Institut fiir Parallele und Verteilte Systeme
Universitat Stuttgart
Universitatsstralle 38

D-70569 Stuttgart

Diplomarbeit Nr. 3128

Balltracking im RoboCup
mit der
Log-Polar-Transformation

Florian Burger

Studiengang: Softwaretechnik
Priifer: Prof. Dr. P. Levi
Betreuer: Andreas Koch
begonnen am: 10. Januar 2011
beendet am: 12. Juli 2011

CR-Klassifikation: [.2.9, 1.2.10, 1.4.8

Zusammenfassung

Diese Diplomarbeit beschéftigt sich mit der Verfolgung der Trajektorie von Ob-
jekten, dem sogenannten Tracking, am Beispiel der Verfolgung von Béllen im Ro-
boCup. An Informationen stehen dazu die Bilder einer am Roboter angebrachten
360°-Kamera zur Verfiigung. Unter der Voraussetzung, dass die initiale Position des
zu verfolgenden Balls bekannt ist, wird dessen weitere Bewegung in den folgenden
Kamerabildern bestimmt. Die dabei zur Verfligung stehende Rechenzeit ist stark
begrenzt. Um ein giinstigeres Abtastverhalten zu erreichen, werden die Bilder im
logarithmischen Polarkoordinatensystem (Log-polar) betrachtet. Dadurch werden,
relativ zur betrachteten Bildposition, nahe Bereiche feiner abgetastet als weiter ent-
fernte.

Mit Hilfe dieser Betrachtungsweise werden die Kanten des Balls bestimmt. Da-
zu werden Pixel als Ballpixel oder Nicht-Ballpixel klassifiziert. Diese Klassifizierung
basiert auf einem parameterlosen System, dass die speziellen Bedingungen des Ro-
boCup beriicksichtigt.

Aus den bestimmten Kanten werden dann Groéfse und Position des Balls im aktu-
ellen Kamerabild ermittelt. Fiir diesen Vorgang werden zwei mogliche Varianten in
dieser Arbeit beschrieben und verglichen. Der eine Ansatz basiert darauf, dass der
Rand eines Balls im Log-Polar-Bild genau dann eine Gerade darstellt, wenn der Pol
dieses Bildes auf dem Mittelpunkt des Balls liegt. Das liegt daran, dass der Ball alle
Winkel bis zu einem gewissen Abstand ausfiillt. Aus der Abweichung des aktuellen
Bilds zu diesem Idealbild soll versucht werden, auf die Position des Ballmittelpunkts
zu schliefen. Der zweite Ansatz basiert auf der Methode der Summe der kleinsten
Fehlerquadrate. Dabei werden aus jeweils drei Ballkantenpunkten Kreise bestimmt.
Fiir jeden dieser Kreise wird anschlieftend die Summe der quadrierten Abstédnde
der anderen Ballkantenpunkte von eben diesem Kreis bestimmt. Der Kreis mit der
niedrigsten Summe bestimmt dann die Parameter des Balls.

Inhaltsverzeichnis

1.

2.

Uberblick

Einleitung
2.1. Verwandte Arbeiten

Grundlagen
3.1. Die Log-Polar-Transformation
3.2, Weitere Grundlagen

Motivation und Anforderungen

4.1. Trackingdes Balls
4.2. Verwendung der Log-Polar-Transformation
4.3. Zu verwendende Technologien

Balltracking mit der Log-Polar-Transformation
5.1. Detektion der Ballkanten oL
5.1.1. Detektion von Ballpixeln ohne Parameter
5.1.2. Log-Polar-Transformation mit Look-Up-Table
5.1.3. Erkennen von Ballkanten
5.1.4. Klassifikation der Kanten,
5.1.5. Einsatz von Importance Sampling
5.2. Berechnung der Position des Ballmittelpunkts und des Ballradius’
5.2.1. Variante 1: Bestimmen der Abweichung von einer geraden Linie im
Log-Polar-Bild
5.2.2. Variante 2: Einpassen eines Kreises
5.2.3. Vergleich der beiden Varianten
5.2.4. Weit entfernte Balle L.
5.2.5. Information zur Ermittlung der Giite des gefundenen Balls.
5.3. Zusammenfassung und Beispielablaufo 000

Einsatzszenario, Messungen und Ergebnisse

6.1. Aufbau der Roboter

6.2. Integration des Tracking-Verfahrens.

6.3. Messungeno
6.3.1. Erkennen des Balls in verschiedenen Positionen
6.3.2. Laufzeitmessungen oL
6.3.3. Erkennen des Balls in ungiinstigen Positionen

Fazit und Ausblick

7.1. Verwendung der parameterlosen Ballsuche
7.2. Die Log-Polar-Transformation beim Ball-Tracking
7.3. Bewertung des Verfahrens L.
7.4. Weiterentwicklung o

7.5. Ausblick

A. Anhang: Weitere Grundlagen

A.1. RoboCup

A.2. Die OpenCV-Bibliothek
A.3. Look-Up-Tables
A4, YUV-Farbmodell
A.5. Omnidirektionale Kameras

Literatur

Abbildungsverzeichnis

© 00N WD =

L W W W WK DNDNDDNDDDNDDNDDDNDND DN = = = s =
D= O 000N Ot WD E O © 0N O WD = o

Bild der Roboterkamera
Skizze zu Polarkoordinaten
Beispielbild fiir Polarkoordinaten
Beispielbild fiir Log-Polar-Koordinaten
Verdeckung des Balls durch den Roboter
Log-Polar-Bild mit Ball im Zentrum
Log-Polar-Bild mit Ball nicht im Zentrum
YUV-Bild mit verschiedenen Béallen
U -V Differenzbild
U — V Schwellwertbild
Als grin erkannte Pixel
Als weik erkannte Pixel
Das exclusion-Bild
Mehrfachabtastung von Pixeln
Umkreise von Dreiecken
Umkreis aus Mittelsenkrechten
Abstand eines Pixels vom Kreis
Tracking-Beispiel: Kamerabild
Tracking-Beispiel: UV-Bild
Tracking-Beispiel: Griine Feldpixel
Tracking-Beispiel: Kantenpixel
Tracking-Beispiel: Mogliche Balle
Tracking-Beispiel: Der gefundene Ball
Fuftballroboter
Die verschiedenen Balle
Messungen mit verschiedenen Béllen, 0Om
Messungen mit verschiedenen Béllen, 1m
Messungen mit verschiedenen Béllen, 2m
Messungen mit verschiedenen Béllen, 3m
Messungen mit verschiedenen Béllen, 4m
Messungen mit verschiedenen Béllen, 5m

Erkennung des durch den Roboter verdeckten Balls

Erkennung des durch eine Strebe verdeckten Balls
Die Kanéle eines YUV-Bildes

Tabellenverzeichnis

- =

Auswirkung des Skalierungsfaktors M
Messung der mehrfach abgetasteten Pixel
Statistik zu[Tabelle 2.
Einige Beispielwerte fiir den Binomialkoeffizienten

Zusammenfassung der Messungen
Laufzeit des Trackings

1. Uberblick

Dieses Dokument beschreibt die Entwicklung eines Tracking-Verfahrens fiir Bélle zum
Einsatz im RoboCup. Das Dokument ist in 7 Abschnitte unterteilt.

Erster Abschnitt: Kurziiberblick.
Zweiter Abschnitt: Einleitung in das behandelte Thema.

Dritter Abschnitt: Erlduterung der Grundlagen, die fiir das restliche Dokument
notwendig sind.

Vierter Abschnitt: Motivation, das hier behandelte Verfahren zu entwickeln, und
Beschreibung der Anforderungen, die an dieses gestellt werden.

Fiinfter Abschnitt: Vorstellung des entwickelten Verfahrens inklusive verschiedener
Varianten fiir Teilprobleme und deren Abwéigung gegeneinander.

Sechster Abschnitt: Ergebnisse der Messungen und die Leistungen des Verfahrens
in der Praxis.

Siebter Abschnitt: abschliefendes Fazit und Ausblick.

2. Einleitung

Fiir die Menschheit hat die visuelle Wahrnehmung der Umwelt von jeher grofe Bedeu-
tung. Fiir einen Menschen sind seine Augen sein wichtigstes Sinnesorgan. Es ist erstaun-
lich, was das menschliche Auge zu leisten in der Lage ist. Mindestens ebenso erstaunlich
sind die Leistungen des Gehirns, das die Bilder der Augen verarbeitet. Raumliches Sehen
ist nur eine der faszinierenden Féhigkeiten, die uns diese Bildverarbeitung ermdoglicht.

Mit dem Aufkommen der Kamera- und Computertechnologie erwuchs dementspre-
chend frith der Wunsch, auch Computern solche Fahigkeiten beizubringen. Dazu geniigt
es nicht, Kameras zu bauen, die entsprechende Bilder liefern. Mindestens ebenso grofs ist
die Herausforderung, den Computer diese Bilder verarbeiten zu lassen. Diese enthalten
eine Vielzahl von Informationen, die mit Blick auf bestimmte Ziele ausgewertet werden
miissen. Oft ist dazu auch ein Filtern dieser Informationen, sprich des Bildes, notwendig.
Mit dem Filtern sollen die Informationen hervorgehoben werden, die fiir die zu erfiillende
Aufgabe wesentlich sind, oder umgekehrt nicht benotigte Informationen entfernt werden.

Eine dieser moglichen Aufgaben ist die Verfolgung eines Objekts. Dieser Vorgang wird
von uns Menschen téglich durchgefiihrt. Will man zum Beispiel ein Objekt fangen, das
einem zugeworfen wird, so muss das Gehirn die Flugbahn dieses Objekts verfolgen und
seine zukiinftige Position extrapolieren, um die Hédnde in die richtige Fangposition zu
bringen. Ein anderes Beispiel ist der Stralenverkehr, auch dort miissen standig Objekte,
sprich andere Fahrzeuge oder Verkehrsteilnehmer, verfolgt werden, um Kollisionen zu
vermeiden. Allgemein ldsst sich sagen, dass die Fahigkeit zur Objektverfolgung in sehr
vielen verschiedenen Situationen relevant fiir einen Menschen ist.

Dementsprechend handelt es sich dabei um eine Aufgabe, die auch in der Bildverarbei-
tung bei Computern eine wichtige Rolle spielt. Das Verfolgen eines Objektes bezeichnet
man hier meist mit dem englischen Begriff Tracking. Zentral ist diese Féhigkeit, wie auch
das oben genannte Strafenverkehrsbeispiel zeigt, vor allem zur Vermeidung von Kollisio-
nen. Daher hat sie vor allem fiir mobile Roboter grofe Bedeutung. Natiirlich gibt es aber
auch dort Einsatzbereiche fiir die Objektverfolgung, die iiber die Kollisionsvermeidung
hinausgehen.

Ein aktives Forschungsgebiet in der Robotik ist der Roboterfuftball, da es dort mit dem
RoboC’upH eine zentrale Organisation zur Veranstaltung von Wettbewerben gibt. Aufter-
dem handelt es sich beim Fufball um ein Szenario, das viele verschiedene Aufgaben der
Robotik kombiniert, unter anderem komplexe Bewegungssteuerung, Koordination meh-
rerer Roboter, Planung und natiirlich Bildverarbeitung. Eine der Aufgaben der Bildver-
arbeitung beim Roboterfuflball ist das Verfolgen des Spielballs. Eine genaue Bestimmung
der Ballposition ist eine wichtige Voraussetzung fiir das Gewinnen eines Spiels.

Diese Positionsbestimmung muss auf Grundlage der Bilder der Kamera der Fufiballro-
boter durchgefiihrt werden. Da Ball und Roboter auf dem Spielfeld beliebig zueinander
orientiert sein konnen, verwendet man hier Kameras, die in der Lage sind, das vollstandi-
ge Spielfeld, also einen Winkel von 360°, sehen zu kénnen. Das Bild einer solchen Kamera
eines Fufballroboters ist in zu sehen. Um die notwendige Bandbreite zur

1Siehe |Unterabschnitt A. 1| auf Seite

Abbildung 1: Ein Bild der 360°-Kamera eines Fufsballroboters. Weitere Informationen zu
dieser Art von Kameras sind in |Unterabschnitt A.5| auf Seite 61| zu finden.

Ubertragung der Bilder einer Kamera zum Roboter gering zu halten, werden die Bilder
in der so genannten ,4:2:2“-Kodierung des YUV—Farbmodellsﬂ geliefert.

Eine wichtige Anforderung an ein Verfahren, das die Verfolgung des Spielballs iiber
mehrere Kamerabilder hinweg ermdoglicht, ist geringe Laufzeit. Gewohnlich liefern die
verwendeten Kameras 30 Bilder pro Sekunde. Das bedeutet, dass fiir die gesamte Ver-
arbeitung eines Bildes maximal % Sekunde zur Verfiigung steht. In dieser Zeit miissen
aber noch wesentlich mehr Bildverarbeitungsaufgaben durchgefiihrt werden, zum Beispiel
muss sich der Roboter lokalisieren oder andere Roboter erkennen. Dadurch verringert sich
die tatsédchlich fiir das Tracking des Balls zur Verfiigung stehende Zeit weiter.

Um die notwendige Geschwindigkeit zu erreichen, muss die Abtastung des Bildes be-
schleunigt werden. Um das zu erreichen, kann man dieses nicht Pixel fiir Pixel abtasten,
sondern es in Log-Polar-Koordinaten iiberfithren und dann nur bestimmte Pixel betrach-
ten. Diese Transformation und ihre Eigenschaften werden im folgenden ge-
nauer beschrieben.

Gegenstand dieser Arbeit ist die Entwicklung und Evaluierung eines Verfahrens, das
die Verfolgung eines Spielballs mit Hilfe der Log-Polar-Transformation realisiert.

2.1. Verwandte Arbeiten

Die Verwendung der Log-Polar-Transformation in der Bildverarbeitung war bereits The-
ma vieler Arbeiten. Bereits 1990 schreiben C. F. Weiman und R. D. Juday iiber deren
Einsatz[12]. Sie stellen ein Verfahren vor, mit dem das Tracking von Raumfahrzeugen er-
moglicht wird, um deren Andockvorgang zu unterstiitzen. Die Arbeit kommt zum Ergeb-

2Siehe |Unterabschnitt A.4| auf Seite

nis, dass die Transformation in Log-Polar-Koordinaten hilft, Laufzeit und Speicherbedarf
zu senken.

K. Daniilidis schreibt 1995 iiber die Verwendung der Transformation zur Nachbildung
der Auflésungsverringerung des menschlichen Auges am Rand des wahrgenommenen
Bildes|5]. Basierend darauf werden in dieser Arbeit weitere giinstige Eigenschaften der
Log-Polar-Transformation vorgestellt. Anschlieffend werden die gewonnenen Erkenntnis-
se zur Berechnung der Eigenbewegung und zur Kollisionsberechnung bei einem Roboter
verwendet.

Die dynamische Fokussierung von Bildbereichen bei Stereo-Kamera-Robotern ist das
Thema der Arbeit von C. Capurro et al. von 1997[3]. Sie erértern, warum die Verwendung
von Log-Polar-Bildern in diesem Fall vorteilhaft ist und stellen ein Vergenz-Kontrollsys-
tem vor, dass auf diesen Bildern basiert.

Die Verwendung der Log-Polar-Transformation zur Gesichtserkennung stellen K. Hotta
et al. in ihrer Arbeit aus dem Jahre 1998 vor[6]. Das Log-Polar-Bild wird dazu zeilenwei-
se nach skalierungs- und verschiebungsinvarianten Merkmalen durchsucht, die dann zur
Erkennung von menschlichen Gesichtern genutzt werden.

Ein Feld der Bildverarbeitung, in dem ebenfalls gern auf die Eigenschaften der Log-Po-
lar-Koordinaten zuriickgegriffen wird, ist die Registrierung mehrerer Bilder zueinander.
Das beschreiben zum Beispiel G. Wolberg und S. Zokai in ihrer Arbeit aus dem Jahr
2000[14]. Sie stellen ein Registrierungsverfahren vor, dass Skalierung und Rotation von
mehreren Bildern zueinander erkennt. Dieses arbeitet mit Log-Polar-Bildern.

Dem Tracking von Objekten im Bild einer beweglichen Kamera unter Zuhilfenah-
me der Log-Polar-Koordinaten widmen sich N. Okajima et al. im Jahr 2000[8]. Durch
Untersuchung der Phasendifferenz von komplexen Wavelet-Transformationen der Bilder-
sequenzen ermitteln sie die Bewegung des Objekts. Ziel ist auferdem, moglichst wenig
Laufzeit zu bendtigen, um moglichst viele Bilder pro Sekunde verarbeiten zu kénnen.

Den Ansatz der Erfassung und Schétzung von Translationsbewegungen mit der Log-
Polar-Transformation untersuchen V. Javier Traver und Filiberto Pla in ihrer Arbeit aus
dem Jahre 2001[I1]. Dazu verwenden sie ein gradientenbasiertes Minimierungsverfahren.

I1 Choi et al. beschéftigen sich 2003 mit einem &hnlichen Themal4] wie bereits N. Okaji-
ma et al.[8]. Thre Arbeit behandelt das Tracking von sich bewegenden Objekten mit einem
Stereo-Kamera-System. Dabei vergleichen sie den Einsatz der Log-Polar-Transformation
mit anderen Ansétzen und stellen dessen Uberlegenheit fest.

Speziell auf die Bewegungssteuerung eines Roboterkopfes zum Zweck des Trackings
von farbigen Objekten gehen G. Metta et al. in ihrem Artikel aus dem Jahre 2004 ein|7].
Basierend auf Log-Polar-Bildern wird die Bewegung des Roboterkopfes bestimmt, die
zu vollziehen ist, um das Kamerasystem des Roboters auf das zu verfolgende Objekt
auszurichten. Sie stellen aufserdem ein Lernverfahren vor, bei dem die Parameter dieses
Steuerungssystems selbstiiberwacht vom Roboter gelernt werden.

In seiner 2005 verfassten Masterthesis stellt Saikiran S. Thunuguntla ein Objekt-
Tracking-Verfahren basierend auf der Log-Polar-Transformation vor|[I0]. Dieses basiert
auf einem Template-Matching-Ansatz und verwendet die Transformation insbesondere
dazu, um dieses Matching gegeniiber Skalierung und Rotation des zu verfolgenden Ob-
jekts robust zu machen.

3. Grundlagen

3.1. Die Log-Polar-Transformation

Logarithmische Polarkoordinaten bauen auf gewthnlichen Polarkoordinaten auf. Daher
empfiehlt sich, zuerst zu erkldren, was ein polares Koordinatensystem ist und wie dieses
in der Bildverarbeitung verwendet wird.

