Institut flr Architektur von Anwendungssystemen
Universitat Stuttgart
Universitatsstral3e 38
D-70569 Stuttgart

Diplomarbeit Nr.3112

Visualisierung und
Implementierung von Compliance
Scopes

Stefan Grohe

Studiengang: Softwaretechnik

Prufer: Prof. Dr. Frank Leymann
Betreuer: Dipl.-Inf. Daniel Schleicher
begonnen am: 15. November 2010
beendet am: 17.Mai 2011

CR-Klassifikation: D.2.4,H.4.1, H.5.3

Zusammenfassung

Die Einhaltung sowohl gesetzlicher auch als unternehmensinterner Regulierungen beim
Design von Geschéftsprozessen wird ein immer wichtigeres Thema.

Basierend auf vorhergehenden Arbeiten, die das Konzept der Variabilitit in BPMN 2.0-
Diagrammen durch die Definition von Referenzprozessen und Prozessfragmenten einfiihrten,
wird ein Konzept fiir Compliance Scopes entwickelt. Dabei werden die bestehenden Dia-
grammtypen um ein neues BPMN-Element Compliance Scope erweitert, welches einen Bereich
im Diagramm definiert, in welchem zuvor festgelegte Regeln eingehalten werden miissen.
Wihrend der Prozessvariantenbildung wird die Ableitung von Prozessvarianten verhindert,
die diese Regeln verletzen. Die Regeln werden dabei in einem Regelbaum zusammen gefasst,
der die logische Verkniipfung einzelner Regeln erlaubt. Zwei Operatoren zur Kontroll- und
Datenflussanalyse werden definiert. Kontrollflussregeln werden dabei in linearer temporaler
Logik definiert und mittels Model Checking tiberpriift.

Das entwickelte Konzept wird in dem webbasierten Prozesseditor Oryx umgesetzt. Der
Ausblick behandelt weiterfithrende Fragestellungen wie Optimierungen beziiglich Perfor-
mance und graphischer Darstellung, sowie einen Losungsansatz, ad-hoc Compliance Checks
umzusetzen.

Abstract

Compliance to governmental as well as entrepreneurial regulations is becoming an important
factor in the design of business processes.

Based on previous work which introduced the concept of variability to BPMN 2.0 diagrams
by defining Reference Processes and Process Fragments, a concept for Compliance Scopes is
built. This is realized by extending the existing diagram types by a new BPMN element called
Compliance Scope which defines an area in a process diagram in which previously specified
requirements have to be matched. During the creation of process variants those compliance
rules are checked and thereby prevent the creation of process variants violating those rules.
Rules are combined using logical operators to an operator tree. Two rule operators for
sequence flow as well as data flow verification are defined. Sequence flow verification is
performed using model checking.

The presented concepts are implemented using the web-based editor Oryx. The outlook
covers additional issues concerning performance optimizitations, improvements of the
graphical interface and an option to perform ad-hoc compliance checks.

Inhaltsverzeichnis

1. Einfiihrung
1.1. Aufgabenstellung o
1.2. Gliederung der Arbeit L L oo

2. Anforderungen

3. Grundlagen
3.1. Business Process Model and Notation
3.2 ModelChecking

3.3. SPIN . . . Lo

3.4. OryX .o
3.5. Scalable Vector Graphics

3.6. JavaScript Object Notation

4. Vorhandene Ansétze und Vorarbeiten
4.1. Definition des Compliance Scopes
4.2. Definition des Compliance Templates
4.3. Ansdtze zur Kontrollflussverifikation
4.4. Ansdtze zur Verifikation des Datenflusses
4.5. Vorarbeiten der Diplomarbeit zur Variabilitat

5. Konzept
5.1. Der Compliance Scope L oo
5.2. Der Regelbaum
5.3. LTL-Diagramme
5.4. Das Ergebnis eines Compliance Checks
5.5. Arbeiten mit Compliance Scopes o L L.
5.6. Wahl des Model Checkers
5.7. Mapping des BPMN-Modells auf die Systembeschreibung

6. Implementierung
6.1. Ubersicht i
6.2. Backend
6.3. Frontend
6.4. Erweiterbarkeit o
6.5. Komplexitdtsbetrachtungen,

10
10

11

15
15
16
18
20
23
23

25
25
25
27
30
31

33
33
36
42
43
45
46

53
53
54
64
68
70

7. Zusammenfassung und Ausblick

7.1. Zusammenfassung
7.2. Ausblick

A. Anhang

A.1. Inhalt und Aufbau des beigelegten Datentragers

A.2. Aufsetzen der Entwicklungsumgebung . . .
A.3. Anleitung Lo

A.4. Graphische Darstellung der generierten Petrinetze

A.5. Mapping von BPMN auf Prozesse/Channels

Literaturverzeichnis

75

75
76

81
81
81
83
88
90

93

Abbildungsverzeichnis

6.12.
6.13.

7.1.
7.2.

. Beispiel BPMIN-Prozess. 16
. Beispiel Kripkestruktur. o o o o 17
. GUIvon Oryx oo e 21
. Compliance Template [SALMog] 26
. XOR-Gateway im Petrinetz, nach [DDOoy] 29
. BPMN-Q Beispielabfrage [AWWog] 30
. BPMN-Q Beispielabfrage mit Datenberticksichtigung [AWWo9] 30
. Einsetzung eines Fragments mit einem Fragment-Link [K6tio] 31
. Definition Compliance Scope 33
. Beispiel zur Vererbung von Regeln zwischen Compliance Scopes 36
. Regelbaum 37
Beispielgraph LTL-Operator 38
. Hlustration Next-Operator 39
Beispielgraph DataTransfer-Operator 39
Mapping BPMN-Elemente Petrinetz, nach [DDOo7] 48
Mapping des laufenden Beispiels auf die Petrinetzdarstellung 49
. Mapping Gateway mit mehreren eingehenden Kanten auf Petrinetz 49
Mapping BPMN-Elemente Petrinetz Spezialfille, [DDOo7] 50
. Architektur der Oryx-Erweiterung (baut auf [Kotio] auf) 54
. Datenstruktur Oryx-JSON-Format 55
. Beispiel LTL-Modell 57
BPMNTranslator 58
. Struktur PetriNet 59
. ComplianceChecker 60
. ComplianceCheckerContext 61
. Toolbar-Button des Compliance Plugins 65
. Compliance Wizard L 65
Editor fiir DataTransfer-Regel 66
Ergebnisfenster 68
Profiling paralleler Gateways -BPMN 71
Profiling paralleler Gateways - Petrinetz 71
Beispiel graphische Darstellung Gegenbeispiel 77
Beispiel Umsetzung Exception Handling [DDOo7] 77

Tabellenverzeichnis

3.1.

5.1.
5.2.

6.1.

Beispielauswertung LTL-Operatoren 18
. Auszug Operatorendarstellungen LTL (nach [BDSVos]) 30
Beispielauswertung Regeltypen 42
Ubersicht Operatorendarstellungen LTL (angelehnt an [BDSVos]) 43
Auswertung Profiling paralleler Gateways, Laufzeiten in Millisekunden 72

Verzeichnis der Listings

3.1.
3.2.
3.3.
3.4.

4.1.
4.2.

5.1.
5.2.

6.1.

Beispiel Channels L 19
Beispiel Nichtdeterminismus 19
Beispiel Never Claim 20
Beispiel JSON 24
Pattern in PROPOLS [YMH 06] 27
Umsetzung eines XOR-Gateways 28
Beispielschema eines Datenobjektes 41
Beispiel Promela aus Petrinetz 51
Resultat JSON 64

1. Einfuhrung

Mit der zunehmenden Vernetzung von Geschiftsprozessen tiber das Internet ergeben sich
neue Herausforderungen fiir die Prozessmodellierung. Mehrere, weltweit verteilte Unterneh-
mensbereiche, aber auch voneinander unabhidngige Unternehmen arbeiten in gemeinsamen
Geschiftsprozessen zusammen.

Hierbei konnen sich Standardgeschéftsprozesse, wie beispielsweise die Abwicklung eines
Unfallschadens an einem Auto durch ein Versicherungsunternehmen, bei unterschiedlichen
Zusammenarbeitskonstellationen in Details unterscheiden. So arbeitet ein deutschlandweit
vertretenes Versicherungsunternehmen an unterschiedlichen Standorten mit anderen Gut-
achtern und Autowerkstédtten zusammen, die jeweils ihre eigenen Prozesse nutzen. Damit
entsteht ein Bedarf an Prozessvorlagen, die fiir die konkrete Instanziierung individuell
angepasst werden konnen. Eine Umsetzungsmoglichkeit besteht in abstrakten Prozessen mit
Platzhaltern, die nach dem Baukastenprinzip durch Einsetzen von Teilprozessen konkretisiert
werden.

Gleichzeitig miissen beim Prozessdesign immer mehr Regelungen und Auflagen beachtet
werden. Diese konnen dabei aus ganz unterschiedlichen Quellen stammen. Zum einen
kann der Gesetzgeber die Nichteinhaltung gesetzlicher Regelungen mit Strafen ahnden.
Die weltweite Finanzkrise in den vergangenen Jahren haben neue Gesetze fiir Banken
zur Folge gehabt, die berticksichtig werden miissen [Han1o]. Unternehmen koénnen aber
auch eigene Richtlinien formulieren, die Einfluss auf die Geschaftsprozesse nehmen. So
kann zum Beispiel, je nach Hohe der Schadenssumme, die Durchfiihrung eines zweiten
Gutachtens gefordert werden. Aber auch die gewiinschte AufSenwirkung eines Unternehmens
kann sich auf die Unternehmensziele und damit die Prozesse auswirken. Greenpeace fiihrt
regelméaflig ein Ranking von IT-Unternehmen anhand der Einhaltung von Umweltrichtlinien
durch [Gre1o]. Hierbei werden auch die Unternehmensprozesse berticksichtigt.

Die dabei erforderlichen Regeln kénnen unterschiedlicher Natur sein. Neben Regeln, die den
Kontrollfluss betreffen, etwa durch Forderung von Vorhandensein bestimmter Aktivitdten
oder Einhaltung gewisser Reihenfolgen von Tasks, konnen Regeln auch Anforderungen an
den Datenfluss stellen. Gerade bei der Zusammenarbeit unterschiedlicher Unternehmen
spielt hier die Datensicherheit eine wichtige Rolle. Patienten-, Kunden- und Kreditkarten-
daten miissen besonders sorgfiltig geschiitzt werden. So fiithrte das Bekanntwerden eines
Hackerangriffs auf das von Sony betriebene Playstation Network Ende April 2011 zur
Verunsicherung der Kunden [Son11].

Damit sieht sich der Nutzer beim Modellieren eines Prozesses mit einer grofien Menge von
zusétzlichen Anforderungen konfrontiert. Deshalb miissen Konzepte entwickelt werden, die
dem Prozessdesigner Hilfsmittel an die Hand geben, um die Einhaltung der Anforderungen

1. Einflhrung

sicherzustellen. Verletzungen von Regelungen miissen in einem frithen Entwicklungssta-
dium erkannt werden, da eine spéte Erkennung kostenintensiv sein oder im schlimmsten
Fall die Zahlung von Strafen nach sich ziehen kann. Zusétzlich ist eine Rollenverteilung
anzustreben, bei der Compliance Experten fiir die Umsetzung der Regelungen und Auflagen
verantwortlich sind und diese in Prozessvorlagen integrieren.

1.1. Aufgabenstellung

Zielsetzung dieser Arbeit ist die Erarbeitung eines Bedienkonzepts fiir die graphische
Modellierung von Prozessen mit Compliance Scopes. Dazu sollen geeignete Formulierungs-
moglichkeiten fiir die Definition von Regeln sowohl fiir den Kontroll- als auch den Datenfluss
in einem BPMN-Modell entwickelt werden.

Wihrend der Prozessvariantenbildung soll dem Prozessdesigner die Funktion angeboten
werden, die aktuelle Prozessvariante auf Einhaltung der zuvor definierten Regeln zu tiber-
priifen. Hierbei ist eine Darstellung anzustreben, die auch fiir Prozessdesigner verstandlich
ist, die nicht mit dem dahinter liegenden Verifikationsprozess vertraut sind.

Das erarbeitete Konzept soll als Erweiterung des webbasierten Prozessmodelleditors Oryx
umgesetzt werden. Dabei soll Oryx um die Moglichkeit der graphischen Modellierung
von Compliance Scopes und Regelbausteinen erweitert werden. Zur Verifikation von den
Kontrollfluss betreffenden Regeln soll ein geeigneter Model Checker in Oryx eingebunden
werden.

1.2. Gliederung der Arbeit

Kapitel 1 gibt eine Einfithrung in das Thema der Arbeit und beschreibt die Aufgabenstellung
sowie den weiteren Aufbau der vorliegenden Arbeit. In Kapitel 2 werden die funktiona-
len und nicht-funktionalen Anforderungen an die zu entwickelnde Losung detaillierter
erldutert.

Kapitel 3 beschreibt die notwendigen Grundlagen fiir die Arbeit und die entsprechende
Umsetzung. Themen sind Model Checking sowie die bei der Implementierung von Oryx
eingesetzten Techniken. Vorhandene Ansitze zur Uberpriifung von Compliance sowie die in
einer vorangegangenen Arbeit geleisteten Vorarbeiten finden sich in Kapitel 4.

Auf den im zweiten Kapitel dargestellten Anforderungen basierend wird die entwickelte
Losung in Kapitel 5 beschrieben. Unter anderem wird hier der Regelbaum 5.2 und das
Arbeiten mit Compliance Scopes 5.5 erldutert. Kapitel 6 geht ndher auf einzelne Aspekte der
Implementierung ein. Neben der Grundarchitektur des entwickelten Prototypen wird hier
auch auf das Front- und Backend sowie die Erweiterbarkeit eingegangen.

Eine Zusammenfassung der Arbeit und einen Ausblick auf Themen im Kontext der Arbeit
bietet Kapitel 7.

10

2. Anforderungen

An die erarbeitete Losung wurden eine Reihe von funktionalen und nicht-funktionalen
Anforderungen gestellt, die in diesem Kapitel genauer betrachtet und erldutert werden.

Erweiterung der Vorarbeiten aus der Diplomarbeit zum Variabilitatskonzept

In der vorhergehenden Diplomarbeit Prozessvarianten in unternehmensiibergreifenden Service-
netzwerken [Kotio] wurde Oryx bereits um die Beschreibungsmoglichkeit von Variabilitat in
BPMN-Modellen erweitert. Damit ist es moglich, Prozesstemplates zu erstellen, die dann
entsprechend der aktuellen Anforderungen zu konkreten Prozessvarianten abgeleitet werden
konnen.

Da die Variabilitit eng mit dem Konzept der Compliance Scopes verbunden ist, ist es sinnvoll,
die neu entwickelte Losung auf dieser bestehenden Erweiterung aufzubauen.

Unterstiitzung unterschiedlicher Beschreibungssprachen fiir Compliance Rules

Je nach Art der Regeln, die in einem Compliance Scope erfiillt sein sollen, ist die Formulie-
rung in unterschiedlichen Beschreibungssprachen sinnvoll.

Zur Beschreibung zeitlicher Anforderungen, wie der Reihenfolge auszufiihrender Tasks,
kann die Linear Temporal Logic (kurz LTL) zum Einsatz kommen. Die Definition von Regeln
zum Datenaustausch kann dagegen mit anderen Ausdrucksformen besser und leichter
ausgedriickt werden.

Die zu erstellende Losung sollte daher auch nachtréglich leicht um weitere Beschreibungs-
sprachen erweiterbar sein. In der Diplomarbeit ist ein Model Checker fiir die Auswertung
von in LTL formulierter Regeln einzubinden.

Aufierdem soll die logische Verkniipfung von Regeln in unterschiedlichen Beschreibungs-
sprachen in einer gemeinsamen Regel fiir den Compliance Scope ermoglicht werden, sodass
in einem einzigen Compliance Scope Regeln mit unterschiedlichen Beschreibungssprachen
iiberpriift werden konnen.

Einbettung auf Client-Seite Je nach einzubettender Sprache kann eine graphische Modellie-
rung der Regeln sinnvoll erscheinen. Die zu erarbeitende Losung sollte deshalb die
Einbindung graphischer Regeleditoren ermdglichen.

11

2. Anforderungen

Einbettung auf Server-Seite Hier konnen fiir verschiedene Regelbeschreibungssprachen Al-
gorithmen angegeben werden, die fiir die Verarbeitung der jeweiligen Regel zustandig
sind.

Unterstiitzung von Patterns

Da der Prozesstemplatedesigner eventuell nicht mit der LTL und anderen Beschreibungs-
sprachen vertraut ist, sollten Patterns ihn dabei unterstiitzen, dennoch zum gewtinschten
Ziel zu kommen.

Beispiele fiir konkrete Instanzen von Patterns sind

/

o Stelle sicher, dass in jedem Fall ein Task mit Namen , durch Geschiftsleitung priifen”
ausgefiihrt wird.

o Stelle sicher, dass falls ein Task mit Namen , durch Praktikant bearbeiten” ausgefiihrt
wird, im ndchsten Schritt ein Task mit Namen , durch Praktikantenbetreuer priifen”
ausgefiihrt wird.

Um dem Benutzer zu ermoglichen, aus einfacheren Grundregeln komplexere Regeln zu
erschaffen, soll die Kombination von Patterns zu einer Compliance-Regel unterstiitzt wer-
den.

Execution Semantics in BPMN 2.0

Die im Januar erschienene neue Major-Version 2.0 [Obj11] der Business Process Model and
Notation (kurz BPMN) definiert im Gegensatz zur vorigen Version 1.2 [Objog] eine Ausfiih-
rungssemantik (Execution Semantics). In Ansitzen, die auf der ersten Version der BPMN
basieren, wurde deshalb eine eigene Interpretation der Ausfiihrungssemantik verwendet.

Hintergrund der Einfiihrung der Execution Semantics ist der Wunsch BPMN direkt ausfiihr-
bar zu machen. Gleichzeitig wird aber darauf geachtet die Execution Semantics dhnlich zu
der BPEL Semantik zu gestalten, um Interoperabilitdt zu gewédhrleisten [Lito8].

Da in dieser Arbeit die zweite Version der BPMN verwendet wird, miissen bei der Ubernah-
me von bestehenden Ansitzen die Unterschiede zur Execution Semantics von BPMN 2.0
berticksichtigt werden.

Performance

In der Usability sind die Reaktionszeiten des Systems eine wichtige Anforderungen [Eur].
Die Informationen miissen in einem Format und Tempo angezeigt werden, die dem Benutzer
angepasst sind. Deshalb soll die erarbeitete Losung so implementiert werden, dass die
Antwortzeiten moglichst gering ausfallen.

12

Hierbei ist zu priifen, ob die Durchfiihrung von Compliance Checks sofort bei Anderung
eines BPMN-Modells moglich ist oder zu langen Wartezeiten fiihrt, sodass nur die Prii-
fung auf Wunsch durchgefiihrt werden kann. Im ersteren Falle erhélt der Benutzer zwar
ein unmittelbares Feedback, ob die von ihm erstellte Prozessvariante alle Regeln erfiillt,
dauert der Verifikationsprozess allerdings zu lange, verliert das unmittelbare Feedback an
Attraktivitat.

Integration in Oryx

Die zu realisierende Losung ist in Oryx zu integrieren. Dabei sollen vorhandene und
dokumentierte Erweiterungsmechanismen wie Plugins und Stencilsets nach Moglichkeit
vorrangig genutzt werden, anstatt nicht offiziell vorgesehene. Das erleichtert in der spateren
Wartung auch die Migration auf neuere Oryx-Versionen.

Bei der Integration des Model Checkers ist darauf zu achten, dass dieser sowohl unter einer
Windows- als auch einer Linuxserverumgebung lauffahig ist. Aufierdem soll der Model
Checker gekapselt werden, sodass ein spéterer Austausch des Model Checkers moglich ist.

Nachvollziehbarkeit von LTL-Regel-Verletzungen

Der Model Checker liefert im Falle der Verletzung einer Regel durch das BPMN-Diagramm
ein Gegenbeispiel. Dieses soll nach Moglichkeit entsprechend aufbereitet und dem Endbe-
nutzer zur Verfiigung gestellt werden, damit dieser die Regelverletzung nachvollziehen und
seine eigene Regel verbessern kann.

13

3. Grundlagen

Die fiir die Erarbeitung der Losung benotigten Grundlagen werden in diesem Kapitel
vorgestellt. Dies ist zum einen die Business Process Model and Notation, zum anderen das
Thema Model Checking. Der verwendete Model Checker Spin sowie die darin verwendete
Programmiersprache Promela wird vorgestellt. Da die Implementierung als Erweiterung von
Oryx erfolgt, werden aufserdem Oryx und die dort verwendeten Techniken und Technologien
vorgestellt.

3.1. Business Process Model and Notation

Die Business Process Model and Notation (BPMN) ist eine graphische Notation zur Beschrei-
bung von Geschiftsprozessen, deren Entwicklung um 2002 begann und die spéter von der
Object Management Group (OMG) zur weiteren Pflege tibernommen wurde [Silog]. Fiir die
Verwendung der BPMN fallen keine Lizenzkosten an, eine Reihe von BPMN-Werkzeugen ist
zudem kostenlos verfiigbar.

Durch die Ahnlichkeit zu Flowcharts [ISO] sind BPMN-Modelle auch von Businessanwen-
dern einfach zu verstehen. Die BPMN definiert aber im Gegensatz zu Flowcharts eine feste
Bedeutung fiir alle Elemente, was die Kommunikation {iber in BPMN beschriebene Prozesse
vereinfacht. Anders als die Unified Modeling Language (UML) [Obj10] ist die BPMN weniger
IT-zentriert und kann damit sowohl von den Geschédftsanwendern als auch von denjenigen,
die die technische Umsetzung und Pflege der Geschiftsprozesse vornehmen, verstanden
werden [Obj11]. Zusétzlich zu Flowcharts gibt es Event-getriggertes Verhalten [Silog].

Die graphischen Elemente der BPMN in fiinf Grundkategorien eingeteilt [Obj11]:

Flussobjekte Diese definieren als wichtigste graphische Elemente das Verhalten eines Ge-
schiftsprozesses. Insgesamt gibt es drei verschiedene Flussobjekte: Ereignisse, Aktivita-
ten und Gateways.

Daten Hierzu gehoren Datenobjekte, Datenein- und -ausgange sowie Data Stores.

Verbindende Objekte Diese verbinden Flussobjekte miteinander oder Flussobjekte mit an-
deren Informationen. Hierbei werden Kontrollfluss, Nachrichtenfluss, allgemeine Ver-
kntipfungen und Datenverkniipfungen unterschieden.

Pools und Swimlanes Mit Swimlanes und Pools werden verschiedene Teilnehmer an ei-
nem Geschéftsprozess reprasentiert. Die Kommunikation zwischen Pools findet iiber
Nachrichten statt.

15

3. Grundlagen

Artefakte Hiermit konnen Prozesse um zusitzliche Informationen angereichert werden. Die
gangigsten Artefakte sind die Gruppierung und die Text Annotation.

Ein Beispielprozess findet sich in Abbildung 3.1.

[0}
o
c
=]
4
N A
als Duplikat markieren
)
2
'9 0
o
c Eingang Bug- bekannt? Statusmeldung
I Report ' an Kunden
c
> - >
X N— Bug bearbeiten
-
Bug Datenbank

Abbildung 3.1.: Beispiel BPMN-Prozess

Eine Ubersicht iiber die Elemente der BPMN findet sich in [BPM1o], die vollstandige
Spezifikation in [Obj11].

3.2. Model Checking

Mit der zunehmenden Komplexitdt von Software wird es schwieriger, deren Fehlerfreiheit
zu gewdhrleisten. In besonders kritischen Anwendungen werden deshalb formale Methoden
gewohnlichen Tests vorgezogen. Formale Methoden beschreiben Systeme als mathematische
Modelle, um dann die Korrektheit der Systeme zu beweisen [Nowog].

In einigen Anwendungsgebieten wird Model Checking bereits intensiv genutzt [CGPo1]. So
zum Beispiel bei der Verifikation von grofien integrierten Schaltungen.

Ein Model Checker benétigt zwei Eingaben, eine Beschreibung des zu iiberpriifenden Systems
und die Spezifikation, die das System erfiillen muss. Anschlieffend lduft die Verifikation
vollautomatisch und liefert im Falle einer Verletzung der Spezifikation ein Gegenbeispiel.

3.2.1. Systembeschreibung

Im ersten Schritt wird ein formales Modell des zu verifizierenden Systems erstellt. Dabei
miissen in dem erstellten Modell alle Eigenschaften vertreten sein, die fiir die Verifikation

16

3.2. Model Checking

der Korrektheit notwendig sind. Eigenschaften, die fiir die Verifikation dagegen irrelevant
sind, werden weggelassen, um das Modell nicht unnétig komplex zu gestalten und beim
spateren Verifikationsprozess keine Laufzeiteinbufien zu erzeugen. So werden bei digita-
len Schaltungen die anliegenden Spannungen wegabstrahiert und durch boolsche Werte
reprasentiert [CGPo1].

Die Beschreibung des zu testenden Systems kann dabei unter anderem als Kripkestruktur
[CGPo1] erfolgen. Eine Kripkestruktur ist ein gerichteter Graph. Die Knoten dieses Graphen
beschreiben dabei Zustdnde des Systems. Jeder Zustand ist mit Bedingungen annotiert, die
in diesem Zustand erfiillt sind. Die Kanten des Graphen beschreiben Zustandsiibergéange.
Diese Zustandstibergédnge sind dabei an keine Bedingungen gekniipft. Eine Teilmenge der
Zustande wird als Startzustande ausgezeichnet.

Eine Kripkestruktur ist in Abbildung 3.2 gegeben. z; ist als Startzustand gekennzeichnet. In
diesem Zustand gilt Bedingung a4, im Zustand z; gelten die Bedingungen b und c. Von Zu-
stand z; kann das System entweder in z, oder z4 wechseln, die Wahl des Nachfolgezustands
erfolgt nichtdeterministisch.

Abbildung 3.2.: Beispiel Kripkestruktur

Auf dem erstellten Modell werden nun zu erfiillende Eigenschaften (die Spezifikation)
beschrieben.

