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Zusammenfassung

Diese Diplomarbeit beschäftigt sich mit der Verfolgung der Trajektorie von Ob-
jekten, dem sogenannten Tracking, am Beispiel der Verfolgung von Bällen im Ro-
boCup. An Informationen stehen dazu die Bilder einer am Roboter angebrachten
360◦-Kamera zur Verfügung. Unter der Voraussetzung, dass die initiale Position des
zu verfolgenden Balls bekannt ist, wird dessen weitere Bewegung in den folgenden
Kamerabildern bestimmt. Die dabei zur Verfügung stehende Rechenzeit ist stark
begrenzt. Um ein günstigeres Abtastverhalten zu erreichen, werden die Bilder im
logarithmischen Polarkoordinatensystem (Log-polar) betrachtet. Dadurch werden,
relativ zur betrachteten Bildposition, nahe Bereiche feiner abgetastet als weiter ent-
fernte.
Mit Hilfe dieser Betrachtungsweise werden die Kanten des Balls bestimmt. Da-

zu werden Pixel als Ballpixel oder Nicht-Ballpixel klassifiziert. Diese Klassifizierung
basiert auf einem parameterlosen System, dass die speziellen Bedingungen des Ro-
boCup berücksichtigt.
Aus den bestimmten Kanten werden dann Größe und Position des Balls im aktu-

ellen Kamerabild ermittelt. Für diesen Vorgang werden zwei mögliche Varianten in
dieser Arbeit beschrieben und verglichen. Der eine Ansatz basiert darauf, dass der
Rand eines Balls im Log-Polar-Bild genau dann eine Gerade darstellt, wenn der Pol
dieses Bildes auf dem Mittelpunkt des Balls liegt. Das liegt daran, dass der Ball alle
Winkel bis zu einem gewissen Abstand ausfüllt. Aus der Abweichung des aktuellen
Bilds zu diesem Idealbild soll versucht werden, auf die Position des Ballmittelpunkts
zu schließen. Der zweite Ansatz basiert auf der Methode der Summe der kleinsten
Fehlerquadrate. Dabei werden aus jeweils drei Ballkantenpunkten Kreise bestimmt.
Für jeden dieser Kreise wird anschließend die Summe der quadrierten Abstände
der anderen Ballkantenpunkte von eben diesem Kreis bestimmt. Der Kreis mit der
niedrigsten Summe bestimmt dann die Parameter des Balls.
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1. Überblick

Dieses Dokument beschreibt die Entwicklung eines Tracking-Verfahrens für Bälle zum
Einsatz im RoboCup. Das Dokument ist in 7 Abschnitte unterteilt.

• Erster Abschnitt: Kurzüberblick.

• Zweiter Abschnitt: Einleitung in das behandelte Thema.

• Dritter Abschnitt: Erläuterung der Grundlagen, die für das restliche Dokument
notwendig sind.

• Vierter Abschnitt: Motivation, das hier behandelte Verfahren zu entwickeln, und
Beschreibung der Anforderungen, die an dieses gestellt werden.

• Fünfter Abschnitt: Vorstellung des entwickelten Verfahrens inklusive verschiedener
Varianten für Teilprobleme und deren Abwägung gegeneinander.

• Sechster Abschnitt: Ergebnisse der Messungen und die Leistungen des Verfahrens
in der Praxis.

• Siebter Abschnitt: abschließendes Fazit und Ausblick.
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2. Einleitung

Für die Menschheit hat die visuelle Wahrnehmung der Umwelt von jeher große Bedeu-
tung. Für einen Menschen sind seine Augen sein wichtigstes Sinnesorgan. Es ist erstaun-
lich, was das menschliche Auge zu leisten in der Lage ist. Mindestens ebenso erstaunlich
sind die Leistungen des Gehirns, das die Bilder der Augen verarbeitet. Räumliches Sehen
ist nur eine der faszinierenden Fähigkeiten, die uns diese Bildverarbeitung ermöglicht.
Mit dem Aufkommen der Kamera- und Computertechnologie erwuchs dementspre-

chend früh der Wunsch, auch Computern solche Fähigkeiten beizubringen. Dazu genügt
es nicht, Kameras zu bauen, die entsprechende Bilder liefern. Mindestens ebenso groß ist
die Herausforderung, den Computer diese Bilder verarbeiten zu lassen. Diese enthalten
eine Vielzahl von Informationen, die mit Blick auf bestimmte Ziele ausgewertet werden
müssen. Oft ist dazu auch ein Filtern dieser Informationen, sprich des Bildes, notwendig.
Mit dem Filtern sollen die Informationen hervorgehoben werden, die für die zu erfüllende
Aufgabe wesentlich sind, oder umgekehrt nicht benötigte Informationen entfernt werden.
Eine dieser möglichen Aufgaben ist die Verfolgung eines Objekts. Dieser Vorgang wird

von uns Menschen täglich durchgeführt. Will man zum Beispiel ein Objekt fangen, das
einem zugeworfen wird, so muss das Gehirn die Flugbahn dieses Objekts verfolgen und
seine zukünftige Position extrapolieren, um die Hände in die richtige Fangposition zu
bringen. Ein anderes Beispiel ist der Straßenverkehr, auch dort müssen ständig Objekte,
sprich andere Fahrzeuge oder Verkehrsteilnehmer, verfolgt werden, um Kollisionen zu
vermeiden. Allgemein lässt sich sagen, dass die Fähigkeit zur Objektverfolgung in sehr
vielen verschiedenen Situationen relevant für einen Menschen ist.
Dementsprechend handelt es sich dabei um eine Aufgabe, die auch in der Bildverarbei-

tung bei Computern eine wichtige Rolle spielt. Das Verfolgen eines Objektes bezeichnet
man hier meist mit dem englischen Begriff Tracking. Zentral ist diese Fähigkeit, wie auch
das oben genannte Straßenverkehrsbeispiel zeigt, vor allem zur Vermeidung von Kollisio-
nen. Daher hat sie vor allem für mobile Roboter große Bedeutung. Natürlich gibt es aber
auch dort Einsatzbereiche für die Objektverfolgung, die über die Kollisionsvermeidung
hinausgehen.
Ein aktives Forschungsgebiet in der Robotik ist der Roboterfußball, da es dort mit dem

RoboCup1 eine zentrale Organisation zur Veranstaltung von Wettbewerben gibt. Außer-
dem handelt es sich beim Fußball um ein Szenario, das viele verschiedene Aufgaben der
Robotik kombiniert, unter anderem komplexe Bewegungssteuerung, Koordination meh-
rerer Roboter, Planung und natürlich Bildverarbeitung. Eine der Aufgaben der Bildver-
arbeitung beim Roboterfußball ist das Verfolgen des Spielballs. Eine genaue Bestimmung
der Ballposition ist eine wichtige Voraussetzung für das Gewinnen eines Spiels.
Diese Positionsbestimmung muss auf Grundlage der Bilder der Kamera der Fußballro-

boter durchgeführt werden. Da Ball und Roboter auf dem Spielfeld beliebig zueinander
orientiert sein können, verwendet man hier Kameras, die in der Lage sind, das vollständi-
ge Spielfeld, also einen Winkel von 360◦, sehen zu können. Das Bild einer solchen Kamera
eines Fußballroboters ist in Abbildung 1 zu sehen. Um die notwendige Bandbreite zur

1Siehe Unterabschnitt A.1 auf Seite 58
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Abbildung 1: Ein Bild der 360◦-Kamera eines Fußballroboters. Weitere Informationen zu
dieser Art von Kameras sind in Unterabschnitt A.5 auf Seite 61 zu finden.

Übertragung der Bilder einer Kamera zum Roboter gering zu halten, werden die Bilder
in der so genannten „4:2:2“-Kodierung des YUV-Farbmodells2 geliefert.
Eine wichtige Anforderung an ein Verfahren, das die Verfolgung des Spielballs über

mehrere Kamerabilder hinweg ermöglicht, ist geringe Laufzeit. Gewöhnlich liefern die
verwendeten Kameras 30 Bilder pro Sekunde. Das bedeutet, dass für die gesamte Ver-
arbeitung eines Bildes maximal 1

30 Sekunde zur Verfügung steht. In dieser Zeit müssen
aber noch wesentlich mehr Bildverarbeitungsaufgaben durchgeführt werden, zum Beispiel
muss sich der Roboter lokalisieren oder andere Roboter erkennen. Dadurch verringert sich
die tatsächlich für das Tracking des Balls zur Verfügung stehende Zeit weiter.
Um die notwendige Geschwindigkeit zu erreichen, muss die Abtastung des Bildes be-

schleunigt werden. Um das zu erreichen, kann man dieses nicht Pixel für Pixel abtasten,
sondern es in Log-Polar-Koordinaten überführen und dann nur bestimmte Pixel betrach-
ten. Diese Transformation und ihre Eigenschaften werden im folgenden Abschnitt 3 ge-
nauer beschrieben.
Gegenstand dieser Arbeit ist die Entwicklung und Evaluierung eines Verfahrens, das

die Verfolgung eines Spielballs mit Hilfe der Log-Polar-Transformation realisiert.

2.1. Verwandte Arbeiten

Die Verwendung der Log-Polar-Transformation in der Bildverarbeitung war bereits The-
ma vieler Arbeiten. Bereits 1990 schreiben C. F. Weiman und R. D. Juday über deren
Einsatz[12]. Sie stellen ein Verfahren vor, mit dem das Tracking von Raumfahrzeugen er-
möglicht wird, um deren Andockvorgang zu unterstützen. Die Arbeit kommt zum Ergeb-

2Siehe Unterabschnitt A.4 auf Seite 60
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nis, dass die Transformation in Log-Polar-Koordinaten hilft, Laufzeit und Speicherbedarf
zu senken.
K. Daniilidis schreibt 1995 über die Verwendung der Transformation zur Nachbildung

der Auflösungsverringerung des menschlichen Auges am Rand des wahrgenommenen
Bildes[5]. Basierend darauf werden in dieser Arbeit weitere günstige Eigenschaften der
Log-Polar-Transformation vorgestellt. Anschließend werden die gewonnenen Erkenntnis-
se zur Berechnung der Eigenbewegung und zur Kollisionsberechnung bei einem Roboter
verwendet.
Die dynamische Fokussierung von Bildbereichen bei Stereo-Kamera-Robotern ist das

Thema der Arbeit von C. Capurro et al. von 1997[3]. Sie erörtern, warum die Verwendung
von Log-Polar-Bildern in diesem Fall vorteilhaft ist und stellen ein Vergenz-Kontrollsys-
tem vor, dass auf diesen Bildern basiert.
Die Verwendung der Log-Polar-Transformation zur Gesichtserkennung stellen K. Hotta

et al. in ihrer Arbeit aus dem Jahre 1998 vor[6]. Das Log-Polar-Bild wird dazu zeilenwei-
se nach skalierungs- und verschiebungsinvarianten Merkmalen durchsucht, die dann zur
Erkennung von menschlichen Gesichtern genutzt werden.
Ein Feld der Bildverarbeitung, in dem ebenfalls gern auf die Eigenschaften der Log-Po-

lar-Koordinaten zurückgegriffen wird, ist die Registrierung mehrerer Bilder zueinander.
Das beschreiben zum Beispiel G. Wolberg und S. Zokai in ihrer Arbeit aus dem Jahr
2000[14]. Sie stellen ein Registrierungsverfahren vor, dass Skalierung und Rotation von
mehreren Bildern zueinander erkennt. Dieses arbeitet mit Log-Polar-Bildern.
Dem Tracking von Objekten im Bild einer beweglichen Kamera unter Zuhilfenah-

me der Log-Polar-Koordinaten widmen sich N. Okajima et al. im Jahr 2000[8]. Durch
Untersuchung der Phasendifferenz von komplexen Wavelet-Transformationen der Bilder-
sequenzen ermitteln sie die Bewegung des Objekts. Ziel ist außerdem, möglichst wenig
Laufzeit zu benötigen, um möglichst viele Bilder pro Sekunde verarbeiten zu können.
Den Ansatz der Erfassung und Schätzung von Translationsbewegungen mit der Log-

Polar-Transformation untersuchen V. Javier Traver und Filiberto Pla in ihrer Arbeit aus
dem Jahre 2001[11]. Dazu verwenden sie ein gradientenbasiertes Minimierungsverfahren.
Il Choi et al. beschäftigen sich 2003 mit einem ähnlichen Thema[4] wie bereits N. Okaji-

ma et al.[8]. Ihre Arbeit behandelt das Tracking von sich bewegenden Objekten mit einem
Stereo-Kamera-System. Dabei vergleichen sie den Einsatz der Log-Polar-Transformation
mit anderen Ansätzen und stellen dessen Überlegenheit fest.
Speziell auf die Bewegungssteuerung eines Roboterkopfes zum Zweck des Trackings

von farbigen Objekten gehen G. Metta et al. in ihrem Artikel aus dem Jahre 2004 ein[7].
Basierend auf Log-Polar-Bildern wird die Bewegung des Roboterkopfes bestimmt, die
zu vollziehen ist, um das Kamerasystem des Roboters auf das zu verfolgende Objekt
auszurichten. Sie stellen außerdem ein Lernverfahren vor, bei dem die Parameter dieses
Steuerungssystems selbstüberwacht vom Roboter gelernt werden.
In seiner 2005 verfassten Masterthesis stellt Saikiran S. Thunuguntla ein Objekt-

Tracking-Verfahren basierend auf der Log-Polar-Transformation vor[10]. Dieses basiert
auf einem Template-Matching-Ansatz und verwendet die Transformation insbesondere
dazu, um dieses Matching gegenüber Skalierung und Rotation des zu verfolgenden Ob-
jekts robust zu machen.
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3. Grundlagen

3.1. Die Log-Polar-Transformation

Logarithmische Polarkoordinaten bauen auf gewöhnlichen Polarkoordinaten auf. Daher
empfiehlt sich, zuerst zu erklären, was ein polares Koordinatensystem ist und wie dieses
in der Bildverarbeitung verwendet wird.

Polarkoordinaten In einem Polarkoordinatensystem wird die Position eines Punktes
auf einer zweidimensionalen Ebene nicht durch zwei orthogonale Vektoren bestimmter
Länge, wie in einem kartesischen Koordinatensystem, sondern durch einen Winkel und
einen Abstand definiert. Der Abstand, normalerweise mit r bezeichnet, gibt dabei die
Entfernung des Punktes vom Ursprung, im Polarkoordinatensystem als Pol bezeichnet,
wieder. Die Winkelkoordinate, meist mit θ oder φ bezeichnet, ist definiert als der Win-
kel, der von der Polarachse (auch: Null-Grad-Linie) gegen den Uhrzeigersinn anliegt.
Statt Abstands- und Winkelkoordinate spricht man auch von Radius und Azimut oder
Azimutwinkel. Abbildung 2 zeigt eine Skizze dazu.

0

P(x|y)
y

x 0

y

x 0°

ϕr P(r |ϕ)

Abbildung 2: Links ist ein Punkt in einem kartesischen Koordinatensystem zu sehen.
Rechts der selbe Punkt in Polarkoordinaten.

Das Koordinatenpaar bestimmt einen Punkt in einer zweidimensionalen Ebene un-
ter zwei Voraussetzungen eindeutig: Erstens muss der Azimutwinkel auf ein definiertes
Intervall, beispielsweise [0, 2π), beschränkt werden. Ansonsten könnte jeder Punkt belie-
big viele verschiedene Werte als Winkelkoordinate haben, die sich jeweils um eine volle
Periode von 2π unterscheiden. Zweitens muss dem Pol die Azimutkoordinate φ = 0 zuge-
wiesen werden, da diese sonst für r = 0 beliebig wäre. Unter diesen Voraussetzungen ist
eine Umrechnung von Polarkoordinaten in kartesische Koordinaten problemlos möglich.
Dies ist für die Verwendung von Polarkoordinaten in der Bildverarbeitung wichtig, da
Datenstrukturen für Bilder üblicherweise mit kartesischen Koordinaten adressiert wer-
den. Liegt die Polarachse gleich mit der x-Achse des kartesischen Koordinatensystems,
so ergeben sich folgende Umrechnungsformeln, um Polarkoordinaten in kartesische Ko-
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ordinaten umzurechnen:

x = r · cos(φ) (1)
y = r · sin(φ) (2)

Die Umrechnung von kartesischen Koordinaten in Polarkoordinaten gestaltet sich wegen
der Berechnung des Azimutwinkels etwas aufwendiger. Der Radius r entspricht hingegen
einfach der Länge des x-y-Vektors:

r =
√
x2 + y2 (3)

Die Berechnung des Winkels erfolgt über die Arkustangens-Funktion. Da diese jedoch auf
denWertebereich (−π

2 ,
π
2 ) beschränkt ist, ist hierfür eine erweiterte Arkustangensfunktion

notwendig, die, abhängig von den Werten von x und y, gewisse Fälle unterscheidet (je
nach Quadrant, in dem sich der umzuwandelnde Punkt befindet), und damit auf den
Wertebereich [0, 2π) erweitert wird. Da diese Umwandlung für diese Arbeit keine Rolle
spielt, wird diese, auch als atan2 bezeichnete, Funktion hier nicht wiedergegeben.

