Institut flr Architektur von Anwendungssystemen
Universitat Stuttgart
Universitatsstral3e 38
D-70569 Stuttgart

Diplomarbeit Nr. 3129

Architektur und Implementierung
ereignis- und
situationsgetriebener Workflows

Sascha Julien Retter

Studiengang: Softwaretechnik

Prufer: Prof. Dr. Frank Leymann
Betreuer: Dipl.-Inf. Matthias Wieland
begonnen am: 10. Januar 2011

beendet am: 12.Juli 2011

CR-Klassifikation: H.3.5, H.4.1, J.1

Inhaltsverzeichnis

. Einleitung

1.1. Motivation
1.2. Konventionen e
1.3. Rechtliche Hinweise
1.4. Aufbaudes Dokuments L oL

. Grundlagen

2.1. Workflow-Management,
2.2. Business Process Model and Notation
2.3. Complex Event Processing
2.4. Sonstige Definitionen und Begriffe,

. Verwandte Arbeiten

3.1. Modellierung von Geschéftsprozessen, Geschiftsregeln und Ereignissen
3.2. Workflows und Ereignisverarbeitung
3.3. Kontext- und situationsbezogene Workflows
3.4. Ableitung von Ereignissen oL

. Anforderungen

4.1. Voriiberlegungen L L oo
4.2. Nicht-funktionale Anforderungen
4.3. Funktionale Anforderungen

. Technologien
51. BPMN-Engines
52. CEP-Engine

. Architektur

6.1. Komponenten
6.1.1. ESCStore
6.1.2. ESEngine.
6.1.3. InstanceManager 0.

6.2. Datenmodellierung L o
6.2.1. ConfigurationMessage
6.2.2. Ereignisformat

6.3. Kommunikation und Datenintegration

7. Implementierung
7.1. Vorgehen bei der Implementierung
7.1.1. Hauptkomponenten
7.1.2. Activitio
7.2. Erweiterungen oo

8. Evaluation

8.1. Szenario e
8.1.1. DerProzess
8.1.2. Die Ereignisverarbeitung
8.1.3. Andere Varianten bzw. Modellierungsmoglichkeiten

9. Zusammenfassung und Ausblick

A. Anhang
A1, Abkiirzungen
A.2. XML-Schemataund WSDLs

Literaturverzeichnis

53

53
53
54
55

59
62
62

66

69

73

73
74

87

Abbildungsverzeichnis

1.1.

2.1.
2.2,
2.3.
2.4.
2.5.
2.6.
2.7.
2.8.

2.9.

3.1.
3.2.

4.1.
4.2.

5.1.
5.2.
53

6.1.

6.2.
6.3.

6.4.
6.5.
6.6.

7.1.
8.1.

Darstellung eines Ereignisses mit zwei Attributen 9
BPMN Modellierungsebenen (Quelle: vgl. [FRH10]) 13
BPMN Start-Ereignis o 14
BPMN Start-Ereignisse 14
Abstraktionsebenen bei der Verarbeitung von Ereignissen 16
Verarbeitung von Ereignissen 16
Datenextraktion aus Ereignissen 17
Ereigniskomposition o 17
Ereignisakkumulation o 0 L. 18
Zeitliche Abhédngigkeit von Ereignissen 18
Notationselemente von BEMN (Quelle: [DGBoy]) 21
Modellierung: Entscheidungs-Framework (Quelle: [MIKo8]) 22
Was soll die Architektur bzw. Implementierung leisten? 30
Lebenszyklus eines Modells (Workflow-Modell, Regeln, Ereignisquellen-

Konfigurationen) 32
Activiti Modeler - BPMN-Palette 36
Aufbau von Activiti (Quelle: vgl. [Men11]) 37
Architekturiiberblick der CEP-Engine Esper (Quelle: vgl. http://www.

espertech.com/products/esper.php) 38

Uberblick im Kontext des WfMC-Referenz-Modells (basierend auf dem Work-
flow Reference Model Diagram http://www.wfmc.org/reference-model.

html der WEMC) 41
Uberblick Gesamtarchitektur 42
Klassendiagramm der ESCStore Komponente 43
Klassendiagramm der ESEngine-Komponente 46
Klassendiagramm der InstanceManager-Komponente 48
Sequenzdiagramm: Erstellung einer ESEngine-Instanz; Abruf von Daten aus

dem ESCStore; Initialisierung einer EventSource; Empfang eines Ereignisses . . 51

Erweiterung der Palette des Eclipse-Designers von Activiti um zwei Aktivititen 55

Prozess des Szenarioso e e 62

http://www.espertech.com/products/esper.php
http://www.espertech.com/products/esper.php
http://www.wfmc.org/reference-model.html
http://www.wfmc.org/reference-model.html

8.2.

8.3.

8.5.

Benutzungsoberfldche des Eclipse-Designers, die es erlaubt, Attribute fiir die
ConfigurationMessage festzulegen 63
Benutzungsoberfliche zur Konfiguration der Receive Event Task - Es wird
festgelegt, auf welches Ereignis gewartet werden soll, und wie der Bezeichner

der Variable heiflen soll, die nach dem Empfang die Ereignisdaten enthidlt. . . 63
. Vereinfachter Szenario-Prozess 66
Szenario-Prozess mit minimaler Anzahl Regeln 67

Tabellenverzeichnis

1.1.
2.1.
3.1.
6.1.

8.1.
8.2.

Lizenzen e 9
CEP-Engines 18
Composite Event-Patterns 24
Common Base Event: Benétigte Attribute, 49
BPMN Event-Patterns o oo o oo 60
Composite Event-Patterns 61

1. Einleitung

Vor der eigentlichen, inhaltlichen Auseinandersetzung mit dem Thema dieser Diplomar-
beit werden einfithrende Uberlegungen zur Motivation vorgestellt, und es werden einige
Konventionen und Rahmenbedingungen fiir diese Diplomarbeit festgelegt.

1.1. Motivation

Die Workflow-Technologie hat ihren Ursprung im Document Routing und Case Processing
Mitte der 1980er Jahre. Seitdem gab es zahlreiche Entwicklungen in diesem Bereich, und
Workflow Management Systeme (WfMSe) finden immer haufiger ihren Einsatz in Unterneh-
men. Seit kurzem riickt daneben jedoch immer stdrker ein anderes Paradigma in den Fokus:
Complex Event Processing (CEP).

Der Begriff CEP wurde zum ersten Mal von David Luckham in seinem Buch , The Power
of Events” [Lucoz], erschienen im Jahr 2002, verwendet. Sensoren und Softwaresysteme
liefern in immer groflerem Umfang feingranulare Informationen, die moglichst schnell wei-
terverarbeitet werden miissen. Diese Beschleunigung wird laut der Vorhersagen von Gartner
fiir das Jahr 2011 weiter zunehmen. Unter dem Punkt , Addressing Key Advancements in
Application Architecture” konstatiert Gartner ,die Beschleunigung, die vor einigen Jahren
mit serviceorientierten Architekturen begann, findet ihre Fortsetzung durch den immer

"1

haufiger werdenden Einsatz von ereignisgesteuerten Systemen”’.

Es liegt also nahe, die in den Unternehmen eingesetzten Workflow-Systeme um die Fahig-
keiten des Complex Event Processing bzw. um Fahigkeiten von Systemen zur Situationser-
kennung zu erweitern. Im Rahmen dieser Diplomarbeit soll die Architektur eines solchen
Systems entworfen und eine Implementierung entwickelt werden.

Es sind somit z.B. Szenarien denkbar, in denen Ereignisse von Produktionssystemen (z.B.
Smartfactories) und aus Enterprise Resource Planning (ERP)-Systemen von speziellen Syste-
men zur Ereignisverarbeitung verarbeitet werden, und dann nur die akkumulierten Ergeb-
nisse von Workflow-Systemen weiterverarbeitet werden.

Thttp://wuw.gartner.com/DisplayDocument?doc_cd=208777

http://www.gartner.com/DisplayDocument?doc_cd=208777

1. Einleitung

1.2. Konventionen

Verwendung englischer Begriffe

Ich verwende in meiner Diplomarbeit immer dann englische Begriffe, wenn es sich um einen
feststehenden Fachbegriff handelt oder wenn es keine mir bekannte, dquivalente und eindeu-
tige deutsche Entsprechung gibt. Fiir die Bezeichnungen, die sich auf die Implementierung
beziehen, werden ebenso englische Begriffe verwendet.

Abkiirzungen

Alle Abkiirzungen werden bei der ersten Verwendung ausgeschrieben. Die Abkiirzung
steht bei der ersten Verwendung in Klammern. Im Folgenden wird in der Regel nur noch
die Abkiirzung verwendet. Unter A.1 im Anhang ist ein Verzeichnis aller Abkiirzungen zu
finden.

Zitierung

Sofern Inhalte aus dem Web verwendet werden, wird die URL der Quelle als Fufsnote
angegeben. Alle anderen Quellen werden wie folgt gekennzeichnet: [WMKLog]. Im Anhang
unter A.2 befindet sich ein Literaturverzeichnis, dem detaillierte Informationen zu all diesen
Quellen enthommen werden konnen.

Hervorgehobener Text

Bezeichnungen im Text, die sich auf Bezeichnungen der Implementierung, auf Tabellen,
Aufzéhlungen oder Abbildungen beziehen, werden hervorgehoben. Bei Verweisen auf Kapitel
im Text wird der Titel eines Kapitels ebenfalls hervorgehoben.

Darstellung von Ereignissen

Um Ereignisse auf einer abstrakten, konzeptionellen Ebene darzustellen, verwende ich
eine Darstellung wie in Abbildung 1.1. Es wird immer die Instanz eines Ereignis-Typs, im
Folgenden nur noch Ereignis genannt, dargestellt. Der Typ der Instanz wird durch die Farbe
und den Buchstaben représentiert. Die Attribute 1 - n eines Ereignisses des Typs A werden
als A1 - An,n € IN dargestellt. Die Bezeichnung von Attributen durch den Namen des Typs
und eine natiirliche Zahl ist erforderlich, um die Attribute verschiedener Ereignis-Typen
auseinanderhalten zu konnen. Wire der Bezeichner eines Attributs nur eine natiirliche Zahl,
so wiirde eine Verwechslungsgefahr zwischen Attributen unterschiedlicher Typen bestehen.
Mit der vorgestellten Notation lassen sich verschiedene Instanzen eines Ereignis-Typs nicht

1.3. Rechtliche Hinweise

unterscheiden. Dies stellt aber auf der Abstraktionsebene, auf der diese Notation verwendet
wird, kein Problem dar.

Abbildung 1.1.: Darstellung eines Ereignisses mit zwei Attributen

Darstellung von Geschéftsprozessen

Fiir alle Darstellungen von Geschéftsprozessen verwende ich die Business Process Modelling
Notation oder seit Version 2.0 Business Process Model and Notation (BPMN). Es wird davon
ausgegangen, dass der Leser BPMN 2.0 versteht. In Kapitel 2.2 wird lediglich eine kurze
Einfiihrung gegeben, die die fiir die folgende Arbeit relevanten Aspekte hervorhebt.

1.3. Rechtliche Hinweise

Alle Lizenzen verwendeter Software sind zu beachten. Folgende Bibliotheken oder Program-
me wurden bei der Implementierung verwendet.

Bibliothek Lizenz

Esper General Public License v2

EclipseLink Eclipse Public License

H2 Eclipse Public License

Open Message Queue Common Development and Distribution License
Activiti Apache License

Tabelle 1.1.: Lizenzen der verwendeten Programmbibliotheken

1.4. Aufbau des Dokuments

Der Aufbau dieses Dokuments orientiert sich grob am Ablauf eines Softwareprojekts. Zu-
ndchst werden in Kapitel 2 einige fiir das Verstdndnis wichtige Grundlagen behandelt. Danach
wird in Kapitel 3 versucht, einen Uberblick iiber die verwandten Arbeiten zu geben, die
zusammen mit den Grundlagen und der Motivation die Basis der weiteren Arbeit bilden.

http://opensource.org/licenses/gpl-2.0
http://opensource.org/licenses/eclipse-1.0
http://opensource.org/licenses/eclipse-1.0
http://opensource.org/licenses/cddl1
http://opensource.org/licenses/apache2.0

1. Einleitung

Danach werden in Kapitel 4 Anforderungen an das System definiert. Im Anschluss werden
einige zentrale Technologien in Kapitel 5 vorgestellt. In Kapitel 6 wird auf Basis der Anforde-
rungen eine Architektur fiir das System entworfen. In Kapitel 7 werden das Vorgehen bei der
Implementierung und die Erweiterungsmoglichkeiten beschrieben. Danach wird in Kapitel 8 -
Evaluation - das Ergebnis der Implementierung untersucht. Ferner wird diskutiert, wie sich
die Implementierung nutzen ldsst, ob alle Anforderungen aus Kapitel 4 realisiert wurden,
wie das System optimal eingesetzt werden kann und welche Verbesserungsmoglichkeiten
es gibt. In Kapitel 9 - Zusammenfassung und Ausblick - werden die Ergebnisse der Arbeit
zusammengefasst und offene Fragen benannt.

10

2. Grundlagen

Dieses Kapitel enthilt einige Grundlagen, die fiir das Verstindnis der nachfolgenden Kapitel
bendtigt werden. Viele Grundlagen konnen hier aber nur angerissen werden. Insofern erhebt
die Darstellung der Grundlagen in dieser Diplomarbeit in keiner Weise einen Anspruch auf
Vollstandigkeit.

2.1. Workflow-Management

Wie bereits in der Einleitung erwidhnt, spielen WfMSe in vielen Unternehmen eine wichtige
Rolle. WfMSe werden in vielen Bereichen eingesetzt, um Geschéftsprozesse auf einem
Rechner auszufiihren.

Im Folgenden werden zentrale Begriffe aus dem Bereich Workflow-Management definiert,
die in dieser Diplomarbeit verwendet werden. Die verwendeten Definitionen stammen aus
[LRoo] und aus dem Glossar der Workflow Management Coalition (WfMC)".

In [LRoo] wird ein Geschéftsprozess als eine Folge von Aktivitdten beschrieben, die von ver-
schiedenen Personen ausgefiihrt werden. Ein solcher Geschaftsprozess wird typischerweise
auf gleiche Weise immer von Neuem wiederholt. Ein Prozessmodell wird verwendet, um
einen Geschiftsprozess zu beschreiben. Ein solches Prozessmodell definiert alle moglichen
Pfade eines Geschiftsprozesses und alle Regeln, die festlegen, welche Pfade genommen
und welche Aktionen ausgefiihrt werden miissen. Ein Prozessmodell dient als Vorlage
fiir die Instantiierung aller konkreten Prozesse. Solche Prozesse miissen nicht auf einem
Rechner ausgefiihrt werden. Geschéftsprozesse konnen sowohl aus Teilen bestehen, die
auf einem Rechner ausgefiihrt werden, als auch aus Teilen, die nicht von einem Rech-
ner unterstiitzt ausgefiihrt werden. Die auf dem Rechner ausfiihrbaren Teile werden als
Workflow-Modell bezeichnet [LRoo]. Analog zu Prozessmodell und Prozess wird die Instanz
eines Workflow-Modells Workflow genannt. Ein WEMS ist ein System, mit dem Workflows
durch die Anwendung von Software definiert, erstellt und verwaltet werden konnen. Dabei
werden die Workflows auf einer oder mehreren Workflow-Engines ausgefiihrt, die in der
Lage sind, Prozessdefinitionen zu interpretieren, mit Workflow-Teilnehmern zu interagieren,
und ggf. IT-Werkzeuge und Anwendungen aufzurufen [WfMgg].

Thttp://wuw.wfmc.org/Glossaries-FAQs/View-category.html

11

http://www.wfmc.org/Glossaries-FAQs/View-category.html

2. Grundlagen

Modellierung

Zur Definition von Geschéftsprozessen mit Softwareunterstiitzung stehen verschiedene
Notationen bzw. Sprachen zur Verfiigung. Folgende Sprachen werden in [LKo06] als weit
verbreitet oder fiur die Zukunft relevant bezeichnet:

¢ UML 2.0 - Activity Diagram (AD)

¢ Business Process Definition Metamodel (BPDM)
¢ Business Process Modelling Notation (BPMN)

¢ Event Driven Process Chains (EPC)

Integrated DEFinition Method 3 (IDEF3)

Petri-Netze
* Role Activity Diagram (RAD)

Aus meiner Sicht ist heutzutage fiir die Modellierung vor allem die BPMN von Bedeutung.
BPMN ist ein offener Standard, wird von zahlreichen Herstellern, darunter z.B. IBM und SAP,
unterstiitzt?>, und mit der Version 2.0 besitzt BPMN eine definierte Ausfiihrungssemantik.

Mit der Version 2.0 findet eine Umdeutung des Akronyms von Business Process Modelling
Notation hin zu Business Process Model and Notation statt [OMG10]. Diese Umdeutung
spiegelt die Tatsache wider, dass BPMN nicht mehr nur eine Modellierungssprache ist, son-
dern auch eine definierte Ausfiihrungssemantik und zudem ein XML-Serialisierungsformat
besitzt, das beschreibt, wie die technischen Details des Prozesses gespeichert werden [FRH1o0,
S. 199].

Fiir BPMN 2.0 existieren bereits einige wenige Ausfithrungsumgebungen. Zum Zeitpunkt
des Beginns der Diplomarbeit waren mir JBOSS JBPM3 und Activiti* bekannt, die in Kapitel
5 betrachtet werden.

2.2. Business Process Model and Notation

Es folgen nun einige Erlduterungen zur Ausfithrung von BPMN 2.0 und zur Modellierung
des technischen Prozessmodells (siehe Abbildung 2.1). Simtliche Ausfithrungen basieren
auf dem Buch ,Praxishandbuch BPMN”. Die Ausfiihrung von BPMN 2.0 beruht auf dem
Token-Konzept. Dies bedeutet, dass der Ablauf eines Workflows sich immer gerade an der
Stelle befindet, an der sich ein Token befindet. Bei parallelen Abldufen existieren mehrere
Token, d.h. zu Beginn eines parallelen Ablaufs wird ein einzelnes Token entsprechend der

*http://www.omg.org/bpmn/BPMN_Supporters.htm
Shttp://www. jboss.org/jbpm
4http://www.activiti.org

12

http://www.omg.org/bpmn/BPMN_Supporters.htm
http://www.jboss.org/jbpm
http://www.activiti.org

2.2. Business Process Model and Notation

Anzahl paralleler Zweige geklont. Am Ende eines parallelen Ablaufs miissen die Zweige
entsprechend synchronisiert und tiberzdhlige Token konsumiert werden.

Die Autoren von [FRH1o0] legen grofien Wert auf die Unterscheidung verschiedener Ebenen
bei der Prozessmodellierung. Sie unterscheiden dabei folgende Ebenen:

Prozess Landschaft

Strategisches
Prozessmodell

Business Operationales Prozessmodell

Technischs

Prozessmodell IT-Spezifikation

Process Engine Implementierung

Abbildung 2.1.: BPMN Modellierungsebenen (Quelle: vgl. [FRH1o0])

Die Autoren beschreiben weiterhin ein Vorgehen, bei dem erst zwischen den Ebenen zwei
und drei entschieden wird, welche Technologie und Prozess Engine eingesetzt wird. Wird
eine BPMN 2.0 Engine eingesetzt, erfolgt eine Verfeinerung des Modells der Ebene zwei
um die technisch notwendigen Details [FRH10, S. 188 f.]. Die Alternativen, eine andere
Engine einzusetzen oder das Prozess Modell mit Hilfe einer klassischen Programmiersprache
umzusetzen, verfolge ich an dieser Stelle nicht weiter, da bei der Umsetzung der Diplomarbeit
eine BPMN 2.0 Engine zum Einsatz kommen soll

Ereignisse

Da Ereignisse in dieser Diplomarbeit eine zentrale Rolle spielen, werden im Folgenden
Ereignisse in BPMN 2.0 ndher betrachtet.

Ereignisse konnen laut [FRH1o0, S. 48] dazu fiihren, dass:

* der Prozess gestartet wird,

¢ der Prozess oder ein Prozesspfad fortgesetzt wird,

13

2. Grundlagen

¢ die aktuell in Bearbeitung befindliche Aufgabe oder der Teilprozess abgebrochen wird,

* wihrend der Bearbeitung einer Aufgabe oder eines Teilprozesses ein weiterer Prozess-
pfad durchlaufen wird.

Im Folgenden werden alle eingetretenen Ereignisse (im Original ,catching events”) abgebil-
det, die BPMN zur Verfiigung stellt. Im Vergleich zur BPMN 1.2 kamen in der Notation bei
den Ereignissen die nicht-unterbrechenden Ereignisse hinzu.

In Abbildung 2.2 werden Start-Ereignisse dargestellt. In Teilbild (a) ist ein Ereignis dargestellt,
durch das ein Prozess gestartet wird. In Teilbild (b) ist ein Start-Ereignis abgebildet, das
einen Ereignis-Teilprozess startet und den Oberprozess abbricht. Das Teilbild (c) zeigt ein
Ereignis, das einen Ereignis-Teilprozess startet, ohne den Oberprozess zu beenden.

