Institut fiir Softwaretechnologie
Universitat Stuttgart
Universitatsstral3e 38
D-70569 Stuttgart

Diplomarbeit Nr. 3135

Annotierung von Use Cases mit
Usability Patterns

Ruslana Brull
Studiengang: Softwaretechnik
Prufer: Prof. Dr. rer. nat. Jochen Ludewig
Betreuer: Dipl.-Inf. Holger Réder
begonnen am: 07. Februar 2011
beendet am: 09. August 2011

CR-Klassifikation: D.2.1,H.5.2, D.2.2

Zusammenfassung

In den letzten Jahren erlangte die Usability steigende Bedeutung im Softwareentwicklungs-
prozess. Bisher wird wahrend des Entwicklungsprozesses das Hauptaugenmerk auf die
funktionalen Anforderungen gelegt. Dabei werden die nichtfunktionalen Anforderungen
sowie die Usability der Software leicht vernachldssigt. Aufgrund des unscharfen Konzep-
tes der Usability werden viele Usability-Anforderungen wahrend der Entwicklung einer
Software nicht einheitlich beachtet. Vielmehr wird unter Usability nur die Gestaltung der
graphischen Oberfldche verstanden, obwohl bestimmte Aspekte der Usability einen direkten
Einfluss auf die Funktionalitdt der Software haben. Daher besteht die Notwendigkeit, diese
bereits in der frithen Entwicklungsphase mit zu beriicksichtigen. Um die eben genannten
Aspekte in die Anforderungsspezifikation einzubinden, kann das Konzept der Usability
Patterns angewandt werden. Usability Patterns beschreiben die funktionalen Aspekte, die
nachweisbar die Usability von Software verbessern.

Das Ziel dieser Arbeit liegt in praktischer Anwendung, Bewertung und Verbesserung des
Konzeptes der Aufnahme der Usability Patterns in die Anforderungsspezifikation. Dies wird
erreicht, indem die Use-Case-Struktur mit Elementen erweitert wird, die die Annotierung
mit Usability Patterns erlauben. Der Prozess der Erstellung einer erweiterten Use-Case-
Spezifikation wurde durch die Entwicklung des Use-Case-Editors Tulip, der die Anwendung
von Usability Patterns unterstiitzt, optimiert. Wahrend der einzelnen Phasen der Entwicklung
von Tulip wurde das Konzept von Usability Patterns angewandt und bewertet.

Abstract

In recent years usability is the area of focus in software development. In modern practice
mainly functional requirements are considered during the development phase and the
usability aspects together with other non functional requirements get neglected. Due to the
fussy nature of the usability concept it is not followed consistently during the development
phase. It is widely known only as a User Interface Design, nevertheless, particular usability
aspects have a direct influence on the functional aspects of software. Thus, this presents a
need to incorporate these usability aspects into the early development stages. Integrating
above mentioned into the requirements specification can be conducted through a method
called Usability Patterns. These Patterns describe functional aspects which are known to
improve the usability of software.

The scope of work in this thesis is to evaluate and improve the concept of integrating
Usability Patterns into use case based functional requirements specification. This is achieved
by extending the use case structure with elements which allow their annotation with Usability
Patterns. The process of creating an extended use case specification has been optimized by
the development and using of a use case editor tool Tulip which supports the application of
usability patterns. Throughout the development process of Tulip the concept of Usability
Patterns has been applied and evaluated.

Inhaltsverzeichnis

Abbildungsverzeichnis
Tabellenverzeichnis

1 Einleitung
1.1 Motivation
1.2 Aufgabenstellung L L
1.3 Aufbauder Arbeit
1.4 Sprachliche Konvention

2 Grundlagen
21 Usability
2.1.1 Usability-Merkmale,
2.1.2 Usability Engineering
2.1.3 Definition der Usability-Anforderungen
2.2 Usability Patterns
2.2.1 Funktionale Usability-Merkmale
2.2.2 Aufbau der Usability Patterns
2.2.3 Usability-Pattern-Katalog
2.2.4 Usability Patterns im Entwicklungsprozess
23 UseCases
23.1 AufbauvonUseCases
2.3.2 ErstellungvonUseCases
2.4 Anforderungsspezifikation im Entwicklungsprozess.

3 Konzept der Erweiterung von Use Cases
3.1 Erstellung einer erweiterten Spezifikation
3.1.1 Auswahl der Usability Patterns aus dem Katalog
3.1.2 Spezifikation der Anwendung von Usability Patterns
3.1.3 Erstellung der Annotationen
3.2 Erweiterung der Use-Case-Struktur
3.3 Spezifikationsschablonen in Usability Patterns
3.4 ErgdnzungvonUseCases

4 Werkzeugunterstitzung fiir das Konzept
4.1 Anforderungen an das Werkzeug,
4.1.1 VerwaltungvonUseCases

11
13

15
15
15
16
17

19
19
20
22
25
25
25
26
27
28
28
29
31
32

33

33
34
34
34
35
36
36

41
41
42

4.1.2 Anzeige der Usability Patterns im Katalog

4.1.3 Spezifikation der Anwendung von Usability Patterns
4.1.4 Annotierung von Use-Case-Elementen
4.1.5 Export der annotierten Use Cases
4.2 Evaluierung existierender Werkzeuge
421 Case Complete 2011 o
422 HeRA
423 UCEd.
424 Remas
4.2.5 Zusammenfassung
4.3 Evaluierung einer Erweiterungsmoglichkeit.

Realisierung von Tulip

5.1 Erstellung der Spezifikation 0 L.
5.2 Erweiterung der Spezifikation um Usability Patterns
5.2.1 Auswahlder Patterns
5.2.2 Spezifizierung der Anwendung der Patterns
5.2.3 Annotierung der Use-Case-Elemente
5.3 Entwurf und Implementierung Lo L L oL
53.1 Datenmodell
53.2 Komponenten Lo oo
5.3.3 Externe Bibliotheken oL
5.4 Systemtest
Evaluation von Tulip
6.1 EinsatzvonTulip
6.1.1 Spezifizierung der UseCases
6.1.2 PatternBrowser o o oL
6.1.3 Spezifizierung der Anwendung der Patterns
6.1.4 AnnotierungderUseCases
6.1.5 Generierung eines Reports
6.2 Bewertung von Tulip als Spezifikationswerkzeug
6.3 Bewertung der Qualitdt der Software
6.3.1 Zuverldssigkeit L o oo
6.3.2 Niutzlichkeit
6.3.3 Bedienbarkeit Lo
6.3.4 Prifbarkeit
6.3.5 Anderbarkeit
6.3.6 Portabilitat.
Bewertung des Konzeptes ,,Usability Patterns®
7.1 Anforderungsanalyse L L.
7.2 Spezifikation L L
7.3 Entwurf und Implementierung o 0L

7.4 Testphase

7.5 Zusammenfassung Lo L
8 Zusammenfassung und Ausblick

Literaturverzeichnis

Abbildungsverzeichnis

2.1
2.2
2.3
2.4
2.5

3.2

4.1
4.2
43
44

5.1
5.2
53
54

6.1
6.2
6.3

6.5
6.6

Usability im Entstehungsprozess einer Software 20
Optimierung der Usability-Aspekte im Entwicklungsprozess 21
Auswirkung der Usability-Techniken 23
Usability Pattern ,,Abbruch” 27
Einordnung der Usability Patterns 28
Erweiterung eines Use Cases mit einem Usability Pattern (Angelehnt an

[Rod1ab]) . . . o o 35
Spezifikationsschablonen im Usability Pattern ,Gute Standardwerte” 37
Eingabemaske fiir Use Cases in CaseComplete 45
Eingabemaske fiir Use Casesin HeRA 46
Eingabemaske fiir Use Casesin UCEd 47
Bearbeitung von Use Casesinremas 49
Use Case ,Projekt offnen” 54
Annotierter Use Case ,Projekt 6ffnen”, 59
Datenmodell von Tulip 60
Architekturvon Tulip oo 61
Projektbaum und Anzeige eines Use Casesin Tulip 66
Pattern Browserin Tulip 67
Spezifikation der Anwendung fiir Usability Pattern , Direkte Validierung” in

Tulip 68
Bearbeiten eines Use-Case-Ablaufsin Tulip 69
Ausschnitt aus dem Use Case ,System starten” im RTF-Report 70
Qualitdtsbaum [LL10] 72

11

Tabellenverzeichnis

2.1

4.1
5.1
6.1

Use Case ,System starten” 30
Annotierter Use Case ,System starten” 38
Vergleich der Use Case Editoren 50
Spezifikation der Anwendung der Usability Patterns in Tulip 58
Spezifizierung der Use Cases 66

13

1 Einleitung

1.1 Motivation

Usability-Anforderungen werden im Softwareentwicklungsprozess oft vernachldssigt. Wenn
tiberhaupt, werden Mafinahmen zur Verbesserung der Usability erst spdat und oft in einem
separaten Prozess durchgefiihrt. Zudem wird unter Usability hdufig nur die Gestaltung der
Benutzungsoberfliche verstanden, der Einfluss der funktionalen Aspekte auf die Usability
wird dabei nicht beachtet. Dies kann dazu fiihren, dass die Usability-Anforderungen erst
nach der Implementierung der Software auftauchen, z.B. bei der Ul-Gestaltung oder in der
Testphase. Dabei ist die Umsetzung dieser Anforderungen oft nicht mehr moglich oder mit
einem groflen Aufwand verbunden. Dies kann verhindert werden, indem man die Usability-
Anforderungen bereits in fritheren Phasen des Entwicklungsprozesses berticksichtigt, etwa
bei der Anforderungsanalyse und -spezifikation.

Das Konzept der Usability Patterns sieht vor, dass Usability-Merkmale, die die Struktur und
Funktionalitat der Software beeinflussen, bereits bei der Anforderungsanalyse berticksichtigt
werden und als Erweiterungen der funktionalen Anforderungen in die Spezifikation der
Software einfliefSen. Dadurch werden diese strukturiert sowie einheitlich beschrieben und
konnen beim Entwurf, der Implementierung und dem Testen der Software berticksichtigt
werden.

Usability Patterns beschreiben bewéhrte Usability-Merkmale, die die Usability der Software
verbessern. Jedes Usability Pattern enthdlt Einweisungen zur Spezifikation des entsprechen-
den Usability-Merkmals. Patterns werden mittels Annotierung der Use Cases spezifiziert.
Dafiir miissen Use Cases um entsprechende Elemente erweitert werden. Fiir den praktischen
Einsatz einer solchen Annotierung erscheint eine Werkzeugunterstiitzung notwendig, existie-
rende Werkzeuge zur Erstellung der Use Cases bieten jedoch keine solche Unterstiitzung.

1.2 Aufgabenstellung

Im Rahmen dieser Arbeit soll das Konzept der Verwendung von Usability Patterns im
Softwareentwicklungsprozess angewendet, evaluiert und verbessert werden. Ziel der Arbeit
ist die Entwicklung eines Use-Case-Editors, der den Einsatz der Usability Patterns unterstiitzt.
Zu den Kernfunktionalitidten des Editors zdhlen insbesondere:

e Verwaltung von Use-Case-Beschreibungen

e Anzeige und Auswahl von Usability Patterns aus einem Katalog

15

1 Einleitung

o Spezifizierung von Usability-Merkmalen durch Annotierung von Use-Case-Elementen
entsprechend den Anweisungen in den Usability Patterns

e Export der annotierten Use Cases

Im Rahmen der Entwicklung des Use-Case-Editors sollen fiir diesen geeignete Usability
Patterns ausgewdhlt und die entsprechenden Usability-Merkmale spezifiziert werden. Es
sollen auch die fiir die Spezifizierung notwendigen Erweiterungen der Use-Case-Struktur
modelliert werden. Die Verwendung eines existierenden Use-Case-Editors als Ausgangspunkt
tir die weitere Entwicklung soll im Rahmen dieser Arbeit gepriift und ggf. in Erwdgung
gezogen werden. Fiir die Implementierung soll die Programmiersprache Java verwendet
werden.

1.3 Aufbau der Arbeit

Kapitel 2 stellt die theoretischen Grundlagen der Arbeit vor. Es werden die Begriffe ,Usabi-
lity” und , Use Case” erldutert sowie ein Uberblick iiber das Konzept , Usability Patterns”
gegeben. Zudem wird auf die Rolle der Anforderungsspezifikation im Softwareentwick-
lungsprozess eingegangen.

Kapitel 3 widmet sich dem Konzept der Erweiterung der Spezifikation und der Use Cases fiir
die Spezifizierung der Usability Patterns. Es werden die Vorgehensweise bei der Erstellung
einer erweiterten Spezifikation sowie die Elemente, um die die Use-Case-Notation erweitert
wird, beschrieben.

In Kapitel 4 werden Anforderungen an das Werkzeug gestellt, das den Entwickler bei der
Erstellung einer erweiterten Spezifikation unterstiitzen soll. Es werden auch existierende
Werkzeuge evaluiert und deren Erweiterungsmoglichkeit beurteilt.

Kapitel 5 beschreibt den Prozess der Realisierung eines Use-Case-Werkzeugs mit Verwen-
dung von Usability Patterns beschrieben.

In Kapitel 6 wird das erstellte Werkzeug einer Evaluierung unterzogen. Es wird der Prozess
der Erstellung einer erweiterten Use-Case-Spezifikation mit Hilfe des Werkzeugs beschrieben
und anschlieffend die Eignung der Software als Spezifikationswerkzeugs sowie die Qualitit
der Software bewertet.

Im 7. Kapitel wird das Konzept , Usability Patterns” anhand der gewonnenen Erkenntnisse
beim Einsatz in einzelnen Phasen des Softwareentwicklungsprozesses evaluiert.

Kapitel 8 bildet mit einer Zusammenfassung der Ergebnisse und einem Ausblick auf mogliche
zukiinftige Schritte, die der Weiterentwicklung des Konzeptes und des Werkzeuges dienen,
den Abschluss der Arbeit.

16

1.4 Sprachliche Konvention

1.4 Sprachliche Konvention

Zum Zwecke der besseren Lesbarkeit wird in dieser Arbeit fiir Rollenbezeichnungen entspre-
chend der sprachlichen Konvention die médnnliche Form verwendet, wie z.B. ,, Entwickler”
oder ,Benutzer”. Es sind jedoch stets Personen beider Geschlechter gemeint.

17

2 Grundlagen

In diesem Kapitel werden die theoretischen Grundlagen dieser Arbeit vorgestellt. Zundchst
wird der Begriff der Usability erldutert und einige Komplikationen aufgezeichnet, die bei der
Erhebung und Dokumentation der Usability-Anforderungen in der Praxis auftreten. Darauf-
folgend werden Usability Patterns vorgestellt, die eine konzeptuelle Grundlage darstellen,
auf der aufgebaut wird. Anschlieend folgt ein Uberblick iiber die Struktur von Use Cases
und deren Rolle im Entwicklungsprozess, da im Rahmen dieser Arbeit deren Erweiterung
um Usability-Merkmale untersucht wird.

2.1 Usability

In dieser Arbeit wird Usability (engl. fiir Benutzbarkeit)' als eine wichtige Teilqualitdt der
Software betrachtet.

Die ISO-Norm 9241-11 [DINo06] definiert Usability bzw. Gebrauchstauglichkeit als

~Das Ausmaf3, in dem ein Produkt durch bestimmte Benutzer in einem bestimmten
Nutzungskontext genutzt werden kann, um bestimmte Ziele effektiv, effizient und zufrie-
denstellend zu erreichen.”

Diese Definition macht deutlich, dass man Usability nicht ausschliefilich als eine Eigenschaft
eines Produktes betrachten kann. Vielmehr ist sie von der Benutzergruppe und deren
Zielen beziiglich der Software abhdngig. Das Empfinden der Benutzer kann man nicht
verallgemeinern. Was einem erfahrenen Benutzer als verstandlich erscheint, kann fiir einen
anderen ohne Vorkenntnisse sehr verwirrend sein. Deswegen muss Usability beziiglich einer
bestimmten Benutzergruppe und deren Ziele bewertet werden.

Usability bestimmt, wie zufrieden die Benutzer mit der Software sind. Somit ist sie auch
fir die Akzeptanz der Software bei den Benutzern und folglich fiir die Vermarktung des
Produktes entscheidend. Eine gute Usability reduziert Fehler der Benutzer im Umgang mit
der Software, was Kosten fiir die Implementierung, Schulung, technische Unterstiitzung
und Wartung reduziert [Kargo]. Eine schlechte Usability kann dagegen dafiir verantwortlich
sein, dass eine Software, die eine gute Qualitdt beziiglich der Funktionalitdt aufweist, auf die
Ablehnung der Benutzer stofst.

Im deutschen Sprachgebrauch hat sich Usability als Begriff durchgesetzt, so dass in dieser Arbeit im Weiteren
ebenfalls Usability den Begriffen , Benutzbarkeit” und ,Gebrauchstauglichkeit” vorgezogen wird.

19

2 Grundlagen

Spezifikation

- Code
(Entwickler)

Softwareprodukt

Usability- /

Anforderungen Ul-Gestaltung
(Designer)

Abbildung 2.1: Usability im Entstehungsprozess einer Software

Ferner werden die einzelnen Merkmale der Usability erldutert und die Techniken vorgestellt,
wie diese optimiert werden konnen.

2.1.1 Usability-Merkmale

Unter Usability-Merkmalen wird oft nur die Gestaltung der Benutzungsoberflache verstan-
den. In diesem Abschnitt wird der Begriff der Usability um weitere Merkmale ausgedehnt,
die ebenfalls zur Zufriedenheit der Benutzer mit der Software beitragen.

Die Abbildung 2.1 zeigt, wie die Usability tiblicherweise in den Softwareentwicklungs-
prozess eingeordnet wird. Die funktionalen Anforderungen werden in einer Spezifikation
festgehalten und von einem Entwickler im Code realisiert. Usability-Anforderungen, wie z.
B. Anordnung der Elemente in Dialogen, Anzahl erforderlicher Klicks, Verstandlichkeit und
Asthetik der Oberflache [RFo7], werden, wenn tiberhaupt, von einem Ul-Designer in einem
separaten Prozess umgesetzt.

Dabei benotigen einige Merkmale, die die Benutzung der Software angenehmer machen,
die zusédtzliche Funktionalitit und Anpassungen in der Struktur der Software. So stellt
z.B. die Undo-Funktion (Moglichkeit, ausgefiihrte Aktionen riickgangig zu machen), eine
zusitzliche funktionale Anforderung dar. Es ist nicht mehr mdoglich, solche Merkmale in

20

2.1 Usability

Anforderungsanalyse Technische Realisierung
Spezifikation
Code
(Entwickler)

Konsistenz \

Softwareprodukt

Erlernbarkeit
Ul-Gestaltung /
Usability-

Anforderungen Ul-Gestaltung
(Designer)

Metapher

Erlernbarkeit

Ubersichtlichkeit

Erlernbarkeit

Abbildung 2.2: Optimierung der Usability-Aspekte im Entwicklungsprozess

einem separaten Prozess zu implementieren, da diese bei Entwurf und Realisierung der
Software vom Entwickler berticksichtigt werden sollen.

Fiir die Akzeptanz der Software ist es auch entscheidend, dass diese die Benutzer optimal
bei der Erreichung ihrer Ziele unterstiitzt. Die Usability der Software kann bereits bei
der Anforderungsanalyse optimiert werden, indem Ziele und Anforderungen der spéteren
Benutzer ermittelt werden. Fehler bei der Anforderungsanalyse konnen dazu fiihren, dass
die spéter entwickelte Software die Benutzer bei der Erledigung ihrer Aufgaben nicht oder
nur unvollstindig unterstiitzt. Solche Mangel lassen sich in der Regel nicht mehr oder nur
mit einem groflen Aufwand beheben.

Somit ergeben sich drei Bereiche im Softwareenteicklungsprozess, in denen man Usability-
Aspekte optimieren kann: Anforderungsanalyse, technische Realisierung und UI-Gestaltung.
Die Abbildung 2.2 zeigt diese zusammen mit einzelnen Usability-Merkmalen auf. Die
Merkmale werden jeweils den Bereichen zugeordnet, in denen sie optimiert werden kénnen.
Dabei wurde folgende Abgrenzung der Usability-Merkmale von [LL10] tibernommen:

e Metapher, Benutzungsmodell: Szenarien der Interaktion mit dem System sollen fiir
die Benutzer intuitiv sein. Am Besten erreicht man dies, indem man ein Schema nimmt,
das dem Benutzer entweder aus dem Alltag oder durch eine andere weit verbreitete
Software bekannt ist. Zum Beispiel verstehen die meisten Benutzer, dass eine rote
Ampel als Warnung eingesetzt wird.

