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1 Einleitung

Die Kombinatorik auf Wortern ist ein junges Gebiet der Mathematik. Es zéhlt sowohl als
Teilgebiet der theoretischen Informatik als auch der diskreten Mathematik. Erste Arbeiten
zur Kombinatorik auf Wortern wurden von Thue in [Thul906] anfangs des 20. Jahrhunderts
verdffentlicht. Damals wurden Ergebnisse in diesem Teilgebiet oft nur als Hilfsmittel fiir andere
Resultate genutzt. Eine Ausnahme stellte die kombinatorische Gruppentheorie dar. Insbesondere
nach der Veroffentlichung von Lothaire [Lot1983] entwickelte sich die Kombinatorik auf Wortern
als eigenes Teilgebiet. Diese und weitere Informationen iiber die Geschichte der Kombinatorik
auf Worter findet man in [BK2003|.

Billaud hat sich zum ersten Mal 1988 mit Fixpunktwortern beschéftigt, sich jedoch schnell vom
Problem abgewandt hat, vgl. [Bil2011]. Sein damaliger Kollege Filé erarbeitete daraufhin in
[Fil1989] ein Resultat tiber die Bilder eines Wortes unter Morphismen. Er zeigte, dass, falls
die Menge der Bilder zweier Worter unter allen moglichen Morphismen dieselbe ist, sich die
Worter mittels eines Morphismus ineinander iiberfiihren lassen. Dieses Konzept untersuchten
Reidenbach und Schneider in [RS2009]|. Dabei definieren sie auch einen zu den Fixpunktwortern
dquivalenten Begriff.

1993 veroffentlichte Billaud dann in der Newsgroup comp.theory seine Vermutung, vgl. [Bil1993].
Seine Vermutung handelt von einer Induktivitat der Fixpunktworter. Sind von einem Wort
w alle Teilworter d,(w), die alle a’s 16schen, Fixpunktworter, so ist auch w ein Fixpunktwort.
Seitdem wurden wenige Resultate zur Vermutung gefunden. Geser und Zimmermann tauschten
sich mit Billaud iiber die Vermutung aus, vgl. [Ges1993, Zim1993|. Dabei 16ste Zimmermann
die Vermutung, wenn das Alphabet aus drei Elementen besteht.

Levé und Richomme konnten 2005 einen Spezialfall der Billaudschen Vermutung in [LR2005]
beweisen. Die Vermutung selbst konnte jedoch nicht signifikant vereinfacht werden.

Holub zeige 2009 in [Hol2009], dass FW € P ist. Damit ist in Polynomialzeit entscheidbar, ob
ein Wort ein Fixpunktwort ist. Holubs Algorithmus konstruiert dazu einen Zeugen.

Diese Arbeit baut auf Teilen von [LR2005| auf und versucht weitere Teilresultate zur Billaud-
schen Vermutung zu zeigen. Dabei konnte die in Kapitel 4 formulierte schwichere Vermutung
ein wichtiger Zwischenschritt sein.

In Kapitel 2 werden die Grundlagen dieser Arbeit eingefiihrt. Es wird der zentrale Begriff
des Fixpunktworts definiert. Damit kann man dann die Billaudsche Vermutung formulieren.



1 Einleitung

Aufbauend wird eine dquivalente kombinatorische Beschreibung von Fixpunktwortern bewiesen
und fiir die weiteren Kapitel benotigte Lemmata bewiesen.

In Kapitel 3 betrachten wir die Billaudsche Vermutung auf einem kleinen Alphabet. Die
Vermutung wird auf einem Alphabet mit drei Buchstaben verifiziert. Mehrere Teilfélle der
Vermutung auf vier Buchstaben werden ebenfalls bewiesen.

In Kapitel 4 wird dann eine schwéchere Version der Billaudschen Vermutung formuliert. Diese
schwichere Vermutung wird teilweise gelost, so dass man sich nur noch auf endlich viele Teilfalle
beschréanken muss.

In Kapitel 5 betrachten wir Beispiele fiir Fixpunktworter und fiir Worter, welche die Billaudsche
Vermutung erfiillen.

In Kapitel 6 wird die Arbeit zusammengefasst und ein Fazit gezogen.



