Institut fir Architektur von Anwendungssystemen

Universitat Stuttgart Universitatsstral3e 38 D - 70569 Stuttgart

Diplomarbeit Nr. 3122

Transaction Flow Compiler for SWoM

Timo Salm
Studiengang: Informatik
Priifer: Prof. Dr. Frank Leymann
Betreuer: Dipl.-Phys. Dieter H. Roller
begonnen am: 03.Januar 2011
beendet am: 04. Juli 2011

CR-Klassifikation: C.2.2,C24,C26,D.3.4,H.3.4,H.3.5 H.4.1

Inhaltsverzeichnis

T BINIEITUNG oottt s ssssssssssssssssssssssssssssssessssssssssssssssssssssssssssssesssesssssssassssssssssees 1
1.1 AUFGADENSTEIUNG .ot ssssssssssss s s ssssssssssssssesssssssssssesssssssssses 2
1.2 Gliederung des DOKUMENTS........cccvireereisrrssieissississess 2

2 GIUNADEGIIIE wueereeeieiseisseissssssssissesssessssssssssssesssesans 4
2.1 Java EE - Java Platform, ENterprise EQitioNeeciessensisensissiessssisssssenssessssessssssssenss 4
2.2 LaUfZEITUMQEDUNG .t ssssssssssssassessns 4
2.3 Serviceorientierte ArChitektur (SOA) ... ieeenseiseisssssissns 5
24 WED SEIVICES .cueureeeeiresisssisssissasssssens 6

2.4.1 SOAP (urspringlich fiir Simple Object ACCeSS Protocol)......ceeeneeenseeneesessersseessennne 7
2.4.2 WSDL (Web Service Definition LANgQUAgQE)ceeeeereneinnresinssnssensissssssssssssssssssssssssens 8
2.4.3 UDDI (Universial Description Discovery and Integration)..........c...ceecceeeeseesseeseesseenens 11
2.5 WS-Business Process Execution Language (BPEL)eeeneineincrnenesssssssssssssssnnns 11

3 Transaction FIOW COMPIIET w..ieeneeeeissssseesessssesses 16
3.1 NAVIGATOL eieceeeettetesessessessessessesstststssss s sssssssssssessessessassassssssssssssssssssssssssssssssssssssassasses 18
3.2 ModelCache UNd MOdEILOAETcrrrrirrireiseineinssissssesses 18
3.3 COMPIIAtION UNIES...uiiirriirriirriirrieinseisssississsssessses 19
3.4 Compilation UNit COMPILETeeeeeeeireeseiseissiseississsisesisesses 19
3.5 Compilation Unit EXECULION CONTEXL....vvirrrerrieineeesisssisessses 26
3.6 CoMPIilation UNIt CACRE ...ttt ssses 27

4 Serialisierung VON TranSaCtioNflOWSocverrnninsinsississiseiseississens 32

5 Zusammenfassung, Bewertung und AUSDIICKiinrineineireisensssssssssesssssssssissinens 37
5T AUSDIICK ettt sesssssisseisseissasssssssssesssesssssssssssssssasssssses 38

6 LIt@IATUIVEIZEICINIS oottt tessasesssssbsssesssssassssstssassssssasssassasssssssassssssssnsassassssses 39

Abbildungsverzeichnis

ADDIIAUNG 2-T SOA DIQIECK u.uuvereeeerririeisseisssisssissess 5
Abbildung 2-2 Funktionsweise Web Services anhand des SOA-Dreieckscoveveenreerneerncenens 7
Abbildung 3-1 Architektur des Transaction FIOW COMPIIELS........rreerrereinerssrseessenssesssessseens 16
Abbildung 3-2 Compilation Unit COMPIIETceereireiseiseiseisseississens 19

Abbildung 3-3 Compilation UNit CACKErsssssiseiseiseisssisssssssissssssssssssssssssssssssssssssssens 27

Verzeichnis der Listings

Listing 2-4-1 Struktur @iner SOAP-NACHIICHT ... ssssssssssssssssesaseses 8
Listing 2-4-2 Struktur @INer WSDL-Dati......c..cuuuerrurmeererrrserssssserssssssesssessses 8
Listing 2-4-2 Struktur €iN@S BPEL-PrOZESSES.......ovvvrrrrrrereiseiseiseisssisssisses 11
Listing 3-4-0 compile-Methode der ,Compilation Unit Compiler’-KIassec.coecrevrerererenens 21

Listing 3-4-1 getByteArrayFromClass-Methode der ,Compilation Unit Compiler“-Klasse ... 22

Listing 3-4-2 compile-Methode der ,Compilation Unit Compiler“-Klasse mit Java EE 6........23
Listing 3-4-3 Auszug ClassFileManager-KIQSSEueeneinseinsssesssssssssssesssssssssssssssssssssssssssses 24
Listing 3-4-4 JavaClassODJECT-KIQSSEurirrrnrrseissississsisessssissssssssesses 25
Listing 3-4-5 CharSequencelavaFileObject-KIasseiniinsissnseieesssessssssssssssessssses 26
Listing 3-6-0 Methodenriimpfe der ,Compilation Unit Cache”-KIasse........c.couevveerrrrererererereenns 28
Listing 3-6-1 getinstanceOfClass-Methode der ,Compilation Unit Cache”-Klasse................... 29
Listing 3-6-2 Methodenriimpfe der CompilationUnitinstanceCreator-Klasse.........cc..cveerevuneee. 29

Listing 3-6-3 getinstanceFromByteArray-Methode der CompilationUnitintanceCreator 30
Listing 3-6-4 run-Methode der CompilationUnitCache-KIasseeverneenseenseensseseseseseenns 30

Listing 4-0-0 Dead Path Elimination in serialisiertem FIOWccovninercsersernneenseenssesssssesesesssenns 36

1 Einleitung

Moderne, flexible Anwendungen implementieren das zweistufige Programmiermodell.
Dabei definieren Geschaftsprozesse (programming in the large) die Flusslogik der
Anwendungen und Web Services implementieren die entsprechenden Algorithmen
(programming in the small).

Solche Anwendungen sind workflow-basiert. Die Spezifikation der Geschaftsprozesse
geschieht durch WS-BPEL, die Ausflihrung durch ein BPEL-konformes

Workflowmanagementsystem.

Die Optimierung workflow-basierter Anwendungen bedeutet zum gré3ten Teil
Optimierung der Ausfiihrung der Geschaftsprozesse durch das
Workflowmanagementsystem. Im Rahmen dieser Diplomarbeit wurde versucht, die
Performance des Workflowmanagementsystems zu verbessern, indem Transaktionen, die
Bestandteil eines Transaktionsflusses sind und von einem Navigator ausgefiihrt werden,
mit Hilfe des Flow Compilers erzeugt und kompiliert werden. Der Flow Compiler besteht

aus folgenden Komponenten:

* Einem Compilation Unit Generator, der aus Prozessmodellen, die in BPEL vorliegen,

Java-Klassen generiert.

