
Institut für Architektur von Anwendungssystemen
Universität Stuttgart

Universitätsstraße 38
D–70569 Stuttgart

Diplomarbeit Nr. 3129

Architektur und Implementierung
ereignis- und

situationsgetriebener Workflows

Sascha Julien Retter

Studiengang: Softwaretechnik

Prüfer: Prof. Dr. Frank Leymann

Betreuer: Dipl.-Inf. Matthias Wieland

begonnen am: 10. Januar 2011

beendet am: 12. Juli 2011

CR-Klassifikation: H.3.5, H.4.1, J.1

Inhaltsverzeichnis

1. Einleitung 7
1.1. Motivation . 7

1.2. Konventionen . 8

1.3. Rechtliche Hinweise . 9

1.4. Aufbau des Dokuments . 9

2. Grundlagen 11
2.1. Workflow-Management . 11

2.2. Business Process Model and Notation . 12

2.3. Complex Event Processing . 15

2.4. Sonstige Definitionen und Begriffe . 19

3. Verwandte Arbeiten 21
3.1. Modellierung von Geschäftsprozessen, Geschäftsregeln und Ereignissen 21

3.2. Workflows und Ereignisverarbeitung . 23

3.3. Kontext- und situationsbezogene Workflows . 24

3.4. Ableitung von Ereignissen . 26

4. Anforderungen 29
4.1. Vorüberlegungen . 29

4.2. Nicht-funktionale Anforderungen . 30

4.3. Funktionale Anforderungen . 31

5. Technologien 35
5.1. BPMN-Engines . 35

5.2. CEP-Engine . 38

6. Architektur 41
6.1. Komponenten . 42

6.1.1. ESCStore . 42

6.1.2. ESEngine . 45

6.1.3. InstanceManager . 47

6.2. Datenmodellierung . 48

6.2.1. ConfigurationMessage . 48

6.2.2. Ereignisformat . 48

6.3. Kommunikation und Datenintegration . 50

3

7. Implementierung 53
7.1. Vorgehen bei der Implementierung . 53

7.1.1. Hauptkomponenten . 53

7.1.2. Activiti . 54

7.2. Erweiterungen . 55

8. Evaluation 59
8.1. Szenario . 62

8.1.1. Der Prozess . 62

8.1.2. Die Ereignisverarbeitung . 63

8.1.3. Andere Varianten bzw. Modellierungsmöglichkeiten 66

9. Zusammenfassung und Ausblick 69

A. Anhang 73
A.1. Abkürzungen . 73

A.2. XML-Schemata und WSDLs . 74

Literaturverzeichnis 87

4

Abbildungsverzeichnis

1.1. Darstellung eines Ereignisses mit zwei Attributen 9

2.1. BPMN Modellierungsebenen (Quelle: vgl. [FRH10]) 13

2.2. BPMN Start-Ereignis . 14

2.3. BPMN Start-Ereignisse . 14

2.4. Abstraktionsebenen bei der Verarbeitung von Ereignissen 16

2.5. Verarbeitung von Ereignissen . 16

2.6. Datenextraktion aus Ereignissen . 17

2.7. Ereigniskomposition . 17

2.8. Ereignisakkumulation . 18

2.9. Zeitliche Abhängigkeit von Ereignissen . 18

3.1. Notationselemente von BEMN (Quelle: [DGB07]) 21

3.2. Modellierung: Entscheidungs-Framework (Quelle: [MIK08]) 22

4.1. Was soll die Architektur bzw. Implementierung leisten? 30

4.2. Lebenszyklus eines Modells (Workflow-Modell, Regeln, Ereignisquellen-
Konfigurationen) . 32

5.1. Activiti Modeler - BPMN-Palette . 36

5.2. Aufbau von Activiti (Quelle: vgl. [Men11]) . 37

5.3. Architekturüberblick der CEP-Engine Esper (Quelle: vgl. http://www.

espertech.com/products/esper.php) . 38

6.1. Überblick im Kontext des WfMC-Referenz-Modells (basierend auf dem Work-
flow Reference Model Diagram http://www.wfmc.org/reference-model.

html der WfMC) . 41

6.2. Überblick Gesamtarchitektur . 42

6.3. Klassendiagramm der ESCStore Komponente 43

6.4. Klassendiagramm der ESEngine-Komponente 46

6.5. Klassendiagramm der InstanceManager-Komponente 48

6.6. Sequenzdiagramm: Erstellung einer ESEngine-Instanz; Abruf von Daten aus
dem ESCStore; Initialisierung einer EventSource; Empfang eines Ereignisses . . 51

7.1. Erweiterung der Palette des Eclipse-Designers von Activiti um zwei Aktivitäten 55

8.1. Prozess des Szenarios . 62

5

http://www.espertech.com/products/esper.php
http://www.espertech.com/products/esper.php
http://www.wfmc.org/reference-model.html
http://www.wfmc.org/reference-model.html

8.2. Benutzungsoberfläche des Eclipse-Designers, die es erlaubt, Attribute für die
ConfigurationMessage festzulegen . 63

8.3. Benutzungsoberfläche zur Konfiguration der Receive Event Task - Es wird
festgelegt, auf welches Ereignis gewartet werden soll, und wie der Bezeichner
der Variable heißen soll, die nach dem Empfang die Ereignisdaten enthält. . . 63

8.4. Vereinfachter Szenario-Prozess . 66

8.5. Szenario-Prozess mit minimaler Anzahl Regeln 67

Tabellenverzeichnis

1.1. Lizenzen . 9

2.1. CEP-Engines . 18

3.1. Composite Event-Patterns . 24

6.1. Common Base Event: Benötigte Attribute . 49

8.1. BPMN Event-Patterns . 60

8.2. Composite Event-Patterns . 61

6

1. Einleitung

Vor der eigentlichen, inhaltlichen Auseinandersetzung mit dem Thema dieser Diplomar-
beit werden einführende Überlegungen zur Motivation vorgestellt, und es werden einige
Konventionen und Rahmenbedingungen für diese Diplomarbeit festgelegt.

1.1. Motivation

Die Workflow-Technologie hat ihren Ursprung im Document Routing und Case Processing
Mitte der 1980er Jahre. Seitdem gab es zahlreiche Entwicklungen in diesem Bereich, und
Workflow Management Systeme (WfMSe) finden immer häufiger ihren Einsatz in Unterneh-
men. Seit kurzem rückt daneben jedoch immer stärker ein anderes Paradigma in den Fokus:
Complex Event Processing (CEP).

Der Begriff CEP wurde zum ersten Mal von David Luckham in seinem Buch „The Power
of Events“ [Luc02], erschienen im Jahr 2002, verwendet. Sensoren und Softwaresysteme
liefern in immer größerem Umfang feingranulare Informationen, die möglichst schnell wei-
terverarbeitet werden müssen. Diese Beschleunigung wird laut der Vorhersagen von Gartner
für das Jahr 2011 weiter zunehmen. Unter dem Punkt „Addressing Key Advancements in
Application Architecture“ konstatiert Gartner „die Beschleunigung, die vor einigen Jahren
mit serviceorientierten Architekturen begann, findet ihre Fortsetzung durch den immer
häufiger werdenden Einsatz von ereignisgesteuerten Systemen“1.

Es liegt also nahe, die in den Unternehmen eingesetzten Workflow-Systeme um die Fähig-
keiten des Complex Event Processing bzw. um Fähigkeiten von Systemen zur Situationser-
kennung zu erweitern. Im Rahmen dieser Diplomarbeit soll die Architektur eines solchen
Systems entworfen und eine Implementierung entwickelt werden.

Es sind somit z.B. Szenarien denkbar, in denen Ereignisse von Produktionssystemen (z.B.
Smartfactories) und aus Enterprise Resource Planning (ERP)-Systemen von speziellen Syste-
men zur Ereignisverarbeitung verarbeitet werden, und dann nur die akkumulierten Ergeb-
nisse von Workflow-Systemen weiterverarbeitet werden.

1http://www.gartner.com/DisplayDocument?doc_cd=208777

7

http://www.gartner.com/DisplayDocument?doc_cd=208777

1. Einleitung

1.2. Konventionen

Verwendung englischer Begriffe

Ich verwende in meiner Diplomarbeit immer dann englische Begriffe, wenn es sich um einen
feststehenden Fachbegriff handelt oder wenn es keine mir bekannte, äquivalente und eindeu-
tige deutsche Entsprechung gibt. Für die Bezeichnungen, die sich auf die Implementierung
beziehen, werden ebenso englische Begriffe verwendet.

Abkürzungen

Alle Abkürzungen werden bei der ersten Verwendung ausgeschrieben. Die Abkürzung
steht bei der ersten Verwendung in Klammern. Im Folgenden wird in der Regel nur noch
die Abkürzung verwendet. Unter A.1 im Anhang ist ein Verzeichnis aller Abkürzungen zu
finden.

Zitierung

Sofern Inhalte aus dem Web verwendet werden, wird die URL der Quelle als Fußnote
angegeben. Alle anderen Quellen werden wie folgt gekennzeichnet: [WMKL09]. Im Anhang
unter A.2 befindet sich ein Literaturverzeichnis, dem detaillierte Informationen zu all diesen
Quellen entnommen werden können.

Hervorgehobener Text

Bezeichnungen im Text, die sich auf Bezeichnungen der Implementierung, auf Tabellen,
Aufzählungen oder Abbildungen beziehen, werden hervorgehoben. Bei Verweisen auf Kapitel
im Text wird der Titel eines Kapitels ebenfalls hervorgehoben.

Darstellung von Ereignissen

Um Ereignisse auf einer abstrakten, konzeptionellen Ebene darzustellen, verwende ich
eine Darstellung wie in Abbildung 1.1. Es wird immer die Instanz eines Ereignis-Typs, im
Folgenden nur noch Ereignis genannt, dargestellt. Der Typ der Instanz wird durch die Farbe
und den Buchstaben repräsentiert. Die Attribute 1 - n eines Ereignisses des Typs A werden
als A1 - An, n ∈ N dargestellt. Die Bezeichnung von Attributen durch den Namen des Typs
und eine natürliche Zahl ist erforderlich, um die Attribute verschiedener Ereignis-Typen
auseinanderhalten zu können. Wäre der Bezeichner eines Attributs nur eine natürliche Zahl,
so würde eine Verwechslungsgefahr zwischen Attributen unterschiedlicher Typen bestehen.
Mit der vorgestellten Notation lassen sich verschiedene Instanzen eines Ereignis-Typs nicht

8

1.3. Rechtliche Hinweise

unterscheiden. Dies stellt aber auf der Abstraktionsebene, auf der diese Notation verwendet
wird, kein Problem dar.

Abbildung 1.1.: Darstellung eines Ereignisses mit zwei Attributen

Darstellung von Geschäftsprozessen

Für alle Darstellungen von Geschäftsprozessen verwende ich die Business Process Modelling
Notation oder seit Version 2.0 Business Process Model and Notation (BPMN). Es wird davon
ausgegangen, dass der Leser BPMN 2.0 versteht. In Kapitel 2.2 wird lediglich eine kurze
Einführung gegeben, die die für die folgende Arbeit relevanten Aspekte hervorhebt.

1.3. Rechtliche Hinweise

Alle Lizenzen verwendeter Software sind zu beachten. Folgende Bibliotheken oder Program-
me wurden bei der Implementierung verwendet.

Bibliothek Lizenz

Esper General Public License v2

EclipseLink Eclipse Public License
H2 Eclipse Public License
Open Message Queue Common Development and Distribution License
Activiti Apache License

Tabelle 1.1.: Lizenzen der verwendeten Programmbibliotheken

1.4. Aufbau des Dokuments

Der Aufbau dieses Dokuments orientiert sich grob am Ablauf eines Softwareprojekts. Zu-
nächst werden in Kapitel 2 einige für das Verständnis wichtige Grundlagen behandelt. Danach
wird in Kapitel 3 versucht, einen Überblick über die verwandten Arbeiten zu geben, die
zusammen mit den Grundlagen und der Motivation die Basis der weiteren Arbeit bilden.

9

http://opensource.org/licenses/gpl-2.0
http://opensource.org/licenses/eclipse-1.0
http://opensource.org/licenses/eclipse-1.0
http://opensource.org/licenses/cddl1
http://opensource.org/licenses/apache2.0

1. Einleitung

Danach werden in Kapitel 4 Anforderungen an das System definiert. Im Anschluss werden
einige zentrale Technologien in Kapitel 5 vorgestellt. In Kapitel 6 wird auf Basis der Anforde-
rungen eine Architektur für das System entworfen. In Kapitel 7 werden das Vorgehen bei der
Implementierung und die Erweiterungsmöglichkeiten beschrieben. Danach wird in Kapitel 8 -
Evaluation - das Ergebnis der Implementierung untersucht. Ferner wird diskutiert, wie sich
die Implementierung nutzen lässt, ob alle Anforderungen aus Kapitel 4 realisiert wurden,
wie das System optimal eingesetzt werden kann und welche Verbesserungsmöglichkeiten
es gibt. In Kapitel 9 - Zusammenfassung und Ausblick - werden die Ergebnisse der Arbeit
zusammengefasst und offene Fragen benannt.

10

2. Grundlagen

Dieses Kapitel enthält einige Grundlagen, die für das Verständnis der nachfolgenden Kapitel
benötigt werden. Viele Grundlagen können hier aber nur angerissen werden. Insofern erhebt
die Darstellung der Grundlagen in dieser Diplomarbeit in keiner Weise einen Anspruch auf
Vollständigkeit.

2.1. Workflow-Management

Wie bereits in der Einleitung erwähnt, spielen WfMSe in vielen Unternehmen eine wichtige
Rolle. WfMSe werden in vielen Bereichen eingesetzt, um Geschäftsprozesse auf einem
Rechner auszuführen.

Im Folgenden werden zentrale Begriffe aus dem Bereich Workflow-Management definiert,
die in dieser Diplomarbeit verwendet werden. Die verwendeten Definitionen stammen aus
[LR00] und aus dem Glossar der Workflow Management Coalition (WfMC)1.

In [LR00] wird ein Geschäftsprozess als eine Folge von Aktivitäten beschrieben, die von ver-
schiedenen Personen ausgeführt werden. Ein solcher Geschäftsprozess wird typischerweise
auf gleiche Weise immer von Neuem wiederholt. Ein Prozessmodell wird verwendet, um
einen Geschäftsprozess zu beschreiben. Ein solches Prozessmodell definiert alle möglichen
Pfade eines Geschäftsprozesses und alle Regeln, die festlegen, welche Pfade genommen
und welche Aktionen ausgeführt werden müssen. Ein Prozessmodell dient als Vorlage
für die Instantiierung aller konkreten Prozesse. Solche Prozesse müssen nicht auf einem
Rechner ausgeführt werden. Geschäftsprozesse können sowohl aus Teilen bestehen, die
auf einem Rechner ausgeführt werden, als auch aus Teilen, die nicht von einem Rech-
ner unterstützt ausgeführt werden. Die auf dem Rechner ausführbaren Teile werden als
Workflow-Modell bezeichnet [LR00]. Analog zu Prozessmodell und Prozess wird die Instanz
eines Workflow-Modells Workflow genannt. Ein WfMS ist ein System, mit dem Workflows
durch die Anwendung von Software definiert, erstellt und verwaltet werden können. Dabei
werden die Workflows auf einer oder mehreren Workflow-Engines ausgeführt, die in der
Lage sind, Prozessdefinitionen zu interpretieren, mit Workflow-Teilnehmern zu interagieren,
und ggf. IT-Werkzeuge und Anwendungen aufzurufen [WfM99].

1http://www.wfmc.org/Glossaries-FAQs/View-category.html

11

http://www.wfmc.org/Glossaries-FAQs/View-category.html

2. Grundlagen

Modellierung

Zur Definition von Geschäftsprozessen mit Softwareunterstützung stehen verschiedene
Notationen bzw. Sprachen zur Verfügung. Folgende Sprachen werden in [LK06] als weit
verbreitet oder für die Zukunft relevant bezeichnet:

• UML 2.0 - Activity Diagram (AD)

• Business Process Definition Metamodel (BPDM)

• Business Process Modelling Notation (BPMN)

• Event Driven Process Chains (EPC)

• Integrated DEFinition Method 3 (IDEF3)

• Petri-Netze

• Role Activity Diagram (RAD)

Aus meiner Sicht ist heutzutage für die Modellierung vor allem die BPMN von Bedeutung.
BPMN ist ein offener Standard, wird von zahlreichen Herstellern, darunter z.B. IBM und SAP,
unterstützt2, und mit der Version 2.0 besitzt BPMN eine definierte Ausführungssemantik.

Mit der Version 2.0 findet eine Umdeutung des Akronyms von Business Process Modelling
Notation hin zu Business Process Model and Notation statt [OMG10]. Diese Umdeutung
spiegelt die Tatsache wider, dass BPMN nicht mehr nur eine Modellierungssprache ist, son-
dern auch eine definierte Ausführungssemantik und zudem ein XML-Serialisierungsformat
besitzt, das beschreibt, wie die technischen Details des Prozesses gespeichert werden [FRH10,
S. 199].

Für BPMN 2.0 existieren bereits einige wenige Ausführungsumgebungen. Zum Zeitpunkt
des Beginns der Diplomarbeit waren mir JBOSS JBPM3 und Activiti4 bekannt, die in Kapitel
5 betrachtet werden.

2.2. Business Process Model and Notation

Es folgen nun einige Erläuterungen zur Ausführung von BPMN 2.0 und zur Modellierung
des technischen Prozessmodells (siehe Abbildung 2.1). Sämtliche Ausführungen basieren
auf dem Buch „Praxishandbuch BPMN“. Die Ausführung von BPMN 2.0 beruht auf dem
Token-Konzept. Dies bedeutet, dass der Ablauf eines Workflows sich immer gerade an der
Stelle befindet, an der sich ein Token befindet. Bei parallelen Abläufen existieren mehrere
Token, d.h. zu Beginn eines parallelen Ablaufs wird ein einzelnes Token entsprechend der

2http://www.omg.org/bpmn/BPMN_Supporters.htm
3http://www.jboss.org/jbpm
4http://www.activiti.org

12

http://www.omg.org/bpmn/BPMN_Supporters.htm
http://www.jboss.org/jbpm
http://www.activiti.org

2.2. Business Process Model and Notation

Anzahl paralleler Zweige geklont. Am Ende eines parallelen Ablaufs müssen die Zweige
entsprechend synchronisiert und überzählige Token konsumiert werden.

Die Autoren von [FRH10] legen großen Wert auf die Unterscheidung verschiedener Ebenen
bei der Prozessmodellierung. Sie unterscheiden dabei folgende Ebenen:

Prozess Landschaft

IT-Specification

Implementation

Process Engine

Business

IT

Operational Processmodel

Technischs
Prozessmodell

Strategisches
Prozessmodell

Implementierung

Operationales Prozessmodell

IT-Spezifikation

Abbildung 2.1.: BPMN Modellierungsebenen (Quelle: vgl. [FRH10])

Die Autoren beschreiben weiterhin ein Vorgehen, bei dem erst zwischen den Ebenen zwei
und drei entschieden wird, welche Technologie und Prozess Engine eingesetzt wird. Wird
eine BPMN 2.0 Engine eingesetzt, erfolgt eine Verfeinerung des Modells der Ebene zwei
um die technisch notwendigen Details [FRH10, S. 188 f.]. Die Alternativen, eine andere
Engine einzusetzen oder das Prozess Modell mit Hilfe einer klassischen Programmiersprache
umzusetzen, verfolge ich an dieser Stelle nicht weiter, da bei der Umsetzung der Diplomarbeit
eine BPMN 2.0 Engine zum Einsatz kommen soll.

Ereignisse

Da Ereignisse in dieser Diplomarbeit eine zentrale Rolle spielen, werden im Folgenden
Ereignisse in BPMN 2.0 näher betrachtet.

Ereignisse können laut [FRH10, S. 48] dazu führen, dass:

• der Prozess gestartet wird,

• der Prozess oder ein Prozesspfad fortgesetzt wird,

13

2. Grundlagen

• die aktuell in Bearbeitung befindliche Aufgabe oder der Teilprozess abgebrochen wird,

• während der Bearbeitung einer Aufgabe oder eines Teilprozesses ein weiterer Prozess-
pfad durchlaufen wird.

