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Kapitel 1

Einleitung

Die Berechnung des FTLE (finite-time Lyapunov exponent) bietet die Möglichkeit, die Separation von
Partikeln in Strömungen zu visualisieren. Dies bedeutet nicht die Trajektorie des einzelnen, masselosen
Partikels darzustellen, sondern zu ermitteln, ob eine Teilchengruppe innerhalb eines Betrachtungszeit-
raumes nahe beieinander bleibt (geringe Separation) oder sich voneinander entfernt (starke Separation).

Um diese Separation der Teilchen darzustellen wird zuerst ein Startpunkt vorgegeben. An diesem
wird begonnen, die Positionsänderung der Teilchen über einen Zeitraum zu verfolgen. Statt nun nur
den Endzustand zu betrachten wird in dieser Arbeit die Veränderung der Werte über den kompletten
Integrationszeitraum betrachtet. Hierbei kann zwischen Teilchen unterschieden werden, die sich über
den kompletten Zeitraum immer weiter entfernen - andere nähern sich nach einer gewissen Zeit einander
wieder an. Diese Phänomene können nur bei Betrachtung über den kompletten Betrachtungszeitraum
erkannt werden. In einem einzelnen FTLE-Bild, bei welchem lediglich die Separation der Teilchen
zum Endzeitpunkt betrachtet wird, liegt diese Information nicht vor. Teilchen, die sich zuerst entfernen
und dann wieder annähern, treten zum Beispiel beim Umströmen von Hindernissen auf. Ebenfalls
können solche Effekte in Wirbeln beobachtet werden. Bei Wirbeln können sogar wiederkehrende, peri-
odische Muster im Verlauf des FTLE-Wertes erkannt werden, die Periodendauer gibt Aufschluss über
die Drehgeschwindigkeit des Wirbels. Die Analyse des FTLE-Werteverlaufes ist somit ein interessantes
Instrument, um noch mehr Informationen über ein Strömungsfeld zu erhalten.

In dieser Arbeit werden die zeitlichen Vorgänge in zweidimensionalen FTLE-Feldern untersucht.
Hierzu wird eine Programm entworfen, mit welchem die FTLE-Werte der Strömungsdaten angezeigt
werden können. Innerhalb gewählter Bildbereiche können Diagramme über die (zeitlichen) Veränder-
ungen der Werte generiert werden. Ebenfalls werden auf Basis dieser Kurvenverläufe Operationen wie
Clustering oder Detektion sinkender beziehungsweise steigender Kurven durchgeführt. Um eine für
die Durchführung der Arbeiten angenehme Berechnungsgeschwindigkeit zu erreichen werden Berech-
nungen auf der Grafikkarte durchgeführt. Für die Validierung des entwickelten Algorithmus wurden
Datensätze erzeugt.
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Kapitel 2

Verwandte Arbeiten

2.1 FTLE

Eine sehr anschauliche Einführung in die Eigenschaften und Berechnung des Finite Time Lyapunov
Exponent (FTLE) liefert [Ill05]. Die grundlegenden Arbeiten wurden von Haller et al. [HP98], [Hal02],
[HY00] sowie Shadden et al. [SLM05] geleistet. [SLM05] beschreibt auch die Verwendung einer flow
map. Die Verwendung einer flow map wurde auch in dieser Arbeit aufgegriffen und durch das Caching
der flow map erweitert. Detailliertere Untersuchungen der Beschleunigung durch Reduktion redundan-
ter Partikelintegrationen mittels flow map führen [BR10] durch. Hierbei werden auch auf Speicherver-
brauch und erreichter Geschwindigkeitszuwachs betrachtet.
Weitere Erläuterungen des zur Berechnung des im FTLE enthaltenen Cauchy Green Tensors enthält eine
Arbeit von Ihlenburg [Ihl11]. Einen bebilderten Vergleich zwischen der Visualisierung mit LIC und der
Visualisierung mittels FTLE liefert [STW+08].
Hlawatsch et al. beschreiben in [HSW11] eine Methode zur Beschleunigung der Berechnung von Grup-
pen von Trajektorien in Vektorfeldern und führen mit dieser Performancemessungen von FTLE und
LIC auf der GPU durch. Die Analyse von Lagrangian Coherent Structures basiert auf Berechnung des
Lyapunov Exponents und wird in [Hal01] und [HVSW11] erläutert. Eine Abwandlung der Lagrangian
Coherent Structures zu 2-dimensionalen Vektorfeldanalyse verwenden Sadlo und Weiskopf in [SW10].
Sadlo et al. behandeln die zeitabhängige Visualisation von Lagrange Coherent Structures mittels Grid
Advection [SRP09].

Die zur Berechnung der Gradienten verwendete Methode der finiten Differenzen wird in [KR10]
sowie [NM08] behandelt. Finite Differenzen werden in dieser Arbeit zur Berechnung des Gradienten
auf diskreten Gitterzellen der flow map verwendet. Detaillierte Analysen zur Erkennung von Strukturen
in Strömungsdaten führten bereits de Leeuw und van Liere [LL] durch. Eine Beschleunigung der Be-
rechnung mittels CUDA beschreibt [JV09]. [GLT+] kombiniert FTLE und LIC und führt die Berech-
nung ebenfalls auf der Graphics Processing Unit (GPU) durch. In dieser Arbeit wird ebenfalls CUDA
verwendet, um die Berechnungen auf der GPU durchzuführen.

2.2 Clustering

In [MCDZL05] führen Ma et al. Clustering auf sich zeitlich verändernden Gendaten durch. Hierbei wird
statt des k-means Algorithmus ein Ansatz mit Approximation von Splines angewendet. Des weiteren
wird auf die Wahl der Clusteranzahl eingegangen.
[AGDJ09] behandelt das Segmentieren von Funktionsfeldern mittels Range-Space Segmentation und
vergleicht diese Ergebnisse mit Vector Quantization Clustering. Beim Clustern eines hochdimensionalen
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Feldes tritt starkes Rauschen auf, auf welches auch in [JMF99] eingegangen wird. K-Means Clustering
wird von [PP09] mit range trees kombiniert, um eine schnelle Suche von Daten unter Vorgabe von
Wertebereichen zu ermöglichen. Als Anwendungsgebiet wird personalisiertes Clustern von Daten in
e-commerce-Anwendungen angegeben. Karch vergleicht GPU-beschleunigte Clusteringalgorithmen in
[Kar10].
Die Grundlagen des k-Means Algorithmus wurden 1967 von J.B. MacQueen [Mac67] veröffentlicht.
Dabei wird bereits auf N-Dimensionale Felder eingegangen. In dieser Arbeit wird der k-Means Algo-
rithmus für Clustering auf 2-dimensionalen Daten eingesetzt.
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Kapitel 3

Grundlagen

3.1 Fachbegriffe

Pixel, Voxel und Texel

Computer können Daten nur in diskretisierter Form verarbeiten. Ein Pixel ist der kleinste Bildbereich
eines zweidimensionalen Computerbildes. Sowie ein Pixel den Wert eines Feldes in einem zweidimen-
sionalen Bild darstellt ist ein Voxel der Wert einer Zelle eines dreidimensionalen Datensatzes. Von einem
Texel spricht man bei einem Bildpunkt auf einer Textur, unabhängig von deren Dimensionalität.

Vektorfeld

In einem Vektorfeld wird jedem Punkt im Raum ein Vektor zugeordnet. Im Folgenden werden nur
2-Dimensionale Vektorfelder betrachtet. Dies entspricht beispielsweise einem 2D-Strömungsdatensatz
oder einer Ebene innerhalb eines 3D-Strömungsdatensatzes. Ein Vektor stellt bei der Strömungsvisual-
isierung die momentane Strömung an einem Punkt dar. Für das LIC-Verfahren in dieser Arbeit werden
Vektoren nur für den zweidimensionalen Fall betrachtet.

CPU

Central Processing Unit (CPU) bedeutet Hauptprozessor. In jedem Computer befindet sich ein Prozessor,
der für die Abarbeitung des laufenden Programms zuständig ist. Seine Stärke liegt in der raschen
Verarbeitung sequentieller Programme und Abläufe. Trotz zunehmender Parallelisierung durch mehrere
Cores bei DualCore (2 Cores) bzw. QuadCore (4 Cores) - Prozessoren liegen diese bei massiv parallelen
Berechungen leistungsmäßig hinter den aktuellen Grafikkarten.

GPU

Die Graphic Processing Unit (GPU) kann in Form einer Grafikkarte (Einsteckkarte) oder eines Gra-
fikchips (direkt auf der Hauptplatine) verbaut sein. Durch die rasche Zunahme an Rechenleistung,
Grafikspeicher und Flexibilität hinsichtlich der Programmierung werden diese Karten nicht mehr nur
für Grafikausgabe sondern auch für Berechnungen auf großen Datenmengen verwendet. Geschwindig-
keitsvorteile gegenüber der CPU werden erreicht, wenn auf vielen Datensätzen die gleiche Operation
durchgeführt wird (SIMD). Dies ist unter anderem bei Wissenschaftlichen Berechnungen wie Strö-
mungssimulationen oder dem hier behandelten FTLE-Verfahren der Fall.
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SIMD

Von single instruction multiple data (SIMD) wird gesprochen, wenn auf mehrere Datensätze die gleiche
Operation angewendet wird - beispielsweise wenn zu jedem Feld in einer Matrix ein Wert einer anderen
Matrix addiert wird.
Eine ältere CPU (Single Core, ohne MMX, SSE etc.) muss hier sequentiell jede Multiplikation nach-
einander durchführen. Eine GPU kann eine große Anzahl dieser Einzeloperationen in einem Zeitschritt
abarbeiten.

Core

Core bedeutet „Kern“. Ein Prozessorkern besteht aus der Arithmetisch-Logischen Einheit (ALU), Regi-
stern, Cache und Steuerelektronik. In einer aktuellen CPU im Consumer-Sektor sind meist 4 Cores im
Einsatz (Stand 2010). In Serven können CPUs mit einer höheren Anzahl Cores zum Einsatz kommen,
wie beispielsweise der AMD Opteron 6164HE mit 12 Cores [AMD10a]. Eine aktuelle Grafikkarte wie
die ATI FirePro TM V9800 hat 1600 Cores [AMD10b]. Die ALU eines Grafikkarten-Cores hat hingegen
einen geringeren Befehlssatz als die ALU eines CPU-Cores. Auch sind die von NVidia angegebenen
CUDA-Cores aufgrund des Architekturunterschieds nur schwer mit den Stream Processors von ATI
vergleichbar. Ein besseres Kriterium zum Vergleich der Leistung ist die Anzahl Floating-Point Opera-
tionen pro Sekunde: eine Intel Core i7-975 - CPU mit 4 Cores leistet 55.36 GFlops (double precision,
peak) [Int10], eine NVidia GTX275 leistet hingegen 1011 GFlops (single precision) [Spo09].

CUDA

Compute Unified Device Architecture (CUDA) bezeichnet sowohl eine Architektur als auch eine Pro-
grammierschnittstelle (API). CUDA ist eine Entwicklung von NVidia und stellt das Konkurrenzprodukt
zu ATI Stream dar. Ziel beider Architekturen ist es, das Programmieren der Grafikkarte transparenter
zu gestalten. Bei der früheren GPU-Programmierung mussten Shader und deren Besonderheiten für die
Entwicklung berücksichtigt werden. CUDA hingegen erlaubt eine Programmierung in gewohnter C++-
Umgebung, auch Speichertransfer zwischen Grafikspeicher und Hauptspeicher wird durch vorgefertigte
Routinen vereinfacht. In dieser Arbeit werden die Strömungsdaten in den Texturspeicher der GPU
kopiert, um von dort unter Verwendung von Hardwareinterpolation zugreifen zu können. Die Trans-
formationsoperationen auf diesen Daten wird mit CUDA durchgeführt.
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3.2 FTLE - finite-time Lyapunov exponent

Der finite-time Lyapunov exponent, FTLE, stellt ein Maß für die Separation innerhalb eines zeitabhän-
gigen Strömungsdatensatzes dar. Anschaulich lässt sich dieses auf einem Gitter mit diskreten Partikel-
Abständen zeigen (Abbildung 3.1): je weiter die Partikel, die sich zum Startzeitpunkt in direkter Nach-
barschaft zum Partikel innerhalb eines vorgegenbenen Zeitschritts voneinander entfernen, desto höher
wird der resultierende FTLE-Wert. Der FTLE-Wert gibt lediglich eine Information über die Separa-
tion der Teilchen, nicht jedoch über deren Trajektorie oder Richtung. Eine ridge bedeutet, dass entlang
dieser Kante eine hohe Separation herrscht (zum Beispiel an den Grenzen zweier Strömungen mit
unterschiedlicher Strömungsrichtung) - ein Partikel, das sich auf der ridge befindet muss sich jedoch
nicht entlang dieser bewegen.
Der FTLE-Wert σ(~x)∆t

T0
muss für jede Position ~x im Zielbild berechnet werden. Da diese Berechnungen

für jedes ~x unabhängig durchgeführt werden können wird eine parallele Berechnung der Werte auf der
GPU implementiert. Einen Vergleich der Berechnungsdauer des FTLE zwischen CPU und GPU bietet
[JV09]. Es wird gezeigt, dass eine Beschleunigung um mehr als Faktor 10 erreicht werden kann.

(a) niedrige Separation resultiert in einem niedrigen
FTLE-Wert bei P.

(b) hohe Separation resultiert in einem hohen FTLE-Wert
bei P.

Abbildung 3.1: Veranschaulichung der Separation anhand der Trajektorie von Partikeln.

3.2.1 Berechnung des FTLE

Die mathematische Berechnung des FTLE wird in [SLM05] erläutert. Der FTLE-Werte σ(~x)∆t
T0

an
der Position ~x mit den Parametern Startzeit und Integrationslänge ist durch folgende mathematische
Vorschrift gegeben:

σ∆t
T0(~x) =

1

|∆t|
ln
√
λmax(4) (3.1)
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Hierbei stellt λmax(4) den maximalen Eigenwert von 4 dar. 4 ist der rechte Cauchy-Green Verzer-
rungstensor der Jakobimatrix∇χ und wird nach der Vorschrift

4 = ∇χT ∗ ∇χ (3.2)

ermittelt. Cauchy-Green Verzerrungstensoren liefern Auskunft über Verzerrungen und Deformationen
und werden in [Ihl11] behandelt. Es ist zu beachten, dass 4 sowie ∇χ von ~x, T0 und ∆t abhängig
sind. Der Übersichtlichkeit und Lesbarkeit wegen wird hier jedoch die verkürzte Notation 4 statt
4(x;T0; ∆t) verwendet.
Die Jakobi-Matrix∇χ für den 2-dimensionalen Fall setzt sich aus den partiellen Ableitungen der Einträ-
ge der flow map ξT0+∆t

T0 zusammen. Zur Erstellung der flow map werden die Strömungsdaten ausgehend
vom Startzeitpunkt T0 über einen Zeitraum ∆t advektiert. Dieser Arbeitsschritt wurde hier in Form des
Runge-Kutta-Verfahrens 4. Ordnung implementiert. Die Schrittweite des Integrators wird vom Benutzer
vorgegeben. Alternativ sind auch andere Integratoren möglich. Da die Größe der vorgegebenen Schritt-
weite je nach Datensatz stark unterschiedlich ist kommt als Erweiterung ein Integrator mit adaptiver
Anpassung der Schrittweite in Frage: hier müsste lediglich der maximale Fehler vorgegeben werden.
Hierauf wurde jedoch verzichtet.
Für eine flow map mit 2-Dimensionalen Einträgen der Form

ξ(~x) =

(
ξu(~x)
ξv(~x)

)
(3.3)

ergibt sich eine Jakobimatrix der Form

J(~x, T0,∆t) =

(∂ξu
∂u

∂ξu
∂v

∂ξv
∂u

∂ξv
∂v

)
(3.4)

Für die Aufstellung der Jakobimatrix müssen die partiellen Ableitungen ermittelt werden. Da die Flow
Map aus diskreten Werten auf einem rechteckigen Gitter besteht, wird zur Ermittlung der partiellen
Ableitungen die Methode der finiten Differenzen angewandt.

3.2.2 Berechnung der Gradienten mittels finiter Differenzen

Bei der Berechnung der Gradienten mit der Methode der finiten Differenzen wird auf die Punkte in der
Nachbarschaft des zu untersuchenden Punktes zugegriffen. Hierzu wird auf benachbarte Gitterpunkte in
x- und y-Richtung entsprechend Abbildung 3.2 zugegriffen.
Zur Auswertung der benachbarten Partikel wurde ein kreuzförmiger stencil 1. Ordnung gewählt: hierbei
werden 4 Partikel in direkter Nachbarschaft entsprechend Abbildung 3.2 betrachtet. Prinzipiell sind zur
Berechnung des FTLE auch beliebig komplexere stencils denkbar. Da die Untersuchung des Einflusses
des stencils jedoch nicht Gegenstand dieser Arbeit ist, wird der einfachst mögliche stencil verwendet.
Bei der Ermittlung der Gittergröße dgrid in physikalischer Einheit muss die Zellgröße der Gitterdiskre-
tisierung des Strömungsdatensatzes beachtet werden. Die Berechnung der Ableitungen mittels finiter
Differenzen wird in [KR10] und [Nat04] erläutert - benötigt wird die zentrale Differenz (central diffe-
rence).
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Abbildung 3.2: Für die Berechnung der finiten Differenzen gewählter stencil.

