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1 Einleitung und Motivation 1

1 Einleitung und Motivation

1.1 Motivation

Heutzutage spielen Robotik und Computer Vision, und deren Anwendung, eine wesentli-

che Rolle in vielen Teilen unseres Lebens. Ein wichtiger Teil von Robotik und Computer

Vision ist die Bildverarbeitung beziehungsweise die 3D Umgebung. Die Erzeugung von

präzisen 3D Modellen ist die Aufgabe von 3D Laserscannern. Mit einer Fotokamera

können 2D Bilder erzeugt werden. Der FARO 3D Laserscanner erzeugt ein 3D Bild von

einer komplexen Umgebung. Diese Umgebung besteht aus verschiedene geometrischen

Objekten.

Der Laserscanner berechnet von seiner Position aus alle Objekte bis zu einer bestimmten

Entfernung. Dazu wird die Umgebung zuerst als eine Menge von Punkten erfasst und zu

Punktwolken zusammengefasst. Letztendlich werden diese von einer Software interpre-

tiert und als ein geometrisches Objekt dergestalt. Normalerweise kann der heutige 3D

Laserscanner Objekte bis zu einer bestimmten Entfernung berechnen. Über Objekte die

außerhalb dieser Entfernung liegen werden keine Information gespeichert.

Jetzt stellt sich die Frage, ob es möglich wäre, mit Hilfe von vorhandenen Daten, die

Entfernung der weit entfernten Objekte zu berechnen. Um dieses Problem zu lösen wer-

den mehrere Aufnahmen der gleichen Umgebung aus verschiedenen Positionen erstellt.

Durch diese unterschiedlichen Betrachtungswinkel kann man mit Hilfe von Software die

Entfernung zu weit entfernt liegenden Objekten berechnen(sehen Sie z.B.[1]).
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1.2 Aufgabenstellung

In dieser Diplomarbeit sollen die Daten der Laserscanner, die aus unterschiedlichen Scan-

positionen aufgenommen wurden, verifiziert oder ergänzt werden. Die zu untersuchenden

Bereiche werden vorab durch den speziellen Marker markiert.

Betrachtet man nun zwei Scanpunktmengen A und B, die von unterschiedlichen Stand-

orten aufgenommen wurden, so können folgende Szenarien entstehen:

• Ein Scanpunkt mit vorhandener Distanzinformation in A enthält nach der Projek-

tion in B ebenfalls eine Distanz. Hier soll eine Gegenprüfung der beiden Messungen

stattfinden.

• Ein Scanpunkt mit vorhandener Distanzinformation in A enthält nach der Projek-

tion in B keine Distanz. In diesem Fall soll die Distanz in B berechnet werden.

• Ein Scanpunkt hat keine Distanzinformation in A und die Distanz konnte durch

vorhergehende Schritte nicht bestimmt werden. Hier soll zuerst eine pixelweise

Korrespondenz gefunden bzw. überprüft werden. Danach soll die Distanz in A

und B berechnet werden. Im ersten Ansatz kann davon ausgegangen werden, dass

die Marker exakt platziert wurden. Als nächstes soll die ungenaue Markerposition

durch pixelweise Korrespondenzfindung kompensiert werden.
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1.3 Gliederung

Die Arbeit ist in folgende Abschnitte gegliedert:

Kapitel 2 beschreibt die grundlegenden Konzepte, die in dieser Arbeit verwendet wer-

den.

Kapitel 3 stellt ein geometrisches Modell vor, das die geometrischen Beziehungen zwi-

schen verschiedenen Kamerabildern des gleichen Objekts aus verschiedene Winkelpo-

sitionen darstellt. Mit Hilfe dieser Beziehungen lässt sich die Abhängigkeit zwischen

korrespondierenden Bildpunkten beschreiben.

Kapitel 4 beschreibt die Analyse zweier Ansichten eines Stereokamerasystems.Das Ziel

besteht darin, korrespondierende Bildpunkte oder Bildmerkmale in zwei unterschiedli-

chen Bildern zu finden. Die Korrespondenzanalyse ist ein klassisches Aufgabefeld der

Bildanalyse. Es gibt viele Verfahren für die Korrespondenzanalyse, wir werden aber nur

die Pixel- und die Merkmalsbasierten Verfahren.

Kapitel 5 beschreibt die Problematik und Lösungswege für das vorgestellte Problem.

Kapitel 6 beschreibt ein Block Matching Verfahren.

Kapitel 7 fasst das Themengebiet nochmals zusammen.
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2 Grundlagen und Begriffe

2.1 Lasercannes

Abbildung 2.1: FARO Laser Scanner Photon

Laser steht für ’light amplification by stimulated emission of radiation’ und beschreibt

den Vorgang der Lichtverstärkung durch stimulierte Emission. Dieses Ereignis führt zur

Entstehung der Laserstrahlung. Anfang des 20. Jahrhunderts hat Albert Einstein die

Idee der stimulierten Emission eingeführt, und 1960 hat Theodore Maiman den ersten

funktionsfähigen Laser realisiert. Im Gegensatz zu anderen Lichtquellen, wie Glühlampen

oder der Sonne, die Licht in alle Raumrichtungen mit relativ unbestimmten Frequenzen

aussenden, emittiert der Laser einen gut gebündelten Strahl mit hoher Frequenzschärfe.

Allgemein zeichnet sich Laserlicht durch folgende Eigenschaften aus (sehen Sie z.B. [2]):
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• geringe spektrale Linienbreite

• starke Bündelung

• hohe Strahlintensität(-Energie)

• Eignung zur Erzeugung ultrakurzer Lichtimpulse

Laserscanning(sehen Sie z.B.[3])(auch Laserabtastung) bezeichnet das zeilen- oder ras-

terartige Überstreichen von Oberflächen oder Körpern mit einem Laserstrahl, um diese

zu vermessen,zu bearbeiten, oder um ein Bild zu erzeugen. Geräte, die den Laserstrahl

entsprechend ablenken, heißen Laserscanner. Ein Laserscanner besteht aus einem Scan-

kopf und einer Treiber- und Ansteuerelektronik. Die Elektronik besteht aus einem leis-

tungselektronischen Teil, der die Ströme für die Antriebe liefert, und aus einer eingebet-

teten Scannersoftware.

Bei Messanwendungen wird das Ergebnis des Scanvorgangs von Sensoren über den glei-

chen oder einem getrennten optischen Weg empfangen und von der Scannersoftware

erfasst, die auch die anderen Komponenten anspricht und kontrolliert.

Beim 3D-Laserscanning wird die Oberflächengeometrie von Gegenständen mittels Pul-

slaufzeit, Phasendifferenz im Vergleich zu einer Referenz, oder durch Triangulation von

Laserstrahlen digital erfasst. Dabei entsteht eine diskrete Menge von dreidimensionalen

Abtastpunkten, die als Punktwolke bezeichnet wird. Die Koordinaten der gemessenen

Punkte werden aus den Winkeln und der Entfernung in Bezug zum Ursprung (Gerätes-

tandort) ermittelt.

Anhand der Punktwolke werden entweder Einzelmaßse wie z.B. Längen und Winkel

bestimmt, oder es wird eine geschlossene Oberfläche aus Dreiecken konstruiert. Moderne

Lasermesssysteme erreichen eine Punktgenauigkeit von bis zu 1 mm.

Im Bereich der Laserscanner, die nach dem Phasendifferenzverfahren (Phasenmessver-

fahren) arbeiten, wurden in den letzten Jahren enorme Fortschritte insbesondere in

Hinblick auf die Abtastrate erzielt. So erreichen aktuelle Geräte Messgeschwindigkeiten

von über 1 000 000 3D-Messpunkten (1MHz) pro Sekunde. Dabei wird, im Gegensatz

zum Impulslaufzeitmessverfahren, ein kontinuierlicher Laserstrahl ausgesandt. Die Am-

plitude des ausgesandten Laserstrahls wird mit mehreren sinusförmigen Wellen unter-
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schiedlicher Wellenlänge moduliert. Der entstehende zeitliche Abstand des empfangenen

Signals gegenüber dem gesendeten Signal ist eine Folge der Entfernung zum Objekt. Bei

gleichzeitiger Betrachtung der Phasenlage des gesendeten und des empfangenen Signals

ergibt sich eine Phasendifferenz, die die Bestimmung des Objektabstandes erlaubt.

Der Einsatz des Laserscanning:

• Architekturvermessung mit Schwerpunkten in der Bauforschung und Denkmalpfle-

ge

• Bei möblierten Gebäude sind die Scanergebnisse de facto nicht auswertbar.

• andere Gebiete z.B. Rohrleitungsbau, Anlagenbau, Archölogie, Denkmalschutz,

Tunnelbau, Forensik und Unfallforschung.
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2.2 Photogrammetrie

Photogrammetrische Verfahren stützen sich auf photographisch erzeugte Abbildungen,

Fotos oder Videobilder. Dadurch soll die Lage, Größe und Form von Objekten bestimmt

werden. Die Messungen werden nicht direkt am Objekt, sondern indirekt aus deren Ab-

bildern im Foto vorgenommen. Die Erfassung von geometrischen Objekten durch ein

photogrammetrisches Verfahren besteht aus zwei Stufen. In der ersten Stufe ist das Foto

vor Ort in der Art einer originären Erfassung herzustellen; d.h. das Objekt soll foto-

grafiert werden. In der zweiten Stufe werden die interessante Objektmerkmale aus dem

Foto im Sinne einer sekundären Erfassung bestimmt. Das Ableiten von Geometrieinfor-

mationen aus den Fotos setzt voraus, dass die Abbildungsvorschrift sehr genau bekannt

ist. In der Regel werden daher Kameras benutzt, die annähernd eine ideale zentralper-

spektivische Abbildung gewährleisten. Sind die Abbildungseigenschaften einer Kamera

über mehr oder minder lange Zeit konstant oder können diese auf einfache Weise, z. B.

durch eine Resauplatte, aus den Fotos rekonstruiert werden, so spricht man von Mess-

kammern bzw. Teilmesskammern. Aber auch aus Photos, die mit einer Amateurkamera

mit unbekannten Abbildungseigenschaften aufgenommen wurden, sind geometrische In-

formationen bestimmbar, wenn zugleich die Abbildungseigenschaft mitbestimmt wird.

Hierzu werden Referenzobjekte genutzt, deren abgebildete Form und Größe mit ihrer

Sollgröße mathematisch in Verbindung gebracht werden .

Das Fotografieren ist ein physikalischer Vorgang, sodass Fotos die darauf abgebilde-

ten Objekte objektiv dokumentieren. Ein Foto stellt ein Informationsträger sehr hoher

Dichte dar und kann zu beliebiger Zeit und mehrmals unter verschiedenen Aspekten aus-

gewertet werden. Der Informationsträger Foto hält das vom Objekt zum Zeitpunkt des

Fotografierens reflektierte Umgebungslicht fest. Es werden somit ausschließllich radiome-

trische Informationen in einem wohldefinierten Bildkoordinatensystem gespeichert. Der

fotografische Messvorgang ist dem menschlichen Sehen nachempfunden, sodass die abge-

bildete Farb- und Helligkeitsinformation unmittelbar durch den Betrachter interpretiert

werden können(sehen Sie z.B. [4]).

Die Photogrammetrie hat folgende spezielle Vorteile bei der geometrischen Erfassung:
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• Das Fotografieren benötigt nur einen Bruchteil von Sekunden, sodass auch von

beweglichen Plattformen aus fotografiert werden kann oder das Messobjekt sich

bewegen darf.

• Die Fotos selbst sind bereits Endprodukte und eignen sich zur Dokumentation.