Polarkoordinaten in der Bildverarbeitung Polarkoordinaten sind für die Bildverarbei-
tung interessant, da sich damit bestimmte Abtastverfahren eines Bildes leichter beschrei-
ben lassen. Wenn von einem zentralen Punkt aus entlang von von diesem ausgehenden
Linien ein Bild abgetastet werden soll, lassen sich diese Positionen hervorragend durch
Polarkoordinaten ausdrücken. Der Azimutwinkel wird dann immer um den gewünschten
Abstand zwischen zwei Abtastlinien erhöht, der Radius einfach hochgezählt. Diese Art
der Abtastung ist besonders bei der Objekterkennung und -verfolgung interessant, da so
nicht alle Pixel des Bildes betrachtet werden müssen und die Auflösung der Abtastung
mit steigendem Abstand vom zentralen Punkt sinkt. So kann das Bild auf der Suche nach
einem zu erkennenden Objekt in größeren radialen Abschnitten untersucht werden, und
nur dort, wo potentielle Objektpositionen gefunden werden, wird die Suche vertieft.

Abstand
W
i
n
k
e
l

Abbildung 3: Ein Beispielbild in Originalform (links) und in Polarkoordinaten (rechts).
Die Position des Pols des Polarkoordinatenbilds ist mit einem Kreuz im
Originalbild markiert.
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Logarithmieren der Entfernungen Der einzige Unterschied von Log-Polar-Koordinaten
zu gewöhnlichen Polarkoordinaten besteht darin, dass die Abstandskoordinate nicht mehr
dem Radius selbst, sondern dessen natürlichem Logarithmus entspricht:

ρ = ln
√
x2 + y2 (4)

Teilweise wird auch noch ein SkalierungsfaktorM verwendet, beispielsweise in OpenCV[13,
S. 277ff]:

ρ′ =M · ln
√
x2 + y2 (5)

Der Azimutwinkel berechnet sich genau wie bei den gewöhnlichen Polarkoordinaten. Für
die umgekehrte Transformation, also die Umwandlung von log-polar Koordinaten in kar-
tesische Koordinaten, gilt:

x = eρ · cos(φ) (6)
y = eρ · sin(φ) (7)

Mit Skalierungsfaktor M gilt:

x = e
ρ′
M cos(φ) (8)

y = e
ρ′
M sin(φ) (9)

Mit steigendem Abstand vom zentralen Punkt sinkt also bei der Verwendung von Log-
Polar-Koordinaten in der Bildverarbeitung die Abtastrate. Nahe Bereiche sind hingegen
höher aufgelöst. Dieses Verhalten wird von der Logarithmierung des Abstandes verur-
sacht. Abbildung 4 verdeutlicht dies an einem Beispielbild.

Abstand
W
i
n
k
e
l

ln(Abstand)

W
i
n
k
e
l

Abbildung 4: Ein Beispielbild in Originalform (links), Polarkoordinaten (Mitte) und in
Log-Polar-Darstellung (rechts, Skalierungsfaktor M = 10 )
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3.2. Weitere Grundlagen

Die Erläuterungen zu weiteren Grundlagen sind bei Bedarf im Anhang zu finden. Im
Einzelnen finden sich Erläuterungen zum RoboCup in Unterabschnitt A.1 auf Seite 58,
zur OpenCV -Bibliothek in Unterabschnitt A.2 auf Seite 59, zu Look-Up-Tables in Un-
terabschnitt A.3 auf Seite 60, zum YUV-Farbmodell in Unterabschnitt A.4 auf Seite 60
und zu omnidirektionalen Kameras in Unterabschnitt A.5 auf Seite 61.
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4. Motivation und Anforderungen

4.1. Tracking des Balls

Um im RoboCup erfolgreich sein zu können, ist eine gute und schnelle Erkennung des
Spielballs ausgesprochen wichtig. Nur mit einer genauen Lokalisierung des Balls sind
die Planungen von Angriffs- oder Verteidigungsstrategien möglich. Auch für die Berech-
nung der Bewegungssteuerung ist es erforderlich, die genaue Ballposition zu kennen:
Der Roboter muss den Ball im richtigen Winkel anfahren, um ihn beispielsweise in sein
Dribbling-Device3 zu legen und sich dann mit dem Ball fortbewegen zu können. Für den
Torwart ist eine genaue Erkennung des Balls ebenfalls von großer Bedeutung, damit er
sich richtig positionieren kann, um gegnerische Angriffe abzuwehren.
Als Tracking bezeichnet man dabei den Vorgang, einen Ball über mehrere Kamerabil-

der hinweg zu verfolgen. Dazu steht zunächst eine Initialposition zur Verfügung, die von
einem globalen Ballsuchverfahren geliefert wird. Natürlich können dabei auch mehrere
potentielle Ballpositionen gefunden werden, die dann unabhängig voneinander ausgewer-
tet und, falls ein Ball erkannt wurde, verfolgt werden. Für das Tracking selbst macht dies
keinen Unterschied, es wird mehrfach für verschiedene Positionen ausgelöst. Das globale
Verfahren wird nicht mehr benötigt, so bald ein Tracking-Vorgang aktiv ist. Stattdessen
bekommt das Trackingverfahren als Initialposition im nächsten Schritt die Position des
Balls aus dem aktuellen Trackingschritt.
Da es sich beim RoboCup um ein dynamisches Szenario handelt, soll das Tracking

mit möglichst wenig Rechenzeit realisierbar sein. Nach einer einmaligen globalen Suche,
um den Ball initial zu erfassen, muss das Trackingverfahren diesen im jeweils nächsten
Bild der Kamera des Roboters in kurzer Zeit lokalisieren. Ausgangspunkt ist dabei die
Position des Balls im vorherigen Bild. Als Vorgabe wurde gegeben, dass das Tracking
nicht länger als etwa zwei Millisekunden auf der aktuellen RoboCup-Robotergeneration
dauern soll.
Ein Problem beim Tracking ist die Verdeckung des Balls durch andere Roboter oder

sogar den Bezugsroboter selbst, zum Beispiel dann, wenn der Ball im Kamerabild unter
den Halterungen des Kameraspiegels verschwindet. Dies ist in Abbildung 5 zu sehen. Das
Trackingverfahren muss daher in der Lage sein, den Ball auch dann korrekt zu erkennen,
wenn er teilweise verdeckt ist.
Für das RoboCup-Szenario gelten gewisse Voraussetzungen, die beim Tracking hilfreich

sind. Die Farbe des „Rasens“ ist vorgegeben und auf dem Spielfeld dürfen sich nur die
anderen Roboter und ein Ball befinden. Der Ball selbst hat eine kräftige Farbe, meist
gelb, und ist so gut von allen anderen Objekten zu unterscheiden. Da dies jedoch nur für
Spielsituationen selbst gilt, das Trackingverfahren aber auch in Trainings- oder Testsitua-
tionen funktionieren soll, muss es weiteren Hindernissen oder mehreren Bällen gegenüber
robust sein.
Um Fehldetektionen auszuschließen, muss das Trackingverfahren Informationen aus-

geben, auf deren Basis sich eine Güte des detektierten Balls bestimmen lässt. Da eine
globale Ballsuche möglicherweise mehrere potentielle Ballpositionen liefert, muss daraus

3Aussparung oder Vorrichtung am Roboter, in die der Ball zum Dribbeln gelegt werden soll
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Abbildung 5: Der Ball wird von einer Halterung des Kameraspiegels teilweise verdeckt

die beste und somit wahrscheinlichste Hypothese gewählt werden.
Das Trackingverfahren muss außerdem deterministisch arbeiten: Bei gleichem Eingabe-

bild müssen auch immer identische Ballposition und -größe ermittelt werden. Die stabile
Detektion eines ruhig liegenden Balls muss außerdem robust gegenüber dem unvermeidli-
chen Rauschen im Kamerabild sein, damit nicht fälschlicherweise eine Bewegung erkannt
wird.
Eine weitere Anforderung an ein Trackingverfahren ist seine Skalierbarkeit: Steht zu-

künftig mehr Rechenleistung zur Verfügung, soll es möglich sein, durch Parameterein-
stellung die Güte der Ergebnisse zu verbessern, da ja dann mehr Rechenzeit aufgewendet
werden kann.

4.2. Verwendung der Log-Polar-Transformation

Die Log-Polar-Transformation ist unter zwei Gesichtspunkten für das Tracking inter-
essant. Zum einen durch das Auflösungsverhalten, das sich durch diese ergibt. Dieses ist
für ein Trackingverfahren potentiell nützlich. Zum anderen lassen sich aus der Darstellung
eines Balles im Log-Polar-Bild Rückschlüsse auf dessen Position ziehen.

Auflösungsverhalten Wie im vorangegangenen Unterabschnitt 4.1, Tracking des Balls,
erwähnt, ist hohe Geschwindigkeit für das Trackingverfahren sehr wichtig. Eine Mög-
lichkeit, die Geschwindigkeit eines solchen Verfahrens zu steigern, ist die Anzahl der
abgetasteten Punkte zu verringern, also nicht alle Punkte eines Bildes abzutasten. Wie
in Unterabschnitt 3.1, Die Log-Polar-Transformation, auf Seite 10, beschrieben, hat die
Log-Polar-Transformation hier gleich zwei günstige Eigenschaften:

Strahlenförmige Abtastung. Bei Log-Polar-Koordinaten, wie auch bei gewöhnlichen Po-
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larkoordinaten, kann ein Bild strahlenförmig von einem zentralen Punkt ausgehend
abgetastet werden, indem jeweils über die Winkel- und Radiuskoordinate iteriert
wird. Dadurch wird die Anzahl der abgetasteten Pixel, je nach Schrittweite, erheb-
lich reduziert, obwohl alle Richtungen trotzdem gleich gut berücksichtigt werden.

Auflösungsverhalten entlang der Strahlen. Durch die Logarithmierung des Radius’ bei
Log-Polar-Koordinaten wird außerdem die Auflösung auch entlang der einzelnen
Strahlen mit steigendem Abstand reduziert. Bei Polarkoordinaten würde jedes Pi-
xel entlang eines Strahls betrachtet, bei Log-Polar-Koordinaten hingegen – mit
Skalierungsfaktor M = 1 – nur das erste (e0 = 1), das dritte (e1 ≈ 2, 718), das
siebte (e2 ≈ 7, 389) und so weiter.

Balldarstellung im Log-Polar-Bild Interessant für das Tracking ist außerdem das Aus-
sehen eines Balls im Log-Polar-Bild. Liegt der Mittelpunkt eines Balls auf dem zentralen
Punkt eines Log-Polar-Bildes, also dem Pol, so ergibt sein Rand eine gerade Linie, da
alle Punkte des Randes den gleichen Abstand rBall vom Mittelpunkt haben. Abbildung 6
zeigt das.

Abbildung 6: Der Ball (links) und das entsprechende Log-Polar-Bild (rechts) mit dem
Zentrum im Ballmittelpunkt (M = 10)

Ist ein Ball hingegen nicht im Zentrum des Log-Polar-Bildes, so ergibt sein Rand eine
Kurve. Dies zeigt Abbildung 7.
Aus dem Verlauf dieser Kurve lassen sich wiederum Rückschlüsse auf die Position

des Ballmittelpunkts ziehen, was für ein Trackingverfahren eine potentiell interessante
Eigenschaft ist.

4.3. Zu verwendende Technologien

Da das zu entwickelnde Verfahren beim 1. RFC Stuttgart im Rahmen der Middle Size
League des RoboCups eingesetzt werden soll, ergeben sich einige Anforderungen an die
zu verwendenden Technologien. Die Entwicklung findet in der Programmiersprache C++
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Abbildung 7: Der Ball (links) und das entsprechende Log-Polar-Bild (rechts, M = 10)

statt. Einzige Abhängigkeit soll die OpenCV -Bibliothek sein. Unter diesen Voraussetzun-
gen kann das entwickelte Verfahren dann problemlos in das RoboCup-Software-Frame-
work des 1. RFC Stuttgart integriert werden.
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5. Balltracking mit der Log-Polar-Transformation

Die Aufgabe des Tracking eines Balls besteht darin, ausgehend von einer Startposition
in einem Kamerabild, den Ball zu lokalisieren, der in diesem Fall durch einen Kreis mit
Mittelpunkt und Radius definiert wird. Dabei gibt es grundsätzlich zwei übergeordnete
Probleme zu lösen:

• Wie können die Kanten des Balls gefunden werden?

• Wie können aus diesen Randpositionen der Mittelpunkt und der Radius des Balls
bestimmt werden?

Natürlich sind diese beiden Probleme nicht unabhängig voneinander, sondern beeinflus-
sen sich gegenseitig. Je exakter die Kanten des Balls ermittelt werden können, desto
einfacher lassen sich daraus dessen Größe und Position bestimmen. Wenn diese Positions-
bestimmung allerdings toleranter gegenüber Ausreißern ist, darf man bei der Detektion
der Kanten großzügiger sein. Wichtig ist also, dass diese beiden Probleme aufeinander
abgestimmt gelöst werden, damit die Ausgabe der Kantendetektion dem Positionsbe-
stimmungsverfahren genügt, um zuverlässig die korrekte Position und Größe des Balls zu
bestimmen.
Auf Grund der Forderung nach geringer Laufzeit kann hier nicht beliebig Rechenzeit

investiert werden. Beide Probleme müssen mit einem Minimum an Operationen gelöst
werden. Hier ist es, wie meist in der Informatik, notwendig, einen Kompromiss zwischen
Güte der Ergebnisse und aufgewendeter Laufzeit zu finden.
Im Folgenden werden die entwickelten Lösungsansätze für die beiden Teilprobleme

dargestellt und verglichen und anschließend dargelegt, aus welchen Gründen welcher
Ansatz schließlich verwendet wurde.

5.1. Detektion der Ballkanten

Um die Kanten eines Balls in einem Kamerabild zu detektieren, ist das grundsätzlich
zu lösende Problem, Ballpixel von Nicht-Ballpixeln zu unterscheiden. Anschließend kann
der Übergang von einem Nicht-Ballpixel zu einem Ballpixel oder umgekehrt als Kante
des Balls klassifiziert werden. Dies allein genügt aber nicht: Hier würden aus mehreren
Gründen sehr viele falsche Kanten erkannt. Die Probleme sind im einzelnen:

Verdeckung Bälle, die durch andere Roboter oder andere Hindernisse oder die Aufbau-
ten des Bezugsroboters selbst teilweise verdeckt sind. In diesem Fall würden dann
Kanten an der Grenze zum verdeckten Bereich erkannt, was dazu führen würde,
dass der Ball erheblich unterschätzt wird.

Bildrauschen Wenn tatsächlich jeder Übergang als Kante gezählt werden würde, so wä-
ren allein durch das Kamerarauschen viele Fehlerkennungen enthalten.

Die Detektion der Kanten muss also stabil gegenüber Bildrauschen sein und die Kanten,
die an Verdeckungen entstehen, ausschließen.
Im Folgenden ist das entwickelte Verfahren zur Kantendetektion mit seinen einzelnen

Schritten beschrieben.
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5.1.1. Detektion von Ballpixeln ohne Parameter

Das erste zu lösende Problem beim Tracking ist, wie beschrieben, die Unterscheidung
zwischen Ballpixeln und Nicht-Ballpixeln. Im vorgegebenen Szenario soll dabei der Ball
nicht vorgegeben sein, genaues Aussehen und Größe sind dem Verfahren also unbekannt.
Die einzige zur Verfügung stehende Information ist, dass der Ball, im Gegensatz zu allen
anderen Objekten auf dem Spielfeld im RoboCup farbig aber nicht grün ist, sprich sich
deutlich vom Rasen abhebt. Es muss also ein Weg gefunden werden, wie „bunte“ Pixel
von „nicht-bunten“ Pixeln unterschieden werden können.
Die Kamera des Roboters stellt die Bilder in „4:2:2“-Kodierung des YUV-Farbmodells

dar (Siehe auch Unterabschnitt A.4, YUV-Farbmodell, auf Seite 60,). Wenn man die
einzelnen Komponenten eines Bildes, das mit dem YUV-Farbmodell dargestellt wird, be-
trachtet, so stellt man fest, dass ein „farbiger“ Ball entweder im U- oder im V-Komponenten-
Bild sehr deutlich zu erkennen ist. Die folgende Abbildung 8 verdeutlicht das.

Abbildung 8: Links das Originalbild, in der Mitte die U -Komponente und rechts die V -
Komponente. In den beiden rechten Bildern sieht man deutlich, dass jeweils
der orangene beziehungsweise der gelbe Ball sehr gut zu erkennen sind.

Bildet man nun das Differenzbild, rechnet also an jedem Pixel V −U aus, so sieht man,
dass sich alle Bälle darauf deutlich abheben. In Abbildung 9 ist dies verdeutlicht.

Abbildung 9: Links das Originalbild, rechts das V − U -Differenzbild. In diesem sind die
Bälle klar zu erkennen.

In diesem Differenzbild heben sich die Bälle deutlich vom Hintergrund ab. Das liegt
daran, dass die verwendeten Bälle alle einen erheblich größeren Rot- als Blauanteil in
YUV-Darstellung haben. Das unterscheidet sie von allen anderen Pixeln des Bildes. Legt
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man über das erzeugte Differenzbild nun noch einen Schwellwertfilter, hat man im dar-
aus resultierenden Bild die Bälle aus dem Originalbild extrahiert. Dies kann man in
Abbildung 10 sehen.

