
Institut für Formale Methoden
der Informatik

Abteilung Theoretische Informatik

Universität Stuttgart
Universitätsstraße 38
D-70569 Stuttgarte

Institut für Softwaretechnik
und Programmiersprachen

Universität zu Lübeck
Ratzeburger Allee 160

D-23562 Lübeck

Diplomarbeit Nr. 3125

Temporal Logic for Properties
with Relative Frequency

Normann Decker

Course of Study: Computer Science

Examiner: Prof. Volker Diekert

Supervisor: Prof. Martin Leucker

Commenced: 1 January 2011

Completed: 1 July 2011

CR-Classification: F.4.1, D.2.4, F.3.1

Abstract. Inherently unreliable or fault-tolerant systems demand for a specification
formalism that allows the user to express a required ratio of certain observations.
Such a requirement can be, e.g. that deadlines in a real-time system must be met in
at least 80% of all cases. Logics and in particular temporal logics provide powerful,
flexible and well established specification formalisms. We therefore propose f LTL, an
extension to linear-time temporal logic that allows for expressing relative frequencies
by an intuitive generalization of the temporal operators. We develop a game theoretical
methodology and a semantics for temporal logic with counters. For our novel logic,
we establish an undecidability result regarding the satisfiability problem but identify a
decidable fragment which strictly increases the expressiveness of linear-time temporal
logic by allowing, e.g., to express non-context-free properties.

Keywords. Specification and Verification, Temporal Logic, Relative Frequency, Avail-
ability, Counter Logic

Contents

1 Introduction 5

2 Logic on Words 9
2.1 Notation and first-order logic . 9
2.2 Linear-time temporal logic . 11
2.3 Satisfiability of LTL formulae . 16

2.3.1 Focus games . 17

3 Defining Frequentness 25
3.1 LTL with relative frequencies . 26
3.2 From Minsky machines to f LTL . 30

4 Game-Representation and Satisfiability for f LTL 41
4.1 Counter semantics for f LTL . 42
4.2 Counter focus games . 48
4.3 ω-abstraction . 54
4.4 Systems of linear inequalities . 61

4.4.1 Restrictions . 69
4.4.2 An expressive decidable fragment of f LTL 74

5 Conclusion 79

3

1 Introduction

Formal specification, modelling and verification of software systems relies on con-
cepts that allow the user, for example programmer, customer, certifier or authority,
to precisely formulate requirements, assumptions or behaviour. It is often convenient,
and might even be straight forward, to detail out a system’s architecture, to explain be-
haviour, in natural language. Unfortunately, it is nearly impossible to avoid ambiguity,
to ensure that texts accurately reflect the authors’ intention. Secondly, a specification
should allow for, or even encourage, automated reasoning about a system with regard
to that specification on one hand, and analysing the specification itself on the other,
for example in terms of consistency or completeness.

Logics provide powerful and flexible languages to formulate properties of software
systems, processes, algorithms or models of any kind. Their fragments and dialects
address various areas of application and provide problem specific and intuitive means
of articulation. First or second order logic (FO, MSO), for example is a very general
framework that is rather unbiased subject to the domain or the types of statements.
That allows the intuitive application in many settings. Temporal logics are suitable
to express relations between events, actions or observations in an ordered, time-like
domain.

Based on the relationship between theories of logics and e.g. formal languages, au-
tomata or games, a variety of methods has been developed. Methods, that help de-
velopers to verify and analyse systems regarding to requirements and therefore to
produce more reliable software.

One particular domain of specification concerns so called soft requirements. In con-
trast to strict requirements, that stipulate explicitly a behaviour, a timely relationship
of events or the effects of an action, soft requirements are allowed to be violated by
the system to a certain extend. This can reflect for example properties for systems that
are inherently unreliable or be just more convenient since formulating requirements
and considering a less strict interpretation may be more intuitive and less complex
than an explicit specification. In a real-time application, it might be required that all
processes deliver results within a certain interval. While this is a strict demand, the
intention of the developer might actually be a soft deadline that can be missed up to a
certain number of times per interval. Formulating explicitly, that a streaming protocol
can allow a certain percentage of transmission errors might be complex in contrast to
just stating the strict property, that all transmissions must be correct and then adding
that this is required to hold only in “most” cases. Still, any formalism that can express
such relaxed properties must have a formal, clearly defined semantics.

5

The aim of the work reported on here was to develop and study a logical specifi-
cation formalism, for properties allows for relaxing obligations in terms of a relative
frequencies.

Extending a logical framework by some intuitive operation can provide more conve-
nient means of specifying properties and encourage developers to make use of them,
leading to better quality of software. However, the structure of a logical framework
might be very sensitive to small changes and the effect of any extension to the frame-
work can demand for extensive study.

We lay the focus on linear-time temporal logic (LTL) which was suggested for rea-
soning about computer programs first by Armir Pnueli in [Pnu77]. Since, it has been
extensively studied and proved to be a suitable formalism for formal specification and
verification of software.

Our approach starts by extending the until operator U from LTL by annotating a
constant frequency c to it. In LTL, the until operator connects two properties, rep-
resented by sentences ϕ and ψ. A formula ϕUψ expresses an eventuality in that the
property specified by ψ must hold eventually, i.e. at some point in the “future”. Addi-
tionally, the formula imposes an obligation in terms of ϕ. This obligation must hold at
every point in time as long, as the eventuality has not been fulfilled, which resolves the
formula, and releases the obligation. The obligation ϕ is thus bound to a scope – from
the point of instantiation until the eventuality holds – in which it must always be sat-
isfied. Following the idea of weakening strict requirements, an annotated frequency,
i.e. a rational number between zero and one, renders the obligation satisfied already,
if at least a fraction c of all positions within the scope satisfy the property ϕ. We
will formally define syntax and semantics of this extension and review the meaning
of derived operators in comparison to the original ones. We study in particular how
the frequency affects the semantics of the release operator R, which is defined as the
dual for U. Apart from the pure syntactical extension we observe that the annotation
of frequencies increases expressiveness in terms of language theoretic models.

In order to better understand the formalism and to step further in the direction of
application we will investigate the satisfiability problem of the new logic. It turns out
to be undecidable in general.

Nevertheless, we examine two approaches, based on games. Lange and Stirling in-
troduce so called focus games in [LS01] which can be used to decide the satisfiability
problem for LTL. One of the players plays for satisfiability and tries to construct a
model for the given formula. In order to adopt this approach to f LTL we develop a
semantics based on counters. This allows us to define a notion of unfolding, which
is essential for any approach based on tableaux and formula rewriting. We approxi-
mate infinite plays in our extended focus games in order to determine a winner. This
requires certain assumptions about the formulae. To overcome some of these restric-
tions A second approach tries to overcome some of the problems that arise in the first

6

approach by analysing a folded version of the game graph. We thereby identify a frag-
ment of f LTL that is still more expressive then LTL and for which satisfiability can be
decided.

Outline

This report is structured in five chapters. The first chapter introduces logic as specifi-
cation formalism and motivates the presented work. It contains a short abstract and
references related work. In Chapter 2 we give formal foundations and relate language
theory and logic. Sections 2.2 and 2.3 provide the crucial basis for the work presented
here. The temporal logic LTL is defined and focus games are discussed, providing a
game theoretical approach to satisfiability of LTL formulae. The major contribution of
this work is detailed out in Chapter 3 and 4. We propose the the extended temporal
logic f LTL in Section 3.1 and present first results regarding the relation to LTL and
expressivity. Section 3.2 establishes undecidability of f LTL by reduction of Minsky
machines. A counter semantics for f LTL is defined in Section 4.1 which provides the
basis for extending focus games to f LTL in Section 4.2. Extended focus games enable
us to identify an expressive and decidable fragment of f LTL at the end of the fourth
chapter. The conclusions in Chapter 5 describe soma alternatives that we did not focus
on and provide an outlook and ideas regarding future work.

Related work

In [HMO10], Hoenicke, Meyer and Olderog suggest an extension to regular expres-
sions which they call regular availability expressions. They consider availability of a
system as the ratio between time of execution and correct functioning. While they do
not consider actual timed models, finite words are used as a discrete representation.
For prefixes of a finite word, the availability of some set of letters A is the fraction of
observed letters from A and the length of that prefix.

The motivation for availability expressions is related to the idea of frequentness.
They express properties that require a system to fulfill some property to a certain
extend. Availability expressions contain special symbols, checkmarks, that define a
variable scope. The words defined by the expressions contain that symbol and in a
second processing step the check-marks are removed and the according availability is
checked for the prefix up to the marked position.

Their methodology is based on regular expression and finite automata models,
while the approach of f LTL is based on logic and games. Furhtermore, we use ω-
words as modles for infinite computation while availability is defined on finite words.

Probabilistic approaches to modeling and analysing systems in a quantitative setting
are well studied, e.g. in [dA97], and sophisticated tools are available, such as the

7

probabilistic model checker PRISM [HKNP06]. In [SLSR07], Sammapun et al. study
run-time checking of probabilistic properties.

However, these methods relay on stochastic models, such as Markov chains which
we do not consider in the work presented here. While probabilistic methods aim
at modelling actual statistic processes, our approach uses the notion of frequency
to formulate properties that would require a large explicit specification due to their
extensive combinatorics.

8

2 Logic on Words

Considering the behaviour of systems as chains of discrete observations, events, ac-
tions or states, leads to the domain of formal languages. We can make the assumption,
that in every time unit, i.e. in every position of such a “chain”, one of finitely many
observations is made, e.g. a particular action or one of finitely many system states.
The observations then yield a finite alphabet for our language theoretical framework,
runs of systems are represented as words over this alphabet and behaviours form
languages.

Atomic propositions provide an alternative that allow us to abstract from particular
observations. Take, for example, debug information in some computer program. An
observation, we can make at some point in time, is that a program variable X has a
value of 5 and at some other point it might have a value of 4. If the actual value is
not of interest but only the assertion that X is greater then zero, we can treat these
observations, and many more, identically. If we fix a finite set AP of such properties
we can consider the power set of AP our alphabet, distinguishing only observations
that differ substantially in the particular setting of verification.

We aim at reasoning about ideally infinite computations which reflect in particu-
lar the nature of reactive systems such as web-servers, operating or control systems.
Therefore our (idealised) models of computation are infinite, i.e. ω-words.

There are many formalisms to characterize infinite words and the goal is to find a
suitable framework for a certain task. In the following we want to introduce words
as logical models in general. Logics can provide intuitive languages to formulate
properties of words and to specify behaviour.

With logical formulae, a user does not explicitly state how a word must look like
but only state properties that are important. Compared to e.g. automata the user does
not have to have a strong imagination of an exact behaviour, but only about some
aspects, general rules that it must obey. Logic suits in particular the notion of atomic
propositions.

2.1 Notation and first-order logic

We start by clarifying some basic notation and introduce the setting of first-order logic
over words as linear structures.

9

Variables n,m, k . . . usually denote natural numbers and we follow the convention
that the natural numbers N = {1, 2, . . . } and N0 = N ∪ {0}. ϕ,ψ,Φ,Ψ, . . . denote
formulae. Σ always denotes a finite alphabet, Σ∗ the set of finite and Σω the set of
infinite words over Σ and Σ∞ = Σ∗ ∪ Σω. Letters are mostly denoted a, b, and u, v,w
are used for finite or infinite words over Σ. An infinite repetition of some finite word
u is denoted uω. For a word w = a0a1a2. . . we write |w| for the number of letters in
w, |w| = ω if w is infinite. For prefixes of w we write wn = anan+1. . . , for suffixes
w(n) = a0. . . an, thus w

0 = w(|w|+1) = w. For sets U ⊆ Σ∗, V ⊆ Σ∞ of words we define

the concatenation UV = {uv | u ∈ U, v ∈ V}. 2M is the power set of some set M.

The standard Boolean connectives ∧, ∨ and ¬ are used. For a set M of formulae we
may write short

∧

M or
∨

M for
∧

m∈M

m, or
∨

m∈M

m,

respectively. With first-order quantifiers ∀ and ∃ we bind variables x, y, . . . from a set
V ranging over some universe U.

For formulae in first-order logic we use the elements of AP, interpreted as unary
predicates p(x), q(x), . . . , and we assume a single additional binary predicate ≤, a
linear order on U. Symbols ⊥ and ⊤ are the logical constants true and false, respectively.
The syntax of first-order formulae is defined inductively by

ϕ ::= ⊤ | ⊥ | x ≤ x| ϕ ∧ ϕ | ϕ ∨ ϕ | ¬ϕ | ∀xϕ | ∃xϕ| p(x) (p ∈ AP)

We set brackets to indicate the exact order of evaluation if necessary. We may also use
the usual syntactic abbreviations such as →, < or =. For example we have ∀xp(x),
∃x∀y(x < y → p(y)) or ¬∀x(p(x) ∨ q(x)). Universal and existential quantification of
variables refers to values from U. Free variables, are those which are not bound by
any quantifier.

In our setting of formal languages we interpret formulae in terms of structures
(w, σ), where w ∈ Σω is an infinite word consisting of letters from Σ. The mapping
σ : V → U interprets free variables.

A word w = a0a1a2. . . with ai ∈ Σ = 2AP defines a logical model by taking the
positions in w as universe U = {i ∈ N0 | i < |w|}. We interpret a predicate p(x) as
the set of positions that carry a letter including p: p(x) = {i ∈ U | p ∈ ai}, thus the
semantics of some predicate is given by

(w, σ) |= p(x) iff p ∈ aσ(x) (p ∈ AP, x ∈ V).

We naturally also have a linear order on the positions that allows us to interpret the
binary predicate ≤ accordingly.

To first-order sentences with at most one free variable x, we give a semantics in
terms of languages in Σω by

L(ϕ) = {w ∈ Σω | (w, x 7→ 0) |= ϕ}.

10

By FO, we denote the here defined set of first-order formulae with linear order over
the alphabet Σ or the languages definable by such formulae. One may write FOΣ[≤] to
specify the allowed predicates explicitly – unary ones by the alphabet Σ = 2AP and the
one binary relation ≤. Since we do not vary this setting these annotations are omitted.

We can use FO as specification formalism to describe properties or behaviour of
some system but we will concentrate on an alternative, namely linear-time temporal
logic, that we introduce next. First-order logic needs to be mentioned, however, since
it forms an important basis of formal reasoning. Recalling the interpretation of this
“standard” logic in the context of languages is certainly beneficial for the understand-
ing of logics in general and the following forthcoming considerations in particular.

A rather algebraic methodology for characterizing first-order definable languages is
given by Volker Diekert and Paul Gastin in [DG08]. For a broad perspective on the
relationship between a variety of specification formalisms such as logic, automata or
games, and language theory the reader may also be referred to the survey “Languages,
Automata and Logic” by Wolfgang Thomas [Tho97] and the handbook “Automata,
Logics and Infinite Games” [GTW02].

2.2 Linear-time temporal logic

First-order logic formulae rely on an explicit handling of positions. The generalization
from propositions, which are just true or false, to predicates of positions allows for
evaluating propositions depending on the context (the position in a word). The argu-
ment for choosing logic to formulate properties of words was the intuitive handling by
the user. Now it appears that explicit variables still pose obstacles to natural intuition.
While a purely propositional formula is easy to formulate and to understand it can
not relate arbitrarily many positions to each other. An alternative to explicitly attach a
position to a proposition comes from modal logic. Modals allow, in a sense, to switch
the “setting”. Leibniz’ formulation of several “possible worlds”1 often serves as intu-
ition. Propositions are still only true or false but they depend on the current “world”.
In our setting these worlds are the positions of a word, but in contrast to predicates
we do not touch them directly. Instead we say that something happens “possibly” or
“necessarily”. In the formal framework for modal logic introduced by Kripke [Kri59],
connections between worlds play an important role as they define what is “possible”,
namely what is possible to reach from the current world. Considering word models,
the position are linked by a linear order. Therefore, if it is “possible” to reach a world
having a certain property this will happen eventually. On a one-dimensional chain of
positions, we can not go around any of them while moving on. Positions in words
are also considered as points in time on a discrete scale, they correspond to temporal

1 Gottfried Wilhelm Leibniz published in 1710 his “Essays on the Goodness of God, the Freedom of
Man and the Origin of Evil“ (original French title: “Essais de théodicée sur la bonté de Dieu, la liberté
de l’homme, et l’origine du mal”) in which he introduced the idea of different possible worlds.

11

sequences of worlds and so Prior suggested the temporal interpretation of modal oper-
ators [Pri57, Pri67] in the setting of such linear structures. The association with time
led to additional operators such as next and until. Consequently also corresponding
past operators were introduced.

“Temporal Logic introduces a clear distinction between variability within a
state, which is described using classic connectives and quantifiers, and the
variability over time, moving from one state to another.” [GPSS80]

However, in Linear-time Temporal Logic (LTL) which we consider here, no classical
quantifiers will be used. The application of temporal logic in computer science was
proposed by Burstall [Bur74] and Pnueli used in [Pnu77] temporal logic to reason
about liveness properties of concurrent programs which is regarded the starting point
of using temporal logic in program specification and verification.

Definition 2.1 (Linear-time temporal logic). Let AP be a finite set of atomic proposi-
tions and Σ = 2AP a finite alphabet. The syntax of Linear-time Temporal Logic (LTL)
formulae is given by

ϕ ::= ⊤ | ¬ϕ | ϕ ∧ ϕ | X ϕ | ϕU ϕ | p (p ∈ AP)

Let ϕ be such an LTL formula and w ∈ Σω an infinite word. The semantics of ϕ is
defined in terms of the relation |= as follows:

w |= ⊤
w |= p iff p ∈ w0 (p ∈ AP)
w |= ¬ϕ iff w 6|= ϕ

w |= X ϕ iff w1 |= ϕ

w |= ϕ ∧ ψ iff w |= ϕ and w |= ψ

w |= ϕUψ iff ∃n : wn |= ψ and
∀i<n : wi |= ϕ

For LTL formulae ϕ, ψ, the following abbreviations may also be used. We let AP be
the set of negated atomic propositions.

⊥ := ¬⊤

p := ¬p (p ∈ AP)

ϕ ∨ ψ := ¬(¬ϕ ∧ ¬ψ)

ϕRψ := ¬(¬ϕU¬ψ) (“release”)

F ϕ := ⊤U ϕ (“eventually“)

G ϕ := ¬ F¬ϕ (“globally”)

The set of models of a formula is L(ϕ) = {w ∈ Σω | w |= ϕ}.

12

We may use propositions p ∈ AP as letters in words. Those refer to the singleton
letters {p} ∈ Σ = 2AP.

Example ([Wol85]). Consider the following examples for LTL formulae:

p is satisfied by all words in which p is true at the first position. Any continuation is
then possible.

G(p → X q) states, whenever p holds in a position, then q must hold in the subsequent
one.

G(p → X(¬qU r)) is satisfied by words where if p is true at some position then q
must not hold from the subsequent position on, until the next position in which
r holds. Furthermore, by means of eventuality of the until operator, it must
happen that r holds at some point. If r holds already in the first position, i.e.
directly after p, the obligation ¬q does not have to hold at all.

G F p states that p must hold always eventually. There is no position, that is not
eventually preceded by p or, in other words, p must hold at infinitely many
positions.

G p ∧ F¬p is not satisfiable.

F p → (¬pU p) is a tautology, i.e. is satisfied by any word. The formula is valid.

Remark. Observe that we could also define the release operator R directly as

w |= ϕRψ iff ∀n : wn |= ψ or
∃i<n : wi |= ϕ

by negating the definition for U. This reveals an intuition for the operator: The formula
ψ has to always hold except there was once a positions that satisfied ϕ. Therefor
evaluating ϕ to true at some point releases the obligation ψ from the next position on.
In contrast to the obligation of an until formula, this ψ does not need to be released,
there is no eventuality that is necessary to hold at some position. The word pω satisfies
the qR p but not the formulae pU q.

Based on the abbreviations ⊥, ∨ and R, that semantically represent the dual oper-
ators of ⊤, ∧ and U, respectively, we define a positive normal form of LTL formulae
where negation appears only (and even implicitly) in front of atomic propositions.

Definition 2.2 (Positive Normal Form of LTL formulae). The syntax of the positive
normal form of LTL formulae is given by

ϕ ::= ⊤ | ϕ ∧ ϕ | ϕU ϕ | p | X ϕ |
⊥ | ϕ ∨ ϕ | ϕR ϕ | p (p ∈ AP)

13

ϕRψ

∧

ψ ∨

ϕ X(ϕRψ)

ϕRψ

...

...

...

X

ϕRψ

∧

ψ ∨

ϕ X(ϕRψ)

ϕRψ

...

...

...

X

Figure 2.1: Graphical representation of the unfolding of formulae ϕUψ and ϕRψ.

Note that for all LTL formulae ϕ there exists a formula ϕ′ in positive normal form
such that L(ϕ) = L(ϕ′).

A central equality that follows from the definition of LTL is the so called unfolding
equation

w |= ϕUψ ⇔ w |= ψ ∨ (ϕ ∧ X(ϕUψ)).