• Zur Aufnahme schwierig zu erreichender Abschnitte können Hubgeräte, Fesselbal-

lons, (Modell-) Hubschrauber etc. eingesetzt werden.

• Die zeitliche Trennung zwischen Aufnahme und Auswertung erlaubt die Vermes-

sung von zerstörten oder bereits untergegangenen Gebäuden. Dieser Aspekte der

Rekonstruktion von Gebäuden ist für die Denkmalpflege äußerst interessant.

• Moderne Digitalkameras und analytische Photogrammetrie-Auswerteprogramme

erlauben eine preiswerte Erfassung und Auswertung.

• Das berührungslose Vermessen ist auch möglich wenn das Messobjekt: schwer

zugänglich, sehr kompliziert strukturiert,sehr heiß,sehr weich,sehr empfindlich,sehr

giftig oder radioaktiv ist.

Die größten Schwächen der photogrammetrischen Verfahren liegen darin begründet, dass

• für eine ausreichende Beleuchtung des Objektes zu sorgen ist, insbesondere im

Gebäudeinneren,

• durch die Abbildung die Tiefeninformation der Objektgeometrie verloren geht und

• das Photo ein im Maßstab verkleinertes Zwischen-Modell auf dem Weg zum drei-

dimensionalen bzw. maßstabsgetreuen Modell darstellt.

Die erste Schwächen kann mittels zusätzlicher aktiver Beleuchtung durch Blitzgeräte

überwunden werden. Die zweite führt dazu, dass zur Gewinnung von dreidimensionalen

Informationen mindestens zwei Fotos erforderlich sind, auf denen jeweils das auszumes-

sende Objekt abgebildet ist, und die von unterschiedlichen Aufnahmeorten stammen

müssen. Sind solche zwei sich Überdeckenden Fotos vorhanden und sind deren Auf-

nahmestandorte und Aufnahmerichtungen bekannt, so kann über ein modifiziertes drei-

dimensionales Vorwärtseinschneiden im Angesicht der Fotos dreidimensional gemessen

werden. Durch dieses Verfahren(Beobachten, Analysieren und Dokumentieren) können
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die Objekte virtuell nachempfunden werden. Die photogrammetrische Aufnahme ist ein

relativ einfaches, preiswertes und hochgenaues Verfahren, mit dem ein detailreiches und

schnelles Modell hergestellt werden kann. Der Modellmaßstab ist für Aufgaben der Bau-

aufnahme deutlich kleiner als der Maßstab des zu erstellenden Zielmodells. Während

der, zum Teil recht aufwendigen, Auswertung ist damit eine Vergrößerung der originären

Messinformation nötig. Im Vergleich zu anderen (direkten) Erfassungsverfahren wird das

Endprodukt aus einem stark verkleinerten Zwischenmodell abgeleitet. Hierdurch ergeben

sich theoretisch Genauigkeitsverluste. Um diese zu minimieren, muss der Bildmaßstab

der Photos vergrößert und die Qualität der Messkammer, im Bezug zur Präzision der

inneren Orientierung, erhöht werden. Die Detailerkennbarkeit und Genauigkeit der pho-

togrammetrischen Auswertung ist wesentlich von der photographischen Auflösung und

dem Bildmaßstab abhängig.

Die Photogrammetrie kann nicht zur Erfassung von Objekten eingesetzt werden bei

denen die Oberfläche ohne Struktur ist, die sich im Abbild abzeichnen können, oder

wenn sie durchsichtig sind. Andere Erfassungsmethoden wie z. B. das Laserscanning

haben hier keine Probleme. Oftmals wird hervorgehoben, dass mittels Photogrammetrie

flächenhaft vermessen werden kann. Dies gilt nur dann wenn die Objektoberfläche an

jeder Stelle abbildbare Strukturen z.B. Farbänderungen aufweist.

Der größte Vorteil der Photogrammetrie ist der der berührungslosen Messung. So kann

z.B. ein Museumsstück oder eine Skulptur, die nicht berührt werden sollte, anhand von

markanten Punkten problemlos vermessen werden. Das zu vermessende Objekt kann

zu jedem Zeitpunkt festgehalten werden. Der Zeitbedarf bleibt dabei sehr gering, da

ein Bild innerhalb kürzester Zeit aufgenommen wird. Außerdem kann die Auswertung

der Bilder örtlich und zeitlich getrennt von der Aufnahme erfolgen. Die Qualität und

Genauigkeit der Aufnahmen ist sehr flexibel und kann je nach Bedarf variiert werden. Bei

der digitalen Photogrammetrie ist die Speicherung sehr effektiv und geometrisch stabil.

Detaillierte Informationen sind jederzeit extrahierbar und können schließlich vielfältig

analysiert werden.

Es gibt jedoch auch einige Nachteile. Auf den Fotografien sind nur Oberflächenda-

ten zu sehen. Eine notwendige Voraussetzung ist also, dass das Objekt abbildbar ist.

Wenn dies der Fall ist, kann die Auswertung durch zufalllige Verdeckungen, wie fallende

Blätter,fliegende Vögel, oder auch Regen behindert werden. Bei der Luftbildphotogram-



2 Grundlagen und Begriffe 10

metrie sind schon kleinste Wolken problematisch. Ein weiteres Problem besteht in fehlen-

den Kontrasten, bedingt durch Schnee oder fehlerhafte Beleuchtung. Je nach Wetterlage

oder Beleuchtung im Raum ist indirekte Beleuchtung erforderlich. Außerdem sind für

dreidimensionale Erfassungen mindestens zwei Aufnahmen von unterschiedlichen Stand-

orten mit dem gleichen Bildinhalt erforderlich, sodass oft eine Flut von Bildmaterial

entsteht(sehen Sie z.B. [5]).
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2.3 Triangulationen

Das Grundprinzip der Triangulation ist in der Abbildung 2.2 vereinfacht für den zwei-

dimensionalen Fall dargestellt. Von zwei verschiedenen Stationen an den Positionen

S1(Laser) und S2(Kamera) wird der zu bestimmende Zielpunkt P(Objektpunkt) an-

gepeilt. Dabei erhält man die beiden Winkel α und β mit der Genauigkeit ∆α und ∆β.

Unter Kenntnis der Basislänge b kann man dann die Koordinaten von P relativ zum

Koordinatenursprung bestimmen.

Abbildung 2.2: Triangulation

Vereinfacht könnte man auch sagen, dass von zwei Punkten auf einer Geraden, wobei

der Abstand zwischen den beiden Punkten bekannt ist, Winkelmessungen zu beliebig

anderen Punkten im Raum erfolgen, um deren Lage eindeutig zu bezeichnen.

Im dreidimensionalen Raum ist zu beachten, dass sich die zwei Sichtgeraden der beiden

Basisstationen im Normalfall mathematisch nicht exakt schneiden, sondern windschief

sind. Betrachtet man das lineare Gleichungssystem zur Bestimmung der Punktkoordi-

nate P so ist dieses im zweidimensionalen Raum eindeutig lösbar, im dreidimensiona-

len Raum jedoch Überbestimmt und somit nicht mehr eindeutig lösbar. Das bedeutet,

dass in den Gleichungen Zusatzinformationen enthalten sind, die man nutzen kann um

beispielsweise den Messfehler von P aus dem Abstand der windschiefen Geraden zu

schätzen.
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Im Umkehrschluss ist es auch möglich die Anzahl der Beobachtungen zu reduzieren.

Anstelle für beide Basisstationen jeweils zwei Richtungswinkel zu messen genügt es, dies

nur bei einer Station zu tun. Bei der zweiten Station wird nur die Winkelkomponente in

der Ebene die aus S1, S2 und P aufgespannt wird bestimmt. Die graphische Lösung der

Schnittgleichung enthält damit nicht mehr zwei Geraden sondern eine Ebene und eine

Gerade und ist somit bei physikalisch sinnvollen Beobachtungen immer eindeutig lösbar.

Eine technische Umsetzung dieses Prinzips findet man in der Streifenprojektion(sehen

Sie z.B. [16]).
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2.4 Grundlagen dreidimensionaler Darstellungen

In diesem Kapitel werden mathematische Grundlagen für 3D Umgebung beschrieben

(sehen Sie z.B.[6]).

2.4.1 Koordinatensysteme

Zweidimensionales Polarkoordinatensystem

Ein zweidimensionales Polarkoordinatensystem besteht aus zwei Geraden, die orthogonal

zueinander liegen (Abbildung 2.3). Ein Punkt in einem Polarkoordinatensystem wird

durch ein zweier Tupel (r,θ) beschrieben, siehe Abbildung 2.4

Abbildung 2.3: Polarkoordinatensystem

Abbildung 2.4: Punkt in einem Polarkoordinatensystem
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Zweidimensionales kartesisches Koordinatensystem

Ein zweidimensionales kartesisches Koordinatensystem besteht aus zwei Achsen, die wie

beim Polarkoordinatensystem orthogonal zueinander liegen. Ein Punkt in einem zweidi-

mensionalen Koordinatensystem wird durch ein zweier Tupel (x, y) beschrieben, siehe

Abbildung 2.5.

Abbildung 2.5: Punkt in einem zweidimensionalen kartesischen Koordinatensystem

Umrechnung von Polarkoordinaten in kartesischen Koordinaten (2D)

Um einen Punkt (r,θ) eines zweidimensionalen Polarkoordinatensystems in einen karte-

sischen Punkt (x, y) umzurechnen, werden folgende Formeln für die Berechnung des x

und y Wertes genutzt:

x = r cos(θ) (2.1)

y = r sin(θ) (2.2)

Dreidimensionales kartesisches Koordinatensystem

Ein dreidimensionales Koordinatensystem besteht aus drei Achsen, die alle zueinander

orthogonal liegen. Ein Punkt in einem dreidimensionalen Koordinatensystem wird durch

ein dreier Tupel (x, y, z) beschrieben, siehe Abbildung 2.6.
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Abbildung 2.6: Punkt in einem dreidimensionalen Koordinatensystem

Umrechnung von Polarkoordinaten in kartesische Koordinaten (3D)

Abbildung 2.7: Punkt in einem dreidimensionalen Koordinatensystem

x = r sin(θ) cos(ϕ) (2.3)

y = r sin(θ) sin(ϕ) (2.4)

z = r cos(θ) (2.5)
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2.4.2 Homogene Koordinaten im 3D Raum

Objekte in der Ebene werden durch kartesische, Zylinder- oder Kugelkoordinaten dar-

gestellt. Außerdem kann es auch mit homogenen Koordinaten beschreiben, diese han-

ben einen großen Vorteil. Durch homogene Koordinaten kann man alle geometrischen

Transformationen einheitlich durch Matrixmultiplikationen darstellen. Kartesische und

homogene Koordinaten befinden sich in folgendem Zusammenhang:

• Ein Punkt P = (x, y) R2 besitzt [x, y, 1] als homogene Koordinaten.

• Ein Punkt P = (x, y, z) R3 besitzt [x, y, z, 1] als homogene Koordinaten.

• Ein zweidimensionaler Vektor wird als (3 x 3)-Matrix dargestellt.

• Ein dreidimensionaler Vektor wird als (4 x 4)-Matrix dargestellt.

Sowohl in zweidimensionalen Raum als auch in dreidimensionalen Raum kann man fol-

gende Koordinatentransformationen einsetzen:

• Verschiebung von Objekten (Translation)

• Vergrößerung und Verkleinerung von Objekten (Skalierung)

• Drehung (bzw. Spiegelung an einem Punkt) von Objekten (Rotation)

Hiermit werden die Transformationen in dreidimensionalen Räumen beschrieben.

