Institut fUr Architektur von Anwendungssystemen

Universita Stuttgart
Universitasstral® 38
D-70569 Stuttgart

Diplomarbeit Nr. 3124

Ein Verzeichnisdienst fUr Services

Studiengang:

Prifer:

Betreuer:

begonnen am:

beendet am:

CR-Klassifikation:

und Ressourcen

Hao Jin

Informatik

Jun.-Prof. Dr.-Ing. Dimka Karastoyanova

Dipl.-Inf. Mirko Sonntag

30. September 2010

01. April 2011

H.3.3, H.3.5,D.2.2

Inhaltverzeichnis

1 EINIEITUNG .ot b e 1
IRV (o 1Y L1 o] o IO PP PRTRRRR 1
1.2 AUFQADENSTEITUNG ...t nre e 1
1.3 GHBABIUNG -ttt bbbttt bbbttt e e 2
2 GIUNGIAGEN ..t b bbb bbbt 3
2.1 SO A e ettt et et e te Rt e Re e Rt eRe et et et e ntenreereare s 3
F YT ST Y ot SRR 3
2.3 WWSDLou ittt ettt Rt Reen e ne et et et e ntenaenaenre s 4
220 T R V£ T S SSRP P TRSR 4
2 T 1YL | TSP 14
2.4 SOAP ... ettt e et beeRe et et et et e ntenreareans 15
2.5 WS-POIICY ..ttt bbbt n e 17
FZE T80 R I 1= 1 T3 o] < oSSR 18
2.5.2 POHCY MOTEL ... 18
2.5.3 OPBIALON ...ttt ettt bbbt b bt neenne s 19
2.5 4 NOIMAITOIM ...ttt be e teeneesreenreeneeas 20
2.5.5 KOMPAKLTOIM .o 20
2.5.6 INtersection der POIICIESc.coviiiiiesiee e nne e 22
2.5.7 POlICY AttaChmMENT......ccuiiiiiiiiiieiee e 25
2.6 Web Services ReSOUICEe FramEWOIK.........cccueiieieiieieeiesieseesie e see e sseessae e eneesraesseaneens 31
2.6.1 WV S-RESOUICE.utieiiietiieitie ettt ettt ettt st e e e e s sa e et e srb e e beesbbeebeesneeenbeeanbeereas 31
2.6.2 WS-RESOUICE PrOPEITIESeouviueeieieeitisiesie ettt sttt sttt 32
2.6.3 WS-RESOUICE LITEIIME ...ccviiie et 38
2.7 XMLO _FragMENTOccuviiiieieeieiiie ittt ettt nb et ne e 42
3 KONZEPLE. .. et b ettt n e nne e 47
3L ANDIBLET .t bbbt bbbttt r e 47
3.2 WVED SEIVICE ...ttt bbbt b bbbt b e bt e bbbttt 48
321 WS-BIUNGEL .ttt bbbttt bbb 48
3.2.2 SErVICE METAUALENoviiiiiiiieieie e bbb 50
3.3 DALENDANKEN ...ttt b 52
I B T T @ 1= - U1 o] =1 o USSR PSR 54
3.4.1 Operationen fUr ANDIBLEN........ccviie et enre e 56
3.4.2 Operationen fUr Artefakieccoeiiiiiiie e 59
3.4.3 Operationen fUr DatenbanKenccceoviieiieiicie e 63
3.4.4 Operationen fUr WED SEIVICESccviiieiiie et 70
O [4] o] (= T oL =T 0 T =T o PSS USSSR 75
4.1 ReposSitory Datenbankcoveiiiiiiie e 75
4.2 Die Klassen und MEetNOTENcocviiiiiiiiiieie i 76
4.3 Realierung des REJISIEISEIVICEccviiueiiieiieeie et eitesee e ste e saeste e re e e sreesreenaenreas 86
4.3.1 Implementierung der Operationen fUr Anbieter.........c.coovviieiiiic i, 89
4.3.2 Implementierung der Operationen fUr Artefakte..........ccooviveiiiiiiicie e, 93

4.3.3 Implementierung der Operationen fUr Datenbanken............cccoovveniinieniiiciieieine 98

4.3.4 Implementierung der Operationen fir Web Services........cccoocovviveveiieicniiiiccnn 104
5 Zusammenfassung und AUSDICK ..o 111
LITErAtUNVEIZEICHNIS ...t sb e e 115
LISTINGSVEIZEICHNIS ... bbb 119
ADDIAUNGSVEIZEICNNIS ... 121
ADKUIZUNGSVEIZEICHNIS ...ttt nre e 123
NAIMESPACES ...ttt e et r e st e n e e as e e e re e snn e e nne e sn e e reennn e e nneennneas 125
ETKIEIUND ...t b bbbttt e e 127

1 Einleitung

SOA ist ein besonderer Architekturstil, der lose Kopplung und dynamisches Binding von
Services behandelt. Web Service ist eine Implementierung von SOA. Es ist eine Software
Anwendung, die von anderen Software Anwendungen verwendet werden kann. Die
funktionalen Eigenschaften von Service werden durch WSDL beschrieben, WS-Policy

spezifiziert die nicht-funktionalen Eigenschaften von Service.

1.1 Motivation

Um die Web Services verwenden zu kénen, missen die Service vorher registriert werden,
dann k&inen die Services mit ihren Eigenschaften gesucht, gefunden und ausgewé< werden.
UDDI ist dafUr zusténdig, aber in der Praxis wird kommt es vor, dass UDDI zu
schwergewichtig und zu komplex ist. Es ist deswegen erwinscht, ein neues leichtgewichtiges
Service anzubieten, das die Registrierung und das Suchen von Web Services erm&glichen
kann. Auf®rdem sind die Datenbanken ebenfalls Resources und werden fUr die Ausftnrung
von wissenschaftlichen Anwendungen bendigt. Um die Datenbanken einzusetzen, ist es auch

ndig, die Datenbanken zu registrieren, zu suchen, zu finden und auswé&nlen zu k&inen.

1.2 Aufgabenstellung

Die Aufgabe dieser Arbeit ist ein Konzept und die prototypische Implementierung eines
leichtgewichtigen Verzeichnisdient fUr Services und Resources zu entwickeln. Der
Verzeichnisdienst wird in der Arbeit auch ,,Registerservice* genannt. Das Registerservice ist
fir die Registrierung, das Suchen und die verwaltung von Services, Datenbanken und

Anbieter zusténdig. FUr die Registrierung und das Suchen von Services werden sowohl die
funktionalen Eigenschaften (WSDL) als auch die nicht-funktionale Eigenschaften (WS-Policy)
bericksichtigt. FUr die Registrierung und das Suchen von Datenbanken wird ebenfalls die

Anforderung (Policy) fUr Nutzung der Datenbank beachtet.

1.3 Gliederung

Der weitere Aufbau der Arbeit wird in diesem Abschnitt beschrieben. In Kapitel 2 werden
Grundlagen von Web Services und das Sofware Fragmento vorgestellt, die zum Versténdnis
der Arbeit dienen sollen. Im Kapitel 3 wird das Konzept der Arbeit vorgestellt. In diesem
Kapitel wird beschrieben, welche Funktionalit&en und wie die Funktionalit&en vom Service
angeboten wird. Im Kapitel 4 wird spezifiziert, wie das im Kapitel 3 vorgestellte Konzept

realisiert wird. Schliefdich wird im Kapitel 5 diese Arbeit zusammengefasst.

2 Grundlagen

2.1 SOA

SOA ist die Abkirzung fir Service-Oriented Architecture. Es ein besonderer Architekturstil,
der Lose Kopplung und dynamisches Binding von Services behandelt [1]. Die Prinzipien

k&nnen durch ein Dreieck beschrieben werden.

Fequestor
Bind Find
. Discovery
Senvice Publish | Facility

Abbildung 1: SOA Dreieck
Ein Service-Anbieter kann ein Service publizieren, die von Anderen benutzt werden k&nnen.

Ein Service Nuzter verwendet das Discovery Facility, um die Services zu suchen. Der Nutzer

waélt ein gewtnschtes Service aus und bindet das Service.

2.2 Web Service

Web Service ist eine Implementierung von SOA, ein Web Service ist eine
Software-Anwendung, die von anderen Software-Anwendugen verwendet werden kann. Eine
genauere Definition wird in [3] gegeben:

"A Web service is a software system identified by a URI, whose public interfaces and
bindings are defined and described using XML. Its definition can be discovered by other
software systems. These systems may then interact with the Web service in a manner
prescribed by its definition, using XML based messages conveyed by Internet protocols.”

Ein Web Service wird durch Web Service Description Language (WSDL) und Web Service
Policy beschrieben, WSDL spezifiziert die funktionalen Eigenschaften, die Policy beschreibt

die nicht-funktionalen Eigenschaften von einem Web Service. SOAP definiert das
3

Message-Format und das Message-Verarbeitungsmodel und wird von Web Service zur
Kommunikation verwendet. UDDI ist zusténdig fUr die Registrierung und das Suchen fUr

Web Services.

Fequestor

WsDL UDDI

Abbildung 2: Web Service Dreieck

2.3 WSDL

WSDL ist eine sehr wichtige Grundlage fir Web Service-Anwendung, WSDL ist eine
AbkCrzung fUr Web Service Description Language, durch WSDL k&anen Web Service

auf standardisiertem Weg beschrieben werden [2]. Ein WSDL-Dokument besteht aus zwei
Teilen: einem wiederverwendbaren abstrakten Teil und einem konkretem Teil. Der abstrakte
Teil von WSDL beschreibt das operationale Verhalten von Web Service durch das Auflisten
der hereinkommenden und hinausegehenden Messages von Services. Der konkrete Teil von

WSDL beschreibt, wo und wie auf ein Web Service zugegriffen werden kann [1].

231 WSDL1.1

Definitionen

Types: Definitionen der ndigen Daten Typen
Message: Abstrakte Definition von ausgetauschten Daten
Operation: Abstrakte Aktionen, die durch das Service unterstiizt werden

Port Type: Eine Menge von Operationen , die durch einen Endpoint untersttizt werden

Binding: Concrete Protocol und Daten Format, die verwendet werden, um einen Port Type zu
implementieren.

Port: Einzelnes individuelles Endpoint, das durch eine Netzwerkadresse identifiziert ist,
unterstiizt ein bestimmtes Binding.

Service : Eine Menge von bezogenen Endpoints

Struktur

WSDL1.1 Dokument enth&t normalerweise zwei Gruppen von Definitionen:

ein abstrakten Teil, der spezifiziert, was das Service anbietet und drei Elemente enth&t:
<types>, <message> und <portType>. Ein konkreter Teil, der spezifiziert, wie und wo auf ein
Service zugegriffen werden kann und zus&zlich noch die zwei Elemente <binding> und

<service > enthdt (gezeigt in Abbildung 3).

WSDL 1.1

Abstrakter Teil

Types

Message

FortType

konkreter Teill

Einding

Service

Abbildung 3: WSDL 1.1 Struktur

Definitionen

Das <definitions> Element ist das Wurzelelement eines WSDL-Dokumentes. In dem werden

ein einziges Targetnamespace und alle ndigen Namespaces definiert.
5

Das folgende Beispiel zeigt wie die Namespaces im <definitions> Element definiert werden.
<wsdl:definitions xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
xmlns:tns="http://www.jin.ustutt.da/RegisterService/"
xmlns:da="http://www.jin.ustutt.da/RegisterService/"
xmins:wsdl="http://schemas.xmlsoap.org/wsdl/"
xmlns:xsd="http://www.w3.0rg/2001/XMLSchema"

name="RegisterService" targetNamespace="http://www.jin.ustutt.da/RegisterService/"'>

</wsdl:definitions>
Listing 1: WSDL Element definitions

Types
Die Struktur von <types> Element
<types>

<xsd:schema.../>*
</types>

Listing 2: WSDL Element types [4]
Mit Hilfe vom XML-Schema k&inen die Datentypen im <types> Element definiert werden.

Die Datentypen werden beim Definieren der Messages referenziert. Die definitionen der
Datentypen mit XML Schema werden entweder direkt im <types> Element umschlossen oder
in einer externen Datei gespeichert. In diesem Fall wird die Importanweisung im <types>
Element verwendet, um die Definitionen der Datentypen zu importieren. [2]
Im folgendem Beispiel sind ein komplexer Datentyp ,,authenticateProviderType* und zwei
weitere Elemente, ,,authenticateProviderRequestMessage* und
»authenticateProviderResponseMessage* im <types> Element definiert.
<wsdl:types>
<xsd:schema xmlns:xsd=http://www.w3.0rg/2001/XMLSchema
targetnamespace="http://www.Jjin.ustutt.da/RegisterService/">
<xsd:complexType name="authenticateProviderType">
<xsd:sequence>
<xsd:element name="email" type="xsd:string" />

<xsd:element name="password" type="xsd:string" />

6

</xsd:sequence>
</xsd:complexType>
<xsd:element name="authenticateProviderRequestMessage">
<xsd:complexType>
<xsd:sequence>
<xsd:element name="authenticateProvider"
type="tns:authenticateProviderType" />
</xsd:sequence>
</xsd:complexType>
</xsd:element>
<xsd:element name="authenticateProviderResponseMessage'">
<xsd:complexType>
<xsd:sequence>
<xsd:element name="providerId" type="xsd:long" />
</xsd:sequence>
</xsd:complexType>
</xsd:element>
</xsd:schema>

</wsdl:types>

Listing 3: Beispiel von WSDL Element types
Messages

Die Struktur vom <message> Element:

<message name="nmtoken" >*
<part name = "nmtoken" elment="gname"? type="gname"? />*

</message>
Listing 4: WSDL Element message [4]

Das <Message> Element spezifiziert die Messages, die beim Aufruf einer Opertion von einem
Web Service ausgetauscht werden. Eine Message besteht aus einem oder mehreren Parts.
Parts sind typisiert und spezifiziert alle Parameter von einem RPC. Messsage ist abstrakt, das

konkrete Format wird durch das Binding beschrieben. [6]

7

Im folgenden Beispiel werden zwei <message> Elemente ,,authenticateProviderRequest* und
,authenticateProviderResponse* definiert
<wsdl:message name="authenticateProviderRequest">
<wsdl:part name="parameter"
element="tns:authenticateProviderRequestMessage" />
</wsdl :message>
<wsdl:message name="authenticateProviderResponse">
<wsdl:part name="parameter"
element="tns:authenticateProviderResponseMessage" />

</wsdl :message>

Listing 5: Beispiel vom WSDL Element message

PortTypes

Die Struktur vom <portType> Element
<portType name="nmtoken">
<operation name="nmtoken" parameterOrder="nmtokens“?>*
<input name="nmtoken"? message="gname"/>?
<output name="nmtoken"? message="gname"/>?
<fault name="nmtoken" message="gname"/>*
</operation>

</portType>
Listing 6: WSDL Element portType [4]
Das <portType> Element spezifiziert das Interface eines Web Service und ist eine Menge von

abstrakten Operationen und Messages. Vier Arten von Operationen werden unterstiizt [1]:
e One-Way, ein Message wird zum Service geschickt. Das Service erzeugt kein
Response Message.
o Request-Response, ein Message wird zum Service geschickt. Das Service erzeugt
eine Respons-Message.
« Solicit-Response, ein Service schickt zuerst eine Message und erh&t eine
Response-Message.

« Notification, ein Service schickt eine Message und erhdt keine Response-Message.

8

Im folgenden Beispiel wird eine Request-Response Operation ,,authenticateProvider mit
Input Message ,,tns:authenticateProviderRequest* und Output Message

,.ins:authenticateProviderResponse* im <portType> Element spezifiziert.

<wsdl:portType name="RegisterService">
<wsdl:operation name="authenticateProvider">
<wsdl:input message="tns:authenticateProviderRequest" />
<wsdl:output message="tns:authenticateProviderResponse" />
</wsdl:operation>

</wsdl :portType>

Listing 7: Beispiel vom WSDL Element portType
Bindings
Die Struktur vom <binding> Element:
<binding name="nmtoken" type="gname">
<-- extensibility element ->%*
<operation name="nmtoken">*
<-- extensibility element -->*
<input name="nmtoken"?>?
<-- extensibility element -->%*
</input>
<output name="nmtoken"?>?
<-- extensibility element -->*
</output>
<fault name="nmtoken">*
<-- extensibility element-->*
</fault>
</operation>
</binding>

Listing 8: WSDL Element binding [4]

Das <binding> Element geh&t zum konkreten Teil eines WSDL-Dokumentes, das spezifiziert
auf Service zugegriffen werden kann. WSDL hat selber keine Standardmethode um Messages
darzustellen, WSDL verwendet die Erweiterbarkeit um zu spezifizieren, wie die Messsages

durch die Nutzung von SOAP, HTTP, MIME etc. ausgetauscht werden [1].

SOAP Binding

Das SOAP Binding von WSDL ist eine Erweiterung vom WSDL, es beschreibt, wie eine
SOAP-Message Uber ein Netzwerk tbertragen wird. Ein SOAP Message kann Uber
verschiedene Transportprotokolle wie HTTP, JMS, usw. (bertragen werden. Eine
Binding-Spezifikation ist fUr einen einzelnen Schritt zwischen den Konten gitig, nicht aber
fUr den ganzen Message Path [1]. Meistens wird das HTTP-Binding von SOAP
Anwendungen verwendet.

Die SOAP Web-Methode wird vom HTTP-Binding genutzt, damit es die Anwendungen
ermcylicht, eine Web Methode auszuwdhlen (GET oder POST).

Die Struktur sieht demnach wie folgt aus:

<soap:binding

transport="uri"?

style="rpc | document"?>

Listing 9: Extensibility Element soap binding [6]

Das verwendete Transportprotokoll kann HTTP, SMTP, FTP oder JMS usw. sein und wird
durch entsprechende URI dargestellt.
Es werden zwei Styles im SOAP Binding definiert:
o Dokument Style, alle Parts vom <message> Element werden als Kinder des <Body>
Elements in SOAP Envelope eingefit.
o RPC Style, alle Parts vom <message> Element werden in einem &f&ren Element
eingepackt und das einzelne eingepackte Element wird als einziges Kind von <body>

Element in SOAP Envelope eingefUt.

10

SOAP Operation
<soap:operation
soapAction="uri"?

style="rpc | document"?>

Listing 10: Extensibility Element soap binding [6]

Das <soap:operation> Element definiert ein Action-URI, das die Operation eindeutig
identifizieren kann. Im Element werden zwei Styles von Operationen definiert:
« Dokument Style, die Messages sind Dokumente
e RPC Style, die Messages sind Parameter
SOAP Body
<soap:body
parts="nmtokens"?
use="literal | encoded"?
encodingStyle="uri-1list"?

namespace="uri"?>

Listing 11: Extensibility Element soap body [6]

Das <soap: body> Element spezifiziert wie die Message-Parts in SOAP Body Element
auftauchen. Die Parts einer Message k&nnen entweder abstrakte Typ-Definitionen oder
konkrete Schemadefintionen sein.

SOAP Header

<soap:header
message="qgname"
part="nmtoken"
use="literal | encoded"?
encodingStyle="uri-list"?
namespace="uri"?>x*

Listing 12: Extensibility Element soap header [6]

11

Das <soap:header> Element spezifiziert, welcher Part von welcher Message als Header im
SOAP Envelope vom entsprechenden SOAP Request enthalten ist [6].

Im folgenden Beispiel ist ein <wsdl:binding> Element mit dem Name
,,RegisterServiceSOAP* definiert. Das Binding verwendet das Port Type
»tns:RegisterService™ wie auch das HTTP als Transport. Alle Parts von <message>
Elementen, die von der Operation ,,authenticateProvider* verwendet werden, werden als

Kinder des <body> Elements in SOAP Envelope eingefiut.

<wsdl:binding name="RegisterServiceSOAP" type="tns:RegisterService">
<soap:binding style="document"
transport="http://schemas.xmlsoap.org/soap/http" />
<wsdl:operation name="authenticateProvider">
<soap:operation soapAction=
"http://www.Jjin.ustutt.da/RegisterService/authenticateProvider" />
<wsdl:input>
<soap:body use="literal" />
</wsdl :input>
<wsdl:output>
<soap:body use="literal" />
</wsdl :output>
</wsdl :operation>
</wsdl :binding>
Listing 13: Beispiel WSDL Element binding

Service

<service> ist das letzte Element der WSDL-Beschreibung. Das Element geh&rt zum
konkreten Teil des WSDL-Dokumentes. Es hat folgende Struktur:
<wsdl:service name="nmtoken">
<wsdl:port name="nmtoken" binding="gname">*
<soap:address location="uri"/>

</wsdl :port>

</wsdl:service>
12

Listing 14: WSDL Element service
Das Element <service> spezifiziert, wo ein Service durch das Kindelement <port>

gefunden werden kann. Ein <service> Element kann beliebig viele <port> Elemente
enthalten. Ein <port> Element beschreibt, wo ein Port Type durch ein gegebenes
Binding angeboten wird. Das Attribut ,,binding™ spezifiziert, welches Binding vom
<port> Element eingesetzt wird. Das Kindelement <soap:address> vom <port>
beschreibt die Adresse vom Port. Das folgende Beispiel zeigt, dass ein <service>

Element mit dem Namen ,,RegisterService* definiert wird.

<wsdl:service name="RegisterService">
<wsdl:port name="RegisterServiceSOAPPort"
binding="tns:RegisterServiceSOAP" >
<soap:address
location="http://localhost:8080/axis2/services/RegisterService/"/>
</wsdl:port>

</wsdl:service>

Listing 15: Beispiel WSDL Element service

13

2.3.2 WSDL2.0

Struktur

WSDL 2.0

Abstralter Teil

Types

Interface

konkreter Teil

Einding

Senvice

Abbildung 4: WSDL 2.0 Struktur

WSDL2.0 Dokument hat das Wurzelelement <description>, in dem ein abstrakter

Teil und ein konkreter Teil definiert werden (gezeigt in Abbildung 4). Der abstrakte Teil
enthdt die Elemente <types> und <interface>, die Elemente <binding> und <service>
geh&en zum konkreten Teil.

Im vergleich mit WSDL1.1 ist das Wurzelelement nicht mehr <defintions> in WSDL2.0,
sondern <description>, das Element <portType> wird durch <interface> ersetzt. Der grdd3e
Unterschied ist, dass das Element <message> in WSDL2.0 eliminiert wird. Die Messages
werden in <interface> definiert. Bei der Defintion der Datentyen stehen auf®r XML Schema
noch RelaxNG und DTDs zur VerfUgung. Auf®rdem wird das Konzept der Vererbung
eingefthrt.Ein Interface kann von einem oder mehreren bereits definierten Interfaces

abgeleitet werden [2].

14

2.4 SOAP

SOARP ist eine Message-Architektur und ein Message-Verarbeitungsmodel. Eine

SOAP-Message ist die Grundeinheit der Kommunikation zwischen SOAP Konten [1].

SOAP Message-Struktur

Eine SOAP-Message besteht aus, wie in Abbildung 5 gezeigt, einem Envelope Element. Das
Element besteht aus einem Body-Element und einem optionalen Header-Element, wé&arend im
Body-Element die eigentlichen Nutzdaten stehen, kénen im Header Element die
Meta-Informationen, beispielsweise zum Routing, zur VerschlUsselung oder zur

Transaktionsidentifizierung, untergebracht werden.

SOAF Envelope

SOAF Header

Header Elocl 1

Header Block M

SOAF Body

Eody sub-element 1

Body sub-element M

Abbildung 5: SOAP Message Struktur [1]
Das folgende Beispiel zeigt eine SOAP Requst-Message und eine Response-Message an:

Das Request-Message

<?xml version='1.0' ?>
<env:Envelope xmlns:env="http://www.w3.0rg/2003/05/soap-envelope"

xmlns:reg="http://www.jin.ustutt.da/RegisterService/">

15

<env:Header/>

<env:Body>
<reg:authenticateProviderRequestMessage>
<reg:authenticateProvider>
<email>abc@hotmal.com</email>
<password>passwordl234</password>
</reg:authenticateProvider>
</reg:authenticateProviderRequestMessage>
</env:Body>

</env:Envelope>

Listing 16: Beispiel der SOAP Request Message

Die Response Message :

<?xml version='1.0' ?>

<env:Envelope xmlns:env="http://www.w3.0rg/2003/05/soap-envelope"
xmlns:reg="http://www.jin.ustutt.da/RegisterService/">
<env:Header/>

<env:Body>

<reg:authenticateProviderResponseMessage>
<providerId>5</providerId>
</reg:authenticateProviderResponseMessage>

</env:Body>

</env:Envelope>

Listing 17: Beispiel der SOAP Response Message

Definitionen

Sender: Knoten, das eine Message sendet.
Receiver: Knoten, das eine Message empféngt.
Message path: Menge von Knoten, Uber die eine einzelne Message passt, inklusiv dem initial

Sender, null oder mehrere Intermediaries und ein Ultimate-Receiver.
16

Initial sender: Knoten, der eine Message erzeugt und welcher der Ausgangspunkt von einem
Message Path ist.

