
 
 
 
 

 
 

	
  
 Institut für Architektur von Anwendungssystemen  

Universität Stuttgart Universitätsstraße 38 D - 70569 Stuttgart  

Diplomarbeit Nr. 3122  

Transaction Flow Compiler for SWoM 

Timo Salm  

	
  

Studiengang:  Informatik  

Prüfer:  Prof. Dr. Frank Leymann  

Betreuer:  Dipl.-Phys. Dieter H. Roller  

begonnen am:  03. Januar 2011  

beendet am:  04. Juli 2011  

CR-Klassifikation:  C.2.2, C.2.4, C.2.6, D.3.4, H.3.4, H.3.5, H.4.1  

 

 



 
 
 
 

 
 

Inhaltsverzeichnis 
	
  
	
  
	
  
1	
   Einleitung ....................................................................................................................................................... 1	
  

1.1	
   Aufgabenstellung ................................................................................................................................ 2	
  

1.2	
   Gliederung des Dokuments ............................................................................................................. 2	
  

2	
   Grundbegriffe ............................................................................................................................................... 4	
  

2.1	
   Java EE - Java Platform, Enterprise Edition ................................................................................. 4	
  

2.2	
   Laufzeitumgebung .............................................................................................................................. 4	
  

2.3	
   Serviceorientierte Architektur (SOA) ............................................................................................ 5	
  

2.4	
   Web Services ......................................................................................................................................... 6	
  

2.4.1	
   SOAP (ursprünglich für Simple Object Access Protocol) ............................................... 7	
  

2.4.2	
   WSDL (Web Service Definition Language) ......................................................................... 8	
  

2.4.3	
   UDDI (Universial Description Discovery and Integration) .......................................... 11	
  

2.5	
   WS-Business Process Execution Language (BPEL) ................................................................ 11	
  

3	
   Transaction Flow Compiler ................................................................................................................... 16	
  

3.1	
   Navigator ............................................................................................................................................. 18	
  

3.2	
   ModelCache und ModelLoader ................................................................................................... 18	
  

3.3	
   Compilation Units ............................................................................................................................. 19	
  

3.4	
   Compilation Unit Compiler ........................................................................................................... 19	
  

3.5	
   Compilation Unit Execution Context ......................................................................................... 26	
  

3.6	
   Compilation Unit Cache ................................................................................................................. 27	
  

4	
   Serialisierung von Transactionflows .................................................................................................. 32	
  

5	
   Zusammenfassung, Bewertung und Ausblick ............................................................................... 37	
  

5.1	
   Ausblick ................................................................................................................................................ 38	
  

6	
   Literaturverzeichnis ................................................................................................................................. 39	
  



 
 
 
 

 
 

Abbildungsverzeichnis  
 

 

 

Abbildung 2-1 SOA Dreieck ............................................................................................................................ 5	
  

Abbildung 2-2 Funktionsweise Web Services anhand des SOA-Dreiecks ..................................... 7	
  

Abbildung 3-1 Architektur des Transaction Flow Compilers ........................................................... 16	
  

Abbildung 3-2 Compilation Unit Compiler ............................................................................................ 19	
  

Abbildung 3-3 Compilation Unit Cache .................................................................................................. 27	
  

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
 
 
 

 
 

 

Verzeichnis der Listings 

 

 
Listing 2-4-1 Struktur einer SOAP-Nachricht ............................................................................................. 8	
  

Listing 2-4-2 Struktur einer WSDL-Datei ..................................................................................................... 8	
  

Listing 2-4-2 Struktur eines BPEL-Prozesses ........................................................................................... 11 

Listing 3-4-0 compile-Methode der „Compilation Unit Compiler“-Klasse .................................. 21	
  

Listing 3-4-1 getByteArrayFromClass-Methode der „Compilation Unit Compiler“-Klasse ... 22	
  

Listing 3-4-2 compile-Methode der „Compilation Unit Compiler“-Klasse mit Java EE 6 ....... 23	
  

Listing 3-4-3 Auszug ClassFileManager-Klasse ..................................................................................... 24	
  

Listing 3-4-4 JavaClassObject-Klasse ........................................................................................................ 25	
  

Listing 3-4-5 CharSequenceJavaFileObject-Klasse .............................................................................. 26	
  

Listing 3-6-0 Methodenrümpfe der „Compilation Unit Cache“-Klasse ......................................... 28	
  

Listing 3-6-1 getInstanceOfClass-Methode der „Compilation Unit Cache“-Klasse .................. 29 

Listing 3-6-2 Methodenrümpfe der CompilationUnitInstanceCreator-Klasse ........................... 29 

Listing 3-6-3 getInstanceFromByteArray-Methode der CompilationUnitIntanceCreator .... 30 

Listing 3-6-4 run-Methode der CompilationUnitCache-Klasse ....................................................... 30 

Listing 4-0-0 Dead Path Elimination in serialisiertem Flow .............................................................. 36	
  

 

 



 
 
 
 

 
1 

 

 

1 Einleitung 
 

   

Moderne, flexible Anwendungen implementieren das zweistufige Programmiermodell. 

Dabei definieren Geschäftsprozesse (programming in the large) die Flusslogik der 

Anwendungen und Web Services implementieren die entsprechenden Algorithmen 

(programming in the small).  

Solche Anwendungen sind workflow-basiert. Die Spezifikation der Geschäftsprozesse 

geschieht durch WS-BPEL, die Ausführung durch ein BPEL-konformes 

Workflowmanagementsystem. 

 

Die Optimierung workflow-basierter Anwendungen bedeutet zum größten Teil 

Optimierung der Ausführung der Geschäftsprozesse durch das 

Workflowmanagementsystem. Im Rahmen dieser Diplomarbeit wurde versucht, die 

Performance des Workflowmanagementsystems zu verbessern, indem Transaktionen, die 

Bestandteil eines Transaktionsflusses sind und von einem Navigator ausgeführt werden, 

mit Hilfe des Flow Compilers erzeugt und kompiliert werden. Der Flow Compiler besteht 

aus folgenden Komponenten:  

 

• Einem Compilation Unit Generator, der aus Prozessmodellen, die in BPEL vorliegen, 

Java-Klassen generiert. 

 

• Ein Compilation Unit Compiler, der den vom Compilation Unit Generator erzeugten  

Java-Quellcode in Bytecode umwandelt. 

 

• Ein Compilation Unit Cache, der für die Ausführung der Compilation Units 

zuständig ist. 

	
  
	
  
	
  
	
  
	
  



 
 
 
 

 
2 

 

 

1.1 Aufgabenstellung 

 

Ziel dieser Diplomarbeit war es, einen „Transaction Flow Compiler“ zu implementieren, der  

Klassen aus Prozessmodellen, die in BPEL spezifiziert sind, generiert und eine einfache 

Verwendung und Ausführung der generierten Klassen gewährleistet.  

Aufgabe war es, den Compilation Unit Cache und somit die Laufzeitumgebung der 

Compilation Units und den Compilation Unit Compiler, der den Java-Quellcode der 

generierten Klassen in Bytecode umwandelt, zu implementieren. 

Für eine spätere Realisierung des Compilation Unit Generators wurde außerdem ein 

Algorithmus für die Ausführung eines serialisierten Transaction Flows entwickelt. Dieser 

wird benötigt, da die Aktivitäten des Flows bzw. der Klassen, die der Compilation Unit 

Generator erzeugt, in einem einzelnen Thread und somit sequentiell und nicht wie in 

einem Flow üblich parallel ausgeführt werden müssen.   

 

 

 

1.2 Gliederung des Dokuments 

 

Kapitel 1: Einleitung Dieses Kapitel führt in das Themengebiet und die Aufgabenstellung 

der Diplomarbeit ein. 

 

Kapitel 2: Grundbegriffe Für ein besseres Verständnis werden in Kapitel 2 zunächst 

grundlegende Begriffe erläutert. Dabei wird auf Suns „Java EE Spezifikation“, die 

verwendete Laufzeitumgebung, Serviceorientierte Architektur, Web Services (SOAP,WSDL, 

UDDI) und BPEL eingegangen. 

 

Kapitel 3: Transaction Flow Compiler In Kapitel 3 werden die einzelnen Komponenten des 

Transaction Flow Compilers und ihre Aufgaben beschrieben. Detailliert wird auf den 

Compliation Unit Compiler und den Compilation Unit Cache eingegangen. 

 



 
 
 
 

 
3 

 

 

Kapitel 4: Serialisierung von Transactionflows Dieses Kapitel zeigt einen Ansatz, der es 

ermöglich Parallelität in Transactionflows zu serialisieren.  