3.2.2. LTL

Eine Beschreibungsmoglichkeit fiir die einzuhaltende Spezifikation ist die lineare temporale
Logik (kurz LTL). Die LTL erweitert die Aussagenlogik um temporale, das heifst zeitbezogene,
Operatoren. Die Auswertung der Regel erfolgt dabei auf einzelnen Ausfiihrungen des Models.
Folgende Operatoren werden dabei untersttitzt:

Next ¢ Im ndchsten Zustand gilt Bedingung ¢.
Finally ¢ Irgendwann im weiteren Verlauf der Ausfiihrung gilt Bedingung ¢.
Globally ¢ Im weiteren Verlauf gilt in jedem Zustand Bedingung ¢.

¢ Until ¢ Bis Bedingung 1 eintritt, gilt Bedingung ¢ und Bedingung i tritt irgendwann im
weiteren Verlauf ein.

17

3. Grundlagen

Tabelle 3.1 zeigt eine Auswertung der Operatoren auf der in Abbildung 3.2 gegebenen
Kripkestruktur.

Formel / Zustand ‘ Z4 ‘ Z ‘ Z7 ‘ Z5 ‘
Next d falsch | falsch | falsch | wahr
Finally d wahr | falsch | falsch | wahr
Globally ¢ falsch | wahr | wahr | falsch
a Until d wahr | falsch | falsch | wahr

Tabelle 3.1.: Beispielauswertung LTL-Operatoren

Daneben existiert noch eine Reihe weiterer temporaler Operatoren [Nowog], die sich aber,
ebenso wie Finally und Globally, aus den Operatoren der Aussagenlogik sowie Next und
Until darstellen lassen, da diese bereits eine Junktorenbasis bilden:

true = ¢V —¢

Finally ¢ = true Until ¢

Globally ¢ = — (Finally — ¢)

¢ Release y = — (— ¢ Until - ¢)

Neben der LTL gibt es noch weitere Beschreibungsmdoglichkeiten fiir temporale Anforde-
rungen. Die Computation Tree Logic (CTL) betrachtet im Gegensatz zur LTL nicht nur eine
mogliche Zukunft, sondern berticksichtigt alle moglichen Ausfiihrungen [Nowog]. Damit
lasst sich zum Beispiel beschreiben, dass mindestens eine mogliche Ausfithrung des Sys-
tems existiert, in der Task1 ausgefiihrt wird. Beide Logiken kdnnen jeweils Bedingungen
formulieren, die sich mit der anderen Logik nicht ausdriicken lassen. Es existiert aber eine
Vereinigung von beidem in der CTL*.

3.3. Spin

Spin [Spia] ist ein bewdhrtes und weit verbreitetes Werkzeug zur Modellpriifung. Die
Entwicklung begann bereits 1980 in den Bell Labs. Seit 1991 ist die Software frei verftigbar.

Sowohl die Beschreibung des Systems als auch die Spezifikation der Anforderung erfolgt
dabei in Promela. Beide werden anschlieffend konkateniert und in C-Code umgewandelt.
Der C-Code wird mit einem C-Compiler wie dem GCC [GT] kompiliert. Das dabei erzeugte
Programm simuliert das spezifizierte System und priift dabei die Spezifikation.

Neben dem Model Checking ermoglicht Spin auch das Simulieren von Modellen durch
deren schrittweises Ausfiithren und Nachverfolgen des Ablaufs.

18

3.3. Spin

3.3.1. Promela

Spin verwendet zur Formulierung der Systembeschreibung eine eigene Programmiersprache
die Process or Protocol Meta Language (kurz Promela) [Gergy]. Promela ist an C angelehnt
und besteht aus drei Typen von Objekten: Prozessen, Nachrichtenkanélen und Variablen.
Prozesse definieren dabei das Verhalten des Modells und konnen tiber globale Variablen und
Nachrichtenkanile miteinander kommunizieren.

Fiir das Verstandnis der betrachteten Losungsansaitze der Systembeschreibung in Promela
sind einige Besonderheiten von Promela relevant, die im Folgenden kurz erldutert werden.

Kommunikation tGiber Channels

Nachrichten werden mit eigenen Operatoren in Channels geschrieben und aus diesen gelesen
(siehe Listing 3.1).

channel ! token; // Token in Channel schreiben
channel ? token; // Token aus Channel lesen (blockiert)

Listing 3.1: Beispiel Channels

Nichtdeterminismus

Auch Nichtdeterminismus ldsst sich mit Promela umsetzen. Dies findet zum Beispiel An-
wendung bei der zufélligen Wahl des Folgezustandes beim Umformen einer Kripkestruktur
in ein Promela-Programm.

if

:: conditionl -> statementl
: condition2 -> statement2

fi;

do
:: conditionl -> statementl
:: condition2 -> statement2
od;

Listing 3.2: Beispiel Nichtdeterminismus
Listing 3.2 zeigt das if-Konstrukt und die do-Schleife in Promela. Beim if-Konstrukt werden
bei der Ausfithrung zunéchst alle Bedingungen ausgewertet. Sind mehrere Bedingungen

erfiillt, so wird anschliefsend zuféllig einer der erfiillten Zweige ausgefiihrt. Die Interpretation
bei der do-Schleife erfolgt analog.

19

-

3. Grundlagen

Never Claims

Never Claims sind spezielle Prozessarten, die beim Start der Verifikation einmal initialisiert
werden und anschlieflend parallel zu den Prozessen des Modells laufen. Sie dienen dazu,
unerwiinschtes Verhalten des Modells zu erkennen. Die Prozesse des Modells und der Pro-
zess mit dem Never Claim werden schrittweise abwechselnd ausgefiihrt. Damit erzeugen die
Prozesse des Modells den ndchsten Zustand, der im nachfolgenden Schritt dann umgehend
durch den Never Claims auf Korrektheit {iberpriift wird. Wird ein Never Claim beendet, so
ist das durch den Never Claim beschriebene unerwiinschte Verhalten eingetreten und die
Spezifikation verletzt.

Als Beispiel sei die Spezifikation gegeben, dass stets die Bedingung abc gelten muss, als LTL-
Formel: [Jabc. Spin erlaubt nun die Generierung von passenden Promela-Programmen aus
LTL-Formeln. Dazu wird Spin mit dem Befehlszeilenparameter -f und der darzustellenden
LTL-Formel in negierter Form aufgerufen. So wird die LTL-Formel [Jabc in einen Never
Claim wie in Listing 3.3 dargestellt umgeformt.

never { /* V'[]abc */
TO_init:
if
:: (! ((abc))) -> goto accept_all
: (1) -> goto TO_init
fi;
accept_all:
skip
}

Listing 3.3: Beispiel Never Claim

Sobald ein Prozess des Modells die globale Variable abc auf false setzt, wird der Never
Claim beendet und damit die Spezifikation verletzt.

Damit mehrere Anweisungen in einem Block ausgefiihrt werden kdnnen, bevor der Wechsel
zum Never Claim stattfindet, konnen die Anweisungen in eine d_step-Umgebung einge-
schlossen werden.

Seit Version 6 konnen LTL-Formeln auch direkt in der Systembeschreibung angegeben
werden, ohne den Umweg iiber den Never-Claim [lt]].

3.4. Oryx

Oryx [ory] ist ein Open Source Framework zur graphischen Prozessmodellierung, das am
Hasso-Plattner-Institut in Potsdam entwickelt wurde und inzwischen sowohl als Open Source
Anwendung als auch als kommerzielles Produkt der Firma Signavio verftigbar ist [sig].

Der Client-Teil lauft dabei im Webbrowser und ist somit plattformiibergreifend nutzbar.
Der Serverteil ist als JavaServlets realisiert. Durch seine Erweiterbarkeit bietet sich Oryx

20

3.4. Oryx

fiir Erweiterungen wie die im Rahmen dieser Arbeit entwickelte Losung an. Im Oryx-
Coderepository [ory11] finden sich bereits eine Reihe von Erweiterungen wie Modellierungs-
moglichkeiten fiir Petrinetze, BPMN-Q und UML-Diagramme.

OR’/X

HE&S -0 &l A mi=3 fofel @~ El-1nsxm O RS HEH@
Shape Repository ol M Properties (BPMN-Diagram) »
" |
3 Activities Compliance b Properties =
D Task ! Mame Value
|
@ Collapsed Subprocess M | @ Often used
| |
= Expanded Subprocess | §| | Nams
| | Documentation
L w
i Collapsed Event- |
Subprocess | = More Properties
- [Auditing
3 § |
v.s Event-Subprocess | Menitoring
= Gateways | Wersion
@ Data-based Exclusive | Author
(XOR) Gateway v/ Language English
M
@ Event-based Gateway amaspaces
Target Namesp httpofwww.omg.org
& Parallel Gateway ExpressionLan http:fwww.w3.org/
@ Inclusive Gateway TypelLanguage httpufwww.w3.omg!
CreationDate
@ Complex Gateway i MedificationDa
'y v
Feedback « = <>

Abbildung 3.3.: GUI von Oryx

3.4.1. Frontend

Die Benutzeroberflache wird vom Benutzer tiber den Webbrowser aufgerufen und genutzt.
Bei der Entwicklung wurde Wert auf ein Desktop Feeling gelegt, das heifit der Editor wurde
wie eine Desktop-Anwendung mit den dort gewohnten Konzepten, beispielsweise Drag and
Drop, konzipiert [Tscoy]. Wichtige Bestandteile der Architektur des Frontends sind Plugins
und Stencilsets, die nachfolgend genauer erldutert werden.

Eine Darstellung der GUI von Oryx findet sich in Abbildung 3.3. Auf der linken Seite befindet
sich die Toolbox mit allen fiir den Diagrammtypen verfiigbaren graphischen Primitiven. Auf
der rechten Seite befindet sich ein Editor, mit dem Eigenschaften des aktuell markierten
Elements modifiziert werden konnen. Oben befindet sich die Toolbar, in der die verfiigbaren
Plugins Zusatzfunktionen zur Verfiigung stellen.

21

3. Grundlagen

Stencilsets

Ein Stencilset fasst die graphischen Primitive (Stencils) eines Diagrammtyps zusammen und
kann zusétzlich einen Satz von Regeln enthalten, der definiert, wie sich die graphischen
Elemente untereinander verhalten [Peto7].

Die graphischen Elemente eines Stencilsets unterteilen sich in Knoten und Kanten und kon-
nen neben der graphischen Darstellung weitere Eigenschaften, wie einen Namen, aufweisen,
die sich tiber den Eigenschaftseditor im Oryx-Frontend manipulieren lassen.

Ahnlich zur Vererbung in der Objektorientierung bieten Stencilsets die Erweiterung um
weitere Stencilset Extensions. Dies wurde zur Definition des Stencilsets zur Variabilitit
genutzt, welches das BPMN 2.0-Stencilset um Variability Points und Variability Attributes
erweitert.

Rules definieren die Regeln, die in einem Diagrammtyp eingehalten werden miissen. Die
Dokumentation spezifiziert drei verschiedene Regeltypen:

Connection Rules Hiermit wird definiert, welche graphischen Primitive miteinander ver-
bunden werden konnen. So kann ein Task mit einer Kontrollflusskante verbunden
werden, aber nicht (direkt) mit einem Gateway.

Cardinality Rules Dieser Regeltyp beschrankt unter anderem die Anzahl ausgehender Kan-
ten eines Knotens oder die Anzahl moglicher Instanzen eines graphischen Primitivs in
einem Elternelement.

Containment Rules Mit diesem Regeltyp wird angegeben, welche graphischen Primitive
andere enthalten konnen.

Um dhnliches Verhalten und dhnliche Eigenschaften zusammenzufassen, konnen Stencils
Rollen zugeordnet werden [how]. So konnen weder Tasks noch Gateways weitere BPMN-
Elemente enthalten. Datenobjekte und Data Stores konnen beide nicht mit Kontrollflusskan-
ten verbunden werden.

Neben dem hier erweiterten Stencilset zur BPMN [Poloy] wurden bereits auch Stencilsets fiir
Petrinetze und UML-Diagramme erstellt und in Oryx eingebunden.

Plugins

Die Benutzeroberfliche kann auf Frontend-Seite durch Plugins erweitert werden [Tsco7].
Diese werden beim Aufruf der Benutzeroberfliche geladen und erhalten Zugriff auf eine
spezielle Fassade, iiber die sie auf den Datenbestand und die Funktionen des Frontends
zugreifen konnen.

Die Kommunikation zwischen Plugins erfolgt {iber Events. Plugins kdnnen dabei eigene
Events definieren und auslosen, sowie Events abonnieren. Events werden unter anderem
dann ausgelost, wenn Stencils dem Graphen hinzugefiigt werden oder sich Eigenschaften
der Stencils dndern.

22

3.5. Scalable Vector Graphics

3.4.2. Backend

Das Backend ist in Java realisiert. Erweiterungen um neue Funktionalitidten erfolgen als
JavaServlets [Oraa]. Insbesondere aufwéandigere Operationen lassen sich einfacher im Back-
end umsetzen. So ist zum Beispiel der Aufruf von nativen Anwendungen auch nur hier
moglich.

3.5. Scalable Vector Graphics

Das in XML formulierte Scalable Vector Graphics Format [svg] erlaubt die Definition von
zweidimensionalen Vektorgraphiken. Nachdem SVG inzwischen von den gingigen Browsern
relativ vollstandig unterstiitzt wird [Sch11], hat sich SVG zu einem im Web weit verbreiteten
Standard entwickelt. In Oryx wird SVG zur Beschreibung der graphischen Primitive in
Stencilsets verwendet.

Das Design der SVG-Graphiken muss dabei nicht als SVG von Hand erstellt werden, sondern
kann durch eine Reihe graphischer Editoren erfolgen, zum Beispiel mit Inkscape [Ink].

Oryx erweitert die SVG-Syntax um zusatzliche Attribute und Knoten [Petoy]. So erlauben
Anchors die Definition von Layoutverhalten im Falle einer Groflendnderung eines Elementes
durch den Benutzer, Eigenschaftswerte konnen tiber das Text-Attribut mit der graphischen
Darstellung etwa zur Anzeige des Namens eines Tasks verwendet werden. Mittels Magnets
und Dockers wird die Definition von Ankerpunkten beim Versehen von Knoten mit Kanten
beschrieben.

3.6. JavaScript Object Notation

Die JavaScript Object Notation (JSON) [jso, Croo8] ist ein leichtgewichtiges Datenaustausch-
format. JSON ist fiir Menschen leicht lesbar und auf Grund seines einfachen Aufbaus leicht zu
parsen. Im Gegensatz zu XML ist JSON deutlich kompakter. Damit bietet sich JSON iiberall
dort an, wo die Moglichkeiten von JSON ausreichen und die Bandbreite zum Datentransfer
beschrénkt ist. JSON basiert auf zwei grundlegenden Datentypen:

e Sammlungen von Name/Wertepaaren zur Beschreibung eines Objektes,

e Arrays zur Definition von Sammlungen von Objekten.

Listing 3.4 stellt einen Datensatz zu einem Auto in JSON dar. Die Ausstattungsmerkmale
werden als Array definiert, die Inhaberinformationen als Unterobjekt umgesetzt. Als Daten-
typen fiir Eigenschaftswerte stehen Zeichenketten, Dezimalzahlen, true und false, null
sowie Arrays und Objekte zur Verfiigung.

JSON kann direkt in JavaScript geparst werden [eva], fiir Java ist ein entsprechender Par-
ser [Cro] verfiigbar. In Oryx findet JSON umfangreiche Anwendung. So unter anderem bei

23

3. Grundlagen

der Definition von Stencilsets, beim Datenaustausch mit dem Backend und als Datenhal-
tungsformat fiir erstellte Modelle.

1 {
"Kennzeichen": "S-AB-1233",
"Kilometerstand": 18000,
"TUEV": true,
"Ausstattung": ["Radio", "Klima"],
6 "Inhaber": {
"Name": "Max Mustermann",
"Geburtstag": "1980-01-01"
}
}

Listing 3.4: Beispiel JSON

24

4. Vorhandene Ansatze und Vorarbeiten

In diesem Kapitel werden bestehende Ansétze zur Regeliiberpriifung in BPMN-Diagrammen
genauer betrachtet. Zundchst werden Compliance Scopes und Compliance Templates vor-
gestellt und verglichen. AnschliefSend wird nacheinander auf Ansétze zur Kontroll- und
Datenflussverifikation eingegangen. Aufserdem wird die bereits in der Diplomarbeit Prozess-
varianten in unternehmensiibergreifenden Servicenetzwerken erarbeitete Losung betrachtet, auf
der in der vorliegenden Arbeit aufgebaut wird.

4.1. Definition des Compliance Scopes

In [SWLS10] werden Compliance Scopes formal definiert. Als Grundlage hierfiir dient die
Definition des Hypergraphen [Ber89]. Sei X = x1, x3, ..., x, eine Menge von BPMN 2.0-Tasks
und E; eine Hyperkante, dann ist ein Hypergraph iiber X eine Familie H = Ey, E», ..., E;; von
Untermengen von X, sodass gilt:

m
E; # @ fir (i =1,2,..m) und U E,=X
i=1

Das heifit jede Kante muss mindestens einen Task verbinden und jeder Task von X muss von
mindestens einer Kante erfasst werden. Sei C die (endliche) Menge aller Compliance-Regeln.
Darauf aufbauend wird nun die Menge CS der Compliance Scopes, die auf einen Business
Prozess angewendet werden, definiert:

CSC Hx (2°\ @)

Damit ist ein Compliance Scope ein Element aus der Menge CS, das heifst er verbindet eine
Hyperkante mit einem Satz Regeln. Dabei hat jeder Compliance Scope mindestens eine
verkniipfte Regel, Compliance Scopes ohne Regeln sind damit nicht zugelassen.

4.2. Definition des Compliance Templates

[SALMog] definiert den Begriff des Compliance Templates und beschreibt den Umgang mit
diesen.

In Abbildung 4.1 wird ein Compliance Template dargestellt. Dieses besteht aus drei
Komponenten: einem abstrakten Geschéftsprozess, sowie Variabilitdtsbeschreibungen und

25

4. Vorhandene Ansétze und Vorarbeiten

Compliance-Deskriptoren. In dem abstrakten Geschéftsprozess sind Platzhalter enthalten
(in der Abbildung mit Opagque bezeichnet), die ersetzt werden miissen, bevor der Prozess
ausgefiihrt werden kann. Dazu definieren die Variabilitdtsbeschreibungen Alternativen, die
fiir die Platzhalter eingesetzt werden konnen. Alternativen werden durch verschiedene
Typen kategorisiert. So ist die Angabe von expliziten, leeren, freien oder aus Expressions
generierten Alternativen moglich.

Zusatzliche Compliance-Regeln konnen mit den Compliance-Deskriptoren ausgedriickt
werden. Nicht mit Opaque bezeichnete Aktivitdten sind Compliance-Aktivitdten und diirfen
weder entfernt noch anderweitig verdndert werden. Compliance-Deskriptoren bestehen aus
Compliance-Punkten, von denen jeder eine Compliance-Anforderung an den Geschaftspro-
zess beschreibt. Jeder dieser Compliance-Punkte besteht wiederum aus einer Menge von
Compliance-Links, die auf Aktivitidten im abstrakten Prozess zeigen, die nicht verdndert
werden diirfen, sowie eine Reihe von Assurance-Regeln, die fiir einzelne Platzhalter angeben,
welche Regeln gelten miissen.

Compliance Descriptor Abstract Process Variability Descriptor

Compliance Descriptor) Receive Loan (" Variability Descriptor N

1 I
! I
1 I
1 I
1 I
i i
e - - ~ | Request |
Compliance Point 1 ! i Variability Point 1
1 I
1 [Request.value > 300 |[Request.value <= 300 | | Alternative A
Compliance Link 1 !
L ST |
Compliance Link ™~ / Opaque Opagque ! Copy loan data
! SN ! AN |
Compliance Link | \(’ Se — ;
i AR T T Alternative B
I / N
Link to Opaque Act. ['N | | el = ‘
Comliance - Prepare Request

Assurance Rule A

Invoke Credit
Check

Opaque activities
cannot be replaced by -
an invocation to the Assign

I
I
I
I
I
I
I
I
I
I
I
I
1
! Response
I
[——
I
} Variability Point 2
I
I
I
I
I
I
I
I
I
I
b
I
I
I
I
I
I
I

Disapproval Sub-
Process

) Alternative A
Compliance

Assurance Rule B

Disapproval
Sub-Process

Log Decision

Activites replacing
opaque activities must
not contain links that
cross the boundary of
that activity

\
\
Invoke Approval e -
S Alternative B
Invoke Approval
Sub-Process

[

1
1
1
1
1
1
1
1
1
1
1
1
1
i
1
Link to Opaque Act. !
1
1
1
1
1
1
1
1
1
1
1
1
I
1
1
1
1

Abbildung 4.1.: Compliance Template [SALMog]
Variabilitdtsbeschreibungen und Compliance-Deskriptoren werden dabei unabhéingig vom
abstrakten Prozess definiert, was eine Wiederverwendung ermoglicht.

Im Gegensatz zur Definition des Compliance Scope lassen sich die Compliance-Regeln hier
nicht nachtréaglich in bestehende Prozesse integrieren, denn Opaque-Aktivitdten fehlen in
bestehenden, ausfithrbaren Prozessen.

26

4.3. Ansatze zur Kontrollflussverifikation

4.3. Ansatze zur Kontrollflussverifikation

Eine Reihe von Arbeiten beschiftigen sich mit der Verifikation des Kontrollflusses. Zweck
der Kontrollflussanalyse ist es unter anderem, sicherzustellen, dass Tasks in der korrekten
Reihenfolge ausgefiihrt oder Tasks im Prozess in jedem Fall durchgefiihrt werden. Aber
auch komplexere Regeln wie Falls die Aktivitit ,,Gutachten erhalten” ausgefiihrt wird, dann muss
anschlieflend irgendwann die Aktivitit ,,Gegengutachten einholen” ausgefiihrt werden. lassen sich
damit tiberpriifen.

4.3.1. PROPOLS

In [YMH"06] wird die Spezifikationssprache Property Specification Pattern Ontology Lan-
guage for Service Composition (kurz PROPOLS) vorgestellt. Diese basiert auf den in [DACg8]
vorgestellten Property Patterns, welche wiederum Verallgemeinerungen oft genutzter tempo-
raler Formeln sind.

So definiert PROPOLS unter anderem die Patterns Absence, Existence und Precedence iiber
definierten Geltungsbereichen wie Globally oder zwischen zwei Ereignissen (Between ... And).
FEin mogliches kombiniertes Pattern ist in Listing 4.1 dargestellt.

Customer.GetOrderFulfilled Precedes Bank.Transfer Globally
And
Customer.GetOrderFulfilled LeadsTo Bank.Transfer Globally

Listing 4.1: Pattern in PROPOLS [YMH*06]

Die definierten Properties werden zum Uberpriifen von BPEL Service Composition Schemas
genutzt. Der Verifikationsprozess lduft in diesem Ansatz dann wie folgt ab:

Schritt 1 Zunichst werden die durch Pattern ausgedriickten Eigenschaften als totale, deter-
ministische, endliche Automaten umgesetzt. Dabei ist auch definiert, wie der resultie-
rende Automat eines kombinierten Patterns aus den Automaten der einzelnen Patterns
erstellt wird.

Schritt 2 Anschlieffend wird das BPEL-Schema in ein endliches, deterministisches, beschrif-
tetes Transitionssystem umgeformt, woraus dann wieder ein totaler, deterministischer
und endlicher Automat erstellt wird.

Schritt 3 Die Konformitdt des BPEL-Schema zu den in PROPOLS definierten Eigenschaften
wird ermittelt, indem nachgepriift wird, ob alle vom BPEL-Automaten akzeptierten Se-
quenzen auch vom Automaten, der die Eigenschaften représentiert, akzeptiert werden.

Dies wiederum erfolgt durch Schnitt des BPEL-Automaten mit dem Komplement des
Eigenschafts-Automaten. Ist der Schnitt leer, so ist die definierte Eigenschaft stets
erfullt.

27

4. Vorhandene Ansétze und Vorarbeiten

Der Verifikationsprozess dhnelt damit dem des automaten-basierten Model Checkings. Dort
werden sowohl das zu priifende System als auch die zu priifende Eigenschaft in einen Biichi-
Automaten (dieser arbeitet auf unendlichen Wortern und akzeptiert, wenn ein Endzustand
unendlich oft durchlaufen wird) tiberfithrt. Um zu priifen, ob das System der definierten
Eigenschaft geniigt, wird anschliefSend der Biichi-Automat des Systems mit dem Komplement
des Biichi-Automaten der Spezifikation geschnitten und ermittelt, ob der Schnittautomat nur
die leere Sprache akzeptiert. Ist dies der Fall, so ist die Spezifikation erfiillt [CGPo1].

4.3.2. Ansitze zur Verifikation mittels Model Checking

In einigen Arbeiten wurde Model Checking bereits zur Uberpriifung von BPMN-Modellen
eingesetzt. Hier finden sich zwei Ansdtze, um ein BPMN-Modell auf Promela, die Einga-
besprache von Spin, umzuformen: Das Mapping mittels mehrerer Prozesse und Channels
zur Kontrollflussbehandlung und der Zwischenschritt iiber ein Petrinetz, welches in einem
Promela-Programm schrittweise simuliert wird.

Mapping der BPMN auf Prozesse/Channels

In [VFoy] wird die Verifikation von Web Services und Geschiftsprozessen mit Spin be-
handelt. Dazu werden die in [RAAMo6] prasentierten Workflow-Pattern-Spezifikationen
(Sequenz, Auswahl, Parallelismus und Synchronisierung) genutzt, die sich auf den Kontroll-
fluss beschranken. Fiir jedes dieser Workflow-Patterns wird eine entsprechende Promela-
Ubersetzung erstellt. Die wichtigsten (Sequenz, Paralleler und Exklusiver Split, Synchronisie-
rung und einfacher Merge) werden vorgestellt.

active proctype XORGateway() {
end:
rendezvous_channels[1] 7 _;

if
:: rendezvous_channels[2] ! 1
:: rendezvous_channels[3] ! 1
fi

}

Listing 4.2: Umsetzung eines XOR-Gateways

Prozesse, Unterprozesse und Aktivititen werden dabei als Promela-Prozesse umgesetzt,
der Kontrollfluss erfolgt tiber Channels. Am Beispiel einer Reiseagentur wird die Um-
setzung eines BPMN-Modells in Promela, sowie die Verifikation von in LTL formulierter
Spezifikationen illustriert.