3.2.3 Bestimmung des größten Eigenwertes

Da die Bestimmung des maximalen Eigenwertes zur Berechnung des FTLE ebenfalls auf der GPU
ausgeführt werden muss ist es sinnvoll, diese Berechnung soweit wie möglich zu vereinfachen und auf
bezüglich der Berechnungsgeschwindigkeit teure Verzweigungen zu verzichten. Zur Bestimmung der
Eigenwerte ist allgemein folgende Gleichung zu lösen:

det(∆− λ~E) = 0 (3.5)

Durch Einsetzen und Berechnung der Determinante kann dies in folgende Form gebracht werden:

det

(
fxx − λ fxy
fyx fyy − λ

)
= λ2 − λ(fxx + fyy) + fxxfyy − fxyfyx

!
= 0 (3.6)

Eine 2x2-Matrix hat 2 Eigenwerte - diese Eigenwerte lauten:

λ1,2 =
fxx + fyy ±

√
(fxx + fyy)2 − 4 ∗ (fxxfyy − fxyfyx)

2
(3.7)

Für det4 6= 0 ist der rechte Cauchy-Green Tensor laut [Ihl11] symmetrisch und positiv definit und hat
somit reelle Eigenwerte. Dadurch ist der maximale Eigenwert:

λmax =
fxx + fyy +

√
(fxx + fyy)2 − 4 ∗ (fxxfyy − fxyfyx)

2
(3.8)

Da nicht zuerst beide Eigenwerte bestimmt werden müssen und daraus der größere gewählt wird kann
dieser verkürzte Rechenweg verwendet werden und auf ein auf der GPU teures if-statement verzichtet
werden.
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Kapitel 4

Caching und Performance-Steigerung

4.1 Zugriff auf Strömungsdaten: Speedup durch Hardwareinterpolation

4.2 Zweck der Integration

Der Strömungsdatensatz stellt Strömungsvektoren an diskreten Positions-/Zeitschritten zu Verfügung.
Für die Berechnung des FTLE ist es jedoch notwendig, die Bewegung eines virtuellen, masselosen
Partikels durch das Strömungsfeld zu erfassen: Zum gewählten Startzeitpunkt T0 werden für jede zu
berechnende Position ein virtueller Partikel gestartet, und dessen Position nach einer Integrationsdauer
von ∆T Sekunden ermittelt. Als Integrator wurde das Runge-Kutta-Verfahren 4. Ordnung (RK4) ge-
wählt.

4.3 Zugriff auf die Strömungsdaten

Der RK4-Integrator benötigt einen Zugriff auf beliebige Positionen im Strömungsfeld. Dieser Zugriff
wird über eine 3-dimensionale Textur auf der Grafikkarte realisiert. Für diese Textur steht somit die
schnelle Hardware-Interpolation (trilineare Interpolation zwischen den Voxeln) zu Verfügung. Am Rand
der Textur muss ein Offset von 1

2 Texel beachtet werden. Im 2D-Fall ist der Zugriff in Abbildung 4.1

dargestellt. Bei einem Strömungsdatensatz mit der Dimension ~dimflow =

(
dimflow,x

dimflow,y

)
erfolgt die

Umrechnung zwischen normalisierter Position im Strömungsdatensatz ~Pf =

(
Pf,x
Pf,y

)
und Texturzu-

griffskoordinate Pt wie folgt:

~Pf =

(
xf
yf

)
=

(
Pf,x ∗

dimflow,x−1
dimflow,x

Pf,y ∗
dimflow,y−1
dimflow,y

)
+

(
1

2dimflow,x
1

2dimflow,y

)
(4.1)

Problematisch sind allerdings die Randgebiete des Datensatzes. Wenn in x- bzw. y-Richtung außerhalb
des Definitionsbereichs des Datensatzes zugegriffen wird, so wird durch clamping (Abschneiden) auf
einen Randpixel des Datensatzes zugegriffen. Falls jedoch in z-Richtung, welche der Zeitachse im
Datensatz entspricht, ausserhalb des gültigen Bereichs zugegriffen wird, darf nicht mit dem in Hardware
implementierten Clamping zugegriffen werden. Hierbei würde sonst auf den Daten des letzten Zeit-
schritts weitergerechnet, was zwar den Eindruck erweckt es würde weitergerechnet, allerdings keine
sinnvoll interpretierbaren Daten liefert. Deshalb wird beim Überschreiten des definierten Zeit-Bereichs
eine Strömung von ~v = ~0 zurückgegeben.
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Abbildung 4.1: Koordinatentransformation beim Zugriff auf die Strömungsdaten-Textur.

(a) Clamping bei Strömungsdaten. (b) identische Parameterwahl, jedoch Relativkoordinaten.

Abbildung 4.2: Textur-Clamping beim Strömungsdaten-Zugriff.

Einen Eindruck über das Verhalten liefern die in Abbildung 4.2 gezeigten Diagramme der FTLE -
Werteverläufe: Bei dem 16 Sekunden langen Datensatz wurde bei T0 = 15sec mit der Berechnung
begonnen. Der grüne Strich markiert ∆T = 1sec und damit das Ende des definierten Bereichs. Im
ersten Ansatz 4.2(a) wurde die Hardware-Clamping-Funktion verwendet, und somit auf dem letzten
definierten Zeitschritt weiterintegriert. Die Schwankungen der FTLE-Werte hinter ∆T = 1sec entstehen
lediglich durch Überschreiten von Zellgrenzen in x- und y-Richtung, resultieren jedoch alle aus dem
selben Zeitschritt im Datensatz. Im zweiten Diagramm 4.2(b) wird bei Überschreiten des definierten
Zeitbereichs ~v = ~0 erzwungen, wodurch ein Anhalten des virtuellen Partikels auf dem Integrationsweg
erfolgt. Hierdurch bleiben die FTLE-Werte ab diesem Punkt konstant - dies ist deutlich intuitiver.

4.4 Normalisierung der FTLE-Werte auf der GPU

Um die FTLE-Daten anzuzeigen müssen diese normalisiert werden. Für eine Normalisierung ist die
Berechnung des Minimums (Maximums) über alle FTLE-Daten notwendig. Diese Berechnung zu pa-
rallelisieren und somit zu beschleunigen ist mit Hilfe eines divide and conquer - Ansatzes möglich:
Parallel wird von mehreren Teilbereichen des Arrays das Minimum (Maximum) bestimmt. Das Ergebnis
der Teilbereiche wird daraufhin im nächsten Durchlauf verglichen - so lange, bis nur noch ein globales
Minimum bzw. Maximum übrig bleibt.
Hierbei müssen jedoch die Eigenschaften der Hardware beachtet werden: Einen CUDA-Kernel zu starten
ist im Vergleich zu dessen Ausführungszeit sehr zeitaufwändig, die Normalisierung soll deshalb mit nur
einem Kernel-Aufruf vollständig durchführbar sein. Zusätzlich kommt erschwerend hinzu, dass eine
Synchronisation während eines Kernel-Aufrufes nur zwischen den Threads eines Blockes möglich ist,
nicht jedoch zwischen Blocks. Um nur ein globales Minimum (Maximum) nach dem Aufruf von nur
einem Kernel zu erhalten, ist es also notwendig nur einen Block, dafür jedoch möglichst vielen Threads
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zu starten. Auf der GPU kann bei der Berechnung in Teilbereichen die Lokalität der Daten genutzt
werden: Für den CUDA-Block wird ein Speicherbereich für ein Min/Max-Paar im schnelleren shared
memory der Grafikkarte reserviert. Dieser Speicherbereich wird für den Datenaustausch der Threads
dieses Blocks verwendet.

Abbildung 4.3 zeigt den Ablauf der effizienten Min/Max-Suche auf der GPU. Es wird nur ein Block
gestartet. Jeder der Threads untersucht einen Bereich der FTLE-Daten und schreibt diesen Wert in einen
Speichbereich des shared memory. Daraufhin werden die CUDA-Threads synchronisiert: Hierdurch
wird sichergestellt, dass alle Threads abgeschlossen sind und somit alle Minima (Maxima) im shared
memory gespeichert wurden. Abschließend detektiert ein einzelner Thread das globale Minimum bzw.
Maximum aus dem Array des shared memory und schreibt dieses zurück ins global memory.

Abbildung 4.3: Berechnung des globalen Minimums/Maximums auf der GPU.

Da für jeden Thread ein Speicherblock im shared memory reserviert werden muss ist die Größe des
shared memories eine obere Schranke für die Anzahl der einsetzbaren Threads. Grafikkarten mit Com-
pute Capability 1.x erlauben eine Verwendung von 16kb shared memory, ab Compute Capability 2.0
werden bereits 48kb unterstützt (siehe [cud10], Appendix G.1). Bei Verwendung von float-Variablen
(4 byte) können also maximal 2048 Min-Max-Paare gespeichert werden. Dies bedeutet, dass maximal
2048 Threads gestartet werden können. Bei einem FTLE-Feld mit 512x512 Werten müssen pro Thread
lediglich 128 FTLE-Werte bearbeitet werden.
Bei Laufzeitmessungen wurde ermittelt, dass die Ermittlung von Min/Max mit dieser Methode bei einem
Feld mit 512x512 Werten im Durchschnitt 0,8 Millisekunden benötigte und somit im Vergleich zur
übrigen Berechung praktisch vernachlässigbar ist.
Bei Datensätzen mit großer Dynamik können die Werte zwischen Minima und Maxima so verteilt sein,
dass ein großer Teil der Werte sehr nahe an einem der Extreme liegt - und nur ein sehr kleiner Bildbereich
den vollen Dynamikumfang ausnutzt. Hierdurch werden große Bildbereiche völlig schwarz (bzw. völlig
weiß) dargestellt. Um gewünschte Details dieser Bereiche dennoch anzeigen zu können müssten Minima
bzw. Maxima dann manuell vom Benutzer vorgegeben werden. Auch hat es sich als vorteilhaft erwiesen,
negative Werte zu ignorieren indem das Minimum auf 0 gesetzt wird.
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4.5 Caching der integrierten Strömungsdaten: flow map

4.5.1 Erstellung der flow maps

Eine flow map speichert für jedes Teilchen, dass sich zum Zeitpunkt T0 an der Position ~x befindet die
neue Position ~x′, an der es sich zum Zeitpunkt t = k ∗∆tflowMapDist befindet.

Abbildung 4.4: Aufbau der gecacheten flow map

Die hier benötigten flow maps sind 2-Dimensional. Als Größe der flow map wurde die Größe des
Ausgabebildes gewählt.
Die Integration erfolgt unter Verwendung des Runge-Kutta Verfahrens 4. Ordnung. Die Schrittwei-
te des Runge-Kutta-Integrators darf nicht mit dem für FTLE festgesetzten Zeitraum ∆t verwechselt
werden. Bei einer zu großen Schrittweite des Integrators bilden sich Artefakte aus, da die Lösung der
Pfadlinien-Differentialgleichung zu unpräzise approximiert wird. Bei zu geringer Schrittweite wird der
Rechenaufwand größer, ohne dass eine weitere Verbesserung des Ergebnisses eintritt. In Abbildung
4.5 ist dieser Effekt verdeutlicht: Bei einer sehr großen Schrittweite von einem slice des Bouyancy-
Datensatzes benötigte die Berechnung der flow map lediglich 18.3 Millisekunden. Hierbei sind jedoch
deutliche Artefakte entlang der ridges ausgebildet. In Abbildung 4.5(c) bilden sich wellenartige Ver-
zerrungen aus. Wird eine präzisere Berechnung mit einer Integrator-Schrittweite von lediglich 1

26 slice
durchgeführt (siehe Abbildung 4.5(b)), so verschwinden die Artefakte. Die Berechnung benötigt nun
jedoch 403 Millisekunden. Die Steigerung der Rechenschritte um den Faktor 26 hat einen Anstieg der
Berechnungszeit um etwas weniger als Faktor 26 zur Folge, da das Kopieren der Daten einen konstanten
Faktor darstellt der unabhängig von der Anzahl Integrationsschritte durchgeführt wird. In Abbildung
4.5(c) wurde eine noch geringere Schrittweite des RK4-Integrators gewählt. In Bezug zu Abbildung
4.5(b) ist keine Veränderung bzw. Verbesserung des Bildes erkennbar - die Berechnungszeit beträgt nun
jedoch 4,7 Sekunden.

Eine automatische Wahl der Schrittweite kann unter Verwendung adaptiver Verfahren wie z.B. dem
adaptiven Runge-Kutta Integrationsverfahren [PTVF] erreicht werden. Dabei muss vom Benutzer le-
diglich der maximal zulässige Fehler vorgegeben werden. Jedoch haben diese Verfahren bei der Imple-
mentierung den Nachteil, dass einzelne Berechnungen eine unterschiedliche Anzahl Schritte benötigen.
Dies bringt bei paralleler Berechnung auf der GPU größeren Aufwand mit sich. Für die gewünsch-
ten Untersuchungen erwies sich eine Vorgabe der Schrittweite des Integrators durch den Benutzer als
ausreichend.
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(a) ∆trk = 0.05s
(Entspricht 1 slice im Datensatz)
Berechnungszeit: 18.3 msec.

(b) ∆trk = 1.92 ∗ 10−3s
(Entspricht 1

26
slice im Datensatz)

Berechnungszeit: 411.3 msec.

(c) ∆trk = 1.67 ∗ 10−4s
(Entspricht 1

300
slice im Datensatz)

Berechnungszeit: 4706 msec.

Abbildung 4.5: Vergleich unterschiedlicher RK4-Schrittweiten.

4.6 Caching der flow maps

Ziel ist es, innerhalb des Programms über einen Schieberegler die Integrationslänge ∆t (nicht zu ver-
wechseln mit der Schrittweite des RK4-Integrators ∆trk) zu verändern um die gewünschte Einstellung
interaktiv zu finden. Bei vollständiger Berechnung einer flow map nimmt die Berechnungszeit mit
der Integrationslänge zu. Die Berechnungsdauer des FTLE-Wertes auf Basis der flow map sowie die
Normalisierung sind hingegen unabhängig von ∆t. Tabelle 4.1 wurde mit dem Bouyancy-Datensatz
und einer Auflösung von 512x512 Feldern erstellt. Der Startzeitpunkt wurde auf T0 = 8.0s gesetzt, die
Schrittweite des RK4-Integrators fest auf ∆trk = 1.92 ∗ 10−3s ( 1

26 slice). Als Berechnungsdauer ist
die der flow map bezeichnet, zusätzliche Rechenzeit für FTLE und Normalisierung ist nicht inbegriffen.
Für die Zeitmessung wurden jeweils 5 Messwerte gesammelt und gemittelt. Die Streuung zwischen

∆t Berechnungsdauer
0.1s 52 msec
0.2s 101 msec
0.4s 202 msec
0.8s 411 msec
1.6s 874 msec

Tabelle 4.1: Berechnungsdauer der flow maps.

den Durchläufen betrug jeweils unter 3 msec. Aus den Messdaten geht hervor, dass bereits bei einer
Integrationslänge größer als ∆t = 0.4s die Interaktivität nicht mehr gegeben ist.
Dieses Problem kann durch Caching der flow map gelöst werden: Es wird einmalig ein Array mit n flow
maps mit ∆tflowMap,k = (k+1)∗ Tmax

n+1 für k = 0..n erstellt. Der Abstand zwischen 2 flow maps beträgt
somit ∆tflowMapDist = Tmax

n+1 .Zur Berechnung einer flow map für ein angefordertes ∆t wird auf die
naheliegendste vorberechnete flow map zugegriffen und von dort aus weiterintegriert. Da auch rückwärts
integriert werden kann beträgt somit der maximal zu integrierende Zeitbereich ∆tdiff =

∆tflowMapDist

2 .
Aus Speicherplatzgründen können die flow maps nur für das jeweils aktuelle T0 vorberechnet werden:
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Eine einzelne flow map hat bei einer Auflösung von 512x512 Gitterpunkten und dem Datentyp float4
eine Größe von s = 512 ∗ 512 ∗ 4 ∗ 32Bit = 4MB. Auf einer Grafikkarte mit 1GB Grafikspeicher
passen somit theoretisch maximal 256 Felder. In der Praxis ist dieser Wert allerdings nicht erreichbar,
da für weitere Berechnungen sowie die Darstellung des aktuellen Monitorbildes bereits Grafikspeicher
reserviert ist. Es werden deswegen nur die flow maps für das aktuell gewählte T0 vorberechnet - bei
einer Veränderung des Parameters T0 müssen die flow maps neu vorberechnet werden.