* Ein Compilation Unit Compiler, der den vom Compilation Unit Generator erzeugten

Java-Quellcode in Bytecode umwandelt.

* Ein Compilation Unit Cache, der fiir die Ausfiihrung der Compilation Units

zustandig ist.

1.1 Aufgabenstellung

Ziel dieser Diplomarbeit war es, einen ,Transaction Flow Compiler” zu implementieren, der
Klassen aus Prozessmodellen, die in BPEL spezifiziert sind, generiert und eine einfache
Verwendung und Ausflihrung der generierten Klassen gewahrleistet.

Aufgabe war es, den Compilation Unit Cache und somit die Laufzeitumgebung der
Compilation Units und den Compilation Unit Compiler, der den Java-Quellcode der
generierten Klassen in Bytecode umwandelt, zu implementieren.

Flir eine spatere Realisierung des Compilation Unit Generators wurde aul3erdem ein
Algorithmus fiir die Ausfihrung eines serialisierten Transaction Flows entwickelt. Dieser
wird bendtigt, da die Aktivitaten des Flows bzw. der Klassen, die der Compilation Unit
Generator erzeugt, in einem einzelnen Thread und somit sequentiell und nicht wie in

einem Flow Ublich parallel ausgefiihrt werden muissen.

1.2 Gliederung des Dokuments

Kapitel 1: Einleitung Dieses Kapitel fiihrt in das Themengebiet und die Aufgabenstellung

der Diplomarbeit ein.

Kapitel 2: Grundbegriffe Flr ein besseres Verstandnis werden in Kapitel 2 zunachst
grundlegende Begriffe erlautert. Dabei wird auf Suns ,Java EE Spezifikation”, die
verwendete Laufzeitumgebung, Serviceorientierte Architektur, Web Services (SOAP,WSDL,

UDDI) und BPEL eingegangen.

Kapitel 3: Transaction Flow Compiler In Kapitel 3 werden die einzelnen Komponenten des
Transaction Flow Compilers und ihre Aufgaben beschrieben. Detailliert wird auf den

Compliation Unit Compiler und den Compilation Unit Cache eingegangen.

Kapitel 4: Serialisierung von Transactionflows Dieses Kapitel zeigt einen Ansatz, der es

ermdoglich Parallelitdt in Transactionflows zu serialisieren.

Kapitel 5: Bewertung und Ausblick In Kapitel 5 wird die Arbeit abschlieBend bewertet.

2 Grundbegriffe

2.1 Java EE - Java Platform, Enterprise Edition

Die Java Platform, Enterprise Edition (Java EE), ist die Spezifikation einer
Softwarearchitektur. Sie definiert Softwarekomponenten und Dienste, die es ermdglichen,
verteilte, mehrschichtige, skalierbare und plattformunabhangige Anwendungen zu
entwickeln. Die aktuelle Version der Java-EE-Spezifikation ist die Version 6. Eine flr den
Flow-Compiler relevante Neuerung in Java-EE 6 ist die Compiler API, die es erstmals
ermdoglicht, den Java-Compiler Uber eine standarisierte APl aufzurufen. Da die eingesetzte
Version der Laufzeitumgebung jedoch lediglich Java-EE 5 unterstiitzt, wird sie momentan

nicht im Compilation Unit Compiler eingesetzt.

2.2 Laufzeitumgebung

Zur Ausfiihrung einer Java-EE-Applikation sind eine Java Virtual Maschine(JVM) und
verschiedene Dienste, die die korrekte Interaktion der einzelnen Komponenten
garantieren, nétig [1]. Dies wird durch eine Laufzeitumgebung, wie dem in diesem Projekt

verwendeten WebSphere Application Server (Version 7) von IBM, bereitgestellt.

2.3 Serviceorientierte Architektur (SOA)

Eine Serviceorientierte Architektur, kurz SOA, ist ein Architekturmuster, bei dem eine
Anwendung als Zusammenschluss lose gekoppelter Dienste(Services) realisiert wird. Diese
Dienste kommunizieren wechselseitig tiber ihre Schnittstellen, die einen Zugriff auf ihre
Funktionen ermdglichen.

Eine Serviceorientierten Architektur wird im wesentlich durch die folgenden drei Rollen
realisiert, deren Funktion im so genannten ,SOA-Dreieck” in Abbildung 2-1 veranschaulicht

werden.

Service Broker

suchen verdffentlichen

Service Requester Service Provider

ruft auf

Abbildung 2-1 SOA Dreieck

* Service Provider (Dienstanbieter) Bietet Giber eine definierte Schnittstelle
Funktionalitaten an, die bei einem Service-Verzeichnis unter Angabe einer

Beschreibung registriert werden.

e Service Broker (Serviceverzeichnis) Stellt ein Verzeichnis von Services bereit, Gber

das die Service angebotenen Schnittstellen gefunden werden kénnen.

* Service Requester (Dienstnutzer) Sucht einen Service beim Service Broker, erhalt
von diesem die Servicebeschreibung und stellt die Verbindung fiir die Nutzung des

Dienstes zum Service Provider her.

2.4 Web Services

Ein Web Service ist nach dem W3C (World Wide Web Consortium) eine
Software-Anwendung, die mit einem Uniform Resource Identifier (URI) eindeutig
identifizierbar ist und deren Schnittstelle als XML-Artefakt definiert, beschrieben und
gefunden werden kann. Ein Web Service unterstiitzt die direkte Interaktion mit
anderen Software-Agenten unter Verwendung XML-basierter Nachrichten durch den

Austausch Gber internetbasierte Protokolle. [2]

Web Services stellen eine Realisierung der Serviceorientierten Architektur dar.

Die Grundlage eines Webservice sind die Standards SOAP (Simple Object Access Protocol)
fur den Datenaustausch und WSDL (Web Service Description Language) fur die
Beschreibung eines Web Service. In Abbildung 2-2 wird zusammen mit dem
Verzeichnisdienst UDDI die Funktionsweise anhand des SOA-Dreiecks veranschaulicht und

in den folgenden Abschnitten detailliert auf sie eingegangen.

Service Broker UDDI

suchen / WSDL WSDL\ verdffentlichen

Service Requester Service Provider

Datenaustausch

Abbildung 2-2 Funktionsweise Web Services anhand des SOA-Dreiecks

2.4.1 SOAP (urspriinglich fiir Simple Object Access Protocol)

SOAP ist ein Netzwerkprotokoll zum Austausch XML-basierter Nachrichten und ein durch
das World Wide Web Consortium(W3C) definierter Standard. Seit der Version 1.2 ist SOAP
offiziell keine Abkiirzung von, Simple Object Access Protocol” mehr, da es nicht nur dem
Zugriff auf Objekte dient. SOAP definiert ein Nachrichtenformat, mit dem Informationen
unabhdngig vom verwendeten DatenUlbertragungsprotokoll, am haufigsten tber HTTP

und TCP, versendet werden.