3D Translation um den Vektor (a,b,c)

P
′
= T · P =


x+ a

y + b

z + c

1

 =


1 0 0 a

0 1 0 b

0 0 1 c

0 0 0 1



x

y

z

1

 (2.6)

T = Translationmatrix
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3D Skalierung mit den Faktoren Sx, Sy und Sz

P
′
= S · P =


Sx · x
Sy · y
Sz · z

1

 =


Sx 0 0 0

0 Sy 0 0

0 0 Sz 0

0 0 0 1



x

y

z

1

 (2.7)

S = Skalirungsmatrix

3D Rotation um einen Winkel α

Wenn man in Richtung der positiven z-Achse blickt, bezeichnet man die Winkel im

Gegenuhrzeigersinn als positiv.

Für eine Drehung um die z-Achse ergibt sich folgende Matrix:

P
′
= Rz · P =


x · cos(α)+y · sin(α)

y · cos(α)−x · sin(α)

z

1

 =


cos(α) sin(α) 0 0

− sin(α) cos(α) 0 0

0 0 1 0

0 0 0 1



x

y

z

1

 (2.8)

Rz = Rotationmatrix

Entsprechend gilt für eine Drehung um die y-Achse

P
′
= Ry · P =


x · cos(α)−z · sin(α)

y

x · sin(α)+z · cos(α)

1

 =


cos(α) 0 − sin(α) 0

0 1 0 0

sin(α) 0 cos(α) 0

0 0 0 1



x

y

z

1

 (2.9)

Ry = Rotationmatrix
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Eine Drehung um die x-Achse ergibt

P
′
= Rx · P =


x

y · cos(α)+z · sin(α)

−y · sin(α)+z · cos(α)

1

 =


1 0 0 0

0 cos(α) sin(α) 0

0 − sin(α) cos(α) 0

0 0 0 1



x

y

z

1

 (2.10)

Rx = Rotationmatrix

Abbildung 2.8: Drehung um die z-, y- und x-Achse im Gegenuhrzeigersinn

Spiegelungen

Spiegelungen sind Spezialfälle der Skalierung. Für eine Spiegelung am Nullpunkt des

Koordinatensystems erhält man

P
′
= S0 · P =


−x
−y
−z
1

 =


−1 0 0 0

0 −1 0 0

0 0 −1 0

0 0 0 1



x

y

z

1

 (2.11)

S0 = Skalierungsmatrix am Nullpunkt
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Für eine Spiegelung an der Achsenebene x = 0 (also an der (y , z)-Ebene) erhält man

P
′
= Sx · P =


−x
y

z

1

 =


−1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1



x

y

z

1

 (2.12)

Sx = Skalierungsmatrix an x-Achse

2.4.3 Koordinatentransformationen im 3D Raum

Transformation von Koordinatensystemen

Im vorhergehenden Abschnitt wurden Transformationen von Punkten bei festgehalte-

nem Koordinatensystem betrachtet. Oft ist es jedoch auch notwendig, die Koordinaten

desselben Punktes in unterschiedlichen Koordinatensystemen zu ermitteln. Wir benöti-

gen daher auch Transformationen von Koordinatensystemen.

Translation eines Koordinatensystems

Abbildung 2.9: Translation eines Koordinatensystems

Zu einem gegebenen Punkt P mit den Koordinaten (x , y , z) in einem Koordinatensys-

tem K sind die Koordinaten (x’ , y’ , z’) desselben Punktes P bezüglich eines zweiten
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Koordinatensystems K’ gesucht. K’ sei gegenüber K um den Vektor ( a , b , c) verscho-

ben.

PK′ = T · PK =


x− a
y − b
z − c

1

 =


1 0 0 −a
0 1 0 −b
0 0 1 −c
0 0 0 1



x

y

z

1

 (2.13)

Eine Translation des Koordinatensystems um den Vektor ( a , b , c) ist äquivalent zu

einer Objekttranslation um den Vektor (-a , -b , -c).

Rotation des Koordinatensystems

Zu einem gegebenen Punkt P mit den Koordinaten ( x , y , z) in einem Koordinaten-

system K sind die Koordinaten (x’ , y’ , z’) desselben Punktes P bezüglich eines zweiten

Koordinatensystems K’ gesucht, das gegenüber K um den Winkel α gedreht ist.

Abbildung 2.10: Rotation eines Koordinatensystems
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Mit den Beziehungen für das

Dreieck OB
′
x : sinα =

B′x

x
=
OA′

x
und cosα =

OB′

x
(2.14)

Dreieck PC
′
x : sinα =

C ′x

Px
=
B′x′

y
und cosα =

PC ′

Px
=
A′y

y
(2.15)

ergibt sich nach Abbildung 2.10 für eine Drehung um die z-Achse:

x
′
= OB′ −B′x′ = x cosα− y sinα (2.16)

y
′
= OA′ − A′y′ = x sinα + y cosα (2.17)

Dies lässt sich durch die folgende Rotation beschreiben:

PK′ = R · PK =


x · cos(α)−y · sin(α)

x · sin(α)+y · cos(α)

z

1

 =


cos(α) − sin(α) 0 0

sin(α) cos(α) 0 0

0 0 1 0

0 0 0 1



x

y

z

1

 (2.18)

Daraus kann man schließen: Eine Rotation des Koordinatensystems um den Winkel α

entspricht eine Rotation der Objekte um den Winkel −α.

Drehung um eine beliebige Raumachse

Als typische Anwendung für Transformationen entwickeln wir nun die Rotationsmatrix

Ra für die Drehung eines Punktes P um eine beliebig orientierte Achse im Raum um

einen Winkel α. Die Drehachse ist dabei eine Gerade der Form G = a+m · b, die durch

die zwei Vektoren a = (ax, ay, az) und b = (bx, by, bz) und dem Skalar m bestimmt wird.

Gesucht sind die Koordinaten eines Punktes P = (x, y, z) nach einer Drehung um die

Achse G um den Winkel α . Man geht dazu in folgenden Teilschritten vor:
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1) Translation

Abbildung 2.11: Translation in den Basispunkt a

Wir verschieben das Koordinatensystem (x, y, z) in den Basispunkt a der Drehachse

durch eine Translation T1. Wir erhalten das Koordinatensystem (x′, y′, z′).

T1 =


1 0 0 −ax
0 0 0 −ay
0 0 0 −az
1 0 0 1

 (2.19)

2) Rotation um die z’-Achse

Abbildung 2.12: Rotation um z’-Achse
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Nun drehen wir das Koordinatensystem (x′, y′, z′) um seine z’-Achse, so dass der Vektor

b in der (x”, z”)-Ebene liegt. Dann gilt:

sinα =
by
d

, cosα =
bx
d

, d =
√
b2x + a2x (2.20)

Da das Koordinatensystem um −α gedreht wird, ergibt sich für die Transformation T2:

T2 =


cosα sinα 0 0

− sinα cosα 0 0

0 0 1 0

0 0 0 1

 =
1

d


bx by 0 0

−by bx 0 0

0 0 d 0

0 0 0 d

 (2.21)

Rotation um die y”-Achse

Abbildung 2.13: Rotation um y”-Achse
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Wir drehen das Koordinatensystem (x”, y”, z”) jetzt so um die y”-Achse, dass die

neue z-Achse in Richtung der gewünschten Drehachse zeigt, also mit dem Vektor b

zusammenfällt. Die Rotationsmatrix für diese Drehung ist:

T3 =
1

e


bz 0 −d 0

0 e 0 0

d 0 bz 0

0 0 0 e

 (2.22)

mit e = |b| =
√
b2x + b2y + b2z , sinα =

d

e
, cosα =

bz
e

Rotation um die z”’-Achse

In dem nun vorliegenden Koordinatensystem ist die gewünschte Drehung eine einfache

Rotation des Objektpunktes um die neue z-Achse mit der Matrix:

T =


cosα sinα 0 0

− sinα cosα 0 0

0 0 1 0

0 0 0 1

 (2.23)

Zusammenfassung zur Gesamttransformation

Die gesuchte Transformation Ta lässt sich durch die Verknüpfung der Transformationen

Ta = T · T3 · T2 · T1 (2.24)

ermitteln. Damit der gedrehte Punkt wieder im Ausgangskoordinatensystem vorliegt,

werden anschließend noch die inversen Transformationen T−11 , T−12 und T−13 darauf an-

gewandt. Man erhält somit für die gesuchte Gesamttransformation:

Ta = T−11 · T−12 · T−13 · T · T3 · T2 · T1 (2.25)
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2.4.4 Vergleich zwischen Modell- und Weltkoordinaten

Ein geometrisches Objekt lässt sich durch eine geschlossene Verbindung mehrerer Punkte

über bestimmte Kurven beschreiben. Die Lage eines dieser Punkte P wird dabei durch

seine Koordinaten (xP , yP , zP ) festgelegt.

Das hierfür benötigte Bezugssystem wird so gewählt, dass sich dieses spezielle Objekt

möglichst einfach beschreiben lässt. Ein derartiges Koordinatensystem wird als Modell-

koordinatensystem (x, y, z) oder auch MC (master coordinate system) bezeichnet. Bild

2.14 zeigt 8 Punkte, die in einem beispielhaften Modellkoordinatensystem definiert sind.

Die Verbindung bestimmter Punkte durch Linien ergibt die Darstellung eines Quaders.

Abbildung 2.14: Darstellung eines Quaders im Modellkoordinatensystem (x, y, z)

Die einfache Beschreibung dieses Körpers ist dadurch gekennzeichnet, dass ein Teil der

Punkte auf jeweils einer Koordinatenachse liegt. Beim Zusammenstellen des Objektes

ist es leichter, die gewünschten Seitenlängen direkt auf die Achsen zu übertragen, als

eine Umrechnung auf eine beliebig verschobene und verdrehte Position im Raum vorzu-

nehmen.

Jetzt soll eine Szene, bestehend aus zwei Quadern mit der gleichen Geometrie, aufgebaut

werden. Eine Möglichkeit zu deren Realisierung ist die Definition eines zweiten Quaders

bezüglich des Koordinatensystem des ersten Quaders. Damit sind zwei wesentliche Kon-
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sequenzen verbunden: Der zweite Quader lässt sich nicht mehr einfach im Sinne weniger

Punkte ausserhalb der Koordinatenachsen beschreiben. Außerdem muss der Verlauf der

Verbindungslinien (Geradengleichung: y = m·x + n) zwischen den Punkten für diesen

Quader neu bestimmt werden.

Eine andere Möglichkeit besteht nun darin, das bereits definierte MC einschliesslich des

Quaders zu duplizieren und die Positionen dieser beiden Modellkoordinatensysteme in

Bezug auf ein drittes Koordinatensystem zu beschreiben. Im Bereich der Computergrafik

wird hierzu auf ein speziell definiertes unabhängiges Koordinatensystem zurückgegriffen,

das als Weltkoordinatensystem bezeichnet wird. Die übliche Kurzschreibweise lautet WC

(world coordinate system). Zur Unterscheidung von einem Modellkoordinatensystem

werden dessen Achsen im folgenden mit Großbuchstaben (X, Y, Z) beschriftet.

Abbildung 2.15: einfache, aus zwei gleichartigen Objekten aufgebaute Szene

In Bild 2.15 ist eine nach dem zweiten Verfahren - Bestimmung der relativen Positionen

zusammengestellte Szene zu erkennen. Das aus Bild 2.14 bekannte Modellkoordinaten-

system mit dem darin definierten Quader wurde hierzu dupliziert und die mit MC1 und

MC2 bezeichneten Kopien an bestimmte Positionen im Raum verschoben.