Um die optimale Anzahl vorberechneter flow maps in Abhängigkeit der Hardwareleistung zu ermit-
teln wird über ein Testintervall ∆t1 eine flow map vorberechnet und die Berechnungszeit ttest gemessen.
Aus Tabelle 4.1 geht hervor, dass die Berechnungszeit weitgehend proportional zu ∆t ist. Wenn als
Parameter vom Benutzer eine maximale Berechnungszeit tbMax vorgegeben wurde kann die optimale
Distanz zwischen den flow maps bestimmt werden: ∆tflowMapDist,opt = tbMax∗∆t1

2∗ttest .
Für die Vorberechnung von n = 50 flow maps bei Tmax = 8.0s benötigt der Referenzcomputer 7
Sekunden. Daraufhin kann der Schieberegler zur Veränderung von ∆t jedoch ohne merkliche Verzöger-
ung über den kompletten Bereich bewegt werden. Da eine Vorberechnungszeit in der Größenordnung
von 7 Sekunden nach jeder Änderung von T0 den Bedienungskomfort stark einschränkt wird die flow
map nur auf Anforderung des Benutzers erstellt. Erst nach Auswahl des gewünschten Startzeitpunktes
klickt der Benutzer auf den „create flow maps“-Button um die Vorberechnung anzustoßen.

4.6.1 Versuch: Einsparung von Kernel-Calls

Die Vorberechnung der flow map für ∆t aus der gecacheten Flow map und die Berechnung des FTLE
werden in getrennten Kernels durchgeführt. Beim Aufruf des FTLE-Kernels muss der Kernel zur Be-
rechnung der flow map bereits vollständig abgeschlossen sein. Um eine Berechnung in einem Durchgang
zu ermöglichen, müssen von einem Thread 4 Partikel-Positionen berechnet werden. Aufgrund der Lo-
kalität der Daten können über das schnellere shared memory vorberechnete Partikelpositionen zwischen
den Threads getauscht werden. Dem Nachteil des mehrfachen Rechenaufwandes steht somit der Vorteil
der Einsparung eines Kernel-Calls sowie die Nutzung des shared memories entgegen. Um herauszufinden,
welche Rechenmethode performanter ist, wurde ein Kernel entworfen, der beide Rechenschritte auf
Einmal durchführt, und die Ergebnisse verglichen. Der Vergleich der Rechendauer wird mit Bouyancy-
Datensatz bei einer Auflösung von 512x512 FTLE-Werten durchgeführt: Vorberechnet wurden n = 150
flow maps. Die Schrittweite für den RK4-Integrator beträgt ∆trk = 1

1000s. Der Startzeitpunkt liegt bei
T0 = 4.57s. Die Ergebnisse der Messreihe befinden sich in Tabelle 4.2.

∆t Berechnungsdauer Berechnungsdauer
getrennte Kernel kombinierter Kernel

0.801s 88msec 264msec
1.1sec 129msec 442msec

Tabelle 4.2: Vergleich des FTLE mit unterschiedlichen Kernels

Der Rechenaufwand für die Integration (vorberechnete flow map bis zum gewünschten ∆t) wird trotz
Nutzung des shared memory praktisch vervierfacht - hingegen ein Kernel-Call eingespart. Der benötigte
Zeitaufwand für die Berechnung wird ebenfalls vervierfacht. Die Integration in einem getrennten Kernel
ist der Einsparung eines Kernels somit vorzuziehen.
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Abbildung 4.6: Berechnung der Diagrammdaten.

Ein Kernel-Aufruf verursacht laut [TSM] mit ca. 9µs overhead. Dies ist relativ klein im Vergleich zur
Berechnungszeit im zweistelligen ms-Bereich. Durch eine Reduktion der Anzahl Kernel-Calls kann
somit hier keine weitere Beschleunigung erziehlt werden.

4.6.2 Beschleunigte Berechnung der Diagramm-Daten

Um die Diagrammdaten zu speichern wird ein 3-dimensionales Array verwendet. Die x- und y-Achse
stellt hierbei die Koordinate im selektierten Bereich des FTLE-Feldes dar. Entlang der t-Achse sind
die einzelnen Zeitschritte angeordnet. Mit Hilfe der flow map kann die Berechnung der FTLE-Werte
für einen einzelnen gewünschten Zeitschritt beschleunigt werden. Da die t-Achse des Diagramms den
kompletten Zeitbereich des Strömungsdatensatzes abdeckt kann durch die gecacheten flow maps keine
Beschleunigung erreicht werden. Da von jeder jeweils am nächsten liegenden vorberechneten flow map
bis zum aktuellen t des Diagramms integriert werden muss, kann hierbei gleich vom zuletzt berechneten
Zeitschritt im Diagramm weiterintegriert werden. Dies hat auch zum Vorteil, dass wiederum das schnel-
lere shared memory zum Einsatz kommen kann. Die Größe des shared memory ist hier ein begrenzender
Faktor: Maximal 16x16 Zellen können gleichzeitig berechnet werden. Die Blockgröße wird dem ent-
sprechend auf 16x16 Threads festgelegt. Aufgrund des für die finiten Differenzen benötigten kreuzför-
migen stencils können auf Basis dieser lokalen 16x16 Felder-flow map lediglich 14x14 FTLE-Werte
berechnet werden. Dementsprechend müssen sich die Berechnungsgebiete der einzelnen Blocks über-
lappen. Diese Überlappung veranschaulicht Abbildung 4.6.

Zur Vereinfachung wurde in der Abbildung die Block-Größe auf 5x5 reduziert. In grün ist das Gebiet
dargestellt, auf dem Block 1 die Strömungsdaten integriert. Diese Werte werden im shared memory
dieses Blocks hinterlegt. Daraus werden die FTLE-Werte für die Positionen berechnet, an denen die
Kreise mit blauem Kern eingetragen sind. Der zweite Block (rot) erzeugt die FTLE-Werte mit den
orangenen Kreiskernen. Im türkis gefärbten Gebiet überlappen sich die Gebiete, für die der jeweilige
Kernel die Strömungsdaten integriert. Dieser Mehraufwand muss in Kauf genommen werden.
Falls die Berechnung eines Diagrams über einen zu großen Bereich des FTLE-Feldes angefordert wird
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reicht der Speicher der GPU nicht aus, um das komplette Array des Diagramms auf einmal zu berechnen.
In diesem Fall wird der angeforderte Bereich automatisch mittels divide&conquer in mehrere kleinere
Bereiche aufgeteilt und getrennt berechnet. Nach jeder Teilberechnung wird das erzeugte Array in den
Arbeitsspeicher verschoben, um den GPU-Speicher frei zu halten. Von dort aus wird auf die Daten zum
Zeichnen per OpenGL Display List und zur weiteren Auswertung zugegriffen.
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Kapitel 5

FTLE-Werteverlauf

Um den in dieser Arbeit im Mittelpunkt stehenden, zeitlichen Verlauf der FTLE-Werte darstellen zu
können, wird dieser in ein Diagramm gezeichnet. In der grafischen Oberfläche wird als erster Schritt der
Bereich vorgegeben, für dessen FTLE-Werte das Diagramm gezeichnet wird (Abbildung 5.1). Um die
zeitlichen Vorgänge im Diagramm mit dem Resultat der Visualisierung der FTLE-Werte für die gewählte
Integrationslänge vergleichen zu können wird ∆t durch einen grünen Balken im Diagramm dargestellt.

Abbildung 5.1: Vorgabe des Bereichs, über den der zeitliche Verlauf des FTLE-Wertes dargestellt wird.

Zur präziseren Betrachtung einzelner Bereiche des Diagramms kann in diese Bereiche hineingezoomt
werden (Abbildung 5.2). Ein Zoomstack speichert hierbei den letzten Zustand, sodass zu diesem zu-
rückgekehrt werden kann.
Bei der Darstellung der Diagramme kann zwischen FTLE-Wert, Gradienten des FTLE-Wertes und
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Abbildung 5.2: Betrachtung eines Ausschnitts mittels Zoom-Funktion.

Fourier-Transformierter gewählt werden (Abbildung 5.3).
Innerhalb des Diagramms ist es möglich, eine Selektion für den zu betrachtenden Zeitbereich zu defi-
nieren (Abbildung 5.4, Ziffer 1). Dieser Zeitbereich definiert das Gebiet, auf dem Clustering sowie die
Anwendung von Kriterien, wie der Detektion von steigenden bzw. fallenden FTLE-Werten, durchgeführt
werden.
Beim Clustering und der Selektion von Kurven nach Bereichen bzw. Kriterien können die jeweils
ausgewählten Kurven optional hervorgehoben bzw. ausgeblendet werden. Die Kurven der FTLE-Werte
gesetzter Particle Tracer werden in hellgrau und einer dickeren Liniendicke dargestellt (Abb. 5.4, Ziffer
3). Um neue Particle Tracer zu setzen kann die gewünschte Linie im Diagramm selektiert werden.
Hierbei wird ein optisches Feedback in Form einer Hervorhebung der Kurve durchgeführt, die sich am
nächsten am Mauszeiger befindet (Ziffer 4). Die Repräsentanten von Clustern werden in blau (Ziffer 2)
dargestellt, falls dieses Cluster aktuell im FTLE-Bild angezeigt wird. Die übrigen Clusterrepräsentanten
werden im Diagramm weiß (Ziffer 5) gezeichnet.



Abbildung 5.3: Unterschiedliche Modi: FTLE-Wert, Gradient oder Fourier-Transformierte.

Abbildung 5.4: Features der Diagrammdarstellung.
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Kapitel 6

Implementierung

Das Programm zur Durchführung der Auswertung wurde in c++ geschrieben. Die grafische Oberfläche
wurde mittels Qt4 erstellt. Berechnungen auf der GPU wurden mit CUDA implementiert. OpenGL wird
zum Zeichnen der Diagramme eingesetzt.

6.1 Berechnung der Diagramme

Um Rechenzeit und Speicheraufwand gering zu halten werden diese Kurven aus einzelnen Linienseg-
menten zusammengesetzt. Die Koordinaten dieser Liniensegmente werden in einem Array gespeichert.
Bei beispielsweise einer betrachteten Fläche von 512x512 Werten im FTLE-Feld und 1000 Zeitschritten
(399 Liniensegmente pro FTLE-Wert) ergeben sich 262,144 Millionen zu speichernde FTLE-Werte.
Bei Speicherung mit dem Datentyp float werden 4 byte pro Eintrag vewendet - in diesem Beispiel sind
also bereits 1GB Speicherplatz notwendig. Da der Speicher der GPU hier schnell an seine Grenzen
kommt und für die Speicherung des Strömungsdatensatzes, der flow map und andere Berechnungen
ebenfalls GPU-Speicher frei bleiben muss, wird das Array mit dem Zeitverlauf der FTLE-Werte im
RAM gespeichert. Die Berechnung erfolgt in Teilbereichen auf der GPU. Näheres zur Implementierung
dieser schrittweisen Berechnung befindet sich in Kapitel 4.6.2.
Der Werteverlauf wird im Programm in einem Fenster wie in Abbildung 6.1 dargestellt. In Abbil-
dung 6.1(a) wurden lediglich 38 Zeitschritte zur Approximation des Kurvenverlaufs verwendet. Sehr
deutlich sind die Liniensegmente zu sehen. In vertikaler Richtung verläuft die Zeitachse: vertikale graue
Linien zeigen an, dass an diesem Zeitpunkt eine Stützstelle der gezeichneten Kurven ist. Am unteren
Rand des Diagramms befinden sich in roter Schrift die Zeit für Integrationslänge in Sekunden. Bei der
Darstellung der Zeitwerte wird auf einen Minimalabstand zwischen den Achsenbeschriftungen geachtet
- beim Vergrößern des Fensters erscheinen entsprechend mehr Einträge. Um ein sicheres Zuordnen
der Zeiteinträge zu den vertikalen Linien zu gewährleisten wird oberhalb der roten Beschriftung ein
kleines Segment der sonst grauen Linie in rot markiert. In horizontale Richtung ist der FTLE-Wert
(nicht normalisiert) eingetragen. Die Achsenbeschriftung sowie die grauen, horizontalen Linien haben
einen konstanten Abstand von 1. In Abbildung 6.1(b) wurde der selbe Ausschnitt des FTLE-Bildes mit
einer höheren Auflösung von 1000 Zeitschritten abgetastet. Die Kurvenform wird hier deutlich genauer
approximiert, die größere Anzahl Datenpunkte ist auch durch die häufigeren vertikalen Linien gut zu
erkennen. Eine Linie im Diagramm ist dicker und in grauer Farbe gezeichnet: für diese Linie wurde
im FTLE-Bild ein Partikel-Tracer gesetzt. Die vom Benutzer eingestellte Advektionsdauer der Partikel
wird durch die gelbe vertikale Linie im Diagramm markiert. Die grüne vertikale Linie markiert die
momentan eingestellte Integrationslänge ∆t des Diagramms. In der Titelleiste des Fensters erscheint
der aktuell im Diagramm sichtbare Werte- und Zeitbereich. Bei der Darstellung in Diagrammform
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(a) Diagramm mit 28 Zeitschritten.

(b) Diagramm mit 1000 Zeitschritten.

Abbildung 6.1: Diagramm-Darstellung des FTLE-Werteverlaufs.

werden Transformationen wie die in Kapitel 7.2 erläuterte Gradientenform bzw. die in Kapitel 7.2.1
angewendete Fouriertransformation berücksichtigt. Ebenfalls wird bei markierter Option „nicht durch
∆t teilen“ (siehe Kapitel 7.1.1) der FTLE-Wert ohne entsprechende Division im Diagramm dargestellt.

6.2 Validierung

6.2.1 Validierung der flow map

Statt des FTLE-Wertes wurde zur optischen Prüfung die flow map dargestellt. Hierbei wurden in meh-
reren Durchläufen x und y-Wert bzw. die Länge des Vektors gezeichnet. Es konnten anfangs bereits
die durch die begrenzte Präzision des float-Datentyps entstandenen Probleme (siehe Abschnitt 6.2.4)
sichtbar gemacht werden. Als Darstellungsform wurden Graustufen gewählt. Auch wird hierbei sofort
sichtbar, wenn Array-Indizes beim Zugriff auf die Strömungsdaten falsch berechnet wurden da das Bild
dann entweder deformiert oder völlig unkenntlich erscheint. Erst wenn mit der optischen Prüfung keine
offensichtlichen Fehler sichtbar sind kann zum zweiten Schritt weitergegangen werden, der Validierung
gegen externe Daten. Hierbei wurde anhand des Bouyancy-Datensatzes eine flow map erstellt, und gegen
einen Referenzdatensatz verglichen. Hierzu wurde T0 = 8.05sec und ∆t = 0.55sec gewählt, dies
entspricht einem Start auf slice 161 des Bouyancy-Datensatzes. Die Auflösung der verglichenen flow
maps beträgt 512 ∗ 512 Felder.
Beim Vergleich muss darauf geachtet werden, dass die hier erzeugten Relativkoordinaten der flow map
wieder in Absolutkorrdinaten umgewandelt werden müssen. Es wurde eine durchschnittliche quadrati-
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sche Abweichung von εavg = 0, 0001 festgestellt. Diese Abweichungen erscheinen bei der Berechnung
mit Float-Werten als realistische, numerische Abweichungen.

6.2.2 Validierung des RK4-Integrators

Um die Funktion des RK4-Integrators zu prüfen wird ein synthetischer Datensatz verwendet, bei dem die
Teilchen eine Drehung mit Umlaufdauer T = 2π durchführen. Dieser Datensatz ist durch die Gleichung
~v = (x,−y) bestimmt, wobei ~v die Strömung an der Position (x, y) darstellt. Dieser Datensatz wird über
∆t = 2π Sekunden integriert, wodurch jedes Teilchen wieder an seiner Ursprungsposition angelangt ist,
somit also in jedem Gitterpunkt der flow map die Koordinate dieses Punkts steht.
Eine weitere Integritätsprüfung stellt eine Integration mit einer darauffolgenden Integration gleicher
Länge, jedoch entgegengesetzter Integrationsrichtung dar. Auf unterschiedlichen Datensätzen wird die
Integration über eine Schleife n Schritte durchgeführt. Daraufhin folgt eine weitere Integration in die
entgegengesetzte Richtung (t-Achse invertiert) mit der selben Anzahl Schritte. Rechnerisch befindet
man sich wieder am Ausgangspunkt, die flow map muss somit an jeder Stelle einen Nullvektor-Eintrag
haben. Bis auf die numerischen Schwankungen (7. Stelle hinter dem Komma) wurde dies erfüllt.

