
Institut für Softwaretechnologie
Universität Stuttgart

Universitätsstraße 38
D–70569 Stuttgart

Diplomarbeit Nr. 3135

Annotierung von Use Cases mit
Usability Patterns

Ruslana Brull

Studiengang: Softwaretechnik

Prüfer: Prof. Dr. rer. nat. Jochen Ludewig

Betreuer: Dipl.-Inf. Holger Röder

begonnen am: 07. Februar 2011

beendet am: 09. August 2011

CR-Klassifikation: D.2.1, H.5.2, D.2.2





Zusammenfassung

In den letzten Jahren erlangte die Usability steigende Bedeutung im Softwareentwicklungs-
prozess. Bisher wird während des Entwicklungsprozesses das Hauptaugenmerk auf die
funktionalen Anforderungen gelegt. Dabei werden die nichtfunktionalen Anforderungen
sowie die Usability der Software leicht vernachlässigt. Aufgrund des unscharfen Konzep-
tes der Usability werden viele Usability-Anforderungen während der Entwicklung einer
Software nicht einheitlich beachtet. Vielmehr wird unter Usability nur die Gestaltung der
graphischen Oberfläche verstanden, obwohl bestimmte Aspekte der Usability einen direkten
Einfluss auf die Funktionalität der Software haben. Daher besteht die Notwendigkeit, diese
bereits in der frühen Entwicklungsphase mit zu berücksichtigen. Um die eben genannten
Aspekte in die Anforderungsspezifikation einzubinden, kann das Konzept der Usability
Patterns angewandt werden. Usability Patterns beschreiben die funktionalen Aspekte, die
nachweisbar die Usability von Software verbessern.

Das Ziel dieser Arbeit liegt in praktischer Anwendung, Bewertung und Verbesserung des
Konzeptes der Aufnahme der Usability Patterns in die Anforderungsspezifikation. Dies wird
erreicht, indem die Use-Case-Struktur mit Elementen erweitert wird, die die Annotierung
mit Usability Patterns erlauben. Der Prozess der Erstellung einer erweiterten Use-Case-
Spezifikation wurde durch die Entwicklung des Use-Case-Editors Tulip, der die Anwendung
von Usability Patterns unterstützt, optimiert. Während der einzelnen Phasen der Entwicklung
von Tulip wurde das Konzept von Usability Patterns angewandt und bewertet.

3





Abstract

In recent years usability is the area of focus in software development. In modern practice
mainly functional requirements are considered during the development phase and the
usability aspects together with other non functional requirements get neglected. Due to the
fussy nature of the usability concept it is not followed consistently during the development
phase. It is widely known only as a User Interface Design, nevertheless, particular usability
aspects have a direct influence on the functional aspects of software. Thus, this presents a
need to incorporate these usability aspects into the early development stages. Integrating
above mentioned into the requirements specification can be conducted through a method
called Usability Patterns. These Patterns describe functional aspects which are known to
improve the usability of software.

The scope of work in this thesis is to evaluate and improve the concept of integrating
Usability Patterns into use case based functional requirements specification. This is achieved
by extending the use case structure with elements which allow their annotation with Usability
Patterns. The process of creating an extended use case specification has been optimized by
the development and using of a use case editor tool Tulip which supports the application of
usability patterns. Throughout the development process of Tulip the concept of Usability
Patterns has been applied and evaluated.

5





Inhaltsverzeichnis

Abbildungsverzeichnis 11

Tabellenverzeichnis 13

1 Einleitung 15
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

1.2 Aufgabenstellung . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

1.3 Aufbau der Arbeit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

1.4 Sprachliche Konvention . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2 Grundlagen 19
2.1 Usability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.1.1 Usability-Merkmale . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.1.2 Usability Engineering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.1.3 Definition der Usability-Anforderungen . . . . . . . . . . . . . . . . . . 25

2.2 Usability Patterns . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.2.1 Funktionale Usability-Merkmale . . . . . . . . . . . . . . . . . . . . . . . 25

2.2.2 Aufbau der Usability Patterns . . . . . . . . . . . . . . . . . . . . . . . . 26

2.2.3 Usability-Pattern-Katalog . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.2.4 Usability Patterns im Entwicklungsprozess . . . . . . . . . . . . . . . . . 28

2.3 Use Cases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.3.1 Aufbau von Use Cases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.3.2 Erstellung von Use Cases . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

2.4 Anforderungsspezifikation im Entwicklungsprozess . . . . . . . . . . . . . . . . 32

3 Konzept der Erweiterung von Use Cases 33
3.1 Erstellung einer erweiterten Spezifikation . . . . . . . . . . . . . . . . . . . . . . 33

3.1.1 Auswahl der Usability Patterns aus dem Katalog . . . . . . . . . . . . . 34

3.1.2 Spezifikation der Anwendung von Usability Patterns . . . . . . . . . . . 34

3.1.3 Erstellung der Annotationen . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.2 Erweiterung der Use-Case-Struktur . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.3 Spezifikationsschablonen in Usability Patterns . . . . . . . . . . . . . . . . . . . 36

3.4 Ergänzung von Use Cases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

4 Werkzeugunterstützung für das Konzept 41
4.1 Anforderungen an das Werkzeug . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

4.1.1 Verwaltung von Use Cases . . . . . . . . . . . . . . . . . . . . . . . . . . 42

7



4.1.2 Anzeige der Usability Patterns im Katalog . . . . . . . . . . . . . . . . . 42

4.1.3 Spezifikation der Anwendung von Usability Patterns . . . . . . . . . . . 43

4.1.4 Annotierung von Use-Case-Elementen . . . . . . . . . . . . . . . . . . . 43

4.1.5 Export der annotierten Use Cases . . . . . . . . . . . . . . . . . . . . . . 43

4.2 Evaluierung existierender Werkzeuge . . . . . . . . . . . . . . . . . . . . . . . . 43

4.2.1 Case Complete 2011 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

4.2.2 HeRA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

4.2.3 UCEd . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

4.2.4 Remas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

4.2.5 Zusammenfassung . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

4.3 Evaluierung einer Erweiterungsmöglichkeit . . . . . . . . . . . . . . . . . . . . . 50

5 Realisierung von Tulip 53
5.1 Erstellung der Spezifikation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

5.2 Erweiterung der Spezifikation um Usability Patterns . . . . . . . . . . . . . . . 54

5.2.1 Auswahl der Patterns . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

5.2.2 Spezifizierung der Anwendung der Patterns . . . . . . . . . . . . . . . . 56

5.2.3 Annotierung der Use-Case-Elemente . . . . . . . . . . . . . . . . . . . . 58

5.3 Entwurf und Implementierung . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

5.3.1 Datenmodell . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

5.3.2 Komponenten . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

5.3.3 Externe Bibliotheken . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

5.4 Systemtest . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

6 Evaluation von Tulip 65
6.1 Einsatz von Tulip . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

6.1.1 Spezifizierung der Use Cases . . . . . . . . . . . . . . . . . . . . . . . . . 65

6.1.2 Pattern Browser . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

6.1.3 Spezifizierung der Anwendung der Patterns . . . . . . . . . . . . . . . . 68

6.1.4 Annotierung der Use Cases . . . . . . . . . . . . . . . . . . . . . . . . . . 69

6.1.5 Generierung eines Reports . . . . . . . . . . . . . . . . . . . . . . . . . . 69

6.2 Bewertung von Tulip als Spezifikationswerkzeug . . . . . . . . . . . . . . . . . 70

6.3 Bewertung der Qualität der Software . . . . . . . . . . . . . . . . . . . . . . . . 71

6.3.1 Zuverlässigkeit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

6.3.2 Nützlichkeit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

6.3.3 Bedienbarkeit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

6.3.4 Prüfbarkeit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

6.3.5 Änderbarkeit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

6.3.6 Portabilität . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

7 Bewertung des Konzeptes „Usability Patterns“ 75
7.1 Anforderungsanalyse . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

7.2 Spezifikation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

7.3 Entwurf und Implementierung . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

7.4 Testphase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

8



7.5 Zusammenfassung . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

8 Zusammenfassung und Ausblick 79

Literaturverzeichnis 81

9





Abbildungsverzeichnis

2.1 Usability im Entstehungsprozess einer Software . . . . . . . . . . . . . . . . . . 20

2.2 Optimierung der Usability-Aspekte im Entwicklungsprozess . . . . . . . . . . 21

2.3 Auswirkung der Usability-Techniken . . . . . . . . . . . . . . . . . . . . . . . . 23

2.4 Usability Pattern „Abbruch“ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.5 Einordnung der Usability Patterns . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.1 Erweiterung eines Use Cases mit einem Usability Pattern (Angelehnt an
[Röd11b]) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.2 Spezifikationsschablonen im Usability Pattern „Gute Standardwerte“ . . . . . 37

4.1 Eingabemaske für Use Cases in CaseComplete . . . . . . . . . . . . . . . . . . . 45

4.2 Eingabemaske für Use Cases in HeRA . . . . . . . . . . . . . . . . . . . . . . . . 46

4.3 Eingabemaske für Use Cases in UCEd . . . . . . . . . . . . . . . . . . . . . . . . 47

4.4 Bearbeitung von Use Cases in remas . . . . . . . . . . . . . . . . . . . . . . . . . 49

5.1 Use Case „Projekt öffnen“ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

5.2 Annotierter Use Case „Projekt öffnen“ . . . . . . . . . . . . . . . . . . . . . . . . 59

5.3 Datenmodell von Tulip . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

5.4 Architektur von Tulip . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

6.1 Projektbaum und Anzeige eines Use Cases in Tulip . . . . . . . . . . . . . . . . 66

6.2 Pattern Browser in Tulip . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

6.3 Spezifikation der Anwendung für Usability Pattern „Direkte Validierung“ in
Tulip . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

6.4 Bearbeiten eines Use-Case-Ablaufs in Tulip . . . . . . . . . . . . . . . . . . . . . 69

6.5 Ausschnitt aus dem Use Case „System starten“ im RTF-Report . . . . . . . . . 70

6.6 Qualitätsbaum [LL10] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

11





Tabellenverzeichnis

2.1 Use Case „System starten“ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.1 Annotierter Use Case „System starten“ . . . . . . . . . . . . . . . . . . . . . . . 38

4.1 Vergleich der Use Case Editoren . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

5.1 Spezifikation der Anwendung der Usability Patterns in Tulip . . . . . . . . . . 58

6.1 Spezifizierung der Use Cases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

13





1 Einleitung

1.1 Motivation

Usability-Anforderungen werden im Softwareentwicklungsprozess oft vernachlässigt. Wenn
überhaupt, werden Maßnahmen zur Verbesserung der Usability erst spät und oft in einem
separaten Prozess durchgeführt. Zudem wird unter Usability häufig nur die Gestaltung der
Benutzungsoberfläche verstanden, der Einfluss der funktionalen Aspekte auf die Usability
wird dabei nicht beachtet. Dies kann dazu führen, dass die Usability-Anforderungen erst
nach der Implementierung der Software auftauchen, z.B. bei der UI-Gestaltung oder in der
Testphase. Dabei ist die Umsetzung dieser Anforderungen oft nicht mehr möglich oder mit
einem großen Aufwand verbunden. Dies kann verhindert werden, indem man die Usability-
Anforderungen bereits in früheren Phasen des Entwicklungsprozesses berücksichtigt, etwa
bei der Anforderungsanalyse und -spezifikation.

Das Konzept der Usability Patterns sieht vor, dass Usability-Merkmale, die die Struktur und
Funktionalität der Software beeinflussen, bereits bei der Anforderungsanalyse berücksichtigt
werden und als Erweiterungen der funktionalen Anforderungen in die Spezifikation der
Software einfließen. Dadurch werden diese strukturiert sowie einheitlich beschrieben und
können beim Entwurf, der Implementierung und dem Testen der Software berücksichtigt
werden.

Usability Patterns beschreiben bewährte Usability-Merkmale, die die Usability der Software
verbessern. Jedes Usability Pattern enthält Einweisungen zur Spezifikation des entsprechen-
den Usability-Merkmals. Patterns werden mittels Annotierung der Use Cases spezifiziert.
Dafür müssen Use Cases um entsprechende Elemente erweitert werden. Für den praktischen
Einsatz einer solchen Annotierung erscheint eine Werkzeugunterstützung notwendig, existie-
rende Werkzeuge zur Erstellung der Use Cases bieten jedoch keine solche Unterstützung.

1.2 Aufgabenstellung

Im Rahmen dieser Arbeit soll das Konzept der Verwendung von Usability Patterns im
Softwareentwicklungsprozess angewendet, evaluiert und verbessert werden. Ziel der Arbeit
ist die Entwicklung eines Use-Case-Editors, der den Einsatz der Usability Patterns unterstützt.
Zu den Kernfunktionalitäten des Editors zählen insbesondere:

• Verwaltung von Use-Case-Beschreibungen

• Anzeige und Auswahl von Usability Patterns aus einem Katalog

15



1 Einleitung

• Spezifizierung von Usability-Merkmalen durch Annotierung von Use-Case-Elementen
entsprechend den Anweisungen in den Usability Patterns

• Export der annotierten Use Cases

Im Rahmen der Entwicklung des Use-Case-Editors sollen für diesen geeignete Usability
Patterns ausgewählt und die entsprechenden Usability-Merkmale spezifiziert werden. Es
sollen auch die für die Spezifizierung notwendigen Erweiterungen der Use-Case-Struktur
modelliert werden. Die Verwendung eines existierenden Use-Case-Editors als Ausgangspunkt
für die weitere Entwicklung soll im Rahmen dieser Arbeit geprüft und ggf. in Erwägung
gezogen werden. Für die Implementierung soll die Programmiersprache Java verwendet
werden.

1.3 Aufbau der Arbeit

Kapitel 2 stellt die theoretischen Grundlagen der Arbeit vor. Es werden die Begriffe „Usabi-
lity“ und „Use Case“ erläutert sowie ein Überblick über das Konzept „Usability Patterns“
gegeben. Zudem wird auf die Rolle der Anforderungsspezifikation im Softwareentwick-
lungsprozess eingegangen.

Kapitel 3 widmet sich dem Konzept der Erweiterung der Spezifikation und der Use Cases für
die Spezifizierung der Usability Patterns. Es werden die Vorgehensweise bei der Erstellung
einer erweiterten Spezifikation sowie die Elemente, um die die Use-Case-Notation erweitert
wird, beschrieben.

In Kapitel 4 werden Anforderungen an das Werkzeug gestellt, das den Entwickler bei der
Erstellung einer erweiterten Spezifikation unterstützen soll. Es werden auch existierende
Werkzeuge evaluiert und deren Erweiterungsmöglichkeit beurteilt.

Kapitel 5 beschreibt den Prozess der Realisierung eines Use-Case-Werkzeugs mit Verwen-
dung von Usability Patterns beschrieben.

In Kapitel 6 wird das erstellte Werkzeug einer Evaluierung unterzogen. Es wird der Prozess
der Erstellung einer erweiterten Use-Case-Spezifikation mit Hilfe des Werkzeugs beschrieben
und anschließend die Eignung der Software als Spezifikationswerkzeugs sowie die Qualität
der Software bewertet.

Im 7. Kapitel wird das Konzept „Usability Patterns“ anhand der gewonnenen Erkenntnisse
beim Einsatz in einzelnen Phasen des Softwareentwicklungsprozesses evaluiert.

Kapitel 8 bildet mit einer Zusammenfassung der Ergebnisse und einem Ausblick auf mögliche
zukünftige Schritte, die der Weiterentwicklung des Konzeptes und des Werkzeuges dienen,
den Abschluss der Arbeit.

16



1.4 Sprachliche Konvention

1.4 Sprachliche Konvention

Zum Zwecke der besseren Lesbarkeit wird in dieser Arbeit für Rollenbezeichnungen entspre-
chend der sprachlichen Konvention die männliche Form verwendet, wie z.B. „Entwickler“
oder „Benutzer“. Es sind jedoch stets Personen beider Geschlechter gemeint.

17





2 Grundlagen

In diesem Kapitel werden die theoretischen Grundlagen dieser Arbeit vorgestellt. Zunächst
wird der Begriff der Usability erläutert und einige Komplikationen aufgezeichnet, die bei der
Erhebung und Dokumentation der Usability-Anforderungen in der Praxis auftreten. Darauf-
folgend werden Usability Patterns vorgestellt, die eine konzeptuelle Grundlage darstellen,
auf der aufgebaut wird. Anschließend folgt ein Überblick über die Struktur von Use Cases
und deren Rolle im Entwicklungsprozess, da im Rahmen dieser Arbeit deren Erweiterung
um Usability-Merkmale untersucht wird.

2.1 Usability

In dieser Arbeit wird Usability (engl. für Benutzbarkeit)1 als eine wichtige Teilqualität der
Software betrachtet.

Die ISO-Norm 9241-11 [DIN06] definiert Usability bzw. Gebrauchstauglichkeit als

„Das Ausmaß, in dem ein Produkt durch bestimmte Benutzer in einem bestimmten
Nutzungskontext genutzt werden kann, um bestimmte Ziele effektiv, effizient und zufrie-
denstellend zu erreichen.“

Diese Definition macht deutlich, dass man Usability nicht ausschließlich als eine Eigenschaft
eines Produktes betrachten kann. Vielmehr ist sie von der Benutzergruppe und deren
Zielen bezüglich der Software abhängig. Das Empfinden der Benutzer kann man nicht
verallgemeinern. Was einem erfahrenen Benutzer als verständlich erscheint, kann für einen
anderen ohne Vorkenntnisse sehr verwirrend sein. Deswegen muss Usability bezüglich einer
bestimmten Benutzergruppe und deren Ziele bewertet werden.

Usability bestimmt, wie zufrieden die Benutzer mit der Software sind. Somit ist sie auch
für die Akzeptanz der Software bei den Benutzern und folglich für die Vermarktung des
Produktes entscheidend. Eine gute Usability reduziert Fehler der Benutzer im Umgang mit
der Software, was Kosten für die Implementierung, Schulung, technische Unterstützung
und Wartung reduziert [Kar90]. Eine schlechte Usability kann dagegen dafür verantwortlich
sein, dass eine Software, die eine gute Qualität bezüglich der Funktionalität aufweist, auf die
Ablehnung der Benutzer stößt.

1Im deutschen Sprachgebrauch hat sich Usability als Begriff durchgesetzt, so dass in dieser Arbeit im Weiteren
ebenfalls Usability den Begriffen „Benutzbarkeit“ und „Gebrauchstauglichkeit“ vorgezogen wird.