Abbildung 10: Links das Originalbild, rechts das V − U -Schwellwertbild (Schwellwert in
diesem Fall Tvu = 45). Die beiden Bälle sind deutlich zu erkennen und
nur leichtes Rauschen ist im Schwellwertbild enthalten.

Ein vollständiges Konvertieren des zu untersuchenden Kamerabildes in diese Darstel-
lung ist allerdings zu zeitaufwendig. Da für diese Umwandlung jedoch nur die Information
des Pixels selbst, sprich seine U - und V -Komponente, wichtig ist, kann diese Methode
auch nur für jedes betrachtete Pixel ausgeführt werden. Ein Pixel gilt also zunächst
einmal als Ballpixel, wenn folgende Bedingung erfüllt ist:

VPixel − UPixel > Tvu (10)

Der Schwellwert Tvu muss dabei natürlich, je nach Eigenschaften und Kalibrierung der
Kamera, unterschiedlich gewählt werden.

Detektieren von Feldpixeln Um das Ergebnis der Kantendetektion zu verbessern und
das Rauschen im Schwellwertbild zu verringern, bietet es sich an, Spielfeldpixel von vorn
herein auszuschließen. Wird also ein Pixel als Spielfeldpixel eingestuft, so kann es sich
dabei nicht um ein Ballpixel handeln.
Auch zur Erkennung von „grünen“ Spielfeldpixeln eignet sich das Betrachten der einzel-

nen Kanäle eines YUV-Bildes. Vergleicht man sowohl die U - als auch die V -Komponente
eines Bildes mit einem Schwellwert Tgrün, so lässt sich das Grün des Spielfelds sehr gut
von allen anderen Pixeln unterscheiden. Ein Pixel gilt als grün, wenn folgende Bedingung
erfüllt ist:

(VPixel < Tgrün) ∧ (UPixel < Tgrün) (11)

In Abbildung 11 ist dargestellt, welches Ergebnis diese Grün-Erkennung liefert.
Neben der Erkennung aller grünen Pixel können auch alle weißen Linien des Spielfelds

als Ballpixel ausgeschlossen werden. Hier ist das YUV-Farbmodell ebenfalls von Vorteil:
Vergleicht man den Wert der Luminanz-Komponente Y mit einem Schwellwert Tweiß,
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Abbildung 11: Links das Originalbild, rechts sind alle Pixel in grün hervorgehoben, die
als Spielfeldpixel erkannt wurden.

kann man diese Linien schnell und zuverlässig erkennen. Ein Pixel wird als Linienpixel
klassifiziert, wenn die folgende Bedingung erfüllt ist:

YPixel > Tweiß (12)

Abbildung 12 zeigt das Ergebnis an einem Beispiel. Es ist bei dieser Erkennung aller-
dings zu beachten, dass der Schwellwert nicht zu weit gesenkt wird, da ansonsten auch
Ballpixel als „weiß“ erkannt und somit ausgeschlossen werden.

Abbildung 12: Links das Originalbild, rechts sind alle Pixel in rot hervorgehoben, die als
weiße Linienpixel erkannt wurden.

Ignorieren von verdeckten Pixeln Bei den Fußballrobotern für den RoboCup gibt es
noch eine weitere Besonderheit. Da die Roboter über eine Panorama-Kamera mit einem
Parabolspiegel verfügen, sieht der Roboter in Teilen des Bildes sich selbst. Insbesondere
die Streben der Haltekonstruktion, die den Spiegel über der Kamera fixiert, verdecken
einige Pixel auf dem Kamerabild grundsätzlich. Außerdem sieht die Kamera ab einem
bestimmten Winkel am Parabolspiegel vorbei und dann nur noch das Schwarz der Hal-
tekonstruktion.
Dort, wo sich diese grundsätzlich verdeckten Pixel befinden, können dementsprechend

auch keine Ballpixel erkannt werden, so dass diese Positionen von vorn herein ausge-
schlossen werden können. Zu diesem Zweck wird ein Bild erzeugt, das diese Information
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enthält: Ein Pixel darin hat den Wert „weiß“, wenn die Sicht der Kamera an dieser Posi-
tion nicht durch den Roboter selbst eingeschränkt ist, ansonsten ist das Pixel „schwarz“.
Dieses Bild wird nach der Kalibrierung des Roboters erstellt. Abbildung 13 zeigt dieses
sogenannte exclusion-Bild.

Abbildung 13: Links das Kamerabild eines Roboters, rechts das zugehörige exclusion-
Bild.

Zusammenfassung: Erkennung eines Ballpixels Zusammenfassend wird ein Pixel mit
den Koordinaten (xp|yp) genau dann als Ballpixel erkannt, wenn folgende Bedingungen
erfüllt sind:

exclusion(xp, yp) > 0 Das Pixel darf nicht ohnehin verdeckt sein (13)
und

Yxp,yp <= Tweiß Das Pixel darf nicht weiß sein (14)
und

(Uxp,yp >= Tgrün) ∨ (Vxp,yp >= Tgrün) Das Pixel darf nicht grün sein (15)
und

Vxp,yp − Uxp,yp > Tvu Das Pixel muss unter die Schwellwertbedingung fallen (16)

Für diese Klassifizierung benötigt man nur Informationen des Pixels selbst und keinerlei
Parameter, die den Ball charakterisieren. Je nach Szenario kann es allerdings notwendig
sein, beispielsweise „grüne“ Pixel auch als Ballpixel zuzulassen, da diese Auswahl unter
Umständen auch tatsächliche Ballpixel ausschließen kann. Im RoboCup-Szenario und mit
den Robotern des 1. RFC Stuttgart hat sich die Klassifizierung in dieser Reihenfolge aber
als effektiv erwiesen.

5.1.2. Log-Polar-Transformation mit Look-Up-Table

Wie bereits unter Unterabschnitt 4.2, Verwendung der Log-Polar-Transformation, auf
Seite 15, geschildert, ist die Verwendung der Log-Polar-Transformation für das Tracking
interessant und soll daher im Verfahren Verwendung finden. Das Auflösungsverhalten
dieser Transformation in Bezug auf das Originalbild ist für schnelles Tracking hilfreich, da
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die Anzahl der abgetasteten Pixel damit erheblich reduziert werden kann. Die Berechnung
des Log-Polar-Bildes aus dem Originalbild ist allerdings aufwendig und erfordert somit
relativ viel Rechenzeit. Damit wären alle Zeitvorteile, die durch die gröbere Abtastung
gewonnen werden, hinfällig.
Um dieses Problem zu lösen, bietet es sich an, eine vorberechnete Look-Up-Table zu

verwenden (Siehe Unterabschnitt A.3, Look-Up-Tables, auf Seite 60). Damit lässt sich
das Log-Polar-Bild implizit berechnen, ohne die teure Transformation des gesamten Bil-
des berechnen zu müssen. In der Look-Up-Table wird gespeichert, welche Pixelposition
im Originalbild einem Log-Polar-Koordinatenpaar (ρ|φ) entspricht. Die Look-Up-Table
realisiert also die folgende Funktion:

LUT : N2 → N2, (ρ, φ) 7→ (e
ρ
M cos(φ), e

ρ
M sin(φ)) (17)

Mit dieser Look-Up-Table kann über die Log-Polar-Koordinaten ρ und φ iteriert wer-
den, indem die entsprechende Position im Originalbild aus der Tabelle ausgelesen wird.
An dieser Stelle wird dann das Originalbild ausgewertet. Das Bild wird folglich strahlen-
förmig abgetastet, und mit steigender Entfernung vom Pol des Log-Polar-Bildes sinkt die
Auflösung entlang des Strahls durch die logarithmische Eigenschaft der ρ-Koordinate.

Bei dieser Art der Abtastung des Bildes ergibt sich aus dieser Eigenschaft ein Problem:
Beim Iterieren der ρ-Koordinate wird diese nur für ganzzahlige Werte ausgewertet. Mit
steigenden Werten vergrößert sich dadurch der Bereich zwischen zwei Abtastpunkten
schnell. Stellt sich heraus, dass eine Kante zwischen zwei dieser Abtastpunkte liegt, so
kann ihre eigentliche Position irgendwo zwischen diesen beiden liegen, die aber möglicher-
weise bereits im Bild einen größeren Abstand voneinander haben. Zwischen e2 = 7, 389
und e3 = 20, 086 liegen beispielsweise bereits 13 Schritte entlang des Strahls. Damit ist
unklar, wo genau sich die Kante befindet. Da diese Information für die Ermittlung der
Ballposition enorm wichtig ist, darf die Abtastrate des Bildes durch Verwendung der
Log-Polar-Position nicht zu schnell zu weit sinken.
Um die Problematik etwas zu entschärfen, kann man den Mittelwert der zwei Ab-

tastpositionen verwenden. Wird eine Kante also zwischen den beiden Werten ρn ∈ N
und ρn+1 ∈ N erkannt, so wird als resultierende Entfernung der Kante vom Pol des
Log-Polar-Bildes, das die Look-Up-Table darstellt, der Wert

rK = (e
ρn
M + e

ρn+1
M ) · 1

2
(18)

gespeichert, also der Mittelwert der beiden Entfernungen.
Um die Abstände zwischen den abgetasteten Pixeln zu verringern, lässt sich der Ska-

lierungsfaktorM verwenden. Wird dieser erhöht, so steigt die Abtastrate in der Nähe des
Pols deutlich, ohne dass sie in größerer Entfernung so stark zunimmt, dass die vorteil-
haften Eigenschaften der Log-Polar-Transformation verloren gehen. In Tabelle 1 ist der
Verlauf der abgetasteten Entfernungen für zwei verschiedene Wert des Skalierungsfaktors
M aufgelistet.
Wie man der Tabelle entnehmen kann, werden die Werte für M = 1 bei steigendem

ρ schnell sehr groß, während sie für M = 10 wesentlich langsamer wachsen. Damit kann
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e
ρ
M

ρ M = 1 M = 10

0 1 1

1 ∼ 2, 718 ∼ 1, 105

2 ∼ 7, 389 ∼ 1, 221

3 ∼ 20, 086 ∼ 1, 350

4 ∼ 54, 598 ∼ 1, 492

5 ∼ 148, 413 ∼ 1, 649

6 ∼ 403, 429 ∼ 1, 822

7 ∼ 1096, 633 ∼ 2, 014

e
ρ
M

ρ M = 1 M = 10

8 ∼ 2980, 958 ∼ 2, 226

9 ∼ 8103, 084 ∼ 2, 457

10 ∼ 22026, 466 ∼ 2, 718

. . .

15 ∼ 3, 270 · 106 ∼ 4, 482

20 ∼ 4, 852 · 108 ∼ 7, 389

25 ∼ 7, 200 · 1010 ∼ 12, 182

30 ∼ 1, 069 · 1013 ∼ 20, 086

Tabelle 1: Auswirkung des Skalierungsfaktors M

man eine wesentlich genauere Abtastung erreichen. Wie bei den höheren Werten zu sehen
ist, beginnt das Abtastverhalten auch für den größeren Skalierungsfaktor ab gewissen
Werten, wie gewünscht, zu sinken.
Es zeigt sich dabei allerdings ein anderes Problem. Für Werte von ρ von 0 bis 10 nehmen

die Werte nur sehr langsam zu, wenn M = 10 gilt. Das führt dazu, dass einzelne Pixel
mehrfach abgetastet werden, was die Laufzeit des Verfahrens unnötig steigern würde.
Diesem Problem kann man dadurch begegnen, dass ρ nur auf Werte gesetzt wird, die

für unterschiedliche Pixel stehen, so dass das selbe Pixel nicht mehr mehrfach betrachtet
wird. Ein Wert ρ = ρn ist also nur dann zu betrachten wenn gilt:

LUT : N2 → N2, (ρ, φ) 7→ (e
ρ
M cos(φ), e

ρ
M sin(φ)) (19)

LUT (ρn−1|φ0) 6= LUT (ρn|φ0) mit festem φ0 (20)

Um für die Prüfung dieser Bedingung keine Rechenzeit aufwenden zu müssen, kann ei-
ne Iterationsliste schon beim Generieren der Look-Up-Table mit erzeugt werden. Dazu
wird für alle Werte von φ eine solche Liste erzeugt, in die dann Werte für ρ nur dann
eingetragen werden, wenn sie die oben genannte Bedingung erfüllen. Beim Abtasten des
Bildes selbst wird dann ρ nicht für jeden Wert ausgewertet, sondern nur für alle Werte
aus der Liste.
Mit Hilfe dieser Maßnahmen kann die Abtastung des Bildes mit der Log-Polar-Trans-

formation schon erheblich beschleunigt werden. Eine Messung zeigt aber, dass es trotzdem
noch viele Pixel des Bildes gibt, die unnötigerweise mehrfach abgetastet werden. Tabel-
le 2 und Tabelle 3 zeigen das Ergebnis der Messung bei der Abtastung eines 640 Pixel
breiten und 480 Pixel hohen Bildes.
Wie man an den Ergebnissen der Messung sehen kann, werden viele Pixel mehrfach

abgetastet. Das führt dazu, dass etwa vier mal so viele Abtastvorgänge stattfinden, wie
nötig wären. Die Ursache liegt darin, dass durch Rundung viele an sich unterschiedliche
Log-Polar-Koordinaten dem selben Pixel zugeordnet werden. Man betrachte das Pixel,
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Anzahl
n mal Pixel
0 303.216
1 2.390
2 707
3 191
4 180
5 112
6 60
7 28
8 48
9 24

Anzahl
n mal Pixel
10 36
12 28
13 12
14 8
15 4
16 28
18 4
19 4
20 12
22 8

Anzahl
n mal Pixel
24 12
28 8
30 4
31 8
33 4
38 8
39 4
48 8
55 4
58 4

Anzahl
n mal Pixel
62 4
88 8
108 4
118 4
148 2
149 2
162 4
298 4
315 2
316 2

Tabelle 2: Messung der mehrfach abgetasteten Pixel

Summe der Pixel: 307.200
davon abgetastet: 3.984
Summe der Abtastungen: 16.709
unnötige Abtastungen: 12.725
Abtastungen (100% =̂ 3.984): ∼ 419, 4%

Tabelle 3: Statistik zu Tabelle 2

auf dem sich der Pol befindet, und seine acht Nachbarpixel. Diese Pixel werden von
einer Vielzahl von Strahlen mit unterschiedlicher Winkelkoordinate φ getroffen und somit
mehrfach abgetastet. Abbildung 14 verdeutlicht das Beispiel.
Um diesen Effekt zu vermeiden, bietet es sich an, für bereits besuchte Pixel die Er-

gebnisse der Abtastung zu speichern und bei der erneuten Abtastung einfach auf diesen
Cache zuzugreifen, anstatt das Pixel selbst erneut zu analysieren. Der Zugriff auf den
Cache kostet hingegen fast keine Rechenzeit.
Eine Auslassung des bereits abgetasteten Pixels kommt nicht in Frage, da die strah-

lenförmige Kantensuche dadurch falsche Ergebnisse liefern könnte oder manche Kanten
überhaupt nicht gefunden werden würden. Der Grund dafür ist im folgenden Unterun-
terabschnitt 5.1.3 geschildert. Mit der Einführung besagten Caches wird jegliche Mehr-
fachabtastung verhindert und die Laufzeit des Verfahrens aufgrund der eingesparten Re-
chenoperationen erheblich verbessert.

5.1.3. Erkennen von Ballkanten

Nachdem im vorangegangenen Abschnitt beschrieben wurde, wie man Ballpixel und
Nicht-Ballpixeln unterscheidet und wie das Bild mit Hilfe der Log-Polar-Transforma-
tion abgetastet wird, geht es nun darum, wie und unter welchen Bedingungen Kanten
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Abbildung 14: In der Skizze ist ein Pixel mit seinen acht Nachbarpixeln zu sehen, also
ein Bildausschnitt von 3×3 Pixeln. Das selbe Pixel rechts neben dem Pol
wird für eine Vielzahl von Werten der Winkelkoordinate φ abgetastet

des Balls erkannt werden.
Grundsätzlich kann sich eine Kante des Balls nur dort befinden, wo entlang eines

Abtaststrahls von einem Ball-Pixel auf ein Nicht-Ball-Pixel übergegangen wird oder um-
gekehrt. Es müssen aber noch zusätzliche Kriterien festgelegt werden, um ein sinnvolles
Detektieren von Kanten zu ermöglichen. Eine Einstufung aller Übergänge zwischen Ball
und Nicht-Ball als Kanten würde dazu führen, dass man sehr viele falsche Ballkanten
erkennen würde. Dies hat verschiedene Ursachen:

Kamerarauschen Das Rauschen der Kamera bewirkt leichte Fluktuationen im Bild, wo-
durch einzelne Pixel fälschlicherweise als Ball beziehungsweise Nicht-Ball eingestuft
werden.

Das Detektionsverfahren Bei der in Unterabschnitt 5.1, Detektion der Ballkanten, auf
Seite 18, beschriebenen Erkennung von Ballpixeln können, je nach Parametrierung,
auch beispielsweise einzelne Punkte an den Grenzen von Feldlinien irrtümlicherwei-
se als Ballpixel erkannt werden.

Verschattung und Texturierung des Balls Einzelne Pixel des Balls können als Nicht-
Ball-Pixel erkannt werden, beispielsweise dann, wenn sie verschattet sind oder der
Ball texturiert ist.