21

2 Grundlagen

e Ubersichtlichkeit: . Alle relevanten Informationen und Elemente sollten so platziert
werden, dass sie leicht erkennbar sind.

e Konsistenz: Ahnliche Inhalte, z.B. eine Warnung tiber eine irreversible Operation des
Benutzers, sollen im ganzen System dhnlich oder gleich dargestellt werden.

e Sicherheit: Es soll sichergestellt werden, dass der Benutzer irrtiimlich keinen irreversi-
blen Schaden anrichten kann, z.B. aus Versehen Daten 10schen, die man nicht mehr
wiederherstellen kann.

e Asthetik: Die Benutzer sollen die Benutzungsoberflache als angenehm empfinden.

e Effizienz: Der Aufwand fiir die Bedienung der Software soll von den Benutzern nicht
als unnotig hoch empfunden werden.

o Erlernbarkeit: Die Benutzer sollen in der Lage sein, den Umgang mit der Software
schnell zu erlernen.

2.1.2 Usability Engineering

Usability Engineering befasst sich mit Methoden und Techniken, die im Laufe des Soft-
wareentwicklungsprozesses angewendet werden, um die Usability des Endproduktes zu
verbessern.

Den Entwicklungsprozess kann man in folgende Abschnitte unterteilen:

1. Anforderungsanalyse: Planung des Projekts, Sammlung der Anforderungen, Model-
lierung der Prozesse, Erstellung des Angebots.

2. Spezifikation: Spezifikation der funktionalen und nichtfunktionalen Anforderungen,
Erstellung von Use Cases.

3. Entwurf und Implementierung: Erstellung der Architektur und Realisierung der
Losung.

4. Evaluation: Komponenten-, Integrations- und Systemtests.

Im Folgenden wird auf die einzelnen Usability-Methoden und -Techniken eingegangen,
die man in jeweiligem Abschnitt anwenden kann. Diese werden in der Abbildung 2.3 den
entsprechenden Bereichen zugeordnet, in denen sie ihre Wirkung zeigen.

Anforderungsanalyse

Wiéhrend dieser Phase kann eine griindliche Analyse von Benutzergruppen und dem Nut-
zungskontext durchgefiihrt werden. Dabei werden tiber Interviews, Workshops, Befragungen,
Beobachtungen und Aufgabenanalysen die Arbeitsabldufe und Verhaltensmuster der Benutzer
analysiert und ausgewertet. So werden die Anforderungen verschiedener Benutzergruppen
bei der Erstellung der Anforderungsspezifikation berticksichtigt.

22

2.1 Usability

Anforderungsanalyse Technische Realisierung
Spezifikation
Code
(Entwickler)
Konsistenz \

Metapher Softwareprodukt

Erlernbarkeit
Ul-Gestaltung /
Usability-

Anforderungen Ul-Gestaltung
(Designer)

Erlernbarkeit

Ubersichtlichkeit

| Interviews || Aufgabenanalyse |
| Workshops || Persé)nas | | Ul-Prototyping |

| Befragungen || Scenlarien | |IUsabiIity-GuideIine |

| Beobachtungen || Story:boards | |iSterguide || Usabil]ity-Tests |

Abbildung 2.3: Auswirkung der Usability-Techniken

Spezifikation

Die Anforderungsspezifikation, die wihrend dieser Phase des Entwicklungsprozesses ent-
steht, ist ein wichtiges Dokument, das spater als Referenz fiir den Entwurf, die Entwicklung,
die Tests und das Handbuch dienen wird. Deswegen ist es sinnvoll, moglichst viele Usability-
Anforderungen bereits in der Anforderungsspezifikation festzuhalten. Zahlreiche Techniken,

wie z.B. Personas, Szenarien, Storyboards,UI-Prototyping, etc. unterstiitzen die Entwickler
dabei.

Bei Personas handelt es sich um prototypische Benutzerprofile, die verschiedene Eigenschaf-
ten, wie Erfahrung, Ziele, Verhaltensweisen, fachliche Ausbildung, Computerkenntnisse,
Erwartungen etc. verschiedener Benutzergruppen beschreiben. Personas werden aus den
Informationen tiber zukiinftige Benutzer abgeleitet.

Szenarien sind Beispielabldufe, die beschreiben, wie Benutzer mit dem System interagieren
werden. Szenarien werden zusammen mit den zukiinftigen Benutzern entwickelt und bei der
Erstellung der Systemanforderungen berticksichtigt.

Storyboards dienen zur Visualisierung von Szenarien und erleichtern die Kommunikation
zwischen Auftraggeber und Entwickler. Storyboards konnen, abhéngig von dem Prézisions-
grad, sehr unterschiedlich dargestellt werden, von skizzierter Benutzungsschnittstelle bis zur

23

2 Grundlagen

bildhaften Darstellung der ganzen Geschichte aus einem Szenario, auf der Akteure, System
und Umgebung visualisiert werden.

Bei UI-Prototypen handelt es sich um die Modellierung der Benutzeroberfliche. Dies kann
in Form von Skizzen oder Mockups sein. Abhingig vom Ziel, konnen Ul-Prototypen auch
einen Teil der Funktionalitdt des Systems aufweisen.

Die in dieser Phase angewendeten Techniken dienen zum grofiten Teil zur Verbesserung
der Qualitédt der Spezifikation. Die erstellten Prototypen und Storyboards dienen spéter als
Referenz fiir die Gestaltung der Benutzungsoberfldche. Somit zeigen sie ihre Wirkung in den
Bereichen der Anforderungsanalyse und der UI-Gestaltung (vergleiche Abbildung 2.3). Fiir
die Berticksichtigung bei der technischen Implementierung fehlt es den Techniken aber an
Strukturierung und Anbindung an funktionale Anforderungen.

Entwurf und Implementierung

In der Implementierungsphase wird Usability des Produktes dadurch gesteigert, dass man
bei der Entwicklung Usability Guidelines und Stylequides beachtet. Sie beinhalten Vorschriften
fiir die Konsistenz und Asthetik der Benutzungsschnittstelle.

Evaluation

Es gibt eine Reihe von Testverfahren, die die Endbenutzer einbeziehen und somit die
Usability der Software {iberpriifen. Man kann das fertige System oder bereits der Prototyp
auf die Usability testen. Bei einem formalen Usability-Test wird das Verhalten der Benutzer in
einem Usability Lab beobachtet und ausgewertet. Die nicht formalen Methoden beinhalten
Walkthroughs, Fragebogen, Checklisten und Expertenreviews.

Zusammenfassung

Wie man der Abbildung 2.3 entnehmen kann, kdnnen bei der technischen Realisierung
einer Software einige Usability-Aspekte optimiert werden. Zum Beispiel werden die Kon-
sistenz und Effizienz einer Software werden durch die Beriicksichtigung der Usability-
Anforderungen beim Entwurf der Komponenten und des Datenmodells einer Software
erreicht. Es fehlt aber an Techniken zur Optimierung der Usability, die den Entwicklern
in dieser Phase zur Verfiigung stehen. So sind die Entwickler oft bei der Definition der
Usability-Anforderungen und bei der Umsetzung und Evaluierung dieser auf sich alleine
gestellt.

24

2.2 Usability Patterns

2.1.3 Definition der Usability-Anforderungen

Ingenieure neigen dazu, sich auf den funktionalen Kern ihres Problems zu konzentrieren
[LL10]. Beim Spezifizieren der Funktionalitédt einer Software werden formale Modelle, wie
z.B. Use Cases, eingesetzt, die alle funktionalen Anforderungen bis ins kleinste Detail
beschreiben. Die nichtfunktionalen Anforderungen werden dagegen nur am Rande erwahnt
und bei der Entwicklung spéter oft vernachlassigt.

Usability-Aspekte, die im Laufe einer Anforderungsanalyse festgestellt werden, fliefSen in
Form der nichtfunktionalen Anforderungen, hochstens auch Personas und Szenarien, in
die Anforderungsspezifikation ein. Sie sind, wie auch andere nichtfunktionale Anforderun-
gen, unstrukturiert und in nattirlicher Sprache beschrieben. Insbesondere sind Usability-
Anforderungen nicht an funktionale Anforderungen angebunden, was es fiir die Entwickler
schwer macht, diese beim Entwurf und der Implementierung umzusetzen [Rod10]. Ferner
werden Usability Patterns als Losungsansatz fiir dieses Problem vorgestellt.

2.2 Usability Patterns

Usability Patterns sind strukturierte Beschreibungen der Losungsansitze fiir wiederkehrende
Usability-Probleme. Sie helfen dabei, die vagen Usability-Anforderungen strukturiert festzu-
halten. Das Konzept sieht vor, dass funktionale Merkmale, die zur Usability der Software
beitragen, bereits frith im Entwicklungsprozess erhoben und explizit spezifiziert werden.

2.2.1 Funktionale Usability-Merkmale

Einige Usability-Merkmale haben eine grofse Auswirkung auf die Architektur der Software.
Wenn man z.B. erst nach den Usability-Tests in der Evaluationsphase feststellt, dass die Undo-
Funktion die Usability des Produktes steigern wiirde, ist es oft zu spit, dieses Feature in das
Produkt einzubauen. Eine Anderung dieses Grades kann das Umbauen ganzer Komponenten
erfordern und soll deswegen bereits beim Entwurf des Produktes beriicksichtigt werden.
Daher ist es sinnvoll, solche Usability-Merkmale als funktionale Anforderungen wahrend
der Analysephase zu erfassen und deren Umsetzung durchgehend zu kontrollieren.

Es gab einige Versuche von Usability-Experten, allgemeingiiltige funktionale Usability-
Merkmale zu erfassen. Nach Juristo et.al. zdhlen z.B. folgende Merkmale zu den funktionalen
Usability-Anforderungen [JMSSoy]:

e Feedback fiir die Benutzer tiber die Vorgdnge im System
e Undo-Funktion

e Abbruchmoglichkeit

e Fehlerkorrektur bei den Eingaben

o Assistent fiir Aktionen mit mehreren Schritten

25

2 Grundlagen

e Hilfefunktion

Fiir die erfolgreiche Umsetzung gentigt es aber nicht, die funktionalen Usability- Anforde-
rungen zusammen zu fassen und an die Entwickler weiter zu geben. Usability-Experten
sind sich einig, dass z.B. die Undo-Funktion die Usability jeder Software steigern wiirde
[JMSSo7]. Es gibt aber eine Reihe von produktspezifischen Fragen, die sich ein Entwickler
stellen wird, wenn er diese Funktion entwerfen und realisieren muss: , Wie viele Schritte
sollen gespeichert werden?”, ,Soll es auch eine Redo-Moglichkeit geben?”, , Falls mehrere
Fenster verwaltet werden, ist eine globale Undo-Geschichte, oder jeweils eine pro Fenster
erwiinscht?”, ,Wie verhilt sich das System, wenn die Wiederherstellung eines vorherigen
Standes zu Inkonsistenzen im Datenmodell fiihrt?” usw. Es ist also wiinschenswert, die vagen
Usability-Vorgaben in strukturierte funktionale Vorgaben zu tibersetzen und zusammen mit
der Anforderung zu dokumentieren. Das Konzept der Usability Patterns bietet dafiir einen
geeigneten Ansatz.

2.2.2 Aufbau der Usability Patterns

Usability Patterns sind bewdhrte und wiederverwendbare Losungen, die man in einem
bestimmten Zusammenhang einsetzen kann, um gut benutzbare Systeme zu bauen [Rod11b].
Sie beschreiben wiederkehrende Probleme, die erfahrungsgemafs zu schlechter Usability der
Software fiihren konnen, und Losungsschablonen fiir deren Behebung. Ein Pattern beinhaltet
strukturierte Informationen dartiber, in welchem Zusammenhang und auf welche Weise der
Einsatz des Patterns die Usability der Software steigern kann. Jedes Pattern ist auch mit
anschaulichen Beispielen versehen.

Auf der Abbildung 2.4 ist zu sehen, wie das Usability Pattern ,,Abbruch” aufgebaut ist. Im
Folgenden werden einzelne Bausteine eines Patterns erldutert:

e Name: Name des funktionalen Usability-Merkmals.

e Problem: Beschreibung des Problems, das mit Hilfe des Patterns behoben werden
kann.

e Losung: Ausfiihrliche Beschreibung der Problemldsung.
e Illustration: Ein Beispielszenario, das das Problem und die Losung demonstriert.

e Beispiele: Screenshots und Beschreibung der Anwendung dieser Losung in weit
verbreiteter Software.

¢ Nutzungskontext: Abgrenzung fiir den Einsatz des Patterns.
e Begriindung: Argumentation, warum das Pattern die Usability steigert.
e Zusammenspiel: Abhdngigkeit von anderen Patterns.

e Risiken, Nachteile, Kosten.

26

2.2 Usability Patterns

Usability Pattern Abbruch

Problem Benutzer machten die Aktion, die sie gerade ausfiithren, abbrechen, ohne Anderungen zu Gbernehmen.

Lisung Erlaube Benutzern, Aktionen abzubrechen.

Verwirf dabei alle Anderungen, die in den bisherigen Schritten der Aktion gemacht wurden. Bei Abbruch einer Aktion soll
diese aus Sicht des Benutzers folgenlos bleiben, System und Daten sollen sich also maglichst im Zustand vor Ausfahrung
der (abgebrochenen) Aktion befinden.

‘Wenn beim Abbruch einer Aktion umfangreiche Eingaben des Benutzers verworfen werden, weise den Benutzer darauf hin
und lasse den Abbruch bestdtigen, z. B. durch eine Warnung .

Beispiel Mozilla Firefox 4

Der Web-Browser Firefox erlaubt Benutzern, Aktionen abzubrechen, Die Abbildung zeigt den Dialog zum Import von Daten
aus anderen Web-Browsern. Der Import kann vom Benutzer abgebrochen werden, ohne das tatsachlich Daten importiert
werden.

Abbruch- Moglichket in Firefox-Dizlog

Mutzungskontext W Aktionen, die einen Dialog nutzen: die Maglichkeit zum Abbruch ist far die meisten Aktionen, bei denen Benutzer
Eingaben in einem aktionsbezogenen Dialog vornehmen, sinnvaoll

B Aktionen, die Benutzer nicht auf einfache Weise (z. B. Gber ein Globales Undo | rackgéngig machen kdnnen.

Begrindung Die Moglichkeit zum Abbruch der aktuellen Aktion nimmt Benutzern die Furcht vor einer Fehlbedienung des Systems.
Versehentlich aufgerufene Aktionen kinnen folgenlos abgebrochen werden.

Eenutzer erhalten durch die Abbruchmaglichkeit eine gralere Kontrolle Gber den Interaktionsablauf. Die Steuerbarkeit des
Systems wird somit aus Benutzersicht erhaht.

Abbildung 2.4: Usability Pattern , Abbruch”

2.2.3 Usability-Pattern-Katalog

Usability Patterns sind in einem Pattern-Katalog [Rod11a] gesammelt. Der Katalog beinhaltet
zurzeit 20 Patterns und kann erweitert werden. Alle Patterns sind nach dem gleichen Muster
aufgebaut und konnen Referenzen auf andere Patterns beinhalten. Das Pattern ,, Abbruch”
verweist z.B. im Feld ,Losung” auf das Usability Pattern ,,Warnung” mit dem Hinwesis,
dass im Fall des Abbruchs einer Aktion, bei dem eine grofse Menge nicht gespeicherter
Daten verworfen werden, eine Warnung sinnvoll ist. Im Feld ,,Nutzungskontext” wird die
Abgrenzung vom , Abbruch” zum Usability Pattern , Globales Undo” erldutert.

Die Auswahl der Patterns hat sich aus den in der Praxis erprobten Mustern ergeben. Der
Einsatz der Patterns aus dem Katalog in der Anforderungsanalysephase hilft dabei, die auf
Usability bezogenen Schwachstellen der Software friihzeitig zu erkennen und den Entwurf
entsprechend den Empfehlungen aus den Patterns anzupassen, um diese vorzubeugen.

27

2 Grundlagen

Anforderungsanalyse Technische Realisierung
Spezifikation —
Code Usability Patterns
(Entwickler)

Metapher

@ Softwareprodukt
—
Erlernbarkeit
Ul-Gestaltung /
Usability-

Anforderungen Ul-Gestaltung
(Designer)

Erlernbarkeit

| Interviews H Aufgabenanalyse [
| Workshops H Persc;nas [[Ul-Prototyping [

| Befragungen H Scen'arien [[VUsabiIity-GuideIine [

l Beobachtungen H Story:boards [I:Styleguide H Usabilyity-Tests [

Abbildung 2.5: Einordnung der Usability Patterns

2.2.4 Usability Patterns im Entwicklungsprozess

Im Rahmen dieser Arbeit wird untersucht, wie Usability Patterns zur Optimierung der
Usability auf der Ebene der technischen Realisierung eingesetzt werden konnen. Diese
Einordnung wird auf der Abbildung 2.5 dargestellt. Damit die Entwickler beim Entwerfen
und Implementieren Usability Patterns beriicksichtigen, sollen die Patterns in die funktionale
Spezifikation integriert werden, da diese als eine wichtige Referenz in diesen Phasen der
Entwicklung dient. Fiir die Integration der Usability Patterns in die funktionale Spezifikation
bieten sich Use Cases an, weil diese die Funktionalitat der Software aus der Benutzersicht
beschreiben.

2.3 Use Cases

Use Cases (engl. fiir Anwendungsfille) sind eine bekannte Technik fiir die Spezifikation
der funktionalen Anforderungen. Sie beschreiben die Art und Weise, wie ein Benutzer mit
dem System interagieren kann und dienen als eine Beschreibung fiir das dufSerlich sichtbare
Systemverhalten [RE-o7]. Use Cases beschreiben, wie ein System den Benutzer in seinen
Aufgaben, die er mit Hilfe von Software erledigt, untersttitzt.

28

2.3 Use Cases

Da Use Cases die Abldufe aus der Benutzersicht in natiirlicher Sprache beschreiben 2,
braucht man keine besonderen technischen Kenntnisse, um sie zu verstehen. Aus diesem
Grund eignen sich die Use Cases gut fiir die Kommunikation und Abstimmung zwischen
Kunden und Entwicklern. Eine vollstandige Use-Case-Spezifikation ist auch als Vorlage fiir
Entwurf, Implementierung, Testvorbereitung, Abnahme der Software und auch als Referenz
fur spatere Erweiterung oder Re-Implementierung geeignet [LL1o0].

2.3.1 Aufbau von Use Cases

Use Cases wurden bereits in den 8oer Jahren von Ivar Jacobson vorgestellt [Jacgz]. In all den
Jahren hat sich aber kein Standard etabliert, der den Aufbau von einem Use Case vorschreibt.
Vielmehr macht die Flexibilitat die Use Cases so beliebt. In der Praxis werden abhéngig von
der Analysephase unterschiedlich stark formalisierte Vorlagen fiir Use Cases verwendet. Fiir
diese Arbeit wurde eine Vorlage, angelehnt an die Empfehlungen von Cockburn [Cocoy],
ausgearbeitet. Sie wird am Beispiel eines Use Cases ,System starten", welcher in der Tabelle
2.1 abgebildet ist, vorgestellt. Jeder Use Case besteht aus Metadaten, die dessen Eigenschaften
erfassen, und Abldufen, die schrittweise die Interaktion von Benutzern mit dem System
beschreiben. Die Bestandteile einer Use-Case-Beschreibung werden in diesem Abschnitt
genauer erldutert.

Metadaten

e Name: Beschreibt das Ziel der Interaktion zwischen System und Akteur.
¢ ID: Muss eindeutig sein.
e Beschreibung: Stellt knapp den Zweck des Use Cases dar.

o Akteure: Beteiligte Personen oder Objekte. Man unterscheidet zwischen einem Pri-
marakteur, der unmittelbar mit dem System interagiert, und Sekundéarakteuren, die
das System {iiberwachen, warten und den Primédrakteur bei seiner Zielerreichung
unterstiitzen.

e System: Das System, das auf Interaktion der Akteure reagiert.
e Ziel: Das Ziel oder der Endzustand, den die Akteuren mit der Interaktion verfolgen.
e Prioritdt: Erlaubt die Priorisierung fiir Use Cases.

e Ebene: Beschreibt die Granularitiat der Interaktion. Use Cases der oberen Ebene be-
schreiben sehr allgemeine Prozesse, die weiter in Unterpozesse einer unteren Ebene
zerlegt werden konnen. Use Cases der unteren Ebenen beschreiben die technischen
Details der Interaktionen. Wie viele Ebenen fiir die Use-Case-Spezifikation definiert
werden, entscheidet das Spezifikationsteam.

?In dieser Arbeit wird die UML-Modellierung der Use Cases mittels der Use-Case-Diagramme nicht betrachtet

29

2 Grundlagen

Name System starten

Ziel Der Benutzer mochte das System starten.

Akteure Benutzer

Primarakteur Benutzer

Ebene Ubersicht

Prioritat hoch

Normalablauf

Vorbedingung | Das System ist installiert und lauffahig.

1 Entwickler | Ruft die Funktion ,System starten” auf.

2 System ladt das zuletzt bearbeitete Projekt.
Fehler: Kein zuletzt bearbeitetes Projekt verfiigbar. ‘ Alternativablauf 2a

Nachbedingung | Das System ist gestartet.
Das System zeigt das zuletzt bearbeitete Projekt.