19



2 Grundlagen

© 2010 Capgemini – All rights reserved

Presentation1.pptx
3

Spezifikation

Usability-
Anforderungen

Softwareprodukt

Code
(Entwickler)

UI-Gestaltung
(Designer)

Abbildung 2.1: Usability im Entstehungsprozess einer Software

Ferner werden die einzelnen Merkmale der Usability erläutert und die Techniken vorgestellt,
wie diese optimiert werden können.

2.1.1 Usability-Merkmale

Unter Usability-Merkmalen wird oft nur die Gestaltung der Benutzungsoberfläche verstan-
den. In diesem Abschnitt wird der Begriff der Usability um weitere Merkmale ausgedehnt,
die ebenfalls zur Zufriedenheit der Benutzer mit der Software beitragen.

Die Abbildung 2.1 zeigt, wie die Usability üblicherweise in den Softwareentwicklungs-
prozess eingeordnet wird. Die funktionalen Anforderungen werden in einer Spezifikation
festgehalten und von einem Entwickler im Code realisiert. Usability-Anforderungen, wie z.
B. Anordnung der Elemente in Dialogen, Anzahl erforderlicher Klicks, Verständlichkeit und
Ästhetik der Oberfläche [RF07], werden, wenn überhaupt, von einem UI-Designer in einem
separaten Prozess umgesetzt.

Dabei benötigen einige Merkmale, die die Benutzung der Software angenehmer machen,
die zusätzliche Funktionalität und Anpassungen in der Struktur der Software. So stellt
z.B. die Undo-Funktion (Möglichkeit, ausgeführte Aktionen rückgängig zu machen), eine
zusätzliche funktionale Anforderung dar. Es ist nicht mehr möglich, solche Merkmale in

20



2.1 Usability

© 2010 Capgemini – All rights reserved

Presentation1.pptx
4

Spezifikation

Usability-
Anforderungen

Softwareprodukt

Code
(Entwickler)

UI-Gestaltung
(Designer)

Metapher

Erlernbarkeit

Konsistenz

Sicherheit

Effizienz

Erlernbarkeit

Übersichtlichkeit

Ästhetik

Erlernbarkeit

Anforderungsanalyse Technische Realisierung

UI-Gestaltung

Abbildung 2.2: Optimierung der Usability-Aspekte im Entwicklungsprozess

einem separaten Prozess zu implementieren, da diese bei Entwurf und Realisierung der
Software vom Entwickler berücksichtigt werden sollen.

Für die Akzeptanz der Software ist es auch entscheidend, dass diese die Benutzer optimal
bei der Erreichung ihrer Ziele unterstützt. Die Usability der Software kann bereits bei
der Anforderungsanalyse optimiert werden, indem Ziele und Anforderungen der späteren
Benutzer ermittelt werden. Fehler bei der Anforderungsanalyse können dazu führen, dass
die später entwickelte Software die Benutzer bei der Erledigung ihrer Aufgaben nicht oder
nur unvollständig unterstützt. Solche Mängel lassen sich in der Regel nicht mehr oder nur
mit einem großen Aufwand beheben.

Somit ergeben sich drei Bereiche im Softwareenteicklungsprozess, in denen man Usability-
Aspekte optimieren kann: Anforderungsanalyse, technische Realisierung und UI-Gestaltung.
Die Abbildung 2.2 zeigt diese zusammen mit einzelnen Usability-Merkmalen auf. Die
Merkmale werden jeweils den Bereichen zugeordnet, in denen sie optimiert werden können.
Dabei wurde folgende Abgrenzung der Usability-Merkmale von [LL10] übernommen:

• Metapher, Benutzungsmodell: Szenarien der Interaktion mit dem System sollen für
die Benutzer intuitiv sein. Am Besten erreicht man dies, indem man ein Schema nimmt,
das dem Benutzer entweder aus dem Alltag oder durch eine andere weit verbreitete
Software bekannt ist. Zum Beispiel verstehen die meisten Benutzer, dass eine rote
Ampel als Warnung eingesetzt wird.

21



2 Grundlagen

• Übersichtlichkeit: . Alle relevanten Informationen und Elemente sollten so platziert
werden, dass sie leicht erkennbar sind.

• Konsistenz: Ähnliche Inhalte, z.B. eine Warnung über eine irreversible Operation des
Benutzers, sollen im ganzen System ähnlich oder gleich dargestellt werden.

• Sicherheit: Es soll sichergestellt werden, dass der Benutzer irrtümlich keinen irreversi-
blen Schaden anrichten kann, z.B. aus Versehen Daten löschen, die man nicht mehr
wiederherstellen kann.

• Ästhetik: Die Benutzer sollen die Benutzungsoberfläche als angenehm empfinden.

• Effizienz: Der Aufwand für die Bedienung der Software soll von den Benutzern nicht
als unnötig hoch empfunden werden.

• Erlernbarkeit: Die Benutzer sollen in der Lage sein, den Umgang mit der Software
schnell zu erlernen.

2.1.2 Usability Engineering

Usability Engineering befasst sich mit Methoden und Techniken, die im Laufe des Soft-
wareentwicklungsprozesses angewendet werden, um die Usability des Endproduktes zu
verbessern.

Den Entwicklungsprozess kann man in folgende Abschnitte unterteilen:

1. Anforderungsanalyse: Planung des Projekts, Sammlung der Anforderungen, Model-
lierung der Prozesse, Erstellung des Angebots.

2. Spezifikation: Spezifikation der funktionalen und nichtfunktionalen Anforderungen,
Erstellung von Use Cases.

3. Entwurf und Implementierung: Erstellung der Architektur und Realisierung der
Lösung.

4. Evaluation: Komponenten-, Integrations- und Systemtests.

Im Folgenden wird auf die einzelnen Usability-Methoden und -Techniken eingegangen,
die man in jeweiligem Abschnitt anwenden kann. Diese werden in der Abbildung 2.3 den
entsprechenden Bereichen zugeordnet, in denen sie ihre Wirkung zeigen.

Anforderungsanalyse

Während dieser Phase kann eine gründliche Analyse von Benutzergruppen und dem Nut-
zungskontext durchgeführt werden. Dabei werden über Interviews, Workshops, Befragungen,
Beobachtungen und Aufgabenanalysen die Arbeitsabläufe und Verhaltensmuster der Benutzer
analysiert und ausgewertet. So werden die Anforderungen verschiedener Benutzergruppen
bei der Erstellung der Anforderungsspezifikation berücksichtigt.

22



2.1 Usability

© 2010 Capgemini – All rights reserved

Presentation1.pptx
5

Spezifikation

Usability-
Anforderungen

Softwareprodukt

Code
(Entwickler)

UI-Gestaltung
(Designer)

Metapher

Erlernbarkeit

Konsistenz

Sicherheit

Effizienz

Erlernbarkeit

Übersichtlichkeit

Ästhetik

Erlernbarkeit

Anforderungsanalyse Technische Realisierung

UI-Gestaltung

Interviews

Workshops

Befragungen

Aufgabenanalyse

Beobachtungen

Personas

Scenarien

Storyboards

UI-Prototyping

Styleguide

Usability-Guideline

Usability-Tests

Abbildung 2.3: Auswirkung der Usability-Techniken

Spezifikation

Die Anforderungsspezifikation, die während dieser Phase des Entwicklungsprozesses ent-
steht, ist ein wichtiges Dokument, das später als Referenz für den Entwurf, die Entwicklung,
die Tests und das Handbuch dienen wird. Deswegen ist es sinnvoll, möglichst viele Usability-
Anforderungen bereits in der Anforderungsspezifikation festzuhalten. Zahlreiche Techniken,
wie z.B. Personas, Szenarien, Storyboards,UI-Prototyping, etc. unterstützen die Entwickler
dabei.

Bei Personas handelt es sich um prototypische Benutzerprofile, die verschiedene Eigenschaf-
ten, wie Erfahrung, Ziele, Verhaltensweisen, fachliche Ausbildung, Computerkenntnisse,
Erwartungen etc. verschiedener Benutzergruppen beschreiben. Personas werden aus den
Informationen über zukünftige Benutzer abgeleitet.

Szenarien sind Beispielabläufe, die beschreiben, wie Benutzer mit dem System interagieren
werden. Szenarien werden zusammen mit den zukünftigen Benutzern entwickelt und bei der
Erstellung der Systemanforderungen berücksichtigt.

Storyboards dienen zur Visualisierung von Szenarien und erleichtern die Kommunikation
zwischen Auftraggeber und Entwickler. Storyboards können, abhängig von dem Präzisions-
grad, sehr unterschiedlich dargestellt werden, von skizzierter Benutzungsschnittstelle bis zur

23



2 Grundlagen

bildhaften Darstellung der ganzen Geschichte aus einem Szenario, auf der Akteure, System
und Umgebung visualisiert werden.

Bei UI-Prototypen handelt es sich um die Modellierung der Benutzeroberfläche. Dies kann
in Form von Skizzen oder Mockups sein. Abhängig vom Ziel, können UI-Prototypen auch
einen Teil der Funktionalität des Systems aufweisen.

Die in dieser Phase angewendeten Techniken dienen zum größten Teil zur Verbesserung
der Qualität der Spezifikation. Die erstellten Prototypen und Storyboards dienen später als
Referenz für die Gestaltung der Benutzungsoberfläche. Somit zeigen sie ihre Wirkung in den
Bereichen der Anforderungsanalyse und der UI-Gestaltung (vergleiche Abbildung 2.3). Für
die Berücksichtigung bei der technischen Implementierung fehlt es den Techniken aber an
Strukturierung und Anbindung an funktionale Anforderungen.

Entwurf und Implementierung

In der Implementierungsphase wird Usability des Produktes dadurch gesteigert, dass man
bei der Entwicklung Usability Guidelines und Styleguides beachtet. Sie beinhalten Vorschriften
für die Konsistenz und Ästhetik der Benutzungsschnittstelle.

Evaluation

Es gibt eine Reihe von Testverfahren, die die Endbenutzer einbeziehen und somit die
Usability der Software überprüfen. Man kann das fertige System oder bereits der Prototyp
auf die Usability testen. Bei einem formalen Usability-Test wird das Verhalten der Benutzer in
einem Usability Lab beobachtet und ausgewertet. Die nicht formalen Methoden beinhalten
Walkthroughs, Fragebögen, Checklisten und Expertenreviews.

Zusammenfassung

Wie man der Abbildung 2.3 entnehmen kann, können bei der technischen Realisierung
einer Software einige Usability-Aspekte optimiert werden. Zum Beispiel werden die Kon-
sistenz und Effizienz einer Software werden durch die Berücksichtigung der Usability-
Anforderungen beim Entwurf der Komponenten und des Datenmodells einer Software
erreicht. Es fehlt aber an Techniken zur Optimierung der Usability, die den Entwicklern
in dieser Phase zur Verfügung stehen. So sind die Entwickler oft bei der Definition der
Usability-Anforderungen und bei der Umsetzung und Evaluierung dieser auf sich alleine
gestellt.

24



2.2 Usability Patterns

2.1.3 Definition der Usability-Anforderungen

Ingenieure neigen dazu, sich auf den funktionalen Kern ihres Problems zu konzentrieren
[LL10]. Beim Spezifizieren der Funktionalität einer Software werden formale Modelle, wie
z.B. Use Cases, eingesetzt, die alle funktionalen Anforderungen bis ins kleinste Detail
beschreiben. Die nichtfunktionalen Anforderungen werden dagegen nur am Rande erwähnt
und bei der Entwicklung später oft vernachlässigt.

Usability-Aspekte, die im Laufe einer Anforderungsanalyse festgestellt werden, fließen in
Form der nichtfunktionalen Anforderungen, höchstens auch Personas und Szenarien, in
die Anforderungsspezifikation ein. Sie sind, wie auch andere nichtfunktionale Anforderun-
gen, unstrukturiert und in natürlicher Sprache beschrieben. Insbesondere sind Usability-
Anforderungen nicht an funktionale Anforderungen angebunden, was es für die Entwickler
schwer macht, diese beim Entwurf und der Implementierung umzusetzen [Röd10]. Ferner
werden Usability Patterns als Lösungsansatz für dieses Problem vorgestellt.

2.2 Usability Patterns

Usability Patterns sind strukturierte Beschreibungen der Lösungsansätze für wiederkehrende
Usability-Probleme. Sie helfen dabei, die vagen Usability-Anforderungen strukturiert festzu-
halten. Das Konzept sieht vor, dass funktionale Merkmale, die zur Usability der Software
beitragen, bereits früh im Entwicklungsprozess erhoben und explizit spezifiziert werden.

2.2.1 Funktionale Usability-Merkmale

Einige Usability-Merkmale haben eine große Auswirkung auf die Architektur der Software.
Wenn man z.B. erst nach den Usability-Tests in der Evaluationsphase feststellt, dass die Undo-
Funktion die Usability des Produktes steigern würde, ist es oft zu spät, dieses Feature in das
Produkt einzubauen. Eine Änderung dieses Grades kann das Umbauen ganzer Komponenten
erfordern und soll deswegen bereits beim Entwurf des Produktes berücksichtigt werden.
Daher ist es sinnvoll, solche Usability-Merkmale als funktionale Anforderungen während
der Analysephase zu erfassen und deren Umsetzung durchgehend zu kontrollieren.

Es gab einige Versuche von Usability-Experten, allgemeingültige funktionale Usability-
Merkmale zu erfassen. Nach Juristo et.al. zählen z.B. folgende Merkmale zu den funktionalen
Usability-Anforderungen [JMSS07]:

• Feedback für die Benutzer über die Vorgänge im System

• Undo-Funktion

• Abbruchmöglichkeit

• Fehlerkorrektur bei den Eingaben

• Assistent für Aktionen mit mehreren Schritten

25



2 Grundlagen

• Hilfefunktion

Für die erfolgreiche Umsetzung genügt es aber nicht, die funktionalen Usability- Anforde-
rungen zusammen zu fassen und an die Entwickler weiter zu geben. Usability-Experten
sind sich einig, dass z.B. die Undo-Funktion die Usability jeder Software steigern würde
[JMSS07]. Es gibt aber eine Reihe von produktspezifischen Fragen, die sich ein Entwickler
stellen wird, wenn er diese Funktion entwerfen und realisieren muss: „Wie viele Schritte
sollen gespeichert werden?“, „Soll es auch eine Redo-Möglichkeit geben?“, „Falls mehrere
Fenster verwaltet werden, ist eine globale Undo-Geschichte, oder jeweils eine pro Fenster
erwünscht?“, „Wie verhält sich das System, wenn die Wiederherstellung eines vorherigen
Standes zu Inkonsistenzen im Datenmodell führt?“ usw. Es ist also wünschenswert, die vagen
Usability-Vorgaben in strukturierte funktionale Vorgaben zu übersetzen und zusammen mit
der Anforderung zu dokumentieren. Das Konzept der Usability Patterns bietet dafür einen
geeigneten Ansatz.

2.2.2 Aufbau der Usability Patterns

Usability Patterns sind bewährte und wiederverwendbare Lösungen, die man in einem
bestimmten Zusammenhang einsetzen kann, um gut benutzbare Systeme zu bauen [Röd11b].
Sie beschreiben wiederkehrende Probleme, die erfahrungsgemäß zu schlechter Usability der
Software führen können, und Lösungsschablonen für deren Behebung. Ein Pattern beinhaltet
strukturierte Informationen darüber, in welchem Zusammenhang und auf welche Weise der
Einsatz des Patterns die Usability der Software steigern kann. Jedes Pattern ist auch mit
anschaulichen Beispielen versehen.

Auf der Abbildung 2.4 ist zu sehen, wie das Usability Pattern „Abbruch“ aufgebaut ist. Im
Folgenden werden einzelne Bausteine eines Patterns erläutert:

• Name: Name des funktionalen Usability-Merkmals.

• Problem: Beschreibung des Problems, das mit Hilfe des Patterns behoben werden
kann.

• Lösung: Ausführliche Beschreibung der Problemlösung.

• Illustration: Ein Beispielszenario, das das Problem und die Lösung demonstriert.

• Beispiele: Screenshots und Beschreibung der Anwendung dieser Lösung in weit
verbreiteter Software.

• Nutzungskontext: Abgrenzung für den Einsatz des Patterns.

• Begründung: Argumentation, warum das Pattern die Usability steigert.

• Zusammenspiel: Abhängigkeit von anderen Patterns.

• Risiken, Nachteile, Kosten.

26



2.2 Usability Patterns

Abbildung 2.4: Usability Pattern „Abbruch“

2.2.3 Usability-Pattern-Katalog

Usability Patterns sind in einem Pattern-Katalog [Röd11a] gesammelt. Der Katalog beinhaltet
zurzeit 20 Patterns und kann erweitert werden. Alle Patterns sind nach dem gleichen Muster
aufgebaut und können Referenzen auf andere Patterns beinhalten. Das Pattern „Abbruch“
verweist z.B. im Feld „Lösung“ auf das Usability Pattern „Warnung“ mit dem Hinweis,
dass im Fall des Abbruchs einer Aktion, bei dem eine große Menge nicht gespeicherter
Daten verworfen werden, eine Warnung sinnvoll ist. Im Feld „Nutzungskontext“ wird die
Abgrenzung vom „Abbruch“ zum Usability Pattern „Globales Undo“ erläutert.

Die Auswahl der Patterns hat sich aus den in der Praxis erprobten Mustern ergeben. Der
Einsatz der Patterns aus dem Katalog in der Anforderungsanalysephase hilft dabei, die auf
Usability bezogenen Schwachstellen der Software frühzeitig zu erkennen und den Entwurf
entsprechend den Empfehlungen aus den Patterns anzupassen, um diese vorzubeugen.