Die Positionierung eines Objektes bezüglich des Weltkoordinatensystems bezeichnet man

als Modelltransformation. Eine Modelltransformation besteht im allgemeinen aus meh-

reren, in einer bestimmten Reihenfolge ausgeführten Transformationsschritten.



2 Grundlagen und Begriffe 27

Modelltransformation

Die Positionierung eines Objektes im Raum lässt sich durch eine Modelltransforma-

tion realisieren. Dabei wird ein deckungsgleich zum Weltkoordinatensystem liegendes

MC durch die schrittweise Ausführung von Einzeltransformationen gedanklich in die

gewünschte räumliche Lage gebracht. Soll jetzt ein Objekt in diesem MC definiert wer-

den, bildet man dazu das Objekt zuerst im WC ab und multipliziert dann die Koor-

dinaten aller Objektpunkte mit den einzelnen Transformationsmatrizen, die zur Posi-

tionierung des MC benötigt wurden. Als Ergebnis erhält man die Weltkoordinaten des

Objektes, kann dieses also mit der korrekten Lage und Orientierung im Raum abbilden.

Abbildung 2.16: einfache, aus zwei gleichartigen Objekten aufgebaute Szene

Im allgemeinen besteht eine Modelltransformation aus einer aufeinanderfolgenden Ausführung

von Rotation, Translation, Skalierung und Spiegelung. Für das folgende Beispiel soll aber

eine mehrfache Rotation ausreichen. Bild 2.16 links zeigt dazu ein deckungsgleich zum

WC(X, Y, Z) liegendes MC(x, y, z), in dem bereits ein würfelförmiges Objekt definiert

ist. Das Objekt soll dabei nur der besseren Erkennbarkeit dienen, denn grundsätzlich ist

die Definition eines Objektes vor abgeschlossener Positionierung des MC nicht notwen-

dig. Im folgenden wird dieses MC von der in Bild 2.16 links erkennbaren Position in die

Position gemäß Bild 2.16 rechts transformiert. Damit die Rotationen um die Achsen des

Modellkoordinatensystems erfolgen können, werden die Richtungsvektoren der Achsen

(x, y, z) durch die drei in Weltkoordinaten angegebenen. Punkte Px(1, 0, 0), Py(0, 1, 0)

und Pz(0, 0, 1) beschrieben. Der erste Schritt der Modelltransformation soll nun eine

Rotation um die z-Achse, beschrieben durch Pz(0, 0, 1), und dem Winkel sein.



2 Grundlagen und Begriffe 28

RM =


x2(1− cosϕ) + cosϕ xy(1− cosϕ)− z sinϕ xz(1− cosϕ) + y sinϕ 0

xy(1 + cosϕ) + sinϕ y2(1− cosϕ) + cosϕ yz(1− cosϕ)− x sinϕ 0

xz(1− cosϕ) + sinϕ yz(1− cosϕ) + x sinϕ z2(1− cosϕ) + cosϕ 0

0 0 0 1


Dafür lässt sich gemäß RM eine Rotationsmatrix RM1 aufstellen

RM1 =


0.87 −0.5 0 0

0.5 0.87 0 0

0 0 1 0

0 0 0 1


Mit der Transformationsmatrix RM1 lassen sich jetzt die Koordinaten der Punkte Px,

Py und Pz berechnen. Pz bleibt für diesen Transformationsschritt unverändert, so dass

nur die Punkte Px auf (0.87, 0.5, 0) und Py auf (-0.5, 0.87, 0) transformiert werden. Die

Zahlenangaben ermöglichen ein einfaches Skizzieren des gedrehten Koordinatensystems

(Bild 2.17 links).

Abbildung 2.17: Rotation mit RM2, RM2 und RM3

Der nächste Schritt soll aus einer Drehung um die y-Achse mit dem Winkel ϕy = 30◦

bestehen. Dabei ist zu beachten, dass die Koordinaten des transformierten Punktes Py

einzusetzen sind. Die zweite Transformationsmatrix ergibt sich deshalb zu
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RM2 =


0.90 −0.06 0.43 0

−0.06 0.97 0.25 0

−0.43 −0.25 0.87 0

0 0 0 1


Durch Multiplikation der Koordinaten mit RM2 berechnen sich die neuen Positionen

der Punkte zu Px(0.75, 0.43, -0.5) und Pz(0.43, 0.25, 0.87); Py bleibt unverändert. Die

abschließende Rotation um die x-Achse mit ϕx = 30◦ ergibt die Rotationsmatrix RM3

RM3 =


0.94 0.29 0.17 0

−0.21 0.89 −0.40 0

−0.27 0.35 0.90 0

0 0 0 1


und die endgültigen Punktkoordinaten Px(0.75, 0.43, -0.5), Py(-0.22, 0.88, 0.43) und

Pz(0.63, -0.22, 0.75).

Nach Durchführung dieses Transformationsschrittes befindet sich das MC an der erwar-

teten Position (Abbildung 2.17 rechts), die Modelltransformation ist damit abgeschlos-

sen. Es sind jetzt alle notwendigen Matrizen bekannt, um die Position eines Objektes in

Weltkoordinaten anzugeben.

Für das vorangegangene Beispiel berechnet man die Weltkoordinaten eines beliebigen

Punktes Q(x, y, z, 1) nach der Gleichung

(QWC)T = RM3 ·RM2 ·RM1 · (QMC)T (2.26)

Die Modelltransformation eines beliebig komplexen Objektes lässt sich realisieren, indem

man mit Gleichung (2.26) alle Objektkoordinaten bezüglich des MC in die entsprechen-

den Weltkoordinaten umrechnet.



3 Epipolargeometrie 30

3 Epipolargeometrie

Hiermit wird eine geometrische Beziehung zwischen mindestens zwei unterschiedlichen

Kameras beziehungsweise mindestens zwei Laserscannern beobachtet. Die Anordnung

von zwei Kameras (Laserscannern) wird als Stereosystem bezeichnet und lässt sich in

Abhängigkeit von ihren räumlichen Anordnungen in zwei grundsätzliche Klassen un-

terteilen. Davon ist die eine das achsparallele Stereosystem, die andere die konvergente

Anordnung. Im ersten Fall liegen beide Kameras auf einer optischen Achsen und sind

parallel ausgerichtet. Im zweiten Fall können die Kameras beliebig positioniert werden.

In dieser Arbeit wird der zweite Fall beschrieben(sehen Sie z.B. [7]).

3.1 Achsparalleles Stereogeometrie

Abbildung 3.1: Achsparallele Stereogeometrie

Das achsparallele Stereosystem ist durch zwei Kameras ausgeprägt, die nur horizontal

verschoben sind. Abbildung 3.1 zeigt zwei parallel ausgerichtete Kameras mit den Brenn-
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punkten L bzw. R. Ihre Bildebenen liegen in einer gemeinsamen Ebene eingebettet. Die

Variable b bezeichnet den horizontalen Abstand der Kameras und f die Brennweite.

Punkt P stellt das beobachtete Objekt dar. Die Entfernung von P zur Basislinie ist z.

Als horizontale Bildkoordinate von P ergibt sich für die linke Kamera der Wert xL und

für die rechte Kamera der Wert xR.

d := xL − xR (3.1)

Den Abstand d bezeichnet man als Disparität d.h. die Verschiebung zwischen korre-

spondierenden Bildpunkten. Durch Verwendung des Strahlensatzes ergibt sich für die

Entfernung z die Beziehung

z =
f ∗ b
d

(3.2)

Hat man z berechnet, lassen sich auch die x- und y-Koordinate von P im dreidimensio-

nalen Raum berechnen. In einem Koordinatensystem, dessen Ursprung im Brennpunkt

der linken Kamera liegt, gilt:

x =
xL
f
z, y =

yL
f
z (3.3)

Die Entfernung verhält sich umgekehrt proportional zur Disparität. Das bedeutet, dass

eine Disparität von 0 für unendliche Entfernung steht. Bei abnehmender Entfernung

nimmt die Disparität zu. Bei bekannten Kameraparametern (f, b) ist die Disparität

damit ein eindeutiges Maß für die Objektentfernung.
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3.2 Die allgemeine Stereogeometrie

Die Epipolargeometrie bearbeitet einen Teilbereich der projektiven Geometrie. Sie wird

auch als allgemeine Stereogeometrie bezeichnet. Die Epipolargeometrie deckt im Wesent-

lichen alle Projektionen und Operationen im zwei- bzw. dreidimensionalen euklidischen

Raum ab. Sie beschreibt vollständig die geometrischen Informationen korrespondieren-

der Punkte zwischen zwei perspektivischen Bildern zueinander.

Es ist nicht möglich, die Position eines Objektes aus den Pixeln eines Bildes zu bestim-

men. Um räumliche Informationen aus digitalen Bildern zu bekommen, werden deshalb

mindestens zwei Ansichten, manchmal auch mehrere Ansichten benötigt. Nach der Auf-

nahme eines Bildpaares werden korrespondierende Punkte gesucht, d.h. Punkte bei de-

nen im linken und rechten Bild der gleiche Weltpunkt abgebildet wird. Es müsste also für

jeden Bildpunkt im linken Bild das komplette rechte Bild nach dem korrespondierenden

Punkt durchsucht werden.

Abbildung 3.2: Epipolargemetrie

Sei m1 ein Bildpunkt einer perspektivischen Abbildung des 3D-Raumpunktes M auf

eine Bildebene I1. Können darauf aufbauend Einschränkungen der Positionen des korre-

spondierenden Bildpunktes m2 in einer weiteren Bildebene I2 gemacht werden? Es soll

gezeigt werden, dass Einschränkungen aus der Kalibrierung, und bekannter Lage zweier

Kameras zueinander formuliert werden können. Die Suche über den ganzen Bildraum

kann auf eine Suche über eine Linie reduziert werden. Durch eine Transformation der

Bilder kann zudem erreicht werden, dass diese Linien mit den Zeilen der transformier-
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ten Bilder zusammenfallen und folglich eine horizontale Suche ermöglicht wird. Diese

Transformation wird Rektifikation genannt.

Seien nun zwei Kameras mit ihren optischen Zentren C1,C2 auf den gleichen Raumpunkt

M ausgerichtet wie in Abbildung 3.2 dargestellt. Die Verbindungslinie zwischen den bei-

den optischen Zentren C1,C2 wird Basislinie B genannt. Aufgrund der leicht zueinander

gedrehten Bildebenen I1 und I2 schneidet die Basislinie beide Bildebenen. Die Schnitt-

punkte der Basisline mit den Bildebenen werden Epipole genannt und mit e1 und e2 ge-

kennzeichnet. Anders formuliert stellen die Epipole die Projektion der optischen Zentren

in die jeweils andere Bildebene dar. Ihre Position in den Bildebenen hängt ausschließlich

von der Anordnung der Kameras zueinander ab. Sie können, müssen sich aber nicht,

in den jeweils aufgenommenen Bildern befinden. Die beiden optischen Zentren C1,C2

spannen gemeinsam mit dem 3D-Raumpunkt M eine Ebene auf, die als Epipolarebe-

ne bezeichnet wird. Es ist offensichtlich, dass auch die Punkte m1 und m2 auf dieser

Ebene π liegen, da die optischen Strahlen von M zu C1 und M zu C2 Geraden auf der

Epipolarebene sind.