(O—» O (O

(a) Start-Ereignis (b) Start-Ereignis (c) Start-Ereignis
Teilprozess - Teilprozess -
unterbrechend nicht unterbre-

chend

Abbildung 2.2.: BPMN Start-Ereignis

In Abbildung 2.3 sind Zwischen-Ereignisse abgebildet. In Teilbild (a) ist ein Ereignis dar-
gestellt, das den Prozess unterbricht, bis das Ereignis eintritt. Das Teilbild (b) zeigt eine
Aktivitat, die unterbrochen wird, wenn das Ereignis eintritt. In Teilbild (c) ist eine Aktivitat
abgebildet, die bei Eintritt des Ereignisses nicht abgebrochen wird.

o —
£ T
1
by !

iy

(a) Kontrollfluss un- (b) Aktivitit unter- (c) Aktivitdt nicht
terbrechendes brechendes Er- unterbrechen-
Ereignis eignis des Ereignis

Abbildung 2.3.: BPMN Start-Ereignisse

14

2.3. Complex Event Processing

2.3. Complex Event Processing

Der Begriff CEP wurde erstmals in dem im Jahr 2002 erschienen Buch , The Power of Events”
[Lucoz] von David Luckham verwendet. Im Alltagsgebrauch ist ein Ereignis etwas, was
passiert [Lucoz, S. 88].

Ein Ereignis hat nach [Luco2, S.88] drei Aspekte:

¢ Form
¢ Bedeutung

¢ Beziehung

Mit Form ist die Reprasentation eines Ereignisses gemeint. David Luckham schreibt: , Die
Form eines Ereignisses ist ein Objekt”. Wobei mit Objekt eine beliebige Objekt-Reprasentation
z.B. in Form eines Strings, eines Tupels oder eines Objekts im Sinne einer objektorientierten
Programmiersprache gemeint ist. Dieses Objekt kann verschiedene Eigenschaften enthalten
(z.B. wo das Ereignis aufgetreten ist).

Zu einem Ereignis gehort ebenso seine Bedeutung. Ein Ereignis steht immer fiir eine Aktivitat.
Modelltheoretisch ausgedriickt ist ein Ereignis ein deskriptives Modell einer Aktivitat.

Der dritte Aspekt, der zu einem Ereignis gehort, ist die Beziehung. Eine Aktivitdt steht
beztiglich des zeitlichen und kausalen Zusammenhangs und der Aggregation in einer
Beziehung zu anderen Aktivititen. Der gleiche Zusammenhang gilt, da ein Ereignis ein
Modell einer Aktivitit ist, also ebenso fiir Ereignisse.

Ein komplexes Ereignis ist eine Abstraktion anderer Ereignisse. Bei diesen anderen Ereignis-
sen kann es sich entweder um andere komplexe Ereignisse oder aber um einfache Ereignisse
handeln. Einfach sind Ereignisse, die sich nicht weiter in Teilereignisse unterteilen lassen.
Da es in vielen Fillen fiir die weitere Verarbeitung keine Rolle spielt, ob es sich bei einem
Ereignis um ein komplexes Ereignis oder ein einfaches Ereignis handelt, verwende ich
in diesem Fall den Begriff Ereignis sowohl fiir einfache Ereignisse als auch fiir komplexe
Ereignisse[Lucoz].

Der Gedanke hinter CEP ist die Strukturierung von Ereignissen in Abstraktionsebenen. Ein
Beispiel ist in 2.4 dargestellt.

15

2. Grundlagen

Abstraktionsebene 2

Abstraktionsebene 1 \

Abstraktionsebene 0 ‘ ‘ XX ‘

Abbildung 2.4.: Abstraktionsebenen bei der Verarbeitung von Ereignissen

Ein komplexes Ereignis ist also entweder eine Abstraktion mehrerer weniger-abstrakter
Ereignisse der gleichen Abstraktionsebene oder eine Abstraktion von Ereignissen unter-
schiedlicher Abstraktionsebenen. So ist das Ereignis der Abstraktionsebene 1 in der Abbildung
2.4 eine Abstraktion mehrerer Ereignisse der Abstraktionsebene o, und das Ereignis der
Abstraktionsebene 2 ist eine Abstraktion von Ereignissen der Ebenen o und 1.

Das Ziel von CEP ist es, moglichst in Echtzeit eine grofie Anzahl von Ereignissen zu
verarbeiten. Abbildung 2.5 zeigt schematisch die Verarbeitung von Ereignissen mit Hilfe
einer CEP-Engine.

‘ CEP-Engine
Sensorinformationen

>
; Regel 1 - Stau
Wenn fUnf Autos im Bereich und
Position jedes Autos andert sich

innerhalb einer Minute um
weniger als 10m
Regel 2 - ...

.

Abbildung 2.5.: Verarbeitung von Ereignissen

16

2.3. Complex Event Processing

Die Verarbeitung der Ereignisse wird durch sogenannte Event Pattern Languages (EPLs)
gesteuert. EPLs dienen der Beschreibung von Ereignismustern. Wird ein solches Muster von
einer CEP-Engine erkannt, so wird ein Ereignis erzeugt. Momentan gibt es noch keinen
Standard fiir EPLs, und jeder Hersteller verwendet somit eine eigene Sprache. Grundsatzlich
lassen sich nach [BEoy] vier Dimensionen unterscheiden, die eine Sprache zum Erkennen
von Ereignismustern bzw. der Abfrage von Ereignissen unterstiitzen muss:

¢ data extraction - Datenextraktion
¢ event composition - Ereigniskomposition
* temporal (and causal) relationships - zeitliche (und kausale) Verkniipfungen

* event accumulation - Ereignisakkumulation

Die Datenextraktion dient der Filterung von Daten aus bestehenden Ereignissen. Die Abbil-
dung 2.6 zeigt, dass einzelne Eigenschaften eines Ereignisses ausgewdhlt werden, die dann
die Eigenschaften eines neuen komplexen Ereignisses bilden.

Al A3 <
A2 p 4 — >

Abbildung 2.6.: Datenextraktion aus Ereignissen

Bei der Ereigniskomposition werden dagegen, wie in Abbildung 2.7 dargestellt, die Eigenschaf-
ten eines Ereignisses mit denen anderer Ereignisse zusammengesetzt.

e ©

Abbildung 2.7.: Ereigniskomposition

Bei der Ereignisakkumulation, dargestellt in Abbildung 2.8, werden die Attribute verschie-
dener Ereignisse mit Hilfe eines Operators akkumuliert. Da ein Ereignisstrom prinzipiell
unendlich ist, miissen fiir die Berechnung Zeitraume oder eine gewiinschte Anzahl von
Ereignissen angegeben werden. Eine solche Akkumulation kann z.B. der Berechnung des
durchschnittlichen Gewinns der letzten Stunde oder der Berechnung des durchschnittlichen
Gewinns der letzten zehn Buchungs-Ereignisse dienen.

17

2. Grundlagen

© beliebiger Operator

Abbildung 2.8.: Ereignisakkumulation

Schliefdlich gibt es noch zeitliche oder kausale Abhangigkeiten von Ereignissen. Es muss also
moglich sein, auszudriicken, dass Ereignisse zeitlich oder kausal eine vorgegebene Ordnung
erfiillen. In Abbildung 2.9 wird ein neues Ereignis des Typs C erzeugt, wenn ein Ereignis
des Typs A und ein Ereignis des Typs B in dieser zeitlichen Abfolge auftreten.

QO
o ©

Q-
o ©

Zeit

Abbildung 2.9.: Zeitliche Abhdngigkeit von Ereignissen

Es gibt, wie in Tabelle 2.1 dargestellt, eine Reihe von Systemen und Engines fiir CEP. Die
Tabelle erhebt in keiner Weise einen Anspruch auf Vollstandigkeit.

Hersteller Engine EPL Lizenz
Oracle Oracle CEP Continuous Query Language (CQL) proprietar
Codehaus (N)Esper Esper EPL GPL
Tibco Tibco Business Events Rete-basierte Regelsprache proprietar
Sybase Sybase CEP Continuous Computation Language (CCL) proprietir

Tabelle 2.1.: CEP-Engines

18

2.4. Sonstige Definitionen und Begriffe

Die Fachstudie , Vergleich von Complex Event Processing-Ansédtzen fiir Business Activity
Monitoring” [BDK10], durchgefiihrt am Institut fiir Architektur von Anwendungssystemen
(IAAS) der Universitit Stuttgart, hat einige CEP-Werkzeuge untersucht und ist dabei zu dem
Ergebnis gekommen, dass vor allem im Hinblick auf Leistungsfahigkeit und Ausgereiftheit
der EPL mit Esper?® eine sehr leistungsfihige Ausfithrungsumgebung zur Verfiigung steht
[BDK10]. Esper ist ein Opensource-Projekt und eignet sich auch daher sehr gut fiir eine
Diplomarbeit. Aus diesem Grund werde ich bei der Realisierung des erarbeiteten Konzepts
auf Esper zurtickgreifen.

2.4. Sonstige Definitionen und Begriffe

Die folgenden Begriffe und Abkiirzungen werde ich in meiner Diplomarbeit immer wieder
verwenden, ohne ndher darauf einzugehen, was sich dahinter verbirgt. Sollten Zweifel an
der Bedeutung eines Begriffs bestehen, den ich in meiner Diplomarbeit verwende, so sind
die Glossare der WfMC?, was Workflows betrifft, und das Glossar der Event Processing
Technical Society (EPTS)7, was CEP betrifft, geeignete Quellen, an denen ich mich nach
Moglichkeit orientiert habe. An dieser Stelle werde ich mich auf eine ganz kurze Definition
einiger verwendeter Begriffe beschranken, die ich bis hierhin noch nicht erklért habe.

Event Driven Architecture (EDA) = ereignisgesteuerte Architektur

Event Driven Architecture (EDA) ist ein Architekturstil. In einer EDA sind zentrale Kompo-
nenten durch Ereignisse gesteuert bzw. kommunizieren tiber Ereignisse [LSo08].

Service Oriented Architecture (SOA) = serviceorientierte Architektur

Service Oriented Architecture (SOA) ist ein Architekturstil, dessen zentrale Eigenschaft die
lose Kopplung von Services ist. Services stellen eine Funktionalitdt an einer Netzwerkadresse
tiber verschiedene Transportprotokolle und Formate und mit unterschiedlichen Quality of
Service (QoS)-Eigenschaften zur Verfiigung. Ein Service steht wie Elektrizitat, Wasser, Gas
etc. immer zur Verfiigung [CLS'05], muss also weder erstellt noch zerstort werden.

Shttp://esper.codehaus.org
Shttp://www.wfmc. org
7http://www.ep-ts.com

19

http://esper.codehaus.org
http://www.wfmc.org
http://www.ep-ts.com

2. Grundlagen

Context = Kontext

,Kontext ist jede Information, die geeignet ist, die Situation einer Entitit zu beschreiben. Eine
Entitét ist eine Person, ein Ort oder ein Objekt, die relevant fiir die Interaktion zwischen
einem Benutzer und einer Anwendung, einschliefilich des Benutzers und der Anwendung
selbst, ist [Deyo1].”

Context-aware = kontextbewusst

,Ein System ist Context-aware, wenn es Kontext verwendet, um relevante Informationen
und/oder Services bereitzustellen, deren Relevanz fiir Benutzer abhéngig von der Aufgabe
des Benutzers ist [Deyo1].”

Situation

Ich verwende den Begriff Situation in meiner Diplomarbeit, wie er in [Deyo1] verwendet
wird. Eine Situation besteht aus allen Umstdnden, die relevant fiir eine Entitit sind. Aus
meiner Sicht ist der Kontext ein deskriptives Modell einer Situation.

Business Rule = Geschaftsregeln

Den Begriff Geschiftsregel verwende ich in dieser Arbeit geméafi der Verwendung in [MIKo8].
,Im allgemeinen ist eine Geschiftsregel eine Aussage mit dem Ziel, das Verhalten und die
Informationen einer Organisation zu leiten oder zu beeinflussen [SNo3].” In [MIKo8] werden
strukturelle Regeln wie Integritdtsregeln (z.B. jede Buchung muss einen Posten enthalten)
oder Ableitungsregeln (z.B. ein Kunde, mit einem monatlichen Umsatz von 2000 Euro, ist ein
Premiumkunde) und operationale Regeln wie Transformationsregeln (z.B. das Alter eines
Kunden kann nur einmal pro Jahr gedndert werden) oder Reaktionsregeln (z.B. bei einem
Kreditantrag tiber 100.000 Euro muss dieser von einem Mitarbeiter der Ebene drei genehmigt
werden) genannt.

Event Processing Rule = Ereignisverarbeitungsregeln

Event Processing Rules konnen auf viele verschiedene Arten (endlicher Automat, Java-Code,
SQL-Code, Event-Condition-Action Rules) beschrieben werden [LSo8]. Mit Regeln wird
deklarativ beschrieben, wie die Verarbeitung von Ereignissen durch eine entsprechende
Engine ablduft.

20

3. Verwandte Arbeiten

Nachdem die Grundlagen im vorangegangenen Kapitel prasentiert wurden, werden nun
einige Arbeiten, die fiir die Diplomarbeit mafigeblich sind, vorgestellt. Grundsatzlich lassen
sich die relevanten, wissenschaftlichen Arbeiten in vier Gruppen aufteilen. Es gibt Arbeiten,
die die Modellierung von Geschiftsprozessen und Geschiftsregeln bzw. Ereignissen behan-
deln. Die ndchste Gruppe beschiftigt sich generell mit der Verarbeitung von Ereignissen im
Zusammenhang mit Workflows, und die dritte relevante Gruppe befasst sich mit kontext-
und situationsbezogenen Workflows. Die vierte Gruppe beschiftigt sich mit der Ableitung
von Ereignissen bzw. dem logischen SchliefSen auf Ereignisse. Natiirlich existieren auch
zwischen den einzelnen Arbeiten Uberlappungen, so dass sich diese nicht immer ganz
eindeutig einer Gruppe zuordnen lassen. In solchen Féllen habe ich versucht, die Arbeit
ihres Themenschwerpunkts entsprechend einzuordnen.

3.1. Modellierung von Geschaftsprozessen, Geschaftsregeln und
Ereignissen

Eine interessante Arbeit zur Modellierung von Ereignissen ist [DGBoy]. Die Autoren schlagen
darin eine Sprache zur Modellierung von Ereignissen vor, die sie Business Event Modelling
Language (BEMN) nennen. Der Name deutet schon die Anlehnung an BPMN an. Tatsdchlich
sprechen die Autoren sogar von einer Erweiterung der BPMN [DGBoy].

Die in Abbildung 3.1 dargestellten grafischen Notationselemente werden vorgestellt, es wird
eine formale Semantik fiir sie definiert und ein Metamodell prasentiert:

O 0O

i £
input evgnt output e\.jenl OR operator AND operator %
declaration declaration .

_______ S J

I | i 1

: ! I (Oa3s ! =
precedence inhibition Yoo — ===
relationship relationship grouping repetition filters

Abbildung 3.1.: Notationselemente von BEMN (Quelle: [DGBoy])

21

3. Verwandte Arbeiten

Aber nicht nur die Darstellung sondern auch die Semantik, auf die ich an dieser Stelle nicht
weiter eingehen will, ist stark an die von BPMN angelehnt. Die Kompatibilitat zwischen
BEMN und BPMN erfordert dies letztendlich auch.

Am Ende werfen die Autoren die Frage auf, welche Aspekte nun mit welchem Paradigma
modelliert werden sollten. Diese Frage wird zumindest teilweise auch in weiter unten
betrachteten Arbeit [DKGZ10] beantwortet.

Auch [MIKo8] widmet sich der Frage, welche Geschéfts-Aspekte eher mit der klassischen
Geschiftsprozess-Modellierung abgebildet werden und fiir welche Aspekte eher ein regelba-
sierter Ansatz gewdhlt werden sollte. Es werden fiinf Kriterien identifiziert, mit denen sich
bestimmen lassen soll, ob ein Aspekt eher mit einer Regel oder eher mit einem Geschéftspro-
zess modelliert werden sollte. Abbildung 3.2 zeigt eine Ubersicht der Kriterien.

Geschaftsregeln Geschaftsprozesse

} Frequenz
Anderungen

stiindlich taglich wochentlich ~ monatlich jahrlich

Business /

Implemintlstrungs- BusinessilcEE Business System Programmierer
verantwortung Analyst Analyst

Grad
der sehr gering gering sehr hoch

Auswirkung

Ursprung 3fts-
der intern Teilbereich Fachbereich o1t Externe

. partner

Anderung

betroffener [IRSaE RTINS Prozess Aktivitat o ibld-

Bereich Prozesse Aktivitat

Abbildung 3.2.: Modellierung: Entscheidungs-Framework (Quelle: [MIKo8])

In ihrem Fazit stellen die Autoren fest, dass sie in ihrer Arbeit die gemeinsame visuelle
Modellierung von Geschiftsprozessen und Geschiftsregeln nicht beriicksichtigt haben. Ein
Ansatz hierzu bietet die bereits oben erwdhnte Erweiterung von BPMN, die in der Arbeit
[DGBoy] vorgeschlagen wird.

22

3.2. Workflows und Ereignisverarbeitung

3.2. Workflows und Ereignisverarbeitung

Eine fiir diese Diplomarbeit besonders relevante Arbeit ist [WMKLog]. Ein zentraler Punkt
dieser Arbeit ist der Gedanke der Vereinheitlichung der Ansédtze von EDA und SOA, die in
der Industrie jeweils fiir sich bereits weit verbreitet sind [WMKLog]. Die als Service Oriented
Event Driven Architecture (SOEDA) bezeichnete Architektur basiert auf der Integration
beider Architekturen durch Event-driven Process Chains (EPCs). Auf Modellierungsebene
werden also EPCs verwendet. Das Modell wird zur Ausfithrung mit Hilfe eines modellge-
triebenen Ansatzes transformiert. Als Zielsprachen werden BPEL fiir die Workflows und
Esper-Regeln fiir das CEP vorgeschlagen. Durch SOEDA sollen also die Vorteile beider Archi-
tekturen vereint werden. Als Vorteile von EDA-basierten Systemen werden die Fahigkeiten
aufgezihlt, flexibel auf ad-hoc Anderungen zu reagieren, Situationen zu erkennen und eine
grofle Anzahl von Ereignissen oder Datenstromen verarbeiten zu konnen. Fiir SOAs werden
als Vorteile die Einhaltung von Standards, die Interoperabilitit und die Integration von
legacy Systemen beschrieben.

In [AESWo8] wird ein Referenzmodell fiir Event Driven Business Process Management
(EDBPM) vorgestellt, wobei die Autoren unter EDBPM eine Verkniipfung von Business
Process Management (BPM) und CEP verstehen. Allerdings beschréanken sich die Autoren in
ihrer Betrachtung von EDBPM fast ausschliefdlich auf Business Activity Monitoring (BAM).
Am Ende kommen die Autoren aber zu dem Schluss, dass in Zukunft Geschéftsprozesse
auch automatisch auf Ereignisse reagieren konnen sollten [AESWo8].

Auch die Arbeit [DKGZ10] setzt sich mit der Integration verschiedener Paradigmen ausein-
ander. Dazu gehoren Workflow-Management (WfM), Business Rules Management (BRM)
und CEP. Einen Schwerpunkt der Arbeit bilden die Integration der Paradigmen auf
Metamodellebene und die Frage, welche Aspekte wie und mit welchem der drei Paradigmen
modelliert werden sollten.

In [BDGoy] wird ebenfalls die Notwendigkeit zur Modellierung von Ereignissen im Um-
feld von Geschiftsprozessen dargestellt. Allerdings liegt der Schwerpunkt dann auf der
Beschreibung von Mustern fiir Composite Events und ihrer Realisierbarkeit mit Business
Process Execution Language (BPEL) und BPMN. Einen Uberblick iiber die Composite Event
Patterns gibt Tabelle 3.1. Die Autoren sind der Auffassung, dass eine nahtlose Modellierung
von Prozessen und Ereignissen benétigt wird, um eine konsistente Sicht fiir Prozessexper-
ten zu erreichen. Sowohl BPEL als auch BPMN besitzen nicht die Fahigkeit, verschiedene
Abstraktionsebenen (siehe Kapitel 2.3) auszudriicken. BPMN bietet abgesehen davon aber
mehr Ereignistypen. Trotzdem zeigt sich, dass sich weder mit BPEL noch mit BPMN alle
vorgeschlagenen Muster realisieren lassen [BDGoy].

23

3. Verwandte Arbeiten

Composite Event Pattern Beschreibung

1. Event Conjunction Zwei oder mehr Ereignisse miissen in der
richtigen Reihenfolge eintreten.

2. Event Cardinality Eine festgelegte Anzahl von Ereignissen
desselben Typs treten ein.

3. Event Disjunction Alternative Ereignisse treten in einer be-
stimmten Reihenfolge auf.

4. Inhibiting Event Ein Ereignis tritt ein, wahrend ein anderes
Ereignis nicht eintritt.

5. Event Time Relation Zwei Ereignisse treffen wahrend oder au-
Berhalb eine bestimmten Zeitfensters ein.

6. Subscription Time Relation Ein Ereignis tritt in einem Zeitfenster ein,
das relativ zum Zeitpunkt der Subscripti-
on ist.