Eine minimale SOAP-Nachricht besteht aus einem Envelope-Element, in dem der
Namensraum(engl. namespace) festgelegt wird. Es enthalt ein Body-Element und ein
optionales Header-Element. In diesem kénnen Meta-Informationen, beispielsweise zur
Authentifizierung, untergebracht werden. Im Body-Element kénnen die zu Gbertragenden

Informationen und Anweisungen fiir einen entfernten Prozeduraufruf stehen.

<?xml version="1.0"7?>

<s:Envelope xmlns:s="http://www.w3.0rg/2003/05/soap-envelope">
<s:Header> </s:Header>
<s:Body> </s:Body>

</s:Envelope>

Listing 2-4-1: Struktur eines SOAP-Nachricht

2.4.2 WSDL (Web Service Definition Language)

Die Web Services Description Language (WSDL) ist XML-basierte Metasprache, die zur
Beschreibung von Web Services dient und unabhéangig von Plattform,
Programmiersprache und Protokoll ist. Sie beschreibt die Schnittstelle, Giber die mit dem
Web Service interagiert werden kann, dazu gehéren Operationen sowie deren Parameter

und Rickgabewerte.

<wsdl:definitions name="... " targetNamespace="...">
<wsdl:types>
<xsd:schema />

</wsdl:types>

<wsdl:message name="...">

<part name="..." element="..." type="..."/>

</wsdl:message>

<wsdl:portType name="...">
<wsdl:operation name="...">
<wsdl:input name="..." message="..."></wsdl:input>
<wsdl:output name=".." message="..."></wsdl:output>

</wsdl:operation>
</wsdl:portType>
<wsdl:binding name="..." type="...">*
<wsdl:operation name="...>
<wsdl:input> </wsdl:input>
<wsdl:output> </wsdl:output>
</wsdl:operation>
</wsdl:binding>
<wsdl:service name="nmtoken">
<wsdl:port name="nmtoken" binding="qname"></wsdl:port>

</wsdl:service>

</wsdl:definitions>

Listing 2-4-2: Struktur einer WSDL-Datei

Web Services werden in WSDL mit folgenden Elemente definiert ([3],[4]):

Types (Datentypen) Definition von Datentypen, die fiir den Austausch der

Nachrichten (messages) verwendet werden.

Message Abstrakte Definitionen der tibertragenen Daten, die aus mehreren

logischen Teilen bestehen kénnen.

* Operation Eine abstrakte Beschreibung einer Operation, des Services. Sie enthalt
Eingangs- und Ausgangsnachrichten bzw. Fehlermeldungen bei einem

fehlgeschlagene Operationsaufruf.

* Port Type Stellt eine abstrakte Beschreibung der Schnittstellen des Web Services
aus Operationen dar. Jede Operation erhalt dabei einen eindeutigen Namen und
unterstiitzt eines der vier Nachrichtenaustauschmuster:

1) One-way: Der Client sendet einen Request an den Service.

2) Request-Response: Der Service bekommt einen Request vom Client und

sendet eine Antwort zurtick.

3) Solicit-Response: Der Service sendet eine Message an den Client und

erwartet eine Antwort.

4) Notification: Der Service sendet eine Output-Message und bekommt keine

Antwort.

* Binding Bestimmt das Protokoll und Datenformat fiir einen Port Type , wie

SOAP/HTTP

* Port Legt fiir jedes Binding eine bestimmte Adresse fest. Durch sie ist der Service

von auf3en erreichbar.
* Service Eine Sammlung von verwandten Ports.
Hier wurde auf WSDL 1.1 eingegangen, es liegt aber bereits die Version 2.0 vor, die einige

Anderungen mit sich bringt. Die Anderungen der WSDL 2.0 Spezifikation kénnen auf der
Website des W3C [10] nachgelesen werden.

10

2.4.3 UDDI (Universial Description Discovery and Integration)

Der Vollstandigkeit halber ist noch UDDI zu erwahnen, ein Verzeichnisdienst zur
Registrierung von Web Services, der das dynamische Finden des Web Service durch den

Konsumenten ermdglicht. UDDI hat sich jedoch nie 6ffentlich durchgesetzt.

2.5 WS-Business Process Execution Language (BPEL)

Die Web Services Business Process Execution Language (kurz: BPEL) ist eine XML-basierte
Sprache, die es ermdglicht, Geschaftsprozessen zu beschreiben. Sie ist aus der
blockstrukturierten Sprache XLANG von Microsoft und der Graph-basierten Web Services
Flow Language (WSFL) von IBM entstanden. Das Prozessmodel WS-BPEL baut auf das von
WSDL definierte Service-Modell auf.

BPEL unterscheidet zwei Arten von Geschaftsprozessen, die Geschaftsprotokolle und die
ausflihrbaren Geschaftsprozesse. Geschaftsprotokolle sind abstrakte
Prozessbeschreibungen, die als Interaktionsmuster fiir die ausfiihrbaren Geschaftsprozesse
dienen. Ein BPEL Prozess besteht aus einem Prozess-Interface und einem Prozess-Schema.
Das Prozess-Schema ist in WSDL formuliert, da jeder BPEL-Prozess selbst einen Webservice

darstellt. [6] Die Struktur eines Prozess-Schemas ist in Listing 2.3 zu sehen.

< process name ="Prozessname" >
<import>...</import>
< partnerLinks >.. </ partnerLinks >
<variables >.. </ variables >
< correlationSets >.. </ correlationSets >

< faultHandlers >.. </ faultHandlers >

11

< compensationHandler >.. </ compensationHandler >
< eventHandlers >.. </ eventHandlers >

Aktivitaten

</ process >

Listing 2-5-0: Struktur eines BPEL-Prozesses

Im Folgenden werden die wichtigsten in einem BPEL-Dokument verwendeten

Sprachelemente erlautert:

Prozess (process) Das Wurzelelement jedes BPEL-Dokuments. Uber das

+~name”-Attribut wird der Name des Geschaftsprozesses angegeben.

Dokumentenreferenzen (import) Referenzieren von externe Ressourcen wie z.B.

XML Schemata oder WSDL Definitionen.

Verbindungen zu Partnerprozessen (partnerLinks) Dienste mit denen der BPEL-
Prozess interagiert. Das kdnnen Services, die vom Prozess aufgerufen werden oder

die den Prozess aufrufen, sein.