6.2.3 Validierung des Gesamtsystems

Um das Gesamtsystem und die Oberfläche zu validieren muss die Integrität der dargestellten Achsen-
beschriftungen kontrolliert werden. Hierfür wird ein Datensatz geladen und die Parameter T0 sowie
∆t vorgegeben. Im FTLE-Bild wird ein beliebiger Bereich selektiert, damit ein Diagramm erzeugt
wird. Zusätzlich wird ein Partikel-Tracer platziert. Nun kann die Zeitachse im Diagramm gegen die
Einstellregler der Oberfläche kontrolliert werden. Der grüne Balken im Diagramm von Abbildung 6.2
zeigt das aktuell gewählte ∆t an. Im Diagramm muss die Achsenbeschriftung (hier: 0.48) exakt mit
dem im Hauptprogramm gewählten Wert übereinstimmen. Die Position des gelben Balkens, der die
Integrationslänge des Particle-Tracers im Diagramm markiert, wird auf die selbe Weise überprüft. Beim
Verändern der Schieberegler müssen die Balken entsprechend mitlaufen. Beim Zoomen im Diagramm
kann mit Hilfe der farbigen Balken die korrekte Skalierung ebenfalls geprüft werden. Beim Zoomen
im FTLE-Bild dürfen sich die Selektion sowie die verfolgten Partikel relativ zu markanten Stellen im
Datensatz nicht verschieben.

Beim Selektieren eines hellen Gebietes im FTLE-Bild muss die Kurve im Diagramm höhere Werte als
bei Selektion eines dunklen Gebietes aufweisen. Zusätzlich werden in diesen Gebieten Partikel verfolgt.
Anhand des Verlaufes der 4 farbigen Punkte wird überprüft, ob die Werte plausibel sind: bei einem
niedrigen Diagrammwert dürfen sich die Punkte nicht weit voneinander entfernt haben. Bei einem
hohen Diagrammwert hingegen muss hinreichende Separation vorliegen. Dies wird in Abbildung 6.3
verdeutlicht. Bei der Selektion unterschiedlicher Bereiche ist darauf zu achten, dass die Kurven stets
einen stetigen Verlauf haben. Bei einem Strömungsdatensatz, der keine Sonderfälle wie not a number
(NaN), unendlich große Werte, harte Kanten die sich über die Zeit verschieben oder ähnliches aufweist
sind Sprünge nicht zu erwarten. Dies gilt ebenfalls für die Repräsentantenkurven beim Clustering,
welches in Kapitel 7.3 beschrieben wird. Unter Verwendung eines homogenen Datensatzes mit ~v = ~0
bzw. ~v = ~1 darf im Diagramm nur eine Kurve erscheinen, da alle Werte zusammenfallen.
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Abbildung 6.2: Überprüfen der Oberfläche.

6.2.4 Diskretisierungsprobleme

Bei der Validierung mit dem Datensatz, bei dem an jedem Punkt der selbe Fluss ~v = (1, 1) angegeben
war, traten statt des erwarteten homogen schwarzen FTLE-Bildes ein gitterartiges Muster auf, dass sich
bei Modifikation der Integrationslänge ∆t veränderte. Bei Untersuchung mit einem Datensatz ohne
Strömung (~v = (0, 0)) blieb das FTLE-Resultat erwartungsgemäß einheitlich schwarz.
Für die Artefakte bei Untersuchung des Datensatzes mit ~v = (1, 1) waren leichte Schwankungen
der Werte in der flow map verantwortlich, die sich dann durch FTLE-Berechnung und die darauffol-
gende Normalisierung zu deutlich sichtbaren Mustern verstärkten. Die Schwankungen wurden durch
Diskretisierungs- und Rundungsfehler verursacht: Ein Eintrag in der flow map entspricht der Position
eines Teilchens nach der Advektion. Die Advektion und die Daten des Strömungsdatensatzes sind meist
sehr gering bezogen auf die Dimension des Strömungsfeldes. So konnte an Position (0, 0) die Advektion
noch mit voller float-Präzision gespeichert werden - an Position (10, 10) hingegen wurde durch den
höheren Exponenten bereits Nachkommastellen abgeschnitten.
In Abbildung 6.4(a) sind die Artefakte bei der Darstellung des Bouyancy-Datensatzes zu sehen. Hierbei
kam als zusätzlicher Störungsfaktor hinzu, dass unnötig oft zwischen den Koordinatensystemen der
flow map, des Strömungsdatensatzes und physikalischen Koordinaten transformiert wurde und hierbei
weitere Rundungsfehler zum Tragen kamen. In Abbildung 6.4(b) und 6.4(c) wurde diese Problema-
tik mit Hilfe eines Datensatz mit konstantem Fluss von ~v = (1, 1) näher untersucht. Für Abbildung
6.4(b) wurde die Anzahl Koordinatensystemtransformationen bereits auf das Minimum reduziert. Erst
mit der Speicherung relativer Koordinaten in der flow map verschwanden die Artefakte vollständig, wie
in Abbildung 6.4(c) zu erkennen ist. Bei der Speicherung mittels relativer Koordinaten wird nur die
Verschiebung eines Teilchens gespeichert - der Offset wird bei der Berechnung als getrennte Variable
behandelt. Der Offset muss nicht zwingend gespeichert werden: da die Größe des Datensatzes bekannt
ist, kann der Offset jederzeit wieder berechnet werden.



(a) Untersuchung einer ridge. (b) Untersuchung eines Gebietes mit niedrigem FTLE-
Wert.

Abbildung 6.3: Vergleich unterschiedlicher RK4-Schrittweiten.

(a) Artefakte bei der Darstellung des
Bouyancy-Datensatz.

(b) Artefakte durch Diskretisierungs-
problem der flow map.

(c) keine Artefakte bei Verwendung
von Relativkoordinaten in der flow
map.

Abbildung 6.4: Flowmap: Diskretisierungsproblem und Lösung durch Relativkoordinaten.
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Kapitel 7

Auswertungsmethoden

7.1 Transformation der Kurven

7.1.1 Berechnug des FSR

Bei der Berechnung des FTLE wird die in Abschnitt 3.2.1 behandelte Formel

σ∆t
T0(~x) =

1

|∆t|
ln
√
λmax(4) (7.1)

angewendet. Da in dieser Arbeit ausschließlich räumlich begrenzte Datensätze verwendet werden ist
ein exponentieller Anstieg der Separation über einen unendlichen Zeitraum ausgeschlossen. Somit gilt
in diesem Fall, dass für große ∆t der FTLE-Wert sich 0 annähert, da ∆t im Nenner des Bruchs steht.
Somit sinken die FTLE-Werte bei Erhöhung des Integrationszeitraumes ∆t, auch wenn sich die Teilchen
nicht annähern. Um die Annäherung von Partikeln ohne störenden Einfluss dieses Effekts untersuchen
zu können, wurde die Oberfläche um die Möglichkeit erweitert, auf die Division mit ∆t zu verzichten.
Hlawatsch et al. definieren in [HVSW11] den finite separation ratio (FSR). Für den Spezialfall m = 1
lautet dieser:

σ̃∆t
T0 =

√
λmax(4) (7.2)

Um die Skalierung bei großen Werten zu erhalten wird der Logarithmus des FSR verwendet. Dies
entspricht der Berechnung des FTLE ohne die Division durch ∆t:

σ, noDivision∆t
T0(~x) = ln

√
λmax(4) (7.3)

Der Unterschied im Verlauf der Kurvenschaar zwischen Abbildung 7.1(a) und Abbildung 7.1(b) ist
signifikant. Für die Erstellung dieser Kurven wurde der selbe Ausschnitt des quadGyre-Datensatz ver-
wendet. Wenn durch ∆t geteilt wird ist beim gewählten Zoomfenster bereits ab ∆t = 6s ein Unterschei-
den der einzelnen Kurven praktisch nicht mehr möglich, da diese sich zu weit angenähert haben. Auch
ist das Annähern an den Grenzwert 0 gut zu beobachten. Verzichtet man hingegen auf das Teilen durch
∆t, so wird deutlich, dass die FTLE-Werte auch bei größeren Integrationslängen stark unterschiedlich
bleiben. Auch ist ein kontinuierlicher Anstieg der Werte zu betrachten: die Separation wächst bei stei-
gendem ∆t. Für die Suche nach sich annähernden Teilchen und die Betrachtung der Separation unab-
hängig von der Integrationsdauer ist die Darstellung des FTLE-Wertes ohne die Division durch ∆t somit
ein wichtiges Werkzeug. Auch auf das Ergebnis des Clusterings hat diese Transformation Einfluss: Bei
normaler Berechnung nähern sich mit steigendem ∆t die FTLE-Werte 0 an. Somit weisen diese auch
gegeneinander immer geringere Differenzen auf, wodurch beim Clustering der Bereich mit niedrigem
∆t dominant wirkt. Wird auf die Division jedoch verzichtet sind auch bei größeren Integrationszeiträu-
men noch Differenzen in den FTLE-Werten ausschlaggebend. Eine nähere Betrachtung findet in Kapitel
7.3 statt.
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(a) Mit Division durch ∆t. (b) Ohne Division durch ∆t.

(c) Für Abbildung 7.1 gewählte Region.

Abbildung 7.1: Vergleich der Kurvenschaar mit und ohne Division durch ∆t.

7.2 Betrachtung des Gradienten

Um ein Sinken beziehungsweise Steigen der FTLE-Werte besser untersuchen zu können liegt es nahe,
den Gradienten des FTLE-Werteverlaufs zu betrachten. Zur Berechnung des Gradienten wird zuerst das
Array mit den FTLE-Werten des selektierten Bereichs wie in Abschnitt 4.6.2 berechnet. Daraufhin folgt
ein zweiter Durchlauf, in dem der Gradient mit der Methode der finiten Differenzen berechnet wird. Bei
diesem Berechnungsmodus kann die Division durch ∆t ebenfalls wie in Abschnitt 7.1.1 unterdrückt
werden.
Der wing-Datensatz (siehe Abschnitt 8.1.4) wurde zur Veranschaulichung der Funktionsweise gewählt,
da an der Vorder- und Hinterseite des Tragflächenprofils starke, aber kurze Schwankungen des FTLE-
Wertes zu erwarten sind. Der Gradient der Kurven dieses Datensatzes kann in Abbildung 7.2(a) betrachtet
werden. Wenn sich der FTLE-Wert nicht ändert beträgt dessen Gradient 0. Ein positiver Gradient wird
durch einen ansteigenden FTLE-Wert verursacht, ein negativer Gradient deutet auf einen abfallenden
FTLE-Wert hin. Änderungen treten in diesem Datensatz beim Erreichen bzw. Verlassen der Tragfläche
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(a) Peak im Kurvenverlauf bei Erreichen der Tragflächenvorderkante. (b) FTLE-Bild der Tragfläche mit
2 verfolgten Partikeln.

(c) Der zweite verfolgte Partikel erreicht die Kante der Tragfläche. (d) Position des Partikels zu Abbil-
dung 7.2(c).

Abbildung 7.2: Betrachtung des Gradienten der Diagrammkurven.

auf. Dieser Effekt ist in Abbildung 7.2 zu sehen. Auch wird sichtbar, dass auch die Werte des Gradienten
mit steigendem ∆t zurückgehen. Die Peaks beim Verlassen des Profils sind in dieser Zoom-Einstellung
bereits nicht mehr zu sehen.
Möchte man auch auf diese Details nicht verzichten bietet es sich an, wie bereits in Kapitel 7.3 ange-
wendet auf das Teilen durch ∆t bei der Berechnung des FTLE-Wertes zu verzichten. Die Diagramme in
Abbildung 7.3 zeigen diese Ergebnisse: Die Peaks bei ∆t = 0.3s sind fast genauso hoch wie die Peaks
der Partikel, die die Tragfläche als erstes erreichen. Das nochmalige Ansteigen des Gradienten hinter
∆t = 0.8s entsteht beim Verlassen des Tragflächenprofils. Dies ist in Abbildung 7.3(c) anhand eines
einzelnen Partikels sichtbar.
Beim Clustering spielt es ebenfalls eine Rolle, ob auf den Kurven der FTLE-Werte oder auf dessen
Gradienten gearbeitet wird. Abbildung 7.4 stellt den Vergleich zwischen normalem Clustering und dem
Clustering auf dem Gradienten dar. In beiden Fällen wurde das Teilen durch ∆t unterdrückt, um auch
die Peaks beim Verlassen des Tragflächenprofils ausreichend zu berücksichtigen. Als Zeitbereich wurde
∆t = 0.6s bis ∆t = 0.98s gewählt. Die Form und Lage der 5 Cluster unterscheidet sich maßgeblich:
Beim normalen Clustering spielt der Absolutwert hier eine größere Rolle. Deshalb ist für die Zuordnung
der Cluster der Zeitpunkt, zu dem ein Teilchen die Tragflächenkante erreicht der dominante Faktor. Beim
Clustern auf den Gradienten hingegen ist die Stärke der Änderung zu betrachten. Diese ist abhängig von
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(a) Darstellung des Gradienten ohne Division durch ∆t mit den gleichen Partikeln wie
in Abbildung 7.2.

(b) Position des Partikels zum mit
der gelben Markierung in Abbil-
dung 7.3(a) markierten Zeitpunkt.

(c) Darstellung des Gradienten ohne Division durch ∆t. Es wurde 1 Partikel verfolgt,
bei dem der Peak beim Verlassen der Tragfläche sehr deutlich zu erkennen ist.

(d) Position des Partikels zum mit
der gelben Markierung in Abbil-
dung 7.3(a) markierten Zeitpunkt.

Abbildung 7.3: Betrachtung des Gradienten der Diagrammkurven.
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(a) Clustering auf normalen Diagrammkurven. (b) Darstellung der Cluster zu Ab-
bildung 7.3(a).

(c) Clustering auf den Gradienten der Diagrammkurven. (d) Darstellung der Cluster zu Ab-
bildung 7.4(c).

Abbildung 7.4: Clustering auf FTLE-Werten und deren Gradienten.

der Entfernung zur Tragfläche während des Vorbeiströmens. Teilchen mit großer Entfernung erfahren
nur eine geringe Änderung der Separation und werden dem grünen Cluster zugeordnet. Die Teilchen
die die Tragfläche mit geringerem Abstand umstreifen und somit eine größere Änderung des FTLE-
Wertes erfahren, befinden sich in den übrigen 4 Clustern. Die Gebiete dieser Cluster unterschieden sich
hauptsächlich durch den Zeitpunkt, wann das Erreichen der Tragflächenkante (und damit das Auftreten
des Peaks) stattfand.

7.2.1 Fourier-Transformierte des Werteverlaufs

Auf der Suche nach wiederkehrenden Mustern und periodischen Effekten, wie sie z.B. in Wirbeln
auftreten können ist die Fourier-Transformation zur Betrachtung des Frequenzspektrums ein mächtiges
Werkzeug. Mit Hilfe der in der FFTW-Library [FJ09] enthaltenen Fast-Fourier-Transformation (FFT)
werden die Spektren der einzelnen Kurven der FTLE-Daten berechnet. Diese Berechnung wird auf der
CPU durchgeführt. Bei der Betrachtung der Diagramme ist zu beachten, dass der k-te Wert (von links
nach rechts) der Frequenz k/N entspricht.N ist hierbei die gesamte Anzahl Samplingpunkte der Kurve.
In der linken Hälfte des Diagramms sind die positiven Frequenzen dargestellt, in der rechten Hälfte
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(a) Frequenzspektrum der FTLE-Wertekurve. (b) Frequenzspektrum der FTLE-Wertekurve ohne durch ∆t.

Abbildung 7.5: Gradienten der in Abbildung 7.1 gewählten Region Kurven∆t.

die negativen Frequenzen. Dies bedeutet auch, dass in der Mitte des Diagramms die höchste Frequenz
dargestellt wird und diese nach außen hin abfällt. Am linken bzw. rechten Rand des Diagramms ist der
Gleichanteil eingezeichnet. Da die Ergebnisse in diesem Modus lediglich Qualitativ beurteilt werden
sowie die Ergebnisse des Clusterings auf dem Frequenzspektrum untersucht wird wird auf die Bemaßung
der Frequenz im Diagramm verzichtet.

Bei der Betrachtung des Frequenzspektrums muss stets beachtet werden, dass bei Frequenzen |k| > 1
2N

Artefakte auftreten können. Näheres über das Sampling Theorem und dessen Einflüsse können [Fro07]
entnommen werden. Auf die hier gewählte Diagrammdarstellung bezogen bedeutet dies, dass lediglich
das linke bzw. rechte Viertel des Diagramms untersucht werden darf. Die roten Streifen am linken Rand
der Diagramme von Abbildung 7.5 sind die Beschriftungen der y-Achsen, die sich aufgrund des großen
Wertebereichs der Fouriertransformierten überschneiden.

