
Institut für Architektur von Anwendungssystemen
Universität Stuttgart

Universitätsstraße 38
D–70569 Stuttgart

Diplomarbeit Nr. 3127

Service-Bus-Erweiterung um
Pandas-basierte Simulationen in

Workflows zu nutzen

Raymond Dormien

Studiengang: Informatik

Prüfer: Jun.-Prof.Dr. Dimka Karastoyanova

Betreuer: Dipl.-Math. Michael Reiter

begonnen am: 23.12.2010

beendet am: 24.06.2011

CR-Klassifikation: C.2.4, D.2.12, H.2.8, H.3.4, H.3.5,
I.6.3, I.6.7, I.6.8, J.2

III

Inhaltsverzeichnis

Abbildungsverzeichnis ... V

Tabellenverzeichnis ... VII

Abkürzungsverzeichnis ... IX

1 Einleitung ... 1

1.1 Aufgabenstellung und Motivation ... 1

2 Grundlagen .. 3

2.1 Service-orientierte Architektur ... 3

2.2 Web Services ... 4

2.2.1 WSDL ... 5

2.2.2 SOAP .. 6

2.2.3 WS-Addressing .. 8

2.3 Workflows ... 9

2.3.1 Prozessmodell und Instanz .. 10

2.3.2 Workflow Dimensionen ... 11

2.3.3 Workflow Management Systeme .. 12

2.3.4 BPEL ... 14

2.3.5 Scientific Workflows .. 15

2.4 eScience ... 16

2.4.1 Simulationen .. 17

2.4.2 FEM .. 19

2.5 Strukturänderungen im Knochen .. 24

3 Spezifikation .. 27

3.1 Anforderungen .. 27

3.2 Konzepte .. 28

3.2.1 gSOAP .. 29

3.2.2 Web Service Interface ... 29

3.2.3 OpenDBX ... 31

3.2.4 Pandas Service-Bus-Adapter ... 31

3.2.5 Evaluierung der Datenbank ... 38

3.3 Erweiterungen des Pandas-Adapter .. 41

3.3.1 DUNE-Matrixlöser .. 42

IV

3.3.2 Data-Quality .. 44

3.3.3 Mehrere Pandas-Instanzen ... 48

3.3.4 Pandas-Matlab Kopplung .. 50

4 Entwurf .. 61

4.1 Architektur ... 61

4.2 Web Service-Operationen ... 63

4.2.1 WSI_Pandas ... 63

4.2.2 WSI_Matlab ... 72

4.2.3 WSI_PMConnector .. 74

4.3 Datenbankschema ... 77

5 Implementierung ... 84

5.1 Anpassungen an Pandas .. 84

5.1.1 Ursprünglicher Ablauf ... 84

5.1.2 Modifizierter Ablauf .. 86

5.1.3 Modifizierter Simulationsablauf .. 87

5.1.4 Quellcodeänderungen ... 89

6 Pandas basierte Workflows ... 96

6.1 Data-Quality .. 97

6.2 Simulation mit mehreren Pandas-Instanzen ... 98

6.3 Pandas-Matlab Kopplung .. 99

7 Laufzeitumgebung ... 105

7.1 Aufbau und Benutzung .. 105

8 Zusammenfassung und Ausblick ... 107

Literaturverzeichnis ... 109

Anhang .. 1

WSDL WSI_Pandas .. 1

WSDL WSI_Matlab ... 35

WSDL WSI_PMConnector .. 43

WSDL Data-Quality .. 53

WSDL TwoInstances .. 54

WSDL Pandas-Bone ... 56

WSDL Data-Manager ... 59

WSDL Matlab-Bone ... 64

V

Abbildungsverzeichnis

Abbildung 1: SOA-Dreieck ... 3
Abbildung 2: Web Service Stack aus [4] .. 5
Abbildung 3: WSDL 1.1 Struktur aus [3] .. 6
Abbildung 4: Aufbau von SOAP-Nachrichten aus [3] .. 7
Abbildung 5: SOAP Nachrichtenpfad aus [3] ... 7
Abbildung 6: WS-Addressing Headers in Request- und Response-Nachrichten aus [3] 8
Abbildung 7: WS-Addressing in SOAP-Nachrichten aus [3] ... 9
Abbildung 8: Prozesse und Workflows aus [10] .. 10
Abbildung 9: Die Workflow Dimensionen aus [10] ... 12
Abbildung 10: Komponenten eines Workflow Management System aus [10] 13
Abbildung 11: Lebenszyklus eines Business-Workflows (a) und eines Scientific-Workflows aus [1].... 15
Abbildung 12: finite Elemente nähern Grundgebiet an .. 20
Abbildung 13: Gekoppeltes Festkörper-Fluid-Problem mit individuellen Bewegungsfunktionen der
Teilkörper aus [20] .. 22
Abbildung 14: Durchschnittsbildung eines fluidgesättigten granularen Festkörpers aus [20] 23
Abbildung 15: klassisches Konsolidationsproblem aus [20] .. 23
Abbildung 16: wechselnde Belastungen am Oberschenkelhalsknochen .. 24
Abbildung 17: Multi-Skalen Simulation aus [23] ... 25
Abbildung 18: Finite Elemente Netz und Randbedingungen aus [23] .. 26
Abbildung 19: Ergebnisreihe zeitlicher und räumlicher Veränderungen im Knochen aus [23] 26
Abbildung 20: Überblick Service-Bus-Erweiterung ... 28
Abbildung 21: Web Service Interface nach [24] .. 29
Abbildung 22: Zustände einer Simulationsinstanz aus [24] .. 30
Abbildung 23 : Übersicht über die Pandas-Service-Bus-Erweiterung Anwendungsfälle 31
Abbildung 24: Übersicht über die PANDAS-DUNE Matrixlöser Anwendungsfälle 42
Abbildung 25: Übersicht über die PANDAS Data-Quality Anwendungsfälle ... 45
Abbildung 26: Übersicht über die Anwendungsfälle einer Simulation mit mehreren Pandas-Instanzen
 ... 48
Abbildung 27: Übersicht über die Pandas-Matlab Anwendungsfälle ... 51
Abbildung 28: Architektur Pandas Adapter ... 61
Abbildung 29: Architektur Matlab Adapter ... 62
Abbildung 30: Architektur PMConnector Adapter .. 63
Abbildung 31: Datenbankschema ... 77
Abbildung 32: Ablauf der Pandas-Anwendung ... 85
Abbildung 33: Ablauf der Pandas-Anwendung nach der Modifikation ... 86
Abbildung 34: Ablauf der geänderten DaeSteps-Methode ... 89
Abbildung 35: Pandas Prepare Steps .. 96
Abbildung 36: Pandas Post Processing .. 96
Abbildung 37: DataQuality Workflow ... 98
Abbildung 38: TwoInstances Workflow... 99
Abbildung 39: Workflows Strukturänderungen im Knochen .. 100
Abbildung 40: Prepare Matlab Instances .. 101
Abbildung 41: Prepare Matlab-Bone ... 101

VI

Abbildung 42: receive all Matlab-Bone ... 102

VII

Tabellenverzeichnis

Tabelle 1: Ergebnis Datenbank-Evaluierung.. 41
Tabelle 2: Parameter der Operation prepareSimulation .. 63
Tabelle 3: Parameter der Operation startPandas ... 64
Tabelle 4: Parameter der Operation stopApplication ... 64
Tabelle 5: Parameter der Operation connect-db .. 64
Tabelle 6: Parameter der Operation disconnect-db ... 65
Tabelle 7: Parameter der Operation set-option .. 65
Tabelle 8: Parameter der Operation run-cmd ... 65
Tabelle 9: Parameter der Operation readProblem ... 66
Tabelle 10: Parameter der Operation executeCommandSync ... 66
Tabelle 11: Parameter der Operation do-step .. 67
Tabelle 12: Parameter der Operation getStepnr .. 67
Tabelle 13: Parameter der Operation saveState ... 67
Tabelle 14: Parameter der Operation loadState ... 68
Tabelle 15: Parameter der Operation getDataQualityQuery .. 68
Tabelle 16: Parameter der Operation getLastSavedStepnr .. 68
Tabelle 17: Parameter der Operation getMid ... 68
Tabelle 18: Parameter der Operation saveDataQuality .. 69
Tabelle 19: Parameter der Operation getUsedParamFile ... 69
Tabelle 20: Parameter der Operation save-dof... 69
Tabelle 21: Parameter der Operation load-dof ... 69
Tabelle 22: Parameter der Operation saveMatrix .. 70
Tabelle 23: Parameter der Operation loadMatrix ... 70
Tabelle 24: Parameter der Operation saveAllGauss ... 70
Tabelle 25: Parameter der Operation loadAllGauss .. 71
Tabelle 26: Parameter der Operation saveGaussName .. 71
Tabelle 27: Parameter der Operation loadGaussName .. 71
Tabelle 28: Parameter der Operation prepareSimulation .. 72
Tabelle 29: Parameter der Operation Start ... 72
Tabelle 30: Parameter der Operation Copy .. 73
Tabelle 31: Parameter der Operation Mkdir ... 73
Tabelle 32: Parameter der Operation deleteFile .. 73
Tabelle 33: Parameter der Operation setMatlabPath ... 74
Tabelle 34: Parameter der Operation getMatlabPath .. 74
Tabelle 35: Parameter der Operation prepareSimulation .. 74
Tabelle 36: Parameter der Operation getCountGauss .. 75
Tabelle 37: Parameter der Operation getCountElement .. 75
Tabelle 38: Parameter der Operation createList ... 75
Tabelle 39: Parameter der Operation insertList .. 76
Tabelle 40: Parameter der Operation getCountAllValues ... 76
Tabelle 41: Parameter der Operation setDBConn .. 76
Tabelle 42: Parameter der Operation getDBConn .. 77
Tabelle 43: Attribute von simulation ... 78

VIII

Tabelle 44: Attribute von simsteps ... 78
Tabelle 45: Attribute von save_state .. 78
Tabelle 46: Attribute von matrix ... 79
Tabelle 47: Attribute von ma_pro ... 79
Tabelle 48: Attribute von ma_dns ... 79
Tabelle 49: Attribute von ma_csr .. 80
Tabelle 50: Attribute von matrix_data .. 80
Tabelle 51: Attribute von matrix_bin_data ... 81
Tabelle 52: Attribute von matrix_bin_vectors .. 81
Tabelle 53: Attribute von ma_quality ... 82
Tabelle 54: Attribute von mesh_alg_data ... 82
Tabelle 55: Attribute von mesh_obj_data .. 82
Tabelle 56: Attribute von gausspunkte ... 83
Tabelle 57: zu der Methode DaeSteps hinzugefügte Parameter .. 95
Tabelle 58: hinzugefügte Dateien ... 95
Tabelle 59: Startparameter des DataQuality Workflow .. 97
Tabelle 60: Startparameter des TwoInstances Workflow ... 99
Tabelle 61: Parameter der process-Operation des Pandas-Bone Workflows 103
Tabelle 62: Parameter der Initiate-Operation des Data-Manager Workflows 103
Tabelle 63: Parameter der startMatlabSim-Operatioon des Data-Manager Workflows 103
Tabelle 64: Parameter der stop-Operation des Data-Manager Workflows .. 103
Tabelle 65: Parameter der Initiate-Operation des Matlab-Bone Workflows 104
Tabelle 66: Hardware-Komponenten der Laufzeitumgebung ... 105

IX

Abkürzungsverzeichnis

BPEL ……………………Business Process Execution Language

CORBA ……………………Common Object Request Broker Architectur

DCOM ……………………Distributed Component Object Model

DGL ……………………Differentialgleichung

EPR ……………………Endpoint Reference

OVF ……………………Open Virtualization Format

pDGL ……………………partielle Differentialgleichung

SOA ……………………Service-orientierte Architektur

W3C ……………………World Wide Web Consortium

WfMC ……………………Workflow Management Coalition

WfMS ……………………Workflow Management System

WS ……………………Web Service

WSDL ……………………Web Service Description Language

X

1

1 Einleitung

Web Service- und Workflow-Technologien haben sich im Business-Bereich etabliert und bekommen
in den letzten Jahren immer mehr Aufmerksamkeit im wissenschaftlichen Bereich. Entsprechend
wurde der Begriff Scientific Workflows geprägt. Durch den Einsatz von Workflow-Technologien soll es
Wissenschaftlern ermöglicht werden, sich verstärkt auf die Lösung ihrer wissenschaftlichen Probleme
zu konzentrieren, da Schritte während des Workflow-Designs und der Ausführung automatisiert
werden. Ebenso wird die Zusammenarbeit von Wissenschaftlern gefördert, da eine
Wissensweitergabe über gemeinsame Dienste möglich ist und gemeinsam eine Ergebnisanalyse
geführt werden kann. Auch durch die Fähigkeit der Workflow-Technologie mit großen Datenmengen
umgehen zu können, eignen diese sich für die Ausführung von Simulationen. Solche Simulation-
Workflows bilden einen Teilbereich der Scientific Workflows. [1]

Die Arbeit in der Wissenschaft wird immer stärker durch Simulationen und der Analyse der
Ergebnisdaten geprägt. Der Einsatz von Simulationen kann vielfältige Gründe haben. Mit Hilfe von
Simulationen können zum Beispiel Wissenschaftler, detailliert die Dynamik eines echten Prozesses
untersuchen. In vielen Fällen können diese Daten experimentell nicht erfasst werden, da zum
Beispiel die betrachteten Zeitskalen zu groß sind (z.B. die Evolution von Galaxien) oder das
Experiment aus theoretischen Gründen nicht ausführbar ist (z.B. Kontrafaktische Modelle, bei dem
fundamentale Konstanten aus der Natur geändert werden). [2]

Aktuelle Simulationsprogramme sind hochspezialisiert und oft für einen bestimmten Zweck
entwickelt. Diese hohe Spezialisierung und Zweckgebundenheit stellt jedoch häufig ein Hindernis für
eine Kopplung verschiedener Simulationsprogramme dar. Durch die Kopplung verschiedener
Simulationsprogramme werden Multi-Skalen, Multi-Physiken, Multi-Domänen und Multi-Tools
Simulationen möglich und lassen eine kombinierte Aussage der Einzelsimulationen zu. Sie erlauben
komplexe Fragestellungen wie etwa: Wie verhält sich zum Beispiel auf zellularer Ebene der Auf- und
Abbau eines menschlichen Knochens bei einer bestimmten Belastung, und wie verändert sich
dadurch die gesamte Knochenstruktur?

Eine Aufgabe des Stuttgarter Exzellenzclusters Simulation Technology (SimTech)1 ist die
interdisziplinäre Zusammenarbeit, um Simulation-Workflows voranzutreiben indem bestehende wie
zukünftige Simulationsprogramme durch Workflows integriert werden.

1.1 Aufgabenstellung und Motivation

Im Rahmen dieser Arbeit werden Schnittstellen zum parallelisierten und automatisierten Ablauf von
Simulationen aus dem Bereich der Finiten Elemente ausgearbeitet. Die Hauptaufgabe liegt im
Entwurf einer geeigneten Architektur, um Pandas2-basierte Simulationen in Workflows zu nutzen.

1 http://www.simtech.uni-stuttgart.de
2 http://www.mechbau.uni-stuttgart.de/pandas/index.php

2

Eine Service Bus Erweiterung für Pandas soll hier insgesamt fünf Anforderungen genügen. Hierunter
fallen die Bereitstellung von Pandas als Web Service, die Speicherung von Ergebnissen in einer
Datenbank, die Interaktion mit anderen Simulationsprogrammen, die Verwendung einer Opensource
Datenbank, und die Erstellung eines BPEL-Prozess.

Die Pandas Service-Bus-Erweiterung soll darüber hinaus um die Möglichkeit einen DUNE3 Matrixlöser
zu verwenden, die Möglichkeit die Datenqualität der Matrix während der Simulation zu erfassen und
eine Pandas-Matlab Kopplung durchführen zu können erweitert werden. Hierzu werden
verschiedene Web Services entwickelt, welche die Pandas-basierten Simulation-Workflows zulassen.

Die Möglichkeit zur weiteren Modifikation wurde mit dieser Arbeit geschaffen. Für ein neues
Simulationsszenario, wie zum Beispiel bei der Kopplung von Pandas mit Matlab, muss nur ein neues
Table in der Datenbank angelegt werden, wohin Pandas die Daten speichern kann, und die
entsprechenden Web Service-Operationen müssen hinzugefügt werden.

3 http://www.dune-project.org/

3

2 Grundlagen

In diesem Kapitel wird ein kurzer Einblick in die grundlegenden Konzepte und Technologien gegeben,
welche zum Verständnis der Ausarbeitung benötigt werden. Neben den Begriffen Service-orientierte
Architekturen, Web Services, Workflows und Business Process Execution Language wird der Bereich
e-Science erläutert. Den Abschluss bildet die Einführung in die Simulation der Strukturänderungen im
Knochen, welche unter anderem mit dem Framework Pandas durchgeführt wird.

2.1 Service-orientierte Architektur

Dieses Kapitel basiert auf dem Buch [3]. Bei der Service-orientierten Architektur (SOA) handelt es sich
nicht um eine bestimmte Technologie, sondern vielmehr beschreibt sie losgelöst von einer konkreten
Implementierungsmethode einen speziellen Architekturstil. Der zentrale Bestandteil einer SOA ist
das Konzept des Services oder des Dienstes. Ein Dienst kann seine Funktionalität teilweise oder
komplett über eine öffentliche wohldefinierte Schnittstelle anbieten. Die so bereitgestellten Dienste
können von anderen Anwendungen dynamisch gebunden werden und sind miteinander lose
gekoppelt. Die Kommunikation zwischen den Diensten erfolgt nachrichtenbasiert in der Regel über
ein Netzwerk.

Im Rahmen der SOA gibt es drei verschiedene Rollen: den Service Provider, den Service Client und
das Service Verzeichnis. Der Service Provider bietet einen Dienst an. Das Service Verzeichnis wird von
dem Service Provider dazu verwendet seinen Dienst, unter der Angabe einer abstrakten
Beschreibung, zu veröffentlichen. Der Service Client kann dann in dem Service Verzeichnis nach
einem Service mit einer bestimmten Funktionalität suchen und erhält von Service Verzeichnis die für
den Service Client geeigneten Servicebeschreibungen zurück. Der Service Client kann dann, mit der
zurückgelieferten Servicebeschreibung, den Dienst des Service Providers nutzen. Den
Zusammenhang zwischen diesen Rollen ergibt das sogenannte SOA-Dreieck und ist auf der Abbildung
1 dargestellt.

Abbildung 1: SOA-Dreieck

4

Durch die lose Kopplung ist eine späte Dienstauswahl seitens des Service Clients möglich. Dies sorgt
für eine hohe Flexibilität bei der Ausführung und erhöht die Wiederverwendbarkeit von
Komponenten.

2.2 Web Services

Web Services stellen eine Möglichkeit der technischen Realisierung einer SOA dar. In [4] wird von
dem World Wide Web Consortium (W3C) ein Web Service wie folgt definiert:

A Web service is a software system designed to support interoperable
machine-to-machine interaction over a network. It has an interface
described in a machine-processable format (specifically WSDL). Other
systems interact with the Web service in a manner prescribed by its
description using SOAP messages, typically conveyed using HTTP with an
XML serialization in conjunction with other Web-related standards.

Der Unterschied zwischen dem Web Service Ansatz und der älterer Ansätze,
wie zum Beispiel dem Common Object Request Broker Architecture (CORBA)
Ansatz oder dem Distributed Component Object Model (DCOM) Ansatz, liegt in
dem Aspekt der losen Kopplung und der Plattformunabhängigkeit.

Die Web Service Architektur umfasst viele aufeinander aufbauende Technologien. Dieser modulare
Aufbau wird Web Service Stack genannt und wird auf Abbildung 2 dargestellt.

5

Abbildung 2: Web Service Stack aus [4]

Einen umfassenden Überblick über hierüber kann man über das Buch [3] oder dem Artikel [4]
erlangen.

2.2.1 WSDL

Die Web Service Description Language (WSDL) ist die formelle Beschreibungssprache für Web
Services. Die Sprache basiert auf XML und ist dabei plattform-, protokoll- und
programmiersprachenunabhängig. In einem WSDL-Dokument wird beschrieben was für Funktionen
der Web Service hat, wie darauf zugegriffen werden kann und wo sich der Web Service Endpunkt
befindet. Es besteht im Allgemeinen aus zwei Arten von Definitionen, einem abstrakten Teil und
einem konkreten Teil. Der abstrakte Teil beschreibt was der Dienst an Funktionalitäten bietet. Der
konkrete Teil beschreibt wie der Dienst wo aufgerufen werden kann. Abbildung 3 zeigt den
strukturellen Aufbau eines WSDL-Dokuments.

6

Abbildung 3: WSDL 1.1 Struktur aus [3]

Für vertiefende Informationen über den genauen Aufbau von WSDL-Dateien sei auf die Spezifikation
des W3C [5] oder auf das Buch [3] verwiesen.

2.2.2 SOAP

Bei SOAP handelt es sich um ein Nachrichten-Framework, welches einerseits das Format und
andererseits die Verarbeitung der Nachrichten von Sender zu Empfänger definiert. Die Abbildung 4
zeigt den Aufbau einer solchen SOAP-Nachricht nach [3]. Eine SOAP-Nachricht besteht aus zwei
Bereichen: dem Header-Bereich und dem Body-Bereich.

7

Abbildung 4: Aufbau von SOAP-Nachrichten aus [3]

Der Header-Bereich ist optional und kann mehrere SOAP-Header enthalten. Die Header können von
jedem SOAP-Empfänger auf dem Nachrichtenpfad verarbeitet werden. Wie auf Abbildung 5 zu
sehen, kann der Nachrichtenpfad vom ursprünglichen SOAP-Sender bis endgültigen SOAP-Empfänger
über beliebig viele Zwischenstationen verlaufen. Die Zwischenstationen können dabei die Nachricht
weiterverarbeiten oder einfach weiterleiten. Wenn eine Zwischenstation einen Header auswertet,
wird dieser in der Regel entfernt. Durch das Setzen eines speziellen Attributs, kann dies jedoch
verhindert werden.

Abbildung 5: SOAP Nachrichtenpfad aus [3]

Der Body-Bereich enthält die Nutzdaten für den Empfänger, wie zum Beispiel vom Dienst zu
verarbeitende Eingabedaten. Da SOAP auf XML basiert, werden binäre Eingaben entweder Base64-
kodiert im Body-Bereich verwendet oder als SOAP-Attachment an die Nachricht angehängt.

Für weiterführende Informationen zu SOAP sei auf [3] oder [6] verwiesen.

8

2.2.3 WS-Addressing

WS-Addressing wurde in [7] spezifiziert und dient der Beschreibung von Web Service Endpunkten.
Diese Endpunktbeschreibungen können in SOAP-Nachrichten eingebettet werden, um
Dienstanbietern und Dienstnutzern den Nachrichtenaustausch zu ermöglichen, auch wenn diese zur
Entwicklungszeit noch nicht feststanden. WS-Adressing ist, wie Web Services auch, nicht an ein
bestimmtes darunterliegendes Transportprotokoll gebunden.

Dabei spezifiziert WS-Addressing zwei grundlegende Konzepte:

• Endpoint References (EPR) als Zeiger auf einen Web Service Endpunkt
• Möglichkeiten EPRs in SOAP-Nachrichten zu verwenden

WS-Addressing findet im Normalfall bei einem asynchronen Web Service Aufruf Anwendung. Das
heißt immer dann, wenn die Anfrage und die Rückantwort nicht im selben Kontext stehen und über
separate Einwege-Nachrichten ausgetauscht werden. Hierzu werden mehrere Header definiert, die
es ermöglichen EPRs in SOAP-Nachrichten einzubetten. Abbildung 6 zeigt das Erstellen einer
Rückantwort-Nachricht eines Dienstes und das Zusammenwirken der EPRs in Anfrage- und
Rückantwort-Nachricht.

Abbildung 6: WS-Addressing Headers in Request- und Response-Nachrichten aus [3]

Die verschiedenen Message Headers werden in [8] spezifiziert und in [3] ausführlicher beschrieben.

9

2.2.3.1 End Point Reference

Eine Endpoint Reference (EPR) ist eine Datenstruktur, die alle Informationen enthält um einen Web
Service zur Laufzeit zu adressieren. Nach [3] können Endpoint References zusätzliche Informationen
enthalten, die sich in zwei Klassen einteilen lassen, die Runtime-Information, welche für die
Adressierung benötigt wird und die damit verknüpften Metadaten, die den Endpunkt zusätzlich
beschreiben.

Die Runtime-Information bestehen aus drei Feldern. Das Adressfeld ist zwingend erforderlich und
gibt den Endpunkt an. Die Referenz-Properties sind optional und enthalten Daten, die bei der
Zustellung zum Endpunkt verwendet werden können. Die Referenz-Parameter sind ebenfalls optional
und enthalten Daten, die vom Endpunkt verwendet werden können.

Die Metadaten ihrerseits sind optional und hat drei Felder und sind in [9] spezifiziert. Darin können
Informationen wie anzuwendende Policies oder die Namen des WSDL services, porttypes oder ports
enthalten sein.

Die Abbildung 7 zeigt die Beziehungen zwischen EPR, WSDL und den WS-Addressing Message
Headers in einer SOAP-Nachricht.

Abbildung 7: WS-Addressing in SOAP-Nachrichten aus [3]

2.3 Workflows

In diesem Unterkapitel wird ein Einblick über das Thema Workflows, indem zunächst auf das Modell
und deren Instanziierung sowie auf die Dimensionen eines Workflows eingegangen wird.

10

Anschließend wird erläutert was ein Workflow Management System (WfMS) ist. Die Sprache BPEL
wird abschließend erläutert.

2.3.1 Prozessmodell und Instanz

Nach [10] beschreibt das Prozessmodell die Struktur eines (Geschäfts-) Prozesses in der realen Welt.
Das Modell definiert alle möglichen Pfade durch den (Geschäfts-) Prozess, einschließlich der
Verzweigungsregeln und den auszuführenden Aktivitäten. Dieses Modell dient als Vorlage für jeden
Prozess der ausgeführt wird. Aus dem Prozessmodell wird eine sogenannte Prozessinstanz erzeugt. In
einer Versicherungsgesellschaft könnte es zum Beispiel ein Prozessmodell für die
Schadensbearbeitung geben und von diesem Modell verschiedene Prozessinstanzen für verschiedene
Personen. Dabei hat jede Prozessinstanz seine eigenen Werte, die den genommenen Pfad durch das
Modell beschreiben.

Prozesse müssen dabei nicht unbedingt auf einem Computer ausgeführt werden. Ein (Geschäfts-)
Prozess kann aus Teilprozessen bestehen, die auf einem Computer ausgeführt werden, und aus
Teilprozessen, die von Personen ausgeführt werden müssen. Dies führt zu dem Begriff des
Workflowmodells, welches die Teilprozesse eines Prozessmodells bezeichnet, die auf einem
Computer ausgeführt werden. Das Workflowmodell kann hierbei ein kleiner Teilprozess eines
größeren Prozessmodells sein oder es kann das gesamte Prozessmodell umfassen. Wie bei dem
Prozessmodell dient das Workflowmodell als eine Vorlage für die Instanziierung von
Workflowinstanzen. Abbildung 8 stellt die Zusammenhänge zwischen Prozessmodell und
Workflowmodell und deren Instanziierung dar.

Abbildung 8: Prozesse und Workflows aus [10]

11

Da sich diese Arbeit ausschließlich mit Prozessen beschäftigt, welche auf Computern ausgeführt
werden, werden im Folgenden die Begriffe Prozessmodell und Workflowmodell sowie
Prozessinstanz und Workflowinstanz jeweils synonym verwendet.

2.3.2 Workflow Dimensionen

In dem Buch [10] werden Prozesse in drei verschiedene Dimensionen aufgespalten:

Wie:

Diese Dimension steht für die Prozesslogik und beschreibt die Aktivitäten, die ausgeführt
werden sollen, und in welcher Reihenfolge die Ausführung stattfinden soll. Die Aktivitäten
können hierbei sequentiell als auch parallel ausgeführt werden.

Wer:

Diese Dimension beschreibt die Organisationsstruktur des Unternehmens im Hinblick auf
Abteilungen, Rollen und Personen. Diese Information wird dazu verwendet, um festzulegen
wer die Aktivität auszuführen hat. Dabei kann für jede Aktivität eine Query angegeben
werden, um ermitteln zu können, wer diese Aktivität in der Organisation ausführen kann.
Wenn die Aktivität nicht von einem Benutzer ausgeführt werden muss, so führt das
Workflow Management System diese Aktivität selbst aus.

Womit:

Diese Dimension beschreibt welche IT-Ressourcen für die auszuführende Aktivität eingesetzt
werden soll.

12

Abbildung 9: Die Workflow Dimensionen aus [10]

Die Abbildung 9 stellt die drei Workflow Dimensionen als Würfel dar. Nach [10] kann die Ausführung
eines Prozesses als eine Folge von Punkten in dem dreidimensionalen Workflowraum (wie, wer,
womit) aufgefasst werden.

2.3.3 Workflow Management Systeme

Ein Workflow Management System umfasst Anwendungen, welche der aktiven Steuerung von
Prozessen dient. Dazu gehört es Workflows zu definieren, zu verwalten und auszuführen. Ein
Workflow Management System wird von der Workflow Management Coalition (WfMC) in [11] wie
folgend definiert:

A system that completely defines, manages and executes “workflows”
through the execution of software whose order of execution is driven
by a computer representation of the workflow logic.

Die WfMC gliedert ein WfMS in ihrem Referenzmodell in verschiedene Funktionsbereiche:

Buildtime

Dieser Funktionsbereich beinhaltet die Komponenten, die für die Erstellung und
Modellierung von Prozessmodellen und für die Verwaltung von Ressourcen zuständig sind.

Runtime

Dieser Funktionsbereich enthält alle Komponenten, welche zur Ausführung von
Prozessinstanzen benötigt werden.

13

Database

Dieser Funktionsbereich umfasst die komplette Datenhaltung aus den Buildtime und Runtime
Bereichen. Die Datenhaltung erfolgt in der Regel über Datenbanken.

In dem Buch [10] wird ein WfMS zusätzlich noch in den folgenden funktionalen Bereich unterteilt:

Metamodel

Hierbei ist dieser Funktionsbereich eine weitere Unterteilung des Buildtime Bereichs. Hier
werden die Konstrukte und die damit verbundenen Funktionen, wie zum Beispiel die Struktur
eines Prozessmodells, die von dem WfMS unterstützt werden, definiert.

Abbildung 10 zeigt die Hauptkomponenten eines WfMS und deren Beziehungen untereinander.

Abbildung 10: Komponenten eines Workflow Management System aus [10]

Für vertiefende Informationen in das Thema der Workflow Management System, sei auf die Lektüre
des Buches [10] verwiesen.

14

2.3.4 BPEL

Die Informationen für dieses Kapitel stammen aus der BPEL-Spezifikation [12] und dem Buch [3]. Die
Business Process Execution Language (BPEL) ist Teil der sogenannten WS-*-Spezifikationen. Der
eigentliche Name ist daher auch WS-BPEL. Dabei ist BPEL eine XML-basierte Sprache zur
Beschreibung von Prozessen und geht als Nachfolger der Sprachen WSFL und XLANG hervor.

Die Aktivitäten des Prozesses sind durch Web Services implementiert und der Prozess selbst, kann als
Web Service angeboten werden. Die Daten in BPEL werden in typisierten Variablen gespeichert. Der
Typ einer Variablen kann entweder ein einfacher oder komplexer Typ aus einem XML-Schema sein
oder durch eine wsdl:message festgelegt sein. Der Zugriff auf die Variablen erfolgt über XPath [13].

Ein BPEL-Prozess ist blockstrukturiert, das heißt er besteht aus verschachtelten Scopes, die lokale
Variablen, Aktivitäten, Partner Links und diverse Handler enthalten können. Ein Scope bündelt eine
Reihe von Aktivitäten zu einer transaktionalen Einheit.

In BPEL gibt es folgende Handler Typen: Event Handler, Fault Handler und Compensation Handler. In
einem Scope können unterschiedliche Handler vorhanden sein und jeder Handler wiederum kann
Aktivitäten enthalten, die bei der Aktivierung des entsprechenden Handlers ausgeführt werden.

Die Ausführung des Event Handler läuft parallel zum Prozess und dient zur Bearbeitung von
Ereignissen. Ein Fault Handler wird einem Scope zugeordnet und wird innerhalb dieses Scopes
aufgerufen, wenn ein Fehlerfall auftritt. Ein Compensation Handler wird einem Scope zugeordnet
und wird in der Regel über die compensate-Aktivität aus einem Fault Handler heraus aufgerufen.
Durch diesen Handler werden lang-andauernde Transaktionen ermöglicht. Die verschiedenen
Handler und deren Anwendung werden in [12] näher erläutert.

Die Aktivitäten werden in BPEL in Basic Activities und in Structured Activities unterschieden. Die Basic
Activities, sozusagen atomaren Aktivitäten enthalten keine weiteren Aktivitäten und ihr Aufruf wird
als atomare Operation betrachtet. Da BPEL rekursiv definiert ist und selbst als Web Service
aufgerufen werden kann, ist der Aufruf eines Prozesses in einem Prozess auch als atomar zu
betrachten. Strukturierte Aktivitäten beinhalten selber andere Aktivitäten und lassen somit eine
beliebig komplexe Zusammensetzung von Abläufen zu. Die genauen Aktivitäten werden in [12]
ausführlich beschrieben.

Durch die Partner Links wird in BPEL-Prozessen ein Partner und dessen Rolle beschrieben. Für alle
Aktivitäten, die mit Web Services interagieren, werden Partner Links verwendet. Dabei basiert ein
Partner Link auf einen PartnerLinkType aus einer WSDL-Datei. Der PartnerLinkType wiederum
definieren einen oder mehrere Rollen und jeder Rolle wird ein portType zugeordnet. Bei der
Instanziierung des Prozessmodels wird jeder Rolle ein konkreter Web Service Endpunkt zugeordnet.

15

2.3.5 Scientific Workflows

Dieser Abschnitt basiert hauptsächlich auf [1]. In den letzten Jahren bekam die Workflow-
Technologie immer mehr Aufmerksamkeit im wissenschaftlichen Bereich, wodurch sich der Begriff
der Scientific Workflows geprägt hat. In der Wissenschaft bieten Workflows einige Vorteile:

• Sie helfen bei der Wissensweitergabe, indem sie als Dienst für zusammenarbeitende
Wissenschaftler zur Verfügung stehen.

• Mit Hilfe von Workflows wird eine Ergebnisanalyse durch die Community ermöglicht.
• Workflows können mit großen Datenmengen umgehen, welche zum Beispiel von Sensoren

gesammelt werden.
• Workflows sind in verteilten und hoch heterogenen Umgebungen lauffähig. Dies stellt ein

häufiges Szenario bei wissenschaftlichen Berechnungen dar, bei der einen Vielzahl von
Plattformen und Programmiersprachen zum Einsatz kommen.

• Durch die Automatisierung der Schritte während des Workflow-Design und der Ausführung,
können sich Wissenschaftler auf die Lösung ihrer wissenschaftlichen Probleme
konzentrieren.

• Workflows können dazu verwendet werden, um wissenschaftliche Simulationen parallel und
automatisiert durchzuführen.

Da sich die Web Service- und Workflow-Technologien im Business-Bereich etabliert haben und hier
auch schon Standards und Tools vorhanden sind, ist es sinnvoll diese auch im wissenschaftlichen
Bereich zu verwenden. Unterschiede zwischen Business- und Scientific-Workflows werden durch den
Vergleich der Lebenszyklen deutlich.

Abbildung 11 zeigt die Lebenszyklen eines Business-Workflows (a) und eines Scientific-Workflows (b),
welche anschließend weiter erläutert werden.

Abbildung 11: Lebenszyklus eines Business-Workflows (a) und eines Scientific-Workflows aus [1]

16

Ein Workflow wird durch Business-Spezialisten modelliert, der die konkreten Schritte zur Erreichung
eines bestimmten Geschäftsziels kennt. Ein IT-Spezialist macht den Workflow ausführbar, indem er
ihn auf einer Workflow-Engine bereitstellt. Die Ausführung eines Workflows wird durch einen
Angestellten oder Kunden angestoßen. Die Ausführung erfolgt oft erst spät nach dem Deployment
und das Workflow-Modell kann mehrfach instanziiert werden. Das Workflow-Monitoring kann mit
einzelnen Workflow-Instanzen umgehen und ebenso über mehrere Instanzen Daten
zusammenfassen. Das Monitoring kann über den Gesamtzustand eines Systems einschließlich der
laufenden und beendeten Workflow-Instanzen Statistiken bereitstellen. Daher kann die
Überwachung sowohl für Administratoren als auch für Business-Analysten wertvoll sein. Schließlich
kann ein Business-Analyst einen oder mehrere Workflow-Ausführungen analysieren und daraus den
Bedarf an Modelländerungen aufzeigen.

Der Lebenszyklus bei Scientific Workflows unterscheidet sich stark zu dem des Business Workflows.
Normalerweise übernimmt hier der Wissenschaftler alle Rollen aus dem Business-Workflow-
Lebenszyklus. Eine Unterscheidung zwischen Workflow-Modell und Workflow-Instanz findet nicht
statt, das heißt der Schwerpunkt ihrer Arbeit liegt auf einer einzelnen Workflow-Instanz. Die Phasen
der Modellierung und Ausführung sind nicht in einer strengen Reihenfolge angeordnet, da
Wissenschaftler ihre Workflows in einer Trial-and-Error Weise entwickeln. Tatsächlich werden beide
Phasen abwechselnd ausgeführt. Durch eine Suspend-Operation wird ein weiterer Zyklus von der
Ausführungsphase zur Modellierungsphase gestartet. Die technischen Details bleiben hierbei für den
Wissenschaftler transparent. Nach dem Modellieren beginnt sofort die Ausführung des Workflows.
Die Phasen der Ausführung und des Monitorings aus dem Lebenszyklus herkömmlicher Workflows
sind im Lebenszyklus der Scientific Workflows zusammengelegt. Aus der Sicht eines Wissenschaftlers
visualisiert das Monitoring nur die laufende Workflow-Instanz. Nach der Ausführung kann ein
Wissenschaftler die berechneten Ergebnisse analysieren, woraufhin der Workflow neu modelliert
und, möglicherweise mit geänderten Parametern, erneut ausgeführt werden kann.

Der Lebenszyklus des Scientific Workflows zeigt die Möglichkeit vorhandene Workflow-Technologien
zu verwenden, verdeutlicht jedoch auch die Notwendigkeit für Erweiterungen, um für den Einsatz
von wissenschaftlichen Experimenten, Berechnungen und Simulationen geeignet zu sein.

2.4 eScience

Der Begriff e-Science steht für Enhanced Science und ist ein Sammelbegriff für groß angelegte
wissenschaftliche Projekte, in denen Wissenschaftler weltweit über das Internet zusammenarbeiten
und in denen Grid-Computing benutzt wird. Der Begriff wurde in Großbritannien geprägt, welche
mehrere e-Science Zentren im ganzen Land haben [14]. Das National e-Science Centre4 aus
Großbritannien definiert e-Science folgendermaßen:

In the future, e-Science will refer to the large scale science that will increasingly
be carried out through distributed global collaborations enabled by the Internet.
Typically, a feature of such collaborative scientific enterprises is that they will

4 http://www.nesc.ac.uk/index.html

17

require access to very large data collections, very large scale computing resources
and high performance visualisation back to the individual user scientists.

Nach [15] war die Wissenschaft verschiedenen Paradigmen Wandeln unterworfen, von der
empirischen Beschreibung der Natur über die Bildung theoretischer Modelle hin zur Simulation
komplexer Phänomene. Demnach beschreibt e-Science den aktuellen Paradigmen Wandel, wie die
Daten erfasst, verarbeitet und bereitgestellt werden.

Die deutsche E-Science Initiative5 unterteilt e-Science in folgende vier Bereiche:

• Grid-Computing: eine Form des verteilten Rechnens, um rechenintensive Probleme zu lösen
• Wissensvernetzung: die methodische Einflussnahme auf die vorhandene Wissensbasis
• E-Learning: alle Formen von Lernen, bei denen elektronische Medien zur Distribution von

Lerninhalten zum Einsatz kommt
• Open Access: der freie Zugang zu wissenschaftlicher Literatur und anderen Materialien

Somit stellt e-Science eine Art Infrastruktur mit technologischen und sozialen Aspekten für die
moderne Wissenschaft dar.

2.4.1 Simulationen

In diesem Unterkapitel wird über das Thema Simulationen ein kleiner Einblick gegeben.

Der Begriff Simulation wird von jedem Fachbereich, mit einem Schwerpunkt auf unterschiedlichen
Aspekten, definiert. Da es keine einheitliche Definition gibt, wird in [2] folgende weitgefasste und
abstrakte Definition des Begriffs Simulation aufgestellt:

A simulation imitates one process by another process. In this definition, the term
“process” refers solely to some object or system whose state changes in time. If
the simulation is run on a computer, it is called a computer simulation.

Durch die Simulation wird demnach das Verhalten eines Systems oder Prozesses nachgeahmt. Um
Erkenntnisse über das System zu erlangen, werden Experimente an dem Modell der Simulation
durchgeführt. Modelle und Simulationen sind eng miteinander verwandt. Dabei stellt das
Simulationsmodell eine Abstraktion des nachzuahmenden Systems dar. Daher stellt bei einer
Simulation die Erstellung eines validen Modells den ersten Schritt dar. Ein valides Modell selbst ist
ein beschränktes Abbild aus der Realität und zeichnet sich nach [16] durch folgende drei Merkmale
aus:

Abbildung: Modelle sind stets Modelle von einem natürlichen oder künstlichen Original. Ein
Modell ist ein Abbild oder ein Repräsentant des Originals, welches selbst wieder ein Modell
sein kann.

5 http://www.ges2007.de/

18

Verkürzung: Modelle erfassen üblicherweise nicht alle Attribute des durch sie dargestellten
Originals. Es werden von dem Modellerschaffer diejenigen Originalattribute ausgewählt, die
der Zielsetzung der Modellbenutzung dienen.

Pragmatismus: Modelle erfüllen eine Ersetzungsfunktion und sind nicht per se zu ihren
Originalen zugeordnet. Das Modell muss bezüglich seiner spezifischen Funktion durch die
Fragen für wen, wann und wozu relativiert werden. Das heißt ein Modell ist nicht nur ein
Modell von etwas, sondern auch für jemanden und es erfüllt einen bestimmten Zweck
innerhalb eines Zeitintervalls.

An diesem validen Modell können dann verschiedene Parameter für jeden Simulationslauf geändert
werden. Aus den Ergebnissen der Simulation lassen sich dann Rückschlüsse auf das gestellte Problem
und deren Lösung ziehen.

Simulationen lassen sich grob mit folgenden Aspekten unterteilen:

Computer: Basiert die Simulation auf einem physischen Modell, bei dem diverse Messungen
erfolgen, wie zum Beispiel einem Auto-Modell im Windkanal bei dem Strömungswerte gemessen
werden oder basiert die Simulation auf einem Computermodell, bei dem die Simulation
vollständig auf einem Computer läuft.

Zeit: Ist die Zeitdimension Teil der Simulation (dynamische Simulation) oder spielt diese keine
Rolle (statische Simulation).

Zufall: Werden bei der Simulation zufällige Ereignisse mit eingeschlossen (stochastische
Simulation) oder werden dieses ausgeschlossen (deterministische Simulation).

In die Bereiche, die durch die verschiedenen Aspekte, und teilweise deren Kombination miteinander,
beschrieben werden können, fallen viele verschiedene Simulationsarten, welche an dieser Stelle
nicht weiter erläutert werden.

In [2] werden Simulationen in folgende fünf Funktionsbereiche eingeteilt:

Simulation als Technik

Mit Hilfe von Simulationen können Wissenschaftler, detailliert die Dynamik eines echten
Prozesses untersuchen. In vielen Fällen ist es nicht möglich die Daten experimentell zu
erfassen, da die betrachtete Zeitskala zu groß ist, zum Beispiel bei der Evolution von
Galaxien, oder zu klein, wie zum Beispiel bei nuklearen Reaktionen.

Simulation als heuristisches Werkzeug

Simulationen spielen eine wichtige Rolle in der Entwicklung von Hypothesen, Modellen und
sogar neuen Theorien. Durch die Ausführung verschiedener Simulationsläufe mit geänderten
Eingabeparametern, können neue und einfache Regeln abgeleitet werden, welche ansonsten
nicht über die Modellannahmen hätten gemacht werden können. Einige dieser Hypothesen
wiederum können als Grundannahmen für ein neues und einfacheres Modell dienen.

19

Simulation als Ersatz für Experimente

Simulationen können Wissenschaftlern helfen Situationen zu untersuchen, die experimentell
nicht untersucht werden können. Die Ausführung eines Experiments kann sich aus
pragmatischen, theoretischen und ethischen Gründen als unmöglich erweisen. Ein Beispiel
für pragmatisch unmögliches Experiment wäre die Untersuchung der Entstehung von
Galaxien. Ein Beispiel für ein theoretisch unmögliches Experiment wären Situationen, bei
denen fundamentale Konstanten, wie zum Beispiel die Ladung eines Elektrons, geändert
werden. Ein Beispiel für ein ethisch unmögliches Experiment wäre eine Untersuchung der
Langzeitauswirkungen einer Einkommenssteuererhöhung um den Faktor 1,5. In all jenen
Fällen ist das Beste, was ein Wissenschaftler tun kann, eine angemessene Simulation
durchführen.

Simulation als Werkzeug für experimentell Arbeitende

Eine Simulation kann bei realen Experimenten bei der Planung, Entwicklung und Ausführung
hilfreich sein. Simulationen können reale Experimente inspirieren, wenn aus den
Simulationsergebnissen sich neue Regeln oder Hypothesen ergeben haben. Ebenso können
Simulationen bei der Vorauswahl von möglichen System und Aufbauten für das Experiment
helfen. Hierbei werden verschiedene Experimentaufbauten simuliert und das am meisten
erfolgversprechendste ausgewählt. Bei der Analyse von Experiment-Ergebnissen, können
Simulationen helfen, indem triviale oder gut verstandene Zusammenhänge aus den Daten
ausgeblendet werden können.

Simulation als pädagogisches Werkzeug

Simulationen haben sich in der Ausbildung als äußert nützlich erwiesen. Durch das „Spielen“
an einem Simulationsmodell und der Visualisierung der Ergebnisse, wird das Verständnis des
darunterliegenden Prozesses gefördert und eine Intuition für ähnliche Experimente
entwickelt. Diese Art des Lernens ist in vielen Fällen billiger und schneller, als ein reales
Experiment auszuführen.

2.4.2 FEM

Bei der Finite Elemente Methode (FEM) handelt es sich um ein numerisches Verfahren zur Lösung
von partiellen Differentialgleichungen (pDGL). Diese Methode findet in der Technik und in der Physik
zur Lösung von Problemen Anwendung. Die FEM stellt einen Oberbegriff für unterschiedliche Ansätze
für unterschiedliche Problemstellungen dar. Die zu lösenden Problemstellungen können hierbei zum
Beispiel eine Crash-Test-Simulation (Körperverformung) oder eine Diffusions-Simulation
verschiedener Flüssigkeiten (keine Körperverformung) sein. Für die verschiedenen
Problemstellungen müssen unterschiedliche Ansätze, wie zum Beispiel der Ritz-Ansatz bei
Körperverformungen oder der Galerkin-Ansatz für zeitabhängige Probleme, verwendet werden.

Der Galerkin-Ansatz lässt sich auf einen großen Problemkreis anwenden und wird im Folgenden
erläutert. Bei der FEM wird zum Lösen der Differentialgleichung (DGL) das Grundgebiet in endlich
viele Teilgebiete unterteilt. Dieses Grundgebiet stellt somit die zu simulierende Welt dar und wird

20

durch ein Netzwerk aus endlich vielen kleineren Gebieten angenähert. Diese kleineren Gebiete
werden Elemente genannt und haben meist eine einfach zu beschreibende geometrische Form. Aus
der endlichen Anzahl der Elemente leitet sich der Name Finite Elemente ab. Diese Elemente werden
dann diskretisiert. Dazu werden an bestimmten Stellen in den Elementen, den sogenannten
Knotenpunkten, Gleichungen aufgestellt. Diese Gleichungen beschreiben näherungsweise die
gesuchte Lösungsfunktion. Der Zustand eines Elements wird somit durch eine Matrix von
Gleichungen beschrieben. Aus den Matrizen der Elemente lässt sich eine globale Matrixgleichung
aufstellen, die den Zustand des gesamten Systems beschreibt. Die Matrixgleichung wird numerisch
gelöst. Dass der Galerkin-Ansatz unter strengen Bedingungen konvergiert, wurde mathematisch
bewiesen [17]. Eine Bedingung für die Konvergenz des Galerkin-Ansatzes ist, dass die gesuchte
Lösungsfunktion eine bestimmte Form besitzen muss.

Gebietsunterteilung in Elemente

Die Auswahl der Geometrie der Elemente, die das Grundgebiet annähern sollen, ist
Problemabhängig. Jedoch besitzen sie meist eine einfache Geometrie, die auf Drei- oder Vierecken
basieren. Die Elementgeometrie kann jedoch auch durch eine Vektorfunktion beschrieben werden.
Durch die gewählte Geometrie ergibt sich eine gewisse Anzahl von Knoten und Kanten. Die einzelnen
Elemente werden über diese Knoten miteinander verbunden.

Abbildung 12: finite Elemente nähern Grundgebiet an

Abbildung 12 zeigt ein quadratisches Element und wie diese miteinander verbundenen Elemente das
Grundgebiet annähern. Die miteinander verbundenen Elemente bilden zusammen das sogenannte
Gitter. Die Elemente werden innerhalb dieses Gitters eindeutig nummeriert, wodurch die
Reihenfolge der Elementberechnung festgelegt wird. Da die Reihenfolge einen großen Einfluss auf
das Ergebnis der Simulation hat, gibt es unterschiedliche Nummerierungsverfahren.

