
 Institut für Architektur von Anwendungssystemen (IAAS)

Universität Stuttgart

Universitätsstraße 38

D – 70569 Stuttgart

Diplomarbeit Nr. 3138

Sprachübergreifende Überwachung

von Geschäftsprozessen

Eike Klenk

 Studiengang: Softwaretechnik

Prüfer: Prof. Dr. Frank Leymann

Betreuer: Dipl.-Inf. David Schumm

begonnen am: 02.02.2011

beendet am: 04.08.2011

CR-Klassifikation: C.2.4, D.2.2, H.4.1, H.5.2, H.5.3

2

Inhaltsverzeichnis

1 Einleitung .. 3

1.1 Motivation .. 3

1.2 Abgrenzung des Themas .. 3

1.3 Aufgabenstellung .. 3

1.4 Aufbau... 4

2 Beispiele für BPEL und BPMN .. 5

2.1 BPEL ... 6

2.2 BPMN...12

2.3 Beispiel der Projektion ..13

3 Grundlagen ..14

3.1 Definitionen ..14

3.2 BPEL ..15

3.3 Konstrukte in BPEL ..15

3.4 BPMN 2.0 ...30

3.5 Konstrukte in BPMN ...30

4 Abbildungen von BPEL zu BPMN ..40

4.1 Transformation zwischen den Sprachen ...40

4.2 Probleme nach der Transformation ..46

5 Beschreibung einer Projektion ...47

5.1 Zustände ..47

5.2 Muster zur Zustandsübertragung ..51

5.3 BPEL und BPMN Erweiterungen ..52

5.4 Zustandsübertragungen von BPEL nach BPMN ...55

5.5 Ablauf einer Projektion ...67

5.6 Anpassungen an der Mappings-Datei ..76

5.7 Mapping der Zustände ...77

6 Zusammenfassung und Ausblick...78

Literaturverzeichnis ...79

Abbildungsverzeichnis ..81

Listingsverzeichnis ..83

Tabellenverzeichnis ...85

3

1 Einleitung

1.1 Motivation

In der heutigen Zeit sind Geschäftsprozesse wichtige Bestandsteile der Unternehmensfüh-

rung. Damit können ganze Geschäftsbereiche oder nur Unterbereiche, inklusive aller Um-

welteinflüsse und Abhängigkeiten, modelliert werden. Das erleichtert die Planung und die

Organisation des Unternehmens und gibt Rückschlüsse auf etwaige Verbesserungsmöglich-

keiten. In der Praxis ist die Business Process Execution Language, kurz BPEL [1], ein Stan-

dard um Geschäftsprozesse zu modellieren, auszuführen und anschließend zu Überwachen.

BPEL ist sehr technisch gehalten und daher für Manager oder Geschäftsführer oft schwer zu

lesen und zu verstehen. Für diese Anwendergruppen ist eine weniger technische, visuell

modellierbare, Sprache zur Erstellung und Überwachung von Geschäftsprozessen geeigne-

ter.

Die Überwachung von Geschäftsmodellen wird ein immer wichtigerer Aspekt in der Unter-

nehmensführung. Da die erstellten Geschäftsmodelle häufig über Details verfügen, die nicht

für jeden Betrachter von Interesse sind, geht die Entwicklung in Richtung von Werkzeugen,

mit denen es möglich ist, die Komplexität zu verringern oder uninteressante Details für den

aktuellen Betrachter auszublenden. Der aktuelle Stand ist, dass Geschäftsprozesse in der

Sprache überwacht werden, in denen sie erstellt wurden. Die Überwachung eines Ge-

schäftsprozesses in einer anderen, vielleicht für den Betrachter verständlicheren, Sprache,

soll in Zukunft auch möglich sein. Es gibt zwar viele Ansätze um verschiedene Sprachen

aufeinander abzubilden, aber es gibt bisher nur wenige um den aktuellen Ablauf zu projizie-

ren.

In [2] wurde der Business Process Illustrator, kurz BPI [3], konzipiert und entwickelt. Dabei

handelt es sich um ein Werkzeug zur Überwachung von Geschäftsprozessen, die mit BPEL

erstellt wurden. Mit dem Werkzeug kann ein Graph eines Prozessmodells, der mit Statusin-

formationen der Prozessinstanz erweitert wurde, überwacht werden. Zudem ist es möglich

den Detailgrad der Ansicht auf den Geschäftsprozess zu variieren. In der weiteren Entwick-

lung des BPI soll es möglich sein einen Geschäftsprozess in einer anderen Prozessmodellie-

rungssprache zu überwachen, als mit der Sprache, mit der der Geschäftsprozess ausgeführt

wird. Als Vorbereitung für diese Erweiterung wird in dieser Arbeit ein Konzept erstellt, das es

ermöglicht, die Zustände aus BPEL nach BPMN zu übertragen. Hierfür wird beschrieben, wie

aus der BPEL-Datei eine BPMN-Datei generiert wird und anschließend, die Zustände mit

zuvor definierten Regeln übertragen werden.

1.2 Abgrenzung des Themas

Die Vielfalt an Sprachen macht das Thema sehr mächtig. Um das Thema einzugrenzen wer-

den in dieser Arbeit die beiden Sprachen BPEL und BPMN, Business Process Model and

Notation [4], betrachtet. Das heißt es soll eine Überwachung eines Geschäftsprozesses mit

BPMN ermöglicht werden, während der Geschäftsprozess selbst mit BPEL ausgeführt wird.

1.3 Aufgabenstellung

Ein Geschäftsprozess, der mit BPEL erstellt wurde und ausgeführt wird, soll als BPMN Pro-

zess überwacht werden. In dieser Arbeit sollen Konzepte erstellt werden, um die Projektion

4

des Ausführungszustands von BPEL nach BPMN darzustellen. Weiter sollen Techniken zur

Übertragung von BPEL Variablen zu BPMN Informationen spezifiziert werden.

1.4 Aufbau

In Kapitel 2 werden Beispiele zur Verbesserung des Verständnisses des Lesers vorgestellt.

In Kapitel 3 folgen die Grundlagen der Arbeit. Hier werden die beiden Sprachen BPEL und

BPMN vorgestellt und deren Konstrukte erläutert. In Kapitel 4 ist die Transformation von

BPEL zu BPMN das Thema. Die Abbildungen aller BPEL Aktivitäten in BPMN werden erör-

tert und durch Beispiele gestützt. Die Projektion der Zustände wird in Kapitel 5 behandelt.

Zuerst wird der theoretische Ansatz zur Projektion beschrieben, gefolgt von der Definition der

Zustandsräume für den Prozess und die Aktivitäten. Zusätzlich werden die benötigten XML-

Erweiterungen für BPEL und BPMN, sowie die Generierung einer unterstützenden Map-

pings-Datei beschrieben. Die Erläuterung der Probleme bei der Projektion der Zustände

schließt das Kapitel ab. Abgeschlossen wird die Arbeit von der Zusammenfassung der Er-

kenntnisse und einem Ausblick für die Zukunft.

5

2 Beispiele für BPEL und BPMN

Als Einführung und zur Förderung des Verständnisses beginnt diese Arbeit mit einem An-

wendungsbeispiel. Dargestellt wird eine Produktanfrage in einem Onlineshop. Dabei wird

eine Anfrage empfangen und die Verfügbarkeit des Produkts abgefragt. Anschließend wer-

den je nach Verfügbarkeit verschiedene Aktivitäten ausgeführt. Ist das Produkt verfügbar,

werden keine weiteren Aktivitäten ausgeführt. Ist das Produkt nicht verfügbar, wird überprüft,

ob es nachbestellt werden kann und ist dies der Fall, werden alle Lieferangebote erfasst und

ausgewertet. Kann das Produkt nicht nachbestellt werden, wird nach ähnlichen Produkten

gesucht und anschließend werden die Ergebnisse der Suche zusammengefasst. Abge-

schlossen wird der Prozess, indem ein Produktangebot als Antwort zurückgegeben wird. In

Abbildung 1 wird der BPEL-Prozess graphisch mit Hilfe des BPEL Designer [5] dargestellt

und in Listing 1 ist der passende, schon mit Zuständen erweiterte, BPEL-Code zu sehen. In

Abbildung 2 ist das Beispiel in BPMN dargestellt, ebenfalls bereits zustandsbehaftet. Um die

Lesbarkeit zu gewährleisten wird in dem Beispiel nur die Variable Product als Data Object

mit zwei Message Flow Verbindungen abgebildet. In Abbildung 3 ist die BPEL zu BPMN Zu-

ordnungen graphisch dargestellt. Die roten Pfeile kennzeichnen die Zuordnungen der Zu-

stände der BPEL Aktivitäten zu ihren Darstellungen in BPMN.

Um die bereits zustandsbehafteten Diagramme verstehen zu können, ist in Tabelle 1 eine

Legende der Zustände angegeben.

Name Symbol

Inactive

Ready

Skipped

Executing

Completed

Iteration Completed

Compensated

Faulted

Terminated

Tabelle 1: Legende der Zustände

6

2.1 BPEL

Abbildung 1: Graphisch dargestellter BPEL-Prozess

Der <process> ist das Hauptkonstrukt eines BPEL Prozesses. Innerhalb des <process>

Konstrukts werden globale Einstellungen für den BPEL Prozess vorgenommen. Dazu zählen

<extensions>, <import>s, <partnerLinks>, <variables>, <correlationSets>, <message-

Exchanges>, <eventHandlers> und <faultHandlers>. Im <process> Konstrukt darf nur eine

Aktivität enthalten sein. In diesem Fall ist das eine <sequence>. Weiterführende Informatio-

nen zu BPEL folgen in Kapitel 3.

<bpel:process name="Beispiel"

 targetNamespace="http://sample.bpel.org/bpel/sample"

 suppressJoinFailure="yes"

 xmlns:tns="http://sample.bpel.org/bpel/sample"

 xmlns:bpel=

 "http://docs.oasis-open.org/wsbpel/2.0/process/executable"

 executableProcessProfile=

7

 "http://docs.oasis-open.org/wsbpel/2.0/process/executable

 /simple-template/2006/08">

 <ext:processState>Executing</ext:processState>

 <bpel:import location="Beispiel.wsdl"

 namespace=http://sample.bpel.org/bpel/sample

 importType="http://schemas.xmlsoap.org/wsdl/" />

 <bpel:variables>

 <bpel:variable name="product" messageType="tns:productType">

 <ext:activityId>variable 1</ext:activityId>

 <ext:variableValue></ext:variableValue>

 </bpel:variable>

 <bpel:variable name="availabilityInfo"

 messageType="tns:availabilityType">

 <ext:activityId>variable 2</ext:activityId>

 <ext:variableValue></ext:variableValue>

 </bpel:variable>

 <bpel:variable name="productOffers" messageType="tns:productType">

 <ext:activityId>variable 3</ext:activityId>

 <ext:variableValue></ext:variableValue>

 </bpel:variable>

 <bpel:variable name="productOffer" messageType="tns:productType">

 <ext:activityId>variable 4</ext:activityId>

 <ext:variableValue></ext:variableValue>

 </bpel:variable>

 <bpel:variable name="productDeliveryDate" messageType="tns:date">

 <ext:activityId>variable 5</ext:activityId>

 <ext:variableValue></ext:variableValue>

 </bpel:variable>

 <bpel:variable name="productPrice" messageType="tns:float">

 <ext:activityId>variable 6</ext:activityId>

 <ext:variableValue></ext:variableValue>

 </bpel:variable>

 <bpel:variable name="evaluatedProductOffers"

 messageType="tns:productArrayType">

 <ext:activityId>variable 7</ext:activityId>

 <ext:variableValue></ext:variableValue>

 </bpel:variable>

 <bpel:variable name="similarProductRequest"

 messageType="tns:productType">

 <ext:activityId>variable 8</ext:activityId>

 <ext:variableValue></ext:variableValue>

 </bpel:variable>

 </bpel:variables>

 <bpel:faultHandlers>

 <ext:activityId>faulthandlers 1</ext:activityId>

 <ext:activityState>Ready</ext:activityState>

 <ext:projectionType>Casual</ext:projectionType>

 <bpel:catchAll>

 <ext:activityId>catchall 1</ext:activityId>

 <bpel:sequence>

 <ext:activityId>sequence 1</ext:activityId>

 <bpel:compensate>

 <ext:activityId>compensate 1</ext:activityId>

 <ext:activityState>Inactive</ext:activityState>

 <ext:projectionType>Casual</ext:projectionType>

 </bpel:compensate>

 <bpel:exit name="Exit">

 <ext:activityId>exit 1</ext:activityId>

 <ext:activityState>Inactive</ext:activityState>

 <ext:projectionType>Casual</ext:projectionType>

 </bpel:exit>

 </bpel:sequence>

http://sample.bpel.org/bpel/sample

8

 </bpel:catchAll>

 </bpel:faultHandlers>

 <bpel:sequence name="main">

 <ext:activityId>sequence 2</ext:activityId>

 <bpel:receive name="receiveProductRequest" variable="product"

 createInstance="yes" operation="sendProductRequest">

 <ext:activityId>receive 1</ext:activityId>

 <ext:activityState>Completed</ext:activityState>

 <ext:projectionType>Casual</ext:projectionType>

 </bpel:receive>

 <bpel:invoke name="checkAvailability" inputVariable="product"

 outputVariable="availabilityInfo"

 operation="requestAvailability">

 <ext:activityId>invoke 1</ext:activityId>

 <ext:activityState>Completed</ext:activityState>

 <ext:projectionType>Casual</ext:projectionType>

 </bpel:invoke>

 <bpel:if name="ProductAvailable">

 <ext:activityId>if 1</ext:activityId>

 <ext:activityState>Executing</ext:activityState>

 <ext:projectionType>Casual</ext:projectionType>

 <bpel:condition>

 bpel:getVariableProperty('availabilityInfo',

 'inventory:level') > 0

 </bpel:condition>

 <bpel:sequence>

 <ext:activityId>sequence 3</ext:activityId>

 <bpel:empty name="Empty">

 <ext:activityId>empty 1</ext:activityId>

 <ext:activityState>Skipped</ext:activityState>

 <ext:projectionType>Casual</ext:projectionType>

 </bpel:empty>

 </bpel:sequence>

 <bpel:elseif>

 <ext:activityId>elseif 1</ext:activityId>

 <bpel:condition>

 bpel:getVariableProperty('availabilityInfo',

 'product:inProduction') > 0

 </bpel:condition>

 <bpel:sequence>

 <ext:activityId>sequence 4</ext:activityId>

 <bpel:invoke name="checkReorder"

 inputVariable="product" outputVariable="productOffers"

 operation="getProductOffers">

 <ext:activityId>invoke 2</ext:activityId>

 <ext:activityState>Completed</ext:activityState>

 <ext:projectionType>Casual</ext:projectionType>

 </bpel:invoke>

 <bpel:assign validate="no" name="saveReorderOffers">

 <ext:activityId>assign 1</ext:activityId>

 <ext:activityState>Completed</ext:activityState>

 <bpel:copy>

 <ext:activityId>copy 1</ext:activityId>

 <ext:activityState>Completed</ext:activityState>

 <bpel:from>$productOffers</bpel:from>

 <bpel:to>$product.reorderOffers</bpel:to>

 </bpel:copy>

 </bpel:assign>

 <bpel:forEach parallel="no" counterName="Counter"

 name="ForEach">

 <bpel:startCounterValue>1</bpel:startCounterValue>

 <bpel:finalCounterValue>

9

 $productOffers.count

 </bpel:finalCounterValue>

 <ext:activityId>forEach 1</ext:activityId>

 <ext:activityState>Executing</ext:activityState>

 <ext:projectionType>Loop</ext:projectionType>

 <bpel:scope>

 <ext:activityId>scope 1</ext:activityId>

 <bpel:sequence>

 <ext:activityId>sequence 5</ext:activityId>

 <bpel:flow name="Flow">

 <ext:activityId>flow 1</ext:activityId>

 <ext:activityState>Executing</ext:activityState>

 <ext:projectionType>Casual</ext:projectionType>

 <bpel:receive name="receiveOffer"

 variable="productOffer" operation="offerRequest">

 <ext:activityId>receive 2</ext:activityId>

 <ext:activityState>Completed</ext:activityState>

 <ext:projectionType>Casual</ext:projectionType>

 <bpel:sources>

 <bpel:source linkName="link1"></bpel:source>

 <bpel:source linkName="link2"></bpel:source>

 </bpel:sources>

 </bpel:receive>

 <bpel:invoke name="checkDeliveryDate"

 inputVariable="product"

 outputVariable="productDeliveryDate"

 operation="getDeliveryDate">

 <ext:activityId>invoke 3</ext:activityId>

 <ext:activityState>Executing</ext:activityState>

 <ext:projectionType>Casual</ext:projectionType>

 <bpel:targets>

 <bpel:target linkName="link1"></bpel:target>

 </bpel:targets>

 <bpel:sources>

 <bpel:source linkName="link3"></bpel:source>

 </bpel:sources>

 </bpel:invoke>

 <bpel:assign validate="no" name="assignOffer">

 <ext:activityId>assign 2</ext:activityId>

 <ext:activityState>Inactive</ext:activityState>

 <ext:projectionType>Casual</ext:projectionType>

 <bpel:copy>

 <ext:activityId>copy 2</ext:activityId>

 <bpel:from>$productDeliveryDate</bpel:from>

 <bpel:to>$product.deliveryDate</bpel:to>

 </bpel:copy>

 <bpel:copy>

 <ext:activityId>copy 3</ext:activityId>

 <bpel:from>$productPrice</bpel:from>

 <bpel:to>$product.price</bpel:to>

 </bpel:copy>

 <bpel:targets>

 <bpel:target linkName="link3"></bpel:target>

 <bpel:target linkName="link4"></bpel:target>

 </bpel:targets>

 </bpel:assign>

 <bpel:invoke name="checkPrice" inputVariable="product"

 outputVariable="productPrice" operation="getPrice">

 <ext:activityId>invoke 4</ext:activityId>

 <ext:activityState>Ready</ext:activityState>

 <ext:projectionType>Casual</ext:projectionType>

 <bpel:targets>

10

 <bpel:target linkName="link2"></bpel:target>

 </bpel:targets>

 <bpel:sources>

 <bpel:source linkName="link4"></bpel:source>

 </bpel:sources>

 </bpel:invoke>

 <bpel:links>

 <bpel:link name="link1"></bpel:link>

 <bpel:link name="link2"></bpel:link>

 <bpel:link name="link3"></bpel:link>

 <bpel:link name="link4"></bpel:link>

 </bpel:links>

 </bpel:flow>

 </bpel:sequence>

 </bpel:scope>

 </bpel:forEach>

 <bpel:invoke name="evaluateResults"

 inputVariable="productOffers"

 outputVariable="evaluatedProductOffers"

 operation="evaluateResults">

 <ext:activityId>invoke 5</ext:activityId>

 <ext:activityState>Inactive</ext:activityState>

 <ext:projectionType>Casual</ext:projectionType>

 </bpel:invoke>

 </bpel:sequence>

 </bpel:elseif>

 <bpel:else>

 <ext:activityId>else 1</ext:activityId>

 <bpel:sequence>

 <ext:activityId>sequence 6</ext:activityId>

 <bpel:while name="While">

 <ext:activityId>while 1</ext:activityId>

 <ext:activityState>Skipped</ext:activityState>

 <ext:projectionType>Loop</ext:projectionType>

 <ext:iterationCount>0</ext:iterationCount>

 <bpel:condition>

 $similarProductRequest ≠ nil

 </bpel:condition>

 <bpel:invoke name="findSimilarProduct"

 inputVariable="product"

 outputVariable="similarProductRequest"

 operation="findSimilarProduct">

 <ext:activityId>invoke 6</ext:activityId>

 <ext:activityState>Skipped</ext:activityState>

 <ext:projectionType>Casual</ext:projectionType>

 <bpel:compensationHandler>

 <ext:activityId>compensationHandler 1</ext:activityId>

 <ext:activityState>Skipped</ext:activityState>

 <ext:projectionType>Casual</ext:projectionType>

 <bpel:invoke name="cancelSearch"

 operation="cancelProductSearch">

 </bpel:invoke>

 </bpel:compensationHandler>

 </bpel:invoke>

 </bpel:while>

 <bpel:wait name="Wait">

 <ext:activityId>wait 1</ext:activityId>

 <ext:activityState>Skipped</ext:activityState>

 <ext:projectionType>Casual</ext:projectionType>

 <bpel:for>PT10M</bpel:for>

 </bpel:wait>

 <bpel:invoke name="summarizeResults">

11

 <ext:activityId>invoke 7</ext:activityId>

 <ext:activityState>Skipped</ext:activityState>

 <ext:projectionType>Casual</ext:projectionType>

 </bpel:invoke>

 </bpel:sequence>

 </bpel:else>

 </bpel:if>

 <bpel:reply name="productOffering" operation="productRequest"

 variable="productOffers">

 <ext:activityId>reply 1</ext:activityId>

 <ext:activityState>Inactive</ext:activityState>

 <ext:projectionType>Casual</ext:projectionType>

 </bpel:reply>

 </bpel:sequence>

</bpel:process>

Listing 1: BPEL-Code für das Produktanfrage Beispiel

12

2.2 BPMN

13

Abbildung 2: Das Produktanfrage Beispiel in BPMN

2.3 Beispiel der Projektion

Abbildung 3: Die BPEL zu BPMN Zuordnungen für das Beispiel

14

3 Grundlagen

Die fachlichen Grundlagen, die für diese Arbeit relevant sind, werden im Folgenden näher

beschrieben. Eine kurze Einführung in BPEL soll dem Leser einen Einblick in den Aufbau

und die Verwendung der Sprache geben. Um eine Grundlage für die weitere Arbeit zu

schaffen, werden die wichtigsten Sprachkonstrukte aus BPEL näher erläutert. Darauf folgt

dann eine Einführung in BPMN, sowie eine Erläuterung der, für diese Arbeit relevanten,

Sprachkonstrukte aus BPMN [4]. Die Erläuterungen der Sprachkonstrukte beider Sprachen

dienen zur Veranschaulichung und zur Einführung in das Thema und stellen keinen Ersatz

der Spezifikationen dar. Da die Spezifikationen nur auf Englisch verfügbar sind, werden zur

Unterstützung des Verständnisses der Leser die Beschreibungen auf Deutsch formuliert.

Dabei werden die Informationen aus den Spezifikationen eingegrenzt. Für weiterführende

Informationen wird auf die Spezifikationen verwiesen.

3.1 Definitionen

3.1.1 Projektion

Eine Projektion ist die Übertragung des Zustandes einer Aktivität in BPEL auf ein Konstrukt

in BPMN.

3.1.2 Soundness

Die Soundness einer Projektion wird durch folgende Regeln bestimmt:

1. die Projektion muss surjektiv sein. Es muss also gelten:

X Elemente im BPEL Model

Y Elemente im BPMN Model

f() Zustandszusammenführungsfunktion

Für alle Elemente in Y muss es mindestens ein Element in X geben, für das gilt f(x) = y.

2. die Projektion muss gewisse Konsistenzregeln einhalten:

(1) Eine Aktivität kann nur den Zustand Executing haben, wenn die vorherige Aktivität im

Zustand Completed ist.