2 Grundlagen

In diesem Kapitel wird in die Grundlagen der vorliegenden Arbeit eingefiithrt. Dabei wer-
den grundlegende Kenntnisse in der Theorie der formalen Sprachen vorausgesetzt, wie sie
beispielsweise in [HU2000| stehen.

Zunéchst fithren wir den fiir diese Arbeit zentralen Begriff des Fixpunktwortes ein.

Definition 2.1. Sei w ein beliebiges Wort und sei ¥ = alph(w) sein Alphabet. Wir nennen w
ein Fixpunktwort, falls es einen Morphismus f : ¥* — ¥* gibt mit f # id und f(w) = w. Wir
nennen f einen Zeugen von w und FW die Menge aller Fixpunktworter.

Die Benennung eines Zeugen wurde von Geser in [Ges1993| vorgeschlagen.

Es wird sich als sinnvoll erweisen das Alphabet eines Fixpunktwortes w geeignet aufzuteilen.
Diese Aufteilung erfolgt in Abhéngigkeit eines Zeugen f von w und stammt aus [LR2005].

Definition 2.2. Sei w € FW gegeben und f ein Zeuge von w. Wir definieren
Cy = {e € alph(w) | f(c) = c},
My = {c € alph(w) | f"(c) = € fiir ein n € N},
E; = {c € alph(w) | f(c) = ucv fir Woérter u, v mit uv € MJT}
Die Buchstaben aus C'y nennen wir konstant, jene aus My sterblich und die Buchstaben aus

E heifsen expandierend oder erzeugend. Wir setzen auf exp(f) die kleinste natiirliche Zahl, so
dass foPU)(a) = ¢ fiir a € M gilt und nennen exp(f) den Exponenten von f.

Wir zeigen zunéchst, dass die Aufteilung in konstante, sterbliche und expandierende Buchstaben
eine disjunkte Zerlegung des Alphabets darstellt. Dazu bendtigen wir eine Klassifikation der
Menge der Fixpunktworter eines festen Morphismus.

Satz 2.3. Sei f ein Morphismus. Die Menge der Fizpunktworter von f ist die Menge
fexp(f) (CrUE)".

Beweis. Vergleiche [Heal981, HS1999|. O

Folgendes Lemma aus [LR2005]| zeigt nun das oben angekiindigte Resultat.



2 Grundlagen

Lemma 2.4. Sei w € FW und f ein Zeuge von w. Dann gilt

alph(w) = Cy U My U Ej.

Beweis. Man sieht anhand der Definition sofort, dass die Vereinigung disjunkt sein muss.
Offensichtlich gilt Cy U My U Ey C alph(w) nach Definition. Da f(w) = w ist, gilt w €
fPU) (O U Ef)* nach Satz 2.3. Man sieht leicht, dass f(Cf) = Cf und f(Ey) C (Ef U Mj)*
ist. Also gilt w € (Cy U My U Ef)* und somit ist alph(w) € Cy U My U Ej. O

Das folgende Lemma aus [LR2005| zeigt, dass wir uns auf Zeugen konzentrieren konnen,
die idempotent sind. Idempotente Zeugen f haben die Eigenschaft, dass f(a) = ¢ gilt fir
a € My. Dies erleichtert die Suche nach Zeugen und ist auch essentiell fiir die kombinatorische
Beschreibung von Fixpunktwortern in Proposition 2.10. Aufserdem gilt fiir idempotente Zeugen
f, dass der Tréger von f genau Cy U Ey ist. Es gilt somit supp(f) := {« € alph(w) | f(x) #
€ } =C U E f-

Lemma 2.5. Fir jedes w € FW gibt es einen idempotenten Zeugen. Genauer gibt es fiir jeden
Zeugen f einen idempotenten Zeugen g mit By = Eg, My = My und Cy = C.

