..::. o‘.. . . .
sl Institut fur Architektur von Anwendungssystemen (IAAS) M
s Cd

Universitat Stuttgart
Universitatsstralle 38
D — 70569 Stuttgart

Diplomarbeit Nr. 3138

Sprachiibergreifende Uberwachung
von Geschaftsprozessen

Eike Klenk
Studiengang: Softwaretechnik
Prufer: Prof. Dr. Frank Leymann
Betreuer: Dipl.-Inf. David Schumm
begonnen am: 02.02.2011
beendet am: 04.08.2011

CR-Klassifikation: C.2.4,D.2.2,H.4.1,H.5.2,H.5.3

Inhaltsverzeichnis

T =11 41 U= 0] RSO 3
11 MOTIVATION ...ttt 3
1.2 Abgrenzung des ThEMASuuuuiiiiiiiiiiiiiiii e 3
1.3 AUTGabeENnSIEIIUNGooviii e 3
T4 AUTDAUL .. 4

2 Beispiele fiir BPEL und BPIMN ... e r s s s s e s s s s e e 5
2 T = = PRSP 6
2.2 BPIMN ..t e et e ettt e e e et et e e e neeeean 12
2.3 Beispiel der ProjeKtion.........ccouuiiiiiiii e 13

B TN €1 1T T [=T =1 o SOOI PPRRRPOt 14
3.1 DEfiNHIONEN .. 14
K0 = 1 PSPPI 15
3.3 Konstrukte in BPELoooiiiiiieeeeeeeeeeeeeeee e 15
34 BPIMN 2.0 ittt e et et e e e e et et e e e e nnaeaeeeanaeeas 30
3.5 Konstrukte in BPMNoooiiiiiiiiiiiiiiiiiieeeeeeeeee e 30

4 Abbildungen von BPEL zu BPMN ... 40
4.1 Transformation zwischen den Sprachen............ccccooiiiiiiiiiiiiii e 40
4.2 Probleme nach der Transformation ..o 46

5 Beschreibung einer Projektion.......... i 47
STt A §] = | o L= PSPPSR PP PPPPPPPPPPI 47
5.2 Muster zur ZustandsUbertragung............cueueiiiiiiiiiiiiiiiiiiiiiiieeieeeeeeeeeeeee e 51
5.3 BPEL und BPMN Erweiterungenccoooeeiiiiiiiiiiie e e e e e eeeeeees 52
5.4 Zustandsubertragungen von BPEL nach BPMN. ..., 55
5.5 Ablauf einer Projektion ... 67
5.6 Anpassungen an der Mappings-Datei ... 76
5.7 Mapping der ZUSIANAEiii i 77

6 Zusammenfassung und AusbliCK..........ccciiiiiiii 78

LiteraturverzeiChnisuueeeeeiiiiiiiieieeeeeeee et 79

AbbildungsVverzeiChnis ... 81

[IESS] Yo T3 = =TT o2 3T 83

TabellenVverzeiChnis ... ———— 85

1 Einleitung

1.1 Motivation

In der heutigen Zeit sind Geschaftsprozesse wichtige Bestandsteile der Unternehmensfuh-
rung. Damit kdnnen ganze Geschéftsbereiche oder nur Unterbereiche, inklusive aller Um-
welteinflisse und Abhangigkeiten, modelliert werden. Das erleichtert die Planung und die
Organisation des Unternehmens und gibt Ruckschlisse auf etwaige Verbesserungsmaoglich-
keiten. In der Praxis ist die Business Process Execution Language, kurz BPEL [1], ein Stan-
dard um Geschaftsprozesse zu modellieren, auszufiihren und anschlieRend zu Uberwachen.
BPEL ist sehr technisch gehalten und daher fir Manager oder Geschaftsfuhrer oft schwer zu
lesen und zu verstehen. Fur diese Anwendergruppen ist eine weniger technische, visuell
modellierbare, Sprache zur Erstellung und Uberwachung von Geschéaftsprozessen geeigne-
ter.

Die Uberwachung von Geschéftsmodellen wird ein immer wichtigerer Aspekt in der Unter-
nehmensflihrung. Da die erstellten Geschaftsmodelle haufig Uber Details verfigen, die nicht
fur jeden Betrachter von Interesse sind, geht die Entwicklung in Richtung von Werkzeugen,
mit denen es moglich ist, die Komplexitat zu verringern oder uninteressante Details flir den
aktuellen Betrachter auszublenden. Der aktuelle Stand ist, dass Geschaftsprozesse in der
Sprache (iberwacht werden, in denen sie erstellt wurden. Die Uberwachung eines Ge-
schaftsprozesses in einer anderen, vielleicht flr den Betrachter verstandlicheren, Sprache,
soll in Zukunft auch mdglich sein. Es gibt zwar viele Ansatze um verschiedene Sprachen
aufeinander abzubilden, aber es gibt bisher nur wenige um den aktuellen Ablauf zu projizie-
ren.

In [2] wurde der Business Process lllustrator, kurz BPI [3], konzipiert und entwickelt. Dabei
handelt es sich um ein Werkzeug zur Uberwachung von Geschéaftsprozessen, die mit BPEL
erstellt wurden. Mit dem Werkzeug kann ein Graph eines Prozessmodells, der mit Statusin-
formationen der Prozessinstanz erweitert wurde, Uberwacht werden. Zudem ist es mdoglich
den Detailgrad der Ansicht auf den Geschaftsprozess zu variieren. In der weiteren Entwick-
lung des BPI soll es mdglich sein einen Geschaftsprozess in einer anderen Prozessmodellie-
rungssprache zu Uberwachen, als mit der Sprache, mit der der Geschaftsprozess ausgefihrt
wird. Als Vorbereitung fur diese Erweiterung wird in dieser Arbeit ein Konzept erstellt, das es
ermdglicht, die Zustdnde aus BPEL nach BPMN zu Ubertragen. Hierflr wird beschrieben, wie
aus der BPEL-Datei eine BPMN-Datei generiert wird und anschliefend, die Zustande mit
zuvor definierten Regeln Ubertragen werden.

1.2 Abgrenzung des Themas

Die Vielfalt an Sprachen macht das Thema sehr machtig. Um das Thema einzugrenzen wer-
den in dieser Arbeit die beiden Sprachen BPEL und BPMN, Business Process Model and
Notation [4], betrachtet. Das heilt es soll eine Uberwachung eines Geschéftsprozesses mit
BPMN erméglicht werden, wahrend der Geschéaftsprozess selbst mit BPEL ausgefihrt wird.

1.3 Aufgabenstellung

Ein Geschaftsprozess, der mit BPEL erstellt wurde und ausgefihrt wird, soll als BPMN Pro-
zess uUberwacht werden. In dieser Arbeit sollen Konzepte erstellt werden, um die Projektion

des Ausflhrungszustands von BPEL nach BPMN darzustellen. Weiter sollen Techniken zur
Ubertragung von BPEL Variablen zu BPMN Informationen spezifiziert werden.

1.4 Aufbau

In Kapitel 2 werden Beispiele zur Verbesserung des Verstandnisses des Lesers vorgestellt.
In Kapitel 3 folgen die Grundlagen der Arbeit. Hier werden die beiden Sprachen BPEL und
BPMN vorgestellt und deren Konstrukte erldutert. In Kapitel 4 ist die Transformation von
BPEL zu BPMN das Thema. Die Abbildungen aller BPEL Aktivitaten in BPMN werden eror-
tert und durch Beispiele gestitzt. Die Projektion der Zustande wird in Kapitel 5 behandelt.
Zuerst wird der theoretische Ansatz zur Projektion beschrieben, gefolgt von der Definition der
Zustandsraume fur den Prozess und die Aktivitaten. Zusatzlich werden die bendtigten XML-
Erweiterungen fir BPEL und BPMN, sowie die Generierung einer unterstiitzenden Map-
pings-Datei beschrieben. Die Erlauterung der Probleme bei der Projektion der Zustande
schliel3t das Kapitel ab. Abgeschlossen wird die Arbeit von der Zusammenfassung der Er-
kenntnisse und einem Ausblick fur die Zukunft.

2 Beispiele fur BPEL und BPMN

Als Einfihrung und zur Férderung des Verstandnisses beginnt diese Arbeit mit einem An-
wendungsbeispiel. Dargestellt wird eine Produktanfrage in einem Onlineshop. Dabei wird
eine Anfrage empfangen und die Verfigbarkeit des Produkts abgefragt. Anschlielend wer-
den je nach Verflgbarkeit verschiedene Aktivitaten ausgeflihrt. Ist das Produkt verflgbar,
werden keine weiteren Aktivitdten ausgefuhrt. Ist das Produkt nicht verfligbar, wird Gberprift,
ob es nachbestellt werden kann und ist dies der Fall, werden alle Lieferangebote erfasst und
ausgewertet. Kann das Produkt nicht nachbestellt werden, wird nach ahnlichen Produkten
gesucht und anschlielend werden die Ergebnisse der Suche zusammengefasst. Abge-
schlossen wird der Prozess, indem ein Produktangebot als Antwort zurlickgegeben wird. In
Abbildung 1 wird der BPEL-Prozess graphisch mit Hilfe des BPEL Designer [5] dargestellt
und in Listing 1 ist der passende, schon mit Zustdnden erweiterte, BPEL-Code zu sehen. In
Abbildung 2 ist das Beispiel in BPMN dargestellt, ebenfalls bereits zustandsbehaftet. Um die
Lesbarkeit zu gewahrleisten wird in dem Beispiel nur die Variable Product als Data Object
mit zwei Message Flow Verbindungen abgebildet. In Abbildung 3 ist die BPEL zu BPMN Zu-
ordnungen graphisch dargestellt. Die roten Pfeile kennzeichnen die Zuordnungen der Zu-
stédnde der BPEL Aktivitdten zu ihren Darstellungen in BPMN.

Um die bereits zustandsbehafteten Diagramme verstehen zu konnen, ist in Tabelle 1 eine
Legende der Zustande angegeben.

Name Symbol

Inactive

Ready ®

Skipped

Executing

Completed

Iteration Completed

Compensated

Faulted

RUSPRAN|Y

Terminated

Tabelle 1: Legende der Zustande

2.1 BPEL

=t &
Catch All
£ Sequence
=
& Exit
=]
£ main
receiveProductRequest
q
W= "= 1
& checkAvailability
| @ productfailable |
=
[Productfvailable ElceIf Elce
D Empty Sequence Sequence
q q
= =
& checkRearder & While
=]
=
= raveReorderOffers & flndSlmlIarProdudﬁ &
| &% ForBach | & cancelSearch

=
=

=]

{8 sequence | I
= © Wait
@] receiveOffer (& summarizeResults

=]
! !

[& checkDelivenyDate | (& checkprice |
L
= assignOffer
=
-
=
=]
+
<§> evaluateResults
¥
=]
=]
-
& productQffering
¥
=

Abbildung 1: Graphisch dargestellter BPEL-Prozess

Der <process> ist das Hauptkonstrukt eines BPEL Prozesses. Innerhalb des <process>
Konstrukts werden globale Einstellungen fir den BPEL Prozess vorgenommen. Dazu zahlen
<extensions>, <import>s, <partnerLinks>, <variables>, <correlationSets>, <message-
Exchanges>, <eventHandlers> und <faultHandlers>. Im <process> Konstrukt darf nur eine
Aktivitat enthalten sein. In diesem Fall ist das eine <sequence>. Weiterflihrende Informatio-
nen zu BPEL folgen in Kapitel 3.

<bpel:process name="Beispiel"
targetNamespace="http://sample.bpel.org/bpel/sample"
suppressJoinFailure="yes"
xmlns:tns="http://sample.bpel.org/bpel/sample"
xmlns:bpel=
"http://docs.oasis-open.org/wsbpel/2.0/process/executable"
executableProcessProfile=

"http://docs.ocasis-open.org/wsbpel/2.0/process/executable
/simple-template/2006/08">
<ext:processState>Executing</ext:processState>
<bpel:import location="Beispiel.wsdl"
namespace=http://sample.bpel.org/bpel/sample
importType="http://schemas.xmlsoap.org/wsdl/" />
<bpel:variables>
<bpel:variable name="product" messageType="tns:productType">
<ext:activityId>variable 1</ext:activityId>
<ext:variableValue></ext:variableValue>
</bpel:variable>
<bpel:variable name="availabilityInfo"
messageType="tns:availabilityType">
<ext:activityId>variable 2</ext:activityId>
<ext:variableValue></ext:variableValue>
</bpel:variable>
<bpel:variable name="productOffers" messageType="tns:productType">
<ext:activityId>variable 3</ext:activityId>
<ext:variableValue></ext:variableValue>
</bpel:variable>
<bpel:variable name="productOffer" messageType="tns:productType">
<ext:activityId>variable 4</ext:activityId>
<ext:variableValue></ext:variableValue>
</bpel:variable>
<bpel:variable name="productDeliveryDate" messageType="tns:date">
<ext:activityId>variable 5</ext:activityId>
<ext:variableValue></ext:variableValue>
</bpel:variable>
<bpel:variable name="productPrice" messageType="tns:float">
<ext:activityId>variable 6</ext:activityId>
<ext:variableValue></ext:variableValue>
</bpel:variable>
<bpel:variable name="evaluatedProductOffers"
messageType="tns:productArrayType">
<ext:activityId>variable 7</ext:activityId>
<ext:variableValue></ext:variableValue>
</bpel:variable>
<bpel:variable name="similarProductRequest"
messageType="tns:productType">
<ext:activityId>variable 8</ext:activityId>
<ext:variableValue></ext:variableValue>
</bpel:variable>
</bpel:variables>
<bpel:faultHandlers>
<ext:activityId>faulthandlers 1</ext:activityId>
<ext:activityState>Ready</ext:activityState>
<ext:projectionType>Casual</ext:projectionType>
<bpel:catchAll>
<ext:activityId>catchall 1</ext:activityId>
<bpel:sequence>
<ext:activityId>sequence 1</ext:activityId>
<bpel:compensate>
<ext:activityId>compensate 1</ext:activityId>
<ext:activityState>Inactive</ext:activityState>
<ext:projectionType>Casual</ext:projectionType>
</bpel:compensate>
<bpel:exit name="Exit">
<ext:activityId>exit 1</ext:activityId>
<ext:activityState>Inactive</ext:activityState>
<ext:projectionType>Casual</ext:projectionType>
</bpel:exit>
</bpel:sequence>

http://sample.bpel.org/bpel/sample

</bpel:catchAll>
</bpel:faultHandlers>
<bpel:sequence name="main">
<ext:activityId>sequence 2</ext:activityId>
<bpel:receive name="receiveProductRequest" variable="product"
createInstance="yes" operation="sendProductRequest">
<ext:activityId>receive 1</ext:activityId>
<ext:activityState>Completed</ext:activityState>
<ext:projectionType>Casual</ext:projectionType>
</bpel:receive>
<bpel:invoke name="checkAvailability" inputVariable="product"
outputVariable="availabilityInfo"
operation="requestAvailability">
<ext:activityId>invoke 1</ext:activityId>
<ext:activityState>Completed</ext:activityState>
<ext:projectionType>Casual</ext:projectionType>
</bpel:invoke>
<bpel:if name="ProductAvailable">
<ext:activityId>if 1</ext:activityId>
<ext:activityState>Executing</ext:activityState>
<ext:projectionType>Casual</ext:projectionType>
<bpel:condition>
bpel:getVariableProperty('availabilityInfo',
'inventory:level') > 0
</bpel:condition>
<bpel:sequence>
<ext:activityId>sequence 3</ext:activityId>
<bpel:empty name="Empty">
<ext:activityId>empty 1</ext:activityId>
<ext:activityState>Skipped</ext:activityState>
<ext:projectionType>Casual</ext:projectionType>
</bpel:empty>
</bpel:sequence>
<bpel:elseif>
<ext:activityId>elseif 1</ext:activityId>
<bpel:condition>
bpel:getVariableProperty('availabilityInfo',
'product:inProduction') > 0
</bpel:condition>
<bpel:sequence>
<ext:activityId>sequence 4</ext:activityId>
<bpel:invoke name="checkReorder"
inputVariable="product" outputVariable="productOffers"
operation="getProductOffers">
<ext:activityId>invoke 2</ext:activityId>
<ext:activityState>Completed</ext:activityState>
<ext:projectionType>Casual</ext:projectionType>
</bpel:invoke>
<bpel:assign validate="no" name="saveReorderOffers">
<ext:activityId>assign 1</ext:activityId>
<ext:activityState>Completed</ext:activityState>
<bpel:copy>
<ext:activityId>copy 1</ext:activityId>
<ext:activityState>Completed</ext:activityState>
<bpel:from>$productOffers</bpel:from>
<bpel:to>S$product.reorderOffers</bpel:to>
</bpel:copy>
</bpel:assign>
<bpel:forEach parallel="no" counterName="Counter"
name="ForEach">
<bpel:startCounterValue>1</bpel:startCounterValue>
<bpel:finalCounterValue>

SproductOffers.count
</bpel:finalCounterValue>
<ext:activityId>forEach 1</ext:activityId>
<ext:activityState>Executing</ext:activityState>
<ext:projectionType>Loop</ext:projectionType>
<bpel:scope>
<ext:activityId>scope 1</ext:activityId>
<bpel:sequence>
<ext:activityId>sequence 5</ext:activityId>
<bpel:flow name="Flow">
<ext:activityId>flow 1</ext:activityId>
<ext:activityState>Executing</ext:activityState>
<ext:projectionType>Casual</ext:projectionType>
<bpel:receive name="receiveOffer"
variable="productOffer" operation="offerRequest">
<ext:activityId>receive 2</ext:activityId>
<ext:activityState>Completed</ext:activityState>
<ext:projectionType>Casual</ext:projectionType>
<bpel:sources>
<bpel:source linkName="1linkl"></bpel:source>
<bpel:source linkName="1ink2"></bpel:source>
</bpel:sources>
</bpel:receive>
<bpel:invoke name="checkDeliveryDate"
inputVariable="product"
outputVariable="productDeliveryDate"
operation="getDeliveryDate">
<ext:activityId>invoke 3</ext:activityId>
<ext:activityState>Executing</ext:activityState>
<ext:projectionType>Casual</ext:projectionType>
<bpel:targets>
<bpel:target linkName="1linkl"></bpel:target>
</bpel:targets>
<bpel:sources>
<bpel:source linkName="1ink3"></bpel:source>
</bpel:sources>
</bpel:invoke>
<bpel:assign validate="no" name="assignOffer">
<ext:activityId>assign 2</ext:activityId>
<ext:activityState>Inactive</ext:activityState>
<ext:projectionType>Casual</ext:projectionType>
<bpel:copy>
<ext:activityId>copy 2</ext:activityId>
<bpel:from>$productDeliveryDate</bpel:from>
<bpel:to>S$product.deliveryDate</bpel:to>
</bpel:copy>
<bpel:copy>
<ext:activityId>copy 3</ext:activityId>
<bpel:from>$productPrice</bpel:from>
<bpel:to>S$product.price</bpel:to>
</bpel:copy>
<bpel:targets>
<bpel:target linkName="1ink3"></bpel:target>
<bpel:target linkName="1link4"></bpel:target>
</bpel:targets>
</bpel:assign>
<bpel:invoke name="checkPrice" inputVariable="product"
outputVariable="productPrice" operation="getPrice">
<ext:activityId>invoke 4</ext:activityId>
<ext:activityState>Ready</ext:activityState>
<ext:projectionType>Casual</ext:projectionType>
<bpel:targets>

<bpel:target linkName="1ink2"></bpel
</bpel:targets>
<bpel:sources>
<bpel:source linkName="1ink4"></bpel
</bpel:sources>
</bpel:invoke>
<bpel:links>
<pbpel:link name="1linkl1"></bpel:link>
<bpel:link name="1ink2"></bpel:link>
<bpel:link name="1ink3"></bpel:1link>
<bpel:link name="1ink4"></bpel:1link>
</bpel:links>
</bpel:flow>
</bpel:sequence>
</bpel:scope>
</bpel:forEach>
<bpel:invoke name="evaluateResults"
inputVariable="productOffers"
outputVariable="evaluatedProductOffers"
operation="evaluateResults">
<ext:activityId>invoke 5</ext:activityId>
<ext:activityState>Inactive</ext:activityState>
<ext:projectionType>Casual</ext:projectionType>
</bpel:invoke>
</bpel :sequence>
</bpel:elseif>
<bpel:else>
<ext:activityId>else 1</ext:activityId>
<bpel:sequence>
<ext:activityId>sequence 6</ext:activityId>
<bpel:while name="While">
<ext:activityId>while 1</ext:activityId>
<ext:activityState>Skipped</ext:activityState>
<ext:projectionType>Loop</ext:projectionType>
<ext:iterationCount>0</ext:iterationCount>
<bpel:condition>
SsimilarProductRequest ≠ nil
</bpel:condition>
<bpel:invoke name="findSimilarProduct"
inputVariable="product"
outputVariable="similarProductRequest"
operation="findSimilarProduct">
<ext:activityId>invoke 6</ext:activityId>

ctarget>

:source>

<ext:activityState>Skipped</ext:activityState>

<ext:projectionType>Casual</ext:projectionType>

<bpel:compensationHandler>
<ext:activityId>compensationHandler 1</ext:activityId>
<ext:activityState>Skipped</ext:activityState>
<ext:projectionType>Casual</ext:projectionType>

<bpel:invoke name="cancelSearch"
operation="cancelProductSearch">
</bpel:invoke>
</bpel :compensationHandler>
</bpel:invoke>
</bpel:while>
<bpel:wait name="Wait">
<ext:activityId>wait 1</ext:activityId>
<ext:activityState>Skipped</ext:activityState>
<ext:projectionType>Casual</ext:projectionType>
<bpel:for>PT10M</bpel:for>
</bpel:wait>
<bpel:invoke name="summarizeResults">

10

<ext:activityId>invoke 7</ext:activityId>
<ext:activityState>Skipped</ext:activityState>
<ext:projectionType>Casual</ext:projectionType>
</bpel:invoke>
</bpel :sequence>
</bpel:else>
</bpel:if>
<bpel:reply name="productOffering" operation="productRequest"
variable="productOffers">
<ext:activityId>reply 1</ext:activityId>
<ext:activityState>Inactive</ext:activityState>
<ext:projectionType>Casual</ext:projectionType>
</bpel:reply>
</bpel:sequence>
</bpel:process>

Listing 1: BPEL-Code fur das Produktanfrage Beispiel

11

2.2 BPMN

receiveProduct
Request

Product

R > checkAvailability

®
fan)

A

checkReorder

.

-

checkDelivery
Date

checkPrice

k4>| assignOffer

p

]

Y

Y

Product

R 1 B,

{ findSimilar

I &

y
Summarize
Results

.

R—
o
<

Yy

ProductOffering

1
®

|

12

Abbildung 2: Das Produktanfrage Beispiel in BPMN

ﬁxw\

i - .| receiveProduct
G . Request
[catchan | :

_ T Sequence |
= 2 2

“.--r- > checkAvailability

[4 Compensate —

(@ et |

S

>V
findSimilar
T - empty ~——m| checkReorder - - Product
_ L
h 4
>
- /X

v

* an__.ﬂSE,_mEn

| Productévailable I Elself | Else l

E [= Sequence] = Sequence ;

i 3

o
& checkReorder @ while | \A recaiveCffer
e | —

|5 ﬂmmn; & findSimilarProduct = 7
! LA 2 Y ®

: = J

s
—_—
Resuls

checkDelivery checkPrice

@ wait | Date

““““ — & summarizeResults |- _,’ assignOffer i
, ai‘g_ﬁsm\., @
it / 2N :

[& checkDeliveryDate | (& checkPrice |

| +r
] ¢

,m assignOffer \\V‘

.\rﬁ_a_i%mm____m

[
X
N g
8— /<\
Legende
@ | 'T.SE_OE_,_&
Kontrollfluss

J
-

Projektion
>

2.3 Beispiel der Projektion

H
®

13

-T2 -

@i

Abbildung 3: Die BPEL zu BPMN Zuordnungen fur das Beispiel

3 Grundlagen

Die fachlichen Grundlagen, die fur diese Arbeit relevant sind, werden im Folgenden naher
beschrieben. Eine kurze Einfiihrung in BPEL soll dem Leser einen Einblick in den Aufbau
und die Verwendung der Sprache geben. Um eine Grundlage fir die weitere Arbeit zu
schaffen, werden die wichtigsten Sprachkonstrukte aus BPEL naher erlautert. Darauf folgt
dann eine Einfihrung in BPMN, sowie eine Erlduterung der, flr diese Arbeit relevanten,
Sprachkonstrukte aus BPMN [4]. Die Erlauterungen der Sprachkonstrukte beider Sprachen
dienen zur Veranschaulichung und zur Einflihrung in das Thema und stellen keinen Ersatz
der Spezifikationen dar. Da die Spezifikationen nur auf Englisch verfligbar sind, werden zur
Unterstltzung des Verstandnisses der Leser die Beschreibungen auf Deutsch formuliert.
Dabei werden die Informationen aus den Spezifikationen eingegrenzt. Fir weiterfiUhrende
Informationen wird auf die Spezifikationen verwiesen.

3.1 Definitionen

3.1.1 Projektion

Eine Projektion ist die Ubertragung des Zustandes einer Aktivitat in BPEL auf ein Konstrukt
in BPMN.

3.1.2 Soundness
Die Soundness einer Projektion wird durch folgende Regeln bestimmt:
1. die Projektion muss surjektiv sein. Es muss also gelten:
X Elemente im BPEL Model
Y Elemente im BPMN Model
f() Zustandszusammenfuhrungsfunktion
Fir alle Elemente in Y muss es mindestens ein Element in X geben, fur das gilt f(x) = y.
2. die Projektion muss gewisse Konsistenzregeln einhalten:

(1) Eine Aktivitat kann nur den Zustand Executing haben, wenn die vorherige Aktivitat im
Zustand Completed ist.

