
Institut für Architektur von Anwendungssystemen
Universität Stuttgart

Universitätsstraße 38
D–70569 Stuttgart

Diplomarbeit Nr. 3112

Visualisierung und
Implementierung von Compliance

Scopes

Stefan Grohe

Studiengang: Softwaretechnik

Prüfer: Prof. Dr. Frank Leymann

Betreuer: Dipl.-Inf. Daniel Schleicher

begonnen am: 15. November 2010

beendet am: 17. Mai 2011

CR-Klassifikation: D.2.4, H.4.1, H.5.3

Zusammenfassung

Die Einhaltung sowohl gesetzlicher auch als unternehmensinterner Regulierungen beim
Design von Geschäftsprozessen wird ein immer wichtigeres Thema.

Basierend auf vorhergehenden Arbeiten, die das Konzept der Variabilität in BPMN 2.0-
Diagrammen durch die Definition von Referenzprozessen und Prozessfragmenten einführten,
wird ein Konzept für Compliance Scopes entwickelt. Dabei werden die bestehenden Dia-
grammtypen um ein neues BPMN-Element Compliance Scope erweitert, welches einen Bereich
im Diagramm definiert, in welchem zuvor festgelegte Regeln eingehalten werden müssen.
Während der Prozessvariantenbildung wird die Ableitung von Prozessvarianten verhindert,
die diese Regeln verletzen. Die Regeln werden dabei in einem Regelbaum zusammen gefasst,
der die logische Verknüpfung einzelner Regeln erlaubt. Zwei Operatoren zur Kontroll- und
Datenflussanalyse werden definiert. Kontrollflussregeln werden dabei in linearer temporaler
Logik definiert und mittels Model Checking überprüft.

Das entwickelte Konzept wird in dem webbasierten Prozesseditor Oryx umgesetzt. Der
Ausblick behandelt weiterführende Fragestellungen wie Optimierungen bezüglich Perfor-
mance und graphischer Darstellung, sowie einen Lösungsansatz, ad-hoc Compliance Checks
umzusetzen.

Abstract

Compliance to governmental as well as entrepreneurial regulations is becoming an important
factor in the design of business processes.

Based on previous work which introduced the concept of variability to BPMN 2.0 diagrams
by defining Reference Processes and Process Fragments, a concept for Compliance Scopes is
built. This is realized by extending the existing diagram types by a new BPMN element called
Compliance Scope which defines an area in a process diagram in which previously specified
requirements have to be matched. During the creation of process variants those compliance
rules are checked and thereby prevent the creation of process variants violating those rules.
Rules are combined using logical operators to an operator tree. Two rule operators for
sequence flow as well as data flow verification are defined. Sequence flow verification is
performed using model checking.

The presented concepts are implemented using the web-based editor Oryx. The outlook
covers additional issues concerning performance optimizitations, improvements of the
graphical interface and an option to perform ad-hoc compliance checks.

3

Inhaltsverzeichnis

1. Einführung 9
1.1. Aufgabenstellung . 10
1.2. Gliederung der Arbeit . 10

2. Anforderungen 11

3. Grundlagen 15
3.1. Business Process Model and Notation . 15
3.2. Model Checking . 16
3.3. Spin . 18
3.4. Oryx . 20
3.5. Scalable Vector Graphics . 23
3.6. JavaScript Object Notation . 23

4. Vorhandene Ansätze und Vorarbeiten 25
4.1. Definition des Compliance Scopes . 25
4.2. Definition des Compliance Templates . 25
4.3. Ansätze zur Kontrollflussverifikation . 27
4.4. Ansätze zur Verifikation des Datenflusses . 30
4.5. Vorarbeiten der Diplomarbeit zur Variabilität . 31

5. Konzept 33
5.1. Der Compliance Scope . 33
5.2. Der Regelbaum . 36
5.3. LTL-Diagramme . 42
5.4. Das Ergebnis eines Compliance Checks . 43
5.5. Arbeiten mit Compliance Scopes . 45
5.6. Wahl des Model Checkers . 46
5.7. Mapping des BPMN-Modells auf die Systembeschreibung 46

6. Implementierung 53
6.1. Übersicht . 53
6.2. Backend . 54
6.3. Frontend . 64
6.4. Erweiterbarkeit . 68
6.5. Komplexitätsbetrachtungen . 70

5

7. Zusammenfassung und Ausblick 75
7.1. Zusammenfassung . 75
7.2. Ausblick . 76

A. Anhang 81
A.1. Inhalt und Aufbau des beigelegten Datenträgers 81
A.2. Aufsetzen der Entwicklungsumgebung . 81
A.3. Anleitung . 83
A.4. Graphische Darstellung der generierten Petrinetze 88
A.5. Mapping von BPMN auf Prozesse/Channels . 90

Literaturverzeichnis 93

6

Abbildungsverzeichnis

3.1. Beispiel BPMN-Prozess . 16
3.2. Beispiel Kripkestruktur . 17
3.3. GUI von Oryx . 21

4.1. Compliance Template [SALM09] . 26
4.2. XOR-Gateway im Petrinetz, nach [DDO07] . 29
4.3. BPMN-Q Beispielabfrage [AWW09] . 30
4.4. BPMN-Q Beispielabfrage mit Datenberücksichtigung [AWW09] 30
4.5. Einsetzung eines Fragments mit einem Fragment-Link [Köt10] 31

5.1. Definition Compliance Scope . 33
5.2. Beispiel zur Vererbung von Regeln zwischen Compliance Scopes 36
5.3. Regelbaum . 37
5.4. Beispielgraph LTL-Operator . 38
5.5. Illustration Next-Operator . 39
5.6. Beispielgraph DataTransfer-Operator . 39
5.7. Mapping BPMN-Elemente Petrinetz, nach [DDO07] 48
5.8. Mapping des laufenden Beispiels auf die Petrinetzdarstellung 49
5.9. Mapping Gateway mit mehreren eingehenden Kanten auf Petrinetz 49
5.10. Mapping BPMN-Elemente Petrinetz Spezialfälle, [DDO07] 50

6.1. Architektur der Oryx-Erweiterung (baut auf [Köt10] auf) 54
6.2. Datenstruktur Oryx-JSON-Format . 55
6.3. Beispiel LTL-Modell . 57
6.4. BPMNTranslator . 58
6.5. Struktur PetriNet . 59
6.6. ComplianceChecker . 60
6.7. ComplianceCheckerContext . 61
6.8. Toolbar-Button des Compliance Plugins . 65
6.9. Compliance Wizard . 65
6.10. Editor für DataTransfer-Regel . 66
6.11. Ergebnisfenster . 68
6.12. Profiling paralleler Gateways - BPMN . 71
6.13. Profiling paralleler Gateways - Petrinetz . 71

7.1. Beispiel graphische Darstellung Gegenbeispiel 77
7.2. Beispiel Umsetzung Exception Handling [DDO07] 77

7

Tabellenverzeichnis

3.1. Beispielauswertung LTL-Operatoren . 18

4.1. Auszug Operatorendarstellungen LTL (nach [BDSV05]) 30

5.1. Beispielauswertung Regeltypen . 42
5.2. Übersicht Operatorendarstellungen LTL (angelehnt an [BDSV05]) 43

6.1. Auswertung Profiling paralleler Gateways, Laufzeiten in Millisekunden 72

Verzeichnis der Listings

3.1. Beispiel Channels . 19
3.2. Beispiel Nichtdeterminismus . 19
3.3. Beispiel Never Claim . 20
3.4. Beispiel JSON . 24

4.1. Pattern in PROPOLS [YMH+06] . 27
4.2. Umsetzung eines XOR-Gateways . 28

5.1. Beispielschema eines Datenobjektes . 41
5.2. Beispiel Promela aus Petrinetz . 51

6.1. Resultat JSON . 64

8

1. Einführung

Mit der zunehmenden Vernetzung von Geschäftsprozessen über das Internet ergeben sich
neue Herausforderungen für die Prozessmodellierung. Mehrere, weltweit verteilte Unterneh-
mensbereiche, aber auch voneinander unabhängige Unternehmen arbeiten in gemeinsamen
Geschäftsprozessen zusammen.

Hierbei können sich Standardgeschäftsprozesse, wie beispielsweise die Abwicklung eines
Unfallschadens an einem Auto durch ein Versicherungsunternehmen, bei unterschiedlichen
Zusammenarbeitskonstellationen in Details unterscheiden. So arbeitet ein deutschlandweit
vertretenes Versicherungsunternehmen an unterschiedlichen Standorten mit anderen Gut-
achtern und Autowerkstätten zusammen, die jeweils ihre eigenen Prozesse nutzen. Damit
entsteht ein Bedarf an Prozessvorlagen, die für die konkrete Instanziierung individuell
angepasst werden können. Eine Umsetzungsmöglichkeit besteht in abstrakten Prozessen mit
Platzhaltern, die nach dem Baukastenprinzip durch Einsetzen von Teilprozessen konkretisiert
werden.

Gleichzeitig müssen beim Prozessdesign immer mehr Regelungen und Auflagen beachtet
werden. Diese können dabei aus ganz unterschiedlichen Quellen stammen. Zum einen
kann der Gesetzgeber die Nichteinhaltung gesetzlicher Regelungen mit Strafen ahnden.
Die weltweite Finanzkrise in den vergangenen Jahren haben neue Gesetze für Banken
zur Folge gehabt, die berücksichtig werden müssen [Han10]. Unternehmen können aber
auch eigene Richtlinien formulieren, die Einfluss auf die Geschäftsprozesse nehmen. So
kann zum Beispiel, je nach Höhe der Schadenssumme, die Durchführung eines zweiten
Gutachtens gefordert werden. Aber auch die gewünschte Außenwirkung eines Unternehmens
kann sich auf die Unternehmensziele und damit die Prozesse auswirken. Greenpeace führt
regelmäßig ein Ranking von IT-Unternehmen anhand der Einhaltung von Umweltrichtlinien
durch [Gre10]. Hierbei werden auch die Unternehmensprozesse berücksichtigt.

Die dabei erforderlichen Regeln können unterschiedlicher Natur sein. Neben Regeln, die den
Kontrollfluss betreffen, etwa durch Forderung von Vorhandensein bestimmter Aktivitäten
oder Einhaltung gewisser Reihenfolgen von Tasks, können Regeln auch Anforderungen an
den Datenfluss stellen. Gerade bei der Zusammenarbeit unterschiedlicher Unternehmen
spielt hier die Datensicherheit eine wichtige Rolle. Patienten-, Kunden- und Kreditkarten-
daten müssen besonders sorgfältig geschützt werden. So führte das Bekanntwerden eines
Hackerangriffs auf das von Sony betriebene Playstation Network Ende April 2011 zur
Verunsicherung der Kunden [Son11].

Damit sieht sich der Nutzer beim Modellieren eines Prozesses mit einer großen Menge von
zusätzlichen Anforderungen konfrontiert. Deshalb müssen Konzepte entwickelt werden, die
dem Prozessdesigner Hilfsmittel an die Hand geben, um die Einhaltung der Anforderungen

9

1. Einführung

sicherzustellen. Verletzungen von Regelungen müssen in einem frühen Entwicklungssta-
dium erkannt werden, da eine späte Erkennung kostenintensiv sein oder im schlimmsten
Fall die Zahlung von Strafen nach sich ziehen kann. Zusätzlich ist eine Rollenverteilung
anzustreben, bei der Compliance Experten für die Umsetzung der Regelungen und Auflagen
verantwortlich sind und diese in Prozessvorlagen integrieren.

1.1. Aufgabenstellung

Zielsetzung dieser Arbeit ist die Erarbeitung eines Bedienkonzepts für die graphische
Modellierung von Prozessen mit Compliance Scopes. Dazu sollen geeignete Formulierungs-
möglichkeiten für die Definition von Regeln sowohl für den Kontroll- als auch den Datenfluss
in einem BPMN-Modell entwickelt werden.

Während der Prozessvariantenbildung soll dem Prozessdesigner die Funktion angeboten
werden, die aktuelle Prozessvariante auf Einhaltung der zuvor definierten Regeln zu über-
prüfen. Hierbei ist eine Darstellung anzustreben, die auch für Prozessdesigner verständlich
ist, die nicht mit dem dahinter liegenden Verifikationsprozess vertraut sind.

Das erarbeitete Konzept soll als Erweiterung des webbasierten Prozessmodelleditors Oryx
umgesetzt werden. Dabei soll Oryx um die Möglichkeit der graphischen Modellierung
von Compliance Scopes und Regelbausteinen erweitert werden. Zur Verifikation von den
Kontrollfluss betreffenden Regeln soll ein geeigneter Model Checker in Oryx eingebunden
werden.

1.2. Gliederung der Arbeit

Kapitel 1 gibt eine Einführung in das Thema der Arbeit und beschreibt die Aufgabenstellung
sowie den weiteren Aufbau der vorliegenden Arbeit. In Kapitel 2 werden die funktiona-
len und nicht-funktionalen Anforderungen an die zu entwickelnde Lösung detaillierter
erläutert.

Kapitel 3 beschreibt die notwendigen Grundlagen für die Arbeit und die entsprechende
Umsetzung. Themen sind Model Checking sowie die bei der Implementierung von Oryx
eingesetzten Techniken. Vorhandene Ansätze zur Überprüfung von Compliance sowie die in
einer vorangegangenen Arbeit geleisteten Vorarbeiten finden sich in Kapitel 4.

Auf den im zweiten Kapitel dargestellten Anforderungen basierend wird die entwickelte
Lösung in Kapitel 5 beschrieben. Unter anderem wird hier der Regelbaum 5.2 und das
Arbeiten mit Compliance Scopes 5.5 erläutert. Kapitel 6 geht näher auf einzelne Aspekte der
Implementierung ein. Neben der Grundarchitektur des entwickelten Prototypen wird hier
auch auf das Front- und Backend sowie die Erweiterbarkeit eingegangen.

Eine Zusammenfassung der Arbeit und einen Ausblick auf Themen im Kontext der Arbeit
bietet Kapitel 7.

10

2. Anforderungen

An die erarbeitete Lösung wurden eine Reihe von funktionalen und nicht-funktionalen
Anforderungen gestellt, die in diesem Kapitel genauer betrachtet und erläutert werden.

Erweiterung der Vorarbeiten aus der Diplomarbeit zum Variabilitätskonzept

In der vorhergehenden Diplomarbeit Prozessvarianten in unternehmensübergreifenden Service-
netzwerken [Köt10] wurde Oryx bereits um die Beschreibungsmöglichkeit von Variabilität in
BPMN-Modellen erweitert. Damit ist es möglich, Prozesstemplates zu erstellen, die dann
entsprechend der aktuellen Anforderungen zu konkreten Prozessvarianten abgeleitet werden
können.

Da die Variabilität eng mit dem Konzept der Compliance Scopes verbunden ist, ist es sinnvoll,
die neu entwickelte Lösung auf dieser bestehenden Erweiterung aufzubauen.

Unterstützung unterschiedlicher Beschreibungssprachen für Compliance Rules

Je nach Art der Regeln, die in einem Compliance Scope erfüllt sein sollen, ist die Formulie-
rung in unterschiedlichen Beschreibungssprachen sinnvoll.

Zur Beschreibung zeitlicher Anforderungen, wie der Reihenfolge auszuführender Tasks,
kann die Linear Temporal Logic (kurz LTL) zum Einsatz kommen. Die Definition von Regeln
zum Datenaustausch kann dagegen mit anderen Ausdrucksformen besser und leichter
ausgedrückt werden.

Die zu erstellende Lösung sollte daher auch nachträglich leicht um weitere Beschreibungs-
sprachen erweiterbar sein. In der Diplomarbeit ist ein Model Checker für die Auswertung
von in LTL formulierter Regeln einzubinden.

Außerdem soll die logische Verknüpfung von Regeln in unterschiedlichen Beschreibungs-
sprachen in einer gemeinsamen Regel für den Compliance Scope ermöglicht werden, sodass
in einem einzigen Compliance Scope Regeln mit unterschiedlichen Beschreibungssprachen
überprüft werden können.

Einbettung auf Client-Seite Je nach einzubettender Sprache kann eine graphische Modellie-
rung der Regeln sinnvoll erscheinen. Die zu erarbeitende Lösung sollte deshalb die
Einbindung graphischer Regeleditoren ermöglichen.

11

2. Anforderungen

Einbettung auf Server-Seite Hier können für verschiedene Regelbeschreibungssprachen Al-
gorithmen angegeben werden, die für die Verarbeitung der jeweiligen Regel zuständig
sind.

Unterstützung von Patterns

Da der Prozesstemplatedesigner eventuell nicht mit der LTL und anderen Beschreibungs-
sprachen vertraut ist, sollten Patterns ihn dabei unterstützen, dennoch zum gewünschten
Ziel zu kommen.

Beispiele für konkrete Instanzen von Patterns sind

• Stelle sicher, dass in jedem Fall ein Task mit Namen „durch Geschäftsleitung prüfen“
ausgeführt wird.

• Stelle sicher, dass falls ein Task mit Namen „durch Praktikant bearbeiten“ ausgeführt
wird, im nächsten Schritt ein Task mit Namen „durch Praktikantenbetreuer prüfen“
ausgeführt wird.

Um dem Benutzer zu ermöglichen, aus einfacheren Grundregeln komplexere Regeln zu
erschaffen, soll die Kombination von Patterns zu einer Compliance-Regel unterstützt wer-
den.

Execution Semantics in BPMN 2.0

Die im Januar erschienene neue Major-Version 2.0 [Obj11] der Business Process Model and
Notation (kurz BPMN) definiert im Gegensatz zur vorigen Version 1.2 [Obj09] eine Ausfüh-
rungssemantik (Execution Semantics). In Ansätzen, die auf der ersten Version der BPMN
basieren, wurde deshalb eine eigene Interpretation der Ausführungssemantik verwendet.

Hintergrund der Einführung der Execution Semantics ist der Wunsch BPMN direkt ausführ-
bar zu machen. Gleichzeitig wird aber darauf geachtet die Execution Semantics ähnlich zu
der BPEL Semantik zu gestalten, um Interoperabilität zu gewährleisten [Lit08].

Da in dieser Arbeit die zweite Version der BPMN verwendet wird, müssen bei der Übernah-
me von bestehenden Ansätzen die Unterschiede zur Execution Semantics von BPMN 2.0
berücksichtigt werden.

Performance

In der Usability sind die Reaktionszeiten des Systems eine wichtige Anforderungen [Eur].
Die Informationen müssen in einem Format und Tempo angezeigt werden, die dem Benutzer
angepasst sind. Deshalb soll die erarbeitete Lösung so implementiert werden, dass die
Antwortzeiten möglichst gering ausfallen.

12

Hierbei ist zu prüfen, ob die Durchführung von Compliance Checks sofort bei Änderung
eines BPMN-Modells möglich ist oder zu langen Wartezeiten führt, sodass nur die Prü-
fung auf Wunsch durchgeführt werden kann. Im ersteren Falle erhält der Benutzer zwar
ein unmittelbares Feedback, ob die von ihm erstellte Prozessvariante alle Regeln erfüllt,
dauert der Verifikationsprozess allerdings zu lange, verliert das unmittelbare Feedback an
Attraktivität.

Integration in Oryx

Die zu realisierende Lösung ist in Oryx zu integrieren. Dabei sollen vorhandene und
dokumentierte Erweiterungsmechanismen wie Plugins und Stencilsets nach Möglichkeit
vorrangig genutzt werden, anstatt nicht offiziell vorgesehene. Das erleichtert in der späteren
Wartung auch die Migration auf neuere Oryx-Versionen.

Bei der Integration des Model Checkers ist darauf zu achten, dass dieser sowohl unter einer
Windows- als auch einer Linuxserverumgebung lauffähig ist. Außerdem soll der Model
Checker gekapselt werden, sodass ein späterer Austausch des Model Checkers möglich ist.

Nachvollziehbarkeit von LTL-Regel-Verletzungen

Der Model Checker liefert im Falle der Verletzung einer Regel durch das BPMN-Diagramm
ein Gegenbeispiel. Dieses soll nach Möglichkeit entsprechend aufbereitet und dem Endbe-
nutzer zur Verfügung gestellt werden, damit dieser die Regelverletzung nachvollziehen und
seine eigene Regel verbessern kann.

13

3. Grundlagen

Die für die Erarbeitung der Lösung benötigten Grundlagen werden in diesem Kapitel
vorgestellt. Dies ist zum einen die Business Process Model and Notation, zum anderen das
Thema Model Checking. Der verwendete Model Checker Spin sowie die darin verwendete
Programmiersprache Promela wird vorgestellt. Da die Implementierung als Erweiterung von
Oryx erfolgt, werden außerdem Oryx und die dort verwendeten Techniken und Technologien
vorgestellt.

3.1. Business Process Model and Notation

Die Business Process Model and Notation (BPMN) ist eine graphische Notation zur Beschrei-
bung von Geschäftsprozessen, deren Entwicklung um 2002 begann und die später von der
Object Management Group (OMG) zur weiteren Pflege übernommen wurde [Sil09]. Für die
Verwendung der BPMN fallen keine Lizenzkosten an, eine Reihe von BPMN-Werkzeugen ist
zudem kostenlos verfügbar.

Durch die Ähnlichkeit zu Flowcharts [ISO] sind BPMN-Modelle auch von Businessanwen-
dern einfach zu verstehen. Die BPMN definiert aber im Gegensatz zu Flowcharts eine feste
Bedeutung für alle Elemente, was die Kommunikation über in BPMN beschriebene Prozesse
vereinfacht. Anders als die Unified Modeling Language (UML) [Obj10] ist die BPMN weniger
IT-zentriert und kann damit sowohl von den Geschäftsanwendern als auch von denjenigen,
die die technische Umsetzung und Pflege der Geschäftsprozesse vornehmen, verstanden
werden [Obj11]. Zusätzlich zu Flowcharts gibt es Event-getriggertes Verhalten [Sil09].

Die graphischen Elemente der BPMN in fünf Grundkategorien eingeteilt [Obj11]:

Flussobjekte Diese definieren als wichtigste graphische Elemente das Verhalten eines Ge-
schäftsprozesses. Insgesamt gibt es drei verschiedene Flussobjekte: Ereignisse, Aktivitä-
ten und Gateways.

Daten Hierzu gehören Datenobjekte, Datenein- und -ausgänge sowie Data Stores.

Verbindende Objekte Diese verbinden Flussobjekte miteinander oder Flussobjekte mit an-
deren Informationen. Hierbei werden Kontrollfluss, Nachrichtenfluss, allgemeine Ver-
knüpfungen und Datenverknüpfungen unterschieden.

Pools und Swimlanes Mit Swimlanes und Pools werden verschiedene Teilnehmer an ei-
nem Geschäftsprozess repräsentiert. Die Kommunikation zwischen Pools findet über
Nachrichten statt.

15

3. Grundlagen

Artefakte Hiermit können Prozesse um zusätzliche Informationen angereichert werden. Die
gängigsten Artefakte sind die Gruppierung und die Text Annotation.

Ein Beispielprozess findet sich in Abbildung 3.1.

Abbildung 3.1.: Beispiel BPMN-Prozess

Eine Übersicht über die Elemente der BPMN findet sich in [BPM10], die vollständige
Spezifikation in [Obj11].

3.2. Model Checking

Mit der zunehmenden Komplexität von Software wird es schwieriger, deren Fehlerfreiheit
zu gewährleisten. In besonders kritischen Anwendungen werden deshalb formale Methoden
gewöhnlichen Tests vorgezogen. Formale Methoden beschreiben Systeme als mathematische
Modelle, um dann die Korrektheit der Systeme zu beweisen [Now09].

In einigen Anwendungsgebieten wird Model Checking bereits intensiv genutzt [CGP01]. So
zum Beispiel bei der Verifikation von großen integrierten Schaltungen.

Ein Model Checker benötigt zwei Eingaben, eine Beschreibung des zu überprüfenden Systems
und die Spezifikation, die das System erfüllen muss. Anschließend läuft die Verifikation
vollautomatisch und liefert im Falle einer Verletzung der Spezifikation ein Gegenbeispiel.

3.2.1. Systembeschreibung

Im ersten Schritt wird ein formales Modell des zu verifizierenden Systems erstellt. Dabei
müssen in dem erstellten Modell alle Eigenschaften vertreten sein, die für die Verifikation

16

3.2. Model Checking

der Korrektheit notwendig sind. Eigenschaften, die für die Verifikation dagegen irrelevant
sind, werden weggelassen, um das Modell nicht unnötig komplex zu gestalten und beim
späteren Verifikationsprozess keine Laufzeiteinbußen zu erzeugen. So werden bei digita-
len Schaltungen die anliegenden Spannungen wegabstrahiert und durch boolsche Werte
repräsentiert [CGP01].

Die Beschreibung des zu testenden Systems kann dabei unter anderem als Kripkestruktur
[CGP01] erfolgen. Eine Kripkestruktur ist ein gerichteter Graph. Die Knoten dieses Graphen
beschreiben dabei Zustände des Systems. Jeder Zustand ist mit Bedingungen annotiert, die
in diesem Zustand erfüllt sind. Die Kanten des Graphen beschreiben Zustandsübergänge.
Diese Zustandsübergänge sind dabei an keine Bedingungen geknüpft. Eine Teilmenge der
Zustände wird als Startzustände ausgezeichnet.