Um diesem Problem zu begegnen, wird, wie gesagt, nicht jeder Übergang zwischen Ball-
und Nicht-Ball-Pixeln als Kante erkannt. Stattdessen muss dieser weitere Bedingungen
erfüllen, um als Kante zugelassen zu werden.
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Um die Erkennung von Kanten stabiler gegenüber Kamerarauschen und einzelnen
falsch als Ball-Pixeln oder Nicht-Ball-Pixeln erkannten Pixeln zu machen, wird ein Ball-
zu Nicht-Ball-Übergang (oder umgekehrt) nur dann als Kante zugelassen, wenn sich
davor und danach jeweils eine gewisse Anzahl von gleichen Pixeln befindet. Zum Beispiel
wird eine Kante dort erkannt, wo fünf Ball-Pixel auf fünf Nicht-Ball-Pixel folgen. Allge-
mein müssen die folgenden beiden Bedingungen erfüllt sein, damit eine Kante erkannt
wird:

ngleiche Pixel davor ≥ Tminimum gleiche Pixel davor (21)
ngleiche Pixel danach ≥ Tminimum gleiche Pixel danach (22)

Damit werden einzelne falsch zugeordnete Pixel als mögliche Kanten ausgeschlossen.
Übergänge werden zwischen Folgen gleich zugeordneter Pixel erkannt und nicht zwischen
einzelnen Pixeln. Solche Folgen von Pixeln können natürlich auch wieder durch Rauschen
fälschlicherweise ausgeschlossen werden, wenn sich, zum Beispiel nahe des Randes des
Balls, ein einzelnes Nicht-Ball-Pixel befindet. Diese Überkompensation hat aber in der
Praxis kaum Auswirkungen und kann daher verschmerzt werden, da sich durch diese
Methode viele Ausreißer ausschließen lassen.
Eine weitere Möglichkeit, die Kantendetektion zu verbessern, ist, grüne Feldpixel zu

beachten. Solche grünen Pixel dürfen sich natürlich nur auf der „Nicht-Ball-Seite“ der
erkannten Kante befinden, ansonsten ist die Kante als Fehldetektion einzustufen. Da-
mit können weitere Ausreißer von Kantenpositionen ausgeschlossen werden. Die hierbei
anfallende Information über Kanten zu grünen Feldpixeln ist im folgenden Unterunter-
abschnitt 5.1.4 wieder von Bedeutung.
Kanten zu im exclusion-Bild (Siehe „Ignorieren von verdeckten Pixeln“ auf Seite 21)

als verdeckt markierten Pixeln können ebenfalls von vorn herein ausgeschlossen werden.
Befindet sich also ein Übergang an oder in unmittelbarer Nähe einer dieser Stellen, so
wird er als mögliche Kante nicht zugelassen.
Um die Laufzeit der Kantenerkennung möglichst gering zu halten, soll jeder Abtast-

strahl nur so lange abgelaufen werden, bis die maximale Anzahl von Kanten erkannt
wurde. Dabei gibt es drei Möglichkeiten:

1. Es wird keine Kante erkannt.

2. Es wird eine Kante von Ball zu Nicht-Ball erkannt. Damit kann zum nächsten
Strahl übergegangen werden, da hier keine weitere Kante mehr folgen kann, denn
der Pol muss sich auf dem Ball befunden haben und nach Verlassen des Balls kann
keine weitere Kante mehr folgen.

3. Es wird eine Kante von Nicht-Ball zu Ball erkannt. Dann muss der Strahl weiter
abgelaufen werden, denn es muss eine weitere Kante von Ball zu Nicht-Ball gefun-
den werden können, außer diese liegt außerhalb der maximalen Suchdistanz. Das
liegt daran, dass der Strahl, wenn er Ball betritt, ihn dann auch wieder verlassen
muss. Dieser Fall kann nur eintreten, wenn der Pol des Log-Polar-Bildes nicht auf
dem Ball liegt.
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In Fall Nummer zwei kann die Abtastung früh abgebrochen werden, was dazu beiträgt,
die Laufzeit des Verfahrens gering zu halten.

5.1.4. Klassifikation der Kanten

Die im vorherigen Unterunterabschnitt 5.1.3 beschriebene Erkennung von Kanten er-
kennt jedoch immer noch falsche Ballkanten, nämlich dort, wo der Ball von Robotern
oder anderen Objekten verdeckt ist. An diesen Stellen werden Kanten erkannt, die aber
eigentlich nicht zum Rand des Balls gehören. Um diesem Umstand Rechnung zu tragen,
gibt es eine einfache Klassifikation, mit der diese Kanten ausgeschlossen werden können.
Die Kanten werden dazu in zwei Klassen unterteilt:

• Kanten zu einer Folge von grünen Feldpixeln

• Andere Kanten

Kanten zu Folgen von grünen Feldpixeln sind auf jeden Fall korrekte Kanten, die zum
Rand des Balls gehören, da im RoboCup nur das Feld grün sein darf. Sie können daher
nicht an Verdeckungen oder dergleichen entstehen. Gleichzeitig kostet diese Unterschei-
dung praktisch keine Rechenzeit, da die Grün-Eigenschaft von Pixeln in den vorange-
gangen Schritten Unterunterabschnitt 5.1.1 und Unterunterabschnitt 5.1.3 ohnehin für
jedes betrachtete Pixel ermittelt wurde. Mit dieser einfachen Klassifikation lassen sich
die Ergebnisse der Kantendetektion erheblich verbessern und nahezu alle Ausreißer aus-
schließen.
Die bei dieser Klassifikation ausgeschlossenen Kanten werden nicht verworfen. Sollten

zu wenig Kanten zu grünen Feldpixeln erkannt werden, um den Ball zu bestimmen, so
kann man auf sie zurückgreifen. Es existieren Situationen, in denen der Ball keine Kanten
zu grünen Feldpixeln hat, beispielsweise, wenn er vollständig vor einem anderen Roboter
oder am Rand des Feldes liegt. In diesen Fällen sind auch die „schlechteren“ Kanten
wichtig, um überhaupt eine Ballposition bestimmen zu können.

5.1.5. Einsatz von Importance Sampling

Um die Detektion von Kanten zu verbessern und zu beschleunigen, wurde auch der
Einsatz von Importance Sampling getestet. Ziel war es, durch dieses weitere Ausreißer-
kanten auszuschließen. Für alle gefundenen Kanten wurden benachbarte Abtaststrahlen
untersucht und nur bei Erkennung einer Kante entlang dieser Strahlen wurde die Ur-
sprungskante zugelassen. Dieser Vorgang wurde rekursiv für die Nachbarkanten wieder-
holt, bis die gewünschte Anzahl an bestätigten Kanten gefunden wurde. Der Einsatz
von Importance Sampling hat sich jedoch als nicht praktikabel herausgestellt. Dies hatte
hauptsächlich drei Gründe:

1. Durch Kamerarauschen wurden oft eigentlich korrekte Kanten ausgeschlossen, wenn
eine der Nachbarpositionen keine Kante ergeben hat.
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2. Der Einsatz von Importance Sampling führt zu einer Verdichtung der Kantenposi-
tionen in einem bestimmten Bereich während andere Bereiche kaum abgetastet wer-
den. Dadurch wurde die Detektion des Balls erheblich verschlechtert. Eine gleich-
mäßige Abtastung des Balls hat sich als hilfreich heurausgestellt, was den Einsatz
von Importance Sampling als unzweckmäßig herausstellt.

3. Auch aus Laufzeiterwägungen wurde das getestete Importance Sampling wieder
deaktiviert und dessen Einsatz verworfen, da sonst viele zusätzliche Strahlen hätten
abgelaufen werden müssen, wenn der Ball trotzdem in alle Richtungen gleichmäßig
abgetastet werden soll.

5.2. Berechnung der Position des Ballmittelpunkts und des Ballradius’

Nachdem die Positionen von Kantenpixeln, wie im vorangegangen Unterabschnitt 5.1
beschrieben, ermittelt wurden, muss aus diesen Kantenpositionen die Position und Größe
des Balls bestimmt werden. Dafür wurde mit zwei Ansätzen experimentiert.

1. Bestimmung des Ballmittelpunkts durch Bestimmen der Abweichung von einer ge-
raden Linie im Log-Polar-Bild

2. Bestimmung des Ballmittelpunkts und des Ballradius durch Einpassen eines Krei-
ses.

Die beiden Ansätze sind im Folgenden beschrieben und werden anschließend verglichen.

5.2.1. Variante 1: Bestimmen der Abweichung von einer geraden Linie im
Log-Polar-Bild

Um aus den ermittelten Kantenpixeln die Parameter des Ball zu bestimmen, kann die in
Abschnitt 4.2, Balldarstellung im Log-Polar-Bild, auf Seite 16, beschriebene Eigenschaft
des Log-Polar-Bildes genutzt werden, die besagt, dass der Rand eines Balls darin als
Gerade beziehungsweise Kurve erscheint. Aus der Form dieser Randkurve im Log-Polar-
Bild lässt sich auf die Position des Ballmittelpunktes und den Ballradius schließen. Dies
funktioniert zunächst einmal natürlich nur dann, wenn der Pol bereits auf dem Ball liegt.
Dies ist in den folgenden Betrachtungen, wenn nicht anders beschrieben, vorausgesetzt.
Zur Bestimmung von Ballposition und -radius stehen, wie beschrieben, die Kantenpixel

aus der Kantenerkennung in Log-Polar-Koordinaten zur Verfügung. Um nun den Radius
des Balls bestimmen zu können, kann über die Entfernungen der n Kantenpixel gemittelt
werden. Dabei ist zu beachten, dass nicht über die Werte ρn der Koordinaten selbst
gemittelt wird, sondern über die tatsächliche Entfernung eρn beziehungsweise e

ρn
M , wenn

M 6= 1 gilt. Dies folgt aus den Eigenschaften der Log-Polar-Koordinaten. Der Radius des
Balls ergibt sich also wie folgt:

rBall =
1

N
·
N∑
k=1

e
ρk
M mit N Kantenpixeln (23)
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Würde sich der Pol auf dem Mittelpunkt des Balls befinden, so ergäbe sich im Log-Polar-
Bild also eine Gerade bei ρ =M · ln(rBall).

Nun kann für jedes Kantenpixel die Distanz von dieser Gerade berechnet werden, also
die Strecke, um die der Pol zu verschieben ist, damit das Kantenpixel im Log-Polar-Bild
genau auf dieser Geraden liegt. Diese Distanz ergibt sich für das n-te Kantenpixel wie
folgt:

dn,Verschiebung = e
ρn
M − rBall (24)

Die Richtung der Verschiebung ist zunächst unklar. Nimmt man nun einfach eine Ver-
schiebung entlang der Geraden von Pol zu Kantenpixel um dn,Verschiebung an, ergibt sich
für die berechnete Verschiebung für das n-te Kantenpixel mit den Log-Polar-Koordinaten
(ρn|φn):

~vn =

(
dn,Verschiebung · cos(φn)
dn,Verschiebung · sin(φn)

)
(25)

Um nun die korrekte Gesamt-Verschiebung zu bestimmen, müssen die Vektoren wieder
bereinigt werden. Voraussetzung dafür ist, dass der Ballrand gleichmäßig abgetastet wur-
de. Dann heben sich für jeweils Paare von Kantenpositionen falsche Teilkomponenten
der Verschiebung auf. Die x-Komponente gleicht sich dabei bei jeweils dem Paar aus,
bei dem die Winkelkoordinate an der 90◦- beziehungsweise 270◦-Achse gespiegelt ist, die
y-Komponente entsprechend bei den Paaren, deren Winkelkoordinaten an der 0◦- bezie-
hungsweise 180◦-Achse gespiegelt sind. Übrig bleiben jeweils nur die Komponenten der
Verschiebung, die in die korrekte Richtung weisen.
Nachdem, wie beschrieben, die entsprechenden Paare von Verschiebungsvektoren mit-

einander verglichen wurden, stellen die bereinigten Vektoren alle die korrekte Verschie-
bung dar. Um aber der Tatsache Rechnung zu tragen, dass das Bild nicht immer gleich-
mäßig abgetastet wird und es gewissem Rauschen unterliegt, wird der Mittelwert dieser
Vektoren gebildet:

~vges =
1

N
·
N∑
k=1

~vk,bereinigt (26)

Um diesen Vektor muss der Pol des Log-Polar-Bildes bewegt werden, um mit dem
Mittelpunkt des Balls zusammenzufallen. Damit ist der Mittelpunkt des Balls bekannt:

~vBall =

(
xPol + xges
yPol + yges

)
(27)

5.2.2. Variante 2: Einpassen eines Kreises

Eine andere Möglichkeit, aus den detektierten Ballkantenpixeln die Parameter des Balls
zu bestimmen, ist einen Kreis so einzupassen, dass möglichst alle der Kantenpixel auf des-
sen Rand liegen. Dieser Kreis stellt dann den Ball dar, das heißt, Radius und Position des
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Mittelpunkts dieses Kreises stimmen mit dem Ball überein. Dafür müssen die ermittel-
ten Kantenpixel, die in Log-Polar-Koordinaten gegeben sind, in kartesische Koordinaten
umgewandelt werden. Diese Umwandlung wurde in Abschnitt 3.1, Logarithmieren der
Entfernungen, auf Seite 12, beschrieben.
Im Folgenden wird zuerst erläutert, wie mögliche Kreise bestimmt werden können und

anschließend, nach welchen Kriterien der schließlich ausgegebene Kreis ermittelt wird.

Berechnen möglicher Kreise Da drei Punkte einen Kreis eindeutig bestimmen, kann
aus jedem 3-Tupel von Kantenpixeln ein möglicher Kreis berechnet werden, sofern diese
nicht auf einer Geraden liegen. Dies liegt daran, dass ein solches 3-Tupel von Punkten
ein Dreieck darstellt und der gesuchte Kreis dann gleich dem Umkreis dieses Dreiecks ist.
Dies verdeutlicht Abbildung 15.

A

B

C

D

Abbildung 15: Vier Punkte mit zwei möglichen Dreiecken sowie deren Umkreisen.

Der Mittelpunkt des Umkreises eines Dreiecks ist gleichzeitig der Schnittpunkt der
Mittelsenkrechten der Seiten dieses Dreiecks. Um also den Kreis zu bestimmen, genügt
es, den Schnittpunkt zweier Mittelsenkrechten zu errechnen. Der Radius des Kreises ist
dann der Abstand der Punkte von diesem Schnittpunkt. In Abbildung 16 ist dies zu
sehen.
Soll also der Kreis, den das 3-Tupel A,B,C von Punkten darstellt, bestimmt werden,

so beginnt man mit der Berechnung zweier Mittelsenkrechten des entsprechenden Drei-
ecks mit den Seiten a, b, c. Die Steigung einer Mittelsenkrechten bestimmt man aus der
Steigung der Dreiecksseite. Die Steigung der Dreiecksseite a bestimmt sich wie folgt:

~a =

(
xC − xB
yC − yB

)
=

(
1

yC−yB
xC−xB

)
=

(
1
ma

)
(28)

Die Dreiecksseite a und deren Mittelsenkrechte sa sind orthogonal zueinander. Mit dem
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A

B

C

Abbildung 16: Ein Dreieck mit den Mittelsenkrechten der Seiten und dem daraus be-
stimmten Umkreis.

euklidischen Skalarprodukt gilt also:

~a · ~sa = |~a| · |~sa| · cos(90◦) = 0 (29)
~a · ~sa = xa · xsa + ya · ysa = 0 (30)

1 · 1 +ma ·msa = 0 (31)
ma ·msa = −1 (32)

msa = − 1

ma
(33)

msa = − 1
yC−yB
xC−xB

(34)

msa =
xB − xC
yC − yB

(35)

Für die Seite b gilt entsprechend:

msb =
xA − xC
yC − yA

(36)

Um den Schnittpunkt der beiden Mittelsenkrechten berechnen zu können, braucht man
diese allerdings als Geradengleichungen, also muss man auch noch die y-Achsen-Ab-
schnitte bestimmen. Dafür verwendet man die Mittelpunkte der Dreiecksseiten, die ja
den Schnittpunkt mit der jeweiligen Mittelsenkrechten darstellen. Diese bestimmt man
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wie folgt:

~Ma =

(
xMa

yMa

)
= ~B +

~C − ~B

2
(37)

~Ma =

(
xB
yB

)
+

(
xC − xB
yC − yB

)
· 1
2
=

(
xB
yB

)
+

( xC−xB
2

yC−yB
2

)
(38)

~Ma =

(
xB + xC−xB

2

yB + yC−yB
2

)
=

(
1
2 · (xC + xB)
1
2 · (yC + yB)

)
(39)

Nun kann durch Einsetzen dieses Seitenmittelpunkts Ma die Geradengleichung der Mit-
telsenkrechten sa der Seite a bestimmt werden:

sa(x) = msa · x+ csa (40)
csa = sa(x)−msa · x (41)

csa =
1

2
(yC + yB)−

1

2
msa (xC + xB) mit ~Ma =

(
1
2 · (xC + xB)
1
2 · (yC + yB)

)
(42)

Entsprechend gilt für csb :

csb =
1

2
(yC + yA)−

1

2
msb (xC + xA) (43)

Der gesuchte Umkreismittelpunkt M ergibt sich nun durch Gleichsetzen der Geraden:

für msa 6=∞,msb 6=∞
msaxM + csa = msbxM + csb (44)

msaxM = msbxM + csb − csa (45)
msaxM −msbxM = csb − csa (46)
xM (msa −msb) = csb − csa (47)

xM =
csb − csa
msa −msb

(48)

yM = maxM + ca (49)

→ ~M =

 csb−csa
msa−msb

ma

(
csb−csa
msa−msb

)
+ ca

 (50)

für msa =∞, xa = x0 const ( msb =∞ analog)
xM = xa (51)
yM = mbxM + cb (52)

Nachdem der Umkreismittelpunkt M bekannt ist, ergibt sich der Radius r des Um-
kreises als Abstand zwischen M und einem der drei Dreieckseckpunkte.

r = | ~MA| = | ~A− ~M | =
∣∣∣∣( xA − xM

yA − yM

)∣∣∣∣ =√(xA − xM )2 + (yA − yM )2 (53)
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N
(
N
3

)
3 1

4 4

5 10

10 120

20 1140

30 4060

50 19600

Tabelle 4: Einige Beispielwerte für den Binomialkoeffizienten

Anzahl möglicher Kreise Wie beschrieben, kann aus drei Punkten ein Kreis eindeu-
tig bestimmt werden. Die Anzahl verschiedener Kreise, die aus der Gesamtanzahl N an
gefundenen Kantenpixeln bestimmt werden kann, ist durch den entsprechenden Binomi-
alkoeffizienten gegeben. (

N

3

)
=

N !