It allows a syntactical decomposition of LTL formulae into one aspect that must hold
now at the current position and another that is postponed to the future.

Dually, such an unfolding equation is derived for the release operator by negation:

w |= ϕRψ ⇔ w |= ψ ∧ (ϕ ∨ X(ϕRψ)).

For the analysis of LTL formulae these equations are very valuable. They allow us
to draw a tableau of the formula, a graphical representation of the timely development
described by the formula (see Figure 2.1). In such a graph, a next-formula leads by an
edge to a sub-graph describing what happens from the next point in time (i.e. at the
next position of a word model). Boolean connectives ∨ and ∧ describe a choice and a
composition of obligations, respectively. With the unfolding equation an until-formula
can be graphically represented in that manner, however, they lead in general to infinite
graphs as the unfolding can be repeated arbitrarily often on the same formula.

We define an operator to process formulae based on that equality for a syntactic, yet
semantically neutral, unfolding.

14

Definition 2.3 (Unfolding of LTL formulae). For LTL formulae Φ, ϕ and ψ in positive
normal form the unfolding unf(Φ) is defined as

unf(Φ) :=











ψ ∨ (ϕ ∧ X(ϕUψ)) if Φ = ϕUψ

ψ ∧ (ϕ ∨ X(ϕRψ)) if Φ = ϕRψ

Φ otherwise.

Remark. Commonly the notation LTLΣ[X,U] is used in order to refer to the formulae
following the syntax from Definition 2.1 or the languages over Σ that can be expressed
therewith. In this report, the alphabet is usually fixed and is therefore omitted, fur-
thermore we only consider infinite models and thus only ω-languages in Σω. Unless
stated otherwise, we assume the two temporal operators X and U, just as defined.

Note however, that e.g. [GPSS80] follows a slightly different notation, namely LTL[XU],
where only a single temporal operator XU is defined as

w |= ϕXUψ iff ∃n>0 : w
n |= ψ and

∀0<i<n : wi |= ϕ

The difference is that XU basically ignores the first position in a word. LTL[XU] is still
expressively equivalent to LTL[X,U] since X and U can be translated as

X ϕ = ⊥XU ϕ and

ϕUψ = ψ ∨ (ϕ ∧ ϕXUψ)

and
ϕXUψ = X(ϕUψ).

We stick to X and U since this equivalence is not given in the more general setting
of f LTL, which will be introduced in Section 3.1.

The definition of LTL semantics is based on first-order logic. In the definition only
two different names for variables were used and with an additional variable indicating
the current position, we can thus translate any LTL formula into an FO formula with
at most three names for variables. Hence LTL is at most as expressive as the according
fragment FO3 of FO. Kamp first established the fact, that it is exactly as expressive as
FO [Kam68]. While Kamp used additional past operators Gabbay et al. sharpened the
result in [GPSS80] to the pure future fragment of LTL, that is considered here. Also
their result is more general as it allows for arbitrary linearly ordered structures, in
particular not isomorphic to the natural numbers.

Regarding the class of languages, expressible in LTL, there are more characteri-
zations including star-free expressions, various automata models and an algebraic
characterization based on aperiodic monoids. In [DG08], Diekert and Gastin survey
translations between these theories.

15

2.3 Satisfiability of LTL formulae

An important issue about any formalism used to describe formal languages is empti-
ness. Methods checking a language for emptiness provide an insight and are further-
more crucial for practical applications such as consistency checking of specification or
especially model checking.

When specified by logical formulae, a language is none-empty if and only if the
formula is satisfiable, i.e. if there is a model, a word in our setting, under which the
formula evaluates to true. For LTL formulae, there exist several approaches to satisfi-
ability checking, common ones are based on tableaux and automata construction.

Tableaux, as e.g. described for first-order logic in [Smu68], syntactically decompose
logical formulae. They provide a graphical depiction of semantic relations by a syntac-
tical decomposition. An example is the use of the unfolding for the until and release
operator as shown in Figure 2.1. Many approaches to analysing formulae are based
on this principle. A method for satisfiability checking of LTL formulae is described in
[Wol85]. One advantage is usually, that the graph is constructed during the analysis
and needs not to be stored completely which is exploited, e.g. in the method described
in [GPVW95].

Related to the graphs of such tableaux are automata constructions, translations of
formulae to automata recognizing exactly according models. While classical tableaux
yield a result themselves, as they represent a calculus, e.g. for satisfiability, the au-
tomata approach interprets the tableau graph as an automaton model which is then
analysed with appropriate methods. There is a variety of automata constructions,
the classical approach is due to Vardi and Wolper [VW86, VW94]. A widely recog-
nized optimization by the use of alternating and generalized Büchi automata is due
to Gastin and Oddoux [GO01]. Again, the concepts are technically related, however,
the different intuitional interpretation may provide different inspiration and motivate
other techniques.

A third notion is the interpretation in terms of games. While being technically
also very similar to tableaux constructions and automata, the notion of two players
provides a natural perspective. This helps to investigate and understand the nature
of problems, in particular for combinatorially challenging analysis, such as reasoning
about infinite words.

In none-deterministic and deterministic automata models the transition relation is
much easier to overlook while alternation often provides a much more concise rep-
resentation. Arguing about strategies of players is often more intuitive and conve-
nient than arguing about some graph properties directly because strategies can be
none-positional, yet still intuitive. Equivalent automata models are preferably none-
deterministic, or even deterministic, which involves an exponential blow up and are
therefore often harder to understand and to reason about.

16

2.3.1 Focus games

In [LS01], Lange and Stirling suggest so called focus games for satisfiability checking of
LTL formulae. We discuss that approach in the following and extend it in Section 4.2
to analyse our extended logic f LTL.

Solving the question of satisfiability for a formula reduces to either provide a sat-
isfying model or to show that no such model exists. Intuitively, we can consider two
players, let us call them E and A, that argue about the existence of such a model.
Player E claims, that she can build such a model and Player A tries to prove that the
model provided violates the formula. Now if E comes up with a potential model and
we are convinced, that both players are smart enough, we can conclude that if A can
not disprove it, the formula is actually satisfied and, on the other hand, if he did pick
a false model then only for the reason a true one does not exist.

A game consists of a set of configurations that are owned by exactly one of the players
and moves that turn one configuration into another. We thus, have a graph where the
nodes are configurations and directed edges defined by the moves. Furthermore there
must be a winning condition that determines a winner for a play, i.e. a path in the
game graph. Players can choose a move according to a strategy that determines for the
current situation which move to make.

Focus games are based on the following idea: Take a set of positive formulae as
obligations. Assume Player E is our side in favour, we try to construct a word letter by
letter which satisfies all of them. Now if one of the formulae is an atomic proposition,
we must choose a letter which contains that proposition and, on the contrary, if we
face a negated proposition we must not chose a letter containing it. In particular, if
we have obligations p and ¬p for any p ∈ AP, we are lost and can not construct any
model satisfying both at a time. We need to avoid that at any cost. A conjunction ϕ∧ψ
can be broken up, adding ϕ and ψ to the set of obligations since we need to satisfy
both of them. A disjunction actually allows us to make a choice, namely of which part
we believe is easier to satisfy. Thus for each formula ϕ ∨ ψ we can discard one side
and keep the other. What is left are temporally quantified formulae. A X-formula does
not directly impose any constraint on the letter we can choose now so we leave them
untouched until we examined all obligations for the current position of the word. The
local influence of U- and R-formulae is characterized by their unfolding: For an U-
formula we have the chance to finally “fulfill” it by choosing the rear part, but only if
that does not lead to two contradicting propositions in the set. For the release, we have
a similar choice. The only difference is that we will have to fulfill any U eventually
while R-formulae can be postponed forever. Once the set of obligation consists only
of (none contradicting) atomic propositions and X-formulae, we choose the subset of
all positive propositions as letter for the current position in the word and proceed by
keeping only formulae ϕ for which we still have an obligation X ϕ.

Since conjunctions do not require a choice Player A appears to have nothing to do
at all but to point out if we added contradicting propositions. Yet, there is one more

17

[⊥R(pU q)] = Φ

[(pU q) ∧ (⊥∨ XΦ)]
[pU q],⊥∨ XΦ

[q ∨ (p ∧ X(pU q))],⊥∨ XΦ

start

[q], XΦ

challenge passed

[p ∧ X(pU q)], XΦ

p, [X(pU q)], XΦ

challenge failed

next next

Figure 2.2: Tableaux graph on the formula ⊥R(pU q). A focus distinguishes greatest
and least fixed points.

issue to keep track of. Consider the formula

Φ = ⊥R(pU q) = (pU q) ∧ (⊥∨ XΦ)

as the obligation in the set {Φ}. By breaking up the ∧-operator we get {pU q,⊥∨X ϕ}.
For the second formula we have no actual choice since ⊥ is unsatisfiable. With the first
formula unfolded we have thus {q ∨ (p ∧ X(pU q)), X ϕ} that gives us the first choice,
namely either to discard q or (p∧X(pU q). Even though there is no reason not to keep
q in this case, let us consider both options as shown in Figure 2.2 and see what makes
the difference in terms of constructing a model, i.e. winning the game. Taking the left
loop infinitely often, Player E builds a word {q}ω , which is a model for the formula.
Choosing the right loop does not violate the formula locally at any time but the word
constructed would be {p}ω which is not a model because the obligation pU q was
never fulfilled but postponed forever.

Giving Player A the possibility to point out obligations which are illegally postponed
forever is done by introducing a so called focus. Player A can focus on an U-formula,
indicating that he does not believe that this particular sub-formula will eventually be
satisfied. In case of conjunctions that carry the focus, Player A chooses the one that
inherits it. Now Player E has not only to avoid local contradictions but also prove, that
the formula in focus can be fulfilled. Once that is proven A can challenge E again by
moving the focus, but only to a formula that has not had the focus before.

With these considerations we can formalize moves and configurations in more detail.

Definition 2.4 (Sub-formulae). For a formula Φ in positive normal form the set sub(Φ)

18

of unfolded sub-formulae is defined inductively by

sub(p) := {p} (p ∈ AP ∪ AP)
sub(ϕ ∧ ψ) := {ϕ ∧ ψ} ∪ sub(ϕ) ∪ sub(ψ)
sub(ϕ ∨ ψ) := {ϕ ∨ ψ} ∪ sub(ϕ) ∪ sub(ψ)
sub(X ϕ) := {X ϕ} ∪ sub(ϕ)
sub(ϕUψ) := {unf(ϕUψ), ϕ ∧ X(ϕUψ), X(ϕUψ)}

∪ sub(ϕ) ∪ sub(ψ)
sub(ϕRψ) := {unf(ϕRψ), ϕ ∨ X(ϕRψ), X(ϕRψ)}

∪ sub(ϕ) ∪ sub(ψ)

Additionally, we always have ⊤,⊥ ∈ sub(Φ).

Definition 2.5 (Focus Games [LS01]). Let Φ be an LTL formula in positive normal
form. The focus game G(Φ) is a graph (V, E) where V ⊆ sub(ϕ) × 2sub(Φ) is a set
of game configurations and E ⊆ V × V is a transition relation. For any configuration
C = ([ϕ], Γ) it is required that ϕ ∈ Γ. ϕ indicates the formula that carries the focus
which we indicate by the surrounding brackets. If Φ is not already unfolded, we set
G(Φ) := G(unf(Φ)).

We identify configurations if they are equal after application of the normalization
rules from Figure 2.3. Two configurations c1, c2 are connected by a dircted edge, i.e.
(c1, c2) ∈ E iff one of the moves from Figure 2.3 can be applied to c1 and results in c2.
Normalization rules and moves are read from top to bottom. Note, that the order of
application of moves or rules does not matter. The most important rule considering
the constructed word is the next rule. It discards all atomic propositions and exactly
those are required to hold in the current position. With application of the next rule
we move one step further in the construction of the word but that is possible if and
only if no other move or rule can be applied anymore. To make the game graph
syntactically explicit we can assume an arbitrary order, that ensures that all rules that
can be applied will be applied eventually. For visualizing games we might combine
moves whenever convenient.

In a configuration C = ([X ϕ1], {X ϕ1, . . . , X ϕn, q1, . . . , qm}) a winner may have be-
come apparent. If there is a propositional contradiction qi = qj, player E obviously
did not succeed in constructing a model for the initial formula and thus the game
is lost for her. On the other hand, if n = 0 all requirements have been met and the
game is won by E. There is no rule that applies to an empty configuration, anyway.
Furthermore the configuration may have occurred already. In that case the game can
go on forever, repeating that loop ad infinitum. By means of the focus a winner can
nevertheless be anticipated: Such an infinite sequence depends on the repeated un-
folding of an until or release formula. Assuming there was no contradiction so far in
the play, the only reason why E should not go on like this forever, building a model
that way is that there is an eventuality that needs to be fulfilled. That is some until
formula was repeatedly postponed to “fulfill” and therefore stays in the configuration.

19

Player E

[ϕ0 ∨ ϕ1], {ϕ0 ∨ ϕ1} ∪ Γ

[unf(ϕi)], {unf(ϕi)} ∪ Γ

[ψ], {ϕ0 ∨ ϕ1} ∪ Γ

[ψ], {unf(ϕi)} ∪ Γ

Player A

[ϕ0 ∧ ϕ1], {ϕ0 ∧ ϕ1} ∪ Γ

[unf(ϕi)], {unf(ϕ1−i)} ∪ Γ

[ϕ], {ϕ,ψ} ∪ Γ

[ψ], {ϕ,ψ} ∪ Γ
(change)

Normalization rules

[ψ], {ϕ0 ∧ ϕ1} ∪ Γ

[ψ], {unf(ϕ0), unf(ϕ1)} ∪ Γ

[X ϕ1], {X ϕ1, . . . , X ϕn, q1, . . . , qm}

[unf(ϕ1)], {unf(ϕ1), . . . , unf(ϕn)}
(next)

Figure 2.3: Game moves and normalization rules for focus games. Rules are applied
after each game move to cover obligatory transformations. ϕ and ψ denote
arbitrary formulae, q denotes possibly negated propositions or ⊤. Note,
once the formula ⊥ occurred, the next-rule can not be applied anymore.
Adopted from [LS01].

If that is the case A is able to point out that formula by putting it in focus and has no
obligation to change the focus afterwards. Only if A can not focus on such a formula,
E can force A to change the focus when resolving the respective until. Therefore A has
lost if C is repeated and the focus moved in between or A could only avoid to change
by setting a release formula in focus. In the latter case E’s strategy is legal since the
release formula allows to be postponed forever.

Definition 2.6 (Plays and winning conditions). A play on a game G(Φ) is a sequence
of configurations P = C0C1. . . such that C0 = ([Φ], {Φ}) and (Ci,Ci+1) ∈ E. A play
ends at the first configuration Cn = ([Ψ], {X ϕ1, . . . , X ϕn, q1, . . . , qm} with Ψ = X ϕ or
Ψ = qi ∈ AP, such that one of the players wins P = C0C1. . .Cn according to the
following winning conditions.

The play P is won by Player E if and only if

• Cn = ([q1], {q1, q2, . . . , qm}) where qi is either the constant ⊤ or a (possibly
negated) proposition and pi 6= ¬pj for i, j = 1. . .m, or

• Cn = Ci = ([X(ϕRψ)], Γ) for some i < n or

• Cn = Ci for some i < n and Player A has applied the change-rule between Ci

and Cn.

Player A wins the play P if and only if

20

• Cn = ([Ψ], Γ) and ⊥ ∈ Γ or p, p ∈ Γ for some p ∈ AP, or

• Cn = Ci = ([X(ϕUψ)], Γ) for some i < n and between Ci and Cn the change-rule
was not applied.

Players can follow a certain strategy, that indicates which move to make after a par-
tial play C0C1. . .Ck. Strategies may depend on the complete sequence of configurations
played so far.

Definition 2.7 (Strategies). A strategy for a Player X on a game G(ϕ) = (V, E) is a
partial mapping π : V∗ → V, that obeys the game rules, i.e. C1C2. . .Cn 7→ Cn+1 only if
(Cn,Cn+1) ∈ E.

A Player X uses a strategy π in a play P = C1C2. . . if and only if for all configurations
Ci in P, such that X is to make a move in Ci, the choice is Ci+1 = π(C1C2. . .Ci).

A strategy π is winning for a game G(ϕ) iff all plays, for which X uses π, are won
by X and the game is said to be won by X if there is a winning strategy for X.

Remark. Plays end after the first recurrence of a configuration. Since the state space
V ⊆ sub(Φ) × 2sub(Φ) is finite, every play has finite length. Also, the winning condi-
tions are mutually exclusive and one of the conditions must apply. A none-repeating
play can only end with a purely propositional configuration and if a configuration is
repeated without the focus being changed in between, the formula in focus must ei-
ther be a release or an until formula. The shape of such a recurring formula is sooner
or later X(ϕUψ) or X(ϕRψ), respectively. The winner of any play in a focus game
G(Φ) is thus uniquely determined and therefore the winner of the game itself.

Theorem 2.1 (Soundness and completeness [LS01]). Player E has a winning strategy for
a focus game G(Φ) on an LTL formula Φ if and only if Φ is satisfiable.

Proof. In the following we describe a strategy for A and show that if E can win against
this strategy, there is a model for Ψ. We therefore call this strategy optimal for A.

Player A maintains a priority list of all until sub-formulae of Φ. That list will ensure,
that A focuses on any until formula a second time only if he went through all other
possible until formulae before. By re-focusing an until formula, A risks to revisit a
configuration while having changed the focus in between.

Whenever A has to choose where to put the focus, i.e. in a situation ([ϕ ∧ ψ], Γ) he
focuses on

• ψ if it contains an until sub-formula or if ϕ does not.

• He focuses on ϕ if it contains an until sub-formula while ψ does not.

21

Whenever E resolves an until formula in focus, i.e. she chooses ψ in a configuration
([ψ ∨ (ϕ ∧ X(ϕUψ))], Γ), A moves that until formula to the end of the list and focuses
on the first one in the list, that is present in Γ. By present we mean that unf(ϕUψ) ∈ Γ

or X(ϕUψ) ∈ Γ.

Player A also changes to the first present until formula in the list if the focus ends up
on a proposition or a configuration is repeated while the focus remained on a release
formula.

Note that, in particular A keeps the focus on until formulae ϕUψ as long as possible,
i.e. until they are fulfilled by E choosing ψ in the unfolding.

(⇒). Assume E has a winning strategy for G(Φ) and thus wins every play.

Observe, that by the rules of the game, E refines Φ to an under-approximation by
choosing only one side of disjunctions. Before the next rule is applied, Φ is reduced
to a conjunction

Φ′ =
∧

{X ϕ1, . . . , X ϕn, q1, . . . , qm}

and for any w |= Φ′ we have that w |= Φ.

E wins in particular against the optimal strategy for A and the according play P =
C1. . .Cn yields a model for Φ:

Every time, the next rule is applied during the play P at a configuration Ci =
([ξi], Γi), we obtain a none-contradicting set of atomic propositions {q1, q2, . . . , qm}
since E wins. Hence, restricted to AP, these sets are letters in Σ = 2AP and the play
yields a word

C1 . . . Ci1 →
(next) Ci1+1 . . . Ci2 →

(next) Ci2+1 . . . Ci3 →
(next) Ci3+1 . . .

↓ ↓ ↓
w := a1 a2 a3 . . .

The negated propositions are included implicitly in letters by the absence of their
positive duals.

w |= Φ′ iff w(0) = a0 |=
∧

(Γi1 ∩ AP) and w1 |=
∧

Γi1+1. The first condition is true by
construction. Additionally, that argument applies in any position in w and thus w will
not violate Φ′ positionally. If we considered only greatest fixed points in Φ′, w would
be certainly a model. Only if there is an unfulfilled eventuality imposed by an until
sub-formula in Φ′, the word would not be a model. The play ends after finitely many
configurations but we can extend the acquired word: If the play ends in an empty
configuration the prefix obtained is good2 and can be extended arbitrarily. If the play
ended by a repetition of a configuration we append that part between the repeating
configurations infinitely often.

2A good prefix for an ω-language is a finite word, such that all extensions to an infinite word belong to
the language. [KV01]

22

By the strategy A used in the play we can reject that case and assure that w is
indeed a model for Φ′: If in no configuration an until formula is present, E could avoid
these obligations to fulfill an eventually by her choice on disjunctions. Otherwise, by
the strategy of A, the focus would sooner or later stay on all of them and only be
moved away when that particular eventually is fulfilled. Also, using the priority list,
A assures to not focus on one of them a second time unless all of them have been
fulfilled before. If there were an unfulfilled until, A would focus on it before revisiting
a configuration, never change the focus again and win. Since that is not the case, there
are no unfulfilled eventualities in w.