(2) Ist eine Aktivität im Zustand Compensated oder Faulted, dann darf dieser Zustand

nicht mehr geändert werden.

(3) Gateways bleiben im Zustand Executing solange nicht alle Aktivitäten zwischen den

beiden zusammengehörenden Gateways im Zustand Completed sind.

(4) Alle Aktivitäten auf einem toten Pfad werden automatisch in den Zustand Skipped

gesetzt.

(5) Eine Aktivität mit mehreren Vorgängern kann erst ausgeführt werden, wenn alle Vor-

gänger im Zustand Completed sind.

(6) Der Zustand von Schleifen wird aus den Zuständen aller enthaltenen Aktivitäten be-

rechnet und wird erst auf Completed gesetzt, wenn alle enthaltenen Zustände Com-

pleted sind.

(7) Für jede Aktivität muss es die Möglichkeit geben ausgeführt zu werden.

15

3.1.3 Vollständigkeit

Vollständigkeit wird erreicht, wenn es für jede Projektion eine Zustandsüberführungsregel

gibt.

3.2 BPEL

BPEL ist eine XML-basierte Sprache zur Beschreibung von Abläufen aus technischer Sicht.

Mit BPEL können Dienste, welche über Web Services angeboten werden, innerhalb eines

Geschäftsprozesses orchestriert werden. Unter Orchestrierung versteht man die Anordnung

von unterschiedlichen Web Services in einem ausführbaren Geschäftsprozess. Im Bereich

der Orchestrierung von Web Services ist BPEL der de-facto Standard. Für die Modellierung

von automatisierten Geschäftsprozessen stehen in BPEL standardisierte Sprachkonstrukte

zur Verfügung. Diese Sprachkonstrukte sind über ein XML-Schema definiert. Die aktuelle

Version ist BPEL 2.0 [1]. Es gibt zudem Erweiterungen von BPEL, wie zum Beispiel

BPEL4People [6], das die Integration von Personen im Geschäftsprozess erlaubt.

Die Tatsache, dass es keine standardisierte, visuelle Notation gibt, ist ein viel diskutiertes

Problem von BPEL. Im Moment stellt jeder Hersteller eines BPEL Frameworks eine eigene

Notation zur Verfügung. [7] zeigt, dass in der Praxis zur visuellen Modellierung häufig BPMN

[4] verwendet und das BPMN-Model dann durch eine Transformation in ein BPEL-Model

umgewandelt wird. Auf BPMN wird in Kapitel 3.4 näher eingegangen.

Da es bereits verschiedene Quellen zu der Entstehungsgeschichte von BPEL oder zur Ziel-

setzung der Sprache gibt, wird in dieser Arbeit nicht näher auf diese Themen eingegangen.

Für weiterführende Informationen zur Entstehungsgeschichte wird an dieser Stelle auf [8]

und [9] und zur Zielsetzung auf [10] verwiesen.

Ein Beispiel für den allgemeinen Aufbau eines BPEL-Modells wurde in Kapitel 2 gegeben

und dieses Beispiel wird im nächsten Unterkapitel weiter verwendet um die einzelnen Kon-

strukte näher zu beschreiben.

3.3 Konstrukte in BPEL

In diesem Unterkapitel werden die in der BPEL-Spezifikation beschriebenen Konstrukte er-

läutert und durch Beispiele veranschaulicht. Die Arbeit orientiert sich bei der Unterteilung der

Konstrukte an der BPEL2.0-Spezifikation. Basis Aktivitäten, Strukturierte Aktivitäten, Scopes,

Variablen und andere Konstrukte werden im Folgenden beschrieben und erläutert. Zu jedem

Konstrukt werden eine kurze Beschreibung und soweit möglich ein Teilbeispiel aus dem gro-

ßen Beispiel in Kapitel 2 angegeben.

3.3.1 Basis Aktivitäten

3.3.1.1 <assign>

Die <assign> Aktivität wird zum einen verwendet um Variablen Werte zuzuweisen und zum

anderen um neue Daten via Ausdrücken zu konstruieren und einzufügen. Ein <assign> Kon-

strukt kann zwischen einer und beliebig vielen Zuweisungen enthalten. Jede Zuweisung wird

dabei als einzelnes <copy> Element beschrieben. Während der Ausführung werden entwe-

der alle oder keine der Zuweisungen ausgeführt.

16

In Listing 2 ist ein <assign> Beispiel mit einem einzelnen <copy> Element aus dem Beispiel

aus Kapitel 2 zu sehen.

<bpel:assign validate="no" name="saveReorderOffers">

 <bpel:copy>

 <bpel:from>$productOffers</bpel:from>

 <bpel:to>$product.reorderOffers</bpel:to>

 </bpel:copy>

</bpel:assign>

Listing 2: <assign>

3.3.1.2 <empty>

Die <empty> Aktivität ist eine leere Aktivität, die keine auszuführende Funktion hat. Ein An-

wendungsbeispiel ist die Fehlerbehandlung bei der ein Fehler abgefangen und unterdrückt

werden muss. Des Weiteren kann die <empty> Aktivität einen Synchronisationspunkt in ei-

nem <flow> darstellen.

Ein Beispiel für eine <empty> Aktivität aus dem Beispiel in Kapitel 2 ist in Listing 3 zu sehen.

<bpel:empty name="Empty">

</bpel:empty>

Listing 3: <empty>

3.3.1.3 <exit>

Zum sofortigen Beenden einer BPEL-Prozessinstanz wird die <exit> Aktivität verwendet. Alle

laufenden Aktivitäten müssen sofort beendet werden, ohne <terminationHandler>, <fault-

Handler> oder <compensationHandler> zu beachten.

Listing 4 zeigt ein Beispiel für die <exit> Aktivität aus dem großen Beispiel in Kapitel 2.

<bpel:exit name="Exit">

</bpel:exit>

Listing 4: <exit>

3.3.1.4 <invoke>

Zum Aufrufen von Web Services, die von Service Providern angeboten werden, wird die <in-

voke> Aktivität verwendet. Die Aktivität kann synchron, das bedeutet es wird auf die Antwort

gewartet bevor die Ausführung weitergeht, oder asynchron, es wird ohne auf die Antwort zu

warten weiter ausgeführt, aufgerufen werden. Innerhalb einer <invoke> Aktivität können

Elemente zur Fehlerbehandlung oder zur Kompensation definiert werden, ohne dass ein

<scope> verwendet werden muss.

In Listing 5 und 6 folgen zwei Beispiele für die <invoke> Aktivität. Das erste Beispiel zeigt

einen kurzen Aufruf per <invoke>, im zweiten Beispiel wird zusätzlich ein Element zur Kom-

pensation, ein <compensationHandler>, verwendet.

<bpel:invoke name="checkAvailability" inputVariable="product"

 outputVariable="availabilityInfo"

 operation="requestAvailability">

</bpel:invoke>

Listing 5: <invoke> ohne <compensationHandler>

17

<bpel:invoke name="findSimilarProduct"

 inputVariable="product"

 outputVariable="similarProductRequest"

 operation="findSimilarProduct">

 <bpel:compensationHandler>

 <bpel:invoke name="cancelSearch"

 operation="cancelProductSearch">

 </bpel:invoke>

 </bpel:compensationHandler>

</bpel:invoke>

Listing 6: <invoke> mit <compensationHandler>

3.3.1.5 <receive>

Mit der <receive> Aktivität wird auf eine bestimmte Nachricht gewartet. Ist das Attribut crea-

teInstance auf den Wert yes gesetzt, dann wird mit dieser <receive> Aktivität ein BPEL-

Prozess gestartet.

In Listing 7 ist ein Beispiel für die <receive> Aktivität zu sehen.

<bpel:receive name="receiveProductRequest" variable="product"

 createInstance="yes" operation="sendProductRequest">

</bpel:receive>

Listing 7: <receive>

3.3.1.6 <reply>

Um in einer Request-Response Interaktion auf eine Anfrage durch <receive>, <pick> oder

<extensionActivity> zu antworten wird die <reply> Aktivität verwendet.

In Listing 8 ist eine <reply> Aktivität aus dem Beispiel in Kapitel 2 zu sehen.

<bpel:reply name="productOffering" operation="productRequest"

 variable="productOffers">

</bpel:reply>

Listing 8: <reply>

3.3.1.7 <rethrow>

Mit der <rethrow> Aktivität kann ein aktiver <faultHandler> einen Fehler an den übergeordne-

ten <faultHandler> weiterreichen.

Im Beispiel aus der BPEL-Spezifikation [1, S.132] leitet die <rethrow> Aktivität alle Fehler an

den übergeordneten <faultHandler> weiter.

<catchAll>

 <sequence>

 <compensate />

 <rethrow />

 </sequence>

</catchAll>

Listing 9: <rethrow>

18

3.3.1.8 <throw>

Wenn ein Geschäftsprozess explizit einen internen Fehler signalisieren muss, wird die

<throw> Aktivität verwendet. Jeder Fehler muss mit einem QName identifizierbar sein. Opti-

onal können weitere Informationen über den Fehler an die <faultHandlers> weitergegeben

werden, um Fehlermeldungen an andere Services zu erstellen.

In Listing 10 folgt ein einfaches Beispiel für eine <throw> Aktivität, die keine Fehlerdaten wei-

tergibt [1, S. 95].

<throw xmlns:FLT="http://example.com/faults"

 faultName="FLT:OutOfStock" />

Listing 10: <throw>

3.3.1.9 <wait>

Mit der <wait> Aktivität kann entweder für eine bestimmte Zeitdauer, mit <for>, oder auf ei-

nen bestimmten Zeitpunkt, mit <until>, gewartet werden.

Listing 11 zeigt eine <wait> Aktivität aus dem Beispiel in Kapitel 2 bei dem 10 Minuten ge-

wartet wird.

<bpel:wait name="Wait">

 <bpel:for>PT10M</bpel:for>

</bpel:wait>

Listing 11: <wait>

3.3.2 Strukturierte Aktivitäten

3.3.2.1 <flow>

Mit Hilfe der <flow> Aktivität können parallele Abläufe modelliert werden. Die <flow> Aktivität

ist erst beendet, wenn alle Aktivitäten im <flow> beendet sind. Durch <link>, <transitionCon-

dition>, <joinCondition> und Dead-Path-Eliminierung kann das Verhalten innerhalb der

<flow> Aktivität beeinflusst werden.

In Listing 12 ist eine <flow> Aktivität mit vier internen Aktivitäten aus dem Beispiel in Kapitel

2 zu sehen.

<bpel:flow name="Flow">

 <bpel:receive name="receiveOffer"

 variable="productOffer" operation="offerRequest">

 <bpel:sources>

 <bpel:source linkName="link1"></bpel:source>

 <bpel:source linkName="link2"></bpel:source>

 </bpel:sources>

 </bpel:receive>

 <bpel:invoke name="checkDeliveryDate"

 inputVariable="product"

 outputVariable="productDeliveryDate"

 operation="getDeliveryDate">

 <bpel:targets>

 <bpel:target linkName="link1"></bpel:target>

 </bpel:targets>

 <bpel:sources>

 <bpel:source linkName="link3"></bpel:source>

 </bpel:sources>

19

 </bpel:invoke>

 <bpel:assign validate="no" name="assignOffer">

 <bpel:copy>

 <bpel:from>$productDeliveryDate</bpel:from>

 <bpel:to>$product.deliveryDate</bpel:to>

 </bpel:copy>

 <bpel:copy>

 <bpel:from>$productPrice</bpel:from>

 <bpel:to>$product.price</bpel:to>

 </bpel:copy>

 <bpel:targets>

 <bpel:target linkName="link3"></bpel:target>

 <bpel:target linkName="link4"></bpel:target>

 </bpel:targets>

 </bpel:assign>

 <bpel:invoke name="checkPrice" inputVariable="product"

 outputVariable="productPrice" operation="getPrice">

 <bpel:targets>

 <bpel:target linkName="link2"></bpel:target>

 </bpel:targets>

 <bpel:sources>

 <bpel:source linkName="link4"></bpel:source>

 </bpel:sources>

 </bpel:invoke>

 <bpel:links>

 <bpel:link name="link1"></bpel:link>

 <bpel:link name="link2"></bpel:link>

 <bpel:link name="link3"></bpel:link>

 <bpel:link name="link4"></bpel:link>

 </bpel:links>

</bpel:flow>

Listing 12: <flow>

3.3.2.1.1 <link>

Mit <link>s wird innerhalb der <flow> Aktivität der Kontrollfluss festgelegt. Ein <link> hat da-

bei einen Ursprung und ein Ziel. In einer Aktivität wird der Ursprung durch ein Unterelement

im <sources> Element dargestellt und ein Ziel durch ein Unterelement im <targets> Element.

Die BPEL2.0 Spezifikation beschreibt einige Einschränkungen, welche für das <link> Ele-

ment gelten. Zum einen wird die Erzeugung von Zyklen ausgeschlossen. Eine Aktivität mit

einem logischen Vorgänger zu verlinken und damit Zyklen zu erzeugen ist untersagt. Des

Weiteren dürfen <link>s das <flow> Konstrukt, in welchem sie definiert wurden, nicht verlas-

sen. Um <link>s innerhalb von <while>, <repeatUntil>, <forEach>, <eventHandlers> oder

<compensationHandler> verwendet zu können, ist es erforderlich, dass die <link>s in einem

<flow> Element innerhalb der Konstrukte eingebettet werden, damit sie die umgebenden

Konstrukte nicht verlassen können. In den Konstrukten <catch> und <catchAll>, sowie dem

<terminationHandler> sind eingehende <link>s untersagt.

In Listings 12 sind Beispiele für <link>s zu sehen.

3.3.2.1.2 <transitionCondition>

Um die Übergangsbedingung für den Ursprung eines <link>s festlegen zu können, muss die

betreffende Aktivität im <source> Unterelement eine <transitionCondition> beinhalten. Nach

Beendigung der Aktivität wird diese Bedingung ausgewertet und dabei entweder auf true

oder false gesetzt. Wird die <transitionCondition> nicht angegeben wird immer auf true ge-

20

setzt. Der Zustand eines <link>s wird nicht nur durch die <transitionCondition> festgelegt,

sondern ist auch noch abhängig von Fehlern und der Dead-Path-Elimination.

Ein einfaches Beispiel aus der BPEL-Spezifikation [1, S.182].

<source linkName="assess-to-setMessage">

<transitionCondition>

 $risk.level='low'

 </transitionCondition>

</source>

Listing 13: <transitionCondition>

3.3.2.1.3 <joinCondition>

Das Gegenstück zur <transitionCondition> im Ziel eines <link>s ist die <joinCondition>. Hat

ein <link> in seinem <targets> Unterelement eine <joinCondition>, dann wird in diesem Ele-

ment festgelegt, unter welchen Bedingungen die Aktivität ausgeführt wird. Unter Auswertung

der Zustände der eingehenden <link>s, wird ein bool‘scher Ausdruck auf true oder false ge-

setzt, das bedeutet zur Auswertung müssen die Zustände der <link>s bereits evaluiert sein.

Ist die <joinCondition> true, dann wird die Aktivität ausgeführt. Ist die <joinCondition> nicht

explizit angegeben, dann wird ein logisches ODER verwendet, um zu entscheiden, ob die

Aktivität ausgeführt wird. In diesem Fall muss also nur ein eingehender <link> den Zustand

true haben. Wird die <joinCondition> mit false ausgewertet, dann wird die Dead-Path-

Elimination angewendet.

Das Beispiel aus [1, S.110] zeigt eine <joinCondition>, die eine AND-Verknüpfung für „buy-

ToSettle“ und „sellToSettle“ festlegt.

<targets>

<joinCondition>$buyToSettle and $sellToSettle</joinCondition>

<target linkName="buyToSettle" />

<target linkName="sellToSettle" />

</targets>

Listing 14: <joinCondition>

3.3.2.1.4 Dead-Path-Elimination

Die BPEL-Engine muss Fälle, in welchen bestimmte Aktivitäten nicht mehr erreichbar sind,

von selbst auflösen. Das ist die sogenannte Dead-Path-Elimination. Wie im vorherigen Kapi-

tel beschrieben, kann eine <joinCondition> zu false ausgewertet werden, in diesem Fall

muss die BPEL-Engine die Dead-Path-Elimination durchführen. Durch diesen Vorgang wer-

den alle Zustände von <link>s, die die nun nicht auszuführende Aktivität als Ursprung haben,

auf false gesetzt. Dies geschieht unabhängig von etwaigen <transitionCondition>s und kann

dazu führen, dass ganze Pfade von der Ausführung ausgenommen werden. Diese Pfade

nennt man Dead Paths. Damit die Dead-Path-Elimination durchgeführt wird, muss im betref-

fenden <flow> das Attribut suppressJoinFailure auf yes gesetzt sein, ansonsten wird, im Fal-

le einer zu false ausgewerteten <joinCondition>, von der BPEL-Engine ein Fehler erzeugt.

3.3.2.2 <forEach>

Um eine Aktivität mehrfach ausführen zu können, verwendet man die <forEach> Aktivität.

Innerhalb einem eigenen <scope> werden alle auszuführenden Aktivitäten der <forEach>-

Schleife modelliert. Des Weiteren können die Ausführungen sequenziell oder parallel ausge-

21

führt werden und bei Bedarf kann eine <completionCondition> angegeben werden, mit wel-

cher die Ausführung auch frühzeitig beendet werden kann.

Listing 15 zeigt eine <forEach> Schleife aus dem Beispiel in Kapitel 2. Die enthaltene <flow>

Aktivität ist in Listing 12 zu sehen.

<bpel:forEach parallel="no" counterName="Counter"

 name="ForEach">

 <bpel:startCounterValue>1</bpel:startCounterValue>

 <bpel:finalCounterValue>

 $productOffers.count

 </bpel:finalCounterValue>

 <bpel:scope>

 <bpel:sequence>

 <bpel:flow name="Flow">

 ...

 </bpel:flow>

 </bpel:sequence>

 </bpel:scope>

</bpel:forEach>

Listing 15: <forEach>

3.3.2.3 <if>

Für bedingte Aktivitäten stellt die BPEL-Engine die <if> Aktivität zur Verfügung. Wie von hö-

heren Programmiersprachen bekannt, können <else> und <elseif> Konstrukte verwendet

werden, um eine komplexere bedingte Aktivität zu modellieren. Die Bedingungen werden mit

dem <condition> Element angegeben.

In Listing 16 ist eine <if> Aktivität aus dem Beispiel in Kapitel 2 zu sehen. Die zur Übersicht-

lichkeit weggelassenen Teile können Listing 1 entnommen werden.

<bpel:if name="ProductAvailable">

 <bpel:condition>

 bpel:getVariableProperty('availabilityInfo',

 'inventory:level') > 0

 </bpel:condition>

 <bpel:sequence>

 ...

 </bpel:sequence>

 <bpel:elseif>

 <bpel:condition>

 bpel:getVariableProperty('availabilityInfo',

 'product:inProduction') > 0

 </bpel:condition>

 <bpel:sequence>

 ...

 </bpel:sequence>

 </bpel:elseif>

 <bpel:else>

 <bpel:sequence>

 ...

 </bpel:sequence>

 </bpel:else>

</bpel:if>

Listing 16: <if>

22

3.3.2.4 <pick>

Wenn aus mehreren alternativen Nachrichten eine ausgewählt und verarbeitet werden soll,

wird die <pick> Aktivität verwendet. Im Unterelement <onMessage> wird dann die, für die

spezifische Nachricht angegebene, Aktivität ausgeführt. Mit dem <onAlarm> Element lässt

sich ein Timeout für die <pick> Aktivität einstellen, an dem diese dann auch ohne Eingang

einer Nachricht beendet wird. Wie bei der <receive> Aktivität kann das Attribut crea-

teInstance auf yes gesetzt werden um einen BPEL-Prozess zu starten.

Ein Beispiel aus der BPEL-Spezifikation [1, S.101 f.] ist in Listing 17 zu sehen.

<pick>

 <onMessage partnerLink="buyer"

 portType="orderEntry"

 operation="inputLineItem"

 variable="lineItem">

 <!-- activity to add line item to order -->

 </onMessage>

 <onMessage partnerLink="buyer"

 portType="orderEntry"

 operation="orderComplete"

 variable="completionDetail">

 <!-- activity to perform order completion -->

 </onMessage>

 <!-- set an alarm to go off

 3 days and 10 hours after the last order line -->

 <onAlarm>

 <for>'P3DT10H'</for>

 <!-- handle timeout for order completion -->

 </onAlarm>

</pick>

Listing 17: <pick>

3.3.2.5 <repeatUntil>

Die <repeatUntil> Aktivität führt enthaltene Aktivitäten solange aus, bis die durch <condition>

angegebene Bedingung erfüllt ist. Die <repeatUntil>-Schleife wird dabei mindestens einmal

ausgeführt.

Listing 18 zeigt ein Beispiel für eine <repeatUntil> Schleife.

<bpel:repeatUntil name=“checkStock“>

 <ext:iterationCount>10</ext:iterationCount>

 <bpel:invoke name=“checkStock“>

 ...

 </bpel:invoke>

 <bpel:condition>

 bpel:getVariableProperty(`availabilityInfo`,

 `product:inStock`) < 15

 </bpel:condition>

</bpel:repeatUntil>

Listing 18: <repeatUntil>

3.3.2.6 <sequence>

Innerhalb der <sequence> Aktivität werden mehrere Aktivitäten sequentiell ausgeführt. Wenn

alle enthaltenen Aktivitäten ausgeführt wurden, wird die <sequence> Aktivität beendet.

23

In Listing 19 ist eine <sequence> mit einer <while> Schleife, einer <wait> Aktivität und einer

<invoke> Aktivität aus dem Beispiel in Kapitel 2 zu sehen.

<bpel:sequence>

 <bpel:while name="While">

 <bpel:condition>

 $similarProductRequest ≠ nil

 </bpel:condition>

 <bpel:invoke name="findSimilarProduct"

 inputVariable="product"

 outputVariable="similarProductRequest"

 operation="findSimilarProduct">

 <bpel:compensationHandler>

 <bpel:invoke name="cancelSearch"

 operation="cancelProductSearch">

 </bpel:invoke>

 </bpel:compensationHandler>

 </bpel:invoke>

 </bpel:while>

 <bpel:wait name="Wait">

 <bpel:for>PT10M</bpel:for>

 </bpel:wait>

 <bpel:invoke name="summarizeResults">

 </bpel:invoke>

</bpel:sequence>

Listing 19: <sequence>

3.3.2.7 <while>

Genau wie in der <repeatUntil>-Schleife kann hier, unter Berücksichtigung der Bedingung im

<condition> Element, eine Aktivität mehrfach ausgeführt werden. Der Unterschied besteht

darin, dass die Bedingung zu Beginn des Durchlaufs geprüft wird und es somit auch möglich

ist, dass die <while>-Schleife nicht einmal durchlaufen wird.

Eine <while> Schleife aus dem Beispiel in Kapitel 2 ist in Listing 20 zu sehen.