(2) Ist eine Aktivitéat im Zustand Compensated oder Faulted, dann darf dieser Zustand
nicht mehr geandert werden.

(3) Gateways bleiben im Zustand Executing solange nicht alle Aktivitaten zwischen den
beiden zusammengehdrenden Gateways im Zustand Completed sind.

(4) Alle Aktivitdten auf einem toten Pfad werden automatisch in den Zustand Skipped
gesetzt.

(5) Eine Aktivitat mit mehreren Vorgangern kann erst ausgefiihrt werden, wenn alle Vor-
ganger im Zustand Completed sind.

(6) Der Zustand von Schleifen wird aus den Zustanden aller enthaltenen Aktivitaten be-
rechnet und wird erst auf Completed gesetzt, wenn alle enthaltenen Zustande Com-
pleted sind.

(7) Fir jede Aktivitat muss es die Moglichkeit geben ausgefihrt zu werden.
14

3.1.3 Volistandigkeit

Vollstandigkeit wird erreicht, wenn es fir jede Projektion eine Zustandsuberfiihrungsregel
gibt.

3.2 BPEL

BPEL ist eine XML-basierte Sprache zur Beschreibung von Ablaufen aus technischer Sicht.
Mit BPEL kénnen Dienste, welche tUber Web Services angeboten werden, innerhalb eines
Geschaftsprozesses orchestriert werden. Unter Orchestrierung versteht man die Anordnung
von unterschiedlichen Web Services in einem ausfiihrbaren Geschaftsprozess. Im Bereich
der Orchestrierung von Web Services ist BPEL der de-facto Standard. Fur die Modellierung
von automatisierten Geschaftsprozessen stehen in BPEL standardisierte Sprachkonstrukte
zur Verfugung. Diese Sprachkonstrukte sind uUber ein XML-Schema definiert. Die aktuelle
Version ist BPEL 2.0 [1]. Es gibt zudem Erweiterungen von BPEL, wie zum Beispiel
BPEL4People [6], das die Integration von Personen im Geschaftsprozess erlaubt.

Die Tatsache, dass es keine standardisierte, visuelle Notation gibt, ist ein viel diskutiertes
Problem von BPEL. Im Moment stellt jeder Hersteller eines BPEL Frameworks eine eigene
Notation zur Verflgung. [7] zeigt, dass in der Praxis zur visuellen Modellierung haufig BPMN
[4] verwendet und das BPMN-Model dann durch eine Transformation in ein BPEL-Model
umgewandelt wird. Auf BPMN wird in Kapitel 3.4 naher eingegangen.

Da es bereits verschiedene Quellen zu der Entstehungsgeschichte von BPEL oder zur Ziel-
setzung der Sprache gibt, wird in dieser Arbeit nicht ndher auf diese Themen eingegangen.
Fiur weiterfihrende Informationen zur Entstehungsgeschichte wird an dieser Stelle auf [8]
und [9] und zur Zielsetzung auf [10] verwiesen.

Ein Beispiel fur den allgemeinen Aufbau eines BPEL-Modells wurde in Kapitel 2 gegeben
und dieses Beispiel wird im nachsten Unterkapitel weiter verwendet um die einzelnen Kon-
strukte naher zu beschreiben.

3.3 Konstrukte in BPEL

In diesem Unterkapitel werden die in der BPEL-Spezifikation beschriebenen Konstrukte er-
lautert und durch Beispiele veranschaulicht. Die Arbeit orientiert sich bei der Unterteilung der
Konstrukte an der BPEL2.0-Spezifikation. Basis Aktivitaten, Strukturierte Aktivitaten, Scopes,
Variablen und andere Konstrukte werden im Folgenden beschrieben und erlautert. Zu jedem
Konstrukt werden eine kurze Beschreibung und soweit moglich ein Teilbeispiel aus dem gro-
Ren Beispiel in Kapitel 2 angegeben.

3.3.1 Basis Aktivitiaten

3.3.1.1 <assign>

Die <assign> Aktivitat wird zum einen verwendet um Variablen Werte zuzuweisen und zum
anderen um neue Daten via Ausdrucken zu konstruieren und einzufligen. Ein <assign> Kon-
strukt kann zwischen einer und beliebig vielen Zuweisungen enthalten. Jede Zuweisung wird
dabei als einzelnes <copy> Element beschrieben. Wahrend der Ausfiihrung werden entwe-
der alle oder keine der Zuweisungen ausgefihrt.

15

In Listing 2 ist ein <assign> Beispiel mit einem einzelnen <copy> Element aus dem Beispiel
aus Kapitel 2 zu sehen.

<bpel:assign validate="no" name="saveReorderOffers">
<bpel:copy>
<bpel:from>$productOffers</bpel:from>
<bpel:to>S$Sproduct.reorderOffers</bpel:to>
</bpel:copy>
</bpel:assign>

Listing 2: <assign>

3.3.1.2 <empty>

Die <empty> Aktivitat ist eine leere Aktivitat, die keine auszufihrende Funktion hat. Ein An-
wendungsbeispiel ist die Fehlerbehandlung bei der ein Fehler abgefangen und unterdrickt
werden muss. Des Weiteren kann die <empty> Aktivitat einen Synchronisationspunkt in ei-
nem <flow> darstellen.

Ein Beispiel fir eine <empty> Aktivitat aus dem Beispiel in Kapitel 2 ist in Listing 3 zu sehen.

<bpel:empty name="Empty">
</bpel :empty>

Listing 3: <empty>

3.3.1.3 <exit>

Zum sofortigen Beenden einer BPEL-Prozessinstanz wird die <exit> Aktivitat verwendet. Alle
laufenden Aktivititen missen sofort beendet werden, ohne <terminationHandler>, <fault-
Handler> oder <compensationHandler> zu beachten.

Listing 4 zeigt ein Beispiel fur die <exit> Aktivitat aus dem grof3en Beispiel in Kapitel 2.

<bpel:exit name="Exit">
</bpel:exit>

Listing 4: <exit>

3.3.1.4 <invoke>

Zum Aufrufen von Web Services, die von Service Providern angeboten werden, wird die <in-
voke> Aktivitat verwendet. Die Aktivitat kann synchron, das bedeutet es wird auf die Antwort
gewartet bevor die Ausfuhrung weitergeht, oder asynchron, es wird ohne auf die Antwort zu
warten weiter ausgefiihrt, aufgerufen werden. Innerhalb einer <invoke> Aktivitat kénnen
Elemente zur Fehlerbehandlung oder zur Kompensation definiert werden, ohne dass ein
<scope> verwendet werden muss.

In Listing 5 und 6 folgen zwei Beispiele fur die <invoke> Aktivitdt. Das erste Beispiel zeigt
einen kurzen Aufruf per <invoke>, im zweiten Beispiel wird zusatzlich ein Element zur Kom-
pensation, ein <compensationHandler>, verwendet.

<bpel:invoke name="checkAvailability" inputVariable="product"
outputVariable="availabilityInfo"
operation="requestAvailability">

</bpel:invoke>

Listing 5: <invoke> ohne <compensationHandler>

16

<bpel:invoke name="findSimilarProduct"
inputVariable="product"
outputVariable="similarProductRequest"
operation="findSimilarProduct">
<bpel:compensationHandler>
<bpel:invoke name="cancelSearch"
operation="cancelProductSearch">
</bpel:invoke>
</bpel:compensationHandler>
</bpel:invoke>

Listing 6: <invoke> mit <compensationHandler>

3.3.1.5 <receive>

Mit der <receive> Aktivitat wird auf eine bestimmte Nachricht gewartet. Ist das Attribut crea-
telnstance auf den Wert yes gesetzt, dann wird mit dieser <receive> Aktivitat ein BPEL-
Prozess gestartet.

In Listing 7 ist ein Beispiel flr die <receive> Aktivitat zu sehen.

<bpel:receive name="receiveProductRequest" variable="product"
createInstance="yes" operation="sendProductRequest">
</bpel:receive>

Listing 7: <receive>

3.3.1.6 <reply>

Um in einer Request-Response Interaktion auf eine Anfrage durch <receive>, <pick> oder
<extensionActivity> zu antworten wird die <reply> Aktivitat verwendet.

In Listing 8 ist eine <reply> Aktivitat aus dem Beispiel in Kapitel 2 zu sehen.

<bpel:reply name="productOffering" operation="productRequest"
variable="productOffers">
</bpel:reply>

Listing 8: <reply>

3.3.1.7 <rethrow>

Mit der <rethrow> Aktivitat kann ein aktiver <faultHandler> einen Fehler an den Ubergeordne-
ten <faultHandler> weiterreichen.

Im Beispiel aus der BPEL-Spezifikation [1, S.132] leitet die <rethrow> Aktivitat alle Fehler an
den ubergeordneten <faultHandler> weiter.

<catchAll>
<sequence>
<compensate />
<rethrow />
</sequence>
</catchAll>

Listing 9: <rethrow>

17

3.3.1.8 <throw>

Wenn ein Geschaftsprozess explizit einen internen Fehler signalisieren muss, wird die
<throw> Aktivitat verwendet. Jeder Fehler muss mit einem QName identifizierbar sein. Opti-
onal kénnen weitere Informationen Uber den Fehler an die <faultHandlers> weitergegeben
werden, um Fehlermeldungen an andere Services zu erstellen.

In Listing 10 folgt ein einfaches Beispiel flr eine <throw> Aktivitat, die keine Fehlerdaten wei-
tergibt [1, S. 95].

<throw xmlns:FLT="http://example.com/faults"
faultName="FLT:0utOfStock"™ />

Listing 10: <throw>

3.3.1.9 <wait>

Mit der <wait> Aktivitat kann entweder fUr eine bestimmte Zeitdauer, mit <for>, oder auf ei-
nen bestimmten Zeitpunkt, mit <until>, gewartet werden.

Listing 11 zeigt eine <wait> Aktivitdt aus dem Beispiel in Kapitel 2 bei dem 10 Minuten ge-
wartet wird.

<bpel:wait name="Wait">
<bpel:for>PT10M</bpel:for>
</bpel:wait>

Listing 11: <wait>
3.3.2 Strukturierte Aktivitaten

3.3.21 <flow>

Mit Hilfe der <flow> Aktivitdt kbnnen parallele Ablaufe modelliert werden. Die <flow> Aktivitat
ist erst beendet, wenn alle Aktivitaten im <flow> beendet sind. Durch <link>, <transitionCon-
dition>, <joinCondition> und Dead-Path-Eliminierung kann das Verhalten innerhalb der
<flow> Aktivitat beeinflusst werden.

In Listing 12 ist eine <flow> Aktivitat mit vier internen Aktivitaten aus dem Beispiel in Kapitel
2 zu sehen.

<bpel:flow name="Flow">
<bpel:receive name="receiveOffer"
variable="productOffer" operation="offerRequest">
<bpel:sources>
<bpel:source linkName="1inkl"></bpel:source>
<bpel:source linkName="1ink2"></bpel:source>
</bpel:sources>
</bpel:receive>
<bpel:invoke name="checkDeliveryDate"
inputVariable="product"
outputVariable="productDeliveryDate"
operation="getDeliveryDate">
<bpel:targets>
<bpel:target linkName="1linkl"></bpel:target>
</bpel:targets>
<bpel:sources>
<bpel:source linkName="1ink3"></bpel:source>
</bpel:sources>

18

</bpel:invoke>
<bpel:assign validate="no" name="assignOffer">
<bpel:copy>
<bpel:from>$productDeliveryDate</bpel:from>
<bpel:to>S$product.deliveryDate</bpel:to>
</bpel:copy>
<bpel:copy>
<bpel:from>S$productPrice</bpel:from>
<bpel:to>S$product.price</bpel:to>
</bpel:copy>
<bpel:targets>
<bpel:target linkName="1ink3"></bpel:target>
<bpel:target linkName="1ink4"></bpel:target>
</bpel:targets>
</bpel:assign>
<bpel:invoke name="checkPrice" inputVariable="product"
outputVariable="productPrice" operation="getPrice">
<bpel:targets>
<bpel:target linkName="1ink2"></bpel:target>
</bpel:targets>
<bpel:sources>
<bpel:source linkName="1ink4"></bpel:source>
</bpel:sources>
</bpel:invoke>
<bpel:links>
<bpel:link name="1inkl"></bpel:link>
<bpel:link name="1ink2"></bpel:link>
<bpel:link name="1ink3"></bpel:1link>
<bpel:link name="1ink4"></bpel:1link>
</bpel:links>
</bpel:flow>

Listing 12: <flow>

3.3.2.1.1 <link>

Mit <link>s wird innerhalb der <flow> Aktivitat der Kontrollfluss festgelegt. Ein <link> hat da-
bei einen Ursprung und ein Ziel. In einer Aktivitat wird der Ursprung durch ein Unterelement
im <sources> Element dargestellt und ein Ziel durch ein Unterelement im <targets> Element.
Die BPEL2.0 Spezifikation beschreibt einige Einschrankungen, welche fir das <link> Ele-
ment gelten. Zum einen wird die Erzeugung von Zyklen ausgeschlossen. Eine Aktivitat mit
einem logischen Vorganger zu verlinken und damit Zyklen zu erzeugen ist untersagt. Des
Weiteren dirfen <link>s das <flow> Konstrukt, in welchem sie definiert wurden, nicht verlas-
sen. Um <link>s innerhalb von <while>, <repeatUntil>, <forEach>, <eventHandlers> oder
<compensationHandler> verwendet zu kénnen, ist es erforderlich, dass die <link>s in einem
<flow> Element innerhalb der Konstrukte eingebettet werden, damit sie die umgebenden
Konstrukte nicht verlassen konnen. In den Konstrukten <catch> und <catchAll>, sowie dem
<terminationHandler> sind eingehende <link>s untersagt.

In Listings 12 sind Beispiele fur <link>s zu sehen.

3.3.2.1.2 <transitionCondition>

Um die Ubergangsbedingung fir den Ursprung eines <link>s festlegen zu kénnen, muss die
betreffende Aktivitdt im <source> Unterelement eine <transitionCondition> beinhalten. Nach
Beendigung der Aktivitat wird diese Bedingung ausgewertet und dabei entweder auf true
oder false gesetzt. Wird die <transitionCondition> nicht angegeben wird immer auf true ge-

19

setzt. Der Zustand eines <link>s wird nicht nur durch die <transitionCondition> festgelegt,
sondern ist auch noch abhangig von Fehlern und der Dead-Path-Elimination.

Ein einfaches Beispiel aus der BPEL-Spezifikation [1, S.182].

<source linkName="assess-to-setMessage">
<transitionCondition>
Srisk.level="low'
</transitionCondition>
</source>

Listing 13: <transitionCondition>

3.3.2.1.3 <joinCondition>

Das Gegenstick zur <transitionCondition> im Ziel eines <link>s ist die <joinCondition>. Hat
ein <link> in seinem <targets> Unterelement eine <joinCondition>, dann wird in diesem Ele-
ment festgelegt, unter welchen Bedingungen die Aktivitat ausgefuhrt wird. Unter Auswertung
der Zustande der eingehenden <link>s, wird ein bool‘'scher Ausdruck auf true oder false ge-
setzt, das bedeutet zur Auswertung mussen die Zustande der <link>s bereits evaluiert sein.
Ist die <joinCondition> true, dann wird die Aktivitat ausgefuhrt. Ist die <joinCondition> nicht
explizit angegeben, dann wird ein logisches ODER verwendet, um zu entscheiden, ob die
Aktivitat ausgefihrt wird. In diesem Fall muss also nur ein eingehender <link> den Zustand
true haben. Wird die <joinCondition> mit false ausgewertet, dann wird die Dead-Path-
Elimination angewendet.

Das Beispiel aus [1, S.110] zeigt eine <joinCondition>, die eine AND-Verknupfung fur ,buy-
ToSettle” und ,sellToSettle” festlegt.

<targets>
<joinCondition>$buyToSettle and $sellToSettle</joinCondition>
<target linkName="buyToSettle" />
<target linkName="sellToSettle" />

</targets>

Listing 14: <joinCondition>

3.3.2.1.4 Dead-Path-Elimination

Die BPEL-Engine muss Falle, in welchen bestimmte Aktivitdten nicht mehr erreichbar sind,
von selbst auflésen. Das ist die sogenannte Dead-Path-Elimination. Wie im vorherigen Kapi-
tel beschrieben, kann eine <joinCondition> zu false ausgewertet werden, in diesem Fall
muss die BPEL-Engine die Dead-Path-Elimination durchfihren. Durch diesen Vorgang wer-
den alle Zustande von <link>s, die die nun nicht auszufuhrende Aktivitat als Ursprung haben,
auf false gesetzt. Dies geschieht unabhangig von etwaigen <transitionCondition>s und kann
dazu flhren, dass ganze Pfade von der Ausfuhrung ausgenommen werden. Diese Pfade
nennt man Dead Paths. Damit die Dead-Path-Elimination durchgefiihrt wird, muss im betref-
fenden <flow> das Attribut suppressJoinFailure auf yes gesetzt sein, ansonsten wird, im Fal-
le einer zu false ausgewerteten <joinCondition>, von der BPEL-Engine ein Fehler erzeugt.

3.3.2.2 <forEach>

Um eine Aktivitat mehrfach ausfliihren zu kénnen, verwendet man die <forEach> Aktivitat.
Innerhalb einem eigenen <scope> werden alle auszufihrenden Aktivitadten der <forEach>-
Schleife modelliert. Des Weiteren kénnen die Ausflihrungen sequenziell oder parallel ausge-

20

fuhrt werden und bei Bedarf kann eine <completionCondition> angegeben werden, mit wel-
cher die Ausflihrung auch frihzeitig beendet werden kann.

Listing 15 zeigt eine <forEach> Schleife aus dem Beispiel in Kapitel 2. Die enthaltene <flow>
Aktivitat ist in Listing 12 zu sehen.

<bpel:forEach parallel="no" counterName="Counter"

name="ForEach">
<bpel:startCounterValue>1</bpel:startCounterValue>
<bpel:finalCounterValue>

SproductOffers.count
</bpel:finalCounterValue>
<bpel:scope>

<bpel:sequence>

<bpel:flow name="Flow">

</bpel:flow>
</bpel:sequence>
</bpel:scope>
</bpel:forEach>

Listing 15: <forEach>

3.3.23 <if>

Fir bedingte Aktivitaten stellt die BPEL-Engine die <if> Aktivitat zur Verfugung. Wie von ho-
heren Programmiersprachen bekannt, kénnen <else> und <elseif> Konstrukte verwendet
werden, um eine komplexere bedingte Aktivitdt zu modellieren. Die Bedingungen werden mit
dem <condition> Element angegeben.

In Listing 16 ist eine <if> Aktivitat aus dem Beispiel in Kapitel 2 zu sehen. Die zur Ubersicht-
lichkeit weggelassenen Teile kdnnen Listing 1 entnommen werden.

<bpel:if name="ProductAvailable">
<bpel:condition>
bpel:getVariableProperty('availabilityInfo',
'inventory:level') > 0
</bpel:condition>
<bpel:sequence>

</bpel :sequence>
<bpel:elseif>
<bpel:condition>
bpel:getVariableProperty('availabilityInfo',
'product:inProduction') > 0
</bpel:condition>
<bpel:sequence>

</bpel :sequence>
</bpel:elseif>
<bpel:else>

<bpel:sequence>

</bpel :sequence>
</bpel:else>
</bpel:if>

Listing 16: <if>

21

3.3.2.4 <pick>

Wenn aus mehreren alternativen Nachrichten eine ausgewahlt und verarbeitet werden soll,
wird die <pick> Aktivitdt verwendet. Im Unterelement <onMessage> wird dann die, fur die
spezifische Nachricht angegebene, Aktivitat ausgefihrt. Mit dem <onAlarm> Element [8sst
sich ein Timeout fir die <pick> Aktivitat einstellen, an dem diese dann auch ohne Eingang
einer Nachricht beendet wird. Wie bei der <receive> Aktivitdt kann das Attribut crea-
telnstance auf yes gesetzt werden um einen BPEL-Prozess zu starten.

Ein Beispiel aus der BPEL-Spezifikation [1, S.101 f.] ist in Listing 17 zu sehen.

<pick>

<onMessage partnerLink="buyer"
portType="orderEntry"
operation="inputLineItem"
variable="1lineItem">
<!-- activity to add line item to order -->

</onMessage>

<onMessage partnerLink="buyer"
portType="orderEntry"
operation="orderComplete"
variable="completionDetail">

<!-- activity to perform order completion -->
</onMessage>
<!-- set an alarm to go off

3 days and 10 hours after the last order line -->

<onAlarm>

<for>'P3DT10H'</for>

<!-- handle timeout for order completion -->
</onAlarm>

</pick>

Listing 17: <pick>

3.3.2.5 <repeatUntil>

Die <repeatUntil> Aktivitat fihrt enthaltene Aktivitdten solange aus, bis die durch <condition>
angegebene Bedingung erflllt ist. Die <repeatUntil>-Schleife wird dabei mindestens einmal
ausgefuhrt.

Listing 18 zeigt ein Beispiel fur eine <repeatUntil> Schleife.

<bpel:repeatUntil name=“checkStock">
<ext:iterationCount>10</ext:iterationCount>
<bpel:invoke name=“checkStock"“>

</bpel:invoke>
<bpel:condition>
bpel:getVariableProperty(availabilityInfo’,
‘product:inStock’) < 15
</bpel:condition>
</bpel:repeatUntil>

Listing 18: <repeatUntil>

3.3.2.6 <sequence>

Innerhalb der <sequence> Aktivitat werden mehrere Aktivitaten sequentiell ausgefihrt. Wenn
alle enthaltenen Aktivitaten ausgefiihrt wurden, wird die <sequence> Aktivitat beendet.

22

In Listing 19 ist eine <sequence> mit einer <while> Schleife, einer <wait> Aktivitat und einer
<invoke> Aktivitat aus dem Beispiel in Kapitel 2 zu sehen.

<bpel:sequence>
<bpel:while name="While">
<bpel:condition>
$similarProductRequest ≠ nil
</bpel:condition>
<bpel:invoke name="findSimilarProduct"
inputVariable="product"
outputVariable="similarProductRequest"
operation="findSimilarProduct">
<bpel:compensationHandler>
<bpel:invoke name="cancelSearch"
operation="cancelProductSearch">
</bpel:invoke>
</bpel:compensationHandler>
</bpel:invoke>
</bpel:while>
<bpel:wait name="Wait">
<bpel:for>PT10M</bpel:for>
</bpel:wait>
<bpel:invoke name="summarizeResults">
</bpel:invoke>
</bpel:sequence>

Listing 19: <sequence>

3.3.2.7 <while>

Genau wie in der <repeatUntil>-Schleife kann hier, unter Berticksichtigung der Bedingung im
<condition> Element, eine Aktivitdt mehrfach ausgefihrt werden. Der Unterschied besteht
darin, dass die Bedingung zu Beginn des Durchlaufs gepruft wird und es somit auch méglich
ist, dass die <while>-Schleife nicht einmal durchlaufen wird.

Eine <while> Schleife aus dem Beispiel in Kapitel 2 ist in Listing 20 zu sehen.

<bpel:while name="While">
<bpel:condition>
SsimilarProductRequest ≠ nil
</bpel:condition>
<bpel:invoke name="findSimilarProduct"
inputVariable="product"
outputVariable="similarProductRequest"
operation="findSimilarProduct">
<bpel:compensationHandler>
<bpel:invoke name="cancelSearch"
operation="cancelProductSearch">
</bpel:invoke>
</bpel:compensationHandler>
</bpel:invoke>
</bpel:while>

Listing 20: <while>

23

3.3.3 Scopes

3.3.3.1 <compensate>

Die <compensate> Aktivitat darf nur innerhalb eines <compensationHandler>s, eines <termi-
nationHandler>s oder eines <faultHandlers>, also innerhalb eines <catch> oder <catchAll>,
aufgerufen werden. Mit dieser Aktivitdt wird in allen abgeschlossenen <scope>s die Kom-
pensation wahrend eines Fehlerfalles gestartet. Die betreffenden, abgeschlossenen <sco-
pe>s midssen dazu, nimmt man die XML Darstellung als Ausgangspunkt, auf derselben oder
auf einer tieferen Ebene im Zweig wie der Handler liegen.

Ein Beispiel fir <compensate> innerhalb eines <faultHandlers> ist in Listing zu sehen.

3.3.3.2 <compensateScope>

Fir die <compensateScope> Aktivitat gelten dieselben Regeln wie fir die <compensate>
Aktivitat, bis auf die Besonderheit, dass man einen bestimmten zu kompensierenden <sco-
pe> angeben kann.

Listing 21 zeigt ein kurzes Beispiel aus [1, S.139]:

<compensationHandler>
<sequence>
<compensateScope target="S2" />
</sequence>
</compensationHandler>

Listing 21: <compensateScope>

3.3.3.3 <scope>

<scope>s sind Bereiche in welchen, fir die enthaltenen Aktivitaten, bestimmte gultige Ein-
stellungen und Angaben gemacht werden. Zu diesen Einstellungen zahlen: <faultHandler>,
<eventHandler>, <compensationHandler>, <terminationHandler>, <correlationSets>, <part-
nerLinks>, <messageExchanges> und <variables>.

In Listing 22 ist eine <scope> Aktivitat aus dem Beispiel in Kapitel 2 zu sehen. Die inneren
Aktivitaten der <flow> Aktivitat sind in Listing 12 dargestellt.