Polarkoordinaten In einem Polarkoordinatensystem wird die Position eines Punktes
auf einer zweidimensionalen Ebene nicht durch zwei orthogonale Vektoren bestimmter
Lange, wie in einem kartesischen Koordinatensystem, sondern durch einen Winkel und
einen Abstand definiert. Der Abstand, normalerweise mit r bezeichnet, gibt dabei die
Entfernung des Punktes vom Ursprung, im Polarkoordinatensystem als Pol bezeichnet,
wieder. Die Winkelkoordinate, meist mit 6 oder ¢ bezeichnet, ist definiert als der Win-
kel, der von der Polarachse (auch: Null-Grad-Linie) gegen den Uhrzeigersinn anliegt.
Statt Abstands- und Winkelkoordinate spricht man auch von Radius und Azimut oder

Azimutwinkel. zeigt eine Skizze dazu.

Y9 L AZP(r 1)
R |

Abbildung 2: Links ist ein Punkt in einem kartesischen Koordinatensystem zu sehen.
Rechts der selbe Punkt in Polarkoordinaten.

Das Koordinatenpaar bestimmt einen Punkt in einer zweidimensionalen Ebene un-
ter zwei Voraussetzungen eindeutig: Erstens muss der Azimutwinkel auf ein definiertes
Intervall, beispielsweise [0, 27), beschriankt werden. Ansonsten konnte jeder Punkt belie-
big viele verschiedene Werte als Winkelkoordinate haben, die sich jeweils um eine volle
Periode von 27 unterscheiden. Zweitens muss dem Pol die Azimutkoordinate ¢ = 0 zuge-
wiesen werden, da diese sonst fiir 7 = 0 beliebig wére. Unter diesen Voraussetzungen ist
eine Umrechnung von Polarkoordinaten in kartesische Koordinaten problemlos moglich.
Dies ist fiir die Verwendung von Polarkoordinaten in der Bildverarbeitung wichtig, da
Datenstrukturen fiir Bilder iiblicherweise mit kartesischen Koordinaten adressiert wer-
den. Liegt die Polarachse gleich mit der x-Achse des kartesischen Koordinatensystems,
so ergeben sich folgende Umrechnungsformeln, um Polarkoordinaten in kartesische Ko-

10

ordinaten umzurechnen:

x =1-cos(¢) (1)
y =r-sin(o) (2)

Die Umrechnung von kartesischen Koordinaten in Polarkoordinaten gestaltet sich wegen
der Berechnung des Azimutwinkels etwas aufwendiger. Der Radius r entspricht hingegen
einfach der Lange des z-y-Vektors:

r= 22 +y? (3)

Die Berechnung des Winkels erfolgt iiber die Arkustangens-Funktion. Da diese jedoch auf
den Wertebereich (-7, 5) beschrénkt ist, ist hierfiir eine erweiterte Arkustangensfunktion
notwendig, die, abhéngig von den Werten von z und y, gewisse Félle unterscheidet (je
nach Quadrant, in dem sich der umzuwandelnde Punkt befindet), und damit auf den
Wertebereich [0,27) erweitert wird. Da diese Umwandlung fiir diese Arbeit keine Rolle
spielt, wird diese, auch als atan2 bezeichnete, Funktion hier nicht wiedergegeben.

Polarkoordinaten in der Bildverarbeitung Polarkoordinaten sind fiir die Bildverarbei-
tung interessant, da sich damit bestimmte Abtastverfahren eines Bildes leichter beschrei-
ben lassen. Wenn von einem zentralen Punkt aus entlang von von diesem ausgehenden
Linien ein Bild abgetastet werden soll, lassen sich diese Positionen hervorragend durch
Polarkoordinaten ausdriicken. Der Azimutwinkel wird dann immer um den gewiinschten
Abstand zwischen zwei Abtastlinien erhoht, der Radius einfach hochgezéhlt. Diese Art
der Abtastung ist besonders bei der Objekterkennung und -verfolgung interessant, da so
nicht alle Pixel des Bildes betrachtet werden miissen und die Auflésung der Abtastung
mit steigendem Abstand vom zentralen Punkt sinkt. So kann das Bild auf der Suche nach
einem zu erkennenden Objekt in groferen radialen Abschnitten untersucht werden, und
nur dort, wo potentielle Objektpositionen gefunden werden, wird die Suche vertieft.

Abstand

W

—0 ~35 —

Abbildung 3: Ein Beispielbild in Originalform (links) und in Polarkoordinaten (rechts).
Die Position des Pols des Polarkoordinatenbilds ist mit einem Kreuz im
Originalbild markiert.

11

Logarithmieren der Entfernungen Der einzige Unterschied von Log-Polar-Koordinaten
zu gewohnlichen Polarkoordinaten besteht darin, dass die Abstandskoordinate nicht mehr
dem Radius selbst, sondern dessen natiirlichem Logarithmus entspricht:

p=In\/22+ 3?2 (4)

Teilweise wird auch noch ein Skalierungsfaktor M verwendet, beispielsweise in OpenCV|[13],
S. 2771

o= M -Iny/22 + y? (5)

Der Azimutwinkel berechnet sich genau wie bei den gewthnlichen Polarkoordinaten. Fiir
die umgekehrte Transformation, also die Umwandlung von log-polar Koordinaten in kar-
tesische Koordinaten, gilt:

x = el - cos(9) (6)

y = e’ -sin(¢) (7)
Mit Skalierungsfaktor M gilt:

x = epﬁl cos(¢) (8)

y = ef7 sin(9) (9)

Mit steigendem Abstand vom zentralen Punkt sinkt also bei der Verwendung von Log-
Polar-Koordinaten in der Bildverarbeitung die Abtastrate. Nahe Bereiche sind hingegen
héher aufgelost. Dieses Verhalten wird von der Logarithmierung des Abstandes verur-

sacht. verdeutlicht dies an einem Beispielbild.

In(Abstand)
R —

Abstand

W

—0 x> —=

—0 ~ 3> —

Abbildung 4: Ein Beispielbild in Originalform (links), Polarkoordinaten (Mitte) und in
Log-Polar-Darstellung (rechts, Skalierungsfaktor M = 10)

12

3.2. Weitere Grundlagen

Die Erlauterungen zu weiteren Grundlagen sind bei Bedarf im Anhang zu finden. Im
Einzelnen finden sich Erlduterungen zum RoboCup in [Unterabschnitt A.T] auf Seite [58]
zur OpenCV-Bibliothek in [Unterabschnitt A.2| auf Seite zu Look-Up-Tables in
[ferabschnitt A3 auf Seite [60} zum YUV-Farbmodell in [Unterabschnitt A-4] auf Seite
und zu omnidirektionalen Kameras in [Unterabschnitt A auf Seite [61]

13

4. Motivation und Anforderungen

4.1. Tracking des Balls

Um im RoboCup erfolgreich sein zu koénnen, ist eine gute und schnelle Erkennung des
Spielballs ausgesprochen wichtig. Nur mit einer genauen Lokalisierung des Balls sind
die Planungen von Angriffs- oder Verteidigungsstrategien moglich. Auch fiir die Berech-
nung der Bewegungssteuerung ist es erforderlich, die genaue Ballposition zu kennen:
Der Roboter muss den Ball im richtigen Winkel anfahren, um ihn beispielsweise in sein
Dribblmg—Dem’ce{ﬂ zu legen und sich dann mit dem Ball fortbewegen zu kénnen. Fiir den
Torwart ist eine genaue Erkennung des Balls ebenfalls von grofer Bedeutung, damit er
sich richtig positionieren kann, um gegnerische Angriffe abzuwehren.

Als Tracking bezeichnet man dabei den Vorgang, einen Ball {iber mehrere Kamerabil-
der hinweg zu verfolgen. Dazu steht zunéchst eine Initialposition zur Verfiigung, die von
einem globalen Ballsuchverfahren geliefert wird. Natiirlich kénnen dabei auch mehrere
potentielle Ballpositionen gefunden werden, die dann unabhéngig voneinander ausgewer-
tet und, falls ein Ball erkannt wurde, verfolgt werden. Fiir das Tracking selbst macht dies
keinen Unterschied, es wird mehrfach fiir verschiedene Positionen ausgelést. Das globale
Verfahren wird nicht mehr benétigt, so bald ein Tracking-Vorgang aktiv ist. Stattdessen
bekommt das Trackingverfahren als Initialposition im néchsten Schritt die Position des
Balls aus dem aktuellen Trackingschritt.

Da es sich beim RoboCup um ein dynamisches Szenario handelt, soll das Tracking
mit moglichst wenig Rechenzeit realisierbar sein. Nach einer einmaligen globalen Suche,
um den Ball initial zu erfassen, muss das Trackingverfahren diesen im jeweils néchsten
Bild der Kamera des Roboters in kurzer Zeit lokalisieren. Ausgangspunkt ist dabei die
Position des Balls im vorherigen Bild. Als Vorgabe wurde gegeben, dass das Tracking
nicht lénger als etwa zwei Millisekunden auf der aktuellen RoboCup-Robotergeneration
dauern soll.

Ein Problem beim Tracking ist die Verdeckung des Balls durch andere Roboter oder
sogar den Bezugsroboter selbst, zum Beispiel dann, wenn der Ball im Kamerabild unter
den Halterungen des Kameraspiegels verschwindet. Dies ist in zu sehen. Das
Trackingverfahren muss daher in der Lage sein, den Ball auch dann korrekt zu erkennen,
wenn er teilweise verdeckt ist.

Fiir das RoboCup-Szenario gelten gewisse Voraussetzungen, die beim Tracking hilfreich
sind. Die Farbe des ,Rasens” ist vorgegeben und auf dem Spielfeld diirfen sich nur die
anderen Roboter und ein Ball befinden. Der Ball selbst hat eine kréftige Farbe, meist
gelb, und ist so gut von allen anderen Objekten zu unterscheiden. Da dies jedoch nur fiir
Spielsituationen selbst gilt, das Trackingverfahren aber auch in Trainings- oder Testsitua-
tionen funktionieren soll, muss es weiteren Hindernissen oder mehreren Béllen gegentiber
robust sein.

Um Fehldetektionen auszuschliefen, muss das Trackingverfahren Informationen aus-
geben, auf deren Basis sich eine Giite des detektierten Balls bestimmen ldsst. Da eine
globale Ballsuche moglicherweise mehrere potentielle Ballpositionen liefert, muss daraus

3 Aussparung oder Vorrichtung am Roboter, in die der Ball zum Dribbeln gelegt werden soll

14

Abbildung 5: Der Ball wird von einer Halterung des Kameraspiegels teilweise verdeckt

die beste und somit wahrscheinlichste Hypothese gewahlt werden.

Das Trackingverfahren muss aufferdem deterministisch arbeiten: Bei gleichem Eingabe-
bild miissen auch immer identische Ballposition und -gréfse ermittelt werden. Die stabile
Detektion eines ruhig liegenden Balls muss aufierdem robust gegeniiber dem unvermeidli-
chen Rauschen im Kamerabild sein, damit nicht falschlicherweise eine Bewegung erkannt
wird.

Eine weitere Anforderung an ein Trackingverfahren ist seine Skalierbarkeit: Steht zu-
kiinftig mehr Rechenleistung zur Verfiigung, soll es moglich sein, durch Parameterein-
stellung die Giite der Ergebnisse zu verbessern, da ja dann mehr Rechenzeit aufgewendet
werden kann.

4.2. Verwendung der Log-Polar-Transformation

Die Log-Polar-Transformation ist unter zwei Gesichtspunkten fiir das Tracking inter-
essant. Zum einen durch das Auflésungsverhalten, das sich durch diese ergibt. Dieses ist
fiir ein Trackingverfahren potentiell niitzlich. Zum anderen lassen sich aus der Darstellung
eines Balles im Log-Polar-Bild Riickschliisse auf dessen Position ziehen.

Auflésungsverhalten Wie im vorangegangenen [Unterabschnitt 4.1} [Tracking des Balls),
erwahnt, ist hohe Geschwindigkeit flir das Trackingverfahren sehr wichtig. Eine Mdog-
lichkeit, die Geschwindigkeit eines solchen Verfahrens zu steigern, ist die Anzahl der
abgetasteten Punkte zu verringern, also nicht alle Punkte eines Bildes abzutasten. Wie
in [Unterabschnitt 3.1], [Die Log-Polar-Transformation] auf Seite beschrieben, hat die
Log-Polar-Transformation hier gleich zwei giinstige Eigenschaften:

Strahlenférmige Abtastung. Bei Log-Polar-Koordinaten, wie auch bei gewohnlichen Po-

15

larkoordinaten, kann ein Bild strahlenférmig von einem zentralen Punkt ausgehend
abgetastet werden, indem jeweils iiber die Winkel- und Radiuskoordinate iteriert
wird. Dadurch wird die Anzahl der abgetasteten Pixel, je nach Schrittweite, erheb-
lich reduziert, obwohl alle Richtungen trotzdem gleich gut beriicksichtigt werden.

Auflésungsverhalten entlang der Strahlen. Durch die Logarithmierung des Radius’ bei
Log-Polar-Koordinaten wird aufserdem die Auflésung auch entlang der einzelnen
Strahlen mit steigendem Abstand reduziert. Bei Polarkoordinaten wiirde jedes Pi-
xel entlang eines Strahls betrachtet, bei Log-Polar-Koordinaten hingegen — mit
Skalierungsfaktor M = 1 — nur das erste (¢’ = 1), das dritte (e! ~ 2,718), das
siebte (e? &~ 7,389) und so weiter.

Balldarstellung im Log-Polar-Bild Interessant fiir das Tracking ist aufferdem das Aus-
sehen eines Balls im Log-Polar-Bild. Liegt der Mittelpunkt eines Balls auf dem zentralen
Punkt eines Log-Polar-Bildes, also dem Pol, so ergibt sein Rand eine gerade Linie, da

alle Punkte des Randes den gleichen Abstand rg,; vom Mittelpunkt haben.

zeigt das.
{

Abbildung 6: Der Ball (links) und das entsprechende Log-Polar-Bild (rechts) mit dem
Zentrum im Ballmittelpunkt (M = 10)

Ist ein Ball hingegen nicht im Zentrum des Log-Polar-Bildes, so ergibt sein Rand eine

Kurve. Dies zeigt

Aus dem Verlauf dieser Kurve lassen sich wiederum Riickschliisse auf die Position
des Ballmittelpunkts ziehen, was fiir ein Trackingverfahren eine potentiell interessante
Eigenschaft ist.

4.3. Zu verwendende Technologien

Da das zu entwickelnde Verfahren beim 1. RFC Stuttgart im Rahmen der Middle Size
League des RoboCups eingesetzt werden soll, ergeben sich einige Anforderungen an die
zu verwendenden Technologien. Die Entwicklung findet in der Programmiersprache C++

16

Abbildung 7: Der Ball (links) und das entsprechende Log-Polar-Bild (rechts, M = 10)

statt. Einzige Abhéngigkeit soll die OpenC'V-Bibliothek sein. Unter diesen Voraussetzun-
gen kann das entwickelte Verfahren dann problemlos in das RoboCup-Software-Frame-
work des 1. RFC Stuttgart integriert werden.

17

5. Balltracking mit der Log-Polar-Transformation

Die Aufgabe des Tracking eines Balls besteht darin, ausgehend von einer Startposition
in einem Kamerabild, den Ball zu lokalisieren, der in diesem Fall durch einen Kreis mit
Mittelpunkt und Radius definiert wird. Dabei gibt es grundsétzlich zwei {ibergeordnete
Probleme zu 16sen:

e Wie konnen die Kanten des Balls gefunden werden?

e Wie konnen aus diesen Randpositionen der Mittelpunkt und der Radius des Balls
bestimmt werden?

Natiirlich sind diese beiden Probleme nicht unabhéngig voneinander, sondern beeinflus-
sen sich gegenseitig. Je exakter die Kanten des Balls ermittelt werden koénnen, desto
einfacher lassen sich daraus dessen Grofse und Position bestimmen. Wenn diese Positions-
bestimmung allerdings toleranter gegeniiber Ausreiffern ist, darf man bei der Detektion
der Kanten grofiziigiger sein. Wichtig ist also, dass diese beiden Probleme aufeinander
abgestimmt gelost werden, damit die Ausgabe der Kantendetektion dem Positionsbe-
stimmungsverfahren geniigt, um zuverlassig die korrekte Position und Gréfse des Balls zu
bestimmen.

Auf Grund der Forderung nach geringer Laufzeit kann hier nicht beliebig Rechenzeit
investiert werden. Beide Probleme miissen mit einem Minimum an Operationen gelost
werden. Hier ist es, wie meist in der Informatik, notwendig, einen Kompromiss zwischen
Giite der Ergebnisse und aufgewendeter Laufzeit zu finden.

Im Folgenden werden die entwickelten Losungsansétze fiir die beiden Teilprobleme
dargestellt und verglichen und anschliefsend dargelegt, aus welchen Griinden welcher
Ansatz schlieflich verwendet wurde.

5.1. Detektion der Ballkanten

Um die Kanten eines Balls in einem Kamerabild zu detektieren, ist das grundséatzlich
zu l6sende Problem, Ballpixel von Nicht-Ballpixeln zu unterscheiden. Anschlieffend kann
der Ubergang von einem Nicht-Ballpixel zu einem Ballpixel oder umgekehrt als Kante
des Balls klassifiziert werden. Dies allein geniigt aber nicht: Hier wiirden aus mehreren
Griinden sehr viele falsche Kanten erkannt. Die Probleme sind im einzelnen:

Verdeckung Bille, die durch andere Roboter oder andere Hindernisse oder die Aufbau-
ten des Bezugsroboters selbst teilweise verdeckt sind. In diesem Fall wiirden dann
Kanten an der Grenze zum verdeckten Bereich erkannt, was dazu fithren wiirde,
dass der Ball erheblich unterschétzt wird.

Bildrauschen Wenn tatséchlich jeder Ubergang als Kante gezihlt werden wiirde, so wi-
ren allein durch das Kamerarauschen viele Fehlerkennungen enthalten.

Die Detektion der Kanten muss also stabil gegeniiber Bildrauschen sein und die Kanten,
die an Verdeckungen entstehen, ausschliefsen.

Im Folgenden ist das entwickelte Verfahren zur Kantendetektion mit seinen einzelnen
Schritten beschrieben.