7. Consumption Time Relation Ein Ereignis tritt mindestens eine be-
stimmte Zeit vor dem Konsum ein.

8. Absolute Time Relation Ein Ereignis tritt vor oder nach einem
festgelegten Zeitpunkt ein.

9. Event Data Dependency Die Daten zweier eintretender Ereignis-
se stehen in einer bestimmten Relation
zueinander.

10. Process Instance Data Dependency Ein eintretendes Ereignis steht in einer
bestimmten Relation zu Daten der zuge-
horigen Prozess-Instanz.

11. Environment Data Dependency Ein eingetretenes Ereignis steht in einer
bestimmten Relation zu Daten, die fiir
alle Prozess-Instanzen verfiigbar sind.

12. Consume Once Ein Ereignis kann hochstens von einer
Prozess-Instanz konsumiert werden.
13. Consume Multiple Times Ein Ereignis kann mehrer Male (ggf. auch

von der gleichen Prozess-Instanz) konsu-
miert werden.

Tabelle 3.1.: Composite Event-Patterns (Quelle: vgl. [BDGo7])

3.3. Kontext- und situationsbezogene Workflows

Zu kontextbezogenen Workflows existiert eine Vielzahl von Arbeiten. Ich erwdhne hier nur
einige, die fiir diese Diplomarbeit von Bedeutung sind.

24

3.3. Kontext- und situationsbezogene Workflows

In dem Konferenzbeitrag [WKNLoy] wird das Ziel verfolgt, technische Prozesse mit Work-
flow Systemen, die urspriinglich fiir Geschéftsprozesse entwickelt wurden, zu modellieren
und auszufiihren. Als grundlegender Unterschied zwischen traditionellen Geschéftsprozes-
sen und technischen Prozessen werden dabei die Ereignisse der Realwelt aufgefiihrt, die
von besonderer Bedeutung fiir technische Prozesse sind. In diesem Zusammenhang wird
vom sogenannten Business-Production-Gap gesprochen. Diese Liicke soll mit context-aware
Workflows geschlossen werden. Die Autoren stellen fest, dass eine schnelle Reaktion auf Kon-
textinderungen und die Anpassung an eine verdnderte Umgebung wichtige Anforderungen
darstellen, die von etablierten Workflow Sprachen nicht unterstiitzt wird. In der zitierten
Arbeit wird eine Erweiterung (Context4BPEL) von BPEL vorgeschlagen, um context-aware
Workflows zu realisieren. Fiir die Realisierung wird in der Arbeit {iber die BPEL-Erweiterung
die Nexus Context Management Plattform® angebunden. Uber eine zusitzliche Komponente,
den Context Event Scheduler, konnen Workflows per Context-Event instantiiert werden, und
einzelne Workflow Instanzen konnen sich fiir bestimmte Context-Events registrieren, die
dann zur Steuerung des Kontrollflusses verwendet werden kénnen. Neben dem Konsum von
Context-Events (asynchron), die von der Nexus Platform erzeugt werden, kann ein Workflow
auch synchron Context-Queries an die Nexus Plattform stellen [WKNLoy].

,Modeling Dynamic Context Awareness for Situated Workflows” [WHRo9] greift zwei An-
satze aus den Arbeiten [WKNLo7], [HCCos], [HCKCo6] und [SCCYo7] auf und kritisiert sie
im Hinblick auf die Notwendigkeit einer umfassenden Modellierung und die fehlende Flexi-
bilitdt bei der Modellierung bezogen auf die zur Laufzeit relevanten Kontextinformationen.
In der Arbeit ist die Rede von Adaptable Pervasive Flow (APF), einer weitreichenden Erwei-
terung des klassischen Workflow-Paradigmas. Die Autoren betrachten dabei drei Aspekte.
Beim ersten Aspekt geht es um die Erweiterung klassischer Workflows um Situationsabhan-
gigkeit. Hinter dem zweiten Aspekt verbirgt sich ein Konzept, das die Autoren dynamische
Kontextprovisionierung nennen. Es ermoglicht die dynamische Bestimmung relevanter Kon-
textinformationen zur Laufzeit. Der dritte und letzte Aspekt betrifft einen Mechanismus
zur Constraint- und Ereignisbehandlung, der es moglich macht, auf Anderungen des rele-
vanten Kontextes geeignet zu reagieren. Das Grundprinzip funktioniert wie im Folgenden
beschrieben. Fiir die Repradsentation der realen Welt wird ein Entitdten-Modell vorgeschlagen.
Teil dieses Konzepts sind sogenannte Entity Events, die generiert werden, wenn zu einem
bestimmten Zeitpunkt etwas in der realen Welt passiert, das die Anderung einer Entitit
verursacht. Des Weiteren wird das Konzept von Scopes eingefiihrt, um Aktivitdten eines
Workflows zu gruppieren. Wahrend der Modellierung werden die Scopes mit Attachments
versehen, die einen Entitats-Typ beschreiben. Zur Laufzeit wird der Workflow dann mit einer
passenden Entitdten-Instanz assoziiert und hat somit Zugriff auf die Kontextinformationen
dieser Entitat. Uber sogenannte Context-Frames wird der Zugriff auf Entitdten ermoglicht,
die bei der Modellierung noch nicht bekannt sind. Durch ihren Ansatz, relevante Kontex-
tinformationen tiber Attachments bzw. Context-Frames verfiigbar zu machen, wollen die
Autoren die Menge der Kontextinformationen auf den relevanten Kontext beschrianken. Uber
die Entity-Events und entsprechende Event-Handler soll es moglich sein, auf Anderungen in
der Realwelt zu reagieren [WHRo9].

Thttp://www.nexus.uni-stuttgart.de
p g

25

http://www.nexus.uni-stuttgart.de

3. Verwandte Arbeiten

3.4. Ableitung von Ereignissen

Ein in der IT immer wieder auftretendes Problem ist die Behandlung von Sachverhalten der
Realitdt, die mit Unscharfe bzw. Unsicherheit behaftet sind. Es gibt bei der Modellierung von
Ereignissen und dem Schliefien auf Ereignisse verschiedene Ansétze. Schlieflen bedeutet in
diesem Zusammenhang den Vorgang der Ableitung bzw. Abstraktion von Ereignissen. Wie
bereits in Kapitel 2.3 beschrieben, kann es sich hierbei um die Abstraktion von Ereignissen
unterschiedlicher oder gleicher Abstraktionsstufen handeln.

Der am weitesten verbreitete Ansatz zur Modellierung ist die Modellierung von Ereignis-
sen und das Schlieflen durch Regeln, die wie ein Geschéftsprozess im Voraus modelliert
werden.

Dieser Ansatz wird z.B. von Max Pucher, Chief Architect bei ISIS Software?, in seinem Blog?
kritisiert. Mit einer Modellierung von Ereignissen im Voraus wiirde man in die Falle einer zu
sehr vereinfachten Ursache-Wirkungs-Kette tappen. Ein zentraler Punkt seiner Kritik bezieht
sich auf die Unschérfe von Ereignissen, der man seiner Ansicht nach mit einer Modellierung
im Voraus nicht gerecht wird.

Die Unschérfe und Unsicherheit von Ereignissen werden in einigen wissenschaftlichen
Artikeln betrachtet, und es werden Losungsansdtze entwickelt.

In ,,Complex Event Processing over Uncertain Data” [WGETo8] werden Bayesche” Netze in
Kombination mit einem Monte Carlo Sampling Algorithmus verwendet, um Ereignisse zu
verarbeiten, die mit einer Unsicherheit behaftet sind.

Beide Ansitze haben gemeinsam, dass auch aus Ereignissen, die mit einer Unsicherheit
behaftet sind, Ereignisse abgeleitet bzw. aus ihnen auf Ereignisse geschlossen werden kann.

In , Event Modelling and Reasoning with uncertain Information for Distributed Sensor
Networks” [MLM1o] wird fiir die Event Modellierung und logische Schlussfolgerung aus
den Ereignissen ein Rahmenwerk entworfen, das auf der Dempster-Shafer-Theorie beruht.
Das Rahmenwerk erlaubt die Modellierung von mit einer Unsicherheit behafteten Ereignissen
und das Schliefien auf Ereignisse. Um eine Wissensbasis einzubeziehen, werden sogenannte
Domain-Events eingefiihrt, die das Wissen reprasentieren. So kann das Wissen mit in die
Regeln zur Schlussfolgerung einbezogen werden.

Im Gegensatz zu Pucher sehe ich kein generelles Problem darin, Regeln und Ereignisse im
Voraus zu modellieren. Meiner Meinung nach hingt es stark von der Anwendung ab, ob
eine Modellierung im Voraus moglich ist oder nicht. In Féllen, in denen eine Modellierung
von Regeln im Voraus nicht moéglich ist, kann ein Ansatz wie in [WGETo08] oder [MLM10]
verwendet werden. Allerdings stehen meines Wissens noch keine in der Praxis verwendbaren
Systeme zur Verfligung. Beide Konzepte lassen sich nach meiner Einschédtzung nicht ohne
Weiteres mit bestehenden CEP-Engines realisieren. Es sollte aber kein Problem darstellen,

2http://www.isis-papyrus.com
Shttp://isismjpucher.wordpress.com/2010/11/15/can-bpmn-and-rules-handle-complex-events-no

26

http://www.isis-papyrus.com
http://isismjpucher.wordpress.com/2010/11/15/can-bpmn-and-rules-handle-complex-events-no

3.4. Ableitung von Ereignissen

ein System, das das Schlieffen auf der Basis von Ereignissen erlaubt, die mit einer Unsicher-
heit behaftet sind, in das System zu integrieren, welches im Rahmen dieser Diplomarbeit
entwickelt wird.

27

4. Anforderungen

Die Spezifikation ist eines der wichtigsten Dokumente, nach [LLo6] sogar das wichtigste
Dokument, das wihrend eines Softwareprojekts entsteht. Eine Spezifikation enthilt die
wesentlichen funktionalen und nicht-funktionalen Anforderungen aus Kunden- bzw. Be-
nutzersicht und ist somit die Referenz fiir die gesamte, weitere Entwicklung von Software.
Nun unterscheidet sich eine Diplomarbeit schon alleine aufgrund der Tatsache, dass bei
einer Diplomarbeit im Allgemeinen nicht die Software im Sinne einer ausfiihrbaren Software
sondern das Konzept im Vordergrund steht, deutlich von einem Softwareprojekt in der In-
dustrie. Trotzdem werde ich in diesem Kapitel einige Anforderungen an die Architektur und
an die Umsetzung dieser Architektur sammeln. Nur so ist aus meiner Sicht die zielgerichtete
Entwicklung einer guten Softwarearchitektur und spater deren Umsetzung moglich.

Wie in einer Spezifikation iiblich, werde ich versuchen, bei der Sammlung von Anforderungen
eine klare Trennung von funktionalen und nicht-funktionalen Anforderungen vorzunehmen.
Da bei einer Diplomarbeit im Allgemeinen kein Kunde im eigentlichen Sinne zur Verfiigung
steht, werde ich die Anforderungen auf Basis der Ausschreibung der Diplomarbeit, der
Konzepte und Ideen aus den in Kapitel 3 vorgestellten Arbeiten erheben. Da kein Kunde zur
Verfligung steht, werden einige Anforderungen absichtlich offen gelassen und in Kapitel 6
diskutiert. Die in diesem Kapitel genannten Anforderungen sind Anforderungen aus einer
imagindren Kunden- bzw. Benutzersicht und enthalten absichtlich wenig technische Details.
Die technischen Details werden in den folgenden Kapiteln 5 und 6 betrachtet.

Haufig enthélt eine Spezifikation ein Kapitel , Einsatzbereich und Ziele”. Dieses Kapitel habe
ich mit der Motivation in Kapitel 1.1 mehr oder weniger vorweggenommen.

4.1. Voruberlegungen

Es soll eine Architektur entworfen werden, die bestehende Systeme integriert. Dabei handelt
es sich um eine Workflow-Engine und um Systeme zur Verarbeitung von Ereignissen bzw.
Erkennung von Situationen auf der Basis von Ereignissen. So soll es moglich sein, auch
grofie Mengen von Ereignissen in einem speziell fiir diese Zwecke entwickelten System zu
verarbeiten und nur geringe Mengen relevanter Ereignisse in einer Workflow-Engine weiter
zu verarbeiten. Es soll moglich sein, beliebige Workflow-Engines und Systeme zur Ereignis-
verarbeitung bzw. Situationserkennung zu verwenden. Damit wird die Idee, verschiedene
Paradigmen zu kombinieren, von [WMKLog], [AESWo08] und [DKGZ1o0] aufgegriffen. In
diesem Fall wird also, wie in Abbildung 4.1 dargestellt, die Idee des Workflow-Managements
mit der des CEP kombiniert. Gegenstand dieser Arbeit ist vor allem die Interaktion zwischen

29

4. Anforderungen

WIMS und einem System zur Ereignis- bzw. Situationsverarbeitung. Es wird also eine Archi-
tektur geschaffen, die die Integration eines WfMS mit einem oder mehreren Systemen zur
Verarbeitung von Ereignissen bzw. Situationen ermoglicht. Der Aspekt der Modellierung
wird vernachldssigt.

DY

"y
Situation

Workflow

Engine Engine

uolyetaju

Abbildung 4.1.: Was soll die Architektur bzw. Implementierung leisten?

4.2. Nicht-funktionale Anforderungen

Die nicht-funktionalen Anforderungen werden zu einem Grofiteil durch den Charakter von
Ereignissen und durch WfMSe und Systeme zur Ereignisverarbeitung bzw. Situationserken-
nung (z.B. CEP-Engines) vorgegeben. Einige andere nicht-funktionale Anforderungen wie
eine gute Erweiterbarkeit sollten heutzutage Standard sein.

Einsatz bestehender Systeme und Sprachen

Durch die Integration bestehender Systeme soll der Implementierungsaufwand gering
gehalten werden. Aufierdem lassen sich die Starken bestehender Workflow-Systeme und
die Starken von Systemen zur Ereignisverarbeitung bzw. Situationserkennung nutzen, ohne
diese implementieren zu miissen. Bereits bestehende Erfahrungen mit solchen Systemen
und verbreiteten Sprachen konnen weiter genutzt werden. Anders als in [WHRog] kénnen
Erfahrungen im Bereich von CEP genutzt werden, und es muss kein neues Prinzip verstanden
werden. Es miissen lediglich Erfahrungen gesammelt werden, wie sich die beiden Prinzipien
in einem kombinierten Ansatz effizient nutzen lassen. Dies sollte zu einer hohen Akzeptanz
bei Benutzern fiihren.

30

4.3. Funktionale Anforderungen

Erweiterbarkeit

Das entstehende System soll erweiterbar sein. Dies bedeutet, es soll auf einfache Weise
moglich sein, neue Systeme zu integrieren. Dies gilt fiir die Integration neuer bzw. weiterer
Systeme zur Ereignisverarbeitung bzw. Situationserkennung genauso wie fiir neue Ereignis-
quellen, die einfach in das Gesamtsystem integrierbar sein sollen. Ebenso soll ein Austausch
der Workflow-Engine mit geringem Entwicklungsaufwand moglich sein.

Performanz

Der Durchsatz und die Latenz sollen durch die Integration nicht negativ beeinflusst werden.
Insbesondere sollen der Durchsatz und die Latenz fiir die Verarbeitung von Ereignissen im
Wesentlichen vom verwendeten System, also z.B. der verwendeten CEP-Engine, abhéngen,
da sonst ein wichtiger Vorteil der Workflow-Engine-externen Verarbeitung zunichte gemacht
wird. Dieser Vorteil besteht z.B. in der Optimierung von CEP-Engines im Hinblick auf
die Verarbeitung einer grofsen Menge von Ereignissen (hoher Durchsatz) bei moglichst
geringer Verzogerung (geringe Latenz). Die Verarbeitungsgeschwindigkeit der Ergebnis-
Ereignisse soll im Wesentlichen davon abhéngen wie schnell die Workflow-Engine Ereignisse
verarbeiten kann. Der Durchsatz und die Latenz sollen durch die Integration moglichst nicht
negativ beeinflusst werden. Bestimmend fiir Durchsatz und Latenz sollen im Wesentlichen
die Workflow-Engine und die Systeme zur Verarbeitung von Ereignissen bzw. Situationen
sein.

Transparenz

Die Nutzung von CEP-Systemen oder vergleichbaren Systemen aus Workflows heraus soll
moglichst einfach und transparent erfolgen. Dies gilt insbesondere fiir die Modellierung auf
der Business-Ebene. Dem wichtigen Aspekt von WfM und SOAs, das Business-IT-Gap zu
reduzieren bzw. ganz zu tiberwinden, soll also nicht entgegengewirkt werden. Wesentlich
fiir die Nutzung eines Systems ist die Akzeptanz durch die Benutzer. Durch eine moglichst
transparente Integration von Systemen zur Ereignis- und Situationsverarbeitung und die
einheitliche Modellierung auf Grundlage einer bekannten Notation bzw. Sprache soll die
Akzeptanz durch die Benutzer gefordert werden.

4.3. Funktionale Anforderungen

Im Wesentlichen wird die Funktionalitdt von einem WfMS und von einem oder mehreren
Systemen zur Ereignisverarbeitung bzw. Situationserkennung erbracht. Aus diesem Grund
werden an dieser Stelle nur wenige funktionale Anforderungen spezifiziert. Neue Funktiona-
litat entsteht im Wesentlichen durch Emergenz. Dies bedeutet, dass durch die Integration

31

4. Anforderungen

eines WfMSs und eines oder mehrerer anderer Systeme zur Ereignisverarbeitung bzw. Si-
tuationserkennung Funktionalitédt entsteht, die {iber die Funktionalitdt der Einzelsysteme
hinausgeht.

Die meisten funktionalen Anforderungen sollten im Idealfall fiir den Benutzer moglichst
transparent erfiillt werden.

Den funktionalen Anforderungen liegt der folgende grobe Ablauf zu Grunde:

rstellung:

- fachliches Prozess-
modell inkl. der
Ereignisse

Ausfiithrung ‘

(Workflow & Regeln)
Erstellung:
- technisches Prozessmodell
- Regeln
- EventSource-Config

Deployment

- Workflow

- Regeln

- EventSource-Config

Abbildung 4.2.: Lebenszyklus eines Modells (Workflow-Modell, Regeln, Ereignisquellen-
Konfigurationen)

Zunichst entstehen in einem iterativen Vorgehen ein Prozessmodell und die zugehorigen
Regeln, die die vom Prozess benétigten Ereignisse erzeugen. Im néchsten Schritt werden Pro-
zessmodell, Regeln und die Konfiguration von Ereignisquellen bereitgestellt (Deployment).
In der Phase der Ausfithrung werden Instanzen des Prozessmodells von der Workflow-
Engine ausgefiihrt. Das System zur Ereignisverarbeitung bzw. Situationserkennung leitet auf
Basis der Regeln Ereignisse bzw. Situationen aus einfachen Ereignissen ab und stellt diese
der Prozessinstanz zur Verfiigung. Schlieflich sollte eine Uberpriifung des Modells erfolgen
und ggf. von vorne begonnen werden.

Bei der Modellierung sollen nach Moglichkeit verschiedene Abstraktionsebenen (z.B. Busi-
nessebene, technische Ebene - vgl. 2.1) zur Verfligung stehen.

Es muss die Moglichkeit geben, Regeln zu verwalten und beliebige Ereignisquellen zu
nutzen.

Es sollen moglichst viele der in [BDGoy] vorgeschlagenen Composite Event Patterns reali-
sierbar sein. Durch die Integration beliebiger Ereignisquellen soll eine Integrationsplattform

32

4.3. Funktionale Anforderungen

auf Ereignisebene entstehen. Die in [BDGo7y] beschriebenen Composite Event Patterns be-
trachten nicht die Reaktion auf eingetretene Ereignisse. Reaktionen sollen grundsétzlich im
Workflow-Modell realisiert werden. Zusétzlich soll es aber moglich sein, Workflow-Instanzen

per Ereignis zu erzeugen.

33

5. Technologien

5.1. BPMN-Engines

Aufgrund der weitreichenden Ereignis-Konzepte, die von BPMN 2.0 unterstiitzt werden, habe
ich mich fiir die Nutzung einer BPMN-Engine entschieden. Als BPMN-Engines kommen,
wie bereits erwdhnt, JBPM 5 des JBOSS-Projekts’ und Activiti ein OpenSource Projekt, das
vom Unternehmen Alfresco? initiiert wurde und von einigen anderen Firmen unterstiitzt
wird, in Frage. Beide Engines sind in Java implementiert und basieren auf einem dhnlichen
Konzept. Sie basieren auf einer sogenannten Process Virtual Machine (PVM). Die PVM ist
ein Konzept zur Ausfithrung von Graphen, die aus Knoten und Kanten bestehen. Auf Basis
der PVM konnen praktisch beliebige graphbasierte Sprachen implementiert werden. Im
konkreten Fall wurde in beiden Féllen BPMN 2.0 implementiert. Es lassen sich aber auch
BPEL, XPDL und andere Sprachen mit dem Konzept einer PVM realisieren3.