Alternativablauf 2a

Vorbedingung | Kein zuletzt bearbeitetes Projekt verfiigbar.

2a1 ‘ System erstellt ein neues leeres Projekt.

Nachbedingung | Das System ist gestartet.
Das System zeigt ein leeres Projekt.

Tabelle 2.1: Use Case ,System starten”

Diese Liste stellt nur die wesentlichen Eigenschaften dar, die einen Use Case beschreiben,
und kann bei Bedarf um beliebige Feldern erweitert werden.

Normalablauf

Jeder Use Case verfiigt iiber einen Normalablauf, dieser beschreibt die Art und Weise, auf
die der Primirakteur das definierte Ziel erreicht. Eine Vorbedingung beschreibt den Zustand
des Systems, der vor der Interaktion vorhanden sein muss. Der Use Case , System starten”
verlangt z.B., dass das System auf dem Rechner installiert ist, bevor es gestartet wird. Die
Interaktion wird in einzelnen Schritten beschrieben. Jeder Schritt reprasentiert genau eine
Aktion, die entweder von einem Akteur oder vom System ausgefiihrt wird. Ein Schritt kann
auch aus der Ausfiithrung eines anderen Use Cases einer niedrigeren Ebene bestehen. Somit
werden die Hierarchien von Use Cases erzeugt. Eine Nachbedingung beschreibt den Zustand
des Systems nachdem alle Schritte erfolgreich ausgefiihrt werden. Dieser Zustand entspricht
der erfolgreichen Erreichung des Ziels von dem Use Case.

Alternativablaufe

Die Fehlerfille und Ausnahmen, die bei der Interaktion auftreten konnen und zu einem
Abbruch der normalen Interaktionsfolge fiihren, werden mittels Alternativabldufe behandelt.

30

2.3 Use Cases

Der Use Case ,System starten” beschreibt z.B. einen Fehlerfall fiir Schritt 2. Fiir jeden
Fehlerfall wird ein Alternativablauf angelegt, dessen Name aus der Nummer des Schritts
abgeleitet wird, in dem der Fehler auftritt. Jeder Alternativablauf verfiigt ebenfalls iiber Vor-
und Nachbedingung und wird mit Hilfe von Schritten beschrieben. Ein Alternativablauf
stellt entweder eine Fehlerbehebung dar und beschreibt den Weg zuriick zum Hauptablauf,
in dem der Fehler passiert ist, oder er fithrt zum Ende der Interaktion ohne dass das Ziel
des Primédrakteurs erreicht wird.

2.3.2 Erstellung von Use Cases

Abhédngig von der Granularitat, die fiir die Use Cases benotigt wird, wird auch die Strategie
fiir deren Erstellung gewdhlt. Fiir diese Arbeit wurde die von [ABCo3] beschriebene iterative
Vorgehensweise tibernommen, bei der zundchst ziemlich grob das Geriist der Use Cases
erstellt wird. Dieser wird spéter in einzelnen Iterationsschritten mit Details angereichert. Die
Vorgehensweise wird in vier Abschnitte unterteilt:

1. Akteure und Ziele definieren: Zunichst werden alle Akteure, die mit dem System
interagieren werden, zusammen mit ihren Zielen, definiert. Die komplette Liste der
Ziele soll vollstandige funktionale Anforderungen an das System représentieren. Fiir
jedes Ziel wird ein Use Case angelegt und mit Metadaten gefiillt.

2. Normalabldufe ausarbeiten: Fiir jedes vorher definierte Ziel wird der Ablauf der
Interaktion vom Akteur mit dem System in Details ausgearbeitet. Am Ende des Ablaufs
wird das Ziel vom Akteur erfolgreich erreicht. Das Ergebnis dieser Phase ist eine Liste
von Use Cases mit jeweils komplett ausgearbeitetem Normalablauf.

3. Sonderfille hinzufiigen: Fiir jeden Ablauf werden Schritte initialisiert, in denen ein
Sonderfall (ein Fehler oder eine nicht geplante Situation) auftreten kann. Diese Schritte
werden mit der Beschreibung des Sonderfalls versehen.

4. Behandlung von Sonderfillen: Fiir alle vorher definierten Sonderfille wird ein Al-
ternativablauf angelegt, der beschreibt, wie das System den Sonderfall behandeln
muss.

Nach jedem Abschnitt entsteht eine vollstindige Use-Case-Spezifikation mit unterschiedlicher
Granularitdt. Diese Spezifikation kann man evaluieren und ggf. korrigieren, bevor man
mit dem neuen Abschnitt beginnt und detailliertere Use Cases entwirft. Je nach Situation
und Verfiigbarkeit von Ressourcen werden Use Cases bis zur gewiinschten Granularitat
entwickelt.

Nachdem die gesamte Funktionalitdt der Software mittels Use Cases beschrieben wurde, wird
die Use-Case-Spezifikation in die Anforderungsspezifikation des Produktes aufgenommen.

31

2 Grundlagen

2.4 Anforderungsspezifikation im Entwicklungsprozess

Anforderungen an das System beschreiben, was das System leisten soll und in welcher
Qualitdt. Anforderungen werden in einer Anforderungsspezifikation festgehalten. Dabei un-
terscheidet man zwischen funktionalen und nichtfunktionalen Anforderungen. Funktionale
Anforderungen beschreiben gewiinschte Funktionalitdten des Systems und dessen Verhalten.
Die nichtfunktionalen Anforderungen beschreiben die Qualitét, in welcher die geforderte
Funktionalitdt zu erbringen ist [RE-07]. In der Anforderungsspezifikation werden die funk-
tionalen Anforderungen oft mit Hilfe von Use Cases beschrieben, und die nichtfunktionalen
mittels natiirlicher Sprache. Die Usability-Anforderungen liegen im Grenzbereich und kon-
nen sowohl die Funktionalitdt (z.B. Undo-Funktion) als auch die Qualitét (z.B. Vorgaben fiir
die UI-Gestaltung) beschreiben. Diese werden aber {iiblicherweise zu den nichtfunktionalen
Anforderungen gezdhlt und entsprechend beschrieben.

Use Cases beschreiben die Reaktion des Systems auf die Aktionen der Benutzer bei der
Interaktion. Somit dient eine detaillierte Use-Case-Spezifikation als eine vollstindige Referenz
fir die Entwickler bei Entwurf und Implementierung der Funktionalitdt der Software. Use
Cases bieten den Entwicklern alle Black-Box-Verhaltensanforderungen an die Software, ohne
ihre Freiheit bei der Methodenwahl einzuschrianken. Dabei muss man beachten, dass die
Use Cases lediglich als Referenz dienen und nicht direkt in den Entwurf einer Software
umgewandelt werden. Der Entwickler liest die Use-Case-Spezifikation und entwirft anhand
der Vorgaben die Software. Spater kann dieser Entwurf mit Hilfe der Use-Case-Spezifikation
auf die Erfiillung der Anforderungen tiberpriift werden.

Im Unterschied zu klar formulierten Vorgaben aus den Use Cases, denen man Qualitétskrite-
rien fiir die Evaluation des Produktes entnehmen kann, sind die nichtfunktionalen Vorgaben
nur vage formuliert, so dass der Entwickler bei der Evaluation der Erfiillung dieser auf sich
allein gestellt ist.

Im Rahmen dieser Arbeit wird die Moglichkeit der Erweiterung der Use Cases um Usability-
Vorgaben evaluiert. Formal beschriebene Usability-Merkmale sollen eine bessere Referenz
fur den Entwickler darstellen, als unklar definierte nichtfunktionale Anforderungen.

32

3 Konzept der Erweiterung von Use Cases

In diesem Kapitel wird das Konzept der Integration der Usability Patterns in die Use-Case-
Spezifikation ausgearbeitet. Es sieht vor, dass bereits in der Spezifikationsphase die fiir die
Software relevanten Usability Patterns aus dem Katalog ausgewéhlt und in die Use-Case-
Spezifikation eingearbeitet werden. Durch diese Mafinahme entsteht ein neues Dokument, in
dem Usability-Vorgaben strukturiert, einheitlich und eng verzahnt mit der Beschreibung der
Funktionalitat spezifiziert sind.

Die Abbildung 3.1 stellt schematisch dar, wie die Patterns in die Spezifikation eingebunden
werden. Die Erstellung einer mit Patterns erweiterten Spezifikation erfolgt in drei Schritten:

1. Eine vollstindige Use-Case-Spezifikation wird erstellt.

2. Aus dem Katalog werden passende Usability Patterns ausgewéhlt. Fiir jedes Pattern
wird die Anwendung spezifiziert. Dabei werden globale Anforderungen fiir das Pattern
definiert.

3. Fiir jedes spezifizierte Pattern werden einzelne Use-Case-Elemente annotiert und die
entsprechenden lokalen Anforderungen angelegt.

In diesem Kapitel werden die Schritte fiir die Erstellung einer erweiterten Spezifikation
ausfiihrlich erldutert, die Erweiterungen fiir die Use Cases und Spezifikation beschrieben, die
dafiir notwendig sind, und die Anwendung dieses Verfahrens in der Praxis angesprochen.

3.1 Erstellung einer erweiterten Spezifikation

Usability Patterns beschreiben Vorgaben, deren Erfiillung die Usability der Software ver-
bessert. Es erscheint also wiinschenswert, diese Vorgaben in die Anforderungsspezifikation
aufzunehmen und in spaterem Entwicklungsprozess systematisch zu beriicksichtigen. Viele
in Usability Patterns definierte Vorgaben betreffen nicht nur eine, sondern mehrere Funk-
tionen der Software, konnen also an mehreren Stellen eingesetzt werden. Deswegen ist
es sinnvoll, sowohl globale Vorgaben aus dem Pattern in der Anforderungsspezifikation
zu definieren, als auch alle Stellen der Interaktion der Benutzer mit dem System zu iden-
tifizieren, an denen diese Patterns eingesetzt werden. Somit ergeben sich zwei Aspekte
fur die Spezifikation der Usability Patterns: Anwendungsspezifikation fiir Patterns und
Annotationen mit individuellen Vorgaben. Fiir die Anwendungsspezifikationen der Usability
Patterns wird ein neues Kapitel in der Anforderungsspezifikation der Software angelegt. Fiir
die Annotationen werden Use-Cases um weitere Elemente ergdnzt. Im Folgenden werden

33

3 Konzept der Erweiterung von Use Cases

der auf der Abbildung 3.1 dargestellte Prozess der Erstellung einer erweiterten Spezifikation
beschrieben.

3.1.1 Auswahl der Usability Patterns aus dem Katalog

Zunichst werden Usability Patterns ausgewdhlt, die spéter in die Spezifikation aufgenom-
men werden. Die Auswahlkriterien fiir die Patterns basieren darauf, ob die vom Pattern
beschriebene Funktionalitit fiir das System sinnvoll ist und ob diese von dem Kunden
erwiinscht ist. Der Katalog [Rod11a] bietet dem Use-Case-Entwickler Unterstiitzung bei der
Auswahl, indem fiir jedes Pattern Anwendungsbeispiele und Beispielszenarien angegeben
werden. Fiir jedes ausgewihlte Pattern wird ferner die Anwendung spezifiziert.

3.1.2 Spezifikation der Anwendung von Usability Patterns

Fiir jedes eingesetzte Pattern wird eine Beschreibung verfasst, die das Ziel der Anwendung
erldutert. Auflerdem werden globale Vorgaben spezifiziert, die beschreiben, wie das Pattern
in diesem Produkt eingesetzt wird und fiir alle spéter angelegten Annotationen giiltig sind.
Hier werden z.B. Design-Vorgaben und Verhaltensmuster festgelegt, was die einheitliche
Erscheinung des Merkmals sicherstellt, auch wenn das Pattern an mehreren Stellen im
System angewendet wird. Die Abbildung 3.1 zeigt diesen Vorgang im zweiten Schritt.

3.1.3 Erstellung der Annotationen

Nachdem die Anwendung fiir alle Patterns spezifiziert wurde, werden Use Cases identifiziert,
die fiir die Anwendung der Patterns in Frage kommen. Dann werden einzelne Use-Case-
Elemente mit Annotationen versehen, die eine Referenz auf das entsprechende Usability
Pattern beinhalten. Wenn notig, werden auch zusétzliche individuelle Vorgaben spezifiziert,
die das Verhalten oder Aussehen speziell fiir dieses Element vorschreiben. Lokale Vorgaben
konnen auch die Erweiterung vom Use Case um zusédtzliche Elemente definieren. In diesem
Fall werden zusétzliche Schritte oder Abldufe erstellt.

Auf der Abbildung 3.1 wird in Schritt 3 schematisch dargestellt, wie ein Use Case annotiert
wird. Es wird eine Annotation an Schritt 3 im Normalablauf angehédngt. Diese definiert einen
lokalen Parameter und tiberschreibt lokal eine globale Vorgabe, die in der Anwendungsspe-
zifikation von dem Usability Pattern definiert wurde. Aufierdem enthélt die Annotation zwei
Referenzen. Fiir die Erfiillung der in der Annotation definierten Vorgaben wurde Schritt 4
im Normalablauf und ein neuer Alternativablauf 3a angelegt.

Wie man der Abbildung entnehmen kann, werden neue Elemente in der Use-Case-Notation
benotigt, um Annotationen mit Usability Patterns zu beschreiben. Diese werden im nichsten
Kapitel erldutert.

34

Usability Pattern

3.2 Erweiterung der Use-Case-Struktur

Globale Vorgabe 1

Globale Vorgabe 2

Usability Pattern
Globale Vorgabe 1

Globale Vorgabe 2 &< S

Use Case Use Case Use Case \\
\
Normalablauf Normalablauf Normalablauf \‘
Schritt 1 Schritt 1 Schritt 1 \
Schritt 2 Schritt 2 Schritt 2 ¥
Schritt 3 Schritt 3 Schritt 3 — Annotation
Alternativablauf 2a Alternativablauf 2a Lokale Vorgabe
B Parameter 1
Schritt 2al Schritt 2a1 Alternativablauf 2a
- Referenz 1
Schritt 2a2 Schritt 2a2 Schritt 2al
5 = - Referenz 2
Schritt 2a3 Schritt 2a3 Schritt 2a2
Schritt 2a3
Alternativablauf 3a <+
Schritt 3al
Schritt 3a2
1. Use-Case- 2. Anwendungsspezifikation 3. Annotieren der Use-Case-
Spezifikation fur Usability Patterns Elemente

Abbildung 3.1: Erweiterung eines Use Cases mit einem Usability Pattern (Angelehnt an
[Rod11b])

3.2 Erweiterung der Use-Case-Struktur

Um die Annotierung der Use Cases mit Usability Patterns zu ermoglichen, wurde im Rahmen
dieser Arbeit die Use-Case-Notation um Annotationselemente erweitert. Use Cases, einzelne
Abldufe oder Schritte eines Ablaufs werden mit Annotationen versehen. Annotationen sind
Referenzen zu einer Anwendungsspezifikation eines Usability Patterns und kennzeichnen
die Stellen, an denen die Vorgaben eines Usability Patterns erfiillt werden miissen.

Annotationen beinhalten konkrete Vorgaben, die die im Use Case beschriebenen funktio-
nale Anforderungen prézisieren und erweitern. Eine Annotation kann folgende Elemente
definieren:

e Parameter, die Vorgaben fiir die Anwendung des Usability Patterns auf das konkrete
Element beinhalten.

e Lokale Vorgaben, die in der Anwendungsspezifikation eines Patterns definierte Globa-
len Vorgaben tiberschreiben und somit fiir das annotierte Element aufler Kraft setzen.

35

3 Konzept der Erweiterung von Use Cases

o Schritt- oder Ablaufreferenzen, die Schritt- und Ablauferweiterungen definieren, die
tiir die Erfiillung der Vorgaben von Usability Pattern eingefiigt werden.

Use Cases, Ablaufe und Schritte sind Use-Case-Elemente, die mit einer Annotation versehen
werden koénnen. Jede Annotation kann nur an einen Typ der Elemente angehidngt werden.
Welches das ist, wird mittels Spezifikationsschablonen definiert. Diese werden im nachsten
Abschnitt beschrieben.

3.3 Spezifikationsschablonen in Usability Patterns

Um die Entwickler bei der Spezifikation der Usability Patterns zu unterstiitzen, beinhalten
diese semiformalen Spezifikationsvorgaben [Rod11b]. Diese Schablonen beschreiben, wie
das Pattern in die Use-Case-Spezifikation eingebunden werden kann. Es gibt drei Typen von
Spezifikationsschablonen:

e Globale Vorgaben: Einheitliche Verhaltens- und Gestaltungsvorgaben. Sie kénnen
obligatorisch oder optional sein. Bei den optionalen Vorgaben ist es dem Entwickler
iiberlassen, ob diese in die Anforderungsspezifikation {ibernommen werden. Die
nach dieser Schablone erstellten Elemente sind in der Anwendungsspezifikation des
Usability Patterns zu finden.

¢ Globale Funktionen: Zusétzliche Use Cases, die im Prozess der Anwendung dieses
Patterns entstehen. Funktionen konnen ebenfalls obligatorisch oder optional sein und
befinden sich auf der Ebene der Anwendungsspezifikation des Patterns.

¢ Annotationsvorgaben legen fest, welche Elemente der Use-Case-Spezifikation (Schritte,
Ablédufe oder ganze Use-Cases) annotiert werden kdnnen. Hier werden auch Parameter
fiir die Annotationen definiert.

Dank Schablonen bieten Usability Patterns eine Unterstiitzung fiir die Entwickler bei der
Erweiterung der Use-Case-Spezifikation. Alle Parameter und Annotationsmuster sind bereits
vorgegeben, der Entwickler muss diese lediglich mit Informationen ausfiillen. Wie diese
Technik in der Praxis aussieht, wird im nédchsten Abschnitt gezeigt.

3.4 Erganzung von Use Cases

In diesem Abschnitt wird der Prozess der Erweiterung der Use Cases am Beispiel des Use
Cases ,System starten” aus der Abbildung 2.1 beschrieben.

Zunichst wurde aus dem Usability-Pattern-Katalog ein fiir den Use Case geeignetes Pattern
ausgewahlt. Die Wahl fiel auf das Pattern , Gute Standardwerte”, welches fiir den Schritt 2a1
die Voreinstellungen festlegen soll, welche bei der Erstellung eines neuen Projektes greifen.
Danach wurde die Spezifikation der Anwendung des Patterns vorgenommen. Die Abbildung
3.2 zeigt die entsprechenden Spezifikationsschablonen. Es wurde eine Beschreibung des

36

3.4 Erganzung von Use Cases

Spezifiziere globale Funktionen (Use Cases) fiir den Einsatz des Usability Patterns .. Gute Standardwerte “:

Standardwerte verwalten | Optional

Use Case, mit dem Benutzer die Standardwerte verwalten (z. B. an eigene Bedirfnisse anpassen) kdnnen.

Spezifiere, fur welche Interaktionen das Usability Pattern , Gute Standardwerte “ eingesetzt wird. Annotiere und erganze
dazu vorhandene Use Cases :

l Annotation l [@ Schritt l Standardwerte

Fiir diesen Eingabeschritt gibt das System Standardwerte vor.

[Parameter l Wertel Bendtigt l

Vorgegebene Standardwerte fir den Eingabeschritt (gaf. vom System kontextabhangig bestimmt)

Abbildung 3.2: Spezifikationsschablonen im Usability Pattern ,Gute Standardwerte”

Patterns in die Anforderungsspezifikation aufgenommen. Weiterhin wurden die vorgege-
benen Schablonen umgesetzt. Die erste Schablone bietet eine optionale Globale Funktion
,Standardwerte verwalten” an, die eine zuséatzliche Funktionalitat fiir die Verwaltung der
Standardwerte vorsieht. Diese wurde in einem separaten Use Case beschrieben und in der
Anwendungsspezifikation des Patterns referenziert. Weiterhin enthélt das Pattern eine An-
notationsschablone , Standardwerte” vom Typ Schritt mit einem obligatorischen Parameter
Werte. Diese Annotationsvorschrift wurde auf den Use Case ,System starten” auf den Schritt
2a1 angewendet. Der annotierte Use Case ist in der Tabelle 3.1 dargestellt.

Use Cases werden {iblicherweise in Form von Tabellen erstellt. Dazu eignen sich gut géngige
Textverarbeitungsprogramme, wie z.B. Microsoft Word oder Open Office Writer. Annotie-
rung von Use Cases mit Usability Patterns erfolgt nach der Fertigstellung der Use-Case-
Spezifikation. Die erweiterte Spezifikation wird in weiteren Phasen des Softwareetwicklungs-
prozesses verwendet. Sie dient als wichtige Referenz fiir die Entwickler bei der Erstellung
von Entwurf und Code, als Vorlage bei der Erstellung von Testfdllen und einem Handbuch.
Entwickler, die Annotationen einpflegen oder mit der erweiterten Spezifikation arbeiten,
stoflen dabei auf einige Schwierigkeiten.