Im Folgenden werden alle eingetretenen Ereignisse (im Original „catching events“) abgebil-
det, die BPMN zur Verfügung stellt. Im Vergleich zur BPMN 1.2 kamen in der Notation bei
den Ereignissen die nicht-unterbrechenden Ereignisse hinzu.

In Abbildung 2.2 werden Start-Ereignisse dargestellt. In Teilbild (a) ist ein Ereignis dargestellt,
durch das ein Prozess gestartet wird. In Teilbild (b) ist ein Start-Ereignis abgebildet, das
einen Ereignis-Teilprozess startet und den Oberprozess abbricht. Das Teilbild (c) zeigt ein
Ereignis, das einen Ereignis-Teilprozess startet, ohne den Oberprozess zu beenden.

(a) Start-Ereignis (b) Start-Ereignis
Teilprozess -
unterbrechend

(c) Start-Ereignis
Teilprozess -
nicht unterbre-
chend

Abbildung 2.2.: BPMN Start-Ereignis

In Abbildung 2.3 sind Zwischen-Ereignisse abgebildet. In Teilbild (a) ist ein Ereignis dar-
gestellt, das den Prozess unterbricht, bis das Ereignis eintritt. Das Teilbild (b) zeigt eine
Aktivität, die unterbrochen wird, wenn das Ereignis eintritt. In Teilbild (c) ist eine Aktivität
abgebildet, die bei Eintritt des Ereignisses nicht abgebrochen wird.

(a) Kontrollfluss un-
terbrechendes
Ereignis

(b) Aktivität unter-
brechendes Er-
eignis

(c) Aktivität nicht
unterbrechen-
des Ereignis

Abbildung 2.3.: BPMN Start-Ereignisse

14

2.3. Complex Event Processing

2.3. Complex Event Processing

Der Begriff CEP wurde erstmals in dem im Jahr 2002 erschienen Buch „The Power of Events“
[Luc02] von David Luckham verwendet. Im Alltagsgebrauch ist ein Ereignis etwas, was
passiert [Luc02, S. 88].

Ein Ereignis hat nach [Luc02, S.88] drei Aspekte:

• Form

• Bedeutung

• Beziehung

Mit Form ist die Repräsentation eines Ereignisses gemeint. David Luckham schreibt: „Die
Form eines Ereignisses ist ein Objekt“. Wobei mit Objekt eine beliebige Objekt-Repräsentation
z.B. in Form eines Strings, eines Tupels oder eines Objekts im Sinne einer objektorientierten
Programmiersprache gemeint ist. Dieses Objekt kann verschiedene Eigenschaften enthalten
(z.B. wo das Ereignis aufgetreten ist).

Zu einem Ereignis gehört ebenso seine Bedeutung. Ein Ereignis steht immer für eine Aktivität.
Modelltheoretisch ausgedrückt ist ein Ereignis ein deskriptives Modell einer Aktivität.

Der dritte Aspekt, der zu einem Ereignis gehört, ist die Beziehung. Eine Aktivität steht
bezüglich des zeitlichen und kausalen Zusammenhangs und der Aggregation in einer
Beziehung zu anderen Aktivitäten. Der gleiche Zusammenhang gilt, da ein Ereignis ein
Modell einer Aktivität ist, also ebenso für Ereignisse.

Ein komplexes Ereignis ist eine Abstraktion anderer Ereignisse. Bei diesen anderen Ereignis-
sen kann es sich entweder um andere komplexe Ereignisse oder aber um einfache Ereignisse
handeln. Einfach sind Ereignisse, die sich nicht weiter in Teilereignisse unterteilen lassen.
Da es in vielen Fällen für die weitere Verarbeitung keine Rolle spielt, ob es sich bei einem
Ereignis um ein komplexes Ereignis oder ein einfaches Ereignis handelt, verwende ich
in diesem Fall den Begriff Ereignis sowohl für einfache Ereignisse als auch für komplexe
Ereignisse[Luc02].

Der Gedanke hinter CEP ist die Strukturierung von Ereignissen in Abstraktionsebenen. Ein
Beispiel ist in 2.4 dargestellt.

15

2. Grundlagen

Abbildung 2.4.: Abstraktionsebenen bei der Verarbeitung von Ereignissen

Ein komplexes Ereignis ist also entweder eine Abstraktion mehrerer weniger-abstrakter
Ereignisse der gleichen Abstraktionsebene oder eine Abstraktion von Ereignissen unter-
schiedlicher Abstraktionsebenen. So ist das Ereignis der Abstraktionsebene 1 in der Abbildung
2.4 eine Abstraktion mehrerer Ereignisse der Abstraktionsebene 0, und das Ereignis der
Abstraktionsebene 2 ist eine Abstraktion von Ereignissen der Ebenen 0 und 1.

Das Ziel von CEP ist es, möglichst in Echtzeit eine große Anzahl von Ereignissen zu
verarbeiten. Abbildung 2.5 zeigt schematisch die Verarbeitung von Ereignissen mit Hilfe
einer CEP-Engine.

Regel 1 - Stau
Wenn fünf Autos im Bereich und
Position jedes Autos ändert sich
innerhalb einer Minute um
weniger als 10m

Regel 2 - ...

Sensorinformationen

CEP-Engine

Stau

Abbildung 2.5.: Verarbeitung von Ereignissen

16

2.3. Complex Event Processing

Die Verarbeitung der Ereignisse wird durch sogenannte Event Pattern Languages (EPLs)
gesteuert. EPLs dienen der Beschreibung von Ereignismustern. Wird ein solches Muster von
einer CEP-Engine erkannt, so wird ein Ereignis erzeugt. Momentan gibt es noch keinen
Standard für EPLs, und jeder Hersteller verwendet somit eine eigene Sprache. Grundsätzlich
lassen sich nach [BE07] vier Dimensionen unterscheiden, die eine Sprache zum Erkennen
von Ereignismustern bzw. der Abfrage von Ereignissen unterstützen muss:

• data extraction - Datenextraktion

• event composition - Ereigniskomposition

• temporal (and causal) relationships - zeitliche (und kausale) Verknüpfungen

• event accumulation - Ereignisakkumulation

Die Datenextraktion dient der Filterung von Daten aus bestehenden Ereignissen. Die Abbil-
dung 2.6 zeigt, dass einzelne Eigenschaften eines Ereignisses ausgewählt werden, die dann
die Eigenschaften eines neuen komplexen Ereignisses bilden.

Abbildung 2.6.: Datenextraktion aus Ereignissen

Bei der Ereigniskomposition werden dagegen, wie in Abbildung 2.7 dargestellt, die Eigenschaf-
ten eines Ereignisses mit denen anderer Ereignisse zusammengesetzt.

Abbildung 2.7.: Ereigniskomposition

Bei der Ereignisakkumulation, dargestellt in Abbildung 2.8, werden die Attribute verschie-
dener Ereignisse mit Hilfe eines Operators akkumuliert. Da ein Ereignisstrom prinzipiell
unendlich ist, müssen für die Berechnung Zeiträume oder eine gewünschte Anzahl von
Ereignissen angegeben werden. Eine solche Akkumulation kann z.B. der Berechnung des
durchschnittlichen Gewinns der letzten Stunde oder der Berechnung des durchschnittlichen
Gewinns der letzten zehn Buchungs-Ereignisse dienen.

17

2. Grundlagen

Abbildung 2.8.: Ereignisakkumulation

Schließlich gibt es noch zeitliche oder kausale Abhängigkeiten von Ereignissen. Es muss also
möglich sein, auszudrücken, dass Ereignisse zeitlich oder kausal eine vorgegebene Ordnung
erfüllen. In Abbildung 2.9 wird ein neues Ereignis des Typs C erzeugt, wenn ein Ereignis
des Typs A und ein Ereignis des Typs B in dieser zeitlichen Abfolge auftreten.

Abbildung 2.9.: Zeitliche Abhängigkeit von Ereignissen

Es gibt, wie in Tabelle 2.1 dargestellt, eine Reihe von Systemen und Engines für CEP. Die
Tabelle erhebt in keiner Weise einen Anspruch auf Vollständigkeit.

Hersteller Engine EPL Lizenz

Oracle Oracle CEP Continuous Query Language (CQL) proprietär
Codehaus (N)Esper Esper EPL GPL
Tibco Tibco Business Events Rete-basierte Regelsprache proprietär
Sybase Sybase CEP Continuous Computation Language (CCL) proprietär

Tabelle 2.1.: CEP-Engines

18

2.4. Sonstige Definitionen und Begriffe

Die Fachstudie „Vergleich von Complex Event Processing-Ansätzen für Business Activity
Monitoring“ [BDK10], durchgeführt am Institut für Architektur von Anwendungssystemen
(IAAS) der Universität Stuttgart, hat einige CEP-Werkzeuge untersucht und ist dabei zu dem
Ergebnis gekommen, dass vor allem im Hinblick auf Leistungsfähigkeit und Ausgereiftheit
der EPL mit Esper5 eine sehr leistungsfähige Ausführungsumgebung zur Verfügung steht
[BDK10]. Esper ist ein Opensource-Projekt und eignet sich auch daher sehr gut für eine
Diplomarbeit. Aus diesem Grund werde ich bei der Realisierung des erarbeiteten Konzepts
auf Esper zurückgreifen.

2.4. Sonstige Definitionen und Begriffe

Die folgenden Begriffe und Abkürzungen werde ich in meiner Diplomarbeit immer wieder
verwenden, ohne näher darauf einzugehen, was sich dahinter verbirgt. Sollten Zweifel an
der Bedeutung eines Begriffs bestehen, den ich in meiner Diplomarbeit verwende, so sind
die Glossare der WfMC6, was Workflows betrifft, und das Glossar der Event Processing
Technical Society (EPTS)7, was CEP betrifft, geeignete Quellen, an denen ich mich nach
Möglichkeit orientiert habe. An dieser Stelle werde ich mich auf eine ganz kurze Definition
einiger verwendeter Begriffe beschränken, die ich bis hierhin noch nicht erklärt habe.

Event Driven Architecture (EDA) = ereignisgesteuerte Architektur

Event Driven Architecture (EDA) ist ein Architekturstil. In einer EDA sind zentrale Kompo-
nenten durch Ereignisse gesteuert bzw. kommunizieren über Ereignisse [LS08].

Service Oriented Architecture (SOA) = serviceorientierte Architektur

Service Oriented Architecture (SOA) ist ein Architekturstil, dessen zentrale Eigenschaft die
lose Kopplung von Services ist. Services stellen eine Funktionalität an einer Netzwerkadresse
über verschiedene Transportprotokolle und Formate und mit unterschiedlichen Quality of
Service (QoS)-Eigenschaften zur Verfügung. Ein Service steht wie Elektrizität, Wasser, Gas
etc. immer zur Verfügung [CLS+05], muss also weder erstellt noch zerstört werden.

5http://esper.codehaus.org
6http://www.wfmc.org
7http://www.ep-ts.com

19

http://esper.codehaus.org
http://www.wfmc.org
http://www.ep-ts.com

2. Grundlagen

Context = Kontext

„Kontext ist jede Information, die geeignet ist, die Situation einer Entität zu beschreiben. Eine
Entität ist eine Person, ein Ort oder ein Objekt, die relevant für die Interaktion zwischen
einem Benutzer und einer Anwendung, einschließlich des Benutzers und der Anwendung
selbst, ist [Dey01].“

Context-aware = kontextbewusst

„Ein System ist Context-aware, wenn es Kontext verwendet, um relevante Informationen
und/oder Services bereitzustellen, deren Relevanz für Benutzer abhängig von der Aufgabe
des Benutzers ist [Dey01].“

Situation

Ich verwende den Begriff Situation in meiner Diplomarbeit, wie er in [Dey01] verwendet
wird. Eine Situation besteht aus allen Umständen, die relevant für eine Entität sind. Aus
meiner Sicht ist der Kontext ein deskriptives Modell einer Situation.

Business Rule = Geschäftsregeln

Den Begriff Geschäftsregel verwende ich in dieser Arbeit gemäß der Verwendung in [MIK08].
„Im allgemeinen ist eine Geschäftsregel eine Aussage mit dem Ziel, das Verhalten und die
Informationen einer Organisation zu leiten oder zu beeinflussen [SN03].“ In [MIK08] werden
strukturelle Regeln wie Integritätsregeln (z.B. jede Buchung muss einen Posten enthalten)
oder Ableitungsregeln (z.B. ein Kunde, mit einem monatlichen Umsatz von 2000 Euro, ist ein
Premiumkunde) und operationale Regeln wie Transformationsregeln (z.B. das Alter eines
Kunden kann nur einmal pro Jahr geändert werden) oder Reaktionsregeln (z.B. bei einem
Kreditantrag über 100.000 Euro muss dieser von einem Mitarbeiter der Ebene drei genehmigt
werden) genannt.

Event Processing Rule = Ereignisverarbeitungsregeln

Event Processing Rules können auf viele verschiedene Arten (endlicher Automat, Java-Code,
SQL-Code, Event-Condition-Action Rules) beschrieben werden [LS08]. Mit Regeln wird
deklarativ beschrieben, wie die Verarbeitung von Ereignissen durch eine entsprechende
Engine abläuft.

20

3. Verwandte Arbeiten

Nachdem die Grundlagen im vorangegangenen Kapitel präsentiert wurden, werden nun
einige Arbeiten, die für die Diplomarbeit maßgeblich sind, vorgestellt. Grundsätzlich lassen
sich die relevanten, wissenschaftlichen Arbeiten in vier Gruppen aufteilen. Es gibt Arbeiten,
die die Modellierung von Geschäftsprozessen und Geschäftsregeln bzw. Ereignissen behan-
deln. Die nächste Gruppe beschäftigt sich generell mit der Verarbeitung von Ereignissen im
Zusammenhang mit Workflows, und die dritte relevante Gruppe befasst sich mit kontext-
und situationsbezogenen Workflows. Die vierte Gruppe beschäftigt sich mit der Ableitung
von Ereignissen bzw. dem logischen Schließen auf Ereignisse. Natürlich existieren auch
zwischen den einzelnen Arbeiten Überlappungen, so dass sich diese nicht immer ganz
eindeutig einer Gruppe zuordnen lassen. In solchen Fällen habe ich versucht, die Arbeit
ihres Themenschwerpunkts entsprechend einzuordnen.

3.1. Modellierung von Geschäftsprozessen, Geschäftsregeln und
Ereignissen

Eine interessante Arbeit zur Modellierung von Ereignissen ist [DGB07]. Die Autoren schlagen
darin eine Sprache zur Modellierung von Ereignissen vor, die sie Business Event Modelling
Language (BEMN) nennen. Der Name deutet schon die Anlehnung an BPMN an. Tatsächlich
sprechen die Autoren sogar von einer Erweiterung der BPMN [DGB07].

Die in Abbildung 3.1 dargestellten grafischen Notationselemente werden vorgestellt, es wird
eine formale Semantik für sie definiert und ein Metamodell präsentiert:

Abbildung 3.1.: Notationselemente von BEMN (Quelle: [DGB07])

21

3. Verwandte Arbeiten

Aber nicht nur die Darstellung sondern auch die Semantik, auf die ich an dieser Stelle nicht
weiter eingehen will, ist stark an die von BPMN angelehnt. Die Kompatibilität zwischen
BEMN und BPMN erfordert dies letztendlich auch.

Am Ende werfen die Autoren die Frage auf, welche Aspekte nun mit welchem Paradigma
modelliert werden sollten. Diese Frage wird zumindest teilweise auch in weiter unten
betrachteten Arbeit [DKGZ10] beantwortet.

Auch [MIK08] widmet sich der Frage, welche Geschäfts-Aspekte eher mit der klassischen
Geschäftsprozess-Modellierung abgebildet werden und für welche Aspekte eher ein regelba-
sierter Ansatz gewählt werden sollte. Es werden fünf Kriterien identifiziert, mit denen sich
bestimmen lassen soll, ob ein Aspekt eher mit einer Regel oder eher mit einem Geschäftspro-
zess modelliert werden sollte. Abbildung 3.2 zeigt eine Übersicht der Kriterien.

stündlich

Business User

sehr gering

intern

konzernweit

täglich

gering

Teilbereich

mehrere
Prozesse

Business
Analyst

wöchentlich

mittel

Fachbereich

Prozess

Business /
System
Analyst

monatlich

hoch

Geschhäfts-
partner

Aktivität

System
Analyst

jährlich

sehr hoch

Externe

innerhalb d.
Aktivität

Programmierer

Geschäftsregeln Geschäftsprozesse

Frequenz
Änderungen

Implementierungs-
verantwortung

Grad
der

Auswirkung

Ursprung
der

Änderung

betroffener
Bereich

Abbildung 3.2.: Modellierung: Entscheidungs-Framework (Quelle: [MIK08])

In ihrem Fazit stellen die Autoren fest, dass sie in ihrer Arbeit die gemeinsame visuelle
Modellierung von Geschäftsprozessen und Geschäftsregeln nicht berücksichtigt haben. Ein
Ansatz hierzu bietet die bereits oben erwähnte Erweiterung von BPMN, die in der Arbeit
[DGB07] vorgeschlagen wird.

22

3.2. Workflows und Ereignisverarbeitung

3.2. Workflows und Ereignisverarbeitung

Eine für diese Diplomarbeit besonders relevante Arbeit ist [WMKL09]. Ein zentraler Punkt
dieser Arbeit ist der Gedanke der Vereinheitlichung der Ansätze von EDA und SOA, die in
der Industrie jeweils für sich bereits weit verbreitet sind [WMKL09]. Die als Service Oriented
Event Driven Architecture (SOEDA) bezeichnete Architektur basiert auf der Integration
beider Architekturen durch Event-driven Process Chains (EPCs). Auf Modellierungsebene
werden also EPCs verwendet. Das Modell wird zur Ausführung mit Hilfe eines modellge-
triebenen Ansatzes transformiert. Als Zielsprachen werden BPEL für die Workflows und
Esper-Regeln für das CEP vorgeschlagen. Durch SOEDA sollen also die Vorteile beider Archi-
tekturen vereint werden. Als Vorteile von EDA-basierten Systemen werden die Fähigkeiten
aufgezählt, flexibel auf ad-hoc Änderungen zu reagieren, Situationen zu erkennen und eine
große Anzahl von Ereignissen oder Datenströmen verarbeiten zu können. Für SOAs werden
als Vorteile die Einhaltung von Standards, die Interoperabilität und die Integration von
legacy Systemen beschrieben.

In [AESW08] wird ein Referenzmodell für Event Driven Business Process Management
(EDBPM) vorgestellt, wobei die Autoren unter EDBPM eine Verknüpfung von Business
Process Management (BPM) und CEP verstehen. Allerdings beschränken sich die Autoren in
ihrer Betrachtung von EDBPM fast ausschließlich auf Business Activity Monitoring (BAM).
Am Ende kommen die Autoren aber zu dem Schluss, dass in Zukunft Geschäftsprozesse
auch automatisch auf Ereignisse reagieren können sollten [AESW08].

Auch die Arbeit [DKGZ10] setzt sich mit der Integration verschiedener Paradigmen ausein-
ander. Dazu gehören Workflow-Management (WfM), Business Rules Management (BRM)
und CEP. Einen Schwerpunkt der Arbeit bilden die Integration der Paradigmen auf
Metamodellebene und die Frage, welche Aspekte wie und mit welchem der drei Paradigmen
modelliert werden sollten.

In [BDG07] wird ebenfalls die Notwendigkeit zur Modellierung von Ereignissen im Um-
feld von Geschäftsprozessen dargestellt. Allerdings liegt der Schwerpunkt dann auf der
Beschreibung von Mustern für Composite Events und ihrer Realisierbarkeit mit Business
Process Execution Language (BPEL) und BPMN. Einen Überblick über die Composite Event
Patterns gibt Tabelle 3.1. Die Autoren sind der Auffassung, dass eine nahtlose Modellierung
von Prozessen und Ereignissen benötigt wird, um eine konsistente Sicht für Prozessexper-
ten zu erreichen. Sowohl BPEL als auch BPMN besitzen nicht die Fähigkeit, verschiedene
Abstraktionsebenen (siehe Kapitel 2.3) auszudrücken. BPMN bietet abgesehen davon aber
mehr Ereignistypen. Trotzdem zeigt sich, dass sich weder mit BPEL noch mit BPMN alle
vorgeschlagenen Muster realisieren lassen [BDG07].