Activiti

Bei der Evaluation von Activiti im Hinblick auf die Ereignisfahigkeit zeigt sich, dass viele
BPMN 2.0 Elemente noch nicht implementiert sind. Insbesondere bei den Ereignissen sind
bisher lediglich die angehefteten Ereignisse Timer und Fehler implementiert. Sowohl das
Activiti-kompatible Subset von BPMN 2.0 in der Modellierungsumgebung von Activiti
(siehe Abbildung 5.1) als auch der Parser der Engine unterstiitzen keine anderen Ereignisse.
Insbesondere werden keine Nachrichten-Ereignisse unterstiitzt.

Thttp://www. jboss.org
2http://www.alfresco.com
3http://docs. jboss.com/jbpm/pvm/article

35

http://www.jboss.org
http://www.alfresco.com
http://docs.jboss.com/jbpm/pvm/article

5. Technologien

4 Catching Intermediate Events

Datei Bearbeiten Ansicht Chronik Lesezeichen Extras Hilfe Datei Bearbeiten Ansicht Chronik Lesezeichen Extras Hilfe
<P g € O hetpifflocalhost:8080/acthiti-modeler/| ¢ » € O hiep://localhost: 8080/activiti-modeler/|
NawProcess-Signavio 6 %+ NawProcess-Signavio 6 +
0 P
== 1 > | of & |G & & HE ! 1 = | of | G & &
Shape Repository Shape Repository
BPMMN (Complete) ~7 BPMN (Activiti) A2
4 BPMN 2.0 4 BPMN 2.0 / Activit
b Activities 4 Activities
1 1
G
b Careways | O rask
b Swimi
mEn=s] B, User Task
P Artifacts
| N
} Dam Objects | '% Service Task
b SmrtEvents = seript Task
|
1

OF Manual Task

@ Intermedizre Message Evert Send Task

=
@ Intermediate Timer Event [Receive Task
@ Intermediate Escalation Evert [Ej Call Activity
E] Intermediate Conditional Evenit [=) Expanded Subprocess
€ Intermediate Link Evert

b Gamways
@ Inermediate Error Evert b Swimlanes
Artitacts
B intermediate Cancel Event b At

b Start Events
4B Imermedize Compensation Evert
4 Catching Intermediate Events

@3 Intermediate Signal Event @ Imermediare Timer Evert

@) Intermediare Multiple Event b End Events

e Intermediate Parallel Multiple Event b Connecting Objects

(a) Activiti - Vollstandige BPMN 2.0 Palette (b) Activiti - Subset von BPMN 2.0, das von
Activiti untersttitzt wird

Abbildung 5.1.: Activiti Modeler - BPMN-Palette

JBPM5

JBPM5 scheint bei der Implementierung von BPMN 2.0 Elementen schon weiter fortge-
schritten. So unterstiitzt JBPM5 Nachrichten-Ereignisse als Start-Ereignisse und Zwischen-
Ereignisse?.

Auswahl einer Engine

Insgesamt scheint mir die Activiti-Engine besser strukturiert und durchdachter. Die Doku-
mentation ist bei beiden Projekten eher mangelhaft. Wahrend das Benutzerhandbuch bei
JBPM5 etwas weiter fortgeschritten ist, ist der Quellcode der Activiti-Engine besser kommen-
tiert. Da moglicherweise Anderungen am Quellcode notwendig sind und das Activiti-Projekt
einen wesentlich aktiveren Eindruck macht, habe ich mich fiir den Einsatz von Activiti bei

4https://hudson. jboss.org/hudson/job/jBPM5/lastSuccessfulBuild/artifact/target/jbpm-5.
1-SNAPSHOT-docs-build/jbpm-docs/html/chO1.html#d0e74

36

https://hudson.jboss.org/hudson/job/jBPM5/lastSuccessfulBuild/artifact/target/jbpm-5.1-SNAPSHOT-docs-build/jbpm-docs/html/ch01.html#d0e74
https://hudson.jboss.org/hudson/job/jBPM5/lastSuccessfulBuild/artifact/target/jbpm-5.1-SNAPSHOT-docs-build/jbpm-docs/html/ch01.html#d0e74

5.1. BPMN-Engines

meiner Implementierung entschieden. Aus diesem Grund folgen hier nun noch einige Details
zum Aufbau (siehe Abbildung 5.2) von Actviti.

Web Frontends

Abbildung 5.2.: Aufbau von Activiti (Quelle: vgl. [Men11])

Es stehen fiir Activiti verschiedene Benutzungsschnittstellen in Form von WebFrontends
zur Verfligung. Diese kommunizieren mit der Activiti Engine per REST. Als Abstraktions-
schicht fiir persistente Daten dient MyBatis. MyBatis unterstiitzt eine grofle Zahl gdngiger
Datenbankmanagement-Systeme (DBMSe) als Datenbank-Backend.

Die zentralen Benutzungsschnittstellen von Activiti sind:

Activiti-Modeler dient der Modellierung von Geschéftsprozessen.

Activiti-Probe ermoglicht das Deployment von Prozessen und die Anzeige von Informatio-
nen z.B. zu den laufenden Prozessinstanzen und der Activiti-Engine.

Activiti-Explorer dient der Anzeige von Tasks und dem Starten von Prozessinstanzen.

Activiti-Designer ein Eclipse-Plugin zur Modellierung von Geschéftsprozessen

Kurz vor dem Druck der Diplomarbeit, wurden die Funktionen der Anwendungen Activiti-Probe und
Activiti-Explorer sinnvollerweise im Activiti-Explorer gebiindelt.

37

5. Technologien

5.2. CEP-Engine

Esper wurde als CEP-Engine bereits kurz in Kapitel 2.3 erwdhnt. Auf Basis der Fachstudie
[BDK10] wurde dort bereits entschieden, Esper fiir die Implementierung zu verwenden. Bei
Esper handelt es sich um eine freie CEP-Engine, die fiir Java und fiir INET zur Verfiigung
steht. Der Hersteller Espertech> schreibt: ,Esper erlaubt die schnelle Entwicklung von
Anwendungen, die grofse Mengen von Nachrichten oder Ereignissen verarbeiten. Esper filtert
und analysiert Ereignisse auf verschiedene Weise und reagiert in Echtzeit auf Bedingungen,
die von Interesse sind. Esper verwendet eine optimierte Sprache fiir die Verarbeitung einer
grofien Anzahl zeitabhdngiger Ereignisse”.

Einen Uberblick iiber die Architektur gibt Abbildung 5.3.

High-speed, high-volume
data streams

Event Query & Causality Pattern Language

Esper: Lightweight ESP/CEP container

Abbildung 5.3.: Architekturiiberblick der CEP-Engine Esper (Quelle: vgl. http://www.
espertech.com/products/esper.php)

Fiir die Verarbeitung von Ereignissen sind die Statements von zentraler Bedeutung. Ein
Statement besteht aus einer Regel (Event-Query oder Causality Pattern) und einem oder
mehreren Listenern (im Sinne des Observer-Patterns).

Sobald ein Statement beim CoreContainer registriert wird, werden also Ereignisse des Ereignis-
Stroms von einer Esper-Engine analysiert. Wird ein Muster erkannt oder liefert eine Query
Ergebnisse, so werden diese ebenfalls in Form von Ereignissen an Listener, die an Statements
gebunden sind, ausgeliefert und konnen weiterverarbeitet werden. Listener sind einfache
POJOs, die das Interface com.espertech.esper.client.UpdateListener implementieren. Esper ldsst
sich somit gut in (bestehende) Java-Anwendungen integrieren6.

Die Ergebnis-Ereignisse, die von Esper produziert werden, konnen also iiber eine eigene
Implementierung in einer beliebigen Java-Anwendung weiterverarbeitet werden. AufSerdem

Shttp://www.espertech.com
Shttp://www.espertech.com/products/esper . php

38

http://www.espertech.com/products/esper.php
http://www.espertech.com/products/esper.php
http://www.espertech.com
http://www.espertech.com/products/esper.php

5.2. CEP-Engine

stellt Esper Adapter zur Verfiigung, um Ereignisse direkt per Java Messaging Service (JMS)
zu publizieren.

39

6. Architektur

In diesem Kapitel wird eine Architektur beschrieben, die es ermoglicht, die Anforderungen
aus Kapitel 4 umzusetzen. Natiirlich kann die Architektur hier nicht mit einem Detaillierungs-
grad wie in einem Entwurfsdokument eines realen Softwareprojekts beschrieben werden. So
verzichte ich unter anderem komplett auf einen Entwurf der Benutzungsschnittstellen und
beschranke mich an vielen Stellen bewusst darauf, das Prinzip deutlich zu machen.

Mein Ansatz besteht darin, bestehende WfMSe mit bestehenden Systemen zur Ereignis- bzw.
Situationsverarbeitung zu integrieren. Bei der Architektur des Systems orientiere ich mich
dabei konzeptionell am Referenz-Modell der WfMC. Abbildung 6.1 zeigt auf der linken
Seite das WIMC Referenz-Modell fiir WfMSe und auf der rechten Seite analog dazu ein
System zur Ereignis- und Situationsverarbeitung. Diese Diplomarbeit beschéftigt sich im
Wesentlichen mit dem Rule Enactment, also der Ausfithrung.

Workflow Modelingp= = = m = = = - - - - - = = = = Rule Modeling

Model import/export Model import/export

Workflow Enactment Rule Enactment
Event configuration/exchange

Wmmzm- Eﬂm-
WfMS Engine Workflow ESEngine

Enactment
Service

onitoring

|M

Worklist | Application EventSource

Processor Invocation Interaction

Worklist handlerV Avoked application = / Event sources
Worklist — [X X]
Application Application

IqQJ9d0J91U|I

£y

Abbildung 6.1.: Uberblick im Kontext des WfMC-Referenz-Modells (basierend auf
dem Workflow Reference Model Diagram http://www.wfmc.org/
reference-model.html der WEMQC)

41

http://www.wfmc.org/reference-model.html
http://www.wfmc.org/reference-model.html

6. Architektur

Abbildung 6.2 gibt einen Gesamtiiberblick tiber die Architektur. Der Architekturiiberblick
zeigt folgende zentrale Komponenten, die implementiert werden miissen:

¢ ESCStore
¢ ESEngine

¢ InstanceManager

ESEngine

RM / A EventSource N <
InstanceManager ~|———O——— {ESEnginelnstance 1 H \ Twitter
EventSource <«
l \a
EventSource &
/Wﬂkﬂﬁw@gﬁe ESEnginelnstance n i |
/ \ EventSource
~
[Workflowlnstance 1
| | IMS EventSource |
| | ESEngineProcinstance 1 H |
| | EventTopic EventSource 4*
| 5 Yo
|/ ms . s R | EventSource |
| |workflowinstance n V() ¥ A% ESEngineProcinstance n H) Y&
\) \ EventSource 7 YahooFinance
AN — | <R
SOAPHTTP

ESCStore C(DBMS >

Abbildung 6.2.: Uberblick Gesamtarchitektur

Die anderen Komponenten sind eine Workflow-Engine, verschiedene Datenquellen (Twitter,
YahooFinance, ...), eine Message oriented Middleware (MoM) und ein DBMS. Die Integration
dieser fertigen Komponenten wird im Abschnitt 6.3 beschrieben.

6.1. Komponenten

Im Folgenden werden zundchst die zu implementierenden Komponenten beschrieben, ehe
dann genauer auf die Datenformate und die Kommunikation eingegangen wird.

6.1.1. ESCStore

Der Name ESCStore steht fiir Event Situation Configuration Store und dient der Verwaltung
von Regeln und Ereignisquellenkonfigurationen. Der ESCStore soll Regeln unterschiedlichs-
ter Ereignis- bzw. Situationsverarbeitungssysteme und verschiedenster Ereignisquellen (siehe
6.1.2) speichern. Er bietet eine Web Service-Schnittstelle (siehe A.2) an. Nattirlich wére es
moglich, auf den ESCStore zu verzichten und alle Regeln zur Laufzeit direkt zu {ibermitteln.

42

6.1. Komponenten

Mehrere Punkte sprechen jedoch daftir, den ESCStore wie im Folgenden beschrieben zu
realisieren:

Wiederverwendbarkeit Verschiedene Prozesse konnen per Deklaration die gleichen Regeln
verwenden.

Transparenz Der Prozessmodellierer muss kein Regelexperte sein und kann die Regeln
deklarativ verwenden. Es kann also klar zwischen den Rollen Regelmodellierer und
Prozessmodellierer unterschieden werden.

Entkopplung Die Optimierung von Regeln erfordert keine Anderung eines oder mehrerer
Prozesse, da die Regeln per Name im Prozess deklariert werden.

Die Abbildung 6.3 zeigt die ESCStore-Klasse und das Datenmodell fiir die Regeln und
Ereignisquellenkonfigurationen, die im ESCStore abgelegt werden.

«interface»
+ ESCStore

+addRule(rule : AbstractRule)

+getRule(id : long) : AbstractRule

+delRule(id : long)
+getinstantiationRules(processID : long) : InstantiationRule[*]
+getAllRules() : AbstractRule[*]
+addEventSource(es : EventSource)
+getEventSource(id : long)

+delEventSource(id : long)
+getRuleEventSources(id : long)
+getAllEventSources() : EventSource[*]
+getRuleByName(String) : EventSource[*]
+getEventSourceByName(String) : EventSource[*]

1 1

0..* 0..%

+ AbstractRule + EventSource

+rule : String
+author : String
+description : String 1 0..*
+esEngine : String

+eventSources [0..*] : EventSource
+id : Long

+name : String

+id : Long

+name : String

+type : String

+description : String
+eventSourceConfig : String

+ RuntimeRule + InstantiationRule

+wsdl : String
+operation : String
+processID : String

Abbildung 6.3.: Klassendiagramm der ESCStore Komponente

43

6. Architektur

Beztiglich der Regeln gilt es abzuwégen, ob Regeln im ESCStore workflow-spezifisch sind,
also jedes Prozess-Modell seine eigenen Regeln hat, oder ob die Regeln global definiert
werden und dann per Deklaration festgelegt wird, welche Regeln welcher Prozess verwendet.
Gegen den ersten Ansatz spricht, dass Regeln bei der Erstellung neuer Prozesse immer
wieder kopiert werden miissen, auch wenn die gleichen Ereignisse verarbeitet werden. Der
Ansatz die Regeln so zu speichern, dass sie fiir alle Prozesse verwendbar sind, hat aber
ebenfalls Nachteile. Wird eine Regel in ihrer Semantik fiir einen Prozess gedndert, kann dies
zu Problemen bei anderen Prozessen fiihren. Die Deklaration der zu verwendenden Regeln
in der Configuration Task wird aufwiandiger. Dennoch habe ich mich dazu entschieden,
die Regeln global zu definieren und die Verwendung explizit in der Configuration Task zu
deklarieren. Dieser Ansatz bietet die Flexibilitdt, zu verwendende Ereignisse/Regeln erst zur
Laufzeit, d.h. nach der Instantiierung, festzulegen.

Es gibt zwei Arten von Regeln. Regeln, die zur Laufzeit von einer Prozessinstanz benotigt
werden, werden im Folgenden als Laufzeitregeln bezeichnet. Im Klassendiagramm heifst die
entsprechende Klasse RuntimeRule. Regeln, die dazu dienen, eine Prozessinstanz zu erzeu-
gen, werden als Instantiierungsregeln (IntantiationRule) bezeichnet. Folgende Informationen
werden fiir jede Regel gespeichert:

Name Der Name der Regel

ESEngine Name der ESEngine-Implementierung (z.B. Esper), die diese Regel verarbeiten
soll

Rule Die engine-spezifische Regel
Author Der Name des Autors
Description Natiirlichsprachliche Beschreibung der Regel

EventSources* Dieses Attribut ist optional und enthilt ggf. die Konfiguration von Ereignis-
quellen, die von der Regel benotigt werden.

Instantiierungsregeln benotigen zusétzlich folgende Informationen:

ProcessID Die ID des Prozesses, der gestartet werden soll
WSDL Die WSDL des Prozesses

Operation Die Operation, die zum Starten/Instantiieren aufgerufen werden muss

Neben den Regeln kann der ESCStore auch Konfigurationen fiir EventSources verwalten.
Standardmafiig wird die Konfiguration aus dem ESCStore geladen, um die Benutzung des
Systems fiir unerfahrene Benutzer moglichst einfach zu gestalten. Um trotzdem flexibel
zu sein, soll es moglich sein, EventSources in der Configuration Task zu konfigurieren
(siehe 6.1.2). Wird die Konfiguration in der Configuration Task vorgenommen, wird die
vorgenommene und nicht die im ESCStore gespeicherte Konfiguration verwendet.

44

6.1. Komponenten

6.1.2. ESEngine

Der Name ESEngine steht fiir Event Situation Engine. Die ESEngine stellt also die Kompo-
nente zur Ereignisverarbeitung bzw. Situationserkennung dar. Die ESEngine bietet eine Web
Service-Schnittstelle, die direkt auf das Interface ESEngine (siehe Abbildung 6.4) abgebildet
wird.

Neben dem Interface ESEngine sind vor allem die Interfaces ESEnginelnstance und Event-
Listener von Bedeutung. Um externe Ereignisse zu abonnieren und verarbeiten zu konnen,
muss aufserdem das Interface EventSource (siehe 6.1.2) fiir alle gewiinschten Ereignisquellen
implementiert werden.

Um ein existierendes System zur Ereignisverarbeitung bzw. Situationserkennung zu nutzen,
muss also eine Mapping-Schicht implementiert werden, die das konkrete System auf die
Interfaces ESEngine und ESEnginelnstance abbildet.

Das ESEngine-Interface stellt Methoden zur Verwaltung von ESEngine-Instanzen zur Verfii-
gung, die direkt iiber den Web Service angesprochen werden sollen.

45

6. Architektur

<<interface>>
+ ESEngine

<<interface>>
+ ESEnginelnstance

+destroyESEnginelnstance(esEnginelD : String)
+getEngineType() : String

+createESEnginelnstance(config : ConfigurationMessage) : String

+getESEnginelnstancelD() : String

/N

1
1
1
1
) |
<<realize>> |
!
!
!
.

+ ESEnginelmpl

-ENGINE_TYPE : String

1
0.*

+registerStateListener(listener : StateListener) <<Enum>>
+unregisterStateListener(listener : StateListener) + State---
+notifyStateListener(state : State---) has 1
+setEventDestination(destination : String) +init
+getProcessinstancelD() : String +run
+destroy() +finalize
+getConfiguration() : ConfigurationMessage

+create(config : ConfigurationMessage)

<<interface>>
+ EventListener

+onEvent(event : CommonBaseEvent)

<<realize>>

<<realize>>

+ Esperinstance

+ ESEnginelnstancelmpl

<<interface>>
+ EventPublisher

-ESEnginelnstancelmpl()
+ESEnginelnstancelmpl(config : ConfigurationMessage)

1
0..*

<<interface>>
+ EventSource

+init(config : String)

-notifylncomingEventListener()
+addEventListener(eventListener : EventListener)
+removeEventListener(eventListener : EventListener)
+notifyEventListener(event : CommonBaseEvent)
+destroy()

/N /N

1 . .. 1
| <<realize>> <<realize>>

1 1
+ TwitterEventSource + JMSEventSource

+setESEnginelnstance(ESEnginelnstance)
+getESEnginelnstance() : ESEnginelnstance
+publish(event : CommonBaseEvent)

Abbildung 6.4.: Klassendiagramm der ESEngine-Komponente

Um Workflow-Instanzen per Ereignis erzeugen zu konnen, muss fiir jedes Workflow-Modell,
fiir das eine Instantiierungsregel existiert, eine ESEngine-Instanz (in der Abbildung 6.2
ESEngineProcInstance genannt) gestartet werden, und es miissen die entsprechenden Regeln
geladen werden. Fiir Instantiierungsregeln erzeugt der ESCStore die ConfigurationMessage
und publiziert diese {iber das EventTopic, aus dem der InstanceManager die Configuration-
Message liest und eine entsprechende ESEngine-Instanz erzeugt. Eintreffende Configura-
tionMessages werden von einer ESEngine persistent gespeichert, um im Fehlerfall bei der
Recovery des Systems bestehende ESEngine-Instanzen wieder herstellen zu kénnen. Das
persistente Speichern von Daten, die aktuell von den ESEngine-Instanzen verarbeitet werden
sollen, ist nicht sinnvoll, da es sich um eine grofie Anzahl von Daten handelt, die moglichst

schnell verarbeitet werden soll.

46

6.1. Komponenten

EventSource

Das EventSource-Interface enthélt Methoden-Signaturen, um von verschiedensten Ereignis-
quellen (z.B. Twitter, YahooFinance, Sensoren, ...) zu abstrahieren. Die EventSource dient
zum einem dem Abonnement von Ereignissen und zum anderen der Transformation von
Ereignissen in das intern verwendete Common Base Event (CBE)-Ereignisformat (siehe
6.2.2). Um vor der Verarbeitung, durch die jeweilige ESEngine-Implementierung (z.B. Esper),
bereits eine Vorverarbeitung der Ereignisse durchzufiihren, kann ebenfalls das Konzept der
EventSource verwendet werden. Es ist so z.B. moglich, Ereignisse zu klassifizieren und erst
dann an die jeweilige ESEngine weiterzuleiten. Die Anbindung der EventSource an das
restliche System folgt dem Observer-Pattern.