3! · (N − 3)!
(54)

Mit steigendem N nimmt dieser Wert schnell zu. Tabelle 4 zeigt einige Beispielwerte.
Wie man in der Tabelle sehen kann, sind die Werte des Binomialkoeffizienten bereits für

relativ niedrige Werte von N sehr groß. Die Anzahl der verwendeten 3-Tupel von Punkten
muss also beschränkt werden, ansonsten würde die Laufzeit mit steigender Anzahl von
detektierten Punkten sehr schnell stark steigen.
Es muss also ein Teil aller möglichen 3-Tupel ausgewählt werden. Dies kann entweder

durch ein zufallsbasiertes oder ein deterministisches Verfahren erreicht werden. Es wurde
mit beiden Arten der Auswahl experimentiert und schließlich der deterministischen der
Vorzug gegeben, um für das selbe Eingabebild auch immer den selben Ball zu erkennen.

Auswahl des besten Kreises Aus der ermittelten Anzahl von potentiellen Kreisen,
die aus jeweils einem 3-Tupel von Kantenpixeln bestimmt wurden, ist der bestmögliche
Kreis auszuwählen. Dafür muss ein Kriterium gefunden werden. Bezogen auf die ermit-
telten Kantenpixel ist der beste Kreis derjenige, bei dem diese Pixel am nächsten zum
Rand liegen, also deren Abstände am geringsten sind. Damit bietet es sich an, sich hier
an der Methode der kleinsten Fehlerquadrate oder englisch Least Squares zu orientie-
ren. Bei dieser Methode wird, um eine Funktion f optimal an N gegebene Messpunkte
(xk, yk), k = 1 . . . N anzugleichen, die Summe der Fehlerquadrate

N∑
k=1

(f(xk)− yk)2 (55)

minimiert.
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Bei den Kreisen wird diese Summe also gebildet, indem die quadrierten Abstände der
Kantenpixel von dem Kreis aufsummiert werden. Für einen Kreis m mit Mittelpunkt
(xM |yM ) und Radius rm und ein Kantenpixel k mit Position (xk|yk) entspricht der Ab-
stand des Pixels vom Kreismittelpunkt der Länge des Vektors ~mk. Diese berechnet sich
wie folgt:

~mk =

(
xk − xM
yk − yM

)
(56)

| ~mk| =
∣∣∣∣( xk − xM

yk − yM

)∣∣∣∣ =√(xk − xM )2 + (yk − yM )2 (57)

Der Betrag zum Fehlerwert für dieses Kantenpixel k besteht aus dem quadrierten Ab-
stand dieses Pixels zum Rand des Kreises. Mit dem bereits berechneten Abstand vom
Kreismittelpunkt erhält man die Distanz des Pixels vom Rand des Kreises, indem man
dessen Radius von diesem Abstand subtrahiert:

ηk = (| ~mk| − rm)2 (58)

ηk = (
√
(xk − xM )2 + (yk − yM )2 − rm)2 (59)

Abbildung 17 verdeutlicht dieses Prinzip.

m

k0

1

Abbildung 17: In der Skizze ist ein Kreis und zwei Pixel zu sehen. In rot sind jeweils
deren Abstände zum Kreis markiert, die dann quadriert deren Beitrag
zum Gesamtfehler sind.

Der gesamte Fehlerwert ηm des Kreises m für alle N Kantenpixeln ergibt sich also zu:

ηm =
N∑
k=1

(∣∣∣∣( xk − xM
yk − yM

)∣∣∣∣− rm)2

(60)

ηm =
N∑
k=1

(√
(xk − xM )2 + (yk − yM )2 − rm

)2
(61)
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Aus der Menge der KreiseK wird der Kreis mit dem niedrigsten ηm als der Beste gewählt.

KErgebnis = Km ∈ K : ηm < ηk∀Kk ∈ K (62)

Aus den Parametern dieses Kreises werden dann Ballposition und -radius bestimmt. Da
die verwendeten Pixelkoordinaten der Ballkantenpixel als Ursprung den Pol des Log-
Polar-Bildes haben, müssen dessen Koordinaten noch addiert werden, um die absolute
Position des Ballmittelpunkts zu bekommen. Der Radius des Balls entspricht dem Radius
des besten Kreises KErgebnis.

rBall = rErgebnis (63)

~vBall =

(
xPol + xErgebnis
yPol + yErgebnis

)
(64)

Alternative: Median der Fehlerquadrate Es wurde auch damit experimentiert, anstatt
der Summe den Median der Fehlerquadrate zu verwenden und dann den Kreis zu wählen,
der den geringsten Median hat. Im Vergleich waren die Ergebnisse grundsätzlich robuster
gegenüber Ausreißern als bei der Summenberechnung, es gab allerdings Konstellationen,
in denen das Verfahren Kreise wählte, die sehr große Summen gehabt hätten, und deren
Parameter vom denen des eigentlichen Balls sehr weit entfernt waren. Dies trat beispiels-
weise zu Tage, wenn Teile des Balls verdeckt waren.
Ein grundsätzliches Problem ist, dass die Berechnung des Medians sehr langsam ist, da

hierzu die einzelnen Fehlerquadrate für jeden Kreis gespeichert und anschließend sortiert
werden müssen. Auch mit einem schnellen Sortierverfahren ist dies erheblich langsamer
als das einfache Aufsummieren.
In dem man die Anzahl der betrachteten Kreise erhöht, konnte bei dann gleicher Lauf-

zeit die Bestimmung mit der Fehlerquadrat-Summe mindestens gleichwertige, meist we-
sentlich bessere Ergebnisse liefern, als die Bestimmung mit dem Median und weniger
betrachteten Kreisen. Daher wurde dieser Ansatz wieder verworfen.

5.2.3. Vergleich der beiden Varianten

Die beiden vorgestellten Varianten, den Mittelpunkt und den Radius des Balls aus den
ermittelten Kantenpixeln zu bestimmen, haben beide ihre Stärken und Schwächen. Stär-
ke des ersten Verfahrens ist insbesondere seine geringe Laufzeit. Variante zwei benötigt
demgegenüber ein mehrfaches dieser Laufzeit, sie liegt aber immer noch im vertretbaren
Rahmen. Bei einem gleichmäßig abgetasteten Ball liefern beide Varianten gute Ergebnis-
se, wobei die der zweiten Variante trotzdem meist genauer sind.
Variante eins hat aber einen ganz erheblichen Nachteil, der dazu geführt hat, dass

sie in der Praxis nicht verwendbar ist. Um vernünftige Ergebnisse zu liefern, muss der
Ball in alle Richtungen gleichmäßig abgetastet sein, damit sich die Vektoren gegenseitig
bereinigen können. Die ist aber nur gegeben, wenn der Ball vollständig sichtbar ist. Sobald
Teile des Balls verdeckt sind, ist eine solche Abtastung kaum mehr möglich. Außerdem
ist die Variante deutlich empfindlicher gegenüber Ausreißern als Variante zwei. Zudem
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muss für die erste Variante der Pol bereits auf dem Ball selbst liegen, was eine weitere
Einschränkung bedeutet.
Variante zwei hingegen liefert nahezu immer gute Ergebnisse, auch wenn Teile des

Balls verdeckt sind und es einzelne Ausreißer gibt, an denen Kantenpixel an falschen
Positionen erkannt wurden. Auch wenn der Pol sich nicht auf dem Ball befindet, ist dies
kein Problem für die zweite Variante.
Diese Faktoren gaben den Ausschlag zum Verwenden der zweiten Variante und Ver-

werfen der Ersten. Diese basiert zwar auf einer interessanten Idee, hat sich jedoch in
der Praxis aufgrund der genannten Einschränkungen als unbrauchbar erwiesen. Auch die
Laufzeit ist hier nicht ausschlaggebend, da Variante zwei immer noch ausreichend schnell
ist, um die gesetzten Anforderungen zu erfüllen, und gleichzeitig mit ihrer Robustheit
und ihren guten Ergebnissen überzeugt.

5.2.4. Weit entfernte Bälle

Sehr weit vom Roboter entfernte Bälle erscheinen im Kamerabild sehr klein. Das führt
dazu, dass für diese Punkt zu wenige Kantenpixel gefunden werden, um eine der beiden
Varianten vernünftige Ergebnisse produzieren zu lassen. Trotzdem geben diese wenigen
Kantenpixel eine Information darüber, wo ungefähr sich der Ball befindet. Bei Bällen in
dieser Entfernung ist die exakte Position und Größe des Balls ohnehin nicht so wichtig
wie bei nahen Bällen, da eine genauere Positionierung des Roboters bei so weit entfernten
Bällen nicht nötig ist. Stattdessen wird der Roboter nur grob in die Richtung des Balls
fahren und mit sich verringernder Entfernung vom Ball auch genauere Positionsinforma-
tion erhalten.
Um auch in solchen Fällen, in denen der Ball eigentlich zu weit weg ist, eine Information

vom Tracking zu erhalten, wird in diesem Fall die gemittelte Position der N gefundenen
Kantenpixel und ein Radius von 0 zurückgegeben.

~vBall =
1

N

N∑
k=1

(
xN
yN

)
(65)

rBall = 0 (66)

5.2.5. Information zur Ermittlung der Güte des gefundenen Balls

Wie in Unterabschnitt 4.1, Tracking des Balls, auf Seite 14, erklärt, ist es wichtig, dass
das Tracking-Verfahren auch Informationen über den ermittelten Ball liefert, mit deren
Hilfe sich ein Qualitätswert für diesen Ball bestimmen lässt. Nur dann ist man in der
Lage, bei mehreren möglichen Ballpositionen die richtige zu bestimmen oder, falls es
nur sehr ungenaue Positionsbestimmungen gibt, eine neue globale Suche nach möglichen
Ballpositionen anzustoßen.
Zu diesem Zweck gibt das Tracking nach erfolgreichem Finden eines Balls vier ver-

schiedene Informationen zurück.

1. Art des gefunden Balls. Der erste zurückgelieferte Wert sagt aus, wie der Ball
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lokalisiert wurde. Damit lässt sich eine grobe Qualitätsabstufung in drei Stufen
treffen:

Bälle mit Kanten zu grünen Feldpixel. Die besten Bällen sind gleichzeitig der Nor-
malfall, nämlich Bälle, deren Position und Größe ermittelt wurde, in dem die
Kantenpixel an Kanten zu grünen Feldpixeln verwendet wurden.

Bälle mit Kanten zu anderen Pixel Qualitativ wesentlich schlechter sind die Bäl-
le, bei denen nicht genügend Kanten zu grünen Feldpixeln vorhanden waren
und bei denen auch die anderen gefunden Kantenpixel zur Positionsbestim-
mung verwendet wurden. Diese sind mit einer wesentlich größeren Unsicherheit
behaftet, als die Kantenpixel zu grünen Feldpixeln. Daher sind für diese Bälle
die ermittelten Ballparameter tendenziell weniger exakt.

Sehr weit entfernte Bälle Wie im vorherigen Unterunterabschnitt 5.2.4 beschrie-
ben, gibt es auch den Fall, wenn es zu wenig Kantenpixel für jede genaue
Positionsbestimmung gibt. In diesem Fall wird nur der Mittelwert der Punkt
und ein Radius von 0 zurückgegeben. Bei so bestimmten Ballparametern han-
delt es sich um die am wenigsten genauen.

2. Anzahl der gefunden Kantenpositionen. Die Anzahl der gefundenen Kanten-
pixel lässt ebenfalls auf die Güte des ermittelten Balls schließen, da mehr gefundene
Kantenpositionen auch normalerweise eine exaktere Positionsbestimmung ermög-
lichen. Insbesondere gilt der umgekehrte Fall, je weniger Kantenpixel gefunden
wurden, desto weniger exakt ist die Positionsbestimmung.

3. Summe der quadrierten Abweichungen. Die Summe der quadrierten Abwei-
chungen desjenigen Kreises, der dann zurückgegeben wird, wird ebenfalls ausgege-
ben. Wie diese bestimmt wird, kann in Abschnitt 5.2.2, Auswahl des besten Kreises,
auf Seite 34, nachgelesen werden. Auch aus diesem Wert lässt sich auf die Güte der
ermittelten Ballparameter schließen

4. Alle anderen ermittelten Kreise. Die, wie in Unterunterabschnitt 5.2.2, Va-
riante 2: Einpassen eines Kreises, auf Seite 30, beschrieben, anderen Kreise, die
aus den Kantenpixeln ermittelt und als mögliche Ballposition in Betracht gezogen
wurden, werden ebenfalls ausgegeben. Falls die vom Verfahren ermittelten Ballpa-
rameter ausgeschlossen werden können, kann als Rückfallwert hieraus ein anderer
Kreis ausgewählt werden.

Durch die Ausgabe dieser vier Parameter ist von dort, von wo das Tracking aufgerufen
wird, eine Gütebestimmung für die ermittelten Ballparameter möglich.

5.3. Zusammenfassung und Beispielablauf

In den voran gegangenen Unterabschnitten wurde erläutert, wie in einem Bild Kantenpi-
xel gefunden werden können und wie man aus diesen Positionen dann die Parameter des
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Balls bestimmen kann. Um einen Überblick über den Ablauf eines kompletten Tracking-
Schrittes zu geben, werden im Folgenden die dazu nötigen Schritte einzeln und in der
entsprechenden Reihenfolge aufgelistet.
Zunächst steht dem Tracking-Verfahren wie in Unterabschnitt 4.1, Tracking des Balls,

auf Seite 14, erläutert eine Initial-Position zur Verfügung. Dabei handelt es sich entweder
um die Position des Balls im letzten Kamerabild oder, falls diese nicht bekannt ist, um die
Ausgabe eines globalen Balldetekionsverfahrens, dass gewisse Regionen mit potentiellen
Bällen ermittelt. Von dieser Initialposition aus werden dann alle Schritte des Trackings
durchgeführt. Abbildung 18 zeigt ein Beispiel für ein gesehenes Kamerabild und die
gelieferte Initialposition.

Abbildung 18: Tracking-Beispiel: Das Bild, das der Roboter sieht. Mit einem roten Kreuz
ist die Initialposition markiert.

Ausgehend von dieser Position wird nun das Bild abgelaufen, so wie in Unterunterab-
schnitt 5.1.2, Log-Polar-Transformation mit Look-Up-Table, auf Seite 22, beschrieben.
Dabei werden die Punkte in Nicht-Ball-Pixel und Ball-Pixel unterteilt und Kantenpixel
gesucht, dies wurde in Unterunterabschnitt 5.1.1, Detektion von Ballpixeln ohne Para-
meter, auf Seite 19, beschrieben. Dabei wird für jeden untersuchten Pixel der Wert von
V − U betrachtet und mit einem Schwellwert Tvu verglichen, Abbildung 19 zeigt das
entsprechende Bild.
Die gefunden Kantenpixel werden dann klassifiziert, je nachdem, ob sie an Kanten zu

grünen Feldpixeln liegen oder nicht. Solche Kantenpixel werden bevorzugt behandelt und
andere gefundene Kantenpixel werden nur dann verwendet, wenn die Zahl der Kanten zu
Feldpixeln nicht ausreicht. Abbildung 20 zeigt die im Beispiel als grün erkannten Pixel.
In der darauf folgenden Abbildung 21 sind die gefunden Kantenpixel zu sehen.
Damit ist die Kantendetektion abgeschlossen. Nun müssen aus den ermittelten Kanten-

pixeln die Position des Ballmittelpunkts und der Ballradius bestimmt werden. Wie das
im Einzelnen gemacht wird, wurde in Unterabschnitt 5.2, Berechnung der Position des
Ballmittelpunkts und des Ballradius’, auf Seite 29, erklärt. Dabei wird aus einer Menge
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Abbildung 19: Tracking-Beispiel: Im Bild aus Abbildung 18 wurde für jeden Pixel V −U
mit einem Schwellwert Tvu verglichen. Pixel mit V − U > Tvu sind weiß,
alle anderen schwarz.