27



2 Grundlagen

© 2010 Capgemini – All rights reserved

Presentation1.pptx
5

Spezifikation

Usability-
Anforderungen

Softwareprodukt

Code
(Entwickler)

UI-Gestaltung
(Designer)

Metapher

Erlernbarkeit

Konsistenz

Sicherheit

Effizienz

Erlernbarkeit

Übersichtlichkeit

Ästhetik

Erlernbarkeit

Anforderungsanalyse Technische Realisierung

UI-Gestaltung

Interviews

Workshops

Befragungen

Aufgabenanalyse

Beobachtungen

Personas

Scenarien

Storyboards

UI-Prototyping

Styleguide

Usability-Guideline

Usability-Tests

Usability Patterns

Abbildung 2.5: Einordnung der Usability Patterns

2.2.4 Usability Patterns im Entwicklungsprozess

Im Rahmen dieser Arbeit wird untersucht, wie Usability Patterns zur Optimierung der
Usability auf der Ebene der technischen Realisierung eingesetzt werden können. Diese
Einordnung wird auf der Abbildung 2.5 dargestellt. Damit die Entwickler beim Entwerfen
und Implementieren Usability Patterns berücksichtigen, sollen die Patterns in die funktionale
Spezifikation integriert werden, da diese als eine wichtige Referenz in diesen Phasen der
Entwicklung dient. Für die Integration der Usability Patterns in die funktionale Spezifikation
bieten sich Use Cases an, weil diese die Funktionalität der Software aus der Benutzersicht
beschreiben.

2.3 Use Cases

Use Cases (engl. für Anwendungsfälle) sind eine bekannte Technik für die Spezifikation
der funktionalen Anforderungen. Sie beschreiben die Art und Weise, wie ein Benutzer mit
dem System interagieren kann und dienen als eine Beschreibung für das äußerlich sichtbare
Systemverhalten [RE-07]. Use Cases beschreiben, wie ein System den Benutzer in seinen
Aufgaben, die er mit Hilfe von Software erledigt, unterstützt.

28



2.3 Use Cases

Da Use Cases die Abläufe aus der Benutzersicht in natürlicher Sprache beschreiben 2,
braucht man keine besonderen technischen Kenntnisse, um sie zu verstehen. Aus diesem
Grund eignen sich die Use Cases gut für die Kommunikation und Abstimmung zwischen
Kunden und Entwicklern. Eine vollständige Use-Case-Spezifikation ist auch als Vorlage für
Entwurf, Implementierung, Testvorbereitung, Abnahme der Software und auch als Referenz
für spätere Erweiterung oder Re-Implementierung geeignet [LL10].

2.3.1 Aufbau von Use Cases

Use Cases wurden bereits in den 80er Jahren von Ivar Jacobson vorgestellt [Jac92]. In all den
Jahren hat sich aber kein Standard etabliert, der den Aufbau von einem Use Case vorschreibt.
Vielmehr macht die Flexibilität die Use Cases so beliebt. In der Praxis werden abhängig von
der Analysephase unterschiedlich stark formalisierte Vorlagen für Use Cases verwendet. Für
diese Arbeit wurde eine Vorlage, angelehnt an die Empfehlungen von Cockburn [Coc07],
ausgearbeitet. Sie wird am Beispiel eines Use Cases „System starten", welcher in der Tabelle
2.1 abgebildet ist, vorgestellt. Jeder Use Case besteht aus Metadaten, die dessen Eigenschaften
erfassen, und Abläufen, die schrittweise die Interaktion von Benutzern mit dem System
beschreiben. Die Bestandteile einer Use-Case-Beschreibung werden in diesem Abschnitt
genauer erläutert.

Metadaten

• Name: Beschreibt das Ziel der Interaktion zwischen System und Akteur.

• ID: Muss eindeutig sein.

• Beschreibung: Stellt knapp den Zweck des Use Cases dar.

• Akteure: Beteiligte Personen oder Objekte. Man unterscheidet zwischen einem Pri-
märakteur, der unmittelbar mit dem System interagiert, und Sekundärakteuren, die
das System überwachen, warten und den Primärakteur bei seiner Zielerreichung
unterstützen.

• System: Das System, das auf Interaktion der Akteure reagiert.

• Ziel: Das Ziel oder der Endzustand, den die Akteuren mit der Interaktion verfolgen.

• Priorität: Erlaubt die Priorisierung für Use Cases.

• Ebene: Beschreibt die Granularität der Interaktion. Use Cases der oberen Ebene be-
schreiben sehr allgemeine Prozesse, die weiter in Unterpozesse einer unteren Ebene
zerlegt werden können. Use Cases der unteren Ebenen beschreiben die technischen
Details der Interaktionen. Wie viele Ebenen für die Use-Case-Spezifikation definiert
werden, entscheidet das Spezifikationsteam.

2In dieser Arbeit wird die UML-Modellierung der Use Cases mittels der Use-Case-Diagramme nicht betrachtet

29



2 Grundlagen

Name System starten
Ziel Der Benutzer möchte das System starten.
Akteure Benutzer
Primärakteur Benutzer
Ebene Übersicht
Priorität hoch

Normalablauf
Vorbedingung Das System ist installiert und lauffähig.

1 Entwickler Ruft die Funktion „System starten“ auf.
2 System lädt das zuletzt bearbeitete Projekt.

Fehler: Kein zuletzt bearbeitetes Projekt verfügbar. Alternativablauf 2a
Nachbedingung Das System ist gestartet.

Das System zeigt das zuletzt bearbeitete Projekt.

Alternativablauf 2a
Vorbedingung Kein zuletzt bearbeitetes Projekt verfügbar.

2a1 System erstellt ein neues leeres Projekt.
Nachbedingung Das System ist gestartet.

Das System zeigt ein leeres Projekt.

Tabelle 2.1: Use Case „System starten“

Diese Liste stellt nur die wesentlichen Eigenschaften dar, die einen Use Case beschreiben,
und kann bei Bedarf um beliebige Feldern erweitert werden.

Normalablauf

Jeder Use Case verfügt über einen Normalablauf, dieser beschreibt die Art und Weise, auf
die der Primärakteur das definierte Ziel erreicht. Eine Vorbedingung beschreibt den Zustand
des Systems, der vor der Interaktion vorhanden sein muss. Der Use Case „System starten“
verlangt z.B., dass das System auf dem Rechner installiert ist, bevor es gestartet wird. Die
Interaktion wird in einzelnen Schritten beschrieben. Jeder Schritt repräsentiert genau eine
Aktion, die entweder von einem Akteur oder vom System ausgeführt wird. Ein Schritt kann
auch aus der Ausführung eines anderen Use Cases einer niedrigeren Ebene bestehen. Somit
werden die Hierarchien von Use Cases erzeugt. Eine Nachbedingung beschreibt den Zustand
des Systems nachdem alle Schritte erfolgreich ausgeführt werden. Dieser Zustand entspricht
der erfolgreichen Erreichung des Ziels von dem Use Case.

Alternativabläufe

Die Fehlerfälle und Ausnahmen, die bei der Interaktion auftreten können und zu einem
Abbruch der normalen Interaktionsfolge führen, werden mittels Alternativabläufe behandelt.

30



2.3 Use Cases

Der Use Case „System starten“ beschreibt z.B. einen Fehlerfall für Schritt 2. Für jeden
Fehlerfall wird ein Alternativablauf angelegt, dessen Name aus der Nummer des Schritts
abgeleitet wird, in dem der Fehler auftritt. Jeder Alternativablauf verfügt ebenfalls über Vor-
und Nachbedingung und wird mit Hilfe von Schritten beschrieben. Ein Alternativablauf
stellt entweder eine Fehlerbehebung dar und beschreibt den Weg zurück zum Hauptablauf,
in dem der Fehler passiert ist, oder er führt zum Ende der Interaktion ohne dass das Ziel
des Primärakteurs erreicht wird.

2.3.2 Erstellung von Use Cases

Abhängig von der Granularität, die für die Use Cases benötigt wird, wird auch die Strategie
für deren Erstellung gewählt. Für diese Arbeit wurde die von [ABC03] beschriebene iterative
Vorgehensweise übernommen, bei der zunächst ziemlich grob das Gerüst der Use Cases
erstellt wird. Dieser wird später in einzelnen Iterationsschritten mit Details angereichert. Die
Vorgehensweise wird in vier Abschnitte unterteilt:

1. Akteure und Ziele definieren: Zunächst werden alle Akteure, die mit dem System
interagieren werden, zusammen mit ihren Zielen, definiert. Die komplette Liste der
Ziele soll vollständige funktionale Anforderungen an das System repräsentieren. Für
jedes Ziel wird ein Use Case angelegt und mit Metadaten gefüllt.

2. Normalabläufe ausarbeiten: Für jedes vorher definierte Ziel wird der Ablauf der
Interaktion vom Akteur mit dem System in Details ausgearbeitet. Am Ende des Ablaufs
wird das Ziel vom Akteur erfolgreich erreicht. Das Ergebnis dieser Phase ist eine Liste
von Use Cases mit jeweils komplett ausgearbeitetem Normalablauf.

3. Sonderfälle hinzufügen: Für jeden Ablauf werden Schritte initialisiert, in denen ein
Sonderfall (ein Fehler oder eine nicht geplante Situation) auftreten kann. Diese Schritte
werden mit der Beschreibung des Sonderfalls versehen.

4. Behandlung von Sonderfällen: Für alle vorher definierten Sonderfälle wird ein Al-
ternativablauf angelegt, der beschreibt, wie das System den Sonderfall behandeln
muss.

Nach jedem Abschnitt entsteht eine vollständige Use-Case-Spezifikation mit unterschiedlicher
Granularität. Diese Spezifikation kann man evaluieren und ggf. korrigieren, bevor man
mit dem neuen Abschnitt beginnt und detailliertere Use Cases entwirft. Je nach Situation
und Verfügbarkeit von Ressourcen werden Use Cases bis zur gewünschten Granularität
entwickelt.

Nachdem die gesamte Funktionalität der Software mittels Use Cases beschrieben wurde, wird
die Use-Case-Spezifikation in die Anforderungsspezifikation des Produktes aufgenommen.

31



2 Grundlagen

2.4 Anforderungsspezifikation im Entwicklungsprozess

Anforderungen an das System beschreiben, was das System leisten soll und in welcher
Qualität. Anforderungen werden in einer Anforderungsspezifikation festgehalten. Dabei un-
terscheidet man zwischen funktionalen und nichtfunktionalen Anforderungen. Funktionale
Anforderungen beschreiben gewünschte Funktionalitäten des Systems und dessen Verhalten.
Die nichtfunktionalen Anforderungen beschreiben die Qualität, in welcher die geforderte
Funktionalität zu erbringen ist [RE-07]. In der Anforderungsspezifikation werden die funk-
tionalen Anforderungen oft mit Hilfe von Use Cases beschrieben, und die nichtfunktionalen
mittels natürlicher Sprache. Die Usability-Anforderungen liegen im Grenzbereich und kön-
nen sowohl die Funktionalität (z.B. Undo-Funktion) als auch die Qualität (z.B. Vorgaben für
die UI-Gestaltung) beschreiben. Diese werden aber üblicherweise zu den nichtfunktionalen
Anforderungen gezählt und entsprechend beschrieben.

Use Cases beschreiben die Reaktion des Systems auf die Aktionen der Benutzer bei der
Interaktion. Somit dient eine detaillierte Use-Case-Spezifikation als eine vollständige Referenz
für die Entwickler bei Entwurf und Implementierung der Funktionalität der Software. Use
Cases bieten den Entwicklern alle Black-Box-Verhaltensanforderungen an die Software, ohne
ihre Freiheit bei der Methodenwahl einzuschränken. Dabei muss man beachten, dass die
Use Cases lediglich als Referenz dienen und nicht direkt in den Entwurf einer Software
umgewandelt werden. Der Entwickler liest die Use-Case-Spezifikation und entwirft anhand
der Vorgaben die Software. Später kann dieser Entwurf mit Hilfe der Use-Case-Spezifikation
auf die Erfüllung der Anforderungen überprüft werden.

Im Unterschied zu klar formulierten Vorgaben aus den Use Cases, denen man Qualitätskrite-
rien für die Evaluation des Produktes entnehmen kann, sind die nichtfunktionalen Vorgaben
nur vage formuliert, so dass der Entwickler bei der Evaluation der Erfüllung dieser auf sich
allein gestellt ist.

Im Rahmen dieser Arbeit wird die Möglichkeit der Erweiterung der Use Cases um Usability-
Vorgaben evaluiert. Formal beschriebene Usability-Merkmale sollen eine bessere Referenz
für den Entwickler darstellen, als unklar definierte nichtfunktionale Anforderungen.

32



3 Konzept der Erweiterung von Use Cases

In diesem Kapitel wird das Konzept der Integration der Usability Patterns in die Use-Case-
Spezifikation ausgearbeitet. Es sieht vor, dass bereits in der Spezifikationsphase die für die
Software relevanten Usability Patterns aus dem Katalog ausgewählt und in die Use-Case-
Spezifikation eingearbeitet werden. Durch diese Maßnahme entsteht ein neues Dokument, in
dem Usability-Vorgaben strukturiert, einheitlich und eng verzahnt mit der Beschreibung der
Funktionalität spezifiziert sind.

Die Abbildung 3.1 stellt schematisch dar, wie die Patterns in die Spezifikation eingebunden
werden. Die Erstellung einer mit Patterns erweiterten Spezifikation erfolgt in drei Schritten:

1. Eine vollständige Use-Case-Spezifikation wird erstellt.

2. Aus dem Katalog werden passende Usability Patterns ausgewählt. Für jedes Pattern
wird die Anwendung spezifiziert. Dabei werden globale Anforderungen für das Pattern
definiert.

3. Für jedes spezifizierte Pattern werden einzelne Use-Case-Elemente annotiert und die
entsprechenden lokalen Anforderungen angelegt.

In diesem Kapitel werden die Schritte für die Erstellung einer erweiterten Spezifikation
ausführlich erläutert, die Erweiterungen für die Use Cases und Spezifikation beschrieben, die
dafür notwendig sind, und die Anwendung dieses Verfahrens in der Praxis angesprochen.

3.1 Erstellung einer erweiterten Spezifikation

Usability Patterns beschreiben Vorgaben, deren Erfüllung die Usability der Software ver-
bessert. Es erscheint also wünschenswert, diese Vorgaben in die Anforderungsspezifikation
aufzunehmen und in späterem Entwicklungsprozess systematisch zu berücksichtigen. Viele
in Usability Patterns definierte Vorgaben betreffen nicht nur eine, sondern mehrere Funk-
tionen der Software, können also an mehreren Stellen eingesetzt werden. Deswegen ist
es sinnvoll, sowohl globale Vorgaben aus dem Pattern in der Anforderungsspezifikation
zu definieren, als auch alle Stellen der Interaktion der Benutzer mit dem System zu iden-
tifizieren, an denen diese Patterns eingesetzt werden. Somit ergeben sich zwei Aspekte
für die Spezifikation der Usability Patterns: Anwendungsspezifikation für Patterns und
Annotationen mit individuellen Vorgaben. Für die Anwendungsspezifikationen der Usability
Patterns wird ein neues Kapitel in der Anforderungsspezifikation der Software angelegt. Für
die Annotationen werden Use-Cases um weitere Elemente ergänzt. Im Folgenden werden

33



3 Konzept der Erweiterung von Use Cases

der auf der Abbildung 3.1 dargestellte Prozess der Erstellung einer erweiterten Spezifikation
beschrieben.

3.1.1 Auswahl der Usability Patterns aus dem Katalog

Zunächst werden Usability Patterns ausgewählt, die später in die Spezifikation aufgenom-
men werden. Die Auswahlkriterien für die Patterns basieren darauf, ob die vom Pattern
beschriebene Funktionalität für das System sinnvoll ist und ob diese von dem Kunden
erwünscht ist. Der Katalog [Röd11a] bietet dem Use-Case-Entwickler Unterstützung bei der
Auswahl, indem für jedes Pattern Anwendungsbeispiele und Beispielszenarien angegeben
werden. Für jedes ausgewählte Pattern wird ferner die Anwendung spezifiziert.

3.1.2 Spezifikation der Anwendung von Usability Patterns

Für jedes eingesetzte Pattern wird eine Beschreibung verfasst, die das Ziel der Anwendung
erläutert. Außerdem werden globale Vorgaben spezifiziert, die beschreiben, wie das Pattern
in diesem Produkt eingesetzt wird und für alle später angelegten Annotationen gültig sind.
Hier werden z.B. Design-Vorgaben und Verhaltensmuster festgelegt, was die einheitliche
Erscheinung des Merkmals sicherstellt, auch wenn das Pattern an mehreren Stellen im
System angewendet wird. Die Abbildung 3.1 zeigt diesen Vorgang im zweiten Schritt.

3.1.3 Erstellung der Annotationen

Nachdem die Anwendung für alle Patterns spezifiziert wurde, werden Use Cases identifiziert,
die für die Anwendung der Patterns in Frage kommen. Dann werden einzelne Use-Case-
Elemente mit Annotationen versehen, die eine Referenz auf das entsprechende Usability
Pattern beinhalten. Wenn nötig, werden auch zusätzliche individuelle Vorgaben spezifiziert,
die das Verhalten oder Aussehen speziell für dieses Element vorschreiben. Lokale Vorgaben
können auch die Erweiterung vom Use Case um zusätzliche Elemente definieren. In diesem
Fall werden zusätzliche Schritte oder Abläufe erstellt.

Auf der Abbildung 3.1 wird in Schritt 3 schematisch dargestellt, wie ein Use Case annotiert
wird. Es wird eine Annotation an Schritt 3 im Normalablauf angehängt. Diese definiert einen
lokalen Parameter und überschreibt lokal eine globale Vorgabe, die in der Anwendungsspe-
zifikation von dem Usability Pattern definiert wurde. Außerdem enthält die Annotation zwei
Referenzen. Für die Erfüllung der in der Annotation definierten Vorgaben wurde Schritt 4
im Normalablauf und ein neuer Alternativablauf 3a angelegt.

Wie man der Abbildung entnehmen kann, werden neue Elemente in der Use-Case-Notation
benötigt, um Annotationen mit Usability Patterns zu beschreiben. Diese werden im nächsten
Kapitel erläutert.