Listing 4.2 zeigt die Umsetzung eines XOR-Gateways. Der Prozess wird bei Programm-
beginn gestartet und wartet auf dem eingehenden Channel (entspricht der eingehenden
Kontrollflusskante) auf das Signal, mit der Ausfithrung zu beginnen. Anschlieffend wird eine

28

4.3. Ansatze zur Kontrollflussverifikation

der beiden nachfolgenden Kanten zuféllig gewdhlt und auf dem entsprechenden Channel
signalisiert.

Der in [VFoy] vorgestellte Ansatz wird unter anderem in [Mii10] weiter verfolgt. Zuséatzlich
wird hier ein Algorithmus zur Verifikation der temporalen Bedingungen Direktnachfolger,
Direktvorgiinger, Direktabfolge und negierte Direktabfolge vorgestellt. Dieser verwendet allerdings
kein Model Checking, sondern priift die Struktur des BPMN-Modells durch eigenen Code
direkt.

Mapping eines BPMN-Modells auf ein Petrinetz

Der in [DDOo7, WMMog, Wol1o0] vorgestellte Ansatz verfolgt dagegen einen anderen Weg
der Umsetzung. Hier wird das BPMN-Modell nicht direkt in ein Promela-Programm umge-
wandelt, sondern zunédchst auf ein Petrinetz abgebildet, welches dann als Promela-Programm
umgesetzt wird.

Jedem BPMN-Element ist dabei ein Petrinetz-Fragment zugeordnet. Das Mapping des
gesamten BPMN-Modells erfolgt durch Umsetzung der einzelnen BPMN-Elemente in ihre
Petrinetzentsprechungen.

Abbildung 4.2.: XOR-Gateway im Petrinetz, nach [DDOo7]

Das Petrinetzfragment fiir das XOR-Gateway ist in Abbildung 4.2 dargestellt. Das XOR-
Gateway wird aktiv, sobald ein Token auf dem eingehenden Platz eintrifft. Nichtdeterminis-
tisch wird dann eine der beiden Transitionen getitigt und damit einer der nachfolgenden
Zweige gewdhlt.

4.3.3. Visuelle Notationen fiir LTL-Formeln

Da die Formulierung vor allem komplexerer LTL-Formeln fiir unerfahrene Anwender schwie-
rig ist, existieren Ansitze zur graphischen Notation. In [BDSVo5] werden zwei mogliche
Notationen untersucht. Neben der Verwendung der BPMN wird auch eine eigene Nota-
tion vorgeschlagen, die im Gegensatz zur BPMN die volle Ausdrucksmaéchtigkeit der LTL
abbilden kann.

Abbildung 4.1 zeigt die graphischen Darstellungen einiger Operatoren.

29

4. Vorhandene Ansétze und Vorarbeiten

Operator Beispielformel ‘ Représentation

Finally Finally Prop

[Prop 1 {A;% Prop 2]

Tabelle 4.1.: Auszug Operatorendarstellungen LTL (nach [BDSVos])

Until Prop1 Until Prop2

Klammerung | (Prop1 And Prop2)

4.4. Ansatze zur Verifikation des Datenflusses

Bestehende Ansitze [AWWog9, KLRM " 10], die sich mit den Daten innerhalb eines Prozesses
beschiftigten, behandeln vor allem die Erweiterung von Kontrollflussregeln um zusatzliche
Datenaspekte. [AWWog] erweitert die BPMN-Q [AS] dabei um zusatzliche Elemente.

Die BPMN-Q ist eine visuelle Notation, die die BPMN erweitert, um Suchanfragen auf
Prozessmodellen beschreiben zu konnen. Abbildung 4.3 zeigt eine einfache Anfrage, bei der
im BPMN-Modell nach einem Untergraphen gesucht wird, in die Durchfiithrung von Taskz

letztendlich stets zur Durchfiihrung von Taskz fiihrt.

Abbildung 4.3.: BPMN-Q Beispielabfrage [AWWo9]

<<Leads to>>

Um bei diesen Regeln zusétzlich noch Daten beriicksichtigen zu kénnen, wird die Notation
erweitert. Eine entsprechende Regel findet sich in Abbildung 4.4. Hier muss eine negativ
ausgefallene Kreditpriifung in jedem Fall zur Ablehnung fiihren.

R Negativ
[Kreditwuerdigkeit pruefen Kredit ablehnen
<<Leads to>>

Abbildung 4.4.: BPMN-Q Beispielabfrage mit Datenberticksichtigung [AWWog]

Fiir die erweiterte Syntax wird dann ein Mapping auf die Past Linear Temporal Logic (kurz
PLTL) angegeben. Die PLTL erweitert die LTL zusatzlich um Operatoren, die Aussagen iiber
die Vergangenheit ermoglichen. Diese Operatoren sind unter anderem Previous, Once, Always
Been und Since (diese dhneln den LTL-Operatoren Next, Finally, Globally bzw. Until in ihrer

30

4.5. Vorarbeiten der Diplomarbeit zur Variabilitat

Definition). Nach dem Mapping der Regeln auf PLTL-Formeln lassen sich diese mittels eines
Temporal Logic Query Checkers tiberpriifen.

4.5. Vorarbeiten der Diplomarbeit zur Variabilitat

In der Diplomarbeit Prozessvarianten in unternehmensiibergreifenden Servicenetzwerken [Kot1o]
wurde die BPMN bereits um zuséitzliche Konstrukte zur Formulierung von Variabilitat in
BPMN-Modellen erweitert.

Dazu wurde die BPMN 2.0 um folgende Konzepte ergdnzt [Kot1o]:

Variabler Referenzprozess Ein BPMN-Prozess, der Leerstellen fiir einzusetzende Prozess-
fragmente enthélt. Aufferdem konnen seine Elemente variable Attribute enthalten.

Prozessfragment Ein separat modellierter Teilprozess, der in einen Referenzprozess einge-
setzt werden kann.

Variable Attribute Attribute, die mittels einer eigenen Beschreibungssprache definiert wer-
den, die auf Variabilitdtsbeschreibungen aufbaut.

Variantenableitung Auswahl der einzusetzenden Prozessfragmente in die Leerstellen im Re-
ferenzprozess durch den Nutzer nach dem Baukastenprinzip. Auswahl konkreter Werte
fiir die variablen Attribute. Als Resultat der Ableitung entsteht eine Prozessvariante.

Prozessvariante Ein abgeleiteter Referenzprozess, der keine Variabilitdt mehr enthilt. Er ist
ein giiltiger BPMN-Prozess.

Fiir variable Referenzprozesse und Prozessfragmente wurde dazu jeweils eine eigene Er-
weiterung des BPMN 2.0-Stencilsets erstellt. Mit dem Diagrammtyp Fragments kdnnen
Prozessfragmente erstellt werden, zur Definition von Referenzprozessen steht der Diagramm-
typ Variability zur Verfiigung.

@d&.senden

Abbildung 4.5.: Einsetzung eines Fragments mit einem Fragment-Link [K&t10]

Abbildung 4.5 zeigt den Prozess der Prozessvariantenbildung. Ein Prozessfragment wird
in einen Referenzprozess eingesetzt. Prozessfragmente besitzen genau einen Fragment-
Start (weifses Dreieck) und ein Fragment-Ende (schwarzes Dreieck). Diese werden bei
der Prozessvariantenbildung dazu genutzt, das Prozessfragment in den Kontrollfluss des

31

4. Vorhandene Ansétze und Vorarbeiten

umgebenden Referenzprozesses einzubinden. Fragment-Links (ineinanderliegende Dreiecke)
dienen der Definition von Nachrichtenfluss tiber die Fragment-/Referenzprozessgrenze
hinaus.

Variable Attribute kdnnen bei der Prozessvariantenbildung dabei entweder aus einer vor-
definierten Liste ausgewdhlt oder mit Freitext versehen werden, wobei bei Freitext hier
zusétzliche Constraints, wie zum Beispiel Wertebereichsbeschrankungen, angegeben werden
konnen.

Mit sogenannten Dependencies kann aufierdem festgelegt werden, in welcher Reihenfolge die
Ableitung vorgenommen werden muss. Enabling Conditions schranken die Alternativen fiir
einen Variabilitdtspunkt ein und werden in XPath formuliert.

32

5. Konzept

Unter Berticksichtigung der im zweiten Kapitel vorgestellten Anforderungen wird in diesem
Kapitel nun ein Konzept erarbeitet. Dieses baut auf den im vorigen Kapitel erorterten
Ansétzen auf.

Hierzu werden der Compliance Scope sowie der Regelbaum zur Beschreibung von
Compliance-Regeln inklusive der unterstiitzten Operatoren definiert. Anschlieffend werden
die LTL-Diagramme zur Definition von temporalen Anforderungen beschrieben, sowie das
Arbeiten mit Compliance Scopes.

5.1. Der Compliance Scope

Ein Compliance Scope definiert eine Umgebung in einem BPMN-Diagramm, in der zuvor
festgelegte Regeln eingehalten werden miissen. Dies kann zum Beispiel die Anforderung
sein, dass in jedem Fall ein Task mit Namen Kreditwiirdigkeit priifen ausgefiihrt wird. In dieser
Umgebung sind BPMN-Elemente enthalten.

e - A
Compliance

O—{a}—{=e}—O

Abbildung 5.1.: Definition Compliance Scope

Regeln

Abbildung 5.1 zeigt einen Compliance Scope in einem mit BPMN modellierten Prozess.
Dieser beinhaltet zwei Tasks, ein Start- und ein Endereignis sowie ein Datenobjekt. Dem
vom Compliance Scope umschlossenen Teil des BPMN-Diagramms konnen nun Regeln
zugewiesen werden, zum Beispiel, dass Task2 nach Task1 ausgefiihrt werden muss. Tauscht
der Prozessdesigner spater die Reihenfolge der beiden Tasks im Compliance Scope, so ist
die Regel verletzt.

33

5. Konzept

Aufbauend auf der Definition des Compliance Scopes in [SWLS10] wird die im Rahmen die-
ser Arbeit verwendete Definition entwickelt, wobei zwei unterschiedliche Ansétze verglichen
werden.

Compliance Scopes als loser Verbund von frei gewéhlten Tasks

In [SWLS10] wird ein Compliance Scope als Hyperkante in einem Hypergraphen definiert,
das heifit es werden Verkniipfungen zu jedem einzelnen BPMN-Element abgespeichert, das
zum Compliance Scope gehdoren soll.

Dieser Ansatz ist sehr flexibel, da hier sehr feingranular festgelegt werden kann, welche
Elemente zum Compliance Scope gehoren sollen und welche nicht. Aufierdem kénnen
BPMN-Elemente zu mehreren Compliance Scopes gehoren. Bei der direkten Umsetzung
dieses Ansatzes ist aber mit Problemen in der Handhabbarkeit durch den Anwender zu
rechnen, denn fiir den Prozessdesigner muss die Darstellung der Compliance Scopes und
ihrer zugehoriger Elemente nachvollziehbar sein.

Da die zu einem Compliance Scope gehorenden BPMN-Elemente iiber das komplette Dia-
gramm verteilt sein konnen, muss fiir jedes Element deutlich gemacht werden, zu welchem
Compliance Scope es gehort. Dies kann durch die Angabe des Namens des Compliance
Scopes oder die Verwendung eines eigenen Icons oder einer eigenen Farbe pro Compliance
Scope erfolgen. In allen Fillen wird die Darstellung durch die zusétzlichen Complian-
ce Scope-Kennzeichnungen aber deutlich komplexer und damit fiir den Prozessdesigner
schwieriger zu tiberblicken.

Compliance Scopes als konvexe Hiille

Im Rahmen dieser Arbeit wird deshalb ein modifizierter Ansatz gewéhlt. Hier bildet der
Compliance Scope einen Teil der Hierarchie des BPMN-Modells, das heifit der Compliance
Scope beinhaltet, wie zum Beispiel auch ein Subprozess, weitere BPMN-Elemente.

Dieser Ansatz ist zwar weniger flexibel als der zuerst vorgestellte Ansatz, ist aber besser fiir
den Prozessdesigner zu verstehen, da alle zum Compliance Scope gehdrenden Elemente an
einer Stelle des BPMN-Modells konzentriert sind.

Zusétzlich konnen zu einem Compliance Scope nicht nur Tasks, sondern beliebige BPMN-
Elemente wie Datenobjekte und Gateways gehoren. Damit wird die Modellierung von
Datenflussregeln ermdglicht, die zum Beispiel fiir die zu einem Compliance Scope gehoren-
den Datenobjekte festlegen, welche Daten gelesen und geschrieben werden diirfen.

34

5.1. Der Compliance Scope

Beschreibung der Compliance-Regeln

Wie in [SWLS10] auch werden die Compliance-Regeln eines Compliance Scopes als Ele-
ment der Potenzmenge aller moglichen Regeln definiert. Diese Menge der darstellbaren
Compliance-Regeln wird aber weiter eingeschrankt. Dazu werden Compliance-Regeln als
Baum aus Operatoren, dem Regelbaum, definiert. Dieser verkniipft einzelne Compliance-
Regeln in unterschiedlichen Beschreibungsmoglichkeiten wie der LTL mittels logischer
Operatoren zu einer einzigen Compliance-Regel.

5.1.1. Finale Definition

Zusammenfassend werden Compliance Scopes nun wie folgt definiert: Sei X = x1,x2, ..., X
eine Menge von BPMN 2.0-Elementen und H = E;, E», ..., E;; eine Familie von Untermengen,
den Hyperkanten tiber X, sodass gilt:

m
Ei #@fir (i=1,2,..m)und | JE =X
i=1

Sei weiterhin C die (endliche) Menge aller Compliance-Regeln und R C 2¢ die Menge aller
als Regelbaum dargestellten Regelkombinationen aus 2¢, dann ist ein Compliance Scope ein
Element aus dem kartesischen Produkt H x R. Das heifst, ein Compliance Scope verkniipft
eine Menge von BPMN-Elementen mit einer als Regelbaum dargestellten Menge von Regeln.
Zusétzlich miissen folgende Bedingungen gelten:

Zusammenhéangend Sind zwei Tasks in dem selben Compliance Scope enthalten und exis-
tiert ein Kontrollflusspfad zwischen beiden Tasks, dann sind auch alle Tasks auf dem
Kontrollflusspfad zwischen den beiden Tasks im Compliance Scope enthalten.

Kontrollfluss Analog zum Subprozess beginnt die Ausfiihrung in einem Compliance Scope
mit einem Startereignis und endet mit einem Endereignis. Ein Compliance Scope
enthédlt damit mindestens ein Start- und mindestens ein Endereignis.

Compliance-Regel Ein Compliance Scope kann mit Compliance-Regeln annotiert sein. Diese
definieren unter anderem Kontroll- und Datenflussregeln, die in dem Compliance Scope
eingehalten miissen. Die Compliance-Regeln werden mittels logischer Verkniipfungen
als Operatorenbaum realisiert.

5.1.2. Vererbung von Regeln

Werden Compliance Scopes ineinander geschachtelt, so muss festgelegt werden, wie im
inneren Compliance Scope mit den Regeln des dufieren Compliance Scopes verfahren
wird. In der hier erarbeiteten Losungen werden Compliance-Regeln nicht an enthaltene
Compliance Scopes weiter vererbt (das heifst zum Regelsatz des inneren Compliance Scopes
hinzugefiigt), da bei der Verifikation der Compliance-Regeln eines Compliance Scopes alle
inneren Compliance Scopes als normale Subprozesse betrachtet werden.

35

5. Konzept

Als Beispiel sei das in Abbildung 5.2 dargestellte Prozessmodell gegeben. Hier wird in einem
Compliance Scope Unternehmen ein weiterer Compliance Scope Abteilung definiert. Bei der
Verifikation jedes der beiden Compliance Scopes wird nur der Regelsatz des jeweiligen
Compliance Scopes tiberpriift. Enthélt der Compliance Scope Unternehmen, die Regel, dass
irgendwann im Prozess Task1 ausgefiihrt werden muss, so ist diese im dufieren Compliance
Scope erfiillt. Diese Regel wird aber nicht dem Regelsatz des Compliance Scopes Abteilung
hinzugefiigt, sodass also kein weiterer Tusk1 im Compliance Scope Abteilung enthalten sein
muss, damit der innere Compliance Scope erfiillt ist.

e - A
Unternehmen Compliance

Abteilung Compliance
‘ O—D[TasszTasB}.O
N

Abbildung 5.2.: Beispiel zur Vererbung von Regeln zwischen Compliance Scopes

J

Damit unterscheidet sich die hier gewéhlte Losung zu [SALS10]. Dort werden sogenann-
te Refinement Layers definiert, tiber die schrittweise ein Prozesstemplate prézisiert wird.
Beim Einsetzen eines Prozesstemplates in ein Prozesstemplate werden dabei bestehende
Compliance-Regeln mit denen des neu eingesetzten Prozesstemplates kombiniert. So kon-
nen Regeln, die bereits im umgebenden Prozesstemplate erfiillt sind und im eingefiigten
Prozesstemplate nicht mehr verletzt werden konnen, bei der Betrachtung des inneren Tem-
plates ignoriert werden. Damit wird es zum einen ermdoglicht, den dufieren Compliance
Scope wiahrend der Bearbeitung des inneren auszublenden und somit die Konzentration
des Nutzers auf diesen zu richten, zum anderen miissen bereits erfiillte Regeln nicht erneut
gepriift werden, was den Compliance Check beschleunigt.

Da aber in dem hier erarbeiteten Konzept stets das komplette Prozessmodell weiter bearbeitet
wird, werden Compliance-Regeln nicht an bei der Prozessvariantenbildung eingeftigte
Compliance Scopes weiter gereicht.

5.2. Der Regelbaum

Der Regelsatz eines jeden Compliance Scopes ist als ein Baum aus Operatoren reprasentiert.
Operatoren sind dabei logische Operatoren zur Verkniipfung und Operatoren, die einzelne
Anforderungen beschreiben. In dieser Arbeit sind dies LTL- und DataTransfer-Operatoren,
in spateren Erweiterungen sind auch weitere Operatoren moglich, die Anforderungen zum
Beispiel auf Ontologien basierend beschreiben. Bladtter dieses Regelbaums sind LTL- oder
DataTransfer-Operatoren, innere Knoten logische Operatoren.

36

5.2. Der Regelbaum

Beide Operatorenarten liefern als Ergebnis entweder wahr oder falsch. Das Ergebnis logischer
Operatoren wird dabei aus den als Operanden verwendeten Operatoren ermittelt, das
Ergebnis der LTL- und DataTransfer-Operatoren iiber dem Compliance Scope anhand der
Definition des jeweiligen Operators.

Abbildung 5.3 zeigt einen Regelbaum, der zwei LTL- und eine DataTransfer-Regel kombi-

SN\ I

LTL LTL DataTransfer

Abbildung 5.3.: Regelbaum

5.2.1. Logische Operatoren

Unterstiitzt werden die logischen Operatoren AND, NOT und OR. Da bereits einer der beiden
bindren Operatoren und NOT eine Junktorenbasis bilden, lassen sich weitere Operatoren
wie Implikation, Aquivalenz und XOR als Kombination dieser darstellen.

Im Gegensatz zur klassischen Definition diirfen die Operatoren AND und OR auch nur
einen oder auch mehr als zwei Operanden besitzen. OR und AND mit jeweils genau
einem Operanden sind genau dann erfiillt, wenn ihr Operand erfiillt ist. Bei mehr als zwei
Operanden wird die Interpretation von OR und AND analog fortgesetzt, OR ist wahr, wenn
mindestens ein Operand erfiillt ist, bei AND miissen alle Operanden erfiillt sein.

5.2.2. LTL-Operator

Der LTL-Operator dient der Kontrollflussanalyse. Die Regel eines LTL-Operators ist dabei
durch eine LTL-Formel beschrieben (vgl. Abschnitt 3.2.2). In der bestehenden Implementie-
rung erfolgt die Analyse alleinig auf den Namen der Tasks. Dies ldsst sich aber erweitern um
weitere Priifbedingungen, wie zum Beispiel den Typ eines Tasks (WebService, manuell. ..).

37

5. Konzept

Fortlaufendes Beispiel

Abbildung 5.4 zeigt ein Prozessmodell, welches im weiteren Verlauf dieser Ausarbeitung
zur Beschreibung der Verarbeitungsschritte beim Auswerten einer in LTL formulierten
Compliance-Regel verwendet wird.

N A
Compliance

Cfine (—>C

Abbildung 5.4.: Beispielgraph LTL-Operator

Hier werden nacheinander die Tasks Taskz und Taskz ausgefiihrt. Abhidngig von einer
hier nicht ndher spezifizierten Bedingung wird anschliefiend entweder Task3 oder Taskq
ausgefiihrt, bevor der Prozess nach Durchfithrung von Tasks und Task6 beendet wird. Um
Task2 und Tasks wurde ein Compliance Scope definiert, dem folgende Compliance-Regel
zugewiesen wurde:

Finally Task2 A Finally Task3

Finally Task2 und Finally Task3 wurden dabei jeweils als einzelne LTL-Formeln mo-
delliert, die mit einem logischen AND-Operator verkniipft werden. Der Regelbaum des
Compliance Scope besteht damit aus drei Operatoren.

Der Next-Operator in LTL-Formeln

Die LTL unterstiitzt wie in den Grundlagen (3.2.2) vorgestellt auch einen Next-Operator, der
den Zustand unmittelbar nach dem aktuellen beschreibt. Dieser wird allerdings von der
erarbeiteten Losung nicht untersttitzt.

Dies hat zwei Griinde. Zum einen ist der Einsatz des Next-Operators fehleranfallig. Als
Beispiel sei die LTL-Formel Taskl -> Next Task2 und die in Abbildung 5.5 gezeigte Prozess-
variante gegeben. Auf den ersten Blick erfiillt diese die angegebene LTL-Formel. Allerdings
wird diese verletzt, wenn zuerst Task1 ausgefiihrt wird und wihrend dieser ausgefiihrt wird,
parallel mit Task3 begonnen wird. Das ganze System befindet sich damit durch den Start
von Task3 in einem neuen Zustand, in dem aber noch Taskz und noch nicht Task2 ausgefiihrt
wird.

38

5.2. Der Regelbaum

Zum anderen wird der Next-Operator in der Bindrdistribution von Spin nicht unterstiitzt,
da dieser nicht kompatibel mit der verwendeten Partial Order Reduction ist [ltl].

Abbildung 5.5.: Illustration Next-Operator

5.2.3. DataTransfer-Operator

Der DataTransfer-Operator dient der Analyse des Datenflusses in Datenobjekte und aus
Datenobjekten heraus. Ein wichtiges Anwendungsszenario dieses Regeltyps ist das Arbeiten
mit sensiblen Daten. So muss zum Beispiel sichergestellt werden, dass geheime Kreditkar-
tendaten nicht an externe Dienstleister weitergegeben werden.

In Abbildung 5.6 ist ein Beispielprozess gegeben. Aus Task1 werden dabei Daten iiber eine
DataAssociation in das Datenobject DataObject1 tibertragen. DataObject1 liefert anschlieflend
Eingabedaten fiir Task2. Welche Daten iiber einer Datenflusskante iibertragen werden, wird
dabei in einer Assignment-Regel hinterlegt [Obj11].

- N
Compliance

A DataObject1 ¢

Abbildung 5.6.: Beispielgraph DataTransfer-Operator

39

5. Konzept

Die grundlegenden Eigenschaften des DataTransfer-Operators enthalten folgende Informa-
tionen:

Name Datenobjekt Der Name des Datenobjektes, auf den sich die Regel bezieht. Ein leerer
Name ist dabei nicht zugelassen.

Pfad Beschreibt die Felder im Datenobjekt, die betrachtet werden.

Sprache Pfad Gibt die Formulierungssprache des Pfades an. Die Spezifikation der
BPMN 2.0 [Obj11] ldsst hier prinzipiell beliebige Sprachen zu, in der Diplomarbeit
wird allerdings nur XPath [xpa] unterstiitzt.

Einschriankung, wann die Regel gepriift wird

Wann eine DataTransfer-Regel gepriift wird, kann durch mehrere Bedingungen festgelegt
werden. Zum einen kann die Richtung des Datenflusses angegeben werden, das heifst ob die
Daten in das Datenobjekt geschrieben oder von diesem gelesen werden.

Eine zweite Einschrankungsmoglichkeit bieten die potentiellen Partner eines Datenaus-
tauschs. Hier kann eine Liste der Partner angegeben werden. Die Uberpriifung der Regel
findet nur dann statt, wenn ein Datenaustausch mit einem der zuvor definierten Partner
stattfindet.

Die dritte und letzte Bedingung ist, ob die Regel nur beim Uberqueren der Grenze des Com-
pliance Scopes gepriift werden soll. Hierbei muss das Datenobjekt innerhalb des Compliance
Scopes liegen. Das stellt sicher, dass das Datenobjekt betreffende Datenflussregeln nahe am
Datenobjekt definiert werden.

Regeltyp

Uber den Regeltyp lasst sich festlegen, in welcher Beziehung die durch den XPath-Ausdruck
in der Regel selektierten Knoten und die durch die Assignment-Regeldefinition bestimmte
Knotenmenge stehen sollen. Insgesamt werden vier verschiedene Regeltypen unterstiitzt.

Regeltyp 1: Nicht diese Die durch den XPath-Ausdruck in der Compliance-Regel beschrie-
benen Knoten diirfen nicht gelesen oder geschrieben werden. Damit kann zum Beispiel
sichergestellt werden, dass sensible Informationen nicht tibertragen werden.

Regeltyp 2: Nur diese Nur die durch den XPath-Ausdruck in der Regel beschriebenen Kno-
ten diirfen gelesen und geschrieben werden. Hiermit konnen Informationen dhnlich
einer Whitelist explizit zur Dateniibertragung freigegeben werden.

Regeltyp 3: Genau diese Exakt die durch den XPath-Ausdruck in der Regel beschriebenen
Knoten miissen gelesen oder geschrieben werden.

40

5.2. Der Regelbaum

Regeltyp 4: Mindestens diese Mindestens die durch den XPath-Ausdruck der Regel be-
schriebenen Knoten miissen gesetzt werden. Damit ldsst sich sicherstellen, dass an-
schlieffend die gewiinschten Informationen auch im Zielobjekt enthalten sind.

Ausgewertet werden diese Regeln durch Mengenoperationen auf den Knotenmengen, die
durch den XPath-Ausdruck der Regel und durch den XPath-Ausdruck der Assignments der
DataAssociations beschrieben werden.