Abbildung 20: Tracking-Beispiel: Im Bild aus Abbildung 18 wurden alle als grüne Feld-
pixel erkannten Pixel mit einem kräftigen Grün markiert.

von Kreisen der bestmögliche ausgewählt. Wie diese Kreise im Beispiel aussehen, ist in
Abbildung 22 zu sehen.
Als Ergebnis liefert das Tracking-Verfahren dann die Ballposition und den Ballradius.

Abbildung 23 zeigt dies für das Beispiel.
Damit ist ein Durchlauf des Trackingverfahrens abgeschlossen.
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Abbildung 21: Tracking-Beispiel: Die im Bild aus Abbildung 18 erkannten Kantenpixel.

Abbildung 22: Tracking-Beispiel: Die mit den Kantenpixeln aus Abbildung 21 bestimm-
ten möglichen Bälle (Bemerkung: andere Initialposition als bei den restli-
chen Beispielbildern).

Abbildung 23: Tracking-Beispiel: Der gefundene Ball.
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6. Einsatzszenario, Messungen und Ergebnisse

Nachdem nun ein Verfahren entwickelt wurde, dass das Auffinden des Balls in einem
Kamerabild ausgehend von einer Initialposition erlaubt, soll dieses in der Praxis zum
Tracking eingesetzt werden. Wie bereits beschrieben, soll es bei den Fußballrobotern
des 1. RFC Stuttgart verwendet werden, die im RoboCup in der Middle Size League
spielen. Im Folgenden wird kurz beschrieben, wie diese Roboter aufgebaut sind, siehe
dazu Unterabschnitt 6.1.
Anschließend wird gezeigt, wie das im vorherigen Abschnitt 5 entwickelte Tracking-

Verfahren in das Software-Framework integriert wurde, das auf den Robotern eingesetzt
wird, um diese zu steuern. Dies wird in Unterabschnitt 6.2 erklärt.
Mit den so konfigurierten Robotern wurden schließlich verschieden Messungen mit dem

fertig entwickelten Verfahren durchgeführt, um dessen Leistungen zu dokumentieren.
Diese Messungen und deren Ergebnisse werden in Unterabschnitt 6.3 erläutert.

6.1. Aufbau der Roboter

Die Fußballroboter des 1. RFC Stuttgart für die Middle Size League des RoboCups sind
rund einen Meter hoch und haben eine Grundfläche von etwa 50 cm × 50 cm. In Abbil-
dung 24 ist ein solcher Roboter zu sehen. Die Roboter besitzen drei angetriebene Räder

Abbildung 24: Ein Fußballroboter des 1. RFC Stuttgart

mit quer installieren Rollen auf der Lauffläche. Dadurch können sie sich in jede Richtung
drehen und gleichzeitig in jede Richtung fahren, es handelt sich also um einen omnidi-
rektionalen Antrieb. Dieser kann den Roboter mit Geschwindigkeiten von bis zu 5 m/s
bewegen[1]. Zur Stromversorgung sind im Boden des Roboters Einschübe für mehrere
Akku-Packs vorhanden.
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Jeder Roboter besitzt außerdem ein sogenanntes Dribbling Device, eine Aussparung
knapp über Spielfeldhöhe, teilweise mit zusätzlichen Rädern. Diese Vorrichtung dient
dazu, dass der Roboter in der Lage ist, mit dem Ball zu dribbeln. Dazu fährt der Roboter
den Ball so an, dass er in diese Aussparung gelegt wird, und durch die zwei Räder wird
der Ball gedreht, damit er in der Aussparung liegen bleibt.
In der Mitte des Roboters ist der Steuerrechner angebracht. Dabei handelt es sich um

handelsübliche PC-Komponenten, die in ein kleines Gehäuse gepackt wurden. Auf diesen
läuft ein normales Linux-Betriebssystem. Er verfügt über konventionelle Anschlüsse für
einen Bildschirm, Eingabegeräte und weitere Peripheriegeräte. Der Rechner hat außer-
dem ein WLAN-Modul, das die Kommunikation mit den anderen Robotern oder den
Zugriff von außen auf den Steuerungsrechner ermöglicht. Am Gehäuse des Steuerrech-
ners befindet sich ebenfalls ein Anschluss für ein Laptop-Netzteil, um den Roboter mit
Strom zu versorgen, ohne geladene Akkus zu benötigen. Im mobilen Betrieb wird der
Steuerrechner von einem eigenen Akku mit Strom versorgt[1].
Ganz oben am Roboter befindet sich die Panorama-Kamera. Sie verfügt über ein Auf-

lösungsvermögen von 640 × 480 Pixeln und überträgt ihre Bilder in UYVY -Kodierung.
Die Kamera ist senkrecht nach oben ausgerichtet und blickt auf einen Parabolspiegel di-
rekt über sich, der sich auf einer Haltekonstruktion befindet. Diese Haltekonstruktion ist
auch dafür verantwortlich, dass, wie in Unterabschnitt 4.1 auf Seite 14, erklärt, Teile des
Bildes immer verdeckt sind. Die ältere Version dieser Konstruktion hatte vier Streben,
inzwischen kommt man mit drei schmäleren Streben aus, dies spiegelt sich zum Teil in
den Bildern in dieser Arbeit wider.
Dies ist natürlich nur ein sehr grober Überblick über die einzelnen Teile des Roboters.

Weitere Details lassen sich auf der Webseite des 1. RFC Stuttgart finden[1].

6.2. Integration des Tracking-Verfahrens

Um das entwickelte Tracking-Verfahren auf den Robotern einzusetzen, musste es in das
Software-Framework eingebunden werden, das auf den Robotern eingesetzt wird. Aus-
gangsstand war, dass in jedem Kamerabild global nach Pixeln gesucht wurde, die die
Ballbedingung erfüllen, also für die

V − U > Tvu (67)

ist. Wenn von diesen Pixeln eine gewisse Anzahl benachbart sind, wird eine gewissen
Region um diese gefundenen Pixel herum als „enthält potentiell einen Ball“ markiert und
gespeichert. Das Tracking-Verfahren wurde dann so integriert, dass es für jede dieser
Region aufgerufen wurde. Wurde dabei mindestens ein Ball gefunden, fand ein erneuter
Aufruf der globalen Suche nach Ballpixeln erst wieder statt, wenn zu einem späteren
Zeitpunkt kein Ball mehr gefunden wurde. Zusätzlich wurde diese globale Suche auch
nach einer gewisse Anzahl von Kamerabildern erneut durchgeführt, um zu verhindern,
dass das Tracking ewig nur ein und denselben Ball verfolgt.
Da das Verfahren für jede der Regionen aufgerufen wird, kann es natürlich vorkommen,

dass mehrere Bälle gefunden werden. Wenn dieser Fall eintritt, muss ausgewählt werden,
welchem der gefundenen Bälle gefolgt werden soll. Hierfür ist eine Qualitätsabschätzung
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wichtig, die besagt, welcher Ball der am besten erkannte ist, der dann verfolgt werden soll.
Die Qualitätsabschätzung ist auch wichtig, um zu ermitteln, wann erneut eine globale
Ballsuche ausgeführt werden soll, also wann der Zeitpunkt erreicht ist, ab dem ein noch
erkannter Ball als qualitativ nicht ausreichend klassifiziert wird.
Diese Qualitätsabschätzung wird im Software-Framework mit den vom Tracking-Ver-

fahren gelieferten Informationen durchgeführt. Diese wurden unter Unterunterabschnitt 5.2.5,
Information zur Ermittlung der Güte des gefundenen Balls, auf Seite 37, beschrieben. Der
Gütewert eines Balls berechnet sich nach folgender Formel, wobei sich alle Pixelanzahlen
auf die Pixel innerhalb des Kreises beziehen, der vom Tracking-Verfahren geliefert wird:

ηBall =
nBallpixel − nGrünpixel

nGesamtpixel
· rBall (68)

Mit dem Radius wird multipliziert, um größere und somit nähere Bälle höher zu gewich-
ten. Außerdem wird bei der Berechnung der Anzahl von Gesamtpixeln nur der Teil der
Pixel beachtet, der nicht ohnehin durch die Roboteraufbauten verdeckt ist, siehe dazu
Abschnitt 5.1.1, Ignorieren von verdeckten Pixeln, auf Seite 21.
Der gefundene Ball mit dem höchsten Qualitätswert wird dann vom Tracking verfolgt,

sprich dessen Position wird dem Tracking-Verfahren für den nächsten Rechenschritt als
Initialwert vorgegeben.
Dieser Gütewert hat einen weiteren Nutzen, denn man kann damit die Qualität der

Balldetektion in verschiedenen Entfernungen vergleichen. Basierend darauf wurden ver-
schiedene Messungen durchgeführt, die im Folgenden beschrieben sind.

6.3. Messungen

6.3.1. Erkennen des Balls in verschiedenen Positionen

Eine wichtige Leistung, die das Tracking zu erbringen hat, ist das Erkennen von verschie-
denen Arten von Bällen in verschiedener Entfernung. Bei der Auflösung der Kameras der
Roboter und der Panorama-Konstruktion sollte eine Erkennung bis etwa 5m Entfernung
möglich sein, dies würde den Anforderungen zum Einsatz im RoboCup genügen. Auf diese
Entfernung ist nur noch ein Tracking des Balls möglich, die globale Suche nach Ballre-
gionen erkennt Bälle in dieser Entfernung nicht mehr, da sonst die Gefahr zu groß wäre,
Fehldetektionen zu unterliegen. Durch den bereits beschriebenen Qualitätswert, der sich
nach der Formel

ηBall =
nBallpixel − nGrünpixel

nGesamtpixel
· rBall (69)

berechnet, ist es möglich, auch eine Aussage darüber zu treffen, wie gut ein Ball in einer
gewissen Entfernung im Vergleich zu anderen Bällen und anderen Entfernungen erfasst
wurde.
Um die Leistung des Trackingverfahrens zu überprüfen, wurde eine entsprechende Mes-

sung durchgeführt. Dazu wurde ein Roboter, auf dem das Tracking-Verfahren installiert
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wurde, etwa in der Mitte des Spielfelds positioniert. Dann wurden zwei Bälle in ver-
schiedenen Entfernungen von 0m bis 5m positioniert, und die Qualitätswerte aus 100
Kamerabildern gemittelt. Da die Kameras immer mit einem gewissen Rauschen behaftet
sind, wurde einem Mittelwert der Vorzug gegenüber einer einzelnen Messung gegeben.
Die beiden Bälle, die verwendet wurden, sind in Abbildung 25 zu sehen. Dabei handelt

es sich einmal um den sogenannten „Tournament“-Ball. Dieser ist gleichmäßig gelb und
enthält nur wenig Muster. Seinen Namen trägt er, weil er oft für RoboCup-Wettbewerbe
Verwendung findet. Zum Vergleich wurde ein zweiter Ball benutzt, der gelb mit lila
Texturierung ist. Dieser ist durch die Mehrfarbigkeit grundsätzlich etwas schwieriger zu
Erkennen, als der „Tournament“-Ball.

Abbildung 25: Die beiden für die folgende Messung verwendeten Bälle. Links der
„Tournament“-Ball, der oft bei RoboCup-Wettbewerben verwendet wird.
Rechts ein etwas stärker texturierter Ball.

Die Messung wurde durchgeführt, in dem nacheinander die beiden Bälle in der ent-
sprechenden Entfernung positioniert wurden. Dann wurden die Qualitätswerte für den
Ball aus 100 Kamerabildern gemittelt. Anschließend wurde noch ein Bild aufgenommen,
diese werden im Folgenden zur Illustration verwendet, um einen Eindruck dafür zu ge-
ben, wie groß Bälle in gewisser Entfernung im Bild der Panorama-Kamera des Roboters
erscheinen.
Im Folgenden sind die Ergebnisse der einzelnen Messungen mit besagten Bildern aufge-

listet. Danach folgt eine Zusammenfassung und Bewertung der Ergebnisse der Messungen.
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Entfernung Ø Qualität Tournament-Ball Ø Qualität texturierter Ball
0m (direkt am Roboter) 12, 1 11, 2

Abbildung 26: Messungen mit verschiedenen Bällen direkt am Roboter

Entfernung Ø Qualität Tournament-Ball Ø Qualität texturierter Ball
1m 10, 3 8, 2

Abbildung 27: Messungen mit verschiedenen Bällen in einem Meter Distanz zum Roboter

46



Entfernung Ø Qualität Tournament-Ball Ø Qualität texturierter Ball
2m 7, 2 5, 1

Abbildung 28: Messungen mit verschiedenen Bällen in zwei Metern Distanz zum Roboter

Entfernung Ø Qualität Tournament-Ball Ø Qualität texturierter Ball
3m 5, 0 3, 8

Abbildung 29: Messungen mit verschiedenen Bällen in drei Metern Distanz zum Roboter
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Entfernung Ø Qualität Tournament-Ball Ø Qualität texturierter Ball
4m 3, 1 2, 8

Abbildung 30: Messungen mit verschiedenen Bällen in vier Metern Distanz zum Roboter

Entfernung Ø Qualität Tournament-Ball Ø Qualität texturierter Ball
5m 1, 5 —

Abbildung 31: Messungen mit verschiedenen Bällen in fünf Metern Distanz zum Roboter
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Bewertung der Ergebnisse Die Messungen zeigen, dass das Tracking-Verfahren den ge-
forderten Anforderungen genügt. Bis 5m wird der Wettbewerbs-Ball zuverlässig erkannt.
Der texturierte Ball wird etwas schlechter gefunden, dieser wird ab einer Entfernung von
etwa 4, 5m nicht mehr erkannt. In Tabelle 5 sind die Ergebnisse der Messung nochmals
zusammengefasst.

Ø Qualität Ø Qualität
Entfernung Tournament-Ball texturierter Ball

0m 12, 1 11, 2

1m 10, 3 8, 2

2m 7, 2 5, 1

3m 5, 0 3, 8

4m 3, 1 2, 8

5m 1, 5 —

Tabelle 5: Zusammenfassung der Messungen der Ballqualität des erkannten Balls in ver-
schiedenen Entfernungen und mit verschiedenen Bällen.

Der Verlauf der Qualitätswerte zeigt, dass die Bälle wie gewünscht bewertet werden:
Bälle, die sich näher am Roboter befinden, werden höher bewertet als Bälle, die weiter
entfernt sind. Damit würde der Roboter im Zweifelsfall immer den näheren Ball wählen,
würde er mehrere Bälle sehen.
Die Qualitätsberechnung geschieht wie beschrieben nach der folgenden Formel:

ηBall =
nBallpixel − nGrünpixel

nGesamtpixel
· rBall (70)

Diese enthält den Radius des gefundenen Balls als multiplikativen Faktor. Da die Qualität
des erkannten Balls in etwa mit der Entfernung skaliert, ohne größere Einbrüche zu haben,
lässt sich daraus schließen, dass weiter entfernte Bälle bis etwa 4 − 5m (je nach Ball)
nahezu ebenso gut erkannt werden wie weniger weit entfernte.

6.3.2. Laufzeitmessungen

Wie bereits in Unterabschnitt 4.1, Tracking des Balls, auf Seite 14, beschrieben, stellt
geringe Laufzeit ebenfalls eine wichtige Anforderung an das Tracking-Verfahren dar.
Während der Entwicklung und Implementierung des Verfahrens war möglichst geringe
Laufzeit daher immer oberste Priorität. Auch im praktischen Einsatz auf den Fußballro-
botern ist die Laufzeit enorm wichtig. Sie muss gering sein, da ja zwischen jeweils zwei
Kamerabildern nur ca. 30ms an Zeit zur Verfügung stehen. In dieser Zeit müssen unter
Umständen mehrere Bereiche bei der Suche nach Bällen ausgewertet werden.
Um die Laufzeit des Verfahrens zu messen, wurden die Google Performance Tools4

4http://code.google.com/p/google-perftools/
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verwendet. Mit diesen wurde die Gesamtlaufzeit der Bildverarbeitungskomponente des
Roboter-Software-Frameworks gemessen und den Ergebnis-Graphen dann der Anteil ent-
nommen, der auf das Tracking entfiel. Der Testaufbau war ähnlich wie in Unterunter-
abschnitt 6.3.1, Erkennen des Balls in verschiedenen Positionen. Der „Tournament“-Ball
(Siehe Abbildung 25 auf Seite 45) wurde in verschiedenen Entfernungen zum Roboter
positioniert, anschließend wurde die Laufzeit der BV-Komponente für 100 Kamerabilder
gemessen.

Ø gemessene Laufzeit Anteil Laufzeit
Entfernung BV-Komponente Tracking Tracking

0m 4, 0ms 29, 7% ∼ 1, 19ms

1m 3, 8ms 28, 6% ∼ 1, 09ms

2m 4, 3ms 30, 2% ∼ 1, 30ms

3m 4, 6ms 32, 2% ∼ 1, 48ms

4m 5, 5ms 35, 8% ∼ 1, 97ms

Tabelle 6: Laufzeit des Trackings bei verschiedenen Entfernungen des Balls.