<bpel:while name="While">

 <bpel:condition>

 $similarProductRequest ≠ nil

 </bpel:condition>

 <bpel:invoke name="findSimilarProduct"

 inputVariable="product"

 outputVariable="similarProductRequest"

 operation="findSimilarProduct">

 <bpel:compensationHandler>

 <bpel:invoke name="cancelSearch"

 operation="cancelProductSearch">

 </bpel:invoke>

 </bpel:compensationHandler>

 </bpel:invoke>

</bpel:while>

Listing 20: <while>

24

3.3.3 Scopes

3.3.3.1 <compensate>

Die <compensate> Aktivität darf nur innerhalb eines <compensationHandler>s, eines <termi-

nationHandler>s oder eines <faultHandlers>, also innerhalb eines <catch> oder <catchAll>,

aufgerufen werden. Mit dieser Aktivität wird in allen abgeschlossenen <scope>s die Kom-

pensation während eines Fehlerfalles gestartet. Die betreffenden, abgeschlossenen <sco-

pe>s müssen dazu, nimmt man die XML Darstellung als Ausgangspunkt, auf derselben oder

auf einer tieferen Ebene im Zweig wie der Handler liegen.

Ein Beispiel für <compensate> innerhalb eines <faultHandlers> ist in Listing zu sehen.

3.3.3.2 <compensateScope>

Für die <compensateScope> Aktivität gelten dieselben Regeln wie für die <compensate>

Aktivität, bis auf die Besonderheit, dass man einen bestimmten zu kompensierenden <sco-

pe> angeben kann.

Listing 21 zeigt ein kurzes Beispiel aus [1, S.139]:

<compensationHandler>

 <sequence>

 <compensateScope target="S2" />

 </sequence>

</compensationHandler>

Listing 21: <compensateScope>

3.3.3.3 <scope>

<scope>s sind Bereiche in welchen, für die enthaltenen Aktivitäten, bestimmte gültige Ein-

stellungen und Angaben gemacht werden. Zu diesen Einstellungen zählen: <faultHandler>,

<eventHandler>, <compensationHandler>, <terminationHandler>, <correlationSets>, <part-

nerLinks>, <messageExchanges> und <variables>.

In Listing 22 ist eine <scope> Aktivität aus dem Beispiel in Kapitel 2 zu sehen. Die inneren

Aktivitäten der <flow> Aktivität sind in Listing 12 dargestellt.

<bpel:scope>

 <bpel:sequence>

 <bpel:flow name="Flow">

 ...

 </bpel:flow>

 </bpel:sequence>

</bpel:scope>

Listing 22: <scope>

3.3.4 Variablen

3.3.4.1 <variable>

Um in BPEL Variablen zu verwendet wird das <variable> Konstrukt verwendet. Es gibt in

BPEL lokale und globale Variablen. Wird ein <variable> Konstrukt innerhalb eines <scope>s

verwendet, dann ist die angegebene Variable nur innerhalb dieses <scope>s gültig und man

25

spricht von einer lokalen Variable. Wird die Variable auf der <process> Ebene deklariert,

dann ist sie allgemein gültig und man spricht von einer globalen Variable. Die Variablentypen

werden in WSDL- oder XML-Schema-Dateien definiert.

Listing 23 zeigt die <variables> aus dem Beispiel in Kapitel 2.

<bpel:variables>

 <bpel:variable name="product" messageType="tns:productType">

 </bpel:variable>

 <bpel:variable name="availabilityInfo"

 messageType="tns:availabilityType">

 </bpel:variable>

 <bpel:variable name="productOffers" messageType="tns:productType">

 </bpel:variable>

 <bpel:variable name="productOffer" messageType="tns:productType">

 </bpel:variable>

 <bpel:variable name="productDeliveryDate" messageType="tns:date">

 </bpel:variable>

 <bpel:variable name="productPrice" messageType="tns:float">

 </bpel:variable>

 <bpel:variable name="evaluatedProductOffers"

 messageType="tns:productArrayType">

 </bpel:variable>

 <bpel:variable name="similarProductRequest"

 messageType="tns:productType">

 </bpel:variable>

</bpel:variables>

Listing 23: <variable>

3.3.4.2 <validate>

Um Variablen gegen ihre Datendefinitionen aus der jeweilgen XML oder WSDL zu validieren,

wird die <validate> Aktivität verwendet.

Listing 24 zeigt ein Beispiel zum Validieren der zuvor genannten Variablen:

<validate variables=” product availabilityInfo productOffers

 productOffer productDeliveryDate productPrice

 evaluatedProductOffers similarProductRequest ” />

Listing 24: <validate>

3.3.5 Andere Konstrukte

3.3.5.1 <catch>

Die <catch> Aktivität ermöglicht es, während der Fehlerbehandlung, auf bestimmte Fehler zu

reagieren. Hierfür muss der Bezeichner und der Nachrichtentyp des Fehlers angegeben

werden.

Das folgende Beispiel eines <faultHandlers> aus [1, S.19] in Listing 25 zeigt die Fehlerbe-

handlung auf <process> Ebene.

<faultHandlers>

 <catch faultName="lns:cannotCompleteOrder"

 faultVariable="POFault"

 faultMessageType="lns:orderFaultType">

 <reply partnerLink="purchasing"

 portType="lns:purchaseOrderPT"

26

 operation="sendPurchaseOrder" variable="POFault"

 faultName="cannotCompleteOrder" />

 </catch>

</faultHandlers>

Listing 25: <catch>

3.3.5.2 <catchAll>

Alle Fehler, die nicht mit der <catch> Aktivität abgefangen und behandelt werden, können mit

der <catchAll> Aktivität behandelt werden.

Im Beispiel in Listing 26 wird bei allen auftretenden Fehlern abgebrochen [1, S.162].

<faultHandlers>

 <catchAll>

 <exit />

 </catchAll>

</faultHandlers>

Listing 26: <catchAll>

3.3.5.3 <compensationHandler>

Alle für die Kompensation auszuführenden Aktionen werden im <compensationHandler>

zusammengefasst. Durch die Aktivitäten im <compensationHandler> soll ein vorheriger Zu-

stand so gut es geht wieder hergestellt werden. Zusätzlich gibt es noch die Möglichkeit einen

<compensationHandler> direkt an einer <invoke> Aktivität anzubringen.

In Listing 6 wurde ein Beispiel für einen <compensationHandler> innerhalb einer <invoke>

Aktivität vorgestellt. Folgend noch ein Beispiel für einen <compensationHandler> in einem

<scope> [1, S.145].

<scope name="Q" isolated="true">

 <compensationHandler>

 <sequence name="undoQ_Seq">...</sequence>

 </compensationHandler>

 <sequence name="doQ_Seq">...</sequence>

</scope>

Listing 27: <compensationHandler>

3.3.5.4 <extensions>

Mit Hilfe der <extensions> kann BPEL, um Attribute, neue Aktivitäten oder ein verändertes

Laufzeitverhalten der BPEL-Engine, erweitert werden. Mit dem <extensions> Element wer-

den in dieser Arbeit zusätzliche Elemente zur Speicherung von benötigten Informationen für

die Zustandsübertragung erstellt.

Ein Beispiel aus der BPEL-Spezifikation, in dem der Prozess um das Attribut „uniqueUser-

FriendlyName“ erweitert wird [1, S.162].

<extensions>

 <extension

 namespace="http://example.com/bpel/some/extension"

 mustUnderstand="yes" />

</extensions>

<receive partnerLink="homeInfoVerifier"

 operation="##opaque" variable="##opaque"

27

 ext:uniqueUserFriendlyName="receive verification

 result" />

Listing 28: <extensions>

3.3.5.5 <faultHandlers>

Wie bereits beschrieben werden mit den Konstrukten <catch> und <catchAll> Fehler abge-

fangen und behandelt. Diese können nur innerhalb eines <faultHandlers> verwendet wer-

den. Einzige Ausnahme dieser Regel stellt die <invoke> Aktivität dar, hier können die beiden

Konstrukte direkt angebracht werden, ohne das <faultHandlers> Konstrukt zu verwenden.

In Listing 29 ist der <faultHandlers> auf Prozessebene aus dem Beispiel in Kapitel 2 darge-

stellt.

<bpel:faultHandlers>

 <bpel:catchAll>

 <bpel:sequence>

 <bpel:compensate>

 </bpel:compensate>

 <bpel:exit name="Exit">

 </bpel:exit>

 </bpel:sequence>

 </bpel:catchAll>

</bpel:faultHandlers>

Listing 29: <faultHandlers>

3.3.5.6 <import>

Mit Hilfe des <import> Konstrukts wird innerhalb von BPEL Prozessen eine Abhängigkeit von

externen XML Schemata oder WSDL Definitionen angezeigt. Das <import> Konstrukt wird

direkt unterhalb des <process> Elements eingefügt.

Listing 30 zeigt ein Beispiel aus [1, S.169]:

<import importType="http://schemas.xmlsoap.org/wsdl/"

 location="shippingProperties.wsdl"

 namespace="http://example.com/shipping/properties/" />

Listing 30: <import>

3.3.5.7 <partnerLinks>

Damit ein BPEL Prozess mit den beteiligten Web Services, beziehungsweise Business Part-

nern, kommunizieren kann, werden <partnerLinks>, <partnerLinkType>s, roles und port-

Types verwendet. Diese Elemente werden in dieser Arbeit nicht näher erläutert, da sie für die

Zustandsübertragung nicht von Bedeutung sind. Für weiterführende Informationen wird auf

[1, S.36 ff.] verwiesen.

3.3.5.8 <process>

Der <process> ist das Hauptkonstrukt eines BPEL Prozesses. Innerhalb des <process>

Konstrukts werden globale Einstellungen für den BPEL Prozess vorgenommen. Dazu zählen

<extensions>, <import>s, <partnerLinks>, <variables>, <correlationSets>, <message-

Exchanges>, <eventHandlers> und <faultHandlers>. In der BPEL Spezifikation wird das als

root-context bezeichnet. Im <process> Konstrukt darf nur eine Aktivität enthalten sein. In den

28

meisten Fällen ist das entweder eine <sequence>, <scope> oder <flow> Aktivität.

Ein <process> Konstrukt kann entweder ein executable process sein oder ein abstract pro-

cess. Ein executable process beschreibt das Verhalten eines BPEL-Prozesses und kann auf

einer BPEL-Engine ausgeführt werden. Bei einem abstract process dagegen lassen sich

Prozessdetails verbergen um, zum Beispiel, Geschäftspartnern die nötigen Schnittstellen

offen zu legen, ohne Einsicht auf die inneren Abläufe zu geben. Zum Verbergen von Details

wird die <opaqueActivity> verwendet.

In Kapitel 2 wurde ein Beispiel für einen kompletten <process> gezeigt. Weitere Beispiele

sind in [1, S.19 ff.] zu finden.

3.3.5.9 <terminationHandler>

Wird der komplette BPEL Prozess oder nur ein <scope> durch einen Fehler beendet, bietet

der <terminationHandler> die Möglichkeit, durch Ausführung der darin enthaltenen Aktivitä-

ten, den durch den Fehler entstandenen Schaden zu begrenzen.

Das Beispiel in Listing 31 zeigt den Default-<terminationHandler> [1, S.132].

<terminationHandler>

 <compensate />

</terminationHandler>

Listing 31: <terminationHandler>

3.3.5.10 <eventHandlers>

Um auf Ereignisse während der Ausführung eines BPEL-Prozesses zu reagieren werden die

<eventHandlers> verwendet. Es muss sich mindestens ein Element vom Typ <onEvent>

oder vom Typ <onAlarm> darin befinden und die in jenem Element enthaltene Aktivität muss

vom Typ <scope> sein. <eventHandlers> können entweder direkt in das <process> Kon-

strukt oder in ein <scope> Konstrukt integriert werden.

3.3.5.10.1 <onEvent>

Ein <onEvent> Element in einem <eventHandlers> Konstrukt reagiert auf das Eintreffen ei-

ner bestimmten Nachricht.

In der BPEL-Spezifikation ist ein Beispiel zur Veranschaulichung des <onEvent> Elements

zu finden [1, S.141].

<process name="orderCar">

 ...

 <eventHandlers>

 <onEvent partnerLink="buyer"

 portType="ns:car"

 operation="haltOrder"

 messageType="ns:haltOrderMsgType"

 variable="haltDetails">

 <scope>

 <exit />

 </scope>

 </onEvent>

 ...

 </eventHandlers>

 ...

</process>

29

Listing 32: <eventHandlers> mit <onEvent>

3.3.5.10.2 <onAlarm>

Ein <onAlarm> Element wird für zeitgesteuerte Ereignisse eingesetzt. Die bereits bekannten

Elemente <for> oder <until> können darin enthalten sein. Es gibt zwei Unterschiede bei der

Verwendung dieser Elemente in einem <onAlarm> Element im Vergleich zur Verwendung in

einer <pick> Aktivität. Der eine Unterschied ist, dass mit <repeatEvery> die Ausführung so-

lange wiederholt ausgeführt werden kann, bis der <process> oder der <scope>, der diese

<eventHandlers> beinhaltet, beendet ist. Und der zweite Unterschied ist, dass innerhalb von

<onAlarm> Elementen nur ein <scope> Konstrukt verwendet werden darf.

Ein kurzes <eventHandlers> Beispiel mit dem <onAlarm> Element aus [1, S.142]:

<eventHandlers>

 <onAlarm>

 <for>$orderDetails.processDuration</for>

 ...

 </onAlarm>

 ...

</eventHandlers>

Listing 33: <eventHandlers> mit <onAlarm>

30

3.4 BPMN 2.0

BPMN [4] ist eine Sprache zur graphischen Modellierung von Geschäftsprozessen. Es exis-

tieren noch andere Sprachen zur visuellen Modellierung von Geschäftsprozessen, aber

durch die große Anzahl namhafter Unternehmen [4, S.17 ff.], die an der BPMN-Spezifikation

beteiligt sind, ist BPMN die am häufigsten verwendete Sprache zur visuellen Modellierung

von Geschäftsprozessen, also der quasi Standard. Die OMG, Object Management Group

[11], hat die Spezifikation für BPMN definiert und veröffentlicht, wobei die aktuelle Version

BPMN2.0 ist. BPMN wurde entwickelt, um Geschäftsleuten die Erstellung von einfach ver-

ständlichen, grafischen Darstellungen ihrer Geschäftsprozesse zu ermöglichen. Des Weite-

ren soll BPMN eine Brücke über die Kluft zwischen dem Entwurf und der Implementierung

von Geschäftsprozessen erstellen und die Kommunikation zwischen Geschäftsleuten und

technisch orientierten Mitarbeitern, wie zum Beispiel Programmierern, vereinfachen.

In BPMN wird eine Tokensemantik ähnlich der in Petri-Netzen verwendet. Ein Token kann

man sich dabei als ein Element vorstellen, das während der Ausführung des Prozesses die

einzelnen Konstrukte durchläuft. Beim Starten des Prozesses wird ein Token bildlich auf das

Start-Event gelegt und wird dann von Konstrukt zu Konstrukt geschoben. An Verzweigungen

kann das Token verschiedene Wege einschlagen und es werden nur die Konstrukte ausge-

führt, auf denen das Token landet. Ist eine parallele Ausführung, zum Beispiel durch ein Pa-

rallel Gateway, vorgesehen, so wird an jeden Pfad ein Token weitergegeben und diese

durchlaufen den Prozess dann unabhängig voneinander. Alle Tokens müssen an einem End-

Event konsumiert werden um den Prozess zu beenden. Weiterführende Informationen über

die Tokensemantik in BPMN sind in der Spezifikation zu finden [4, S.427 ff.].

Auf die genaue Entstehungsgeschichte von BPMN wird in dieser Arbeit nicht näher einge-

gangen. Für explizitere Informationen über das Themengebiet wird auf die Homepage der

Object Management Group [11] und auf die BPMN-Spezifikation [4] verwiesen.

3.5 Konstrukte in BPMN

Die in der BPMN-Spezifikation [4] beschriebenen Konstrukte werden in diesem Unterkapitel

erläutert. Um den Umfang einzugrenzen werden die Konstrukte hier nur durch kurze Be-

schreibungen erläutert. Zur ausführlicheren Beschreibung wird auf die BPMN-Spezifikation

verwiesen und hierfür werden zu allen Konstrukten die Seitenangaben in der Spezifikation

angegeben. In diesem Unterkapitel findet keine nähere Beschreibung der einzelnen Attribute

statt. Diese Informationen sind ebenfalls der BPMN-Spezifikation zu entnehmen. Für weiter-

führende Informationen wird das Buch „BPMN Method & Style“ von Bruce Silver [12] emp-

fohlen.

3.5.1 Events

Wie in der BPMN-Spezifikation beschrieben (vgl. [4, S. 233 ff.]), ist ein Event ein Ereignis,

das während der Ausführung eines Geschäftsprozesses eintritt. Diese Events beeinflussen

den weiteren Ablauf des Geschäftsprozesses und haben normalerweise einen Auslöser, im

Weiteren Trigger genannt, oder eine Auswirkung, im Weiteren Result genannt. Ein Event

kann viele verschiedene Dinge darstellen, wie zum Beispiel den Start eines Tasks, das Ende

eines Tasks, die Zustandsänderung eines Dokuments oder eine eingehende Nachricht.

Es gibt drei Haupttypen von Events: Das Start-Event, siehe Abbildung 4, das End-Event,

siehe Abbildung 5, und das Intermediate-Event, siehe Abbildung 6. Ein Start-Event wird als

31

Kreis mit einfachem Rand dargestellt und gibt an wo ein Geschäftsprozess startet. Ein End-

Event wird als Kreis mit fettem Rand dargestellt und gibt an wo ein Geschäftsprozess endet.

Der dritte Haupttyp, das Intermediate-Event, wird als Kreis mit doppeltem Rand dargestellt

und wird überall dort eingesetzt, wo während des Geschäftsprozesses ein Ereignis eintritt.

Abbildung 4: Start-Event

Abbildung 5: End-Event

Abbildung 6: Intermediate-Event

Die drei Haupttypen werden in zwei Arten unterteilt. Events mit einem Trigger werden als

catching Event, sie warten auf den Eingang eines Events, und Events mit einem Result wer-

den als throwing Events, sie sind der Auslöser eines Events, bezeichnet. Während Start-

Events immer catching Events und End-Events immer throwing Events sind, können Inter-

mediate-Events von beiden Arten sein. Zur Veranschaulichung der beiden Arten in der Dar-

stellung werden catching Events als normal gezeichnetes Symbol und throwing Events als

ausgemaltes Symbol innerhalb des Kreises dargestellt.

In dieser Arbeit wird nur eine Teilmenge von BPMN, wie sie in [13] definiert wurde, beschrie-

ben. Die folgende Abbildung zeigt eine Übersicht der verschiedenen Event-Typen. Diese

werden anschließend näher erläutert.

 „Catching“ „Throwing“

Message

Timer

Error

Compensation

Terminate

Tabelle 2: Übersicht über die verwendeten Events aus BPMN2.0

32

3.5.1.1 Message-Event

Ist der Message-Event ein catching Event, dann wird auf eine eingehende Nachricht gewar-

tet und anschließend entsprechend dieser Nachricht eine Aktivität gestartet. Handelt es sich

um einen throwing Event, dann wird eine Nachricht versendet. Ist der Message-Event am

Rand einer Aktivität angebracht, dann handelt es sich um eine Ausnahmebehandlung.

Abbildung 7: Message Events

3.5.1.2 Timer-Event

Zum Starten von Prozessen zu einer bestimmten Zeit oder nach einem Zeitplan wird der

Timer-Event verwendet. Ist es ein Intermediate-Event dann kann der Timer-Event auch zur

Ablaufverzögerung eines Prozesses verwendet werden. Angebracht an den Rand einer Akti-

vität dient er zur Ausnahmebehandlung zu einem bestimmten Zeitpunkt oder nach Ablauf

einer Zeitperiode.

Abbildung 8: Timer Events

3.5.1.3 Error-Event

Der Error-Event wird zur Fehlerbehandlung genommen. Es kann am Rand einer Aktivität als

Intermediate-Event oder als End-Event auftreten. Ist der Event ein Intermediate-Event, dann

wird auf ein Fehlerereignis gewartet. Als End-Event wird ein Fehler dem zugehörigen cat-

ching Event übermittelt.

Abbildung 9: Error Events

3.5.1.4 Compensation-Event

Wird der Compensation-Event als Catching-Event am Rand einer Aktivität verwendet, dann

wird, sobald eine Kompensation notwendig ist, die angegebene Ausführung gestartet. Wird

der Compensation-Event dagegen als Throwing-Event verwendet, dann signalisiert dieser,

dass eine Kompensation notwendig ist.

33

Abbildung 10: Compensation Events

3.5.1.5 Terminate-Event

Mit dem Terminate-Event werden alle noch laufenden Aktivitäten im aktuellen Prozess sofort

beendet. Beim Beenden durch den Terminate-Event werden keine weiteren Behandlungen,

wie zum Beispiel die Kompensation, mehr gestartet.

Abbildung 11: Terminate Event

34

3.5.2 Aktivität

In BPMN ist eine Aktivität ([4, S.151 ff.]) ein Arbeitsschritt, der während eines Geschäftspro-

zesses ausgeführt wird. Dabei kann es sich um einen einzelnen, atomaren Arbeitsschritt

handeln, ein Task, oder um mehrere zusammengesetzte Arbeitsschritte, dabei spricht man

dann von einem Sub-Prozess. Dargestellt werden Aktivitäten durch ein Rechteck mit abge-

rundeten Ecken. Marker am unteren Rand des Rechtecks geben Aufschluss darüber, wel-

ches Verhalten die Aktivität hat. Mit einem Label auf der Rechtecksfläche kann eine Be-

schreibung der Aktivität angegeben werden.

Abbildung 12: Piktogramm einer Aktivität

3.5.3 Task

Ein einzelner Arbeitsschritt, ein Task ([4, S.156 ff.]), kann drei verschiedene Marker haben.

Einen Loop-Marker, einen Multi-Instance-Marker oder einen Compensation-Marker. Der

Loop-Marker hat eine wiederholende, sequenzielle Ausführungssemantik und der Multi-

Instance-Marker eine parallele, mehrfach Ausführungssemantik. Somit können die beiden

Marker nicht gemeinsam auftreten, da sich die Semantik überschneiden würde. Der Com-

pensation-Marker gibt an, dass der Task eine Kompensationsfunktion hat. Der Compensati-

on-Marker kann gemeinsam mit dem Loop-Marker oder dem Multi-Instance-Marker auftreten.

Der Multi-Instance Marker wird in dieser Arbeit nicht weiter verwendet.

Abbildung 13: Loop-Marker

Abbildung 14: Compensation-Marker

3.5.3.1 Sub-Prozess

Ein Sub-Prozess ([4, S.173 ff.]) ist ein Teil-Prozess innerhalb des Geschäftsprozesses. Er

kann wie der Prozess beliebig viele Aktivitäten, Gateways, Events und Sequence-Flows be-

inhalten. Ein Sub-Prozess kann in zweierlei Arten angezeigt werden. Zum einen die „collap-

sed“ Ansicht, bei der die Details des Sub-Prozesses versteckt sind. Die Darstellung des Sub-

Prozesses beinhaltet in diesem Fall einen weiteren Marker am unteren Rand, ein Plus-

Zeichen umgeben von einem kleinen Rechteck. Die zweite Ansicht ist die „expanded“ An-

sicht. In dieser sieht man die Details des Sub-Prozesses umgeben von einem Rechteck mit

abgerundeten Ecken.