Intermediary: Knoten, der sowohl ein Sender als auch ein Receiver ist.

Ultimate-Receiver: Receiver ist der Zielort einer Message und zusténdig fir die
Verarbeitung des Inhalts vom Body and allen Header-Bl&eken, die auf dem Receiver gezielt

sind. Ultimate-Receiver kann nicht ein Intermediary fUr die gleiche SOAP Message sein.

Verarbeitungsmodell von SOAP

Das Verarbeitungsmodel spezifiziert, wie ein Knoten eine SOAP-Message verarbeitet, falls es
die SOAP-Message empfangt. Wenn ein Initial-Sender eine SOAP Message zu einem
Ultimate-Receiver schickt, k&hnen noch mehrere Knoten, auch Intermediaries genannt,
zwischen den beiden Knoten vorkommen, deswegen ist es notwendig festzustellen, wie die
Knoten die Message verarbeiten soll. Normalerweise ist das Body-Element von einer
SOAP-Message auf dem Ultimate-Receiver gezielt. Die Intermediaries und der
Ultimate-Receiver missen oder kénnen die Header-Bl&rke verarbeiten, dies ist abhangig vom

,,role“-Attribut der Header-Bl&rke.

SO4AP SOaP S0P Service Provider
Service Client [Feaest) imtermediary A2 intermediany B |Fetuest) (ultimate SOAP
receiver)
4
SOAP Response Intermediaw Cle SOAP Response

Abbildung 6: Verarbeitungspfad einer SOAP Message mit Intermediaries [2]

2.5 WS-Policy

WS-Policy [14] beschreibt die nicht-funktionalen Eigenschaften von Web Services und
erm@licht dem Serviceanbieter die Richtlinien bezCglich Sicherheit, Qualit& und Version
seines Services in Form von XML-Daten fUr den Servicenutzer bereitzustellen. Diese Policies
werden dann an entsprechenden Stellen in die WSDL-Datei des Services eingefiot.

17

Umgekehrt kann auch ein Servicenutzer seine Anforderung an einem Service in Form von
Policies formulieren. Die Intersection der Policies vom Serviceanbieter und vom

Servicenutzer dient zum Wahl eines Web-Services.

2.5.1 Definitionen

Eine Policy ist eine potenziell leere Menge von Policy Alternatives.

Eine Policy Alternative ist eine potenziell leere Menge von Policy Assertions.

Eine Policy Assertion ist eine Anforderung, eine F&nigkeit oder eine Eigenschaft des
Verhaltens.

Ein Policy Assertion Type repr&entiert eine Klasse von Assertions und impliziert ein Schema
fUr die Assertions.

Ein Policy Subject ist eine Entit& (z.B, Endpoint, Message, Resource, Interaction), mit der
eine Policy assoziiert werden kann.

Ein Policy Scope ist eine Menge von Policy Subjects, auf die eine Policy zutreffen kann.

Ein Policy Attachment ist ein Mechanismus fUr die Assoziierung einer Policy mit einem oder
mehreren Policy Scopes.

Eine effektive Policy ist eine Kombination von relevanten Policies fUr ein gegebenes Policy

Subject

2.5.2 Policy Model

Assertion

Eine Policy Assertion spezifiziert ein Verhalten, das eine Anforderung (oder F&higkeit) von
einem Policy Subject ist. Assertions geben Domain-spezifische Semantik, wie Sicherheit und
Transaktionen an und werden verlangt in separaten, Domain-spezifischen Spezifikationen zu
definieren. Ein Typ der Assertions ist stark abh&ngig von der Autoren-definierten Domain

und nur durch den QName vom Wurzelelement der Assertion identifiziert[14].

18

Alternative

Eine Policy Alternative ist eine potenziell leere Menge von Policy Assertions. Eine
Alternative mit leerer Assertion gibt kein Verhalten an, eine Alternative mit einer oder
mehreren Assertions zeigt nur das von diesen Assertions implizierte Verhalten an. Eine Policy
Alternative kann mehrere Assertions von einem Typ sein, die Assertions innerhalb einer

Alternative ist nicht geordnet.
Policy

Eine Policy ist eine potenziell leere Menge von Policy Alternatives. Eine Policy mit leeren
Alternatives wird als eine leere Policy betrachtet. Eine Policy mit einer oder mehreren Policy
Alternatives bietet die Mdglichkeiten an, die Anforderungen auszuwéhlen, die durch die Policy
Alternatives in der Policy spezifiziert sind. Die Alternatives innerhalb einer Policy sind nicht

geordnet.

2.5.3 Operator

WS-Policy spezifiziert drei Operatoren: Policy, All und ExactlyOne. Alle die, die direkt in
einem All Operator stehenden Assertions und Operatoren missen erfdlt sein. Der
ExactlyOne-Operator verlangt, dass es genau eine der direkt im Operator stehenden
Assertions und Operatoren gelten muss. Das folgende Beispiel betrifft eine Policy mit vier
Alternatives. Die erste Alternative schlief zwei Assertions um, die zweite enth&t auch zwei
Assertions, die dritte und vierte haben jeweils drei Assertions.
<wsp:Policy>
<wsp:ExactlyOne>
<wsp:All> <A/> <D/> </wsp:Al1l>
<wsp:All> <C/> </wsp:All>
<wsp:All> <C/> <D/> </wsp:All>
<wsp:All> <A/> <D/> </wsp:All>
</wsp:ExactlyOne>
<wsp:Policy>

Listing 18: Beispiel vom W S-Policy
19

2.5.4 Normalform

Um die interoperability der Policies einfach zu implementieren, wird eine Normalform
definiert, die vor allem die Voraussetzung fir den Intersection-Algorithmus darstellt. Eine
Policy in Normalform ist wie folgt definiert:
<wsp:Policy ... >
<wsp:ExactlyOne>
(<wsp:All>
(<Assertion ...> ... </Assertion>)*
</wsp:All>)*
</wsp:ExactlyOne>

</wsp:Policy ... >
Listing 19: Normalform vom W S-Policy [14]
Das folgende ist ein Beispiel einer Policy der Normalform:

<wsp:Policy>
<wsp:ExactlyOne>
<wsp:All> <A/> </wsp:Al1l>
<wsp:All> <C/> </wsp:All>
<wsp:All> <D/> <E/> </wsp:Al1l>
</wsp:ExactlyOne>
<wsp:Policy>

Listing 20: Beispiel einer Policy in der Normalform
2.5.5 Kompaktform

In einer Policy der Kompaktform ist es erlaubt, dass eine Assertion optional sein kann.

<Assertion (wsp:Optional="xs:boolean”)?...> .. </Assertion>
Listing 21: Optionale Assertion

Ist der Wert ,, True®, ist die Assertion dquivalent zu:
<wsp:ExactlyOne>

<wsp:All> <Assertion ...> ... <Assertion/> </wsp:All>

20

<wsp:All/>

</wsp:ExactlyOne>
Listing 22: Die aquivalente Form der optionalen Assertion mit Optional=true

Ist der Wert ,,False®, ist die Assertion dquivalent zu:

<wsp:ExactlyOne>
<wsp:All> <Assertion ...> ... <Assertion/> </wsp:All>

</wsp:ExactlyOne>

Listing 23: Die aquivalente Form der optionalen Assertion mit Optional=false

AufZrdem ist eine beliebige Reihenfolge von Operatoren mé&glich. Die Operatoren kéanen
rekursiv verschachtelt werden. Im Vergleich mit der Normalform ist die Flexibilita& der
Vorteil der Kompaktform.
Das folgende Beispiel ist ein Beispiel einer Policy der Kompaktform:
<wsp:Policy>
<wsp:All>
<wsp:ExactlyOne> <C/> </wsp:ExactlyOne>
</wsp:All>
<wsp:All>
<wsp:Policy>
<wsp:ExactlyOne> <A/> <C/> </wsp:ExactlyOne>
</wsp:Policy>
</wsp:All>

</wsp:Policy>
Listing 24: Beispiel einer Policy im Kompaktform

&yuivalent zu der Normalform:
<wsp:Policy>
<wsp:ExactlyOne>
<wsp: All> <A/> </wsp: All>
<wsp: All> <A/> <C/> </wsp: All>
<wsp: All> <C/> </wsp: All>
<wsp: All> <C/> </wsp: All>

21

</wsp:ExactlyOne>

</wsp:Policy>

Listing 25: Beispiel der aquivalenten Policy in der Normalform

2.5.6 Intersection der Policies

Die Policy Intersection wird verwendet um die Kompatibilit& von zwei Policies festzustellen
und ist eine Funktion, die zwei Policies nimmt und eine Policy liefert.
Um die Intersection von zwei Policies auszufthren, missen die beiden Policies in der
Normalform sein. Zwei Policies sind kompatibel, wenn eine Alternative in einer Policy mit
einer Alternative in einer anderenPolicy kompatibel ist. Das Ergebnis der Intersection ist eine
Policy mit allen kompatiblen Alternatives.
Zwei Policy Alternatives sind kompatibel, wenn jede Assertion in einer Alternative mit einer
Assertion in einer anderen Alternative ist.
Zwei Policy Assertions sind kompatibel, wenn sie den gleichen Typ haben. Wenn eine
Assertion eine nested Policy Expression enth&t, muss die andere Assertion auch eine nested
Policy Expression enthalten und die Alternative in der nested Policy Expression von einer
Assertion muss mit der Alternative in der nested Policy von einer anderen Assertion
kompatibel sein.
Im Folgenden sind zwei Policies dargestellt. Die Policy 1 enth&t zwei Alternatives Al und
A2, die Policy 2 enth&t zwei Alternatives A3 und A4.
<wsp:Policy
xmlns:sp="http://docs.oasis-open.org/ws-sx/ws—-securitypoliy/200702"
xmlns:wsp="http://www.w3.0rg/ns/ws-policy" >
<! -- Policy P1 -->
<wsp:ExactlyOne>
<wsp:All> <! -- Alternative Al -->
<sp:SignedElements>
<sp:XPath>/S:Envelope/S:Body</sp:XPath>

</sp:SignedElements>

22

<sp:EncryptedElements>
<sp:XPath>/S:Envelope/S:Body</sp:XPath>
</sp:EncryptedElements>
</wsp:All>
<wsp:All> <! -- Alternative A2 -->
<sp:SignedParts>
<sp:Body />
<sp:Header
Namespace="http://www.w3.0rg/2005/08/addressing" />
</sp:SignedParts>
<sp:EncryptedParts>
<sp:Body />
</sp:EncryptedParts>
</wsp:All>
</wsp:ExactlyOne>

</wsp:Policy>

<wsp:Policy
xmlns:sp="http://docs.oasis-open.org/ws—sx/ws-securitypoliy/200702"
xmlns:wsp="http://www.w3.0rg/ns/ws-policy" >
<! ——= Policy P2 -—>
<wsp:ExactlyOne>
<wsp:All> <! -- Alternative A3 -->
<sp:SignedParts />
<sp:EncryptedParts>
<sp:Body />
</sp:EncryptedParts>
</wsp:All>
<wsp:All> <! -- Alternative A4 —-->

<sp:SignedElements>
23

<sp:XPath>/S:Envelope/S:Body</sp:XPath>
</sp:SignedElements>
</wsp:All>
</wsp:ExactlyOne>

</wsp:Policy>

Listing 26: Beispiel von zwei Policies [14]

Die Alternative A2 in Policy 1 ist kompatibel mit A3 in Policy 2. Das Ergebnis der
Intersection der Policies ist die folgende Policy mit einer einzigen Alternative, die alle
Assertion in A2 und A3 enth&t.
<wsp:Policy
xmlns:sp="http://docs.oasis-open.org/ws-sx/ws—-securitypoliy/200702"
xmlns:wsp="http://www.w3.0rg/ns/ws-policy" >
<! —-- Intersection of Pl and P2 -->
<wsp:ExactlyOne>
<wsp:All>
<sp:SignedParts >
<sp:Body />
<sp:Header
Namespace=http://schemas.xmlsoap.org/ws/2004/08/addressing />
</sp:SignedParts>
<sp:EncryptedParts>
<sp:Body />
</sp:EncryptedParts>
<sp:SignedParts />
<sp:EncryptedParts>
<sp:Body />
</sp:EncryptedParts>
</wsp:All>
</wsp:ExactlyOne>

24

</wsp:Policy>

Listing 27: Beispiel vom Intersection von zwei Policies [14]
2.5.7 Policy attachment

WS-Policy Attachment spezifiziert die Policy Assoziierung mit Subjects, es gibt zwei
Mechanismen:
« XML Element Attachment, Policy Assertions werden definiert oder assoziiert als die
Bestandteile der Defintion von einem Subject
o External Policy Attachment, Policy Assertions werden unabh&ngig definiert und

durch externes Binding assoziiert.

Merge von Policies

Wenn mehrere Policies mit einem Subject assoziiert werden, wird eine effektive Policy durch
Merge Operationen berechnet. Eine Merge Operation von zwei Policies wird wie folgt
definiert:
e Die beiden Policies werden in die Normalform umgewandelt.
o Das <wsp: Policy> Element jeder Policy wird durch <wsp: All > Element ersetzt,
dann werden beide Kinder eines neuen <wsp: Policy> Elementes.
e Die neue Policy wird in die Normalform umgewandelt.
e Die neue Policy in der Normalform wird als merged Policy fUr den Subject
Zum Beispiel sind die folgene zwei Policys gegeben:
<wsp:Policy> <!— Policyl -->
<wsp:All>
<wsp:ExactlyOne> <C/> </wsp:ExactlyOne>
</wsp:All>
</wsp:Policy>
<wsp:Policy> <!-- Policy2 -->
<wsp:ExactlyOne> <A/> <C/> </wsp:ExactlyOne>
</wsp:Policy>

Listing 28: Beispiel von zwei Policies fur Merge

25

Die beiden Policies werden zuerst in die Normalform umgewandelt:

<wsp:Policy> <!—— Policyl in Normalform -->
<wsp:ExactlyOne >
<wsp:All> </wsp:All>
<wsp:All> <C/> </wsp:All>
</wsp:ExactlyOne >
</wsp:Policy>
<wsp:Policy> <!-- Policy2 in Normalform -->
<wsp:ExactlyOne>
<wsp:All> <A/> </wsp:All>
<wsp:All> <C/> </wsp:All>
</wsp:ExactlyOne>

</wsp:Policy>

Listing 29: Beispiel von zwei Poalicies in der Normalform fir Merge

Die beiden <wsp: Policy> Elementen werden jeweils durch das <wsp:All> Element ersetzt
und ein neues <wsp:Policy> Element wird als das Wurzelelement hinzugefiot.

<wsp:Policy> <!——neu hinzugefligtes <wsp:Policy> Wurzelelement -->
<wsp:All> <!—— <wsp:Policy> durch <wsp:All> ersetzt -->
<wsp:ExactlyOne >
<wsp:All> </wsp:All>
<wsp:All> <C/> </wsp:All>
</wsp:ExactlyOne >
</wsp:Al1l>
<wsp:All> <!-- <wsp:Policy> durch <wsp:All> ersetzt -->
<wsp:ExactlyOne>
<wsp:All> <A/> </wsp:All>
<wsp:All> <C/> </wsp:All>
</wsp:ExactlyOne>

26

</wsp:All>
</wsp:Policy>
Listing 30: Beispiel vom merged Policy
Die merged Policy:
<wsp:Policy>
<wsp:ExactlyOne>
<wsp: All> <A/> </wsp: All>
<wsp: All> <A/> <C/> </wsp: All>
<wsp: All> <C/> </wsp: All>
<wsp: All> <C/> </wsp: All>
</wsp:ExactlyOne>
</wsp:Policy>

Listing 31: Beispiel vom merged Policy in der Normalform

Policy Assoziierung mit WDSL Elementen

XML Element Attachment

Die <wsp:PolicyReference> Elemente k&inen als Kindelemente von WSDL-Elementen direkt
angeh&ngt werden, um eine Policy mit einem WSDL-Element zu assoziieren. Das folgende
Beispiel zeigt an, dass drei Policies ,,RmPolicy*, ,,X509EndpointPolicy“ und
»SecureMessagePolicy* in einer WSDL-Dokument definiert sind. Die Policies

,RmPolicy“ und ,,X509EndpointPolicy* sind mit dem Binding "StockQuoteSoapBinding"
assoziiert, die Policy ,,SecureMessagePolicy* ist mit den Input- und Output- Messages der

Operation ,,GetLastTradePrice* assoziiert.

<wsdl:definitions name="StockQuote"
targetNamespace="http://www.example.com/stock/binding"
xmlns:tns="http://www.example.com/stock/binding"
xmlns: fab="http://www.example.com/stock"
xmlns:rmp="http://docs.ocasis-open.org/ws—-rx/wsrmp/200702"

xmlns:sp="http://docs.ocasis-open.org/ws-sx/
27

ws—securitypolicy/200702"
xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"
xmlns:wsoapl2="http://schemas.xmlsoap.org/wsdl/socapl2/"
xmlns:wsp="http://www.w3.0rg/ns/ws-policy"
xmlns:wsu="http://docs.ocasis-open.org/wss/2004/01/
0asis-200401l-wss-wssecurity-utility-1.0.xsd" >
<wsp:Policy wsu:Id="RmPolicy" >
<rmp:RMAssertion>
<wsp:Policy/>
</rmp:RMAssertion>
</wsp:Policy>
<wsp:Policy wsu:Id="X509EndpointPolicy" >
<sp:AsymmetricBinding>
<wsp:Policy>
<!-- Details omitted for readability -->
<sp:IncludeTimestamp />
<sp:0nlySignEntireHeadersAndBody />
</wsp:Policy>
</sp:AsymmetricBinding>
</wsp:Policy>
<wsp:Policy wsu:Id="SecureMessagePolicy" >
<sp:SignedParts>
<sp:Body />
</sp:SignedParts>
<sp:EncryptedParts>
<sp:Body />
</sp:EncryptedParts>
</wsp:Policy>
<wsdl:import namespace="http://www.example.com/stock"

location="http://www.example.com/stock/stock.wsdl" />
28

<wsdl:binding name="StockQuoteSoapBinding" type="fab:Quote" >
<wsoap:binding style="document"
transport="http://schemas.xmlsoap.org/soap/http" />
<wsp:PolicyReference URI="#RmPolicy" wsdl:required="true" />
<wsp:PolicyReference URI="#X509EndpointPolicy"
wsdl:required="true" />
<wsdl:operation name="GetLastTradePrice" >
<soap:operation
soapAction="http://www.example.com/stock/Quote/
GetLastTradePriceRequest" />
<wsdl:input>
<soap:body use="literal" />
<wsp:PolicyReference URI="#SecureMessagePolicy"
wsdl:required="true" />
</wsdl:input>
<wsdl :output>
<soap:body use="literal" />
<wsp:PolicyReference URI="#SecureMessagePolicy"
wsdl:required="true" />
</wsdl:output>
</wsdl:operation>
</wsdl:binding>

</wsdl:definitions>

Listing 32: Beispiel vom Policy Assoziierung mit WSDL [15]

External Policy Attachment
Die Policies mit einem Subject kéhnen unabh&ngig vom WSDL-Dokument durch das
Element <wsp:PolicyAttachment> definiert werden. Das <wsp:PolicyAttachment> Element

wird durch das folgende Pseudo-Schema definiert:
<wsp:PolicyAttachment ... >

29

<wsp:AppliesTo>

<x:DomainExpression/> +

</wsp:AppliesTo>

(<wsp:Policy>...</wsp:Policy> |

<wsp:PolicyReference>...</wsp:PolicyReference>) +

<wsse:Security>...</wsse:Security> ?

</wsp:PolicyAttachment>

Listing 33: External Policy Attachment [15]

Im WSDL gibt es vier Policy Subjects:

Service Policy Subject, eine mit einem Service assoziierte Policy, betrifft nur das
Element wsdl:service.
Endpoint Policy Subject, eine mit einem Endpoint assoziierte Policy, betrifft die
Elemente:

wsdl:port

wsdl:binding

wsdl:portType
Operation Policy Subject, eine mit einer Operation assoziierte Policy,betrifft die
Elemente:

wsdl:portType/operation

wsdl:binding/operation
Message Policy Subject, eine mit einem Message assoziierte Policy, betrifft die
Elemente:

wsdl:message

wsdl:binding/opeation/input

wsdl:binding/opeation/output

wsdl:binding/opeation/fault

wsdl:portType/opeation/input

wsdl:portType/opeation/output

30

wsdl:portType/opeation/fault

2.6 Web Services Resource Framework

Web Services Resource Framework ist eine Menge von OASIS publizierte Spezifikationen
fUr Web Services [17]. Es spezifiziert einen Mechanismus, um die Beziehung zwischen Web
Services und deren Status zu beschreiben. Es besteht aus den Spezifikationen WS-Resource,
WS-ResourceProperties, WS-ResourceLifetime, WS-ServiceGroup und WS-BaseFaults. In

der Arbeit werden nur die ersten drei Spezifikationen behandelt.

2.6.1 WS-Resource

WS-Resource beschreibt die Beziehung zwischen einem Web Service und einem Resource in

Web Service Framework und definiert wie WS-Resources referenziert werden [17].

Definitionen

Ein Resource ist eine logische Entit&, die folgende Eigenschaften besitzt:
e Es muss identifizierbar sein.
o Es muss eine Menge von null oder mehrere Eigenschaften haben, die durch
XMLlInfoset darstellbar sind.
e Eskann einen Lebenszyklus haben.
Ein WS-Resource ist die Kompositition von einem Web Service und einem durch das Web
Serivce zugreifbarem Resource. Es ist detailiert wie folgt definiert:
e Ein WS-Resource wird durch einen Endpoint Reference referenziert(ERP). Ein ERP
kann genau ein WS-Resource referenzieren.
o Die Eigenschaften des WS-Resources missen mit einem XML Infoset dargestellt
werden. Es muss den Zugriff der Eigenschaften durch die Message Exchange

unterstiizen, die in der WS-ResourceProperties Spezifikation definiert sind.

31

o Ein WS-Resource kann die in WS-ResourceLifetime Spezifikation definierte Message

Exchange untersttizen.

2.6.2 WS-Resource Properties

Ein Resource Property ist die Information, die als ein Teil vom Statusmodell von einem
WS-Resouce definiert ist. Es kann ein Teil von einer Information (ber den Status,
Meta-Daten, Verwaltbarkeit vom Resource reflektieren.

Ein Resource Properties Dokument stellt eine logische Komposition von Resource Property
Elementen dar. Es enthdt alle Eigenschaften von einem WS-Resource und wird mit einem

WSDLL1.1 Port Type assoziiert [18]

<wsdl:defintions ..>

<wsdl:portType .

wsrf-rp:ResourceProperties="xsd:QName”? . . .>

</wsdl :portType>

</wsdl:defintions>

Listing 34: Die Assoziierung vom Resource Properties Dokument

Ein Resource Property Element ist eine XML Darstellung einer Resource Eigenschaft und
erscheint als Kindelement des Wurzelelements eines Resource properties Dokumentes. Es
muss eine XML GED(global element defintion) sein und identifiziert durch den Qname.
Ein Resource Property Value ist der Wert, der mit einer Eigenschaft eines Resource
assoziiert wird.

Im folgenden Beispiel [18] wird ein WSDL Dokument angezeigt, in dem der portType
GenericDiskDrive und die mit der PortType assoziierten Resource Properties Dokument

definiert werden.

<wsdl:definitions ... xmlns:tns="http://example.com/diskDrive" ...>

32

<wsdl:types>
<xsd:schema targetNamespace="http://example.com/diskDrive"
<!-- Resource property element declarations -->
<xsd:element name="NumberOfBlocks" type="xsd:integer"/>
<xsd:element name="BlockSize" type="xsd:integer" />
<xsd:element name="Manufacturer" type="xsd:string" />
<xsd:element name="StorageCapability" type="xsd:string" />
<!-- Resource properties document declaration -->
<xsd:element name="GenericDiskDriveProperties">
<xsd:complexType>
<xsd:sequence>
<xsd:element ref="tns:NumberOfBlocks"/>
<xsd:element ref="tns:BlockSize" />
<xsd:element ref="tns:Manufacturer" />
<xsd:any minOccurs="0" maxOccurs="unbounded" />
<xsd:element ref="tns:StorageCapability"
minOccurs="0" maxOccurs="unbounded" />
</xsd:sequence>
</xsd:complexType>
</xsd:element>
</xsd:schema>
</wsdl:types>
<!-- Association of resource properties document to a portType -->
<wsdl:portType name="GenericDiskDrive"
wsrf-rp:ResourceProperties="tns:GenericDiskDriveProperties" >
<operation name="start" ../>
<operation name="stop" ../>
</wsdl :portType>

</wsdl:definitions>
33

Listing 35:Beispiel von der Assoziierung von Resource Properties Dokument [18]

Das folgende Besipiel stellt die Request-Message dar, die verwendet wird, um drei Resource

Property Elemente abzuholen.