21

Lösen der DGL

Die zu lösende DGL hat die Form:

𝐹�𝑥,𝑦(𝑥),𝐷𝑦(𝑥),𝐷2𝑦(𝑥),𝐷3𝑦(𝑥)� = 0

Die gesuchte Funktion 𝑦(𝑥) wird durch folgendes Polynom an den Knotenpunkten approximiert:

𝑦 ≅ 𝑁0 + �ℎ𝑘 𝑁𝑘

𝑛

𝑘=0

Der Faktor 𝑁𝑘 aus dem Polynom wird Formfaktor genannt und wird dem Problem entsprechend
gewählt. Die Formfunktion selbst ist oft ein Polynom und an sie werden in der Regel strenge
Bedingungen geknüpft. Die Terme der Formfunktion werden ℎ𝑘 genannt. Bei dem Galerkin-Ansatz
werden die ℎ𝑘 Terme so berechnet, dass das Polynom die gesuchte Funktion möglichst gut
approximiert. Dabei soll der Fehler R, das sogenannte Residuum, an den Knotenpunkten minimiert
werden. Der Betrag des Residuums soll dabei am Knotenpunkt i gegen Null gehen.

𝑅 = ��𝑁0 + �ℎ𝑘𝑁𝑘

𝑛

𝑘=0

� − 𝑦�

Oft wird eine zusätzliche Gewichtsfunktion 𝑊𝑖 benutzt, um eine numerische Stabilität zu erreichen,
das heißt 𝑊𝑖 sorgt dafür, dass das Residuum am Knotenpunkt i nur vom Knotenpunkt i abhängt. Das
Residuum wird an jedem Knotenpunkt solange minimiert, bis 𝑅 kleiner als ein vorgegebenes Epsilon
ist. Durch weitere Umformungen kommt eine Gleichung der folgenden Form zustande:

𝐴ℎ + 𝐵ℎ′ = 0

In dieser Gleichung ist A die Gesamtmatrix und B eine Korrektur-Matrix, die die numerische
Eigenschaft verbessert. ℎ entspricht dabei der Formfunktion 𝑁 aus obiger Gleichung und ℎ′
entspricht der ersten Ableitung der Funktion ℎ.

Die Bücher [18], [19] und [17] geben einen umfassenden Einblick in das Thema der FEM und deren
genaue Lösungsverfahren.

2.4.2.1 Theorie der porösen Medien

Dieser Abschnitt basiert im Wesentlichen auf [20]. Andere Quellen werden separat angegeben.

Unter einem porösen Medium versteht man ein Festkörper-Skelett, dessen Poren mit einem Fluid
oder einem Gas gefüllt sind. Bei vielen Problemen aus der Mechanik werden die Werkstoffe häufig
als Ein-Phasen-Kontinuum behandelt, auch wenn diese aus mehreren Phasen bestehen. Da die
Nichtlinearitäten der verschiedenen Phasen oft vernachlässigbar sind, liefert diese Vereinfachung in
der Regel zufriedenstellende Ergebnisse. Bei einem porösen Medium sind die Kopplungseffekte
zwischen den Phasen zu groß, wodurch diese Vereinfachung nicht mehr zulässig ist. [21]

22

Hierbei ergeben sich zwei Lösungswege. Bei der ersten Methode wird in dem porösen Medium jeder
Teilkörper durch ein Einphasenmaterial und seiner Bewegung beschrieben. Zusätzlich müssen an den
Innenseiten des Gesamtkörpers Kopplungsmechanismen, in Form von Übergangs- und
Kontaktbedingungen, formuliert werden. Abbildung 13 zeigt diesen Ansatz schematisch. Da die
Geometrie der inneren Porenstrukturen sowie die äußere Geometrie der Einzelkörper unbekannt
sind, lässt sich diese Methode in den meisten Fällen nicht anwenden.

Abbildung 13: Gekoppeltes Festkörper-Fluid-Problem mit individuellen Bewegungsfunktionen der Teilkörper aus [20]

Bei der zweiten Methode wird ein statistischer Durchschnitt der Teilkörper eines betrachteten
Bereichs gebildet. Hierbei muss beachtet werden, dass der betrachtete Bereich für eine statistische
Aussage groß genug ist und, dass die lokalen Substrukturen für eine verschmierte Modellbildung fein
genug sind. Dadurch erhält man ein Kontinuum mit statistisch verteilten und unvermischbaren
Konstituierenden, welche sich gleichzeitig im gemeinsamen Kontrollraum befinden. Abbildung 14
zeigt exemplarisch eine solche Durchschnittsbildung. Dadurch lassen sich mithilfe der
Mischungstheorie interne Kopplungsmechanismen zwischen den Phasen beschreiben. Um dieser
Beschreibung von allgemeinen Mehrphasenmaterialien ein volumetrisches Maß hinzuzufügen, wird
von dem Konzept der Volumenanteile Gebrauch gemacht.

23

Abbildung 14: Durchschnittsbildung eines fluidgesättigten granularen Festkörpers aus [20]

In [20] wird die Theorie der porösen Medien wie folgt definiert:

Damit ist die Theorie der porösen Medien definiert als eine Kontinuumstheorie
für mehrphasige Materialien, die sich aus den Elementen „Mischungstheorie“
und „Konzept der Volumenanteile“ zusammensetzt.

Das Konsolidationsproblem ist ein klassischer Anwendungsfall für die Theorie der porösen Medien.
Hierbei wird auf einem flüssigkeitsgesättigten Boden eine zusätzliche äußere Belastung aufgebracht.
Diese Belastung kann zum Beispiel ein Bauwerk darstellen, welches über die Zeit zu Verformungen
des Untergrunds führt. Die Verformung ist von einem Prozess austretendem Wassers begleitet.
Dieser Konsolidierungsprozess ist beendet, wenn ein neuer Gleichgewichtszustand zwischen der
inneren Spannung des Bodens und der äußeren Belastung eingetreten ist. Abbildung 15 zeigt eine
schematische Darstellung des Konsolidationsproblems.

Abbildung 15: klassisches Konsolidationsproblem aus [20]

Für die mathematischen Konzepte hinter der TPM sei auf [20] oder [22]verwiesen, da dies den
Rahmen dieser Arbeit übersteigt.

24

2.5 Strukturänderungen im Knochen

Im Rahmen des Exzellenzclusters SimTech werden Strukturänderungen bei wechselnden Belastungen
am menschlichen Knochen simuliert. Ein Knochen wird von einer ihm eng anliegenden
Bindegewebshaut umgeben und besteht aus einer sogenannten Knochenmatrix. Diese
Knochenmatrix besteht aus 70% anorganischen Stoffen, 20% organischen Materialien und aus 10%
Wasser. Somit lässt sich die Knochenmatrix mit der Theorie der porösen Medien gut beschreiben. Ein
Knochen ist dem ständigen Umbau unterworfen, indem Osteoblasten den Knochen aufbauen und
Osteoklasten den Knochen abbauen. Je nach Belastungsart und Belastungsdauer stellen sich
unterschiedliche Gleichgewichte dieser Auf- und Abbauprozesse ein. Abbildung 16 zeigt
beispielsweise wechselnde Belastungen beim Rudern am Oberschenkelhalsknochen.

Abbildung 16: wechselnde Belastungen am Oberschenkelhalsknochen

Durch die Aufbau- und Abbauprozesse, kann sich der Knochen innerhalb weniger Wochen an eine
geänderte Belastung anpassen. Die Fähigkeit diese Strukturänderungen am menschlichen Knochen
simulieren zu können, ist aus medizinischer Sicht recht interessant. Denn hierdurch lassen sich
beispielsweise nach einer Verletzung Reha-Maßnahmen festlegen oder die Trainingsmethoden bei
Langzeitaufenthalten von Astronauten auf einer Raumstation, deren Knochen in der Schwerelosigkeit
kaum bis keine Belastungen erfahren, optimieren.

So eine Simulation ist recht komplex und stellt eine Multi-* Simulation dar. Eine Multi-* Simulation
deckt mindestens zwei folgender Bereiche ab:

Multi-Domänen: Die hier angewendeten Methoden stammen aus verschiedenen
Fachbereichen. Zum Beispiel finden Modelle aus der Mechanik und der Biologie Anwendung.

Multi-Skalen: Für die Simulation werden unterschiedliche Zeit- und /oder Raumskalen
verwendet.

Multi-Physiken: In der Simulation kommen unterschiedliche physikalische Gesetze zum
Einsatz.

Multi-Tools: Für die Simulation kommen unterschiedliche Tools zum Einsatz.

Ein besonderer Schwerpunkt der Strukturänderungssimulation im Knochen stellt der Multi-Skalen
Bereich dar. Neben der unterschiedlichen Zeitskala, bedingt durch Belastungsintervalle und

25

Ruhephasen, ist die Raumskala von bedeutender Rolle. Um das Skelett bzw. den Knochen zu
simulieren, muss eine ganze Kaskade von Simulationen unterschiedlicher Modelle mit
unterschiedlichen Raumskalen durchgeführt werden, welche sich gegenseitig bedingen. Abbildung 17
veranschaulicht diese Simulationskaskade, welche von der Zell-Ebene über die Gewebs- und Organ-
Ebene zur Skelett-Ebene verläuft.

Abbildung 17: Multi-Skalen Simulation aus [23]

Die Strukturänderungen im Knochen werden über die Simulationsprogramme Pandas und Matlab
ausgeführt. Pandas simuliert hierbei das biomechanische Knochenmodell auf einer größeren
Raumskala und Matlab simuliert das biologische Modell auf einer kleineren Raumskala. Neben der
unterschiedlichen Zeitskala der Belastungs- und Ruhephase, laufen die Modelle selbst in
unterschiedlichen Zeitskalen ab. Das biomechanische Modell besitzt eine große Zeitskala, welche
beispielsweise in Tagen abläuft, und das biologische Modell hat eine kleinere Zeitskala, die zum
Beispiel in Minuten oder Stunden abläuft. Zunächst wird in Pandas ein Knochenmodell erstellt,
welches auf Abbildung 18 zu sehen ist.

26

Abbildung 18: Finite Elemente Netz und Randbedingungen aus [23]

Nachdem das Knochenmodell erzeugt wurde, können die Auswirkungen der mechanischen
Belastungen berechnet werden. Teilergebnisse von der Berechnung aus der größeren Raumskala,
welche die Belastungsbedingungen an verschiedenen Punkten im Knochenmodell beschreiben,
müssen dann der Simulation auf der kleineren Raumskala bereitgestellt werden. Mit diesen Daten
kann dann das Verhalten auf Zell-Ebene simuliert werden. Die Ergebnisse der Simulation aus der
kleineren Raumskala, welche beschreiben, ob an den verschiedenen Punkten im Knochenmodell
Knochenstrukturen auf- oder abgebaut wurden, müssen dann wieder der Simulation auf der
größeren Raumskala zur Verfügung gestellt werden. Dieser Zyklus beschreibt einen
Berechnungsschritt der Gesamtsimulation und wird so oft wiederholt bis ein angestrebter Zeitpunkt
erreicht wurde. Abbildung 19 zeigt eine Ergebnisreihe zeitlicher und räumlicher Veränderungen im
Knochen.

Abbildung 19: Ergebnisreihe zeitlicher und räumlicher Veränderungen im Knochen aus [23]

27

3 Spezifikation

In diesem Kapitel wird die Pandas Service-Bus-Erweiterung näher spezifiziert. Zunächst wird auf die
Anforderungen und die verwendeten Konzepte eingegangen, danach folgen die Anwendungsfälle der
Pandas Service-Bus-Erweiterung.

3.1 Anforderungen

Bereitstellung von Pandas als Web Service (𝔸1)

Pandas soll als Web Service bereitgestellt werden, worüber dessen Steuerung möglich ist. Hierbei soll
Java als Programmiersprache verwendet werden, und die Web Services kommunizieren mit Hilfe von
SOAP Nachrichten. Der Web Service soll des Weiteren unter eine geeigneten Opensource Lizenz
gestellt werden.

Speicherung von Ergebnissen in einer Datenbank (𝔸2)

Pandas soll die Möglichkeit bieten (Teil-) Ergebnisse, wie zum Beispiel ein Finite Elemente Gitter oder
die Lösungsmatrix, in einer Datenbank abzuspeichern. Hierzu soll ein Datenbank-Schema erarbeitet
werden, um eine Simulation abzubilden.

Interaktion mit anderen Simulationsprogrammen (𝔸3)

Die Daten aus Pandas sollen von anderen Simulationsanwendungen verwendet werden können.
Hierbei muss unter Umständen ein Transformator oder eine Schnittstelle für das Ein- und Auslesen
der Daten bereitgestellt werden. Als Beispiel wäre hier die Verwendung eines externen DUNE-Löser
oder die Kopplung von Pandas mit Matlab zu nennen.

Verwendung einer Opensource-Datenbank (𝔸4)

Im Rahmen dieser Arbeit soll eine Opensource Datenbank verwendet werden.

BPEL-Prozess für die Simulation des Knochenwachstums (𝔸5)

Im Rahmen dieser Arbeit soll ein BPEL-Prozess erstellt werden, der den Pandas Web Service
verwendet und eine Simulation des Knochenwachstums durchführt.

28

3.2 Konzepte

Für die Realisierung der Service-Bus-Erweiterung von Pandas, finden verschiedene Softwarelösungen
eine Verwendung. Ein Überblick darüber ist auf Abbildung 20 zu sehen und wird anschließen weiter
erläutert.

Abbildung 20: Überblick Service-Bus-Erweiterung

Hierbei bekommt Pandas eine direkte Datenbankanbindung über die OpenDBX-Bibliothek6 zur
Speicherung und zum Austausch von Daten mit anderen Simulationsanwendungen. Hierbei wird eine
Opensource Datenbank verwendet. Die Fähigkeit Web Service Anfragen verarbeiten zu können
bekommt Pandas über das gSOAP Toolkit. Da Pandas für jede Simulation neu kompiliert und
gestartet werden muss, kann es hierüber nicht als Dienst verwendet werden. Für die Funktionalität
als Dienst wird ein Pandas-Adapter erstellt, der auf dem Web Service Interface aus der Diplomarbeit
[24] aufbaut. Diese Adapter laufen auf einem Apache Tomcat Server in einem Web Container. Als
Workflow Engine kommt Apache ODE zum Einsatz, welche auch auf dem Tomcat Server läuft. Damit
kann der Pandas-Adapter von einem Client oder aus einem Workflow heraus aufgerufen werden, der
wiederum Pandas kompiliert und startet.

6 http://www.linuxnetworks.de/doc/index.php/OpenDBX

29

3.2.1 gSOAP

Um Pandas mit einer Web Service Schnittstelle zu versehen, wird das gSOAP Web Service-Toolkit7
verwendet. Damit wird ein Binding von SOAP und XML-Typen auf C-Funktionen ermöglicht. Hierbei
werden die Web Service spezifischen Teile in Stubs und Skeletons gekapselt, welche dann von Pandas
verwendet werden können. gSOAP stellt eine Web Service-Server Bibliothek zur Verfügung, welche
direkt in Pandas mit eingebunden und kompiliert werden kann.

Für die Erzeugung der Stubs und Skeletons wird sowohl ein Top-Down wie ein Bottom-Up Ansatz zur
Verfügung gestellt. Bei beiden Ansätzen ist eine spezielle Schnittstellen-Definition nötig – die
sogenannte gSOAP-Header File. Diese Header File entspricht einer normalen C/C++ Header File, die
jedoch mit zusätzlichen Informationen in den Kommentaren angereichert ist. Darin stehen
Informationen wie z.B. der Name des Web Services oder der Typ des Services. Bei dem Top-Down
Ansatz wird diese spezielle Schnittstellen-Definition aus einer gegebenen WSDL-Datei erzeugt und
daraus dann die Stubs und Skeletons. Bei dem Bottom-Up Ansatz hingegen muss die gSOAP-Header
File schon vorhanden sein, woraus dann die WSDL-Datei sowie die Stubs und Skeletons erzeugt
werden.

Damit ist Pandas zwar mit einer Web Service Schnittstelle versehen, lässt sich aber so nicht als
Dienst, der ständig zu Verfügung steht, verwenden. Denn Pandas muss für jede Simulation neu mit
dem zu simulierenden Problem kompiliert werden. Um diese Problematik zu umgehen, ist ein
stellvertretender Adapter nötig, der Pandas kompilieren und starten kann.

3.2.2 Web Service Interface

Der stellvertretende Pandas Adapter baut auf dem erweiterungsfähigen Web Service Interface aus
der Diplomarbeit [24] auf. Das Web Service Interface ist auf der Abbildung 21 zu sehen und wird im
Folgenden näher beschrieben.

Abbildung 21: Web Service Interface nach [24]

7 http://www.cs.fsu.edu/~engelen/soap.html

30

Das Web Service Interface, nachfolgend nur noch WSI genannt, stellt einen generischen Adapter zur
Verwaltung von Simulationsinstanzen bereit.

Der Basis Web Service stellt die primäre Schnittstelle des Adapters dar und bietet Operationen für
den generischen Umgang mit Simulationsinstanzen an. Dazu gehören z.B. Operationen zum Erzeugen
bzw. Löschen von Instanzen oder das Ausführen von Anwendungen.

Der Instanz Pool verwaltet die einzelnen Simulationsinstanzen mit dessen Eigenschaften wie das
Instanzverzeichnis, dem Zustand und dem Lebenszyklus. Der Lebenszyklus einer Simulationsinstanz
wird auf der Abbildung 22 gezeigt.

Über den Programm-Manager können externe Programme ausgeführt werden oder Archive entpackt
werden. Des Weiteren ist es möglich die Standard-Ausgabe der hierüber gestarteten Programme in
einem Log zu speichern.

Der Callback-Web Service dient als Rückmeldungsschnittstelle für modifizierte
Simulationsanwendungen. Hierüber wird dem generischen Adapter von der Simulationsanwendung
der verwendete TCP-Port und die Bereitschaft der Bearbeitung von Web Service Anfragen mitgeteilt.

Abbildung 22: Zustände einer Simulationsinstanz aus [24]

31

3.2.3 OpenDBX

Da in Simulationen schnell große Datenmengen anfallen können, soll eine effiziente
Datenspeicherung möglich sein. Damit diese Datenmengen nicht über SOAP-Nachrichten
transportiert oder in die Workflow-Engine geladen werden müssen, wird die Datenbankanbindung
direkt von Pandas aus gewährleistet. Hierfür wird die OpenDBX Bibliothek verwendet, da diese als C-
Bibliothek einfach in das Programm mit eingebunden werden kann und eine Vielzahl an Datenbanken
unterstützt.

3.2.4 Pandas Service-Bus-Adapter

Dieses Szenario stellt die Pandas Service-Bus-Erweiterung dar und baut auf dem WSI-Adapter auf.
Durch diese Service-Bus-Erweiterung wird einerseits die Grundfunktionalität Pandas bereitgestellt
und andererseits eine Datenbankanbindung ermöglicht. Der Akteur in den nachfolgenden
Anwendungsfällen ist der Client des Pandas Service-Bus-Adapter. Abbildung 23 zeigt eine Übersicht
der Anwendungsfälle der Pandas-Service-Bus-Erweiterung.

Abbildung 23 : Übersicht über die Pandas-Service-Bus-Erweiterung Anwendungsfälle

32

3.2.4.1 neue Pandas Simulation erstellen (𝔸1)

Beschreibung: Damit man eine Pandas Simulation starten und steuern kann, muss zunächst eine
neue Simulationsinstanz erzeugt werden. Hierzu wird zunächst über den generischen WSI-Adapter
eine neue Instanz erzeugt. Mit der neuen Instanz wird eine neue Simulations-ID und ein neues
Verzeichnis erstellt. In diese neue Simulationsinstanz wird anschließend der Pandas Sourcecode und
ein Simulationsproblem entpackt und kompiliert. Der Instanzstatus wird auf Runnable gesetzt.

Vorbedingung: Im Archiv-Verzeichnis des generischen WSI-Adapters muss das Unterverzeichnis src
existieren und darin das Pandas-Sourcecode-Archiv pandas.tar.gz. Zudem muss in dem Archiv-
Verzeichnis das Unterverzeichnis problems existieren und darin das Simulationsproblem-Archiv.

Nachbedingung: Die Simulationsinstanz wurde erzeugt, die Pandas Archive wurden darin entpackt
und anschließend kompiliert. Die Simulationsinstanz ist in einem ausführbaren Zustand.

Fehler:

• Archive-Files existieren nicht.
• Schreibfehler, volles Filesystem.

Ablauf:

1. Es wird eine neue Simulationsinstanz erzeugt.
2. Der Pandas Sourcecode wird entpackt.
3. Das Pandas Simulationsproblem wird entpackt.
4. Der Instanz Status wird auf DirectoryPrepared gesetzt.
5. Der Instanz Status wird auf Runnable gesetzt.
6. Der Pandas Sourcecode wird mit dem Simulationsproblem kompiliert.

3.2.4.2 Pandas starten (𝔸1)

Beschreibung: Es wird von einer bestehenden Pandas-Simulationsinstanz die Pandas-Anwendung
gestartet.

Vorbedingung: Die Pandas-Simulationsinstanz wurde erfolgreich erzeugt und Pandas wurde darin
erfolgreich kompiliert.

Nachbedingung: Pandas ist gestartet.

Fehler:

• Pandas ist nicht erfolgreich kompiliert.
• Die angegebene Pandas-Simulationsinstanz existiert nicht.
• Der angegebene Pfad zu den Pandas-Binaries existiert nicht.

Ablauf:

1. Pandas wird gestartet.

33

2. Der integrierte Pandas Web Service-Server wird gestartet.
3. Pandas wartet auf Befehle.

3.2.4.3 Pandas beenden (𝔸1)

Beschreibung: Es wird eine gestartete Pandas-Simulationsinstanz beendet.

Vorbedingung: Pandas wurde gestartet.

Nachbedingung: Pandas ist beendet.

Fehler:

• Pandas ist nicht gestartet.
• Die angegebene Pandas-Simulationsinstanz existiert nicht.

Ablauf:

1. Eine eventuell bestehende Datenbank-Verbindung wird getrennt.
2. Der integrierte Pandas Web Service-Server wird heruntergefahren.
3. Pandas wird beendet.

3.2.4.4 DB-Verbindung aufbauen (𝔸1, 𝔸2)

Beschreibung: Bei einer gestarteten Pandas-Simulationsinstanz wird eine Verbindung zu einer
Datenbank hergestellt.

Vorbedingung: Es wurde eine Pandas-Simulationsinstanz erzeugt, Pandas ist gestartet und wartet auf
Anfragen, und es besteht keine Datenbank-Verbindung.

Nachbedingung: Pandas ist mit der angegebenen Datenbank verbunden.

Fehler:

• Die angegebene Pandas-Simulationsinstanz existiert nicht.
• Pandas ist nicht in dieser Simulationsinstanz gestartet.
• Die angegebene Datenbank existiert nicht.
• Die Datenbank-Verbindungsdaten sind nicht korrekt.

Ablauf:

1. Es wird geprüft, ob schon eine Verbindung besteht.
2. Verbindung wird hergestellt.

34

3.2.4.5 DB-Verbindung trennen (𝔸1, 𝔸2)

Beschreibung: Bei einer gestarteten Pandas-Simulationsinstanz, die eine Datenbank-Verbindung hat,
wird diese von Pandas getrennt.

Vorbedingung: Es wurde eine Pandas-Simulationsinstanz erzeugt, Pandas ist gestartet und mit einer
Datenbank verbunden.

Nachbedingung: Pandas hat die Datenbank-Verbindung getrennt.

Fehler:

• Die angegebene Pandas-Simulationsinstanz existiert nicht.
• Pandas ist nicht in dieser Simulationsinstanz gestartet.

Ablauf:

1. Es wird geprüft ob eine Verbindung besteht.
2. Wenn eine Verbindung besteht, wird diese getrennt.

3.2.4.6 Pandas Batchfile ausführen (𝔸1)

Beschreibung: Bevor eine Simulation ausgeführt werden kann, muss Pandas zuvor entsprechend
initialisiert werden. Dies geschieht in der Regel über eine Pandas Batchfile, welche eine Reihe von
Pandas Kommandos beinhaltet. Hierüber wird Pandas veranlasst eine solche Batchfile auszuführen.

Vorbedingung: Es wurde eine Pandas-Simulationsinstanz erzeugt, Pandas ist gestartet und mit einer
Datenbank verbunden. Zudem sollte die Batchfile in dem Verzeichnis liegen, in dem die Pandas-
Binaries liegen.

Nachbedingung: Es wurde die Pandas Batchfile ausgeführt.

Fehler:

• Die angegebene Pandas-Simulationsinstanz existiert nicht.
• Pandas ist nicht in dieser Simulationsinstanz gestartet.
• Die angegebene Batchfile existiert nicht.

Ablauf:

1. Es wird das Kommando zum Ausführen einer Batchfile an Pandas geschickt.
2. Pandas führt die Batchfile aus.

35

3.2.4.7 Simulationsproblem einlesen (𝔸1)

Beschreibung: Bevor eine Simulation ausgeführt werden kann, muss Pandas zuvor initialisiert
werden. Dabei ist das Einlesen des Simulationsproblems ein Teil der Initialisierung. Hierbei werden
z.B. Dateien eingelesen, welche die Geometrie oder die Materialeigenschaften des Problems
beschreiben. Es werden dabei vier unterschiedliche Möglichkeiten des Einlesens unterstützt.

Vorbedingung: Es wurde eine Pandas-Simulationsinstanz erzeugt, Pandas ist gestartet und mit einer
Datenbank verbunden.

Nachbedingung: Das Simulationsproblem wurde eingelesen.

Fehler:

• Die angegebene Pandas-Simulationsinstanz existiert nicht.
• Pandas ist nicht in dieser Simulationsinstanz gestartet.
• Die angegebenen Problem-Files existieren nicht.

Ablauf:

Problem wird über Mesh-Generator eingelesen:

1. Shape-Datei wird eingelesen.
2. Geometrie-Datei wird eingelesen.
3. Netzgenerator wird eingestellt.
4. Datei der internen Variablen wird eingelesen.
5. Materialparameter-Datei wird eingelesen.

Problem wird über Grid-Generator eingelesen:

1. Shape-Datei wird eingelesen.
2. Geometrie-Datei wird eingelesen.
3. Gittergenerator wird gestartet.
4. Datei der internen Variablen wird eingelesen.
5. Materialparameter-Datei wird eingelesen.

Problem wird über Nodes und Elements File eingelesen:

1. Shape-Datei wird eingelesen.
2. Geometrie-Datei wird eingelesen.
3. Knoten-Datei wird eingelesen.
4. Elems-File wird eingelesen.

a. Randbedingungs-Datei wird eingelesen, falls angegeben.
5. Datei der internen Variablen wird eingelesen.
6. Materialparameter-Datei wird eingelesen.

36

Problem wird über eine Problembeschreibungsdatei eingelesen:

1. Problembeschreibungsdatei wird eingelesen.

3.2.4.8 Pandas Kommando ausführen (𝔸1)

Beschreibung: Hierüber kann jedes Pandas Kommando zur Steuerung ausgeführt werden

 Vorbedingung: Es wurde eine Pandas-Simulationsinstanz erzeugt, Pandas ist gestartet und mit einer
Datenbank verbunden.

Nachbedingung: Pandas hat das Kommando ausgeführt.

Fehler:

• Die angegebene Pandas-Simulationsinstanz existiert nicht.
• Pandas ist nicht in dieser Simulationsinstanz gestartet.
• Das angegebene Kommando existiert nicht.

Ablauf:

1. Es wird das Kommando an Pandas abgeschickt.
2. Pandas führt dieses Kommando aus.

3.2.4.9 Einen Simulationszeitschritt ausführen (𝔸1)

Beschreibung: Pandas wird veranlasst einen Simulationszeitschritt auszuführen. Hierfür wird das
Kommando step 1 ausgeführt.

Vorbedingung: Es wurde eine Pandas-Simulationsinstanz erzeugt, Pandas ist gestartet und mit einer
Datenbank verbunden. Des Weiteren muss Pandas und das Simulationsproblem initialisiert sein.

Nachbedingung: Pandas hat einen Simulationszeitschritt ausgeführt

Fehler:

• Die angegebene Pandas-Simulationsinstanz existiert nicht.
• Pandas ist nicht in dieser Simulationsinstanz gestartet.
• Pandas wurde nicht initialisiert.
• Pandas ist nicht mit der Datenbank verbunden.

Ablauf:

1. Es wird das Kommando step 1 an Pandas abgeschickt.
2. Pandas führt einen Simulationszeitschritt aus.

37

3.2.4.10 Aktuellen Simulationszeitschritt abfragen (𝔸1)

Beschreibung: Zur Ablaufsteuerung kann es nötig sein den aktuellen Simulationszeitschritt
abzufragen.

Vorbedingung: Es wurde eine Pandas-Simulationsinstanz erzeugt, Pandas ist gestartet und mit einer
Datenbank verbunden. Des Weiteren muss Pandas und das Simulationsproblem initialisiert sein.

Nachbedingung: Der aktuelle Simulationszeitschritt wurde zurückgeliefert.

Fehler:

• Die angegebene Pandas-Simulationsinstanz existiert nicht.
• Pandas ist nicht in dieser Simulationsinstanz gestartet.
• Pandas wurde nicht initialisiert.
• Pandas ist nicht mit der Datenbank verbunden.

Ablauf:

1. Der aktuelle Simulationszeitschritt wurde zurückgeliefert.

3.2.4.11 Zustand speichern (𝔸1, 𝔸2)

Beschreibung: Der Zustand von Pandas soll in der Datenbank abgespeichert werden. Um den
Zustand zu erzeugen, wird das Pandas Kommando save verwendet.

Vorbedingung: Es wurde eine Pandas-Simulationsinstanz erzeugt, Pandas ist gestartet und mit einer
Datenbank verbunden. Des Weiteren muss Pandas und das Simulationsproblem initialisiert sein.

Nachbedingung: Pandas hat seinen Zustand in der Datenbank gespeichert

Fehler:

• Die angegebene Pandas-Simulationsinstanz existiert nicht.
• Pandas ist nicht in dieser Simulationsinstanz gestartet.
• Pandas wurde nicht initialisiert.
• Pandas ist nicht mit der Datenbank verbunden.

Ablauf:

1. Der Pandas Zustand wird über das Kommando save erzeugt.
2. Die entstandene Zustandsdatei wird in der Datenbank gespeichert.
3. Die Zustandsdatei wird gelöscht.

38

3.2.4.12 Zustand laden (𝔸1, 𝔸2)

Beschreibung: Ein zuvor in der Datenbank gespeicherter Pandas Zustand soll von der aktuellen
Pandas Instanz geladen werden. Um den Zustand zu laden, wird das Pandas Kommando load
verwendet.

Vorbedingung: Es wurde eine Pandas-Simulationsinstanz erzeugt. Pandas ist gestartet und mit einer
Datenbank verbunden.

Nachbedingung: Pandas hat den Zustand geladen.

Fehler:

• Die angegebene Pandas-Simulationsinstanz existiert nicht.
• Pandas ist nicht in dieser Simulationsinstanz gestartet.
• Pandas ist nicht mit der Datenbank verbunden.
• Der angegebene Zustand existiert nicht.

Ablauf:

1. Die Zustandsdatei wird aus der Datenbank geholt.
2. Der Pandas Zustand wird über das Kommando load aus der Zustandsdatei geladen.
3. Die Zustandsdatei wird gelöscht.

3.2.5 Evaluierung der Datenbank

Im Rahmen der Diplomarbeit [25] wurden verschiedene Kriterien und Testprozesse zur
Datenbankevaluierung aufgestellt. Darin wurden Hauptspeicher und Extern-Speicher-basierte
Datenbanken auf ihre relationalen bzw. XML Fähigkeiten untersucht. Für diese Arbeit soll die
relationale Datenbank PostgreSQL mit den Ergebnissen der relationalen Extern-Speicher-basierten
Datenbanken aus der Arbeit [25] verglichen werden. Nachfolgend werden die 11 Kriterien für die
Datenbank-Evaluierung kurz erläutert.

3.2.5.1 Kriterien

Kriterium 1: Lizenz und Kosten

Das erste Kriterium betrachtet die Lizenz der Datenbank. Handelt es sich um eine Opensource oder
kommerzielle Datenbank? Wenn es sich um eine Opensource Lizenz handelt, gibt es copyleft8
Bedingungen? Wie gestaltet sich der Preis bei einer kommerziellen Lizenz und gibt es für den
wissenschaftlichen Gebrauch spezielle Angebote?

8 Eine copyleft-Bedingung schreibt fest, dass Bearbeitungen des Werks nur dann erlaubt sind, wenn alle
Änderungen ausschließlich unter den identischen oder im Wesentlichen gleichen Lizenzbedingungen
weitergegeben werden

39

Kriterium 2: Plattform

Bei dem zweiten Kriterium werden die unterstützten Plattformen der Datenbank betrachtet. Für
welche Betriebssysteme wird die Datenbank angeboten, und gibt es 32 bit und 64 bit Versionen?
Gibt es besondere Anforderungen an die Hardware? Ebenso wird gefragt, ob JDBC-Treiber angeboten
werden.

Kriterium 3: Installation und Integration

Das dritte Kriterium beleuchtet die Installation und Integration der Datenbank. Ist eine
Installationsanleitung vorhanden, und wie aufwändig gestaltet sich die Installation? Wie lange dauert
die Installation, und wie groß ist die Installation?

Kriterium 4: Administration und Benutzerfreundlichkeit

Bei dem vierten Kriterium werden die Administration und die Benutzerfreundlichkeit bewertet. Ist
eine Anleitung bzw. eine Dokumentation vorhanden, und wenn ja, wie ausführlich ist diese? Sind
Administrationswerkzeuge oder ein Web Front-end vorhanden?

Kriterium 5: SQL-Features

Das fünfte Kriterium beleuchtet die vorhandenen SQL-Features einer relationalen Datenbank. Es
wird untersucht, ob alle SQL-Sprachelemente unterstützt werden und ob die Standard SQL
Datentypen unterstützt werden. Ebenso wird geprüft, ob eine bestimmte Version des SQL-Standards
eingehalten wird.

Kriterium 6: XQuery

Bei dem sechsten Kriterium findet nur bei Datenbanken die XQuery-Anfragen beherrschen
Anwendung. Hierbei wird unter anderem untersucht, ob XML-Dokumente importiert und manipuliert
werden können oder ob FLOWR-Ausdrücke verarbeitet werden können.

Kriterium 7: Transaktionen und ACID

Das siebte Kriterium untersucht die Datenbank auf ihre ACID-Fähigkeiten und Locking-Techniken.

Kriterium 8: Cache Consistency

Bei dem achten Kriterium wird die Synchronisierung zwischen lokalen Cache und Data Store
untersucht.

Kriterium 9: Performance relationale DB

Das neunte Kriterium testet die Performance einer relationale Datenbank. Hierbei werden
verschiedene Testqueries an die Datenbank gestellt und dabei die Ausführungszeit festgehalten.

Kriterium 10: Performance XML DB

Bei dem zehnten Kriterium wird die Performance einer XML-Datenbank getestet. Hierbei wird der
XMark Test verwendet.

40

Kriterium 11: Verwendung als ODE Modell

Bei dem elften Kriterium wird die Datenbank als ODE Model DB verwendet. Dabei wird anschließend
ein Workflow ausgeführt, der einen genetischen Algorithmus verwendet, um die Charakteristika von
Simulationsworkflows zu simulieren.

3.2.5.2 Evaluierung

Im Rahmen dieser Arbeit soll eine Opensource Datenbank zum Einsatz kommen. Daher beschränkt
sich das Auswahlkriterium auf das Performancekriterium für relationale Datenbanken.

In dem Performancetest für relationale Datenbanken gibt es eine Liste von Testqueries, die die
Datenbank ausführen muss. Die Testqueries lassen sich in mehrere Test-Kategorien aufteilen:

[TPCH]: Die erste Test-Kategorie basiert auf den TPC-H Benchmark der Version 2.8.0. Hierbei
werden typische Queries aus dem Businessumfeld und ad-hoc Queries abgedeckt. Zusätzlich zu
den Queries werden auch die Datenbanktabellen und deren Inhalt bereitgestellt.

[Concurrent]: Bei dieser Test-Kategorie werden mehrere simultane Zugriffe auf eine
Datenbanktablle simuliert. Hierbei gibt es wieder verschiedene Zugriffsarten: „read only“, „read
and write“ und „insert only“.

[CO2]: Diese Test-Kategorie basiert auf Daten eines FEM-Grid, welches von dem Workshop on
Numerical Models for Carbon Dioxide Storage in Geological Formations9 bereitgestellt wurde.

Schema Dropping: Hier werden alle Tabellen und ihre Daten gelöscht.

3.2.5.3 Ergebnisse der Datenbank-Evaluierung (𝔸4)

In der Tabelle 1 ist das wesentliche Ergebnis des Performance-Tests zu sehen. Die komplette Tabelle
mit allen Ergebnissen und allen Datenbanken ist auf der Abgabe-DVD zu finden.

In der Arbeit von [25] schneidet die DB2 Datenbank bei den Tests für relationale Datenbanken am
besten ab. Da in dieser Arbeit eine Opensource Datenbank zum Einsatz kommen soll, wird die DB2
nur als Referenzdatenbank aufgeführt. Das Ergebnis der drei gegenübergestellten Datenbanken ist
farblich kodiert:

• Grün : Bestes Testergebnis
• Rot : Schlechtestes Testergebnis
• Schwarz: Test konnte nicht ausgeführt werden

Aus diesem Performance-Test-Ergebnis ist klar ersichtlich, dass die PostgreSQL Datenbank gegenüber
der Apache Derby Datenbank in den meisten Testfällen besser abschneidet. Die Apache Derby

9 http://www.iws.uni-stuttgart.de/co2-workshop/

http://www.iws.uni-stuttgart.de/co2-workshop/

41

Datenbank konnte sogar einen Testfall nicht ausführen. Aus diesem Grunde wird im Rahmen dieser
Arbeit die PostgreSQL Datenbank verwendet.

Test Group DB2 PostgreSQL Derby
[TPCH] Import 00:02:08,313 00:06:08,035 00:06:50,254
[TPCH] Keys, Indizes 00:03:18,948 00:01:50,191 00:05:49,289
[TPCH] Select Count CUSTOMER 00:00:00,033 00:00:00,090 00:00:00,123
[TPCH] Select Count LINEITEM 00:00:00,153 00:00:00,363 00:00:00,587
[TPCH] Select Count Distinct ORDERS 00:00:00,341 00:00:02,565 00:00:08,741
[TPCH] Select * CUSTOMER 00:00:01,164 00:00:01,904 00:00:02,116
[TPCH] Select Column CUSTOMER 00:00:00,187 00:00:00,572 00:00:00,412
[TPCH] Select * Where ORDERS 00:00:09,712 00:00:10,185 00:00:18,954
[TPCH] Select Column Where ORDERS 00:00:08,219 00:00:02,596 00:00:05,310
[TPCH] Select Column Where ORDERS with Index 00:00:08,504 00:00:02,645 00:00:05,348
[TPCH] Select Join without Index 00:00:01,197 00:00:00,087 00:00:00,361
[TPCH] Select Join with Index 00:00:00,628 00:00:00,959 00:00:01,072
[TPCH] Select Aggregation 00:00:20,362 00:00:32,727 00:00:45,403
[TPCH] Select Aggregation Join Order 00:00:08,974 00:00:01,805 00:00:02,403
[TPCH] Query 2 00:00:01,261 00:00:01,515 00:00:05,952
[TPCH] Query 4 mod 00:00:09,044 00:00:00,803 00:00:08,113
[TPCH] Query 6 00:00:01,310 00:00:00,301 00:00:01,521
[TPCH] Query 16 00:00:01,169 00:00:07,808 00:00:07,084
[TPCH] Query 17 00:18:32,992 00:06:27,392 00:00:00,206
[TPCH] Query 22 00:00:13,464 01:12:19,852
[CONCURRENT] Read Customer 00:00:05,773 00:00:07,816 00:00:07,126
[CONCURRENT] Modify Patient (Read Committed) 00:00:58,599 00:01:05,088 00:01:52,037
[CONCURRENT] Modify Patient (Repeatable Read) 00:01:06,533 00:01:02,407 00:01:16,595
[CONCURRENT] Insert Emergency Call (Read
Committed) 00:10:34,808 00:03:28,880 00:03:36,529
[CONCURRENT] Insert Emergency Call
(Repeatable Read) 00:09:51,093 00:03:24,632 00:03:37,466
[CO2] Import 00:00:12,921 00:00:09,071 00:00:16,945
[CO2] Keys 00:00:11,111 00:00:01,664 00:00:20,655
[CO2] Performance Adopt Properties 00:00:00,679 00:00:02,816 00:00:06,853
[CO2] Performance Select All 00:00:00,281 00:00:01,488 00:00:00,803
[CO2] Performance Join 1 00:00:00,469 00:00:01,210 00:00:36,602
[CO2] Performance Join 2 00:00:01,639 00:00:05,006 00:00:29,075
[CO2] Performance Join 3 00:00:09,630 00:00:06,338 00:00:45,048
Schema Dropping 00:00:03,829 00:00:01,122 00:00:03,459

RSS Memory Peak 786.444 432.520 706.320

Tabelle 1: Ergebnis Datenbank-Evaluierung

3.3 Erweiterungen des Pandas-Adapter

In diesem Abschnitt werden die Anwendungsfälle der verschiedenen Simulationsszenarien im
Pandas-Umfeld beschrieben. Der Akteur in den nachfolgenden Anwendungsfällen der verschiedenen
Szenarien ist der Client des entsprechenden WSI-Adapters.

42

3.3.1 DUNE-Matrixlöser

In diesem Szenario soll es ermöglicht werden, die Lösungsmatrix von Pandas extern zu speichern und
von einem externen Löser zu lösen. Die Matrix wird dabei in der Datenbank abgelegt, die wiederum
von einem Service mit einem DUNE-Löser geladen und gelöst wird. Die gelöste Matrix soll wieder in
der Datenbank abgespeichert werden und von Pandas wieder geladen werden können. Abbildung 24
zeigt eine Übersicht über die Anwendungsfälle des externen DUNE-Lösers.

Abbildung 24: Übersicht über die PANDAS-DUNE Matrixlöser Anwendungsfälle

3.3.1.1 Gespeicherte Matrix-ID abfragen (𝔸2, 𝔸3)

Beschreibung: Es soll die Matrix-ID einer zuvor abgespeicherten Lösungsmatrix von einer
Simulation ausgegeben werden.

Vorbedingung: Es wurde eine Pandas-Simulationsinstanz erzeugt, Pandas ist gestartet und mit
einer Datenbank verbunden. Des Weiteren sollte eine Matrix abgespeichert worden sein.

Nachbedingung: Die Matrix-ID wurde zurückgeliefert.

Fehler:

• Die angegebene Pandas-Simulationsinstanz existiert nicht.
• Pandas ist nicht in dieser Simulationsinstanz gestartet.
• Pandas ist nicht mit der Datenbank verbunden.
• Es wurde noch keine Matrix abgespeichert.

43

Ablauf:

• Es wird die Matrix-ID zurückgeliefert.

3.3.1.2 Matrix speichern (𝔸2, 𝔸3)

Beschreibung: Es wird die Lösungsmatrix von Pandas in der Datenbank abgelegt. Dabei kann die
Speicherung werteweise oder der komplette Speicherbereich binär erfolgen.

Vorbedingung: Es wurde eine Pandas-Simulationsinstanz erzeugt, Pandas ist gestartet und mit einer
Datenbank verbunden. Des Weiteren muss Pandas und das Simulationsproblem initialisiert sein und
ein Simulationszeitschritt ausgeführt worden sein.

Nachbedingung: Die Matrix wurde in der Datenbank gespeichert.

Fehler:

• Die angegebene Pandas-Simulationsinstanz existiert nicht.
• Pandas ist nicht in dieser Simulationsinstanz gestartet.
• Pandas ist nicht mit der Datenbank verbunden.
• Es wurde noch kein Simulationszeitschritt ausgeführt.

Ablauf:

1. Es wird geprüft, ob schon Metadaten über die Matrix abgespeichert wurden.
2. Wenn noch keine Metadaten abgespeichert wurden, so werden diese nun abgespeichert und

ein neuer Simulationszeitschritt in der Datenbank angelegt.
3. Es wird die Matrixqualität erfasst.
4. Die Matrix wird gespeichert.
5. Es wird der Simulationszeitschritt, zu dem die Matrix gehört, zurückgegeben.

3.3.1.3 Matrix laden (𝔸2, 𝔸3)

Beschreibung: Es wird die Lösungsmatrix aus der Datenbank in Pandas geladen. Dabei muss
angegeben werden, in welcher Form die Matrix abgespeichert wurde – werteweise oder binär.

Vorbedingung: Es wurde eine Pandas-Simulationsinstanz erzeugt, Pandas ist gestartet und mit einer
Datenbank verbunden. Des Weiteren muss Pandas und das Simulationsproblem initialisiert sein und
ein Simulationszeitschritt ausgeführt worden sein.

Nachbedingung: Matrix wurde in Pandas geladen

Fehler:

• Die angegebene Pandas-Simulationsinstanz existiert nicht.
• Pandas ist nicht in dieser Simulationsinstanz gestartet.

44

• Pandas ist nicht mit der Datenbank verbunden.
• Es wurde noch kein Simulationszeitschritt ausgeführt.
• Die angegebene Matrix existiert nicht in der Datenbank.

Ablauf:

1. Es wird geprüft, ob eine Verbindung zur Datenbank besteht.
2. Bei bestehender Datenbank-Verbindung wird in Pandas die Matrix aus der Datenbank

geladen.

3.3.1.4 Matrix zyklisch speichern (𝔸2, 𝔸3)

Beschreibung: Es soll möglich sein, Pandas anzuweisen automatisch seine Matrix zyklisch mit fester
Schrittweite in der Datenbank abzulegen. Dabei muss mit angegeben werden, wie die Speicherung zu
erfolgen hat – werteweise oder binär.

Vorbedingung: Es wurde eine Pandas-Simulationsinstanz erzeugt und Pandas ist gestartet.

Nachbedingung: Einstellungen wurden übernommen.

Fehler:

• Die angegebene Pandas-Simulationsinstanz existiert nicht.
• Pandas ist nicht in dieser Simulationsinstanz gestartet.

Ablauf:

1. Die Speicherungsart wird übernommen.
2. Die Schrittweite zum Speichern wird übernommen.

3.3.2 Data-Quality

In diesem Szenario soll es Pandas ermöglicht werden, während der Simulation die Matrixqualität zu
erfassen und in der Datenbank abzulegen. Bei der Matrixqualität sollen Metriken von den
Hauptdiagonalen, den Vektoren und der Werteverteilung auf der Matrix erfasst werden. Ebenso soll
es möglich sein, die verwendete Parameterfile zur Bestimmung der Materialeigenschaften
abzufragen. Die erfassten Metriken können dann von externer Seite weiterverarbeitet werden, wie
zum Beispiel dem Data-Quality-Framework aus der Diplomarbeit [26]. Diese Ergebnisse können dann
zur Steuerung der Simulation verwendet werden. Abbildung 25 zeigt eine Übersicht über die
Anwendungsfälle des Data-Quality Szenarios.

45

Abbildung 25: Übersicht über die PANDAS Data-Quality Anwendungsfälle

3.3.2.1 Matrixqualität erfassen (𝔸2, 𝔸3)

Beschreibung: Es soll von der Matrix A sowie den Vektoren x und b, die bei der Gleichung 𝐴 ∗ 𝑥 = 𝑏
auftreten, diverse Metriken erfasst werden. Dabei wird von der Matrix A die Anzahl der Null-Werte
und der Nicht-Null-Werte gespeichert. Von der Hauptdiagonalen der Matrix A sowie den Vektoren x
und b werden jeweils der minimale Wert, der maximale Wert und der Quotient aus dem minimalen
und maximalen Wert in der Datenbank gespeichert.

Vorbedingung: Es wurde eine Pandas-Simulationsinstanz erzeugt, Pandas ist gestartet und mit einer
Datenbank verbunden. Des Weiteren muss Pandas und das Simulationsproblem initialisiert sein und
ein Simulationszeitschritt ausgeführt worden sein.

Nachbedingung: Die Metrikwerte wurden in der Datenbank gespeichert.

Fehler:

• Die angegebene Pandas-Simulationsinstanz existiert nicht.
• Pandas ist nicht in dieser Simulationsinstanz gestartet.
• Pandas ist nicht mit der Datenbank verbunden.
• Es wurde noch kein Simulationszeitschritt ausgeführt.

Ablauf:

1. Es wird geprüft, ob die Matrix vorhanden ist.

46

2. Wenn die Matrix vorhanden ist, werden alle Einträge durchlaufen, und es werden die
Metriken dabei erfasst.

3. Es wird geprüft, ob eine Datenbank-Verbindung besteht.
4. Wenn eine Verbindung besteht, werden die erfassten Metriken gespeichert.
5. Es wird der Simulationszeitschritt, zu dem die Metriken gehören, gespeichert.
6. Es wird der Simulationszeitschritt, zu dem die Metriken gehören, zurückgegeben.

3.3.2.2 SQL-Query zur Matrixqualität (𝔸3)

Beschreibung: Es soll ein SQL-Query zur zuletzt gespeicherten Matrixqualitätseintrag zurückgeliefert
werden.

Vorbedingung: Es wurde eine Pandas-Simulationsinstanz erzeugt, Pandas ist gestartet und mit einer
Datenbank verbunden. Des Weiteren muss Pandas und das Simulationsproblem initialisiert sein, ein
Simulationszeitschritt ausgeführt und eine Matrixqualität erfasst worden sein.

Nachbedingung: Die SQL-Query wurde zurückgeliefert.

Fehler:

• Die angegebene Pandas-Simulationsinstanz existiert nicht.
• Pandas ist nicht in dieser Simulationsinstanz gestartet.
• Pandas ist nicht mit der Datenbank verbunden.
• Es wurde keine Matrixqualität erfasst.

Ablauf:

1. Es wird aus dem Simulationszeitschritt der zuletzt gespeicherten Matrixqualität und der
Matrix-ID das SQL-Query zusammengesetzt.

2. Das SQL-Query wird zurückgegeben.

3.3.2.3 Zeitschritt der letzten Matrixqualität (𝔸3)

Beschreibung: Es soll der Simulationszeitschritt der zuletzt gespeicherten Matrixqualität
zurückgeliefert werden.