Zum einen erweist sich die Pflege der Annotationen als miihsam. Sie werden als zusétz-
liche Zeilen in bereits bestehende Tabellen eingepflegt, was das urspriingliche Layout
zerstoren kann. Auflerdem werden die Annotationen mit der zentralen Usability-Pattern-
Anwendungsspezifikation nicht verbunden, d.h. eventuelle Anderungen an dem Pattern
(z.B. ein zusidtzlicher Parameter) miissen an allen annotierten Stellen einzeln nachgezogen
werden. Es ist auch nicht moglich, ein Pattern einfach zu entfernen. Alle dazugehorige
Annotationselemente miissen aufgefunden und aus den Tabellen rausgenommen werden.

Zum anderen hat man keinen Uberblick tiber die Annotationen, wenn man mit einer
erweiterten Spezifikation arbeitet. Es ist z.B. nicht moglich, sich eine Liste von Use Cases
ausgeben zu lassen, die mit einem bestimmten Pattern annotiert sind.

37

3 Konzept der Erweiterung von Use Cases

Name System starten

Ziel Der Benutzer mochte das System starten.

Akteure Benutzer

Primarakteur Benutzer

Ebene Ubersicht

Prioritat hoch

Normalablauf

Vorbedingung | Das System ist installiert und lauffahig.

1 Entwickler | Ruft die Funktion ,System starten” auf.

2 System ladt das zuletzt bearbeitete Projekt.
Fehler: Kein zuletzt bearbeitetes Projekt verfiigbar. ‘ Alternativablauf 2a

Nachbedingung | Das System ist gestartet.
Das System zeigt das zuletzt bearbeitete Projekt.

Alternativablauf 2a

Vorbedingung | Kein zuletzt bearbeitetes Projekt verfiigbar.

2a1 | System erstellt ein neues leeres Projekt.

Standardwerte

Werte: Projektname: ,Neues Projekt”, Systemname: ,System”;
Unterordner: Usability Patterns, Akteure, Use Cases;
Prioritdten: hoch, mittel, niedrig;.

Ebenen: Ubersicht, Benutzerebene, Technische Details.

Nachbedingung | Das System ist gestartet.
Das System zeigt ein leeres Projekt.

Tabelle 3.1: Annotierter Use Case ,System starten”

Aufierdem lasst es sich nicht tiberpriifen, ob ein Pattern richtig angewendet wurde. Eine
richtige Anwendung setzt voraus, dass:

e nur die im Pattern beschriebenen Elemente annotiert wurden (Use Case, Ablauf oder
Schritt),

e alle obligatorischen Vorgaben spezifiziert wurden und
o alle zusédtzlichen Elemente eingefiigt wurden.

Diese Validierung lasst sich mittels von Textverarbeitungsprogrammen angebotener Funktio-
nalitdt nicht automatisch durchfiihren und wird von Entwicklern manuell durchgefiihrt.

Usability Patterns bieten ein Werkzeug fiir die Verbesserung der Usability. Das Konzept
setzt aber voraus, dass die in dem Katalog beschriebenen Schablonen wéahrend der An-
notierung eingehalten werden, was sich in der Praxis als schwierig erweist, da gangige
Textverarbeitungsprogramme keine speziell auf die Use Case-Modellierung zugeschnittenen
Bedienkonzepte und Funktionalitidten anbieten. Bei der Erweiterung der Use Cases ist der

38

3.4 Erganzung von Use Cases

Entwickler selber dafiir verantwortlich, auf die Konsistenz und die Einhaltung der Schablo-
nen zu achten. Diese Tatsache hat die Uberlegung angestofen, ein Werkzeug zu entwickeln,
das die Entwickler bei der Erstellung einer mit Usability Patterns annotierten Spezifikation
unterstiitzt.

39

4 Werkzeugunterstlutzung fur das Konzept

Eine der Teilaufgaben dieser Arbeit war, das Konzept der Usability Patterns zu evaluieren in-
dem eine erweiterte Use-Case-Spezifikation erstellt wird. Dies umfasst folgende Aufgaben:

e Auswahl einer Anforderungsspezifikation, auf die das Konzept angewendet wird

e Identifizierung der Usability Patterns, die fiir die Anwendung auf die Spezifikation in
Frage kommen

e Spezifizierung der Anwendung der ausgewédhlten Patterns
e Annotierung einzelner Elemente der Spezifikation

Ublicherweise wird eine Use-Case-Spezifikation als Teil der Anforderungsspezifikation mit
Hilfe von Textverarbeitungsprogrammen erstellt. Fiir die Erweiterung der Use Cases mit
Usability Patterns sind deren Funktionalitdten nicht ausreichend, wie im Abschnitt 3.4 gezeigt
wurde. Aus diesem Grund erscheint fiir den praktischen Einsatz der Annotierung der Use
Cases eine Werkzeugunterstiitzung notwendig. In diesem Kapitel werden die Anforderungen
an das Werkzeug ausgearbeitet und existierende Use-Case-Werkzeuge im Bezug auf diese
Anforderungen evaluiert. Ferner wird die Entwicklung des Werkzeugs beschrieben.

4.1 Anforderungen an das Werkzeug

Das Use-Case-Werkzeug soll die Entwickler bei der Anwendung des Konzeptes der Annotie-
rung von Use Cases mit Usability Patterns unterstiitzen. Um dies zu bewerkstelligen, sind
folgende Funktionen notwendig:

e Verwaltung von Use Cases

e Anzeige der Usability Patterns aus dem Katalog mit dazugehorigen Informationen
und Spezifikationsschablonen

e Auswahl der Patterns im Katalog, die in der Spezifikation eingesetzt werden
e Spezifizierung der Anwendung der Patterns, die aus dem Katalog ausgewahlt wurden

¢ Annotierung von Use-Case-Elementen entsprechend der Schablonen in den Usability
Patterns

e Export der annotierten Use Cases und Import dieser in die Anforderungsspezifikation
der Software

41

4 Werkzeugunterstltzung fiir das Konzept

Im Folgenden werden einzelne Anforderungen in separaten Abschnitten beschrieben.

4.1.1 Verwaltung von Use Cases

Das Werkzeug soll grundlegende Funktionen zur Verwaltung von Akteuren und Use Cases
anbieten. Diese werden innerhalb eines Projekts verwaltet.

Akteure

Akteure werden fiir ein Projekt angelegt und kénnen den Use Cases aus diesem Projekt
zugeordnet werden. Jeder Akteur verfiigt {iber einen Namen und eine Beschreibung, die
jederzeit bearbeitet werden konnen.

Use Cases

Use Cases werden ebenfalls fiir ein Projekt angelegt und konnen zusatzlich mit Hilfe eines
Ordnersystems gruppiert werden. Fiir das Anlegen der Use Cases gibt es eine vorgefertigte
Eingabemaske, die den Entwickler dabei unterstiitzt, alle fiir den Use Case relevanten Daten
strukturiert zu erfassen. Fiir die Beschreibung der Use Cases wird die in Abschnitt 2.3
beschriebene Struktur verwendet.

Ablaufe und Schritte

Um spiter eine Annotierung der Elemente mit Usability Patterns zu ermoglichen, ist ein
strukturierter Aufbau der Abldufe und einzelner Schritte notwendig. Die Eingabemaske
fur Abldufe unterstiitzt das Anlegen der Vor- und Nachbedingungen und Verwaltung der
einzelnen Schritte im Ablauf. Alternativabldufe werden automatisch angelegt, nachdem ein
Sonderfall fiir einen Schritt definiert wurde. Einzelne Schritte konnen Referenzen auf andere
Use Cases enthalten.

4.1.2 Anzeige der Usability Patterns im Katalog
Der Usability-Pattern-Katalog bietet eine Ubersicht {iber alle vorhandenen Usability Patterns.
Fiir jedes Usability Pattern sollen folgende Informationen angezeigt werden:

e Die komplette Beschreibung des Patterns, welches die Problembeschreibung, den
Losungsansatz, den Kontext, die Illustration und die Kosten fiir das Pattern beinhaltet
sowie die Verbindung zu anderen Patterns aufzeichnet.

e Beispiele der Anwendung des Patterns mit Beschreibung und einem Screenshot.

42

4.2 Evaluierung existierender Werkzeuge

e Spezifikations- und Annotationsschablonen, die Anweisungen fiir die Anwendung des
Patterns beinhalten.

Die Anzeige des Usability-Pattern-Katalogs [Rod11a] soll iiber eine zusédtzliche Komponente
erfolgen, die eventuell in den Editor integriert werden kann.

4.1.3 Spezifikation der Anwendung von Usability Patterns

Uber den Katalog werden Usability Patterns ausgewihlt, die fiir die Annotation der Use
Cases in Frage kommen. Diese miissen dann in die Projektstruktur im Use-Case-Editor
tibernommen werden. Fiir die iibernommenen Patterns werden im Use-Case-Editor neue
Elemente erstellt, die die Anwendung von den Patterns im Projekt entsprechend den Spezifi-
kationsschablonen spezifizieren.

4.1.4 Annotierung von Use-Case-Elementen

Jedes Usability Pattern schreibt tiber die Annotationsschablonen vor, fiir welche Use-Case-
Elemente dieses Pattern angewendet werden kann. Das Werkzeug soll die Annotierung von
Use Cases, einzelner Abldufe und Schritte entsprechend dieser Vorgaben unterstiitzen. Eine
Annotation ist ein Element, welches das entsprechende Usability Pattern referenziert und
iiber eine Liste von lokalen Parametern verfiigt. Fiir jedes in die Spezifikation iibernommene
Pattern soll eine Liste von mit diesem Pattern annotierten Use Cases angezeigt werden.

4.1.5 Export der annotierten Use Cases

Das Werkzeug soll eine um Usability Patterns und Annotationen erweiterte Use-Case-
Spezifikation im PDF-, RTF-, XML und HTML-Format generieren. Es soll ebenfalls moglich
sein, nur eine Auswahl von Use Cases zu exportieren. Das Format des Exportes ist wichtig,
weil die erweiterte Use-Case-Spezifikation eventuell in die Anforderungsspezifikation der
Software tibernommen wird, welche mit einem Textverarbeitungsprogramm erstellt wird.

4.2 Evaluierung existierender Werkzeuge

Ublicherweise werden Use Cases mit Hilfe von Textverarbeitungsprogrammen erstellt. Aus
diesem Grund bestand kein grofier Bedarf nach einer speziellen Software. Dennoch gibt
es einige wenige Werkzeuge, die sich auf die strukturierte textbasierte Beschreibung von
Use Cases spezialisiert haben. In diesem Abschnitt werden diese vorgestellt. Es wird auch
untersucht, ob diese Werkzeuge fiir die Erweiterung der Use-Case-Spezifikation mit Usability
Patterns geeignet sind. Dabei sind folgenden Fragen von einem besonderen Interesse:

1. Ist die strukturierte, textbasierte Beschreibung von Use Cases moglich?

43

4 Werkzeugunterstltzung fiir das Konzept

2. Werden Vorlagen fiir die Use Cases angeboten, die den Entwickler bei der Erstellung
unterstiitzen?

3. Wird die Moglichkeit fiir die Abbildung der Beziehungen zwischen den Use Cases
angeboten, oder ist deren Reprédsentation dem Entwickler iiberlassen?

4. Wird Reportgenerierung angeboten? Ist das Format der Reports fiir die Weiterbearbei-
tung geeignet?

5. Gibt es eine Mdoglichkeit, die Anwendung der Usability Patterns mit Hilfe des Werk-
zeugs zu beschreiben?

6. Gibt es die Moglichkeit fiir die Darstellung der Annotationen fiir Use Cases, Abldufe
und Schritte?

Im Folgenden werden einzelne Werkzeuge hinsichtlich der gestellten Fragen betrachtet. Alle
aufgefiihrten Werkzeuge bieten Moglichkeiten zur strukturierten Bearbeitung von Use-Case-
Beschreibungen, unterscheiden sich aber in Details wesentlich. Jedes Werkzeug wird in
einem eigenen Abschnitt beschrieben. Es wird nicht auf den gesamten Funktionsumfang
eingegangen, sondern nur auf die bewertungsrelevante Merkmale. Zum Zweck eines an-
schaulichen Vergleichs wird ein einfacher Use Case als Beispiel genommen und mit Hilfe der
vorgestellten Werkzeuge modelliert. Der Use Case , Kunde anlegen” hat einen Normalablauf
und eine Verzweigung zum Alternativablauf im Schritt 4. Zu jedem Werkzeug gibt es eine
Abbildung, welche die Darstellung dieses Use Cases zeigt.

4.2.1 Case Complete 2011

CaseComplete [Cas11] ist ein kommerzielles Werkzeug zur Erstellung der Use Cases. Es
bietet eine interaktive Anleitung zur Vorgehensweise bei der Use-Case-Modellierung und
mehrere Dokumentenvorlagen fiir die im Modellierungsprozess entstehende Artefakte. Es
gibt einen Bereich zur Definition von Akteuren und Use Cases. Dariiber hinaus wird die
Moglichkeit angeboten, ein Glossar und eine Liste von Anforderungen und Verkniipfungen
zu beliebigen Dokumenten zu pflegen und mit Use Cases zu verkniipfen. Es ist moglich, tiber
Referenzen Inklusionsbeziehungen zwischen Use Cases explizit festzuhalten. Detaillierte
Beschreibung von Use Cases konnen in einem separaten Dialog mit Hilfe einer Eingabemaske
vorgenommen werden. Die Eingabemaske daftir wird in Abbildung 4.1 dargestellt.

Wie man der Abbildung entnehmen kann, ist die Struktur der Beschreibung der Use Cases in
CaseComplete der in dieser Arbeit definierten dhnlich. Die wichtigsten Informationen werden
im Hauptreiter erfasst. Zwei zusétzliche Reiter bieten Moglichkeiten fiir mehrere detaillierte
Eingaben und Verkniipfungen. Ebenfalls im Hauptreiter werden der Normalablauf und
Alternativabldufe angezeigt. Schritte werden in Form einer durchgehend nummerierten
Liste dargestellt, in der Beschreibung der Schritte vorkommende Namen der Akteure wer-
den hervorgehoben und mit einem Hyperlink versehen, der auf die Akteurbeschreibung
verweist.

44

4.2 Evaluierung existierender Werkzeuge

F B
@ Kunde anlegen - Use Case E@g
Kunde anlegen uc-1 @
B / Use|i==A-8. ,| ,| 1=
Main |Details | Supplemental|
Mame: unde anlegen Priority: |1 =
Description:
Administrator mdchte ginen neuen Kunden im System anlegen
Actors: Primary: = IAdministrator Supporting: * IBenutzer
Steps | Prose v [] Show Testing Procedure
Flow of Main Success Scenario:
Events: -
1. System stellt die Kundenverwaltung dar.
2. Administrator erfasst den neuen Kunden.
3. Administrator veranlasst das System zum Speichern.
4. System prift die Daten auf Korrektheit,
II 5. System speichert die erfassten Daten.
6. System informiert Gber die erfolgreiche Speicherung.
Extensions:
4.3, Daten sind nicht korrekt
1. System informiert den Administrator Gber die Fehler,
2. Weiter mit Step 1.
Owning
Package; Test Pro_]ect vl
L%

Abbildung 4.1: Eingabemaske fiir Use Cases in CaseComplete

Fiir die Darstellung der Usability Patterns wiirden sich zahlreiche zusitzliche Felder in der
Use-Case-Beschreibung anbieten. Es gibt allerdings keine Moglichkeit, Patterns zentral zu
definieren und diese in einzelnen Use Cases zu verlinken.

CaseComplete bietet neben der Bearbeitung auch die Moglichkeit, erstellte Use Cases zu
exportieren. Fiir das gesamte Projekt oder fiir die einzelnen Elemente (Use Cases, Akteure,
Anforderungen) werden Reports in HTML-, Word- und Excel-Format mit Hilfe zahlreicher

Vorlagen generiert.

45

4 Werkzeugunterstltzung fiir das Konzept

5T *test project [C:\Users\rhrull\Desk‘hnpm Mﬁ] - HEuristic Requirements Assislz- Elﬂlg
Datei Bearbeiten Projekt Einstellungen Hilfe
| Projektinhalt | ! Use Case ID[UC-001 1“1}
3 test project Titel[Kunde anlegen
¢ 3 Use Cases §§ Erlauterung
[E UC-001: Kunde anlegq| : Status
useCaseld : Entwurf |v|
title : Erstellt von|Ruslana Brul
description Bearbeitet von [Ruslana Brul
status : Durchgeschaut von
creator i
editor “|Systemagrenzen (Scope)
reviewer Ebene|fynktion |v|
scope f)
level : Vorbed Administrator hat bereits die Kundenvernwaltung gedfinet
precondition Mindestgarantie
minimumGuarantee|| : Erfolgsgarantie
successGuarantee || ; Stakeholder| Stakeholder | Interessen
stakeholders
mainActor
trigger i
mainsuccessScena §§ Iz‘
extensions i
variations Iz‘
priarity
performance
usageFrequency f
openPoints g@ Hauptakteur |Administrator
03 Glossar . Ausloser
: Hauptszenario| Schritt Akteur Aktion IE‘
1|System stellt die Kundenverwaltung dar.
2Administrator |erfasst den neuen Kunden.
3ladministrator eranlasst das System zum Speichern.
4|System prift die Daten auf Korrektheit. Iz‘
5|System speichert die erfassten Daten.
6|System informiert Ober die efolgreiche Speicherung. Iz‘
Erweiterungen o [4 ||Daten sind nicht korrekt. |
Schritt Alteur Aktion IE‘
System informiert dber die
1 Fehler (weiter mit Schritt
1im Mormalablauf)
4] I [T B =

Abbildung 4.2: Eingabemaske fiir Use Cases in HeRA

4.2.2 HeRA

HeRA (Heuristic Requirements Assistant) ist ein Projekt des Fachgebietes Software Engi-
neering der Leibniz Universitdit Hannover. Es ist im Laufe einer Masterarbeit entstanden
und wird bis heute im Rahmen mehrerer Projekte weiterentwickelt [HeR11]. HeRA dient zur
Erstellung und Bearbeitung von Use Cases und Anforderungen und verfiigt tiber zusatzli-
che Plugins, die seine Funktionalitdt erweitern. Das Glossarplugin erlaubt die Verwaltung
von Begriffen und zugehorigen Definitionen und verfiigt tiber semantische Verifizierung
[Hecog]. Die besondere Funktionalitdt von HeRA ist das heuristische Feedback. Die Eingaben
der Benutzer werden stdndig analysiert und auf die Vollstandigkeit gepriift. Der Benutzer

4.2 Evaluierung existierender Werkzeuge

0 = | B S

Edit @Validate @Ex‘tract Domain

MormalllseCaze B.

m Administrator

Title: Kunde anlegen
: Description:
System Under Design: System
Primary Actor: Administrator
Participants:
Goal: Administrator méchte einen neuen Kunden anlegen
Follows Use Cases:
Invariant:
Precondition: Systermn is running and Kundenverwaltung is geoeffnet
STEPS
1.5ystem stellt die Kundenverwaltung dar.
2. Administrator erfasst einen neuen Kunden.
3.Administrator veranlasst das Systermn zum Speichern.
A 5ystem prueft die Daten auf Korrektheit.
5.5ystem speichert die Daten.
6.5ystem informiert ueber die erfolgreiche Speicherung.
Success Postcondition: Kunde is angelegt.

Validating use cases done

Verifying use cases sequencing statements
Verifying sequencing in Use Case 'New'
|se cases sequencing verification done.

Abbildung 4.3: Eingabemaske fiir Use Cases in UCEd

bekommt die Riickmeldung iiber den aktuellen Stand seiner Arbeit in Form von Warnungen
und Empfehlungen.

Abbildung 4.2 zeigt die Eingabemaske fiir die Bearbeitung der Use Cases in HeRA. Das
Werkzeug sieht mehrere Felder fiir die Speicherung der Informationen tiber Use Cases
vor. Abldufe werden mit Hilfe von Tabellen dargestellt. Einzelne Schritte konnen um Al-
ternativabldufe erweitert werden. Es ist moglich, aus einem Schritt weitere Use Cases zu
referenzieren.

In HeRA erstellte Elemente konnen in HTML- und TEX- Format exportiert werden. Use
Cases werden dabei in Tabellenform dargestellt.

4.2.3 UCEd

UCEd (Use Case Editor) ist ein frei verfiigbares Werkzeug, das die automatisierte Unterstiit-
zung der Anforderungsanalyse anstrebt [UCE11]. Neben der Erstellung und Bearbeitung
von Use-Case-Beschreibungen ermoglicht UCEd die Erzeugung der Beschreibung eines
endlichen Automaten und simuliert die im Use Case beschriebenen Abldufe mittels dieses
Automaten.