Der 3D-Raumpunkt M liegt auf der Geraden, die durch das Projektionszentrum C und

seinem Bildpunkt m definiert wird. Diese Gerade, in das andere Bild projiziert, kenn-

zeichnet die Epipolarlinie li und entspricht genau der Schnittgeraden der Bildebenen

mit der Epipolarebene π. Da die Bildpunkte m1, m2 komplanar in der Epipolarebene

π sind, müssen Sie sich folglich auf den Epipolarlinien , l2 befinden. Alle Abbildungen

m1π, m2π der zu π komplanaren Raumpunkte Mπ müssen auf den Epipolarlinien l1π,l2π

liegen. Rotiert man die Epipolarebene um die Basislinie, so kann die Gesamtheit aller 3D

Punkte im Raum erfasst werden. Aus jeder neuen Epipolarebene resultieren jeweils neue

Schnittgeraden mit den Bildebenen und somit neue Epipolarlinien. Das gemeinsame an

diesen Epipolarlinien ist, dass sie sich in den jeweiligen Epipolen ihrer Bildebene schnei-

den. Die Gesamtheit der Epipolarlinien in einer Bildebene wird Epipolarlinienbüschel

(engl. pencil of epipolarlines) genannt. Als wesentliche Eigenschaft erhält man somit

folgende wichtige Beziehung. Wird ein 3D Punkt M in einem Bild an einer bestimmten

Bildposition abgebildet, so beschränkt sich die Suche des korrespondierenden Punktes

m2 auf die Epipolarlinie l2, statt auf das gesamte Bild(sehen Sie z.B. [8]).
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3.3 Beziehungen in Kamerakoordinaten

Bei Stereogeometrie muss ein Kamerasystem existieren, das mindestens aus zwei Ka-

meras besteht,wobei die Kameras zueinander gedreht sind. Diese allgemeine Positions-

und Orientierungsänderung wird durch Koordinatentransformation angegeben(sehen Sie

z.B.[7]).

MC2 = RMC1 + t (3.4)

wobei R eine orthogonale Drehmatrix und t der dreidimensionale Verschiebungsvektor

ist.

In Kamerakoordinaten stehen Systeme über eine Transformation in Beziehung, wobei

der Ursprung in das Koordinatensystem der Kamera 1 gelegt wird.xy
z

 = R

x1y1
z1

 + t, mitR =

x
T
1

yT1

zT1

 (3.5)

Aus dem Lochkameramodell ergeben sich die Abbildungen eines 3D Punktes M in Sen-

sorkoordinaten:

m̃
′
1 =

M1

z1
, m̃

′
2 =

M2

z2
(3.6)

aus (3.5) und (3.6) erfolgt

m̃
′
2 =

1

z2
(z1Rm̃

′
1 + t) (3.7)

Das Kreuzprodukt der Gleichung mit dem Vektor t und weiterhin das innere Produkt

(Skalarprodukt) mit m̃
′
2 sowie die Eliminierung der Strukturparameter gibt schließlich

die folgende Gleichung.

t× m̃′
2 =

z1
z2
t×Rm̃′

1 (3.8)

m̃
′
2(t× m̃

′
2) = m̃

′
2t× (Rm̃

′
1) = 0 (3.9)
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 0 −tz ty

tz 0 −tx
−ty tx 0

 , mit [t]x = −[t]Tx (3.10)
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Mit dieser Schreibweise erhält man schließlich die zentrale Gleichung für die mathe-

matische Beziehung zwischen den Abbildungen eines 3D Punktes in zwei Kameras, die

Epipolargleichung

m̃
′
2

T

Em̃
′
2 = 0,mit E = [t]xR (3.11)

3.4 Bestimmung der Epipolarlinien

Eine Linie in einer Ebene kann mit dem dreidimensionalen Vektor v auf folgende Weise

beschrieben werden:

ax+ by + cz = 0, mit v = [a, b, c]T (3.12)

Für Punkte auf diese Linie müssen die Ausführungen zur Projektive Ebene gelten:

pT1 v = 0 und pT2 v = 0, mit pi = [xi, yi, 1]T (3.13)

Eine Linie kann durch das Kreuzprodukt zweier Punkte definiert werden.

l = p1 × p2 (3.14)

Jeder 3D Punkt der zugehörigen Bildpunkte kann mit dem Kameramodell in homogenen

Koordinaten und auch mit entsprechendem Skalierungsfaktor λ darstellt werden.

λ1m̃
′
1 = M1 und λ2m̃

′
2 = M2, mit λi ∈ (0,∞) (3.15)

Die beiden Kameras können über die Euklidische Transformation verknüpft werden.

M2 = RM1 + t = λ1Rm̃
′
1 + t (3.16)

λ2m̃
′
2 = λ2Rm̃

′
1 + t (3.17)

Nun kann die Epipolarlinie in Kamera 2 über zwei ausgezeichnete Punkte berechnet

werden. Dies ist der Epipol in Ansicht2, der die Projektion des optischen Zentrums von

Kamera1 in der Bildebene 2 darstellt. Er entspricht damit einer Skalierung mit λ1 = 0

und man erhält den Epipol dann aus Gl. 3.17, der bis auf einen Faktor dem Vektor t

entspricht:

ẽ
′
2 = t (3.18)
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Die Abbildung eines Punktes in Ansicht 2 ist der zweite Punkt und entspricht einer

Skalierung von m̃
′
1 mit λ1 = ∞ . Hier kann man den Vektor t vernachläßigen und man

erhält die Projektion des Punktes m̃
′
2∞

m̃
′
2∞ = Rm̃

′
1 (3.19)

Aus beiden Abbildungen kann die Epipolarlinien in Ansicht 2 berechnen werden.

l
′

2 = ẽ
′
2 × m̃

′
2∞ = t×Rm̃′

1 = Em̃
′
1 (3.20)

Die korrespondierende Epipolarlinie in Ansicht 1 lautet:

l
′

1 = ET m̃
′
2 (3.21)
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3.5 Beziehungen in Bildkoordinaten

Die intrinsische Transformation, die durch Matrix A hergestellt wird, kann man durch

den Zusammenhang zwischen normierten Kamerakoordinaten und Pixelkoordinaten be-

schreiben. Sie lauten für die beiden Kameras(sehen Sie z.B. [8]):

m̃1 = A1m̃
′
1 und m̃2 = A2m̃

′
2 (3.22)

Falls man nun diese Beziehung in die Epipolargleichung einsetzt, bekommt man folgende

Gleichung:

m̃T
2A
−T
2 EA−T1 m̃1 = m̃T

2 Fm̃1 = 0, und F = A−T2 EA−11 (3.23)

Die 3x3 Matrix F wird Fundamental-Matrix genannt. Die Fundamental-Matrix be-

schreibt die Epipolargeometrie vollständig in Pixelkoordinaten, weil sie sowohl die int-

rinsischen Parameter der beiden Kameras als auch die extrinsische Parameter der eukli-

dischen Transformation enthält. Entsprechend für die Epipolarlinien gilt folgende Glei-

chung:

l2 = Fm̃1 und l1 = F T m̃2 (3.24)

Die Epipole in Bildkoordinaten ergeben sich unter Einbeziehung der intrinsischen Ma-

trizen wie folgt:

ẽ2 = A2t und ẽ1 = A1R
T t (3.25)

Die Definition der Fundamental-Matrix kann umformuliert werden. Unter Verwendung

einer Beziehung zwischen einer nicht-singulären Matrix und einem Vektor stellt man sie

als antisymmetrische Matrix dar:

F = A−T2 [t]xRA
−1
1 = [A2t]xA2RA

−1
1 , mit [A2t]xA2 = A−T2 = A−T2 [A2t]x (3.26)

Wenn diese Definition auf Ansicht 2 angewendet wird, bekommt man folgende Gleichung:

F = [ẽ2]xA2RA
−1
1 (3.27)

Analog föur die Fundamental-Matrix und die Epipole in Bildkoordinaten erhält man:

F ẽ1 = 0 und F T ẽ2 = 0 (3.28)
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3.6 Essential- und Fundamental-Matrix

Die geometrischen Beziehungen zwischen korrespondierenden Punkten in zwei Ansichten

eines Stereokamerasystems werden sowohl mit Essential- als auch mit der Fundamental-

Matrix beschrieben.

Die Essential-Matrix beschreibt die Beziehung der Punkte in Sensorkoordinaten. Dage-

gen liefert die Fundamental-Matrix die Beziehung für korrespondierende Bildpunkte in

Bildkoordinaten. Für die Essential-Matrix ist es wichtig, dass die intrinsischen Parameter

bekannt sind, um von den Bildkoordinaten in Pixel, in Sensorkoordinaten transformieren

zu können. In diesem Fall spricht man vom kalibrierten Fall, demgegenüber spricht man

bei der Fundamental-Matrix vom unkalibrierten Fall(sehen Sie z.B. [7]).

Bei der Essential-Matrix sind drei für Rotation, und zwei für Translation unbekannte

Parameter gegeben. Die Essential-Matrix enthält zwei Bedingungen:

1. Da die Determinante der antisymmetrischen Matrix Null ist, verschwindet auch

die Determinante der Essential-Matrix, denn nach der Determinantenregel gilt:

det(E) = det([x]x)det(R) = 0 (3.29)

2. Aufgrund von det(E) = 0 existieren nur zwei linear unabhängige Zeilen- oder

Spaltenvektoren. Damit ist der Rang der Matrix Rg(E) = 2. Die beiden von Null

verschiedenen Eigenwerte der Essential-Matrix sind gleich.

Die Fundamental-Matrix enthält zwei Eigenschaften:

1. da die Determinante der Essential-Matrix verschwindet, gilt det(F ) = 0;

2. deswegen gilt für die Fundamental-Matrix Rg(F ) = 2;
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4 Korrespondenzanalyse

Sei ein Element der einen Ansicht gegeben,dann wird das dazu korrespondierende Ele-

ment der anderen Ansicht gesucht. Hierbei müssen zwei Entscheidungen getroffen wer-

den:

1. Welches Bildelement soll verglichen werden?

2. Welches Ähnlichkeitsmaß kann dafür verwendet werden?

Das Korrespondenzproblem besteht darin herauszufinden, welcher Punkt eines Bildes zu

welchem Punkt eines anderen Bildes korrespondiert, unter der Annahme, dass es sich um

Abbilder desselben Raumpunktes handelt. Die Korrespondenzanalyse ist ein klassisches

Aufgabenfeld der Bildanalyse.

Die Algorithmen der Korrespondenzanalyse können grob in zwei Klassen unterteilt wer-

den. Es handelt sich dabei um die pixel- und die merkmalsbasierten Verfahren.

Bei den pixelbasierten Verfahren werden Regionen fester Größe um den Pixel herum

miteinander verglichen und deren Korrelation über ein Ähnlichkeitsmaß bestimmt. Das

korrespondierende Bildelement befindet sich an der Stelle, an der ein Maximum der Ähn-

lichkeitsfunktion herrscht. Die pixelbasierten Verfahren betrachten die Menge aller Pixel.

Wegen ihres Bezugs auf einen Bildblock werden sie auch als Block-Matching bezeichnet.

Die merkmalsbasierten Verfahren beschränken den Suchraum auf eine Menge von Merk-

malen im Bild. Merkmale können unter anderem Ecken- oder Liniensegmente sein. Im

Gegensatz zu der Korrelationsmessung nutzen diese Verfahren die Abstände zwischen

den Merkmalen als Ähnlichkeitskriterium. Als Vorverarbeitungsschritt ist somit eine

Merkmalsextraktion notwendig.
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Zusammenfassend ist also die Zielsetzung der Korrespondenzanalyse eine robuste, fehler-

freie und eindeutige Zuordnung zwischen Bildmerkmalen zweier unterschiedlicher Bilder

derselben Szene. Ein Scanpunkt hat keine Distanzinformation in A und die Distanz konn-

te durch vorhergehende Schritte nicht bestimmt werden. Hier soll zuerst eine pixelweise

Korrespondenz gefunden werden. Danach soll die Distanz in A und B berechnet wer-

den. Im ersten Ansatz kann davon ausgegangen werden, dass die Marker exakt platziert

wurden. Als nächstes soll die ungenaue Markerposition durch pixelweise Korrespondenz-

findung ausgeglichen werden(sehen Sie z.B [9]).