Vorbedingung: Es wurde eine Pandas-Simulationsinstanz erzeugt, Pandas ist gestartet und mit einer
Datenbank verbunden. Des Weiteren muss Pandas und das Simulationsproblem initialisiert sein, ein
Simulationszeitschritt ausgeführt und eine Matrixqualität erfasst worden sein.

Nachbedingung: Der Simulationszeitschritt der zuletzt gespeicherten Matrixqualität wurde
zurückgeliefert.

Fehler:

• Die angegebene Pandas-Simulationsinstanz existiert nicht.

47

• Pandas ist nicht in dieser Simulationsinstanz gestartet.
• Pandas ist nicht mit der Datenbank verbunden.
• Es wurde keine Matrixqualität erfasst.

Ablauf:

1. Der Simulationszeitschritt der zuletzt gespeicherten Matrixqualität wird zurückgeliefert.

3.3.2.4 Gespeicherte Matrix-ID abfragen (𝔸3)

Beschreibung: Es soll die Matrix-ID einer zuvor abgespeicherten Lösungsmatrix von einer Simulation
ausgegeben werden.

Vorbedingung: Es wurde eine Pandas-Simulationsinstanz erzeugt, Pandas ist gestartet und mit einer
Datenbank verbunden. Des Weiteren sollte eine Matrix abgespeichert worden sein.

Nachbedingung: Die Matrix-ID wurde zurückgeliefert.

Fehler:

• Die angegebene Pandas-Simulationsinstanz existiert nicht.
• Pandas ist nicht in dieser Simulationsinstanz gestartet.
• Pandas ist nicht mit der Datenbank verbunden.
• Es wurde noch keine Matrix abgespeichert.

Ablauf:

1. Es wird die Matrix-ID zurückgeliefert.

3.3.2.5 Verwendete Parameterdatei abfragen (𝔸3)

Beschreibung: Von einer Pandas Simulation soll der Pfad der verwendeten Parameter-File
ausgegeben werden, damit die darin definierten Materialeigenschaften analysiert werden können.

Vorbedingung: Es wurde eine Pandas-Simulationsinstanz erzeugt und es existiert eine Parameter-
File.

Nachbedingung: Es wurde der Pfad zu dem Parameter-File zurückgeliefert.

Fehler:

• Die angegebene Pandas-Simulationsinstanz existiert nicht.
• Es existiert keine Parameter-File.

Ablauf:

1. Es wird das Instanz-Verzeichnis nach der Parameter-File durchsucht.

48

2. Der Pfad zur Parameter-File wird zurückgeliefert.

3.3.3 Mehrere Pandas-Instanzen

Bei diesem Szenario sollen zwei verschiedene Pandas Instanzen eine gemeinsame Simulation führen.
Jede Instanz hat dabei seine eigene Physik und eine eigene Zeitschrittgröße. Die beiden Instanzen
tauschen dabei die Freiheitsgrade der Mesh-Elemente aus, wobei der Austausch über die
angebundene Datenbank erfolgt. Bei der Simulation fängt eine Instanz an zu rechnen und speichert
nach x Schritten seine Daten ab. Diese Daten werden von der zweiten Instanz geladen und mit deren
Physik und Zeitschrittgröße weitergerechnet. Nach y Schritten wiederum werden die Ergebnisse der
zweiten Instanz gespeichert und können wieder von der ersten Instanz geladen werden. Dieser
Zyklus wird so lange wiederholt bis das Ende der Simulation erreicht wurde. Abbildung 26 zeigt eine
Übersicht über die Anwendungsfälle einer Simulation mit mehreren Pandas-Instanzen.

Abbildung 26: Übersicht über die Anwendungsfälle einer Simulation mit mehreren Pandas-Instanzen

3.3.3.1 Freiheitsgrade an allen Mesh-Elementen speichern (𝔸2, 𝔸3)

Beschreibung: Es werden alle Freiheitsgrade der Mesh-Elemente in der Datenbank gespeichert. Für
die Speicherung wird die interne Pandas-Funktion MeshSave verwendet. In dem
zweidimensionalen Sonderfall wird zusätzlich die interne Pandas-Funktion BisectSave
verwendet, um einen Koordinatenvergleich des aktuellen und des zu ladenden Meshes zu
ermöglichen.

Vorbedingung: Es wurde eine Pandas-Simulationsinstanz erzeugt, Pandas ist gestartet und mit einer
Datenbank verbunden. Des Weiteren muss Pandas und das Simulationsproblem initialisiert sein und
ein Simulationszeitschritt ausgeführt worden sein.

Nachbedingung: Die Freiheitsgrade wurden in der Datenbank gespeichert.

Fehler:

• Die angegebene Pandas-Simulationsinstanz existiert nicht.
• Pandas ist nicht in dieser Simulationsinstanz gestartet.

49

• Pandas ist nicht mit der Datenbank verbunden.
• Es wurde noch kein Simulationszeitschritt ausgeführt.

Ablauf:

1. Es wird eine Mesh-File über die Pandas-Funktion MeshSave erzeugt.
2. Das erzeugte Mesh-File wird in der Datenbank abgespeichert.
3. Das erzeugte Mesh-File wird gelöscht.
4. Falls es sich um eine zweidimensionale Simulation handelt, wird ein Object-File über die

Funktion BisectSave erstellt.
5. Das erzeugte Object-File wird in der Datenbank abgespeichert.
6. Das erzeugte Object-File wird gelöscht.

3.3.3.2 Gespeicherte Freiheitsgrade laden (𝔸2, 𝔸3)

Beschreibung: Es werden alle Freiheitsgrade aus der DATENBANK in Pandas geladen. Für das Laden
wird die interne Pandas-Funktion MeshLoad verwendet. In dem zweidimensionalen Sonderfall wird
zusätzlich die interne Pandas-Funktion BisectLoad verwendet, damit die Koordinaten des
aktuellen und des zu ladenden Meshes verglichen werden können.

Vorbedingung: Es wurde eine Pandas-Simulationsinstanz erzeugt, Pandas ist gestartet und mit einer
Datenbank verbunden. Des Weiteren muss Pandas und das Simulationsproblem initialisiert sein und
ein Simulationszeitschritt ausgeführt worden sein.

Nachbedingung: Alle Freiheitsgrade sind geladen.

Fehler:

• Die angegebene Pandas-Simulationsinstanz existiert nicht.
• Pandas ist nicht in dieser Simulationsinstanz gestartet.
• Pandas ist nicht mit der Datenbank verbunden.
• Es wurde noch kein Simulationszeitschritt ausgeführt.
• Die Datenbank enthält die zu ladende Daten nicht.
• Die Koordinaten des aktuellen und des gespeicherten Meshes passen nicht zusammen. (Nur

im zweidimensionalen Fall!)

Ablauf:

1. Falls es sich um eine zweidimensionale Simulation handelt, wird das Object-File aus der
Datenbank geholt.

2. Das Object-File wird temporär geladen.
3. Im zweidimensionalen Fall werden die Koordinaten des aktuellen und des temporären

Meshes verglichen.
4. Falls die beiden Meshes nicht zusammenpassen, wird das temporäre Mesh verworfen und

ein Fehler ausgegeben.
5. Falls die beiden Meshes zusammenpassen, wird das temporäre Mesh verworfen und das zu

ladende Mesh-File wird aus der Datenbank geholt.

50

6. Das erzeugte Mesh-File wird über die Funktion MeshLoad in Pandas geladen.

3.3.4 Pandas-Matlab Kopplung

In diesem Szenario soll eine Kopplung von Pandas mit Matlab stattfinden, das heißt Pandas und
Matlab führen gemeinsam eine Multi-Tool, Multi-Skalen und Multi-Domänen Simulation aus. Hierbei
werden die Strukturveränderungen eines menschlichen Oberschenkelknochens simuliert. Pandas
berechnet die mechanischen Belastungen, welche auf den Knochen einwirken, und Matlab
berechnet die systembiologische Komponente der Kalziumbildung des Knochens auf zellularer Ebene.
Das Modell für die Matlab-Simulation liegt in Form einer oder mehrerer Dateien mit Matlab-
Anweisungen vor. Diese Dateien haben die Endung .m und werden dementsprechend als M-Files
bezeichnet. Hierbei tauschen Pandas und Matlab bestimmte Variablen an den Gausspunkten der
Mesh-Elemente aus. Der Austausch selbst erfolgt über die Datenbank und der daraus erstellten CSV-
Dateien. Bei der Simulation beginnt Pandas mit der Berechnung des biomechanischen
Knochenmodells. Die Berechnung endet, bezüglich des biomechanischen Knochenmodells, nach
einer bestimmten Anzahl von Zeitschritten. Da das biomechanische und das biologische Modell
voneinander abhängen, speichert Pandas sein Berechnungsergebnis in der Datenbank ab. Bevor die
Berechnung des biologischen Knochenmodells auf zellularer Ebene gestartet werden kann, muss aus
dem Berechnungsergebnis eine CSV-Datei erstellt werden, welche als Eingabe für Matlab dient. Nun
kann das biologische Knochenmodell mit Matlab berechnet werden. Diese Berechnung endet,
bezüglich des biologischen Knochenmodells, nach einer bestimmten Anzahl von Zeitschritten.Das
Ergebnis der Matlab Berechnung ist selbst wieder eine CSV-Datei, welche in die Datenbank und
anschließend in Pandas geladen werden kann. Dieser Zyklus vollzieht sich bis die Simulation ihr Ende
erreicht hat. Abbildung 27 zeigt eine Übersicht über die Anwendungsfälle der Pandas-Matlab
Kopplung.

51

Abbildung 27: Übersicht über die Pandas-Matlab Anwendungsfälle

3.3.4.1 Neue Matlab Simulation erstellen (𝔸3)

Beschreibung: Damit man eine Matlab Simulation starten und steuern kann, muss zunächst eine
neue Simulationsinstanz erzeugt werden. Hierzu wird zunächst über den generischen WSI-Adapter
eine neue Instanz erzeugt, womit eine neue ID und ein neues dazugehöriges Verzeichnis erstellt
werden. In diese neue Simulationsinstanz wird anschließend das Matlab Archiv entpackt, welches die
M-Files und notwendigen Dateien für die Simulation enthält. Der Instanzstatus wird auf Runnable
gesetzt.

Vorbedingung: Im Archiv-Verzeichnis des generischen WSI-Adapters muss das Unterverzeichnis src
existieren und darin das Matlab Archiv, welches man angeben kann.

Nachbedingung: Die Simulationsinstanz wurde erzeugt und das Matlab Archive wurden darin
entpackt. Die Simulationsinstanz ist in einem ausführbaren Zustand.

Fehler:

• Archiv-Files existieren nicht.
• Schreibfehler, volles Filesystem.

Ablauf:

1. Es wird eine neue Simulationsinstanz erzeugt.
2. Das Matlab Archiv wird entpackt.

52

3. Der Instanz Status wird auf Runnable gesetzt.

3.3.4.2 Alle Variablen der Gausspunkte speichern (𝔸2, 𝔸3)

Beschreibung: Speichert alle Variablen an allen Gausspunkten an allen Elementen von Pandas in der
Datenbank ab.

Vorbedingung: Es wurde eine Pandas-Simulationsinstanz erzeugt, Pandas ist gestartet und mit einer
Datenbank verbunden. Des Weiteren muss Pandas und das Simulationsproblem initialisiert sein und
ein Simulationszeitschritt ausgeführt worden sein.

Nachbedingung: Alle Variablen an allen Gausspunkten von allen Elementen sind in der Datenbank
abgespeichert.

Fehler:

• Die angegebene Pandas-Simulationsinstanz existiert nicht.
• Pandas ist nicht in dieser Simulationsinstanz gestartet.
• Pandas ist nicht mit der Datenbank verbunden.
• Es wurde noch kein Simulationszeitschritt ausgeführt.

Ablauf:

1. Es werden alle Mesh-Elemente und deren Gausspunkte traversiert.
2. An einem Gausspunkt werden alle Variablen in der Datenbank abgespeichert.

3.3.4.3 Alle Variablen der Gausspunkte laden (𝔸2, 𝔸3)

Beschreibung: Es werden alle Werte aller Variablen an allen Gausspunkten und an allen Elementen
aus der Datenbank in Pandas geladen.

Vorbedingung: Es wurde eine Pandas-Simulationsinstanz erzeugt, Pandas ist gestartet und mit einer
Datenbank verbunden. Des Weiteren muss Pandas und das Simulationsproblem initialisiert sein und
ein Simulationszeitschritt ausgeführt worden sein. Die zu ladenden Variablen sollten in der
Datenbank vorhanden sein.

Nachbedingung: Pandas hat alle Variablen aus der Datenbank geladen.

Fehler:

• Die angegebene Pandas-Simulationsinstanz existiert nicht.
• Pandas ist nicht in dieser Simulationsinstanz gestartet.
• Pandas ist nicht mit der Datenbank verbunden.
• Es wurde noch kein Simulationszeitschritt ausgeführt.
• Die Datenbank enthält keine Werte.
• Datenbank enthält die zu ladenden Daten nicht.

53

Ablauf:

1. Es werden alle Mesh-Elemente und deren Gausspunkte traversiert.
2. An einem Gausspunkt werden alle Variablen aus der Datenbank in Pandas geladen.

3.3.4.4 Eine Variable der Gausspunkte speichern (𝔸2, 𝔸3)

Beschreibung: Speichert eine vorgegebene Variable von allen Gausspunkten an allen Elementen von
Pandas in der Datenbank ab.

Vorbedingung: Es wurde eine Pandas-Simulationsinstanz erzeugt, Pandas ist gestartet und mit einer
Datenbank verbunden. Des Weiteren muss Pandas und das Simulationsproblem initialisiert sein, ein
Simulationszeitschritt ausgeführt worden sein.

Nachbedingung: Die vorgegebene Variable wurde an allen Gausspunkten von allen Elementen in der
Datenbank abgespeichert.

Fehler:

• Die angegebene Pandas-Simulationsinstanz existiert nicht.
• Pandas ist nicht in dieser Simulationsinstanz gestartet.
• Pandas ist nicht mit der Datenbank verbunden.
• Es wurde noch kein Simulationszeitschritt ausgeführt.

Ablauf:

1. Es werden alle Mesh-Elemente und deren Gausspunkte traversiert.
2. An einem Gausspunkt wird die vorgegebene Variable in der Datenbank abgespeichert.

3.3.4.5 Eine Variable der Gausspunkte laden (𝔸2, 𝔸3)

Beschreibung: Es werden die Werte der angegebenen Variable an allen Gausspunkten und an allen
Elementen aus der Datenbank in Pandas geladen.

Vorbedingung: Es wurde eine Pandas-Simulationsinstanz erzeugt, Pandas ist gestartet und mit einer
Datenbank verbunden. Des Weiteren muss Pandas und das Simulationsproblem initialisiert sein und
ein Simulationszeitschritt ausgeführt worden sein. Die zu ladende Variable sollte in der Datenbank
vorhanden sein.

Nachbedingung: Es wurde die angegebene Variable aller Gausspunkte aus der Datenbank in Pandas
geladen.

Fehler:

• Die angegebene Pandas-Simulationsinstanz existiert nicht.
• Pandas ist nicht in dieser Simulationsinstanz gestartet.

54

• Pandas ist nicht mit der Datenbank verbunden.
• Es wurde noch kein Simulationszeitschritt ausgeführt.
• Die Datenbank enthält die zu ladende Variable nicht.
• Datenbank enthält die zu ladenden Daten nicht.

Ablauf:

1. Es werden alle Mesh-Elemente und deren Gausspunkte traversiert.
2. An einem Gausspunkt wird die angegebene Variable aus der Datenbank in Pandas geladen.

3.3.4.6 Anzahl der Gausspunkte abfragen (𝔸3)

Beschreibung: Die Datenbank wird abgefragt, wie viele Gausspunkte ein Element hat. Dies wird
benötigt, um eine CSV-Datei zu erstellen bzw. eine CSV-Datei einzulesen.

Vorbedingung: Die Variablen an den Gausspunkten wurden zuvor in der Datenbank gespeichert.

Nachbedingung: Die Anzahl der Gausspunkte an einem Element wurde ausgegeben.

Fehler:

• Die angegebene Matlab-Simulationsinstanz existiert nicht.
• Die Datenbank-Verbindungsdaten sind nicht korrekt.
• Die Variablen an den Gausspunkten wurden nicht in der Datenbank gespeichert.

Ablauf:

1. Die Anfrage wird an die Datenbank geschickt.
2. Die Anzahl der Gausspunkte an einem Element wird zurückgegeben.

3.3.4.7 Anzahl der Elemente abfragen (𝔸3)

Beschreibung: Die Datenbank wird abgefragt, wie viele Elemente das Mesh hat. Dies wird benötigt,
um eine CSV-Datei zu erstellen bzw. eine CSV-Datei einzulesen.

Vorbedingung: Die Variablen an den Gausspunkten wurden zuvor in der Datenbank gespeichert.

Nachbedingung: Die Anzahl der Elemente wurde ausgegeben.

Fehler:

• Die angegebene Matlab-Simulationsinstanz existiert nicht.
• Die Datenbank-Verbindungsdaten sind nicht korrekt.
• Die Variablen an den Gausspunkten wurden nicht in der Datenbank gespeichert.

55

Ablauf:

1. Die Anfrage wird an die Datenbank geschickt.
2. Die Anzahl der Elemente wird zurückgegeben.

3.3.4.8 Anzahl aller Variablen abfragen (𝔸3)

Beschreibung: Die Datenbank wird abgefragt, wie viele Variablenwerte insgesamt von dem Mesh
gespeichert wurden.

Vorbedingung: Die Variablen an den Gausspunkten wurden zuvor in der Datenbank gespeichert.

Nachbedingung: Die Anzahl aller Variablenwerte wurde zurückgegeben.

Fehler:

• Die angegebene Matlab-Simulationsinstanz existiert nicht.
• Die Datenbank-Verbindungsdaten sind nicht korrekt.
• Die Variablen an den Gausspunkten wurden nicht in der Datenbank gespeichert.

Ablauf:

1. Die Anfrage wird an die Datenbank geschickt.
2. Die Anzahl der Elemente wird zurückgegeben.

3.3.4.9 Matlab Input-Dateien erstellen (𝔸3)

Beschreibung: Es soll eine CSV-Eingabedatei für Matlab erstellt werden. In dieser Datei stehen alle
Variablen aller Gausspunkte. Dabei stellt in der CSV-Datei eine Zeile einen Gausspunkt und die
Spalten die dazugehörigen Variablen dar. Ein Element hingegen besitzt mehrere Gausspunkte. Das
heißt ein Element mit seinen Gausspunkten und Variablen erstreckt sich über mehrere Zeilen der
CSV-Datei. Die Struktur der Datei enthält somit implizit Informationen über verschiedene benötigte
Indizes wie zum Beispiel die Elementnummer oder die Gausspunktnummer. Der Umfang der Datei
wird über die Anzahl der Elemente gesteuert.

Vorbedingung: Die Variablen an den Gausspunkten wurden zuvor in der Datenbank gespeichert.

Nachbedingung: Die CSV-Eingabedatei wurde in das Matlab-Instanzverzeichnis geschrieben.

Fehler:

• Die angegebene Matlab-Simulationsinstanz existiert nicht.
• Die Variablen an den Gausspunkten wurden nicht in der Datenbank gespeichert.
• Die Datenbank-Verbindungsdaten sind nicht korrekt.
• Das Filesystem ist voll die Datei konnte nicht erstellt werden.

56

Ablauf:

1. Eine Datenbank-Abfrage nach allen Variablen an allen Gausspunkten wird abgesetzt.
2. Aus der Datenbank-Antwort wird die CSV-Datei erstellt.

3.3.4.10 Matlab Output-Datei laden (𝔸3)

Beschreibung: Es soll eine Matlab-CSV-Ausgabedatei eingelesen werden, und die Variablen an den
Gausspunkten in die Datenbank geladen werden. Dabei stellt in der CSV-Datei eine Zeile einen
Gausspunkt und die Spalten die dazugehörigen Variablen dar. Ein Element hingegen besitzt mehrere
Gausspunkte. Das heißt ein Element mit seinen Gausspunkten und Variablen erstreckt sich über
mehrere Zeilen der CSV-Datei. Die Struktur der Datei enthält somit implizit Informationen über
verschiedene benötigte Indizes wie zum Beispiel die Elementnummer oder die Gausspunktnummer.

Vorbedingung: Die CSV-Ausgabedatei existiert im Matlab-Instanzverzeichnis und das Format ist
korrekt. Von dieser Matlab-Simulationsinstanz wurde zuvor eine CSV-Eingabedatei erstellt, damit die
Datenbank für das Laden des Ergebnisses von Matlab vorbereitet wurde. Zudem sollten die
Verbindungsdaten der Datenbank korrekt sein.

Nachbedingung: Alle Werte aus der CSV-Ausgabedatei sind in die Datenbank geladen.

Fehler:

• Die angegebene Matlab-Simulationsinstanz existiert nicht.
• Das Format der CSV-Datei ist nicht korrekt.
• Die CSV-Datei existiert nicht im Matlab-Instanzverzeichnis.
• Es wurde zuvor keine Matlab CSV-Eingabedatei erstellt.

Ablauf:

1. Es wird geprüft, ob die CSV-Ausgabedatei im Matlab-Instanzverzeichnis existiert.
2. Die CSV-Ausgabedatei wird eingelesen und werteweise in die Datenbank gespeichert.

3.3.4.11 DB-Verbindungsdaten setzen (𝔸3)

Beschreibung: Es soll möglich sein, die Datenbank anzugeben, worüber der Austausch der Variablen
an den Gausspunkten stattfindet. Die Datenbank-Verbindungsdaten werden in einem Property-File
im Matlab-Instanzverzeichnis gespeichert.

Vorbedingung: Es existiert die Matlab-Simulationsinstanz.

Nachbedingung: Das Property-File mit den Datenbank-Verbindungsdaten wurde erzeugt oder
aktualisiert.

57

Fehler:

• Die angegebene Matlab-Simulationsinstanz existiert nicht.

Ablauf:

1. Es wird geprüft, ob das Property-File existiert.
2. Falls das Property-File existiert, wird es mit den neuen Werten aktualisiert.
3. Falls das Property-File nicht existiert, wird es neu erzeugt.

3.3.4.12 DB-Verbindungsdaten abfragen (𝔸3)

Beschreibung: Es soll möglich sein die Datenbank-Verbindungsdaten abzufragen.

Vorbedingung: Die Matlab-Simulationsinstanz und darin die Property-File mit den Verbindungsdaten
existiert.

Nachbedingung: Die Datenbank-Verbindungsdaten wurden zurückgegeben.

Fehler:

• Die angegebene Matlab-Simulationsinstanz existiert nicht.
• Das Property-File existiert nicht.

Ablauf:

1. Es wird geprüft, ob das Property-File existiert.
2. Das Property-File wird gelesen und die Verbindungsdaten zurückgegeben.

3.3.4.13 M-File ausführen (𝔸3)

Beschreibung: Es soll möglich sein, auf einem entfernten Rechner eine M-File von Matlab oder
Octave ausführen zu lassen und somit eine Berechnung anzustoßen. Dies soll über einen SSH-Aufruf
realisiert werden. Dabei muss auf dem entfernten Rechner ein Verzeichnis mit dem auszuführenden
M-File vorhanden sein.

Vorbedingung: Die Matlab-Simulationsinstanz und darin das Skript für den SSH-Aufruf müssen
existieren. Auf dem entfernten Rechner muss ein Verzeichnis vorbereitet sein, welches das
auszuführende M-File enthält. Des Weiteren muss zwischen dem entfernten Rechner und dem
Rechner auf dem der WSI-Adapter läuft ein SSH-Schlüsselaustausch stattgefunden haben, damit
keine weitere Authentifizierung im späteren Ablauf stattfinden muss.

Nachbedingung: Das M-File wurde auf dem entfernten Rechner ausgeführt.

 Fehler:

• Die angegebene Matlab-Simulationsinstanz existiert nicht.

58

• Es wurde kein SSH-Schlüsselaustausch zwischen den beteiligten Rechnern vorgenommen.
• Das M-File ist auf dem entfernten Rechner nicht vorhanden.
• Das Shell-Skript zum Absetzen des SSH-Befehls ist nicht vorhanden.

Ablauf:

1. Es wird eine SSH-Verbindung zum entfernten Rechner aufgebaut.
2. Auf dem entfernten Rechner wird in das Simulationsinstanz Verzeichnis gewechselt.
3. Matlab oder Octave wird mit dem M-File ausgeführt.

3.3.4.14 Dateien zwischen Rechnern kopieren (𝔸3)

Beschreibung: Es muss möglich sein zwischen zwei entfernten Rechnern Dateien zu kopieren. Dies
wird benötigt, um Dateien von und zum Matlab-Rechner zu kopieren.

Vorbedingung: Die Matlab-Simulationsinstanz und darin das Skript für den SCP-Aufruf müssen
existieren. Auf dem entfernten Rechner muss ein Verzeichnis mit Schreibrechten vorhanden sein.
Des Weiteren muss zwischen dem entfernten Rechner und dem Rechner auf dem der WSI-Adapter
läuft ein SSH-Schlüsselaustausch stattgefunden haben, damit keine weitere Authentifizierung im
späteren Ablauf stattfinden muss. Die zu kopierende Datei muss vorhanden sein.

Nachbedingung: Die Datei wurde kopiert.

Fehler:

• Die angegebene Matlab-Simulationsinstanz existiert nicht.
• Es wurde kein SSH-Schlüsselaustausch zwischen den beteiligten Rechnern vorgenommen.
• Das Shell-Skript zum Absetzen des SCP-Befehls ist nicht vorhanden.
• Auf der Zielseite sind keine Schreibrechte vorhanden.
• Die zu kopierende Datei ist nicht vorhanden.

Ablauf:

1. Es wird ein SCP-Aufruf abgesetzt.
2. Die Datei wird über SCP kopiert.

3.3.4.15 Verzeichnis auf entfernten Rechner erstellen (𝔸3)

Beschreibung: Erstellt ein Verzeichnis auf einen anderen Rechner über SSH. Dies wird benötigt um
auf dem Matlab-Rechner ein Simulationsverzeichnis zu erstellen.

Vorbedingung: Die Matlab-Simulationsinstanz und darin das Skript für den SSH-Aufruf müssen
existieren. Auf dem entfernten Rechner müssen Schreibrechte vorhanden sein. Des Weiteren muss
zwischen dem entfernten Rechner und dem Rechner auf dem der WSI-Adapter läuft ein SSH-

59

Schlüsselaustausch stattgefunden haben, damit keine weitere Authentifizierung im späteren Ablauf
stattfinden muss.

Nachbedingung: Auf dem Zielrechner wurde das Verzeichnis erstellt.

Fehler:

• Die angegebene Matlab-Simulationsinstanz existiert nicht.
• Es wurde kein SSH-Schlüsselaustausch zwischen den beteiligten Rechnern vorgenommen.
• Das Shell-Skript zum Absetzen des SCP-Befehls ist nicht vorhanden.
• Auf der Zielseite sind keine Schreibrechte vorhanden.

Ablauf:

1. Es wird über SSH der Befehl zum Erstellen des Verzeichnisses abgesetzt.
2. Das Verzeichnis wird auf dem entfernten Rechner erstellt.

3.3.4.16 Datei auf entfernten Rechner löschen (𝔸3)

Beschreibung: Löscht eine Datei auf einem entfernten Rechner über einen SSH Befehl. Dies wird
benötigt, um das Instanzverzeichnis auf einem anderen Rechner aufzuräumen.

Vorbedingung: Die Matlab-Simulationsinstanz und darin das Skript für den SSH-Aufruf müssen
existieren. Auf dem entfernten Rechner müssen Schreibrechte vorhanden sein. Des Weiteren muss
zwischen dem entfernten Rechner und dem Rechner auf dem der WSI-Adapter läuft ein SSH-
Schlüsselaustausch stattgefunden haben, damit keine weitere Authentifizierung im späteren Ablauf
stattfinden muss. Die zu löschende Datei muss vorhanden sein.

Nachbedingung: Die Datei wird auf der Zielseite gelöscht.

Fehler:

• Die angegebene Matlab-Simulationsinstanz existiert nicht.
• Es wurde kein SSH-Schlüsselaustausch zwischen den beteiligten Rechnern vorgenommen.
• Das Shell-Skript zum Absetzen des SCP-Befehls ist nicht vorhanden.
• Auf der Zielseite sind keine Schreibrechte vorhanden.
• Die Datei auf der Zielseite existiert nicht.

Ablauf:

1. Es wird über SSH der Befehl zum Löschen der Datei abgesetzt.
2. Die Datei wird auf dem entfernten Rechner gelöscht.

60

3.3.4.17 Matlab-Aufruf setzen (𝔸3)

Beschreibung: Es muss möglich sein das Kommando zum Ausführen eines M-File in einer Matlab-
Simulationsinstanz festzulegen, da auf jedem entfernten Rechner sich der Installationspfad
unterscheiden kann. Ebenso ist es damit möglich, statt einem Matlab-Aufruf ein Octave-Aufruf
festzulegen. Dieser Aufruf wird in einem Property-File in dem Matlab-Instanzverzeichnis gespeichert.

Vorbedingung: Die Matlab-Simulationsinstanz muss existieren.

Nachbedingung: Das Property-File wurde erstellt oder aktualisiert.

Fehler:

• Die angegebene Matlab-Simulationsinstanz existiert nicht.

Ablauf:

1. Es wird geprüft, ob das Property-File existiert.
2. Falls das Property-File existiert, wird es mit den neuen Werten aktualisiert.
3. Falls das Property-File nicht existiert, wird es neu erzeugt.

3.3.4.18 Matlab-Aufruf abfragen (𝔸3)

Beschreibung: Es soll möglich sein den gesetzten Aufruf zum Ausführen eines M-Files abzufragen.

Vorbedingung: Die Matlab-Simulationsinstanz muss existieren und es muss zuvor ein Aufruf gesetzt
worden sein.

Nachbedingung: Der Aufruf wurde zurückgeliefert.

Fehler:

• Die angegebene Matlab-Simulationsinstanz existiert nicht.
• Der Aufruf wurde nicht gesetzt bzw. das Property-File existiert nicht.

Ablauf:

1. Es wird geprüft, ob das Property-File existiert.
2. Das Property-File wird gelesen und der Aufruf zurückgegeben.

61

4 Entwurf

In diesem Kapitel werden neben den Architekturen der verschiedenen WSI-Adapter auch deren Web
Service Operationen und Parameter vorgestellt. Zum Abschluss wird das Datenbankschema zur
Speicherung von Daten aus der Simulation gezeigt.

4.1 Architektur

Architektur des WSI-Pandas-Adapters

Die Architektur des WSI-Pandas-Adapters ist auf der Abbildung 28 zu sehen und wird im Folgenden
beschrieben. Der WSI-Pandas-Adapter ist der Stellvertreter für die Pandas-Anwendung, da diese
nicht als Dienst laufen kann. Der WSI-Pandas-Adapter bietet im Grunde die gleichen Operationen an
wie die Pandas-Anwendung selber. Damit der WSI-Pandas-Adapter mit der Pandas-Anwendung
interagieren kann, muss die Pandas-Anwendung zunächst erstellt und gestartet werden. Hierzu greift
der WSI-Pandas-Adapter auf den Instanz-Pool und dem Programm-Manager des generischen WSI-
Adapters zu, um eine Simulationsinstanz zu erzeugen und darin den Sourcecode der Pandas-
Anwendung zu entpacken. Instanz-Pool und Programm-Manager werden dann dazu verwendet den
Sourcecode von Pandas zu kompilieren und zu starten. Die modifizierte Pandas Anwendung
verwendet nach dem Start den Callback Web Service des generischen WSI-Adapters, um sich
zurückzumelden. Durch diese Rückmeldung ist die Simulationsinstanz in einem lauffähigen Zustand.
Nun kann der WSI-Pandas-Adapter die Web Service Anfragen durch den Pandas Service Stub an die
Pandas Anwendung weiterleiten.

Abbildung 28: Architektur Pandas Adapter

Architektur des WSI-Matlab-Adapters

Auf der Abbildung 29 ist die Architektur des WSI-Matlab-Adapters zu sehen und wird im
Folgenden näher beschrieben. Da Matlab nicht ohne weiteres als eigener Web Service zur

62

Verfügung steht, werden für den WSI-Matlab-Adapter ausschließlich Funktionalitäten des
generischen WSI-Adapters verwendet. Wie bei dem WSI-Pandas-Adapter wird der Instanz-Pool
und der Programm-Manager zur Erstellung und Verwaltung der Simulationsinstanz sowie zum
Entpacken des Matlab-Archives verwendet. In dem Archiv befindet sich ein Shell Skript, welches
es dem generischen WSI-Adapter erlaubt via SSH auf entfernten Rechnern Befehle abzusetzen
und via SCP Dateien zwischen einem entfernten Rechner und dem erzeugten
Simulationsinstanzverzeichnis zu kopieren.

Abbildung 29: Architektur Matlab Adapter

Architektur des WSI-PMConnector-Adapters

Die Architektur des WSI-PMConnector-Adapters ist auf der Abbildung 30 dargestellt und wird nun
näher beschrieben. PM steht für Pandas-Matlab. Der WSI-PMConnector-Adapter erstellt für die
Matlab-Simulation die CSV-Eingabedatei aus der Datenbank und speichert von der Matlab-Simulation
die CSV-Ausgabedatei in der Datenbank ab. Damit der WSI-PMConnector-Adapter Zugriff auf das
Matlab-Simulationsinstanzverzeichnis bekommt, wird auf den Instanz-Pool des generischen WSI-
Adapters zugegriffen.

63

Abbildung 30: Architektur PMConnector Adapter

4.2 Web Service-Operationen

In diesem Abschnitt werden die gesamten Schnittstellen der WSI-Adapter aufgelistet und die
Parameter der Operationen beschrieben.

4.2.1 WSI_Pandas

prepareSimulation (𝔸1)

Erstellt eine neue und ausführbare Pandas Simulationsinstanz.

Szenario: Pandas Service-Bus-Adapter

Anwendungsfall: neue Pandas Simulation erstellen

Input/Output Parametername Datentyp Beschreibung
Input ProblemName String Name des auszupackenden

Simulationsproblem
Output SimID Long Die Simulations-ID der neuen Instanz
Output ReturnMessage String Return Message

Tabelle 2: Parameter der Operation prepareSimulation

startPandas (𝔸1)

Startet Pandas der angegebenen Simulationsinstanz.

Szenario: Pandas Service-Bus-Adapter

Anwendungsfall: Pandas starten

64

Input/Output Parametername Datentyp Beschreibung
Input SimID Long Simulations-ID der Instanz
Input ProgramPath String Der Pfad zum Pandas-Binary relativ zur

Instanz
Input WorkingDirectory String Der Pfad des zu verwendenden

Arbeitsverzeichnisses
Input Arguments String Die zu verwendenden Kommandozeilen-

Parameter
Input ExecutionLog String Der Pfad zur Datei, welche die Ausgabe von

Pandas speichert.
Output ReturnMessage String Return Message

Tabelle 3: Parameter der Operation startPandas

stopApplication (𝔸1)

Beendet Pandas.

Szenario: Pandas Service-Bus-Adapter

Anwendungsfall: Pandas beenden

Input/Output Parametername Datentyp Beschreibung
Input SimID Long Simulations-ID der Instanz

Tabelle 4: Parameter der Operation stopApplication

connect-db (𝔸1, 𝔸2)

Verbindet Pandas mit einer Datenbank.

Szenario: Pandas Service-Bus-Adapter

Anwendungsfall: DB-Verbindung aufbauen

Input/Output Parametername Datentyp Beschreibung
Input SimID Long Simulations-ID der Instanz
Input backend String gibt den Datenbank-Typ an (Bsp. pgsql)
Input host String Host auf dem die Datenbank läuft
Input port String Port auf dem die Datenbank lauscht
Input db String Name der Datenbank
Input user String Username zum Anmelden
Input pw String Passwort zum Anmelden
Input encryption Boolean soll die Verbindung Verschlüsselt werden
Input compression Boolean soll die Verbindung komprimiert werden

Tabelle 5: Parameter der Operation connect-db

disconnect-db (𝔸1, 𝔸2)

Trennt die Datenbank-Verbindung von Pandas.

65

Szenario: Pandas Service-Bus-Adapter

Anwendungsfall: DB-Verbindung trennen

Input/Output Parametername Datentyp Beschreibung
Input SimID Long Simulations-ID der Instanz
Input host String Host auf dem die Datenbank läuft
Input port String Port auf dem die Datenbank lauscht
Input db String Name der Datenbank

Tabelle 6: Parameter der Operation disconnect-db

set-option (𝔸2, 𝔸3)

Hierüber sollte man das Verhalten der Matrixspeicherung steuern können. Darüber hinaus lässt sich
hierüber initial die Datenbank-Tables anlegen.

Szenario: DUNE-Matrixlöser

Anwendungsfall: Matrix zyklisch speichern

Input/Output Parametername Datentyp Beschreibung
Input SimID Long Simulations-ID der Instanz
Input save-matrix Boolean soll die Matrix zyklisch gespeichert werden?
Input load-matrix Boolean soll die Matrix geladen werden?
Input save-binary Boolean soll die Matrix binär gespeichert werden?
Input create-tables Boolean sollen die Datenbank-Tables erstellt werden?
Input step-width Integer Schrittweite zum zyklischen speichern

Tabelle 7: Parameter der Operation set-option

run-cmd (𝔸1)

Führt ein Batch-File aus, um Pandas zu initialisieren.

Szenario: Pandas Service-Bus-Adapter

Anwendungsfall: Pandas Batchfile ausführen

Input/Output Parametername Datentyp Beschreibung
Input sid Long Simulations-ID der Instanz
Input cmd-filename String Name der auszuführenden CMD-File

Tabelle 8: Parameter der Operation run-cmd

readProblem (𝔸1)

Lässt Pandas ein Simulationsproblem über 4 unterschiedliche Alternativen einlesen.

Szenario: Pandas Service-Bus-Adapter

Anwendungsfall: Simulationsproblem einlesen

66

Input/Output Parametername Datentyp Beschreibung
Input SimID Long Simulations-ID der Instanz
Input ShapeFile String Name der Shape-Datei (*.shape)
Input GeomFile String Name der Geometrie-Datei (*.geom)
Input createMesh Boolean soll das Netz generiert oder eingelesen werden
Input BaseName String Parameter für den TRIANGLE-Netzgenerator –

bestimmt Ausgabedatei
Input minAngle Float Parameter für den TRIANGLE-Netzgenerator –

Vorgabe eines minimalen Winkels
Input maxArea Long Parameter für den TRIANGLE-Netzgenerator –

Vorgabe einer max. Elementfläche
Input o2 Boolean Parameter für den TRIANGLE-Netzgenerator –

Zusatzoption für Dreieckelemente mit quad.
Ansatz

Input creategrid Boolean soll ein einfaches Vierecks-Gitter generiert
werden

Input ShapeType String Parameter für Grid-Generator – Typ der
Ansatzfunktion

Input PhysType String Parameter für Grid-Generator – Name der
Physik

Input nel_x Integer Parameter für Grid-Generator – Anzahl der
Elemente in Richtung der x-Koordinate

Input nel_y Integer Parameter für Grid-Generator - Anzahl der
Elemente in Richtung der y-Koordinate

Input useNodeElems Boolean soll das Mesh über die Knoten- und Element-
Datei eingelesen werden

Input NodesFile String Name der Knoten-Datei (*.nodes)
Input ElemsFile String Name der Element-Datei (*.elems)
Input BoundaryFile String Name der Randbedingungs-Datei (*.bound)
Input DescriptionFile String Name der Problembeschreibungsdatei

(*.descr)
Input IvarsFile String Name der Datei der internen Variablen

(*.ivars)
Input ParamFile String Name der Materialparameter-Datei (*.param)

Tabelle 9: Parameter der Operation readProblem

executeCommandSync (𝔸1)

Führt ein Pandas-Kommando aus.

Szenario: Pandas Service-Bus-Adapter

Anwendungsfall: Pandas Kommando ausführen

Input/Output Parametername Datentyp Beschreibung
Input SimID Long Simulations-ID der Instanz
Input Command Sting Der auszuführende Befehl in Pandas

Tabelle 10: Parameter der Operation executeCommandSync

67

do-step (𝔸1)

Führt einen Simulationszeitschritt über das Pandas-Kommando step 1 aus.

Szenario: Pandas Service-Bus-Adapter

Anwendungsfall: Einen Simulationszeitschritt ausführen

Input/Output Parametername Datentyp Beschreibung
Input SimID Long Simulations-ID der Instanz
Output stepnr Integer der aktuelle Simulationszeitschritt

Tabelle 11: Parameter der Operation do-step

getStepnr (𝔸1)

Hierüber wird der aktuelle Simulationszeitschritt von Pandas abgefragt.

Szenario: Pandas Service-Bus-Adapter

Anwendungsfall: Aktuellen Simulationszeitschritt abfragen

Input/Output Parametername Datentyp Beschreibung
Input SimID Long Simulations-ID der Instanz
Output Stepnr Integer der aktuelle Simulationszeitschritt

Tabelle 12: Parameter der Operation getStepnr

saveState (𝔸1, 𝔸2)

Speichert den aktuellen Zustand von Pandas in der Datenbank ab.

Szenario: Pandas Service-Bus-Adapter

Anwendungsfall: Zustand speichern

Input/Output Parametername Datentyp Beschreibung
Input SimID Long Simulations-ID der Instanz
Output Stepnr Integer der aktuelle Simulationszeitschritt

Tabelle 13: Parameter der Operation saveState

loadState (𝔸1, 𝔸2)

Lädt einen abgespeicherten Zustand von Pandas aus der Datenbank.

Szenario: Pandas Service-Bus-Adapter

Anwendungsfall: Zustand laden

Input/Output Parametername Datentyp Beschreibung
Input SimID Long Simulations-ID der Instanz

68

Input load_SimID Long Simulations-ID der zu ladenden Instanz
Input Stepnr Integer Der Simulationszeitschritt des Zustandes

Tabelle 14: Parameter der Operation loadState

getDataQualityQuery (𝔸3)

Liefert ein Query zur zuletzt abgespeicherten Matrix-Qualität zurück.

Szenario: Data-Quality

Anwendungsfall: SQL-Query zur Matrixqualität

Input/Output Parametername Datentyp Beschreibung
Input SimID Long Simulations-ID der Instanz
Output sql-stmt String Query zur zuletzt abgespeicherten Matrix-

Qualität
Tabelle 15: Parameter der Operation getDataQualityQuery

getLastSavedStepnr (𝔸3)

Liefert den Simulationszeitschritt zurück, bei dem zuletzt die Matrix-Qualität abgespeichert wurde.

Szenario: Data-Quality

Anwendungsfall: Zeitschritt der letzten Matrixqualität

Input/Output Parametername Datentyp Beschreibung
Input SimID Long Simulations-ID der Instanz
Output Stepnr Integer Der Simulationszeitschritt des Zustandes

Tabelle 16: Parameter der Operation getLastSavedStepnr

getMid (𝔸3)

Liefert die Matrix-ID zurück.

Szenario: Data-Quality, DUNE-Matrixlöser

Anwendungsfall: Gespeicherte Matrix-ID abfragen

Input/Output Parametername Datentyp Beschreibung
Input SimID Long Simulations-ID der Instanz
Output Mid Integer Matrix-ID

Tabelle 17: Parameter der Operation getMid

saveDataQuality (𝔸2, 𝔸3)

Erfasst die aktuelle Matrixqualität und speichert diese ab.

69

Szenario: Data-Quality

Anwendungsfall: Matrixqualität erfassen

Input/Output Parametername Datentyp Beschreibung
Input SimID Long Simulations-ID der Instanz

Tabelle 18: Parameter der Operation saveDataQuality

getUsedParamFile (𝔸3)

Gibt den Pfad zur verwendeten Parameterfile zurück.

Szenario: Data-Quality

Anwendungsfall: Verwendete Parameterdatei abfragen

Input/Output Parametername Datentyp Beschreibung
Input SimID Long Simulations-ID der Instanz
Input ProblemName String Der Name des Simulationsproblem
Output Path String Der Pfad zur verwendeten ParamFile

Tabelle 19: Parameter der Operation getUsedParamFile

save-dof (𝔸2, 𝔸3)

Speichert die Freiheitsgrade des Meshes in der Datenbank ab.

Szenario: Mehrere Pandas-Instanzen

Anwendungsfall: Freiheitsgrade an allen Mesh-Elementen speichern

Input/Output Parametername Datentyp Beschreibung
Input SimID Long Simulations-ID der Instanz
Output stepnr Integer Der aktuelle Simulationszeitschritt

Tabelle 20: Parameter der Operation save-dof

load-dof (𝔸2, 𝔸3)

Lädt die Freiheitsgrade des Meshes aus der Datenbank.

Szenario: Mehrere Pandas-Instanzen

Anwendungsfall: Gespeicherte Freiheitsgrade laden

Input/Output Parametername Datentyp Beschreibung
Input SimID Long Simulations-ID der Instanz
Input load_SimID Long Simulations-ID der zu ladenden Instanz
Input Stepnr Integer Der Simulationszeitschritt der zu ladenden

Instanz
Tabelle 21: Parameter der Operation load-dof

70

saveMatrix (𝔸2, 𝔸3)

Speichert die Matrix von Pandas in der Datenbank binär oder werteweise ab.

Szenario: DUNE-Matrixlöser

Anwendungsfall: Matrix speichern

Input/Output Parametername Datentyp Beschreibung
Input SimID Long Simulations-ID der Instanz
Input saveBinary Boolean soll die Matrix binär abgespeichert werden?
Output Stepnr Integer Der Simulationszeitschritt bei dem die Matrix

abgespeichert wurde
Tabelle 22: Parameter der Operation saveMatrix

loadMatrix (𝔸2, 𝔸3)

Lädt die Matrix von Pandas aus der Datenbank.

Szenario: DUNE-Matrixlöser

Anwendungsfall: Matrix laden

Input/Output Parametername Datentyp Beschreibung
Input SimID Long Simulations-ID der Instanz
Input load_SimID Long die Simulations-ID der zu ladenden Instanz
Input Stepnr Integer Der Simulationszeitschritt bei dem die Matrix

gespeichert wurde
Input loadBinary Boolean soll die Matrix binär geladen werden

Tabelle 23: Parameter der Operation loadMatrix

saveAllGauss (𝔸2, 𝔸3)

Speichert alle Variablen von allen Gausspunkten aller Elemente in der Datenbank ab.

Szenario: Pandas-Matlab Kopplung

Anwendungsfall: Alle Variablen der Gausspunkte speichern

Input/Output Parametername Datentyp Beschreibung
Input SimID Long Simulations-ID der Instanz
Output Stepnr Integer Der Simulationszeitschritt bei dem die

Variablen an den Gausspunkten abespeichert
wurde

Tabelle 24: Parameter der Operation saveAllGauss

71

loadAllGauss (𝔸2, 𝔸3)

Lädt aus der Datenbank alle Variablen von allen Gausspunkten aller Elemente.

Szenario: Pandas-Matlab Kopplung

Anwendungsfall: Alle Variablen der Gausspunkte laden

Input/Output Parametername Datentyp Beschreibung
Input SimID Long Simulations-ID der Instanz
Input load_SimID Long die Simulations-ID der zu ladenden Instanz
Input Stepnr Integer Der Simulationszeitschritt bei dem die

Gausspunkte gespeichert wurde
Tabelle 25: Parameter der Operation loadAllGauss

saveGaussName (𝔸2, 𝔸3)

Speichert die angegebene Variable von allen Gausspunkten aller Elemente in der Datenbank ab.

Szenario: Pandas-Matlab Kopplung

Anwendungsfall: Eine Variable der Gausspunkte speichern

Input/Output Parametername Datentyp Beschreibung
Input SimID Long Simulations-ID der Instanz
Input Name String Der Name der zu speichernden Variable
Output Stepnr Integer Der Simulationszeitschritt bei dem die

Variablen an den Gausspunkten abespeichert
wurde

Tabelle 26: Parameter der Operation saveGaussName

loadGaussName (𝔸2, 𝔸3)

Lädt aus der Datenbank die angegebene Variable von allen Gausspunkten aller Elemente.

Szenario: Pandas-Matlab Kopplung

Anwendungsfall: Eine Variable der Gausspunkte laden

Input/Output Parametername Datentyp Beschreibung
Input SimID Long Simulations-ID der Instanz
Input load_SimID Long die Simulations-ID der zu ladenden Instanz
Input Stepnr Integer Der Simulationszeitschritt bei dem die

Gausspunkte gespeichert wurde
Input Name String Der Name der zu ladenden Variblen an den

Gausspunkten
Tabelle 27: Parameter der Operation loadGaussName

72

4.2.2 WSI_Matlab

prepareSimulation (𝔸3)

Erstellt eine neue Matlab-Simulationsinstanz.

Szenario: Pandas-Matlab Kopplung

Anwendungsfall: Neue Matlab Simulation erstellen

Input/Output Parametername Datentyp Beschreibung
Input Name String Name des auszupackenden Archives
Output SimID Long Die Simulations-ID der neuen Instanz
Output ReturnMessage String Return Message

Tabelle 28: Parameter der Operation prepareSimulation

Start (𝔸3)

Führt auf einem entfernten Rechner über SSH ein M-File aus. Hierbei muss zuvor der Matlab Path
gesetzt sein, damit der richtige Matlab Aufruf stattfindet.

Szenario: Pandas-Matlab Kopplung

Anwendungsfall: M-File ausführen

Input/Output Parametername Datentyp Beschreibung
Input SimID Long Simulations-ID der Instanz
Input User String User des Matlab Rechners
Input Host String Host des Matlab Rechners
Input Path String Pfad auf dem Matlab Rechner, wo sich die M-

File befindet
Input Program String der Name des M-Files
Output ReturnMessage String Return Message

Tabelle 29: Parameter der Operation Start

Copy (𝔸3)

Kopiert eine Datei über SCP zwischen zwei Rechnern.