18

5.1.1. Detektion von Ballpixeln ohne Parameter

Das erste zu lésende Problem beim Tracking ist, wie beschrieben, die Unterscheidung
zwischen Ballpixeln und Nicht-Ballpixeln. Im vorgegebenen Szenario soll dabei der Ball
nicht vorgegeben sein, genaues Aussehen und Gréfse sind dem Verfahren also unbekannt.
Die einzige zur Verfiigung stehende Information ist, dass der Ball, im Gegensatz zu allen
anderen Objekten auf dem Spielfeld im RoboCup farbig aber nicht griin ist, sprich sich
deutlich vom Rasen abhebt. Es muss also ein Weg gefunden werden, wie ,bunte” Pixel
von ,nicht-bunten” Pixeln unterschieden werden kénnen.

Die Kamera des Roboters stellt die Bilder in ,4:2:2“-Kodierung des YUV-Farbmodells
dar (Siehe auch [Unterabschnitt A.4] [YUV-Farbmodell| auf Seite [60]). Wenn man die
einzelnen Komponenten eines Bildes, das mit dem YUV-Farbmodell dargestellt wird, be-
trachtet, so stellt man fest, dass ein ,farbiger” Ball entweder im U- oder im V-Komponenten-
Bild sehr deutlich zu erkennen ist. Die folgende [Abbildung 8 verdeutlicht das.

Abbildung 8: Links das Originalbild, in der Mitte die U-Komponente und rechts die V-
Komponente. In den beiden rechten Bildern sieht man deutlich, dass jeweils
der orangene beziehungsweise der gelbe Ball sehr gut zu erkennen sind.

Bildet man nun das Differenzbild, rechnet also an jedem Pixel V' — U aus, so sieht man,
dass sich alle Bélle darauf deutlich abheben. In ist dies verdeutlicht.

Abbildung 9: Links das Originalbild, rechts das V' — U-Differenzbild. In diesem sind die
Balle klar zu erkennen.

In diesem Differenzbild heben sich die Bélle deutlich vom Hintergrund ab. Das liegt

daran, dass die verwendeten Bille alle einen erheblich gréferen Rot- als Blauanteil in
YUV-Darstellung haben. Das unterscheidet sie von allen anderen Pixeln des Bildes. Legt

19

man iiber das erzeugte Differenzbild nun noch einen Schwellwertfilter, hat man im dar-
aus resultierenden Bild die Bélle aus dem Originalbild extrahiert. Dies kann man in

schen.

Abbildung 10: Links das Originalbild, rechts das V' — U-Schwellwertbild (Schwellwert in
diesem Fall T, = 45). Die beiden Bille sind deutlich zu erkennen und
nur leichtes Rauschen ist im Schwellwertbild enthalten.

Ein vollstdndiges Konvertieren des zu untersuchenden Kamerabildes in diese Darstel-
lung ist allerdings zu zeitaufwendig. Da fiir diese Umwandlung jedoch nur die Information
des Pixels selbst, sprich seine U- und V-Komponente, wichtig ist, kann diese Methode
auch nur fiir jedes betrachtete Pixel ausgefiihrt werden. Ein Pixel gilt also zunéchst
einmal als Ballpixel, wenn folgende Bedingung erfiillt ist:

VPi:L‘el - UPixel > Tvu (10)

Der Schwellwert T, muss dabei natiirlich, je nach Eigenschaften und Kalibrierung der
Kamera, unterschiedlich gewahlt werden.

Detektieren von Feldpixeln Um das Ergebnis der Kantendetektion zu verbessern und
das Rauschen im Schwellwertbild zu verringern, bietet es sich an, Spielfeldpixel von vorn
herein auszuschlieffen. Wird also ein Pixel als Spielfeldpixel eingestuft, so kann es sich
dabei nicht um ein Ballpixel handeln.

Auch zur Erkennung von ,griinen“ Spielfeldpixeln eignet sich das Betrachten der einzel-
nen Kanile eines YUV-Bildes. Vergleicht man sowohl die U- als auch die V-Komponente
eines Bildes mit einem Schwellwert T, in, so lasst sich das Griin des Spielfelds sehr gut
von allen anderen Pixeln unterscheiden. Ein Pixel gilt als griin, wenn folgende Bedingung
erfiillt ist:

(VPimel < Tgriin) A (UPixel < Tgrijn) (11)

In ist dargestellt, welches Ergebnis diese Griin-Erkennung liefert.
Neben der Erkennung aller griinen Pixel kdnnen auch alle weifen Linien des Spielfelds

als Ballpixel ausgeschlossen werden. Hier ist das YUV-Farbmodell ebenfalls von Vorteil:
Vergleicht man den Wert der Luminanz-Komponente Y mit einem Schwellwert T,

20

Abbildung 11: Links das Originalbild, rechts sind alle Pixel in griin hervorgehoben, die
als Spielfeldpixel erkannt wurden.

kann man diese Linien schnell und zuverldssig erkennen. Ein Pixel wird als Linienpixel
klassifiziert, wenn die folgende Bedingung erfiillt ist:

YPizel > Tweiﬁ (12)

zeigt das Ergebnis an einem Beispiel. Es ist bei dieser Erkennung aller-
dings zu beachten, dass der Schwellwert nicht zu weit gesenkt wird, da ansonsten auch

Ballpixel als ,weifs erkannt und somit ausgeschlossen werden.

Abbildung 12: Links das Originalbild, rechts sind alle Pixel in rot hervorgehoben, die als
weifse Linienpixel erkannt wurden.

Ignorieren von verdeckten Pixeln Bei den Fufsballrobotern fiir den RoboCup gibt es
noch eine weitere Besonderheit. Da die Roboter {iber eine Panorama-Kamera mit einem
Parabolspiegel verfiigen, sieht der Roboter in Teilen des Bildes sich selbst. Insbesondere
die Streben der Haltekonstruktion, die den Spiegel {iber der Kamera fixiert, verdecken
einige Pixel auf dem Kamerabild grundséitzlich. Aufterdem sieht die Kamera ab einem
bestimmten Winkel am Parabolspiegel vorbei und dann nur noch das Schwarz der Hal-
tekonstruktion.

Dort, wo sich diese grundséatzlich verdeckten Pixel befinden, kénnen dementsprechend
auch keine Ballpixel erkannt werden, so dass diese Positionen von vorn herein ausge-
schlossen werden konnen. Zu diesem Zweck wird ein Bild erzeugt, das diese Information

21

enthélt: Ein Pixel darin hat den Wert ,weifs“, wenn die Sicht der Kamera an dieser Posi-
tion nicht durch den Roboter selbst eingeschréankt ist, ansonsten ist das Pixel ,schwarz”.
Dieses Bild wird nach der Kalibrierung des Roboters erstellt. zeigt dieses

sogenannte exclusion-Bild.

Abbildung 13: Links das Kamerabild eines Roboters, rechts das zugehérige ezclusion-
Bild.

Zusammenfassung: Erkennung eines Ballpixels Zusammenfassend wird ein Pixel mit
den Koordinaten (zp|y,) genau dann als Ballpixel erkannt, wenn folgende Bedingungen
erfiillt sind:

exclusion(xp,y,) > 0 Das Pixel darf nicht ohnehin verdeckt sein (13)
und

Y,y <= Tweir Das Pixel darf nicht weif sein (14)
und

(Uzpyp >= Tgriin) V (Vapy, >= Tgrim) Das Pixel darf nicht griin sein (15)
und

Vipwe = Uzpy, > Tow Das Pixel muss unter die Schwellwertbedingung fallen (16)

Fiir diese Klassifizierung bend6tigt man nur Informationen des Pixels selbst und keinerlei
Parameter, die den Ball charakterisieren. Je nach Szenario kann es allerdings notwendig
sein, beispielsweise ,,griine” Pixel auch als Ballpixel zuzulassen, da diese Auswahl unter
Umstédnden auch tatsdchliche Ballpixel ausschliefsen kann. Im Robo Cup-Szenario und mit
den Robotern des 1. RFC Stuttgart hat sich die Klassifizierung in dieser Reihenfolge aber
als effektiv erwiesen.

5.1.2. Log-Polar-Transformation mit Look-Up-Table

Wie bereits unter [Unterabschnitt 4.2 [Verwendung der Log-Polar-Transformationl auf
Seite geschildert, ist die Verwendung der Log-Polar-Transformation fiir das Tracking
interessant und soll daher im Verfahren Verwendung finden. Das Auflésungsverhalten
dieser Transformation in Bezug auf das Originalbild ist fiir schnelles Tracking hilfreich, da

22

die Anzahl der abgetasteten Pixel damit erheblich reduziert werden kann. Die Berechnung
des Log-Polar-Bildes aus dem Originalbild ist allerdings aufwendig und erfordert somit
relativ viel Rechenzeit. Damit wéren alle Zeitvorteile, die durch die grobere Abtastung
gewonnen werden, hinfallig.

Um dieses Problem zu l6sen, bietet es sich an, eine vorberechnete Look-Up-Table zu
verwenden (Siehe [Unterabschnitt A.3] [Look-Up-Tables| auf Seite [60). Damit ldsst sich
das Log-Polar-Bild implizit berechnen, ohne die teure Transformation des gesamten Bil-
des berechnen zu miissen. In der Look-Up-Table wird gespeichert, welche Pixelposition
im Originalbild einem Log-Polar-Koordinatenpaar (p|¢) entspricht. Die Look-Up-Table
realisiert also die folgende Funktion:

LUT : N? - N2, (p, @) — (el\% cos(¢), eir sin(¢)) (17)

Mit dieser Look-Up-Table kann iiber die Log-Polar-Koordinaten p und ¢ iteriert wer-
den, indem die entsprechende Position im Originalbild aus der Tabelle ausgelesen wird.
An dieser Stelle wird dann das Originalbild ausgewertet. Das Bild wird folglich strahlen-
férmig abgetastet, und mit steigender Entfernung vom Pol des Log-Polar-Bildes sinkt die
Auflésung entlang des Strahls durch die logarithmische Eigenschaft der p-Koordinate.

Bei dieser Art der Abtastung des Bildes ergibt sich aus dieser Eigenschaft ein Problem:
Beim Iterieren der p-Koordinate wird diese nur fiir ganzzahlige Werte ausgewertet. Mit
steigenden Werten vergrofert sich dadurch der Bereich zwischen zwei Abtastpunkten
schnell. Stellt sich heraus, dass eine Kante zwischen zwei dieser Abtastpunkte liegt, so
kann ihre eigentliche Position irgendwo zwischen diesen beiden liegen, die aber méglicher-
weise bereits im Bild einen groferen Abstand voneinander haben. Zwischen e? = 7,389
und e? = 20,086 liegen beispielsweise bereits 13 Schritte entlang des Strahls. Damit ist
unklar, wo genau sich die Kante befindet. Da diese Information fiir die Ermittlung der
Ballposition enorm wichtig ist, darf die Abtastrate des Bildes durch Verwendung der
Log-Polar-Position nicht zu schnell zu weit sinken.

Um die Problematik etwas zu entschérfen, kann man den Mittelwert der zwei Ab-
tastpositionen verwenden. Wird eine Kante also zwischen den beiden Werten p, € N
und pp+1 € N erkannt, so wird als resultierende Entfernung der Kante vom Pol des
Log-Polar-Bildes, das die Look-Up-Table darstellt, der Wert

P n Pn41
rK:(eM +e M)

(18)

N

gespeichert, also der Mittelwert der beiden Entfernungen.

Um die Abstédnde zwischen den abgetasteten Pixeln zu verringern, ldsst sich der Ska-
lierungsfaktor M verwenden. Wird dieser erhoht, so steigt die Abtastrate in der Néahe des
Pols deutlich, ohne dass sie in groferer Entfernung so stark zunimmt, dass die vorteil-
haften Eigenschaften der Log-Polar-Transformation verloren gehen. In ist der
Verlauf der abgetasteten Entfernungen fiir zwei verschiedene Wert des Skalierungsfaktors
M aufgelistet.

Wie man der Tabelle entnehmen kann, werden die Werte fiir M = 1 bei steigendem
p schnell sehr grofs, wahrend sie fiir M = 10 wesentlich langsamer wachsen. Damit kann

23

eﬁ eﬁ

p M=1 M =10 p M=1 M =10
0 1 1 8 ~ 2980,958 | ~ 2,226
1 ~ 2,718 | ~1,105 9 ~ 8103,084 | ~ 2,457
2 ~ 7,380 | ~1,221 10 | ~22026,466 | ~ 2,718
3 ~ 20,086 | ~ 1,350

4 ~ 54,598 | ~ 1,492 15| ~3,270-106 | ~ 4,482
5 | ~ 148,413 | ~ 1,649 20 | ~4,852-10% | ~ 7,389
6 | ~ 403,429 | ~ 1,822 25 | ~7,200-10%0 | ~ 12,182
7 | ~1096,633 | ~ 2,014 30 | ~1,069-10'3 | ~ 20,086

Tabelle 1: Auswirkung des Skalierungsfaktors M

man eine wesentlich genauere Abtastung erreichen. Wie bei den héheren Werten zu sehen
ist, beginnt das Abtastverhalten auch fiir den groferen Skalierungsfaktor ab gewissen
Werten, wie gewiinscht, zu sinken.

Es zeigt sich dabei allerdings ein anderes Problem. Fiir Werte von p von 0 bis 10 nehmen
die Werte nur sehr langsam zu, wenn M = 10 gilt. Das fiihrt dazu, dass einzelne Pixel
mehrfach abgetastet werden, was die Laufzeit des Verfahrens unnétig steigern wiirde.

Diesem Problem kann man dadurch begegnen, dass p nur auf Werte gesetzt wird, die
fiir unterschiedliche Pixel stehen, so dass das selbe Pixel nicht mehr mehrfach betrachtet
wird. Ein Wert p = p,, ist also nur dann zu betrachten wenn gilt:

LUT : N> - N, (p,) — (e cos(e), e sin(¢)) (19)
LUT(pn_110) # LUT(pul) mit festern do (20)

Um fiir die Priifung dieser Bedingung keine Rechenzeit aufwenden zu miissen, kann ei-
ne Iterationsliste schon beim Generieren der Look-Up-Table mit erzeugt werden. Dazu
wird fiir alle Werte von ¢ eine solche Liste erzeugt, in die dann Werte fiir p nur dann
eingetragen werden, wenn sie die oben genannte Bedingung erfiillen. Beim Abtasten des
Bildes selbst wird dann p nicht fiir jeden Wert ausgewertet, sondern nur fiir alle Werte
aus der Liste.

Mit Hilfe dieser Mafnahmen kann die Abtastung des Bildes mit der Log-Polar-Trans-
formation schon erheblich beschleunigt werden. Eine Messung zeigt aber, dass es trotzdem
noch viele Pixel des Bildes gibt, die unnotigerweise mehrfach abgetastet werden.
[le 2| und [Tabelle 3| zeigen das Ergebnis der Messung bei der Abtastung eines 640 Pixel
breiten und 480 Pixel hohen Bildes.

Wie man an den Ergebnissen der Messung sehen kann, werden viele Pixel mehrfach
abgetastet. Das fiihrt dazu, dass etwa vier mal so viele Abtastvorginge stattfinden, wie
notig waren. Die Ursache liegt darin, dass durch Rundung viele an sich unterschiedliche
Log-Polar-Koordinaten dem selben Pixel zugeordnet werden. Man betrachte das Pixel,

24

Anzahl Anzahl Anzahl Anzahl
n mal Pixel n mal Pixel n mal Pixel n mal Pixel

0 303.216 10 36 24 12 62 4
1 2.390 12 28 28 8 88 8
2 707 13 12 30 4 108 4
3 191 14 8 31 8 118 4
4 180 15 4 33 4 148 2
5 112 16 28 38 8 149 2
6 60 18 4 39 4 162 4
7 28 19 4 48 8 298 4
8 48 20 12 55 4 315 2
9 24 22 8 58 4 316 2

Tabelle 2: Messung der mehrfach abgetasteten Pixel

Summe der Pixel: 307.200
davon abgetastet: 3.984
Summe der Abtastungen: 16.709
unndtige Abtastungen: 12.725
Abtastungen (100 % = 3.984): | ~419,4%

Tabelle 3: Statistik zu [Tabelle 2|

auf dem sich der Pol befindet, und seine acht Nachbarpixel. Diese Pixel werden von
einer Vielzahl von Strahlen mit unterschiedlicher Winkelkoordinate ¢ getroffen und somit
mehrfach abgetastet. verdeutlicht das Beispiel.

Um diesen Effekt zu vermeiden, bietet es sich an, fiir bereits besuchte Pixel die Er-
gebnisse der Abtastung zu speichern und bei der erneuten Abtastung einfach auf diesen
Cache zuzugreifen, anstatt das Pixel selbst erneut zu analysieren. Der Zugriff auf den
Cache kostet hingegen fast keine Rechenzeit.

Eine Auslassung des bereits abgetasteten Pixels kommt nicht in Frage, da die strah-
lenférmige Kantensuche dadurch falsche Ergebnisse liefern kénnte oder manche Kanten
tiberhaupt nicht gefunden werden wiirden. Der Grund dafiir ist im folgenden
[terabschnitt 5.1.3] geschildert. Mit der Einfiihrung besagten Caches wird jegliche Mehr-
fachabtastung verhindert und die Laufzeit des Verfahrens aufgrund der eingesparten Re-
chenoperationen erheblich verbessert.

5.1.3. Erkennen von Ballkanten

Nachdem im vorangegangenen Abschnitt beschrieben wurde, wie man Ballpixel und
Nicht-Ballpixeln unterscheidet und wie das Bild mit Hilfe der Log-Polar-Transforma-
tion abgetastet wird, geht es nun darum, wie und unter welchen Bedingungen Kanten

25

——

Abbildung 14: In der Skizze ist ein Pixel mit seinen acht Nachbarpixeln zu sehen, also
ein Bildausschnitt von 3 x 3 Pixeln. Das selbe Pixel rechts neben dem Pol
wird fiir eine Vielzahl von Werten der Winkelkoordinate ¢ abgetastet

des Balls erkannt werden.

Grundsétzlich kann sich eine Kante des Balls nur dort befinden, wo entlang eines
Abtaststrahls von einem Ball-Pixel auf ein Nicht-Ball-Pixel iibergegangen wird oder um-
gekehrt. Es miissen aber noch zusétzliche Kriterien festgelegt werden, um ein sinnvolles
Detektieren von Kanten zu erméglichen. Eine Einstufung aller Ubergéinge zwischen Ball
und Nicht-Ball als Kanten wiirde dazu fiihren, dass man sehr viele falsche Ballkanten
erkennen wiirde. Dies hat verschiedene Ursachen:

Kamerarauschen Das Rauschen der Kamera bewirkt leichte Fluktuationen im Bild, wo-
durch einzelne Pixel falschlicherweise als Ball beziehungsweise Nicht-Ball eingestuft
werden.

