
Institut für Parallele und Verteilte Systeme
Universität Stuttgart

Universitätsstraße 38
D–70569 Stuttgart

Diplomarbeit Nr. 3116

Entwicklung eines Werkzeugs zur
standardisierten Verarbeitung von

Prozessdaten und operativen
Daten

Bernhard Maier

Studiengang: Informatik

Prüfer: Prof. Dr. Bernhard Mitschang

Betreuer: M.Sc. Florian Niedermann

begonnen am: 27. Oktober 2010

beendet am: 14. April 2011

CR-Klassifikation: H.4.1, H.2.8, H.5.2

Inhaltsverzeichnis

1 Abstract / Kurzfassung 8
1.1 Abstract . 8

1.2 Kurzfassung . 8

2 Einleitung 10
2.1 Einführung . 10

2.2 Motivation . 11

2.3 Aufgabenstellung . 12

2.4 Verwandte Arbeiten . 13

2.5 Gliederung . 15

3 Grundlagen 16
3.1 Workflows und Geschäftsprozesse . 16

3.2 Workflow Management Systeme . 17

3.3 Modellierung von Prozessen und Workflows . 17

3.3.1 BPMN 1.1 . 18

Die graphischen Objekte von BPMN 1.1 18

Beispiel . 20

3.3.2 WS-BPEL 2.0 . 20

Geschichte von WS-BPEL . 21

Sprachelemente von WS-BPEL . 21

3.4 IBM WebSphere Process Server . 23

3.5 Data Mining . 25

3.5.1 Überblick über gängige Data Mining Verfahren 26

Assoziationsanalyse . 26

Klassifizierung . 27

Regression . 28

Klassenbildung . 28

3.6 Preprocessing . 29

3.6.1 Data Cleaning . 30

3.6.2 Data Integration . 31

3.6.3 Data Transformation . 32

3.6.4 Data Reduction . 32

3.6.5 Spezifisches Preprocessing für Klassenbildung, Assoziationsanalyse
und Regression . 34

Preprocessing für Klassenbildungs-Methoden (Clustering) 34

Preprocessing für Assoziationsregel-Methoden: Diskretisierung 35

2

Preprocessing für Regression . 36

4 Lösungsansatz 37
4.1 Analyse der Aufgabenstellung . 37

4.2 Die Architektur des Werkzeugs (statische Sicht) 39

4.3 Die Filter der Datenpipeline . 39

4.3.1 Szenario: Bewertung von Versicherungsfällen („Fraud Detection“) . . . 40

4.3.2 Ziel des Werkzeugs . 40

4.3.3 Verwendung des Werkzeugs . 41

4.3.4 Der Filter für die Extraktion und Transformation der Audit Daten . . . 41

4.3.5 Der Filter für die Berechnung der Metriken 42

4.3.6 Der Filter für die Konsolidierung . 43

4.3.7 Preprocessing . 44

4.3.8 Data Mining . 45

4.3.9 Die graphische Benutzerschnittstelle . 46

5 Entwurf des Werkzeugs 47
5.1 Entwurf der graphischen Benutzeroberfläche . 47

5.1.1 Ziel . 47

5.1.2 Entwurf der graphischen Benutzeroberfläche 47

5.2 Extraktion der Audit Daten . 49

5.2.1 Ziel . 49

5.2.2 Entwurf der Extraktion . 51

5.3 Berechnung der Metriken . 54

5.3.1 Ziel . 54

5.3.2 Entwurf zur Berechnung der Metriken 55

5.4 Konsolidierung . 58

5.4.1 Ziel . 58

5.4.2 Entwurf . 58

Benutzer-Schnittstelle . 58

Konsolidierungsvorgang . 58

5.5 Preprocessing . 61

5.5.1 Ziel . 61

5.5.2 Entwurf . 61

5.6 Anwendung von Data Mining Verfahren zur Optimierung von Workflows . . 61

5.6.1 Unterstützung von der Task Automation Best Practice [RLM04] durch
Data Mining auf konsolidierten Prozessdaten und operativen Daten . . 61

5.6.2 Entscheidungsbäume und Modellbäume: Die Algorithmen C4.5 und
M5P . 62

C4.5 . 62

M5P . 66

5.7 Entwurf des Classifier-Webservice . 71

3

6 Implementierung des Werkzeugs 72
6.1 Implementierung der graphischen Benutzerschnittstelle 72

6.1.1 Die Pipeline-Visualisierung . 72

6.1.2 Protokoll und Hilfetextfenster . 72

6.1.3 DEA . 73

6.2 Implementierung der Extraktion . 74

6.3 Implementierung der Metriken . 77

6.3.1 Implementierung Benutzer-spezifischer Metriken 78

6.4 Implementierung der Konsolidierung . 79

6.4.1 AttributeTable: Ein Bedienelement zur Steuerung der Konsolidierung . 80

6.4.2 Binarisierung . 80

6.5 Implementierung des Preprocessing . 83

6.6 Implementierung des Data Mining . 84

6.7 Implementierung des Classifier-Webservice . 85

7 Zusammenfassung und Ausblick 86
7.1 Zusammenfassung . 86

7.2 Ausblick . 87

Literaturverzeichnis 89

4

Abbildungsverzeichnis

2.1 Die Architektur der deep Business Optimization Platform. Die hellgrün her-
vorgehobenen Teile wurden in der Diplomarbeit bearbeitet. 12

4.1 Datenpipeline . 38

4.2 Architektur des Werkzeugs. 39

4.3 Geschäftsprozess zur Verarbeitung von Versicherungsfällen. 40

4.4 Der 3-stufige Extraktionsvorgang. 42

4.5 Konsolidierung der Prozessdaten und operativen Daten. 43

4.6 Ansicht für den Filter Konsolidierung. 44

4.7 Ansicht für den Filter Preprocessing. Dargestellt ist eine Liste aller Attribute
der Aktivitätstabelle die der Benutzer bearbeiten kann. Außerdem werden
statistische Eigenschaften ausgewählter Attribute visualisiert (Balkendiagramm) 45

4.8 Ein Entscheidungsbaum zur Kategorisierung von Versicherungsfällen. Dieser
Classifier kann zur Automatisierung der Aktivität „Einordnung in Risiko-
klassen“ (siehe Abbildung 4.3) mittels eines Classifier-Webservice verwendet
werden. 46

5.1 Vereinfachter deterministischer endlicher Automat zur Kontrolle der Benut-
zerinteraktion. Es sind nicht alle Zustände und Kanten dargestellt. 49

5.2 Erstellung der Aktivitätstabellen. Links: XML Datei mit Informationen über
Aktivität X. Rechts: Aktivitätstabelle. 52

5.3 Daten- und Kontrollfluss bei der Extraktion der Prozessdaten. 52

5.4 Erweiterung der Aktivitätstabellen. Oben: Metrik-Klassen die die Funktion
getSQLName definieren. Unten: Erweiterte Aktivitätstabelle. 55

5.5 Beispiel für eine 1:N Beziehung zwischen einer Aktivitätstabelle und einer
entsprechenden operativen Tabelle. Die Aktivitätsinstanz mit der ID 2102 hat
2 Join-Partner in der operativen Tabelle. 60

6.1 Klassendiagramm der GUI Klassen. 73

6.2 Klassendiagramm der DEA Klassen. 74

6.3 Klassendiagramm Extraktion . 76

6.4 Klassendiagramm Metriken . 78

6.5 Klassendiagramm Attribute Table. 81

6.6 Klassendiagramm Matchings. 82

6.7 Klassendiagramm für den Preprocessing Schritt. Das TAPreprocessingPanel
erbt von dem entsprechenden WEKA Panel. 83

5

6.8 Klassendiagramm für den Data Mining Schritt. Das TAMiningPanel erbt von
dem entsprechenden WEKA Panel. 84

Tabellenverzeichnis

2.1 Geschäftsprozesse von IBM (1991) in den Bereichen Kapitalbilanz und Finanz-
planung [Har91] . 10

3.1 Beispiele für Flow Objects in BPMN. Links: Ereignisse. Mitte: Aktivitäten.
Rechts: Gateways. 19

5.1 Use Case: Audit-Daten extrahieren. 50

5.2 Use Case: Metriken berechnen. 54

5.3 Use Case: Konsolidierung. 59

5.4 Beispiel Vorverarbeitung : Sortierung der nominalen Werte bezüglich Klassen-
mittelwert und Neukodierung der nominalen Werte 67

Verzeichnis der Listings

3.1 BPEL Code zur Deklaration von partnerLinks. 21

3.2 BPEL Code zur Deklaration von correlationSets. 22

3.3 BPEL Code zur Deklaration von correlations. 22

3.4 BPEL Code zur Deklaration von Variablen. 22

3.5 BPEL Code zur Deklaration von faultHandlern. 23

5.1 Beispiel Datei für eine XML Eingabedatei, die vom dBOP Designer geliefert
wird. 53

5.2 XML Schema für die Ausgabe der Metriken. 57

5.3 Beispiel Datei für Matchings. 60

5.4 XML Schema für die Ausgabe der Data Mining Ergebnisse. 70

6.1 Beispiel für die Verwendung der Business Flow Manager API zum Auslesen
von Auditdaten. 75

6.2 Beispiel für SQL Code zur Bestimmung des Medians. Hier wird der Median
von WAITINGTIME berechnet . 77

6

6.3 Registrierung der Standardmetriken (z.B. Ausführungsdauer von Aktivitäten)
in der Methode BPAClientFrame.calculateCustomMetrics(). 79

6.4 Beispiel: SQL Code den das Werkzeug generiert und ausführt, um zu prüfen,
ob Spalte ID der Tabelle FORTBILDUNGEN binarisiert werden muss. 82

6.5 Beispiel: SQL Code den das Werkzeug generiert und ausführt, um Mehr-
facheinträge für dieselben Entities (hier:Angestellte) miteinander zu ver-
schmelzen. 82

6.6 Methode zum Auslesen eines Classifiers (z.B. Entscheidungsbaum) aus der
XML Ausgabe des Werkzeugs. 85

Verzeichnis der Algorithmen

5.1 Pseudocode des C4.5. Der Pseudocode stammt aus [Qui93] und wurde in
seiner Darstellung an die Diplomarbeit angepasst. 64

7

1 Abstract / Kurzfassung

1.1 Abstract

In many lines of business, the execution of formally described business processes called
workflows on Workflow Management Systems is already established and is gaining in
importance. As many of these workflows describe the core processes, their performance is of
key importance to the respective business. Consequently, businesses seek to optimize them
with respect to their process goals (e.g. cost, benefit or customer satisfaction).
The deep Business Optimization Platform (dBOP [NRM10]) provides the basis for the
optimization of workflows spanning their whole lifecycle including the design-, execution-
and the analysis stage. The platform consists of the layers “Data Integration”, “Process
Analytics” und “Process Optimization”. In the Data Integration layer, relevant sources of
data are extracted and integrated. In the Process Analytics layer, this data is analyzed and
data mining models as well as other insights are generated. These insights can be used in
the Process Optimization layer in order to optimize workflow models.
This thesis elaborates on the design and the implementation of the Data Integration layer
and the Process Analytics layer. These layers are the basis of the dBOP. The implemented
software supports the whole process from extraction of relevant data to its analysis, and it
provides its output as XML file for a later use in a webservice. The system was modeled as a
pipes-filters [LL07] architecture. This led to a division into 5 steps of processing for the data.
These “filters” were designed and implemented in the software.
The user is supported in configuring and running the filters by graphical and text-based
widgets. With it, principles of human machine interaction are taken under consideration.
For the exchange of the data mining models and other data with existing dBOP software,
respective XML schemas were created. A sample scenario from the insurance business domain
demonstrates the application of the thesis results as well as showing their relevance.

1.2 Kurzfassung

In vielen Branchen ist die Unterstützung wichtiger Geschäftsprozesse durch Workflow
Management Systeme bereits etabliert und gewinnt weiter an Bedeutung. Oftmals kann
durch Optimierung eines Workflows dessen Qualität in Bezug auf Kosten, Nutzen,
Kundenzufriedenheit und Ausführungsdauer verbessert werden. Die deep Business
Optimization Platform (dBOP [NRM10]) bildet die Basis zur Optimierung von Workflows in
allen Phasen ihres Lebenszykluses: Entwurfs-, Ausführungs- und Analysephase.
Die Plattform besteht aus den Schichten Data Integration, Process Analytics und Process

8

1.2 Kurzfassung

Optimization. In der Data Integration Schicht werden relevante Datenquellen, also
Prozessdaten und sonstige operative Daten, zusammengeführt. In der Process Analytics
Schicht werden diese Daten analysiert und Modelle und sonstige Erkenntnisse gewonnen,
die dann in der Process Optimization Schicht zur Optimierung bestehender Prozessmodelle
genutzt werden können.
In dieser Diplomarbeit wird auf den Entwurf und die Implementierung der Data Integration
und Process Analytics Schichten eingegangen, die die Basis der Platform bilden.
Die entwickelte Software unterstützt den gesamten Ablauf bis zur Analyse der Daten und
stellt die Analyse-Ergebnisse für eine spätere Verwendung in einem Webservice bereit.
Die Systemsicht der Software wurde als Pipes-Filters Architektur [LL07] modelliert. Daraus
ergab sich eine Einteilung in 5 Verarbeitungsschritte, die die relevanten Daten durchlaufen
müssen. Sie wurden im Rahmen der Diplomarbeit entworfen und implementiert.
Der Benutzer wird während des Ablaufs bis hin zur Modellerstellung mit entsprechenden
graphischen und textbasierten Widgets, unter Berücksichtigung von Gesichtspunkten der
Mensch-Maschine-Interaktion (HMI) [NW87] unterstützt. Für den Datenaustausch mit
bestehender dBOP-Software auf Basis von XML, also z.B. zur Ausgabe der gewonnen
Modelle, wurden geeignete XML Schemata erstellt. Ein Anwendungsszenario aus der
Versicherungsbranche unterstreicht die Relevanz der Arbeit.

9

2 Einleitung

2.1 Einführung

In vielen Branchen ist es heutzutage Standard, dass wichtige Geschäftsprozesse durch Work-
flow Management Systeme unterstützt werden. Unter einem Geschäftsprozess (Business
Process) versteht man einen Ablauf in einem Unternehmen, der in Aktivitäten untergliedert
ist, die von verschiedenen Sachbearbeitern oder Ressourcen des Unternehmens ausgeführt
werden, und der eine bestimmte Aufgabe erledigt. Zum Beispiel wird in einer Bank ein
Geschäftsprozess angestoßen, wenn ein Kunde einen Kredit beantragt. Den Computer-
gestützten Teil eines Geschäftsprozesses bezeichnet man als Workflow-Modell [LR00].
Workflow Management Systeme können Workflow-Modelle interpretieren und die darin vor-
gesehenen Abläufe anstoßen. Die Instanz des Workflow-Modells die dabei zur Ausführung
kommt ist eine Workflow-Instanz oder kurz ein Workflow.
In größeren Unternehmen gibt es eine Vielzahl von Geschäftsprozessen, die für eine Un-
terstützung durch Workflow Management Systeme in Frage kommen. In [Har91] sind z.B.
die typischen Geschäftsprozesse der Firma IBM zu finden. Bei IBM gab es 1991 allein 20

verschiedene Geschäftsprozesse der Sparte Kapitalbilanz, und daneben in der Sparte Fi-
nanzielle Planung 8 verschiedene Geschäftsprozesse (siehe Tabelle 2.1). Außerdem gab es

Kapitalbilanz Ledger control (Buchführung)
Payroll (Gehaltsliste)
Taxes (Steuern)
Accounts receivable (Buchforderungen)
Accounts payable (Verbindlichkeiten)
usw...

Finanz-Planung Budget control (Budget Kontrolle)
Cost estimating (Kostenschätzung)
Business planning (Geschäftsplanung)
Contract management (Vetragsverwaltung)
usw...

Tabelle 2.1: Geschäftsprozesse von IBM (1991) in den Bereichen Kapitalbilanz und Finanz-
planung [Har91]

Geschäftsprozesse in den Sparten: Entwicklung, Vertrieb, Informationssysteme, Produktions-
kontrolle, Einkauf, Personal, Programmierung, Qualität, usw.

10

2.2 Motivation

2.2 Motivation

Während früher der Fokus bei den Workflow Management Systemen 1 auf dem Entwurf und
der Ausführung von Workflows lag, so gibt es seit einigen Jahren die Bestrebung solche Sys-
teme um Fähigkeiten der Prozessdiagnose zu erweitern. Das Business Process Management
(BPM) ist eine Management Disziplin die diese Idee propagiert. In [ATHW03] wird Business
Process Management definiert als:„Supporting business processes using methods, techniques,
and software to design, enact, control, and analyse operational processes involving humans,
organisations, applications, documents and other sources of information.“
Jedoch wird der Analyseschritt im Lebenszyklus von Workflows oft nicht ausreichend un-
terstützt. Die Analyse von Workflows, die die Basis zu ihrer Verbesserung ist, hat eine
hohe Bedeutung, gerade wenn sich Unternehmen in einem vom Wandel geprägten Umfeld
bewegen, in dem sie flexibel und schnell auf Änderungen reagieren können müssen. An
der Universität Stuttgart wird derzeit die deep Business Optimization Platform entwickelt,
die eine (automatisierte) Optimierung von Workflows während aller Phasen des Workflow-
Lebenszyklus erlauben soll.
In [NRM10] wird die Optimierung in der Analyse Phase besprochen. Abbildung 2.1 zeigt die
Architektur der Software. Sie besteht aus den 3 Schichten „Data Integration“, „Process Ana-
lytics“ und „Process Optimzation“. In der Data Integration Schicht wird der Audit Trail des
WFMS ausgelesen und mit operativen Daten zusammengeführt, die z.B. in Human Resource
Systemen vorliegen. Diese Daten werden in einem Data Warehouse abgelegt, durchlaufen
dann in der Process Analytics Schicht einen Preprocessing Schritt und werden mit Metriken
angereichert und schließlich analysiert. Die daraus gewonnenen Erkenntnisse/Modelle wer-
den im Process Insight Repository (PIR) gespeichert. Die Process Optimzation Schicht nutzt
diese Erkenntnisse im Rahmen einer Muster-basierten Optimierung. Dabei werden in einem
Pattern Catalogue Muster vorgehalten, die in einem zu optimierenden Workflow erkannt
werden können.

1Mittlerweile ist der Name „Business Process Management System“ (BPMS) gebräuchlicher, als Workflow
Management System. Die Funktionalität ist aber im Großen und Ganzen dieselbe.

11

2.3 Aufgabenstellung

Data
Integration

Process Analytics

Process
Optimization

Business
Process

Process Model

Deployment

BPMS

Process
Execution

Operational
Systems

HR/Payroll

Inventory

CRMDWH

ETL

Operational
Data

Process Data

Audit Trail
DB

Match-
ing

Integrated DWH

Optimized
Process

Analysis

Process Insight
Repository (PIR)

Business Analyst

Pattern detectionPattern application

Pattern
Catalogue

Metric Calc.

 Runtime
 Utilization
 Cost

Graph analysis
& matching

Preprocessing

Abbildung 2.1: Die Architektur der deep Business Optimization Platform. Die hellgrün
hervorgehobenen Teile wurden in der Diplomarbeit bearbeitet.

2.3 Aufgabenstellung

In dieser Diplomarbeit soll ein Teil der deep Business Optimization Platform implementiert
werden.
Dazu ist eine Software zu entwickeln, die Auditdaten über Workflows von einem IBM Web-
sphere Process Server abrufen kann. Da die Auditdaten (auch „Prozessdaten“ genannt) sich
auf BPEL, also auf eine ausführungsorientierte Workflow-Notation beziehen, die Workflows
aber in BPMN modelliert werden, ist eine entsprechende Transformation auf Basis von Map-
pings durchzuführen. Die Mappings werden als Ausgabe eines bereits verfügbaren Workflow
Modellierungswerkzeugs („dBOP Designer“) in Form einer XML Datei bereitgestellt.
Die Software soll außerdem folgende funktionale Anforderungen erfüllen:

• Für die BPMN Aktivitäten sollen standardisierte Prozessmetriken berechnet werden
können. Diese Metriken sollen an einer Schnittstelle zum dBOP Designer verfügbar
gemacht werden.

• Für das Matching im Data Integration Layer der dBOP Architektur soll der Anwender
die Inhalte und den Umfang der Extraktion der operativen Daten steuern können.
Die Auditdaten und operativen Daten sollen durch die Software konsolidiert werden,
dafür sollen die Matchings, die mit dem sogenannten BIA Matching Editor [RD00]

12

2.4 Verwandte Arbeiten

erzeugt werden können, verarbeitet werden. Matchings sind semantische Äquivalenzen
zwischen Prozessattributen und operativen Attributen.

• Der Anwender soll die Konsolidierung über ein geeignetes Interface konfigurieren
können.

• Die Software soll die Daten für das Data Mining denormalisieren und eine Reihe von
Preprocessing-Techniken zur Aufbereitung für das Data Mining anbieten.

• Die Ergebnisse sollen in einer einzelnen Tabelle zur Verfügung gestellt werden und ein
entsprechendes Data Mining Verfahren soll prototypisch implementiert werden.

Ergänzend dazu ist ein Szenario zu beschreiben, bei dem der Data Mining Algorithmus
die Optimierung sinnvoll unterstützt. Für die Ausgabedateien des Werkzeugs sollen XML
Schemata erstellt werden.
Der Bericht soll die angewendeten Verfahren beschreiben, und darüber hinaus verschiedene
Preprocessing Techniken aus entsprechender Fachliteratur behandeln.

2.4 Verwandte Arbeiten

In diesem Kapitel sollen Arbeiten vorgestellt werden die ähnlich wie in dieser Diplomarbeit
Analyseverfahren auf Workflows und Audit Daten anwenden. Van der Aalst führt in [Aal]
den Begriff des „Process Mining“ ein und unterscheidet 5 Typen des Process Minings:

1. Grundlegende Prozessmetriken bestimmen. Wenn das Prozessmodell für einen be-
trieblichen Ablauf bekannt ist, können solche Metriken bestimmt werden, z.B. mittlere
Dauer oder Ausführungshäufigkeit einer einzelnen Aktivität.

2. Ein Prozessmodell erstellen.

3. Modell einer Organisation erstellen. Dabei handelt es sich um Aufgaben, die auf der
Grundlage von Audit Daten betrieblicher Systeme, wie z.B. ERP (Enterprise Resource
Planning) und SCM (Supply Chain Management) Systemen durchgeführt werden.

4. Ein soziales Netzwerk analysieren (Beziehungen zwischen Sachbearbeitern und zwi-
schen Ressourcen)

5. Leistungseigenschaften analysieren (Regeln ableiten die z.B. besonders gute Leistungen
von Ressourcen erklären)

In [ADH+
03] beschreiben Van der Aalst et al. „Workflow Mining“ also die Erstellung eines

Prozessmodells anhand von Auditdaten betrieblicher Informationssysteme (Vgl. Punkt 2

oben). Das Ziel ist die Gewinnung eines Prozessmodells als Petri Netz unter Verwendung
möglichst elementarer Audit Daten wie z.B. Auflistungen davon, welche Aktivitäten nach-
einander aktiviert wurden.
Dabei ist den Autoren wichtig auch dann ein korrektes Prozessmodell ermitteln zu können
wenn die Auditdaten „verrauscht“ sind, wenn also in einigen Prozessinstanzen Aktivitä-
ten ausnahmsweise nicht zur Ausführung gekommen sind oder z.B. vertauscht wurden.

13

2.4 Verwandte Arbeiten

Workflow Mining kann für eine „Delta Analyse“ wichtig sein: Wenn ein Workflow Desi-
gner prüfen möchte, welche Abweichungen es vom vorgegebenen Workflow gegeben hat.
Wenn eine Abweichung immer öfter erfolgt, und zur Regel wird, muss möglicherweise der
Workflow überarbeitet werden. Die Autoren nennen jedoch als primäres Ziel des Workflow
Minings, zu verstehen was in einem Unternehmen tatsächlich abläuft [ADH+

03]. Es ist somit
kein Tool für den Entwurf oder die Anpassung von Prozessen. Ein wichtiges Teilproblem
beim Workflow Mining ist das „Conformance Testing“ [Roz06]. Dabei wird berechnet, wie
gut ein potentielles Prozessmodell zu den aufgezeichneten Auditdaten passt. Die Autoren
unterscheiden als Maße dafür die „Fitness“ und die „Appropriateness“. Diese Maße erfassen,
inwieweit es sich bei einem gegebenen Prozessmodellkandidaten um eine minimale Struktur
handelt und inwieweit es dem, in den Auditdaten protokollierten, Verhalten entspricht. Diese
Kriterien müssen geprüft werden da es zum einen leicht ist, ein Prozessmodell zu generieren,
das jedem beliebigen Aktivitäts-Protokoll entspricht. Andererseits ist es genauso einfach
ein Prozessmodell zu erstellen, das nur genau die Prozessabläufe erlaubt, die im Aktivitäts-
Protokoll vorkommen. Beide Fälle gilt es zu verhindern, denn solche Prozessmodelle liefern
keine über die Auditdaten hinausgehenden Informationen.
Zur Mühlen und Shapiro beschreiben in [MS09] „Business Process Analytics“. Dieser Begriff
fasst Methoden und Werkzeuge zusammen, die auf Audit Trails angewandt werden können
um Entscheidungen in Unternehmen zu unterstützen [MS09]. Das geschieht z.B. indem
die Menschen, die mit dem Prozess zu tun haben mit Informationen zur Effizienz und
Effektivität des Prozesses versorgt werden. Es gibt dabei 3 Sparten:

• Process Controlling ist die Analyse von Workflow Audit Trail Daten, die auf bereits
abgeschlossenen Prozessinstanzen erfolgt. Das Ziel von Process Controlling ist die
Verbesserung zukünftiger Ausführungen eines Workflows. Process Controlling wird in
[Mue01] genauer besprochen. In diese Sparte ist auch das Process Mining nach Van
der Aalst et al. einzuordnen.

• Business Activity Monitoring [MS09][GCC+
04] wertet Prozessinstanzen aus, die sich

gerade in der Ausführung befinden. Hier kann auch das Process Monitoring [Mue01]
eingeordnet werden. Das ist die Bereitstellung von Informationen über gerade laufende
Prozessinstanzen, die dem Workflow Administrator einen Überblick über die laufenden
Prozesse ermöglichen oder weitergehende Analysemöglichkeiten eröffnen.

• Process Intelligence umfasst solche Methoden und Werkzeuge, die zur Vorhersage
des Verhaltens eines Unternehmens in der Zukunft dienen [MS09][GRC04]. Hier un-
terscheiden zur Mühlen et al. noch zwischen Simulation, Data Mining und Process
Optimization. Simulation kann z.B. Fragen beantworten die Änderungen des Prozess-
modells betreffen.

Das in dieser Diplomarbeit entwickelte Werkzeug kann in die Sparte der Process Intelli-
gence eingeordnet werden, da seine Ausgabe verwendet werden kann, um Vorhersagen
bezüglich Prozessfluss zu treffen. Um das zu ermöglichen, werden historische Prozessdaten
ausgewertet, was eine Einordnung in die Sparte Process Controlling ebenso gut rechtfertigt.

14

2.5 Gliederung

2.5 Gliederung

Die Arbeit ist in folgender Weise gegliedert:

Kapitel 2 – Einleitung: Stellt die Aufgabenstellung vor und ordnet Sie in ihren Kontext,
die deep Business Optimization Platform (dBOP), ein. Außerdem werden verwandte
Arbeiten vorgestellt.

Kapitel 3 – Grundlagen: Hier werden die Grundlagen besprochen, die zum Verständnis der
Arbeit notwendig sind. Dazu gehören Grundbegriffe und relevante Standards wie
BPEL und BPMN. Anschließend wird ein Überblick über gängige Preprocessing und
Data Mining Verfahren gegeben.

Kapitel 4 – Lösungsansatz: Hier werden die Ideen, Methoden und Konzepte vorgestellt,
die bei der Realisierung des Werkzeugs, das Teile der Data Integration und Process
Analytics Schicht von dBOP implementiert, eine wichtige Rolle gespielt haben.

Kapitel 5 – Entwurf des Werkzeugs: Hier werden die genauen Anforderungen an das Werk-
zeug und die Entwurfsphase des Werkzeugs besprochen. Das Kapitel übernimmt die
Struktur des Werkzeugs und ist in Abschnitte über GUI, Extraktion, Berechnung der
Metriken, Konsolidierung, Preprocessing, Data Mining unterteilt. Der Abschnitt 5.7
beschreibt, wie die gewonnenen Modelle eingesetzt werden können.

Kapitel 6 – Implementierung des Werkzeugs: Hier wird die praktische Umsetzung des
Werkzeugs in derselben Struktur wie im Entwurfskapitel besprochen.

Kapitel 7 – Zusammenfassung und Ausblick: Fasst die Ergebnisse der Arbeit zusammen
und stellt Anknüpfungspunkte vor.

15

3 Grundlagen

In diesem Kapitel werden die fachlichen und technischen Grundlagen der Diplomarbeit
behandelt. Zunächst werden wichtige Grundbegriffe definiert, dann wird die graphische
Notation BPMN (siehe Abschnitt 3.3.1) besprochen, die von der deep Business Optimization
Platform genutzt wird: Workflows werden in dieser Notation modelliert und analysiert.
Anschließend erfolgt eine Übersetzung in BPEL. BPEL ist eine XML Sprache für ausführbare
(und abstrakte) Workflows. BPEL wird in Abschnitt 3.3.2 besprochen.
Das Werkzeug, das in dieser Diplomarbeit entwickelt wurde, setzt nach der Ausführungs-
phase eines Workflows auf einem IBM Websphere Process Server an. Abschnitt 3.4 stellt die
Websphere Produktreihe von IBM und ihren Hintergrund vor.
Das Werkzeug hat das Ziel, eine Analyse durchzuführen und darauf aufbauend eine Opti-
mierung des Workflows zu ermöglichen. Deshalb wird in diesem Kapitel ein Überblick über
gängige Data Mining Verfahren und entsprechende Preprocessing Methoden gegeben.