35

Abbildung 15: collapsed Sub-Prozess

Abbildung 16: expanded Sub-Prozess

Zusätzlich zum „collapsed“-Marker werden vier weitere Marker definiert. Der Loop-Marker,

der Compensation-Marker, der Error-Marker und der Termination-Marker. Wie beim Task hat

auch hier der Loop-Marker eine wiederholende, sequenzielle Ausführungssemantik. Der

Compensation-Marker gibt an, dass der Sub-Prozess als Kompensation von zuvor ausge-

führten Aktivitäten genutzt wird. Der Error-Marker wird eingeführt um den <faultHandlers>

aus BPEL darstellen zu können und der Termination-Marker wird für die Darstellung des

<terminationHandler>s verwendet.

Abbildung 17: Loop

Abbildung 18: Com-
pensation

Abbildung 19: Error

Abbildung 20: Ter-
mination

3.5.4 Gateways

Gateways ([4, S.287 ff.]) dienen zur Steuerung der Ablaufreihenfolge der Aktivitäten. Mit de-

ren Hilfe können Verzweigungen und Entscheidungen, sowie Zusammenführungen darge-

stellt werden. Ein Gateway wird in BPMN 2.0 durch eine Raute abgebildet. Die jeweils spezi-

fische Semantik wird durch einen Marker innerhalb der Raute angegeben. Wie in [4, S.90 ff.]

können Gateways Null oder mehr eingehende Sequence Flows haben. Wenn das Gateway

keinen eingehenden Sequence Flow hat und es keinen Start-Event für den Prozess gibt,

dann soll das verzweigende Verhalten des Gateways beim Instanziieren des Prozesses

durchgeführt werden. Genauso können Gateways Null oder mehr ausgehende Sequence

Flows haben. Aber dabei ist zu beachten, dass ein Gateway entweder mehrere eingehende

oder mehrere ausgehende Sequence Flows haben muss.

36

3.5.4.1 Exclusive Gateway

Das verzweigende Exclusive Gateway stellt eine Entscheidung im Prozessablauf dar. Es

werden alternative Pfade erstellt, wobei in jeder Prozessinstanz nur einer der Pfade genom-

men werden kann. Eine Entscheidung kann man sich als Frage vorstellen, die zu einem be-

stimmten Zeitpunkt im Prozess gestellt wird. Diese Frage hat eine definierte Menge an alter-

nativen Antworten. Jede Antwort hat eine zugehörige Bedingung, welche zu einem bestimm-

ten ausgehenden Sequence Flow gehört. Exclusive Gateways können einen Marker haben,

der wie ein großgeschriebenes X aussieht. In der BPMN 2.0 Spezifikation wird darauf hinge-

wiesen, dass ein Diagramm konsistent in der Verwendung dieses internen Markers sein soll-

te. Es sollte also nicht vorkommen, dass in einem Diagramm Gateways mit und Gateways

ohne Marker verwendet werden.

Abbildung 21: Exclusive Gateway ohne Mar-
ker

Abbildung 22: Exclusive Gateway mit Marker

Wie in den beiden Abbildungen zu sehen ist, kann ein Default-Pfad angegeben werden.

Wurden alle Bedingungen auf den Wahrheitswert false evaluiert, wird dieser Default-Pfad

verwendet. Wird kein Default-Pfad spezifiziert und alle Bedingungen sind auf false evaluiert,

so wird ein Runtime Error erzeugt.

Ein zusammenführendes Exclusive Gateway wird zur Zusammenfassung von mehreren al-

ternativen Pfaden verwendet. Jeder eingehende Sequence Flow wird zum ausgehenden

Sequence Flow weitergeleitet.

3.5.4.1.1 Event-Based Gateway

Wie der Name schon sagt, sind Event-Based Gateways abhängig von eintretenden Ereignis-

sen. Ein bestimmtes Ereignis, meistens eine empfangene Nachricht, bestimmt welcher Pfad

weiter genommen wird. Wenn zum Beispiel eine Firma auf die Antwort eines Kunden wartet,

dann wird es zwei unterschiedliche Mengen von Aktivitäten geben, je nachdem welche Ant-

wort vom Kunden kommt. Die Kundenentscheidung bestimmt also den weiteren Pfad im

Prozess. Das Empfangen einer Nachricht kann als Intermediate Event mit einem Nachrich-

ten-Trigger modelliert werden. Neben Nachrichten können auch Timer als Trigger verwendet

werden.

Das Piktogramm des Event-Based Gateways wird als Raute mit dem Symbol für Multiple

Intermediate Events im Innern dargestellt.

37

Abbildung 23: Event-Based Gateway

Event-Based Gateways können auch zum Starten von Prozessen verwendet werden. Beim

Exclusive Event-Based Gateway wird nur der als erstes angestoßene Event gestartet. Alle

anderen Pfade des Gateways sind dann nicht mehr gültig. Das Piktogramm hierfür ist eine

Raute mit dem Multiple Start Event in der Mitte.

Abbildung 24: Exclusive Event-Based Gateway

3.5.4.2 Parallel Gateway

Das Parallel Gateway wird verwendet um parallele Flows zu synchronisieren oder zu erstel-

len. Das Parallel Gateway erstellt parallele Pfade ohne irgendwelche Bedingungen zu über-

prüfen. Jeder ausgehende Sequence Flow bekommt einen Token vom Gateway und bei

synchronisierenden Gateways wird auf alle eingehenden Sequence Flows gewartet bevor

der ausgehende Flow ausgelöst wird. Als Piktogramm wird für das Parallel Gateway ein

Plus-Zeichen innerhalb der Raute verwendet.

Abbildung 25: erstellendes Parallel Gateway

Abbildung 26: synchronisierendes Parallel
Gateway

38

3.5.5 Message Flow

Um die Kommunikation zwischen zwei Teilnehmern in einem Prozess darzustellen verwen-

det man Message Flow Verbindungen ([4, S.120 ff.]) in BPMN. Die Verbindung muss zwi-

schen zwei unterschiedlichen Pools sein, wobei nicht nur der Pool selbst, sondern auch Ob-

jekte innerhalb des Pools als Verbindungspunkt verwendet werden kann. Es ist aber nicht

möglich zwei Objekte innerhalb desselben Pools zu verbinden.

Abbildung 27: Message Flow Connection

3.5.6 Sequence Flow

Zur Festlegung der Reihenfolge, in welcher die Aktivitäten in einem Prozess ausgeführt wer-

den, werden die Sequence Flow Verbindungen ([4, S.97 ff.]) verwendet. Jede Verbindung

hat immer genau ein Ursprung und ein Ziel. Als Ursprung oder Ziel kommen Events, Aktivitä-

ten oder Gateways in Frage, wobei es bestimmte Einschränkungen gibt. Start-Events dürfen

keine eingehenden Verbindungen und End-Events keine ausgehenden Verbindungen haben.

Es dürfen keine Verbindungen über die Grenzen eines Sub-Prozesses hinaus verwendet

werden und Pools, Lanes, Data Objects und Annotations dürfen überhaupt nicht verbunden

werden. Diese drei Konstrukte werden mit Message Flows verbunden.

Abbildung 28: Sequence Flow

Außer den normalen Verbindungen gibt es noch zwei weitere Arten. Zum einen die Condito-

nal Sequence Flows und zum anderen die Default Sequence Flows. Die Condtional Se-

quence Flows haben eine Übergangsbedingung, mit welcher entschieden wird, ob der Token

weitergeschickt wird. Typischerweise werden Conditonal Sequence Flows nur an Gateways

oder an Aktivitäten verwendet. Handelt es sich um eine ausgehende Verbindung einer Aktivi-

tät, dann muss eine kleine Raute zusätzlich zum Piktogramm der normalen Sequence Flow

Verbindung vorne angehängt werden. Handelt es sich jedoch um einen Gateway, dann muss

diese zusätzliche Raute nicht angehängt werden. Ist der Ursprung des Conditional Se-

quence Flows eine Aktivität, dann muss es mindestens eine weitere ausgehende Verbindung

geben, ist es ein Gateway, dann darf dieses Gateway nicht vom Typ Parallel oder Event

sein.

Abbildung 29: Conditional Sequence Flow

Ein Sequence Flow, der als Ursprung entweder ein Exclusive Gateway, ein Inclusive Gate-

way, ein Complex Gateway oder eine Aktivität hat, kann auch als Default Sequence Flow

definiert werden. Dieser Sequence Flow wird einen Marker haben, der ihn als Standard

39

kennzeichnet. Der Default Sequence Flow bekommt ein Token, wenn alle anderen ausge-

henden Verbindungen nicht mehr gültig sind, also deren Bedingungen nicht zutreffen.

Abbildung 30: Default Sequence Flow

3.5.7 Pools

In einem Prozess repräsentiert ein Pool ([4, S.112 ff.]) einen Teilnehmer des Prozesses. Ein

Teilnehmer kann eine spezifische Rolle, wie zum Beispiel ein Unternehmen, oder eine all-

gemeinere Rolle, wie zum Beispiel einen Kunden, darstellen. Dabei kann der innere Prozess

des Pools sichtbar oder verborgen sein. Pools werden zur Visualisierung des Nachrichten-

austausches zwischen mehreren Teilnehmern genutzt.

Abbildung 31: Pool

3.5.8 Data Association

Data Associations werden verwendet um den Datenfluss zwischen Data Objects, siehe Kapi-

tel 3.5.9, und anderen Konstrukten zu visualisieren. Ein Beispiel wäre die Verwendung von

Daten aus einem Data Object in einer Aktivität.

Abbildung 32: Data Association

3.5.9 Data Object

Mit Hilfe des Data Objects ([4, S.205ff.]) können die Diagramme der Prozesse mit zusätzli-

chen Informationen ausgestattet werden. Zur Visualisierung wird ein Aussehen eines Blatt

Papiers genommen. Data Objects können nicht per Sequence Flow Connections, sondern

nur per Data Associations verbunden werden.

Abbildung 33: Data Object

40

4 Abbildungen von BPEL zu BPMN

Um einen Geschäftsprozess, der mit BPEL ausgeführt wird, mit BPMN überwachen zu kön-

nen, muss das BPEL-Modell zuerst in ein BPMN-Modell transformiert werden. Ein Beispiel

für ein BPEL-Model und dem zugehörigen BPMN-Model ist in Kaiptel 2.3 zu sehen. Eine

Möglichkeit diese Transformation zu bewerkstelligen ist ein BPEL-Modell einem manuell er-

stellten BPMN-Modell gegenüber zu stellen und die Projektionen der einzelnen Aktivitäten

manuell zu bestimmen. Dabei muss auf die Einhaltung von Soundness und Vollständigkeit

geachtet werden. Die zweite Möglichkeit besteht darin das BPMN-Modell aus dem BPEL-

Modell generieren zu lassen. Bei dieser Variante kann angenommen werden, dass das ge-

nerierte Modell, auf Grund der wohldefinierten, verwendeten Regeln, vollständig und sound

ist.

Die Motivation dieser Arbeit ist, dass ein Konzept erstellt werden soll, mit dem es ermöglicht

wird das Tool BPI um die Überwachung eines BPEL-Prozesses durch BPMN zu erweitern. In

Hinsicht auf den automatisierten Ablauf des Tools, wird die zweite Möglichkeit gewählt. Für

die Umsetzung des Konzepts soll in einem ersten Schritt das Tool BPI um die Generierung

eines BPMN-Modells aus einem BPEL-Modell erweitert werden.

 In den folgenden Abschnitten dieses Kapitels werden bereits untersuchte und definierte

Konzepte zur Transformation von BPEL zu BPMN erläutert und weiterverwendet.

4.1 Transformation zwischen den Sprachen

In [8] wurde eine umfassende und detaillierte Untersuchung von Ansätzen zur Transformati-

on von BPEL-Modellen zu BPMN-Modellen durchgeführt. In diesem Abschnitt werden die

wichtigsten Erkenntnisse und Ergebnisse zusammengefasst. Für tiefergehende Fragen wird

auf [8, S.62 ff.] verwiesen.

Als Grundlage für die Transformation zwischen BPEL und BPMN kann das in der BPMN

Spezifikation [4, S.445 ff.] vorgestellte Mapping von BPMN zu BPEL dienen. Zusätzlich wer-

den in [13] Muster zur Visualisierung von BPEL Aktivitäten vorgestellt. Weiter wurden die drei

Strategien Flattening, Hierarchy-Preservation und Hierarchy-Maximization aus [14] und [15]

in Bezug auf die Transformation zwischen BPEL und BPMN untersucht. Bei der Flattening

Strategie werden alle strukturierten Aktivitäten in BPEL vereinfacht dargestellt, indem die, in

den strukturierten Aktivitäten enthaltenen, Aktivitäten von zwei Gateways ummantelt werden.

Dabei werden für die <flow> Aktivität AND-Gateways und für die <if>, <pick> und <while>

Aktivitäten XOR-Gateways verwendet. Probleme bei dieser Strategie sind hauptsächlich in

der Umsetzung der Dead-Path-Eliminierung aus BPEL zu finden.

Die zweite Strategie, die Hierarchy-Preservation, transformiert alle strukturierten Aktivitäten

aus BPEL zu Sub-Prozessen in BPMN. Da in BPMN keine Sequence Flow Connection als

Ziel oder Quelle eine Aktivität aus einem Sub-Prozess haben darf, wird für diese Strategie

die Teilmenge „Structured BPEL“ aus BPEL definiert. Darin sind alle BPEL Konstrukte ent-

halten, nur mit der Ausnahme, dass keine <link>s in den Aktivitäten enthalten sein dürfen.

Das Konzept der Hierarchy-Maximization kombiniert die beiden vorherigen Strategien. Struk-

turierte Aktivitäten werden mit der Hierarchy-Preservation als Sub-Prozess transformiert,

solange die Aktivität keine <link>s beinhaltet. In diesem Fall wird die Flattening Strategie

angewandt, um die komplexe Struktur aufzulösen.

Die Ergebnisse, wie die einzelnen Aktivitäten aus BPEL in BPMN dargestellt werden können,

werden in den folgenden Unterkapiteln beschrieben und anschließend wird eine Tabelle als

41

Übersicht für alle Zuordnungen präsentiert. Bis auf die <forEach> Aktivität, die leicht verän-

dert wurde, wurden die Transformationen aus [8] verwendet.

4.1.1 Basis Aktivitäten

4.1.1.1 <assign>

Die <assign> Aktivität kann in BPMN als Task oder als Sub-Prozess dargestellt werden. Wird

die Darstellung als Sub-Prozess gewählt, dann werden alle enthaltenen <copy> Elemente

als Task innerhalb des Sub-Prozesses dargestellt.

Genügt der überwachenden Person des Prozesses ein gröberer Detailgrad, so können meh-

rere Aktivitäten zu einem Task zusammengefasst werden. Beispiele für solche Zusammen-

fassungen wären eine <sequence> aus <assign>, <invoke> und <assign> oder eine <se-

quence> aus <receive> und <reply> als Task darzustellen.

4.1.1.2 <empty>

Die <empty> Aktivität wird in BPMN als Task dargestellt.

4.1.1.3 <exit>

Die <exit> Aktivität wird in BPMN als Throwing Intermediate Terminate Event dargestellt.

4.1.1.4 <invoke>

Die <invoke> Aktivität kann in BPMN als Task oder als Sub-Prozess dargestellt werden. Bei

der Darstellung als Sub-Prozess können eingebettete <faultHandlers> und <compensation-

Handler> innerhalb des Sub-Prozesses separat dargestellt werden.

4.1.1.5 <receive>

Die <receive> Aktivität kann in BPMN als Task oder als Catching Intermediate Message

Event dargestellt werden.

4.1.1.6 <reply>

Die <reply> Aktivität kann in BPMN als Task oder als Throwing Intermediate Message Event

dargestellt werden.

4.1.1.7 <rethrow>

Die <rethrow> Aktivität wird in BPMN als Throwing Intermediate Error Event dargestellt.

4.1.1.8 <throw>

Die <throw> Aktivität wird in BPMN als Throwing Intermediate Error Event dargestellt.

4.1.1.9 <wait>

Die <wait> Aktivität wird in BPMN als Catching Intermediate Timer Event dargestellt.

42

4.1.2 Strukturierte Aktivitäten

4.1.2.1 <flow>

Die <flow> Aktivität wird in BPMN als Sub-Prozess mit jeweils einem Parallel-Gateway als

Start- und Endpunkt dargestellt. Die im <flow> enthaltenen Aktivitäten werden zwischen den

beiden Gateways separat abgebildet. Im <flow> enthaltene <link>s werden als Sequence

Flow Connections abgebildet.

4.1.2.2 <forEach>

Die <forEach> Aktivität wird in BPMN als Sub-Prozess mit jeweils einem Exclusive-Gateway

als Start- und Endpunkt dargestellt. Der im <forEach> enthaltene <scope> wird zwischen

den beiden Gateways separat dargestellt.

4.1.2.3 <if>

Die im <if> Konstrukt enthaltenen Aktivitäten werden durch jeweils ein Exclusive-Gateway

als Start- und Endpunkt umgeben. Für den if-Zweig und für jeden elseif-Zweig innerhalb des

<if> Konstrukts werden einzelne Pfade mit einer Sequence Flow Connection erstellt. Für den

else-Zweig wird eine Default Sequence Flow Connection erstellt. Jeder Pfad bildet dabei

eine <sequence> Aktivität im <if> Konstrukt ab.

4.1.2.4 <pick>

Die im <pick> Konstrukt enthaltenen Aktivitäten werden durch ein Event-Based-Gateway als

Startpunkt und ein Exclusive-Gateway als Endpunkt umgeben. Die Aktivitäten innerhalb des

<pick> Konstrukts werden separat abgebildet.

4.1.2.5 <repeatUntil>

Die <repeatUntil> Aktivität wird in BPMN entweder als Sub-Prozess mit einem Loop-Marker

dargestellt oder mit jeweils einem Exclusive-Gateway als Start- und Endpunkt, die die enthal-

tenen Aktivitäten umschließen. Zwischen dem Endpunkt und dem Startpunkt wird eine

Default Sequence Flow Connection erstellt, um die RepeatUntil-Schleifen-Semantik herzu-

stellen.

4.1.2.6 <sequence>

Die einzelnen Aktivitäten innerhalb der <sequence> Aktivität werden in BPMN separat dar-

gestellt und mit Sequence Flow Connections verbunden.

4.1.2.7 <while>

Die <while> Aktivität wird in BPMN entweder als Sub-Prozess mit einem Loop-Marker darge-

stellt oder mit jeweils einem Exclusive-Gateway als Start- und Endpunkt, die die enthaltenen

Aktivitäten umschließen. Zwischen dem Endpunkt und dem Startpunkt wird eine Sequence

Flow Connection erstellt und als ausgehende Verbindung eine Default Sequence Flow

Connection, um die While-Schleifen-Semantik herzustellen.

43

4.1.3 Scopes

4.1.3.1 <compensate>

Die <compensate> Aktivität wird in BPMN als Throwing Intermediate Compensation Event

dargestellt.

4.1.3.2 <compensateScope>

Die <compensate> Aktivität wird in BPMN als Throwing Intermediate Compensation Event

dargestellt.

4.1.3.3 <scope>

Die <scope> Aktivität wird in BPMN als Sub-Prozess dargestellt. <faultHandlers>, <compen-

sationHandler> und <eventHandler> werden innerhalb des Sub-Prozesses ebenfalls darge-

stellt.

4.1.4 Variablen

4.1.4.1 <variable>

Die Informationen aus den <variable> Konstrukten werden in BPMN durch Data Objects ab-

gebildet.

4.1.4.2 <validate>

Die <validate> Aktivität wird in BPMN als Task dargestellt.

4.1.5 Andere Konstrukte

4.1.5.1 <catch>

Die Abbildung des <catch> Elements wird in Kapitel 4.1.5.4 behandelt.

4.1.5.2 <catchAll>

Die Abbildung des <catchAll> Elements wird in Kapitel 4.1.5.4 behandelt.

4.1.5.3 <compensationHandler>

Die <compensationHandler> Aktivität wird in BPMN als Sub-Prozess mit einem Compensati-

on-Marker dargestellt.

4.1.5.4 <faultHandlers>

Die Struktur eines <faultHandlers> Konstrukts in BPMN beginnt mit einem Error Start Event

und die eigentliche Fehlerbehandlung wird wie bei der <if> Aktivität abgebildet. Für jedes

<catch> Element und das <catchAll> Element wird ein eigener Pfad erstellt. Die <catch>

Elemente werden durch normale Sequence Flow Connections und das <catchAll> Element

durch eine Default Sequence Flow Connection verbunden.

44

4.1.5.5 <process>

Das <process> Konstrukt wird in BPMN als Pool mit allen enthaltenen Aktivitäten und Hand-

lern dargestellt.

4.1.5.6 <terminationHandler>

Die <terminationHandler> Aktivität wird in BPMN als Sub-Prozess mit einem Termination-

Marker dargestellt.

4.1.5.7 <onEvent>

Das <onEvent> Element einer <eventHandler> Aktivität wird in BPMN als Catching Interme-

diate Message Event dargestellt.

4.1.5.8 <onAlarm>

Das <onAlarm> Element einer <eventHandler> Aktivität wird in BPMN als Catching Interme-

diate Timer Event dargestellt.

In der folgenden Tabelle sind nochmal alle Zuordnungen zusammengefasst. Wenn es meh-

rere Möglichkeiten für eine Zuordnung gibt, wurde eine Default-Zuordnung angegeben. Die

Default-Zuordnungen sind unterstrichen.

BPEL Aktivität BPMN Zuordnung

Basis Aktivitäten

<assign>
Task oder Sub-Prozess mit den <copy>
Elementen als einzelne Tasks

<empty>
Task

<exit>
Throwing Intermediate Terminate Event

<invoke>
Task oder Sub-Prozess mit <faultHandlers>
und <compensationHandler>

<receive>
Task oder Catching Intermediate Message
Event

<reply>
Task oder Throwing Intermediate Message
Event

<rethrow>
Throwing Intermediate Error Event

<throw>
Throwing Intermediate Error Event

<wait>
Catching Intermediate Timer Event

Strukturierte Aktivitäten

<flow>
Sub-Prozess mit Parallel-Gateways als
Start- und Endpunkt der inneren Aktivitäten,
<link>s als Sequence Flow Connections

<forEach>
Sub-Prozess mit Loop-Marker oder Exclusi-
ve-Gateways als Start- und Endpunkt des

45

inneren <scope>

<if>
Exclusive-Gateways als Start- und End-
punkt, Default Sequence Flow Connection
beim else-Pfad

<pick>
Event-Based-Gateway als Startpunkt und
Exclusive-Gateway als Endpunkt, separate
Projektionen der internen Aktivitäten

<repeatUntil>

Sub-Prozess mit Loop-Marker oder Exclusi-
ve-Gateways als Start- und Endpunkt,
Default Sequence Flow Connection zwi-
schen End- und Startpunkt

<sequence>
Sequence Flow Connections verbinden die
einzelnen Aktivitäten

<while>

Sub-Prozess mit Loop-Marker oder Exclusi-
ve-Gateways als Start- und Endpunkt, nor-
male Sequence Flow Connection zwischen
End- und Startpunkt, Default Sequence Flow
Connection als ausgehende Verbindung

Scopes

<compensate>
Throwing Intermediate Compensation Event

<compensateScope>
Throwing Intermediate Compensation Event

<scope>
Sub-Prozess mit allen Handlern

Variablen

<variable>
Data Object

<validate>
Task

Andere Konstrukte

<catch>
Siehe <faultHandlers>

<catchAll>
Siehe <faultHandlers>

<compensationHandler>
Sub-Prozess mit einem Compensation-
Marker

<faultHandlers>

Error Start Event und Exclusive-Gateways
als Start- und Endpunkt für alle <catch> und
<catchAll>, jedes <catch> ein eigener Pfad,
der <catchAll> Pfad hat eine Default Se-
quence Flow Connection

<process>
Pool mit allen Aktivitäten und Handlern

<terminationHandler>
Sub-Prozess mit einem Termination-Marker

46

<onEvent>
Catching Intermediate Message Event

<onAlarm>
Catching Intermediate Timer Event

Tabelle 3: Übersicht über alle Zuordnungen

4.2 Probleme nach der Transformation

Als größtes Problem nach der Transformation zwischen BPEL und BPMN hat sich die Dead-

Path-Eliminierung aus BPEL herausgestellt. Die Dead-Path-Eliminierung stellt für das To-

kenkonzept in BPMN eine große Herausforderung dar, da eine Unterscheidung gemacht

werden muss, ob eine Aktivität ausgeführt oder übersprungen wird.