Das Detektionsverfahren Bei der in [Unterabschnitt 5.1} [Detektion der Ballkanten| auf
Seite beschriebenen Erkennung von Ballpixeln kénnen, je nach Parametrierung,
auch beispielsweise einzelne Punkte an den Grenzen von Feldlinien irrtiimlicherwei-
se als Ballpixel erkannt werden.

Verschattung und Texturierung des Balls Einzelne Pixel des Balls konnen als Nicht-
Ball-Pixel erkannt werden, beispielsweise dann, wenn sie verschattet sind oder der
Ball texturiert ist.

Um diesem Problem zu begegnen, wird, wie gesagt, nicht jeder Ubergang zwischen Ball-
und Nicht-Ball-Pixeln als Kante erkannt. Stattdessen muss dieser weitere Bedingungen
erfiillen, um als Kante zugelassen zu werden.

26

Um die Erkennung von Kanten stabiler gegeniiber Kamerarauschen und einzelnen
falsch als Ball-Pixeln oder Nicht-Ball-Pixeln erkannten Pixeln zu machen, wird ein Ball-
zu Nicht-Ball-Ubergang (oder umgekehrt) nur dann als Kante zugelassen, wenn sich
davor und danach jeweils eine gewisse Anzahl von gleichen Pixeln befindet. Zum Beispiel
wird eine Kante dort erkannt, wo fiinf Ball-Pixel auf fiinf Nicht-Ball-Pixel folgen. Allge-
mein miissen die folgenden beiden Bedingungen erfiillt sein, damit eine Kante erkannt
wird:

Ngleiche Pixel davor > Tminimum gleiche Pixel davor (21)

Ngleiche Pixel danach > Tminimum gleiche Pixel danach (22)

Damit werden einzelne falsch zugeordnete Pixel als mogliche Kanten ausgeschlossen.
Uberginge werden zwischen Folgen gleich zugeordneter Pixel erkannt und nicht zwischen
einzelnen Pixeln. Solche Folgen von Pixeln kénnen natiirlich auch wieder durch Rauschen
falschlicherweise ausgeschlossen werden, wenn sich, zum Beispiel nahe des Randes des
Balls, ein einzelnes Nicht-Ball-Pixel befindet. Diese Uberkompensation hat aber in der
Praxis kaum Auswirkungen und kann daher verschmerzt werden, da sich durch diese
Methode viele Ausreifier ausschliefsen lassen.

Eine weitere Moglichkeit, die Kantendetektion zu verbessern, ist, griine Feldpixel zu
beachten. Solche griinen Pixel diirfen sich natiirlich nur auf der ,Nicht-Ball-Seite* der
erkannten Kante befinden, ansonsten ist die Kante als Fehldetektion einzustufen. Da-
mit konnen weitere Ausreifter von Kantenpositionen ausgeschlossen werden. Die hierbei
anfallende Information {iber Kanten zu griinen Feldpixeln ist im folgenden
wieder von Bedeutung.

Kanten zu im ezclusion-Bild (Siehe ,{Ignorieren von verdeckten Pixelnl* auf Seite
als verdeckt markierten Pixeln konnen ebenfalls von vorn herein ausgeschlossen werden.
Befindet sich also ein Ubergang an oder in unmittelbarer Néhe einer dieser Stellen, so
wird er als mogliche Kante nicht zugelassen.

Um die Laufzeit der Kantenerkennung moglichst gering zu halten, soll jeder Abtast-
strahl nur so lange abgelaufen werden, bis die maximale Anzahl von Kanten erkannt
wurde. Dabei gibt es drei Moglichkeiten:

1. Es wird keine Kante erkannt.

2. Es wird eine Kante von Ball zu Nicht-Ball erkannt. Damit kann zum néchsten
Strahl ibergegangen werden, da hier keine weitere Kante mehr folgen kann, denn
der Pol muss sich auf dem Ball befunden haben und nach Verlassen des Balls kann
keine weitere Kante mehr folgen.

3. Es wird eine Kante von Nicht-Ball zu Ball erkannt. Dann muss der Strahl weiter
abgelaufen werden, denn es muss eine weitere Kante von Ball zu Nicht-Ball gefun-
den werden konnen, aufier diese liegt auflerhalb der maximalen Suchdistanz. Das
liegt daran, dass der Strahl, wenn er Ball betritt, ihn dann auch wieder verlassen
muss. Dieser Fall kann nur eintreten, wenn der Pol des Log-Polar-Bildes nicht auf
dem Ball liegt.

27

In Fall Nummer zwei kann die Abtastung friih abgebrochen werden, was dazu beitrigt,
die Laufzeit des Verfahrens gering zu halten.

5.1.4. Klassifikation der Kanten

Die im vorherigen [Unterunterabschnitt 5.1.3| beschriebene Erkennung von Kanten er-

kennt jedoch immer noch falsche Ballkanten, ndmlich dort, wo der Ball von Robotern

oder anderen Objekten verdeckt ist. An diesen Stellen werden Kanten erkannt, die aber

eigentlich nicht zum Rand des Balls gehoéren. Um diesem Umstand Rechnung zu tragen,

gibt es eine einfache Klassifikation, mit der diese Kanten ausgeschlossen werden kénnen.
Die Kanten werden dazu in zwei Klassen unterteilt:

e Kanten zu einer Folge von griinen Feldpixeln
e Andere Kanten

Kanten zu Folgen von griinen Feldpixeln sind auf jeden Fall korrekte Kanten, die zum
Rand des Balls gehoren, da im RoboCup nur das Feld griin sein darf. Sie kénnen daher
nicht an Verdeckungen oder dergleichen entstehen. Gleichzeitig kostet diese Unterschei-
dung praktisch keine Rechenzeit, da die Griin-Eigenschaft von Pixeln in den vorange-
gangen Schritten [Unterunterabschnitt 5.1.1] und [Unterunterabschnitt 5.1.3] ohnehin fiir
jedes betrachtete Pixel ermittelt wurde. Mit dieser einfachen Klassifikation lassen sich
die Ergebnisse der Kantendetektion erheblich verbessern und nahezu alle Ausreifser aus-
schliefsen.

Die bei dieser Klassifikation ausgeschlossenen Kanten werden nicht verworfen. Sollten
zu wenig Kanten zu griinen Feldpixeln erkannt werden, um den Ball zu bestimmen, so
kann man auf sie zuriickgreifen. Es existieren Situationen, in denen der Ball keine Kanten
zu griinen Feldpixeln hat, beispielsweise, wenn er vollstdandig vor einem anderen Roboter
oder am Rand des Feldes liegt. In diesen Féllen sind auch die ,schlechteren Kanten
wichtig, um tiberhaupt eine Ballposition bestimmen zu kénnen.

5.1.5. Einsatz von Importance Sampling

Um die Detektion von Kanten zu verbessern und zu beschleunigen, wurde auch der
Einsatz von Importance Sampling getestet. Ziel war es, durch dieses weitere Ausreifser-
kanten auszuschliefen. Fiir alle gefundenen Kanten wurden benachbarte Abtaststrahlen
untersucht und nur bei Erkennung einer Kante entlang dieser Strahlen wurde die Ur-
sprungskante zugelassen. Dieser Vorgang wurde rekursiv fiir die Nachbarkanten wieder-
holt, bis die gewiinschte Anzahl an bestétigten Kanten gefunden wurde. Der Einsatz
von Importance Sampling hat sich jedoch als nicht praktikabel herausgestellt. Dies hatte
hauptséchlich drei Griinde:

1. Durch Kamerarauschen wurden oft eigentlich korrekte Kanten ausgeschlossen, wenn
eine der Nachbarpositionen keine Kante ergeben hat.

28

2. Der Einsatz von Importance Sampling fiihrt zu einer Verdichtung der Kantenposi-
tionen in einem bestimmten Bereich wiahrend andere Bereiche kaum abgetastet wer-
den. Dadurch wurde die Detektion des Balls erheblich verschlechtert. Eine gleich-
méfkige Abtastung des Balls hat sich als hilfreich heurausgestellt, was den Einsatz
von Importance Sampling als unzweckméfig herausstellt.

3. Auch aus Laufzeiterwdgungen wurde das getestete Importance Sampling wieder
deaktiviert und dessen Einsatz verworfen, da sonst viele zusétzliche Strahlen hatten
abgelaufen werden miissen, wenn der Ball trotzdem in alle Richtungen gleichméfig
abgetastet werden soll.

5.2. Berechnung der Position des Ballmittelpunkts und des Ballradius’

Nachdem die Positionen von Kantenpixeln, wie im vorangegangen |Unterabschnitt 5.1|
beschrieben, ermittelt wurden, muss aus diesen Kantenpositionen die Position und Grofe
des Balls bestimmt werden. Dafiir wurde mit zwei Ansétzen experimentiert.

1. Bestimmung des Ballmittelpunkts durch Bestimmen der Abweichung von einer ge-
raden Linie im Log-Polar-Bild

2. Bestimmung des Ballmittelpunkts und des Ballradius durch Einpassen eines Krei-
ses.

Die beiden Ansétze sind im Folgenden beschrieben und werden anschliefsend verglichen.

5.2.1. Variante 1: Bestimmen der Abweichung von einer geraden Linie im
Log-Polar-Bild

Um aus den ermittelten Kantenpixeln die Parameter des Ball zu bestimmen, kann die in
[Abschnitt 4.2} [Balldarstellung im Log-Polar-Bild], auf Seite beschriebene Eigenschaft
des Log-Polar-Bildes genutzt werden, die besagt, dass der Rand eines Balls darin als
Gerade beziehungsweise Kurve erscheint. Aus der Form dieser Randkurve im Log-Polar-
Bild lasst sich auf die Position des Ballmittelpunktes und den Ballradius schlieffen. Dies
funktioniert zundchst einmal natiirlich nur dann, wenn der Pol bereits auf dem Ball liegt.
Dies ist in den folgenden Betrachtungen, wenn nicht anders beschrieben, vorausgesetzt.

Zur Bestimmung von Ballposition und -radius stehen, wie beschrieben, die Kantenpixel
aus der Kantenerkennung in Log-Polar-Koordinaten zur Verfiigung. Um nun den Radius
des Balls bestimmen zu kénnen, kann tiber die Entfernungen der n Kantenpixel gemittelt
werden. Dabei ist zu beachten, dass nicht iiber die Werte p, der Koordinaten selbst
gemittelt wird, sondern iiber die tatsidchliche Entfernung e beziehungsweise 6%, wenn
M ## 1 gilt. Dies folgt aus den Eigenschaften der Log-Polar-Koordinaten. Der Radius des
Balls ergibt sich also wie folgt:

N
1
TBall = N ; e mit N Kantenpixeln (23)

29

Wiirde sich der Pol auf dem Mittelpunkt des Balls befinden, so ergébe sich im Log-Polar-
Bild also eine Gerade bei p = M - In(rgan).

Nun kann fiir jedes Kantenpixel die Distanz von dieser Gerade berechnet werden, also
die Strecke, um die der Pol zu verschieben ist, damit das Kantenpixel im Log-Polar-Bild
genau auf dieser Geraden liegt. Diese Distanz ergibt sich fiir das n-te Kantenpixel wie
folgt:

pn
dn,Verschiebung = €M — TBall (24)

Die Richtung der Verschiebung ist zunéchst unklar. Nimmt man nun einfach eine Ver-
schiebung entlang der Geraden von Pol zu Kantenpixel um d,, verschiebung an, ergibt sich
fiir die berechnete Verschiebung fiir das n-te Kantenpixel mit den Log-Polar-Koordinaten

(pn‘¢n):

- dp, Verschiebung * COS(¢n))
Up = ’) 25
" < dn,Verschiebung : Sln(¢n) ()

Um nun die korrekte Gesamt-Verschiebung zu bestimmen, miissen die Vektoren wieder
bereinigt werden. Voraussetzung dafiir ist, dass der Ballrand gleichmdjig abgetastet wur-
de. Dann heben sich fiir jeweils Paare von Kantenpositionen falsche Teilkomponenten
der Verschiebung auf. Die z-Komponente gleicht sich dabei bei jeweils dem Paar aus,
bei dem die Winkelkoordinate an der 90°- beziehungsweise 270°-Achse gespiegelt ist, die
y-Komponente entsprechend bei den Paaren, deren Winkelkoordinaten an der 0°- bezie-
hungsweise 180°-Achse gespiegelt sind. Ubrig bleiben jeweils nur die Komponenten der
Verschiebung, die in die korrekte Richtung weisen.

Nachdem, wie beschrieben, die entsprechenden Paare von Verschiebungsvektoren mit-
einander verglichen wurden, stellen die bereinigten Vektoren alle die korrekte Verschie-
bung dar. Um aber der Tatsache Rechnung zu tragen, dass das Bild nicht immer gleich-
mékig abgetastet wird und es gewissem Rauschen unterliegt, wird der Mittelwert dieser
Vektoren gebildet:

N

. 1 -

Vges = N : Z VE bereinigt (26)
k=1

Um diesen Vektor muss der Pol des Log-Polar-Bildes bewegt werden, um mit dem
Mittelpunkt des Balls zusammenzufallen. Damit ist der Mittelpunkt des Balls bekannt:

— TPol + Tges
U = 27
Ball (Ypol + Yges > ()

5.2.2. Variante 2: Einpassen eines Kreises

Eine andere Moglichkeit, aus den detektierten Ballkantenpixeln die Parameter des Balls
zu bestimmen, ist einen Kreis so einzupassen, dass moéglichst alle der Kantenpixel auf des-
sen Rand liegen. Dieser Kreis stellt dann den Ball dar, das heiftt, Radius und Position des

30

Mittelpunkts dieses Kreises stimmen mit dem Ball iiberein. Dafiir miissen die ermittel-
ten Kantenpixel, die in Log-Polar-Koordinaten gegeben sind, in kartesische Koordinaten
umgewandelt werden. Diese Umwandlung wurde in [Abschnitt 3.1 |[Logarithmieren der|
[Entfernungen] auf Seite beschrieben.

Im Folgenden wird zuerst erldautert, wie mogliche Kreise bestimmt werden kénnen und
anschliefsend, nach welchen Kriterien der schliefllich ausgegebene Kreis ermittelt wird.

Berechnen moglicher Kreise Da drei Punkte einen Kreis eindeutig bestimmen, kann
aus jedem 3-Tupel von Kantenpixeln ein moglicher Kreis berechnet werden, sofern diese
nicht auf einer Geraden liegen. Dies liegt daran, dass ein solches 3-Tupel von Punkten
ein Dreieck darstellt und der gesuchte Kreis dann gleich dem Umkreis dieses Dreiecks ist.

Dies verdeutlicht

Abbildung 15: Vier Punkte mit zwei moglichen Dreiecken sowie deren Umkreisen.

Der Mittelpunkt des Umbkreises eines Dreiecks ist gleichzeitig der Schnittpunkt der
Mittelsenkrechten der Seiten dieses Dreiecks. Um also den Kreis zu bestimmen, geniigt
es, den Schnittpunkt zweier Mittelsenkrechten zu errechnen. Der Radius des Kreises ist
dann der Abstand der Punkte von diesem Schnittpunkt. In ist dies zu
sehen.

Soll also der Kreis, den das 3-Tupel A, B, C von Punkten darstellt, bestimmt werden,
so beginnt man mit der Berechnung zweier Mittelsenkrechten des entsprechenden Drei-
ecks mit den Seiten a, b, c. Die Steigung einer Mittelsenkrechten bestimmt man aus der
Steigung der Dreiecksseite. Die Steigung der Dreiecksseite a bestimmt sich wie folgt:

. To — IR 1 1>
a = = — = 28
(oo)= (ot)= .

Die Dreiecksseite a und deren Mittelsenkrechte s, sind orthogonal zueinander. Mit dem

31

4

Abbildung 16: Ein Dreieck mit den Mittelsenkrechten der Seiten und dem daraus be-
stimmten Umbkreis.

euklidischen Skalarprodukt gilt also:

a-Sq=\dl-|Sa| - cos(90°) =0 (29)
Q- Sq=1=Tq Ts, +Ya Ys, =0 (30)
1-14+mg-ms, =0 (31)
Mg - M, = —1 (32)
1
=—-— 33
msa My ()
_ 1
Msa = ~yo—yp (34)
Toc—TR
mg, = B C (35)
Yc — YB
Fiir die Seite b gilt entsprechend:
TA— XC
mg, = ——— 36
Yo —ya (36)

Um den Schnittpunkt der beiden Mittelsenkrechten berechnen zu kénnen, braucht man
diese allerdings als Geradengleichungen, also muss man auch noch die y-Achsen-Ab-
schnitte bestimmen. Dafiir verwendet man die Mittelpunkte der Dreiecksseiten, die ja
den Schnittpunkt mit der jeweiligen Mittelsenkrechten darstellen. Diese bestimmt man

32

wie folgt:

- . C-B
Ma:<mM‘1>:B+02 (37)

- TR TCo — TR 1 TB LOTAR
‘ (yB> (yc yB>2 (yB>+<nyB (3
M:<x3+$c xB>:(é1 (xc—f—xB))
yp + YSYE 5 (yc +yB)
Nun kann durch Einsetzen dieses Seitenmittelpunkts M, die Geradengleichung der Mit-
telsenkrechten s, der Seite a bestimmt werden:

(39)

Sq(x) = mg, - T+ cs, (40)
Csy = Sq(x) — My, - T (41)
1 1 v 3 (zc +p))
Cs, = = + — =M, (xc + mit M, = 42
= gl) — g o +ap) mie M= (37 00TE)
Entsprechend gilt fiir c,,:
1 1
Csy = 9 (Yo +ya) — §m8b (e +mwa) (43)

Der gesuchte Umkreismittelpunkt M ergibt sich nun durch Gleichsetzen der Geraden:

fiir ms, # 00, mg, # 00

W
=~

Mg, TN + Cs, = Mg, TN + Csy

N
(@)}

Mg, LM = Mg, T + Csy — Cs

a

Mg, LM — Mg, TN = Cg, — Cs

PN,
39 &
S— S N S N N

xM(mSa - msb) = Csy, = Csq

Ty = ——

)
— ~~ /N

YM = MgZTpr + Cq

— M = S (50)
(i) e
fir mg, = 00, x4 = xo const (mg, = oo analog)
TM = Zq (51)
Ynm = Mpxar + Cp (52)

Nachdem der Umkreismittelpunkt M bekannt ist, ergibt sich der Radius r» des Um-
kreises als Abstand zwischen M und einem der drei Dreieckseckpunkte.