3.1 Workflows und Geschäftsprozesse

An dieser Stelle sollen einige Grundbegriffe auf der Basis von [LR00] eingeführt werden. Ein
Geschäftsprozess ist nach Hammer und Champy, die das Business Process Reengineering,
einen Vorläufer des Business Process Management geprägt haben, „eine Kollektion von
Aktivitäten, die eine oder mehrere Eingaben entgegennimmt und eine Ausgabe erzeugt,
die für den Kunden einen Wert hat.“ ([HC93] S.35). Es gibt aber noch weitere davon ab-
weichende Definitionen, für das Verständnis dieser Arbeit genügt diese Definition jedoch.
Ein Prozess-Modell ist eine Beschreibung eines Geschäftsprozesses „in der echten Welt“
[LR00], die Instanzen die von diesem Modell erzeugt werden können, sind Prozesse. Den
Computer-gestützten Teil eines Geschäftsprozesses bezeichnet man als Workflow-Modell.
Workflows sind Instanzen davon. Um Workflow-Modelle und damit den formalisierbaren
Teil von Geschäftsprozessen aufzuschreiben und zu kommunizieren werden sogenannte Me-
tamodelle benötigt. Mit BPMN und BPEL werden zwei solche Metamodelle in den Kapiteln
3.3.1 und 3.3.2 beschrieben.
In [LR00] werden 4 Arten von Workflows unterschieden:

1. Collaborative Workflows, sind Workflows die zwar für das Unternehmen ein Ergebnis
von hohem Wert erzeugen, aber relativ selten angestoßen werden. Oft lassen sie sich
nicht in ein festes Modell abbilden. Z.B. ist jeder Auftrag für die Entwicklung von
Software wieder anders, auch wenn es dafür sehr wohl Standard Vorgehensmodelle
gibt.

16

3.2 Workflow Management Systeme

2. Auch Ad Hoc Workflows werden relativ selten angestoßen, sie erzeugen aber eher
einen geringen Wert für das Unternehmen. Hier sind zum Beispiel Revisionsprozesse
einzuordnen.

3. Administrative Workflows erzeugen kein Ergebnis von hohem Wert, laufen im Unter-
nehmen aber sehr häufig in derselben Weise ab. Zum Beispiel gehören dazu Workflows
wie Reisekostenabrechnung oder Einkaufsbewilligung.

4. Production Workflows sind schließlich Workflows, die sehr häufig ausgeführt werden
müssen und gleichzeitig ein wertvolles Ergebnis für das Unternehmen erbringen, so
z.B. die Abwicklung eines Schadensfalls in einer Versicherung.

3.2 Workflow Management Systeme

Um Workflows auszuführen werden Workflow Management Systeme (WFMS) verwendet.
Das ist jedoch nur eine der Aufgaben solcher Systeme: Die Workflow Manangement Coalition
definiert ein Workflow Management System folgendermaßen:„A system that completely
defines, manages and executes „workflows“ through the execution of software whose order
of execution is driven by a computer representation of the workflow logic.“ ([Hol95] S.6)
Ein WFMS ist also ein System, das Workflows verwaltet und ausführt, und deren Definition
ermöglicht. Die Ausführung erfolgt durch Aufruf von Software in der Reihenfolge, die von
der Workflow Logik vorgegeben ist.
Während der Ausführung eines Workflows werden dessen Zustandsübergänge im sogenann-
ten Audit Trail protokolliert. Dementsprechend sind die Daten in [WFM99] (S.51) definiert
als: „Audit Data: A historical record of the progress of a process instance from start to com-
pletion or termination. Such data normally incorporates information on the state transitions
of the process instance.“. Oft werden im Audit Trail auch die Eingabe- und Ausgabedaten
einzelner Aktivitäten der Workflows protokolliert.

3.3 Modellierung von Prozessen und Workflows

Die Modellierung von Prozessen erfolgt in der Regel durch Personal das sich im Anwen-
dungsgebiet der Prozesse auskennt. Dabei kommen Flussdiagramme [BPM06] oder ähnliche
graphische Notationen zu Einsatz, die anschließend in ein Ausführungsformat überführt
werden müssen, um eine Ausführung auf einem Workflow Management System möglich zu
machen. Durch diese Überführung entsteht aus dem ursprünglichen Prozess ein Workflow.
Als Ausführungsformat kommt zum Beispiel BPEL zum Einsatz. BPEL ist ein XML Workflow-
Format, das für den Betrieb und die Zusammenarbeit von Workflow Management Systemen
optimiert ist [BPM06]. Es eignet sich daher nur bedingt für den Entwurf, die Verwaltung
und die Überwachung von Prozessen bzw. Workflows durch Personal.
Der Umstand, dass bisherige graphische Notationen sich nicht für die Ausführung eignen,
wird in [BPM06] als technologische Lücke zwischen Entwurfsformat und Ausführungsspra-
che bezeichnet. Deshalb veröffentlichte die Object Management Group den BPMN Standard

17

3.3 Modellierung von Prozessen und Workflows

[BPM06]. In der Business Process Modelling Notation können Prozesse graphisch modelliert
und verwaltet werden. Die Autoren von [BPM06] streben mit BPMN die Entwicklung einer
gemeinsamen Sprache für betriebswirtschaftlich ausgebildetes Fachpersonal und IT-Experten
an. Die Prozessnotation soll gut lesbar, flexibel und erweiterbar sein und sich auf ein Ausfüh-
rungsformat wie BPEL abbilden lassen. In Abschnitt 5.2.1 wird der Ansatz der deep Business
Optimzation Platform zur Abbildung von BPMN auf BPEL vorgestellt.

3.3.1 BPMN 1.1

Die Business Process Modelling Notation (BPMN) wurde ursprünglich von der Business
Process Management Initiative (BPMI) vorgeschlagen. Die BPMN eignet sich zur Konzeption
und Kommunikation von Prozessen. BPMN setzt sich in der Wirtschaft mehr und mehr
durch, so gab es 2008 schon über 50 Tools zur Modellierung von Geschäftsprozessen mit
BPMN [All08]. Die BPMI ging im Juni 2005 in der Object Management Group (OMG) auf,
die derzeit an der Version 2.0 des Standards arbeitet. Ab Version 2.0 steht das Kürzel BPMN
für Business Process Model and Notation.

Die graphischen Objekte von BPMN 1.1

In diesem Abschnitt sollen die wichtigsten graphischen Objekte der Notation vorgestellt
werden. Die Darstellung orientiert sich dabei an [BPM06] S.17f. Die graphischen Objekte von
BPMN lassen sich in 4 Kategorien unterteilen:

1. Flow Objects

2. Connecting Objects

3. Swimlanes

4. Artifacts

Flow Objects können Ereignisse (engl. Events), Aktivitäten (engl. Activities) oder Gateways
sein. Sie werden als (zum Teil beschriftete) Kreise, Rechtecke bzw. Rauten dargestellt, und
können mit Hilfe der Connecting Objects verknüpft werden. Das kann auf 3 Arten geschehen.
Entweder kann ein Kontrollfluss, ein Nachrichtenfluss oder eine Assoziation zwischen 2

Flow Objects deklariert werden. Die Grundform für die Connecting Objects ist ein Pfeil.
Mit Pools können die Flow Objects gruppiert werden, so können die Prozesse verschiedener
Organisationen klar voneinander getrennt werden. In jedem Pool kann es mehrere Swimlanes
geben, dadurch können Prozesse verschiedener Organisationseinheiten voneinander getrennt
dargestellt werden.
Mit den Artifacts sieht der BPMN Standard eine Möglichkeit vor, Prozessmodelle mit wei-
terer Information zum besseren Verständnis anzureichern. Es gibt 3 Standard Artefakte:
Datenobjekte können z.B. die Übergabe eines Dokuments, etwa einer Rechnung, von einer
Aktivität zur nächsten darstellen. Gruppen können verwendet werden, um Fluss Objekte
einer beliebigen Kategorie graphisch zusammenzufassen. Annotationen sind erläuternde

18

3.3 Modellierung von Prozessen und Workflows

Aktivität Sub-Prozess

Transaktion

Sub-Prozess

Tabelle 3.1: Beispiele für Flow Objects in BPMN. Links: Ereignisse. Mitte: Aktivitäten. Rechts:
Gateways.

Anmerkungen in Textform.
In Tabelle 3.1 sind Beispiele für Flow Objects zu sehen. Die kreisförmigen Symbole sind
Events, von denen es 3 Kategorien gibt: Start-, Intermediate- und End- Events. Start-Events
haben eine einfache Umrandung, sie können verwendet werden um darzustellen, dass ein
neuer Prozess beginnt. Das kann z.B. als Reaktion auf eine Nachricht (Briefsymbol) oder zu
festgelegtem Zeitpunkt (Uhrensymbol) erfolgen. Intermediate Events haben eine doppelte
Umrandung und können in einen Prozess integriert werden, um z.B. darzustellen, dass
mit einem Produktionsschritt gewartet werden muss, bis ein benötigtes Bauteil (Nachricht)
eingetroffen ist. End Events (Kreise mit dickem Rand) stellen dar, dass bei einem bestimmten
Ereignis der Prozess terminiert. So zum Beispiel wenn ein Ausnahmefehler eintritt. Dann
besagt der doppelter Rückpfeil, dass alle Änderungen an Daten, die im aktuellen Kompensa-
tionsbereich („Compensation Sphere“) gemacht wurden, rückgängig zu machen sind.
Die rechteckigen Kästen in Tabelle 3.1 sind Aktivitäten. Aktivitäten können Sub-Prozesse
sein, die selbst wieder einen Prozess enthalten können. Ist der innere Prozess nicht darge-
stellt, so zeichnet man dafür ein Plus. Einfach umrandete Aktivitäten ohne Plus oder inneren
Prozessdarstellung sind atomar. Doppelt umrandete Aktivitäten sind Transaktionen.
Rechts in Tabelle 3.1 sind die Gateways zu sehen, die verwendet werden um den Kontroll-
fluss des modellierten Prozess vorzugeben. Der Kontrollfluss kann wie bei Petri Netzen mit
Hilfe von Tokens simuliert werden. Ein Token ist wie eine Spielfigur die über das BPMN
Prozessmodell verschoben wird, je nachdem welche Aktivität gerade ausgeführt wird. Gate-
ways bestimmen den Weg der Tokens. Gateways können die Tokens, die das Prozessmodell
durchlaufen, auf 4 Arten beeinflussen:

• Branching: Auf Basis der Bedingungen die an den n ausgehenden Sequenzpfeilen
annotiert sind, werden für die m (m ≤ n) Sequenzpfeile neue Token erzeugt, de-
ren Bedingung zu true auswertet. Das kann mit dem leeren oder dem „x“-Gateway
ausgedrückt werden.

• Forking: An allen ausgehenden Sequenzpfeilen wird ein Token erzeugt. Das bedeutet,
es erfolgt eine parallele Ausführung der nachfolgenden Aktivitäten. Das kann mit dem
„+“-Gateway ausgedrückt werden.

• Joining: Wenn an allen Eingängen ein Token anliegt wird am Ausgang ein Token
erzeugt. Das wird ebenfalls mit dem „+“-Gateway dargestellt.

19

3.3 Modellierung von Prozessen und Workflows

• Merging: Merging kann durch exklusive oder inklusive Gateways erfolgen. Diese
Gateways erzeugen dann ein Token am Ausgang, wenn alle Token des entsprechenden
Branchings eingetroffen sind.

Beispiel

Abbildung 4.3 zeigt einen Beispiel Prozess in BPMN. Es handelt sich dabei um ein verein-
fachtes Modell der Abläufe in einem Versicherungs-Unternehmen, die ausgeführt werden
müssen, wenn ein Versicherter eine Versicherungsleistung anfordert. Der Prozess beginnt
immer bei einem Kreis mit dünner Umrandung, im Beispiel also ganz links. Anschließend
werden die Daten des Versicherungsfalls entgegengenommen. Dann wird der Versicherungs-
fall in eine von 3 Risikoklassen bezüglich Betrugswahrscheinlichkeit eingeordnet. Solche
Aktivitäten werden bei BPMN als abgerundete Rechtecke dargestellt und durch einfache
Pfeile miteinander verbunden, um eine sequentielle Ausführung darzustellen. Wenn der
Kontrollfluss in Abhängigkeit des Ergebnisses einer Aktivität unterschiedlich verlaufen soll,
kann man z.B. ein rautenförmiges XOR Gateway-Symbol zeichnen. Im Beispiel entspricht es
der Entscheidung, wie mit dem Versicherungsfall weiter verfahren wird. Bei einem hohen
Betrugsrisiko erfolgt eine eingehende Prüfung, bei einem niederigen Risiko entfällt die
Prüfung und es erfolgt eine Leistung an den Versicherten. Der Prozess terminiert bei einem
dick umrandeten Kreis.

3.3.2 WS-BPEL 2.0

Die Business Process Execution Language (WS-BPEL) ist eine XML Sprache zur Definition ab-
strakter und ausführbarer Workflows, die 2007 von der Organization for the Advancement of
Structured Information Standards (OASIS) als Standard verabschiedet wurde. An dem Stan-
dard haben z.B. Unternehmen wie IBM, Microsoft und SAP mitgewirkt. Abstrakte Workflows
sind Workflows, die nur die öffentlichen Aspekte eines Unternehmens- Protokolls („Business
Protocol“) definieren [ACD03]. So gibt es viele Szenarien, bei denen Unternehmen mit
Kunden-(Unternehmen) oder Partnerunternehmen online interagieren, dabei jedoch ein Aus-
tausch aller Details der internen Prozessabläufe der beteiligten Unternehmen nicht sinnvoll
und womöglich nicht erwünscht ist. Für einen solches Szenario bietet WS-BPEL die Möglich-
keit, die Prozessinformation, die ausgetauscht wird, beliebig abstrakt zu halten. Abstrakte
Workflows haben somit in erster Linie das Ziel, einen Workflow grob zu beschreiben. Darüber
hinaus können mit WS-BPEL ausführbare Workflows definiert werden, Sie „modellieren
das tatsächliche Verhalten eines Teilnehmers in einer Unternehmens-Interaktion“ [WSB].
WS-BPEL Workflows nutzen in ihrer Prozess-Logik Webservices um Aktionen auszuführen.
Webservices sind Programme [HB04], die über Netzwerke flexibel interagieren können.
Webservices zeichnen sich außerdem dadurch aus, dass ihre Schnittstelle maschinenlesbar in
Form eines WSDL Dokuments vorliegt.

20

3.3 Modellierung von Prozessen und Workflows

Geschichte von WS-BPEL

WS-BPEL setzt die von DeRemer und Kron 1975 [DK75] beschriebene Idee einer „module
interconnection language“ um. Das ist eine Sprache die sich für das „Programming in
the large“ eignet, also für das Zusammenfügen einfacher Module zu einem komplexeren
Gesamtsystem. Dabei entstehen die Module im Rahmen des „Programming in the small“.
Die Autoren unterstreichen die Notwendigkeit passender Sprachen für beide Paradigmen.
WS-BPEL reiht sich ein in die Kette der Sprachen, die für „Programming in the large “
entworfen wurden, es ist der Nachfolger der der Sprachen BPEL4WS 1.0 und BPEL4WS
1.1, wobei letztere bereits als de-facto Standard galt. In BPEL4WS wurden die Sprachen
XLANG von Microsoft und WSFL von IBM zusammengeführt. Während die WSFL auf einem
graphentheoretischen Ansatz basiert, handelt es sich bei der XLANG um eine Sprache die
ihre formalen Grundlagen im sogenannten Pi-Kalkül hat.

Sprachelemente von WS-BPEL

Hier werden die Sprachelemente von WS-BPEL vorgestellt. Die Informationen wurden
der Spezifikation entnommen [ACD03]. Ein typischer Workflow, der in BPEL definiert ist,
umfasst folgende Bereiche: Die Partner Links, Correlation Sets, Variablendeklarationen, Fault
Handler und den normalen Kontrollfluss („normal behavior“ S.19 in [ACD03]).

Partner Links In diesem Bereich werden alle möglichen Interaktionspartner des Workflows
deklariert. Die Interaktionspartner werden dabei nicht statisch, etwa mittels einer URL
gesetzt, sondern es wird lediglich angegeben, von welcher Art die Interaktion ist und welche
Rolle der Workflow dabei hat, und welche Rolle der Interaktionspartner hat. Dadurch wird
dynamisches Binden von Diensten möglich.

Listing 3.1 BPEL Code zur Deklaration von partnerLinks.
<partnerLinks>
<partnerLink name="" partnerLinkType="" myRole="" partnerRole="" />
</partnerLinks>

Message Exchanges Message Exchanges können definiert werden, um Ambiguitäten in
der Zuordnung zwischen Receive und Reply (siehe Paragraph über Kontrollfluss) Aktivitäten
aufzulösen. Diese entstehen wenn zwei Receive-Reply Paare denselben Partner Link nutzen
und auch die WSDL Operation, der sie zugeordnet sind, dieselbe ist.

21

3.3 Modellierung von Prozessen und Workflows

Correlation Sets Correlation Sets werden in BPEL verwendet, um Nachrichten Prozessin-
stanzen zuordnen zu können. Eine Correlation Set hat einen definierten Namen („name“)
und eine definierte Menge von Attributen, die für die eindeutige Zuordnung verwendet
werden („properties“). Bei einem Online Bestell-Prozess könnte ein solches Attribut z.B. eine
Bestellnummer sein, mit der auch der Kunde selbst sich auf seine Bestellung beziehen kann,
etwa zwecks Reklamation. Es gibt auch Szenarien, in denen mehrere Correlation Sets für
eine Nachricht Sinn ergeben ([WSB] S.75). In allen Nachrichten-Aktivitäten, also z.B. send

Listing 3.2 BPEL Code zur Deklaration von correlationSets.
<correlationSets>?
<correlationSet name="CorrelationSetName1" properties="Attribut1" />+
</correlationSets>

und receive, können die Correlation Sets genutzt werden (siehe Listing 3.3). Dabei gibt

Listing 3.3 BPEL Code zur Deklaration von correlations.
<correlations>
<correlation set="CorrelationSetName1" initiate="yes"/>
</correlations>

der boolesche initiate-Wert an, ob die umschließende receive Aktivität auf Empfang einer
Nachricht eine neue Instanz des Prozesses erzeugen soll, die dann die ID erhält, die aus den
Attributwerten des Correlation Sets besteht.

Variablen In diesem Bereich können Variablen definiert werden die es erlauben, über
den Verlauf der Workflow Ausführung hinweg, beliebige Informationen in Form von XML
Schema Datentypen und Elementen oder WSDL Nachrichten-Typen vorzuhalten.

Listing 3.4 BPEL Code zur Deklaration von Variablen.
<variables>
<variable name="" messageType="" />
</variables>

Fault Handler In diesem Bereich wird definiert, was bei Fehlern in dem Workflow oder
bei Fehlern in Diensten, die der Workflow aufruft, zu tun ist. So wird hier zum Beispiel
auch jeder WSDL-Fehler behandelt, der in der Schnittstellen-Definition eines aufzurufenden
Webservice deklariert ist.

Kontrollfluss Der normale Kontrollfluss eines Prozesses kann durch Verkettung und Ver-
schachtelung von WS-BPEL Aktivitäten definiert werden.
Mit der Aktivität <receive> kann auf Aufrufe des Prozesses gewartet werden. Erfolgt ein
Aufruf z.B. durch einen anderen Webservice so wird eine neue Instanz des Prozess erstellt.

22

3.4 IBM WebSphere Process Server

Listing 3.5 BPEL Code zur Deklaration von faultHandlern.
<faultHandlers>
<catch faultName="" faultVariable="" faultMessageType="">
...Aktivität (z.B. reply)...
</catch>
</faultHandlers>

Anschließend wird begonnen, die nachfolgende Aktivitäten auszuführen.
Um den Kontrollfluss zu programmieren stehen dabei nicht nur die üblichen Konstrukte
wie <if>, <while>, <repeatUntil>, <forEach>, <throw> zur Verfügung, sondern es kann auch
gewählt werden, ob Aktivitäten sequentiell (<sequence>) oder parallel (<flow>) ausführbar
sind. Außerdem besteht die Möglichkeit, Aktivitäten auf Eintreten eines Ereignisses hin
auszuführen:<pick> wartet auf mehrere Ereignisse. Wenn eines davon eintritt, wird die ent-
sprechende Aktivität ausgeführt und keine weiteren Ereignisse mehr entgegengenommen.
Mit <invoke> kann auf einfache Weise ein externer Webservice aufgerufen werden.
Mit <assign> können Werte zwischen Variablen ausgetauscht werden, z.B. um die Einga-
bedaten eines aufzurufenden Webservice festzulegen. Mit <validate> können Inhalte von
Variablen auf Übereinstimmung mit einer XML Schema oder WSDL Datendefinition geprüft
werden. Der <wait>-Befehl drückt aus, dass entweder eine bestimmte Zeit gewartet werden
soll bis die innere Aktivität ausgeführt wird, oder dass diese zu einem bestimmten Zeitpunkt
auszuführen ist.
<empty> dient als Platzhalter für Stellen im Code, wo zwar eine Aktivität stehen muss, aber
nichts ausgeführt werden soll, so zum Beispiel bei einem Fehler der zwar abgefangen wird,
aber keine Fehlerbehandlung erfordert [ACD03].
Mit <scope> kann ein vom Hauptprogramm getrennter Gültigkeitsbereich für Variablen,
partnerLinks usw. definiert werden. Mit <compensateScope> können die Aktionen, die in ei-
nem inneren Gültigkeitsbereich bereits (erfolgreich) stattgefunden haben, wieder rückgängig
gemacht werden. <compensate> macht dasselbe für alle inneren Scopes.
<extensionActivity>s können verwendet werden um einen neue Aktivitätstypen, die der
WS-BPEL Namespace nicht enthält, anzusprechen. In einem Fault Handler besteht außerdem
die Möglichkeit mit <rethrow> den Fehler erneut zu werfen, sodass ein weiterer Fault
Handler darauf reagieren kann.
Der Kontrollfluss des Prozess kann mit <exit> beendet werden, mit <reply> können die
Ergebnisse an den aufrufenden Prozess zurückgegeben werden.

3.4 IBM WebSphere Process Server

In diesem Kapitel wird der IBM WebSphere Process Server vorgestellt und es wird auf
verwandte Produkte eingegangen. Es ist eine Zusammenfassung der, für die vorliegende
Diplomarbeit relevanten Informationen aus [PGG05].
In der Diplomarbeit wurde der Websphere Process Server als Workflow Management System
genutzt: Das Werkzeug ruft am Anfang Daten des Audit Trails von einem WebSphere Process
Server ab.

23

3.4 IBM WebSphere Process Server

Der Grund für die Entwicklung des WebSphere Process Servers und verwandter Produkte
war, dass sich viele Unternehmen mit einem immer stärkeren Wandel ihrer Umgebung
konfrontiert sahen. Bei IBM entwickelte sich deshalb die Idee des On Demand Business.
Ein Unternehmen das diese Idee umsetzt, zeichnet sich nach [PGG05] durch folgende
Eigenschaften aus:

• Es ist auf seine Kernkompetenzen fokussiert. Für alle anderen Aufgaben gibt es Part-
nerschaften mit Fremdunternehmen. Es kann schnell auf veränderte „Kundenwünsche,
Marktbedingungen und externe Bedrohungen“ [PGG05] reagieren.

• Es ist außerdem flexibel was seine Prozesse betrifft.

• Darüber hinaus ist es robust gegenüber Änderungen seines wirtschaftlichen und
technischen Umfelds.

Um ein On Demand Business zu realisieren ist es laut [PGG05] z.B. wichtig, offene Standards
einzuführen („Open Standards“), Systeme zu Integrieren („Integration“) und bestimmte
Abläufe zu automatisieren („Automation“) [PGG05].
Als passende Architektur für ein On Demand Business propagiert IBM die Service-
orientierten Architekturen (SOA).
Den Service orientierten Architekturen liegen die Ideen Objekt-orientierten Designs, des
Komponenten-basierten Designs und der Enterprise Application Integration zugrunde.
SOAs nutzen Konzepte wie lose Kopplung und Kapselung um eine hohe Flexibilität bei der
Integration auf Unternehmensebene zu erreichen.
Die zentrale Rolle spielt dabei der „Dienst“, der eine wiederverwendbare Unternehmensfunk-
tion realisiert, und durch eine explizite Schnittstelle definiert ist [Mel10]. Es gibt Dienstan-
bieter, Dienstnutzer und Dienstverzeichnisse. Dienste können andere Dienste in den Dienst-
verzeichnissen nachschlagen, sie dynamisch binden und nutzen.
Damit möglichst alle bestehende Funktionalität in einem Unternehmen weitergenutzt werden
kann, wurde das Konzept des Enterprise Service Bus entwickelt, der eine Vermittlerrolle
zwischen heterogenen Diensten einnimmt, und mit Message orientierter Middleware vergli-
chen werden kann.
Die WebSphere Produkte von IBM ermöglichen den Aufbau einer SOA in Unternehmen.
Um das Dienstkonzept von SOAs zu realisieren, bietet der WebSphere Process Server die
Webservice Technik an (siehe Abschnitt 3.3.2). Webservices bauen auf den Standards WSDL
und SOAP und UDDI auf. SOAP ermöglicht den Aufruf von Webservices über HTTP. UDDI
spezifiziert die technischen Details einer Registry in der Dienstanbieter ihre Webservices
bereitstellen können, und Dienstnutzer diese finden können.
Der Process Server unterstützt zusammen mit den anderen WebSphere Produkten den
gesamten Lebenszyklus von Applikationen. Mit Hilfe des WebSphere Business Modellers
können Workflows modelliert werden. Mit dem Rational Application Developer können ein-
zelne Dienste z.B. in Form von Webservices realisiert werden. Diese können im Rahmen von
BPEL Workflows mit dem WebSphere Integration Developer orchestriert werden, die dann
auf einem WebSphere Process Server ausgeführt werden können. Der WebSphere Process
Server unterstützt neben BPEL Workflows auch Human Tasks, Business State Machines und
Business Rules.
Human Tasks sind Komponenten, die verwendet werden können um z.B. Sachbearbeitern

24

3.5 Data Mining

Aufgaben zuzuweisen [PGG05]. Business State Machines erlauben die Implementierung
von Geschäftsprozessen auf Basis von Zuständen und Ereignissen. Business Rules sind
Regeln der Form IF ... THEN Sie können in natürlicher Sprache formuliert werden und
erlauben so einen schnellen Zugriff auf die Workflow-Logik eines Unternehmens, auch für
Personal ohne IT Hintergrund. Zum Beispiel könnte ein solche Regel sein, dass bei einem
Autovermieter bei besonders großer Nachfrage die Rabatte angepasst werden sollen [IBM].
Ausgeführte Workflow-Instanzen können mit dem WebSphere BusinessMonitor überwacht
werden.

3.5 Data Mining

In diesem Abschnitt soll geklärt werden, was unter Data Mining verstanden wird. Data Mi-
ning ist der Prozess der „Extraktion von interessantem Wissen aus großen Datenbeständen“
[HK06]. Bei solchen Datenbeständen kann es sich um Datenbanken, Data Warehouses oder
z.B. einfache Dateien handeln. Ein häufig verwendetes Synonym ist Knowledge Discovery in
Databases (KDD). Es gibt aber auch eine Reihe sinnverwandter Begriffe, wie z.B. Knowledge
Mining from Databases.
Data Mining im weiteren Sinne umfasst eine Reihe von Aktivitäten an dessen Ende der
Benutzer Informationen erhält, die für seine Aufgabe(n) von Nutzen sind.
Han und Kamber grenzen Data Mining Systeme von ähnlichen Systemen ab, die für
große Datenbestände nicht ausgelegt sind, wie. z.B. Machine Learning Software oder
statistische Datenanalyse-Tools. Online Analytical Processing (OLAP) ist auch davon
zu unterscheiden. Das sind „Technologien und Werkzeuge die eine (ad-hoc) Analyse
multidimensional aggregierter Daten ermöglichen“ [Mit10]. Eine typische OLAP Operation
ist z.B. Roll up zum Zusammenfassen durch Aufstieg in einer Hierarchie (z.B. von Ort zu
Bundesland, oder von Tag zu Monat) oder durch Reduzierung der Dimensionen. Wenn
z.B. die Einnahmen einer Kaufhauskette tagesweise für verschiedene Standorte vorliegen,
könnte man die Zeitdimension durch die Summe über alle Tage ersetzen und hätte somit
die Gesamteinnahmen pro Standort.
Ein wichtiger Unterschied zwischen OLAP und Data Mining ist, dass OLAP im Gegensatz
zu Data Mining keine Modelle über Datenbestände generieren kann. OLAP kann jedoch
dazu benutzt werden um bestehende Modelle oder Annahmen zu verfizieren. In der
Fachliteratur gibt es verschiedene Herangehensweisen, den Data Mining Prozess zu
beschreiben. Petersohn [Pet05] bezieht in den Prozess den Anwender mit ein, der zunächst
das Ziel des Prozesses definiert, und am Ende die Ergebnisse interpretiert.
Han et al. beschreiben das was dazwischen abläuft. Zunächst erfolgt ein Preprocessing
wie es in Kapitel 3.6 vorgestellt wird, dazu gehört insbesondere das Zusammenführen
von relevanten Daten (Data Integration). Danach werden im zentralen Data Mining-Schritt
durch intelligente Methoden relevante Muster gesucht, die dannach durch Relevanzmaße als
interessant oder nicht interessant eingestuft werden. In der Regel wird in diesem Schritt ein
Data Mining Modell der Trainingsdaten erstellt. Am Ende werden die Ergebnisse visualisiert.
In [Pet05] gehört darüber hinaus der Schritt der Evaluierung des Data Mining Modells und

25

3.5 Data Mining

dessen Anwendung zum Gesamtprozess.