(⇐). Assume Φ is satisfiable and w ∈ Σω, w = a1a2a3. . . , is a model. We can derive
a winning strategy for E on G(Φ). Suppose that

P = C0,0C0,1C0,2. . .C1,0C1,1. . .C2,0. . .

is a play where Ci,0 is the i-th configuration where the (next)-rule is applied. (If that is
possible already in the first configuration we count accordingly C0,0=C1,0.)

w |= Γ0,0 and that does not change but through a move from E. However, E will
preserve that when choosing a move. That is possible since

w |=
(

∧

Γ
)

∧ (ϕ ∨ ψ) iff w |= (
∧

Γ) ∧ ϕ or
w |= (

∧

Γ) ∧ ψ.

Before the (next)-rule is applied in C1,0 we hence have the situation that

w0 |=
∧

Γ1,0 =
(

∧

{X ϕ1, . . . , X ϕn}
)

∧
(

∧

{q1, . . . , qm}
)

.

Therefore {q1, . . . , qm} is obviously satisfiable (by a0) and

w1 |=
∧

{ϕ1, . . . , ϕn}.

Player E, maintaining the invariant wi |=
∧

Γ(i,j) at every configuration Ci,j, will thus
not be defeated by an inconsistent set of propositions. Additionally, if E has the choice
to fulfill an until formula, she will do so: She will choose ψ in a configuration

Ci,j = ([ξ], Γ ∪ {ψ ∨ (ϕ ∧ X(ϕUψ))})

where

wi |=
(

∧

Γ
)

∧ (ϕ ∧ X(ψUψ)) and wi |=
(

∧

Γ
)

∧ ψ.

Now assume that Ci,0 = ([X(ϕUψ)], Γi,0) = Ci′,0 for i′ > i and Player A has not
changed the focus during the play since the first time Ci,0 was reached. Then we have

wi |=
∧

Ci,0 =
∧

Ci′,0 =| w
i′ .

23

In that case, there is a strategy that continues according wi′ already from configura-
tion Ci,0 on, still maintaining the invariance. Intuitively, we slice some part of w and
simply avoid that one repetition in the play. We do that continuously until we obtain
a strategy, such that the until formula is fulfilled at latest at Ci′,0 and thus avoid all po-
tential repetitions but force A to change focus. Note that this refinement of strategies
terminates since at every configuration Ck,0, k > i, such that the until formula has not
yet been fulfilled by E we have

wk |=
(

∧

Γk,0

)

∧ ¬ψ

because E prefers to choose ψ if possible. But since wi is a model for X(ϕUψ), there
is a position j such that wj |= ψ.

We do that for all present until formulae and hence obtain a play, where every until
formula is released before a configuration is repeated and we conclude that E has a
winning strategy for G(Φ).

Deciding satisfiability for a given formula reduces now to guess a strategy for E and
let E play with that strategy against the optimal strategy for A. In other words, we
traverse all possible plays, knowing they are finite, and search a winning one for E
that we can find if and only if the formula is satisfiable.

24

3 Defining Frequentness

For this section, our aim is to extend LTL in an intuitive way in order to specify
properties (words, languages) that cover a notion of relative frequency of events. This
is meant to reflect the idea of relaxing a property which we believe is a very natural
form for descriptions. Whenever we specify an obligation that has to hold for a certain
period or at a certain number of positions, e.g. a property like “always p” we can
derive a property “sufficiently often p” which is less strict, but should nevertheless be
defined exactly.

In the context of infinite computations a definition of relative frequency requires
a scope in order to be verifiable. Otherwise a property like “sufficiently often p”,
that considers the whole infinite word would rather describe some distribution than
a discrete property. Even though statistical analysis may allow some reasoning on
whether a property holds, we aim at giving the user the option to explicitly specify a
scope in which a property must hold and to which extend.

Apart from the notion of relative frequency, the term “often” could mean alterna-
tively a certain constant number of positions but that appears to be a rather inflexible
and trivial approach. It can be realized using nested F operators in standard LTL. For
example a formula F(p ∧ XF(p ∧ XF p)) would require the proposition p to hold at
least three times, somewhere in the word.

A more dynamic approach would be a formula like G(p ∨ X p ∨ XX p) which spec-
ifies that p has to hold in every frame of length three. This formulation implies a
certain frequency of p, however it also implies a certain distribution and is not bound
to a scope. A word such as ({p}4∅8)ω would respect the same frequency requirement
but violate the formula because the positions for p are not distributed equally enough.

We pursue another option, based on the scope defined by the U operator. For a
formula ϕUψ, the scope of ϕ may end in any position that satisfies ψ and before the
end of the scope, ϕ has to hold always. The until operator directly provides a scope
and an obligation. An intuitive relaxation is that the obligation ϕ is only required to
hold in a sufficiently large part of the scope. An example for a property could be
the following: A process synchronization must happen at some point and before that
at least 80% of all incoming requests must be processed. If this property is violated,
a programmer might want a system to allocate additional resources to handle more
incoming requests.

25

3.1 LTL with relative frequencies

Relaxing the semantics of the until operator U appears to be an intuitive and syntac-
tically elegant way in order to introduce frequency into the framework of LTL. The
usual intuition for a formula pU q is that q must hold at some point in the future, and
before that p has to hold always. Instead of “always”, consider the less strict formu-
lation “sufficiently often”. With a relative frequency c ∈ [0, 1] in mind, this is not a
vague term since we can refer to an explicit scope. In Definition 2.1, the until operator
was given a semantics by

w |= ϕUψ iff ∃n : wn |= ψ and

∀i<n : wi |= ϕ.

That is equivalent to a formulation based on the number of positions before the end of
the scope at a position n, instead of a general ∀-quantification:

w |= ϕUψ iff ∃n : wn |= ψ and
|{0 ≤ i < n | wi |= ϕ}| ≥ 1 · n

Recall that we consider the indices starting with zero, w = a0a1. . . . Thus there are n
letters preceding an. For example, consider a formula pU q and a word w starting with
{q}, i.e. w0 satisfies q already. Then the above set of positions before n = 0 is empty
and 0 ≥ 1 · n. The actual position n is not considered anymore since in the definition
we required p only to hold at positions before wn begins, which are exactly n. For a
word w′ = {p}{p}{p}{q}. . . , the eventuality q is satisfied at position n = 3. There are
3 letters before that position and therefore p always holds before q only if the number
of positions for p is greater then or equal to 1 · n = 3.

With this reformulation we have a direct way of relaxing the operator, namely by
multiplying a factor c, which may be annotated to the U-operator.

Definition 3.1 (Syntax and semantics of f LTL). The syntax of Frequency Linear-time
Temporal Logic (f LTL) formulae is given by

ϕ ::= ⊤ | ¬ϕ | ϕ ∧ ϕ | X ϕ | ϕ Uc ϕ | p (p ∈ AP)

where each U-operator is annotated by a rational number c ∈ Q with 0 ≤ c ≤ 1.

f LTL formulae are interpreted over words w ∈ Σω, w = a0a1a2. . . , with the follow-
ing semantics.

w |= ⊤
w |= p iff p ∈ a0 (p ∈ AP)
w |= ¬ϕ iff w 6|= ϕ

w |= X ϕ iff w1 |= ϕ

w |= ϕ ∧ ψ iff w |= ϕ and w |= ψ

w |= ϕUc ψ iff ∃n : wn |= ψ and
|{i | 0 ≤ i < n, wi |= ϕ}| ≥ c · n

26

Similar to LTL, we consider the following operators as abbreviations.

⊥ := ¬⊤

p := ¬p (p ∈ AP)

ϕ ∨ ψ := ¬(¬ϕ ∧ ¬ψ)

ϕRc ψ := ¬(¬ϕU1−c ¬ψ)

ϕUψ := ϕU1 ψ

ϕRψ := ϕR0 ψ

F ϕ := ⊤U ϕ

G ϕ := ¬ F¬ϕ

Example. Consider the formula pU
1
2 q and a the following infinite words.

p p p r r r q rω is a model since q holds at position 6 (the 7th letter) and in the prefix
before we have three out of six positions that satisfy p.

r r q rω is not a model since the only position at which q holds is the one with index
2. But the two letters before are both not containing p and the ratio is thus 0

2 = 0

which is smaller then the required 1
2 .

r q p p q q rω Here, we have three potential witnesses: positions 1, 4 and 5. The ob-
served frequency of p at positions 1 and 5 is 0 and 2

5 , respectively, which is too
low. Yet, at position 4 q is satisfied and before position 4 we observe two out of 4

times that p holds. Thus the word is a model for pU
1
2 q

Let us examine the duality between Uc and R(1−c), that is suggested by the above
definition, in order to get an intuition for the meaning of “release” in the frequentness
setting.

Let w ∈ Σω and w |= ϕRc ψ = ¬(¬ϕU1−c ¬ψ), that is by definition

¬
(

∃n : wn |= ¬ψ and |{i | 0 ≤ i < n, wi |= ¬ϕ}| ≥ (1− c) · n
)

⇔ ∀n : wn |= ψ or |{i | 0 ≤ i < n, wi |= ¬ϕ}| < (1− c) · n.
(3.1)

If the number of positions satisfying ¬ϕ (i.e. violating ϕ) is less than a fraction (1− c)
of all positions, then the number of positions satisfying ϕ is at least the fraction 1− (1−
c) = c of all all positions. We hence rewrite Equation 3.1 above to

∀n : wn |= ψ or |{i | 0 ≤ i < n, wi |= ϕ}| > c · n.

We quickly confirm that by the following Lemma 3.1. For easier reading, we write
for a word w ∈ Σω and positions i, n in w

#ϕ,w(n) := |{i | 0 ≤ i < n, wi |= ϕ}|

for the number of position in the prefix w0w1. . .wn−1 that satisfy an f LTL formula ϕ.

27

Lemma 3.1. Let for a word w ∈ Σω, a position n in w and an f LTL formula ϕ

a := #ϕ,w(n) and

b := #¬ϕ,w(n).

By definition, ϕ and ¬ϕ are mutual exclusive at the single position n while one of them must
hold. Hence we have

#ϕ,w(n) + #¬ϕ,w(n) = a+ b = n ≥ 0

and confirm for c ∈ Q, 0 ≤ c ≤ 1, that

a < (1− c) · n
⇔ a+ b < (1− c) · (a+ b) + b
⇔ a+ b− (1− c) · (a+ b) < b
⇔ (1− (1− c)) · (a+ b) < b
⇔ c · n < b

First of all, we see that the explicit interpretation of Rc coincides for c = 0 with the
classical notion of the release operator and thus justifies abbreviating R0 by R.

It also reveals that for ϕRc ψ we can read “sufficiently often ϕ releases ψ”. However,
note the particularity: Under this view, the classical notion of ϕ seen once releases
ψ forever turns out to only be an implication that follows by the “strength” of the
classical until. In our setting, which allows “weakening” the until, the release gets
much “stronger” in that it imposes an ever recurring obligation in satisfying ψ or ϕ.
While there may be a position in a model that does not need to satisfy ψ because it was
preceded by enough positions for ϕ, this does not “fulfill” the formula and allows an

arbitrary suffix thereafter. Consider for example formulae Φ = pR q and Φ′ = pR
1
4 q

together with a word starting as follows. (The fraction of positions that satisfy p so far
is written underneath.)

{q} {q} {p, q} {p} {} {q} {} {} . . .

0
1

0
2

1
3

2
4

2
5

2
6

2
7

2
8 . . .

In the third position p holds and thus q has not to hold in the fourth. But while the
first occurrence of p is enough to release q from all further positions for Φ, the prefix
does not allow to judge about the evaluation of Φ′. In the last position the fraction for
p is not greater then 1

4 any more and thus the next position is not released and must
continue by a letter including q, e.g. {q}.

For the classical temporal modalities finally (F) and globally (G), which are defined
in terms of the until, we find that the modification with frequencies does not affect the
semantics. We defined F ϕ by ⊤U ϕ but this is semantically equivalent to ⊤Uc ϕ for

28

any c ∈ [0, 1] because allowing ⊤ to hold less frequently does not change anything as
it always holds. Dually, G ϕ = ¬ F¬ϕ = ⊥Rc ϕ keeps the exact same semantics for
any c since ⊥ does not hold, in particular not “often”.

This coincides with the initial idea of specifying frequentness only within some
scope. The only reasonable meaning of “weakening” G on infinite words could be
some kind of probabilistic assertion what we tried to avoid.

By these considerations we confirm that classical LTL (including its abbreviations)
forms a fragment of f LTL with restrictions c = 1 for Uc and c = 0 for Rc. Note that,
again, we can assume a positive normal form for f LTL formulae and it coincides with
the one for LTL.

Moreover, we observe that LTL is also a true semantic fragment considering ω-languages.

Theorem 3.1 (f LTL is not context free). Consider alphabets Σn = {a1, . . . , an, b} and the
class of languages

Ln = {ak1a
k
2 . . . a

k
nb

ω | k ∈ N0}.

While not being context free for n > 2, all of the languages Ln are definable by an f LTL
formula

ϕn =

(

n
∧

i=1

ai U
1
n b

)

∧

(

n−1
∧

i=1

G(ai+1 → G¬ai)

)

.

One more observation we make, is that the unfolding equation

ϕUψ ≡ ψ ∨ (ϕ ∧ X(ϕUψ))

does not hold any more for ϕUc ψ where c < 1. The formula pU0.4 q, for example,
has a model w = ∅{p}{q}ω , the number of positions before {q} that satisfy p is
1 ≥ 0.4 · 2). The right-hand side of the unfolding equation is violated since it requires
the first position to satisfy either p or q.

The information that is passed on to the future may not be sufficient anymore. In
the case of c = 1 the formula is immediately violated whenever neither ψ nor ϕ holds,
unless ψ holds before. In other words, the “contribution” of a single position where
neither ψ nor ϕ hold is annihilating any future, whereas for c < 1 this position may or
may not be required to hold in order to obtain the required frequency in the end. The
“weight” of a single position depends on the length of the scope. This also prohibits
to adopt the unfolding by modifying the frequency, e.g. to something like

ψ ∨ (ϕ ∧ X(ϕUc′ ψ)) ∨ X(ϕUc′′ ψ).

Any mapping from c to c′ and c′′ would depend on the final length of the scope
in order to evaluate the influence the single position has with regard to the overall
fraction.

29

3.2 From Minsky machines to f LTL

In the following section we will establish an undecidability result regarding satisfia-
bility of f LTL formulae.

Minsky machines [Min67] are a computation model that uses a program built from
a simple set of instructions and two unbounded but none-negative counters. The
machines are defined using the instruction set

{inc(ki, l), dect(ki, l1, l2)}.

The operation inc increase one of two counters k1, k2 and jumps to the instruction
labeled with l in the program. The dect operation tests ki for zero. Is that the case, the
machine directly jumps to label l1. Otherwise ki is decreased and the next instruction
that is executed is the one labelled by l2.

For the forthcoming construction we decompose the instructions to limit the effect
of each to a minimum which allows us to capsule different aspects.

First, the operation dect(ki, l1, l2) is split. One operation testz(ki, l1, l2) only tests ki for
zero and jumps to l1 if that is the case and to l2 otherwise. A second decrease operation
dec(ki, l) always jumps to the position l and decreases ki by one if possible. The second
step is now to remove the first argument – the counter – from all instructions and
consider two copies of each. One copy operates on counter 1, the other on counter 2.
We thus obtain the the following set of six operations.

OP := {inc1, inc2, dec1, dec2, testz1, testz2}

Note that we did not lose any expressivity since the original instructions can still be
simulated by these. (Nor do we gain any, since the converse holds as well.)

Definition 3.2 (Minsky machine). A Minsky machine is a tuple

M = (π, L, linit, lfinal, n0,m0),

where

• L is a none-empty, finite set of locations,

• linit, lfinal ∈ L are the initial and final location, respectively,

• n0,m0 ∈ N0 are the initial counter values,

• π : L× (OP× L× L) is a set of labelled instructions, the program, where for every
location l ∈ L, there is exactly one instruction (l, op, l1, l2) ∈ π.

30

The set OP, as defined above is the set of operations on the two counters which can be
used in a program π. Since for every location l, there is a unique tuple (l, op, n,m) ∈ π,
we may also interpret π as a mapping of locations to instructions and write π(l) to
denote (op, n,m).

A configuration of M is a tuple C = (l, n,m) ∈ L×N0×N0 representing the current
location and the values of both counters.

The computation of M is the unique, infinite sequence

C0 → C1 → C2 → . . .

of configurations Ci, such that C0 = (linit, n0,m0) is the initial configuration and for
any Ci = (l, n,m), the subsequent configuration Ci+1 is computed according to the
program π:

• If π(l) = (inc1, l1, l2) then Ci+1 = (l1, n+ 1,m).

• If π(l) = (inc2, l1, l2) then Ci+1 = (l1, n,m+ 1).

• If π(l) = (dec1, l1, l2) then Ci+1 = (l1,max(0, n− 1),m).

• If π(l) = (dec2, l1, l2) then Ci+1 = (l1, n,max(0,m− 1)).

• If π(l) = (testz1, l1, l2) then Ci+1 = (l′, n,m), if n = 0 then l′ = l1 else l′ = l2.

• If π(l) = (testz2, l1, l2) then Ci+1 = (l′, n,m), if m = 0 then l′ = l1 else l′ = l2.

• If l = lfinal then Ci+1 = Ci.

Note, that for simplicity we do not distinguish operations with one or two argu-
ments but always assume two, even if the second one is not regarded at all.

It is possible to reduce the termination problem of Turing machines to that of Minsky
machines, which is thus undecidable. The result still holds for our definition since the
instruction set is able to simulate the instructions of standard Minsky machines via a
translation

l : inc(ki, l
′) → (l, inci, l

′, l′)

l : dect(ki , l1, l2) → (l, testzi, l1, l
′
2), (l

′
2, deck, l2, l2)

for some newly created location l′2. Observe, that assuming this translation, a dec op-
eration is never performed on a counter that is zero already. Without loss of generality
we assume that for any program π, since we could translate any program π′ back to
the instruction set {inc, dect} and forth again, obtaining an equivalent program π that
obeys that restriction.

Together with the standard result, the possible translation shows, that our notion of
Minsky machines has an undecidable termination problem.

31

Lemma 3.2 (Termination of Minsky machines is undecidable [Min67]). Given an arbi-
trary Minsky machineM, it is undecidable whether l f will be reached eventually or not during
the computation of M.

Our goal is now, to express the chain of computation steps of an arbitrary Minsky
machine M by an f LTL formula ΦM. The formula shall have exactly one model,
which represents the computation of M.

We will use, among others, the elements of L as letters in the alphabet over which
the model will be defined. Given a model for ΦM, the projection to L, will yield a sub-
sequence l0l2l3. . . which shall correspond to the order, in which the single locations are
visited during the execution of the program. Then, the question whether the Minsky
machine M terminates reduces to whether ΦM ∧ F lfinal is satisfiable.

For the following construction we fix a Minsky machine M = (π, L, linit, lfinal, n0,m0).

Encoding the computation

We encode counters unary by an according number of letters a or â for counter 1 and b
or b̂ for counter 2. We will use a,b to represent counter values before and â, b̂ for values
after some operation.

The effect of an operation op ∈ OP is represented by two letters, one for the effect
on each of the counters individually. The considered letters appear slightly inconsis-
tent in first place which is due to technical counting issues in the construction. The
operations with their representative combination of letters is shown in Table 3.1. For
example, the operation inc2 increases counter 2, represented by letter ib and does not
affect counter 1, which can be considered as a neutral operation “skip”, performed on
counter 1 instead. In contrast to sa, the effect of such a neutral operation on counter 2
is expressed implicitly by the absence of a letter, i.e. the empty word ε. We denote the
two types of “operational” letters on the number of a and b by the sets

aOP = {ia, da, sa} and bOP = {ib, db},

respectively. We have, for example, computations

ania â
n+1, an+1da â

n or bnb̂n

that increase counter 1, decrease counter 1 or have no effect for counter 2, respectively.

To reflect whole instructions, we combine the single operations on each counter and
precede the according location label from L.

l anop1â
n′ bmop2b̂

m′

32

OP Letter for effect
on counter 1

Letter for effect
on counter 2

inc1 ia ε

inc2 sa ib
dec1 da ε
dec2 sa db
testz1 sa ε

testz2 sa ε

Table 3.1: The letters representing an operation on individual counters.

Consider the configuration C = (l, n,m). Depending on which operation is specified
by π(l) = (op, l′, l′′) we may represent the computation of the Minsky machine, e.g. as

l ania â
n+1 bm b̂m for op = inc1,

l ansa â
n bm b̂m for op = testz1 or

l ansa â
n bmibb̂

m+1 for op = inc2.

Now, the current instruction at location l implies the next location l′, possibly de-
pending on the counter values, which we simply append after the computation on the
counters. Since we want to reflect a sequence of operations, the counter values after
the first operation and before the subsequent operation must coincide. A computation
step might therefore be

l ania â
n+1 bmb̂m l′ an+1 sa â

n+1 bmdbb̂
m−1

The computation

(l0, n0,m0) → (l1, n1,m1) → (l2, n2,m2) → . . .

of M is thereby represented as a word of the form

l0 a
n0 opa â

n1 bm0#opb b̂
m1 l1 an1 op′a â

n2 bm1#op′b b̂
m2 l2 an1 op′′a ân2 bm1#op′′b b̂m2 . . .

where l0 = lI is the initial location ofM. For purely technical reasons (we need to start
counting soon) we added a separator sign # between the representation of counter 2
in terms of bn and the symbol representing the effect of the current operation on that
counter.