Eine Implementierung des Interface EventSource erlaubt die Einbindung praktisch beliebiger
Ereignisquellen. Es sind also Ereignisquellen wie JMS-Topics / Queues genauso denkbar
wie AJAX-HTTP-Streams oder ganz andere Quellen.

Um eine neue Ereignisquelle hinzuzufiigen, muss also lediglich das Interface EventSource
implementiert werden.

6.1.3. InstanceManager

Der InstanceManager iibernimmt die Erzeugung von ESEngine-Instanzen. Grundsatzlich
besteht die Moglichkeit, die Funktionalitdt auch in der Komponente ESEngine zu realisie-
ren. Die separate Implementierung hat aber viele Vorteile. Die Funktionalitit muss nur
einmal realisiert werden, auch wenn es mehrere verschiedene ESEngine-Implementierungen
(Esper, Oracle CEP, ...) geben kann. Ein weiterer Vorteil ist, dass nicht jede ESEngine-
Implementierung alle ConfigurationMessages empfangen und priifen muss, ob das Attribut
engineType dem eigenen Typ entspricht und somit die Engine fiir die Ausfithrung verwendet
werden soll. Der InstanceManager ruft eine ESEngine des entsprechenden Typs auf. Es ist also
moglich, an dieser Stelle eine Lastverteilung vorzunehmen, falls verschiedene ESEngines
des gleichen Typs (z.B. Esper) zur Verfiigung stehen. Dies ist insbesondere dann interessant,
wenn eine grofie Anzahl von Prozessinstanzen und Prozessen existieren oder es gar meh-
rere Workflow-Engines gibt. Um die verschiedenen ESEngines zu verwalten, wiirde eine
Art Verzeichnis benétigt. Die Implementierung der Lastverteilung wird im Weiteren nicht
mehr Gegenstand der Diplomarbeit sein. Es sollte lediglich begriindet werden, warum der
InstanceManager als eigenstindige Komponente ausgelagert wird und nicht als Teil der
ESEngine implementiert werden sollte.

47

6. Architektur

<<interface>>
MessagelListener

onMessage(msg : Message)

N
: <<realize>>

. 1
<<interface>> 1

InstanceManager JMSReceiver

createlnstance(config : ConfigurationMessage) : String
destroylnstance(instancelD : String)

Abbildung 6.5.: Klassendiagramm der InstanceManager-Komponente

6.2. Datenmodellierung

Als Datenformate werden, soweit moglich, verbreitete, standardisierte Formate eingesetzt.
Stehen keine passenden Formate zur Verfiigung, wird auf XML als Technologie zuriickge-
griffen, und es werden eigene XML-Schemata definiert.

6.2.1. ConfigurationMessage

Die ConfigurationMessage ist eine Nachricht zur Initialisierung einer ESEngine. Die Configu-
rationMessage besteht aus zwei Bereichen. Der erste Bereich, im Folgenden EventDeclaration
genannt, deklariert, welche Ereignisse von der Workflow-Instanz verwendet werden. Der
zweite Bereich konfiguriert die EventSource, welche die Ereignisse fiir die Verarbeitung in
der ESEngine liefern sollen. Der Bereich wird im Folgenden SourceConfiguration genannt.
Die SourceConfiguration ist so gestaltet, dass neue Ereignisquellen moglichst einfach ver-
wendet werden konnen. Um eine neue Ereignisquelle nutzen zu konnen, muss das Interface
de.uni_stuttgart.informatik.eventum.esengine.management.EventSource (siehe 6.4) implementiert
werden.

Das einer ConfigurationMessage zugrunde liegende XML-Schema befindet sich im Anhang
unter A.2.

6.2.2. Ereignisformat
Als Ereignisformat wird das Format der CBE-Spezifikation von IBM" verwendet. , Die

Common Base Event Spezifikation definiert einen neuen Mechanismus, um Ereignisse
in Geschiftsanwendungen zu verwalten ...“?. Das CBE-Format wurde wohl urspriinglich

*http://www.ibm.com
2http://www.ibm.com/developerworks/library/specification/ws-cbe/

48

http://www.ibm.com
http://www.ibm.com/developerworks/library/specification/ws-cbe/

6.2. Datenmodellierung

ausschlieflich fiir Maschinenereignisse vor allem im Bereich Netzwerke und nicht fiir CEP
entwickelt. Es ldsst sich aber nutzen, auch wenn einige Attribute nicht unbedingt sinnvoll
erscheinen.

Prinzipiell konnen alle Moglichkeiten, die das XML-Schema bietet, von einer Ereignisquelle
verwendet werden. Um jedoch zu zeigen, wie eine sinnvolle Verwendung aussehen konnte,
zeige ich hier ein Beispiel fiir ein Ereignis im CBE-Format aus dem Szenario in Kapitel 8.1.
Das Ereignis wurde von der TwitterEventSource erzeugt.

<?xml version="1.0" encoding="UTF-8" standalone="yes"7>
<commonBaseEventType creationTime="2011-06-22T13:03:41.836+02:00" extensionName="Tweet"
xmlns:ns2="http://wuw.ibm.com/AC/commonbaseevent1_0_1">
<ns2:extendedDataElements type="String" name="category">
<ns2:values>neutral</ns2:values>
</ns2:extendedDataElements>
<ns2:extendedDataElements type="String" name="text">
<ns2:values>Welche Rolle #socialmedia bei Bayer MaterialScience spielt:
http://t.co/yCPgpbp #socbiz #Wikis #Blogs #casestudy #lesenswert</ns2:values>
</ns2:extendedDataElements>
<ns2:sourceComponentId componentType="WebApplication" locationType="Hostname"
location="twitter.com" componentIdType="ServiceName" subComponent="twitter.com"
component="twitter.com"/>
<ns2:situation categoryName="OtherSituation">
<ns2:situationType xsi:type="ns2:0therSituation" reasoningScope="EXTERNAL"
xmlns:xsi="http://wuw.w3.0org/2001/XMLSchema-instance"/>
</ns2:situation>
</commonBaseEventType>

Die von der CBE-Spezifikation definierten Attribute sind zu einem grofSen Teil optional.
Lediglich die Attribute bzw. Elemente creationTime, sourceComponentld und situation miissen,
gemaf3 der Spezifikation, vorhanden sein.

Attribut Beschreibung

creationTime Datum und Uhrzeit zu denen das Eintritt eingetreten ist.

sourceComponentld Id der Komponente die von dem Ereignis oder Situation
betroffen ist.

situation Gibt den Typ der Situation angibt die zu dem Ereignis
gefiihrt hat.

Tabelle 6.1.: Common Base Event: Benotigte Attribute

Um Ereignisquellen-spezifische Daten auszudriicken, definiert das CBE-Format sogenannte
extendedDataElements. Ein extendedDataElement hat die Attribute type und name sowie ein
Element value.

Die CBE-Spezifikation erlaubt die folgenden Datentypen sowie die entsprechenden Array-
Typen:

49

6. Architektur

* byte

¢ short

* int

* long

e float

e double

* string

¢ dateTime
* hexBinary

® boolean

Bei der Implementierung einer EventSource muss also darauf geachtet werden, dass alle
benétigten Attribute gesetzt werden und nur die erlaubten Datentypen verwendet werden.

Weitere Informationen konnen der CBE-Spezifikation unter http://www.ibm.com/
developerworks/autonomic/books/fpyOmst . htm#HDRAPPA entnommen werden.

6.3. Kommunikation und Datenintegration

Fur die Kommunikation werden zum einen Web Services3 (SOAP tiber HTTP) und zum
anderen JMS# verwendet.

Eine Entkopplung von Workflow-Engine und den Systemen zur Ereignis- bzw. Situations-
verarbeitung ist zwingend notwendig, um die Workflow-Engine vor einer Uberﬂutung von
Ereignissen zu schiitzen. Asynchronitit entspricht dem Charakter von Ereignissen. Fiir die
Kopplung der Systeme wird aus diesem Grund eine MoM eingesetzt. Die Entkopplung der
Systeme per MoM trédgt zur Robustheit und Erweiterbarkeit bei. Falls einzelne Teilsysteme
ausfallen oder nicht erreichbar sind, fiihrt das in der Regel nicht dazu, dass das komplette
System ausfallt. Durch die Verwendung einer MoM erhélt man auflerdem eine Indirektion
beim Nachrichtenaustausch. Dies fiihrt zu einer guten Erweiterbarkeit, da die Komponenten
sich nicht kennen miissen.

Als MoM wird eine JMS-Implementierung eingesetzt. Diese Implementierung stellt das
EventTopic zur Verfligung iiber das die Kommunikation zwischen WfMS, ESEngine und
InstanceManager stattfindet (siehe Abbildung 6.2).

Shttp://www.w3.org/TR/ws-arch/
4http://www.oracle.com/technetwork/java/jms/index.html

50

http://www.ibm.com/developerworks/autonomic/books/fpy0mst.htm#HDRAPPA
http://www.ibm.com/developerworks/autonomic/books/fpy0mst.htm#HDRAPPA
http://www.w3.org/TR/ws-arch/
http://www.oracle.com/technetwork/java/jms/index.html

6.3. Kommunikation und Datenintegration

Das Sequenzdiagramm in Abbildung 6.6 zeigt exemplarisch den Ablauf der Kommunikati-
on.

EventPublisher

| :ESEnginelmpl | | :ESEnginelnstancelmpl | | :ESCStorelmpl | | :EventSource
T T T T T

. . I I
createESEnginelnstance(CM cpnfig) | 1
create(CM config) N |

getRuleByName(Strind name)

getEventSourceByName(String name)

I
I
I
I
I
I
I
I
I
I
I
|
|
|
|
init(CM cdnfig) L

- - - - - - - - -
|
|
|
i
]
I
| o external|Event
onEvent({CBE event) <
< T -

e e '
| I
1 : !

Abbildung 6.6.: Sequenzdiagramm: Erstellung einer ESEngine-Instanz; Abruf von Daten aus
dem ESCStore; Initialisierung einer EventSource; Empfang eines Ereignisses

Das EventTopic ist, wie bereits erwédhnt, das Austauschmedium zwischen einer Workflow-
Engine und dem tibrigen System. Trifft eine ConfigurationMessage ein, ruft der InstanceMa-
nager den Web Service einer passenden ESEngine auf. Passend bedeutet in diesem Fall, dass
die ESEngine vom richtigen Typ ist, der Typ der ESEngine also mit dem Attribut engineType
in der ConfigurationMessage (siehe A.2) {ibereinstimmt.

In einer realen Umgebung kann es sinnvoll sein, nicht nur einen sondern mehrere Instan-
ceManager zu haben. So wird das Problem eines Single Point of Failure oder Bottlenecks
umgangen. Es miisste dann eine zusétzliche Queue verwendet werden, um sicherzustellen,
dass genau ein InstanceManager die ConfigurationMessage liest.

Innerhalb der ESEngine-Komponente wird beim Aufruf von createESEnginelnstance eine
Instanz der Implementierung von ESEnginelnstance erzeugt. Danach wird der zugehorige
EventListener konfiguriert, indem die SourceConfiguration tibergeben wird. Im Detail be-
deutet dies, dass eine EventSource-Implementierung erzeugt und konfiguriert wird. Dann
registriert sich der EventListener als Listener bei der EventSource-Implementierung. Beim
Eintreffen eines Ereignisses bei der EventSource-Implementierung wird das entsprechende
Ereignis in das CBE-Format transformiert und dann an den EventListener weitergereicht,

51

6. Architektur

von der ESEngine weiterverarbeitet, und schliefSlich werden die Ergebnisereignisse an das
EventTopic weitergeleitet und konnen von der Workflow-Engine konsumiert werden.

Fiir die Kommunikation der Ereignisproduzenten (z.B. Twitter, YahooFinance, Sensoren, ...)
kommen unterschiedlichste Protokolle in Frage. Die Protokolle sind durch den Ereignispro-
duzenten vorgegeben.

52

7. Implementierung

Dieses Kapitel beschreibt die konkrete Umsetzung des in Kapitel 6 skizzierten Entwurfs. Auf
die Implementierung von grafischen Benutzungsoberflachen wird verzichtet. Lediglich das
Eclipse-Plugin von Activiti zur Modellierung von Prozessen wurde um zwei Aktivitdten
erweitert.

Die Implementierung integriert die beiden Systeme Activiti* als Workflow-Engine und Es-
per? als CEP-Engine. Bei der Implementierung wurde viel Wert auf die Trennung zwischen
einem anwendungsspezifischem Code (hier also Activiti und Esper) und einem Code, der
die Basis fiir die Integration darstellt, gelegt. Es handelt sich also lediglich um eine Art Refe-
renzimplementierung, die sich auch leicht auf andere Workflow-Engines und insbesondere
andere Systeme zur Ereignisverarbeitung tibertragen lasst.

7.1. Vorgehen bei der Implementierung

Im Folgenden wird das grobe Vorgehen bei der Implementierung beschrieben.

7.1.1. Hauptkomponenten

Bei der Implementierung wurde grofser Wert auf die Trennung zwischen Datenmodell und
Anwendungslogik gelegt. Fiir die Komponenten ESCStore und ESEngine wurden zunéchst
die Datenmodelle entwickelt. Dazu wurden XML-Schemata entwickelt und per Java Archi-
tecture for XML Binding (JAXB) Java-Klassen erzeugt. Die generierten Klassen wurden um
Java Persistence API (JPA)-Annotationen ergdnzt. Auf diese Weise wird beschrieben, wie
Daten in der Datenbank persistent abgelegt werden. Es wird also letztendlich das Daten-
bankschema mithilfe von Annotationen beschrieben. Aus meiner Sicht sind sowohl Lese-
als auch Schreiboperationen fiir die Performance des Systems von untergeordneter Bedeu-
tung. Schreiboperationen finden im Wesentlichen nur beim Hinzufiigen von neuen Regeln
oder Ereignisquellen-Konfigurationen statt. Leseoperationen finden bei der Instantiierung
von ESEngines statt. Aus diesem Grund ist in diesem Fall nichts gegen den Einsatz eines
Object-Relational-Mapper (ORM) einzuwenden. Der Standardweg in Java ist die Nutzung
der JPA. Als Implementierung wurde die Referenzimplementierung EclipseLink3 gewdhlt.

Thttp://www.activiti.org
*http://esper.codehaus.org
Shttp://www.eclipse.org/eclipselink/

53

http://www.activiti.org
http://esper.codehaus.org
http://www.eclipse.org/eclipselink/

7. Implementierung

Als DBMS wird H2* eingesetzt. Das DBMS kann aufgrund der Verwendung der JPA aber
leicht ausgetauscht werden.

Die eigentliche Verarbeitung von Ereignissen bzw. Situationen erfolgt durch entsprechende
Engines. Im konkreten Fall wurde Esper> verwendet. Esper ist, wie bereits in Kapitel 5.2
erwahnt, in der Lage, eine grofie Anzahl von Ereignissen mit hoher Geschwindigkeit zu
verarbeiten. Ein persistentes Speichern von Ereignissen wiirde die Verarbeitungsgeschwin-
digkeit von Esper stark reduzieren. Dies ist mit den Zielen, eine moglichst grofle Anzahl von
Ereignissen mit moglichst geringer Verzogerung zu verarbeiten, nicht vereinbar. Esper sieht
trotzdem Konzepte zur Speicherung historischer Daten vor. Diese werden hier aber nicht
weiter betrachtet, da es nur schwer moglich ist, ein allgemeingiiltiges Konzept auf dieser
Basis zu entwickeln.

Nach der Entwicklung der Datenmodelle wurden per Web Service Description Language
(WSDL) die Web Services beschrieben und per Java API for XML - Web Services (JAX-WS)
die entsprechenden Skeletons generiert. Standardmaéfig generiert JAX-WS das Datenmodell
fiir Web Services automatisch. Mithilfe von sogenannten Binding-Files kann allerdings ein
zuvor mit JAXB® generiertes Datenmodell verwendet werden. Dies hat mehrere Vorteile:

¢ Die Datenmodelle konnen von verschiedenen Web Services wiederverwendet werden,
und das Datenmodell muss nicht fiir jeden Web Service erneut generiert werden.

* Anderungen an der Schnittstelle erfordern nicht unbedingt eine Anderung des Daten-
modells und umgekehrt.

7.1.2. Activiti

Activiti (siehe Kapitel 5) ist eine vollstdndig in Java implementierte BPMN 2.0-Workflow-
Engine. Activiti unterstiitzt nur eine Teilmenge der Elemente von BPMN 2.0 und wird
wahrscheinlich wie auch andere BPMN-Engines nie alle Elemente implementieren. Leider
sind bis zur Activiti-Version 5.4 keine relevanten Elemente zur Ereignisverarbeitung imple-
mentiert. Die Unterstiitzung zur Erweiterung ist aber gegeben. Fiir sogenannte ServiceTasks
kann ein eigenes Verhalten implementiert werden. Aufserdem ldsst sich die Palette des
Eclipse-Designers sehr leicht erweitern. Es besteht somit die Moglichkeit, eigene Aktivitdten
zu realisieren.

Im Rahmen der Diplomarbeit habe ich zwei Aktivitdts-Typen implementiert, die der Inter-
aktion mit dem fiir Ereignisverarbeitung zustdndigen System dienen. Die Configuration
Task ermoglicht die Auswahl der vom Prozess benétigten Ereignisse und optional die Konfi-
guration von Ereignisquellen. Die Receive Event Task wartet bis ein bei der Modellierung
festgelegtes Ereignis eintritt und speichert dieses Ereignis in einer zuvor festgelegten Variable.

4http://www.h2database.com
Shttp://esper.codehaus.org
Shttp://jaxb.java.net/

54

http://www.h2database.com
http://esper.codehaus.org
http://jaxb.java.net/

7.2. Erweiterungen

Die Aktivitit fiir den Empfang von Ereignissen ist nichts anderes als ein J]MS-Subscriber mit
MessageSelector, um nur die fiir diesen Prozess relevanten Ereignisse zu empfangen.

Wie in Kapitel 5 bereits erwdhnt, bietet Activiti zwei verschiedene Moglichkeiten zur Model-
lierung von Prozessen an - zum einen das angepasste Modellierungswerkzeug von Signavio
und zum anderen ein Eclipse-Plugin. Diese beiden Anwendungen spiegeln auch die Sichten
auf einen Workflow wider. Wahrend das Eclipse-Plugin von Prozessingenieuren fiir die tech-
nische Umsetzung genutzt wird, wird ein Prozessanalyst eher das Werkzeug von Signavio
benutzen. Da es bei der Umsetzung der Verarbeitung von Ereignissen eher um technische
Details geht, die sich von einer abstrakten Sichtweise eines Prozessanalysten unterscheiden
wird, wurde im Rahmen der Diplomarbeit lediglich eine Erweiterung fiir das Eclipse-Plugin
entwickelt. Dies bedeutet, dass die oben beschriebenen Aktivitidten, wie in Abbildung 7.1
dargestellt, in der Palette des Eclipse-Designers zur Verfiigung stehen.

. Palette [

[}3 Seleck - Selection Tool ko
select nodes only

r-1

t_{ Marquee - Marquee Tool

ko select nodes anly

[~ Conneckion

== Evenkt

= Task

== Gateway

[~ Boundary evenkt

& Alfresco

== Uni Stutktgart - 1AAS]
[@ Receive Evenk Task
BCnnFiguratinn Task

Abbildung 7.1.: Erweiterung der Palette des Eclipse-Designers von Activiti um zwei Aktivi-
taten

7.2. Erweiterungen

Im Folgenden wird skizziert, welche Erweiterungsmoglichkeiten das System anbietet und wie
neue Systeme zur Ereignis- bzw. Situationsverarbeitung oder Workflow-Engines integriert
werden kénnen.

55

7. Implementierung

EventSources

Wie bereits unter 6.1.2 beschrieben, dienen EventSources dazu, externe Ereignisse zu emp-
fangen. Um eine einfache Erweiterbarkeit zu gewdhrleisten, werden Ereignisquellen per
Reflection zur Laufzeit geladen. So kénnen leicht neue Ereignisquellen hinzugefiigt werden.
Ein entsprechendes Java Archive (JAR), das eine oder mehrere Implementierung(en) des
Interface de.uni_stuttgart.informatik.eventum.esengine.management.EventSource enthdlt, muss
sich im Classpath befinden. Verwendet werden konnen solche Ereignisquellen, indem das
Attribut type einer EventSource in der ConfigurationMessage (siehe A.2) oder beim Hinzu-
fiigen im ESCStore auf den vollstandig qualifizierten Klassennamen der Implementierung
gesetzt wird.

Neue Ereignisquellen sind, wie in 6.1.2 beschrieben, eine Abstraktion, um grund-
sdtzlich beliebige externe Ereignisquellen (z.B. Twitter, Yahoo Finance, Sensoren)
einzubinden. Um eine neue Ereignisquelle bereitzustellen, muss das Interface
de.uni_stuttgart.informatik.eventum.esengine.management.EventSource implementiert oder die
abstrakte Klasse de.uni_stuttgart.informatik.eventum.esengine.management.Abstract EventSource
erweitert werden. AbstractEventSource stellt Implementierungen fiir die Verwaltung der
EventListener bereits zur Verfiigung und beschleunigt so die Implementierung neuer
Ereignisquellen.