3.5.1 Überblick über gängige Data Mining Verfahren

Im zentralen Data Mining Schritt kommen je nach Zielsetzung verschiedene Verfahrensklas-
sen zum Einsatz, die hier auf Basis von [HK06] und [Pet05] vorgestellt werden. Man un-
terscheidet dabei zwischen „supervised“ und „unsupervised“ Verfahren [HK06]. Zu den
„supervised“ Verfahren gehört die Klassifizierung und die Regression. Mit solchen Verfahren
können anhand von Trainingsbeispielen Modelle erstellt werden, die zur Vorhersage eines,
für die Trainingsbeispiele bekannten, Attributes benutzt werden können. Daneben gibt es
Verfahren bei denen diese Attribute nicht vor der Modellerstellung bekannt sein müssen,
dazu zählt in erster Linie die Klassenbildung (Clustering). Daneben gibt es z.B. die Assozia-
tionsanalyse, die im folgenden Abschnitt vorgestellt wird. Auf „Outlier-Detection“ wird im
Preprocessing Kapitel kurz eingegangen (siehe Abschnitt 3.6.1) . Eine genaue Besprechung
von „Outlier-Detection“ und weiterer Verfahrensklassen wie z.B. „Evolution Analysis“ geht
über den Fokus dieser Arbeit hinaus und kann in [HK06] nachgelesen werden.

Assoziationsanalyse

Assoziationsanalyse-Verfahren kommen in erster Linie in Anwendungsgebieten zum Einsatz,
bei denen Zusammenhänge auf Basis von nominalen bzw. diskreten Quelldaten ermittelt
werden sollen. Das bekannteste Beispiel dafür ist die Warenkorbanalyse. Dabei stellt sich
das Problem, aus einer großen Anzahl von protokollierten Verkaufsvorgängen („Trans-
aktionen“) Informationen z.B. für den Katalog Entwurf zu gewinnen [AS98]. Durch die
Assoziationsanalyse-Verfahren können Aussagen gemacht werden wie, „wenn ein Kunde
Produkt X und Y kauft, dann kauft er mit hoher Wahrscheinlichkeit auch Produkt Z“.
Assoziationsregeln haben allgemein die Form A→ C. Dabei steht das A für Antecedent und
das C für Consequent. Bei Antecedent und Consequent handelt es sich formal um Itemsets,
das sind Mengen von sogenannten Items. Items ihrerseits sind Literale [AS98], die im Fall
der Warenkorbanalyse einzelne Produkte repräsentieren.
Die Itemsets sind im Beispiel also Mengen von gekauften Produkten. Das Beispiel lässt sich
als Assoziationsregel XY → Z notieren.
Um dem Anwender eine Einschätzung der Bedeutsamkeit einer konkreten Assoziationsregel
zu ermöglichen, gibt ein Algorithmus für Assoziationsregeln zu jeder gefundenen Regel
einen Support und einen Confidence-Wert aus. Der Support ist ein Maß dafür, wie hoch
der Anteil der Transaktionen, die sowohl die Items des Antecedent als auch die des Con-
sequent enthalten, an der Gesamtmenge aller Transaktionen ist. Die Angabe des Support
kann wahlweise auch in absoluter Form erfolgen. Die Confidence gibt dagegen an, wie
hoch die Wahrscheinlichkeit ist, dass eine Transaktion das Consequent enthält, sofern es
das Antezedent enthält. Die Algorithmen zum Auffinden von Assoziationsregeln erlauben
zur Einschränkung der Ergebnismenge dem Anwender die Angabe, wie hoch Support und
Confidence mindestens sein müssen, damit eine Regel ausgegeben wird.

26

3.5 Data Mining

Mit dem AIS Algorithmus wurde im Jahr 1993 von Agrawal et al. erstmals ein Verfahren
zur Assoziationsanalyse veröffentlicht [AIS93]. Der AIS Algorithmus ist ein Algorithmus für
boolesche Assoziationsregeln, wie es im Warenkorb-Beispiel erklärt wurde. Der Algorithmus
findet nur solche Regeln deren Consequent aus einem einzigen Item besteht [AS98]. Der
bekannteste Vertreter der Assoziationsregel-Algorithmen ist der Apriori Algorithmus [AS98].
Dieser Algorithmus hebt die Einschränkung des AIS bezüglich des Consequent auf.
Seit 1993 wurden viele weitere Assoziationsanalyse-Algorithmen veröffentlicht, darunter
auch ein Algorithmus für die Ermittlung quantitativer Assoziationsregeln [SA96]. Das sind
Assoziationsregeln deren Antecedent und Consequent Terme der Form X ≤ Attribut ≤ Y
enthalten können. Dadurch wird es möglich, Aussagen zu treffen wie „10% aller Verheirate-
ten im Alter von 50 bis 60 haben mindestens 2 Autos“ [SA96]. Boolesche Assoziationsregeln
sind nicht mächtig genug um solche Aussagen zu treffen, es sei denn die quantitativen
Attribute des Antecedent und des Consequent werden auf die richtigen Intervalle abgebildet
und anschließend als Items interpretiert.

Klassifizierung

Klassifizierung ist die Zuweisung einer Klasse zu einem gegebenen Objekt auf Basis eines
Analysemodells das aus Beispielen erlernt wurde. Wichtige Vertreter der Klassifizierungsver-
fahren sind der Naive Baysesian Classifier, Bayessian Belief Networks, Neuronale Netze und
Entscheidungsbauminduktion. Diese Verfahren werden auf Basis von einzelnen Relationen
mit Trainingsbeispielen trainiert.
Die Naive Bayessian Classifier basieren auf dem Bayes’schen Theorem. Das Verfahren arbeitet
unter der Annahme, dass die Eingabe-Attribute des Classifiers statistisch unabhängig sind.
Es kann auf effiziente Art und Weise die Klasse eines Objekts mit maximaler a posteriori
Wahrscheinlichkeit bezüglich der Eingabe-Attribute zu bestimmen. Aufgrund ihrer Effizienz
eignen sich solche Classifier auch dann, wenn sehr viele Attribute vorliegen.
Bayessian Belief Networks können im Gegensatz zu den Naive Bayessian Classifiern, Abhän-
gigkeiten zwischen Attributen berücksichtigen.
Neuronale Netzwerke können ebenfalls zur Klassifizierung verwendet werden. Das sind
gerichtete azyklische Graphen, deren Knoten in Input Layer, Hidden Layer und Output
Layer eingeteilt sind. Das Training besteht in der Anpassung von Kantengewichten durch
ein Gradientenabstiegsverfahren („Backpropagation“). Neuronale Netzwerke kommen gut
mit Objekten zurecht, die nicht in der Trainingsmenge enthalten waren und sind tolerant
gegenüber verrauschten Daten. Allerdings haben sie eine relativ lange Trainingsdauer und
sind als Modelle nur schwer interpretierbar, jedoch gibt es Verfahren um aussagekräftige
Regeln aus trainierten Neuronalen Netzwerken zu gewinnen.
Entscheidungsbauminduktion gilt als eines der einfachsten Lernverfahren und ist leicht zu
implementieren [RN04]. Ein Entscheidungsbaum stellt dabei eine einfache hierarchische
Anordnung von inneren Knoten und Blättern dar. Die inneren Knoten stehen für Attribute,
die Kanten zu deren Kindern stehen für Werte oder Wertbereiche dieser Attribute. Ein
Knoten mit nominalem Attribut A zusammen mit einer Kante zu einem Kindknoten mit
Wert W bildet eine Bedingung (A = W). Die Blätter enthalten Klassenzuweisungen.
Um mit einem solchen Analysemodell Objekte zu klassifizieren, wird der Baum so bis zu

27

3.5 Data Mining

einem Blatt durchlaufen, dass die Bedingungen entlang des Pfades genau auf das Objekt
zutreffen. Die Klassenzuweisung erfolgt dann durch Auslesen des Inhalts des Blattknotens.
Die gängigen Entscheidungsbaumalgorithmen versuchen einen möglichst „kleinen“ Ent-
scheidungsbaum herzuleiten, da ein großer Entscheidungsbaum zur Klassifizierung nicht in
der Trainingsmenge enthaltener Objekte wenig nützt. Üblich ist dabei die Anwendung einer
Greedy Strategie: Dabei wird der Baum von der Wurzel ausgehend aufgebaut. Das Attribut
des aktuellen Knotens wird mit Hilfe einer Metrik ausgewählt, die über alle zur Auswahl
stehenden Attribute entweder zu maximieren oder zu minimieren ist. Übliche Metriken sind
Entropie (ID3 und C4.5 Algorithmus - mehr dazu in Abschnitt 5.6.2), Gini Index (CART
Algorithmus) und Korrelation (ChAID Algorithmus) [Mit10].

Regression

Die im letzten Abschnitt vorgestellten Entscheidungsbäume haben das Defizit, sich nur
bedingt für stetige Attribute zu eignen. D.h. dann, wenn der Wert eines stetigen Attributes
vorhergesagt werden soll, haben diese Verfahren Probleme. Es wurde zwar versucht das
Problem der Vorhersage stetiger Attribute mit Hilfe von Standard-Klassifizierungsverfahren
zu lösen, indem die numerischen Attributwerte der Beispiele der Trainingsmenge auf In-
tervalle abgebildet wurden, jedoch scheitert ein solcher Ansatz oft deshalb, [Qui92] weil
Entscheidungsbaumverfahren nicht die implizite Ordnung der Intervalle berücksichtigen.
Der erste Entscheidungsbaum-Algorithmus, der zur Vorhersage stetiger Attributwerte ge-
eignet war und darüber hinaus auch stetige Attribute von Objekten zur Vorhersage nutzen
konnte war der M5 Algorithmus. Die Vorhersage stetiger Attributwerte wird dabei dadurch
erzielt, dass die Blattknoten nicht mehr eine einfache Klassifizierung enthalten, sondern linea-
re Regressions-Modelle. Das sind Funktionen, die mit der Fehlerquadratmethode [BSMM01]
an die Trainingsbeispiele angepasst werden.
Der M5 wird in [Qui92] vorgestellt und genauer in [Pet05] beschrieben. In Abschnitt 5.6.2
wird eine Variante davon besprochen, die in dieser Diplomarbeit zum Einsatz kam. Weitere
Regressionsverfahren sind z.B. in [Pet05] im Kapitel Zeitreihenanalyse zu finden.

Klassenbildung

Klassenbildung ist in der englischsprachigen Fachliteratur als Clustering bekannt und um-
fasst alle Algorithmen, die auf eine nicht überwachte Art und Weise Objekte einer gegebenen
Objektmenge, auf Basis ihrer Attribute, in vorher nicht näher beschriebene Klassen einordnet.
Dabei werden immer solche Objekte ein und derselben Klasse zugeordnet, die sich mög-
lichst „ähnlich“ sind, während je zwei Objekte, die aus unterschiedlichen Klassen stammen,
möglichst „verschieden“ sind. Dabei gibt es verschiedene Ähnlichkeitsmaße, wie z.B. die
Manhattan Distanz oder die euklidische Distanz, die zur Anwendung kommen können.
In [HK06] werden folgende Typen von Klassenbildungs-Algorithmen unterschieden: Metho-
den die mit Partitionierung arbeiten, hierarchische Methoden, Dichte-basierte Methoden,
Grid-basierte Methoden und Modell-basierte Methoden.
Einer der bekanntesten Klassenbildungs-Algorithmen ist der k-Means Algorithmus, der

28

3.6 Preprocessing

mit Partitionierung folgendermaßen funktioniert: Der Algorithmus bekommt die Anzahl k
der zu findenden Klassen als Eingabe. Er wählt per Zufallsprinzip k Objekte als vorläufige
Klassenzentren aus. Dann ordnet er jedes Objekt jeweils der Klasse zu, dessen „Mittelwert“
es am nächsten ist. Der Mittelwert ist dabei ein gedachtes Objekt, dessen Attribute genau
den Mittelwerten aller Objekte in der Klasse entsprechen. Nach der Zuordnung aller Objekte
zu einer Klasse werden die Mittelwerte neu berechnet. Und der Algorithmus ordnet alle
Objekte erneut einer Klasse auf Basis der Mittelwerte zu. Das wird solange gemacht bis sich
keine Änderung bei der Klassenzugehörigkeit von Objekten mehr ergibt.
Bei den hierarchischen Clustering Algorithmen unterscheidet man Verfahren die agglome-
rativ und solchen die divisiv vorgehen. Agglomerative Verfahren ordnen zunächst jedem
Objekt eine eigene Klasse zu und verschmelzen anschließend schrittweise möglichst ähnliche
Paare von Klassen miteinander. Divisive Verfahren arbeiten top-down und unterteilen die
Gesamtmenge aller Objekte schrittweise.
Ein Clustering Verfahren kann entweder auf einer Datenmatrix oder auf einer „Dissimilarity
Matrix“ [HK06] arbeiten. Die Datenmatrix enthält pro Objekt alle Attributwerte in einer
Zeile, während die Dissimilarity Matrix für jedes Paar von Objekten einen Abstandswert
enthält.

3.6 Preprocessing

Vor der Anwendung von Data Mining Verfahren ist in der Regel eine Vorverarbeitung
(„Preprocessing“) notwendig, da häufig die zu untersuchenden Daten Lücken und Inkonsis-
tenzen aufweisen, oder verrauscht sind [HK06]. Außerdem kann das Data Mining Verfahren
weitergehende Anforderungen an die Eingabedaten (z.B. in Bezug auf das Eingabeformat)
stellen. Han und Kamber unterteilen die Preprocessing Techniken für Data Mining Verfahren
in 3 Kategorien [HK06]:

• Data Cleaning Verfahren. Sie beseitigen Inkonsistenzen aus den Daten und ermitteln
Ersatzwerte für unbelegte Attribute.

• Data Integration and Transformation Verfahren. Diese Verfahren führen für das Data
Mining relevante Daten zusammen.

• Data Reduction Verfahren. Sie ermitteln reduzierte Repräsentationen der ursprüng-
lichen Daten. Dabei ist in der Regel das Ziel, das anschließende Data Mining zu
beschleunigen.

In dieser Arbeit wird diese Unterteilung übernommen und es wird in Abschnitt 3.6.5 auf
spezifisches Preprocessing für Clustering, Assoziationsanalyse und Regression eingegan-
gen. Ein Großteil der Informationen über die Preprocessing-Verfahren stammt ebenso aus
[HK06].

29

3.6 Preprocessing

3.6.1 Data Cleaning

In [HK06] werden unter Data Cleaning solche Verfahren zusammengefasst, die fehlende
Werte ersetzen, inkonsistente Daten behandeln oder Rauschen bzw. Ausreißer entfernen. In
[RD00] wird Data Cleaning für Data Warehousing besprochen. Die Autoren zählen zum
Data Cleaning auch das Entfernen von Fehlern aus den Daten. Die Begriffe Data Cleansing
und Data Scrubbing werden häufig synonym für Data Cleaning verwendet.
Sowohl beim Data Mining als auch beim Data Warehousing ist es entscheidend, korrekte Da-
ten zu verwenden, denn qualitativ schlechte Daten führen zu „falschen Schlussfolgerungen“
[RD00] und somit letztendlich zu falschen Entscheidungen in Unternehmen. Daher spielt
Data Cleaning eine wichtige Rolle in beiden Szenarien.
Rahm et al. [RD00] ordnen die Probleme, die sich auf die Datenqualität beziehen in eine
2-stufige Hierarchie ein. Sie unterscheiden Probleme, die bei Integrationsszenarien vorliegen
können von solchen Qualitätsproblemen die sich auf nur 1 Datenquelle beziehen. Die 2.Stufe
unterscheidet zwischen der Schema-Ebene und der Instanz-Ebene.
In diesem Abschnitt sollen Verfahren vorgestellt werden, die bei Problemen mit nur 1 Da-
tenquelle angewendet werden können. Dabei wird davon ausgegangen, dass die Daten in
einer Tabelle einer relationalen Datenbank vorliegen. Die Probleme bei Integrationsszenarien
(„Multi-source problems“) werden im Abschnitt Data Integration behandelt.
Wenn eine Datenbank fehlende Werte aufweist, können verschiedene Strategien zur Anwen-
dung kommen [HK06]: Eine Möglichkeit ist, die entsprechenden Tupel zu entfernen. Oder
man könnte den Mittelwert aller Tupel für das Attribut einsetzen, oder den Mittelwert aller
Tupel mit derselben Klasse.
Rauschen ist „ein zufälliger Fehler oder eine zufällige Varianz in einer gemessenen Variable“
[HK06]. Es kann z.B. durch verschiedene Arten des Binnings entfernt werden.
Umfassen die Messungen mehr als eine Variable, so kann versucht werden, die Ausreißer
durch Clustering zu identifizieren. Oder es können spezielle „Outlier-Detection“ Verfahren
zur Anwendung kommen. [KKZ09] fasst einige solche Verfahren zusammen, darunter auch
die Dichte-basierten Verfahren. Breunig et al. [BKNS99] stellen fest, dass die herkömmliche
Definition eines Ausreißers bei Clustern unterschiedlicher Dichte an ihre Grenzen stößt und
stellen einen Algorithmus vor, der auch in solchen Situationen funktioniert. Kriegel et al.
[Kri08] schlagen einen Algorithmus für hochdimensionale Problemklassen vor, der auf die
Auswertung euklidischer Distanzen verzichtet und stattdessen Winkel-basiert arbeitet. Ein
weiteres relevantes Verfahren zur Entfernung von Rauschen ist (multiple) linear Regression
[HK06].
Inkonsistente Daten entstehen oft bei der Dateneingabe [RD00], z.B. durch Rechtschreibfehler,
Verwendung von nicht eindeutigen Abkürzungen oder dadurch, dass eine Information in das
falsche Feld einer Eingabemaske eingegeben wird. Eine wichtige Voraussetzung für die Kon-
sistenz von Daten sind daher feste Standards für die Dateneingabe. Diese können in vielen
Fällen durch ein passendes Schema forciert werden, z.B. durch Fremdschlüsselbeziehungen,
uniqueness-Constraints oder Wahl des richtigen Datentyps für eine Eingabevariable.

30

3.6 Preprocessing

3.6.2 Data Integration

Data Integration Techniken sind geeignet, um Daten aus mehreren, auch heterogenen Quellen
zusammenzuführen, zum Beispiel aus einfachen Dateien und aus Datenbanken.
Rahm et al.[RD00] schlagen ein generisches 5-stufiges Vorgehen vor, das (neben dem reinen
Data Cleaning) den Fall der Datenintegration mit einschließt:

1. Data Analysis: Der erste Schritt besteht darin, Fehler und Inkonsistenzen in den
Datenquellen aufzudecken.

2. Definition of transformation and mapping rules: In diesem Schritt wird definiert, wie
die einzelnen Quellen bereinigt werden sollen (siehe Data Cleaning) und wie die
Schemas integriert werden sollen. Handelt es sich um einen ETL Prozess, so macht es
Sinn, diesen als Workflow zu spezifizieren.

3. Verification: Test und Evaluation der definierten Workflows und Transformationen.

4. Transformation: Ausführung der Workflows und Transformationen

5. Backflow of cleaned data: Die bereinigten Daten sollen in ihre ursprünglichen Quellen
zurückgeschrieben werden.

Data Integration ist wie das Data Cleaning ein bedeutender Schritt bei vielen Data Ware-
house Szenarien. Es existieren dabei in der Regel bereits eine Reihe operativer Datenbanken,
die sich nicht zur effizienten Auswertung komplexer Anfragen eignen, wie sie z.B. auf der
Management-Ebene eines Unternehmens von Interesse sind. Deshalb integriert man diese
Daten in ein Data Warehouse.
Die Anfragen werden dann mit dem Data Warehouse abgearbeitet.
Bei der Integration mehrerer Datenquellen, die Informationen über dieselben Entities spei-
chern, tritt häufig das Problem auf, dass semantisch gleiche Attribute verschieden benannt,
unterschiedlich codiert oder in anderer Weise nicht einheitlich vorliegen. Oder aber, dass die
beiden Datenquellen dieselben Entities mit unterschiedlichen Attributen beschreiben. Das
Problem das dann entsteht, wenn die Daten zusammengeführt werden sollen, wird in der
Fachliteratur „entity identification problem“ genannt.
Ganesh et. al. [GSR96] verwenden einen semi-automatischen Ansatz um Entities aus zwei
Quellen einander zuzuordnen. Dabei annotiert der Anwender eine Reihe von Tupeln aus
beiden Datenquellen und vergibt für zusammengehörige Tupel eine eindeutige Entity ID.
Dann wird eine Tabelle aufgebaut mit Distanzen (z.B. Edit distance) zwischen Tupeln und
der Information, ob diese dieselbe Entity identifizieren (Match vs. NoMatch). Danach kommt
der C4.5 Algorithmus (siehe Kapitel 5.6.2) zum Einsatz, um einen Entscheidungsbaum
aufzubauen, der noch nicht gesehene Paare von Tupeln in die Klassen Match und NoMatch
einordnen kann.
Ein weiteres Problem tritt auf, wenn für Attribute die Semantik nicht bekannt ist, deshalb
ist es bei größeren Datenbanken sehr wichtig Metadaten vorzuhalten. Häufig kommt es
bei der Datenintegration vor, dass manche Daten redundant vorliegen. Um Redundanzen

31

3.6 Preprocessing

aufzudecken [HK06], helfen Korrelationstests wie z.B. der Chi-Square Unabhängigkeitstest
für nominale Attribute. Für numerische Attribute eignet sich diese Formel:

rA,B =
∑(A− A)(B− B)

(n− 1)σAσB

1 Liefert die Formel den Wert 0, so sind die Attribute A und B unabhängig, bei einem Wert
größer 0 liegt eine (positive) Korrelation vor.
Über die hier vorgestellten Probleme im Bereich Datenintegration hinaus, sind z.B. noch
Duplikate, Wertkonflikte und semantische Heterogenitäten erwähnenswert [HK06], die in
dieser Arbeit nicht besprochen werden.

3.6.3 Data Transformation

Die Data Transformation Verfahren überführen die Daten in eine für das Data Mining pas-
sende Repräsentation [HK06]. Dazu zählt z.B. das Smoothing zur Entfernung von Rauschen
und die Aggregation zur Anpassung der Granularitätsstufe von Daten. In manchen Fällen
kann es sinnvoll sein, Objekte zu generalisieren. Dabei wird eine Hierarchie von Konzepten
herangezogen, und Attributwerte die in der Hierarchie unten angeordnet sind durch solche
Konzepte ersetzt, die darüber angeordnet sind. Zum Beispiel könnte man in einer Tabelle
mit Zitaten die Seitenangaben durch Kapitelangaben ersetzen.
Normalisierung, also die Transformation eines stetigen Attributs auf einen einheitlichen Wer-
tebereich (z.B. [0..1]) wird aus Effizienzgründen als Preprocessing bei Anwendung neuronaler
Netze durchgeführt, und für Data Mining Verfahren die auf Distanzmaßen basieren dient es
dazu, dass alle Dimensionen/Attribute gleich stark gewichtet werden. Gängige Verfahren
sind die Min-Max Normalisierung und die Z-Score Transformation (siehe Abschnitt 3.6.5).
Darüber hinaus kann es in einigen Fällen sinnvoll sein, aus vorhandenen Attributen neue
Attribute zu berechnen um die Daten damit für das Data Mining anzureichern.
In der Regel unterscheiden Data Mining Werkzeuge zwischen nominalen Daten und numeri-
schen Daten, jedoch kann ein Werkzeug nicht immer anhand der syntaktischen Eigenschaften
der Daten entscheiden, welcher dieser beiden Kategorien das Attribut zuzuordnen ist. Des-
halb muss in diesem Fall der Anwender das Attribut annotieren. Bei WEKA gibt es dafür
z.B. den Filter NumericToNominal.

3.6.4 Data Reduction

Data Reduction hat in erster Linie das Ziel, die Mining Dauer zu reduzieren [HK06].
In realen Datenbanken ist es keine Seltenheit dass die Relationen sehr viele Tupel bzw.
Attribute haben. Dadurch steigt der Rechenaufwand für die Data Mining Algorithmen.

1n ist die Anzahl der Tupel. A,B sind die Mittelwerte von A und B. σA,σB sind die Standardabweichungen von
A und B.

32

3.6 Preprocessing

Eine Möglichkeit große Datenmengen auf das Data Mining vorzubereiten ist die Aggrega-
tion, dadurch sinkt die Anzahl der Tupel. Der SQL Standard [SQL92] bietet dazu z.B. die
GROUP-BY und HAVING Klauseln an.
„Attribute subset selection“ Verfahren begegnen dem Problem durch eine Vorauswahl rele-
vanter Attribute. Bei solchen Verfahren unterscheidet man zwischen Filtern und Wrappern
[HH03]: Wrapper nutzen im Gegensatz zu Filtern den Lernalgorithmus zur Bewertung
der Relevanz von Attributen, der hinterher auf den Vorverarbeiteten Daten zum Einsatz
kommen soll. Eine weitere Unterscheidung ist die zwischen forward-selection und backward-
elimination Ansätzen. Erstere starten mit der leeren Menge und fügen zu der Menge
relevanter Attribute nach dem Greedy Prinzip jeweils das Attribut hinzu, das nach einem
Relevanzmaß am wichtigsten ist.
Zwei Beispiele solcher Relevanzmaße sind die statistische Signifikanz und der Informations-
gewinn.
Mit Heuristiken wie dem Informationsgewinn umgeht man den Aufwand des naiven Ver-
fahrens, einfach jede der 2 hoch D (bei D Dimensionen) Teilmengen aller Attribute auf ihre
Eignung zu testen.
Aufgrund des niedrigen Rechenaufwands eignet sich die Methode, die den Informations-
gewinn nutzt auch sehr gut für Textklassifikation [HH03], wo hochdimensonale Vektoren
verarbeitet werden müssen.
Backward elimination Ansätze gehen von der Gesamtmenge verfügbarer Attribute aus und
eliminieren schrittweise die irrelevanten Attribute.
Kompression zählt auch zu den Datenreduktionserfahren. Die Diskrete Wavelet Transforma-
tion (DWT) [HK06] ist eine in Linearzeit durchführbare Transformation, sie wandelt einen
Eingabevektor in einen Vektor von Wavelet Koeffizienten um. Für eine verlustbehaftete ("los-
sy") Kompression genügt es, nur die stärksten Koeffizienten zu speichern. Der Originalvektor
kann hinterher wieder aus diesen Koeffizienten angenähert werden.
Die Principal Component Analysis (PCA) betrachtet die Tupel in einer Relation als Vektoren
in einem k-dimensionalen Raum, und findet dazu c ≤ k orthonormale Basisvektoren die
sich zur Darstellung dieser Vektoren besonders gut eignen. Alle Tupel werden anschließend
auf diese Basis umgerechnet. Natürlich haben solche Kompressions-Verfahren immer den
Nachteil dass die Lesbarkeit durch den Menschen dadurch verlorengeht. Jedoch ist es in
manchen Szenarien notwendig entsprechend Speicherplatz einzusparen.
Als weitere Möglichkeit zur Datenreduktion wird in [HK06] „Numerosity Reduction“ ange-
führt.
Dazu gehört Regression, die im linearen Fall aus den Trainingsdaten eine Geradengleichung
für die sogenannte „Response Variable“ in Abhängigkeit von der „Predictor Variable“ auf-
stellt. „Multiple Regression“ leistet das gleiche für vektorielle Prädiktionsvariablen. Leider
skalieren Regressionsverfahren nicht gut mit der Anzahl der Dimensionen. Zu „Numerosity
Reduction“ gehören auch Histogramme, Sie können die Werteverteilung eines oder mehrerer
Attribute erfassen, im letzteren Fall spricht man von multidimensionalen Histogrammen.
Darüber hinaus kann „Numerosity Reduction“ mit Klassenbildung (Clustering) erzielt wer-
den.
Wenn anhand von n Attributen geclustert wird, so können hinterher die n Attribute durch
einen Klassenindex ersetzt werden.

33

3.6 Preprocessing

3.6.5 Spezifisches Preprocessing für Klassenbildung, Assoziationsanalyse und
Regression

Die bisher vorgestellten Verfahren kommen allgemein bei der Vorbereitung von Daten auf
Data Mining Vorgänge zur Anwendung. Clustering, Assoziationsanalyse und Regression
benötigen jedoch ein spezifisches Preprocessing.

Preprocessing für Klassenbildungs-Methoden (Clustering)

Klassenbildungs-Methoden bestimmen die Cluster auf Basis von Distanzmaßen. Einige
Klassenbildungs-Algorithmen benötigen deshalb als Eingabe (anstatt einer „Data Matrix“)
eine „Dissimilarity Matrix“ mit je einem vorberechneten Distanzwert pro Objekt-Paar. Im
Folgenden wird beschrieben, wie die Distanzwerte der Matrix berechnet werden können. Es
handelt sich dabei um eine Zusammenfassung des Kapitels 8.2 aus [HK06].
In [HK06] wird zwischen 5 verschiedenen Datentypen unterschieden:

• Interval-Scaled Variables

• Binary Variables

• Nominal Variables

• Ordinal Variables

• Ratio-Scaled Variables

Eine Variable ist „Interval-scaled“, wenn Sie stetig ist und einen Wert auf einer linearen
Skala angibt. Han und Kamber weisen darauf hin, dass die Maßeinheit, die verwendet wird,
das Ergebnis der Klassenbildung beeinflussen kann. Um das zu verhindern sollte vor der
Anwendung von Klassenbildungsverfahren standardisiert werden. Eine Möglichkeit das
zu tun ist die z-score Transformation: Der Wert v eines Attributes A wird durch Abziehen
des Mittelwerts von A und anschließendes Teilen durch die Standardabweichung von A
standardisiert. v′ = v−A

σA
[HK06]. Nach der Standardisierung, die in manchen Fällen auch

entfallen kann, können zwischen Objekten die nur „Interval-scaled“ Attribute haben, mit
dem Manhattan-Distanzmaß oder dem Euklidischen Distanzmaß oder dem Minkowski-
Distanzmaß, Abstände berechnet werden.
„Binary“ Variablen sind Variablen die nur entweder den Wert 0 oder 1 annehmen können.
Für Objekte mit solchen binären Variablen kann zur Berechnung der Distanz eine Kon-
tingenztafel aufgestellt werden. Die Distanz ergibt sich dann als Anzahl aller Variablen
deren Wert sich bei den beiden betrachteten Objekten unterscheidet dividiert durch die
Gesamtzahl der binären Variablen. Einen Sonderfall stellen asymmetrische binäre Variablen
dar, bei denen die beiden Binärwerte unterschiedlich wichtig eingestuft werden. In diesem
Fall eignet sich z.B. der Jaccard Koeffizient zur Bestimmung der Distanz; dabei verwendet
man dieselbe Formel, nur dass man die binären Variablen, die im Wert 0 übereinstimmen
nicht zur Gesamtzahl aller binären Variablen rechnet.
Nominale Variablen ähneln binären Variablen, jedoch können Sie mehr als 2 verschiedene

34

3.6 Preprocessing

Werte annehmen, auf denen keine Ordnung definiert ist. Die Ähnlichkeit zweier Objekte kann
bestimmt werden, indem die Anzahl m nominaler Variablen gezählt wird, die für beide Ob-
jekte denselben Wert haben. Dann ergibt sich für p nominale Variablen: d(i, j) = (p−m)/p.
Alternativ kann man nominale Variablen auch binarisieren.
Ordinale Variablen sind nominale Variablen auf deren Wertebereich eine Ordnung definiert
ist. Ordinale Variablen entstehen z.B. durch Diskretisierung von „Interval-scaled“ Varia-
blen [HK06]. Han und Kamber schlagen ein dreistufiges Vorgehen zur Berechnung von
Ähnlichkeiten zwischen Objekten mit ordinalen Variablen vor.