Along with the encoding we implicitly constructed the alphabet over which we will
interpret the final formula ΨM. We use the symbols a, â, b, . . . as letters to describe
the structure in the word as well as in formulae. Following our convention, they
should therefore be atomic propositions, and as letters an abbreviation for the single-
tons {a}, {â}, {b}, Thus we use the set

AP = {a, â, b, b̂, #, ia, ib, da, db, sa} ∪ L

33

for the atomic propositions. Since Σ = 2AP, the alphabet contains many letters that are
not acutally used. We assume that these letters do not occur in any model and will
asure that in the final formula.

Specifying program instructions

We shall continue with constructing formulae ϕ(op, l1, l2) that hold for words which
start with a correct representation of the according instruction. These are formulae ϕ

such that

L(ϕ(inc1, l1, l2)) = {ania â
n+1 bm#b̂m l1 | n,m ∈ N0} Σω

L(ϕ(inc2, l1, l2)) = {ansa â
n bm#ib b̂

m+1 l1 | n,m ∈ N0} Σω

L(ϕ(dec1, l1, l2)) = {an+1da â
n bm#b̂m l1 | n,m ∈ N0} Σω

L(ϕ(dec2, l1, l2)) = {ansa â
n bm+1#db b̂

m l1 | n,m ∈ N0} Σω

L(ϕ(testz1, l1, l2)) = {an+1sa â
n+1 bm#b̂m l2 | n,m ∈ N0} Σω

∪ {sa b
m#b̂m l1 | m ∈ N0} Σω

L(ϕ(testz2, l1, l2)) = {ansa â
n bm+1#b̂m+1 l2 | n,m ∈ N0} Σω

∪ {ansa â
n # l1 | n ∈ N0} Σω

Before constructing the actual formulae we define a sub-formula that we can reuse
quite often. As we see above, we often need to express bm#b̂m l and we define a
formula βε(l) with

L(βε(l)) = {bm#b̂m l | m ∈ N0} Σω.

Obviously, the words need to start either by b or by #. Thus we note b ∨ #. Then we
need to require, that as many b as b̂ occur, which we cannot do directly. However, we
can express bm b̂mlΣω (c.f. Theorem 3.1) by

bU
1
2 l ∧ b̂U

1
2 l

We now use a trick, which is similar to one from [HMO10]: The formula

((b ∨ #)U
1
2 l) ∧ b̂U

1
2 l

expresses that the number of b and # together is equal to the number of b̂. Assuming
that there can be only one symbol # (which we will assert by another formula later),
this is used to represent bm#bm+1 or, if we cut off one b by shifting the starting point
to the second position we get what we aimed at by

βε(l) := (b ∨ #) ∧ X(((b ∨ #)U
1
2 l) ∧ b̂U

1
2 l)

Again, we assume that there can be only one # and moreover, that the order in which
symbols can occur is restricted to what we expect, for now.

Equipped that way, we proceed straight forward to define all operations.

34

ϕ(inc1, l1, l2): The symbol ia is used the same way as # was before, namely to enforce
that the symbol â is present exactly once more than a:

ϕ(inc1, l1, l2) := (a ∨ ia)U
1
2 (βε(l1)) ∧ âU

1
2 (βε(l1))

ϕ(inc2, l1, l2): Again, we first define an auxiliary formula βinc(l), which expresses that
there is one more b̂ than symbols b, using the same ideas and cutting off one
symbol since we have an additional #: bm#ib b̂

m+1l.

βinc(l) := (b ∨ #) ∧ X((b ∨ #∨ ib)U
1
2 l ∧ b̂U

1
2 l)

The number of a is to be kept, and we obtain

ϕ(inc2, l1, l2) = (a ∨ sa) ∧ X((a ∨ sa)U
1
2 (βinc(l1)) ∧ âU

1
2 βinc(l1))

ϕ(dec1, l1, l2): We do the same, except that the operator symbol now counts for â since
they should be one less.

ϕ(dec1, l1, l2) := aU
1
2 βε(l1) ∧ (d ∨ â)U

1
2 βε(l1)

ϕ(dec2, l1, l2): For decreasing the number of b we employ the auxiliary formula

βdec(l) := b ∧ X((b ∨ #)U
1
2 l ∧ (db ∨ b̂)U

1
2 l)

and define

ϕ(dec1, l1, l2) := (a ∨ sa) ∧ X
(

(a ∨ sa)U
1
2 βdec(l1) ∧ âU

1
2 βdec(l1)

)

ϕ(testz1, l1, l2): For the test operation we require that there is either no a, and thus the
word starts with the skip-symbol sa or there is at least one a in the beginning.
In the former case the last letter will be the label l1, in the latter the label l2. We
perform neutral operation on both counters, thus having sa for counter 1 and ε
for counter 2.

ϕ(testz1, l1, l2) :=

sa ∧ X
(

(b ∨ #) ∧ X
(

(b ∨ #)U
1
2 l1 ∧ b̂U

1
2 l1
)

)

∨

a ∧ X
(

(a ∨ sa)U
1
2 βε(l2) ∧ âU

1
2 βε(l2)

)

ϕ(testz2, l1, l2): For the last operation we assure that there is a skip symbol between
an equal number of a and â and then that there is no b at all but a # followed by

35

the label l1 or there is at least one b and then the number of b̂ must be equal and
the label must be the second, l2.

ϕ(testz2, l1, l2) :=

(a ∨ sa) ∧ X
(

(a ∨ sa)U
1
2 (#∧ X l1)

)

∧ X
(

âU
1
2 (#∧ X l1)

)

∨

(a ∨ sa) ∧ X
(

(a ∨ sa)U
1
2 (b ∧ βε(l2)

)

∧ X
(

âU
1
2 (b ∧ βε(l2)

)

From the program π we can now compose the constructed formulae, such that we
obtain a restriction that enforces that any model must mimic the operations, at every
point where an according label occurs. Let hence

ϕπ := G





∧

(l,op,l1,l2)∈π

l → ϕ(op, l1, l2)



 .

Enforcing propagation

Now that we can assure that at any label, given a counter value, the according opera-
tion is executed correctly we need to establish the connection between each computa-
tion step. In other words: We need to ensure that the result of a computation, i.e. the
powers of ân and b̂m, is copied correctly to the input, in terms of a and b, of the next
operation. Recall, the scheme of the computation sequence

l0 an0 opa â
n1 bm0#opb b̂

m1 l1 an1 op′a â
n2 bm1#op′b b̂

m2 l2. . . (3.2)

We assured a correct translation from an0 to ân1 and bm0 to b̂m1 . Now, we need to
propagate the values further via the translation ân1 to an1 and b̂m1 to bm1 .

The issue we face, is, again that we can actually not express quantitative equiva-
lences of symbols over “distances” in words. We managed in the last section to bridge
one or two symbols between letters, e.g. a and â, that are supposed to appear in the
same number. Now for copying the counter values between configurations repre-
sented in the word we face variable domains in between, namely that part where the
other counter changes (or not) according to an operation.

However, we can make use of an invariant. Consider the crucial frame for copying
symbols a:

36

. . . opa â
n bm#opb b̂

m′
l an op′a. . .

We investigate the sub-term bm#opbb̂
m′
l that ends just before an operation from aOP

occurs. Consider the case where opb = ib, then we have m′ = m+ 1 and the length of
the whole term is

|bm| + |#| + |ib | + |b̂m+1| + |l| = m + 1 + 1 + (m+ 1) + 1.

Thus, if we separate the letters b, #, ib and b̂, l, both sets of symbols represent exactly
one half of the positions. Therefore, if we require for the whole term ânbm#ib b̂

m′
lan

′
,

that the number of positions for any of {â, b, #, ib} is equal to the number of position
for any of {b̂, a}∪ L, we implicitly require, that n = n′ because the rest is equal already.
Thus we can formulate the condition

(â ∨ b ∨ #∨ ib)U
1
2 (ia ∨ da ∨ sa)

∧

(b̂ ∨ a ∨ νL)U
1
2 (ia ∨ da ∨ sa)

which reflects our aim in the case of opb = ib. Furthermore, we observe, that even in
all the other cases, where opb = db and opb = ε, we can count d to the right-hand side
and get

|bm+1#db b̂
ml| = (m+ 1) + 1 + 1 +m + 1.

Also, for op = ε, we get
|bm#b̂ml| = m+ 1 + m+ 1.

For better reading we denote

Aleft := {â, b, #, ib} and Aright := {b̂, a} ∪ L

and the disjunction of all formulae from a set M by

νM :=
∨

m∈M

M.

Whenever an operator symbol for the first counter occurs we want to ensure that
the outcome of that operation is propagated.

Therefore we set

ψa := G
(

νaOP → X
(

(νAleft
U

1
2 νaOP ∧ (νAright

U
1
2 νaOP)

)

)

For propagating the value of the second counter we enforce the pattern

. . . b̂m l an opa â
n′bm#. . .

37

To the left of the opa sign, we find the symbols

Bleft := {b̂, a} ∪ L

and to the right
Bright := {â, b}.

Next, consider the following three cases for opa.

opa = ia: When counter 1 is increased, we have

|b̂m l ania â
n+1bm| = m+ 1+ n+ 1+ n+ 1+m

and thus an offset of 1 when counting ia to the left part. Therefore, again, we
cut off the first position and require then that the blue and green symbols are
equally many which implies that the number of b̂ equals the number of b.

We express the quantitative equality between the two sets of symbols by

ψinc := X
(

((νBleft
∨ ia)U

1
2 #) ∧ (νBright

U
1
2 #)

)

.

Note, that this formula can only be true if the operation on counter 1, i.e. the
symbol between a and â, is actually ia, not da or sa. Also, the first # defines the
scope, since any later # comes after a symbol from bOP and those are neither in
Bleft nor in Bright. Since the formula requires, that the ratio of symbols from each
set must be at least one half, any occurrence of a “foreign” symbol (e.g. from
bOP) within the scope would lead to a violation of this property.

opa = da: If the counter is supposed to be decreased the according computation looks
like

|b̂m l an+1da â
nbm| = m+ 1+ n+ 1+ 1+ n+m

and if we count the operator da to the right-hand side symbols this time we have
an offset of 2. Still, we can express the correct propagation by

ψdec := XX
(

(νBleft
U

1
2 #) ∧ ((νBright

∨ da)U
1
2 #)

)

because we can assume that there are at least two symbols on the left (blue) side:
one label l and at least one letter a.

opa = sa: The last case we have to consider is that of a neutral operation on a. Then,
we count

|b̂m l ansa â
nbm| = m+ 1+ n+ 1+ n+m

and see, that we do not need to cut off anything. The inner part is equally
distributed and by requiring that both types occur equally often before the #
symbol by

ψskip :=
(

νBleft
U

1
2 #
)

∧
(

(νBright
∨ sa)U

1
2 #
)

we implicitly express the correct propagation.

38

Combining all these cases, we obtain a formula which expresses that in any case,
the propagation is done correctly. The property must always hold right after the the
position of the operator symbol for counter 2. Recall, that these symbols for counter
two might not be explicitly present since the skip operation was expressed by ε. We
therefore describe the position that triggers the copy-property for â by either finding
symbol from bOP ={ib, db} explicitly or just the # symbol without a following operation
from bOP.

ψb = G
(

(νbOP ∨ (#∧ ¬X νbOP) → X
(

ψinc ∨ ψdec ∨ ψskip

)

)

While we could express all cases for ψa by a single formula we need to consider the
operations individually for ψb because of the different offsets.

The final formula

Now that we have ϕπ to ensure the correct operations on the counters and ψa,ψb

to ensure the correct propagation of counter 1 and 2, respectively, the last task is to
enforce a correct ordering of the symbols, since we assumed that at some points. This
is not difficult with the schema of the encoded computation in mind (Equation 3.2):

• Labels l ∈ L and the letter a are followed by a or op ∈ aOP:
(νL ∨ a) → X(a ∨ νaOP)

• An operation op ∈ aOP on counter 1 and letters â are followed by â, b or #:
(νaOP ∨ â) → X(â ∨ b ∨ #).

• b is followed by another b or the symbol #:
b → X(b ∨ #).

• After # each there is an operation on b, a number of b̂ or the next label:
→ X(νbOP ∨ b̂ ∨ νL)

• A label must follow directly after symbols b̂, or directly after an operation on b:
(νbOP ∨ b̂) → X(b̂ ∨ νL)

We subsume these formulae by a conjunction ζ thereof. Additionally we initialize
the computation according to the initial configuration of M by a formula ϕI . This
reflect basically setting the counter values through a required fixed prefix. Formally,
ϕI describes the language

L(ϕI) = {l0 an0 opa â
n1 bm0#}Σω

which can be achieved easily with a conjunction of a one formula for each position in
the fixed prefix:

ϕI = l0 ∧





n0
∧

j=1

Xj(a)



 ∧
(

Xn0+1 opa

)

∧





n1
∧

j=0

Xn0+1+j â



 . . .

39

Combining all the formulae

• ϕπ, assuring correct instruction and computation of counter values in a configu-
ration,

• ψa, ψb, forcing the correct propagation from configuration to configuration,

• G ζ, ensuring the correct ordering of all symbols globally,

• ϕI , representing the initial configuration,

finally yields the formula

ΦM = ϕπ ∧ ψa ∧ ψb ∧G ζ ∧ ϕI .

By construction, ΦM describes exactly the computation of M. We conclude, that
the formula ΦM ∧ Flfinal is satisfiable if and only if M terminates after finitely many
computation steps. Now, by Lemma 3.2 above, we have proven the following result.

Theorem 3.2 (Undecidability of f LTL). The satisfiability problem for f LTL formulae is
undecidable.

40

4 Game-Representation and Satisfiability
for f LTL

Even though there is no hope to find an approach to the satisfiability problem for
arbitrary f LTL formulae we want to put some more attention to the problem in order
to gain a better insight into the formalism and it’s fragments. We approach LTL from a
game theoretical view, namely by extending focus games as presented in Section 2.3.1.
Our aim is to understand the novel logic and we believe that games provide a natural
intuition.

Recall the unfolding equality

w |= ϕUψ ⇔ w |= ψ ∨ (ϕ ∧ X(ϕUψ)).

In f LTL, this equality does only hold for c = 1. The reason is, that the “contribution”
of a single position in a word can be arbitrary small since the length of the scope is
not bounded. As soon as c < 1, any number of violating positions can be “covered”

by enough satisfying positions. Take e.g. pU
2
3 q and a word starting with ∅n. For

any n we can append 2n positions that satisfy p and thereby fulfilling the required
frequentness. Hence a finite prefix can never prove that a word violates this formula,
it can at most prove satisfaction.

However, a tableaux-like approach relies on some notion of unfolding. Therefore
we consider the standard unfolding and recall the idea of “weakening” obligations.
In Figure 4.1 the unfolding of the formula pU q is represented as ∧-∨-graph. Let us
associate two players E and A with nodes labelled ∨ and ∧, respectively. Together with
a word w, the graph defines a game that is won by (the existential player) E, owning
the ∨-nodes, if she can always reach a ⊤-node, regardless of the choices of A on his
nodes. This is the case, if w satisfies the formula. Moreover, the formula is satisfiable if
and only if E can choose a word (i.e. a strategy) such that she wins the according game.

Consider now the formula pU0.8 q, intuitively meaning that a word satisfies the
formula already if 80% of the positions before q satisfy p. Regarding the game, this is
like allowing E to cheat at some positions of A by pruning the left branch. However, E
should only be able to prune sub-trees that result from the left side of the U-operator
when it is unfolded. (Figure 4.1, right-hand side)

On the logical side this means that there is an alternative during the unfolding.
For the formula pU0.8 q, either p and X(pU0.8 q) must hold, or just X(pU0.8 q). Yet,

41

pU q

∨

q

⊤

q

⊥

q
∧

p

⊤

p

⊥

p
X(pU q)

pU q

...

∗

pU1 q

∨

q

⊤

q

⊥

q
∧

p

⊤

p

⊥

p
X(pU1 q)

pU1 q

...

∗ k1 := k1 + (1− c

⇒

—
k1 := k1 − 1

k1 := 0

Figure 4.1: A representation of the LTL formula pUq as game graph. We consider it
generic for a word w, that determines the choice on the labelled edges.

we need to restrict how often p can be disregarded, i.e. obligate E to not cheat too
often. This can be realized using an account that keeps the credit E has left or a debt,
respectively. We can calculate that way: E gets a regular income for every position
passed in the word. Every time E decides to cheat, i.e. to dismiss the left branch from
the Uc-operator, the account is additionally debited by 1. Taking 1− c for the income
gives E exactly that much credit, that for every (1− c)−1 positions played E earns one
credit to invest in cheating. Therefore, whenever the account is non-negative, E has
not cheated too often since the required frequentness so far is met. In the example
pU0.8 q, p has to hold in 80% of the positions. For every 5 = (1− 4

5)
−1 steps played, E

can choose one position to prune, and has thus not to assure p holds there.

4.1 Counter semantics for f LTL

An account for a sub-formula ϕUc ψ can store information about the “history” of
a position. The unfolding separates such a formula into a local obligation ϕ and a
postponed obligation X ϕUψ, including the eventuality ψ. In the frequentness setting
the decision whether the eventuality can hold now is also dependant on some global
property, namely if the obligation was satisfied often enough in the past. Previous
decisions have to be recorded and that is what the counter is good for. With the notion
of credit it tracks exactly the information needed in the future. We can formulate that
by saying “satisfy ϕ and earn credit or do not and loose some“.

To formalize this idea we define an alternative, yet sound semantics that allows us

42

to bias formulae by setting an explicit counter value.

The syntax of f LTL is extended by a counter bias as subscript for the U-operator.

ϕ ::= f LTL | ϕUc
k ϕ

Recall the definition of the Uc-operator for f LTL (Definition 3.1):

w |= ϕUc ψ iff ∃n : wn |= ψ and
#ϕ,w(n) ≥ c · n

We can rewrite #ϕ,w(n) ≥ c · n to #ϕ,w(n)− c · n ≥ 0, that reflects our intuition for the
counter: For every position (i.e. n times), c is subtracted, and for all the positions that
satisfy ϕ, 1 is added and therefore these positions amount to 1− c, what we had in
mind. Now, presetting a bias in terms of a counter value is straight forward:

w |= ϕUc
k ψ iff ∃n : wn |= ψ and

k+ #ϕ,w(n)− c · n ≥ 0

For k = 0, the definitions obviously coincide and we consider Uc as abbreviation for
Uc

0 and consequently U for U1
0.

The definition yields, what should happen for an unfolding by considering one
single position, i.e. n = 1. If that position satisfies ϕ we get to add 1− c to the counter
and otherwise 0− c. Then the counter will always indicate a potential “ending” of the
unfolding along the word being greater or equal to zero.

Definition 4.1 (Counted unfolding). Let Φ be an f LTL formula. The unfolding on LTL
formulae is extended to the counter semantics as follows.

unf(Φ) :=











ψ ∨ (ϕ ∧ X(ϕUc
k+1−c ψ)) ∨ X(ϕUc

k−c ψ) if Φ = ϕUc
k ψ and k ≥ 0

(ϕ ∧ X(ϕUc
k+1−c)) ∨ X(ϕUc

k+1−c) if Φ = ϕUc
k ψ and k < 0

Φ otherwise.

We may write more concisely 〈ψ∨〉k≥0(ϕ ∧ X(ϕUc
k+1−c ψ)) when convenient to re-

flect that the presence of the first part ψ∨ depends on the counter.

So far we argued informally about how the counters should behave. The following
Lemma 4.1 confirms that Definition 4.1 is purely syntactic and does not change the
semantics of a formula.

Lemma 4.1 (Counted unfolding equivalence). Let Φ be a (possibly biased) f LTL formula
and w ∈ Σω. Then

w |= Φ iff w |= unf(Φ).

43

Proof. For Φ 6= ϕUc
k ψ the unfolding does not affect the formula and the result follows

trivially. Therefore, let Φ = ϕUc
k ψ.

Case 1: k ≥ 0. By definition we have

w |= ϕUc
k ψ ⇔ ∃n :

(

wn |= ψ and
k+ #ϕ,w(n)− c · n ≥ 0

)

.