Eine Kripkestruktur ist in Abbildung 3.2 gegeben. z1 ist als Startzustand gekennzeichnet. In
diesem Zustand gilt Bedingung a, im Zustand z7 gelten die Bedingungen b und c. Von Zu-
stand z1 kann das System entweder in z2 oder z4 wechseln, die Wahl des Nachfolgezustands
erfolgt nichtdeterministisch.

a

c

a

c

b,c

d

z
1

z
2

z
3

z
4

z
6

z
7

a
z
5

Abbildung 3.2.: Beispiel Kripkestruktur

Auf dem erstellten Modell werden nun zu erfüllende Eigenschaften (die Spezifikation)
beschrieben.

3.2.2. LTL

Eine Beschreibungsmöglichkeit für die einzuhaltende Spezifikation ist die lineare temporale
Logik (kurz LTL). Die LTL erweitert die Aussagenlogik um temporale, das heißt zeitbezogene,
Operatoren. Die Auswertung der Regel erfolgt dabei auf einzelnen Ausführungen des Models.
Folgende Operatoren werden dabei unterstützt:

Next φ Im nächsten Zustand gilt Bedingung φ.

Finally φ Irgendwann im weiteren Verlauf der Ausführung gilt Bedingung φ.

Globally φ Im weiteren Verlauf gilt in jedem Zustand Bedingung φ.

φ Until ψ Bis Bedingung ψ eintritt, gilt Bedingung φ und Bedingung ψ tritt irgendwann im
weiteren Verlauf ein.

17

3. Grundlagen

Tabelle 3.1 zeigt eine Auswertung der Operatoren auf der in Abbildung 3.2 gegebenen
Kripkestruktur.

Formel / Zustand z4 z2 z7 z5

Next d falsch falsch falsch wahr
Finally d wahr falsch falsch wahr
Globally c falsch wahr wahr falsch
a Until d wahr falsch falsch wahr

Tabelle 3.1.: Beispielauswertung LTL-Operatoren

Daneben existiert noch eine Reihe weiterer temporaler Operatoren [Now09], die sich aber,
ebenso wie Finally und Globally, aus den Operatoren der Aussagenlogik sowie Next und
Until darstellen lassen, da diese bereits eine Junktorenbasis bilden:

true ≡ φ ∨ ¬φ

Finally φ ≡ true Until φ

Globally φ ≡ ¬ (Finally ¬ φ)

φ Release ψ ≡ ¬ (¬ φ Until ¬ ψ)

Neben der LTL gibt es noch weitere Beschreibungsmöglichkeiten für temporale Anforde-
rungen. Die Computation Tree Logic (CTL) betrachtet im Gegensatz zur LTL nicht nur eine
mögliche Zukunft, sondern berücksichtigt alle möglichen Ausführungen [Now09]. Damit
lässt sich zum Beispiel beschreiben, dass mindestens eine mögliche Ausführung des Sys-
tems existiert, in der Task1 ausgeführt wird. Beide Logiken können jeweils Bedingungen
formulieren, die sich mit der anderen Logik nicht ausdrücken lassen. Es existiert aber eine
Vereinigung von beidem in der CTL*.

3.3. Spin

Spin [Spia] ist ein bewährtes und weit verbreitetes Werkzeug zur Modellprüfung. Die
Entwicklung begann bereits 1980 in den Bell Labs. Seit 1991 ist die Software frei verfügbar.

Sowohl die Beschreibung des Systems als auch die Spezifikation der Anforderung erfolgt
dabei in Promela. Beide werden anschließend konkateniert und in C-Code umgewandelt.
Der C-Code wird mit einem C-Compiler wie dem GCC [GT] kompiliert. Das dabei erzeugte
Programm simuliert das spezifizierte System und prüft dabei die Spezifikation.

Neben dem Model Checking ermöglicht Spin auch das Simulieren von Modellen durch
deren schrittweises Ausführen und Nachverfolgen des Ablaufs.

18

3.3. Spin

3.3.1. Promela

Spin verwendet zur Formulierung der Systembeschreibung eine eigene Programmiersprache
die Process or Protocol Meta Language (kurz Promela) [Ger97]. Promela ist an C angelehnt
und besteht aus drei Typen von Objekten: Prozessen, Nachrichtenkanälen und Variablen.
Prozesse definieren dabei das Verhalten des Modells und können über globale Variablen und
Nachrichtenkanäle miteinander kommunizieren.

Für das Verständnis der betrachteten Lösungsansätze der Systembeschreibung in Promela
sind einige Besonderheiten von Promela relevant, die im Folgenden kurz erläutert werden.

Kommunikation über Channels

Nachrichten werden mit eigenen Operatoren in Channels geschrieben und aus diesen gelesen
(siehe Listing 3.1).

1 channel ! token; // Token in Channel schreiben
channel ? token; // Token aus Channel lesen (blockiert)

Listing 3.1: Beispiel Channels

Nichtdeterminismus

Auch Nichtdeterminismus lässt sich mit Promela umsetzen. Dies findet zum Beispiel An-
wendung bei der zufälligen Wahl des Folgezustandes beim Umformen einer Kripkestruktur
in ein Promela-Programm.

if
:: condition1 -> statement1

3 :: condition2 -> statement2
fi;

do
:: condition1 -> statement1

8 :: condition2 -> statement2
od;

Listing 3.2: Beispiel Nichtdeterminismus

Listing 3.2 zeigt das if-Konstrukt und die do-Schleife in Promela. Beim if-Konstrukt werden
bei der Ausführung zunächst alle Bedingungen ausgewertet. Sind mehrere Bedingungen
erfüllt, so wird anschließend zufällig einer der erfüllten Zweige ausgeführt. Die Interpretation
bei der do-Schleife erfolgt analog.

19

3. Grundlagen

Never Claims

Never Claims sind spezielle Prozessarten, die beim Start der Verifikation einmal initialisiert
werden und anschließend parallel zu den Prozessen des Modells laufen. Sie dienen dazu,
unerwünschtes Verhalten des Modells zu erkennen. Die Prozesse des Modells und der Pro-
zess mit dem Never Claim werden schrittweise abwechselnd ausgeführt. Damit erzeugen die
Prozesse des Modells den nächsten Zustand, der im nachfolgenden Schritt dann umgehend
durch den Never Claims auf Korrektheit überprüft wird. Wird ein Never Claim beendet, so
ist das durch den Never Claim beschriebene unerwünschte Verhalten eingetreten und die
Spezifikation verletzt.

Als Beispiel sei die Spezifikation gegeben, dass stets die Bedingung abc gelten muss, als LTL-
Formel: []abc. Spin erlaubt nun die Generierung von passenden Promela-Programmen aus
LTL-Formeln. Dazu wird Spin mit dem Befehlszeilenparameter -f und der darzustellenden
LTL-Formel in negierter Form aufgerufen. So wird die LTL-Formel []abc in einen Never
Claim wie in Listing 3.3 dargestellt umgeformt.

1 never { /* ![]abc */
T0_init:

if
:: (! ((abc))) -> goto accept_all
:: (1) -> goto T0_init

6 fi;
accept_all:

skip
}

Listing 3.3: Beispiel Never Claim

Sobald ein Prozess des Modells die globale Variable abc auf false setzt, wird der Never
Claim beendet und damit die Spezifikation verletzt.

Damit mehrere Anweisungen in einem Block ausgeführt werden können, bevor der Wechsel
zum Never Claim stattfindet, können die Anweisungen in eine d_step-Umgebung einge-
schlossen werden.

Seit Version 6 können LTL-Formeln auch direkt in der Systembeschreibung angegeben
werden, ohne den Umweg über den Never-Claim [ltl].

3.4. Oryx

Oryx [ory] ist ein Open Source Framework zur graphischen Prozessmodellierung, das am
Hasso-Plattner-Institut in Potsdam entwickelt wurde und inzwischen sowohl als Open Source
Anwendung als auch als kommerzielles Produkt der Firma Signavio verfügbar ist [sig].

Der Client-Teil läuft dabei im Webbrowser und ist somit plattformübergreifend nutzbar.
Der Serverteil ist als JavaServlets realisiert. Durch seine Erweiterbarkeit bietet sich Oryx

20

3.4. Oryx

für Erweiterungen wie die im Rahmen dieser Arbeit entwickelte Lösung an. Im Oryx-
Coderepository [ory11] finden sich bereits eine Reihe von Erweiterungen wie Modellierungs-
möglichkeiten für Petrinetze, BPMN-Q und UML-Diagramme.

Abbildung 3.3.: GUI von Oryx

3.4.1. Frontend

Die Benutzeroberfläche wird vom Benutzer über den Webbrowser aufgerufen und genutzt.
Bei der Entwicklung wurde Wert auf ein Desktop Feeling gelegt, das heißt der Editor wurde
wie eine Desktop-Anwendung mit den dort gewohnten Konzepten, beispielsweise Drag and
Drop, konzipiert [Tsc07]. Wichtige Bestandteile der Architektur des Frontends sind Plugins
und Stencilsets, die nachfolgend genauer erläutert werden.

Eine Darstellung der GUI von Oryx findet sich in Abbildung 3.3. Auf der linken Seite befindet
sich die Toolbox mit allen für den Diagrammtypen verfügbaren graphischen Primitiven. Auf
der rechten Seite befindet sich ein Editor, mit dem Eigenschaften des aktuell markierten
Elements modifiziert werden können. Oben befindet sich die Toolbar, in der die verfügbaren
Plugins Zusatzfunktionen zur Verfügung stellen.

21

3. Grundlagen

Stencilsets

Ein Stencilset fasst die graphischen Primitive (Stencils) eines Diagrammtyps zusammen und
kann zusätzlich einen Satz von Regeln enthalten, der definiert, wie sich die graphischen
Elemente untereinander verhalten [Pet07].

Die graphischen Elemente eines Stencilsets unterteilen sich in Knoten und Kanten und kön-
nen neben der graphischen Darstellung weitere Eigenschaften, wie einen Namen, aufweisen,
die sich über den Eigenschaftseditor im Oryx-Frontend manipulieren lassen.

Ähnlich zur Vererbung in der Objektorientierung bieten Stencilsets die Erweiterung um
weitere Stencilset Extensions. Dies wurde zur Definition des Stencilsets zur Variabilität
genutzt, welches das BPMN 2.0-Stencilset um Variability Points und Variability Attributes
erweitert.

Rules definieren die Regeln, die in einem Diagrammtyp eingehalten werden müssen. Die
Dokumentation spezifiziert drei verschiedene Regeltypen:

Connection Rules Hiermit wird definiert, welche graphischen Primitive miteinander ver-
bunden werden können. So kann ein Task mit einer Kontrollflusskante verbunden
werden, aber nicht (direkt) mit einem Gateway.

Cardinality Rules Dieser Regeltyp beschränkt unter anderem die Anzahl ausgehender Kan-
ten eines Knotens oder die Anzahl möglicher Instanzen eines graphischen Primitivs in
einem Elternelement.

Containment Rules Mit diesem Regeltyp wird angegeben, welche graphischen Primitive
andere enthalten können.

Um ähnliches Verhalten und ähnliche Eigenschaften zusammenzufassen, können Stencils
Rollen zugeordnet werden [how]. So können weder Tasks noch Gateways weitere BPMN-
Elemente enthalten. Datenobjekte und Data Stores können beide nicht mit Kontrollflusskan-
ten verbunden werden.

Neben dem hier erweiterten Stencilset zur BPMN [Pol07] wurden bereits auch Stencilsets für
Petrinetze und UML-Diagramme erstellt und in Oryx eingebunden.

Plugins

Die Benutzeroberfläche kann auf Frontend-Seite durch Plugins erweitert werden [Tsc07].
Diese werden beim Aufruf der Benutzeroberfläche geladen und erhalten Zugriff auf eine
spezielle Fassade, über die sie auf den Datenbestand und die Funktionen des Frontends
zugreifen können.

Die Kommunikation zwischen Plugins erfolgt über Events. Plugins können dabei eigene
Events definieren und auslösen, sowie Events abonnieren. Events werden unter anderem
dann ausgelöst, wenn Stencils dem Graphen hinzugefügt werden oder sich Eigenschaften
der Stencils ändern.

22

3.5. Scalable Vector Graphics

3.4.2. Backend

Das Backend ist in Java realisiert. Erweiterungen um neue Funktionalitäten erfolgen als
JavaServlets [Oraa]. Insbesondere aufwändigere Operationen lassen sich einfacher im Back-
end umsetzen. So ist zum Beispiel der Aufruf von nativen Anwendungen auch nur hier
möglich.

3.5. Scalable Vector Graphics

Das in XML formulierte Scalable Vector Graphics Format [svg] erlaubt die Definition von
zweidimensionalen Vektorgraphiken. Nachdem SVG inzwischen von den gängigen Browsern
relativ vollständig unterstützt wird [Sch11], hat sich SVG zu einem im Web weit verbreiteten
Standard entwickelt. In Oryx wird SVG zur Beschreibung der graphischen Primitive in
Stencilsets verwendet.

Das Design der SVG-Graphiken muss dabei nicht als SVG von Hand erstellt werden, sondern
kann durch eine Reihe graphischer Editoren erfolgen, zum Beispiel mit Inkscape [Ink].

Oryx erweitert die SVG-Syntax um zusätzliche Attribute und Knoten [Pet07]. So erlauben
Anchors die Definition von Layoutverhalten im Falle einer Größenänderung eines Elementes
durch den Benutzer, Eigenschaftswerte können über das Text-Attribut mit der graphischen
Darstellung etwa zur Anzeige des Namens eines Tasks verwendet werden. Mittels Magnets
und Dockers wird die Definition von Ankerpunkten beim Versehen von Knoten mit Kanten
beschrieben.

3.6. JavaScript Object Notation

Die JavaScript Object Notation (JSON) [jso, Cro08] ist ein leichtgewichtiges Datenaustausch-
format. JSON ist für Menschen leicht lesbar und auf Grund seines einfachen Aufbaus leicht zu
parsen. Im Gegensatz zu XML ist JSON deutlich kompakter. Damit bietet sich JSON überall
dort an, wo die Möglichkeiten von JSON ausreichen und die Bandbreite zum Datentransfer
beschränkt ist. JSON basiert auf zwei grundlegenden Datentypen:

• Sammlungen von Name/Wertepaaren zur Beschreibung eines Objektes,

• Arrays zur Definition von Sammlungen von Objekten.

Listing 3.4 stellt einen Datensatz zu einem Auto in JSON dar. Die Ausstattungsmerkmale
werden als Array definiert, die Inhaberinformationen als Unterobjekt umgesetzt. Als Daten-
typen für Eigenschaftswerte stehen Zeichenketten, Dezimalzahlen, true und false, null
sowie Arrays und Objekte zur Verfügung.

JSON kann direkt in JavaScript geparst werden [eva], für Java ist ein entsprechender Par-
ser [Cro] verfügbar. In Oryx findet JSON umfangreiche Anwendung. So unter anderem bei

23

3. Grundlagen

der Definition von Stencilsets, beim Datenaustausch mit dem Backend und als Datenhal-
tungsformat für erstellte Modelle.

1 {
"Kennzeichen": "S-AB-1233",
"Kilometerstand": 18000,
"TUEV": true,
"Ausstattung": ["Radio", "Klima"],

6 "Inhaber": {
"Name": "Max Mustermann",
"Geburtstag": "1980-01-01"

}
}

Listing 3.4: Beispiel JSON

24

4. Vorhandene Ansätze und Vorarbeiten

In diesem Kapitel werden bestehende Ansätze zur Regelüberprüfung in BPMN-Diagrammen
genauer betrachtet. Zunächst werden Compliance Scopes und Compliance Templates vor-
gestellt und verglichen. Anschließend wird nacheinander auf Ansätze zur Kontroll- und
Datenflussverifikation eingegangen. Außerdem wird die bereits in der Diplomarbeit Prozess-
varianten in unternehmensübergreifenden Servicenetzwerken erarbeitete Lösung betrachtet, auf
der in der vorliegenden Arbeit aufgebaut wird.

4.1. Definition des Compliance Scopes

In [SWLS10] werden Compliance Scopes formal definiert. Als Grundlage hierfür dient die
Definition des Hypergraphen [Ber89]. Sei X = x1, x2, ..., xn eine Menge von BPMN 2.0-Tasks
und Ei eine Hyperkante, dann ist ein Hypergraph über X eine Familie H = E1, E2, ..., Em von
Untermengen von X, sodass gilt:

Ei 6= ∅ für (i = 1, 2, ...m) und
m⋃

i=1

Ei = X

Das heißt jede Kante muss mindestens einen Task verbinden und jeder Task von X muss von
mindestens einer Kante erfasst werden. Sei C die (endliche) Menge aller Compliance-Regeln.
Darauf aufbauend wird nun die Menge CS der Compliance Scopes, die auf einen Business
Prozess angewendet werden, definiert:

CS ⊆ H × (2C \∅)

Damit ist ein Compliance Scope ein Element aus der Menge CS, das heißt er verbindet eine
Hyperkante mit einem Satz Regeln. Dabei hat jeder Compliance Scope mindestens eine
verknüpfte Regel, Compliance Scopes ohne Regeln sind damit nicht zugelassen.

4.2. Definition des Compliance Templates

[SALM09] definiert den Begriff des Compliance Templates und beschreibt den Umgang mit
diesen.

In Abbildung 4.1 wird ein Compliance Template dargestellt. Dieses besteht aus drei
Komponenten: einem abstrakten Geschäftsprozess, sowie Variabilitätsbeschreibungen und

25

4. Vorhandene Ansätze und Vorarbeiten

Compliance-Deskriptoren. In dem abstrakten Geschäftsprozess sind Platzhalter enthalten
(in der Abbildung mit Opaque bezeichnet), die ersetzt werden müssen, bevor der Prozess
ausgeführt werden kann. Dazu definieren die Variabilitätsbeschreibungen Alternativen, die
für die Platzhalter eingesetzt werden können. Alternativen werden durch verschiedene
Typen kategorisiert. So ist die Angabe von expliziten, leeren, freien oder aus Expressions
generierten Alternativen möglich.

Zusätzliche Compliance-Regeln können mit den Compliance-Deskriptoren ausgedrückt
werden. Nicht mit Opaque bezeichnete Aktivitäten sind Compliance-Aktivitäten und dürfen
weder entfernt noch anderweitig verändert werden. Compliance-Deskriptoren bestehen aus
Compliance-Punkten, von denen jeder eine Compliance-Anforderung an den Geschäftspro-
zess beschreibt. Jeder dieser Compliance-Punkte besteht wiederum aus einer Menge von
Compliance-Links, die auf Aktivitäten im abstrakten Prozess zeigen, die nicht verändert
werden dürfen, sowie eine Reihe von Assurance-Regeln, die für einzelne Platzhalter angeben,
welche Regeln gelten müssen.

the abstract business process with concrete business logic and make the process
executable. Compliance activities are activities in the business process that are
not allowed to be removed or altered otherwise. They implement the compliance
requirements which the compliance template should fulfill.

Figure 1 shows an abstract business process as a template for a loan approval
process, a compliance descriptor, and a variability descriptor of a compliance
template. The dotted arrows show exemplarily what alternative, compliance link,
and compliance assurance rules is applied to which activity. The activities with
label 1st decision and 2nd decision are compliance activities. Opaque activities
are labeled Opaque.

Request.value > 300 Request.value <= 300

no

no

yes

yes

Receive Loan
Request

Opaque Opaque

1st decision

Opaque

Opaque

Invoke Approval
Sub-Process

Invoke
Disapproval
Sub-Process

2nd decision

Variability Descriptor

Variability Point 1

Alternative A

Copy loan data

Alternative B

Prepare Request

Invoke Credit
Check

Assign
Response

Variability Point 2

Alternative A

Log Decision

Alternative B

Invoke Approval
Sub-Process

Compliance Descriptor Abstract Process Variability Descriptor

Compliance Descriptor

Compliance Point 1

Comliance
Assurance Rule A

Opaque activities
cannot be replaced by

an invocation to the
Disapproval Sub-

Process

Compliance
Assurance Rule B

Activites replacing
opaque activities must
not contain links that
cross the boundary of

that activity

Compliance Link

Compliance Link

Compliance Link

Link to Opaque Act.

Link to Opaque Act.

Fig. 1. Loan approval process with compliance descriptor and variability descriptor

3.2 Variability Descriptors

Variability descriptors [7, 8] are a means to describe variability for applications.
Unlike other approaches [13, 5, 11] they are not focused on process models alone
but whole applications. Variability descriptors can be used to describe variability
across all layers of the application ranging from the GUI over the workflow layer
down to individual services and database schemes.

Besides documenting variability, variability descriptors can be transformed
into workflows [8] that can be used to guide users through the customization of

Abbildung 4.1.: Compliance Template [SALM09]

Variabilitätsbeschreibungen und Compliance-Deskriptoren werden dabei unabhängig vom
abstrakten Prozess definiert, was eine Wiederverwendung ermöglicht.

Im Gegensatz zur Definition des Compliance Scope lassen sich die Compliance-Regeln hier
nicht nachträglich in bestehende Prozesse integrieren, denn Opaque-Aktivitäten fehlen in
bestehenden, ausführbaren Prozessen.

26

4.3. Ansätze zur Kontrollflussverifikation

4.3. Ansätze zur Kontrollflussverifikation

Eine Reihe von Arbeiten beschäftigen sich mit der Verifikation des Kontrollflusses. Zweck
der Kontrollflussanalyse ist es unter anderem, sicherzustellen, dass Tasks in der korrekten
Reihenfolge ausgeführt oder Tasks im Prozess in jedem Fall durchgeführt werden. Aber
auch komplexere Regeln wie Falls die Aktivität „Gutachten erhalten“ ausgeführt wird, dann muss
anschließend irgendwann die Aktivität „Gegengutachten einholen“ ausgeführt werden. lassen sich
damit überprüfen.

4.3.1. PROPOLS

In [YMH+06] wird die Spezifikationssprache Property Specification Pattern Ontology Lan-
guage for Service Composition (kurz PROPOLS) vorgestellt. Diese basiert auf den in [DAC98]
vorgestellten Property Patterns, welche wiederum Verallgemeinerungen oft genutzter tempo-
raler Formeln sind.

So definiert PROPOLS unter anderem die Patterns Absence, Existence und Precedence über
definierten Geltungsbereichen wie Globally oder zwischen zwei Ereignissen (Between . . . And).
Ein mögliches kombiniertes Pattern ist in Listing 4.1 dargestellt.

Customer.GetOrderFulfilled Precedes Bank.Transfer Globally
And
Customer.GetOrderFulfilled LeadsTo Bank.Transfer Globally

Listing 4.1: Pattern in PROPOLS [YMH+06]

Die definierten Properties werden zum Überprüfen von BPEL Service Composition Schemas
genutzt. Der Verifikationsprozess läuft in diesem Ansatz dann wie folgt ab:

Schritt 1 Zunächst werden die durch Pattern ausgedrückten Eigenschaften als totale, deter-
ministische, endliche Automaten umgesetzt. Dabei ist auch definiert, wie der resultie-
rende Automat eines kombinierten Patterns aus den Automaten der einzelnen Patterns
erstellt wird.

Schritt 2 Anschließend wird das BPEL-Schema in ein endliches, deterministisches, beschrif-
tetes Transitionssystem umgeformt, woraus dann wieder ein totaler, deterministischer
und endlicher Automat erstellt wird.

Schritt 3 Die Konformität des BPEL-Schema zu den in PROPOLS definierten Eigenschaften
wird ermittelt, indem nachgeprüft wird, ob alle vom BPEL-Automaten akzeptierten Se-
quenzen auch vom Automaten, der die Eigenschaften repräsentiert, akzeptiert werden.

Dies wiederum erfolgt durch Schnitt des BPEL-Automaten mit dem Komplement des
Eigenschafts-Automaten. Ist der Schnitt leer, so ist die definierte Eigenschaft stets
erfüllt.

27

4. Vorhandene Ansätze und Vorarbeiten

Der Verifikationsprozess ähnelt damit dem des automaten-basierten Model Checkings. Dort
werden sowohl das zu prüfende System als auch die zu prüfende Eigenschaft in einen Büchi-
Automaten (dieser arbeitet auf unendlichen Wörtern und akzeptiert, wenn ein Endzustand
unendlich oft durchlaufen wird) überführt. Um zu prüfen, ob das System der definierten
Eigenschaft genügt, wird anschließend der Büchi-Automat des Systems mit dem Komplement
des Büchi-Automaten der Spezifikation geschnitten und ermittelt, ob der Schnittautomat nur
die leere Sprache akzeptiert. Ist dies der Fall, so ist die Spezifikation erfüllt [CGP01].

4.3.2. Ansätze zur Verifikation mittels Model Checking

In einigen Arbeiten wurde Model Checking bereits zur Überprüfung von BPMN-Modellen
eingesetzt. Hier finden sich zwei Ansätze, um ein BPMN-Modell auf Promela, die Einga-
besprache von Spin, umzuformen: Das Mapping mittels mehrerer Prozesse und Channels
zur Kontrollflussbehandlung und der Zwischenschritt über ein Petrinetz, welches in einem
Promela-Programm schrittweise simuliert wird.

Mapping der BPMN auf Prozesse/Channels

In [VF07] wird die Verifikation von Web Services und Geschäftsprozessen mit Spin be-
handelt. Dazu werden die in [RAAM06] präsentierten Workflow-Pattern-Spezifikationen
(Sequenz, Auswahl, Parallelismus und Synchronisierung) genutzt, die sich auf den Kontroll-
fluss beschränken. Für jedes dieser Workflow-Patterns wird eine entsprechende Promela-
Übersetzung erstellt. Die wichtigsten (Sequenz, Paralleler und Exklusiver Split, Synchronisie-
rung und einfacher Merge) werden vorgestellt.

active proctype XORGateway() {
2 end:

rendezvous_channels[1] ? _;

if
:: rendezvous_channels[2] ! 1

7 :: rendezvous_channels[3] ! 1
fi

}

Listing 4.2: Umsetzung eines XOR-Gateways

Prozesse, Unterprozesse und Aktivitäten werden dabei als Promela-Prozesse umgesetzt,
der Kontrollfluss erfolgt über Channels. Am Beispiel einer Reiseagentur wird die Um-
setzung eines BPMN-Modells in Promela, sowie die Verifikation von in LTL formulierter
Spezifikationen illustriert.