R (R el | R e e e e

33

N @

3 1
4 4
5 10
10 120
20 1140
30 4060
50 | 19600

Tabelle 4: Einige Beispielwerte fiir den Binomialkoeffizienten

Anzahl moglicher Kreise Wie beschrieben, kann aus drei Punkten ein Kreis eindeu-
tig bestimmt werden. Die Anzahl verschiedener Kreise, die aus der Gesamtanzahl N an
gefundenen Kantenpixeln bestimmt werden kann, ist durch den entsprechenden Binomi-

alkoeffizienten gegeben.
N N!
— M 54
(3) 31 (N =3)! (54)

Mit steigendem N nimmt dieser Wert schnell zu. zeigt einige Beispielwerte.

Wie man in der Tabelle sehen kann, sind die Werte des Binomialkoeffizienten bereits fiir
relativ niedrige Werte von N sehr grofs. Die Anzahl der verwendeten 3-Tupel von Punkten
muss also beschrankt werden, ansonsten wiirde die Laufzeit mit steigender Anzahl von
detektierten Punkten sehr schnell stark steigen.

Es muss also ein Teil aller moglichen 3-Tupel ausgewéhlt werden. Dies kann entweder
durch ein zufallsbasiertes oder ein deterministisches Verfahren erreicht werden. Es wurde
mit beiden Arten der Auswahl experimentiert und schlieflich der deterministischen der
Vorzug gegeben, um fiir das selbe Eingabebild auch immer den selben Ball zu erkennen.

Auswahl des besten Kreises Aus der ermittelten Anzahl von potentiellen Kreisen,
die aus jeweils einem 3-Tupel von Kantenpixeln bestimmt wurden, ist der bestmdgliche
Kreis auszuwahlen. Dafiir muss ein Kriterium gefunden werden. Bezogen auf die ermit-
telten Kantenpixel ist der beste Kreis derjenige, bei dem diese Pixel am néchsten zum
Rand liegen, also deren Absténde am geringsten sind. Damit bietet es sich an, sich hier
an der Methode der kleinsten Fehlerquadrate oder englisch Least Squares zu orientie-
ren. Bei dieser Methode wird, um eine Funktion f optimal an N gegebene Messpunkte
(xk,yx), k = 1... N anzugleichen, die Summe der Fehlerquadrate

N
Z(f(fﬂk) — yk)? (55)

k=1

minimiert.

34

Bei den Kreisen wird diese Summe also gebildet, indem die quadrierten Absténde der
Kantenpixel von dem Kreis aufsummiert werden. Fiir einen Kreis m mit Mittelpunkt
(zar|lyar) und Radius 7, und ein Kantenpixel k& mit Position (zx|y) entspricht der Ab-
stand des Pixels vom Kreismittelpunkt der Lange des Vektors mk. Diese berechnet sich

wie folgt:
mk = < Tk oM) (56)
Ye —YMm
k| = \(Tk — Tar)\ [N A (57)
Y —YMm

Der Betrag zum Fehlerwert fiir dieses Kantenpixel k besteht aus dem quadrierten Ab-
stand dieses Pixels zum Rand des Kreises. Mit dem bereits berechneten Abstand vom
Kreismittelpunkt erhélt man die Distanz des Pixels vom Rand des Kreises, indem man
dessen Radius von diesem Abstand subtrahiert:

k= (Jmk| —) (58)
e = (V @k —2a0)? + (ys — yar)? = 1)’ (59)
verdeutlicht dieses Prinzip.

Ko

Abbildung 17: In der Skizze ist ein Kreis und zwei Pixel zu sehen. In rot sind jeweils
deren Abstdnde zum Kreis markiert, die dann quadriert deren Beitrag
zum Gesamtfehler sind.

Der gesamte Fehlerwert 7, des Kreises m fiir alle N Kantenpixeln ergibt sich also zu:

o (Cd) o

N = (\/(-Tk —xm)? + (Ye — ymr)? — Tm>2 (61)

35

Aus der Menge der Kreise K wird der Kreis mit dem niedrigsten 7, als der Beste gewéhlt.
KErgebnis = Km € K: N < nkVKk €K (62)

Aus den Parametern dieses Kreises werden dann Ballposition und -radius bestimmt. Da
die verwendeten Pixelkoordinaten der Ballkantenpixel als Ursprung den Pol des Log-
Polar-Bildes haben, miissen dessen Koordinaten noch addiert werden, um die absolute
Position des Ballmittelpunkts zu bekommen. Der Radius des Balls entspricht dem Radius
des besten Kreises Kgrgebnis-

T'Ball = T'Ergebnis (63)

- TPol + TErgebnis

UBall = & (64)
YPol + YErgebnis

Alternative: Median der Fehlerquadrate Es wurde auch damit experimentiert, anstatt
der Summe den Median der Fehlerquadrate zu verwenden und dann den Kreis zu wéhlen,
der den geringsten Median hat. Im Vergleich waren die Ergebnisse grundsétzlich robuster
gegeniiber Ausreifsern als bei der Summenberechnung, es gab allerdings Konstellationen,
in denen das Verfahren Kreise wihlte, die sehr groffe Summen gehabt hétten, und deren
Parameter vom denen des eigentlichen Balls sehr weit entfernt waren. Dies trat beispiels-
weise zu Tage, wenn Teile des Balls verdeckt waren.

FEin grundsatzliches Problem ist, dass die Berechnung des Medians sehr langsam ist, da
hierzu die einzelnen Fehlerquadrate fiir jeden Kreis gespeichert und anschliefsend sortiert
werden miissen. Auch mit einem schnellen Sortierverfahren ist dies erheblich langsamer
als das einfache Aufsummieren.

In dem man die Anzahl der betrachteten Kreise erhoht, konnte bei dann gleicher Lauf-
zeit die Bestimmung mit der Fehlerquadrat-Summe mindestens gleichwertige, meist we-
sentlich bessere Ergebnisse liefern, als die Bestimmung mit dem Median und weniger
betrachteten Kreisen. Daher wurde dieser Ansatz wieder verworfen.

5.2.3. Vergleich der beiden Varianten

Die beiden vorgestellten Varianten, den Mittelpunkt und den Radius des Balls aus den
ermittelten Kantenpixeln zu bestimmen, haben beide ihre Starken und Schwéachen. Stéar-
ke des ersten Verfahrens ist insbesondere seine geringe Laufzeit. Variante zwei bendtigt
demgegeniiber ein mehrfaches dieser Laufzeit, sie liegt aber immer noch im vertretbaren
Rahmen. Bei einem gleichméfig abgetasteten Ball liefern beide Varianten gute Ergebnis-
se, wobei die der zweiten Variante trotzdem meist genauer sind.

Variante eins hat aber einen ganz erheblichen Nachteil, der dazu gefithrt hat, dass
sie in der Praxis nicht verwendbar ist. Um verniinftige Ergebnisse zu liefern, muss der
Ball in alle Richtungen gleichméfig abgetastet sein, damit sich die Vektoren gegenseitig
bereinigen kénnen. Die ist aber nur gegeben, wenn der Ball vollsténdig sichtbar ist. Sobald
Teile des Balls verdeckt sind, ist eine solche Abtastung kaum mehr moglich. Auferdem
ist die Variante deutlich empfindlicher gegeniiber Ausreifern als Variante zwei. Zudem

36

muss fiir die erste Variante der Pol bereits auf dem Ball selbst liegen, was eine weitere
Einschriankung bedeutet.

Variante zwei hingegen liefert nahezu immer gute Ergebnisse, auch wenn Teile des
Balls verdeckt sind und es einzelne Ausreiffer gibt, an denen Kantenpixel an falschen
Positionen erkannt wurden. Auch wenn der Pol sich nicht auf dem Ball befindet, ist dies
kein Problem fiir die zweite Variante.

Diese Faktoren gaben den Ausschlag zum Verwenden der zweiten Variante und Ver-
werfen der Ersten. Diese basiert zwar auf einer interessanten Idee, hat sich jedoch in
der Praxis aufgrund der genannten Einschrinkungen als unbrauchbar erwiesen. Auch die
Laufzeit ist hier nicht ausschlaggebend, da Variante zwei immer noch ausreichend schnell
ist, um die gesetzten Anforderungen zu erfiillen, und gleichzeitig mit ihrer Robustheit
und ihren guten Ergebnissen liberzeugt.

5.2.4. Weit entfernte Balle

Sehr weit vom Roboter entfernte Bille erscheinen im Kamerabild sehr klein. Das fiihrt
dazu, dass fiir diese Punkt zu wenige Kantenpixel gefunden werden, um eine der beiden
Varianten verniinftige Ergebnisse produzieren zu lassen. Trotzdem geben diese wenigen
Kantenpixel eine Information dariiber, wo ungefahr sich der Ball befindet. Bei Ballen in
dieser Entfernung ist die exakte Position und Gréfe des Balls ohnehin nicht so wichtig
wie bei nahen Béllen, da eine genauere Positionierung des Roboters bei so weit entfernten
Ballen nicht nétig ist. Stattdessen wird der Roboter nur grob in die Richtung des Balls
fahren und mit sich verringernder Entfernung vom Ball auch genauere Positionsinforma-
tion erhalten.

Um auch in solchen Féllen, in denen der Ball eigentlich zu weit weg ist, eine Information
vom Tracking zu erhalten, wird in diesem Fall die gemittelte Position der N gefundenen
Kantenpixel und ein Radius von 0 zuriickgegeben.

1 N x
I N
UBall = Z (N > (65)
=1
TBall = 0 (66)

5.2.5. Information zur Ermittlung der Giite des gefundenen Balls

Wie in [Unterabschnitt 4.1} [Tracking des Ballg, auf Seite erklart, ist es wichtig, dass
das Tracking-Verfahren auch Informationen iiber den ermittelten Ball liefert, mit deren
Hilfe sich ein Qualitdtswert fiir diesen Ball bestimmen lédsst. Nur dann ist man in der
Lage, bei mehreren moglichen Ballpositionen die richtige zu bestimmen oder, falls es
nur sehr ungenaue Positionsbestimmungen gibt, eine neue globale Suche nach méglichen
Ballpositionen anzustofsen.

Zu diesem Zweck gibt das Tracking nach erfolgreichem Finden eines Balls vier ver-
schiedene Informationen zuriick.

1. Art des gefunden Balls. Der erste zuriickgelieferte Wert sagt aus, wie der Ball

37

lokalisiert wurde. Damit lédsst sich eine grobe Qualitdtsabstufung in drei Stufen
treffen:

Bille mit Kanten zu griinen Feldpixel. Die besten Béllen sind gleichzeitig der Nor-
malfall, ndmlich Bélle, deren Position und Groéfe ermittelt wurde, in dem die
Kantenpixel an Kanten zu griinen Feldpixeln verwendet wurden.

Bille mit Kanten zu anderen Pixel Qualitativ wesentlich schlechter sind die B&l-
le, bei denen nicht geniigend Kanten zu griinen Feldpixeln vorhanden waren
und bei denen auch die anderen gefunden Kantenpixel zur Positionsbestim-
mung verwendet wurden. Diese sind mit einer wesentlich gréfteren Unsicherheit
behaftet, als die Kantenpixel zu griinen Feldpixeln. Daher sind fiir diese Bélle
die ermittelten Ballparameter tendenziell weniger exakt.

Sehr weit entfernte Balle Wie im vorherigen [Unterunterabschnitt 5.2.4] beschrie-
ben, gibt es auch den Fall, wenn es zu wenig Kantenpixel fiir jede genaue
Positionsbestimmung gibt. In diesem Fall wird nur der Mittelwert der Punkt
und ein Radius von 0 zuriickgegeben. Bei so bestimmten Ballparametern han-
delt es sich um die am wenigsten genauen.

2. Anzahl der gefunden Kantenpositionen. Die Anzahl der gefundenen Kanten-
pixel lasst ebenfalls auf die Giite des ermittelten Balls schliefsen, da mehr gefundene
Kantenpositionen auch normalerweise eine exaktere Positionsbestimmung ermog-
lichen. Insbesondere gilt der umgekehrte Fall, je weniger Kantenpixel gefunden
wurden, desto weniger exakt ist die Positionsbestimmung.

3. Summe der quadrierten Abweichungen. Die Summe der quadrierten Abwei-
chungen desjenigen Kreises, der dann zuriickgegeben wird, wird ebenfalls ausgege-
ben. Wie diese bestimmt wird, kann in [Abschnitt 5.2.2] |Auswahl des besten Kreises|,
auf Seite nachgelesen werden. Auch aus diesem Wert ldsst sich auf die Giite der
ermittelten Ballparameter schliefen

4. Alle anderen ermittelten Kreise. Die, wie in [Unterunterabschnitt 5.2.2] [Va-
[mante 2: Einpassen eines Kreises| auf Seite beschrieben, anderen Kreise, die
aus den Kantenpixeln ermittelt und als mogliche Ballposition in Betracht gezogen
wurden, werden ebenfalls ausgegeben. Falls die vom Verfahren ermittelten Ballpa-
rameter ausgeschlossen werden koénnen, kann als Riickfallwert hieraus ein anderer
Kreis ausgewéhlt werden.

Durch die Ausgabe dieser vier Parameter ist von dort, von wo das Tracking aufgerufen
wird, eine Giitebestimmung fiir die ermittelten Ballparameter moglich.

5.3. Zusammenfassung und Beispielablauf

In den voran gegangenen Unterabschnitten wurde erlautert, wie in einem Bild Kantenpi-
xel gefunden werden konnen und wie man aus diesen Positionen dann die Parameter des

38

Balls bestimmen kann. Um einen Uberblick iiber den Ablauf eines kompletten Tracking-
Schrittes zu geben, werden im Folgenden die dazu nétigen Schritte einzeln und in der
entsprechenden Reihenfolge aufgelistet.

Zunéachst steht dem Tracking-Verfahren wie in [Unterabschnitt 4.1} [Tracking des Balls|
auf Seite erlautert eine Initial-Position zur Verfiigung. Dabei handelt es sich entweder
um die Position des Balls im letzten Kamerabild oder, falls diese nicht bekannt ist, um die
Ausgabe eines globalen Balldetekionsverfahrens, dass gewisse Regionen mit potentiellen
Béllen ermittelt. Von dieser Initialposition aus werden dann alle Schritte des Trackings

durchgefiihrt. zeigt ein Beispiel fiir ein gesehenes Kamerabild und die
gelieferte Initialposition.

Abbildung 18: Tracking-Beispiel: Das Bild, das der Roboter sieht. Mit einem roten Kreuz
ist die Initialposition markiert.

Ausgehend von dieser Position wird nun das Bild abgelaufen, so wie in
[schnitt 5.1.2] [Log-Polar-Transformation mit Look-Up-Table, auf Seite 22| beschrieben.
Dabei werden die Punkte in Nicht-Ball-Pixel und Ball-Pixel unterteilt und Kantenpixel
gesucht, dies wurde in [Unterunterabschnitt 5.1.1] [Detektion von Ballpixeln ohne Para-|
auf Seite beschrieben. Dabei wird fiir jeden untersuchten Pixel der Wert von

V — U betrachtet und mit einem Schwellwert T, verglichen, zeigt das
entsprechende Bild.

Die gefunden Kantenpixel werden dann klassifiziert, je nachdem, ob sie an Kanten zu
griinen Feldpixeln liegen oder nicht. Solche Kantenpixel werden bevorzugt behandelt und
andere gefundene Kantenpixel werden nur dann verwendet, wenn die Zahl der Kanten zu

Feldpixeln nicht ausreicht. zeigt die im Beispiel als griin erkannten Pixel.
In der darauf folgenden sind die gefunden Kantenpixel zu sehen.

Damit ist die Kantendetektion abgeschlossen. Nun miissen aus den ermittelten Kanten-
pixeln die Position des Ballmittelpunkts und der Ballradius bestimmt werden. Wie das
im Einzelnen gemacht wird, wurde in [Unterabschnitt 5.2] [Berechnung der Position deg]
[Ballmittelpunkts und des Ballradius’, auf Seite erklart. Dabei wird aus einer Menge

39

Abbildung 19: Tracking-Beispiel: Im Bild aus|Abbildung 18| wurde fiir jeden Pixel V — U
mit einem Schwellwert T, verglichen. Pixel mit V' — U > T, sind weik,

alle anderen schwarz.

Abbildung 20: Tracking-Beispiel: Im Bild aus |Abbildung 18 wurden alle als griine Feld-
pixel erkannten Pixel mit einem kréftigen Griin markiert.

von Kreisen der bestmégliche ausgewahlt. Wie diese Kreise im Beispiel aussehen, ist in

Als Ergebnis liefert das Tracking-Verfahren dann die Ballposition und den Ballradius.

zeigt dies fiir das Beispiel.

Damit ist ein Durchlauf des Trackingverfahrens abgeschlossen.

40

Abbildung 22: Tracking-Beispiel: Die mit den Kantenpixeln aus|Abbildung 21| bestimm-
ten moglichen Bélle (Bemerkung: andere Initialposition als bei den restli-
chen Beispielbildern).

Abbildung 23: Tracking-Beispiel: Der gefundene Ball.

41

6. Einsatzszenario, Messungen und Ergebnisse

Nachdem nun ein Verfahren entwickelt wurde, dass das Auffinden des Balls in einem
Kamerabild ausgehend von einer Initialposition erlaubt, soll dieses in der Praxis zum
Tracking eingesetzt werden. Wie bereits beschrieben, soll es bei den Fuftballrobotern
des 1. RFC Stuttgart verwendet werden, die im RoboCup in der Middle Size League
spielen. Im Folgenden wird kurz beschrieben, wie diese Roboter aufgebaut sind, siehe
dazu [Unterabschnitt 6.1l

Anschliefend wird gezeigt, wie das im vorherigen entwickelte Tracking-
Verfahren in das Software-Framework integriert wurde, das auf den Robotern eingesetzt
wird, um diese zu steuern. Dies wird in |[Unterabschnitt 6.2 erklart.

Mit den so konfigurierten Robotern wurden schliefslich verschieden Messungen mit dem
fertig entwickelten Verfahren durchgefiihrt, um dessen Leistungen zu dokumentieren.
Diese Messungen und deren Ergebnisse werden in [Unterabschnitt 6.3] erldutert.

6.1. Aufbau der Roboter

Die Fuftballroboter des 1. RFC Stuttgart fir die Middle Size League des RoboCups sind
rund einen Meter hoch und haben eine Grundfliche von etwa 50 cm x 50 cm. In
ist ein solcher Roboter zu sehen. Die Roboter besitzen drei angetriebene Réder

Abbildung 24: Ein Fufballroboter des 1. RFC Stuttgart

mit quer installieren Rollen auf der Lauffache. Dadurch kénnen sie sich in jede Richtung
drehen und gleichzeitig in jede Richtung fahren, es handelt sich also um einen omnidi-
rektionalen Antrieb. Dieser kann den Roboter mit Geschwindigkeiten von bis zu 5 m/s
bewegen[I]. Zur Stromversorgung sind im Boden des Roboters Einschiibe fiir mehrere
Akku-Packs vorhanden.