 

Kapitel 5: Bewertung und Ausblick In Kapitel 5 wird die Arbeit abschließend bewertet. 

 

  



 
 
 
 

 
4 

 

 

2 Grundbegriffe 
 

 

 

2.1 Java EE - Java Platform, Enterprise Edition 

 

Die Java Platform, Enterprise Edition (Java EE), ist die Spezifikation einer 

Softwarearchitektur. Sie definiert Softwarekomponenten und Dienste, die es ermöglichen, 

verteilte, mehrschichtige, skalierbare und plattformunabhängige Anwendungen zu 

entwickeln. Die aktuelle Version der Java-EE-Spezifikation ist die Version 6. Eine für den 

Flow-Compiler relevante Neuerung in Java-EE 6 ist die Compiler API, die es erstmals 

ermöglicht, den Java-Compiler über eine standarisierte API aufzurufen. Da die eingesetzte 

Version der Laufzeitumgebung jedoch lediglich Java-EE 5 unterstützt, wird sie momentan 

nicht im Compilation Unit Compiler eingesetzt. 

 

 

 

 

2.2 Laufzeitumgebung 

 

Zur Ausführung einer Java-EE-Applikation sind eine Java Virtual Maschine(JVM) und 

verschiedene Dienste, die die korrekte Interaktion der einzelnen Komponenten 

garantieren, nötig [1]. Dies wird durch eine Laufzeitumgebung, wie dem in diesem Projekt 

verwendeten WebSphere Application Server (Version 7) von IBM, bereitgestellt.  

 

 

 

 

 

 



 
 
 
 

 
5 

 

 

2.3 Serviceorientierte Architektur (SOA) 

 

Eine Serviceorientierte Architektur, kurz SOA, ist ein Architekturmuster, bei dem eine 

Anwendung als Zusammenschluss lose gekoppelter Dienste(Services) realisiert wird. Diese 

Dienste kommunizieren wechselseitig über ihre Schnittstellen, die einen Zugriff auf ihre 

Funktionen ermöglichen.  

Eine Serviceorientierten Architektur wird im wesentlich durch die folgenden drei Rollen 

realisiert, deren Funktion im so genannten „SOA-Dreieck“ in Abbildung 2-1 veranschaulicht 

werden. 

 

 

 
Abbildung 2-1 SOA Dreieck 

 



 
 
 
 

 
6 

 

 

• Service Provider (Dienstanbieter) Bietet über eine definierte Schnittstelle 

Funktionalitäten an, die bei einem Service-Verzeichnis unter Angabe einer 

Beschreibung registriert werden. 

 

• Service Broker (Serviceverzeichnis) Stellt ein Verzeichnis von Services bereit, über 

das die Service angebotenen Schnittstellen gefunden werden können. 

 

• Service Requester (Dienstnutzer) Sucht einen Service beim Service Broker, erhält 

von diesem die Servicebeschreibung und stellt die Verbindung für die Nutzung des 

Dienstes zum Service Provider her. 

 

 

 

 

2.4 Web Services 

 

Ein Web Service ist nach dem W3C (World Wide Web Consortium) eine 

Software-Anwendung, die mit einem Uniform Resource Identifier (URI) eindeutig 

identifizierbar ist und deren Schnittstelle als XML-Artefakt definiert, beschrieben und 

gefunden werden kann. Ein Web Service unterstützt die direkte Interaktion mit 

anderen Software-Agenten unter Verwendung XML-basierter Nachrichten durch den 

Austausch über internetbasierte Protokolle. [2]  

 

Web Services stellen eine Realisierung der Serviceorientierten Architektur dar. 

Die Grundlage eines Webservice sind die Standards SOAP (Simple Object Access Protocol) 

für den Datenaustausch und WSDL (Web Service Description Language) für die 

Beschreibung eines Web Service. In Abbildung 2-2 wird zusammen mit dem 

Verzeichnisdienst UDDI die Funktionsweise anhand des SOA-Dreiecks veranschaulicht und 

in den folgenden Abschnitten detailliert auf sie eingegangen. 

 



 
 
 
 

 
7 

 

 

 
Abbildung 2-2 Funktionsweise Web Services anhand des SOA-Dreiecks 

 

 

 

 

2.4.1 SOAP (ursprünglich für Simple Object Access Protocol) 
 

SOAP ist ein Netzwerkprotokoll zum Austausch XML-basierter Nachrichten und ein durch 

das World Wide Web Consortium(W3C) definierter Standard. Seit der Version 1.2 ist SOAP 

offiziell keine Abkürzung von„Simple Object Access Protocol“ mehr, da es nicht nur dem 

Zugriff auf Objekte dient. SOAP definiert ein Nachrichtenformat, mit dem Informationen 

unabhängig vom verwendeten Datenübertragungsprotokoll, am häufigsten über HTTP 

und TCP, versendet werden.  

 



 
 
 
 

 
8 

 

 

Eine minimale SOAP-Nachricht besteht aus einem Envelope-Element, in dem der 

Namensraum(engl. namespace) festgelegt wird. Es enthält ein Body-Element und ein 

optionales Header-Element. In diesem können Meta-Informationen, beispielsweise zur 

Authentifizierung, untergebracht werden. Im Body-Element können die zu übertragenden 

Informationen und Anweisungen für einen entfernten Prozeduraufruf stehen. 

 

	
  

	
   <?xml	
  version="1.0"?>	
   	
  

	
   <s:Envelope	
  xmlns:s="http://www.w3.org/2003/05/soap-­‐envelope">	
   	
   	
   	
   	
   	
  

	
   <s:Header>	
  </s:Header>	
   	
   	
   	
   	
   	
  

	
   <s:Body>	
  </s:Body>	
   	
  

	
   </s:Envelope>	
   	
  

	
  

Listing 2-4-1: Struktur eines SOAP-Nachricht 
 
 
 
 
 

2.4.2 WSDL (Web Service Definition Language) 
 

Die Web Services Description Language (WSDL) ist XML-basierte Metasprache, die zur 

Beschreibung von Web Services dient und unabhängig von Plattform, 

Programmiersprache und Protokoll ist. Sie beschreibt die Schnittstelle, über die mit dem 

Web Service interagiert werden kann, dazu gehören Operationen sowie deren Parameter 

und Rückgabewerte.  

 

 

	
  

<wsdl:definitions	
  name="...	
  "	
  targetNamespace="...">	
   	
   	
   	
   	
   	
   	
  

<wsdl:types>	
   	
   	
   	
   	
   	
   	
   	
   	
   	
  

	
   	
   	
   	
   	
   	
   <xsd:schema	
  ....	
  />	
   	
   	
   	
   	
   	
   	
   	
   	
   	
   	
   	
   	
   	
   	
  

</wsdl:types>	
   	
   	
   	
   	
   	
   	
  



 
 
 
 

 
9 

 

 

<wsdl:message	
  name="...">	
   	
  

	
   	
   	
   	
   	
   	
   <part	
  name="..."	
  element="..."	
  type="..."/>	
   	
  

</wsdl:message>	
   	
   	
   	
   	
   	
   	
  

<wsdl:portType	
  name="...">	
   	
   	
   	
   	
   	
   	
   	
   	
   	
  

	
   	
   	
   	
   	
   	
   <wsdl:operation	
  name="...">	
   	
   	
   	
   	
   	
   	
   	
   	
   	
   	
   	
  

	
   	
   	
   	
   	
   	
   	
   	
   	
   	
   	
   	
   <wsdl:input	
  name="..."	
  message="..."></wsdl:input>	
   	
   	
   	
   	
   	
   	
   	
   	
   	
   	
   	
  

	
   	
   	
   	
   	
   	
   	
   	
   	
   	
   	
   	
   <wsdl:output	
  name="..."	
  message="..."></wsdl:output>	
   	
   	
   	
   	
   	
   	
   	
   	
   	
   	
   	
   	
   	
   	
   	
   	
   	
   	
   	
   	
   	
   	
   	
  

	
   	
   	
   	
   	
   	
   </wsdl:operation>	
   	
   	
   	
   	
   	
  

</wsdl:portType>	
   	
   	
   	
   	
   	
   	
  

<wsdl:binding	
  name="..."	
  type="...">*	
   	
   	
   	
   	
   	
   	
   	
   	
   	
  

	
   	
   	
   	
   	
   	
   <wsdl:operation	
  name="...>	
   	
   	
   	
   	
   	
   	
  

	
   	
   	
   	
   	
   	
   	
   	
   	
   	
   	
   	
   <wsdl:input>	
  </wsdl:input>	
   	
   	
   	
   	
   	
   	
   	
   	
   	
   	
   	
  

	
   	
   	
   	
   	
   	
   	
   	
   	
   	
   	
   	
   <wsdl:output>	
  </wsdl:output>	
  

	
   	
   	
   	
   	
   	
   </wsdl:operation>	
   	
   	
   	
   	
   	
  

</wsdl:binding>	
   	
   	
   	
   	
   	
   	
  

<wsdl:service	
  name="nmtoken">	
   	
  

	
   	
   	
   	
   	
   	
   <wsdl:port	
  name="nmtoken"	
  binding="qname"></wsdl:port>	
  

</wsdl:service>	
   	
   	
   	
  

</wsdl:definitions>	
  

	
  

Listing 2-4-2: Struktur einer WSDL-Datei 
 

 

Web Services werden in WSDL mit folgenden Elemente definiert ([3],[4]):   

• Types (Datentypen) Definition von Datentypen, die für den Austausch der 

Nachrichten (messages) verwendet werden. 