47

4 Werkzeugunterstltzung fiir das Konzept

Wie in der Abbildung 4.3 zu sehen ist, unterstiitzt UCEd die strukturierte Beschreibung von
Use Cases. Allerdings verlangt das Werkzeug fiir die Weiterverarbeitung der Informationen
die Einhaltung einer vorgegebenen Grammatik, die in dem auf der Webseite verfiigbaren
Handbuch [Somo7y] erldutert wird. Der syntaktische Freiraum bei der Benutzung dieser
semiformaler Sprache ist eng begrenzt, was einen Einarbeitungsaufwand von den Use-
Case-Entwicklern erfordert. Dies wirkt sich negativ auf die Benutzbarkeit des Werkzeugs
aus.

UCEd bietet auch die Moglichkeit, erstellte Modelle im HTML-Format zu exportieren. Die
exportierte Darstellung enthilt die Beschreibung von Use Cases sowie die Darstellung des
generierten Automaten.

4.2.4 Remas

Remas (Requirements Management System) ist eine auf Eclipse basierte Open-Source-
Software zur Anforderungsverwaltung. Es bietet die Moglichkeit zur Verwaltung von Use
Cases, Akteuren, sowie funktionalen und nichtfunktionalen Anforderungen [rem11].

Die Abbildung 4.4 zeigt die graphische Oberfldche von remas. Ganz unten ist der Projekt-
baum zu sehen, in dem die zu einem Projekt gehorende Akteure, Systeme, Use Cases,
Anforderungen, Metriken, Glossareintrage und Referenzen verwaltet werden. Oben links
ist die Eingabemaske fiir Use Cases dargestellt. Fiir die Bearbeitung der Abldufe ist ein
zusédtzliches Fenster vorgesehen (siehe Abbildung 4.4, unten links). Fiir jeden Use Case
kann eine Liste von Schritten angelegt werden. Es wird keine Moglichkeit angeboten, Al-
ternativabldufe anzulegen, diese konnen aber als Abzweigungen im Normalablauf mittels
zusatzlicher (Substep) und alternativer (Altstep) Schritte dargestellt werden. Remas bietet auch
die Moglichkeit, alle Elemente mittels so genannter Links miteinander zu verkniipfen.

Fiir die Abbildung von Usability Patterns in remas sind die Metrikenelemente am besten
geeignet. Oben rechts in Abbildung 4.4 sind die Eigenschaften einer Metrik zu sehen. Diese
umfassen lediglich einen Namen und eine Beschreibung. Fiir die Spezifikation der Anwen-
dung der Usability Patterns waren noch zusitzliche Felder notwendig, die Parameter und
Vorgaben darstellen. Eine Metrik wird immer fiir ein bestimmtes System definiert und kann
mittels Links mit beliebigen Elementen verbunden werden. Unten rechts in der Abbildung
sieht man einen Link von einer Metrik zu einem Schritt. Diese Links konnen Annotationen ein-
zelner Elemente mit Usability Patterns darstellen. Allerdings lassen diese keine zuséatzlichen
Angaben zu, was fiir die Darstellung lokaler Vorgaben allerdings unabdingbar ist.

Das in remas erstellte Projekt und einzelne Elemente kénnen in HTML-Format exportiert
werden. Dabei kann die Darstellung mittels angebotener Schablonen vom Entwickler selbst
gestaltet werden.

48

4.2 Evaluierung existierender Werkzeuge

© REguirements MAnagement System] o S

File Edit Window Help
+ F ON

> *Kunde anlegen [UC-0001] &2 Kunde anlegen [UC-0001] (- *Warnung [METRICS-0002] £3 =0
a & L 2 *
refresh save cancel SYS-0001 refresh save cancel
PROPERTIES (* Required Fields) i PROPERTIES (* Required Fields) i
code UC-0001 code METRICS-0002
link = link Systern =
name(*) Kunde anlegen name(*) [UsabilityPattern]Warnung
Description Administrator machte einen neuen Kunden im Systerm & = Description -
Type Iprm’mry 'I AUDIT PROPERTIES
Status Im construction 'I created by ruslana
dated b |
Complexity Imedium 'I e fusiana
creation date [dd/mn 13/07/2011
Pre-condition Administrator hat bereits die Kundenverwaltung gedffnet. 2 . e ha me s 2
© Kunde anlegen [UC-0001] 2 4 [STEP-0005] &%
name description link = 7 G £
e! STEP-0002) 1 stellt die Kundenverwaltung dar. ‘?a SY5-0001)system new edit delete refresh
e! STEP-0003) 2 Erfasst den neuen Kunden. % ACT-0001)Administr
#® STEP-0004) 3 veranlasst das System zum Speichem. & ACT-0001)Administr | | description updated by change date
% STEP-0005) 4 Prift die Daten auf Korrektheit, T SYS-0001)system (E¥[UsabiiityPattem]Wamung ruslana 14/07/2011

&% ALTSTEP-0001) Daten sind nicht korrekt.
SUBSTEP-000Informiert den Administratir Gber die Fehl & ACT-0003)System
® STEP-0006) 5 Speichert die erfassten Daten. B SYS-0001)system

-
2! STEP-0007) & Informiert Giber die erfolgreiche Speicheru "6 SYS5-0001)system

] mm 3

© Requirements % s @7 =0
3 [REQFOL-0001| folder-requ -
2 |ACT-0003] System
2 |ACT-0002| Entwickler
© |UC-0001| Kunde anlegen
% |ACT-0001] Administrator i

1,

Abbildung 4.4: Bearbeitung von Use Cases in remas

4.2.5 Zusammenfassung

In Tabelle 4.1 wird der Vergleich der untersuchten Werkzeuge beziiglich der oben definierten
Merkmale dargestellt. Uber die Grundfunktionalitit zur Verwaltung von Use Cases verfiigen
alle vier Werkzeuge. Es ist moglich, Use Cases mit Hilfe einer unterschiedlich detaillierter
Vorlage zu erstellen und diese in einem Projektbaum zu verwalten. Alle Werkzeuge aufSer
UCEd bieten dariiber hinaus die Abbildung der Beziehungen zwischen den Use Cases an. Die
Export-Funktion wird von allen Produkten angeboten, in einem weiterverwendbaren Format
allerdings nur von HeRA und CaseComplete. CaseComplete und remas weisen ein breiteres
Spektrum an Funktionalitdten fiir die Verwaltung von Use Cases und Anforderungen auf,
wiahrend die anderen zwei Werkzeuge hoher spezialisiert sind.

Keines der Werkzeuge ist im aktuellen Zustand zur Erstellung der mittels Usability Pat-
terns erweiterten Use Cases geeignet. Wegen der vorhandenen Grundfunktionalitit und der

49

4 Werkzeugunterstltzung fiir das Konzept

Werkzeug || Strukturierte | Vorlagen | Beziehungen | Export | Patterns | Annotationen
Beschreibung
Case ja ja ja HTML nein teilweise
Complete Word
Excel
HERA ja ja ja HTML nein nein
TEX
UCEd ja ja nein HTML nein nein
remas ja ja ja HTML ja teilweise

Tabelle 4.1: Vergleich der Use Case Editoren

Verfiigbarkeit des Quellcodes bieten sich aber HeRA und remas an, um deren Erweiterungs-
moglichkeit zu untersuchen.

4.3 Evaluierung einer Erweiterungsmaoglichkeit

Die Evaluierung der Werkzeuge hat ergeben, dass HeRA und remas dafiir geeignet sind,
nach entsprechender Erweiterung fiir die Evaluierung des Konzeptes der Annotierung von
Use Cases mit Usability Patterns eingesetzt zu werden. Die Erweiterung umfasst folgende
Punkte:

e Import der Usability Patterns aus dem Katalog

e Verwaltung von Usability Patterns im Projekt

e Erweiterung der Struktur der Use-Case-Elemente um Annotationen zu ermoglichen
e Annotation der Use-Case-Elemente

Eine technische Systemanalyse hat ergeben, dass beide Werkzeuge eine komplexe, modular
aufgebaute Architektur aufweisen. Die Erweiterung um eine Usability-Patterns-Komponente
kann ohne grofien Einfluss auf andere Module erfolgen. Die Annotierungsfunktionalitat
verlangt aber die Erweiterung der Use-Case-Struktur um Annotationselemente. Da Use-
Case-Verwaltung die Kernfunktionalitdt dieser Werkzeuge darstellt, konnte eine solche
Anderung der Struktur Auswirkungen auf andere Komponenten haben. Die Analyse der
Abhingigkeiten wurde dadurch erschwert, dass die Dokumentation fiir beide Werkzeuge
nur spérlich vorhanden ist.

Eine grobe Schidtzung hat ergeben, dass unter diesen Umstdanden der Einarbeitungs- und
Umbauaufwand fiir die Erweiterung eines der beiden Werkzeuge fiir die Durchfiihrung im
Rahmen dieser Arbeit zu umfangreich wire. Eine Neuentwicklung wiirde dagegen folgende
Vorteile mit sich bringen:

50

4.3 Evaluierung einer Erweiterungsmdglichkeit

e Das Werkzeug bleibt tibersichtlich. Es werden nur die Funktionen umgesetzt, die auch
tiir die Evaluation nétig sind.

e Die Struktur und Architektur des Werkzeugs sind nicht vorgegeben. Somit konnen
beliebige Usability Patterns bei der Entwicklung berticksichtigt werden.

e Da der gesamte Softwareentwicklungsprozess durchlaufen wird, kann die Anwendung
der Usability Patterns in allen Phasen beobachtet und untersucht werden.

Nach der Gewichtung aller Vor- und Nachteile wurde die Entscheidung getroffen, ein neues
Werkzeug zu entwickeln, das die Anwendung der Usability Patterns demonstriert. Bei der
Entwicklung sollen ausgewdhlte Patterns angewendet werden.

51

5 Realisierung von Tulip

Dieser Abschnitt beschreibt die Realisierung des Werkzeugs namens Tulip (Tool for Use
Case Specification with Usability Patterns). Die Realisierung des Werkzeugs selbst stellt eine
praktische Anwendung des Konzeptes der Usability Patterns im Entwicklungsprozess dar. In
der Anforderungsanalysephase werden einige Patterns aus dem Katalog ausgewdhlt. In der
Spezifikationsphase werden diese in die Spezifikation aufgenommen und Use-Case-Elemente
annotiert. Beim Entwurf und Implementierung werden die Vorgaben aus den Patterns und
Annotationen berticksichtigt. Die Vorgaben aus den Patterns stellen auch Qualitdtskriterien
fiir die Softwaretests dar. Mit Hilfe des fertigen Werkzeugs wird anschlieflend eine erweiterte
Use-Case-Spezifikation erstellt.

5.1 Erstellung der Spezifikation

In diesem Abschnitt wird die Erstellung der mit Usability Patterns erweiterten Use-Case-
Spezifikation [RB11] fiir das Werkzeug Tulip beschrieben.

Die Anforderungen fiir Tulip wurden vollstandig geklart, analysiert und in einer Anforde-
rungsspezifikation festgehalten. Die funktionalen Anforderungen wurden mit Hilfe von Use
Cases beschrieben. Dabei wurde die Notation aus dem Abschnitt 2.3 verwendet. Bei der
Anforderungsanalyse wurden folgende Funktionalitdten identifiziert:

e System starten

e Projekt verwalten

o Akteure verwalten

e Use Cases verwalten

e Ablédufe verwalten

e Usability Patterns verwalten
e Use-Case-Element annotieren
e Use Cases exportieren

e Use Cases importieren

¢ Einstellungen verwalten

¢ Infodialog aufrufen

53

5 Realisierung von Tulip

Projekt ffnen (UC-202)

Ziel: Der Entwickler will ein bestehendes Projekt offnen
Akteure: Entwickler

Beschreibung:

Ebene: Benutzerebene

Priorit&t: MUST

Normalablauf

Vaorbedingung: Das System ist gestartet

1 Entwickler Ruftdie Funktion ,Projekt 6ffnen” auf.

2 System Bietet die Méglichkeit, die Projektdateiim Dateisystem auszuwsdhlen.
3 Entwickler Wahlt eine Datei aus.

4 Entwickler bestatigh die Auswahl.

5 System Schlieftdas aktuell gedffnete Projekt.

6 System offnetdas vom Entwickler ausgewshlte Projekt.

MNachbedingung: Das System hat das vom Entwickler ausgewshlte Projekt gedffnet.

Abbildung 5.1: Use Case ,Projekt 6ffnen”

Fiir jede Funktionalitit wurde ein Use Case oder eine Sequenz von Use Cases erstellt.
Insgesamt wurden 26 Use Cases spezifiziert. Die Abbildung 5.1 zeigt am Beispiel des Use
Cases ,Projekt 6ffnen”, wie die urspriinglichen Use Cases in der Spezifikation aussehen.

5.2 Erweiterung der Spezifikation um Usability Patterns

5.2.1 Auswahl der Patterns

Nach der Fertigstellung der Use-Case-Spezifikation wurden Usability Patterns aus dem
Katalog ausgewahlt, welche fiir den Einsatz in Tulip als sinnvoll erschienen.

Zunichst wurden aus 20 Patterns, die im Katalog enthalten sind, diejenigen eliminiert, die
zu dem Zeitpunkt der Entwicklung noch nicht vollstindig ausgearbeitet wurden. Diese sind
Systemstatus, Assistent und Expertenmodus. Des Weiteren wurden die Patterns ausgeschlossen,
die fiir den Einsatz in Tulip mit spezifizierter Funktionalitdt aus verschiedenen Griinden
nicht in Frage kommen. Diese sind:

e Wiederholung erlaubt es dem Benutzer, die einmal ausgefiihrte Aktion auf eine ein-
fache Weise zu wiederholen, ohne dass alle Eingaben noch einmal gemacht werden
miissen. In Tulip kommen keine Funktionalititen mit mehreren komplizierten Eingaben
vor, so dass dieses Pattern nicht eingesetzt werden kann.

e Fortschrittsanzeige sieht eine Anzeige der Dauer vor, wenn das System eine Aktion
ausfiihrt, die lingere Zeit dauert. Da in Tulip keine komplizierten Berechnungen
durchgefiihrt werden und kein Datenaustausch mit einer Datenbank oder anderen
Systemen notwendig ist, wird davon ausgegangen, dass es keine Aktionen gibt, deren

54

5.2 Erweiterung der Spezifikation um Usability Patterns

Ausfiihrung langer dauert, als eine Sekunde. Aus diesem Grund wird dieses Pattern
nicht eingesetzt.

e Verarbeitungsanzeige sieht eine Anzeige fiir den Benutzer vor, wenn eine Aktion im
Hintergrund ausgefiihrt wird. Da es in Tulip keine Aktionen gibt, die im Hintergrund
ausgefiihrt werden, erscheint der Einsatz dieses Patterns als nicht sinnvoll.

e Auto-Vervollstindigung sieht das Vorschlagen geeigneter Werte wahrend der Eingabe
vor. Diese Funktionalitdt ist sinnvoll, wenn es Eingabewerte gibt, die aus einer grofieren
Menge der Eingabewerte stammen. In Tulip kommt es nur bei der Auswahl der Prioritiit,
der Ebene eines Use Cases, sowie bei der Auswahl eines Akteurs fiir einen Schritt, vor.
Dabei wird die Menge der moglichen Eingabewerte von fiinf Elementen in der Regel
nicht iiberschritten. In diesem Fall erscheint eine Auswahl {iber eine Liste sinnvoller, als
die Auswahl iiber die freie Eingabe mit einer Vorschlagmdglichkeit. Aufgrund dieser
Uberlegung wurde dieses Pattern verworfen.

e Nachsichtiges Format sieht vor, dass bei Bedarf die Eingaben vom Benutzer in das
richtige Format umgewandelt werden. Da in Tulip kein Format fiir die Eingaben der
Benutzer festgelegt wird, wird dieses Pattern nicht eingesetzt.

e Vorschau bietet eine Vorschau auf die voraussichtlichen Resultate der Aktion, ohne
die Aktion vollstandig auszufiihren oder Anderungen durchzufiithren. Dieses Pattern
erscheint fiir den Einsatz in Tulip nicht sinnvoll, da keine Aktionen vorgesehen sind,
die nur mit einem grofien Aufwand riickgdngig gemacht werden kénnen. Aufserdem
wird fiir die meisten Aktionen eine Undo-Funktion angeboten.

e Ausfiihrung im Hintergrund bietet Benutzern an, lang andauernde Aktionen im
Hintergrund auszufiihren. In Tulip werden keine Aktionen gleichzeitig ausgefiihrt,
daher ist die Ausfiihrung im Hintergrund nicht nétig.

Nach diesem Ausschlussverfahren wurden zehn Patterns, die fiir den Einsatz in Tulip als
geeignet erschienen, ndher untersucht. Es wurden zwei Gruppen von Patterns identifiziert,
die eine dhnliche Funktionalitét spezifizieren, so dass es ausreichend ist, nur ein Pattern aus
der Gruppe fiir den Einsatz in Tulip auszuwéhlen.

Die erste Gruppe beinhaltet Patterns, die die Undo-Funktionalitdt unterstiitzen. Diese sind
Globales Undo und Objektbezogenes Undo. Beim Globalen Undo hat der Benutzer die Moglichkeit,
eine aus Versehen ausgefiihrte Aktion riickgdngig zu machen. Das Objektbezogene Undo bietet
die gleiche Funktionalitdt, nur jeweils auf ein bestimmtes Objekt bezogen. Das heifit, dass
mehrere Historien gleichzeitig verwaltet werden, jeweils eine fiir das zurzeit bearbeitete
Objekt. Diese Option erscheint fiir Tulip vorteilhaft, da die Moglichkeit besteht, mehrere
Objekte gleichzeitig zu bearbeiten. Aus diesem Grund wurde die Entscheidung getroffen,
das Usability Pattern Objektbezogenes Undo in Tulip anzuwenden.

Zur zweiten Gruppe gehoren folgende Patterns: Sicherheitskopie, Automatisches Speichern
und Dokumentwiederherstellung. Diese drei Patterns behandeln die Erstellung zuséatzlicher
Kopien des aktuellen Projekts. Bei Sicherheitskopie wird bei jeder vom Benutzer ausgelosten
Speicherung der Datei ein Backup fiir die alte Datei gemacht, so dass man den Stand der
vorletzten Speicherung wiederherstellen kann. Beim Automatischen Speichern wird das Projekt

55

5 Realisierung von Tulip

in regelmédfiigen Abstdnden gespeichert ohne dass der Benutzer das System dazu auffordern
muss. Dabei wird die Projektdatei tiberschrieben. Bei der Dokumentwiederherstellung geht
es darum, dass das Projekt nach jeder vom Benutzer vorgenommenen Anderung in einer
separaten Datei gespeichert wird. Im Fall eines Systemfehlers kann die letzte Fassung eines
Dokuments wiederhergestellt werden. Fiir den Einsatz im Tulip wurde die Dokumentwieder-
herstellung ausgewdhlt, da das automatische Speichern und das damit verbundene standige
Uberschreiben der Datei nicht erwiinscht ist. Des Weiteren geschieht das Anlegen einer
Sicherheitskopie nur beim Speichern, was nicht von den Systemfehlern schiitzt.

Nachdem der Aufwand fiir die Aufnahme der sieben ausgewéhlten Usability Patterns in die
Anforderungen an Tulip geschitzt wurde, wurden diese entsprechend den Wiinschen des
Kunden priorisiert. Dabei wurde vereinbart, dass das Pattern Filter, welches es dem Benutzer
erlaubt, dargestellte Daten nach eigenen Kriterien zu filtern, fiir diese Implementierung
eine niedrige Prioritdt hat und fiir die erste Version von Tulip nicht in die Anforderungen
aufgenommen wird.

Somit ist eine Liste von sechs Patterns entstanden, welche in die Anforderungen an Tulip auf-
genommen werden. Diese sind: Gute Standardwerte, Objektbezogenes Undo, Abbruch, Warnung,
Direkte Validierung und Dokumentwiederherstellung.

5.2.2 Spezifizierung der Anwendung der Patterns

Fiir die Spezifikation der Anwendung der ausgewéhlten Usability Patterns in Tulip wurde ein
separates Kapitel in der Spezifikation angelegt. Fiir jedes Pattern wurde eine Beschreibung
sowie Globale Vorgaben, Globale Funktionen und Annotationsvorschriften entsprechend den
im Usability Pattern Katalog definierten Schablonen hinterlegt. In der Tabelle 5.1 sind alle
Anwendungsspezifikationen aufgefiihrt. Die Annotationen fiir jedes Pattern sind hervorge-
hoben.

Gute Standardwerte

Beschreibung Beim Anlegen neuer Elemente fiillt das System einige
Felder mit Standardwerten. Der Benutzer kann die
Standardwerte jederzeit tiberschreiben.

Annotation ‘ @Schritt Standardwerte

Objektbezogenes Undo

Beschreibung Das System soll es Benutzern erlauben, Aktionen
objektbezogen riickgédngig zu machen.