34



3.2 Erweiterung der Use-Case-Struktur

© 2010 Capgemini – All rights reserved

Presentation1.pptx
5

Use Case

Schritt 1

Schritt 2

Schritt 3

Schritt 2a1

Schritt 2a2

Schritt 2a3

Normalablauf

Alternativablauf  2a

Use Case

Schritt 1

Schritt 2

Schritt 3

Schritt 2a1

Schritt 2a2

Schritt 2a3

Normalablauf

Alternativablauf 2a

Use Case

Schritt 1

Schritt 2

Schritt 3

Schritt 2a1

Schritt 2a2

Schritt 2a3

Normalablauf

Alternativablauf 2a

Globale Vorgabe 1

Globale Vorgabe 2

Usability Pattern

Globale Vorgabe 1

Globale Vorgabe 2

Usability Pattern

Parameter 1

Annotation

Schritt 4

Schritt 3a1

Schritt 3a2

Alternativablauf 3a

Referenz 1

Referenz 2

1. Use-Case-
Spezifikation

2. Anwendungsspezifikation 
für Usability Patterns

3. Annotieren der Use-Case-
Elemente

Lokale Vorgabe

Abbildung 3.1: Erweiterung eines Use Cases mit einem Usability Pattern (Angelehnt an
[Röd11b])

3.2 Erweiterung der Use-Case-Struktur

Um die Annotierung der Use Cases mit Usability Patterns zu ermöglichen, wurde im Rahmen
dieser Arbeit die Use-Case-Notation um Annotationselemente erweitert. Use Cases, einzelne
Abläufe oder Schritte eines Ablaufs werden mit Annotationen versehen. Annotationen sind
Referenzen zu einer Anwendungsspezifikation eines Usability Patterns und kennzeichnen
die Stellen, an denen die Vorgaben eines Usability Patterns erfüllt werden müssen.

Annotationen beinhalten konkrete Vorgaben, die die im Use Case beschriebenen funktio-
nale Anforderungen präzisieren und erweitern. Eine Annotation kann folgende Elemente
definieren:

• Parameter, die Vorgaben für die Anwendung des Usability Patterns auf das konkrete
Element beinhalten.

• Lokale Vorgaben, die in der Anwendungsspezifikation eines Patterns definierte Globa-
len Vorgaben überschreiben und somit für das annotierte Element außer Kraft setzen.

35



3 Konzept der Erweiterung von Use Cases

• Schritt- oder Ablaufreferenzen, die Schritt- und Ablauferweiterungen definieren, die
für die Erfüllung der Vorgaben von Usability Pattern eingefügt werden.

Use Cases, Abläufe und Schritte sind Use-Case-Elemente, die mit einer Annotation versehen
werden können. Jede Annotation kann nur an einen Typ der Elemente angehängt werden.
Welches das ist, wird mittels Spezifikationsschablonen definiert. Diese werden im nächsten
Abschnitt beschrieben.

3.3 Spezifikationsschablonen in Usability Patterns

Um die Entwickler bei der Spezifikation der Usability Patterns zu unterstützen, beinhalten
diese semiformalen Spezifikationsvorgaben [Röd11b]. Diese Schablonen beschreiben, wie
das Pattern in die Use-Case-Spezifikation eingebunden werden kann. Es gibt drei Typen von
Spezifikationsschablonen:

• Globale Vorgaben: Einheitliche Verhaltens- und Gestaltungsvorgaben. Sie können
obligatorisch oder optional sein. Bei den optionalen Vorgaben ist es dem Entwickler
überlassen, ob diese in die Anforderungsspezifikation übernommen werden. Die
nach dieser Schablone erstellten Elemente sind in der Anwendungsspezifikation des
Usability Patterns zu finden.

• Globale Funktionen: Zusätzliche Use Cases, die im Prozess der Anwendung dieses
Patterns entstehen. Funktionen können ebenfalls obligatorisch oder optional sein und
befinden sich auf der Ebene der Anwendungsspezifikation des Patterns.

• Annotationsvorgaben legen fest, welche Elemente der Use-Case-Spezifikation (Schritte,
Abläufe oder ganze Use-Cases) annotiert werden können. Hier werden auch Parameter
für die Annotationen definiert.

Dank Schablonen bieten Usability Patterns eine Unterstützung für die Entwickler bei der
Erweiterung der Use-Case-Spezifikation. Alle Parameter und Annotationsmuster sind bereits
vorgegeben, der Entwickler muss diese lediglich mit Informationen ausfüllen. Wie diese
Technik in der Praxis aussieht, wird im nächsten Abschnitt gezeigt.

3.4 Ergänzung von Use Cases

In diesem Abschnitt wird der Prozess der Erweiterung der Use Cases am Beispiel des Use
Cases „System starten“ aus der Abbildung 2.1 beschrieben.

Zunächst wurde aus dem Usability-Pattern-Katalog ein für den Use Case geeignetes Pattern
ausgewählt. Die Wahl fiel auf das Pattern „Gute Standardwerte“, welches für den Schritt 2a1
die Voreinstellungen festlegen soll, welche bei der Erstellung eines neuen Projektes greifen.
Danach wurde die Spezifikation der Anwendung des Patterns vorgenommen. Die Abbildung
3.2 zeigt die entsprechenden Spezifikationsschablonen. Es wurde eine Beschreibung des

36



3.4 Ergänzung von Use Cases

Abbildung 3.2: Spezifikationsschablonen im Usability Pattern „Gute Standardwerte“

Patterns in die Anforderungsspezifikation aufgenommen. Weiterhin wurden die vorgege-
benen Schablonen umgesetzt. Die erste Schablone bietet eine optionale Globale Funktion
„Standardwerte verwalten“ an, die eine zusätzliche Funktionalität für die Verwaltung der
Standardwerte vorsieht. Diese wurde in einem separaten Use Case beschrieben und in der
Anwendungsspezifikation des Patterns referenziert. Weiterhin enthält das Pattern eine An-
notationsschablone „Standardwerte“ vom Typ Schritt mit einem obligatorischen Parameter
Werte. Diese Annotationsvorschrift wurde auf den Use Case „System starten“ auf den Schritt
2a1 angewendet. Der annotierte Use Case ist in der Tabelle 3.1 dargestellt.

Use Cases werden üblicherweise in Form von Tabellen erstellt. Dazu eignen sich gut gängige
Textverarbeitungsprogramme, wie z.B. Microsoft Word oder Open Office Writer. Annotie-
rung von Use Cases mit Usability Patterns erfolgt nach der Fertigstellung der Use-Case-
Spezifikation. Die erweiterte Spezifikation wird in weiteren Phasen des Softwareetwicklungs-
prozesses verwendet. Sie dient als wichtige Referenz für die Entwickler bei der Erstellung
von Entwurf und Code, als Vorlage bei der Erstellung von Testfällen und einem Handbuch.
Entwickler, die Annotationen einpflegen oder mit der erweiterten Spezifikation arbeiten,
stoßen dabei auf einige Schwierigkeiten.

Zum einen erweist sich die Pflege der Annotationen als mühsam. Sie werden als zusätz-
liche Zeilen in bereits bestehende Tabellen eingepflegt, was das ursprüngliche Layout
zerstören kann. Außerdem werden die Annotationen mit der zentralen Usability-Pattern-
Anwendungsspezifikation nicht verbunden, d.h. eventuelle Änderungen an dem Pattern
(z.B. ein zusätzlicher Parameter) müssen an allen annotierten Stellen einzeln nachgezogen
werden. Es ist auch nicht möglich, ein Pattern einfach zu entfernen. Alle dazugehörige
Annotationselemente müssen aufgefunden und aus den Tabellen rausgenommen werden.

Zum anderen hat man keinen Überblick über die Annotationen, wenn man mit einer
erweiterten Spezifikation arbeitet. Es ist z.B. nicht möglich, sich eine Liste von Use Cases
ausgeben zu lassen, die mit einem bestimmten Pattern annotiert sind.

37



3 Konzept der Erweiterung von Use Cases

Name System starten
Ziel Der Benutzer möchte das System starten.
Akteure Benutzer
Primärakteur Benutzer
Ebene Übersicht
Priorität hoch

Normalablauf
Vorbedingung Das System ist installiert und lauffähig.

1 Entwickler Ruft die Funktion „System starten“ auf.
2 System lädt das zuletzt bearbeitete Projekt.

Fehler: Kein zuletzt bearbeitetes Projekt verfügbar. Alternativablauf 2a
Nachbedingung Das System ist gestartet.

Das System zeigt das zuletzt bearbeitete Projekt.

Alternativablauf 2a
Vorbedingung Kein zuletzt bearbeitetes Projekt verfügbar.

2a1 System erstellt ein neues leeres Projekt.
Standardwerte
Werte: Projektname: „Neues Projekt“, Systemname: „System“;
Unterordner: Usability Patterns, Akteure, Use Cases;
Prioritäten: hoch, mittel, niedrig;.
Ebenen: Übersicht, Benutzerebene, Technische Details.

Nachbedingung Das System ist gestartet.
Das System zeigt ein leeres Projekt.

Tabelle 3.1: Annotierter Use Case „System starten“

Außerdem lässt es sich nicht überprüfen, ob ein Pattern richtig angewendet wurde. Eine
richtige Anwendung setzt voraus, dass:

• nur die im Pattern beschriebenen Elemente annotiert wurden (Use Case, Ablauf oder
Schritt),

• alle obligatorischen Vorgaben spezifiziert wurden und

• alle zusätzlichen Elemente eingefügt wurden.

Diese Validierung lässt sich mittels von Textverarbeitungsprogrammen angebotener Funktio-
nalität nicht automatisch durchführen und wird von Entwicklern manuell durchgeführt.

Usability Patterns bieten ein Werkzeug für die Verbesserung der Usability. Das Konzept
setzt aber voraus, dass die in dem Katalog beschriebenen Schablonen während der An-
notierung eingehalten werden, was sich in der Praxis als schwierig erweist, da gängige
Textverarbeitungsprogramme keine speziell auf die Use Case-Modellierung zugeschnittenen
Bedienkonzepte und Funktionalitäten anbieten. Bei der Erweiterung der Use Cases ist der

38



3.4 Ergänzung von Use Cases

Entwickler selber dafür verantwortlich, auf die Konsistenz und die Einhaltung der Schablo-
nen zu achten. Diese Tatsache hat die Überlegung angestoßen, ein Werkzeug zu entwickeln,
das die Entwickler bei der Erstellung einer mit Usability Patterns annotierten Spezifikation
unterstützt.

39





4 Werkzeugunterstützung für das Konzept

Eine der Teilaufgaben dieser Arbeit war, das Konzept der Usability Patterns zu evaluieren in-
dem eine erweiterte Use-Case-Spezifikation erstellt wird. Dies umfasst folgende Aufgaben:

• Auswahl einer Anforderungsspezifikation, auf die das Konzept angewendet wird

• Identifizierung der Usability Patterns, die für die Anwendung auf die Spezifikation in
Frage kommen

• Spezifizierung der Anwendung der ausgewählten Patterns

• Annotierung einzelner Elemente der Spezifikation

Üblicherweise wird eine Use-Case-Spezifikation als Teil der Anforderungsspezifikation mit
Hilfe von Textverarbeitungsprogrammen erstellt. Für die Erweiterung der Use Cases mit
Usability Patterns sind deren Funktionalitäten nicht ausreichend, wie im Abschnitt 3.4 gezeigt
wurde. Aus diesem Grund erscheint für den praktischen Einsatz der Annotierung der Use
Cases eine Werkzeugunterstützung notwendig. In diesem Kapitel werden die Anforderungen
an das Werkzeug ausgearbeitet und existierende Use-Case-Werkzeuge im Bezug auf diese
Anforderungen evaluiert. Ferner wird die Entwicklung des Werkzeugs beschrieben.

4.1 Anforderungen an das Werkzeug

Das Use-Case-Werkzeug soll die Entwickler bei der Anwendung des Konzeptes der Annotie-
rung von Use Cases mit Usability Patterns unterstützen. Um dies zu bewerkstelligen, sind
folgende Funktionen notwendig:

• Verwaltung von Use Cases

• Anzeige der Usability Patterns aus dem Katalog mit dazugehörigen Informationen
und Spezifikationsschablonen

• Auswahl der Patterns im Katalog, die in der Spezifikation eingesetzt werden

• Spezifizierung der Anwendung der Patterns, die aus dem Katalog ausgewählt wurden

• Annotierung von Use-Case-Elementen entsprechend der Schablonen in den Usability
Patterns

• Export der annotierten Use Cases und Import dieser in die Anforderungsspezifikation
der Software

41



4 Werkzeugunterstützung für das Konzept

Im Folgenden werden einzelne Anforderungen in separaten Abschnitten beschrieben.

4.1.1 Verwaltung von Use Cases

Das Werkzeug soll grundlegende Funktionen zur Verwaltung von Akteuren und Use Cases
anbieten. Diese werden innerhalb eines Projekts verwaltet.

Akteure

Akteure werden für ein Projekt angelegt und können den Use Cases aus diesem Projekt
zugeordnet werden. Jeder Akteur verfügt über einen Namen und eine Beschreibung, die
jederzeit bearbeitet werden können.

Use Cases

Use Cases werden ebenfalls für ein Projekt angelegt und können zusätzlich mit Hilfe eines
Ordnersystems gruppiert werden. Für das Anlegen der Use Cases gibt es eine vorgefertigte
Eingabemaske, die den Entwickler dabei unterstützt, alle für den Use Case relevanten Daten
strukturiert zu erfassen. Für die Beschreibung der Use Cases wird die in Abschnitt 2.3
beschriebene Struktur verwendet.

Abläufe und Schritte

Um später eine Annotierung der Elemente mit Usability Patterns zu ermöglichen, ist ein
strukturierter Aufbau der Abläufe und einzelner Schritte notwendig. Die Eingabemaske
für Abläufe unterstützt das Anlegen der Vor- und Nachbedingungen und Verwaltung der
einzelnen Schritte im Ablauf. Alternativabläufe werden automatisch angelegt, nachdem ein
Sonderfall für einen Schritt definiert wurde. Einzelne Schritte können Referenzen auf andere
Use Cases enthalten.

4.1.2 Anzeige der Usability Patterns im Katalog

Der Usability-Pattern-Katalog bietet eine Übersicht über alle vorhandenen Usability Patterns.
Für jedes Usability Pattern sollen folgende Informationen angezeigt werden:

• Die komplette Beschreibung des Patterns, welches die Problembeschreibung, den
Lösungsansatz, den Kontext, die Illustration und die Kosten für das Pattern beinhaltet
sowie die Verbindung zu anderen Patterns aufzeichnet.

• Beispiele der Anwendung des Patterns mit Beschreibung und einem Screenshot.

42



4.2 Evaluierung existierender Werkzeuge

• Spezifikations- und Annotationsschablonen, die Anweisungen für die Anwendung des
Patterns beinhalten.

Die Anzeige des Usability-Pattern-Katalogs [Röd11a] soll über eine zusätzliche Komponente
erfolgen, die eventuell in den Editor integriert werden kann.

4.1.3 Spezifikation der Anwendung von Usability Patterns

Über den Katalog werden Usability Patterns ausgewählt, die für die Annotation der Use
Cases in Frage kommen. Diese müssen dann in die Projektstruktur im Use-Case-Editor
übernommen werden. Für die übernommenen Patterns werden im Use-Case-Editor neue
Elemente erstellt, die die Anwendung von den Patterns im Projekt entsprechend den Spezifi-
kationsschablonen spezifizieren.

4.1.4 Annotierung von Use-Case-Elementen

Jedes Usability Pattern schreibt über die Annotationsschablonen vor, für welche Use-Case-
Elemente dieses Pattern angewendet werden kann. Das Werkzeug soll die Annotierung von
Use Cases, einzelner Abläufe und Schritte entsprechend dieser Vorgaben unterstützen. Eine
Annotation ist ein Element, welches das entsprechende Usability Pattern referenziert und
über eine Liste von lokalen Parametern verfügt. Für jedes in die Spezifikation übernommene
Pattern soll eine Liste von mit diesem Pattern annotierten Use Cases angezeigt werden.

4.1.5 Export der annotierten Use Cases

Das Werkzeug soll eine um Usability Patterns und Annotationen erweiterte Use-Case-
Spezifikation im PDF-, RTF-, XML und HTML-Format generieren. Es soll ebenfalls möglich
sein, nur eine Auswahl von Use Cases zu exportieren. Das Format des Exportes ist wichtig,
weil die erweiterte Use-Case-Spezifikation eventuell in die Anforderungsspezifikation der
Software übernommen wird, welche mit einem Textverarbeitungsprogramm erstellt wird.

4.2 Evaluierung existierender Werkzeuge

Üblicherweise werden Use Cases mit Hilfe von Textverarbeitungsprogrammen erstellt. Aus
diesem Grund bestand kein großer Bedarf nach einer speziellen Software. Dennoch gibt
es einige wenige Werkzeuge, die sich auf die strukturierte textbasierte Beschreibung von
Use Cases spezialisiert haben. In diesem Abschnitt werden diese vorgestellt. Es wird auch
untersucht, ob diese Werkzeuge für die Erweiterung der Use-Case-Spezifikation mit Usability
Patterns geeignet sind. Dabei sind folgenden Fragen von einem besonderen Interesse:

1. Ist die strukturierte, textbasierte Beschreibung von Use Cases möglich?

43



4 Werkzeugunterstützung für das Konzept

2. Werden Vorlagen für die Use Cases angeboten, die den Entwickler bei der Erstellung
unterstützen?

3. Wird die Möglichkeit für die Abbildung der Beziehungen zwischen den Use Cases
angeboten, oder ist deren Repräsentation dem Entwickler überlassen?

4. Wird Reportgenerierung angeboten? Ist das Format der Reports für die Weiterbearbei-
tung geeignet?

5. Gibt es eine Möglichkeit, die Anwendung der Usability Patterns mit Hilfe des Werk-
zeugs zu beschreiben?

6. Gibt es die Möglichkeit für die Darstellung der Annotationen für Use Cases, Abläufe
und Schritte?

Im Folgenden werden einzelne Werkzeuge hinsichtlich der gestellten Fragen betrachtet. Alle
aufgeführten Werkzeuge bieten Möglichkeiten zur strukturierten Bearbeitung von Use-Case-
Beschreibungen, unterscheiden sich aber in Details wesentlich. Jedes Werkzeug wird in
einem eigenen Abschnitt beschrieben. Es wird nicht auf den gesamten Funktionsumfang
eingegangen, sondern nur auf die bewertungsrelevante Merkmale. Zum Zweck eines an-
schaulichen Vergleichs wird ein einfacher Use Case als Beispiel genommen und mit Hilfe der
vorgestellten Werkzeuge modelliert. Der Use Case „Kunde anlegen“ hat einen Normalablauf
und eine Verzweigung zum Alternativablauf im Schritt 4. Zu jedem Werkzeug gibt es eine
Abbildung, welche die Darstellung dieses Use Cases zeigt.