<wsrf-rp:GetMultipleResourceProperties
xmlns:tns="http://example.com/diskdrive" . . .>
<wsrf-rp:ResourceProperty>
tns:NumberOfBlocks
</wsrf-rp:ResourceProperty>
<wsrf-rp:ResourceProperty>
tns:BlockSize
</wsrf-rp:ResourceProperty>
<wsrf-rp:ResourceProperty>
tns:StorageCapability
</wsrf-rp:ResourceProperty>

</wsrf-rp:GetMultipleResourceProperties>

Listing 36: Beispiel vom GetMultipleResourceProperties Request Message [18]

Das folgende stellt die entsprechende Response-Message dar
<wsrf-rp:GetMultipleResourcePropertiesResponse
xmlns:nsl="http://example.com/diskdrive"
xmlns:ns2="http://example.com/capabilities" ...>
<nsl:NumberOfBlocks>22</nsl:NumberOfBlocks>
<nsl:BlockSize>1024</nsl:BlockSize>
<nsl:StorageCapability>
<ns2:NoSinglePointOfFailure> true </ns2:NoSinglePointOfFailure>
</nsl:StorageCapability>
<nsl:StorageCapability>
<ns2:DataRedundancyMax>42</ns2:DataRedundancyMax>

</nsl:StorageCapability>

34

</wsrf-rp:GetMultipleResourcePropertiesResponse>

Listing 37: Beispiel vom GetMultipleResourceProperties Response Message [18]

Operationen

WS-ResourceProperties definiert eine Menge von Operationen (Message Exchanges). Durch
die Operationen kann der Status von Resources abgefragt oder ge&ndert werden.
Die Operation GetResourcePropertyDocument wird verwendet um die Werte aller
Resource Properties abzuholen, die mit dem WS-Resource assoziiert werden. Die Request
Message der Operation hat die folgende Form[18]:
<wsrf-rp:GetResourcePropertyDocument />
Die wsa:Action muss das URI enthalten:
http://docs.ocasis-open.org/wsrf/rpw-2/GetResourcePropertyDocument/GetRe
sourcePropertyDocumentRequest
Die Response Message der Operation hat die Form:
<wsrf-rp:GetResourcePropertyDocumentResponse>

{any}

</wsrf-rp:GetResourcePropertyDocumentResponse>

Die wsa:Action muss das URI enthalten:

http://docs.oasis-open.org/wsrf/rpw-2/GetResourcePropertyDocument/GetRe

sourcePropertyDocumentResponse

Im folgenden Beisipiel wird gezeigt wie die Request Message und die Response Message der
Operation aussehen.
Angenomen ist das folgende ein Resource Properties Dokument fir ein WS-Resource, das

durch den PortType GenericDiskDrive definiert wird.

<tns:GenericDiskDriveProperties xmlns:tns="http://example.com/diskDrive"
xmlns:cap="http://example.com/capabilities">

<tns:NumberOfBlocks>22</tns:NumberOfBlocks>

35

<tns:BlockSize>1024</tns:BlockSize>

<tns:Manufacturer>DrivesRUs</tns:Manufacturer>

<tns:StorageCapability>
<cap:NoSinglePointOfFailure>true</cap:NoSinglePointOfFailure>

</tns:StorageCapability>

<tns:StorageCapability>
<cap:DataRedundancyMax>42</cap:DataRedundancyMax>

</tns:StorageCapability>

</tns:GenericDiskDriveProperties>

Listing 38: Beispiel eines Resource Properties Dokumentes [18]

Das folgende ist die Request Message der Operation:
<soap:Envelope . . .>
<soap:Header>
<wsa:Action>
http://docs.oasis-open.org/wsrf/rpw-2/GetResourcePropertyDocumen
t/GetResourcePropertyDocumentRequest

</wsa:Action>

</soap:Header>

<soap:Body>
<wsrf-rp:GetResourcePropertyDocument />

</soap:Body>

</soap:Envelope>

Listing 39: Beispiel einer getResourcePropertyDokument Request Message [18]

Das folgende Beispiel betrifft die Response Message der Operation:

<soap:Envelope ..>
<soap:Header>

<wsa:Action>

36

http://docs.ocasis-open.org/wsrf/rpw-2/GetResourcePropertyDocumen
t/GetResourcePropertyDocumentResponse

</wsa:Action>

</soap:Header>
<soap:Body>
<wsrf-rp:GetResourcePropertyDocumentResponse
xmlns:tns="http://example.com/diskDrive"
xmlns:cap="http://example.com/capabilities">
<tns:GenericDiskDriveProperties>
<tns:NumberOfBlocks>22</tns:NumberOfBlocks>
<tns:BlockSize>1024</tns:BlockSize>
<tns:Manufacturer>DrivesRUs</tns:Manufacturer>
<tns:StorageCapability>
<cap:NoSinglePointOfFailure>true</cap:NoSinglePointOfFailur
e>
</tns:StorageCapability>
<tns:StorageCapability>
<cap:DataRedundancyMax>42</cap:DataRedundancyMax>
</tns:StorageCapability>
</tns:GenericDiskDriveProperties>
</wsrf-rp:GetResourcePropertyDocumentResponse>
</soap:Body>

</soap:Envelope>

Listing 40: Beispiel einer getResourcePropertyDokument Response Message [18]

In WS-ResourceProperties werden die anderen Operationen auf &nliche Weise definiert:
o Die Operation GetResourceProperty wird verwendet um einen einzelnen Resource

Property von einem WS-Resource abzuholen.

37

o Die Operation GetMultipleResourceProperties wird eingesetzt um mehrere
Resource Properties von einem WS-Resource abzuholen.

o Die Operation QueryResourceProperties ermdglicht das Resource Properties
Dokument von einem WS-Resource durch einen Anfrage Ausdruck wie Xpath,
abzufragen.

e Die Operation PutResourcePropertyDocument wird verwendet, um die Werte der
Properties eines WS-Resources vdlstandig durch ein total neues Resource Property
Dokument zu ersetzen.

e Die Operation SetResourceProperties ermcglicht drei verschiedene Typen von
Anderung des Resource Properties Dokumentes:

Insert: Ein neues Resource Property Element kann im Resource Properties
Dokument eingefUpgt werden.

Update: Ein oder mehrere vorkommende Resource Property Elemente kéinen
ge&ndert werden.

Delete: Ein oder mehrere vorkommende Resource Property Elemente kGnen
gel&Gcht werden.

o Die Operation InsertResourceProperties ermdylicht einen oder mehrere Element
Wert(e) einer Resource Property im Resource Properties Dokument von einem
WS-Resource einzufigen.

o Die Operation DeleteResourceProperties wird eingesetzt, um alle Werte einer
Resource Property zu I&Gschen.

« Die Operation UpdateResourceProperties ist zusténdig fir die Anderung von einem

oder mehrere Werte einer Property.

2.6.3 WS-Resource Lifetime

38

In der WS-ResourceLifetime Spezifikation wird beschrieben wie ein Resource zerstGt und
die Lebensdauer eines WS-Resource (berwacht werden kann. Um ein Resource zu zerst&Gen,

werden zwei Methoden definiert: Immediate Destruction und Scheduled Destruction.

Immediate Destruction

Ein Resource wird unmittelbar zerst&rt, es wird durch die Nutzung der Message Exchange
realisiert, die DestroyRequest Message hat das folgende Format [19]:

<wsrf-rl:Destroy />

Die wsa: Action muss das URI enthalten:
http://docs.oasis-open.org/wsrf/rlw-2/ImmediateResourceTermination/Dest
royRequest

Falls das WS-Resource die DestroyRequest Message erhdt, schickt es entweder eine
DestroyResponse Message wenn das Resource erfolgreich zerst&t wird oder es schickt eine
Fault Message zuritk. Die DestroyResponse Message hat das folgende Format [19]:
<wsrf-rl:DestroyResponse />

Das folgende Beispiel beschreibt eine DestroyRequest Message:

<soap:Envelope . . .>

<soap:Header>

<wsa:Action>
http://docs.oasis-open.org/wsrf/rlw-2/ImmediateResourceTerminati
on/DestroyRequest

</wsa:Action>

</soap:Header>

<soap:Body>
<wsrf-rl:Destroy/>

</soap:Body>

</soap:Envelope>

Listing 41: Beispiel einer DestroyRequest Message [19]

39

Das folgende Beispiel beschreibt eine DestroyResponse Message:

<soap:Envelope . . .>

<soap:Header>

<wsa:Action>
http://docs.oasis-open.org/wsrf/rlw-2/ImmediateResourceTerminati
on/DestroyResponse

</wsa:Action>

</soap:Header>

<soap:Body>
<wsrf-rl:DestroyResponse />

</soap:Body>

</soap:Envelope>

Listing 42: Beispiel einer DestroyReponse Message [19]

Scheduled Destruction

Die StGung des Resource ist zeitbasiert und kann von einem Client gesteuert werden, indem
das Client einen Zeitpunkt fCr die Terminierung des Resource anlegt. Ist die Zeit abgelaufen,
wird das Resource automatisch zerst&t. Um Scheduled Desstruction zu unterstiizen, muss
das Resource Properties Dokument die Resource Property Elemente CurrentTime und
TermitationTime enthalten und die Operation SetTerminationTime unterstiizen.

Das Element CurrentTime bietet die aktuelle Zeit an, die dem WS-Resource bekannt ist und
hat das folgende Format [19]:
<wsrf-rl:CurrentTime>xsd:dateTime</wsrf-rl:CurrentTime>

Das Resource Property Element wsrf-r1:CurrentTime muss genau ein Mal definiert werden
und darf durch die Operation SetResourceProperties nicht geandert werden.

Das Element TerminationTime zeigt die aktuelle Terminierungszeit vom WS-Resource an.

Es hat das folgende Format [19]:

40

<wsrf-rl:TerminationTime xsi:nil="xsd:boolean”?>
xsd:dateTime

</wsrf- rl:TerminationTime>

Das Resource Property Element wsrf-r1:TerminationTime muss genau ein Mal definiert

werden und darf durch die Operation SetResourceProperties nicht ge&ndert werden. Wenn

das Resource Property Element das Attribut xsi:nil mit den Wert ,, True* enthélt, dann gibt es

keine Scheduled Destruction Zeit.

Die Operation SetTerminationTime ermcglicht die Anderung der geplanten

Terminierungszeit. Das folgende ist ein Pseudo-Schema von der Request Message der

Operation:

<wsrf-rl:SetTerminationTime>
(<wsrf-rl:RequestedTerminationTime xsi:nil="xsd:boolean”?>
xsd:dateTime
</wsrf-rl:RequestedTerminationTime>)
| (Kwsrf-rl:RequestedLifetimeDuration>
xsd:duration
</wsrf-rl:RequestedLifetimeDuration>)

</wsrf-rl:SetTerminationTime>

Listing 43: Beispiel einer SetTerminationTime Request Message [19]

Die Operation bietet zwei M@ylichkeiten an, um den Zerst&Gungszeitpunkt zu bestimmen:
Der Zerstcrungszeitpunkt wird durch das Element wsrf-rl: RequestedTerminationTime direkt
angegeben.
Die verbleibende Lebensdauer wird durch das Element wsrf-rl: RequestedLifetimeDuration
angegeben.
Wenn das WS-Resource die SetTerminationTime Request annimmt, muss die
Terminierungszeit aktualisiert werden und eine Response Message wird zurickgeschickt.
Das folgende zeigt das Format der Response Message:
<wsrf-rl:SetTerminationTimeResponse>

<wsrf-rl:NewTerminationTime xsi:nil="xsd:boolean”?>

41

xsd:dateTime
</wsrf-rl:NewTerminationTime>
<wsrf-rl:CurrentTime>

xsd:dateTime
</wsrf-rl:CurrentTime>

<wsrf-rl:SetTerminationTimeResponse>

Listing 44: Beispiel einer SetTerminationTime Response Message [19]

2.7 XMLO_Fragmento

Das Fragmento bedeutet ein fragmentorientierten Prozess Artefakt-Repository und verwaltet
Prozesse und Prozess-Fragmente fUr den Einsatz im Bereich vom Compliance. Das
Fragmento ist zusténdig fUr das Speichern, das Zugreifen und die Versionsverwaltung aller
Artefakte, die mit einem Prozess relevant sind. Das Fragmento ist auf einem Repository
aufgebaut, das durch das Projekt Master entwickelt wurde [11].

Das Master-Repository untersttizt das Modell fCr die Versionierung der Artefakte. Wenn ein
neues Artefakt erstellt wird, erzeugt das Repository ein neues Versioned Objekt(gezeigt in
Abbildung 7). Dieses Objekt ist der Container fir die verschiedenen Versionen des Artefakts
(gezeigt in Abbildung 8). Das Versioned Objekt ist auch ein Versionhistory Objekt, das den
Zugriff auf die Root-Version (die erste Version) und die Basis Version (die neueste Version)
erm@licht. Eine Version eines Artefakts ist durch einen "Version Descriptor” Objekt
dargestellt. Es speichert das Datum der Erstellung, Metadaten und einem Verweis auf das

XML-Dokument des Artefakts.

42

Versioned Object
[z
13

Version History

Root Base
Version Version

Version Descriptor
[x
4
XML Element

XML Metadata

Abbildung 7: Modell der Versionsverwaltung [11]

Versioned Object

ptor
Version Descriptor

Abbildung 8: Versionen eines Artefakts [11]

Das Master-Repository kann ebenfalls neue Relationen zwischen Version Deskriptoren
erstellen (In Abbildung 9). Diese Funktion kann zum Erstellen eines Btndels von Artefakten
verwendet werden. Es untersttizt auch die Erstellung einer Annotation von einem Fragment
und einer textuellen Annotation. Es ist wichtig zu beachten, dass die Relationen zwischen den

Deskriptoren Version erstellt werden und nicht zwischen Versioned Objekten.

43

Versioned Object Versioned Object

Lar ; ar
ptor _ itor
Version Descriptor ; ——— Neysion Descriptor

Abbildung 9: Relationen zwischen Artefakten [11]

Das Fragmento unterteilt die XML basierten Artefakte auf sechs verschieden Typen: Prozess

oder Prozess Fragment Model, WSDL-Artefakt, Deployment Deskriptor, Modeller

Information, Transformationsregel und Annotation.

Wenn ein Artefakt angelegt wird, ordnet das Repository dem Artefakt eine eindeutige 1D zu.

Die Relationen zwischen Artefakten kénnen durch IDs erstellt werden.

Die Verwaltung von Relationen geh&t auch zu der Aufgabe des Repositorys. Die Abbildung

10 zeigt das konzeptionelle Modell der verschiedenen Arten von Artefakten und ihrer

Relation.

Im Fragmento Repository besteht ein Artefakt aus den folgenden Teilen:

Einer Id, der eindeutig das Artefakt identifiziert.

Metadaten, die zur Beschreibung des Artefakts dienen.

Einer XML Dokument, die das Inhalt von Artefakt ist.

Einem Typ, der den Typ vom Artefakt wie ,, WSDL*, ,,Process®, usw. beschreibt.

Relation(en) zu anderen Artefakten.

Im Fragmento Repository besteht eine Relation aus den folgenden Teilen:

Einem Quell, das ein Artefakt ist.
Einem Ziel, das ein anderes Artefakt ist.
Einem Typ, der den Typ von der Relation beschreibt.

Einer weiteren Beschreibung

44

Annotation Document

WSsDL * * |Process (-fragment) View Transformation Rules
* +
* -+
* *
Deployment Descriptor Modeller Information

Abbildung 10: Konzeptionelles Model fur Fragmento [11]

Das Fragmento Service bietet die folgenden Funktionalit&en an [11]:

1. createArtefact: Die Operation wird verwendet um ein neues Artefakt zu erstellen.

2. retrieveArtefact: Die Operation wird verwendet um eine bestimmte Version eines
Artefakts abzurufen, ohne Durchfthrung eines Check Outs.

3. retrieveArtefactBundle: Die Operation liefert ein Artefakt und alle Artefakte, die mit dem
Artefakt in Relation stehen.

4. retrieveArtefactHistory: Die Operation liefert eine Liste von Ids von Version Deskriptor,
die die Versionshistorie eines Artefakts repr&entieren.

5. checkOutArtefact: Die Operation setzt eine Sperre fUr das angeforderte Artefakt und gibt
das Artefakt und einen fUr Check In angeforderte Sperren-1d zurick.

6. checkInArtefact: Die Operation erstellt eine neue Version eines Artefakts. FUr die
Zulassung muss auch die entsprechende Sperren-ld gegeben werden. Basierend auf den
Parameter keepRelations. Die Relationen des Artefakts gelten auch fCr die neue Version. Die

Operation gibt die Id der neuen Version zurick.

45

7. browseArtefacts: Die Operation implementiert die Suchfunktion. Basierend auf den
Eingabeparameter gibt diese Operation eine Liste der Version Deskriptoren aus, die der
Abfrage entsprechen. Als Eingabeparameter werden akzeptiert: Artefakt-Typ, Zeitintervall
des Erstellens, Suchbegriff fUr die Beschreibung oder das Inhalt des Dokumentes

8. retrieveArtefactLatestVVersion: Die Operation liefert die neueste Version eines Artefakts.
Um alte Revisionen abzurufen, wird die Operation retrieveArtefact eingesetzt.

9. browseLocks: Die Operation liefert eine Liste aller gesperrten Artefakte.

10. releaseLocks: Die Operation kann eine Sperre wieder freigeben.

11. createRelation: Die Operation ermcylicht die Erstellung einer Relation von einem
Artefakte zu einem anderen.

12. retrieveRelation: Die Operation liefert die Details einer Relation.

13. browseRelations: Die Operation bietet Suchfunktionen fir die Relation an. Die gUtige
Eingabeparameter sind eine Quelle (1D eines Version Deskriptors), ein Ziel, ein Typ oder ein
Zeitintervall fUr das Erstellen.

14. updateRelation: Die Operation ermdglicht es eine vorhandene Relation zu &ndern.

15. deleteRelation: Die Operation I&cht vollsténdig eine Relation.

46

3 Konzepte

In der Arbeit wird ein Web Service, das Registerservice entwickelt. Das Registerservice bietet
die Funktionalit&en an, um Web Services, Datenbanken und Anbieter zu registrieren, zu
suchen und zu verwalten. Bevor die Funktionalit&ien vom Registerservice vorgestellt werden,
wird zuerst die Relation zwischen Web Services, Datenbanken und Anbietern kurz erklé&t.

Die Relation wird in Abbildung 11 gezeigt:

Web Service Datenbank

Abbildung 11: Relationen zwischen Web Services, Datenbanken und Anbietern

e Ein Anbieter kann beliebig viele Web Services bzw. Datenbanken anbieten

e Ein Web Service bzw. eine Datenbank geh&rt nur zu einem Anbieter.

3.1 Anbieter

Bevor ein Web Service bzw. eine Datenbank registriert wird, muss zuerst der Anbieter des Services
bzw. der Datenbank registriert werden. Die Grinde dafir sind:

e Die Informationen (ber die Anbieter sind erwinscht von der Nutzerseite.

e Esist von der Anbieterseite auch erwinscht, die schon registrierten Web Services und
Datenbanken zu verwalten. Es ist klar, dass Operationen wie Andern, L&schen nur von dem
entsprechenden Anbietern ausgefthrt werden dirfen. Es ist deswegen notwendig, einen
Anbieter zu authentifizieren, ob es der richtige Anbieter des Services bzw. der Datenbank ist,

bevor er ein Service bzw. eine Datenbank &dert bzw. |&cht.

47

Die Informationen eines Anbieters missen enthalten:

« Eine Id, die einen Anbieter eindeutig identifizieren kann, wird bei der Registrierung
eines Anbieters automatisch generiert und darf nicht ge&ndert werden.

e Einen Namen des Anbieters

o Eine Emailadresse, die einen Anbieter eindeutig identifizieren und zusammen mit dem
Passwort zur Authentifizierung des Anbieters dienen kann.

o Ein Passwort, das zusammen mit der Emailadresse zur Authentifizierung dienen kann.

« Ein Registrierungsdatum, die bei der Registrierung automatisch erstellt wird und nicht
ge&ndert werden darf.

Aul®rdem k&inen die Informationen eines Anbieters optional enthalten:
o Eine Adresse: Strasse, Stadt, Postleitzahl, Land
« Eine Web Site

¢ Eine Telefonnummer

3.2 Web Service
3.2.1 WS-Bindel

Die Voraussetzung fir die Registrierung von Web Services ist die Registrierung des
Anbieters fUr den Service.

Bei der Registrierung von Web Services muss der Anbieter ein WS- Bindel von XML
Dokumenten liefern, die mit den Web Services relevant sind. Nach der Registrierung wird das
WS-Bindel als ein Artefakt-BUndel gespeichert. Im Artefakte-BUndel gibt es fir jedes
Dokument vom WS-BUndel ein entsprechendes Artefakt. Wie ein WS-Bindel aussieht, wird

in Abbildung 12 gezeigt:

48

BPEL Process

Any XML

1 WSDL 1
Dokument

-a

XML Schema

Policy

Abbildung 12: WS-Bundel

Wie im Kapitel 2 spezifiziert, beschreibt WSDL die funktionalen Eigenschaften von Web

Service. Das WSDL Dokument spielt eine zentrale Rolle bei der Registrierung von Web

Services. EinWS-Bindel besteht aus:

Ein WSDL-Dokument, das die funktionalen Eigenschaften von Services spezifiziert.
Beliebig viele BPEL-Process Dokumente, die zum Aufruf von Services dienen.
Beliebig viele Policy-Dokumente, die die nicht funktionalen Eigenschaften von
Services beschreiben.

Ein optionales XML-Schema Dokument fUr das Resource Properties Dokument.

Beliebig viele andere XML Dokumente, die relevant von Web Services sind.

Ein Artefakt besteht aus:

Eine Id, die ein Artefakt eindeutig identifizieren kann.

Ein Typ von drei Typen: "WSDL", "Process" und "Anntotation".

Eine Beschreibung. Die Artefakte werden in drei Typen unterteilt, auf%er
WSDL-Artefakte und BPEL-Process Artefakte haben alle anderen Artefakte den Typ
"Annotation”. Die Beschreibung unterteilt den Typ "Annotation" in mehrere
Kind-Typen.

Ein Inhalt
49

Relationen. Eine Relation stammt entweder von einem WSDL-Artefakt oder von einer

Datenbank zu einem Non-WSDL-Artefakt.

Wenn ein Artefakt-Bindel fr ein WS-Bindel angelegt wird, sind der Typ, die

Beschreibung und die Relationen des Artefakts schon festgelegt. Die drei Eigenschaften

eines Artefakts durfen nicht geéndert werden solange das Artefakt noch in

Artefakt-BUndel steht. Die Drei Eigenschaften fUr ein einzelnes Artefakt werden im

Folgenden spezifiziert:

Ein WSDL-Artefakt hat den Typ "WSDL", die Beschreibung "WSDL" und die
Relationen, die jeweils vom WSDL-Artefakt zum jedem anderen Artefakt im
Artefakt-BtUndel sind.

Ein XML-Schema-Artefakt hat den Typ "Annotation”, die Beschreibung "Schema"
und eine Relation mit WSDL-Artefakt.

Ein BPEL-Process-Artefakt hat den Typ "Process”, die Beschreibung "Process" und
eine Relation mit WSDL-Artefakt.

Ein Policy-Artefakt hat den Typ "Annotation”, die Beschreibung "Policy™ und eine
Relation mit WSDL-Artefakt.

Ein anderes Artefakt hat den Typ "Annotation”, die Beschreibung "Other"” und eine
Relation mit WSDL Artefakt.

3.2.2 Service Metadaten

FUr jeden Service, das durch ein WSDL-Artefakt beschrieben wird, gibt es Service Metadaten.

Durch die Service Metadaten wird der Zusammenhang (gezeigt in Abbildung 13) zwischen

Services, WSDL-Artefakten und Anbietern angelegt. FUr einen Service kann es dadurch

einfach festgestellt werden, welches WSDL-Artefakt das Service beschreibt und welchem

Anbieter der Service und das WSDL-Artefakt gehcren.

50

Service .

—

Metadaten WSDL Artefakt
Anbieter

Abbildung 13: Der Zusammenhang zwischen Service, WSDL-Artefakt und Anbieter

Service Metadaten bestehen aus:

Eine Id, die einen Service eindeutig identifiziert

Ein Service Name, der mit dem entsprechenden Service Namen im WSDL-Artefakt
identisch ist, darf nicht ge&ndert werden, solange der entsprechende Service Name im
WSDL-Artefakt unge&ndert bleibt.

Eine Service Beschreibung. Bei der Registrierung eines Services wird ein Service
Name gesetzt, kann aber sp&er vom Anbieter ge&ndert werden.

Eine Service Adresse, die mit der entsprechenden Service Adresse im WSDL-Artefakt
identisch ist, darf nicht ge&ndert werden, solange sie im WSDL-Artefakt unge&ndert
bleibt.

Ein Service Targetnamespace, das mit dem Targetnamespace im WSDL-Artefakt
identisch ist, darf nicht ge&ndert werden, solange es im WSDL-Artefakt unge&ndert
bleibt.

Ein Registrierungsdatum, der bei der Registrierung von einem Service automatisch
generiert wird, darf nicht ge&ndert werden.