Annotation | @Ablauf Objekt-Undo

Objekte Projektbaum (Operationen auf Elementen im Baum,

Vorgaben z.B. Verschieben, Loschen etc.), Projekt (d.h. Projekt-

stammdaten), Akteur, Use Case, Usability Pattern

56

Undo-Verhalten

5.2 Erweiterung der Spezifikation um Usability Patterns

Lineares Undo: 1-10 zuletzt ausgefiihrte Aktionen pro
Objekt sollen in der umgekehrten Reihenfolge der ur-
spriinglichen Ausfithrung riickgangig gemacht wer-
den koénnen. Die Undo-Historie wird geleert, wenn
das jeweilige Objekt nicht mehr angezeigt wird (gilt
fur Akteur, Use Case, Usability Pattern, Projektstamm-
daten).

Redo-Verhalten

Aktionen, die per Undo riickgdngig gemacht wurden,
sollen auch wiederherstellbar sein.

Abbruch

Beschreibung Der Benutzer soll in der Lage sein, einige Aktionen
abzubrechen. Das System soll den Zustand vor der
Ausfiihrung der Aktion wiederherstellen.

Annotation ‘ @Ablauf Abbruch

Warnung

Beschreibung Das System warnt den Benutzer vor der Ausfiithrung
der Funktionen, die nicht riickgiangig gemacht wer-
den konnen.

Annotation | @Schritt Warnung

Vorgaben Darstellung Das System zeigt Warnungen als Popup Dialog an.

Direkte Validierung

Beschreibung Eingaben des Benutzers sollen direkt auf Giiltigkeit
gepriift werden, ohne dass der Benutzer eine spezielle
Funktion dafiir aufrufen muss. Die Validierungsfehler
und Hinweise werden sofort dem Benutzer sofort
signalisiert.

Annotation | @Schritt Direkte Validierung

Vorgaben Darstellung Ungiiltige Eingabewerte werden durch ein Fehler-
symbol neben dem Eingabefeld gekennzeichnet. Ein
Hinweis auf die Fehlerursache wird als ToolTip des
Symbols angezeigt.

Validierungs- Die Validierung findet unmittelbar wéahrend der Ein-
zeitpunkt gabe statt.

Dokumentwiederherstellung

Beschreibung Nach jeder Anderung der Projektdaten speichert das
System Wiederherstellungsinformationen, mit denen
die Projektdaten wiederhergestellt werden konnen.

Annotation | @Ablauf Dok.wdhst.

57

5 Realisierung von Tulip

Strategie Nach jeder Anderung der Projektdaten speichert das
System Wiederherstellungsinformationen, mit denen
die Projektdaten wiederhergestellt werden. Die Wie-
derherstellungsinformationen werden in einer Da-
tei im Benutzerverzeichnis gespeichert. Bei einem
normalen Systemende wird die Datei mit den Wie-
derherstellungsinformationen geldscht. Nach einem
unerwarteten Systemabbruch (,, Absturz”) bietet das
System dem Benutzer beim néchsten Systemstart an,
die Projektdaten anhand der Wiederherstellungsinfor-
mationen wiederherzustellen.

Vorgaben

Daten Vollstandiger Projektbaum, Zeitpunkt der Speiche-
rung

Funktionen | Dokumentwieder- | UC-101: System starten, Alternativer Ablauf 2b
herstellung nach
Systemfehler
Tabelle 5.1: Spezifikation der Anwendung der Usability Patterns in Tulip

5.2.3 Annotierung der Use-Case-Elemente

Im néchsten Schritt wurden fiir jedes Pattern die Use Cases ausgewdhlt, in denen das Pattern
zum Einsatz kommt. Diese Use Cases oder deren Elemente wurden mit einer Annotation
versehen. Ferner wurden von dem Pattern vorgeschriebene lokale Vorgaben und Parameter
beschrieben und zusétzliche Elemente angelegt und referenziert.

Beispiel

Die Abbildung 5.2 zeigt noch einmal den Use Case ,Projekt 6ffnen” (vgl. Abbildung 5.1).
Der Use Case wurde mit drei Usability Patterns annotiert:

1. Schritt 2 aus dem Normalablauf wurde mit dem Pattern Standardwerte annotiert. An
dieser Stelle bietet das System dem Entwickler die Moglichkeit, die Datei auszuwihlen,
die gedffnet werden soll. Das Pattern legt fest, dass standardmaéfsig ein bestimmtes
Verzeichnis angezeigt wird. Der vorgeschriebene Parameter ,Werte” definiert, welches
Verzeichnis als Standardverzeichnis verwendet wird.

2. Im Schritt 5 des Normalablaufs schliefit das System das aktuelle Projekt. Usability
Pattern Warnung sieht eine Warnung vor, falls das aktuelle Projekt nicht gespeicherte
Anderungen enthilt. Durch die Parameter wird die Bedingung fiir die Warnung
und die Moglichkeiten fiir das weitere Vorgehen festgelegt. Aufierdem wurde fiir
die Annotation ein alternativer Ablauf angelegt, der den Fall behandelt, dass der
Entwickler sich fiir die Speicherung des aktuellen Projektes entscheidet.

58

5.3 Entwurf und Implementierung

Projekt dffnen (UC-202)

Ziel: Der Entwickler will ein bestehendes Projekt &6ffnen
Akteure: Entwickler

Beschreibung:

Ebene: Benutzerebene

Prioritdt: MUST

Normalablauf

Vorbedingung: Das System ist gestartet.

1 Entwickler Ruftdie Funktion ,Projekt 6ffnen” auf.

2 System Bietet die Méglichkeit, die Projektdateiim Dateisystem auszuwihlen.
Standardwerte
Werte: zuwietzt verwendetes Verzeichnis (falls bekannt und verfigbar)

3 Entwickler Wiahlt eine Datei aus.

4 Entwickler bestatigt die Auswahl.

5 System SchlieBt das aktuell gedffnete Projekt.
Warnung

Bedingung: Aktuell gedffnetes Projekt enthdlt nicht gespeicherte Anderungen
Alternativen: , Speichern und schifefen™
Alternative Ablaufe bei zusatzlichen Aktionen: = Alternativer Abiouf 5a

Sonderfall: Entwickler wihlt die Option = Alternativer Ablauf 5a
LSpeichernund schliefen”.
6 System offnet das vom Entwickler ausgewdhlte Projekt.
Machbedingung: Das System hat das vom Entwickler ausgewdhlte Projekt gedffnet.
Abbruch

= Alternativer Abhlauf 5a

Sonderfall in 2: Entwickler wihlt die Option ,Speichern und schlieen®.
2al | System Speichertdasalte Projekt.
Sprung: Weiter mit Schritt 6

Abbildung 5.2: Annotierter Use Case ,Projekt 6ffnen”

3. Der Normalablauf wurde mit dem Pattern Abbruch annotiert, was die Abbruchmog-
lichkeit fiir jeden Schritt des Ablaufs vorsieht. Nach dem Abbruch wird der Stand von
vor dem ersten Schritt wiederhergestellt.

5.3 Entwurf und Implementierung

Dieser Abschnitt beschreibt die einzelnen Komponenten von Tulip und deren Implementie-
rung. Es wird auch auf die Auswirkungen der Berticksichtigung der Usability Patterns auf
den Entwurf- und Implementierungsprozess eingegangen.

59

5 Realisierung von Tulip

tulip.model projectTree
hildren Level
TreeElement 1 Folder Project
parent 1 F |
1 Priority
GlobalFunction Actor
1
PatternSpecification PreCondition
1 UseCase
|]
GlobalParameter B referency MainScenario
Condition
1
v \ T
Step Scenario
steps PostCondition
LocalStep / ExtenslonScenario
* 0.1
0.1
tulip. rr'odel.annof:nions
LocalGlobalParameter El
Annotation
LocalParameter
| .
up.mgdel 1
GlobalParameterTemplate ElementTemy o
1
| :
UsabilityPattern —

tion

5.3.1 Datenmodell

Die Abbildung 5.3 bietet einen Uberblick iiber das Datenmodell in einer an UML angelehnter
Notation. Auf die Darstellung einiger Klassen und Beziehungen wurde aus Ubersichtlich-

Abbildung 5.3: Datenmodell von Tulip

keitsgriinden verzichtet.

Das Paket tulip.model.projectTree umfasst die Projekthierarchie. Fiir die Abbildung
der Baumstruktur wurde das Entwurfmuster Kompositum [GHJVo4] verwendet. Die Klasse
TreeElement reprasentiert dabei die Basiskomponente. Das Projekt ist das Wurzelelement
des Baums. Die untergeordneten Use Cases, Akteure und Anwendungsspezifikationen fiir
Usability Patterns stellen Bldtterelemente des Baums dar und werden mit Hilfe von Folder
gruppiert. Des Weiteren befinden sich auch Klassen fiir die Reprdsentation der Bestandteile

60

5.3 Entwurf und Implementierung

[1

Tulip-view cantrole

EditActorPanel LaoutBuilder
MainWindow controlerlistener controller.cbserver
TabPanel EditTabPanel E
TabbedPaneManager
T R == —

\

controler.action controller.command

ViewTabPanel

MainTulipTool Bar
AN

[viewActorPanel |

EditUseCasePanel

_ [RemoveTabAction | [RedoAction | [_command | CommandManager

Al

EditElementAction UndoAction
— ‘ ActorEditCommand

| ‘ PersistActorAction
e ™

mode| utils

]] a ’I‘
tulip.model projectTree: tulip.model annotations tulip.model.vo
CurrentProject XmiExporter ’M‘ Fonts

Abbildung 5.4: Architektur von Tulip

eines Projekts, eines Use Cases und einer Anwendungsspezifikation fiir Usability Pattern in
diesem Paket.

Fiir das bessere Verstdndnis beinhaltet die Abbildung auch einen Ausschnitt aus dem
Paket up.model. Dieses Paket ist ein Teil der Komponente Usability Pattern Browser. Das
zentrale Element ist UsabilityPattern. Fin UsabilityPattern enthdlt eine Liste von
Spezifikationsschablonen, reprasentiert durch GlobalParameterTemplate, GlobalFunction-
Template und AnnotationTemplate. Ein UsabilityPattern wird im Projektbaum durch
PatternSpezifikation instanziiert. Fiir die Schablonen erfolgt die Instanziierung fol-
gendermafien: GlobalFunctionTemplate und GlobalParameterTemplate werden entspre-
chend tiber die Klassen GlobalFunction und GlobalParameter instanziiert, welche mit
einer PatternSpecification assoziiert sind. Fine AnnotationTemplate wird tiber eine
Annotation aus dem Paket tulip.model.annotations instanziiert. Lokale Vorgaben fiir eine
Annotation werden iliber LocalParameter, LocalGlobalParameter und ElementReference
dargestellt. LocalParameter und ElementReference sind Instanzen von Annotationsschablo-
nen LocalParameterTemplate und ElementReferenceTemplate, mit LocalGlobalParameter
werden globale Vorgaben GlobalParameter aus der PatternSpezification iiberschrieben.

5.3.2 Komponenten

Die Abbildung 5.4 zeigt einen Ausschnitt aus dem Entwurf von Tulip. Fiir die Implemen-
tierung wurde das Architekturmuster MVC (Model View Controller) [GRo1] verwendet,
entsprechend sind auch die Pakete aufgeteilt.

Die Daten werden im Paket tulip.model verwaltet. Neben projectTree und annotations
enthélt dieses das Paket vo, welches die Value Objects fiir alle Elemente verwaltet. Value
Objects sind die Implementierung des Entwurfsmusters Memento [GHJVo4] und dienen zur

61

5 Realisierung von Tulip

Zwsischenspeicherung des Zustandes eines Elements. Die Zwischenspeicherung mehrerer
Zustande ist fiir die Erfiillung des Usability Patterns Objektbezogenes Undo notwendig.

Klassen fiir die Verwaltung der graphischen Benutzungsoberfliche befinden sich im
tulip.view. Das Hauptfenster MainWindow beinhaltet drei weitere Elemente: den Projekt-
baum, die Haupttoolbar und die Anzeigefldche, die fiir die Anzeige der Inhalte verwen-
det wird. Das Projekt, Use Cases, Akteure und Anwendungsspezifikationen fiir Usability
Patters werden entweder im Anzeige- oder im Bearbeiten-Modus angezeigt. Daher gibt
es fiir die Anzeige jedes Elements jeweils zwei Klassen, die eine ist von ViewTabPanel
und die andere von EditTabPanel abgeleitet. Weitere Hilfsklassen befinden sich im Paket
tulip.model.internal.

Das Paket tulip.controller enthdlt Klassen zur Kontrolle und Steuerung der anderen
Komponenten. Die Anzeige der richtigen Tabs und die rechtzeitigen Updates aller Elemente
werden z.B. von der Klasse TabbedPaneManager gesteuert. Listener fiir die Ereignisse aus
der GUI findet man in Paketen listener, action und observer. Die Undo-Funktionalitit
wird mittels so genannter Commands realisiert. Fiir jedes Element, welches tiber die Undo-
Funktionalitdt verfiigt, gibt es eine Klasse, die die abstrakte Klasse Command erweitert, z.B.
ActorEditCommand fiir Akteure. Diese Commands implementieren die Methoden undo () und
redo(), indem sie entweder zwei zustdnde des Objekts oder die Funktionen fiir die Wie-
derherstellung eines Zustandes speichern. Fiir jede vorgenommene Anderung wird ein
Command angelegt. Diese werden in einem CommandManager verwaltet und stellen somit die
Anderungshistorie eines Elements dar.

Ein weiteres Paket tulip.utils beinhaltet die Reportgenierung- sowie Export- und Im-
portklassen. Aufierdem werden hier allgemeine Einstellungen wie Schriftart und Farben
verwaltet. Die Klasse CurrentProject ist nach dem Entwurfsmuster Singleton [GHJVo4]
realisiert und verwaltet alle Informationen fiir das aktuelle Projekt, z.B. dazugehorige GUI
und den Dateinamen, unter dem das Projekt gespeichert wurde.

Die Beriicksichtigung der Usability Patterns hat den Entwurf von Tulip erheblich beein-
flusst. Die Anwendung der Patterns Objekbezogenes Undo, Abbruch und Warnung verlangen
eine Moglichkeit der Wiederherstellung eines vorher gespeicherten Zustandes, was zur
Einfithrung von Commands und Value Objects fiihrte. Fiir die Patterns Direkte Validierung und
Dokumentwiederherstellung wurden zusatzliche Funktionalitdten implementiert. Des Weiteren
wirken sich alle Patterns auf die Gestaltung der graphischen Benutzungsoberfldche aus.

5.3.3 Externe Bibliotheken
Bei der Implementierung von Tulip wurde Gebrauch von einigen externen Open-Source-
Bibliotheken gemacht.

Fir die formatierten Eingaben vom Benutzer wurde der HTML-Editor von Shef [sheog] mit
einigen Anderungen eingesetzt. Diese Komponente wird vor allem fiir die Formatierung der
Beschreibungen der Elemente eingesetzt.

62

5.4 Systemtest

Fiir die Implementierung der Import- und Exportfunktionalitdt wurde die Bibliothek XOM
[xom11] benutzt. Diese stellt ein Framework fiir die Verarbeitung von XML-Objekten dar.

Fiir die Reportgenerierung wurden die iText-Bibliotheken eingesetzt. iText for PDF [ite11a]
und iText for RTF [ite11b] unterstiitzen Erstellung und Verarbeitung von PDF- und RTF-
Dokumenten.

5.4 Systemtest

Anschliefiend an die Implementierung von Tulip wurde ein Systemtest durchgefiihrt. Ein
Systemtest dient der Uberpriifung, ob die geforderte Funktionalitit vollstindig implementiert
wurde [LL10]. Die Testdaten fiir den Systemtest von Tulip wurden aus der Spezifikation
[RB11] abgeleitet. Fiir jeden der 26 Use Cases aus der Spezifikation wurde je ein Testfall
fiir jede spezifizierte Reaktion des Systems auf eine Aktion des Benutzers angelegt. Danach
wurden Testfélle fiir alle Abhdngigkeiten zwischen den Use Cases erstellt. Somit wurden alle
in der Use-Case-Spezifikation definierten funktionalen Anforderungen mit den Testfdllen
iiberdeckt. Da Annotationen mit Usability Patterns zuséatzliche Vorgaben definieren, wurden
anschliefiend fiir die Uberpriifung dieser zusitzliche Testfélle abgeleitet. Die wihrend dem
Systemtest entdeckte Fehler wurden behoben, anschlieffend wurde das System noch einmal
mit den gleichen Testdaten getestet.

Dadurch, dass die Anwendung der Usability Patterns in der Use-Case-Spezifikation spezifi-
ziert wurde, konnten wihrend des Systemtests neben den funktionalen Anforderungen auch
die von den Patterns definierte Usability-Merkmale getestet werden.

63

6 Evaluation von Tulip

Dieses Kapitel beschreibt den Einsatz von Tulip wahrend der Erstellung einer erweiterten Use-
Case-Spezifikation. Anschliefiend wird die Einschdtzung der Qualitat der erstellten Software
gemacht. Es wurde tiberpriift, ob die Funktionalitit von Tulip den Anforderungen entspricht.
Dabei wurde besonders darauf geachtet, inwieweit der Einsatz von Tulip im Vergleich
zur Verwendung von Textverarbeitungsprogrammen zur Verbesserung des Prozesses der
Erstellung einer mit Usability Patterns erweiterten Use-Case-Spezifikation beitrédgt.

6.1 Einsatz von Tulip

Im Prozess der Evaluierung wurde die Spezifikation von Tulip selbst, die bereits vor der
Implementierung, wie im Abschnitt 5.1 beschrieben, mittels Microsoft Word verfasst wurde,
erneut erzeugt, dieses Mal mit der Werkzeugunterstiitzung von Tulip. Es wurden alle Use
Cases in Tulip angelegt, Usability Patterns aus dem Katalog importiert und deren Anwen-
dung spezifiziert, anschlieffend wurden Use-Case-Elemente mit Annotationen versehen. Die
erweiterte Use-Case-Spezifikation wurde in RTF-Format exportiert und in die mittels Mi-
crosoft Word erstellte Anforderungsspezifikation von Tulip importiert. Im Folgenden werden
diese Schritte in einzelnen Abschnitten beschrieben.

6.1.1 Spezifizierung der Use Cases

Fiir die Erstellung der Spezifikation wurde ein neues Projekt , Tulip Spezifikation” in Tulip
erstellt. Es wurde eine Beschreibung zum Projekt angegeben sowie Ebenen und Priorita-
ten angelegt. Danach wurde ein Akteurelement mit dem Namen , Entwickler” angelegt.
Anschliefsend wurden 26 Use Cases erstellt, gruppiert mittels Ordner, je einen pro Funktiona-
litatseinheit. Die Abbildung 6.1 zeigt den Projektbaum mit den Ordnern und Use Cases sowie
die Anzeige des Use Cases ,System starten”. Die Erstellung von Use Cases untersttitzt Tulip
mit Hilfe einer vorgefertigten Schablone. Tabelle 6.1 zeigt die Schritte bei der Spezifizierung
der Use Cases auf, die von dem Entwickler durchgefiihrt wurden, und die Unterstiitzung,
die fiir jeden Schritt von Tulip geleistet wurde. Aufserdem wurde der Entwickler dank der
Validierungsfunktion auf die Eingabefehler, wie z.B. eine fehlende Beschreibung fiir einen
Schritt, hingewiesen.

Nachdem alle Use Cases vollstindig, mit Normal- und Alternativabldufen, definiert wurden,
wurde die Komponente Pattern Browser fiir die Auswahl der Usability Patterns aufgerufen.

65

6 Evaluation von Tulip

Ll,vW‘H"ﬁ—u—.wnW
Ej?mjektladen Speidvem @Rﬁpﬂt Ei-'l,\laideren @Pattemﬂmwser @mﬁ:

TR/ D2EC =) Tulip Speaifikation % | [systemstarten %
o undo €* Redo 3 Leschen # Bearbeiten
L~ Usability Patterns I:I System starten (UC-101)
Use Cases. tieren
Expar Ziel: Der Entwickler méchte das System starten,
Use-Case-Element annotieren
- Usability Patterns verwalten Beschreibung:
 Ablufe Verwalten Akteure: Entwickler
= Use Cases Verwalten Pricritat high
[uc-501: Use Case anzeigen Ebene: averview

“-[[] uc-502: Use Case bearbeiten

Filrs E e [normalablauf
UC-302: Akteur anzeigen
D UC-303: Akteur bearbeiten Vorbedingung:

-+ Projekt verwalten

1 |Entwickler startet das System.

[uc-204: Prajektstammdaten bearbeiten
[] uc-203: Projektstammdaten anzeigen

- [] uc-202: projekt ffnen

[uc-201: Neues Prajekt anlegen

[uc-205: Element zum Projekt hinzufiagen
[uc-206: Blement lschen

[uc-207: Element verschieben

ladt das zuletzt bearbeitete Projekt.

2 [Tul
uip Sonderfall 2a: Kein zuletzt bearbeitetes Projekt verfiigbar.

Nachbedingung: Das System ist gestartet.
Das System zeigt das zuletzt bearbeitete Projekt,

" [[] uc-208: Element kopieren und einfiigen [Alternativablauf 2a

i+ | System Starten
[uc-102: Pri Vorbedingung: Kein zuletzt bearbeitetes Projekt verfugbar,
| ‘ 221 I—mhp Frshellt ein neues leeres Projekt.