Szenario: Pandas-Matlab Kopplung

Anwendungsfall: Dateien zwischen Rechnern kopieren

Input/Output Parametername Datentyp Beschreibung
Input SimID Long Simulations-ID der Instanz
Input SrcUser String User des Rechners auf dem die Quelldatei liegt
Input SrcHost String Host auf dem die Quelldatei liegt
Input SrcFile String der absolute Pfad der Quelldatei
Input DstUser String User des Rechners wo die Datei hin kopiert

73

werden soll
Input DstHost String Host des Rechners wo die Datei hin kopiert

werden soll
Input DstFile String der absolute Pfad der Zieldatei
Output ReturnMessage String Return Message

Tabelle 30: Parameter der Operation Copy

Mkdir (𝔸3)

Erstellt ein Verzeichnis über SSH auf dem Zielrechner.

Szenario: Pandas-Matlab Kopplung

Anwendungsfall: Verzeichnis auf entfernten Rechner erstellen

Input/Output Parametername Datentyp Beschreibung
Input SimID Long Simulations-ID der Instanz
Input User String User des Rechners auf dem das Verzeichnis

angelegt werden soll
Input Host String Host auf dem das Verzeichnis angelegt werden

soll
Input Dir String Der absolute Pfad des zu erstellenden

Verzeichnisses
Output ReturnMessage String Return Message

Tabelle 31: Parameter der Operation Mkdir

deleteFile (𝔸3)

Löscht eine Datei über SSH auf dem Zielrechner.

Szenario: Pandas-Matlab Kopplung

Anwendungsfall: Datei auf entfernten Rechner löschen

Input/Output Parametername Datentyp Beschreibung
Input SimID Long Simulations-ID der Instanz
Input User String User des Rechners auf dem die Datei gelöscht

werden soll
Input Host String Host auf dem die Datei gelöscht werden soll
Input File String Der absolute Pfad der zu löschenden Datei
Output ReturnMessage String Return Message

Tabelle 32: Parameter der Operation deleteFile

setMatlabPath (𝔸3)

Setzt den zu verwendenden Aufruf für Matlab oder Octave. Hierbei ist zu beachten dass der absolute
Pfad zum Programm samt Aufrufparametern anzugeben ist.

Szenario: Pandas-Matlab Kopplung

74

Anwendungsfall: Matlab-Aufruf setzen

Input/Output Parametername Datentyp Beschreibung
Input SimID Long Simulations-ID der Instanz
Input MatlabPath String Der Absolute Pfad zu Matlab oder Octave
Output ReturnMessage String Return Message

Tabelle 33: Parameter der Operation setMatlabPath

getMatlabPath (𝔸3)

Gibt den aktuell gesetzten Aufruf für Matlab oder Octave für die angegebene Instanz.

Szenario: Pandas-Matlab Kopplung

Anwendungsfall: Matlab-Aufruf abfragen

Input/Output Parametername Datentyp Beschreibung
Input SimID Long Simulations-ID der Instanz
Output MatlabPath String Der gesetzte Aufruf für Matlab oder Octave

Tabelle 34: Parameter der Operation getMatlabPath

4.2.3 WSI_PMConnector

prepareSimulation (𝔸3)

Erstellt eine neue Matlab-Simulationsinstanz.

Szenario: Pandas-Matlab Kopplung

Anwendungsfall: Neue Matlab Simulation erstellen

Input/Output Parametername Datentyp Beschreibung
Input Name String Name des auszupackenden Archives
Output SimID Long Die Simulations-ID der neuen Instanz
Output ReturnMessage String Return Message

Tabelle 35: Parameter der Operation prepareSimulation

getCountGauss (𝔸3)

Liefert die Anzahl der Gausspunkte pro Element.

Szenario: Pandas-Matlab Kopplung

Anwendungsfall: Anzahl der Gausspunkte abfragen

Input/Output Parametername Datentyp Beschreibung
Input SimID Long Simulations-ID der Instanz
Input FromSimID Long Simulations-ID der abgespeicherten Instanz

75

Input Stepnr Integer Der Simulationszeitschritt der abgespeicherten
Instanz

Output Count Integer Anzahl der Gausspunkte pro Element
Tabelle 36: Parameter der Operation getCountGauss

getCountElement (𝔸3)

Liefert die Anzahl von abgespeicherten Elementen zurück.

Szenario: Pandas-Matlab Kopplung

Anwendungsfall: Anzahl der Elemente abfragen

Input/Output Parametername Datentyp Beschreibung
Input SimID Long Simulations-ID der Instanz
Input FromSimID Long Simulations-ID der abgespeicherten Instanz
Input Stepnr Integer Der Simulationszeitschritt der abgespeicherten

Instanz
Output Count Integer Anzahl der abgespeicherten Elemente

Tabelle 37: Parameter der Operation getCountElement

createList (𝔸3)

Erstellt eine CSV-Datei als Eingabe für Matlab oder Octave. Hierbei stehen pro Zeile alle Variablen an
einem Gausspunkt. Jedes Element besitzt mehrere Gausspunkte. Die Anzahl der Gausspunkte kann
nur über die Anzahl der Elemente geregelt werden.

Szenario: Pandas-Matlab Kopplung

Anwendungsfall: Matlab Input-Dateien erstellen

Input/Output Parametername Datentyp Beschreibung
Input SimID Long Simulations-ID der Instanz
Input FromSimID Long Simulations-ID der abgespeicherten Instanz
Input Stepnr Integer Der Simulationszeitschritt der abgespeicherten

Instanz
Input StartElement Integer das Element, bei dem die CSV-Datei beginnt
Input EndElement Integer das Element, bei dem die CSV-Datei endet
Input Time Integer die Endzeit, bei der die Matlab Berechnung

abbrechen soll
Output ReturnMessage String Return Message

Tabelle 38: Parameter der Operation createList

insertList (𝔸3)

Liest eine CSV-Datei ein und speichert diese in der Datenbank ab.

Szenario: Pandas-Matlab Kopplung

76

Anwendungsfall: Matlab Output-Datei laden

Input/Output Parametername Datentyp Beschreibung
Input SimID Long Simulations-ID der Instanz
Input Stepnr Integer Der Simulationszeitschritt aus dem die CSV-

Datei stammt
Input StartElement Integer bei welchem Element beginnt die CSV-Datei
Input EndElement Integer bei welchem Element endet die CSV-Datei
Input CountGauss Integer wieviele Gausspunkte sind pro Element

vorhanden
Output ReturnMessage String Return Message

Tabelle 39: Parameter der Operation insertList

getCountAllValues (𝔸3)

Liefert die Anzahl aller abgespeicherten Variablen an allen Gausspunkten aller Elemente.

Szenario: Pandas-Matlab Kopplung

Anwendungsfall: Anzahl aller Variablen abfragen

Input/Output Parametername Datentyp Beschreibung
Input SimID Long Simulations-ID der Instanz
Input FromSimID Long Simulations-ID der abgespeicherten Instanz
Input Stepnr Integer Der Simulationszeitschritt der abgespeicherten

Instanz
Output Count Integer Anzahl der abgespeicherten Variablen

Tabelle 40: Parameter der Operation getCountAllValues

setDBConn (𝔸3)

Setzt die Verbindungsdaten zur Datenbank des WSI_PMConnectors.

Szenario: Pandas-Matlab Kopplung

Anwendungsfall: DB-Verbindungsdaten setzen

Input/Output Parametername Datentyp Beschreibung
Input SimID Long Simulations-ID der Instanz
Input Host String Der Host auf dem die Datenbank läuft
Input DB String Der Datenbankname
Input User String Der Datenbank-User
Input PW String Das Passwort des Datenbank-Users
Output ReturnMessage String Return Message

Tabelle 41: Parameter der Operation setDBConn

getDBConn (𝔸3)

Liefert die Verbindungsdaten des WSI_PMConnectors.

77

Szenario: Pandas-Matlab Kopplung

Anwendungsfall: DB-Verbindungsdaten abfragen

Input/Output Parametername Datentyp Beschreibung
Input SimID Long Simulations-ID der Instanz
Output Host String Der Host auf dem die Datenbank läuft
Output DB String Der Datenbankname

Tabelle 42: Parameter der Operation getDBConn

4.3 Datenbankschema (𝔸2, 𝔸3)

In diesem Abschnitt wird das Datenbankschema mit seinen Tabellen für die Pandas Service-Bus-
Erweiterung beschrieben, welches eine Simulation und die verschiedenen Simulationsszenarien
abbilden soll.

Simulation

PK sid

 date
 problem_name

SimStep

PK,FK1 sid
PK stepnr

 step_time

Matrix

PK,FK1 sid
PK mid

 type
 rows
 cols
 text

pro

PK,FK1 mid

 nd
 sym

dns

PK,FK1 mid

 maxsize

csr

PK,FK1 mid

ma_quality

PK,FK1 stepnr
PK mid

FK1 sid
 diag_min
 diag_max
 diag_quotient
 vecx_min
 vecx_max
 vecx_quotient
 vecb_min
 vecb_max
 vecb_quotient
 zero_vals
 non_zero_vals

matrix_data

PK,FK1 stepnr
PK mid
PK col_x
PK row_y

FK1 sid
 value

matrix_bin_data

PK,FK1 stepnr
PK mid

FK1 sid
 matrix_a

matrix_bin_vectors

PK,FK1 stepnr
PK mid

FK1 sid
 vector_x
 vector_b

mesh_alg_data

PK,FK1 sid
PK,FK1 stepnr

 data

mesh_obj_data

PK,FK1 sid
PK,FK1 stepnr

 data

save_state

PK,FK1 sid
PK,FK1 stepnr

 data

gausspunkte

PK,FK1 sid
PK,FK1 stepnr
PK elementnr
PK gaussnr
PK name

 physidx
 index
 hist
 nick
 scale
 useit
 value

Abbildung 31: Datenbankschema

simulation

Diese Tabelle enthält alle Simlationsinstanzen.

Szenario: Pandas Service-Bus-Adapter

Anwendungsfälle:

• neue Pandas Simulation erstellen

78

Attributname Datentyp Beschreibung
sid BIGINT Die Simulations-ID
date TIMESTAMP Zeitpunkt des Simulationsstarts
problem_name TEXT Der Name der Simulation

Tabelle 43: Attribute von simulation

simsteps

Diese Tabelle enthält alle Simulationszeitschritte einer referenzierten Simulation.

Szenario: Pandas Service-Bus-Adapter

Anwendungsfälle:

• Einen Simulationszeitschritt ausführen
• Aktuellen Simulationszeitschritt abfragen

Attributname Datentyp Beschreibung
sid BIGINT Die Simulations-ID
stepnr INTEGER Der Simulationszeitschritt der Simulation
step_time TIMESTAMP Zeitpunkt des Simulationszeitschritts

Tabelle 44: Attribute von simsteps

save_state

Diese Tabelle enthält einen Zustand eines Simulationszeitschrittes von einer Pandas-Instanz.

Szenario: Pandas Service-Bus-Adapter

Anwendungsfälle:

• Zustand speichern
• Zustand laden

Attributname Datentyp Beschreibung
sid BIGINT Die Simulations-ID
stepnr INTEGER Der Simulationszeitschritt der Simulation
data BYTEA Zustandsdatei Pandas

Tabelle 45: Attribute von save_state

matrix

Diese Tabelle enthält allgemeine Metadaten einer Matrix einer Pandas-Instanz.

Szenario: DUNE-Matrixlöser

Anwendungsfälle:

• Matrix speichern

79

• Gespeicherte Matrix-ID abfragen

Attributname Datentyp Beschreibung
sid BIGINT Die Simulations-ID
mid INTEGER Die Matrix-ID
type TEXT Der Matrixtyp: Profile, Dense, …
rows INTEGER Die Anzahl der Zeilen der Matrix
cols INTEGER Die Anzahl der Spalten der Matrix
text TEXT textuelle Beschreibung der Matrix – wird nicht genutzt

Tabelle 46: Attribute von matrix

ma_pro

Diese Tabelle ist die Spezialisierung der matrix-Tabelle und enthält zusätzliche Attribute bezüglich
einer Profile-Matrix.

Szenario: DUNE-Matrixlöser

Anwendungsfälle:

• Matrix speichern

Attributname Datentyp Beschreibung
mid INTEGER Die Matrix-ID
nd BIGINT Die Anzahl der Elemente je Matrixdreieck
sym BOOLEAN Flag für Symmetrie

Tabelle 47: Attribute von ma_pro

ma_dns

Diese Tabelle ist die Spezialisierung der matrix-Tabelle, und enthält zusätzliche Attribute
bezüglich einer Dense-Matrix.

Szenario: DUNE-Matrixlöser

Anwendungsfälle:

• Matrix speichern

Attributname Datentyp Beschreibung
mid INTEGER Die Matrix-ID
maxsize BIGINT Die Anzahl der Elemente der Matrix

Tabelle 48: Attribute von ma_dns

80

ma_csr

Diese Tabelle ist die Spezialisierung der matrix-Tabelle, und enthält zusätzliche Attribute
bezüglich einer Compressed-Sparse-Row-Matrix. Da diese Matrix nicht in der Pandas-Testversion
vorhanden ist, gibt es in dieser Tabelle keine weiteren Attribute.

Szenario: DUNE-Matrixlöser

Anwendungsfälle:

• Matrix speichern

Attributname Datentyp Beschreibung
mid INTEGER Die Matrix-ID

Tabelle 49: Attribute von ma_csr

matrix_data

In dieser Tabelle werden die Werte einer Matrix zu einer Pandas-Instanz eines
Simulationszeitschrittes gespeichert.

Szenario: DUNE-Matrixlöser

Anwendungsfälle:

• Matrix speichern
• Matrix laden
• Matrix zyklisch speichern

Attributname Datentyp Beschreibung
stepnr INTEGER Der Simulationszeitschritt der Simulation
mid INTEGER Die Matrix-ID
col_x INTEGER Die Spalte des Matrixelements
row_y INTEGER Die Zeile des Matrixelements
sid BIGINT Die Simulations-ID
value DOUBLE PRECISION Der Wert des Matrixelements

Tabelle 50: Attribute von matrix_data

matrix_bin_data

In dieser Tabelle wird der komplette Speicherbereich der Matrix zu einer Pandas-Instanz eines
Simulationszeitschrittes gespeichert.

Szenario: DUNE-Matrixlöser

Anwendungsfälle:

• Matrix speichern
• Matrix laden

81

• Matrix zyklisch speichern

Attributname Datentyp Beschreibung
stepnr INTEGER Der Simulationszeitschritt der Simulation
mid INTEGER Die Matrix-ID
sid BIGINT Die Simulations-ID
matrix_a BYTEA Der komplette Speicherbereich der Matrix

Tabelle 51: Attribute von matrix_bin_data

matrix_bin_vectors

In dieser Tabelle werden die kompletten Speicherbereiche der beiden Vektoren x und b zu einer
Pandas-Instanz eines Simulationszeitschrittes gespeichert.

Szenario: DUNE-Matrixlöser

Anwendungsfälle:

• Matrix speichern
• Matrix laden
• Matrix zyklisch speichern

Attributname Datentyp Beschreibung
stepnr INTEGER Der Simulationszeitschritt der Simulation
mid INTEGER Die Matrix-ID
sid BIGINT Die Simulations-ID
vector_x BYTEA Der komplette Speicherbereich des Vektors x
vector_y BYTEA Der komplette Speicherbereich des Vektors b

Tabelle 52: Attribute von matrix_bin_vectors

ma_quality

Diese Tabelle enthält diverse Metriken der Matrixqualität.

Szenario: Data-Quality

Anwendungsfälle:

• Matrixqualität erfassen
• SQL-Query zur Matrixqualität

Attributname Datentyp Beschreibung
stepnr INTEGER Der Simulationszeitschritt der Simulation
mid INTEGER Die Matrix-ID
sid BIGINT Die Simulations-ID
diag_min DOUBLE PRECISION Der minimale Wert auf der Hauptdiagonalen der Matrix
diag_max DOUBLE PRECISION Der maximale Wert auf der Hauptdiagonalen der Matrix
diag_quotient DOUBLE PRECISION Der Quotient aus minimalen und maximalen Wert
vecx_min DOUBLE PRECISION Der minimale Wert des Vektors x

82

vecx_max DOUBLE PRECISION Der maximale Wert des Vektors x
vecx_quotient DOUBLE PRECISION Der Quotient aus minimalen und maximalen Wert des

Vektors x
vecb_min DOUBLE PRECISION Der minimale Wert des Vektors y
vecb_max DOUBLE PRECISION Der maximale Wert des Vektors y
vecb_quotient DOUBLE PRECISION Der Quotient aus minimalen und maximalen Wert des

Vektors y
zero_vals BIGINT Die Anzahl der Matrixeinträge außerhalb der

Hauptdiagonalen, die nicht Null sind.
non_zero_vals BIGINT Die Anzahl der Matrixeinträge außerhalb der

Hauptdiagonalen, die Null sind.
Tabelle 53: Attribute von ma_quality

mesh_alg_data

Diese Tabelle enthält Freiheitsgrade eines Meshes in Form einer MeshFile, die über die interne
Pandas Funktion MeshSave erzeugt wurde.

Szenario: Mehrere Pandas-Instanzen

Anwendungsfälle:

• Freiheitsgrade an allen Mesh-Elementen speichern
• Gespeicherte Freiheitsgrade laden

Attributname Datentyp Beschreibung
sid BIGINT Die Simulations-ID
stepnr INTEGER Der Simulationszeitschritt der Simulation
data BYTEA MeshFile

Tabelle 54: Attribute von mesh_alg_data

mesh_obj_data

Diese Tabelle enthält alle Objekte eines Meshes in Form einer ObjectFile, die über die interne Pandas
Funktion BisectSave erzeugt wurde. Diese Tabelle wird nur bei einer zweidimensionalen
Simulation verwendet.

Szenario: Mehrere Pandas-Instanzen

Anwendungsfälle:

• Freiheitsgrade an allen Mesh-Elementen speichern
• Gespeicherte Freiheitsgrade laden

Attributname Datentyp Beschreibung
sid BIGINT Die Simulations-ID
stepnr INTEGER Der Simulationszeitschritt der Simulation
data BYTEA ObjectFile

Tabelle 55: Attribute von mesh_obj_data

83

gausspunkte

Diese Tabelle enthält die Variablen von den Gausspunkten der Mesh-Elemente.

Szenario: Pandas-Matlab Kopplung

Anwendungsfälle:

• Alle Variablen der Gausspunkte speichern
• Alle Variablen der Gausspunkte laden
• Eine Variable der Gausspunkte speichern
• Eine Variable der Gausspunkte laden
• Anzahl der Gausspunkte abfragen
• Anzahl der Elemente abfragen
• Anzahl aller Variablen abfragen
• Matlab Input-Dateien erstellen
• Matlab Output-Datei laden

Attributname Datentyp Beschreibung
sid BIGINT Die Simulations-ID
stepnr INTEGER Der Simulationszeitschritt der Simulation
elementnr INTEGER Die Nummer des Mesh-Elementes
gaussnr INTEGER Die Nummer des Gausspunktes an einem Mesh-Element
name TEXT Der Kurzname der Variable
physidx INTEGER Der Index der Variablendefinition in der Physik
index INTEGER Elementindex: Index in elem->var bzw. elem->hist
hist BOOLEAN Flag, ob es sich um eine History Variable handelt
nick TEXT Der Langname der Variable
scale DOUBLE

PRECISION
Skalierung der Variable

useit BOOLEAN Ausgabe der Variable
value DOUBLE

PRECISION
Der Wert der Variable

Tabelle 56: Attribute von gausspunkte

84

5 Implementierung

In diesem Kapitel werden einige Details der Implementierung der Pandasmodifikation beschrieben.
Hierzu wird zunächst die Integration des gSOAP Web Service-Servers und die Modifikation an Pandas
anhand ihrer Abläufe beschrieben. Anschließend werden die genauen Änderungen an den Modulen
und des Projektes aufgezeigt.

Bei der Implementierung des WSI-Pandas-Adapters und der Modifikation an Pandas wurde die
Entwicklungsumgebung Eclipse 3.6 verwendet. Die Ausführung der Web Service-Operationen wurde
mit dem Web Service Explorer von Eclipse vorgenommen. Während der Implementierung wurden
der WSI_Pandas-Adapter und die Modifikation an Pandas aufgrund des modularen Aufbaus manuell
getestet.

5.1 Anpassungen an Pandas

Mit dem WSI-Adapter, dem WSI-Pandas-Adapter und der Web Service Erweiterung an Pandas sind
nun interaktive Simulationen möglich. Hierzu werden Web Service Anfragen, die an den WSI-Pandas-
Adapter gesendet wurden, an die modifizierte Pandas-Anwendung weitergeleitet. Dieser Umweg war
nötig, da Pandas selber nicht als Dienst laufen kann und für jedes Simulationsproblem neu kompiliert
und gestartet werden muss.

Damit Pandas nach dem Start Web Service Anfragen bearbeiten kann, musste zunächst der Web
Service-Server von gSOAP integriert werden. Für das bessere Verständnis werden der ursprüngliche
und der modifizierten Startablauf miteinander verglichen.

5.1.1 Ursprünglicher Ablauf

Der ursprüngliche Ablauf von Pandas ist auf der Abbildung 32 zu sehen und wird im Folgenden
beschrieben.

1. Der Benutzer startet Pandas, womit zunächst die main-Methode von pandas.c ausgeführt
wird.

2. Die main-Methode aus pandas.c ruft sofort die MainMain-Methode aus der main.c
auf.
Zu Beginn der MainMain-Methode werden die Kommandozeilenparameter eingelesen

3. Nachdem die Kommandozeilenparameter eingelesen wurden, wird die komplette Pandas-
Anwendung initialisiert. Dazu wird aus der pandas.c die Methode AppInitialize
aufgerufen, die eine komplette Hierarchie von Initialisierungsmethoden diverser Module
antriggert. In der Abbildung 32 ist dies mit dem Aufruf der Methode MainInit beispielhaft
angedeutet.

4. Nach der Initialisierung wird die MainLoop-Methode aufgerufen, worin die
Benutzerbefehle entgegengenommen und abgearbeitet werden.

85

5. Nach Eingabe des Beenden-Kommandos wird die MainLoop verlassen und alle Ressourcen
wieder freigegeben.

pandas.c main.c

MainInit

diverse Initialisierungen

...

...

MainLoop

MainDone

AppInitialize

MainMain

Anfragen bearbeiten

.........

Kommandozeilenparameter

Pandas

Abbildung 32: Ablauf der Pandas-Anwendung

86

5.1.2 Modifizierter Ablauf

Für den modifizierten Ablauf von Pandas ist der WSI-Pandas-Adapter nötig, der zunächst über den
generischen WSI-Adapter eine neue Simulationsinstanz erzeugt, den Sourcecode von Pandas
kompiliert und dann startet. Für die Web Service-Server Integration in Pandas wurde die main.c
angepasst. Dieser modifizierte Ablauf wird in Abbildung 33 gezeigt und im Folgenden beschrieben.

WSI_Pandas

start (SimID)

pandas.cmain.c

MainInit

diverse Initialisierungen

...

...

alt. MainLoop

MainDone

AppInitialize

MainMain

WS Anfragen bearbeiten

Pandas

Kommandozeilenparameter

Pandas
WS

SimID aus Parametern

Web Service Server starten

(SimID, TCP Port)

Web Service Server stoppen

Callback
WS

WS-Anfrage

WS-Anfrage

Abbildung 33: Ablauf der Pandas-Anwendung nach der Modifikation

1. Diesmal wird die Pandas-Anwendung über den WSI-Pandas-Adapter gestartet. Hierzu wird,

von der zuvor neu erstellten Simulationsinstanz, die SimID als Kommandozeilenparameter
übergeben.

2. Wie zuvor, ruft die main-Methode aus der pandas.c sofort die MainMain-Methode
aus der main.c auf. Zu Beginn der MainMain-Methode wird nun aus den
Kommandozeilenparametern die SimID ausgelesen.

87

3. Die Anwendungsinitialisierung durch die AppInitialize-Methode ist unverändert
geblieben.

4. Da in den Kommandozeilenparametern die SimID übergeben wurde, wird nun nach der
Initialisierung eine alternative MainLoop-Methode aufgerufen

a. In der alternativen MainLoop-Methode wird zunächst der von gSOAP erstellte Web
Service-Server gestartet und an einen freien TCP-Port gebunden. Es können jedoch
noch keine Web Service Anfragen beantwortet werden.

b. Die SimID und der TCP-Port werden über die Callback-Schnittstelle des generischen
WSI-Adapters als asynchrone Nachricht geschickt.

c. Der generische WSI-Adapter speichert den verwendeten TCP-Port bei der
entsprechenden Simulationsinstanz ab und setzt den Zustand der Instanz auf Ready,
wodurch nun der WSI-Pandas-Adapter Web Service Anfragen an Pandas weiterleiten
kann.

d. Der in Pandas integrierte Web Service-Server ist nun bereit Web Service-Anfragen zu
bearbeiten und wartet auf eingehende Nachrichten.

e. Eingehende Nachrichten werden bearbeitet und die Antwort an den WSI-Pandas-
Adapter zurückgesendet und anschließend auf die nächste Anfrage gewartet.

f. Bei dem Aufruf der stopApplication-Operation des WSI-Pandas-Adapters wird
der integrierte Web Service-Server gestoppt und im Anschluss die von Pandas
verwendeten Ressourcen wieder freigegeben.

5.1.3 Modifizierter Simulationsablauf

Damit man die Simulation in der Datenbank abbilden kann, war es nötig einen globalen
Simulationszeitschrittzähler einzuführen. Dieser Simulationszeitschrittzähler stellt die
Speicherungsgranularität in der Datenbank dar. Zusätzlich müssen während der Simulation die
Schritte gezählt werden und, während der Berechnung eines Zeitschrittes, der Zugriff auf die
Simulations-Daten ermöglicht werden. Hierfür wurde die Methode DaeSteps modifiziert, da diese
von allen Kommandos zum Starten der Berechnung verwendet werden. Die Abbildung 34 zeigt den
Ablauf der modifizierten Methode DaeSteps und wird im Folgenden beschrieben.

1. Die Simulationsberechnung wird über den Aufruf von DaeSteps gestartet
2. Zu Beginn finden diverse Initialisierungen für die Berechnung statt.
3. Nach den Initialisierungen wird die Schleife zur Ausführung der Simulationszeitschritte

betreten.
a. Ein Hook für Benutzer-Funktionen wird aufgerufen.
b. Die Berechnung eines Simulationszeitschrittes wird angestoßen.
c. Es wird geprüft, ob die Simulation schon in der Datenbank initialisiert wurde. Falls

dies noch nicht geschehen ist, wird nun eine neue Simulation in der Datenbank
angelegt sowie die Informationen zur verwendeten Matrix in der Datenbank
abgespeichert.

d. Nachdem sichergestellt wurde, dass die Simulation in der Datenbank vorhanden ist,
wird der aktuelle Simulationszeitschritt in der Datenbank angelegt. Dadurch ist es
nun möglich zu diesem Simulationszeitschritt Daten in der Datenbank abzulegen.

88

e. Wenn zyklisches Speichern der Matrix oder der Matrixqualität eingestellt wurde,
wird nun geprüft, ob die Matrix oder die Matrixqualität gespeichert werden muss
und unter Umständen gespeichert.

f. Der neue globale Simulationszeitschrittzähler wird erhöht.
g. Danach wird ein etwaiger Benutzerabbruch behandelt und es erfolgen diverse

Bildschirmausgaben.
h. Am Ende der Schleife wird der temporär verwendete Speicher wieder freigegeben.

Nachdem die DaeSteps-Methode durchlaufen wurde, können folgende Daten aus der Simulation
in der Datenbank gespeichert werden:

• Matrix
• Matrixqualität
• Pandas-Zustand
• Freiheitsgrade der Mesh-Elemente
• Variablen der Gausspunkte

89

DaeSolve.c

DaeSteps()

diverse Initialisierungen

Benutzer-Funktionen

Zeitschritt rechnen

initialer DB-Eintrag

neuen SimStep in DB anlegen

zyklisches speichern

Benutzer-Abbruch behandeln

Simulationsschritt zählen

diverse Ausgaben

tmp Speicher freigeben

Zeitschritte rechnen

Pandas

Abbildung 34: Ablauf der geänderten DaeSteps-Methode

5.1.4 Quellcodeänderungen

Die Service Bus Erweiterung an Pandas direkt betraf einerseits den Build-Prozess und andererseits
die Module main und daesolve. Zusätzlich mussten neue Dateien in die Sourcen mit
aufgenommen werden. Im Folgenden werden die betroffenen Stellen beschrieben

90

5.1.4.1 Build-Prozess

Der Build-Prozess von Pandas musste angepasst werden, damit der generierte Web Service-Server
von gSOAP und die OpenDBX-Bibliothek für die Datenbankanbindung eingebunden werden. Da sich
die Build-Prozesse von der Test- und der Entwicklerversion unterscheiden, werden beide Änderungen
gezeigt.

In der Testversion musste lediglich die Datei Makefile, welche in <Pandas_Home>/src liegt
geändert werden. Zum einen wurden bei der Variablendefinition OBJECTS die folgenden Dateien
hinzugefügt: stdsoap2.o soapServer.o soapClient.o soapC.o db.o. Zum anderen
wurde bei der Variablendefinition Netlibs die OpenDBX-Bibliothek -lopendbx hinzugefügt.

In der Entwicklerversion sind die Änderunge im Build-Prozess weitreichender. Hier wurden folgende
Dateien geändert:

<Pandas_Home>/src/mak32/general.mak
<Pandas_Home>/src/mak64/general.mak
<Pandas_Home>/src/lib/Makefile

In der general.mak wurde eine Variable SOAP definiert und die Variablendefinition NETLIBS wurde
um die OpenDBX-Bibliothek -lopendbx erweitert.

Die Makefile wurde um folgende Variablen erweitert:

SOAPSERVER = stdsoap2.c soapServer.c soapClient.c soapC.c
HSOAPSERVER = $(SOAPSERVER:.c=.h)
DB = db.c
HDB = $(DB:.c=.h)

Über die neue Variable SOAP aus der general.mak wird nun in der Makefile entschieden, ob der
Web Service-Server und die Datenbankerweiterung mitkompiliert werden.

ifeq ($(SOAP), TRUE)
 CFILES = $(CUTIL) $(DB) $(CCORE) $(CMESH) me_ren.c $(SOAPSERVER)
wrapper.c
else
 CFILES = $(CUTIL) $(CCORE) $(CMESH) me_ren.c wrapper.c
endif

ifeq ($(SOAP), TRUE)
 HFILES = $(HUTIL) $(HDB) $(HCORE) $(HMESH) $(HSOAPSERVER)
else
 HFILES = $(HUTIL) $(HCORE) $(HMESH)
endif

5.1.4.2 main.c

In dieser Datei wurden die Grundlegenden Änderungen vorgenommen. Hierbei wurden für den
gSOAP Web Service-Server die Dateien soapH.h, namespaces.nsmap und soapStub.h und
für die Datenbankfunktionalität die Dateien db.h und odbx.h aufgenommen

91

My_MainLoop (𝔸1)

Die alternative MainLoop Methode, welche den integrierten Web Service-Server startet, dem
WSI den verwendeten TCP-Port mitteilt und Web Service Anfragen bearbeitet.

Szenario: Pandas Service-Bus-Adapter

Anwendungsfall: Pandas starten

getLocalPort (𝔸1)

Liefert den verwendeten TCP-Port des integrierten Web Service-Servers zurück

Szenario: Pandas Service-Bus-Adapter

Anwendungsfall: Pandas starten

__callback__reportStateReady (𝔸1)

Diese Funktion wird nur für die Rückmeldung am WSI benötigt, um diesem den TCP-Port
mitzuteilen.

Szenario: Pandas Service-Bus-Adapter

Anwendungsfall: Pandas starten

__pandas__executeCommand (𝔸1)

Führt ein Pandas-Kommando aus, indem der übergebene String an die interne Macro-
Ausführung weitergeleitet wird. Da die interne Methode zur Macro-Ausführung keinen
Status zurückgibt, wird hierüber immer ein fehlerfreier Status zurückgeliefert.

Szenario: Pandas Service-Bus-Adapter

Anwendungsfall: Pandas Kommando ausführen

__pandas__getStepnr (𝔸1)

 Liefert den aktuellen Simulationszeitschritt zurück.

Szenario: Pandas Service-Bus-Adapter

Anwendungsfall: Aktuellen Simulationszeitschritt abfragen

__pandas__set_option (𝔸2, 𝔸3)

Hierüber kann man das Verhalten der Matrixspeicherung steuern. Darüber hinaus lässt sich
hierüber initial die Datenbank-Tables anlegen.

Szenario: DUNE-Matrixlöser

Anwendungsfall: Matrix zyklisch speichern

92

__pandas__stopApplication (𝔸1)

Sofern Pandas mit einer Datenbank verbunden ist, wird diese Verbindung getrennt und
anschließend wird Pandas beendet.

Szenario: Pandas Service-Bus-Adapter

Anwendungsfall: Pandas beenden

__pandas__do_step (𝔸1)

Hierüber wird ein Simulationszeitschritt ausgeführt. Dazu wird intern der Befehl step 1
ausgeführt.

Szenario: Pandas Service-Bus-Adapter

Anwendungsfall: Einen Simulationszeitschritt ausführen

__pandas__connect_db (𝔸1, 𝔸2)

Stellt eine Verbindung zu einer Datenbank her.

Szenario: Pandas Service-Bus-Adapter

Anwendungsfall: DB-Verbindung aufbauen

__pandas__disconnect_db (𝔸1, 𝔸2)

Trennt eine bestehende Verbindung zu einer Datenbank.

Szenario: Pandas Service-Bus-Adapter

Anwendungsfall: DB-Verbindung trennen

__pandas__save_state (𝔸1, 𝔸2)

Speichert den Zustand von Pandas in der Datenbank. Dabei wird zunächst von Pandas der
Befehl save verwendet um lokal eine Zustandsdatei zu erzeugen. Diese Zustandsdatei wird
anschließend in der Datenbank abgelegt.

Szenario: Pandas Service-Bus-Adapter

Anwendungsfall: Zustand speichern

__pandas__load_state (𝔸1, 𝔸2)

Lädt einen Zustand von Pandas aus der Datenbank. Hier wird zunächst die Zustandsdatei aus
der Datenbank lokal erstellt und anschließend von Pandas über den Befehl load geladen.

Szenario: Pandas Service-Bus-Adapter

Anwendungsfall: Zustand laden

93

__pandas__save_dof (𝔸2, 𝔸3)

Speichert die Freiheitsgrade der Mesh-Elemente ab. Dazu wird die Pandas-Funktion
MeshSave verwendet, welche lokal eine Datei speichert. Diese Datei wird anschließend in
der Datenbank abgelegt. Im 2-dimensionalen Fall wird zusätzlich noch die Pandas-Funktion
BisectSave verwendet, damit beim Laden die Meshkoordinaten überprüfen zu können.
Auch hier wird wieder lokal eine Datei erstellt, welche in der Datenbank abgelegt wird.

Szenario: Mehrere Pandas-Instanzen

Anwendungsfall: Freiheitsgrade an allen Mesh-Elementen speichern

__pandas__load_dof (𝔸2, 𝔸3)

Lädt die Freiheitsgrade der Mesh-Elemente aus der Datenbank. Im 2-dimensionalen Fall wird
zunächst aus der Datenbank die von BisectSave erzeugte Datei lokal erstellt und
temporär mittels BisectLoad geladen. Anschließend wird überprüft, ob die Koordinaten
des aktuellen und des gespeicherten Meshes passen. Wenn die Koordinaten
übereinstimmen, so wird aus der Datenbank die von MeshSave erzeugte Datei lokal erstellt
und mit MeshLoad geladen.

Szenario: Mehrere Pandas-Instanzen

Anwendungsfall: Gespeicherte Freiheitsgrade laden

__pandas__save_matrix (𝔸2, 𝔸3)

Speichert die Matrix von Pandas ab. Die Matrix kann dabei entweder werteweise oder der
gesamte Speicherbereich binär in der Datenbank abgespeichert werden.

Szenario: DUNE-Matrixlöser

Anwendungsfall: Matrix speichern

__pandas__load_matrix (𝔸2, 𝔸3)

Lädt die binär in der Datenbank abgelegte Matrix von Pandas.

Szenario: DUNE-Matrixlöser

Anwendungsfall: Matrix laden

__pandas__saveAllGauss (𝔸2, 𝔸3)

Speichert alle Variablen von allen Gausspunkten an allen Elementen.

Szenario: Pandas-Matlab Kopplung

Anwendungsfall: Alle Variablen der Gausspunkte speichern

__pandas__loadAllGauss (𝔸2, 𝔸3)

Lädt aus der Datenbank alle Variablen von allen Gausspunkten an allen Elementen.

94

Szenario: Pandas-Matlab Kopplung

Anwendungsfall: Alle Variablen der Gausspunkte laden

__pandas__saveGaussName (𝔸2, 𝔸3)

Speichert eine angegebene Variable von allen Gausspunkten an allen Elementen.

Szenario: Pandas-Matlab Kopplung

Anwendungsfall: Eine Variable der Gausspunkte speichern

__pandas__loadGaussName (𝔸2, 𝔸3)

Lädt aus der Datenbank eine angegebene Variable von allen Gausspunkten an allen
Elementen.

Szenario: Pandas-Matlab Kopplung

Anwendungsfall: Eine Variable der Gausspunkte laden

__pandas__saveDataQuality (𝔸2, 𝔸3)

Erfasst die aktuelle Matrix Qualität und legt diese in der Datenbank ab.

Szenario: Pandas-Matlab Kopplung

Anwendungsfall: Matrixqualität erfassen

__pandas__getDataQualityQuery (𝔸3)

Gibt ein Query zur zuletzt abgespeicherten Matrix Qualität zurück.

Szenario: Data-Quality

Anwendungsfall: SQL-Query zur Matrixqualität

__pandas__getLastSavedStepnr (𝔸3)

Gibt den Simulationszeitschritt zurück, bei dem zuletzt die Matrixqualität erhoben wurde.

Szenario: Data-Quality

Anwendungsfall: Zeitschritt der letzten Matrixqualität

__pandas__getMid (𝔸3)

Liefert die Matrix-ID dieser Simulation zurück.

Szenario: Data-Quality

Anwendungsfall: Gespeicherte Matrix-ID abfragen

95

5.1.4.3 daesolve.c (𝔸2)

Die Methode DaeSteps musste um folgende Parameter erweitert werden, damit der
Simulationsverlauf in der Datenbank abgebildet werden kann.

Parametername Typ Beschreibung
SID Long globale Simulations-ID
mid Integer globale Matrix-ID
step_counter Integer globaler Simulationszeitschrittzähler
step_width Integer Schrittweite für zyklisches speichern der Matrix oder Matrixqualität
init Boolean wurde die Simulation schon in der Datenbank angelegt
db_state DBstates Handle für die Datenbank-Verbindung

Tabelle 57: zu der Methode DaeSteps hinzugefügte Parameter

5.1.4.4 Hinzugefügte Dateien (𝔸1)

In der Testversion wurden in das Verzeichnis <Pandas_Home>/src und in der Entwicklerversion
in das Verzeichnis <Pandas_Home>/src/lib neue Dateien für den Web Service-Server
hinzugefügt.

Datei Beschreibung
namespace.nsmap Enthält die XML-Namespace-Definitionen
soapC.c
soapClient.c
soapH.h
soapServer.c
soapStub.h

Enthalten die aus dem gSOAP-Header generierten Structs und C-
Funktionen, welche für die Skeletons und Stubs benötigt werden.

stdsoap2.c
stdsoap.h

Enthalten den Web Service-Server von gSOAP.

db.c
db.h

Enthalten für Pandas Datenbank-Funktionen, welche z.B. die Datenbank-
Verbindung herstellen oder Queries absetzt.

Tabelle 58: hinzugefügte Dateien

96

6 Pandas basierte Workflows

In jedem Pandas Workflow gibt es zu Beginn und am Ende immer die gleichen Abläufe, welche die
Simulation erstellen bzw. beenden. Diese wiederkehrenden Abläufe werden hiermit einmal erläutert
und in den folgenden Workflows nur noch als Pandas Prepare Steps bzw. als Pandas Post Processing
genannt.

Abbildung 35: Pandas Prepare Steps

Auf der Abbildung 35 ist das Pandas Prepare Steps Workflowfragment zu sehen. Hier wird als erste
Aktion die Operation PrepareSimulation aufgerufen, welche eine Simulationsinstanz erzeugt, den
Pandas Sourcecode und die Simulationsdaten entpackt und dieses dann kompiliert. Nachdem Pandas
erfolgreich kompiliert wurde, wird es mit der aktuellen Simulations-ID als Startparameter gestartet.
Nachdem Pandas gestartet wurde und der integrierte Web Service-Server sich bei dem WSI_Pandas
Adapter zurückgemeldet hat, kann es nun direkt Web Service Anfragen bearbeiten. Als erste
eingehende Web Service Anfrage wird die Verbindung zu einer Datenbank etabliert. Als
abschließende Aktion wird ein Initialisierungsfile von Pandas ausgeführt, welche mehrere
simulationsspezifische Einstellungen vornimmt. Nach der Ausführung der Initialisierungsfile ist
Pandas bereit die Simulation auszuführen.

Abbildung 36: Pandas Post Processing

97

Auf der Abbildung 36 ist das Pandas Post Processing Workflowfragment zu sehen. Nachdem die
Simulation durchgelaufen ist, wird zunächst der Endzustand der Simulation in der Datenbank
gespeichert. Wenn der Zustand gespeichert ist, wird die Verbindung zu der Datenbank getrennt und
abschließend wird Pandas beendet.

6.1 Data-Quality (𝔸3)

Der Workflow zu dem Data-Quality Szenario testet den WSI_Pandas Web Service zusammen mit dem
Data Quality Framework aus der Diplomarbeit [26]. Hierbei wurde im Workflow ein vom Data Quality
Framework erstellter Wrapper des WSI_Pandas verwendet. Durch den Wrapper ist es dem Data-
Quality-Framework möglich, die Ergebnisse aus der Simulation auszuwerten und gegebenenfalls
grafisch darzustellen. Konkret wird die Parameter-File mit ihren Materialeigenschaften und die
Werteverteilung auf der Lösungsmatrix von Pandas ausgewertet. In diesem Workflow wird einmal zu
Beginn die Materialeigenschaften ausgewertet und dann während der Simulation zyklisch die
Matrixqualität erfasst.

Der auf der Abbildung 37 zu sehende DataQuality Workflow führt zunächst das Pandas Prepare
Steps-Workflowfragment aus, wobei zusätzlich noch eine zyklische Speicherung der Matrixqualität
eingestellt wird. Nachdem Pandas erfolgreich seine Vorbereitungsschritte ausgeführt hat, wird der
Pfad, der verwendeten Parameterfile, abgefragt und von dem Data Quality Framework analysiert. Als
nächstes wird die Simulationsschleife betreten. Innerhalb der Schleife wird zunächst die angegebene
Anzahl von Simulationszeitschritten ausgeführt und automatisch die Matrixqualität erfasst. Nachdem
die Simulationszeitschritte ausgeführt wurden, wird die SQL-Query zur zuletzt gespeicherten
Matrixqualität angefordert. Diese SQL-Query wird von dem Wrapper an das Data Quality Framework
gesendet, welches damit die Matrixqualität abfragen, weiterverarbeiten und grafisch darstellen
kann. Am Ende der Schleife wird überprüft, ob die Simulation das Ende erreicht hat. Wenn die
Simulation ihr Ende erreicht hat wird abschließend das Pandas Post Processing-Workflowfragment
ausgeführt.

Aus Provenance Gründen bleiben die verwendeten Instanz-Verzeichnisse und deren Inhalt erhalten.

Die WSDL des Workflows ist im Anhang WSDL Data-Quality zu finden. Der BPEL-Workflow ist auf der
beigelegten DVD enthalten.

Die Startparameter des Data-Quality Workflows sind in der Tabelle 59 aufgelistet:

Parametername Datentyp Beschreibung
ProblemName String Bestimmt welches Simulationsproblem verwendet werden soll.
CmdFile Integer Bestimmt welche Cmd Datei zur Pandasinitialisierung verwendet

werden soll
StepWidth Integer Bestimmt in welcher Schrittweite immer die Matrix Qualität erfasst

wird
Tabelle 59: Startparameter des DataQuality Workflow

98

Abbildung 37: DataQuality Workflow

6.2 Simulation mit mehreren Pandas-Instanzen (𝔸5)

Bei dem Workflow zu dem Szenario Mehrere Pandas-Instanzen wird der normale WSI_Pandas Web
Service Adapter verwendet. Hierbei wird eine Simulation über zwei Pandas Instanzen geführt, indem
beide Instanzen ein Objekt abwechselnd mit unterschiedlichen Physiken und Zeitintervallen
berechnen. Der Datenaustausch erfolgt hierbei über die Datenbank. Konkret wird hier ein Knochen
simuliert, bei dem die Belastungen und die Belastungsdauer variieren.

Bei dem Workflow auf Abbildung 38 werden gemäß des obigen Pandas Prepare Steps-
Workflowfragments beide Pandas Instanzen erstellt und vorbereitet. Nach der Vorbereitung wird die
Simulationsschleife betreten, in der sich beide Instanzen mit der Simulation abwechseln. Dabei
beginnt die Pandas Instanz A seine Anzahl an Simulationszeitschritten zu rechnen und speichert dann
im Anschluss die Freiheitsgrade der Mesh-Elemente in der Datenbank ab. Die Pandas Instanz B lädt
im Anschluss die Freiheitsgrade der Instanz A aus der Datenbank und rechnet mit den geänderten
Werten seine Anzahl an Simulationszeitschritten weiter. Nachdem die Pandas Instanz B mit seiner
Berechnung fertig ist, werden dessen Freiheitsgrade in der Datenbank gespeichert und daraufhin
gleich wieder von Instanz A geladen. Am Ende der Schleife wird überprüft, ob das Ende der
Simulation, welches in dem Initialisierungsfile definiert wurde, erreicht wurde. Nachdem das Ende
erreicht wurde, wird abschließend das Pandas Post Processing-Workflowfragment für beide
Instanzen ausgeführt.

Aus Provenance Gründen bleiben die verwendeten Instanz-Verzeichnisse erhalten.

Die WSDL des Workflows ist im Anhang WSDL TwoInstances zu finden. Der BPEL-Workflow ist auf
der beigelegten DVD enthalten.

Die Startparameter des TwoInstances Workflow sind in der Tabelle 60 aufgelistet:

Parametername Datentyp Beschreibung
Problem-SimA String Bestimmt welches Simulationsproblem für die Pandas-Instanz A

verwendet werden soll.
CmdFile-SimA String Bestimmt welche Cmd Datei zur Initialisierung für die Pandas-Instanz

A verwendet werden soll
StepWidth-SimA Integer Bestimmt wie viele Simulationszeitschritte von der Pandas-Instanz A

gerechnet werden sollen
Problem-SimB String Bestimmt welches Simulationsproblem für die Pandas-Instanz B

99

verwendet werden soll.
CmdFile-SimB String Bestimmt welche Cmd Datei zur Initialisierung für die Pandas-Instanz

B verwendet werden soll
StepWidth-SimB Integer Bestimmt wie viele Simulationszeitschritte von der Pandas-Instanz B

gerechnet werden sollen
Tabelle 60: Startparameter des TwoInstances Workflow

Abbildung 38: TwoInstances Workflow

6.3 Pandas-Matlab Kopplung (𝔸3, 𝔸5)

Bei dem Szenario Pandas-Matlab werden die Strukturänderungen im Knochen simuliert. Dabei
führen Pandas und Matlab gemeinsam die Simulation aus. Pandas berechnet hierbei das
biomechanische Modell, die Belastungsverteilung im Organ oder Gewebe, und Matlab das
systembiologische Modell, ein Zelleninteraktionsmodell mit Signalmolekülen.

Die Simulation wird über drei Workflows ausgeführt: Pandas-Bone, Data-Manager und Matlab-Bone.
Der Workflow Pandas-Bone führt die Pandas-Simulation aus. Der Matlab-Bone Workflow führt die
Matlab-Simulation aus und wird von Pandas-Bone über den Data-Manager Workflow angetriggert.
Der Data-Manager Workflow hingegen koordiniert die Kommunikation und Datenaustausch zwischen
Pandas und mehreren Matlab Instanzen. In den Workflows finden folgende Web Service Adapter
Verwendung: WSI_Pandas, WSI_Matlab und WSI_PMConnector. Der Datenaustausch zwischen
Pandas und Matlab erfolgt über die Datenbank und CSV-Dateien. Pandas speichert seine Daten in der
Datenbank ab und der WSI_PMConnector erstellt aus der Datenbank eine CSV-Datei, welche von
Matlab eingelesen werden kann. Matlab hingegen speichert sein Ergebnis wieder in einer CSV-Datei
ab, die wiederum der WSI_PMConnector in der Datenbank speichert.

100

Abbildung 39: Workflows Strukturänderungen im Knochen

Auf Abbildung 39 ist das Zusammenspiel der drei Workflows zu sehen und wird nun exemplarisch
durchgegangen. Die Simulation wird über den Pandas-Bone Workflow in Gang gesetzt. Nachdem
Pandas-Bone gestartet wurde und Pandas über das Workflowfragment Pandas Prepare Steps
vorbereitet wurde, wird zunächst der Data-Manager Workflow über die process-Operation gestartet.
Durch das Starten des Data-Manager Workflows wird zunächst eine Schleife zur Vorbereitung der
Matlab Instanzen gestartet. Auf der Abbildung 40 ist diese Vorbereitungsschleife zu sehen. Die erste
Aktion Create Matlab Instance erzeugt eine Simulationsinstanz für Matlab und entpackt darin die
benötigten Simulationsdateien. Da Matlab auf unterschiedlichen Rechnern ausgeführt wird und da
auf jedem Rechner Matlab wo anders liegen kann, wird als nächste Aktion für diese Instanz der
Matlab Aufruf festgelegt. Danach wird auf dem Rechner, auf dem Matlab ausgeführt wird, ein lokales
Simulationsverzeichnis erstellt. Anschließend wird in dieses Verzeichnis das von Matlab
auszuführende M-File kopiert. Als letzter Schritt in der Vorbereitungsschleife werden
Initialisierungsdateien in dieses Verzeichnis kopiert. Diese Schleife wird so oft ausgeführt wie es
Matlab-Rechner gibt.