42

Jeder Roboter besitzt aufserdem ein sogenanntes Dribbling Device, eine Aussparung
knapp tiber Spielfeldhéhe, teilweise mit zusétzlichen Rédern. Diese Vorrichtung dient
dazu, dass der Roboter in der Lage ist, mit dem Ball zu dribbeln. Dazu fahrt der Roboter
den Ball so an, dass er in diese Aussparung gelegt wird, und durch die zwei Rader wird
der Ball gedreht, damit er in der Aussparung liegen bleibt.

In der Mitte des Roboters ist der Steuerrechner angebracht. Dabei handelt es sich um
handelsiibliche PC-Komponenten, die in ein kleines Gehéuse gepackt wurden. Auf diesen
lauft ein normales Linux-Betriebssystem. Er verfiigt iiber konventionelle Anschliisse fiir
einen Bildschirm, Eingabegeréite und weitere Peripheriegerdte. Der Rechner hat aufser-
dem ein WLAN-Modul, das die Kommunikation mit den anderen Robotern oder den
Zugriff von aufien auf den Steuerungsrechner ermdoglicht. Am Gehduse des Steuerrech-
ners befindet sich ebenfalls ein Anschluss fiir ein Laptop-Netzteil, um den Roboter mit
Strom zu versorgen, ohne geladene Akkus zu bendtigen. Im mobilen Betrieb wird der
Steuerrechner von einem eigenen Akku mit Strom versorgt|[I].

Ganz oben am Roboter befindet sich die Panorama-Kamera. Sie verfiigt iiber ein Auf-
16sungsvermogen von 640 x 480 Pixeln und iibertragt ihre Bilder in UY VY -Kodierung.
Die Kamera ist senkrecht nach oben ausgerichtet und blickt auf einen Parabolspiegel di-
rekt iiber sich, der sich auf einer Haltekonstruktion befindet. Diese Haltekonstruktion ist
auch dafiir verantwortlich, dass, wie in [Unterabschnitt 4.1] auf Seite [I4] erklart, Teile des
Bildes immer verdeckt sind. Die &dltere Version dieser Konstruktion hatte vier Streben,
inzwischen kommt man mit drei schméleren Streben aus, dies spiegelt sich zum Teil in
den Bildern in dieser Arbeit wider.

Dies ist natiirlich nur ein sehr grober Uberblick iiber die einzelnen Teile des Roboters.
Weitere Details lassen sich auf der Webseite des 1. RFC Stuttgart findenl[I].

6.2. Integration des Tracking-Verfahrens

Um das entwickelte Tracking-Verfahren auf den Robotern einzusetzen, musste es in das
Software-Framework eingebunden werden, das auf den Robotern eingesetzt wird. Aus-
gangsstand war, dass in jedem Kamerabild global nach Pixeln gesucht wurde, die die
Ballbedingung erfiillen, also fiir die

V—U>T,, (67)

ist. Wenn von diesen Pixeln eine gewisse Anzahl benachbart sind, wird eine gewissen
Region um diese gefundenen Pixel herum als ,,enthélt potentiell einen Ball“ markiert und
gespeichert. Das Tracking-Verfahren wurde dann so integriert, dass es fiir jede dieser
Region aufgerufen wurde. Wurde dabei mindestens ein Ball gefunden, fand ein erneuter
Aufruf der globalen Suche nach Ballpixeln erst wieder statt, wenn zu einem spéteren
Zeitpunkt kein Ball mehr gefunden wurde. Zusétzlich wurde diese globale Suche auch
nach einer gewisse Anzahl von Kamerabildern erneut durchgefiithrt, um zu verhindern,
dass das Tracking ewig nur ein und denselben Ball verfolgt.

Da das Verfahren fiir jede der Regionen aufgerufen wird, kann es natiirlich vorkommen,
dass mehrere Bélle gefunden werden. Wenn dieser Fall eintritt, muss ausgewéhlt werden,
welchem der gefundenen Bélle gefolgt werden soll. Hierfiir ist eine Qualitétsabschétzung

43

wichtig, die besagt, welcher Ball der am besten erkannte ist, der dann verfolgt werden soll.
Die Qualitatsabschétzung ist auch wichtig, um zu ermitteln, wann erneut eine globale
Ballsuche ausgefiihrt werden soll, also wann der Zeitpunkt erreicht ist, ab dem ein noch
erkannter Ball als qualitativ nicht ausreichend klassifiziert wird.

Diese Qualitdtsabschitzung wird im Software-Framework mit den vom Tracking-Ver-
fahren gelieferten Informationen durchgefiihrt. Diese wurden unter[Unterunterabschnitt 5.2.5]
[nformation zur Ermittlung der Giite des gefundenen Balls| auf Seite [37], beschrieben. Der
Giitewert eines Balls berechnet sich nach folgender Formel, wobei sich alle Pixelanzahlen
auf die Pixel innerhalb des Kreises beziehen, der vom Tracking-Verfahren geliefert wird:

NBallpixel — " Griinpixel

NBall = T'Ball (68)

NGesamtpixel
Mit dem Radius wird multipliziert, um gréfere und somit ndhere Bélle hoher zu gewich-
ten. Auferdem wird bei der Berechnung der Anzahl von Gesamtpixeln nur der Teil der
Pixel beachtet, der nicht ohnehin durch die Roboteraufbauten verdeckt ist, sieche dazu
[Abschnitt 5.1.1] fgnorieren von verdeckten Pixeln] auf Seite [21]

Der gefundene Ball mit dem héchsten Qualitdtswert wird dann vom Tracking verfolgt,
sprich dessen Position wird dem Tracking-Verfahren fiir den néchsten Rechenschritt als
Initialwert vorgegeben.

Dieser Giitewert hat einen weiteren Nutzen, denn man kann damit die Qualitdt der
Balldetektion in verschiedenen Entfernungen vergleichen. Basierend darauf wurden ver-
schiedene Messungen durchgefiihrt, die im Folgenden beschrieben sind.

6.3. Messungen
6.3.1. Erkennen des Balls in verschiedenen Positionen

Eine wichtige Leistung, die das Tracking zu erbringen hat, ist das Erkennen von verschie-
denen Arten von Béllen in verschiedener Entfernung. Bei der Auflésung der Kameras der
Roboter und der Panorama-Konstruktion sollte eine Erkennung bis etwa 5m Entfernung
moglich sein, dies wiirde den Anforderungen zum Einsatz im RoboCup geniigen. Auf diese
Entfernung ist nur noch ein Tracking des Balls méglich, die globale Suche nach Ballre-
gionen erkennt Bille in dieser Entfernung nicht mehr, da sonst die Gefahr zu grofs ware,
Fehldetektionen zu unterliegen. Durch den bereits beschriebenen Qualitédtswert, der sich
nach der Formel

NBallpixel — M Griinpixel

TBall = T'Ball (69)

N Gesamtpixel
berechnet, ist es moglich, auch eine Aussage dariiber zu treffen, wie gut ein Ball in einer
gewissen Entfernung im Vergleich zu anderen Biéllen und anderen Entfernungen erfasst
wurde.
Um die Leistung des Trackingverfahrens zu tiberpriifen, wurde eine entsprechende Mes-
sung durchgefiihrt. Dazu wurde ein Roboter, auf dem das Tracking-Verfahren installiert

44

wurde, etwa in der Mitte des Spielfelds positioniert. Dann wurden zwei Bélle in ver-
schiedenen Entfernungen von 0m bis 5m positioniert, und die Qualitdtswerte aus 100
Kamerabildern gemittelt. Da die Kameras immer mit einem gewissen Rauschen behaftet
sind, wurde einem Mittelwert der Vorzug gegeniiber einer einzelnen Messung gegeben.

Die beiden Bille, die verwendet wurden, sind in zu sehen. Dabei handelt
es sich einmal um den sogenannten ,, Tournament‘‘-Ball. Dieser ist gleichméafig gelb und
enthélt nur wenig Muster. Seinen Namen trégt er, weil er oft fiir Robo Cup-Wettbewerbe
Verwendung findet. Zum Vergleich wurde ein zweiter Ball benutzt, der gelb mit lila
Texturierung ist. Dieser ist durch die Mehrfarbigkeit grundsétzlich etwas schwieriger zu
Erkennen, als der ,,Tournament“-Ball.

Abbildung 25: Die beiden fiir die folgende Messung verwendeten Bélle. Links der
,Tournament“-Ball, der oft bei RoboCup-Wettbewerben verwendet wird.
Rechts ein etwas stéarker texturierter Ball.

Die Messung wurde durchgefiihrt, in dem nacheinander die beiden Bélle in der ent-
sprechenden Entfernung positioniert wurden. Dann wurden die Qualitdtswerte fiir den
Ball aus 100 Kamerabildern gemittelt. Anschliefsend wurde noch ein Bild aufgenommen,
diese werden im Folgenden zur Illustration verwendet, um einen Eindruck dafiir zu ge-
ben, wie grofs Bélle in gewisser Entfernung im Bild der Panorama-Kamera des Roboters
erscheinen.

Im Folgenden sind die Ergebnisse der einzelnen Messungen mit besagten Bildern aufge-
listet. Danach folgt eine Zusammenfassung und Bewertung der Ergebnisse der Messungen.

45

Entfernung

@ Qualitit Tournament-Ball

@ Qualitit texturierter Ball

0m (direkt am Roboter) 12,1

11,2

Abbildung 26: Messungen mit verschiedenen Béllen direkt am Roboter

Entfernung

@ Qualitat Tournament-Ball | @ Qualitat texturierter Ball

1m

10,3

8,2

Abbildung 27: Messungen mit verschiedenen Béllen in einem Meter Distanz zum Roboter

46

Entfernung | @ Qualitdt Tournament-Ball | @ Qualitét texturierter Ball
2m 7,2 5,1

Abbildung 28: Messungen mit verschiedenen Béllen in zwei Metern Distanz zum Roboter

Entfernung | @ Qualitdt Tournament-Ball | @ Qualitét texturierter Ball
3m 5,0 3,8

Abbildung 29: Messungen mit verschiedenen Béllen in drei Metern Distanz zum Roboter

47

Entfernung | @ Qualitdt Tournament-Ball | @ Qualitét texturierter Ball
dm 3,1 2,8

Abbildung 30: Messungen mit verschiedenen Béllen in vier Metern Distanz zum Roboter

Entfernung | @ Qualitdt Tournament-Ball | @ Qualitét texturierter Ball
am 1,5 —

Abbildung 31: Messungen mit verschiedenen Béllen in fiinf Metern Distanz zum Roboter

48

Bewertung der Ergebnisse Die Messungen zeigen, dass das Tracking-Verfahren den ge-
forderten Anforderungen geniigt. Bis 5 m wird der Wettbewerbs-Ball zuverldssig erkannt.
Der texturierte Ball wird etwas schlechter gefunden, dieser wird ab einer Entfernung von
etwa 4,5m nicht mehr erkannt. In sind die Ergebnisse der Messung nochmals

zusammengefasst.

O Qualitat O Qualitat
Entfernung | Tournament-Ball | texturierter Ball
0m 12,1 11,2
1m 10,3 8,2
2m 7,2 5,1
3m 5,0 3,8
4m 3,1 2,8
am 1,5 —

Tabelle 5: Zusammenfassung der Messungen der Ballqualitéit des erkannten Balls in ver-
schiedenen Entfernungen und mit verschiedenen Béllen.

Der Verlauf der Qualitatswerte zeigt, dass die Béalle wie gewiinscht bewertet werden:
Bille, die sich ndher am Roboter befinden, werden hoher bewertet als Biélle, die weiter
entfernt sind. Damit wiirde der Roboter im Zweifelsfall immer den néheren Ball wahlen,
wiirde er mehrere Balle sehen.

Die Qualitatsberechnung geschieht wie beschrieben nach der folgenden Formel:

NBallpixel — M Griinpixel

NBall = “ TBall (70)
N Gesamtpixel

Diese enthélt den Radius des gefundenen Balls als multiplikativen Faktor. Da die Qualitét
des erkannten Balls in etwa mit der Entfernung skaliert, ohne gréfere Einbriiche zu haben,
lasst sich daraus schliefen, dass weiter entfernte Bélle bis etwa 4 — 5m (je nach Ball)
nahezu ebenso gut erkannt werden wie weniger weit entfernte.

6.3.2. Laufzeitmessungen

Wie bereits in [Unterabschnitt 4.1} [Iracking des Balls, auf Seite beschrieben, stellt
geringe Laufzeit ebenfalls eine wichtige Anforderung an das Tracking-Verfahren dar.
Wiéhrend der Entwicklung und Implementierung des Verfahrens war moglichst geringe
Laufzeit daher immer oberste Prioritdt. Auch im praktischen Einsatz auf den Fuftballro-
botern ist die Laufzeit enorm wichtig. Sie muss gering sein, da ja zwischen jeweils zwei
Kamerabildern nur ca. 30 ms an Zeit zur Verfliigung stehen. In dieser Zeit miissen unter
Umstanden mehrere Bereiche bei der Suche nach Béllen ausgewertet werden.

Um die Laufzeit des Verfahrens zu messen, wurden die Google Performance Toolsﬂ

“http://code.google.com/p/google-perftools/

49

http://code.google.com/p/google-perftools/

verwendet. Mit diesen wurde die Gesamtlaufzeit der Bildverarbeitungskomponente des
Roboter-Software-Frameworks gemessen und den Ergebnis-Graphen dann der Anteil ent-
nommen, der auf das Tracking entfiel. Der Testaufbau war &hnlich wie in
[abschnitt 6.3.1] [Erkennen des Balls in verschiedenen Positionen| Der , Tournament“-Ball
(Siehe auf Seite wurde in verschiedenen Entfernungen zum Roboter
positioniert, anschliefend wurde die Laufzeit der BV-Komponente fiir 100 Kamerabilder
gemessen.

() gemessene Laufzeit | Anteil Laufzeit

Entfernung BV-Komponente Tracking | Tracking
0m 4,0ms 29,7% | ~1,19ms
1m 3,8ms 28,6% | ~1,09ms
2m 4,3ms 30,2% | ~1,30ms
3m 4,6ms 32,2% | ~1,48ms
4m 5,5ms 35,8% | ~1,97ms

Tabelle 6: Laufzeit des Trackings bei verschiedenen Entfernungen des Balls.

Wie man an den Ergebnissen der Messung in erkennen kann, liegt die Lauf-
zeit auch bei weiter entfernten Béllen unter den 2ms, die fiir die Fulballroboter des 1.
RFC Stuttgart gefordert wurde. Aufserdem sieht man, dass die Laufzeit mit steigender
Entfernung des Balles vom Roboter zunimmt. Dies liegt daran, dass bei weiter entferntem
Ball langer nach Kantenpixeln gesucht wird, da die gewilinschte Anzahl an Kantenpixeln
nicht so schnell gefunden wird, wie bei einem im Bild groffen, nahen Ball.

Wichtig zu bemerken ist, dass in der Messung darauf geachtet wurde, dass sich keine
anderen Objekte auf dem Spielfeld befinden, die als Bille erkannt werden, also insbe-
sondere auch keine anderen Bélle. Die gemessene Laufzeit bezieht sich also auf exakt
einen Schritt des Tracking-Verfahrens, also der Suche nach einem Ball in einer Region
des Kamerabildes. Gibt es mehr Regionen mit potentiellen Béllen so wird das Tracking
mehrfach aufgerufen, was sich in hoherer Laufzeit niederschlagt.

6.3.3. Erkennen des Balls in ungiinstigen Positionen

Die Erkennung von Béllen, die teilweise verdeckt sind, ist eine wichtige Anforderung an
ein Tracking-Verfahren im RoboCup. Die Fahigkeit des vorgestellten Verfahrens, solche
Bille zu erkennen, soll exemplarisch an zwei wichtigen Positionen gezeigt werden. Bei
diesen beiden Positionen handelt es sich einmal um die teilweise Verdeckung des Balls
durch den Roboter selbst, wenn sich der Ball direkt am Roboter, also in der Dribbling-
Position befindet. Dies wird in gezeigt.

Wie in der Abbildung zu sehen ist, ist der Ball etwa zur Halfte verdeckt. Trotzdem
wird seine Position und Grofe korrekt erkannt.

Ein weiterer Fall ist die Verdeckung des Balls durch die Halterungen der Kameraauf-

50

—

Abbildung 32: Links ist das Kamerabild des Roboters zu sehen, rechts der vom Verfahren
erkannte Ball. In Griin die erkannten Ballkantenpixel.

bauten des Roboters. Diese wird in gezeigt. Auch hier ist zu sehen, dass

Abbildung 33: Links ist das Kamerabild des Roboters zu sehen, rechts der vom Verfahren
erkannte Ball. In Griin die erkannten Ballkantenpixel.

der Ball korrekt erkannt wird, obwohl er zu einem nicht unerheblichen Teil durch die
Strebe der Kamera-Aufbauten verdeckt wird.

ol

7. Fazit und Ausblick

Wie sich durch die Messungen, die in [Unterabschnitt 6.3| vorgestellt wurden, gezeigt hat,
ist das entwickelte Tracking-Verfahren in der Lage, die Position des Balls schnell, exakt
und robust zu ermitteln. Dabei gentigt es den in [Abschnitt 4] [Motivation und Anfor-|
auf Seite formulierten Anforderungen. Es ist schnell genug, um auf den
Fuftballrobotern des 1. RFC Stuttgart im Spielbetrieb eingesetzt zu werden und seine
Ergebnisse sind qualitativ ausreichend, um den Ball zuverldssig anzufahren beziehungs-
weise Spielziige abhéngig von der Position des Balls zu planen.

Grundsétzlich haben sich die getroffenen Annahmen und verwendeten Konzepte also
als tauglich erwiesen, ein schnelles und robustes Tracking-Verfahren umzusetzen.

Mit dem beschriebenen Verfahren ist es moglich, den Ball in nahezu allen Positionen
und bis in akzeptable Distanz zu erkennen. Dies héngt natiirlich von der Giite und dem
Auflésungsvermogen der verwendeten Kamera ab. Da die bei den Messungen eingesetzte
Kamera mit einer Auflésung von 640 x 480 und einem eher ungiinstigen Rauschverhalten
aber eher am unteren Rand der Skala zu verorten ist, und damit bereits zufriedenstellen-
de Ergebnisse erzielt werden konnen, ist das Verfahren nicht von besonders hochwertiger
Hardware abhéngig. Es kann auch mit niedrig aufgelosten und verrauschten Bildern um-
gehen, was fiir die Praxis durchaus relevant ist. Kameras sind teure Bauteile, und bieten
somit ein grofses Sparpotenzial, wenn man auf giinstigere Modelle zuriickgreifen kann
und das Tracking trotzdem moglich ist.