Sei A die Knotenmenge, die durch die Assignment-Regel in der DataAssociation beschrieben
wird und B die Menge der Knoten, die durch den XPath-Ausdruck im DataTransfer-Operator
beschrieben wird, dann werden die einzelnen Regeltypen wie folgt umgesetzt:

Regeltyp 1: Nicht diese AN B 2

Regeltyp 2: Nur diese A\ B ZQ

Regeltyp 3: Genau diese A AB=(AUB)\ (ANB) =0
Regeltyp 4: Mindestens diese BN A ZQ

Der Operator zur Vereinigung ist bereits in XPath 1.0 enthalten, die Operatoren fiir Schnitt
und Mengendifferenz sind in XPath 2.0 neu hinzugekommen [exc, xpa].

Beispiel Regeltyp

Um die einzelnen Regeltypen zu veranschaulichen, sei das in Listing 5.1 gegebene Sche-
mafragment fiir das Datenobjekt DataObject1 in Abbildung 5.6 gegeben.

<xs:element name="note">
<xs:complexType>
<xs:sequence>
<xs:element name="to" type="xs:string"/>
<xs:element name="from" type="xs:string"/>
<xs:element name="heading" type="xs:string"/>
<xs:element name="body" type="xs:string"/>
</xs:sequence>
</xs:complexType>
</xs:element>

Listing 5.1: Beispielschema eines Datenobjektes

Fiir den in der Assignment-Regel der eingehenden DataAssociation enthaltenen XPath-
Ausdruck werden nun folgende drei Alternativen betrachtet:

Alternative 1

xs:element/xs:complexType/xs:sequence/*

41

5. Konzept

Alternative 2

xs:element/xs:complexType/xs:sequence/*[2]

Alternative 3

xs:element/xs:complexType/xs:sequence/*[3]

In der Compliance-Regel des umgebenden Compliance Scope sei nun folgender XPath-
Ausdruck angegeben:

xs:element/xs:complexType/xs:sequence/xs:element [@name="from"]

Alternative 1 wahlt damit alle Unterknoten des sequence-Knoten aus, Alternative 2 nur den
zweiten und Alternative 3 den dritten. Der XPath-Ausdruck in der Compliance-Regel wahlt
im gegebenen Schema nur den zweiten Unterknoten des sequence-Knoten aus.

Eine Auswertung der einzelnen Regeltypen mit den einzelnen Alternativen ist in Tabelle 5.1
angegeben.

’ Regeltyp ‘ Alternative 1 | Alternative 2 | Alternative 3
1 (Nicht diese) nicht erfiillt | nicht erfullt erfullt

2 (Nur diese) nicht erfullt erfullt nicht erfullt

3 (Genau diese) nicht erfullt erfullt nicht erfullt

4 (Mindestens diese) erfuillt erfuillt nicht erfullt

Tabelle 5.1.: Beispielauswertung Regeltypen

5.3. LTL-Diagramme

Fiir die Definition von LTL-Regeln fiir den LTL-Operator wird ein eigener Diagrammtyp in
Oryx geschaffen. Durch die graphische Modellierung erhilt der Benutzer einen einfacheren
Zugang. Die Ubersicht, besonders bei LTL-Formeln mit vielen Klammern, wird durch die
Verwendung von Containern erleichtert. Durch die separate Definition in eigenstindigen Dia-
grammen konnen LTL-Diagramme auflerdem in mehreren Prozesstemplates und Prozessen
wiederverwendet werden.

Eine Ubersicht der graphischen Primitive fiir die LTL-Operatoren findet sich in Tabelle 5.2.
Hierbei werden unére Operatoren als Container umgesetzt, bindre Operatoren als Kanten.
Mehrere Operatorenketten in einem Container werden per AND verkniipft.

42

5.4. Das Ergebnis eines Compliance Checks

Operator Promela-Notation | Beispielformel Représentation
Property - A
(NOT —)
A
Not ! 1A \)
(FINALLY ——]
A
Finally <> <>A b g
(GLOBALLY ——)
A
Globally [1 [1A N)
AND
(» Je—{ e
And && A && B
OR
(» Je—{ =]
Or] AllB
UNTIL
(2 p—{ 5]
Until U AUB
IMP
([p—(e
Implikation -> A->B
T T T "AND_—— ™\
I [A H B] :
Klammerung () (A && B) | = === ~

Tabelle 5.2.: Ubersicht Operatorendarstellungen LTL (angelehnt an [BDSVo5])

5.4. Das Ergebnis eines Compliance Checks

Das Ergebnis eines Compliance Checks ist hierarchisch aufgebaut und setzt sich aus den
Ergebnissen der einzelnen Compliance Checks fiir die einzelnen Compliance Scopes zusam-
men.

43

5. Konzept

Gesamtergebnis

Das Gesamtergebnis ist eine Zusammenfassung der Einzelergebnisse. Der Aufbau ist wie
folgt:

Message Zusammenfassung des Gesamtergebnisses in einem Satz.

Log Ausfiihrliches Log, das beschreibt, welche Compliance Scopes gefunden und mit wel-
chem Ergebnis gepriift wurden.

Einzelergebnisse Liste der Ergebnisse der einzelnen Compliance Scopes.

Ergebnis fiir einen einzelnen Compliance Scope

Jedes dieser Einzelergebnisse ist wiederum wie folgt aufgebaut:

ID des Compliance Scopes Diese dient der eindeutigen Identifikation des Compliance Sco-
pes zur Zuordnung des Ergebnisses zum zugehorigen Compliance Scope.

Message Kurze Zusammenfassung des Ergebnisses. Bei einem Nichterfiillen einer LTL-
Regel wird hier die Herleitung des Gegenbeispiels angegeben.

Log Hier findet sich in aller Regel ein hierarchisches Log der Auswertung der mit dem Com-
pliance Scope verkniipften Regel. Damit ldsst sich Nachvollziehen, wie die einzelnen
Operatoren ausgewertet wurden.

Compliance Check Resultat Ergebnis der Auswertung wie im nidchsten Absatz beschrieben.

Mogliche Ausgéange eines Compliance Checks eines einzelnen Compliance Scopes

Die moglichen Ausgiange eines Compliance Checks sind die folgenden:

Fail Der Compliance Check konnte nicht ausgefiihrt werden. Dies tritt zum Beispiel ein,
wenn der Model Checker Spin nicht gefunden wurde.

Invalid Der Compliance Check wurde erfolgreich durchgefiihrt, die definierte Regel wird
aber verletzt.

Valid Der Compliance Check wurde erfolgreich durchgefiihrt und die definierte Regel wird
nicht verletzt.

NoRulesDefined Es wurde keine Regel definiert. Dieser Fall wird getrennt behandelt, da
hier in aller Regel das Prozesstemplate nicht vollendet wurde.

Ignored Der Compliance Scope wurde nicht gepriift. Dies kann eintreten, wenn der Benutzer
in der Oryx-Erweiterung nur einen Teil der Compliance Scopes priifen lassen will.

44

5.5. Arbeiten mit Compliance Scopes

Alle Ergebnisse schliefien die jeweils anderen Ergebnisse aus, das heifst das Resultat eines
Compliance Checks fiir einen Compliance Scope kann niemals aus mehreren der oben
genannten Ergebnisse bestehen.

5.5. Arbeiten mit Compliance Scopes

In diesem Abschnitt wird das Arbeiten mit Compliance Scopes genauer erldutert. Dabei wird
verdeutlicht, wie die Kombination von Variabilitdt und Compliance Scopes in der Praxis
erfolgt.

Graphische Modellierung von LTL-Formeln

In einem ersten Schritt werden Anforderungen an Prozesse als LTL-Formeln formuliert und
anschlieflend als graphische Diagramme in Oryx erstellt. Mit der Zeit entsteht dabei eine
ganze Sammlung von als LTL-Formeln definierten Regeln, die entsprechend weiterverwendet
werden kénnen. Andert sich eine Regel, so muss lediglich das entsprechende LTL-Diagramm
angepasst werden und wird ab dann bei allen folgenden Prozessvariantenbildungen bertick-
sichtigt.

Spéter wird dieser Schritt auch parallel zum nachfolgenden erfolgen, wenn sich die Anforde-
rungen an ein Prozessmodell d&ndern.

Definition von Prozesstemplates mit Compliance Scopes

Vorlagen fiir Prozesse werden in Oryx mit dem BPMN 2.0-Variablity-Stencilset erstellt und
im Oryx-Repository abgelegt. Dies erfolgt wie in [K6t10] beschrieben. Zuséitzlich konnen
Compliance Scopes erstellt werden.

Die Compliance Scopes werden mit einem entsprechenden Editor, dem Compliance Wizard,
mit Regeln versehen. LTL-Operatoren verkniipfen zuvor erstellte LTL-Diagramme. Durch
die separate Speicherung der LTL-Diagramme koénnen diese auch noch spéater angepasst
werden.

Erstellen von Prozessvarianten unter Beachtung der Compliance-Regeln

Nach dem Laden eines Prozesstemplates wird dieses Schritt fiir Schritt abgeleitet [K&t10].
Dabei werden Variability Points durch die gewiinschte Alternative ersetzt und variable
Attribute mit konkreten Werten belegt.

Von Zeit zu Zeit kann der Prozessdesigner per Knopfdruck einen Compliance Check durch-
fithren lassen. Noch nicht ersetzte Variability Regions werden dabei wie (namenlose) Tasks

45

5. Konzept

behandelt und verhindern damit nicht die Durchfithrung von Compliance Checks solange
das Prozesstemplate noch nicht fertig abgeleitet wurde.

5.6. Wahl des Model Checkers

Bei der Wahl des Model Checkers fiel die Wahl auf Spin [Spia], da dieser weit verbreitet ist
und die Anforderungen abdeckt. Von Spin stehen hier im wesentlichen zwei Implementie-
rungen zur Verfiigung. Die originale, in C geschriebene Variante und eine im Rahmen einer
Masterarbeit durchgefiihrte Neuimplementierung in Java: SpinjJa [spib].

Die urspriingliche Implementierung von Spin in C wird bereits seit 1980 entwickelt. Entspre-
chend oft wurde die Implementierung bereits genutzt, sodass viele Fehler beseitigt wurden.
Auflerdem wird diese Version bestiandig gepflegt und weiterentwickelt. Nachteilig ist hier
die Tatsache, dass Spin kein Java-Interface bietet und tiber die Konsole aufgerufen werden
muss. Die Ausgabe von Spin muss daher umgeleitet und geparst werden.

SpinJa ist eine Neuimplementierung von Spin in Java, bei der besonderes Augenmerk auf
Erweiterbarkeit und Objektorientierung gelegt wurde. Die weitere Entwicklung von SpinJa
ist ungewiss, die Implementierung weniger fehlererprobt. Auf Grund der Implementierung
in Java ist SpinJa in den meisten Anwendungssituationen geringfiigig langsamer als die
urspriingliche Implementierung, das stellt aber keinen Hinderungsgrund fiir den Einsatz
dar.

Da der Status von SpinJa ungewiss ist und das Ausfiihren der urspriinglichen Spin Version im
Webcontainer keine Probleme bereitet, wird die original Spin-Implementierung verwendet.
Bei der Implementierung wird die Einbindung des Model Checkers entsprechend gekapselt,
sodass spiter auch ein anderer Model Checker verwendet werden kann.

5.7. Mapping des BPMN-Modells auf die Systembeschreibung

Fiir das Mapping des BPMN-Modells auf Promela, die Eingabesprache fiir die Modellbe-
schreibung in Spin, wurden zwei Ansitze genauer untersucht (siehe auch 4.3.2).

In [VFoy] werden die Elemente eines BPMN-Modells direkt in Promela mittels eigenstandiger
Prozesse umgesetzt. Hierbei wird jeder einzelne Task und jedes Gateway als eigenstandiger
Prozess definiert. Die Realisierung des Kontrollflusses erfolgt iiber die Kommunikation
zwischen Tasks und Gateways mittels Channels. Uber die Channels wird dabei das Signal
zum Anfangen der Durchfiihrung des jeweiligen Prozesses vermittelt. Um zu protokollieren,
dass bestimmte Tasks ausgefiihrt wurden, werden in den entsprechenden Prozessen globale
Variablen gesetzt.

[DDOoy, WMMog, Wol10] dagegen formen das BPMN-Modell zunéchst in ein Petrinetz um.
Die Plidtze des 1-sicheren Petrinetzes werden als Array verwaltet. Die Transitionen jeweils als

46

5.7. Mapping des BPMN-Modells auf die Systembeschreibung

zwei Makros: zum einen die Startbedingung fiir die Transition und zum anderen die Veran-
derung der Platzbelegungen durch die Transition. Die Beschreibung des zu iiberpriifenden
Modells in Promela besteht anschlieffend nur aus einem einzigen Prozess, der das Petrinetz
simuliert.

In der hier erarbeiteten Losung wird der Ansatz mit Petrinetzen umgesetzt, da die globalen
Variablen im ersten Ansatz bei einer wiederholten Ausfiihrung eines Tasks in einer Schleife
wieder zuriickgesetzt werden miissen. Durch den dafiir zusétzlich nétigen Schritt ist die
Umsetzung fehleranfillig. Bei Petrinetzen dagegen erfolgt die Protokollierung der durchge-
fiihrten Tasks durch Makros, die priifen, ob die zugehorigen Pldtze der Petrinetzfragmente
mit einem Token belegt sind. Nach der Ausfiihrung des Petrinetzfragments wird der Token
von dem zugehdrigen Platz entfernt, womit das Zuriicksetzen des Ausgefiihrtheitsstatus des
Tasks automatisch erfolgt.

Ein weiterer Vorteil des zweiten Ansatzes ist, dass das Mapping mittels Petrinetzen nahe
an der Spezifikation der BPMN Version 2.0 ist, da hier die Beschreibung der Execution
Semantic auch an Petrinetze angelehnt ist [Obj11]. Aufierdem ist das Petrinetz-Mapping
leichter nachvollziehbar, bei der Fehlersuche in Mappings der BPMN auf Promela, da sich das
generierte Petrinetz mittels geeigneter Werkzeuge graphisch darstellen ldsst [pnma, gra].

Das Mapping des BPMN-Modells iiber ein Petrinetz auf Promela wird in den néchsten
beiden Unterabschnitten beschrieben.

5.7.1. Mapping des BPMN-Modells auf ein Petrinetz

Abbildung 5.7 zeigt eine Ubersicht des Mappings einiger BPMN-Elemente auf Petrinetzele-
mente. Platze mit gestrichelter Umrandung werden dabei wiederverwendet, das heifst die
direkte Verbindung eines Startereignisses mit einem Endereignis benéttigt insgesamt nur drei
Pliatze, denn der Endplatz des Startereignisses und der Startplatz des Endereignisses werden
zusammengefasst.

Das Petrinetz des BPMN-Modells wird durch Zusammensetzen der Petrinetzfragmentent-
sprechungen der einzelnen BPMN-Elemente aufgebaut. Die Startereignisse der obersten
Hierarchieebene, das heifit die Startereignisse des Compliance Scopes nicht aber Startereig-
nisse in enthaltenen Subprozessen, werden mit Tokens vorbelegt.

Petrinetz-Entsprechung des laufenden Beispiels

Das entsprechende Petrinetz fiir das laufende Beispiel aus Abbildung 5.4 findet sich in
Abbildung 5.8.

47

5. Konzept

BPMN-Element Petrinetz-Darstellung

BPMN-Element Petrinetz-Darstellung

Startereignis

Endereignis

-0 10

Exklusives Gateway

Nachrichtenfluss

o Ny

Abbildung 5.7.: Mapping BPMN-Elemente Petrinetz, nach [DDOo7]

Minimierung des Petrinetzes und Sonderfélle

Da sich die GrofSe des zu tiberpriifenden Petrinetzes direkt auf die Ausfithrungszeit des
Model Checkers auswirkt, wird bei der Generierung des Petrinetzes sparsam mit Stellen

und Transitionen umgegangen.

In einigen Situationen miissen aber zusatzliche Platze und Transitionen eingefiigt werden.
Dies ist zum Beispiel der Fall bei Gateways mit mehreren eingehenden Kontrollflusskanten.
Abbildung 5.9 illustriert dies anhand der Umsetzung eines XOR-Joins. Hier wird fiir jede
eingehende Kante ein separater Platz benotigt. Wiirden die Pldtze 1 und 2 entfernt, ware
bei einer spateren Ausfithrung nicht nachvollziehbar, ob vor dem Join Taskz oder Task2
ausgefiihrt worden ist. Aufserdem wurde zusitzlich Transition t5 hinzugefiigt fiir die Nach-

48

5.7. Mapping des BPMN-Modells auf die Systembeschreibung

Abbildung 5.8.: Mapping des laufenden Beispiels auf die Petrinetzdarstellung

vollziehbarkeit des Gegenbeispiels. Das Ausfiihren dieser Transition wird mit ‘Gateway
geschaltet” protokolliert.

Abbildung 5.9.: Mapping Gateway mit mehreren eingehenden Kanten auf Petrinetz

Zwei Sonderfille beim Mapping der BPMN auf ein Petrinetz sind in Abbildung 5.10 darge-
stellt. Zum einen das Mapping von Subprozessen, hier werden die zusétzlichen Transitionen
t; und t5 erstellt, fiir das Eintreten in den beziehungsweise das Verlassen des Subprozesses.
Zum anderen wird die Umsetzung eines sich wiederholenden Tasks dargestellt.

5.7.2. Mapping des Petrinetzes auf Promela

Bei der Umwandlung des generierten Petrinetzes in Promela werden die Pldtze durch ein
Byte-Array reprdsentiert, dessen Elemente die Werte Eins und Null annehmen konnen.
Die Konstruktion des Petrinetzes im Abschnitt 5.7.1 stellt dabei sicher, dass das generierte
Petrinetz 1-sicher ist, indem Transitionen in der Startbedingung priifen, ob Plitze, die beim
Ausfiihren der Transition mit Tokens belegt werden, vorher leer sind.

In einem ersten Schritt wird die initiale Arraybelegung hergestellt, das heifst alle als initial
markierten Plidtze werden auf Eins gesetzt, die zugehorigen Arrayelemente der anderen
Platze auf Null.

49

5. Konzept

Subprozess

; : .

% O P @4;@4;@41

Task mit Wiederholung
— O

Abbildung 5.10.: Mapping BPMN-Elemente Petrinetz Spezialfille, [DDOoy]

Anschlieffend wird in einer Endlosschleife in jeder Iteration gepriift, welche Transitionen
aktuell moglich sind. Aus den mdoglichen Transitionen wird dann eine einzige zufallig
ausgewahlt und ausgefiihrt. Realisiert wird dies durch ein if-Konstrukt, welches in Promela
entsprechend definiert ist und Nichtdeterminismus zuldsst (siehe Abschnitt 3.3.1).

Einige Plédtze sind als Endplédtze markiert. Wird ein solcher Platz erreicht, wird die Schleife
verlassen und das Programm gilt als korrekt ausgefiihrt.

Nachverfolgung des Gegenbeispiels

Damit der Benutzer nachvollziehen kann, wie die definierte LTL-Regel durch die aktu-
ell erstellte Prozessvariante verletzt werden kann, wird dem Benutzer ein Gegenbeispiel
geliefert.

Spin schreibt bei einer Regelverletzung die Herleitung des Gegenbeispiels in eine sogenannte
Trail-Datei [bas]. Dabei werden alle Variablenbelegungen nach jedem Schritt festgehalten
(und damit auch die Belegung des Arrays mit den Platzbelegungen). Prinzipiell ldsst sich
aus dieser Trail-Datei somit ohne weitere Hilfsmittel ermitteln, welche Transitionen ausge-
fiihrt wurden, um das Gegenbeispiel zu erzeugen, da keine zwei Transitionen dieselben
Anderungen am Platzarray vornehmen.

Ein anderer Ansatz [Wol1o] dagegen gibt bei jeder durchgefiihrten Transition eine entspre-
chende Logging-Ausgabe mit dem printf-Statement aus C aus. Dieses ldsst sich verwenden,
da Promela von Spin zunéchst in C tiberfiihrt wird. Eingebetteter C-Code wird dabei iiber-
nommen. Die Ausgabe dieser Logging-Statements findet sich anschlieffend ebenfalls in der
Trail-Datei.

In der hier erarbeiteten Losung wurde der Ansatz mit den speziellen Logging-Ausgaben
gewdhlt. Der Hauptgrund fiir diese Wahl ist ein deutlich weniger fehleranfilliges Parsen,
denn abhidngig von der Anzahl der gesetzten Tokens einer Transition unterscheidet sich

50

14

19

5.7. Mapping des BPMN-Modells auf die Systembeschreibung

die Anzahl der Variablenausgaben fiir eine Transition. Wird nur ein Token von einem Platz
entfernt und auf einen anderen Platz gesetzt, werden zwei Komplettbelegungen ausgegeben.
Bei der Umsetzung eines exklusiven Gateways kann aber auch die Situation auftreten, dass
von einem Platz ein Token entfernt, dafiir aber auf zwei andere Plédtze jeweils ein Token
gesetzt wird. In diesem Fall wiirden drei komplette Variablenbelegungen in der Logdatei
ausgegeben werden. Das heifit abhdngig von der Transition muss eine unterschiedliche
Anzahl an Variablenbelegungen ausgelesen werden. Da beim Ansatz mit den speziellen
Logging-Ausgaben pro Transition nur eine Ausgabe erfolgt, ist das Parsen der Trail-Datei
einfacher und damit weniger fehleranfallig.

Bei der Ausgabe der Trail-Datei kann dann dariiber hinaus auf die Ausgabe der kompletten
Variablenbelegung nach jedem einzelnen Schritt verzichtet werden, wodurch ein schnelleres
Parsen moglich ist, da die zu parsende Ausgabe kleiner ist.

Promela-Entsprechung des laufenden Beispiels

Die Promela-Entsprechung des laufenden Beispiels findet sich in Listing 5.2. Nach der
Deklaration des Arrays fiir die Platzbelegungen folgen die Makros zur Erkennung, welche
Tasks ausgefiihrt wurden.

Im Makroblock fiir die Transitionen wird jede Transition in zwei Makros umgesetzt, die
Startbedingung und die Fire-Regel. In jeder Startbedingung wird explizit fiir jeden Zielplatz
gepriift, dass dieser auch leer ist. Damit wird sichergestellt, dass das Petrinetz 1-sicher ist.
Im test-Prozess wird nach der Herstellung der Initialbelegung so lange zufillig eine der
moglichen Transitionen durchgefiihrt, bis der Endplatz 10 erreicht wird.

Jede durchgefiihrte Transition wird mit einem printf-Statement dokumentiert (siehe auch
Nachverfolgung des Gegenbeispiels 5.7.2).

byte p[11];

#define Task2 p[2]
#define Task3 pl[5]
#define Task4 p[6]
#define Task5 p[9]

#define rd_t0 p[0] && !'pl1]
#define fire_tO0 p[0] = 0; p[1] = 1;
#define rd_t1 p[1] && !p[2]
#define fire_t1 p[1] = 0; p[2] = 1;
#define rd_t2 p[2] && !'p[3]
#define fire_t2 p[2] = 0; p[3] = 1;
#define rd_t3 pl[2] && !'pl4l]
#define fire_t3 p[2] = 0; pl[4] = 1;
#define rd_t4 p[3] && !'p[5]
#define fire_t4 p[3] = 0; p[5] = 1;
#define rd_t5 p[4] && !'pl6]
#define fire_t5 p[4] = 0; pl6] = 1;
#define rd_t6 p[5] && !'pl7]

51

24

29

34

39

44

49

5. Konzept

#define fire_t6 p[5] = 0; p[7]

]
e

#define rd_t7 pl6] && !'pl7]

#define fire_t7 pl[6] = 0; pl7]

1]
-

#define rd_t8 pl[7] && !'pl8]

#define fire_t8 p[7] = 0; pl8]

]
e

#define rd_t9 p[8] && !'pl9]

#define fire_t9 p[8] = 0; pl[9]

]
e

#define rd_t10 p[9] && !p[10]
#define fire_t10 p[9] = 0; p[10] = 1;

active proctype test()

{

d_step { p[0] = 1; p[1] = 0; pl[2] = 0; p[3] = 0; p[4] = 0; p[6] = 0; pl(6] = 0; p[7] = O3
pl8] = 0;

do
i rd_t0
t:ord_t1
t:ord_t2
:: rd_t3
c:ord_t4
t: rd_tb
i rd_t6
crord_t7
:: rd_t8
i rd_t9

->

pl9] = 0; p[10] = 0; }

d_step{printf ("PROCESSED_t0"); fire_tO}
d_step{printf ("PROCESSED_t1"); fire_t1}
d_step{printf ("PROCESSED_t2"); fire_t2}
d_step{printf ("PROCESSED_t3"); fire_t3}
d_step{printf ("PROCESSED_t4"); fire_t4}
d_step{printf ("PROCESSED_t5"); fire_t5}
d_step{printf ("PROCESSED_t6"); fire_t6}
d_step{printf ("PROCESSED_t7"); fire_t7}
d_step{printf ("PROCESSED_t8"); fire_t8}
d_step{printf ("PROCESSED_t9"); fire_t9}

: rd_t10 -> d_step{printf ("PROCESSED_t10"); fire_t10}

od;

: pl10] -> goto accept

accept: printf("Accepted");

}

Listing 5.2: Beispiel Promela aus Petrinetz

52

6. Implementierung

Das im vorhergehenden Kapitel beschriebene Konzept wird nun exemplarisch im Oryx-
Editor umgesetzt.

Bei der Beschreibung der Implementierung wird nach einem kurzen Uberblick iiber die
Gesamtarchitektur zunédchst auf die Erweiterung des Backends eingegangen. Im Anschluss
an die Betrachtung des Frontends wird die Erweiterbarkeit ndher erldutert. Den Abschluss
bilden einige aus der Implementierung gewonnene Erkenntnisse.

6.1. Ubersicht

Die in Abbildung 6.1 dargestellte Architektur der hier entwickelten Lésung baut auf den Vor-
arbeiten in [Kot10] auf. Zusatzlich zu den dort eingebrachten Erweiterungen zur Variabilitdt
werden Back- und Frontend um folgende Komponenten erweitert:

Im Backend werden zwei neue Servlets erstellt. Das ComplianceServlet ist fiir die Com-
pliance Checks und die Exportfunktion von Petrinetzen zustidndig, das LTLServlet stellt
die Funktionalitdt zur Ad-hoc-Ermittlung der textuellen Darstellungen eines LTL-Modells
bereit.