4.1 Pixelbasierte Verfahren

Eine einfachste Korrespondenzanalyse kann auf mindestens zwei Bilder anwenden. Da-

bei vergleicht man die Intensitätswerte, und bei Farbbildern zusätzlich die Farbwerte,des

einen Bildes, mit den jeweiligen Werten des anderen Bildes. Grundlegend aussagekräfti-

ger jedoch ist die Bildstruktur in der Umgebung dieses Bildpunktes. Deshalb wird bei

der Korrespondenzanalyse nicht der einzelne Bildpunkt, sondern ein Fenster um diesen

Bildpunkt herum, ein sogenannter Block, betrachtet. Diese Methode wird als Block-

Matching bezeichnet.

Abbildung 4.1: Achsparallele Stereogeometrie

Die Vorgehensweise für das Block-Matching ist dabei folgende: für jede Position (u1, v)

in der ersten Ansicht wird ein Referenzblock der Größe (m,n) um den Aufpunkt gewählt

und mit entsprechenden Musterblöcken in der zweiten Ansicht an der verschobenen Po-
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sition (u2, v) verglichen. Damit ist die Ähnlichkeit zwischen zwei Blöcken gleicher Größe

zu bestimmen. Damit wir noch einen definiertes Ähnlichkeitsmaß verwenden können,

werden dann die Bildpunktposition ermittelt, die für den gewählten Referenzblock in

der ersten Ansicht den ähnlichsten Musterblock in der zweiten Ansicht angibt. Solche

Verschiebung bezeichnet man dann als Disparität δ(u, v). Bei einer achsparallelen Ste-

reogeometrie enthält die Disparität nur eine Komponente, im allgemeinen Fall hat die

Disparität aber eine horizontale und vertikale Komponente. Wurden für alle Bildpunkte

in einer Ansicht die Disparitäten berechnet, so werden diese als Disparitätskarte oder

Disparitätsfeld bezeichnet. In der folgenden Abbildung 4.1 ist ein Referenzblock und ein,

um die Disparität δ(u, v) verschobener, Musterblock dargestellt.

Die pixelbasierte Verfahren sind leichter zu implementieren. Wie gesagt, basiert die-

ses Verfahren auf einer Korrespodenzanalyse von Fenstern, bzw. Blöcken,welche sich

um den Aufpunkt befinden. Solche Methoden sind translatorische Schätzverfahren. Es

werden nur geradlinige Bewegungen der einzelnen betrachteten Blöcke berücksichtigt.

Bewegungs- und Heligkeitsänderungen zweier Bilder (Rotation, Zoom, starke Hellig-

keitsänderung) führen zu schwerwiegenden Problemen. Es gibt zwar Schätzverfahren,

die genau auf solche Probleme abgestimmt sind, jedoch sind diese schwierig zu imple-

mentieren(sehen Sie z.B. [10]).

Parametrische Ähnlichkeitsmaße für das Block-Matching

Zur Berechnung der Ähnlichkeiten von zwei Bildblöcken kann die allgemeine Normde-

finition herangezogen werden, wobei der Index p die entsprechende Norm bezeichnet.

lp = [(
∑
m

∑
n

|f1(u+m, v + n)− f2(u+ ∆u+m, v + ∆v + n)|)p]1/p (4.1)

Mittlere absolute Fehler

Setzt man p = 1 so ergibt sich die l1 − Norm, die auch als mittlerer absoluter Fehler

(engl. sum of absolute differences (SAD)) bezeichnet wird. Mit dieser Norm berechnet

man die absolute Differenz zwischen zwei Blöcken, wobei die Ähnlichkeit dort am größten
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ist,und folglich die Differenz minimal wird.

δ(u, v) = argmin
1

| ∧ |
∑
m

∑
n

|f1(u+m, v+ n)− f2(u+ ∆u+m, v+ ∆v+ n)| (4.2)

Mittlere quadratischer Fehler

Sehr häufig wird der mittlere quadratische Fehler (engl. sum of squared differences

(SSD)), der sich entsprechend der Normdefinition für p = 2 ergibt, als Abstandsmaß

gewählt. Die Vergrößerung der Norm führt zu einem höheren Exponenten in der Norm-

definition aus Gl.(4.1), der wiederum zu einer stärken Gewichtung von größeren Fehlern

führt.

δopt(u, v) = argmin
δ(u,v)

1

[∧|
∑
m

∑
n

|f1(u+m, v+n)−f2(u+ ∆u+m, v+ ∆v+n)]2 (4.3)

Mit dem mittleren quadratischen Fehler wird die Intensitäts der Bilddifferenz minimiert.

Multipliziert man Gl. (4.3) aus, so ergibt sich folgender Term:

δopt(u, v) = argmin
δ(u,v)

1

[∧|
∑
m

∑
n

[f1(u+m, v + n)]2+∑
m

∑
n

[f2(u+ δ(u, v) +m, v + n)]2−

2
∑
m

∑
n

[f1(u+m, v + n)f2(u+ δ(u, v) +m, v + n)]

(4.4)

Die beiden ersten Summanden stellen jeweils ddie Intensitäts der Referenz und des

Musterblockes dar und sind konstant. Der dritte Term beschreibt die Korrelation, als

die Ähnlichkeit zwischen dem Referenz- und Musterblock. Somit wird der quadratische

Fehler minimal, wo die Ähnlichkeit am größten ist. Die ausführliche Schreibweise des

quadratischen Fehlers zeigt jedoch, dass der Fehler auch von der Intensität der beiden

Blöcke abhängt.
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Normierte Kreuzkorrelation

Um eine Abhängigkeit von der Intensität des Muster- und Refernzblockes zu vermeiden,

wird die normierte Kreuzkorrelation (engl. normalized crosscorrelation, NCC) verwendet.

Ein Vergleich der relativen Unterschiede zwischen den Bildblöcken wird ermittelt, da

der Nenner auf die Intensität der beiden Blöcke normiert wird. Das Maximum wird

von der normierten Kreuzkorrelation geliefert, bei der die Ähnlichkeit am größten ist.

Auch die NCC weist ähnlich der SSD ein sensibles Verhalten gegenüber Ausreißern

auf. Die Intensitätsbilder der ersten und zweiten Ansicht der Szene sind mit fi(u, v), i

gekennzeichnet.

δopt(u, v) =

argmin
δ(u,v)

∑
m

∑
n

f1(u+m, v + n) · f2(u+ δ(u, v) +m, v + n)√∑
m

∑
n

(f1(u+m, v + n))2 ·
∑
m

∑
n

(f2(u+ δ(u, v) +m, v + n))2
(4.5)

Neben den parametrischen Bewertungsfunktionen gibt es auch noch nicht-parametrische

Ähnlichkeitsmaße. Bei der Rank-Transformation beispielsweise wird die Anzahl jener

Bildpunkte berechnet, die einen geringeren Intensitätswert aufweisen, als der Pixel des

Aufpunktes. Es wird ein neues Bild berechnet, bei dem diese Werte an der Pixelposi-

tion abgetragen werden. Die neuen Bilder werden schließlich mit einem parametrischen

Ähnlichkeitsmaß (wie im Abschnitt erläutert) verglichen. Dieses Verfahren ist invari-

ant gegenüber Rotation, Reflektion und monotoner Grauwerttransformation. Bei der

Census-Transformation wird jedem Fenster eine Bitkette zugewiesen. Sie beschreibt die

Relation der Intensitäten der Bildpunkte im Messfenster bezüglich der Intensität des

Aufpunktes. Die Länge der Bitkette entspricht daher der Anzahl der verglichenen Pixel

im Messfenster. Ähnlich der parametrischen Ähnlichkeitsmaße wird die Ähnlichkeit aus

der Summe von Hamming-Distanzen berechnet.
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4.2 Merkmalsbasierte Verfahrenen

Bei den merkmalbasierten Verfahren werden Bildmerkmale bezüglich ihrer Korrespon-

denz untersucht. Die merkmalsbasierten Verfahren nutzen unterschiedliche Methoden,

je nachdem ob sie sich auf eine Korrespondenzanalyse von Punktmerkmalen oder Lini-

ensegmenten stützen.

Korrespondenzanalyse von Punktmerkmalen

Als Punktmerkmale eines Bildes sind Ecken geeignet, die man auf beiden Bildern fin-

den kann. Punktmerkmale kann man durch Standardverfahren, wie Moravec-Operator

oder Harris-Ecken-Detektor extrahieren. Wenn die interessanten Punkten für beide Bil-

der vorliegen, so wird die Auswahl für alle Punkte auf dem linken Bild, die nur einen

entsprechenden Punkt auf der Epipolarlinie im rechten Bild haben, durch die Epipolar-

bedingung

m̃T
2 Fm̃1 = m̃T

2 l̃2 = 0 (4.6)

definiert. Der Moravec-Operator analysiert die mittlere Änderung der Bildintensitäten

um einen Bildpunkt. Sei f(u,v) das Intensitätsbild, dann ist das Ergebnis des Moravec-

Detektors wie folgt:

MO(u, v) =
1

8

1∑
k=−1

1∑
l=−1

|f(u+ k, v + l)− f(u, v)| (4.7)

Der Moravec-Operator exportiert den größten Wert, bei dem die Änderung in mehre-

ren Richtungen besonders groß ist, z.B. bei Ecken. Ein weiterer Eckendetektor ist der

Harris-Ecken Detektor. Bei diesem wird zuerst der Gradient in horizontaler und verti-

kaler Richtung berechnet. Die diskrete Approximation des horizontalen und vertikalen

Gradienten ist

df

du
= f(u− 1, v)− f(u+ 1, v) (4.8)

df

dv
= f(u, v − 1)− f(u, v + 1) (4.9)

Die Detektion kann man unempfindlich gegenüber Rauschstörungen machen, falls die

Quadrate der örtlichen Ableitungen einer Tiefpass-Filterung unterzogen werden. Durch
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eine Faltung (⊗) mit der Gewichtfunktion g ergibt sich das gelieferte Bild, das folgende

Ergebnisse hat:

(
∂f

∂u
)2 = g ⊗ (

df

du
· df
du

) (4.10)

(
∂f

∂v
)2 = g ⊗ (

df

dv
· df
dv

) (4.11)

(
∂f

∂uv
)2 = g ⊗ (

df

du
· df
dv

) (4.12)

Damit kann dann folgende Matrix aufgestellt werden:

M =

(
∂f

∂u
)2 (

∂f

∂uv
)

(
∂f

∂uv
) (

∂f

∂v
)2

 (4.13)

Aus dieser Matrix kann man folgendes Kriterium für die Eckenerkennung ableiten. Die

Determinante lautet:

detM = (
∂f

∂u
)2(
∂f

∂v
)2 − (

∂f

∂uv
)2 (4.14)

Liegt nun eine große Änderung in horizontaler und vertikaler Richtung vor, so wird die

Determinante einen von Null verschiedenen Wert annehmen. Um nun zwischen Kanten

und Ecken zu unterscheiden wird die Spur der Matrix, d.h. die Summe der Hauptdiago-

nalelemente, herangezogen.

trace(M) = (
∂f

∂u
)2 + (

∂f

∂v
)2 (4.15)

Ist die Spur der Matrix groß, so liegt eine Intensitätsänderung in horizontaler und verti-

kaler Richtung vor. Bei Kanten hingegen verläuft die Intensitätsänderung vorzugsweise

nur in einer Richtung. Damit lässt sich folgendes Auswahlkriterium für einen ausge-

zeichneten Eckpunkt definieren, wobei k ein Gewichtungsfaktor ist(sehen Sie z.B. [7]):

K = detM–k(traceM)2 (4.16)
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5 Vorverarbeitung

SCENE ist eine Software für den FARO Laser Scanner. SCENE verarbeitet und verwaltet

gescannte Daten besonders effizient und einfach durch die neuartige automatische Ob-

jekterkennung, Scan Registrierung und Platzierung. SCENE hat die Möglichkeit Scans in

Farbe zu übernehmen. In SCENE existieren massenhaft Funktionen und Möglichkeiten

für die Datenbearbeitung in einer 3D Umgebung (sehen Sie z.B [11]).