23

3. Verwandte Arbeiten

Composite Event Pattern Beschreibung

1. Event Conjunction Zwei oder mehr Ereignisse müssen in der
richtigen Reihenfolge eintreten.

2. Event Cardinality Eine festgelegte Anzahl von Ereignissen
desselben Typs treten ein.

3. Event Disjunction Alternative Ereignisse treten in einer be-
stimmten Reihenfolge auf.

4. Inhibiting Event Ein Ereignis tritt ein, während ein anderes
Ereignis nicht eintritt.

5. Event Time Relation Zwei Ereignisse treffen während oder au-
ßerhalb eine bestimmten Zeitfensters ein.

6. Subscription Time Relation Ein Ereignis tritt in einem Zeitfenster ein,
das relativ zum Zeitpunkt der Subscripti-
on ist.

7. Consumption Time Relation Ein Ereignis tritt mindestens eine be-
stimmte Zeit vor dem Konsum ein.

8. Absolute Time Relation Ein Ereignis tritt vor oder nach einem
festgelegten Zeitpunkt ein.

9. Event Data Dependency Die Daten zweier eintretender Ereignis-
se stehen in einer bestimmten Relation
zueinander.

10. Process Instance Data Dependency Ein eintretendes Ereignis steht in einer
bestimmten Relation zu Daten der zuge-
hörigen Prozess-Instanz.

11. Environment Data Dependency Ein eingetretenes Ereignis steht in einer
bestimmten Relation zu Daten, die für
alle Prozess-Instanzen verfügbar sind.

12. Consume Once Ein Ereignis kann höchstens von einer
Prozess-Instanz konsumiert werden.

13. Consume Multiple Times Ein Ereignis kann mehrer Male (ggf. auch
von der gleichen Prozess-Instanz) konsu-
miert werden.

Tabelle 3.1.: Composite Event-Patterns (Quelle: vgl. [BDG07])

3.3. Kontext- und situationsbezogene Workflows

Zu kontextbezogenen Workflows existiert eine Vielzahl von Arbeiten. Ich erwähne hier nur
einige, die für diese Diplomarbeit von Bedeutung sind.

24

3.3. Kontext- und situationsbezogene Workflows

In dem Konferenzbeitrag [WKNL07] wird das Ziel verfolgt, technische Prozesse mit Work-
flow Systemen, die ursprünglich für Geschäftsprozesse entwickelt wurden, zu modellieren
und auszuführen. Als grundlegender Unterschied zwischen traditionellen Geschäftsprozes-
sen und technischen Prozessen werden dabei die Ereignisse der Realwelt aufgeführt, die
von besonderer Bedeutung für technische Prozesse sind. In diesem Zusammenhang wird
vom sogenannten Business-Production-Gap gesprochen. Diese Lücke soll mit context-aware
Workflows geschlossen werden. Die Autoren stellen fest, dass eine schnelle Reaktion auf Kon-
textänderungen und die Anpassung an eine veränderte Umgebung wichtige Anforderungen
darstellen, die von etablierten Workflow Sprachen nicht unterstützt wird. In der zitierten
Arbeit wird eine Erweiterung (Context4BPEL) von BPEL vorgeschlagen, um context-aware
Workflows zu realisieren. Für die Realisierung wird in der Arbeit über die BPEL-Erweiterung
die Nexus Context Management Plattform1 angebunden. Über eine zusätzliche Komponente,
den Context Event Scheduler, können Workflows per Context-Event instantiiert werden, und
einzelne Workflow Instanzen können sich für bestimmte Context-Events registrieren, die
dann zur Steuerung des Kontrollflusses verwendet werden können. Neben dem Konsum von
Context-Events (asynchron), die von der Nexus Platform erzeugt werden, kann ein Workflow
auch synchron Context-Queries an die Nexus Plattform stellen [WKNL07].

„Modeling Dynamic Context Awareness for Situated Workflows“ [WHR09] greift zwei An-
sätze aus den Arbeiten [WKNL07], [HCC05], [HCKC06] und [SCCY07] auf und kritisiert sie
im Hinblick auf die Notwendigkeit einer umfassenden Modellierung und die fehlende Flexi-
bilität bei der Modellierung bezogen auf die zur Laufzeit relevanten Kontextinformationen.
In der Arbeit ist die Rede von Adaptable Pervasive Flow (APF), einer weitreichenden Erwei-
terung des klassischen Workflow-Paradigmas. Die Autoren betrachten dabei drei Aspekte.
Beim ersten Aspekt geht es um die Erweiterung klassischer Workflows um Situationsabhän-
gigkeit. Hinter dem zweiten Aspekt verbirgt sich ein Konzept, das die Autoren dynamische
Kontextprovisionierung nennen. Es ermöglicht die dynamische Bestimmung relevanter Kon-
textinformationen zur Laufzeit. Der dritte und letzte Aspekt betrifft einen Mechanismus
zur Constraint- und Ereignisbehandlung, der es möglich macht, auf Änderungen des rele-
vanten Kontextes geeignet zu reagieren. Das Grundprinzip funktioniert wie im Folgenden
beschrieben. Für die Repräsentation der realen Welt wird ein Entitäten-Modell vorgeschlagen.
Teil dieses Konzepts sind sogenannte Entity Events, die generiert werden, wenn zu einem
bestimmten Zeitpunkt etwas in der realen Welt passiert, das die Änderung einer Entität
verursacht. Des Weiteren wird das Konzept von Scopes eingeführt, um Aktivitäten eines
Workflows zu gruppieren. Während der Modellierung werden die Scopes mit Attachments
versehen, die einen Entitäts-Typ beschreiben. Zur Laufzeit wird der Workflow dann mit einer
passenden Entitäten-Instanz assoziiert und hat somit Zugriff auf die Kontextinformationen
dieser Entität. Über sogenannte Context-Frames wird der Zugriff auf Entitäten ermöglicht,
die bei der Modellierung noch nicht bekannt sind. Durch ihren Ansatz, relevante Kontex-
tinformationen über Attachments bzw. Context-Frames verfügbar zu machen, wollen die
Autoren die Menge der Kontextinformationen auf den relevanten Kontext beschränken. Über
die Entity-Events und entsprechende Event-Handler soll es möglich sein, auf Änderungen in
der Realwelt zu reagieren [WHR09].

1http://www.nexus.uni-stuttgart.de

25

http://www.nexus.uni-stuttgart.de

3. Verwandte Arbeiten

3.4. Ableitung von Ereignissen

Ein in der IT immer wieder auftretendes Problem ist die Behandlung von Sachverhalten der
Realität, die mit Unschärfe bzw. Unsicherheit behaftet sind. Es gibt bei der Modellierung von
Ereignissen und dem Schließen auf Ereignisse verschiedene Ansätze. Schließen bedeutet in
diesem Zusammenhang den Vorgang der Ableitung bzw. Abstraktion von Ereignissen. Wie
bereits in Kapitel 2.3 beschrieben, kann es sich hierbei um die Abstraktion von Ereignissen
unterschiedlicher oder gleicher Abstraktionsstufen handeln.

Der am weitesten verbreitete Ansatz zur Modellierung ist die Modellierung von Ereignis-
sen und das Schließen durch Regeln, die wie ein Geschäftsprozess im Voraus modelliert
werden.

Dieser Ansatz wird z.B. von Max Pucher, Chief Architect bei ISIS Software2, in seinem Blog3

kritisiert. Mit einer Modellierung von Ereignissen im Voraus würde man in die Falle einer zu
sehr vereinfachten Ursache-Wirkungs-Kette tappen. Ein zentraler Punkt seiner Kritik bezieht
sich auf die Unschärfe von Ereignissen, der man seiner Ansicht nach mit einer Modellierung
im Voraus nicht gerecht wird.

Die Unschärfe und Unsicherheit von Ereignissen werden in einigen wissenschaftlichen
Artikeln betrachtet, und es werden Lösungsansätze entwickelt.

In „Complex Event Processing over Uncertain Data“ [WGET08] werden Bayesche’ Netze in
Kombination mit einem Monte Carlo Sampling Algorithmus verwendet, um Ereignisse zu
verarbeiten, die mit einer Unsicherheit behaftet sind.

Beide Ansätze haben gemeinsam, dass auch aus Ereignissen, die mit einer Unsicherheit
behaftet sind, Ereignisse abgeleitet bzw. aus ihnen auf Ereignisse geschlossen werden kann.

In „Event Modelling and Reasoning with uncertain Information for Distributed Sensor
Networks“ [MLM10] wird für die Event Modellierung und logische Schlussfolgerung aus
den Ereignissen ein Rahmenwerk entworfen, das auf der Dempster-Shafer-Theorie beruht.
Das Rahmenwerk erlaubt die Modellierung von mit einer Unsicherheit behafteten Ereignissen
und das Schließen auf Ereignisse. Um eine Wissensbasis einzubeziehen, werden sogenannte
Domain-Events eingeführt, die das Wissen repräsentieren. So kann das Wissen mit in die
Regeln zur Schlussfolgerung einbezogen werden.

Im Gegensatz zu Pucher sehe ich kein generelles Problem darin, Regeln und Ereignisse im
Voraus zu modellieren. Meiner Meinung nach hängt es stark von der Anwendung ab, ob
eine Modellierung im Voraus möglich ist oder nicht. In Fällen, in denen eine Modellierung
von Regeln im Voraus nicht möglich ist, kann ein Ansatz wie in [WGET08] oder [MLM10]
verwendet werden. Allerdings stehen meines Wissens noch keine in der Praxis verwendbaren
Systeme zur Verfügung. Beide Konzepte lassen sich nach meiner Einschätzung nicht ohne
Weiteres mit bestehenden CEP-Engines realisieren. Es sollte aber kein Problem darstellen,

2http://www.isis-papyrus.com
3http://isismjpucher.wordpress.com/2010/11/15/can-bpmn-and-rules-handle-complex-events-no

26

http://www.isis-papyrus.com
http://isismjpucher.wordpress.com/2010/11/15/can-bpmn-and-rules-handle-complex-events-no

3.4. Ableitung von Ereignissen

ein System, das das Schließen auf der Basis von Ereignissen erlaubt, die mit einer Unsicher-
heit behaftet sind, in das System zu integrieren, welches im Rahmen dieser Diplomarbeit
entwickelt wird.

27

4. Anforderungen

Die Spezifikation ist eines der wichtigsten Dokumente, nach [LL06] sogar das wichtigste
Dokument, das während eines Softwareprojekts entsteht. Eine Spezifikation enthält die
wesentlichen funktionalen und nicht-funktionalen Anforderungen aus Kunden- bzw. Be-
nutzersicht und ist somit die Referenz für die gesamte, weitere Entwicklung von Software.
Nun unterscheidet sich eine Diplomarbeit schon alleine aufgrund der Tatsache, dass bei
einer Diplomarbeit im Allgemeinen nicht die Software im Sinne einer ausführbaren Software
sondern das Konzept im Vordergrund steht, deutlich von einem Softwareprojekt in der In-
dustrie. Trotzdem werde ich in diesem Kapitel einige Anforderungen an die Architektur und
an die Umsetzung dieser Architektur sammeln. Nur so ist aus meiner Sicht die zielgerichtete
Entwicklung einer guten Softwarearchitektur und später deren Umsetzung möglich.

Wie in einer Spezifikation üblich, werde ich versuchen, bei der Sammlung von Anforderungen
eine klare Trennung von funktionalen und nicht-funktionalen Anforderungen vorzunehmen.
Da bei einer Diplomarbeit im Allgemeinen kein Kunde im eigentlichen Sinne zur Verfügung
steht, werde ich die Anforderungen auf Basis der Ausschreibung der Diplomarbeit, der
Konzepte und Ideen aus den in Kapitel 3 vorgestellten Arbeiten erheben. Da kein Kunde zur
Verfügung steht, werden einige Anforderungen absichtlich offen gelassen und in Kapitel 6

diskutiert. Die in diesem Kapitel genannten Anforderungen sind Anforderungen aus einer
imaginären Kunden- bzw. Benutzersicht und enthalten absichtlich wenig technische Details.
Die technischen Details werden in den folgenden Kapiteln 5 und 6 betrachtet.

Häufig enthält eine Spezifikation ein Kapitel „Einsatzbereich und Ziele“. Dieses Kapitel habe
ich mit der Motivation in Kapitel 1.1 mehr oder weniger vorweggenommen.

4.1. Vorüberlegungen

Es soll eine Architektur entworfen werden, die bestehende Systeme integriert. Dabei handelt
es sich um eine Workflow-Engine und um Systeme zur Verarbeitung von Ereignissen bzw.
Erkennung von Situationen auf der Basis von Ereignissen. So soll es möglich sein, auch
große Mengen von Ereignissen in einem speziell für diese Zwecke entwickelten System zu
verarbeiten und nur geringe Mengen relevanter Ereignisse in einer Workflow-Engine weiter
zu verarbeiten. Es soll möglich sein, beliebige Workflow-Engines und Systeme zur Ereignis-
verarbeitung bzw. Situationserkennung zu verwenden. Damit wird die Idee, verschiedene
Paradigmen zu kombinieren, von [WMKL09], [AESW08] und [DKGZ10] aufgegriffen. In
diesem Fall wird also, wie in Abbildung 4.1 dargestellt, die Idee des Workflow-Managements
mit der des CEP kombiniert. Gegenstand dieser Arbeit ist vor allem die Interaktion zwischen

29

4. Anforderungen

WfMS und einem System zur Ereignis- bzw. Situationsverarbeitung. Es wird also eine Archi-
tektur geschaffen, die die Integration eines WfMS mit einem oder mehreren Systemen zur
Verarbeitung von Ereignissen bzw. Situationen ermöglicht. Der Aspekt der Modellierung
wird vernachlässigt.

ModellierungIn
te
ra
ktio

n

Workflow
Engine

Event
Situation
Engine

Abbildung 4.1.: Was soll die Architektur bzw. Implementierung leisten?

4.2. Nicht-funktionale Anforderungen

Die nicht-funktionalen Anforderungen werden zu einem Großteil durch den Charakter von
Ereignissen und durch WfMSe und Systeme zur Ereignisverarbeitung bzw. Situationserken-
nung (z.B. CEP-Engines) vorgegeben. Einige andere nicht-funktionale Anforderungen wie
eine gute Erweiterbarkeit sollten heutzutage Standard sein.

Einsatz bestehender Systeme und Sprachen

Durch die Integration bestehender Systeme soll der Implementierungsaufwand gering
gehalten werden. Außerdem lassen sich die Stärken bestehender Workflow-Systeme und
die Stärken von Systemen zur Ereignisverarbeitung bzw. Situationserkennung nutzen, ohne
diese implementieren zu müssen. Bereits bestehende Erfahrungen mit solchen Systemen
und verbreiteten Sprachen können weiter genutzt werden. Anders als in [WHR09] können
Erfahrungen im Bereich von CEP genutzt werden, und es muss kein neues Prinzip verstanden
werden. Es müssen lediglich Erfahrungen gesammelt werden, wie sich die beiden Prinzipien
in einem kombinierten Ansatz effizient nutzen lassen. Dies sollte zu einer hohen Akzeptanz
bei Benutzern führen.

30

4.3. Funktionale Anforderungen

Erweiterbarkeit

Das entstehende System soll erweiterbar sein. Dies bedeutet, es soll auf einfache Weise
möglich sein, neue Systeme zu integrieren. Dies gilt für die Integration neuer bzw. weiterer
Systeme zur Ereignisverarbeitung bzw. Situationserkennung genauso wie für neue Ereignis-
quellen, die einfach in das Gesamtsystem integrierbar sein sollen. Ebenso soll ein Austausch
der Workflow-Engine mit geringem Entwicklungsaufwand möglich sein.

Performanz

Der Durchsatz und die Latenz sollen durch die Integration nicht negativ beeinflusst werden.
Insbesondere sollen der Durchsatz und die Latenz für die Verarbeitung von Ereignissen im
Wesentlichen vom verwendeten System, also z.B. der verwendeten CEP-Engine, abhängen,
da sonst ein wichtiger Vorteil der Workflow-Engine-externen Verarbeitung zunichte gemacht
wird. Dieser Vorteil besteht z.B. in der Optimierung von CEP-Engines im Hinblick auf
die Verarbeitung einer großen Menge von Ereignissen (hoher Durchsatz) bei möglichst
geringer Verzögerung (geringe Latenz). Die Verarbeitungsgeschwindigkeit der Ergebnis-
Ereignisse soll im Wesentlichen davon abhängen wie schnell die Workflow-Engine Ereignisse
verarbeiten kann. Der Durchsatz und die Latenz sollen durch die Integration möglichst nicht
negativ beeinflusst werden. Bestimmend für Durchsatz und Latenz sollen im Wesentlichen
die Workflow-Engine und die Systeme zur Verarbeitung von Ereignissen bzw. Situationen
sein.

Transparenz

Die Nutzung von CEP-Systemen oder vergleichbaren Systemen aus Workflows heraus soll
möglichst einfach und transparent erfolgen. Dies gilt insbesondere für die Modellierung auf
der Business-Ebene. Dem wichtigen Aspekt von WfM und SOAs, das Business-IT-Gap zu
reduzieren bzw. ganz zu überwinden, soll also nicht entgegengewirkt werden. Wesentlich
für die Nutzung eines Systems ist die Akzeptanz durch die Benutzer. Durch eine möglichst
transparente Integration von Systemen zur Ereignis- und Situationsverarbeitung und die
einheitliche Modellierung auf Grundlage einer bekannten Notation bzw. Sprache soll die
Akzeptanz durch die Benutzer gefördert werden.

4.3. Funktionale Anforderungen

Im Wesentlichen wird die Funktionalität von einem WfMS und von einem oder mehreren
Systemen zur Ereignisverarbeitung bzw. Situationserkennung erbracht. Aus diesem Grund
werden an dieser Stelle nur wenige funktionale Anforderungen spezifiziert. Neue Funktiona-
lität entsteht im Wesentlichen durch Emergenz. Dies bedeutet, dass durch die Integration

31

4. Anforderungen

eines WfMSs und eines oder mehrerer anderer Systeme zur Ereignisverarbeitung bzw. Si-
tuationserkennung Funktionalität entsteht, die über die Funktionalität der Einzelsysteme
hinausgeht.

Die meisten funktionalen Anforderungen sollten im Idealfall für den Benutzer möglichst
transparent erfüllt werden.

Den funktionalen Anforderungen liegt der folgende grobe Ablauf zu Grunde:

Erstellung:
- technisches Prozessmodell
- Regeln
- EventSource-Config

Deployment
- Workflow
- Regeln
- EventSource-Config

Ausführung
(Workflow & Regeln)

Erstellung:
- fachliches Prozess-
 modell inkl. der
 Ereignisse

Abbildung 4.2.: Lebenszyklus eines Modells (Workflow-Modell, Regeln, Ereignisquellen-
Konfigurationen)

Zunächst entstehen in einem iterativen Vorgehen ein Prozessmodell und die zugehörigen
Regeln, die die vom Prozess benötigten Ereignisse erzeugen. Im nächsten Schritt werden Pro-
zessmodell, Regeln und die Konfiguration von Ereignisquellen bereitgestellt (Deployment).
In der Phase der Ausführung werden Instanzen des Prozessmodells von der Workflow-
Engine ausgeführt. Das System zur Ereignisverarbeitung bzw. Situationserkennung leitet auf
Basis der Regeln Ereignisse bzw. Situationen aus einfachen Ereignissen ab und stellt diese
der Prozessinstanz zur Verfügung. Schließlich sollte eine Überprüfung des Modells erfolgen
und ggf. von vorne begonnen werden.

Bei der Modellierung sollen nach Möglichkeit verschiedene Abstraktionsebenen (z.B. Busi-
nessebene, technische Ebene - vgl. 2.1) zur Verfügung stehen.

Es muss die Möglichkeit geben, Regeln zu verwalten und beliebige Ereignisquellen zu
nutzen.

Es sollen möglichst viele der in [BDG07] vorgeschlagenen Composite Event Patterns reali-
sierbar sein. Durch die Integration beliebiger Ereignisquellen soll eine Integrationsplattform

32

4.3. Funktionale Anforderungen

auf Ereignisebene entstehen. Die in [BDG07] beschriebenen Composite Event Patterns be-
trachten nicht die Reaktion auf eingetretene Ereignisse. Reaktionen sollen grundsätzlich im
Workflow-Modell realisiert werden. Zusätzlich soll es aber möglich sein, Workflow-Instanzen
per Ereignis zu erzeugen.