Listing 4.2 zeigt die Umsetzung eines XOR-Gateways. Der Prozess wird bei Programm-
beginn gestartet und wartet auf dem eingehenden Channel (entspricht der eingehenden
Kontrollflusskante) auf das Signal, mit der Ausführung zu beginnen. Anschließend wird eine

28

4.3. Ansätze zur Kontrollflussverifikation

der beiden nachfolgenden Kanten zufällig gewählt und auf dem entsprechenden Channel
signalisiert.

Der in [VF07] vorgestellte Ansatz wird unter anderem in [Mü10] weiter verfolgt. Zusätzlich
wird hier ein Algorithmus zur Verifikation der temporalen Bedingungen Direktnachfolger,
Direktvorgänger, Direktabfolge und negierte Direktabfolge vorgestellt. Dieser verwendet allerdings
kein Model Checking, sondern prüft die Struktur des BPMN-Modells durch eigenen Code
direkt.

Mapping eines BPMN-Modells auf ein Petrinetz

Der in [DDO07, WMM09, Wol10] vorgestellte Ansatz verfolgt dagegen einen anderen Weg
der Umsetzung. Hier wird das BPMN-Modell nicht direkt in ein Promela-Programm umge-
wandelt, sondern zunächst auf ein Petrinetz abgebildet, welches dann als Promela-Programm
umgesetzt wird.

Jedem BPMN-Element ist dabei ein Petrinetz-Fragment zugeordnet. Das Mapping des
gesamten BPMN-Modells erfolgt durch Umsetzung der einzelnen BPMN-Elemente in ihre
Petrinetzentsprechungen.

Startereignis

Endereignis

Task

t

Zwischenereignis

Paralleles Gateway

+

+

Exklusives Gateway

X

X

Nachrichtenfluss

t

t

BPMN-Element Petrinetz-Darstellung BPMN-Element Petrinetz-Darstellung

Abbildung 4.2.: XOR-Gateway im Petrinetz, nach [DDO07]

Das Petrinetzfragment für das XOR-Gateway ist in Abbildung 4.2 dargestellt. Das XOR-
Gateway wird aktiv, sobald ein Token auf dem eingehenden Platz eintrifft. Nichtdeterminis-
tisch wird dann eine der beiden Transitionen getätigt und damit einer der nachfolgenden
Zweige gewählt.

4.3.3. Visuelle Notationen für LTL-Formeln

Da die Formulierung vor allem komplexerer LTL-Formeln für unerfahrene Anwender schwie-
rig ist, existieren Ansätze zur graphischen Notation. In [BDSV05] werden zwei mögliche
Notationen untersucht. Neben der Verwendung der BPMN wird auch eine eigene Nota-
tion vorgeschlagen, die im Gegensatz zur BPMN die volle Ausdrucksmächtigkeit der LTL
abbilden kann.

Abbildung 4.1 zeigt die graphischen Darstellungen einiger Operatoren.

29

4. Vorhandene Ansätze und Vorarbeiten

Operator Beispielformel Repräsentation

Finally Finally Prop
Prop

Prop1 Prop2

Prop 1 Prop 2A

Until Prop1 Until Prop2

Prop

Prop1 Prop2

Prop 1 Prop 2AKlammerung (Prop1 And Prop2)

Prop

Prop1 Prop2

Prop 1 Prop 2A

Tabelle 4.1.: Auszug Operatorendarstellungen LTL (nach [BDSV05])

4.4. Ansätze zur Verifikation des Datenflusses

Bestehende Ansätze [AWW09, KLRM+10], die sich mit den Daten innerhalb eines Prozesses
beschäftigten, behandeln vor allem die Erweiterung von Kontrollflussregeln um zusätzliche
Datenaspekte. [AWW09] erweitert die BPMN-Q [AS] dabei um zusätzliche Elemente.

Die BPMN-Q ist eine visuelle Notation, die die BPMN erweitert, um Suchanfragen auf
Prozessmodellen beschreiben zu können. Abbildung 4.3 zeigt eine einfache Anfrage, bei der
im BPMN-Modell nach einem Untergraphen gesucht wird, in die Durchführung von Task1
letztendlich stets zur Durchführung von Task2 führt.

Abbildung 4.3.: BPMN-Q Beispielabfrage [AWW09]

Um bei diesen Regeln zusätzlich noch Daten berücksichtigen zu können, wird die Notation
erweitert. Eine entsprechende Regel findet sich in Abbildung 4.4. Hier muss eine negativ
ausgefallene Kreditprüfung in jedem Fall zur Ablehnung führen.

Abbildung 4.4.: BPMN-Q Beispielabfrage mit Datenberücksichtigung [AWW09]

Für die erweiterte Syntax wird dann ein Mapping auf die Past Linear Temporal Logic (kurz
PLTL) angegeben. Die PLTL erweitert die LTL zusätzlich um Operatoren, die Aussagen über
die Vergangenheit ermöglichen. Diese Operatoren sind unter anderem Previous, Once, Always
Been und Since (diese ähneln den LTL-Operatoren Next, Finally, Globally bzw. Until in ihrer

30

4.5. Vorarbeiten der Diplomarbeit zur Variabilität

Definition). Nach dem Mapping der Regeln auf PLTL-Formeln lassen sich diese mittels eines
Temporal Logic Query Checkers überprüfen.

4.5. Vorarbeiten der Diplomarbeit zur Variabilität

In der Diplomarbeit Prozessvarianten in unternehmensübergreifenden Servicenetzwerken [Köt10]
wurde die BPMN bereits um zusätzliche Konstrukte zur Formulierung von Variabilität in
BPMN-Modellen erweitert.

Dazu wurde die BPMN 2.0 um folgende Konzepte ergänzt [Köt10]:

Variabler Referenzprozess Ein BPMN-Prozess, der Leerstellen für einzusetzende Prozess-
fragmente enthält. Außerdem können seine Elemente variable Attribute enthalten.

Prozessfragment Ein separat modellierter Teilprozess, der in einen Referenzprozess einge-
setzt werden kann.

Variable Attribute Attribute, die mittels einer eigenen Beschreibungssprache definiert wer-
den, die auf Variabilitätsbeschreibungen aufbaut.

Variantenableitung Auswahl der einzusetzenden Prozessfragmente in die Leerstellen im Re-
ferenzprozess durch den Nutzer nach dem Baukastenprinzip. Auswahl konkreter Werte
für die variablen Attribute. Als Resultat der Ableitung entsteht eine Prozessvariante.

Prozessvariante Ein abgeleiteter Referenzprozess, der keine Variabilität mehr enthält. Er ist
ein gültiger BPMN-Prozess.

Für variable Referenzprozesse und Prozessfragmente wurde dazu jeweils eine eigene Er-
weiterung des BPMN 2.0-Stencilsets erstellt. Mit dem Diagrammtyp Fragments können
Prozessfragmente erstellt werden, zur Definition von Referenzprozessen steht der Diagramm-
typ Variability zur Verfügung.

5. Variabilitätskonzept

Abbildung 5.3.: Darstellung eines Fragment-Links.

Name Name des Fragment-Links. Wird als Beschriftung angezeigt.

Target Ziel des Fragment-Links.

Documentation Kommentar.

Abbildung 5.4 zeigt beispielhaft das Einsetzen eines Fragments mit einem Fragment-Link.
Das Fragment wird in die variable Region des Referenzprozesses eingesetzt. Der Sequenzfluss
der Region wird mit Fragment-Start und Fragment-Ende verbunden. Der Nachrichtenfluss,
der am Fragment-Link endet, wird mit dem Ziel des Links im Referenzprozess verbunden.

Abbildung 5.4.: Einsetzung eines Fragments mit einem Fragment-Link.

Variable Attribute

Für variable Attribute wird eine eigene Sprache definiert, mittels der ein Attribut als variabel
erklärt werden kann. Ein Ausdruck in dieser Sprache ersetzt dann den eigentlichen Inhalt
des Attributs.

Dazu ist zuallererst zu klären, welche Art von Variabilität für ein Attribut sinnvoll ist. Als
Orientierung dazu dienen die in 3.2 vorgestellten Alternativen des Variability Descriptor.

50

Abbildung 4.5.: Einsetzung eines Fragments mit einem Fragment-Link [Köt10]

Abbildung 4.5 zeigt den Prozess der Prozessvariantenbildung. Ein Prozessfragment wird
in einen Referenzprozess eingesetzt. Prozessfragmente besitzen genau einen Fragment-
Start (weißes Dreieck) und ein Fragment-Ende (schwarzes Dreieck). Diese werden bei
der Prozessvariantenbildung dazu genutzt, das Prozessfragment in den Kontrollfluss des

31

4. Vorhandene Ansätze und Vorarbeiten

umgebenden Referenzprozesses einzubinden. Fragment-Links (ineinanderliegende Dreiecke)
dienen der Definition von Nachrichtenfluss über die Fragment-/Referenzprozessgrenze
hinaus.

Variable Attribute können bei der Prozessvariantenbildung dabei entweder aus einer vor-
definierten Liste ausgewählt oder mit Freitext versehen werden, wobei bei Freitext hier
zusätzliche Constraints, wie zum Beispiel Wertebereichsbeschränkungen, angegeben werden
können.

Mit sogenannten Dependencies kann außerdem festgelegt werden, in welcher Reihenfolge die
Ableitung vorgenommen werden muss. Enabling Conditions schränken die Alternativen für
einen Variabilitätspunkt ein und werden in XPath formuliert.

32

5. Konzept

Unter Berücksichtigung der im zweiten Kapitel vorgestellten Anforderungen wird in diesem
Kapitel nun ein Konzept erarbeitet. Dieses baut auf den im vorigen Kapitel erörterten
Ansätzen auf.

Hierzu werden der Compliance Scope sowie der Regelbaum zur Beschreibung von
Compliance-Regeln inklusive der unterstützten Operatoren definiert. Anschließend werden
die LTL-Diagramme zur Definition von temporalen Anforderungen beschrieben, sowie das
Arbeiten mit Compliance Scopes.

5.1. Der Compliance Scope

Ein Compliance Scope definiert eine Umgebung in einem BPMN-Diagramm, in der zuvor
festgelegte Regeln eingehalten werden müssen. Dies kann zum Beispiel die Anforderung
sein, dass in jedem Fall ein Task mit Namen Kreditwürdigkeit prüfen ausgeführt wird. In dieser
Umgebung sind BPMN-Elemente enthalten.

Abbildung 5.1.: Definition Compliance Scope

Abbildung 5.1 zeigt einen Compliance Scope in einem mit BPMN modellierten Prozess.
Dieser beinhaltet zwei Tasks, ein Start- und ein Endereignis sowie ein Datenobjekt. Dem
vom Compliance Scope umschlossenen Teil des BPMN-Diagramms können nun Regeln
zugewiesen werden, zum Beispiel, dass Task2 nach Task1 ausgeführt werden muss. Tauscht
der Prozessdesigner später die Reihenfolge der beiden Tasks im Compliance Scope, so ist
die Regel verletzt.

33

5. Konzept

Aufbauend auf der Definition des Compliance Scopes in [SWLS10] wird die im Rahmen die-
ser Arbeit verwendete Definition entwickelt, wobei zwei unterschiedliche Ansätze verglichen
werden.

Compliance Scopes als loser Verbund von frei gewählten Tasks

In [SWLS10] wird ein Compliance Scope als Hyperkante in einem Hypergraphen definiert,
das heißt es werden Verknüpfungen zu jedem einzelnen BPMN-Element abgespeichert, das
zum Compliance Scope gehören soll.

Dieser Ansatz ist sehr flexibel, da hier sehr feingranular festgelegt werden kann, welche
Elemente zum Compliance Scope gehören sollen und welche nicht. Außerdem können
BPMN-Elemente zu mehreren Compliance Scopes gehören. Bei der direkten Umsetzung
dieses Ansatzes ist aber mit Problemen in der Handhabbarkeit durch den Anwender zu
rechnen, denn für den Prozessdesigner muss die Darstellung der Compliance Scopes und
ihrer zugehöriger Elemente nachvollziehbar sein.

Da die zu einem Compliance Scope gehörenden BPMN-Elemente über das komplette Dia-
gramm verteilt sein können, muss für jedes Element deutlich gemacht werden, zu welchem
Compliance Scope es gehört. Dies kann durch die Angabe des Namens des Compliance
Scopes oder die Verwendung eines eigenen Icons oder einer eigenen Farbe pro Compliance
Scope erfolgen. In allen Fällen wird die Darstellung durch die zusätzlichen Complian-
ce Scope-Kennzeichnungen aber deutlich komplexer und damit für den Prozessdesigner
schwieriger zu überblicken.

Compliance Scopes als konvexe Hülle

Im Rahmen dieser Arbeit wird deshalb ein modifizierter Ansatz gewählt. Hier bildet der
Compliance Scope einen Teil der Hierarchie des BPMN-Modells, das heißt der Compliance
Scope beinhaltet, wie zum Beispiel auch ein Subprozess, weitere BPMN-Elemente.

Dieser Ansatz ist zwar weniger flexibel als der zuerst vorgestellte Ansatz, ist aber besser für
den Prozessdesigner zu verstehen, da alle zum Compliance Scope gehörenden Elemente an
einer Stelle des BPMN-Modells konzentriert sind.

Zusätzlich können zu einem Compliance Scope nicht nur Tasks, sondern beliebige BPMN-
Elemente wie Datenobjekte und Gateways gehören. Damit wird die Modellierung von
Datenflussregeln ermöglicht, die zum Beispiel für die zu einem Compliance Scope gehören-
den Datenobjekte festlegen, welche Daten gelesen und geschrieben werden dürfen.

34

5.1. Der Compliance Scope

Beschreibung der Compliance-Regeln

Wie in [SWLS10] auch werden die Compliance-Regeln eines Compliance Scopes als Ele-
ment der Potenzmenge aller möglichen Regeln definiert. Diese Menge der darstellbaren
Compliance-Regeln wird aber weiter eingeschränkt. Dazu werden Compliance-Regeln als
Baum aus Operatoren, dem Regelbaum, definiert. Dieser verknüpft einzelne Compliance-
Regeln in unterschiedlichen Beschreibungsmöglichkeiten wie der LTL mittels logischer
Operatoren zu einer einzigen Compliance-Regel.

5.1.1. Finale Definition

Zusammenfassend werden Compliance Scopes nun wie folgt definiert: Sei X = x1, x2, ..., xn
eine Menge von BPMN 2.0-Elementen und H = E1, E2, ..., Em eine Familie von Untermengen,
den Hyperkanten über X, sodass gilt:

Ei 6= ∅ für (i = 1, 2, ...m) und
m⋃

i=1

Ei = X

Sei weiterhin C die (endliche) Menge aller Compliance-Regeln und R ⊆ 2C die Menge aller
als Regelbaum dargestellten Regelkombinationen aus 2C, dann ist ein Compliance Scope ein
Element aus dem kartesischen Produkt H × R. Das heißt, ein Compliance Scope verknüpft
eine Menge von BPMN-Elementen mit einer als Regelbaum dargestellten Menge von Regeln.
Zusätzlich müssen folgende Bedingungen gelten:

Zusammenhängend Sind zwei Tasks in dem selben Compliance Scope enthalten und exis-
tiert ein Kontrollflusspfad zwischen beiden Tasks, dann sind auch alle Tasks auf dem
Kontrollflusspfad zwischen den beiden Tasks im Compliance Scope enthalten.

Kontrollfluss Analog zum Subprozess beginnt die Ausführung in einem Compliance Scope
mit einem Startereignis und endet mit einem Endereignis. Ein Compliance Scope
enthält damit mindestens ein Start- und mindestens ein Endereignis.

Compliance-Regel Ein Compliance Scope kann mit Compliance-Regeln annotiert sein. Diese
definieren unter anderem Kontroll- und Datenflussregeln, die in dem Compliance Scope
eingehalten müssen. Die Compliance-Regeln werden mittels logischer Verknüpfungen
als Operatorenbaum realisiert.

5.1.2. Vererbung von Regeln

Werden Compliance Scopes ineinander geschachtelt, so muss festgelegt werden, wie im
inneren Compliance Scope mit den Regeln des äußeren Compliance Scopes verfahren
wird. In der hier erarbeiteten Lösungen werden Compliance-Regeln nicht an enthaltene
Compliance Scopes weiter vererbt (das heißt zum Regelsatz des inneren Compliance Scopes
hinzugefügt), da bei der Verifikation der Compliance-Regeln eines Compliance Scopes alle
inneren Compliance Scopes als normale Subprozesse betrachtet werden.

35

5. Konzept

Als Beispiel sei das in Abbildung 5.2 dargestellte Prozessmodell gegeben. Hier wird in einem
Compliance Scope Unternehmen ein weiterer Compliance Scope Abteilung definiert. Bei der
Verifikation jedes der beiden Compliance Scopes wird nur der Regelsatz des jeweiligen
Compliance Scopes überprüft. Enthält der Compliance Scope Unternehmen, die Regel, dass
irgendwann im Prozess Task1 ausgeführt werden muss, so ist diese im äußeren Compliance
Scope erfüllt. Diese Regel wird aber nicht dem Regelsatz des Compliance Scopes Abteilung
hinzugefügt, sodass also kein weiterer Task1 im Compliance Scope Abteilung enthalten sein
muss, damit der innere Compliance Scope erfüllt ist.

Abbildung 5.2.: Beispiel zur Vererbung von Regeln zwischen Compliance Scopes

Damit unterscheidet sich die hier gewählte Lösung zu [SALS10]. Dort werden sogenann-
te Refinement Layers definiert, über die schrittweise ein Prozesstemplate präzisiert wird.
Beim Einsetzen eines Prozesstemplates in ein Prozesstemplate werden dabei bestehende
Compliance-Regeln mit denen des neu eingesetzten Prozesstemplates kombiniert. So kön-
nen Regeln, die bereits im umgebenden Prozesstemplate erfüllt sind und im eingefügten
Prozesstemplate nicht mehr verletzt werden können, bei der Betrachtung des inneren Tem-
plates ignoriert werden. Damit wird es zum einen ermöglicht, den äußeren Compliance
Scope während der Bearbeitung des inneren auszublenden und somit die Konzentration
des Nutzers auf diesen zu richten, zum anderen müssen bereits erfüllte Regeln nicht erneut
geprüft werden, was den Compliance Check beschleunigt.

Da aber in dem hier erarbeiteten Konzept stets das komplette Prozessmodell weiter bearbeitet
wird, werden Compliance-Regeln nicht an bei der Prozessvariantenbildung eingefügte
Compliance Scopes weiter gereicht.

5.2. Der Regelbaum

Der Regelsatz eines jeden Compliance Scopes ist als ein Baum aus Operatoren repräsentiert.
Operatoren sind dabei logische Operatoren zur Verknüpfung und Operatoren, die einzelne
Anforderungen beschreiben. In dieser Arbeit sind dies LTL- und DataTransfer-Operatoren,
in späteren Erweiterungen sind auch weitere Operatoren möglich, die Anforderungen zum
Beispiel auf Ontologien basierend beschreiben. Blätter dieses Regelbaums sind LTL- oder
DataTransfer-Operatoren, innere Knoten logische Operatoren.

36

5.2. Der Regelbaum

Beide Operatorenarten liefern als Ergebnis entweder wahr oder falsch. Das Ergebnis logischer
Operatoren wird dabei aus den als Operanden verwendeten Operatoren ermittelt, das
Ergebnis der LTL- und DataTransfer-Operatoren über dem Compliance Scope anhand der
Definition des jeweiligen Operators.

Abbildung 5.3 zeigt einen Regelbaum, der zwei LTL- und eine DataTransfer-Regel kombi-
niert.

AND

OR NOT

LTL LTL DataTransfer

Abbildung 5.3.: Regelbaum

5.2.1. Logische Operatoren

Unterstützt werden die logischen Operatoren AND, NOT und OR. Da bereits einer der beiden
binären Operatoren und NOT eine Junktorenbasis bilden, lassen sich weitere Operatoren
wie Implikation, Äquivalenz und XOR als Kombination dieser darstellen.

Im Gegensatz zur klassischen Definition dürfen die Operatoren AND und OR auch nur
einen oder auch mehr als zwei Operanden besitzen. OR und AND mit jeweils genau
einem Operanden sind genau dann erfüllt, wenn ihr Operand erfüllt ist. Bei mehr als zwei
Operanden wird die Interpretation von OR und AND analog fortgesetzt, OR ist wahr, wenn
mindestens ein Operand erfüllt ist, bei AND müssen alle Operanden erfüllt sein.

5.2.2. LTL-Operator

Der LTL-Operator dient der Kontrollflussanalyse. Die Regel eines LTL-Operators ist dabei
durch eine LTL-Formel beschrieben (vgl. Abschnitt 3.2.2). In der bestehenden Implementie-
rung erfolgt die Analyse alleinig auf den Namen der Tasks. Dies lässt sich aber erweitern um
weitere Prüfbedingungen, wie zum Beispiel den Typ eines Tasks (WebService, manuell. . .).

37

5. Konzept

Fortlaufendes Beispiel

Abbildung 5.4 zeigt ein Prozessmodell, welches im weiteren Verlauf dieser Ausarbeitung
zur Beschreibung der Verarbeitungsschritte beim Auswerten einer in LTL formulierten
Compliance-Regel verwendet wird.

Abbildung 5.4.: Beispielgraph LTL-Operator

Hier werden nacheinander die Tasks Task1 und Task2 ausgeführt. Abhängig von einer
hier nicht näher spezifizierten Bedingung wird anschließend entweder Task3 oder Task4
ausgeführt, bevor der Prozess nach Durchführung von Task5 und Task6 beendet wird. Um
Task2 und Task5 wurde ein Compliance Scope definiert, dem folgende Compliance-Regel
zugewiesen wurde:

Finally Task2 ∧ Finally Task3

Finally Task2 und Finally Task3 wurden dabei jeweils als einzelne LTL-Formeln mo-
delliert, die mit einem logischen AND-Operator verknüpft werden. Der Regelbaum des
Compliance Scope besteht damit aus drei Operatoren.

Der Next-Operator in LTL-Formeln

Die LTL unterstützt wie in den Grundlagen (3.2.2) vorgestellt auch einen Next-Operator, der
den Zustand unmittelbar nach dem aktuellen beschreibt. Dieser wird allerdings von der
erarbeiteten Lösung nicht unterstützt.

Dies hat zwei Gründe. Zum einen ist der Einsatz des Next-Operators fehleranfällig. Als
Beispiel sei die LTL-Formel Task1 -> Next Task2 und die in Abbildung 5.5 gezeigte Prozess-
variante gegeben. Auf den ersten Blick erfüllt diese die angegebene LTL-Formel. Allerdings
wird diese verletzt, wenn zuerst Task1 ausgeführt wird und während dieser ausgeführt wird,
parallel mit Task3 begonnen wird. Das ganze System befindet sich damit durch den Start
von Task3 in einem neuen Zustand, in dem aber noch Task1 und noch nicht Task2 ausgeführt
wird.

38

5.2. Der Regelbaum

Zum anderen wird der Next-Operator in der Binärdistribution von Spin nicht unterstützt,
da dieser nicht kompatibel mit der verwendeten Partial Order Reduction ist [ltl].

Abbildung 5.5.: Illustration Next-Operator

5.2.3. DataTransfer-Operator

Der DataTransfer-Operator dient der Analyse des Datenflusses in Datenobjekte und aus
Datenobjekten heraus. Ein wichtiges Anwendungsszenario dieses Regeltyps ist das Arbeiten
mit sensiblen Daten. So muss zum Beispiel sichergestellt werden, dass geheime Kreditkar-
tendaten nicht an externe Dienstleister weitergegeben werden.

In Abbildung 5.6 ist ein Beispielprozess gegeben. Aus Task1 werden dabei Daten über eine
DataAssociation in das Datenobject DataObject1 übertragen. DataObject1 liefert anschließend
Eingabedaten für Task2. Welche Daten über einer Datenflusskante übertragen werden, wird
dabei in einer Assignment-Regel hinterlegt [Obj11].

Abbildung 5.6.: Beispielgraph DataTransfer-Operator

39

5. Konzept

Die grundlegenden Eigenschaften des DataTransfer-Operators enthalten folgende Informa-
tionen:

Name Datenobjekt Der Name des Datenobjektes, auf den sich die Regel bezieht. Ein leerer
Name ist dabei nicht zugelassen.

Pfad Beschreibt die Felder im Datenobjekt, die betrachtet werden.

Sprache Pfad Gibt die Formulierungssprache des Pfades an. Die Spezifikation der
BPMN 2.0 [Obj11] lässt hier prinzipiell beliebige Sprachen zu, in der Diplomarbeit
wird allerdings nur XPath [xpa] unterstützt.

Einschränkung, wann die Regel geprüft wird

Wann eine DataTransfer-Regel geprüft wird, kann durch mehrere Bedingungen festgelegt
werden. Zum einen kann die Richtung des Datenflusses angegeben werden, das heißt ob die
Daten in das Datenobjekt geschrieben oder von diesem gelesen werden.

Eine zweite Einschränkungsmöglichkeit bieten die potentiellen Partner eines Datenaus-
tauschs. Hier kann eine Liste der Partner angegeben werden. Die Überprüfung der Regel
findet nur dann statt, wenn ein Datenaustausch mit einem der zuvor definierten Partner
stattfindet.