1. Nummeriere die möglichen Variablenwerte durch (1, 2, ..., N). Ersetze jeden Wert durch
seine Nummerierung.

2. Damit alle ordinalen Variablen bei der Klassenbildung gleichberechtigt behandelt
werden, muss der Wertebereich nach der Nummerierung auf den Intervall [0, 1] nor-
malisiert werden.

3. Verwende eines der Distanzmaße für „Interval-scaled“ Variablen.

„Ratio-Scaled Variables“ sind Variablen deren Werte auf einer non-linearen Skala definiert
sind, das heißt ihr tatsächlicher Wert ergibt sich durch Berechnung einer nicht-linearen Funk-
tion. Solche Variablen können nicht mit einfachen Distanzmaßen verarbeitet werden, sondern
sie sollten vorher logarithmiert werden oder wie stetige, ordinale Variablen vorverarbeitet
werden.

Preprocessing für Assoziationsregel-Methoden: Diskretisierung

Data Mining Algorithmen wie z.B. die Assoziationsregelverfahren können numerische (steti-
ge) Daten nur indirekt verarbeiten, nämlich indem die Datenwerte zunächst auf sinnvolle
repräsentative Intervalle abgebildet werden, und somit nominalisiert werden. Nominale
Werte können relativ einfach auf Binäre Werte abgebildet werden, womit Assoziationsregel-
verfahren eigentlich arbeiten.
In der Regel ist eine Auswahl von Intervallgrenzen nicht trivial, da bei falscher Wahl der
Intervallgrenzen interessante Assoziationsregeln aufgrund eines zu niedrigen Supports
möglicherweise nicht aufgefunden werden. Folglich scheitert der einfache Ansatz häufig,
äquidistante Intervallgrenzen zu wählen, insbesondere dann wenn die Wertebereiche der
numerischen Attribute in zu viele Intervalle aufgeteilt werden.
In [Bay00] wird ein Diskretisierungs-Verfahren für multivariate numerische Daten vorgestellt.
Die Idee des MVD Algorithmus ist, zunächst eine feine Unterteilung des Datenraumes in
Zellen vorzunehmen und anschließend (nur) solche benachbarten Intervalle zu verschmelzen,
deren Instanzen dieselbe oder zumindest eine ähnliche Verteilung aufweisen. Getestet wird
diese Bedingung mit dem STUCCO Verfahren [BP99]. Der STUCCO Algorithmus nimmt
als Eingabe zwei Gruppen von Instanzen entgegen und findet darin solche „Contrast Sets“
also Konjunktionen von Attribut-Wert Paaren, die in den beiden Gruppen eine signifikant
unterschiedliche Auftritts-Wahrscheinlichkeit haben und auch in ihrem jeweiligen Support
eine gewisse Abweichung haben. Werden solche Contrast Sets für zwei benachbarte Intervalle
gefunden, werden sie beim MVD Algorithmus nicht verschmolzen.

35

3.6 Preprocessing

In [HH03] wird ein weiteres, Entropie-basiertes Diskretisierungs-Verfahren [FI93] beschrie-
ben, das einzelne Attribute rekursiv aufsplittet.

Preprocessing für Regression

Wenn Regressionsverfahren auf sehr große Datensätze angewendet werden, (Datensätze
mit vielen Trainingsbeispielen oder vielen Attributen) ist es sinnvoll vorher Data Reduction
Verfahren anzuwenden (z.B. Principal Component Analysis). In [JMDX06] wird ein Ansatz
beschrieben, der nach bestimmten Regeln einzelne Trainingsbeispiele aussondert bzw. in der
Trainingsmenge belässt. Z.B. besagt eine Regel, dass Ausreisser entfernt werden sollten. Die
Regeln werden auf der Grundlage eines Clusterings der Daten geprüft.

36

4 Lösungsansatz

Dieses Kapitel liefert einen Überblick über die Herausforderungen, die bei der Entwicklung
des Werkzeugs zu bewältigen waren, sowie über die neu entwickelten Konzepte. Zunächst
wird in Abschnitt 4.1 die Aufgabenstellung nochmals kurz vorgestellt und anschließend ana-
lysiert. Daraus ergeben sich 5 wichtige Komponenten der zu entwickelnden Software. Diese
werden im Abschnitt 4.3 einzeln anhand eines Beispiel-Szenarios besprochen. Zum Schluss
wird in Abschnitt 4.3.9 ein Blick auf die Umsetzung der graphischen Benutzeroberfläche
geworfen.

4.1 Analyse der Aufgabenstellung

In der vorliegenden Diplomarbeit soll eine geeignete Benutzeroberfläche entwickelt werden,
mit der Workflow Auditdaten mit operativen Daten konsolidiert werden können. Die Daten
sollen sich mit Metriken anreichern lassen und am Ende für Data Mining genutzt werden
können. Ein entsprechendes Szenario soll beschrieben werden, in dem mit Hilfe von Data
Mining ein Workflow optimiert wird.
Aus den Anforderungen der Aufgabenstellung wurde die Datenpipeline aus Abbildung
4.1 gewonnen. Die Datenpipeline ist in der üblichen Notation des Pipes-Filters Architek-
turmodells [LL07] dargestellt. Die Notation bietet eine Systemsicht kombiniert mit einer
dynamischen Sicht auf die Architektur eines Systems. Eine solche Architektur wird für
Software zur Verarbeitung von Datenströmen verwendet.
In der Notation unterscheidet man zwischen Datenquelle, Datensenke, Kanal und Filter. Die
zu verarbeitenden Daten durchlaufen die Filter entlang der Kanäle von der Datenquelle
zur Senke. Das dargestellte Modell beschreibt den Normalablauf bei der Verwendung des
Werkzeugs. Das Modell zeigt 5 voneinander zu unterscheidende Schritte beim Normalablauf,
in Klammern wird jeweils angegeben, in welchem Abschnitt der Schritt besprochen wird:

1. Extraktion und Transformation (siehe Abschnitt 4.3.4)

2. Berechnung der Metriken (siehe Abschnitt 4.3.5)

3. Konsolidierung (siehe Abschnitt 4.3.6)

4. Preprocessing (siehe Abschnitt 4.3.7)

5. Data Mining (siehe Abschnitt 4.3.8)

37

4.1 Analyse der Aufgabenstellung

Extraktion und
Transformation in

dBOP
Aktivitätsdaten

Berechnung von
Metriken.

Anreicherung.

Konsolidierung mit
operativen Daten

Pre-Processing

WFMS IBM Websphere Process
Server + DB2 XML Datei mit Metriken

XML Datei mit Data Mining
Ergebnissen (z.B.

Entscheidungsbäume)

BPEL Prozessdaten dBOP Prozessdaten Prozess-Metriken

Angereicherte
Prozessdaten

Konsolidierte Daten in 1
Tabelle

DB2
Operative Daten

Filter

Pipe

Eingabe/Ausgabe

Eingabe-/
Ausgabemedium

Data Mining

Vorverarbeitete
Daten

Konsolidierte Daten

DB2

XML Datei mit Matchings

Matchings

XML Datei mit BPEL-dBOP
Mappings

Verwendung
in Classifier-
Webservice

Abbildung 4.1: Datenpipeline

Das Modell zeigt als Datenquellen einen IBM Process Server, eine DB2 Datenbank und
verschiedene XML Eingabedateien, die für Schritt 1 und 3 benötigt werden. Dazu gehört
einerseits eine Abbildung von BPEL- Attributen und Aktivitäten auf deren dBOP Pendants
in XML Form („BPEL-dBOP Mappings“). Andererseits gehören dazu die Zuordnungen
zwischen Auditdaten und operativen Daten („Matchings“). Als Datensenken sind die DB2

Datenbank für die konsolidierten Daten, sowie XML Dateien für Metriken und Data Mining
Ergebnisse vorgesehen.
Dieser generische Ablauf zur Verarbeitung der Prozessdaten und operativen Daten, wurde
für das Optimierungsmuster Task Automation [RLM04] realisiert, da sich eine automatische
Optimierung von Workflows nach diesem Muster nach Auffassung des Autors besonders
gut umsetzen lässt.

38

4.2 Die Architektur des Werkzeugs (statische Sicht)

4.2 Die Architektur des Werkzeugs (statische Sicht)

Die oben genannten Arbeitsschritte der Pipeline werden durchgehend von dem Werkzeug
unterstützt. Eine der ersten Herausforderungen war es, einen grundsätzlichen Aufbau des
Werkzeugs zu bestimmen. Die Architektur des Werkzeugs ist in Abbildung 4.2 zu sehen.
Es besteht aus einem Java Client und einem Webservice, der aufgrund seiner Aufgaben als

ETL Webservice

Java Client

Extraktion Konsolidierung
Pre-

Processing
Data Mining

BFM

Metriken

GUI

DataAccessLib WEKA

Abbildung 4.2: Architektur des Werkzeugs.

„ETL-Webservice“ bezeichnet wird. Der Benutzer interagiert nur mit dem Java Client: Er
hat in der GUI die Möglichkeit, die einzelnen Schritte der Pipeline zu aktivieren und zu
konfigurieren. Dementsprechend sind die Schritte in dem Schichtenmodell als tragende
Säulen der GUI eingezeichnet.
Die Extraktion nutzt den ETL Webservice, der als solcher nicht zum Java Client gehört,
sondern nur von ihm genutzt wird. Jedoch gibt es mit der DataAccessLib eine gemeinsame
Basis, über die der Java Client und der Webservice auf Eingabedateien und die Datenbank
zugreifen können.
Über die Datenbank erfolgt der Datenaustausch zwischen Java Client und ETL Webservice.
Deshalb ist es sinnvoll den Zugriff beider Komponenten über die DataAccessLib als
gemeinsame Zugriffskomponente abzuwickeln: Das bringt Vorteile für die Wartbarkeit,
denn lesende und schreibende Funktionen der gleichen Daten können so in einer einzigen
Java Klasse untergebracht werden. Ab dem Preprocessing Schritt stützt sich das Werkzeug
auf die WEKA Data Mining Bibliothek [HFH+

09].

4.3 Die Filter der Datenpipeline

In diesem Abschnitt werden die einzelnen Filter anhand eines durchgehenden Anwendungs-
Szenarios erklärt. Das Szenario spielt sich in einem Versicherungs-Unternehmen ab.
Der Fokus liegt im Folgenden auf den besonderen Herausforderungen und neu entwickelten
Konzepten. Eine ausführliche Besprechung kann im Entwurfs- und Implementierungskapitel
(Kapitel 5 bzw. 6) nachgelesen werden.

39

4.3 Die Filter der Datenpipeline

4.3.1 Szenario: Bewertung von Versicherungsfällen („Fraud Detection“)

Große Versicherungen sind mit einer hohen Zahl an Versicherungsfällen konfrontiert, die
täglich zu bearbeiten sind. Um einen Versicherungsbetrug unwahrscheinlich zu machen, ist
es notwendig, die eingehenden Fälle näher zu untersuchen.
Ein Prozess zur Abwicklung könnte in 3 Schritten ablaufen:

1. Aufnahme des Versicherungsfalls

2. Einordnung durch einen Sachbearbeiter in Risikogruppen.

3. Getrennte Behandlung der Fälle nach Risikogruppe: Eingehende Prüfung, Normale
Prüfung, Keine Prüfung.

Aufnahme des

Versicherungsfalls

Einordnung in

Risikoklassen

Eingehende

Prüfung

Normale

Prüfung

Leistung

Mittleres

Risiko

Hohes

Risiko

Geringes Risiko OK

OK

Rechts-

abteilung

Rechts-

abteilung

Abbildung 4.3: Geschäftsprozess zur Verarbeitung von Versicherungsfällen.

4.3.2 Ziel des Werkzeugs

Das Werkzeug hat das Ziel, eine Optimierung von Prozessen wie dem hier beschriebenen
Versicherungsfall-Prozess, zu unterstützen. Dabei wird das Task Automation Optimierungs-
muster [RLM04] verwendet. Bezogen auf einen in BPMN modellierten Prozess heißt das, dass
eine manuelle Aktivität durch eine Computer-gestützte Aktivität ersetzt wird. Im Beispiel
ist damit die Aktivität 2 „Einordnung in Risikoklassen“ gemeint. Diese Automatisierung
kann erzielt werden, indem viele manuelle Risiko-Klassifikationen protokolliert und dann in
ein Entscheidungsbaum-Modell umgesetzt werden. Das Entscheidungsbaum-Modell kann
im letzten Schritt in einem Klassifikations-Webservice benutzt werden, der die Aktivität 2

ersetzt.

40

4.3 Die Filter der Datenpipeline

4.3.3 Verwendung des Werkzeugs

Um das Werkzeug einsetzen zu können ist es erforderlich, den IBM Websphere Process
Server als Workflow Management System einzuführen. Dann muss der oben beschriebene
Prozess mit dem dBOP Editor in BPMN entworfen und auf dem Process Server als BPEL
Workflow deployt werden. Anschließend protokolliert der Process Server die Bewertungen
der Sachbearbeiter in Form von Workflow Auditdaten.
Es folgt die Beschreibung der Filter des Werkzeugs, die anschließend auf den Audit Trail
angewandt werden können.

4.3.4 Der Filter für die Extraktion und Transformation der Audit Daten

In diesem Filter werden, bezogen auf das Fraud Detection Beispiel, Auditdaten über den
Versicherungs-Workflow abgerufen und auf BPMN Ebene transformiert.
Das Werkzeug ruft Aktivitäts- und Prozesszentrierte Daten ab, transformiert sie und spei-
chert sie in einer, dem Java Client zugänglichen, Datenbank.
Der Abruf dieser Daten erfolgt mit Hilfe der Business Flow Manager API. Dieser Vorgang
und die Transformation ist komplett im ETL-Webservice implementiert. Nach Ausführung
dieses Filters im Beispielszenario existieren in der Datenbank Aktivitätstabellen und eine
Prozesstabelle. Die Aktivitätstabellen enthalten Daten wie Uhrzeit zu Beginn und Ende der
Aktivitäten, Eingabedaten wie Versichertennummer, Sachbearbeiter-ID, einen Text der den
Versicherungsfall beschreibt und die Information welche Aktivitäten danach zur Ausführung
gekommen sind. Bei Aktivität 2 ist außerdem als Ausgabedatum die Risikogruppe vermerkt,
die der Sachbearbeiter dem Versicherungsfall zugewiesen hat.
Um zu diesem Ergebnis zu kommen, werden die Daten, die an der Schnittstelle zum Business
Flow Manager abgerufen werden können und sich noch auf den BPEL Workflow beziehen
in BPMN transformiert.
Dazu wird pro BPEL Aktivität über die DataAccessLib mit einem XPath in der XML Eingabe
nachgesehen, welcher BPMN Aktivität sie entspricht. Anschließend werden die Eingabedaten
und Ausgabedaten in Form von DataObjects abgerufen und rekursiv traversiert. Gefundene
Attribute werden ebenfalls in der XML Eingabe per XPath ihrem dBOP Pendant zugeordnet.
Der Extraktionsalgorithmus geht eine Prozessinstanz nach der anderen durch und ruft

für jede Prozessinstanz die protokollierten Aktivitätsinstanzen ab. Jede davon vermerkt er
im ActivityActivationLog der mit einer HashMap realisiert wurde. Sind alle Aktivitätsin-
stanzen abgerufen, wird für jede davon der ActivityActivationLog ausgelesen. Im Fraud
Detection Beispiel würden für die Tabelle der Aktivität „Einordnung in Risikoklassen“ die
Spalten AKTIVITÄTEingehendePrü f ung, AKTIVITÄTNormalePrü f ung und AKTIVITÄTLeistung er-
zeugt und gefüllt. So kann später im Data Mining Schritt (auch unabhängig von dem
Attribut Risikogruppe) der Prozessfluss analysiert werden. Abbildung 4.4 zeigt den Ablauf
schematisch.

41

4.3 Die Filter der Datenpipeline

Aktivitäten

BPEL dBOP

BPELA
dBOPA

Attribute

BPEL dBOP

U X

V Y

W Z

Business Flow

Manager API
DataAccessLib

1. Abrufen 2. Zuordnen & Filtern 3.Speichern

U V W

a b cBPELA
X Y Z

a b cdBOPA

dBOPA

XML

Datei

Abbildung 4.4: Der 3-stufige Extraktionsvorgang.

4.3.5 Der Filter für die Berechnung der Metriken

Dieser Filter reichert die Auditdaten mit weiteren Attributen (Metriken) an, die sich aus-
schließlich aus Audit-Attributen berechnen lassen. Im Fraud Detection Beispiel könnte eine
solche Metrik die Zeit sein, die der Sachbearbeiter benötigt um die Versicherungsfälle einzu-
ordnen. Da zur Entwicklungszeit des Werkzeugs nicht alle Metriken, die einmal benötigt
werden könnten bekannt sind, spielt hier Erweiterbarkeit eine wichtige Rolle. Die Metriken
sollten darüber hinaus im XML Format für den dBOP Editor bereitgestellt werden.
Die Metriken sind in der Implementierung auf Klassen abgebildet. Dabei wird zwischen
Prozessmetriken und Aktivitätsmetriken unterschieden.
Die Gemeinsamkeiten, nämlich Berechenbarkeit pro Instanz, Aggregierbarkeit und Seria-
lisierbarkeit dieser Metrik-Klassen wurden in einer gemeinsamen Vaterklasse der Klassen
deklariert. Serialisierbarkeit und Aggregierbarkeit zu Minima, Maxima, Mittelwert und Me-
dian wurde per SQL bereits in dieser Vaterklasse implementiert, sodass neue Metriken durch
Vererbung diese Fähigkeiten automatisch mitbringen, sofern Sie sich um die Berechnung der

42

4.3 Die Filter der Datenpipeline

Werte pro Aktivitäts- oder Prozessinstanz kümmern.
Da es Metriken gibt, die andere Metriken nutzen, wie zum Beispiel die Aufruffrequenz
einer Aktivität, wurde ein Repository implementiert in dem beliebige Metriken in Form
von Java Objekten unter einem String Schlüssel zwischengespeichert werden können. Der
Programmierer einer Metrik hat außerdem die Möglichkeit, seine Metrik in die Reihenfolge
der Berechnung bestehender Metriken beliebig einzuordnen.

4.3.6 Der Filter für die Konsolidierung

Bei der Konsolidierung werden die dBOP Aktivitätsdaten mit Hilfe der BIA Matchings
[RNB10] mit passenden operativen Daten zusammengeführt. Im Fraud Detection Beispiel
handelt es sich bei solchen Daten z.B. um die Gesamtzahl von Versicherungsfällen eines
Versicherten, die Summe der erbrachten Leistungen für den Versicherten und möglicherweise
sein Alter. In Bezug auf den Sachbearbeiter können z.B. Daten wie absolvierte Fortbildun-
gen und Erfahrung aus operativen Datenbanken ausgelesen werden. Alle diese Attribute
werden als neue Spalten der Aktivitätstabelle der Aktivität „Einordnung in Risikoklassen“
hinzugefügt. Eine besondere Herausforderung in diesem Schritt waren der Entwurf und die
Implementierung eines passenden Bedienelements. Die operativen Daten spezifiziert der An-

DataAccessLib

dBOPA Matching - XML

Datei

DBOP X

OP K

SQL
SELECT K,L,M…

FROM OPTable

dBOPA

SQLTable SQLTable

⨝
X=K

SQLTable

=

Abbildung 4.5: Konsolidierung der Prozessdaten und operativen Daten.

wender vor Ausführung des Werkzeugs in einer Matching Datei im XML Format. Für jedes
Matching gibt er einen SQL Befehl zur Extraktion (Dieser kann in der GUI noch korrigiert

43

4.3 Die Filter der Datenpipeline

werden.) an, sowie die Spalten der Aktivitätstabelle und der extrahierten operativen Tabelle
über die der Join der beiden Tabellen erfolgen soll.
Da diese Tabellen nun verwaltet werden müssen, wurde die DataAccessLib um eine entspre-
chende Klasse SqlTable erweitert, die zum Beispiel den Name einer Tabelle speichert und
ihre Spaltennamen. Bevor der Join durchgeführt wird, wird per SQL getestet, ob zwischen
der Aktivitäts-Entity und der operativen Entity eine 1:N Beziehung besteht. Kann das aus
den Daten erschlossen werden, so wird die Spalte, die für eine Aktivitätsinstanz mehrere
Werte aufweist, umcodiert in „N“ binäre Spalten. Das ist für die Korrektheit des Data Mining
Schritts erforderlich, der mit Verfahren arbeitet, die mit mehrwertigen Attributen nicht
funktionieren.
Abbildung 4.5 zeigt schematisch den Vorgang der Konsolidierung (ohne Binarisierung). In
Abbildung 4.6 sind die Bedienelemente für die Konsolidierung zu sehen. Der Screenshot
zeigt, wie ein SQL Befehl zur Extraktion operativer Daten in der GUI editiert werden kann.
Am linken Rand ist die Visualisierung der Datenpipeline zu sehen. Rechts oben befindet sich
ein Fenster mit einem Hilfetext und darunter das Protokoll.

Abbildung 4.6: Ansicht für den Filter Konsolidierung.

4.3.7 Preprocessing

Im Preprocessing Schritt können die konsolidierten Daten für das Data Mining vorbereitet
werden. Dazu wird in dem Werkzeug das Preprocessing Panel von WEKA wiederverwendet.

44

4.3 Die Filter der Datenpipeline

Da WEKA den JDBC Treiber der DB2 Datenbank von Haus aus nicht enthält, überschreibt
das Werkzeug die Methode, die die Daten von der Datenbank in den Hauptspeicher holt.
Das Preprocessing Panel erlaubt unter anderem folgende Aktionen:

• Nicht benötigte Attribute der Aktivitätstabelle der zu automatisierenden Aktivität
können entfernt werden. Im Fraud Detection Beispiel macht es z.B. keinen Sinn die
AktivitätsID in das Mining einzubeziehen.

• Fälschlicherweise numerisch interpretierte Attribute können nominalisiert werden: Eine
Versichertennummer ist zwar vom Typ Integer, ist jedoch nominal zu interpretieren.

• Das Weka Preprocessing Panel bietet noch viele weitere Möglichkeiten, zum Beispiel
Diskretisierung und eine automatische Auswahl wichtiger Attribute.

Abbildung 4.7: Ansicht für den Filter Preprocessing. Dargestellt ist eine Liste aller Attribute
der Aktivitätstabelle die der Benutzer bearbeiten kann. Außerdem werden
statistische Eigenschaften ausgewählter Attribute visualisiert (Balkendia-
gramm)

4.3.8 Data Mining

Im Data Mining Schritt werden für die Ausgabedaten der untersuchten Aktivität Entschei-
dungsbäume und Regressionsbäume ermittelt. Im Fraud Detection Beispiel muss für die
Risikogruppe ein Entscheidungsbaum ermittelt werden. Dieser Entscheidungsbaum kann

45

4.3 Die Filter der Datenpipeline

anschließend von einem Classifier-Webservice verwendet werden, um die Aktivität „Ein-
ordnung in Risikoklassen“ automatisch durchzuführen. Das Grundgerüst eines solchen
Webservice wurde im Rahmen der Diplomarbeit entworfen. Für die Erstellung des Ent-
scheidungsbaums kommt die WEKA Implementierung des C4.5 [Qui93] zum Einsatz. Die
Auswahl der Testdaten für den Klassifikator kann der Anwender über das WEKA Data
Mining Panel beeinflussen.
In Abbildung 4.8 ist ein Beispiel zu sehen, wie im Fraud Detection Beispiel ein
Entscheidungsbaum-Klassifikator aussehen könnte. Der Klassifikator wird von dem Werk-
zeug als serialisiertes Java Objekt in einer XML Datei ausgegeben, zusammen mit der
Genauigkeit des Klassifikators auf den Testdaten und mit weitergehenden Informationen
über die Konfiguration der tatsächlich angewandten Filter (z.B. über im Konsolidierungs-
schritt tatsächlich genutzte Matchings).

ja

<
Chronische
Erkrankung

Chronische
ErkrankungSumme Leistungen

pro Jahr≥250 €

Summe Leistungen
pro Jahr≥250 €

Geringes
Risiko

≥

Geringes
Risiko

Alter > 60Alter > 60

<

≥

Geringes
Risiko

Hohes
Risiko

nein

<

≥
Summe Leistungen pro

Jahr≥1000 €

Summe Leistungen pro
Jahr≥1000 €

Mittleres
Risiko

Abbildung 4.8: Ein Entscheidungsbaum zur Kategorisierung von Versicherungsfällen. Dieser
Classifier kann zur Automatisierung der Aktivität „Einordnung in Risiko-
klassen“ (siehe Abbildung 4.3) mittels eines Classifier-Webservice verwendet
werden.

4.3.9 Die graphische Benutzerschnittstelle

Eine weitere Herausforderung war die Konzeption und Implementierung einer aufgabenge-
rechten und verständlichen Bedienoberfläche. Hier kam das Sites Modes Trails HMI-Modell
[NW87] zum Einsatz. Es wurde durch Visualisierung der Datenpipeline sowie durch ein
Hilfetextfenster und ein Aktionsprotokoll umgesetzt (siehe Abbildung 4.6).
Fehlbedienungen werden durch einen entsprechenden DEA erkannt. Sonstige Fehler wer-
den in Form von Exceptions abgefangen und dem Benutzer über die Informationsleisten
mitgeteilt. Das Erscheinungsbild der GUI ist in Abbildung 4.6 zu sehen.

46

5 Entwurf des Werkzeugs

In diesem Kapitel werden die genauen Anforderungen, die an das Werkzeug gestellt wurden,
besprochen. Es wird außerdem darauf eingegangen, wie die Anforderungen bezüglich der
GUI und bezüglich der Filter umgesetzt wurden. Die entsprechenden Abschnitte haben einen
einheitlichen Aufbau: Unter der Überschrift „Ziel“ werden die Anforderungen in der Regel
an einem Anwendungsfall (Use Case) verdeutlicht. Die eigentlichen Entwurfsentscheidungen
sind jeweils unter „Entwurf“ zu finden.

5.1 Entwurf der graphischen Benutzeroberfläche

5.1.1 Ziel

Für die Steuerung des Werkzeugs sollte ein geeignetes Benutzer-Interface bereitgestellt
werden. Über dieses Interface sollte festgelegt werden können, welche Inhalte in welchem
Umfang aus der Websphere Process Server Umgebung extrahiert werden sollen. Darüber
hinaus sollte über das Benutzer-Interface der Konsolidierungsvorgang konfigurierbar sein.

5.1.2 Entwurf der graphischen Benutzeroberfläche

Das Benutzerinterface des Werkzeugs teilt sich auf in eine graphische Benutzeroberfläche
und eine Schnittstelle für Konfigurationsdaten, die der Benutzer dem Werkzeug in Form
einer XML Datei bereitstellt.
In der XML Datei können die Extraktionsinhalte spezifiziert werden, und es können Mat-
chings für die Konsolidierung darin definiert werden. Die restlichen Eingaben, die für die
Konsolidierung erforderlich sind, können über die graphische Benutzeroberfläche erfolgen
(siehe Abbildung 4.6). Die graphische Benutzeroberfläche wurde auf Grundlage des Sites-
Modes-Trails Modells von Nievergelt and Weydert [NW87] entworfen. Es sagt aus, dass der
Benutzer einer graphischen Benutzeroberfläche zu jedem Zeitpunkt die Fragen beantworten
können sollte,

1. wo er sich befindet,

2. was er dort tun kann,

3. wie er dorthin gekommen ist,

4. und wie er andere „Orte“ erreichen kann.

47

5.1 Entwurf der graphischen Benutzeroberfläche

Dementsprechend sollte bei der Verwendung des Werkzeugs stets klar sein, an welcher Stelle
der Datenpipeline die Verarbeitung angelangt ist. Es sollte klar sein wie der aktuelle „Filter“
konfiguriert werden kann, und wie die „Filterung“ angestoßen wird. Wenn dazu noch die
Datenpipeline selbst visualisiert wird, sind die Kriterien des Sites-Modes-Trails Modells für
Benutzerfreundlichkeit erfüllt.
Da es sich bei dem Programmverlauf um eine einfache Daten-Pipeline, also eine Sequenz
von Arbeitsschritten/Filtern handelt, besteht eine gute Lösung zur Beantwortung der Fragen
1,3 und 4 darin, die Pipeline zu visualisieren. Das erfolgt in einer vertikalen Leiste, die links
neben dem Arbeitsbereich, also dem Hauptbildschirm platziert ist.
Die Visualisierung zeigt für jeden Arbeitsschritt ein Symbol an, und ob er gerade aktiv,
bereits ausgeführt, noch anstehend ist oder einen Fehler gemeldet hat. Der Status eines
Arbeitschritts wird mit einer Farbcodierung gezeigt. Ein grünes Symbol bedeutet, dass der
Arbeitsschritt ausgeführt werden kann. Rot bedeutet, dass ein Fehler aufgetreten ist. Ein
weißes Symbol bedeutet, dass der Arbeitsschritt noch nicht aktiviert werden kann. Ein grüner
Haken bedeutet, dass der Arbeitsschritt ausgeführt wurde.
Zusätzlich gibt es rechts neben dem Arbeitsbereich ein Protokoll, das alle Arbeitsschritte, die
ausgeführt wurden, schriftlich aufführt. Der Benutzer erhält darüber hinaus Hilfestellungen
zu dem, was er in der aktuellen Ansicht tun kann (Frage 2) über ein Fenster, das rechts
über dem Protokoll platziert ist. Über dem Hauptbildschirm befindet sich eine beschriftete
Toolbar in der die Arbeitsschritte angestoßen werden können.
Die Benutzerinteraktion wird durch einen DEA überwacht. So wird sichergestellt, dass
der Benutzer nicht einen Pipelinefilter anstößt, an dem noch keine Eingabedaten verfügbar
sind. Der Automat ist in Abbildung 5.1 zu sehen. Zusätzlich zu den gezeigten Kanten
gibt es Kanten, die von Zustand Zn zu Zustand Zm führen mit m < n. D.h. wenn die
Datenverarbeitung an einem bestimmten Filter angelangt ist, kann ein beliebiger vorheriger
Filter erneut angestoßen werden.