Die Dead-Path-Eliminierung widerspricht der Tokensemantik in BPMN, weil dabei Zustände

von Konstrukten verändert werden, die nicht von einem Token abgelaufen werden. In [8,

S.115 f.] wird eine Lösung durch die Einführung von unterschiedlichen Tokens erläutert. Da-

bei werden zusätzlich zu den normalen Tokens Anti-Tokens verwendet, um tote Pfade abzu-

laufen und die entsprechenden Aktivitäten in den Zustand Skipped zu setzen.

In dieser Arbeit werden die Zustände in BPMN, die von der Dead-Path-Eliminierung betroffen

sind, intern berechnet und so direkt auf den Zustand Skipped gesetzt. Der Bruch mit der To-

kensemantik in BPMN wird damit in Kauf genommen, da keine Nachteile bezüglich der Aus-

führung erkennbar sind. Um die interne Berechnung zu gewährleisten müssen bestimmte

Regeln bezüglich der Existenz von Zuständen eingehalten werden.

1. Wenn eine Aktivität im Zustand Inactive ist, müssen alle folgenden Aktivitäten eben-

falls in diesem Zustand sein.

2. Wenn eine Aktivität im Zustand Ready ist, dann müssen alle folgenden Aktivitäten im

Zustand Inactive und die vorhergehenden Aktivitäten im Zustand Completed sein.

3. Wenn eine Aktivität im Zustand Executing ist, dann müssen alle folgenden Aktivitäten

im Zustand Inactive und die vorhergehenden Aktivitäten im Zustand Completed sein.

4. Wenn eine Aktivität im Zustand Completed ist, dann müssen alle vorhergehenden Ak-

tivitäten ebenfalls im Zustand Completed sein.

47

5 Beschreibung einer Projektion

5.1 Zustände

Den Betrachter eines ausführenden Geschäftsprozesses können zwei unterschiedliche Arten

von Zuständen interessieren. Zum einen der Zustand des gesamten Prozesses und zum

anderen der Zustand einzelner Aktivitäten innerhalb des Prozesses. Basierend auf den In-

formationen aus [16] und [17] werden im Folgenden die möglichen Zustände und die Zu-

standsübergänge beschrieben. Die Abbildungen 34 und 35 zeigen die Zustandslebenszyklen

basierend auf diesen Informationen.

In diesem Kapitel wird der Begriff Anwender verwendet. Ein Anwender ist die Person, die

den Geschäftsprozess überwacht und bei Bedarf die Ausführung stoppen kann. Der Anwen-

der muss im natürlichen Geschäftsleben keine einzelne Person sein, der Begriff dient hier

nur zur Veranschaulichung.

Der komplette Prozess kann sich in einem der vier folgenden Zustände befinden: Running,

Faulted, Completed und Terminated.

Wird die Ausführung eines Geschäftsprozesses gestartet, in BPEL geschieht dies durch den

Empfang einer entsprechenden Nachricht, so wird der Zustand auf Running gesetzt. Solange

keine Fehler auftreten oder die Ausführung vom Anwender beendet wird, bleibt der Prozess

im Zustand Running. Tritt ein Fehler während der Ausführung auf, wird die Fehlerbehandlung

gestartet und anschließend der Zustand des Prozesses von Running zu Faulted geändert.

Der Prozess selbst und jeder <scope> haben eine Fehlerbehandlung. Ist keine explizite

Fehlerbehandlung angegeben, wird eine Default-Fehlerbehandlung ausgeführt. Bei der

Default-Fehlerbehandlung werden alle Fehler innerhalb eines <scope>s an die übergeordne-

te Fehlerbehandlung weitergegeben. Wurde eine explizite Fehlerbehandlung angegeben,

werden die beinhalteten Aktivitäten ausgeführt. Wird während der Fehlerbehandlung die

Kompensationsmethode aufgerufen, werden alle Kompensationsbehandlungen gestartet.

Durch diese sollen bereits ausgeführte Aktivitäten wieder, soweit möglich, rückgängig ge-

macht werden. Dadurch können Aktivitäten innerhalb des Prozesses, die bereits im Zustand

Completed sind, in den Zustand Compensating gesetzt werden, während der Prozess selbst

im Zustand Running verbleibt.

Nach Beendigung der Fehlerbehandlung ändert sich der Zustand des Prozesses zu Faulted.

Wird der Prozess durch den Anwender beendet, wird dieser auf den Zustand Terminated

gesetzt. Dabei wird vorher keine Fehlerbehandlung durchgeführt. Läuft die Ausführung da-

gegen bis zum Ende des Prozesses ohne das Auftreten eines Fehlers durch, wird der Zu-

stand auf Completed gesetzt.

48

Abbildung 34: Zustandslebenszyklus für einen Geschäftsprozess

Die hier beschriebenen Zustände für den Prozess werden in dieser Arbeit durch Symbole

veranschaulicht. In der folgenden Tabelle ist eine Übersicht mit allen Zuständen und den

zugehörigen Symbolen zu sehen.

Name Symbol Beschreibung

Running
Der Prozess wird momentan ausgeführt.

Completed
Der Prozess wurde erfolgreich beendet.

Faulted
Der Prozess ist fehlgeschlagen.

Terminated
Der Prozess wurde abgebrochen.

Tabelle 4: Zustände des Prozesses

Für die Aktivitäten gibt es mehr Zustände als für den Prozess an sich. Hier wird unterschie-

den zwischen den Zuständen Inactive, Ready, Skipped, Executing, Completed, Iteration

Completed, Compensating, Compensated, Faulting, Faulted und Terminated.

Nach der Initialisierung des Prozesses werden alle Aktivitäten in den Zustand Inactive ge-

setzt. In diesem Zustand kann eine Aktivität nicht ausgeführt werden. Der Zustand Skipped

bedeutet, dass die Aktivität im weiteren Prozessverlauf nicht ausgeführt wird. Durch eine

Dead-Path-Eliminierung kann eine Aktivität, die entweder im Zustand Inactive oder Ready

ist, in den Zustand Skipped gesetzt werden. Innerhalb einer <if> Aktivität werden alle Aktivi-

täten, die nicht im ausgeführten Zweig liegen, ebenfalls in den Zustand Skipped gesetzt.

Ist eine Aktivität in einer <sequence> enthalten, so wird ihr Zustand auf Ready gesetzt, so-

bald die vorherige Aktivität in dieser <sequence> den Zustand Completed erreicht hat. Inner-

halb eines <flow>s wird eine Aktivität in den Zustand Ready gesetzt, wenn sie entweder als

erste Aktivität vorkommt oder, falls die Aktivität <link>s beinhaltet, wenn alle Aktivitäten, de-

ren <link>s als Ziel diese Aktivität haben, den Zustand Completed erreicht haben.

49

Ist eine Aktivität im Zustand Ready, ergeben sich drei Möglichkeiten in der Fortführung des

Prozesses. Entweder wird die Aktivität gestartet und somit in den Zustand Executing gesetzt

oder ein alternativer Pfad in der Ausführung einer <if> Aktivität wird gewählt und die Aktivität

wird in den Zustand Skipped gesetzt, wobei sie in diesem Fall nicht ausgeführt wird. Die drit-

te Möglichkeit besteht im Übergang in den Zustand Terminated, falls der Anwender den Pro-

zess beendet.

Für eine Aktivität im Zustand Executing gibt es vier mögliche Zustandsübergänge im weite-

ren Ablauf des Prozesses. Die erste Möglichkeit besteht darin, dass ein Fehler während der

Ausführung auftritt und somit der Zustand der Aktivität zu Faulting übergeht. Ist eine explizite

Fehlerbehandlung angegeben, wird diese ausgeführt und der Zustand geht anschließend zu

Completed über. In diesem Fall wird der Prozess weiter ausgeführt. Gibt es keine explizite

Fehlerbehandlung, wird die Default-Fehlerbehandlung durchgeführt und der Fehler wird an

die übergeordnete Fehlerbehandlung weitergegeben. Wenn es keine übergeordnete Fehler-

behandlung gibt, der Fehler befindet sich bereits auf der Prozessebene, werden der Zustand

der Aktivität, sowie der Zustand des Prozesses, nach Beendigung der Fehlerbehandlung in

den Zustand Faulted gesetzt und die Ausführung wird beendet.

Als zweites gibt es die Möglichkeit, dass der Prozess vom Anwender abgebrochen wird. In

diesem Fall gehen alle Aktivitäten, die entweder im Zustand Executing oder im Zustand

Ready sind, sofort in den Zustand Terminated über, ohne eine Fehler- oder eine Kompensa-

tionsbehandlung zu starten.

Weiter gibt es die Möglichkeit, dass die Ausführung der Aktivität normal verläuft und nach

Beendigung der Aktivität der Zustand auf Completed gesetzt wird.

Als letztes gibt es den Anwendungsfall, dass eine Schleife durchlaufen wird. In diesem Fall

wird die Aktivität in den Zustand Iteration Completed gesetzt und am Ende des Schleifen-

durchlaufs wird, durch eine angegebene Bedingung, entschieden, ob die Schleife nochmals

zu durchlaufen ist. Im Falle, dass die Schleife nochmals durchlaufen wird, werden alle inter-

nen Aktivitäten, die im Zustand Iteration Completed sind, in den Zustand Inactive gesetzt und

der Zustand der Schleife bleibt auf Executing. Wird die Schleife nicht nochmals durchlaufen,

werden der Zustand der Schleife und die Zustände alle internen Aktivitäten auf Completed

gesetzt.

Wird die Kompensationsbehandlung einer Aktivität gestartet, so geht der Zustand von Com-

pleted zu Compensating über. Nach Beendigung der Kompensation wird der Zustand auf

Compensated gesetzt.

50

Abbildung 35: Zustandslebenszyklus von Aktivitäten

Die für die Aktivitäten beschriebenen Zustände werden in dieser Arbeit durch verschiedene

Symbole veranschaulicht. In der folgenden Tabelle ist eine Übersicht mit allen Zuständen

und den zugehörigen Symbolen zu sehen.

Name Symbol Beschreibung

Inactive
Die Aktivität wurde noch nicht ausgeführt und die Vo-
raussetzungen zum Starten sind noch nicht erfüllt.

Ready

Die Aktivität wurde noch nicht ausgeführt, aber die Vo-
raussetzungen zum Starten sind erfüllt.

Skipped

Die Aktivität wurde übersprungen.

Executing
Die Aktivität wird im Moment ausgeführt.

Completed
Die Aktivität wurde erfolgreich beendet.

Iteration Completed

Ein Durchlauf der Schleife wurde erfolgreich beendet
und es wird geprüft ob ein weiterer durchgeführt wird.

Compensated
Die Aktivität wurde kompensiert.

Faulted
Die Aktivität ist fehlgeschlagen.

Terminated
Die Aktivität wurde abgebrochen.

Tabelle 5: Zustände der Aktivitäten

51

5.2 Muster zur Zustandsübertragung

In [18] haben die Autoren durch ihre Arbeit mehrere Muster zur Zustandsübertragung zwi-

schen technischen Prozessen, zum Beispiel beschrieben durch BPEL, und abstrakten Pro-

zessen, zum Beispiel beschrieben durch BPMN, identifiziert und erstellt. Um diese Muster

abzuleiten, haben sie die Transformation von Konstrukten in abstrakten Prozessen zu Kon-

strukten in technischen Prozessen untersucht und anschließend haben sie eine Lösung spe-

zifiziert, um den Zustand des abstrakten Prozesses aus dem Zustand des technischen Pro-

zesses abzuleiten. Im Folgenden erläutere ich die von mir verwendeten Muster aus [18]. Für

Informationen über die weiteren Muster wird auf [SLLMS11, S.7 ff.] verwiesen.

5.2.1 Direct State Propagation Pattern

Eine direkte Projizierung des Zustandes einer technischen Aktivität auf den Zustand einer

abstrakten Aktivität ist die einfachste Möglichkeit zur Übertragung des Zustandes. Dieses

Pattern kann immer angewendet werden, wenn eine einzelne technische Aktivität auf eine

einzelne abstrakte Aktivität abgebildet werden kann. Im Beispiel aus Kapitel 2 wird die <invo-

ke> Aktivität „checkAvailbility“ in BPEL als Task in BPMN dargestellt, was ein Beispiel für das

Direct State Propagation Pattern ist. Dabei wird der Zustand der <invoke> Aktivität direkt auf

die Task in BPMN übertragen.

Abbildung 36: Direct State Propagation

5.2.2 State Combination Pattern

Es kann vorkommen, dass mehrere technische Aktivitäten eine einzige abstrakte Aktivität

implementieren. Der Zustand der abstrakten Aktivität wird aus einer Funktion über die Zu-

stände von mehreren technischen Aktivitäten abgeleitet, welche nicht unbedingt verbunden

sein müssen. Es können beliebige Funktionen zur Zustandszusammenführung definiert wer-

den. Eine <assign>-Aktivität, eine <invoke>-Aktivität und eine zweite <assign>-Aktivität im

BPEL-Model können als eine BPMN-Aktivität dargestellt werden. Die Zustandszusammen-

führungsfunktion könnte nun lauten: Wenn eine der BPEL-Aktivitäten im Zustand Executing

ist, dann ist die BPMN-Aktivität ebenfalls im Zustand Executing. Wenn alle drei BPEL-

Aktivitäten im Zustand Completed sind, dann ist auch die BPMN-Aktivität im Zustand Com-

pleted.

Abbildung 37: State Combination

52

5.2.3 Complex State Distribution Pattern

Das Complex State Distibution Pattern basiert auf dem Direct State Propagation Pattern.

Wenn eine einzelne Aktivität im technischen Model mehrere Aktivitäten im abstrakten Model

implementiert, dann wird der Zustand der technischen Aktivität auf die zugehörigen abstrak-

ten Aktivitäten verteilt.

Abbildung 38: Complex State Distribution

5.3 BPEL und BPMN Erweiterungen

Um die Projektion von Zuständen durchführen zu können, müssen neue XML-Tags als Er-

weiterungen eingeführt werden. Im weiteren Verlauf werden die neuen XML-Tags vorgestellt

und beschrieben. In BPEL werden die Erweiterungen mit dem <extension> Element be-

schrieben und eingeführt. BPMN stellt ebenfalls Elemente zu Erweiterung zur Verfügung.

Das Element in BPMN wird wie in BPEL „extension“ genannt und Unterstützt die Erweiter-

barkeit, indem neue Attribute oder Elemente für BPMN durch XML-Schemas definiert werden

können. Die neuen Attribute oder Elemente müssen anschließend mit dem „extension“ Ele-

ment importiert werden. Für weitergehende Informationen zur Erweiterbarkeit von BPMN

wird auf [4, S.57 ff.] verwiesen.

5.3.1 activityId

Jede Aktivität in BPEL erhält eine eindeutige activityId. Diese wird aus dem Namen der Akti-

vität, sowie einer Zahl, getrennt durch ein Leerzeichen, zusammengesetzt. Das erste Vor-

kommen einer <assign> Aktivität hätte die activityId „assign 1“, die Zweite „assign 2“ und so

weiter. Die activityId wird für die Generierung der Mappings-Datei, zum Auslesen der Zu-

stände und zur Anwendung der Projektionen benötigt.

<bpel:invoke name="checkAvailability"

 inputVariable=“product“

 outputVariable=“availabilityInfo“

 operation=“requestAvailability“>

 <ext:activityId>invoke 1</ext:activityId>

 <ext:activityState>Completed</ext:activityState>

 <ext:projectionType>Casual</ext:projectionType>

</bpel:invoke>

Listing 34: <invoke> Aktivität mit einer <ext:activityId>

53

5.3.2 projectionId

Jede Projektion erhält eine einzigartige projectionId. Diese wird aus dem Namen des BPMN-

Konstrukts, sowie einer Zahl, getrennt durch ein Leerzeichen, zusammengesetzt. Das erste

Vorkommen eines Tasks hätte die projectionId „task 1“, die Zweite „task 2“ und so weiter.

Zusammen mit der activityId wird die projectionId zur Generierung der Mappings-Datei und

zur Anwendung der Projektionen verwendet.

<projection>

 <MappingFrom>

 <activityId>assign 10</activityId>

 <activityId>invoke 8</activityId>

 <activityId>assign 11</activityId>

 </MappingFrom>

 <MappingTo>

 <projectionId>Task 3</projectionId>

 </MappingTo>

 <projectionRule>Combination</projectionRule>

</projection>

Listing 35: Beispiel einer Projektion aus der Mappings-Datei mit der <projectionId>

In der BPMN-Datei wird das Attribut „id“ zur Speicherung der projectionId genommen. Das

Attribut „id“ ist ein Standard-Attribut in BPMN und stellt einen eindeutigen Bezeichner für je-

des Konstrukt dar.

<subProcess id="subprocess 5" name="findSimilarProduct" />

Listing 36: Attribut "id" in einem BPMN-Konstrukt

5.3.3 activityState

Der XML-Tag activityState gibt den aktuellen Zustand der Aktivität an, der auf das Konstrukt

in BPMN übertragen wird. Wie in Kapitel 5.1 beschrieben, gibt es für Aktivitäten die Zustände

Inactive, Ready, Skipped, Executing, Terminated, Iteration Completed, Completed, Faulting,

Faulted, Compensating und Compensated.

<bpel:invoke name="checkAvailability"

 inputVariable=“product“

 outputVariable=“availabilityInfo“

 operation=“requestAvailability“>

 <ext:activityId>invoke 1</ext:activityId>

 <ext:activityState>Completed</ext:activityState>

 <ext:projectionType>Casual</ext:projectionType>

</bpel:invoke>

Listing 37: <invoke> Aktivität mit dem <ext:activityState> Completed

In BPMN wird der Zustand in einem Attribut gespeichert. Die BPMN-Datei wird zu diesem

Zweck durch das Attribut „state“ erweitert.

 <task id="task 2" name="checkAvailability" state="Completed" />

Listing 38: Task mit dem state Completed

5.3.4 processState

Der XML-Tag processState ist das Pendant zum activityState für den kompletten Prozess.

Für den Prozess kann nicht der activityState verwendet werden, da der Prozess einen ande-

54

ren Zustandsraum als die Aktivitäten hat. Der Zustandsraum für den Prozess umfasst, wie in

Kapitel 5.1 beschrieben, die Zustände Running, Completed, Faulted und Terminated.

<bpel:process name="Beispiel"

 targetNamespace="http://sample.bpel.org/bpel/sample"

 suppressJoinFailure="yes"

 xmlns:tns="http://sample.bpel.org/bpel/sample"

 xmlns:bpel="http://docs.oasis-open.org/wsbpel/2.0/process/abstract"

 abstractProcessProfile=

 "http://docs.oasis-open.org/wsbpel/2.0/process/abstract

 /simple-template/2006/08">

 <ext:processState>Running</ext:processState>

 <bpel:import location="Beispiel.wsdl"

 namespace=http://sample.bpel.org/bpel/sample

 importType="http://schemas.xmlsoap.org/wsdl/" />

Listing 39: Der Beispiel-Prozess mit dem <ext:processState> Running

5.3.5 projectionType

Mit dem XML-Tag projectionType wird zwischen casual und loop unterschieden. Der Typ

loop beinhaltet alle Schleifen, die es in BPEL gibt. Dazu zählen <while>, <repeatUntil> und

<forEach>. Für diese Konstrukte wird ein weiteres Attribut, der iterationCount, zum korrekten

Abbilden der Zustände benötigt. Alle anderen Konstrukte sind im Typ casual zusammenge-

fasst. Der projectionType kann um weitere Typenarten erweitert werden.

<bpel:invoke name="checkAvailability"

 inputVariable=“product“

 outputVariable=“availabilityInfo“

 operation=“requestAvailability“>

 <ext:activityId>invoke 1</ext:activityId>

 <ext:activityState>Completed</ext:activityState>

 <ext:projectionType>Casual</ext:projectionType>

</bpel:invoke>

Listing 40: <invoke> Aktivität mit einem <ext:projectionType>

5.3.6 iterationCount

Um in Schleifen die korrekte Darstellung des aktuellen Zustands abbilden zu können, wird

der iterationCount eingeführt. Der iterationCount gibt an in welchem Durchlauf die Schleife

sich befindet. Bei der <forEach> Schleife wird der iterationCount auch zur Überprüfung der

Bedingung eingesetzt. Hat der iterationCount zu Beginn des Schleifendurchlaufs denselben

Wert wie der finalCounterValue der <forEach> Schleife, so ist die Schleife vollständig durch-

gelaufen und wird beendet. Bei der <while> und <repeatUntil> Schleife gibt es keinen final-

CounterValue, da die Schleife solange durchlaufen wird bis die angegebene Bedingung er-

füllt ist. Das schließt nicht aus, dass in der Bedingung vom iterationCount gebraucht gemacht

wird.

<bpel:forEach parallel="no" counterName="Counter" name="ForEach">

 <bpel:startCounterValue>1</bpel:startCounterValue>

 <bpel:finalCounterValue>$productOffers.count</bpel:finalCounterValue>

 <ext:activityId>forEach 1</ext:activityId>

 <ext:activityState>Executing</ext:activityState>

 <ext:projectionType>Loop</ext:projectionType>

 <ext:iterationCount>5</ext:iterationCount>

 <bpel:scope>

 ...

http://sample.bpel.org/bpel/sample

55

 </bpel:scope>

</bpel:forEach>

Listing 41: <forEach> Aktivität mit dem <ext:iterationCount> 5

5.4 Zustandsübertragungen von BPEL nach BPMN

5.4.1 <assign>

Die <assign> Aktivität kann in BPMN als Task oder als Sub-Prozess abgebildet werden. Wird

die Aktivität als Task abgebildet, dann wird das Direct State Propagation Pattern verwendet.

Der Zustand der <assign> Aktivität wird also direkt als Zustand auf den Task übertragen.