7.3 Clustering

Als Verfahren für das Clustering wird k-means eingesetzt. Für den eindimensionalen Fall wird das
Vorgehen in [JMF99] erläutert. Dies kann jedoch sehr einfach auf den zweidimensionalen Fall übertragen
werden: Bei diesem Verfahren werden zuerst zufällige Kurven als Repräsentant eines Clusters gesetzt.
Im zweiten Schritt wird jede Kurven des FTLE-Diagramms dem Cluster zugeordnet, zu dem sie den
jeweils geringsten Abstand haben. Im nächsten Schritt werden Repräsentanten des Clusters aktualisiert:
Jeder Stützpunkt des Repräsentanten zum Zeitpunkt t ist der Mittelwert der Stützpunkte zum Zeit-
punkt t aller in diesem Cluster enthaltenen Kurven. Das Zuordnen der Kurven und Aktualisieren der
Repräsentanten wird so lange wiederholt, bis keine Veränderungen in der Clusterzuordnung mehr statt-
finden. Als Metrik zur Bestimmung des Abstandes zwischen Clusterrepräsentanten und der zu verglei-
chenden Kurve wird hier die Summe des quadratischen Abstands der Werte verwendet.

d(vcentroid, vcurve) =
∑
t

(vcentroid(t))− vcurve(t))2 (7.4)

Eine Eigenschaft des k-Means Clustering ist, dass je nach (zufällig gewählten) Startwerten andere
Cluster-Zuordnungen auftreten können. In der Praxis hat sich jedoch gezeigt, dass beim Wiederholen
des Clusterings lediglich die Reihenfolge (IDs) der Cluster variiert, die Inhalte der Cluster jedoch bis
auf wenige Ausnahmen gleich bleiben.
Der Clustervorgang kann über die Anzahl Cluster k gesteuert werden. Ebenfalls hat die Wahl des
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Zeitbereiches, über den die Werte verglichen werden einen Einfluss auf das Ergebnis.
Die Auswahl des Zeitbereichs wird mit Hilfe des Datensatzes „bottleneck assymetric“ (siehe Abschnitt
8.1.4) und 4 Clustern untersucht. Dieser Datensatz bietet durch die Engstelle ein starkes Schwanken
des FTLE-Wertes über die Zeit. Trotzdem ist das Verhalten von Teilchen in diesem Datensatz sehr
überschaubar, es gibt keine nennenswerten Verwirbelungen. Durch die dominante Strömungsrichtung
von links nach rechts ist auch die Überprüfung, ob Teilchen bereits das Betrachtungsfeld verlassen haben
einfach möglich. Clustering wird über einen Zeitbereich durchgeführt die Berechnung des FTLE-Bildes
hingegen visualisiert lediglich die Separation zum Zeitpunkt T0 + ∆t. Es können sich unterschiedliche
Strukturen ausbilden, die nicht zwingend vergleichbar sind. Bei der ersten Gruppe in Abbildung 7.6
werden für das Clustering lediglich die FTLE-Werte zwischen ∆t = 0s und ∆t = 0.3s betrachtet.
Hierzu gehört das Ansteigen der Werte zu Beginn der Betrachtung sowie ein Abfallen, nachdem die
Teilchen die Engstelle passiert haben. Zum Zeitpunkt ∆t = 0.3s haben bereits alle Partikel, die sich
innerhalb des im FTLE-Bild selektierten Bereichs befinden die Engstelle durchlaufen. Hierbei spielt bei
der Zuordnung der Cluster hauptsächlich der Zeitpunkt wann die Teilchen die Engstelle passieren eine
Rolle. Während der Partikel die Engstelle durchläuft herrscht dort eine sehr hohe Geschwindigkeit und
damit verbunden eine hohe Separation. Diese äußert sich in einem kurzen, aber starkem Anstieg des
FTLE-Wertes und fällt sofort hinter dem Engpass wieder steil ab. In Abbildung 7.7(a) wurden diese
Peaks mit roten Kreisen markiert. Da der Zeitpunkt, an dem die Engstelle durchschritten wird, direkt
von der Entfernung zu dieser abhängt, bilden sich die Cluster ringförmig um die Engstelle herum aus.
Beim zweiten gewählten Zeitbereich, bei dem die Kurven nur zwischen ∆t = 0.3s und ∆t = 0.6s für
das Clustering berücksichtigt werden, weicht die Form der Cluster stark von der zuletzt beschriebenen
ab. Am Anfang des betrachteten Bereiches passieren die in der Selektion des FTLE-Bildes ganz links
liegenden Partikel noch den Engpass. Deswegen ist die linke Grenze zwischen rotem und grünem Cluster
in Abbildung 7.6(d) noch in Form einer Ellipse um den Engpass ausgebildet. Bis ∆t = 0.6s entfernen
sich die Partikel immer weiter von der Engstelle, wobei die Änderung der Separation und somit die
Änderung des FTLE-Wertes immer geringer wird. Am Ende des Betrachtungsbereiches mit ∆t = 0.6s
hat jedoch noch kein Partikel den rechten Rand des Datensatzes überschritten.
In Abbildung 7.6(f) und dem zugehörigen Diagramm 7.6(e) erreichen hingegen Partikel aus allen Clus-
tern bereits den rechten Rand. Überwiegend die auf der y-Achse in der Mitte liegenden Teilchen über-
schreiten die Datensatzgrenze. Teilchen die den Rand erreichen sind in jedem Cluster enthalten, keines
der Cluster enthält ausschließlich Teilchen die am Rand ankommen. Da Teilchen, die die Datensatz-
grenze überschreiten dort „eingefroren“ und nicht mehr weiter advektiert werden, stellt sich dort eine
Art stationärer Zustand ein: der Wert beim Verlassen des Feldes wird somit maßgeblicher Faktor zur
Auswahl des Clusters. Die Höhe dieses Wertes wird in diesem Datensatz hauptsächlich durch die y-
Position mit der der Partikel die Engstelle passiert bestimmt. Auch wenn die Form der Cluster symme-
trisch und gleichmäßig erscheint ist ein praktischer Nutzen der Analyse von Kurven, deren Partikel zu
unterschiedlichen Zeiten das Feld verlässt zweifelhaft oder zumindest mit Vorsicht zu betrachten. Jedoch
steht außer Frage, dass die Auswahl des für das Clustering zu betrachtenden Zeitbereiches wesentlichen
Einfluss auf das Ergebnis und die Aussage des Clusterings hat.

Es muss ebenfalls untersucht werden, welche Rolle die Länge des Zeitbereichs hat, auf dem geclustert
wird. Hierzu wird der Startzeitpunkt fest auf ∆t = 0s gelegt und lediglich der Endzeitpunkt variiert.
Clustering auf nur einem Slice zu Beginn des Datensatzes liefert das in Abbildung 7.8 gezeigte Resultat.
In Abbildung 7.8(a) ist anzumerken, dass zur Zuordnung der einzelnen Kurven zum jeweiligen Cluster
nur der im Diagramm selektierte Zeitbereich betrachtet wird - das Berechnen der Repräsentanten erfolgt
hingegen der Anschaulichkeit wegen über den kompletten Zeitbereich. Ansonsten wären lediglich 4
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(a) gewählter Zeitbereich: Anfang bis ∆t = 0.3sec. (b) resultierende Cluster.

(c) gewählter Zeitbereich: ∆t = 0.3sec bis ∆t = 0.6sec. (d) resultierende Cluster.

(e) gewählter Zeitbereich: ∆t = 0.6sec bis ∆t = 1sec. (f) resultierende Cluster.

Abbildung 7.6: Diagramm-Darstellung des FTLE-Werteverlaufs.
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(a) Zeitpunkt der in Abbildung 7.7(b) dargestellten Partikel (gelbe Linie). Die Peaks
des FTLE-Wertes beim Durchströmen der Engstelle wurden mit roten Kreisen markiert.

(b) in unterschiedlichen Clustern
gestartete Partikel.

Abbildung 7.7: Tracen von Partikeln in den Clustern aus Abbildung 7.6(e) bzw. 7.6(f).

(a) Clustering auf nur 1 Slice: Dargestellt sind lediglich die Repräsentanten der 4
Cluster.

(b) Anordung der Cluster.

Abbildung 7.8: Variation des Zeitbereichs, auf dem geclustert wird.
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Punkte statt der 4 Kurven darstellbar. Auf die Zuordnung der Kurven zu ihren Clustern hat diese
zusätzliche Berechnung jedoch keinen Einfluss. Auffällig ist hierbei, dass die Cluster hierbei nicht zu-
sammenhängen. Der blaue Cluster in Abbildung 7.8(b) tritt ganz links sowie ganz rechts auf, darauf
folgen von außen nach innen der grüne und der türkisfarbene Cluster. Lediglich der rote Cluster in
der Mitte tritt nur einmal auf. Den Grund für dieses Verhalten liefert eine Betrachtung von Partikeln,
die in den jeweiligen Feldern gestartet werden. In Abbildung 7.9 wurden in mehreren Clustern Partikel
gestartet. Im Diagramm sind die Cluster-Repräsentanten (weiß) sowie die Kurven der verfolgten Partikel
(hellgrau, breitere Linien) eingezeichnet. Zu erkennen ist, dass die Partikel des linken blauen Clusters
die Engstelle noch nicht passiert haben, die des rechten blauen Clusters befinden sich hingegen bereits
dahinter. Partikel des grünen Clusters sind ebenfalls noch vor der Engstelle (linkes grünes Cluster) bzw.
dahinter (rechtes grünes Cluster), jedoch deutlich näher am Cluster. Nur die Partikel, die im roten
Clusters gestartet wurden befinden sich zum Zeitpunkt des für das Clustering berücksichtigten Slices
direkt in der Engstelle. Da beim Clustering auf einem einzelnen Zeitschritt lediglich die Momentanwerte
berücksichtigt werden und nicht der Verlauf des Wertes fallen hier die Partikel mit gleichem FTLE-Wert
in ein Cluster, unabhängig davon ob dieser vor- oder nach dem beim Passieren der Engstelle auftretenden
Peak auftritt.
Wird hingegen über einen längeren Zeitraum geclustert, so fällt der zeitliche Verlauf stärker ins Gewicht.
Abbildung 7.10(b) zeigt die Cluster, die unter Berücksichtigung des Kurvenverlaufs zwischen ∆t =
0.3s bis ∆t = 0.8s erstellt wurden. Durch Setzen von Testpartikeln wurde überprüft, dass auch am
Ende der Betrachtungszeit noch keine Teilchen den rechten Bereich des Datensatzes verlassen haben.
Wie zu erwarten spielt es bei der Betrachtung über diesen längeren Zeitraum nun eine Rolle, zu welchem
Zeitpunkt das Teilchen die Engstelle passiert - nicht zusammenhängende Cluster treten nicht mehr auf.
Ebenfalls verändert der Verzicht auf die Division durch ∆t bei der Berechnung des FTLE-Wertes die
Resultate Da alle ∆t bei diesem Zeitfenster kleiner als 1 sind sinken die Werte deutlich, weshalb
die Zoomeinstellung im Diagramm angepasst wurde. Durch das Auslassen dieser Division, die die
Dämpfung der Werte mit wachsendem ∆t reduziert, wächst hierbei der Einfluss der Werte gegen Ende
des Betrachtungszeitraumes. Die hierdurch resultierende Aufteilung der Cluster zeigt Abbildung 7.10(d).

7.4 Visuell vereinfachte Untersuchung von Symmetrien durch Clustering

Das Auffinden von Symmetrien sowie von unsymmetrischen Bereichen wird anhand des Datensatzes
„bottleneck“ (siehe Abschnitt 8.1.4) durchgeführt. Hierzu wird mit Hilfe von Matlab ein modifizierter
Datensatz erzeugt, bei dem der untere Teil des Hindernisses nach rechts verschoben ist (Abbildung
7.11(b)). Der Versatz beträgt gerade einmal 10% des Abstands zwischen oberer und unterer Hindernis-
spitze und ist im FTLE-Bild mit bloßen Auge nur schwer erkennbar.

In Abbildung 7.12 wird das Bild mittels Clustering untersucht. Der für das Clustering verwendete
Zeitbereich geht über die komplette Datensatzlänge von ∆t = 0sec bis ∆t = 0.1sec, da gegen Ende des
Zeitbereiches keine extremen Schwankungen auftraten. Bei einem Clustering mit 4 Clustern (Abbildung
7.12(b)) sind an den Grenzen des rot gefärbten Bereichs bereits Auswirkungen der Assymetrie erkenn-
bar: der türkisfarbige Einschnitt ist im unteren Bereich deutlich größer als im oberen. Bei einer Erhöhung
der Clusterzahl auf 10 werden wie in Abbildung 7.13(b) ersichtlich noch mehr Details deutlich: der Rand
zwischen hellgrünem und gelbem Cluster hat einen unterschiedlich großen Einschnitt. Ebenfalls ist der
rechte, rosafarbige Cluster etwas unterhalb der Mitte stark eingeschnitten.
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Abbildung 7.9: Untersuchung der Clusteraufteilung durch Verfolgung von Partikeln.
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(a) Kurven der 4 Cluster-Repräsentanten. Um diese besser erkennen zu können wurden
die übrigen Kurven ausgeblendet.

(b) Resultierende Cluster zu Abbil-
dung 7.10(a).

(c) Diagramm der FTLE-Werte und der 4 Cluster-Repräsentanten. Hier wurde die
Division des FTLE-Wertes durch ∆t unterdrückt.

(d) Resultierende Cluster zu Abbil-
dung 7.10(c).

Abbildung 7.10: Durchführung des Clusterings auf einem größeren Intervall von ∆t = 0.3s bis ∆t =
0.8s.
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(a) Symmetrische Form des Hindernisses im Datensatz
„bottleneck1“.

(b) modifizierter Datensatz mit assymetrischem Hindernis.

Abbildung 7.11: Vergleich des FTLE-Bildes zwischen originalem und modifiziertem Datensatz.

Beim symmetrischen Bild (Abbildung 7.12(a)) hingegen sind die Cluster absolut symmetrisch ausge-
bildet - sogar die Ausreißer des rechten, gelben Clusters sind oben und unten gleich weit ausgebil-
det. Auffällig ist auch, dass die Cluster nahe der Engstelle beim assymetrischen Bild deutlich schärfer
abgegrenzt sind als beim symmetrischen, obwohl der Zeitbereich sowie die Schrittweite des Runge-
Kutta-Integrators unverändert blieben. Dieses Verhalten blieb auch bei Verkürzung des Zeitbereichs und
mehrmaligem Neusetzen der (zufällig gewählten) Startwerte des K-Means Clusterings bestehen. Ein
Vergrößern der Schrittweite des RK4-Operators verstärkt den Effekt. Es ist also anzunehmen, dass beim
symmetrischen Datensatz die bei der Integration entstehenden Fehler stärker ins Gewicht fallen als beim
assymetrischen.

Der Vorteil dieses Ansatzes zur Erkennung von assymetrischen Bereichen ist, dass nicht nur die Se-
paration zu einem konkretern Zeitpunkt betrachtet wird, sondern die Veränderung der FTLE-Werte
über einen größeren Zeitraum eine Rolle spielt - und sich kleinere Unterschiede zu einer größeren
Wirkung aufsummieren können. Auch wird hierbei die volle Bildfläche zur Darstellung von Information
ausgenutzt: gerade in den bei diesem Datensatz sonst einheitlich schwarz erscheinenden Bereichen
erscheinen die für den Benutzer wichtigsten Details in Form von ausgeprägten Clustergrenzen.
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(a) Symmetrische Form des Hindernisses im Datensatz
„bottleneck1“.

(b) modifizierter Datensatz mit assymetrischem Hindernis.

Abbildung 7.12: 4 Cluster.

(a) Symmetrische Form des Hindernisses im Datensatz
„bottleneck1“.

(b) modifizierter Datensatz mit assymetrischem Hindernis.

Abbildung 7.13: 10 Cluster.