Das Frontend wird wie folgt erweitert: Fiir das Design von LTL-Modellen wird ein neues
Stencilset erstellt. Das Stencilset aus der vorhergehenden Diplomarbeit zur Variabilitat wird
um einen neuen Stencil ComplianceScope erweitert. Dieser Stencil basiert auf dem Stencil
Subprocess, das heifit er kann weitere BPMN-Elemente enthalten und SequenceFlows als
eingehende und ausgehende Kanten erhalten. Zur Reprédsentation der Compliance Rule
erhélt der Stencil eine neue Property Rule, die den Regelbaum enthilt.

Hinzu kommen zwei neue Plugins. Das Plugin Compliance Wizard erweitert die Oryx-
GUI um die neuen Funktionalititen Compliance Wizard zur Bearbeitung des Regelbaums,
Compliance-Check durchfiihren, Compliance-Ergebnis anzeigen, Compliance-Ergebnis zu-
riicksetzen, den Export des markierten Compliance Scope als PNML-Diagramm und den Ex-
und Import von Compliance Scopes.

Das Plugin LTLPlugin fiigt der Toolbar von Oryx einen Button hinzu, mit dem sich der
Benutzer das aktuelle LTL-Diagramm als textuelle Darstellung ausgeben lassen kann.

53

6. Implementierung

—

O LtIServiet
O Compliance-
Servlet

—

Compliance-
Checker

?

LTLOperator —{O—{ Spin

LTL | |Compliance| | Variability | | Ableitungs-
Plugin Wizard Wizard Plugin
| - | O Repository
Plugins
O' Facade
Backend
‘ Canvas ’ Editor
\
Stencilset Stencilset Stencilset
Fragments erweite Variability LTL
Neu modifiziert
Frontend

Abbildung 6.1.: Architektur der Oryx-Erweiterung (baut auf [Kot1o] auf)

6.2. Backend

Der grofite Teil der Implementierung wird im Backend umgesetzt. Das ist zum einen dadurch
begriindet, dass der Model Checker hier ausgefiihrt wird und die zugehorigen Mappings
deshalb auch hier durchgefiihrt werden. Zum anderen ist die Implementierung hier leichter
zu testen, da mit JUnit und Eclipse mit einem integrierten Debugger ausgereifte Werkzeuge
zur Verfiigung stehen. Die wichtigsten Aspekte der Implementierung des Backends werden
in den folgenden Abschnitten beschrieben.

54

6.2. Backend

6.2.1. Testbarkeit

Um eine gute Testbarkeit der Implementierung zu gewihrleisten, wurde weitestgehend auf
statische Klassen verzichtet und das Prinzip der Dependency Injection [Fow] angewendet.
Dieses wurde in Form von Kontexten umgesetzt. Sie vereinen die Informationen und zu
nutzenden Interface-Implementierungen, die zur Bearbeitung einer Aufgabe benotigt werden.
So erhilt die Klasse, die den Regelbaum eines Compliance Scopes auswertet, Zugriff auf
den Adapter, der den Zugriff auf das Modell-Repository zum Nachladen von benotigten
LTL-Modellen ermdglicht, und den Adapter zum Zugriff auf den Model Checker Spin.

Beim Test konnen die Standardimplementierungen der Adapter durch eigene Implementie-
rungen ersetzt werden. Das ermdglicht das Testen der Implementierung ohne Zugriff auf das
Oryx-Modelrepository, indem entsprechend vorbereitete Daten zuriickgegeben werden.

Der Einsatz der Dependency Injection erlaubt aufSerdem die Unabhidngigkeit von Spin
und dem C-Compiler wiahrend der Entwicklung, da hier entsprechende Beispielausgaben
hinterlegt und damit auch entsprechende Fehler generiert werden konnen.

6.2.2. OryxGraph

An mehreren Stellen im Backend wird auf die von Oryx genutzte JSON-Darstellung von
BPMN- und LTL-Modellen zugegriffen. Dies ist unter anderem der Fall bei den Mappings von
LTL-Diagrammen und BPMN-Modellen auf die jeweiligen Eingabeformate fiir den Model
Checker sowie der Auswertung des DataTransfer-Operators. Um den Zugriff zu vereinfachen,
wird eine Hilfsklasse zum Auswerten dieser Struktur eingefiihrt, der OryxGraph. Dieser stellt
einige oft benotigte Methoden zur Verfligung.

Subprocess
resourceld_01

; StartEvent — Task EndEvent
childSha pes : resourceld_02 resourceld_03 resourceld_04
outgoing = outgoing =
5 5
) o)
-’ -’
3 3
SequenceFlow SequenceFlow
resourceld_05 resourceld_06

Abbildung 6.2.: Datenstruktur Oryx-JSON-Format

In Abbildung 6.2 ist der Aufbau der JSON-Darstellung eines BPMN-Modells exemplarisch
veranschaulicht. Der Subprozess enthélt die beiden Ereignisse und den Task als Kindelemente,

55

6. Implementierung

die Umsetzung der mit outgoing bezeichneten Kanten erfolgen tiber IDs. Auf Grund des
hierarchischen Aufbaus und der ausschliefslich vorhandenen Vorwértsnavigation ergeben
sich mehrere Schwierigkeiten beim Zugriff. Zum einen ist keine Riickwartsnavigation direkt
in der Datenstruktur moglich. Diese wird aber zum Beispiel beim Umsetzen von Gateways
beim Mapping eines BPMN-Modells auf die Petrinetzdarstellung benotigt. AufSerdem ist
kein direkter Zugriff iber die Resourceld vorgesehen, das heifit beim Entlangwandern einer
Kette von Elementen, wie vom Startereignis iiber die outgoing-Kanten zum Endereignis,
muss fiir jede Resourceld das zugehorige Element in der JSON-Darstellung herausgesucht
werden, deshalb wird der OryxGraph eingesetzt.

Beim Mapping eines LTL-Diagramms in die textuelle Darstellung parst der OryxGraph
einmal die komplette JSON-Darstellung. AnschliefSend stehen mehrere Informationen zur
Verftigung. Neben dem Mapping aller vorhandenen Resourcelds auf die jeweiligen JSON-
Objekte, konnen fiir jedes Element die eingehenden und ausgehenden Kanten abgefragt
werden. So kann zum Beispiel fiir den Task in der Beispielabbildung direkt ermittelt werden,
welche beiden Elemente sich an seinen beiden Enden befinden. Bei der Abfrage der ausge-
henden oder eingehenden Elemente ldsst sich aufserdem bestimmen, dass nur die Elemente
ausgegeben werden, die einem gewiinschten Typ entsprechen. So kdnnen bei dem Task
direkt die ausgehenden Nachrichten- oder Kontrollflusskanten abgefragt werden.

Auflerdem leistet der OryxGraph die Unterscheidung in Knoten- und Kantenstenciltypen.
Bei der Initialisierung des OryxGraph werden dafiir die Knoten- und Kantenstenciltypen
angeben. Zu einem gegebenen Stencil kann dann ermittelt werden, ob es sich um einen
Knoten- oder Kantentyp handelt.

Die letzte Funktion schliefflich erlaubt das Auflisten aller in einem definierten Element
enthaltenen Elemente. Hierbei kann angegeben werden welche Containerelemente als Hier-
archiegrenzen angesehen werden. Zum Beispiel ldsst sich damit festlegen, dass Lanes nicht
als Hierarchiegrenze betrachtet werden.

6.2.3. Umwandeln der graphischen Darstellung der LTL-Formeln in die textuelle
Reprasentation

Die textuelle Reprédsentation einer LTL-Formel aus einem in JSON abgelegten LTL-Modell
wird rekursiv durchgefiihrt. Container-Elemente sind hier die undren Operatoren Klamme-
rung, Negation, Finally und Globally. Diese 16sen einen neuen Schritt in der Rekursion aus.
Abbildung 6.3 zeigt ein LTL-Diagramm.

In jedem Container konnen sich Ketten von Operatoren befinden, in der Abbildung enthalt
der Globally-Operator zwei Ketten. Eine beginnt mit dem Task2-Propertyoperator, die andere
mit dem NOT-Operator. Von jeder Kette wird der Startknoten ermittelt, welcher dadurch
definiert ist, dass er keine eingehenden Kanten hat. Anschliefiend wird entlang der Kette
gewandert und die Operatoren werden auf dem Weg {ibersetzt. Bei einem unéren Operator
findet dabei ein neuer Rekursionsschritt statt.

56

6.2. Backend

GLOBALLY
NOT IMP FINALLY

Abbildung 6.3.: Beispiel LTL-Modell

Die einzelnen Operatoren-Ketten in einem Container werden anschliefSend per AND ver-
kntipft. Die textuelle Reprasentation der in Abbildung 6.3 dargestellten LTL-Formel lautet
damit Globally (Not(Taskl) And (Task2 -> Task3)).

Bei der Abarbeitung des LTL-Diagrammes werden auch eine Reihe von Fehlern in LTL-
Modellen erkannt, die nicht durch entsprechende Constraints im LTL-Stencilset vermieden
werden konnen:

e Ein bindrer Operator darf keine zwei Operatoren mit unterschiedlichen Elternoperato-
ren verbinden.

e Bindre Operatoren diirfen keine losen Enden besitzen, das heifit an jedem ihrer Enden
muss sich ein weiterer Operator befinden.

Im Falle, dass ein Containerelement keine Operatoren enthilt, wird ein true-Operator
eingefiigt.

Wihrend des Erstellens einer LTL-Formel im graphischen Editor kann sich der Benutzer
tiber einen Button in der Toolbar die textuelle Darstellung der LTL-Formel anzeigen lassen.
Dabei wird er auch tiber die oben angegebenen Fehler informiert.

6.2.4. Umwandeln des BPNMN-Modells in ein Petrinetz

Das Umformen des BPMN-Modells wird durch das Interface BPMNTranslator bzw. seine
Standardimplementierung BPMNTranslatorImpl durchgefiihrt. Abbildung 6.4 gibt einen
Uberblick iiber die fiir das Mapping zustindigen Klassen.

Die Ubersetzung findet dabei in einem TranslatorContext statt, der den Zugriff auf die
verwendete OryxGraph-Instanz und die TranslatorFactory bereitstellt. Fiir jedes unterstiitzte
BPMN-Element ist ein sogenannter Translator zustédndig, der die Ubersetzung dieses BPMN-
Elementtyps in eine Petrinetzkomponente tibernimmt. Die TranslatorFactory verwaltet die
Zuordnung von BPMN-Elementen auf den entsprechenden Translator. Translators werden
wiederverwendet, das heifst nicht fiir jedes BPMN-Element neu erzeugt. Zusétzlich kann ein
Translator fiir mehrere BPMN-Elementtypen zustidndig sein.

Bei Priifbedingungen fiir die Ausfiihrbarkeit einer Transition muss gewéhrleistet sein, dass
alle Zielpldtze leer sind, da sonst nicht gewédhrleistet werden kann, dass das erstellte Petrinetz
1-sicher ist.

57

6. Implementierung

BPMNTranslatorImpl

------------ > TranslatorContext {>——— OryxGraph

translate(bpmnModel, complianceScope):PetriNet

nutzt

PetriNet

v

«interface> FragmentTranslatorFactory
FragmentTranslator

translate(resourceld, translatorContext)

K >A

getTranslator(resourceld, translatorContext): FragmentTranslator

TaskTranslator SubprocessTranslator

Abbildung 6.4.: BPMNTranslator

Makros fiir Tasks

Bei der Ubersetzung werden Makros fiir den spiteren Promela-Code erzeugt, mit denen bei
der spéteren Ausfiithrung tiberpriift werden kann, ob ein Task gerade ausgefiihrt wird. Dies
wird fiir die Auswertung der LTL-Formeln benétigt. Reprasentiert Platz Nummer 3, dass
Taskz ausgefiihrt wird, so wird ein Makro #define Task2 p[3] erzeugt.

Da in den LTL-Formeln der Compliance-Regeln Tasknamen verwendet werden konnen, die
nicht im Prozessmodell enthalten sein miissen, werden die in den LTL-Formeln enthaltenen
Tasknamen in einem weiteren Schritt vor dem Compliance Check extrahiert und mit false
vorbelegt definiert. Findet sich im Prozessmodell ein Task mit einem Namen, der in einer LTL-
Formel verwendet wird, werden die vordefinierten Makros mit den echten Priifbedingungen
iiberschrieben.

Ergebnisstruktur PetriNet

Das Ergebnis des BPMNTranslators wird in der Klasse PetriNet abgelegt, die wie in Abbil-
dung 6.5 dargestellt aufgebaut ist. Hier sind die Anzahl der Pldtze, die Transitionen, die
anfanglich belegten Pldtze und die Endplétze abgelegt.

Eine Transition besteht aus einer Menge eingehender und ausgehender Pldtze. Ein eindeuti-
ger Identifier wird beim Schreiben des Gegenbeispiels durch das Promela-Testprogramm
ausgegeben und dient anschlieffend der Zuordnung der getétigten Transitionen des Gegenbei-
spiels. Der zusitzlich enthaltene Kommentar dient der Darstellung fiir den Endbenutzer.

Caching

Dem Prozesstemplatedesigner fillt die Erstellung kleinerer LTL-Formeln leichter, sodass mit
hoher Wahrscheinlichkeit mehrere LTL-Operatoren {iber demselben Compliance Scope ausge-

58

6.2. Backend

PetriNet Transition

+setPlaces: Set<Integer> 0..* | +id: String

i t: String
+finalPlaces: Set<Integer> K>———— +comment: -
+placesCount: Integer +fromPlaces: Set<Integer>

+toPlaces: Set<Integer>
*.
o

Macro

+name: String
+content: String

Abbildung 6.5.: Struktur PetriNet

wertet werden. So ldsst sich die LTL-Formel aus Abbildung 6.3 Globally (Not(Task1) And
(Task2 -> Task3)) auch als Konjunktion der beiden Formeln Globally (Not(Task1)) und
Globally ((Task2 -> Task3)) darstellen. Damit werden statt einer nun zwei LTL-Formeln
iiber demselben Compliance Scope iiberpriift, dabei dndert sich die Petrinetzdarstellung des
BPMN-Modells nicht. Deshalb werden generierte Petrinetzdarstellungen gespeichert und
wiederverwendet.

Export des generierten Petrinetzes

Das generierte Petrinetz ldsst sich in eine Reihe von Formaten exportieren. Neben der fiir
die Auswertung des LTL-Operators benotigte Promela-Darstellung ist auch eine Ausgabe als
PNML und eine Ausgabe als vereinfachte Textdarstellung moglich.

Die Petri Net Markup Language (kurz PNML) [pnmb] ist eine in XML formulierte Beschrei-
bungssprache fiir Petrinetze, die von einer Reihe von Petrinetz-Editoren unterstiitzt wird.
Aus der PNML-Darstellung ldsst sich mittels des Hilfsprogramms PNML 2 dot [pnma] eine
Zwischendarstellung im DOT-Format [DOT] erzeugen. Das DOT-Format kann dann mit
dem Werkzeug GraphViz [gra] in eine graphische Darstellung iiberfiihrt werden. Die Funk-
tionalitdt zum Export als PNML wird auch im Frontend fiir den Endbenutzer angeboten.

Die vereinfachte Textdarstellung dient dem Debugging bei der Erstellung von Mappings
von BPMN-Elementen auf Petrinetzelemente. Hier werden die enthaltenen Transitionen und
Makros, sowie die anfangs gesetzten Pldtze und finalen Pldtze aufgelistet.

6.2.5. Auswertung der Compliance-Regeln

Zur Auswertung der Compliance-Regeln wird im BPMN-Modell nach den Compliance
Scopes gesucht. Die angehdngten, als Regelbaum dargestellten, Compliance-Regeln wer-
den ausgewertet und aus dem Ergebnis dieser Einzelergebnisse wird das Gesamtergebnis
aufgebaut.

59

6. Implementierung

Die Auswertung logischer Operatoren erfolgt als Auswertung auf den Operanden, die von
DataTransfer- und LTL-Operatoren anhand der im Konzept beschriebenen Semantik.

Suche nach den Compliance Scopes und ihre Auswertung

Die Klasse ComplianceChecker erhilt als Eingabe ein BPMN-Modell in der von Oryx verwen-
deten JSON-Darstellung iibergeben und gibt als Ergebnis ein CompleteComplianceResult
zuriick. Dies entspricht dem Ergebnis aus Kapitel 5.4.

Zur Ermittlung des Ergebnisses sucht der ComplianceChecker rekursiv die JSON-Darstellung
nach Compliance Scopes ab. Ist fiir den aktuellen Compliance Scope keine Regel definiert,
steht das Ergebnis als NoRulesDefined bereits fest. Andernfalls fragt der ComplianceChe-
cker bei der ComplianceOperatorFactory die Implementierung fiir den als Wurzelknoten
verwendeten Operator nach. Auf dieser wird dann die Methode evaluate aufgerufen, die als
Parameter eine Referenz auf das BPMN-Modell, den Compliance Scope und den auszuwer-
tenden Operator erhilt.

ComplianceChecker verwendet | ComplianceCheckerContext

+checkCompliance(bpmnModel: JSONObject): CompleteComplianceResult

X
O

&
&

ComplianceOperatorFactory

CompleteComplianceResult +getOperator(operatorJSON: JSONObject): ComplianceOperator

+log: String
+toJSON(): JSONObject

*. W
o
<interface>

li i ComplianceOperator

ComplianceScopeResult +evaluate(bpmnModel,complianceScope,operatorJSON): ComplianceOperatorResult
+oryxId: String

+log: String
+message: String
+scopeName: String

+t0JSON():JSONObject

sne 1oU9M

erzeugt

STEIC

ComplianceOperatorResult

— +passed: boolean
+message: String

e
-

<enumeration>>
Results

+Valid * Q
+Invalid g

+Ignored

+NoRulesDefined
+Fail

cause

Abbildung 6.6.: ComplianceChecker
Die ComplianceOperatorFactory erzeugt von jedem Operator nur eine Instanz, damit das

Caching innerhalb eines Operators ermoglicht wird. Generierte Zwischendarstellungen
konnen somit in einer Operatorenimplementierung weiterverwendet werden.

60

6.2. Backend

Der ComplianceCheckerContext

Der ComplianceCheckerContext fasst alle wahrend eines Compliance Checks bendétigten
Informationen und Interface-Implementierungen zusammen. Dazu enthélt er einen Verweis
auf einen RepositoryConnector, dariiber kann dann auf die Modelle des Oryx-Repositories
zugegriffen werden. Dies wird benétigt, um beim Auswerten eines LTL-Operators die
referenzierten LTL-Modelle nachzuladen.

Auflerdem sind hier Referenzen auf die zu nutzenden Implementierungen des BPMNTrans-
lator und LTLTranslator hinterlegt. Der SpinAdapter wird zum Zugriff auf Spin benottigt
und kapselt die Aufrufe von Spin und dem GCC, auflerdem parst er die entsprechenden
Ergebnisse.

Die CmdExecution wird vom SpinAdapter genutzt und kapselt den Aufruf nativer Anwen-
dungen wie der Model Checkers und des GCC, fangt die Ergebnisse ab und gibt diese an
den Aufrufer zuriick.

ComplianceCheckerContext

<interface> <interface>
| — RepositoryConnector LTLTranslator

+readLTLModel(modelld: int): JSONObject translate(model: JSONObject): String

<interface>
CmdExecution

execCmd(command:String, args: String[]): String

<interface>
- SpinAdapter

+modelCheck(model: String, specification: String): String[]

<interface>
| BPMNTranslator

+translate(bpmnModel: JSONObject, complianceScope: JSONObject): PetriNet

Abbildung 6.7.: ComplianceCheckerContext

Logische Operatoren

Der NOT-Operator fragt bei der ComplianceOperatorFactory die Implementierung fiir den
enthaltenen Operanden an und wertet den Operator mit der erhaltenen Implementierung
aus. Anschlieffend wird das Ergebnis negiert.

Die Implementierung des OR-Operators arbeitet in einer Schleife die enthaltenen Operatoren
nacheinander ab. Jeder Operator wird mit der aus der ComplianceOperatorFactory erhalte-

61

6. Implementierung

nen Implementierung ausgewertet. Sobald der erste Operator erfiillt ist, wird das Ergebnis
des OR-Operators auf erfiillt gesetzt und die Schleife abgebrochen.

Die Implementierung des AND-Operators erfolgt entsprechend der des OR-Operator. Hier
wird das Ergebnis des AND-Operators zunéchst als erfiillt angenommen und beim ers-
ten Auftreten eines nicht erfiillten Operanden auf nicht erfiillt gesetzt und die Schleife
abgebrochen.

LTL-Regeln

Das Auswerten einer LTL-Regel iiber einem Compliance Scope erfolgt in mehreren Schritten.
Zundchst wird das LTL-Model, welches die zu priifende LTL-Formel reprasentiert, tiber
den RepositoryConnector ausgelesen und anschlieffend mittels des LTLTranslators in die
textuelle Darstellung tiberfiihrt.

Im néchsten Schritt wird das BPMN-Modell, beziehungsweise der davon benétigte Teil des
Compliance Scopes, in ein Petrinetz iibersetzt. Wurde der Compliance Scope bereits einmal
in ein Petrinetz tibersetzt, so wird die alte, zwischengespeichert Version, wiederverwendet.
Anschlieflend wird das Petrinetz als Promela-Quellcode, also in der Eingabesprache fiir die
Modellbeschreibung fiir Spin, exportiert.

Die Modellspezifikation in der LTL und die Systembeschreibung als Promela-Quellcode
werden anschlieffend dem SpinAdapter tibergeben, der zunéchst in einem Zwischenschritt
Spin die LTL-Spezifikation in eine Promela-Never-Clause iibersetzen ldsst. Beide Promela-
Darstellungen werden anschlieffend konkateniert in eine temporéare Datei geschrieben und
von Spin in C-Quellcode {iibersetzt. Dieser wird mittels dem installierten GCC in ein ausfiihr-
bares Programm tibersetzt.

Das generierte Testprogramm wird ausgefiihrt und die Ausgabe des Programms geparst. Im
Falle einer Verletzung der LTL-Spezifikation durch das Modell wird Spin ein weiteres Mal
mit der Trace-Datei ausgefiihrt, um die Herleitung des Gegenbeispiels zu erhalten. In dieser
Herleitung sind die IDs der getatigten Transitionen im Petrinetz enthalten, von welchen dann
auf die durchgefiihrten Transitionen geschlossen werden kann. Aus der Transitionenabfolge
wird anschliefien die textuelle Darstellung des Gegenbeispiels fiir den Endbenutzer erstellt.

DataTransfer-Regeln

Die DataTransfer-Regeln werden in mehreren Schritten ausgewertet. Zunachst wird nach
dem Datenobjekt anhand des Namens, dessen Angabe verpflichtend ist, gesucht. Die Suche
berticksichtigt dabei nur die in dem Compliance Scope enthaltenen BPMN-Elemente, da
sich die DataTransfer-Regeln eines Compliance Scopes nur auf die im Compliance Scope
enthaltenen Datenobjekte beziehen.

Anschlieflend werden die relevanten Kanten (DataAssociations) anhand der Richtung, der
Datenaustauschpartner und ob die Grenzen des Compliance Scopes tiberschritten werden,

62

6.2. Backend

herausgesucht. Der OryxGraph kann beim Aufruf anhand der Richtung und des Kantentyps,
direkt irrelevante Kanten ausfiltern. Die Information, ob die Grenze des Compliance Scope
tiberschritten wird, lasst sich auch aus dem OryxGraph ermitteln.

Das im Datenobjekt hinterlegte XML-Schema wird ausgelesen. Aus den XPath-Ausdriicken
aus der Compliance-Regel und aus den Assignmentregeln der DataAssociation wird mit den
im Konzept beschriebenen Umsetzungen ein gemeinsamer XPath-Ausdruck anhand des Re-
geltyps gebildet. Mittels Saxon [sax] wird dieser gemeinsame XPath-Ausdruck anschlieffend
tiber dem XML-Schema ausgewertet und die Ergebnismenge auf das Vorhandensein von
Knoten gepriift. Sind Knoten in der Ergebnismenge enthalten, so ist die Regel verletzt.

6.2.6. Logging

Um die Nachvollziehbarkeit der Regelauswertungen sowohl fiir den Implementierer als
auch fiir den spateren Nutzer der Oryx-Erweiterung zu erhéhen, werden in der hier erar-
beiteten Losung wihrend der Compliance-Regel-Auswertung fiir die Auswertung relevante
Informationen in Logs geschrieben.

Zum einen wird dazu der Logging-Mechanismus tiber Logy4] [The] genutzt. Hier finden sich
vor allem implementierungsspezifische Informationen wie zum Beispiel die Riickgaben von
Spin und des GCC. Die entsprechenden Loggingausgaben lassen sich in den Logdateien von
Apache Tomcat nachlesen.

Zum anderen muss der Endbenutzer aber auch die Ergebnisse der Compliance Checks
nachvollziehen kénnen. Dafiir wird ein eigener Loggingmechanismus eingesetzt, der speziell
auf den Endbenutzer zugeschnittene Informationen enthilt. Fiir jeden Compliance Scope
und fiir das Endergebnis werden dabei separate Logs erstellt. Die Logs konnen nach einem
Compliance Check tiber die Oberfliche angezeigt werden.

Prinzipiell ist es moglich, den zweiten Loggingtyp durch Abfangen und Aufbereiten des
Loggings tiber Log4] zu realisieren. Eine entsprechende Umsetzung ist aber sehr von Log4]
abhingig und erschwert damit den Umstieg auf andere Logging-Losung, wie das in neueren
Java-Versionen integrierte Logging.

6.2.7. Ergebnisformat

Die Darstellung des Gesamtergebnisses wird in JSON realisiert, da dieses auf Frontend-Seite
geparst wird und das Parsen von JSON in JavaScript tiber die eval-Funktion bereits enthalten
ist.

In Logs und Messages miissen Sonderzeichen wie beispielsweise Zeilenumbriiche escaped
werden, da sonst die JSON-Struktur verletzt werden wiirde. Auf der Frontendseite werden
diese mittels String-Funktionen [Kocog] in JavaScript wieder zuriickgewandelt.

Ein Gesamtergebnis kann wie in Listing 6.1 gezeigt aussehen.