101

Abbildung 40: Prepare Matlab Instances

Nachdem alle Matlab Instanzen vorbereitet wurden, kommt der Pandas-Bone Workflow in seine
Simulationsschleife und der Data-Manager Workflow wartet auf weitere Interaktionen. Jetzt werden
von Pandas Simulationszeitschritte berechnet und anschließend seine Daten in der Datenbank
gespeichert. Nachdem die Daten in der Datenbank abgespeichert wurden, wird über die Data-
Manager Operation startMatlabSim die Matlab Berechnung angetriggert.

Abbildung 41: Prepare Matlab-Bone

Bevor die Matlab Berechnung anfangen kann, wird zunächst die Größe der zu verteilenden
Datenmenge bestimmt. Dies geschieht über das Workflowfragment Prepare Matlab-Bone und ist auf
der Abbildung 41 zu sehen. Hierbei werden aus den zuvor von Pandas abgespeicherten Daten die
Anzahl der Elemente und die Anzahl der Gausspunkte je Element bestimmt. Die Anzahl der Elemente,
die jeder Matlab-Rechner berechnen muss, wird durch die Anzahl der Matlab Instanzen und der
Anzahl der aller Elemente bestimmt. Danach wird für jede Matlab Instanz eine Matlab-Bone
Workflow Instanz erzeugt und anschließend auf alle Matlab-Bone Ergebnisse gewartet.

102

Abbildung 42: receive all Matlab-Bone

Beim Matlab-Bone Workflow werden zuerst über den WSI_PMConnector die Eingabedateien für
Matlab in dem Matlab-Instanzverzeichnis erstellt. Nachdem die Eingabedateien erstellt wurden,
werden diese auf den entfernten Matlab-Rechner kopiert. Nun wird die Matlab Berechnung
gestartet, indem der Kommandozeilenaufruf zur direkten Ausführung eines M-File verwendet wird.
Nach Beendigung der Matlab Berechnung steht das Ergebnis in Form einer Ausgabedatei zur
Verfügung. Diese Ausgabedatei wird danach von dem Matlab-Rechner zurück in das Matlab Instanz
Verzeichnis kopiert. Wenn sich die Ausgabedatei wieder im Matlab Instanz Verzeichnis befindet, wird
diese von dem WSI_PMConnector eingelesen und in der Datenbank gespeichert.

Wie auf Abbildung 42 zu sehen ist, werden, nachdem alle Matlab-Bone Instanzen zurückgekehrt sind,
alle Teilergebnisse von Matlab in Pandas geladen. Im Anschluss wird wieder zum Pandas-Bone
Workflow zurückgekehrt und es wird überprüft, ob mit dem nächsten Simulationszeitschritt
begonnen wird oder ob die Simulation beendet wird.

Wenn die Simulation ihr Ende erreicht hat, so wird zunächst die stop-Operation des Data-Manager
Workflows aufgerufen, womit sich der Data-Manager Workflow beendet. Nachdem der Data-
Manager Workflow beendet wurde, wird Abschließend das Pandas Post Processing-
Workflowfragment ausgeführt.

Aus Provenance Gründen bleiben die verwendeten Instanz-Verzeichnisse und deren Inhalt erhalten.

Die WSDL-Dateien der Workflows sind in den Anhängen WSDL Pandas-Bone, WSDL Data-Manager
und WSDL Matlab-Bone zu finden. Die BPEL-Workflows sind auf der beigelegten DVD enthalten.

In den nachfolgenden Tabellen sind die Parameter der Operationen der drei Workflows aufgelistet.

Parametername Datentyp Beschreibung
PandasData

ProblemName
CmdFile
Step_Width
End_Step

ComplexType
String
String
Integer
Integer

enthält die Daten zur Pandas-Simulation
der Name des Simulationsarchives
der Name des Initialisierungsfiles
die Simulationszeitschrittweite für Pandas
das Ende der Simulation

MatlabData
MatlabNodes

ComplexType
ComplexType

enthält die Daten zur Matlab-Simulation
enthält die Zugriffsdaten

103

User
Host
SimPath
MatlabPath

SimData
SrcArchive
mFile

t_end

String
String
String
String

ComplexType
String
String

Integer

der Benutzername am Matlabrechner
der Hostname des Matlabrechners
der Simulationspfad auf dem Matlabrechner
der zu verwendende Matlab Aufruf
enthält die Daten für die Matlab Simulation
der Name des Matlab Archives
der Name des M-Files
die Anzahl der Matlab
Simulationszeitschritte

WSINodeData
User
Host

ComplexType
String
String

Daten bezüglich des WSI-Rechners
der Benutzername am WSI Rechner
der Hostname des WSI Rechners

Tabelle 61: Parameter der process-Operation des Pandas-Bone Workflows

Parametername Datentyp Beschreibung
SimID-Pandas Long Die Simulations-ID von der Pandas Instanz
MatlabNodes

User
Host
SimPath
MatlabPath

ComplexType
String
String
String
String

enthält die Daten bezüglich des Matlab Rechners
der Benutzername am Matlab Rechner
der Hostname des Matlab Rechners
der Simulationsinstanzpfad auf dem Matlab Rechner
der zu verwendende Matlab Aufruf

SimNode
User
Host

ComplexType
String
String

enthält die Daten bezüglich des WSI Rechners
der Benutzername am WSI Rechner
der Hostname des WSI Rechners

SimData
SrcArchive
mFile

ComplexType
String
String

enthält die Daten für die Matlab Simulation
der Name des zu verwendenden Matlab Archives
der Name der zu verwendenden M-File

Tabelle 62: Parameter der Initiate-Operation des Data-Manager Workflows

Parametername Datentyp Beschreibung
SimIDPandas Long Die Simulations-ID von der Pandas Instanz
t_end Integer die Anzahl der Matlab-Simulationszeitschritte
Stepnr Integer aus welchem Simulationszeitschritt die Variablen der Gausspunkte

stammen
Tabelle 63: Parameter der startMatlabSim-Operatioon des Data-Manager Workflows

Parametername Datentyp Beschreibung
SimID-Pandas Long Die Simulations-ID von der Pandas Instanz

Tabelle 64: Parameter der stop-Operation des Data-Manager Workflows

Parametername Datentyp Beschreibung
SimID Long Die Simulations-ID der Matlab Instanz
FromSimID Long Die Simulations-ID von Pandas, von der die Variablen der

Gausspunkte stammen
StartElement Integer Bei welchem Mesh-Element die Liste der Variablen der Gausspunkte

beginnt

104

EndElement Integer Bei welchem Mesh-Element die Liste endet
Gaussount Integer Die Anzahl der Gausspunkte pro Mesh-Element
Stepnr Integer aus welchem Simulationszeitschritt die Variablen der Gausspunkte

stammen
t_end Integer die Anzahl der Matlab-Simulationszeitschritte
mSimPath String der Pfad der Simulationsinstanz auf dem Matlabrechner
mFile String der Name der auszuführenden M-File
mUser String der Benutzername auf Matlabrechner
mHost String der Hostname des Matlabrechners
wUser String der Benutzername auf dem WSI Rechner
wHost String der Hostname des WSI Rechners

Tabelle 65: Parameter der Initiate-Operation des Matlab-Bone Workflows

105

7 Laufzeitumgebung

Im Rahmen dieser Diplomarbeit wurde eine Laufzeitumgebung erstellt, auf welcher die Pandas
Testversion lauffähig ist, und welche die notwendige Software für die Pandas Service-Bus-
Erweiterung enthält. Diese Umgebung wurde mit Oracle‘s Virtualbox 4.0 erstellt und als Appliance im
Open Virtualization Format (OVF) exportiert. Aus Gründen der Portabilität und der Unabhängigkeit
der tatsächlich zugrunde liegenden Hardware, wurde die Laufzeitumgebung vollständig virtualisiert
und auf Formen wie z.B. der Paravirtualisierung verzichtet.

Die Appliance der Laufzeitumgebung besteht aus drei Dateien. Die ovf-Datei enthält die
Beschreibung der virtualisierten Hardware-Komponenten und die vmdk-Datei enthält das
Festplattenabbild der virtuellen Umgebung. Die mf-Datei wiederum enthält Fingerprints über die
Appliance, um sicherzustellen dass die ausgelieferten Dateien der Appliance zusammenpassen und
nicht verändert wurden.

7.1 Aufbau und Benutzung

Für die Laufzeitumgebung wurde das Betriebssystem Ubuntu 8.04 benötigt, da hierauf die Pandas
Testversion lauffähig ist. Bei der Erstellung der virtuellen Maschine, wurde das von VirtualBox
bereitgestellte Hardware Profil für das Ubuntu Betriebssystem verwendet.

HW-Komponente Auswahl
Prozessoren 1
Hauptspeicher 512 MB
Grafikspeicher 12 MB
Festplatte 15 GB
IDE-Controller Intel PII4
Netzwerk-Adapter Intel PRO/100 MT Desktop

Tabelle 66: Hardware-Komponenten der Laufzeitumgebung

Neben der Standardinstallation von Ubuntu 8.04 wurden noch folgende Pakete installiert, welche zur
Ausführung der Serverplattform bzw. Pandas und der Pandas-Erweiterung benötig wird:

• Java Runtime Environment
• Fortran g77 compiler
• OpenDBX Bibliothek

Die Serverplattform zur Ausführung des WSI_Pandas Adapters und der Workflows bildet sich aus
dem Apache Tomcat Server mit Apache Axis und Apache ODE. Für die Datenbankanbindung von
Pandas wurde Postgresql 8.3 installiert. Zusätzlich wurde für die Datenbankadministration pgAdmin
installiert.

106

Die Umgebung kann man entweder direkt über die Virtualisierungssoftware oder per SSH-
Verbindung verwenden. Da im Rahmen der Diplomarbeit diese Umgebung nicht für den produktiven
Einsatz gedacht ist, spielen Sicherheitsaspekte nur eine untergeordnete Rolle. Dies äußert sich z.B.
dadurch dass sämtliche Benutzernamen und Passwörter „pandas“ lauten. Damit nach dem Start der
virtuellen Maschine das Web Service Interface und die darauf aufbauenden Erweiterungsadapter
verwendet werden können, müssen zunächst der Tomcat Server und die Postgresql Datenbank
gestartet werden.

Das Starten des Tomcat Servers erfolgt über den folgenden Aufruf des up.sh Skriptes:

/srv/tomcat/bin/up.sh

Dieses Skript setzt, bevor es den Tomcat Server startet, die LD_LIBRARY_PATH Variable auf den
OpenDBX-Bibliothekspfad, damit dieser später der Pandasausführung zur Verfügung steht.

Die Datenbank startet man hingegen mit folgendem Befehl:

/etc/init.d/postgresql-8.3 start

Nachdem der Tomcat Server und die Datenbank gestartet wurden, können sämtliche Web Services
und BPEL-Prozesse über den Port 8080 der virtuellen Maschine erreicht werden. Für das Web Service
Interface wurden folgende Verzeichnisse verwendet:

Pfad Verwendung
/srv/wsi/instances Verzeichnis der Simulationsinstanzen
/srv/wsi/archives/problems Archiv-Verzeichnis für die Simulationsdaten von Pandas
/srv/wsi/archives/src Archiv-Verzeichnis für den Pandas Sourcecode

107

8 Zusammenfassung und Ausblick

Die Nutzung und Bedeutung von Workflows im wissenschaftlichen Umfeld nimmt stetig zu. Dies zeigt
sich auch an der Forschungsaktivität in Richtung Scientific Workflows. Daher sollte im Rahmen dieser
Arbeit für das FEM-Simulationsprogramm Pandas eine Servicebus-Erweiterung erstellt werden.
Hierfür wurde Pandas dahingehend erweitert, um Web Service Anfragen verarbeiten zu können.
Damit Pandas als Service verfügbar ist, wurde ein stellvertretender Web Service Interface-Adapter
erstellt. Durch die Erstellung eines Datenbank-Schemas und der Verwendung einer Datenbank-
Bibliothek in Pandas, ist es nun möglich eine Pandas-Simulation in der Datenbank abzubilden. Hierbei
können Pandas Simulationsdaten in der Datenbank abgelegt werden, die von anderen Pandas-
Instanzen oder teilweise auch von anderen Programmen verwendet werden können.

Um eine Multi-* Simulation mit Matlab zusammen führen zu können, wurde zusätzlich noch ein
stellvertretender Web Service Interface-Adapter für Matlab erstellt. Der Einfachheit halber, werden
bei diesem Adapter zur Steuerung von Matlab ausschließlich SSH- und SCP-Befehle abgesetzt.

Im Laufe der Arbeit wurde über das Erfassen der Matrixqualität von Pandas, eine numerische
Inkompatibilität zwischen den Matrizen von Pandas und DUNE festgestellt. Aus diesem Grunde
schlug die Kopplung von Pandas mit DUNE fehl.

Für die Pandas-Service-Bus-Erweiterung wurden verschiedene Workflows erstellt, um einerseits die
allgemeine Workflowfähigkeit von Pandas zu zeigen und andererseits die Kopplung mit anderen
Instanzen, sei es Pandas selbst oder ein anderes Simulationsprogramm, zu zeigen. Der erste
Workflow erfasst von Pandas in regelmäßigen Abständen die Matrixqualität, welche von dem Daten-
Qualitäts-Framework visualisiert werden konnte. Darüber hinaus ließen sich diese Daten zur
Steuerung der Simulation heranziehen. Bei dem zweiten Workflow führen zwei Pandas-Instanzen
eine Multi-Skalen und eine Multi-Physien Simulation durch. Da im Laufe der Arbeit die
unterschiedlichen Physiken noch nicht lauffähig waren, wurde hier zweimal dieselbe Physik
verwendet. Für das nächste Szenario wurden drei Workflows erstellt, mit denen es möglich ist mit
Pandas und Matlab zusammen eine Multi-Domänen, Multi-Skalen, Multi-Physiken und Multi-Tools
Simulation auszuführen. Hierbei ergab sich die Einschränkung die Simulation nur mit einem Matlab-
Knoten durchzuführen, da es nicht ohne weiteres möglich war innerhalb des Datenverwaltungs-
Workflows Variablen mit Arrays zu erstellen.

Für den erstellten Matlab-Adapter bzw. auch den Pandas-Adapter könnten für den Datenzugriff das
Framework SIMPLE oder WS-Ressource verwendet werden. Des Weiteren könnte der
Datenverwaltungs-Workflow so erweitert werden, dass er mehrere Matlab-Knoten verwalten kann.

108

109

Literaturverzeichnis
[1] Mirko Sonntag, Dimka Karastoyanova, Frank Leymann, Michael Reiter Katharina Görlach,

"Conventional Workflow Technology for Scientific Simulation," 2011.

[2] Stephan Hartmann, "The World as a Process: Simulations in the Natural and Social Sciences," in
Simulation and Modelling in the Social Sciences from the Philosophy of Science Point of View.
Dordrecht: Kluwer, 1996, pp. 77-100.

[3] Sanjiva Weerawarana, Francisco Curbera, Frank Leymann, Tony Storey, and Donald F. Ferguson,
Web Services Platform Architecture: SOAP, WSDL, WS-Policy, WS-Addressing, WS-BPEL, WS-
Reliable Messaging, and More. Upper Saddle River, New Jersey, USA: Prentice Hall PTR, March
22, 2005.

[4] David Booth et al. (2004, February) Web Services Architecture. [Online].
http://www.w3.org/TR/2004/NOTE-ws-arch-20040211/

[5] Erik Christensen, Francisco Curbera, Greg Meredith, and Sanjiva Weerawarana. (2001, March)
Web Services Description Language (WSDL) 1.1. [Online]. http://www.w3.org/TR/2001/NOTE-
wsdl-20010315

[6] Martin Gudgin et al. (2007, April) SOAP Version 1.2 Part 1: Messaging Framework (Second
Edition). [Online]. http://www.w3.org/TR/2007/REC-soap12-part1-20070427/

[7] Martin Gudgin, Marc Hadley, and Tony Rogers. (2006, May) Web Services Addressing 1.0 - Core.
[Online]. http://www.w3.org/TR/2006/REC-ws-addr-core-20060509/

[8] Martin Gudgin, Marc Hadley, and Tony Rogers. (2006, May) Web Services Addressing 1.0 - SOAP
Binding. [Online]. http://www.w3.org/TR/2006/REC-ws-addr-soap-20060509/

[9] Martin Gudgin, Marc Hadley, Tony Rogers, and Ümit Yalçinalp. (2007, September) Web Services
Addressing 1.0 - Metadata. [Online]. http://www.w3.org/TR/2007/REC-ws-addr-metadata-
20070904/

[10] Frank Leymann and Dieter Roller, Production Workflow - Concepts and Techniques. Upper Saddle
River, New Jersey, USA: Prentice Hall PTR, 2000.

[11] David Hollingsworth. (1995, Januar) Workflow Management Coalition: The Workflow Reference
Model. [Online]. http://www.wfmc.org/standards/docs/tc003v11.pdf

[12] Frank Leymann et al. (2003, May) Business Process Execution Language for Web Services version
1.1. [Online]. http://www.ibm.com/developerworks/library/specification/ws-bpel/

[13] Anders Berglund et al. (2009, April) XML Path Language (XPath) 2.0 (Second Edition). [Online].
http://www.w3.org/TR/2009/PER-xpath20-20090421/

[14] Nicholas W. Jankowski, "Exploring e-Science: An Introduction," Journal of Computer-Mediated
Communication, 12(2), pp. 549-562, 2007.

http://www.w3.org/TR/2004/NOTE-ws-arch-20040211/
http://www.w3.org/TR/2001/NOTE-wsdl-20010315
http://www.w3.org/TR/2001/NOTE-wsdl-20010315
http://www.w3.org/TR/2007/REC-soap12-part1-20070427/
http://www.w3.org/TR/2006/REC-ws-addr-core-20060509/
http://www.w3.org/TR/2006/REC-ws-addr-soap-20060509/
http://www.w3.org/TR/2007/REC-ws-addr-metadata-20070904/
http://www.w3.org/TR/2007/REC-ws-addr-metadata-20070904/
http://www.wfmc.org/standards/docs/tc003v11.pdf
http://www.ibm.com/developerworks/library/specification/ws-bpel/
http://www.w3.org/TR/2009/PER-xpath20-20090421/

110

[15] Tony Hey, Stewart Tansley, and Krist in Tolle, The Fourth Paradigm. Redmond, 2009.

[16] Herbert Stachowiak, Allgemeine Modelltheorie. Wien: Springer-Verlag, 1973.

[17] Semendjajew Bronstein, Taschenbuch der Mathematik.: Verlag Harri Deutsch, 1972.

[18] O. C. Zienkiewicz, Methode der finiten Elemente.: Carl Hanser Verlag, 1975.

[19] Hans Rudolf Schwarz, Methode der finiten Elemente. Stuttgart: Teubner, 1991.

[20] W. Ehlers, "Grundlegende Konzepte in der Theorie Poröser Medien," in Technische Mechanik,
Band 16., 1996, pp. 63-76.

[21] Michael Müller and Jochen Ruben, Adaptive dynamisch verteilte Baugrund-Tragwerk-Simulation
auf der Grundlage der Theorie poröser Medien, Oktober 2004.

[22] W. Ehlers, "Challenges of Porous Media Models in Geo- and Biomechanical Engineering including
Electro-Chemically Active Polymers and Gels," Stuttgart, 2009.

[23] Robert Krause, Wolfgang Ehlers, and Bernd Markert, Bone remodelling: A combined
biomechanical and systems-biological model, March 25, 2011.

[24] Jens Rutschmann, Generisches Web Service Interface um Simulationsanwendungen in BPEL-
Prozesse einzubinden, August 17, 2009.

[25] Christoph Marian Müller, Development of an Integrated Database Architecture for a Runtime
Environment for Simulation Workflows, February 5, 2010.

[26] Uwe Breitenbücher, Datenqualität in Simulation-Workflows, März 3, 2011.

1

Anhang

WSDL WSI_Pandas

<?xml version="1.0" encoding="UTF-8"?> 1
<wsdl:definitions name="WSI_Pandas" 2
 xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/" 3
 xmlns:tns="http://wsi.simtech.de/extensions/pandas/" 4
 xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/" 5
 xmlns:xsd="http://www.w3.org/2001/XMLSchema" 6
 xmlns:types="http://wsi.simtech.de/ws/types/" 7
 targetNamespace="http://wsi.simtech.de/extensions/pandas/"> 8
 9
 <wsdl:types> 10
 <xsd:schema 11
targetNamespace="http://wsi.simtech.de/extensions/pandas/"> 12
 <xsd:element name="ExecuteCommand"> 13
 <xsd:complexType> 14
 <xsd:sequence> 15
 <xsd:element name="SimID" 16
type="xsd:long" minOccurs="1" 17
 maxOccurs="1" /> 18
 <xsd:element name="Command" 19
type="xsd:string" 20
 minOccurs="1" maxOccurs="1" /> 21
 </xsd:sequence> 22
 </xsd:complexType> 23
 </xsd:element> 24
 <xsd:element name="ExecuteCommandSyncFault"> 25
 <xsd:complexType> 26
 <xsd:sequence> 27
 <xsd:element name="returnCode" 28
type="xsd:int" 29
 minOccurs="1" maxOccurs="1" /> 30
 <xsd:element name="errorMessage" 31
type="xsd:string" 32
 minOccurs="1" maxOccurs="1" /> 33
 </xsd:sequence> 34
 </xsd:complexType> 35
 </xsd:element> 36
 <xsd:element name="readProblem"> 37
 <xsd:annotation> 38
 <xsd:documentation>Die Geometrie-Datei enthält die 39
geometrischen Daten des zu beschreibenden Randwertproblems. 40
Mit Hilfe dieser Datei kann der Netzgenerator ein FE-Netz 41
erstellen.</xsd:documentation> 42
 </xsd:annotation> 43
 <xsd:complexType> 44
 <xsd:sequence> 45
 <xsd:element name="SimID" 46
type="xsd:long" 47
 minOccurs="1" maxOccurs="1"> 48
 <xsd:annotation> 49
 <xsd:documentation></xsd:documentation> 50
 </xsd:annotation> 51
 </xsd:element> 52
 <xsd:element name="ShapeFile" 53
type="xsd:string" 54

2

 minOccurs="1" maxOccurs="1"> 55
 <xsd:annotation> 56
 <xsd:documentation>In der Shape-Datei werden 57
die mathematischen Voraussetzungen f¨ur eine FE-Berechnung festgelegt. 58
So werden dort der Typ der finiten Elemente, die Anzahl der 59
Prim¨arvariablen und deren 60
Ansatz- und Testfunktionen, die Geometrietransformation und die 61
Quadraturordnungen f¨ur die 62
numerische Integration definiert.</xsd:documentation></xsd:annotation> 63
 </xsd:element> 64
 <xsd:element name="GeomFile" 65
 type="xsd:string" maxOccurs="1" 66
minOccurs="1"> 67
 <xsd:annotation> 68
 <xsd:documentation>Die Geometrie-Datei enthält 69
die geometrischen Daten des zu beschreibenden Randwertproblems. 70
Mit Hilfe dieser Datei kann der Netzgenerator ein FE-Netz 71
erstellen.</xsd:documentation> 72
 </xsd:annotation> 73
 </xsd:element> 74
 <xsd:choice minOccurs="1" maxOccurs="1"> 75
 <xsd:sequence minOccurs="1" 76
maxOccurs="1"> 77
 <xsd:element 78
name="createMesh" 79
 type="xsd:boolean" 80
minOccurs="1" maxOccurs="1"> 81
 </xsd:element> 82
 <xsd:element name="BaseName" 83
 type="xsd:string" 84
minOccurs="1" maxOccurs="1"> 85
 </xsd:element> 86
 <xsd:element name="minAngle" 87
 type="xsd:float" 88
minOccurs="1" maxOccurs="1"> 89
 </xsd:element> 90
 <xsd:element name="maxArea" 91
 type="xsd:long" 92
minOccurs="1" maxOccurs="1"> 93
 </xsd:element> 94
 <xsd:element name="o2" 95
 type="xsd:boolean" 96
minOccurs="1" maxOccurs="1"> 97
 </xsd:element> 98
 </xsd:sequence> 99
 <xsd:sequence minOccurs="1" 100
maxOccurs="1"> 101
 <xsd:element 102
name="createGrid" 103
 type="xsd:boolean" 104
minOccurs="1" maxOccurs="1"> 105
 </xsd:element> 106
 <xsd:element 107
name="ShapeType" 108
 type="xsd:string" 109
minOccurs="1" maxOccurs="1"> 110
 </xsd:element> 111
 <xsd:element name="PhysType" 112
 type="xsd:string" 113
minOccurs="1" maxOccurs="1"> 114
 </xsd:element> 115
 <xsd:element name="nel_x" 116
type="xsd:int" 117

3

 minOccurs="1" 118
maxOccurs="1"> 119
 </xsd:element> 120
 <xsd:element name="nel_y" 121
type="xsd:int" 122
 minOccurs="1" 123
maxOccurs="1"> 124
 </xsd:element> 125
 </xsd:sequence> 126
 <xsd:sequence> 127
 <xsd:element 128
name="useNodesElems" 129
 type="xsd:boolean" 130
minOccurs="1" maxOccurs="1"> 131
 </xsd:element> 132
 <xsd:element 133
name="NodesFile" 134
 type="xsd:string" 135
maxOccurs="1" minOccurs="1"> 136
 <xsd:annotation> 137
 <xsd:documentation>In der Knoten-138
Datei werden die Koordinaten aller Netz-Knoten als Fließkommazahlen 139
festgelegt. Die Indizes der Knoten sind über die jeweilige Zeilennummer 140
definiert, wobei die vier Kopfzeilen nicht mitzählen. Die Indizierung 141
beginnt mit 1.</xsd:documentation> 142
 </xsd:annotation> 143
 </xsd:element> 144
 <xsd:element 145
name="ElemsFile" 146
 type="xsd:string" 147
maxOccurs="1" minOccurs="1"> 148
 <xsd:annotation> 149
 <xsd:documentation>In der Element-150
Datei wird festgelegt, welche Knoten ein Element bilden. Dabei wird pro 151
Zeile durch Angabe der Knotenindizes aus der Knoten-Datei genau ein Element 152
definiert. Die Anzahl und Reihenfolge der Elementknoten wird durch den 153
Elementtyp bestimmt.</xsd:documentation> 154
 </xsd:annotation> 155
 </xsd:element> 156
 <xsd:element name="BoundaryFile" 157
type="xsd:string" minOccurs="0" maxOccurs="1"> 158
 <xsd:annotation> 159
 <xsd:documentation>In der 160
Randbedingungs-Datei können die Randbedingungen, die in der Boundary-161
Condition-Datei definiert wurden, auf ihre Richtigkeit überprüft werden. 162
Sie wird durch den Befehl write von PANDAS erzeugt. Die Randbedingungen pro 163
Knoten werden in der Reihenfolge der Knotenfreiheitsgrade angegeben. Diese 164
Reihenfolge und auch die Anzahl der Knotenfreiheitsgrade ist von der 165
verwendeten Physik abhängig.</xsd:documentation> 166
 </xsd:annotation> 167
 </xsd:element> 168
 </xsd:sequence> 169
 170
 </xsd:choice> 171
 172
 <xsd:element name="DescriptionFile" 173
type="xsd:string" minOccurs="0" maxOccurs="1"> 174
 <xsd:annotation> 175
 <xsd:documentation>Durch das Lesen der 176
Problembeschreibungsdatei kann ein ganzes Problem beschrieben 177
werden.</xsd:documentation></xsd:annotation> 178
 </xsd:element> 179
 <xsd:element name="IvarsFile" 180

4

 type="xsd:string" maxOccurs="1" 181
minOccurs="1"> 182
 <xsd:annotation> 183
 <xsd:documentation>Die Datei der internen 184
Variablen enthält die Namen (Strings) der internen Variablen, die später 185
visualisiert oder in eine Datei ausgegeben werden sollen. Es wird dabei 186
nicht zwischen Groß- und Kleinschreibung der Variablennamen 187
unterschieden.</xsd:documentation> 188
 </xsd:annotation> 189
 </xsd:element> 190
 <xsd:element name="ParamFile" 191
 type="xsd:string" maxOccurs="1" 192
minOccurs="1"> 193
 <xsd:annotation> 194
 <xsd:documentation>In der Materialparameter-195
Datei werden die Materialparameter für die jeweils verwendete Elementphysik 196
(z. B. linear elastisches Materialverhalten) angegeben. Die Anzahl, Art und 197
Reihenfolge der Materialparameter ist durch die Wahl der Elementphysik 198
gegeben. Für eine Elementphysik können auch mehrere Materialparametersätze 199
(matsets) angegeben werden. Damit ist es möglich, ein Problem mit gleicher 200
Elementphysik aber verschiedenen Materialparametern in unterschiedlichen 201
Gebieten zu berechnen.</xsd:documentation> 202
 </xsd:annotation> 203
 </xsd:element> 204
 </xsd:sequence> 205
 </xsd:complexType> 206
 </xsd:element> 207
 <xsd:element name="readProblemResponse"> 208
 <xsd:complexType> 209
 <xsd:sequence> 210
 <xsd:element name="ReturnCode" 211
type="xsd:int" minOccurs="1" maxOccurs="1"></xsd:element> 212
 <xsd:element name="errorMessage" 213
 type="xsd:string" minOccurs="0" 214
maxOccurs="1"> 215
 </xsd:element> 216
 </xsd:sequence> 217
 </xsd:complexType> 218
 </xsd:element> 219
 220
 <xsd:element name="connect-db"> 221
 <xsd:complexType> 222
 <xsd:sequence> 223
 <xsd:element name="SimID" 224
 type="xsd:long" minOccurs="1" 225
maxOccurs="1"> 226
 </xsd:element> 227
 <xsd:element name="backend" 228
type="xsd:string" 229
 minOccurs="1" maxOccurs="1"> 230
 </xsd:element> 231
 <xsd:element name="host" 232
type="xsd:string" 233
 minOccurs="1" maxOccurs="1"> 234
 </xsd:element> 235
 <xsd:element name="port" 236
type="xsd:string" 237
 minOccurs="1" maxOccurs="1"> 238
 </xsd:element> 239
 <xsd:element name="db" type="xsd:string" 240
 minOccurs="1" maxOccurs="1"> 241
 </xsd:element> 242

5

 <xsd:element name="user" 243
type="xsd:string" 244
 minOccurs="1" maxOccurs="1"> 245
 </xsd:element> 246
 <xsd:element name="pw" type="xsd:string" 247
 minOccurs="1" maxOccurs="1"> 248
 </xsd:element> 249
 <xsd:element name="encryption" 250
 type="xsd:boolean" minOccurs="1" 251
maxOccurs="1"> 252
 </xsd:element> 253
 <xsd:element name="compression" 254
 type="xsd:boolean" minOccurs="1" 255
maxOccurs="1"> 256
 </xsd:element> 257
 </xsd:sequence> 258
 </xsd:complexType> 259
 </xsd:element> 260
 <xsd:element name="connect-dbResponse"> 261
 <xsd:complexType> 262
 <xsd:sequence> 263
 <xsd:element name="returnCode" 264
type="xsd:int" minOccurs="1" maxOccurs="1"></xsd:element> 265
 <xsd:element name="error-msg" 266
 type="xsd:string" minOccurs="0" 267
maxOccurs="1"> 268
 </xsd:element> 269
 </xsd:sequence> 270
 </xsd:complexType> 271
 </xsd:element> 272
 <xsd:element name="disconnect-db"> 273
 <xsd:complexType> 274
 <xsd:sequence> 275
 <xsd:element name="SimID" 276
 type="xsd:long"> 277
 </xsd:element> 278
 <xsd:element name="host" 279
type="xsd:string" 280
 minOccurs="1" maxOccurs="1"> 281
 </xsd:element> 282
 <xsd:element name="port" 283
type="xsd:string" 284
 minOccurs="1" maxOccurs="1"> 285
 </xsd:element> 286
 <xsd:element name="db" type="xsd:string" 287
 minOccurs="1" maxOccurs="1"> 288
 </xsd:element> 289
 </xsd:sequence> 290
 </xsd:complexType> 291
 </xsd:element> 292
 <xsd:element name="disconnect-dbResponse"> 293
 <xsd:complexType> 294
 <xsd:sequence> 295
 <xsd:element name="returnCode" 296
type="xsd:int" minOccurs="1" maxOccurs="1"></xsd:element> 297
 <xsd:element name="error-msg" 298
 type="xsd:string" minOccurs="0" 299
maxOccurs="1"> 300
 </xsd:element> 301
 </xsd:sequence> 302
 </xsd:complexType> 303
 </xsd:element> 304
 <xsd:element name="set-option"> 305

6

 <xsd:complexType> 306
 <xsd:sequence> 307
 <xsd:element name="SimID" 308
 type="xsd:long" minOccurs="1" 309
maxOccurs="1"> 310
 </xsd:element> 311
 <xsd:element name="save-matrix" 312
 type="xsd:boolean" minOccurs="1" 313
maxOccurs="1"> 314
 </xsd:element> 315
 <xsd:element name="load-matrix" 316
 type="xsd:boolean" minOccurs="1" 317
maxOccurs="1"> 318
 </xsd:element> 319
 <xsd:element name="save-binary" 320
 type="xsd:boolean" minOccurs="1" 321
maxOccurs="1"> 322
 </xsd:element> 323
 <xsd:element name="create-tables" 324
 type="xsd:boolean" minOccurs="1" 325
maxOccurs="1"> 326
 </xsd:element> 327
 <xsd:element name="step-width" 328
type="xsd:int" 329
 minOccurs="1" maxOccurs="1"> 330
 </xsd:element> 331
 </xsd:sequence> 332
 </xsd:complexType> 333
 </xsd:element> 334
 <xsd:element name="set-optionResponse"> 335
 <xsd:complexType> 336
 <xsd:sequence> 337
 <xsd:element name="returnCode" 338
type="xsd:int" minOccurs="1" maxOccurs="1"></xsd:element> 339
 <xsd:element name="error-msg" 340
 type="xsd:string" minOccurs="1" 341
maxOccurs="1"> 342
 </xsd:element> 343
 </xsd:sequence> 344
 </xsd:complexType> 345
 </xsd:element> 346
 <xsd:element name="do-step"> 347
 <xsd:complexType> 348
 <xsd:sequence> 349
 <xsd:element name="SimID" 350
type="xsd:long" minOccurs="1" maxOccurs="1"></xsd:element> 351
 </xsd:sequence> 352
 </xsd:complexType> 353
 </xsd:element> 354
 <xsd:element name="do-stepResponse"> 355
 <xsd:complexType> 356
 <xsd:sequence> 357
 <xsd:element name="stepnr" 358
 type="xsd:int" minOccurs="1" 359
maxOccurs="1"> 360
 </xsd:element> 361
 </xsd:sequence> 362
 </xsd:complexType> 363
 </xsd:element> 364
 <xsd:element name="save-dof"> 365
 <xsd:complexType> 366
 <xsd:sequence> 367

7

 <xsd:element name="SimID" 368
type="xsd:long" minOccurs="1" maxOccurs="1"></xsd:element> 369
 </xsd:sequence> 370
 </xsd:complexType> 371
 </xsd:element> 372
 <xsd:element name="save-dofResponse"> 373
 <xsd:complexType> 374
 <xsd:sequence> 375
 <xsd:element name="stepnr" 376
type="xsd:int" minOccurs="1" maxOccurs="1"></xsd:element> 377
 </xsd:sequence> 378
 </xsd:complexType> 379
 </xsd:element> 380
 <xsd:element name="load-dof"> 381
 <xsd:complexType> 382
 <xsd:sequence> 383
 <xsd:element name="instance_SimID" 384
type="xsd:long" 385
 minOccurs="1" maxOccurs="1"> 386
 </xsd:element> 387
 <xsd:element name="load_SimID" 388
 type="xsd:long" minOccurs="1" 389
maxOccurs="1"> 390
 </xsd:element> 391
 <xsd:element name="Stepnr" 392
type="xsd:int" 393
 minOccurs="1" maxOccurs="1"> 394
 </xsd:element> 395
 </xsd:sequence> 396
 </xsd:complexType> 397
 </xsd:element> 398
 <xsd:element name="run-cmd"> 399
 <xsd:complexType> 400
 <xsd:sequence> 401
 <xsd:element name="sid" type="xsd:long" 402
minOccurs="1" maxOccurs="1"></xsd:element> 403
 <xsd:element name="cmd-filename" 404
 type="xsd:string" minOccurs="1" 405
maxOccurs="1"> 406
 </xsd:element> 407
 </xsd:sequence> 408
 </xsd:complexType> 409
 </xsd:element> 410
 <xsd:element name="run-cmdResponse"> 411
 <xsd:complexType> 412
 <xsd:sequence> 413
 <xsd:element name="out" 414
type="xsd:string"></xsd:element> 415
 </xsd:sequence> 416
 </xsd:complexType> 417
 </xsd:element> 418
 <xsd:element name="do-step-pseudo"> 419
 <xsd:complexType> 420
 <xsd:sequence> 421
 <xsd:element name="sid" type="xsd:long" 422
minOccurs="1" maxOccurs="1"></xsd:element> 423
 </xsd:sequence> 424
 </xsd:complexType> 425
 </xsd:element> 426
 <xsd:element name="do-step-pseudoResponse"> 427
 <xsd:complexType> 428
 <xsd:sequence> 429

8

 <xsd:element name="sql-stmt" 430
type="xsd:string" minOccurs="1" maxOccurs="1"></xsd:element> 431
 </xsd:sequence> 432
 </xsd:complexType> 433
 </xsd:element> 434
 <xsd:element name="getDataQualityQuery"> 435
 <xsd:complexType> 436
 <xsd:sequence> 437
 <xsd:element name="SimID" 438
type="xsd:long" minOccurs="1" maxOccurs="1"></xsd:element> 439
 </xsd:sequence> 440
 </xsd:complexType> 441
 </xsd:element> 442
 <xsd:element name="getDataQualityQueryResponse"> 443
 <xsd:complexType> 444
 <xsd:sequence> 445
 <xsd:element name="sql-stmt" 446
type="xsd:string" minOccurs="1" maxOccurs="1"></xsd:element> 447
 </xsd:sequence> 448
 </xsd:complexType> 449
 </xsd:element> 450
 <xsd:element name="getDataQualityQueryPseudo"> 451
 <xsd:complexType> 452
 <xsd:sequence> 453
 <xsd:element name="SimID" 454
type="xsd:long" minOccurs="1" maxOccurs="1"></xsd:element> 455
 </xsd:sequence> 456
 </xsd:complexType> 457
 </xsd:element> 458
 <xsd:element name="getDataQualityQueryPseudoResponse"> 459
 <xsd:complexType> 460
 <xsd:sequence> 461
 <xsd:element name="sql-stmt" 462
type="xsd:string" minOccurs="1" maxOccurs="1"></xsd:element> 463
 </xsd:sequence> 464
 </xsd:complexType> 465
 </xsd:element> 466
 <xsd:element name="getStepnr"> 467
 <xsd:complexType> 468
 <xsd:sequence> 469
 <xsd:element name="SimID" 470
type="xsd:long" minOccurs="1" maxOccurs="1"></xsd:element> 471
 </xsd:sequence> 472
 </xsd:complexType> 473
 </xsd:element> 474
 <xsd:element name="getStepnrResponse"> 475
 <xsd:complexType> 476
 <xsd:sequence> 477
 <xsd:element name="Stepnr" 478
type="xsd:int" minOccurs="1" maxOccurs="1"></xsd:element> 479
 </xsd:sequence> 480
 </xsd:complexType> 481
 </xsd:element> 482
 <xsd:element name="getStepnrPseudo"> 483
 <xsd:complexType> 484
 <xsd:sequence> 485
 <xsd:element name="SimID" 486
type="xsd:long" minOccurs="1" maxOccurs="1"></xsd:element> 487
 </xsd:sequence> 488
 </xsd:complexType> 489
 </xsd:element> 490
 <xsd:element name="getStepnrPseudoResponse"> 491
 <xsd:complexType> 492

9

 <xsd:sequence> 493
 <xsd:element name="Stepnr" 494
type="xsd:int" minOccurs="1" maxOccurs="1"></xsd:element> 495
 </xsd:sequence> 496
 </xsd:complexType> 497
 </xsd:element> 498
 <xsd:element name="getLastSavedStepnr"> 499
 <xsd:complexType> 500
 <xsd:sequence> 501
 <xsd:element name="SimID" 502
type="xsd:long" minOccurs="1" maxOccurs="1"></xsd:element> 503
 </xsd:sequence> 504
 </xsd:complexType> 505
 </xsd:element> 506
 <xsd:element name="getLastSavedStepnrResponse"> 507
 <xsd:complexType> 508
 <xsd:sequence> 509
 <xsd:element name="Stepnr" 510
type="xsd:int" minOccurs="1" maxOccurs="1"></xsd:element> 511
 </xsd:sequence> 512
 </xsd:complexType> 513
 </xsd:element> 514
 <xsd:element name="getLastSavedStepnrPseudo"> 515
 <xsd:complexType> 516
 <xsd:sequence> 517
 <xsd:element name="SimID" 518
type="xsd:long" minOccurs="1" maxOccurs="1"></xsd:element> 519
 </xsd:sequence> 520
 </xsd:complexType> 521
 </xsd:element> 522
 <xsd:element name="getLastSavedStepnrPseudoResponse"> 523
 <xsd:complexType> 524
 <xsd:sequence> 525
 <xsd:element name="Stepnr" 526
type="xsd:int" minOccurs="1" maxOccurs="1"></xsd:element> 527
 </xsd:sequence> 528
 </xsd:complexType> 529
 </xsd:element> 530
 <xsd:element name="getMid"> 531
 <xsd:complexType> 532
 <xsd:sequence> 533
 <xsd:element name="SimID" 534
type="xsd:long" minOccurs="1" maxOccurs="1"></xsd:element> 535
 </xsd:sequence> 536
 </xsd:complexType> 537
 </xsd:element> 538
 <xsd:element name="getMidResponse"> 539
 <xsd:complexType> 540
 <xsd:sequence> 541
 <xsd:element name="Mid" type="xsd:int" 542
minOccurs="1" maxOccurs="1"></xsd:element> 543
 </xsd:sequence> 544
 </xsd:complexType> 545
 </xsd:element> 546
 <xsd:element name="getMidPseudo"> 547
 <xsd:complexType> 548
 <xsd:sequence> 549
 <xsd:element name="SimID" 550
type="xsd:long" minOccurs="1" maxOccurs="1"></xsd:element> 551
 </xsd:sequence> 552
 </xsd:complexType> 553
 </xsd:element> 554
 <xsd:element name="getMidPseudoResponse"> 555

10

 <xsd:complexType> 556
 <xsd:sequence> 557
 <xsd:element name="Mid" type="xsd:int" 558
minOccurs="1" maxOccurs="1"></xsd:element> 559
 </xsd:sequence> 560
 </xsd:complexType> 561
 </xsd:element> 562
 <xsd:element name="saveDataQuality"> 563
 <xsd:complexType> 564
 <xsd:sequence> 565
 <xsd:element name="SimID" 566
type="xsd:long" minOccurs="1" maxOccurs="1"></xsd:element> 567
 </xsd:sequence> 568
 </xsd:complexType> 569
 </xsd:element> 570
 <xsd:element name="saveDataQualityResponse"> 571
 <xsd:complexType> 572
 <xsd:sequence> 573
 <xsd:element name="out" 574
type="xsd:string"></xsd:element> 575
 </xsd:sequence> 576
 </xsd:complexType> 577
 </xsd:element> 578
 <xsd:element name="saveMatrix"> 579
 <xsd:complexType> 580
 <xsd:sequence> 581
 <xsd:element name="SimID" 582
type="xsd:long" minOccurs="1" maxOccurs="1"></xsd:element> 583
 <xsd:element name="saveBinary" 584
 type="xsd:boolean" minOccurs="1" 585
maxOccurs="1"> 586
 </xsd:element> 587
 </xsd:sequence> 588
 </xsd:complexType> 589
 </xsd:element> 590
 <xsd:element name="saveMatrixResponse"> 591
 <xsd:complexType> 592
 <xsd:sequence> 593
 <xsd:element name="Stepnr" 594
type="xsd:int" minOccurs="1" maxOccurs="1"></xsd:element> 595
 </xsd:sequence> 596
 </xsd:complexType> 597
 </xsd:element> 598
 <xsd:element name="loadMatrix"> 599
 <xsd:complexType> 600
 <xsd:sequence> 601
 <xsd:element name="SimID" 602
type="xsd:long" 603
 minOccurs="1" maxOccurs="1"> 604
 </xsd:element> 605
 <xsd:element name="load_SimID" 606
 type="xsd:long" minOccurs="1" 607
maxOccurs="1"> 608
 </xsd:element> 609
 <xsd:element name="Stepnr" 610
type="xsd:int" 611
 minOccurs="1" maxOccurs="1"> 612
 </xsd:element> 613
 <xsd:element name="loadBinary" 614
 type="xsd:boolean" minOccurs="1" 615
maxOccurs="1"> 616
 </xsd:element> 617
 </xsd:sequence> 618

11

 </xsd:complexType> 619
 </xsd:element> 620
 <xsd:element name="loadMatrixResponse"> 621
 <xsd:complexType> 622
 <xsd:sequence> 623
 <xsd:element name="out" 624
type="xsd:string"></xsd:element> 625
 </xsd:sequence> 626
 </xsd:complexType> 627
 </xsd:element> 628
 <xsd:element name="prepareSimulation"> 629
 <xsd:complexType> 630
 <xsd:sequence> 631
 <xsd:element name="ProblemName" 632
type="xsd:string" minOccurs="1" maxOccurs="1"></xsd:element> 633
 </xsd:sequence> 634
 </xsd:complexType> 635
 </xsd:element> 636
 <xsd:element name="prepareSimulationResponse"> 637
 <xsd:complexType> 638
 <xsd:sequence> 639
 <xsd:element name="ReturnMessage" 640
type="xsd:string" minOccurs="1" maxOccurs="1"></xsd:element> 641
 <xsd:element name="SimID" 642
 type="xsd:long" minOccurs="1" 643
maxOccurs="1"> 644
 </xsd:element> 645
 </xsd:sequence> 646
 </xsd:complexType> 647
 </xsd:element> 648
 <xsd:element name="startPandas"> 649
 <xsd:complexType> 650
 <xsd:sequence> 651
 <xsd:element name="SimID" 652
type="xsd:long" minOccurs="1" maxOccurs="1"></xsd:element> 653
 <xsd:element name="ProgramPath" 654
 type="xsd:string" minOccurs="1" 655
maxOccurs="1"> 656
 </xsd:element> 657
 <xsd:element name="WorkingDirectory" 658
 type="xsd:string" minOccurs="1" 659
maxOccurs="1"> 660
 </xsd:element> 661
 <xsd:element name="Arguments" 662
 type="xsd:string" minOccurs="1" 663
maxOccurs="1"> 664
 </xsd:element> 665
 <xsd:element name="ExecutionLog" 666
 type="xsd:string" minOccurs="1" 667
maxOccurs="1"> 668
 </xsd:element> 669
 </xsd:sequence> 670
 </xsd:complexType> 671
 </xsd:element> 672
 <xsd:element name="startPandasResponse"> 673
 <xsd:complexType> 674
 <xsd:sequence> 675
 <xsd:element name="ReturnMessage" 676
type="xsd:string" minOccurs="1" maxOccurs="1"></xsd:element> 677
 </xsd:sequence> 678
 </xsd:complexType> 679
 </xsd:element> 680
 <xsd:element name="getUsedParamFile"> 681

12

 <xsd:complexType> 682
 <xsd:sequence> 683
 <xsd:element name="SimID" 684
type="xsd:long" minOccurs="1" maxOccurs="1"></xsd:element> 685
 <xsd:element name="ProblemName" 686
 type="xsd:string" minOccurs="1" 687
maxOccurs="1"> 688
 </xsd:element> 689
 </xsd:sequence> 690
 </xsd:complexType> 691
 </xsd:element> 692
 <xsd:element name="getUsedParamFileResponse"> 693
 <xsd:complexType> 694
 <xsd:sequence> 695
 <xsd:element name="Path" 696
type="xsd:string" minOccurs="1" maxOccurs="1"></xsd:element> 697
 </xsd:sequence> 698
 </xsd:complexType> 699
 </xsd:element> 700
 <xsd:element name="saveState"> 701
 <xsd:complexType> 702
 <xsd:sequence> 703
 <xsd:element name="SimID" 704
type="xsd:long" minOccurs="1" maxOccurs="1"></xsd:element> 705
 </xsd:sequence> 706
 </xsd:complexType> 707
 </xsd:element> 708
 <xsd:element name="saveStateResponse"> 709
 <xsd:complexType> 710
 <xsd:sequence> 711
 <xsd:element name="Stepnr" 712
type="xsd:int" minOccurs="1" maxOccurs="1"></xsd:element> 713
 </xsd:sequence> 714
 </xsd:complexType> 715
 </xsd:element> 716
 <xsd:element name="loadState"> 717
 <xsd:complexType> 718
 <xsd:sequence> 719
 <xsd:element name="SimID" 720
type="xsd:long" 721
 minOccurs="1" maxOccurs="1"> 722
 </xsd:element> 723
 <xsd:element name="load_SimID" 724
type="xsd:long" 725
 minOccurs="1" maxOccurs="1"> 726
 </xsd:element> 727
 <xsd:element name="Stepnr" 728
type="xsd:int" 729
 minOccurs="1" maxOccurs="1"> 730
 </xsd:element> 731
 </xsd:sequence> 732
 </xsd:complexType> 733
 </xsd:element> 734
 <xsd:element name="load_stateResponse"> 735
 <xsd:complexType> 736
 <xsd:sequence> 737
 <xsd:element name="out" 738
type="xsd:string"></xsd:element> 739
 </xsd:sequence> 740
 </xsd:complexType> 741
 </xsd:element> 742
 <xsd:element name="saveMeshTrans"> 743
 <xsd:complexType> 744