48

5.2 Extraktion der Audit Daten

Z1:Extraktion

aktivierbar.

Z2:

Metrikberechnung

aktivierbar.

Z6:Data Mining

Fenster aktiv.

Programm

gestartet.

Button Extraktion

angeklickt.

Button Metriken

angeklickt.

Button Join

angeklickt.

Wechsel in Fenster

Data Mining.

Button Extraktion

angeklickt. UND

Fehler

Button Metriken

angeklickt. UND

Fehler

Button Join

angeklickt. UND

Fehler

XML Export

geklickt.

Z3:Aktivitäten

sind wählbar.

Z4:Matchings sind

wählbar und

editierbar.

Aktivität

ausgewählt.

Z5:Preprocessing

Fenster aktiv.

Preprocessing

Filter aktiviert.

Abbildung 5.1: Vereinfachter deterministischer endlicher Automat zur Kontrolle der Benut-
zerinteraktion. Es sind nicht alle Zustände und Kanten dargestellt.

5.2 Extraktion der Audit Daten

5.2.1 Ziel

Das Ziel des ersten Abschnittes der Entwicklung des Werkzeugs ist die Extraktion von
Audit-Daten eines Websphere Process Servers. Die erforderlichen Audit-Daten, die extrahiert
werden sollen, beziehen sich grundsätzlich auf die BPMN-Prozessebene und nicht auf die
tatsächliche Form in der der Prozess auf dem Process Server vorliegt, also in Form von BPEL
Code.
Die Audit-Daten umfassen pro (BPMN) Aktivität den Startzeitpunkt, Endzeitpunkt und
die Wartezeit, also die Zeit, in der die Aktivität Ressourcen anfordert, auf die Freigabe
von Ressourcen wartet, oder sie selbst wieder freigibt. Der weitere Prozessfluss nach der
Ausführung einer Aktivität gehört ebenfalls zu den Audit Daten. Darüber hinaus sollen
die Eingabe- und Ausgabedaten aller Aktivitäten erfasst und zur weiteren Verarbeitung
bereitgestellt werden.

49

5.2 Extraktion der Audit Daten

Name Prozessdaten-Extraktion

Ziel Extraktion von Prozessdaten für einen BPEL-Prozess. Transformation
in dBOP Prozessinformationen.

Vorbedingung Das Tool wurde mit validen Eingabedaten aufgerufen.

Nachbedingung Pro dBOP-Aktivität existiert eine Tabelle mit Informationen über ein-
zelne Aktivitätsinstanzen.

Akteure Anwender, Tool

Normalablauf 1. Der Anwender klickt auf die Option "BFM Daten extrahieren."
2. Das Tool ermittelt aus den Eingabedaten den zu analysierenden Pro-
zess. Es ruft dann alle relevanten BPEL-Prozessdaten vom Websphere
Process Server ab. Mit Hilfe der Eingabedatei werden einzelne BPEL
Aktivitäten den dBOP Aktivitäten zugeordnet, genauso werden BPEL
Attribute dBOP Prozessattributen zugeordnet. Das Tool transformiert
unter Verwendung dieser Mappings die BPEL Prozessdaten in dBOP
Prozessdaten, und speichert Sie in einem DBMS.

Tabelle 5.1: Use Case: Audit-Daten extrahieren.

Alle Prozesse, die das in dieser Arbeit vorgestellte Werkzeug verarbeiten kann, müs-
sen mit dem in der Aufgabenstellung bereits erwähnten dBOP-Designer in Form von
BPMN-Prozessdiagrammen erstellt worden sein. Der dBOP-Designer übersetzt die BPMN-
Prozessdiagramme in BPEL Code, der anschließend auf einem IBM Websphere Process
Server deployt werden kann. Zur Übersetzung von BPMN in BPEL generiert der dBOP-
Designer pro Aktivität ein dreistufiges Schema in BPEL:
1. Stufe: Ressourcen anfordern.
2. Stufe: Aufruf des Webservice, der die Aktivität realisiert.
3. Stufe: Ressourcen freigeben.
Dabei wird die erste und dritte Stufe vom sogenannten Resource Manager durchgeführt,
dessen Entwicklung nicht Teil der vorliegenden Arbeit ist. Dieser fordert zunächst Ressour-
cen an, die die Aktivität verwendet. Anschließend erfolgt die Ausführung der eigentlichen
Aktivität in Form eines Webservice Aufrufs. Am Ende gibt der ResourceManager die Res-
sourcen wieder frei.
Folglich ergibt sich die Startzeit als die Startzeit der 1.Stufe und der Endzeitpunkt als der
Endzeitpunkt der dritten Stufe. Die Wartezeit ist die Ausführungsdauer der ersten und
dritten Stufe zusammen und die Eingabedaten bzw. Ausgabedaten sind genau die des
Webservice der in Stufe 2 aufgerufen wird.
Nach dem Deployment und mindestens einer Ausführung des Prozesses, kann das Werkzeug
die Prozessdaten analysieren. Der IBM Websphere Process Server erlaubt den Zugriff auf Pro-
zessdaten auf seiner Betrachtungsebene, der BPEL Ebene. Dazu gibt es zwei Möglichkeiten:
Den Zugriff über SQL und den Zugriff über die Business Flow Manager Programmierschnitt-
stelle (BFM API). Der Zugriff über die Business Flow Manager API ist besser dokumentiert

50

5.2 Extraktion der Audit Daten

und bietet einen direkten Weg um auf Ein- und Ausgabedaten von BPEL-Aktivitäten zuzu-
greifen.
Das Werkzeug erhält als Eingabe eine XML Datei, die für jede Aktivität die Information
enthält, welche Prozessvariablen und welche Attribute davon aus dem Audit Trail ausgelesen
werden sollen. Die XML Datei kann vom dBOP Designer auf Wunsch generiert werden, ein
Beispiel ist in Listing 5.1 zu sehen.

5.2.2 Entwurf der Extraktion

In einer Vorstudie der vorliegenden Diplomarbeit hat sich herausgestellt, dass sich die
Business Flow Manager API am Besten aus dem Kontext eines Websphere Process Servers
nutzen lässt. Deshalb ist für die eigentliche Extraktion der Audit-Daten ein Webservice
vorgesehen, der auf demselben Process Server deployt und ausgeführt wird, wie der zu
analysierende Prozess. Der Webservice verfügt über 2 konzeptionelle Schnittstellen: Eine
zur Entgegennahme der XML Eingabedatei, der er die Zuordnungen zwischen BPEL und
BPMN Aktivitäten, sowie die zu extrahierenden Prozessvariablen entnimmt und eine weitere
Schnittstelle zum Hauptprogramm, um die Prozessdaten zurückgeben zu können.
Die Extraktion läuft in 5 Stufen ab:

1. Das Hauptprogramm liest die XML Eingabedatei (Beispiel siehe Listing 5.1) ein und
stellt eine Verbindung zu einer DB2 Datenbank her, auf die auch von dem Websphere
Process Server aus zugegriffen werden kann.

2. Das Hauptprogramm erzeugt in der Datenbank jeweils eine Tabelle ActivityX pro
BPMN Aktivität. Abbildung 5.2 zeigt die XML Datenquelle und eine entsprechende
Tabelle. Die Aktivitätstabellen haben also folgende Struktur:
ActivityX(AIID:INTEGER,Start:LONG,End:LONG,StartRequest:LONG,EndRequest:LONG,
StartRelease:LONG,EndRelease:LONG,Input1:DInput1 ,...,Inputm:DInputm ,
Output1:DOutput1 ,...,Outputn:DOutputn ,
ActivatedActivity1 :BOOLEAN,...,ActivatedActivityo :BOOLEAN)
Dabei werden auch die Spalten für die Eingabe (Input1:DInput1 ,...,Inputm:DInputm)
und Ausgabedaten (Output1:DOutput1 ,...,Outputn:DOutputn) erzeugt, ihr Typ
ist der SQL Typ, der dem XML Typ der Prozessvariable entspricht. Z.B.
wird für xs:decimal eine BIGINT Spalte erstellt. Außerdem die Spalten
(ActivatedActivity1 :BOOLEAN,...,ActivatedActivityo :BOOLEAN) die für alle nachfol-
genden Aktivitäten die Information enthalten, ob die entsprechende Aktivität nach
Aktivität X zur Ausführung kam oder nicht. Diese Informationen können später
genutzt werden um Prozessflussinformationen in das Data Mining einzubeziehen. Die
Wartezeit wird nicht durch den Webservice berechnet sondern im Hauptprogramm als
Metrik (siehe nächster Abschnitt).

3. Das Hauptprogramm ruft den Webservice auf und übergibt dabei die XML Eingabe
als Argument.

4. Der Webservice ruft die Prozessdaten mit Hilfe der BFM API ab und füllt die Aktivi-
tätstabellen.

51

5.2 Extraktion der Audit Daten

5. Der Webservice meldet an das Hauptprogramm zurück, ob die Extraktion erfolgreich
ausgeführt werden konnte.

Prozess: X
Aktivität: Y

Input-Attribute: I1,I2,…,Im
Output-Attribute: O1,O2,…,On

Nachfolgende Aktivitäten:
A1,A2,…,Ao

<XML
Eingabe/>

Tabelle für Aktivität Y

AIID Start Ende I1 I2 … Im O1 O2 … On A1 A2 … Ao

Abbildung 5.2: Erstellung der Aktivitätstabellen. Links: XML Datei mit Informationen über
Aktivität X. Rechts: Aktivitätstabelle.

Das Szenario ist in Abbildung 5.3 zu sehen. Dabei ist es unerheblich, ob sich der Process
Server und die DB2 Datenbank auf ein und demselben Server befinden oder auf getrennten.

IBM Websphere Process Server
+ ETL-Webservice

IBM DB2
Datenbank

Java
Client

Aufruf des
ETL-Webservice

Prozessdaten

Prozessdaten

CREATE
TABLE...

Abbildung 5.3: Daten- und Kontrollfluss bei der Extraktion der Prozessdaten.

52

5.2 Extraktion der Audit Daten

Listing 5.1 Beispiel Datei für eine XML Eingabedatei, die vom dBOP Designer geliefert wird.
<process bpelName="testprozess">
<activity dbopName="CheckEligibility" dbopType="Activity">
<invokeMapping>
<implementationMapping bpelName="CheckEligibility" dbopName="CheckEligibility" />
<resourceAcquisitionMapping>
<mapping bpelName="CheckEligibilityAcqResSalesEmp" dbopName="CheckEligibility" />

</resourceAcquisitionMapping>
<resourceReleaseMapping>
<mapping bpelName="CheckEligibilityRelResSalesEmp" dbopName="CheckEligibility" />

</resourceReleaseMapping>
</invokeMapping>
<inputMapping>
<mapping processVariable="rental" processAttribute="rentalID"
wsVariable="" wsPart="checkEligibilityParameters"
wsExpression="checkEligibility/rental/rentalID"
mappingType="inputData" dataType="xs:decimal" />

<mapping processVariable="rental" processAttribute="customerID" dataType="xs:decimal"
wsVariable="" wsPart="checkEligibilityParameters"
wsExpression="checkEligibility/rental/customerID" mappingType="inputData"
></mapping>

<mapping processVariable="SalesEmp" processAttribute="resId" dataType="xs:decimal"
wsVariable="" wsPart="checkEligibilityParameters"
wsExpression="checkEligibility/rental/employeeID" mappingType="inputResource"
></mapping>

</inputMapping>
<outputMapping>
<mapping processVariable="rental" processAttribute="eligible" dataType="xs:string"

wsVariable="" wsPart="checkEligibilityResult"
wsExpression="checkEligibilityResponse/rental/eligible" mappingType="outputData" />

</outputMapping>
<requiredAnalysis>
<metrics basicMetrics="true" extendedMetrics="true" />
<mining>
<taskAutomationMining enabled="true"/>

</mining>
</requiredAnalysis>
<graphInformation>
<predecessors>
...
</predecessors>
<successors>
...
</successors>
<exclusives />
<parallels>
...

</parallels>
</graphInformation>

</activity>
... weitere Aktivitäten mit der gleichen Syntax...
</process>

53

5.3 Berechnung der Metriken

5.3 Berechnung der Metriken

5.3.1 Ziel

Nachdem die Extraktion beendet ist, liegen alle benötigten Rohdaten vor, um Prozess- und
Aktivitätsmetriken berechnen zu können. Aktivitätsmetriken machen eine Aussage über eine
einzelne Aktivität oder eine Instanz einer Aktivität. Prozessmetriken beziehen sich hingegen
auf den Gesamtworkflow oder einzelne Instanzen davon. Diese Metriken sollen einerseits
dem dBOP Designer an einer Schnittstelle zugänglich gemacht werden, andererseits sollen
sie in der Data Mining Phase als Zusatzinformationen zur Verfügung stehen.
Der Use Case „Metriken berechnen“ (Tabelle 5.2) beschreibt die funktionalen Anforderungen
des Anwendungsfalls „Metriken berechnen“. Zusätzlich zu den in der Aufgabenstellung
genannten, machen im Hinblick auf die Metriken folgende funktionale Anforderungen
Sinn: Es soll möglich sein, dass eine Metrik das Ergebnis einer anderen Metrik nutzen
kann. Für neue Metriken, die pro Aktivitätsinstanz berechnet werden, soll es eine einfache
Aggregationsmöglichkeit geben, mit Aufnahme der aggregierten Metrik in die Ausgabe des
Werkzeugs.

Name Berechnung der Metriken

Ziel Berechnung der Metriken auf Basis der im Extraktionsschritt gewonne-
nen Prozessdaten

Vorbedingung Die Extraktion wurde durchgeführt, und die Aktivitätstabellen sind
gefüllt.

Nachbedingung Die Aktivitätstabellen sind um Spalten für die Metriken erweitert
und entsprechende Einträge wurden vorgenommen. Die aggregierten
Metriken liegen in Form einer XML Datei vor.

Akteure Anwender, Tool

Normalablauf 1. Der Anwender klickt auf die Option "Metriken Berechnen."
2. Das Tool berechnet die Metriken mit Hilfe aller im Quellcode ver-
merkten Metrik-Klassen. Das Interface zu den Metrik-Klassen erlaubt
die Definition eines neuen Attributs pro Aktivität, und die Berechnung
eines Werts des Attributs für jede Aktivitätsinstanz. Es erlaubt außer-
dem die Definition eines passenden XML Tags und die Berechnung
eines entsprechenden aggregierten Wertes für alle Aktivitätsinstanzen.
Dieser Wert wird unter Verwendung des Tags in der XML Ausgabedatei
protokolliert.

Tabelle 5.2: Use Case: Metriken berechnen.

54

5.3 Berechnung der Metriken

5.3.2 Entwurf zur Berechnung der Metriken

Da es Metriken gibt, die andere Metriken nutzen, wird ein „MetricRepository“ eingeführt,
in dem Metriken beliebige bereits berechnete Ergebnisse in Form von Java Objekten unter
einem wohldefinierten, menschenlesbaren Schlüssel zwischenspeichern können.
Die Metrik-Klassen haben alle dieselbe abstrakte Vaterklasse, sodass sie in Form einer Liste
abgearbeitet werden können. Dabei definiert der Programmierer anwendungsspezifischer
Metriken die Reihenfolge in der die Metriken abgearbeitet werden sollen. Zuerst werden
die Prozessmetriken berechnet, da die Aktivitätsmetrik „Frequenz“ z.B. die Prozess- Metrik
„InvocationCount“ benötigt. Im zweiten Schritt folgen dann die Aktivitätsmetriken.
Diese Vorgehensweise hat den Nachteil, dass Prozessmetriken keine Ergebnisse von Aktivi-
tätsmetriken nutzen können, jedoch ist dies durch eine einfache Anpassung bei Bedarf leicht
zu beheben.
Für jede Aktivitätsmetrik wird zunächst pro Aktivität eine passende Spalte für ihre Werte
erstellt (siehe Abbildung 5.4). Die Aktivitätstabellen haben danach bei einer Anzahl von p

Tabelle für Aktivität Y

AIID Start Ende I1 I2 … Im O1 O2 … On A1 A2 … Ao Wartezeit Ausführungszeit

+getSQLName() : string

AusführungszeitMetrik

+getSQLName() : string

WartezeitMetrik

Metrik

Abbildung 5.4: Erweiterung der Aktivitätstabellen. Oben: Metrik-Klassen die die Funktion
getSQLName definieren. Unten: Erweiterte Aktivitätstabelle.

Metriken dieses Schema:
ActivityX(AIID:INTEGER,Start:LONG,End:LONG,StartRequest:LONG,EndRequest:LONG,
StartRelease:LONG,EndRelease:LONG,Input1:DInput1 ,...,Inputm:DInputm ,
Output1:DOutput1 ,...,Outputn:DOutputn ,
ActivatedActivity1 :BOOLEAN,...,ActivatedActivityo :BOOLEAN,
Metrik1:DMetrik1 ,...,Metrikp:DMetrikp)
Die Metriken werden nach Erstellung der Spalte einmal pro Aktivitätsinstanz aufgerufen,
um die die Spalte zu befüllen. Numerische Metriken wie Durchschnitt, Minimalwert, Ma-

55

5.3 Berechnung der Metriken

ximalwert und Median, können hinterher automatisch aggregiert werden. Jede Metrik hat
danach noch die Möglichkeit, pro Aktivität beliebige weitere Aggregationen durchzuführen,
mit freiem Zugriff auf alle Daten.
Am Ende kann die Metrik-Klasse diese Aggregationen in der XML Ausgabe vermerken. Für
die XML Ausgabe wird nicht die bereits besprochene DataAccessLib verwendet, da erstens
ein schreibender Zugriff auf eine XML Datei erfolgt, und zweitens dieser schreibende Zugriff
vom ETL-Webservice nicht benötigt wird. Eine Umsetzung dieser Funktionalität in der
DataAccessLib hätte zur Folge, dass sich der ETL-Webservice aufgrund seiner Abhängigkeit
von der DataAccessLib im Laufe der Implementierungsphase ständig ändern würde und
unter Umständen jedes Mal neu deployt werden müsste.
Listing 5.2 zeigt das XML Schema der Ausgabedatei für die Metriken. Das Schema sieht für
die Aktivitäten bisher nur numerische Metriken vor (Typ MetricType).

56

5.3 Berechnung der Metriken

Listing 5.2 XML Schema für die Ausgabe der Metriken.
<?xml version="1.0" encoding="UTF-8"?>
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"

targetNamespace="http://www.BusinessProcessAnalytics.org/Metrics"
xmlns:tns="http://www.BusinessProcessAnalytics.org/Metrics"
elementFormDefault="qualified">

<xs:complexType name="MetricType">
<xs:sequence minOccurs="0" maxOccurs="1">
<xs:element name="Avg" type="xs:float"></xs:element>
<xs:element name="Min" type="xs:float"></xs:element>
<xs:element name="Max" type="xs:float"></xs:element>
<xs:element name="Median" type="xs:float"></xs:element>
</xs:sequence>

<xs:attribute name="MetricName" type="xs:string"></xs:attribute>
</xs:complexType>

<xs:complexType name="ActivityType">
<xs:sequence minOccurs="1" maxOccurs="1">
<xs:sequence minOccurs="0" maxOccurs="unbounded">

<xs:element name="Metric" type="tns:MetricType"/>
</xs:sequence>
<xs:element name="InvocationCount" type="xs:decimal"></xs:element>
<xs:element name="Frequency" type="xs:float"></xs:element>
</xs:sequence>
<xs:attribute name="ActivityName" type="xs:string"/>
</xs:complexType>

<xs:complexType name="ProcessType">
<xs:sequence minOccurs="1" maxOccurs="1">
<xs:sequence minOccurs="0" maxOccurs="unbounded">

<xs:element name="Activity" type="tns:ActivityType"/>
</xs:sequence>
<xs:element name="InvocationCount" type="xs:decimal"></xs:element>
</xs:sequence>
<xs:attribute name="ProcessName" type="xs:string"/>
</xs:complexType>

<xs:complexType name="MetricsType">
<xs:sequence>

<xs:element name="Process" type="tns:ProcessType"/>
</xs:sequence>
</xs:complexType>

<xs:complexType name="ResultsType">
<xs:sequence>

<xs:element name="Metrics" type="tns:MetricsType"/>
</xs:sequence>
</xs:complexType>

<xs:element name="Results" type="tns:ResultsType"></xs:element>

</xs:schema>

57

5.4 Konsolidierung

5.4 Konsolidierung

5.4.1 Ziel

Die durch Metriken angereicherten Aktivitäts- bzw. Prozessdaten sollen im 3. Schritt der
Datenpipeline 4.1 mit operativen Daten konsolidiert werden. Bei dieser Zusammenführung
sollen alle vorgegebenen Matchings, also semantische Äquivalenzen zwischen Prozessdaten
und operativen Daten, genutzt werden können, um damit für das Data Mining wichtige
operative Daten auszulesen. Matchings können vor der Ausführung des Werkzeugs im
sogenannten BIA-Editor [RNB10] definiert werden.
Das Ergebnis der Konsolidierung ist für jeden Data Mining Auftrag genau eine Tabelle, die
für jede Aktivitätsinstanz der betrachteten Aktivität eine Zeile mit Informationen enthält.
Bei den Informationen handelt es sich um Prozessdaten und operative Daten.

5.4.2 Entwurf

Benutzer-Schnittstelle

Anwendungsfall 5.3 zeigt die funktionalen Anforderungen an den Konsolidierungsteil der
graphischen Benutzeroberfläche. Zur Realisierung dieses Anwendungsfalls ist eine einfache,
graphische Benutzerschnittstelle vorgesehen (siehe Abbildung 4.6). Sie erlaubt zunächst die
Auswahl einer Aktivitätstabelle. Eine Aktivitätstabelle ist für alle Aktivitäten verfügbar, für
die in der dBOP-BPEL Mapping Datei, der Data Mining Auftrag Task Automation aktiviert
ist.
Wird eine Aktivitätstabelle angeklickt, so erscheinen alle Attribute der Tabelle, inklusive der
Metriken in Form einer Liste. Der Benutzer kann dann Matchings auf die operativen Daten
aktivieren oder deaktivieren. Die Matchings können mit Klick auf „Details“ geprüft und edi-
tiert werden. Der Benutzer kann nach Auswahl der benötigten Matchings die Prozesstabellen
mit den operativen Tabellen joinen, indem er „Tabellen joinen.“ anklickt.

Konsolidierungsvorgang

Um die Konsolidierung durchführen zu können, werden Informationen über die Aktivitäts-
tabelle und die Matchings benötigt. Ein Aktivitätstabelle wird beschrieben durch folgende
Angaben:

• Name

• Namen der Attribute

Ein Matching definiert diese Angaben:

• SQL Statement, um die operativen Daten zu extrahieren.

• Name der Tabelle in die die Extraktion erfolgen soll.

58

5.4 Konsolidierung

Name Konsolidierung

Ziel Überführen aller für das Data Mining relevanten Daten in eine Tabelle.

Vorbedingung Das Tool wurde mit validen Eingabedaten aufgerufen: Eingabedaten
sind die dBOP-BPEL Abbildung und die Matchings. Aktivitätszentrier-
te Daten sind extrahiert. Operative Daten auf die sich die Matchings
beziehen liegen in Form von SQL Tabellen vor.

Nachbedingung Alle für das Data Mining relevanten Daten liegen in einer einzigen
Tabelle vor.

Akteure Anwender, Tool

Normalablauf 1. Der Anwender wählt die Option "Konsolidieren".
2. Das Tool wechselt in die Ansicht Konsolidieren. Es zeigt alle Aktivi-
täten, für die der aktuelle Data Mining Auftrag aktiviert ist.
3. Der Anwender wählt eine Aktivität.
4. Das Tool zeigt eine Liste aller Spalten der entsprechenden Aktivitäts-
tabelle. Wenn eine für Spalte ein Matching auf die operativen Daten
existiert, zeigt das Tool einen Info-Knopf und eine Checkbox mit der
das Matching aktiviert werden kann.
5. Der Anwender drückt den Knopf "Join".
6. Das Tool prüft ob zwischen den Prozessdaten und den operati-
ven Tabellen eine 1:N oder eine M:N Beziehung besteht. Und "ver-
schmelzt"gegebenenfalls n Tupel in 1 Tupel. Anschließend erfolgt ein
Join der Prozessdaten mit den operativen Tabellen.
7. Das Tool wechselt in die Ansicht Preprocessing und zeigt die Spalten
der konsolidierten Daten.

Tabelle 5.3: Use Case: Konsolidierung.

• Name der Spalte dieser Tabelle, die zu einem Prozess-Attribut korrespondiert.

• Name der Prozess-Variable

• Name des Prozess-Attributes

Die Matchings werden aus einer XML Datei (Beispiel: siehe Listing 5.3) gelesen, die vorher
mit dem BIA Editor erstellt werden muss. Das Werkzeug extrahiert zunächst für alle in
dieser Datei definierten Matchings die operativen Daten in separate Tabellen die wie im
Matching definiert benannt werden.
Wenn der Benutzer seine Auswahl getroffen hat und „Join“ klickt, werden die aktiven
Matchingtabellen daraufhin untersucht, ob zu den Prozessdaten eine 1:N Beziehung besteht.
Das Kriterium dafür ist die Existenz von Dubletten in der Spalte, die zu dem Prozess-
Attribut korrespondiert. Ist dieses Kriterium erfüllt, werden die Spalten der operativen
Tabelle „binarisiert“ die für eine Aktivitätsinstanz mehrere Werte aufweisen, sofern es sich

59

5.4 Konsolidierung

ANGESTELLTER ERFAHRUNG FORTBILDUNG

100 7 Business English

102 10 Kundenberatung

102 10 Business English

103 5 Soft Skills

…

AKTIVITÄT START ENDE KUNDE ANGESTELLTER

2102 11:05 11:25 1010 102

2103 11:06 11:20 2111 54

…

Aktivitätstabelle
Operative Tabelle

Abbildung 5.5: Beispiel für eine 1:N Beziehung zwischen einer Aktivitätstabelle und einer
entsprechenden operativen Tabelle. Die Aktivitätsinstanz mit der ID 2102

hat 2 Join-Partner in der operativen Tabelle.

dabei um nominale Spalten handelt. Bei numerischen Spalten erfolgt keine „Binarisierung“.
Bei dem Vorgang wird für jeden Wert der Spalte, der in den operativen Daten auftaucht,
in der konsolidierten Tabelle eine binäre Spalte angelegt. Diese erhält für ein Tupel genau
dann den Wert true, wenn die ursprüngliche Spalte den entsprechenden nominalen Wert
enthalten hat.
Die Binarisierung ist erforderlich, da gängige Data Mining Verfahren Trainingsbeispiele mit
mehrwertigen Attributen nicht verarbeiten können. Ein Beispiel ist in Abbildung 5.5 zu sehen.
Nach der Binarisierung erfolgt ein Join der operativen Tabellen mit der Aktivitätstabelle:
Sei ActivityX die Aktivitätstabelle nach der Berechnung der Metriken. Seien Op1,...,Opi
die operativen Tabellen die durch die Matchings spezifiziert sind, dann wird die Tabelle
ActivityX onProcessVariable1=OperativeColumn1 Op1 on ... onProcessVariableI=OperativeColumnI Opi an den
Preprocessing Schritt weitergereicht. Der Benutzer gelangt in die Ansicht „Preprocessing“.

Listing 5.3 Beispiel Datei für Matchings.
<Matchings xmlns="http://www.BusinessProcessAnalytics.org/Matchings"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://www.BusinessProcessAnalytics.org/Matchings matchings.xsd">

<Matching id="1">
<Process>
<Variable>rental</Variable>
<Attribute>customerID</Attribute>
</Process>
<Operational>
<Table>BPACLIENT_CUSTOMER</Table>
<Col>CUSTOMERID</Col>
<SQLStatement>SELECT c.CUSTOMERID, c.AGE AS

CUSTOMERAGE,c.NUMBERRENTALS,d.AVERAGEINCOME FROM CARRENTAL.CUSTOMER c,
CARRENTAL.OCCUPATION d WHERE c.OCCUPATIONID=d.OCCUPATIONID

</SQLStatement>
</Operational>

</Matching>
<Matching>...
</Matching>

</Matchings>

60

5.5 Preprocessing

5.5 Preprocessing

5.5.1 Ziel

Die konsolidierten Daten werden im Preprocessing-Schritt für das Data Mining vorbereitet.
Da diese Daten schon in einer einzigen Tabelle vorliegen, fehlt als Voraussetzung für das Data
Mining nur noch die Information, ob es sich bei den Spalten um nominale oder numerische
Daten handelt.

5.5.2 Entwurf

Für die Umsetzung des Data Mining Schritts wurde die Open Source Data Mining Bibliothek
WEKA [HFH+

09] eingesetzt. WEKA bietet bereits umfangreiche Preprocessing Filter an.
Deshalb integriert das Werkzeug das Preprocessing Panel von WEKA und lädt automatisch
die konsolidierten Daten in das Panel. Alle Metriken, die vom SQL-Typ CHAR() oder
VARCHAR() sind, werden dann automatisch als nominal interpretiert. Alle SQL-Zahlentypen
werden als numerisch interpretiert. Da letzteres manchmal nicht erwünscht ist, kann der
Benutzer z.B. für eine Kunden-ID den „NumericToNominal“ Filter von WEKA verwenden.
Darüber hinaus besteht die Möglichkeit nicht benötigte Prozess- oder operative Attribute
per „Remove“ zu entfernen, und es können nach Bedarf beliebige weitere WEKA Filter
angewandt werden.