Abbildung 5.1: Passungsobjekt für einen Punkt

Eine von zahlreichen Möglichkeiten der Software ist die Erkennung von CAD Objek-

ten, wie beispielsweise ein Punkt, eine Ebene, ein Wand,eine Kugel,ein Zylinder,eine

Kante,eine Region und ein Objekt-Marker. Derartige geometrische Objekte sind in den
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Scann vorhanden, und es ist interessant, die Parameter der Objekte aus den Scanpunk-

ten zu gewinnen. Hierbei markiert man einen Bereich der Scanpunkte und trägt dann

SCENE auf, daraus die Parameter eines ausgewählten geometrischen Objekts zu be-

stimmen, indem man im Kontextmenü der Markierung den Befehl zur Anpassung des

entsprechenden Objekts auswählt .

Der Punkt ist das einfachste geometrische Objekt. Er ist gekennzeichnet durch seinen

Namen und seiner Position im Raum. Die Ebene gibt es in SCENE in zwei Varianten. Ei-

ne ist als idealisierte Ebene, die unendlich groß ist und keinen Rand besitzt, definiert. Die

andere Variante der Ebene hat eine Randbegrenzung. In beiden Fällen werden Position

und Lage durch die Position eines Punkts der Ebene sowie eine so genannte Norma-

le beschrieben. Das Wandobjekt ist dem Ebenenobjekt ähnlich. Wandobjekte können

aus Wänden, Decken oder Böden erstellt werden. Aber im Gegensatz zur Ebene, wird

das Objekt Wand dazu verwendet, um Scann zueinander auszurichten, die von den ge-

genüberliegenden Seiten des Wandobjektes aufgenommen wurden.Die Kugel ist ein Ob-

jekt, die durch ihre Position und Größe, d.h. dem Radius dargestellt wird.Der Zylinder

wird durch seinen Außendurchmesser und seine Länge definiert. Die Kantenerkennung

basiert auf einer kombinierten Betrachtung von Unterschieden in den Helligkeits- und

Entfernungswerten. Die Region wird dazu benutzt eine Markierung zu speichern. Zum

Beispiel kann man einen ganz bestimmten Bereich an Scanpunkten im Arbeitsbereich

speichern, um ihn später näher zu untersuchen(sehen Sie z.B [11]).

5.1 Problembetrachtung

In dieser Arbeit wird der Objekt-Marker interessant. Mit dem Objekt-Marker kann man

schnell automatische Markierungen festlegen und daraus unterschiedliche Objektety-

pen im Scan erzeugen. Vordefinierte Typen sind Sphere (Kugel), CircularFlatTarget

(Kreiszielmarke), Plane (Ebene), CheckerboardTarget (Schachbrettzielmarke) und Slab

(Wand). Ein weiterer Objekt-Marker wäre der DistanzCheck gewesen,der die Entfernung

eines angeklickten Objektes beziehungsweise Punktes berechnet. Die Idee besteht darin,

dass man zwei Scanns beobachtet,die die gleiche Umgebung aus zwei unterschiedlichen

Positionen darstellen.Der DistanzCheck wird auf ein Objekt des Scann, beispielsweise ein

Punkt, angewendet. SCENE soll entweder automatisch oder manuell korrespondierende
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Abbildung 5.2: Objekt-Marker

Punkte auf dem zweiten Scann finden. Um dieses Problem zu lösen, gibt es mehrere

verschiedene Analyse- und Bearbeitungsmöglichkeiten.

Wie schon bekannt ist, hat ein Laserscanner eine Umgebung, in der er die Daten erfas-

sen kann, d.h. er kann bis zu einem bestimmten Radius die Daten scannen, erfassen und

letztendlich speichern. So erfasste Daten sind Millionen von Punkten, von denen jeder

Punkt durch XYZ Koordinaten dargestellt und gespeichert wird. Der Laserscanner hat

jedoch die Möglichkeit, die Daten zu scannen, erfassen und zu speichern, die außerhalb

seiner Radiusumgebung liegen. Solche Daten werden auch von SCENE übernommen ,

wobei sie wie ein Bild gespeichert werden. Die Punkte außerhalb der Radiusumgebung

sind schon von SCENE gespeichert, man kann aber von diesen keine Information ab-

lesen, d.h. man kann keine XYZ Koordinaten der Punkte bestimmen, und somit auch

keine Entfernung. Es existieren aber auch die Punkte, die in der Radiusumgebung des

Lasescanners liegen, und trotzdem keine Entfernung haben. Dies kann passieren wenn

der Laserstrahl an bestimmten Punkten nicht zurückgeworfen wird.

Man unterscheidet drei Fälle:

• Die korrespondierende Punkte in beiden Ansichten besitzen eine Distanzinforma-

tion. Hier kann man einen Punkt aus der ersten Ansicht durch einen Klick wählen.

Hier bekommt man automatisch von SCENE die Daten über den korrespondie-

renden Punkt aus der zweiten Ansicht, d.h. man bekommt nicht nur die Position

des Punktes im Weltkoordinatensystem, sondern auch die Entfernung des Punk-
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tes zur Position des zweiten Laserscanners. Man kann den Punkt aus der zweiten

Ansicht natürlich auch manuell bestimmen. Dazu nutzt man die Methode der zwei

windschiefen Geraden. Um diese Methode einzusetzen muss man zwei Richtungs-

vektoren bestimmen. Man kann durch die Informationen aus der ersten Ansicht

einen entsprechenden Richtungsvektor bestimmen. Danach muss man den korre-

spondierenden Richtungsvektor in der zweiten Ansicht finden. Hierbei nutz man

die Rotation, die Translation und die Skalierung. Nun ist die Voraussetzung für

die Methode der zwei windschiefen Geraden erfüllt.

• Der Punkt in der ersten Ansicht besitzt eine Distanzinformation, der korrespondie-

rende Punkt in der zweiten Ansicht jedoch nicht. Auch in diesem Fall gibt es eine

Möglichkeit den korrespondirenden Punkt in der zweiten Ansicht automatisch zu

finden. Dazu nutzt SCENE schon vorhandene Algorithmen. Das manuelle Finden

des korrespondierenden Punktes funktioniert wie im ersten Fall.

• Die korrespondierende Punkte in beiden Ansichten besitzen keine Distanzinforma-

tion. Auch in diesem Fall gibt es eine automatische und eine manuelle Methode,

wobei die manuelle Methode wie im ersten und zweiten Fall funktioniert. Bei der

automatische Methode exportiert man jeweils ein Bild aus beiden Ansichten und

wendet auf diese Bilder das Block-Matching Verfahren an. Mit Hilfe von SCENE

kann man die Bilder in verschiedene Formate exportieren. Wenn man ein Objekt in

einem Bild betrachtet bzw. man darauf klickt, kann man korrespondierende Pixel

im zweitem Bild mit Hilfe des Block-Matchig Algorithmus finden.
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Abbildung 5.3: Das Schloss: erste Ansicht

In dieser Arbeit behandle ich den dritten Fall. Wie betrachten ein Gebäude aus zwei

verschiedene Scannpositionen. In der Abblildung 5.3 wird ein Objekt des Gebäudes,

das keine Distanzinformation hat, markiert.Um diese Distanzinformation zu bestimmen,

wird ein Richtungsvektor des Objektes definiert. Diese Richtungsvektor ist in der Abb-

lildung 5.4 als eine Gerade dargestellt. Nun wird das Block Matching Verfahren entlang

der Länge dieser Gerade ausgeführt, um das korrespondierende Objekt zu finden. Auf

dieses Block Matching Verfahren werde ich im nächsten Kapitel näher eingehen.

Abbildung 5.4: Das Schloss: zweite Ansicht
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5.2 Methoden für Entfernungsberechnung

Distanz zwischen zwei Punkten in Raum

Im kartesischen Koordinatensystem berechnet man den Abstand (euklidischer Abstand)

zweier Punkte mit Hilfe des Satzes von Pythagoras:

d(X, Y ) =

√√√√ n∑
i=1

(xi − yi)2 (5.1)

wobei X = (x1, x2, ..., xn) ∈ Rn und Y = (y1, y2, ..., yn) ∈ Rn

dXY =
√

(x1 − y1)2 + (x2 − y2)2 + (x3 − y3)2 im R3 (5.2)

Distanz zwischen zwei windschiefen Geraden im Raum

Im dreidimensionalen Raum existieren zwei Geraden die sowohl keinen Schnittpunkt

besitzen und auch nicht Parallel sind. Diese nennt man windschiefe Geraden. Hier wird

diese Methode beschrieben. Die l1 und l2 sind zwei Geraden die folgendermaßen definiert

sind:

l1 : Q1 = pos1 + s ∗ dir1 (5.3)

l2 : Q2 = pos2 + t ∗ dir2 (5.4)

wobei dir1, dir2 die Richtung der Vektoren der zwei Geraden und pos1, pos2 die Ur-

sprungspunkten der Vektoren der zwei Geraden sind.



5 Vorverarbeitung 52

Abbildung 5.5: Abstand windschiefer Geraden

l1 :

x1y1
z1

 =

pos1xpos1y

pos1z

 + s ∗

dir1xdir1y

dir1z

 (5.5)

l2 :

x2y2
z2

 =

pos2xpos2y

pos2z

 + t ∗

dir2xdir2y

dir2z

 (5.6)

F (s, t) = (x2 − x1)2 + (y2 − y1)2 + (z2 − z1)2 (5.7)

F (s, t) = f 2 + 2 · f · t · dir2− 2 · f · s · dir1 + dir22t
2− 2 · t · s · dir1 · dir2 + dir21s

2 (5.8)

wobei f=(pos1-pos2) und die erste Ableitung aus Formel (5.8) folgendermaßen lautet:

Fs(s, t) = −2 · f · dir1–2 · t · dir1 · dir2 + 2 · s · dir21 (5.9)

Ft(s, t) = −2 · f · dir2–2 · s · dir1 · dir2 + 2 · t · dir21 (5.10)
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Damit wir Koeffizienten s, t finden können, müssen wir die Formeln (5.9) und (5.10) mit

Null verglichen.

Fs(s, t) = 0 (5.11)

Ft(s, t) = 0 (5.12)

Durch Lösen dieses Gleichungsystems bekommt man die gewünschten Koeffizienten (s,

t). Die minimale Distanz zwischen den zwei windschiefen Geraden ist:

D =
√
F (s, t) oder D =

|−−−−−→pos1pos2 · ~n|
‖~n‖

(5.13)

wobei ~n =
−−→
dir1 ×

−−→
dir2
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6 Block-Matching

Korrespondierende Pixel besitzen einen ähnlichen Intensitätswert, aber in der Regel gibt

es eine große Anzahl von Pixeln, die identische Intensitätswerte in einem Bild haben.