Nachbedingung: ~ Das System ist gestartet.

Das System zeigt ein leeres Projekt,

[
'| Erstellt von Ruslana Brull am 22,07,2011, zuletzt ge&ndert am 07.08,2011

Abbildung 6.1: Projektbaum und Anzeige eines Use Cases in Tulip

Nr. | Schritt Unterstiitzung durch Tulip
1 Projektdaten befiillen | Eingegebene Ebenen und Prioritdten werden fiir die Aus-
wahl bei der Bearbeitung der Use Cases angeboten.

2 Ordner fiir die Funktio-
nalitdten anlegen

3 Use Cases anlegen Normalabldufe werden angelegt.

4 Stammdaten fiir Use | Es werden fiir Akteure, Ebenen und Prioritaten Auswahl-
Cases befiillen optionen angeboten.

5 Schritte fiir Abldufe de- | Schritte werden nummeriert, es werden Auswahloptionen
finieren fiir den Akteur angeboten.

6 Sonderfille anlegen Fiir jeden Sonderfall wird ein Alternativablauf angelegt. Der

Name fiir den Ablauf wird entsprechend der von Cockburn
in [Cocoy] definierten Konvention generiert.

Tabelle 6.1: Spezifizierung der Use Cases

66

6.1 Einsatz von Tulip

ﬂ‘;r,- Pattern Browser *

Globales Undo Abbruch Angewende
Objektbezogenes Undo -
Wederholung E Beschreibung ‘ e Beispiele / Anwendung

Warnung

Fortschrittsanzeige brcer

Verarbeitungsanzeige |Benu12er machten die Aktion, die sie gerade ausfilhren, abbrechen, ohne Anderungen zu Ubernehmen.

Gute Standardwerte

Direkte Validierung Lésung

Auto-Vervollstandigung

Nachsichtiges Format Erlaube Benutzern, Aktionen abzubrechen.

Filter Verwirf dabei alle Anderungen, die in den bisherigen Schritten der Aktion gemacht wurden. Bei Abbruch einer
Vorschau Aktion soll diese aus Sicht des Benutzers folgenlos bleiben, System und Daten sollen sich also méglichstim
Ausfihrung im Hintergrund Zustand vor Ausfiihrung der (@bgebrochenen) Aktion befinden.

Dokumentwiederherstellung
Automatisches Speichern
Sicherheitskopie

Papierkorb

Beispielmuster Mutzungskontext

Wenn beim Abbruch einer Aktion umfangreiche Eingaben des Benutzers verworfen werden, weise den
Benutzer darauf hin und lasse den Abbruch bestatigen, z. B. durch eine Warnunag .

& Aktionen, die einen Dialog nutzen: die Maglichkeit zum Abbruch ist fiir die meisten Aktionen, bei denen
Benutzer Eingaben in einem aktionsbezogenen Dialog vornehmen, sinnvall

@ Aktionen, die Benutzer nicht auf einfache Weise (z. B. dber ein Globales Undo) riickgangig machen
kénnen.

Begriindung

Die Méglichkeit zum Abbruch der aktuellen Aktion nimmt Benutzern die Furcht vor einer Fehlbedienung des
Systems, Versehentlich aufgerufene Aktionen kénnen folgenlos abgebrochen werden.

Benutzer erhalten durch die Abbruchméglichkeit eine grifere Kontrolle iiber den Interaktionsablauf. Die
Steuerbarkeit des Systems wird somit aus Benutzersicht erhaht.

Abbildung 6.2: Pattern Browser in Tulip

6.1.2 Pattern Browser

Die in Tulip eingebettete Komponente Pattern Browser reprasentiert den Katalog ,Usability
Patterns” [Rod11a]. Sie bietet eine strukturierte Ubersicht iiber die vorhandenen Usability
Patterns und verwaltet detaillierte Beschreibungen und Schablonen fiir die Anwendung. Der
Browser ermoglicht die Navigation durch alle Usability Patterns sowie die Auswahl der
Patterns, um die die Use-Case-Spezifikation erweitert werden soll. Die Abbildung 6.2 zeigt
die Benutzungsoberfliche fiir die Pattern-Browser-Komponente und die Beschreibung des
Patterns ,, Abbruch”.

Die sechs Usability Patterns, die in die Spezifikation tibernommen werden, wurden im
Pattern-Browser ausgewdhlt. Wie man der Abbildung entnehmen kann, wurden diese mit
einem gelben Stern markiert und konnen nicht mehr angewendet werden.

6 Evaluation von Tulip

Itz

Ummﬂt Eijjdctladm Speidm REpnrt ;],Vdcieren @P&M&m @mrn

‘ =i Tulip Spezifiation % | F1 Direkte Validierung %

;‘:J Undo EREdD M Laschen / Bearbeiten

5

-

| Direkte Validierung 454 2um Pattern Browser

Die Eingaben vom Benutzer sollen direkt validiert werden ohne dass der Benutzer eine spezielle Funktion dafiir aufruft.

Die Validierungsfehler und Hinweise werden sofort signalisiert.

{2 Globale Vorgaben

.2 Darstellung:

@ Ungiiltige Eingabewerte werden durch ein Fehlersymbol neben dem Eingabefeld gekennzeichnet.

@ Ein Hinweis auf die Fehlerursache wird als ToolTip des Symbols angezeigt.

.2 validierungszeitpunkt:

Die Validierung findet unmittelbar wahrend der Eingabe statt.

[F)Annotierte Use Cases

UC-801: Use-Case Element annotieren
UC-703: Usability Patterns verwalten
UC-601: Normalablauf bearbeiten
UC-602: Alternativen Ablauf bearbeiten
UC-502: Use Case bearbeiten

UC-303: Akteur bearbeiten

UC-204: Projekistammdaten bearbeiten

UC-201: Neues Projekt anlegen

Abbildung 6.3: Spezifikation der Anwendung fiir Usability Pattern , Direkte Validierung” in
Tulip

6.1.3 Spezifizierung der Anwendung der Patterns

Fiir die im Browser ausgewdhlten Patterns erstellt Tulip Elemente, die die Anwendung
der Patterns spezifizieren. Der Name wird aus dem Katalog tibernommen. Es werden
auch entsprechend den im Katalog definierten Schablonen globale Parameter und globale
Funktionen angelegt. Optionale Vorgaben konnen vom Entwickler nach Bedarf hinzugefiigt
werden. Dem Entwickler bleibt es lediglich, die Anwendung der angelegten Parameter fiir
die Software zu beschreiben. Abbildung 6.3 zeigt die Spezifikation der Anwendung des
Patterns Direkte Validierung mit einer Beschreibung und globalen Parametern Darstellung und
Validierungszeitpunkt.

68

6.1 Einsatz von Tulip

[C:Alternativablauf 2a (Sonderfallim Schritt[2) a »
Vorbedingung: | ein zuletzt bearbeitetes Projekt verfiigar. "
2al | Tulip w | | erstellt ein neues leeres Projekt. R
Standardwerte ®

Werte: Projektname: JMeues Projekt”, Systemname: System™;
Unterordner: Usability Patterns, Akteure, Use Cases;
Priorititen: hoch, mittel, niedrig;

Ebenen: Ubersicht, Benutzerebene, Technische Details.

Schritt hinzufiigen

Nachbedingung: | pag system ist gestartet.

Das System zeigt ein leeres Projekt.

Bedingung Hinzufiigen

Abbildung 6.4: Bearbeiten eines Use-Case-Ablaufs in Tulip

6.1.4 Annotierung der Use Cases

Die Annotation der Use Cases erfolgt entsprechend den in den Usability Patterns definierten
Annotationsschablonen. In Tulip wird fiir jeden Use Case, Ablauf und Schritt eine Liste mit
Schablonen angeboten, die fiir die Annotation dieses Elements geeignet sind. Der Entwickler
muss lediglich eine Schablone auswihlen, daraufhin wird das Element mit einer Annotation,
die mit dem Usability Pattern verlinkt ist, versehen. Die obligatorischen Parameter werden
ebenfalls automatisch angelegt. Die Abbildung 6.4 zeigt beispielhaft die Bearbeitung des
Alternativablaufs 2a fiir den Use Case System starten. Der Schritt 2a1 wurde mit dem Pattern
Standardwerte annotiert.

6.1.5 Generierung eines Reports

AnschliefSfend wurde ein RTF-Report von Tulip generiert [Tul11]. Dieser enthélt Informationen
iiber das Projekt, Anwendungsspezifikationen fiir die verwendeten Patterns, sowie eine
tabellarische Darstellung aller Use Cases. Die Annotationen sind in die Tabellen eingebettet.
Aufierdem weist der Report fiir jedes Usability Pattern eine Liste von Use Cases auf, deren
Elemente mit diesem Pattern annotiert sind. Abbildung 6.5 zeigt einen Ausschnitt aus dem
Report, auf dem der Use Case ,System starten” abgebildet ist. Der generierte Report wurde
anschlieffend in die Anforderungsspezifikation von Tulip [RB11] an Stelle von der alten
Use-Case-Spezifikation aufgenommen.

69

6 Evaluation von Tulip

Pre Condition:

Kein zuletzt bearbeitetes Projekt verfligbar.

2al

Tulip

erstellt ein neues leeres Projekt.

Standardwerte

Werte: Projektname: ,Neues Projekt”, Systemname: System®;
Unterordner: Usability Patterns, Akteure, Use Cases;
Prioritaten: hoch, mittel, niedrig;

Ebenen: Ubersicht, Benutzerebene, Technische Details.

Post Condition:

Das System ist gestartet.

Das System zeigt ein leeres Projekt.

Extension Scenario 2b

Pre Condition:

System wurde bei der letzten Ausfithrung unvorhergesehen
beendet (z. B. aufgrund eines Systemfehlers).

2b1 Tulip fragt Entwickler, ob die zuletzt bearbeiteten Projekidaten aus
den Wiederherstellungsinformationen wiederhergestellt werden
sallen.

2b2 Entwickler bestatigt die Wiederherstellung.

2b3 Tulip stellt die Projektdaten wieder her.

Post Condition:

Das System ist gestartet.
Das System zeigt die wiederhergestellten Projektdaten.

Abbildung 6.5: Ausschnitt aus dem Use Case ,System starten” im RTF-Report

6.2 Bewertung von Tulip als Spezifikationswerkzeug

Das Werkzeug Tulip eignet sich dafiir, eine Use-Case-Spezifikation zu erstellen und diese
mit Usability Patterns aus dem Katalog zu erweitern. Dank der Automatisierung vieler
Prozesse und dem Wegfallen des Formatierungsaufwands verlduft der Prozess der Use-
Case-Modellierung und anschlieffender Annotation mit Anwendung von Tulip wesentlich
schneller als mit gdngigen Textverarbeitungsprogrammen. Durch die Validierungsfunktion,
die den Entwickler auf fehlende und inkorrekte Eingaben hinweist, wird die Konsistenz
in der Verwendung der Usability Patterns sichergestellt und die Qualitdt der Use-Case-
Spezifikation erhoht. Auch alle erstellten Verweise werden bei Anderungen stets aktualisiert,
bei der Verwendung eines Textverarbeitungsprogramms ist der Entwickler bei der Pflege
dieser auf sich alleine gestellt.

70

6.3 Bewertung der Qualitat der Software

Ein Nachteil gegentiber einem Textverarbeitungsprogramm ist allerdings der entstehende
Medienbruch. Wenn z.B. mit Word gearbeitet wird, kann die gesamte Anforderungsspezifi-
kation inklusive einer Use-Case-Spezifikation im gleichen Dokument erstellt und verwaltet
werden. Falls fiir die Erstellung und Pflege der Use-Case-Spezifikation Tulip eingesetzt wird,
muss diese entweder in ein separates Dokument ausgelagert oder nach jeder Anderung neu
importiert werden.

Da Tulip in erster Linie fiir die Evaluierung des Konzeptes ,Usability Patterns” entwickelt
wurde, ist die Funktionalitdt des Werkzeugs auf die strukturierte Erfassung von Use Cases mit
der Unterstiitzung von Usability Patterns begrenzt. Im Vergleich zu den anderen Werkzeugen
zur Use-Case-Modellierung (vergleiche Abschnitt 4.2) erscheint diese recht eingeschrankt. Es
gibt in Tulip z.B. keine Moglichkeit, andere Anforderungen oder Dokumente zu verwalten, es
werden keine Use-Case-Diagramme erstellt, keine Rechtschreibpriifung fiir Benutzereingaben
durchgefiihrt. Tulip ist zur Zeit ein Einbenutzersystem, das heifst, dass die kollaborative
Arbeit nicht unterstiitzt wird. Es wire allerdings denkbar, diese und weitere Funktionalitaten
in spétere Versionen von Tulip einzubauen, so dass die gesamte Anforderungsspezifikation
mit Hilfe von Tulip erzeugt und gepflegt werden kann.

6.3 Bewertung der Qualitat der Software

In diesem Abschnitt wird die Produktqualitdt der im Rahmen dieser Arbeit erstellten
Software anhand der von [LL10] definierten Teilqualitidten bewertet. Die Abbildung 6.6 zeigt
die Gliederung des Qualitédtsbegriffs nach [LL10]. Da bei der Realisierung von Tulip in erster
Linie das Ziel verfolgt wurde, die praktische Anwendung des Konzeptes ,Usability Patterns”
zu evaluieren, wurde auf die Erhebung der nichtfunktionalen Anforderungen, die fiir die
Benutzung der Software von breiteren Anwendergruppen relevant waren, vorerst verzichtet.
Aus diesem Grund kénnen manche Qualitdtskriterien nur grob oder gar nicht eingeschatzt
werden.

6.3.1 Zuverlassigkeit

Die Korrektheit der Software wurde wie im Abschnitt 5.4 beschrieben anhand der Anforde-
rungsspezifikation [RB11] gepriift. Die dabei festgestellten Mdngel wurden behoben, die
Software wurde anschlieffend nochmal getestet. Somit ldsst sich die Korrektheit als hoch
einstufen.

Im Laufe der Evaluierung hat das Werkzeug die erwartete Funktionalitdt erbracht. Allerdings
ist die Ausfallsicherheit nur schwer einschitzbar, da Tulip nicht mit grofsen Datenmengen
getestet wurde. Es wurden auch keine speziellen Anforderungen diesbeziiglich an die
Software gestellt.

Das Genauigkeit-Kriterium ist fiir die Software wenig relevant, da diese nur eindeutige
Resultate erzeugt znd somit eine Abweichung von der Korrektheit nicht in Frage kommt.

71

6 Evaluation von Tulip

Spezifikationsvollstandigkeit
— — Lokalitat

Prufbarkeit Testbarkeit

/ _— Strukturiertheit
) " —— —— Simplizitat
Wartbarkeit Anderbarkeit < Knappheit
/ \ Lesbarkeit
Portabilitat — Gerateunabhangigkeit
Abgeschlossenheit

Produktqualitat

__—"Korrektheit

Zuverlassigkeit — Ausfallsicherheit

T Genauigkeit

, _ . __—— Effizienz
Brauchbarkeit —————— Nijtzlichkeit _——______ Sparsamkeit

N Leistungsvollstandigkeit

Handbuchvollstandigkeit
Bedienbarkeit Z __—— Konsistenz

Q/ersténdlichkeit

Einfachheit

Abbildung 6.6: Qualitdtsbaum [LL10]

6.3.2 Nutzlichkeit

Die Effizienz und Sparsamkeit lagen bei der Evaluierung der Software hoch. Es wurden keine
Einbufle in Rechenzeit oder im Speicherverbrauch beobachtet.

Die Leistungsvollstindigkeit ist gegeben. Alle in der Spezifikation beschriebenen hochpriori-
sierten Funktionalititen wurden umgesetzt.

6.3.3 Bedienbarkeit

Der Aspekt der Handbuchvollstindigkeit ist fiir Tulip nicht relevant. Es wurden keine Hand-
bticher fiir Tulip erstellt, da die mit Screenshots versehene ausfiihrliche Spezifikation einen
guten Uberblick iiber die Benutzung der Software bietet.

Die hohe Konsistenz wurde durch die durchgehende Wiederverwendung der Komponenten
fir die Benutzungsoberfldche sowie durch die Anwendung der Usability Patterns Warnung
und Abbruch [Rod11a] erreicht.

Die hohe Verstindlichkeit wird durch die Anwendung des Usability Patterns Direkte Vali-
dierung [Rod11a] erreicht. Durch den gesamten Use-Case-Modellierungsprozess wird der
Entwickler mittels Warnungen auf falsche oder fehlende Eingaben hingewiesen.

72

6.3 Bewertung der Qualitat der Software

Die Einfachkeit der Software lasst sich als hoch einschdtzen, da die Bedienung intuitiv ist und
meist aus den Texteingaben in vorgefertigte Felder besteht. Allerdings sollte der Entwickler
mit der Struktur der textbasierten Use-Case-Beschreibung vertraut sein.

6.3.4 Prufbarkeit

Die Spezifikationsvollstindigkeit von Tulip ist hoch, da dies die Grundlage fiir die spatere
Evaluierung des Werkzeugs war. Alle funktionalen und Usability-Anforderungen an die
Software wurden vollstindig mit Hilfe von Use Cases in [RB11] spezifiziert und priorisiert.

Die Lokalitit der Software ist dadurch gegeben, dass diese als eine isolierte Anwendung
implementiert wurde. Der Zugriff auf systemfremde Daten erfolgt nur tiber die Komponente
Pattern Browser. Dabei werden die Daten lediglich ausgelesen und in keiner Weise verandert.
Somit werden die Fernwirkungen in der Software vermieden.

Die Testbarkeit von Tulip ist hoch, da jede Eingabesituation reproduzierbar ist und die damit
verbundenen visuellen Auswirkungen immer nachvollziehbar sind.

6.3.5 Anderbarkeit

Durch die Verwendung von Entwurfmustern bei der Implementierung ist die Software in
logisch abgeschlossene Einheiten gegliedert. Somit wird eine hohe Strukturiertheit erreicht.

Die Simplizitit der Software ist relativ hoch, da diese nur wenige schwer verstandliche
Konstruktionen enthélt. Wobei fiir das Verstdndnis einiger Komponenten, wie z.B. Import-
und Export-Funktionalitédt, die Einarbeitung in die eingebundenen fremden Bibliotheken
notwendig ist.

Die Knappheit der Software wurde durch die Wiederverwendung einiger Komponenten und
die Vermeidung von Redundanz sichergestellt.

Um die Lesbarkeit des Codes sicherzustellen, wurde bei der Implementierung auf die Richtli-
nien fiir die Programmierung in Java geachtet. Es wurden stets ausdrucksstarke Bezeichner
in englischer Sprache verwendet und der Code wurde durchgehend mit Kommentaren
versehen.

6.3.6 Portabilitat

Die Geriteunabhiingigkeit ist durch die Verwendung der Programmiersprache Java gegeben.
Dadurch ist die Software auf jedem System lauffihig, auf dem Java Virtual Machine installiert
ist. Allerding wurde fiir die Darstellung der graphischen Oberflache zwecks des besseren
Erscheinungsbilds auf die Verwendung eines auf allen Plattformen gleich aussehenden Look-
and-Feels verzichtet. Es wurde das dem systemiiblichen angepasste SystemLookAndFeel
verwendet, dabei wurde die Gestaltung der Benutzungsoberflache hauptséachlich fiir das
Betriebssystem Windows optimiert.

73

6 Evaluation von Tulip

In der aktuellen Implementierung von Tulip ist der Datenaustausch mit anderen Systemen
nur mittels Import- und Exportfunktionalitit gegeben. Somit ist die Abgeschlossenheit der
Software garantiert.

74

7 Bewertung des Konzeptes ,,Usability
Patterns”

Im Rahmen dieser Arbeit wurde das Konzept der Usability Patterns bei der Entwicklung
eines Softwareproduktes eingesetzt. In diesem Kapitel wird der Einsatz des Konzeptes
,Usability Patterns” in einzelnen Phasen des Softwareentstehungsprozesses einer Bewertung
unterzogen.

7.1 Anforderungsanalyse

Bei der Anforderungsanalyse werden Usability-Anforderungen oft vergessen oder zusammen
mit anderen nichtfunktionalen Anforderungen nur am Rande berticksichtigt. Der Usability-
Patterns-Katalog bietet eine Sammlung der strukturiert beschriebenen Anforderungen, die
die Usability der Software steigern. Dadurch, dass diese Anforderungen bereits beschrieben
und zusammengefasst sind, wird der Prozess der Erhebung von Usability-Anforderungen
deutlich vereinfacht.

Bei den Usability-Anforderungen handelt es sich meistens um so genannte weiche An-
forderungen, da sie nicht quantifiziert werden konnen. Weiche Anforderungen sind da-
durch gekennzeichnet, dass es einen flieBenden Ubergang zwischen richtig und falsch gibt
[LL10]. Solche Anforderungen sind schwer zu erheben und zu formulieren. An dieser Stelle
bietet der Usability Patterns Katalog [Rod11a] eine geeignete Grundlage, um die Usability-
Anforderungen mit dem Kunden zu diskutieren und diese dank den Schablonen aus dem
Katalog zu quantifizieren.