 

• Message Abstrakte Definitionen der übertragenen Daten, die aus mehreren 

logischen Teilen bestehen können. 

 



 
 
 
 

 
10 

 

 

• Operation Eine abstrakte Beschreibung einer Operation, des Services. Sie enthält 

Eingangs- und Ausgangsnachrichten bzw. Fehlermeldungen bei einem 

fehlgeschlagene Operationsaufruf. 

 

• Port Type Stellt eine abstrakte Beschreibung der Schnittstellen des Web Services 

aus Operationen dar. Jede Operation erhält dabei einen eindeutigen Namen und 

unterstützt eines der vier Nachrichtenaustauschmuster:  

1) One-way: Der Client sendet einen Request an den Service. 

 

2) Request-Response: Der Service bekommt einen Request vom Client und 

sendet eine Antwort zurück. 

 

3) Solicit-Response: Der Service sendet eine Message an den Client und 

erwartet eine Antwort.  

 

4) Notification: Der Service sendet eine Output-Message und bekommt keine 

Antwort. 

 

• Binding Bestimmt das Protokoll und Datenformat für einen Port Type , wie 

SOAP/HTTP 

 

• Port Legt für jedes Binding eine bestimmte Adresse fest. Durch sie ist der Service 

von außen erreichbar. 

 

• Service Eine Sammlung von verwandten Ports. 

 

Hier wurde auf WSDL 1.1 eingegangen, es liegt aber bereits die Version 2.0 vor, die einige 

Änderungen mit sich bringt. Die Änderungen der WSDL 2.0 Spezifikation können auf der 

Website des W3C [10] nachgelesen werden. 

 



 
 
 
 

 
11 

 

 

2.4.3 UDDI (Universial Description Discovery and Integration) 
 

Der Vollständigkeit halber ist noch UDDI zu erwähnen, ein Verzeichnisdienst zur 

Registrierung von Web Services, der das dynamische Finden des Web Service durch den 

Konsumenten ermöglicht. UDDI hat sich jedoch nie öffentlich durchgesetzt.  

 

 

 

 

2.5 WS-Business Process Execution Language (BPEL) 

 

Die Web Services Business Process Execution Language (kurz: BPEL) ist eine XML-basierte 

Sprache, die es ermöglicht, Geschäftsprozessen zu beschreiben. Sie ist aus der 

blockstrukturierten Sprache XLANG von Microsoft und der Graph-basierten Web Services 

Flow Language (WSFL) von IBM entstanden. Das Prozessmodel WS-BPEL baut auf das von 

WSDL definierte Service-Modell auf. 

BPEL unterscheidet zwei Arten von Geschäftsprozessen, die Geschäftsprotokolle und die 

ausführbaren Geschäftsprozesse. Geschäftsprotokolle sind abstrakte 

Prozessbeschreibungen, die als Interaktionsmuster für die ausführbaren Geschäftsprozesse 

dienen. Ein BPEL Prozess besteht aus einem Prozess-Interface und einem Prozess-Schema. 

Das Prozess-Schema ist in WSDL formuliert, da jeder BPEL-Prozess selbst einen Webservice 

darstellt. [6] Die Struktur eines Prozess-Schemas ist in Listing 2.3 zu sehen.  

 

 

	
  

<	
  process	
  name	
  ="Prozessname"	
  >	
  

<import>...</import>	
  

<	
  partnerLinks	
  >..	
  </	
  partnerLinks	
  >	
  

<	
  variables	
  >..	
  </	
  variables	
  >	
  

<	
  correlationSets	
  >..	
  </	
  correlationSets	
  >	
  

<	
  faultHandlers	
  >..	
  </	
  faultHandlers	
  >	
  



 
 
 
 

 
12 

 

 

<	
  compensationHandler	
  >..	
  </	
  compensationHandler	
  >	
  

<	
  eventHandlers	
  >..	
  </	
  eventHandlers	
  >	
  

##	
  Aktivitäten	
  ##	
  

</	
  process	
  >	
  

 

Listing 2-5-0: Struktur eines BPEL-Prozesses 
 

 

Im Folgenden werden die wichtigsten in einem BPEL-Dokument verwendeten 

Sprachelemente erläutert: 

 

• Prozess (process) Das Wurzelelement jedes BPEL-Dokuments. Über das 

„name“-Attribut wird der Name des Geschäftsprozesses angegeben.  

 

• Dokumentenreferenzen (import) Referenzieren von externe Ressourcen wie z.B. 

XML Schemata oder WSDL Definitionen. 

 

• Verbindungen zu Partnerprozessen (partnerLinks) Dienste mit denen der BPEL- 

Prozess interagiert. Das können Services, die vom Prozess aufgerufen werden oder 

die den Prozess aufrufen, sein.  

 

	
  

<partnerLinks>	
  

<partnerLink	
  name="..."	
  partnerLinkType="..."	
   	
  

	
   	
   	
   	
   	
   	
   	
   	
   	
   	
   	
   	
   myRole="..."	
  partnerRole="..."/>	
  

	
   </partnerLinks>	
  

	
  

 

• Variablen (variable) Definition von Variablen eines bestimmten Typs, die den 

Aktivitäten und Diensten zum Austausch von Informationen dienen.  

 



 
 
 
 

 
13 

 

 

	
  

<variables>	
  

<variable	
  name="..."	
  messageType="..."	
  

	
   	
   	
   	
   	
   	
   	
   	
   	
   	
   	
   	
   	
   	
   	
   type="..."	
  element="..."/>	
  

</variables>	
  

	
  

 

• Korrelationsmengen (correlationSet) Da ein BPEL-Prozess in mehreren Instanzen 

ausgeführt werden kann und sich diese in unterschiedlichen Zuständen befinden 

können, wird mit Korrelationsmengen die Zuordnung von Antwortnachrichten 

ermöglicht. 

 

	
  

<correlationSets>	
  

<correlationSet	
  name="..."	
  properties="..."/>	
  

</correlationSets>	
  

	
  

 

• Fehlerbehandlungen (faultHandler ) Beim Auftreten von Fehlern während der 

Ausführung eines BPEL-Prozesses können diese mit faultHandlers behandelt 

werden. 

 

• Kompensationsroutinen (compensationHandler ) Umkehroperationen und 

Operationen, die in besonderen Fällen durchgeführt werden müssen. 

 

• Ergebnisbehandlungen (eventHandler) Die Steuerung eines Prozesses wird durch 

Events erweitert. 

 

Das Herzstück eines Prozesses bilden die Aktivitäten (activities), von denen, im Gegensatz 

zu den andere Elementen, mindestens ein Element in einem Prozess vorhanden sein muss.  



 
 
 
 

 
14 

 

 

Aktivitäten werden durch Web Services implementiert. Es wird zwischen einfachen(basic 

activities) und strukturierten Aktivitäten(structured activities) unterschieden. 

Einfache Aktivitäten sind die grundlegenden Aktivitäten, die nicht aus anderen Aktivitäten 

aufgebaut sind: 

 

• assign Verändern des Inhalts einer Variablen. 
 

• invoke Aufruf eines anderen Web Services. 
 

• receive Warten auf einen eingehenden Client Request. 
 

• reply Sendet eine Antwort zum erhaltenen Client Request. 
 

• throw Explizites Signalisieren eines Fehlers. 
 

• wait Bis zu einem Zeitpunkt oder für eine Zeitspanne warten. 
 

• empty Nichts tun. 
 
 

Strukturierte Aktivitäten lassen die rekursive Komposition von komplexen Prozessen zu 

und steuern den Ablauf eines Prozesses [5]: 

 

• sequence Alle Kind-Aktivitäten werden ihrer Reihenfolge nach abgearbeitet. 

 

• while Solange eine Bedingung erfüllt ist, werden die Kind-Aktivitäten ausgeführt. 