13

 <xsd:sequence> 745
 <xsd:element name="SimID" 746
type="xsd:long" minOccurs="1" maxOccurs="1"></xsd:element> 747
 </xsd:sequence> 748
 </xsd:complexType> 749
 </xsd:element> 750
 <xsd:element name="saveMeshTransResponse"> 751
 <xsd:complexType> 752
 <xsd:sequence> 753
 <xsd:element name="Stepnr" 754
type="xsd:int" 755
 minOccurs="1" maxOccurs="1"> 756
 </xsd:element> 757
 <xsd:element name="ElementCount" 758
 type="xsd:int" minOccurs="1" 759
maxOccurs="1"> 760
 </xsd:element> 761
 </xsd:sequence> 762
 </xsd:complexType> 763
 </xsd:element> 764
 <xsd:element name="loadMeshTrans"> 765
 <xsd:complexType> 766
 <xsd:sequence> 767
 <xsd:element name="SimID" 768
type="xsd:long" minOccurs="1" maxOccurs="1"></xsd:element> 769
 </xsd:sequence> 770
 </xsd:complexType> 771
 </xsd:element> 772
 <xsd:element name="loadMeshTransResponse"> 773
 <xsd:complexType> 774
 <xsd:sequence> 775
 <xsd:element name="out" 776
type="xsd:string"></xsd:element> 777
 </xsd:sequence> 778
 </xsd:complexType> 779
 </xsd:element> 780
 <xsd:element name="ReadNextValFromMeshFile"> 781
 <xsd:complexType> 782
 <xsd:sequence> 783
 <xsd:element name="SimID" 784
type="xsd:long" minOccurs="1" maxOccurs="1"></xsd:element> 785
 </xsd:sequence> 786
 </xsd:complexType> 787
 </xsd:element> 788
 <xsd:element name="ReadNextValFromMeshFileResponse"> 789
 <xsd:complexType> 790
 <xsd:sequence> 791
 <xsd:element name="out" 792
type="xsd:string"></xsd:element> 793
 </xsd:sequence> 794
 </xsd:complexType> 795
 </xsd:element> 796
 <xsd:element name="WriteValToMeshFile"> 797
 <xsd:complexType> 798
 <xsd:sequence> 799
 <xsd:element name="in" 800
type="xsd:string"></xsd:element> 801
 </xsd:sequence> 802
 </xsd:complexType> 803
 </xsd:element> 804
 <xsd:element name="WriteValToMeshFileResponse"> 805
 <xsd:complexType> 806
 <xsd:sequence> 807

14

 <xsd:element name="out" 808
type="xsd:string"></xsd:element> 809
 </xsd:sequence> 810
 </xsd:complexType> 811
 </xsd:element> 812
 <xsd:element name="saveAllGauss"> 813
 <xsd:complexType> 814
 <xsd:sequence> 815
 <xsd:element name="SimID" 816
type="xsd:long" minOccurs="1" maxOccurs="1"></xsd:element> 817
 </xsd:sequence> 818
 </xsd:complexType> 819
 </xsd:element> 820
 <xsd:element name="saveAllGaussResponse"> 821
 <xsd:complexType> 822
 <xsd:sequence> 823
 <xsd:element name="Stepnr" 824
type="xsd:int" minOccurs="1" maxOccurs="1"></xsd:element> 825
 </xsd:sequence> 826
 </xsd:complexType> 827
 </xsd:element> 828
 <xsd:element name="loadAllGauss"> 829
 <xsd:complexType> 830
 <xsd:sequence> 831
 <xsd:element name="SimID" 832
type="xsd:long" minOccurs="1" maxOccurs="1"></xsd:element> 833
 <xsd:element name="loadSimID" 834
 type="xsd:long" minOccurs="1" 835
maxOccurs="1"> 836
 </xsd:element> 837
 <xsd:element name="Stepnr" 838
 type="xsd:int" minOccurs="1" 839
maxOccurs="1"> 840
 </xsd:element> 841
 </xsd:sequence> 842
 </xsd:complexType> 843
 </xsd:element> 844
 <xsd:element name="loadGaussResponse"> 845
 <xsd:complexType> 846
 <xsd:sequence> 847
 <xsd:element name="out" 848
type="xsd:string"></xsd:element> 849
 </xsd:sequence> 850
 </xsd:complexType> 851
 </xsd:element> 852
 <xsd:element name="saveGaussName"> 853
 <xsd:complexType> 854
 <xsd:sequence> 855
 <xsd:element name="SimID" 856
type="xsd:long" minOccurs="1" maxOccurs="1"></xsd:element> 857
 <xsd:element name="Name" 858
 type="xsd:string" minOccurs="1" 859
maxOccurs="1"> 860
 </xsd:element> 861
 </xsd:sequence> 862
 </xsd:complexType> 863
 </xsd:element> 864
 <xsd:element name="saveGaussNameResponse"> 865
 <xsd:complexType> 866
 <xsd:sequence> 867
 <xsd:element name="Stepnr" 868
type="xsd:int" minOccurs="1" maxOccurs="1"></xsd:element> 869
 </xsd:sequence> 870

15

 </xsd:complexType> 871
 </xsd:element> 872
 <xsd:element name="loadGaussName"> 873
 <xsd:complexType> 874
 <xsd:sequence> 875
 <xsd:element name="SimID" 876
type="xsd:long" 877
 minOccurs="1" maxOccurs="1"> 878
 </xsd:element> 879
 <xsd:element name="loadSimID" 880
type="xsd:long" 881
 minOccurs="1" maxOccurs="1"> 882
 </xsd:element> 883
 <xsd:element name="Stepnr" 884
type="xsd:int" 885
 minOccurs="1" maxOccurs="1"> 886
 </xsd:element> 887
 <xsd:element name="Name" 888
 type="xsd:string" minOccurs="1" 889
maxOccurs="1"> 890
 </xsd:element> 891
 </xsd:sequence> 892
 </xsd:complexType> 893
 </xsd:element> 894
 <xsd:element name="loadGaussNameResponse"> 895
 <xsd:complexType> 896
 <xsd:sequence> 897
 <xsd:element name="out" 898
type="xsd:string"></xsd:element> 899
 </xsd:sequence> 900
 </xsd:complexType> 901
 </xsd:element> 902
 </xsd:schema> 903
 <xsd:schema> 904
 <xsd:import namespace="http://wsi.simtech.de/ws/types/" 905
 schemaLocation="types.xsd" /> 906
 </xsd:schema> 907
 </wsdl:types> 908
 909
 <wsdl:message name="ExecuteCommandSyncRequest"> 910
 <wsdl:part element="tns:ExecuteCommand" name="parameters" /> 911
 </wsdl:message> 912
 <wsdl:message name="EmptyMessage"> 913
 </wsdl:message> 914
 <wsdl:message name="ExecuteCommandException"> 915
 <wsdl:part name="fault" 916
element="tns:ExecuteCommandSyncFault"></wsdl:part> 917
 </wsdl:message> 918
 <wsdl:message name="InvalidStateException"> 919
 <wsdl:part name="fault" 920
element="types:InvalidStateFault"></wsdl:part> 921
 </wsdl:message> 922
 <wsdl:message name="ExecuteCommandAsyncRequest"> 923
 <wsdl:part name="parameters" 924
element="tns:ExecuteCommand"></wsdl:part> 925
 </wsdl:message> 926
 <wsdl:message name="SimIDMessage"> 927
 <wsdl:part name="parameters" element="types:SimID"></wsdl:part> 928
 </wsdl:message> 929
 <wsdl:message name="readProblemRequest"> 930
 <wsdl:part name="parameters" 931
element="tns:readProblem"></wsdl:part> 932
 </wsdl:message> 933

16

 <wsdl:message name="readProblemResponse"> 934
 </wsdl:message> 935
 <wsdl:message name="connect-dbRequest"> 936
 <wsdl:part name="parameters" element="tns:connect-937
db"></wsdl:part> 938
 </wsdl:message> 939
 <wsdl:message name="connect-dbResponse"> 940
 </wsdl:message> 941
 <wsdl:message name="disconnect-dbRequest"> 942
 <wsdl:part name="parameters" element="tns:disconnect-943
db"></wsdl:part> 944
 </wsdl:message> 945
 <wsdl:message name="disconnect-dbResponse"> 946
 </wsdl:message> 947
 <wsdl:message name="set-optionRequest"> 948
 <wsdl:part name="parameters" element="tns:set-949
option"></wsdl:part> 950
 </wsdl:message> 951
 <wsdl:message name="set-optionResponse"> 952
 </wsdl:message> 953
 <wsdl:message name="do-stepRequest"> 954
 <wsdl:part name="parameters" element="tns:do-step"></wsdl:part> 955
 </wsdl:message> 956
 <wsdl:message name="do-stepResponse"> 957
 <wsdl:part name="parameters" element="tns:do-958
stepResponse"></wsdl:part> 959
 </wsdl:message> 960
 <wsdl:message name="save-dofRequest"> 961
 <wsdl:part name="parameters" element="tns:save-962
dof"></wsdl:part> 963
 </wsdl:message> 964
 <wsdl:message name="save-dofResponse"> 965
 <wsdl:part name="parameters" element="tns:save-966
dofResponse"></wsdl:part> 967
 </wsdl:message> 968
 <wsdl:message name="load-dofRequest"> 969
 <wsdl:part name="parameters" element="tns:load-970
dof"></wsdl:part> 971
 </wsdl:message> 972
 <wsdl:message name="load-dofResponse"> 973
 </wsdl:message> 974
 <wsdl:message name="run-cmdRequest"> 975
 <wsdl:part name="parameters" element="tns:run-cmd"></wsdl:part> 976
 </wsdl:message> 977
 <wsdl:message name="run-cmdResponse"> 978
 </wsdl:message> 979
 <wsdl:message name="do-step-pseudoRequest"> 980
 <wsdl:part name="parameters" element="tns:do-step-981
pseudo"></wsdl:part> 982
 </wsdl:message> 983
 <wsdl:message name="do-step-pseudoResponse"> 984
 <wsdl:part name="parameters" element="tns:do-step-985
pseudoResponse"></wsdl:part> 986
 </wsdl:message> 987
 <wsdl:message name="getDataQualityQueryRequest"> 988
 <wsdl:part name="parameters" 989
element="tns:getDataQualityQuery"></wsdl:part> 990
 </wsdl:message> 991
 <wsdl:message name="getDataQualityQueryResponse"> 992
 <wsdl:part name="parameters" 993
element="tns:getDataQualityQueryResponse"></wsdl:part> 994
 </wsdl:message> 995
 <wsdl:message name="getDataQualityQueryPseudoRequest"> 996

17

 <wsdl:part name="parameters" 997
element="tns:getDataQualityQueryPseudo"></wsdl:part> 998
 </wsdl:message> 999
 <wsdl:message name="getDataQualityQueryPseudoResponse"> 1000
 <wsdl:part name="parameters" 1001
element="tns:getDataQualityQueryPseudoResponse"></wsdl:part> 1002
 </wsdl:message> 1003
 <wsdl:message name="getStepnrRequest"> 1004
 <wsdl:part name="parameters" 1005
element="tns:getStepnr"></wsdl:part> 1006
 </wsdl:message> 1007
 <wsdl:message name="getStepnrResponse"> 1008
 <wsdl:part name="parameters" 1009
element="tns:getStepnrResponse"></wsdl:part> 1010
 </wsdl:message> 1011
 <wsdl:message name="getStepnrPseudoRequest"> 1012
 <wsdl:part name="parameters" 1013
element="tns:getStepnrPseudo"></wsdl:part> 1014
 </wsdl:message> 1015
 <wsdl:message name="getStepnrPseudoResponse"> 1016
 <wsdl:part name="parameters" 1017
element="tns:getStepnrPseudoResponse"></wsdl:part> 1018
 </wsdl:message> 1019
 <wsdl:message name="getLastSavedStepnrRequest"> 1020
 <wsdl:part name="parameters" 1021
element="tns:getLastSavedStepnr"></wsdl:part> 1022
 </wsdl:message> 1023
 <wsdl:message name="getLastSavedStepnrResponse"> 1024
 <wsdl:part name="parameters" 1025
element="tns:getLastSavedStepnrResponse"></wsdl:part> 1026
 </wsdl:message> 1027
 <wsdl:message name="getLastSavedStepnrPseudoRequest"> 1028
 <wsdl:part name="parameters" 1029
element="tns:getLastSavedStepnrPseudo"></wsdl:part> 1030
 </wsdl:message> 1031
 <wsdl:message name="getLastSavedStepnrPseudoResponse"> 1032
 <wsdl:part name="parameters" 1033
element="tns:getLastSavedStepnrPseudoResponse"></wsdl:part> 1034
 </wsdl:message> 1035
 <wsdl:message name="getMidRequest"> 1036
 <wsdl:part name="parameters" element="tns:getMid"></wsdl:part> 1037
 </wsdl:message> 1038
 <wsdl:message name="getMidResponse"> 1039
 <wsdl:part name="parameters" 1040
element="tns:getMidResponse"></wsdl:part> 1041
 </wsdl:message> 1042
 <wsdl:message name="getMidPseudoRequest"> 1043
 <wsdl:part name="parameters" 1044
element="tns:getMidPseudo"></wsdl:part> 1045
 </wsdl:message> 1046
 <wsdl:message name="getMidPseudoResponse"> 1047
 <wsdl:part name="parameters" 1048
element="tns:getMidPseudoResponse"></wsdl:part> 1049
 </wsdl:message> 1050
 <wsdl:message name="saveDataQualityRequest"> 1051
 <wsdl:part name="parameters" 1052
element="tns:saveDataQuality"></wsdl:part> 1053
 </wsdl:message> 1054
 <wsdl:message name="saveDataQualityResponse"> 1055
 </wsdl:message> 1056
 <wsdl:message name="saveMatrixRequest"> 1057
 <wsdl:part name="parameters" 1058
element="tns:saveMatrix"></wsdl:part> 1059

18

 </wsdl:message> 1060
 <wsdl:message name="saveMatrixResponse"> 1061
 <wsdl:part name="parameters" 1062
element="tns:saveMatrixResponse"></wsdl:part> 1063
 </wsdl:message> 1064
 <wsdl:message name="loadMatrixRequest"> 1065
 <wsdl:part name="parameters" 1066
element="tns:loadMatrix"></wsdl:part> 1067
 </wsdl:message> 1068
 <wsdl:message name="loadMatrixResponse"> 1069
 </wsdl:message> 1070
 <wsdl:message name="prepareSimulationRequest"> 1071
 <wsdl:part name="parameters" 1072
element="tns:prepareSimulation"></wsdl:part> 1073
 </wsdl:message> 1074
 <wsdl:message name="prepareSimulationResponse"> 1075
 <wsdl:part name="parameters" 1076
element="tns:prepareSimulationResponse"></wsdl:part> 1077
 </wsdl:message> 1078
 <wsdl:message name="startPandasRequest"> 1079
 <wsdl:part name="parameters" 1080
element="tns:startPandas"></wsdl:part> 1081
 </wsdl:message> 1082
 <wsdl:message name="startPandasResponse"> 1083
 <wsdl:part name="parameters" 1084
element="tns:startPandasResponse"></wsdl:part> 1085
 </wsdl:message> 1086
 <wsdl:message name="getUsedParamFileRequest"> 1087
 <wsdl:part name="parameters" 1088
element="tns:getUsedParamFile"></wsdl:part> 1089
 </wsdl:message> 1090
 <wsdl:message name="getUsedParamFileResponse"> 1091
 <wsdl:part name="parameters" 1092
element="tns:getUsedParamFileResponse"></wsdl:part> 1093
 </wsdl:message> 1094
 <wsdl:message name="saveStateRequest"> 1095
 <wsdl:part name="parameters" 1096
element="tns:saveState"></wsdl:part> 1097
 </wsdl:message> 1098
 <wsdl:message name="saveStateResponse"> 1099
 <wsdl:part name="parameters" 1100
element="tns:saveStateResponse"></wsdl:part> 1101
 </wsdl:message> 1102
 <wsdl:message name="loadStateRequest"> 1103
 <wsdl:part name="parameters" 1104
element="tns:loadState"></wsdl:part> 1105
 </wsdl:message> 1106
 <wsdl:message name="loadStateResponse"> 1107
 </wsdl:message> 1108
 <wsdl:message name="saveMeshTransRequest"> 1109
 <wsdl:part name="parameters" 1110
element="tns:saveMeshTrans"></wsdl:part> 1111
 </wsdl:message> 1112
 <wsdl:message name="saveMeshTransResponse"> 1113
 <wsdl:part name="parameters" 1114
element="tns:saveMeshTransResponse"></wsdl:part> 1115
 </wsdl:message> 1116
 <wsdl:message name="loadMeshTransRequest"> 1117
 <wsdl:part name="parameters" 1118
element="tns:loadMeshTrans"></wsdl:part> 1119
 </wsdl:message> 1120
 <wsdl:message name="loadMeshTransResponse"> 1121
 </wsdl:message> 1122

19

 <wsdl:message name="ReadNextValFromMeshFileRequest"> 1123
 <wsdl:part name="parameters" 1124
element="tns:ReadNextValFromMeshFile"></wsdl:part> 1125
 </wsdl:message> 1126
 <wsdl:message name="ReadNextValFromMeshFileResponse"> 1127
 <wsdl:part name="parameters" 1128
element="tns:ReadNextValFromMeshFileResponse"></wsdl:part> 1129
 </wsdl:message> 1130
 <wsdl:message name="WriteValToMeshFileRequest"> 1131
 <wsdl:part name="parameters" 1132
element="tns:WriteValToMeshFile"></wsdl:part> 1133
 </wsdl:message> 1134
 <wsdl:message name="WriteValToMeshFileResponse"> 1135
 <wsdl:part name="parameters" 1136
element="tns:WriteValToMeshFileResponse"></wsdl:part> 1137
 </wsdl:message> 1138
 1139
 <wsdl:message name="saveAllGaussRequest"> 1140
 <wsdl:part name="parameters" 1141
element="tns:saveAllGauss"></wsdl:part> 1142
 </wsdl:message> 1143
 <wsdl:message name="saveAllGaussResponse"> 1144
 <wsdl:part name="parameters" 1145
element="tns:saveAllGaussResponse"></wsdl:part> 1146
 </wsdl:message> 1147
 <wsdl:message name="loadAllGaussRequest"> 1148
 <wsdl:part name="parameters" 1149
element="tns:loadAllGauss"></wsdl:part> 1150
 </wsdl:message> 1151
 <wsdl:message name="loadAllGaussResponse"> 1152
 </wsdl:message> 1153
 <wsdl:message name="saveGaussNameRequest"> 1154
 <wsdl:part name="parameters" 1155
element="tns:saveGaussName"></wsdl:part> 1156
 </wsdl:message> 1157
 <wsdl:message name="saveGaussNameResponse"> 1158
 <wsdl:part name="parameters" 1159
element="tns:saveGaussNameResponse"></wsdl:part> 1160
 </wsdl:message> 1161
 <wsdl:message name="loadGaussNameRequest"> 1162
 <wsdl:part name="parameters" 1163
element="tns:loadGaussName"></wsdl:part> 1164
 </wsdl:message> 1165
 <wsdl:message name="loadGaussNameResponse"> 1166
 </wsdl:message> 1167
 <wsdl:portType name="WSI_Pandas"> 1168
 <wsdl:operation name="executeCommandSync"> 1169
 <wsdl:documentation>Executes a Pandas command 1170
synchronously. 1171
 </wsdl:documentation> 1172
 <wsdl:input message="tns:ExecuteCommandSyncRequest" /> 1173
 <wsdl:output message="tns:EmptyMessage" /> 1174
 <wsdl:fault name="CommandFault" 1175
message="tns:ExecuteCommandException" /> 1176
 <wsdl:fault name="InvalidStateFault" 1177
message="tns:InvalidStateException" /> 1178
 </wsdl:operation> 1179
 <wsdl:operation name="stopApplication"> 1180
 <wsdl:documentation>Shuts down the simulation 1181
application. 1182
 </wsdl:documentation> 1183
 <wsdl:input message="tns:SimIDMessage"></wsdl:input> 1184
 <wsdl:output message="tns:EmptyMessage"></wsdl:output> 1185

20

 <wsdl:fault name="CommandFault" 1186
message="tns:ExecuteCommandException" /> 1187
 <wsdl:fault name="InvalidStateFault" 1188
message="tns:InvalidStateException" /> 1189
 </wsdl:operation> 1190
 <wsdl:operation name="readProblem"> 1191
 <wsdl:documentation>Read a problem to initialize 1192
Pandas</wsdl:documentation> 1193
 <wsdl:input 1194
message="tns:readProblemRequest"></wsdl:input> 1195
 <wsdl:output 1196
message="tns:readProblemResponse"></wsdl:output> 1197
 <wsdl:fault name="CommandFault" 1198
message="tns:ExecuteCommandException"></wsdl:fault> 1199
 <wsdl:fault name="InvalidStateFault" 1200
message="tns:InvalidStateException"></wsdl:fault> 1201
 </wsdl:operation> 1202
 <wsdl:operation name="connect-db"> 1203
 <wsdl:documentation>Connect Pandas with a 1204
DB</wsdl:documentation> 1205
 <wsdl:input message="tns:connect-dbRequest"></wsdl:input> 1206
 <wsdl:output message="tns:connect-1207
dbResponse"></wsdl:output> 1208
 <wsdl:fault name="CommandFault" 1209
message="tns:ExecuteCommandException"></wsdl:fault> 1210
 <wsdl:fault name="InvalidStateFault" 1211
message="tns:InvalidStateException"></wsdl:fault> 1212
 </wsdl:operation> 1213
 <wsdl:operation name="disconnect-db"> 1214
 <wsdl:documentation>Disconnects Pandas from a 1215
DB</wsdl:documentation> 1216
 <wsdl:input message="tns:disconnect-1217
dbRequest"></wsdl:input> 1218
 <wsdl:output message="tns:disconnect-1219
dbResponse"></wsdl:output> 1220
 <wsdl:fault name="CommandFault" 1221
message="tns:ExecuteCommandException"></wsdl:fault> 1222
 <wsdl:fault name="InvalidStateFault" 1223
message="tns:InvalidStateException"></wsdl:fault> 1224
 </wsdl:operation> 1225
 <wsdl:operation name="set-option"> 1226
 <wsdl:input message="tns:set-optionRequest"></wsdl:input> 1227
 <wsdl:output message="tns:set-1228
optionResponse"></wsdl:output> 1229
 <wsdl:fault name="CommandFault" 1230
message="tns:ExecuteCommandException"></wsdl:fault> 1231
 <wsdl:fault name="InvalidStateFault" 1232
message="tns:InvalidStateException"></wsdl:fault> 1233
 </wsdl:operation> 1234
 <wsdl:operation name="do-step"> 1235
 <wsdl:documentation>execute one simulation 1236
step</wsdl:documentation> 1237
 <wsdl:input message="tns:do-stepRequest"></wsdl:input> 1238
 <wsdl:output message="tns:do-stepResponse"></wsdl:output> 1239
 <wsdl:fault name="CommandFault" 1240
message="tns:ExecuteCommandException"></wsdl:fault> 1241
 <wsdl:fault name="InvalidStateFault" 1242
message="tns:InvalidStateException"></wsdl:fault> 1243
 </wsdl:operation> 1244
 <wsdl:operation name="save-dof"> 1245
 <wsdl:documentation>saves algebraic mesh data at the 1246
actual simulation step</wsdl:documentation> 1247
 <wsdl:input message="tns:save-dofRequest"></wsdl:input> 1248

21

 <wsdl:output message="tns:save-1249
dofResponse"></wsdl:output> 1250
 <wsdl:fault name="CommandFault" 1251
message="tns:ExecuteCommandException"></wsdl:fault> 1252
 <wsdl:fault name="InvalidStateFault" 1253
message="tns:InvalidStateException"></wsdl:fault> 1254
 </wsdl:operation> 1255
 <wsdl:operation name="load-dof"> 1256
 <wsdl:documentation>loades algebraic mesh data from a 1257
certain simulation step</wsdl:documentation> 1258
 <wsdl:input message="tns:load-dofRequest"></wsdl:input> 1259
 <wsdl:output message="tns:load-1260
dofResponse"></wsdl:output> 1261
 <wsdl:fault name="CommandFault" 1262
message="tns:ExecuteCommandException"></wsdl:fault> 1263
 <wsdl:fault name="InvalidStateFault" 1264
message="tns:InvalidStateException"></wsdl:fault> 1265
 </wsdl:operation> 1266
 <wsdl:operation name="run-cmd"> 1267
 <wsdl:documentation>executes a command batch 1268
file</wsdl:documentation> 1269
 <wsdl:input message="tns:run-cmdRequest"></wsdl:input> 1270
 <wsdl:output message="tns:run-cmdResponse"></wsdl:output> 1271
 <wsdl:fault name="CommandFault" 1272
message="tns:ExecuteCommandException"></wsdl:fault> 1273
 <wsdl:fault name="InvalidStateFault" 1274
message="tns:InvalidStateException"></wsdl:fault> 1275
 </wsdl:operation> 1276
 <wsdl:operation name="do-step-pseudo"> 1277
 <wsdl:input message="tns:do-step-1278
pseudoRequest"></wsdl:input> 1279
 <wsdl:output message="tns:do-step-1280
pseudoResponse"></wsdl:output> 1281
 <wsdl:fault name="CommandFault" 1282
message="tns:ExecuteCommandException"></wsdl:fault> 1283
 <wsdl:fault name="InvalidStateFault" 1284
message="tns:InvalidStateException"></wsdl:fault> 1285
 </wsdl:operation> 1286
 <wsdl:operation name="getDataQualityQuery"> 1287
 <wsdl:input 1288
message="tns:getDataQualityQueryRequest"></wsdl:input> 1289
 <wsdl:output 1290
message="tns:getDataQualityQueryResponse"></wsdl:output> 1291
 <wsdl:fault name="CommandFault" 1292
message="tns:ExecuteCommandException"></wsdl:fault> 1293
 <wsdl:fault name="InvalidStateFault" 1294
message="tns:InvalidStateException"></wsdl:fault> 1295
 </wsdl:operation> 1296
 <wsdl:operation name="getDataQualityQueryPseudo"> 1297
 <wsdl:input 1298
message="tns:getDataQualityQueryPseudoRequest"></wsdl:input> 1299
 <wsdl:output 1300
message="tns:getDataQualityQueryPseudoResponse"></wsdl:output> 1301
 <wsdl:fault name="CommandFault" 1302
message="tns:ExecuteCommandException"></wsdl:fault> 1303
 <wsdl:fault name="InvalidStateFault" 1304
message="tns:InvalidStateException"></wsdl:fault> 1305
 </wsdl:operation> 1306
 <wsdl:operation name="getStepnr"> 1307
 <wsdl:input message="tns:getStepnrRequest"></wsdl:input> 1308
 <wsdl:output 1309
message="tns:getStepnrResponse"></wsdl:output> 1310

22

 <wsdl:fault name="CommandFault" 1311
message="tns:ExecuteCommandException"></wsdl:fault> 1312
 <wsdl:fault name="InvalidStateFault" 1313
message="tns:InvalidStateException"></wsdl:fault> 1314
 </wsdl:operation> 1315
 <wsdl:operation name="getStepnrPseudo"> 1316
 <wsdl:input 1317
message="tns:getStepnrPseudoRequest"></wsdl:input> 1318
 <wsdl:output 1319
message="tns:getStepnrPseudoResponse"></wsdl:output> 1320
 <wsdl:fault name="CommandFault" 1321
message="tns:ExecuteCommandException"></wsdl:fault> 1322
 <wsdl:fault name="InvalidStateFault" 1323
message="tns:InvalidStateException"></wsdl:fault> 1324
 </wsdl:operation> 1325
 <wsdl:operation name="getLastSavedStepnr"> 1326
 <wsdl:input 1327
message="tns:getLastSavedStepnrRequest"></wsdl:input> 1328
 <wsdl:output 1329
message="tns:getLastSavedStepnrResponse"></wsdl:output> 1330
 <wsdl:fault name="CommandFault" 1331
message="tns:ExecuteCommandException"></wsdl:fault> 1332
 <wsdl:fault name="InvalidStateFault" 1333
message="tns:InvalidStateException"></wsdl:fault> 1334
 </wsdl:operation> 1335
 <wsdl:operation name="getLastSavedStepnrPseudo"> 1336
 <wsdl:input 1337
message="tns:getLastSavedStepnrPseudoRequest"></wsdl:input> 1338
 <wsdl:output 1339
message="tns:getLastSavedStepnrPseudoResponse"></wsdl:output> 1340
 <wsdl:fault name="CommandFault" 1341
message="tns:ExecuteCommandException"></wsdl:fault> 1342
 <wsdl:fault name="InvalidStateFault" 1343
message="tns:InvalidStateException"></wsdl:fault> 1344
 </wsdl:operation> 1345
 <wsdl:operation name="getMid"> 1346
 <wsdl:input message="tns:getMidRequest"></wsdl:input> 1347
 <wsdl:output message="tns:getMidResponse"></wsdl:output> 1348
 <wsdl:fault name="CommandFault" 1349
message="tns:ExecuteCommandException"></wsdl:fault> 1350
 <wsdl:fault name="InvalidStateFault" 1351
message="tns:InvalidStateException"></wsdl:fault> 1352
 </wsdl:operation> 1353
 <wsdl:operation name="getMidPseudo"> 1354
 <wsdl:input 1355
message="tns:getMidPseudoRequest"></wsdl:input> 1356
 <wsdl:output 1357
message="tns:getMidPseudoResponse"></wsdl:output> 1358
 <wsdl:fault name="CommandFault" 1359
message="tns:ExecuteCommandException"></wsdl:fault> 1360
 <wsdl:fault name="InvalidStateFault" 1361
message="tns:InvalidStateException"></wsdl:fault> 1362
 </wsdl:operation> 1363
 <wsdl:operation name="saveDataQuality"> 1364
 <wsdl:input 1365
message="tns:saveDataQualityRequest"></wsdl:input> 1366
 <wsdl:output 1367
message="tns:saveDataQualityResponse"></wsdl:output> 1368
 <wsdl:fault name="CommandFault" 1369
message="tns:ExecuteCommandException"></wsdl:fault> 1370
 <wsdl:fault name="InvalidStateFault" 1371
message="tns:InvalidStateException"></wsdl:fault> 1372
 </wsdl:operation> 1373

23

 <wsdl:operation name="saveMatrix"> 1374
 <wsdl:input message="tns:saveMatrixRequest"></wsdl:input> 1375
 <wsdl:output 1376
message="tns:saveMatrixResponse"></wsdl:output> 1377
 <wsdl:fault name="CommandFault" 1378
message="tns:ExecuteCommandException"></wsdl:fault> 1379
 <wsdl:fault name="InvalidStateFault" 1380
message="tns:InvalidStateException"></wsdl:fault> 1381
 </wsdl:operation> 1382
 <wsdl:operation name="loadMatrix"> 1383
 <wsdl:input message="tns:loadMatrixRequest"></wsdl:input> 1384
 <wsdl:output 1385
message="tns:loadMatrixResponse"></wsdl:output> 1386
 <wsdl:fault name="CommandFault" 1387
message="tns:ExecuteCommandException"></wsdl:fault> 1388
 <wsdl:fault name="InvalidStateFault" 1389
message="tns:InvalidStateException"></wsdl:fault> 1390
 </wsdl:operation> 1391
 <wsdl:operation name="prepareSimulation"> 1392
 <wsdl:input 1393
message="tns:prepareSimulationRequest"></wsdl:input> 1394
 <wsdl:output 1395
message="tns:prepareSimulationResponse"></wsdl:output> 1396
 <wsdl:fault name="CommandFault" 1397
message="tns:ExecuteCommandException"></wsdl:fault> 1398
 <wsdl:fault name="InvalidStateFault" 1399
message="tns:InvalidStateException"></wsdl:fault> 1400
 </wsdl:operation> 1401
 <wsdl:operation name="startPandas"> 1402
 <wsdl:input 1403
message="tns:startPandasRequest"></wsdl:input> 1404
 <wsdl:output 1405
message="tns:startPandasResponse"></wsdl:output> 1406
 <wsdl:fault name="CommandFault" 1407
message="tns:ExecuteCommandException"></wsdl:fault> 1408
 <wsdl:fault name="InvalidStateFault" 1409
message="tns:InvalidStateException"></wsdl:fault> 1410
 </wsdl:operation> 1411
 <wsdl:operation name="getUsedParamFile"> 1412
 <wsdl:input 1413
message="tns:getUsedParamFileRequest"></wsdl:input> 1414
 <wsdl:output 1415
message="tns:getUsedParamFileResponse"></wsdl:output> 1416
 <wsdl:fault name="CommandFault" 1417
message="tns:ExecuteCommandException"></wsdl:fault> 1418
 <wsdl:fault name="InvalidStateFault" 1419
message="tns:InvalidStateException"></wsdl:fault> 1420
 </wsdl:operation> 1421
 <wsdl:operation name="saveState"> 1422
 <wsdl:input message="tns:saveStateRequest"></wsdl:input> 1423
 <wsdl:output 1424
message="tns:saveStateResponse"></wsdl:output> 1425
 <wsdl:fault name="CommandFault" 1426
message="tns:ExecuteCommandException"></wsdl:fault> 1427
 <wsdl:fault name="InvalidStateFault" 1428
message="tns:InvalidStateException"></wsdl:fault> 1429
 </wsdl:operation> 1430
 <wsdl:operation name="loadState"> 1431
 <wsdl:input message="tns:loadStateRequest"></wsdl:input> 1432
 <wsdl:output 1433
message="tns:loadStateResponse"></wsdl:output> 1434
 <wsdl:fault name="CommandFault" 1435
message="tns:ExecuteCommandException"></wsdl:fault> 1436

24

 <wsdl:fault name="InvalidStateFault" 1437
message="tns:InvalidStateException"></wsdl:fault> 1438
 </wsdl:operation> 1439
 <wsdl:operation name="saveMeshTrans"> 1440
 <wsdl:input 1441
message="tns:saveMeshTransRequest"></wsdl:input> 1442
 <wsdl:output 1443
message="tns:saveMeshTransResponse"></wsdl:output> 1444
 <wsdl:fault name="CommandFault" 1445
message="tns:ExecuteCommandException"></wsdl:fault> 1446
 <wsdl:fault name="InvalidStateFault" 1447
message="tns:InvalidStateException"></wsdl:fault> 1448
 </wsdl:operation> 1449
 <wsdl:operation name="loadMeshTrans"> 1450
 <wsdl:input 1451
message="tns:loadMeshTransRequest"></wsdl:input> 1452
 <wsdl:output 1453
message="tns:loadMeshTransResponse"></wsdl:output> 1454
 <wsdl:fault name="CommandFault" 1455
message="tns:ExecuteCommandException"></wsdl:fault> 1456
 <wsdl:fault name="InvalidStateFault" 1457
message="tns:InvalidStateException"></wsdl:fault> 1458
 </wsdl:operation> 1459
 <wsdl:operation name="ReadNextValFromMeshFile"> 1460
 <wsdl:input 1461
message="tns:ReadNextValFromMeshFileRequest"></wsdl:input> 1462
 <wsdl:output 1463
message="tns:ReadNextValFromMeshFileResponse"></wsdl:output> 1464
 <wsdl:fault name="CommandFault" 1465
message="tns:ExecuteCommandException"></wsdl:fault> 1466
 <wsdl:fault name="InvalidStateFault" 1467
message="tns:InvalidStateException"></wsdl:fault> 1468
 </wsdl:operation> 1469
 <wsdl:operation name="WriteValToMeshFile"> 1470
 <wsdl:input 1471
message="tns:WriteValToMeshFileRequest"></wsdl:input> 1472
 <wsdl:output 1473
message="tns:WriteValToMeshFileResponse"></wsdl:output> 1474
 <wsdl:fault name="CommandFault" 1475
message="tns:ExecuteCommandException"></wsdl:fault> 1476
 <wsdl:fault name="InvalidStateFault" 1477
message="tns:InvalidStateException"></wsdl:fault> 1478
 </wsdl:operation> 1479
 <wsdl:operation name="saveAllGauss"> 1480
 <wsdl:input 1481
message="tns:saveAllGaussRequest"></wsdl:input> 1482
 <wsdl:output 1483
message="tns:saveAllGaussResponse"></wsdl:output> 1484
 <wsdl:fault name="CommandFault" 1485
message="tns:ExecuteCommandException"></wsdl:fault> 1486
 <wsdl:fault name="InvalidStateFault" 1487
message="tns:InvalidStateException"></wsdl:fault> 1488
 </wsdl:operation> 1489
 <wsdl:operation name="loadAllGauss"> 1490
 <wsdl:input 1491
message="tns:loadAllGaussRequest"></wsdl:input> 1492
 <wsdl:output 1493
message="tns:loadAllGaussResponse"></wsdl:output> 1494
 <wsdl:fault name="CommandFault" 1495
message="tns:ExecuteCommandException"></wsdl:fault> 1496
 <wsdl:fault name="InvalidStateFault" 1497
message="tns:InvalidStateException"></wsdl:fault> 1498
 </wsdl:operation> 1499

25

 <wsdl:operation name="saveGaussName"> 1500
 <wsdl:input 1501
message="tns:saveGaussNameRequest"></wsdl:input> 1502
 <wsdl:output 1503
message="tns:saveGaussNameResponse"></wsdl:output> 1504
 <wsdl:fault name="CommandFault" 1505
message="tns:ExecuteCommandException"></wsdl:fault> 1506
 <wsdl:fault name="InvalidStateFault" 1507
message="tns:InvalidStateException"></wsdl:fault> 1508
 </wsdl:operation> 1509
 <wsdl:operation name="loadGaussName"> 1510
 <wsdl:input 1511
message="tns:loadGaussNameRequest"></wsdl:input> 1512
 <wsdl:output 1513
message="tns:loadGaussNameResponse"></wsdl:output> 1514
 <wsdl:fault name="CommandFault" 1515
message="tns:ExecuteCommandException"></wsdl:fault> 1516
 <wsdl:fault name="InvalildStateFault" 1517
message="tns:InvalidStateException"></wsdl:fault> 1518
 </wsdl:operation> 1519
 </wsdl:portType> 1520
 1521
 1522
 <wsdl:binding name="WSI_PandasSOAP" type="tns:WSI_Pandas"> 1523
 <soap:binding style="document" 1524
 transport="http://schemas.xmlsoap.org/soap/http" /> 1525
 <wsdl:operation name="executeCommandSync"> 1526
 <soap:operation 1527
 1528
 soapAction="http://wsi.simtech.de/extensions/pandas/executeCommandSyn1529
c" /> 1530
 <wsdl:input> 1531
 <soap:body use="literal" /> 1532
 </wsdl:input> 1533
 <wsdl:output> 1534
 <soap:body use="literal" /> 1535
 </wsdl:output> 1536
 <wsdl:fault name="CommandFault"> 1537
 <soap:fault use="literal" name="CommandFault" /> 1538
 </wsdl:fault> 1539
 <wsdl:fault name="InvalidStateFault"> 1540
 <soap:fault use="literal" name="InvalidStateFault" 1541
/> 1542
 </wsdl:fault> 1543
 </wsdl:operation> 1544
 <wsdl:operation name="stopApplication"> 1545
 <soap:operation 1546
 1547
 soapAction="http://wsi.simtech.de/extensions/pandas/stopApplication" 1548
/> 1549
 <wsdl:input> 1550
 <soap:body use="literal" /> 1551
 </wsdl:input> 1552
 <wsdl:output> 1553
 <soap:body use="literal" /> 1554
 </wsdl:output> 1555
 <wsdl:fault name="CommandFault"> 1556
 <soap:fault use="literal" name="CommandFault" /> 1557
 </wsdl:fault> 1558
 <wsdl:fault name="InvalidStateFault"> 1559
 <soap:fault use="literal" name="InvalidStateFault" 1560
/> 1561
 </wsdl:fault> 1562

26

 </wsdl:operation> 1563
 <wsdl:operation name="readProblem"> 1564
 <soap:operation 1565
 1566
 soapAction="http://wsi.simtech.de/extensions/pandas/readProblem" /> 1567
 <wsdl:input> 1568
 <soap:body use="literal" /> 1569
 </wsdl:input> 1570
 <wsdl:output> 1571
 <soap:body use="literal" /> 1572
 </wsdl:output> 1573
 <wsdl:fault name="CommandFault"> 1574
 <soap:fault use="literal" name="CommandFault" /> 1575
 </wsdl:fault> 1576
 <wsdl:fault name="InvalidStateFault"> 1577
 <soap:fault use="literal" name="InvalidStateFault" 1578
/> 1579
 </wsdl:fault> 1580
 </wsdl:operation> 1581
 <wsdl:operation name="connect-db"> 1582
 <soap:operation 1583
 1584
 soapAction="http://wsi.simtech.de/extensions/pandas/connect-db" /> 1585
 <wsdl:input> 1586
 <soap:body use="literal" /> 1587
 </wsdl:input> 1588
 <wsdl:output> 1589
 <soap:body use="literal" /> 1590
 </wsdl:output> 1591
 <wsdl:fault name="CommandFault"> 1592
 <soap:fault use="literal" name="CommandFault" /> 1593
 </wsdl:fault> 1594
 <wsdl:fault name="InvalidStateFault"> 1595
 <soap:fault use="literal" name="InvalidStateFault" 1596
/> 1597
 </wsdl:fault> 1598
 </wsdl:operation> 1599
 <wsdl:operation name="disconnect-db"> 1600
 <soap:operation 1601
 1602
 soapAction="http://wsi.simtech.de/extensions/pandas/disconnect-db" /> 1603
 <wsdl:input> 1604
 <soap:body use="literal" /> 1605
 </wsdl:input> 1606
 <wsdl:output> 1607
 <soap:body use="literal" /> 1608
 </wsdl:output> 1609
 <wsdl:fault name="CommandFault"> 1610
 <soap:fault use="literal" name="CommandFault" /> 1611
 </wsdl:fault> 1612
 <wsdl:fault name="InvalidStateFault"> 1613
 <soap:fault use="literal" name="InvalidStateFault" 1614
/> 1615
 </wsdl:fault> 1616
 </wsdl:operation> 1617
 <wsdl:operation name="set-option"> 1618
 <soap:operation 1619
 1620
 soapAction="http://wsi.simtech.de/extensions/pandas/set-option" /> 1621
 <wsdl:input> 1622
 <soap:body use="literal" /> 1623
 </wsdl:input> 1624
 <wsdl:output> 1625

27

 <soap:body use="literal" /> 1626
 </wsdl:output> 1627
 <wsdl:fault name="CommandFault"> 1628
 <soap:fault use="literal" name="CommandFault" /> 1629
 </wsdl:fault> 1630
 <wsdl:fault name="InvalidStateFault"> 1631
 <soap:fault use="literal" name="InvalidStateFault" 1632
/> 1633
 </wsdl:fault> 1634
 </wsdl:operation> 1635
 <wsdl:operation name="do-step"> 1636
 <soap:operation 1637
 1638
 soapAction="http://wsi.simtech.de/extensions/pandas/do-step" /> 1639
 <wsdl:input> 1640
 <soap:body use="literal" /> 1641
 </wsdl:input> 1642
 <wsdl:output> 1643
 <soap:body use="literal" /> 1644
 </wsdl:output> 1645
 <wsdl:fault name="CommandFault"> 1646
 <soap:fault use="literal" name="CommandFault" /> 1647
 </wsdl:fault> 1648
 <wsdl:fault name="InvalidStateFault"> 1649
 <soap:fault use="literal" name="InvalidStateFault" 1650
/> 1651
 </wsdl:fault> 1652
 </wsdl:operation> 1653
 <wsdl:operation name="save-dof"> 1654
 <soap:operation 1655
 1656
 soapAction="http://wsi.simtech.de/extensions/pandas/save-dof" /> 1657
 <wsdl:input> 1658
 <soap:body use="literal" /> 1659
 </wsdl:input> 1660
 <wsdl:output> 1661
 <soap:body use="literal" /> 1662
 </wsdl:output> 1663
 <wsdl:fault name="CommandFault"> 1664
 <soap:fault use="literal" name="CommandFault" /> 1665
 </wsdl:fault> 1666
 <wsdl:fault name="InvalidStateFault"> 1667
 <soap:fault use="literal" name="InvalidStateFault" 1668
/> 1669
 </wsdl:fault> 1670
 </wsdl:operation> 1671
 <wsdl:operation name="load-dof"> 1672
 <soap:operation 1673
 1674
 soapAction="http://wsi.simtech.de/extensions/pandas/load-dof" /> 1675
 <wsdl:input> 1676
 <soap:body use="literal" /> 1677
 </wsdl:input> 1678
 <wsdl:output> 1679
 <soap:body use="literal" /> 1680
 </wsdl:output> 1681
 <wsdl:fault name="CommandFault"> 1682
 <soap:fault use="literal" name="CommandFault" /> 1683
 </wsdl:fault> 1684
 <wsdl:fault name="InvalidStateFault"> 1685
 <soap:fault use="literal" name="InvalidStateFault" 1686
/> 1687
 </wsdl:fault> 1688

28

 </wsdl:operation> 1689
 <wsdl:operation name="run-cmd"> 1690
 <soap:operation 1691
 1692
 soapAction="http://wsi.simtech.de/extensions/pandas/run-cmd" /> 1693
 <wsdl:input> 1694
 <soap:body use="literal" /> 1695
 </wsdl:input> 1696
 <wsdl:output> 1697
 <soap:body use="literal" /> 1698
 </wsdl:output> 1699
 <wsdl:fault name="CommandFault"> 1700
 <soap:fault use="literal" name="CommandFault" /> 1701
 </wsdl:fault> 1702
 <wsdl:fault name="InvalidStateFault"> 1703
 <soap:fault use="literal" name="InvalidStateFault" 1704
/> 1705
 </wsdl:fault> 1706
 </wsdl:operation> 1707
 <wsdl:operation name="do-step-pseudo"> 1708
 <soap:operation 1709
 1710
 soapAction="http://wsi.simtech.de/extensions/pandas/do-step-pseudo" 1711
/> 1712
 <wsdl:input> 1713
 <soap:body use="literal" /> 1714
 </wsdl:input> 1715
 <wsdl:output> 1716
 <soap:body use="literal" /> 1717
 </wsdl:output> 1718
 <wsdl:fault name="CommandFault"> 1719
 <soap:fault use="literal" name="CommandFault" /> 1720
 </wsdl:fault> 1721
 <wsdl:fault name="InvalidStateFault"> 1722
 <soap:fault use="literal" name="InvalidStateFault" 1723
/> 1724
 </wsdl:fault> 1725
 </wsdl:operation> 1726
 <wsdl:operation name="getDataQualityQuery"> 1727
 <soap:operation 1728
 1729
 soapAction="http://wsi.simtech.de/extensions/pandas/getDataQualityQue1730
ry" /> 1731
 <wsdl:input> 1732
 <soap:body use="literal" /> 1733
 </wsdl:input> 1734
 <wsdl:output> 1735
 <soap:body use="literal" /> 1736
 </wsdl:output> 1737
 <wsdl:fault name="CommandFault"> 1738
 <soap:fault use="literal" name="CommandFault" /> 1739
 </wsdl:fault> 1740
 <wsdl:fault name="InvalidStateFault"> 1741
 <soap:fault use="literal" name="InvalidStateFault" 1742
/> 1743
 </wsdl:fault> 1744
 </wsdl:operation> 1745
 <wsdl:operation name="getDataQualityQueryPseudo"> 1746
 <soap:operation 1747
 1748
 soapAction="http://wsi.simtech.de/extensions/pandas/getDataQualityQue1749
ryPseudo" /> 1750
 <wsdl:input> 1751

29

 <soap:body use="literal" /> 1752
 </wsdl:input> 1753
 <wsdl:output> 1754
 <soap:body use="literal" /> 1755
 </wsdl:output> 1756
 <wsdl:fault name="CommandFault"> 1757
 <soap:fault use="literal" name="CommandFault" /> 1758
 </wsdl:fault> 1759
 <wsdl:fault name="InvalidStateFault"> 1760
 <soap:fault use="literal" name="InvalidStateFault" 1761
/> 1762
 </wsdl:fault> 1763
 </wsdl:operation> 1764
 <wsdl:operation name="getStepnr"> 1765
 <soap:operation 1766
 1767
 soapAction="http://wsi.simtech.de/extensions/pandas/getStepnr" /> 1768
 <wsdl:input> 1769
 <soap:body use="literal" /> 1770
 </wsdl:input> 1771
 <wsdl:output> 1772
 <soap:body use="literal" /> 1773
 </wsdl:output> 1774
 <wsdl:fault name="CommandFault"> 1775
 <soap:fault use="literal" name="CommandFault" /> 1776
 </wsdl:fault> 1777
 <wsdl:fault name="InvalidStateFault"> 1778
 <soap:fault use="literal" name="InvalidStateFault" 1779
/> 1780
 </wsdl:fault> 1781
 </wsdl:operation> 1782
 <wsdl:operation name="getStepnrPseudo"> 1783
 <soap:operation 1784
 1785
 soapAction="http://wsi.simtech.de/extensions/pandas/getStepnrPseudo" 1786
/> 1787
 <wsdl:input> 1788
 <soap:body use="literal" /> 1789
 </wsdl:input> 1790
 <wsdl:output> 1791
 <soap:body use="literal" /> 1792
 </wsdl:output> 1793
 <wsdl:fault name="CommandFault"> 1794
 <soap:fault use="literal" name="CommandFault" /> 1795
 </wsdl:fault> 1796
 <wsdl:fault name="InvalidStateFault"> 1797
 <soap:fault use="literal" name="InvalidStateFault" 1798
/> 1799
 </wsdl:fault> 1800
 </wsdl:operation> 1801
 <wsdl:operation name="getLastSavedStepnr"> 1802
 <soap:operation 1803
 1804
 soapAction="http://wsi.simtech.de/extensions/pandas/getLastSavedStepn1805
r" /> 1806
 <wsdl:input> 1807
 <soap:body use="literal" /> 1808
 </wsdl:input> 1809
 <wsdl:output> 1810
 <soap:body use="literal" /> 1811
 </wsdl:output> 1812
 <wsdl:fault name="CommandFault"> 1813
 <soap:fault use="literal" name="CommandFault" /> 1814