Splitting the cases n = 0 and n > 0 we get for the right-hand side above

(w0 |= ψ and k ≥ 0) or ∃n :

(

wn+1 |= ψ and
k+ #ϕ,w(n+ 1)− c · (n+ 1) ≥ 0)

)

. (4.1)

The left conjunct reduces to w |= ψ since we assumed k ≥ 0. On the right-hand side
we rewrite #ϕ,w(n+ 1) depending on the first position. If ϕ holds at the first position
of w we have #ϕ,w(n+ 1) = #ϕ,w1(n)+ 1 and #ϕ,w(n+ 1) = #ϕ,w1(n)+ 0 otherwise. Also

we have wn+1 = (w1)n. Hence we obtain

w |= ψ

or

∃n : (w1)n |= ψ and

(

w |= ϕ and k+ 1+ #ϕ,w1(n)− c · (n+ 1) ≥ 0 or

w 6|= ϕ and k+ 0+ #ϕ,w1(n)− c · (n+ 1) ≥ 0

)

We can distribute the existential quantifier over the disjunction:

w |= ψ

or








w |= ϕ and ∃n : (w1)n |= ψ
and k+ 1+ #ϕ,w1(n)− c · (n+ 1) ≥ 0 or

w 6|= ϕ and ∃n : (w1)n |= ψ

and k+ 0+ #ϕ,w1(n)− c(i) · (n+ 1) ≥ 0









By the equalities

k+ 1+ #ϕ,w1(n)− c · (n+ 1) = (k+ 1− c) + #ϕ,w1(n)− c · n,

k+ 0+ #ϕ,w1(n)− c · (n+ 1) = (k− c) + #ϕ,w1(n)− c · n

we get

w |= ψ

or








w |= ϕ and ∃n : (w1)n |= ψ

and k+ (1− c) + #ϕ,w1(n)− c · n ≥ 0 or

w 6|= ϕ and ∃n : (w1)n |= ψ

and k+ (−c) + #ϕ,w1(n)− c · n ≥ 0









44

which reduces by the definition of the U-operator to

w |= ψ or

(

w |= ϕ and w1 |= ϕUc
k+1−c ψ or

w 6|= ϕ and w1 |= ϕUc
k−c ψ

)

,

by the definition of the X-operator to

w |= ψ or

(

w |= ϕ and w |= X(ϕUc
k+1−c ψ) or

w 6|= ϕ and w |= X(ϕUc
k−c ψ)

)

and finally to

w |= ψ ∨ (ϕ ∧ X(ϕUc
k+1−c ψ)) ∨ X(ϕUc

k−c ψ) =(k≥0) unf(ϕUc
k ψ).

Case 2: k < 0. The second case is almost identical. The only difference is that
in Equation 4.1 the left-hand side evaluates to false and therefore the term w |= ψ

disappears in all following equations. Still, the last equation holds by

w |= (ϕ ∧ X ϕUc
k+1−c ψ) ∨ X(ϕUc

k−c ψ) =(k<0) unf(ϕUc
k ψ)

Let us examine what happens to the Release. We continue analogously by defining

ϕRc
k ψ := ¬(¬ϕU1−c

k ¬ψ)

yielding

¬
(

∃n : wn |= ¬ψ and k+ #¬ϕ,w(n)− n · (1− c) ≥ 0
)

⇔ ∀n : wn |= ψ or k+ #¬ϕ,w(n)− n · (1− c) < 0.

Again, ϕ and ¬ϕ are mutually exclusive and therefore #¬ϕ,w(n) = n − #ϕ,w(n) and
hence

⇔ ∀n : wn |= ψ or k+ (n− #ϕ,w(n))− n · (1− c) < 0
⇔ ∀n : wn |= ψ or k− #ϕ,w(n) + n · c < 0.

(4.2)

Consider a word w that satisfies a formula ϕUc ψ. Then, there is some witnessing
position n in w, i.e. wn satisfies ψ and n = 0 or the freuqentness

fϕ,w(n) :=
#ϕ,w(n)

n
(n > 0)

of positions satisfying ϕ on the prefix a0a1. . . an−1 of w is at least c. At any position n′

before n where the freuqentness of ϕ is insufficient, i.e. where fϕ,w(n′) ≤ c we know
that the part an′ . . . an must have a ratio of at least c, since the overall ratio at n is
sufficient. Therefore ϕUc ψ holds at such a position n′.

In general we have the following implications.

45

Lemma 4.2 (Positional implications). Let w ∈ Σω satisfy an f LTL formula Φ = ϕUc ψ

and n be a witnessing position in w for Φ. Then for all 0 < i < n we have

wi |= ϕUc ψ and fϕ,w(i) ≥ c ⇒ w |= ϕUc ψ,
w |= ϕUc ψ and fϕ,w(i) ≤ c ⇒ wi |= ϕUc ψ.

In the counter setting we have the related observation, for k ≤ k′,

ϕUc
k ψ ⇒ ϕUc

k′ ψ

ϕRc
k′ ψ ⇒ ϕRc

k ψ

Proof. 1). By definition we have

wi |= ϕUc ψ iff ∃j : (w
i)j |= ψ and #ϕ,wi ≥ c · j.

The intervals 0 to i − 1 and i to i + j − 1 do not overlap, nor have a position in
between. Therefore the number of positions that satisfy ϕ in the combined interval 0
to i+ j− 1, i.e. before i+ j, is

#ϕ,w(i+ j) = #ϕ,w(i) + #ϕ,wi(j).

Recall that wi starts with aiai+1. . . , while ai−1 is the last letter of w that is taken into
account for #ϕ,w(i).

With
fϕ,w(i) ≥ c ⇔ #ϕ,w(i) ≥ c · n

we obtain
#ϕ,w(i+ j) = #ϕ,w(i) + #ϕ,wi(j) ≥ c · i+ c · j = c · (i+ j).

Hence, there is an j′ = i + j such that wj′ = (wi)j |= ψ and #ϕ,w(j′) ≥ c · j′. Thus
w |= ϕUc ψ.

2). We have a witness n for w |= ϕUc ψ, i.e. wn |= ψ and #ϕ,w(n) ≥ c · n. Additionally
#ϕ,w(i) ≤ c · i with 0 < i < n. Splitting

w = a0. . . ai−1w
i = a0. . . ai−1ai+0. . . ai+(n−i)w

n+1,

the number of positions before n = i+ n− i which satisfy ϕ can be written as

#ϕ,w(n) = #ϕ,w(i)+ #ϕ,wi(n− i) ≥ c · n = c · (i+ (n− i))

≥ c · i + c · (n− i)

For #ϕ,w(i) ≤ c · i it hence follows that #ϕ,wi(n− i) ≥ c · (n− i). Therefore

∃n′=n−i : (w
i)n

′
= wn |= ψ and #ϕ,wi(n′) ≥ c · n′

⇔

wi |= ϕUc ψ.

46

The implication for the counted formulae follow direct from the definition. For
k ≤ k′ and any model v,w for ϕUc

k ψ and ϕRc
k′ ψ, respectively,

k′ + #ϕ,w(n)− c · n ≥ k+ #ϕ,w(n)− c · n ≥ 0

k− #ϕ,w(n) + c · n ≤ k′ − #ϕ,w(n) + c · n < 0,

thus the counter condition is actually relaxed and therefore v,w satisfy in particular
ϕUc

k′ ψ and ϕRc
k ψ, respectively.

By the explicit semantics (Equation 4.2) we derive that when unfolding a release-
formula, the counter must be modified such that c is added every time (term +n · c)
and an additional one can be subtracted if ϕ is asserted to hold (term −#ϕ,w(n)). We
subsume:

Theorem 4.1 (Release-unfolding). In duality to the until operator we find

unf(Φ) ≡

{

ψ ∧ ((ϕ ∧ X(ϕRc
k+c−1 ψ)) ∨ X(ϕRc

k+c ψ)) if Φ = ϕRc
k ψ and k ≥ 0

(ϕ ∧ X(ϕRc
k+c−1 ψ)) ∨ X(ϕRc

k+c ψ) if Φ = ϕRc
k ψ and k < 0.

Proof. We rewrite the release in terms of Until:

unf(ϕRc
k ψ) = unf(¬(¬ϕU1−c

k ¬ψ))

By Lemma 4.1 unf does not change the semantics of any formula, in particular not of
subformulae.

w |= unf(¬(¬ϕU1−c
k ¬ψ)) ⇔ w |= ¬unf(¬ϕU1−c

k ¬ψ))

Case 1: k ≤ 0.

w |= ¬unf(¬ϕU1−c
k ¬ψ)

⇔ w |= ¬

(

¬ψ ∧

(

(¬ϕ ∧ X(¬ϕU1−c
k+1−(1−c) ¬ψ))

∨ X(¬ϕU1−c
k−(1−c) ¬ψ)

))

⇔ w |= ψ ∨

(

(ϕ ∨ X(ϕRc
k+c ψ))

∧ X(ϕRc
k+c−1 ψ)

)

⇔ w |= ψ ∨

(

(ϕ ∧ X(ϕRc
k+c−1 ψ)) ∨

(X(ϕRc
k+c ψ) ∧ X(ϕRc

k+c−1 ψ))

)

(distribute)

⇔ w |= ψ ∨

(

(ϕ ∧ X(ϕRc
k+c−1 ψ)) ∨

X(ϕRc
k+c ψ)

)

(from Lemma 4.2)

Case 2: k < 0. The second case follows in analogy. The only change is to omit the
conjunction/disjunction with ψ in the beginning of every line above, except for the
first one.

47

Remark. Even though the coincidence between counted and standard unfolding fol-
lows by the semantic equivalences

unf(ϕU1
0 ψ) ≡ ϕU1

0 ψ ≡ ϕUψ ≡ unf(ϕUψ)

established already we observe directly that

unf(ϕU1
0 ψ) = ψ ∨ (ϕ ∧ X(ϕU1

0+1−1 ψ)) ∨ X(ϕU1
0−1 ψ) ≡ ψ ∨ (ϕ ∧ X(ϕU1

0 ψ))

because ϕU1
k ψ is not satisfiable for any k < 0. The definition requires (for c = 1) that

k+ #ϕ,w(n)− n · 1 ≤ 0 which cannot be the case since always #ϕ,w(n) ≤ n.

In the next section, we need the here developed notion of unfolding to define a
tableau-like game graph for f LTL formulae.

4.2 Counter focus games

In Section 2.3.1 we introduced focus games that could be used to decide satisfiability
for LTL formulae. The game graph was defined in terms of configurations that contain
formulae and rules that are applied automatically or can be chosen by one of the
players and lead to a preceding configuration. Paths in the game graph represent the
plays of a game and if the existential player E had a winning strategy, we could derive
a model and thus conclude satisfiability for the formula.

Using the developed counter semantics for f LTL, which yields a notion of unfold-
ing, we now aim at adopting this technique for f LTL. Making use of the counter,
the unfolding stores information about the past, a bias, for each until operators. That
way the eventuality of an until formula can be evaluated with regard to the (relative)
quantity of met obligations in the past.

The only syntactic change is the difference in the unfolding function unf and that
(sub-)formulae may be equipped with a counter k and a frequency c. Therefore, syn-
tactically, the set of sub-formulae in f LTL is larger, in fact it is infinite since counter
values can grow and decrease arbitrarily by application of unf.

Still, we keep the definition of sub-formulae, disregarding counters. We only dis-
criminate these formulae by the constant frequency c such that, e.g. for

ϕ = pU0.8
0 q ∨ (p ∧ (pU0.4

−3 q ∨ pU0.8
4 q))

the set of sub-formulae sub(ϕ) includes pU0.8 q and pU0.4 q but not their counted
versions pU0.8

0 q, pU0.8
4 q or pU0.4

−3 q. Also, due to the different unfolding, there is one
more sub-formula for each until.

For the games on f LTL formulae the set of configurations is adjusted accordingly
and the major difference is, that it is not finite anymore. Not only plays can last

48

arbitrary long without revisiting a configuration, also configurations themselves might
grow, since they might accumulate the same sub-formula arbitrary often, only with
different counters. Here we can add a new rewriting rule, that reduces configurations
such that they contain only one instance of a formula at a time and are therefore again
bounded by |sub(Φ)| for a formula Φ.

Definition 4.2 (Extended Focus Games). Let Φ be an f LTL formula in positive normal
form.

The counted focus game on Φ is a graph G(Φ) = (V, E) where

• V ⊆ sub(Φ)× Q × 2sub(Φ)×Q is the set of configurations and

• E ⊆ V ×V is a set of possible moves.

We write configurations C = ([ϕ], Γ) ∈ V meaning that ϕ is the formula in focus and
it is thus required that ϕ ∈ Γ. The initial configuration remains

C0 = (unf(Φ), {unf(Φ)}).

The moves (C,C′) are defined according to Figure 4.2. Configurations are directly
rewritten to contain only one instance of a counted sub-formula at a time and to break
up ∧-formulae that do not have the focus.

Configurations C1, C2 are identified if they result in the same configuration after
rewriting.

Note that, for the rewriting rules from Figure 4.2, the order of application does
not matter. In particular either the rule for breaking up the ∧ operator or those for
merging similar until and release formulae can be applied.

Merging similar until and release formulae is done implicitly in the standard rule set
(Figure 2.3) as well as in the extended rule set for identical formulae since they are
stored in sets. For example a formula ϕ ∧ ϕ reasonably rewrites {unf(ϕ), unf(ϕ)} →
{unf(ϕ)}. This implicit rewriting ensures in standard focus games the finiteness of the
game graph. During the unfolding new formulae are added and if they were all treated
individually the state space would be unbounded. In the counter setting the unfold-
ing affects the counters which may increase or decrease arbitrarily and the resulting
formulae would be syntactically different. E.g. unfolding a formula pU0.8

0 q again and
again, results - amongst others - in possible sub-formulae pU0.8

−0.8 q, pU
0.8
−1.6 q, pU

0.8
−2.4 q,

and so on. These are all not equal, neither syntactically nor semantically, however,
when appearing in conjunction, as they implicitly do in our game configurations, we
can discard all but the one with the least counter value. The implications from Lemma
4.2 assure that this does not give advantage nor disadvantage to either of the players
since

∧

i

ϕUc
ki

ψ ≡ ϕUc
mini(ki)

ψ.

49

Player E

[ϕ0 ∨ ϕ1], {ϕ0 ∨ ϕ1} ∪ Γ

[unf(ϕi)], {unf(ϕi)} ∪ Γ

[ψ], {ϕ0 ∨ ϕ1} ∪ Γ

[ψ], {unf(ϕi)} ∪ Γ

Player A

[ϕ0 ∧ ϕ1], {ϕ0 ∧ ϕ1} ∪ Γ

[unf(ϕi)], {unf(ϕ1−i)} ∪ Γ

[ϕ], {ϕ,ψ} ∪ Γ

[ψ], {ϕ,ψ} ∪ Γ
(change)

Rewriting rules

[X(ϕRc
ki

ψ)], {X(ϕRc
k0

ψ), X(ϕRc
k1

ψ)} ∪ Γ

[X(ϕRc
max(k0,k1)

ψ)], {X(ϕRc
max(k0,k1)

ψ)} ∪ Γ

[ξ], {X(ϕRc
k0

ψ), X(ϕRc
k1

ψ)} ∪ Γ

[ξ], {X(ϕRc
max(k0,k1)

ψ)} ∪ Γ

[X(ϕUc
ki

ψ)], {X(ϕUc
k0

ψ), X(ϕUc
k1

ψ)} ∪ Γ

[X(ϕUc
min(k0,k1)

ψ)], {X(ϕUc
min(k0,k1)

ψ)} ∪ Γ

[ξ], {X(ϕUc
k0

ψ), X(ϕUc
k1

ψ)} ∪ Γ

[ξ], {X(ϕUc
min(k0,k1)

ψ)} ∪ Γ

[ψ], {ϕ0 ∧ ϕ1} ∪ Γ

[ψ], {unf(ϕ0), unf(ϕ1)} ∪ Γ

Next
[X ϕ1], {X ϕ1, . . . , X ϕn, q1, . . . , qm}

[unf(ϕ1)], {unf(ϕ1), . . . , unf(ϕn)}

Figure 4.2: Moves for counted focus games. Moves are to be read from top to bottom
and rewriting rules are applied as long as possible after every move.

50

[pU0.5
0 q]

[q ∨ (p ∧ X(pU0.5
0.5 q)) ∨ X(pU0.5

−0.5 q)]
(unf)

[q] [(p ∧ X(pU0.5
0.5 q)) ∨ X(pU0.5

−0.5 q)]

[p ∧ X(pU0.5
0.5 q)]

p, [X(pU0.5
0.5 q)]

[pU0.5
0.5 q]

[q ∨ ((p ∧ X(pU0.5
1 q))

∨X(pU0.5
0 q))]

(next)

(unf)

[X(pU0.5
−0.5 q)]

[pU0.5
−0.5 q]

[q ∨ ((p ∧ X(pU0.5
0 q))

∨X(pU0.5
−1 q))]

(next)

(unf)

[q]
[(p ∧ X(pU0.5

1 q))
∨X(pU0.5

0 q)]

[X(pU0.5
−1 q)]
...

[p ∧ X(pU0.5
1 q)]

...

Figure 4.3: Example game graph for Φ = pU
1
2 q. For better readability consecutive

moves are condensed where order does not matter, similarly to omitting
unneeded brackets. For example, there are actually only two outgoing
edges from the initial node at the top and one of them has the two children
that are bound directly to the top node. Also, Player A could choose to
put the focus of [p ∧ X(pU0.5

0.5 q)] to p in the next step, however, that would
clearly not be optimal and we omitted this case in the figure.

51

Winning conditions for infinite plays

We can keep Definition 2.6 for winning plays. However, the strategy, to anticipate
the outcome of an infinite play on the recurrence of a configuration is not exhaustive
anymore. The state space is finite in standard focus games, thus on every potentially
infinite play there must some configuration eventually be revisited. With the infinite
state space for counter focus games we may not necessarily experience the recurrence
of any configuration.

In the Example shown in Figure 4.3, we find the following infinite play on G(pU0.5 q).

[unf(pU0.5
0 q)] =

[q ∨ (p ∧ X(pU0.5
0.5 q)) ∨ X(pU0.5

−0.5 q)]

[(p ∧ X(pU0.5
0.5 q)) ∨ X(pU0.5

−0.5 q)]
(e)

[p ∧ X(pU0.5
0.5 q)]

(e)

p, [X(pU0.5
0.5 q)]

(a)

[unf(pU0.5
0.5 q)] =

[q ∨ ((p ∧ X(pU0.5
1 q)) ∨ X(pU0.5

0 q))]

(next)

[(p ∧ X(pU0.5
1 q)) ∨ X(pU0.5

0 q)]
(e)

[p ∧ X(pU0.5
1 q)]

(e)

p, [X(pU0.5
1 q)]

(a)

[unf(pU0.5
1 q)]

(next)

···

[unf(pU0.5
1.5 q)]

(next)

···

Ignoring the counters, the standard winning conditions (Definition 2.6) would classify
the play above lost, already after the first application of the next rule. As argued
earlier, this is reasonable in the absence of counters because if Player E had a chance to
force A to move the focus away from the until formula, this would have been possible
already. Taking the counters into account the configurations are not equal anymore,
the formulae are biased differently. In the example above the fact that the until counter
increases does not help Player E to fulfill the eventuality and the play is supposed to
be lost either way.

However, in general we can not conclude directly whether or not Player E will have
choices in the future that she did not have already, due to different counter values.
Consider a second example (pU0.6 q) ∧ (¬p ∧ ¬q). A possible play on that formula is

52

the following.

revisited *

*

[pU0.6
0 q ∧ (p ∧ q)]

[unf(pU0.6
0 q)], p ∧ q)]

(a)

[unf(pU0.6
0 q)], p, q) =

[(p ∧ X(pU0.6
0.4 q)) ∨ X(pU0.6

−0.6 q)], p, q

(rewrite)

[X(pU0.6
−0.6 q)], p, q

(e)

[unf(pU0.6
−0.6 q)] =

[(p ∧ X(pU0.6
−0.2 q)) ∨ X(pU0.6

−1.2 q)]

(next)

[p ∧ X(pU0.6
−0.2 q)]

(e)

p, [X(pU0.6
−0.2 q)]

(a)

[unf(pU0.6
−0.2 q)] =

[(p ∧ X(pU0.6
0.2 q)) ∨ X(pU0.6

−0.8 q)]

(next)

[p ∧ X(pU0.6
0.2 q)]

(e)

p, [X(pU0.6
0.2 q)]

(a)

[unf(pU0.6
0.2 q)] =

[q ∨ ((p ∧ X(pU0.6
0.6 q)) ∨ X(pU0.6

−0.4 q))]

(next)

[q]
(e)

Player E should obviously win even though there was repeated position in between
and A never changed the focus. In that play, E profited from increasing the counter
to a certain amount and was only then able to fulfill the eventuality q. Obviously,
disallowing p and q even on the second position, i.e. adding ∧X(¬p∧¬q) to the initial
formula forces E to play even more “rounds” until she reaches a positive counter value
and is able to choose q.

Therefore we can not just disregard the counters but add additional conditions on
infinite plays. These need to incorporate that all until formulae have to be fulfilled
eventually.

Definition 4.3 (Winning conditions). Let Φ be an f LTL formula and P = C0C1. . . a
play on the game G(Φ). The play P is won by Player E or A if it is won according to
the respective winning conditions of standard focus games in Definition 2.6.