 

• switch Bedingte Ausführung von Kind-Aktivitäten. 

 

• flow Die Kind-Aktivitäten können parallel oder in beliebiger Reihenfolge ausgeführt 

werden. Dabei werden Kontrollabhängigkeiten durch Links angegeben. 

 

• pick Auswahl von Alternativen aufgrund externer Ereignisse. 

 



 
 
 
 

 
15 

 

 

Scopes erlauben es, mehrere Aktivitäten zu bündeln und ermöglichen die Steuerung von 

globaler und lokaler Sichtbarkeit. Sie können Variablen, faultHandler, 

compensationHandler und eventHandler enthalten. 

 
 

 

 

  



 
 
 
 

 
16 

 

 

3 Transaction Flow Compiler 
 

 

 
Abbildung 3-1 Architektur des Transaction Flow Compilers 



 
 
 
 

 
17 

 

 

In Abbildung 3-1 ist die schematische Architektur des Transaction Flow Compilers und ihr 

Zusammenspiel mit anderen Komponenten dargestellt.   

 

Der Flow Compiler besteht aus drei Hauptkomponenten. Dem Compilation Unit 

Generator, der aus BPEL Java-Klassen beziehungsweise Java-Quellcode erzeugt, dem 

Compilation Unit Compiler, der den erzeugten oder direkt eingelesenen Quellcode in 

Bytecode umwandelt und dem Compilation Unit Cache, der für einen möglichst schnellen 

Zugriff und die Ausführung der Compilation Units zuständig ist. 

 

Das Einlesen neuer Prozessmodelle ist in Abbildung 3-1 grau mit einer roten Umrandung 

hervorgehoben. Die Compilation Unit Generator Komponente des Flow Compilers 

generiert aus BPEL-Dateien Java Quellcode bzw. Klassen( Compilation Units).  

Außerdem wird als weitere Möglichkeit angeboten, die Prozessmodelle direkt als 

Java-Quellcode einzulesen.  

Die weitere Verarbeitung des direkt eingelesene oder vom Compilation Unit Generator 

erzeugten Java-Quellcodes ist die Aufgabe des Compilation Unit Compilers, der in Kapitel 

3.4 detailliert beschrieben ist. Er wandelt die Compilation Units, deren Quellcode als String 

übergeben wird, in Bytecode um. Der Bytecode wird für die spätere Verwendung 

zusammen mit dem generierten Java-Quellcode in der Datenbank abgelegt.  

Die Ausführung eines Prozessmodells wird, nachdem es mit Hilfe des Compilation Unit 

Generators und Compilation Unit Compilers eingelesen wurde, über den Navigator 

angestoßen. Dieser steuert die Ausführung des Prozessmodells. Er ruft den Compilation 

Unit Cache(siehe Kapitel 3.6) auf, der schon verwendete Instanzen der Compilation Units in 

einer Hashtabelle zwischenspeichert. Existiert zu einem Prozessmodell, dessen ID der 

Navigator beim Methodenaufruf übergibt, noch keine Compilation Unit Instanz im Cache, 

muss diese erst aus dem Bytecode der entsprechenden generierten Klasse, der durch den 

ModelCache aus der Datenbank geliefert wird, erzeugt werden. Nachdem eine Instanz zu 

dem vom Navigator übergebenen Prozessmodell existiert, wird diese durch den 

Compilation Unit Cache ausgeführt. 

 

 



 
 
 
 

 
18 

 

 

3.1 Navigator 

 

Die Aufgabe des Navigators ist die Steuerung der Ausführung der Prozessmodelle. Er 

delegiert die Ausführung der Prozessmodelle, bzw. der aus den Prozessmodellen vom 

Compilation Unit Generator generierten Klassen an den Compilation Unit Cache.  

Alle für die Ausführung nötigen Informationen übergibt der Navigator dem Compilation 

Unit Cache mit einem Objekt des Typs Compilation Unit Execution Context(Kapitel 3.5).  

 

 

 

3.2 ModelCache und ModelLoader 

 

Mit der ModelCache- bzw. ModelLoader-Klasse wird vom Compilation Unit Cache auf den 

vom Compilation Unit Compiler generierte Bytecode zugegriffen, der nach seiner 

Erzeugung in der Datenbank abgelegt wurde. Der Modelcache ermöglicht einen Zugriff 

auf Objekte, die Prozessmodelle abbilden. Wird ein solches Objekt mit der 

getProcessModel–Methode des ModelCaches über die entsprechende Prozessmodell-ID 

angefordert, werden ,wenn es nicht bereits in der Hashtabelle des Caches abgelegt ist, die 

nötigen Informationen vom ModelLoader von der Datenbank abgefragt, ein neues Objekt 

mit ihnen erstellt, dieses im ModelCache hinterlegt und zurückgegeben. Die vom 

Compilation Unit Cache verwendete loadMFC–Methode ermöglicht den Zugriff auf den 

Bytecode der für das Prozessmodel generierten Klasse, der in den Prozessmodel-Objekten 

hinterlegt ist. 

 

 

 

 

 

 

 



 
 
 
 

 
19 

 

 

3.3 Compilation Units 

 

Die Compilation Units sind vom Compilation Unit Generator aus BPEL generierte Klassen, 

die Prozessmodelle abbilden. Der Klassenname wird dabei, um Namenskonflikte zu 

vermeiden, durch den Namen des Prozessmodells festgelegt. Beim Erzeugen einer Instanz 

wird dem Konstruktor ein Objekt der Compilation Unit Execution Context Klasse 

übergeben, das alle benötigten Informationen für die Ausführung enthält. 

Jede Compilation Unit stellt eine run-Methode bereit, mit der ihre Ausführung gestartet 

wird. Im Fall einer Transaktion erwartet diese als Übergabeparameter noch eine 

Transaktions-ID. 

 

 

 

 

3.4 Compilation Unit Compiler 

 

 
Abbildung 3-2 Compilation Unit Compiler 

 



 
 
 
 

 
20 

 

 

 

Die Aufgabe des Compilation Unit Compilers ist es, den vom Compilation Unit Generator 

generierten Java-Quellcode, der als String übergeben wird, in Java-Bytecode 

umzuwandeln und diesen als Bytearray zurückzugeben.  

Da, wie in den Grundlagen schon beschrieben, die bei der Stuttgarter Workflow Maschine 

eingesetzte Laufzeitumgebung Websphere Application Server(WAS) 7 nur Java EE 5 

unterstützt, ist es nicht möglich, die Kompilierung mit der in Java EE 6 neu hinzugefügten 

Compiler API zu realisieren. Da der WAS 8 demnächst den Beta-Status verlässt und Java EE 

6 unterstützt, wird im zweiten Teil dieses Kapitels zusätzlich eine Realisierung mit der 

Compiler API gezeigt.  

 

Bei der Umsetzung ohne Java EE 6 Compiler API wird in der 

CompilationUnitCompiler-Klasse mit den bereitgestellten Methoden des 

com.sun.tools.javac-Pakets, das Bestandteil des Java Development Kits ist, auf den 

primären Java-Compiler(javac) zugegriffen. Da es hierbei keine einfach Möglichkeit gibt, 

den Java-Quellcode als String direkt in den Speicher als Bytecode zu kompilieren, wird eine 

temporäre Java-Quellcode-Datei(.java) angelegt, in der der String gespeichert wird(Listing 

3-4-0, Zeile 1/2). Diese wird mit der compile-Methode der com.sun.tools.javac.Main-Klasse 

in Bytecode bzw. eine .class-Datei kompiliert.  

 

Die compile-Methode erwartet als Übergabeparameter, wie in Zeile 6 zu sehen ist, ein 

Array mit Compilerargumenten, das im einfachsten Fall nur den Pfad der Java-Quellcode 

Datei enthält, und ein PrintWriter, der die Ausgaben des Compilers in einem String 

speichert (siehe Zeile 4/5).  