<bpel:scope>
<bpel:sequence>
<bpel:flow name="Flow">

</bpel:flow>
</bpel :sequence>
</bpel:scope>

Listing 22: <scope>
3.3.4 Variablen

3.3.4.1 <variable>

Um in BPEL Variablen zu verwendet wird das <variable> Konstrukt verwendet. Es gibt in
BPEL lokale und globale Variablen. Wird ein <variable> Konstrukt innerhalb eines <scope>s
verwendet, dann ist die angegebene Variable nur innerhalb dieses <scope>s gliltig und man

24

spricht von einer lokalen Variable. Wird die Variable auf der <process> Ebene deklariert,
dann ist sie allgemein gultig und man spricht von einer globalen Variable. Die Variablentypen
werden in WSDL- oder XML-Schema-Dateien definiert.

Listing 23 zeigt die <variables> aus dem Beispiel in Kapitel 2.

<bpel:variables>

<bpel:variable name="product" messageType="tns:productType">

</bpel:variable>

<bpel:variable name="availabilityInfo"
messageType="tns:availabilityType">

</bpel:variable>

<bpel:variable name="productOffers" messageType="tns:productType">

</bpel:variable>

<bpel:variable name="productOffer" messageType="tns:productType">

</bpel:variable>

<bpel:variable name="productDeliveryDate" messageType="tns:date">

</bpel:variable>

<bpel:variable name="productPrice" messageType="tns:float">

</bpel:variable>

<bpel:variable name="evaluatedProductOffers"
messageType="tns:productArrayType">

</bpel:variable>

<bpel:variable name="similarProductRequest"
messageType="tns:productType">

</bpel:variable>

</bpel:variables>

Listing 23: <variable>

3.3.4.2 <validate>

Um Variablen gegen ihre Datendefinitionen aus der jeweilgen XML oder WSDL zu validieren,
wird die <validate> Aktivitat verwendet.

Listing 24 zeigt ein Beispiel zum Validieren der zuvor genannten Variablen:

r”

<validate variables="” product availabilityInfo productOffers
productOffer productDeliveryDate productPrice
evaluatedProductOffers similarProductRequest ” />

Listing 24: <validate>

3.3.5 Andere Konstrukte

3.3.5.1 <catch>

Die <catch> Aktivitat ermoglicht es, wahrend der Fehlerbehandlung, auf bestimmte Fehler zu
reagieren. Hierfir muss der Bezeichner und der Nachrichtentyp des Fehlers angegeben
werden.

Das folgende Beispiel eines <faultHandlers> aus [1, S.19] in Listing 25 zeigt die Fehlerbe-
handlung auf <process> Ebene.

<faultHandlers>
<catch faultName="lns:cannotCompleteOrder"
faultVariable="POFault"
faultMessageType="1lns:orderFaultType">
<reply partnerLink="purchasing"
portType="1ns:purchaseOrderPT"

25

operation="sendPurchaseOrder" variable="POFault"
faultName="cannotCompleteOrder" />
</catch>
</faultHandlers>

Listing 25: <catch>

3.3.5.2 <catchAll>

Alle Fehler, die nicht mit der <catch> Aktivitat abgefangen und behandelt werden, kbnnen mit
der <catchAll> Aktivitat behandelt werden.

Im Beispiel in Listing 26 wird bei allen auftretenden Fehlern abgebrochen [1, S.162].

<faultHandlers>
<catchAll>
<exit />
</catchAll>

</faultHandlers>

Listing 26: <catchAll>

3.3.5.3 <compensationHandler>

Alle fur die Kompensation auszufihrenden Aktionen werden im <compensationHandler>
zusammengefasst. Durch die Aktivitdten im <compensationHandler> soll ein vorheriger Zu-
stand so gut es geht wieder hergestellt werden. Zusatzlich gibt es noch die Moglichkeit einen
<compensationHandler> direkt an einer <invoke> Aktivitat anzubringen.

In Listing 6 wurde ein Beispiel fur einen <compensationHandler> innerhalb einer <invoke>
Aktivitat vorgestellt. Folgend noch ein Beispiel fur einen <compensationHandler> in einem
<scope> [1, S.145].

<scope name="Q" isolated="true">
<compensationHandler>
<sequence name="undoQ Seqg">...</sequence>
</compensationHandler>
<sequence name="doQ Seqg">...</sequence>
</scope>

Listing 27: <compensationHandler>

3.3.5.4 <extensions>

Mit Hilfe der <extensions> kann BPEL, um Attribute, neue Aktivitaten oder ein verandertes
Laufzeitverhalten der BPEL-Engine, erweitert werden. Mit dem <extensions> Element wer-
den in dieser Arbeit zusatzliche Elemente zur Speicherung von benétigten Informationen fir
die Zustandsubertragung erstellt.

Ein Beispiel aus der BPEL-Spezifikation, in dem der Prozess um das Attribut ,uniqueUser-
FriendlyName* erweitert wird [1, S.162].

<extensions>
<extension
namespace="http://example.com/bpel/some/extension"
mustUnderstand="yes" />
</extensions>

<receive partnerLink="homeInfoVerifier"
operation="##opaque" variable="##opaque"

26

ext:uniqueUserFriendlyName="receive verification
result" />

Listing 28: <extensions>

3.3.5.5 <faultHandlers>

Wie bereits beschrieben werden mit den Konstrukten <catch> und <catchAll> Fehler abge-
fangen und behandelt. Diese kénnen nur innerhalb eines <faultHandlers> verwendet wer-
den. Einzige Ausnahme dieser Regel stellt die <invoke> Aktivitat dar, hier kbnnen die beiden
Konstrukte direkt angebracht werden, ohne das <faultHandlers> Konstrukt zu verwenden.

In Listing 29 ist der <faultHandlers> auf Prozessebene aus dem Beispiel in Kapitel 2 darge-
stellt.

<bpel:faultHandlers>
<bpel:catchAll>
<bpel:sequence>
<bpel:compensate>
</bpel:compensate>
<bpel:exit name="Exit">
</bpel:exit>
</bpel:sequence>
</bpel:catchAll>
</bpel:faultHandlers>

Listing 29: <faultHandlers>

3.3.5.6 <import>

Mit Hilfe des <import> Konstrukts wird innerhalb von BPEL Prozessen eine Abhangigkeit von
externen XML Schemata oder WSDL Definitionen angezeigt. Das <import> Konstrukt wird
direkt unterhalb des <process> Elements eingeflgt.

Listing 30 zeigt ein Beispiel aus [1, S.169]:

<import importType="http://schemas.xmlsoap.org/wsdl/"
location="shippingProperties.wsdl"
namespace="http://example.com/shipping/properties/" />

Listing 30: <import>

3.3.5.7 <partnerLinks>

Damit ein BPEL Prozess mit den beteiligten Web Services, beziehungsweise Business Part-
nern, kommunizieren kann, werden <partnerLinks>, <partnerLinkType>s, roles und port-
Types verwendet. Diese Elemente werden in dieser Arbeit nicht naher erlautert, da sie fur die
Zustandsubertragung nicht von Bedeutung sind. Fur weiterfihrende Informationen wird auf
[1, S.36 ff.] verwiesen.

3.3.5.8 <process>

Der <process> ist das Hauptkonstrukt eines BPEL Prozesses. Innerhalb des <process>
Konstrukts werden globale Einstellungen flir den BPEL Prozess vorgenommen. Dazu zahlen
<extensions>, <import>s, <partnerLinks>, <variables>, <correlationSets>, <message-
Exchanges>, <eventHandlers> und <faultHandlers>. In der BPEL Spezifikation wird das als
root-context bezeichnet. Im <process> Konstrukt darf nur eine Aktivitat enthalten sein. In den

27

meisten Fallen ist das entweder eine <sequence>, <scope> oder <flow> Aktivitat.
Ein <process> Konstrukt kann entweder ein executable process sein oder ein abstract pro-
cess. Ein executable process beschreibt das Verhalten eines BPEL-Prozesses und kann auf
einer BPEL-Engine ausgefihrt werden. Bei einem abstract process dagegen lassen sich
Prozessdetails verbergen um, zum Beispiel, Geschéaftspartnern die ndtigen Schnittstellen
offen zu legen, ohne Einsicht auf die inneren Ablaufe zu geben. Zum Verbergen von Details
wird die <opaqueActivity> verwendet.

In Kapitel 2 wurde ein Beispiel fur einen kompletten <process> gezeigt. Weitere Beispiele
sind in [1, S.19 ff.] zu finden.

3.3.5.9 <terminationHandler>

Wird der komplette BPEL Prozess oder nur ein <scope> durch einen Fehler beendet, bietet
der <terminationHandler> die Moglichkeit, durch Ausflihrung der darin enthaltenen Aktivita-
ten, den durch den Fehler entstandenen Schaden zu begrenzen.

Das Beispiel in Listing 31 zeigt den Default-<terminationHandler> [1, S.132].

<terminationHandler>
<compensate />
</terminationHandler>

Listing 31: <terminationHandler>

3.3.5.10 <eventHandlers>

Um auf Ereignisse wahrend der Ausfiihrung eines BPEL-Prozesses zu reagieren werden die
<eventHandlers> verwendet. Es muss sich mindestens ein Element vom Typ <onEvent>
oder vom Typ <onAlarm> darin befinden und die in jenem Element enthaltene Aktivitat muss
vom Typ <scope> sein. <eventHandlers> kénnen entweder direkt in das <process> Kon-
strukt oder in ein <scope> Konstrukt integriert werden.

3.3.5.10.1 <onEvent>

Ein <onEvent> Element in einem <eventHandlers> Konstrukt reagiert auf das Eintreffen ei-
ner bestimmten Nachricht.

In der BPEL-Spezifikation ist ein Beispiel zur Veranschaulichung des <onEvent> Elements
zu finden [1, S.141].

<process name="orderCar">

<eventHandlers>

<onEvent partnerLink="buyer"
portType="ns:car"
operation="haltOrder"
messageType="ns:haltOrderMsgType"
variable="haltDetails">
<scope>

<exit />

</scope>

</onEvent>

</eventHandlers>

</process>

28

Listing 32: <eventHandlers> mit <onEvent>

3.3.5.10.2<onAlarm>

Ein <onAlarm> Element wird flr zeitgesteuerte Ereignisse eingesetzt. Die bereits bekannten
Elemente <for> oder <until> kénnen darin enthalten sein. Es gibt zwei Unterschiede bei der
Verwendung dieser Elemente in einem <onAlarm> Element im Vergleich zur Verwendung in
einer <pick> Aktivitat. Der eine Unterschied ist, dass mit <repeatEvery> die Ausflihrung so-
lange wiederholt ausgefuhrt werden kann, bis der <process> oder der <scope>, der diese
<eventHandlers> beinhaltet, beendet ist. Und der zweite Unterschied ist, dass innerhalb von
<onAlarm> Elementen nur ein <scope> Konstrukt verwendet werden darf.

Ein kurzes <eventHandlers> Beispiel mit dem <onAlarm> Element aus [1, S.142]:

<eventHandlers>
<onAlarm>
<for>SorderDetails.processDuration</for>

</onAlarm>

</eventHandlers>

Listing 33: <eventHandlers> mit <onAlarm>

29

3.4 BPMN 2.0

BPMN [4] ist eine Sprache zur graphischen Modellierung von Geschaftsprozessen. Es exis-
tieren noch andere Sprachen zur visuellen Modellierung von Geschéaftsprozessen, aber
durch die grof3e Anzahl namhafter Unternehmen [4, S.17 ff.], die an der BPMN-Spezifikation
beteiligt sind, ist BPMN die am haufigsten verwendete Sprache zur visuellen Modellierung
von Geschaftsprozessen, also der quasi Standard. Die OMG, Object Management Group
[11], hat die Spezifikation fir BPMN definiert und veréffentlicht, wobei die aktuelle Version
BPMN2.0 ist. BPMN wurde entwickelt, um Geschaftsleuten die Erstellung von einfach ver-
standlichen, grafischen Darstellungen ihrer Geschaftsprozesse zu ermdglichen. Des Weite-
ren soll BPMN eine Brucke Uber die Kluft zwischen dem Entwurf und der Implementierung
von Geschaftsprozessen erstellen und die Kommunikation zwischen Geschéftsleuten und
technisch orientierten Mitarbeitern, wie zum Beispiel Programmierern, vereinfachen.

In BPMN wird eine Tokensemantik dhnlich der in Petri-Netzen verwendet. Ein Token kann
man sich dabei als ein Element vorstellen, das wahrend der Ausflihrung des Prozesses die
einzelnen Konstrukte durchlauft. Beim Starten des Prozesses wird ein Token bildlich auf das
Start-Event gelegt und wird dann von Konstrukt zu Konstrukt geschoben. An Verzweigungen
kann das Token verschiedene Wege einschlagen und es werden nur die Konstrukte ausge-
fuhrt, auf denen das Token landet. Ist eine parallele Ausflihrung, zum Beispiel durch ein Pa-
rallel Gateway, vorgesehen, so wird an jeden Pfad ein Token weitergegeben und diese
durchlaufen den Prozess dann unabhangig voneinander. Alle Tokens missen an einem End-
Event konsumiert werden um den Prozess zu beenden. Weiterfiihrende Informationen Uber
die Tokensemantik in BPMN sind in der Spezifikation zu finden [4, S.427 ff].

Auf die genaue Entstehungsgeschichte von BPMN wird in dieser Arbeit nicht naher einge-
gangen. Fir explizitere Informationen Uber das Themengebiet wird auf die Homepage der
Object Management Group [11] und auf die BPMN-Spezifikation [4] verwiesen.

3.5 Konstrukte in BPMN

Die in der BPMN-Spezifikation [4] beschriebenen Konstrukte werden in diesem Unterkapitel
erldutert. Um den Umfang einzugrenzen werden die Konstrukte hier nur durch kurze Be-
schreibungen erlautert. Zur ausfuhrlicheren Beschreibung wird auf die BPMN-Spezifikation
verwiesen und hierfur werden zu allen Konstrukten die Seitenangaben in der Spezifikation
angegeben. In diesem Unterkapitel findet keine ndhere Beschreibung der einzelnen Attribute
statt. Diese Informationen sind ebenfalls der BPMN-Spezifikation zu entnehmen. Fir weiter-
fuhrende Informationen wird das Buch ,BPMN Method & Style“ von Bruce Silver [12] emp-
fohlen.

3.5.1 Events

Wie in der BPMN-Spezifikation beschrieben (vgl. [4, S. 233 ff.]), ist ein Event ein Ereignis,
das wahrend der Ausfiihrung eines Geschaftsprozesses eintritt. Diese Events beeinflussen
den weiteren Ablauf des Geschaftsprozesses und haben normalerweise einen Ausléser, im
Weiteren Trigger genannt, oder eine Auswirkung, im Weiteren Result genannt. Ein Event
kann viele verschiedene Dinge darstellen, wie zum Beispiel den Start eines Tasks, das Ende
eines Tasks, die Zustandsanderung eines Dokuments oder eine eingehende Nachricht.

Es gibt drei Haupttypen von Events: Das Start-Event, siehe Abbildung 4, das End-Event,
siehe Abbildung 5, und das Intermediate-Event, siehe Abbildung 6. Ein Start-Event wird als

30

Kreis mit einfachem Rand dargestellt und gibt an wo ein Geschaftsprozess startet. Ein End-
Event wird als Kreis mit fettem Rand dargestellt und gibt an wo ein Geschaftsprozess endet.
Der dritte Haupttyp, das Intermediate-Event, wird als Kreis mit doppeltem Rand dargestellt
und wird Uberall dort eingesetzt, wo wahrend des Geschaftsprozesses ein Ereignis eintritt.

Abbildung 4: Start-Event Abbildung 5: End-Event Abbildung 6: Intermediate-Event

Die drei Haupttypen werden in zwei Arten unterteilt. Events mit einem Trigger werden als
catching Event, sie warten auf den Eingang eines Events, und Events mit einem Result wer-
den als throwing Events, sie sind der Ausloser eines Events, bezeichnet. Wahrend Start-
Events immer catching Events und End-Events immer throwing Events sind, kdnnen Inter-
mediate-Events von beiden Arten sein. Zur Veranschaulichung der beiden Arten in der Dar-
stellung werden catching Events als normal gezeichnetes Symbol und throwing Events als
ausgemaltes Symbol innerhalb des Kreises dargestellt.

In dieser Arbeit wird nur eine Teilmenge von BPMN, wie sie in [13] definiert wurde, beschrie-
ben. Die folgende Abbildung zeigt eine Ubersicht der verschiedenen Event-Typen. Diese
werden anschlielend naher erlautert.

,»Catching“ » Throwing“

Timer

- ®

Compensation @

Terminate

Tabelle 2: Ubersicht liber die verwendeten Events aus BPMN2.0

31

3.5.1.1 Message-Event

Ist der Message-Event ein catching Event, dann wird auf eine eingehende Nachricht gewar-
tet und anschlieflend entsprechend dieser Nachricht eine Aktivitat gestartet. Handelt es sich
um einen throwing Event, dann wird eine Nachricht versendet. Ist der Message-Event am
Rand einer Aktivitdt angebracht, dann handelt es sich um eine Ausnahmebehandlung.

@006

Abbildung 7: Message Events

3.5.1.2 Timer-Event

Zum Starten von Prozessen zu einer bestimmten Zeit oder nach einem Zeitplan wird der
Timer-Event verwendet. Ist es ein Intermediate-Event dann kann der Timer-Event auch zur
Ablaufverzogerung eines Prozesses verwendet werden. Angebracht an den Rand einer Akti-
vitat dient er zur Ausnahmebehandlung zu einem bestimmten Zeitpunkt oder nach Ablauf

einer Zeitperiode.

Abbildung 8: Timer Events

3.5.1.3 Error-Event

Der Error-Event wird zur Fehlerbehandlung genommen. Es kann am Rand einer Aktivitat als
Intermediate-Event oder als End-Event auftreten. Ist der Event ein Intermediate-Event, dann
wird auf ein Fehlerereignis gewartet. Als End-Event wird ein Fehler dem zugehdrigen cat-

ching Event Ubermittelt.

Abbildung 9: Error Events

3.5.1.4 Compensation-Event

Wird der Compensation-Event als Catching-Event am Rand einer Aktivitat verwendet, dann
wird, sobald eine Kompensation notwendig ist, die angegebene Ausfuhrung gestartet. Wird
der Compensation-Event dagegen als Throwing-Event verwendet, dann signalisiert dieser,
dass eine Kompensation notwendig ist.

32

WOOW®

Abbildung 10: Compensation Events

3.5.1.5 Terminate-Event

Mit dem Terminate-Event werden alle noch laufenden Aktivitaten im aktuellen Prozess sofort
beendet. Beim Beenden durch den Terminate-Event werden keine weiteren Behandlungen,
wie zum Beispiel die Kompensation, mehr gestartet.

Abbildung 11: Terminate Event

33

3.5.2 Aktivitat

In BPMN ist eine Aktivitat ([4, S.151 ff.]) ein Arbeitsschritt, der wahrend eines Geschaftspro-
zesses ausgefuhrt wird. Dabei kann es sich um einen einzelnen, atomaren Arbeitsschritt
handeln, ein Task, oder um mehrere zusammengesetzte Arbeitsschritte, dabei spricht man
dann von einem Sub-Prozess. Dargestellt werden Aktivitaten durch ein Rechteck mit abge-
rundeten Ecken. Marker am unteren Rand des Rechtecks geben Aufschluss daruber, wel-
ches Verhalten die Aktivitat hat. Mit einem Label auf der Rechtecksflache kann eine Be-
schreibung der Aktivitdt angegeben werden.

Abbildung 12: Piktogramm einer Aktivitat

3.5.3 Task

Ein einzelner Arbeitsschritt, ein Task ([4, S.156 ff.]), kann drei verschiedene Marker haben.
Einen Loop-Marker, einen Multi-Instance-Marker oder einen Compensation-Marker. Der
Loop-Marker hat eine wiederholende, sequenzielle Ausfihrungssemantik und der Multi-
Instance-Marker eine parallele, mehrfach Ausfiihrungssemantik. Somit kdnnen die beiden
Marker nicht gemeinsam auftreten, da sich die Semantik Uberschneiden wirde. Der Com-
pensation-Marker gibt an, dass der Task eine Kompensationsfunktion hat. Der Compensati-
on-Marker kann gemeinsam mit dem Loop-Marker oder dem Multi-Instance-Marker auftreten.
Der Multi-Instance Marker wird in dieser Arbeit nicht weiter verwendet.

R

. <«
Abbildung 13: Loop-Marker Abbildung 14: Compensation-Marker

3.5.3.1 Sub-Prozess

Ein Sub-Prozess ([4, S.173 ff]) ist ein Teil-Prozess innerhalb des Geschaftsprozesses. Er
kann wie der Prozess beliebig viele Aktivitaten, Gateways, Events und Sequence-Flows be-
inhalten. Ein Sub-Prozess kann in zweierlei Arten angezeigt werden. Zum einen die ,collap-
sed” Ansicht, bei der die Details des Sub-Prozesses versteckt sind. Die Darstellung des Sub-
Prozesses beinhaltet in diesem Fall einen weiteren Marker am unteren Rand, ein Plus-
Zeichen umgeben von einem kleinen Rechteck. Die zweite Ansicht ist die ,expanded® An-
sicht. In dieser sieht man die Details des Sub-Prozesses umgeben von einem Rechteck mit
abgerundeten Ecken.

34

Abbildung 15: collapsed Sub-Prozess

- R

", -

Abbildung 16: expanded Sub-Prozess

Zusatzlich zum ,collapsed“-Marker werden vier weitere Marker definiert. Der Loop-Marker,
der Compensation-Marker, der Error-Marker und der Termination-Marker. Wie beim Task hat
auch hier der Loop-Marker eine wiederholende, sequenzielle Ausflihrungssemantik. Der
Compensation-Marker gibt an, dass der Sub-Prozess als Kompensation von zuvor ausge-
fuhrten Aktivitaten genutzt wird. Der Error-Marker wird eingefiihrt um den <faultHandlers>
aus BPEL darstellen zu kénnen und der Termination-Marker wird fir die Darstellung des
<terminationHandler>s verwendet.

O[F H[F H[7] @[3
Abbildung 17: Loop Abbildung 18: Com- Abbildung 19: Error Abbildung 20: Ter-
pensation mination

3.5.4 Gateways

Gateways ([4, S.287 ff.]) dienen zur Steuerung der Ablaufreihenfolge der Aktivitaten. Mit de-
ren Hilfe kdnnen Verzweigungen und Entscheidungen, sowie Zusammenfihrungen darge-
stellt werden. Ein Gateway wird in BPMN 2.0 durch eine Raute abgebildet. Die jeweils spezi-
fische Semantik wird durch einen Marker innerhalb der Raute angegeben. Wie in [4, S.90 ff.]
kénnen Gateways Null oder mehr eingehende Sequence Flows haben. Wenn das Gateway
keinen eingehenden Sequence Flow hat und es keinen Start-Event fir den Prozess gibt,
dann soll das verzweigende Verhalten des Gateways beim Instanziieren des Prozesses
durchgefuhrt werden. Genauso kénnen Gateways Null oder mehr ausgehende Sequence
Flows haben. Aber dabei ist zu beachten, dass ein Gateway entweder mehrere eingehende
oder mehrere ausgehende Sequence Flows haben muss.

35

3.5.4.1 Exclusive Gateway

Das verzweigende Exclusive Gateway stellt eine Entscheidung im Prozessablauf dar. Es
werden alternative Pfade erstellt, wobei in jeder Prozessinstanz nur einer der Pfade genom-
men werden kann. Eine Entscheidung kann man sich als Frage vorstellen, die zu einem be-
stimmten Zeitpunkt im Prozess gestellt wird. Diese Frage hat eine definierte Menge an alter-
nativen Antworten. Jede Antwort hat eine zugehérige Bedingung, welche zu einem bestimm-
ten ausgehenden Sequence Flow gehdrt. Exclusive Gateways kdnnen einen Marker haben,
der wie ein grof3geschriebenes X aussieht. In der BPMN 2.0 Spezifikation wird darauf hinge-
wiesen, dass ein Diagramm konsistent in der Verwendung dieses internen Markers sein soll-
te. Es sollte also nicht vorkommen, dass in einem Diagramm Gateways mit und Gateways
ohne Marker verwendet werden.

Condition 1 Condition 1

Condition

Condition

Default

Abbildung 21: Exclusive Gateway ohne Mar- Abbildung 22: Exclusive Gateway mit Marker
ker

Wie in den beiden Abbildungen zu sehen ist, kann ein Default-Pfad angegeben werden.
Wurden alle Bedingungen auf den Wahrheitswert false evaluiert, wird dieser Default-Pfad
verwendet. Wird kein Default-Pfad spezifiziert und alle Bedingungen sind auf false evaluiert,
so wird ein Runtime Error erzeugt.

Ein zusammenfuhrendes Exclusive Gateway wird zur Zusammenfassung von mehreren al-
ternativen Pfaden verwendet. Jeder eingehende Sequence Flow wird zum ausgehenden
Sequence Flow weitergeleitet.

3.5.4.1.1 Event-Based Gateway

Wie der Name schon sagt, sind Event-Based Gateways abhangig von eintretenden Ereignis-
sen. Ein bestimmtes Ereignis, meistens eine empfangene Nachricht, bestimmt welcher Pfad
weiter genommen wird. Wenn zum Beispiel eine Firma auf die Antwort eines Kunden wartet,
dann wird es zwei unterschiedliche Mengen von Aktivitaten geben, je nachdem welche Ant-
wort vom Kunden kommt. Die Kundenentscheidung bestimmt also den weiteren Pfad im
Prozess. Das Empfangen einer Nachricht kann als Intermediate Event mit einem Nachrich-
ten-Trigger modelliert werden. Neben Nachrichten konnen auch Timer als Trigger verwendet
werden.