Die Methoden init und destroy miissen implementiert werden. Die Implementierung der
Methode init muss den Empfang der Ereignisse von externen Ereignisquellen, z.B. Twitter-
Nachrichten, deren Transformation in ein Common Base Event und schliefslich den Aufruf
von notifyEventListener(CommonBaseEvents cbe) beinhalten, um das Ereignis an das System
zur Ereignis- bzw. Situationverarbeitung weiterzureichen. In der Methode destroy konnen
Aufraumarbeiten, wie z.B. das Schlieffen von Verbindungen, vorgenommen werden. Na-
tiirlich kann eine EventSource-Implementierung grundsétzlich jede mit der Programmier-
sprache Java realisierbare Funktionalitdt implementieren. Fiir bestimmte Félle konnte es
z.B. sinnvoll sein, Ereignisse vorzuverarbeiten (z.B. die Klassifikation mithilfe eines Bayes-
Klassifikators).

Integration eines Systems zur Verarbeitung von Ereignissen/Situationen

Wie bereits oben erwdahnt, wurde eine moglichst strikte Trennung zwischen anwendungs-
spezifischem Quellcode, und Quellcode zur Verwaltung von Regeln, Ereignisquellen und
Systemen zur Ereignis- bzw. Situationsverarbeitung vorgenommen. Um ein neues System
zur Ereignis- bzw. Situationsverarbeitung zu integrieren, muss eine entsprechende Im-
plementierung fiir ESEngine.wsdl realisiert werden. Auflerdem muss die abstrakte Klasse
de.uni_stuttgart.informatik.eventum.esengine.management. ESEnginelnstancelmpl erweitert wer-
den. Die Implementierung dieser Klasse stellt eine Instanz einer Engine fiir Ereignis- bzw.
Situationsverarbeitungen dar. Die Implementierung des Web Service erstellt fiir jede Prozess-
instanz eine solche Engine-Instanz.

56

7.2. Erweiterungen

Das Laden von Regeln oder Konfigurationen fiir Ereignisquellen ist fiir den Entwickler
transparent. Er kann tiber die Methode getRules() der abstrakten Klasse ESEngineManage-
mentImpl direkt auf die Regeln zugreifen. Ereignisquellen werden automatisch geladen und
konfiguriert.

Um andere Systeme zur Ereignis- bzw. Situationsverarbeitung als Esper zu unterstiitzen,
muss die Implementierung des InstanceManager entsprechend angepasst werden. Falls eine
ConfigurationMessage (siehe A.2) mit dem entsprechenden engineType eintrifft, muss die
Operation createlnstance(ConfigurationMessage config) einer ESEngine dieses Typs aufgerufen
werden.

Integration einer anderen Workflow-Engine

Die Workflow-Engine kommuniziert ausschliefllich per JMS mit den anderen Komponenten.
Dies wurde bereits in Kapitel 6.3 beschrieben. Aus Sicht der Workflow-Engine gestaltet sich
die Schnittstelle folgendermafien. Die Workflow-Engine muss zum einen eine Configuration-
Message (siehe A.2) erzeugen und tiber eine javax.jms.ObjectMessage im Topic bereitstellen.
Dabei muss die J]MS-Nachricht die Eigenschaft InitializationMessage = true enthalten. Er-
eignisse fiir die Workflow-Engine werden im gleichen Topic zur Verfiigung gestellt. Die
JMS-Nachrichten enthalten zwei Eigenschaften:

CorrespondingProcessID Ermoglicht es, das Ereignis einer Prozessinstanz zuzuordnen.

EventType Enthdlt den Typ des Ereignisses. Der JMSEventPublisher (siehe ref-
fig:instancemanager) setzt die Eigenschaft eventType auf den Wert des Attributs
ExtensionName eines CommonBaseEvents. Der ExtensionName sollte von jeder
EventSource gesetzt werden.

Weitere Funktionalitat

Nicht implementiert wurde das Konzept der InstantiationRules. Die InstantiationRules sollen
dazu dienen, eine Prozessinstanz per Ereignis zu erzeugen. Der ESCStore implementiert
alle dafiir notwendigen Konzepte. Lediglich der InstanceManager muss erweitert werden.
Eine einfache Moglichkeit der Implementierung besteht darin, fiir jeden Prozess mit In-
stantiationRules eine eigene ESEngine-Instanz zu erzeugen, die alle InstantiationRules fiir
diesen Prozess verarbeitet. Aufierdem muss eine Komponente implementiert werden, die bei
Eintreten eines Ereignisses eine Prozessinstanz bei der Workflow-Engine erzeugt.

57

8. Evaluation

Im Nachhinein zeigt sich, dass samtliche neue BPMN-Engines wohl noch einige Zeit be-
notigen werden, bis mehr Konzepte, die die Ereignisverarbeitung betreffen, unterstiitzt,
werden. Vielleicht zeigt sich hierin auch, wie komplex die Implementierung der Elemente
von BPMN 2.0 zur Ereignisverarbeitung ist. Sollte dieser Schluss richtig sein, wire mein
Ansatz bestitigt, die Ereignisverarbeitung im eigentlichen Sinne auszulagern und Systeme
dafiir zu verwenden, die explizit dafiir entwickelt wurden (z.B. ein CEP-System wie Esper).

Bei der fiir die Implementierung im Rahmen dieser Diplomarbeit eingesetzten Workflow-
Engine Activiti hat sich jedenfalls in Hinsicht auf die Unterstiitzung von Ereignissen, wah-
rend ich diese Diplomarbeit verfasst habe, keine nennenswerte Weiterentwicklung gezeigt.
Trotzdem lassen sich viele Félle mit der entstandenen Implementierung l6sen, ohne dass eine
Implementierung der BPMN 2.0 Konzepte in Activiti vorhanden ist. Dazu wurde im Rahmen
der Diplomarbeit die Receive Event Task entwickelt (siehe 7.1.2), die auf das Eintreten eines
Ereignisses wartet.

Im Folgenden werden einige Grundmuster gesammelt, die bei der Verarbeitung von Ereig-
nissen mit BPMN auftreten (siehe auch 2.3), und es wird eine Abbildung auf die entwickelte
Receive Event Task vorgenommen. Die Auflistung der Grundmuster in Tabelle 8.1 erhebt
keinen Anspruch auf Vollstandigkeit, sollte aber nahezu alle Félle abdecken.

Das Fehlen einiger Elemente der BPMN-Spezifikation in Activiti ldsst sich nicht immer
kompensieren. Deshalb versuche ich, eine Klassifikation der Muster in drei Klassen vorzu-
nehmen.

Klasse 1 lasst sich vollstindig auf das im Rahmen der Diplomarbeit implementierte System
abbilden.

Klasse 2 erfordert geringe Erweiterungen der Implementierung, die im Rahmen der Diplom-
arbeit entstanden ist. Diese Erweiterungen sind in der Architektur bereits vorgesehen.

Klasse 3 Die Semantik ldsst sich nicht &quivalent abbilden und erfordert die Implementie-
rung weiterer Elemente der BPMN-Spezifikation. Trotzdem gibt es in vielen Féllen eine
addquate Modellierung.

59

8. Evaluation

Pattern Abbildung Klasse Kurzbeschreibung

x » Prozessinstanziierung
durch Ereignis

Prozessinstanziierung
x 2 durch Ereignis A oder
Ereignis B, A # B

Warten, bis Ereignis ein-
tritt

Paralleles Warten auf
Ereignisse

Y

Das Eintreten eines Er-
eignisses fiihrt zum Ab-
bruch von Task 1. Task
3 wird ausgefiihrt.

abhangig vom konkreten Fall 3

Nach dem Eintreten ei-
nes Ereignisses wird
Task 3 gestartet. Task 1
lauft weiter.

abhéangig vom konkreten Fall 3

Tabelle 8.1.: BPMN Event-Patterns

Wir sehen, dass mit dem entstandenen System die Muster 3 und 4 realisierbar sind. Die Mus-
ter 1 und 2 erfordern nur einige geringe Ergdnzungen des Systems, die bereits vorgesehen
sind (siehe Kapitel 6). Lediglich fiir 5 und 6 gibt es keine semantisch dquivalente Abbildung.
Allerdings ist nicht nur aufgrund von 5 und 6 eine Implementierung der entsprechenden
Elemente von BPMN wiinschenswert. Vor allem im Hinblick auf Roundtrip-Engineering
ist eine einheitliche Modellierung wichtig, um ein einheitliches technisches und fachliches
Modell zu haben.

Die Fahigkeiten zur Ereignisverarbeitung im Sinne der Composite Event Patterns aus
[BDGo7] (siehe 3.1) hingen vor allem von der ESEngine-Implementierung (siehe 6.1.2)
ab. Fiir die Implementierung im Rahmen der Diplomarbeit wurde Esper verwendet. Eine
kurze Ubersicht, welche Composite Event Patterns von Esper unterstiitzt werden, gibt Tabelle
8.2.

60

Composite Event Pattern BPEL BPMN Diplomarbeit

Event Conjunction - -
Event Cardinality - -
Event Disjunction + +
Inhibiting Event - -
Event Time Relation - -

+ + + + +

Subscription Time Relation +/- +/- +/-
Consumption Time Relation - - -
Absolute Time Relation +/- +/- +/-
Event Data Dependency - - +
Process Instance Data Dependency + - -
Environment Data Dependency - -
Consume Once + +
Consume Multiple Times - -

O XN o RN

R R R R
P N RO
+ + +

+: unterstiitzt, -: nicht unterstiitzt, +/-: teilweise unterstiitzt

Tabelle 8.2.: Composite Event Patterns (basierend auf [BDGo7])

Die erste Analyse zeigt, dass der Grofiteil der in [BDGoy] beschriebenen Composite Event
Patterns unterstiitzt werden. Eine tiefergehende Analyse der Moglichkeiten von Esper war
aufgrund des Umfangs der Esper-EPL nicht moglich. Der Tabelle liegt also nur eine erste
grobe Analyse zugrunde. Ich sehe lediglich Probleme beim Zugriff auf externe Daten zum
Zeitpunkt der Regelverarbeitung durch die ESEngine und bei Ereignissen, die abhidngig vom
Zeitpunkt der Subscription von Ereignissen behandelt werden sollen.

In den Anforderungen wurden einige nicht-funktionale Anforderungen aufgefiihrt. Eine
genaue Performance-Untersuchung wiirde den Rahmen dieser Diplomarbeit sprengen. Auf-
grund der verwendeten Technologien und Komponenten liegt der Schluss jedoch nahe, dass
die Performance der formulierten Anforderung entspricht. Die Erweiterbarkeit ist durch den
Einsatz von Standards und freien Technologien wie XML, Web Services und JMS und sauber
definierten Schnittstellen und Formaten gegeben. Einige Tipps zur Erweiterung wurden
in Kapitel 7.2 beschrieben. Lediglich die Anforderung, eine moglichst transparente und
einfache Benutzung zu garantieren, gestaltet sich nicht so einfach. Dies ist vor allem darauf
zuriickzuftiihren, dass die Sprachen fiir CEP-Systeme nicht standardisiert und meist sehr
kompliziert sind. Transparenz ist nur insofern gewdéhrleistet, dass die Regelverarbeitung und
alles, was damit zu tun hat, zumindest fiir den Prozessmodellierer relativ transparent ist. Fiir
einen Entwickler, der neue ESEngines integrieren will, ist dagegen die Interaktion mit dem
ESCStore, sowie das Laden und die Konfiguration von EventSources vollig transparent.

61

8. Evaluation

8.1. Szenario

Im Folgenden wird ein einfaches Szenario skizziert, um einen Uberblick dariiber zu geben,
was das entstandene System leisten kann. Ich greife aus mehreren Griinden auf ein sehr
einfaches Aktien-Kauf Szenario zuriick,

1. um ein moglichst gut verstandliches Beispiel zu haben,
2. da die Modellierung von Esper-Regeln (zu Esper siehe Kapitel 5.2) sehr komplex ist,

3. weil Ereignisdaten fiir das Szenario (Borsenkurse u. Twitternachrichten) leicht verfiig-
bar sind,

4. weil bei der hohen Dynamik am Aktienmarkt eine hohe Verarbeitungsgeschwindigkeit
von Vorteil ist,

5. und da sich in dieses Szenario leicht weitere Ereignisquellen einbinden lassen, um eine
Bewertung von Aktien vorzunehmen (z.B. RSS-Feeds).

8.1.1. Der Prozess

Der Prozess des Szenarios in Abbildung 8.1 wartet nach der Konfiguration des Systems
zur Ereignisverarbeitung mithilfe des Configuration Task (siehe im Kapitel 7.1.2) darauf,
dass ein Ereignis eintrifft, das den Kauf einer Aktie aufgrund des Kursverlaufs empfiehlt.
Danach wartet der Prozess noch auf gute Nachrichten, in diesem Fall auf einen Tweet, zum
Unternehmen, dessen Aktien gekauft werden sollen. Im Folgenden werden der Prozess und
dessen Ablauf genauer beschrieben.

(3] = % 6%
Configuration Task Receive buy_stockEvent Receive buy_tweetEvent BuyStock

Abbildung 8.1.: Prozess des Szenarios

Nach dem Start des Ereignisses muss zunéchst eine Configuration Task die Ereignisverarbei-
tung konfigurieren.

62

8.1. Szenario

[Properties 52 . [2. Problems | ¥ Error Log| B Censole | [5] Metrics - main = ¥ =8
General L Configuration Task

Configure Eventum ESEngine

Creake the Configuration to inikialize ESEngine
Enginetype (): esper.codehaus.org ~

Eventtypes (*): stock_guote,candidate,buy_stocktweet,buy_tweet

EventSource-Configuration:

Abbildung 8.2.: Benutzungsoberfldche des Eclipse-Designers, die es erlaubt, Attribute fiir
die ConfigurationMessage festzulegen

Die beiden darauf folgenden Receive Event Tasks (Receive buy_stock Event und Reveice
buy_tweet Event) sind Aktivitdten, die auf das Eintreffen eines Ereignisses warten und dieses
Ereignis dem Prozess zur Verfiigung stellen. Die Receive buy_stock Event Task wartet auf
das Eintreffen des Ereignisses buy_stock. Die Konfiguration ist in Abbildung 8.3 zu sehen.
Die nachfolgende Task erwartet dann noch das Eintreten des Ereignisses buy_tweet, und
danach fithrt die Aktivitat BuyStock den Aktienkauf aus. Vernachldssigt wird an dieser Stelle
die Tatsache, dass der Prozess nicht beliebig lange auf ein buy_tweet-Ereignis warten sollte,
sondern buy_event und buy_tweet in einem unmittelbaren zeitlichen Zusammenhang stehen
sollten. Dieses Problem liefse sich aber auf einfache Weise mit einem Timer losen.

[2: Problems | €] Error Log| B console | (5 Metrics - main = ¥ =08
Receive Event Task

Recleve events

Recieve events From Eventum EventTopic
Eventtype (*): buy_steck @

Eventvariable (*): buy_stock

Abbildung 8.3.: Benutzungsoberfldche zur Konfiguration der Receive Event Task - Es wird
festgelegt, auf welches Ereignis gewartet werden soll, und wie der Bezeich-
ner der Variable heifien soll, die nach dem Empfang die Ereignisdaten
enthalt.

8.1.2. Die Ereignisverarbeitung
Fiir die Ereignisverarbeitung werden zwei Ereignisquellen benétigt, namlich die fiir Twitter-
Nachrichten (genannt Tweets) und die fiir Aktienkurse.

Fiir die Ereignisverarbeitung sind folgende Regeln erforderlich. In dieser Diplomarbeit wird
Esper zur Verarbeitung der Ereignisse eingesetzt. Daher wird hier die Sprache von Esper
(Esper-EPL) verwendet.

63

8. Evaluation

Regeln und Erklarung

Listing 8.1 Regel: stock_event

INSERT INTO stock_event SELECT value.values[0] AS value, symbol.values[0] AS symbol FROM
Event [SELECT * FROM extendedDataElements WHERE name = "11"] AS value,
Event [SELECT * FROM extendedDataElements WHERE name = "s"] AS symbol

Diese Regel erzeugt stock_event-Ereignisse mit den Attributen value (Kurs-Wert) und symbol
(Symbol des Unternehmens), falls ein eingehendes Ereignis die Attribute /1 und s enthilt. Bei
YahooFinance (einem Dienst, der Aktienkurse zur Verfiigung stellt), steht /1 fiir den letzten
Aktienkurs und s fiir die Abkiirzung bzw. das Symbol des Unternehmens.

Listing 8.2 Regel: candidate
INSERT INTO candidate SELECT a.symbol AS symbol,
a.value AS value,
-1+(cast(b.value,float) / cast(a.value,float)) AS change FROM
pattern[EVERY a=stock_event -> b=stock_event(symbol = a.symbol)]

Diese Regel erzeugt candidate-Ereignisse mit den Attributen symbol und value. Fiir alle Paare
von Ereignissen A,B des Typs stock_event, fiir die gilt: auf A folgt B und das Symbol ist fiir A
und B identisch.

Listing 8.3 Regel: buy_stock
INSERT INTO buy_stock SELECT symbol,change,value FROM candidate WHERE change > 0.00009

Erzeugt ein Ereignis buy_stock, wenn der change-Wert eines candiate-Ereignisses grofser als
0.009% ist.

Listing 8.4 Regel: tweet

INSERT INTO tweet SELECT category.values[0] AS category, text.values[0] AS text FROM
Event [SELECT * FROM extendedDataElements WHERE name = "category"] AS category,
Event [SELECT * FROM extendedDataElements WHERE name = "text"] AS text

Erzeugt ein tweet-Ereignis, wenn der Ereignisstrom ein Ereignis mit den extendedDataElements
category und text enthalt.

Listing 8.5 Regel: buy_tweet
INSERT INTO buy_tweet SELECT category, text FROM tweet WHERE category = "buy"

Erzeuge ein buy_tweet Ereignis, wenn ein tweet-Ereignis das extendedDataElement das Attribut
category mit dem Wert buy enthdlt.

64

8.1. Szenario

Die Ereignisquellen

Wie in den Kapiteln 6.1.2 und 7.2 beschrieben, dienen EventSources dazu, Ereignisse externer
Systeme zu abonnieren, zu transformieren, ggf. vorzuverarbeiten und schliefllich an das
System weiterzuleiten.

TwitterEventSource Diese EventSource erlaubt das Abonnement von Tweets, die bestimmte
Begriffe enthalten. Die Tweets werden mithilfe eines Bayes-Klassifikators in die Klassen sell,
neutral und buy eingeteilt.

Als Konfiguration erwartet diese EventSource lediglich die durch Kommata getrennten
Begriffe.

Ziel ist, Tweets tiber Aktiengesellschaften zu klassifizieren und somit zu erkennen, ob es sich
um gute, neutrale oder schlechte Nachrichten handelt.

YahooStockQuoteEventSource Diese EventSource stellt Borsenkurse des Dienstes YahooFi-
nance’ zur Verfiigung. Die YahooStockQuoteEventSource erwartet zur Konfiguration das
Symbol der Aktiengesellschaft und danach per Komma getrennt beliebige Attribute, die
von YahooFinance unterstiitzt werden (einige Details zur YahooFinance API sind z.B. unter
http://brusdeylins.info/projects/yahoo-finance-api/ zu finden).

Der Ablauf

Wie also lduft das beschriebene Szenario nun ab. Nachdem eine Prozessinstanz gestartet
wurde, wird die Configuration Task ausgefiihrt. Sie erzeugt eine ConfigurationMessage, die im
EventTopic platziert wird.

Die ConfigurationMessage wird nun vom InstanceManager aus dem EventTopic gelesen,
und es wird eine ESEngine-Instanz entsprechend der ConfigurationMessage vom Instance-
Manager erzeugt. Die ESEngine-Instanz ruft die entsprechenden Regeln und zugehorigen
EventSource-Konfigurationen vom ESCStore ab und erzeugt die EventSource-Instanzen und
konfiguriert die ESEngine-Instanz, in diesem Fall Esper.

Die tiber die EventSources eintreffenden externen Ereignisse werden von Esper entsprechend
der Regeln verarbeitet. Die Ergebnisse in Form von Ereignissen werden schliefslich tiber das
EventTopic publiziert und so fiir Activiti zur Verfiigung gestellt.

Nach der Configuration Task wird die erste Receive Event Task ausgefiihrt. Das EventTopic wird
abonniert. Nachrichten, die fiir die Prozessinstanz relevant sind und den entsprechenden
Event-Typ haben, werden mit einem JMS-MessageSelector auswahlt. Die Task speichert das
Ereignis beim Eintreffen in einer Prozessvariable unter dem Namen, der bei der Modellierung

Thttp://finance.yahoo.com

65

http://brusdeylins.info/projects/yahoo-finance-api/
http://finance.yahoo.com

8. Evaluation

des Prozesses angegeben wurde. Die zweite Receive Event Task wartet dann noch, bis ein
Tweet-Ereignis eintrifft, das in die Klasse buy eingeordnet wurde. Danach wird die Buy-Task
ausgefiihrt.