<partnerLinks>
<partnerLink name=".." partnerLinkType="..."
myRole="..." partnerRole="..." />
</partnerLinks>

Variablen (variable) Definition von Variablen eines bestimmten Typs, die den

Aktivitaten und Diensten zum Austausch von Informationen dienen.

12

<variables>
<variable name="..." messageType="..."
type="..." element="..." />

</variables>

* Korrelationsmengen (correlationSet) Da ein BPEL-Prozess in mehreren Instanzen
ausgefiihrt werden kann und sich diese in unterschiedlichen Zustanden befinden
kdnnen, wird mit Korrelationsmengen die Zuordnung von Antwortnachrichten

ermdoglicht.

<correlationSets>

<correlationSet name="..." properties="..." />

</correlationSets>

* Fehlerbehandlungen (faultHandler) Beim Auftreten von Fehlern wahrend der
Ausfiihrung eines BPEL-Prozesses kdnnen diese mit faultHandlers behandelt

werden.

* Kompensationsroutinen (compensationHandler) Umkehroperationen und

Operationen, die in besonderen Fallen durchgefiihrt werden muissen.

* Ergebnisbehandlungen (eventHandler) Die Steuerung eines Prozesses wird durch

Events erweitert.

Das Herzstlick eines Prozesses bilden die Aktivitaten (activities), von denen, im Gegensatz

zu den andere Elementen, mindestens ein Element in einem Prozess vorhanden sein muss.

13

Aktivitaten werden durch Web Services implementiert. Es wird zwischen einfachen(basic
activities) und strukturierten Aktivitaten(structured activities) unterschieden.
Einfache Aktivitaten sind die grundlegenden Aktivitaten, die nicht aus anderen Aktivitaten

aufgebaut sind:

* assign Verandern des Inhalts einer Variablen.

* invoke Aufruf eines anderen Web Services.

* receive Warten auf einen eingehenden Client Request.

* reply Sendet eine Antwort zum erhaltenen Client Request.

* throw Explizites Signalisieren eines Fehlers.

* wait Bis zu einem Zeitpunkt oder fiir eine Zeitspanne warten.

* empty Nichts tun.

Strukturierte Aktivitaten lassen die rekursive Komposition von komplexen Prozessen zu

und steuern den Ablauf eines Prozesses [5]:

* sequence Alle Kind-Aktivitaten werden ihrer Reihenfolge nach abgearbeitet.

* while Solange eine Bedingung erfllt ist, werden die Kind-Aktivitaten ausgefihrt.

* switch Bedingte Ausfiihrung von Kind-Aktivitaten.

* flow Die Kind-Aktivitaten konnen parallel oder in beliebiger Reihenfolge ausgefiihrt

werden. Dabei werden Kontrollabhdangigkeiten durch Links angegeben.

* pick Auswahl von Alternativen aufgrund externer Ereignisse.

14

Scopes erlauben es, mehrere Aktivitaten zu biindeln und erméglichen die Steuerung von
globaler und lokaler Sichtbarkeit. Sie konnen Variablen, faultHandler,

compensationHandler und eventHandler enthalten.

15

3 Transaction Flow Compiler

Compilation Unit Model

Navigator —» Cache Cache

v v
Compilation Units | ‘ BT Datenba@

—» Java Bytecode

Compilation Unit
Compiler

|

Java Quellcode |le—

Compilation Unit
Generator

|

BPEL

Abbildung 3-1 Architektur des Transaction Flow Compilers

16

In Abbildung 3-1 ist die schematische Architektur des Transaction Flow Compilers und ihr

Zusammenspiel mit anderen Komponenten dargestellt.

Der Flow Compiler besteht aus drei Hauptkomponenten. Dem Compilation Unit
Generator, der aus BPEL Java-Klassen beziehungsweise Java-Quellcode erzeugt, dem
Compilation Unit Compiler, der den erzeugten oder direkt eingelesenen Quellcode in
Bytecode umwandelt und dem Compilation Unit Cache, der fiir einen mdglichst schnellen

Zugriff und die Ausfiihrung der Compilation Units zustandig ist.

Das Einlesen neuer Prozessmodelle ist in Abbildung 3-1 grau mit einer roten Umrandung
hervorgehoben. Die Compilation Unit Generator Komponente des Flow Compilers
generiert aus BPEL-Dateien Java Quellcode bzw. Klassen(Compilation Units).

AuBerdem wird als weitere Moglichkeit angeboten, die Prozessmodelle direkt als
Java-Quellcode einzulesen.

Die weitere Verarbeitung des direkt eingelesene oder vom Compilation Unit Generator
erzeugten Java-Quellcodes ist die Aufgabe des Compilation Unit Compilers, der in Kapitel
3.4 detailliert beschrieben ist. Er wandelt die Compilation Units, deren Quellcode als String
Ubergeben wird, in Bytecode um. Der Bytecode wird fiir die spatere Verwendung
zusammen mit dem generierten Java-Quellcode in der Datenbank abgelegt.

Die Ausfiihrung eines Prozessmodells wird, nachdem es mit Hilfe des Compilation Unit
Generators und Compilation Unit Compilers eingelesen wurde, tiber den Navigator
angestof3en. Dieser steuert die Ausfiihrung des Prozessmodells. Er ruft den Compilation
Unit Cache(siehe Kapitel 3.6) auf, der schon verwendete Instanzen der Compilation Units in
einer Hashtabelle zwischenspeichert. Existiert zu einem Prozessmodell, dessen ID der
Navigator beim Methodenaufruf tibergibt, noch keine Compilation Unit Instanz im Cache,
muss diese erst aus dem Bytecode der entsprechenden generierten Klasse, der durch den
ModelCache aus der Datenbank geliefert wird, erzeugt werden. Nachdem eine Instanz zu
dem vom Navigator tGibergebenen Prozessmodell existiert, wird diese durch den

Compilation Unit Cache ausgefihrt.

17

3.1 Navigator

Die Aufgabe des Navigators ist die Steuerung der Ausflihrung der Prozessmodelle. Er
delegiert die Ausflihrung der Prozessmodelle, bzw. der aus den Prozessmodellen vom
Compilation Unit Generator generierten Klassen an den Compilation Unit Cache.

Alle fur die Ausfiihrung notigen Informationen Ubergibt der Navigator dem Compilation

Unit Cache mit einem Objekt des Typs Compilation Unit Execution Context(Kapitel 3.5).