Beweis. Sei f ein Zeuge von w. Jede Potenz von f ist auch ein Zeuge von w da f™(w) =
" Yw) = ... = w. Wir setzen g := f*®P() Der Morphismus ¢ ist dann ein Zeuge von
w. Offensichtlich gilt Cy C Cy, Ey C Ey und My C M,. Nach Lemma 2.4 gilt alph(w) =
CrUM;UE; = CyUM,;U E,. Da die Mengen disjunkt sind, folgt bereits die geforderte
Gleichheit. Noch zu zeigen bleibt also, dass g idempotent ist. Fiir a € M, gilt g*(a) = g(a) = ¢.
Fiir a € Cy gilt g*(a) = g(a) = a und fiir a € E; gibt es Faktoren o, 8 € M} so, dass
g(a) = aap gilt. Es gilt dann g?(a) = g(caB) = eg(a)e = g(a). Mit alph(w) = C, U M, U E,
und der universellen Eigenschaft fiir Morphismen auf dem freien Monoid alph(w)* folgt dann,
dass g idempotent ist. O

Fiir idempotente Morphismen f vereinfacht sich Satz 2.3 zu folgendem Korollar. Dieses findet
vor allem in Kapitel 3 Anwendung.

Korollar 2.6. Sei f ein idempotenter Morphismus. Die Menge der Fixpunktwérter von f ist

die Menge (Cy U f(Ey))*.

Beweis. Fiir idempotente Morphismen f gilt exp(f) = 1. Wegen f(Cy) = Cy folgt die Aussage
direkt aus Satz 2.3. O



Definition 2.7. Sei w ein Wort und A C alph(w). Wir definieren die beiden Morphismen § 4
und 74 auf alph(w) durch die universelle Eigenschaft. Fiir x € alph(w) setzen wir dazu

x ,fallsec g A
bala) = ’

e ,fallsze A

e ,fallsz g A
ma(r) =

x ,fallsz € A.

Fiir ein Teilwort w’ von w schreiben wir auch ¢, und m, anstatt dalph(w) UNd Taiph(wr)- Inbuitiv
16scht also § 4 alle Buchstaben aus w die in A enthalten sind, wobei w4 das Wort w auf die
Buchstaben in A projiziert.

Es gilt offensichtlich 0 4(w) = Taiph(w)\ a(w) und 74(w) = Jaiph(w) a(w). Zur besseren Lesbarkeit
werden jedoch beide Morphismen benutzt. Damit lasst sich bequem die Anzahl der Buchstaben
innerhalb eines Wortes definieren.

Definition 2.8. Sei w € ¥* ein Wort. Wir definieren |w| als die Lange von w. Auferdem
setzen wir |w|s = |7ms(w)| und insbesondere |wl|, = |w|(qy fiir einen Buchstaben a € Y. Die
Menge aller Buchstaben, die in w minimal vorkommen, nennen wir

minLetters(w) := {a € alph(w) | |w|s < |w|; V& € alph(w)} .

Wir betrachten ein Beispiel fiir den Begriff des Fixpunktwortes.

Beispiel 2.9. Sei der Morphismus f gegeben durch f(a) = ¢, f(b) = ¢ und f(¢) = w. Dann
ist f # id. Wir betrachten das Wort w = abacab. Es ist f(w) = w, also ist w ein Fixpunktwort.
Man sieht direkt, dass dies fiir alle Worter funktioniert, die einen Buchstaben ¢ besitzen
mit |w|. = 1. Das Wort w’ = abba ist kein Fixpunktwort, denn jeder Zeuge f’ miisste einen
Buchstaben 16schen. Dann wire w’ = f'(ab)?, aber w’ ist kein Quadrat.

Wir formulieren eine kombinatorische Aussage, die dquivalent zum Begriff des Fixpunktwortes
ist. Ein &hnlich formuliertes Resultat findet sich auch in [Hol2009].

Proposition 2.10. Sei w € X*. Genau dann ist w ein Fizpunktwort, wenn es eine Fak-
torisierung w = [ w; gibt, mit w; € {v1,..., v}, k < |alph(w)| und Buchstaben a; mit

Vj]a; = dij-

Beweis. Sei w € FW und f ein idempotenter Zeuge von w. Wir wahlen die Buchstaben a; als
die Elemente aus EyUC/ und setzen v; = f(a;). Dies liefert nach Korollar 2.6 eine Zerlegung der
gewiinschten Form. Sei nun eine Faktorisierung vorgegeben. Wir setzen umgekehrt f(a;) = v;
und f(b) =€ fir b ¢ {ai,...,ar}. Dann ist f ein Zeuge fir w. O



2 Grundlagen

Proposition 2.10 ist niitzlich um Beispiele effizient auf die Zugehorigkeit zu FW zu testen.
Man muss auf diese Weise keine Abbildung suchen, sondern nur eine geeignete Faktorisierung
finden.