Eine WSDL-Artefakt Id spezifiziert welches WSDL-Artefakt das Service beschreibt.
Eine WSDL Dokument Adresse, die spezifiziert, wo das WSDL Dokument von einem
Anbieter bereitzustellen ist.

Eine Anbieter Id spezifiziert von wem der Service angeboten wird.

51

Eine Bewertungsanzahl. Ein Nutzer kann einen Service bewerten. Jedes mal wenn ein
Service bewertet wird, erhdnt sich die Anzahl um 1. Der Anfangswert ist 0.

Eine Service Note, die eine durchschnittliche Note aller von Nutzern gegebenen
Bewertungsnoten wiedergibt. Die Note hat den Wertbereich zwischen 0 und 10 und

den Anfangswert 0.

3.3 Datenbanken

Eine Datenbank ist ein Resource, mit der beliebig viele Policies assoziiert werden k&hnen und

kann beliebig viele Datenbanknutzer haben (wie in Abbildung 14 gezeigt). Die Policies

spezifizieren die Anforderungen des Anbieters fr die Nutzung der Datenbank

—

Datenbank ~ Datenbanknutzer

Policy

Abbildung 14: Der Zusammenhang zwischen Policy, Datenbank und Datenbanknutzer

Die Informationen einer Datenbank missen enthalten:

Eine ID, die eine Datenbank eindeutig identifizieren kann

Ein Datenbank Name, der vom Anbieter geliefert wird.

Eine ID des Anbieters, die den Anbieter der Datenbank identifizieren kann.

Einen Datenbank-Treiber

Eine Datenbank-Adresse, die spezifiziert, wo die Datenbank gefunden werden kann.
Eine Beschreibung der Datenbank.

52

e Ein Registrierungsdatum, das bei der Registrierung der Datenbank automatisch
generiert wird und nicht geandert werden darf.

« Eine Bewertungsanzahl. Jeder Nutzer kann eine Datenbank bewerten. Jedes mal wenn
eine Datenbank bewertet wird, erhcnt sich die Anzahl um 1. Der Anfangswert ist 0.

o Eine Datenbank Note, die eine durchschnittliche Note aller von Nutzern gegebenen
Bewertungsnoten wiedergibt. Die Note hat den Wertbereich zwischen 0 und 10 und

den Anfangswert 0.

Datenbanknutzer
Die Informationen eines Datenbanknutzers missen enthalten:

« Eine ID, die einen Datenbanknutzer eindeutig identifizieren kann.

e Ein Name

o Ein Passwort

o Ein Erstellungsdatum, das bei der Registrierung automatisch generiert wird.
Aul®rdem k&nnen die Informationen eines Anbieters optional enthalten:

« Eine Emailadresse

o Eine Adresse: Strasse, Stadt, Postleitzahl, Land

« Eine Web Site

e Eine Telefonnummer

Bevor eine Datenbank registriert wird, muss der Anbieter der Datenbank vorher registriert
werden. Die Policies, die mit einer Datenbank assoziiert sind, spezifizieren die
Anforderungen des Anbieters fUr die Nutzung der Datenbank. Bei der Registrierung einer
Datenbank mit Policies werden die Informationen von der Datenbank gespeichert und die
Policy-Artefakte fUr gegebene Policy Dokumente angelegt, wichtig ist, fUr jedes
Policy-Artefakt jeweils eine Relation von der Datenbank zum Policy-Artefakt zu erstellen.
Durch die Relationen kann man einfach feststellen, welche Policies zu welchen Datenbanken
geh&en. Ein neues Policy Dokument kann ebenfalls nach der Registrierung einer Datenbank

hinzugefigt werden. Die mit einer Datenbank in Relationen stehenden Policy-Artefakte

53

k&nnen ebenfalls geéndert bzw. entfernt werden. Die Datenbanknutzer einer Datenbank

k&nen nach der Registrierung der Datenbank separat angelegt werden.

3.4 Die Operationen

FUr die Registrierung, das Suchen und die Verwaltung von Anbietern, Services und
Datenbanken werden die folgenden vier Typen von Operationen vom Registerservice
angeboten:
Operationen fUr Anbieter
e registerProvider, die Operation ist fUr die Registrierung von einem Anbieter
zusténdig
« updateProvider, die Operation ermdglicht die Anderung von Informationen eines
registrierten Anbieters
e retrieveProvider, die Operation ermcglicht es Informationen eines Anbieters zu
liefern.
e getPassword, die Operation wird eingesetzt um ein Passwort zurictkzubekommen,
wenn ein Anbieter sein Passwort vergessen hat.

o deleteProvider, die Operation ist fUr die Entfernung eines Anbieter zustandig.

Operationen fir Artefakte

o addNewArtefact, die Operation ermdglicht ein neues Non-WSDL-Artefakt zu einem
WSDL-Artefakt bzw. zu einer Datenbank hinzuzufCgen.

o updateArtefact, die Operation wird verwendet, um ein Non-WSDL-Artefakt zu
andern.

e browseArtfacts, die Operation bietet verschiedene Mcglichkeiten an Artefakte zu
suchen

o deleteArtefact, die Operation wird eingesetzt, um ein Non-WSDL-Artefakt zu
IGschen.

o RetrieveArtefact, die Operation nimmt eine Artefakt ID ein und liefert den Typ, die
Beschreibung und den Inhalt vom Artefakt.

54

RetrieveArtefactBundle, die Operation nimmt eine ID eines WSDL-Artefakts bzw.
eine 1D einer Datenbank ein und gibt den Typ, die Beschreibung und den Inhalt von
allen Artefakten im Artefakt-BUndel bzw. von allen Policy-Artefakten aus, die mit der

Datenbank in Relation stehen.

Operationen fir Datenbanken

registerDatabase, die Operation ist fUr Registrierung einer Datenbank zust&ndig.
updateDatabase, die Operation ermdylicht die Anderung von Informationen einer
Datenbank

browseDatabase, die Operation bietet verschiedene Mglichkeiten an, um
Datenbanken zu suchen.

valuateDatabase, die Operation wird verwendet, um eine Datenbank zu bewerten.
deleteDatabase, die Operation erm¢cylicht es eine Datenbank zu I&schen.
addNewDatabaseUser, die Operation ist fUr die Anlegung eines Datenbanknutzers
zusténdig.

updateDatabaseUser, die Operation ermcglicht die Informationen eines
Datenbanknutzers zu &ndern

browseDatabaseUser, die Operation bietet dem Datenbank Anbieter verschiedene
Mdaglichkeiten an, um Datenbanknutzer zu suchen

deleteDatabaseUser, die Operation wird verwendet, um einen Datenbanknutzer zu

IGschen.

Operationen fr Web Services

registerWebServices, die Operation ist fUr die Registrierung von Web Services
zusténdig.

updateWebServices, die Operation ermdglicht es Informationen von Web Services zu
andern.

BrowseWebServices, die Operation bietet verschiedene M&jlichkeiten an, um
Services zu suchen.

RetrieveWebService, die Operation liefert alle Informationen eines Services zurick
55

o valuateWebServcie, die Operation ermcylicht es, ein Service von Nutzern bewerten
zu lassen.
o deleteWebServcies, die Operation wird verwendet, um Services zu |&chen.

Wie die einzelnen Operationen funktionieren, wird in folgenden detailliert beschrieben.

3.4.1 Operationen fir Anbieter

registerProvider
Eingabe:

Mandatory: providername, emaill, email2, passowordl, password2

Optional: street, city, zipcode, country, telephone, website
Ausgabe: providerld
Beschreibung:
Bei der Registrierung eines Anbieters muss der Anbieter die Informationen Uber den
providername, emaill, email2, passwordl und password2 angeben. Diese finf Felder sind fr
die Registrierung von Anbietern notwendig. Der Wert von emaill wird mit dem Wert von
email2 verglichen. Sind die beiden Werte identisch, wird dann der Wert von passwordl mit
dem Wert von password?2 verglichen. Sind die beiden Werte identisch, wird kontrolliert ob
die Werte der optionalen Felder zus&zlich noch vorhanden sind. Die Emailadresse und das
Passwort eines Anbieters dienen zusammen der Authentifizierung vom Anbieter. Wenn die
Registrierung fehlerfrei ausgefthrt wird, werden alle Informationen auf der Datenbank
gespeichert. Eine ID wird fUr den Anbieter automatisch generiert und zurUckgegeben. Ein
Email wird ebenfalls an der gegebenen Emailadresse zugeschickt, um die Registrierung zu
bestaigen. Die Email enthdt die ID Nummer vom Anbieter, die eindeutig den Anbieter

identifiziert.

retrieveProvider
Eingabe:
Mandatory: providerld
Optional:

56

Ausgabe: Informationen vom Provider

Beschreibung:

Es ist mcylich, dass ein Nutzer die allgemeinen Informationen von einem anderen Anbieter
anfordert. FUr diese Operation soll der Nutzer ein providerld liefern. Durch die gegebene
Providerld, wird zuerst Uberprift, ob der Provider existiert. Ist dies der Fall, werden alle

Informationen vom Provider auf%®r dem Passwort zurictkgegeben.

getPassword
Eingabe:

Mandatory: email

Optional:
Ausgabe: providerld
Beschreibung:
Es kommt sehr h&ufig vor, dass ein Anbieter das Passwort vergisst, das bei der Registrierung
in der Datenbank gespeichert wurde. Das Web Service bietet auch die Funktionalit& an um
das vergessene Passwort zurtck zu bekommen. Beim Abfragen des Passwortes braucht der
Anbieter nur die Emailadresse, die bei der Registrierung angegeben wurde anzugeben. Es
wird kontrolliert, ob die Emailadresse vorhanden ist. Ist dies der Fall, wird ein Anbieter mit
der Emailadresse gefunden. Eine Email wird mit dem Passwort vom Anbieter an die

Emailadresse zugeschickt und die ID des Anbieters wird zuritkgegeben.

authenticateProvider
Eingabe:
Mandatory: email, password
Optional:
Ausgabe: providerld
Beschreibung:
Der Anbieter muss sich selber authentifizieren um eigene Services und Datenbanken zu
verwalten. Bei der Authentifizierung muss der Anbieter eine Emailadresse und ein Passwort

eingeben. Es wird ein Anbieter durch die gegebene Emailadresse gesucht. Wird ein Provider
57

gefunden, wird das gegebene Passwort mit dem Passwort des gefundenen Providers
verglichen. Falls die beiden Werte identisch sind, dann ist der Anbieter authentifiziert. Die ID

Nummer vom Anbieter wird zuriUckgegeben.

updateProvider
Eingabe:

Mandatory: email, password

Optional: name, street, city, zipcode, country, telephone, website, emaill, emal2,

passwordl, password2

Ausgabe: providerld
Beschreibung:
Vor der Anderung muss der Anbieter eine Emailadresse und ein Passwort angeben, um sich
zu authentifizieren. Falls der Anbieter authentifiziert ist, wird kontrolliert, welche optionale
Parameter vom Anbieter gegeben sind. Die Werte der vorkommenden optionalen Parameter
werden jeweils mit dem entsprechenden im Datenbank gespeicherten Wert verglichen, wenn
die beiden Werte nicht identisch sind, wird der in der Datenbank gespeicherte Wert durch den
gegebenen Wert ersetzt. Die Anderung der Emailadresse bzw. dem Passwort wird besonders
behandelt, der Anbieter muss fir die Anderung der Emailadresse bzw. des Passwortes zwei
mal den gleichen Wert eingeben um Tippfehler zu vermeiden. Falls die Informationen

ge&ndert werden, wird die ID vom Anbieter zurickgegeben.

deleteProvider
Eingabe:
Mandatory: email, password
Optional:
Ausgabe: providerld
Beschreibung:
Vor dem L&schen des Anbieters muss der Anbieter die Emailadresse und das Passwort
angeben um sich zu authentifizieren. Ist der Anbieter authentifiziert, wird kontrolliert ob es

noch web Services bzw. Datenbanken vom Anbieter vorhanden sind. Ist dies der Fall, darf der
58

Anbieter nicht gel&scht werden. Sonst wird der Anbieter gelGscht und die ID vom Anbieter

zurickgegeben.

3.4.2 Operationen fir Artefakte

addNewArtefact
Eingabe:

Mandatory: email, password, wsdlld | databaseld, description, type, Inhalt des Artefakts

Optional:
Ausgabe: artefaktld, relationld
Beschreibung:
Nach der Registrierung von einem Web Service bzw. einer Datenbank kann der Anbieter ein
neues XML Dokument im WS-Btndel bzw. ein neues Policy Dokument in der Datenbank
hinzufUgen. Der Typ des hinzufUgenden Artefakts darf nicht ,,WSDL* sein, weil in einem
BUndel nur genau ein WSDL-Artefakt vorhanden sein darf.
Beim Hinzufigen eines Artefakts zum WSDL-Artefakt muss der Anbieter eine Emailadresse,
ein Passwort, die ID des WSDL-Artefakts, die Beschreibung, den Typ und den Inhalt des
neuen Artefakts eingeben. Die Emailadresse und das Passwort dienen zusammen zur
Authentifizierung des Anbieters. Die ID des WSDL-Artefakts dient der Auswahl des
WSDL-Artefakts. Ist der Anbieter authentifiziert, wird das WSDL-Artefakt durch die
gegebene ID gesucht. Fall das WSDL-Artefakt existiert, wird irgendein Web Service durch
die ID des WSDL-Artefakts gesucht. Die Anbieter ID eines gefundenen Web Services wird
mit der durch die Authentifizierung zurictkgegebenen ID des Anbieters verglichen. Wenn die
beiden IDs identisch sind, geh&t das WSDL-Artefakt zum Anbieter. Dann wird das neue
Artefakt angelegt. Eine Relation wird vom WSDL-Artefakt zum neuen Artefakt erstellt. Falls
das neue Artefakt erfolgreich hinzugefUgt wird, werden die ID des Artefakts dem Anbieter
zurickgegeben.
Beim Hinzufigen eines Artfakts zu einer Datenbank ist der VVorgang &nlich wie beim

Hinzuf{pgen eines Artefakts zum WSDL-Artefakt.

59

deleteArtefact
Eingabe:

Mandatory: email, password, artefaktld

Optional:
Ausgabe: artefaktld
Beschreibung:
Der Typ des zu I&schenden Artefakts darf nicht ,,WSDL* sein, denn das Entfernen eines
WSDL-Artefakts bedeutet das Entfernen des ganzen WS-Btndels. FUr das Entfernen eines
WSDL-Artefakts steht die Operation deleteWebServices zur Verfigung. Beim L&chen eines
Artfakts muss der Anbieter Emailadresse, ein Passwort und die ID eines Artefakts eingeben.
Die Emailadresse und das Passwort dienen zusammen der Authentifizierung des Anbieters.
Die ID des Artefakts dient zum Auswahl des Artefakts. Ist der Anbieter authentifiziert wird
das Artefakt durch die gegebene ID gesucht. Falls das Artefakt existiert und kein
WSDL-Artefakt ist, wird zuerst durch die Artefakt ID das bezogene WSDL-Artefakt gesucht.
Falls gefunden:
dann wird irgendein Web Service durch die ID des gefundenen WSDL-Artefakts gesucht. Die
Anbieter ID eines gefundenen Web Services wird mit der durch die Authentifizierung
zurickgegebenen 1D des Anbieters verglichen. Wenn die beiden IDs identisch sind, geh&t
das Artefakt zum Anbieter. Dann wird die Relation vom WSDL-Artefakt zum Artefakt
gesucht und gel&cht. Anschlief®nd kann das Artefakt gelcscht werden und die ID des
Artefakts wird dem Anbieter zurickgegeben.
Falls nicht gefunden:
wird durch die Artefakt ID die bezogene Datenbank gesucht. Die Anbieter ID der gefundenen
Datenbank wird mit der durch die Authentifizierung zurictkgegebenen ID des Anbieters
verglichen. Wenn die beiden IDs identisch sind, geh&t das Artefakt zum Anbieter. Dann wird
die Relation aus der Datenbank zum Artefakt gesucht und gel&cht. Anschlief®nd kann das

Artefakt gelGcht werden und die ID vom Artefakt wird dem Anbieter zurickgegeben.

60

updateArtefact

Eingabe:

Mandatory: email, password, artefaktld, desription, Inhalt des Artefakts
Optional:
Ausgabe: artefaktld
Beschreibung:
Der Type des zu &ndernden Artefakts darf nicht ,,WSDL" sein, denn die Anderung eines
WSDL-Artefakts kann zu Anderungen des Web Serivces fthren. Dafir ist die Operation
updateWebServices zusténdig. Bei der Anderung eines Artefakts muss der Anbieter eine
Emailadresse, ein Passwort, die ID von einem Artefakt, die neue Beschreibung und das neue
Inhalt eingeben. Die Emailadresse und das Passwort dienen zusammen der Authentifizierung
des Anbieters. Die 1d des Artefakts dient zum Auswahl des Artefakts. Ist der Anbieter
authentifiziert, wird das Artefakt durch die gegebene ID gesucht. Fall das Artefakt existiert
und keine WSDL-Artefakt ist, wird zuerst durch die Artefakt ID das entsprechende
WSDL-Artefakt gesucht.
Wenn gefunden:
dann wird irgendein Web Service durch die ID des gefundenen WSDL-Artefakts gesucht. Die
Anbieter ID eines gefundenen Web Services wird mit der durch die Authentifizierung
zurickgegebenen ID des Anbieters verglichen. Wenn die beiden IDs identisch sind, geh&t
das Artefakt zum Anbieter. Dann k&nhnen die alten Informationen durch neue ersetzt werden.
Nach der Aktualisierung wird die 1D des Artefakts dem Anbieter zurickgegeben.
Wenn nicht gefunden:
wird durch die Artefakt ID die entsprechende Datenbank gesucht. Die Anbieter 1D der
gefundenen Datenbank wird mit der durch die Authentifizierung zurickgegebenen ID des
Anbieters verglichen. Wenn die beiden IDs identisch sind, geh&t das Artefakt zum Anbieter.
Dann k&nen die alten Informationen durch neue ersetzt werden. Nach der Aktualisierung

wird die ID des Artefakts dem Anbieter zuritkgegeben.

browseArtefacts

Eingabe:
61

Mandatory: suchMethode

Optional:
Ausgabe: Eine Menge von Artefakt-Metadaten
Beschreibung:
FU das Suchen von Artefakten ist die Authentifizierng des Anbieters nicht n@ig, jeder Nutzer
kann diese Funktion verwenden, es stehen fUnf Suchmethoden zur Verfigung und zwar durch
einen Typ von Artefakten, eine Beschreibung von Artefakten, einen Inhalt von Artefakten,
einen Zeitinterval des Anlegens von Artefakten und den Typ mit einem Zeitraum des
Anlegens von Artefakten. Als Ergebnis wird eine List von Artefakten Meta-Informationen

zuritkgegeben, die die 1D, die Beschreibung und den Typ von Artefakten enthalten.

retrieveArtefact
Eingabe:
Mandatory: artefaktld
Optional:
Ausgabe: artefaktType, description, Inhalt des Artefakts
Beschreibung:
Bei der Abholung eines Artefakts muss man eine Artefakt 1D eingeben. Das Artefakt wird
durch die ID gesucht, falls gefunden, werden der Typ, die Beschreibung und der Inhalt vom

Artefakt zurictkgegeben.

retrieveArtefactBundle
Eingabe:
Mandatory: wsdlld | databaseld
Optional:
Ausgabe: Eine Menge von Artefakt-Metadaten
Beschreibung:
Bei der Abholung eines ArtefaktbUndels muss man eine ID eingeben. Die ID kann entweder
eine WSDL-Artefaktld oder eine Datenbankld sein.

Falls die ID eine WSDL-Artefaktld ist:
62

wird das WSDL-Artefakt durch die ID gesucht, falls das WSDL-Artefakt existiert, werden
alle Artefakte gesucht, die jeweils eine Relation mit dem WSDL-Artefakt haben. FUr jedes
gefundene Artefakt inklusive WSDL-Artefakt, wird der Typ, die Beschreibung und der Inhalt
des Artefakts zurickgegeben

Falls die ID eine Datenbankld ist:

wird die Datenbank durch die ID gesucht, falls sie existiert, werden alle Artefakte gesucht, die
jeweils eine Relation mit der Datenbank haben. FUr jedes gefundene Artefakt ,wird der Typ,

die Beschreibung und der Inhalt des Artefakts zuritkgegeben

3.4.3 Operationen fir Datenbanken

registerDatabase
Eingabe:
Mandatory: email, password, databaseName, databaseDriver, databaseAddress
Optional: description, Policy Dokumente
Ausgabe: databaseld
Beschreibung:
Bevor der Anbieter eine Datenbank registriert, muss der Anbieter sicherstellen, ob er sich
schon registriert hat. Wenn Nein, muss der Anbieter sich zuerst registrieren, sonst muss der
Anbieter eine Emailadresse und ein Passwort angeben, um sich zu authentifizieren. Ist der
Anbieter authentifiziert, dann kann die Datenbank registriert werden. Bei der Registrierung
der Datenbank muss der Anbieter Informationen tber den Namen, dem Treiber und die
Adresse von der Datenbank angeben. Diese drei Informationen sind fUr die Registrierung der
Datenbank erforderlich. Die Datenbanknutzer k&nnen nur nach der Registrierung einer
Datenbank separat angelegt werden. FUr eine Datenbank wird eine in der Datenbank
eindeutige ID automatisch generiert. Optional kann der Anbieter noch Policy Dokumente
angeben, die mit der Datenbank assoziiert sind. FUr jedes gegebene Policy Dokument wird

jeweils ein Policy Artefakt angelegt und eine Relation wird von der Datenbank zum Artefakt

63

erstellt. Ist die Registrierung erfolgreich durchgefihrt, wird die ID der Datenbank und die IDs

der Artefakte zurickgegeben.

updateDatabase
Eingabe:

Mandatory: email, password, databaseld

Optional: databaseName, databaseDriver, databaseAddress, description
Ausgabe: databaseld
Beschreibung:
Nach der Registrierung einer Datenbank darf der Anbieter jeder Zeit die Informationen Cber
die Datenbank &dern. Aber die Operation unterstiizt nicht funktion die mit der Datenbank
assoziierten Policy Artefakte zu &dern. Das Registerservice bietet eine andere Operation
updateArtefakt an, die fir die Anderung eines Non-WSDL-Artefakts zust&ndig ist. Bei der
Anderung muss der Anbieter eine Emailadresse, ein Passwort, eine ID einer Datenbank und
neue Informationen (ber die Datenbank eingeben. Die Emailadresse und das Passwort dienen
zusammen der Authentifizierung des Anbieters. Database ID dient zur Auswahl der
Datenbank. Ist Der Anbieter authentifiziert, wird eine Datenbank durch die gegebene
Datenbank 1D gesucht. Wurde die Datenbank gefunden, wird die ID des Anbieters von der
gefundenen Datenbank mit der durch die Authentifizierung zurictkgegebenen ID des
Anbieters verglichen. Falls die beiden IDs identisch sind, geh&t die Datenbank zum Anbieter.
Dann darf der Anbieter erst die Informationen tber die Datenbank &ndern, weil der Anbieter
nur die Informationen eigener Datenbank &dern darf. Es wird dann kontrolliert, welche
optionale Parameter vom Anbieter gegeben sind. Die Werte der vorkommenden optionalen
Parameter werden jeweils mit dem entsprechenden im Datenbank gespeicherten Wert
verglichen, wenn die beiden Werte nicht identisch sind, wird der in der Datenbank
gespeicherte Wert durch den gegebenen Wert ersetzt. Wenn die Anderung fehlerfrei

ausgefthrt wird, wird die ID der Datenbank zurickgegeben.

addNewDatabaseUser

Eingabe:
64

Mandatory: email, password, databaseld, userName, userPassword

Optional: street, city, zipcode, country, telephone, website, userEmail
Ausgabe: userld
Beschreibung:
Beim Anlegen des Nutzers von einer Datenbank, muss der Anbieter eine Emailadresse, ein
Passwort, eine ID einer Datenbank und die Informationen tber den neuen Nutzer eingeben.
Die Emailadresse und das Passwort dienen zusammen zur Authentifizierung des Anbieters.
Die Datenbank ID dient zur Auswahl der Datenbank. Ist der Anbieter authentifiziert, wird
eine Datenbank durch die gegebene Datenbank ID gesucht. Wird die Datenbank gefunden,
wird die ID des Anbieters von der gefundenen Datenbank mit der durch die Authentifizierung
zuritkgegebenen ID des Anbieters verglichen. Falls die beiden IDs identisch sind, geh&t die
Datenbank zum Anbieter. Dann darf der Anbieter einen neuen Datenbanknutzer anlegen, weil
der Anbieter nur Nutzer fUr eigene Datenbanken anlegen darf. Der Anbieter muss noch
Informationen von userName, userPassword anbieten. Es wird kontrolliert, ob noch Werte der
optionalen Felder vorhanden sind. Falls der Nutzer erfolgreich angelegt ist, wird eine ID fir

den Nutzer automatisch generiert und dem Anbieter zurictkgegeben.