33

5. Technologien

5.1. BPMN-Engines

Aufgrund der weitreichenden Ereignis-Konzepte, die von BPMN 2.0 unterstützt werden, habe
ich mich für die Nutzung einer BPMN-Engine entschieden. Als BPMN-Engines kommen,
wie bereits erwähnt, JBPM 5 des JBOSS-Projekts1 und Activiti ein OpenSource Projekt, das
vom Unternehmen Alfresco2 initiiert wurde und von einigen anderen Firmen unterstützt
wird, in Frage. Beide Engines sind in Java implementiert und basieren auf einem ähnlichen
Konzept. Sie basieren auf einer sogenannten Process Virtual Machine (PVM). Die PVM ist
ein Konzept zur Ausführung von Graphen, die aus Knoten und Kanten bestehen. Auf Basis
der PVM können praktisch beliebige graphbasierte Sprachen implementiert werden. Im
konkreten Fall wurde in beiden Fällen BPMN 2.0 implementiert. Es lassen sich aber auch
BPEL, XPDL und andere Sprachen mit dem Konzept einer PVM realisieren3.

Activiti

Bei der Evaluation von Activiti im Hinblick auf die Ereignisfähigkeit zeigt sich, dass viele
BPMN 2.0 Elemente noch nicht implementiert sind. Insbesondere bei den Ereignissen sind
bisher lediglich die angehefteten Ereignisse Timer und Fehler implementiert. Sowohl das
Activiti-kompatible Subset von BPMN 2.0 in der Modellierungsumgebung von Activiti
(siehe Abbildung 5.1) als auch der Parser der Engine unterstützen keine anderen Ereignisse.
Insbesondere werden keine Nachrichten-Ereignisse unterstützt.

1http://www.jboss.org
2http://www.alfresco.com
3http://docs.jboss.com/jbpm/pvm/article

35

http://www.jboss.org
http://www.alfresco.com
http://docs.jboss.com/jbpm/pvm/article

5. Technologien

(a) Activiti - Vollständige BPMN 2.0 Palette (b) Activiti - Subset von BPMN 2.0, das von
Activiti unterstützt wird

Abbildung 5.1.: Activiti Modeler - BPMN-Palette

JBPM5

JBPM5 scheint bei der Implementierung von BPMN 2.0 Elementen schon weiter fortge-
schritten. So unterstützt JBPM5 Nachrichten-Ereignisse als Start-Ereignisse und Zwischen-
Ereignisse4.

Auswahl einer Engine

Insgesamt scheint mir die Activiti-Engine besser strukturiert und durchdachter. Die Doku-
mentation ist bei beiden Projekten eher mangelhaft. Während das Benutzerhandbuch bei
JBPM5 etwas weiter fortgeschritten ist, ist der Quellcode der Activiti-Engine besser kommen-
tiert. Da möglicherweise Änderungen am Quellcode notwendig sind und das Activiti-Projekt
einen wesentlich aktiveren Eindruck macht, habe ich mich für den Einsatz von Activiti bei

4https://hudson.jboss.org/hudson/job/jBPM5/lastSuccessfulBuild/artifact/target/jbpm-5.

1-SNAPSHOT-docs-build/jbpm-docs/html/ch01.html#d0e74

36

https://hudson.jboss.org/hudson/job/jBPM5/lastSuccessfulBuild/artifact/target/jbpm-5.1-SNAPSHOT-docs-build/jbpm-docs/html/ch01.html#d0e74
https://hudson.jboss.org/hudson/job/jBPM5/lastSuccessfulBuild/artifact/target/jbpm-5.1-SNAPSHOT-docs-build/jbpm-docs/html/ch01.html#d0e74

5.1. BPMN-Engines

meiner Implementierung entschieden. Aus diesem Grund folgen hier nun noch einige Details
zum Aufbau (siehe Abbildung 5.2) von Actviti.

Activiti Engine

REST

Web Frontends

MyBatis

JDBC
(Oracle, DB2,H2, ...)

Abbildung 5.2.: Aufbau von Activiti (Quelle: vgl. [Men11])

Es stehen für Activiti verschiedene Benutzungsschnittstellen in Form von WebFrontends
zur Verfügung. Diese kommunizieren mit der Activiti Engine per REST. Als Abstraktions-
schicht für persistente Daten dient MyBatis. MyBatis unterstützt eine große Zahl gängiger
Datenbankmanagement-Systeme (DBMSe) als Datenbank-Backend.

Die zentralen Benutzungsschnittstellen von Activiti sind:

Activiti-Modeler dient der Modellierung von Geschäftsprozessen.

Activiti-Probe ermöglicht das Deployment von Prozessen und die Anzeige von Informatio-
nen z.B. zu den laufenden Prozessinstanzen und der Activiti-Engine.

Activiti-Explorer dient der Anzeige von Tasks und dem Starten von Prozessinstanzen.

Activiti-Designer ein Eclipse-Plugin zur Modellierung von Geschäftsprozessen

Kurz vor dem Druck der Diplomarbeit, wurden die Funktionen der Anwendungen Activiti-Probe und
Activiti-Explorer sinnvollerweise im Activiti-Explorer gebündelt.

37

5. Technologien

5.2. CEP-Engine

Esper wurde als CEP-Engine bereits kurz in Kapitel 2.3 erwähnt. Auf Basis der Fachstudie
[BDK10] wurde dort bereits entschieden, Esper für die Implementierung zu verwenden. Bei
Esper handelt es sich um eine freie CEP-Engine, die für Java und für .NET zur Verfügung
steht. Der Hersteller Espertech5 schreibt: „Esper erlaubt die schnelle Entwicklung von
Anwendungen, die große Mengen von Nachrichten oder Ereignissen verarbeiten. Esper filtert
und analysiert Ereignisse auf verschiedene Weise und reagiert in Echtzeit auf Bedingungen,
die von Interesse sind. Esper verwendet eine optimierte Sprache für die Verarbeitung einer
großen Anzahl zeitabhängiger Ereignisse“.

Einen Überblick über die Architektur gibt Abbildung 5.3.

Esper: Lightweight ESP/CEP container

Outputadapters
Event Stream
connectors &
adapters

High-speed, high-volume
data streams

Statements

Esper-Engines

Event Query & Causality Pattern Language

Core Container

Abbildung 5.3.: Architekturüberblick der CEP-Engine Esper (Quelle: vgl. http://www.

espertech.com/products/esper.php)

Für die Verarbeitung von Ereignissen sind die Statements von zentraler Bedeutung. Ein
Statement besteht aus einer Regel (Event-Query oder Causality Pattern) und einem oder
mehreren Listenern (im Sinne des Observer-Patterns).

Sobald ein Statement beim CoreContainer registriert wird, werden also Ereignisse des Ereignis-
Stroms von einer Esper-Engine analysiert. Wird ein Muster erkannt oder liefert eine Query
Ergebnisse, so werden diese ebenfalls in Form von Ereignissen an Listener, die an Statements
gebunden sind, ausgeliefert und können weiterverarbeitet werden. Listener sind einfache
POJOs, die das Interface com.espertech.esper.client.UpdateListener implementieren. Esper lässt
sich somit gut in (bestehende) Java-Anwendungen integrieren6.

Die Ergebnis-Ereignisse, die von Esper produziert werden, können also über eine eigene
Implementierung in einer beliebigen Java-Anwendung weiterverarbeitet werden. Außerdem

5http://www.espertech.com
6http://www.espertech.com/products/esper.php

38

http://www.espertech.com/products/esper.php
http://www.espertech.com/products/esper.php
http://www.espertech.com
http://www.espertech.com/products/esper.php

5.2. CEP-Engine

stellt Esper Adapter zur Verfügung, um Ereignisse direkt per Java Messaging Service (JMS)
zu publizieren.

39

6. Architektur

In diesem Kapitel wird eine Architektur beschrieben, die es ermöglicht, die Anforderungen
aus Kapitel 4 umzusetzen. Natürlich kann die Architektur hier nicht mit einem Detaillierungs-
grad wie in einem Entwurfsdokument eines realen Softwareprojekts beschrieben werden. So
verzichte ich unter anderem komplett auf einen Entwurf der Benutzungsschnittstellen und
beschränke mich an vielen Stellen bewusst darauf, das Prinzip deutlich zu machen.

Mein Ansatz besteht darin, bestehende WfMSe mit bestehenden Systemen zur Ereignis- bzw.
Situationsverarbeitung zu integrieren. Bei der Architektur des Systems orientiere ich mich
dabei konzeptionell am Referenz-Modell der WfMC. Abbildung 6.1 zeigt auf der linken
Seite das WfMC Referenz-Modell für WfMSe und auf der rechten Seite analog dazu ein
System zur Ereignis- und Situationsverarbeitung. Diese Diplomarbeit beschäftigt sich im
Wesentlichen mit dem Rule Enactment, also der Ausführung.

Abbildung 6.1.: Überblick im Kontext des WfMC-Referenz-Modells (basierend auf
dem Workflow Reference Model Diagram http://www.wfmc.org/

reference-model.html der WfMC)

41

http://www.wfmc.org/reference-model.html
http://www.wfmc.org/reference-model.html

6. Architektur

Abbildung 6.2 gibt einen Gesamtüberblick über die Architektur. Der Architekturüberblick
zeigt folgende zentrale Komponenten, die implementiert werden müssen:

• ESCStore

• ESEngine

• InstanceManager

WorkflowEngine

ESEngine

WorkflowInstance 1

InstanceManager

EventTopic

ESCStore DBMS

Twitter

JMS

JMS

ESEngineInstance 1

WorkflowInstance n

JMS

JMS

ESEngineInstance n

EventSource

YahooFinance

R

R

R

R

SOAP/HTTP

R

R

SOAP/HTTP

ESEngineProcInstance 1

ESEngineProcInstance n R

RR

R

R

JMS

JMS

EventSource

EventSource

EventSource

EventSource

EventSource

EventSource

EventSource

R

R

R

DBMS

R

Abbildung 6.2.: Überblick Gesamtarchitektur

Die anderen Komponenten sind eine Workflow-Engine, verschiedene Datenquellen (Twitter,
YahooFinance, ...), eine Message oriented Middleware (MoM) und ein DBMS. Die Integration
dieser fertigen Komponenten wird im Abschnitt 6.3 beschrieben.

6.1. Komponenten

Im Folgenden werden zunächst die zu implementierenden Komponenten beschrieben, ehe
dann genauer auf die Datenformate und die Kommunikation eingegangen wird.

6.1.1. ESCStore

Der Name ESCStore steht für Event Situation Configuration Store und dient der Verwaltung
von Regeln und Ereignisquellenkonfigurationen. Der ESCStore soll Regeln unterschiedlichs-
ter Ereignis- bzw. Situationsverarbeitungssysteme und verschiedenster Ereignisquellen (siehe
6.1.2) speichern. Er bietet eine Web Service-Schnittstelle (siehe A.2) an. Natürlich wäre es
möglich, auf den ESCStore zu verzichten und alle Regeln zur Laufzeit direkt zu übermitteln.

42

6.1. Komponenten

Mehrere Punkte sprechen jedoch dafür, den ESCStore wie im Folgenden beschrieben zu
realisieren:

Wiederverwendbarkeit Verschiedene Prozesse können per Deklaration die gleichen Regeln
verwenden.

Transparenz Der Prozessmodellierer muss kein Regelexperte sein und kann die Regeln
deklarativ verwenden. Es kann also klar zwischen den Rollen Regelmodellierer und
Prozessmodellierer unterschieden werden.

Entkopplung Die Optimierung von Regeln erfordert keine Änderung eines oder mehrerer
Prozesse, da die Regeln per Name im Prozess deklariert werden.

Die Abbildung 6.3 zeigt die ESCStore-Klasse und das Datenmodell für die Regeln und
Ereignisquellenkonfigurationen, die im ESCStore abgelegt werden.

+ ESCStore

«interface»

+addRule(rule : AbstractRule)
+getRule(id : long) : AbstractRule
+delRule(id : long)
+getInstantiationRules(processID : long) : InstantiationRule[*]
+getAllRules() : AbstractRule[*]
+addEventSource(es : EventSource)
+getEventSource(id : long)
+delEventSource(id : long)
+getRuleEventSources(id : long)
+getAllEventSources() : EventSource[*]
+getRuleByName(String) : EventSource[*]
+getEventSourceByName(String) : EventSource[*]

+ AbstractRule

+rule : String
+author : String
+description : String
+esEngine : String
+eventSources [0..*] : EventSource
+id : Long
+name : String

+ RuntimeRule + InstantiationRule

+wsdl : String
+operation : String
+processID : String

1

0..*

+ EventSource

+id : Long
+name : String
+type : String
+description : String
+eventSourceConfig : String

1

0..*

1 0..*

Abbildung 6.3.: Klassendiagramm der ESCStore Komponente

43

6. Architektur

Bezüglich der Regeln gilt es abzuwägen, ob Regeln im ESCStore workflow-spezifisch sind,
also jedes Prozess-Modell seine eigenen Regeln hat, oder ob die Regeln global definiert
werden und dann per Deklaration festgelegt wird, welche Regeln welcher Prozess verwendet.
Gegen den ersten Ansatz spricht, dass Regeln bei der Erstellung neuer Prozesse immer
wieder kopiert werden müssen, auch wenn die gleichen Ereignisse verarbeitet werden. Der
Ansatz die Regeln so zu speichern, dass sie für alle Prozesse verwendbar sind, hat aber
ebenfalls Nachteile. Wird eine Regel in ihrer Semantik für einen Prozess geändert, kann dies
zu Problemen bei anderen Prozessen führen. Die Deklaration der zu verwendenden Regeln
in der Configuration Task wird aufwändiger. Dennoch habe ich mich dazu entschieden,
die Regeln global zu definieren und die Verwendung explizit in der Configuration Task zu
deklarieren. Dieser Ansatz bietet die Flexibilität, zu verwendende Ereignisse/Regeln erst zur
Laufzeit, d.h. nach der Instantiierung, festzulegen.

Es gibt zwei Arten von Regeln. Regeln, die zur Laufzeit von einer Prozessinstanz benötigt
werden, werden im Folgenden als Laufzeitregeln bezeichnet. Im Klassendiagramm heißt die
entsprechende Klasse RuntimeRule. Regeln, die dazu dienen, eine Prozessinstanz zu erzeu-
gen, werden als Instantiierungsregeln (IntantiationRule) bezeichnet. Folgende Informationen
werden für jede Regel gespeichert:

Name Der Name der Regel

ESEngine Name der ESEngine-Implementierung (z.B. Esper), die diese Regel verarbeiten
soll

Rule Die engine-spezifische Regel

Author Der Name des Autors

Description Natürlichsprachliche Beschreibung der Regel

EventSources* Dieses Attribut ist optional und enthält ggf. die Konfiguration von Ereignis-
quellen, die von der Regel benötigt werden.

Instantiierungsregeln benötigen zusätzlich folgende Informationen:

ProcessID Die ID des Prozesses, der gestartet werden soll

WSDL Die WSDL des Prozesses

Operation Die Operation, die zum Starten/Instantiieren aufgerufen werden muss

Neben den Regeln kann der ESCStore auch Konfigurationen für EventSources verwalten.
Standardmäßig wird die Konfiguration aus dem ESCStore geladen, um die Benutzung des
Systems für unerfahrene Benutzer möglichst einfach zu gestalten. Um trotzdem flexibel
zu sein, soll es möglich sein, EventSources in der Configuration Task zu konfigurieren
(siehe 6.1.2). Wird die Konfiguration in der Configuration Task vorgenommen, wird die
vorgenommene und nicht die im ESCStore gespeicherte Konfiguration verwendet.

44

6.1. Komponenten

6.1.2. ESEngine

Der Name ESEngine steht für Event Situation Engine. Die ESEngine stellt also die Kompo-
nente zur Ereignisverarbeitung bzw. Situationserkennung dar. Die ESEngine bietet eine Web
Service-Schnittstelle, die direkt auf das Interface ESEngine (siehe Abbildung 6.4) abgebildet
wird.

Neben dem Interface ESEngine sind vor allem die Interfaces ESEngineInstance und Event-
Listener von Bedeutung. Um externe Ereignisse zu abonnieren und verarbeiten zu können,
muss außerdem das Interface EventSource (siehe 6.1.2) für alle gewünschten Ereignisquellen
implementiert werden.

Um ein existierendes System zur Ereignisverarbeitung bzw. Situationserkennung zu nutzen,
muss also eine Mapping-Schicht implementiert werden, die das konkrete System auf die
Interfaces ESEngine und ESEngineInstance abbildet.

Das ESEngine-Interface stellt Methoden zur Verwaltung von ESEngine-Instanzen zur Verfü-
gung, die direkt über den Web Service angesprochen werden sollen.

45

6. Architektur

+ ESEngine

<<interface>>

+createESEngineInstance(config : ConfigurationMessage) : String
+destroyESEngineInstance(esEngineID : String)
+getEngineType() : String

+ ESEngineInstance

<<interface>>

+getESEngineInstanceID() : String
+registerStateListener(listener : StateListener)
+unregisterStateListener(listener : StateListener)
+notifyStateListener(state : State---)
+setEventDestination(destination : String)
+getProcessInstanceID() : String
+destroy()
+getConfiguration() : ConfigurationMessage
+create(config : ConfigurationMessage)

+ State---

<<Enum>>

+init
+run
+finalize

has 1

+ ESEngineInstanceImpl

-ESEngineInstanceImpl()
+ESEngineInstanceImpl(config : ConfigurationMessage)

<<realize>>

+ ESEngineImpl

-ENGINE_TYPE : String

+ EsperInstance

1

0..*

<<realize>>

+ EventListener

<<interface>>

+onEvent(event : CommonBaseEvent)

+ EventSource

<<interface>>

+init(config : String)
-notifyIncomingEventListener()
+addEventListener(eventListener : EventListener)
+removeEventListener(eventListener : EventListener)
+notifyEventListener(event : CommonBaseEvent)
+destroy()

+ TwitterEventSource

<<realize>>

+ JMSEventSource

<<realize>>

<<realize>>

+ EventPublisher

<<interface>>

+setESEngineInstance(ESEngineInstance)
+getESEngineInstance() : ESEngineInstance
+publish(event : CommonBaseEvent)

1

0..*

Abbildung 6.4.: Klassendiagramm der ESEngine-Komponente

Um Workflow-Instanzen per Ereignis erzeugen zu können, muss für jedes Workflow-Modell,
für das eine Instantiierungsregel existiert, eine ESEngine-Instanz (in der Abbildung 6.2
ESEngineProcInstance genannt) gestartet werden, und es müssen die entsprechenden Regeln
geladen werden. Für Instantiierungsregeln erzeugt der ESCStore die ConfigurationMessage
und publiziert diese über das EventTopic, aus dem der InstanceManager die Configuration-
Message liest und eine entsprechende ESEngine-Instanz erzeugt. Eintreffende Configura-
tionMessages werden von einer ESEngine persistent gespeichert, um im Fehlerfall bei der
Recovery des Systems bestehende ESEngine-Instanzen wieder herstellen zu können. Das
persistente Speichern von Daten, die aktuell von den ESEngine-Instanzen verarbeitet werden
sollen, ist nicht sinnvoll, da es sich um eine große Anzahl von Daten handelt, die möglichst
schnell verarbeitet werden soll.

46

6.1. Komponenten

EventSource

Das EventSource-Interface enthält Methoden-Signaturen, um von verschiedensten Ereignis-
quellen (z.B. Twitter, YahooFinance, Sensoren, ...) zu abstrahieren. Die EventSource dient
zum einem dem Abonnement von Ereignissen und zum anderen der Transformation von
Ereignissen in das intern verwendete Common Base Event (CBE)-Ereignisformat (siehe
6.2.2). Um vor der Verarbeitung, durch die jeweilige ESEngine-Implementierung (z.B. Esper),
bereits eine Vorverarbeitung der Ereignisse durchzuführen, kann ebenfalls das Konzept der
EventSource verwendet werden. Es ist so z.B. möglich, Ereignisse zu klassifizieren und erst
dann an die jeweilige ESEngine weiterzuleiten. Die Anbindung der EventSource an das
restliche System folgt dem Observer-Pattern.

Eine Implementierung des Interface EventSource erlaubt die Einbindung praktisch beliebiger
Ereignisquellen. Es sind also Ereignisquellen wie JMS-Topics / Queues genauso denkbar
wie AJAX-HTTP-Streams oder ganz andere Quellen.