5.6 Anwendung von Data Mining Verfahren zur Optimierung von
Workflows

Abschließend soll ein Szenario spezifiziert werden in dem Data Mining die Optimierung von
Workflows sinnvoll unterstützt. Ein passender Data Mining Algorithmus soll beschrieben
und prototypisch implementiert werden.

5.6.1 Unterstützung von der Task Automation Best Practice [RLM04] durch Data
Mining auf konsolidierten Prozessdaten und operativen Daten

In diesem Kapitel wird ein Szenario beschrieben, in dem Data Mining die Workflow Opti-
mierung unterstützt. In [RLM04] sind Optimierungsmuster für Geschäftsprozesse zu finden.
Einige davon lassen sich gut auf die Workflow-Ebene übertragen, um automatisiert Opti-
mierungsvorschläge zu generieren. Als besonders gut dafür geeignet haben sich auf Basis
ihrer Beschreibung in [RLM04] die Optimierungsmuster „Task Automation“ und „Triage“
herausgestellt.
Task Automation bedeutet, eine Aufgabe, die sonst ein Sachbearbeiter durchführen müsste,
ganz oder teilweise mit Hilfe einer Software zu automatisieren. Eine teilweise Automatisie-
rung könnte zum Beispiel durch Vorbelegung von Webformularen, die der Sachbearbeiter

61

5.6 Anwendung von Data Mining Verfahren zur Optimierung von Workflows

dann zur Überprüfung erhalten würde, erfolgen. Oder dass unter bestimmten Voraussetzun-
gen eine Software alleine agiert und in schwierigen Fällen ein Sachbearbeiter.
Eine auf das Muster des Task Automation passende Aktivität zeichnet sich also dadurch aus,
dass sie vollständig durch einen Sachbearbeiter oder z.B. durch einen Kunden ausgeführt
wird, etwa durch Ausfüllen eines Webformulars unter Berücksichtigung bestimmter Angaben.
Letztere sind genau die Eingabedaten der Aktivität. Das was in das Formular eingegeben
wurde, stellt die Menge der Ausgabedaten dar. Die Wirkung einer passenden Aktivität muss
sich auf den Prozess selbst beschränken: Eine Aktivität in der eine Warenauslieferung erfolgt
kann nicht automatisiert werden.
Um Task Automation durch Data Mining auf den konsolidierten Prozess- und operativen
Daten zu unterstützen, müssen die Ausgabedaten vollständig ermittelt werden. In manchen
Fällen kann es auch ausreichend sein, nur die für die zu erwartende Folgeaktivität erforderli-
chen Ausgabedaten zu ermitteln, inklusive der für die Auswertung der Gateway-Bedingung
erforderlichen Ausgabedaten.
Dafür gibt es mehrere Alternativen. Erstens könnte man alle Eingabe- und Ausgabedaten
binarisieren und anschließend ein Assoziationsregelverfahren darauf anwenden. Numeri-
sche Attribute müssen vor der Binarisierung in Intervalle diskretisiert werden. Wenn beim
Assoziationsregel-Mining Regeln mit genügend hohem Support und Confidence-Wert auftau-
chen, deren Antecedent eine oder mehrere Eingabeattribute darstellt und deren Consequent
eine vollständige Aussage über die erforderlichen Ausgabedaten macht, hätte man für einen
Teil aller Ausführungen genügend Informationen, um die Aktivität z.B. durch ein Java
Programm zu automatisieren.
Die Alternative, die in dieser Diplomarbeit vorgestellt wird, ist, für jede nominale Ausga-
bevariable einen Entscheidungsbaum-Klassifikator zu erstellen und für jede numerische
Variable einen Modellbaum. Diese Alternative hat den Vorteil, dass Entscheidungsbaum-
Modelle nicht nur einfach verständlich sind, sondern auch direkt zur Prädiktion verwendet
werden können. Passende Assoziationsregeln müssten dagegen erst aus der Ergebnismenge
herausgefiltert werden.
Die Modellbäume sind gegenüber normaler (multipler) linearer Regression im Vorteil, da
sie die Menge der aller möglichen Objekte hierarchisch aufteilen in Mengen, die in den
Trainingsbeispielen eine möglichst geringe Standardabweichung bezüglich des vorherzusa-
genden Attributs aufweisen. Für jede Menge dieser Aufteilung wird ein passendes lineares
Regressionsmodell gespeichert. Gegenüber neuronaler Netzwerke weisen Modellbäume eine
bessere Interpretierbarkeit auf.
Listing 5.4 zeigt das XML Schema für die Ausgabe der Modelle. Neben dem serialisierten
WEKA Classifier wird auch die Genauigkeit der Modelle ausgegeben. Für alle Entschei-
dungsbäume wird auch der Java Code ausgegeben.

5.6.2 Entscheidungsbäume und Modellbäume: Die Algorithmen C4.5 und M5P

C4.5

Der von Ross Quinlan vorgeschlagene C4.5 Klassifizierungs-Algorithmus [Qui93] ist ein
Entscheidungsbaum-Verfahren, das sich für diskrete Klassen eignet. Es handelt sich dabei

62

5.6 Anwendung von Data Mining Verfahren zur Optimierung von Workflows

um einen divide-and-conquer Algorithmus der sich das Greedy Prinzip zur Optimierung
der Höhe des Entscheidungsbaumes, also dem Resultat einer Ausführung des Trainings-
Algorithmus, zu eigen macht. Die Informationen über den C4.5 Algorithmus wurden dem
Buch [Qui93] entnommen.

Aufbau des Entscheidungsbaums Um für eine gegebene Trainingsmenge T von Beispielen
einen Entscheidungsbaum zu erstellen, wird zunächst für jede Klasse Ci die Häufigkeit
f requ(Ci, T) mit der sie in T auftritt bestimmt. Kommt nur eine Klasse Cj in der Trainings-
menge vor, wird ein Blattknoten mit der Entscheidung Cj erzeugt und zurückgegeben. Ist
|T| sehr klein, so wird ebenfalls ein Blattknoten zurückgegeben, wobei die mehrheitlich
auftretende Klasse die Entscheidung an diesem Blatt darstellt.
Gilt keine der beiden Abbruchbedingungen wird ein neuer Entscheidungsknoten N erstellt
und für jedes Attribut A des Datensatzes ermittelt, welchen Informationsgewinn (Gain)
eine Aufteilung von T anhand von A einbringt (siehe Abschnitt 5.6.2). Hier können diskrete
und stetige Attribute berücksichtigt werden. Das Attribut mit dem höchsten Gain wird zur
Auftrennung von T herangezogen. Bei stetigen Attributen wird vor der Auftrennung noch
die Trennschwelle bestimmt (siehe Abschnitt 5.6.2).
Anschließend werden die Trainingsteilmengen Tk (Tk ∈ TSplit), die durch eine Aufteilung
von T entstehen, daraufhin untersucht, ob sie leer sind. Wenn ja, wird dafür ein Blattknoten
erzeugt und als Kind des aktuellen Knotens N angehängt, ansonsten erfolgt ein rekursiver
Aufruf auf Tk, der dann einen Kindknoten oder Unterbaum für N zurückgibt.
Im Anschluss daran wird der Fehler des aktuellen Knotens N bestimmt und N zurückgege-
ben. Algorithmus 5.1 auf der nächsten Seite zeigt den groben Ablauf des C4.5 Algorithmus.

Auswahl von Attributtests Der C4.5 kennt 3 Arten von Attributtests:

1. Der Test vergleicht pro Zweig j das diskrete Attribut Ai mit einem festen Wert aj:
Ai = aj.

2. Der Test vergleicht pro Zweig j das diskrete Attribut Ai mit mehreren festen Werten ax:
Ai = aj ∨ Ai = ak ∨

3. Der Test hat zwei Zweige und vergleicht ein stetiges Attribut mit einem Schwellwert s :
Ai < s, Ai ≥ s

In dieser Diplomarbeit werden die Typen 1 und 3 besprochen. Typ 2 wird nur optional
verwendet.
Ziel ist es, einen Attributtest zu finden, der die aktuelle Trainingsmenge so aufspaltet, dass
ein möglichst kleiner Entscheidungsbaum entsteht.
C4.5 nutzt, wie einige andere Klassifizierungsalgorithmen (CLS, ID3) das Gain Kriterium als
Grundlage für die Attributauswahl. Mit dem Gain Kriterium versucht man auf Basis des
Shannon’schen Informationsbegriffs den Informationszuwachs beim Abstieg im Entschei-
dungsbaum zu maximieren. Ein hoher Informationszuwachs kann z.B. bedeuten: Wenn ein
Tupel alle Tests X auf einem Pfad P (X ∈ TestsP) mit X = true durchläuft, dass es sich dann

63

5.6 Anwendung von Data Mining Verfahren zur Optimierung von Workflows

Algorithmus 5.1 Pseudocode des C4.5. Der Pseudocode stammt aus [Qui93] und wurde in
seiner Darstellung an die Diplomarbeit angepasst.

procedure FormTree(T)
ComputeClassFrequency(T)
if OneClass or FewCases then

return a leaf
end if
create a decision node N
for all A ∈ Attributes do

ComputeGain(A)
end for
N.test← AttributeWithBestGain
if N.test is continuous then

find Treshold
end if
for all Ti ∈ TSplit do

if Ti is Empty then
N.newChild← leaf

else
N.newChild← FormTree(Ti)

end if
end for
ComputeErrors(N)
return N

end procedure

bei der Klassenzuweisung um eine ganz bestimmte Klasse Ci handeln muss, während ohne
die Aussagen, die durch die Tests gemacht werden, eine solche Zuordnung nicht möglich ist
und es stattdessen viele mögliche Klassenzuweisungen für das Tupel gibt, die alle gleich
wahrscheinlich sind.
Der Informationszuwachs ist dabei definiert als die Differenz zwischen Informationsge-
halt der Trainingsmenge vor der Aufteilung und dem mittleren Informationsgehalt der
Trainingsteilmengen die man durch die Aufteilung erhält:

gain = in f o(T)− in f oX(T)

Der mittlere Informationsgehalt der Aufteilung der Trainingsmenge T anhand von Test X
ist:

in f oX(T) = −
s

∑
i=1

|Ti|
|T| × in f o(|Ti|)

64

5.6 Anwendung von Data Mining Verfahren zur Optimierung von Workflows

Dabei ist s die Anzahl der möglichen Ergebnisse von Test X. Die Entropie in f o(T) einer
gegebene Trainingsmenge wird berechnet durch:

in f o(T) = −
NClass

∑
j=1

f requ(Cj, T)
|T| × log2(

f requ(Cj, T)
|T|)

Dabei ist NClass die Anzahl der Klassen. Konkrete Trainingsmengen werden also als Nach-
richten im Sinne der Informationstheorie [Wer09] angesehen. Die Tupel, die die Trainings-
mengen enthalten, werden als Zeichen interpretiert. Die Zeichen haben dann für Tupel ti ∈ T
mit Klassenzuweisung Ci die reduzierte Form „Ci“. Aus den Wahrscheinlichkeiten dieser
Zeichen ergibt sich deren Informationsgehalt. Aus den Informationsgehalten dieser j Zeichen
ergibt sich der mittlere Informationsgehalt der Nachricht. Es wird davon ausgegangen, dass
genügend Trainingsdaten vorliegen. Deshalb werden die statistischen Eigenschaften der
Nachrichten mit denen der Quelle gleichgesetzt. Somit kann der Entscheidungsbaum, der als
Modell die Quelle repräsentieren soll, zur Prädiktion nicht klassifizierter Tupel herangezogen
werden.
Das Gain Kriterium liefert deshalb brauchbare Entscheidungsbäume, da insbesondere Attri-
buttests X, die homogene Trainingsteilmengen Ti erzeugen, begünstigt werden, denn der
Gain ist maximal, wenn die Entropie von allen Ti 0 ist. Und die Entropie einer Trainingsteil-
menge Ti ist dann 0, wenn sie homogen ist, d.h. nur Tupel einer einzigen Klasse Ci enthält.
Jedoch wird das Gain Kriterium nicht in Reinform angewandt, da es dazu neigt, Attribute
mit besonders vielen verschiedenen möglichen Werten zu bevorzugen. Soll also z.B. eine
Kundendatenbank untersucht werden, besteht die Gefahr, dass die Kunden ID als erstes
zur Auftrennung der Trainingsmenge verwendet wird, was zu einem extrem breiten Ent-
scheidungsbaum, ohne Nutzen führt. Deshalb wird bei der Maximierung des Gain, derselbe
noch durch einen „Penalty Term“ geteilt, der Attribute mit extrem vielen möglichen Werten
bestraft. Das Ergebnis ist die „Gain Ratio“

splitIn f o(X) = −
s

∑
i=1

|Ti|
|T| × log2(

|Ti|
|T|)

Dabei ist s wieder die Anzahl verschiedener möglicher Ergebnisse von Test X.

Behandlung fehlender Werte Wenn bei einem Trainingsbeispiel der Attributwert fehlt,
anhand dessen eine Auftrennung erfolgen soll, so gelangt das Trainingsbeispiel in alle
Unterbäume des aktuellen Knotens und wird mit der Werteverteilung des Attributs an
diesem Knoten gewichtet [MAT10].

Trennschwellen für stetige Attribute finden Um den Informationsgewinn eines stetigen
Attributes zu berechnen, muss dessen Trennschwelle s berechnet werden. Eine Trennschwelle
s wird aus einer Trainingsmenge T folgendermaßen berechnet: Erst wird T nach den Werten
des stetigen Attributes sortiert. T dann wird für alle Mittelwerte aus je 2 aufeinanderfolgen-
den Tupeln t ∈ T in zwei Trainingsteilmengen T1 und T2 aufgetrennt. Anschließend wird
wie gehabt die Gain Ratio für diese Trennstelle ermittelt. Die Trennstelle si mit der höchsten

65

5.6 Anwendung von Data Mining Verfahren zur Optimierung von Workflows

Gain Ratio wird nicht direkt für das Attribut verwendet, sondern es wird die gesamte
Trainingsmenge nach einem Wert s′i für das aktuelle Attribut durchsucht, der möglichst nahe
an si herankommt. s′i ist dann die Trennschwelle des stetigen Attributes.

Pruning Beim Pruning wird ein Entscheidungsbaum gekürzt, um die Genauigkeit auf
noch nicht gesehenen Tupeln zu verbessern. Dabei verringert sich die Genauigkeit des
Entscheidungsbaumes für die Trainingsdaten automatisch.
Um nun testen zu können, ob es besser ist, den gegebenen Entscheidungsbaum an einem
Knoten zu kürzen oder nicht, werden Trainingstupel benötigt, die nicht in den Trainingsdaten
enthalten sind, die für den Aufbau des Entscheidungsbaumes verwendet wurden. Um die
verfügbaren Trainingsdaten möglichst gut zu nutzen, folgt der C4.5 einem cross-validation
Ansatz.
D.h. es wird nicht nur 1 Entscheidungsbaum generiert, sondern n Entscheidungsbäume,
wobei jeweils 1 von n Stücken der Trainingsmenge, nur für das Pruning verwendet werden.
Am Ende wird der beste Entscheidungsbaum als Ergebnis zurückgegeben.
Das Pruning läuft so ab, dass unten beginnend alle nicht-Blätter des Baumes untersucht
werden, ob sie gekürzt werden sollten oder nicht, was mit einer Heuristik entschieden
wird.

M5P

Der M5P Algorithmus ist ein Entscheidungsbauminduktion-Verfahren für Modellbäume.
Dieses Kapitel stellt den Algorithmus vor und orientiert sich dabei stark an [WW97].
Modellbäume sind Entscheidungsbäume die sowohl diskrete als auch stetige Attribute ver-
arbeiten können und stetige Klassenzuweisungen vornehmen können. Das wird erreicht
indem ein normaler Entscheidungsbaum an den Blättern durch lineare Regressionsmodelle
erweitert wird. Es ist eine Variante von Quinlans M5 Algorithmus, die 1996 von Yong Wang
und Ian H. Witten vorgeschlagen wurde und besser dokumentiert ist als der Originalalgo-
rithmus. M5P wurde außerdem für das Open Source Data Mining Tool Weka [HFH+

09]
implementiert. Deshalb eignet es sich gut für die Einbindung in das Werkzeug. Wie der M5

Algorithmus von Quinlan basiert M5P auf dem CART (Classification and Regression Tree)
Algorithmus.
Der Algorithmus nimmt als Eingabe eine Tabelle mit Trainingstupeln entgegen. Für jedes
Trainingstupel enthält die Tabelle einen numerischen Wert, den es mit dem Modellbaum, der
Ausgabe des Algorithmus, später für neue Tupel vorherzusagen gilt. Das ist der Wert des
sogenannten Klassenattributes der Tabelle. Die anderen Attribute können ebenfalls numeri-
schen Typs sein oder nominal. Wenn nominale Attribute in der Trainingstabelle auftauchen,
werden sie jedoch umkodiert:

Preprocessing Für jeden der n möglichen nominalen Werte des Attributes werden die
Tupel selektiert, die diesen Wert aufweisen und es wird deren Klassenzuweisung gemittelt.
Anschließend werden die nominalen Werte nach ihren Mittelwerten sortiert. Es werden dann

66

5.6 Anwendung von Data Mining Verfahren zur Optimierung von Workflows

n− 1 neue binäre Spalten angelegt. Das i-te binäre Attribut eines Tupels hat dann den Wert
0, wenn das nominale Attribut des Tupels in der Ordnung an einer Stelle j ≤ i angeordnet
ist, andernfalls hat das i-te Attribut den Wert 1.

Nominales Attribut 1 Klassenzuweisung (Mittelwert) Codierung
Wert1 1.1 00

Wert2 1.5 01

Wert3 10.6 11

Tabelle 5.4: Beispiel Vorverarbeitung : Sortierung der nominalen Werte bezüglich Klassen-
mittelwert und Neukodierung der nominalen Werte

Aufbau des vorläufigen Modellbaumes Der Algorithmus arbeitet nach dieser Vorverarbei-
tung auf der Trainingsmenge mit einer „Divivde and Conquer“ Strategie, dabei wird die
Trainingsmenge T rekursiv aufgespaltet. Sei am Anfang T die gesamte Trainingsmenge. Der
Algorithmus sucht ein Attribut und einen Test auf diesem Attribut, sodass die Mengen T1
und T2, die bei einer Auftrennung anhand dieses Tests entstehen, eine möglichst geringe
Standardabweichung aufweisen, was das Klassenattribut betrifft. Die Standardabweichung
wird dabei als Fehlermaß angesehen, das es durch eine richtige Auswahl von Tests zu
minimieren gilt. Die Minimierung der Standardabweichung muss für alle Mengen Ti die bei
der Auftrennung von T entstehen, minimiert werden. Dafür wird die Fehlerreduktion als
Differenz zwischen Standardabweichung von T und mittlerer Standardabweichung in den
Mengen T1 und T2 berechnet:

SDR = sd(T)−∑
i

|Ti|
|T| × sd(Ti)

Dieser Wert wird bei nominalen Attributen mit einem Faktor

β = e7× 2−k
n

korrigiert, um zu verhindern, dass Attribute mit sehr vielen verschiedenen Werten zu gut
bewertet werden, etwa ID-Attribute, die bei jedem Tupel einen eindeutigen Wert haben und
somit keinen Informationswert haben. Dabei ist n die Anzahl der Trainingsbeispiele und
k die Anzahl verschiedener Werte des nominalen Attributes. β ist maximal 1 und fällt mit
k exponentiell ab. Der Attributtest mit der maximalen Fehlerreduktion wird dann zur 1.
Auftrennung am Wurzelknoten des Modellbaums verwendet. Bei stetigen Attributen wird
zur Bestimmung der Trennschwelle genauso wie bei C4.5 (siehe Abschnitt C4.5 in 5.6.2)
vorgegangen, nur dass si direkt als Trennschwelle verwendet wird und somit auf eine globale
Suche einer guten Trennschwelle verzichtet wird.
Anschließend erfolgt eine Auftrennung in die Mengen Ti. Dann wird für diese Mengen
derselbe Algorithmus rekursiv ausgeführt. Die Rekursion endet mit einem Blattknoten,
sobald ein Minimalwert an Trainingsbeispielen erreicht wird, oder die Standardabweichung
der Klassenzuweisung klein genug ist.

67

5.6 Anwendung von Data Mining Verfahren zur Optimierung von Workflows

Es gibt noch einen weiteren Korrekturfaktor, der die Fehlerreduktion bei vielen fehlenden
Werten eines Attributes verringert: m

|T| . Das ist der Anteil der Tupel, die den Knoten erreichen,
bei denen der Wert vorliegt.

Behandlung fehlender Werte Fehlt beim Training des Modellbaums bei Tupeln der Wert
eines Attributes, so werden erst alle Tupel genutzt, bei denen der Wert nicht fehlt. Es wird
die beste Trennschwelle durch Sortieren und Berechnung der SDRs bestimmt. Anschließend
werden die Trainingsbeispiele in die Mengen L und R aufgetrennt, je nachdem ob die
Trennschwelle unter- (Menge L) oder überschritten (Menge R) wird.
Dann werden bei nominalen Attributen die mittleren Klassenwerte L und R der Tupel in L
und von R ermittelt. Trainingsbeispiele mit fehlenden Werten werden dann entweder in
L oder R eingeordnet je nachdem ob ihr Klassenwert näher an L oder an R herankommt.
Bei stetigen Attributen wird genauso vorgegangen jedoch kann hier L und R einfacher
berechnet werden.

Pruning Nachdem der vorläufige Modellbaum aufgebaut ist, erfolgt eine Kürzung („Pru-
ning“). An jedem Knoten des Baumes wird die mittlere Abweichung der Trainingsbeispiele
von der vorhergesagten numerischen Klassenzuweisung berechnet, und mit einem Kor-
rekturfaktor multipliziert, der notwendig ist, da der Fehler des Regressions-Modells bei
unbekannten Tupeln größer sein wird.

errorTree
′ = errorTree ∗

n + ν

n− ν

Dabei ist n die Anzahl der Trainingsbeispiele die den Knoten erreichen und ν ist die
Anzahl der Parameter des Regressionsmodells des Knotens. Außerdem wird ein lineares
Regressionsmodell für die Trainingsbeispiele erstellt, das genau die Attribute als Parameter
verwendet, die auch in Entscheidungsknoten des Teilbaums vorkommen, dessen Wurzel
der aktuelle Knoten ist. Anschließend wird für die zum aktuellen Knoten gehörenden
Trainingsbeispiele der mittlere Regressions-Fehler errorRegression ermittelt. Gilt errorRegression <
errorTree

′, so wird der aktuelle Knoten zu einem Blattknoten.

Prädiktion Wenn der Modell Baum aufgebaut ist, kann das Klassenattribut für neue Tupel
geschätzt werden. M5P geht dafür, wie auch der Vorgänger M5, so vor, dass der Entschei-
dungsbaum bis zu einem Blattknoten durchlaufen wird und anschließend entlang dieses
Pfades das Klassenattribut durch Filterung berechnet wird. Dazu wird an jedem Knoten der
Schätzwert des Regressionsmodells q des Knotens linear kombiniert mit dem Schätzwert p
des Sohnknotens.

np + kq
n + k

Der Koeffizient n für p ist die Anzahl der Trainingsbeispiele, die den Sohnknoten erreichen,
der Koeffizient k für q ist ein Parameter, der frei wählbar ist. Desto größer er ist, desto mehr

68

5.6 Anwendung von Data Mining Verfahren zur Optimierung von Workflows

gehen auf dem Pfad höher gelegene Regressionsmodelle in die Prädiktion ein. Der Wert
der Wurzel entspricht schließlich der Prädiktion. Fehlt bei einem Tupel, dessen Klassenwert
vorhergesagt werden soll, ein Attributwert, so wird der Mittelwert des Attributes aller Trai-
ningsbeispiele, die den entsprechenden Knoten im Modellbaum erreichen, dafür eingesetzt
[WW97].

69

5.6 Anwendung von Data Mining Verfahren zur Optimierung von Workflows

Listing 5.4 XML Schema für die Ausgabe der Data Mining Ergebnisse.
<?xml version="1.0" encoding="UTF-8"?>
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"

targetNamespace="http://www.BusinessProcessAnalytics.org/DataMining"
xmlns:tns="http://www.BusinessProcessAnalytics.org/DataMining"
elementFormDefault="qualified">

<xs:complexType name="ClassifierType">
<xs:sequence minOccurs="1" maxOccurs="1"><xs:element name="ModelObject"

type="xs:base64Binary"/><xs:element name="JavaCode" type="xs:string"/></xs:sequence>
<xs:attribute name="CorrectlyClassifiedInstances" type="xs:float"/>
<xs:attribute name="IncorrectlyClassifiedInstances" type="xs:float"/>
<xs:attribute name="KappaStatistic" type="xs:float"/>
<xs:attribute name="MeanAbsoluteError" type="xs:float"/>
...
<xs:attribute name="TotalNumberOfInstances" type="xs:float"/>
<xs:attribute name="dBOPVariableName" type="xs:string"/>
<xs:attribute name="dBOPAttributeName" type="xs:string"/>
</xs:complexType>

<xs:complexType name="RegressionTreeType">
<xs:sequence minOccurs="1" maxOccurs="1"><xs:element name="ModelObject"

type="xs:base64Binary"/></xs:sequence>
<xs:attribute name="CorrelationCoefficient" type="xs:float"/>
<xs:attribute name="MeanAbsoluteError" type="xs:float"/>
....
<xs:attribute name="dBOPVariableName" type="xs:string"/>
<xs:attribute name="dBOPAttributeName" type="xs:string"/>
</xs:complexType>

<xs:complexType name="ActivityType">
<xs:sequence minOccurs="1" maxOccurs="unbounded">
<xs:choice>
<xs:element name="DecisionTree" type="tns:ClassifierType"></xs:element>
<xs:element name="ModelTree" type="tns:RegressionTreeType"></xs:element>
</xs:choice>
</xs:sequence>
<xs:attribute name="ActivityName" type="xs:string"/>
</xs:complexType>

<xs:complexType name="ProcessType">
<xs:sequence minOccurs="0" maxOccurs="unbounded">

<xs:element name="Activity" type="tns:ActivityType"/>
</xs:sequence>
<xs:attribute name="ProcessName" type="xs:string"/>
</xs:complexType>

...

<xs:element name="Results" type="tns:ResultsType"></xs:element>

</xs:schema>

70

5.7 Entwurf des Classifier-Webservice

5.7 Entwurf des Classifier-Webservice

In diesem Abschnitt wird die allgemeine Struktur eines Webservice vorgestellt, der die
Modelle, die das Werkzeug ausgibt, verwenden kann, um nach der Task Automation Best
Practice [RLM04] eine manuelle Aktivität zu automatisieren.
Ein solcher Webservice kann als Plain Old Java Object (POJO) implementiert werden, in
das die WEKA Bibliothek importiert wird. Für den Webservice kann das gleiche WSDL-File
verwendet werden, das auch die entsprechende manuelle Aktivität nutzt. Der Webservice
muss die Datenpipeline (siehe Abbildung 4.1), ausgenommen der Schritte „Berechnung der
Metriken“ und „Data Mining“, für ein einzelne Aktivitätsinstanzen ausführen können.
Für jedes Modell sind somit folgende Schritte auszuführen:

• Extraktion, d.h. die aktuellen Eingabewerte der Aktivität müssen als Parameter ent-
gegengenommen werden. Diese Parameter müssen mit Hilfe der XML Datei mit den
Mappings auf ihre dBOP-Pendants abgebildet werden. Dazu muss eine WEKA Instan-
ce erstellt werden. Der Datensatz der Instance wird auf den Trainingsdatensatz des
Modells gesetzt. Das Klassenattribut des Datensatzes wird mit setClass() gesetzt. In die
Instance werden die Eingabewerte unter ihrem SQL-Spaltennamen eingetragen. Dieser
Name ergibt sich durch Konkatenation ein Ein-/Ausgabepräfix („IN“,“OUT“) mit dem
dBOP-Variablenname und dem dBOP-Attributname. Z.B. ist „IN_RENTAL_ELIGIBLE“
der SQL-Spaltenname für einen Eingabeparameter mit Variablenname „Rental“ und
Attributname „Eligible“ (siehe Konstruktor der Klasse AVPair der DataAccessLib).

• Konsolidierung, d.h. die operativen Daten der Matchings, die beim Data Mining
aktiviert waren, müssen (z.B. als View) verfügbar sein. Die im Extraktionsschritt
gewonnenen Eingabeparameter müssen gematcht werden und mit den operativen
Daten angereichert werden. Hier wird, wie bei der Erstellung der Modelle, wieder die
BIA Matching Datei verwendet.

• „Binarisierung“ (siehe Kapitel 5.4.2 Abschnitt Konsolidierungsvorgang), d.h. nominale
Attribute, die bei der Erstellung der Data Mining Modelle auf binäre Spalten abgebildet
wurden, muss auch der Webservice entsprechend umwandeln.

• Preprocessing, d.h. alle Schritte, die als Preprocessing vor der Modellerstellung statt-
gefunden haben, müssen für die aktuellen Prozessdaten nachvollzogen werden. Das
dazu notwendige Protokoll des Preprocessings kann aus der Arff Datei des Trainings-
datensatzes ausgelesen werden.

• Anwendung des Modells (Entscheidungsbaum oder Modellbaum) zur Bestimmung
der Ausgabe der Aktivität. Dazu muss zunächst der Classifier geladen werden (siehe
Kapitel 6.7). Dann kann dessen Methode classifyInstance verwendet werden, um die
WEKA Instance auf den Ausgabewert der Aktivität abzubilden.

Wenn alle Ausgabewerte ermittelt wurden, müssen sie den entsprechenden BPEL-Variablen
zugeordnet werden und von dem Webservice zurückgegeben werden.

71

6 Implementierung des Werkzeugs

In diesem Kapitel wird die Implementierung des Werkzeugs mit Java in derselben Struktur
wie im Entwurfskapitel besprochen. Es wird zunächst wieder auf die graphische Benutzero-
berfläche eingegangen, dann folgen wieder in der gleichen Reihenfolge die einzelnen Filter
der Datenpipeline.