 

 

	
  
	
   	
   1:	
  public	
  byte[]	
  compile	
  (String	
  source,	
  String	
  className)	
   	
  

	
   	
   	
   	
   	
   	
   	
   	
   	
   	
   	
   	
   	
   throws	
  IOException,	
  ClassNotFoundException	
  {	
  

	
   	
   2:	
   tempClassDir	
  =	
  new	
  File(tempDir.getAbsolutePath()	
  +	
  File.separator	
  +	
  

	
   	
   	
   className.replace('.',	
  File.separatorChar));	
  



 
 
 
 

 
21 

 

 

	
   	
   3:	
   writeTempfile(source,	
  tempClassDir.getAbsolutePath()	
  +	
  ".java");	
  

	
   	
   	
   	
  

	
   	
   4:	
   StringWriter	
  compilerMessage	
  =	
  new	
  StringWriter();	
  

	
   	
   5:	
   PrintWriter	
  compilerMessageWriter	
  =	
  new	
  PrintWriter(compilerMessage);	
  

	
  

	
   	
   6:	
   int	
  exitCode	
  =	
  Main.compile(getCompilerArguments(	
  

	
   	
   	
   	
   	
   	
   	
   	
   	
   	
   	
   	
   	
   	
   	
   	
   tempClassDir.getAbsolutePath()	
  +".java"),	
  compilerMessageWriter);	
  

	
   	
   7:	
   compilerMessageWriter.close();	
   	
   	
   	
   	
   	
   	
   	
   	
  

	
   	
  

	
   	
   8:	
   if	
  (exitCode	
  !=	
  0)	
  {	
  

	
   	
   9:	
   	
   throw	
  new	
  CompilationUnitCompilerException(	
  

	
   	
   	
   exitCode	
  +	
  "Message:	
  "	
  +	
  compilerMessage.toString());	
  

	
   10:	
   }	
  

	
   	
   	
   	
   	
   	
   	
   	
   	
   	
  

	
   11:	
   	
   File	
  file	
  =	
  new	
  File(tempClassDir.getAbsolutePath()	
  +	
  ".java");	
  

	
   12:	
   file.delete();	
  

	
   	
   	
   	
   	
   	
   	
   	
   	
   	
  

	
   13:	
   byte[]	
  classBytes	
  =	
  getByteArrayFromClass(	
  

	
   	
   	
   	
   	
   	
   	
   	
   	
   	
   	
   	
   	
   	
   	
   	
   	
   	
   	
   	
   	
   	
   	
   tempClassDir.getAbsolutePath()	
  +	
  ".class");	
  

	
   	
   	
   	
   	
   	
   	
   	
   	
   	
   	
   	
   	
   	
   	
   	
   	
   	
   	
  

	
   14:	
   return	
  classBytes;	
  

	
   15:	
  }	
  

	
  

Listing 3-4-0: compile-Methode der „Compilation Unit Compiler“-Klasse 
 

 

Mittels der getByteArrayFromClass-Methode in Listing 3-4-1 wird der in der .class-Datei 

erzeugte Bytecode in ein Bytearray gelesen und an den Aufrufer zurückgegeben. Die 

beiden temporär erzeugten Dateien werden am Ende der Methode wieder gelöscht. 

 

 



 
 
 
 

 
22 

 

 

	
  
private	
  byte[]	
  getByteArrayFromClass	
  (String	
  classFilePath)	
  throws	
  IOException,	
  

ClassNotFoundException	
  {	
  

	
   try	
  {	
  

	
   	
   InputStream	
  inputStream	
  =	
  new	
  FileInputStream(classFilePath);	
  

	
   	
   	
  

	
   	
   byte[]	
  buf	
  =	
  new	
  byte[8192];	
  

	
   	
   	
   	
   	
   	
   	
   	
   	
   	
   ByteArrayOutputStream	
  outputStream	
  =	
  new	
  

ByteArrayOutputStream(buf.length);	
  

	
   	
   	
   	
   	
   	
   	
   	
   	
   	
   int	
  count;	
  

	
   	
   	
   	
   	
   	
   	
   	
   	
   	
   while	
  ((count	
  =	
  inputStream.read(buf,	
  0,	
  buf.length))	
  >	
  0)	
  {	
  

	
   	
   	
   	
   	
   	
   	
   	
   	
   	
   	
   	
   outputStream.write(buf,	
  0,	
  count);	
  

	
   	
   	
   	
   	
   	
   	
   	
   	
   	
   }	
  

	
   	
   	
   	
   	
   	
   	
   	
   	
   	
   outputStream.flush();	
  

	
   	
   	
   	
   	
   	
   	
   	
   	
   	
   outputStream.close();	
  

	
   	
   	
   	
   	
   	
   	
   	
   	
   	
   inputStream.close();	
  

	
   	
   	
   	
   	
   	
   	
   	
   	
   	
   	
   	
   	
  

	
   	
   	
   	
   	
   	
   	
   	
   	
   	
   File	
  file	
  =	
  new	
  File(classFilePath);	
  

	
   	
   	
   	
   	
   	
   file.delete();	
  

	
   	
   	
   	
   	
   	
   	
   	
   	
   	
   	
   	
   	
  

	
   	
   	
   	
   	
   	
   	
   	
   	
   	
   return	
  outputStream.toByteArray();	
   	
   	
   	
   	
  

	
   }	
   	
   	
  

	
   catch	
  (FileNotFoundException	
  exception)	
  

	
   {	
  

	
   	
   throw	
  new	
  CompilationUnitCompilerException("Could	
  not	
  load	
  .class	
  

file");	
  

	
   }	
   	
  

}	
  

	
  

Listing 3-4-1: getByteArrayFromClass-Methode der „Compilation Unit Compiler“-Klasse 
 

 



 
 
 
 

 
23 

 

 

Mit der Java EE 6 Compiler API ist eine wesentlich elegantere und effizientere Umsetzung 

des Compilation Unit Compilers möglich. Im Gegensatz zu der davor vorgestellten 

Realisierung wird ohne Erstellung temporärer Dateien ein Java-Quellcode in Form eines 

Strings direkt in den Speicher kompiliert.  

In Listing 3-4-2 wird die compile-Methode mit Verwendung der Compiler API gezeigt. 

In Zeile 2 wird durch die getSystemJavaCompiler()-Methode der ToolProvider-Klasse der 

Zugriff auf den Compiler über eine zurückgegebene Instanz vom Typ JavaCompiler 

ermöglicht.  

 

 

	
  

	
   	
   1:	
  public	
  byte[]	
  compile	
  (String	
  source,	
  String	
  className)	
   	
   {	
  

	
   	
   2:	
   	
   JavaCompiler	
  compiler	
  =	
  ToolProvider.getSystemJavaCompiler();	
  

	
   	
   3:	
   	
   JavaFileManager	
  fileManager	
  =	
  new	
  

	
   	
   	
   	
   	
   	
   	
   	
   ClassFileManager(compiler.getStandardFileManager(null,	
  null,	
  null));	
  

	
  

	
   	
   4:	
   	
   List<JavaFileObject>	
  jfiles	
  =	
  new	
  ArrayList<JavaFileObject>();	
   	
   	
   	
   	
   	
   	
   	
   	
   	
  

	
   	
   5:	
   	
   jfiles.add(new	
  CharSequenceJavaFileObject(className,	
  source));	
  

	
   	
   6:	
   	
   	
   compiler.getTask(null,	
  fileManager,	
  null,	
  null,	
  null,	
  jfiles).call();	
  

	
   	
   7:	
   	
   byte[]	
  classBytes	
  =	
  ((ClassFileManager)fileManager).	
  jclassObject.getBytes();	
  

	
   	
   	
   	
   	
   	
   	
   	
   	
   	
   	
   	
   	
   	
   	
   	
   	
   	
   	
  

	
   	
   8:	
   	
   return	
  classBytes;	
  

}	
  

	
  
Listing 3-4-2: compile-Methode der „Compilation Unit Compiler“-Klasse mit Java EE 6 Compiler API 

 

 

Der Kompiliervorgang wird mit der call-Methode der CompilationTask-Instanz gestartet 

(Listing 3-4-2, Zeile 6), die über die getTask-Methode des JavaCompiler-Objekts geliefert 

wird. Der getTask-Methode werden als Übergabeparameter ein Objekt des Typs 

ClassFileManager (Listing 3-4-3) übergeben, durch das festgelegt wird, wohin der erzeugte 

Bytecode geschrieben wird.  



 
 
 
 

 
24 

 

 

 

	
  

	
   public	
  class	
  ClassFileManager	
  extends	
  ForwardingJavaFileManager<JavaFileManager>	
   	
   	
  

	
   {	
  

public	
  JavaClassObject	
  jclassObject;	
  

	
  

public	
  ClassFileManager(StandardJavaFileManager	
  standardManager)	
  {	
  

	
   	
   	
   	
   	
   	
   	
   super(standardManager);	
  

}	
  

	
  

@Override	
  

public	
  JavaFileObject	
  getJavaFileForOutput(Location	
  location,	
  

	
   	
   	
   	
   	
   	
   	
   	
   	
   	
   String	
  className,	
  Kind	
  kind,	
  FileObject	
  sibling)	
  throws	
  IOException	
  {	
  

	
   	
   	
   	
   	
   	
   jclassObject	
  =	
  new	
  JavaClassObject(className,	
  kind);	
  

	
   	
   	
   	
   	
   	
   return	
  jclassObject;	
  

	
   	
   	
   	
   	
   	
   }	
  

	
   ...	
  