30

 </wsdl:fault> 1815
 <wsdl:fault name="InvalidStateFault"> 1816
 <soap:fault use="literal" name="InvalidStateFault" 1817
/> 1818
 </wsdl:fault> 1819
 </wsdl:operation> 1820
 <wsdl:operation name="getLastSavedStepnrPseudo"> 1821
 <soap:operation 1822
 1823
 soapAction="http://wsi.simtech.de/extensions/pandas/getLastSavedStepn1824
rPseudo" /> 1825
 <wsdl:input> 1826
 <soap:body use="literal" /> 1827
 </wsdl:input> 1828
 <wsdl:output> 1829
 <soap:body use="literal" /> 1830
 </wsdl:output> 1831
 <wsdl:fault name="CommandFault"> 1832
 <soap:fault use="literal" name="CommandFault" /> 1833
 </wsdl:fault> 1834
 <wsdl:fault name="InvalidStateFault"> 1835
 <soap:fault use="literal" name="InvalidStateFault" 1836
/> 1837
 </wsdl:fault> 1838
 </wsdl:operation> 1839
 <wsdl:operation name="getMid"> 1840
 <soap:operation 1841
 1842
 soapAction="http://wsi.simtech.de/extensions/pandas/getMid" /> 1843
 <wsdl:input> 1844
 <soap:body use="literal" /> 1845
 </wsdl:input> 1846
 <wsdl:output> 1847
 <soap:body use="literal" /> 1848
 </wsdl:output> 1849
 <wsdl:fault name="CommandFault"> 1850
 <soap:fault use="literal" name="CommandFault" /> 1851
 </wsdl:fault> 1852
 <wsdl:fault name="InvalidStateFault"> 1853
 <soap:fault use="literal" name="InvalidStateFault" 1854
/> 1855
 </wsdl:fault> 1856
 </wsdl:operation> 1857
 <wsdl:operation name="getMidPseudo"> 1858
 <soap:operation 1859
 1860
 soapAction="http://wsi.simtech.de/extensions/pandas/getMidPseudo" /> 1861
 <wsdl:input> 1862
 <soap:body use="literal" /> 1863
 </wsdl:input> 1864
 <wsdl:output> 1865
 <soap:body use="literal" /> 1866
 </wsdl:output> 1867
 <wsdl:fault name="CommandFault"> 1868
 <soap:fault use="literal" name="CommandFault" /> 1869
 </wsdl:fault> 1870
 <wsdl:fault name="InvalidStateFault"> 1871
 <soap:fault use="literal" name="InvalidStateFault" 1872
/> 1873
 </wsdl:fault> 1874
 </wsdl:operation> 1875
 <wsdl:operation name="saveDataQuality"> 1876
 <soap:operation 1877

31

 1878
 soapAction="http://wsi.simtech.de/extensions/pandas/saveDataQuality" 1879
/> 1880
 <wsdl:input> 1881
 <soap:body use="literal" /> 1882
 </wsdl:input> 1883
 <wsdl:output> 1884
 <soap:body use="literal" /> 1885
 </wsdl:output> 1886
 <wsdl:fault name="CommandFault"> 1887
 <soap:fault use="literal" name="CommandFault" /> 1888
 </wsdl:fault> 1889
 <wsdl:fault name="InvalidStateFault"> 1890
 <soap:fault use="literal" name="InvalidStateFault" 1891
/> 1892
 </wsdl:fault> 1893
 </wsdl:operation> 1894
 <wsdl:operation name="saveMatrix"> 1895
 <soap:operation 1896
 1897
 soapAction="http://wsi.simtech.de/extensions/pandas/saveMatrix" /> 1898
 <wsdl:input> 1899
 <soap:body use="literal" /> 1900
 </wsdl:input> 1901
 <wsdl:output> 1902
 <soap:body use="literal" /> 1903
 </wsdl:output> 1904
 <wsdl:fault name="CommandFault"> 1905
 <soap:fault use="literal" name="CommandFault" /> 1906
 </wsdl:fault> 1907
 <wsdl:fault name="InvalidStateFault"> 1908
 <soap:fault use="literal" name="InvalidStateFault" 1909
/> 1910
 </wsdl:fault> 1911
 </wsdl:operation> 1912
 <wsdl:operation name="loadMatrix"> 1913
 <soap:operation 1914
 1915
 soapAction="http://wsi.simtech.de/extensions/pandas/loadMatrix" /> 1916
 <wsdl:input> 1917
 <soap:body use="literal" /> 1918
 </wsdl:input> 1919
 <wsdl:output> 1920
 <soap:body use="literal" /> 1921
 </wsdl:output> 1922
 <wsdl:fault name="CommandFault"> 1923
 <soap:fault use="literal" name="CommandFault" /> 1924
 </wsdl:fault> 1925
 <wsdl:fault name="InvalidStateFault"> 1926
 <soap:fault use="literal" name="InvalidStateFault" 1927
/> 1928
 </wsdl:fault> 1929
 </wsdl:operation> 1930
 <wsdl:operation name="prepareSimulation"> 1931
 <soap:operation 1932
 1933
 soapAction="http://wsi.simtech.de/extensions/pandas/prepareSimulation1934
" /> 1935
 <wsdl:input> 1936
 <soap:body use="literal" /> 1937
 </wsdl:input> 1938
 <wsdl:output> 1939
 <soap:body use="literal" /> 1940

32

 </wsdl:output> 1941
 <wsdl:fault name="CommandFault"> 1942
 <soap:fault use="literal" name="CommandFault" /> 1943
 </wsdl:fault> 1944
 <wsdl:fault name="InvalidStateFault"> 1945
 <soap:fault use="literal" name="InvalidStateFault" 1946
/> 1947
 </wsdl:fault> 1948
 </wsdl:operation> 1949
 <wsdl:operation name="startPandas"> 1950
 <soap:operation 1951
 1952
 soapAction="http://wsi.simtech.de/extensions/pandas/startPandas" /> 1953
 <wsdl:input> 1954
 <soap:body use="literal" /> 1955
 </wsdl:input> 1956
 <wsdl:output> 1957
 <soap:body use="literal" /> 1958
 </wsdl:output> 1959
 <wsdl:fault name="CommandFault"> 1960
 <soap:fault use="literal" name="CommandFault" /> 1961
 </wsdl:fault> 1962
 <wsdl:fault name="InvalidStateFault"> 1963
 <soap:fault use="literal" name="InvalidStateFault" 1964
/> 1965
 </wsdl:fault> 1966
 </wsdl:operation> 1967
 <wsdl:operation name="getUsedParamFile"> 1968
 <soap:operation 1969
 1970
 soapAction="http://wsi.simtech.de/extensions/pandas/getUsedParamFile" 1971
/> 1972
 <wsdl:input> 1973
 <soap:body use="literal" /> 1974
 </wsdl:input> 1975
 <wsdl:output> 1976
 <soap:body use="literal" /> 1977
 </wsdl:output> 1978
 <wsdl:fault name="CommandFault"> 1979
 <soap:fault use="literal" name="CommandFault" /> 1980
 </wsdl:fault> 1981
 <wsdl:fault name="InvalidStateFault"> 1982
 <soap:fault use="literal" name="InvalidStateFault" 1983
/> 1984
 </wsdl:fault> 1985
 </wsdl:operation> 1986
 <wsdl:operation name="saveState"> 1987
 <soap:operation 1988
 1989
 soapAction="http://wsi.simtech.de/extensions/pandas/saveState" /> 1990
 <wsdl:input> 1991
 <soap:body use="literal" /> 1992
 </wsdl:input> 1993
 <wsdl:output> 1994
 <soap:body use="literal" /> 1995
 </wsdl:output> 1996
 <wsdl:fault name="CommandFault"> 1997
 <soap:fault use="literal" name="CommandFault" /> 1998
 </wsdl:fault> 1999
 <wsdl:fault name="InvalidStateFault"> 2000
 <soap:fault use="literal" name="InvalidStateFault" 2001
/> 2002
 </wsdl:fault> 2003

33

 </wsdl:operation> 2004
 <wsdl:operation name="loadState"> 2005
 <soap:operation 2006
 2007
 soapAction="http://wsi.simtech.de/extensions/pandas/loadState" /> 2008
 <wsdl:input> 2009
 <soap:body use="literal" /> 2010
 </wsdl:input> 2011
 <wsdl:output> 2012
 <soap:body use="literal" /> 2013
 </wsdl:output> 2014
 <wsdl:fault name="CommandFault"> 2015
 <soap:fault use="literal" name="CommandFault" /> 2016
 </wsdl:fault> 2017
 <wsdl:fault name="InvalidStateFault"> 2018
 <soap:fault use="literal" name="InvalidStateFault" 2019
/> 2020
 </wsdl:fault> 2021
 </wsdl:operation> 2022
 <wsdl:operation name="saveMeshTrans"> 2023
 <soap:operation 2024
 2025
 soapAction="http://wsi.simtech.de/extensions/pandas/saveMeshTrans" /> 2026
 <wsdl:input> 2027
 <soap:body use="literal" /> 2028
 </wsdl:input> 2029
 <wsdl:output> 2030
 <soap:body use="literal" /> 2031
 </wsdl:output> 2032
 <wsdl:fault name="CommandFault"> 2033
 <soap:fault use="literal" name="CommandFault" /> 2034
 </wsdl:fault> 2035
 <wsdl:fault name="InvalidStateFault"> 2036
 <soap:fault use="literal" name="InvalidStateFault" 2037
/> 2038
 </wsdl:fault> 2039
 </wsdl:operation> 2040
 <wsdl:operation name="loadMeshTrans"> 2041
 <soap:operation 2042
 2043
 soapAction="http://wsi.simtech.de/extensions/pandas/loadMeshTrans" /> 2044
 <wsdl:input> 2045
 <soap:body use="literal" /> 2046
 </wsdl:input> 2047
 <wsdl:output> 2048
 <soap:body use="literal" /> 2049
 </wsdl:output> 2050
 <wsdl:fault name="CommandFault"> 2051
 <soap:fault use="literal" name="CommandFault" /> 2052
 </wsdl:fault> 2053
 <wsdl:fault name="InvalidStateFault"> 2054
 <soap:fault use="literal" name="InvalidStateFault" 2055
/> 2056
 </wsdl:fault> 2057
 </wsdl:operation> 2058
 <wsdl:operation name="ReadNextValFromMeshFile"> 2059
 <soap:operation 2060
 2061
 soapAction="http://wsi.simtech.de/extensions/pandas/ReadNextValFromMe2062
shFile" /> 2063
 <wsdl:input> 2064
 <soap:body use="literal" /> 2065
 </wsdl:input> 2066

34

 <wsdl:output> 2067
 <soap:body use="literal" /> 2068
 </wsdl:output> 2069
 <wsdl:fault name="CommandFault"> 2070
 <soap:fault use="literal" name="CommandFault" /> 2071
 </wsdl:fault> 2072
 <wsdl:fault name="InvalidStateFault"> 2073
 <soap:fault use="literal" name="InvalidStateFault" 2074
/> 2075
 </wsdl:fault> 2076
 </wsdl:operation> 2077
 <wsdl:operation name="WriteValToMeshFile"> 2078
 <soap:operation 2079
 2080
 soapAction="http://wsi.simtech.de/extensions/pandas/WriteValToMeshFil2081
e" /> 2082
 <wsdl:input> 2083
 <soap:body use="literal" /> 2084
 </wsdl:input> 2085
 <wsdl:output> 2086
 <soap:body use="literal" /> 2087
 </wsdl:output> 2088
 <wsdl:fault name="CommandFault"> 2089
 <soap:fault use="literal" name="CommandFault" /> 2090
 </wsdl:fault> 2091
 <wsdl:fault name="InvalidStateFault"> 2092
 <soap:fault use="literal" name="InvalidStateFault" 2093
/> 2094
 </wsdl:fault> 2095
 </wsdl:operation> 2096
 <wsdl:operation name="saveAllGauss"> 2097
 <soap:operation 2098
 2099
 soapAction="http://wsi.simtech.de/extensions/pandas/saveAllGauss" /> 2100
 <wsdl:input> 2101
 <soap:body use="literal" /> 2102
 </wsdl:input> 2103
 <wsdl:output> 2104
 <soap:body use="literal" /> 2105
 </wsdl:output> 2106
 <wsdl:fault name="CommandFault"> 2107
 <soap:fault use="literal" name="CommandFault" /> 2108
 </wsdl:fault> 2109
 <wsdl:fault name="InvalidStateFault"> 2110
 <soap:fault use="literal" name="InvalidStateFault" 2111
/> 2112
 </wsdl:fault> 2113
 </wsdl:operation> 2114
 <wsdl:operation name="loadAllGauss"> 2115
 <soap:operation 2116
 2117
 soapAction="http://wsi.simtech.de/extensions/pandas/loadAllGauss" /> 2118
 <wsdl:input> 2119
 <soap:body use="literal" /> 2120
 </wsdl:input> 2121
 <wsdl:output> 2122
 <soap:body use="literal" /> 2123
 </wsdl:output> 2124
 <wsdl:fault name="CommandFault"> 2125
 <soap:fault use="literal" name="CommandFault" /> 2126
 </wsdl:fault> 2127
 <wsdl:fault name="InvalidStateFault"> 2128

35

 <soap:fault use="literal" name="InvalidStateFault" 2129
/> 2130
 </wsdl:fault> 2131
 </wsdl:operation> 2132
 <wsdl:operation name="saveGaussName"> 2133
 <soap:operation 2134
 2135
 soapAction="http://wsi.simtech.de/extensions/pandas/saveGaussName" /> 2136
 <wsdl:input> 2137
 <soap:body use="literal" /> 2138
 </wsdl:input> 2139
 <wsdl:output> 2140
 <soap:body use="literal" /> 2141
 </wsdl:output> 2142
 <wsdl:fault name="CommandFault"> 2143
 <soap:fault use="literal" name="CommandFault" /> 2144
 </wsdl:fault> 2145
 <wsdl:fault name="InvalidStateFault"> 2146
 <soap:fault use="literal" name="InvalidStateFault" 2147
/> 2148
 </wsdl:fault> 2149
 </wsdl:operation> 2150
 <wsdl:operation name="loadGaussName"> 2151
 <soap:operation 2152
 2153
 soapAction="http://wsi.simtech.de/extensions/pandas/loadGaussName" /> 2154
 <wsdl:input> 2155
 <soap:body use="literal" /> 2156
 </wsdl:input> 2157
 <wsdl:output> 2158
 <soap:body use="literal" /> 2159
 </wsdl:output> 2160
 <wsdl:fault name="CommandFault"> 2161
 <soap:fault use="literal" name="CommandFault" /> 2162
 </wsdl:fault> 2163
 <wsdl:fault name="InvalildStateFault"> 2164
 <soap:fault use="literal" name="InvalildStateFault" 2165
/> 2166
 </wsdl:fault> 2167
 </wsdl:operation> 2168
 </wsdl:binding> 2169
 <wsdl:service name="WSI_Pandas"> 2170
 <wsdl:port binding="tns:WSI_PandasSOAP" name="WSI_PandasSOAP"> 2171
 <soap:address 2172
location="http://localhost:8080/axis2/services/WSI_Pandas/" /> 2173
 </wsdl:port> 2174
 </wsdl:service> 2175
 2176
</wsdl:definitions> 2177

WSDL WSI_Matlab

<?xml version="1.0" encoding="UTF-8"?> 1
<wsdl:definitions name="WSI_Matlab" 2
 xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/" 3
 xmlns:tns="http://wsi.simtech.de/extensions/matlab/" 4
 xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/" 5
 xmlns:xsd="http://www.w3.org/2001/XMLSchema" 6

36

 xmlns:types="http://wsi.simtech.de/ws/types/" 7
 targetNamespace="http://wsi.simtech.de/extensions/matlab/"> 8
 9
 <wsdl:types> 10
 <xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema" 11
targetNamespace="http://wsi.simtech.de/extensions/matlab/"> 12
 13
 <xsd:element name="ExecuteCommandSyncFault"> 14
 <xsd:complexType> 15
 <xsd:sequence> 16
 <xsd:element name="returnCode" type="xsd:int" 17
minOccurs="1" 18
 maxOccurs="1" /> 19
 <xsd:element name="errorMessage" 20
type="xsd:string" 21
 minOccurs="1" maxOccurs="1" /> 22
 </xsd:sequence> 23
 </xsd:complexType> 24
 </xsd:element> 25
 26
 <xsd:element name="prepareSimulation"> 27
 <xsd:complexType> 28
 <xsd:sequence> 29
 <xsd:element name="Name" type="xsd:string" 30
minOccurs="1" maxOccurs="1"></xsd:element> 31
 </xsd:sequence> 32
 </xsd:complexType> 33
 </xsd:element> 34
 35
 <xsd:element name="prepareSimulationResponse"> 36
 <xsd:complexType> 37
 <xsd:sequence> 38
 <xsd:element name="ReturnMessage" 39
type="xsd:string" minOccurs="1" maxOccurs="1"></xsd:element> 40
 <xsd:element name="SimID" 41
 type="xsd:long" minOccurs="1" 42
maxOccurs="1"> 43
 </xsd:element> 44
 </xsd:sequence> 45
 </xsd:complexType> 46
 </xsd:element> 47
 48
 <xsd:element name="start"> 49
 <xsd:complexType> 50
 <xsd:sequence> 51
 <xsd:element name="SimID" 52
 type="xsd:long" minOccurs="1" 53
maxOccurs="1"> 54
 </xsd:element> 55
 <xsd:element name="User" type="xsd:string" 56
 minOccurs="1" maxOccurs="1"> 57
 </xsd:element> 58
 <xsd:element name="Host" type="xsd:string" 59
 minOccurs="1" maxOccurs="1"> 60
 </xsd:element> 61
 <xsd:element name="Path" type="xsd:string" 62
 minOccurs="1" maxOccurs="1"> 63
 </xsd:element> 64
 <xsd:element name="Program" type="xsd:string" 65
 minOccurs="1" maxOccurs="1"> 66
 </xsd:element> 67
 </xsd:sequence> 68
 </xsd:complexType> 69

37

 </xsd:element> 70
 71
 <xsd:element name="startResponse"> 72
 <xsd:complexType> 73
 <xsd:sequence> 74
 <xsd:element name="ReturnMessage" 75
type="xsd:string" minOccurs="1" maxOccurs="1"></xsd:element> 76
 </xsd:sequence> 77
 </xsd:complexType> 78
 </xsd:element> 79
 80
 <xsd:element name="copy"> 81
 <xsd:complexType> 82
 <xsd:sequence> 83
 <xsd:element name="SimID" type="xsd:long" 84
 minOccurs="1" maxOccurs="1"> 85
 </xsd:element> 86
 <xsd:element name="SrcUser" type="xsd:string" 87
 minOccurs="1" maxOccurs="1"> 88
 </xsd:element> 89
 <xsd:element name="SrcHost" type="xsd:string" 90
 minOccurs="1" maxOccurs="1"> 91
 </xsd:element> 92
 <xsd:element name="SrcFile" type="xsd:string" 93
 minOccurs="1" maxOccurs="1"> 94
 </xsd:element> 95
 <xsd:element name="DstUser" 96
 type="xsd:string" minOccurs="1" 97
maxOccurs="1"> 98
 </xsd:element> 99
 <xsd:element name="DstHost" 100
 type="xsd:string" minOccurs="1" 101
maxOccurs="1"> 102
 </xsd:element> 103
 <xsd:element name="DstFile" 104
 type="xsd:string" minOccurs="1" 105
maxOccurs="1"> 106
 </xsd:element> 107
 </xsd:sequence> 108
 </xsd:complexType> 109
 </xsd:element> 110
 111
 <xsd:element name="copyResponse"> 112
 <xsd:complexType> 113
 <xsd:sequence> 114
 <xsd:element name="ReturnMessage" 115
type="xsd:string" minOccurs="1" maxOccurs="1"></xsd:element> 116
 </xsd:sequence> 117
 </xsd:complexType> 118
 </xsd:element> 119
 120
 <xsd:element name="mkdir"> 121
 <xsd:complexType> 122
 <xsd:sequence> 123
 <xsd:element name="SimID" type="xsd:long" 124
 minOccurs="1" maxOccurs="1"> 125
 </xsd:element> 126
 <xsd:element name="User" type="xsd:string" 127
 minOccurs="1" maxOccurs="1"> 128
 </xsd:element> 129
 <xsd:element name="Host" type="xsd:string" 130
 minOccurs="1" maxOccurs="1"> 131
 </xsd:element> 132

38

 <xsd:element name="Dir" 133
 type="xsd:string" minOccurs="1" 134
maxOccurs="1"> 135
 </xsd:element> 136
 </xsd:sequence> 137
 </xsd:complexType> 138
 </xsd:element> 139
 140
 <xsd:element name="mkdirResponse"> 141
 <xsd:complexType> 142
 <xsd:sequence> 143
 <xsd:element name="ReturnMessage" 144
type="xsd:string" minOccurs="1" maxOccurs="1"></xsd:element> 145
 </xsd:sequence> 146
 </xsd:complexType> 147
 </xsd:element> 148
 149
 <xsd:element name="setMatlabPath"> 150
 <xsd:complexType> 151
 <xsd:sequence> 152
 <xsd:element name="SimID" type="xsd:long" 153
minOccurs="1" maxOccurs="1"></xsd:element> 154
 <xsd:element name="MatlabPath" 155
 type="xsd:string" minOccurs="1" 156
maxOccurs="1"> 157
 </xsd:element> 158
 </xsd:sequence> 159
 </xsd:complexType> 160
 </xsd:element> 161
 162
 <xsd:element name="setMatlabPathResponse"> 163
 <xsd:complexType> 164
 <xsd:sequence> 165
 <xsd:element name="ReturnMessage" 166
type="xsd:string" minOccurs="1" maxOccurs="1"></xsd:element> 167
 </xsd:sequence> 168
 </xsd:complexType> 169
 </xsd:element> 170
 171
 <xsd:element name="getMatlabPath"> 172
 <xsd:complexType> 173
 <xsd:sequence> 174
 <xsd:element name="SimID" type="xsd:long" 175
minOccurs="1" maxOccurs="1"></xsd:element> 176
 </xsd:sequence> 177
 </xsd:complexType> 178
 </xsd:element> 179
 180
 <xsd:element name="getMatlabPathResponse"> 181
 <xsd:complexType> 182
 <xsd:sequence> 183
 <xsd:element name="MatlabPath" 184
type="xsd:string" minOccurs="1" maxOccurs="1"></xsd:element> 185
 </xsd:sequence> 186
 </xsd:complexType> 187
 </xsd:element> 188
 189
 <xsd:element name="deleteFile"> 190
 <xsd:complexType> 191
 <xsd:sequence> 192
 <xsd:element name="SimID" type="xsd:long" 193
minOccurs="1" maxOccurs="1"></xsd:element> 194
 <xsd:element name="User" 195

39

 type="xsd:string" minOccurs="1" 196
maxOccurs="1"> 197
 </xsd:element> 198
 <xsd:element name="Host" 199
 type="xsd:string" minOccurs="1" 200
maxOccurs="1"> 201
 </xsd:element> 202
 <xsd:element name="File" 203
 type="xsd:string" minOccurs="1" 204
maxOccurs="1"> 205
 </xsd:element> 206
 </xsd:sequence> 207
 </xsd:complexType> 208
 </xsd:element> 209
 210
 <xsd:element name="deleteFileResponse"> 211
 <xsd:complexType> 212
 <xsd:sequence> 213
 <xsd:element name="ReturnMessage" 214
type="xsd:string" minOccurs="1" maxOccurs="1"></xsd:element> 215
 </xsd:sequence> 216
 </xsd:complexType> 217
 </xsd:element> 218
 219
 </xsd:schema> 220
 221
 <xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema"> 222
 <xsd:import namespace="http://wsi.simtech.de/ws/types/" 223
 schemaLocation="types.xsd"> 224
 </xsd:import> 225
 </xsd:schema> 226
 </wsdl:types> 227
 228
 <wsdl:message name="prepareSimulationRequest"> 229
 <wsdl:part name="parameters" 230
element="tns:prepareSimulation"></wsdl:part> 231
 </wsdl:message> 232
 <wsdl:message name="prepareSimulationResponse"> 233
 <wsdl:part name="parameters" 234
element="tns:prepareSimulationResponse"></wsdl:part> 235
 </wsdl:message> 236
 <wsdl:message name="startRequest"> 237
 <wsdl:part name="parameters" element="tns:start"></wsdl:part> 238
 </wsdl:message> 239
 <wsdl:message name="startResponse"> 240
 <wsdl:part name="parameters" element="tns:startResponse"></wsdl:part> 241
 </wsdl:message> 242
 <wsdl:message name="copyRequest"> 243
 <wsdl:part name="parameters" element="tns:copy"></wsdl:part> 244
 </wsdl:message> 245
 <wsdl:message name="copyResponse"> 246
 <wsdl:part name="parameters" element="tns:copyResponse"></wsdl:part> 247
 </wsdl:message> 248
 <wsdl:message name="mkdirRequest"> 249
 <wsdl:part name="parameters" element="tns:mkdir"></wsdl:part> 250
 </wsdl:message> 251
 <wsdl:message name="mkdirResponse"> 252
 <wsdl:part name="parameters" element="tns:mkdirResponse"></wsdl:part> 253
 </wsdl:message> 254
 <wsdl:message name="setMatlabPathRequest"> 255
 <wsdl:part name="parameters" element="tns:setMatlabPath"></wsdl:part> 256
 </wsdl:message> 257
 <wsdl:message name="setMatlabPathResponse"> 258

40

 <wsdl:part name="parameters" 259
element="tns:setMatlabPathResponse"></wsdl:part> 260
 </wsdl:message> 261
 <wsdl:message name="getMatlabPathRequest"> 262
 <wsdl:part name="parameters" element="tns:getMatlabPath"></wsdl:part> 263
 </wsdl:message> 264
 <wsdl:message name="getMatlabPathResponse"> 265
 <wsdl:part name="parameters" 266
element="tns:getMatlabPathResponse"></wsdl:part> 267
 </wsdl:message> 268
 <wsdl:message name="InvalidStateException"> 269
 <wsdl:part name="fault" element="types:InvalidStateFault"></wsdl:part> 270
 </wsdl:message> 271
 <wsdl:message name="ExecuteCommandException"> 272
 <wsdl:part name="fault" 273
element="tns:ExecuteCommandSyncFault"></wsdl:part> 274
 </wsdl:message> 275
 <wsdl:message name="deleteFileRequest"> 276
 <wsdl:part name="parameters" element="tns:deleteFile"></wsdl:part> 277
 </wsdl:message> 278
 <wsdl:message name="deleteFileResponse"> 279
 <wsdl:part name="parameters" 280
element="tns:deleteFileResponse"></wsdl:part> 281
 </wsdl:message> 282
 283
 284
 <wsdl:portType name="WSI_Matlab"> 285
 286
 <wsdl:operation name="prepareSimulation"> 287
 <wsdl:input message="tns:prepareSimulationRequest"></wsdl:input> 288
 <wsdl:output message="tns:prepareSimulationResponse"></wsdl:output> 289
 <wsdl:fault name="InvalidStateFault" 290
message="tns:InvalidStateException"></wsdl:fault> 291
 <wsdl:fault name="CommandFault" 292
message="tns:ExecuteCommandException"></wsdl:fault> 293
 </wsdl:operation> 294
 295
 <wsdl:operation name="start"> 296
 <wsdl:input message="tns:startRequest"></wsdl:input> 297
 <wsdl:output message="tns:startResponse"></wsdl:output> 298
 <wsdl:fault name="InvalidStateFault" 299
message="tns:InvalidStateException"></wsdl:fault> 300
 <wsdl:fault name="CommandFault" 301
message="tns:ExecuteCommandException"></wsdl:fault> 302
 </wsdl:operation> 303
 304
 <wsdl:operation name="copy"> 305
 <wsdl:input message="tns:copyRequest"></wsdl:input> 306
 <wsdl:output message="tns:copyResponse"></wsdl:output> 307
 <wsdl:fault name="InvalidStateFault" 308
message="tns:InvalidStateException"></wsdl:fault> 309
 <wsdl:fault name="CommandFault" 310
message="tns:ExecuteCommandException"></wsdl:fault> 311
 </wsdl:operation> 312
 313
 <wsdl:operation name="mkdir"> 314
 <wsdl:input message="tns:mkdirRequest"></wsdl:input> 315
 <wsdl:output message="tns:mkdirResponse"></wsdl:output> 316
 <wsdl:fault name="InvalidStateFault" 317
message="tns:InvalidStateException"></wsdl:fault> 318
 <wsdl:fault name="CommandFault" 319
message="tns:ExecuteCommandException"></wsdl:fault> 320
 </wsdl:operation> 321

41

 322
 <wsdl:operation name="deleteFile"> 323
 <wsdl:input message="tns:deleteFileRequest"></wsdl:input> 324
 <wsdl:output message="tns:deleteFileResponse"></wsdl:output> 325
 <wsdl:fault name="InvalidStateFault" 326
message="tns:InvalidStateException"></wsdl:fault> 327
 <wsdl:fault name="CommandFault" 328
message="tns:ExecuteCommandException"></wsdl:fault> 329
 </wsdl:operation> 330
 331
 <wsdl:operation name="setMatlabPath"> 332
 <wsdl:input message="tns:setMatlabPathRequest"></wsdl:input> 333
 <wsdl:output message="tns:setMatlabPathResponse"></wsdl:output> 334
 <wsdl:fault name="InvalidStateFault" 335
message="tns:InvalidStateException"></wsdl:fault> 336
 <wsdl:fault name="CommandFault" 337
message="tns:ExecuteCommandException"></wsdl:fault> 338
 </wsdl:operation> 339
 340
 <wsdl:operation name="getMatlabPath"> 341
 <wsdl:input message="tns:getMatlabPathRequest"></wsdl:input> 342
 <wsdl:output message="tns:getMatlabPathResponse"></wsdl:output> 343
 <wsdl:fault name="InvalidStateFault" 344
message="tns:InvalidStateException"></wsdl:fault> 345
 <wsdl:fault name="CommandFault" 346
message="tns:ExecuteCommandException"></wsdl:fault> 347
 </wsdl:operation> 348
 </wsdl:portType> 349
 350
 351
 <wsdl:binding name="WSI_MatlabSOAP" type="tns:WSI_Matlab"> 352
 353
 354
 <soap:binding style="document" 355
 transport="http://schemas.xmlsoap.org/soap/http" /> 356
 <wsdl:operation name="prepareSimulation"> 357
 358
 <soap:operation 359
 360
 soapAction="http://wsi.simtech.de/extensions/matlab/prepareSimulation361
" /> 362
 <wsdl:input> 363
 <soap:body use="literal" /> 364
 </wsdl:input> 365
 <wsdl:output> 366
 <soap:body use="literal" /> 367
 </wsdl:output> 368
 <wsdl:fault name="InvalidStateFault"> 369
 <soap:fault use="literal" name="InvalidStateFault" /> 370
 </wsdl:fault> 371
 <wsdl:fault name="CommandFault"> 372
 <soap:fault use="literal" name="CommandFault" /> 373
 </wsdl:fault> 374
 </wsdl:operation> 375
 376
 <wsdl:operation name="start"> 377
 <soap:operation 378
 379
 soapAction="http://wsi.simtech.de/extensions/matlab/start" /> 380
 <wsdl:input> 381
 <soap:body use="literal" /> 382
 </wsdl:input> 383
 <wsdl:output> 384

42

 <soap:body use="literal" /> 385
 </wsdl:output> 386
 <wsdl:fault name="InvalidStateFault"> 387
 <soap:fault use="literal" name="InvalidStateFault" /> 388
 </wsdl:fault> 389
 <wsdl:fault name="CommandFault"> 390
 <soap:fault use="literal" name="CommandFault" /> 391
 </wsdl:fault> 392
 </wsdl:operation> 393
 394
 <wsdl:operation name="copy"> 395
 <soap:operation 396
 soapAction="http://wsi.simtech.de/extensions/matlab/copy" 397
/> 398
 <wsdl:input> 399
 <soap:body use="literal" /> 400
 </wsdl:input> 401
 <wsdl:output> 402
 <soap:body use="literal" /> 403
 </wsdl:output> 404
 <wsdl:fault name="InvalidStateFault"> 405
 <soap:fault use="literal" name="InvalidStateFault" /> 406
 </wsdl:fault> 407
 <wsdl:fault name="CommandFault"> 408
 <soap:fault use="literal" name="CommandFault" /> 409
 </wsdl:fault> 410
 </wsdl:operation> 411
 412
 <wsdl:operation name="mkdir"> 413
 <soap:operation 414
 415
 soapAction="http://wsi.simtech.de/extensions/matlab/mkdir" /> 416
 <wsdl:input> 417
 <soap:body use="literal" /> 418
 </wsdl:input> 419
 <wsdl:output> 420
 <soap:body use="literal" /> 421
 </wsdl:output> 422
 <wsdl:fault name="InvalidStateFault"> 423
 <soap:fault use="literal" name="InvalidStateFault" /> 424
 </wsdl:fault> 425
 <wsdl:fault name="CommandFault"> 426
 <soap:fault use="literal" name="CommandFault" /> 427
 </wsdl:fault> 428
 </wsdl:operation> 429
 430
 <wsdl:operation name="setMatlabPath"> 431
 <soap:operation 432
 433
 soapAction="http://wsi.simtech.de/extensions/matlab/setMatlabPath" /> 434
 <wsdl:input> 435
 <soap:body use="literal" /> 436
 </wsdl:input> 437
 <wsdl:output> 438
 <soap:body use="literal" /> 439
 </wsdl:output> 440
 <wsdl:fault name="InvalidStateFault"> 441
 <soap:fault use="literal" name="InvalidStateFault" /> 442
 </wsdl:fault> 443
 <wsdl:fault name="CommandFault"> 444
 <soap:fault use="literal" name="CommandFault" /> 445
 </wsdl:fault> 446
 </wsdl:operation> 447

43

 448
 <wsdl:operation name="getMatlabPath"> 449
 <soap:operation 450
 451
 soapAction="http://wsi.simtech.de/extensions/matlab/getMatlabPath" /> 452
 <wsdl:input> 453
 <soap:body use="literal" /> 454
 </wsdl:input> 455
 <wsdl:output> 456
 <soap:body use="literal" /> 457
 </wsdl:output> 458
 <wsdl:fault name="InvalidStateFault"> 459
 <soap:fault use="literal" name="InvalidStateFault" /> 460
 </wsdl:fault> 461
 <wsdl:fault name="CommandFault"> 462
 <soap:fault use="literal" name="CommandFault" /> 463
 </wsdl:fault> 464
 </wsdl:operation> 465
 466
 <wsdl:operation name="deleteFile"> 467
 <soap:operation 468
 469
 soapAction="http://wsi.simtech.de/extensions/matlab/deleteFile" /> 470
 <wsdl:input> 471
 <soap:body use="literal" /> 472
 </wsdl:input> 473
 <wsdl:output> 474
 <soap:body use="literal" /> 475
 </wsdl:output> 476
 <wsdl:fault name="InvalidStateFault"> 477
 <soap:fault use="literal" name="InvalidStateFault" /> 478
 </wsdl:fault> 479
 <wsdl:fault name="CommandFault"> 480
 <soap:fault use="literal" name="CommandFault" /> 481
 </wsdl:fault> 482
 </wsdl:operation> 483
 </wsdl:binding> 484
 485
 <wsdl:service name="WSI_Matlab"> 486
 <wsdl:port binding="tns:WSI_MatlabSOAP" name="WSI_MatlabSOAP"> 487
 <soap:address 488
location="http://localhost:8080/axis2/services/WSI_Matlab"/> 489
 </wsdl:port> 490
 </wsdl:service> 491
 492
</wsdl:definitions> 493

WSDL WSI_PMConnector

<?xml version="1.0" encoding="UTF-8"?> 1
<wsdl:definitions name="WSI_PMConnector" 2
 xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/" 3
 xmlns:tns="http://wsi.simtech.de/extensions/pmconn/" 4
 xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/" 5
 xmlns:xsd="http://www.w3.org/2001/XMLSchema" 6
 xmlns:types="http://wsi.simtech.de/ws/types/" 7
 targetNamespace="http://wsi.simtech.de/extensions/pmconn/"> 8
 9

44

 <wsdl:types> 10
 <xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema" 11
targetNamespace="http://wsi.simtech.de/extensions/pmconn/"> 12
 13
 <xsd:element name="ExecuteCommandSyncFault"> 14
 <xsd:complexType> 15
 <xsd:sequence> 16
 <xsd:element name="returnCode" type="xsd:int" 17
minOccurs="1" 18
 maxOccurs="1" /> 19
 <xsd:element name="errorMessage" 20
type="xsd:string" 21
 minOccurs="1" maxOccurs="1" /> 22
 </xsd:sequence> 23
 </xsd:complexType> 24
 </xsd:element> 25
 26
 27
 <xsd:element name="getCountGauss"> 28
 <xsd:complexType> 29
 <xsd:sequence> 30
 <xsd:element name="SimID" type="xsd:long" 31
 minOccurs="1" maxOccurs="1"> 32
 </xsd:element> 33
 <xsd:element name="FromSimID" 34
 type="xsd:long" minOccurs="1" 35
maxOccurs="1"> 36
 </xsd:element> 37
 <xsd:element name="Stepnr" type="xsd:int" 38
 minOccurs="1" maxOccurs="1"> 39
 </xsd:element> 40
 </xsd:sequence> 41
 </xsd:complexType> 42
 </xsd:element> 43
 44
 <xsd:element name="getCountGaussResponse"> 45
 <xsd:complexType> 46
 <xsd:sequence> 47
 <xsd:element name="Count" type="xsd:int" 48
minOccurs="1" maxOccurs="1"></xsd:element> 49
 </xsd:sequence> 50
 </xsd:complexType> 51
 </xsd:element> 52
 53
 <xsd:element name="createList"> 54
 <xsd:complexType> 55
 <xsd:sequence> 56
 <xsd:element name="SimID" type="xsd:long" 57
 minOccurs="1" maxOccurs="1"> 58
 </xsd:element> 59
 <xsd:element name="FromSimID" type="xsd:long" 60
 minOccurs="1" maxOccurs="1"> 61
 </xsd:element> 62
 <xsd:element name="Stepnr" type="xsd:int" 63
 minOccurs="1" maxOccurs="1"> 64
 </xsd:element> 65
 <xsd:element name="StartElement" 66
type="xsd:int" 67
 minOccurs="1" maxOccurs="1"> 68
 </xsd:element> 69
 <xsd:element name="EndElement" type="xsd:int" 70
 minOccurs="1" maxOccurs="1"> 71
 </xsd:element> 72

45

 <xsd:element name="Time" 73
 type="xsd:int" maxOccurs="1" 74
minOccurs="1"> 75
 </xsd:element> 76
 </xsd:sequence> 77
 </xsd:complexType> 78
 </xsd:element> 79
 80
 <xsd:element name="createListResponse"> 81
 <xsd:complexType> 82
 <xsd:sequence> 83
 <xsd:element name="ReturnMessage" 84
type="xsd:string" minOccurs="1" maxOccurs="1"></xsd:element> 85
 </xsd:sequence> 86
 </xsd:complexType> 87
 </xsd:element> 88
 89
 <xsd:element name="insertList"> 90
 <xsd:complexType> 91
 <xsd:sequence> 92
 <xsd:element name="SimID" type="xsd:long" 93
 maxOccurs="1" minOccurs="1"> 94
 </xsd:element> 95
 <xsd:element name="Stepnr" type="xsd:int" 96
 maxOccurs="1" minOccurs="1"> 97
 </xsd:element> 98
 <xsd:element name="StartElement" 99
type="xsd:int" 100
 minOccurs="1" maxOccurs="1"> 101
 </xsd:element> 102
 <xsd:element name="EndElement" type="xsd:int" 103
 minOccurs="1" maxOccurs="1"> 104
 </xsd:element> 105
 <xsd:element name="CountGauss" type="xsd:int" 106
 maxOccurs="1" minOccurs="1"> 107
 </xsd:element> 108
 </xsd:sequence> 109
 </xsd:complexType> 110
 </xsd:element> 111
 112
 <xsd:element name="insertListResponse"> 113
 <xsd:complexType> 114
 <xsd:sequence> 115
 <xsd:element name="ReturnMessage" 116
type="xsd:string" minOccurs="1" maxOccurs="1"></xsd:element> 117
 </xsd:sequence> 118
 </xsd:complexType> 119
 </xsd:element> 120
 121
 <xsd:element name="prepareSimulation"> 122
 <xsd:complexType> 123
 <xsd:sequence> 124
 <xsd:element name="Name" type="xsd:string" 125
minOccurs="1" maxOccurs="1"></xsd:element> 126
 </xsd:sequence> 127
 </xsd:complexType> 128
 </xsd:element> 129
 130
 <xsd:element name="prepareSimulationResponse"> 131
 <xsd:complexType> 132
 <xsd:sequence> 133
 <xsd:element name="ReturnMessage" 134
type="xsd:string" minOccurs="1" maxOccurs="1"></xsd:element> 135

46

 <xsd:element name="SimID" 136
 type="xsd:long" minOccurs="1" 137
maxOccurs="1"> 138
 </xsd:element> 139
 </xsd:sequence> 140
 </xsd:complexType> 141
 </xsd:element> 142
 143
 <xsd:element name="getCountElement"> 144
 <xsd:complexType> 145
 <xsd:sequence> 146
 <xsd:element name="SimID" type="xsd:long" 147
 maxOccurs="1" minOccurs="1"> 148
 </xsd:element> 149
 <xsd:element name="FromSimID" 150
 type="xsd:long" minOccurs="1" 151
maxOccurs="1"> 152
 </xsd:element> 153
 <xsd:element name="Stepnr" type="xsd:int" 154
 minOccurs="1" maxOccurs="1"> 155
 </xsd:element> 156
 </xsd:sequence> 157
 </xsd:complexType> 158
 </xsd:element> 159
 160
 <xsd:element name="getCountElementResponse"> 161
 <xsd:complexType> 162
 <xsd:sequence> 163
 <xsd:element name="Count" type="xsd:int" 164
minOccurs="1" maxOccurs="1"></xsd:element> 165
 </xsd:sequence> 166
 </xsd:complexType> 167
 </xsd:element> 168
 169
 <xsd:element name="getCountAllValues"> 170
 <xsd:complexType> 171
 <xsd:sequence> 172
 <xsd:element name="SimID" type="xsd:long" 173
 minOccurs="1" maxOccurs="1"> 174
 </xsd:element> 175
 <xsd:element name="FromSimID" 176
 type="xsd:long" minOccurs="1" 177
maxOccurs="1"> 178
 </xsd:element> 179
 <xsd:element name="Stepnr" type="xsd:int" 180
 minOccurs="1" maxOccurs="1"> 181
 </xsd:element> 182
 </xsd:sequence> 183
 </xsd:complexType> 184
 </xsd:element> 185
 186
 <xsd:element name="getCountAllValuesResponse"> 187
 <xsd:complexType> 188
 <xsd:sequence> 189
 <xsd:element name="Count" type="xsd:int" 190
minOccurs="1" maxOccurs="1"></xsd:element> 191
 </xsd:sequence> 192
 </xsd:complexType> 193
 </xsd:element> 194
 195
 <xsd:element name="setDBConn"> 196
 <xsd:complexType> 197
 <xsd:sequence> 198

47

 <xsd:element name="SimID" type="xsd:long" 199
 minOccurs="1" maxOccurs="1"> 200
 </xsd:element> 201
 <xsd:element name="Host" type="xsd:string" 202
 minOccurs="1" maxOccurs="1"> 203
 </xsd:element> 204
 <xsd:element name="DB" type="xsd:string" 205
 minOccurs="1" maxOccurs="1"> 206
 </xsd:element> 207
 <xsd:element name="User" 208
 type="xsd:string" minOccurs="1" 209
maxOccurs="1"> 210
 </xsd:element> 211
 <xsd:element name="PW" 212
 type="xsd:string" minOccurs="1" 213
maxOccurs="1"> 214
 </xsd:element> 215
 </xsd:sequence> 216
 </xsd:complexType> 217
 </xsd:element> 218
 219
 <xsd:element name="setDBConnResponse"> 220
 <xsd:complexType> 221
 <xsd:sequence> 222
 <xsd:element name="ReturnMessage" 223
type="xsd:string" minOccurs="1" maxOccurs="1"></xsd:element> 224
 </xsd:sequence> 225
 </xsd:complexType> 226
 </xsd:element> 227
 228
 <xsd:element name="getDBConn"> 229
 <xsd:complexType> 230
 <xsd:sequence> 231
 <xsd:element name="SimID" type="xsd:long" 232
minOccurs="1" maxOccurs="1"></xsd:element> 233
 </xsd:sequence> 234
 </xsd:complexType> 235
 </xsd:element> 236
 237
 <xsd:element name="getDBConnResponse"> 238
 <xsd:complexType> 239
 <xsd:sequence> 240
 <xsd:element name="Host" type="xsd:string" 241
 minOccurs="1" maxOccurs="1"> 242
 </xsd:element> 243
 <xsd:element name="DB" 244
 type="xsd:string" minOccurs="1" 245
maxOccurs="1"> 246
 </xsd:element> 247
 </xsd:sequence> 248
 </xsd:complexType> 249
 </xsd:element> 250
 251
 </xsd:schema> 252
 253
 <xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema"> 254
 <xsd:import namespace="http://wsi.simtech.de/ws/types/" 255
 schemaLocation="types.xsd"> 256
 </xsd:import> 257
 </xsd:schema> 258
 </wsdl:types> 259
 260
 261

48

 262
 263
 <wsdl:message name="getCountGaussRequest"> 264
 <wsdl:part name="parameters" element="tns:getCountGauss"></wsdl:part> 265
 </wsdl:message> 266
 <wsdl:message name="getCountGaussResponse"> 267
 <wsdl:part name="parameters" 268
element="tns:getCountGaussResponse"></wsdl:part> 269
 </wsdl:message> 270
 <wsdl:message name="createListRequest"> 271
 <wsdl:part name="parameters" element="tns:createList"></wsdl:part> 272
 </wsdl:message> 273
 <wsdl:message name="createListResponse"> 274
 <wsdl:part name="parameters" 275
element="tns:createListResponse"></wsdl:part> 276
 </wsdl:message> 277
 <wsdl:message name="insertListRequest"> 278
 <wsdl:part name="parameters" element="tns:insertList"></wsdl:part> 279
 </wsdl:message> 280
 <wsdl:message name="insertListResponse"> 281
 <wsdl:part name="parameters" 282
element="tns:insertListResponse"></wsdl:part> 283
 </wsdl:message> 284
 <wsdl:message name="prepareSimulationRequest"> 285
 <wsdl:part name="parameters" 286
element="tns:prepareSimulation"></wsdl:part> 287
 </wsdl:message> 288
 <wsdl:message name="prepareSimulationResponse"> 289
 <wsdl:part name="parameters" 290
element="tns:prepareSimulationResponse"></wsdl:part> 291
 </wsdl:message> 292
 <wsdl:message name="getCountElementRequest"> 293
 <wsdl:part name="parameters" 294
element="tns:getCountElement"></wsdl:part> 295
 </wsdl:message> 296
 <wsdl:message name="getCountElementResponse"> 297
 <wsdl:part name="parameters" 298
element="tns:getCountElementResponse"></wsdl:part> 299
 </wsdl:message> 300
 <wsdl:message name="getCountAllValuesRequest"> 301
 <wsdl:part name="parameters" 302
element="tns:getCountAllValues"></wsdl:part> 303
 </wsdl:message> 304
 <wsdl:message name="getCountAllValuesResponse"> 305
 <wsdl:part name="parameters" 306
element="tns:getCountAllValuesResponse"></wsdl:part> 307
 </wsdl:message> 308
 <wsdl:message name="InvalidStateException"> 309
 <wsdl:part name="fault" element="types:InvalidStateFault"></wsdl:part> 310
 </wsdl:message> 311
 <wsdl:message name="ExecuteCommandException"> 312
 <wsdl:part name="fault" 313
element="tns:ExecuteCommandSyncFault"></wsdl:part> 314
 </wsdl:message> 315
 316
 <wsdl:message name="setDBConnRequest"> 317
 <wsdl:part name="parameters" element="tns:setDBConn"></wsdl:part> 318
 </wsdl:message> 319
 <wsdl:message name="setDBConnResponse"> 320
 <wsdl:part name="parameters" 321
element="tns:setDBConnResponse"></wsdl:part> 322
 </wsdl:message> 323
 <wsdl:message name="getDBConnRequest"> 324

49

 <wsdl:part name="parameters" element="tns:getDBConn"></wsdl:part> 325
 </wsdl:message> 326
 <wsdl:message name="getDBConnResponse"> 327
 <wsdl:part name="parameters" 328
element="tns:getDBConnResponse"></wsdl:part> 329
 </wsdl:message> 330
 331
 332
 333
 334
 <wsdl:portType name="WSI_PMConnector"> 335
 336
 <wsdl:operation name="prepareSimulation"> 337
 <wsdl:input message="tns:prepareSimulationRequest"></wsdl:input> 338
 <wsdl:output message="tns:prepareSimulationResponse"></wsdl:output> 339
 <wsdl:fault name="InvalidStateFault" 340
message="tns:InvalidStateException"></wsdl:fault> 341
 <wsdl:fault name="CommandFault" 342
message="tns:ExecuteCommandException"></wsdl:fault> 343
 </wsdl:operation> 344
 345
 <wsdl:operation name="getCountGauss"> 346
 <wsdl:input message="tns:getCountGaussRequest"></wsdl:input> 347
 <wsdl:output message="tns:getCountGaussResponse"></wsdl:output> 348
 <wsdl:fault name="InvalidStateFault" 349
message="tns:InvalidStateException"></wsdl:fault> 350
 <wsdl:fault name="CommandFault" 351
message="tns:ExecuteCommandException"></wsdl:fault> 352
 </wsdl:operation> 353
 354
 <wsdl:operation name="getCountElement"> 355
 <wsdl:input message="tns:getCountElementRequest"></wsdl:input> 356
 <wsdl:output message="tns:getCountElementResponse"></wsdl:output> 357
 <wsdl:fault name="InvalidStateFault" 358
message="tns:InvalidStateException"></wsdl:fault> 359
 <wsdl:fault name="CommandFault" 360
message="tns:ExecuteCommandException"></wsdl:fault> 361
 </wsdl:operation> 362
 363
 <wsdl:operation name="createList"> 364
 <wsdl:input message="tns:createListRequest"></wsdl:input> 365
 <wsdl:output message="tns:createListResponse"></wsdl:output> 366
 <wsdl:fault name="InvalidStateFault" 367
message="tns:InvalidStateException"></wsdl:fault> 368
 <wsdl:fault name="CommandFault" 369
message="tns:ExecuteCommandException"></wsdl:fault> 370
 </wsdl:operation> 371
 372
 <wsdl:operation name="insertList"> 373
 <wsdl:input message="tns:insertListRequest"></wsdl:input> 374
 <wsdl:output message="tns:insertListResponse"></wsdl:output> 375
 <wsdl:fault name="InvalidStateFault" 376
message="tns:InvalidStateException"></wsdl:fault> 377
 <wsdl:fault name="CommandFault" 378
message="tns:ExecuteCommandException"></wsdl:fault> 379
 </wsdl:operation> 380
 381
 <wsdl:operation name="getCountAllValues"> 382
 <wsdl:input message="tns:getCountAllValuesRequest"></wsdl:input> 383
 <wsdl:output message="tns:getCountAllValuesResponse"></wsdl:output> 384
 <wsdl:fault name="InvalidStateFault" 385
message="tns:InvalidStateException"></wsdl:fault> 386