Um dieses Problem zu vermeiden, wird die Unterteilung in Blöcke empfohlen. Wenn die

Blöcke zugeordnet wurden, kann man die Block Matching Methode auch auf die Pixel

in diesem Block anwenden. Die Wahl der Fenstergröße entscheidet über die Qualität

solcher Algorithmen

6.1 Block-Matching Verfahren

Hauptaufgabe diese Verfahren wird der Ähnlichkeitsvergleich von Grauverteilungen zwi-

schen zwei gleichen großen Pixelmatrizen (n x m). Alle Pixel der Matrix sollen gleichen

Disparitätswert haben. Deswegen muss für jeden Block nur ein Disparitätswert berechnet

werden(sehen Sie z.B. [12]).

1. Im ersten Verarbeitungsschritt wird ein Bild des Bildpaares (zum Beispiel das

linke) in eine konstante Anzahl von gleich großen Blöcken aufgeteilt. Die Suche

nach einem korrespondierendem Block im rechten Bild wird nur für die festgelegten

Blöcke des linken Bildes durchgeführt.

2. Das Maßes für die Ähnlichkeit zwischen den Intensitätswerten der Pixel in den ent-

sprechenden Blöcken wird mit Hilfe von der
”
mean square error

”
Formel berechnet.

e(x, y,∆) =
1

mn

n−1∑
i=0

m−1∑
j=0

|ER(x+ i, y + j)− EL(x+ i+ ∆, y + j)|2 (6.1)
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wobei die Intensitätsfunktionen des linken bzw. rechten Bildes mit EL bzw. ER

bezeichnet werden. Das Ähnlichkeitsmaß ist für einen Offset ∆ , der die Differenz

(xL − xR) zwischen den Spaltenpositionen im rechten und im linken Bild angibt,

und eine Blockgröße von (n x m) Pixeln durch e(x, y,∆) definiert. (x, y) bezeichnet

hier jeweils die linke obere Ecke eines Blockes im linken Bild. Die Disparität D

zwischen den Blöcken ist definiert durch den Abstand zwischen den Positionen der

Blöcke, die die minimale Abweichung aufweisen.

3. Der Suchbereich in horizontaler Richtung im rechten Bild wird zusätzlich durch

ein Disparitätslimit dmax beschränkt. dmax ergibt sich direkt aus der definierten

Einsatzumgebung des Verfahrens. Je dichter Objekte der beobachteten Szene am

Kamerasystem liegen, desto größer ist die Disparität der zum Objekt gehören-

den Pixel. Durch die Festlegung einer Mindestdistanz lässt sich dmax also leicht

ermitteln.

4. Innerhalb des Suchbereiches (zwischen 0 und dmax) wird der (n x m)-große Block

punktweise verschoben. Der Verschiebungswert ∆ für den die e-Funktion ihr Mi-

nimun annimmt, bestimmt den so genannten Blockdisparitätswert D. Ein Dispa-

ritätswert ist ein Vektor, welcher die Änderung der Lage eines Blockes (später ei-

nes Bildpunktes) zwischen den Bildern des Bildpaares beschreibt. Er ist nur dann

eindeutig bestimmt, wenn die e Funktion im Suchbereich ein eindeutiges Mini-

mum besitzt. In den Fällen, in denen kein eindeutiges Minimum existiert, wird ein

zusätzliches Entscheidungskriterium verwendet.

5. Unter der Annahme, dass sich die Disparitätswerte benachbarter Blöcke nur ge-

ringfügig unterscheiden, werden alle Disparitätswerte, für die die e-Funktion ein

Minimum annimmt, mit dem Wert des benachbarten Blocks verglichen. Ausgewählt

wird die Disparität mit dem geringsten Unterschied zu der Disparität des Nach-

barblockes.

Das Ergebnis der Anwendung des Block-Matching Verfahrens ist eine Disparitätsmatrix,

in der jeweils Blöcke fester Größe einen identischen Wert besitzen. Dieses Ergebnis lässt

sich unter Verwendung eines Pixelselektionsverfahrens weiter verfeinern, sodass für je-

des Pixel ein Disparitätswert bestimmt werden kann. Das Verfahren setzt sich aus drei

Verarbeitungsschritten zusammen:
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1. Anwendung des Medianoperators auf die Disparitätswerte der Blöcke

2. Pixelselektion

3. Anwendung des Medianoperators auf die Disparitätswerte, die für jedes einzelne

Pixel bestimmt wurden.

Der Medianoperator bestimmt in einer Menge von Werten denjenigen Wert, der bei

deiner sortierten Reihenfolge der Werte die mittlere Position einnehmen würde. Als

erster Schritt wird zunächst der Medianoperator auf die Blockdisparitäten innerhalb

einer 3x3-Blockumgebung angewendet, um einzelne Ausreißer in den Disparitätswerten

zu eliminieren. Anschließend wird bei der Pixelselektion die Disparität für jeden Pixel (x
′
,

y
′
) eines Blockes unter Verwendung der Disparitätswerte dieses und der benachbarten

Blöcke bestimmt(sehen Sie z.B. [8]). Für die Bestimmung der Disparität eines einzelnen

Abbildung 6.1: Pixelselektion des Disparitätswertes an der Position (x
′
, y

′
) unter Ver-

wendung der Blockdisparitäten D(k)

Pixels an der Position (x
′
, y

′
) werden die Differenzen D(k) zwischen dem Intensitätswert

des linken Bildes an der Position (x
′
, y

′
) und den Intensitätswerten des rechten Bildes

an den Positionen(x
′

+ D(k), y
′
) für alle Disparitäten D(k) mit (1 < k < 9) aus der

(3x3)-Blockumgebung gebildet (vgl. Abbildung 6.1):

D(k) = |ER(x
′
, y

′
)− EL(x

′
+D(k), y

′
)| mit k = 1, ..., 9 (6.2)

Der Disparitätswert DISP (x
′
, y

′
) ist definiert durch den Wert D(k), für den die Betrags-

differenz D(k) ihr Minimum annimmt. Bei der Anwendung der Pixelselektion auf jeden
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Bildpunkt ergibt sich eine Disparitätsmatrix in Originalbildgröße. Abschließend wird der

Medianoperator auf die mittels Pixelselektion berechneten Disparitätswerte angewendet.

Hiermit wird der Block Matching Algortihmus mit anschließender Pixelselektion be-

schrieben.

begin

unterteile linkes Bild in Blöcke der Größe n x m;

for (jeden Block im linken Bild) do begin {BM}
initialisiere min und D;

setze (x, y) gemäß linker oberer Ecke des aktuellen Blocks;

for ∆:= 1 to dmax do begin

berechne e(x, y, ∆);

if e(x,y, ∆) < min then

min := e(x,y, ∆); D := ∆

else

if e(x, y, ∆ ) = min then

D := Disparität mit geringstem Unterschied

zum Disparitätswert des Nachbarblockes

end if

end if;

speichere Blockdisparitätswert

end for

end for;

filtere Blockdisparitätswerte mit Medianoperator;

for (jedes Pixel im linken Bild) do begin Pixelselektion

for k := 1 to 9 do begin berechne D(k);

bestimme Wert D für den D(k) minimal ist;

DISPARITÄT(Pixelposition) := D

end for

end for;

filtere Matrix DISPARITÄT mit Medianoperator

end
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6.2 Block-Matching Verfahren für Farbstereoanalyse

1. Wahl eines geeigneten Farbraums bzw. Koordinatensystems, hier wird der RGB-

Raum vorgestellt.

2. Differenzen zwischen zwei Pixeln im Raum beschreibbar machen. RGB ist ein

euklidischer Raum ⇒ Abstandsmaße für die Farbdifferenz:

D1(F1F2) =
√

(r1 − r2)2 + (g1 − g2)2 + (b1 − b2)2 (6.3)

r =
R

R +G+B
, g =

G

R +G+B
, b =

B

R +G+B
(6.4)

wo F1 = (r1, g1, b1), F2 = (r2, g2, b2) r,g,b sind durch Intensität normierte Farb-

wertanteile

3. weitere Ablauf wie bei Block-Matching Verfahren, nur daß mit Farbabstand D1

die eFarbe(x, y,∆) berechnet wird, also

statt|ER(x+ i, y + j)− EL(x+ i+ ∆, y + j)|2 wird

[((rR(x+ i, y + j)− rL(x+ i+ ∆, y + j))2+

((gR(x+ i, y + j)− gL(x+ i+ ∆, y + j))2+

((bR(x+ i, y + j)− bL(x+ i+ ∆, y + j))2]l2 eingesetzt.

Wenn statt D1, D3 benutzt wird, welches eine Approximation von D1 ist, mit:

D3(F1, F2) = |r1 − r2|2 + |g1 − g2|2 + |b1 − b2|2 ,dann statt

|ER(x+ i, y + j)− EL(x+ i+ ∆, y + j)|2 wird

[|(rR(x+ i, y + j)− rL(x+ i+ ∆, y + j)|2+
|(gR(x+ i, y + j)− gL(x+ i+ ∆, y + j)|2+
|(bR(x+ i, y + j)− bL(x+ i+ ∆, y + j)|2] eingesetzt.
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4. Wenn auch hier Pixelbetrachtung durchgeführt werden soll, dann geht man wie

beim Pixelselektionsverfahren vor, aber hier muß zusätzlich das Farbabstandsmaß

berücksichtigt werden.

RGB ist ein euklidischer Raum => Abstandsmaße für die Farbdifferenz : r,g,b

sind durch Intensität normierte Farbwertanteile F1 = (r1, g1, b1) F2 = (r2, g2, b2)

Der Farbabstand D1 repräsentiert den Winkel zwischen Farbvektoren F1 und F2
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7 Zusammenfassung und Ausblick

In dieser Arbeit werden einen 3D Lasersysteme beobachtet und die Anwendung von La-

serscanner vorgestellt. Außerdem werden die Algorithmen und die Verfahren beschrie-

ben, die die Distanz zwischen korrespondierenden Objekten in einer 3D Umgebung be-

stimmen. Um diese Aufgabe zu lösen, soll man die Methoden von Model- und Welt-

koordinatensystemen im 3D Umgebung anwenden. Außerdem wird eine geometrische

Beziehung zwischen zwei Laserscanner Positionen beobachtet.

Diese Beziehungen werden durch die Epipolargeometrie ausgeprägt. Mit ihrer Hilfe lässt

sich die Abhängigkeit zwischen korrespondierenden Bildpunkten beschreiben, also den

Punkten, die ein einzelner Objektpunkt in den beiden Bildern erzeugt. Die Korrespon-

denzanalyse Algorithmen bestimmen die Ähnlichkeit zwischen den Intensitätsvergleich

der Pixel in dem entsprechenden Blocke des Bildes. Es gibt jedoch in der Regel eine

große Anzahl von Pixel, die identische Werte in einem Bild haben. Um diese Problem

zu vermeiden, muss man die Block-Matching Verfahren verwendet werden. Mit diesen

Algorithmen kann man die Objekte, die außer Radiusumgebung des Laserscanner liegen,

beobachten.

Dieses System kann erweitert und optimiert werden. Möglichkeiten für die Erweiterungen

des 3D Lasersystems sind: Entwicklung anderer Scan-Methoden, um komplexe Objekte

detektieren und modellieren zu können, andere Verarbeitungsalgorithmen zur Analyse

der 3D Punktwolke.
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