6.1 Implementierung der graphischen Benutzerschnittstelle

Der im Entwurfskapitel 5.1 vorgestellte grundsätzliche Aufbau des Programmfensters mit
Pipeline-Visualisierung, Hilfetext, Protokoll und Toolbar wurde in Form einer Klasse DataMi-
ningJobPanel umgesetzt. Von dieser Klasse erbt das TaskAutomationPanel, also die Ansicht
die vom Anwender zur Prozessanalyse verwendet werden kann, um Entscheidungsbaum-
Klassifikatoren zur Automatisierung einzelner Aktivitäten zu gewinnen (siehe Kapitel 5.6.1).
Neue Data Mining Typen können je nach Ausprägung von TaskAutomationPanel oder
DataMiningJobPanel erben. Wenn sich das Mining auf Aktivitäten bezieht, bietet sich eine
Ableitung von TaskAutomationPanel an.

6.1.1 Die Pipeline-Visualisierung

Die Pipeline-Visualisierung ist intern repräsentiert als eine Array Liste vom Typ Array-
List<PicLabel>, wobei ein PicLabel ein JLabel ist, das ein Symbol für eine Pipeline-Stufe
anzeigt und einen Zustand hat. Je nach Zustand (aktiviert,deaktiviert,beendet,fehlgeschlagen)
wird ein passendes Symbol angezeigt.

6.1.2 Protokoll und Hilfetextfenster

Das Protokoll und das Hilfetextfenster (Klasse RecordPanel) sind 2 JTextAreas, in die über
die Methoden addHelpHint() und addDoneHint() Nachrichten an den Benutzer eingefügt
werden können. addHelpHint() ersetzt den gesamten Text des Textfelds durch den Hilfetext,
während addDoneHint() einen Protokolleintrag einfügt. Abbildung 6.1 zeigt die Klassen der
Bedienungsoberfläche.

72

6.1 Implementierung der graphischen Benutzerschnittstelle

+actionPerformed()

TaskAutomationPanel

+actionPerformed()

DataMiningJobPanel

JPanel

TAConsolidationPanel TAPreprocessingPanel

+addHelpHint()
+addDoneHint()

RecordPanel

+addPic()
+setState()

PicPanel

JLabel

+setState()

PicLabel

-activeLabel
-inactiveLabel
-doneLabel
-failedLabel
-state

+setError()
+setHint()

StatusBar

TAMiningPanel

weka.gui.explorer.PreprocessPanel weka.gui.explorer.ClassifierPanel

Abbildung 6.1: Klassendiagramm der GUI Klassen.

6.1.3 DEA

Der im Entwurf angesprochene DEA (siehe Abbildung 5.1) wurde als eigene Klasse imple-
mentiert, die die Zustände und Eingabezeichen (Benutzeraktionen) in Form von Aufzäh-
lungsvariablen (Enumeratoren) speichert. Die möglichen Zustandsübergänge samt Quell-
und Zielzuständen werden in einer ArrayList gespeichert.
Immer wenn der Benutzer eine Aktion, z.B. den Export der Data Mining Ergebnisse, anstößt
wird zuerst mit der Methode isallowed() des DEA Objekts geprüft, ob die Aktion im aktuel-
len Zustand überhaupt ausführbar ist.
Wenn ja, dann kann die ActionListener Methode des entsprechenden Buttons die Aktion
ausführen. Dann ruft sie die Methode doDEAAction(Aktion) des DEA Objekts auf. Dadurch
wird der Automat in den entsprechenden Zielzustand überführt.
Wenn die Aktion nicht ausführbar ist, so gibt isallowed() false zurück und der ActionListener
kann eine entsprechende Fehlermeldung ausgeben. Die Abbildung 6.2 zeigt die beteiligten
Klassen.

73

6.2 Implementierung der Extraktion

+isallowed()
+doDEAAction()

-q
-transitions : ArrayList<DEATransition>

DEA
DEAState

DEAAction-fromQ : DEAState
-toQ : DEAState
-action : DEAAction

DEATransition
ArrayList<DEATransition>

«uses»

«uses» «uses»

«uses»

«uses»

Abbildung 6.2: Klassendiagramm der DEA Klassen.

6.2 Implementierung der Extraktion

Die Extraktion wird in einem normalen Java Client vom Benutzer angestoßen. Daraufhin
erstellt der Java Client für jede Aktivität, die in der Eingabedatei des dBOP Designers ver-
merkt ist eine Datenbank-Tabelle mit einer Spalte pro zu protokollierendem Prozessattribut
und einer Spalte pro Aktivität die noch folgt für die Prozessflussinformationen. Diese Ta-
bellen dienen anschließend als Schnittstelle zu dem oben erwähnten Webservice, der nun
aufgerufen wird und die Tabellen mit den Audit-Daten füllt.
Die XML Datei mit den Eingaben des dBOP Designers wird als ein Argument binär in einer
CDATA Sektion an den Webservice übergeben.
Der Zugriff auf die Datenbank und auf die XML Daten erfolgt im Hauptprogramm und im
Webservice über die gleichen Klassen (BPAXMLModule und BPADBModule). Abbildung 6.3
zeigt das entsprechende Klassendiagramm.
Der Webservice führt nach seinem Aufruf folgenden Algorithmus aus: Er übergibt einen SQL
Befehl an die Methode query() der Business Flow Manager API, um alle Prozessinstanzen des
zu analysierenden Prozesses in einer QueryResultSet festzuhalten. Für jede Instanz werden

74

6.2 Implementierung der Extraktion

Listing 6.1 Beispiel für die Verwendung der Business Flow Manager API zum Auslesen von
Auditdaten.
public void readAuditData() {
QueryResultSet processes = bfm.query("DISTINCT PROCESS_INSTANCE.PIID",

"PROCESS_TEMPLATE.NAME=’Testprozess’", "", null, 500, null);
while (processes.next()) {

PIID piid = (PIID)processes.getOID(1);
QueryResultSet activities = bfm.getAllActivities(piid, null);
while(activities.next()){
AIID activityID = (AIID)activities.getOID(1);
ActivityInstanceData activity = bfm.getActivityInstance(activityID);
System.out.println("Name: " + activity.getName());
System.out.println("Start: " + activity.getActivationTime());
System.out.println("Ende: " + activity.getCompletionTime());
int[] allowedActions = activity.getAvailableActions();
//Hat die Aktivität Ein/Ausgabenachrichten ?
for (int i : allowedActions){
if (i == ActivityInstanceActions.GETINPUTMESSAGE){
cangetinput = true;}

if (i == ActivityInstanceActions.GETOUTPUTMESSAGE){
cangetoutput = true;}

}
if (cangetinput){
msgWrapper = bfm.getInputMessage(activityID);
DataObject inputMessage = (DataObject)msgWrapper.getObject();
readDataObject(inputMessage,activity.getName());

}
...

}
}

public void readDataObject(DataObject data, String wsExpression) {
List properties = data.getInstanceProperties();
for(int i = 0; i < properties.size(); i++)
{
commonj.sdo.Property property_i = (commonj.sdo.Property)properties.get(i);
if (property_i.isContainment()) { //kein Blattknoten
readInput(data.getDataObject(property_i,wsExpression + "/" + property_i.getName());

}
else { //Blattknoten
System.out.println("Attribut gefunden: " + wsExpression + "/" + property_i.getName());
System.out.println("Wert von Attribut: " + d.get(property_i).toString());
}
}

dann alle Aktivitätsinstanzen abgerufen. Für diese können nun die gewünschten Attribute
wie Startzeitpunkt und Endzeitpunkt sowie die Eingabe und Ausgabedaten abgerufen wer-
den. Dazu traversiert der Algorithmus den vom Business Flow Manager zurückgegebenen
Baum vom Typ DataObject, der die BPEL Attribute der Eingabe- bzw. der Ausgabedaten
enthält (Schema: siehe Methode readDataObject() in Listing 6.1). Immer wenn er auf einen
Blattknoten trifft, also z.B. einen String-Wert, wird dieser in eine Liste vom Typ Printa-
bleAVList eingefügt. PrintableAVListen sind einfach verkettete Listen, die pro Knoten ein

75

6.2 Implementierung der Extraktion

Attribut-Wert-Paar enthalten und sich gut zur Verwendung in SQL Statements eignen. Zum
Beispiel genügt ein Aufruf von PrintableAVList.getCommaSeparatedValueList() um alle
Prozessattribute getrennt durch Kommas in einer Liste als String auszugeben.
Zum Einfügen in die PrintableAVList wird zunächst aus der, an den Webservice übergebe-
nen, XML Datei der Name der entsprechenden Prozessvariable und des Prozessattributs
ausgelesen und daraus der Name der entsprechenden Tabellenspalte abgeleitet. Dazu wird
dieselbe Bibliothek und Methode verwendet, die auch im Hauptprogramm beim Erstellen
der Tabelle verwendet wird, um die Spalte zu benennen.
Listing 6.1 zeigt beispielhaft die Verwendung der Business Flow Manager API, ohne die
Details der Abbildung von BPEL auf dBOP. Um den Prozessfluss für jede Prozessinstanz

+fillActivityTables()

JavaComponentImpl

PMDB

+main()

+BPAClientFrame()

+createActivityTables()

+calculateMetrics()

BPAClientFrame

(DM) Java Client ETL-

Webservice

<<realize>>

<<realize>>

DataAccessLib

dBOP-

BPEL

Mappings

+connect()

+close()

+createActiivityTable()

+insertRelActivityInformation()

+insertReqActivityInformation()

+insertMainActivityInformation()

BPADatabaseModule

+evaluate()

+setXMLFile()

+setXMLString()

+evaluateToString()

+evaluateToNodelist()

+getdbopActivity()

BPAXMLModule

DB2

+getCommaSeparatedAttributeList()

+getCommaSeparatedAttributeTypeList()

+getCommaSeparatedValuewList()

+concatenateCommaSpearatedLists()

PrintableAVList

AVPair

-attributeName

-attributeSQLType

-attributeValue

TActivity

-type

-dbopName

-bpelName

LinkedList<AVPair>

«uses»
«uses»

Matchings

Abbildung 6.3: Klassendiagramm Extraktion

zu protokollieren gibt es eine Klasse „ActivityActivationLog“ die sich beim Auslesen jeder
Aktivität aus der BFM API merkt, dass sie in der aktuellen Prozessinstanz ausgeführt wurde.

76

6.3 Implementierung der Metriken

Ist das Auslesen der Prozessinstanz beendet, wird für jede Aktivität der Prozessfluss als
passender Binärvektor (0 bedeutet die Aktivität wurde nicht ausgeführt, 1 heißt sie wurde
ausgeführt) aus dem „ActivityActivationLog“ ausgelesen und in die Aktivitätstabelle einge-
fügt, wodurch die Anzahl der Datenbankzugriffe für das Prozessflussprotokoll genau der
Anzahl der Aktivitäten entspricht.
Alternativ zu der oben beschriebenen Vorgehensweise hätte der Transformationsschritt, also
die Übersetzung von BPEL Daten in dBOP Daten auch erst auf dem Client erfolgen können.
Dies hätte jedoch zur Folge dass unter Umständen die Datenbank unübersichtlich würde,
da für jede BPEL Aktivität eine eigene Tabelle vorgesehen werden müsste und nach dem
Extraktionsschritt durch den Webservice der Client die Transformation in entsprechende
dBOP Tabellen durchführen müsste. Folglich wird bei der implementierten Vorgehensweise
eine Zwischenspeicherung eingespart. Der Client kann nach dem Webservice Aufruf direkt
mit der Berechnung der Metriken starten (siehe nächster Abschnitt).

6.3 Implementierung der Metriken

Um Implementierungsaufwand einzusparen, wurden alle Gemeinsamkeiten von Prozess-
und Aktivitätsmetriken in einer gemeinsamen Oberklasse gekapselt. Dazu gehören
Getter-Methoden für Metrikname, Metriktyp (Java), Metriktyp (SQL) sowie Standard-
Aggregationsmethoden für numerische Metriken wie z.B. Mittelwert und Median. Letztere
wurden mit Standard SQL Konstrukten realisiert. Der Median wird als mittleres Element der
Sortierung aller instanzbasierten Metrikwerte ermittelt (siehe Listing 6.2).
Da Aktivitätsmetriken nicht immer auf jede Aktivität angewandt werden sollen, es sei

denn, es handelt sich tatsächlich um generische Metriken wie z.B. Ausführungsdauer oder
Ausführungshäufigkeit, wurde für Aktivitätsmetriken eine eigene Unterklasse AbstractCu-
stomActivityMetric vorgesehen. Sie erlaubt mit entsprechenden Methoden einerseits die
Definition aller Aktivitäten, auf die die Metrik angewandt werden soll, sowie andererseits
die Abfrage, ob die Metrik auf eine gegebene Aktivität angewandt werden soll.
Da es Metriken gibt, die auf andere Metriken zugreifen müssen, ist mit dem oben bereits
angesprochenen MetricRepository ein entsprechender Datenaustausch vorgesehen. Dazu
enthalten alle Unterklassen von AbstractCustomMetric einen Verweis auf ein MetricReposi-
tory Objekt. Es enthält eine statische Hashtabelle in der bereits berechnete Metriken unter
einem Schlüssel hinterlegt werden können.
Z.B. ist es sinnvoll, hier die Aufrufhäufigkeit des Gesamtprozesses zu speichern, um später
die Frequenzen der einzelnen Aktivitäten ausrechnen zu können. Für die Erzeugung der

Listing 6.2 Beispiel für SQL Code zur Bestimmung des Medians. Hier wird der Median von
WAITINGTIME berechnet
SELECT Tabelle.WAITINGTIME

FROM (SELECT WAITINGTIME, ROWNUMBER() OVER() As Item
FROM CHECKELIGIBILITY

ORDER BY WAITINGTIME) Tabelle,
WHERE Tabelle.Item=(SELECT COUNT(*) FROM CHECKELIGIBILITY)/2;

77

6.3 Implementierung der Metriken

+main()
+BPAClientFrame()
+createActivityTables()
+calculateCustomMetrics()

-metricRepository : MetricRepository

BPAClientFrame

(DM) Java Client

<<realize>>

+median()
+average()
+min()
+max()
+calculateMetric()
+getJavaType()
+getSQLType()
+getName()
+calculateAggregateMetric()
+setMetricRepository()

-metricRepository : MetricRepository
-xmlGenerator : XMLOutputGenerator

AbstractCustomMetric

+forActivity()
+setActivites()

-activities

AbstractCustomActivityMetricAbstractCustomProcessMetric

ProcessExecutionTimeMetric ExecutionTimeMetric WaitingTimeMetric

+setCalculatedMetric()
+getCalculatedMetric()

-calculatedMetrics

MetricRepository

ProcessInvocationCountMetric

+insertProcess()
+insertActivity()
+insertAggProcessMetric()
+insertAggActivityMetric()
+serialize()

XMLOutputGenerator

<<uses>>

<<uses>>

Abbildung 6.4: Klassendiagramm Metriken

XML Ausgabe wird folgendermaßen vorgegangen. Es gibt eine Klasse XMLOutputGenerator,
die für jedes XML-Tag eine Methode definiert, die es in das XML Dokument, das zunächst
als DOM Baum vorliegt, einfügen kann.
Zum Beispiel gibt es die Methoden insertProcess(), insertActivity(), sowie Methoden die
für einen anzugebenden Prozess oder eine anzugebende Aktivität eine (unter Umständen
benutzerdefinierte) Metrik in den aktuellen DOM Baum eintragen können.
Bevor die Metriken berechnet werden, wird zunächst ein Prozessknoten erzeugt und darun-
ter für jede dBOP Aktivität ein Knoten. Jeder Metrik Klasse wird ein Verweis auf den für die
Ausgabe verwendeten XMLOutputGenerator übergeben, sodass während der Berechnung
der Metriken beliebige Einträge in den DOM Baum erfolgen können. Am Ende wird der
DOM Baum noch serialisiert. Abbildung 6.4 zeigt die an der Metrikberechnung beteiligten
Klassen.

6.3.1 Implementierung Benutzer-spezifischer Metriken

Der Aufbau des Werkzeugs erlaubt die Definition beliebiger benutzerspezifischer Metriken.
Je nachdem, ob die Metrik ein Attribut darstellt, das zu einer Aktivität oder einem ganzen

78

6.4 Implementierung der Konsolidierung

Listing 6.3 Registrierung der Standardmetriken (z.B. Ausführungsdauer von Aktivitäten) in
der Methode BPAClientFrame.calculateCustomMetrics().

String[] activityMetricNames =
{"Metrics.WaitingTimeMetric","Metrics.ExecutionTimeMetric",

"Metrics.InvocationCountMetric","Metrics.FrequencyMetric"};
String[] processMetricNames = {"Metrics.ProcessInvocationCountMetric"};

Prozess gehört, wird als Vaterklasse AbstractCustomActivityMetric oder AbstractCustom-
ProcessMetric gewählt. Die Metrik muss folgende Methoden implementieren:

• getName(). Gibt den Spaltenname der Aktivitäts- oder Prozesstabelle zurück, in die
die Metrik eingetragen werden soll, sofern es sich um eine Aktivität handelt, die pro
Instanz zu berechnen ist.

• getSQLType() und getJavaType. Gibt den SQL- bzw. Java Typ der Metrikwerte zurück.

• setActivities(). Trägt in die ArrayList activities die Namen der Aktivitäten als Strings
ein, für die die Metrik berechnet werden soll. Handelt es sich um eine allgemeingültige
Metrik, so genügt der Eintrag „All“.

• calculateMetric(). Trägt in ein übergebenes JDBC-ResultSet den Wert der Metrik ein
(pro Aktivitätsinstanz bzw. pro Prozessinstanz).

• aggregate(). Gibt als booleschen Wert zurück, ob die Metrik aggregierbar ist. Das ist
nur dann der Fall wenn die Metrik numerisch ist und pro Instanz berechnet werden
kann.

• calculateAggregateMetric(). Berechnet auf Basis beliebiger Datenbankzugriffe eine
Metrik die genau einer Aktivität oder einem Prozess zuzuordnen ist. Die Metrik kann
per Zugriff auf das Objekt xmlGen vom Typ XMLOutputGenerator den Wert in der
XML Ausgabe protokollieren.

Bei der Berechnung der Metriken in calculateMetric() und calculateAggregateMetric() können
im MetricRepository neue Werte abgelegt werden (setCalculatedMetric()) und es kann auf
bereits berechnete Werte zurückgegriffen werden (getCalculatedMetric()). Die Metrik muss
abschließend in der Methode BPAClientFrame.calculateCustomMetrics() wie in Listing 6.3
registriert werden.

6.4 Implementierung der Konsolidierung

Zur Steuerung des Konsolidierungsvorgangs wurde eine passende Ansicht (Klasse TAConso-
lidationPanel) implementiert. Die Ansicht besteht aus einer JList, in der die zu untersuchende
Aktivitätstabelle ausgewählt werden kann.
Jede Aktivitätstabelle ist durch ein Objekt vom Typ SqlTable in einem Objekt vom Typ
TAConsolidationData, der Zustandsvariable für die Konsolidierung, repräsentiert.
SqlTable erlaubt es, z.B. die Attribute der Tabelle auszulesen.

79

6.4 Implementierung der Konsolidierung

Die Klasse AVPair, die bei der Extraktion eingeführt wurde, wird hier wiederverwendet,
um die Attribute der Aktivitätstabellen samt dBOP Variablenname und dBOP Attributname
darzustellen.
Unter der JList ist eine weitere Liste angeordnet, in der die Matchings auf die operativen
Daten eingesehen und editiert werden können. Sie ist vom Typ AttributeTable.

6.4.1 AttributeTable: Ein Bedienelement zur Steuerung der Konsolidierung

Das Bedienelement zur Steuerung der Konsolidierung hat das Erscheinungsbild einer Liste,
in der die Attribute der aktuell gewählten Aktivitätstabelle angezeigt werden. Die Aktivi-
täten, für die ein Matching existiert, haben in ihrer Zeile einen Button „Details“ und eine
JCheckBox zur Aktivierung des Matchings.
AttributeTable ist von JTable abgeleitet und verwendet als Renderer für die Zellen Attribute-
TableCellPanels. Das sind JPanels, die alle Informationen einer Zeile der Tabelle anzeigen
können:

• Name eines Attributs der Aktivitätstabelle.

• Name eines matchenden operativen Attributes.

• Einen Button zum Anzeigen von Details über das Matching.

• Eine Checkbox zum Aktivieren des Matchings.

Wird auf „Details“ geklickt, öffnet sich ein Dialog vom Typ MatchingDialog der von JDialog
erbt, er zeigt die Matching Informationen wie in Kapitel 5.4 vorgestellt.
Zur Speicherung der Daten des Bedienelements wird ein dafür angepasstes Tabellenmodell
verwendet. Es wird durch die Klasse AttributeTableModell realisiert, das von AbstractTa-
bleModel erbt und die Daten in Form einer ArrayList von AttributeTableCell Objekten
vorhält.
AttributeTable hat eine Methode setModel(), die eine Liste mit Attributinformationen der
aktuellen Aktivitätstabelle (Von Typ PrintableAVList. Siehe Kapitel über Extraktion.) entge-
gennimmt, sowie eine ArrayListe von Matchings und das Tabellenmodell mit den Daten
füllt, die letztendlich von AttributeTableCellPanel angezeigt werden. setModel() geht für
jedes Attribut der Aktivitätstabelle alle Matchings durch und prüft, ob eines davon zu dem
Attribut passt.

6.4.2 Binarisierung

Die Binarisierung, die vor dem Join der operativen Tabellen mit der Aktivitätstabelle erfolgt,
wird nur dann angestoßen, wenn das operative Attribut, das für den Join verwendet werden
soll, Werte mehrfach enthält. Das kann per SQL geprüft werden, indem die Anzahl der Zeilen
der Tabelle mit der Anzahl verschiedener Werte des operativen Attributs verglichen wird. Bei
Gleichheit muss kein Attribut binarisiert werden. Bei Ungleichheit werden alle operativen

80

6.4 Implementierung der Konsolidierung

«interface»
TableCellRenderer

+getActiveMatchings()
+setModel()

AttributeTable

AttributeTableCell

-attribute
-matching
-matchingActivated MatchingDialog

AttributeTableRenderer

AttributeTableCellPanelAttributeTableCellEditor

-component : AttributeTableCellPanel

AttributeTableModel

-data : ArrayList<AttributeTableCell>

ArrayList<AttributeTableCell>

JDialogJPanel

AbstractTableModel

AbstractCellEditor

«interface»
TableCellEditor

JTable

«uses»

«uses»

«uses»

«uses»

«uses»

«uses»

<<realizes>>

<<realizes>>

Abbildung 6.5: Klassendiagramm Attribute Table.

Attribute herausgesucht, die für Mehrfach-Einträge der Join-Spalte (im Beispiel 5.5 ist es
die Spalte ANGESTELLTER) mehrere verschiedene Wert aufweisen. Das kann per SQL für
Attribut ID (das ist die Spalte für Fortbildungs-IDs) wie in Listing 6.4 geprüft werden. Für
die gefundenen Attribute wird vor der Ausführung des Joins der Prozesstabelle mit den
operativen Tabellen pro nominalem Wert eine neue binäre Spalte in der entsprechenden
operativen Tabelle angelegt.
Dann wird für jedes Tupel in den operativen Tabellen, die zu binarisierende Spalten enthalten,
der Wert dieser Spalte nachgesehen und als binäres Attribut in die entsprechende binäre
Spalte geschrieben.
Danach wird über die neuen binären Spalten eine Aggregation zur Verschmelzung gleicher
Entities (z.B. Angestellte) durchgeführt (siehe Listing 6.5). Zum Schluss erfolgt der Join wie
im Entwurfskapitel 5.4 beschrieben.

81

6.4 Implementierung der Konsolidierung

-opTableName
-activityTableCol
-sqlStatement
-extractedTable : SqlTable
-processVariable
-processAttribute

Matching

+addAttribute()
+removeAttribute()

-tableName
-attributes
-selectionStatus
-extracted
-extractionFailed

SqlTable

-attribute
-matching : Matching
-matchingActivated

AttributeTableCell

<<use>> <<use>>

Abbildung 6.6: Klassendiagramm Matchings.

Listing 6.4 Beispiel: SQL Code den das Werkzeug generiert und ausführt, um zu prüfen, ob
Spalte ID der Tabelle FORTBILDUNGEN binarisiert werden muss.
SELECT fortbildungen.ID
FROM FORTBILDUNGEN fortbildungen,

(SELECT DISTINCT ANGESTELLTER AS id
FROM FORTBILDUNGEN f
WHERE 1 < (SELECT COUNT(ANGESTELLTER)

FROM FORTBILDUNGEN
WHERE ANGESTELLTER=f.ANGESTELLTER)) dubletten

WHERE dubletten.ID=fortbildungen.ANGESTELLTER AND 1 < (SELECT COUNT(DISTINCT
fortbildungen2.ID)

FROM FORTBILDUNGEN fortbildungen2
WHERE fortbildungen2.ANGESTELLTER=dubletten.ID)

Listing 6.5 Beispiel: SQL Code den das Werkzeug generiert und ausführt, um Mehrfachein-
träge für dieselben Entities (hier:Angestellte) miteinander zu verschmelzen.
SELECT ANGESTELLTER,MAX(BUSINESSENGLISH),MAX(KUNDENBERATUNG),MAX(SOFTSKILLS)
FROM FORTBILDUNGEN
GROUPBY ANGESTELLTER

82

6.5 Implementierung des Preprocessing

6.5 Implementierung des Preprocessing

Das Preprocessing Panel von WEKA kann in beliebige Java-Swing Anwendungen integriert
werden. Der nächste Schritt besteht dann im Füllen der Datenstruktur für die Trainingsbei-
spiele (die konsolidierten Daten), da WEKA nicht direkt auf der Datenbank arbeitet, sondern
die Trainingsdaten im Hauptspeicher vorhält.
Die Datenstruktur ist vom Typ Instances, sie wird normalerweise bei WEKA durch das
SQLViewerPanel, wo der Benutzer eine Datenbank-Verbindung herstellen kann, gefüllt.
Allerdings kennt WEKA von Haus aus den SQL JDBC Treiber von DB2 nicht, deshalb bietet
es sich an, die Methode setInstancesFromDBQ() des WEKA Preprocessing-Panels in einer
neuen Klasse entsprechend zu überschreiben.
setInstancesFromDBQ() nutzt ein Objekt vom Typ InstanceQuery um eine Verbindung zur
Datenbank herzustellen und ruft dazu die Methode connectToDatabase() auf. Also wurde
auch diese Methode in der Ersatzklasse BPAInstanceQuery so überschrieben, dass der DB2

JDBC Treiber geladen wird.

+setInstancesFromDBQ()

weka.gui.explorer.PreprocessPanel

+setInstancesFromDBQ()

TAPreprocessingPanel

+connectToDatabase()

weka.experiment.InstanceQuery

+connectToDatabase()()

BPAInstanceQuery«uses»

+notifyCapabilitiesFilterListener()

weka.gui.explorer.Explorer

+notifyCapabilitiesFilterListener()

BPAExplorer «uses»

Abbildung 6.7: Klassendiagramm für den Preprocessing Schritt. Das TAPreprocessingPanel
erbt von dem entsprechenden WEKA Panel.

83

6.6 Implementierung des Data Mining

6.6 Implementierung des Data Mining

Für die Implementierung des Data Minings wird, wie im Preprocessing Schritt, das ent-
sprechende Panel des WEKA Explorers genutzt (das ClassifierPanel). Dieses Panel erlaubt
die Anwendung vieler gängiger Classifier auf die konsolidierten Daten. Darunter auch die
Classifier J48 und M5P, also den Algorithmen, die bereits im Entwurfskapitel besprochen
wurden.
Das Panel protokolliert jeden Start eines Classifiers in einer JList. Die Einträge in der JList
können mit Rechtsklick mit einem PopupMenu näher untersucht werden. Z.B. kann ein
bereits erstellter Classifier jederzeit in Form einer Model-Datei gespeichert werden.
Dieses PopupMenu wurde um den Eintrag „In XML Ausgabe aufnehmen.“ erweitert. Klickt
der Benutzer diese Option, so wird der Classifier und die entsprechende Auswertung (vom
Typ Evaluation) in einer ArrayListe gespeichert. Der Benutzer hat dann die Möglichkeit
mit der Option „Ergebnisse exportieren.“ in der Toolbar die Ergebnisse in XML Form zu
serialisieren. Dazu wurde die Klasse DMXMLGenerator implementiert, die je eine Methode
zum Einfügen von Aktivitäten, Entscheidungsbäumen und Modellbäumen in die XML Datei
anbietet. Abbildung 6.8 zeigt die implementierten Klassen im Überblick.

weka.gui.explorer.ClassifierPanel

+serializeResults()

-attributeMap : AttributeMap
-processName
-activityName
-results : ArrayList<Result>

TAMiningPanel

-Classifier
-classAttribute
-Evaluation

Result

+serialize()

XMLOutputGenerator

+insertActivty()
+insertModelTreeInfo()
+insertDecisionTreeInfo()
+classifierToString()

DMXMLGenerator

«uses»

ArrayList<Result> «uses»«uses»

+put()
+get()

HashMap<String,Attribute>

+addAttributes()
+getProcessVariable()
+getProcessAttribute()

AttributeMap
«uses»

JPanel

Abbildung 6.8: Klassendiagramm für den Data Mining Schritt. Das TAMiningPanel erbt von
dem entsprechenden WEKA Panel.