Wie man an den Ergebnissen der Messung in Tabelle 6 erkennen kann, liegt die Lauf-
zeit auch bei weiter entfernten Bällen unter den 2ms, die für die Fußballroboter des 1.
RFC Stuttgart gefordert wurde. Außerdem sieht man, dass die Laufzeit mit steigender
Entfernung des Balles vom Roboter zunimmt. Dies liegt daran, dass bei weiter entferntem
Ball länger nach Kantenpixeln gesucht wird, da die gewünschte Anzahl an Kantenpixeln
nicht so schnell gefunden wird, wie bei einem im Bild großen, nahen Ball.
Wichtig zu bemerken ist, dass in der Messung darauf geachtet wurde, dass sich keine

anderen Objekte auf dem Spielfeld befinden, die als Bälle erkannt werden, also insbe-
sondere auch keine anderen Bälle. Die gemessene Laufzeit bezieht sich also auf exakt
einen Schritt des Tracking-Verfahrens, also der Suche nach einem Ball in einer Region
des Kamerabildes. Gibt es mehr Regionen mit potentiellen Bällen so wird das Tracking
mehrfach aufgerufen, was sich in höherer Laufzeit niederschlägt.

6.3.3. Erkennen des Balls in ungünstigen Positionen

Die Erkennung von Bällen, die teilweise verdeckt sind, ist eine wichtige Anforderung an
ein Tracking-Verfahren im RoboCup. Die Fähigkeit des vorgestellten Verfahrens, solche
Bälle zu erkennen, soll exemplarisch an zwei wichtigen Positionen gezeigt werden. Bei
diesen beiden Positionen handelt es sich einmal um die teilweise Verdeckung des Balls
durch den Roboter selbst, wenn sich der Ball direkt am Roboter, also in der Dribbling-
Position befindet. Dies wird in Abbildung 32 gezeigt.
Wie in der Abbildung zu sehen ist, ist der Ball etwa zur Hälfte verdeckt. Trotzdem

wird seine Position und Größe korrekt erkannt.
Ein weiterer Fall ist die Verdeckung des Balls durch die Halterungen der Kameraauf-
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Abbildung 32: Links ist das Kamerabild des Roboters zu sehen, rechts der vom Verfahren
erkannte Ball. In Grün die erkannten Ballkantenpixel.

bauten des Roboters. Diese wird in Abbildung 33 gezeigt. Auch hier ist zu sehen, dass

Abbildung 33: Links ist das Kamerabild des Roboters zu sehen, rechts der vom Verfahren
erkannte Ball. In Grün die erkannten Ballkantenpixel.

der Ball korrekt erkannt wird, obwohl er zu einem nicht unerheblichen Teil durch die
Strebe der Kamera-Aufbauten verdeckt wird.
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7. Fazit und Ausblick

Wie sich durch die Messungen, die in Unterabschnitt 6.3 vorgestellt wurden, gezeigt hat,
ist das entwickelte Tracking-Verfahren in der Lage, die Position des Balls schnell, exakt
und robust zu ermitteln. Dabei genügt es den in Abschnitt 4, Motivation und Anfor-
derungen, auf Seite 14, formulierten Anforderungen. Es ist schnell genug, um auf den
Fußballrobotern des 1. RFC Stuttgart im Spielbetrieb eingesetzt zu werden und seine
Ergebnisse sind qualitativ ausreichend, um den Ball zuverlässig anzufahren beziehungs-
weise Spielzüge abhängig von der Position des Balls zu planen.
Grundsätzlich haben sich die getroffenen Annahmen und verwendeten Konzepte also

als tauglich erwiesen, ein schnelles und robustes Tracking-Verfahren umzusetzen.
Mit dem beschriebenen Verfahren ist es möglich, den Ball in nahezu allen Positionen

und bis in akzeptable Distanz zu erkennen. Dies hängt natürlich von der Güte und dem
Auflösungsvermögen der verwendeten Kamera ab. Da die bei den Messungen eingesetzte
Kamera mit einer Auflösung von 640×480 und einem eher ungünstigen Rauschverhalten
aber eher am unteren Rand der Skala zu verorten ist, und damit bereits zufriedenstellen-
de Ergebnisse erzielt werden können, ist das Verfahren nicht von besonders hochwertiger
Hardware abhängig. Es kann auch mit niedrig aufgelösten und verrauschten Bildern um-
gehen, was für die Praxis durchaus relevant ist. Kameras sind teure Bauteile, und bieten
somit ein großes Sparpotenzial, wenn man auf günstigere Modelle zurückgreifen kann
und das Tracking trotzdem möglich ist.
Außerdem hat sich gezeigt, dass das entwickelte Verfahren auf der Referenzhardware,

also den Steuerrechnern der Fußballroboter des 1. RFC Stuttgart, die im durchschnitt-
lichen Leistungsbereich zu verorten ist, in ausreichend geringer Zeit zu berechnen ist.
Dies wurde insbesondere durch die strahlenförmige Abtastung des Bildes ausgehend vom
zentralen Pol, die konsequente Verwendung von Look-Up-Tables und die Verwendung
möglichst schnell zu berechnender mathematischer Formeln erreicht.
Für den Einsatz im RoboCup ist besonders wichtig, dass die Bälle auch erkannt werden,

wenn sie beispielsweise teilweise verdeckt sind. Dies kann durch den Roboter selbst, seine
Kamera-Aufbauten, oder durch andere Roboter auf dem Spielfeld der Fall sein. Auch hier
hat sich gezeigt, dass das entwickelte Verfahren in der Lage ist, Bälle auch in ungünstigen
Positionen zu erkennen, siehe dazu Unterunterabschnitt 6.3.3.
Im Folgenden wird auf zwei Aspekte genauer eingegangen. Dabei handelt es sich um die

parameterlose Ballerkennung und die Verwendung der Log-Polar-Transformation. Diese
beiden Eigenschaften bilden die Grundkonzepte für das entwickelte Tracking-Verfahren
und deren Eignung sollte untersucht werden. Daher werden diese in eigenen Unterab-
schnitten genauer besprochen.
Daran anschließend folgt eine zusammenfassende Bewertung des hier gezeigten Verfah-

rens, eine Darstellung von Erweiterungsmöglichkeiten und zum Abschluss ein Ausblick
auf die zukünftige Verwendung des Verfahrens.
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7.1. Verwendung der parameterlosen Ballsuche

Beim Tracking eines Balls stellt sich das Problem, dass eine Möglichkeit gefunden werden
muss, Ballpixel eindeutig zu identifizieren. Dazu müssen gewöhnlich Informationen wie
Farbe oder Texturierung über den Ball zur Verfügung stehen. So ein Verfahren ist aller-
dings dann von der Kalibrierung abhängig und muss bei Änderung des zu verfolgenden
Balles neu eingestellt werden.
Um diesen Nachteilen aus dem Weg zu gehen, wird beim in dieser Arbeit besprochenen

Verfahren auf eine Parametrierung des Balls verzichtet. Stattdessen soll der Ball dadurch
gefunden werden, dass er sich, salopp gesprochen, von der Umgebung abhebt, weil er
im Gegensatz zu allen anderen Objekten auf dem Spielfeld bunt ist. Die Eigenschaft des
bunt-Seins ist hier formal so definiert, dass ein Pixel dann als Ballpixel klassifiziert wird,
wenn für seine Chrominanzkomponenten U und V

V − U > Tvu (71)

gilt, wobei Tvu ein Schwellwert ist. Außerdem gibt es noch einige andere Möglichkeiten,
wann Pixel als potentielle Ballpixel ausgeschlossen werden. Eine genaue Beschreibung der
Ballpixelerkennung ist in Unterunterabschnitt 5.1.1, Detektion von Ballpixeln ohne Para-
meter, auf Seite 19, nachzulesen. Hierbei werden die Eigenschaften des YUV-Farbmodells
genutzt, in dem auch die Bilder der Kamera ausgegeben werden. Dadurch ist auch keine
unnötige Konvertierung notwendig.
Die parameterlose Detektion von Ballpixeln hat sich für das RoboCup-Szenario als

geeignet erwiesen. Bis auf einige Fehlerkennungen wegen Kamerarauschens und an den
Grenzen zu weißen Linien, liefert die Ballpixeldetektion absolut zufriedenstellende Er-
gebnisse. Echte Ballpixel werden zuverlässig erkannt.
Gleichzeitig ist die Pixelklassifizierung schnell zu berechnen und kommt mit den In-

formationen des Pixels selbst aus, ohne Informationen aus der Nachbarschaft oder aus
Kalibrierungsparametern zu erhalten, von einigen Schwellwerten abgesehen.
Ein weiterer Vorteil ist, dass diese Art der Ballpixeldetektion relativ unabhängig von

der konkreten Beleuchtung des Feldes ist, da die Luminanzkomponente Y nicht in die
Detektion einfließt.
Es ist jedoch festzuhalten, dass diese Art der Ballerkennung nur im RoboCup-Szenario

funktioniert. Dort ist fest vorgegeben, dass nur die Bälle auf dem Feld bunt sein dürfen,
ansonsten gibt es festgelegte Farben für den Rasen und die Roboter. In einem Szenario,
in dem diese Voraussetzung nicht gegeben ist, würde diese Art der Ballpixelerkennung
nicht funktionieren. Dies zeigt sich auch daran, dass bunte Objekte an den Wänden des
Spielfelds auch als mögliche Bälle eingestuft werden können. Diese werden aber dann
durch die Qualitätsberechnung schnell verworfen und sind dadurch kein Problem.
Die Komponente der Ballpixelerkennung ist jedoch austauschbar, ohne dass dies Sei-

teneffekte auf andere Teile des Verfahrens hat. Sollte man das Tracking-Verfahren also
einsetzen wollen, ohne dass die eben genannte Bedingung erfüllt ist, so müsste man ein-
fach diesen Teil austauschen. Für die Verwendung im RoboCup hat sich diese Art der
Ballerkennung aber als zweckmäßig erwiesen.
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7.2. Die Log-Polar-Transformation beim Ball-Tracking

Das in dieser Arbeit vorgestellte Verfahren basiert zentral auf der Verwendung der Log-
Polar-Transformation für das Balltracking. Dies ist einer der Ansätze, die untersucht
werden sollen. Wie bereits im Vorherigen hervorgehoben, ist das Tracking-Verfahren in
der Lage, die gestellten Anforderungen zu erfüllen. Grundsätzlich muss also festgehalten
werden, dass die Verwendung der Log-Polar-Transformation für das Tracking geeignet
ist.
Trotzdem hinterlässt die Log-Polar-Transformation ein zwiespältiges Bild. Zunächst

erzeugt ihre Verwendung grundsätzlich einen gewissen Overhead, da nicht einfach über
das betrachtete Kamerabild gelaufen werden kann, sondern die entsprechende Log-Polar-
Position betrachtet werden muss. Dazu muss entweder das Bild komplett transformiert
werden, was allerdings, wie in Unterunterabschnitt 5.1.2, Log-Polar-Transformation mit
Look-Up-Table, auf Seite 22, beschrieben, für die Anforderungen beim Ball-Tracking im
RoboCup ungeeignet ist, da dieser Vorgang zu rechenzeitintensiv ist. Im selben Unterab-
schnitt wird aber auch die Lösung für dieses Problem gegeben. Durch Verwendung einer
Look-Up-Table (siehe auch Unterabschnitt A.3, Look-Up-Tables, auf Seite 60) kann die-
ser Overhead nahezu vollständig beseitigt werden. Aus Sicht der Laufzeit spricht damit
nichts mehr gegen die Verwendung der Log-Polar-Transformation.
Der Grund für den zwiespältigen Eindruck ist ein anderer. Wie ebenfalls in Unterun-

terabschnitt 5.1.2, Log-Polar-Transformation mit Look-Up-Table, auf Seite 22, erläutert,
kann der Bereich zwischen zwei Abtastpunkten bei der Abtastung des Bildes mit der Log-
Polar-Transformation sehr groß werden. Gegensteuern lässt sich hier durch Anpassen des
Skalierungsfaktors M , was neue Probleme aufwirft. Dabei kann eine Mehrfachabtastung
entstehen, die dann wieder mit geeigneten Mitteln beseitigt werden muss. Auch das wur-
de in besagtem Unterabschnitt beschrieben. Bei den anschließenden Tests und Messungen
auf dem Roboter wurden auch die Parameter des Verfahrens angepasst, unter anderem
der Skalierungsfaktor M . Es hat sich dabei gezeigt, dass die Leistung des Verfahrens
für höhere Werte von M besser wird, bis zu einem gewissen Punkt. Dieser Punkt ist
dann erreicht, wenn M so groß ist, dass im Bereich des Balls und der unmittelbaren
Umgebung einfach jeder Punkt abgetastet wird. Mit einer weiteren Erhöhung von M ist
dann natürlich keine Verbesserung mehr zu erreichen, da keine zusätzlichen Abtastun-
gen stattfinden. Diese werden, wie beschrieben, von der Mehrfachabtastungs-Prävention
verhindert.
Wenn M aber nun soweit erhöht wurde, dass jeder Pixel entlang der Abtaststrahlen

betrachtet wird, so ist die verwendete Log-Polar-Transformation in diesem Bereich ab-
solut identisch zu gewöhnlichen Polarkoordinaten. Das bedeutet, in der Praxis hat sich
gezeigt, dass unter Verwendung von Polarkoordinaten und Begrenzung des Suchbereichs
auf einen Teil des Bildes die besten Ergebnisse zu erreichen sind, ohne die Laufzeit erheb-
lich zu vergrößern. Genau das ist, was das hier entwickelte Verfahren in der praktischen
Verwendung dann, bis auf einen kleineren Teil der Außenbereiche des Suchradius, durch-
führt.
Dass die Vorteile der Log-Polar-Transformation bei dem Problem des Balltrackings

im RoboCup nicht zur Geltung kommen liegt daran, dass die Kanten eines Balls sehr
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genau ermittelt werden müssen, um Position und Größe des Balls zu bestimmen. Hier ist
die potentiell große Distanz zwischen zwei Abtastpunkten schon in geringer Entfernung
zum Pol von Nachteil. Bereits um wenige Pixel falsch detektierte Ballkantenpixel können
das Ergebnis deutlich verschlechtern, wenn es sich dabei um einen systematischen Fehler
handelt.
Bei anderen Tracking- oder Bildverarbeitungsproblemen, bei denen eine genaue Kanten-

oder Konturenerkennung nicht notwendig ist, sind die Auswirkungen der Vorteile aber
durchaus denkbar. Insbesondere für eine Feature-Erkennung erscheint das Log-Polar-Bild
geeignet. Im Bereich Objekt-Erkennung lassen sich also sicher interessante Ergebnisse
erzielen, und von der Verwendung der Log-Polar-Transformation in diesem Kontext ist
nicht grundsätzlich abzuraten.
Für das spezielle Problem, das Ball-Tracking im RoboCup, ist man allerdings mit ge-

wöhnlichen Polarkoordinaten genauso gut bedient und spart sich bei der Implementierung
die etwas komplexeren Transformationsregeln und einen Teil der Mehrfachabtastungs-
Prävention. Festzuhalten bleibt aber, dass das hier vorgestellte Verfahren bei entspre-
chender Parametereinstellung absolut äquivalent zur Verwendung von Polarkoordinaten
ist, insbesondere was die Laufzeit betrifft. Das liegt daran, dass alle entstehende Redun-
danz durch die Präventionsverfahren beseitigt wird, diese müssen aber nur einmalig zum
Programmstart ausgerechnet werden und nicht mehr während das eigentliche Tracking
durchgeführt wird.

7.3. Bewertung des Verfahrens

In den beiden vorangegangenen Unterabschnitten wurde bereits dargelegt, dass das Ver-
fahren geeignet ist, die daran gestellten Anforderungen zu erfüllen. Es ist in der Lage, in
relativ kurzer Rechenzeit zufriedenstellende Ergebnisse zu liefern. Dabei ist es, wie sich in
den Messungen gezeigt hat, robust gegenüber den im RoboCup auftretenden Problemen,
wie beispielsweise der Verdeckung des Balls durch den Roboter. Dabei ist es weder auf
außergewöhnlich leistungsstarke Hardware noch auf qualitativ hochwertige Kamerabilder
angewiesen, sondern kann auch mit der verwendeten, durchschnittlich leistungsfähigen
Technik umgehen.
Grundsätzlich ist das Verfahren relativ einfach zu implementieren, wobei seine Ge-

schwindigkeit erheblich von der eigentlichen Implementierung abhängt. Für die in den
Messungen verwendete Umsetzung wurde erhebliche Optimierungsarbeit geleistet, um
die Rechenzeit so weit wie möglich zu senken. Insbesondere durch die konsequente Ver-
wendung von Look-Up-Tables konnte die Laufzeit gering gehalten werden.
Als weiterer Vorteil ergibt sich, dass eine Umsetzung des Verfahrens ohne Abhängigkei-

ten nach außen auskommt, von OpenCV abgesehen. Sonst wurden neben den C++-Stan-
dardbibliotheken keine weiteren Bibliotheken genutzt. Auch OpenCV lässt sich problem-
los ersetzen, das Verfahren selbst ist von den verwendeten Datenstrukturen unabhängig.
Für den Einsatz des Verfahrens im RoboCup ist besonders die Tatsache interessant,

dass der Ball selbst nicht konfiguriert werden muss oder dessen Parameter gelernt werden
müssen, sondern dass durch die parameterlose Ballpixeldetektion jeder Ball erkannt wird,
der die gesetzten Bedingungen erfüllt. Auch wenn sich die Log-Polar-Transformation
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selbst nicht als unbedingt für die Lösung dieses konkreten Tracking-Problems als hilfreich
erwiesen hat, so ist das für das Verfahren kein Nachteil, da das Verhalten normaler
Polarkoordinaten durch Parametrierung hergestellt werden kann.
Insgesamt steht mit dem entwickelten Verfahren also eine schnelle und relativ robuste

Methode zum Ball-Tracking zur Verfügung.
Natürlich muss aber auch festgehalten werden, dass bei der Entwicklung und Imple-

mentierung des Verfahrens stets Kompromisse zwischen Laufzeit und Güte der Ergebnisse
gemacht wurden. Die Qualität der Ergebnisse steht letztlich hinter anderen Suchverfah-
ren, die auf den Fußballrobotern verwendet wurden, zurück, insbesondere, was die Erken-
nung von Ballpixeln betrifft. Dafür ist das Verfahren aber um ein mehrfaches schneller,
und kann somit auch für verschiedene Suchregionen aufgerufen werden, ohne dass zu viel
Rechenzeit dafür benötigt werden würde.
Die Zeit, die zur Entwicklung des Verfahrens zur Verfügung stand, war auf den Zeit-

rahmen einer Diplomarbeit begrenzt. Das Verfahren bietet aber in mehreren Richtungen
erhebliches Verbesserungs- und Erweiterungspotential. Unter anderem darauf wird im
folgenden Unterabschnitt 7.4 eingegangen.