4.2.1 Case Complete 2011

CaseComplete [Cas11] ist ein kommerzielles Werkzeug zur Erstellung der Use Cases. Es
bietet eine interaktive Anleitung zur Vorgehensweise bei der Use-Case-Modellierung und
mehrere Dokumentenvorlagen für die im Modellierungsprozess entstehende Artefakte. Es
gibt einen Bereich zur Definition von Akteuren und Use Cases. Darüber hinaus wird die
Möglichkeit angeboten, ein Glossar und eine Liste von Anforderungen und Verknüpfungen
zu beliebigen Dokumenten zu pflegen und mit Use Cases zu verknüpfen. Es ist möglich, über
Referenzen Inklusionsbeziehungen zwischen Use Cases explizit festzuhalten. Detaillierte
Beschreibung von Use Cases können in einem separaten Dialog mit Hilfe einer Eingabemaske
vorgenommen werden. Die Eingabemaske dafür wird in Abbildung 4.1 dargestellt.

Wie man der Abbildung entnehmen kann, ist die Struktur der Beschreibung der Use Cases in
CaseComplete der in dieser Arbeit definierten ähnlich. Die wichtigsten Informationen werden
im Hauptreiter erfasst. Zwei zusätzliche Reiter bieten Möglichkeiten für mehrere detaillierte
Eingaben und Verknüpfungen. Ebenfalls im Hauptreiter werden der Normalablauf und
Alternativabläufe angezeigt. Schritte werden in Form einer durchgehend nummerierten
Liste dargestellt, in der Beschreibung der Schritte vorkommende Namen der Akteure wer-
den hervorgehoben und mit einem Hyperlink versehen, der auf die Akteurbeschreibung
verweist.

44



4.2 Evaluierung existierender Werkzeuge

Abbildung 4.1: Eingabemaske für Use Cases in CaseComplete

Für die Darstellung der Usability Patterns würden sich zahlreiche zusätzliche Felder in der
Use-Case-Beschreibung anbieten. Es gibt allerdings keine Möglichkeit, Patterns zentral zu
definieren und diese in einzelnen Use Cases zu verlinken.

CaseComplete bietet neben der Bearbeitung auch die Möglichkeit, erstellte Use Cases zu
exportieren. Für das gesamte Projekt oder für die einzelnen Elemente (Use Cases, Akteure,
Anforderungen) werden Reports in HTML-, Word- und Excel-Format mit Hilfe zahlreicher
Vorlagen generiert.

45



4 Werkzeugunterstützung für das Konzept

Abbildung 4.2: Eingabemaske für Use Cases in HeRA

4.2.2 HeRA

HeRA (Heuristic Requirements Assistant) ist ein Projekt des Fachgebietes Software Engi-
neering der Leibniz Universität Hannover. Es ist im Laufe einer Masterarbeit entstanden
und wird bis heute im Rahmen mehrerer Projekte weiterentwickelt [HeR11]. HeRA dient zur
Erstellung und Bearbeitung von Use Cases und Anforderungen und verfügt über zusätzli-
che Plugins, die seine Funktionalität erweitern. Das Glossarplugin erlaubt die Verwaltung
von Begriffen und zugehörigen Definitionen und verfügt über semantische Verifizierung
[Hec09]. Die besondere Funktionalität von HeRA ist das heuristische Feedback. Die Eingaben
der Benutzer werden ständig analysiert und auf die Vollständigkeit geprüft. Der Benutzer

46



4.2 Evaluierung existierender Werkzeuge

Abbildung 4.3: Eingabemaske für Use Cases in UCEd

bekommt die Rückmeldung über den aktuellen Stand seiner Arbeit in Form von Warnungen
und Empfehlungen.

Abbildung 4.2 zeigt die Eingabemaske für die Bearbeitung der Use Cases in HeRA. Das
Werkzeug sieht mehrere Felder für die Speicherung der Informationen über Use Cases
vor. Abläufe werden mit Hilfe von Tabellen dargestellt. Einzelne Schritte können um Al-
ternativabläufe erweitert werden. Es ist möglich, aus einem Schritt weitere Use Cases zu
referenzieren.

In HeRA erstellte Elemente können in HTML- und TEX- Format exportiert werden. Use
Cases werden dabei in Tabellenform dargestellt.

4.2.3 UCEd

UCEd (Use Case Editor) ist ein frei verfügbares Werkzeug, das die automatisierte Unterstüt-
zung der Anforderungsanalyse anstrebt [UCE11]. Neben der Erstellung und Bearbeitung
von Use-Case-Beschreibungen ermöglicht UCEd die Erzeugung der Beschreibung eines
endlichen Automaten und simuliert die im Use Case beschriebenen Abläufe mittels dieses
Automaten.

47



4 Werkzeugunterstützung für das Konzept

Wie in der Abbildung 4.3 zu sehen ist, unterstützt UCEd die strukturierte Beschreibung von
Use Cases. Allerdings verlangt das Werkzeug für die Weiterverarbeitung der Informationen
die Einhaltung einer vorgegebenen Grammatik, die in dem auf der Webseite verfügbaren
Handbuch [Som07] erläutert wird. Der syntaktische Freiraum bei der Benutzung dieser
semiformaler Sprache ist eng begrenzt, was einen Einarbeitungsaufwand von den Use-
Case-Entwicklern erfordert. Dies wirkt sich negativ auf die Benutzbarkeit des Werkzeugs
aus.

UCEd bietet auch die Möglichkeit, erstellte Modelle im HTML-Format zu exportieren. Die
exportierte Darstellung enthält die Beschreibung von Use Cases sowie die Darstellung des
generierten Automaten.

4.2.4 Remas

Remas (Requirements Management System) ist eine auf Eclipse basierte Open-Source-
Software zur Anforderungsverwaltung. Es bietet die Möglichkeit zur Verwaltung von Use
Cases, Akteuren, sowie funktionalen und nichtfunktionalen Anforderungen [rem11].

Die Abbildung 4.4 zeigt die graphische Oberfläche von remas. Ganz unten ist der Projekt-
baum zu sehen, in dem die zu einem Projekt gehörende Akteure, Systeme, Use Cases,
Anforderungen, Metriken, Glossareinträge und Referenzen verwaltet werden. Oben links
ist die Eingabemaske für Use Cases dargestellt. Für die Bearbeitung der Abläufe ist ein
zusätzliches Fenster vorgesehen (siehe Abbildung 4.4, unten links). Für jeden Use Case
kann eine Liste von Schritten angelegt werden. Es wird keine Möglichkeit angeboten, Al-
ternativabläufe anzulegen, diese können aber als Abzweigungen im Normalablauf mittels
zusätzlicher (Substep) und alternativer (Altstep) Schritte dargestellt werden. Remas bietet auch
die Möglichkeit, alle Elemente mittels so genannter Links miteinander zu verknüpfen.

Für die Abbildung von Usability Patterns in remas sind die Metrikenelemente am besten
geeignet. Oben rechts in Abbildung 4.4 sind die Eigenschaften einer Metrik zu sehen. Diese
umfassen lediglich einen Namen und eine Beschreibung. Für die Spezifikation der Anwen-
dung der Usability Patterns wären noch zusätzliche Felder notwendig, die Parameter und
Vorgaben darstellen. Eine Metrik wird immer für ein bestimmtes System definiert und kann
mittels Links mit beliebigen Elementen verbunden werden. Unten rechts in der Abbildung
sieht man einen Link von einer Metrik zu einem Schritt. Diese Links können Annotationen ein-
zelner Elemente mit Usability Patterns darstellen. Allerdings lassen diese keine zusätzlichen
Angaben zu, was für die Darstellung lokaler Vorgaben allerdings unabdingbar ist.

Das in remas erstellte Projekt und einzelne Elemente können in HTML-Format exportiert
werden. Dabei kann die Darstellung mittels angebotener Schablonen vom Entwickler selbst
gestaltet werden.

48



4.2 Evaluierung existierender Werkzeuge

Abbildung 4.4: Bearbeitung von Use Cases in remas

4.2.5 Zusammenfassung

In Tabelle 4.1 wird der Vergleich der untersuchten Werkzeuge bezüglich der oben definierten
Merkmale dargestellt. Über die Grundfunktionalität zur Verwaltung von Use Cases verfügen
alle vier Werkzeuge. Es ist möglich, Use Cases mit Hilfe einer unterschiedlich detaillierter
Vorlage zu erstellen und diese in einem Projektbaum zu verwalten. Alle Werkzeuge außer
UCEd bieten darüber hinaus die Abbildung der Beziehungen zwischen den Use Cases an. Die
Export-Funktion wird von allen Produkten angeboten, in einem weiterverwendbaren Format
allerdings nur von HeRA und CaseComplete. CaseComplete und remas weisen ein breiteres
Spektrum an Funktionalitäten für die Verwaltung von Use Cases und Anforderungen auf,
während die anderen zwei Werkzeuge höher spezialisiert sind.

Keines der Werkzeuge ist im aktuellen Zustand zur Erstellung der mittels Usability Pat-
terns erweiterten Use Cases geeignet. Wegen der vorhandenen Grundfunktionalität und der

49



4 Werkzeugunterstützung für das Konzept

Werkzeug Strukturierte Vorlagen Beziehungen Export Patterns Annotationen
Beschreibung

Case ja ja ja HTML nein teilweise
Complete Word

Excel
HERA ja ja ja HTML nein nein

TEX
UCEd ja ja nein HTML nein nein
remas ja ja ja HTML ja teilweise

Tabelle 4.1: Vergleich der Use Case Editoren

Verfügbarkeit des Quellcodes bieten sich aber HeRA und remas an, um deren Erweiterungs-
möglichkeit zu untersuchen.

4.3 Evaluierung einer Erweiterungsmöglichkeit

Die Evaluierung der Werkzeuge hat ergeben, dass HeRA und remas dafür geeignet sind,
nach entsprechender Erweiterung für die Evaluierung des Konzeptes der Annotierung von
Use Cases mit Usability Patterns eingesetzt zu werden. Die Erweiterung umfasst folgende
Punkte:

• Import der Usability Patterns aus dem Katalog

• Verwaltung von Usability Patterns im Projekt

• Erweiterung der Struktur der Use-Case-Elemente um Annotationen zu ermöglichen

• Annotation der Use-Case-Elemente

Eine technische Systemanalyse hat ergeben, dass beide Werkzeuge eine komplexe, modular
aufgebaute Architektur aufweisen. Die Erweiterung um eine Usability-Patterns-Komponente
kann ohne großen Einfluss auf andere Module erfolgen. Die Annotierungsfunktionalität
verlangt aber die Erweiterung der Use-Case-Struktur um Annotationselemente. Da Use-
Case-Verwaltung die Kernfunktionalität dieser Werkzeuge darstellt, könnte eine solche
Änderung der Struktur Auswirkungen auf andere Komponenten haben. Die Analyse der
Abhängigkeiten wurde dadurch erschwert, dass die Dokumentation für beide Werkzeuge
nur spärlich vorhanden ist.

Eine grobe Schätzung hat ergeben, dass unter diesen Umständen der Einarbeitungs- und
Umbauaufwand für die Erweiterung eines der beiden Werkzeuge für die Durchführung im
Rahmen dieser Arbeit zu umfangreich wäre. Eine Neuentwicklung würde dagegen folgende
Vorteile mit sich bringen:

50



4.3 Evaluierung einer Erweiterungsmöglichkeit

• Das Werkzeug bleibt übersichtlich. Es werden nur die Funktionen umgesetzt, die auch
für die Evaluation nötig sind.

• Die Struktur und Architektur des Werkzeugs sind nicht vorgegeben. Somit können
beliebige Usability Patterns bei der Entwicklung berücksichtigt werden.

• Da der gesamte Softwareentwicklungsprozess durchlaufen wird, kann die Anwendung
der Usability Patterns in allen Phasen beobachtet und untersucht werden.

Nach der Gewichtung aller Vor- und Nachteile wurde die Entscheidung getroffen, ein neues
Werkzeug zu entwickeln, das die Anwendung der Usability Patterns demonstriert. Bei der
Entwicklung sollen ausgewählte Patterns angewendet werden.

51





5 Realisierung von Tulip

Dieser Abschnitt beschreibt die Realisierung des Werkzeugs namens Tulip (Tool for Use
Case Specification with Usability Patterns). Die Realisierung des Werkzeugs selbst stellt eine
praktische Anwendung des Konzeptes der Usability Patterns im Entwicklungsprozess dar. In
der Anforderungsanalysephase werden einige Patterns aus dem Katalog ausgewählt. In der
Spezifikationsphase werden diese in die Spezifikation aufgenommen und Use-Case-Elemente
annotiert. Beim Entwurf und Implementierung werden die Vorgaben aus den Patterns und
Annotationen berücksichtigt. Die Vorgaben aus den Patterns stellen auch Qualitätskriterien
für die Softwaretests dar. Mit Hilfe des fertigen Werkzeugs wird anschließend eine erweiterte
Use-Case-Spezifikation erstellt.

5.1 Erstellung der Spezifikation

In diesem Abschnitt wird die Erstellung der mit Usability Patterns erweiterten Use-Case-
Spezifikation [RB11] für das Werkzeug Tulip beschrieben.

Die Anforderungen für Tulip wurden vollständig geklärt, analysiert und in einer Anforde-
rungsspezifikation festgehalten. Die funktionalen Anforderungen wurden mit Hilfe von Use
Cases beschrieben. Dabei wurde die Notation aus dem Abschnitt 2.3 verwendet. Bei der
Anforderungsanalyse wurden folgende Funktionalitäten identifiziert:

• System starten

• Projekt verwalten

• Akteure verwalten

• Use Cases verwalten

• Abläufe verwalten

• Usability Patterns verwalten

• Use-Case-Element annotieren

• Use Cases exportieren

• Use Cases importieren

• Einstellungen verwalten

• Infodialog aufrufen

53



5 Realisierung von Tulip

Abbildung 5.1: Use Case „Projekt öffnen“

Für jede Funktionalität wurde ein Use Case oder eine Sequenz von Use Cases erstellt.
Insgesamt wurden 26 Use Cases spezifiziert. Die Abbildung 5.1 zeigt am Beispiel des Use
Cases „Projekt öffnen“, wie die ursprünglichen Use Cases in der Spezifikation aussehen.

5.2 Erweiterung der Spezifikation um Usability Patterns

5.2.1 Auswahl der Patterns

Nach der Fertigstellung der Use-Case-Spezifikation wurden Usability Patterns aus dem
Katalog ausgewählt, welche für den Einsatz in Tulip als sinnvoll erschienen.

Zunächst wurden aus 20 Patterns, die im Katalog enthalten sind, diejenigen eliminiert, die
zu dem Zeitpunkt der Entwicklung noch nicht vollständig ausgearbeitet wurden. Diese sind
Systemstatus, Assistent und Expertenmodus. Des Weiteren wurden die Patterns ausgeschlossen,
die für den Einsatz in Tulip mit spezifizierter Funktionalität aus verschiedenen Gründen
nicht in Frage kommen. Diese sind:

• Wiederholung erlaubt es dem Benutzer, die einmal ausgeführte Aktion auf eine ein-
fache Weise zu wiederholen, ohne dass alle Eingaben noch einmal gemacht werden
müssen. In Tulip kommen keine Funktionalitäten mit mehreren komplizierten Eingaben
vor, so dass dieses Pattern nicht eingesetzt werden kann.

• Fortschrittsanzeige sieht eine Anzeige der Dauer vor, wenn das System eine Aktion
ausführt, die längere Zeit dauert. Da in Tulip keine komplizierten Berechnungen
durchgeführt werden und kein Datenaustausch mit einer Datenbank oder anderen
Systemen notwendig ist, wird davon ausgegangen, dass es keine Aktionen gibt, deren

54



5.2 Erweiterung der Spezifikation um Usability Patterns

Ausführung länger dauert, als eine Sekunde. Aus diesem Grund wird dieses Pattern
nicht eingesetzt.

• Verarbeitungsanzeige sieht eine Anzeige für den Benutzer vor, wenn eine Aktion im
Hintergrund ausgeführt wird. Da es in Tulip keine Aktionen gibt, die im Hintergrund
ausgeführt werden, erscheint der Einsatz dieses Patterns als nicht sinnvoll.

• Auto-Vervollständigung sieht das Vorschlagen geeigneter Werte während der Eingabe
vor. Diese Funktionalität ist sinnvoll, wenn es Eingabewerte gibt, die aus einer größeren
Menge der Eingabewerte stammen. In Tulip kommt es nur bei der Auswahl der Priorität,
der Ebene eines Use Cases, sowie bei der Auswahl eines Akteurs für einen Schritt, vor.
Dabei wird die Menge der möglichen Eingabewerte von fünf Elementen in der Regel
nicht überschritten. In diesem Fall erscheint eine Auswahl über eine Liste sinnvoller, als
die Auswahl über die freie Eingabe mit einer Vorschlagmöglichkeit. Aufgrund dieser
Überlegung wurde dieses Pattern verworfen.

• Nachsichtiges Format sieht vor, dass bei Bedarf die Eingaben vom Benutzer in das
richtige Format umgewandelt werden. Da in Tulip kein Format für die Eingaben der
Benutzer festgelegt wird, wird dieses Pattern nicht eingesetzt.

• Vorschau bietet eine Vorschau auf die voraussichtlichen Resultate der Aktion, ohne
die Aktion vollständig auszuführen oder Änderungen durchzuführen. Dieses Pattern
erscheint für den Einsatz in Tulip nicht sinnvoll, da keine Aktionen vorgesehen sind,
die nur mit einem großen Aufwand rückgängig gemacht werden können. Außerdem
wird für die meisten Aktionen eine Undo-Funktion angeboten.

• Ausführung im Hintergrund bietet Benutzern an, lang andauernde Aktionen im
Hintergrund auszuführen. In Tulip werden keine Aktionen gleichzeitig ausgeführt,
daher ist die Ausführung im Hintergrund nicht nötig.

Nach diesem Ausschlussverfahren wurden zehn Patterns, die für den Einsatz in Tulip als
geeignet erschienen, näher untersucht. Es wurden zwei Gruppen von Patterns identifiziert,
die eine ähnliche Funktionalität spezifizieren, so dass es ausreichend ist, nur ein Pattern aus
der Gruppe für den Einsatz in Tulip auszuwählen.