7.5. KRITERIUM: FTLE-WERT FÄLLT ÜBER EIN GEWISSES INTERVALL UNTER MAX 43

7.5 Kriterium: FTLE-Wert fällt über ein gewisses Intervall unter Max

Beim Betrachten sinkender Werte ist es notwendig, die Division durch ∆t zu deaktivieren, um nicht
fälschlicherweise das Abfallen der Werte durch die Division zu detektieren. Der „bottleneck“-Datensatz
eignet sich zur Untersuchung hervorragend, da die Werte bei Annäherung an den Engpass steigen und
dahinter rasch abfallen. Der Startzeitpunkt für die Anwendung des Kriteriums wurde auf ∆t = 0.004s
gelegt. Zu diesem Zeitpunkt ist der initiale Anstieg der FTLE-Werte bereits abgeschlossen, jedoch hat
noch kein Teilchen den Engpass erreicht. In Abbildung 7.14 wurde von Abbildung 7.14(a) bis Abbil-
dung 7.14(d) ein Interval von 10 slices gewählt. Das Diagramm besteht hierbei aus 500 slices, wodurch
das Interval eine Länge von 0.002 Sekunden hat. Bei Abbildung 7.14(e) und 7.14(h) wurde das Interval
auf 70 slices (0.014 Sekunden) verlängert. Dies bedeutet, dass der niedrige Wert über eine längere Zeit
gehalten werden muss, wodurch Werte die zu spät abfallen nicht mehr berücksichtigt werden. Auffällig
ist, dass dies erst Einfluss auf den Selektionsbereich in der Nähe der Engstelle hat, der linke Bereich der
Selektion bleibt unverändert gegenüber 7.14(b). Grund ist, dass die Teilchen, die sich zum Startzeitpunkt
bereits nahe an der Engstelle befinden zum Ende der Betrachtungszeit bereits den Datensatz auf der
rechten Seite verlassen haben und deren Position dort eingefroren wird. Dieser Effekt ist in den meisten
Fällen nicht erwünscht, muss jedoch berücksichtigt werden und ist hier sehr deutlich zu erkennen.
Detailliert wird diese Problematik in Kapitel 7.7 behandelt.
Weiterhin besteht die Möglichkeit, den mindest-Abfall des FTLE-Wertes nicht absolut sondern in Prozent
anzugeben. Dies ist sinnvoll, wenn Kurven die mit sehr großer Streuung gleichzeitig auf fallende Werte
untersucht werden sollen. Kurven mit hohem Maximum müssen verhältnismäßig stärker abfallen um
dem Kriterium zu entsprechen als Diagrammkurven mit geringerem Maximum. Zu sehen ist diese
veränderte Form des selektieren Bereichs in Abbildung 7.14(h): Werte mit geringerem Maximum und
geringerem Abfall des Wertes befinden sich vorwiegend oberhalb bzw. unterhalb des Selektionsgebietes.
Dort erweitert sich das Gebiet, das dem Kriterium entspricht, und wurde ebenfalls blau gefärbt.

7.6 Kriterium: FTLE-Wert steigt über ein gewisses Intervall über Min

Eine andere Auswahlmöglichkeit ist das Aufspüren von Werten, die über ein festgelegtes Intervall über
dem Minimum des FTLE-Wertes innerhalb der Selektion liegen. Abbildung 7.15 zeigt die Anwendungen
des Kriteriums. Wird die Höhe des Wertes, um die das Minimum überschritten wird vergrößert, so
entsprechen weniger Diagrammkurven diesem Kriterium. Der blau markierte Bereich der FTLE - Wer-
teverläufe die diesem Kriterium entspricht befindet sich in desto größerer Entfernung, je höher die
Schwelle angesetzt wird. Die Ursache liegt darin, dass die FTLE-Werte mit größerer Entfernung zu
Beginn einen niedrigeren Wert aufweisen und somit ein geringeres Minimum besitzen. Es fällt jedoch
auf, dass sich in Abbildung 7.15(a) eine Art Zunge in der Nähe der Engstelle ausbildet. In Abbildung
7.16(b) wird die Trajektorie eines Partikels an dieser Position verfolgt. Hierbei wird deutlich, dass die
FTLE-Werte in dieser Region kurz hinter der Engstelle sehr stark abfallen und dadurch das Überschrei-
ten des hierbei gesetzten Minimums erleichtert ist. Die gelbe Zeitmarkierung in Diagramm 7.16(b)
markiert den Zeitpunkt, zu dem das in der Zunge gestartete Teilchen direkt in der Engstelle steht (Peak
des FTLE-Wertes), um die Partikel zuordnen zu könnnen. Dem Vergleich zwischen Abbildung 7.15(b)
und Abbildung 7.16(b) kann man entnehmen, dass beim Vergrößern des zu erfüllenden Intervalls von
10 auf 30 slices Werte mit großer Entfernung zur Engstelle ausgefiltert werden.
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(a) Dagestellt sind Kurven, die über 10 Slices um 3 Einheiten unter dem Maximalen
FTLE-Wert liegen.

(b) Detektierter Bereich im FTLE-
Bild zu Abbildung 7.14(a).

(c) Dagestellt sind Kurven, die über 10 Slices um 4 Einheiten unter dem Maximalen
FTLE-Wert liegen.

(d) Detektierter Bereich im FTLE-
Bild zu Abbildung 7.14(c).

(e) Dagestellt sind Kurven, die über 70 Slices um 3 Einheiten unter dem Maximalen
FTLE-Wert liegen.

(f) Detektierter Bereich im FTLE-
Bild zu Abbildung 7.14(e).

(g) Dagestellt sind Kurven, die über 70 Slices um 400% unter dem Maximalen
FTLE-Wert liegen.

(h) Detektierter Bereich im FTLE-
Bild zu Abbildung 7.14(g).

Abbildung 7.14: Detektion fallender FTLE-Werte.
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(a) Die selektierten Kurven liegen über ein Intervall von 10 slices um mindestens 4,0
Einheiten über dem Minimum.

(b) Selektierter Bereich im FTLE-
Bild zu Abbildung 7.15(a).

(c) Die selektierten Kurven liegen über ein Intervall von 10 slices um mindestens 4,5
Einheiten über dem Minimum.

(d) Selektierter Bereich im FTLE-
Bild zu Abbildung 7.15(c).

(e) Die selektierten Kurven liegen über ein Intervall von 10 slices um mindestens 5,0
Einheiten über dem Minimum.

(f) Selektierter Bereich im FTLE-
Bild zu Abbildung 7.15(e).

Abbildung 7.15: Betrachtung von Gebieten, deren FTLE-Wert über ein Intervall von 10 slices (0.002
Sekunden) um den vorgegebenen Betrag über dem Minimum der jeweiligen Kurve liegt.
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(a) Selektion von Werten, die das Minimum um 4 Einheiten über ein Interval von 30
slices überschreiten.

(b) Selektierter Bereich im FTLE-
Bild zu Abbildung 7.16(a).

Abbildung 7.16: Wie Abbildung 7.15, jeodch Vergrößerung des zu erfüllenden Intervalls auf 30 slices.

7.7 Schwierigkeit: Überschreiten der Datensatzgrenzen

Vorsicht ist auch bei der Wahl des richtigen Zeitbereichs im Bezug auf den zu untersuchenden FTLE-
Bildbereich: Falls der Zeitbereich zum Ende hin zu groß gewählt wird können Teilchen das Feld bereits
verlassen. Anschaulich gezeigt werden kann dies am Tragflächen-Datensatz: In Abbildung 7.17 ist
das FTLE-Bild der Tragfläche gezeigt. Das Gebiet wurde so gewählt, dass auch ein an der rechten
Kante des selektierten Bereichs liegendes Partikel innerhalb des entsprechend Abbildung 7.18 gewählten
Zeitbereichs noch nicht die Grenzen des Datensatzes verlässt. Somit ist sichergestellt, dass der nahe
der verfolgten Partikelgruppe blau markierte Bereich nicht fälschlicherweise aufgrund von FTLE-Wert-
Schwankungen, die beim Verlassen der Datensatzgrenze entstehen, selektiert wurde. Der FTLE-Wert
fällt beim Passieren der Hinterkante des Flügels kurzzeitig ab: hier treffen die Partikel oberhalb der
Tragfläche mit den Partikeln, die unterhalb des Flügels vorbei advektiert wurden wieder zusammen -
und die Partikelgruppe wurde in der vertikalen Achse etwas näher zusammengedrückt.
Für Abbildung 7.19 wurde hingegen ein deutlich größerer Zeitbereich untersucht - der Plot der ent-
sprechenden Kurven befindet sich in Abbildung 7.20. Man beachte, dass die Endposition der verfolg-
ten Partikel (gelber Balken im Diagramm) innerhalb der Selektion liegt, die Teilchen aber bereits auf
der rechten Seite den Bildbereich verlassen haben. Es lässt sich dadurch nicht mehr klar erkennen,
ob der Abfall des FTLE-Wertes durch das Verlassen des definierten Datensatzbereiches oder beim
Vorbeiströmen an der Hinterkante der Tragflächenkante verursacht wurde. Da hier alle Teilchen fast
gleichzeitig das Feld verlassen, ist die Schwankung des FTLE-Wertes im Diagramm nicht sichtbar.

7.7.1 Lösungsansätze

Ein vom Benutzer durchführbares Mittel zur Plausibilitätsprüfung ist das Setzen von Partikeltracern an
den Grenzen des selektierten Bereiches bzw. auch vorwiegend in den bereits durch das Anstiegs- oder
Abfallkriterium markierten Bereiches. Hierdurch kann festgestellt werden, ob und wann Teilchen die
Datensatzgrenze verlassen. Daraufhin kann falls nötig im Diagramm der gewählte Zeitbereich angepasst
werden. Diese Anpassung des Betrachtungsbereichs sowie die Auswahl des Zeitbereiches ist jedoch
nicht trivial. Beim Tragflächen-Datensatz ist eine Eingrenzung über den Zeitbereich noch machbar, da
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Abbildung 7.17: FTLE-Bild mit selektiertem Bereich. Blau markiert ist das Gebiet, indem das Kriterium
(angestiegener FTLE-Wert) zutrift. Unterhalb des Flügels wurde die Trajektorie einer Partikelgruppe
gezeichnet

Abbildung 7.18: Diagramm der selektierten Kurven bei richtiger Begrenzung von ∆t: die gelbe Linie
hinter dem selektierten Bereich zeigt die aktuelle Position des in Abbildung 7.17 gezeigten Partikels.
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Abbildung 7.19: Der selektierte Bereich sowie die Partikel-Startposition entspricht der Konfiguration in
Abbildung 7.17. Die Endposition der verfolgten Partikel liegt jedoch bereits außerhalb des Datensatzes.

Abbildung 7.20: Diagramm der selektierten Kurven zu Abbildung 7.19.
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nur eine dominante Strömungsrichtung (nach rechts) vorliegt und Abweichungen/Verwirbelungen ge-
genüber der horizontalen Bewegung vernachlässigbar sind. Jedoch ist auch hier bereits die Problemstel-
lung gegeben, dass weiter links liegende Teilchen erst zu einem späteren Zeitpunkt den rechten Bildrand
verlassen - wenn ein an der rechten Tragflächenkante gestartetes Teilchen bereits die Datensatzgren-
ze verlässt erreicht ein ganz links gestartetes Teilchen ggf. noch nicht einmal die rechte Flügelkante.
Bei sehr weit links liegenden Teilchen werden hier bei kurzen Zeitbereichen Features übersehen, bei
rechts liegenden hingegen besteht die Gefahr, Randgebietserscheinungen als Feature misszudeuten. Bei
komplexeren Datensätzen ist die Auswahl des Zeitbereiches desto komplexer bzw. führt nicht zum ge-
wünschten Ergebnis.

Gelöst werden kann dies durch ein Abbruchkriterium, dass sobald ein Teilchen den Bildrand verlässt
(und die Kurve bis dahin noch nicht als markiert galt) eine weitere Untersuchung dieser einzelnen
Kurve unterbindet. Somit können beliebig lange Zeitbereiche untersucht werden, ohne dass ungewollte
Sprünge durch das Verlassen der Datensatzgrenze einbezogen werden. Ein Verwerfen der kompletten
Kurve ist hingegen nicht sinnvoll, da die Werte vor dem Verlassen der Datensatzgrenze gültig sind -
und bei chaotischen Datensätzen nach hinreichender Intergrationszeit sehr viele Startpositionen zu einer
Endposition außerhalb des Datensatzes führen können.

7.8 Kombination beider Kriterien

Um Bereiche zu finden, bei denen der FTLE-Wert zuerst ansteigt und daraufhin wieder abfällt (bzw.
umgekehrt) kann das Kriterium auch ein zweites Mal mittels „und“-Verknüpfung angewendet werden.
Die Erfüllung des zweiten Kriteriums wird jedoch nur auf dem Bereich, der zeitlich nach der Erfüllung
des ersten Kriteriums liegt, geprüft. Würde dies nicht berücksichtigt, so könnte nicht unterschieden
werden ob ein Wert zuerst über das Minimum ansteigt und dann unter das Maximum abfällt oder zuerst
abfällt und dann ansteigt. In Abbildung 7.21(a) muss der FTLE-Wert ein Minium haben, über das er
dann wieder ansteigt. Zur Erfüllung der Kriterien in Abbildung 7.21(c) ist hingegen ein Maximum mit
darauffolgendem Abfallen der Werte notwendig.

7.9 Resonanzen und Drehgeschwindigkeiten von Wirbeln

Der QuadGyre Datensatz (siehe Abschnitt 8.1.1) besteht aus 4 Wirbeln. Die Drehrichtung dieser Wirbel
ist in Abbildung 7.22 mit gelben Pfeile eingezeichnet. Im Diagramm werden durch diese Wirbel perio-
dische Schwingungen hervorgerufen (Abbildung 7.23(b)). Bei der Erstellung des Diagramms wurde die
Division durch ∆t deaktiviert, um auch gegen Ende des Betrachtungszeitraumes noch Wertschwankung-
en verfolgen zu können. Um die Umlaufdauer zu untersuchen wird ein Partikel an einer Stelle verfolgt,
die ein deutliches Oszillieren des FTLE-Wertes im Diagramm aufweist. In Abbildung 7.24 wurden die
Integrationslängen jeweils so gewählt, dass im Diagramm an dieser Stelle ein Minimum vorliegt. Dies
ist jeweils beim Erreichen des Ausgangspunktes der Fall, also nach vollständigen Umdrehungen. Da die
Trajektorien des Particle Tracers durch lineare Abschnitte interpoliert werden und die einstellbaren Zeit-
schritte diskret sind muss hier 1 Zeitschritt vor dem Tiefpunkt sowie 1 Zeitschritt nach dem Tiefpunkt
untersucht werden. Falls diese weiter vom ursprünglichen Startpunkt entfernt sind als die Position am
Tiefpunkt, so kann die Position am Tiefpunkt als vollständige Umdrehung angesehen werden. Nach der
5. Umdrehung wurde am verfolgten Partikel eine Integrationslänge von ttracer = 1.728s ermittelt. Die
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(a) Zuerst abfallen um 4 über 10 slices, dann ansteigen um 0,1 über 10 slices. (b) Zusätzlich wurde ein Partikel
eingestreut, der den Peak nach
unten verdeutlicht.

(c) Zuerst abfallen um 4 über 20 slices, dann Ansteigen um 3,1 über 20 slices. (d) FTLE-Bild zu Abbildung
7.21(c).

Abbildung 7.21: Verknüpfung der Detektion abfallender und ansteigender Werte.
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(a) Für die Betrachtung des Diagramms selektierter
Bereich.

(b) Vergleich der Umlaufzeiten: im Wirbelzentrum ist
die Umlaufzeit kürzer.

Abbildung 7.22: Drehrichtung und Umlaufzeiten eines Wirbels des QuadGyre-Datensatzes.

Umlaufdauer des Teilchens beträgt somit tr = 1.728s
5 In Abbildung 7.22(b) ist anhand der verfolgten

Partikel sichtbar, dass die Umlaufdauer im Zentrum des Wirbels geringer als am Rand des Wirbels ist.
Im Diagramm äußert sich dies durch ein Auseinanderdriften der Position der Tiefpunkte: Zum Zeit-
punkt der Abbildung 7.24(b) fallen noch alle Tiefpunkte auf die gleiche Position auf der Z-Achse. Beim
fünften Wirbel (Abbildung 7.24(j)) hingegen ist der Zeitpunkt, zu dem der Tiefpunkt auftritt bereits je
nach Position des Teilchens deutlich früher oder später.
Beim Clustering fallen Kurven mit ähnlichem Auftrittszeitpunkt des Tiefpunktes in das gleiche Cluster.
Hierdurch bilden sich beim Clustering kreisförmige Ringe als Clusterform aus.

(a) Für die Betrachtung des
Diagramms selektierter Bereich.

(b) Periodische Schwingungen im Diagramm.

Abbildung 7.23: Untersuchung des Diagramms eines Wirbels.
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7.9.1 FFT

In Abbildung 7.26 wird die Fourier-Transformierte des FTLE-Werteverlaufs betrachtet. Mittels Zoom
ist der Betrachtungsbereich des Diagramms in Abbildung 7.25(b) auf das erste Viertel beschränkt. Die
Frequenzen sind im Diagramm aufsteigend von links nach rechts angeordnet. Der deutliche Peak bildet
sich durch das zyklische Steigen und Fallen des FTLE-Wertes aufgrund der Rotation im Wirbel aus.

(a) Gewählter Betrach-
tungsbereich des QuadGyre-
Datensatzes.

(b) Betrachtung des Frequenzspektrums des Bereiches aus Abbildung
7.25(a).

Abbildung 7.25: Betrachtung der Fourier-Transformierten.

Wenn wie in Abbildung 7.25(b) nur ein kleines Gebiet selektiert wird, ist sind die Umlaufdauer aller
Teilchen ähnlich. Wird jedoch ein größerer Bereich nahe des Wirbelzentrums gewählt, fallen Partikel
mit unterschiedlicher Umlaufdauer in diesen Bereich. Das Frequenzspektrum enthält mehrere, weniger
scharf begrenzte Peaks (Abbildung 7.26(b)). Clustering führt hier zu einer Gruppierung der Partikeln mit
ähnlicher Umlaufdauer. Aus diesem Grund bilden sich in Abbildung 7.26(b) kreisförmige Cluster aus.
Beim Bouyancy-Datensatz hingegen herschen viele Verwirbelungen, die zu einem chaotisch wirkenden
Frequenzspektrum führen. Erwartungsgemäß liefert Clustering hierauf eine sehr verrauschte Clusterauf-
teilung, dies ist in den Abbildungen 7.26(c) und 7.26(d) ersichtlich.
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(a) Gewählter Betrachtungs-
bereich des QuadGyre-
Datensatzes. Die 4 Cluster
bilden kozentrische Kreise.