Um eine neue Ereignisquelle hinzuzufügen, muss also lediglich das Interface EventSource
implementiert werden.

6.1.3. InstanceManager

Der InstanceManager übernimmt die Erzeugung von ESEngine-Instanzen. Grundsätzlich
besteht die Möglichkeit, die Funktionalität auch in der Komponente ESEngine zu realisie-
ren. Die separate Implementierung hat aber viele Vorteile. Die Funktionalität muss nur
einmal realisiert werden, auch wenn es mehrere verschiedene ESEngine-Implementierungen
(Esper, Oracle CEP, ...) geben kann. Ein weiterer Vorteil ist, dass nicht jede ESEngine-
Implementierung alle ConfigurationMessages empfangen und prüfen muss, ob das Attribut
engineType dem eigenen Typ entspricht und somit die Engine für die Ausführung verwendet
werden soll. Der InstanceManager ruft eine ESEngine des entsprechenden Typs auf. Es ist also
möglich, an dieser Stelle eine Lastverteilung vorzunehmen, falls verschiedene ESEngines
des gleichen Typs (z.B. Esper) zur Verfügung stehen. Dies ist insbesondere dann interessant,
wenn eine große Anzahl von Prozessinstanzen und Prozessen existieren oder es gar meh-
rere Workflow-Engines gibt. Um die verschiedenen ESEngines zu verwalten, würde eine
Art Verzeichnis benötigt. Die Implementierung der Lastverteilung wird im Weiteren nicht
mehr Gegenstand der Diplomarbeit sein. Es sollte lediglich begründet werden, warum der
InstanceManager als eigenständige Komponente ausgelagert wird und nicht als Teil der
ESEngine implementiert werden sollte.

47

6. Architektur

InstanceManager

<<interface>>

createInstance(config : ConfigurationMessage) : String
destroyInstance(instanceID : String)

JMSReceiver

MessageListener

<<interface>>

onMessage(msg : Message)

<<realize>>

Abbildung 6.5.: Klassendiagramm der InstanceManager-Komponente

6.2. Datenmodellierung

Als Datenformate werden, soweit möglich, verbreitete, standardisierte Formate eingesetzt.
Stehen keine passenden Formate zur Verfügung, wird auf XML als Technologie zurückge-
griffen, und es werden eigene XML-Schemata definiert.

6.2.1. ConfigurationMessage

Die ConfigurationMessage ist eine Nachricht zur Initialisierung einer ESEngine. Die Configu-
rationMessage besteht aus zwei Bereichen. Der erste Bereich, im Folgenden EventDeclaration
genannt, deklariert, welche Ereignisse von der Workflow-Instanz verwendet werden. Der
zweite Bereich konfiguriert die EventSource, welche die Ereignisse für die Verarbeitung in
der ESEngine liefern sollen. Der Bereich wird im Folgenden SourceConfiguration genannt.
Die SourceConfiguration ist so gestaltet, dass neue Ereignisquellen möglichst einfach ver-
wendet werden können. Um eine neue Ereignisquelle nutzen zu können, muss das Interface
de.uni_stuttgart.informatik.eventum.esengine.management.EventSource (siehe 6.4) implementiert
werden.

Das einer ConfigurationMessage zugrunde liegende XML-Schema befindet sich im Anhang
unter A.2.

6.2.2. Ereignisformat

Als Ereignisformat wird das Format der CBE-Spezifikation von IBM1 verwendet. „Die
Common Base Event Spezifikation definiert einen neuen Mechanismus, um Ereignisse
in Geschäftsanwendungen zu verwalten ...“2. Das CBE-Format wurde wohl ursprünglich

1http://www.ibm.com
2http://www.ibm.com/developerworks/library/specification/ws-cbe/

48

http://www.ibm.com
http://www.ibm.com/developerworks/library/specification/ws-cbe/

6.2. Datenmodellierung

ausschließlich für Maschinenereignisse vor allem im Bereich Netzwerke und nicht für CEP
entwickelt. Es lässt sich aber nutzen, auch wenn einige Attribute nicht unbedingt sinnvoll
erscheinen.

Prinzipiell können alle Möglichkeiten, die das XML-Schema bietet, von einer Ereignisquelle
verwendet werden. Um jedoch zu zeigen, wie eine sinnvolle Verwendung aussehen könnte,
zeige ich hier ein Beispiel für ein Ereignis im CBE-Format aus dem Szenario in Kapitel 8.1.
Das Ereignis wurde von der TwitterEventSource erzeugt.

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>

<commonBaseEventType creationTime="2011-06-22T13:03:41.836+02:00" extensionName="Tweet"

xmlns:ns2="http://www.ibm.com/AC/commonbaseevent1_0_1">

<ns2:extendedDataElements type="String" name="category">

<ns2:values>neutral</ns2:values>

</ns2:extendedDataElements>

<ns2:extendedDataElements type="String" name="text">

<ns2:values>Welche Rolle #socialmedia bei Bayer MaterialScience spielt:

http://t.co/yCPgp6p #socbiz #Wikis #Blogs #casestudy #lesenswert</ns2:values>

</ns2:extendedDataElements>

<ns2:sourceComponentId componentType="WebApplication" locationType="Hostname"

location="twitter.com" componentIdType="ServiceName" subComponent="twitter.com"

component="twitter.com"/>

<ns2:situation categoryName="OtherSituation">

<ns2:situationType xsi:type="ns2:OtherSituation" reasoningScope="EXTERNAL"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"/>

</ns2:situation>

</commonBaseEventType>

Die von der CBE-Spezifikation definierten Attribute sind zu einem großen Teil optional.
Lediglich die Attribute bzw. Elemente creationTime, sourceComponentId und situation müssen,
gemäß der Spezifikation, vorhanden sein.

Attribut Beschreibung

creationTime Datum und Uhrzeit zu denen das Eintritt eingetreten ist.
sourceComponentId Id der Komponente die von dem Ereignis oder Situation

betroffen ist.
situation Gibt den Typ der Situation angibt die zu dem Ereignis

geführt hat.

Tabelle 6.1.: Common Base Event: Benötigte Attribute

Um Ereignisquellen-spezifische Daten auszudrücken, definiert das CBE-Format sogenannte
extendedDataElements. Ein extendedDataElement hat die Attribute type und name sowie ein
Element value.

Die CBE-Spezifikation erlaubt die folgenden Datentypen sowie die entsprechenden Array-
Typen:

49

6. Architektur

• byte

• short

• int

• long

• float

• double

• string

• dateTime

• hexBinary

• boolean

Bei der Implementierung einer EventSource muss also darauf geachtet werden, dass alle
benötigten Attribute gesetzt werden und nur die erlaubten Datentypen verwendet werden.

Weitere Informationen können der CBE-Spezifikation unter http://www.ibm.com/

developerworks/autonomic/books/fpy0mst.htm#HDRAPPA entnommen werden.

6.3. Kommunikation und Datenintegration

Für die Kommunikation werden zum einen Web Services3 (SOAP über HTTP) und zum
anderen JMS4 verwendet.

Eine Entkopplung von Workflow-Engine und den Systemen zur Ereignis- bzw. Situations-
verarbeitung ist zwingend notwendig, um die Workflow-Engine vor einer Überflutung von
Ereignissen zu schützen. Asynchronität entspricht dem Charakter von Ereignissen. Für die
Kopplung der Systeme wird aus diesem Grund eine MoM eingesetzt. Die Entkopplung der
Systeme per MoM trägt zur Robustheit und Erweiterbarkeit bei. Falls einzelne Teilsysteme
ausfallen oder nicht erreichbar sind, führt das in der Regel nicht dazu, dass das komplette
System ausfällt. Durch die Verwendung einer MoM erhält man außerdem eine Indirektion
beim Nachrichtenaustausch. Dies führt zu einer guten Erweiterbarkeit, da die Komponenten
sich nicht kennen müssen.

Als MoM wird eine JMS-Implementierung eingesetzt. Diese Implementierung stellt das
EventTopic zur Verfügung über das die Kommunikation zwischen WfMS, ESEngine und
InstanceManager stattfindet (siehe Abbildung 6.2).

3http://www.w3.org/TR/ws-arch/
4http://www.oracle.com/technetwork/java/jms/index.html

50

http://www.ibm.com/developerworks/autonomic/books/fpy0mst.htm#HDRAPPA
http://www.ibm.com/developerworks/autonomic/books/fpy0mst.htm#HDRAPPA
http://www.w3.org/TR/ws-arch/
http://www.oracle.com/technetwork/java/jms/index.html

6.3. Kommunikation und Datenintegration

Das Sequenzdiagramm in Abbildung 6.6 zeigt exemplarisch den Ablauf der Kommunikati-
on.

Abbildung 6.6.: Sequenzdiagramm: Erstellung einer ESEngine-Instanz; Abruf von Daten aus
dem ESCStore; Initialisierung einer EventSource; Empfang eines Ereignisses

Das EventTopic ist, wie bereits erwähnt, das Austauschmedium zwischen einer Workflow-
Engine und dem übrigen System. Trifft eine ConfigurationMessage ein, ruft der InstanceMa-
nager den Web Service einer passenden ESEngine auf. Passend bedeutet in diesem Fall, dass
die ESEngine vom richtigen Typ ist, der Typ der ESEngine also mit dem Attribut engineType
in der ConfigurationMessage (siehe A.2) übereinstimmt.

In einer realen Umgebung kann es sinnvoll sein, nicht nur einen sondern mehrere Instan-
ceManager zu haben. So wird das Problem eines Single Point of Failure oder Bottlenecks
umgangen. Es müsste dann eine zusätzliche Queue verwendet werden, um sicherzustellen,
dass genau ein InstanceManager die ConfigurationMessage liest.

Innerhalb der ESEngine-Komponente wird beim Aufruf von createESEngineInstance eine
Instanz der Implementierung von ESEngineInstance erzeugt. Danach wird der zugehörige
EventListener konfiguriert, indem die SourceConfiguration übergeben wird. Im Detail be-
deutet dies, dass eine EventSource-Implementierung erzeugt und konfiguriert wird. Dann
registriert sich der EventListener als Listener bei der EventSource-Implementierung. Beim
Eintreffen eines Ereignisses bei der EventSource-Implementierung wird das entsprechende
Ereignis in das CBE-Format transformiert und dann an den EventListener weitergereicht,

51

6. Architektur

von der ESEngine weiterverarbeitet, und schließlich werden die Ergebnisereignisse an das
EventTopic weitergeleitet und können von der Workflow-Engine konsumiert werden.

Für die Kommunikation der Ereignisproduzenten (z.B. Twitter, YahooFinance, Sensoren, ...)
kommen unterschiedlichste Protokolle in Frage. Die Protokolle sind durch den Ereignispro-
duzenten vorgegeben.

52

7. Implementierung

Dieses Kapitel beschreibt die konkrete Umsetzung des in Kapitel 6 skizzierten Entwurfs. Auf
die Implementierung von grafischen Benutzungsoberflächen wird verzichtet. Lediglich das
Eclipse-Plugin von Activiti zur Modellierung von Prozessen wurde um zwei Aktivitäten
erweitert.

Die Implementierung integriert die beiden Systeme Activiti1 als Workflow-Engine und Es-
per2 als CEP-Engine. Bei der Implementierung wurde viel Wert auf die Trennung zwischen
einem anwendungsspezifischem Code (hier also Activiti und Esper) und einem Code, der
die Basis für die Integration darstellt, gelegt. Es handelt sich also lediglich um eine Art Refe-
renzimplementierung, die sich auch leicht auf andere Workflow-Engines und insbesondere
andere Systeme zur Ereignisverarbeitung übertragen lässt.

7.1. Vorgehen bei der Implementierung

Im Folgenden wird das grobe Vorgehen bei der Implementierung beschrieben.

7.1.1. Hauptkomponenten

Bei der Implementierung wurde großer Wert auf die Trennung zwischen Datenmodell und
Anwendungslogik gelegt. Für die Komponenten ESCStore und ESEngine wurden zunächst
die Datenmodelle entwickelt. Dazu wurden XML-Schemata entwickelt und per Java Archi-
tecture for XML Binding (JAXB) Java-Klassen erzeugt. Die generierten Klassen wurden um
Java Persistence API (JPA)-Annotationen ergänzt. Auf diese Weise wird beschrieben, wie
Daten in der Datenbank persistent abgelegt werden. Es wird also letztendlich das Daten-
bankschema mithilfe von Annotationen beschrieben. Aus meiner Sicht sind sowohl Lese-
als auch Schreiboperationen für die Performance des Systems von untergeordneter Bedeu-
tung. Schreiboperationen finden im Wesentlichen nur beim Hinzufügen von neuen Regeln
oder Ereignisquellen-Konfigurationen statt. Leseoperationen finden bei der Instantiierung
von ESEngines statt. Aus diesem Grund ist in diesem Fall nichts gegen den Einsatz eines
Object-Relational-Mapper (ORM) einzuwenden. Der Standardweg in Java ist die Nutzung
der JPA. Als Implementierung wurde die Referenzimplementierung EclipseLink3 gewählt.

1http://www.activiti.org
2http://esper.codehaus.org
3http://www.eclipse.org/eclipselink/

53

http://www.activiti.org
http://esper.codehaus.org
http://www.eclipse.org/eclipselink/

7. Implementierung

Als DBMS wird H2
4 eingesetzt. Das DBMS kann aufgrund der Verwendung der JPA aber

leicht ausgetauscht werden.

Die eigentliche Verarbeitung von Ereignissen bzw. Situationen erfolgt durch entsprechende
Engines. Im konkreten Fall wurde Esper5 verwendet. Esper ist, wie bereits in Kapitel 5.2
erwähnt, in der Lage, eine große Anzahl von Ereignissen mit hoher Geschwindigkeit zu
verarbeiten. Ein persistentes Speichern von Ereignissen würde die Verarbeitungsgeschwin-
digkeit von Esper stark reduzieren. Dies ist mit den Zielen, eine möglichst große Anzahl von
Ereignissen mit möglichst geringer Verzögerung zu verarbeiten, nicht vereinbar. Esper sieht
trotzdem Konzepte zur Speicherung historischer Daten vor. Diese werden hier aber nicht
weiter betrachtet, da es nur schwer möglich ist, ein allgemeingültiges Konzept auf dieser
Basis zu entwickeln.

Nach der Entwicklung der Datenmodelle wurden per Web Service Description Language
(WSDL) die Web Services beschrieben und per Java API for XML - Web Services (JAX-WS)
die entsprechenden Skeletons generiert. Standardmäßig generiert JAX-WS das Datenmodell
für Web Services automatisch. Mithilfe von sogenannten Binding-Files kann allerdings ein
zuvor mit JAXB6 generiertes Datenmodell verwendet werden. Dies hat mehrere Vorteile:

• Die Datenmodelle können von verschiedenen Web Services wiederverwendet werden,
und das Datenmodell muss nicht für jeden Web Service erneut generiert werden.

• Änderungen an der Schnittstelle erfordern nicht unbedingt eine Änderung des Daten-
modells und umgekehrt.

7.1.2. Activiti

Activiti (siehe Kapitel 5) ist eine vollständig in Java implementierte BPMN 2.0-Workflow-
Engine. Activiti unterstützt nur eine Teilmenge der Elemente von BPMN 2.0 und wird
wahrscheinlich wie auch andere BPMN-Engines nie alle Elemente implementieren. Leider
sind bis zur Activiti-Version 5.4 keine relevanten Elemente zur Ereignisverarbeitung imple-
mentiert. Die Unterstützung zur Erweiterung ist aber gegeben. Für sogenannte ServiceTasks
kann ein eigenes Verhalten implementiert werden. Außerdem lässt sich die Palette des
Eclipse-Designers sehr leicht erweitern. Es besteht somit die Möglichkeit, eigene Aktivitäten
zu realisieren.

Im Rahmen der Diplomarbeit habe ich zwei Aktivitäts-Typen implementiert, die der Inter-
aktion mit dem für Ereignisverarbeitung zuständigen System dienen. Die Configuration
Task ermöglicht die Auswahl der vom Prozess benötigten Ereignisse und optional die Konfi-
guration von Ereignisquellen. Die Receive Event Task wartet bis ein bei der Modellierung
festgelegtes Ereignis eintritt und speichert dieses Ereignis in einer zuvor festgelegten Variable.

4http://www.h2database.com
5http://esper.codehaus.org
6http://jaxb.java.net/

54

http://www.h2database.com
http://esper.codehaus.org
http://jaxb.java.net/

7.2. Erweiterungen

Die Aktivität für den Empfang von Ereignissen ist nichts anderes als ein JMS-Subscriber mit
MessageSelector, um nur die für diesen Prozess relevanten Ereignisse zu empfangen.

Wie in Kapitel 5 bereits erwähnt, bietet Activiti zwei verschiedene Möglichkeiten zur Model-
lierung von Prozessen an - zum einen das angepasste Modellierungswerkzeug von Signavio
und zum anderen ein Eclipse-Plugin. Diese beiden Anwendungen spiegeln auch die Sichten
auf einen Workflow wider. Während das Eclipse-Plugin von Prozessingenieuren für die tech-
nische Umsetzung genutzt wird, wird ein Prozessanalyst eher das Werkzeug von Signavio
benutzen. Da es bei der Umsetzung der Verarbeitung von Ereignissen eher um technische
Details geht, die sich von einer abstrakten Sichtweise eines Prozessanalysten unterscheiden
wird, wurde im Rahmen der Diplomarbeit lediglich eine Erweiterung für das Eclipse-Plugin
entwickelt. Dies bedeutet, dass die oben beschriebenen Aktivitäten, wie in Abbildung 7.1
dargestellt, in der Palette des Eclipse-Designers zur Verfügung stehen.

Abbildung 7.1.: Erweiterung der Palette des Eclipse-Designers von Activiti um zwei Aktivi-
täten

7.2. Erweiterungen

Im Folgenden wird skizziert, welche Erweiterungsmöglichkeiten das System anbietet und wie
neue Systeme zur Ereignis- bzw. Situationsverarbeitung oder Workflow-Engines integriert
werden können.

55

7. Implementierung

EventSources

Wie bereits unter 6.1.2 beschrieben, dienen EventSources dazu, externe Ereignisse zu emp-
fangen. Um eine einfache Erweiterbarkeit zu gewährleisten, werden Ereignisquellen per
Reflection zur Laufzeit geladen. So können leicht neue Ereignisquellen hinzugefügt werden.
Ein entsprechendes Java Archive (JAR), das eine oder mehrere Implementierung(en) des
Interface de.uni_stuttgart.informatik.eventum.esengine.management.EventSource enthält, muss
sich im Classpath befinden. Verwendet werden können solche Ereignisquellen, indem das
Attribut type einer EventSource in der ConfigurationMessage (siehe A.2) oder beim Hinzu-
fügen im ESCStore auf den vollständig qualifizierten Klassennamen der Implementierung
gesetzt wird.

Neue Ereignisquellen sind, wie in 6.1.2 beschrieben, eine Abstraktion, um grund-
sätzlich beliebige externe Ereignisquellen (z.B. Twitter, Yahoo Finance, Sensoren)
einzubinden. Um eine neue Ereignisquelle bereitzustellen, muss das Interface
de.uni_stuttgart.informatik.eventum.esengine.management.EventSource implementiert oder die
abstrakte Klasse de.uni_stuttgart.informatik.eventum.esengine.management.AbstractEventSource
erweitert werden. AbstractEventSource stellt Implementierungen für die Verwaltung der
EventListener bereits zur Verfügung und beschleunigt so die Implementierung neuer
Ereignisquellen.

Die Methoden init und destroy müssen implementiert werden. Die Implementierung der
Methode init muss den Empfang der Ereignisse von externen Ereignisquellen, z.B. Twitter-
Nachrichten, deren Transformation in ein Common Base Event und schließlich den Aufruf
von notifyEventListener(CommonBaseEvents cbe) beinhalten, um das Ereignis an das System
zur Ereignis- bzw. Situationverarbeitung weiterzureichen. In der Methode destroy können
Aufräumarbeiten, wie z.B. das Schließen von Verbindungen, vorgenommen werden. Na-
türlich kann eine EventSource-Implementierung grundsätzlich jede mit der Programmier-
sprache Java realisierbare Funktionalität implementieren. Für bestimmte Fälle könnte es
z.B. sinnvoll sein, Ereignisse vorzuverarbeiten (z.B. die Klassifikation mithilfe eines Bayes-
Klassifikators).