Wir demonstieren dies an einem Beispiel.

Beispiel 2.11. Sei w = abacabdeedeeabacab. Das Wort hat die folgende Faktorisierung.

[Elalel el JdelE]dElE|elole]e]e]

Es ist also v1 = abacab und vy = dee. Die dazugehorigen Buchstaben sind a; = ¢ und ag = d.
Ein Zeuge f von w ergibt sich nun mit f(a1) = vi1, f(a2) = v2 und f(x) = ¢ fiir x € {a,b, e}.

Wir formulieren jetzt die Vermutung von Billaud aus [Bil1993]. Billaud formulierte diese als
Kontraposition von der folgenden Vermutung.

Vermutung 2.12 (Billaud). Sei w ein Wort und 6,(w) € FW fiir alle a € alph(w). Dann ist
auch w € FW.

Auf einem einelementigen Alphabet gibt es keine Fixpunktworter, da f(a) = a gelten miisste
und f somit die Identitét ist. Dies impliziert, dass ein Wort w, das die Voraussetzung fiir
Vermutung 2.12 erfiillt, mindestens drei verschiedene Buchstaben enthélt. Das Wort abcab
liefert dazu ein Beispiel mit genau drei verschiedenen Buchstaben.

Der Zeuge fiir 6,(w) wird oft f, genannt. Wir schreiben dann kurz fiir die Mengen Ey,, Mjy,
und Cy, auch E,, M, und C,.

Das folgende Lemma aus [LR2005] wird in Kapitel 3 genutzt. Es zeigt, dass sich minimale
Buchstaben unter bestimmten Voraussetzungen immer als erzeugend wéhlen lassen.

Lemma 2.13. Sei w € FW ein beliebiges Wort und a € minLetters(w). Sei f ein Zeuge von
w. Falls a € Ey UMy gilt, so kann man einen idempotenten Zeugen g wihlen mit |Ef| = |Eg|
und a € By.

Beweis. Wir nehmen nach Lemma 2.5 an, dass f idempotent ist. Sei
F={z€E;||f(x)la >0}

die Menge aller x € Ey, die a erzeugen. Falls a € F' gilt, so kénnen wir g = f wahlen.

Sei also ohne Einschrankungen a ¢ F. Wir kénnen die Anzahl aller a auf folgende Weise zéhlen:

wle = 3wl - £ (@)

zeF



Da |w|, minimal gewahlt wurde, muss F' = {e} gelten fiir ein e € alph(w). Aukerdem muss
|f(e)]a =1 und somit |w|, = |w|e gelten. Da a € My und f idempotent ist, gilt f(a) =e. Wir
ersetzen nun den Erzeugenden e durch a. Setze dafiir g(e) = ¢, g(a) = f(e) und g(z) = f(z)
fir & {e,a}. Es gilt damit Cy = Cy, E; = (Ef \ {e}) U{a} und My, = (My \ {a}) U {e}.
Es gilt ¢%(z) = f2(z) = f(z) = g(z) fiir v € {e,a}. Aukerdem gilt g?>(e) = ¢ = g(e) und
g*(a) = g(f(e)) = g(a). Damit ist g idempotent. Nach Korollar 2.6 gibt es eine Faktorisierung

Somit ist der Morphismus g nach Korollar 2.6 ein Zeuge von w. O

Unter gewissen Voraussetzungen lédsst sich aus den reduzierten Wortern d,(w) auch das Wort
w rekonstruieren. Dies wird sich insbesondere in Kapitel 4 als wichtig erweisen.

Lemma 2.14. Seien wq,...,w, Worter in X* und a,b, ¢ paarweise verschiedene Buchstaben.
Gilt 0q(w;) = dq(wj), dp(w;) = p(wj) und oc(w;) = dc(wj;) fiir alle 1 < 4,5 < n, so ist
W] =W = ... = Wp.