Auflerdem hat sich gezeigt, dass das entwickelte Verfahren auf der Referenzhardware,
also den Steuerrechnern der Fufsballroboter des 1. RFC Stuttgart, die im durchschnitt-
lichen Leistungsbereich zu verorten ist, in ausreichend geringer Zeit zu berechnen ist.
Dies wurde insbesondere durch die strahlenformige Abtastung des Bildes ausgehend vom
zentralen Pol, die konsequente Verwendung von Look-Up-Tables und die Verwendung
moglichst schnell zu berechnender mathematischer Formeln erreicht.

Fiir den Einsatz im RoboCup ist besonders wichtig, dass die Bélle auch erkannt werden,
wenn sie beispielsweise teilweise verdeckt sind. Dies kann durch den Roboter selbst, seine
Kamera-Aufbauten, oder durch andere Roboter auf dem Spielfeld der Fall sein. Auch hier
hat sich gezeigt, dass das entwickelte Verfahren in der Lage ist, Bélle auch in ungiinstigen
Positionen zu erkennen, siehe dazu |Unterunterabschnitt 6.3.3|

Im Folgenden wird auf zwei Aspekte genauer eingegangen. Dabei handelt es sich um die
parameterlose Ballerkennung und die Verwendung der Log-Polar-Transformation. Diese
beiden Eigenschaften bilden die Grundkonzepte fiir das entwickelte Tracking-Verfahren
und deren Kignung sollte untersucht werden. Daher werden diese in eigenen Unterab-
schnitten genauer besprochen.

Daran anschliefend folgt eine zusammenfassende Bewertung des hier gezeigten Verfah-
rens, eine Darstellung von Erweiterungsmoglichkeiten und zum Abschluss ein Ausblick
auf die zukiinftige Verwendung des Verfahrens.

92

7.1. Verwendung der parameterlosen Ballsuche

Beim Tracking eines Balls stellt sich das Problem, dass eine Moglichkeit gefunden werden
muss, Ballpixel eindeutig zu identifizieren. Dazu miissen gewohnlich Informationen wie
Farbe oder Texturierung iiber den Ball zur Verfiigung stehen. So ein Verfahren ist aller-
dings dann von der Kalibrierung abhéingig und muss bei Anderung des zu verfolgenden
Balles neu eingestellt werden.

Um diesen Nachteilen aus dem Weg zu gehen, wird beim in dieser Arbeit besprochenen
Verfahren auf eine Parametrierung des Balls verzichtet. Stattdessen soll der Ball dadurch
gefunden werden, dass er sich, salopp gesprochen, von der Umgebung abhebt, weil er
im Gegensatz zu allen anderen Objekten auf dem Spielfeld bunt ist. Die Eigenschaft des
bunt-Seins ist hier formal so definiert, dass ein Pixel dann als Ballpixel klassifiziert wird,
wenn fiir seine Chrominanzkomponenten U und V'

V—U>T, (71)

gilt, wobei Ty, ein Schwellwert ist. Aufserdem gibt es noch einige andere Moglichkeiten,
wann Pixel als potentielle Ballpixel ausgeschlossen werden. Eine genaue Beschreibung der
Ballpixelerkennung ist in [Unterunterabschnitt 5.1.1} [Detektion von Ballpixeln ohne Para-|
auf Seite[I9] nachzulesen. Hierbei werden die Eigenschaften des YUV-Farbmodells
genutzt, in dem auch die Bilder der Kamera ausgegeben werden. Dadurch ist auch keine
unnotige Konvertierung notwendig.

Die parameterlose Detektion von Ballpixeln hat sich fiir das RoboCup-Szenario als
geeignet erwiesen. Bis auf einige Fehlerkennungen wegen Kamerarauschens und an den
Grenzen zu weiflen Linien, liefert die Ballpixeldetektion absolut zufriedenstellende FEr-
gebnisse. Echte Ballpixel werden zuverlassig erkannt.

Gleichzeitig ist die Pixelklassifizierung schnell zu berechnen und kommt mit den In-
formationen des Pixels selbst aus, ohne Informationen aus der Nachbarschaft oder aus
Kalibrierungsparametern zu erhalten, von einigen Schwellwerten abgesehen.

Ein weiterer Vorteil ist, dass diese Art der Ballpixeldetektion relativ unabhéngig von
der konkreten Beleuchtung des Feldes ist, da die Luminanzkomponente Y nicht in die
Detektion einfliefit.

Es ist jedoch festzuhalten, dass diese Art der Ballerkennung nur im Robo Cup-Szenario
funktioniert. Dort ist fest vorgegeben, dass nur die Bélle auf dem Feld bunt sein diirfen,
ansonsten gibt es festgelegte Farben fiir den Rasen und die Roboter. In einem Szenario,
in dem diese Voraussetzung nicht gegeben ist, wiirde diese Art der Ballpixelerkennung
nicht funktionieren. Dies zeigt sich auch daran, dass bunte Objekte an den Wénden des
Spielfelds auch als mogliche Bélle eingestuft werden konnen. Diese werden aber dann
durch die Qualitédtsberechnung schnell verworfen und sind dadurch kein Problem.

Die Komponente der Ballpixelerkennung ist jedoch austauschbar, ohne dass dies Sei-
teneffekte auf andere Teile des Verfahrens hat. Sollte man das Tracking-Verfahren also
einsetzen wollen, ohne dass die eben genannte Bedingung erfiillt ist, so miisste man ein-
fach diesen Teil austauschen. Fiir die Verwendung im RoboCup hat sich diese Art der
Ballerkennung aber als zweckméfig erwiesen.

93

7.2. Die Log-Polar-Transformation beim Ball-Tracking

Das in dieser Arbeit vorgestellte Verfahren basiert zentral auf der Verwendung der Log-
Polar-Transformation fiir das Balltracking. Dies ist einer der Anséitze, die untersucht
werden sollen. Wie bereits im Vorherigen hervorgehoben, ist das Tracking-Verfahren in
der Lage, die gestellten Anforderungen zu erfiillen. Grundsétzlich muss also festgehalten
werden, dass die Verwendung der Log-Polar-Transformation fiir das Tracking geeignet
ist.

Trotzdem hinterlédsst die Log-Polar-Transformation ein zwiespéltiges Bild. Zuné&chst
erzeugt ihre Verwendung grundsétzlich einen gewissen Overhead, da nicht einfach iiber
das betrachtete Kamerabild gelaufen werden kann, sondern die entsprechende Log-Polar-
Position betrachtet werden muss. Dazu muss entweder das Bild komplett transformiert
werden, was allerdings, wie in [Unterunterabschnitt 5.1.2] [Log-Polar-Transformation mit|
[Look-Up-Table] auf Seite beschrieben, fiir die Anforderungen beim Ball-Tracking im
RoboClup ungeeignet ist, da dieser Vorgang zu rechenzeitintensiv ist. Im selben Unterab-
schnitt wird aber auch die Losung fiir dieses Problem gegeben. Durch Verwendung einer
Look-Up-Table (siehe auch [Unterabschnitt A.3| [Look-Up-Tables| auf Seite kann die-
ser Overhead nahezu vollstandig beseitigt werden. Aus Sicht der Laufzeit spricht damit
nichts mehr gegen die Verwendung der Log-Polar-Transformation.

Der Grund fiir den zwiespéltigen Eindruck ist ein anderer. Wie ebenfalls in
[ferabschnitt 5.1.2] [Cog-Polar-Transformation mit Look-Up-Table] auf Seite [22] erlautert,
kann der Bereich zwischen zwei Abtastpunkten bei der Abtastung des Bildes mit der Log-
Polar-Transformation sehr groft werden. Gegensteuern lésst sich hier durch Anpassen des
Skalierungsfaktors M, was neue Probleme aufwirft. Dabei kann eine Mehrfachabtastung
entstehen, die dann wieder mit geeigneten Mitteln beseitigt werden muss. Auch das wur-
de in besagtem Unterabschnitt beschrieben. Bei den anschliefenden Tests und Messungen
auf dem Roboter wurden auch die Parameter des Verfahrens angepasst, unter anderem
der Skalierungsfaktor M. Es hat sich dabei gezeigt, dass die Leistung des Verfahrens
flir hohere Werte von M besser wird, bis zu einem gewissen Punkt. Dieser Punkt ist
dann erreicht, wenn M so grof ist, dass im Bereich des Balls und der unmittelbaren
Umgebung einfach jeder Punkt abgetastet wird. Mit einer weiteren Erhéhung von M ist
dann natiirlich keine Verbesserung mehr zu erreichen, da keine zusétzlichen Abtastun-
gen stattfinden. Diese werden, wie beschrieben, von der Mehrfachabtastungs-Pravention
verhindert.

Wenn M aber nun soweit erhdht wurde, dass jeder Pixel entlang der Abtaststrahlen
betrachtet wird, so ist die verwendete Log-Polar-Transformation in diesem Bereich ab-
solut identisch zu gewohnlichen Polarkoordinaten. Das bedeutet, in der Praxis hat sich
gezeigt, dass unter Verwendung von Polarkoordinaten und Begrenzung des Suchbereichs
auf einen Teil des Bildes die besten Ergebnisse zu erreichen sind, ohne die Laufzeit erheb-
lich zu vergréfiern. Genau das ist, was das hier entwickelte Verfahren in der praktischen
Verwendung dann, bis auf einen kleineren Teil der Aufsenbereiche des Suchradius, durch-
fiihrt.

Dass die Vorteile der Log-Polar-Transformation bei dem Problem des Balltrackings
im RoboCup nicht zur Geltung kommen liegt daran, dass die Kanten eines Balls sehr

o4

genau ermittelt werden miissen, um Position und Gréfse des Balls zu bestimmen. Hier ist
die potentiell grofte Distanz zwischen zwei Abtastpunkten schon in geringer Entfernung
zum Pol von Nachteil. Bereits um wenige Pixel falsch detektierte Ballkantenpixel kénnen
das Ergebnis deutlich verschlechtern, wenn es sich dabei um einen systematischen Fehler
handelt.

Bei anderen Tracking- oder Bildverarbeitungsproblemen, bei denen eine genaue Kanten-
oder Konturenerkennung nicht notwendig ist, sind die Auswirkungen der Vorteile aber
durchaus denkbar. Insbesondere fiir eine Feature-Erkennung erscheint das Log-Polar-Bild
geeignet. Im Bereich Objekt-Erkennung lassen sich also sicher interessante Ergebnisse
erzielen, und von der Verwendung der Log-Polar-Transformation in diesem Kontext ist
nicht grundsétzlich abzuraten.

Fiir das spezielle Problem, das Ball-Tracking im RoboCup, ist man allerdings mit ge-
wohnlichen Polarkoordinaten genauso gut bedient und spart sich bei der Implementierung
die etwas komplexeren Transformationsregeln und einen Teil der Mehrfachabtastungs-
Pravention. Festzuhalten bleibt aber, dass das hier vorgestellte Verfahren bei entspre-
chender Parametereinstellung absolut dquivalent zur Verwendung von Polarkoordinaten
ist, insbesondere was die Laufzeit betrifft. Das liegt daran, dass alle entstehende Redun-
danz durch die Praventionsverfahren beseitigt wird, diese miissen aber nur einmalig zum
Programmstart ausgerechnet werden und nicht mehr wahrend das eigentliche Tracking
durchgefiihrt wird.

7.3. Bewertung des Verfahrens

In den beiden vorangegangenen Unterabschnitten wurde bereits dargelegt, dass das Ver-
fahren geeignet ist, die daran gestellten Anforderungen zu erfiillen. Es ist in der Lage, in
relativ kurzer Rechenzeit zufriedenstellende Ergebnisse zu liefern. Dabei ist es, wie sich in
den Messungen gezeigt hat, robust gegeniiber den im RoboCup auftretenden Problemen,
wie beispielsweise der Verdeckung des Balls durch den Roboter. Dabei ist es weder auf
aufsergewohnlich leistungsstarke Hardware noch auf qualitativ hochwertige Kamerabilder
angewiesen, sondern kann auch mit der verwendeten, durchschnittlich leistungsfihigen
Technik umgehen.

Grundsétzlich ist das Verfahren relativ einfach zu implementieren, wobei seine Ge-
schwindigkeit erheblich von der eigentlichen Implementierung abhéngt. Fiir die in den
Messungen verwendete Umsetzung wurde erhebliche Optimierungsarbeit geleistet, um
die Rechenzeit so weit wie moglich zu senken. Insbesondere durch die konsequente Ver-
wendung von Look-Up-Tables konnte die Laufzeit gering gehalten werden.

Als weiterer Vorteil ergibt sich, dass eine Umsetzung des Verfahrens ohne Abhéngigkei-
ten nach aufen auskommt, von OpenC'V abgesehen. Sonst wurden neben den C++-Stan-
dardbibliotheken keine weiteren Bibliotheken genutzt. Auch OpenC'V lésst sich problem-
los ersetzen, das Verfahren selbst ist von den verwendeten Datenstrukturen unabhéngig.

Fiir den Einsatz des Verfahrens im RoboCup ist besonders die Tatsache interessant,
dass der Ball selbst nicht konfiguriert werden muss oder dessen Parameter gelernt werden
miissen, sondern dass durch die parameterlose Ballpixeldetektion jeder Ball erkannt wird,
der die gesetzten Bedingungen erfiillt. Auch wenn sich die Log-Polar-Transformation

95

selbst nicht als unbedingt fiir die Losung dieses konkreten Tracking-Problems als hilfreich
erwiesen hat, so ist das fiir das Verfahren kein Nachteil, da das Verhalten normaler
Polarkoordinaten durch Parametrierung hergestellt werden kann.

Insgesamt steht mit dem entwickelten Verfahren also eine schnelle und relativ robuste
Methode zum Ball-Tracking zur Verfiigung.

Natiirlich muss aber auch festgehalten werden, dass bei der Entwicklung und Imple-
mentierung des Verfahrens stets Kompromisse zwischen Laufzeit und Giite der Ergebnisse
gemacht wurden. Die Qualitat der Ergebnisse steht letztlich hinter anderen Suchverfah-
ren, die auf den Fuballrobotern verwendet wurden, zuriick, insbesondere, was die Erken-
nung von Ballpixeln betrifft. Dafiir ist das Verfahren aber um ein mehrfaches schneller,
und kann somit auch fiir verschiedene Suchregionen aufgerufen werden, ohne dass zu viel
Rechenzeit dafiir bendtigt werden wiirde.

Die Zeit, die zur Entwicklung des Verfahrens zur Verfiigung stand, war auf den Zeit-
rahmen einer Diplomarbeit begrenzt. Das Verfahren bietet aber in mehreren Richtungen
erhebliches Verbesserungs- und Erweiterungspotential. Unter anderem darauf wird im
folgenden [Unterabschnitt 7.4] eingegangen.

7.4. Weiterentwicklung

Das Verfahren bietet an mehreren Stellen Verbesserungspotential, das aufgrund der be-
grenzten Entwicklungszeit ungenutzt blieb.

Zum Beispiel ist ein bekannter Parameter des Balls dessen echte Grofie. Bei einem
kalibrierten Roboter ldsst sich aufserdem die Entfernung eines Bildpunktes vom Roboter
bestimmen. Mit diesen beiden Informationen konnte man eine Look-Up-Table aufstel-
len, die fir jede Position im Bild den Radius des Balls, wenn er auf dem Boden liegt,
liefert. Dieser Radius kénnte dann benutzt werden, um die Bestimmung des besten Krei-
ses verbessern, indem Kreise bevorzugt werden wiirden, deren Radius nah an diesem
berechneten Radius liegt.

Verbesserungspotenzial besteht auch in der Detektion von Ballkantenpixeln. Anstatt
hier nur zu ermitteln, ob ein Pixel zum Ball gehort oder nicht, und dann spéter noch
zu priifen, ob es griin ist, konnte man hier eine echte Pixelklassifizierung durchfiihren.
Dabei kénnte man die Pixel direkt in mehrere Klassen wie Ball, griines Feldpixel, weifses
Feldpizel, Hindernis, usw. einteilen.

Es wire aufserdem denkbar, die Qualitétspriifung der Ergebnisse direkt in das Tracking-
Verfahren zu verlagern. Dort stehen alle Informationen, die gewonnen wurden, zur Verfii-
gung, und nicht nur der Teil, der in Variablen zuriickgegeben wird. Damit liefse sich eine
wesentlich feinere Qualitdtsbestimmung durchfiihren, deren Ergebnisse direkt zur Opti-
mierung der Ausgabe genutzt werden kénnen. Hier konnten ungeeignete Kreise friithzeitig
ausgeschlossen und fiir die Bestimmung des besten Kreises gar nicht in Betracht gezogen
werden.

o6

7.5. Ausblick

Aufgrund der Tatsache, dass das Verfahren, beziehungsweise seine Implementierung, bei
den Fufsballrobotern des 1. RFC Stuttgart eingesetzt wird, ist eine Erweiterung und Wei-
terentwicklung des Verfahrens sehr wahrscheinlich. Beim 1. RFC Stuttgart wird sténdig
aktiv an der Robotersoftware gearbeitet und in Wettbewerben neu gewonnene Erkennt-
nisse werden zur Verbesserung der Verfahren eingesetzt. Die Implementierung des be-
schriebenen Tracking-Verfahrens wurde in diese Software integriert und wird somit von
den Mitarbeitern der beteiligten Institute weiterentwickelt werden.

Wie beschrieben sind die Roboter des 1. RFC Stuttgart mit relativ niedrig auflésenden
und relativ stark verrauschten Kameras ausgestattet, das ldsst sich auch an den Beispiel-
bildern in dieser Arbeit sehen. Diese sollen aber in naher Zukunft durch héherauflésende,
hochwertigere Kameras ersetzt werden. Durch den Einsatz dieser Kameras sollten sich die
Leistungen des Verfahrens erheblich verbessern lassen, insbesondere, was die Entfernung
betrifft, in der Balle zuverldssig erkannt werden.