Das Piktogramm des Event-Based Gateways wird als Raute mit dem Symbol fir Multiple
Intermediate Events im Innern dargestellt.

36

Message

Request
Response

Message
a2

—©

1 Day

Abbildung 23: Event-Based Gateway

Event-Based Gateways kdnnen auch zum Starten von Prozessen verwendet werden. Beim
Exclusive Event-Based Gateway wird nur der als erstes angestoRene Event gestartet. Alle
anderen Pfade des Gateways sind dann nicht mehr gultig. Das Piktogramm hierfur ist eine
Raute mit dem Multiple Start Event in der Mitte.

Abbildung 24: Exclusive Event-Based Gateway

3.5.4.2 Parallel Gateway

Das Parallel Gateway wird verwendet um parallele Flows zu synchronisieren oder zu erstel-
len. Das Parallel Gateway erstellt parallele Pfade ohne irgendwelche Bedingungen zu Uber-
prufen. Jeder ausgehende Sequence Flow bekommt einen Token vom Gateway und bei
synchronisierenden Gateways wird auf alle eingehenden Sequence Flows gewartet bevor
der ausgehende Flow ausgeldst wird. Als Piktogramm wird fir das Parallel Gateway ein
Plus-Zeichen innerhalb der Raute verwendet.

i ™ ™
-
Y s B
5, r
~ Y o
.
I
|
N/ L "

Abbildung 25: erstellendes Parallel Gateway Abbildung 26: synchronisierendes Parallel
Gateway

37

3.5.5 Message Flow

Um die Kommunikation zwischen zwei Teilnehmern in einem Prozess darzustellen verwen-
det man Message Flow Verbindungen ([4, S.120 ff.]) in BPMN. Die Verbindung muss zwi-
schen zwei unterschiedlichen Pools sein, wobei nicht nur der Pool selbst, sondern auch Ob-
jekte innerhalb des Pools als Verbindungspunkt verwendet werden kann. Es ist aber nicht
maoglich zwei Objekte innerhalb desselben Pools zu verbinden.

Abbildung 27: Message Flow Connection

3.5.6 Sequence Flow

Zur Festlegung der Reihenfolge, in welcher die Aktivitdten in einem Prozess ausgefuhrt wer-
den, werden die Sequence Flow Verbindungen ([4, S.97 ff.]) verwendet. Jede Verbindung
hat immer genau ein Ursprung und ein Ziel. Als Ursprung oder Ziel kommen Events, Aktivita-
ten oder Gateways in Frage, wobei es bestimmte Einschrankungen gibt. Start-Events durfen
keine eingehenden Verbindungen und End-Events keine ausgehenden Verbindungen haben.
Es durfen keine Verbindungen Uber die Grenzen eines Sub-Prozesses hinaus verwendet
werden und Pools, Lanes, Data Objects und Annotations durfen Uberhaupt nicht verbunden
werden. Diese drei Konstrukte werden mit Message Flows verbunden.

Y

Abbildung 28: Sequence Flow

AuBer den normalen Verbindungen gibt es noch zwei weitere Arten. Zum einen die Condito-
nal Sequence Flows und zum anderen die Default Sequence Flows. Die Condtional Se-
quence Flows haben eine Ubergangsbedingung, mit welcher entschieden wird, ob der Token
weitergeschickt wird. Typischerweise werden Conditonal Sequence Flows nur an Gateways
oder an Aktivitaten verwendet. Handelt es sich um eine ausgehende Verbindung einer Aktivi-
tat, dann muss eine kleine Raute zusatzlich zum Piktogramm der normalen Sequence Flow
Verbindung vorne angehangt werden. Handelt es sich jedoch um einen Gateway, dann muss
diese zusatzliche Raute nicht angehangt werden. Ist der Ursprung des Conditional Se-
quence Flows eine Aktivitat, dann muss es mindestens eine weitere ausgehende Verbindung
geben, ist es ein Gateway, dann darf dieses Gateway nicht vom Typ Parallel oder Event
sein.

Abbildung 29: Conditional Sequence Flow

Ein Sequence Flow, der als Ursprung entweder ein Exclusive Gateway, ein Inclusive Gate-
way, ein Complex Gateway oder eine Aktivitdt hat, kann auch als Default Sequence Flow
definiert werden. Dieser Sequence Flow wird einen Marker haben, der ihn als Standard

38

kennzeichnet. Der Default Sequence Flow bekommt ein Token, wenn alle anderen ausge-
henden Verbindungen nicht mehr gultig sind, also deren Bedingungen nicht zutreffen.

Y

Abbildung 30: Default Sequence Flow

3.5.7 Pools

In einem Prozess reprasentiert ein Pool ([4, S.112 ff.]) einen Teilnehmer des Prozesses. Ein
Teilnehmer kann eine spezifische Rolle, wie zum Beispiel ein Unternehmen, oder eine all-
gemeinere Rolle, wie zum Beispiel einen Kunden, darstellen. Dabei kann der innere Prozess
des Pools sichtbar oder verborgen sein. Pools werden zur Visualisierung des Nachrichten-
austausches zwischen mehreren Teilnehmern genutzt.

Name

Abbildung 31: Pool

3.5.8 Data Association

Data Associations werden verwendet um den Datenfluss zwischen Data Objects, siehe Kapi-
tel 3.5.9, und anderen Konstrukten zu visualisieren. Ein Beispiel ware die Verwendung von
Daten aus einem Data Object in einer Aktivitat.

.............................. >

Abbildung 32: Data Association

3.5.9 Data Object

Mit Hilfe des Data Objects ([4, S.205ff.]) kbnnen die Diagramme der Prozesse mit zusatzli-
chen Informationen ausgestattet werden. Zur Visualisierung wird ein Aussehen eines Blatt
Papiers genommen. Data Objects konnen nicht per Sequence Flow Connections, sondern
nur per Data Associations verbunden werden.

Abbildung 33: Data Object

39

4 Abbildungen von BPEL zu BPMN

Um einen Geschaftsprozess, der mit BPEL ausgefuhrt wird, mit BPMN Uberwachen zu kon-
nen, muss das BPEL-Modell zuerst in ein BPMN-Modell transformiert werden. Ein Beispiel
fur ein BPEL-Model und dem zugehoérigen BPMN-Model ist in Kaiptel 2.3 zu sehen. Eine
Méglichkeit diese Transformation zu bewerkstelligen ist ein BPEL-Modell einem manuell er-
stellten BPMN-Modell gegeniber zu stellen und die Projektionen der einzelnen Aktivitaten
manuell zu bestimmen. Dabei muss auf die Einhaltung von Soundness und Vollstandigkeit
geachtet werden. Die zweite Mdglichkeit besteht darin das BPMN-Modell aus dem BPEL-
Modell generieren zu lassen. Bei dieser Variante kann angenommen werden, dass das ge-
nerierte Modell, auf Grund der wohldefinierten, verwendeten Regeln, vollstandig und sound
ist.

Die Motivation dieser Arbeit ist, dass ein Konzept erstellt werden soll, mit dem es ermdglicht
wird das Tool BPI um die Uberwachung eines BPEL-Prozesses durch BPMN zu erweitern. In
Hinsicht auf den automatisierten Ablauf des Tools, wird die zweite Mdglichkeit gewahlt. Fur
die Umsetzung des Konzepts soll in einem ersten Schritt das Tool BPlI um die Generierung
eines BPMN-Modells aus einem BPEL-Modell erweitert werden.

In den folgenden Abschnitten dieses Kapitels werden bereits untersuchte und definierte
Konzepte zur Transformation von BPEL zu BPMN erlautert und weiterverwendet.

4.1 Transformation zwischen den Sprachen

In [8] wurde eine umfassende und detaillierte Untersuchung von Ansatzen zur Transformati-
on von BPEL-Modellen zu BPMN-Modellen durchgefihrt. In diesem Abschnitt werden die
wichtigsten Erkenntnisse und Ergebnisse zusammengefasst. Fur tiefergehende Fragen wird
auf [8, S.62 ff.] verwiesen.

Als Grundlage fir die Transformation zwischen BPEL und BPMN kann das in der BPMN
Spezifikation [4, S.445 ff.] vorgestellte Mapping von BPMN zu BPEL dienen. Zusatzlich wer-
den in [13] Muster zur Visualisierung von BPEL Aktivitadten vorgestellt. Weiter wurden die drei
Strategien Flattening, Hierarchy-Preservation und Hierarchy-Maximization aus [14] und [15]
in Bezug auf die Transformation zwischen BPEL und BPMN untersucht. Bei der Flattening
Strategie werden alle strukturierten Aktivitaten in BPEL vereinfacht dargestellt, indem die, in
den strukturierten Aktivitaten enthaltenen, Aktivitdten von zwei Gateways ummantelt werden.
Dabei werden fir die <flow> Aktivitdt AND-Gateways und fir die <if>, <pick> und <while>
Aktivitdten XOR-Gateways verwendet. Probleme bei dieser Strategie sind hauptsachlich in
der Umsetzung der Dead-Path-Eliminierung aus BPEL zu finden.

Die zweite Strategie, die Hierarchy-Preservation, transformiert alle strukturierten Aktivitaten
aus BPEL zu Sub-Prozessen in BPMN. Da in BPMN keine Sequence Flow Connection als
Ziel oder Quelle eine Aktivitat aus einem Sub-Prozess haben darf, wird fir diese Strategie
die Teilmenge ,Structured BPEL* aus BPEL definiert. Darin sind alle BPEL Konstrukte ent-
halten, nur mit der Ausnahme, dass keine <link>s in den Aktivitaten enthalten sein dirfen.

Das Konzept der Hierarchy-Maximization kombiniert die beiden vorherigen Strategien. Struk-
turierte Aktivitaten werden mit der Hierarchy-Preservation als Sub-Prozess transformiert,
solange die Aktivitdt keine <link>s beinhaltet. In diesem Fall wird die Flattening Strategie
angewandt, um die komplexe Struktur aufzulésen.

Die Ergebnisse, wie die einzelnen Aktivitaten aus BPEL in BPMN dargestellt werden kdénnen,
werden in den folgenden Unterkapiteln beschrieben und anschliel’iend wird eine Tabelle als
40

Ubersicht fur alle Zuordnungen prasentiert. Bis auf die <forEach> Aktivitat, die leicht veran-
dert wurde, wurden die Transformationen aus [8] verwendet.

4.1.1 Basis Aktivitaten

4111 <assign>

Die <assign> Aktivitat kann in BPMN als Task oder als Sub-Prozess dargestellt werden. Wird
die Darstellung als Sub-Prozess gewahlt, dann werden alle enthaltenen <copy> Elemente
als Task innerhalb des Sub-Prozesses dargestellt.

Genugt der Uberwachenden Person des Prozesses ein gréberer Detailgrad, so kénnen meh-
rere Aktivitaten zu einem Task zusammengefasst werden. Beispiele flr solche Zusammen-
fassungen waren eine <sequence> aus <assign>, <invoke> und <assign> oder eine <se-
quence> aus <receive> und <reply> als Task darzustellen.

41.1.2 <empty>
Die <empty> Aktivitat wird in BPMN als Task dargestellt.

4113 <exit>

Die <exit> Aktivitat wird in BPMN als Throwing Intermediate Terminate Event dargestellt.

41.1.4 <invoke>

Die <invoke> Aktivitat kann in BPMN als Task oder als Sub-Prozess dargestellt werden. Bei
der Darstellung als Sub-Prozess kdnnen eingebettete <faultHandlers> und <compensation-
Handler> innerhalb des Sub-Prozesses separat dargestellt werden.

4.1.1.5 <receive>

Die <receive> Aktivitdt kann in BPMN als Task oder als Catching Intermediate Message
Event dargestellt werden.

41.1.6 <reply>

Die <reply> Aktivitat kann in BPMN als Task oder als Throwing Intermediate Message Event
dargestellt werden.

4.1.1.7 <rethrow>

Die <rethrow> Aktivitat wird in BPMN als Throwing Intermediate Error Event dargestellt.

41.1.8 <throw>

Die <throw> Aktivitat wird in BPMN als Throwing Intermediate Error Event dargestellt.

41.1.9 <wait>

Die <wait> Aktivitat wird in BPMN als Catching Intermediate Timer Event dargestellt.

41

4.1.2 Strukturierte Aktivitaten

41.21 <flow>

Die <flow> Aktivitat wird in BPMN als Sub-Prozess mit jeweils einem Parallel-Gateway als
Start- und Endpunkt dargestellt. Die im <flow> enthaltenen Aktivitdten werden zwischen den
beiden Gateways separat abgebildet. Im <flow> enthaltene <link>s werden als Sequence
Flow Connections abgebildet.

4.1.2.2 <forEach>

Die <forEach> Aktivitat wird in BPMN als Sub-Prozess mit jeweils einem Exclusive-Gateway
als Start- und Endpunkt dargestellt. Der im <forEach> enthaltene <scope> wird zwischen
den beiden Gateways separat dargestellt.

41.23 <if>

Die im <if> Konstrukt enthaltenen Aktivitdten werden durch jeweils ein Exclusive-Gateway
als Start- und Endpunkt umgeben. Fir den if-Zweig und flr jeden elseif-Zweig innerhalb des
<if> Konstrukts werden einzelne Pfade mit einer Sequence Flow Connection erstellt. Fir den
else-Zweig wird eine Default Sequence Flow Connection erstellt. Jeder Pfad bildet dabei
eine <sequence> Aktivitat im <if> Konstrukt ab.

41.24 <pick>

Die im <pick> Konstrukt enthaltenen Aktivitdten werden durch ein Event-Based-Gateway als
Startpunkt und ein Exclusive-Gateway als Endpunkt umgeben. Die Aktivitaten innerhalb des
<pick> Konstrukts werden separat abgebildet.

4.1.2.5 <repeatUntil>

Die <repeatUntil> Aktivitat wird in BPMN entweder als Sub-Prozess mit einem Loop-Marker
dargestellt oder mit jeweils einem Exclusive-Gateway als Start- und Endpunkt, die die enthal-
tenen Aktivitdten umschlieBen. Zwischen dem Endpunkt und dem Startpunkt wird eine
Default Sequence Flow Connection erstellt, um die RepeatUntil-Schleifen-Semantik herzu-
stellen.

41.2.6 <sequence>

Die einzelnen Aktivitaten innerhalb der <sequence> Aktivitdt werden in BPMN separat dar-
gestellt und mit Sequence Flow Connections verbunden.

41.2.7 <while>

Die <while> Aktivitat wird in BPMN entweder als Sub-Prozess mit einem Loop-Marker darge-
stellt oder mit jeweils einem Exclusive-Gateway als Start- und Endpunkt, die die enthaltenen
Aktivitaten umschlieRen. Zwischen dem Endpunkt und dem Startpunkt wird eine Sequence
Flow Connection erstellt und als ausgehende Verbindung eine Default Sequence Flow
Connection, um die While-Schleifen-Semantik herzustellen.

42

4.1.3 Scopes

4.1.3.1 <compensate>

Die <compensate> Aktivitat wird in BPMN als Throwing Intermediate Compensation Event
dargestellt.

4.1.3.2 <compensateScope>

Die <compensate> Aktivitat wird in BPMN als Throwing Intermediate Compensation Event
dargestellt.

4.1.3.3 <scope>

Die <scope> Aktivitat wird in BPMN als Sub-Prozess dargestellt. <faultHandlers>, <compen-
sationHandler> und <eventHandler> werden innerhalb des Sub-Prozesses ebenfalls darge-
stellt.

4.1.4 Variablen

4.1.41 <variable>

Die Informationen aus den <variable> Konstrukten werden in BPMN durch Data Objects ab-
gebildet.

4.1.4.2 <validate>

Die <validate> Aktivitat wird in BPMN als Task dargestellt.

4.1.5 Andere Konstrukte

4151 <catch>
Die Abbildung des <catch> Elements wird in Kapitel 4.1.5.4 behandelt.

4.1.5.2 <catchAll>
Die Abbildung des <catchAll> Elements wird in Kapitel 4.1.5.4 behandelt.

4.1.5.3 <compensationHandler>

Die <compensationHandler> Aktivitat wird in BPMN als Sub-Prozess mit einem Compensati-
on-Marker dargestellt.

4.1.5.4 <faultHandlers>

Die Struktur eines <faultHandlers> Konstrukts in BPMN beginnt mit einem Error Start Event
und die eigentliche Fehlerbehandlung wird wie bei der <if> Aktivitdt abgebildet. Flr jedes
<catch> Element und das <catchAll> Element wird ein eigener Pfad erstellt. Die <catch>
Elemente werden durch normale Sequence Flow Connections und das <catchAll> Element
durch eine Default Sequence Flow Connection verbunden.

43

4.1.5.5 <process>

Das <process> Konstrukt wird in BPMN als Pool mit allen enthaltenen Aktivitidten und Hand-

lern dargestellt.

4.1.5.6 <terminationHandler>

Die <terminationHandler> Aktivitat wird in BPMN als Sub-Prozess mit einem Termination-

Marker dargestellt.

4.1.5.7 <onEvent>

Das <onEvent> Element einer <eventHandler> Aktivitat wird in BPMN als Catching Interme-

diate Message Event dargestellt.

41.5.8 <onAlarm>

Das <onAlarm> Element einer <eventHandler> Aktivitat wird in BPMN als Catching Interme-

diate Timer Event dargestellt.

In der folgenden Tabelle sind nochmal alle Zuordnungen zusammengefasst. Wenn es meh-
rere Mdglichkeiten flr eine Zuordnung gibt, wurde eine Default-Zuordnung angegeben. Die

Default-Zuordnungen sind unterstrichen.

BPEL Aktivitat

BPMN Zuordnung

Basis Aktivitdaten

Task oder Sub-Prozess mit den <copy>

<assign> Elementen als einzelne Tasks
Task
<empty>
, Throwing Intermediate Terminate Event
<exit>
, Task oder Sub-Prozess mit <faultHandlers>
<invoke> und <compensationHandler>
- , Task oder Catching Intermediate Message
receive> Event
Task oder Throwing Intermediate Message
<reply> Event
Throwing Intermediate Error Event
<rethrow>
Throwing Intermediate Error Event
<throw>
, Catching Intermediate Timer Event
<wait>
Strukturierte Aktivitaten
Sub-Prozess mit Parallel-Gateways als
<flow> Start- und Endpunkt der inneren Aktivitaten,
<link>s als Sequence Flow Connections
Sub-Prozess mit Loop-Marker oder Exclusi-
<forEach>

ve-Gateways als Start- und Endpunkt des

44

inneren <scope>

Exclusive-Gateways als Start- und End-

<if> punkt, Default Sequence Flow Connection
beim else-Pfad
Event-Based-Gateway als Startpunkt und
<pick> Exclusive-Gateway als Endpunkt, separate

Projektionen der internen Aktivitaten

<repeatUntil>

Sub-Prozess mit Loop-Marker oder Exclusi-
ve-Gateways als Start- und Endpunkt,
Default Sequence Flow Connection zwi-
schen End- und Startpunkt

Sequence Flow Connections verbinden die

<sequence> einzelnen Aktivitaten
Sub-Prozess mit Loop-Marker oder Exclusi-
ve-Gateways als Start- und Endpunkt, nor-
<while> male Sequence Flow Connection zwischen
End- und Startpunkt, Default Sequence Flow
Connection als ausgehende Verbindung
Scopes
Throwing Intermediate Compensation Event
<compensate>
Throwing Intermediate Compensation Event
<compensateScope>
Sub-Prozess mit allen Handlern
<scope>
Variablen
_ Data Object
<variable>
<validate> Task

Andere Konstrukte

<catch>

Siehe <faultHandlers>

<catchAll>

Siehe <faultHandlers>

<compensationHandler>

Sub-Prozess mit einem Compensation-
Marker

<faultHandlers>

Error Start Event und Exclusive-Gateways
als Start- und Endpunkt fiir alle <catch> und
<catchAll>, jedes <catch> ein eigener Pfad,
der <catchAll> Pfad hat eine Default Se-
qguence Flow Connection

<process>

Pool mit allen Aktivitaten und Handlern

<terminationHandler>

Sub-Prozess mit einem Termination-Marker

45

Catching Intermediate Message Event
<onEvent>

Catching Intermediate Timer Event
<onAlarm>

Tabelle 3: Ubersicht tber alle Zuordnungen

4.2 Probleme nach der Transformation

Als grofites Problem nach der Transformation zwischen BPEL und BPMN hat sich die Dead-
Path-Eliminierung aus BPEL herausgestellt. Die Dead-Path-Eliminierung stellt fur das To-
kenkonzept in BPMN eine grol’e Herausforderung dar, da eine Unterscheidung gemacht
werden muss, ob eine Aktivitat ausgefihrt oder Ubersprungen wird.

Die Dead-Path-Eliminierung widerspricht der Tokensemantik in BPMN, weil dabei Zustande
von Konstrukten verandert werden, die nicht von einem Token abgelaufen werden. In [8,
S.115 f.] wird eine Lésung durch die Einflhrung von unterschiedlichen Tokens erlautert. Da-
bei werden zusatzlich zu den normalen Tokens Anti-Tokens verwendet, um tote Pfade abzu-
laufen und die entsprechenden Aktivitaten in den Zustand Skipped zu setzen.

In dieser Arbeit werden die Zustande in BPMN, die von der Dead-Path-Eliminierung betroffen
sind, intern berechnet und so direkt auf den Zustand Skipped gesetzt. Der Bruch mit der To-
kensemantik in BPMN wird damit in Kauf genommen, da keine Nachteile bezlglich der Aus-
fuhrung erkennbar sind. Um die interne Berechnung zu gewahrleisten missen bestimmte
Regeln bezlglich der Existenz von Zustanden eingehalten werden.

1. Wenn eine Aktivitat im Zustand /nactive ist, missen alle folgenden Aktivitaten eben-
falls in diesem Zustand sein.

2. Wenn eine Aktivitat im Zustand Ready ist, dann mussen alle folgenden Aktivitaten im
Zustand Inactive und die vorhergehenden Aktivitaten im Zustand Completed sein.

3. Wenn eine Aktivitat im Zustand Executing ist, dann missen alle folgenden Aktivitaten
im Zustand Inactive und die vorhergehenden Aktivitdten im Zustand Completed sein.

4. Wenn eine Aktivitat im Zustand Completed ist, dann mussen alle vorhergehenden Ak-
tivitaten ebenfalls im Zustand Completed sein.

46

5 Beschreibung einer Projektion

5.1 Zustande

Den Betrachter eines ausflihrenden Geschaftsprozesses kbnnen zwei unterschiedliche Arten
von Zustanden interessieren. Zum einen der Zustand des gesamten Prozesses und zum
anderen der Zustand einzelner Aktivitdten innerhalb des Prozesses. Basierend auf den In-
formationen aus [16] und [17] werden im Folgenden die méglichen Zustande und die Zu-
standslibergange beschrieben. Die Abbildungen 34 und 35 zeigen die Zustandslebenszyklen
basierend auf diesen Informationen.

In diesem Kapitel wird der Begriff Anwender verwendet. Ein Anwender ist die Person, die
den Geschaftsprozess Uberwacht und bei Bedarf die Ausfiihrung stoppen kann. Der Anwen-
der muss im natlrlichen Geschéaftsleben keine einzelne Person sein, der Begriff dient hier
nur zur Veranschaulichung.

Der komplette Prozess kann sich in einem der vier folgenden Zustéande befinden: Running,
Faulted, Completed und Terminated.

Wird die Ausflihrung eines Geschaftsprozesses gestartet, in BPEL geschieht dies durch den
Empfang einer entsprechenden Nachricht, so wird der Zustand auf Running gesetzt. Solange
keine Fehler auftreten oder die Ausfiihrung vom Anwender beendet wird, bleibt der Prozess
im Zustand Running. Tritt ein Fehler wahrend der Ausfiihrung auf, wird die Fehlerbehandlung
gestartet und anschlieRend der Zustand des Prozesses von Running zu Faulted geandert.

Der Prozess selbst und jeder <scope> haben eine Fehlerbehandlung. Ist keine explizite
Fehlerbehandlung angegeben, wird eine Default-Fehlerbehandlung ausgefuhrt. Bei der
Default-Fehlerbehandlung werden alle Fehler innerhalb eines <scope>s an die Ubergeordne-
te Fehlerbehandlung weitergegeben. Wurde eine explizite Fehlerbehandlung angegeben,
werden die beinhalteten Aktivitdten ausgefuhrt. Wird wahrend der Fehlerbehandlung die
Kompensationsmethode aufgerufen, werden alle Kompensationsbehandlungen gestartet.
Durch diese sollen bereits ausgefiihrte Aktivitdten wieder, soweit mdglich, rickgangig ge-
macht werden. Dadurch konnen Aktivitdten innerhalb des Prozesses, die bereits im Zustand
Completed sind, in den Zustand Compensating gesetzt werden, wahrend der Prozess selbst
im Zustand Running verbleibt.

Nach Beendigung der Fehlerbehandlung andert sich der Zustand des Prozesses zu Faulted.
Wird der Prozess durch den Anwender beendet, wird dieser auf den Zustand Terminated
gesetzt. Dabei wird vorher keine Fehlerbehandlung durchgefihrt. Lauft die Ausfihrung da-
gegen bis zum Ende des Prozesses ohne das Auftreten eines Fehlers durch, wird der Zu-
stand auf Completed gesetzt.