Beweis. Mit Induktion kann man sich auf den Fall n = 2 beschrénken. Da 6,(w1) = d4(w2)
und dp(w1) = §p(wa) gilt, ist |wy| = |wa|. Die Position der a’s und b’s lasst sich jedoch mit Hilfe
von d.(wq) = d.(w2) bestimmen. Also gilt wy = ws. O






3 Billauds Vermutung auf beschrankter
Buchstabenanzahl

3.1 Billauds Vermutung auf drei Buchstaben

1993 stellte Billaud die Vermutung 2.12 in [Bil1993] auf. Im gleichem Jahr 16ste Zimmermann
diese auf drei Buchstaben in [Zim1993]. Wir beweisen Vermutung 2.12 hier nochmals fiir drei
Buchstaben.

Lemma 3.1. Sei w ein Wort mit alph(w) = {a,b, c}. Erfillt w die Bedingung §,(w) € FW
fir alle z € alph(w), dann ist w ein Fixpunktwort.

Beweis. Seien Zeugen fq, f, fe gegeben fiir die Worter 6, (w), dp(w) und d.(w). Wir fithren eine
Fallunterscheidung nach der Anzahl der Vorkommen der Buchstaben durch. Dabei sei ohne
Einschrankung |w|, < |w]p < |w]e.

Fall 1: |w|q = |w|p = |w]e.

Sei nach Lemma 2.13 ohne Einschrinkung E, = {b}. Es ergibt sich f,(b) = bc oder fq(b) = cb.
Wir nehmen einmal an, dass f,(b) = be gilt. Es gilt somit d,(w) = (be)l®lb. AuRerdem
sei By = {a}. Es gilt entweder fy(a) = ac oder fy(a) = ca. Sei fy(a) = ac. Damit gilt
Sp(w) = (ac)!®le. Also ist vor jedem ¢ entweder ein a oder ein b. Durch Betrachten von d.(w),
wobei d.(w) = (ab)!¥le oder §.(w) = (ba)l*le ist, kann die relative Position der a’s zu den
b’s bestimmt werden. In jedem Fall gibt es eine Permutation o : {a,b,c} = {a,b,c} mit
w = (o(a)o(b)o(c))Wle. Dies zeigt mit Proposition 2.10, dass w € FW ist.

Fall 2: |wl|, < |w|p < |w]e.
Mit Lemma 2.13 erhalten wir Ey = E. = {a}. Gilt f,(c) # €, so ergibt sich
[wlo = |wle - | fale)p 2 [wle = |wlo

und man kann die Rollen von b und ¢ vertauschen. Sei also ohne Einschréankung fq(c) = €.
Seien 4, 5,1, k,m,p € N so gewéhlt, dass

So(w) = (blab?)wle

Ip(w) = (clack)|w|“

Sa(w) = (MbeP)vl



3 Billauds Vermutung auf beschrankter Buchstabenanzahl

gilt. Damit lasst sich w als

[wla

w = H (™bcP) LM bet 0 P (bl
r=1 = =B,
darstellen. Mit ||, = L und |8,| = k folgt g, = ¢, fiir alle r,7’ € {1,...,|wl|,}. Also ist

w = ((cmbcp)i_lcmbcqacp_q(cmbc”)j)|w|“ e FW
mit Proposition 2.10.
Fall 3: |w|, = |w|p < |w]e.

Mit Lemma 2.13 kénnen wir E, = {b} und E, = {a} annehmen. Sei f,(b) = c'bc/ und
fo(a) = cFacl. Wir nehmen ohne Einschrinkung E. = {a} an. Sei wegen |w|, = |w|; ohne
Einschréankung f.(a) = ab und ¢ < k. Dann gilt

w € {cbc —t cl}*

und Proposition 2.10 liefert, dass w € FW ist. ]

3.2 Billauds Vermutung auf vier Buchstaben

Die Beweisidee von Lemma 3.1 stellt eine Klassifikation aller Worter mit drei Buchstaben, welche
die Billaudvermutung erfiillen, dar. In den néchsten Lemmata versuchen wir diese Strategie
auch auf Worter mit vier Buchstaben anzuwenden. Wir beweisen zunéchst ein allgemeineres
Resultat, das dann in Korollar 3.4 auf einen Teilfall mit 4 Buchstaben angewendet wird.

Lemma 3.2. Sei w ein Wort mit {a,b,c,d} C alph(w). Erfillt w die Bedingung 0;(w) € FW
fiir alle x € {a,b,d} und es gibt Zeugen, so dass E, = {b,c}, M, = {d} = M,, Ey = {a,c},
E;={a,b} und My = {c} gilt, dann ist w ein Fizpunktwort.