Integration eines Systems zur Verarbeitung von Ereignissen/Situationen

Wie bereits oben erwähnt, wurde eine möglichst strikte Trennung zwischen anwendungs-
spezifischem Quellcode, und Quellcode zur Verwaltung von Regeln, Ereignisquellen und
Systemen zur Ereignis- bzw. Situationsverarbeitung vorgenommen. Um ein neues System
zur Ereignis- bzw. Situationsverarbeitung zu integrieren, muss eine entsprechende Im-
plementierung für ESEngine.wsdl realisiert werden. Außerdem muss die abstrakte Klasse
de.uni_stuttgart.informatik.eventum.esengine.management.ESEngineInstanceImpl erweitert wer-
den. Die Implementierung dieser Klasse stellt eine Instanz einer Engine für Ereignis- bzw.
Situationsverarbeitungen dar. Die Implementierung des Web Service erstellt für jede Prozess-
instanz eine solche Engine-Instanz.

56

7.2. Erweiterungen

Das Laden von Regeln oder Konfigurationen für Ereignisquellen ist für den Entwickler
transparent. Er kann über die Methode getRules() der abstrakten Klasse ESEngineManage-
mentImpl direkt auf die Regeln zugreifen. Ereignisquellen werden automatisch geladen und
konfiguriert.

Um andere Systeme zur Ereignis- bzw. Situationsverarbeitung als Esper zu unterstützen,
muss die Implementierung des InstanceManager entsprechend angepasst werden. Falls eine
ConfigurationMessage (siehe A.2) mit dem entsprechenden engineType eintrifft, muss die
Operation createInstance(ConfigurationMessage config) einer ESEngine dieses Typs aufgerufen
werden.

Integration einer anderen Workflow-Engine

Die Workflow-Engine kommuniziert ausschließlich per JMS mit den anderen Komponenten.
Dies wurde bereits in Kapitel 6.3 beschrieben. Aus Sicht der Workflow-Engine gestaltet sich
die Schnittstelle folgendermaßen. Die Workflow-Engine muss zum einen eine Configuration-
Message (siehe A.2) erzeugen und über eine javax.jms.ObjectMessage im Topic bereitstellen.
Dabei muss die JMS-Nachricht die Eigenschaft InitializationMessage = true enthalten. Er-
eignisse für die Workflow-Engine werden im gleichen Topic zur Verfügung gestellt. Die
JMS-Nachrichten enthalten zwei Eigenschaften:

CorrespondingProcessID Ermöglicht es, das Ereignis einer Prozessinstanz zuzuordnen.

EventType Enthält den Typ des Ereignisses. Der JMSEventPublisher (siehe ref-
fig:instancemanager) setzt die Eigenschaft eventType auf den Wert des Attributs
ExtensionName eines CommonBaseEvents. Der ExtensionName sollte von jeder
EventSource gesetzt werden.

Weitere Funktionalität

Nicht implementiert wurde das Konzept der InstantiationRules. Die InstantiationRules sollen
dazu dienen, eine Prozessinstanz per Ereignis zu erzeugen. Der ESCStore implementiert
alle dafür notwendigen Konzepte. Lediglich der InstanceManager muss erweitert werden.
Eine einfache Möglichkeit der Implementierung besteht darin, für jeden Prozess mit In-
stantiationRules eine eigene ESEngine-Instanz zu erzeugen, die alle InstantiationRules für
diesen Prozess verarbeitet. Außerdem muss eine Komponente implementiert werden, die bei
Eintreten eines Ereignisses eine Prozessinstanz bei der Workflow-Engine erzeugt.

57

8. Evaluation

Im Nachhinein zeigt sich, dass sämtliche neue BPMN-Engines wohl noch einige Zeit be-
nötigen werden, bis mehr Konzepte, die die Ereignisverarbeitung betreffen, unterstützt,
werden. Vielleicht zeigt sich hierin auch, wie komplex die Implementierung der Elemente
von BPMN 2.0 zur Ereignisverarbeitung ist. Sollte dieser Schluss richtig sein, wäre mein
Ansatz bestätigt, die Ereignisverarbeitung im eigentlichen Sinne auszulagern und Systeme
dafür zu verwenden, die explizit dafür entwickelt wurden (z.B. ein CEP-System wie Esper).

Bei der für die Implementierung im Rahmen dieser Diplomarbeit eingesetzten Workflow-
Engine Activiti hat sich jedenfalls in Hinsicht auf die Unterstützung von Ereignissen, wäh-
rend ich diese Diplomarbeit verfasst habe, keine nennenswerte Weiterentwicklung gezeigt.
Trotzdem lassen sich viele Fälle mit der entstandenen Implementierung lösen, ohne dass eine
Implementierung der BPMN 2.0 Konzepte in Activiti vorhanden ist. Dazu wurde im Rahmen
der Diplomarbeit die Receive Event Task entwickelt (siehe 7.1.2), die auf das Eintreten eines
Ereignisses wartet.

Im Folgenden werden einige Grundmuster gesammelt, die bei der Verarbeitung von Ereig-
nissen mit BPMN auftreten (siehe auch 2.3), und es wird eine Abbildung auf die entwickelte
Receive Event Task vorgenommen. Die Auflistung der Grundmuster in Tabelle 8.1 erhebt
keinen Anspruch auf Vollständigkeit, sollte aber nahezu alle Fälle abdecken.

Das Fehlen einiger Elemente der BPMN-Spezifikation in Activiti lässt sich nicht immer
kompensieren. Deshalb versuche ich, eine Klassifikation der Muster in drei Klassen vorzu-
nehmen.

Klasse 1 lässt sich vollständig auf das im Rahmen der Diplomarbeit implementierte System
abbilden.

Klasse 2 erfordert geringe Erweiterungen der Implementierung, die im Rahmen der Diplom-
arbeit entstanden ist. Diese Erweiterungen sind in der Architektur bereits vorgesehen.

Klasse 3 Die Semantik lässt sich nicht äquivalent abbilden und erfordert die Implementie-
rung weiterer Elemente der BPMN-Spezifikation. Trotzdem gibt es in vielen Fällen eine
adäquate Modellierung.

59

8. Evaluation

Pattern Abbildung Klasse Kurzbeschreibung

2
Prozessinstanziierung
durch Ereignis

2

Prozessinstanziierung
durch Ereignis A oder
Ereignis B, A 6= B

1
Warten, bis Ereignis ein-
tritt

1
Paralleles Warten auf
Ereignisse

abhängig vom konkreten Fall 3

Das Eintreten eines Er-
eignisses führt zum Ab-
bruch von Task 1. Task
3 wird ausgeführt.

abhängig vom konkreten Fall 3

Nach dem Eintreten ei-
nes Ereignisses wird
Task 3 gestartet. Task 1

läuft weiter.

Tabelle 8.1.: BPMN Event-Patterns

Wir sehen, dass mit dem entstandenen System die Muster 3 und 4 realisierbar sind. Die Mus-
ter 1 und 2 erfordern nur einige geringe Ergänzungen des Systems, die bereits vorgesehen
sind (siehe Kapitel 6). Lediglich für 5 und 6 gibt es keine semantisch äquivalente Abbildung.
Allerdings ist nicht nur aufgrund von 5 und 6 eine Implementierung der entsprechenden
Elemente von BPMN wünschenswert. Vor allem im Hinblick auf Roundtrip-Engineering
ist eine einheitliche Modellierung wichtig, um ein einheitliches technisches und fachliches
Modell zu haben.

Die Fähigkeiten zur Ereignisverarbeitung im Sinne der Composite Event Patterns aus
[BDG07] (siehe 3.1) hängen vor allem von der ESEngine-Implementierung (siehe 6.1.2)
ab. Für die Implementierung im Rahmen der Diplomarbeit wurde Esper verwendet. Eine
kurze Übersicht, welche Composite Event Patterns von Esper unterstützt werden, gibt Tabelle
8.2.

60

Composite Event Pattern BPEL BPMN Diplomarbeit

1. Event Conjunction - - +
2. Event Cardinality - - +
3. Event Disjunction + + +
4. Inhibiting Event - - +
5. Event Time Relation - - +
6. Subscription Time Relation +/- +/- +/-
7. Consumption Time Relation - - -
8. Absolute Time Relation +/- +/- +/-
9. Event Data Dependency - - +

10. Process Instance Data Dependency + - -
11. Environment Data Dependency - - +
12. Consume Once + + +
13. Consume Multiple Times - - +

+: unterstützt, -: nicht unterstützt, +/-: teilweise unterstützt

Tabelle 8.2.: Composite Event Patterns (basierend auf [BDG07])

Die erste Analyse zeigt, dass der Großteil der in [BDG07] beschriebenen Composite Event
Patterns unterstützt werden. Eine tiefergehende Analyse der Möglichkeiten von Esper war
aufgrund des Umfangs der Esper-EPL nicht möglich. Der Tabelle liegt also nur eine erste
grobe Analyse zugrunde. Ich sehe lediglich Probleme beim Zugriff auf externe Daten zum
Zeitpunkt der Regelverarbeitung durch die ESEngine und bei Ereignissen, die abhängig vom
Zeitpunkt der Subscription von Ereignissen behandelt werden sollen.

In den Anforderungen wurden einige nicht-funktionale Anforderungen aufgeführt. Eine
genaue Performance-Untersuchung würde den Rahmen dieser Diplomarbeit sprengen. Auf-
grund der verwendeten Technologien und Komponenten liegt der Schluss jedoch nahe, dass
die Performance der formulierten Anforderung entspricht. Die Erweiterbarkeit ist durch den
Einsatz von Standards und freien Technologien wie XML, Web Services und JMS und sauber
definierten Schnittstellen und Formaten gegeben. Einige Tipps zur Erweiterung wurden
in Kapitel 7.2 beschrieben. Lediglich die Anforderung, eine möglichst transparente und
einfache Benutzung zu garantieren, gestaltet sich nicht so einfach. Dies ist vor allem darauf
zurückzuführen, dass die Sprachen für CEP-Systeme nicht standardisiert und meist sehr
kompliziert sind. Transparenz ist nur insofern gewährleistet, dass die Regelverarbeitung und
alles, was damit zu tun hat, zumindest für den Prozessmodellierer relativ transparent ist. Für
einen Entwickler, der neue ESEngines integrieren will, ist dagegen die Interaktion mit dem
ESCStore, sowie das Laden und die Konfiguration von EventSources völlig transparent.

61

8. Evaluation

8.1. Szenario

Im Folgenden wird ein einfaches Szenario skizziert, um einen Überblick darüber zu geben,
was das entstandene System leisten kann. Ich greife aus mehreren Gründen auf ein sehr
einfaches Aktien-Kauf Szenario zurück,

1. um ein möglichst gut verständliches Beispiel zu haben,

2. da die Modellierung von Esper-Regeln (zu Esper siehe Kapitel 5.2) sehr komplex ist,

3. weil Ereignisdaten für das Szenario (Börsenkurse u. Twitternachrichten) leicht verfüg-
bar sind,

4. weil bei der hohen Dynamik am Aktienmarkt eine hohe Verarbeitungsgeschwindigkeit
von Vorteil ist,

5. und da sich in dieses Szenario leicht weitere Ereignisquellen einbinden lassen, um eine
Bewertung von Aktien vorzunehmen (z.B. RSS-Feeds).

8.1.1. Der Prozess

Der Prozess des Szenarios in Abbildung 8.1 wartet nach der Konfiguration des Systems
zur Ereignisverarbeitung mithilfe des Configuration Task (siehe im Kapitel 7.1.2) darauf,
dass ein Ereignis eintrifft, das den Kauf einer Aktie aufgrund des Kursverlaufs empfiehlt.
Danach wartet der Prozess noch auf gute Nachrichten, in diesem Fall auf einen Tweet, zum
Unternehmen, dessen Aktien gekauft werden sollen. Im Folgenden werden der Prozess und
dessen Ablauf genauer beschrieben.

Abbildung 8.1.: Prozess des Szenarios

Nach dem Start des Ereignisses muss zunächst eine Configuration Task die Ereignisverarbei-
tung konfigurieren.

62

8.1. Szenario

Abbildung 8.2.: Benutzungsoberfläche des Eclipse-Designers, die es erlaubt, Attribute für
die ConfigurationMessage festzulegen

Die beiden darauf folgenden Receive Event Tasks (Receive buy_stock Event und Reveice
buy_tweet Event) sind Aktivitäten, die auf das Eintreffen eines Ereignisses warten und dieses
Ereignis dem Prozess zur Verfügung stellen. Die Receive buy_stock Event Task wartet auf
das Eintreffen des Ereignisses buy_stock. Die Konfiguration ist in Abbildung 8.3 zu sehen.
Die nachfolgende Task erwartet dann noch das Eintreten des Ereignisses buy_tweet, und
danach führt die Aktivität BuyStock den Aktienkauf aus. Vernachlässigt wird an dieser Stelle
die Tatsache, dass der Prozess nicht beliebig lange auf ein buy_tweet-Ereignis warten sollte,
sondern buy_event und buy_tweet in einem unmittelbaren zeitlichen Zusammenhang stehen
sollten. Dieses Problem ließe sich aber auf einfache Weise mit einem Timer lösen.

Abbildung 8.3.: Benutzungsoberfläche zur Konfiguration der Receive Event Task - Es wird
festgelegt, auf welches Ereignis gewartet werden soll, und wie der Bezeich-
ner der Variable heißen soll, die nach dem Empfang die Ereignisdaten
enthält.

8.1.2. Die Ereignisverarbeitung

Für die Ereignisverarbeitung werden zwei Ereignisquellen benötigt, nämlich die für Twitter-
Nachrichten (genannt Tweets) und die für Aktienkurse.

Für die Ereignisverarbeitung sind folgende Regeln erforderlich. In dieser Diplomarbeit wird
Esper zur Verarbeitung der Ereignisse eingesetzt. Daher wird hier die Sprache von Esper
(Esper-EPL) verwendet.

63

8. Evaluation

Regeln und Erklärung

Listing 8.1 Regel: stock_event
INSERT INTO stock_event SELECT value.values[0] AS value, symbol.values[0] AS symbol FROM

Event[SELECT * FROM extendedDataElements WHERE name = "l1"] AS value,

Event[SELECT * FROM extendedDataElements WHERE name = "s"] AS symbol

Diese Regel erzeugt stock_event-Ereignisse mit den Attributen value (Kurs-Wert) und symbol
(Symbol des Unternehmens), falls ein eingehendes Ereignis die Attribute l1 und s enthält. Bei
YahooFinance (einem Dienst, der Aktienkurse zur Verfügung stellt), steht l1 für den letzten
Aktienkurs und s für die Abkürzung bzw. das Symbol des Unternehmens.

Listing 8.2 Regel: candidate
INSERT INTO candidate SELECT a.symbol AS symbol,

a.value AS value,

-1+(cast(b.value,float) / cast(a.value,float)) AS change FROM

pattern[EVERY a=stock_event -> b=stock_event(symbol = a.symbol)]

Diese Regel erzeugt candidate-Ereignisse mit den Attributen symbol und value. Für alle Paare
von Ereignissen A,B des Typs stock_event, für die gilt: auf A folgt B und das Symbol ist für A
und B identisch.

Listing 8.3 Regel: buy_stock
INSERT INTO buy_stock SELECT symbol,change,value FROM candidate WHERE change > 0.00009

Erzeugt ein Ereignis buy_stock, wenn der change-Wert eines candiate-Ereignisses größer als
0.009% ist.

Listing 8.4 Regel: tweet
INSERT INTO tweet SELECT category.values[0] AS category, text.values[0] AS text FROM

Event[SELECT * FROM extendedDataElements WHERE name = "category"] AS category,

Event[SELECT * FROM extendedDataElements WHERE name = "text"] AS text

Erzeugt ein tweet-Ereignis, wenn der Ereignisstrom ein Ereignis mit den extendedDataElements
category und text enthält.

Listing 8.5 Regel: buy_tweet
INSERT INTO buy_tweet SELECT category, text FROM tweet WHERE category = "buy"

Erzeuge ein buy_tweet Ereignis, wenn ein tweet-Ereignis das extendedDataElement das Attribut
category mit dem Wert buy enthält.

64

8.1. Szenario

Die Ereignisquellen

Wie in den Kapiteln 6.1.2 und 7.2 beschrieben, dienen EventSources dazu, Ereignisse externer
Systeme zu abonnieren, zu transformieren, ggf. vorzuverarbeiten und schließlich an das
System weiterzuleiten.

TwitterEventSource Diese EventSource erlaubt das Abonnement von Tweets, die bestimmte
Begriffe enthalten. Die Tweets werden mithilfe eines Bayes-Klassifikators in die Klassen sell,
neutral und buy eingeteilt.

Als Konfiguration erwartet diese EventSource lediglich die durch Kommata getrennten
Begriffe.

Ziel ist, Tweets über Aktiengesellschaften zu klassifizieren und somit zu erkennen, ob es sich
um gute, neutrale oder schlechte Nachrichten handelt.

YahooStockQuoteEventSource Diese EventSource stellt Börsenkurse des Dienstes YahooFi-
nance1 zur Verfügung. Die YahooStockQuoteEventSource erwartet zur Konfiguration das
Symbol der Aktiengesellschaft und danach per Komma getrennt beliebige Attribute, die
von YahooFinance unterstützt werden (einige Details zur YahooFinance API sind z.B. unter
http://brusdeylins.info/projects/yahoo-finance-api/ zu finden).

Der Ablauf

Wie also läuft das beschriebene Szenario nun ab. Nachdem eine Prozessinstanz gestartet
wurde, wird die Configuration Task ausgeführt. Sie erzeugt eine ConfigurationMessage, die im
EventTopic platziert wird.

Die ConfigurationMessage wird nun vom InstanceManager aus dem EventTopic gelesen,
und es wird eine ESEngine-Instanz entsprechend der ConfigurationMessage vom Instance-
Manager erzeugt. Die ESEngine-Instanz ruft die entsprechenden Regeln und zugehörigen
EventSource-Konfigurationen vom ESCStore ab und erzeugt die EventSource-Instanzen und
konfiguriert die ESEngine-Instanz, in diesem Fall Esper.

Die über die EventSources eintreffenden externen Ereignisse werden von Esper entsprechend
der Regeln verarbeitet. Die Ergebnisse in Form von Ereignissen werden schließlich über das
EventTopic publiziert und so für Activiti zur Verfügung gestellt.

Nach der Configuration Task wird die erste Receive Event Task ausgeführt. Das EventTopic wird
abonniert. Nachrichten, die für die Prozessinstanz relevant sind und den entsprechenden
Event-Typ haben, werden mit einem JMS-MessageSelector auswählt. Die Task speichert das
Ereignis beim Eintreffen in einer Prozessvariable unter dem Namen, der bei der Modellierung

1http://finance.yahoo.com

65

http://brusdeylins.info/projects/yahoo-finance-api/
http://finance.yahoo.com

8. Evaluation

des Prozesses angegeben wurde. Die zweite Receive Event Task wartet dann noch, bis ein
Tweet-Ereignis eintrifft, das in die Klasse buy eingeordnet wurde. Danach wird die Buy-Task
ausgeführt.

8.1.3. Andere Varianten bzw. Modellierungsmöglichkeiten

Mit einer zusätzlichen Regel lässt sich der Prozess des vorgestellten Szenarios wie in Abbil-
ding 8.4 weiter vereinfachen.

Abbildung 8.4.: Vereinfachter Szenario-Prozess

Die zusätzliche Regel erzeugt ein Ereignis, wenn innerhalb eines bestimmten Zeitraums ein
buy_tweet-Event auf ein buy_stock-Event folgt. Die zusätzliche Regel sieht folgendermaßen
aus:

Listing 8.6 Regel: buy
INSERT INTO buy SELECT a.value, a.symbol FROM Pattern[EVERY a=buy_stock->b=buy_tweet WHERE

timer:within(10min)]

Eine andere Modellierungsmöglichkeit wäre, die Ereignisse, die von den Ereignisquellen zur
Verfügung gestellt werden, mithilfe der Regeln stock_event und tweet direkt zu empfangen,
um sie im Prozess weiter zu verarbeiten. Dazu müssten die Regeln candidate, buy_stock und
buy_tweet mit Konzepten der BPMN nachgebildet werden. Ein erster Ansatz dafür könnte
z.B. wie in Abbildung 8.5 aussehen. Wie im oben dargestellten Szenario wird hier nicht
berücksichtigt, dass die Ereignisse in einem unmittelbaren zeitlichen Zusammenhang stehen
müssen.