(b) Betrachtung des Frequenzspektrums des Bereiches aus Abbildung
7.26(a).

(c) Im Bouyancy-Datensatz
sind die Cluster weniger
zusammenhängend.

(d) Betrachtung des Frequenzspektrums des Bereiches aus Abbildung
7.26(c).

Abbildung 7.26: Betrachtung der Fouriertransformierten und Clustering.



(a) 1. Umdrehung. (b) Periodische Schwingungen im Diagramm.

(c) 2. Umdrehung. (d) Periodische Schwingungen im Diagramm.

(e) 3. Umdrehung. (f) Periodische Schwingungen im Diagramm.

(g) 4. Umdrehung. (h) Periodische Schwingungen im Diagramm.

(i) 5. Umdrehung. (j) Periodische Schwingungen im Diagramm.

Abbildung 7.24: Untersuchung der Tiefpunkte im Diagramm.
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Kapitel 8

Auswertung

8.1 Strömungsdatensätze

Strömungsdatensätze können entweder analytisch oder in Form von diskretisierten Werten auf einem
Gitter vorgegeben werden. Die Wahl der Speicherungsmethode hängt maßgeblich von der Herkunft
der Daten ab - analytische Simulationsdaten können sowohl als Formel gespeichert werden als auch in
diskrete Werte umgewandelt werden. Die Umwandlung von Gitterbasierten Daten einer Simulation in
ein analytische Form ist jedoch nur durch Approximation und Interpolation (z.B. durch lineare Interpo-
lation oder Bézierkurven) möglich - und ergibt in vielen Fällen unhandlich große Gleichungssysteme.

8.1.1 Analytisch vorgegebene Strömungsdatensätze

Bei analytischer Vorgabe eines Strömungsdatensatzes wird der Geschwindigkeitsvektor ~v(~P , t) eines
Teilchens an der Position P zum Zeitpunkt t mit Hilfe eines Gleichungssystems vorgegeben. Diese
Vorgehensweise ist nur für simulierte Strömungsfelder verwendbar, da bei Messungen diskrete Mess-
werte statt einer Gleichung vorliegen. Der Vorteil eines analytischen Datensatzes liegt darin, dass keine
Interpolation zwischen Messwerten notwendig ist. Problematischer ist allerdings die Einbindung solcher
Datensätze in das Auswertungsprogramm, da der Datensatz entweder bereits zum Zeitpunkt des Com-
pilierens in den Quelltext eingebunden werden muss - oder ein Interpreter für mathematische Formeln
verwendet werden muss. Analytische Datensätze wurden hier lediglich zur Validierung verwendet und
für diesen Verwendungszweck fest in den Quelltext einprogrammiert. Die zur Auswertung verwendeten
analytisch erstellten Datensätze wurden auf einem karthesischen Gitter mit 41x41 Punkten diskretisiert.

DoubleGyre Auf einem 41x41x321 großen
Feld werden 2 Wirbel simuliert.
Die Formel zur Erstellung des
Datensatzes lautet ~v(x, y, t) =(
−πA sin(πf(x, t)) cos(πy)

πA cos(πf(x, t)) sin(πy) dfdx

)
mit

f(x, t) = a(t)x2 + b(t)x
a(t) = εsin(ωt)
b(t) = 1 − 2εsin(ωt) und stammt aus
[SLM05]. Als Paramter wurden ε = 0.25
und ω = 2π gewählt. In dieser Abbildung
beträgt T0 = 1.0sec, ∆t = 0.81sec.
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QuadGyre Vierfacher Wirbel.
Der Datensatz wurde mit der gleichen
Formel wie der DoubleGyre erstellt,
allerdings wurde die y-Achse auf
einem Bereich von [0..2] statt [0..1]
skaliert. Für die Darstellung wurde wie
beim DoubleGyre T0 = 1.0sec und
∆t = 0.81sec verwendet.

8.1.2 Strömungsdatensätze auf regulären Gittern

Die vorliegenden Datensätze liegen in einem Dateiformat vor, das diskrete Werte auf einem regulären
Gitter beinhaltet. Prinzipiell sind auch andere Datensatzformen denkbar: Beispielsweise könnte statt
des regulären Gitters ein an Regionen mit komplexem Strömungsverhalten feiner aufgelöstes Gitter
verwendet werden, um dort die Strömungsdaten detaillierter erfassen zu können. Auch wäre ein rundes
statt eines rechteckigen Gebietes denkbar - diese Möglichkeiten werden hier jedoch nicht behandelt, es
wird stets ein reguläres Gitter mit equidistanter Unterteilung angenommen.

Bouyancy Der von Sadlo in [SW10] verwendete
Datensatz simuliert eine geschlossene
Kammer, in der ein Gas angeregt durch
unterschiedliche Temperaturniveaus
zirkuliert. In der Mitte dieser Kammer
befindet sich ein für das Gas nicht
durchdringbares Hindernis.
Die Größe des Datensates beträgt 41x41
Einträge in x-/y-Richtung und 321 Zeit-
schritte. Abgebildet ist der Datensatz
zum Zeitpunkt T0 = 4.5sec mit einer
Integrationslänge von ∆t = 0.8sec.

8.1.3 Datensatz: elektrisches Feld

Bei diesen Datensätzen wird die Wirkung eines elektrischen Feldes auf eine Probeladung simuliert.
Zwischen im Raum verteilten Punktladungen bildet sich ein elektrisches Feld aus. Es wurden zwei
positive und eine negative Punktladung verwendet. Die Probeladung hat eine negative Ladung von
qprobe = 10e−. 1

Beim Eletrco3-Datensatz werden 1 negative und 2 positive Punktladungen auf einer 2-dimensionalen
Ebene platziert. Die positiven Ladungen sindQ1 undQ2 mit q1 = 400C und q2 = 200C. Diese befinden
sich bei den Koordinaten ~PQ1 =

(
1.01cm|1.01cm

)
bzw. ~PQ2 =

(
8.01cm|1.01cm

)
. Die Negative

Punktladung Q3 an Position ~PQ3 =
(
7.01cm|8.01cm

)
ist mit q3 = −200C geladen. Bei der Erstellung

1e− ist die Konstante für die Ladung eines Elektrons, wird in Coulomb angegeben und beträgt e− ≈ −1.60E−19C [NIS].
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weiterer Felder wurde die Position der Punktladungen, deren Anzahl und Ladung variiert.
Die Kraft, die zwischen Probeladung und einer Ladung Qn wirkt, wird mit Hilfe der Coulombschen
Gesetze [MIT10] berechnet und ist durch die Formel

~Fprobe,n =
qprobe ∗ qn

4πε0εr

Pprobe − Pn
|Pprobe − Pn|3

(8.1)

beschrieben. Die resultierende Kraft unter Berücksichtigung aller 3 Punktladungen wird mittels Super-
position ermittelt:

~Fprobe,res =

3∑
n=1

~Fprobe,n (8.2)

~Fprobe,res wird für jede Gitterzelle im Datensatz berechnet. Hierfür wird die Position der virtuellen
Probeladung auf den jeweiligen Gitterpunkt gesetzt und die resultierende Kraft ermittelt. Es ist zweck-
mäßig, die Koordinaten der Punktladungen nicht exakt auf einen Gitterpunkt des Datensatzes zu legen,
da sonst |Pprobe−Pn|3 = 0 wird und dies in Gleichung 8.2 eine Division durch 0 erzeugt. Dies wiederum
bringt ein unerwünschtes NaN im erstellten Datensatz mit sich, welches bei der Darstellung im FTLE
ein schwarzes Kästchen zur Folge hat, da jeder Zugriff auf diese Strömungsdatensatz-Zelle einen Fehler
hervorruft.

(a) Ungünstige Position der Punktladungen
direkt auf Gitterzellen.

(b) Günstigere Wahl der
Punktladungspositionen.

Abbildung 8.1: Positionierung der Punktladungen bezüglich des Strömungsdatensatzgitters.

Folgende Datensätze wurden erstellt:
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Electro1 Auf der linken Seite befindet sich eine
positiv Ladung, auf der rechten Seite
eine negative. Zwischen den beiden
Ladungen befindet sich eine weitere
negative Ladung. Somit wird eine negative
Probeladung, die von der rechten zur
linken Punktladung gezogen wird, von
der mittleren Punktladung zusätzlich
abgestoßen.

Electro2 Im Gegensatz zum Electro1-Datensatz sind
zur Ablenkung 2 positive Punktladungen
angebracht. Durch die zusätzliche
Anziehung zu diesen Punktladungen
kann bei der Verfolgung eines Partikels
von rechts nach links ein temporärer
Anstieg des FTLE-Wertes verzeichnet
werden.

Electro3 Im oberen Bereich befindet sich eine
negative Ladung, im unteren Bereich
sind 2 positive Punktladungen. Bei der
Verfolgung der Trajektorie negativer
Probeladungen kann die Ausbildung
eines Grenzberechs zwischen den beiden
positiven Ladungen beobachtet werden.
Im Detail wird dies in Abschnitt 8.4
behandelt.

8.1.4 Mit Matlab als partielle Differentialgleichung erstellte Datensätze

Matlab verfügt über eine GUI zur grafischen Eingabe und Visualisierung von partiellen Differential-
gleichungen, der Partial Differential Equation Toolbox. Dieses Tool ist in Abbildung 8.2 abgebildet
und dient der Lösung partieller Differentialgleichungen. Mit der Erstellung von Diffusionsgleichungen
können bei Betrachtung des Gradientenfeldes jedoch auch Fluid-ähnliche Bewegungen simuliert werden.
Bei der verwendeten Version 7.12.0 von Matlab kann diese GUI mit dem Befehl pdetool aufgerufen
werden. Mit Hilfe der Maus können Ellipsen, Rechtecke und Polygone plaziert werden - die Kanten
dieser Primitive lassen sich zu Randbedingungen der partiellen Differentialgleichung modellieren.
Als Bedingungstyp stehen Neumann- und Dirichletbedingung zur Verfügung. Die Neumann-Bedingung
ist zur Modellierung undurchlässiger Hindernisse geeignet, an der Kante des Hindernisses wird ein
Gradient von 0 erzwungen, wass bedeutet dass weder Teilchen in das Hindernis gelangen, noch welche
aus dem Hindernis ausströmen. Die Dirichlet-Bedingung hingegen ist zur Modellierung der Feldkanten
geeignet, der Parameter „c“ entspricht der Partikelkonzentration, die an diesen Stellen herrscht. Berech-
net wird die Lösung der partiellen Differentialgleichung auf einem Dreiecksgitter. Zur Verwendung in
dem für diese Diplomarbeit erstellten Programmes müssen die Daten noch auf ein kartesisches Gitter
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Abbildung 8.2: Partial Differential Equation Toolbox in Matlab: grafische Eingabe und Visualisierung
von partiellen Differentialgleichungen.

umgerechnet und in das für das Auswertungsprogramm erforderliche Format konvertiert werden. Die
Umrechnung und Konvertierung geschieht mit Hilfe eines von Markus Üffinger zu Verfügung gestellten
Matlab-Scripts.
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Wing Nachbildung eines NACA6412
Tragflächenprofils [AID11]. Auf
der linken Seite wurde eine hohe
Partikelkonzentration modelliert, sodass
eine Strömung von links nach rechts
vorliegt. Dargestellt ist T0 = 0s, ∆t = 1s.

DoubleWing Um mehrmaliges Ansteigen und Abfallen
des FTLE-Wertes untersuchen zu können
wurden 2 NACA6412-Tragflächen
hintereinander modelliert. Dargestellt
ist ebenfalls T0 = 0s, ∆t = 1s.

Bottleneck An der Engstelle sinken die FTLE-Werte
ab und steigen kurz dahinter wieder an. Die
Darstellung erfolgte hier mit T0 = 0s und
∆t = 0.1s

Bottleneck Assymetric Gleiche Eigenschaften wie der Bottleneck-
Datensatz, allerdings ist die untere Spitze
um 10% des Abstands zwischen oberer
und unterer Hindernisspitze nach rechts
verschoben.
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Circle Umströmen eines kreisförmigen
Hindernisses. Das FTLE-Bild wurde
mit T0 = 0s, ∆t = 0.1s erzeugt.

Square Umströmen eines Quadrates. Die höchste
Konzentration wurde auf der linken Seite
vorgegeben, sodass sich ein Fluss von
links nach rechts einstellt. Parameter zur
Darstellung waren hier T0 = 0s und ∆t =
0.1s

8.2 Circle-Datensatz

Die Trajektorie eines direkt vor dem Hindernis gestarteten Partikels ist Abbildung 8.3(a) bis 8.3(h)
dargestellt. Zum Zeitpunkt ∆t = 0.075s ist ein Absinken des FTLE-Wertes zu erwarten, jedoch steigt
der Wert kontinuierlich weiter. Ursache ist ein Problem bei der Integration in der Nähe des Hindernisses:
Da innerhalb des Hindernisses die Strömung konstant ~v = ~0 ist endet die Bewegung eines Partikels,
sobald er das Hindernis berührt. Eine Lösung wäre die Modifikation des Integrators: Die Hindernisse
müssten durch ein Flag bzw. einen Eintrag von NaN (Not a Number) im Strömungsdatensatz gekenn-
zeichnet werden. Falls ein Partikel nach der Integration in ein so markiertes Gebiet eintritt wird es vom
Integrator auf die letzte Position außerhalb des Hindernisses zurückgesetzt.
Das Clustering auf einem Bereich neben dem Hindernis liefert homogene Cluster (Abbildung 8.4(b)). Es
wurde darauf geachtet, dass weder einzelne Partikel bereits die Grenzen des Datensatzes überschreiten
noch Partikel einbezogen werden, die am Hindernis stehen bleiben. Abbildung 8.4(c) und Abbildung
8.4(e) zeigen die Diagramme mit dem Verlauf der FTLE-Werte. Die in Abbildung 8.4(d) und Abbil-
dung 8.4(f) gesetzten Particle Tracer sind auch in den dazugehörigen Diagrammen eingezeichnet. Die
Diagramme beinhalten jeweils nur die Kurven der FTLE-Werte, die in dieses Cluster fallen. Bei dem
Cluster, dass am weitesten vom Hindernis entfernt ist, findet lediglich ein gleichmäßiger Anstieg der
Werte statt. Die im grün gefärbten Cluster liegenden Werte steigen hingegen deutlich stärker an und
fallen hinter dem Hindernis wieder leicht ab. Die Kurven der FTLE-Werte haben eine geringe Streuung,
es sind keine Ausreißer feststellbar.
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(a) ∆t = 0.034s: Anstieg des FTLE-Wertes durch Separation am
Hindernis.

(b) FTLE und Trajektorien zu
Abbildung 8.3(a).

(c) ∆t = 0.05s: Ein Partikel (hellgrün) tangiert den Rand des
Hindernisses und bleibt dort stehen.

(d) FTLE und Trajektorien zu
Abbildung 8.3(c).

(e) ∆t = 0.075s: die Trajektorie des roten Partikels endet ebenfalls. (f) FTLE und Trajektorien zu
Abbildung 8.3(e).

(g) Bei ∆t = 0.097s bewegt sich nur noch 1 Partikel. (h) FTLE und Trajektorien zu
Abbildung 8.3(e).

Abbildung 8.3: Trajektorie von Partikeln im Circle-Datensatz.



8.2. CIRCLE-DATENSATZ 63

(a) Darstellung des FTLE-Werteverlaufs für alle 4 Cluster aus Abbil-
dung 8.4(b).

(b) Anordnung der 4 Cluster
8.4(a).

(c) Untersuchung des dem Hindernis am nächsten liegenden
Clusters. In hellgrau sind die FTLE-Werte der verfolgten Partikel
hervorgehoben.

(d) FTLE und Trajektorien zu
Abbildung 8.4(c).

(e) Untersuchung des entfernteren Clusters. (f) FTLE und Trajektorien zu
Abbildung 8.4(e).