Die erste Gruppe beinhaltet Patterns, die die Undo-Funktionalität unterstützen. Diese sind
Globales Undo und Objektbezogenes Undo. Beim Globalen Undo hat der Benutzer die Möglichkeit,
eine aus Versehen ausgeführte Aktion rückgängig zu machen. Das Objektbezogene Undo bietet
die gleiche Funktionalität, nur jeweils auf ein bestimmtes Objekt bezogen. Das heißt, dass
mehrere Historien gleichzeitig verwaltet werden, jeweils eine für das zurzeit bearbeitete
Objekt. Diese Option erscheint für Tulip vorteilhaft, da die Möglichkeit besteht, mehrere
Objekte gleichzeitig zu bearbeiten. Aus diesem Grund wurde die Entscheidung getroffen,
das Usability Pattern Objektbezogenes Undo in Tulip anzuwenden.

Zur zweiten Gruppe gehören folgende Patterns: Sicherheitskopie, Automatisches Speichern
und Dokumentwiederherstellung. Diese drei Patterns behandeln die Erstellung zusätzlicher
Kopien des aktuellen Projekts. Bei Sicherheitskopie wird bei jeder vom Benutzer ausgelösten
Speicherung der Datei ein Backup für die alte Datei gemacht, so dass man den Stand der
vorletzten Speicherung wiederherstellen kann. Beim Automatischen Speichern wird das Projekt

55



5 Realisierung von Tulip

in regelmäßigen Abständen gespeichert ohne dass der Benutzer das System dazu auffordern
muss. Dabei wird die Projektdatei überschrieben. Bei der Dokumentwiederherstellung geht
es darum, dass das Projekt nach jeder vom Benutzer vorgenommenen Änderung in einer
separaten Datei gespeichert wird. Im Fall eines Systemfehlers kann die letzte Fassung eines
Dokuments wiederhergestellt werden. Für den Einsatz im Tulip wurde die Dokumentwieder-
herstellung ausgewählt, da das automatische Speichern und das damit verbundene ständige
Überschreiben der Datei nicht erwünscht ist. Des Weiteren geschieht das Anlegen einer
Sicherheitskopie nur beim Speichern, was nicht von den Systemfehlern schützt.

Nachdem der Aufwand für die Aufnahme der sieben ausgewählten Usability Patterns in die
Anforderungen an Tulip geschätzt wurde, wurden diese entsprechend den Wünschen des
Kunden priorisiert. Dabei wurde vereinbart, dass das Pattern Filter, welches es dem Benutzer
erlaubt, dargestellte Daten nach eigenen Kriterien zu filtern, für diese Implementierung
eine niedrige Priorität hat und für die erste Version von Tulip nicht in die Anforderungen
aufgenommen wird.

Somit ist eine Liste von sechs Patterns entstanden, welche in die Anforderungen an Tulip auf-
genommen werden. Diese sind: Gute Standardwerte, Objektbezogenes Undo, Abbruch, Warnung,
Direkte Validierung und Dokumentwiederherstellung.

5.2.2 Spezifizierung der Anwendung der Patterns

Für die Spezifikation der Anwendung der ausgewählten Usability Patterns in Tulip wurde ein
separates Kapitel in der Spezifikation angelegt. Für jedes Pattern wurde eine Beschreibung
sowie Globale Vorgaben, Globale Funktionen und Annotationsvorschriften entsprechend den
im Usability Pattern Katalog definierten Schablonen hinterlegt. In der Tabelle 5.1 sind alle
Anwendungsspezifikationen aufgeführt. Die Annotationen für jedes Pattern sind hervorge-
hoben.

Gute Standardwerte
Beschreibung Beim Anlegen neuer Elemente füllt das System einige

Felder mit Standardwerten. Der Benutzer kann die
Standardwerte jederzeit überschreiben.

Annotation @Schritt Standardwerte
Objektbezogenes Undo
Beschreibung Das System soll es Benutzern erlauben, Aktionen

objektbezogen rückgängig zu machen.
Annotation @Ablauf Objekt-Undo

Vorgaben
Objekte Projektbaum (Operationen auf Elementen im Baum,

z.B. Verschieben, Löschen etc.), Projekt (d.h. Projekt-
stammdaten), Akteur, Use Case, Usability Pattern

56



5.2 Erweiterung der Spezifikation um Usability Patterns

Undo-Verhalten Lineares Undo: 1-10 zuletzt ausgeführte Aktionen pro
Objekt sollen in der umgekehrten Reihenfolge der ur-
sprünglichen Ausführung rückgängig gemacht wer-
den können. Die Undo-Historie wird geleert, wenn
das jeweilige Objekt nicht mehr angezeigt wird (gilt
für Akteur, Use Case, Usability Pattern, Projektstamm-
daten).

Redo-Verhalten Aktionen, die per Undo rückgängig gemacht wurden,
sollen auch wiederherstellbar sein.

Abbruch
Beschreibung Der Benutzer soll in der Lage sein, einige Aktionen

abzubrechen. Das System soll den Zustand vor der
Ausführung der Aktion wiederherstellen.

Annotation @Ablauf Abbruch
Warnung
Beschreibung Das System warnt den Benutzer vor der Ausführung

der Funktionen, die nicht rückgängig gemacht wer-
den können.

Annotation @Schritt Warnung
Vorgaben Darstellung Das System zeigt Warnungen als Popup Dialog an.
Direkte Validierung
Beschreibung Eingaben des Benutzers sollen direkt auf Gültigkeit

geprüft werden, ohne dass der Benutzer eine spezielle
Funktion dafür aufrufen muss. Die Validierungsfehler
und Hinweise werden sofort dem Benutzer sofort
signalisiert.

Annotation @Schritt Direkte Validierung

Vorgaben
Darstellung Ungültige Eingabewerte werden durch ein Fehler-

symbol neben dem Eingabefeld gekennzeichnet. Ein
Hinweis auf die Fehlerursache wird als ToolTip des
Symbols angezeigt.

Validierungs-
zeitpunkt

Die Validierung findet unmittelbar während der Ein-
gabe statt.

Dokumentwiederherstellung
Beschreibung Nach jeder Änderung der Projektdaten speichert das

System Wiederherstellungsinformationen, mit denen
die Projektdaten wiederhergestellt werden können.

Annotation @Ablauf Dok.wdhst.

57



5 Realisierung von Tulip

Vorgaben
Strategie Nach jeder Änderung der Projektdaten speichert das

System Wiederherstellungsinformationen, mit denen
die Projektdaten wiederhergestellt werden. Die Wie-
derherstellungsinformationen werden in einer Da-
tei im Benutzerverzeichnis gespeichert. Bei einem
normalen Systemende wird die Datei mit den Wie-
derherstellungsinformationen gelöscht. Nach einem
unerwarteten Systemabbruch („Absturz“) bietet das
System dem Benutzer beim nächsten Systemstart an,
die Projektdaten anhand der Wiederherstellungsinfor-
mationen wiederherzustellen.

Daten Vollständiger Projektbaum, Zeitpunkt der Speiche-
rung

Funktionen Dokumentwieder-
herstellung nach
Systemfehler

UC-101: System starten, Alternativer Ablauf 2b

Tabelle 5.1: Spezifikation der Anwendung der Usability Patterns in Tulip

5.2.3 Annotierung der Use-Case-Elemente

Im nächsten Schritt wurden für jedes Pattern die Use Cases ausgewählt, in denen das Pattern
zum Einsatz kommt. Diese Use Cases oder deren Elemente wurden mit einer Annotation
versehen. Ferner wurden von dem Pattern vorgeschriebene lokale Vorgaben und Parameter
beschrieben und zusätzliche Elemente angelegt und referenziert.

Beispiel

Die Abbildung 5.2 zeigt noch einmal den Use Case „Projekt öffnen“ (vgl. Abbildung 5.1).
Der Use Case wurde mit drei Usability Patterns annotiert:

1. Schritt 2 aus dem Normalablauf wurde mit dem Pattern Standardwerte annotiert. An
dieser Stelle bietet das System dem Entwickler die Möglichkeit, die Datei auszuwählen,
die geöffnet werden soll. Das Pattern legt fest, dass standardmäßig ein bestimmtes
Verzeichnis angezeigt wird. Der vorgeschriebene Parameter „Werte“ definiert, welches
Verzeichnis als Standardverzeichnis verwendet wird.

2. Im Schritt 5 des Normalablaufs schließt das System das aktuelle Projekt. Usability
Pattern Warnung sieht eine Warnung vor, falls das aktuelle Projekt nicht gespeicherte
Änderungen enthält. Durch die Parameter wird die Bedingung für die Warnung
und die Möglichkeiten für das weitere Vorgehen festgelegt. Außerdem wurde für
die Annotation ein alternativer Ablauf angelegt, der den Fall behandelt, dass der
Entwickler sich für die Speicherung des aktuellen Projektes entscheidet.

58



5.3 Entwurf und Implementierung

Abbildung 5.2: Annotierter Use Case „Projekt öffnen“

3. Der Normalablauf wurde mit dem Pattern Abbruch annotiert, was die Abbruchmög-
lichkeit für jeden Schritt des Ablaufs vorsieht. Nach dem Abbruch wird der Stand von
vor dem ersten Schritt wiederhergestellt.

5.3 Entwurf und Implementierung

Dieser Abschnitt beschreibt die einzelnen Komponenten von Tulip und deren Implementie-
rung. Es wird auch auf die Auswirkungen der Berücksichtigung der Usability Patterns auf
den Entwurf- und Implementierungsprozess eingegangen.

59



5 Realisierung von Tulip

Abbildung 5.3: Datenmodell von Tulip

5.3.1 Datenmodell

Die Abbildung 5.3 bietet einen Überblick über das Datenmodell in einer an UML angelehnter
Notation. Auf die Darstellung einiger Klassen und Beziehungen wurde aus Übersichtlich-
keitsgründen verzichtet.

Das Paket tulip.model.projectTree umfasst die Projekthierarchie. Für die Abbildung
der Baumstruktur wurde das Entwurfmuster Kompositum [GHJV04] verwendet. Die Klasse
TreeElement repräsentiert dabei die Basiskomponente. Das Projekt ist das Wurzelelement
des Baums. Die untergeordneten Use Cases, Akteure und Anwendungsspezifikationen für
Usability Patterns stellen Blätterelemente des Baums dar und werden mit Hilfe von Folder

gruppiert. Des Weiteren befinden sich auch Klassen für die Repräsentation der Bestandteile

60



5.3 Entwurf und Implementierung

Abbildung 5.4: Architektur von Tulip

eines Projekts, eines Use Cases und einer Anwendungsspezifikation für Usability Pattern in
diesem Paket.

Für das bessere Verständnis beinhaltet die Abbildung auch einen Ausschnitt aus dem
Paket up.model. Dieses Paket ist ein Teil der Komponente Usability Pattern Browser. Das
zentrale Element ist UsabilityPattern. Ein UsabilityPattern enthält eine Liste von
Spezifikationsschablonen, repräsentiert durch GlobalParameterTemplate, GlobalFunction-
Template und AnnotationTemplate. Ein UsabilityPattern wird im Projektbaum durch
PatternSpezifikation instanziiert. Für die Schablonen erfolgt die Instanziierung fol-
gendermaßen: GlobalFunctionTemplate und GlobalParameterTemplate werden entspre-
chend über die Klassen GlobalFunction und GlobalParameter instanziiert, welche mit
einer PatternSpecification assoziiert sind. Eine AnnotationTemplate wird über eine
Annotation aus dem Paket tulip.model.annotations instanziiert. Lokale Vorgaben für eine
Annotation werden über LocalParameter, LocalGlobalParameter und ElementReference

dargestellt. LocalParameter und ElementReference sind Instanzen von Annotationsschablo-
nen LocalParameterTemplate und ElementReferenceTemplate, mit LocalGlobalParameter
werden globale Vorgaben GlobalParameter aus der PatternSpezification überschrieben.

5.3.2 Komponenten

Die Abbildung 5.4 zeigt einen Ausschnitt aus dem Entwurf von Tulip. Für die Implemen-
tierung wurde das Architekturmuster MVC (Model View Controller) [GR01] verwendet,
entsprechend sind auch die Pakete aufgeteilt.

Die Daten werden im Paket tulip.model verwaltet. Neben projectTree und annotations

enthält dieses das Paket vo, welches die Value Objects für alle Elemente verwaltet. Value
Objects sind die Implementierung des Entwurfsmusters Memento [GHJV04] und dienen zur

61



5 Realisierung von Tulip

Zwsischenspeicherung des Zustandes eines Elements. Die Zwischenspeicherung mehrerer
Zustände ist für die Erfüllung des Usability Patterns Objektbezogenes Undo notwendig.

Klassen für die Verwaltung der graphischen Benutzungsoberfläche befinden sich im
tulip.view. Das Hauptfenster MainWindow beinhaltet drei weitere Elemente: den Projekt-
baum, die Haupttoolbar und die Anzeigefläche, die für die Anzeige der Inhalte verwen-
det wird. Das Projekt, Use Cases, Akteure und Anwendungsspezifikationen für Usability
Patters werden entweder im Anzeige- oder im Bearbeiten-Modus angezeigt. Daher gibt
es für die Anzeige jedes Elements jeweils zwei Klassen, die eine ist von ViewTabPanel

und die andere von EditTabPanel abgeleitet. Weitere Hilfsklassen befinden sich im Paket
tulip.model.internal.

Das Paket tulip.controller enthält Klassen zur Kontrolle und Steuerung der anderen
Komponenten. Die Anzeige der richtigen Tabs und die rechtzeitigen Updates aller Elemente
werden z.B. von der Klasse TabbedPaneManager gesteuert. Listener für die Ereignisse aus
der GUI findet man in Paketen listener, action und observer. Die Undo-Funktionalität
wird mittels so genannter Commands realisiert. Für jedes Element, welches über die Undo-
Funktionalität verfügt, gibt es eine Klasse, die die abstrakte Klasse Command erweitert, z.B.
ActorEditCommand für Akteure. Diese Commands implementieren die Methoden undo() und
redo(), indem sie entweder zwei zustände des Objekts oder die Funktionen für die Wie-
derherstellung eines Zustandes speichern. Für jede vorgenommene Änderung wird ein
Command angelegt. Diese werden in einem CommandManager verwaltet und stellen somit die
Änderungshistorie eines Elements dar.

Ein weiteres Paket tulip.utils beinhaltet die Reportgenierung- sowie Export- und Im-
portklassen. Außerdem werden hier allgemeine Einstellungen wie Schriftart und Farben
verwaltet. Die Klasse CurrentProject ist nach dem Entwurfsmuster Singleton [GHJV04]
realisiert und verwaltet alle Informationen für das aktuelle Projekt, z.B. dazugehörige GUI
und den Dateinamen, unter dem das Projekt gespeichert wurde.

Die Berücksichtigung der Usability Patterns hat den Entwurf von Tulip erheblich beein-
flusst. Die Anwendung der Patterns Objekbezogenes Undo, Abbruch und Warnung verlangen
eine Möglichkeit der Wiederherstellung eines vorher gespeicherten Zustandes, was zur
Einführung von Commands und Value Objects führte. Für die Patterns Direkte Validierung und
Dokumentwiederherstellung wurden zusätzliche Funktionalitäten implementiert. Des Weiteren
wirken sich alle Patterns auf die Gestaltung der graphischen Benutzungsoberfläche aus.

5.3.3 Externe Bibliotheken

Bei der Implementierung von Tulip wurde Gebrauch von einigen externen Open-Source-
Bibliotheken gemacht.

Für die formatierten Eingaben vom Benutzer wurde der HTML-Editor von Shef [she09] mit
einigen Änderungen eingesetzt. Diese Komponente wird vor allem für die Formatierung der
Beschreibungen der Elemente eingesetzt.

62



5.4 Systemtest

Für die Implementierung der Import- und Exportfunktionalität wurde die Bibliothek XOM
[xom11] benutzt. Diese stellt ein Framework für die Verarbeitung von XML-Objekten dar.

Für die Reportgenerierung wurden die iText-Bibliotheken eingesetzt. iText for PDF [ite11a]
und iText for RTF [ite11b] unterstützen Erstellung und Verarbeitung von PDF- und RTF-
Dokumenten.

5.4 Systemtest

Anschließend an die Implementierung von Tulip wurde ein Systemtest durchgeführt. Ein
Systemtest dient der Überprüfung, ob die geforderte Funktionalität vollständig implementiert
wurde [LL10]. Die Testdaten für den Systemtest von Tulip wurden aus der Spezifikation
[RB11] abgeleitet. Für jeden der 26 Use Cases aus der Spezifikation wurde je ein Testfall
für jede spezifizierte Reaktion des Systems auf eine Aktion des Benutzers angelegt. Danach
wurden Testfälle für alle Abhängigkeiten zwischen den Use Cases erstellt. Somit wurden alle
in der Use-Case-Spezifikation definierten funktionalen Anforderungen mit den Testfällen
überdeckt. Da Annotationen mit Usability Patterns zusätzliche Vorgaben definieren, wurden
anschließend für die Überprüfung dieser zusätzliche Testfälle abgeleitet. Die während dem
Systemtest entdeckte Fehler wurden behoben, anschließend wurde das System noch einmal
mit den gleichen Testdaten getestet.

Dadurch, dass die Anwendung der Usability Patterns in der Use-Case-Spezifikation spezifi-
ziert wurde, konnten während des Systemtests neben den funktionalen Anforderungen auch
die von den Patterns definierte Usability-Merkmale getestet werden.

63





6 Evaluation von Tulip

Dieses Kapitel beschreibt den Einsatz von Tulip während der Erstellung einer erweiterten Use-
Case-Spezifikation. Anschließend wird die Einschätzung der Qualität der erstellten Software
gemacht. Es wurde überprüft, ob die Funktionalität von Tulip den Anforderungen entspricht.
Dabei wurde besonders darauf geachtet, inwieweit der Einsatz von Tulip im Vergleich
zur Verwendung von Textverarbeitungsprogrammen zur Verbesserung des Prozesses der
Erstellung einer mit Usability Patterns erweiterten Use-Case-Spezifikation beiträgt.

6.1 Einsatz von Tulip

Im Prozess der Evaluierung wurde die Spezifikation von Tulip selbst, die bereits vor der
Implementierung, wie im Abschnitt 5.1 beschrieben, mittels Microsoft Word verfasst wurde,
erneut erzeugt, dieses Mal mit der Werkzeugunterstützung von Tulip. Es wurden alle Use
Cases in Tulip angelegt, Usability Patterns aus dem Katalog importiert und deren Anwen-
dung spezifiziert, anschließend wurden Use-Case-Elemente mit Annotationen versehen. Die
erweiterte Use-Case-Spezifikation wurde in RTF-Format exportiert und in die mittels Mi-
crosoft Word erstellte Anforderungsspezifikation von Tulip importiert. Im Folgenden werden
diese Schritte in einzelnen Abschnitten beschrieben.