47

Abbruch durch
Uberwachenden

Terminated

Ausfiihrung gestartet Fehl:;;\;grr::grr:d der
L Running 8 L Faulted
Fehlerlose
Ausflihrung
r
Completed

Abbildung 34: Zustandslebenszyklus fur einen Geschaftsprozess

Die hier beschriebenen Zustande fir den Prozess werden in dieser Arbeit durch Symbole
veranschaulicht. In der folgenden Tabelle ist eine Ubersicht mit allen Zustdnden und den
zugehdrigen Symbolen zu sehen.

Name Symbol | Beschreibung

, Der Prozess wird momentan ausgeflhrt.
Running b’
Completed J Der Prozess wurde erfolgreich beendet.
Faulted 0 Der Prozess ist fehlgeschlagen.
Terminated ® Der Prozess wurde abgebrochen.

Tabelle 4: Zustande des Prozesses

Far die Aktivitaten gibt es mehr Zustande als fir den Prozess an sich. Hier wird unterschie-
den zwischen den Zustanden /nactive, Ready, Skipped, Executing, Completed, lteration
Completed, Compensating, Compensated, Faulting, Faulted und Terminated.

Nach der Initialisierung des Prozesses werden alle Aktivitaten in den Zustand Inactive ge-
setzt. In diesem Zustand kann eine Aktivitat nicht ausgefihrt werden. Der Zustand Skipped
bedeutet, dass die Aktivitat im weiteren Prozessverlauf nicht ausgeflhrt wird. Durch eine
Dead-Path-Eliminierung kann eine Aktivitat, die entweder im Zustand Inactive oder Ready
ist, in den Zustand Skipped gesetzt werden. Innerhalb einer <if> Aktivitdt werden alle Aktivi-
taten, die nicht im ausgefuhrten Zweig liegen, ebenfalls in den Zustand Skipped gesetzt.

Ist eine Aktivitat in einer <sequence> enthalten, so wird ihr Zustand auf Ready gesetzt, so-
bald die vorherige Aktivitat in dieser <sequence> den Zustand Completed erreicht hat. Inner-
halb eines <flow>s wird eine Aktivitat in den Zustand Ready gesetzt, wenn sie entweder als
erste Aktivitdt vorkommt oder, falls die Aktivitat <link>s beinhaltet, wenn alle Aktivitaten, de-
ren <link>s als Ziel diese Aktivitat haben, den Zustand Completed erreicht haben.

48

Ist eine Aktivitat im Zustand Ready, ergeben sich drei Méglichkeiten in der Fortfiihrung des
Prozesses. Entweder wird die Aktivitat gestartet und somit in den Zustand Executing gesetzt
oder ein alternativer Pfad in der Ausfuhrung einer <if> Aktivitat wird gewahlt und die Aktivitat
wird in den Zustand Skipped gesetzt, wobei sie in diesem Fall nicht ausgefiihrt wird. Die drit-
te Mdglichkeit besteht im Ubergang in den Zustand Terminated, falls der Anwender den Pro-
zess beendet.

Fir eine Aktivitat im Zustand Executing gibt es vier mogliche Zustandsiibergange im weite-
ren Ablauf des Prozesses. Die erste Moglichkeit besteht darin, dass ein Fehler wahrend der
Ausflihrung auftritt und somit der Zustand der Aktivitat zu Faulting Gbergeht. Ist eine explizite
Fehlerbehandlung angegeben, wird diese ausgefuhrt und der Zustand geht anschlieRend zu
Completed Uber. In diesem Fall wird der Prozess weiter ausgefiihrt. Gibt es keine explizite
Fehlerbehandlung, wird die Default-Fehlerbehandlung durchgefiihrt und der Fehler wird an
die Ubergeordnete Fehlerbehandlung weitergegeben. Wenn es keine Ubergeordnete Fehler-
behandlung gibt, der Fehler befindet sich bereits auf der Prozessebene, werden der Zustand
der Aktivitat, sowie der Zustand des Prozesses, nach Beendigung der Fehlerbehandlung in
den Zustand Faulted gesetzt und die Ausfuhrung wird beendet.

Als zweites gibt es die Moglichkeit, dass der Prozess vom Anwender abgebrochen wird. In
diesem Fall gehen alle Aktivitdten, die entweder im Zustand Executing oder im Zustand
Ready sind, sofort in den Zustand Terminated Uber, ohne eine Fehler- oder eine Kompensa-
tionsbehandlung zu starten.

Weiter gibt es die Moglichkeit, dass die Ausfilhrung der Aktivitdt normal verlauft und nach
Beendigung der Aktivitat der Zustand auf Completed gesetzt wird.

Als letztes gibt es den Anwendungsfall, dass eine Schleife durchlaufen wird. In diesem Fall
wird die Aktivitat in den Zustand lteration Completed gesetzt und am Ende des Schleifen-
durchlaufs wird, durch eine angegebene Bedingung, entschieden, ob die Schleife nochmals
zu durchlaufen ist. Im Falle, dass die Schleife nochmals durchlaufen wird, werden alle inter-
nen Aktivitaten, die im Zustand /teration Completed sind, in den Zustand /nactive gesetzt und
der Zustand der Schleife bleibt auf Executing. Wird die Schleife nicht nochmals durchlaufen,
werden der Zustand der Schleife und die Zustande alle internen Aktivitaten auf Completed
gesetzt.

Wird die Kompensationsbehandlung einer Aktivitat gestartet, so geht der Zustand von Com-
pleted zu Compensating uber. Nach Beendigung der Kompensation wird der Zustand auf
Compensated gesetzt.

49

Faulted

|

Nicht behandelter Fehler

Aktivitét bersit zur wahrend der Ausfiihrung
Ausﬁ]hrung Aktivitat durch
o Uberwachenden
Aktivitat initiiert abgebrochen
(o Inactive b Ready > Terminated Faulting
L .] o T

.. Aktivitat durch .,3(\(ey

o f-”l«,(s_ Uberwachenden “\e,‘\ﬂsﬁo‘{\“},//
. Aktivitat ~.¥g, abgebrochen Ao e &
. Ubersprungen NS & s

Aktivitat T B

- S / & &

lbersprungen // \z‘{o ‘\cg» s
v . e & 6)@)
] Skipped Executing Compensating
o N
® 2
. (\(\“6(:2.9‘\6,,/ ’ . {\Qoeﬁ\,//
Schleife wird nochmals Wese 7 - & e :
i m N o - e A Kompensation
durchlaufen und Aktivitat < e Y S beendet
zuriickgesetzt / / *
-~ Schleife und ¥ a / 14
Aktivitaten beendet
Iteration Completed » Completed Compensated

Abbildung 35: Zustandslebenszyklus von Aktivitaten

Die fur die Aktivitadten beschriebenen Zustadnde werden in dieser Arbeit durch verschiedene
Symbole veranschaulicht. In der folgenden Tabelle ist eine Ubersicht mit allen Zusténden
und den zugehoérigen Symbolen zu sehen.

Name Symbol | Beschreibung
, Die Aktivitat wurde noch nicht ausgefiihrt und die Vo-

Inactive raussetzungen zum Starten sind noch nicht erfilll.
Read ® Die Aktivitat wurde noch nicht ausgefihrt, aber die Vo-

eady raussetzungen zum Starten sind erfilll.
Skipped Die Aktivitat wurde Ubersprungen.

, Die Aktivitat wird im Moment ausgeftihrt.

Executing
Completed Die Aktivitat wurde erfolgreich beendet.

Iteration Completed

Ein Durchlauf der Schleife wurde erfolgreich beendet
und es wird geprtift ob ein weiterer durchgefiihrt wird.

Die Aktivitat wurde kompensiert.

Compensated
Faulted Die Aktivitat ist fehlgeschlagen.
Terminated Die Aktivitat wurde abgebrochen.

ROICIKRKN|Y

Tabelle 5: Zustande der Aktivitaten

50

5.2 Muster zur Zustandsibertragung

In [18] haben die Autoren durch ihre Arbeit mehrere Muster zur Zustandstbertragung zwi-
schen technischen Prozessen, zum Beispiel beschrieben durch BPEL, und abstrakten Pro-
zessen, zum Beispiel beschrieben durch BPMN, identifiziert und erstellt. Um diese Muster
abzuleiten, haben sie die Transformation von Konstrukten in abstrakten Prozessen zu Kon-
strukten in technischen Prozessen untersucht und anschlieRend haben sie eine Losung spe-
zifiziert, um den Zustand des abstrakten Prozesses aus dem Zustand des technischen Pro-
zesses abzuleiten. Im Folgenden erldutere ich die von mir verwendeten Muster aus [18]. Far
Informationen Uber die weiteren Muster wird auf [SLLMS11, S.7 ff.] verwiesen.

5.2.1 Direct State Propagation Pattern

Eine direkte Projizierung des Zustandes einer technischen Aktivitat auf den Zustand einer
abstrakten Aktivitat ist die einfachste Méglichkeit zur Ubertragung des Zustandes. Dieses
Pattern kann immer angewendet werden, wenn eine einzelne technische Aktivitat auf eine
einzelne abstrakte Aktivitat abgebildet werden kann. Im Beispiel aus Kapitel 2 wird die <invo-
ke> Aktivitat ,checkAvailbility in BPEL als Task in BPMN dargestellt, was ein Beispiel fir das
Direct State Propagation Pattern ist. Dabei wird der Zustand der <invoke> Aktivitat direkt auf
die Task in BPMN Ubertragen.

>

>
[_ Assign j > Task

Abbildung 36: Direct State Propagation

5.2.2 State Combination Pattern

Es kann vorkommen, dass mehrere technische Aktivitdten eine einzige abstrakte Aktivitat
implementieren. Der Zustand der abstrakten Aktivitat wird aus einer Funktion Uber die Zu-
stande von mehreren technischen Aktivitaten abgeleitet, welche nicht unbedingt verbunden
sein mussen. Es kénnen beliebige Funktionen zur Zustandszusammenfihrung definiert wer-
den. Eine <assign>-Aktivitat, eine <invoke>-Aktivitat und eine zweite <assign>-Aktivitat im
BPEL-Model kénnen als eine BPMN-Aktivitat dargestellt werden. Die Zustandszusammen-
fuhrungsfunktion kénnte nun lauten: Wenn eine der BPEL-Aktivitaten im Zustand Executing
ist, dann ist die BPMN-AKktivitdt ebenfalls im Zustand Executing. Wenn alle drei BPEL-
Aktivitaten im Zustand Completed sind, dann ist auch die BPMN-Aktivitat im Zustand Com-
pleted.

>

v v >
Subprocess
f Assign]—»(Invoke \+[Assign)

Abbildung 37: State Combination

51

5.2.3 Complex State Distribution Pattern

Das Complex State Distibution Pattern basiert auf dem Direct State Propagation Pattern.
Wenn eine einzelne Aktivitat im technischen Model mehrere Aktivitaten im abstrakten Model
implementiert, dann wird der Zustand der technischen Aktivitadt auf die zugehdrigen abstrak-
ten Aktivitaten verteilt.

>

> >

>
(_pssin }——m Copy Copy

h.

Abbildung 38: Complex State Distribution

5.3 BPEL und BPMN Erweiterungen

Um die Projektion von Zustanden durchflihren zu kénnen, missen neue XML-Tags als Er-
weiterungen eingeflhrt werden. Im weiteren Verlauf werden die neuen XML-Tags vorgestellt
und beschrieben. In BPEL werden die Erweiterungen mit dem <extension> Element be-
schrieben und eingefuhrt. BPMN stellt ebenfalls Elemente zu Erweiterung zur Verfligung.
Das Element in BPMN wird wie in BPEL ,extension® genannt und Unterstitzt die Erweiter-
barkeit, indem neue Attribute oder Elemente fiir BPMN durch XML-Schemas definiert werden
kénnen. Die neuen Attribute oder Elemente missen anschlieRend mit dem ,extension® Ele-
ment importiert werden. Fir weitergehende Informationen zur Erweiterbarkeit von BPMN
wird auf [4, S.57 ff.] verwiesen.

5.3.1 activityld

Jede Aktivitat in BPEL erhalt eine eindeutige activityld. Diese wird aus dem Namen der Akti-
vitat, sowie einer Zahl, getrennt durch ein Leerzeichen, zusammengesetzt. Das erste Vor-
kommen einer <assign> Aktivitat hatte die activityld ,assign 1%, die Zweite ,assign 2* und so
weiter. Die activityld wird fir die Generierung der Mappings-Datei, zum Auslesen der Zu-
stédnde und zur Anwendung der Projektionen bendtigt.

<bpel:invoke name="checkAvailability"
inputVariable=“product"“
outputVariable=“availabilityInfo®“
operation=“requestAvailability™“>
<ext:activityId>invoke 1</ext:activityId>
<ext:activityState>Completed</ext:activityState>
<ext:projectionType>Casual</ext:projectionType>

</bpel:invoke>

Listing 34: <invoke> Aktivitat mit einer <ext:activityld>

52

5.3.2 projectionid

Jede Projektion erhalt eine einzigartige projectionld. Diese wird aus dem Namen des BPMN-
Konstrukts, sowie einer Zahl, getrennt durch ein Leerzeichen, zusammengesetzt. Das erste
Vorkommen eines Tasks héatte die projectionld ,task 1% die Zweite ,task 2 und so weiter.
Zusammen mit der activityld wird die projectionld zur Generierung der Mappings-Datei und
zur Anwendung der Projektionen verwendet.

<projection>
<MappingFrom>
<activityId>assign 10</activityId>
<activityId>invoke 8</activityId>
<activityId>assign 11l</activityId>
</MappingFrom>
<MappingTo>
<projectionId>Task 3</projectionId>
</MappingTo>
<projectionRule>Combination</projectionRule>
</projection>

Listing 35: Beispiel einer Projektion aus der Mappings-Datei mit der <projectionld>

In der BPMN-Datei wird das Attribut ,id“ zur Speicherung der projectionld genommen. Das
Attribut ,id“ ist ein Standard-Attribut in BPMN und stellt einen eindeutigen Bezeichner fir je-
des Konstrukt dar.

<subProcess id="subprocess 5" name="findSimilarProduct" />

Listing 36: Attribut "id" in einem BPMN-Konstrukt

5.3.3 activityState

Der XML-Tag activityState gibt den aktuellen Zustand der Aktivitat an, der auf das Konstrukt
in BPMN Ubertragen wird. Wie in Kapitel 5.1 beschrieben, gibt es fur Aktivitdten die Zustande
Inactive, Ready, Skipped, Executing, Terminated, lteration Completed, Completed, Faulting,
Faulted, Compensating und Compensated.

<bpel:invoke name="checkAvailability"
inputVariable=“product"“
outputVariable=“availabilityInfo™
operation=“requestAvailability"“>
<ext:activityId>invoke 1</ext:activityId>
<ext:activityState>Completed</ext:activityState>
<ext:projectionType>Casual</ext:projectionType>

</bpel:invoke>

Listing 37: <invoke> Aktivitat mit dem <ext:activityState> Completed

In BPMN wird der Zustand in einem Attribut gespeichert. Die BPMN-Datei wird zu diesem
Zweck durch das Attribut ,state” erweitert.

‘ <task i1d="task 2" name="checkAvailability" state="Completed" />

Listing 38: Task mit dem state Completed

5.3.4 processState

Der XML-Tag processState ist das Pendant zum activityState fur den kompletten Prozess.
Fir den Prozess kann nicht der activityState verwendet werden, da der Prozess einen ande-

53

ren Zustandsraum als die Aktivitaten hat. Der Zustandsraum flir den Prozess umfasst, wie in
Kapitel 5.1 beschrieben, die Zustande Running, Completed, Faulted und Terminated.

<bpel:process name="Beispiel"
targetNamespace="http://sample.bpel.org/bpel/sample"
suppressJoinFailure="yes"
xmlns:tns="http://sample.bpel.org/bpel/sample"
xmlns:bpel="http://docs.ocasis-open.org/wsbpel/2.0/process/abstract"
abstractProcessProfile=
"http://docs.oasis-open.org/wsbpel/2.0/process/abstract
/simple-template/2006/08">
<ext:processState>Running</ext:processState>
<bpel:import location="Beispiel.wsdl"
namespace=http://sample.bpel.org/bpel/sample
importType="http://schemas.xmlsoap.org/wsdl/" />

Listing 39: Der Beispiel-Prozess mit dem <ext:processState> Running

5.3.5 projectionType

Mit dem XML-Tag projectionType wird zwischen casual und loop unterschieden. Der Typ
loop beinhaltet alle Schleifen, die es in BPEL gibt. Dazu zahlen <while>, <repeatUntil> und
<forEach>. Fir diese Konstrukte wird ein weiteres Attribut, der iterationCount, zum korrekten
Abbilden der Zustande bendtigt. Alle anderen Konstrukte sind im Typ casual zusammenge-
fasst. Der projectionType kann um weitere Typenarten erweitert werden.

<bpel:invoke name="checkAvailability"
inputVariable=“product"“
outputVariable=“availabilityInfo™
operation=“requestAvailability"“>
<ext:activityId>invoke 1</ext:activityId>
<ext:activityState>Completed</ext:activityState>
<ext:projectionType>Casual</ext:projectionType>

</bpel:invoke>

Listing 40: <invoke> Aktivitat mit einem <ext:projectionType>

5.3.6 iterationCount

Um in Schleifen die korrekte Darstellung des aktuellen Zustands abbilden zu kénnen, wird
der iterationCount eingeflhrt. Der iterationCount gibt an in welchem Durchlauf die Schleife
sich befindet. Bei der <forEach> Schleife wird der iterationCount auch zur Uberprifung der
Bedingung eingesetzt. Hat der iterationCount zu Beginn des Schleifendurchlaufs denselben
Wert wie der finalCounterValue der <forEach> Schleife, so ist die Schleife vollstandig durch-
gelaufen und wird beendet. Bei der <while> und <repeatUntil> Schleife gibt es keinen final-
CounterValue, da die Schleife solange durchlaufen wird bis die angegebene Bedingung er-
fullt ist. Das schlief3t nicht aus, dass in der Bedingung vom iterationCount gebraucht gemacht
wird.

<bpel:forEach parallel="no" counterName="Counter" name="ForEach">
<bpel:startCounterValue>1</bpel:startCounterValue>
<bpel:finalCounterValue>S$productOffers.count</bpel:finalCounterValue>
<ext:activityId>forEach 1</ext:activityId>
<ext:activityState>Executing</ext:activityState>
<ext:projectionType>Loop</ext:projectionType>
<ext:iterationCount>5</ext:iterationCount>
<bpel:scope>

54

http://sample.bpel.org/bpel/sample

</bpel:scope>
</bpel:forEach>

Listing 41: <forEach> Aktivitat mit dem <ext:iterationCount> 5

5.4 Zustandsibertragungen von BPEL nach BPMN

5.4.1 <assign>

Die <assign> Aktivitat kann in BPMN als Task oder als Sub-Prozess abgebildet werden. Wird
die Aktivitat als Task abgebildet, dann wird das Direct State Propagation Pattern verwendet.
Der Zustand der <assign> Aktivitat wird also direkt als Zustand auf den Task Ubertragen.

Wird die <assign> Aktivitat nicht als Task, sondern als Sub-Prozess abgebildet, dann muss
unterschieden werden, ob der Sub-Prozess expandiert dargestellt wird oder nicht. Ist der
Sub-Prozess nicht expandiert dargestellt, dann wird, wie beim Task, der Zustand direkt tber-
tragen. Bei einer expandierten Darstellung wird das State Distribution Pattern verwendet.
Hierbei wird der Zustand der <assign> Aktivitat auf alle Tasks im Sub-Prozess lbertragen.

Die Abbildung zeigt ein Beispiel fur den Zustand Executing.

<bpel:assign validate="no" name="assignOffer'">
<ext:activityId>assign 2</ext:activityId>
<ext:activityState>Executing</ext:activityState>
<ext:projectionType>Casual</ext:projectionType>
<bpel:copy>

<ext:activitylId>copy 2</ext:activityIld> >
<bpel:from>S$productDeliveryDate</bpel: from>
<bpel:to>$product.deliveryDate</bpel:to> > assignOffer
</bpel:copy>
<bpel:copy> -

<ext:activityId>copy 3</ext:activityId>
<ppel:from>$productPrice</bpel: from>
<ppel:to>S$product.price</bpel:to>
</bpel:copy>
<bpel:targets>
<bpel:target linkName=%"1ink3“></bpel:target>
<ppel:target linkName=“1link4“></bpel:target>
</bpel;:targets>
</bpel:assign>

Abbildung 39: Projektion einer <assign> Aktivitat

5.4.2 <empty>

Die <empty> Aktivitat wird in BPMN als Task dargestellt und somit greift das Direct State
Propagation Pattern.

AR
<bpel:empty name="Empty"> g
<ext:activityIdrempty 1l</ext:activityId>
<ext:activityState>Skipped</ext:activityState> - empty
<ext:projectionType>Casual</ext:projectionType> ‘
</bpel:empty> B —

Abbildung 40: Projektion einer <empty> Aktivitat

5.4.3 <exit>

Fur die Abbildung der <exit> Aktivitat kann das Terminate-End-Event in BPMN verwendet
werden. Der Zustand betrifft hier nicht direkt das Event, sondern den kompletten Prozess.

55

Wird die <exit> Aktivitat ausgefihrt, so wird der <process> Zustand entsprechend verandert
und alle laufenden Aktivitaten werden unverziglich beendet.

In Abbildung 41 ist der Aspekt zu sehen, dass die <exit> Aktivitat Einfluss auf den Zustand
des Prozesses hat.

<bpel:sequence>
<ext:activityId>sequence l</ext:activityId>
<bpel:compensate>
<ext:activityId>compensate 1l</ext:activityId> QD

<ext:activityState>Inactive</ext:activityState>
<ext:projectionType>Casual</ext:projectionType>
</bpel:compensate> >
<bpel:exit name=“Exit“> Prozess
<ext:activityIdrexit 1l</ext:activityId>
<ext:activityState>Inactive</ext:activityState>

<ext:projecticnType>Casual</ext:procjectionType>
</bpel:exit>
</bpel:sequence>

Abbildung 41: Einfluss der <exit> Aktivitat auf den Prozess

5.4.4 <invoke>

Bei der <invoke> Aktivitat kommen wieder mehrere Darstellungsansatze in Frage. Falls die
<invoke> Aktivitat keine <faultHandlers> und <compensationHandler> hat, dann wird sie als
Task dargestellt und somit kommt das Direct State Propagation Pattern zum Einsatz und der
Zustand wird direkt Ubertragen. Kommen jedoch innerhalb der <invoke> Aktivitat eine
<faultHandlers> Aktivitat, eine <compensationHandler> Aktivitat oder beide Aktivitaten zum
Einsatz, dann wird diese Aktivitat als Sub-Prozess dargestellt. Bei einer nicht expandierten
Darstellung des Sub-Prozesses wird wiederum der Zustand direkt, mit Hilfe des Direct State
Propagation Patterns, tbertragen. Die Ubertragung des Zustandes wird komplexer sobald
eine expandierte Darstellung der <invoke> Aktivitat verwendet wird. Hier mussen die unter-
schiedlichen Zustande betrachtet werden. Ist die <invoke> Aktivitdt im Zustand Faulting,
dann wird der dargestellte Sub-Prozess des <faultHandlers> auf den Zustand Executing ge-
setzt und der Zustand des Sub-Prozesses fur die <invoke> Aktivitat bleibt ebenfalls im Zu-
stand Executing, bis die Abarbeitung des <faultHandlers> beendet ist. Fir den <compensati-
onHandler> gelten dieselben Regeln wie fur den <faultHandlers> Bereich.

<bpel:invoke name="checkAvailability"
inputVariable=“product™" v

outputVariable=“availabilityInfo" (
operation="“requestAvailability™> B checkAvailability
<ext:activityId>invoke l1l</ext:activityId>

<ext:activityState>Completed</ext:activityState>
<ext:projectionType>Casual</ext:projectionType>
</bpel:invoke>

Abbildung 42: Projektion einer <invoke> Aktivitat

5.4.5 <receive>

Die <receive> Aktivitdt kann in BPMN als Task dargestellt werden. Hierbei wird das Direct
State Propagation Pattern zum direkten Ubertragen des Zustandes verwendet.

56

<bpel:receive name="receiveProductRequest"

variable="product" createlInstance="yes" <

. -
operation="sendProductRequest">)
<ext:activityId>receive 1</ext:activityId> > rece""z'zgos(tiUCtRe

<ext:activityState>Completed</ext:activityState>
<ext:projectionType>Casual</ext:projectionType>
</bpel:receive>

Abbildung 43: Projektion einer <receive> Aktivitat

5.4.6 <reply>

Die <reply> Aktivitat wird als Task abgeleitet. Der Zustand fur die <reply> Aktivitat wird eben-
falls direkt mit dem Direct State Propagation Pattern Gbertragen.

<bpel:reply name="productOffering"”
variable="productOffers™
operation="productRegquest ">
<ext:activityId>reply 1</ext:activityId> > productoffering
<ext:activityState>Inactive</ext:activityState>
<ext:projectionType>Casual</ext:projectionType>
</bpel:reply>

Abbildung 44: Projektion einer <reply> Aktivitat

5.4.7 <rethrow>

Ein <rethrow> wird in BPMN als Throwing Intermediate Error Event dargestellt. Die
<rethrow> Aktivitat startet den Ubergeordneten <faultHandlers> und setzt dessen Zustand
auf Executing, wahrend der Zustand des aktuellen <faultHandlers> auf Completed gesetzt
wird.

<bpel:rethrow name=“Rethrow">
<ext:activityId>rrethrow l</ext:activityId> S
<ext:activityState>Skipped</ext:activityState> (:)
<ext:projectionType>Casual</ext:projectionType>
</bpel:rethrow>

Abbildung 45: Projektion einer <rethrow> Aktivitat

5.4.8 <throw>

Mit <throw> kann ein benutzerdefinierter Fehler geworfen werden und durch Eintreten dieses
Fehlers wird der zugehorige <faultHandlers> in den Zustand Executing gesetzt. Die <throw>
Aktivitat wird in BPMN, genau wie die <rethrow> Aktivitat, als Throwing Intermediate Error
Event dargestellt.