84

6.7 Implementierung des Classifier-Webservice

6.7 Implementierung des Classifier-Webservice

Die Modell- und Entscheidungsbäume, die mit dem Werkzeug erstellt und in Form von
XML gespeichert wurden, können von anderen Programmen genutzt werden. Z.B. könnte
im beschriebenen Anwendungsszenario (siehe Kapitel 4) ein Webservice die Einordnung
von Versicherungsfällen in Risikoklassen übernehmen.
Um die Modelle zu nutzen ist es erforderlich, die WEKA Bibliothek einzubinden. Um das
Classifier Objekt zu laden, wird zunächst per XPath das serialisierte Objekt in einen String
aus der XML Datei ausgelesen.
Danach erfolgt eine Dekodierung durch einen Base64-Dekoder. Base64 ist eine Klasse der
Apache Commons Bibliothek (siehe http:\\commons.apache.org), die eine Kodierung von
Bytearrays in US-ASCII Text und eine entsprechende Dekodierung, wie in RFC 2045 be-
schrieben, implementiert.
Der ByteArray, den der Decoder zurückgibt, wird dann in einen ByteArrayInputStream
überführt. Mit diesem Stream wird ein ObjectInputStream initialisiert, auf dem dann die
Methode readObject() ausgeführt werden kann. readObject() gibt den Classifier zurück, der
dann nur noch als solcher gecastet werden muss. Listing 6.6 zeigt den Ablauf.
Um den Classifier zu nutzen, muss zunächst ein passende Instanz (Typ weka.core.Instance)
angelegt werden. Dann kann die Methode classifyInstance() des Classifier Objekts auf die
Instanz angewandt werden.

Listing 6.6 Methode zum Auslesen eines Classifiers (z.B. Entscheidungsbaum) aus der XML
Ausgabe des Werkzeugs.
public Classifier getClassifier(String file, String dBOPVariableName, String

dBOPAttributeName) {
DocumentBuilder builder;
Document document;
builder = DocumentBuilderFactory.newInstance().newDocumentBuilder();
try {

document = builder.parse(new File(file));
XPath xPath = XPathFactory.newInstance().newXPath();
String serializedClassifier = (String)

xPath.evaluate("//ModelTree[@dBOPVariableName=’"+dBOPVariableName+"’
and
@dBOPAttributeName=’"+dBOPAttributeName+"’]/ModelObject/text()",
document,XPathConstants.STRING);

byte[] serializedClassifierBytes =
Base64.decodeBase64(serializedClassifier);

ByteArrayInputStream stream = new
ByteArrayInputStream(serializedClassifierBytes);

ObjectInputStream oistream = new ObjectInputStream(stream);
Classifier c = (Classifier)oistream.readObject();
return c;

} catch...
}
return null;

}

85

http:\\commons.apache.org

7 Zusammenfassung und Ausblick

In diesem Kapitel werden die Ergebnisse der Arbeit diskutiert und es wird ein Ausblick auf
weitere Arbeiten gegeben.

7.1 Zusammenfassung

Mit dem in dieser Arbeit entwickelten Werkzeug wurde die Basis für die deep Business
Optimization Platform geschaffen.
Es ermöglicht eine aktivitätsorientierte Integration von Workflowdaten und operativen Daten.
Das heißt, das Werkzeug erstellt pro Aktivität eines Workflows eine Tabelle für alle Instanzen
der Aktivität, und erweitert diese Tabelle anschließend um weitere (operative) Spalten. Zur
Anreicherung der Daten bietet es eine generische und erweiterbare Metrikbibliothek und
eine entsprechende Schnittstelle. Zur Analyse der Daten kann das WEKA Classifier Panel
und Preprocessing Panel genutzt werden.
Die Systemarchitektur wurde als Pipes-Filters Architektur [LL07] modelliert. Dabei wurden
5 Verarbeitungsschritte („Filter“) identifiziert, die zusammen als Pipeline die gewünschten
Ausgaben (Metriken und Modelle) liefern. Entlang dieser Datenpipeline wurde die Software
entworfen und implementiert.
Die Implementierung des Werkzeugs besteht aus einem Hauptprogramm und einem
Webservice. Es erlaubt den Abruf von BPEL-Auditdaten von einem IBM Websphere
Process Server und deren Zuordnung zu den entsprechenden BPMN Aktivitäten und
Prozessattributen. Beide Aufgaben werden mit dem Webservice gelöst, der im gleichen
Applikationserver-Kontext läuft, wie die Workflows deren Auditdaten abgerufen werden
sollen. Dadurch kann auf einfache Weise die Business Flow Manager API des Websphere
Process Servers zum Abruf genutzt werden.
Die Zuordnung der BPEL-Aktivitäten zu BPMN Aktivitäten und von BPEL-Attributen zu
dBOP Attributen erfolgt durch Nachschlagen von Mappings im XML Mapping Inputfile.
Die Auditdaten werden vom Webservice in entsprechenden Datenbanktabellen gespei-
chert, die als Schnittstelle zum Hauptprogramm dienen. Für den Anwender wurde
das Hauptprogramm mit graphischer Benutzeroberfläche entwickelt. Der Datenzugriff
(auf Datenbank und XML Inputfiles) erfolgt im Hauptprogramm und im Webservice
über dieselbe Bibliothek, das hat den Vorteil einer besseren Wartbarkeit, da lesende und
schreibende Methoden derselben Daten nicht verstreut sind. Der Anwender hat mit der GUI,
neben den XML Inputfiles, die Möglichkeit, die Filter der Datenpipeline zu starten und zu
konfigurieren. Nach der Extraktion besteht die Möglichkeit, die Auditdaten mit Metriken
anzureichern. Es wurden entsprechende Basisklassen entwickelt, die die Neuentwicklung

86

7.2 Ausblick

benutzerspezifischer Metriken vereinfachen (z.B. durch Vererbung der Aggregationsfähigkeit
und XML-Serialisierbarkeit).
Der Anwender kann über die GUI einstellen, wie viele Auditdaten extrahiert werden sollen.
Er kann durch Anpassung der Eingabedateien auch steuern, für welche BPMN Aktivitäten
Auditdaten extrahiert werden sollen.
Nach der Berechnung der Metriken können die Auditdaten mit operativen Daten über ein
passendes Steuerelement konsolidiert werden. Dabei können vorher definierte Matchings
genutzt werden. Die Denormalisierung der operativen Daten erfolgt manuell, indem
der Anwender einen SQL Befehl eingibt, der dann zur Extraktion der operativen Daten
verwendet wird. Das Werkzeug kann im Falle einer 1:N Beziehung zwischen Prozess-Entities
und operativen Entities durch Binarisierung die Daten für das Data Mining vorbereiten. Der
Benutzer hat die Möglichkeit über ein Preprocessing Panel weitergehende Vorbereitungen,
wie z.B. Nominalisierung von numerischen Werten zu treffen.
Er kann über das Data Mining Panel C4.5 und M5P Classifier erzeugen und als XML
exportieren.
Der Benutzer wird über den gesamten Ablauf der Datenpipeline durch graphische und
textuelle Widgets unterstützt, wobei die Idee des Sites-Modes-Trails HMI Modells [NW87]
eine wichtige Rolle gespielt hat.
Es wurde ein Szenario beschrieben, in dem das Werkzeug sinnvoll angewandt werden
kann. Die im Data Mining Schritt verwendeten C4.5 [Qui93] und M5P [WW97] Modell-
/Entscheidungsbaumalgorithmen werden in Kapitel 5.6 ausführlich besprochen. Neben
wichtigen Standards (BPMN und BPEL) wurde in den Grundlagen auch auf wichtige
Preprocessing und Data Mining Verfahren eingegangen.

7.2 Ausblick

Das entwickelte Werkzeug ermöglicht es, durch seine Fähigkeit der Extraktion von
Auditdaten, der Fähigkeit der Zuordnung dieser Daten zu BPMN Aktivitäten und
BPMN Prozessattributen, der Fähigkeit zur Metrikberechnung und der Fähigkeit zur
Konsolidierung, die gewonnenen Daten zur Analyse und Optimierung von Workflows
zu nutzen. Die im Data Mining Panel trainierten Classifier können exportiert und z.B.
in einen Classifier Webservice integriert werden. Die Classifier können auch in WEKA
wiederverwendet werden.
Erste Auswertungen [NMRM11] zeigen, dass C4.5 Entscheidungsbäume, wie in Kapitel 5.6
vorgeschlagen, eine gute Wahl sind, wenn der weitere Prozessfluss nach einer Aktivität
vorhergesagt werden soll. Es bleibt zu klären, wie gut die Kombination aus C4.5 für
nominale vorherzusagende Attribute und M5P für stetige vorherzusagende Attribute
gegenüber anderen Klassifizierungs- und Regressionsverfahren bei Task Automation
Anwendungsszenarien abschneidet. Für numerische Attribute würden sich als Alternative
Neuronale Netze anbieten.
Die Einbindung weiterer Datenquellen im Konsolidierungsschritt, z.B. von XML Datenquel-

87

7.2 Ausblick

len, stellt ebenfalls ein interessantes Themengebiet für weiterführende Arbeiten dar.

88

Literaturverzeichnis

[Aal] W. M. P. van der Aalst. Process Mining: The next step in Business Pro-
cess Management. URL http://prom.win.tue.nl/research/wiki/_media/
presentations/mining_au_process_days.ppt. (Zitiert auf Seite 13)

[ACD03] T. Andrews, F. Curbera, H. Dholakia. Business Process Execution Language
for Web Services, Version 1.1. Specification„ 2003. (Zitiert auf den Seiten 20, 21

und 23)

[ADH+
03] W. M. P. van der Aalst, B. F. van Dongen, J. Herbst, L. Maruster, G. Schimm,

A. J. M. M. Weijters. Workflow mining: a survey of issues and approaches. Data
Knowl. Eng., 47:237–267, 2003. doi:10.1016/S0169-023X(03)00066-1. URL http:
//portal.acm.org/citation.cfm?id=961808.961812. (Zitiert auf den Seiten 13

und 14)

[AIS93] R. Agrawal, T. Imieliński, A. Swami. Mining association rules between sets
of items in large databases. SIGMOD Rec., 22:207–216, 1993. doi:http://doi.
acm.org/10.1145/170036.170072. URL http://doi.acm.org/10.1145/170036.
170072. (Zitiert auf Seite 27)

[All08] T. Allweyer. BPMN Business Process Modeling Notation. Books on Demand GmbH,
2008. (Zitiert auf Seite 18)

[AS98] R. Agrawal, R. Srikant. Fast algorithms for mining association rules. In Readings
in database systems (3rd ed.), chapter Fast algorithms for mining association rules,
pp. 580–592. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 1998.
URL http://portal.acm.org/citation.cfm?id=302090.302153. (Zitiert auf
den Seiten 26 und 27)

[ATHW03] W. M. P. van der Aalst, A. H. M. Ter Hofstede, M. Weske. Business Process
Management: A Survey. In Proceedings of the 1st International Conference on
Business Process Management, volume 2678 of LNCS, pp. 1–12. Springer-Verlag,
2003. (Zitiert auf Seite 11)

[Bay00] S. D. Bay. Multivariate discretization of continuous variables for set mining.
In Proceedings of the sixth ACM SIGKDD international conference on Knowledge
discovery and data mining, KDD ’00, pp. 315–319. ACM, New York, NY, USA,
2000. doi:http://doi.acm.org/10.1145/347090.347159. URL http://doi.acm.
org/10.1145/347090.347159. (Zitiert auf Seite 35)

89

http://prom.win.tue.nl/research/wiki/_media/presentations/mining_au_process_days.ppt
http://prom.win.tue.nl/research/wiki/_media/presentations/mining_au_process_days.ppt
http://portal.acm.org/citation.cfm?id=961808.961812
http://portal.acm.org/citation.cfm?id=961808.961812
http://doi.acm.org/10.1145/170036.170072
http://doi.acm.org/10.1145/170036.170072
http://portal.acm.org/citation.cfm?id=302090.302153
http://doi.acm.org/10.1145/347090.347159
http://doi.acm.org/10.1145/347090.347159

Literaturverzeichnis

[BKNS99] M. Breunig, H. Kriegel, R. Ng, J. Sander. Optics-of: Identifying local outliers.
Principles of Data Mining and Knowledge Discovery, pp. 262–270, 1999. (Zitiert auf
Seite 30)

[BP99] S. D. Bay, M. J. Pazzani. Detecting change in categorical data: mining contrast
sets. In Proceedings of the fifth ACM SIGKDD international conference on Knowledge
discovery and data mining, KDD ’99, pp. 302–306. ACM, New York, NY, USA,
1999. doi:http://doi.acm.org/10.1145/312129.312263. URL http://doi.acm.
org/10.1145/312129.312263. (Zitiert auf Seite 35)

[BPM06] Business Process Modeling Notation Specification, 2006. (Zitiert auf den Sei-
ten 17 und 18)

[BSMM01] I. N. Bronstein, K. A. Semendjajew, G. Musiol, H. Mühlig. Taschenbuch der
Mathematik. Verlag Harri Deutsch, Frankfurt/Main, 5 edition, 2001. (Zitiert auf
Seite 28)

[DK75] F. DeRemer, H. Kron. Programming-in-the large versus programming-in-the-
small. SIGPLAN Not., 10:114–121, 1975. doi:http://doi.acm.org/10.1145/390016.
808431. URL http://doi.acm.org/10.1145/390016.808431. (Zitiert auf Sei-
te 21)

[FI93] U. M. Fayyad, K. B. Irani. Multi-interval discretization of continuous-valued
attributes. In Proceedings of the Thirteenth International Joint Conference on Artificial
Intelligence, pp. 1022–1027. Morgan Kaufmann, 1993. (Zitiert auf Seite 36)

[GCC+
04] D. Grigori, F. Casati, M. Castellanos, U. Dayal, M. Sayal, M. Shan. Business

process intelligence. Computers in Industry, 53(3):321–343, 2004. (Zitiert auf
Seite 14)

[GRC04] M. Golfarelli, S. Rizzi, I. Cella. Beyond data warehousing: what’s next in
business intelligence? In Proceedings of the 7th ACM international workshop on
Data warehousing and OLAP, pp. 1–6. ACM, 2004. (Zitiert auf Seite 14)

[GSR96] M. Ganesh, J. Srivastava, T. Richardson. Mining entity-identification rules for
database integration. In Proceedings of the Second International Conference on Data
Mining and Knowledge Discovery, pp. 291–294. 1996. (Zitiert auf Seite 31)

[Har91] H. Harrington. Business Process Improvement: The Breakthrough Strategy for Total
Quality, Productivity, and Competitiveness. McGraw-Hill, 1991. (Zitiert auf den
Seiten 6 und 10)

[HB04] H. Haas, A. Brown. Web Services Glossary, 2004. URL http://www.w3.org/TR/
2004/NOTE-ws-gloss-20040211/. (Zitiert auf Seite 20)

[HC93] M. Hammer, J. Champy. Reengineering the corporation. Harper Collins, 1993.
(Zitiert auf Seite 16)

90

http://doi.acm.org/10.1145/312129.312263
http://doi.acm.org/10.1145/312129.312263
http://doi.acm.org/10.1145/390016.808431
http://www.w3.org/TR/2004/NOTE-ws-gloss-20040211/
http://www.w3.org/TR/2004/NOTE-ws-gloss-20040211/

Literaturverzeichnis

[HFH+
09] M. Hall, E. Frank, G. Holmes, B. Pfahringer, P. Reutemann, I. H. Witten. The

WEKA data mining software: an update. SIGKDD Explor. Newsl., 11(1):10–18,
2009. doi:10.1145/1656274.1656278. URL http://dx.doi.org/10.1145/1656274.
1656278. (Zitiert auf den Seiten 39, 61 und 66)

[HH03] M. Hall, G. Holmes. Benchmarking attribute selection techniques for discrete
class data mining. IEEE Transactions on Knowledge and Data engineering, pp.
1437–1447, 2003. (Zitiert auf den Seiten 33 und 36)

[HK06] J. Han, M. Kamber. Data Mining: Concepts and Techniques, 2006. (Zitiert auf
den Seiten 25, 26, 28, 29, 30, 32, 33, 34 und 35)

[Hol95] D. Hollingsworth. Workflow Management Coalition: Workflow Reference Model,
1995. URL http://www.wfmc.org/reference-model.html. (Zitiert auf Seite 17)

[IBM] IBM Education Assistant. URL http://publib.boulder.ibm.com/infocenter/
ieduasst/v1r1m0/index.jsp?topic=/com.ibm.iea.wpi_v6/wpswid/6.0.2/
BusinessRules.html. (Zitiert auf Seite 25)

[JMDX06] W.-F. Jing, D.-Y. Meng, M.-W. Dai, Z. Xu. A New Pre-processing Method for
Regression. In J. Wang, Z. Yi, J. Zurada, B.-L. Lu, H. Yin, editors, Advances in
Neural Networks - ISNN 2006, volume 3972 of Lecture Notes in Computer Science,
pp. 765–770. Springer Berlin / Heidelberg, 2006. URL http://dx.doi.org/10.
1007/11760023_113. (Zitiert auf Seite 36)

[KKZ09] H. Kriegel, P. Kröger, A. Zimek. Outlier detection techniques. In Tutorial at
the 13th Pacific-Asia Conference on Knowledge Discovery and Data Mining. Citeseer,
2009. (Zitiert auf Seite 30)

[Kri08] H. Kriegel. Angle-based outlier detection in high-dimensional data. In Proceeding
of the 14th ACM SIGKDD international conference on Knowledge discovery and data
mining, pp. 444–452. ACM, 2008. (Zitiert auf Seite 30)

[LL07] J. Ludewig, H. Lichter. Software Engineering - Grundlagen, Menschen, Prozesse,
Techniken. dpunkt.verlag, Heidelberg, 2007. (Zitiert auf den Seiten 8, 9, 37

und 86)

[LR00] F. Leymann, D. Roller. Production workflow: concepts and techniques. Prentice Hall
PTR, Upper Saddle River, NJ, USA, 2000. (Zitiert auf den Seiten 10 und 16)

[MAT10] M. M. Mazid, A. B. M. S. Ali, K. S. Tickle. Improved C4.5 algorithm for rule
based classification. In Proceedings of the 9th WSEAS international conference on
Artificial intelligence, knowledge engineering and data bases, AIKED’10, pp. 296–
301. World Scientific and Engineering Academy and Society (WSEAS), Stevens
Point, Wisconsin, USA, 2010. URL http://portal.acm.org/citation.cfm?id=
1808036.1808087. (Zitiert auf Seite 65)

[Mel10] I. Melzer. Service-orientierte Architekturen mit Web Services. Konzepte - Standards -
Praxis. 4.Auflage. Spektrum Akademischer Verlag, Heidelberg, 2010. (Zitiert auf
Seite 24)

91

http://dx.doi.org/10.1145/1656274.1656278
http://dx.doi.org/10.1145/1656274.1656278
http://www.wfmc.org/reference-model.html
http://publib.boulder.ibm.com/infocenter/ieduasst/v1r1m0/index.jsp?topic=/com.ibm.iea.wpi_v6/wpswid/6.0.2/BusinessRules.html
http://publib.boulder.ibm.com/infocenter/ieduasst/v1r1m0/index.jsp?topic=/com.ibm.iea.wpi_v6/wpswid/6.0.2/BusinessRules.html
http://publib.boulder.ibm.com/infocenter/ieduasst/v1r1m0/index.jsp?topic=/com.ibm.iea.wpi_v6/wpswid/6.0.2/BusinessRules.html
http://dx.doi.org/10.1007/11760023_113
http://dx.doi.org/10.1007/11760023_113
http://portal.acm.org/citation.cfm?id=1808036.1808087
http://portal.acm.org/citation.cfm?id=1808036.1808087

Literaturverzeichnis

[Mit10] B. Mitschang. Data-Warehouse-, Data-Mining- und OLAP-Technologien,
2009/2010. (Zitiert auf den Seiten 25 und 28)

[MS09] M. zur Muehlen, R. Shapiro. Handbook on Business Process Management, chapter
Business Process Analytics. Springer-Verlag, 2009. (Zitiert auf Seite 14)

[Mue01] M. zur Muehlen. Process-driven Management Information Systems - Combining
Data Warehouses and Workflow Technology, presented at. In Proceedings of the
4th International Conference on Electronic Commerce Research (ICECR-4), Dallas (TX.
2001. (Zitiert auf Seite 14)

[NMRM11] F. Niedermann, B. Maier, S. Radeschütz, B. Mitschang. Automated Process
Decision Making based on Integrated Source Data. In Lecture Notes in Business
Information Processing. 2011. (Zitiert auf Seite 87)

[NRM10] F. Niedermann, S. Radeschütz, B. Mitschang. Deep Business Optimiza-
tion: A Platform for Automated Process Optimization. In W. Abramo-
wicz, R. Alt, K.-P. Fändrich, B. Franczyk, L. A. Maciaszek, editors, Busi-
ness Process and Service Science - Proceedings of ISSS and BPSC: BPSC’10;
Leipzig, Germany, September 27th - October 1st, 2010, volume P177 of Lec-
ture Notes in Informatics, pp. 168–180. Gesellschaft für Informatik e.V. (GI),
2010. URL http://www2.informatik.uni-stuttgart.de/cgi-bin/NCSTRL/
NCSTRL_view.pl?id=INPROC-2010-89&engl=0. (Zitiert auf den Seiten 8 und 11)

[NW87] J. Nievergelt, J. Weydert. Sites, modes, and trails: Telling the user of an interactive
system where he is, what he can do, and how to get to places (excerpt). In
R. M. Baecker, editor, Human-computer interaction, chapter Sites, modes, and
trails: Telling the user of an interactive system where he is, what he can do, and
how to get to places (excerpt), pp. 438–441. Morgan Kaufmann Publishers Inc.,
San Francisco, CA, USA, 1987. URL http://portal.acm.org/citation.cfm?
id=58076.58111. (Zitiert auf den Seiten 9, 46, 47 und 87)

[Pet05] H. Petersohn. Data Mining - Verfahren, Prozesse, Anwendungsarchitektur. Olden-
burg, 2005. (Zitiert auf den Seiten 25, 26 und 28)

[PGG05] V. de Putte, L. G. Gavin. Technical Overview of Websphere Process Server and
Websphere Integration Developer. IBM, 2005. URL http://www.redbooks.ibm.
com/redpapers/pdfs/redp4041.pdf. (Zitiert auf den Seiten 23, 24 und 25)

[Qui92] J. Quinlan. Learning with continuous classes. In In Proceedings AI’92. 1992.
(Zitiert auf Seite 28)

[Qui93] J. R. Quinlan. C4.5: Programs for Machine Learning (Morgan Kaufmann Series in
Machine Learning. Morgan Kaufmann, 1 edition, 1993. URL http://www.amazon.
com/exec/obidos/redirect?tag=citeulike07-20&path=ASIN/1558602380.
(Zitiert auf den Seiten 7, 46, 62, 63, 64 und 87)

[RD00] E. Rahm, H. Do. Data cleaning: Problems and current approaches. Bulletin of the
Technical Committee on Data Engineering, 23:3–13, 2000. (Zitiert auf den Seiten 12,
30 und 31)

92

http://www2.informatik.uni-stuttgart.de/cgi-bin/NCSTRL/NCSTRL_view.pl?id=INPROC-2010-89&engl=0
http://www2.informatik.uni-stuttgart.de/cgi-bin/NCSTRL/NCSTRL_view.pl?id=INPROC-2010-89&engl=0
http://portal.acm.org/citation.cfm?id=58076.58111
http://portal.acm.org/citation.cfm?id=58076.58111
http://www.redbooks.ibm.com/redpapers/pdfs/redp4041.pdf
http://www.redbooks.ibm.com/redpapers/pdfs/redp4041.pdf
http://www.amazon.com/exec/obidos/redirect?tag=citeulike07-20&path=ASIN/1558602380
http://www.amazon.com/exec/obidos/redirect?tag=citeulike07-20&path=ASIN/1558602380

Literaturverzeichnis

[RLM04] H. Reijers, S. Liman Mansar. Best Practices in business process redesign: an
overview and qualitative evaluation of successful redesign heuristics. Omega -
The International Journal of Management Science, 2004. (Zitiert auf den Seiten 3, 38,
40, 61 und 71)

[RN04] S. Russel, P. Norvig. Künstliche Intelligenz. Ein moderner Ansatz. Pearson Studium,
2004. (Zitiert auf Seite 27)

[RNB10] S. Radeschütz, F. Niedermann, W. Bischoff. BIAEditor - Matching Process
and Operational Data for a Business Impact Analysis. Proceedings EDBT, 2010.
(Zitiert auf den Seiten 43 und 58)

[Roz06] A. Rozinat. Conformance Testing: Measuring the Fit and Appropriateness of
Event Logs and Process Models. In BPM 2005 Workshops (Workshop on Business
Process Intelligence), volume 3812 of Lecture Notes in Computer Science, pp. 163–176.
Springer-Verlag, 2006. (Zitiert auf Seite 14)

[SA96] R. Srikant, R. Agrawal. Mining Quantitative Association Rules in Large Relatio-
nal Tables. SIGMOD, 1996. (Zitiert auf Seite 27)

[SQL92] Information Technology - Database Language SQL, 1992. URL http://www.
contrib.andrew.cmu.edu/~shadow/sql/sql1992.txt. (Zitiert auf Seite 33)

[Wer09] M. Werner. Information und Codierung Grundlagen und Anwendungen. View-
eg+Teubner, 2009. doi:10.1007/978-3-8348-9550-9. (Zitiert auf Seite 65)

[WFM99] Workflow Management Coalition: Terminology & Glossary, 1999. URL http:
//www.wfmc.org/reference-model.html. (Zitiert auf Seite 17)

[WSB] Web Services Business Process Execution Language Version 2.0. URL http://
docs.oasis-open.org/wsbpel/2.0/OS/wsbpel-v2.0-OS.pdf. (Zitiert auf den
Seiten 20 und 22)

[WW97] Y. Wang, I. H. Witten. Inducing Model Trees for Continuous Classes. In In Proc.
of the 9th European Conf. on Machine Learning Poster Papers, pp. 128–137. 1997.
(Zitiert auf den Seiten 66, 69 und 87)

Alle URLs wurden zuletzt am 11.04.2011 geprüft.

93

http://www.contrib.andrew.cmu.edu/~shadow/sql/sql1992.txt
http://www.contrib.andrew.cmu.edu/~shadow/sql/sql1992.txt
http://www.wfmc.org/reference-model.html
http://www.wfmc.org/reference-model.html
http://docs.oasis-open.org/wsbpel/2.0/OS/wsbpel-v2.0-OS.pdf
http://docs.oasis-open.org/wsbpel/2.0/OS/wsbpel-v2.0-OS.pdf

Erklärung

Hiermit versichere ich, diese Arbeit selbständig
verfasst und nur die angegebenen Quellen
benutzt zu haben.

(Bernhard Maier)

	1 Abstract / Kurzfassung
	1.1 Abstract
	1.2 Kurzfassung

	2 Einleitung
	2.1 Einführung
	2.2 Motivation
	2.3 Aufgabenstellung
	2.4 Verwandte Arbeiten
	2.5 Gliederung

	3 Grundlagen
	3.1 Workflows und Geschäftsprozesse
	3.2 Workflow Management Systeme
	3.3 Modellierung von Prozessen und Workflows
	3.3.1 BPMN 1.1
	Die graphischen Objekte von BPMN 1.1
	Beispiel

	3.3.2 WS-BPEL 2.0
	Geschichte von WS-BPEL
	Sprachelemente von WS-BPEL

	3.4 IBM WebSphere Process Server
	3.5 Data Mining
	3.5.1 Überblick über gängige Data Mining Verfahren
	Assoziationsanalyse
	Klassifizierung
	Regression
	Klassenbildung

	3.6 Preprocessing
	3.6.1 Data Cleaning
	3.6.2 Data Integration
	3.6.3 Data Transformation
	3.6.4 Data Reduction
	3.6.5 Spezifisches Preprocessing für Klassenbildung, Assoziationsanalyse und Regression
	Preprocessing für Klassenbildungs-Methoden (Clustering)
	Preprocessing für Assoziationsregel-Methoden: Diskretisierung
	Preprocessing für Regression

	4 Lösungsansatz
	4.1 Analyse der Aufgabenstellung
	4.2 Die Architektur des Werkzeugs (statische Sicht)
	4.3 Die Filter der Datenpipeline
	4.3.1 Szenario: Bewertung von Versicherungsfällen („Fraud Detection“)
	4.3.2 Ziel des Werkzeugs
	4.3.3 Verwendung des Werkzeugs
	4.3.4 Der Filter für die Extraktion und Transformation der Audit Daten
	4.3.5 Der Filter für die Berechnung der Metriken
	4.3.6 Der Filter für die Konsolidierung
	4.3.7 Preprocessing
	4.3.8 Data Mining
	4.3.9 Die graphische Benutzerschnittstelle

	5 Entwurf des Werkzeugs
	5.1 Entwurf der graphischen Benutzeroberfläche
	5.1.1 Ziel
	5.1.2 Entwurf der graphischen Benutzeroberfläche

	5.2 Extraktion der Audit Daten
	5.2.1 Ziel
	5.2.2 Entwurf der Extraktion

	5.3 Berechnung der Metriken
	5.3.1 Ziel
	5.3.2 Entwurf zur Berechnung der Metriken

	5.4 Konsolidierung
	5.4.1 Ziel
	5.4.2 Entwurf
	Benutzer-Schnittstelle
	Konsolidierungsvorgang

	5.5 Preprocessing
	5.5.1 Ziel
	5.5.2 Entwurf

	5.6 Anwendung von Data Mining Verfahren zur Optimierung von Workflows
	5.6.1 Unterstützung von der Task Automation Best Practice BPR2004 durch Data Mining auf konsolidierten Prozessdaten und operativen Daten
	5.6.2 Entscheidungsbäume und Modellbäume: Die Algorithmen C4.5 und M5P
	C4.5
	M5P

	5.7 Entwurf des Classifier-Webservice

	6 Implementierung des Werkzeugs
	6.1 Implementierung der graphischen Benutzerschnittstelle
	6.1.1 Die Pipeline-Visualisierung
	6.1.2 Protokoll und Hilfetextfenster
	6.1.3 DEA

	6.2 Implementierung der Extraktion
	6.3 Implementierung der Metriken
	6.3.1 Implementierung Benutzer-spezifischer Metriken

	6.4 Implementierung der Konsolidierung
	6.4.1 AttributeTable: Ein Bedienelement zur Steuerung der Konsolidierung
	6.4.2 Binarisierung

	6.5 Implementierung des Preprocessing
	6.6 Implementierung des Data Mining
	6.7 Implementierung des Classifier-Webservice

	7 Zusammenfassung und Ausblick
	7.1 Zusammenfassung
	7.2 Ausblick

	Literaturverzeichnis