Fiir die weitere Verwendung der gewonnenen Erkenntnisse ist nochmals festzuhalten,
dass das hier entwickelte Verfahren im Prinzip aus zwei Teilen besteht, die unabhéngig
voneinander verwendet werden konnen. Zum einen die Detektion von Ballpixeln und,
darauf aufbauend, die Erkennung von Ballkanten und zum zweiten die Berechnung von
Mittelpunkt und Grofe des Balls aus den Kantenpositionen. Natiirlich ben6tigt die Posi-
tionsbestimmung als Eingabe die bestimmten Ballkantenpositionen, jedoch kénnte man
das Detektionsverfahren durch ein beliebiges anderes ersetzen, so lange es diese Positio-
nen liefert. Umgekehrt kann natiirlich auch die Ausgabe des Detektionsverfahren fiir eine
andere Positionsbestimmung verwendet werden.

Das Verfahren wurde im ersten Teil des Jahres 2011 entwickelt und einige Wochen
vor der RoboCup-Veranstaltung in Istanbul im Juli 2011 fertiggestellt. Es wurde auf den
Fuftballrobotern des 1. RFC Stuttgart implementiert und zeigte in Tests und Simulationen
gute Leistungen. Daher soll es auf dieser Veranstaltung das erste Mal in der Praxis in
einer tatsichlichen Spielsituation eingesetzt werden. Wie gut die Implementierung mit
allen Eventualitdten und unvorhergesehenen Situationen zurecht kommt, wird sich dort
zeigen.

o7

A. Anhang: Weitere Grundlagen
A.1. RoboCup

Beim RoboCup handelt es sich um eine wissenschaftliche Initiative, die gegriindet wurde,
um zur Verbesserung von intelligenten Robotern beizutragen. Die Organisation selbst
definiert sich auf ihrer Website wie folgt[9]:

RoboCup is an international scientific initiative with the goal to advance the
state of the art of intelligent robots. When established in 1997, the original
mission was to field a team of robots capable of winning against the human
soccer World Cup champions by 2050. While that mission remains, RoboCup
has since expanded into other relevant application domains based on the needs
of modern society.

(http://www.robocup.org/about-robocup/)

Unter dem Dach des RoboClups werden verschiedene Wettbewerbe durchgefiihrt, in de-
nen sich intelligente Roboter in verschiedenen Bereichen messen miissen. Einer davon, die
auch die urspriingliche Disziplin des RoboCups ist, ist der Roboterfuiball. In verschiede-
nen Ligen treten hier Teams von — je nach Liga — autonomen Robotern gegeneinander an.
Der Roboterfufsball ist fiir die Robotik eine interessante Spielwiese. Um Fufsball spielen
zu koénnen, miissen die Roboter verschiedenste Aufgaben erfiillen kénnen, die alle auch
fiir Anwendungen in anderen Bereichen eine wichtige Rolle spielen. Finige Beispiele fiir
Fahigkeiten, die im Roboterfufsball von Bedeutung sind:

e Erfassen der dynamischen Umgebung, der Gegner und des Spielgeréts durch Sen-
soren, insbesondere Kameras (— Objekterkennung und -verfolgung)

e Erfassen des Zustands des Roboters selbst

e Selbstlokalisierung auf dem Spielfeld

e Schnelle und flexible Fortbewegung mit — je nach Liga — verschiedenen Antrieben
e Kooperation und Kommunikation zwischen mehreren, autonomen Robotern

e Taktisches und strategisches Vorgehen zum FErzielen eigener beziehungsweise Ver-
hindern gegnerischer Tore (—Planung)

Roboterfufsball ist also nicht nur Selbstzweck, alle Entwicklungen kénnen auch fiir pra-
xisrelevante Aufgaben Verwendung finden. Trotzdem bietet der Roboterfuiball ein fest-
gelegtes Szenario, in dem es moglich ist, neue Entwicklungen gezielt und im Vergleich mit
anderen Losungen auszuprobieren. Aus den Ergebnissen dieser Tests kénnen dann na-
tiirlich Riickschliisse darauf gezogen werden, ob ein im RoboCup eingesetztes Verfahren,
eine Technik oder ein Bauteil auch in echten Anwendungen funktionieren wiirde.
Anmerkung: In dieser Arbeit werden RoboCup und Roboterfufiball gleichbedeutend ver-
wendet, auch wenn der RoboCup wie beschrieben inzwischen weitere Disziplinen umfasst.

o8

http://www.robocup.org/about-robocup/

Middle Size League Eine der Ligen des RoboCups ist die Middle Size League, in der das
in dieser Arbeit entwickelte Verfahren zum Einsatz kommen soll. Daher wurden auch alle
Messungen mit Robotern des 1. RFC Stuttgartﬂ der Universitat Stuttgart durchgefiihrt,
der an den Wettbewerben dieser Liga teilnimmt. Fiir die Middle Size League gelten
folgende Regularien[9):

Middle-sized robots of no more than 50 cm diameter play soccer in teams of
up to 6 robots with regular size FIFA soccer ball on a field similar to a scaled
human soccer field. All sensors are on-board. Robots can use wireless networ-
king to communicate. The research focus is on full autonomy and cooperation
at plan and perception levels.

A.2. Die OpenCV-Bibliothek

OpenCYV ist eine freie und offene Bibliothek fiir Bildverarbeitung und maschinelles Se-
hen (engl. Computer Vision), insbesondere in Echtzeit|2]. Die Bibliothek wird unter ei-
ner BSD-Lizens| veréffentlicht, und ist damit sowohl fiir den akademischen als auch fiir
den kommerziellen Gebrauch vollstéandig kostenlos nutzbar. OpenC'V wurde urspriinglich
von Intel entwickelt, inzwischen liegen die Entwicklungstéatigkeiten jedoch bei dem Ro-
botertechnik-Unternehmen Willow Garage. Die zur Erstellungszeit dieser Arbeit aktuelle
Version triagt die Versionsnummer 2.2, auf diese Version beziehen sich alle Aussagen.

Urspriinglich wurde OpenC'V vollstiandig in der Programmiersprache C' entwickelt,
inzwischen gibt es jedoch ein nahezu vollstandiges C+-+-Interface und auch alle weite-
re Entwicklung wird in dieser Sprache stattfinden|2]. Es gibt verschiedene Wrapper in
anderen Sprachen, die jedoch zum Grofsteil nicht immer alle Funktionen der Original-
Bibliothek abbilden. OpenCV ist unter nahezu allen gidngigen Desktop- und mobilen
Betriebssystemen verfiighar[2].

OpenCV stellt eine Vielzahl von Funktionen und Algorithmen bereit. Als Basis fiir
diese Algorithmen werden in der opencv-core-Bibliothek grundlegende Datenstrukturen
definiert, mit denen beispielsweise Bilder, Punkte oder Vektoren innerhalb von OpenCV
verwaltet werden kénnen. Das Auslesen von Bildern beziehungsweise Bildfolgen einer
Kamera ist ebenfalls Teil von OpenCV. Auf Bildern, die in den OpenC'V-Datenstruktu-
ren vorliegen, konnen dann eine Vielzahl von mitgelieferten Operationen durchgefiihrt
werden, beispielsweise einfache wie die Invertierung oder Konvertierung in einen anderen
Farbraum oder Filteroperationen wie Sobe]E] oder Cannyﬂ Ebenfalls gibt es Zeichen-
operationen, mit denen zum Beispiel Linien oder Kreise in die Bilder gezeichnet wer-
den koénnen. OpenCV deckt aber auch andere Bereiche der Bildverarbeitung und des
maschinellen Sehens ab, wie zum Beispiel Objekt- oder Gesichts-Erkennung. Auferdem
beinhaltet es eine Bibliothek fiir maschinelles Lernen, mit der einige der anderen Verfah-
ren unterstiitzt und verbessert werden konnen|[2]. Eine einfache grafische Oberfléche ist
ebenfalls Teil von OpenCV, mit der beispielsweise Bilder angezeigt werden kénnen.

Shttp://robocup.informatik.uni-stuttgart.de/rfc/www/
Shttp://opensource.org/licenses/bsd-1license.php
"http://en.wikipedia.org/wiki/Sobel_operator
Shttp://en.wikipedia.org/wiki/Canny_edge_detector

99

http://robocup.informatik.uni-stuttgart.de/rfc/www/
http://opensource.org/licenses/bsd-license.php
http://en.wikipedia.org/wiki/Sobel_operator
http://en.wikipedia.org/wiki/Canny_edge_detector

Zur Implementierung aller Bildverarbeitungsaufgaben, auf die in dieser Arbeit einge-
gangen wird, wurden die OpenC'V-Datenstrukturen und ein Teil der OpenC'V-Funktionen
genutzt.

A.3. Look-Up-Tables

Unter einer sogenannten Look- Up-Table versteht man eine Datenstruktur, die eine Funk-
tion abbildet. Die Look-Up-Table liefert also fiir eine Belegung von Eingangsparametern
einen Wert oder eine Datenstruktur zuriick. Diese Look-Up-Table kann dazu einmal bei
Programmstart initialisiert oder aus Dateien oder einer Datenbank geladen werden. Der
grofte Vorteil ist, dass die Ergebnisse der Funktion nun direkt mit einem einzigen Look-
Up aus der Look-Up-Table gelesen werden konnen, ohne dass sie erst dynamisch be-
rechnet werden miissen. Dies bedeutet, bei nicht-trivialen Funktionen, einen erheblichen
Geschwindigkeitsvorteil.

Je nach Definitionsbereich der abgebildeten Funktion kann so eine Look-Up-Table sehr
groft werden und somit viel Speicher belegen, dies muss bei deren Verwendung beachtet
werden. Aufkerdem dauert das Anlegen der Look-Up-Table unter Umsténden sehr lange,
was den Programmstart sehr stark verlangsamen kann. Hier bietet es sich an, die Look- Up-
Table in eine Datenbank oder Dateien auszulagern und sie dann beim Programmstart nur
noch zu Laden und nicht mehr neu zu berechnen. Diese Methode ist auch dann notwendig,
wenn die Look-Up-Table keine mathematische Funktion abbildet, die dynamisch fiir alle
Belegungen von Eingangsparametern berechnet werden kann.

Die Look-Up-Table ist oft als Array umgesetzt, jedoch nicht an diese Datenstruktur ge-
bunden. Jede Datenstruktur mit schnellem Random Accessﬂ ist prinzipiell zum Umsetzen
einer Look-Up-Table geeignet.

A.4. YUV-Farbmodell

Beim YUV-Farbmodell wird die Farbe eines Pixels durch seine Helligkeit (Luminanz) Y’
und die Farbanteile (Chrominanzwerte) U und V' ausgedriickt. U représentiert hierbei
den Blauanteil, V' den Rotanteil der Farbinformation.

Da das menschliche Auge auf Anderungen der Helligkeit wesentlich empfindlicher rea-
giert, als auf Anderungen der Farbe, und diese Informationen im YUV-Farbmodell ge-
trennt vorliegen, kann man die Werte komprimieren, ohne dass damit ein wesentlicher
Qualitétsverlust verbunden ist. So werden {iblicherweise fiir jeweils 2 oder 4 Pixel gemein-
same Chrominanzwerte U und V' gespeichert, aber ein Helligkeitswert Y fiir jedes einzelne
Pixel. Diese Art der Komprimierung wird dann als ,4:2:2¢- beziehungsweise ,4:1:1“-Ko-
dierung bezeichnet. Verwendet man zum Beispiel die ,4:2:2“-Kodierung, so kann man ein
dreikanaliges RGB-Bild in zwei Kanélen abspeichern, wobei im einen Kanal die Hellig-
keitswerte ¥ und im anderen Kanal abwechselnd U und V' gespeichert werden. Daher
wird diese Kodierung auch als ,,UYVY“-Kodierung bezeichnet. Auf Grund dieser Eigen-
schaften ist das YUV-Modell fiir die Ausgabe von Videokameras beliebt.

zeigt ein Beispiel fiir die einzelnen Komponenten eines Bildes.

%http://en.wikipedia.org/wiki/Random_access

60

http://en.wikipedia.org/wiki/Random_access

Abbildung 34: Ein Beispielbild: links oben das Original RGB-Bild, rechts oben die Hel-
ligkeit Y als Graustufenbild, unten links die Chrominanz-Komponente U
und rechts unten die Chrominanz-Komponente V'

A.5. Omnidirektionale Kameras

Unter einer omnidirektionalen Kamera versteht man eine Kamera, die in der Lage ist,
Bilder aufzunehmen, die die gesamte Sphére um die Kamera herum einnehmen. Um
dies zu erreichen, wird ein komplexes System aus zwei Spiegeln verwendet. Die Kamera
blickt meist vertikal nach oben direkt auf einen nach oben gewdlbten Hohlspiegel, der
die Kamerasicht dann auf einen zweiten Spiegel umlenkt, der die Kamera umgibt. Dieser
lenkt die Kamerasicht dann in die gesamte Sphére.

So eine Konstruktion besitzt einen blinden Fleck, den sie konstruktionsbedingt nicht
sehen kann. Dabei handelt es sich um die Bereiche der Sphére, die durch den oberen
Hohlspiegel verdeckt sind.

Neben diesen echten omnidirektionalen Kameras gibt es auch so genannte Panorama-
Kamera-Systeme, die nur eine Hemisphére sehen kénnen. Deren Konstruktion ist wesent-
lich einfacher, hierfiir muss lediglich ein einzelner nach unten gewolbter Hohlspiegel tiber
der Kamera positioniert werden. Solche Kamerasysteme werden zum Teil ebenfalls als
iomnidirektional“ bezeichnet.

61

Literatur

1]

2]

3]

4]

[5]

[6]

7]

18]

19]

[10]

[11]

1. RFC Stuttgart: Offizielle Webseite. 2011
http://robocup.informatik.uni-stuttgart.de/rfc/www/

Bradski, Gary; Kaehler, Adrian: Learning OpenCV: Computer Vision with the Open-
CV Library. Sebastopol: O’Reilly Media 2008

Capurro, C.; Panerai, F.; Sandini, G.: Dynamic vergence using log-polar images.
International Journal of Computer Vision 1.24, 79-94 (1997)

Choi, II; Yoon, Jong-Gun; Lee, Young-Beum; Chien, Sung-Il: Stereo system for
tracking moving object using log-polar transformation and zero disparity filtering.
In: Petkov, Nicolai; Westenberg, Michel (eds.): Computer Analysis of Images and
Patterns CAIP, Groningen 2003 (Lecture Notes in Computer Science 2756, 182—
189), Berlin Heidelberg: Springer 2003

Daniilidis, Konstantinos: Attentive visual motion processing: Computations in the
log-polar plane. In: Kropatsch, Walter G.; Klette, Reinhard; Solina, Franc (eds.):
Proceedings of the Tth TFCV on Theoretical Foundations of Computer Vision, Dag-
stuhl 1994 (Computing Supplement 11, 1-20), London UK: Springer 1996

Hotta, K.; Kurita, T.; Mishima, T.: Scale invariant face detection method using
higher-order local autocorrelation features extracted from log-polar image. In: Pro-
ceedings: Third IEEE International Conference on Automatic Face and Gesture Re-
cognition, Nara (Japan) 1998 (FG’98, 70-75), New York City: Institute of Electrical
& Electronics Engineering 1998

Metta, Giorgio; Gasteratos, Antonios; Sandini, Gulio: Learning to track colored
objects with log-polar vision. Mechatronics 14.9, 989-1006 (2004)

Okajima, N.; Nitta, N.; Mitsuhashi, W.: Motion estimation and target tracking in
the log-polar geometry. Seventeenth Sensor Symposium. Kawasaki (Japan), 2000

The RoboCup Federation: Offizielle Webseite. 2011
http://www.robocup.org/

Thunuguntla, Saikiran S.: Object Tracking using Log-Polar Transformation. Mas-
ter’s thesis, Louisiana State University and Agricultural and Mechanical College.
2005

Traver, V.; Pla, Filiberto: An optimization approach for translational motion estima-
tion in log-polar domain. In: Skarbek, Wladyslaw ed.: Computer Analysis of Images
and Patterns CAIP, Warschau 2001 (Lecture Notes in Computer Science 2124, 365—
373), Berlin Heidelberg: Springer 2001

62

http://robocup.informatik.uni-stuttgart.de/rfc/www/
http://www.robocup.org/

[12]

[13]
[14]

Weiman, C. F.; Juday, R. D.: Tracking algorithms using log-polar-mapped image
coordinates. In: D. P. Casasent ed.: Society of Photo-Optical Instrumentation En-
gineers (SPIE) Conference, Philadelphia 1989 (SPIE Conference Series 1192, In-
telligent Robots and Computer Vision VIII: Algorithms and Techniques, 843-853),
Bellingham: International Society for Optics and Photonics 1990

Willow Garage Inc.: OpenC'V Reference Manual Version 2.2. 2011

Wolberg, G.; Zokai, S.: Robust image registration using log-polar transform. In:
Proceedings: 2000 International Conference on Image Processing, Vancouver 2000
(Image Processing ICIP 2000 International Conference 4 Volume Set, 493-496), New
York City: Institute of Electrical & Electronics Engineering 2000

63

Erklarung

Hiermit versichere ich, diese Arbeit selbsténdig
verfasst und nur die angegebenen Quellen
benutzt zu haben.

(Florian Burger)

	Überblick
	Einleitung
	Verwandte Arbeiten

	Grundlagen
	Die Log-Polar-Transformation
	Weitere Grundlagen

	Motivation und Anforderungen
	Tracking des Balls
	Verwendung der Log-Polar-Transformation
	Zu verwendende Technologien

	Balltracking mit der Log-Polar-Transformation
	Detektion der Ballkanten
	Detektion von Ballpixeln ohne Parameter
	Log-Polar-Transformation mit Look-Up-Table
	Erkennen von Ballkanten
	Klassifikation der Kanten
	Einsatz von Importance Sampling

	Berechnung der Position des Ballmittelpunkts und des Ballradius'
	Variante 1: Bestimmen der Abweichung von einer geraden Linie im Log-Polar-Bild
	Variante 2: Einpassen eines Kreises
	Vergleich der beiden Varianten
	Weit entfernte Bälle
	Information zur Ermittlung der Güte des gefundenen Balls

	Zusammenfassung und Beispielablauf

	Einsatzszenario, Messungen und Ergebnisse
	Aufbau der Roboter
	Integration des Tracking-Verfahrens
	Messungen
	Erkennen des Balls in verschiedenen Positionen
	Laufzeitmessungen
	Erkennen des Balls in ungünstigen Positionen

	Fazit und Ausblick
	Verwendung der parameterlosen Ballsuche
	Die Log-Polar-Transformation beim Ball-Tracking
	Bewertung des Verfahrens
	Weiterentwicklung
	Ausblick

	Anhang: Weitere Grundlagen
	RoboCup
	Die OpenCV-Bibliothek
	Look-Up-Tables
	YUV-Farbmodell
	Omnidirektionale Kameras

	Literatur