Wird die <assign> Aktivität nicht als Task, sondern als Sub-Prozess abgebildet, dann muss

unterschieden werden, ob der Sub-Prozess expandiert dargestellt wird oder nicht. Ist der

Sub-Prozess nicht expandiert dargestellt, dann wird, wie beim Task, der Zustand direkt über-

tragen. Bei einer expandierten Darstellung wird das State Distribution Pattern verwendet.

Hierbei wird der Zustand der <assign> Aktivität auf alle Tasks im Sub-Prozess übertragen.

Die Abbildung zeigt ein Beispiel für den Zustand Executing.

Abbildung 39: Projektion einer <assign> Aktivität

5.4.2 <empty>

Die <empty> Aktivität wird in BPMN als Task dargestellt und somit greift das Direct State

Propagation Pattern.

Abbildung 40: Projektion einer <empty> Aktivität

5.4.3 <exit>

Für die Abbildung der <exit> Aktivität kann das Terminate-End-Event in BPMN verwendet

werden. Der Zustand betrifft hier nicht direkt das Event, sondern den kompletten Prozess.

56

Wird die <exit> Aktivität ausgeführt, so wird der <process> Zustand entsprechend verändert

und alle laufenden Aktivitäten werden unverzüglich beendet.

In Abbildung 41 ist der Aspekt zu sehen, dass die <exit> Aktivität Einfluss auf den Zustand

des Prozesses hat.

Abbildung 41: Einfluss der <exit> Aktivität auf den Prozess

5.4.4 <invoke>

Bei der <invoke> Aktivität kommen wieder mehrere Darstellungsansätze in Frage. Falls die

<invoke> Aktivität keine <faultHandlers> und <compensationHandler> hat, dann wird sie als

Task dargestellt und somit kommt das Direct State Propagation Pattern zum Einsatz und der

Zustand wird direkt übertragen. Kommen jedoch innerhalb der <invoke> Aktivität eine

<faultHandlers> Aktivität, eine <compensationHandler> Aktivität oder beide Aktivitäten zum

Einsatz, dann wird diese Aktivität als Sub-Prozess dargestellt. Bei einer nicht expandierten

Darstellung des Sub-Prozesses wird wiederum der Zustand direkt, mit Hilfe des Direct State

Propagation Patterns, übertragen. Die Übertragung des Zustandes wird komplexer sobald

eine expandierte Darstellung der <invoke> Aktivität verwendet wird. Hier müssen die unter-

schiedlichen Zustände betrachtet werden. Ist die <invoke> Aktivität im Zustand Faulting,

dann wird der dargestellte Sub-Prozess des <faultHandlers> auf den Zustand Executing ge-

setzt und der Zustand des Sub-Prozesses für die <invoke> Aktivität bleibt ebenfalls im Zu-

stand Executing, bis die Abarbeitung des <faultHandlers> beendet ist. Für den <compensati-

onHandler> gelten dieselben Regeln wie für den <faultHandlers> Bereich.

Abbildung 42: Projektion einer <invoke> Aktivität

5.4.5 <receive>

Die <receive> Aktivität kann in BPMN als Task dargestellt werden. Hierbei wird das Direct

State Propagation Pattern zum direkten Übertragen des Zustandes verwendet.

57

Abbildung 43: Projektion einer <receive> Aktivität

5.4.6 <reply>

Die <reply> Aktivität wird als Task abgeleitet. Der Zustand für die <reply> Aktivität wird eben-

falls direkt mit dem Direct State Propagation Pattern übertragen.

Abbildung 44: Projektion einer <reply> Aktivität

5.4.7 <rethrow>

Ein <rethrow> wird in BPMN als Throwing Intermediate Error Event dargestellt. Die

<rethrow> Aktivität startet den übergeordneten <faultHandlers> und setzt dessen Zustand

auf Executing, während der Zustand des aktuellen <faultHandlers> auf Completed gesetzt

wird.

Abbildung 45: Projektion einer <rethrow> Aktivität

5.4.8 <throw>

Mit <throw> kann ein benutzerdefinierter Fehler geworfen werden und durch Eintreten dieses

Fehlers wird der zugehörige <faultHandlers> in den Zustand Executing gesetzt. Die <throw>

Aktivität wird in BPMN, genau wie die <rethrow> Aktivität, als Throwing Intermediate Error

Event dargestellt.

Abbildung 46: Projektion einer <throw> Aktivität

58

5.4.9 <wait>

Die <wait> Aktivität wird durch einen Catching Intermediate Timer Event dargestellt. Der Zu-

stand bleibt während der Wartezeit im Zustand Executing und wird auf Completed gesetzt,

sobald die <wait> Aktivität beendet wurde.

In Abbildung 47 ist ein Beispiel für eine <wait> Aktivität mit einer Wartezeit von 10 Minuten

zu sehen.

Abbildung 47: Projektion einer <wait> Aktivität

5.4.10 <flow>

Als äußere Hülle eines <flow> Konstrukts dient ein Sub-Prozess. Im Innern des Sub-

Prozesses kommt jeweils ein Parallel-Gateway an den Anfang und an das Ende des Kon-

strukts, um die parallele Ausführung innerhalb eines <flow>s zu ermöglichen. Die <link>s

innerhalb des <flow> werden als Sequence Flow Connections und alle Aktivitäten werden

separat je nach Aktivitätentyp in BPMN abgebildet.

Wird die <flow> Aktivität als nicht expandierter Sub-Prozess dargestellt, kommt das State

Combination Pattern zum Einsatz. Ist der Sub-Prozess expandiert dargestellt, kommt eben-

falls das State Combination Pattern zum Einsatz, aber zusätzlich sind die beiden Parallel-

Gateways des <flow>s im Zustand Executing. Solange mindestens eine der im <flow> ent-

haltenen Aktivitäten im Zustand Executing ist, bleiben die Parallel-Gateways in ihrem Zu-

stand. Sind alle Aktivitäten im Zustand Completed, werden die Parallel-Gateways auch in

den Zustand Completed gesetzt. Durch die Tokensemantik von BPMN würde es durch die

Zustände der beiden Gateways zu Problemen kommen, da der durchlaufende Token dupli-

ziert wird. Diese Problematik wird in Kapitel 5.5.4 behandelt.

Abbildung 48: Projektion einer <flow> Aktivität

59

5.4.11 <forEach>

Diese Aktivität wird durch einen Sub-Prozess dargestellt. Ist der Sub-Prozess nicht expan-

diert dargestellt, kommt das State Combination Pattern zum Einsatz. In der expandierten

Darstellung wird auch das State Combination Pattern zum Einsatz, wobei, wie bei der <flow>

Aktivität, die Exclusive-Gatways ebenfalls einen Zustand erhalten. Sie sind während der Aus-

führung der <forEach> Aktivität im Zustand Executing. Nach Beendigung der Schleife, ent-

weder durch einen kompletten Durchlauf oder durch eine <completionCondition>, wird der

Zustand der <forEach> Aktivität, sowie die Zustände der Exclusive-Gateways, auf Comple-

ted gesetzt. Durch die Tokensemantik von BPMN würde es durch die Zustände der beiden

Gateways zu Problemen kommen, da der durchlaufende Token dupliziert wird. Diese Prob-

lematik wird in Kapitel 5.5.4 behandelt.

Abbildung 49: Projektion einer <forEach> Aktivität

5.4.12 <if>

Ein <if> Konstrukt wird als Sub-Prozess dargestellt. Bei einer nicht expandierten Darstellung

kommt das State Combination Pattern zum Einsatz. In der expandierten Darstellung kommt

ebenfalls das State Combination Pattern zum Einsatz. In dieser Darstellung hat der Sub-

Prozess vor und hinter den beinhalteten Aktivitäten jeweils ein Exclusive-Gateway, die wäh-

rend der Ausführung der <if> Aktivität im Zustand Executing bleiben. Das Start-Gateway hat

je einen ausgehenden Sequence Flow für den if- und den else-Pfad, sowie für jeden elseif-

Pfad. Da nur einer der Pfade ausgeführt werden kann, werden die Zustände der Aktivitäten

auf den anderen Pfaden intern berechnet und automatisch in den Zustand Skipped gesetzt.

Der else-Pfad hat eine Default Sequence Flow Connection, wird also standardmäßig als

auszuführender Pfad genommen. Auf dem gewählten Pfad werden die Aktivitäten der Reihe

nach, wie in einer <sequence>, ausgeführt. Nach Beendigung der <if> Aktivität werden deren

Zustand, sowie die Zustände der Exclusive-Gateways, auf Completed gesetzt. Durch die

Tokensemantik von BPMN würde es durch die Zustände der beiden Gateways, sowie durch

die Dead-Path-Eliminierung, zu Problemen kommen, da der durchlaufende Token dupliziert

wird. Diese Problematik wird in Kapitel 5.5.4 behandelt.

60

Abbildung 50: Projektion einer <if> Aktivität

5.4.13 <pick>

Das <pick> Konstrukt wird ebenfalls durch zwei umgebende Gateways abgebildet. Am An-

fang wird ein Event-Based-Gateway und am Ende ein Exclusive-Gateway verwendet. Die

Aktivitäten innerhalb des <pick> Konstrukts werden separat behandelt. Das Konstrukt selbst

hat keinen eigenen Zustand, aber die beiden Gateways bekommen einen. Solange mindes-

tens eine Aktivität innerhalb der <pick> Aktivität nicht im Zustand Completed ist, sind die bei-

den Gateways im Zustand Executing. Wurden alle internen Aktivitäten beendet, so werden

die beiden Gateways in den Zustand Completed gesetzt. Durch die Tokensemantik von

BPMN würde es durch die Zustände der beiden Gateways zu Problemen kommen, da der

durchlaufende Token dupliziert wird. Diese Problematik wird in Kapitel 5.5.4 behandelt.

Abbildung 51: Projektion einer <pick> Aktivität

5.4.14 <repeatUntil>

Die <repeatUntil> Aktivität kann als nicht expandierter Sub-Prozess mit einem Loop-Marker

oder als expandierter Sub-Prozess dargestellt werden. In beiden Fällen wird der Zustand per

State Combination Patter übertragen. Bei der expandierten Darstellung wird am Anfang und

am Ende des Sub-Prozesses jeweils ein Exclusive-Gateway gestellt. Man definiert dann für

das hintere Gateway eine Default-Verbindung, die zurück auf das erste Gateway führt um die

Schleife weiterlaufen zu lassen und definiert zudem eine Verbindung, die bei Erfüllung der

angegebenen Bedingung gewählt wird. Die Aktivitäten innerhalb der <repeatUntil> Aktivität

werden separat abgebildet und zwischen die beiden Exclusive-Gateways gesetzt. Die beiden

61

Gateways erhalten ebenfalls einen Zustand. Während der Ausführung der <repeatUntil>-

Schleife wird der Zustand der beiden Gateways auf Executing gesetzt. Nach Beendigung der

Schleife werden der Zustand der <repeatUntil> Aktivität, sowie die Zustände der Exclusive-

Gateways, auf Completed gesetzt. Durch die Tokensemantik von BPMN würde es durch die

Zustände der beiden Gateways zu Problemen kommen, da der durchlaufende Token dupli-

ziert wird. Diese Problematik wird in Kapitel 5.5.4 behandelt.

Ein Beispiel für die <repeatUntil> Aktivität mit einem nicht expandierten Sub-Prozess.

Abbildung 52: Projektion einer <repeatUntil> Aktivität

5.4.15 <sequence>

Eine aneinander Reihung mehrerer Aktivitäten, wie innerhalb der <sequence> Aktivität, kann

in BPMN entweder wieder durch einen nicht expandierten Sub-Prozess oder durch die ein-

zelnen Aktivitäten innerhalb der <sequence> dargestellt werden. Bei Verwendung eines nicht

expandierten Sub-Prozesses wird das State Combination Pattern angewandt. Der Zustand

des Sub-Prozesses ist also solange Executing, solange mindestens eine Aktivität innerhalb

der <sequence> im Zustand Executing ist. Sind alle Aktivitäten innerhalb der <sequence> im

Zustand Completed, dann wird auch der Zustand des Sub-Prozesses auf den Zustand Com-

pleted gesetzt. Werden die Aktivitäten aus der <sequence> allerdings einzeln in BPMN ab-

gebildet, dann wird jede Aktivität einzeln betrachtet und die Regeln für jede dieser Aktivitäten

müssen beachtet werden. Die <sequence> an sich hat in diesem Fall keinen gesonderten

Zustand.

Abbildung 53: Projektion einer <sequence> Aktivität

62

5.4.16 <while>

Die <while> Aktivität wird genauso wie die <repeatUntil> Aktivität aufgebaut, nur dass hier

die Default-Verbindung nicht zurück zum ersten Exclusive-Gateway führt, sondern die aus-

gehende Verbindung ist, mit der die Schleife beendet wird. Die Verbindung mit der <conditi-

on> führt, solange diese erfüllt wird, zurück zum ersten Exclusive-Gateway. Genau wie bei

der <repeatUntil> Aktivität tritt auch hier das Problem mit der Tokensemantik von BPMN auf.

Diese Problematik wird in Kapitel 5.5.4 behandelt.

Das Beispiel in Abbildung 54 zeigt die <while> Schleife aus dem Beispiel in Kapitel 2. Zur

Unterstützung der Verständlichkeit wird das BPMN Konstrukt expandiert und mit Start- und

End-Event dargestellt.

Abbildung 54: Projektion einer <while> Aktivität

5.4.17 <scope>

Alle Aktivitäten innerhalb der <scope> können einzeln dargestellt werden und somit kommt

für jede Aktivität die jeweilige Zustandsübertragungsregel zum Einsatz. Wird die <scope>

Aktivität jedoch als einzelner nicht expandierter Sub-Prozess dargestellt, dann wird das State

Combination Pattern genutzt um die Zustände zusammenzufassen. Es wird eine Funktion

über alle internen Aktivitäten erstellt, die eine Aussage über den Zustand der <scope>, als

übergeordneten Sub-Prozess, macht.

5.4.18 <variable>

Variablen können in BPMN durch ein Data Object dargestellt werden. Der Zustand entspricht

dabei dem aktuellen Wert der Variablen.

63

Abbildung 55: Projektion einer <variable> Aktivität

5.4.19 <validate>

Die <validate> Aktivität wird in BPMN durch einen Task dargestellt. Der Zustand wird mit

dem Direct State Propagation Pattern übertragen.

Abbildung 56: Projektion einer <validate> Aktivität

5.4.20 <compensationHandler>

Der <compensationHandler> wird als Sub-Prozess mit einem Compensation-Marker in

BPMN dargestellt. Die Darstellung als Sub-Prozess hat den Vorteil, dass nicht zwischen ei-

ner Basic Activity und einer Structured Activity unterschieden werden muss. Bei der Darstel-

lung als nicht expandierter Sub-Prozess wird der Zustand direkt übertragen, es kommt also

das Direct State Propagation Pattern zum Einsatz. Handelt es sich jedoch um eine expan-

dierte Darstellung des Sub-Prozesses, dann werden die Aktivitäten innerhalb des <compen-

sationHandler>s einzeln behandelt und die entsprechenden Zustandsübertragungsregeln

müssen verwendet werden.

Abbildung 57: Projektion einer <compensationHandler> Aktivität

5.4.21 <faultHandlers>

Die Darstellung des <faultHandlers> in BPMN wird durch einen Error Start Event, gefolgt von

einem Exclusive-Gateway gelöst. Um die unterschiedlichen <catch> Elemente darstellen zu

können, wird je ein Exclusive-Gateway vor und hinter die Fehlerbehandlung gesetzt. Die bei-

den Exclusive-Gateways haben ebenfalls einen Zustand. Wird der <faultHandlers> ausge-

führt, sind die beiden Gateways im Zustand Executing. Nach Beendigung des <faultHand-

lers> werden die beiden Gateways in den Zustand Completed gesetzt. Für jedes <catch>

Element gibt es eine eigene Verbindung, die vom ersten Exclusive Gateway ausgeht und

beim zweiten Exclusive-Gateway gibt es synchron für jedes <catch> Element eine eingehen-

de Verbindung. Die Aktivitäten innerhalb der <catch> Elemente werden einzeln behandelt

und für jede wird die jeweilige Zustandsübertragungsregel verwendet. Gibt es nur ein

<catchAll> Element und keine <catch> Elemente, dann können die Gateways wegfallen und

64

die Aktivitäten innerhalb des <catchAll> Elements werden direkt an das Error Start Event

gehängt.

Durch die Tokensemantik von BPMN würde es durch die Zustände der beiden Gateways zu

Problemen kommen, da der durchlaufende Token dupliziert wird. Diese Problematik wird in

Kapitel 5.5.4 behandelt.

Abbildung 58: Projektion einer <faultHandlers> Aktivität

5.4.22 <process>

Das <process> Konstrukt enthält den kompletten BPEL-Prozess mit allen Aktivitäten und

Elementen. Der Prozess wird in BPMN als Pool dargestellt und er ist solange im Zustand

Running, solange eine Aktivität innerhalb des Prozesses läuft. Es wird also das State Com-

bination Pattern verwendet. Gibt es auf Prozessebene ein <faultHandlers> Konstrukt, dann

wird dieses wie im entsprechenden Kapitel beschrieben behandelt.

Ein Beispiel für den kompletten Prozess ist in Kapitel 2 zu sehen.

5.4.23 <terminationHandler>

Der <terminationHandler> wird in BPMN durch einen Sub-Prozess mit einem Termination-

Marker dargestellt. Die enthaltenen Aktivitäten werden separat behandelt. Der Zustand wird

durch das State Combination Pattern übertragen. Solange eine der internen Aktivitäten im

Zustand Executing ist, ist auch der <terminationHandler> im Zustand Executing. Sobald alle

internen Aktivitäten beendet sind, wird der Zustand auf Completed gesetzt.

65

Abbildung 59: Projektion einer <terminationHandler> Aktivität

5.4.24 <eventHandlers>

Das <onEvent> Konstrukt kann in BPMN durch einen Catching Intermediate Message Event,

gefolgt von einem Task beziehungsweise einem Sub-Prozess für die enthaltene Aktivität,

dargestellt werden. Synchron dazu kann das <onAlarm> Konstrukt durch einen Catching

Intermediate Timer Event, gefolgt von einem Task beziehungsweise einem Sub-Prozess für

die enthaltene Aktivität, dargestellt werden. Solange eine Aktivität innerhalb des <scope> im

Zustand Executing ist, ist auch der Event im Zustand Executing. Wenn der <scope> beendet

ist, wird das Event in den Zustand Completed gesetzt.

Abbildung 60: Projektion einer <eventHandlers> Aktivität

Eine Übersicht über alle Zustandsüberführungsregeln:

BPEL Aktivität Zustandsüberführungsregel

Basis Aktivitäten

<assign>
Direct State Propagation Pattern oder State
Distribution Pattern

<empty>
Direct State Propagation Pattern

<exit>
Direct State Propagation Pattern

<invoke>
Direct State Propagation Pattern oder State
Combination Pattern

<receive>
Direct State Propagation Pattern

<reply>
Direct State Propagation Pattern

66

<rethrow>
Direct State Propagation Pattern

<throw>
Direct State Propagation Pattern

<wait>
Direct State Propagation Pattern

Strukturierte Aktivitäten

<flow>
State Combination Pattern

<forEach>
State Combination Pattern

<if>
State Combination Pattern

<pick>
State Combination Pattern

<repeatUntil>
State Combination Pattern

<sequence>
Jede Aktivität wird separat behandelt

<while>
State Combination Pattern

Scopes

<compensate>
Direct State Propagation Pattern

<compensateScope>
Direct State Propagation Pattern

<scope>
Direct State Propagation Pattern oder State
Combination Pattern

Variablen

<variable>
Direct State Propagation Pattern

<validate>
Direct State Propagation Pattern

Andere Konstrukte

<catch>
Direct State Propagation Pattern

<catchAll>
Direct State Propagation Pattern

<compensationHandler>
Direct State Propagation Pattern oder State
Combination Pattern

<faultHandlers>
Direct State Propagation Pattern

<process>
State Combination Pattern

67

<terminationHandler>
Direct State Propagation Pattern oder State
Combination Pattern

<onEvent>
Direct State Propagation Pattern

<onAlarm>
Direct State Propagation Pattern

Tabelle 6: Übersicht über die Zustandsüberführungsregeln

Die <flow>, <forEach>, <if>, <repeatUntil>, <pick> und <while> Aktivitäten haben das State

Combination Pattern als Default, alle anderen Aktivitäten werden Default mäßig mit dem Di-

rect State Propagation Pattern abgebildet.

5.5 Ablauf einer Projektion

Um einen Geschäftsprozess, der mit BPEL ausgeführt wird, mit BPMN überwachen zu kön-

nen, muss zu allererst ein BPMN-Modell aus dem BPEL-Modell generiert werden. Zur Gene-

rierung des BPMN-Modells werden zwei Dinge benötigt. Zum einen das BPEL-Modell und

zum anderen Informationen über die Zuordnung der Aktivitäten. Im ersten Schritt wird aus

der BPEL-Datei die Mappings-Datei erstellt. In der Mappings-Datei werden die Informationen

über die Zustandsüberführungen, wie die verwendete Zustandsüberführungsregel und die

beteiligten activityIds und projectionIds, gespeichert. Für die Generierung werden Default-

Zustandsüberführungsregeln bestimmt, mit denen eine erste Version der Mappings-Datei

erstellt werden kann. Eine gewisse Individualisierbarkeit wird dadurch erreicht, dass die

Mappings-Datei nach der Generierung manuell verändert werden können.

Die Generierung der BPMN-Datei ist der zweite Schritt im Ablauf. Mit Hilfe der Mappings-

Datei wird aus der BPEL-Datei eine zustandslose BPMN-Datei generiert. Es wird über alle

Projektionen aus der Mappings-Datei iteriert und für jede activityId wird der entsprechende

Aktivitäten-Name und die Struktur aus der BPEL-Datei geholt und abgespeichert. Danach

wird ein BPMN-Konstrukt mit Hilfe der gespeicherten Daten entsprechend der gespeicherten

Zustandsüberführungsregel aus der Mappings-Datei erzeugt.

Wie bereits erwähnt kann anschließend die Mappings-Datei manuell bearbeitet werden, um

die dargestellten Konstrukte nachträglich zu verändern. Wurde die Datei nach den individuel-

len Wünschen verändert, muss die BPMN-Datei erneut generiert werden, um die Änderun-

gen darzustellen. Nach der erneuten Generierung kann die Zustandsüberführung gestartet

werden. Mit den Informationen aus der BPEL-Engine wird aus der BPEL-Datei eine zu-

standsbehaftete BPEL-Datei. Jetzt können die aktuellen Zustandsinformationen mit Hilfe der

Mappings-Datei auf die BPMN-Datei übertragen werden und generiert so eine zustandsbe-

haftete BPMN-Datei.

Alle Schritte des Ablaufs werden in diesem Kapitel detailliert beschrieben und durch Beispie-

le verdeutlicht.

Eine Übersicht über den Ablauf ist in Abbildung 61 zu sehen.