63

1

16

6. Implementierung

{
"log": "Performing compliance check for all compliance scopes... ",
"scopeResults": [
{
"log": "Checking compliance scope Unnamed Compliance Scope #1",
"message": "Model did not match specification ’<>(Task3)’, counterexample as
follows...",
"oryxId": "oryx_F2BFE1E5-EC21-46AE-93BF-5A7940F7BESF",
"result": "Invalid",
"scopeName": "Unnamed Compliance Scope #1"
1,
{
"log": "",
"message": "No rules defined.",
"oryxId": "oryx_8586F9E9-769B-4C23-90B8-2D86945F57D0" ,
"result": "NoRulesDefined",
"scopeName": "Unnamed Compliance Scope #2"
}
]
}

Listing 6.1: Resultat JSON

6.3. Frontend

Die Implementierung des Frontends findet in JavaScript statt. Als Zusatzbibliotheken kom-
men vor allem Prototype [pro] und Ext]S [ext] zum Einsatz. Prototype erweitert JavaScript
um objektorientierte Konzepte und AJAX-Funktionalitdten, Ext]S erweitert JavaScript um
ein GUI-Framework.

Modale Dialoge

Alle Dialoge im Frontend werden mittels Ext]S realisiert, welches diese in HTML-Primitive
und damit als Teil der HTML-Seite umsetzt. Dadurch wird das Blockieren des Browsers
wiahrend der Anzeige des Dialogs verhindert, wie dieses bei Verwendung der durch Java-
Script bereitgestellten alert-Funktion eintritt. Damit kann der Benutzer wahrend der Anzeige
eines Dialogs in einen anderen Tab wechseln und so zum Beispiel priifen, ob das richtige
LTL-Modell fiir den LTL-Operator gewdhlt wurde.

6.3.1. Erweiterung der Toolbar

Alle Funktionen der Compliance Erweiterung sind in einem Dropdown-Mentii in der Toolbar
von Oryx zusammengefasst. Dieses ist in Abbildung 6.8 dargestellt.

Hiertiber lassen sich die Regeln des markierten Compliance Scopes bearbeiten (Complian-
ce Wizard), alle beziehungsweise nur die markierten Compliance Scopes iiberpriifen, das

64

6.3. Frontend

@R~ aq . % 3

& Compliance Wizard

Check Compliance

Check Compliance (selected scopes)
Show Compliance Result

Clear Compliance Result

Export as PNML

Import Compliance Scope

PR XE 66

Export Compliance Scope

Abbildung 6.8.: Toolbar-Button des Compliance Plugins

Ergebnis des letzten Compliance Checks anzeigen und zuriicksetzen, Compliance Scopes

exportieren und importieren, sowie die Petrinetzdarstellung eines Compliance Scopes als
PNML-Datei herunterladen.

6.3.2. Der Compliance Wizard

Der Compliance Wizard dient der Bearbeitung der mit dem Compliance Scope verkntipf-
ten Regel. Hier konnen Operatoren zum Operatorenbaum hinzugefiigt werden und die
Eigenschaften der LTL- und DataTransfer-Operatoren bearbeitet werden.

Compliance Wizard *
Edit Remove | NOT AND OR LTL DATATRANSFER

Tree =
=M= COMPLIANCE ASSURANCE RULE
= AND
=] LTL(LTL_Finally_T2, 25)
=] LTL{LTL_Finally_T3, 28)
=] DATATRANSFER (DataObject1, incoming)

Ok Cancel |

Abbildung 6.9.: Compliance Wizard

6. Implementierung

Bevor der Regelbaum beim Klick auf OK abgespeichert wird, findet eine Priifung der
Korrektheit des Regelbaums statt. So miissen alle logischen Operatoren mindestens einen
Operanden besitzen. Enthélt ein NOT-Operator also zum Beispiel keinen Kindknoten, wird
der Benutzer darauf hingewiesen und kann den Baum entsprechend korrigieren.

Nach dem Setzen der neuen Regel wird das Ereignis EVENT_EXECUTE_COMMANDS
ausgeldst, damit das File-Plugin {iber die Anderung informiert wird und der Benutzer beim
Schlieflen des Browserfensters eine Nachfrage erhilt, ob er die Anderungen am BPMN-
Modell speichern mochte.

Editoren fiir DataTransfer- und LTL-Operatoren

Der in Abbildung 6.10 dargestellte Editor fiir DataTransfer-Operatoren erlaubt das Festlegen
der im Konzept unter 5.2.3 beschriebenen Eigenschaften.

Add new Data Transfer operator x
Data object DataObjectl
Language xpath =
Path /path/to/element
Restriction Exactly those =
Direction incoming =
Partners
Passing borders [Only if the border of the compliance scope is crossed
Ok Cancel

Abbildung 6.10.: Editor fiir DataTransfer-Regel

Im Editor fiir LTL-Operatoren kann der Benutzer aus einer Liste der im Oryx-Repository
hinterlegten LTL-Modelle wahlen.

6.3.3. Nachladen von LTL-Modellen

Neben dem eigentlichen BPMN-Modell mit dem Compliance Scope kénnen zur Verifikation
eines Compliance Scopes weitere Diagramme aus dem Oryx-Repository, wie etwa die
mittels des LTL-Stencilsets als Diagramme modellierten LTL-Formeln, benétigt werden.

66

6.3. Frontend

Das Nachladen dieser Diagramme erfolgt auf Client-Seite, da im Gegensatz zur Frontend-
Seite [dat] auf Server-Seite fiir Erweiterungen kein Zugriff auf Repository mit den Modellen
vorgesehen ist.

Fiir das Nachladen von Diagrammen wird die JSON-Darstellung des BPMN-Modells rekursiv
nach Compliance Scopes durchsucht. Dabei werden bei einem selektiven Compliance Check,
bei dem nur ausgewihlte Compliance Scopes tiberpriift werden sollen, die nicht markierten
Compliance Scopes ignoriert. Die Regelbdume der Compliance Scopes werden dann nach
LTL-Operatoren durchsucht. Die LTL-Modelle werden anschlieffend per Ajax-Requests
abgefragt. Im ComplianceCheck-Request an den Server werden die geladenen LTL-Modelle
in ihrer JSON-Darstellung als Parameter iibergeben.

Auf Serverseite wird die Implementierung des RepositoryConnectors verwendet, die ein
Mapping von Modellnummer auf die entsprechende JSON-Darstellung enthalt.

6.3.4. Darstellung des Ergebnisses

Nach der Durchfiihrung eines Compliance Checks werden die iiberpriiften Compliance
Scopes farbig markiert. Die Farbe richtet sich dabei nach dem Ergebnis des Compliance
Checks (siehe 5.4) des jeweiligen Compliance Scopes:

griin Die Uberpriifung wurde erfolgreich durchgefiihrt und im Compliance Scope sind alle
Regeln erfiillt.

rot Die Uberpriifung wurde erfolgreich durchgefithrt und im Compliance Scope wird
mindestens eine Regel verletzt.

orange Fiir den Compliance Scope wurde keine Regel definiert. Dies wird separat gekenn-
zeichnet, da hier der Prozesstemplatedesigner mit hoher Wahrscheinlichkeit vergessen
hat, die Regeln hinzuzufiigen.

grau Die Uberpriifung ist fehlgeschlagen.
weiB Der Compliance Scope wurde nicht tiberpriift.

Im Ergebnisfenster eines Compliance Checks kann anschliefiend fiir jeden Compliance Scope
detailliert abgelesen werden, wie die Bewertung zustande kam. Bei der Verletzung einer
LTL-Regel wird das entsprechende Gegenbeispiel dargestellt.

Die farbigen Overlays und das Ergebnis des Compliance Checks werden beim Speichern des
BPMN-Modells nicht mit abgespeichert.

67

6. Implementierung

Compliance Check Result *

Result Violated (Invalid) Empty {MoRulesDefined)

Performing compliance check for all compliance scopes...
Found compliance scope Wiolated, checking...
Finished checking, result: Inwvalid
Found compliance scope Empty, checking...
Finished checking, result: NoRulesDefined
Finished compliance check for all compliance scopes

Statistiecs ———--mm—————————————————————————
Walid: 0
Invalid: 1
Failed: 0
Mo rules defined: 1

Time elapsed: 3128ms

Close

Abbildung 6.11.: Ergebnisfenster

6.3.5. Export und Import von Compliance Scopes

Compliance Scopes konnen sowohl exportiert als auch importiert werden. Hierzu wurde ein
XML-Schema definiert. Exportiert wird dabei nur der Compliance Scope samt Regelbaum, die
enthaltenen BPMN-Elemente nicht. Somit lassen sich Compliance Scopes auch in bestehende
Prozesse einbinden und einmal definierte Compliance Scopes kénnen mit ihren Regeln
wiederverwendet werden.

Wird ein Compliance Scope in einen bestehenden BPMN-Referenzprozess importiert, wird
der Compliance Scope als neues Element in das BPMN-Modell eingefiigt. Die BPMN-
Elemente, die im Compliance Scope enthalten sein sollen, konnen anschlieflend per
Dragé&Drop in den Compliance Scope eingefiigt werden. In einem letzten Schritt miissen die
Kontrollflusskanten der verschobenen Elemente angepasst werden.

6.4. Erweiterbarkeit

Da die Erweiterbarkeit eine zentrale Anforderungen an die entwickelte Losung ist, wird in
diesem Abschnitt genauer auf die moglichen und vorgesehenen Erweiterungen sowie die
dazu notwendigen Anpassungen eingegangen.

6.4.1. Neue Regelbeschreibungssprachen

Bei der Einbindung von neuen Beschreibungssprachen fiir Regeln miissen sowohl das
Backend als auch das Frontend angepasst werden.

68

6.4. Erweiterbarkeit

Operator im Backend

Fiir einen neuen Operator ist eine neue Implementierung des ComplianceOperator-Interfaces
zu erstellen. Benotigt der Operator dabei weitere Modelle aus dem Oryx-Repository, so
lassen sich diese iiber den RepositoryConnector beziehen.

Anschlieflend muss der neue Operator in der OperatorFactory registriert werden, damit die
Implementierung des Operators bei der Abarbeitung des Regelbaums berticksichtigt wird.

Compliance Rule Editor im Frontend anpassen
Damit der neue Operator auch als neuer Regeltyp vom Benutzer in Oryx verwendet werden
kann, ist der Compliance Rule Editor wie folgt anzupassen:

operatorText Diese Funktion erstellt fiir Operator-Knoten im Baum eine aussagefihige
Beschriftung.

rule2Tree Hier wird ein Knoten aus dem Regelbaum in einen Knoten des visuellen Baums
tibersetzt.

tree2Rule Hier wird ein Knoten aus dem visuellen Baum in einen Knoten des Regelbaums
iibersetzt.

addOperatorNode Diese Funktion behandelt den Klick auf einen der Toolbarbuttons zum
Hinzuftigen eines neuen Operators.

editSelectedNode Aus dieser Funktion wird der zum Operatortyp gehorige Operatorenei-
genschaftseditor gedffnet.

editComplianceScope Hier wird der Button zum Erstellen eines neuen Knotens mit dem
neuen Operatortyp in der ToolBar erzeugt.

findModelsOperator (optional) Referenziert der neue Operatortyp andere Modelle im Repo-
sitory (wie der LTL-Operator LTL-Modelle), so miissen diese beim Vorladen bertick-
sichtigt werden.

Import und Export anpassen
Damit der neue Operator korrekt importiert und exportiert wird, sind folgende Funktionen
im ComplianceWizardPlugln zu erweitern:

operatorToXml Ubersetzt die JSON-Darstellung eines Operators in XML beim Export eines
Compliance Scopes.

operatorFromXml Ubersetzt die XML-Darstellung eines Operators in die JSON-Darstellung
beim Import eines Compliance Scopes.

Auflerdem muss das XML-Schema entsprechend erganzt werden.

69

6. Implementierung

6.4.2. Neue Operatoren im LTL-Stencilset

Sind weitere Operatoren wie der Aquivalenz—Operator dem LTL-Stencilset hinzuzufiigen,
muss die Stencilset-Beschreibung erweitert werden. Dies erfolgt in der JSON-Datei, die das
Stencilset definiert. AufSerdem miissen sowohl eine Icon-Datei fiir die Toolbox als auch eine
Beschreibung der Darstellung als SVG erstellt werden.

6.4.3. Weitere Umsetzungen von BPMN-Elementen beim Petrinetz-Mapping

Um weitere BPMN-Elemente in dem Mapping auf das Petrinetz zu beriicksichtigen, sind An-
derungen an der Implementierung im Backend erforderlich. Dazu kann, je nach Ahnlichkeit
des umzusetzenden BPMN-Elements zu bestehenden Umsetzungen, entweder ein aktueller
Translator erweitert oder ein neuer Translator erstellt werden.

In beiden Fillen muss fiir das neue BPMN-Element der entsprechende Translator in der
TranslatorFactory registriert werden.

6.5. Komplexitatsbetrachtungen

Da die Ausfithrungsdauer der Compliance Checks entscheidenden Einfluss auf die Ak-
zeptanz der neuen Funktionen durch den Benutzer hat, wird diese im Folgenden genauer
analysiert. Hierbei wird vor allem untersucht, wie sich die einzelnen Ausfithrungsphasen bei
der Durchfiihrung auf die Gesamtlaufzeit auswirken. Zu den Phasen gehdren unter anderem
das Kompilieren und das Ausfiihren des von Spin generierten Testprogrammes. Hierbei wird
nur die Auswertung von LTL-Regeln betrachtet, da diese bereits bei kleinen Beispielen schon
langer als eine Sekunde bendtigen, wihrend die Ausfithrungszeit der DataTransfer-Regeln
auch bei grofleren Modellen in der Testphase der Implementierung unter einer Sekunde
betrug. Ein Grofiteil der Laufzeit wird durch die Kommunikation zwischen Webbrowser
und Servlet-Container verursacht.

Die einzelnen Phasen der LTL-Verifikation
Da die Verteilung der Laufzeit iiber die einzelnen Phasen Gegenstand der nachfolgenden
Messungen ist, hier noch einmal die Phasen im Uberblick:

Mapping BPMN auf Petrinetz Aus dem im Compliance Scope enthaltenen Ausschnitt des
Prozessmodells wird ein Petrinetz generiert.

Petrinetz auf Promela Das erstellte Petrinetz wird in ein Promela-Programm umgeformt.

Ubersetzung der LTL-Formel nach Promela Die als LTL-Formeln formulierten Regeln wer-
den mit Spin in Promela tibersetzt.

Promela auf C Spin erzeugt aus dem Promela-Programm C-Code.

70

6.5. Komplexitatsbetrachtungen

C kompilieren Der C-Code wird kompiliert, hieraus entsteht das Testprogramm, welches
die eigentliche Verifikation durchfiihrt.

Testprogramm ausfiihren Das Testprogramm simuliert das System und {tiberpriift dabei die
Einhaltung der Spezifikation.

Da die Anzahl der Zustidnde des in Promela beschriebenen Systemmodells mafigeblich fiir
die Ausfiihrungszeit des von Spin generierten Testprogramms ist, wurde als Testszenario die
Ausfiihrung paralleler Kontrollflusszweige gewdhlt.

Parallele Gateways

|
| .
P Task3 f-—=-—

Abbildung 6.12.: Profiling paralleler Gateways - BPMN
Das hierfiir verwendete Beispiel ist in Abbildung 6.12 dargestellt. Auf dem Prozessmo-
dell wird die Regel Finally Tasko ausgewertet. Zwischen den beiden parallelen Gateways

werden nun schrittweise weitere Kontrollflusskanten mit jeweils einem Task eingefiigt.
Abbildung 6.13 zeigt die entsprechende Darstellung als Petrinetz.

@»h@»m»@»m»l»@

OO

Abbildung 6.13.: Profiling paralleler Gateways - Petrinetz

Sei k die Anzahl der Zweige zwischen den beiden parallelen Gateways, dann berechnet sich
die Anzahl der moglichen Zustiande des Petrinetzes nach der Berechnungsvorschrift:

Anzahl Zustinde = 5 + 2K

Der zweite Summand ergibt sich aus der Tatsache, dass beim Ausfiihren des ersten parallelen
Gateways auf jeden der parallelen Zweige ein Token gelegt wird. Sind alle Token an den

71

6. Implementierung

Enden des Zweigs angekommen, wird die Anzahl der im Petrinetz verfiigbaren Token
beim Ausfiihren des zweiten parallelen Gateways wieder auf eins reduziert. Wahrend der
Ausfiihrung der parallelen Zweige kann jedes Token auf einem von zwei Plédtzen liegen.

Abhingig von der Anzahl der Ausfithrungszweige zwischen den beiden parallelen Gateways
wird die Laufzeit gemessen. Tabelle 6.1 listet die Messwerte auf.

Zweige ‘ 1 ‘ 8 ‘ 14 16 18 19 20

Zustande Petrinetz 7| 216 | 16.389 65.541 | 262.149 | 524.293 | 1.048.581
Zustande intern 16 | 2.574 | 262.158 | 1.179.662 | 5x10° | 11%10° | 23 x10°
BPMN — Petrinetz 0 0 0 0 0 0 0
Petrinetz — Promela 0 0 0 0 10 0 10
LTL — Promela 50 50 40 60 40 50 221
Promela — C 90 | 100 100 100 100 110 250
Kompilieren 1.021 | 1.042 1.111 1.162 1.192 1.292 1.582
Testprogramm 80 90 1.042 4907 | 24635 | 52716 | 123.017
Gesamtlaufzeit | 1.251 [1.362 | 2.343 6259 | 26337 | 54.188 | 124.849

Tabelle 6.1.: Auswertung Profiling paralleler Gateways, Laufzeiten in Millisekunden

Testaufbau und Testsystem

Um moglichst praxisnahe Werte zu erhalten wird der Test auf Frontendseite durchgefiihrt.
Dazu wird das Compliance Plugin um die Profiling-Funktionalitidt erweitert. Hierbei wird
ein vorbereitetes Grundmodell verwendet, das dann per JavaScript um die gewtinschte
Anzahl von weiteren Tasks und Sequenzflusskanten erweitert wird.

Die weitere Verarbeitung erfolgt dann genau wie bei einem tatsdchlichen Compliance Check.
Das LTL-Modell fiir die Regel Finally Tasko wird nachgeladen und mitsamt dem BPMN-
Model an den Server gesendet. Die Ausfithrungszeiten lassen sich aus dem erstellten Log
in Tomcat ablesen. Sowohl Beginn und Ende der Abarbeitung des Requests als auch die
Startzeitpunkte der Phasen werden auf Millisekundenbasis festgehalten.

Die Messungen werden auf einer mit Oracle VirtualBox [Orab] virtualisierten Windows
XP-Installation unter Ubuntu 10.04 durchgefiihrt. Diese lduft auf einem Pentium M 735 mit
1,7 GHz und 1 GB der virtuellen Maschine zugewiesenem Hauptspeicher. Damit sich das
System auf den Verifikationsprozess einstellen konnte, werden zundchst alle Tests einmal
durchgefiihrt und deren Ergebnisse verworfen. Anschlieflend wird jeder Testfall dreimal
durchgefiihrt und der Median ermittelt.

72

6.5. Komplexitatsbetrachtungen

Zusammenfassung

Maf3geblich fiir die Laufzeit beim Uberpriifen von LTL-Regeln ist die Anzahl der Zustiande,
die das Petrinetz annehmen kann, welches aus dem BPMN-Diagramm erzeugt wird. Weniger
relevant dagegen ist die Anzahl der Plitze im Petrinetz.

Eine hohe Anzahl von Zustdnden entsteht bei parallel abgearbeiteten Ausfithrungspfaden.
Ein Anwender des Prozesseditors, der mit dem dahinter liegenden Verifikationsprozess nicht
vertraut ist, kann nicht nachvollziehen, wie sich verschiedene Prozessmodellvarianten auf
die Laufzeit beim Compliance Check auswirken. hm kann aber zumindest auf den Weg
gegeben werden, Parallelitdt nicht unbegriindet einzusetzen.

73

7. Zusammenfassung und Ausblick

Im letzten Kapitel dieser Arbeit wird eine Zusammenfassung der Arbeit gegeben. Anschlie-
8end folgt ein Ausblick auf weiterfithrende Themen im Zusammenhang mit der erarbeiteten
Losung.

7.1. Zusammenfassung

In einer vorhergehenden Arbeit [Kot10] wurde der webbasierte Prozesseditor Oryx um die
Moglichkeit der Definition von Prozesstemplates erweitert. Prozesstemplates erlauben die
Definition abstrakter Prozesse, die dann zu konkreten, auf die aktuellen Anforderungen
angepassten, Prozessvarianten abgeleitet werden.

Die vorliegende Arbeit erweitert nun das Konzept der Prozesstemplates um ein Konzept zur
Durchsetzung von Compliance in Geschéftsprozessen. Dazu werden zunédchst die notwendi-
gen Grundlagen gelegt und bestehende Ansitze zur Compliance Uberpriifung présentiert.
Aufierdem wird die Arbeit, auf der die Erweiterung aufgebaut wird, erlautert.

Das Konzept berticksichtigt sowohl die Priifungen des Kontrollflusses als auch des Datenflus-
ses. Anforderungen an den Kontrollfluss werden mittels temporaler Logik formuliert, zum
Einsatz kommt hier die LTL. Fiir die Formulierung von temporalen Anforderungen wurde
eine eigene graphische Notation geschaffen. Die Einhaltung dieser Anforderungen wird
mittels Model Checking tiberpriift. Dazu wird erldutert, wie die BPMN-Diagramme und die
LTL-Formeln in der Eingabesprache des Model Checkers, Promela, umgesetzt werden.

Bei den Datenflussregeln wird ausgehend von Datenobjekten beschrieben, welche Daten
in Datenobjekte geschrieben und welche Daten aus ihnen gelesen werden diirfen. Die
Beschreibung sowohl der transferierten Daten als auch der durch die Regeln erfassten Daten
erfolgt dabei durch XPath-Ausdriicke.

Die Compliance-Regeln eines Compliance Scopes werden in einem Regelbaum zusammen-
gefasst, der die logische Verkniipfung von Daten- und Kontrollflussregeln erlaubt.

Das erarbeitete Konzept wird exemplarisch im webbasierten Prozesseditor Oryx umgesetzt.
Zur Sequenzanalyse wird der Model Checker Spin eingebunden, die Verifikation der Daten-
flussregeln erfolgt mittels Saxon. Die Verifikation der Regeln findet dabei grundsétzlich im
Backend statt, das Frontend stellt Editoren fiir die Regeltypen und den Regelbaum bereit
und bereitet auflerdem das beim Verifikationsprozess ermittelte Ergebnis fiir den Anwender
auf.

75

7. Zusammenfassung und Ausblick

7.2. Ausblick

Wiéhrend der Konzeption und Implementierung wurden einige Teilaspekte nicht oder
nicht vollstandig berticksichtigt. Diese befassen sich mit Performanceoptimierungen, der
Erweiterung der Ausdrucksmichtigkeit von Compliance-Regeln und Verbesserungen der
Usability. Auf sie wird im Folgenden genauer eingegangen.

7.2.1. Caching und Performance

Um die Ausfiihrungszeit der Compliance Checks weiter zu verkiirzen, kann das Caching
noch an einigen Stellen erweitert beziehungsweise verbessert werden.

Hat der Benutzer einen Compliance Scope seit dem letzten Compliance Check nicht gedndert,
so kann durch das Vorhalten von Compliance Ergebnissen Zeit eingespart werden, denn
diese konnen beim ndchsten Compliance Check weiter genutzt werden. Das Einsparergebnis
hédngt hierbei aber sehr vom Benutzer ab. Ein Benutzer, der zwischen zwei Compliance
Checks nur wenige Anderungen durchfiihrt, profitiert hier deutlicher, als ein Benutzer, der
viele Anderungen durchfiihrt und damit wahrscheinlicher Anderungen am Compliance
Scope durchgefiihrt hat, bevor er den ndchsten Compliance Check anstofst.

Werden mehrere LTL-Formeln auf demselben Compliance Scope gepriift, &ndert sich die
Beschreibung des Modells nicht. In Spin werden aber die LTL-Formel und die Systembeschrei-
bung zusammen in C-Code tibersetzt, bevor dieser kompiliert wird. Da das Kompilieren des
C-Codes gerade bei kleineren Modellen einen Grofiteil der Laufzeit des Compliance Checks
einnimmt, wére zu priifen, ob sich nicht mehrere LTL-Formeln mit einer Modellbeschreibung
zusammen in ein einziges Verifikationsprogramm kompilieren lassen und die jeweils zu
priifende LTL-Formel per Befehlszeilenparameter ausgewihlt werden kann.

In diesem Zug wére dann weiter interessant, getrennte LTL-Formeln zusammenzufassen.
Das heifit besteht der Regelbaum eines Compliance Scopes aus der Konjunktion zweier LTL-
Formeln, lieffen sich diese beiden auch zu einer gemeinsamen LTL-Formel zusammenfassen.
Damit wiirde der Model Checker nur noch einmal statt mehrfach aufgerufen werden.

Einen weiteren Performancevorteil bringt das Laden der LTL-Modelle auf der Backendseite
direkt aus dem Repository. Pro nachzuladendem System werden etwa 10oms benétigt.
Gerade bei grofieren Prozesstemplates mit vielen Compliance Scopes konnen sich hier
Zeiteinsparungen ergeben.

7.2.2. Graphische Optimierungen

Um dem Endbenutzer das Nachvollziehen der Gegenbeispiele weiter zu erleichtern, wire
eine graphische Aufbereitung des Gegenbeispiels sinnvoll. So lieie sich die Abfolge der
gewdhlten BPMN-Diagramm-Kanten vom Servlet zuriickgeben und diese dann entsprechend
in die Darstellung auf Clientseite durch Overlays, wie sie momentan schon zur farblichen

76

7.2. Ausblick

Kennzeichnung der Compliance Scopes nach einem Compliance Check eingesetzt werden,
einbauen.

COmpIiaan

O—{r Ea®

Abbildung 7.1.: Beispiel graphische Darstellung Gegenbeispiel

Eine mogliche Darstellung eines Gegenbeispiels findet sich in Abbildung 7.1. Hierbei handelt
es sich wieder um das laufende Beispiel. Dem Compliance Scope wurde die Regel zugewie-
sen, dass sowohl Taskz als auch Task3 stets einmal ausgefiihrt werden miissen. Diese Regel
wird durch den dargestellten Prozess verletzt. Der Ausfiihrungspfad, der zur Verletzung der
Regel fiihrt, wird rot dargestellt.

7.2.3. Verbesserungen am Petrinetz-Mapping

Im Mapping des BPMN-Modells auf ein Petrinetz werden unter anderem eventbasierte
Subprozesse sowie Exception Handling nicht berticksichtigt. Eine Beriicksichtung von beidem
fiihrt dazu, dass das zu erstellende Petrinetz und damit das Konzept komplexer wird.