50

 <wsdl:fault name="CommandFault" 387
message="tns:ExecuteCommandException"></wsdl:fault> 388
 </wsdl:operation> 389
 <wsdl:operation name="setDBConn"> 390
 <wsdl:input message="tns:setDBConnRequest"></wsdl:input> 391
 <wsdl:output message="tns:setDBConnResponse"></wsdl:output> 392
 <wsdl:fault name="InvalidStateFault" 393
message="tns:InvalidStateException"></wsdl:fault> 394
 <wsdl:fault name="CommandFault" 395
message="tns:ExecuteCommandException"></wsdl:fault> 396
 </wsdl:operation> 397
 <wsdl:operation name="getDBConn"> 398
 <wsdl:input message="tns:getDBConnRequest"></wsdl:input> 399
 <wsdl:output message="tns:getDBConnResponse"></wsdl:output> 400
 <wsdl:fault name="InvalidStateFault" 401
message="tns:InvalidStateException"></wsdl:fault> 402
 <wsdl:fault name="CommandFault" 403
message="tns:ExecuteCommandException"></wsdl:fault> 404
 </wsdl:operation> 405
 </wsdl:portType> 406
 407
 408
 <wsdl:binding name="WSI_PMConnectorSOAP" type="tns:WSI_PMConnector"> 409
 410
 <soap:binding style="document" 411
 transport="http://schemas.xmlsoap.org/soap/http" /> 412
 <wsdl:operation name="getCountGauss"> 413
 414
 <soap:operation 415
 416
 soapAction="http://wsi.simtech.de/extensions/pmconn/getCountGauss" /> 417
 <wsdl:input> 418
 <soap:body use="literal" /> 419
 </wsdl:input> 420
 <wsdl:output> 421
 <soap:body use="literal" /> 422
 </wsdl:output> 423
 <wsdl:fault name="InvalidStateFault"> 424
 <soap:fault use="literal" name="InvalidStateFault" /> 425
 </wsdl:fault> 426
 <wsdl:fault name="CommandFault"> 427
 <soap:fault use="literal" name="CommandFault" /> 428
 </wsdl:fault> 429
 </wsdl:operation> 430
 431
 <wsdl:operation name="createList"> 432
 <soap:operation 433
 434
 soapAction="http://wsi.simtech.de/extensions/pmconn/createList" /> 435
 <wsdl:input> 436
 <soap:body use="literal" /> 437
 </wsdl:input> 438
 <wsdl:output> 439
 <soap:body use="literal" /> 440
 </wsdl:output> 441
 <wsdl:fault name="InvalidStateFault"> 442
 <soap:fault use="literal" name="InvalidStateFault" /> 443
 </wsdl:fault> 444
 <wsdl:fault name="CommandFault"> 445
 <soap:fault use="literal" name="CommandFault" /> 446
 </wsdl:fault> 447
 </wsdl:operation> 448
 449

51

 <wsdl:operation name="insertList"> 450
 <soap:operation 451
 452
 soapAction="http://wsi.simtech.de/extensions/pmconn/insertList" /> 453
 <wsdl:input> 454
 <soap:body use="literal" /> 455
 </wsdl:input> 456
 <wsdl:output> 457
 <soap:body use="literal" /> 458
 </wsdl:output> 459
 <wsdl:fault name="InvalidStateFault"> 460
 <soap:fault use="literal" name="InvalidStateFault" /> 461
 </wsdl:fault> 462
 <wsdl:fault name="CommandFault"> 463
 <soap:fault use="literal" name="CommandFault" /> 464
 </wsdl:fault> 465
 </wsdl:operation> 466
 467
 468
 <wsdl:operation name="prepareSimulation"> 469
 <soap:operation 470
 471
 soapAction="http://wsi.simtech.de/extensions/pmconn/prepareSimulation472
" /> 473
 <wsdl:input> 474
 <soap:body use="literal" /> 475
 </wsdl:input> 476
 <wsdl:output> 477
 <soap:body use="literal" /> 478
 </wsdl:output> 479
 <wsdl:fault name="InvalidStateFault"> 480
 <soap:fault use="literal" name="InvalidStateFault" /> 481
 </wsdl:fault> 482
 <wsdl:fault name="CommandFault"> 483
 <soap:fault use="literal" name="CommandFault" /> 484
 </wsdl:fault> 485
 </wsdl:operation> 486
 487
 <wsdl:operation name="getCountElement"> 488
 <soap:operation 489
 490
 soapAction="http://wsi.simtech.de/extensions/pmconn/getCountElement" 491
/> 492
 <wsdl:input> 493
 <soap:body use="literal" /> 494
 </wsdl:input> 495
 <wsdl:output> 496
 <soap:body use="literal" /> 497
 </wsdl:output> 498
 <wsdl:fault name="InvalidStateFault"> 499
 <soap:fault use="literal" name="InvalidStateFault" /> 500
 </wsdl:fault> 501
 <wsdl:fault name="CommandFault"> 502
 <soap:fault use="literal" name="CommandFault" /> 503
 </wsdl:fault> 504
 </wsdl:operation> 505
 506
 <wsdl:operation name="getCountAllValues"> 507
 <soap:operation 508
 509
 soapAction="http://wsi.simtech.de/extensions/pmconn/getCountAllValues510
" /> 511
 <wsdl:input> 512

52

 <soap:body use="literal" /> 513
 </wsdl:input> 514
 <wsdl:output> 515
 <soap:body use="literal" /> 516
 </wsdl:output> 517
 <wsdl:fault name="InvalidStateFault"> 518
 <soap:fault use="literal" name="InvalidStateFault" /> 519
 </wsdl:fault> 520
 <wsdl:fault name="CommandFault"> 521
 <soap:fault use="literal" name="CommandFault" /> 522
 </wsdl:fault> 523
 </wsdl:operation> 524
 525
 <wsdl:operation name="setDBConn"> 526
 <soap:operation 527
 528
 soapAction="http://wsi.simtech.de/extensions/pmconn/setDBConn" /> 529
 <wsdl:input> 530
 <soap:body use="literal" /> 531
 </wsdl:input> 532
 <wsdl:output> 533
 <soap:body use="literal" /> 534
 </wsdl:output> 535
 <wsdl:fault name="InvalidStateFault"> 536
 <soap:fault use="literal" name="InvalidStateFault" /> 537
 </wsdl:fault> 538
 <wsdl:fault name="CommandFault"> 539
 <soap:fault use="literal" name="CommandFault" /> 540
 </wsdl:fault> 541
 </wsdl:operation> 542
 543
 <wsdl:operation name="getDBConn"> 544
 <soap:operation 545
 546
 soapAction="http://wsi.simtech.de/extensions/pmconn/getDBConn" /> 547
 <wsdl:input> 548
 <soap:body use="literal" /> 549
 </wsdl:input> 550
 <wsdl:output> 551
 <soap:body use="literal" /> 552
 </wsdl:output> 553
 <wsdl:fault name="InvalidStateFault"> 554
 <soap:fault use="literal" name="InvalidStateFault" /> 555
 </wsdl:fault> 556
 <wsdl:fault name="CommandFault"> 557
 <soap:fault use="literal" name="CommandFault" /> 558
 </wsdl:fault> 559
 </wsdl:operation> 560
 </wsdl:binding> 561
 562
 <wsdl:service name="WSI_PMConnector"> 563
 <wsdl:port binding="tns:WSI_PMConnectorSOAP" 564
name="WSI_PMConnectorSOAP"> 565
 <soap:address 566
location="http://localhost:8080/axis2/services/WSI_PMConnector"/> 567
 </wsdl:port> 568
 </wsdl:service> 569
 570
</wsdl:definitions> 571

53

WSDL Data-Quality

<?xml version="1.0"?> 1
<definitions name="DQ-WF" 2
 targetNamespace="http://wsi.simtech.de/processes/samples/DQ-WF" 3
 xmlns:tns="http://wsi.simtech.de/processes/samples/DQ-WF" 4
 xmlns:plnk="http://docs.oasis-open.org/wsbpel/2.0/plnktype" 5
 xmlns="http://schemas.xmlsoap.org/wsdl/" 6
 xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"> 7
 8
<!-- ~~~ 9
 TYPE DEFINITION - List of types participating in this BPEL process 10
 The BPEL Designer will generate default request and response types 11
 but you can define or import any XML Schema type and use them as part 12
 of the message types. 13
     ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 14 
-->     15 
    <types> 16 
        <schema attributeFormDefault="unqualified" 17 
elementFormDefault="qualified"  18 
                19 
targetNamespace="http://wsi.simtech.de/processes/samples/DQ-WF"  20 
                xmlns="http://www.w3.org/2001/XMLSchema"> 21 
 22 
            <element name="DQ-WFRequest"> 23 
                <complexType> 24 
                    <sequence> 25 
                     <element name="ProblemName" type="string" 26 
                      minOccurs="1" maxOccurs="1" /> 27 
                     <element name="CmdFile" type="string" 28 
                      minOccurs="1" maxOccurs="1"> 29 
                     </element> 30 
                     <element name="StepWidth" type="int" 31 
                      minOccurs="1" maxOccurs="1"> 32 
                     </element> 33 
 34 
                    </sequence> 35 
                </complexType> 36 
            </element> 37 
 38 
            <element name="DQ-WFResponse"> 39 
                <complexType> 40 
                    <sequence> 41 
                        <element name="result" type="string"/> 42 
                    </sequence> 43 
                </complexType> 44 
            </element> 45 
        </schema> 46 
    </types> 47 
 48 
 49 
<!-- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 50 
     MESSAGE TYPE DEFINITION - Definition of the message types used as  51 
     part of the port type defintions 52 
     ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 53 
--> 54
 <message name="DQ-WFRequestMessage"> 55
 <part name="payload" element="tns:DQ-WFRequest"/> 56
 </message> 57
 <message name="DQ-WFResponseMessage"> 58
 <part name="payload" element="tns:DQ-WFResponse"/> 59

54

 </message> 60
 61
<!-- ~~~ 62
 PORT TYPE DEFINITION - A port type groups a set of operations into 63
 a logical service unit. 64
     ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 65 
-->     66 
 67 
    <!-- portType implemented by the DQ-WF BPEL process --> 68 
    <portType name="DQ-WF"> 69 
        <operation name="process"> 70 
            <input  message="tns:DQ-WFRequestMessage" /> 71 
            <output message="tns:DQ-WFResponseMessage"/> 72 
        </operation> 73 
    </portType> 74 
   75 
 76 
<!-- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 77 
     PARTNER LINK TYPE DEFINITION 78 
     ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 79 
--> 80
 <plnk:partnerLinkType name="DQ-WF"> 81
 <plnk:role name="DQ-WFProvider" portType="tns:DQ-WF"/> 82
 </plnk:partnerLinkType> 83
 84
 <binding name="DQ-WFBinding" type="tns:DQ-WF"> 85
 <soap:binding style="document" 86
 transport="http://schemas.xmlsoap.org/soap/http" /> 87
 <operation name="process"> 88
 <soap:operation 89
 soapAction="http://wsi.simtech.de/processes/samples/DQ-90
WF/process" /> 91
 <input> 92
 <soap:body use="literal" /> 93
 </input> 94
 <output> 95
 <soap:body use="literal" /> 96
 </output> 97
 </operation> 98
 </binding> 99
 <service name="DQ-WFService"> 100
 <port name="DQ-WF" binding="tns:DQ-WFBinding"> 101
 <soap:address location="http://localhost:8080/ode/processes/DQ-102
WF" /> 103
 </port> 104
 </service> 105
</definitions> 106

WSDL TwoInstances

<?xml version="1.0"?> 1
<definitions name="twoinstances" 2
 3
targetNamespace="http://wsi.simtech.de/processes/samples/twoinstances" 4
 xmlns:tns="http://wsi.simtech.de/processes/samples/twoinstances" 5
 xmlns:plnk="http://docs.oasis-open.org/wsbpel/2.0/plnktype" 6
 xmlns="http://schemas.xmlsoap.org/wsdl/" 7
 xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"> 8
 9
<!-- ~~~ 10

55

 TYPE DEFINITION - List of types participating in this BPEL process 11
 The BPEL Designer will generate default request and response types 12
 but you can define or import any XML Schema type and use them as part 13
 of the message types. 14
     ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 15 
-->     16 
    <types> 17 
        <schema attributeFormDefault="unqualified" 18 
elementFormDefault="qualified"  19 
                20 
targetNamespace="http://wsi.simtech.de/processes/samples/twoinstances"  21 
                xmlns="http://www.w3.org/2001/XMLSchema"> 22 
 23 
            <element name="twoinstancesRequest"> 24 
                <complexType> 25 
                    <sequence> 26 
                     <element name="Problem-SimA" type="string" 27 
                      minOccurs="1" maxOccurs="1" /> 28 
                     <element name="CmdFile-SimA" type="string" 29 
                      minOccurs="1" maxOccurs="1"> 30 
                     </element> 31 
                     <element name="StepWidth-SimA" type="int" 32 
                      minOccurs="1" maxOccurs="1"> 33 
                     </element> 34 
                     <element name="Problem-SimB" type="string" 35 
                      minOccurs="1" maxOccurs="1"> 36 
                     </element> 37 
                     <element name="CmdFile-SimB" type="string" 38 
minOccurs="1" maxOccurs="1"></element> 39 
                     <element name="StepWidth-SimB" type="int" 40 
                      minOccurs="1" maxOccurs="1"> 41 
                     </element> 42 
                    </sequence> 43 
                </complexType> 44 
            </element> 45 
 46 
            <element name="twoinstancesResponse"> 47 
                <complexType> 48 
                    <sequence> 49 
                        <element name="result" type="string"/> 50 
                    </sequence> 51 
                </complexType> 52 
            </element> 53 
        </schema> 54 
    </types> 55 
 56 
 57 
<!-- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 58 
     MESSAGE TYPE DEFINITION - Definition of the message types used as  59 
     part of the port type defintions 60 
     ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 61 
--> 62
 <message name="twoinstancesRequestMessage"> 63
 <part name="payload" element="tns:twoinstancesRequest"/> 64
 </message> 65
 <message name="twoinstancesResponseMessage"> 66
 <part name="payload" element="tns:twoinstancesResponse"/> 67
 </message> 68
 69
<!-- ~~~ 70
 PORT TYPE DEFINITION - A port type groups a set of operations into 71
 a logical service unit. 72

56

     ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 73 
-->     74 
 75 
    <!-- portType implemented by the twoinstances BPEL process --> 76 
    <portType name="twoinstances"> 77 
        <operation name="process"> 78 
            <input  message="tns:twoinstancesRequestMessage" /> 79 
            <output message="tns:twoinstancesResponseMessage"/> 80 
        </operation> 81 
    </portType> 82 
   83 
 84 
<!-- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 85 
     PARTNER LINK TYPE DEFINITION 86 
     ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 87 
--> 88
 <plnk:partnerLinkType name="twoinstances"> 89
 <plnk:role name="twoinstancesProvider" 90
portType="tns:twoinstances"/> 91
 </plnk:partnerLinkType> 92
 93
 <binding name="twoinstancesBinding" type="tns:twoinstances"> 94
 <soap:binding style="document" 95
 transport="http://schemas.xmlsoap.org/soap/http" /> 96
 <operation name="process"> 97
 <soap:operation 98
 99
 soapAction="http://wsi.simtech.de/processes/samples/twoinstances/proc100
ess" /> 101
 <input> 102
 <soap:body use="literal" /> 103
 </input> 104
 <output> 105
 <soap:body use="literal" /> 106
 </output> 107
 </operation> 108
 </binding> 109
 <service name="twoinstances"> 110
 <port name="twoinstancesPort" binding="tns:twoinstancesBinding"> 111
 <soap:address 112
location="http://localhost:8080/ode/processes/twoinstances" /> 113
 </port> 114
 </service> 115
 116
 <service name="twoinstances_vm"> 117
 <port name="twoinstancesPort_vm" binding="tns:twoinstancesBinding"> 118
 <soap:address 119
location="http://192.168.1.112:8080/ode/processes/twoinstances" /> 120
 </port> 121
 </service> 122
 123
</definitions> 124

WSDL Pandas-Bone

<?xml version="1.0" encoding="UTF-8" standalone="no"?> 1
<definitions xmlns="http://schemas.xmlsoap.org/wsdl/" 2
xmlns:plnk="http://docs.oasis-open.org/wsbpel/2.0/plnktype" 3
xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/" 4
xmlns:tns="http://wsi.simtech.de/processes/samples/Pandas-Bone" 5

57

xmlns:vprop="http://docs.oasis-open.org/wsbpel/2.0/varprop" 6
xmlns:wsdl="http://wsi.simtech.de/extensions/pandas/" 7
xmlns:wsdl1="http://wsi.simtech.de/processes/samples/Matlab-Dispatcher" 8
xmlns:xsd="http://www.w3.org/2001/XMLSchema" name="Pandas-Bone" 9
targetNamespace="http://wsi.simtech.de/processes/samples/Pandas-Bone"> 10
 11
<!-- ~~~ 12
 TYPE DEFINITION - List of types participating in this BPEL process 13
 The BPEL Designer will generate default request and response types 14
 but you can define or import any XML Schema type and use them as part 15
 of the message types. 16
     ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 17 
-->     18 
    <plnk:partnerLinkType name="WSI_Pandas"> 19 
    <plnk:role name="WSI_Pandas" portType="wsdl:WSI_Pandas"/> 20 
  </plnk:partnerLinkType> 21 
    <plnk:partnerLinkType name="Matlab-Dispatcher"> 22 
    <plnk:role name="Matlab-Dispatcher" portType="wsdl1:Matlab-23 
Dispatcher"/> 24 
  </plnk:partnerLinkType> 25 
    <import location="WSI_Pandas.wsdl" 26 
namespace="http://wsi.simtech.de/extensions/pandas/"/> 27 
    <import location="Matlab-DispatcherArtifacts.wsdl" 28 
namespace="http://wsi.simtech.de/processes/samples/Matlab-Dispatcher"/> 29 
    <types> 30 
        <schema xmlns="http://www.w3.org/2001/XMLSchema" 31 
attributeFormDefault="unqualified" elementFormDefault="qualified" 32 
targetNamespace="http://wsi.simtech.de/processes/samples/Pandas-Bone"> 33 
 34 
            <element name="Pandas-BoneRequest"> 35 
                <complexType> 36 
                    <sequence> 37 
                     <element maxOccurs="1" minOccurs="1" 38 
name="PandasData" type="tns:PandasDataType"/> 39 
                     <element maxOccurs="1" minOccurs="1" 40 
name="MatlabData" type="tns:MatlabDataType"/> 41 
                     <element maxOccurs="1" minOccurs="1" 42 
name="WSINodeData" type="tns:WSINodeDataType"/> 43 
                    </sequence> 44 
                </complexType> 45 
            </element> 46 
 47 
            <element name="Pandas-BoneResponse"> 48 
                <complexType> 49 
                    <sequence> 50 
                        <element name="result" type="string"/> 51 
                    </sequence> 52 
                </complexType> 53 
            </element> 54 
         55 
            <complexType name="PandasDataType"> 56 
             <sequence> 57 
              <element maxOccurs="1" minOccurs="1" 58 
name="ProblemName" type="string"> 59 
              </element> 60 
              <element maxOccurs="1" minOccurs="1" name="CmdFile" 61 
type="string"> 62 
              </element> 63 
              <element maxOccurs="1" minOccurs="1" 64 
name="Step_Width" type="int"> 65 
              </element> 66 
              <element maxOccurs="1" minOccurs="1" 67 
name="End_Step" type="int"/> 68 



58 

             </sequence> 69 
            </complexType> 70 
             71 
            <complexType name="MatlabDataType"> 72 
             <sequence> 73 
              <element maxOccurs="unbounded" minOccurs="1" 74 
name="MatlabNodes" type="tns:MatlabNodeType"/> 75 
              <element maxOccurs="1" minOccurs="1" name="SimData" 76 
type="tns:SimDataType"/> 77 
              <element maxOccurs="1" minOccurs="1" name="t_end" 78 
type="int"/> 79 
             </sequence> 80 
            </complexType> 81 
             82 
            <complexType name="WSINodeDataType"> 83 
             <sequence> 84 
              <element maxOccurs="1" minOccurs="1" name="User" 85 
type="string"/> 86 
              <element maxOccurs="1" minOccurs="1" name="Host" 87 
type="string"/> 88 
             </sequence> 89 
            </complexType> 90 
             91 
            <complexType name="MatlabNodeType"> 92 
             <sequence> 93 
              <element maxOccurs="1" minOccurs="1" name="User" 94 
type="string"/> 95 
              <element maxOccurs="1" minOccurs="1" name="Host" 96 
type="string"/> 97 
              <element maxOccurs="1" minOccurs="1" name="SimPath" 98 
type="string"/> 99 
              <element maxOccurs="1" minOccurs="1" 100 
name="MatlabPath" type="string"/> 101 
             </sequence> 102 
            </complexType> 103 
             104 
            <complexType name="SimDataType"> 105 
             <sequence> 106 
              <element maxOccurs="1" minOccurs="1" 107 
name="SrcArchive" type="string"/> 108 
              <element maxOccurs="1" minOccurs="1" name="mFile" 109 
type="string"/> 110 
             </sequence> 111 
            </complexType> 112 
        </schema> 113 
    </types> 114 
 115 
 116 
<!-- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 117 
     MESSAGE TYPE DEFINITION - Definition of the message types used as  118 
     part of the port type defintions 119 
     ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 120 
--> 121
 <message name="Pandas-BoneRequestMessage"> 122
 <part element="tns:Pandas-BoneRequest" name="payload"/> 123
 </message> 124
 <message name="Pandas-BoneResponseMessage"> 125
 <part element="tns:Pandas-BoneResponse" name="payload"/> 126
 </message> 127
 128
<!-- ~~~ 129
 PORT TYPE DEFINITION - A port type groups a set of operations into 130
 a logical service unit. 131

59

     ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 132 
-->     133 
 134 
    <!-- portType implemented by the Pandas-Bone BPEL process --> 135 
    <portType name="Pandas-Bone"> 136 
        <operation name="process"> 137 
            <input message="tns:Pandas-BoneRequestMessage"/> 138 
            <output message="tns:Pandas-BoneResponseMessage"/> 139 
        </operation> 140 
    </portType> 141 
   142 
 143 
<!-- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 144 
     PARTNER LINK TYPE DEFINITION 145 
     ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 146 
--> 147
 <plnk:partnerLinkType name="Pandas-Bone"> 148
 <plnk:role name="Pandas-BoneProvider" portType="tns:Pandas-Bone"/> 149
 </plnk:partnerLinkType> 150
 151
 <binding name="Pandas-BoneBinding" type="tns:Pandas-Bone"> 152
 <soap:binding style="document" 153
transport="http://schemas.xmlsoap.org/soap/http"/> 154
 <operation name="process"> 155
 <soap:operation 156
soapAction="http://wsi.simtech.de/processes/samples/Pandas-Bone/process"/> 157
 <input> 158
 <soap:body use="literal"/> 159
 </input> 160
 <output> 161
 <soap:body use="literal"/> 162
 </output> 163
 </operation> 164
 </binding> 165
 <service name="Pandas-BoneService"> 166
 <port binding="tns:Pandas-BoneBinding" name="Pandas-BonePort"> 167
 <soap:address 168
location="http://localhost:8080/ode/processes/Pandas-Bone"/> 169
 </port> 170
 </service> 171
</definitions> 172

WSDL Data-Manager

<?xml version="1.0" encoding="UTF-8" standalone="no"?> 1
<definitions xmlns="http://schemas.xmlsoap.org/wsdl/" 2
xmlns:plnk="http://docs.oasis-open.org/wsbpel/2.0/plnktype" 3
xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/" 4
xmlns:tns="http://wsi.simtech.de/processes/samples/Matlab-Dispatcher" 5
xmlns:types="http://wsi.simtech.de/ws/types/" 6
xmlns:vprop="http://docs.oasis-open.org/wsbpel/2.0/varprop" 7
xmlns:wsdl="http://wsi.simtech.de/extensions/pmconn/" 8
xmlns:wsdl1="http://wsi.simtech.de/extensions/matlab/" 9
xmlns:wsdl2="http://wsi.simtech.de/processes/samples/Matlab-Bone" 10
xmlns:wsdl4="http://wsi.simtech.de/extensions/pandas/" 11
xmlns:xsd="http://www.w3.org/2001/XMLSchema" name="Matlab-Dispatcher" 12
targetNamespace="http://wsi.simtech.de/processes/samples/Matlab-13
Dispatcher"> 14
 15
<!-- ~~~ 16

60

 TYPE DEFINITION - List of services participating in this BPEL process 17
 The default output of the BPEL designer uses strings as input and 18
 output to the BPEL Process. But you can define or import any XML 19
 Schema type and us them as part of the message types. 20
     ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 21 
-->     22 
    <plnk:partnerLinkType name="WSI_PMConnector"> 23 
      <plnk:role name="WSI_PMConnector" portType="wsdl:WSI_PMConnector"/> 24 
    </plnk:partnerLinkType> 25 
    <plnk:partnerLinkType name="WSI_Matlab"> 26 
      <plnk:role name="WSI_Matlab" portType="wsdl1:WSI_Matlab"/> 27 
    </plnk:partnerLinkType> 28 
    <plnk:partnerLinkType name="WSI_Pandas"> 29 
      <plnk:role name="WSI_Pandas" portType="wsdl4:WSI_Pandas"/> 30 
    </plnk:partnerLinkType> 31 
     32 
    <vprop:property name="PandasSimID" type="xsd:long"/> 33 
     34 
    <vprop:propertyAlias messageType="tns:Matlab-DispatcherResponseMessage" 35 
part="payload" propertyName="tns:PandasSimID"> 36 
    <vprop:query><![CDATA[/tns:SimID-Pandas]]></vprop:query> 37 
  </vprop:propertyAlias> 38 
    <vprop:propertyAlias messageType="tns:startMatlabSimRequest" 39 
part="parameters" propertyName="tns:PandasSimID"> 40 
    <vprop:query><![CDATA[/tns:SimIDPandas]]></vprop:query> 41 
  </vprop:propertyAlias> 42 
    <vprop:propertyAlias messageType="tns:stopRequest" part="parameters" 43 
propertyName="tns:PandasSimID"> 44 
    <vprop:query><![CDATA[/tns:SimID-Pandas]]></vprop:query> 45 
  </vprop:propertyAlias> 46 
    <vprop:propertyAlias messageType="wsdl2:Matlab-BoneResponseMessage" 47 
part="payload" propertyName="tns:PandasSimID"> 48 
    <vprop:query><![CDATA[/wsdl2:PandasSimID]]></vprop:query> 49 
  </vprop:propertyAlias> 50 
    <import location="WSI_PMConnector.wsdl" 51 
namespace="http://wsi.simtech.de/extensions/pmconn/"/> 52 
    <import location="WSI_Matlab.wsdl" 53 
namespace="http://wsi.simtech.de/extensions/matlab/"/> 54 
    <import location="WSI_Pandas.wsdl" 55 
namespace="http://wsi.simtech.de/extensions/pandas/"/> 56 
    <import location="Matlab-BoneArtifacts.wsdl" 57 
namespace="http://wsi.simtech.de/processes/samples/Matlab-Bone"/> 58 
    <types>   59 
        <schema xmlns="http://www.w3.org/2001/XMLSchema" 60 
attributeFormDefault="unqualified" elementFormDefault="qualified" 61 
targetNamespace="http://wsi.simtech.de/processes/samples/Matlab-62 
Dispatcher"> 63 
                 64 
            <element name="Matlab-DispatcherRequest"> 65 
                <complexType> 66 
                    <sequence> 67 
                     <element maxOccurs="1" minOccurs="1" name="SimID-68 
Pandas" type="long"/> 69 
                     <element maxOccurs="unbounded" minOccurs="1" 70 
name="MatlabNode" type="tns:MatlabNodeType"> 71 
                     </element> 72 
                     <element maxOccurs="1" minOccurs="1" name="SimNode" 73 
type="tns:SimNodeType"> 74 
                     </element> 75 
                     <element maxOccurs="1" minOccurs="1" name="SimData" 76 
type="tns:SimDataType"/> 77 
                    </sequence> 78 
                </complexType> 79 



61 

            </element> 80 
                   81 
            <element name="Matlab-DispatcherResponse"> 82 
                <complexType> 83 
                    <sequence> 84 
                     <element name="result" type="string"/> 85 
                     <element maxOccurs="1" minOccurs="1" name="SimID-86 
Pandas" type="long"/> 87 
                    </sequence> 88 
                </complexType> 89 
            </element> 90 
             91 
            <complexType name="MatlabNodeType"> 92 
             <sequence> 93 
              <element maxOccurs="1" minOccurs="1" name="User" 94 
type="string"> 95 
              </element> 96 
              <element maxOccurs="1" minOccurs="1" name="Host" 97 
type="string"> 98 
              </element> 99 
              <element maxOccurs="1" minOccurs="1" name="SimPath" 100 
type="string"> 101 
              </element> 102 
              <element maxOccurs="1" minOccurs="0" 103 
name="MatlabPath" type="string"/> 104 
             </sequence> 105 
            </complexType> 106 
             107 
            <complexType name="SimNodeType"> 108 
             <sequence> 109 
              <element maxOccurs="1" minOccurs="1" name="User" 110 
type="string"/> 111 
              <element maxOccurs="1" minOccurs="1" name="Host" 112 
type="string"/> 113 
             </sequence> 114 
            </complexType> 115 
             116 
            <complexType name="SimDataType"> 117 
             <sequence> 118 
 119 
                    <element maxOccurs="1" minOccurs="1" name="SrcArchive" 120 
type="string"/> 121 
                    <element maxOccurs="1" minOccurs="1" name="mFile" 122 
type="string"> 123 
              </element> 124 
 125 
             </sequence> 126 
            </complexType> 127 
         128 
            <complexType name="InstanceType"> 129 
             <sequence> 130 
              <element maxOccurs="1" minOccurs="1" name="SimID" 131 
type="long"> 132 
              </element> 133 
              <element maxOccurs="1" minOccurs="1" 134 
name="MatlabNode" type="tns:MatlabNodeType"/> 135 
             </sequence> 136 
            </complexType> 137 
         138 
            <complexType name="InstancesType"> 139 
             <sequence> 140 
              <element maxOccurs="unbounded" minOccurs="1" 141 
name="Instance" type="tns:InstanceType"/> 142 



62 

             </sequence> 143 
            </complexType> 144 
             145 
            <element name="startMatlabSim"> 146 
             <complexType> 147 
              <sequence> 148 
               <element maxOccurs="1" minOccurs="1" 149 
name="SimIDPandas" type="long"> 150 
               </element> 151 
               <element maxOccurs="1" minOccurs="1" 152 
name="t_end" type="int"> 153 
               </element> 154 
               <element maxOccurs="1" minOccurs="1" 155 
name="Stepnr" type="int"/> 156 
              </sequence> 157 
             </complexType> 158 
            </element> 159 
             160 
            <element name="startMatlabSimResponse"> 161 
             <complexType> 162 
              <sequence> 163 
               <element name="out" type="string"/> 164 
               <element maxOccurs="1" minOccurs="1" 165 
name="SimID-Pandas" type="long"/> 166 
              </sequence> 167 
             </complexType> 168 
            </element> 169 
             170 
            <element name="stop"> 171 
             <complexType> 172 
              <sequence> 173 
               <element maxOccurs="1" minOccurs="1" 174 
name="SimID-Pandas" type="long"/> 175 
              </sequence> 176 
             </complexType> 177 
            </element> 178 
             179 
            <element name="stopResponse"> 180 
             <complexType> 181 
              <sequence> 182 
               <element name="out" type="string"/> 183 
               <element maxOccurs="1" minOccurs="1" 184 
name="SimID-Pandas" type="long"/> 185 
              </sequence> 186 
             </complexType> 187 
            </element> 188 
             189 
            <element name="Instances" type="tns:InstancesType"/> 190 
             191 
        </schema> 192 
    </types> 193 
   194 
<!-- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 195 
     MESSAGE TYPE DEFINITION - Definition of the message types used as  196 
     part of the port type defintions 197 
     ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 198 
--> 199
 <message name="Matlab-DispatcherRequestMessage"> 200
 <part element="tns:Matlab-DispatcherRequest" name="payload"/> 201
 </message> 202
 <message name="Matlab-DispatcherResponseMessage"> 203
 <part element="tns:Matlab-DispatcherResponse" name="payload"/> 204
 </message> 205

63

 <message name="startMatlabSimRequest"> 206
 <part element="tns:startMatlabSim" name="parameters"/> 207
 </message> 208
 <message name="startMatlabSimResponse"> 209
 <part element="tns:startMatlabSimResponse" name="parameters"/> 210
 </message> 211
 <message name="stopRequest"> 212
 <part element="tns:stop" name="parameters"/> 213
 </message> 214
 <message name="stopResponse"> 215
 <part element="tns:stopResponse" name="parameters"/> 216
 </message> 217
 <message name="InstancesMsg"> 218
 <part element="tns:Instances" name="parameters"/> 219
 </message> 220
 221
<!-- ~~~ 222
 PORT TYPE DEFINITION - A port type groups a set of operations into 223
 a logical service unit. 224
     ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 225 
--> 226 
    <!-- portType implemented by the Matlab-Dispatcher BPEL process --> 227 
 228 
    <portType name="Matlab-Dispatcher"> 229 
        <operation name="initiate"> 230 
            <input message="tns:Matlab-DispatcherRequestMessage"/> 231 
            <output message="tns:Matlab-DispatcherResponseMessage"/> 232 
        </operation> 233 
        <operation name="startMatlabSim"> 234 
         <input message="tns:startMatlabSimRequest"/> 235 
         <output message="tns:startMatlabSimResponse"/> 236 
        </operation> 237 
        <operation name="stop"> 238 
         <input message="tns:stopRequest"/> 239 
         <output message="tns:stopResponse"/> 240 
        </operation> 241 
    </portType> 242 
 243 
    <!-- portType implemented by the requester of Matlab-Dispatcher BPEL 244 
process  245 
         for asynchronous callback purposes 246 
         --> 247 
 248 
 249 
 250 
<!-- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 251 
     PARTNER LINK TYPE DEFINITION 252 
         the Matlab-Dispatcher partnerLinkType binds the provider and 253 
         requester portType into an asynchronous conversation. 254 
     ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 255 
--> 256
 <plnk:partnerLinkType name="Matlab-Dispatcher"> 257
 <plnk:role name="Matlab-DispatcherProvider" portType="tns:Matlab-258
Dispatcher"/> 259
 </plnk:partnerLinkType> 260
 <binding name="Matlab-DispatcherBinding" type="tns:Matlab-Dispatcher"> 261
 262
 <soap:binding style="document" 263
transport="http://schemas.xmlsoap.org/soap/http"/> 264
 <operation name="initiate"> 265
 <soap:operation 266
soapAction="http://wsi.simtech.de/processes/samples/Matlab-267
Dispatcher/initiate"/> 268

64

 <input> 269
 <soap:body use="literal"/> 270
 </input> 271
 <output> 272
 <soap:body use="literal"/> 273
 </output> 274
 </operation> 275
 <operation name="startMatlabSim"> 276
 <soap:operation 277
soapAction="http://wsi.simtech.de/processes/samples/Matlab-278
Dispatcher/startMatlabSim"/> 279
 <input> 280
 <soap:body use="literal"/> 281
 </input> 282
 <output> 283
 <soap:body use="literal"/> 284
 </output> 285
 </operation> 286
 <operation name="stop"> 287
 <soap:operation 288
soapAction="http://wsi.simtech.de/processes/samples/Matlab-289
Dispatcher/stop"/> 290
 <input> 291
 <soap:body use="literal"/> 292
 </input> 293
 <output> 294
 <soap:body use="literal"/> 295
 </output> 296
 </operation> 297
 </binding> 298
 299
 <service name="Matlab-DispatcherService"> 300
 <port binding="tns:Matlab-DispatcherBinding" name="Matlab-301
DispatcherPort"> 302
 <soap:address 303
location="http://localhost:8080/ode/processes/Matlab-Dispatcher"/> 304
 </port> 305
 </service> 306
 307
</definitions> 308

WSDL Matlab-Bone

<?xml version="1.0" encoding="UTF-8" standalone="no"?> 1
<definitions xmlns="http://schemas.xmlsoap.org/wsdl/" 2
xmlns:plnk="http://docs.oasis-open.org/wsbpel/2.0/plnktype" 3
xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/" 4
xmlns:tns="http://wsi.simtech.de/processes/samples/Matlab-Bone" 5
xmlns:vprop="http://docs.oasis-open.org/wsbpel/2.0/varprop" 6
xmlns:wsdl1="http://wsi.simtech.de/extensions/matlab/" 7
xmlns:wsdl2="http://wsi.simtech.de/extensions/pmconn/" 8
xmlns:xsd="http://www.w3.org/2001/XMLSchema" name="Matlab-Bone" 9
targetNamespace="http://wsi.simtech.de/processes/samples/Matlab-Bone"> 10
 11
<!-- ~~~ 12
 TYPE DEFINITION - List of services participating in this BPEL process 13
 The default output of the BPEL designer uses strings as input and 14
 output to the BPEL Process. But you can define or import any XML 15
 Schema type and us them as part of the message types. 16

65

     ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 17 
-->     18 
    <plnk:partnerLinkType name="WSI_PMConnector"> 19 
    <plnk:role name="WSI_PMConnector" portType="wsdl2:WSI_PMConnector"/> 20 
  </plnk:partnerLinkType> 21 
    <plnk:partnerLinkType name="WSI_Matlab"> 22 
    <plnk:role name="WSI_Matlab" portType="wsdl1:WSI_Matlab"/> 23 
  </plnk:partnerLinkType> 24 
    <plnk:partnerLinkType name="WSI_Matlab"> 25 
    <plnk:role name="WSI_Matlab" portType="wsdl1:WSI_Matlab"/> 26 
  </plnk:partnerLinkType> 27 
    <import location="WSI_PMConnector.wsdl" 28 
namespace="http://wsi.simtech.de/extensions/pmconn/"/> 29 
    <import location="WSI_Matlab.wsdl" 30 
namespace="http://wsi.simtech.de/extensions/matlab/"/> 31 
    <types>   32 
        <schema xmlns="http://www.w3.org/2001/XMLSchema" 33 
attributeFormDefault="unqualified" elementFormDefault="qualified" 34 
targetNamespace="http://wsi.simtech.de/processes/samples/Matlab-Bone"> 35 
                 36 
            <element name="Matlab-BoneRequest"> 37 
                <complexType> 38 
                    <sequence> 39 
                     <element maxOccurs="1" minOccurs="1" name="SimID" 40 
type="long"/> 41 
                     <element maxOccurs="1" minOccurs="1" 42 
name="FromSimID" type="long"> 43 
                     </element> 44 
                     <element maxOccurs="1" minOccurs="1" 45 
name="StartElement" type="int"> 46 
                     </element> 47 
                     <element maxOccurs="1" minOccurs="1" 48 
name="EndElement" type="int"> 49 
                     </element> 50 
                     <element maxOccurs="1" minOccurs="1" 51 
name="Gausscount" type="int"> 52 
                     </element> 53 
                     <element maxOccurs="1" minOccurs="1" name="Stepnr" 54 
type="int"> 55 
                     </element> 56 
                     <element maxOccurs="1" minOccurs="1" name="t_end" 57 
type="int"> 58 
                     </element> 59 
                     <element maxOccurs="1" minOccurs="1" 60 
name="mSimPath" type="string"> 61 
                     </element> 62 
                     <element maxOccurs="1" minOccurs="1" name="mFile" 63 
type="string"> 64 
                     </element> 65 
                     <element maxOccurs="1" minOccurs="1" name="mUser" 66 
type="string"> 67 
                     </element> 68 
                     <element maxOccurs="1" minOccurs="1" name="mHost" 69 
type="string"> 70 
                     </element> 71 
                     <element maxOccurs="1" minOccurs="1" name="wUser" 72 
type="string"> 73 
                     </element> 74 
                     <element maxOccurs="1" minOccurs="1" name="wHost" 75 
type="string"/> 76 
                    </sequence> 77 
                </complexType> 78 
            </element> 79 



66 

                   80 
            <element name="Matlab-BoneResponse"> 81 
                <complexType> 82 
                    <sequence> 83 
                     <element maxOccurs="1" minOccurs="1" name="result" 84 
type="string"/> 85 
                     <element maxOccurs="1" minOccurs="1" name="SimID" 86 
type="long"/> 87 
                     <element maxOccurs="1" minOccurs="1" 88 
name="PandasSimID" type="long"/> 89 
                    </sequence> 90 
                </complexType> 91 
            </element> 92 
             93 
        </schema> 94 
    </types> 95 
   96 
<!-- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 97 
     MESSAGE TYPE DEFINITION - Definition of the message types used as  98 
     part of the port type defintions 99 
     ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 100 
--> 101
 <message name="Matlab-BoneRequestMessage"> 102
 <part element="tns:Matlab-BoneRequest" name="payload"/> 103
 </message> 104
 105
 <message name="Matlab-BoneResponseMessage"> 106
 <part element="tns:Matlab-BoneResponse" name="payload"/> 107
 </message> 108
 109
 110
<!-- ~~~ 111
 PORT TYPE DEFINITION - A port type groups a set of operations into 112
 a logical service unit. 113
     ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 114 
--> 115 
    <!-- portType implemented by the Matlab-Bone BPEL process --> 116 
    <portType name="Matlab-Bone"> 117 
        <operation name="initiate"> 118 
            <input message="tns:Matlab-BoneRequestMessage"/> 119 
        </operation> 120 
    </portType> 121 
 122 
    <!-- portType implemented by the requester of Matlab-Bone BPEL process  123 
         for asynchronous callback purposes 124 
         --> 125 
    <portType name="Matlab-BoneCallback"> 126 
        <operation name="onResult"> 127 
            <input message="tns:Matlab-BoneResponseMessage"/> 128 
        </operation> 129 
    </portType> 130 
 131 
 132 
<!-- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 133 
     PARTNER LINK TYPE DEFINITION 134 
         the Matlab-Bone partnerLinkType binds the provider and 135 
         requester portType into an asynchronous conversation. 136 
     ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 137 
--> 138
 <plnk:partnerLinkType name="Matlab-Bone"> 139
 <plnk:role name="Matlab-BoneProvider" portType="tns:Matlab-Bone"/> 140
 <plnk:role name="Matlab-BoneRequester" portType="tns:Matlab-141
BoneCallback"/> 142

67

 </plnk:partnerLinkType> 143
 <binding name="Matlab-BoneBinding" type="tns:Matlab-Bone"> 144
 <soap:binding style="document" 145
transport="http://schemas.xmlsoap.org/soap/http"/> 146
 <operation name="initiate"> 147
 <soap:operation 148
soapAction="http://wsi.simtech.de/processes/samples/Matlab-Bone/initiate"/> 149
 <input> 150
 <soap:body use="literal"/> 151
 </input> 152
 </operation> 153
 </binding> 154
 <binding name="Matlab-BoneCallbackBinding" type="tns:Matlab-155
BoneCallback"> 156
 <soap:binding style="document" 157
transport="http://schemas.xmlsoap.org/soap/http"/> 158
 <operation name="onResult"> 159
 <soap:operation 160
soapAction="http://wsi.simtech.de/processes/samples/Matlab-Bone/onResult"/> 161
 <input> 162
 <soap:body use="literal"/> 163
 </input> 164
 </operation> 165
 </binding> 166
 <service name="Matlab-BoneService"> 167
 <port binding="tns:Matlab-BoneBinding" name="Matlab-BonePort"> 168
 <soap:address 169
location="http://localhost:8080/ode/processes/Matlab-Bone"/> 170
 </port> 171
 </service> 172
 <service name="Matlab-BoneCallbackService"> 173
 <port binding="tns:Matlab-BoneCallbackBinding" name="Matlab-174
BoneCallbackPort"> 175
 <soap:address 176
location="http://localhost:8080/ode/processes/Matlab-BoneCallback"/> 177
 </port> 178
 </service> 179
</definitions> 180

Erklärung

Hiermit versichere ich, diese Arbeit selbständig
verfasst und nur die angegebenen Quellen
benutzt zu haben.

(Raymond Dormien)

	DA.pdf
	Abbildungsverzeichnis
	Tabellenverzeichnis
	Abkürzungsverzeichnis
	1 Einleitung
	1.1 Aufgabenstellung und Motivation

	2 Grundlagen
	2.1 Service-orientierte Architektur
	2.2 Web Services
	2.2.1 WSDL
	2.2.2 SOAP
	2.2.3 WS-Addressing
	2.2.3.1 End Point Reference

	2.3 Workflows
	2.3.1 Prozessmodell und Instanz
	2.3.2 Workflow Dimensionen
	2.3.3 Workflow Management Systeme
	2.3.4 BPEL
	2.3.5 Scientific Workflows

	2.4 eScience
	2.4.1 Simulationen
	2.4.2 FEM
	2.4.2.1 Theorie der porösen Medien

	2.5 Strukturänderungen im Knochen

	3 Spezifikation
	3.1 Anforderungen
	3.2 Konzepte
	3.2.1 gSOAP
	3.2.2 Web Service Interface
	3.2.3 OpenDBX
	3.2.4 Pandas Service-Bus-Adapter
	3.2.4.1 neue Pandas Simulation erstellen

	3.2.4.2 Pandas starten

	3.2.4.3 Pandas beenden

	3.2.4.4 DB-Verbindung aufbauen

	3.2.4.5 DB-Verbindung trennen

	3.2.4.6 Pandas Batchfile ausführen

	3.2.4.7 Simulationsproblem einlesen

	3.2.4.8 Pandas Kommando ausführen

	3.2.4.9 Einen Simulationszeitschritt ausführen

	3.2.4.10 Aktuellen Simulationszeitschritt abfragen

	3.2.4.11 Zustand speichern

	3.2.4.12 Zustand laden

	3.2.5 Evaluierung der Datenbank
	3.2.5.1 Kriterien
	3.2.5.2 Evaluierung
	3.2.5.3 Ergebnisse der Datenbank-Evaluierung

	3.3 Erweiterungen des Pandas-Adapter
	3.3.1 DUNE-Matrixlöser
	3.3.1.1 Gespeicherte Matrix-ID abfragen

	3.3.1.2 Matrix speichern

	3.3.1.3 Matrix laden

	3.3.1.4 Matrix zyklisch speichern

	3.3.2 Data-Quality
	3.3.2.1 Matrixqualität erfassen

	3.3.2.2 SQL-Query zur Matrixqualität

	3.3.2.3 Zeitschritt der letzten Matrixqualität

	3.3.2.4 Gespeicherte Matrix-ID abfragen

	3.3.2.5 Verwendete Parameterdatei abfragen

	3.3.3 Mehrere Pandas-Instanzen
	3.3.3.1 Freiheitsgrade an allen Mesh-Elementen speichern

	3.3.3.2 Gespeicherte Freiheitsgrade laden

	3.3.4 Pandas-Matlab Kopplung
	3.3.4.1 Neue Matlab Simulation erstellen

	3.3.4.2 Alle Variablen der Gausspunkte speichern

	3.3.4.3 Alle Variablen der Gausspunkte laden

	3.3.4.4 Eine Variable der Gausspunkte speichern

	3.3.4.5 Eine Variable der Gausspunkte laden

	3.3.4.6 Anzahl der Gausspunkte abfragen

	3.3.4.7 Anzahl der Elemente abfragen

	3.3.4.8 Anzahl aller Variablen abfragen

	3.3.4.9 Matlab Input-Dateien erstellen

	3.3.4.10 Matlab Output-Datei laden

	3.3.4.11 DB-Verbindungsdaten setzen

	3.3.4.12 DB-Verbindungsdaten abfragen

	3.3.4.13 M-File ausführen

	3.3.4.14 Dateien zwischen Rechnern kopieren

	3.3.4.15 Verzeichnis auf entfernten Rechner erstellen

	3.3.4.16 Datei auf entfernten Rechner löschen

	3.3.4.17 Matlab-Aufruf setzen

	3.3.4.18 Matlab-Aufruf abfragen

	4 Entwurf
	4.1 Architektur
	4.2 Web Service-Operationen
	4.2.1 WSI_Pandas
	4.2.2 WSI_Matlab
	4.2.3 WSI_PMConnector

	4.3 Datenbankschema

	5 Implementierung
	5.1 Anpassungen an Pandas
	5.1.1 Ursprünglicher Ablauf
	5.1.2 Modifizierter Ablauf
	5.1.3 Modifizierter Simulationsablauf
	5.1.4 Quellcodeänderungen
	5.1.4.1 Build-Prozess
	5.1.4.2 main.c
	5.1.4.3 daesolve.c

	5.1.4.4 Hinzugefügte Dateien

	6 Pandas basierte Workflows
	6.1 Data-Quality

	6.2 Simulation mit mehreren Pandas-Instanzen

	6.3 Pandas-Matlab Kopplung

	7 Laufzeitumgebung
	7.1 Aufbau und Benutzung

	8 Zusammenfassung und Ausblick
	Literaturverzeichnis
	Anhang
	WSDL WSI_Pandas
	WSDL WSI_Matlab
	WSDL WSI_PMConnector
	WSDL Data-Quality
	WSDL TwoInstances
	WSDL Pandas-Bone
	WSDL Data-Manager
	WSDL Matlab-Bone