8.1.3. Andere Varianten bzw. Modellierungsmoglichkeiten

Mit einer zusitzlichen Regel ldsst sich der Prozess des vorgestellten Szenarios wie in Abbil-
ding 8.4 weiter vereinfachen.

e e &
Configuration Task Receive buy Event BuyStock

Abbildung 8.4.: Vereinfachter Szenario-Prozess

Die zusitzliche Regel erzeugt ein Ereignis, wenn innerhalb eines bestimmten Zeitraums ein
buy_tweet-Event auf ein buy_stock-Event folgt. Die zusétzliche Regel sieht folgendermafien
aus:

Listing 8.6 Regel: buy
INSERT INTO buy SELECT a.value, a.symbol FROM Pattern[EVERY a=buy_stock->b=buy_tweet WHERE
timer:within(10min)]

Eine andere Modellierungsmoglichkeit wére, die Ereignisse, die von den Ereignisquellen zur
Verfiigung gestellt werden, mithilfe der Regeln stock_event und tweet direkt zu empfangen,
um sie im Prozess weiter zu verarbeiten. Dazu miissten die Regeln candidate, buy_stock und
buy_tweet mit Konzepten der BPMN nachgebildet werden. Ein erster Ansatz dafiir konnte
z.B. wie in Abbildung 8.5 aussehen. Wie im oben dargestellten Szenario wird hier nicht
beriicksichtigt, dass die Ereignisse in einem unmittelbaren zeitlichen Zusammenhang stehen
miissen.

66

8.1. Szenario

-1 + b.value / a.value > 0.00009 &&
a.symbol = b.symbol tweet.category = "buy"

‘
BuyStock

=

-
Receive stock_event

] =
O"[Conhgurauun Task }—PEecewe stock_event }—’

Abbildung 8.5.: Szenario-Prozess mit minimaler Anzahl Regeln

Es zeigt sich also, dass sich nicht nur in der Theorie wie in [MIKo8] beschrieben(siehe auch
Kapitel 3) die Frage stellt, welche Aspekte mit dem Paradigma Workflow und welche mit
dem Paradigma CEP realisiert werden.

9. Zusammenfassung und Ausblick

Abschliefsend werden in diesem Kapitel die Erkenntnisse zusammengefasst. Es wird ein Fazit
gezogen, inwieweit die Ziele der Aufgabenstellung erreicht werden konnten und welche
Fragen offen geblieben sind bzw. sich neu ergeben haben.

Zusammenfassung

Nachdem in der Einleitung ein Einstieg vermittelt wurde, wurde mit den Kapiteln zu
Grundlagen und verwandten Arbeiten die Basis geschaffen, um Anforderungen zu ermitteln und
eine Architektur zu entwickeln. Danach wurden in Kapitel 7 das Vorgehen und einige Details
der Implementierung vorgestellt, ehe dann in Kapitel 8 evaluiert wurde, inwieweit Achitektur
und Implementierung die Aufgabenstellung und die in Kapitel 4 definierten Anforderungen
erfiillen.

Der Fokus dieser Arbeit lag auf der Ausfithrungsphase. Es wurde eine Architektur geschaffen,
die es ermoglicht, beliebige Ereignisse mit Hilfe des Konzepts der EventSource zu empfangen
und dann mit einer CEP-Engine oder einem vergleichbaren, regelbasierten System zu
verarbeiten und die Ergebnisse schliefslich in einem WfMS zu nutzen. Damit geht mein
Ansatz tiber den in [AESWo08] hinaus, da es explizit dafiir ausgelegt ist, auf bestimmte
Ereignisse oder Situationen zu reagieren. Die Art der Reaktion auf Ereignisse, die z.B. von
einem CEP-System verarbeitet und erzeugt werden, wird durch einen Prozess festgelegt, der
von einem W{MS ausgefiihrt wird.

Ausblick

Diese Diplomarbeit konnte viele Bereiche nur anreifsen, so dass es viele Fragen gibt, die
noch ndher betrachtet werden sollten. Vergleicht man die entstandene Architektur mit der
Referenz-Architektur des WIMC fiir WEMS, so bemerkt man, dass z.B. kein Konzept fiir das
Monitoring entwickelt wurde. Ebenso hat sich bei der Evaluation in Kapitel 8 gezeigt, dass
ein Konzept zum Zugriff auf externe Daten, die nicht in Form von Ereignissen vorliegen, bei
der Regelverarbeitung vollstandig fehlt. Ein denkbarer Ansatz wird mit Domain-Events in
[MLMa1o], betrachtet in Kapitel 3, genannt. Fast vollstandig vernachldssigt wurde in dieser
Arbeit die Betrachtung der Modellierung von Regeln und Prozessen. Lediglich in Kapitel 3
wurden einige Ansdtze vorgestellt. Ich will versuchen, sie an dieser Stelle einzuordnen.

69

9. Zusammenfassung und Ausblick

Die Modellierung von Regeln gestaltet sich in vielen Fillen schwierig, da z.B. bei Esper die
EPL sehr méchtig aber auch sehr umfangreich ist. Ein wichtiger Schritt wire eine einheitliche
und standardisierte EPL. Bestehende Engines konnten ggf. weiterhin verwendet und die
standardisierte EPL auf die jeweiligen nativen Sprachen abgebildet werden.

In [WMKLog] wird beschrieben, wie sich EPC auf Esper-Regeln abbilden lassen. Ein inter-
essanter Ansatz im Zusammenspiel mit BPMN wire es, die in [DGBo7y] vorgestellte Notation
BEMN auf Esper abzubilden und somit eine einheitliche Moglichkeit fiir die Modellierung
von Regeln und Prozessen zu entwickeln. Es stellt sich aber die Frage, inwieweit es iiberhaupt
sinnvoll ist, ein einheitliches Modell fiir Regeln und Prozesse zu haben. Die Komplexitat bei
der Modellierung von Regeln kann eine Trennung sinnvoll machen. Generell stellt sich bei
der Modellierung die Frage, welche Aspekte als Regeln und welche als Prozess modelliert
werden. Eine gute Grundlage fiir die Entscheidung bildet das in Kapitel 3 vorgestellte
Entscheidungsframework (siehe 3.2) aus [MIKo8].

Im Kapitel tiber verwandte Arbeiten wurden kurz [WGETo8] und [MLM10] erwéhnt, die
Ansitze aus dem Bereich der kiinstlichen Intelligenz wahlen, um Regeln automatisch zur
Laufzeit abzuleiten oder zu verbessern. Dieser Ansatz erfordert es, Regeln zur Laufzeit
anpassen zu konnen.

Im Bereich des Konzepts der EventSources (siehe 6.1.2) gibt es viele offene Fragen. Eine inter-
essante Frage ist z.B., wie EventSources im Hinblick auf Sicherheit, Qualitdt etc. modelliert
werden konnen. Ein moglicher Ansatz konnte eine Losung vergleichbar zu WS-Policy sein.
Insgesamt fallt auf, dass es gewisse Parallelen zwischen Ereignisquellen und Web Services
gibt. Eine Untersuchung, inwieweit es moglich und sinnvoll ist, Web Service Spezifikationen
(WS-*) zu erweitern oder zumindest Konzepte aus der Web Service Welt auf EventSources
zu tbertragen, scheint sinnvoll.

Es ist zu erwarten, dass in Zukunft die Menge der in Echtzeit verfiigbaren Daten weiter
wachst und immer mehr Sensoren Daten in Form von Ereignissen liefern, die dann wie-
derum von den unterschiedlichsten Systemen verarbeitet werden, welche neue Ereignisse
produzieren. Um einen Uberblick iiber die groie Anzahl von Ereignissen in Unternehmen zu
bekommen, ist einerseits ein geeignetes Monitoring dieser Daten erforderlich, andererseits
wird die Anzahl und Heterogenitdt von Ereignissen immer weiter zunehmen und durch
manuelles Eingreifen von Menschen als Reaktion auf Monitoringergebnisse nicht mehr
moglich sein. Daher wird es wichtig sein, aus Ereignissen Aktionen abzuleiten, die mehr
und mehr automatisch erfolgen.

W{MSe sind in dem Bereich der Automatisierung von Abldufen weit verbreitet und zu-
sammen mit dem Konzept des CEP in der Lage, Ereignisse zu verarbeiten und abhingig
von diesen Ereignissen, Aktionen auszufiihren. Diese Diplomarbeit zeigt, dass es technisch
machbar ist, beides zu kombinieren. Bevor die Kombination aber zuverldssig und in der
Breite eingesetzt werden kann, ist vor allem im Hinblick auf die folgenden Aspekte noch
Forschung notwendig:

¢ Modellierung

¢ Benutzerfreundlichkeit

70

Sowohl CEP-Systeme fiir sich als auch ein System, wie es Gegenstand dieser Diplomarbeit ist,
werden nur Erfolg haben, wenn die Systeme komfortabel und moglichst einfach zu bedienen
sind.

71

A. Anhang

A.1. Abkirzungen

In der Informatik und anderen Wissenschaften werden hédufig Bezeichnungen verwendet,
die aus mehreren Worten bestehen. Aus diesem Grund werden diese Bezeichnungen haufig
durch die Verwendung von Akronymen abgekiirzt. Fiir jeden, der sich mit einem Thema oder
Themengebiet befasst, wird der Gebrauch schnell selbstverstandlich. Fiir Aussenstehende
ist es dagegen haufig schwierig, die Abkiirzungen zu verstehen. Aus diesem Grund sind
nachfolgend alle verwendeten Abkiirzungen aufgelistet.

APF Adaptable Pervasive Flow

BAM Business Activity Monitoring

BEMN Business Event Modelling Language

BPEL Business Process Execution Language

BPM Business Process Management

BPMN Business Process Modelling Notation oder seit Version
2.0 Business Process Model and Notation

BRM Business Rules Management
CBE Common Base Event
CEP Complex Event Processing

DBMS Datenbankmanagement-System

EDA Event Driven Architecture

EDBPM Event Driven Business Process Management
EPC Event-driven Process Chain

EPL Event Pattern Language

EPTS Event Processing Technical Society

ERP Enterprise Resource Planning

73

Acronyms

IAAS

JAR

Institut fiir Architektur von Anwendungssystemen

Java Archive

JAX-WS Java API for XML - Web Services

JAXB
JMS
JPA
MoM
ORM

PVM

SOA

Java Architecture for XML Binding
Java Messaging Service

Java Persistence API

Message oriented Middleware
Object-Relational-Mapper

Process Virtual Machine

Service Oriented Architecture

SOEDA Service Oriented Event Driven Architecture

WM

Workflow Management

WIMC Workflow Management Coalition
WIMS Workflow Management System
WSDL Web Service Description Language

A.2. XML-Schemata und WSDLs

ConfigurationMessage

XML-Schema zur Beschreibung einer ConfigurationMessage, die fiir die Initialisierung einer
ESEngine-Instanz benotigt wird.

<?xml version="1.0" encoding="UTF-8"7>
<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema"

74

targetNamespace="http://www.informatik.uni-stuttgart.de/eventum/ConfigurationMessage"
xmlns:tns="http://www.informatik.uni-stuttgart.de/eventum/ConfigurationMessage"
xmlns:es="http://www.informatik.uni-stuttgart.de/eventum/EventSource"
elementFormDefault="qualified">

<xsd:import namespace="http://www.informatik.uni-stuttgart.de/eventum/EventSource"
schemalocation="./EventSource.xsd" />

<xsd:element name="cm" type="tns:ConfigurationMessage"></xsd:element>

<xsd:complexType name="ConfigurationMessage">
<xsd:sequence>
<xsd:element name="events" type="tns:Events" />
<xsd:element name="eventSources" type="tns:EventSources"/>

A.2. XML-Schemata und WSDLs

</xsd:sequence>
<xsd:attribute name="engineType" type="xsd:anyURI" use="required" />
<xsd:attribute name="correlationID" type="xsd:anySimpleType"
use="required" />

</xsd:complexType>

<xsd:complexType name="EventSources">
<xsd:sequence>
<xsd:element name="eventSource" type="es:EventSource" minOccurs="0"
max0ccurs="unbounded" />
</xsd:sequence>
</xsd:complexType>

<xsd:complexType name="Events">
<xsd:sequence>
<xsd:element name="event" type="xsd:string" minOccurs="1"
max0Occurs="unbounded" />
</xsd:sequence>
</xsd:complexType>

</xsd:schema>

EventSource

XML-Schema zur Beschreibung der Konfiguration einer EventSource.

<?xml version="1.0" encoding="UTF-8"7>

<schema xmlns="http://www.w3.0rg/2001/XMLSchema"
targetNamespace="http://www.informatik.uni-stuttgart.de/eventum/EventSource"
xmlns:tns="http://www.informatik.uni-stuttgart.de/eventum/EventSource"
elementFormDefault="qualified">

<complexType name="EventSource">
<sequence>
<element name="description" type="string" />
<element name="eventSourceConfig" type="string" />
</sequence>
<attribute name="id" type="long" use="optional/>
<attribute name="name" type="string" use="required"/>
<attribute name="type" type="string" use="required"/>
</complexType>

</schema>

Rule

XML-Schema zur Beschreibung von Regeln, die vom ESCStore verwaltet und von ESEngine-
Instanzen verarbeitet werden.

75

Acronyms

<?xml version="1.0" encoding="UTF-8"7>
<schema xmlns="http://www.w3.0rg/2001/XMLSchema"
targetNamespace="http://www.informatik.uni-stuttgart.de/eventum/Rule"
xmlns:r="http://www.informatik.uni-stuttgart.de/eventum/Rule"
xmlns:es="http://www.informatik.uni-stuttgart.de/eventum/EventSource"
elementFormDefault="qualified">

<import schemalocation="EventSource.xsd"
namespace="http://www.informatik.uni-stuttgart.de/eventum/EventSource" />

<complexType name="AbstractRule" abstract="true">
<sequence>
<element name="rule" type="string" />
<element name="author" type="string" />
<element name="description" type="string" />
<element name="esEngine" type="anyURI" />
<element name="eventSources" minOccurs="0" maxOccurs="unbounded"
type="es:EventSource">
</element>
</sequence>
<attribute name="id" type="long" use="optional"/>
<attribute name="name" type="string" use="required"/>
</complexType>

<complexType name="RuntimeRule">
<complexContent>
<extension base="r:AbstractRule" />
</complexContent>
</complexType>

<complexType name="InstantiationRule">
<complexContent>
<extension base="r:AbstractRule">
<sequence>
<element name="wsdl" type="string" minOccurs="0" />
<element name="operation" type="string" minOccurs="0" />
<element name="processID" type="string" minOccurs="0" />

</sequence>
</extension>
</complexContent>
</complexType>
</schema>

ESCStore

WSDL zur Beschreibung des ESCStore Web Service.

<?xml version="1.0" encoding="UTF-8" standalone='"no"?>

<wsdl:definitions xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
xmlns:tns="http://wuw.informatik.uni-stuttgart.de/eventum/ESCStore/"
xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"

76

A.2. XML-Schemata und WSDLs

xmlns:xsd="http://www.w3.org/2001/XMLSchema" name="ESCStore"
targetNamespace="http://www.informatik.uni-stuttgart.de/eventum/ESCStore/">
<wsdl:types>
<xsd:schema targetNamespace="http://www.informatik.uni-stuttgart.de/eventum/ESCStore/"
xmlns:Q1="http://www.informatik.uni-stuttgart.de/eventum/Rule"
xmlns:Q2="http://www.informatik.uni-stuttgart.de/eventum/ESCResponse"
xmlns:Q3="http://www.informatik.uni-stuttgart.de/eventum/EventSource">
<xsd:import schemalocation="../xml/EventSource.xsd"
namespace="http://www.informatik.uni-stuttgart.de/eventum/EventSource"></xsd:import>
<xsd:import schemaLocation="../xml/ESCResponse.xsd"
namespace="http://www.informatik.uni-stuttgart.de/eventum/ESCResponse"></xsd:import>
<xsd:import schemalocation="../xml/Rule.xsd"
namespace="http://wuw.informatik.uni-stuttgart.de/eventum/Rule"></xsd:import>
<xsd:element name="addRule">
<xsd:complexType>
<xsd:sequence>
<xsd:element name="Rule" type="Ql:AbstractRule"/>
</xsd:sequence>
</xsd:complexType>
</xsd:element>
<xsd:element name="addRuleResponse" type='"xsd:long">
</xsd:element>
<xsd:element name="getRule" type="xsd:long"></xsd:element>
<xsd:element name="getRuleResponse" type="Q2:ruleResponse"></xsd:element>
<xsd:element name="delRule" type="xsd:long"></xsd:element>
<xsd:element name="getInstantiationRules" type='"xsd:long">
</xsd:element>
<xsd:element name="getInstantiationRulesResponse"
type="Q2:ruleResponse"></xsd:element>
<xsd:element name="getAllRules"
type="tns:emptyGetAllRulesParam">
</xsd:element>
<xsd:element name="getAllRulesResponse" type="Q2:ruleResponse"></xsd:element>

<xsd:complexType name="emptyGetAllRulesParam'"/>

<xsd:element name="addEventSource" type="(3:EventSource">

</xsd:element>

<xsd:element name="addEventSourceResponse" type="xsd:long"></xsd:element>

<xsd:element name="getEventSource" type="xsd:long">

</xsd:element>

<xsd:element name="getEventSourceResponse"
type="Q2:eventSourceResponse"></xsd:element>

<xsd:element name='"delEventSource" type='"xsd:long">

</xsd:element>

<xsd:element name="getRuleEventSource" type="xsd:long">

</xsd:element>

<xsd:element name="getRuleEventSourceResponse"
type="Q2:eventSourceResponse"></xsd:element>

<xsd:element name="getAllEventSources"
type="tns:emptyGetAllEventSourcesParam">

</xsd:element>

<xsd:element name="getAllEventSourcesResponse"
type="Q2:eventSourceResponse"></xsd:element>

<xsd:complexType name="emptyGetAllEventSourcesParam"></xsd:complexType>

77

Acronyms

<xsd:element name="NoSuchRuleFault" type="xsd:string"></xsd:element>
<xsd:element name="NoSuchEventSourceFault" type="xsd:string"></xsd:element>
<xsd:complexType name="emptyResponse"/>
<xsd:element name="getRuleByName" type="xsd:string">
</xsd:element>
<xsd:element name="getRuleByNameResponse" type="Q2:ruleResponse"></xsd:element>
<xsd:element name="getEventSourceByName"
type="xsd:string">
</xsd:element>
<xsd:element name="getEventSourceByNameResponse"
type="Q2:eventSourceResponse"></xsd:element>
</xsd:schema>
</wsdl:types>
<wsdl:message name="addRuleRequest'>
<wsdl:part name="parameters" element="tns:addRule"></wsdl:part>
</wsdl:message>
<wsdl:message name='"addRuleResponse">
<wsdl:part name="parameters" element="tns:addRuleResponse"></wsdl:part>
</wsdl:message>
<wsdl :message name="getRuleRequest'>
<wsdl:part name="parameters" element="tns:getRule"></wsdl:part>
</wsdl:message>
<wsdl:message name='getRuleResponse">
<wsdl:part name="parameters" element="tns:getRuleResponse"></wsdl:part>
</wsdl:message>
<wsdl:message name="delRuleRequest'>
<wsdl:part name="parameters" element="tns:delRule"></wsdl:part>
</wsdl:message>
<wsdl:message name="delRuleResponse"/>
<wsdl :message name='"getInstantiationRulesRequest'>
<wsdl:part name="parameters" element="tns:getInstantiationRules"></wsdl:part>
</wsdl:message>
<wsdl :message name="getInstantiationRulesResponse'>
<wsdl:part name="parameters" element="tns:getInstantiationRulesResponse"></wsdl:part>
</wsdl:message>
<wsdl :message name="getAllRulesRequest">
<wsdl:part name="parameters" element="tns:getAllRules"></wsdl:part>
</wsdl:message>
<wsdl :message name="getAllRulesResponse'>
<wsdl:part name="parameters" element="tns:getAllRulesResponse'"></wsdl:part>
</wsdl:message>
<wsdl :message name="addEventSourceRequest'>
<wsdl:part name="parameters" element="tns:addEventSource"></wsdl:part>
</wsdl:message>
<wsdl :message name="addEventSourceResponse'>
<wsdl:part name="parameters" element="tns:addEventSourceResponse'"></wsdl:part>
</wsdl:message>
<wsdl :message name='"getEventSourceRequest'>
<wsdl:part name="parameters" element="tns:getEventSource"></wsdl:part>
</wsdl:message>
<wsdl :message name='"getEventSourceResponse'>
<wsdl:part name="parameters" element="tns:getEventSourceResponse"></wsdl:part>
</wsdl:message>
<wsdl :message name="delEventSourceRequest'>
<wsdl:part name='"parameters" element="tns:delEventSource"></wsdl:part>