Additionally, Player E wins an infinite play without recurring configuration, if and
only if

• Player A changes the focus always eventually or

• a position of the form [X(ϕRc
k ψ)], Γ is visited always eventually.

Player A wins an infinite play P without recurrence if and only if

• there is a configuration Cn = [X(ϕUc
k ψ)], Γ such that the change rule is never

applied again from that point on.

53

With the additional conditions focus games with counters also have a unique winner.
For finite plays this is already established in standard focus games. On infinite plays,
either the focus changes always eventually or it does not. In the first case E wins
and A looses consistently. If the focus is eventually never moved again it must reach
a formula that re-spawns itself, i.e. an until or release formula and stay on it when
being unfolded. Otherwise, at some point, the formula would be broken down to
propositions which leaves no choice to A but to move the focus. If it stays on an
(possibly unfolded) until formula ϕUc

k ψ it cannot reach something else but

• ((ϕ ∧ X(ϕUc
k′ ψ)) ∨ X(ϕUc

k′′ ψ)),

• (ϕ ∧ X(ϕUc
k′ ψ)) ∨ X(ϕUc

k′′ ψ),

• ϕ ∧ X(ϕUc
k′ ψ) or

• X(ϕUc
k′′ ψ).

In particular the focus can not be on a release formula. Therefore A wins and E does
not. The argument is the same for release formulae where E wins and A looses because
no until will ever be in focus anymore but the release formula will acquire the focus
again and again.

We observe that the optimal strategy for A from standard focus games is still optimal
in the counter setting.

Theorem 4.2. Player E has a winning strategy for a G(Φ) on an f LTL formula Φ if and only
if Φ is satisfiable.

Theorem 4.2 follows by the same construction as used to prove Theorem 2.1. For
a none-repeating winning play for E against A’s optimal strategy, a word model is
constructed in the same manner and does not even need to be extended by repeating
some suffix since the play is infinite already.

4.3 ω-abstraction

The approach of using focus games for checking satisfiability relies on the fact that the
length of plays is bounded. With counters, even if an U-formula carries the focus that
did not change during a “loop” the game might not be lost, as we saw in the example
pU0.6 q ∧ (¬p ∧ ¬q).

In general, such a loop, i.e. repeating similar configurations several times, may be-
long to Player E’s strategy. The following approach distinguishes “useful” loops from
“useless” in many cases which allows us to break down infinite plays to finite ones.

The standard winning condition already uses such an anticipation. The actual play,
according to the rules, on a formula that is unsatisfiable because of an unsatisfiable

54

eventuality, e.g. ⊤U⊥, would last forever. However, the winning condition makes use
of the fact, that both players can be assumed to play optimal. The assumption is that, if
E was not able to fulfil an eventuality, and the play came back to an exact same point,
the next “round“ will not yield something new as E is assumed to have played the best
she can already. In other words if she were able to fulfil the formula, she could have
done that already. The actual infinite play is cut off as soon as E can not profit from
playing any longer. The same argument applies for A, who, once forced to changed
the focus or to put it on a release, will not be able to avoid that in a next loop.

These conclusions can be made after observing that a configuration was repeated
exactly. The goal in this section is to develop arguments for classifying a play lost or
won, if repeated configurations are not exactly equal, but similar.

We saw that a game can require to loop several times through configurations that
differ only by their counters in order to be won. However it might happen as well,
that even playing arbitrary long does not help E to win. In the unfolding

unf(⊤U0.5
k ⊥) = ⊥∨ (⊤∧ X(⊤U0.5

k+1−c ⊥)) ∨ X(⊤U0.5
k−c ⊥),

E can always choose the conjunction ⊤ ∧ X(⊤U0.5
k+1−c ⊥) and increase the counter ar-

bitrarily but has no advantage, i.e. even with an arbitrary high counter value she will
still not be able to satisfy ⊥.

In any case, by revisiting the a configuration, but with a higher counter value, E
has proven, that she can increase the counter value arbitrarily by just playing long
enough. To figure, if she can win the play we can grant an arbitrary high value, which
we symbolically may denote ω, and let the play go on. Now, that particular counter
can not change anymore. Setting the counter to ω does not enable E to do anything
that were not possible by just playing sufficiently long. On the other hand, if E does
not quit the loop (nor force a focus change) with that value, she will obviously never
be able to fulfil the obligation imposed by an U-formula.

Let P = C0C1. . . be a run on a game G(Φ) and Cm,Cn configurations such that
m < n and Cm = Cn[ϕUc

k+ε ψ / ϕUc
k ψ]. By C[ϕ′/ϕ] we mean that the present formula

ϕ, i.e. not any sub-formula, is replaced by ϕ′. The configurations Cm and Cn are not
equal, still we consider them as repetition and consider ε as the gain of a partial play
from Cm to Cn.

Even though repeating configurations with negative gain may occur we only need
to consider positive abstraction, that is setting counters to ω for a positive gain. This
abstraction is an over-approximation for until formulae and an under-approximation
for release formulae (as follows e.g. also from the implications of Lemma 4.2).

When an until formula is in focus, has not been fulfilled since Cm and did not even
gain credit, there is no hope that E can win because having a smaller counter value
gives E rather less but never more options in the game. Assuming E played optimal
this means E can neither fulfil the until now nor later.

55

ω-abstraction

[X(ξ1 Uk ξ2)], {X(ξ1 Uk ξ2), X ϕ2, . . . , X ϕn, q1, . . . , qm}

[X(ξ1 Uω ξ2)], {X(ξ1 Uω ξ2), X ϕ2, . . . , X ϕn, q1, . . . , qm}
(next)ω

[ξ], {X(ξ1 Uk ξ2), X ϕ2, . . . , X ϕn, q1, . . . , qm}

[ξ], {X(ξ1 Uω ξ2), X ϕ2, . . . , X ϕn, q1, . . . , qm}
(next)ω

[X(ξ1 Rk ξ2)], {X(ξ1 Rk ξ2), X ϕ2, . . . , X ϕn, q1, . . . , qm}

[X(ξ1 Rω ξ2)], {X(ξ1 Rω ξ2), X ϕ2, . . . , X ϕn, q1, . . . , qm}
(next)ω

[ξ], {X(ξ1 Rk ξ2), X ϕ2, . . . , X ϕn, q1, . . . , qm}

[ξ], {X(ξ1 Rω ξ2), X ϕ2, . . . , X ϕn, q1, . . . , qm}
(next)ω

Figure 4.4: Rules for approximating a counter value by ω. Their application can, under
certain conditions, yield a conclusive verdict about the winner of an infinite
play by folding the play to a finite one.

Dually for a release formula: The focus does not play an important role here, just like
in standard focus games, since they do not need to be fulfilled eventually. A release
formula in a recurring position of a play was at least not violated and we only need
to check if this will not happen in the future either. As long as the respective counter
does not increase, Player E can repeat the strategy she was using before, in particular
not violating the formula. Only, if the counter value increased during the loop, there is
doubt that E will be able to satisfy such a formula in the future, in particular when the
counter changes from negative to zero or positive which changes the unfolding and
imposes an additional obligation. Player E can avoid to satisfy the sub-formula ψ of
ϕRc

k ψ as long as k is negative. But once k is zero or positive, E has to prove that ψ can
be satisfied. Therefore we set k = ω and let the play go on which leads either to the
termination of the game by a purely propositional formula or to another repetition of
the configuration. This approximation is reflected by the rules form Figure 4.4 which
shall be applied in a repeated position Cn if the gain is ε > 0.

Up to now, we only considered plays where a configurations was repeated and at
most one counter value changed. Let us have a look at a play, where two counters
change during a loop.

For two or even more until formulae, the same argument applies as for one changing
counter, as long as all of them gain credit during a loop. If E needs to play a certain
number of rounds until a counter value is sufficiently high, it does not harm, to play

56

even longer in order to get a higher value for another counter. Thus we can assume an
arbitrary high value on any of them. Similar considerations apply for a set of release
formulae. For a positive gain on some release formulae, E needs to prove that she can
satisfy the obligation for an arbitrary time for all of them.

We can apply the ω-abstraction or conclude directly as long as all counters either
did not decrease or increase, respectively whereas, for formulae of the form

Φ = (ϕ1Uk1 ψ1) ∧ (ϕ2Uk2 ψ2)

and a play P = C1C2. . .Ci. . .Cj. . . on G(Φ) with

X(ϕ1U
c
k1

ψ1), X(ϕ2U
c
k2

ψ2) ∈ Ci and

X(ϕ1U
c
k′1

ψ1), X(ϕ2U
c
k′2

ψ2) ∈ Cj

where k′1 > k1 and k′2 < k2 all approximations are biased. Similarly, for a formula

Ψ = (ϕ1Rk1 ψ1) ∧ (ϕ2 Rk2 ψ2).

There are several possibilities to approximate such plays but only some of them
might allow a conclusion. In general, we can tell that E can not win a play if she
looses even an over-approximation and certainly wins if she can do that in an under-
approximation.

Consider the former case where we set k1 to ω and leave the value of k2 untouched.
This is clearly optimistic for the until formula Φ. If Player E looses this approximation
the game is certainly lost, but if she wins the reason could be the advantage of reaching
the arbitrary high counter value on counter k1 without having to trade off counter k2.
If there is an actual value k∗1, that allows E to satisfy the according until formula, that
value might not be reachable without decreasing k2 too much for winning the play in
the end. To exemplify this case, consider the formula

(pU0.6
−1.8 q) ∧ (rU0.5

1.5G(¬q)) ∧G(¬r)

with an illustration of a play on it shown in Figure 4.5.

Remark. Presetting counters is done for better readability in the examples. We may
construct a formula, e.g.

¬q ∧ ¬p ∧ X¬p ∧ XX¬p ∧ XXX(G¬r) ∧ pU0,6
0 q ∧ rU0.5

0 (G¬q),

which leads to the configuration

(pU0.6
−1.8 q), (rU

0.5
1.5G(¬q)), G(¬r)

after three application of the next-rule. The formula has, formally, a different semantics
in terms of its models, however, this is irrelevant for the considerations made here.

57

unf(pU0.6
k1

q),

unf(rU0.5
k2

G¬q), G(¬r)

X(pU0.6
k1

q), X(rU0.5
k2

G¬q),
p,¬r, G(¬r)

unf(rU0.5
k2

G¬q),
¬r, G(¬r)

unf(pU0.6
k1

q),

unf(rU0.5
k2

G¬q), G(¬r)

X(pU0.6
k1

q), X(rU0.5
k2

G¬q),
p,¬r, G(¬r)

unf(pU0.6
ω q),

unf(rU0.5
1 G¬q),

unf(G¬r)

unf(rU0.5
1 G¬q),

unf(G¬r), q

unf(rU0.5
0.5 G¬q)

unf(G¬q), unf(G¬r)

k1 = −1.8
k2 = 1.5

k1+ = 0.4
k2+ = −0.5

after 5 loops:

• k1 = 0.2 ≥ 0
⇒ Player E can choose
to resolve pU0.6 q

• k2 = −1 < 0

repeat the
loop 5 times

k2+ = −0.5

loops ad infinitum
for k2 < 0

k2+ = 0.5X

required r ∧ ¬r

k1 = −1.8
k2 = 1.5

k1+ = 0.4
k2+ = −0.5

gain(k1) = 0.4 > 0
⇒ k1 := ω

loop
1 time

k1 ≥ 0

k2+ = −0.5, next

k2 = 0.5 ≥ 0

⇒ repeated release

Figure 4.5: The formula (pU0.6
−1.8 q) ∧ (rU0.5

1.5G(¬q)) ∧ G(¬r) is not correctly approxi-
mated by the ω-rules. A sketch of a play is shown: (l) In order to resolve
the first until, E has to play the loop five times but that results in a nega-
tive value for k2. Since ¬r needs to hold globally, E cannot gain credit for
the second until any more and can not win the game. The approximation
(r) would be done after looping once, allowing E to resolve the first until
within two steps. Then k2 is still positive and can also be resolved.

58

The assumption of setting the increasing counter to ω is pessimistic for the release
formula Ψ because it obligates E to globally satisfy ψ1. In particular, k1 could have been
negative and became instantly positive by setting it to ω. k2 did not have the time to
decrease far enough which might have been possible if k1 increased slowly enough.
See Figure 4.6 for an example in which E would win whereas the approximation yield
a negative and thus wrong anticipation.

As can be seen from these examples, the ω-abstraction is not necessarily conclusive
on loops with diverging counters, i.e. where the individual gain on one counter is
positive whereas the gain on another counter is negative. The reason is that, in general,
E can trade one counter for another which might be leading to a winning play but does
not have to.

For a conjunction of until formulae, such as Φ, the apparent alternative of setting
k2 := −ω always results in a lost play for E, no matter what k1 is set to. E has no
chance to win on an until formula with that value since the counted unfolding only
allows to fulfil the eventuality in presence of a none-negative counter value.

Considering the conjunction Ψ of release formulae, any release formula with a neg-
ative, infinite counter value can never be violated. In particular, since E did not loose
with counters k1 and k2 she will not loose the game when setting k2 to −ω either.
Therefore this approximations yields no further information.

Setting k1 to ω and k2 to −ω also leads to no conclusion. If E wins under that
assumption the actual game might have been lost because k2 was actually always too
large to win. If E lost, on the other hand, that does not mean the game needed to be
lost, it is possible that k1 would not increase as quickly, allowing k2 to decrease to a
certain amount that allows k1 to not increase any more.

The overall observation is so far, that in case of diverging counters, the ω-abstraction
does not provide good arguments to anticipate the outcome of an infinite game. That
also applies to combinations of until and release formulae.

Only if all changing counters accord, the abstraction can be conclusive: Whenever
all changing counters on release formulae decrease and all changing counters on until
formulae increase, abstracting them by −ω and ω, respectively anticipates the out-
come of the game correctly. In the dual case, where all R-counters increase and all
U-counters decrease the approximation is not even necessary since, following the im-
plication lemma there is no hope that the until formulae can ever be resolved.

If R- and U-counters decrease, the only thing we can check is whether the E profits
from setting all R-counters to −ω. Then, only if all U-counters increase a second ap-
proximation by ω is justified. Given this leads to resolving all untils, we can conclude
that E has a winning strategy. In all other cases we stay inconclusive. Also, the case of
a conjunction of R- and U-formulae with increasing counters kr and ku, respectively,
is similar to the case of having two until formulae with diverging counters. Only if E
is winning by setting kr to ω and leaving ku, and then a further approximation setting

59

pR0.5
k1

q, ¬pR0.2
k2

¬q

q, p, X pR0.5
k1

q,

X¬pR0.2
k2

¬q

p, X pR0.5
k1

q,

¬q, X¬pR0.2
k2

¬q

pR0.5
k1

q, ¬pR0.2
k2

¬q

q, p, X pR0.5
k1

q,

X¬pR0.2
k2

¬q

pR0.5
k1

q, ¬pR0.2
k2

¬q

pR0.5
k1

q, ¬pR0.2
ω ¬q

q,¬q, . . . ⇒ not winning

k1 = 1.5
k2 = −0.8

p ⇒ k1+ = −0.5
k2+ = 0.2

k1 ≥ 0 ⇒ q

after 4 loops:

• k1 = −0.5 < 0

• k2 = 0 ≥ 0 ⇒ ¬q

repeat the
loop 4 times

k1+ = −0.5
k2+ = 0.2
can be repeated
infinitely ⇒ winning

k1 = 1.5
k2 = −0.5

p ⇒ k1+ = −0.5
k2+ = 0.2

k1 ≥ 0 ⇒ q

next

ω-approximation:
gain for k1: -0.5
gain for k2: 0.2
⇒ k2 := ω

k1 = 1 ≥ 0 ⇒ q
k2 = ω ≥ 0 ⇒ ¬q

Figure 4.6: The figure sketches a play on the formula pR0.5
1.5 q ∧ ¬pR0.2

−0.8 ¬q which
would be won by E (l) but is approximated too pessimistic by the ω-rules
(r).

60

ku to ω is equally successful we can conclude that E is indeed winning. Setting only
ku to ω is optimistic, hence if E looses she has no chance to win on the actual game
either. As in previous cases, we do not gain information if E is winning.

The last option is to set both, kr and ku to ω which is inherently inconclusive, just
as setting ω and −ω in the case of two release formulae, one increasing and one
decreasing, respectively.

The apparent difficulties arising from the combinatorics with several changing coun-
ters motivates the definition of an f LTL fragment of formulae with at most one single
counter. Within this fragment we can assure, the ω-approximation can always be ap-
plied conclusively and is hence decidable. Unfortunately this fragment is too weak
to keep up Theorem 3.1 where we used a conjunction of several until formulae with
annotated frequencies.

4.4 Systems of linear inequalities

We describe the idea of reducing the existence of a winning strategy for Player E to
the solution of some equation system. Examples are given in order to explain the
construction. Secondly the drawbacks of this approach are outlined and motivate the
definition of a fragment of f LTL that assures applicability.

The ω-approximation failed on the example

(pU0.6
−1.8 q) ∧ (rU0.5

1.5G(¬q)) ∧G(¬r),

as shown in Figure 4.5, because it directly considers the limit. In order to overcome
this problem we consider a more sensitive approach to reason about loops, i.e. circles
in the game graph.

We will start describing the idea of reducing the existence of a winning strategy
for Player E to the solution of some equation system. Examples are given in order to
explain the construction. Secondly the drawbacks of this approach are outlined and
motivate the definition of a fragment of f LTL that assures applicability. Based on this
fragment, the approach is formalized at the end of this section.

In contrast to setting a counter value to an arbitrary high value because of a possible
loop, we want to calculate whether there is a number n such that traversing the loop
for n times leads to a qualitative change of the situation, i.e. it gives E either new
options or imposes new restrictions.

In the example, traversing the loop more than three times took Player E’s option to
choose G¬q in the unfolding of the second until formula, i.e. to resolve it, since this
leads to a negative counter value. On the other hand, four times is not enough for the
other counter value to get positive. Therefore E has no chance to satisfy the eventuality
q before the second counter gets negative.

61

Let us denote the counter of the two until formulae by k1 and k2, respectively. The
loop causes k2 to decrease by −c2, where c2 = 0.5, c1 = 0.6 are the frequencies of the
respective until operators. Assuming for the moment, that the loop is the only possible
way of playing the game, k2 is decreased by c2 once after the first until was resolved
and additionally as often as the loop was traversed before. Hence, we need to ensure
that

k2 − c2 + n · (−c2) ≥ 0.

The loop also effected an increase of k1 by 1− c1 and, in order to resolve the first until,
it is required that

k1 + n · (1− c1) ≥ 0.

Finding a natural solution, i.e. a number n ∈ N, such that both inequalities hold,
yields directly a winning play for E. Furthermore, if there is no solution, E cannot win
by only playing the considered loops. For k1 = −1.8, k2 = 1.5 we observe directly that
there is no natural solution. If we are able to reason about all loops of a game graph
in such a manner, we can conclude if the formula is satisfiable or not.

Consider a game G(Φ). We introduce a folded representation of the game graph
where explicit counter values are substituted by unique variables. Instead of calculat-
ing the unfolding unf(ϕUc

k ψ) for c 6= 1 directly, we add three edges to represent the
choice of Player E. The variable k does not change and we always have a subsequent
configuration where the formula is resolved, i.e. where E chose ψ. But we do add
annotations to the edges: There is a constraint on the edge of the form k ≤ 0 when-
ever a formula is resolved. When E chooses one of the other two options we label the
edge with the respective modification of k: For ϕ ∧ X(ϕUc

k ψ) we use a label such as
k+ = 1− c and for only X(ϕUc

k ψ) the label is k+ = −c. See Figure 4.7 for a simple
example.

As can be seen in the example, choices of Player A can blow up the graph artificially,
since A can potentially choose to focus e.g. on p in the example but would again have
to change the focus immediately.

To analyse the game graph it makes sense to reduce it as far as possible without
loosing important information. We can reduce ∧-nodes by incorporating an optimal
strategy for A in the game graph. That restricts A to decisions according to that strat-
egy which, however, does not make him weaker. Unfortunately, the optimal strategy
we considered in Theorems 2.1 and 4.2 is not positional, i.e. the decision at a certain
point in a play may depend on more then just the last configuration. Imposing a
non-positional strategy on a game is possible but results in general in an exponen-
tially blown-up game graph, since it is, from an automata-theoretical point of view,
the elimination of ∧-nodes and hence related to a subset construction. In [DL05], Dax
and Lange give a construction for a pure positional strategy using multiple foci in each
configuration, which basically stores the queue maintained by A in every configura-
tion.

62

[pUc
k q]

[p ∧ X(pUc
k q)]

[q]

[p], X(pUc
k q) p, [X(pUc

k q])

[X(pUc
k q)]

k ≤ 0

k+ = 1− c

×

(change)
×

k+ = −c

Figure 4.7: Folded representation of a game G(pUc q) where counter changes and con-
strains are represented by labels on edges. Choices of Player A are printed
in blue.