68

Abbildung 61: Übersicht über den Ablauf

Als erklärendes Beispiel wird der Ablauf an der <while> Schleife gefolgt von einer <wait>

Aktivität aus dem Beispiel in Kapitel 2 gezeigt. In Listing 42 ist die normale BPEL-Datei für

beide Aktivitäten zu sehen.

<bpel:while name="While">

 <ext:activityId>while 1</ext:activityId>

 <ext:activityState> </ext:activityState>

 <ext:projectionType>Loop</ext:projectionType>

 <ext:iterationCount>0</ext:iterationCount>

 <bpel:condition>

 $similarProductRequest != nil

 </bpel:condition>

 <bpel:invoke name="findSimilarProduct" inputVariable="product"

 outputVariable="similarProductRequest" operation="findSimilarProduct">

 <ext:activityId>invoke 6</ext:activityId>

 <ext:activityState> </ext:activityState>

 <ext:projectionType>Casual</ext:projectionType>

 <bpel:compensationHandler>

 <ext:activityId>compensationHandler 1</ext:activityId>

 <ext:activityState> </ext:activityState>

 <ext:projectionType>Casual</ext:projectionType>

 <bpel:invoke name="cancelSearch" operation="cancelProductSearch">

 <ext:activityId>invoke 7</ext:activityId>

 <ext:activityState> </ext:activityState>

69

 <ext:projectionType>Casual</ext:projectionType>

 </bpel:invoke>

 </bpel:compensationHandler>

 </bpel:invoke>

</bpel:while>

<bpel:wait name="Wait">

 <ext:activityId>wait 1</ext:activityId>

 <ext:activityState> </ext:activityState>

 <ext:projectionType>Casual</ext:projectionType>

 <bpel:for>PT10M</bpel:for>

</bpel:wait>

Listing 42: <while> Schleife gefolgt von einer <wait> Aktivität in BPEL

5.5.1 Mappings XML-Schema

Um festlegen zu können welche Aktivitäten auf welche Konstrukte in BPMN projiziert wer-

den, wird eine Mappings XML-Datei erstellt. Darin sind alle Projektionen enthalten. Eine Pro-

jektion enthält dabei eine oder mehrere Aktivitäten aus BPEL und eine oder mehrere Kon-

strukte aus BPMN. Die Aktivitäten sind durch die activityId und die Konstrukte durch die pro-

jectionId einzigartig gekennzeichnet. Zudem wird durch projectionRule die Transformations-

regel angegeben, mit der die Projektion durchgeführt wird. In Listing 43 wird das XML-

Schema beschrieben und danach folgt ein Beispiel für die Mappings-Datei.

<?xml version="1.0" encoding="utf-8"?>

<xsd:schema attributeFormDefault="unqualified"

elementFormDefault="qualified" version="1.0"

xmlns:xsd="http://www.w3.org/2001/XMLSchema">

 <xsd:element name="projections">

 <xsd:complexType>

 <xsd:sequence>

 <xsd:element maxOccurs="unbounded" name="projection">

 <xsd:complexType>

 <xsd:sequence>

 <xsd:element name="MappingFrom">

 <xsd:complexType>

 <xsd:sequence>

 <xsd:element maxOccurs="unbounded" name="activityId"

 type="xsd:string" />

 </xsd:sequence>

 </xsd:complexType>

 </xsd:element>

 <xsd:element name="MappingTo">

 <xsd:complexType>

 <xsd:sequence>

 <xsd:element maxOccurs="unbounded" name="projectionId"

 type="xsd:string" />

 </xsd:sequence>

 </xsd:complexType>

 </xsd:element>

 <xsd:element name="projectionRule" type="xsd:string" />

 </xsd:sequence>

 </xsd:complexType>

 </xsd:element>

 </xsd:sequence>

 </xsd:complexType>

 </xsd:element>

</xsd:schema>

70

Listing 43: Mappings XML-Schema

In Listing 44 ist die Mappings-Datei für die <while> Schleife gefolgt von der <wait> Aktivität

zu sehen.

<?xml version="1.0" encoding="UTF-8"?>

<projections>

 ...

 <projection>

 <MappingFrom>

 <activityId>while 1</activityId>

 <activityId>invoke 6</activityId>

 <activityId>compensationHandler 1</activityId>

 <activityId>invoke 7</activityId>

 </MappingFrom>

 <MappingTo>

 <projectionId>SubProcess 5</projectionId>

 </MappingTo>

 <projectionRule>Combination</projectionRule>

 </projection>

 <projection>

 <MappingFrom>

 <activityId>wait 1</activityId>

 </MappingFrom>

 <MappingTo>

 <projectionId>Task 10</projectionId>

 </MappingTo>

 <projectionRule>Direct</projectionRule>

 </projection>

 ...

</projections>

Listing 44: Mappings-Datei für das <while> und <wait> Beispiel

In dem Beispiel sind zwei Projektionen zu sehen. Bei der ersten wird eine <while> Schleife in

BPMN als Sub-Prozess dargestellt. Als Zustandsüberführungsregel kommt das State Com-

bination Pattern zum Einsatz. Bei der zweiten Projektion wird eine <wait> Aktivität in BPMN

als ein einzelner Task dargestellt. Hierbei kommt als Zustandsüberführungsregel das Direct

State Propagation Pattern zum Einsatz.

Zur Generierung der Mappings-Datei wird der Pseudo-Code in Listing 45 verwendet:

GenerateMappings(BPELProcess p){

 //schreibe den XML-Header für die Mappings-Datei

 writeHead;

 Array activityList = getAllActivities(p);

 FOR each activity in activityList

 activityId = getId(activity);

 type = getType(activity);

 mapping = getDefaultMapping(type);

 rule = getRule(mapping);

 projectionIds = generateNewProjectionId(mapping);

 //schreibe den XML-Code für die Projektion

 writeProjection(activityId, projectionIds, rule);

 NEXT;

 //schreibe das XML-Closing für die Mappings-Datei

 writeTail;

}

Listing 45: Generierung der Mappings-Datei

71

5.5.2 Zustandsüberführungsregeln

In Kapitel 5.2 wurden drei Muster zur Zustandsüberführung vorgestellt. Diese werden in die-

sem Kapitel in Zusammenhang mit dieser Arbeit definiert und in Pseudo-Code beschrieben.

In Hinsicht auf die weitere Entwicklung können weitere Zustandsüberführungsregeln definiert

und umgesetzt werden.

5.5.2.1 Direct State Propagation Pattern

Das Direct State Propagation Pattern überführt den Zustand einer Aktivität in BPEL in den

Zustand eines Konstrukts in BPMN. Da der Zustand einfach übernommen wird, ist dies das

einfachste der drei Muster. Die Methode für das Muster bekommt als Eingabe eine activityId

und eine projectionId, liest dann den aktuellen Zustand der Aktivität aus und schreibt ihn zum

passenden Konstrukt in BPMN.

Directstate (activityID string, projectionID string) {

 projectionState = getState(activityID);

 write(projectionID, projectionState);

}

Listing 46: Pseudo-Code zum Direct State Propagation Pattern

5.5.2.2 State Combination Pattern

Für das State Combination Pattern gibt es zwei Methoden. Eine für normale Aktivitäten und

eine für Schleifen. Die normalen Aktivitäten umfassen <invoke>, <flow>, <if>, <pick>, <sco-

pe>, <compensationHandler>, <faultHandlers>, <process> und <terminationHandler>. Als

Schleifen werden <forEach>, <repeatUntil> und <while> bezeichnet. Beim State Combinati-

on Pattern werden mehrere Zustände aus BPEL auf einen Zustand in BPMN abgebildet. Um

das zu erreichen müssen bestimmte Bedingungen erfüllt sein, die im Folgenden für beide

Methoden beschrieben werden.

Die Methode für die normalen Aktivitäten bekommt als Eingabe mehrere activityIds und eine

projectionId. Als erstes wird die Variable projectionState auf einen leeren String gesetzt und

anschließend wird über alle activityIds iteriert. Solange der projectionState auf Completed

steht wird die activityId abgehandelt, ist dies nicht der Fall werden die restlichen Aktivitäten

nicht weiter beachtet, da eine weitere Änderung des Zustands eine Inkonsistenz in Bezug

auf die in Kapitel 4.2 vorgestellten Regeln verursachen würde. Während der Abarbeitung der

Aktivität, wird der activityState ausgelesen und anschließend je nach Zustand der projecti-

onState verändert. Bei Inactive wird der projectionState ebenfalls auf Inactive gesetzt. Das-

selbe gilt für die Zustände Skipped, Executing, Compensated, Completed, Faulted und Ter-

minated. Beim Zustand Ready wird der bisherige projectionState abgefragt, ist dieser Com-

pleted, so wird der projectionState auf Executing gesetzt, ansonsten auf Ready. Abschlie-

ßend wird der projectionState zum passenden Konstrukt in der BPMN-Datei geschrieben.

CombinationState (activityIDs array, projectionID string){

 projectionState = "";

 //ändere den projectionState abhängig von allen activityStates

 FOR each activityID in activityIds

 IF pprojectionState == Completed | Iteration Completed

 activityState = getState(activityID);

 CASE activityState:

 Inactive: projectionState = Inactive;

 Ready: IF projectionState == Completed

 then projectionState = Executing

72

 ELSE projectionState = Ready;

 Skipped: projectionState = Skipped;

 Executing: projectionState = Executing;

 Compensated: projectionState = Compensated;

 Completed: projectionState = Completed;

 Faulted: projectionState = Faulted;

 Terminated: projectionState = Terminated;

 ESAC;

 FI;

 NEXT;

 //schreibe den Zustand in die BPMN-Datei

 write(projectionID, projectionState);

}

Listing 47: Pseudo-Code für das normale State Combination Pattern

Für die Methode für Schleifen wird die obere Methode erweitert. Als weitere Eingaben kom-

men der iterationCount und der finalCounterValue hinzu. Wobei der finalCounterValue nur

für die <forEach> Schleife von Bedeutung ist. Für die <repeatUntil> und <while> Schleifen

wird eine Bedingung in der BPEL-Datei angegeben. Die Zustände werden durch den Zu-

stand Iteration Completed ergänzt. Nach der Abarbeitung aller activityIds kommt eine Abfra-

ge über den Zustand hinzu. Ist der projectionState nach der Abarbeitung der <forEach>

Schleife im Zustand Iteration Completed, dann wird geprüft, ob der finalCounterValue er-

reicht wurde. Für <repeatUntil> und <while> wird geprüft, ob die angegebene Bedingung

erfüllt wurde. Bei der <while> Schleife wird diese Abfrage vor der inneren Ausführung ge-

macht und nicht am Ende. Trifft der Fall zu, dass die jeweilige Bedingung erfüllt ist, wird der

projectionState auf den Zustand Executing und alle activityIds im Zustand Iteration Comple-

ted werden in den Zustand Inactive gesetzt. Ansonsten werden der projectionState und alle

activityStates auf Completed gesetzt.

CombinationState (activityIDs array, projectionID string, iterationCount

int, finalCounterValue int, condition){

 projectionState = "";

 FOR each activityID

 IF projectionstate == Completed | Iteration Completed

 activityState = getState(activityID);

 CASE activityState:

 Inactive: projectionState = Inactive;

 Ready: IF projectionState == Completed

 then projectionState = Executing

 ELSE projectionState = Ready;

 Skipped: projectionState = Skipped;

 Executing: projectionState = Executing;

 Compensated: projectionState = Compensated;

 Completed: projectionState = Completed;

 Faulted: projectionState = Faulted;

 Terminated: projectionState = Terminated;

 Iteration Completed: projectionState = Iteration Completed;

 ESAC;

 FI;

 NEXT;

 //Abschnitt für die <forEach> Schleife

 //Hier wird geprüft, ob der finalCounterValue erreicht wurde

 IF projectionState == Iteration Completed

 IF iterationCount < finalCounterValue

 projectionState = Executing;

 FOR each activityID

 activityState = getState(activityID);

 IF activityState == Iteration Completed

73

 activityState = Inactive;

 FI;

 NEXT;

 ELSE

 projectionState = Completed;

 FOR each activityID

 activityState = getState(activityID);

 IF activityState == Iteration Completed

 activityState = Completed;

 FI;

 NEXT:

 FI;

 FI;

 write(projectionID, projectionState);

}

Listing 48: Pseudo-Code für das State Combination Pattern für Schleifen

5.5.2.3 State Distribution Pattern

Das State Distribution Pattern überführt den Zustand einer Aktivität in BPEL in den Zustand

mehrerer Konstrukte in BPMN. Der Zustand der Aktivität wird für alle Konstrukte übernom-

men. Die Methode für das Muster bekommt als Eingabe eine activityId und mehrere projec-

tionId, liest dann den aktuellen Zustand der Aktivität aus und schreibt ihn zu allen passenden

Konstrukten in BPMN.

DistributionState (activityID string, projectionIDs array){

 projectionState = getState(activityID);

 FOR each projectionID

 write(projectionID, projectionState);

 NEXT;

}

Listing 49: Pseudo-Code für das State Distribution Pattern

5.5.3 Generierung der BPMN-Datei

5.5.3.1 XML-Elemente in BPMN

In diesem Unterkapitel werden die wichtigsten XML-Tags für die BPMN-Datei vorgestellt.

Das <process>-Tag für den eigentlichen Prozess wird vom <definitions>-Tag umgeben. In

diesem Tag werden Informationen wie zum Beispiel der Namespace angegeben. Alle ande-

ren Tags haben einen Identifier, kurz eine id, und einen Namen. Zusätzlich gibt es noch die

Attribute sourceRef, gibt die Quelle an, targetRef, gibt das Ziel an und gatewayDirection, gibt

an ob das Gateway erstellend (diverging) oder synchronisierend (converging) ist. Für detail-

lierte Informationen über die verwendeten XML-Tags wird auf [19] verwiesen.

In Listing 50 ist die der Teil der BPMN-Datei für die <while> Schleife und die folgende <wait>

Aktivität zu sehen.

<subProcess id="subprocess 5" name="findSimilarProduct" />

<sequenceFlow id="sequenceflow 25" sourceRef="subprocess 5"

 targetRef="task 10" />

<task id="task 10" name="Wait" />

Listing 50: BPMN-Datei für die <while> Schleife und die <wait> Aktivität

Das Listing 51 zeigt die BPMN-Datei für das Beispiel aus Kapitel 2.

74

<definitions id="customerProductRequest"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation="http://schema.omg.org/spec/BPMN/2.0 BPMN20.xsd" >

 <process id="process 1" name="main_process" processType="None">

 <startEvent id="Start" />

 <intermediateCatchEvent id="event 1" name="processFaultHandler">

 <errorEventDefinition>

 <subProcess id="subprocess 1" name="faultHandlers">

 <exclusiveGateway id="exclusivegateway 1"

 gatewayDirection="diverging" />

 <sequenceFlow id="sequenceflow 1"

 sourceRef="exclusivegateway 1" targetRef="event 2" />

 <intermediateThrowEvent id="event 2" name="compensate">

 <compensateEventDefintion />

 </intermediateThrowEvent>

 <sequenceFlow id="sequenceflow 2" sourceRef="event 2"

 targetRef="event 3" />

 <endEvent id="event 3" name="terminate">

 <terminateEventDefintion />

 </endEvent>

 <sequenceFlow id="sequenceflow 3" sourceRef="event 3"

 targetRef="exclusivegateway 2" />

 <exclusiveGateway id="exclusivegateway 2"

 gatewayDirection="converging" />

 </subProcess>

 </errorEventDefinition>

 </intermediateCatchEvent>

 <sequenceFlow id="sequenceflow 4" sourceRef="Start"

 targetRef="task 1" />

 <task id="task 1" name="receiveProductRequest" />

 <sequenceFlow id="sequenceflow 5" sourceRef="task 1"

 targetRef="task 2" />

 <task id="task 2" name="checkAvailability" />

 <sequenceFlow id="sequenceflow 6" sourceRef="task 2"

 targetRef="subprocess 2" />

 <subProcess id="subprocess 2" name="productAvailable">

 <sequenceFlow id="sequenceflow 7" sourceRef="subprocess 2"

 targetRef="exclusivegateway 3" />

 <exclusiveGateway id="exclusivegateway 3"

 gatewayDirection="diverging" />

 <sequenceFlow id="sequenceflow 8" sourceRef="exclusivegateway 3"

 targetRef="task 3">

 <conditionExpression xsi:type="tFormalExpression">

 ${inventoryLevel > 0}

 </conditionExpression>

 </sequenceFlow>

 <task id="task 3" name="empty" />

 <sequenceFlow id="sequenceflow 9" sourceRef="task 3"

 targetRef="exclusivegateway 4" />

 <sequenceFlow id="sequenceflow 10" sourceRef="exclusivegateway 3"

 targetRef="task 4">

 <conditionExpression xsi:type="tFormalExpression">

 ${inventoryLevel = 0} && ${inProduction > 0}

 </conditionExpression>

 </sequenceFlow>

 <task id="task 4" name="checkReorder" />

 <sequenceFlow id="sequenceflow 11" sourceRef="task 4"

 targetRef="subprocess 3" />

 <subprocess id="subprocess 3" name="forEach">

 <exclusiveGateway id="exclusivegateway 5"

 gatewayDirection="diverging" />

 <sequenceFlow id="sequenceflow 12"

75

 sourceRef="exclusivegateway 5" targetRef="subprocess 4" />

 <subProcess id="subprocess 4" name="flow">

 <sequenceFlow id="sequenceflow 13" sourceRef="subprocess 4"

 targetRef="parallelgateway 1" />

 <parallelGateway id="parallelgateway 1"

 gatewayDirection="diverging" />

 <sequenceFlow id="sequenceflow 14"

 sourceRef="parallelgateway 1" targetRef="task 5" />

 <task id="task 5" name="receiveOffer" />

 <sequenceFlow id="sequenceflow 15" sourceRef="task 5"

 targetRef="task 6" />

 <sequenceFlow id="sequenceflow 16" sourceRef="task 5"

 targetRef="task 7" />

 <task id="task 6" name="checkDeliveryDate" />

 <task id="task 7" name="checkPrice" />

 <sequenceFlow id="sequenceflow 17" sourceRef="task 6"

 targetRef="task 8" />

 <sequenceFlow id="sequenceflow 18" sourceRef="task 7"

 targetRef="task 8" />

 <task id="task 8" name="assignOffer" />

 <sequenceFlow id="sequenceflow 19" sourceRef="task 8"

 targetRef="parallelgateway 2" />

 <parallelGateway id="parallelgateway 2"

 gatewayDirection="converging" />

 </subProcess>

 <sequenceFlow id="sequenceflow 20" sourceRef="parallelgateway 2"

 targetRef="exclusivegateway 6" />

 <exclusiveGateway id="exclusivegateway 6"

 gatewayDirection="converging" />

 <sequenceFlow id="sequenceflow 21"

 sourceRef="exclusivegateway 6"

 targetRef="exclusivegateway 5" />

 </subProcess>

 <sequenceFlow id="sequenceflow 22" sourceRef="exclusivegateway 6"

 targetRef="task 9" />

 <task id="task 9" name="evaluateResults" />

 <sequenceFlow id="sequenceflow 23" sourceRef="task 9"

 targetRef="exclusivegateway 4" />

 <sequenceFlow id="sequenceflow 24" sourceRef="exclusivegateway 3"

 targetRef="subprocess 5">

 <conditionExpression xsi:type="tFormalExpression">

 ${inventoryLevel = 0} && ${inProduction = 0}

 </conditionExpression>

 </sequenceFlow>

 <subProcess id="subprocess 5" name="findSimilarProduct" />

 <sequenceFlow id="sequenceflow 25" sourceRef="subprocess 5"

 targetRef="task 10" />

 <task id="task 10" name="summarizeResults" />

 <sequenceFlow id="sequenceflow 26" sourceRef="task 10"

 targetRef="exclusivegateway 4" />

 <exclusiveGateway id="exclusivegateway 4"

 gatewayDirection="converging" />

 </subProcess>

 <sequenceFlow id="sequenceflow 27" sourceRef="exclusivegateway 4"

 targetRef="task 11" />

 <task id="task 11" name="productOffering" />

 <sequenceFlow id="sequenceflow 28" sourceRef="task 11"

 targetRef="End" />

 <endEvent id="End" />

 </process>

</definitions>

76

Listing 51: BPMN-Datei

5.5.3.2 Generierung

Die BPEL-Datei und die Mappings-Datei dienen als Grundlage für die Generierung der

BPMN-Datei. Es wird über alle Projektionen aus der Mappings-Datei iteriert und für jede acti-

vityId wird der entsprechende Aktivitäten-Name aus der BPEL-Datei geholt und abgespei-

chert. Danach wird ein BPMN-Konstrukt entsprechend der gespeicherten Zustandsüberfüh-

rungsregel aus der Mappings-Datei erzeugt. Die XML-Tags für BPMN wurden dafür in Kapi-

tel 5.5.3.1 eingeführt.

Der Algorithmus in Listing 52 zeigt die Generierung der BPMN-Datei in Pseudo-Code:

GenerateBPMN(BPELProcess p, MappingsDatei m){

//schreibe den XML-Header für die BPMN-Datei

writeHead;

Array projections = getProjections(m);

FOR each projection in projections

 activityId = getAcitivityId(projection);

 name = getName(activityId);

 projectionId = getProjectionId(projection);

 rule = getRule(projection);

 //Zur Einhaltung der Struktur wird der BPEL-Prozess bei der

 //Generierung als Parameter mitgegeben

 writeBPMNContruct(p, name, projectionId, rule);

NEXT;

//schreibe das XML-Closing für die BPMN-Datei

writeTail;

}

Listing 52: Generierung der BPMN-Datei

5.5.4 Probleme bei der Projektion

Bei allen Aktivitäten, die mit Hilfe von Gateways dargestellt werden, würde das Problem der

duplizierten Tokens auftreten. Um dieses zu umgehen werden die Zustände der Gateways

nicht übertragen, sondern intern aus den Zuständen aller, zwischen den beiden Gateways

enthaltenen, Aktivitäten berechnet. Während mindestens eine dieser Aktivitäten im Zustand

Executing ist, sind die beiden Gateways ebenfalls im Zustand Executing. Sobald alle enthal-

tenen Aktivitäten im Zustand Completed sind, werden auch die beiden Gateways in den Zu-

stand Completed gesetzt.

5.6 Anpassungen an der Mappings-Datei

Nach der Generierung der Mappings-Datei ist es möglich, die enthaltenen Projektionen ma-

nuell zu verändern. Dabei müssen die activityIds korrekt weiterverwendet werden, da es

sonst zu Problemen bei der Generierung der BPMN-Datei kommen kann. Wurden alle ge-

wünschten Änderungen vollzogen, kann, mit Hilfe der geänderten Mappings-Datei, die

BPMN-Datei erneut erzeugt werden. Dafür wird überprüft, ob die Mappings-Datei verändert

wurde, und falls dies der Fall ist, wird die generateBPMN-Methode erneut aufgerufen.

checkMappingsFile(BPELProcess p, MappingsDatei m){

 BOOL fileStateChanged = checkForChanges(m);

 IF fileStateChanged == true

 generateBPMN(p, m);

 FI

77

}

Listing 53: checkMappingsFile als Pseudo-Code

5.7 Mapping der Zustände

Als letzter Schritt wird die Übertragung der Zustände gemacht. Die zustandsbehaftete BPEL-

Datei, die Mappings-Datei und die BPMN-Datei bilden die Grundlage für die Generierung der

zustandsbehafteten BPMN-Datei.