Die dritte und letzte Bedingung ist, ob die Regel nur beim Überqueren der Grenze des Com-
pliance Scopes geprüft werden soll. Hierbei muss das Datenobjekt innerhalb des Compliance
Scopes liegen. Das stellt sicher, dass das Datenobjekt betreffende Datenflussregeln nahe am
Datenobjekt definiert werden.

Regeltyp

Über den Regeltyp lässt sich festlegen, in welcher Beziehung die durch den XPath-Ausdruck
in der Regel selektierten Knoten und die durch die Assignment-Regeldefinition bestimmte
Knotenmenge stehen sollen. Insgesamt werden vier verschiedene Regeltypen unterstützt.

Regeltyp 1: Nicht diese Die durch den XPath-Ausdruck in der Compliance-Regel beschrie-
benen Knoten dürfen nicht gelesen oder geschrieben werden. Damit kann zum Beispiel
sichergestellt werden, dass sensible Informationen nicht übertragen werden.

Regeltyp 2: Nur diese Nur die durch den XPath-Ausdruck in der Regel beschriebenen Kno-
ten dürfen gelesen und geschrieben werden. Hiermit können Informationen ähnlich
einer Whitelist explizit zur Datenübertragung freigegeben werden.

Regeltyp 3: Genau diese Exakt die durch den XPath-Ausdruck in der Regel beschriebenen
Knoten müssen gelesen oder geschrieben werden.

40

5.2. Der Regelbaum

Regeltyp 4: Mindestens diese Mindestens die durch den XPath-Ausdruck der Regel be-
schriebenen Knoten müssen gesetzt werden. Damit lässt sich sicherstellen, dass an-
schließend die gewünschten Informationen auch im Zielobjekt enthalten sind.

Ausgewertet werden diese Regeln durch Mengenoperationen auf den Knotenmengen, die
durch den XPath-Ausdruck der Regel und durch den XPath-Ausdruck der Assignments der
DataAssociations beschrieben werden.

Sei A die Knotenmenge, die durch die Assignment-Regel in der DataAssociation beschrieben
wird und B die Menge der Knoten, die durch den XPath-Ausdruck im DataTransfer-Operator
beschrieben wird, dann werden die einzelnen Regeltypen wie folgt umgesetzt:

Regeltyp 1: Nicht diese A ∩ B !
= ∅

Regeltyp 2: Nur diese A \ B !
= ∅

Regeltyp 3: Genau diese A4 B = (A ∪ B) \ (A ∩ B) !
= ∅

Regeltyp 4: Mindestens diese B ∩ A !
= ∅

Der Operator zur Vereinigung ist bereits in XPath 1.0 enthalten, die Operatoren für Schnitt
und Mengendifferenz sind in XPath 2.0 neu hinzugekommen [exc, xpa].

Beispiel Regeltyp

Um die einzelnen Regeltypen zu veranschaulichen, sei das in Listing 5.1 gegebene Sche-
mafragment für das Datenobjekt DataObject1 in Abbildung 5.6 gegeben.

1 <xs:element name="note">
<xs:complexType>
<xs:sequence>
<xs:element name="to" type="xs:string"/>
<xs:element name="from" type="xs:string"/>

6 <xs:element name="heading" type="xs:string"/>
<xs:element name="body" type="xs:string"/>

</xs:sequence>
</xs:complexType>

</xs:element>

Listing 5.1: Beispielschema eines Datenobjektes

Für den in der Assignment-Regel der eingehenden DataAssociation enthaltenen XPath-
Ausdruck werden nun folgende drei Alternativen betrachtet:

Alternative 1

xs:element/xs:complexType/xs:sequence/*

41

5. Konzept

Alternative 2

xs:element/xs:complexType/xs:sequence/*[2]

Alternative 3

xs:element/xs:complexType/xs:sequence/*[3]

In der Compliance-Regel des umgebenden Compliance Scope sei nun folgender XPath-
Ausdruck angegeben:

xs:element/xs:complexType/xs:sequence/xs:element[@name="from"]

Alternative 1 wählt damit alle Unterknoten des sequence-Knoten aus, Alternative 2 nur den
zweiten und Alternative 3 den dritten. Der XPath-Ausdruck in der Compliance-Regel wählt
im gegebenen Schema nur den zweiten Unterknoten des sequence-Knoten aus.

Eine Auswertung der einzelnen Regeltypen mit den einzelnen Alternativen ist in Tabelle 5.1
angegeben.

Regeltyp Alternative 1 Alternative 2 Alternative 3

1 (Nicht diese) nicht erfüllt nicht erfüllt erfüllt
2 (Nur diese) nicht erfüllt erfüllt nicht erfüllt

3 (Genau diese) nicht erfüllt erfüllt nicht erfüllt
4 (Mindestens diese) erfüllt erfüllt nicht erfüllt

Tabelle 5.1.: Beispielauswertung Regeltypen

5.3. LTL-Diagramme

Für die Definition von LTL-Regeln für den LTL-Operator wird ein eigener Diagrammtyp in
Oryx geschaffen. Durch die graphische Modellierung erhält der Benutzer einen einfacheren
Zugang. Die Übersicht, besonders bei LTL-Formeln mit vielen Klammern, wird durch die
Verwendung von Containern erleichtert. Durch die separate Definition in eigenständigen Dia-
grammen können LTL-Diagramme außerdem in mehreren Prozesstemplates und Prozessen
wiederverwendet werden.

Eine Übersicht der graphischen Primitive für die LTL-Operatoren findet sich in Tabelle 5.2.
Hierbei werden unäre Operatoren als Container umgesetzt, binäre Operatoren als Kanten.
Mehrere Operatorenketten in einem Container werden per AND verknüpft.

42

5.4. Das Ergebnis eines Compliance Checks

Operator Promela-Notation Beispielformel Repräsentation

Property - A

Not ! !A

Finally <> <>A

Globally [] []A

And && A && B

Or || A || B

Until U A U B

Implikation -> A -> B

Klammerung () (A && B)

Tabelle 5.2.: Übersicht Operatorendarstellungen LTL (angelehnt an [BDSV05])

5.4. Das Ergebnis eines Compliance Checks

Das Ergebnis eines Compliance Checks ist hierarchisch aufgebaut und setzt sich aus den
Ergebnissen der einzelnen Compliance Checks für die einzelnen Compliance Scopes zusam-
men.

43

5. Konzept

Gesamtergebnis

Das Gesamtergebnis ist eine Zusammenfassung der Einzelergebnisse. Der Aufbau ist wie
folgt:

Message Zusammenfassung des Gesamtergebnisses in einem Satz.

Log Ausführliches Log, das beschreibt, welche Compliance Scopes gefunden und mit wel-
chem Ergebnis geprüft wurden.

Einzelergebnisse Liste der Ergebnisse der einzelnen Compliance Scopes.

Ergebnis für einen einzelnen Compliance Scope

Jedes dieser Einzelergebnisse ist wiederum wie folgt aufgebaut:

ID des Compliance Scopes Diese dient der eindeutigen Identifikation des Compliance Sco-
pes zur Zuordnung des Ergebnisses zum zugehörigen Compliance Scope.

Message Kurze Zusammenfassung des Ergebnisses. Bei einem Nichterfüllen einer LTL-
Regel wird hier die Herleitung des Gegenbeispiels angegeben.

Log Hier findet sich in aller Regel ein hierarchisches Log der Auswertung der mit dem Com-
pliance Scope verknüpften Regel. Damit lässt sich Nachvollziehen, wie die einzelnen
Operatoren ausgewertet wurden.

Compliance Check Resultat Ergebnis der Auswertung wie im nächsten Absatz beschrieben.

Mögliche Ausgänge eines Compliance Checks eines einzelnen Compliance Scopes

Die möglichen Ausgänge eines Compliance Checks sind die folgenden:

Fail Der Compliance Check konnte nicht ausgeführt werden. Dies tritt zum Beispiel ein,
wenn der Model Checker Spin nicht gefunden wurde.

Invalid Der Compliance Check wurde erfolgreich durchgeführt, die definierte Regel wird
aber verletzt.

Valid Der Compliance Check wurde erfolgreich durchgeführt und die definierte Regel wird
nicht verletzt.

NoRulesDefined Es wurde keine Regel definiert. Dieser Fall wird getrennt behandelt, da
hier in aller Regel das Prozesstemplate nicht vollendet wurde.

Ignored Der Compliance Scope wurde nicht geprüft. Dies kann eintreten, wenn der Benutzer
in der Oryx-Erweiterung nur einen Teil der Compliance Scopes prüfen lassen will.

44

5.5. Arbeiten mit Compliance Scopes

Alle Ergebnisse schließen die jeweils anderen Ergebnisse aus, das heißt das Resultat eines
Compliance Checks für einen Compliance Scope kann niemals aus mehreren der oben
genannten Ergebnisse bestehen.

5.5. Arbeiten mit Compliance Scopes

In diesem Abschnitt wird das Arbeiten mit Compliance Scopes genauer erläutert. Dabei wird
verdeutlicht, wie die Kombination von Variabilität und Compliance Scopes in der Praxis
erfolgt.

Graphische Modellierung von LTL-Formeln

In einem ersten Schritt werden Anforderungen an Prozesse als LTL-Formeln formuliert und
anschließend als graphische Diagramme in Oryx erstellt. Mit der Zeit entsteht dabei eine
ganze Sammlung von als LTL-Formeln definierten Regeln, die entsprechend weiterverwendet
werden können. Ändert sich eine Regel, so muss lediglich das entsprechende LTL-Diagramm
angepasst werden und wird ab dann bei allen folgenden Prozessvariantenbildungen berück-
sichtigt.

Später wird dieser Schritt auch parallel zum nachfolgenden erfolgen, wenn sich die Anforde-
rungen an ein Prozessmodell ändern.

Definition von Prozesstemplates mit Compliance Scopes

Vorlagen für Prozesse werden in Oryx mit dem BPMN 2.0-Variablity-Stencilset erstellt und
im Oryx-Repository abgelegt. Dies erfolgt wie in [Köt10] beschrieben. Zusätzlich können
Compliance Scopes erstellt werden.

Die Compliance Scopes werden mit einem entsprechenden Editor, dem Compliance Wizard,
mit Regeln versehen. LTL-Operatoren verknüpfen zuvor erstellte LTL-Diagramme. Durch
die separate Speicherung der LTL-Diagramme können diese auch noch später angepasst
werden.

Erstellen von Prozessvarianten unter Beachtung der Compliance-Regeln

Nach dem Laden eines Prozesstemplates wird dieses Schritt für Schritt abgeleitet [Köt10].
Dabei werden Variability Points durch die gewünschte Alternative ersetzt und variable
Attribute mit konkreten Werten belegt.

Von Zeit zu Zeit kann der Prozessdesigner per Knopfdruck einen Compliance Check durch-
führen lassen. Noch nicht ersetzte Variability Regions werden dabei wie (namenlose) Tasks

45

5. Konzept

behandelt und verhindern damit nicht die Durchführung von Compliance Checks solange
das Prozesstemplate noch nicht fertig abgeleitet wurde.

5.6. Wahl des Model Checkers

Bei der Wahl des Model Checkers fiel die Wahl auf Spin [Spia], da dieser weit verbreitet ist
und die Anforderungen abdeckt. Von Spin stehen hier im wesentlichen zwei Implementie-
rungen zur Verfügung. Die originale, in C geschriebene Variante und eine im Rahmen einer
Masterarbeit durchgeführte Neuimplementierung in Java: SpinJa [spib].

Die ursprüngliche Implementierung von Spin in C wird bereits seit 1980 entwickelt. Entspre-
chend oft wurde die Implementierung bereits genutzt, sodass viele Fehler beseitigt wurden.
Außerdem wird diese Version beständig gepflegt und weiterentwickelt. Nachteilig ist hier
die Tatsache, dass Spin kein Java-Interface bietet und über die Konsole aufgerufen werden
muss. Die Ausgabe von Spin muss daher umgeleitet und geparst werden.

SpinJa ist eine Neuimplementierung von Spin in Java, bei der besonderes Augenmerk auf
Erweiterbarkeit und Objektorientierung gelegt wurde. Die weitere Entwicklung von SpinJa
ist ungewiss, die Implementierung weniger fehlererprobt. Auf Grund der Implementierung
in Java ist SpinJa in den meisten Anwendungssituationen geringfügig langsamer als die
ursprüngliche Implementierung, das stellt aber keinen Hinderungsgrund für den Einsatz
dar.

Da der Status von SpinJa ungewiss ist und das Ausführen der ursprünglichen Spin Version im
Webcontainer keine Probleme bereitet, wird die original Spin-Implementierung verwendet.
Bei der Implementierung wird die Einbindung des Model Checkers entsprechend gekapselt,
sodass später auch ein anderer Model Checker verwendet werden kann.

5.7. Mapping des BPMN-Modells auf die Systembeschreibung

Für das Mapping des BPMN-Modells auf Promela, die Eingabesprache für die Modellbe-
schreibung in Spin, wurden zwei Ansätze genauer untersucht (siehe auch 4.3.2).

In [VF07] werden die Elemente eines BPMN-Modells direkt in Promela mittels eigenständiger
Prozesse umgesetzt. Hierbei wird jeder einzelne Task und jedes Gateway als eigenständiger
Prozess definiert. Die Realisierung des Kontrollflusses erfolgt über die Kommunikation
zwischen Tasks und Gateways mittels Channels. Über die Channels wird dabei das Signal
zum Anfangen der Durchführung des jeweiligen Prozesses vermittelt. Um zu protokollieren,
dass bestimmte Tasks ausgeführt wurden, werden in den entsprechenden Prozessen globale
Variablen gesetzt.

[DDO07, WMM09, Wol10] dagegen formen das BPMN-Modell zunächst in ein Petrinetz um.
Die Plätze des 1-sicheren Petrinetzes werden als Array verwaltet. Die Transitionen jeweils als

46

5.7. Mapping des BPMN-Modells auf die Systembeschreibung

zwei Makros: zum einen die Startbedingung für die Transition und zum anderen die Verän-
derung der Platzbelegungen durch die Transition. Die Beschreibung des zu überprüfenden
Modells in Promela besteht anschließend nur aus einem einzigen Prozess, der das Petrinetz
simuliert.

In der hier erarbeiteten Lösung wird der Ansatz mit Petrinetzen umgesetzt, da die globalen
Variablen im ersten Ansatz bei einer wiederholten Ausführung eines Tasks in einer Schleife
wieder zurückgesetzt werden müssen. Durch den dafür zusätzlich nötigen Schritt ist die
Umsetzung fehleranfällig. Bei Petrinetzen dagegen erfolgt die Protokollierung der durchge-
führten Tasks durch Makros, die prüfen, ob die zugehörigen Plätze der Petrinetzfragmente
mit einem Token belegt sind. Nach der Ausführung des Petrinetzfragments wird der Token
von dem zugehörigen Platz entfernt, womit das Zurücksetzen des Ausgeführtheitsstatus des
Tasks automatisch erfolgt.

Ein weiterer Vorteil des zweiten Ansatzes ist, dass das Mapping mittels Petrinetzen nahe
an der Spezifikation der BPMN Version 2.0 ist, da hier die Beschreibung der Execution
Semantic auch an Petrinetze angelehnt ist [Obj11]. Außerdem ist das Petrinetz-Mapping
leichter nachvollziehbar, bei der Fehlersuche in Mappings der BPMN auf Promela, da sich das
generierte Petrinetz mittels geeigneter Werkzeuge graphisch darstellen lässt [pnma, gra].

Das Mapping des BPMN-Modells über ein Petrinetz auf Promela wird in den nächsten
beiden Unterabschnitten beschrieben.

5.7.1. Mapping des BPMN-Modells auf ein Petrinetz

Abbildung 5.7 zeigt eine Übersicht des Mappings einiger BPMN-Elemente auf Petrinetzele-
mente. Plätze mit gestrichelter Umrandung werden dabei wiederverwendet, das heißt die
direkte Verbindung eines Startereignisses mit einem Endereignis benötigt insgesamt nur drei
Plätze, denn der Endplatz des Startereignisses und der Startplatz des Endereignisses werden
zusammengefasst.

Das Petrinetz des BPMN-Modells wird durch Zusammensetzen der Petrinetzfragmentent-
sprechungen der einzelnen BPMN-Elemente aufgebaut. Die Startereignisse der obersten
Hierarchieebene, das heißt die Startereignisse des Compliance Scopes nicht aber Startereig-
nisse in enthaltenen Subprozessen, werden mit Tokens vorbelegt.

Petrinetz-Entsprechung des laufenden Beispiels

Das entsprechende Petrinetz für das laufende Beispiel aus Abbildung 5.4 findet sich in
Abbildung 5.8.

47

5. Konzept

Startereignis

Endereignis

Task

t

Zwischenereignis

Paralleles Gateway

+

+

Exklusives Gateway

X

X

Nachrichtenfluss

t

t

BPMN-Element Petrinetz-Darstellung BPMN-Element Petrinetz-Darstellung

Abbildung 5.7.: Mapping BPMN-Elemente Petrinetz, nach [DDO07]

Minimierung des Petrinetzes und Sonderfälle

Da sich die Größe des zu überprüfenden Petrinetzes direkt auf die Ausführungszeit des
Model Checkers auswirkt, wird bei der Generierung des Petrinetzes sparsam mit Stellen
und Transitionen umgegangen.

In einigen Situationen müssen aber zusätzliche Plätze und Transitionen eingefügt werden.
Dies ist zum Beispiel der Fall bei Gateways mit mehreren eingehenden Kontrollflusskanten.
Abbildung 5.9 illustriert dies anhand der Umsetzung eines XOR-Joins. Hier wird für jede
eingehende Kante ein separater Platz benötigt. Würden die Plätze 1 und 2 entfernt, wäre
bei einer späteren Ausführung nicht nachvollziehbar, ob vor dem Join Task1 oder Task2
ausgeführt worden ist. Außerdem wurde zusätzlich Transition t5 hinzugefügt für die Nach-

48

5.7. Mapping des BPMN-Modells auf die Systembeschreibung

t
1

t
2

t
3

t
4

t
5

t
6

t
7

t
8

t
9

1 2

3

4 6

5

7 8 9

0

10

t
0

t
10

Abbildung 5.8.: Mapping des laufenden Beispiels auf die Petrinetzdarstellung

vollziehbarkeit des Gegenbeispiels. Das Ausführen dieser Transition wird mit ’Gateway
geschaltet’ protokolliert.

1

X

Task1

Task2

2

t
5

Abbildung 5.9.: Mapping Gateway mit mehreren eingehenden Kanten auf Petrinetz

Zwei Sonderfälle beim Mapping der BPMN auf ein Petrinetz sind in Abbildung 5.10 darge-
stellt. Zum einen das Mapping von Subprozessen, hier werden die zusätzlichen Transitionen
t1 und t5 erstellt, für das Eintreten in den beziehungsweise das Verlassen des Subprozesses.
Zum anderen wird die Umsetzung eines sich wiederholenden Tasks dargestellt.

5.7.2. Mapping des Petrinetzes auf Promela

Bei der Umwandlung des generierten Petrinetzes in Promela werden die Plätze durch ein
Byte-Array repräsentiert, dessen Elemente die Werte Eins und Null annehmen können.
Die Konstruktion des Petrinetzes im Abschnitt 5.7.1 stellt dabei sicher, dass das generierte
Petrinetz 1-sicher ist, indem Transitionen in der Startbedingung prüfen, ob Plätze, die beim
Ausführen der Transition mit Tokens belegt werden, vorher leer sind.

In einem ersten Schritt wird die initiale Arraybelegung hergestellt, das heißt alle als initial
markierten Plätze werden auf Eins gesetzt, die zugehörigen Arrayelemente der anderen
Plätze auf Null.

49

5. Konzept

t

t
1

t
2

t
3

t
4

t
5

t XX t

Subprozess

Task mit Wiederholung

Abbildung 5.10.: Mapping BPMN-Elemente Petrinetz Spezialfälle, [DDO07]

Anschließend wird in einer Endlosschleife in jeder Iteration geprüft, welche Transitionen
aktuell möglich sind. Aus den möglichen Transitionen wird dann eine einzige zufällig
ausgewählt und ausgeführt. Realisiert wird dies durch ein if-Konstrukt, welches in Promela
entsprechend definiert ist und Nichtdeterminismus zulässt (siehe Abschnitt 3.3.1).

Einige Plätze sind als Endplätze markiert. Wird ein solcher Platz erreicht, wird die Schleife
verlassen und das Programm gilt als korrekt ausgeführt.

Nachverfolgung des Gegenbeispiels

Damit der Benutzer nachvollziehen kann, wie die definierte LTL-Regel durch die aktu-
ell erstellte Prozessvariante verletzt werden kann, wird dem Benutzer ein Gegenbeispiel
geliefert.

Spin schreibt bei einer Regelverletzung die Herleitung des Gegenbeispiels in eine sogenannte
Trail-Datei [bas]. Dabei werden alle Variablenbelegungen nach jedem Schritt festgehalten
(und damit auch die Belegung des Arrays mit den Platzbelegungen). Prinzipiell lässt sich
aus dieser Trail-Datei somit ohne weitere Hilfsmittel ermitteln, welche Transitionen ausge-
führt wurden, um das Gegenbeispiel zu erzeugen, da keine zwei Transitionen dieselben
Änderungen am Platzarray vornehmen.

Ein anderer Ansatz [Wol10] dagegen gibt bei jeder durchgeführten Transition eine entspre-
chende Logging-Ausgabe mit dem printf -Statement aus C aus. Dieses lässt sich verwenden,
da Promela von Spin zunächst in C überführt wird. Eingebetteter C-Code wird dabei über-
nommen. Die Ausgabe dieser Logging-Statements findet sich anschließend ebenfalls in der
Trail-Datei.

In der hier erarbeiteten Lösung wurde der Ansatz mit den speziellen Logging-Ausgaben
gewählt. Der Hauptgrund für diese Wahl ist ein deutlich weniger fehleranfälliges Parsen,
denn abhängig von der Anzahl der gesetzten Tokens einer Transition unterscheidet sich

50

5.7. Mapping des BPMN-Modells auf die Systembeschreibung

die Anzahl der Variablenausgaben für eine Transition. Wird nur ein Token von einem Platz
entfernt und auf einen anderen Platz gesetzt, werden zwei Komplettbelegungen ausgegeben.
Bei der Umsetzung eines exklusiven Gateways kann aber auch die Situation auftreten, dass
von einem Platz ein Token entfernt, dafür aber auf zwei andere Plätze jeweils ein Token
gesetzt wird. In diesem Fall würden drei komplette Variablenbelegungen in der Logdatei
ausgegeben werden. Das heißt abhängig von der Transition muss eine unterschiedliche
Anzahl an Variablenbelegungen ausgelesen werden. Da beim Ansatz mit den speziellen
Logging-Ausgaben pro Transition nur eine Ausgabe erfolgt, ist das Parsen der Trail-Datei
einfacher und damit weniger fehleranfällig.

Bei der Ausgabe der Trail-Datei kann dann darüber hinaus auf die Ausgabe der kompletten
Variablenbelegung nach jedem einzelnen Schritt verzichtet werden, wodurch ein schnelleres
Parsen möglich ist, da die zu parsende Ausgabe kleiner ist.

Promela-Entsprechung des laufenden Beispiels

Die Promela-Entsprechung des laufenden Beispiels findet sich in Listing 5.2. Nach der
Deklaration des Arrays für die Platzbelegungen folgen die Makros zur Erkennung, welche
Tasks ausgeführt wurden.

Im Makroblock für die Transitionen wird jede Transition in zwei Makros umgesetzt, die
Startbedingung und die Fire-Regel. In jeder Startbedingung wird explizit für jeden Zielplatz
geprüft, dass dieser auch leer ist. Damit wird sichergestellt, dass das Petrinetz 1-sicher ist.
Im test-Prozess wird nach der Herstellung der Initialbelegung so lange zufällig eine der
möglichen Transitionen durchgeführt, bis der Endplatz 10 erreicht wird.