For the following considerations it suffices to only use the positional parts of the
strategy, removing some of A’s choices. By the optimality of the strategy described,
e.g. in the proof for Theorem 2.1, we can restrict Player A to obey the following rule: He
is supposed to always choose the right-hand side of an ∧-formula to inherit the focus,
unless it does not contain an until operator while the left-hand side does. In particular,
A then keeps the focus on an U-operator as long as possible because the formula
reappears with an additional X on the right-hand side in the unfolding. Considering
the example from above, this leads to the game graph in Figure 4.7 where the red
crosses indicate pruned components of the graph.

In the next step we can identify winning nodes and lost nodes. These are the nodes,
that directly yield a winner for a play reaching that node. That is the case if they
either contain a propositional contradiction, i.e. ⊥ or both, q and q for q ∈ AP, or are
a consistent subset of AP.

Additionally we can decide the winner for all nodes that do not contain a formula
with frequency annotated operator. These configurations represent pure LTL formulae
for which we can compute a winner as described in section 2.3.1. Winning nodes play
a role in the analysis of the graph while lost nodes can be cut off.

Figure 4.7 shows a game graph for the formula pUc q. There is a restricted edge
from the initial to the final node ([q]) and any path must obey that restriction. Along
the path modifications are applied to to the initial counter value. The combination of
all of these modifications before the restricted edge is crossed, must yield a value that
meets the condition. If that is not possible, the final node is not reachable and the
game can therefore not be won.

Any path to the restricted edge is composed of the direct path (i.e. without duplicate

63

nodes) and a number of traversals for each loop possible along that direct path. In
this example the direct path consists only of the node ([pUc

k q]) and does thus not
influence the value of k itself. Along that path we have the possibility to traverse two
different loops which add 1− c and −c to k, respectively. Therefore, satisfiability for
that formula can be described by the inequality

k+ n1 · (1− c) + n2 · (−c) ≥ 0.

For any initial value of k, we can find a natural solution and hence a path that forms a
winning play in the game for E.

In general, there can be several winning nodes, and several direct paths to such a
node. Consider the formula p1 U

c1
k1
q1 ∧ p2 U

c2
k2
q2 with two until sub-formulae. The

folded graph is shown partially in Figure 4.8. Note that there are no nodes in which
Player A can make a choice because of the restrictions introduced above.

Even though the satisfiability is obvious here let us demonstrate how an equation
system can be constructed. For every winning node, consider the direct paths starting
at the initial one.

For the node N2 the direct path ̺1 consists of only three nodes:

̺1 = (p1 U
c1
k1
q1, p2 U

c2
k2
q2)

k1≥0
−−→ (q1, p2 U

c2
k2
q2)

k2≥0
−−→ (q1, q2)

There are eight loops from N0 to itself. Unfolding the first until formula gives E two
choices. In order to get back to node N0, the second formula must also not be resolved
and E has, again the two choices of gaining or investing credit. The other four loops
are basically the same but with the opposite order, unfolding the second until formula
first. Therefore we have the combinations of gaining or investing credit per formula.
Formally we want to consider the labels that indicate a modification of some counter
as mapping. The weight weightk(̺) of a path ̺ with respect to a counter k is then the
concatenation of the mappings along that path, that modify k. For example the loop

l1 = N0
k1+=1−c1−−−−−→ N8

k2+=−c2−−−−−→ N10 → N0

is labelled by the mapping

weightk1(l1) :x 7→ x+ 1− c1 for k1 and

weightk2(l1) :x 7→ x+ 1− c2 for k2.

For the seven other loops we obtain similar mappings for each counter. The second
node on the path can not be reached from itself. Therefore it imposes no further in-
equalities. Since each of the mappings here only add some constant value to the counter
value we add them all up, weighted by the number of traversals of the respective loop
and obtain the following conditions for winning the game via N2.

k1 + n1 · weightk1(l1) + . . . + n8 · weightk1(l8) ≥ 0

k2 + n1 · weightk2(l1) + . . . + n8 · weightk2(l8) ≥ 0

64

[p1 U
c1
k1
q1], p2 U

c2
k2
q2 N0

[q1], p2 U
c2
k2
q2 N1

k1 ≥ 0

q1, [p2 U
c2
k2
q2] N3

change

q1, [q2]

N2
k2 ≥ 0

q1, p2, [X p2 U
c2
k2
q2] N5

k2+ = 1− c2

q1, [X p2 U
c2
k2
q2] N4

k2+ = −c2

[p2 U
c2
k2
q2] N6[q2]

N7
k2 ≥ 0

. . .
k2+ = 1− c2

. . .
k2+ = −c2

p1, [X p1 U
c1
k1
q1], p2 U

c2
k2
q2

k1+ = 1− c1

p1, [X p1 U
c1
k1
q1], q2

k2 ≥ 0

[p1 U
c1
k1
q1][q1]

k1 ≥ 0

. . .
k1+ = 1− c1

. . .
k1+ = −c1

p1, p2,
[X p1 U

c1
k1
q1],

X p2 U
c2
k2
q2

k2+ = 1− c2

p1, [X p1 U
c1
k1
q1],

X p2 U
c2
k2
q2

k2+ = −c2

N0

Figure 4.8: Folded graph of the formula p1 U
c1
k1
q1 ∧ p2 U

c2
k2
q2. Analogous parts have

been omitted.

65

There are two direct paths to node N7, one via N5 and another via N4. The first one
adds to k2 the value 1− c2:

([p1 U
c1
k1
q1], p2 U

c2
k2
q2)

k1≥0
−−→ (q1, [p2 U

c2
k2
q2])

1−c2−−→

(q1, p2, [X(p2 U
c2
k2
q2)])

(next)
−−−→ ([p2 U

c2
k2
q2])

k2≥0
−−→ ([q2])

The second path to N7 changes k2 by −c2:

([p1 U
c1
k1
q1], p2 U

c2
k2
q2)

k1≥0
−−→ (q1, [p2 U

c2
k2
q2])

−c2−−→

(q1, [X(p2 U
c2
k2
q2)])

(next)
−−−→ ([p2 U

c2
k2
q2])

k2≥0
−−→ ([q2])

On these paths we find the loops which we already considered earlier from and to
N0 and additionally two loops starting at node N6. One loop has a label k2+ = 1− c2,
the other one k2+ = −c2. We thus have two alternative systems of inequalities, one for
every direct path to N7, where any natural solution also yields at least one winning
play.

For the first path to N7 with label k2+ = 1− c2 we have

k1 + n1 · weightk1(l1) + . . . + n8 · weightk1(l8) ≥ 0

k2 + (1− c2) + n1 · weightk2(l1) + . . . + n8 · weightk2(l8)

+n9 · weightk2(l9) + n10 · weightk2(l10) ≥ 0

and for the second path with label k2+ = −c2

k1 + n1 · weightk1(l1) + . . . + n8 · weightk1(l8) ≥ 0

k2 + (−c2) + n1 · weightk2(l1) + . . . + n8 · weightk2(l8)

+n9 · weightk2(l9) + n10 · weightk2(l10) ≥ 0.

We proceed by constructing these systems for every direct path to a winning node.

Reconsider the example

Φ = (pU0.6
−1.8 q) ∧ (rU0.5

−1.5G(¬q)) ∧G(¬r).

from Section 4.3. While the ω-approximation failed (c.f. Figure 4.5) on that example
we can construct a system of inequalities and verify that it has no solution. The folded
game graph is shown in Figure 4.9.

We observe a single winning node N6, reachable on two direct paths

̺1 = N0
−c2−−→ N1

k1≥0
−−→ N2 → N5

k2≥0
−−→ N6,

̺2 = N0
k1≥0
−−→ N3

(change)
−−−−→ N4

−c2−−→ N2 → N5
k2≥0
−−→ N6.

66

[pUc1
k1
q], rUc2

k2
G¬q, G¬r

. . .
[pUc1

k1
q],

¬q, XG¬q,
¬r, XG¬r

[pUc1
k1
q],

X rUc2
k2
G¬q,

XG¬r,¬r

[X pUc1
k1
q],

X rUc2
k2
G¬q,

XG¬r,¬r

. . .

q, ¬q, r, ¬r, . . .
[X pUc1

k1
q],

X rUc2
k2
G¬q,

XG¬r,¬r, p

[X pUc1
k1
q],

rUc2
k2
G¬q,

XG¬r, ¬r, p

[q],
rUc2

k2
G¬q,

XG¬r, ¬r

. . .

r,¬r, . . .
[X pUc1

k1
q],

X rUc2
k2
G¬q,

XG¬r, ¬r, p

q,
[rUc2

k2
G¬q],

XG¬r,¬r

. . .
q,

[X rUc2
k2
G¬q],

XG¬r,¬r

q,¬q, . . . G¬r, [G¬q] G¬r, [rUc2
k2
G¬q]

¬r, XG¬r, [X rUc2
k2
G¬q]. . .

k2 ≥ 0 k2+ = −c2

l4

k1+ = −c1

k1+ = −c1

l2

k1+ = −c1

l3

k1+ = 1+ c1

k2+ = 1− c2

k1+ = 1− c1
k1 ≥ 0 X

k2 ≥ 0

X

k1+ = 1− c1

k1 ≥ 0

k2+ = 1− c2 X
k2+ = −c2

l1

change

k2 ≥ 0

X
k2+ = c2

k1 ≥ 0,

change

k2+ = 1− c2 X

k2 ≥ 0

k2+ = 1− c2 X k2+ = −c2

N0

N1

N2

N3

N4

N5N6

N7

Figure 4.9: A folded version of the game graph on the formula (pU0.6
−1.8 q) ∧

(rU0.5
−1.5G(¬q)) ∧G(¬r). Crosses on edges indicate that they lead to nodes

where Player E would loose. The loop l2 is very similar to l1 and has been
omitted.

67

Node N0 is reachable from itself by four different paths l1 to l4, labelled by the
mappings

weightk1(l1),weightk1(l3) : k 7→ (k+ 1− c1)

weightk1(l2),weightk1(l4) : k 7→ (k− c1)

for counter k1 of the first until formula pUc1
k1
q and

weightk2(l1),weightk2(l3),

weightk2(l2),weightk2(l4)

}

: k 7→ (k− c2)

For N5 there is another loop

l5 = N5
k2+=−c2−−−−−→ N7 → N5

with weightk2(l5) : k 7→ k− c2 and no effect on k1.

There are two extra loops on node N1, however they coincide with the ones form N0

and are thus already considered.

Any valid path including the edge (N0,N3) has to obey the restriction that the
counter value k1 must be greater than or equal to zero at that point. The weight
of the path that before that edge, applied to the initial value of k1, must meet this
condition. Since the weights of the loops are additive, we can decompose any valid
path in the weight of the direct path to the node before the restricted edge and the
traversals of the loops.

We let ̺′1 denote the path ̺1 up to the first restricted edge and ̺′′1 the path up to the
second restricted edge. Thus, ̺′1 consists only of the node N0 and ̺′′1 ends at N5.

The weight of any path across the edge (N5,N6), applied to the initial value k2 must
also obey the according restriction, i.e. must be greater or equal to zero. These weights
can equally be decomposed into the weight of the direct path to N5, with respect
to k2, and the single loops. Therefore the following equation system evaluates the
conditions for any path to N6 that extends ̺1 by traversing loops l1, . . . , l5 for n1, . . . , n5
times, respectively.

k1 + weightk1(̺
′
1) +

(

4

∑
i=1

ni · weightk1(li)

)

≥ 0

k2 + weightk2(̺
′′
1) +

(

5

∑
i=1

ni · weightk2(li)

)

≥ 0

For the initial values k1 = −1.8 and k2 = 1.5 from the example, there is no natural
solution. Hence, such a path cannot exist. For the second path the equation system
can be constructed in the same manenr and is, for this example, equal to the one for

68

̺1. The paths ̺1 and ̺2 are the only paths that could possibly be extended to a valid
path from the initial node to the (only) winning node. But since they do not allow to
meet the conditions, there is no path and we can conclude that N6 and the according
configuration in the game G(Φ) is not reachable at all. The conclusion is that there is
no possibility for Player E to trade the counters for each other in such a way that at
some point she can resolve both until formulae.

4.4.1 Restrictions

In the examples presented so far the order, in which loops were traversed, did not
matter. It was only necessary to consider the number of times n of traversals for each
single loop l. This was due to the fact that the modifications that could be done to the
counter values were additive and therefore we could assume that

weight(ln) = n · weight(l)

where ln means the concatenation of l for n times, which is always a path in the graph
since l starts and ends in the same node.

Unfortunately the game graph might not always be as simple as in the examples
above. The approach has, in general, two major drawbacks: The occurrence of restric-
tions on loops and none-additive weight functions.

Constraints on loops. To realize the problem with constrained loops, consider the
formula

(pR0.3
k1

¬q) ∧ qU0.6
k2

r

for initial values k1 = 0, k2 = −1 and the folded game graph shown in Figure 4.10.
Release formulae introduce constraints on loops in the folded graph which are not
covered by the equation system constructed. It can happen that the constructed system
has a natural solution but which is not realizable. That is, all the plays that follow
from that solution by traversing loops the respective number of times are not valid but
violate the constraints. In the example, we find the only winning node N1 in the graph
and six loops starting on node N0. Constructing the equation system analogously to
the previous examples leads to only one inequality

k2 +

(

6

∑
i=1

ni · weightk2(li)

)

≥ 0.

In loops l1 to l4, k2 is only affected by the label of edge (N0,N5), which decreases
that counter. The other loops l1 and l2 increase the counter by 1− c2 and we find
a solution to the equation system with n1 = n2 = . . . = n5 = 0 and n6 = 3 since
−1+ 3 · (1− 0.6) = 0.2 ≥ 0.

The loop

l6 = N0
1−c2−−→ N2

k1<0
−−→
+c1

N3 → N0

69

pRc1
k1
¬q, [qUc2

k2
r] [r], pRc1

k1
¬q

pRc1
k1
¬q, q, [X qUc2

k2
r] pRc1

k1
¬q, [X qUc2

k2
r]

q,¬q, . . .· · ·

X pRc1
k1
¬q,

[X qUc2
k2
r],

q

c

X pRc1
k1
¬q,

[X qUc2
k2
r],

p, q

c

X pRc1
k1
¬q,

[X qUc2
k2
r],

¬q, p

c

X pRc1
k1
¬q,

[X qUc2
k2
r],

¬q

c

X pRc1
k1
¬q,

[X qUc2
k2
r],

p

c
X pRc1

k1
¬q,

[X qUc2
k2
r]

c

N0

k2 ≥ 0

k2+ = 1− c2 k2+ = −c2

k1 < 0 k1 < 0X

k1+ = c1 k1+ = c1 − 1 k1+ = c1 − 1 k1+ = c1 k1+ = c1 − 1 k1+ = c1

l6 l5 l4 l3 l2 l1

N0

N2

N3

N4

N5

Figure 4.10: Folded game graph of the formula (pR0.3
k1

¬q) ∧ qU0.6
k2

r. Node N4 is
marked as winning, since the according focus game would be won by
Player E. There is no until formula that needs to be fulfilled and the obli-
gation ¬q can always be satisfied.

70

indeed gives raise to k2 but also to k1. The solution suggests to traverse loop l6 for
n6 = 3 times in order to satisfy the constraint k2 ≥ 0 and win the game, which is not
possible since E is not allowed to choose the edge (N2,N3) because k1 is not negative.
The solution is therefore not realizable by any actual valid play.

Minimum, maximum and reset operations. An additional issue arises from none
additive operations on counters. These can not be summed up in a simple equation.
Apart from simply adding a constant to a counter it may be necessary to compute a
minimum or a maximum between two counters or reset some counter to the initial
value.

As incorporated in the rewriting rules (Figure 4.2), for every two counted formulae
that differ only in their counter value, one implies the other according to the impli-
cation lemma (Lemma 4.2). In case of a counted until, the smaller value determines
whether the conjunction is satisfied or not, for a release formula the maximum of both
values is determining.

Two equal formulae that are merged according to the maximum or minimum rule
can occur because of two reasons: They are either equal sub-formulae at different po-
sitions in the initial formula, e.g. in a play on (pUc

k q) ∧ (r ∨ (pUc
k′ q)) the until sub-

formulae may individually appear in the configuration after the choice of Player E.
The second possibility is that they originate from the same sub-formula that recurred
during a play. Recurrence of sub-formulae happens, e.g. if until formulae are nested as
in the formula (pUc1

k1
q)Uc2

k2
r. The outer until “reproduces” the inner formula pUc2

k1
q

through its unfolding and the inner formula can reside in a configuration even after a
next-step, also because of its unfolding. Then the formula is still present when it re-
peatedly occurs, as shown in the following play, starting on counter values k̂1 = k̂2 = 0.

[unf((pU0.8
0 q)U0.4

0 r)] =
[r ∨ ((pU0.8

0 q ∧ X(pU0.8
0 qU0.4

0.6 r)) ∨ X(pU0.8
0 qU0.4

−0.4 r))]

unf(pU0.8
0 q), [X((pU0.8

0 q)U0.4
0.6 r)]

X(pU0.8
−0.8 q), [X((pU0.8

0 q)U0.4
0.6 r)]

unf(pU0.8
−0.8 q), [unf((pU0.8

0 q)U0.4
0.6 r)]

unf(pU0.8
−0.8 q), unf(pU0.8

0 q), [unf((pU0.8
0 q)U0.4

0.6 r)]

unf(pU0.8
−0.8 q), [unf((pU0.8

0 q)U0.4
0.6 r)]

(min)

···

In the folded game graph shown in Figure 4.11 this appears as path from N0 to N2.

Observe some particularities that result from representing counters only by vari-
ables. Apart from only increasing and decreasing them we need more operations to
represent the game graph. Whenever a formula recurs, e.g. in node N2 or node N5,
we need to reflect that the counter value must change according to the actual value
at that point. We need to distinguish between the two instances of the formula. In
the game this is done syntactically because the counter values are explicitly annotated

71

[(pUc1
k1
q)Uc2

k2
r]

. . .

pUc1
k1
q, [X(pUc1

k1
q)Uc2

k2
r]

. . .

X(pUc1
k1
q), [X(pUc1

k1
q)Uc2

k2
r]

pUc1
k1
q, [(pUc1

k1
q)Uc2

k2
r]

pUc1
k1
q,

[X(pUc1
k1
q)Uc2

k2
r]

q, [(pUc1
k1
q)Uc2

k2
r]q, r

X pUc1
k1
q,

[X(pUc1
k1
q)Uc2

k2
r]

q,
[X(pUc1

k1
q)Uc2

k2
r]

q, pUc1
k1
q,

[X(pUc1
k1
q)Uc2

k2
r]

p, X pUc1
k1
q,

[X(pUc1
k1
q)Uc2

k2
r]

q, X pUc1
k1
q,

[X(pUc1
k1
q)Uc2

k2
r]

q, p, X pUc1
k1
q,

[X(pUc1
k1
q)Uc2

k2
r]

N0

k2+ = 1− c2

k1+ = −c1

next

k2+ = 1− c2
k1 := min(k1, k̂1)

k2+ = −c2
k1 ≥ 0

k2 ≥ 0

k2+ = −c2

k2+ = 1− c2
reset(k1)k1+ = −c1 k1 ≥ 0

k1+ = 1− c1

l2

k1+ = −c1

k1+ = 1− c1

N0

N1

N2 N3

N4 N5

Figure 4.11: Detail of the folded graph for the formula (pUc1
k̂1
q)Uc2

k̂2
r. Initial values are

denoted k̂i, place holder variables by ki.

72

to the respective operators. But since we replaced the actual values by variables in
the folded graph we need to explicitly check, whether a formula is already present in
a configuration, every time a rule is applied. The formulae are then merged which
requires to calculate the minimum of the current counter value, as it results from the
traversed path, and the new instance as it occurs in the initial formula.

Traversing a loop such as

(pUc1
k1
q)

k1+=−c1−−−−−→ (X(pUc1
k1
q))

(next)
−−−→ (pUc1

k1
q)

for n times can be reflected by simply adding up the weight n times but we can not
reflect the effect of a loop where formulae may recur that way. For example, in order
to reflect the effect of a path traversing the loop

l2 = (pUc1
k1
q, (pUc1

k1
q)Uc2

k2
r) (= N1)

k2+=1−c2−−−−−−−−→
k1 :=min(k1,k̂1)

(pUc1
k1
q, X((pUc1

k1
q)Uc2

k2
r)) (= N2)

k1+=−c1−−−−−→ (X(pUc1
k1
q), X((pUc1

k1
q)Uc2

k2
r)) (= N4)

(next)
−−−→ (pUc1

k1
q, (pUc1

k1
q)Uc2

k2
r) (= N1)

several times we need to actually nest the weight functions

weightk1(l2) = min(k̂1, k̂1)− c1 = k̂1 − c1

weightk1(l
2
2) = weightk1(l2) ◦ weightk1(l2)

= min(k̂1 − c1, k̂1)− c1

weightk1(l
3
2) = weightk1(l2) ◦ weightk1(l2) ◦ weightk1(l2)

= min(min(k̂1 − c1, k̂1)− c1, k̂1)− c2
...

where the nesting increases for every single traversal of the loop. k̂1 shall denote the
initial value, as stated in the formula, in contrast to the place holder variable k1. We
loose the convenient notion of a linear system of inequalities when nesting counted
until operators.