6.1.1 Spezifizierung der Use Cases

Für die Erstellung der Spezifikation wurde ein neues Projekt „Tulip Spezifikation“ in Tulip
erstellt. Es wurde eine Beschreibung zum Projekt angegeben sowie Ebenen und Prioritä-
ten angelegt. Danach wurde ein Akteurelement mit dem Namen „Entwickler“ angelegt.
Anschließend wurden 26 Use Cases erstellt, gruppiert mittels Ordner, je einen pro Funktiona-
litätseinheit. Die Abbildung 6.1 zeigt den Projektbaum mit den Ordnern und Use Cases sowie
die Anzeige des Use Cases „System starten“. Die Erstellung von Use Cases unterstützt Tulip
mit Hilfe einer vorgefertigten Schablone. Tabelle 6.1 zeigt die Schritte bei der Spezifizierung
der Use Cases auf, die von dem Entwickler durchgeführt wurden, und die Unterstützung,
die für jeden Schritt von Tulip geleistet wurde. Außerdem wurde der Entwickler dank der
Validierungsfunktion auf die Eingabefehler, wie z.B. eine fehlende Beschreibung für einen
Schritt, hingewiesen.

Nachdem alle Use Cases vollständig, mit Normal- und Alternativabläufen, definiert wurden,
wurde die Komponente Pattern Browser für die Auswahl der Usability Patterns aufgerufen.

65



6 Evaluation von Tulip

Abbildung 6.1: Projektbaum und Anzeige eines Use Cases in Tulip

Nr. Schritt Unterstützung durch Tulip
1 Projektdaten befüllen Eingegebene Ebenen und Prioritäten werden für die Aus-

wahl bei der Bearbeitung der Use Cases angeboten.
2 Ordner für die Funktio-

nalitäten anlegen
3 Use Cases anlegen Normalabläufe werden angelegt.
4 Stammdaten für Use

Cases befüllen
Es werden für Akteure, Ebenen und Prioritäten Auswahl-
optionen angeboten.

5 Schritte für Abläufe de-
finieren

Schritte werden nummeriert, es werden Auswahloptionen
für den Akteur angeboten.

6 Sonderfälle anlegen Für jeden Sonderfall wird ein Alternativablauf angelegt. Der
Name für den Ablauf wird entsprechend der von Cockburn
in [Coc07] definierten Konvention generiert.

Tabelle 6.1: Spezifizierung der Use Cases

66



6.1 Einsatz von Tulip

Abbildung 6.2: Pattern Browser in Tulip

6.1.2 Pattern Browser

Die in Tulip eingebettete Komponente Pattern Browser repräsentiert den Katalog „Usability
Patterns“ [Röd11a]. Sie bietet eine strukturierte Übersicht über die vorhandenen Usability
Patterns und verwaltet detaillierte Beschreibungen und Schablonen für die Anwendung. Der
Browser ermöglicht die Navigation durch alle Usability Patterns sowie die Auswahl der
Patterns, um die die Use-Case-Spezifikation erweitert werden soll. Die Abbildung 6.2 zeigt
die Benutzungsoberfläche für die Pattern-Browser-Komponente und die Beschreibung des
Patterns „Abbruch“.

Die sechs Usability Patterns, die in die Spezifikation übernommen werden, wurden im
Pattern-Browser ausgewählt. Wie man der Abbildung entnehmen kann, wurden diese mit
einem gelben Stern markiert und können nicht mehr angewendet werden.

67



6 Evaluation von Tulip

Abbildung 6.3: Spezifikation der Anwendung für Usability Pattern „Direkte Validierung“ in
Tulip

6.1.3 Spezifizierung der Anwendung der Patterns

Für die im Browser ausgewählten Patterns erstellt Tulip Elemente, die die Anwendung
der Patterns spezifizieren. Der Name wird aus dem Katalog übernommen. Es werden
auch entsprechend den im Katalog definierten Schablonen globale Parameter und globale
Funktionen angelegt. Optionale Vorgaben können vom Entwickler nach Bedarf hinzugefügt
werden. Dem Entwickler bleibt es lediglich, die Anwendung der angelegten Parameter für
die Software zu beschreiben. Abbildung 6.3 zeigt die Spezifikation der Anwendung des
Patterns Direkte Validierung mit einer Beschreibung und globalen Parametern Darstellung und
Validierungszeitpunkt.

68



6.1 Einsatz von Tulip

Abbildung 6.4: Bearbeiten eines Use-Case-Ablaufs in Tulip

6.1.4 Annotierung der Use Cases

Die Annotation der Use Cases erfolgt entsprechend den in den Usability Patterns definierten
Annotationsschablonen. In Tulip wird für jeden Use Case, Ablauf und Schritt eine Liste mit
Schablonen angeboten, die für die Annotation dieses Elements geeignet sind. Der Entwickler
muss lediglich eine Schablone auswählen, daraufhin wird das Element mit einer Annotation,
die mit dem Usability Pattern verlinkt ist, versehen. Die obligatorischen Parameter werden
ebenfalls automatisch angelegt. Die Abbildung 6.4 zeigt beispielhaft die Bearbeitung des
Alternativablaufs 2a für den Use Case System starten. Der Schritt 2a1 wurde mit dem Pattern
Standardwerte annotiert.

6.1.5 Generierung eines Reports

Anschließend wurde ein RTF-Report von Tulip generiert [Tul11]. Dieser enthält Informationen
über das Projekt, Anwendungsspezifikationen für die verwendeten Patterns, sowie eine
tabellarische Darstellung aller Use Cases. Die Annotationen sind in die Tabellen eingebettet.
Außerdem weist der Report für jedes Usability Pattern eine Liste von Use Cases auf, deren
Elemente mit diesem Pattern annotiert sind. Abbildung 6.5 zeigt einen Ausschnitt aus dem
Report, auf dem der Use Case „System starten“ abgebildet ist. Der generierte Report wurde
anschließend in die Anforderungsspezifikation von Tulip [RB11] an Stelle von der alten
Use-Case-Spezifikation aufgenommen.

69



6 Evaluation von Tulip

Abbildung 6.5: Ausschnitt aus dem Use Case „System starten“ im RTF-Report

6.2 Bewertung von Tulip als Spezifikationswerkzeug

Das Werkzeug Tulip eignet sich dafür, eine Use-Case-Spezifikation zu erstellen und diese
mit Usability Patterns aus dem Katalog zu erweitern. Dank der Automatisierung vieler
Prozesse und dem Wegfallen des Formatierungsaufwands verläuft der Prozess der Use-
Case-Modellierung und anschließender Annotation mit Anwendung von Tulip wesentlich
schneller als mit gängigen Textverarbeitungsprogrammen. Durch die Validierungsfunktion,
die den Entwickler auf fehlende und inkorrekte Eingaben hinweist, wird die Konsistenz
in der Verwendung der Usability Patterns sichergestellt und die Qualität der Use-Case-
Spezifikation erhöht. Auch alle erstellten Verweise werden bei Änderungen stets aktualisiert,
bei der Verwendung eines Textverarbeitungsprogramms ist der Entwickler bei der Pflege
dieser auf sich alleine gestellt.

70



6.3 Bewertung der Qualität der Software

Ein Nachteil gegenüber einem Textverarbeitungsprogramm ist allerdings der entstehende
Medienbruch. Wenn z.B. mit Word gearbeitet wird, kann die gesamte Anforderungsspezifi-
kation inklusive einer Use-Case-Spezifikation im gleichen Dokument erstellt und verwaltet
werden. Falls für die Erstellung und Pflege der Use-Case-Spezifikation Tulip eingesetzt wird,
muss diese entweder in ein separates Dokument ausgelagert oder nach jeder Änderung neu
importiert werden.

Da Tulip in erster Linie für die Evaluierung des Konzeptes „Usability Patterns“ entwickelt
wurde, ist die Funktionalität des Werkzeugs auf die strukturierte Erfassung von Use Cases mit
der Unterstützung von Usability Patterns begrenzt. Im Vergleich zu den anderen Werkzeugen
zur Use-Case-Modellierung (vergleiche Abschnitt 4.2) erscheint diese recht eingeschränkt. Es
gibt in Tulip z.B. keine Möglichkeit, andere Anforderungen oder Dokumente zu verwalten, es
werden keine Use-Case-Diagramme erstellt, keine Rechtschreibprüfung für Benutzereingaben
durchgeführt. Tulip ist zur Zeit ein Einbenutzersystem, das heißt, dass die kollaborative
Arbeit nicht unterstützt wird. Es wäre allerdings denkbar, diese und weitere Funktionalitäten
in spätere Versionen von Tulip einzubauen, so dass die gesamte Anforderungsspezifikation
mit Hilfe von Tulip erzeugt und gepflegt werden kann.

6.3 Bewertung der Qualität der Software

In diesem Abschnitt wird die Produktqualität der im Rahmen dieser Arbeit erstellten
Software anhand der von [LL10] definierten Teilqualitäten bewertet. Die Abbildung 6.6 zeigt
die Gliederung des Qualitätsbegriffs nach [LL10]. Da bei der Realisierung von Tulip in erster
Linie das Ziel verfolgt wurde, die praktische Anwendung des Konzeptes „Usability Patterns“
zu evaluieren, wurde auf die Erhebung der nichtfunktionalen Anforderungen, die für die
Benutzung der Software von breiteren Anwendergruppen relevant wären, vorerst verzichtet.
Aus diesem Grund können manche Qualitätskriterien nur grob oder gar nicht eingeschätzt
werden.

6.3.1 Zuverlässigkeit

Die Korrektheit der Software wurde wie im Abschnitt 5.4 beschrieben anhand der Anforde-
rungsspezifikation [RB11] geprüft. Die dabei festgestellten Mängel wurden behoben, die
Software wurde anschließend nochmal getestet. Somit lässt sich die Korrektheit als hoch
einstufen.

Im Laufe der Evaluierung hat das Werkzeug die erwartete Funktionalität erbracht. Allerdings
ist die Ausfallsicherheit nur schwer einschätzbar, da Tulip nicht mit großen Datenmengen
getestet wurde. Es wurden auch keine speziellen Anforderungen diesbezüglich an die
Software gestellt.

Das Genauigkeit-Kriterium ist für die Software wenig relevant, da diese nur eindeutige
Resultate erzeugt znd somit eine Abweichung von der Korrektheit nicht in Frage kommt.

71



6 Evaluation von Tulip

Abbildung 6.6: Qualitätsbaum [LL10]

6.3.2 Nützlichkeit

Die Effizienz und Sparsamkeit lagen bei der Evaluierung der Software hoch. Es wurden keine
Einbuße in Rechenzeit oder im Speicherverbrauch beobachtet.

Die Leistungsvollständigkeit ist gegeben. Alle in der Spezifikation beschriebenen hochpriori-
sierten Funktionalitäten wurden umgesetzt.

6.3.3 Bedienbarkeit

Der Aspekt der Handbuchvollständigkeit ist für Tulip nicht relevant. Es wurden keine Hand-
bücher für Tulip erstellt, da die mit Screenshots versehene ausführliche Spezifikation einen
guten Überblick über die Benutzung der Software bietet.

Die hohe Konsistenz wurde durch die durchgehende Wiederverwendung der Komponenten
für die Benutzungsoberfläche sowie durch die Anwendung der Usability Patterns Warnung
und Abbruch [Röd11a] erreicht.

Die hohe Verständlichkeit wird durch die Anwendung des Usability Patterns Direkte Vali-
dierung [Röd11a] erreicht. Durch den gesamten Use-Case-Modellierungsprozess wird der
Entwickler mittels Warnungen auf falsche oder fehlende Eingaben hingewiesen.

72



6.3 Bewertung der Qualität der Software

Die Einfachkeit der Software lässt sich als hoch einschätzen, da die Bedienung intuitiv ist und
meist aus den Texteingaben in vorgefertigte Felder besteht. Allerdings sollte der Entwickler
mit der Struktur der textbasierten Use-Case-Beschreibung vertraut sein.

6.3.4 Prüfbarkeit

Die Spezifikationsvollständigkeit von Tulip ist hoch, da dies die Grundlage für die spätere
Evaluierung des Werkzeugs war. Alle funktionalen und Usability-Anforderungen an die
Software wurden vollständig mit Hilfe von Use Cases in [RB11] spezifiziert und priorisiert.

Die Lokalität der Software ist dadurch gegeben, dass diese als eine isolierte Anwendung
implementiert wurde. Der Zugriff auf systemfremde Daten erfolgt nur über die Komponente
Pattern Browser. Dabei werden die Daten lediglich ausgelesen und in keiner Weise verändert.
Somit werden die Fernwirkungen in der Software vermieden.

Die Testbarkeit von Tulip ist hoch, da jede Eingabesituation reproduzierbar ist und die damit
verbundenen visuellen Auswirkungen immer nachvollziehbar sind.

6.3.5 Änderbarkeit

Durch die Verwendung von Entwurfmustern bei der Implementierung ist die Software in
logisch abgeschlossene Einheiten gegliedert. Somit wird eine hohe Strukturiertheit erreicht.

Die Simplizität der Software ist relativ hoch, da diese nur wenige schwer verständliche
Konstruktionen enthält. Wobei für das Verständnis einiger Komponenten, wie z.B. Import-
und Export-Funktionalität, die Einarbeitung in die eingebundenen fremden Bibliotheken
notwendig ist.

Die Knappheit der Software wurde durch die Wiederverwendung einiger Komponenten und
die Vermeidung von Redundanz sichergestellt.

Um die Lesbarkeit des Codes sicherzustellen, wurde bei der Implementierung auf die Richtli-
nien für die Programmierung in Java geachtet. Es wurden stets ausdrucksstarke Bezeichner
in englischer Sprache verwendet und der Code wurde durchgehend mit Kommentaren
versehen.

6.3.6 Portabilität

Die Geräteunabhängigkeit ist durch die Verwendung der Programmiersprache Java gegeben.
Dadurch ist die Software auf jedem System lauffähig, auf dem Java Virtual Machine installiert
ist. Allerding wurde für die Darstellung der graphischen Oberfläche zwecks des besseren
Erscheinungsbilds auf die Verwendung eines auf allen Plattformen gleich aussehenden Look-
and-Feels verzichtet. Es wurde das dem systemüblichen angepasste SystemLookAndFeel

verwendet, dabei wurde die Gestaltung der Benutzungsoberfläche hauptsächlich für das
Betriebssystem Windows optimiert.

73



6 Evaluation von Tulip

In der aktuellen Implementierung von Tulip ist der Datenaustausch mit anderen Systemen
nur mittels Import- und Exportfunktionalität gegeben. Somit ist die Abgeschlossenheit der
Software garantiert.

74



7 Bewertung des Konzeptes „Usability
Patterns“

Im Rahmen dieser Arbeit wurde das Konzept der Usability Patterns bei der Entwicklung
eines Softwareproduktes eingesetzt. In diesem Kapitel wird der Einsatz des Konzeptes
„Usability Patterns“ in einzelnen Phasen des Softwareentstehungsprozesses einer Bewertung
unterzogen.

7.1 Anforderungsanalyse

Bei der Anforderungsanalyse werden Usability-Anforderungen oft vergessen oder zusammen
mit anderen nichtfunktionalen Anforderungen nur am Rande berücksichtigt. Der Usability-
Patterns-Katalog bietet eine Sammlung der strukturiert beschriebenen Anforderungen, die
die Usability der Software steigern. Dadurch, dass diese Anforderungen bereits beschrieben
und zusammengefasst sind, wird der Prozess der Erhebung von Usability-Anforderungen
deutlich vereinfacht.

Bei den Usability-Anforderungen handelt es sich meistens um so genannte weiche An-
forderungen, da sie nicht quantifiziert werden können. Weiche Anforderungen sind da-
durch gekennzeichnet, dass es einen fließenden Übergang zwischen richtig und falsch gibt
[LL10]. Solche Anforderungen sind schwer zu erheben und zu formulieren. An dieser Stelle
bietet der Usability Patterns Katalog [Röd11a] eine geeignete Grundlage, um die Usability-
Anforderungen mit dem Kunden zu diskutieren und diese dank den Schablonen aus dem
Katalog zu quantifizieren.

Auch ist es dem Kunden oft nicht bewusst, welche Usability-Merkmale die Software aufwei-
sen soll. Diese Anforderungen bleiben latent, bis der Kunde gezielt danach gefragt wird oder
bis er die fertige Software sieht. In diesem Fall kann der Katalog mit zahlreichen Beispielen
für den Einsatz jedes Patterns dazu verhelfen, die latenten Kundenwünsche zu identifizieren
und diese zu beschreiben.

Allerdings muss man sich bewusst sein, dass nicht alle Usability-Anforderungen mit Hilfe
von Usability Patterns erhoben werden können. Bei Usability Patterns handelt es sich um
Usability-Merkmale, die einen erheblichen Einfluss auf die Funktionalität der Software
haben und daher als eine Ergänzung zu den funktionalen Anforderungen formuliert werden
können. Für die Erhebung der Anforderungen bezüglich der Gestaltung der UI sollen
entsprechende Techniken, wie z.B. UI-Prototyping (vergleiche Abschnitt 2.1.2) eingesetzt
werden.

75



7 Bewertung des Konzeptes „Usability Patterns“

7.2 Spezifikation

Bei der Spezifikation der Anforderungen stehen funktionale Merkmale im Vordergrund, da
Erfüllung dieser den Nutzen der Software ausmachen. Funktionale Anforderungen lassen
sich recht präzise fassen und werden z.B. mittels Use Cases in einer semiformalen Form
festgehalten. Die nichtfunktionalen Anforderungen sind dagegen oft weich und vage und
werden in natürlicher Sprache formuliert. Usability-Merkmale, die im Grenzbereich zwischen
funktionalen und nichtfunktionalen Anforderungen liegen, werden üblicherweise zu den
nichtfunktionalen gezählt und entsprechend nicht strukturiert beschrieben.