Jede durchgeführte Transition wird mit einem printf-Statement dokumentiert (siehe auch
Nachverfolgung des Gegenbeispiels 5.7.2).

byte p[11];

#define Task2 p[2]
4 #define Task3 p[5]
#define Task4 p[6]
#define Task5 p[9]

#define rd_t0 p[0] && !p[1]
9 #define fire_t0 p[0] = 0; p[1] = 1;
#define rd_t1 p[1] && !p[2]
#define fire_t1 p[1] = 0; p[2] = 1;
#define rd_t2 p[2] && !p[3]
#define fire_t2 p[2] = 0; p[3] = 1;

14 #define rd_t3 p[2] && !p[4]
#define fire_t3 p[2] = 0; p[4] = 1;
#define rd_t4 p[3] && !p[5]
#define fire_t4 p[3] = 0; p[5] = 1;
#define rd_t5 p[4] && !p[6]

19 #define fire_t5 p[4] = 0; p[6] = 1;
#define rd_t6 p[5] && !p[7]

51

5. Konzept

#define fire_t6 p[5] = 0; p[7] = 1;
#define rd_t7 p[6] && !p[7]
#define fire_t7 p[6] = 0; p[7] = 1;

24 #define rd_t8 p[7] && !p[8]
#define fire_t8 p[7] = 0; p[8] = 1;
#define rd_t9 p[8] && !p[9]
#define fire_t9 p[8] = 0; p[9] = 1;
#define rd_t10 p[9] && !p[10]

29 #define fire_t10 p[9] = 0; p[10] = 1;

active proctype test()
{
d_step { p[0] = 1; p[1] = 0; p[2] = 0; p[3] = 0; p[4] = 0; p[5] = 0; p[6] = 0; p[7] = 0;

p[8] = 0; p[9] = 0; p[10] = 0; }
34 do

:: rd_t0 -> d_step{printf("PROCESSED_t0"); fire_t0}
:: rd_t1 -> d_step{printf("PROCESSED_t1"); fire_t1}
:: rd_t2 -> d_step{printf("PROCESSED_t2"); fire_t2}
:: rd_t3 -> d_step{printf("PROCESSED_t3"); fire_t3}

39 :: rd_t4 -> d_step{printf("PROCESSED_t4"); fire_t4}
:: rd_t5 -> d_step{printf("PROCESSED_t5"); fire_t5}
:: rd_t6 -> d_step{printf("PROCESSED_t6"); fire_t6}
:: rd_t7 -> d_step{printf("PROCESSED_t7"); fire_t7}
:: rd_t8 -> d_step{printf("PROCESSED_t8"); fire_t8}

44 :: rd_t9 -> d_step{printf("PROCESSED_t9"); fire_t9}
:: rd_t10 -> d_step{printf("PROCESSED_t10"); fire_t10}
:: p[10] -> goto accept

od;
accept: printf("Accepted");

49 }

Listing 5.2: Beispiel Promela aus Petrinetz

52

6. Implementierung

Das im vorhergehenden Kapitel beschriebene Konzept wird nun exemplarisch im Oryx-
Editor umgesetzt.

Bei der Beschreibung der Implementierung wird nach einem kurzen Überblick über die
Gesamtarchitektur zunächst auf die Erweiterung des Backends eingegangen. Im Anschluss
an die Betrachtung des Frontends wird die Erweiterbarkeit näher erläutert. Den Abschluss
bilden einige aus der Implementierung gewonnene Erkenntnisse.

6.1. Übersicht

Die in Abbildung 6.1 dargestellte Architektur der hier entwickelten Lösung baut auf den Vor-
arbeiten in [Köt10] auf. Zusätzlich zu den dort eingebrachten Erweiterungen zur Variabilität
werden Back- und Frontend um folgende Komponenten erweitert:

Im Backend werden zwei neue Servlets erstellt. Das ComplianceServlet ist für die Com-
pliance Checks und die Exportfunktion von Petrinetzen zuständig, das LTLServlet stellt
die Funktionalität zur Ad-hoc-Ermittlung der textuellen Darstellungen eines LTL-Modells
bereit.

Das Frontend wird wie folgt erweitert: Für das Design von LTL-Modellen wird ein neues
Stencilset erstellt. Das Stencilset aus der vorhergehenden Diplomarbeit zur Variabilität wird
um einen neuen Stencil ComplianceScope erweitert. Dieser Stencil basiert auf dem Stencil
Subprocess, das heißt er kann weitere BPMN-Elemente enthalten und SequenceFlows als
eingehende und ausgehende Kanten erhalten. Zur Repräsentation der Compliance Rule
erhält der Stencil eine neue Property Rule, die den Regelbaum enthält.

Hinzu kommen zwei neue Plugins. Das Plugin Compliance Wizard erweitert die Oryx-
GUI um die neuen Funktionalitäten Compliance Wizard zur Bearbeitung des Regelbaums,
Compliance-Check durchführen, Compliance-Ergebnis anzeigen, Compliance-Ergebnis zu-
rücksetzen, den Export des markierten Compliance Scope als PNML-Diagramm und den Ex-
und Import von Compliance Scopes.

Das Plugin LTLPlugin fügt der Toolbar von Oryx einen Button hinzu, mit dem sich der
Benutzer das aktuelle LTL-Diagramm als textuelle Darstellung ausgeben lassen kann.

53

6. Implementierung

Backend

Frontend

Spin

Plugins

Sidebar-
PluginAbleitungs-

Plugin
Variability
Wizard

Canvas Editor

Stencilset
Fragments

Stencilset
Variability

Stencilset
LTL

Repository

Compliance-
Servlet

events

erweitert

Compliance
Wizard

Neu modifiziert

LTLOperator

LTL
Plugin

LtlServlet

Compliance-
Checker

Facade

Abbildung 6.1.: Architektur der Oryx-Erweiterung (baut auf [Köt10] auf)

6.2. Backend

Der größte Teil der Implementierung wird im Backend umgesetzt. Das ist zum einen dadurch
begründet, dass der Model Checker hier ausgeführt wird und die zugehörigen Mappings
deshalb auch hier durchgeführt werden. Zum anderen ist die Implementierung hier leichter
zu testen, da mit JUnit und Eclipse mit einem integrierten Debugger ausgereifte Werkzeuge
zur Verfügung stehen. Die wichtigsten Aspekte der Implementierung des Backends werden
in den folgenden Abschnitten beschrieben.

54

6.2. Backend

6.2.1. Testbarkeit

Um eine gute Testbarkeit der Implementierung zu gewährleisten, wurde weitestgehend auf
statische Klassen verzichtet und das Prinzip der Dependency Injection [Fow] angewendet.
Dieses wurde in Form von Kontexten umgesetzt. Sie vereinen die Informationen und zu
nutzenden Interface-Implementierungen, die zur Bearbeitung einer Aufgabe benötigt werden.
So erhält die Klasse, die den Regelbaum eines Compliance Scopes auswertet, Zugriff auf
den Adapter, der den Zugriff auf das Modell-Repository zum Nachladen von benötigten
LTL-Modellen ermöglicht, und den Adapter zum Zugriff auf den Model Checker Spin.

Beim Test können die Standardimplementierungen der Adapter durch eigene Implementie-
rungen ersetzt werden. Das ermöglicht das Testen der Implementierung ohne Zugriff auf das
Oryx-Modelrepository, indem entsprechend vorbereitete Daten zurückgegeben werden.

Der Einsatz der Dependency Injection erlaubt außerdem die Unabhängigkeit von Spin
und dem C-Compiler während der Entwicklung, da hier entsprechende Beispielausgaben
hinterlegt und damit auch entsprechende Fehler generiert werden können.

6.2.2. OryxGraph

An mehreren Stellen im Backend wird auf die von Oryx genutzte JSON-Darstellung von
BPMN- und LTL-Modellen zugegriffen. Dies ist unter anderem der Fall bei den Mappings von
LTL-Diagrammen und BPMN-Modellen auf die jeweiligen Eingabeformate für den Model
Checker sowie der Auswertung des DataTransfer-Operators. Um den Zugriff zu vereinfachen,
wird eine Hilfsklasse zum Auswerten dieser Struktur eingeführt, der OryxGraph. Dieser stellt
einige oft benötigte Methoden zur Verfügung.

Subprocess

SequenceFlow

StartEvent Task EndEvent

SequenceFlow

outgoing

o
ut
g
oi
ng outgoing

o
ut
g
oi
ng

childShapes

resourceId_01

resourceId_02 resourceId_03 resourceId_04

resourceId_05 resourceId_06

Abbildung 6.2.: Datenstruktur Oryx-JSON-Format

In Abbildung 6.2 ist der Aufbau der JSON-Darstellung eines BPMN-Modells exemplarisch
veranschaulicht. Der Subprozess enthält die beiden Ereignisse und den Task als Kindelemente,

55

6. Implementierung

die Umsetzung der mit outgoing bezeichneten Kanten erfolgen über IDs. Auf Grund des
hierarchischen Aufbaus und der ausschließlich vorhandenen Vorwärtsnavigation ergeben
sich mehrere Schwierigkeiten beim Zugriff. Zum einen ist keine Rückwärtsnavigation direkt
in der Datenstruktur möglich. Diese wird aber zum Beispiel beim Umsetzen von Gateways
beim Mapping eines BPMN-Modells auf die Petrinetzdarstellung benötigt. Außerdem ist
kein direkter Zugriff über die ResourceId vorgesehen, das heißt beim Entlangwandern einer
Kette von Elementen, wie vom Startereignis über die outgoing-Kanten zum Endereignis,
muss für jede ResourceId das zugehörige Element in der JSON-Darstellung herausgesucht
werden, deshalb wird der OryxGraph eingesetzt.

Beim Mapping eines LTL-Diagramms in die textuelle Darstellung parst der OryxGraph
einmal die komplette JSON-Darstellung. Anschließend stehen mehrere Informationen zur
Verfügung. Neben dem Mapping aller vorhandenen ResourceIds auf die jeweiligen JSON-
Objekte, können für jedes Element die eingehenden und ausgehenden Kanten abgefragt
werden. So kann zum Beispiel für den Task in der Beispielabbildung direkt ermittelt werden,
welche beiden Elemente sich an seinen beiden Enden befinden. Bei der Abfrage der ausge-
henden oder eingehenden Elemente lässt sich außerdem bestimmen, dass nur die Elemente
ausgegeben werden, die einem gewünschten Typ entsprechen. So können bei dem Task
direkt die ausgehenden Nachrichten- oder Kontrollflusskanten abgefragt werden.

Außerdem leistet der OryxGraph die Unterscheidung in Knoten- und Kantenstenciltypen.
Bei der Initialisierung des OryxGraph werden dafür die Knoten- und Kantenstenciltypen
angeben. Zu einem gegebenen Stencil kann dann ermittelt werden, ob es sich um einen
Knoten- oder Kantentyp handelt.

Die letzte Funktion schließlich erlaubt das Auflisten aller in einem definierten Element
enthaltenen Elemente. Hierbei kann angegeben werden welche Containerelemente als Hier-
archiegrenzen angesehen werden. Zum Beispiel lässt sich damit festlegen, dass Lanes nicht
als Hierarchiegrenze betrachtet werden.

6.2.3. Umwandeln der graphischen Darstellung der LTL-Formeln in die textuelle
Repräsentation

Die textuelle Repräsentation einer LTL-Formel aus einem in JSON abgelegten LTL-Modell
wird rekursiv durchgeführt. Container-Elemente sind hier die unären Operatoren Klamme-
rung, Negation, Finally und Globally. Diese lösen einen neuen Schritt in der Rekursion aus.
Abbildung 6.3 zeigt ein LTL-Diagramm.

In jedem Container können sich Ketten von Operatoren befinden, in der Abbildung enthält
der Globally-Operator zwei Ketten. Eine beginnt mit dem Task2-Propertyoperator, die andere
mit dem NOT-Operator. Von jeder Kette wird der Startknoten ermittelt, welcher dadurch
definiert ist, dass er keine eingehenden Kanten hat. Anschließend wird entlang der Kette
gewandert und die Operatoren werden auf dem Weg übersetzt. Bei einem unären Operator
findet dabei ein neuer Rekursionsschritt statt.

56

6.2. Backend

Abbildung 6.3.: Beispiel LTL-Modell

Die einzelnen Operatoren-Ketten in einem Container werden anschließend per AND ver-
knüpft. Die textuelle Repräsentation der in Abbildung 6.3 dargestellten LTL-Formel lautet
damit Globally (Not(Task1) And (Task2 -> Task3)).

Bei der Abarbeitung des LTL-Diagrammes werden auch eine Reihe von Fehlern in LTL-
Modellen erkannt, die nicht durch entsprechende Constraints im LTL-Stencilset vermieden
werden können:

• Ein binärer Operator darf keine zwei Operatoren mit unterschiedlichen Elternoperato-
ren verbinden.

• Binäre Operatoren dürfen keine losen Enden besitzen, das heißt an jedem ihrer Enden
muss sich ein weiterer Operator befinden.

Im Falle, dass ein Containerelement keine Operatoren enthält, wird ein true-Operator
eingefügt.

Während des Erstellens einer LTL-Formel im graphischen Editor kann sich der Benutzer
über einen Button in der Toolbar die textuelle Darstellung der LTL-Formel anzeigen lassen.
Dabei wird er auch über die oben angegebenen Fehler informiert.

6.2.4. Umwandeln des BPMN-Modells in ein Petrinetz

Das Umformen des BPMN-Modells wird durch das Interface BPMNTranslator bzw. seine
Standardimplementierung BPMNTranslatorImpl durchgeführt. Abbildung 6.4 gibt einen
Überblick über die für das Mapping zuständigen Klassen.

Die Übersetzung findet dabei in einem TranslatorContext statt, der den Zugriff auf die
verwendete OryxGraph-Instanz und die TranslatorFactory bereitstellt. Für jedes unterstützte
BPMN-Element ist ein sogenannter Translator zuständig, der die Übersetzung dieses BPMN-
Elementtyps in eine Petrinetzkomponente übernimmt. Die TranslatorFactory verwaltet die
Zuordnung von BPMN-Elementen auf den entsprechenden Translator. Translators werden
wiederverwendet, das heißt nicht für jedes BPMN-Element neu erzeugt. Zusätzlich kann ein
Translator für mehrere BPMN-Elementtypen zuständig sein.

Bei Prüfbedingungen für die Ausführbarkeit einer Transition muss gewährleistet sein, dass
alle Zielplätze leer sind, da sonst nicht gewährleistet werden kann, dass das erstellte Petrinetz
1-sicher ist.

57

6. Implementierung

Abbildung 6.4.: BPMNTranslator

Makros für Tasks

Bei der Übersetzung werden Makros für den späteren Promela-Code erzeugt, mit denen bei
der späteren Ausführung überprüft werden kann, ob ein Task gerade ausgeführt wird. Dies
wird für die Auswertung der LTL-Formeln benötigt. Repräsentiert Platz Nummer 3, dass
Task2 ausgeführt wird, so wird ein Makro #define Task2 p[3] erzeugt.

Da in den LTL-Formeln der Compliance-Regeln Tasknamen verwendet werden können, die
nicht im Prozessmodell enthalten sein müssen, werden die in den LTL-Formeln enthaltenen
Tasknamen in einem weiteren Schritt vor dem Compliance Check extrahiert und mit false
vorbelegt definiert. Findet sich im Prozessmodell ein Task mit einem Namen, der in einer LTL-
Formel verwendet wird, werden die vordefinierten Makros mit den echten Prüfbedingungen
überschrieben.

Ergebnisstruktur PetriNet

Das Ergebnis des BPMNTranslators wird in der Klasse PetriNet abgelegt, die wie in Abbil-
dung 6.5 dargestellt aufgebaut ist. Hier sind die Anzahl der Plätze, die Transitionen, die
anfänglich belegten Plätze und die Endplätze abgelegt.

Eine Transition besteht aus einer Menge eingehender und ausgehender Plätze. Ein eindeuti-
ger Identifier wird beim Schreiben des Gegenbeispiels durch das Promela-Testprogramm
ausgegeben und dient anschließend der Zuordnung der getätigten Transitionen des Gegenbei-
spiels. Der zusätzlich enthaltene Kommentar dient der Darstellung für den Endbenutzer.

Caching

Dem Prozesstemplatedesigner fällt die Erstellung kleinerer LTL-Formeln leichter, sodass mit
hoher Wahrscheinlichkeit mehrere LTL-Operatoren über demselben Compliance Scope ausge-

58

6.2. Backend

Abbildung 6.5.: Struktur PetriNet

wertet werden. So lässt sich die LTL-Formel aus Abbildung 6.3 Globally (Not(Task1) And
(Task2 -> Task3)) auch als Konjunktion der beiden Formeln Globally (Not(Task1)) und
Globally ((Task2 -> Task3)) darstellen. Damit werden statt einer nun zwei LTL-Formeln
über demselben Compliance Scope überprüft, dabei ändert sich die Petrinetzdarstellung des
BPMN-Modells nicht. Deshalb werden generierte Petrinetzdarstellungen gespeichert und
wiederverwendet.

Export des generierten Petrinetzes

Das generierte Petrinetz lässt sich in eine Reihe von Formaten exportieren. Neben der für
die Auswertung des LTL-Operators benötigte Promela-Darstellung ist auch eine Ausgabe als
PNML und eine Ausgabe als vereinfachte Textdarstellung möglich.

Die Petri Net Markup Language (kurz PNML) [pnmb] ist eine in XML formulierte Beschrei-
bungssprache für Petrinetze, die von einer Reihe von Petrinetz-Editoren unterstützt wird.
Aus der PNML-Darstellung lässt sich mittels des Hilfsprogramms PNML 2 dot [pnma] eine
Zwischendarstellung im DOT-Format [DOT] erzeugen. Das DOT-Format kann dann mit
dem Werkzeug GraphViz [gra] in eine graphische Darstellung überführt werden. Die Funk-
tionalität zum Export als PNML wird auch im Frontend für den Endbenutzer angeboten.

Die vereinfachte Textdarstellung dient dem Debugging bei der Erstellung von Mappings
von BPMN-Elementen auf Petrinetzelemente. Hier werden die enthaltenen Transitionen und
Makros, sowie die anfangs gesetzten Plätze und finalen Plätze aufgelistet.

6.2.5. Auswertung der Compliance-Regeln

Zur Auswertung der Compliance-Regeln wird im BPMN-Modell nach den Compliance
Scopes gesucht. Die angehängten, als Regelbaum dargestellten, Compliance-Regeln wer-
den ausgewertet und aus dem Ergebnis dieser Einzelergebnisse wird das Gesamtergebnis
aufgebaut.

59

6. Implementierung

Die Auswertung logischer Operatoren erfolgt als Auswertung auf den Operanden, die von
DataTransfer- und LTL-Operatoren anhand der im Konzept beschriebenen Semantik.

Suche nach den Compliance Scopes und ihre Auswertung

Die Klasse ComplianceChecker erhält als Eingabe ein BPMN-Modell in der von Oryx verwen-
deten JSON-Darstellung übergeben und gibt als Ergebnis ein CompleteComplianceResult
zurück. Dies entspricht dem Ergebnis aus Kapitel 5.4.

Zur Ermittlung des Ergebnisses sucht der ComplianceChecker rekursiv die JSON-Darstellung
nach Compliance Scopes ab. Ist für den aktuellen Compliance Scope keine Regel definiert,
steht das Ergebnis als NoRulesDefined bereits fest. Andernfalls fragt der ComplianceChe-
cker bei der ComplianceOperatorFactory die Implementierung für den als Wurzelknoten
verwendeten Operator nach. Auf dieser wird dann die Methode evaluate aufgerufen, die als
Parameter eine Referenz auf das BPMN-Modell, den Compliance Scope und den auszuwer-
tenden Operator erhält.

Abbildung 6.6.: ComplianceChecker

Die ComplianceOperatorFactory erzeugt von jedem Operator nur eine Instanz, damit das
Caching innerhalb eines Operators ermöglicht wird. Generierte Zwischendarstellungen
können somit in einer Operatorenimplementierung weiterverwendet werden.

60

6.2. Backend

Der ComplianceCheckerContext

Der ComplianceCheckerContext fasst alle während eines Compliance Checks benötigten
Informationen und Interface-Implementierungen zusammen. Dazu enthält er einen Verweis
auf einen RepositoryConnector, darüber kann dann auf die Modelle des Oryx-Repositories
zugegriffen werden. Dies wird benötigt, um beim Auswerten eines LTL-Operators die
referenzierten LTL-Modelle nachzuladen.

Außerdem sind hier Referenzen auf die zu nutzenden Implementierungen des BPMNTrans-
lator und LTLTranslator hinterlegt. Der SpinAdapter wird zum Zugriff auf Spin benötigt
und kapselt die Aufrufe von Spin und dem GCC, außerdem parst er die entsprechenden
Ergebnisse.

Die CmdExecution wird vom SpinAdapter genutzt und kapselt den Aufruf nativer Anwen-
dungen wie der Model Checkers und des GCC, fängt die Ergebnisse ab und gibt diese an
den Aufrufer zurück.

Abbildung 6.7.: ComplianceCheckerContext

Logische Operatoren

Der NOT-Operator fragt bei der ComplianceOperatorFactory die Implementierung für den
enthaltenen Operanden an und wertet den Operator mit der erhaltenen Implementierung
aus. Anschließend wird das Ergebnis negiert.

Die Implementierung des OR-Operators arbeitet in einer Schleife die enthaltenen Operatoren
nacheinander ab. Jeder Operator wird mit der aus der ComplianceOperatorFactory erhalte-

61

6. Implementierung

nen Implementierung ausgewertet. Sobald der erste Operator erfüllt ist, wird das Ergebnis
des OR-Operators auf erfüllt gesetzt und die Schleife abgebrochen.

Die Implementierung des AND-Operators erfolgt entsprechend der des OR-Operator. Hier
wird das Ergebnis des AND-Operators zunächst als erfüllt angenommen und beim ers-
ten Auftreten eines nicht erfüllten Operanden auf nicht erfüllt gesetzt und die Schleife
abgebrochen.

LTL-Regeln

Das Auswerten einer LTL-Regel über einem Compliance Scope erfolgt in mehreren Schritten.
Zunächst wird das LTL-Model, welches die zu prüfende LTL-Formel repräsentiert, über
den RepositoryConnector ausgelesen und anschließend mittels des LTLTranslators in die
textuelle Darstellung überführt.

Im nächsten Schritt wird das BPMN-Modell, beziehungsweise der davon benötigte Teil des
Compliance Scopes, in ein Petrinetz übersetzt. Wurde der Compliance Scope bereits einmal
in ein Petrinetz übersetzt, so wird die alte, zwischengespeichert Version, wiederverwendet.
Anschließend wird das Petrinetz als Promela-Quellcode, also in der Eingabesprache für die
Modellbeschreibung für Spin, exportiert.

Die Modellspezifikation in der LTL und die Systembeschreibung als Promela-Quellcode
werden anschließend dem SpinAdapter übergeben, der zunächst in einem Zwischenschritt
Spin die LTL-Spezifikation in eine Promela-Never-Clause übersetzen lässt. Beide Promela-
Darstellungen werden anschließend konkateniert in eine temporäre Datei geschrieben und
von Spin in C-Quellcode übersetzt. Dieser wird mittels dem installierten GCC in ein ausführ-
bares Programm übersetzt.

Das generierte Testprogramm wird ausgeführt und die Ausgabe des Programms geparst. Im
Falle einer Verletzung der LTL-Spezifikation durch das Modell wird Spin ein weiteres Mal
mit der Trace-Datei ausgeführt, um die Herleitung des Gegenbeispiels zu erhalten. In dieser
Herleitung sind die IDs der getätigten Transitionen im Petrinetz enthalten, von welchen dann
auf die durchgeführten Transitionen geschlossen werden kann. Aus der Transitionenabfolge
wird anschließen die textuelle Darstellung des Gegenbeispiels für den Endbenutzer erstellt.

DataTransfer-Regeln

Die DataTransfer-Regeln werden in mehreren Schritten ausgewertet. Zunächst wird nach
dem Datenobjekt anhand des Namens, dessen Angabe verpflichtend ist, gesucht. Die Suche
berücksichtigt dabei nur die in dem Compliance Scope enthaltenen BPMN-Elemente, da
sich die DataTransfer-Regeln eines Compliance Scopes nur auf die im Compliance Scope
enthaltenen Datenobjekte beziehen.

Anschließend werden die relevanten Kanten (DataAssociations) anhand der Richtung, der
Datenaustauschpartner und ob die Grenzen des Compliance Scopes überschritten werden,

62

6.2. Backend

herausgesucht. Der OryxGraph kann beim Aufruf anhand der Richtung und des Kantentyps,
direkt irrelevante Kanten ausfiltern. Die Information, ob die Grenze des Compliance Scope
überschritten wird, lässt sich auch aus dem OryxGraph ermitteln.

Das im Datenobjekt hinterlegte XML-Schema wird ausgelesen. Aus den XPath-Ausdrücken
aus der Compliance-Regel und aus den Assignmentregeln der DataAssociation wird mit den
im Konzept beschriebenen Umsetzungen ein gemeinsamer XPath-Ausdruck anhand des Re-
geltyps gebildet. Mittels Saxon [sax] wird dieser gemeinsame XPath-Ausdruck anschließend
über dem XML-Schema ausgewertet und die Ergebnismenge auf das Vorhandensein von
Knoten geprüft. Sind Knoten in der Ergebnismenge enthalten, so ist die Regel verletzt.

6.2.6. Logging

Um die Nachvollziehbarkeit der Regelauswertungen sowohl für den Implementierer als
auch für den späteren Nutzer der Oryx-Erweiterung zu erhöhen, werden in der hier erar-
beiteten Lösung während der Compliance-Regel-Auswertung für die Auswertung relevante
Informationen in Logs geschrieben.

Zum einen wird dazu der Logging-Mechanismus über Log4J [The] genutzt. Hier finden sich
vor allem implementierungsspezifische Informationen wie zum Beispiel die Rückgaben von
Spin und des GCC. Die entsprechenden Loggingausgaben lassen sich in den Logdateien von
Apache Tomcat nachlesen.

Zum anderen muss der Endbenutzer aber auch die Ergebnisse der Compliance Checks
nachvollziehen können. Dafür wird ein eigener Loggingmechanismus eingesetzt, der speziell
auf den Endbenutzer zugeschnittene Informationen enthält. Für jeden Compliance Scope
und für das Endergebnis werden dabei separate Logs erstellt. Die Logs können nach einem
Compliance Check über die Oberfläche angezeigt werden.

Prinzipiell ist es möglich, den zweiten Loggingtyp durch Abfangen und Aufbereiten des
Loggings über Log4J zu realisieren. Eine entsprechende Umsetzung ist aber sehr von Log4J
abhängig und erschwert damit den Umstieg auf andere Logging-Lösung, wie das in neueren
Java-Versionen integrierte Logging.

6.2.7. Ergebnisformat

Die Darstellung des Gesamtergebnisses wird in JSON realisiert, da dieses auf Frontend-Seite
geparst wird und das Parsen von JSON in JavaScript über die eval-Funktion bereits enthalten
ist.