3.2 ModelCache und ModellLoader

Mit der ModelCache- bzw. ModelLoader-Klasse wird vom Compilation Unit Cache auf den
vom Compilation Unit Compiler generierte Bytecode zugegriffen, der nach seiner
Erzeugung in der Datenbank abgelegt wurde. Der Modelcache ermoglicht einen Zugriff
auf Objekte, die Prozessmodelle abbilden. Wird ein solches Objekt mit der
getProcessModel-Methode des ModelCaches tber die entsprechende Prozessmodell-ID
angefordert, werden ,wenn es nicht bereits in der Hashtabelle des Caches abgelegt ist, die
notigen Informationen vom ModelLoader von der Datenbank abgefragt, ein neues Objekt
mit ihnen erstellt, dieses im ModelCache hinterlegt und zuriickgegeben. Die vom
Compilation Unit Cache verwendete loadMFC-Methode ermdéglicht den Zugriff auf den
Bytecode der fiir das Prozessmodel generierten Klasse, der in den Prozessmodel-Objekten

hinterlegt ist.

18

3.3 Compilation Units

Die Compilation Units sind vom Compilation Unit Generator aus BPEL generierte Klassen,
die Prozessmodelle abbilden. Der Klassenname wird dabei, um Namenskonflikte zu
vermeiden, durch den Namen des Prozessmodells festgelegt. Beim Erzeugen einer Instanz
wird dem Konstruktor ein Objekt der Compilation Unit Execution Context Klasse
Ubergeben, das alle bendtigten Informationen fiir die Ausfiihrung enthalt.

Jede Compilation Unit stellt eine run-Methode bereit, mit der ihre Ausfiihrung gestartet
wird. Im Fall einer Transaktion erwartet diese als Ubergabeparameter noch eine

Transaktions-ID.

3.4 Compilation Unit Compiler

Java Quellcode

l

Compilation Unit
Compiler

l

Java Bytecode

Abbildung 3-2 Compilation Unit Compiler

19

Die Aufgabe des Compilation Unit Compilers ist es, den vom Compilation Unit Generator
generierten Java-Quellcode, der als String Gbergeben wird, in Java-Bytecode
umzuwandeln und diesen als Bytearray zurtickzugeben.

Da, wie in den Grundlagen schon beschrieben, die bei der Stuttgarter Workflow Maschine
eingesetzte Laufzeitumgebung Websphere Application Server(WAS) 7 nur Java EE 5
unterstutzt, ist es nicht moglich, die Kompilierung mit der in Java EE 6 neu hinzugefligten
Compiler API zu realisieren. Da der WAS 8 demnachst den Beta-Status verlasst und Java EE
6 unterstitzt, wird im zweiten Teil dieses Kapitels zusatzlich eine Realisierung mit der

Compiler API gezeigt.

Bei der Umsetzung ohne Java EE 6 Compiler APl wird in der
CompilationUnitCompiler-Klasse mit den bereitgestellten Methoden des
com.sun.tools.javac-Pakets, das Bestandteil des Java Development Kits ist, auf den
primdren Java-Compiler(javac) zugegriffen. Da es hierbei keine einfach Mdglichkeit gibt,
den Java-Quellcode als String direkt in den Speicher als Bytecode zu kompilieren, wird eine
temporadre Java-Quellcode-Datei(.java) angelegt, in der der String gespeichert wird(Listing
3-4-0, Zeile 1/2). Diese wird mit der compile-Methode der com.sun.tools.javac.Main-Klasse

in Bytecode bzw. eine .class-Datei kompiliert.

Die compile-Methode erwartet als Ubergabeparameter, wie in Zeile 6 zu sehen ist, ein
Array mit Compilerargumenten, das im einfachsten Fall nur den Pfad der Java-Quellcode
Datei enthalt, und ein PrintWriter, der die Ausgaben des Compilers in einem String

speichert (siehe Zeile 4/5).

1: public byte[] compile (String source, String className)
throws [0Exception, ClassNotFoundException {
2: tempClassDir = new File(tempDir.getAbsolutePath() + File.separator +

className.replace('.", File.separatorChar));

20

10:

11:
12:

13:

14:
15:}

writeTempfile(source, tempClassDir.getAbsolutePath() + ".java");

StringWriter compilerMessage = new StringWriter();

PrintWriter compilerMessageWriter = new PrintWriter(compilerMessage);

int exitCode = Main.compile(getCompilerArguments(
tempClassDir.getAbsolutePath() +".java"), compilerMessageWriter);

compilerMessageWriter.close();
if (exitCode !'=0) {

throw new CompilationUnitCompilerException(

exitCode + "Message: " + compilerMessage.toString());

File file = new File(tempClassDir.getAbsolutePath() + ".java");

file.delete();

byte[] classBytes = getByteArrayFromClass(
tempClassDir.getAbsolutePath() + ".class");

return classBytes;

Listing 3-4-0: compile-Methode der ,Compilation Unit Compiler“-Klasse

Mittels der getByteArrayFromClass-Methode in Listing 3-4-1 wird der in der .class-Datei

erzeugte Bytecode in ein Bytearray gelesen und an den Aufrufer zurlickgegeben. Die

beiden temporar erzeugten Dateien werden am Ende der Methode wieder gel6scht.

21

private byte[] getByteArrayFromClass (String classFilePath) throws IOException,
ClassNotFoundException {

try {

InputStream inputStream = new FileInputStream(classFilePath);

byte[] buf = new byte[8192];
ByteArrayOutputStream outputStream = new
ByteArrayOutputStream(buf.length);
int count;
while ((count = inputStream.read(buf, 0, buf.length)) > 0) {
outputStream.write(buf, 0, count);
}
outputStream.flush();
outputStream.close();

inputStream.close();

File file = new File(classFilePath);
file.delete();

return outputStream.toByteArray();

}
catch (FileNotFoundException exception)
{
throw new CompilationUnitCompilerException("Could not load .class
file");
}
}

Listing 3-4-1: getByteArrayFromClass-Methode der ,Compilation Unit Compiler”-Klasse

22

Mit der Java EE 6 Compiler APl ist eine wesentlich elegantere und effizientere Umsetzung
des Compilation Unit Compilers moglich. Im Gegensatz zu der davor vorgestellten
Realisierung wird ohne Erstellung temporarer Dateien ein Java-Quellcode in Form eines
Strings direkt in den Speicher kompiliert.

In Listing 3-4-2 wird die compile-Methode mit Verwendung der Compiler API gezeigt.

In Zeile 2 wird durch die getSystemJavaCompiler()-Methode der ToolProvider-Klasse der
Zugriff auf den Compiler liber eine zurlickgegebene Instanz vom Typ JavaCompiler

ermdoglicht.