Das Konzept der Usability Patterns hilft dabei, die Usability-Merkmale, welche die Funktio-
nalität der Software betreffen, zu identifizieren und bieten ein Modell für die Integrierung
dieser in Use Cases. Somit werden mittels Use Cases beschriebene funktionale Anforde-
rungen um dazugehörige Usability-Merkmale erweitert. Über Usability Patterns definierte
Merkmale werden strukturiert und konsistent mittels erweiterter Use-Cases beschrieben.
Dies erhöht die Qualität der Anforderungsspezifikation als Referenz für weitere Artefakte,
da diese jetzt auch quantitative Vorgaben für Usability-Anforderungen beinhaltet.

Ein Nachteil der erweiterten Spezifikation ist, dass diese mühsam zu pflegen ist. Die Erweite-
rungen erhöhen die Komplexität der Use Cases, die üblicherweise in Form von Tabellen mit
Hilfe eines Textverarbeitungsprogramms erstellt werden. Use-Case-Erweiterungen benötigen
syntaxische Validierung und Konsistenzprüfung, somit ist eine Werkzeugunterstützung für
die Erstellung einer erweiterten Use-Case-Spezifikation wünschenswert. Der Einsatz des
im Rahmen dieser Arbeit entwickelten Werkzeug Tulip für die Erstellung einer erweiterten
Use-Case-Spezifikation hat gute Ergebnisse gezeigt (vergleiche Abschnitt 6.2), allerdings
gibt es zurzeit kein Werkzeug für die Erstellung der kompletten Anforderungsspezifikation,
welches die Integration der Usability Patterns unterstützt.

7.3 Entwurf und Implementierung

Die annotierte Use-Case-Spezifikation beschreibt Usability-Anforderungen eng verzahnt
mit den Funktionalitäten, die sie betreffen. Dies versetzt den Entwickler in die Lage, die
Usability-Merkmale bereits bei der Realisierung der entsprechenden Funktionalität zu be-
rücksichtigen und nicht erst später, in der UI-Design-Phase. Dadurch wird die Anpassung
der Architektur und Datenstruktur einer Software an diese Anforderungen in frühen Phasen
des Entwicklungsprozesses sichergestellt.

Allerdings muss man beachten, dass die erweiterte Use-Case-Spezifikation nur eine Referenz
für den Entwickler darstellt, es gibt keine Techniken, die Use Cases in Bausteine eines
Softwareentwurfs umwandeln. Der Entwickler muss in einem iterativen Prozess den Entwurf
ausarbeiten und die Erfüllung der Anforderungen aus der Spezifikation überprüfen.

Bei der Implementierung erwiesen sich die detaillierten Vorgaben zu den Usability-
Merkmalen als durchaus hilfreich. Üblicherweise wird der Entwickler auf sich alleine gestellt,

76



7.4 Testphase

was die Usability der implementierten Funktionalität angeht. Im besten Fall werden allge-
meingültige Vorgaben in Form einer Richtlinie oder eines Styleguides gemacht. Die Vorgaben
für die konkrete Funktionalität müssen dann von dem Entwickler selber abgeleitet werden.
Dies kann zur Inkonsistenz im Erscheinungsbild führen, wenn z.B. mehrere Entwickler an
der Implementierung arbeiten. Mit dem Konzept der Usability Patterns wird sichergestellt,
dass die allgemeingültige globale Vorgaben eines Merkmals sowie die Vorgaben für einzelne
Funktionalitäten stets konsistent bleiben.

7.4 Testphase

In der Testphase wird die Erfüllung der an die Software gestellten Anforderungen durchge-
führt. Für weiche Anforderungen, die keine klaren Vorgaben definieren, können auch keine
aussagekräftige Testdaten erstellt werden. Dank Usability Patterns können die in Form der
Annotationen in Use Cases enthaltene Usability-Merkmale, wie im Abschnitt 5.4 beschrieben,
direkt in Testfälle für einen Systemtest überführt werden. Somit kann die Erfüllung der über
Usability-Patterns definierten Usability-Anforderungen zusammen mit anderen funktionalen
Anforderungen an die Software in einem Systemtest getestet werden.

7.5 Zusammenfassung

Die Anwendung des Konzeptes „Usability Patterns“ in einem Softwareentwicklungsprozess
bringt einige Vorteile für die Entwickler mit sich. In der Anforderungsanalysephase bietet der
Usability-Pattern-Katalog eine Unterstützung bei der Identifizierung und Abstimmung be-
stimmter Usability-Anforderungen. In der Spezifikationsphase werden diese Anforderungen
nicht mehr als nichtfunktionale behandelt, sondern strukturiert und konsistent zusammen
mit funktionalen Anforderungen beschrieben. Eine solche Anforderungsspezifikation kann
als Referenz bei der Realisierung und beim Testen der Usability-Anforderungen verwendet
werden.

Man muss allerdings beachten, dass nicht alle Usability-Anforderungen als ein Usability-
Pattern beschrieben werden können. Dieses Konzept kann nur für die Merkmale verwendet
werden, welche die Funktionalität der Software betreffen. Auch ist das Konzept noch relativ
neu und umfasst nur einige wenige Usability-Probleme, die am häufigsten auftreten. Es gibt
auch zurzeit keine ausreichende Werkzeugunterstützung für die Anwendung des Konzeptes,
wobei die Evaluation

77





8 Zusammenfassung und Ausblick

Im Rahmen dieser Arbeit wurde das Konzept der Usability Patterns an einem praktischen
Beispiel angewendet, evaluiert und verbessert. Dabei entstand ein Werkzeug, welches die
Entwickler bei der Anwendung des Konzeptes unterstützt.

Als Erstes wurde die Use-Case-Struktur um zusätzliche Elemente, so genannte Annotationen,
erweitert, welche die Spezifizierung der Usability-Merkmale ermöglichen. Eine erweiterte
Use-Case-Spezifikation beschreibt sowohl funktionale als auch mittels Usability Patterns
beschriebene Usability-Merkmale des Systems und trägt dazu bei, dass die Entwickler bei
der Erstellung des Entwurfs und des Codes auch Usability-Aspekte berücksichtigen.

Das Konzept der Usability Patterns wurde bei der Entwicklung eines Use-Case-Editors Tulip
angewendet und evaluiert. Während der Anforderungsanalyse wurden passende Usability
Patterns identifiziert, woraufhin eine Use-Case-Spezifikation für Tulip erstellt und mit den
ausgewählten Patterns erweitert wurde. Die spezifizierten Usability Patterns konnten somit
beim Entwurf und der Implementierung der Software sowie bei der Erstellung der Testdaten
berücksichtigt werden.

Im Laufe der Arbeit entstand ein Werkzeug zur Erstellung und Bearbeitung einer Use-
Case-Spezifikation mit Unterstützung für erweiterte Use Cases und Usability Patterns.
Das Werkzeug bietet eine Komponente zur Anzeige der vorhandenen Patterns aus dem
Katalog und die Funktionalität für die Übernahme dieser in die Use-Case-Spezifikation.
Desweiteren ist es möglich, Use Cases zu erstellen, die Anwendung der Usability Patterns
zu spezifizieren und Use-Case-Elemente mit den Patterns zu annotieren. Die erweiterte
Use-Case-Spezifikation kann in PDF- und RTF-Format exportiert und in andere Dokumente,
wie z.B. in die Anforderungsspezifikation, integriert werden.

Das erstellte Werkzeug Tulip wurde an einem praktischen Beispiel evaluiert, indem die
eigene Spezifikation nochmal erstellt wurde. Dabei ließ sich erkennen, dass der Prozess
der Erstellung einer erweiterten Use-Case-Spezifikation mit einer Werkzeugunterstützung
deutlich optimiert werden kann, indem die Strukturierung und die syntaktische Validierung
von dem Werkzeug übernommen werden.

Ausblick

Der im Rahmen dieser Arbeit durchgeführte Einsatz der Usability Patterns im Entwicklungs-
prozess konnte erste positive Erkenntnisse über die Brauchbarkeit und Praxistauglichkeit des

79



8 Zusammenfassung und Ausblick

Konzeptes liefern. Weitere Schritte können und sollen in mehrere Richtungen unternommen
werden.

Der aktuelle Pattern-Katalog beschreibt nur einige geläufige Usability-Merkmale. Um ein
breiteres Spektrum an Anforderungen zu unterstützen, können weitere spezifische Usability
Patterns ausgearbeitet werden. Für eine bessere Übersichtlichkeit kann eine Kategorisierung
der Patterns oder sogar die Verwendung mehrerer Pattern-Kataloge in Betracht gezogen
werden.

Die Werkzeugunterstützung durch Tulip trägt zur Optimierung des Prozesses der Erstellung
einer mit Usability Patterns erweiterten funktionalen Use-Case-Spezifikation bei. Im Rahmen
dieser Arbeit wurden die Grundfunktionen für die Verwaltung der Use Cases und Anno-
tierung dieser mit Usability Patterns realisiert. Eine Weiterentwicklung von Tulip wäre für
die Unterstützung der Entwickler bei der Anwendung des Konzeptes von Vorteil. Es sind
folgende funktionale Erweiterungen zu empfehlen:

• Erstellung von Use-Case-Diagrammen zusätzlich zu den Use-Case-Beschreibungen

• Erfassung zusätzlicher Elemente, wie z.B. nichtfunktionalen Anforderungen

• Pflege eines Glossars

• Bereitstellung der Arbeitsumgebung für mehrere Benutzer

• Anpassungsmöglichkeit der Struktur der exportierten Dokumente

• Rechtschreibprüfung

80



Literaturverzeichnis

[ABC03] S. Adolph, P. Bramble, A. Cockburn. Patterns for effective use cases. Addison-Wesley,
Boston, 2003. (Zitiert auf Seite 31)

[Cas11] Use Cases and Requirements Management - CaseComplete, 2011. URL http:

//www.casecomplete.com/. (Zitiert auf Seite 44)

[Coc07] A. Cockburn. Writing effective use cases. Addison-Wesley, Boston, 18. print. edition,
2007. (Zitiert auf den Seiten 29 und 66)

[DIN06] DIN EN ISO 9241-110: Ergonomische Gestaltung von Benutzungsschnittstellen :
Kommentar zur Grundsatznorm, 2006. (Zitiert auf Seite 19)

[GHJV04] E. Gamma, R. Helm, R. Johnson, J. M. Vlissides. Design patterns: Elements of reusable
object-oriented software. Addison-Wesley, Reading, Mass, 31. printing. edition, 2004.
(Zitiert auf den Seiten 60, 61 und 62)

[GR01] E. Gamma, D. Riehle. Entwurfsmuster: Elemente wiederverwendbarer objektorientierter
Software. Addison-Wesley, München ;, Boston [u.a.], 5., korrigierter nachdr. edition,
2001. (Zitiert auf Seite 61)

[Hec09] G. Hecke. Bachelorarbeit. Semantische Erweiterung von Glossareinträgen zur au-
tomatisierten Überprüfung der korrekten Benutzung. Leibnitz Universität Hannover,
2009. (Zitiert auf Seite 46)

[HeR11] HEuristic Requirements Assistant, 2011. URL https://trac.se.uni-hannover.

de/trac/hera/wiki. (Zitiert auf Seite 46)

[ite11a] iText r - Free / Open Source PDF Library for Java and C#, 2011. URL http:

//itextpdf.com/. (Zitiert auf Seite 63)

[ite11b] iText RTF library | Download iText RTF library software for free at SourceFor-
ge.net, 2011. URL http://sourceforge.net/projects/itextrtf/. (Zitiert auf
Seite 63)

[Jac92] I. Jacobson. Object-oriented software engineering: A use case approach. ACM Press,
Harlow, Essex, 1992. URL http://www.worldcat.org/oclc/638307356. (Zitiert
auf Seite 29)

[JMSS07] N. Juristo, A. M. Moreno, M.-I. Sanchez-Segura. Guidelines for Eliciting Usability
Functionalities. IEEE Transactions on Software Engineering, 33(11), 2007. (Zitiert auf
den Seiten 25 und 26)

81

http://www.casecomplete.com/
http://www.casecomplete.com/
https://trac.se.uni-hannover.de/trac/hera/wiki
https://trac.se.uni-hannover.de/trac/hera/wiki
http://itextpdf.com/
http://itextpdf.com/
http://sourceforge.net/projects/itextrtf/
http://www.worldcat.org/oclc/638307356


Literaturverzeichnis

[Kar90] C.-M. Karat. Cost-benefit analysis of usability engineering techniques. Proceedings of
the Human Factors Society, Orlando, Florida, 1990. (Zitiert auf Seite 19)

[LL10] J. Ludewig, H. Lichter. Software Engineering: Grundlagen, Menschen, Prozesse,
Techniken. dpunkt-Verl, 2010. (Zitiert auf den Seiten 11, 21, 25, 29, 63, 71, 72

und 75)

[RB11] H. Röder, R. Brull. Erweiterte Use-Case-Spezifikation für Tulip, 2011. (Zitiert auf
den Seiten 53, 63, 69, 71 und 73)

[RE-07] Portal für Anforderungsmanagement, 2007. URL http://re-wissen.de/Wissen/.
(Zitiert auf den Seiten 28 und 32)

[rem11] remasystem - Requirements management system - Google Project Hosting, 2011.
URL http://code.google.com/p/remasystem/. (Zitiert auf Seite 48)

[RF07] M. Richter, M. Flückiger. Usability Engineering kompakt: Benutzbare Software gezielt
entwickeln. Elsevier, München, 1 edition, 2007. (Zitiert auf Seite 20)

[Röd10] H. Röder. Using Interaction Requirements to Operationalize Usability. Proceedings
of the 25th ACM Symposium on Applied Computing, 2010. (Zitiert auf Seite 25)

[Röd11a] H. Röder. Katalog ”Usability Patterns”, 2011. (Zitiert auf den Seiten 27, 34, 43, 67,
72 und 75)

[Röd11b] H. Röder. A Pattern Approach to Specifying Usability Features in Use Cases.
Proceedings of the 2nd Int’l Workshop on Pattern-Driven Engineering of Interactive
Computing Systems, 2011. (Zitiert auf den Seiten 11, 26, 35 und 36)

[she09] SHEF - Swing HTML Editor Framework, 2009. URL http://shef.sourceforge.

net/. (Zitiert auf Seite 62)

[Som07] S. Somé. UCEd Use Cases development approach, 2007. (Zitiert auf Seite 48)

[Tul11] Tulip. Generierte erweiterte Use-Case-Spezifikation für Tulip, 2011. (Zitiert auf
Seite 69)

[UCE11] Use Case Editor, 2011. URL http://sourceforge.net/projects/uced/. (Zitiert
auf Seite 47)

[xom11] XOM - XML object model, 2011. URL http://www.xom.nu/. (Zitiert auf Seite 63)

Alle URLs wurden zuletzt am 1.08.2011 geprüft.

82

http://re-wissen.de/Wissen/
http://code.google.com/p/remasystem/
http://shef.sourceforge.net/
http://shef.sourceforge.net/
http://sourceforge.net/projects/uced/
http://www.xom.nu/


Erklärung

Hiermit versichere ich, diese Arbeit selbständig
verfasst und nur die angegebenen Quellen
benutzt zu haben.

Stuttgart, den 8. August 2011

(Ruslana Brull)


	Abbildungsverzeichnis
	Tabellenverzeichnis
	1 Einleitung
	1.1 Motivation
	1.2 Aufgabenstellung
	1.3 Aufbau der Arbeit
	1.4 Sprachliche Konvention

	2 Grundlagen
	2.1 Usability
	2.1.1 Usability-Merkmale
	2.1.2 Usability Engineering
	2.1.3 Definition der Usability-Anforderungen

	2.2 Usability Patterns
	2.2.1 Funktionale Usability-Merkmale
	2.2.2 Aufbau der Usability Patterns
	2.2.3 Usability-Pattern-Katalog
	2.2.4 Usability Patterns im Entwicklungsprozess

	2.3 Use Cases
	2.3.1 Aufbau von Use Cases
	2.3.2 Erstellung von Use Cases

	2.4 Anforderungsspezifikation im Entwicklungsprozess

	3 Konzept der Erweiterung von Use Cases
	3.1 Erstellung einer erweiterten Spezifikation
	3.1.1 Auswahl der Usability Patterns aus dem Katalog
	3.1.2 Spezifikation der Anwendung von Usability Patterns
	3.1.3 Erstellung der Annotationen

	3.2 Erweiterung der Use-Case-Struktur
	3.3 Spezifikationsschablonen in Usability Patterns
	3.4 Ergänzung von Use Cases

	4 Werkzeugunterstützung für das Konzept
	4.1 Anforderungen an das Werkzeug
	4.1.1 Verwaltung von Use Cases
	4.1.2 Anzeige der Usability Patterns im Katalog
	4.1.3 Spezifikation der Anwendung von Usability Patterns
	4.1.4 Annotierung von Use-Case-Elementen
	4.1.5 Export der annotierten Use Cases

	4.2 Evaluierung existierender Werkzeuge
	4.2.1 Case Complete 2011
	4.2.2 HeRA
	4.2.3 UCEd
	4.2.4 Remas
	4.2.5 Zusammenfassung

	4.3 Evaluierung einer Erweiterungsmöglichkeit

	5 Realisierung von Tulip
	5.1 Erstellung der Spezifikation
	5.2 Erweiterung der Spezifikation um Usability Patterns
	5.2.1 Auswahl der Patterns
	5.2.2 Spezifizierung der Anwendung der Patterns
	5.2.3 Annotierung der Use-Case-Elemente

	5.3 Entwurf und Implementierung
	5.3.1 Datenmodell
	5.3.2 Komponenten
	5.3.3 Externe Bibliotheken

	5.4 Systemtest

	6 Evaluation von Tulip
	6.1 Einsatz von Tulip
	6.1.1 Spezifizierung der Use Cases
	6.1.2 Pattern Browser
	6.1.3 Spezifizierung der Anwendung der Patterns
	6.1.4 Annotierung der Use Cases
	6.1.5 Generierung eines Reports

	6.2 Bewertung von Tulip als Spezifikationswerkzeug
	6.3 Bewertung der Qualität der Software
	6.3.1 Zuverlässigkeit
	6.3.2 Nützlichkeit
	6.3.3 Bedienbarkeit
	6.3.4 Prüfbarkeit
	6.3.5 Änderbarkeit
	6.3.6 Portabilität


	7 Bewertung des Konzeptes „Usability Patterns“
	7.1 Anforderungsanalyse
	7.2 Spezifikation
	7.3 Entwurf und Implementierung
	7.4 Testphase
	7.5 Zusammenfassung

	8 Zusammenfassung und Ausblick
	Literaturverzeichnis