In Logs und Messages müssen Sonderzeichen wie beispielsweise Zeilenumbrüche escaped
werden, da sonst die JSON-Struktur verletzt werden würde. Auf der Frontendseite werden
diese mittels String-Funktionen [Koc09] in JavaScript wieder zurückgewandelt.

Ein Gesamtergebnis kann wie in Listing 6.1 gezeigt aussehen.

63

6. Implementierung

1 {
"log": "Performing compliance check for all compliance scopes... ",
"scopeResults": [

{
"log": "Checking compliance scope Unnamed Compliance Scope #1",

6 "message": "Model did not match specification ’<>(Task3)’, counterexample as
follows...",

"oryxId": "oryx_F2BFE1E5-EC21-46AE-93BF-5A7940F7BE5F",
"result": "Invalid",
"scopeName": "Unnamed Compliance Scope #1"

},
11 {

"log": "",
"message": "No rules defined.",
"oryxId": "oryx_8586F9E9-769B-4C23-90B8-2D86945F57D0",
"result": "NoRulesDefined",

16 "scopeName": "Unnamed Compliance Scope #2"
}

]
}

Listing 6.1: Resultat JSON

6.3. Frontend

Die Implementierung des Frontends findet in JavaScript statt. Als Zusatzbibliotheken kom-
men vor allem Prototype [pro] und ExtJS [ext] zum Einsatz. Prototype erweitert JavaScript
um objektorientierte Konzepte und AJAX-Funktionalitäten, ExtJS erweitert JavaScript um
ein GUI-Framework.

Modale Dialoge

Alle Dialoge im Frontend werden mittels ExtJS realisiert, welches diese in HTML-Primitive
und damit als Teil der HTML-Seite umsetzt. Dadurch wird das Blockieren des Browsers
während der Anzeige des Dialogs verhindert, wie dieses bei Verwendung der durch Java-
Script bereitgestellten alert-Funktion eintritt. Damit kann der Benutzer während der Anzeige
eines Dialogs in einen anderen Tab wechseln und so zum Beispiel prüfen, ob das richtige
LTL-Modell für den LTL-Operator gewählt wurde.

6.3.1. Erweiterung der Toolbar

Alle Funktionen der Compliance Erweiterung sind in einem Dropdown-Menü in der Toolbar
von Oryx zusammengefasst. Dieses ist in Abbildung 6.8 dargestellt.

Hierüber lassen sich die Regeln des markierten Compliance Scopes bearbeiten (Complian-
ce Wizard), alle beziehungsweise nur die markierten Compliance Scopes überprüfen, das

64

6.3. Frontend

Abbildung 6.8.: Toolbar-Button des Compliance Plugins

Ergebnis des letzten Compliance Checks anzeigen und zurücksetzen, Compliance Scopes
exportieren und importieren, sowie die Petrinetzdarstellung eines Compliance Scopes als
PNML-Datei herunterladen.

6.3.2. Der Compliance Wizard

Der Compliance Wizard dient der Bearbeitung der mit dem Compliance Scope verknüpf-
ten Regel. Hier können Operatoren zum Operatorenbaum hinzugefügt werden und die
Eigenschaften der LTL- und DataTransfer-Operatoren bearbeitet werden.

Abbildung 6.9.: Compliance Wizard

65

6. Implementierung

Bevor der Regelbaum beim Klick auf OK abgespeichert wird, findet eine Prüfung der
Korrektheit des Regelbaums statt. So müssen alle logischen Operatoren mindestens einen
Operanden besitzen. Enthält ein NOT-Operator also zum Beispiel keinen Kindknoten, wird
der Benutzer darauf hingewiesen und kann den Baum entsprechend korrigieren.

Nach dem Setzen der neuen Regel wird das Ereignis EVENT_EXECUTE_COMMANDS
ausgelöst, damit das File-Plugin über die Änderung informiert wird und der Benutzer beim
Schließen des Browserfensters eine Nachfrage erhält, ob er die Änderungen am BPMN-
Modell speichern möchte.

Editoren für DataTransfer- und LTL-Operatoren

Der in Abbildung 6.10 dargestellte Editor für DataTransfer-Operatoren erlaubt das Festlegen
der im Konzept unter 5.2.3 beschriebenen Eigenschaften.

Abbildung 6.10.: Editor für DataTransfer-Regel

Im Editor für LTL-Operatoren kann der Benutzer aus einer Liste der im Oryx-Repository
hinterlegten LTL-Modelle wählen.

6.3.3. Nachladen von LTL-Modellen

Neben dem eigentlichen BPMN-Modell mit dem Compliance Scope können zur Verifikation
eines Compliance Scopes weitere Diagramme aus dem Oryx-Repository, wie etwa die
mittels des LTL-Stencilsets als Diagramme modellierten LTL-Formeln, benötigt werden.

66

6.3. Frontend

Das Nachladen dieser Diagramme erfolgt auf Client-Seite, da im Gegensatz zur Frontend-
Seite [dat] auf Server-Seite für Erweiterungen kein Zugriff auf Repository mit den Modellen
vorgesehen ist.

Für das Nachladen von Diagrammen wird die JSON-Darstellung des BPMN-Modells rekursiv
nach Compliance Scopes durchsucht. Dabei werden bei einem selektiven Compliance Check,
bei dem nur ausgewählte Compliance Scopes überprüft werden sollen, die nicht markierten
Compliance Scopes ignoriert. Die Regelbäume der Compliance Scopes werden dann nach
LTL-Operatoren durchsucht. Die LTL-Modelle werden anschließend per Ajax-Requests
abgefragt. Im ComplianceCheck-Request an den Server werden die geladenen LTL-Modelle
in ihrer JSON-Darstellung als Parameter übergeben.

Auf Serverseite wird die Implementierung des RepositoryConnectors verwendet, die ein
Mapping von Modellnummer auf die entsprechende JSON-Darstellung enthält.

6.3.4. Darstellung des Ergebnisses

Nach der Durchführung eines Compliance Checks werden die überprüften Compliance
Scopes farbig markiert. Die Farbe richtet sich dabei nach dem Ergebnis des Compliance
Checks (siehe 5.4) des jeweiligen Compliance Scopes:

grün Die Überprüfung wurde erfolgreich durchgeführt und im Compliance Scope sind alle
Regeln erfüllt.

rot Die Überprüfung wurde erfolgreich durchgeführt und im Compliance Scope wird
mindestens eine Regel verletzt.

orange Für den Compliance Scope wurde keine Regel definiert. Dies wird separat gekenn-
zeichnet, da hier der Prozesstemplatedesigner mit hoher Wahrscheinlichkeit vergessen
hat, die Regeln hinzuzufügen.

grau Die Überprüfung ist fehlgeschlagen.

weiß Der Compliance Scope wurde nicht überprüft.

Im Ergebnisfenster eines Compliance Checks kann anschließend für jeden Compliance Scope
detailliert abgelesen werden, wie die Bewertung zustande kam. Bei der Verletzung einer
LTL-Regel wird das entsprechende Gegenbeispiel dargestellt.

Die farbigen Overlays und das Ergebnis des Compliance Checks werden beim Speichern des
BPMN-Modells nicht mit abgespeichert.

67

6. Implementierung

Abbildung 6.11.: Ergebnisfenster

6.3.5. Export und Import von Compliance Scopes

Compliance Scopes können sowohl exportiert als auch importiert werden. Hierzu wurde ein
XML-Schema definiert. Exportiert wird dabei nur der Compliance Scope samt Regelbaum, die
enthaltenen BPMN-Elemente nicht. Somit lassen sich Compliance Scopes auch in bestehende
Prozesse einbinden und einmal definierte Compliance Scopes können mit ihren Regeln
wiederverwendet werden.

Wird ein Compliance Scope in einen bestehenden BPMN-Referenzprozess importiert, wird
der Compliance Scope als neues Element in das BPMN-Modell eingefügt. Die BPMN-
Elemente, die im Compliance Scope enthalten sein sollen, können anschließend per
Drag&Drop in den Compliance Scope eingefügt werden. In einem letzten Schritt müssen die
Kontrollflusskanten der verschobenen Elemente angepasst werden.

6.4. Erweiterbarkeit

Da die Erweiterbarkeit eine zentrale Anforderungen an die entwickelte Lösung ist, wird in
diesem Abschnitt genauer auf die möglichen und vorgesehenen Erweiterungen sowie die
dazu notwendigen Anpassungen eingegangen.

6.4.1. Neue Regelbeschreibungssprachen

Bei der Einbindung von neuen Beschreibungssprachen für Regeln müssen sowohl das
Backend als auch das Frontend angepasst werden.

68

6.4. Erweiterbarkeit

Operator im Backend

Für einen neuen Operator ist eine neue Implementierung des ComplianceOperator-Interfaces
zu erstellen. Benötigt der Operator dabei weitere Modelle aus dem Oryx-Repository, so
lassen sich diese über den RepositoryConnector beziehen.

Anschließend muss der neue Operator in der OperatorFactory registriert werden, damit die
Implementierung des Operators bei der Abarbeitung des Regelbaums berücksichtigt wird.

Compliance Rule Editor im Frontend anpassen

Damit der neue Operator auch als neuer Regeltyp vom Benutzer in Oryx verwendet werden
kann, ist der Compliance Rule Editor wie folgt anzupassen:

operatorText Diese Funktion erstellt für Operator-Knoten im Baum eine aussagefähige
Beschriftung.

rule2Tree Hier wird ein Knoten aus dem Regelbaum in einen Knoten des visuellen Baums
übersetzt.

tree2Rule Hier wird ein Knoten aus dem visuellen Baum in einen Knoten des Regelbaums
übersetzt.

addOperatorNode Diese Funktion behandelt den Klick auf einen der Toolbarbuttons zum
Hinzufügen eines neuen Operators.

editSelectedNode Aus dieser Funktion wird der zum Operatortyp gehörige Operatorenei-
genschaftseditor geöffnet.

editComplianceScope Hier wird der Button zum Erstellen eines neuen Knotens mit dem
neuen Operatortyp in der ToolBar erzeugt.

findModelsOperator (optional) Referenziert der neue Operatortyp andere Modelle im Repo-
sitory (wie der LTL-Operator LTL-Modelle), so müssen diese beim Vorladen berück-
sichtigt werden.

Import und Export anpassen

Damit der neue Operator korrekt importiert und exportiert wird, sind folgende Funktionen
im ComplianceWizardPlugIn zu erweitern:

operatorToXml Übersetzt die JSON-Darstellung eines Operators in XML beim Export eines
Compliance Scopes.

operatorFromXml Übersetzt die XML-Darstellung eines Operators in die JSON-Darstellung
beim Import eines Compliance Scopes.

Außerdem muss das XML-Schema entsprechend ergänzt werden.

69

6. Implementierung

6.4.2. Neue Operatoren im LTL-Stencilset

Sind weitere Operatoren wie der Äquivalenz-Operator dem LTL-Stencilset hinzuzufügen,
muss die Stencilset-Beschreibung erweitert werden. Dies erfolgt in der JSON-Datei, die das
Stencilset definiert. Außerdem müssen sowohl eine Icon-Datei für die Toolbox als auch eine
Beschreibung der Darstellung als SVG erstellt werden.

6.4.3. Weitere Umsetzungen von BPMN-Elementen beim Petrinetz-Mapping

Um weitere BPMN-Elemente in dem Mapping auf das Petrinetz zu berücksichtigen, sind Än-
derungen an der Implementierung im Backend erforderlich. Dazu kann, je nach Ähnlichkeit
des umzusetzenden BPMN-Elements zu bestehenden Umsetzungen, entweder ein aktueller
Translator erweitert oder ein neuer Translator erstellt werden.

In beiden Fällen muss für das neue BPMN-Element der entsprechende Translator in der
TranslatorFactory registriert werden.

6.5. Komplexitätsbetrachtungen

Da die Ausführungsdauer der Compliance Checks entscheidenden Einfluss auf die Ak-
zeptanz der neuen Funktionen durch den Benutzer hat, wird diese im Folgenden genauer
analysiert. Hierbei wird vor allem untersucht, wie sich die einzelnen Ausführungsphasen bei
der Durchführung auf die Gesamtlaufzeit auswirken. Zu den Phasen gehören unter anderem
das Kompilieren und das Ausführen des von Spin generierten Testprogrammes. Hierbei wird
nur die Auswertung von LTL-Regeln betrachtet, da diese bereits bei kleinen Beispielen schon
länger als eine Sekunde benötigen, während die Ausführungszeit der DataTransfer-Regeln
auch bei größeren Modellen in der Testphase der Implementierung unter einer Sekunde
betrug. Ein Großteil der Laufzeit wird durch die Kommunikation zwischen Webbrowser
und Servlet-Container verursacht.

Die einzelnen Phasen der LTL-Verifikation

Da die Verteilung der Laufzeit über die einzelnen Phasen Gegenstand der nachfolgenden
Messungen ist, hier noch einmal die Phasen im Überblick:

Mapping BPMN auf Petrinetz Aus dem im Compliance Scope enthaltenen Ausschnitt des
Prozessmodells wird ein Petrinetz generiert.

Petrinetz auf Promela Das erstellte Petrinetz wird in ein Promela-Programm umgeformt.

Übersetzung der LTL-Formel nach Promela Die als LTL-Formeln formulierten Regeln wer-
den mit Spin in Promela übersetzt.

Promela auf C Spin erzeugt aus dem Promela-Programm C-Code.

70

6.5. Komplexitätsbetrachtungen

C kompilieren Der C-Code wird kompiliert, hieraus entsteht das Testprogramm, welches
die eigentliche Verifikation durchführt.

Testprogramm ausführen Das Testprogramm simuliert das System und überprüft dabei die
Einhaltung der Spezifikation.

Da die Anzahl der Zustände des in Promela beschriebenen Systemmodells maßgeblich für
die Ausführungszeit des von Spin generierten Testprogramms ist, wurde als Testszenario die
Ausführung paralleler Kontrollflusszweige gewählt.

Parallele Gateways

Task1

Task3

+ + Task0Task2

Abbildung 6.12.: Profiling paralleler Gateways - BPMN

Das hierfür verwendete Beispiel ist in Abbildung 6.12 dargestellt. Auf dem Prozessmo-
dell wird die Regel Finally Task0 ausgewertet. Zwischen den beiden parallelen Gateways
werden nun schrittweise weitere Kontrollflusskanten mit jeweils einem Task eingefügt.
Abbildung 6.13 zeigt die entsprechende Darstellung als Petrinetz.

Task1

Task3

+ + Task0Task2

Abbildung 6.13.: Profiling paralleler Gateways - Petrinetz

Sei k die Anzahl der Zweige zwischen den beiden parallelen Gateways, dann berechnet sich
die Anzahl der möglichen Zustände des Petrinetzes nach der Berechnungsvorschrift:

Anzahl Zustände = 5 + 2k

Der zweite Summand ergibt sich aus der Tatsache, dass beim Ausführen des ersten parallelen
Gateways auf jeden der parallelen Zweige ein Token gelegt wird. Sind alle Token an den

71

6. Implementierung

Enden des Zweigs angekommen, wird die Anzahl der im Petrinetz verfügbaren Token
beim Ausführen des zweiten parallelen Gateways wieder auf eins reduziert. Während der
Ausführung der parallelen Zweige kann jedes Token auf einem von zwei Plätzen liegen.

Abhängig von der Anzahl der Ausführungszweige zwischen den beiden parallelen Gateways
wird die Laufzeit gemessen. Tabelle 6.1 listet die Messwerte auf.

Zweige 1 8 14 16 18 19 20

Zustände Petrinetz 7 216 16.389 65.541 262.149 524.293 1.048.581
Zustände intern 16 2.574 262.158 1.179.662 5 ∗ 106 11 ∗ 106 23 ∗ 106

BPMN→ Petrinetz 0 0 0 0 0 0 0
Petrinetz→ Promela 0 0 0 0 10 0 10

LTL→ Promela 50 50 40 60 40 50 221
Promela→ C 90 100 100 100 100 110 250
Kompilieren 1.021 1.042 1.111 1.162 1.192 1.292 1.582

Testprogramm 80 90 1.042 4.907 24.635 52.716 123.017

Gesamtlaufzeit 1.251 1.362 2.343 6.259 26.337 54.188 124.849

Tabelle 6.1.: Auswertung Profiling paralleler Gateways, Laufzeiten in Millisekunden

Testaufbau und Testsystem

Um möglichst praxisnahe Werte zu erhalten wird der Test auf Frontendseite durchgeführt.
Dazu wird das Compliance Plugin um die Profiling-Funktionalität erweitert. Hierbei wird
ein vorbereitetes Grundmodell verwendet, das dann per JavaScript um die gewünschte
Anzahl von weiteren Tasks und Sequenzflusskanten erweitert wird.

Die weitere Verarbeitung erfolgt dann genau wie bei einem tatsächlichen Compliance Check.
Das LTL-Modell für die Regel Finally Task0 wird nachgeladen und mitsamt dem BPMN-
Model an den Server gesendet. Die Ausführungszeiten lassen sich aus dem erstellten Log
in Tomcat ablesen. Sowohl Beginn und Ende der Abarbeitung des Requests als auch die
Startzeitpunkte der Phasen werden auf Millisekundenbasis festgehalten.

Die Messungen werden auf einer mit Oracle VirtualBox [Orab] virtualisierten Windows
XP-Installation unter Ubuntu 10.04 durchgeführt. Diese läuft auf einem Pentium M 735 mit
1,7 GHz und 1 GB der virtuellen Maschine zugewiesenem Hauptspeicher. Damit sich das
System auf den Verifikationsprozess einstellen konnte, werden zunächst alle Tests einmal
durchgeführt und deren Ergebnisse verworfen. Anschließend wird jeder Testfall dreimal
durchgeführt und der Median ermittelt.

72

6.5. Komplexitätsbetrachtungen

Zusammenfassung

Maßgeblich für die Laufzeit beim Überprüfen von LTL-Regeln ist die Anzahl der Zustände,
die das Petrinetz annehmen kann, welches aus dem BPMN-Diagramm erzeugt wird. Weniger
relevant dagegen ist die Anzahl der Plätze im Petrinetz.

Eine hohe Anzahl von Zuständen entsteht bei parallel abgearbeiteten Ausführungspfaden.
Ein Anwender des Prozesseditors, der mit dem dahinter liegenden Verifikationsprozess nicht
vertraut ist, kann nicht nachvollziehen, wie sich verschiedene Prozessmodellvarianten auf
die Laufzeit beim Compliance Check auswirken. Ihm kann aber zumindest auf den Weg
gegeben werden, Parallelität nicht unbegründet einzusetzen.

73

7. Zusammenfassung und Ausblick

Im letzten Kapitel dieser Arbeit wird eine Zusammenfassung der Arbeit gegeben. Anschlie-
ßend folgt ein Ausblick auf weiterführende Themen im Zusammenhang mit der erarbeiteten
Lösung.

7.1. Zusammenfassung

In einer vorhergehenden Arbeit [Köt10] wurde der webbasierte Prozesseditor Oryx um die
Möglichkeit der Definition von Prozesstemplates erweitert. Prozesstemplates erlauben die
Definition abstrakter Prozesse, die dann zu konkreten, auf die aktuellen Anforderungen
angepassten, Prozessvarianten abgeleitet werden.

Die vorliegende Arbeit erweitert nun das Konzept der Prozesstemplates um ein Konzept zur
Durchsetzung von Compliance in Geschäftsprozessen. Dazu werden zunächst die notwendi-
gen Grundlagen gelegt und bestehende Ansätze zur Compliance Überprüfung präsentiert.
Außerdem wird die Arbeit, auf der die Erweiterung aufgebaut wird, erläutert.

Das Konzept berücksichtigt sowohl die Prüfungen des Kontrollflusses als auch des Datenflus-
ses. Anforderungen an den Kontrollfluss werden mittels temporaler Logik formuliert, zum
Einsatz kommt hier die LTL. Für die Formulierung von temporalen Anforderungen wurde
eine eigene graphische Notation geschaffen. Die Einhaltung dieser Anforderungen wird
mittels Model Checking überprüft. Dazu wird erläutert, wie die BPMN-Diagramme und die
LTL-Formeln in der Eingabesprache des Model Checkers, Promela, umgesetzt werden.

Bei den Datenflussregeln wird ausgehend von Datenobjekten beschrieben, welche Daten
in Datenobjekte geschrieben und welche Daten aus ihnen gelesen werden dürfen. Die
Beschreibung sowohl der transferierten Daten als auch der durch die Regeln erfassten Daten
erfolgt dabei durch XPath-Ausdrücke.

Die Compliance-Regeln eines Compliance Scopes werden in einem Regelbaum zusammen-
gefasst, der die logische Verknüpfung von Daten- und Kontrollflussregeln erlaubt.

Das erarbeitete Konzept wird exemplarisch im webbasierten Prozesseditor Oryx umgesetzt.
Zur Sequenzanalyse wird der Model Checker Spin eingebunden, die Verifikation der Daten-
flussregeln erfolgt mittels Saxon. Die Verifikation der Regeln findet dabei grundsätzlich im
Backend statt, das Frontend stellt Editoren für die Regeltypen und den Regelbaum bereit
und bereitet außerdem das beim Verifikationsprozess ermittelte Ergebnis für den Anwender
auf.

75

7. Zusammenfassung und Ausblick

7.2. Ausblick

Während der Konzeption und Implementierung wurden einige Teilaspekte nicht oder
nicht vollständig berücksichtigt. Diese befassen sich mit Performanceoptimierungen, der
Erweiterung der Ausdrucksmächtigkeit von Compliance-Regeln und Verbesserungen der
Usability. Auf sie wird im Folgenden genauer eingegangen.

7.2.1. Caching und Performance

Um die Ausführungszeit der Compliance Checks weiter zu verkürzen, kann das Caching
noch an einigen Stellen erweitert beziehungsweise verbessert werden.

Hat der Benutzer einen Compliance Scope seit dem letzten Compliance Check nicht geändert,
so kann durch das Vorhalten von Compliance Ergebnissen Zeit eingespart werden, denn
diese können beim nächsten Compliance Check weiter genutzt werden. Das Einsparergebnis
hängt hierbei aber sehr vom Benutzer ab. Ein Benutzer, der zwischen zwei Compliance
Checks nur wenige Änderungen durchführt, profitiert hier deutlicher, als ein Benutzer, der
viele Änderungen durchführt und damit wahrscheinlicher Änderungen am Compliance
Scope durchgeführt hat, bevor er den nächsten Compliance Check anstößt.

Werden mehrere LTL-Formeln auf demselben Compliance Scope geprüft, ändert sich die
Beschreibung des Modells nicht. In Spin werden aber die LTL-Formel und die Systembeschrei-
bung zusammen in C-Code übersetzt, bevor dieser kompiliert wird. Da das Kompilieren des
C-Codes gerade bei kleineren Modellen einen Großteil der Laufzeit des Compliance Checks
einnimmt, wäre zu prüfen, ob sich nicht mehrere LTL-Formeln mit einer Modellbeschreibung
zusammen in ein einziges Verifikationsprogramm kompilieren lassen und die jeweils zu
prüfende LTL-Formel per Befehlszeilenparameter ausgewählt werden kann.

In diesem Zug wäre dann weiter interessant, getrennte LTL-Formeln zusammenzufassen.
Das heißt besteht der Regelbaum eines Compliance Scopes aus der Konjunktion zweier LTL-
Formeln, ließen sich diese beiden auch zu einer gemeinsamen LTL-Formel zusammenfassen.
Damit würde der Model Checker nur noch einmal statt mehrfach aufgerufen werden.

Einen weiteren Performancevorteil bringt das Laden der LTL-Modelle auf der Backendseite
direkt aus dem Repository. Pro nachzuladendem System werden etwa 100ms benötigt.
Gerade bei größeren Prozesstemplates mit vielen Compliance Scopes können sich hier
Zeiteinsparungen ergeben.

7.2.2. Graphische Optimierungen

Um dem Endbenutzer das Nachvollziehen der Gegenbeispiele weiter zu erleichtern, wäre
eine graphische Aufbereitung des Gegenbeispiels sinnvoll. So ließe sich die Abfolge der
gewählten BPMN-Diagramm-Kanten vom Servlet zurückgeben und diese dann entsprechend
in die Darstellung auf Clientseite durch Overlays, wie sie momentan schon zur farblichen

76

7.2. Ausblick

Kennzeichnung der Compliance Scopes nach einem Compliance Check eingesetzt werden,
einbauen.

Abbildung 7.1.: Beispiel graphische Darstellung Gegenbeispiel

Eine mögliche Darstellung eines Gegenbeispiels findet sich in Abbildung 7.1. Hierbei handelt
es sich wieder um das laufende Beispiel. Dem Compliance Scope wurde die Regel zugewie-
sen, dass sowohl Task2 als auch Task3 stets einmal ausgeführt werden müssen. Diese Regel
wird durch den dargestellten Prozess verletzt. Der Ausführungspfad, der zur Verletzung der
Regel führt, wird rot dargestellt.

7.2.3. Verbesserungen am Petrinetz-Mapping

Im Mapping des BPMN-Modells auf ein Petrinetz werden unter anderem eventbasierte
Subprozesse sowie Exception Handling nicht berücksichtigt. Eine Berücksichtung von beidem
führt dazu, dass das zu erstellende Petrinetz und damit das Konzept komplexer wird.

the occurrence of one error exception, and can be viewed as one atomic action.
They are modelled by one transition named TEx in Figure 7.

Figure 7. Mapping of a subprocess P associated with an exception flow via “throw-
catch” error exception.