}	
  

	
  

Listing 3-4-3: Auszug ClassFileManager-Klasse 
 

 

In unserem Fall wird er in einer JavaClassObject-Instanz hinterlegt. Durch die 

getBytes-Methode der JavaClassObject-Klasse(Listing 3-4-4) wird dieser in Form eines 

Bytearray zurückgeliefert.  

 

 

 

 

 

 



 
 
 
 

 
25 

 

 

 	
  

	
   public	
  class	
  JavaClassObject	
  extends	
  SimpleJavaFileObject	
  {	
  

	
   	
   protected	
  final	
  ByteArrayOutputStream	
  bos	
  =	
  new	
  ByteArrayOutputStream();	
  

	
  

public	
  JavaClassObject(String	
  name,	
  Kind	
  kind)	
  {	
  

	
   	
   	
   	
   	
   	
   	
   super(URI.create("string:///"	
  +	
  name.replace('.',	
  '/')	
  

	
   	
   	
   	
   	
   	
   	
   	
   	
   	
   	
   	
   	
   	
   	
   	
   	
   	
   	
   	
   	
   	
   	
   	
   	
   	
   	
   	
   	
   	
   	
   	
   +	
  kind.extension),	
  kind);	
  

	
  

}	
  

	
  

public	
  byte[]	
  getBytes()	
  {	
  

	
   	
   	
   	
   	
   	
   	
   return	
  bos.toByteArray();	
  

}	
  

	
  

@Override	
  

public	
  OutputStream	
  openOutputStream()	
  throws	
  IOException	
  {	
  

	
   	
   	
   	
   	
   	
   	
   return	
  bos;	
  

}	
  

}	
  

	
  

Listing 3-4-4: JavaClassObject-Klasse  
	
  

 

Außerdem erwartet die getTask-Methode als Übergabeparameter den zu kompilierenden 

Java-Quellcode, der in einem Objekt des Typs CharSequenceJavaFileObject(Lisitng 3-4-5) 

als String hinterlegt ist. Da mit einem CompilationTask auch Quellcodes mehrerer Klassen 

auf einmal kompiliert werden können, wird die CharSequenceJavaFileObject-Instanz in 

einer ArrayList übergeben. 

 

 
 
 
 
 



 
 
 
 

 
26 

 

 

	
  

	
   public	
  class	
  CharSequenceJavaFileObject	
  extends	
  SimpleJavaFileObject	
  {	
  

	
   	
   private	
  CharSequence	
  content;	
  

	
  

public	
  CharSequenceJavaFileObject(String	
  className,	
  CharSequence	
  content)	
  {	
  

	
   	
   	
   	
   	
   	
   super(URI.create("string:///"	
  +	
  className.replace('.',	
  '/')	
   	
  

	
   	
   	
   	
   	
   	
   	
   	
   	
   	
   	
   	
   	
   	
   	
   	
   	
   	
   	
   	
   	
   	
   	
   	
   	
   	
   	
   	
   	
   	
   	
   	
   +	
  Kind.SOURCE.extension),	
  Kind.SOURCE);	
  

	
   	
   	
   	
   	
   	
   this.content	
  =	
  content;	
  

}	
  

	
  

@Override	
  

public	
  CharSequence	
  getCharContent(boolean	
  ignoreEncodingErrors)	
  {	
  

	
   	
   	
   	
   	
   	
   return	
  content;	
  

}	
  

	
   }	
  

	
  

Listing 3-4-5 CharSequenceJavaFileObject-Klasse  
 

 

 

 

3.5 Compilation Unit Execution Context 

 

Mit der CompilationUnitExecutionContext –Klasse bzw. Instanzen dieser Klasse, werden 

alle Informationen bereitgestellt, die für das Ausführen eines Objekts einer für ein 

Prozessmodell generierten Klasse im Compilation Unit Cache nötig sind. 

Der Compilation Unit Execution Context ermöglicht Zugriffe auf den Instanz- und 

Model-Cache und enthält Informationen wie die IDs des Prozessmodells, der 

Prozessinstanz und der Aktivität. Außerdem wird mit einem Objekt dieser Klasse die 

Eingabe für die Anfrage übergeben und deren Rückgabe gespeichert. 

 



 
 
 
 

 
27 

 

 

3.6 Compilation Unit Cache 

 

 
Abbildung 3-3 Compilation Unit Cache 

 

 

Der Compilation Unit Cache dient dazu, zeitaufwendige Datenbankzugriffe zu vermeiden, 

in dem Instanzen der generierten Klassen nach ihrer Erzeugung in einer Hashtabelle 

abgelegt werden und somit wiederverwendet werden können. Zusätzlich bietet er 

Methoden zur Ausführung dieser Instanzen an. Abbildung 3-3 zeigt das schematische 

Zusammenspiel der einzelnen Komponenten. 

Die ComilationUnitCache-Klasse definiert drei Methoden, deren Methodenrümpfe in 

Listing 3-6-0 aufgeführt werden.  

 

 

 

public	
  void	
  run	
  (CompilationUnitExecutionContext	
  cuExecutionContext)..	
   	
  

public	
  void	
  run	
  (CompilationUnitExecutionContext	
  cuExecutionContext,	
  short	
  TXID)	
  ...	
  

	
  



 
 
 
 

 
28 

 

 

public	
  Object	
  getInstaceOfClass(CompilationUnitExecutionContext	
  cuExecutionContext)	
  

...	
  
  

Listing 3-6-0: Methodenrümpfe der „Compilation Unit Cache“-Klasse 
 

 

Ein Übergabeparameter der drei Methoden ist vom Typ CompilationUnitExecutionContext. 

In einem Objekt dieses Typs ist unter anderem die ID des Prozessmodells gespeichert. 

Anhand dieser ID sucht die getInstaceOfClass–Methode in der Hashtabelle des 

Compilation Unit Cache nach einer bereits im Cache vorhandenen Instanz der für das 

Prozessmodell generierten Klasse, die beim Erzeugen mit der Prozessmodell ID als 

Schlüssel hinterlegt wurde. Wird diese gefunden, kann sie direkt zurückgegeben werden 

(Listing 3-6-1, Zeile 4/5). Sollte noch keine Instanz in der Hashtabelle vorliegen, wird der 

Bytecode der für das Prozessmodell generierten Klasse vom Modelcache (siehe Kapitel 3.2) 

geholt. Aus diesem wird mit der CompilationUnitInstaceCreator-Klasse ein Objekt erzeugt, 

das in der Hashtabelle gespeichert und zurückgegeben wird (Listing 3-6-1, Zeile 7/8).  

 

 

	
  

	
   	
   1:	
  public	
  Object	
  getInstaceOfClass(	
  

	
   	
   	
   	
   	
   	
   CompilationUnitExecutionContext	
  cuExecutionContext){	
  

	
   	
   2:	
   String	
  PMID	
  =	
  cuExecutionContext.PMID;	
  

	
   	
   3:	
   Object	
  instance	
  =	
  null;	
  

	
   	
   4:	
   if	
  (cacheMap.containsKey(PMID))	
  {	
  

	
   	
   5:	
   	
   instance	
  =	
  cacheMap.get(PMID);	
  

	
   	
   6:	
   }	
  else	
  {	
  

	
   	
   7:	
   	
   instance	
  =	
  InstanceCreator.getInstanceFromByteArray(	
  

	
   	
   	
   	
   	
   	
   modelCache.loadMFC(PMID),	
  

	
   	
   	
   	
   new	
  Object[]{cuExecutionContext});	
  

	
   	
   8:	
   	
   add(PMID,	
  instance);	
  

	
   	
   9:	
   }	
  

	
   10:	
   return	
  instance;	
  



 
 
 
 

 
29 

 

 

	
   11:	
  }	
  

	
  

Listing 3-6-1: getInstanceOfClass-Methode der „Compilation Unit Cache“-Klasse 
	
  

 

 

Die CompilationUnitInstaceCreator-Klasse stellt drei statische Methoden bereit (Listing 

3-6-2). Die getInstanceFromByteArray Methoden ermöglichen es, aus einer Klasse in 

Bytecode Objekte mit und ohne Übergabeparameter zu erzeugen, die dem Aufrufer 

zurückgegeben werden. Diese verwenden die getClassNameFromByteArray Methode, um 

den Namen der Klasse bzw. Typ des zu erzeugenden Objekts aus dem Bytecode zu lesen 

und die ByteArrayClassLoader-Klasse, um diese zu laden (Listing 3-6-3, Zeile 2/3). Nach 

dem Laden der Klasse wird das Objekt in Zeile 8 erstellt. Die ByteArrayClassLoader-Klasse 

erweitert den SecureClassLoader des java.security Paketes für die Verwendung mit 

Bytearrays.  