P (P, enabled)
t(h
Call subprocess P : /—.H‘_\\ :
v - ... 1-safe
. Ps tHs: P(s,61) P(en,eil' te Pe
v t (P, excp)
v X Tx
P (P, ok) P (P, nok) P (Ex, Tx)

P (P, excp)

Abbildung 7.2.: Beispiel Umsetzung Exception Handling [DDOoy]

Ansitze fiir eine Umsetzung im Petrinetz finden sich in [DDOo7y]. Abbildung 7.2 stellt die
Petrinetzentsprechung der Fehlerbehandlung in einem Subprozess dar.

77

7. Zusammenfassung und Ausblick

7.2.4. Erweiterung der Ausdrucksmachtigkeit der LTL-Operatoren

In der bestehenden Implementierung werden in den LTL-Formeln lediglich die Tasknamen
berticksichtigt. Je nach Anwendung konnten aber auch weitere Informationen relevant sein,
wie zum Beispiel, ob ein Task manuell ausgefiihrt wird oder als Webservice realisiert ist.
Eine erweiterte LTL-Formel kénnte dann wie folgt aussehen:

Finally (Task.Name=Task1 A Task.Implementation=Webservice).

Bei der Ausfiihrung eines Tasks kann dann der Implementierungstyp des Tasks in einer
globalen Variable abgelegt und somit in einer LTL-Formel verwendet werden.

7.2.5. Past Linear Temporal Logic

In 4.4 wurde bereits die Past Linear Temporal Logic (kurz PLTL) genannt. Diese ermoglicht
durch zusitzliche Operatoren, die sich auf die Vergangenheit beziehen, die Beschreibung
weiterer Regeln, die sich nicht mit der LTL ausdriicken lassen.

Ein Beispiel dafiir ist die Regel, dass wenn Task2 durchgefiihrt wird, in jedem Fall vorher
Task1 durchgefiihrt worden sein muss. Mit der LTL ldsst sich zwar formulieren, dass Task2
zwingend auf Task1 folgen muss (hinreichend), die Riickrichtung (notwendig) dagegen nicht.
Eine Formulierung in PLTL ist zum Beispiel Task2 -> Once Taskl.

Der im Rahmen dieser Arbeit verwendete Model Checker Spin unterstiitzt nur die Linear
Temporal Logic. In der Arbeit [PPSMo3] wurde eine entsprechende Erweiterung von Spin
vorgestellt.

7.2.6. Ad-hoc Compliance Checks

Grundsitzlich ist eine direkte Uberpriifung der Einhaltung der definierten Regeln beim
Prozessdesign wiinschenswert, da der Endbenutzer hierbei zeitnah Riickmeldung bekommt,
falls eine Regel verletzt wird. Da die Uberprﬁfung einer LTL-Regel durch den Aufruf von
Spin und vor allem die Kompilierung des C-Quellcodes aber schon bei einfachen Regeln
mehrere Sekunden benétigt, ist die sofortige Uberpriifung zumindest bei temporalen Regeln
nicht praktikabel.

Bei DataTransfer-Regeln dagegen ist die Verzogerungszeit deutlich kiirzer, sodass hier die
zeitnahe Priifung und Riickmeldung an den Nutzer moglich ist.

Durch den in Oryx verwendeten Event-Mechanismus kann das Compliance Plugin die
relevanten Ereignisse abonnieren und sich bei deren Auftreten informieren lassen. Das
heiflt, Anderungen, die eine erneute Priifung des Compliance Scopes erforderlich machen,
bekommt das Plugin durch das Abonnement dieser Ereignisse mit. Da der Eventhandler an
den Kontext des Plugins gebunden ist, bekommt dieses dariiber auch Zugriff auf die dem
Plugin bei der Initialisierung angebotene Facade und damit auf die JSON-Darstellung des

78

7.2. Ausblick

Diagramms. Aufierdem ldsst sich in den meisten Féllen aus den Event-Daten (event und
shape) auf den Compliance Scope schliefen, der nach der gerade durchgefiihrten Anderung
erneut tiberpriift werden muss.

Bei einer Umsetzung miissen aber einige Punkte beachtet werden. Beim Einfiigen von
Datenobjekten und Datenverbindungen in das Modell werden mehrere Ereignisse ausgelost,
das heifit, neben dem Ereignis, welches den neuen Compliance Check auslost, treten weitere
Ereignisse auf. Diese miissen zundchst abgewartet werden, bevor mit dem Compliance
Check begonnen werden kann. Damit muss fiir jede Aktion, die einen erneuten Compliance
Check auslosen soll, eine geeignete Bedingung gefunden werden, die den Compliance Check
anstoft.

Auflerdem ist zu priifen, wie das Plugin erkennt, ob sich der betroffene Compliance Scope
priifen ldsst, ohne die Weiterarbeit am Modell zu lange zu verzogern. Ein Ansatz ist,
Compliance Scopes mit LTL-Regeln nicht zu priifen. In diesem Fall muss dem Benutzer
kenntlich gemacht werden, welche Compliance Scopes in ihrem aktuellen Zustand gepriift
sind und welche nicht. Dies kann mit den bekannten Overlayfarben erfolgen, die bereits zur
Ergebnisdarstellung verwendet werden.

79

A. Anhang

A.1. Inhalt und Aufbau des beigelegten Datentragers

Der beiliegende Datentrédger ist wie folgt aufgebaut:
Ausarbeitung Der Ordner ausarbeitung enthélt dieses Dokument im PDF-Format.

Projektverzeichnis Das Eclipse-Projekt von Oryx mit den vorgenommenen Erweiterungen
findet sich im Ordner projekt.

Prototyp Der fertig kompilierte Prototyp findet sich im Verzeichnis distribution.

SVN-Patch Der Ordner patch enthilt einen Patch, mit dem sich die Erweiterungen in einen
aktuellen SVN-Checkout von Oryx einpflegen lassen.

Profiling-Patch Die Erweiterung des Compliance Plugins fiir die Profiling-Tests findet sich
im Ordner profiling als Patch.

Installationsdateien Im Ordner install finden sich Installationsdateien fiir alle Software,
die fiir den Betrieb der Losung notwendig ist. Es sind nur Installationsdateien fiir
Windows enthalten.

Quellen Alle als PDF-Dateien verfiigbaren, verwendeten Quellen finden sich im Verzeichnis
quellen. Sie sind nach dem im Literaturverzeichnis verwendeten Kiirzel benannt.

A.2. Aufsetzen der Entwicklungsumgebung

Da die hier erarbeitete Losung auf [Kot1o] aufbaut, unterscheidet sich das Aufsetzen der
Entwicklungsumgebung nur durch zusitzliche Schritte am Ende des Installationsprozes-
ses. Zundchst sind deshalb die in [K6t10] im Anhang im Abschnitt Installation genannten
Anweisungen zu befolgen.

Die Einrichtung der fiir den hier entwickelten Prototyp zusatzlich benétigten Programme,
dem GCC und Spin, wird im folgenden beschrieben.

81

A. Anhang

A.2.1. Installation des C-Compilers

Da der Model Checker Spin zum Kompilieren der erzeugten Testprogramme einen C-
Compiler benotigt, muss dieser zundchst eingerichtet werden. Unter Windows kann dazu
MinGW? verwendet werden.

Die gédngigen Linuxdistributionen bieten in ihrer Paketverwaltungssoftware vorbereitete
Pakete mit dem GCC an. Ubuntu stellt dazu das Paket build-essential bereit.

Anschliefend muss der Pfad des Compilers unter Windows in die System-
variable PATH eingetragen werden. Dazu wird in der Systemsteuerung unter
System— Advanced—Environment Variables im Bereich System Variables an die
vorhandene Path-Variable, bei Verwendung der Standardeinstellungen bei der Installation
von MingW, der Pfad C:\mingw\bin angehdngt werden. Unter Linux findet sich der
Compiler nach der Installation unter /usr/bin wieder und ist damit bereits in einem
Verzeichnis aus der Path-Variable.

A.2.2. Installation von Spin

Fiir Spin stehen vorkompilierte Dateien fiir Windows und Linux auf der Spin-Homepage
zur Verfligung.?

Wie der C-Compiler auch, muss Spin unter Windows in die Path-Variable eingebunden
werden. Unter Linux kann Spin entweder in ein Verzeichnis aus der Path-Variable kopiert
werden oder das Verzeichnis von Spin muss zur Path-Variablen hinzugefiigt werden. Da
der Webbrowser unter einem eigenen Benutzeraccount lduft, muss dazu die Path-Variable
des entsprechenden Benutzeraccounts angepasst werden. Informationen dazu sind der
Dokumentation der entsprechenden Linux-Distribution zu entnehmen.

A.2.3. Logs

Neben den fiir den Benutzer bestimmten Logs (siehe Abschnitt 6.2.6), erstellt die entwickelte
Losung ausfiihrlichere Loggingausgaben, fiir die Log4] verwendet wird. Unter anderem wird
hier zusitzlich geloggt, welche nativen Programme mit welchen Befehlszeilenparametern
ausgefiihrt wurden und welche Riickgaben diese geliefert haben. Damit lassen sich zum
Beispiel anhand der Compilermeldungen des GCC Fehler im C-Code nachvollziehen.

Die fiir den Entwickler bestimmten Meldungen lassen sich in den Logs von Tomcat nachle-
sen. Unter Windows liegen diese normalerweise im Verzeichnis C:\Program Files\Apache
Software Foundation\Tomcat 7.0\logs. Standardmifsig loggt Tomcat nur ab dem Info-
Level. Da ein Teil der Ausgaben aber vorrangig zur Fehlersuche bestimmt ist und somit

thttp://www.mingw.org/
%http://spinroot.com/spin/Bin/index.html

82

http://www.mingw.org/
http://spinroot.com/spin/Bin/index.html

A.3. Anleitung

mit Debug-Level ausgegeben wird, kann das Logging-Level in Tomcat herabgesetzt werden.
Dazu ist iiber Start— Programme— Apache Tomcat 7.0—Configure Tomcat die Konfigura-
tionskonsole von Tomcat zu 6ffnen. Im Reiter Logging kann fiir die Einstellung Level dann das
gewiinschte Level gewihlt werden. Anschlieend ist die Anderung mit OK zu bestitigen.

A.3. Anleitung

Anhand eines Beispiels werden die wichtigsten Funktionen der Oryx-Erweiterung erldutert.
Die Vorgehensweise richtet sich nach der Beschreibung unter 5.5 und setzt Grundkenntnisse
im Umgang mit Oryx voraus.

Graphische Modellierung von LTL-Formeln

Eine neue Richtlinie im Unternehmen legt fest, dass Bugs nun vorevaluiert werden miissen.
Dies lasst sich als LTL-Formel formulieren: Finally Bug_vorevaluieren. Um diese Regel
zu modellieren, wird ein neues LTL-Diagramm erstellt. Dazu wird wie in Abbildung A.1
dargestellt auf der Startseite von Oryx im Dropdownmenti Create New Model der LTL-
Diagrammtyp gewdihlt.

[I-e: Create New Model - Ifl View - ._j Sorting *

L. LTL "
Example - i
Tk I
Example Extensiocn
Examplemuster
BPMH zlu F'FDCESS-E'S Tl.ltﬂ-l"la”.TLV... {BF"MN 2.0 p'l"ﬂ'CE‘SS-EE}
hittp:/ fgetopenid.comy
BPMMN 2.0 Conversations

Abbildung A.1.: Auswahl des LTL-Diagrammtyps

Daraufhin 6ffnet sich ein neuer Diagrammeditor. Links in der Toolbox finden sich die
verfiigbaren Operatoren. Im ersten Schritt wird nun zunéchst ein Finally-Operator per
Drag&Drop in das Diagramm eingefiigt. Anschliefsend wird ein Property-Operator, eben-
falls per Drag&Drop, in den Finally-Operator eingefiigt. Per Doppelklick auf den Property-
Operator lasst sich die zu priifende Eigenschaft, in diesem Fall der Taskname Bug_evaluieren
setzen. Das erstellte LTL-Diagramm sollte nun wie in Abbildung A.2 dargestellt aussehen.
Anschliefsend wird das Diagramm gespeichert, zum Beispiel als Finally_BugEvaluieren.

A. Anhang

HE&* @ (1Dl o 0= 3 1o 1o

Shape Repository bt

FINALLY

=l LTL Diagram
Bug_vorevaluieren

E] Property

() Parenthesis
N Not-Operator

G Globally-Operator

Abbildung A.z.: LTL-Diagramm der Anforderung

Definition von Prozesstemplates mit Compliance Scopes

Im néchsten Schritt erfolgt die Modellierung des Prozesstemplates fiir die (stark vereinfachte)
Bearbeitung eines Bugs. Dazu ist wieder tiber die Startseite von Oryx ein neues Diagramm zu
erstellen, diesmal vom Typ BPMN 2.0 Variability. Das Prozesstemplate ist in Abbildung A.3
dargestellt. Dieses enthilt eine variable Region. An dieser Stelle konnen sich Varianten des
Prozesses voneinander unterscheiden.

Compliance

Variable
Region

()

Bug_entgegennshmen

Abbildung A.3.: Prozesstemplate zur Bugbearbeitung

Die Compliance-Regel des Compliance Scopes wird mit dem Compliance Wizard
festgelegt, der sich wie in Abbildung 6.8 dargestellt {iber die Toolbar von Oryx
aufrufen lasst. Hier wird jeweils ein LTL- und ein DataTransfer-Operator angelegt,
die per AND verkniipft werden (siehe Abbildung A.4). Fiir den LTL-Operator wird
das vorhin erstellte LTL-Diagramm ausgewdhlt, die Eigenschaften des DataTransfer-

A.3. Anleitung

Compliance Wizard bt

Edit Remowe | MOT AND OR LTL DATATRAMSFER

Tree =
=5 COMPLIANCE ASSURANCE RULE
== AND
5 LTL{TutorialFinallyTask2, 35)
5 DATATRAMNSFER {Laufzettel. incoming)

Ok Cancel
Abbildung A.4.: LTL-Diagramm der Anforderung
Edit Data Transfer operator *
Data object Laufzettel
Language xpath w
Path xs:element)xs:complex
Restriction Those not =
Direction incoming bl
Partners

Passing borders [Only if the border of this compliance scope is crossed

Ok Cancel

Abbildung A.5.: LTL-Diagramm der Anforderung

Operators werden wie in Abbildung A.5 dargestellt gesetzt, die Path-Eigenschaft auf
xs:element/xs:complexType/xs:sequence/xs:element [@name="from’] gesetzt.

Das erstellte Prozesstemplate wird anschliefsend gespeichert.

A. Anhang

Erstellen der Prozessfragmente

Fiir die im Prozesstemplate definierte variable Region werden nun zwei Alternativen erstellt.
Dazu werden wieder tiber die Startseite von Oryx zwei Diagramme vom Typ BPMN 2.0 Frag-
ments angelegt. Das eine Prozessfragment sieht vor, dass der Bugreport ausgedruckt wird
(siehe Abbildung A.6). Im alternativen Prozessfragment (siehe Abbildung A.7) dagegen wird
der Bugreport zunéchst einmal vorevaluiert, wobei das Ergebnis des Evaluierungsschrittes
in einem Laufzettel festgehalten wird. Die Struktur des Laufzettels wird tiber den Eigen-
schaftseditor im rechten Teil des Oryxfensters festgelegt. Dort 6ffnet sich beim Klick auf den
Eintrag Properties ein weiterer Editor. Der dortigen Liste ldsst sich per Add ein neuer Eintrag
hinzuftigen. Als Name wird schema verwendet, im Feld Structure wird das Schemafragment
aus Listing 5.1 hinterlegt. Anschlieflend ist noch festzulegen, welche Daten in den Lauf-
zettel geschrieben werden. Dies erfolgt tiber die Bearbeitung der Eigenschaft Assignments
der Datenverbindung iiber den Eigenschaftseditor. Mit einem Klick auf Add wird ein neue
Zuweisungsregel erstellt, das Feld To wird auf xs:element/xs:complexType/xs:sequence/x*
gesetzt, From auf /source/path und Language auf xpath.

H Bugreport_drucken]—‘

Abbildung A.6.: Erste Alternative

H Bug_vorevaluieren

e
Laufzettel

Das erste Prozessfragment wird als BugEditFragment1 abgespeichert, das zweite als BugEdit-
Fragment2.

Abbildung A.7.: Zweite Alternative

Erstellen von Prozessvarianten unter Beachtung der Compliance-Regeln

Aus dem Prozesstemplate werden nun konkrete Prozessvarianten erstellt. Dazu wird das
zuvor gespeicherte Prozesstemplate wieder gedffnet und mit einem Klick auf den Button

86

A.3. Anleitung

Create variant in der Toolbar mit der Prozessvariantenerstellung begonnen. Die variable
Region wird nun griin dargestellt, da fiir diese noch keine Alternative ausgewihlt wurde.
Zur Auswahl der Alternative wird die variable Region durch einen Klick markiert und
anschliefiend rechts im Eigenschaftseditor per Doppelklick die erste Alternative BugEdit-
Fragment1 ausgewdhlt. Da im Prozesstemplate nur eine variable Region definiert wurde, ist
damit die Prozessvariantenerstellung bereits abgeschlossen.

Compliance) | |

b

Bugreport_drucken Bug_bearbeiten

Compliance Check Result b

Result Unnamed Compliance Scope #1 (Invalid)

Message
false, One of the operands was evaluated to false.
false, Model did not match specification '<>(Bug_worevaluieren)', cour

Performing Start event
Performing Task <Bug_ entgegennehmen>
Performing Task <Bugreport_drucken>
Performing Task <Bug bearbeiten>
End event

Bug_entgegennehmen

——]

Log
Checking compliance scope Unnamed Compliance Scope #1
Evaluating AMD-Operator
Evaluating LTL-Operator
Evaluating <>({Bug_worevaluieren])
Finished evaluating LTL-Operator, passed: false hd

Abbildung A.8.: Verletzung der LTL-Regel beim Einsetzen des ersten Prozessfragments

Nun kann die erstellte Variante auf die Einhaltung der Compliance-Regeln tiberpriift werden.
Dazu wird tiber das von der Erweiterung in der Toolbar erstellte Dropdownmenti (siehe
Abbildung 6.8) ein Compliance-Check angestofien. Nach dem durchgefiihrten Compliance-
Check sieht das Ergebnis wie in Abbildung A.8 dargestellt aus. Der Compliance Scope wird
rot hinterlegt, da die Compliance-Regel verletzt ist, denn der Task Bug_vorevaluieren wird im
Prozess nicht ausgefiihrt. Im Ergebnisfenster wird neben dem Gegenbeispiel unter Message
auch die Auswertung des Operatorenbaums unter Log angezeigt.

In einem weiteren Versuch wird nun das zweite Prozessfragment eingesetzt, welches die
Compliance-Regel aber ebenfalls verletzt, da hier Felder des Laufzettels gesetzt werden, die
von der DataTransfer-Regel nicht zugelassen sind.

Bei beiden Beispielen kann der Benutzer nachvollziehen, warum das eingesetzte Prozessfrag-
ment zur Verletzung der Compliance-Regel fiihrte, und dann entweder ein neues Prozess-
fragment erstellen, welches die Regeln nicht verletzt, oder die bestehenden Prozessfragmente
korrigieren.

11

21

26

31

A. Anhang

A.4. Graphische Darstellung der generierten Petrinetze

Um die Umformung eines in JSON vorliegenden BPMN-Diagramms in ein Petrinetz zu
tberpriifen, ldsst sich dieses in eine graphische Darstellung umwandeln. Dies erfolgt tiber
den Export des Petrinetzes als Datei in der Petri Net Markup Language (kurz PNML) und
die anschlieffende Konvertierung in das DOT-Format [DOT] bewerkstelligen.

In einem ersten Schritt wird statt in eine Promela-Darstellung in das PNML-Format exportiert.
Eine entsprechende Export-Funktionalitét ist bereits im Backend implementiert und wird
auch im Frontend angeboten. Dort ldsst sich zu dem markierten Compliance Scope die
entsprechende PNML-Darstellung als Datei herunterladen.

<pnml xmlns="http://www.pnml.org/version-2009/grammar/pnml">
<net id="nl1" type="http://www.pnml.org/version-2009/grammar/ptnet">
<page id="top-level">
<name>
<text>An example P/T-net</text>
</name>
<place id="p1">
<name>
<text>cond1</text>
</name>
<initialMarking>
<text>1</text>
</initialMarking>
</place>
<place id="p2">
<name>
<text>cond2</text>
</name>
<initialMarking>
<text>1</text>
</initialMarking>
</place>
<place id="p3">
<name>
<text>done</text>
</name>
</place>
<transition id="t1"/>
<arc id="al" source="pl" target="t1"/>
<arc id="a2" source="p2" target="t1"/>
<arc id="a3" source="t1" target="p3"/>
</page>
</net>
</pnml>

Listing A.1: Petrinetz in PNML-Notation

Listing A.1 zeigt eine Beispieldatei im PNML-Format. Darin wird eine Transition definiert,
die als Eingdnge zwei, jeweils mit einem Token belegte, Plitze, und als Ausgang einen

88

11

16

21

A.4. Graphische Darstellung der generierten Petrinetze

leeren Platz hat. Plitze und Transitionen werden dabei getrennt voneinander definiert und
anschliefend mit Kanten verbunden.

Mit dem PNML 2 dot converter3 wird das in Listing A.1 definierte Petrinetz in das DOT-
Format in Listing A.2 tiberfiihrt.

strict digraph "ni1" {
overlap=scale;
splines=true;
node[fixedsize=true]l;
edgel];
subgraph "clustertop-level" {
ordering=out;
comment="An example P/T-net";
color=blue;
"pi1" [shape=circle,height=.25,width=.25,comment="ready",label="1"];

"p2" [shape=circle,height=.25,width=.25,comment="ready",label="1"];
"p3" [shape=circle,height=.25,width=.25,comment="ready",label=""];
P P g y

"t1" [shape=box,height=.08,width=.27,comment="t1",label=""];

"pl" > g [label=" n] ;

np2n > "¢ [1abel=" u] ;

L7 LS ||p3u [1abel=" n];

}
Listing A.2: Resultat im DOT-Format

Das DOT-Format ist eine Beschreibungssprache fiir Graphen. Dazu werden die Knoten und
Kanten aufgelistet, Positionen fiir die einzelnen Objekte miissen dabei nicht angegeben
werden. GraphViz* berechnet aus den gegebenen Kanten und Knoten ein Layout fiir den
Graphen und gibt diesen als Bilddatei, beispielsweise im PNG-Format, aus.

Abbildung A.g.: Darstellung des generierten Petrinetzes

Shttp://pnml.lip6.fr/pnml2dot/introduction.html
4http://www.graphviz.org/

http://pnml.lip6.fr/pnml2dot/introduction.html
http://www.graphviz.org/

A. Anhang

A.4.1. Empfohlene Modifikationen am PNML 2 dot converter

Um die Ubersichtlichkeit der Petrinetze zu erhohen wird empfohlen, den
Quellcode des PNML 2 dot converters zu modifizieren. In der Klasse
fr.1lip6.move.pnml.todot.processors.PTProcessor sind dabei die in Listing A.3 im
diff-Format dargestellten Anderungen vorzunehmen.

—sb.append("\"" + II’II + "1abel=\"");
+sb.append("\"" + "," + "label=\"" + workOnName (nhp));

-print ("node[fixedsize=true] ;") ;
+print ("node [fixedsize=false];");

Listing A.3: Anderungen an PBML 2 dot

Die erste Modifikation bewirkt, dass Transitionen mit den beim Mapping generierten IDs
versehen werden, die zweite, dass Knoten im erzeugten Graph entsprechend ihres Inhaltes
in der Grofle angepasst werden.

A.5. Mapping von BPMN auf Prozesse/Channels

In dieser Arbeit wurde das Mapping von BPMN-Diagrammen auf die von Spin benétigte
Promela-Darstellung mit Petrinetzen realisiert. Der zweite Ansatz mittels Prozessen und
Channels wird in diesem Abschnitt fiir das fortlaufende Beispiel aus Abschnitt 5.2.2 illustriert.

Complianca

& J

Abbildung A.10.: Laufendes Beispiel mit Channelnummern

Abbildung A.10 zeigt dazu noch einmal das laufende Beispiel. Zusétzlich sind hier die
verwendeten Channelnummern eingetragen. Zunichst werden in Listing A.4 die globalen
Variablen definiert. Dies sind die verwendeten Channels als Array und die Indikatoren,

90

15

A.5. Mapping von BPMN auf Prozesse/Channels

welche Tasks aktuell ausgefiihrt werden. Aufierdem werden zwei zur besseren Lesbarkeit
des folgenden Codes eingefiihrte Makros definiert.

/* globale Variablen --—---------ommmmmmm - x/
chan rendezvous_channels[7] = [0] of { bit }

bool taskTwo = false

bool taskThree = false
bool taskFour = false
bool taskFive = false

/% MaKroS ——--——— oo oo x/
inline send(channel, token) {
channel ! token

}

inline receive(channel, token) {
channel 7 token

}
Listing A.4: Umsetzung des laufenden Beispiels mittels Prozesse/Channels

Listing A.5 zeigt die Umsetzungen des Start- und des Endereignisses. Das Startereignis
beginnt sofort mit der Ausfithrung und gibt das Ausfiihrungssignal an den ausgehenden
Channel weiter. Das Endereignis wartet am eingehenden Channel auf das Signal.

active proctype procStartEvent() { /* Startereignis */
end:
send (rendezvous_channels[0], 1);

}

active proctype procEndEvent() { /* Endereignis */
end:
receive(rendezvous_channels[6], _);

¥
Listing A.5: Umsetzung des laufenden Beispiels mittels Prozesse/Channels

Die Implementierung der beiden exklusiven Gateways ist in Listing A.6 dargestellt. Das erste
exklusive Gateway wihlt abhingig von einer im Mapping vernachldssigten Bedingung einen
der beiden Nachfolgepfade aus. In Promela wird dies mit dem if-Konstrukt umgesetzt. Da
beide Bedingungen leer und damit erfiillt sind, wird bei der Ausfiihrung nichtdeterministisch
einer der beiden Nachrichtenchannels gewahlt und mit dem Signal belegt.

Das zweite exklusive Gateway vereinigt die beiden Ausfithrungspfade wieder. Fiir die
eingehenden Sequenzflusskanten wird derselbe Channel verwendet, {iber welchen entweder
von Task3 oder Taskq das Signal zum Ausfiihren tibermittelt wird.