1: public byte[] compile (String source, String className) {
2: JavaCompiler compiler = ToolProvider.getSystem]JavaCompiler();
3: JavaFileManager fileManager = new

ClassFileManager(compiler.getStandardFileManager(null, null, null));

4: List<]JavaFileObject> jfiles = new ArrayList<JavaFileObject>();

5: jfiles.add(new CharSequence]avaFileObject(className, source));

6: compiler.getTask(null, fileManager, null, null, null, jfiles).call();

7: byte[] classBytes = ((ClassFileManager)fileManager). jclassObject.getBytes();
8: return classBytes;

Listing 3-4-2: compile-Methode der ,Compilation Unit Compiler”-Klasse mit Java EE 6 Compiler API

Der Kompiliervorgang wird mit der call-Methode der CompilationTask-Instanz gestartet
(Listing 3-4-2, Zeile 6), die Uber die getTask-Methode des JavaCompiler-Objekts geliefert
wird. Der getTask-Methode werden als Ubergabeparameter ein Objekt des Typs
ClassFileManager (Listing 3-4-3) Gibergeben, durch das festgelegt wird, wohin der erzeugte

Bytecode geschrieben wird.

23

public class ClassFileManager extends Forwarding]JavaFileManager<JavaFileManager>

{

public JavaClassObiject jclassObject;

public ClassFileManager(Standard]avaFileManager standardManager) {

super(standardManager);

@OQOverride
public JavaFileObject get]JavaFileForOutput(Location location,
String className, Kind kind, FileObject sibling) throws [OException {
jclassObject = new JavaClassObject(className, kind);

return jclassObject;

}

Listing 3-4-3: Auszug ClassFileManager-Klasse

In unserem Fall wird er in einer JavaClassObject-Instanz hinterlegt. Durch die
getBytes-Methode der JavaClassObject-Klasse(Listing 3-4-4) wird dieser in Form eines

Bytearray zurlickgeliefert.

24

public class JavaClassObject extends SimpleJavaFileObject {

protected final ByteArrayOutputStream bos = new ByteArrayOutputStream();

public JavaClassObject(String name, Kind kind) {
super(URI.create("string:///" + name.replace('.","'/")

+ kind.extension), kind);

public byte[] getBytes() {

return bos.toByteArray();

@OQOverride
public OutputStream openOutputStream() throws IOException {

return bos;

Listing 3-4-4: JavaClassObject-Klasse

AuBerdem erwartet die getTask-Methode als Ubergabeparameter den zu kompilierenden
Java-Quellcode, der in einem Objekt des Typs CharSequencelavaFileObject(Lisitng 3-4-5)
als String hinterlegt ist. Da mit einem CompilationTask auch Quellcodes mehrerer Klassen
auf einmal kompiliert werden kénnen, wird die CharSequenceJavaFileObject-Instanz in

einer ArrayList Ubergeben.

25

public class CharSequence]avaFileObject extends SimpleJavaFileObject {

private CharSequence content;

public CharSequence]avaFileObject(String className, CharSequence content) {
super(URI.create("string:///" + className.replace(".’, '/")
+ Kind.SOURCE.extension), Kind.SOURCE);

this.content = content;

@OQOverride
public CharSequence getCharContent(boolean ignoreEncodingErrors) {

return content;

Listing 3-4-5 CharSequencelJavaFileObject-Klasse

3.5 Compilation Unit Execution Context

Mit der CompilationUnitExecutionContext —Klasse bzw. Instanzen dieser Klasse, werden
alle Informationen bereitgestellt, die flr das Ausfiihren eines Objekts einer fiir ein
Prozessmodell generierten Klasse im Compilation Unit Cache nétig sind.

Der Compilation Unit Execution Context ermdglicht Zugriffe auf den Instanz- und
Model-Cache und enthalt Informationen wie die IDs des Prozessmodells, der
Prozessinstanz und der Aktivitat. AuBerdem wird mit einem Objekt dieser Klasse die

Eingabe fiir die Anfrage libergeben und deren Riickgabe gespeichert.

26

3.6 Compilation Unit Cache

Compilation Unit

Navigator —» Cache

Model
Cache

Compilation Units

BT Datenbank

Abbildung 3-3 Compilation Unit Cache

Der Compilation Unit Cache dient dazu, zeitaufwendige Datenbankzugriffe zu vermeiden,

in dem Instanzen der generierten Klassen nach ihrer Erzeugung in einer Hashtabelle

abgelegt werden und somit wiederverwendet werden kénnen. Zusatzlich bietet er

Methoden zur Ausfiihrung dieser Instanzen an. Abbildung 3-3 zeigt das schematische

Zusammenspiel der einzelnen Komponenten.

Die ComilationUnitCache-Klasse definiert drei Methoden, deren Methodenriimpfe in

Listing 3-6-0 aufgefiihrt werden.

public void run (CompilationUnitExecutionContext cuExecutionContext)..

public void run (CompilationUnitExecutionContext cuExecutionContext, short TXID) ...

27

public Object getInstaceOfClass(CompilationUnitExecutionContext cuExecutionContext)

Listing 3-6-0: Methodenriimpfe der ,Compilation Unit Cache”-Klasse

Ein Ubergabeparameter der drei Methoden ist vom Typ CompilationUnitExecutionContext.
In einem Objekt dieses Typs ist unter anderem die ID des Prozessmodells gespeichert.
Anhand dieser ID sucht die getinstaceOfClass-Methode in der Hashtabelle des
Compilation Unit Cache nach einer bereits im Cache vorhandenen Instanz der fiir das
Prozessmodell generierten Klasse, die beim Erzeugen mit der Prozessmodell ID als
Schlissel hinterlegt wurde. Wird diese gefunden, kann sie direkt zurlickgegeben werden
(Listing 3-6-1, Zeile 4/5). Sollte noch keine Instanz in der Hashtabelle vorliegen, wird der
Bytecode der fiir das Prozessmodell generierten Klasse vom Modelcache (siehe Kapitel 3.2)
geholt. Aus diesem wird mit der CompilationUnitinstaceCreator-Klasse ein Objekt erzeugt,

das in der Hashtabelle gespeichert und zuriickgegeben wird (Listing 3-6-1, Zeile 7/8).

1: public Object getInstaceOfClass(

CompilationUnitExecutionContext cuExecutionContext){

2: String PMID = cuExecutionContext.PMID;

3: Objectinstance = null;

4: if (cacheMap.containsKey(PMID)) {

5: instance = cacheMap.get(PMID);

6: }else{

7: instance = InstanceCreator.getInstanceFromByteArray(
modelCache.loadMFC(PMID),
new Object[]{cuExecutionContext});

8: add(PMID, instance);

9: }

10: return instance;

28

11:}

Listing 3-6-1: getinstanceOfClass-Methode der ,Compilation Unit Cache”-Klasse

Die CompilationUnitInstaceCreator-Klasse stellt drei statische Methoden bereit (Listing
3-6-2). Die getInstanceFromByteArray Methoden ermdglichen es, aus einer Klasse in
Bytecode Objekte mit und ohne Ubergabeparameter zu erzeugen, die dem Aufrufer
zuriickgegeben werden. Diese verwenden die getClassNameFromByteArray Methode, um
den Namen der Klasse bzw. Typ des zu erzeugenden Objekts aus dem Bytecode zu lesen
und die ByteArrayClassLoader-Klasse, um diese zu laden (Listing 3-6-3, Zeile 2/3). Nach
dem Laden der Klasse wird das Objekt in Zeile 8 erstellt. Die ByteArrayClassLoader-Klasse
erweitert den SecureClassLoader des java.security Paketes fur die Verwendung mit

Bytearrays.

public static Object getInstanceFromByteArray (byte[] b) ...
public static Object getinstanceFromByteArray (byte[] b, Object[] initargs) ...

public static String getClassNameFromByteArray(byte[] b) ...