 

 

	
   	
  

	
   public	
  static	
  Object	
  getInstanceFromByteArray	
  (byte[]	
  b)	
  ...	
   	
  

	
   public	
  static	
  Object	
  getInstanceFromByteArray	
  (byte[]	
  b,	
  Object[]	
  initargs)	
  ...	
  

	
  

	
   public	
  static	
  String	
  getClassNameFromByteArray(byte[]	
  b)	
  ...	
   	
  
	
  

Listing 3-6-2: Methodenrümpfe der CompilationUnitIntanceCreator-Klasse 
 
 
 

	
  

	
   	
   1:	
  public	
  static	
  Object	
  getInstanceFromByteArray	
  (byte[]	
  b,	
  Object[]	
  initargs)	
  ...	
  {	
  

	
   	
   2:	
   ByteArrayClassLoader	
  classLoader	
  =	
  new	
  

	
   	
   	
   	
   	
   ByteArrayClassLoader(b,Thread.currentThread().getContextClassLoader());	
  

	
   	
   3:	
   Class<?>	
  cls	
  =	
  classLoader.loadClass(getClassNameFromByteArray(b));	
  

	
   	
   4:	
   Class<?>[]	
  acParams	
  =	
  new	
  Class[initargs.length];	
  



 
 
 
 

 
30 

 

 

	
   	
   5:	
   for	
  (int	
  i	
  =	
  0;	
  i	
  <	
  initargs.length;	
  i++)	
  {	
  

	
   	
   6:	
   	
   acParams[i]	
  =	
  initargs[i].getClass();	
  

	
   	
   7:	
   }	
  

	
  

	
   	
   8:	
   Constructor<?>	
  cnst	
  =	
  cls.getConstructor(acParams);	
  

	
   	
   	
  

	
   	
   9:	
   Object	
  instance	
  =	
  cnst.newInstance(initargs);	
  

	
   10:	
   return	
  instance;	
  

}	
  

	
  

Listing 3-6-3: getInstanceFromByteArray-Methode der CompilationUnitIntanceCreator-Klasse 
 

 

Die beiden run-Methoden der ComilationUnitCache-Klasse geben keine Instanz des durch 

den CompilationUnitExecutionContext festgelegten Prozessmodells zurück, sondern rufen 

eine run-Methode des Objekts der generierten Klasse auf, die sie mit der 

getInstaceOfClass–Methode geliefert bekommen. Die zweite run-Methode der 

ComilationUnitCache-Klasse, bei der als zweiter Übergabeparameter eine Transaktions-ID 

erwartet wird, ist für die Ausführung von Transactionflows gedacht. Diese ist in Listing 

3-6-4 abgebildet. Eine Instanz zu der im Compilation Unit Execution Context übergebenen 

Prozessmodell-ID  wird in Zeile 2 von der getInstaceOfClass-Methode geliefert. In Zeile 5 

und 6 wird mittels Reflexion die run-Methode dieser Instanz ausgeführt. 

 

 

	
  

	
   	
   1:	
  public	
  void	
  run	
  (CompilationUnitExecutionContext	
  cuExecutionContext,	
   	
  

	
   	
   	
   	
   	
   	
   	
   	
   	
   	
   	
   	
   	
   short	
  TXID)	
  {	
  

	
   	
   2:	
   Object	
  instance	
  =	
  getInstaceOfClass(cuExecutionContext);	
  

	
   	
   3:	
   if	
  (instance	
  !=	
  null)	
  {	
  

	
  

	
  



 
 
 
 

 
31 

 

 

	
   	
   4:	
   	
   Method	
  method	
  =	
  instance.getClass().getMethod("run",	
   	
  

	
   	
   	
   	
   	
   	
   	
   	
   	
   	
   	
   	
   	
   	
   	
   	
   	
   	
   	
   	
   	
   	
   	
   	
   	
   	
   	
   	
   new	
  Class[]{short.class});	
  

	
   	
   5:	
   	
   method.invoke(instance,	
  new	
  Object[]{TXID});	
  

	
   	
   6:	
   }	
  

	
   	
   7:	
  }	
  

	
  

Listing 3-6-4: run-Methode der CompilationUnitCache-Klasse	
  
 

 

 

 

 

 

 

 

 



 
 
 
 

 
32 

 

 

4 Serialisierung von Transactionflows 
 

 

Flow Aktivitäten gehören wie in Kapitel 2.4 beschrieben zu der Gruppe der strukturellen 

Aktivitäten. In ihnen können sowohl einfache als auch strukturierte Aktivitäten enthalten 

sein. Diese werden in der Flow Aktivität parallel und nicht wie in einer Sequence-Aktivität 

sequentiell ausgeführt.  

Mit Hilfe von Links ist es möglich, Kontrollabhängigkeiten zwischen je zwei Aktivitäten 

festzulegen und somit nebenläufige Aktivitäten zu synchronisieren. In jedem Link ist eine 

Aktivität als Quelle(source )und die andere als Ziel(target) definiert. Alle Links in einem 

Flow haben einen eindeutigen Status, der die Werte „true“, „false“ oder „undefined“ 

annehmen kann.  

Der Status kann durch eine Transition Condition (Übergangsbedingung) geändert werden, 

die nach der erfolgreichen Ausführung von der Quellaktivität ausgewertet wird. Wenn 

keine Übergangsbedingung vorhanden ist, hat der Status immer den Wert „true“. 

Anhand einer Join Condition einer Aktivität, die das Ziel eines oder mehrerer Links ist, wird 

anhand des Status der eingehenden Links entschieden, ob die Aktivität ausgeführt wird. 

Im impliziten Fall ist die Join Condition eine ODER-Verknüpfung, d.h. mindestens ein Status 

eines eingehenden Links muss „true“ sein, damit die Aktivität ausgeführt wird. 

Wird eine Aktivität aufgrund einer zu „false“ ausgewerteten Join Condition nicht 

ausgeführt, kann es, da ausgehende Links in der weiteren Ausführung des Prozesses 

eventuell benötigt werden, zu einer Verklemmung des Prozesses kommen. Diese 

Blockierung des Kontrollflusses wird mit der Dead-Path-Elimination (DPE) verhindert. Sie 

wird durch Setzen der suppressJoinFailure-Eigenschaft auf „yes“ aktiviert. Wenn die 

suppressJoinFailure-Eigenschaft den Standartwert „no“ hat, wird ein Fehler geworfen, der 

durch einen faultHandler abgefangen werden kann. Die DPE, die auch in einem nicht 

abgearbeiteten Zweig einer if – oder pick-Aktivität aufgerufen wird, verhindert einen 

Deadlock, indem sie die ausgehenden Links aller auf dem Pfad befindlicher Aktivitäten, die 

nicht mehr ausgeführt werden können, auf „false“ setzt.  

 



 
 
 
 

 
33 

 

 

Da Java-EE die Aktivitäten in einem einzelnen Thread ausführt, wird keine parallele 

Abarbeitung der Aktivitäten unterstützt. Daher können in einem Flow Aktivitäten nicht 

parallel, sondern müssen sequentiell ausgeführt werden. In Abbildung 4-0 ist schematisch 

ein Beispiel für einen parallelen Flow und seine sequentielle Ausführung abgebildet.  

  



 
 
 
 

 
34 

 

 

 Abbildung 4-1 Serialisiert Ausführung eines Flows 



 
 
 
 

 
35 

 

 

Aktivitäten werden in der Abbildung durch Kreise repräsentiert, Links und ihre Transition 

Conditions durch durchgezogene Pfeile mit Kästchen, und die gestrichelten Pfeile  

veranschaulichen die Reihenfolge der Ausführung.    

 

Da die Aktivitäten entlang eines Pfades nicht mehr direkt hintereinander ausgeführt 

werden, sondern auch die Ausführung einer Aktivitäten eines anderen Pfades dazwischen 

liegen kann (siehe Beispiel in Abbildung 4-1), muss die Dead-Path-Elimination bei der 

sequentiellen Ausführung angepasst werden.  