updateDatabaseUser
Eingabe:

Mandatory: email, password, databaseld, userld

Optional: street, city, zipcode, country, telephone, website, userPassword, userEmail
Ausgabe: userld
Beschreibung:
Bei der Anderung des Nutzers von einer Datenbank, muss der Anbieter eine Emailadresse, ein
Passwort, eine ID einer Datenbank, eine ID des Nutzers und neue Informationen vom Nutzer
eingeben. Die Emailadresse und das Passwort dienen zusammen der Authentifizierung des
Anbieters. Die Datenbank ID dient zur Auswahl der Datenbank. Nutzer ID dient zur Auswahl
des Nutzers. Ist der Anbieter authentifiziert, wird eine Datenbank durch die gegebene
Datenbank 1D gesucht. Falls die Datenbank gefunden wird, wird die 1D des Anbieters von der

gefundenen Datenbank mit der durch die Authentifizierung zurictkgegebene ID des Anbieters
65

verglichen. Falls die beiden IDs identisch sind, geh&t die Datenbank zum Anbieter. Dann
wird der Nutzer durch die gegebene Nutzer ID gesucht. Falls der Nutzer existiert und die
Datenbank 1D vom gefundenen Nutzer mit gegebener Datenbank ID identisch ist, darf der
Anbieter die Informationen Uber den Datenbank Nutzer aktualisieren. Es wird dann
kontrolliert, welche optionale Parameter vom Anbieter gegeben sind. Die Werte der
vorkommenden optionalen Parameter werden jeweils mit dem entsprechenden in Datenbank
gespeicherten Wert verglichen. Wenn die beiden Werte nicht identisch sind, wird der in der
Datenbank gespeicherte Wert durch den gegebenen Wert ersetzt. Falls die Informationen

ge&ndert werden, wird die ID des Nutzers dem Anbieter zurickgegeben.

deleteDatabaseUser
Eingabe:

Mandatory: email, password, databaseld, userld

Optional:
Ausgabe: userld
Beschreibung:
Beim L&chen eines Nutzers von einer Datenbank, muss der Anbieter eine Emailadresse, ein
Passwort, eine ID von einer Datenbank und eine 1D des Nutzers eingeben. Die Emailadresse
und das Passwort dienen zusammen zur Authentifizierung des Anbieters. Die Datenbank ID
dient zur Auswahl der Datenbank. Die Nutzer IDdient zur Auswahl des Nutzers. Ist der
Anbieter authentifiziert, wird eine Datenbank durch die gegebene Datenbank 1D gesucht.
Falls die Datenbank gefunden ist, wird die ID des Anbieters von der ausgewé&hlten Datenbank
mit der durch die Authentifizierung zurictkgegebenen ID des Anbieters verglichen. Falls die
beiden IDs identisch sind, geh&t die Datenbank zum Anbieter. Dann wird der Nutzer durch
die gegebene Nutzer ID gesucht. Falls der Nutzer existiert und die Datenbank 1D Nummer
vom gefundenen Nutzer mit der gegebenen Datenbank ID identisch ist, darf der Anbieter den
Nutzer IGschen. Fall der Nutzer fehlerfrei gelGscht wird, wird die ID des Nutzers dem

Anbieter zurickgegeben.

browseDatabaseUser
66

Eingabe:

Mandatory: email, password, databaseld, suchwert einer Suchmethode

Optional:
Ausgabe: eine Menge von Datenbank Nuzter
Beschreibung:
Beim Suchen der Nutzer von einer Datenbank, muss der Anbieter eine Emailadresse, ein
Passwort, eine Id von einer Datenbank und eine Suchmethode eingeben. Die Emailadresse
und das Passwort dienen zusammen zur Authentifizierung des Anbieters. Die Datenbank 1D
dient zur Auswahl der Datenbank. Ist der Anbieter authentifiziert, wird die Datenbank durch
die gegebene Datenbank ID gesucht. Falls die Datenbank existiert, wird die ID des Anbieters
von der gefundenen Datenbank mit der durch die Authentifizierung zurickgegebene 1D des
Anbieters verglichen. Falls die beiden IDs identisch sind, geh&t die Datenbank zum Anbieter.
Nur der Anbieter der Datenbank darf die Nutzer der Datenbank suchen. Der Anbieter kann
eine von vier Suchmethoden auswéhlen:
findByUserName, der Suchwert wird mit den gespeicherten Namen aller Nutzer der
Datenbank verglichen.
findByEmail, der Suchwert wird mit den gespeicherten Emails der aller Nutzer der
Datenbank verglichen.
findByAll, der Suchwert wird mit alle gespeichterten Informationen aller Nutzer der
Datenbank verglichen
findAll, braucht keinen Suchwert, alle Nutzer einer Datenbank werden gelistet und alle

Informationen Uber den Nutzer dem Anbieter zurUckgegeben.

deleteDatabase

Eingabe:

Mandatory: email, password, databaseld
Optional:
Ausgabe: databaseld, eine Menge von Artefaktlds

Beschreibung:

67

Beim L&schen einer Datenbank, muss der Anbieter eine Emailadresse, ein Passwort und eine
ID von einer Datenbank eingeben. Die Emailadresse und das Passwort dienen zusammen der
Authentifizierung des Anbieters. Die Datenbank ID dient zur Auswahl der Datenbank. Ist der
Anbieter authentifiziert, wird eine Datenbank durch die gegebene Datenbank 1D gesucht.
Falls die Datenbank existiert, wird die ID des Anbieters von der gefundenen Datenbank mit
der durch die Authentifizierung zuritkgegebenen ID des Anbieters verglichen. Falls die
beiden IDs identisch sind, geh&t die Datenbank zum Anbieter. Dann wird kontrolliert, ob die
Nutzer der Datenbank noch vorhanden sind. Die Datenbanknutzer werden n&mlich durch die
Datenbank ID gesucht. Falls noch welche existieren, werden zuerst alle Nutzer der Datenbank
gel&cht, dann wird weiter kontrolliert, ob noch Artefakte vorhanden sind, die Relationen mit
der Datenbank haben. Ist dies der Fall, werden zuerst die Relationen gel&cht, dann die
Artefakte. Danach kann die Datenbank gel&cht werden. Falls kein Nutzer der Datenbank
existiert, kann die Datenbank direkt gel&Gcht werden. Ist die Datenbank erfolgreich gel&cht,

dann wird die Datenbank ID dem Anbieter zurictkgegeben.

valuateDatabase
Eingabe:

Mandatory: databaseld, Bewertungsnote

Optional:
Ausgabe: databaseld, Bewertungsanzahl, Note der Datenbank
Beschreibung:
Bei der Bewertung einer Datenbank, ist die Authentifizierung nicht ndig. Jeder kann eine
Datenbank einfach bewerten. FUr die Bewertung sind eine ID einer Datenbank und die
Bewertungsnote erforderlich. Es wird die Datenbank zuerst durch die Datenbank 1D gesucht,
falls gefunden, erhcht sich die Bewertungsanzahl der gefundenen Datenbank um 1, die Note
der Datenbank wird auf (Bewertungsnote + Note der Datenbank)/Bewertungsanzahl gesetzt.
Falls die Bewertung der Datenbank fehlerfrei ausgefthrt wird, wird die 1D, die

Bewertungsanzahl und die Note der Datenbank zurUckgegeben.

68

browseDatabase
Eingabe:

Mandatory: Suchwert einer Methode

Optional:
Ausgabe: Eine Menge von Datenbanken
Beschreibung:
FU das Suchen der Datenbanken kann eine von sechs Suchmethoden ausgew&hlt werden:
findByProviderName, der Suchwert wird zuerst mit dem gespeicherten Namen aller
Anbieter verglichen, es kénen mehrere Anbieter mit gleichem Namen gefunden werden.
Dann werden die Datenbanken durch die 1Ds des gefundenen Providers gesucht
findByAll, der Suchwert wird mit allen gespeicherten Informationen aller Datenbanken
verglichen
findByRating, der Suchwert muss eine Zahl zwischen Null und Zehn sein. Alle Datenbanken,
dessen Noten grdr gleich die gegebene Zahl sind, werden gesucht.
findbyDatabaseName, der Suchwert wird mit dem gespeicherten Datenbank Namen aller
Datenbanken verglichen
findByPolicy, der Suchwert ist eine Policy. Die Suchmethode wird folgend detailliert
beschrieben:
Es wird zuerst kontrolliert, ob die gegebene Policy im Nomalform ist. Ist dies nicht der Fall,
wird die Policy normalisiert.
Nur die Datenbanken werden ausgewéhlt, mit denen ein oder mehrere Policy-Artefakte
assoziiert sind.
FUr jede ausgewéhlte Datenbank wird kontrolliert, ob die mit der Datenbank assoziierten
Policies in der Normalform sind. Ist dies nicht der Fall, werden die Policies normalisiert.
Dann werden die Policies gemerged. Die durch Merge entstehende Policy wird mit der
gegebenen normalisierten Policy verglichen, wenn die beiden Policies kompatibel sind, ist die
Datenbank qualifiziert.
Falls welche gefunden werden, werden alle Informationen von den Datenbanken

zurickgegeben.

69

3.4.4 Operationen fUr web Services

RegisterWebServices

Eingabe:

Mandatory: email, password, wsdlUri, WS-Btndel
Optional:
Ausgabe: eine Menge von Artefaktlds, eine Menge von Servicelds
Beschreibung:
Bei der Registrierung von Web Service muss der Anbieter eine Emailadresse, ein Passwort,
ein WS-Bindel und die Adresse des WSDL Dokumentes liefern. Die Emailadresse und das
Passwort dienen zusammen zur Authentifizierung des Anbieters. Wie schon beschrieben
enthd8t das WS-Bindel genau ein WSDL Dokument und mehrere andere XML Dokumente.
Das WSDL Dokument enth&t alle Informationen (ber einen bzw. mehrere Web Services wie
Service Name, Service Endpoint, Service Bindings, Service Operationen usw. Die Adresse
des WSDL Dokumentes spezifiziert wo das WSDL Dokument vom Anbieter bereitgestellt
wird. Ist der Anbieter authentifiziert, wird zuerst ein WSDL-Artefakt fir das WSDL
Dokument angelegt. Die WSDL-Artefakt 1D wird automatisch generiert. Falls es noch weitere
XML Dokumente im WS-Bindel vorkommen, wird fUr die Dokumente jeweils ein Artefakt
mit einer 1D erzeugt. FUr jedes Non-WSDL-Artefakt wird eine Relation vom WSDL-Artefakt
zum Artefakt angelegt. Dann wird das WSDL-Artefakt geparst, die Informationen ber
Service Name, Targetnamespace, Service Endpoint extrahiert und eine ID fUr jeweils einen
Web Service automatisch generiert. Diese Informationen sind fir die Erstellung vom Service
Metadaten notwendig. Falls die Registrierung fehlerfrei ausgeftnrt wird, werden die IDs von

Services und zusammen mit allen Artefakt IDs dem Anbieter zurickgegeben.

updateWebServices
Eingabe:
Mandatory: email, password, (wsdlld, wsdldokument) | (serviceld, [wsdluri],
[serviceDesription])

Optional:
70

Ausgabe: Eine Menge von servicelds

Beschreibung:

Bei der Anderung von Web Services, darf der Anbieter nur die Informationen der WSDL
Adresse und der Service Description von Service Metadaten oder dem Inhalt des
WSDL-Artefakts &ndern. Fir die Anderung der Non-WSDL- Artefakte steht die Operation
updateArtefakt zur Verfigung.

Der Anbieter gibt eine Emailadresse und ein Passwort ein, um sich zu authentifizieren. Ist der
Anbieter authentifiziert, wird kontrolliert, was ge&ndert werden soll, ist es der Inhalt von
WSDL Dokument:

dann wird das WSDL-Artefakt durch die gegebene ID gesucht. Fall das WSDL-Artefakt
existiert, sucht irgendein Web Service durch die ID des WSDL-Artefakts. Die Anbieter ID
eines gefundenen Web Services wird mit der durch die Authentifizierung zurickgegebenen
ID des Anbieters verglichen. Wenn die beiden IDs identisch sind, geh&t das WSDL-Artefakt
zum Anbieter. Dann werden alle Service Metadaten, die vom WSDL-Artefakt abh&ngig sind,
gel&cht. Dann kann das alte WSDL Dokument durch das neue ersetzt werden und das
geanderte WSDL-Artefakt wird wie bei der Registrierung der Web Service neu geparst. Die
Matadaten Information fr Services wird neu extrahiert und wieder gespeichert. Die neuen
Service IDs werden dem Anbieter zur{ctkgegeben.

Handelt es sichdabei Metadaten von einem Service zu &ndern:

wird der Service durch eine gegebene servicelD gesucht. Fall sie existiert, wird die Anbieter
ID des gefundenen Services mit der durch die Authentifizierung zurickgegebenen ID des
Anbieters verglichen. Wenn die beiden IDs identisch sind, geh&t der Service zum Anbieter.
Dann k&nen die alten Informationen durch die neuen entsprechend ge&ndert und gespeichert

werden.

deleteWebServices

Eingabe:
Mandatory: email, password wsdlld
Optional:

Ausgabe: eine Menge von Artefaktlds und eine Menge von servicelD
71

Beschreibung:

Der Anbieter darf nicht nur ein einzelnes Web Service, sondern muss alle Web Services, die
in einer WSDL Datei definiert sind I&chen. Beim L&chen der Web Services muss der
Anbieter eine Emailadresse, ein Passwort und die ID Nummer des WSDL-Artefakts eingeben.
Die Emailadresse und das Passwort dienen zusammen zur Authentifizierung des Anbieters.
Die ID Nummer des WSDL-Artefakts dient zur Auswahl des WSDL-Artefakts. Ist der
Anbieter authentifiziert, wird das WSDL-Artefakt durch die gegebene ID Nummer gesucht.
Fall das WSDL-Artefakt existiert, sucht irgendein Web Service durch die ID des
WSDL-Artefakts. Die Anbieter ID eines gefundenen Web Services wird mit der durch die
Authentifizierung zuritkgegebenen ID Nummer des Anbieters verglichen. Wenn die beiden
IDs identisch sind, geh&t das WSDL-Artefakt zum Anbieter. Dann werden alle Web Services
durch die WSDL ID gesucht. Alle gefundenen Web Services werden einfach gelGcht. Es
werden auch alle Artefakte gesucht, die jeweils eine Relation mit dem WSDL-Artefakt haben.
Falls gefunden, werden zuerst alle Relationen zwischen dem WSDL-Artefakt und den
gefundenen Artefakten gel&Gcht und dann die Artefakte. Anschlief®nd kann das
WSDL-Artefakt gelGscht werden. Werden alle Web Services und alle Artefakte erfolgreich
gel&Gcht, werden die IDs von gel&schten Web Services und Artefakten dem Anbieter

zurickgegeben.

valuateWebService

Eingabe:

Mandatory: serviceld, Bewertungsnote
Optional:
Ausgabe: serviceld
Beschreibung:
Bei der Bewertung eines Web Services, ist eine Authentifizierung nicht ndig, jeder kann
einen Web Service einfach bewerten. FUr die Bewertung, sind die 1D eines Web Services und
die Bewertungsnote erforderlich. Das Web Service wird zuerst durch die Web Service 1D
gesucht, falls gefunden, erh&nt sich die Bewertungsanzahl von der gefundenen Web Service

um 1, die Note des Web Services wird auf (Bewertungsnote + Note der
72

Datenbank)/Bewertungsanzahl gesetzt. Falls die Bewertung des Web Services fehlerfrei
ausgefthrt wird, wird die ID, die Bewertungsanzahl und die Note vom Web Service

zurickgegeben.

browseWebServices

Eingabe: Suchwert einer Suchmethode

Mandatory:
Optional:
Ausgabe: eine Menge von Services
Beschreibung:
Beim Suchen von Web Services kann eine von vier Suchmethoden ausgewéahlt werden:
findByAll, die Information wird in WSDL Artefakt durchgesucht, wenn gefunden, dann
werden alle relevanten Web Services mit der ID, dem Service Namen, dem Anbieter Namen,
der Beschreibung, Erstellungsdatum, der Bewertungsanzahl und der Bewertungsnote
zurickgegeben.
findByServiceName, der gegebene Name wird von Service Metadaten durchgesucht. Falls
gefunden, werden alle gefundenen Web Services zurickgeliefert.
findByRating, der Suchwert muss eine Zahl zwischen Null und Zehn sein. Alle Web
Services, dessen Noten grdd%r gleich die gegebene Zahl sind, werden gesucht.
findByPolicy Das suchen durch Service 1D, eine Operation und eine gegebene Policy. Der
Ausgangspunkt der Methode ist, dass ein Servicenutzer eine Operation von einem Service
aufrufen will, die gegebene Policy beschreibt die Anforderung an den Service vom
Servicenutzer. Wie diese Methode funktioniert, wird im folgenden beschrieben.
Zuerst ist die Service ID und eine Operation bekannt, dadurch kénnen das entsprechende
WSDL-Artefakt und alle Artefakte, die jeweils eine Relation mit dem WSDL-Artefakt hat,
gefunden werden.
Die Policy ist entweder als Kindelement von WSDL definiert oder in einem externen Artefakt
gespeichert. FUr beide Fale, kann festgestellt werden, mit welchen WSDL-Elementen die
Policies assoziiert sind. Dann wird eine Policy, der zu dem gefundenen Service geh&t fr

jeweils einen Endpoint wie folgend berechnet:
73

Berechnen der effektiven Policy fUr das Service Policy Subject, die einen Merge von allen
Policies ist und die mit dem entsprechenden wsdl:service Element assoziiert.

Berechnen der effektiven Policy fUr das Endpoint Policy Subject, die einen Merge von den
mit dem vom Service verwendeten wsdl:port Element assoziierten Policies, den mit dem vom
Port genutzten wsdl:binding Element assoziierten Policies und den mit dem vom Binding
eingesezten wsdl:portType assoziierten Policies.

Berechnen der effektiven Policy fUr das Operation Policy Subject, die einen Merge von den
mit dem wsdl11:portType/wsdl11:operation Element assoziierten Policies und den mit dem
wsdl11:binding/wsdl11:operation Element assoziierten Policies.

Die effektive Policy fUr Messages wird ebenfalls berechnet.

Die gegebene Policy in der Normalform wird mit der durch Merge aller vier effektiven
Policies entstandenen Policy verglichen. Falls beide Policies kompatibel sind, dann wird der

Service mit entsprechenden Bindings und Operationen zuritkgegeben.

retrieveWebService
Eingabe:
Mandatory: serviceld
Optional:
Ausgabe: detaillierte Informationen Uber das Service
Beschreibung:
Durch die eingegebene Web Service ID kann zuerst das WSDL-Artefakt gefunden werden.
Das gefundene WSDL-Artefakt wird geparst und die Informationen Uber die Bindings, die
Operationen und von den Operationen verwendeten Messages werden aus dem

WSDL-Artefakt extrahiert und zurickgegeben.

74

4 Implementierungen

Das Registerservice ist auf Fragmento aufgebaut. Die meisten Operationen vom Fragmento,
bezogen auf Artefakte sind sehr wichtig fUr das Registerservice. Einige Operationen von
Fragmento werden ge&ndert um sich an das Registerservice anzupassen und einige werden

vom Registerservice direkt als Bestandsteile tbernommen.

4.1 Repository Datenbank

Die von Fragmento verwendete Datenbank ,,Repository* enthdlt 11 Tabellen, wie in
Abbildung 5 gezeigt. Um das Registerservice zu implementieren, wird die Datenbank
Repository um 4 Tabellen erweitert (gezeigt in Abbildung 6):

e Die Tabelle Provider, die die Informationen der registrierten Anbieter der Web
Services bzw. der Datenbanken speichert. Die Tabelle enthdt 11 Felder: Uid,
Providername, Street, Zipcode, City, Country, Telephone, Website, Email, Password,
Created.

Die Felder der Tabelle providername, email und password dtrfen nicht leer sein, das
Feld Uid ist Keyfeld der Tabelle. Wenn ein neuer Anbieter angelegt wird, wird ein
Wert vom Feld automatisch generiert und dem Anbieter zugeordnet. Das Uid
identifiziert den Anbieter eindeutig und entspricht die ID des Anbieters.

e Die Tabelle Servicemetadata, die die Meta-Informationen der registrierten Web
Services speichert. Die Tabelle enth&t 10 Felder: Uid, Provider_Uid, Servicename,
WSDLUri, WSDLUid, Description, Serviceendpoint, Targetnamespace,
Nummberofvote, Userrating.

o Die Tabelle Database, die die Informationen der registrierten Datenbanken speichert.
Die Tabelle enth&t 9 Felder: Uid, Dbname, Dbdriver, Description, DbUri,
Numberofvote, Userrating, Created, Provider_Uid.

o Die Tabelle Dbuser, die die Informationen der Nutzer der registrierten Datenbanken
speichert. Die Tabelle enthdt 12 Felder: Uid, Username, Street, Zipcode, City,

Country, Telephone, Website, Email, Password, Created, Database_Uid.

75

= : | repository

B € public

----- @‘ Doménen ()
v%, Volltextsuche Konfigurationen (0)
----- [l voltextsuche - Wirterbicher (0)
= Voltextsuche - Parser (0)
-7 Valltextsuche - Vorlagen (0)
----- ‘% Funktionen (0)
EEI---% Sequenzen (1)
- B EEEE
[database
-3 dbuser
-3 lockdescriptor
&-[3 provider
[relationdescriptor
#-[F repositoryversiondescriptormetadata
ﬁ repositoryversionhistory
- servicemetadata
-3 versiondescriptor
ﬁ versiondescriptor_predecessors
ﬁ versiondescriptor_sucessors
-3 versionedobject
-3 versionedobjectmetadata
- xmlelement
&-[F xmlelementmetadata
% Triggerfunktionen ()
----- Sichten (0)
-----) Replikation (0)

ml

Abbildung 15: Die Datenbank Repository

4.2 Die Klassen und Methoden

Die Klasse Provider definiert eine Menge von Datentypen, die die Felder der Tabelle
provider der Datenbank entsprechen und die getter und setter Methoden, die fUr die
Operationen an die definierten Daten ermcglichen. Die Klasse spielt fUr das Anlegen der
Tabelle eine zentrale Rolle.
Das Interface GenericDao, die eine Menge von Methoden definiert, die fUr die Operationen
an den Tabellen der Datenbank zust&ndig sind:

o Die Methode persist(entitiy) ermcglicht einen neuen Datensatz in der entsprechenden

Tabelle der Datenbank zu speichern.

76

Die Methode find(primaryKey) ermcglicht einen Datensatz durch einen Primary Key
in einer Tabelle der Datenbank zu suchen.
Die Methode findAll() ermdglicht alle Datens&ze einer Tabelle der Datenbank zu

listen.

wliferiaces
& GenericDao <T,PK>
2 ST neances RO SOMImon 430

wrferiaces
@ persksi(in ey & ProviderDao
@ Nind(in primargkey PK)C T e SR remds Rarp sommon A
e gene,
® updse(lnenRr TR T @0
@ o=ke(in primankey P @0
o ozl T @0 s
@ |omk{in enily: T} bodle @ naSyCresedDate]in cresed: Date): List<Providers
@ fndandLock(in primanyey: PR T 3
L;I - = T &
@ |
= | oot
12l i
abpiements
W MIDlEmEnty |
1
e - F 1 9
GenericDaclmpl <T,PK= I o
F
& ZenerizDzomo % ProviderDaolmpl %
enarizDa -
o o !
@ i
¢ HDEThES £ marts a
@ i b i F
DI
@ find
P DI
@ TndA
DI
@ ThdAndCels
P B
] landLock
DI
@ lok
@ persk & P,
@ u & Pro

Abbildung 16: Klassendiagramm

Die Methode update(entity) ist zustzndig fir die Anderung eines in einer Tabelle der
Datenbank gespeicherten Datensatzes.

Die Methode delete(primaryKey) bietet die M@glichkeit an, um einen Datensatz einer
Tabelle der Datenbank durch den Primary Key zu I&Gchen.

Die Methode delete(entity) ermcglicht einen gegebenen Datensatz einer Tabelle der
Datenbank zu I&Gschen.

Die Methode lock(entity)

Die Methode findAndLock(primaryKey)

Die Methode exists(primaryKey) kontrolliert, ob ein Datensatz mit dem Primary Key

in einer Tabelle der Datenbank existiert.
77

e Die Methode findAndDelete(primaryKey) ermcglicht einen Datensatz in einer
Tabelle der Datenbank durch PrimaryKey zu suchen. Wenn gefunden, dann wird der
Datensatz gelGcht.

Die Klasse GenericDaolmpl implementiert alle Methoden, die im Interface GenericDao
definiert sind.