Listing 3-6-2: Methodenriimpfe der CompilationUnitlntanceCreator-Klasse

1: public static Object getinstanceFromByteArray (byte[] b, Object[] initargs) ... {
2: ByteArrayClassLoader classLoader = new

ByteArrayClassLoader(b,Thread.currentThread().getContextClassLoader());

w

Class<?> cls = classLoader.loadClass(getClassNameFromByteArray(b));

o

Class<?>[] acParams = new Class[initargs.length];

29

5: for (inti=0;1i < initargs.length; i++) {

6: acParamsli] = initargs[i].getClass();

8: Constructor<?> cnst = cls.getConstructor(acParams);

9: Objectinstance = cnst.newInstance(initargs);

10: return instance;

Listing 3-6-3: getinstanceFromByteArray-Methode der CompilationUnitIntanceCreator-Klasse

Die beiden run-Methoden der ComilationUnitCache-Klasse geben keine Instanz des durch
den CompilationUnitExecutionContext festgelegten Prozessmodells zurtick, sondern rufen
eine run-Methode des Objekts der generierten Klasse auf, die sie mit der
getinstaceOfClass—-Methode geliefert bekommen. Die zweite run-Methode der
ComilationUnitCache-Klasse, bei der als zweiter Ubergabeparameter eine Transaktions-ID
erwartet wird, ist flr die Ausflihrung von Transactionflows gedacht. Diese ist in Listing
3-6-4 abgebildet. Eine Instanz zu der im Compilation Unit Execution Context libergebenen
Prozessmodell-ID wird in Zeile 2 von der getinstaceOfClass-Methode geliefert. In Zeile 5

und 6 wird mittels Reflexion die run-Methode dieser Instanz ausgefihrt.

1: public void run (CompilationUnitExecutionContext cuExecutionContext,
short TXID) {
2: Object instance = getInstaceOfClass(cuExecutionContext);

3: if (instance != null) {

30

Method method = instance.getClass().getMethod("run”,
new Class[]|{short.class});

method.invoke(instance, new Object[]{TXID});

Listing 3-6-4: run-Methode der CompilationUnitCache-Klasse

31

4 Serialisierung von Transactionflows

Flow Aktivitaten gehoren wie in Kapitel 2.4 beschrieben zu der Gruppe der strukturellen
Aktivitaten. In ihnen kdnnen sowohl einfache als auch strukturierte Aktivitaten enthalten
sein. Diese werden in der Flow Aktivitat parallel und nicht wie in einer Sequence-Aktivitat
sequentiell ausgefiihrt.

Mit Hilfe von Links ist es moglich, Kontrollabhangigkeiten zwischen je zwei Aktivitaten
festzulegen und somit nebenlaufige Aktivitaten zu synchronisieren. In jedem Link ist eine
Aktivitat als Quelle(source Jund die andere als Ziel(target) definiert. Alle Links in einem
Flow haben einen eindeutigen Status, der die Werte ,true”, ,false” oder ,undefined”
annehmen kann.

Der Status kann durch eine Transition Condition (Ubergangsbedingung) gedndert werden,
die nach der erfolgreichen Ausfiihrung von der Quellaktivitat ausgewertet wird. Wenn
keine Ubergangsbedingung vorhanden ist, hat der Status immer den Wert ,true”.

Anhand einer Join Condition einer Aktivitat, die das Ziel eines oder mehrerer Links ist, wird
anhand des Status der eingehenden Links entschieden, ob die Aktivitat ausgefiihrt wird.
Im impliziten Fall ist die Join Condition eine ODER-Verkniipfung, d.h. mindestens ein Status
eines eingehenden Links muss ,true” sein, damit die Aktivitat ausgefiihrt wird.

Wird eine Aktivitat aufgrund einer zu ,false” ausgewerteten Join Condition nicht
ausgefiihrt, kann es, da ausgehende Links in der weiteren Ausfiihrung des Prozesses
eventuell benétigt werden, zu einer Verklemmung des Prozesses kommen. Diese
Blockierung des Kontrollflusses wird mit der Dead-Path-Elimination (DPE) verhindert. Sie
wird durch Setzen der suppressJoinFailure-Eigenschaft auf ,yes” aktiviert. Wenn die
suppressJoinFailure-Eigenschaft den Standartwert ,no” hat, wird ein Fehler geworfen, der
durch einen faultHandler abgefangen werden kann. Die DPE, die auch in einem nicht
abgearbeiteten Zweig einer if — oder pick-Aktivitat aufgerufen wird, verhindert einen
Deadlock, indem sie die ausgehenden Links aller auf dem Pfad befindlicher Aktivitaten, die

nicht mehr ausgefiihrt werden kénnen, auf ,false” setzt.

32

Da Java-EE die Aktivitaten in einem einzelnen Thread ausfiihrt, wird keine parallele
Abarbeitung der Aktivitaten unterstiitzt. Daher kdnnen in einem Flow Aktivitaten nicht
parallel, sondern mussen sequentiell ausgefiihrt werden. In Abbildung 4-0 ist schematisch

ein Beispiel fiir einen parallelen Flow und seine sequentielle Ausfiihrung abgebildet.

33

ai=s

Hy

B Transition Condition

b

-—» Link

==» Ausfilhrungsreihenfolge

s

Abbildung 4-1 Serialisiert Ausfiihrung eines Flows

34

Aktivitaten werden in der Abbildung durch Kreise reprasentiert, Links und ihre Transition
Conditions durch durchgezogene Pfeile mit Kastchen, und die gestrichelten Pfeile

veranschaulichen die Reihenfolge der Ausfiihrung.

Da die Aktivitaten entlang eines Pfades nicht mehr direkt hintereinander ausgefiihrt
werden, sondern auch die Ausflihrung einer Aktivitaten eines anderen Pfades dazwischen
liegen kann (siehe Beispiel in Abbildung 4-1), muss die Dead-Path-Elimination bei der
sequentiellen Ausfiihrung angepasst werden.