91

11

3

8

13

A. Anhang

active proctype procXorSplit() { /* XOR-Gateway */
end:
receive(rendezvous_channels[1], _);

if
: send(rendezvous_channels[2], 1)
: send(rendezvous_channels[3], 1)
fi
}
active proctype procXorJoin() { /* XOR-Join */
end_loop:
receive (rendezvous_channels[4], _);

send (rendezvous_channels[5], 1);

goto end_loop
}

Listing A.6: Umsetzung des laufenden Beispiels mittels Prozesse/Channels

Die Umsetzung eines BPMN-Tasks findet sich in Listing A.7. Der BPMN-Task wartet am
eingehenden Channel auf das Signal, um mit der Ausfithrung zu beginnen. Anschlieflend
werden zunéchst die globalen Indikatorvariablen aktualisiert, bevor am ausgehenden Chan-

nel das Ausfiihrungssignal weitergegeben wird.

Das Aktualisieren der Indikatorvariablen erfolgt dabei in einem einzigen Schritt. Das heifst,
wiéhrend der atomic-Block ausgefiihrt wird, findet kein Wechsel zu dem Prozess statt, der
den aktuellen Zustand auf die Einhaltung der Spezifikation tiberpriift.

active proctype procTaskTwo() { /* Task 2 */
end:
receive(rendezvous_channels[0], _);

atomic {
taskTwo = true;
taskThree = false;
taskFour = false;
taskFive = false;

}

send (rendezvous_channels[1], 1);

}

Listing A.7: Umsetzung des laufenden Beispiels mittels Prozesse/Channels

Die Implementierung der Tasks drei bis fiinf erfolgt entsprechend.

92

Literaturverzeichnis

[AS]

[AWWog]

[bas]

[BDSVos]

[Ber89]

[BPM10]

[CGPo1]

[Cro]

[Croo8]

[DACq8]

A. Awad, S. Sakr. QBP - A Framework for Querying Graph-Based Business
Process Models. http://bpmng.sourceforge.net/. Zuletzt abgerufen am 23.
April 2011. (Zitiert auf Seite 30)

A. Awad, M. Weidlich, M. Weske. Specification, Verification and Explanation of
Violation for Data Aware Compliance Rules. In Proceedings of the 7th International
Joint Conference on Service-Oriented Computing, ICSOC-ServiceWave "09, pp. 500—
515. Springer-Verlag, Berlin / Heidelberg, 2009. URL http://dx.doi.org/10.
1007/978-3-642-10383-4_37. (Zitiert auf den Seiten 7 und 30)

Basic Spin Manual. http://spinroot.com/spin/Man/Manual.html. Zuletzt
abgerufen am o02. Mai 2011. (Zitiert auf Seite 50)

M. Brambilla, A. Deutsch, L. Sui, V. Vianu. The Role of Visual Tools in a Web
Application Design and Verification Framework: A Visual Notation for LTL
Formulae. In D. Lowe, M. Gaedke, editors, Web Engineering, volume 3579 of
Lecture Notes in Computer Science, pp. 233—243. Springer Berlin / Heidelberg,
2005. URL http://dx.doi.org/10.1007/11531371_70. (Zitiert auf den Seiten 8,

29, 30 und 43)

C. Berge. Hypergraphs : combinatorics of finite sets. Hypergraphs : combinatorics
of finite sets, 1989. (Zitiert auf Seite 25)

BPMN.de. BPMNPoster. http://wuw.bpmb.de/index.php/BPMNPoster, 2010.
Zuletzt abgerufen am 18. April 2011. (Zitiert auf Seite 16)

E. M. Clarke, O. Grumberg, D. Peled. Model checking. MIT Press, Cambridge,
Mass., 2001. (Zitiert auf den Seiten 16, 17 und 28)

D. Crockford. JSON in Java. http://json.org/java/. Zuletzt abgerufen am
o1. April 2011. (Zitiert auf Seite 23)

D. Crockford. JavaScript: The Good Parts. O’Reilly Media, Inc., Sebastopol, CA,
2008. (Zitiert auf Seite 23)

M. B. Dwyer, G. S. Avrunin, J. C. Corbett. Property specification patterns for
finite-state verification. In Proceedings of the second workshop on Formal methods
in software practice, FMSP 98, pp. 7—-15. ACM, New York, NY, USA, 1998. URL
http://doi.acm.org/10.1145/298595.298598. (Zitiert auf Seite 27)

93

http://bpmnq.sourceforge.net/
http://dx.doi.org/10.1007/978-3-642-10383-4_37
http://dx.doi.org/10.1007/978-3-642-10383-4_37
http://spinroot.com/spin/Man/Manual.html
http://dx.doi.org/10.1007/11531371_70
http://www.bpmb.de/index.php/BPMNPoster
http://json.org/java/
http://doi.acm.org/10.1145/298595.298598

Literaturverzeichnis

[dat]

[DDOo7]

[DOT]

[Eur]

[eva]

[exc]

[ext]

[Fow]

[Gergy]

[gra]

[Gre10]

[GT]

[Han1o]

94

How Oryx data management and querying works. http://code.google.com/
p/oryx-editor/wiki/DataManagementImplementation. Zuletzt abgerufen am
08. April 2011. (Zitiert auf Seite 67)

R. M. Dijkman, M. Dumas, C. Ouyang. Formal Semantics and Analysis of BPMN
Process Models, 2007. URL http://eprints.qut.edu.au/7115/. (Zitiert auf
den Seiten 7, 29, 46, 48, 50 und 77)

The DOT Language. http://www.graphviz.org/doc/info/lang.html. Zuletzt
abgerufen am 08. April 2011. (Zitiert auf den Seiten 59 und 88)

Europdischer Rat. Richtlinie 9o/270/EWG - Arbeit an Bildschirmge-
rdten. http://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=CELEX:
31990L0270:DE:HTML. Zuletzt abgerufen am o9. April 2011. (Zitiert auf Seite 12)

eval Core Function. https://developer.mozilla.org/en/JavaScript/
Reference/Global_Objects/Eval. Zuletzt abgerufen am 08. April 2011. (Zitiert
auf Seite 23)

XPath 2.0 Expression Syntax. http://saxon.sourceforge.net/saxon7.9.1/
expressions.html#except. Zuletzt abgerufen am 08. April 2011. (Zitiert auf
Seite 41)

Ext JS - Cross-Browser Rich Internet Application Framework. http://www.
sencha.com/products/extjs/. Zuletzt abgerufen am oy. April 2011. (Zitiert
auf Seite 64)

M. Fowler. Inversion of Control Containers and the Dependency Injection
pattern. http://martinfowler.com/articles/injection.html. Zuletzt abge-
rufen am 08. April 2011. (Zitiert auf Seite 55)

R. Gerth. Concise Promela Reference. http://spinroot.com/spin/Man/Quick.
html, 1997. Zuletzt abgerufen am 08. April 2011. (Zitiert auf Seite 19)

Graphviz - Graph Visualization Software. http://www.graphviz.org/. Zuletzt
abgerufen am 08. April 2011. (Zitiert auf den Seiten 47 und 59)

Greenpeace International. Guide to Greener FElectronics. http:
//www.greenpeace.org/international/en/campaigns/toxics/electronics/
Guide-to-Greener-Electronics/, 2010. Zuletzt abgerufen am 9. Mai 2011.
(Zitiert auf Seite 9)

GCC-Team. GCC, the GNU Compiler Collection. http://gcc.gnu.org/. Zuletzt
abgerufen am o1. April 2011. (Zitiert auf Seite 18)

Handelsblatt. EU installiert Finanzmarktpolizei. http://www.handelsblatt.
com/politik/international/eu-installiert-finanzmarktpolizei/
3545336.html, 2010. Zuletzt abgerufen am 9. Mai 2011. (Zitiert auf
Seite 9)

http://code.google.com/p/oryx-editor/wiki/DataManagementImplementation
http://code.google.com/p/oryx-editor/wiki/DataManagementImplementation
http://eprints.qut.edu.au/7115/
http://www.graphviz.org/doc/info/lang.html
http://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=CELEX:31990L0270:DE:HTML
http://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=CELEX:31990L0270:DE:HTML
https://developer.mozilla.org/en/JavaScript/Reference/Global_Objects/Eval
https://developer.mozilla.org/en/JavaScript/Reference/Global_Objects/Eval
http://saxon.sourceforge.net/saxon7.9.1/expressions.html##except
http://saxon.sourceforge.net/saxon7.9.1/expressions.html##except
http://www.sencha.com/products/extjs/
http://www.sencha.com/products/extjs/
http://martinfowler.com/articles/injection.html
http://spinroot.com/spin/Man/Quick.html
http://spinroot.com/spin/Man/Quick.html
http://www.graphviz.org/
http://www.greenpeace.org/international/en/campaigns/toxics/electronics/Guide-to-Greener-Electronics/
http://www.greenpeace.org/international/en/campaigns/toxics/electronics/Guide-to-Greener-Electronics/
http://www.greenpeace.org/international/en/campaigns/toxics/electronics/Guide-to-Greener-Electronics/
http://gcc.gnu.org/
http://www.handelsblatt.com/politik/international/eu-installiert-finanzmarktpolizei/3545336.html
http://www.handelsblatt.com/politik/international/eu-installiert-finanzmarktpolizei/3545336.html
http://www.handelsblatt.com/politik/international/eu-installiert-finanzmarktpolizei/3545336.html

Literaturverzeichnis

[how]

[Ink]

[ISO]

[jso]

[KLRM*10]

[Kocog]

[Kot1o]

[Lito8]

[1t1]

[Mii1o]

[Nowoo]

[Objog]

How to create a stencil set for oryx by the example of Let’s Dance. http://code.
google.com/p/oryx-editor/wiki/HowToCreateStencilSet. Zuletzt abgerufen
am 08. April 2011. (Zitiert auf Seite 22)

Inkscape Community. Inkscape Website. http://inkscape.org/. Zuletzt
abgerufen am 18. April 2011. (Zitiert auf Seite 23)

ISO 5807:1985. Information processing — Documentation symbols and conventions for
data, program and system flowcharts, program network charts and system resources
charts. ISO, Geneva, Switzerland. (Zitiert auf Seite 15)

Introducing JSON. http://json.org/index.html. Zuletzt abgerufen am o8.
April 2011. (Zitiert auf Seite 23)

D. Knuplesch, L. T. Ly, S. Rinderle-Ma, H. Pfeifer, P. Dadam. On enabling
data-aware compliance checking of business process models. In Proceedings
of the 29th international conference on Conceptual modeling, ER'10, pp. 332-346.
Springer-Verlag, Berlin / Heidelberg, 2010. URL http://portal.acm.org/
citation.cfm?id=1929757.1929789. (Zitiert auf Seite 30)

S. Koch. JavaScript - Einfiihrung, Programmierung und Referenz - inklusive Ajax.
dpunkt.verlag GmbH, Heidelberg, 2009. (Zitiert auf Seite 63)

F. Kotter. Prozessvarianten in unternehmensiibergreifenden Servicenetzwer-
ken. Diploma thesis, University of Stuttgart, Faculty of Computer
Science, Electrical Engineering, and Information Technology, Germany, 2010.
URL http://www2.informatik.uni-stuttgart.de/cgi-bin/NCSTRL/NCSTRL_
view.pl?id=DIP-3046&engl=1. (Zitiert auf den Seiten 7, 11, 31, 45, 53, 54,
75 und 81)

M. Little. BPMN 2.0 Virtual Roundtable Interview. http://www.infoq.com/
articles/bpmn-2, 2008. Zuletzt abgerufen am 23. April 2011. (Zitiert auf
Seite 12)

Promela Reference - LTL. http://www.spinroot.com/spin/Man/1tl.html. Zu-
letzt abgerufen am 08. April 2011. (Zitiert auf den Seiten 20 und 39)

J. Miiller. Modellierung und Auswertung musterbasierter Bedingungen an Ge-
schiftsprozessmodelle. Ph.D. thesis, Fakultit fiir Informations- und Kognitionswis-
senschaften, Eberhard-Karls-Universitiat Tiibingen, 2010. URL http://www-ti.
informatik.uni-tuebingen.de/ spruth/DiplArb/DissMueller.pdf. (Zitiert
auf Seite 29)

D. Nowotka. Networks and Processes. http://www.fmi.uni-stuttgart.de/
szs/teaching/ws0809/nets/, 2009. Vorlesungsfolien WS 2008/09. (Zitiert auf
den Seiten 16 und 18)

Object Management Group. Business Process Model and Notation (BPMN)
- Version 1.2. http://www.omg.org/spec/BPMN/1.2/, 2009. Zuletzt abgerufen
am 08. April 2011. (Zitiert auf Seite 12)

95

http://code.google.com/p/oryx-editor/wiki/HowToCreateStencilSet
http://code.google.com/p/oryx-editor/wiki/HowToCreateStencilSet
http://inkscape.org/
http://json.org/index.html
http://portal.acm.org/citation.cfm?id=1929757.1929789
http://portal.acm.org/citation.cfm?id=1929757.1929789
http://www2.informatik.uni-stuttgart.de/cgi-bin/NCSTRL/NCSTRL_view.pl?id=DIP-3046&engl=1
http://www2.informatik.uni-stuttgart.de/cgi-bin/NCSTRL/NCSTRL_view.pl?id=DIP-3046&engl=1
http://www.infoq.com/articles/bpmn-2
http://www.infoq.com/articles/bpmn-2
http://www.spinroot.com/spin/Man/ltl.html
http://www-ti.informatik.uni-tuebingen.de/~spruth/DiplArb/DissMueller.pdf
http://www-ti.informatik.uni-tuebingen.de/~spruth/DiplArb/DissMueller.pdf
http://www.fmi.uni-stuttgart.de/szs/teaching/ws0809/nets/
http://www.fmi.uni-stuttgart.de/szs/teaching/ws0809/nets/
http://www.omg.org/spec/BPMN/1.2/

Literaturverzeichnis

[Obj1o]

[Obj11]

[Oraa]

[Orab]

[ory]

[ory11]

[Peto7]

[pnma]

[pnmb]

[Polo7]

[PPSMo3]

[pro]

[RAAMo6]

[SALMog]

96

Object Management Group. OMG Unified Modeling Language (OMG UML)
Infrastructure - Version 2.3. http://www.omng.org/spec/UML/2.3/, 2010. Zuletzt
abgerufen am 18. April 2011. (Zitiert auf Seite 15)

Object Management Group. Business Process Model and Notation (BMN) -
Version 2.0. http://www.omg.org/spec/BPMN/2.0/, 2011. Zuletzt abgerufen am
08. April 2011. (Zitiert auf den Seiten 12, 15, 16, 39, 40 und 47)

Oracle Corporation. Java Servlet Technology. http://www.oracle.com/
technetwork/java/javaee/servliet/index.html. Zuletzt abgerufen am o8.
April 2011. (Zitiert auf Seite 23)

Oracle Corporation. Oracle VirtualBox. http://www.virtualbox.org/. Zuletzt
abgerufen am o7. Mai 2011. (Zitiert auf Seite 72)

The Oryx Project. http://bpt.hpi.uni-potsdam.de/0ryx/WebHome. Zuletzt
abgerufen am 08. April 2011. (Zitiert auf Seite 20)

Oryx SVN Repository. http://code.google.com/p/oryx-editor/source/
browse/trunk, 2011. Zuletzt abgerufen am 18. April 2011. (Zitiert auf Sei-
te 21)

N. Peters. Oryx - Stencil Set Specification, 2007. Bachelor’s Thesis, Universitét
Potsdam. (Zitiert auf den Seiten 22 und 23)

PNML 2 dot converter. http://pnml.1ip6.fr/pnml2dot/introduction.html.
Zuletzt abgerufen am 02. April 2011. (Zitiert auf den Seiten 47 und 59)

Pnml.org - PNML reference site. http://www.pnml.org/. Zuletzt abgerufen am
03. Mai 2011. (Zitiert auf Seite 59)

D. Polak. Oryx - BPMN Stencil Set Implementation, 2007. Bachelor’s Thesis,
Universitdt Potsdam. (Zitiert auf Seite 22)

M. Pradella, P. S. Pietro, P. Spoletini, A. Morzenti1. Practical Model Checking
of LTL with Past. In ATVA03. 2003. (Zitiert auf Seite 78)

Prototype JavaScript framework. http://www.prototypejs.org/. Zuletzt abge-
rufen am oy. April 2011. (Zitiert auf Seite 64)

N. Russell, Arthur, W. M. P. van der Aalst, N. Mulyar. Workflow Control-Flow
Patterns: A Revised View. Technical report, BPMcenter.org, 2006. (Zitiert auf
Seite 28)

D. Schleicher, T. Anstett, F. Leymann, R. Mietzner. Maintaining Complian-
ce in Customizable Process Models. In R. Meersman, T. Dillon, P. Her-
rero, editors, Proceedings of the 17th International Conference on COOPERA-
TIVE INFORMATION SYSTEMS (CoopIS 2009), volume 5870 of Lecture
Notes in Computer Science, pp. 60-75. Springer Verlag, Heidelberg, 2009.
URL http://www2.informatik.uni-stuttgart.de/cgi-bin/NCSTRL/NCSTRL_
view.pl?id=INPROC-2009-70&engl=0. (Zitiert auf den Seiten 7, 25 und 26)

http://www.omg.org/spec/UML/2.3/
http://www.omg.org/spec/BPMN/2.0/
http://www.oracle.com/technetwork/java/javaee/servlet/index.html
http://www.oracle.com/technetwork/java/javaee/servlet/index.html
http://www.virtualbox.org/
http://bpt.hpi.uni-potsdam.de/Oryx/WebHome
http://code.google.com/p/oryx-editor/source/browse/trunk
http://code.google.com/p/oryx-editor/source/browse/trunk
http://pnml.lip6.fr/pnml2dot/introduction.html
http://www.pnml.org/
http://www.prototypejs.org/
http://www2.informatik.uni-stuttgart.de/cgi-bin/NCSTRL/NCSTRL_view.pl?id=INPROC-2009-70&engl=0
http://www2.informatik.uni-stuttgart.de/cgi-bin/NCSTRL/NCSTRL_view.pl?id=INPROC-2009-70&engl=0

Literaturverzeichnis

[SALS10]

[sax]

[Schi1]

[sig]

[Silog]

[Son11]

[Spia]

[spib]

[svg]

[SWLS10]

[The]

[Tsco7]

[VFo7]

D. Schleicher, T. Anstett, F. Leymann, D. Schumm. Compliant Business Pro-
cess Design Using Refinement Layers. In T. D. et al. R. Meersman, editor,
accepted for publication in OTM 2010 Conferences. Springer Verlag, Berlin / Hei-
delberg, 2010. URL http://www2.informatik.uni-stuttgart.de/cgi-bin/
NCSTRL/NCSTRL_view.pl?id=INPROC-2010-76&engl=0. (Zitiert auf Seite 36)

The SAXON XSLT and XQuery Processor. http://saxon.sourceforge.net/.
Zuletzt abgerufen am 08. April 2011. (Zitiert auf Seite 63)

J. Schiller. SVG Support. http://www.codedread.com/svg-support.php, 2011.
Zuletzt abgerufen am 18. April 2011. (Zitiert auf Seite 23)

Signavio Products Overview. http://www.signavio.com/en/products/
overview.html. Zuletzt abgerufen am 18. April 2011. (Zitiert auf Seite 20)

B. Silver. BPMN Method and Style. Cody-Cassidy Press, Aptos, CA, 2009. (Zitiert
auf Seite 15)

Sony Computer Entertainment FEurope Limited. PSN/Qriocity
Service Update. http://blog.de.playstation.com/2011/04/26/
psngriocity-service-update/, 2011. Zuletzt abgerufen am 9. Mai 2011.
(Zitiert auf Seite 9)

Spin Homepage. http://spinroot.com/spin/whatispin.html. Zuletzt abge-
rufen am 08. April 2011. (Zitiert auf den Seiten 18 und 46)

SpinJa - a model checker for Promela, written in Java. http://code.google.
com/p/spinja/. Zuletzt abgerufen am 02. Mai 2011. (Zitiert auf Seite 46)

Scalable Vector Graphics (SVG) 1.1 (Second Edition). http://www.w3.org/TR/
SVG11/. Zuletzt abgerufen am 27. Médrz 2011. (Zitiert auf Seite 23)

D. Schleicher, M. Weidmann, F. Leymann, D. Schumm. Compliance Sco-
pes: Extending the BPMN 2.0 Meta Model to Specify Compliance Requi-
rements. In Proceedings of SOCA 2010, pp. 1-18. IEEE Computer Socie-
ty, 2010. URL http://www2.informatik.uni-stuttgart.de/cgi-bin/NCSTRL/
NCSTRL_view.pl?id=INPROC-2010-93&engl=1. (Zitiert auf den Seiten 25, 34
und 35)

The Apache Software Foundation. Apache loggj. http://logging.apache.org/
log4j/. Zuletzt abgerufen am 08. April 2011. (Zitiert auf Seite 63)

W. Tscheschner. Oryx - Dokumentation, 2007. Bachelor’s Thesis, Universitat
Potsdam. (Zitiert auf den Seiten 21 und 22)

C. Vaz, C. Ferreira. Towards Automated Verification of Web Services. In
Proceedings of the IADIS International Conference on WWW/Internet. Vila Real,
Portugal, 2007. (Zitiert auf den Seiten 28, 29 und 46)

97

http://www2.informatik.uni-stuttgart.de/cgi-bin/NCSTRL/NCSTRL_view.pl?id=INPROC-2010-76&engl=0
http://www2.informatik.uni-stuttgart.de/cgi-bin/NCSTRL/NCSTRL_view.pl?id=INPROC-2010-76&engl=0
http://saxon.sourceforge.net/
http://www.codedread.com/svg-support.php
http://www.signavio.com/en/products/overview.html
http://www.signavio.com/en/products/overview.html
http://blog.de.playstation.com/2011/04/26/psnqriocity-service-update/
http://blog.de.playstation.com/2011/04/26/psnqriocity-service-update/
http://spinroot.com/spin/whatispin.html
http://code.google.com/p/spinja/
http://code.google.com/p/spinja/
http://www.w3.org/TR/SVG11/
http://www.w3.org/TR/SVG11/
http://www2.informatik.uni-stuttgart.de/cgi-bin/NCSTRL/NCSTRL_view.pl?id=INPROC-2010-93&engl=1
http://www2.informatik.uni-stuttgart.de/cgi-bin/NCSTRL/NCSTRL_view.pl?id=INPROC-2010-93&engl=1
http://logging.apache.org/log4j/
http://logging.apache.org/log4j/

Literaturverzeichnis

[WMMog]

[Wol1o]

[xpa]

[YMH*06]

98

C. Wolter, P. Miseldine, C. Meinel. Verification of Business Process Entailment
Constraints Using SPIN. In F. Massacci, S. Redwine, N. Zannone, editors,
Engineering Secure Software and Systems, volume 5429 of Lecture Notes in Computer
Science, pp. 1-15. Springer Berlin / Heidelberg, 2009. URL http://dx.doi.org/
10.1007/978-3-642-00199-4_1. (Zitiert auf den Seiten 29 und 46)

C. Wolter. A Methodology for Model-Driven Process Security. Ph.D.
thesis, Hasso-Plattner Institute for IT Systems Engineering, 201o0.
URL http://www.hpi.uni-potsdam.de/forschung/publikationen/
dissertationen/dissertation_christian_wolter.html. (Zitiert auf den
Seiten 29, 46 und 50)

XML Path Language (XPath) 2.0 (Second Edition). http://www.w3.org/TR/
xpath20/. Zuletzt abgerufen am 08. April 2011. (Zitiert auf den Seiten 40
und 41)

J. Yu, T. Manh, J. Han, Y. Jin, Y. Han, J. Wang. Pattern Based Property Spe-
cification and Verification for Service Composition. In K. Aberer, Z. Peng,
E. Rundensteiner, Y. Zhang, X. Li, editors, Web Information Systems — WISE 2006,
volume 4255 of Lecture Notes in Computer Science, pp. 156—168. Springer Berlin /
Heidelberg, 2006. (Zitiert auf den Seiten 8 und 27)

http://dx.doi.org/10.1007/978-3-642-00199-4_1
http://dx.doi.org/10.1007/978-3-642-00199-4_1
http://www.hpi.uni-potsdam.de/forschung/publikationen/dissertationen/dissertation_christian_wolter.html
http://www.hpi.uni-potsdam.de/forschung/publikationen/dissertationen/dissertation_christian_wolter.html
http://www.w3.org/TR/xpath20/
http://www.w3.org/TR/xpath20/

Erkldrung

Hiermit versichere ich, diese Arbeit selbstindig
verfasst und nur die angegebenen Quellen
benutzt zu haben.

(Stefan Grohe)

	1 Einführung
	1.1 Aufgabenstellung
	1.2 Gliederung der Arbeit

	2 Anforderungen
	3 Grundlagen
	3.1 Business Process Model and Notation
	3.2 Model Checking
	3.3 Spin
	3.4 Oryx
	3.5 Scalable Vector Graphics
	3.6 JavaScript Object Notation

	4 Vorhandene Ansätze und Vorarbeiten
	4.1 Definition des Compliance Scopes
	4.2 Definition des Compliance Templates
	4.3 Ansätze zur Kontrollflussverifikation
	4.4 Ansätze zur Verifikation des Datenflusses
	4.5 Vorarbeiten der Diplomarbeit zur Variabilität

	5 Konzept
	5.1 Der Compliance Scope
	5.2 Der Regelbaum
	5.3 LTL-Diagramme
	5.4 Das Ergebnis eines Compliance Checks
	5.5 Arbeiten mit Compliance Scopes
	5.6 Wahl des Model Checkers
	5.7 Mapping des BPMN-Modells auf die Systembeschreibung

	6 Implementierung
	6.1 Übersicht
	6.2 Backend
	6.3 Frontend
	6.4 Erweiterbarkeit
	6.5 Komplexitätsbetrachtungen

	7 Zusammenfassung und Ausblick
	7.1 Zusammenfassung
	7.2 Ausblick

	A Anhang
	A.1 Inhalt und Aufbau des beigelegten Datenträgers
	A.2 Aufsetzen der Entwicklungsumgebung
	A.3 Anleitung
	A.4 Graphische Darstellung der generierten Petrinetze
	A.5 Mapping von BPMN auf Prozesse/Channels

	Literaturverzeichnis