Abbildung 8.4: Clustering im Circle-Datensatz.
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8.3 Bouyancy-Datensatz

Am Beispiel des Bouyancy-Datensatzes können turbulente Regionen mit starken Verwirbelungen un-
tersucht werden. Die Unterschiede im Verlauf der FTLE-Werte zwischen Bereichen mit homogenener
Strömung und verwirbelten Gebieten sind im Diagramm klar zu unterscheiden: Abbildung 8.5(a) zeigt
den Verlauf im Zentrum eines Wirbels. Im Diagramm liegen die einzelnen Kurven bis ∆t = 2.0s sehr
eng beieinander. Erst dahinter divergieren die Kurven stärker, da die Trajektorien einzelner Partikel in
verwirbeltere Regionen führen. Bei Betrachtung des Gradienten in Abbildung 8.5(c) ist dieser Effekt
ebenfalls ersichtlich.
Eine Betrachtung eines turbulenteren Gebietes zeigen Abbildung 8.5(e) bis 8.5(h). In Abbildung 8.5(f)
ist das betrachtete Gebiet zusätzlich durch einen roten Kreis hervorgehoben. In diesem Gebiet befinden
sich viele, eng beieinander liegende ridges. Im Diagramm (Abbildung 8.5(e)) äußert sich dies durch
eine hohe Divergenz zwischen den Kurven. Der Gradient in Abbildung 8.5(f) lässt zudem erkennen,
dass das Steigen und Sinken der Werte zu unterschiedlichen Zeitpunkten stattfindet. Dies erschwert die
Extraktion von Features: das Clustering neigt zum Rauschen. Je höher die Clusterzahl, desto stärker:
Bei 3 Clustern (Abbildung 8.6(b)) sind diese noch überwiegend zusammenhängend, bei 8 Clustern (Ab-
bildung 8.6(d)) bilden sich sehr ungleichmäßige Ränder aus. In homogenen Regionen wie im Zentrum
eines Wirbels liegen die Kurven im Diagramm am Anfang des Integrationsbereiches zusammen. Da die
Trajektorien einiger Partikel aus der Wirbelmitte jedoch in turbulentere Gebiete führen treten für längere
Integrationszeiten größere Unterschiede zwischen den einzelnen Werteverläufen auf. In Turbulenten
Regionen sind die FTLE-Werte bereits bei geringen Integrationszeiten sehr breit gefächert. Zusätzlich
zu den vielen Minima und Maxima aus Abbildung 8.5(e) ist in Abbildung 8.5(g) zu erkennen, dass
diese für die einzelen Kurven zu verschiedenen Zeitpunkten auftreten. Da das Clustering auf einem
Zeitbereich durchgeführt wird, die Berechnung des FTLE-Bildes jedoch lediglich die Separation zum
Zeitpunkt T0 + ∆t visualisiert können sich unterschiedliche Strukturen ausbilden, die nicht zwingend
vergleichbar sind.
Das Resultat der Detektion fallender und steigender FTLE-Werte ist ebenfalls verrauscht. Aufgrund des
großen Selektionsbereichs in Abbildung 8.6(e) und der damit verbundenen hohen Anzahl Liniensegmen-
te im Diagramm wird automatisch die Anzahl der Liniensegmente reduziert, um die Speicherauslastung
zu senken. Auf die vom Detektionsalgorithmus zur Extraktion fallender und steigender FTLE-Werte
verwendeten Daten hat diese Darstellungsform jedoch keinen Einfluss. Steigende Werte treten überwie-
gend auf ridges auf (Abbildung 8.6(h)). Jedoch konnten keine Parameter ermittelt werden, bei denen die
ridges vollständig markiert werden, jedoch noch keine Punkte, die nicht auf ridges liegen, hinzukommen.
Fallende Werte hingegen befinden sich überwiegend im Bereich zwischen den ridges (Abbildung 8.6(f)).
Um ridges zu detektieren führt jedoch auch eine Invertierung dieser Markierung nicht zum Ziel, da diese
ebenfalls von Rauschen überlagert ist.

8.4 Elektro3-Datensatz

Dieser Datensatz basiert auf eine 2-dimensionale Simulation der Kräfte elektrischer Ladungen und ist in
Abschnitt 8.1.3 beschrieben. Aufgrund der Anziehung der beiden sich im unteren Bereich befindlichen
positiven Ladungen auf die negative Probeladung wird die Probeladung je nach Startpunkt zu einer
der beiden positiven Ladungen advektiert. Hierbei bildet sich eine Grenze zwischen den Partikeln, die
die linke positive Ladung erreichen und Partikeln, deren Trajektorie in der rechten positiven Ladung
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(a) Verlauf der FTLE-Werte in einer homogenen Region im Zentrum
eines Wirbels.

(b) Betrachtetes Gebiet zu Ab-
bildung 8.5(a).

(c) Darstellung des Gradienten. (d) Betrachtetes Gebiet zu Ab-
bildung 8.5(c).

(e) Verlauf der FTLE-Werte (ohne Division durch ∆t) in einer
turbulenten Region.

(f) Betrachtetes Gebiet
zu Abbildung 8.5(e), zur
Hervorhebung rot umrandet.

(g) Darstellung des Gradienten. (h) Betrachtetes Gebiet zu Ab-
bildung 8.5(g).

Abbildung 8.5: FTLE-Werte und deren Gradienten in Gebieten des Bouyancy - Datenstzes.
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(a) Clustering mit 3 Clustern. (b) FTLE und Trajektorien zu
Abbildung 8.6(a).

(c) Clustering mit 8 Clustern. (d) FTLE und Trajektorien zu
Abbildung 8.6(c).

(e) Zeitliche Einschränkung des Gebietes, auf dem nach abfallenden
FTLE-Werten gesucht wird.

(f) FTLE und Trajektorien zu
Abbildung 8.6(e).

(g) Detektion steigender Werte: Zeitbereich. (h) FTLE und Trajektorien zu
Abbildung 8.6(g).

Abbildung 8.6: Clustering und Detektion von fallenden bzw. steigenden Werten im Bouyancy -
Datensatz.



8.4. ELEKTRO3-DATENSATZ 67

endet. Dies verdeutlichen die Particle Tracer in Abbildung 8.7. Zu erkennen ist, dass fast jede Parti-
kelgruppe die gleiche positive Ladung als Ziel hat. Lediglich ein Particle Tracer wurde exakt auf der
Grenze gestartet: Bei dieser Partikelgruppe ist in Abbildung 8.7(d) die Aufteilung in unterschiedliche
Richtungen zu erkennen. Mit sinkender Distanz zur positiven Ladung wird die Beschleunigung des
Partikels immer größer. Dies hat auch einen Anstieg der Separation zur Folge, was in Abbildung 8.8
ersichtlich ist. Bei Abbildung 8.8(h) ist die Division durch ∆t bei der Berechnung des FTLE-Wertes
unterdrückt. Das Gleichbleiben des FTLE-Wertes nach Erreichen der positiven Ladung wird hierdurch
noch besser ersichtlich.
Das Grenzgebiet, in dem sich die Partikel wie in Abbildung 8.7(d) zwischen den beiden positiven
Ladungen aufteilen, kann mittels Clustering sehr gut extrahiert werden. Dies ist in Abbildung 8.9 er-
sichtlich. Das Clustering funktioniert auch bei Veränderung der Größe des Bereiches, auf dem das
Clustering angewendet wird. Es wurden 3 Cluster eingesetzt. Auf der zusammenhängenden Fläche
des grünen Clusters sind Ausreißer, die dem blauen Cluster zugeordnet wurden. Diese entstehen durch
Sprünge im FTLE-Wert, wenn ein Partikel die positive Ladung erreicht. Aufgrund der sehr hohen Strö-
mungsgeschwindigkeit im Datensatz integriert der RK4-Integrator hier teilweise über das Ziel hinaus.
Eine Vergrößerung der Schrittweite des Integrators verstärkt diesen Effekt. Die Schrittweite des RK4-
Integrators kann allerdings nicht beliebig verringert werden, da die Berechnungszeit entsprechend an-
steigt. Die Verwendung eines Integratos mit adaptiver Schrittweite wäre hier vorteilhaft.
Die Detektion der Grenze mittels Clustering ist der Betrachtung des FTLE-Wertes zu einem festen Zeit-
punkt überlegen: Die FTLE-Felder mit verschiedenen Integrationslängen werden in Abbildung 8.10
verglichen. Beim Clustering bildet die ridge ein eigenes Cluster. Die ridge kann auch durch Binäri-
sierung des FTLE-Bildes durch Setzen eines Grenzwertes separiert werden. Allerdings ist hierzu die
Vorgabe eines Grenzwertes sowie der Integrationslänge durch den Benutzer erforderlich (siehe Abbil-
dung 8.10(e)).
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(a) Position der Partikel für ∆t = 0.5s. (b) Position der Partikel für ∆t = 2s.

(c) Position der Partikel für ∆t = 6s. (d) Position der Partikel für ∆t = 15.1s.

Abbildung 8.7: Trajektorien von Partikeln im Elektro3-Datensatz zu unterschiedlichen Zeitpunkten.
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(a) Bei Annäherung an die positive Ladung steigt die Separation. (b) Trajektorien zu Abbildung 8.8(a).

(c) Maximale der Separation kurz vor Erreichen der positiven Ladung. (d) Trajektorien zu Abbildung 8.8(c).

(e) Nach Erreichen des Zentrums der positiven Ladung herrscht geringe Separation. (f) Trajektorien zu Abbildung 8.8(e).

(g) Betrachtung des FTLE-Wertes ohne Division durch ∆t. (h) Trajektorien zu Abbildung 8.8(g).

Abbildung 8.8: Trajektorien von Partikeln im Elektro3-Datensatz zu unterschiedlichen Zeitpunkten.



(a) Durch Clustering wird das Grenzgebiet deutlich. (b) Clustering über ein größeres Gebiet.

Abbildung 8.9: Detektion des Grenzgebiets durch Clustering.



(a) Bei ∆t = 0.5s sind die ridges um die Pole
nur schwach zu erkennen.

(b) Bei ∆t = 0.9s sind die ridges noch getrennt.

(c) Bei ∆t = 3s sind die ridges noch getrennt. (d) Bei ∆t = 12s berühren sich die ridges,
der Kontrast lässt aufgrund der automatischen
Normalisierung jedoch stark nach.

(e) Abbildung 8.10(d) wurde mit Hilfe der
Schwellwert-Funktion eines Bildbearbeitungs-
programms in Schwarzweiß umgewandelt. Die
ridge ist nun deutlich zu erkennen.

(f) Ergebnis des Clusterings aus Abbildung
8.9(b) nochmals zum Vergleich.

Abbildung 8.10: Vergleich der Ausbildung der ridges bei verschiedenen Integrationslängen.
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Kapitel 9

Zusammenfassung

Die Betrachtung der zeitlichen Veränderung des FTLE-Wertes erweitert die Visualisierung der Sepa-
ration nach einem festen Intervall. Bei der Betrachtung des zeitlichen Verlaufs im Diagramm können
markante Stellen bereits identifiziert werden. Durch Transformation der Kurven können weitere Features
extrahiert werden.

Caching der flow map

Das Caching der flow map stellt einen großen Vorteil dar, da es dem Benutzer ein interaktives Verändern
der Integrationslänge erlaubt. Der Benutzer kann sich beim Verändern des Parameters in Echtzeit einen
Eindruck über die Veränderung des FTLE-Bildes verschaffen. Nachteilig ist die Berechnungszeit, die
einmalig für die Vorberechnung der flow map benötigt wird.

Particle Tracer

Weder aus dem FTLE-Wert noch aus dem zeitlichen Verlauf können Aussagen über die Richtung einer
Strömung getroffen werden. Das setzen eines Probepartikels und die Verfolgung dessen Trajektore gibt
diese Information. Die Betrachtung der Nachbarpartikel und deren Separation gibt Aufschluss über die
Vorgänge und hilft zur Erkennung der Ursache einer Werteveränderung.

Gradient

Die Betrachtung des Gradienten des FTLE-Werteverlaufs unterdrückt den Einfluss unterschiedlicher
Startwerte. Dies bietet die Möglichkeit, die Änderung statt dem absoluten Wert zu betrachten und
erleichtert die Erkennung dieser. Auch Clustering auf dem Gradienten liefert gute Ergebnisse.

Clustering

Clustering wird eingesetzt, um Bereiche mit ähnlichem Verlauf der FTLE-Werte zu gruppieren. Gerade
bei einem Datensatz mit einer scharfen Trennkante (siehe Abschnitt 8.4) konnte diese mittels Clustering
besser hervorgehoben werden als durch Betrachtung des FTLE zu einem festen Zeitpunkt. Auf Daten-
sätzen mit vielen Wirbeln und feinen Features liefert Clustering hingegen keine sinnvollen Resultate.



74 KAPITEL 9. ZUSAMMENFASSUNG

Detektion sinkender Werte

Die Detektion sinkender FTLE-Werte dient der Auffindung von Regionen mit sinkender Separation.
Diese treten an Engstellen sowie an der Hinterkante eines modellierten Tragflächenprofils auf. Bei
übersichtlichen Datensätzen liefert dies gute Ergebnisse, bei starken Verwirbelungen schwanken die
Werte jedoch sehr stark, was zur Folge hat, dass die detektierten Bereiche immer weniger zusammen-
hängen und zufällig wirken.

Fourier Transformation

Durch die Transformation der Kurven des FTLE-Werteverlaufs ins Frequenzspektrum können perio-
dische Änderungen anhand eines Auftretens einer dominanten Frequenz beobachtet werden. Dies ist
jedoch nur bei Betrachtung eines einzelnen Wirbels (zum Beispiel aus dem QuadGyre-Datensatz) der
Fall. Bei größeren Betrachtungsbereichen oder anderen Datensätzen ist die Darstellung der Fouriertrans-
formierten zu unübersichtlich, da viele unterschiedlichen Frequenzanteile auftreten.

9.1 Ausblick

Modifikation des Integrators

Bei der Integration der Trajektorien von Partikeln, die sich in der Nähe von Hindernissen befinden
bleiben diese aufgrund zu großer Schrittweiten teilweise am Hindernis stehen. Dieses Problem kann
durch einen abgewandelten Integrationsalgorithmus gelöst werden: Im Strömungsdatensatz werden Hin-
dernisse durch NaN (not a number) statt dem Nullvektor gekennzeichnet. Dadurch kann dieses bei der
Integration erkannt werden. Falls bei der Integration ein Partikel in ein mit NaN belegtes Feld advektiert
wird, so muss er auf das nächstgelegene gültige Feld zurückgesetzt werden.

Adaptive Integrationslänge

In dieser Arbeit wird ein Runge-Kutta Integrator 4. Ordnung mit fester Schrittweite verwendet. Die
Schrittweite wird vom Benutzer als Parameter vorgegeben. Es hat sich gezeigt, dass die Größenordnung
dieses Parameters je nach Datensatz stark variiert. Bei einer adaptiven Integrationslänge muss der Be-
nutzer lediglich einen maximalen Fehler als Parameter vorgeben. Bei Datensätzen, die große Flächen
mit geringer Strömung enthalten kann ein Integrationsverfahren mit adaptiver Schrittweite auch Perfor-
mancevorteile bieten, da weniger Rechenschritte durchgeführt werden.

Weitere Auswertungen auf der Zeitachse

Die hier beschriebene Implementierung detektiert Bereiche anhand festgelegter Kriterien im FTLE-Feld.
Eine denkbare Erweiterung ist, die Features bereits vorab auf der Zeitachse zu markieren. Hierbei steht
nicht im Vordergrund, an welcher Position im FTLE-Feld das Kriterium erfüllt wird sondern wann auf
der Zeitachse. Auch Diagramme, welche die Variation eines Parameters eines Selektionskriteriums der
Anzahl selektierter Bereiche gegenüberstellt, können interessante Informationen beinhalten.
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Alternative Clustering-Algorithmen

In dieser Arbeit wurde k-Means eingesetzt. Bereits die Modifikation der Abstandsmetrik beeinflusst die
Zuordnung der Punkte bzw. Kurven zum jeweiligen Cluster. Auch die Untersuchung mit Clusteringal-
gorithmen, die unterschiedlich auf Verschiebung oder Streckung entlang der Zeitachse reagieren bieten
sich an.

Wavelet-Analsye

Die verwendete Fourier-Transformation dient der Betrachtung im Frequenzbereich, wobei als Basis
Sinus- und Cosinusschwingungen verwendet werden. Als Alternative bietet sich die Wavelet-Analyse
an. Hier kann die Form der Wavelets auch dem erwarteten Verlauf der FTLE-Werte angepasst werden.
Es bieten sich Untersuchungen an, welchen Einfluss das Filtern bestimmter Frequenzbereiche hat und
ob so zum Beispiel das Rauschen beim Clustering oder der Detektion steigender oder fallender Werte
verringert werden kann.

Anwendung in der Physik

Bei dieser Auswertung wurden Datensätze erstellt, die bestimmte Eigenschaften wie fallende FTLE-
Werte oder zyklische Muster aufweisen. Diese Datensätze sind jedoch stark idealisiert. Um den Nutzen
in realistischer Umgebung prüfen zu können sollten Datensätze physikalischen Ursprungs wie zum
Beispiel Messungen aus einem Windkanal verwendet werden. Hier muss untersucht werden, inwiefern
sich Ungenauigkeiten bei der Messwerterfassung und der Auftritt gesuchter FTLE-Werteänderungen
auseinanderhalten lassen.
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