Furthermore, another issue becomes apparent at the node N3 = (q, [(pUc1
k1
q)Uc2

k2
r])

where Player E might choose to increase the counter k2. This leads to the node

(q, pUc1
k1
q, [X((pUc1

k1
q)Uc2

k2
r)]).

Even though there is no counter k1 present before we still need to recognize the “new”
instance since whatever path lead to this configuration, the weights along it do not
affect the value of this counter. k1 is reset to the value that is specified in the initial
formula, e.g. zero.

73

4.4.2 An expressive decidable fragment of f LTL

In order to pursue the idea of reducing the satisfiability problem to a set of linear
equation systems we need to avoid the complex cases we just considered since they
impose non-linear operations on the counter variables that can not be covered by a
standard equation system.

Therefore, based on the observations, we suggest a fragment of f LTL where the use
of counted operators is restricted. In order to analyse the a formula using inequality
systems, the positive normal form of any formula should not contain

• release sub-formulae of the form ϕRc ψ for c 6= 0 or

• nesting of counted until formulae, i.e. sub-formulae (ϕUc1 ψ)Uc2 η for c1, c2 6= 0.

Let therefore the f LTL fragment of simple frequentness properties, s f LTL, consist of
formulae of the form

ϕ ::= LTL | (LTL)Uc(ϕ) | ϕ ∧ ϕ | ϕ ∨ ϕ

where LTL denotes a standard LTL formula.

We can generalize the example in Figure 4.8 consisting of two until formulae to a
conjunction of arbitrary many of these formulae. For those we can assure that neither
constraints nor minimum, maximum or reset operations occur on loops in the folded
game graph. Therefore the inequality system constructed has a natural solution if and
only if Player E has e winning strategy for the according game.

Folded game graph for s f LTL

The formal definition of the folded game graph is very similar to the extended game
graph. Operations and constraints on counters that were imposed implicitly by the un-
folding operation are made explicit. Configurations do not contain explicit counter val-
ues anymore, but variables. The operations and constraints along the edges are related
to these placeholders. For example, consider the configuration ([unf(pU0.8

−0.1 q)], {unf(pU
0.8
−0.1 q)}).

By means of the unfolding operation E has not the possibility to resolve the formula
by choosing q since that does not appear in the unfolding due to the negative counter
value. In the folded graph, the unfolding operator needs to be changed in order to
handle counter variables instead of values. Instead of the value −0.1 there is a place-
holder variable k. Also there is an edge that E can choose to move to the configuration
([q], {q}), however, this edge is labelled with the constraint (k ≥ 0).

For c < 1 and a counter variable (not a value) k, we let

unf(ϕUc
k ψ) := 〈ψ〉k≥0 ∨ (〈ϕ ∧ X(ϕUc

k ψ)〉k+=1−c

∨〈X(ϕUc
k ψ)〉k+=−c).

(4.3)

74

Then, additional rules

[〈ϕ〉l], {〈ϕ〉l} ∪ Γ

[ϕ], {ϕ} ∪ Γ
l

[η], {〈ϕ〉l} ∪ Γ

[η], {ϕ} ∪ Γ
l

(4.4)

move the labels, i.e. operations and restrictions, from formulae to the edges in the
game graph.

Definition 4.4 (Folded game graph). Let Φ be an s f LTL formula and Φ′ the same
formula, except that all until formulae µi = ϕiU

ci ψi, that carry frequencies ci < 1, are
uniquely annotated by a placeholder variable ki.

The folded game graph is an edge-labelled graph F(Φ) = (V, E,λ). The set of nodes
is V ⊆ sub(Φ′)× 2sub(Φ

′) and λ : E → 2Λ is a mapping of edges to a set of labels.

The labels in Λ are either constraints of the form ki ≥ 0, or an operation on a counter
variable ki+ = 1− ci or ki+ = −ci, representing functions ki 7→ ki + 1− ci, ki 7→ ki − c,
respectively.

The graph is constructed in analogy to the rules in Figure 2.3 for focus games with
the exception, that the focus is automatically moved

• to the right formula of a conjunction [ϕ ∧ ψ] if ψ contains an until sub-formula
or ϕ does not, and

• the left formula if ϕ contains an until sub-formula while ψ does not.

For counted until formulae µi, the unfolding operation from Equation 4.3 is used.
Annotations from that unfolding are handled by the additional rules from Equation
4.4.

A node ([ϕ], Γ) ∈ V is called winning, if and only if Γ contains no counted sub-
formulae µi with ci < 1 and the according standard focus game

G(
∧

ϕ∈Γ

ϕ)

is won by Player E.

Definition 4.5 (Paths in folded game graphs). A path in the folded game graph F(Φ)
is a finite sequence

̺ = v0
λ(v0,v1)
−−−−→ v1

λ(v1,v2)
−−−−→ v2. . .

λ(vn−1,vn)
−−−−−→ vn

of nodes vi ∈ V, such that (vi, vi+1) ∈ E for i = 0, . . . , n− 1. We call ̺ simple, if vi = vj
implies i = j. We call ̺ a loop if v0 = vn.

Let

opki (̺) =

{

li if li = λ(vi, vi+1) is an operation on k

id otherwise

75

be the operations on a certain variable k along the path ̺. The weight of a path ̺, with
respect to a counter variable k, is the concatenation of the operations along the path ̺.

weightk(̺) :=
n−1

©
i=0

opki (̺)

We call a path valid for some initial setting, if the path can actually be traversed
without violating restrictions. Let k1, . . . , km be the counter variables that occur on
path ̺ and k̂1, . . . , k̂m initial values for the respective variables. The path ̺ is called
valid for this preset of values if for every conditional label λ(vi, vi+1) = (kj ≥ 0) of an
edge (vi, vi+1) on ̺, the weight of the prefix path ̺(i) ending on the i-th node on ̺,
applied to the initial values, satisfies the condition

weightk j(̺(i))(k̂j) ≥ 0.

Equation construction. Let F be a folded game graph. The equations system
Eqn(F) is constructed as follows.

For each winning node v f we consider all simple paths

̺ = v0
λ(v0,v1)
−−−−→ v1

λ(v1,v2)
−−−−→ v2. . .

λ(vn−1,vn)
−−−−−→ vn

that start at the initial node and end in vn = v f .

Now, enumerate all loops l1, l2, . . . , lr, that start on some node on ̺ and are not
composed by others, and consider variables n1, . . . , nr, respectively. For every vi on ̺,
such that the edge (vi, vi+1) is labelled with a restriction kj ≥ 0, construct an inequality

kj +weightk j(̺(i)) +

(

∑
lm before vi

nm · weightk j(lm)

)

≥ 0

These equalities form a system Eqn(̺) and that way we obtain a set

Eqn(F(Φ)) = {Eqn(̺) | ̺ is a simple path to a final node in F(Φ}

of equation systems and there is a system Eqn(̺) ∈ Eqn(F(Φ)) that has a natural
solution, if and only if the s f LTL formula Φ is satisfiable.

Theorem 4.3. Let Φ be an s f LTL formula and F(Φ) the folded game graph of Φ. Player E has
a winning strategy for G(Φ) if and only if there is an equation system Eqn(̺) ∈ Eqn(F(Φ))
that has a natural solution.

Proof. (⇒). Assume there is an equation system Eqn(̺) ∈ Eqn(F(Φ)) for some path ̺

to a final node in F(Φ), that has natural solution (n1, . . . , nr) when setting counters ki
to their initial value as given in Φ (all 0 for pure f LTL formulae).

76

The path ̺′, that follows ̺, but additionally traverses loops l1, . . . , lr for n1, . . . , nr
times, is valid for the initial values. That follows from the solved equation system
which is built from the constraints on the edges in the path ̺. Note that there are
no additional constraints in ̺′ since they cannot occur on loops. The valid path ̺′

yields directly a winning play P for Player E in G(Φ) against A’s optimal strategy.
If ̺′ leads to a final node in F(Φ) that is a leaf, E wins the play P by reaching a
consistent configuration consisting only of atomic propositions. Otherwise the final
node is counter free, focuses on a release formula and is reachable from itself. Thus E
wins the play P, extended by one traversal of the loop on the last configuration.

(⇐). Assume E wins against A, while A is using his optimal strategy. Let P be the
according play in G(Φ). For P, we find an according path ̺′ in F(Φ).

The nodes on ̺′ do eventually not contain a counter anymore, since all until for-
mulae must be resolved eventually if E wins. A resolved until formula can only recur
if it is nested in some other release or until formula, which is only possible without
counters within the fragment s f LTL. We cut off ̺′ at that point, knowing, that the play
from that point on is a winning play in a standard focus game.

All paths in G(Φ) translate to a valid path in F(Φ) since E can only make valid
choices in the game. Cutting out all loops from ̺′ yields simple path ̺, that ends in a
winning node. Thus Eqn(F(Φ)) contains the system Eqn(̺). The loops l1, . . . , lr on ̺

are traversed for n1, . . . , nr times, respectively, on ̺′. Since ̺′ is valid, i.e. all constraints
are met, starting on initial values for the counters ki, n1, . . . , nr form a natural solution
for Eqn(̺).

We observe, that the construction from Theorem 3.1 resides in this fragment which
can thus expresses none-context-free properties. These separate s f LTL e.g. frommonadic
second order logic.

To end this section, we summarize the considerations regarding the decidability
problem of f LTL by the following theorem.

Theorem 4.4. Within the fragment s f LTL of f LTL the satisfiability problem is decidable, yet
s f LTL formulae can express none-context-free properties and are strictly more expressive then
LTL.

77

5 Conclusion

The demand for a formalism that allows for specifying properties along with a relative
frequency leads us to an exciting and challenging theory. Within the well established
framework of temporal logic, the idea of frequentness gains shape in terms of an intu-
itive, novel extension to LTL. The semantical influence of the syntactical generalization
deployed by f LTL is worth thorough investigation and our foundational examination
provides an outline on the use and capabilities. We observe that f LTL is expressive,
we obtain Turing completeness through simulation of Minsky machines, yet the logic
retains the ability to express non context-free languages even in a decidable fragment.

The methods developed, especially the notion of counter semantics for f LTL appear
very interesting and encourage further study. The notion of counters was developed
in first place to transfer the tableaux-like construction of focus games to the frequency
setting. An extension of LTL with counters has, to our knowledge, not been studied
so far. Frequentness properties may even be seen as a special application of LTL with
counters.

We can imagine a generalization of the counter semantics such that, instead of
adding constant values to the counter during the unfolding we allow some restricted
or arbitrary operator that may depend on the evaluation of the obligation at the current
point, e.g.

ϕU
f
k ψ ≡ (ψ ∧ cond(k)) ∨ X ϕU

f
k′ ψ

where k′ = f (k, Jw |= ϕK) and cond : Dom(k) → B evaluates some release condition on
k.

While we considered the notion of the until operator that appeared most natural
and unrestricted, there are alternatives to the semantics defined in Section 3.1.

The single attempt policy. Consider Definition 3.1 with the following change for
the until-operator.

w |= ϕUc ψ iff ∃j : w
j |= ψ and

#ϕ,w(j) ≥ c · j and
∀k<j : w

k |= ¬ψ.

The property ϕUc ψ is stricter now: ψ must hold eventually, and whenever it holds
first, the number of positions fulfilling ϕ must be sufficiently high. In turn, strength-

79

ening the until that way directly weakens the release since we have

¬
(

∃j : w
j |= ¬ψ and ∀k<j : w

k |= ¬ψ and

|{i | 0 ≤ i < j, wi |= ¬ϕ}| ≥ (1− c) · j
)

⇔ ∀j : w
j |= ψ or ∃k<j : w

k |= ¬ψ or

|{i | 0 ≤ i < j, wi |= ϕ}| > c · j.

In other words, only for the first position that does not satisfy ψ, if any, there must
be enough preceding positions satisfying ϕ. This appears to be somehow closer to
the traditional notion of release from the point of view that there is the possibility to
“fulfill” the formula at some point. On the other hand, the event of “releasing” ψ does

require its violation. Take, for example, the formulae Φ = pR q and Φ′ = pR
1
4 q. In a

word starting with
{q} {q} {q} {p, q} {q} {q} {} . . .

the occurrence of p at the fourth position releases q independently of q for the formula
Φ. On the contrary considering Φ′, q is not released just because it does not “demand”
it.

The observations in terms of expressivity and decidability seem to remain for this
variation which may indicate a certain robustness of the definition.

No dept policy. Instead of evaluating the ratio of fulfilled obligations only at the
moment when the eventuality is satisfied, we could impose a global restriction, e.g.
that the ratio is never allowed to fall beyond the threshold c.

w |= ϕUc ψ iff ∃j : w
j |= ψ and

∀i<j : #ϕ,w(i) ≥ c · i

In terms of counters that simply means, that a counter can never get negativeor in
terms of games, that the existential player is allowed to ignore the obligation only if it
was satisfied at sufficiently many positions before.

Note, that all these definition are still consistent with the standard semantics of LTL.
The operator U remains the special case of Uc for c = 1. However, the until operator
is, in a sense, stronger and thus closer to the standard version. Recall that a weaker
until operator dually results in a stronger release and vice versa. The semantics above
allow, just as in LTL, an eventual resolution of a release formula.

While the single attempt policy seem to retain the major results for f LTL, this vari-
ation appears less expressive.

We can give an extension to first-order logic that covers f LTL completely, the con-
verse is, however, uncertain. A predicate H≥c(ψ(z), x, y) defines a scope, the interval
between positions given by variables x, y ∈ V. Within that scope, the ratio between
positions that satisfy a formula ϕ, possibly with one free variable, and the length of

80

the scope is compared to a given fraction c ∈ [0, 1]. Formally (w, σ) |= H≥c(ψ(z), x, y)
if and only if

|{k | x ≤ k < y ∧ (w, σ[k/z]) |= ψ}| ≥ c · (j− i).

The extended U operator can then be characterized in terms of first-order logic to-
gether with that predicate:

w |= ϕUc ψ iff (w, x 7→ 0) |= ∃j : ψ̂(j) ∧H≥c(ϕ̂(z), x, j)

ϕ̂ and ψ̂ denote the formulae ϕ and ψ, translated inductively to first-order formulae
in at most one free variable.

It remains open, whether f LTL can express arbitrary regular properties and it is
subject to further study if the notion of frequency can be lifted to a related, yet more
expressive formalisms such as regular LTL by Leucker and Sánchez [LS07] or fixed-
point logics such as the modal µ-calculus [Koz83].

Acknowledgements

I would like to thank Martin Leucker for all his advice and supervision. The work and
our discussions were very encouraging and strongly confirmed my objectives and aim
towards further work and studies.

Also, I gladly acknowledge the influential contribution of Benedikt Bollig to the
formulation of constitutive ideas in this report.

Ich danke vor allem auch meinen Eltern, die mir ein ungezwungenes Studium er-
möglicht haben und stets alle Freiheiten gaben, ohne mich jemals alleine zu lassen.

81

References

[Bur74] Rod M. Burstall. Program proving as hand simulation with a little induc-
tion. In IFIP Congress, pages 308–312, 1974.

[dA97] Luca de Alfaro. Formal Verification of Probabilistic Systems. Ph.d. disserta-
tion, Stanford University, 1997. Technical report STAN-CS-TR-98-1601.

[DG08] Volker Diekert and Paul Gastin. First-order definable languages. In Jörg
Flum, Erich Grädel, and Thomas Wilke, editors, Logic and Automata, vol-
ume 2 of Texts in Logic and Games, pages 261–306. Amsterdam University
Press, 2008.

[DL05] Christian Dax and Martin Lange. Game over: The foci approach to ltl satis-
fiability and model checking. Electr. Notes Theor. Comput. Sci., 119(1):33–49,
2005.

[GO01] Paul Gastin and Denis Oddoux. Fast ltl to büchi automata translation. In
Gérard Berry, Hubert Comon, and Alain Finkel, editors, CAV, volume 2102
of Lecture Notes in Computer Science, pages 53–65. Springer, 2001.

[GPSS80] Dov M. Gabbay, Amir Pnueli, Saharon Shelah, and Jonathan Stavi. On the
temporal analysis of fairness. In POPL, pages 163–173, 1980.

[GPVW95] Rob Gerth, Doron Peled, Moshe Y. Vardi, and Pierre Wolper. Simple on-
the-fly automatic verification of linear temporal logic. In Piotr Dembinski
and Marek Sredniawa, editors, PSTV, volume 38 of IFIP Conference Proceed-
ings, pages 3–18. Chapman & Hall, 1995.

[GTW02] Erich Grädel, Wolfgang Thomas, and Thomas Wilke, editors. Automata,
Logics, and Infinite Games: A Guide to Current Research [outcome of a Dagstuhl
seminar, February 2001], volume 2500 of Lecture Notes in Computer Science.
Springer, 2002.

[HKNP06] Andrew Hinton, Marta Z. Kwiatkowska, Gethin Norman, and David
Parker. Prism: A tool for automatic verification of probabilistic systems.
In Holger Hermanns and Jens Palsberg, editors, TACAS, volume 3920 of
Lecture Notes in Computer Science, pages 441–444. Springer, 2006.

[HMO10] Jochen Hoenicke, Roland Meyer, and Ernst-Rüdiger Olderog. Kleene, ra-
bin, and scott are available. In Paul Gastin and François Laroussinie, ed-
itors, CONCUR, volume 6269 of Lecture Notes in Computer Science, pages
462–477. Springer, 2010.

83

[Kam68] Hans W. Kamp. Tense Logic and the Theory of Linear Order. Phd thesis,
Computer Science Department, University of California at Los Angeles,
USA, 1968.

[Koz83] Dexter Kozen. Results on the propositional mu-calculus. Theor. Comput.
Sci., 27:333–354, 1983.

[Kri59] Saul Kripke. A completeness theorem in modal logic. J. Symb. Log., 24(1):1–
14, 1959.

[KV01] Orna Kupferman andMoshe Y. Vardi. Model checking of safety properties.
Formal Methods in System Design, 19(3):291–314, 2001.

[LS01] Martin Lange and Colin Stirling. Focus games for satisfiability and com-
pleteness of temporal logic. In LICS, pages 357–365, 2001.

[LS07] Martin Leucker and César Sánchez. Regular linear temporal logic. In
Cliff B. Jones, Zhiming Liu, and Jim Woodcock, editors, ICTAC, volume
4711 of Lecture Notes in Computer Science, pages 291–305. Springer, 2007.

[Min67] Marvin L. Minsky. Computation: finite and infinite machines. Prentice-Hall,
Inc., Upper Saddle River, NJ, USA, 1967.

[Pnu77] Amir Pnueli. The temporal logic of programs. In FOCS, pages 46–57. IEEE,
1977.

[Pri57] Arthur N. Prior. Time and Modality. Oxford University Press, 1957.

[Pri67] Arthur N. Prior. Past, Present and Future. Oxford University Press, 1967.

[SLSR07] Usa Sammapun, Insup Lee, Oleg Sokolsky, and John Regehr. Statistical
runtime checking of probabilistic properties. In Oleg Sokolsky and Ser-
dar Tasiran, editors, RV, volume 4839 of Lecture Notes in Computer Science,
pages 164–175. Springer, 2007.

[Smu68] Raymond M Smullyan. First-order logic [by] Raymond M. Smullyan. Ergeb-
nisse der Mathematik und ihrer Grenzgebiete ; Bd. 43. Springer-Verlag,
Berlin, New York [etc.], 1968. Bibliography: p. [156].

[Tho97] Wolfgang Thomas. Languages, automata, and logic. In Grzegorz Rozen-
berg and Arto Salomaa, editors, Handbook of formal languages, vol. 3: be-
yond words, pages 389–455. Springer-Verlag New York, Inc., New York,
NY, USA, 1997.

[VW86] Moshe Y. Vardi and Pierre Wolper. An automata-theoretic approach to
automatic program verification. In LICS, pages 332–344. IEEE Computer
Society, 1986.

[VW94] Moshe Y. Vardi and Pierre Wolper. Reasoning about infinite computations.
Inf. Comput., 115(1):1–37, 1994.

[Wol85] Pierre Wolper. The tableau method for temporal logic: An overview.
Logique et Analyse, (110–111):119–136, 1985.

84

Declaration

All the work contained within this thesis,
except where otherwise acknowledged, was
solely the effort of the author. At no
stage was any collaboration entered into
with any other party.

(Normann Decker)

	Introduction
	Logic on Words
	Notation and first-order logic
	Linear-time temporal logic
	Satisfiability of LTL formulae
	Focus games

	Defining Frequentness
	LTL with relative frequencies
	From Minsky machines to fLTL

	Game-Representation and Satisfiability for fLTL
	Counter semantics for fLTL
	Counter focus games
	-abstraction
	Systems of linear inequalities
	Restrictions
	An expressive decidable fragment of fLTL

	Conclusion