<bpel:throw xmlns:FLT="“http://example.com/faults™"
faultName=“"FLT:0utOfStock"™> >
<ext:activityId>throw l</ext:activityId> 4>®
<ext:activityState>Executing</ext:activityState>
<ext:projectionType>Casual</ext:projectionType>
</bpel:throw>

Abbildung 46: Projektion einer <throw> Aktivitat

57

5.4.9 <wait>

Die <wait> Aktivitat wird durch einen Catching Intermediate Timer Event dargestellt. Der Zu-
stand bleibt wahrend der Wartezeit im Zustand Executing und wird auf Completed gesetzt,
sobald die <wait> Aktivitat beendet wurde.

In Abbildung 47 ist ein Beispiel fir eine <wait> Aktivitat mit einer Wartezeit von 10 Minuten
zu sehen.

<bpel:wait name="Wait'>
<ext:ractivityId>rwait 1</ext:activityId> ®
<ext:activityState>Skipped</ext:activityState> » .
<ext:projectionType>Casual</ext:projectionType>
<bpel:for>PT10M</bpel:for>
</bpel:wait>

Abbildung 47: Projektion einer <wait> Aktivitat

5.4.10 <flow>

Als aullere Hille eines <flow> Konstrukts dient ein Sub-Prozess. Im Innern des Sub-
Prozesses kommt jeweils ein Parallel-Gateway an den Anfang und an das Ende des Kon-
strukts, um die parallele Ausflihrung innerhalb eines <flow>s zu ermdglichen. Die <link>s
innerhalb des <flow> werden als Sequence Flow Connections und alle Aktivititen werden
separat je nach Aktivitatentyp in BPMN abgebildet.

Wird die <flow> Aktivitat als nicht expandierter Sub-Prozess dargestellt, kommt das State
Combination Pattern zum Einsatz. Ist der Sub-Prozess expandiert dargestellt, kommt eben-
falls das State Combination Pattern zum Einsatz, aber zusatzlich sind die beiden Parallel-
Gateways des <flow>s im Zustand Executing. Solange mindestens eine der im <flow> ent-
haltenen Aktivitaten im Zustand Executing ist, bleiben die Parallel-Gateways in ihrem Zu-
stand. Sind alle Aktivitdten im Zustand Completed, werden die Parallel-Gateways auch in
den Zustand Completed gesetzt. Durch die Tokensemantik von BPMN wirde es durch die
Zustande der beiden Gateways zu Problemen kommen, da der durchlaufende Token dupli-
ziert wird. Diese Problematik wird in Kapitel 5.5.4 behandelt.

<bpel:flow name="Flow"> I <

<ext:activityld>flow 1</ext:activityId>)
<ext:activityState>Executing</ext:activityState>

——1 receiveOffer
<extiprojectionType>Casual</ext:projectionType>
<bpel:receive name="receiveOQffer™ .> -
<ext:activityld>receive 2</ext:activityId>
=

<ext:activityState>Completed</ext:activityState> p

<ext:i:projectionType>Casual</ext:projectionType> - ‘ "\ - ' th\

>

checkDeliveryDat checkPrice
e

</bpel:receive>
<bpel:invoke name=“checkDeliveryDate™ ...>

S h
| ']

<bpel:links> . > assignOffer] -

</bpel:links>
</bpel:flow>

Abbildung 48: Projektion einer <flow> Aktivitat

58

5.4.11 <forEach>

Diese Aktivitdt wird durch einen Sub-Prozess dargestellt. Ist der Sub-Prozess nicht expan-
diert dargestellt, kommt das State Combination Pattern zum Einsatz. In der expandierten
Darstellung wird auch das State Combination Pattern zum Einsatz, wobei, wie bei der <flow>
Aktivitat, die Exclusive-Gatways ebenfalls einen Zustand erhalten. Sie sind wahrend der Aus-
fuhrung der <forEach> Aktivitat im Zustand Executing. Nach Beendigung der Schleife, ent-
weder durch einen kompletten Durchlauf oder durch eine <completionCondition>, wird der
Zustand der <forEach> Aktivitat, sowie die Zustande der Exclusive-Gateways, auf Comple-
ted gesetzt. Durch die Tokensemantik von BPMN wirde es durch die Zustande der beiden
Gateways zu Problemen kommen, da der durchlaufende Token dupliziert wird. Diese Prob-
lematik wird in Kapitel 5.5.4 behandelt.

>

—
P .

<bpel:forEach parallel="no" counterName="Counter"
name="ForEach">
<ppel:startCountervValue>1</bpel:startCountervValue>
<bpel:finalCountervValue>
SproductOffers.count
</bpel:finalCountervValue>
<ext:activityId>foreach l</ext:activityId> >
<ext:activityState>Executing</ext:activityState>
<ext:projectionType>Loop</ext:projectionType>
<ext:iterationCount>2</ext:iterationCount>
<bpel:scope>

</bpel:scope>
</bpel:forEach>

Abbildung 49: Projektion einer <forEach> Aktivitat

5.4.12 <if>

Ein <if> Konstrukt wird als Sub-Prozess dargestellt. Bei einer nicht expandierten Darstellung
kommt das State Combination Pattern zum Einsatz. In der expandierten Darstellung kommt
ebenfalls das State Combination Pattern zum Einsatz. In dieser Darstellung hat der Sub-
Prozess vor und hinter den beinhalteten Aktivitaten jeweils ein Exclusive-Gateway, die wah-
rend der Ausflhrung der <if> Aktivitat im Zustand Executing bleiben. Das Start-Gateway hat
je einen ausgehenden Sequence Flow fir den if- und den else-Pfad, sowie flr jeden elseif-
Pfad. Da nur einer der Pfade ausgeflihrt werden kann, werden die Zustande der Aktivitaten
auf den anderen Pfaden intern berechnet und automatisch in den Zustand Skipped gesetzt.
Der else-Pfad hat eine Default Sequence Flow Connection, wird also standardmaRig als
auszufuhrender Pfad genommen. Auf dem gewahlten Pfad werden die Aktivitaten der Reihe
nach, wie in einer <sequence>, ausgefuhrt. Nach Beendigung der <if> Aktivitat werden deren
Zustand, sowie die Zustande der Exclusive-Gateways, auf Completed gesetzt. Durch die
Tokensemantik von BPMN wiirde es durch die Zustande der beiden Gateways, sowie durch
die Dead-Path-Eliminierung, zu Problemen kommen, da der durchlaufende Token dupliziert
wird. Diese Problematik wird in Kapitel 5.5.4 behandelt.

59

<bpel:if name="ProductAvailable™> v + i
<ext:activityId>if 1</ext:acitivityld>
<ext:activityState>Executing</ext:activityState>
<ext:projecticnType>Casual</ext:projectionType>
<ppel:condition>

bpel:getVariableProperty(availabilityInfo’,
“inventory:level) > 0
</bpel:condition>

Y

<bpel:elseif>

</bpel:elseif>
<bpel:else>

</bpel:else>
</bpel:if> ‘ | ‘

Abbildung 50: Projektion einer <if> Aktivitat

5.4.13 <pick>

Das <pick> Konstrukt wird ebenfalls durch zwei umgebende Gateways abgebildet. Am An-
fang wird ein Event-Based-Gateway und am Ende ein Exclusive-Gateway verwendet. Die
Aktivitaten innerhalb des <pick> Konstrukts werden separat behandelt. Das Konstrukt selbst
hat keinen eigenen Zustand, aber die beiden Gateways bekommen einen. Solange mindes-
tens eine Aktivitat innerhalb der <pick> Aktivitat nicht im Zustand Completed ist, sind die bei-
den Gateways im Zustand Executing. Wurden alle internen Aktivitdten beendet, so werden
die beiden Gateways in den Zustand Completed gesetzt. Durch die Tokensemantik von
BPMN wirde es durch die Zustédnde der beiden Gateways zu Problemen kommen, da der
durchlaufende Token dupliziert wird. Diese Problematik wird in Kapitel 5.5.4 behandelt.

- N
<bpel:pick name="“productRequest“>
<bpel:onMessage operation="startPrecductSearch™ wariable="product™> '
<ext:activityIdrevent 3</ext:activityId> — ey
= &)

<ext:activityState>Inactive</ext:activityState>
<ext:projectionType>Casual</ext:projectionType>
</bpel:onMessage>
<bpel:onAlarm>
<ext:activityIdrevent 4</ext:activityId>
<ext:activityStaterInactive</ext:activityState>
<ext:projectionType>Casual</ext:projectionType>
<bpel:for>"PT12H </bpel:for>

</bpel:onAlarm> L
</bpel:pick> \7P<\ \17’

Abbildung 51: Projektion einer <pick> Aktivitat

5.4.14 <repeatUntil>

Die <repeatUntil> Aktivitdt kann als nicht expandierter Sub-Prozess mit einem Loop-Marker
oder als expandierter Sub-Prozess dargestellt werden. In beiden Fallen wird der Zustand per
State Combination Patter Ubertragen. Bei der expandierten Darstellung wird am Anfang und
am Ende des Sub-Prozesses jeweils ein Exclusive-Gateway gestellt. Man definiert dann fur
das hintere Gateway eine Default-Verbindung, die zurlick auf das erste Gateway flhrt um die
Schleife weiterlaufen zu lassen und definiert zudem eine Verbindung, die bei Erflllung der
angegebenen Bedingung gewahlt wird. Die Aktivitdten innerhalb der <repeatUntil> Aktivitat
werden separat abgebildet und zwischen die beiden Exclusive-Gateways gesetzt. Die beiden

60

Gateways erhalten ebenfalls einen Zustand. Wahrend der Ausflihrung der <repeatUntil>-
Schleife wird der Zustand der beiden Gateways auf Executing gesetzt. Nach Beendigung der
Schleife werden der Zustand der <repeatUntil> Aktivitat, sowie die Zustdnde der Exclusive-
Gateways, auf Completed gesetzt. Durch die Tokensemantik von BPMN wiuirde es durch die
Zustande der beiden Gateways zu Problemen kommen, da der durchlaufende Token dupli-
ziert wird. Diese Problematik wird in Kapitel 5.5.4 behandelt.

Ein Beispiel fur die <repeatUntil> Aktivitat mit einem nicht expandierten Sub-Prozess.

<bpel:repeatUntil name="checkStock™>
<ext:activityId>repeatuntil 1</ext:activityId>
<ext:activityState>Executing</ext:activityState>

<ext:projectionType>Loop</ext:projectionType> >
<ext:iterationCount>10</ext:iterationCount>

<bpel:invoke name=“checkStock™> checkStock
</bpel:invoke> O

<bpel:condition>
bpel:getVariableProperty(availabilityInfo’,
‘product:inStock”) < 15
</bpel:condition>
</bpel:repeatlUntil>

Abbildung 52: Projektion einer <repeatUntil> Aktivitat

5.4.15 <sequence>

Eine aneinander Reihung mehrerer Aktivitaten, wie innerhalb der <sequence> Aktivitat, kann
in BPMN entweder wieder durch einen nicht expandierten Sub-Prozess oder durch die ein-
zelnen Aktivitaten innerhalb der <sequence> dargestellt werden. Bei Verwendung eines nicht
expandierten Sub-Prozesses wird das State Combination Pattern angewandt. Der Zustand
des Sub-Prozesses ist also solange Executing, solange mindestens eine Aktivitat innerhalb
der <sequence> im Zustand Executing ist. Sind alle Aktivitaten innerhalb der <sequence> im
Zustand Completed, dann wird auch der Zustand des Sub-Prozesses auf den Zustand Com-
pleted gesetzt. Werden die Aktivitdten aus der <sequence> allerdings einzeln in BPMN ab-
gebildet, dann wird jede Aktivitat einzeln betrachtet und die Regeln fir jede dieser Aktivitaten
mussen beachtet werden. Die <sequence> an sich hat in diesem Fall keinen gesonderten
Zustand.

v
Assign1
<bpel:segquence>
<bpel:assign name="“Assignl“> +
<ext:activityIdrassign 1l</ext:activityId>
<ext:activityStaterCompleted</ext:activityState>
</bpel:assign> A/ >
<bpel:invoke name=“Invckel™“> Invoke1
<ext:activityIdrinvoke 1</ext:ractivityId>
<ext:activityStaterExecuting</ext:activityState> —— [+
</bpel:invoke>
<bpel:assign name="Assign2“>

<ext:activityIdrassign 2</ext:activityId> [_____J'

<ext:activityState>Inactive</ext:activityState> Assign2
</bpel:assign>

</bpel:sequence>

Abbildung 53: Projektion einer <sequence> Aktivitat

61

5.4.16 <while>

Die <while> Aktivitdt wird genauso wie die <repeatUntil> Aktivitat aufgebaut, nur dass hier
die Default-Verbindung nicht zuriick zum ersten Exclusive-Gateway flihrt, sondern die aus-
gehende Verbindung ist, mit der die Schleife beendet wird. Die Verbindung mit der <conditi-
on> fuhrt, solange diese erfiillt wird, zurlick zum ersten Exclusive-Gateway. Genau wie bei
der <repeatUntil> Aktivitat tritt auch hier das Problem mit der Tokensemantik von BPMN auf.
Diese Problematik wird in Kapitel 5.5.4 behandelt.

Das Beispiel in Abbildung 54 zeigt die <while> Schleife aus dem Beispiel in Kapitel 2. Zur
Unterstutzung der Verstandlichkeit wird das BPMN Konstrukt expandiert und mit Start- und
End-Event dargestellt.

<ppel:while name="While™>
<ext:activityId>swhile 1</ext:activityId>
<ext:activityState>Skipped</ext:activityState>
<ext:projectionType>Loop</ext:projectionType> S
<ext:iterationCount>0</ext:iterationCount> findSimilar
<ppel:conditicn> Product
$similarPreductRequest ≠ nil

</bpel:condition> -
<bpel:invoke name=“findSimilarProduct™ ...>

Y

A

</bpel:invoke>
</bpel:while>

Abbildung 54: Projektion einer <while> Aktivitat

5.4.17 <scope>

Alle Aktivitdten innerhalb der <scope> kodnnen einzeln dargestellt werden und somit kommt
fur jede Aktivitat die jeweilige Zustandsubertragungsregel zum Einsatz. Wird die <scope>
Aktivitat jedoch als einzelner nicht expandierter Sub-Prozess dargestellt, dann wird das State
Combination Pattern genutzt um die Zustdnde zusammenzufassen. Es wird eine Funktion
Uber alle internen Aktivitaten erstellt, die eine Aussage uber den Zustand der <scope>, als
Ubergeordneten Sub-Prozess, macht.

5.4.18 <variable>

Variablen kénnen in BPMN durch ein Data Object dargestellt werden. Der Zustand entspricht
dabei dem aktuellen Wert der Variablen.

<bpel:variable name="availabilityInfo"

messageType="tns:availabilityType">

<ext:ractivityIdrvariable 1</ext:activityId> -
<ext:variableValueravailable</ext:variableValue>

</bpel:variable>

availabilitylnfo

62

Abbildung 55: Projektion einer <variable> Aktivitat

5.4.19 <validate>

Die <validate> Aktivitat wird in BPMN durch einen Task dargestellt. Der Zustand wird mit
dem Direct State Propagation Pattern Gbertragen.

<bpel:validate variables=" shipRequest shipNotice b

itemsShipped “ name=“Validate™>
<ext:activityId>validate 1</ext:activityId> Validate
<ext:activityState>Executing</ext:activityState>
<ext:projectionType>Casual</ext:projectionType>

</bpel:validate>

Abbildung 56: Projektion einer <validate> Aktivitat

5.4.20 <compensationHandler>

Der <compensationHandler> wird als Sub-Prozess mit einem Compensation-Marker in
BPMN dargestellt. Die Darstellung als Sub-Prozess hat den Vorteil, dass nicht zwischen ei-
ner Basic Activity und einer Structured Activity unterschieden werden muss. Bei der Darstel-
lung als nicht expandierter Sub-Prozess wird der Zustand direkt Ubertragen, es kommt also
das Direct State Propagation Pattern zum Einsatz. Handelt es sich jedoch um eine expan-
dierte Darstellung des Sub-Prozesses, dann werden die Aktivitaten innerhalb des <compen-
sationHandler>s einzeln behandelt und die entsprechenden Zustandsubertragungsregeln
muassen verwendet werden.

<bpel:Invoke name=“findSimilarProduct™
inputVariable="product"
outputVariable="similarProductRequest"
operation="findSimilarProduct™>)

<bpel:compensationHandler> findSimilar
<ext:activityId>invoke 6</ext:activityId> Product
<ext:activityState>Skipped</ext:activityState>]

<ext:projectionType>Casual</ext:projectionType>
<bpel:invoke name=“cancelSearch™
operation="“cancelProductSearch0">
</bpel:invoke>
</bpel:compensationHandler>
</bpel:invoke>

Abbildung 57: Projektion einer <compensationHandler> Aktivitat

5.4.21 <faultHandlers>

Die Darstellung des <faultHandlers> in BPMN wird durch einen Error Start Event, gefolgt von
einem Exclusive-Gateway geldst. Um die unterschiedlichen <catch> Elemente darstellen zu
kénnen, wird je ein Exclusive-Gateway vor und hinter die Fehlerbehandlung gesetzt. Die bei-
den Exclusive-Gateways haben ebenfalls einen Zustand. Wird der <faultHandlers> ausge-
fuhrt, sind die beiden Gateways im Zustand Executing. Nach Beendigung des <faultHand-
lers> werden die beiden Gateways in den Zustand Completed gesetzt. Fir jedes <catch>
Element gibt es eine eigene Verbindung, die vom ersten Exclusive Gateway ausgeht und
beim zweiten Exclusive-Gateway gibt es synchron fir jedes <catch> Element eine eingehen-
de Verbindung. Die Aktivitdten innerhalb der <catch> Elemente werden einzeln behandelt
und fir jede wird die jeweilige Zustandslbertragungsregel verwendet. Gibt es nur ein
<catchAll> Element und keine <catch> Elemente, dann kénnen die Gateways wegfallen und

63

die Aktivitdten innerhalb des <catchAll> Elements werden direkt an das Error Start Event
gehangt.

Durch die Tokensemantik von BPMN wirde es durch die Zustande der beiden Gateways zu
Problemen kommen, da der durchlaufende Token dupliziert wird. Diese Problematik wird in
Kapitel 5.5.4 behandelt.

<bpel:faultHandlers>
<ext:activityId>faulthandlers 1l</ext:activityId>
<ext:activityState>Ready</ext:activityState>
<ext:projectionType>Casual</ext:projectionType>
<bpel:catchAll>
<bpel:sequence>
<ext:activityIdrsequence 1</ext:activityId>
<bpel:compensate>
<ext:activityIldrcompensate 1</ext:activityId>
<ext:activityState>Inactive</ext:activityState>
<ext:projectionType>Casual</ext:projectionType>
</bpel:compensate>
<bpel:exit name=“Exit“>
<ext:activityIdrexit 1</ext:activityId>
<ext:activityState>Inactive</ext:activityState>
<ext:projectionType>Casual</ext:projectionType>
</bpel:exit>
</bpel:sequence>
</bpel:catchAll>
</bpel:faultHandlers>

\
@<« 2«2

Abbildung 58: Projektion einer <faultHandlers> Aktivitat

5.4.22 <process>

Das <process> Konstrukt enthalt den kompletten BPEL-Prozess mit allen Aktivitaten und
Elementen. Der Prozess wird in BPMN als Pool dargestellt und er ist solange im Zustand
Running, solange eine Aktivitat innerhalb des Prozesses lauft. Es wird also das State Com-
bination Pattern verwendet. Gibt es auf Prozessebene ein <faultHandlers> Konstrukt, dann
wird dieses wie im entsprechenden Kapitel beschrieben behandelt.

Ein Beispiel fir den kompletten Prozess ist in Kapitel 2 zu sehen.

5.4.23 <terminationHandler>

Der <terminationHandler> wird in BPMN durch einen Sub-Prozess mit einem Termination-
Marker dargestellt. Die enthaltenen Aktivitaten werden separat behandelt. Der Zustand wird
durch das State Combination Pattern Ubertragen. Solange eine der internen Aktivitaten im
Zustand Executing ist, ist auch der <terminationHandler> im Zustand Executing. Sobald alle
internen Aktivitaten beendet sind, wird der Zustand auf Completed gesetzt.

64

<bpel:terminationHandler name=“Terminate®™>

<ext:activityState>Executing</ext:activityState>
<ext:projectionType>Casual</ext:projectionType>
<bpel:assign name=“Assign™>
<ext:activityIdrassign 1l</ext:activityId>
<ext:activityState>Completed</ext:activityState>

</bpel:assign>

<bpel:invoke name="Invoke™>
<ext:activityIdrinveoke 1l</ext:activityId>
<ext:activityState>Executing</ext:activityState>

</bpel:invoke>
</bpel:terminationHandler>

<ext:activityId>terminationhandler 1l</ext:activityId>

Terminate

N

Abbildung 59: Projektion einer <terminationHandler> Aktivitat

5.4.24 <eventHandlers>

Das <onEvent> Konstrukt kann in BPMN durch einen Catching Intermediate Message Event,
gefolgt von einem Task beziehungsweise einem Sub-Prozess fur die enthaltene Aktivitat,
dargestellt werden. Synchron dazu kann das <onAlarm> Konstrukt durch einen Catching
Intermediate Timer Event, gefolgt von einem Task beziehungsweise einem Sub-Prozess flr
die enthaltene Aktivitat, dargestellt werden. Solange eine Aktivitat innerhalb des <scope> im
Zustand Executing ist, ist auch der Event im Zustand Executing. Wenn der <scope> beendet

ist, wird das Event in den Zustand Completed gesetzt.

<bpel:eventHandlers>
<bpel:onEvent operation=“querySearchStatus">
<ext:activityId»event l</ext:activityId>
<ext:activityState>Executing</ext:activityState>
<ext:projectionTyperCasual</ext:projectionType>
<bpel:scope>...</bpel:scope>
</bpel:onEvent>
<bpel:onEvent operation=“cancelSearch">
<ext:activityIdrevent 2</ext:activityId>
<ext:activityState>Inactive</ext:activityState>
<ext:projectionType>Casual</ext:projectionType>
<bpel:scope>...</bpel:scope>
</bpel:onEvent>
</bpel:eventHandlers>

> .
— =\
> N S
. |
scopel [scope2 }
\ A e

Abbildung 60: Projektion einer <eventHandlers> Aktivitat

Eine Ubersicht Uber alle Zustandsiiberfiihrungsregeln:

BPEL Aktivitat Zustandsiberfihrungsregel
Basis Aktivitaten
_ Direct State Propagation Pattern oder State
<assign> Distribution Pattern
Direct State Propagation Pattern
<empty>
, Direct State Propagation Pattern
<exit>
< S Direct State Propagation Pattern oder State
invoke Combination Pattern
, Direct State Propagation Pattern
<receive>
Direct State Propagation Pattern
<reply>

65

Direct State Propagation Pattern

<rethrow>
Direct State Propagation Pattern
<throw> pag
, Direct State Propagation Pattern
<wait>
Strukturierte Aktivititen
State Combination Pattern
<flow>
State Combination Pattern
<forEach>
, State Combination Pattern
<if>
. State Combination Pattern
<pick>

<repeatUntil>

State Combination Pattern

Jede Aktivitat wird separat behandelt

<sequence>
. State Combination Pattern
<while>
Scopes
Direct State Propagation Pattern
<compensate>
Direct State Propagation Pattern
<compensateScope>
Direct State Propagation Pattern oder State
<scope> Combination Pattern
Variablen
) Direct State Propagation Pattern
<variable>
<validate> Direct State Propagation Pattern

Andere Konstrukte

<catch>

Direct State Propagation Pattern

<catchAll>

Direct State Propagation Pattern

<compensationHandler>

Direct State Propagation Pattern oder State
Combination Pattern

<faultHandlers>

Direct State Propagation Pattern

<process>

State Combination Pattern

66

Direct State Propagation Pattern oder State

<terminationHandler> Combination Pattern

Direct State Propagation Pattern
<onEvent> pag

Direct State Propagation Pattern
<onAlarm> pag

Tabelle 6: Ubersicht tiber die Zustandsuberfiihrungsregeln

Die <flow>, <forEach>, <if>, <repeatUntil>, <pick> und <while> Aktivitdten haben das State
Combination Pattern als Default, alle anderen Aktivitaten werden Default maRig mit dem Di-
rect State Propagation Pattern abgebildet.

5.5 Ablauf einer Projektion

Um einen Geschéaftsprozess, der mit BPEL ausgeflhrt wird, mit BPMN Gberwachen zu koén-
nen, muss zu allererst ein BPMN-Modell aus dem BPEL-Modell generiert werden. Zur Gene-
rierung des BPMN-Modells werden zwei Dinge bendtigt. Zum einen das BPEL-Modell und
zum anderen Informationen Uber die Zuordnung der Aktivitaten. Im ersten Schritt wird aus
der BPEL-Datei die Mappings-Datei erstellt. In der Mappings-Datei werden die Informationen
Uber die Zustandsuberfuhrungen, wie die verwendete Zustandsuberfuhrungsregel und die
beteiligten activitylds und projectionlds, gespeichert. Fiir die Generierung werden Default-
Zustandsuberfiihrungsregeln bestimmt, mit denen eine erste Version der Mappings-Datei
erstellt werden kann. Eine gewisse Individualisierbarkeit wird dadurch erreicht, dass die
Mappings-Datei nach der Generierung manuell verandert werden kénnen.