Das Interface ProviderDao ist vom Interface GenericDao vererbt. Alle die im GenericDao
definierten Methoden sind deswegen auch im ProviderDao definiert. Auf®rdem werden noch
vier weitere Methoden definiert:

e Die Methode findByAll(searchString: String) ermdglicht das Suchen der Datens&ze
der Tabelle provider der Datenbank durch eine beliebige Eingabe.

o Die Methode findByEmail(email: String) ist zusténdig fUr das Suchen von einen
Datensatz in der Tabelle provider der Datenbank durch eine gegebene Emailadresse.

o Die Methode findByProviderName(providerName: String) bietet die M@glichkeit an,
die Datens&ze in der Tabelle provider durch einen gegebenen Provider Name zu
suchen.

o Die Methode findByCreateDate(created: Date) ermcylicht die Datens&ze der Tabelle
provider der Datenbank durch das Anlegungsdatum zu suchen.

Die Klasse ProviderDaolmpl ist von der Klasse GenericDao vererbt und implementiert alle
Methoden, die im Interface ProviderDao definiert sind.

Die Klasse ServiceMetadata definiert eine Menge von Daten, die die Felder der Tabelle
provider der Datenbank entsprechen und die getter und setter Methoden, die fUr die
Operationen an die definierten Daten erm&glichen.

Das Interface ServiceMetadataDao ist vom Interface GenericDao vererbt. AufZr die vom
GenericDao definierten Methoden, sind noch sieben Methoden vom ServiceMetadataDao
definiert:

o Die Methode findByAll(searchString: String) erm&glicht das Suchen der Datens&ze
der Tabelle servicemetadata der Datenbank durch eine beliebige Eingabe.

o Die Methode findByServiceName(serviceName: String) ermdglicht das Suchen der
Datensé&ze der Tabelle servicemetadata der Datenbank durch einen gegebenen

Service Name.
78

o Die Methode findByServiceEndpoint(serviceEndpoint: String) bietet die M&glichkeit
an, ein Service durch gegebenen Service Endpoint zu suchen.
o Die Methode findByCreatedDate(created: Date) ist genau wie die Methode fir

ProviderDao.

3 GenericDaolmp! <T,FK=
diriertaces I
@ GenericDao «T,PK= - -
9 terviceMetadataDaolmpl
& GenaricDanimg -
delele
@ o dekis
§ =R
9 d=kEe
@ E ¥ i P =ks
@ N e
o s 1 e
e === | @ faa
@ MhidAndDekes
@ ThosCeks
AndLoc
@ @ fndAndLock
[e
P @ kX
T @ persks
@ U
@ upds

wirferiaces
0 ServiceMetadataDao 155:'

B T T = - T - T - - - - O L
= i i i e i i] "l L
0
Coa b ow
] &
1w -]

R B T T T T R

¢ 0 00 aa

[
C

x

o
Bou S
AR :

w

o 4,

Abbildung 17: Klassendiagramm

e Die Methode findByWsdIUri(wsdlUri: String) ermcglicht das Suchen durch ein
gegebenes WSDL-URI.

e Die Methode findByWsdlUid(wsdlUid: Long) ist zust&ndig fUr das Suchen durch eine
gegebene WSDL Uid Nummer.

e Die Methode findbyProviderUid(wsdlUid: Long) erm&ylicht die Datens&ze in der
Tabelle servicemetadata der Datenbank durch eine gegebene Provider ID Nummer zu
suchen.

Die Klasse ServiceMetadataDaolmpl ist vom GenericDaolmpl vererbt und implementiert

alle im ServiceMetadataDao definierten Methoden.

79

Die Klasse Database definiert eine Menge von Daten, die die Felder der Tabelle database der

Datenbank entsprechen und die getter und setter Methoden, die fUr die Operationen an die

definierten Daten ermcglichen.

Das Interface DatabaseDao ist vom Interface GenericDao vererbt. Alle in GenericeDao

definierten Methoden sind ebenfalls vom DatabaseDao definiert, auf®rdem sind noch finf

Methoden vom DatabaseDao definiert:

Die Methode findByAll(searchString: String) ist genau wie die Methode fir

ProviderDao.

Die Methode findByDbName(dbName: String) ermcglicht die Datens&ze in der

Tabelle database der Datenbank durch den gegebenen Datenbank Name zu suchen.

Die Methode findByDbUri(dbUri: String) bietet die M&ylichkeit an, einen Datensatz

von der Tabelle database durch gegebenes Datenbank URI zu suchen.

(2 GenericDaclmpl <T,FK>

GenericCaokm
=

2Ee

9 20 0@ a0 0 a
]
-

. HDEThE
ol _# . —

almpkemenis

wiferiaces
¥ GenericDao <T,PK=
(S ILESUTLNESOCes, RO x0TI .30

9 DatzbaseDaoclmpl

SangselEalm)

0w e ww 8

Moo W

LV

2e|

I
| =]

a0 aad

==

wimertaces
¥ DatabaseDao
e ROMLSOMImon . da0

¢ @ 99 @

R R T T]

dSyAl

iSO resed s

ndEyDiohiame
5y DR roviderLiid
Sy DioLan

£

o

crested Datz

PO = TR = T = T = Y = N = (R = |

(=]

o
1]
L

Abbildung 18: Klassendiagramm DatabaseDaolmpl

Die Methode findByDbProviderUid(dbProviderUid: Long) ist zust&ndig fir das

Suchen von Datens&ze durch eine gegebene Provider ID Nummer.

80

o Die Methode findByCreatedDate(created: Date) ist genau wie die Methode fir
ProviderDao.
Die Klasse DatabaseDaolmpl ist vom GenericDaolmpl vererbt und implementiert alle im
DatabaseDao definierten Methoden.
Die Klasse DbUser definiert eine Menge von Daten, die die Felder der Tabelle dbuser der
Datenbank entsprechen und die getter und setter Methoden, die fr die Operationen an die
definierten Daten ermcylichen.
Die Klasse DbUserDao ist vom Interface GenericDao vererbt. Alle im GenericDao
definierten Methoden sind deswegen auch im ProviderDao definiert. Auf&rdem werden noch
vier weitere Methoden definiert:
o Die Methode findByAll(searchString: String) ist genau wie die Methode fUr
ProviderDao.
e Die Methode findByUserName(userName: String) erm&ylicht das Suchen der
Datens&ze durch einen gegebenen User Namen.
o Die Methode findByDatabaseUid(databaseUid: Long) ist zusténdig fUr das Suchen
der Datens&ze durch eine gegebene Database ID Nummer.
e Die Methode findByCreatedDate(created: Date) ist genau wie die Methode fUr

ProviderDao.

81

wifiariaes
@ DbUserDao (2 GenericDaolmpl <T.PK=

de ushuRrepasRong comman.dao

" ZenarizDaokmg

deleis

@ d aa

eo e 9o a

a

2
g K
9 DbUserDacimpl @ persk
—— B# @ undse
o DolUserDaoimp SR wDErhE
I almplements
i
wimeracss
@ GenericDao <T,PK=>
02 UsLR E:l-:lir.-:lr_.'xl"l'l"ﬂ:l" 30

o oelee
@ dele
[

[+] hilg

@ Mndal

@ hdatekE
@ TndAndlock
@ ok

o persls

@ updze

Abbildung 19: Klassendiagramm DbUserDaolmpl

Die Klasse DbUserDaolmpl ist vom GenericDaolmpl vererbt und implementiert alle im

DbUserDao definierten Methoden.
Die Klasse VersionDesriptor definiert die Struktur eines Artefakts, das Interface

VersionDescriptorDao definiert die m&ylichen Operationen und wird von der Klasse

VersionDescriptorDaolmpl implementiert.

82

_ ?__l'?-.r_s_ii.:_rrrl;h_escriptur C) GenericDaclmpl <T,PK= e
? ISR repasoncomman made 0 GenericDao <TG

o cenericDemg de ustuT reposRon common dag
o deER
o dekE o dekEE
@ @ o oziEe
@ L“'D.E“'E_:"-: o =
@ TindAl @ 1
@ hdAndDekde @ MndA
@ ThdAndlock @ MndAndDeleiel
@ ok @ ndandlock
@ e @ ok
@ updse @ per

— @ updse

'LIt T

II.":E'-W': I wlDerhEy
'|II F Y |
wiferfazes
______ ¥ versionDescriptorDao
«implemeriti e UsiuTLnenas Rorg comman 430
@ ThdSPanEpnession

Abbildung 20: Klassendiagramm VersionDescriptorDaolmpl

Die fUr die Implementierung des RegisterSerive verwendeten Methoden:
Die Methode find(primarykey)

Die Methode delete(primaryKey)

Die Methode update(entity)

Die Methode persist(entitiy)

Die Klasse RelationDescriptor von Fragmento definiert das Relation Model. Das Interface
RelationManager definiert eine Menge Operationen basierend auf das Relation Model. Die
Klasse RelationManagerImpl ist die Implementierung von Interface. Das Folgende ist ein

Klassendiagramm.

83

‘:3 RelationDescriptor

=
N, HDOr
, siferizoss
(' RelationManagerimpl e .) RelationManager
L * || oeuswm reposhorycomemaon manager
@ foreia m.C
@ o
® o
L] [+
- [
: ________:::::::::E;'; @
. e e = — = = S implements o
@ o
L] o
L] [+
@ [
o o o
@

Abbildung 21: Klassendiagramm von RelationManagerimpl

Die fUr die Implementierung des Registerservice verwendeten Methoden:
Die Methode findByFrom(from)

Die Methode findByTo(to)

Die Methode deleteRelation(primaryKey)

Die Methode createRelation(from, to, description)

Die Klassen Serviceltem, Operationltem und Parameterltem definieren die Struktur von

einem Service, die Klasse WsdlParser ist zustandig fUr das Parsen von WSDL Artefakten.

84

‘:3 WsdlParser

iF DEFALAT S0AP ENCODING STYLE: Siring

EiraciSanica])
ENraciOperstions)
extraciOperation() ojiss=tize, impart, CF
EiracParamaterFroml essage])
(B eraciCompleParameten)

A e e iR Elemen)

‘::3 Operationltem

W E e a8

9 Serviceltem

o, Seniceiame Siring
o, wedladdress: Siring oirstarilate, impeay, Calh
oy, senfceEndpolnt Siring

L= TN = N = N = IR = T = I = I = |

o
n

o argethamesnace: Hring

~ OpETAnG &
seTsadT pes !
i® e : - QUEPErEmEETE & o
o o (2 Parameteritem L & o
I,; g B e ! AR - i_}
= - InParameers P
L B, name: Siring k » 5
® 2 o) ki Sari 3 , s
. Fp Lang P 3
o, \alues Siring L
o senioaid: S
o, operationiame: Sring
O InpuTType: Sar
o, Typer S

Abbildung 22: Klassendiagramm WsdIParser

Die Methode extractServices(), nimmt ein WSDL Dokument vom Typ Document als
Eingabe, extrahiert alle javax.wsdl.Servcice Elemente vom WSDL Dokument, ruft die
Methode extractService() auf, um die Objekte einzelnd zu verarbeiten und gibt dann eine

Liste von Serviceltem Objekten aus.

Die Methode extractService(), die Methode nimmt ein javax.wsdl.Service Element und ein
leeres Serviceltem Objekt als Eingabe, extrahiert alle javax.wsdl.Binding Elemente, ruft die
Methode extractOperations() auf, um die Elemente einzelnd zu verarbeiten und ruft die
Methode extractExtensibilityElement() auf, um die Adresse von Service zu finden. Dann

setzt das Serviceltem Objekt auf die extrahierten Informationen und gibt das Objekt aus.

Die Methode extractOperations(), nimmt ein Binding Element als Eingabe, extrahiert das

SOAPBInding Element und alle javax.wsdl.BindingOperation Elemente, und ruft die

85

Methode extractOperation() auf, um die Elemente einzelnd zu verarbeiten und gibt dann

eine Liste von Operationltem Elementen aus.

Die Methode extractOperation(), nimmt ein BindingOperation Element und ein leeres
Operationltem Objekt als Eingabe, extrahiert SOAPOperation Elemente und alle Message
Elemente, ruft die Methode extractParameterFromMesasage() auf, um die Elemente
einzelnd zu arbeiten, Dann setzt das Operationltem Objekt auf die extrahierten

Informationen und gibt das Objekt aus.

Die Methode extractParameterFromMessage() ruft die Methode

extractComplexParameter() auf, um alle primitiven Parameter zu extrahieren.

4.3 Realierung des Registerservice

FU die Impementierung des Registerservice wird zuerst ein WSDL Dokument
,registerSerivce.wsdl erstellt. Im Dokument werden alle beschriebenen Operationen in

einem PortType definiert, der Port Type wird nur von SOAP Binding verwendet.

L4 RegisterService EI (1] RegisterService
= RegisterServiceS50AP i deleteProvider
http://localhost:8080/ax... [xlinput parameter (2] deleteProviderRequestMessage

<11 output parameter | [e] deleteProviderResponseMessage

4k getPassword
[l input parameter (8] getPasswordRequestMessage
<11 output parameter | [e] getPasswordResponseMessage

4 registerProvider
[l input parameter [8] registerProviderRequestMessage
<11 output parameter | [e] registerProviderResponseMessage

4% updateProvider

[#linput parameter [8] updateProviderRequestMessage
11 output parameter | [&] updateProviderResponseMessage
4k authenticateProvider
[»linput parameter [8] authenticateProviderRequestMessage
11 output parameter [8] authenticateProviderResponseMessage
%k addMewArtefact
[#linput parameter (8] addMewArtefactRequestMessage

11 output parameter [e] addMNewArtefactResponseMessage

Abbildung 23: Ein Schnitt von WSDL Dokument vom Registerservice

86

Apach Axis2 bietet ein Werkzeug fir die Code Generierung ,,wsdl2java“, um von WSDL
Dokumente direkt in Java Codes zu generieren. Durch das Werkzeug wird eine Reihe von
Klassen, einen Deployment Discriptor ,,service.xml* und ein Registerservice.wsdl Dokument
erzeugt. Die meisten von den generierten Klassen repr&entieren die Datentypen und
Elementen, die in RegisterService.wsdl definiert wurden. Alle Klassen besitzen Eigenschaften
und entsprechende ,,get* und ,,set* Methoden nach der Typdefinition im XML Schema vom
WSDL Dokument und implementieren das Interface ADBBean. Die Klassen ermdglichen die
Implementierung der Funktionalit&en vom Registerservice durch normale Java-
Programmierung. Die SOAP Request Message enthaltenen Daten k&anen durch
entsprechende get-Methode ausgelesen werden und die zurickegegebenen Werte kénen
durch entsprechende set-Methode in SOAP Response Message gesetzt [2] werden. Zum
Beispiel ist die Klasse RegisterProviderRequestMessage(gezeigt in Abbildung 24) eine

solche Klasse:

ﬁ RegisterProviderRequestMessage zinterfaces
" ADBBean
Y MY_QNAME: QName org.apache.axis2. databinding
o | _«dmplements_
@ getProvider() @ QEH.:'”."PETEEF':)
@ setProvider() @ EEFfEI?ZE[::
@ getOMElement() @ serialize()
@ =erializel)
@ =erializel)
i@ getPullParser()
{9 Factory

Abbildung 24: Klassendiagramm vom RegisterProviderRequestMessage

Die generierte Klasse RegisterServiceMessageReceiverInOut, ermcglicht, eingehende
Message in Aufrufe an die richtige Service-Methode umzusetzen[2], die Klasse spielt keine
grof% Rolle Bei der Entwicklung.

Das Interface RegisterServiceSkeletonlnterface definiert die Schnittstelle fCr alle Methoden,
die im WSDL Dokument definierten Operationen entsprechen. Die Klasse

RegisterServiceSkeleton implementiert das Interface RegisterServiceSkeletonlInterface.
87

& RegisterService Skeletonlnterface

winterfaces

¢ o @@ @@ &9 2 @ 0000 Q0000000 QD

addNewArtefact()
addMewDatabazelser()
authenticateProvider()
browseArefacts()
browselatabase()
browselatabazellzer()
browseWebServices()
delete&rtefact()
deleteDatabazel)
deleteDatabaselzer()
deleteProvider()
deleteVWebServices()
getPassword()
registerCatabaze()
registerProvider()
registeriebServices()
retrievedrefact()
retrieveArefactBundle()
updateArtefact()
updatelatabase()
updateDatabasellzer()
updateProvider()
updateWebServices()
valuateDatabaszel)
valuateWebService()

(9 RegisterService Skeleton

e @ @@ o9 Q090000 QCQOQCQOQCPTDQDDOQDTOOQOD

addMewArtefact()
addNewDatabaselser()
authenticateProvider()
browseArefacts()
browselDatabaze()
browseDatabaselUser()
browseWebServices()
deleteArtefact()
deleteDatabase()
deleteDatabaselser()
deleteProvider()
deleteWebServices()
getPassword(}
registerDatabase()
registerProvider()
registerWebServices()
retrievefrtefact()
retrievesrefactBundle)
updateArtefact()
updatelatabaze()
updatelatabazelszer()
updateProvider(}
updateWebServices()
valuateDatabase()
valuateWebService()

Abbildung 25: Klassendiagramm von RegisterServiceSkeleton

Die Klasse RegisterServicelmpl, wie in Abbildung 26 gezeigt, ist von der Klasse
RegisterServiceSkeleton abgeleitet und Uberschreibt deren Methode. Auf&rdem enthdt die
Klasse noch einige weitere Methoden, die zu der Implementierung der in der Klasse
RegisterServiceSkeleton definierten Methoden dienen. Die Klasse ist zusténdig fir die
Implementierung vom Registerservice. Eigentlich kann die Implementierung vom
Registerservice einfach direkt in die Klasse RegisterServiceSkeleton eingefigt werden, aber
das ist nicht erwinscht, weil die Klasse im Laufe der Entwicklung neu generiert werden
k&nnten (wenn eine neue Operation in WSDL Dokument definiert wird), das bedeutet, dass
die neu generierte RegisterServiceSkeleton Klasse die alte ersetzt und irgendwie die Codes

der alten Klasse in die neue hinein kopiert werden muss, das macht es aber sehr umsténdlich.

88

Wenn die Implementierung in einer abgeleiteten Klasse steht, kann die Klasse

RegisterServiceSkeleton beliebig oft gel&cht werden.

{9 RegisterService Skeleton

addNewArtefact()
addMewDatabazelser()
authenticateProvider()
browseArefacts()
browselatabase()
browselatabazellzer()
browseWebServices(}
deletesrtefact()
deleteDatabazel)
deleteDatabaselzer()
deleteProvider()
deleteWebServices()
getPassword()
registeratabaze()
registerProvider()
registeriebServices()
retrieveArtefact()
retrieveArefactBundle()
updateArtefact()
updateDatabase(}
updateDatabaselzer()
updateProvider()
updateWebServices()
valuateDatabasel)

o oo oo QOQOQQOQQOQOQOSQPOEOCQCQQQOQQOQOQOQOQOODODODD

valuateWebService()

& RegisterServicelmpl

e @ e e o @ 9099 00000 DDPDPDODOD

browseWebServices()
updateDatabase()
authenticateProvider()
registeriWebServices()
valuateDatabaszel)
deleteWebServices(}
updateProvider()
registerProvider(}
updateWebServices()
deleteDatabasel)
registerlratabase()
browselatabase()
valuateWebService()
browselDatabazelzer()
deletelatabaszelser()
updateDatabasellser(}
addMewDatabaselser()
retrieveArtefactBundle()
deleteProvider()
updatesrtefact()
addNewArtefact()
deletefrtefact()
browseArefacts()
retrieveArefact()
createArtefact()
createRelation()

Abbildung 26: Klassendiagramm RegisterServicelmpl

4.3.1 Implementierung der Operationen fUr Anbieter

registerProvider

Die Methode registerProvider() ist fUr die Implementierung der Operation registerProvider

zusténdig.

89

Die Request Message hat den Messagetyp RegisterProviderRequestMessage und muss

name, emaill, emal2, passwordl, password?2 enthalten, optional kénen street, city, zipcode,

country, telephone, website, in der Message verpackt werden. Durch die get-Methode der

Klasse, kénen die Daten vom SOAP Request Message ausgelesen werden.

Die Response Message hat den Messagetyp RegisterProviderResponseMessage. Durch die

set-Methode kann die zUruckgegebene providerID in SOAP Response Message gesetzt

werden.

Die von der Methode aufgerufenen Methoden:

1. Die Methode persist() von ProviderDao wird aufgerufen, um die Informationen in
Datenbank zu speichern

2. Der Konstruktor SendEmail() der Klasse SendEmail, ermdglicht das Verschicken einer

Email um die Registrierung zu best&igen.

& SendEmail

g, host: String

o, ugernams: String

o, password: String

g, mail_head_name: String
o, mail_head_value: String
o, mail_from: String

g, personalName: String

& SendEmail()

CP SendEmailimail_to: String, mail_subject; String, mail_body: String)

Abbildung 27: Klassendiagramm von SendEmail

authenticateProvider

Die Methode authenticateProvider () ist fUr die Implementierung der Operation
authenticateProvider zusténdig.

Die Request Message hat den Messagetyp AuthenticateProviderRequestMessage, durch die
getEmail() und die getPassword() Methoden der Klasse, ist es m&glich, die Email und das

Passwort von SOAP Request Message auszulesen.

90

Die Response Message hat den Messagetyp AuthenticateProviderResponseMessage, durch
die Methode setPoviderld() der Klasse die zCruckgegebene Providerld in SOAP Response
Message gesetzt wird.

Die Methode findByEmail() von ProviderDao wird eingesetzt, um ein Anbieter durch die
ausgelesene Emailadresse in der Tabelle ,,provider zu suchen

Wird ein Provider gefunden, wird das gegebene Passwort mit dem Passwort des gefundenen
Providers verglichen. Falls die beiden Werte identisch sind, dann ist der Anbieter

authentifiziert. Die providerld wird zuritk gegeben.

retrieveProvider

Die Methode retrieveProvider() ist fUr die Implementierung der Operation retrieveProvider
zusté&ndig.

Die Request Message hat den Messagetyp RetrieveProviderRequestMessage und muss
providerld enthalten

Die Response Message hat den Messagetyp RetrieveProviderResponseMessage

Die von der Methode aufgerufenen Methoden:

Die Methode find() von ProviderDao wird aufgerufen, um diese Methode zu

implementieren.

getPassword

Die Methode getPassword() ist fr die Implementierung der Operation getPassword
zustandig.

Die Request Message hat den Messagetyp getPasswordRequestMessage und muss email
enthalten

Die Response Message hat den Messagetyp getPasswordResponseMessage

Die von der Methode aufgerufenen Methoden:

Die Methode findByEmail() von Providerdao wird aufgerufen, um Passwort zu holen.
Der Konstruktor SendEmail() der Klasse SendEmail, erm&glicht das Verschicken einer

Email mit dem gefundenen Passwort.

91

updateProvider

Die Methode updateProvider () ist fUr die Implementierung der Operation updateProvider

zustandig.

Die Request Message hat den Messagetyp updateProviderRequestMessage und muss email

und password enthalten, optional kéanen name, street, city, zipcode, country, telephone,

website, emaill, emal2, passwordl, password2 in der Message verpackt werden.

Die Response Message hat den Messagetyp updateProviderResponseMessage

Die von der Methode aufgerufenen Methoden:

1. Die Methode authenticate() wird aufgerufen, um zu (berprifen, ob der Anbieter existiert.
Ist der Anbieter authentifiziert, wird die providerld geliefert, sonst gibt sie “null” aus.

2. Die Methode find() von ProviderDao wird aufgerufen, um den Datensatz des Anbieters
abzuholen.

3. Die Methode update() von ProviderDao wird aufgerufen, um die Anderungen in

Datenbank zu speichern.

deleteProvider

Die Methode deleteProvider () ist fUr die Implementierung der Operation deleteProvider

zusténdig.

Die Request Message hat den Messagetyp DeleteProviderRequestMessage und muss email

und password enthalten

Die Response Message hat den Messagetyp DeleteProviderResponseMessage.

Die von der Methode aufgerufenen Methoden:

1. Die Methode authenticate() wird aufgerufen, um zu (berprifen, ob der Anbieter existiert.
Ist der Anbieter authentifiziert, wird die providerld geliefert, sonst gibt sie “null” aus.

2. Die Methode findByDbProviderUid() von DatabaseDao wird aufgerufen, um zu
Uberpriien, ob es noch registrierte Datenbanken vom Anbieter gibt, wenn Ja, gibt sie

“null” aus.

92

3. Die Methode findByProviderUid() von ServiceMetadataDao wird aufgerufen, um zu
Uberpriien, ob es noch registrierte Web Services von der Anbieter gibt, wenn Ja, gibt sie
“null” aus.

4. Die Methode delete() von ProviderDao aufgerufen, um den Datensatz des Anbieters zu

IGschen.