78

A.2. XML-Schemata und WSDLs

</usdl:message>
<wsdl:message name="delEventSourceResponse"/>
<wsdl :message name="getRuleEventSourcesRequest">
<wsdl:part name="parameters" element="tns:getRuleEventSource"></wsdl:part>
</wsdl:message>
<wsdl :message name='"getRuleEventSourcesResponse">
<wsdl:part name="parameters" element="tns:getRuleEventSourceResponse"></wsdl:part>
</wsdl:message>
<wsdl :message name='"getAllEventSourcesRequest">
<wsdl:part name="parameters" element="tns:getAllEventSources"></wsdl:part>
</wsdl:message>
<wsdl :message name="getAllEventSourcesResponse'>
<wsdl:part name="parameters" element="tns:getAllEventSourcesResponse"></wsdl:part>
</wsdl:message>
<wsdl :message name="delRuleFault">
<wsdl:part name="fault" element="tns:NoSuchRuleFault"></wsdl:part>
</wsdl:message>
<wsdl :message name="delEventSourceFault">
<wsdl:part name="fault" element="tns:NoSuchEventSourceFault"></wsdl:part>
</wsdl:message>
<wsdl :message name='"getRuleByNameRequest'>
<wsdl:part name="parameters" element="tns:getRuleByName"></wsdl:part>
</wsdl:message>
<wsdl :message name='"getRuleByNameResponse'>
<wsdl:part name="parameters" element="tns:getRuleByNameResponse"></wsdl:part>
</wsdl:message>
<wsdl :message name='"getEventSourceByNameRequest">
<wsdl:part name="parameters" element="tns:getEventSourceByName"></wsdl:part>
</wsdl:message>
<wsdl :message name='"getEventSourceByNameResponse'>
<wsdl:part name="parameters" element="tns:getEventSourceByNameResponse"></wsdl:part>
</wsdl:message>
<wsdl:portType name="ESCStore">
<wsdl:operation name="addRule">
<wsdl:input message="tns:addRuleRequest"></wsdl:input>
<wsdl:output message="tns:addRuleResponse'"></wsdl:output>
</wsdl:operation>
<wsdl:operation name="getRule">
<wsdl:input message="tns:getRuleRequest"></wsdl:input>
<wsdl:output message="tns:getRuleResponse'"></wsdl:output>
</wsdl:operation>
<wsdl:operation name="delRule">
<wsdl:input message="tns:delRuleRequest"></wsdl:input>
<wsdl:output message="tns:delRuleResponse"/>
<wsdl:fault name="fault" message="tns:delRuleFault"></wsdl:fault>
</wsdl:operation>
<wsdl:operation name="getInstantiationRules'">
<wsdl:input message="tns:getInstantiationRulesRequest"></wsdl:input>
<wsdl:output message="tns:getInstantiationRulesResponse"></wsdl:output>
</wsdl:operation>
<wsdl:operation name="getAllRules">
<wsdl:input message="tns:getAllRulesRequest"></wsdl:input>
<wsdl:output message="tns:getAllRulesResponse"></wsdl:output>
</wsdl:operation>
<wsdl:operation name="addEventSource'">

79

Acronyms

<wsdl:input message="tns:addEventSourceRequest"></wsdl:input>
<wsdl:output message="tns:addEventSourceResponse"></wsdl:output>
</wsdl:operation>
<wsdl:operation name="getEventSource">
<wsdl:input message="tns:getEventSourceRequest"></wsdl:input>
<wsdl:output message="tns:getEventSourceResponse"></wsdl:output>
</wsdl:operation>
<wsdl:operation name="delEventSource'">
<wsdl:input message="tns:delEventSourceRequest"></wsdl:input>
<wsdl:output message="tns:delEventSourceResponse"></wsdl:output>
<wsdl:fault name="fault" message="tns:delEventSourceFault"></wsdl:fault>
</wsdl:operation>
<wsdl:operation name="getRuleEventSources">
<wsdl:input message="tns:getRuleEventSourcesRequest"></wsdl:input>
<wsdl:output message="tns:getRuleEventSourcesResponse"></wsdl:output>
</wsdl:operation>
<wsdl:operation name="getAllEventSources">
<wsdl:input message="tns:getAllEventSourcesRequest"></wsdl:input>
<wsdl:output message="tns:getAllEventSourcesResponse'"></wsdl:output>
</wsdl:operation>
<wsdl:operation name="getRuleByName">
<wsdl:input message="tns:getRuleByNameRequest"></wsdl:input>
<wsdl:output message="tns:getRuleByNameResponse'"></wsdl:output>
</wsdl:operation>
<wsdl:operation name="getEventSourceByName'">
<wsdl:input message="tns:getEventSourceByNameRequest"></wsdl:input>
<wsdl:output message="tns:getEventSourceByNameResponse"></wsdl:output>
</wsdl:operation>
</wsdl:portType>
<wsdl:binding name="ESCStoreSOAP" type="tns:ESCStore">
<soap:binding style="document"
transport="http://schemas.xmlsoap.org/soap/http" />
<wsdl:operation name="addRule">
<soap:operation
soapAction="http://wuw.informatik.uni-stuttgart.de/eventum/ESCStore/addRule"
/>
<wsdl:input>
<soap:body use="literal" />
</wsdl:input>
<wsdl:output>
<soap:body use="literal" />
</wsdl:output>
</wsdl:operation>
<wsdl:operation name="getRule">
<soap:operation
soapAction="http://www.informatik.uni-stuttgart.de/eventum/ESCStore/getRule"
/>
<wsdl:input>
<soap:body use="literal" />
</wsdl:input>
<wsdl:output>
<soap:body use="literal" />
</wsdl:output>
</wsdl:operation>
<wsdl:operation name='"delRule">

8o

A.2. XML-Schemata und WSDLs

<soap:operation
soapAction="http://wuw.informatik.uni-stuttgart.de/eventum/ESCStore/delRule"
/>
<wsdl:input>
<soap:body use="literal" />
</wsdl:input>
<wsdl:output>
<soap:body use="literal" />
</wsdl:output>
<wsdl:fault name="fault">
<soap:fault use="literal" name="fault" />
</wsdl:fault>
</wsdl:operation>
<wsdl:operation name="getInstantiationRules'">
<soap:operation
soapAction="http://.../eventum/ESCStore/getInstantiationRules" />
<wsdl:input>
<soap:body use="literal" />
</wsdl:input>
<wsdl:output>
<soap:body use="literal" />
</wsdl:output>
</wsdl:operation>
<wsdl:operation name="getAllRules">
<soap:operation
soapAction="http://.../eventum/ESCStore/getAl1Rules" />
<wsdl:input>
<soap:body use="literal" />
</wsdl:input>
<wsdl:output>
<soap:body use="literal" />
</wsdl:output>
</wsdl:operation>
<wsdl:operation name="addEventSource">
<soap:operation
soapAction="http://.../eventum/ESCStore/addEventSource" />
<wsdl:input>
<soap:body use="literal" />
</wsdl:input>
<wsdl:output>
<soap:body use="literal" />
</wsdl:output>
</wsdl:operation>
<wsdl:operation name="getEventSource">
<soap:operation
soapAction="http://.../eventum/ESCStore/getEventSource" />
<wsdl:input>
<soap:body use="literal" />
</wsdl:input>
<wsdl:output>
<soap:body use="literal" />
</wsdl:output>
</wsdl:operation>
<wsdl:operation name="delEventSource">
<soap:operation

81

Acronyms

soapAction="http://.../eventum/ESCStore/delEventSource" />
<wsdl:input>
<soap:body use="literal" />
</wsdl:input>
<wsdl:output>
<soap:body use="literal" />
</wsdl:output>
<wsdl:fault name="fault">
<soap:fault use="literal" name="fault" />
</wsdl:fault>
</wsdl:operation>
<wsdl:operation name="getRuleEventSources">
<soap:operation
soapAction="http://.../eventum/ESCStore/getRuleEventSources" />
<wsdl:input>
<soap:body use="literal" />
</wsdl:input>
<wsdl:output>
<soap:body use="literal" />
</wsdl:output>
</wsdl:operation>
<wsdl:operation name="getAllEventSources">
<soap:operation
soapAction="http://.../eventum/ESCStore/getAl1EventSources" />
<wsdl:input>
<soap:body use="literal" />
</wsdl:input>
<wsdl:output>
<soap:body use="literal" />
</wsdl:output>
</wsdl:operation>
<wsdl:operation name="getRuleByName'">
<soap:operation
soapAction="http://.../eventum/ESCStore/getRuleByName" />
<wsdl:input>
<soap:body use="literal" />
</wsdl:input>
<wsdl:output>
<soap:body use="literal" />
</wsdl:output>
</wsdl:operation>
<wsdl:operation name="getEventSourceByName'">
<soap:operation
soapAction="http://.../eventum/ESCStore/getEventSourceByName" />
<wsdl:input>
<soap:body use="literal" />
</wsdl:input>
<wsdl:output>
<soap:body use="literal" />
</wsdl:output>
</wsdl:operation>
</wsdl:binding>
<wsdl:service name="ESCStore">
<wsdl:port binding="tns:ESCStoreSOAP" name="ESCStoreSOAP">
<soap:address location="http://localhost:8080/ESCStore"/>

82

A.2. XML-Schemata und WSDLs

</wsdl:port>
</wsdl:service>
</wsdl:definitions>

ESEngine

WSDL zur Beschreibung des ESEngine Web Service.

<?xml version="1.0" encoding="UTF-8" standalone="no"7>
<wsdl:definitions xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
xmlns:tns="http://wuw.informatik.uni-stuttgart.de/eventum/ESEngine/"
xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"
xmlns:xsd="http://wuw.w3.0rg/2001/XMLSchema"
name="ESEngine"
targetNamespace="http://www.informatik.uni-stuttgart.de/eventum/ESEngine/"
xmlns:cm="http://www.informatik.uni-stuttgart.de/eventum/ConfigurationMessage">
<wsdl:types>
<xsd:schema
targetNamespace="http://www.informatik.uni-stuttgart.de/eventum/ESEngine/">
<xsd:import schemaLocation="../xml/ConfigurationMessage.xsd"

namespace="http://wuw.informatik.uni-stuttgart.de/eventum/ConfigurationMessage"

/>
<xsd:element name="createESEngineInstance'>
<xsd:complexType>
<xsd:sequence>
<xsd:element name="in"
type="cm:ConfigurationMessage" />
</xsd:sequence>
</xsd:complexType>
</xsd:element>
<xsd:element name="createESEngineInstanceResponse'>
<xsd:complexType>
<xsd:sequence>
<xsd:element name="out" type="xsd:string" />
</xsd:sequence>
</xsd:complexType>
</xsd:element>
<xsd:element name="destroyESEnginelInstance" type='"xsd:string" />

<xsd:complexType name="destroyESEngineInstanceResponse"/>

<xsd:element name="getEngineType">
<xsd:complexType/>
</xsd:element>

<xsd:element name="getEngineTypeResponse" type="xsd:string" />

</xsd:schema>
</wsdl:types>
<wsdl:message name='"createESEngineInstanceRequest'>

<wsdl:part element="tns:createESEnginelnstance" name="parameters" />
</wsdl :message>

Acronyms

<wsdl:message name='"createESEngineInstanceResponse">
<wsdl:part element="tns:createESEngineInstanceResponse"
name="parameters" />
</wsdl:message>
<wsdl :message name="destroyESEngineInstanceRequest">
<wsdl:part name='"parameters" element="tns:destroyESEngineInstance" />
</wsdl:message>
<wsdl:message name="destroyESEngineInstanceResponse"/>

<wsdl :message name='"getEngineTypeRequest'>

<wsdl:part name="parameters" element="tns:getEngineType" />
</wsdl:message>
<wsdl :message name='"getEngineTypeResponse'>

<wsdl:part name='"parameters" element='"tns:getEngineTypeResponse" />
</wsdl:message>

<wsdl:portType name="ESEngine">
<wsdl:operation name="createESEngineInstance">
<wsdl:input message="tns:createESEngineInstanceRequest" />
<wsdl:output message="tns:createESEngineInstanceResponse" />
</wsdl:operation>
<wsdl:operation name="destroyESEngineInstance">
<wsdl:input message="tns:destroyESEngineInstanceRequest" />
<wsdl:output message="tns:destroyESEngineInstanceResponse" />
</wsdl:operation>
<wsdl:operation name="getEngineType">
<wsdl:input message="tns:getEngineTypeRequest" />
<wsdl:output message="tns:getEngineTypeResponse" />
</wsdl:operation>
</wsdl:portType>
<wsdl:binding name="ESEngineSOAP" type="tns:ESEngine">
<soap:binding style="document"
transport="http://schemas.xmlsoap.org/soap/http" />
<wsdl:operation name="createESEngineInstance'">
<soap:operation
soapAction="http://.../eventum/ESEngine/createESEngineInstance"
/>
<wsdl:input>
<soap:body use="literal" />
</wsdl:input>
<wsdl:output>
<soap:body use="literal" />
</wsdl:output>
</wsdl:operation>
<wsdl:operation name="destroyESEngineInstance">
<soap:operation
soapAction="http://.../eventum/ESEngine/destroyESEngineInstance"
/>
<wsdl:input>
<soap:body use="literal" />
</wsdl:input>
<wsdl:output>
<soap:body use="literal" />
</wsdl:output>
</wsdl:operation>

A.2. XML-Schemata und WSDLs

<wsdl:operation name="getEngineType">
<soap:operation
soapAction="http://.../eventum/ESEngine/getEngineType" />
<wsdl:input>
<soap:body use="literal" />
</wsdl:input>
<wsdl:output>
<soap:body use="literal" />
</wsdl:output>
</wsdl:operation>
</wsdl:binding>
<wsdl:service name="ESEngine'>
<wsdl:port binding="tns:ESEngineSOAP" name="ESEngineSOAP">
<soap:address location="http://localhost:8080/ESEngine" />
</wsdl:port>
</wsdl:service>
</wsdl:definitions>

Literaturverzeichnis

[AESWo8]

[BDGo7]

[BDK10]

[BEo7]

[CLSTo05]

[Deyo1]

[DGBo7]

[DKGZ10]

[FRH10]

[HCCos]

R. von Ammon, C. Emmersberger, F. Springer, C. Wolff. Event-Driven Business
Process Management and its Practical Application Taking the Example of DHL.
Complex Event Processing blog, 2008. (Zitiert auf den Seiten 23, 29 und 69)

A. Barros, G. Decker, A. Grosskopf. Complex events in business processes. In
Business Information Systems, pp. 29-40. Springer, 2007. (Zitiert auf den Seiten 23,
24, 32, 33, 60 und 61)

F. Burger, P. Debicki, F. Kotter. Vergleich von Complex Event Processing-
Ansitzen fiir Business Activity Monitoring. 2010. (Zitiert auf den Seiten 19
und 38)

F. Bry, M. Eckert. Rule-based composite event queries: The language XChange
eq and its semantics. Web Reasoning and Rule Systems, pp. 16—30, 2007. (Zitiert
auf Seite 17)

F. Curbera, F. Leymann, T. Storey, D. Ferguson, S. Weerawarana. Web Services
Platform Architecture: SOAP, WSDL, WS-Policy, WS-Addressing, WS-BPEL, WS-
Reliable Messaging and More. Prentice Hall PTR, 2005. (Zitiert auf Seite 19)

A. Dey. Understanding and using context. Personal and ubiquitous computing,
5(1):4—7, 2001. (Zitiert auf Seite 20)

G. Decker, A. Grosskopf, A. Barros. A graphical notation for modeling complex
events in business processes. In Enterprise Distributed Object Computing Conference,
2007. EDOC 2007. 11th IEEE International, p. 2. IEEE, 2007. (Zitiert auf den
Seiten 5, 21, 22 und 70)

M. Déhring, L. Karg, E. Godehardt, B. Zimmermann. The Convergence of Work-
flows, Business Rules and Complex Events—Defining a Reference Architecture
and Approaching Realization Challenges. In ICEIS ‘10. 2010. (Zitiert auf den
Seiten 22, 23 und 29)

J. Freund, B. Riicker, T. Henninger. Praxishandbuch BPMN. HANSER, 2010.
(Zitiert auf den Seiten 5, 12 und 13)

J. Han, Y. Cho, J. Choi. Context-aware workflow language based on web services
for ubiquitous computing. Computational Science and Its Applications—-ICCSA 2005,
pp- 1008-1017, 2005. (Zitiert auf Seite 25)

Literaturverzeichnis

[HCKCo6] J. Han, Y. Cho, E. Kim, J. Choi. A ubiquitous workflow service framework.

[LKo6]

[LLo6]

[LRoo]

[LSo8]

[Luco2]

[Men11]

[MIKo8]

[MLM?1o0]

[OMG10]

[SCCYo7]

[SNo3]

[WfMgo9]

[WGETo8]

[WHRo9]

88

Computational Science and its Applications-ICCSA 2006, pp. 3039, 2006. (Zitiert
auf Seite 25)

B. List, B. Korherr. An evaluation of conceptual business process modelling
languages. In Proceedings of the 2006 ACM symposium on Applied computing, pp.
1532-1539. ACM, 2006. (Zitiert auf Seite 12)

J. Ludewig, H. Lichter. Software Engineering-Grundlagen. Menschen, Prozesse,
Techniken. dpunkt. verlag, 2006. (Zitiert auf Seite 29)

E. Leymann, D. Roller. Production workflow: concepts and techniques. Prentice Hall
PTR, 2000. (Zitiert auf Seite 11)

D. Luckham, R. Schulte. Event processing glossary-version 1.1. Event Processing
Technical Society, Tech. Rep, 2008. (Zitiert auf den Seiten 19 und 20)

D. Luckham. The Power of Events. Addison-Wesley, 2002. (Zitiert auf den Seiten 7
und 15)

F. Menge. Workshop: Activiti BPM Platform. Web, 2011. (Zitiert auf den Seiten 5
und 37)

M. zur Muehlen, M. Indulska, K. Kittel. Towards integrated modeling of business
processes and business rules. In 19th Australian Conference on Information Systems
ACIS. 2008. (Zitiert auf den Seiten 5, 20, 22, 67 und 70)

J. Ma, W. Liu, P. Miller. Event Modelling and Reasoning with Uncertain Infor-
mation for Distributed Sensor Networks. Scalable Uncertainty Management, pp.
236—249, 2010. (Zitiert auf den Seiten 26, 69 und 70)

OMG. Business Process Model and Notation (BPMN), Version 2.0. 2010. (Zitiert
auf Seite 12)

K. Shin, Y. Cho, J. Choi, C. Yoo. A workflow Language for Context-Aware
Services. 2007. (Zitiert auf Seite 25)

G. Steinke, C. Nickolette. Business rules as the basis of an organization’s
information systems. Industrial Management & Data Systems, 103(1):52—63, 2003.
(Zitiert auf Seite 20)

G. WEMC. Terminology and Glossary. Document No WFMC-TC-1011. Workflow
Management Coalition. Winchester, 1999. (Zitiert auf Seite 11)

S. Wasserkrug, A. Gal, O. Etzion, Y. Turchin. Complex event processing over
uncertain data. In Proceedings of the second international conference on Distributed
event-based systems, pp. 253-264. ACM, 2008. (Zitiert auf den Seiten 26 und 70)

H. Wolf, K. Herrmann, K. Rothermel. Modeling Dynamic Context Awareness
for Situated Workflows. In On the Move to Meaningful Internet Systems: OTM 2009
Workshops, pp. 98—107. Springer, 2009. (Zitiert auf den Seiten 25 und 30)

Literaturverzeichnis

[WKNLo7] M. Wieland, O. Kopp, D. Nicklas, F. Leymann. Towards context-aware workflows.
In CAiSEo7 Proc. of the Workshops and Doctoral Consortium, volume 2. Citeseer,
2007. (Zitiert auf Seite 25)

[WMKLog] M. Wieland, D. Martin, O. Kopp, F. Leymann. SOEDA: A Methodology for
Specification and Implementation of Applications. 2009. (Zitiert auf den Seiten 8,
23, 29 und 70)

Alle URLs wurden zuletzt am 28.06.2011 gepriift.

Erkldrung

Hiermit versichere ich, diese Arbeit selbstindig
verfasst und nur die angegebenen Quellen
benutzt zu haben.

(Sascha Julien Retter)

	1 Einleitung
	1.1 Motivation
	1.2 Konventionen
	1.3 Rechtliche Hinweise
	1.4 Aufbau des Dokuments

	2 Grundlagen
	2.1 Workflow-Management
	2.2 Business Process Model and Notation
	2.3 Complex Event Processing
	2.4 Sonstige Definitionen und Begriffe

	3 Verwandte Arbeiten
	3.1 Modellierung von Geschäftsprozessen, Geschäftsregeln und Ereignissen
	3.2 Workflows und Ereignisverarbeitung
	3.3 Kontext- und situationsbezogene Workflows
	3.4 Ableitung von Ereignissen

	4 Anforderungen
	4.1 Vorüberlegungen
	4.2 Nicht-funktionale Anforderungen
	4.3 Funktionale Anforderungen

	5 Technologien
	5.1 BPMN-Engines
	5.2 CEP-Engine

	6 Architektur
	6.1 Komponenten
	6.1.1 ESCStore
	6.1.2 ESEngine
	6.1.3 InstanceManager

	6.2 Datenmodellierung
	6.2.1 ConfigurationMessage
	6.2.2 Ereignisformat

	6.3 Kommunikation und Datenintegration

	7 Implementierung
	7.1 Vorgehen bei der Implementierung
	7.1.1 Hauptkomponenten
	7.1.2 Activiti

	7.2 Erweiterungen

	8 Evaluation
	8.1 Szenario
	8.1.1 Der Prozess
	8.1.2 Die Ereignisverarbeitung
	8.1.3 Andere Varianten bzw. Modellierungsmöglichkeiten

	9 Zusammenfassung und Ausblick
	A Anhang
	A.1 Abkürzungen
	A.2 XML-Schemata und WSDLs

	Literaturverzeichnis