Ein Algorithmus flr die DPE in einem serialisierten Flow ist in Listing 4-0-0 als Pseudo-Code
zu sehen. Anstatt wie bei der DPE mit paralleler Verarbeitung den Status aller Links eines
Pfades auf ,false” zu setzten bis eine Join Condition zu ,true” ausgewertet werden kann,
wird dies schrittweise sobald die jeweillige Quellaktivitat eines Links in der serialisierten
Flow ausgefiihrt werden wiirde gemacht. Es wird also, wie es bei der parallelen
Ausfuihrung auch Ublich ist, die Join Condition mit den Status der eingehenden Links
ausgewertet. Wird sie zu ,false”, so wird die Aktivitat nicht ausgefiihrt, zusatzlich wird aber
noch der Status aller ausgehenden Links der Aktivitat auf ,false” gesetzt (Listing 4-0-0,
Zeile 9).

Das Setzen der ausgehenden Links, auch wenn die Aktivitat nicht ausgefiihrt wird, und das
vorherige Prifen realisiert also das Durchlaufen eines Pfades der DPE.

Im Algorithmus werden die Aktivitaten aufgrund der Ubersichtlichkeit in einem Array

hinterlegt, durch das auch die Reihenfolge der Abarbeitung bestimmt ist.

1: Activity[] activities = [Aktivitaten in der durch die Serialisierung bestimmten
Reihenfolge] ;
2: for (inti=1;i< activities.length; i ++) {
3: If (activities[i].AnzahlEinkommenderLinks > 0 &&
activities[i].JoinConditionEinkommenenLinks) {
4: activities[i].run;

If (activities[i].FehlerBeiAusfiihrung) {

35

@

10:
11:
12:
13:
14:
15:
16:

Setzte alle ausgehenden Links der Aktivitat activities[i] auf ,false®;

}

} else if (activities[i].AnzahlEinkommenderLinks > 0 &&
lactivities[i].JoinConditionEinkommenenLinks) {
Setzte alle ausgehenden Links von activities[i] auf false;
}else{
activities[i].run;

If (activities[i].FehlerBeiAusfiihrung) {

Setzte alle ausgehenden Links der Aktivitat activities[i] auf ,false®;

Listing 4-0-0: Dead Path Elimination in serialisiertem Flow

36

5 Zusammenfassung, Bewertung und Ausblick

Die Motivation dieser Diplomarbeit bestand darin, die Performance der Ausfiihrung von
Prozessmodellen, die in BPEL spezifiziert sind, durch die Entwicklung des Transaction Flow

Compilers zu verbessern.

Das bisherige Navigieren durch ein Prozessmodell bei dessen Ausfiihrung wurde durch
das Ausfiihren vorgenerierter Klassen ersetzt. Mit diesem neuen Ansatz sollte ein
wesentlich bessere Performance garantiert werden.

Benchmarks des neuen und alten Ansatzes zeigen jedoch, dass der Leistungszuwachs
weitaus nicht so groB ist wie erhofft und sich die Entwicklung aus Sicht der Performance

nicht wirklich ausgezahlt hat.

Zunachst wurde der Compilation Unit Cache und somit die Laufzeitumgebung der spater
einmal vom Compilation Unit Generator erstellten Klassen implementiert und in das

bestehende System integriert.

Der Compilation Unit Compiler, der Java-Quellcode in Bytecode umwandelt, wurde als
nachstes erstellt. Da die Realisierung des Compilation Unit Generators nicht Teil dieser
Arbeit war, wurden die Compilation Units beziehungsweise ihr Java-Quellcode fiir

Testzwecke von Hand erzeugt.

Der nachste Schritt ware die Implementierung des Compilation Unit Compilers.

Wie schon erwdahnt, war dieser jedoch nicht Umfang dieser Diplomarbeit. Es wurde jedoch
ein Algorithmus entwickelt, der die nétige sequentielle Ausfiihrung der Aktivitaten des
Prozessmodells fur die generierten Klassen beschreibt. Dieser wird bei der Erstellung der
Klassen, beziehungsweise bei ihrer spateren Ausfihrung benétigt, da die Aktivitaten durch
Java EE in einem einzelnen Thread ausgefiihrt werden und somit keine, von einem Flow

unterstutzte, parallele Verarbeitung maoglich ist.

37

5.1 Ausblick

Fir die Fertigstellung des Transaction Flow Compilers misste als nachstes der Compilation
Unit Generator erstellt werden.

Ein Performancezuwachs seitens der fur die Ausflihrung zeitlich nicht relevanten
Kompilierung des Java Quellcodes durch den Compilation Unit Cache kdnnte mit einer
Migration auf die bald erscheinende Version 8 des Websphere Application Servers und der
damit zur Verfligung stehenden Compiler API, die Bestandteil von Java EE 6 ist, erzielt
werden. Eine Implementierung des Compilation Unit Compilers mit dieser API, wurde

zusatzlich in 3.4 vorgestellt.

38

6 Literaturverzeichnis

[1] Stefan Schaffer. Enterprise Java mit IBM WebSphere.: J2EE-applikationen effizient
entwickeln. Addison-Wesley Verlag, 2002.

[2] Web Services Description Requirements. http://www.w3.org/TR/ws-desc-reqs/

[3] Web Services Description Language (WSDL) 1.1. http://www.w3.org/TR/wsdl.html

[4] Gustavo Alonso, Fabio Casati,Harumi Kuno, Vijay Machiraju. Web Services: Concepts,

Architectures and Application. Springer Verlag, 2004.

[5] Sanjiva Weerawarana, Francisco Curbera, Frank Leymann, Tony Storey, Donald F.
Ferguson. Web Services Platform Architecture: Soap, WSDL, WS-Policy, WS-Addressing,
WS-Bpel, WS-Reliable Messaging and More. Prentice Hall, 2005

[6] Daniel Liebhart, Guido Schmutz, Marcel Lattmann, Markus Heinisch, Michael Koénings,
Mischa Kolliker, Perry Pakull, Peter Welkenbach. Architecture Blueprints: Ein Leitfaden zur
Konstruktion von Softwaresystemen mit Java Spring, .NET, ADF, Forms und SOA. Carl Hanser

Verlag, 2007.

[7]1 Java programming dynamics.

http://www.ibm.com/developerworks/java/library/j-dyn0429/

[8] Miron Sadziak: Dynamic in-memory compilation

http://www.javablogging.com/dynamic-in-memory-compilation/

[9] David J. Biesack: Create dynamic applications with javax.tools

http://www.ibm.com/developerworks/java/library/j-jcomp/index.html

39

[10] Web Services Description Language (WSDL) Version 2.0
http://www.w3.0rg/TR/wsdI20/

[11] Daniel Liebhart. SOA goes real. Carl Hanser Verlag 2007

40

Erklarung

Hiermit versichere ich, diese Arbeit selbststandig verfasst und nur die angegebenen Quellen
genutzt zu haben.

Unterschrift: (Timo Salm)

Gaufelden, 4.7.2011

41