4.3.2 Implementierung der Operationen fUr Artefakte

addNewATrtefact

Die Methode addNewArtefact() ist fUr die Implementierung der Operation addNewArtefact
zustandig.
Die Request Message hat den Messagetyp AddNewArtefact RequestMessage und muss
email, password, fromld, xmIDokument enthalten
Die Response Message hat den Messagetyp AddNewArtefact ResponseMessage.
Die von der Methode aufgerufenen Methoden:
1. Die Methode authenticateProvider() wird aufgerufen. Ist der Anbieter authentifiziert,
wird Providerld geliefert, sonst gibt sie “null” aus.
2. Die Methode find() von VersionDescriptorDao wird aufgerufen, um zu tberprifen, ob
das Artefakt existiert. Ist dies der Fall:
I Es wird (berpriit, ob die providerld des gefundenen Artefakts und die durch die
Authentifizierung gelieferte providerld identisch sind. Ist dies nicht der Fall, gibt sie
“null” aus.

ii. Dann wird es kontrolliert, ob das Artefakt WSDL-Artefakt ist. Ist dies nicht der Fall,
gibt sie “null” aus.

iii. Die Methode createArtefakt() wird aufgerufen, um ein Artefakt anzulegen.

iv. Die Methode createRelation() von RelationManager wird aufgerufen, um eine
Relation von der Datenbank bzw. dem WSDL-Artefakt zum neuen angelegten
Artefakt anzulegen

3. Sonst wird die Methode find() von DatabaseDao aufgerufen, um zu Cberprifen, ob eine

Datenbank existiert. Ist dies der Fall:
93

Es wird (berpriit, ob die providerld der gefundenen Datenbank und die durch die
Authentifizierung gelieferte providerld identisch sind. Ist dies nicht der Fall, gibt sie
“null” aus.

Die Methode createArtefakt() wird aufgerufen, um ein Artefakt anzulegen.

Die Methode createRelation() von RelationManagerwird aufgerufen, um eine

Relation von der Datenbank zum neuen angelegten Artefakt anzulegen.

4. Sonst gibt sie “null” aus.

deleteArtefact

Die Methode deleteArtefact() ist fUr die Implementierung der Operation deleteArtefact

zustandig.

Die Request Message hat den Messagetyp DeleteArtefact RequestMessage und muss email,

password, artefaktld enthalten

Die Response Message hat den Messagetyp DeleteArtefact ResponseMessage.

Die von der Methode aufgerufenen Methoden:

1.

die Methode Authenticate() wird aufgerufen, um den Anbieter zu authentifizieren. Ist
der Anbieter authentifiziert, wird eine providerld geliefert, sonst gibt sie “null” aus.
Die Methode find() von VersionDesriptorDao wird aufgerufen, um zu tberprifen, ob
das Artefakt existiert. Ist dies nicht der Fall, gibt sie “null” aus.
Es wird kontrolliert, ob das gefundene Artefakt vom Typ WSDL ist. Ist dies der Fall, gibt
sie “null” aus.
Die Methode findbyTo() von RelationManger wird aufgerufen, um das Fromid zu
finden. Die Fromld ist entweder eine WSDL-Artefaktld oder eine Databaseld
Die Methode find() von VersionDescriptorDao wird aufgerufen, um zu Cberprifen, ob
ein WSDL-Artefakt durch die fromld gefunden werden kann, ist dies der Fall:
Es wird Uberpriift, ob die providerld des gefundenen WSDL-Artefakts und die durch
die Authentifizierung gelieferte providerld identisch sind. Ist dies nicht der Fall, gibt

sie “null” aus.

94

ii. Die Methode deleteRelation() von RelationManager wird aufgerufen, um die
Relation vomWSDL-Artefakt zum Artefakt zu |Gchen.
iii. die Methode delete() von VersionDescriptorDao wird aufgerufen, um das Artefakt
zu IGschen.
6. Sonst:

i. Die Methode find() von DatabaseDao wird aufgerufen, um zu tberprifen, ob die
providerld der gefundenen Datenbank und die durch die Authentifizierung gelieferte
providerld identisch sind. Ist dies nicht der Fall, gibt sie “null” aus

ii. Die Methode deleteRelation() von RelationManager wird aufgerufen, um die
Relation von der Datenbank zum Artefakt zu |&schen.

ii. die Methode delete() von VersionDescriptorDao wird aufgerufen, um das Artefakt

zu |Gschen.

updateArtefact

Die Methode updateArtefact() ist fUr die Implementierung der Operation updateArtefact

zusténdig.

Die Request Message hat den Messagetyp UpdateArtefact RequestMessage und muss email,

password, fromld, enthalten

Die Response Message hat den Messagetyp UpdateArtefact ResponseMessage.

Die von der Methode aufgerufenen Methoden:

1. Die Methode Authenticate() wird aufgerufen, um den Anbieter zu authentifizieren. Ist
der Anbieter authentifiziert, wird eine providerld geliefert, sonst gibt sie “null” aus.

2. Die Methode find() von VersionDesriptorDao wird aufgerufen, um zu (berprifen, ob
das Artefakt existiert. Ist dies nicht der Fall, gibt sie “null” aus.

3. Eswird kontrolliert, ob das gefundene Artefakt vom Typ WSDL ist. Ist dies der Fall, gibt
sie “null” aus.

4. Die Methode findbyTo() von RelationManager wird aufgerufen, um die Fromld zu

finden. Die FromId ist entweder eine WSDL-Artefaktld oder eine Databaseld

95

5.

Die Methode find() von VersionDescriptorDao wird aufgerufen, um zu tberprifen, ob

ein WSDL-Artefakt durch die fromld gefunden werden kann, ist dies der Fall:

Es wird (berprift, ob die providerld des gefundenen WSDL-Artefakts und die durch
die Authentifizierung gelieferte providerld identisch sind. Ist dies nicht der Fall, gibt
sie “null” aus.

Die Methode getXMLElement() wird aufgerufen, um ein XMLEIlement Objekt von
der Request Message abzuholen.

Die Methode setXmlElement() von VersionDescriptor wird aufgerufen, um den
alten Inhalt durch den neuen zu ersetzen.

Die Methode update() von VersionDescriptorDao wird aufgerufen, um die

Anderung in der Datenbank zu speichern.

6. Sonst ist die fromld eine ID einer Datenbank:

Es wird (berpriit, ob die providerld der gefundenen Datenbank und die durch die
Authentifizierung gelieferte providerld identisch sind. Ist dies nicht der Fall, gibt sie
“null” aus.

Die Methode getXMLElement() wird aufgerufen, um ein XMLEIlement Objekt von
der Request Message abzuholen.

Die Methode setXmlElement() von der Klasse VersionDescriptor wird aufgerufen,

um den alten Inhalt durch den neuen zu ersetzen.

iv. Die Methode update() von VersionDescriptorDao wird aufgerufen, um die
Anderung in der Datenbank zu speichern.
browseArtefacts

Die Methode browseArtefacts() ist fir die Implementierung der Operation browseArtefacts

zustandig.

Die Methode wird direkt von Fragmento Ubernommen.

retrieveArtefact

96

Die Methode retrieveArtefact() ist fUr die Implementierung der Operation retrieveArtefact
zusténdig.

Die Methode wird direkt von Fragmento Ubernommen.

retrieveArtefactBundle

Die Methode retrieveArtefactBundle() ist fUr die Implementierung der Operation

retrieveArtefactBundle zusténdig.

Die Request Message hat den Messagetyp RetrieveArtefactRequestMessage und muss eine

WSDL-Artefaktld oder eine databaseld enthalten.

Die Response Message hat den Messagetyp RetrieveArtefactResponseMessage.

Die von der Methode aufgerufenen Methoden:

1. Eswird kontrolliert welches Artefakt-Bindel geholt werden soll, das Artefakt-BUndel
von einer Datenbank oder von Web Services. Ist es ein Datenbank Artefakt-BUndel:

I Die Methode find() von DatabaseDao wird aufgerufen, um zu Uberprifen, ob die
Datenbank existiert. Ist dies der Fall, wird der Datensatz geholt, sonst gibt sie “null”
aus

ii. Die Methode findByFrom() von RelationManager wird aufgerufen, um die
Artefakte zu finden, die jeweils mit der Datenbank in Relation stehen.

iii. FUr jedes gefundene Artefakt wird die Methode retrieveArtefact() aufgerufen, um
die Artefakte zu holen.
2. Sonst:

i. Die Methode find() von ServiceMetadataDao wird aufgerufen, um zu Uberprifen,
ob das WSDL-Artefakt existiert. Ist dies nicht der Fall, gibt sie “null” aus.

ii. Die Methode findByFrom() von RelationManager wir aufgerufen, um die
Artefakte zu finden, die jeweils mit dem WSDL-Artefakt in Relation stehen.

ii. FUr jedes Artefakt inklusiv dem WSDL Artefakt wird die Methode retrieveArtefact()

aufgerufen, um die Artefakte zu holen.

97

4.3.3 Implementierung der Operationen fUr Datenbanken

registerDatabase

Die Methode registerDatabase() ist fir die Implementierung der Operation

registerDatabase zusténdig.

Die Request Message hat den Messagetyp RegisterDatabaseRequestMessage und muss

email, password, databaseName, databaseDriver, databaseUri enthalten. Optional kGinen

Policy Dokumente in der Message verpackt werden.

Die Response Message hat den Messagetyp RegisterDatabaseResponseMessage.

Die von der Methode aufgerufenen Methoden:

1. Die Methode authenticate() wird aufgerufen, um zu (berprifen, ob der Anbieter existiert.
Ist dies der Fall, wird eine providerld geliefert, sonst gibt sie “null” aus.

2. Die Methode findByDbUri() von DatabaseDao wird aufgerufen, um zu Uberprifen, ob
die Datenbank schon registriert ist. Ist dies der Fall, gibt sie “null” aus.

3. Die Methode persist() von DatabaseDao wird aufgerufen, um die Informationen der
Datenbank in der Datenbank Repository zu speichern.

4. FU jedes Policy Dokument wird die Methode createArtefact() aufgerufen, um ein
Policy Artefakt anzulegen, wenn es noch Policy Dokumente im Request Message gibt.

5. FUr jedes angelegte Policy Artefakt wird die Methode createRelation() von
RelationManager aufgerufen, um eine Relation von der Datenbank zum Policy Artefakt

ZU erzeugen.

updateDatabase

Die Methode updateDatabase () ist fUr die Implementierung der Operation updateDatabase
zustandig.

Die Request Message hat den Messagetyp UpdateDatabaseRequestMessage und muss email,
password, databaseld enthalten. Optional k&hnen databaseName, databaseDriver,
databaseAddress, description in der Message verpackt werden.

Die Response Message hat den Messagetyp UpdateDatabaseResponseMessage.

98

Die von der Methode aufgerufenen Methoden:

1. Die Methode authenticateProvider() wird aufgerufen, ist der Anbieter authentifiziert,
wird Providerld geliefert, sonst gibt sie “null” aus.

2. Die Methode find() von DatabaseDao wird aufgerufen, um zu Uberprifen, ob die
Datenbank existiert, wenn nein, gibt sie “null” aus.

3. eswird Uberpriit, ob die ID des Anbieters von der gefundenen Datenbank und die durch
die Authentifizierung zurickgegebene providerld identisch sind. Wenn nein, gibt sie
“null” aus.

4. Die Methode update() von DatabaseDao wird aufgerufen, um die Anderung des

Datensatz in der Datenbank Repository zu speichern

addNewDatabaseUser

Die Methode addNewDatebseUser() ist fUr die Implementierung der Operation

addNewDatabaseUser zusténdig.

Die Request Message hat den Messagetyp AddNewDatabaseUserRequestMessage und

muss email, password, databaseld, userName, userPassword enthalten. Optional kéinen street,

city, zipcode, country, telephone, website, userEmail in der Message verpackt werden.

Die Response Message hat den Messagetyp AddNewDatabaseUserResponseMessage.

Die von der Methode aufgerufenen Methoden:

1. Die Methode authenticateProvider() wird aufgerufen, ist der Anbieter authentifiziert,
wird eine providerld geliefert, sonst gibt sie “null” aus.

2. Die Methode find() von DatabaseDao wird aufgerufen, um zu Uberprifen, ob die
Datenbank existiert, wenn nein, gibt sie “null” aus.

3. eswird Uberpriit, ob die providerld von der gefundenen Datenbank und die durch die
Authentifizierung zurictkgegebene providerld identisch sind. Wenn nein, gibt sie “null”
aus.

4. Die Methode persist() der Klasse DbUserDao wird aufgerufen, um das

Datenbanknutzer Objekt in der Datenbank Repository zu speichern

99

updateDatabaseUser

Die Methode updateDatabaseUser/() ist fUr die Implementierung der Operation

updateDatabaseUser zusténdig.

Die Request Message hat den Messagetyp UpdateDatabaseUserRequestMessage und muss

email, password, databaseld, userld enthalten. Optional ké&nen street, city, zipcode, country,

telephone, website, userEmail in der Message verpackt werden.

Die Response Message hat den Messagetyp UpdateDatabaseUserResponseMessage.

Die von der Methode aufgerufenen Methoden:

1. Die Methode authenticateProvider() wird aufgerufen, ist der Anbieter authentifiziert,
wird eine providerld geliefert, sonst gibt sie “null” aus.

2. Die Methode find() von DatabaseDao wird aufgerufen, um zu Uberprifen, ob die
Datenbank existiert, wenn nein, gibt sie “null” aus.

3. Eswird Uberprift, ob die providerld von der gefundenen Datenbank und die durch die
Authentifizierung zurickgegebene providerld identisch sind. Wenn Nein, gibt sie “null”
aus.

4. Die Methode find() von DbUserDao wird aufgerufen, um zu Uberprifen, ob den
Datenbanknutzer existiert, wenn Nein, gibt sie “null” aus.

5. Eswird Kontrolliert, ob die databaseld des gefundenen Datenbanknutzers und die von der
Request Message gelieferten databaseld identisch sind. Wenn nein, gibt sie “null” aus.

6. Die Methode update() von DbUserDao wird aufgerufen, um die Anderung des

Datensatzes in der Datenbank Repository zu speichern

deleteDatabaseUser

Die Methode deleteDatabaseUser() ist fUr die Implementierung der Operation
deleteDatabaseUser zusténdig.

Das RequestMessage hat den Messagetyp DeleteDatabaseUserRequestMessage und muss
email, password, databaseld, userld enthalten.

Die Response Message hat den Messagetyp DeleteDatabaseUserResponseMessage.

Die von der Methode aufgerufenen Methoden:

100

1. Die Methode authenticateProvider() wird aufgerufen, ist der Anbieter authentifiziert,
wird Providerld geliefert, sonst gibt sie “null” aus.

2. Die Methode find() von DatabaseDao wird aufgerufen, um zu Uberprifen, ob die
Datenbank existiert, wenn nein, gibt sie “null” aus.

3. Eswird Uberpridt, ob die providerld von der gefundenen Datenbank und die durch die
Authentifizierung zurictkgegebene providerld identisch sind. Wenn nein, gibt sie “null”
aus.

4. Die Methode find() von DbUserDao wird aufgerufen, um zu Cberprifen, ob der
Datenbanknutzer existiert, wenn Nein, gibt sie “null” aus.

5. Eswird Kontrolliert, ob die databaseld des gefundenen Datenbanknutzers und die von der
Request Message gelieferten databaseld identisch sind. Wenn Nein, gibt sie “null” aus.

6. Die Methode delete() von DbUserDao wird aufgerufen um den Datenbanknutzer zu
IGschen.

browseDatabaseUser

Die Methode browseDatabaseUser() ist fUr die Implementierung der Operation

browseDatabaseUser zusténdig.

Das RequestMessage hat den Messagetyp browseDatabaseUserRequestMessage und muss

email, password, databaseld, Suchwert einer Suchmethode enthalten.

Die Response Message hat den Messagetyp browseDatabaseUserResponseMessage.

Die von der Methode aufgerufenen Methoden:

1.

Die Methode authenticateProvider() wird aufgerufen, ist der Anbieter authentifiziert,
wird die providerld geliefert, sonst gibt sie “null” aus.

Die Methode find() von DatabaseDao wird aufgerufen, um zu tberprifen, ob die
Datenbank existiert, wenn nein, gibt sie “null” aus.

es wird berprift, ob die ID des Anbieters von der gefundenen Datenbank und die durch
die Authentifizierung zurictkgegebenen providerld identisch sind. Wenn nein, gibt sie
“null” aus.

Es wird kontrolliert, welche Suchmethode verwendet wird. Ist es findByUserName:

101

i. die Methode findByUserName() von DbUserDAO wird aufgerufen, um
Datenbanknutzer durch den gegebenen Suchwert zu finden.
5. Sonst, ist es findByEmail:
i. die Methode findByEmail() von DbUserDAO wird aufgerufen, um
Datenbanknutzer durch den gegebenen Suchwert zu finden.
6. Sonst, ist es findByAll:
I die Methode findByAll() von DbUserDAO wird aufgerufen, um Datenbanknutzer
durch den gegebenen Suchwert zu finden.
7. Sonst:
i. die Methode findAll() von DbUserDAO wird aufgerufen, um alle Datenbanknutzer

der Datenbank zu finden.

deleteDatabase

Die Methode deleteDatabase() ist fUr die Implementierung der Operation deleteDatabase

zustandig.

Die Request Message hat den Messagetyp DeleteDatabaseRequestMessage und muss email,

password, databaseld enthalten.

Die Response Message hat den Messagetyp DeleteDatabaseResponseMessage.

Die von der Methode aufgerufenen Methoden:

1. Die Methode authenticateProvider() wird aufgerufen, ist der Anbieter authentifiziert,
wird eine providerld geliefert, sonst gibt sie “null” aus.

2. Die Methode find() von DatabaseDao wird aufgerufen, um zu Uberprifen, ob die
Datenbank existiert, wenn nein, gibt sie “null” aus.

3. eswird Uberpriit, ob die ID des Anbieters von der gefundenen Datenbank und die durch
die Authentifizierung zurictkgegebenen providerld identisch sind. Wenn nein, gibt sie
“null” aus.

4. die Methode findByFrom() von RelationManager wird aufgerufen, um zu Uberprifen

ob es noch Policy Artefakte gibt, die jeweils mit der Datenbank in Relationen stehen.

102

5. Fur jedes gefundene Policy Artefakt wird die Methode deleteRelation() von
RelationManager aufgerufen, um die Relation von der Datenbank zum Artefakt zu
IGchen. Dann wird die Methode deleteArtefact() aufgerufen, um das Artefakt IGchen.

6. Die Methode delete() von DatabaseDao wird aufgerufen, um die Datenbank zu I&schen.

valuateDatabase

Die Methode valuateDatabase() ist fUr die Implementierung der Operation valuateDatabase

zustandig.

Die Request Message hat den Messagetyp ValuateDatabaseRequestMessage und muss

databaseld und Bewertungsnote enthalten.

Die Response Message hat den Messagetyp ValuateDatabaseResponseMessage.

Die von der Methode aufgerufenen Methoden:

1. Die Methode find() von DatabaseDao wird aufgerufen, um zu Uberprifen, ob die
Datenbank existiert. Ist dies der Fall, wird der Datensatz abgeholt, sonst gibt sie “null”
aus.

2. Die Bewertungsanzahl des Datensatzes erhcht sich um 1, die Note des Datensatzes wird
auf (Bewertungsnote + Note der Datenbank)/Bewertungsanzahl gesetzt

3. Die Methode update() der Klasse DatabaseDao wird aufgerufen, um die Anderung des

Datensatzes in der Datenbank Repository zu speichern

browseDatabase

Die Methode browseDatabase() ist fUr die Implementierung der Operation browseDatabase
zustandig.

Die Request Message hat den Messagetyp BrowseDatabaseRequestMessage und muss einen
Suchwert einer Suchmethode enthalten.

Die Response Message hat den Messagetyp BrowseDatabaseResponseMessage.

Die von der Methode aufgerufenen Methoden:

1. Eswird kontrolliert, welche Suchmethode verwendet wird. Ist es findByProviderName:

103

i Die Methode findByProviderName() von ProviderDao wird aufgerufen, um durch
den gegebenen Suchwert Anbieter zu finden.
ii. FUr jeden gefundenen Anbieter wird die Methode findByDbProviderUid() von
DatabaseDao aufgerufen, um Datenbanken durch providerld zu finden.
2. Sonst, ist es findByEmail:
i. die Methode findByEmail () von DatabaseDao wird aufgerufen, um Datenbanken
durch den gegebenen Suchwert zu finden.
3. Sonst, ist es findByAll:
I die Methode findByAll() von DatabaseDAO wird aufgerufen, um Datenbanken
durch den gegebenen Suchwert zu finden.
4. Sonst, ist es findByRating
i. die Methode findByRating() von DatabaseDAO wird aufgerufen, um alle
Datenbanken zu finden, dessen Note grd%r gleich des gegebenen Wertes ist.
Die Suchmethode findByPolicy wird in der Arbeit nicht implementiert. Apache Neethi
Framework untersttizt WS-Policy und die Operationen Normalisierung, Intersection und
Merge. Durch die Operationen kann einfach (berpriUft werden, ob die Policy der Service Seite
und die Policy der Client Seite potenziell kompatibel sind. Das Problem, wie man es Uberprift,

ob zum Beispiel beide Policies echt kompatibel sind, wird in dieser Arbeit nicht gel&Gst.

4.3.4 Implementierung der Operationen fUr Web Services

registerWebServices

Die Methode registerWebServices() ist fUr die Implementierung der Operation
registerWebServices zusténdig.

Die Request Message hat den Messagetyp registerWebServices RequestMessage und muss
email, password, wsdlUri, WS-Bindel enthalten.

Die Response Message hat den Messagetyp registerWebServicesResponseMessage

Die von der Methode aufgerufenen Methoden:

1. Die Methode authenticate() wird aufgerufen, um zu (berprifen, ob der Anbieter existiert.

Ist dies der Fall, wird eine providerld geliefert, sonst gibt sie “null” aus.
104

2. FUrdas WSDL Dokument des WS-Bindels wird die Methode createArtefact(), um ein
WSDL-Artefakt anzulegen.

3. FUr jedes andere Dokument des WS-Bindels wird die Methode createArtefact()
aufgerufen, um ein Artefakt zu erstellen, dann wird die Methode createRelation() von
RelationManager aufgerufen, um die Relation vom WSDL-Artefakt zum Artefakt
anzulegen.

4. Die Methode extractServices() von WsdlParser wird aufgerufen, um das
WSDL-Artefakt zu parsen und Informationen von Services zu extrahieren.

5. FUr jeden extrahierten Service wird ein Objekt der Klasse ServiceMetadata mit
entsprechenden Informationen instanziiert und die Methode persist() von
ServiceMetadataDao wird aufgerufen, um das Objekt in Datenbank Repository zu

speichern.

updateWebServices

Die Methode updateWebServices() ist fUr die Implementierung der Operation
updateWebServices zusténdig.
Die Request Message hat den Messagetyp updateWebServicesRequestMessage und muss
email, password, (wsdlld, wsdIDokument) | (serviceld, [wsdlUri], [serviceDescription])
enthalten.
Die Response Message hat den Messagetyp updateWebServicesResponseMessage
Die von der Methode aufgerufenen Methoden:
1. Eswird durch die Request Message kontrolliert, was ge&ndert werden soll, das WSDL-
Artefakt oder Metadaten von Services. Falls es WSDL-Artefakt ist:
I Die Methode authenticateProvider() wird aufgerufen. Ist der Anbieter
authentifiziert, wird eine providerld geliefert, sonst gibt sie “null” aus.
ii. Die Methode find() von VersionDescriptorDao wird aufgerufen, um zu (berprifen,
ob das WSDL-Artefakt existiert. Ist dies nicht der Fall, gibt sie “null” aus.
iii. Die Methode findByWsdlUid() von ServiceMetadataDao wird aufgerufen, um alle

Datens&ze der Service Metadata durch wsdlld zu finden

105

Vi.

Vil.

viii.

es wird Uberprift, ob die providerld von einem gefundenen Datensatz und die durch
die Authentifizierung zurictkgegebene providerld identisch sind. Ist dies nicht der

Fall, gibt sie “null” aus.

Die Methode delete() vom ServiceMetadataDao wird aufgerufen, um alle
gefundenen Datens&ze zu |&Gchen.

Die Methode getXMLElement() wird aufgerufen, um ein XMLElement Objekt von
der Request Message abzuholen.

Die Methode setXmlElement() der Klasse VersionDescriptor wird aufgerufen, um
den alten Inhalt durch den neuen zu ersetzen.

Die Methode update() von VersionDescriptorDao wird aufgerufen, um die
Anderung in der Datenbank zu speichern.

Die Methode extractServices() von der Klasse WsdlIParser wird aufgerufen, um das
ge&nderte WSDL-Artefakt neu zu parsen und Informationen von Services zu
extrahieren.

FUr jeden extrahierten Service wird ein Objekt der Klasse ServiceMetadata mit
entsprechenden Informationen instanziiert. Die Methode persist() von
ServiceMetadataDao wird aufgerufen, um das Objekt in Datenbank Repository zu

speichern.

2. Sonst:

Die Methode authenticateProvider() wird aufgerufen. Ist der Anbieter
authentifiziert, wird providerld geliefert, sonst gibt sie “null” aus.

Die Methode find() von ServiceMetadataDao wird aufgerufen, um zu tberprifen,
ob Service existiert. Ist dies nicht der Fall, gibt sie “null” aus.

Es wird UberprUit, ob die Id des Anbieters vom gefundenen Service und die durch die
Authentifizierung zuritkgegebenen providerld identisch sind. Ist dies nicht der Fall,
gibt sie “null” aus.