Auch ist es dem Kunden oft nicht bewusst, welche Usability-Merkmale die Software aufwei-
sen soll. Diese Anforderungen bleiben latent, bis der Kunde gezielt danach gefragt wird oder
bis er die fertige Software sieht. In diesem Fall kann der Katalog mit zahlreichen Beispielen
fiir den Einsatz jedes Patterns dazu verhelfen, die latenten Kundenwtiinsche zu identifizieren
und diese zu beschreiben.

Allerdings muss man sich bewusst sein, dass nicht alle Usability-Anforderungen mit Hilfe
von Usability Patterns erhoben werden konnen. Bei Usability Patterns handelt es sich um
Usability-Merkmale, die einen erheblichen Einfluss auf die Funktionalitdt der Software
haben und daher als eine Ergdnzung zu den funktionalen Anforderungen formuliert werden
konnen. Fiir die Erhebung der Anforderungen beziiglich der Gestaltung der UI sollen
entsprechende Techniken, wie z.B. Ul-Prototyping (vergleiche Abschnitt 2.1.2) eingesetzt
werden.

75

7 Bewertung des Konzeptes ,Usability Patterns®

7.2 Spezifikation

Bei der Spezifikation der Anforderungen stehen funktionale Merkmale im Vordergrund, da
Erfiillung dieser den Nutzen der Software ausmachen. Funktionale Anforderungen lassen
sich recht prazise fassen und werden z.B. mittels Use Cases in einer semiformalen Form
festgehalten. Die nichtfunktionalen Anforderungen sind dagegen oft weich und vage und
werden in natiirlicher Sprache formuliert. Usability-Merkmale, die im Grenzbereich zwischen
funktionalen und nichtfunktionalen Anforderungen liegen, werden tiblicherweise zu den
nichtfunktionalen gezdhlt und entsprechend nicht strukturiert beschrieben.

Das Konzept der Usability Patterns hilft dabei, die Usability-Merkmale, welche die Funktio-
nalitdt der Software betreffen, zu identifizieren und bieten ein Modell fiir die Integrierung
dieser in Use Cases. Somit werden mittels Use Cases beschriebene funktionale Anforde-
rungen um dazugehorige Usability-Merkmale erweitert. Uber Usability Patterns definierte
Merkmale werden strukturiert und konsistent mittels erweiterter Use-Cases beschrieben.
Dies erhoht die Qualitdt der Anforderungsspezifikation als Referenz fiir weitere Artefakte,
da diese jetzt auch quantitative Vorgaben fiir Usability-Anforderungen beinhaltet.

Ein Nachteil der erweiterten Spezifikation ist, dass diese miithsam zu pflegen ist. Die Erweite-
rungen erhohen die Komplexitdt der Use Cases, die iiblicherweise in Form von Tabellen mit
Hilfe eines Textverarbeitungsprogramms erstellt werden. Use-Case-Erweiterungen benétigen
syntaxische Validierung und Konsistenzpriifung, somit ist eine Werkzeugunterstiitzung fiir
die Erstellung einer erweiterten Use-Case-Spezifikation wiinschenswert. Der Einsatz des
im Rahmen dieser Arbeit entwickelten Werkzeug Tulip fiir die Erstellung einer erweiterten
Use-Case-Spezifikation hat gute Ergebnisse gezeigt (vergleiche Abschnitt 6.2), allerdings
gibt es zurzeit kein Werkzeug fiir die Erstellung der kompletten Anforderungsspezifikation,
welches die Integration der Usability Patterns untersttitzt.

7.3 Entwurf und Implementierung

Die annotierte Use-Case-Spezifikation beschreibt Usability-Anforderungen eng verzahnt
mit den Funktionalititen, die sie betreffen. Dies versetzt den Entwickler in die Lage, die
Usability-Merkmale bereits bei der Realisierung der entsprechenden Funktionalitidt zu be-
riicksichtigen und nicht erst spiter, in der Ul-Design-Phase. Dadurch wird die Anpassung
der Architektur und Datenstruktur einer Software an diese Anforderungen in frithen Phasen
des Entwicklungsprozesses sichergestellt.

Allerdings muss man beachten, dass die erweiterte Use-Case-Spezifikation nur eine Referenz
fir den Entwickler darstellt, es gibt keine Techniken, die Use Cases in Bausteine eines
Softwareentwurfs umwandeln. Der Entwickler muss in einem iterativen Prozess den Entwurf
ausarbeiten und die Erfiillung der Anforderungen aus der Spezifikation iiberpriifen.

Bei der Implementierung erwiesen sich die detaillierten Vorgaben zu den Usability-
Merkmalen als durchaus hilfreich. Ublicherweise wird der Entwickler auf sich alleine gestellt,

76

7.4 Testphase

was die Usability der implementierten Funktionalitdt angeht. Im besten Fall werden allge-
meingiiltige Vorgaben in Form einer Richtlinie oder eines Styleguides gemacht. Die Vorgaben
fiir die konkrete Funktionalitdt miissen dann von dem Entwickler selber abgeleitet werden.
Dies kann zur Inkonsistenz im Erscheinungsbild fiihren, wenn z.B. mehrere Entwickler an
der Implementierung arbeiten. Mit dem Konzept der Usability Patterns wird sichergestellt,
dass die allgemeingiiltige globale Vorgaben eines Merkmals sowie die Vorgaben fiir einzelne
Funktionalitdten stets konsistent bleiben.

7.4 Testphase

In der Testphase wird die Erfiillung der an die Software gestellten Anforderungen durchge-
fithrt. Fiir weiche Anforderungen, die keine klaren Vorgaben definieren, kénnen auch keine
aussagekriftige Testdaten erstellt werden. Dank Usability Patterns konnen die in Form der
Annotationen in Use Cases enthaltene Usability-Merkmale, wie im Abschnitt 5.4 beschrieben,
direkt in Testfélle fiir einen Systemtest {iberfiihrt werden. Somit kann die Erfiillung der iiber
Usability-Patterns definierten Usability-Anforderungen zusammen mit anderen funktionalen
Anforderungen an die Software in einem Systemtest getestet werden.

7.5 Zusammenfassung

Die Anwendung des Konzeptes ,Usability Patterns” in einem Softwareentwicklungsprozess
bringt einige Vorteile fiir die Entwickler mit sich. In der Anforderungsanalysephase bietet der
Usability-Pattern-Katalog eine Unterstiitzung bei der Identifizierung und Abstimmung be-
stimmter Usability-Anforderungen. In der Spezifikationsphase werden diese Anforderungen
nicht mehr als nichtfunktionale behandelt, sondern strukturiert und konsistent zusammen
mit funktionalen Anforderungen beschrieben. Eine solche Anforderungsspezifikation kann
als Referenz bei der Realisierung und beim Testen der Usability-Anforderungen verwendet
werden.

Man muss allerdings beachten, dass nicht alle Usability-Anforderungen als ein Usability-
Pattern beschrieben werden konnen. Dieses Konzept kann nur fiir die Merkmale verwendet
werden, welche die Funktionalitdt der Software betreffen. Auch ist das Konzept noch relativ
neu und umfasst nur einige wenige Usability-Probleme, die am hédufigsten auftreten. Es gibt
auch zurzeit keine ausreichende Werkzeugunterstiitzung fiir die Anwendung des Konzeptes,
wobei die Evaluation

77

8 Zusammenfassung und Ausblick

Im Rahmen dieser Arbeit wurde das Konzept der Usability Patterns an einem praktischen
Beispiel angewendet, evaluiert und verbessert. Dabei entstand ein Werkzeug, welches die
Entwickler bei der Anwendung des Konzeptes untersttitzt.

Als Erstes wurde die Use-Case-Struktur um zusétzliche Elemente, so genannte Annotationen,
erweitert, welche die Spezifizierung der Usability-Merkmale ermoglichen. Eine erweiterte
Use-Case-Spezifikation beschreibt sowohl funktionale als auch mittels Usability Patterns
beschriebene Usability-Merkmale des Systems und tragt dazu bei, dass die Entwickler bei
der Erstellung des Entwurfs und des Codes auch Usability-Aspekte berticksichtigen.

Das Konzept der Usability Patterns wurde bei der Entwicklung eines Use-Case-Editors Tulip
angewendet und evaluiert. Wahrend der Anforderungsanalyse wurden passende Usability
Patterns identifiziert, woraufhin eine Use-Case-Spezifikation fiir Tulip erstellt und mit den
ausgewdhlten Patterns erweitert wurde. Die spezifizierten Usability Patterns konnten somit
beim Entwurf und der Implementierung der Software sowie bei der Erstellung der Testdaten
berticksichtigt werden.

Im Laufe der Arbeit entstand ein Werkzeug zur Erstellung und Bearbeitung einer Use-
Case-Spezifikation mit Unterstiitzung fiir erweiterte Use Cases und Usability Patterns.
Das Werkzeug bietet eine Komponente zur Anzeige der vorhandenen Patterns aus dem
Katalog und die Funktionalitit fiir die Ubernahme dieser in die Use-Case-Spezifikation.
Desweiteren ist es moglich, Use Cases zu erstellen, die Anwendung der Usability Patterns
zu spezifizieren und Use-Case-Elemente mit den Patterns zu annotieren. Die erweiterte
Use-Case-Spezifikation kann in PDF- und RTF-Format exportiert und in andere Dokumente,
wie z.B. in die Anforderungsspezifikation, integriert werden.

Das erstellte Werkzeug Tulip wurde an einem praktischen Beispiel evaluiert, indem die
eigene Spezifikation nochmal erstellt wurde. Dabei liefs sich erkennen, dass der Prozess
der Erstellung einer erweiterten Use-Case-Spezifikation mit einer Werkzeugunterstiitzung
deutlich optimiert werden kann, indem die Strukturierung und die syntaktische Validierung
von dem Werkzeug tibernommen werden.

Ausblick

Der im Rahmen dieser Arbeit durchgefiihrte Einsatz der Usability Patterns im Entwicklungs-
prozess konnte erste positive Erkenntnisse iiber die Brauchbarkeit und Praxistauglichkeit des

79

8 Zusammenfassung und Ausblick

Konzeptes liefern. Weitere Schritte konnen und sollen in mehrere Richtungen unternommen
werden.

Der aktuelle Pattern-Katalog beschreibt nur einige geldufige Usability-Merkmale. Um ein
breiteres Spektrum an Anforderungen zu unterstiitzen, konnen weitere spezifische Usability
Patterns ausgearbeitet werden. Fiir eine bessere Ubersichtlichkeit kann eine Kategorisierung
der Patterns oder sogar die Verwendung mehrerer Pattern-Kataloge in Betracht gezogen
werden.

Die Werkzeugunterstiitzung durch Tulip tragt zur Optimierung des Prozesses der Erstellung
einer mit Usability Patterns erweiterten funktionalen Use-Case-Spezifikation bei. Im Rahmen
dieser Arbeit wurden die Grundfunktionen fiir die Verwaltung der Use Cases und Anno-
tierung dieser mit Usability Patterns realisiert. Eine Weiterentwicklung von Tulip wére fiir
die Unterstiitzung der Entwickler bei der Anwendung des Konzeptes von Vorteil. Es sind
folgende funktionale Erweiterungen zu empfehlen:

Erstellung von Use-Case-Diagrammen zusitzlich zu den Use-Case-Beschreibungen

Erfassung zusétzlicher Elemente, wie z.B. nichtfunktionalen Anforderungen

Pflege eines Glossars

Bereitstellung der Arbeitsumgebung fiir mehrere Benutzer

Anpassungsmoglichkeit der Struktur der exportierten Dokumente

Rechtschreibpriifung

8o

Literaturverzeichnis

[ABCo3]

[Cas11]

[Coco7y]

[DINo6]

[GHJVo4]

[GRo1]

[Hecoog]

[HeR11]

[ite11a]

[itex1b]

[Jacg2]

[JMSSo7]

S. Adolph, P. Bramble, A. Cockburn. Patterns for effective use cases. Addison-Wesley,
Boston, 2003. (Zitiert auf Seite 31)

Use Cases and Requirements Management - CaseComplete, 2011. URL http:
//www.casecomplete.com/. (Zitiert auf Seite 44)

A. Cockburn. Writing effective use cases. Addison-Wesley, Boston, 18. print. edition,
2007. (Zitiert auf den Seiten 29 und 66)

DIN EN ISO 9241-110: Ergonomische Gestaltung von Benutzungsschnittstellen :
Kommentar zur Grundsatznorm, 2006. (Zitiert auf Seite 19)

E. Gamma, R. Helm, R. Johnson,]. M. Vlissides. Design patterns: Elements of reusable
object-oriented software. Addison-Wesley, Reading, Mass, 31. printing. edition, 2004.
(Zitiert auf den Seiten 60, 61 und 62)

E. Gamma, D. Riehle. Entwurfsmuster: Elemente wiederverwendbarer objektorientierter
Software. Addison-Wesley, Miinchen ;, Boston [u.a.], 5., korrigierter nachdr. edition,
2001. (Zitiert auf Seite 61)

G. Hecke. Bachelorarbeit. Semantische Erweiterung von Glossareintragen zur au-
tomatisierten Uberpriifung der korrekten Benutzung. Leibnitz Universitit Hannover,
2009. (Zitiert auf Seite 46)

HEuristic Requirements Assistant, 2011. URL https://trac.se.uni-hannover.
de/trac/hera/wiki. (Zitiert auf Seite 46)

iText ® - Free / Open Source PDF Library for Java and C#, 2011. URL http:
//itextpdf.com/. (Zitiert auf Seite 63)

iText RTF library | Download iText RTF library software for free at SourceFor-
genet, 2011. URL http://sourceforge.net/projects/itextrtf/. (Zitiert auf
Seite 63)

I. Jacobson. Object-oriented software engineering: A use case approach. ACM Press,
Harlow, Essex, 1992. URL http://www.worldcat.org/oclc/638307356. (Zitiert
auf Seite 29)

N. Juristo, A. M. Moreno, M.-I. Sanchez-Segura. Guidelines for Eliciting Usability
Functionalities. IEEE Transactions on Software Engineering, 33(11), 2007. (Zitiert auf
den Seiten 25 und 26)

81

http://www.casecomplete.com/
http://www.casecomplete.com/
https://trac.se.uni-hannover.de/trac/hera/wiki
https://trac.se.uni-hannover.de/trac/hera/wiki
http://itextpdf.com/
http://itextpdf.com/
http://sourceforge.net/projects/itextrtf/
http://www.worldcat.org/oclc/638307356

Literaturverzeichnis

[Kargo]

[LL10]

[RB11]

[RE-07]

[rem11]

[RFo7]

[Rod1o]

[Rod11a]

[Rod11b]

[sheog]

[Somo7]
[Tul11]

[UCE11]

[xom11]

C.-M. Karat. Cost-benefit analysis of usability engineering techniques. Proceedings of
the Human Factors Society, Orlando, Florida, 1990. (Zitiert auf Seite 19)

J. Ludewig, H. Lichter. Software Engineering: Grundlagen, Menschen, Prozesse,
Techniken. dpunkt-Verl, 2010. (Zitiert auf den Seiten 11, 21, 25, 29, 63, 71, 72
und 75)

H. Roder, R. Brull. Erweiterte Use-Case-Spezifikation fiir Tulip, 2011. (Zitiert auf
den Seiten 53, 63, 69, 71 und 73)

Portal fiir Anforderungsmanagement, 2007. URL http://re-wissen.de/Wissen/.
(Zitiert auf den Seiten 28 und 32)

remasystem - Requirements management system - Google Project Hosting, 2011.
URL http://code.google.com/p/remasystem/. (Zitiert auf Seite 48)

M. Richter, M. Fluckiger. Usability Engineering kompakt: Benutzbare Software gezielt
entwickeln. Elsevier, Miinchen, 1 edition, 2007. (Zitiert auf Seite 20)

H. Roder. Using Interaction Requirements to Operationalize Usability. Proceedings
of the 25th ACM Symposium on Applied Computing, 2010. (Zitiert auf Seite 25)

H. Roder. Katalog ”"Usability Patterns”, 2011. (Zitiert auf den Seiten 27, 34, 43, 67,
72 und 75)

H. Roder. A Pattern Approach to Specifying Usability Features in Use Cases.
Proceedings of the 2nd Int’l Workshop on Pattern-Driven Engineering of Interactive
Computing Systems, 2011. (Zitiert auf den Seiten 11, 26, 35 und 36)

SHEF - Swing HTML Editor Framework, 2009. URL http://shef.sourceforge.
net/. (Zitiert auf Seite 62)

S. Somé. UCEd Use Cases development approach, 2007. (Zitiert auf Seite 48)

Tulip. Generierte erweiterte Use-Case-Spezifikation fiir Tulip, 2011. (Zitiert auf
Seite 69)

Use Case Editor, 2011. URL http://sourceforge.net/projects/uced/. (Zitiert
auf Seite 47)

XOM - XML object model, 2011. URL http://www.xom.nu/. (Zitiert auf Seite 63)

Alle URLs wurden zuletzt am 1.08.2011 gepriift.

82

http://re-wissen.de/Wissen/
http://code.google.com/p/remasystem/
http://shef.sourceforge.net/
http://shef.sourceforge.net/
http://sourceforge.net/projects/uced/
http://www.xom.nu/

Erkldrung

Hiermit versichere ich, diese Arbeit selbstindig
verfasst und nur die angegebenen Quellen
benutzt zu haben.

Stuttgart, den 8. August 2011

(Ruslana Brull)

	Abbildungsverzeichnis
	Tabellenverzeichnis
	1 Einleitung
	1.1 Motivation
	1.2 Aufgabenstellung
	1.3 Aufbau der Arbeit
	1.4 Sprachliche Konvention

	2 Grundlagen
	2.1 Usability
	2.1.1 Usability-Merkmale
	2.1.2 Usability Engineering
	2.1.3 Definition der Usability-Anforderungen

	2.2 Usability Patterns
	2.2.1 Funktionale Usability-Merkmale
	2.2.2 Aufbau der Usability Patterns
	2.2.3 Usability-Pattern-Katalog
	2.2.4 Usability Patterns im Entwicklungsprozess

	2.3 Use Cases
	2.3.1 Aufbau von Use Cases
	2.3.2 Erstellung von Use Cases

	2.4 Anforderungsspezifikation im Entwicklungsprozess

	3 Konzept der Erweiterung von Use Cases
	3.1 Erstellung einer erweiterten Spezifikation
	3.1.1 Auswahl der Usability Patterns aus dem Katalog
	3.1.2 Spezifikation der Anwendung von Usability Patterns
	3.1.3 Erstellung der Annotationen

	3.2 Erweiterung der Use-Case-Struktur
	3.3 Spezifikationsschablonen in Usability Patterns
	3.4 Ergänzung von Use Cases

	4 Werkzeugunterstützung für das Konzept
	4.1 Anforderungen an das Werkzeug
	4.1.1 Verwaltung von Use Cases
	4.1.2 Anzeige der Usability Patterns im Katalog
	4.1.3 Spezifikation der Anwendung von Usability Patterns
	4.1.4 Annotierung von Use-Case-Elementen
	4.1.5 Export der annotierten Use Cases

	4.2 Evaluierung existierender Werkzeuge
	4.2.1 Case Complete 2011
	4.2.2 HeRA
	4.2.3 UCEd
	4.2.4 Remas
	4.2.5 Zusammenfassung

	4.3 Evaluierung einer Erweiterungsmöglichkeit

	5 Realisierung von Tulip
	5.1 Erstellung der Spezifikation
	5.2 Erweiterung der Spezifikation um Usability Patterns
	5.2.1 Auswahl der Patterns
	5.2.2 Spezifizierung der Anwendung der Patterns
	5.2.3 Annotierung der Use-Case-Elemente

	5.3 Entwurf und Implementierung
	5.3.1 Datenmodell
	5.3.2 Komponenten
	5.3.3 Externe Bibliotheken

	5.4 Systemtest

	6 Evaluation von Tulip
	6.1 Einsatz von Tulip
	6.1.1 Spezifizierung der Use Cases
	6.1.2 Pattern Browser
	6.1.3 Spezifizierung der Anwendung der Patterns
	6.1.4 Annotierung der Use Cases
	6.1.5 Generierung eines Reports

	6.2 Bewertung von Tulip als Spezifikationswerkzeug
	6.3 Bewertung der Qualität der Software
	6.3.1 Zuverlässigkeit
	6.3.2 Nützlichkeit
	6.3.3 Bedienbarkeit
	6.3.4 Prüfbarkeit
	6.3.5 Änderbarkeit
	6.3.6 Portabilität

	7 Bewertung des Konzeptes „Usability Patterns“
	7.1 Anforderungsanalyse
	7.2 Spezifikation
	7.3 Entwurf und Implementierung
	7.4 Testphase
	7.5 Zusammenfassung

	8 Zusammenfassung und Ausblick
	Literaturverzeichnis