Ein Algorithmus für die DPE in einem serialisierten Flow ist in Listing 4-0-0 als Pseudo-Code 

zu sehen. Anstatt wie bei der DPE mit paralleler Verarbeitung den Status aller Links eines 

Pfades auf „false“ zu setzten bis eine Join Condition zu „true“ ausgewertet werden kann, 

wird dies schrittweise sobald die jeweillige Quellaktivität eines Links in der serialisierten 

Flow ausgeführt werden würde gemacht. Es wird also, wie es bei der parallelen 

Ausführung auch üblich ist, die Join Condition mit den Status der eingehenden Links 

ausgewertet. Wird sie zu „false“, so wird die Aktivität nicht ausgeführt, zusätzlich wird aber 

noch der Status aller ausgehenden Links der Aktivität auf „false“ gesetzt (Listing 4-0-0, 

Zeile 9).  

Das Setzen der ausgehenden Links, auch wenn die Aktivität nicht ausgeführt wird, und das 

vorherige Prüfen realisiert also das Durchlaufen eines Pfades der DPE.  

Im Algorithmus werden die Aktivitäten aufgrund der Übersichtlichkeit in einem Array 

hinterlegt, durch das auch die Reihenfolge der Abarbeitung bestimmt ist.  

	
  

	
  

	
  

	
   	
   1:	
   	
   Activity[]	
  activities	
  =	
  [Aktivitäten in	
  der	
  durch	
  die	
  Serialisierung	
  bestimmten	
  

	
   	
   	
   	
   	
   	
   	
   	
   	
   	
   	
   	
   	
   	
   	
   	
   	
   	
   	
   Reihenfolge]	
  ;	
  

	
   	
   2:	
   	
   for	
  (	
  int	
  i	
  =	
  1;	
  i	
  <	
  activities.length;	
  i	
  ++	
  )	
  {	
  

	
   	
   3:	
   	
   	
   If	
  (activities[i].AnzahlEinkommenderLinks	
  >	
  0	
  &&	
  

	
   	
   	
   	
   	
   activities[i].JoinConditionEinkommenenLinks)	
  {	
  

	
   	
   4:	
   	
   activities[i].run;	
  

	
   	
   5:	
   	
   If	
  (activities[i].FehlerBeiAusführung)	
  {	
  



 
 
 
 

 
36 

 

 

	
   	
   6:	
   	
   	
   Setzte	
  alle	
  ausgehenden	
  Links	
  der	
  Aktivität	
  activities[i]	
  auf	
  „false“;	
   	
  

	
   	
   7:	
   	
   	
   	
   	
   	
   	
   	
   	
   	
   	
   	
   }	
  

	
   	
   8:	
   	
   	
   	
   }	
  else	
  if	
  (activities[i].AnzahlEinkommenderLinks	
  >	
  0	
  &&	
  

	
   	
   	
   	
   	
   	
   	
   !activities[i].JoinConditionEinkommenenLinks)	
  {	
  

	
   	
   9:	
   	
   	
   Setzte	
  alle	
  ausgehenden	
  Links	
  von	
  activities[i]	
  auf	
  false;	
  

	
   10:	
   	
   	
   	
   }	
  else	
  {	
  

	
   11:	
   	
   	
   	
   	
   	
   	
   	
   activities[i].run;	
  

	
   12:	
   	
   If	
  (activities[i].FehlerBeiAusführung)	
  {	
  

	
   13:	
   	
   	
   Setzte	
  alle	
  ausgehenden	
  Links	
  der	
  Aktivität	
  activities[i]	
  auf	
  „false“;	
   	
  

	
   14:	
   	
   	
   	
   	
   	
   	
   	
   }	
  

	
   15:	
   	
   	
   	
   }	
  

	
   16:	
   	
   }	
  

	
  
Listing 4-0-0: Dead Path Elimination in serialisiertem Flow	
  

	
  



 
 
 
 

 
37 

 

 

5 Zusammenfassung, Bewertung und Ausblick 
 

 

Die Motivation dieser Diplomarbeit bestand darin, die Performance der Ausführung von 

Prozessmodellen, die in BPEL spezifiziert sind, durch die Entwicklung des Transaction Flow 

Compilers zu verbessern.  

 

Das bisherige Navigieren durch ein Prozessmodell bei dessen Ausführung wurde durch 

das Ausführen vorgenerierter Klassen ersetzt. Mit diesem neuen Ansatz sollte ein 

wesentlich bessere Performance garantiert werden.  

Benchmarks des neuen und alten Ansatzes zeigen jedoch, dass der Leistungszuwachs 

weitaus nicht so groß ist wie erhofft und sich die Entwicklung aus Sicht der Performance 

nicht wirklich ausgezahlt hat. 

 

Zunächst wurde der Compilation Unit Cache und somit die Laufzeitumgebung der später 

einmal vom Compilation Unit Generator erstellten Klassen implementiert und in das 

bestehende System integriert. 

 

Der Compilation Unit Compiler, der Java-Quellcode in Bytecode umwandelt, wurde als 

nächstes erstellt. Da die Realisierung des Compilation Unit Generators nicht Teil dieser 

Arbeit war, wurden die Compilation Units beziehungsweise ihr Java-Quellcode für 

Testzwecke von Hand erzeugt. 

 

Der nächste Schritt wäre die Implementierung des Compilation Unit Compilers.  

Wie schon erwähnt, war dieser jedoch nicht Umfang dieser Diplomarbeit. Es wurde jedoch 

ein Algorithmus entwickelt, der die nötige sequentielle Ausführung der Aktivitäten des 

Prozessmodells für die generierten Klassen beschreibt. Dieser wird bei der Erstellung der 

Klassen, beziehungsweise bei ihrer späteren Ausführung benötigt, da die Aktivitäten durch 

Java EE in einem einzelnen Thread ausgeführt werden und somit keine, von einem Flow 

unterstützte, parallele Verarbeitung möglich ist. 

 



 
 
 
 

 
38 

 

 

 

5.1 Ausblick 

 

Für die Fertigstellung des Transaction Flow Compilers müsste als nächstes der Compilation 

Unit Generator erstellt werden. 

Ein Performancezuwachs seitens der für die Ausführung zeitlich nicht relevanten 

Kompilierung des Java Quellcodes durch den Compilation Unit Cache könnte mit einer 

Migration auf die bald erscheinende Version 8 des Websphere Application Servers und der 

damit zur Verfügung stehenden Compiler API, die Bestandteil von Java EE 6 ist, erzielt 

werden. Eine Implementierung des Compilation Unit Compilers mit dieser API, wurde 

zusätzlich in 3.4 vorgestellt. 

 

 

 



 
 
 
 

 
39 

 

 

6 Literaturverzeichnis 
 

 

[1] Stefan Schäffer. Enterprise Java mit IBM WebSphere.: J2EE-applikationen effizient 

entwickeln. Addison-Wesley Verlag, 2002. 

 

[2] Web Services Description Requirements. http://www.w3.org/TR/ws-desc-reqs/ 

 

[3] Web Services Description Language (WSDL) 1.1. http://www.w3.org/TR/wsdl.html 

 

[4] Gustavo Alonso, Fabio Casati,Harumi Kuno, Vijay Machiraju. Web Services: Concepts, 

Architectures and Application. Springer Verlag, 2004. 

 

[5] Sanjiva Weerawarana, Francisco Curbera , Frank Leymann, Tony Storey, Donald F. 

Ferguson. Web Services Platform Architecture: Soap, WSDL, WS-Policy, WS-Addressing, 

WS-Bpel, WS-Reliable Messaging and More. Prentice Hall, 2005 

 

[6] Daniel Liebhart, Guido Schmutz, Marcel Lattmann, Markus Heinisch, Michael Könings, 

Mischa Kölliker, Perry Pakull, Peter Welkenbach. Architecture Blueprints: Ein Leitfaden zur 

Konstruktion von Softwaresystemen mit Java Spring, .NET, ADF, Forms und SOA. Carl Hanser 

Verlag, 2007. 

 

[7] Java programming dynamics. 

http://www.ibm.com/developerworks/java/library/j-dyn0429/ 

 

[8] Miron Sadziak: Dynamic in-memory compilation 

http://www.javablogging.com/dynamic-in-memory-compilation/ 

 

[9] David J. Biesack: Create dynamic applications with javax.tools 

http://www.ibm.com/developerworks/java/library/j-jcomp/index.html 

 



 
 
 
 

 
40 

 

 

 

[10] Web Services Description Language (WSDL) Version 2.0 
http://www.w3.org/TR/wsdl20/ 

 

[11] Daniel Liebhart. SOA goes real. Carl Hanser Verlag 2007 

 



 
 
 
 

 
41 

 

 

Erklärung  
	
  
Hiermit versichere ich, diese Arbeit selbstständig verfasst und nur die angegebenen Quellen 
genutzt zu haben. 
 
 
 
 
 
 
 
 
 
 
Unterschrift:        (Timo Salm) 
 

Gäufelden, 4.7.2011	
    