Die Methode update() von ServiceMetadataDao wird aufgerufen, um die Anderung

des Datensatzes in der Datenbank Repository zu speichern

106

deleteWebServices

Die Methode deleteWebServices() ist fUr die Implementierung der Operation

deleteWebServices zusténdig.

Die Request Message hat den Messagetyp DeleteWebServices RequestMessage und muss

email, password, wsdlld enthalten.

Die Response Message hat den Messagetyp DeleteWebServicesResponseMessage

Die von der Methode aufgerufenen Methoden:

1. Die Methode authenticateProvider() wird aufgerufen. Ist der Anbieter authentifiziert,
wird eine providerld geliefert, sonst gibt sie “null” aus.

2. Die Methode find() von VersionDescriptorDao wird aufgerufen, um zu (berprifen, ob
das WSDL-Artefakt existiert. Ist dies nicht der Fall, gibt sie “null” aus.

3. Die Methode findByWsdlUid() von ServiceMetadataDao wird aufgerufen, um alle
Datens&ze der Service Metadata durch wsdlld zu finden

4. Eswird Uberpridt, ob die providerld von einem gefundenen Datensatz und die durch die
Authentifizierung zurictkgegebenen providerld identisch sind. Ist dies nicht der Fall, gibt
sie “null” aus.

5. Die Methode delete() von ServiceMetadataDao wird aufgerufen, um alle gefundenen
Datens&ze zu I&chen.

6. Die Methode findByFrom() von RelationManager wird aufgerufen, um alle Artefakte
zu finden, die jeweils mit dem WSDL-Artefakt in Relation stehen.

7. Die Methode delete() vom VersionDescriptorDao wird aufgerufen, um alle gefundenen

Artefakte und das WSDL-Artefakt zu IGschen

valuateWebService

Die Methode valuateDatabase() ist fUr die Implementierung der Operation valuateDatabase
zusténdig.

Die Request Message hat den Messagetyp ValuateWebServiceRequestMessage und muss
serviceld, Bewertungsnote enthalten.

Die Response Message hat den Messagetyp ValuateWebServiceResponseMessage.
107

Die von der Methode aufgerufenen Methoden:

1. Die Methode find() von ServiceMetadataDao wird aufgerufen, um zu Uberprifen, ob
der Service existiert. Ist dies der Fall, wird der Datensatz abgeholt, sonst gibt sie “null”
aus.

2. Die Bewertungsanzahl des Datensatzes erhcht sich um 1, die Note des Datensatzes wird
auf (Bewertungsnote + Note des Service) / Bewertungsanzahl gesetzt.

3. Die Methode update() der Klasse ServiceMetadataDao wird aufgerufen, um die

Anderung des Datensatzes in der Datenbank Repository zu speichern

browseWebServices

Die Methode browseWebServices() ist fUr die Implementierung der Operation
browseWebServices zusténdig.
Die Request Message hat den Messagetyp BrowseWebServicesRequestMessage und muss
einen Suchwert einer Suchmethode enthalten.
Die Response Message hat den Messagetyp BrowseWebServicesResponseMessage.
Die von der Methode aufgerufenen Methoden:
1. Eswird kontrolliert, welche Suchmethode verwendet wird. Ist es findByServiceName:
I Die Methode findByServiceName() von ServiceMetadataDao wird aufgerufen, um
Service Metadaten durch den gegebenen Suchwert zu finden.
2. Sonst, ist es findByAll:
i. die Methode findByAll() von ServiceMetadataDAO wird aufgerufen, um
Datenbanken durch den gegebenen Suchwert zu finden.
3. Sonst, ist es findByRating
i. die Methode findByRating() von ServiceMetadataDAO wird aufgerufen, um alle
Services durch den gegebenen Suchwert zu finden, dessen Noten grd%r gleich der
gegebene Wert ist.
Die Suchmethode findByPolicy wird in der Arbeit nicht implementiert. Apache Neethi
Framework untersttizt WS-Policy und die Operationen Normalisierung, Intersection und

Merge. Durch die Operationen kann einfach tberprift werden, ob die Policy der Service Seite

108

und die Policy der Client Seite potenziell kompatibel sind. Das Problem, wie man es Uberprift,

ob zum Beispiel beide Policies echt kompatibel sind, wird in dieser Arbeit nicht gelGt.

retrieveWebService

Die Request Message hat den Messagetyp RetrieveWebServiceRequestMessage und muss

eine serviceld enthalten.

Die Response Message hat den Messagetyp RetrieveWebServiceResponseMessage.

Die von der Methode aufgerufenen Methoden:

1. Die Methode find() von ServiceMetadataDao wird aufgerufen, um zu Cberprifen, ob
das Service existiert. Ist dies der Fall, wird der Datensatz geholt, sonst gibt sie “null” aus.

2. Die Methode find() von VersionDescriptorDao wird aufgerufen, um das
WSDL-Artefakt zu holen, das das Service beschreibt.

3. Die Methode extractServices() der Klasse WsdIParser wird aufgerufen, um das
WSDL-Artefakt zu parsen und Informationen von Services zu extrahieren.

4. Alle Informationen vom Service werden geholt, dessen Name mit dem Service Namen

vom gefundenen Datensatz identisch sind.

109

110

5 Zusammenfassung und Ausblick

In dieser Arbeit wurde ein Konzept entwickelt um die Registrierung und das Suchen von Web
Services und Datenbanken zu ermd&glichen.

Zun&hst wurden im Kapitel 2 die technischen Grundlagen zum Verst&ndnis der Arbeit
vorgestellt. Es wurden zuerst das Dreieck von SOA und die Definition vom Web Service kurz
erléutert, dann wurde der Begriff WSDL ausfthrlich erkl&t. WSDL beschreibt néamlich die
funktionalen Eigenschaften von Web Service. Ein WSDL Dokument besteht aus zwei Teilen:
einem wiederverwendbaren abstrakten Teil und einem konkreten Teil. Der abstrakte Teil von
WSDL beschreibt welche Funktionalit&en ein Web Service anbietet. Der abstakte Teil enth&t
drei Elemente <types>, <message> und <portType>. Der konkrete Teil der WSDL beschreibt,
wie und wo auf ein Web Service zugegriffen werden kann und enth&t zwei Elemente
<binding> und <service>.

SOAP ist eine Message Architektur und ein Message Verarbeitungsmodel. Eine
SOAP-Message besteht aus einem Envelope Element, dieses Element wiederum besteht aus
einem Body-Element und einen optionalen Header-Element. Im Body Element stehen die
eigentlichen Nutzdaten, im Header Element kdnhnen die Meta-Informationen, beispielsweise
zum Routing, zur VerschlUsselung oder zur Transaktionsidentifizierung untergebracht werden.
Das SOAP Message Verarbeitungsmodel spezifiziert wie ein Knoten ein SOAP Message
verarbeitet, falls es die SOAP Message empféangt.

Die WS-Policy beschreibt die nicht-funktionalen Eigenschaften von Web Service. Eine Policy
ist entweder in der Normalform oder in der Kompaktform. Die Normalform von Policies ist
wichtig fUr die Operationen Intersection und Merge. Die Operation Intersection Uberprift, ob
zwei Policies potenziell kompatibel sind. Wenn mehrere Policies mit einem Policy Subject
assoziiert sind, kann eine effektive Policy durch die Operation Merge berechnet werden.

Web Services Resource Framework (WSRF) spezifiziert einen Mechanismus, um die
Beziehung zwischen Web Services und deren Status zu beschreiben.

Am Ende dieses Kapitels wurde noch das Software Fragmento vorgestellt. Fragmento ist
zusténdig fir das Speichern, das Zugreifen und die Versionsverwaltung aller Artefakte, die

mit einem Prozess relevant sind.
111

In Kapitel 3 wurde das Konzept der Entwicklung vom Registerservice detailliert spezifiziert.
Das Registerservice ermdglicht es Web Services und Datenbanken zu registrieren, zu suchen
und zu verwalten. VVor der Registrierung von einem Service bzw. einer Datenbank muss der
Anbieter registriert sein. Ein Anbieter ist zusténdig fir die Verwaltung eigener Services und
Datenbanken. Bei der Registrierung von Web Services soll der Anbieter ein WS-BUndel
liefern. Ein WS-Bindel enth&t genau ein WSDL-Dokument, beliebig viele BPEL Prozess
Dokumente, beliebig viele Policy Dokumente und ein optionales XML Schema Dokument.
FUr das WS-Bindel wird entsprechend ein Artefakt-Bindel angelegt. FUr jedes XML
Dokument im WS-BUndel gibt es ein entsprechendes Artefakt im Artefakt-BUndel. FCr jedes
Non-WSDL-Artefakt im Artefakt-Bindel wird eine Relation vom WSDL-Artefakt zum
Artefakt angelegt. Die Relationen ermdglichen es durch ein WSDL-Artefakt, alle anderen
Artefakte im Artefakt-BUndel zu finden. Dann wird das WSDL-Artefakt geparst, um die
Metadaten fUr die Services, die durch das WSDL Artefakt beschrieben wurden zu extrahieren
und zusammen mit von dem Provider gelieferten Informationen in der Datenbank zu
speichern. Die Metadaten ermdglichen es einfach festzustellen, wem die Artefakten gehGen.
FUr die Registrierung einer Datenbank soll der Anbieter gentUgende Informationen, wie Name,
Adresse, Treiber usw. liefern. Auf®rdem kann ein Anbieter zus&zlich noch das Policy
Dokument mitgeben, die die Anforderung vom Anbieter fUr die Nutzung der Datenbank
spezifiziert. Das Policy Dokument wird ebenfalls als Artefakt in die Datenbank Repository
gespeichert. FUr jedes Artefakt gibt es eine Relation von der Datenbank und zum Artefakt.
Die Datenbanknutzer kénnen erst nach der Registrierung vom Anbieter separat angelegt
werden.

Nach der Registrierung kéinen die Datenbanken, Services und Artefakte von jedem gesucht
und nur vom Besitzer verwaltet werden. Das Registerservice bietet eine Reihe von
Operationen an, um sie entsprechend zu operieren.

Im Kapitel 4 wurde die Implementierung vom Konzept behandelt, es wurden nur die
wichtigen Klassen und Methoden vorgestellt. Die Klasse RegisterServicelmp ist die
Implementierung vom Service und wurde zusammen mit den Methoden der Klasse detailliert
spezifiziert.

Bei der Implementierung der Suchmethode findByPolicy der Operation browseWebservices
112

und der Operation browsedatabase, kommt das Problem auf wie man es (tberprift, ob zum
Beispiel beide Policies echt kompatibel sind oder nicht. Diese Frage wird in dieser Arbeit

nicht gel Gt.

113

114

Literaturverzeichnis

[1] Sanjiva Weerawarana, Francisco Curbera, Frank Leymann, Tony Storey, and Donald F.
Ferguson. Web Services Platform Architecture: SOAP, WSDL, WS-Policy, WS-Addressing,
WS-BPEL, WS-Reliable Messaging, and More. Prentice Hall PTR, 2005.

[2] Thilo Frotscher, Marc Teufel, Dapeng Wang. Java Web Service mit Apache Axis2. 2007

entwickler.press.

[3] Daniel Austin, Abbie Barbir, Christopher Ferris, Sharad Garg. Web Services Architecture
Requirements, W3C Working Group Note 11 February 2004.
http://www.w3.0rg/TR/wsa-regs.

[4] Erik Christensen, Francisco Curbera, Greg Meredith, Sanjiva Weerawarana, Web Services

Description Language (WSDL) 1.1, W3C Note 15 March 2001. http://www.w3.org/TR/wsdl.

[5] Prof. Dr. Frank Leymann, Institute of Architecture of Application Systems, Université&
Stuttgart. Die Vorlesung Web Services, Kapitel 09 SOAP, WS2009/10.

[6] Prof. Dr. Frank Leymann, Institute of Architecture of Application Systems, Universitéa
Stuttgart. Die Vorlesung Web Services, Kapitel 11 WSDL, WS2009/10.

[7] James Clark, Steve DeRose. XML Path Language (XPath) Version 1.0 W3C,

Recommendation 16 November 1999. http://www.w3.org/TR/xpath.

[8] Paul Grosso, Eve Maler, Jonathan Marsh, Norman Walsh. XPointer Framework, W3C

Recommendation 25 March 2003. http://www.w3.org/TR/xptr-framework/.

[9] David Orchard, Asir S Vedamuthu, Frederick Hirsch, Maryann Hondo, Prasad Yendluri,
Toufic Boubez, Umit Yalgnalp. WSDL 1.1 Element Identifiers, W3C Working Group Note
20 July 2007. http://www.w3.0rg/TR/wsdl11lelementidentifiers.

[10] Nilo Mitra, Yves Lafon. SOAP Version 1.2 Part 0: Primer (Second Edition),W3C

Recommendation 27 April 2007. http://www.w3.0rg/TR/soap12-part0/.

115

[11] Fragmento Dokumentation. Lizenz: Apache 2 License.
http://www.iaas.uni-stuttgart.de/forschung/projects/fragmento/downloads/Fragmento-docume

ntation.pdf.

[12] Alexander Wiese. Diplomarbeit Nr. 2664, Konzeption und Implementierung von
WS-Policy- und WSRF-Erweiterungen fUr einen Open Source Enterprise Service Bus. 23.

Februar 2008.

[13] Zhilei Ma. Diplomarbeit Nr. 2405, WS-Policy Editor - Ein Werkzeug fCr Editieren,

Normalisierung, Verschmelzen und Scheiden von Web Service Policies. 27. M&z 2006.

[14] Asir S Vedamuthu, David Orchard, Frederick Hirsch, Maryann Hondo, Prasad Yendluri,
Toufic Boubez, Umit Yalgnalp. Web Services Policy 1.5 — Framework , W3C
Recommendation 04 September 2007. http://www.w3.0rg/TR/ws-policy/.

[15] Asir S Vedamuthu, David Orchard, Frederick Hirsch, Maryann Hondo, Prasad Yendluri,
Toufic Boubez, Umit Yalgnalp. Web Services Policy 1.5 — Attachment, W3C

Recommendation 04 September 2007. http://www.w3.0rg/TR/ws-policy-attach/.

[16] Giovanni Della-Libera, Martin Gudgin, Phillip Hallam-Baker, Maryann Hondo, Hans
Grangqvist, Chris Kaler, Hiroshi Maruyama, Michael Mcintosh, Anthony Nadalin, Nataraj
Nagaratnam, Rob Philpott, Hemma Prafullchandra, John Shewchuk, Doug Walter, Riaz
Zolfonoon. Web Services Security Policy Language (WS-SecurityPolicy).
http://specs.xmlsoap.org/ws/2005/07/securitypolicy/ws-securitypolicy.pdf.

[17] Steve Graham, Anish Karmarkar, Jeff Mischkinsky, lan Robinson, and Igor Sedhukin.
Web Services Resource 1.2 (WS-Resource), OASIS Standard, 1 April 2006.

http://docs.oasis-open.org/wsrf/wsrf-ws_resource-1.2-spec-0s.pdf, 2006.

[18] Steve Graham, Jem Treadwell. Web Services Resource Properties 1.2
(WS-ResourceProperties), OASIS Standard, 1 April 2006.

http://docs.oasis-open.org/wsrf/wsrf-ws_resource_properties-1.2-spec-o0s.pdf.

116

[19] Latha Srinivasan, Tim Banks. Web Services Resource Lifetime 1.2
(WS-ResourceLifetime), OASIS Standard, 1 April 2006.

http://docs.oasis-open.org/wsrf/wsrf-ws_resource_lifetime-1.2-spec-o0s.pdf.

[20].Tom Maguire, David Snelling, Tim Banks. Web Services Service Group 1.2
(WS-ServiceGroup), OASIS Standard, 1 April 2006.

http://docs.oasis-open.org/wsrf/wsrf-ws_service_group-1.2-spec-os.pdf.

[21]Lily Liu, Sam Meder. Web Services Base Faults 1.2 (WS-BaseFaults), OASIS Standard,
April 1 2006. http://docs.oasis-open.org/wsrf/wsrf-ws_base faults-1.2-spec-os.pdf.

[22]Luc Clement, Andrew Hately, Claus von Riegen, Tony Rogers. UDDI Version 3.0.2,
UDDI Spec Technical Committee Draft, Dated 20041019.
http://www.oasis-open.org/committees/uddi-spec/doc/spec/v3/uddi-v3.0.2-20041019.htm.

[22] Prof. Dr. Frank Leymann, Institute of Architecture of Application Systems, Universita
Stuttgart. Die Vorlesung Web Services, Kapitel 11 Policies For Web Services, WS2009/10.

117

118

Listingsverzeichnis

Listing 1: WSDL Element definitioNns.........cccccvoeiiiiiiie e 6
Listing 2: WSDL EIement tyPes [4] ...cveeveiieeieeie ettt 6
Listing 3: Beispiel von WSDL EIEMENT tYPESocvviiiiiiiieieieie e 7
Listing 4: WSDL Element MesSage [4]......cooeiiveieiieieeie e 7
Listing 5: Beispiel vom WSDL EIeMeNnt MEeSSAQEccvevvveveiierieeie e sieesie e e esee e, 8
Listing 6: WSDL Element pOrtTYPe [4]....ccoveoveeiieiieeceeseee e 8
Listing 7: Beispiel vom WSDL Element POrtTYPEocveeeeieiie e 9
Listing 8: WSDL Element Dinding [4]oooveiiiiiee et 9
Listing 9: Extensibility Element soap binding [6]c.ccccoveviveieiiieiece e 10
Listing 10: Extensibility Element soap binding [6]ccocevvvevviiiiviieiese e 11
Listing 11: Extensibility Element soap body [6]........cccoveiieiiiieieecese e 11
Listing 12: Extensibility Element soap header [6]ccccoevveieiiiiieecese e 11
Listing 13: Beispiel WSDL Element bindingccccoovvevviiiiieie e 12
Listing 14: WSDL EIEMENE SEMVICE.......ccveiiiiieiieeie ettt 13
Listing 15: Beispiel WSDL EIEMENT SEIVICEccovviieiieiiie e 13
Listing 16: Beispiel der SOAP RequESt MESSAQEecveiveerieeieirie e e st 16
Listing 17: Beispiel der SOAP ReSPONSE MESSAJEccveiveerueerieiierieeieseeseesie e sieesee e 16
Listing 18: Beispiel VOM WS-POIICY.........cccociiiiiiiiciccecce e 19
Listing 19: Normalform vom WS-Policy [14]covveeiieie e 20
Listing 20: Beispiel einer Policy in der Normalform...........ccccoevvieiiiie s, 20
Listing 21: Optionale ASSEITIONccueiieiieiie et 20
Listing 22: Die &uivalente Form der optionalen Assertion mit Optional=true 21
Listing 23: Die &uivalente Form der optionalen Assertion mit Optional=false 21
Listing 24: Beispiel einer Policy im Kompaktformccccccoeeiiiieiiieieece e 21
Listing 25: Beispiel der &uivalenten Policy in der Normalformcccooveveiiennnne. 22
Listing 26: Beispiel von zwei POICIES [14]ooovveiieiie e 24
Listing 27: Beispiel vom Intersection von zwei Policies [14]......ccccovviviiieiiieiie e, 25
Listing 28: Beispiel von zwei Policies fUr Mergecocvevvviiieiie e 25
Listing 29: Beispiel von zwei Policies in der Normalform fir Merge........c.cccceevvevnenee. 26
Listing 30: Beispiel vom merged POIICYccooveiiiiiiiiic e 27
Listing 31: Beispiel vom merged Policy in der Normalform...........cccccooeeviiiiniiee e, 27
Listing 32: Beispiel vom Policy Assoziierung mit WSDL [15]......ccccovivviiiiiiiiecieenn, 29
Listing 33: External Policy Attachment [15]cccoeiiiiiiiiie e 30
Listing 34: Die Assoziierung vom Resource Properties Dokumentccccevvevinenee. 32
Listing 35:Beispiel von der Assoziierung von Resource Properties Dokument [18] 34
Listing 36: Beispiel vom GetMultipleResourceProperties Request Message [18] 34
Listing 37: Beispiel vom GetMultipleResourceProperties Response Message [18]........ 35
Listing 38: Beispiel eines Resource Properties Dokumentes [18]ccccovvvvivevieiiieennn. 36
Listing 39: Beispiel einer getResourcePropertyDokument Request Message [18] 36
Listing 40: Beispiel einer getResourcePropertyDokument Response Message [18] 37
Listing 41: Beispiel einer DestroyRequest Message [19]cccovviririniinienencnc e 39

119

Listing 42: Beispiel einer DestroyReponse Message [19]cccuee.e.

Listing 43: Beispiel einer SetTerminationTime Request Message [19]

Listing 44: Beispiel einer SetTerminationTime Response Message [19]cccceovervennen.

120

Abbildung 1:
Abbildung 2:
Abbildung 3:
Abbildung 4:
Abbildung 5:
Abbildung 6:
Abbildung 7:
Abbildung 8:
Abbildung 9:

Abbildung 10:
Abbildung 11:
Abbildung 12:
Abbildung 13:
Abbildung 14:

Abbildungsverzeichnis

SOA DIIBCK ...t 3
WED SErviCe DIEIECK........cciiiiiiieiie e 4
WSDL 1.1 SEUKLUT ..ottt et 5
WSDL 2.0 SEUKEUT ...ttt 14
SOAP Message StrUKLU [1]....ccoveiieiieieiieie e 15
Verarbeitungspfad einer SOAP Message mit Intermediaries [2]............... 17
Modell der Versionsverwaltung [11]c.ccocevviieiieieiiere e, 43
Versionen eines Artefakts [11]......cccovveveiiieiiiiiecie e 43
Relationen zwischen Artefakten [11]......cccccooviveiiiiiiieiece e 44

Konzeptionelles Model fUr Fragmento [11]......cccccvevevieveiieciiercee e 45

Relationen zwischen Web Services, Datenbanken und Anbietern 47

WS-BUNGAEL ...t 49

Der Zusammenhang zwischen Service, WSDL-Artefakt und Anbieter ..51
Der Zusammenhang zwischen Policy, Datenbank und Datenbanknutzer 52

Abbildung 15: Die Datenbank REPOSITOrYccecveieeiieiieiieieesie e 76
Abbildung 16: KIassendiagramiMcccccceiieieiieiieeie et sra s 77
Abbildung 17: KIassendiagramiMcccocveiieieoieieeieerie e sra s 79
Abbildung 18: Klassendiagramm DatabaseDaolmplccccccoceiiiiiiie i, 80
Abbildung 19: Klassendiagramm DbUserDaolmplc.cccevviieiieveiie s 82
Abbildung 20: Klassendiagramm VersionDescriptorDaolmplccccceeveiieinciiecnnne, 83
Abbildung 21: Klassendiagramm von RelationManagerimplccccoooveveievneiecnnne, 84
Abbildung 22: Klassendiagramm WSAIPArserccccovevvvieiieeie s 85
Abbildung 23: Ein Schnitt von WSDL Dokument vom Registerservice.............c.cev..... 86
Abbildung 24: Klassendiagramm vom RegisterProviderRequestMessage...................... 87
Abbildung 25: Klassendiagramm von RegisterServiceSkeleton..........c.ccccocevvevviiecnee 88
Abbildung 26: Klassendiagramm RegisterServicelmpl..........cccccooveiiiiiieiie i 89
Abbildung 27: Klassendiagramm von SendEmailccccooveviiiiic i 90

121

122

AbkUrzungsverzeichnis

BPEL........... Business Process Execution Language
EPR............ Endpoint Reference
GED........... Global Element Definition
HTTP.......... Hypertext Transfer Protocol
JMS............ Java Message Service
ME............. Message Exchange
MEP........... Message Exchange Pattern
SOA........... Serviceorientierte Architektur
SOAP........... Simple Object Accesss Protocol
ubDIl.......... Universal Description, Discovery and Integration
URI............ Uniform Resource Identifier
WSDL.......... Web Services Description Language
WSRF.......... Web Services Resource Framework
XML........... Extensible Markup Language

123

124

Namespaces

pr&ix Namespace

soap http://schemas.xmlsoap.org/soap/envelope/

wsdl http://schemas.xmlsoap.org/wsdl/

wsse http://docs.oasis-open.org/wss/2004/01/o0asis-200401-wsswssecurity-secext-1.0.xsd
wsp http://schemas.xmlsoap.org/ws/2004/09/policy

sp http://docs.oasis-open.org/ws-sx/ws-securitypolicy/200702
wsa http://www.w3.0rg/2005/08/addressing

wsrm http://schemas.xmlsoap.org/ws/2005/02/rm/policy

wsrf-rp | http://docs.oasis-open.org/wsrf/rp-2

wsrf-rl | http://docs.oasis-open.org/wsrf/rl-2

xsd http://www.w3.0rg/2000/10/XMLSchema

125

126

Erkl&ung

Hiermit versichere ich, diese Arbeit selbsténdigverfasst und nur die angegebenen Quellen

benutzt zu haben.

Hao Jin

127