7.4. Weiterentwicklung

Das Verfahren bietet an mehreren Stellen Verbesserungspotential, das aufgrund der be-
grenzten Entwicklungszeit ungenutzt blieb.
Zum Beispiel ist ein bekannter Parameter des Balls dessen echte Größe. Bei einem

kalibrierten Roboter lässt sich außerdem die Entfernung eines Bildpunktes vom Roboter
bestimmen. Mit diesen beiden Informationen könnte man eine Look-Up-Table aufstel-
len, die für jede Position im Bild den Radius des Balls, wenn er auf dem Boden liegt,
liefert. Dieser Radius könnte dann benutzt werden, um die Bestimmung des besten Krei-
ses verbessern, indem Kreise bevorzugt werden würden, deren Radius nah an diesem
berechneten Radius liegt.
Verbesserungspotenzial besteht auch in der Detektion von Ballkantenpixeln. Anstatt

hier nur zu ermitteln, ob ein Pixel zum Ball gehört oder nicht, und dann später noch
zu prüfen, ob es grün ist, könnte man hier eine echte Pixelklassifizierung durchführen.
Dabei könnte man die Pixel direkt in mehrere Klassen wie Ball, grünes Feldpixel, weißes
Feldpixel, Hindernis, usw. einteilen.
Es wäre außerdem denkbar, die Qualitätsprüfung der Ergebnisse direkt in das Tracking-

Verfahren zu verlagern. Dort stehen alle Informationen, die gewonnen wurden, zur Verfü-
gung, und nicht nur der Teil, der in Variablen zurückgegeben wird. Damit ließe sich eine
wesentlich feinere Qualitätsbestimmung durchführen, deren Ergebnisse direkt zur Opti-
mierung der Ausgabe genutzt werden können. Hier könnten ungeeignete Kreise frühzeitig
ausgeschlossen und für die Bestimmung des besten Kreises gar nicht in Betracht gezogen
werden.
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7.5. Ausblick

Aufgrund der Tatsache, dass das Verfahren, beziehungsweise seine Implementierung, bei
den Fußballrobotern des 1. RFC Stuttgart eingesetzt wird, ist eine Erweiterung und Wei-
terentwicklung des Verfahrens sehr wahrscheinlich. Beim 1. RFC Stuttgart wird ständig
aktiv an der Robotersoftware gearbeitet und in Wettbewerben neu gewonnene Erkennt-
nisse werden zur Verbesserung der Verfahren eingesetzt. Die Implementierung des be-
schriebenen Tracking-Verfahrens wurde in diese Software integriert und wird somit von
den Mitarbeitern der beteiligten Institute weiterentwickelt werden.
Wie beschrieben sind die Roboter des 1. RFC Stuttgart mit relativ niedrig auflösenden

und relativ stark verrauschten Kameras ausgestattet, das lässt sich auch an den Beispiel-
bildern in dieser Arbeit sehen. Diese sollen aber in naher Zukunft durch höherauflösende,
hochwertigere Kameras ersetzt werden. Durch den Einsatz dieser Kameras sollten sich die
Leistungen des Verfahrens erheblich verbessern lassen, insbesondere, was die Entfernung
betrifft, in der Bälle zuverlässig erkannt werden.
Für die weitere Verwendung der gewonnenen Erkenntnisse ist nochmals festzuhalten,

dass das hier entwickelte Verfahren im Prinzip aus zwei Teilen besteht, die unabhängig
voneinander verwendet werden können. Zum einen die Detektion von Ballpixeln und,
darauf aufbauend, die Erkennung von Ballkanten und zum zweiten die Berechnung von
Mittelpunkt und Größe des Balls aus den Kantenpositionen. Natürlich benötigt die Posi-
tionsbestimmung als Eingabe die bestimmten Ballkantenpositionen, jedoch könnte man
das Detektionsverfahren durch ein beliebiges anderes ersetzen, so lange es diese Positio-
nen liefert. Umgekehrt kann natürlich auch die Ausgabe des Detektionsverfahren für eine
andere Positionsbestimmung verwendet werden.
Das Verfahren wurde im ersten Teil des Jahres 2011 entwickelt und einige Wochen

vor der RoboCup-Veranstaltung in Istanbul im Juli 2011 fertiggestellt. Es wurde auf den
Fußballrobotern des 1. RFC Stuttgart implementiert und zeigte in Tests und Simulationen
gute Leistungen. Daher soll es auf dieser Veranstaltung das erste Mal in der Praxis in
einer tatsächlichen Spielsituation eingesetzt werden. Wie gut die Implementierung mit
allen Eventualitäten und unvorhergesehenen Situationen zurecht kommt, wird sich dort
zeigen.
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A. Anhang: Weitere Grundlagen

A.1. RoboCup

Beim RoboCup handelt es sich um eine wissenschaftliche Initiative, die gegründet wurde,
um zur Verbesserung von intelligenten Robotern beizutragen. Die Organisation selbst
definiert sich auf ihrer Website wie folgt[9]:

RoboCup is an international scientific initiative with the goal to advance the
state of the art of intelligent robots. When established in 1997, the original
mission was to field a team of robots capable of winning against the human
soccer World Cup champions by 2050. While that mission remains, RoboCup
has since expanded into other relevant application domains based on the needs
of modern society.

(http://www.robocup.org/about-robocup/)

Unter dem Dach des RoboCups werden verschiedene Wettbewerbe durchgeführt, in de-
nen sich intelligente Roboter in verschiedenen Bereichen messen müssen. Einer davon, die
auch die ursprüngliche Disziplin des RoboCups ist, ist der Roboterfußball. In verschiede-
nen Ligen treten hier Teams von – je nach Liga – autonomen Robotern gegeneinander an.
Der Roboterfußball ist für die Robotik eine interessante Spielwiese. Um Fußball spielen
zu können, müssen die Roboter verschiedenste Aufgaben erfüllen können, die alle auch
für Anwendungen in anderen Bereichen eine wichtige Rolle spielen. Einige Beispiele für
Fähigkeiten, die im Roboterfußball von Bedeutung sind:

• Erfassen der dynamischen Umgebung, der Gegner und des Spielgeräts durch Sen-
soren, insbesondere Kameras (→ Objekterkennung und -verfolgung)

• Erfassen des Zustands des Roboters selbst

• Selbstlokalisierung auf dem Spielfeld

• Schnelle und flexible Fortbewegung mit – je nach Liga – verschiedenen Antrieben

• Kooperation und Kommunikation zwischen mehreren, autonomen Robotern

• Taktisches und strategisches Vorgehen zum Erzielen eigener beziehungsweise Ver-
hindern gegnerischer Tore (→Planung)

Roboterfußball ist also nicht nur Selbstzweck, alle Entwicklungen können auch für pra-
xisrelevante Aufgaben Verwendung finden. Trotzdem bietet der Roboterfußball ein fest-
gelegtes Szenario, in dem es möglich ist, neue Entwicklungen gezielt und im Vergleich mit
anderen Lösungen auszuprobieren. Aus den Ergebnissen dieser Tests können dann na-
türlich Rückschlüsse darauf gezogen werden, ob ein im RoboCup eingesetztes Verfahren,
eine Technik oder ein Bauteil auch in echten Anwendungen funktionieren würde.

Anmerkung: In dieser Arbeit werden RoboCup und Roboterfußball gleichbedeutend ver-
wendet, auch wenn der RoboCup wie beschrieben inzwischen weitere Disziplinen umfasst.
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Middle Size League Eine der Ligen des RoboCups ist die Middle Size League, in der das
in dieser Arbeit entwickelte Verfahren zum Einsatz kommen soll. Daher wurden auch alle
Messungen mit Robotern des 1. RFC Stuttgart5 der Universität Stuttgart durchgeführt,
der an den Wettbewerben dieser Liga teilnimmt. Für die Middle Size League gelten
folgende Regularien[9]:

Middle-sized robots of no more than 50 cm diameter play soccer in teams of
up to 6 robots with regular size FIFA soccer ball on a field similar to a scaled
human soccer field. All sensors are on-board. Robots can use wireless networ-
king to communicate. The research focus is on full autonomy and cooperation
at plan and perception levels.

A.2. Die OpenCV-Bibliothek

OpenCV ist eine freie und offene Bibliothek für Bildverarbeitung und maschinelles Se-
hen (engl. Computer Vision), insbesondere in Echtzeit[2]. Die Bibliothek wird unter ei-
ner BSD-Lizenz6 veröffentlicht, und ist damit sowohl für den akademischen als auch für
den kommerziellen Gebrauch vollständig kostenlos nutzbar. OpenCV wurde ursprünglich
von Intel entwickelt, inzwischen liegen die Entwicklungstätigkeiten jedoch bei dem Ro-
botertechnik-Unternehmen Willow Garage. Die zur Erstellungszeit dieser Arbeit aktuelle
Version trägt die Versionsnummer 2.2, auf diese Version beziehen sich alle Aussagen.
Ursprünglich wurde OpenCV vollständig in der Programmiersprache C entwickelt,

inzwischen gibt es jedoch ein nahezu vollständiges C++-Interface und auch alle weite-
re Entwicklung wird in dieser Sprache stattfinden[2]. Es gibt verschiedene Wrapper in
anderen Sprachen, die jedoch zum Großteil nicht immer alle Funktionen der Original-
Bibliothek abbilden. OpenCV ist unter nahezu allen gängigen Desktop- und mobilen
Betriebssystemen verfügbar[2].

OpenCV stellt eine Vielzahl von Funktionen und Algorithmen bereit. Als Basis für
diese Algorithmen werden in der opencv-core-Bibliothek grundlegende Datenstrukturen
definiert, mit denen beispielsweise Bilder, Punkte oder Vektoren innerhalb von OpenCV
verwaltet werden können. Das Auslesen von Bildern beziehungsweise Bildfolgen einer
Kamera ist ebenfalls Teil von OpenCV. Auf Bildern, die in den OpenCV -Datenstruktu-
ren vorliegen, können dann eine Vielzahl von mitgelieferten Operationen durchgeführt
werden, beispielsweise einfache wie die Invertierung oder Konvertierung in einen anderen
Farbraum oder Filteroperationen wie Sobel7 oder Canny8. Ebenfalls gibt es Zeichen-
operationen, mit denen zum Beispiel Linien oder Kreise in die Bilder gezeichnet wer-
den können. OpenCV deckt aber auch andere Bereiche der Bildverarbeitung und des
maschinellen Sehens ab, wie zum Beispiel Objekt- oder Gesichts-Erkennung. Außerdem
beinhaltet es eine Bibliothek für maschinelles Lernen, mit der einige der anderen Verfah-
ren unterstützt und verbessert werden können[2]. Eine einfache grafische Oberfläche ist
ebenfalls Teil von OpenCV, mit der beispielsweise Bilder angezeigt werden können.

5http://robocup.informatik.uni-stuttgart.de/rfc/www/
6http://opensource.org/licenses/bsd-license.php
7http://en.wikipedia.org/wiki/Sobel_operator
8http://en.wikipedia.org/wiki/Canny_edge_detector
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Zur Implementierung aller Bildverarbeitungsaufgaben, auf die in dieser Arbeit einge-
gangen wird, wurden die OpenCV -Datenstrukturen und ein Teil der OpenCV -Funktionen
genutzt.

A.3. Look-Up-Tables

Unter einer sogenannten Look-Up-Table versteht man eine Datenstruktur, die eine Funk-
tion abbildet. Die Look-Up-Table liefert also für eine Belegung von Eingangsparametern
einen Wert oder eine Datenstruktur zurück. Diese Look-Up-Table kann dazu einmal bei
Programmstart initialisiert oder aus Dateien oder einer Datenbank geladen werden. Der
große Vorteil ist, dass die Ergebnisse der Funktion nun direkt mit einem einzigen Look-
Up aus der Look-Up-Table gelesen werden können, ohne dass sie erst dynamisch be-
rechnet werden müssen. Dies bedeutet, bei nicht-trivialen Funktionen, einen erheblichen
Geschwindigkeitsvorteil.
Je nach Definitionsbereich der abgebildeten Funktion kann so eine Look-Up-Table sehr

groß werden und somit viel Speicher belegen, dies muss bei deren Verwendung beachtet
werden. Außerdem dauert das Anlegen der Look-Up-Table unter Umständen sehr lange,
was den Programmstart sehr stark verlangsamen kann. Hier bietet es sich an, die Look-Up-
Table in eine Datenbank oder Dateien auszulagern und sie dann beim Programmstart nur
noch zu Laden und nicht mehr neu zu berechnen. Diese Methode ist auch dann notwendig,
wenn die Look-Up-Table keine mathematische Funktion abbildet, die dynamisch für alle
Belegungen von Eingangsparametern berechnet werden kann.
Die Look-Up-Table ist oft als Array umgesetzt, jedoch nicht an diese Datenstruktur ge-

bunden. Jede Datenstruktur mit schnellem Random Access9 ist prinzipiell zum Umsetzen
einer Look-Up-Table geeignet.

A.4. YUV-Farbmodell

Beim YUV-Farbmodell wird die Farbe eines Pixels durch seine Helligkeit (Luminanz) Y
und die Farbanteile (Chrominanzwerte) U und V ausgedrückt. U repräsentiert hierbei
den Blauanteil, V den Rotanteil der Farbinformation.
Da das menschliche Auge auf Änderungen der Helligkeit wesentlich empfindlicher rea-

giert, als auf Änderungen der Farbe, und diese Informationen im YUV-Farbmodell ge-
trennt vorliegen, kann man die Werte komprimieren, ohne dass damit ein wesentlicher
Qualitätsverlust verbunden ist. So werden üblicherweise für jeweils 2 oder 4 Pixel gemein-
same Chrominanzwerte U und V gespeichert, aber ein Helligkeitswert Y für jedes einzelne
Pixel. Diese Art der Komprimierung wird dann als „4:2:2“- beziehungsweise „4:1:1“-Ko-
dierung bezeichnet. Verwendet man zum Beispiel die „4:2:2“-Kodierung, so kann man ein
dreikanaliges RGB-Bild in zwei Kanälen abspeichern, wobei im einen Kanal die Hellig-
keitswerte Y und im anderen Kanal abwechselnd U und V gespeichert werden. Daher
wird diese Kodierung auch als „UYVY“-Kodierung bezeichnet. Auf Grund dieser Eigen-
schaften ist das YUV-Modell für die Ausgabe von Videokameras beliebt.
Abbildung 34 zeigt ein Beispiel für die einzelnen Komponenten eines Bildes.

9http://en.wikipedia.org/wiki/Random_access
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Abbildung 34: Ein Beispielbild: links oben das Original RGB-Bild, rechts oben die Hel-
ligkeit Y als Graustufenbild, unten links die Chrominanz-Komponente U
und rechts unten die Chrominanz-Komponente V

A.5. Omnidirektionale Kameras

Unter einer omnidirektionalen Kamera versteht man eine Kamera, die in der Lage ist,
Bilder aufzunehmen, die die gesamte Sphäre um die Kamera herum einnehmen. Um
dies zu erreichen, wird ein komplexes System aus zwei Spiegeln verwendet. Die Kamera
blickt meist vertikal nach oben direkt auf einen nach oben gewölbten Hohlspiegel, der
die Kamerasicht dann auf einen zweiten Spiegel umlenkt, der die Kamera umgibt. Dieser
lenkt die Kamerasicht dann in die gesamte Sphäre.
So eine Konstruktion besitzt einen blinden Fleck, den sie konstruktionsbedingt nicht

sehen kann. Dabei handelt es sich um die Bereiche der Sphäre, die durch den oberen
Hohlspiegel verdeckt sind.
Neben diesen echten omnidirektionalen Kameras gibt es auch so genannte Panorama-

Kamera-Systeme, die nur eine Hemisphäre sehen können. Deren Konstruktion ist wesent-
lich einfacher, hierfür muss lediglich ein einzelner nach unten gewölbter Hohlspiegel über
der Kamera positioniert werden. Solche Kamerasysteme werden zum Teil ebenfalls als
„omnidirektional“ bezeichnet.
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