Finally, taking into account the exception handling, we may need to extend
the mapping of a subprocess with cancellation. Assume that a subprocess P is
nested within another subprocess P � (i.e. P � is the “parent” of P). The execution
of P may be cancelled at any point due to the cancellation of P �, despite whether
or not there is an exception associated with P. Figure 8 shows the corresponding
mapping. The transition t(P,cancel) is used to capture the trigger for cancelling
the execution of P, i.e. the cancellation of P’s parent subprocess P �. Note that
each task or event in P also needs to check the ok status of P � (via the bidirec-
tional arc to p(P�,ok)). This is to ensure that once P � is cancelled the execution
of P stops immediately. In Figure 8, when the bypassing has finished, the flow
still continues along the normal flow (via transition t(P,nok)), as opposed to the
mapping of exception handling in Figure 6 where the flow switches to the excep-
tion flow (via transition t(P,excp)) at that point. Also, it is necessary to add two
places p(P,excp) and p(P,cancel) to ensure correct execution of transition t(P,excp)

or t(P,nok). More generally, the execution of subprocess P may be cancelled due
to the cancellation of one of its “ancester” subprocess P �� (e.g. the “parent” of
subprocess P �). In this case, the cancellation can be viewed as propogated from,
e.g., P �� to P � and then P � to P. The mapping is given in the next subsection.

Figure 8. Mapping of a subprocess P that may be cancelled due to the cancellation
of its parent subprocess P �.

11

Abbildung 7.2.: Beispiel Umsetzung Exception Handling [DDO07]

Ansätze für eine Umsetzung im Petrinetz finden sich in [DDO07]. Abbildung 7.2 stellt die
Petrinetzentsprechung der Fehlerbehandlung in einem Subprozess dar.

77

7. Zusammenfassung und Ausblick

7.2.4. Erweiterung der Ausdrucksmächtigkeit der LTL-Operatoren

In der bestehenden Implementierung werden in den LTL-Formeln lediglich die Tasknamen
berücksichtigt. Je nach Anwendung könnten aber auch weitere Informationen relevant sein,
wie zum Beispiel, ob ein Task manuell ausgeführt wird oder als Webservice realisiert ist.
Eine erweiterte LTL-Formel könnte dann wie folgt aussehen:

Finally (Task.Name=Task1∧ Task.Implementation=Webservice).

Bei der Ausführung eines Tasks kann dann der Implementierungstyp des Tasks in einer
globalen Variable abgelegt und somit in einer LTL-Formel verwendet werden.

7.2.5. Past Linear Temporal Logic

In 4.4 wurde bereits die Past Linear Temporal Logic (kurz PLTL) genannt. Diese ermöglicht
durch zusätzliche Operatoren, die sich auf die Vergangenheit beziehen, die Beschreibung
weiterer Regeln, die sich nicht mit der LTL ausdrücken lassen.

Ein Beispiel dafür ist die Regel, dass wenn Task2 durchgeführt wird, in jedem Fall vorher
Task1 durchgeführt worden sein muss. Mit der LTL lässt sich zwar formulieren, dass Task2
zwingend auf Task1 folgen muss (hinreichend), die Rückrichtung (notwendig) dagegen nicht.
Eine Formulierung in PLTL ist zum Beispiel Task2 -> Once Task1.

Der im Rahmen dieser Arbeit verwendete Model Checker Spin unterstützt nur die Linear
Temporal Logic. In der Arbeit [PPSM03] wurde eine entsprechende Erweiterung von Spin
vorgestellt.

7.2.6. Ad-hoc Compliance Checks

Grundsätzlich ist eine direkte Überprüfung der Einhaltung der definierten Regeln beim
Prozessdesign wünschenswert, da der Endbenutzer hierbei zeitnah Rückmeldung bekommt,
falls eine Regel verletzt wird. Da die Überprüfung einer LTL-Regel durch den Aufruf von
Spin und vor allem die Kompilierung des C-Quellcodes aber schon bei einfachen Regeln
mehrere Sekunden benötigt, ist die sofortige Überprüfung zumindest bei temporalen Regeln
nicht praktikabel.

Bei DataTransfer-Regeln dagegen ist die Verzögerungszeit deutlich kürzer, sodass hier die
zeitnahe Prüfung und Rückmeldung an den Nutzer möglich ist.

Durch den in Oryx verwendeten Event-Mechanismus kann das Compliance Plugin die
relevanten Ereignisse abonnieren und sich bei deren Auftreten informieren lassen. Das
heißt, Änderungen, die eine erneute Prüfung des Compliance Scopes erforderlich machen,
bekommt das Plugin durch das Abonnement dieser Ereignisse mit. Da der Eventhandler an
den Kontext des Plugins gebunden ist, bekommt dieses darüber auch Zugriff auf die dem
Plugin bei der Initialisierung angebotene Facade und damit auf die JSON-Darstellung des

78

7.2. Ausblick

Diagramms. Außerdem lässt sich in den meisten Fällen aus den Event-Daten (event und
shape) auf den Compliance Scope schließen, der nach der gerade durchgeführten Änderung
erneut überprüft werden muss.

Bei einer Umsetzung müssen aber einige Punkte beachtet werden. Beim Einfügen von
Datenobjekten und Datenverbindungen in das Modell werden mehrere Ereignisse ausgelöst,
das heißt, neben dem Ereignis, welches den neuen Compliance Check auslöst, treten weitere
Ereignisse auf. Diese müssen zunächst abgewartet werden, bevor mit dem Compliance
Check begonnen werden kann. Damit muss für jede Aktion, die einen erneuten Compliance
Check auslösen soll, eine geeignete Bedingung gefunden werden, die den Compliance Check
anstößt.

Außerdem ist zu prüfen, wie das Plugin erkennt, ob sich der betroffene Compliance Scope
prüfen lässt, ohne die Weiterarbeit am Modell zu lange zu verzögern. Ein Ansatz ist,
Compliance Scopes mit LTL-Regeln nicht zu prüfen. In diesem Fall muss dem Benutzer
kenntlich gemacht werden, welche Compliance Scopes in ihrem aktuellen Zustand geprüft
sind und welche nicht. Dies kann mit den bekannten Overlayfarben erfolgen, die bereits zur
Ergebnisdarstellung verwendet werden.

79

A. Anhang

A.1. Inhalt und Aufbau des beigelegten Datenträgers

Der beiliegende Datenträger ist wie folgt aufgebaut:

Ausarbeitung Der Ordner ausarbeitung enthält dieses Dokument im PDF-Format.

Projektverzeichnis Das Eclipse-Projekt von Oryx mit den vorgenommenen Erweiterungen
findet sich im Ordner projekt.

Prototyp Der fertig kompilierte Prototyp findet sich im Verzeichnis distribution.

SVN-Patch Der Ordner patch enthält einen Patch, mit dem sich die Erweiterungen in einen
aktuellen SVN-Checkout von Oryx einpflegen lassen.

Profiling-Patch Die Erweiterung des Compliance Plugins für die Profiling-Tests findet sich
im Ordner profiling als Patch.

Installationsdateien Im Ordner install finden sich Installationsdateien für alle Software,
die für den Betrieb der Lösung notwendig ist. Es sind nur Installationsdateien für
Windows enthalten.

Quellen Alle als PDF-Dateien verfügbaren, verwendeten Quellen finden sich im Verzeichnis
quellen. Sie sind nach dem im Literaturverzeichnis verwendeten Kürzel benannt.

A.2. Aufsetzen der Entwicklungsumgebung

Da die hier erarbeitete Lösung auf [Köt10] aufbaut, unterscheidet sich das Aufsetzen der
Entwicklungsumgebung nur durch zusätzliche Schritte am Ende des Installationsprozes-
ses. Zunächst sind deshalb die in [Köt10] im Anhang im Abschnitt Installation genannten
Anweisungen zu befolgen.

Die Einrichtung der für den hier entwickelten Prototyp zusätzlich benötigten Programme,
dem GCC und Spin, wird im folgenden beschrieben.

81

A. Anhang

A.2.1. Installation des C-Compilers

Da der Model Checker Spin zum Kompilieren der erzeugten Testprogramme einen C-
Compiler benötigt, muss dieser zunächst eingerichtet werden. Unter Windows kann dazu
MinGW1 verwendet werden.

Die gängigen Linuxdistributionen bieten in ihrer Paketverwaltungssoftware vorbereitete
Pakete mit dem GCC an. Ubuntu stellt dazu das Paket build-essential bereit.

Anschließend muss der Pfad des Compilers unter Windows in die System-
variable PATH eingetragen werden. Dazu wird in der Systemsteuerung unter
System→Advanced→Environment Variables im Bereich System Variables an die
vorhandene Path-Variable, bei Verwendung der Standardeinstellungen bei der Installation
von MingW, der Pfad C:\mingw\bin angehängt werden. Unter Linux findet sich der
Compiler nach der Installation unter /usr/bin wieder und ist damit bereits in einem
Verzeichnis aus der Path-Variable.

A.2.2. Installation von Spin

Für Spin stehen vorkompilierte Dateien für Windows und Linux auf der Spin-Homepage
zur Verfügung.2

Wie der C-Compiler auch, muss Spin unter Windows in die Path-Variable eingebunden
werden. Unter Linux kann Spin entweder in ein Verzeichnis aus der Path-Variable kopiert
werden oder das Verzeichnis von Spin muss zur Path-Variablen hinzugefügt werden. Da
der Webbrowser unter einem eigenen Benutzeraccount läuft, muss dazu die Path-Variable
des entsprechenden Benutzeraccounts angepasst werden. Informationen dazu sind der
Dokumentation der entsprechenden Linux-Distribution zu entnehmen.

A.2.3. Logs

Neben den für den Benutzer bestimmten Logs (siehe Abschnitt 6.2.6), erstellt die entwickelte
Lösung ausführlichere Loggingausgaben, für die Log4J verwendet wird. Unter anderem wird
hier zusätzlich geloggt, welche nativen Programme mit welchen Befehlszeilenparametern
ausgeführt wurden und welche Rückgaben diese geliefert haben. Damit lassen sich zum
Beispiel anhand der Compilermeldungen des GCC Fehler im C-Code nachvollziehen.

Die für den Entwickler bestimmten Meldungen lassen sich in den Logs von Tomcat nachle-
sen. Unter Windows liegen diese normalerweise im Verzeichnis C:\Program Files\Apache
Software Foundation\Tomcat 7.0\logs. Standardmäßig loggt Tomcat nur ab dem Info-
Level. Da ein Teil der Ausgaben aber vorrangig zur Fehlersuche bestimmt ist und somit

1http://www.mingw.org/
2http://spinroot.com/spin/Bin/index.html

82

http://www.mingw.org/
http://spinroot.com/spin/Bin/index.html

A.3. Anleitung

mit Debug-Level ausgegeben wird, kann das Logging-Level in Tomcat herabgesetzt werden.
Dazu ist über Start→Programme→Apache Tomcat 7.0→Configure Tomcat die Konfigura-
tionskonsole von Tomcat zu öffnen. Im Reiter Logging kann für die Einstellung Level dann das
gewünschte Level gewählt werden. Anschließend ist die Änderung mit OK zu bestätigen.

A.3. Anleitung

Anhand eines Beispiels werden die wichtigsten Funktionen der Oryx-Erweiterung erläutert.
Die Vorgehensweise richtet sich nach der Beschreibung unter 5.5 und setzt Grundkenntnisse
im Umgang mit Oryx voraus.

Graphische Modellierung von LTL-Formeln

Eine neue Richtlinie im Unternehmen legt fest, dass Bugs nun vorevaluiert werden müssen.
Dies lässt sich als LTL-Formel formulieren: Finally Bug_vorevaluieren. Um diese Regel
zu modellieren, wird ein neues LTL-Diagramm erstellt. Dazu wird wie in Abbildung A.1
dargestellt auf der Startseite von Oryx im Dropdownmenü Create New Model der LTL-
Diagrammtyp gewählt.

Abbildung A.1.: Auswahl des LTL-Diagrammtyps

Daraufhin öffnet sich ein neuer Diagrammeditor. Links in der Toolbox finden sich die
verfügbaren Operatoren. Im ersten Schritt wird nun zunächst ein Finally-Operator per
Drag&Drop in das Diagramm eingefügt. Anschließend wird ein Property-Operator, eben-
falls per Drag&Drop, in den Finally-Operator eingefügt. Per Doppelklick auf den Property-
Operator lässt sich die zu prüfende Eigenschaft, in diesem Fall der Taskname Bug_evaluieren
setzen. Das erstellte LTL-Diagramm sollte nun wie in Abbildung A.2 dargestellt aussehen.
Anschließend wird das Diagramm gespeichert, zum Beispiel als Finally_BugEvaluieren.

83

A. Anhang

Abbildung A.2.: LTL-Diagramm der Anforderung

Definition von Prozesstemplates mit Compliance Scopes

Im nächsten Schritt erfolgt die Modellierung des Prozesstemplates für die (stark vereinfachte)
Bearbeitung eines Bugs. Dazu ist wieder über die Startseite von Oryx ein neues Diagramm zu
erstellen, diesmal vom Typ BPMN 2.0 Variability. Das Prozesstemplate ist in Abbildung A.3
dargestellt. Dieses enthält eine variable Region. An dieser Stelle können sich Varianten des
Prozesses voneinander unterscheiden.

Abbildung A.3.: Prozesstemplate zur Bugbearbeitung

Die Compliance-Regel des Compliance Scopes wird mit dem Compliance Wizard
festgelegt, der sich wie in Abbildung 6.8 dargestellt über die Toolbar von Oryx
aufrufen lässt. Hier wird jeweils ein LTL- und ein DataTransfer-Operator angelegt,
die per AND verknüpft werden (siehe Abbildung A.4). Für den LTL-Operator wird
das vorhin erstellte LTL-Diagramm ausgewählt, die Eigenschaften des DataTransfer-

84

A.3. Anleitung

Abbildung A.4.: LTL-Diagramm der Anforderung

Abbildung A.5.: LTL-Diagramm der Anforderung

Operators werden wie in Abbildung A.5 dargestellt gesetzt, die Path-Eigenschaft auf
xs:element/xs:complexType/xs:sequence/xs:element[@name=’from’] gesetzt.

Das erstellte Prozesstemplate wird anschließend gespeichert.

85

A. Anhang

Erstellen der Prozessfragmente

Für die im Prozesstemplate definierte variable Region werden nun zwei Alternativen erstellt.
Dazu werden wieder über die Startseite von Oryx zwei Diagramme vom Typ BPMN 2.0 Frag-
ments angelegt. Das eine Prozessfragment sieht vor, dass der Bugreport ausgedruckt wird
(siehe Abbildung A.6). Im alternativen Prozessfragment (siehe Abbildung A.7) dagegen wird
der Bugreport zunächst einmal vorevaluiert, wobei das Ergebnis des Evaluierungsschrittes
in einem Laufzettel festgehalten wird. Die Struktur des Laufzettels wird über den Eigen-
schaftseditor im rechten Teil des Oryxfensters festgelegt. Dort öffnet sich beim Klick auf den
Eintrag Properties ein weiterer Editor. Der dortigen Liste lässt sich per Add ein neuer Eintrag
hinzufügen. Als Name wird schema verwendet, im Feld Structure wird das Schemafragment
aus Listing 5.1 hinterlegt. Anschließend ist noch festzulegen, welche Daten in den Lauf-
zettel geschrieben werden. Dies erfolgt über die Bearbeitung der Eigenschaft Assignments
der Datenverbindung über den Eigenschaftseditor. Mit einem Klick auf Add wird ein neue
Zuweisungsregel erstellt, das Feld To wird auf xs:element/xs:complexType/xs:sequence/*
gesetzt, From auf /source/path und Language auf xpath.

Abbildung A.6.: Erste Alternative

Abbildung A.7.: Zweite Alternative

Das erste Prozessfragment wird als BugEditFragment1 abgespeichert, das zweite als BugEdit-
Fragment2.

Erstellen von Prozessvarianten unter Beachtung der Compliance-Regeln

Aus dem Prozesstemplate werden nun konkrete Prozessvarianten erstellt. Dazu wird das
zuvor gespeicherte Prozesstemplate wieder geöffnet und mit einem Klick auf den Button

86

A.3. Anleitung

Create variant in der Toolbar mit der Prozessvariantenerstellung begonnen. Die variable
Region wird nun grün dargestellt, da für diese noch keine Alternative ausgewählt wurde.
Zur Auswahl der Alternative wird die variable Region durch einen Klick markiert und
anschließend rechts im Eigenschaftseditor per Doppelklick die erste Alternative BugEdit-
Fragment1 ausgewählt. Da im Prozesstemplate nur eine variable Region definiert wurde, ist
damit die Prozessvariantenerstellung bereits abgeschlossen.

Abbildung A.8.: Verletzung der LTL-Regel beim Einsetzen des ersten Prozessfragments

Nun kann die erstellte Variante auf die Einhaltung der Compliance-Regeln überprüft werden.
Dazu wird über das von der Erweiterung in der Toolbar erstellte Dropdownmenü (siehe
Abbildung 6.8) ein Compliance-Check angestoßen. Nach dem durchgeführten Compliance-
Check sieht das Ergebnis wie in Abbildung A.8 dargestellt aus. Der Compliance Scope wird
rot hinterlegt, da die Compliance-Regel verletzt ist, denn der Task Bug_vorevaluieren wird im
Prozess nicht ausgeführt. Im Ergebnisfenster wird neben dem Gegenbeispiel unter Message
auch die Auswertung des Operatorenbaums unter Log angezeigt.

In einem weiteren Versuch wird nun das zweite Prozessfragment eingesetzt, welches die
Compliance-Regel aber ebenfalls verletzt, da hier Felder des Laufzettels gesetzt werden, die
von der DataTransfer-Regel nicht zugelassen sind.

Bei beiden Beispielen kann der Benutzer nachvollziehen, warum das eingesetzte Prozessfrag-
ment zur Verletzung der Compliance-Regel führte, und dann entweder ein neues Prozess-
fragment erstellen, welches die Regeln nicht verletzt, oder die bestehenden Prozessfragmente
korrigieren.

87

A. Anhang

A.4. Graphische Darstellung der generierten Petrinetze

Um die Umformung eines in JSON vorliegenden BPMN-Diagramms in ein Petrinetz zu
überprüfen, lässt sich dieses in eine graphische Darstellung umwandeln. Dies erfolgt über
den Export des Petrinetzes als Datei in der Petri Net Markup Language (kurz PNML) und
die anschließende Konvertierung in das DOT-Format [DOT] bewerkstelligen.

In einem ersten Schritt wird statt in eine Promela-Darstellung in das PNML-Format exportiert.
Eine entsprechende Export-Funktionalität ist bereits im Backend implementiert und wird
auch im Frontend angeboten. Dort lässt sich zu dem markierten Compliance Scope die
entsprechende PNML-Darstellung als Datei herunterladen.

1 <pnml xmlns="http://www.pnml.org/version-2009/grammar/pnml">
<net id="n1" type="http://www.pnml.org/version-2009/grammar/ptnet">
<page id="top-level">
<name>
<text>An example P/T-net</text>

6 </name>
<place id="p1">
<name>
<text>cond1</text>

</name>
11 <initialMarking>

<text>1</text>
</initialMarking>

</place>
<place id="p2">

16 <name>
<text>cond2</text>

</name>
<initialMarking>
<text>1</text>

21 </initialMarking>
</place>
<place id="p3">
<name>
<text>done</text>

26 </name>
</place>
<transition id="t1"/>
<arc id="a1" source="p1" target="t1"/>
<arc id="a2" source="p2" target="t1"/>

31 <arc id="a3" source="t1" target="p3"/>
</page>

</net>
</pnml>

Listing A.1: Petrinetz in PNML-Notation

Listing A.1 zeigt eine Beispieldatei im PNML-Format. Darin wird eine Transition definiert,
die als Eingänge zwei, jeweils mit einem Token belegte, Plätze, und als Ausgang einen

88

A.4. Graphische Darstellung der generierten Petrinetze

leeren Platz hat. Plätze und Transitionen werden dabei getrennt voneinander definiert und
anschließend mit Kanten verbunden.

Mit dem PNML 2 dot converter3 wird das in Listing A.1 definierte Petrinetz in das DOT-
Format in Listing A.2 überführt.

1 strict digraph "n1" {
overlap=scale;
splines=true;
node[fixedsize=true];
edge[];

6 subgraph "clustertop-level" {
ordering=out;
comment="An example P/T-net";
color=blue;
"p1" [shape=circle,height=.25,width=.25,comment="ready",label="1"];

11

"p2" [shape=circle,height=.25,width=.25,comment="ready",label="1"];

"p3" [shape=circle,height=.25,width=.25,comment="ready",label=""];

16 "t1" [shape=box,height=.08,width=.27,comment="t1",label=""];

"p1" -> "t1"[label=""];
"p2" -> "t1"[label=""];
"t1" -> "p3"[label=""];

21 }
}

Listing A.2: Resultat im DOT-Format

Das DOT-Format ist eine Beschreibungssprache für Graphen. Dazu werden die Knoten und
Kanten aufgelistet, Positionen für die einzelnen Objekte müssen dabei nicht angegeben
werden. GraphViz4 berechnet aus den gegebenen Kanten und Knoten ein Layout für den
Graphen und gibt diesen als Bilddatei, beispielsweise im PNG-Format, aus.

11

Abbildung A.9.: Darstellung des generierten Petrinetzes

3http://pnml.lip6.fr/pnml2dot/introduction.html
4http://www.graphviz.org/

89

http://pnml.lip6.fr/pnml2dot/introduction.html
http://www.graphviz.org/

A. Anhang

A.4.1. Empfohlene Modifikationen am PNML 2 dot converter

Um die Übersichtlichkeit der Petrinetze zu erhöhen wird empfohlen, den
Quellcode des PNML 2 dot converters zu modifizieren. In der Klasse
fr.lip6.move.pnml.todot.processors.PTProcessor sind dabei die in Listing A.3 im
diff-Format dargestellten Änderungen vorzunehmen.

-sb.append("\"" + "," + "label=\"");
+sb.append("\"" + "," + "label=\"" + workOnName(nhp));

3

-print("node[fixedsize=true];");
+print("node[fixedsize=false];");

Listing A.3: Änderungen an PBML 2 dot

Die erste Modifikation bewirkt, dass Transitionen mit den beim Mapping generierten IDs
versehen werden, die zweite, dass Knoten im erzeugten Graph entsprechend ihres Inhaltes
in der Größe angepasst werden.

A.5. Mapping von BPMN auf Prozesse/Channels

In dieser Arbeit wurde das Mapping von BPMN-Diagrammen auf die von Spin benötigte
Promela-Darstellung mit Petrinetzen realisiert. Der zweite Ansatz mittels Prozessen und
Channels wird in diesem Abschnitt für das fortlaufende Beispiel aus Abschnitt 5.2.2 illustriert.

0

1

2

3 4

4

5

6

Abbildung A.10.: Laufendes Beispiel mit Channelnummern

Abbildung A.10 zeigt dazu noch einmal das laufende Beispiel. Zusätzlich sind hier die
verwendeten Channelnummern eingetragen. Zunächst werden in Listing A.4 die globalen
Variablen definiert. Dies sind die verwendeten Channels als Array und die Indikatoren,

90

A.5. Mapping von BPMN auf Prozesse/Channels

welche Tasks aktuell ausgeführt werden. Außerdem werden zwei zur besseren Lesbarkeit
des folgenden Codes eingeführte Makros definiert.

/* globale Variablen -- */
chan rendezvous_channels[7] = [0] of { bit }

bool taskTwo = false
5 bool taskThree = false
bool taskFour = false
bool taskFive = false

/* Makros --- */
10 inline send(channel, token) {

channel ! token
}

inline receive(channel, token) {
15 channel ? token

}

Listing A.4: Umsetzung des laufenden Beispiels mittels Prozesse/Channels

Listing A.5 zeigt die Umsetzungen des Start- und des Endereignisses. Das Startereignis
beginnt sofort mit der Ausführung und gibt das Ausführungssignal an den ausgehenden
Channel weiter. Das Endereignis wartet am eingehenden Channel auf das Signal.

active proctype procStartEvent() { /* Startereignis */
end:
send(rendezvous_channels[0], 1);

4 }

active proctype procEndEvent() { /* Endereignis */
end:
receive(rendezvous_channels[6], _);

9 }

Listing A.5: Umsetzung des laufenden Beispiels mittels Prozesse/Channels

Die Implementierung der beiden exklusiven Gateways ist in Listing A.6 dargestellt. Das erste
exklusive Gateway wählt abhängig von einer im Mapping vernachlässigten Bedingung einen
der beiden Nachfolgepfade aus. In Promela wird dies mit dem if-Konstrukt umgesetzt. Da
beide Bedingungen leer und damit erfüllt sind, wird bei der Ausführung nichtdeterministisch
einer der beiden Nachrichtenchannels gewählt und mit dem Signal belegt.

Das zweite exklusive Gateway vereinigt die beiden Ausführungspfade wieder. Für die
eingehenden Sequenzflusskanten wird derselbe Channel verwendet, über welchen entweder
von Task3 oder Task4 das Signal zum Ausführen übermittelt wird.

91

A. Anhang

1 active proctype procXorSplit() { /* XOR-Gateway */
end:
receive(rendezvous_channels[1], _);

if
6 :: send(rendezvous_channels[2], 1)

:: send(rendezvous_channels[3], 1)
fi

}

11 active proctype procXorJoin() { /* XOR-Join */
end_loop:
receive(rendezvous_channels[4], _);
send(rendezvous_channels[5], 1);

16 goto end_loop
}

Listing A.6: Umsetzung des laufenden Beispiels mittels Prozesse/Channels

Die Umsetzung eines BPMN-Tasks findet sich in Listing A.7. Der BPMN-Task wartet am
eingehenden Channel auf das Signal, um mit der Ausführung zu beginnen. Anschließend
werden zunächst die globalen Indikatorvariablen aktualisiert, bevor am ausgehenden Chan-
nel das Ausführungssignal weitergegeben wird.