Die Generierung der BPMN-Datei ist der zweite Schritt im Ablauf. Mit Hilfe der Mappings-
Datei wird aus der BPEL-Datei eine zustandslose BPMN-Datei generiert. Es wird Uber alle
Projektionen aus der Mappings-Datei iteriert und fur jede activityld wird der entsprechende
Aktivitaten-Name und die Struktur aus der BPEL-Datei geholt und abgespeichert. Danach
wird ein BPMN-Konstrukt mit Hilfe der gespeicherten Daten entsprechend der gespeicherten
Zustandsuberflihrungsregel aus der Mappings-Datei erzeugt.

Wie bereits erwahnt kann anschlieRend die Mappings-Datei manuell bearbeitet werden, um
die dargestellten Konstrukte nachtraglich zu verandern. Wurde die Datei nach den individuel-
len Wiinschen verandert, muss die BPMN-Datei erneut generiert werden, um die Anderun-
gen darzustellen. Nach der erneuten Generierung kann die Zustandsuberfihrung gestartet
werden. Mit den Informationen aus der BPEL-Engine wird aus der BPEL-Datei eine zu-
standsbehaftete BPEL-Datei. Jetzt kdnnen die aktuellen Zustandsinformationen mit Hilfe der
Mappings-Datei auf die BPMN-Datei Ubertragen werden und generiert so eine zustandsbe-
haftete BPMN-Datei.

Alle Schritte des Ablaufs werden in diesem Kapitel detailliert beschrieben und durch Beispie-
le verdeutlicht.

Eine Ubersicht Gber den Ablauf ist in Abbildung 61 zu sehen.

67

Generiere
Mappings-Datei

-5 Generiere :
BPEL-Datei-.................3 [U o .
BPMN-Datei Mappings-Datei
BPMN-Datei
Ubertrage S
--------------------- Zustande auf <o
BPMN-Datei
Zustandsbehaftete
BPEL-Datei
Zustandsbehaftete

BPMN-Datei

Abbildung 61: Ubersicht (iber den Ablauf

Als erklarendes Beispiel wird der Ablauf an der <while> Schleife gefolgt von einer <wait>
Aktivitat aus dem Beispiel in Kapitel 2 gezeigt. In Listing 42 ist die normale BPEL-Datei fur
beide Aktivitaten zu sehen.

<bpel:while name="While">
<ext:activityId>while 1</ext:activityId>
<ext:activityState> </ext:activityState>
<ext:projectionType>Loop</ext:projectionType>
<ext:iterationCount>0</ext:iterationCount>
<bpel:condition>
$SsimilarProductRequest != nil
</bpel:condition>
<bpel:invoke name="findSimilarProduct" inputVariable="product"
outputVariable="similarProductRequest" operation="findSimilarProduct">
<ext:activityId>invoke 6</ext:activityId>
<ext:activityState> </ext:activityState>
<ext:projectionType>Casual</ext:projectionType>
<bpel:compensationHandler>
<ext:activityId>compensationHandler 1</ext:activityId>
<ext:activityState> </ext:activityState>
<ext:projectionType>Casual</ext:projectionType>
<bpel:invoke name="cancelSearch" operation="cancelProductSearch">
<ext:activityId>invoke 7</ext:activityId>
<ext:activityState> </ext:activityState>

68

<ext:projectionType>Casual</ext:projectionType>
</bpel:invoke>
</bpel:compensationHandler>

</bpel:invoke>

</bpel:while>

<bpel:wait name="Wait">
<ext:activityId>wait 1</ext:activityId>
<ext:activityState> </ext:activityState>
<ext:projectionType>Casual</ext:projectionType>
<bpel:for>PT10M</bpel:for>

</bpel:wait>

Listing 42: <while> Schleife gefolgt von einer <wait> Aktivitat in BPEL

5.5.1 Mappings XML-Schema

Um festlegen zu kénnen welche Aktivitaten auf welche Konstrukte in BPMN projiziert wer-
den, wird eine Mappings XML-Datei erstellt. Darin sind alle Projektionen enthalten. Eine Pro-
jektion enthalt dabei eine oder mehrere Aktivitaten aus BPEL und eine oder mehrere Kon-
strukte aus BPMN. Die Aktivitdten sind durch die activityld und die Konstrukte durch die pro-
jectionld einzigartig gekennzeichnet. Zudem wird durch projectionRule die Transformations-
regel angegeben, mit der die Projektion durchgefihrt wird. In Listing 43 wird das XML-
Schema beschrieben und danach folgt ein Beispiel fur die Mappings-Datei.

<?xml version="1.0" encoding="utf-8"?>
<xsd:schema attributeFormDefault="unqualified"
elementFormDefault="qualified" version="1.0"
xmlns:xsd="http://www.w3.0rg/2001/XMLSchema">
<xsd:element name="projections">
<xsd:complexType>
<xsd:sequence>
<xsd:element maxOccurs="unbounded" name="projection">
<xsd:complexType>
<xsd:sequence>
<xsd:element name="MappingFrom">
<xsd:complexType>
<xsd:sequence>
<xsd:element maxOccurs="unbounded" name="activityId"
type="xsd:string" />
</xsd:sequence>
</xsd:complexType>
</xsd:element>
<xsd:element name="MappingTo">
<xsd:complexType>
<xsd:sequence>
<xsd:element maxOccurs="unbounded" name="projectionId"
type="xsd:string" />
</xsd:sequence>
</xsd:complexType>
</xsd:element>
<xsd:element name="projectionRule" type="xsd:string" />
</xsd:sequence>
</xsd:complexType>
</xsd:element>
</xsd:sequence>
</xsd:complexType>
</xsd:element>
</xsd:schema>

69

Listing 43: Mappings XML-Schema

In Listing 44 ist die Mappings-Datei fur die <while> Schleife gefolgt von der <wait> Aktivitat

Zu sehen.

<?xml version="1.0" encoding="UTF-8"?>
<projections>

<projection>
<MappingFrom>
<activityId>while 1</activityId>
<activityId>invoke 6</activityId>
<activityId>compensationHandler 1</activityId>
<activityId>invoke 7</activityId>
</MappingFrom>
<MappingTo>
<projectionId>SubProcess 5</projectionId>
</MappingTo>
<projectionRule>Combination</projectionRule>
</projection>
<projection>
<MappingFrom>
<activityId>wait 1</activityId>
</MappingFrom>
<MappingTo>
<projectionId>Task 10</projectionId>
</MappingTo>
<projectionRule>Direct</projectionRule>
</projection>

</projections>

Listing 44: Mappings-Datei fur das <while> und <wait> Beispiel

In dem Beispiel sind zwei Projektionen zu sehen. Bei der ersten wird eine <while> Schleife in
BPMN als Sub-Prozess dargestellt. Als Zustandsuberfuhrungsregel kommt das State Com-
bination Pattern zum Einsatz. Bei der zweiten Projektion wird eine <wait> Aktivitat in BPMN
als ein einzelner Task dargestellt. Hierbei kommt als Zustandsuberfliihrungsregel das Direct

State Propagation Pattern zum Einsatz.

Zur Generierung der Mappings-Datei wird der Pseudo-Code in Listing 45 verwendet:

GenerateMappings (BPELProcess p) {
//schreibe den XML-Header fiur die Mappings-Datei
writeHead;
Array activitylList = getAllActivities (p);
FOR each activity in activityList
activityId = getlId(activity);
type = getType (activity);
mapping = getDefaultMapping (type) ;
rule = getRule (mapping) ;
projectionIds = generateNewProjectionId (mapping) ;
//schreibe den XML-Code fiur die Projektion
writeProjection (activityId, projectionIds, rule);
NEXT;
//schreibe das XML-Closing fur die Mappings-Datei
writeTail;

Listing 45: Generierung der Mappings-Datei

70

5.5.2 Zustandsuberfiihrungsregeln

In Kapitel 5.2 wurden drei Muster zur Zustandsiberfiihrung vorgestellt. Diese werden in die-
sem Kapitel in Zusammenhang mit dieser Arbeit definiert und in Pseudo-Code beschrieben.
In Hinsicht auf die weitere Entwicklung kdnnen weitere Zustandsiberfihrungsregeln definiert
und umgesetzt werden.

5.5.2.1 Direct State Propagation Pattern

Das Direct State Propagation Pattern Uberfihrt den Zustand einer Aktivitat in BPEL in den
Zustand eines Konstrukts in BPMN. Da der Zustand einfach Gbernommen wird, ist dies das
einfachste der drei Muster. Die Methode fir das Muster bekommt als Eingabe eine activityld
und eine projectionld, liest dann den aktuellen Zustand der Aktivitat aus und schreibt ihn zum
passenden Konstrukt in BPMN.

Directstate (activityID string, projectionID string) {
projectionState = getState(activityID);
write (projectionID, projectionState);

Listing 46: Pseudo-Code zum Direct State Propagation Pattern

5.5.2.2 State Combination Pattern

Fir das State Combination Pattern gibt es zwei Methoden. Eine fir normale Aktivitaten und
eine fur Schleifen. Die normalen Aktivitaten umfassen <invoke>, <flow>, <if>, <pick>, <sco-
pe>, <compensationHandler>, <faultHandlers>, <process> und <terminationHandler>. Als
Schleifen werden <forEach>, <repeatUntil> und <while> bezeichnet. Beim State Combinati-
on Pattern werden mehrere Zustande aus BPEL auf einen Zustand in BPMN abgebildet. Um
das zu erreichen mussen bestimmte Bedingungen erflllt sein, die im Folgenden fir beide
Methoden beschrieben werden.

Die Methode fir die normalen Aktivitaten bekommt als Eingabe mehrere activitylds und eine
projectionld. Als erstes wird die Variable projectionState auf einen leeren String gesetzt und
anschlielend wird Uber alle activitylds iteriert. Solange der projectionState auf Completed
steht wird die activityld abgehandelt, ist dies nicht der Fall werden die restlichen Aktivitaten
nicht weiter beachtet, da eine weitere Anderung des Zustands eine Inkonsistenz in Bezug
auf die in Kapitel 4.2 vorgestellten Regeln verursachen wirde. Wahrend der Abarbeitung der
Aktivitat, wird der activityState ausgelesen und anschliel3end je nach Zustand der projecti-
onState verandert. Bei Inactive wird der projectionState ebenfalls auf Inactive gesetzt. Das-
selbe gilt flr die Zustande Skipped, Executing, Compensated, Completed, Faulted und Ter-
minated. Beim Zustand Ready wird der bisherige projectionState abgefragt, ist dieser Com-
pleted, so wird der projectionState auf Executing gesetzt, ansonsten auf Ready. Abschlie-
Rend wird der projectionState zum passenden Konstrukt in der BPMN-Datei geschrieben.

CombinationState (activityIDs array, projectionID string) {
projectionState = "";
//andere den projectionState abhdngig von allen activityStates
FOR each activityID in activityIds
IF pprojectionState == Completed | Iteration Completed
activityState = getState (activityID) ;
CASE activityState:
Inactive: projectionState = Inactive;
Ready: IF projectionState == Completed
then projectionState = Executing

71

ELSE projectionState = Ready;
Skipped: projectionState = Skipped;
Executing: projectionState = Executing;
Compensated: projectionState = Compensated;
Completed: projectionState = Completed;
Faulted: projectionState = Faulted;
Terminated: projectionState = Terminated;
ESAC;
BRI
NEXT;
//schreibe den Zustand in die BPMN-Datei
write (projectionID, projectionState);

Listing 47: Pseudo-Code fur das normale State Combination Pattern

Fir die Methode fur Schleifen wird die obere Methode erweitert. Als weitere Eingaben kom-
men der iterationCount und der finalCounterValue hinzu. Wobei der finalCounterValue nur
fur die <forEach> Schleife von Bedeutung ist. Fur die <repeatUntil> und <while> Schleifen
wird eine Bedingung in der BPEL-Datei angegeben. Die Zustande werden durch den Zu-
stand lteration Completed erganzt. Nach der Abarbeitung aller activitylds kommt eine Abfra-
ge Uber den Zustand hinzu. Ist der projectionState nach der Abarbeitung der <forEach>
Schleife im Zustand lteration Completed, dann wird geprift, ob der finalCounterValue er-
reicht wurde. Fur <repeatUntil> und <while> wird gepruft, ob die angegebene Bedingung
erfullt wurde. Bei der <while> Schleife wird diese Abfrage vor der inneren Ausflihrung ge-
macht und nicht am Ende. Trifft der Fall zu, dass die jeweilige Bedingung erfullt ist, wird der
projectionState auf den Zustand Executing und alle activitylds im Zustand lteration Comple-
ted werden in den Zustand Inactive gesetzt. Ansonsten werden der projectionState und alle
activityStates auf Completed gesetzt.

CombinationState (activityIDs array, projectionID string, iterationCount
int, finalCounterValue int, condition) {
projectionState = "";
FOR each activityID
IF projectionstate == Completed | Iteration Completed
activityState = getState(activityID) ;
CASE activityState:
Inactive: projectionState = Inactive;
Ready: IF projectionState == Completed
then projectionState = Executing
ELSE projectionState = Ready;
Skipped: projectionState = Skipped;
Executing: projectionState = Executing;
Compensated: projectionState = Compensated;
Completed: projectionState = Completed;
Faulted: projectionState = Faulted;

Terminated: projectionState = Terminated;
Iteration Completed: projectionState = Iteration Completed;
ESAC;
FI;
NEXT;

//BRbschnitt fur die <forEach> Schleife
//Hier wird geprift, ob der finalCounterValue erreicht wurde
IF projectionState == Iteration Completed
IF iterationCount < finalCounterValue
projectionState = Executing;
FOR each activityID
activityState = getState (activityID) ;
IF activityState == Iteration Completed

72

activityState = Inactive;
T2
NEXT;
ELSE
projectionState = Completed;
FOR each activityID
activityState = getState (activityID) ;

IF activityState == Iteration Completed
activityState = Completed;
FI;
NEXT :

FI;
ERIN
write (projectionID, projectionState);

Listing 48: Pseudo-Code fur das State Combination Pattern fur Schleifen

5.5.2.3 State Distribution Pattern

Das State Distribution Pattern tberfiihrt den Zustand einer Aktivitat in BPEL in den Zustand
mehrerer Konstrukte in BPMN. Der Zustand der Aktivitat wird fir alle Konstrukte tbernom-
men. Die Methode flr das Muster bekommt als Eingabe eine activityld und mehrere projec-
tionld, liest dann den aktuellen Zustand der Aktivitat aus und schreibt ihn zu allen passenden
Konstrukten in BPMN.

DistributionState (activityID string, projectionIDs array) {
projectionState = getState(activityID) ;
FOR each projectionID
write (projectionID, projectionState);
NEXT;

Listing 49: Pseudo-Code fur das State Distribution Pattern

5.5.3 Generierung der BPMN-Datei

5.5.3.1 XML-Elemente in BPMN

In diesem Unterkapitel werden die wichtigsten XML-Tags fur die BPMN-Datei vorgestellt.
Das <process>-Tag fur den eigentlichen Prozess wird vom <definitions>-Tag umgeben. In
diesem Tag werden Informationen wie zum Beispiel der Namespace angegeben. Alle ande-
ren Tags haben einen Identifier, kurz eine id, und einen Namen. Zusatzlich gibt es noch die
Attribute sourceRef, gibt die Quelle an, targetRef, gibt das Ziel an und gatewayDirection, gibt
an ob das Gateway erstellend (diverging) oder synchronisierend (converging) ist. Fur detail-
lierte Informationen Uber die verwendeten XML-Tags wird auf [19] verwiesen.

In Listing 50 ist die der Teil der BPMN-Datei fur die <while> Schleife und die folgende <wait>
Aktivitat zu sehen.

<subProcess id="subprocess 5" name="findSimilarProduct" />

<sequenceFlow id="sequenceflow 25" sourceRef="subprocess 5"
targetRef="task 10" />

<task id="task 10" name="Wait" />

Listing 50: BPMN-Datei fur die <while> Schleife und die <wait> Aktivitat
Das Listing 51 zeigt die BPMN-Datei flir das Beispiel aus Kapitel 2.
73

<definitions id="customerProductRequest"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalocation="http://schema.omg.org/spec/BPMN/2.0 BPMN20.xsd" >
<process id="process 1" name="main process" processType="None">
<startEvent id="Start" />
<intermediateCatchEvent id="event 1" name="processFaultHandler">
<errorEventDefinition>
<subProcess id="subprocess 1" name="faultHandlers">
<exclusiveGateway id="exclusivegateway 1"
gatewayDirection="diverging" />
<sequenceFlow id="sequenceflow 1"
sourceRef="exclusivegateway 1" targetRef="event 2" />
<intermediateThrowEvent id="event 2" name="compensate'">
<compensateEventDefintion />
</intermediateThrowEvent>
<sequenceFlow id="sequenceflow 2" sourceRef="event 2"
targetRef="event 3" />
<endEvent id="event 3" name="terminate">
<terminateEventDefintion />
</endEvent>
<sequenceFlow id="sequenceflow 3" sourceRef="event 3"
targetRef="exclusivegateway 2" />
<exclusiveGateway id="exclusivegateway 2"
gatewayDirection="converging" />
</subProcess>
</errorEventDefinition>
</intermediateCatchEvent>
<sequenceFlow id="sequenceflow 4" sourceRef="Start"
targetRef="task 1" />
<task id="task 1" name="receiveProductRequest" />
<sequenceFlow id="sequenceflow 5" sourceRef="task 1"
targetRef="task 2" />
<task id="task 2" name="checkAvailability" />
<sequenceFlow id="sequenceflow 6" sourceRef="task 2"
targetRef="subprocess 2" />
<subProcess id="subprocess 2" name="productAvailable">
<sequenceFlow id="sequenceflow 7" sourceRef="subprocess 2"
targetRef="exclusivegateway 3" />
<exclusiveGateway id="exclusivegateway 3"
gatewayDirection="diverging" />

<sequenceFlow id="sequenceflow 8" sourceRef="exclusivegateway 3"

targetRef="task 3">
<conditionExpression xsi:type="tFormalExpression">
${inventoryLevel > 0}
</conditionExpression>
</sequenceFlow>
<task id="task 3" name="empty" />
<sequenceFlow id="sequenceflow 9" sourceRef="task 3"
targetRef="exclusivegateway 4" />

<sequenceFlow id="sequenceflow 10" sourceRef="exclusivegateway 3"

targetRef="task 4">
<conditionExpression xsi:type="tFormalExpression">
${inventoryLevel = 0} && ${inProduction > 0}
</conditionExpression>
</sequenceFlow>
<task id="task 4" name="checkReorder" />
<sequenceFlow id="sequenceflow 11" sourceRef="task 4"
targetRef="subprocess 3" />
<subprocess id="subprocess 3" name="forEach">
<exclusiveGateway id="exclusivegateway 5"
gatewayDirection="diverging" />
<sequenceFlow id="sequenceflow 12"

74

sourceRef="exclusivegateway 5" targetRef="subprocess 4" />
<subProcess id="subprocess 4" name="flow">
<sequenceFlow id="sequenceflow 13" sourceRef="subprocess 4"
targetRef="parallelgateway 1" />
<parallelGateway id="parallelgateway 1"
gatewayDirection="diverging" />
<sequenceFlow id="sequenceflow 14"
sourceRef="parallelgateway 1" targetRef="task 5" />
<task id="task 5" name="receiveOffer" />
<sequenceFlow id="sequenceflow 15" sourceRef="task 5"
targetRef="task 6" />
<sequenceFlow id="sequenceflow 16" sourceRef="task 5"
targetRef="task 7" />
<task id="task 6" name="checkDeliveryDate" />
<task id="task 7" name="checkPrice" />
<sequenceFlow id="sequenceflow 17" sourceRef="task 6"
targetRef="task 8" />
<sequenceFlow id="sequenceflow 18" sourceRef="task 7"
targetRef="task 8" />
<task id="task 8" name="assignOffer" />
<sequenceFlow id="sequenceflow 19" sourceRef="task 8"
targetRef="parallelgateway 2" />
<parallelGateway id="parallelgateway 2"
gatewayDirection="converging" />
</subProcess>
<sequenceFlow id="sequenceflow 20" sourceRef="parallelgateway 2"
targetRef="exclusivegateway 6" />
<exclusiveGateway id="exclusivegateway 6"
gatewayDirection="converging" />
<sequenceFlow id="sequenceflow 21"
sourceRef="exclusivegateway 6"
targetRef="exclusivegateway 5" />
</subProcess>
<sequenceFlow id="sequenceflow 22" sourceRef="exclusivegateway 6"
targetRef="task 9" />
<task id="task 9" name="evaluateResults" />
<sequenceFlow id="sequenceflow 23" sourceRef="task 9"
targetRef="exclusivegateway 4" />
<sequenceFlow id="sequenceflow 24" sourceRef="exclusivegateway 3"
targetRef="subprocess 5">
<conditionExpression xsi:type="tFormalExpression">

S${inventorylLevel = 0} && S${inProduction = 0}
</conditionExpression>
</sequenceFlow>

<subProcess id="subprocess 5" name="findSimilarProduct" />
<sequenceFlow id="sequenceflow 25" sourceRef="subprocess 5"
targetRef="task 10" />
<task id="task 10" name="summarizeResults" />
<sequenceFlow id="sequenceflow 26" sourceRef="task 10"
targetRef="exclusivegateway 4" />
<exclusiveGateway id="exclusivegateway 4"
gatewayDirection="converging" />
</subProcess>
<sequenceFlow id="sequenceflow 27" sourceRef="exclusivegateway 4"
targetRef="task 11" />
<task id="task 11" name="productOffering" />
<sequenceFlow id="sequenceflow 28" sourceRef="task 11"
targetRef="End" />
<endEvent id="End" />
</process>
</definitions>

75

Listing 51: BPMN-Datei

5.5.3.2 Generierung

Die BPEL-Datei und die Mappings-Datei dienen als Grundlage fir die Generierung der
BPMN-Datei. Es wird Uber alle Projektionen aus der Mappings-Datei iteriert und fir jede acti-
vityld wird der entsprechende Aktivitaten-Name aus der BPEL-Datei geholt und abgespei-
chert. Danach wird ein BPMN-Konstrukt entsprechend der gespeicherten Zustandsuberfih-
rungsregel aus der Mappings-Datei erzeugt. Die XML-Tags fir BPMN wurden daflr in Kapi-
tel 5.5.3.1 eingefuhrt.

Der Algorithmus in Listing 52 zeigt die Generierung der BPMN-Datei in Pseudo-Code:

GenerateBPMN (BPELProcess p, MappingsDatei m) {

//schreibe den XML-Header fir die BPMN-Datei

writeHead;

Array projections = getProjections (m);

FOR each projection in projections
activityId = getAcitivityId(projection);

name = getName (activityId) ;
projectionId = getProjectionId(projection);
rule = getRule (projection) ;

//Zur Einhaltung der Struktur wird der BPEL-Prozess bei der
//Generierung als Parameter mitgegeben
writeBPMNContruct (p, name, projectionId, rule);

NEXT;

//schreibe das XML-Closing fur die BPMN-Datei

writeTail;

}

Listing 52: Generierung der BPMN-Datei

5.5.4 Probleme bei der Projektion

Bei allen Aktivitaten, die mit Hilfe von Gateways dargestellt werden, wirde das Problem der
duplizierten Tokens auftreten. Um dieses zu umgehen werden die Zustande der Gateways
nicht Ubertragen, sondern intern aus den Zustédnden aller, zwischen den beiden Gateways
enthaltenen, Aktivitaten berechnet. Wahrend mindestens eine dieser Aktivitaten im Zustand
Executing ist, sind die beiden Gateways ebenfalls im Zustand Executing. Sobald alle enthal-
tenen Aktivitaten im Zustand Completed sind, werden auch die beiden Gateways in den Zu-
stand Completed gesetzt.

5.6 Anpassungen an der Mappings-Datei

Nach der Generierung der Mappings-Datei ist es mdglich, die enthaltenen Projektionen ma-
nuell zu verandern. Dabei missen die activitylds korrekt weiterverwendet werden, da es
sonst zu Problemen bei der Generierung der BPMN-Datei kommen kann. Wurden alle ge-
wilnschten Anderungen vollzogen, kann, mit Hilfe der geanderten Mappings-Datei, die
BPMN-Datei erneut erzeugt werden. Dafur wird Uberprift, ob die Mappings-Datei verandert
wurde, und falls dies der Fall ist, wird die generateBPMN-Methode erneut aufgerufen.

checkMappingsFile (BPELProcess p, MappingsDatei m) {
BOOL fileStateChanged = checkForChanges (m) ;
IF fileStateChanged == true
generateBPMN (p, m) ;
FI

76

|}

Listing 53: checkMappingsFile als Pseudo-Code

5.7 Mapping der Zustande

Als letzter Schritt wird die Ubertragung der Zustande gemacht. Die zustandsbehaftete BPEL-
Datei, die Mappings-Datei und die BPMN-Datei bilden die Grundlage fir die Generierung der
zustandsbehafteten BPMN-Datei.

In Listing 54 ist die zustandsbehaftete BPEL-Datei fur das Beispiel mit der <while> Schleife
gefolgt von der <wait> Aktivitat zu sehen.