66

8.1. Szenario

Abbildung 8.5.: Szenario-Prozess mit minimaler Anzahl Regeln

Es zeigt sich also, dass sich nicht nur in der Theorie wie in [MIK08] beschrieben(siehe auch
Kapitel 3) die Frage stellt, welche Aspekte mit dem Paradigma Workflow und welche mit
dem Paradigma CEP realisiert werden.

67

9. Zusammenfassung und Ausblick

Abschließend werden in diesem Kapitel die Erkenntnisse zusammengefasst. Es wird ein Fazit
gezogen, inwieweit die Ziele der Aufgabenstellung erreicht werden konnten und welche
Fragen offen geblieben sind bzw. sich neu ergeben haben.

Zusammenfassung

Nachdem in der Einleitung ein Einstieg vermittelt wurde, wurde mit den Kapiteln zu
Grundlagen und verwandten Arbeiten die Basis geschaffen, um Anforderungen zu ermitteln und
eine Architektur zu entwickeln. Danach wurden in Kapitel 7 das Vorgehen und einige Details
der Implementierung vorgestellt, ehe dann in Kapitel 8 evaluiert wurde, inwieweit Achitektur
und Implementierung die Aufgabenstellung und die in Kapitel 4 definierten Anforderungen
erfüllen.

Der Fokus dieser Arbeit lag auf der Ausführungsphase. Es wurde eine Architektur geschaffen,
die es ermöglicht, beliebige Ereignisse mit Hilfe des Konzepts der EventSource zu empfangen
und dann mit einer CEP-Engine oder einem vergleichbaren, regelbasierten System zu
verarbeiten und die Ergebnisse schließlich in einem WfMS zu nutzen. Damit geht mein
Ansatz über den in [AESW08] hinaus, da es explizit dafür ausgelegt ist, auf bestimmte
Ereignisse oder Situationen zu reagieren. Die Art der Reaktion auf Ereignisse, die z.B. von
einem CEP-System verarbeitet und erzeugt werden, wird durch einen Prozess festgelegt, der
von einem WfMS ausgeführt wird.

Ausblick

Diese Diplomarbeit konnte viele Bereiche nur anreißen, so dass es viele Fragen gibt, die
noch näher betrachtet werden sollten. Vergleicht man die entstandene Architektur mit der
Referenz-Architektur des WfMC für WfMS, so bemerkt man, dass z.B. kein Konzept für das
Monitoring entwickelt wurde. Ebenso hat sich bei der Evaluation in Kapitel 8 gezeigt, dass
ein Konzept zum Zugriff auf externe Daten, die nicht in Form von Ereignissen vorliegen, bei
der Regelverarbeitung vollständig fehlt. Ein denkbarer Ansatz wird mit Domain-Events in
[MLM10], betrachtet in Kapitel 3, genannt. Fast vollständig vernachlässigt wurde in dieser
Arbeit die Betrachtung der Modellierung von Regeln und Prozessen. Lediglich in Kapitel 3

wurden einige Ansätze vorgestellt. Ich will versuchen, sie an dieser Stelle einzuordnen.

69

9. Zusammenfassung und Ausblick

Die Modellierung von Regeln gestaltet sich in vielen Fällen schwierig, da z.B. bei Esper die
EPL sehr mächtig aber auch sehr umfangreich ist. Ein wichtiger Schritt wäre eine einheitliche
und standardisierte EPL. Bestehende Engines könnten ggf. weiterhin verwendet und die
standardisierte EPL auf die jeweiligen nativen Sprachen abgebildet werden.

In [WMKL09] wird beschrieben, wie sich EPC auf Esper-Regeln abbilden lassen. Ein inter-
essanter Ansatz im Zusammenspiel mit BPMN wäre es, die in [DGB07] vorgestellte Notation
BEMN auf Esper abzubilden und somit eine einheitliche Möglichkeit für die Modellierung
von Regeln und Prozessen zu entwickeln. Es stellt sich aber die Frage, inwieweit es überhaupt
sinnvoll ist, ein einheitliches Modell für Regeln und Prozesse zu haben. Die Komplexität bei
der Modellierung von Regeln kann eine Trennung sinnvoll machen. Generell stellt sich bei
der Modellierung die Frage, welche Aspekte als Regeln und welche als Prozess modelliert
werden. Eine gute Grundlage für die Entscheidung bildet das in Kapitel 3 vorgestellte
Entscheidungsframework (siehe 3.2) aus [MIK08].

Im Kapitel über verwandte Arbeiten wurden kurz [WGET08] und [MLM10] erwähnt, die
Ansätze aus dem Bereich der künstlichen Intelligenz wählen, um Regeln automatisch zur
Laufzeit abzuleiten oder zu verbessern. Dieser Ansatz erfordert es, Regeln zur Laufzeit
anpassen zu können.

Im Bereich des Konzepts der EventSources (siehe 6.1.2) gibt es viele offene Fragen. Eine inter-
essante Frage ist z.B., wie EventSources im Hinblick auf Sicherheit, Qualität etc. modelliert
werden können. Ein möglicher Ansatz könnte eine Lösung vergleichbar zu WS-Policy sein.
Insgesamt fällt auf, dass es gewisse Parallelen zwischen Ereignisquellen und Web Services
gibt. Eine Untersuchung, inwieweit es möglich und sinnvoll ist, Web Service Spezifikationen
(WS-*) zu erweitern oder zumindest Konzepte aus der Web Service Welt auf EventSources
zu übertragen, scheint sinnvoll.

Es ist zu erwarten, dass in Zukunft die Menge der in Echtzeit verfügbaren Daten weiter
wächst und immer mehr Sensoren Daten in Form von Ereignissen liefern, die dann wie-
derum von den unterschiedlichsten Systemen verarbeitet werden, welche neue Ereignisse
produzieren. Um einen Überblick über die große Anzahl von Ereignissen in Unternehmen zu
bekommen, ist einerseits ein geeignetes Monitoring dieser Daten erforderlich, andererseits
wird die Anzahl und Heterogenität von Ereignissen immer weiter zunehmen und durch
manuelles Eingreifen von Menschen als Reaktion auf Monitoringergebnisse nicht mehr
möglich sein. Daher wird es wichtig sein, aus Ereignissen Aktionen abzuleiten, die mehr
und mehr automatisch erfolgen.

WfMSe sind in dem Bereich der Automatisierung von Abläufen weit verbreitet und zu-
sammen mit dem Konzept des CEP in der Lage, Ereignisse zu verarbeiten und abhängig
von diesen Ereignissen, Aktionen auszuführen. Diese Diplomarbeit zeigt, dass es technisch
machbar ist, beides zu kombinieren. Bevor die Kombination aber zuverlässig und in der
Breite eingesetzt werden kann, ist vor allem im Hinblick auf die folgenden Aspekte noch
Forschung notwendig:

• Modellierung

• Benutzerfreundlichkeit

70

Sowohl CEP-Systeme für sich als auch ein System, wie es Gegenstand dieser Diplomarbeit ist,
werden nur Erfolg haben, wenn die Systeme komfortabel und möglichst einfach zu bedienen
sind.

71

A. Anhang

A.1. Abkürzungen

In der Informatik und anderen Wissenschaften werden häufig Bezeichnungen verwendet,
die aus mehreren Worten bestehen. Aus diesem Grund werden diese Bezeichnungen häufig
durch die Verwendung von Akronymen abgekürzt. Für jeden, der sich mit einem Thema oder
Themengebiet befasst, wird der Gebrauch schnell selbstverständlich. Für Aussenstehende
ist es dagegen häufig schwierig, die Abkürzungen zu verstehen. Aus diesem Grund sind
nachfolgend alle verwendeten Abkürzungen aufgelistet.

APF Adaptable Pervasive Flow

BAM Business Activity Monitoring
BEMN Business Event Modelling Language
BPEL Business Process Execution Language
BPM Business Process Management
BPMN Business Process Modelling Notation oder seit Version

2.0 Business Process Model and Notation
BRM Business Rules Management

CBE Common Base Event
CEP Complex Event Processing

DBMS Datenbankmanagement-System

EDA Event Driven Architecture
EDBPM Event Driven Business Process Management
EPC Event-driven Process Chain
EPL Event Pattern Language
EPTS Event Processing Technical Society
ERP Enterprise Resource Planning

73

Acronyms

IAAS Institut für Architektur von Anwendungssystemen

JAR Java Archive
JAX-WS Java API for XML - Web Services
JAXB Java Architecture for XML Binding
JMS Java Messaging Service
JPA Java Persistence API

MoM Message oriented Middleware

ORM Object-Relational-Mapper

PVM Process Virtual Machine

SOA Service Oriented Architecture
SOEDA Service Oriented Event Driven Architecture

WfM Workflow Management
WfMC Workflow Management Coalition
WfMS Workflow Management System
WSDL Web Service Description Language

A.2. XML-Schemata und WSDLs

ConfigurationMessage

XML-Schema zur Beschreibung einer ConfigurationMessage, die für die Initialisierung einer
ESEngine-Instanz benötigt wird.

<?xml version="1.0" encoding="UTF-8"?>

<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema"

targetNamespace="http://www.informatik.uni-stuttgart.de/eventum/ConfigurationMessage"

xmlns:tns="http://www.informatik.uni-stuttgart.de/eventum/ConfigurationMessage"

xmlns:es="http://www.informatik.uni-stuttgart.de/eventum/EventSource"

elementFormDefault="qualified">

<xsd:import namespace="http://www.informatik.uni-stuttgart.de/eventum/EventSource"

schemaLocation="./EventSource.xsd" />

<xsd:element name="cm" type="tns:ConfigurationMessage"></xsd:element>

<xsd:complexType name="ConfigurationMessage">

<xsd:sequence>

<xsd:element name="events" type="tns:Events" />

<xsd:element name="eventSources" type="tns:EventSources"/>

74

A.2. XML-Schemata und WSDLs

</xsd:sequence>

<xsd:attribute name="engineType" type="xsd:anyURI" use="required" />

<xsd:attribute name="correlationID" type="xsd:anySimpleType"

use="required" />

</xsd:complexType>

<xsd:complexType name="EventSources">

<xsd:sequence>

<xsd:element name="eventSource" type="es:EventSource" minOccurs="0"

maxOccurs="unbounded"/>

</xsd:sequence>

</xsd:complexType>

<xsd:complexType name="Events">

<xsd:sequence>

<xsd:element name="event" type="xsd:string" minOccurs="1"

maxOccurs="unbounded" />

</xsd:sequence>

</xsd:complexType>

</xsd:schema>

EventSource

XML-Schema zur Beschreibung der Konfiguration einer EventSource.

<?xml version="1.0" encoding="UTF-8"?>

<schema xmlns="http://www.w3.org/2001/XMLSchema"

targetNamespace="http://www.informatik.uni-stuttgart.de/eventum/EventSource"

xmlns:tns="http://www.informatik.uni-stuttgart.de/eventum/EventSource"

elementFormDefault="qualified">

<complexType name="EventSource">

<sequence>

<element name="description" type="string" />

<element name="eventSourceConfig" type="string" />

</sequence>

<attribute name="id" type="long" use="optional"/>

<attribute name="name" type="string" use="required"/>

<attribute name="type" type="string" use="required"/>

</complexType>

</schema>

Rule

XML-Schema zur Beschreibung von Regeln, die vom ESCStore verwaltet und von ESEngine-
Instanzen verarbeitet werden.

75

Acronyms

<?xml version="1.0" encoding="UTF-8"?>

<schema xmlns="http://www.w3.org/2001/XMLSchema"

targetNamespace="http://www.informatik.uni-stuttgart.de/eventum/Rule"

xmlns:r="http://www.informatik.uni-stuttgart.de/eventum/Rule"

xmlns:es="http://www.informatik.uni-stuttgart.de/eventum/EventSource"

elementFormDefault="qualified">

<import schemaLocation="EventSource.xsd"

namespace="http://www.informatik.uni-stuttgart.de/eventum/EventSource" />

<complexType name="AbstractRule" abstract="true">

<sequence>

<element name="rule" type="string" />

<element name="author" type="string" />

<element name="description" type="string" />

<element name="esEngine" type="anyURI" />

<element name="eventSources" minOccurs="0" maxOccurs="unbounded"

type="es:EventSource">

</element>

</sequence>

<attribute name="id" type="long" use="optional"/>

<attribute name="name" type="string" use="required"/>

</complexType>

<complexType name="RuntimeRule">

<complexContent>

<extension base="r:AbstractRule" />

</complexContent>

</complexType>

<complexType name="InstantiationRule">

<complexContent>

<extension base="r:AbstractRule">

<sequence>

<element name="wsdl" type="string" minOccurs="0" />

<element name="operation" type="string" minOccurs="0" />

<element name="processID" type="string" minOccurs="0" />

</sequence>

</extension>

</complexContent>

</complexType>

</schema>

ESCStore

WSDL zur Beschreibung des ESCStore Web Service.

<?xml version="1.0" encoding="UTF-8" standalone="no"?>

<wsdl:definitions xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"

xmlns:tns="http://www.informatik.uni-stuttgart.de/eventum/ESCStore/"

xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"

76

A.2. XML-Schemata und WSDLs

xmlns:xsd="http://www.w3.org/2001/XMLSchema" name="ESCStore"

targetNamespace="http://www.informatik.uni-stuttgart.de/eventum/ESCStore/">

<wsdl:types>

<xsd:schema targetNamespace="http://www.informatik.uni-stuttgart.de/eventum/ESCStore/"

xmlns:Q1="http://www.informatik.uni-stuttgart.de/eventum/Rule"

xmlns:Q2="http://www.informatik.uni-stuttgart.de/eventum/ESCResponse"

xmlns:Q3="http://www.informatik.uni-stuttgart.de/eventum/EventSource">

<xsd:import schemaLocation="../xml/EventSource.xsd"

namespace="http://www.informatik.uni-stuttgart.de/eventum/EventSource"></xsd:import>

<xsd:import schemaLocation="../xml/ESCResponse.xsd"

namespace="http://www.informatik.uni-stuttgart.de/eventum/ESCResponse"></xsd:import>

<xsd:import schemaLocation="../xml/Rule.xsd"

namespace="http://www.informatik.uni-stuttgart.de/eventum/Rule"></xsd:import>

<xsd:element name="addRule">

<xsd:complexType>

<xsd:sequence>

<xsd:element name="Rule" type="Q1:AbstractRule"/>

</xsd:sequence>

</xsd:complexType>

</xsd:element>

<xsd:element name="addRuleResponse" type="xsd:long">

</xsd:element>

<xsd:element name="getRule" type="xsd:long"></xsd:element>

<xsd:element name="getRuleResponse" type="Q2:ruleResponse"></xsd:element>

<xsd:element name="delRule" type="xsd:long"></xsd:element>

<xsd:element name="getInstantiationRules" type="xsd:long">

</xsd:element>

<xsd:element name="getInstantiationRulesResponse"

type="Q2:ruleResponse"></xsd:element>

<xsd:element name="getAllRules"

type="tns:emptyGetAllRulesParam">

</xsd:element>

<xsd:element name="getAllRulesResponse" type="Q2:ruleResponse"></xsd:element>

<xsd:complexType name="emptyGetAllRulesParam"/>

<xsd:element name="addEventSource" type="Q3:EventSource">

</xsd:element>

<xsd:element name="addEventSourceResponse" type="xsd:long"></xsd:element>

<xsd:element name="getEventSource" type="xsd:long">

</xsd:element>

<xsd:element name="getEventSourceResponse"

type="Q2:eventSourceResponse"></xsd:element>

<xsd:element name="delEventSource" type="xsd:long">

</xsd:element>

<xsd:element name="getRuleEventSource" type="xsd:long">

</xsd:element>

<xsd:element name="getRuleEventSourceResponse"

type="Q2:eventSourceResponse"></xsd:element>

<xsd:element name="getAllEventSources"

type="tns:emptyGetAllEventSourcesParam">

</xsd:element>

<xsd:element name="getAllEventSourcesResponse"

type="Q2:eventSourceResponse"></xsd:element>

<xsd:complexType name="emptyGetAllEventSourcesParam"></xsd:complexType>

77

Acronyms

<xsd:element name="NoSuchRuleFault" type="xsd:string"></xsd:element>

<xsd:element name="NoSuchEventSourceFault" type="xsd:string"></xsd:element>

<xsd:complexType name="emptyResponse"/>

<xsd:element name="getRuleByName" type="xsd:string">

</xsd:element>

<xsd:element name="getRuleByNameResponse" type="Q2:ruleResponse"></xsd:element>

<xsd:element name="getEventSourceByName"

type="xsd:string">

</xsd:element>

<xsd:element name="getEventSourceByNameResponse"

type="Q2:eventSourceResponse"></xsd:element>

</xsd:schema>

</wsdl:types>

<wsdl:message name="addRuleRequest">

<wsdl:part name="parameters" element="tns:addRule"></wsdl:part>

</wsdl:message>

<wsdl:message name="addRuleResponse">

<wsdl:part name="parameters" element="tns:addRuleResponse"></wsdl:part>

</wsdl:message>

<wsdl:message name="getRuleRequest">

<wsdl:part name="parameters" element="tns:getRule"></wsdl:part>

</wsdl:message>

<wsdl:message name="getRuleResponse">

<wsdl:part name="parameters" element="tns:getRuleResponse"></wsdl:part>

</wsdl:message>

<wsdl:message name="delRuleRequest">

<wsdl:part name="parameters" element="tns:delRule"></wsdl:part>

</wsdl:message>

<wsdl:message name="delRuleResponse"/>

<wsdl:message name="getInstantiationRulesRequest">

<wsdl:part name="parameters" element="tns:getInstantiationRules"></wsdl:part>

</wsdl:message>

<wsdl:message name="getInstantiationRulesResponse">

<wsdl:part name="parameters" element="tns:getInstantiationRulesResponse"></wsdl:part>

</wsdl:message>

<wsdl:message name="getAllRulesRequest">

<wsdl:part name="parameters" element="tns:getAllRules"></wsdl:part>

</wsdl:message>

<wsdl:message name="getAllRulesResponse">

<wsdl:part name="parameters" element="tns:getAllRulesResponse"></wsdl:part>

</wsdl:message>

<wsdl:message name="addEventSourceRequest">

<wsdl:part name="parameters" element="tns:addEventSource"></wsdl:part>

</wsdl:message>

<wsdl:message name="addEventSourceResponse">

<wsdl:part name="parameters" element="tns:addEventSourceResponse"></wsdl:part>

</wsdl:message>

<wsdl:message name="getEventSourceRequest">

<wsdl:part name="parameters" element="tns:getEventSource"></wsdl:part>

</wsdl:message>

<wsdl:message name="getEventSourceResponse">

<wsdl:part name="parameters" element="tns:getEventSourceResponse"></wsdl:part>

</wsdl:message>

<wsdl:message name="delEventSourceRequest">

<wsdl:part name="parameters" element="tns:delEventSource"></wsdl:part>

78

A.2. XML-Schemata und WSDLs

</wsdl:message>

<wsdl:message name="delEventSourceResponse"/>

<wsdl:message name="getRuleEventSourcesRequest">

<wsdl:part name="parameters" element="tns:getRuleEventSource"></wsdl:part>

</wsdl:message>

<wsdl:message name="getRuleEventSourcesResponse">

<wsdl:part name="parameters" element="tns:getRuleEventSourceResponse"></wsdl:part>

</wsdl:message>

<wsdl:message name="getAllEventSourcesRequest">

<wsdl:part name="parameters" element="tns:getAllEventSources"></wsdl:part>

</wsdl:message>

<wsdl:message name="getAllEventSourcesResponse">

<wsdl:part name="parameters" element="tns:getAllEventSourcesResponse"></wsdl:part>

</wsdl:message>

<wsdl:message name="delRuleFault">

<wsdl:part name="fault" element="tns:NoSuchRuleFault"></wsdl:part>

</wsdl:message>

<wsdl:message name="delEventSourceFault">

<wsdl:part name="fault" element="tns:NoSuchEventSourceFault"></wsdl:part>

</wsdl:message>

<wsdl:message name="getRuleByNameRequest">

<wsdl:part name="parameters" element="tns:getRuleByName"></wsdl:part>

</wsdl:message>

<wsdl:message name="getRuleByNameResponse">

<wsdl:part name="parameters" element="tns:getRuleByNameResponse"></wsdl:part>

</wsdl:message>

<wsdl:message name="getEventSourceByNameRequest">

<wsdl:part name="parameters" element="tns:getEventSourceByName"></wsdl:part>

</wsdl:message>

<wsdl:message name="getEventSourceByNameResponse">

<wsdl:part name="parameters" element="tns:getEventSourceByNameResponse"></wsdl:part>