In Listing 54 ist die zustandsbehaftete BPEL-Datei für das Beispiel mit der <while> Schleife

gefolgt von der <wait> Aktivität zu sehen.

<bpel:while name="While">

 <ext:activityId>while 1</ext:activityId>

 <ext:activityState> </ext:activityState>

 <ext:projectionType>Loop</ext:projectionType>

 <ext:iterationCount>0</ext:iterationCount>

 <bpel:condition>

 $similarProductRequest != nil

 </bpel:condition>

 <bpel:invoke name="findSimilarProduct" inputVariable="product"

 outputVariable="similarProductRequest" operation="findSimilarProduct">

 <ext:activityId>invoke 6</ext:activityId>

 <ext:activityState>Skipped</ext:activityState>

 <ext:projectionType>Casual</ext:projectionType>

 <bpel:compensationHandler>

 <ext:activityId>compensationHandler 1</ext:activityId>

 <ext:activityState>Skipped</ext:activityState>

 <ext:projectionType>Casual</ext:projectionType>

 <bpel:invoke name="cancelSearch" operation="cancelProductSearch">

 <ext:activityId>invoke 7</ext:activityId>

 <ext:activityState>Skipped</ext:activityState>

 <ext:projectionType>Casual</ext:projectionType>

 </bpel:invoke>

 </bpel:compensationHandler>

 </bpel:invoke>

</bpel:while>

<bpel:wait name="Wait">

 <ext:activityId>wait 1</ext:activityId>

 <ext:activityState>Skipped</ext:activityState>

 <ext:projectionType>Casual</ext:projectionType>

 <bpel:for>PT10M</bpel:for>

</bpel:wait>

Listing 54: zustandsbehaftete BPEL-Datei für die <while> Schleife und die <wait> Aktivität

In Listing 55 ist die zustandsbehaftete BPMN-Datei für das Beispiel mit der <while> Schleife

gefolgt von der <wait> Aktivität zu sehen.

<subProcess id="subprocess 5" name="findSimilarProduct" state="Skipped" />

<sequenceFlow id="sequenceflow 25" sourceRef="subprocess 5"

 targetRef="task 10" />

<task id="task 10" name="Wait" state="Skipped" />

Listing 55: zustandsbehaftete BPMN-Datei für die <while> Schleife und die <wait> Aktivität

78

6 Zusammenfassung und Ausblick

Das Thema dieser Diplomarbeit war die sprachübergreifende Überwachung von Geschäfts-

prozessen. Da es sich um ein großes Themengebiet handelt, wurde das Thema für diese

Diplomarbeit auf die beiden Sprachen BPEL und BPMN eingeschränkt. Nach dem Schaffen

von Grundlagen durch die Beschreibung der wichtigsten BPEL und BPMN Konstrukte, sowie

der Erläuterung an Beispielen, wurde eine Analyse der Transformation zwischen BPEL und

BPMN gemacht. Die Darstellungen der jeweiligen BPEL Aktivitäten in BPMN wurden erläu-

tert und in einer Tabelle zusammengefasst.

Im Hauptteil der Arbeit wurde ein Ansatz zur Zustandsübertragung beschrieben und drei

Muster für die Zustandsübertragung vorgestellt. Als Grundlage der Zustandsübertragung

wurden zwei Zustandsräume, für den Prozess und für die Aktivitäten, definiert. Diese gelten

für BPEL und BPMN gleichermaßen. Zur Darstellung der Beispiele wurden Symbole für die

verschiedenen Zustände eingeführt und in Tabellen zusammengefasst.

Danach folgten die notwendigen Änderungen an den Dateiformaten für die beiden Sprachen

und deren Umsetzung. Darauf folgte die Beschreibung der Zustandsübertragung für die ver-

wendeten BPEL Aktivitäten und deren Darstellung in BPMN. Nach Schaffung der Grundla-

gen wurde der Ablauf zur Generierung einer BPMN-Datei aus einer BPEL-Datei beschrie-

ben. Als ersten Schritt wurde die zusätzliche Mappings-Datei eingeführt, in der die Zuord-

nungen der BPEL Aktivitäten zu den BPMN Konstrukten festgehalten werden. Mit Hilfe der

Mappings-Datei wurde dann aus der BPEL-Datei die BPMN-Datei erzeugt. Zur Unterstüt-

zung des Verständnisses wurden die Schritte zusätzlich in Code-Form dargestellt.

Als letzten Schritt wurde die Individualisierbarkeit der BPMN-Datei erläutert. Die Möglichkeit

die Mappings-Datei von Hand ändern zu können, bietet genau diese Individualisierbarkeit

der BPMN-Datei. Wurden die in der Mappings-Datei enthaltenen Projektionen wunschgemäß

verändert, kann die BPMN-Datei erneut aus der Mappings-Datei und der BPEL-Datei gene-

riert werden.

Für die Zukunft bleibt abzuwarten, ob es eine standardisierte Darstellung von BPEL auf

BPMN geben wird. Das hier vorgestellte Konzept beruht zwar auf den Standards von BPEL

und BPMN, aber eine standardisierte Darstellung wurde bisher nicht von einer Organisation

erstellt. Bisher ist auch noch keine Lösung in Sicht, da sich die OMG nur mit der Transforma-

tion von BPMN zu BPEL beschäftigt und OASIS hat in der BPEL-Spezifikation geschrieben,

dass eine Transformation von BPEL zu BPMN „out of scope“ ist. Daher bleibt nur die Hoff-

nung, dass sich die Einstellungen dazu in Zukunft noch ändern.

Als Erweiterung zu dieser Arbeit könnten alle Zustandsübertragungsmuster aus [18] umge-

setzt werden. Zudem wäre es ein interessantes Thema, die BPMN-Datei nicht generieren zu

lassen, sondern eine selbst erstellte Datei zu verwenden. Dabei müssten aber Probleme mit

der Soundness und der Vollständigkeit von Projektionen betrachtet und gelöst werden. Zu-

dem wäre es natürlich denkbar Zustandsüberführungen zwischen anderen Sprachen, nicht

nur BPEL und BPMN, zu betrachten und auszuarbeiten.

79

Literaturverzeichnis

[1] A. Alves, A. Arkin, S. Askary, C. Barreto, B. Bloch, F. Curbera, M. Ford, Y. Goland, A.

Guizar, N. Kartha, C. K. Liu, R. Khalaf, D. König, M. Marin, V. Mehta, S. Thatte,

D. v. d. Rijn, P.Yendluri, A. Yiu:

OASIS Web Services Business Process Execution Language Version 2.0, BPEL 2.0,

2007

[2] G.Latuske:

Sichten auf Geschäftsprozesse als Werkzeug zur Darstellung laufender Prozessin-

stanzen

 Universität Stuttgart, Diplomarbeit Nr. 3036, 2010

[3] Business Process Illustrator

 http://sourceforge.net/projects/bpi/

[4] Object Management Group:

 Business Process Model and Notation Version 2.0, BPMN 2.0, 2011

[5] BPEL Designer Project

 http://www.eclipse.org/bpel/

[6] A. Agrawal, M. Amend, M. Das, M. Ford, C. Keller, M. Kloppmann, D. König, F. Ley-

mann,

R. Müller, G. Pfau, K. Plösser, R. Rangaswamy, A. Rickayzen, M. Rowley, P.

Schmidt,

I. Trickovic, A. Yiu, M. Zeller:

WS-BPEL Extension for People (BPEL4People), Version 1.0, 2007

[7] Business Process Management Software

 http://bpmsoftware.wordpress.com/free-bpa-tools/

[8] D. Schumm:

Graphische Modellierung von BPEL Prozessen unter der Verwendung der BPMN No-

tation

 Universität Stuttgart, Diplomarbeit Nr. 2720, 2008

[9] OASIS, Advanced open standards for the information society

 http://www.oasis-open.org/

[10] F. Leymann, D. Roller, S. Thatte:

 Goals oft he BPEL4WS Specification, 2003

[11] Object Management Group

http://sourceforge.net/projects/bpi/
http://www.eclipse.org/bpel/
http://bpmsoftware.wordpress.com/free-bpa-tools/
http://www.oasis-open.org/

80

 http://www.omg.org/

[12] B. Silver:

BPMN Method and Style: A Levels-Based Methodology for BPM Process Modeling

and Improvement Using BPMN 2.0, 2009

[13] C. Ouyang, M. Dumas, A. H. M. Hofstede, W. M. P. van der Aalst:

 Pattern-based Translation of BPMN Process Models to BPEL Web Services

[14] J. Mendling, K. B. Lassen, U. Zdun:

Transformation Strategies between Block-Oriented and Graph-Oriented Process Mo-

delling Languages

[15] J. Recker, J. Mendling:

On The Translation between BPMN and BPEL: Conceptual Mismatch between Pro-

cess Modeling Languages, 2006

[16] D. Karastoyanova, R. Khalaf, R. Schroth, M. Paluszek, F. Leymann:

 BPEL Event Model, Universität Stuttgart, 2006

[17] T. Steinmetz:

 Ein Event-Modell für WS-BPEL 2.0 und dessen Realisierung in Apache ODE

 Universität Stuttgart, Diplomarbeit Nr. 2729, 2008

 [18] D. Schumm, G. Latuske, F. Leymann, R. Mietzner, T. Scheibler:

State Propagation For Business Process Monitoring On Different Levels Of

Abstraction

Universität Stuttgart, 2011

[19] JBPMN, Darstellung von BPMN in XML-Notation:

 http://docs.jboss.com/jbpm/v4/devguide/html_single/#basicConstructsEvents

http://www.omg.org/
http://docs.jboss.com/jbpm/v4/devguide/html_single/%23basicConstructsEvents

81

Abbildungsverzeichnis

Abbildung 1: Graphisch dargestellter BPEL-Prozess ... 6

Abbildung 2: Das Produktanfrage Beispiel in BPMN ...13

Abbildung 3: Die BPEL zu BPMN Zuordnungen für das Beispiel ..13

Abbildung 4: Start-Event ...31

Abbildung 5: End-Event ..31

Abbildung 6: Intermediate-Event ..31

Abbildung 7: Message Events ..32

Abbildung 8: Timer Events ...32

Abbildung 9: Error Events ...32

Abbildung 10: Compensation Events ..33

Abbildung 11: Terminate Event ..33

Abbildung 12: Piktogramm einer Aktivität ...34

Abbildung 13: Loop-Marker ..34

Abbildung 14: Compensation-Marker ...34

Abbildung 15: collapsed Sub-Prozess ..35

Abbildung 16: expanded Sub-Prozess ..35

Abbildung 17: Loop ..35

Abbildung 18: Compensation..35

Abbildung 19: Error ..35

Abbildung 20: Termination ..35

Abbildung 21: Exclusive Gateway ohne Marker ..36

Abbildung 22: Exclusive Gateway mit Marker ...36

Abbildung 23: Event-Based Gateway ...37

Abbildung 24: Exclusive Event-Based Gateway ...37

Abbildung 25: erstellendes Parallel Gateway ..37

Abbildung 26: synchronisierendes Parallel Gateway ..37

Abbildung 27: Message Flow Connection ...38

Abbildung 28: Sequence Flow ..38

Abbildung 29: Conditional Sequence Flow ...38

Abbildung 30: Default Sequence Flow ..39

Abbildung 31: Pool ...39

Abbildung 32: Data Association ..39

Abbildung 33: Data Object ..39

Abbildung 34: Zustandslebenszyklus für einen Geschäftsprozess ..48

Abbildung 35: Zustandslebenszyklus von Aktivitäten ..50

Abbildung 36: Direct State Propagation ..51

Abbildung 37: State Combination ...51

Abbildung 38: Complex State Distribution ...52

Abbildung 39: Projektion einer <assign> Aktivität ...55

Abbildung 40: Projektion einer <empty> Aktivität ..55

Abbildung 41: Einfluss der <exit> Aktivität auf den Prozess ...56

Abbildung 42: Projektion einer <invoke> Aktivität ...56

Abbildung 43: Projektion einer <receive> Aktivität ..57

Abbildung 44: Projektion einer <reply> Aktivität ..57

Abbildung 45: Projektion einer <rethrow> Aktivität ..57

Abbildung 46: Projektion einer <throw> Aktivität ...57

Abbildung 47: Projektion einer <wait> Aktivität ...58

82

Abbildung 48: Projektion einer <flow> Aktivität ...58

Abbildung 49: Projektion einer <forEach> Aktivität ...59

Abbildung 50: Projektion einer <if> Aktivität ..60

Abbildung 51: Projektion einer <pick> Aktivität ...60

Abbildung 52: Projektion einer <repeatUntil> Aktivität ..61

Abbildung 53: Projektion einer <sequence> Aktivität ..61

Abbildung 54: Projektion einer <while> Aktivität ...62

Abbildung 55: Projektion einer <variable> Aktivität ...63

Abbildung 56: Projektion einer <validate> Aktivität ...63

Abbildung 57: Projektion einer <compensationHandler> Aktivität ...63

Abbildung 58: Projektion einer <faultHandlers> Aktivität ...64

Abbildung 59: Projektion einer <terminationHandler> Aktivität ..65

Abbildung 60: Projektion einer <eventHandlers> Aktivität ...65

Abbildung 61: Übersicht über den Ablauf..68

83

Listingsverzeichnis

Listing 1: BPEL-Code für das Produktanfrage Beispiel ...11

Listing 2: <assign> ...16

Listing 3: <empty> ..16

Listing 4: <exit> ..16

Listing 5: <invoke> ohne <compensationHandler> ...16

Listing 6: <invoke> mit <compensationHandler> ..17

Listing 7: <receive> ..17

Listing 8: <reply> ..17

Listing 9: <rethrow> ..17

Listing 10: <throw> ...18

Listing 11: <wait> ...18

Listing 12: <flow> ...19

Listing 13: <transitionCondition> ..20

Listing 14: <joinCondition> ...20

Listing 15: <forEach>..21

Listing 16: <if> ..21

Listing 17: <pick> ...22

Listing 18: <repeatUntil> ...22

Listing 19: <sequence> ..23

Listing 20: <while> ..23

Listing 21: <compensateScope> ..24

Listing 22: <scope> ..24

Listing 23: <variable> ...25

Listing 24: <validate>..25

Listing 25: <catch> ...26

Listing 26: <catchAll> ...26

Listing 27: <compensationHandler> ...26

Listing 28: <extensions> ...27

Listing 29: <faultHandlers> ...27

Listing 30: <import> ..27

Listing 31: <terminationHandler> ..28

Listing 32: <eventHandlers> mit <onEvent> ...29

Listing 33: <eventHandlers> mit <onAlarm> ...29

Listing 34: <invoke> Aktivität mit einer <ext:activityId> ...52

Listing 35: Beispiel einer Projektion aus der Mappings-Datei mit der <projectionId>53

Listing 36: Attribut "id" in einem BPMN-Konstrukt ...53

Listing 37: <invoke> Aktivität mit dem <ext:activityState> Completed53

Listing 38: Task mit dem state Completed ..53

Listing 39: Der Beispiel-Prozess mit dem <ext:processState> Running54

Listing 40: <invoke> Aktivität mit einem <ext:projectionType> ..54

Listing 41: <forEach> Aktivität mit dem <ext:iterationCount> 5 ...55

Listing 42: <while> Schleife gefolgt von einer <wait> Aktivität in BPEL69

Listing 43: Mappings XML-Schema ..70

Listing 44: Mappings-Datei für das <while> und <wait> Beispiel ...70

Listing 45: Generierung der Mappings-Datei ..70

Listing 46: Pseudo-Code zum Direct State Propagation Pattern ...71

Listing 47: Pseudo-Code für das normale State Combination Pattern72

84

Listing 48: Pseudo-Code für das State Combination Pattern für Schleifen73

Listing 49: Pseudo-Code für das State Distribution Pattern ..73

Listing 50: BPMN-Datei für die <while> Schleife und die <wait> Aktivität73

Listing 51: BPMN-Datei ..76

Listing 52: Generierung der BPMN-Datei ..76

Listing 53: checkMappingsFile als Pseudo-Code ..77

Listing 54: zustandsbehaftete BPEL-Datei für die <while> Schleife und die <wait> Aktivität .77

Listing 55: zustandsbehaftete BPMN-Datei für die <while> Schleife und die <wait> Aktivität 77

85

Tabellenverzeichnis

Tabelle 1: Legende der Zustände .. 5

Tabelle 2: Übersicht über die verwendeten Events aus BPMN2.0 ..31

Tabelle 3: Übersicht über alle Zuordnungen ...46

Tabelle 4: Zustände des Prozesses ..48

Tabelle 5: Zustände der Aktivitäten ..50

Tabelle 6: Übersicht über die Zustandsüberführungsregeln ..67

86

Erklärung

Hiermit versichere ich, diese Arbeit selbstständig verfasst und nur die angegebenen

Quellen verwendet zu haben.

Stuttgart, den 04.08.2011

 (Eike Klenk)

	1 Einleitung
	1.1 Motivation
	1.2 Abgrenzung des Themas
	1.3 Aufgabenstellung
	1.4 Aufbau

	2 Beispiele für BPEL und BPMN
	2.1 BPEL
	2.2 BPMN
	2.3 Beispiel der Projektion

	3 Grundlagen
	3.1 Definitionen
	3.1.1 Projektion
	3.1.2 Soundness
	3.1.3 Vollständigkeit

	3.2 BPEL
	3.3 Konstrukte in BPEL
	3.3.1 Basis Aktivitäten
	3.3.1.1 <assign>
	3.3.1.2 <empty>
	3.3.1.3 <exit>
	3.3.1.4 <invoke>
	3.3.1.5 <receive>
	3.3.1.6 <reply>
	3.3.1.7 <rethrow>
	3.3.1.8 <throw>
	3.3.1.9 <wait>

	3.3.2 Strukturierte Aktivitäten
	3.3.2.1 <flow>
	3.3.2.1.1 <link>
	3.3.2.1.2 <transitionCondition>
	3.3.2.1.3 <joinCondition>
	3.3.2.1.4 Dead-Path-Elimination

	3.3.2.2 <forEach>
	3.3.2.3 <if>
	3.3.2.4 <pick>
	3.3.2.5 <repeatUntil>
	3.3.2.6 <sequence>
	3.3.2.7 <while>

	3.3.3 Scopes
	3.3.3.1 <compensate>
	3.3.3.2 <compensateScope>
	3.3.3.3 <scope>

	3.3.4 Variablen
	3.3.4.1 <variable>
	3.3.4.2 <validate>

	3.3.5 Andere Konstrukte
	3.3.5.1 <catch>
	3.3.5.2 <catchAll>
	3.3.5.3 <compensationHandler>
	3.3.5.4 <extensions>
	3.3.5.5 <faultHandlers>
	3.3.5.6 <import>
	3.3.5.7 <partnerLinks>
	3.3.5.8 <process>
	3.3.5.9 <terminationHandler>
	3.3.5.10 <eventHandlers>
	3.3.5.10.1 <onEvent>
	3.3.5.10.2 <onAlarm>

	3.4 BPMN 2.0
	3.5 Konstrukte in BPMN
	3.5.1 Events
	3.5.1.1 Message-Event
	3.5.1.2 Timer-Event
	3.5.1.3 Error-Event
	3.5.1.4 Compensation-Event
	3.5.1.5 Terminate-Event

	3.5.2 Aktivität
	3.5.3 Task
	3.5.3.1 Sub-Prozess

	3.5.4 Gateways
	3.5.4.1 Exclusive Gateway
	3.5.4.1.1 Event-Based Gateway

	3.5.4.2 Parallel Gateway

	3.5.5 Message Flow
	3.5.6 Sequence Flow
	3.5.7 Pools
	3.5.8 Data Association
	3.5.9 Data Object

	4 Abbildungen von BPEL zu BPMN
	4.1 Transformation zwischen den Sprachen
	4.1.1 Basis Aktivitäten
	4.1.1.1 <assign>
	4.1.1.2 <empty>
	4.1.1.3 <exit>
	4.1.1.4 <invoke>
	4.1.1.5 <receive>
	4.1.1.6 <reply>
	4.1.1.7 <rethrow>
	4.1.1.8 <throw>
	4.1.1.9 <wait>

	4.1.2 Strukturierte Aktivitäten
	4.1.2.1 <flow>
	4.1.2.2 <forEach>
	4.1.2.3 <if>
	4.1.2.4 <pick>
	4.1.2.5 <repeatUntil>
	4.1.2.6 <sequence>
	4.1.2.7 <while>

	4.1.3 Scopes
	4.1.3.1 <compensate>
	4.1.3.2 <compensateScope>
	4.1.3.3 <scope>

	4.1.4 Variablen
	4.1.4.1 <variable>
	4.1.4.2 <validate>

	4.1.5 Andere Konstrukte
	4.1.5.1 <catch>
	4.1.5.2 <catchAll>
	4.1.5.3 <compensationHandler>
	4.1.5.4 <faultHandlers>
	4.1.5.5 <process>
	4.1.5.6 <terminationHandler>
	4.1.5.7 <onEvent>
	4.1.5.8 <onAlarm>

	4.2 Probleme nach der Transformation

	5 Beschreibung einer Projektion
	5.1 Zustände
	5.2 Muster zur Zustandsübertragung
	5.2.1 Direct State Propagation Pattern
	5.2.2 State Combination Pattern
	5.2.3 Complex State Distribution Pattern

	5.3 BPEL und BPMN Erweiterungen
	5.3.1 activityId
	5.3.2 projectionId
	5.3.3 activityState
	5.3.4 processState
	5.3.5 projectionType
	5.3.6 iterationCount

	5.4 Zustandsübertragungen von BPEL nach BPMN
	5.4.1 <assign>
	5.4.2 <empty>
	5.4.3 <exit>
	5.4.4 <invoke>
	5.4.5 <receive>
	5.4.6 <reply>
	5.4.7 <rethrow>
	5.4.8 <throw>
	5.4.9 <wait>
	5.4.10 <flow>
	5.4.11 <forEach>
	5.4.12 <if>
	5.4.13 <pick>
	5.4.14 <repeatUntil>
	5.4.15 <sequence>
	5.4.16 <while>
	5.4.17 <scope>
	5.4.18 <variable>
	5.4.19 <validate>
	5.4.20 <compensationHandler>
	5.4.21 <faultHandlers>
	5.4.22 <process>
	5.4.23 <terminationHandler>
	5.4.24 <eventHandlers>

	5.5 Ablauf einer Projektion
	5.5.1 Mappings XML-Schema
	5.5.2 Zustandsüberführungsregeln
	5.5.2.1 Direct State Propagation Pattern
	5.5.2.2 State Combination Pattern
	5.5.2.3 State Distribution Pattern

	5.5.3 Generierung der BPMN-Datei
	5.5.3.1 XML-Elemente in BPMN
	5.5.3.2 Generierung

	5.5.4 Probleme bei der Projektion

	5.6 Anpassungen an der Mappings-Datei
	5.7 Mapping der Zustände

	6 Zusammenfassung und Ausblick
	Literaturverzeichnis
	Abbildungsverzeichnis
	Listingsverzeichnis
	Tabellenverzeichnis