<bpel:while name="While">
<ext:activityId>while 1</ext:activityId>
<ext:activityState> </ext:activityState>
<ext:projectionType>Loop</ext:projectionType>
<ext:iterationCount>0</ext:iterationCount>
<bpel:condition>
SsimilarProductRequest != nil
</bpel:condition>
<bpel:invoke name="findSimilarProduct" inputVariable="product"
outputVariable="similarProductRequest" operation="findSimilarProduct">
<ext:activityId>invoke 6</ext:activityId>
<ext:activityState>Skipped</ext:activityState>
<ext:projectionType>Casual</ext:projectionType>
<bpel:compensationHandler>
<ext:activityId>compensationHandler 1</ext:activityId>
<ext:activityState>Skipped</ext:activityState>
<ext:projectionType>Casual</ext:projectionType>
<bpel:invoke name="cancelSearch" operation="cancelProductSearch">
<ext:activityId>invoke 7</ext:activityId>
<ext:activityState>Skipped</ext:activityState>
<ext:projectionType>Casual</ext:projectionType>
</bpel:invoke>
</bpel:compensationHandler>
</bpel:invoke>
</bpel:while>
<bpel:wait name="Wait">
<ext:activityId>wait 1</ext:activityId>
<ext:activityState>Skipped</ext:activityState>
<ext:projectionType>Casual</ext:projectionType>
<bpel:for>PT10M</bpel:for>
</bpel :wait>

Listing 54: zustandsbehaftete BPEL-Datei fur die <while> Schleife und die <wait> Aktivitat

In Listing 55 ist die zustandsbehaftete BPMN-Datei flr das Beispiel mit der <while> Schleife
gefolgt von der <wait> Aktivitat zu sehen.

<subProcess id="subprocess 5" name="findSimilarProduct" state="Skipped" />

<sequenceFlow id="sequenceflow 25" sourceRef="subprocess 5"
targetRef="task 10" />

<task id="task 10" name="Wait" state="Skipped" />

Listing 55: zustandsbehaftete BPMN-Datei flr die <while> Schleife und die <wait> Aktivitat

77

6 Zusammenfassung und Ausblick

Das Thema dieser Diplomarbeit war die sprachiibergreifende Uberwachung von Geschéfts-
prozessen. Da es sich um ein grof3es Themengebiet handelt, wurde das Thema fir diese
Diplomarbeit auf die beiden Sprachen BPEL und BPMN eingeschréankt. Nach dem Schaffen
von Grundlagen durch die Beschreibung der wichtigsten BPEL und BPMN Konstrukte, sowie
der Erlauterung an Beispielen, wurde eine Analyse der Transformation zwischen BPEL und
BPMN gemacht. Die Darstellungen der jeweiligen BPEL Aktivitaten in BPMN wurden erlau-
tert und in einer Tabelle zusammengefasst.

Im Hauptteil der Arbeit wurde ein Ansatz zur Zustandsubertragung beschrieben und drei
Muster fir die Zustandsubertragung vorgestellt. Als Grundlage der Zustandsibertragung
wurden zwei Zustandsraume, fur den Prozess und fur die Aktivitaten, definiert. Diese gelten
fur BPEL und BPMN gleichermalRen. Zur Darstellung der Beispiele wurden Symbole fur die
verschiedenen Zustande eingefiihrt und in Tabellen zusammengefasst.

Danach folgten die notwendigen Anderungen an den Dateiformaten fiir die beiden Sprachen
und deren Umsetzung. Darauf folgte die Beschreibung der Zustandsibertragung fir die ver-
wendeten BPEL Aktivitdten und deren Darstellung in BPMN. Nach Schaffung der Grundla-
gen wurde der Ablauf zur Generierung einer BPMN-Datei aus einer BPEL-Datei beschrie-
ben. Als ersten Schritt wurde die zusatzliche Mappings-Datei eingeflihrt, in der die Zuord-
nungen der BPEL Aktivitaten zu den BPMN Konstrukten festgehalten werden. Mit Hilfe der
Mappings-Datei wurde dann aus der BPEL-Datei die BPMN-Datei erzeugt. Zur Unterstit-
zung des Verstandnisses wurden die Schritte zusatzlich in Code-Form dargestellt.

Als letzten Schritt wurde die Individualisierbarkeit der BPMN-Datei erldutert. Die Moglichkeit
die Mappings-Datei von Hand andern zu kénnen, bietet genau diese Individualisierbarkeit
der BPMN-Datei. Wurden die in der Mappings-Datei enthaltenen Projektionen wunschgemaf
verandert, kann die BPMN-Datei erneut aus der Mappings-Datei und der BPEL-Datei gene-
riert werden.

Fir die Zukunft bleibt abzuwarten, ob es eine standardisierte Darstellung von BPEL auf
BPMN geben wird. Das hier vorgestellte Konzept beruht zwar auf den Standards von BPEL
und BPMN, aber eine standardisierte Darstellung wurde bisher nicht von einer Organisation
erstellt. Bisher ist auch noch keine Lésung in Sicht, da sich die OMG nur mit der Transforma-
tion von BPMN zu BPEL beschaftigt und OASIS hat in der BPEL-Spezifikation geschrieben,
dass eine Transformation von BPEL zu BPMN ,out of scope” ist. Daher bleibt nur die Hoff-
nung, dass sich die Einstellungen dazu in Zukunft noch andern.

Als Erweiterung zu dieser Arbeit konnten alle Zustandslbertragungsmuster aus [18] umge-
setzt werden. Zudem ware es ein interessantes Thema, die BPMN-Datei nicht generieren zu
lassen, sondern eine selbst erstellte Datei zu verwenden. Dabei missten aber Probleme mit
der Soundness und der Vollstandigkeit von Projektionen betrachtet und gelést werden. Zu-
dem ware es natirlich denkbar Zustandsuberfuhrungen zwischen anderen Sprachen, nicht
nur BPEL und BPMN, zu betrachten und auszuarbeiten.

78

Literaturverzeichnis

1 A. Alves, A. Arkin, S. Askary, C. Barreto, B. Bloch, F. Curbera, M. Ford, Y. Goland, A.
Guizar, N. Kartha, C. K. Liu, R. Khalaf, D. Kénig, M. Marin, V. Mehta, S. Thatte,
D. v. d. Rijn, P.Yendluri, A. Yiu:

OASIS Web Services Business Process Execution Language Version 2.0, BPEL 2.0,
2007

[2] G.Latuske:

Sichten auf Geschaftsprozesse als Werkzeug zur Darstellung laufender Prozessin-
stanzen

Universitat Stuttgart, Diplomarbeit Nr. 3036, 2010
[3] Business Process lllustrator

http://sourceforge.net/projects/bpi/

[4] Object Management Group:
Business Process Model and Notation Version 2.0, BPMN 2.0, 2011
[5] BPEL Designer Project

http://www.eclipse.org/bpel/

[6] A. Agrawal, M. Amend, M. Das, M. Ford, C. Keller, M. Kloppmann, D. Kdnig, F. Ley-
mann,
R. Muller, G. Pfau, K. Plésser, R. Rangaswamy, A. Rickayzen, M. Rowley, P.
Schmidt,
I. Trickovic, A. Yiu, M. Zeller:

WS-BPEL Extension for People (BPEL4People), Version 1.0, 2007
[7] Business Process Management Software

http://bpmsoftware.wordpress.com/free-bpa-tools/

[8] D. Schumm:

Graphische Modellierung von BPEL Prozessen unter der Verwendung der BPMN No-
tation

Universitat Stuttgart, Diplomarbeit Nr. 2720, 2008
[9] OASIS, Advanced open standards for the information society

http://www.oasis-open.org/

[10] F.Leymann, D. Roller, S. Thatte:
Goals oft he BPEL4WS Specification, 2003

[11] Object Management Group
79

http://sourceforge.net/projects/bpi/
http://www.eclipse.org/bpel/
http://bpmsoftware.wordpress.com/free-bpa-tools/
http://www.oasis-open.org/

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

http://www.omg.org/

B. Silver:

BPMN Method and Style: A Levels-Based Methodology for BPM Process Modeling
and Improvement Using BPMN 2.0, 2009

C. Ouyang, M. Dumas, A. H. M. Hofstede, W. M. P. van der Aalst:
Pattern-based Translation of BPMN Process Models to BPEL Web Services
J. Mendling, K. B. Lassen, U. Zdun:

Transformation Strategies between Block-Oriented and Graph-Oriented Process Mo-
delling Languages

J. Recker, J. Mendling:

On The Translation between BPMN and BPEL: Conceptual Mismatch between Pro-
cess Modeling Languages, 2006

D. Karastoyanova, R. Khalaf, R. Schroth, M. Paluszek, F. Leymann:

BPEL Event Model, Universitat Stuttgart, 2006

T. Steinmetz:

Ein Event-Modell fiir WS-BPEL 2.0 und dessen Realisierung in Apache ODE
Universitat Stuttgart, Diplomarbeit Nr. 2729, 2008

D. Schumm, G. Latuske, F. Leymann, R. Mietzner, T. Scheibler:

State Propagation For Business Process Monitoring On Different Levels Of
Abstraction

Universitat Stuttgart, 2011
JBPMN, Darstellung von BPMN in XML-Notation:

http://docs.jboss.com/jbpm/v4/devquide/html single/#basicConstructsEvents

80

http://www.omg.org/
http://docs.jboss.com/jbpm/v4/devguide/html_single/%23basicConstructsEvents

Abbildungsverzeichnis

Abbildung 1:
Abbildung 2:
Abbildung 3:
Abbildung 4:
Abbildung 5:
Abbildung 6:
Abbildung 7:
Abbildung 8:
Abbildung 9:
Abbildung 10
Abbildung 11
Abbildung 12
Abbildung 13

Abbildung 14:
Abbildung 15:
Abbildung 16:
Abbildung 17:
Abbildung 18:
Abbildung 19:
Abbildung 20:
Abbildung 21:
Abbildung 22:
Abbildung 23:
Abbildung 24:
Abbildung 25:
Abbildung 26:
Abbildung 27:
Abbildung 28:
Abbildung 29:
Abbildung 30:
Abbildung 31:
Abbildung 32:
Abbildung 33:
Abbildung 34:
Abbildung 35:
Abbildung 36:
Abbildung 37:
Abbildung 38:
Abbildung 39:
Abbildung 40:
Abbildung 41:
Abbildung 42:
Abbildung 43:
Abbildung 44:
Abbildung 45:
Abbildung 46:
Abbildung 47:

Graphisch dargestellter BPEL-Prozess...........ccccccoviiiiiiiiiiiiiiiiiiiiiiiieeeee 6
Das Produktanfrage Beispiel in BPMN ..., 13
Die BPEL zu BPMN Zuordnungen fur das Beispielcccccciiiiiiiiiiiiinnnnes 13
Start-Event.........ooo 31
ENG-EVENT....ce e 31
Intermediate-EVentoooo e 31
MESSAQE EVENLS ... 32
LI 1= Y= o | €SP 32
ErTOr EVENTS ... 32
1 Compensation EVENES.........ouuiiiiiicc e 33
2Terminate EVENT ... 33
: Piktogramm einer AKLIVItAL ... 34
B I T o Y =Ty = PP 34
CompensatioN-Markercooiiiiiiiii e 34
collapsed SUD-Prozessooouuiiiiiiiii e 35
eXPaANAEd SUD-PIrOZESS.......ccciiieeeiieee e a e 35
1o T o J 35
COMPENSALION.....i i 35
T o T P 35
TerMINAtION ...t e et eaeaenneas 35
Exclusive Gateway ohne Marker...........coooooiiiiiiiiiie 36
Exclusive Gateway mit Marker.............eeeiiiiiiiiiiccc e 36
Event-Based Gatewaycccooeeieiiieeee e 37
Exclusive Event-Based Gateway ... 37
erstellendes Parallel Gateway...........ccoooooiiiiiiiiiiiiicicc e 37
synchronisierendes Parallel Gatewaycoovvvviiiiiiiiiiiiiiiiiiiiiiiiiiiiiiieeeee 37
Message FIow Connection..........ccooeeeeiieieeeeeee e 38
SEQUENCE FIOW ... e 38
Conditional SEqUENCE FIOWooeiiiiiiiii e 38
Default SEqUENCE FIOW........uuiiiiieeeieecec e 39
o T P 39
Data ASSOCIAtIONccciiieeiiice e 39
Data ObBJECT. ... 39
Zustandslebenszyklus fur einen GeschaftsSprozess............cccvvveiiiiiiiiiiinnnnnnnes 48
Zustandslebenszyklus von AKEIVITAtEN.............uuuiiiiiiiiiie 50
Direct State Propagation ... 51
State Combinationoiiiiiii 51
Complex State Distribution.............coooviiiiiiiiieeee e 52
Projektion einer <assign> Aktivitat ... 55
Projektion einer <empty> AKLIVItat..........coooeiiiiiiie 55
Einfluss der <exit> Aktivitat auf den Prozessccccoeeevvviiiiiiciiiieiieeen, 56
Projektion einer <invoke> AKLiVItat ..., 56
Projektion einer <receive> AKEIVItAt ... 57
Projektion einer <reply> AKLIVItat............ccooiiiiiiii 57
Projektion einer <rethrow> AKLIVItat............coooooiiiii 57
Projektion einer <throw> AKLIVItat ..o 57
Projektion einer <wait> AKLiVitat............cccoooiiiii 58

Abbildung 48:
Abbildung 49:
Abbildung 50:
Abbildung 51:
Abbildung 52:
Abbildung 53:
Abbildung 54:
Abbildung 55:
Abbildung 56:
Abbildung 57:
Abbildung 58:
Abbildung 59:
Abbildung 60:
Abbildung 61:

Projektion einer <flow> AKLiVitat............cccoooiiiii 58
Projektion einer <forEach> AKLiVitat ..., 59
Projektion einer <if> AKLIVItat.............ooviiiii 60
Projektion einer <pick> AKLIVItat............ccooeiiiiiii 60
Projektion einer <repeatUntil> Aktivitatcccooeiiiiiiiiii 61
Projektion einer <sequence> AktiVitat ... 61
Projektion einer <while> AKLiVitatcccoooiiiiii 62
Projektion einer <variable> AKtiVitatcccooiiii 63
Projektion einer <validate> AKLiVitatccciiiiii i, 63
Projektion einer <compensationHandler> Aktivitatccccooooinnn. 63
Projektion einer <faultHandlers> Aktivitat.............cccooeiiiiiiii . 64
Projektion einer <terminationHandler> Aktivitat.............c....iiii i, 65
Projektion einer <eventHandlers> Aktivitat...........ccccooiiiiiiiicci 65
Ubersicht Uber den ADIAUT..............c.coeieieeeeeeece e 68

82

Listingsverzeichnis

Listing 1: BPEL-Code fur das Produktanfrage Beispiel.............ccccccoiiiiiiiiiiiiiiiiiiiiiiis 11
LiStiNG 2: KASSIGN ...eiiiiiicieeee et a e 16
LiSHING 31 SEIMPEY ™ e 16
LISTING 41 KEXIE> ittt e e e e e e aa 16
Listing 5: <invoke> ohne <compensationHandler>cccooiiiii i, 16
Listing 6: <invoke> mit <compensationHandler>ccccoiiiiiiiiiiiiis 17
LISTING 7: STECEIVES ...ttt e e e et e e e e e e e e ar s 17
LiSTING B SIEPIY™ .. 17
LiSting O: SrethrOW>o e e e e 17

Listing 10:
Listing 11:
Listing 12:
Listing 13:
Listing 14:
Listing 15:
Listing 16:
Listing 17:
Listing 18:
Listing 19:
Listing 20:
Listing 21:
Listing 22:
Listing 23:
Listing 24:
Listing 25:
Listing 26:
Listing 27:
Listing 28:
Listing 29:
Listing 30:
Listing 31:
Listing 32:
Listing 33:
Listing 34:
Listing 35:
Listing 36:
Listing 37:
Listing 38:
Listing 39:
Listing 40:
Listing 41:
Listing 42:
Listing 43:
Listing 44
Listing 45:
Listing 46:
Listing 47:

(o110 10e] g To 11 o] b 20
SFOPEACR> ...t 21

D T3 PP 22
<rEPEAtUNLIIZ ... e 22
1T 1B =T o= PSSP 23
DL 1= 23
<COMPENSAIESCOPE™ ...t e e e e et e e e e e e e e eaeneas 24
=T 070 0> 24
D32 1 F=] 0] = PSS 25
VANAALE™ e 25
D07 1 (6 o P 26
SCALCNAIS .. e 26
<compensationHaNAIEr> ... 26
(LT 1= o] 1S PR 27
<FAUIHANAIEIS™t 27
£ 1101 oo 1 P 27
<terminationHandIer>................cooii e 28
<eventHandlers> mit <ONEvVENt> ... 29
<eventHandlers> mit <ONAIGIM> 29
<invoke> Aktivitat mit einer <ext:activityld>ccccooiiiiiiiiiiii 52
Beispiel einer Projektion aus der Mappings-Datei mit der <projectionld> 53
Attribut "id" in einem BPMN-KONSruKt..........oovvuiiiiiiiiiiee e 53
<invoke> Aktivitat mit dem <ext:activityState> Completed................ccccvvvvvvnnnnnnns 53
Task mit dem state Completed...............ooooeeiiiiiiiiiei 53

Der Beispiel-Prozess mit dem <ext:processState> Running...........ccccccccveveeeenn... 54
<invoke> Aktivitat mit einem <ext:projectionType>...........cccccovrriiiiiiiiiiiiiiiiiiininnns 54
<forEach> Aktivitat mit dem <ext:iterationCount>5............ccciiiiii i, 55
<while> Schleife gefolgt von einer <wait> Aktivitat in BPEL...................ccoovvnnnnnnn. 69
Y E=ToT o1 g Te TSI | IS Tl g =T o - R 70
Mappings-Datei flr das <while> und <wait> Beispi€l..............ccccvveeiiiiiniiiiinnnnnnnn. 70
Generierung der Mappings-Dateicooiiiiiiiiiiiii e 70
Pseudo-Code zum Direct State Propagation Pattern................cccooiininiinne. 71
Pseudo-Code fir das normale State Combination Patternccccccvvvvveeinn. 72

Listing 48:
Listing 49:
Listing 50:
Listing 51:
Listing 52:
Listing 53:
Listing 54
Listing 55:

Pseudo-Code flir das State Combination Pattern fiir Schleifen............................ 73
Pseudo-Code flir das State Distribution Patternooooveiiiiiiiiiiieeeeeen. 73
BPMN-Datei fur die <while> Schleife und die <wait> Aktivitat 73
[T VNN R I = (= R 76
Generierung der BPMN-Datei............uuuumiiiiiiiiiii e 76
checkMappingsFile als Pseudo-Code.........ccoooiiiiiiiiiiiiiiie e 77
zustandsbehaftete BPEL-Datei firr die <while> Schleife und die <wait> Aktivitat.77
zustandsbehaftete BPMN-Datei fir die <while> Schleife und die <wait> Aktivitat77

84

Tabellenverzeichnis

Tabelle 1: Legende der ZUSIANAE oot e e e et e e e e e eeeenes 5
Tabelle 2: Ubersicht (iber die verwendeten Events aus BPMN2.0ccocovveeeeeeeeeeeeeenn. 31
Tabelle 3: Ubersicht Gber alle ZUOrdNUNGENcooviueeeeeeeeeeeee e 46
Tabelle 4: ZUStANAE AES PrOZESSES........ceieeee et e e e e 48
Tabelle 5: Zustande der AKEIVITAENooovieiiee e 50
Tabelle 6: Ubersicht tiber die Zustandsiiberfihrungsregeln................cccoccevevereeeceveeeennenn. 67

85

Erklarung

Hiermit versichere ich, diese Arbeit selbststandig verfasst und nur die angegebenen
Quellen verwendet zu haben.

Stuttgart, den 04.08.2011

(Eike Klenk)

86

	1 Einleitung
	1.1 Motivation
	1.2 Abgrenzung des Themas
	1.3 Aufgabenstellung
	1.4 Aufbau

	2 Beispiele für BPEL und BPMN
	2.1 BPEL
	2.2 BPMN
	2.3 Beispiel der Projektion

	3 Grundlagen
	3.1 Definitionen
	3.1.1 Projektion
	3.1.2 Soundness
	3.1.3 Vollständigkeit

	3.2 BPEL
	3.3 Konstrukte in BPEL
	3.3.1 Basis Aktivitäten
	3.3.1.1 <assign>
	3.3.1.2 <empty>
	3.3.1.3 <exit>
	3.3.1.4 <invoke>
	3.3.1.5 <receive>
	3.3.1.6 <reply>
	3.3.1.7 <rethrow>
	3.3.1.8 <throw>
	3.3.1.9 <wait>

	3.3.2 Strukturierte Aktivitäten
	3.3.2.1 <flow>
	3.3.2.1.1 <link>
	3.3.2.1.2 <transitionCondition>
	3.3.2.1.3 <joinCondition>
	3.3.2.1.4 Dead-Path-Elimination

	3.3.2.2 <forEach>
	3.3.2.3 <if>
	3.3.2.4 <pick>
	3.3.2.5 <repeatUntil>
	3.3.2.6 <sequence>
	3.3.2.7 <while>

	3.3.3 Scopes
	3.3.3.1 <compensate>
	3.3.3.2 <compensateScope>
	3.3.3.3 <scope>

	3.3.4 Variablen
	3.3.4.1 <variable>
	3.3.4.2 <validate>

	3.3.5 Andere Konstrukte
	3.3.5.1 <catch>
	3.3.5.2 <catchAll>
	3.3.5.3 <compensationHandler>
	3.3.5.4 <extensions>
	3.3.5.5 <faultHandlers>
	3.3.5.6 <import>
	3.3.5.7 <partnerLinks>
	3.3.5.8 <process>
	3.3.5.9 <terminationHandler>
	3.3.5.10 <eventHandlers>
	3.3.5.10.1 <onEvent>
	3.3.5.10.2 <onAlarm>

	3.4 BPMN 2.0
	3.5 Konstrukte in BPMN
	3.5.1 Events
	3.5.1.1 Message-Event
	3.5.1.2 Timer-Event
	3.5.1.3 Error-Event
	3.5.1.4 Compensation-Event
	3.5.1.5 Terminate-Event

	3.5.2 Aktivität
	3.5.3 Task
	3.5.3.1 Sub-Prozess

	3.5.4 Gateways
	3.5.4.1 Exclusive Gateway
	3.5.4.1.1 Event-Based Gateway

	3.5.4.2 Parallel Gateway

	3.5.5 Message Flow
	3.5.6 Sequence Flow
	3.5.7 Pools
	3.5.8 Data Association
	3.5.9 Data Object

	4 Abbildungen von BPEL zu BPMN
	4.1 Transformation zwischen den Sprachen
	4.1.1 Basis Aktivitäten
	4.1.1.1 <assign>
	4.1.1.2 <empty>
	4.1.1.3 <exit>
	4.1.1.4 <invoke>
	4.1.1.5 <receive>
	4.1.1.6 <reply>
	4.1.1.7 <rethrow>
	4.1.1.8 <throw>
	4.1.1.9 <wait>

	4.1.2 Strukturierte Aktivitäten
	4.1.2.1 <flow>
	4.1.2.2 <forEach>
	4.1.2.3 <if>
	4.1.2.4 <pick>
	4.1.2.5 <repeatUntil>
	4.1.2.6 <sequence>
	4.1.2.7 <while>

	4.1.3 Scopes
	4.1.3.1 <compensate>
	4.1.3.2 <compensateScope>
	4.1.3.3 <scope>

	4.1.4 Variablen
	4.1.4.1 <variable>
	4.1.4.2 <validate>

	4.1.5 Andere Konstrukte
	4.1.5.1 <catch>
	4.1.5.2 <catchAll>
	4.1.5.3 <compensationHandler>
	4.1.5.4 <faultHandlers>
	4.1.5.5 <process>
	4.1.5.6 <terminationHandler>
	4.1.5.7 <onEvent>
	4.1.5.8 <onAlarm>

	4.2 Probleme nach der Transformation

	5 Beschreibung einer Projektion
	5.1 Zustände
	5.2 Muster zur Zustandsübertragung
	5.2.1 Direct State Propagation Pattern
	5.2.2 State Combination Pattern
	5.2.3 Complex State Distribution Pattern

	5.3 BPEL und BPMN Erweiterungen
	5.3.1 activityId
	5.3.2 projectionId
	5.3.3 activityState
	5.3.4 processState
	5.3.5 projectionType
	5.3.6 iterationCount

	5.4 Zustandsübertragungen von BPEL nach BPMN
	5.4.1 <assign>
	5.4.2 <empty>
	5.4.3 <exit>
	5.4.4 <invoke>
	5.4.5 <receive>
	5.4.6 <reply>
	5.4.7 <rethrow>
	5.4.8 <throw>
	5.4.9 <wait>
	5.4.10 <flow>
	5.4.11 <forEach>
	5.4.12 <if>
	5.4.13 <pick>
	5.4.14 <repeatUntil>
	5.4.15 <sequence>
	5.4.16 <while>
	5.4.17 <scope>
	5.4.18 <variable>
	5.4.19 <validate>
	5.4.20 <compensationHandler>
	5.4.21 <faultHandlers>
	5.4.22 <process>
	5.4.23 <terminationHandler>
	5.4.24 <eventHandlers>

	5.5 Ablauf einer Projektion
	5.5.1 Mappings XML-Schema
	5.5.2 Zustandsüberführungsregeln
	5.5.2.1 Direct State Propagation Pattern
	5.5.2.2 State Combination Pattern
	5.5.2.3 State Distribution Pattern

	5.5.3 Generierung der BPMN-Datei
	5.5.3.1 XML-Elemente in BPMN
	5.5.3.2 Generierung

	5.5.4 Probleme bei der Projektion

	5.6 Anpassungen an der Mappings-Datei
	5.7 Mapping der Zustände

	6 Zusammenfassung und Ausblick
	Literaturverzeichnis
	Abbildungsverzeichnis
	Listingsverzeichnis
	Tabellenverzeichnis