</wsdl:message>

<wsdl:portType name="ESCStore">

<wsdl:operation name="addRule">

<wsdl:input message="tns:addRuleRequest"></wsdl:input>

<wsdl:output message="tns:addRuleResponse"></wsdl:output>

</wsdl:operation>

<wsdl:operation name="getRule">

<wsdl:input message="tns:getRuleRequest"></wsdl:input>

<wsdl:output message="tns:getRuleResponse"></wsdl:output>

</wsdl:operation>

<wsdl:operation name="delRule">

<wsdl:input message="tns:delRuleRequest"></wsdl:input>

<wsdl:output message="tns:delRuleResponse"/>

<wsdl:fault name="fault" message="tns:delRuleFault"></wsdl:fault>

</wsdl:operation>

<wsdl:operation name="getInstantiationRules">

<wsdl:input message="tns:getInstantiationRulesRequest"></wsdl:input>

<wsdl:output message="tns:getInstantiationRulesResponse"></wsdl:output>

</wsdl:operation>

<wsdl:operation name="getAllRules">

<wsdl:input message="tns:getAllRulesRequest"></wsdl:input>

<wsdl:output message="tns:getAllRulesResponse"></wsdl:output>

</wsdl:operation>

<wsdl:operation name="addEventSource">

79

Acronyms

<wsdl:input message="tns:addEventSourceRequest"></wsdl:input>

<wsdl:output message="tns:addEventSourceResponse"></wsdl:output>

</wsdl:operation>

<wsdl:operation name="getEventSource">

<wsdl:input message="tns:getEventSourceRequest"></wsdl:input>

<wsdl:output message="tns:getEventSourceResponse"></wsdl:output>

</wsdl:operation>

<wsdl:operation name="delEventSource">

<wsdl:input message="tns:delEventSourceRequest"></wsdl:input>

<wsdl:output message="tns:delEventSourceResponse"></wsdl:output>

<wsdl:fault name="fault" message="tns:delEventSourceFault"></wsdl:fault>

</wsdl:operation>

<wsdl:operation name="getRuleEventSources">

<wsdl:input message="tns:getRuleEventSourcesRequest"></wsdl:input>

<wsdl:output message="tns:getRuleEventSourcesResponse"></wsdl:output>

</wsdl:operation>

<wsdl:operation name="getAllEventSources">

<wsdl:input message="tns:getAllEventSourcesRequest"></wsdl:input>

<wsdl:output message="tns:getAllEventSourcesResponse"></wsdl:output>

</wsdl:operation>

<wsdl:operation name="getRuleByName">

<wsdl:input message="tns:getRuleByNameRequest"></wsdl:input>

<wsdl:output message="tns:getRuleByNameResponse"></wsdl:output>

</wsdl:operation>

<wsdl:operation name="getEventSourceByName">

<wsdl:input message="tns:getEventSourceByNameRequest"></wsdl:input>

<wsdl:output message="tns:getEventSourceByNameResponse"></wsdl:output>

</wsdl:operation>

</wsdl:portType>

<wsdl:binding name="ESCStoreSOAP" type="tns:ESCStore">

<soap:binding style="document"

transport="http://schemas.xmlsoap.org/soap/http" />

<wsdl:operation name="addRule">

<soap:operation

soapAction="http://www.informatik.uni-stuttgart.de/eventum/ESCStore/addRule"

/>

<wsdl:input>

<soap:body use="literal" />

</wsdl:input>

<wsdl:output>

<soap:body use="literal" />

</wsdl:output>

</wsdl:operation>

<wsdl:operation name="getRule">

<soap:operation

soapAction="http://www.informatik.uni-stuttgart.de/eventum/ESCStore/getRule"

/>

<wsdl:input>

<soap:body use="literal" />

</wsdl:input>

<wsdl:output>

<soap:body use="literal" />

</wsdl:output>

</wsdl:operation>

<wsdl:operation name="delRule">

80

A.2. XML-Schemata und WSDLs

<soap:operation

soapAction="http://www.informatik.uni-stuttgart.de/eventum/ESCStore/delRule"

/>

<wsdl:input>

<soap:body use="literal" />

</wsdl:input>

<wsdl:output>

<soap:body use="literal" />

</wsdl:output>

<wsdl:fault name="fault">

<soap:fault use="literal" name="fault" />

</wsdl:fault>

</wsdl:operation>

<wsdl:operation name="getInstantiationRules">

<soap:operation

soapAction="http://.../eventum/ESCStore/getInstantiationRules" />

<wsdl:input>

<soap:body use="literal" />

</wsdl:input>

<wsdl:output>

<soap:body use="literal" />

</wsdl:output>

</wsdl:operation>

<wsdl:operation name="getAllRules">

<soap:operation

soapAction="http://.../eventum/ESCStore/getAllRules" />

<wsdl:input>

<soap:body use="literal" />

</wsdl:input>

<wsdl:output>

<soap:body use="literal" />

</wsdl:output>

</wsdl:operation>

<wsdl:operation name="addEventSource">

<soap:operation

soapAction="http://.../eventum/ESCStore/addEventSource" />

<wsdl:input>

<soap:body use="literal" />

</wsdl:input>

<wsdl:output>

<soap:body use="literal" />

</wsdl:output>

</wsdl:operation>

<wsdl:operation name="getEventSource">

<soap:operation

soapAction="http://.../eventum/ESCStore/getEventSource" />

<wsdl:input>

<soap:body use="literal" />

</wsdl:input>

<wsdl:output>

<soap:body use="literal" />

</wsdl:output>

</wsdl:operation>

<wsdl:operation name="delEventSource">

<soap:operation

81

Acronyms

soapAction="http://.../eventum/ESCStore/delEventSource" />

<wsdl:input>

<soap:body use="literal" />

</wsdl:input>

<wsdl:output>

<soap:body use="literal" />

</wsdl:output>

<wsdl:fault name="fault">

<soap:fault use="literal" name="fault" />

</wsdl:fault>

</wsdl:operation>

<wsdl:operation name="getRuleEventSources">

<soap:operation

soapAction="http://.../eventum/ESCStore/getRuleEventSources" />

<wsdl:input>

<soap:body use="literal" />

</wsdl:input>

<wsdl:output>

<soap:body use="literal" />

</wsdl:output>

</wsdl:operation>

<wsdl:operation name="getAllEventSources">

<soap:operation

soapAction="http://.../eventum/ESCStore/getAllEventSources" />

<wsdl:input>

<soap:body use="literal" />

</wsdl:input>

<wsdl:output>

<soap:body use="literal" />

</wsdl:output>

</wsdl:operation>

<wsdl:operation name="getRuleByName">

<soap:operation

soapAction="http://.../eventum/ESCStore/getRuleByName" />

<wsdl:input>

<soap:body use="literal" />

</wsdl:input>

<wsdl:output>

<soap:body use="literal" />

</wsdl:output>

</wsdl:operation>

<wsdl:operation name="getEventSourceByName">

<soap:operation

soapAction="http://.../eventum/ESCStore/getEventSourceByName" />

<wsdl:input>

<soap:body use="literal" />

</wsdl:input>

<wsdl:output>

<soap:body use="literal" />

</wsdl:output>

</wsdl:operation>

</wsdl:binding>

<wsdl:service name="ESCStore">

<wsdl:port binding="tns:ESCStoreSOAP" name="ESCStoreSOAP">

<soap:address location="http://localhost:8080/ESCStore"/>

82

A.2. XML-Schemata und WSDLs

</wsdl:port>

</wsdl:service>

</wsdl:definitions>

ESEngine

WSDL zur Beschreibung des ESEngine Web Service.

<?xml version="1.0" encoding="UTF-8" standalone="no"?>

<wsdl:definitions xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"

xmlns:tns="http://www.informatik.uni-stuttgart.de/eventum/ESEngine/"

xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"

xmlns:xsd="http://www.w3.org/2001/XMLSchema"

name="ESEngine"

targetNamespace="http://www.informatik.uni-stuttgart.de/eventum/ESEngine/"

xmlns:cm="http://www.informatik.uni-stuttgart.de/eventum/ConfigurationMessage">

<wsdl:types>

<xsd:schema

targetNamespace="http://www.informatik.uni-stuttgart.de/eventum/ESEngine/">

<xsd:import schemaLocation="../xml/ConfigurationMessage.xsd"

namespace="http://www.informatik.uni-stuttgart.de/eventum/ConfigurationMessage"

/>

<xsd:element name="createESEngineInstance">

<xsd:complexType>

<xsd:sequence>

<xsd:element name="in"

type="cm:ConfigurationMessage" />

</xsd:sequence>

</xsd:complexType>

</xsd:element>

<xsd:element name="createESEngineInstanceResponse">

<xsd:complexType>

<xsd:sequence>

<xsd:element name="out" type="xsd:string" />

</xsd:sequence>

</xsd:complexType>

</xsd:element>

<xsd:element name="destroyESEngineInstance" type="xsd:string" />

<xsd:complexType name="destroyESEngineInstanceResponse"/>

<xsd:element name="getEngineType">

<xsd:complexType/>

</xsd:element>

<xsd:element name="getEngineTypeResponse" type="xsd:string" />

</xsd:schema>

</wsdl:types>

<wsdl:message name="createESEngineInstanceRequest">

<wsdl:part element="tns:createESEngineInstance" name="parameters" />

</wsdl:message>

83

Acronyms

<wsdl:message name="createESEngineInstanceResponse">

<wsdl:part element="tns:createESEngineInstanceResponse"

name="parameters" />

</wsdl:message>

<wsdl:message name="destroyESEngineInstanceRequest">

<wsdl:part name="parameters" element="tns:destroyESEngineInstance" />

</wsdl:message>

<wsdl:message name="destroyESEngineInstanceResponse"/>

<wsdl:message name="getEngineTypeRequest">

<wsdl:part name="parameters" element="tns:getEngineType" />

</wsdl:message>

<wsdl:message name="getEngineTypeResponse">

<wsdl:part name="parameters" element="tns:getEngineTypeResponse" />

</wsdl:message>

<wsdl:portType name="ESEngine">

<wsdl:operation name="createESEngineInstance">

<wsdl:input message="tns:createESEngineInstanceRequest" />

<wsdl:output message="tns:createESEngineInstanceResponse" />

</wsdl:operation>

<wsdl:operation name="destroyESEngineInstance">

<wsdl:input message="tns:destroyESEngineInstanceRequest" />

<wsdl:output message="tns:destroyESEngineInstanceResponse" />

</wsdl:operation>

<wsdl:operation name="getEngineType">

<wsdl:input message="tns:getEngineTypeRequest" />

<wsdl:output message="tns:getEngineTypeResponse" />

</wsdl:operation>

</wsdl:portType>

<wsdl:binding name="ESEngineSOAP" type="tns:ESEngine">

<soap:binding style="document"

transport="http://schemas.xmlsoap.org/soap/http" />

<wsdl:operation name="createESEngineInstance">

<soap:operation

soapAction="http://.../eventum/ESEngine/createESEngineInstance"

/>

<wsdl:input>

<soap:body use="literal" />

</wsdl:input>

<wsdl:output>

<soap:body use="literal" />

</wsdl:output>

</wsdl:operation>

<wsdl:operation name="destroyESEngineInstance">

<soap:operation

soapAction="http://.../eventum/ESEngine/destroyESEngineInstance"

/>

<wsdl:input>

<soap:body use="literal" />

</wsdl:input>

<wsdl:output>

<soap:body use="literal" />

</wsdl:output>

</wsdl:operation>

84

A.2. XML-Schemata und WSDLs

<wsdl:operation name="getEngineType">

<soap:operation

soapAction="http://.../eventum/ESEngine/getEngineType" />

<wsdl:input>

<soap:body use="literal" />

</wsdl:input>

<wsdl:output>

<soap:body use="literal" />

</wsdl:output>

</wsdl:operation>

</wsdl:binding>

<wsdl:service name="ESEngine">

<wsdl:port binding="tns:ESEngineSOAP" name="ESEngineSOAP">

<soap:address location="http://localhost:8080/ESEngine" />

</wsdl:port>

</wsdl:service>

</wsdl:definitions>

85

Literaturverzeichnis

[AESW08] R. von Ammon, C. Emmersberger, F. Springer, C. Wolff. Event-Driven Business
Process Management and its Practical Application Taking the Example of DHL.
Complex Event Processing blog, 2008. (Zitiert auf den Seiten 23, 29 und 69)

[BDG07] A. Barros, G. Decker, A. Grosskopf. Complex events in business processes. In
Business Information Systems, pp. 29–40. Springer, 2007. (Zitiert auf den Seiten 23,
24, 32, 33, 60 und 61)

[BDK10] F. Burger, P. Debicki, F. Kötter. Vergleich von Complex Event Processing-
Ansätzen für Business Activity Monitoring. 2010. (Zitiert auf den Seiten 19

und 38)

[BE07] F. Bry, M. Eckert. Rule-based composite event queries: The language XChange
eq and its semantics. Web Reasoning and Rule Systems, pp. 16–30, 2007. (Zitiert
auf Seite 17)

[CLS+05] F. Curbera, F. Leymann, T. Storey, D. Ferguson, S. Weerawarana. Web Services
Platform Architecture: SOAP, WSDL, WS-Policy, WS-Addressing, WS-BPEL, WS-
Reliable Messaging and More. Prentice Hall PTR, 2005. (Zitiert auf Seite 19)

[Dey01] A. Dey. Understanding and using context. Personal and ubiquitous computing,
5(1):4–7, 2001. (Zitiert auf Seite 20)

[DGB07] G. Decker, A. Grosskopf, A. Barros. A graphical notation for modeling complex
events in business processes. In Enterprise Distributed Object Computing Conference,
2007. EDOC 2007. 11th IEEE International, p. 27. IEEE, 2007. (Zitiert auf den
Seiten 5, 21, 22 und 70)

[DKGZ10] M. Döhring, L. Karg, E. Godehardt, B. Zimmermann. The Convergence of Work-
flows, Business Rules and Complex Events—Defining a Reference Architecture
and Approaching Realization Challenges. In ICEIS ’10. 2010. (Zitiert auf den
Seiten 22, 23 und 29)

[FRH10] J. Freund, B. Rücker, T. Henninger. Praxishandbuch BPMN. HANSER, 2010.
(Zitiert auf den Seiten 5, 12 und 13)

[HCC05] J. Han, Y. Cho, J. Choi. Context-aware workflow language based on web services
for ubiquitous computing. Computational Science and Its Applications–ICCSA 2005,
pp. 1008–1017, 2005. (Zitiert auf Seite 25)

87

Literaturverzeichnis

[HCKC06] J. Han, Y. Cho, E. Kim, J. Choi. A ubiquitous workflow service framework.
Computational Science and its Applications-ICCSA 2006, pp. 30–39, 2006. (Zitiert
auf Seite 25)

[LK06] B. List, B. Korherr. An evaluation of conceptual business process modelling
languages. In Proceedings of the 2006 ACM symposium on Applied computing, pp.
1532–1539. ACM, 2006. (Zitiert auf Seite 12)

[LL06] J. Ludewig, H. Lichter. Software Engineering-Grundlagen. Menschen, Prozesse,
Techniken. dpunkt. verlag, 2006. (Zitiert auf Seite 29)

[LR00] F. Leymann, D. Roller. Production workflow: concepts and techniques. Prentice Hall
PTR, 2000. (Zitiert auf Seite 11)

[LS08] D. Luckham, R. Schulte. Event processing glossary-version 1.1. Event Processing
Technical Society, Tech. Rep, 2008. (Zitiert auf den Seiten 19 und 20)

[Luc02] D. Luckham. The Power of Events. Addison-Wesley, 2002. (Zitiert auf den Seiten 7

und 15)

[Men11] F. Menge. Workshop: Activiti BPM Platform. Web, 2011. (Zitiert auf den Seiten 5

und 37)

[MIK08] M. zur Muehlen, M. Indulska, K. Kittel. Towards integrated modeling of business
processes and business rules. In 19th Australian Conference on Information Systems
ACIS. 2008. (Zitiert auf den Seiten 5, 20, 22, 67 und 70)

[MLM10] J. Ma, W. Liu, P. Miller. Event Modelling and Reasoning with Uncertain Infor-
mation for Distributed Sensor Networks. Scalable Uncertainty Management, pp.
236–249, 2010. (Zitiert auf den Seiten 26, 69 und 70)

[OMG10] OMG. Business Process Model and Notation (BPMN), Version 2.0. 2010. (Zitiert
auf Seite 12)

[SCCY07] K. Shin, Y. Cho, J. Choi, C. Yoo. A workflow Language for Context-Aware
Services. 2007. (Zitiert auf Seite 25)

[SN03] G. Steinke, C. Nickolette. Business rules as the basis of an organization’s
information systems. Industrial Management & Data Systems, 103(1):52–63, 2003.
(Zitiert auf Seite 20)

[WfM99] G. WfMC. Terminology and Glossary. Document No WFMC-TC-1011. Workflow
Management Coalition. Winchester, 1999. (Zitiert auf Seite 11)

[WGET08] S. Wasserkrug, A. Gal, O. Etzion, Y. Turchin. Complex event processing over
uncertain data. In Proceedings of the second international conference on Distributed
event-based systems, pp. 253–264. ACM, 2008. (Zitiert auf den Seiten 26 und 70)

[WHR09] H. Wolf, K. Herrmann, K. Rothermel. Modeling Dynamic Context Awareness
for Situated Workflows. In On the Move to Meaningful Internet Systems: OTM 2009
Workshops, pp. 98–107. Springer, 2009. (Zitiert auf den Seiten 25 und 30)

88

Literaturverzeichnis

[WKNL07] M. Wieland, O. Kopp, D. Nicklas, F. Leymann. Towards context-aware workflows.
In CAiSE07 Proc. of the Workshops and Doctoral Consortium, volume 2. Citeseer,
2007. (Zitiert auf Seite 25)

[WMKL09] M. Wieland, D. Martin, O. Kopp, F. Leymann. SOEDA: A Methodology for
Specification and Implementation of Applications. 2009. (Zitiert auf den Seiten 8,
23, 29 und 70)

Alle URLs wurden zuletzt am 28.06.2011 geprüft.

89

Erklärung

Hiermit versichere ich, diese Arbeit selbständig
verfasst und nur die angegebenen Quellen
benutzt zu haben.

(Sascha Julien Retter)

	1 Einleitung
	1.1 Motivation
	1.2 Konventionen
	1.3 Rechtliche Hinweise
	1.4 Aufbau des Dokuments

	2 Grundlagen
	2.1 Workflow-Management
	2.2 Business Process Model and Notation
	2.3 Complex Event Processing
	2.4 Sonstige Definitionen und Begriffe

	3 Verwandte Arbeiten
	3.1 Modellierung von Geschäftsprozessen, Geschäftsregeln und Ereignissen
	3.2 Workflows und Ereignisverarbeitung
	3.3 Kontext- und situationsbezogene Workflows
	3.4 Ableitung von Ereignissen

	4 Anforderungen
	4.1 Vorüberlegungen
	4.2 Nicht-funktionale Anforderungen
	4.3 Funktionale Anforderungen

	5 Technologien
	5.1 BPMN-Engines
	5.2 CEP-Engine

	6 Architektur
	6.1 Komponenten
	6.1.1 ESCStore
	6.1.2 ESEngine
	6.1.3 InstanceManager

	6.2 Datenmodellierung
	6.2.1 ConfigurationMessage
	6.2.2 Ereignisformat

	6.3 Kommunikation und Datenintegration

	7 Implementierung
	7.1 Vorgehen bei der Implementierung
	7.1.1 Hauptkomponenten
	7.1.2 Activiti

	7.2 Erweiterungen

	8 Evaluation
	8.1 Szenario
	8.1.1 Der Prozess
	8.1.2 Die Ereignisverarbeitung
	8.1.3 Andere Varianten bzw. Modellierungsmöglichkeiten

	9 Zusammenfassung und Ausblick
	A Anhang
	A.1 Abkürzungen
	A.2 XML-Schemata und WSDLs

	Literaturverzeichnis