Das Aktualisieren der Indikatorvariablen erfolgt dabei in einem einzigen Schritt. Das heißt,
während der atomic-Block ausgeführt wird, findet kein Wechsel zu dem Prozess statt, der
den aktuellen Zustand auf die Einhaltung der Spezifikation überprüft.

active proctype procTaskTwo() { /* Task 2 */
end:

3 receive(rendezvous_channels[0], _);

atomic {
taskTwo = true;
taskThree = false;

8 taskFour = false;
taskFive = false;

}

send(rendezvous_channels[1], 1);
13 }

Listing A.7: Umsetzung des laufenden Beispiels mittels Prozesse/Channels

Die Implementierung der Tasks drei bis fünf erfolgt entsprechend.

92

Literaturverzeichnis

[AS] A. Awad, S. Sakr. QBP - A Framework for Querying Graph-Based Business
Process Models. http://bpmnq.sourceforge.net/. Zuletzt abgerufen am 23.
April 2011. (Zitiert auf Seite 30)

[AWW09] A. Awad, M. Weidlich, M. Weske. Specification, Verification and Explanation of
Violation for Data Aware Compliance Rules. In Proceedings of the 7th International
Joint Conference on Service-Oriented Computing, ICSOC-ServiceWave ’09, pp. 500–
515. Springer-Verlag, Berlin / Heidelberg, 2009. URL http://dx.doi.org/10.
1007/978-3-642-10383-4_37. (Zitiert auf den Seiten 7 und 30)

[bas] Basic Spin Manual. http://spinroot.com/spin/Man/Manual.html. Zuletzt
abgerufen am 02. Mai 2011. (Zitiert auf Seite 50)

[BDSV05] M. Brambilla, A. Deutsch, L. Sui, V. Vianu. The Role of Visual Tools in a Web
Application Design and Verification Framework: A Visual Notation for LTL
Formulae. In D. Lowe, M. Gaedke, editors, Web Engineering, volume 3579 of
Lecture Notes in Computer Science, pp. 233–243. Springer Berlin / Heidelberg,
2005. URL http://dx.doi.org/10.1007/11531371_70. (Zitiert auf den Seiten 8,
29, 30 und 43)

[Ber89] C. Berge. Hypergraphs : combinatorics of finite sets. Hypergraphs : combinatorics
of finite sets, 1989. (Zitiert auf Seite 25)

[BPM10] BPMN.de. BPMNPoster. http://www.bpmb.de/index.php/BPMNPoster, 2010.
Zuletzt abgerufen am 18. April 2011. (Zitiert auf Seite 16)

[CGP01] E. M. Clarke, O. Grumberg, D. Peled. Model checking. MIT Press, Cambridge,
Mass., 2001. (Zitiert auf den Seiten 16, 17 und 28)

[Cro] D. Crockford. JSON in Java. http://json.org/java/. Zuletzt abgerufen am
01. April 2011. (Zitiert auf Seite 23)

[Cro08] D. Crockford. JavaScript: The Good Parts. O’Reilly Media, Inc., Sebastopol, CA,
2008. (Zitiert auf Seite 23)

[DAC98] M. B. Dwyer, G. S. Avrunin, J. C. Corbett. Property specification patterns for
finite-state verification. In Proceedings of the second workshop on Formal methods
in software practice, FMSP ’98, pp. 7–15. ACM, New York, NY, USA, 1998. URL
http://doi.acm.org/10.1145/298595.298598. (Zitiert auf Seite 27)

93

http://bpmnq.sourceforge.net/
http://dx.doi.org/10.1007/978-3-642-10383-4_37
http://dx.doi.org/10.1007/978-3-642-10383-4_37
http://spinroot.com/spin/Man/Manual.html
http://dx.doi.org/10.1007/11531371_70
http://www.bpmb.de/index.php/BPMNPoster
http://json.org/java/
http://doi.acm.org/10.1145/298595.298598

Literaturverzeichnis

[dat] How Oryx data management and querying works. http://code.google.com/
p/oryx-editor/wiki/DataManagementImplementation. Zuletzt abgerufen am
08. April 2011. (Zitiert auf Seite 67)

[DDO07] R. M. Dijkman, M. Dumas, C. Ouyang. Formal Semantics and Analysis of BPMN
Process Models, 2007. URL http://eprints.qut.edu.au/7115/. (Zitiert auf
den Seiten 7, 29, 46, 48, 50 und 77)

[DOT] The DOT Language. http://www.graphviz.org/doc/info/lang.html. Zuletzt
abgerufen am 08. April 2011. (Zitiert auf den Seiten 59 und 88)

[Eur] Europäischer Rat. Richtlinie 90/270/EWG - Arbeit an Bildschirmge-
räten. http://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=CELEX:
31990L0270:DE:HTML. Zuletzt abgerufen am 09. April 2011. (Zitiert auf Seite 12)

[eva] eval Core Function. https://developer.mozilla.org/en/JavaScript/
Reference/Global_Objects/Eval. Zuletzt abgerufen am 08. April 2011. (Zitiert
auf Seite 23)

[exc] XPath 2.0 Expression Syntax. http://saxon.sourceforge.net/saxon7.9.1/
expressions.html#except. Zuletzt abgerufen am 08. April 2011. (Zitiert auf
Seite 41)

[ext] Ext JS - Cross-Browser Rich Internet Application Framework. http://www.
sencha.com/products/extjs/. Zuletzt abgerufen am 07. April 2011. (Zitiert
auf Seite 64)

[Fow] M. Fowler. Inversion of Control Containers and the Dependency Injection
pattern. http://martinfowler.com/articles/injection.html. Zuletzt abge-
rufen am 08. April 2011. (Zitiert auf Seite 55)

[Ger97] R. Gerth. Concise Promela Reference. http://spinroot.com/spin/Man/Quick.
html, 1997. Zuletzt abgerufen am 08. April 2011. (Zitiert auf Seite 19)

[gra] Graphviz - Graph Visualization Software. http://www.graphviz.org/. Zuletzt
abgerufen am 08. April 2011. (Zitiert auf den Seiten 47 und 59)

[Gre10] Greenpeace International. Guide to Greener Electronics. http:
//www.greenpeace.org/international/en/campaigns/toxics/electronics/
Guide-to-Greener-Electronics/, 2010. Zuletzt abgerufen am 9. Mai 2011.
(Zitiert auf Seite 9)

[GT] GCC-Team. GCC, the GNU Compiler Collection. http://gcc.gnu.org/. Zuletzt
abgerufen am 01. April 2011. (Zitiert auf Seite 18)

[Han10] Handelsblatt. EU installiert Finanzmarktpolizei. http://www.handelsblatt.
com/politik/international/eu-installiert-finanzmarktpolizei/
3545336.html, 2010. Zuletzt abgerufen am 9. Mai 2011. (Zitiert auf
Seite 9)

94

http://code.google.com/p/oryx-editor/wiki/DataManagementImplementation
http://code.google.com/p/oryx-editor/wiki/DataManagementImplementation
http://eprints.qut.edu.au/7115/
http://www.graphviz.org/doc/info/lang.html
http://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=CELEX:31990L0270:DE:HTML
http://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=CELEX:31990L0270:DE:HTML
https://developer.mozilla.org/en/JavaScript/Reference/Global_Objects/Eval
https://developer.mozilla.org/en/JavaScript/Reference/Global_Objects/Eval
http://saxon.sourceforge.net/saxon7.9.1/expressions.html##except
http://saxon.sourceforge.net/saxon7.9.1/expressions.html##except
http://www.sencha.com/products/extjs/
http://www.sencha.com/products/extjs/
http://martinfowler.com/articles/injection.html
http://spinroot.com/spin/Man/Quick.html
http://spinroot.com/spin/Man/Quick.html
http://www.graphviz.org/
http://www.greenpeace.org/international/en/campaigns/toxics/electronics/Guide-to-Greener-Electronics/
http://www.greenpeace.org/international/en/campaigns/toxics/electronics/Guide-to-Greener-Electronics/
http://www.greenpeace.org/international/en/campaigns/toxics/electronics/Guide-to-Greener-Electronics/
http://gcc.gnu.org/
http://www.handelsblatt.com/politik/international/eu-installiert-finanzmarktpolizei/3545336.html
http://www.handelsblatt.com/politik/international/eu-installiert-finanzmarktpolizei/3545336.html
http://www.handelsblatt.com/politik/international/eu-installiert-finanzmarktpolizei/3545336.html

Literaturverzeichnis

[how] How to create a stencil set for oryx by the example of Let’s Dance. http://code.
google.com/p/oryx-editor/wiki/HowToCreateStencilSet. Zuletzt abgerufen
am 08. April 2011. (Zitiert auf Seite 22)

[Ink] Inkscape Community. Inkscape Website. http://inkscape.org/. Zuletzt
abgerufen am 18. April 2011. (Zitiert auf Seite 23)

[ISO] ISO 5807:1985. Information processing – Documentation symbols and conventions for
data, program and system flowcharts, program network charts and system resources
charts. ISO, Geneva, Switzerland. (Zitiert auf Seite 15)

[jso] Introducing JSON. http://json.org/index.html. Zuletzt abgerufen am 08.
April 2011. (Zitiert auf Seite 23)

[KLRM+10] D. Knuplesch, L. T. Ly, S. Rinderle-Ma, H. Pfeifer, P. Dadam. On enabling
data-aware compliance checking of business process models. In Proceedings
of the 29th international conference on Conceptual modeling, ER’10, pp. 332–346.
Springer-Verlag, Berlin / Heidelberg, 2010. URL http://portal.acm.org/
citation.cfm?id=1929757.1929789. (Zitiert auf Seite 30)

[Koc09] S. Koch. JavaScript - Einführung, Programmierung und Referenz - inklusive Ajax.
dpunkt.verlag GmbH, Heidelberg, 2009. (Zitiert auf Seite 63)

[Köt10] F. Kötter. Prozessvarianten in unternehmensübergreifenden Servicenetzwer-
ken. Diploma thesis, University of Stuttgart, Faculty of Computer
Science, Electrical Engineering, and Information Technology, Germany, 2010.
URL http://www2.informatik.uni-stuttgart.de/cgi-bin/NCSTRL/NCSTRL_
view.pl?id=DIP-3046&engl=1. (Zitiert auf den Seiten 7, 11, 31, 45, 53, 54,
75 und 81)

[Lit08] M. Little. BPMN 2.0 Virtual Roundtable Interview. http://www.infoq.com/
articles/bpmn-2, 2008. Zuletzt abgerufen am 23. April 2011. (Zitiert auf
Seite 12)

[ltl] Promela Reference - LTL. http://www.spinroot.com/spin/Man/ltl.html. Zu-
letzt abgerufen am 08. April 2011. (Zitiert auf den Seiten 20 und 39)

[Mü10] J. Müller. Modellierung und Auswertung musterbasierter Bedingungen an Ge-
schäftsprozessmodelle. Ph.D. thesis, Fakultät für Informations- und Kognitionswis-
senschaften, Eberhard-Karls-Universität Tübingen, 2010. URL http://www-ti.
informatik.uni-tuebingen.de/~spruth/DiplArb/DissMueller.pdf. (Zitiert
auf Seite 29)

[Now09] D. Nowotka. Networks and Processes. http://www.fmi.uni-stuttgart.de/
szs/teaching/ws0809/nets/, 2009. Vorlesungsfolien WS 2008/09. (Zitiert auf
den Seiten 16 und 18)

[Obj09] Object Management Group. Business Process Model and Notation (BPMN)
- Version 1.2. http://www.omg.org/spec/BPMN/1.2/, 2009. Zuletzt abgerufen
am 08. April 2011. (Zitiert auf Seite 12)

95

http://code.google.com/p/oryx-editor/wiki/HowToCreateStencilSet
http://code.google.com/p/oryx-editor/wiki/HowToCreateStencilSet
http://inkscape.org/
http://json.org/index.html
http://portal.acm.org/citation.cfm?id=1929757.1929789
http://portal.acm.org/citation.cfm?id=1929757.1929789
http://www2.informatik.uni-stuttgart.de/cgi-bin/NCSTRL/NCSTRL_view.pl?id=DIP-3046&engl=1
http://www2.informatik.uni-stuttgart.de/cgi-bin/NCSTRL/NCSTRL_view.pl?id=DIP-3046&engl=1
http://www.infoq.com/articles/bpmn-2
http://www.infoq.com/articles/bpmn-2
http://www.spinroot.com/spin/Man/ltl.html
http://www-ti.informatik.uni-tuebingen.de/~spruth/DiplArb/DissMueller.pdf
http://www-ti.informatik.uni-tuebingen.de/~spruth/DiplArb/DissMueller.pdf
http://www.fmi.uni-stuttgart.de/szs/teaching/ws0809/nets/
http://www.fmi.uni-stuttgart.de/szs/teaching/ws0809/nets/
http://www.omg.org/spec/BPMN/1.2/

Literaturverzeichnis

[Obj10] Object Management Group. OMG Unified Modeling Language (OMG UML)
Infrastructure - Version 2.3. http://www.omg.org/spec/UML/2.3/, 2010. Zuletzt
abgerufen am 18. April 2011. (Zitiert auf Seite 15)

[Obj11] Object Management Group. Business Process Model and Notation (BMN) -
Version 2.0. http://www.omg.org/spec/BPMN/2.0/, 2011. Zuletzt abgerufen am
08. April 2011. (Zitiert auf den Seiten 12, 15, 16, 39, 40 und 47)

[Oraa] Oracle Corporation. Java Servlet Technology. http://www.oracle.com/
technetwork/java/javaee/servlet/index.html. Zuletzt abgerufen am 08.
April 2011. (Zitiert auf Seite 23)

[Orab] Oracle Corporation. Oracle VirtualBox. http://www.virtualbox.org/. Zuletzt
abgerufen am 07. Mai 2011. (Zitiert auf Seite 72)

[ory] The Oryx Project. http://bpt.hpi.uni-potsdam.de/Oryx/WebHome. Zuletzt
abgerufen am 08. April 2011. (Zitiert auf Seite 20)

[ory11] Oryx SVN Repository. http://code.google.com/p/oryx-editor/source/
browse/trunk, 2011. Zuletzt abgerufen am 18. April 2011. (Zitiert auf Sei-
te 21)

[Pet07] N. Peters. Oryx - Stencil Set Specification, 2007. Bachelor’s Thesis, Universität
Potsdam. (Zitiert auf den Seiten 22 und 23)

[pnma] PNML 2 dot converter. http://pnml.lip6.fr/pnml2dot/introduction.html.
Zuletzt abgerufen am 02. April 2011. (Zitiert auf den Seiten 47 und 59)

[pnmb] Pnml.org - PNML reference site. http://www.pnml.org/. Zuletzt abgerufen am
03. Mai 2011. (Zitiert auf Seite 59)

[Pol07] D. Polak. Oryx - BPMN Stencil Set Implementation, 2007. Bachelor’s Thesis,
Universität Potsdam. (Zitiert auf Seite 22)

[PPSM03] M. Pradella, P. S. Pietro, P. Spoletini, A. Morzenti1. Practical Model Checking
of LTL with Past. In ATVA03. 2003. (Zitiert auf Seite 78)

[pro] Prototype JavaScript framework. http://www.prototypejs.org/. Zuletzt abge-
rufen am 07. April 2011. (Zitiert auf Seite 64)

[RAAM06] N. Russell, Arthur, W. M. P. van der Aalst, N. Mulyar. Workflow Control-Flow
Patterns: A Revised View. Technical report, BPMcenter.org, 2006. (Zitiert auf
Seite 28)

[SALM09] D. Schleicher, T. Anstett, F. Leymann, R. Mietzner. Maintaining Complian-
ce in Customizable Process Models. In R. Meersman, T. Dillon, P. Her-
rero, editors, Proceedings of the 17th International Conference on COOPERA-
TIVE INFORMATION SYSTEMS (CoopIS 2009), volume 5870 of Lecture
Notes in Computer Science, pp. 60–75. Springer Verlag, Heidelberg, 2009.
URL http://www2.informatik.uni-stuttgart.de/cgi-bin/NCSTRL/NCSTRL_
view.pl?id=INPROC-2009-70&engl=0. (Zitiert auf den Seiten 7, 25 und 26)

96

http://www.omg.org/spec/UML/2.3/
http://www.omg.org/spec/BPMN/2.0/
http://www.oracle.com/technetwork/java/javaee/servlet/index.html
http://www.oracle.com/technetwork/java/javaee/servlet/index.html
http://www.virtualbox.org/
http://bpt.hpi.uni-potsdam.de/Oryx/WebHome
http://code.google.com/p/oryx-editor/source/browse/trunk
http://code.google.com/p/oryx-editor/source/browse/trunk
http://pnml.lip6.fr/pnml2dot/introduction.html
http://www.pnml.org/
http://www.prototypejs.org/
http://www2.informatik.uni-stuttgart.de/cgi-bin/NCSTRL/NCSTRL_view.pl?id=INPROC-2009-70&engl=0
http://www2.informatik.uni-stuttgart.de/cgi-bin/NCSTRL/NCSTRL_view.pl?id=INPROC-2009-70&engl=0

Literaturverzeichnis

[SALS10] D. Schleicher, T. Anstett, F. Leymann, D. Schumm. Compliant Business Pro-
cess Design Using Refinement Layers. In T. D. et al. R. Meersman, editor,
accepted for publication in OTM 2010 Conferences. Springer Verlag, Berlin / Hei-
delberg, 2010. URL http://www2.informatik.uni-stuttgart.de/cgi-bin/
NCSTRL/NCSTRL_view.pl?id=INPROC-2010-76&engl=0. (Zitiert auf Seite 36)

[sax] The SAXON XSLT and XQuery Processor. http://saxon.sourceforge.net/.
Zuletzt abgerufen am 08. April 2011. (Zitiert auf Seite 63)

[Sch11] J. Schiller. SVG Support. http://www.codedread.com/svg-support.php, 2011.
Zuletzt abgerufen am 18. April 2011. (Zitiert auf Seite 23)

[sig] Signavio Products Overview. http://www.signavio.com/en/products/
overview.html. Zuletzt abgerufen am 18. April 2011. (Zitiert auf Seite 20)

[Sil09] B. Silver. BPMN Method and Style. Cody-Cassidy Press, Aptos, CA, 2009. (Zitiert
auf Seite 15)

[Son11] Sony Computer Entertainment Europe Limited. PSN/Qriocity
Service Update. http://blog.de.playstation.com/2011/04/26/
psnqriocity-service-update/, 2011. Zuletzt abgerufen am 9. Mai 2011.
(Zitiert auf Seite 9)

[Spia] Spin Homepage. http://spinroot.com/spin/whatispin.html. Zuletzt abge-
rufen am 08. April 2011. (Zitiert auf den Seiten 18 und 46)

[spib] SpinJa - a model checker for Promela, written in Java. http://code.google.
com/p/spinja/. Zuletzt abgerufen am 02. Mai 2011. (Zitiert auf Seite 46)

[svg] Scalable Vector Graphics (SVG) 1.1 (Second Edition). http://www.w3.org/TR/
SVG11/. Zuletzt abgerufen am 27. März 2011. (Zitiert auf Seite 23)

[SWLS10] D. Schleicher, M. Weidmann, F. Leymann, D. Schumm. Compliance Sco-
pes: Extending the BPMN 2.0 Meta Model to Specify Compliance Requi-
rements. In Proceedings of SOCA 2010, pp. 1–18. IEEE Computer Socie-
ty, 2010. URL http://www2.informatik.uni-stuttgart.de/cgi-bin/NCSTRL/
NCSTRL_view.pl?id=INPROC-2010-93&engl=1. (Zitiert auf den Seiten 25, 34
und 35)

[The] The Apache Software Foundation. Apache log4j. http://logging.apache.org/
log4j/. Zuletzt abgerufen am 08. April 2011. (Zitiert auf Seite 63)

[Tsc07] W. Tscheschner. Oryx - Dokumentation, 2007. Bachelor’s Thesis, Universität
Potsdam. (Zitiert auf den Seiten 21 und 22)

[VF07] C. Vaz, C. Ferreira. Towards Automated Verification of Web Services. In
Proceedings of the IADIS International Conference on WWW/Internet. Vila Real,
Portugal, 2007. (Zitiert auf den Seiten 28, 29 und 46)

97

http://www2.informatik.uni-stuttgart.de/cgi-bin/NCSTRL/NCSTRL_view.pl?id=INPROC-2010-76&engl=0
http://www2.informatik.uni-stuttgart.de/cgi-bin/NCSTRL/NCSTRL_view.pl?id=INPROC-2010-76&engl=0
http://saxon.sourceforge.net/
http://www.codedread.com/svg-support.php
http://www.signavio.com/en/products/overview.html
http://www.signavio.com/en/products/overview.html
http://blog.de.playstation.com/2011/04/26/psnqriocity-service-update/
http://blog.de.playstation.com/2011/04/26/psnqriocity-service-update/
http://spinroot.com/spin/whatispin.html
http://code.google.com/p/spinja/
http://code.google.com/p/spinja/
http://www.w3.org/TR/SVG11/
http://www.w3.org/TR/SVG11/
http://www2.informatik.uni-stuttgart.de/cgi-bin/NCSTRL/NCSTRL_view.pl?id=INPROC-2010-93&engl=1
http://www2.informatik.uni-stuttgart.de/cgi-bin/NCSTRL/NCSTRL_view.pl?id=INPROC-2010-93&engl=1
http://logging.apache.org/log4j/
http://logging.apache.org/log4j/

Literaturverzeichnis

[WMM09] C. Wolter, P. Miseldine, C. Meinel. Verification of Business Process Entailment
Constraints Using SPIN. In F. Massacci, S. Redwine, N. Zannone, editors,
Engineering Secure Software and Systems, volume 5429 of Lecture Notes in Computer
Science, pp. 1–15. Springer Berlin / Heidelberg, 2009. URL http://dx.doi.org/
10.1007/978-3-642-00199-4_1. (Zitiert auf den Seiten 29 und 46)

[Wol10] C. Wolter. A Methodology for Model-Driven Process Security. Ph.D.
thesis, Hasso-Plattner Institute for IT Systems Engineering, 2010.
URL http://www.hpi.uni-potsdam.de/forschung/publikationen/
dissertationen/dissertation_christian_wolter.html. (Zitiert auf den
Seiten 29, 46 und 50)

[xpa] XML Path Language (XPath) 2.0 (Second Edition). http://www.w3.org/TR/
xpath20/. Zuletzt abgerufen am 08. April 2011. (Zitiert auf den Seiten 40
und 41)

[YMH+06] J. Yu, T. Manh, J. Han, Y. Jin, Y. Han, J. Wang. Pattern Based Property Spe-
cification and Verification for Service Composition. In K. Aberer, Z. Peng,
E. Rundensteiner, Y. Zhang, X. Li, editors, Web Information Systems – WISE 2006,
volume 4255 of Lecture Notes in Computer Science, pp. 156–168. Springer Berlin /
Heidelberg, 2006. (Zitiert auf den Seiten 8 und 27)

98

http://dx.doi.org/10.1007/978-3-642-00199-4_1
http://dx.doi.org/10.1007/978-3-642-00199-4_1
http://www.hpi.uni-potsdam.de/forschung/publikationen/dissertationen/dissertation_christian_wolter.html
http://www.hpi.uni-potsdam.de/forschung/publikationen/dissertationen/dissertation_christian_wolter.html
http://www.w3.org/TR/xpath20/
http://www.w3.org/TR/xpath20/

Erklärung

Hiermit versichere ich, diese Arbeit selbständig
verfasst und nur die angegebenen Quellen
benutzt zu haben.

(Stefan Grohe)

	1 Einführung
	1.1 Aufgabenstellung
	1.2 Gliederung der Arbeit

	2 Anforderungen
	3 Grundlagen
	3.1 Business Process Model and Notation
	3.2 Model Checking
	3.3 Spin
	3.4 Oryx
	3.5 Scalable Vector Graphics
	3.6 JavaScript Object Notation

	4 Vorhandene Ansätze und Vorarbeiten
	4.1 Definition des Compliance Scopes
	4.2 Definition des Compliance Templates
	4.3 Ansätze zur Kontrollflussverifikation
	4.4 Ansätze zur Verifikation des Datenflusses
	4.5 Vorarbeiten der Diplomarbeit zur Variabilität

	5 Konzept
	5.1 Der Compliance Scope
	5.2 Der Regelbaum
	5.3 LTL-Diagramme
	5.4 Das Ergebnis eines Compliance Checks
	5.5 Arbeiten mit Compliance Scopes
	5.6 Wahl des Model Checkers
	5.7 Mapping des BPMN-Modells auf die Systembeschreibung

	6 Implementierung
	6.1 Übersicht
	6.2 Backend
	6.3 Frontend
	6.4 Erweiterbarkeit
	6.5 Komplexitätsbetrachtungen

	7 Zusammenfassung und Ausblick
	7.1 Zusammenfassung
	7.2 Ausblick

	A Anhang
	A.1 Inhalt und Aufbau des beigelegten Datenträgers
	A.2 Aufsetzen der Entwicklungsumgebung
	A.3 Anleitung
	A.4 Graphische Darstellung der generierten Petrinetze
	A.5 Mapping von BPMN auf Prozesse/Channels

	Literaturverzeichnis