Beweis. Seien f, Zeugen von §,(w) fir alle x € {a,b, ¢, d}. Sei nun

fa(b) = d* bd" falc) = ded® fa(d ): ,

fola) = d™ad®™ — fi(c) = d®cd™  fi(d) =
fa(a) = dac® fa(b) = b fale) =
Mit Korollar 2.6 ergibt sich dann, dass die reduzierten Wérter 6, (w) mit x € {a,b,d} in den

folgenden Mengen enthalten sind
da(w) € ({d"bd", a cd } U Ca)*
8y(w) € ({d‘“ad“?, dc3cd04} U C,,)*

0q(w) € ({clack, cibcj} U C’d)* .

10



3.2 Billauds Vermutung auf vier Buchstaben

Das Wort d4(w) gibt Aufschluss iiber die relative Positionierung von a, b und c. Die Faktoren
cbc? in 64(w) liefern Faktoren (d°cd®?)id’ bd® (d cd®?)’ in 6,(w) und die Faktoren clac in
8q(w) liefern Faktoren (dcd®?)** in 6,(w). Es ergibt sich somit

Salw) € ({(dcl cd®2)idPLbd2 (d° cde2 ), (dclch2)l+k} U Ca)*
und analog fiir §,(w) ergibt sich
Sy(w) € ({(dc?’cdc‘*)ld“lad” (d°edeF, (dc3cd04)l+k} U Cb)* .

Um Aussagen iiber die Exponenten ¢; zu bekommen betrachten wir §,;(w). Eine Darstellung
davon ergibt sich, indem man d,(w) bzw. §,(w) nochmals reduziert. Wir erhalten die folgende
Darstellung von d,4p(w)

Sap(w) € ({(dﬂcdcz)idbl d2 (doed®? ) | (d° ede? )”’f} U ca)*
A ({(asscass)den e @ ede ), (dsea )+ Cb)* .

Ohne Einschrankung kann man annehmen, dass m,,(w) mit a beginnt. Wir unterscheiden drei
Fille fiir Werte von [.
Foll 1: 1 =0.

Es gilt dann k& > 0, da a € E4 liegt. Betrachte ein Vorkommen von a in w. Dies liefert einen
Faktor der Form ad®c in w. Da dieser auch in 0p(w) vorkommen muss, gilt adPc = ad®dc.
Also ist der Faktor von a zum néchsten ¢ bei jedem Vorkommen von a derselbe. Falls k > 1 ist,
ergibt sich also

we ({(aed)d b (@ cd*), a(d ed)* b U C’a>* .
Falls k = 1 ist, ergibt sich
we ({(arca)'a bd (@ cd ), 4 aded* b U Ca)* .
In beiden Féllen sieht man wieder direkt mit Proposition 2.10, dass w € FW ist.

Fall 2: 1 =1.

Man kann ohne Einschriankung k£ > 0 annehmen. Der Fall k = 0 lasst sich symmetrisch zu
Fall 1 beweisen. Jedes Vorkommen von @ induziert also einen Faktor der Form cd®ad®c. Durch
Betrachten von &,(w) ergibt sich « = ¢4 + a3 und 8 = ag + ¢3. Die Umgebung von jedem a ist
also fest. Damit ergibt sich

w e <{(dc1 Cdcz)idln bdb2 (dcl cde? )j7 dCl edCAtal g e3taz qqc2 (dc1cdcz)k—1} U Ca)*

und somit w € FW.

11



3 Billauds Vermutung auf beschrankter Buchstabenanzahl

Fall 3: 1> 1.

Da mgp(w) mit a beginnt, folgt nach Betrachten von d,(w) und dy(w), dass d,(w) die Préfixe
(d°ed®?)t(dred®?)* und (d°cd®)!d® d®2 (d° cd®t)¥ hat. Es folgt, dass ¢; = c3 und cy = ¢y ist.
Falls k > 0 gilt, so muss a1 + a2 = 0 sein, was im Widerspruch zu a € Ej, steht. Also gilt k = 0.
Dieser Fall ist symmetrisch zu Fall 1. O

Um das néchste Korollar zu formulieren, definieren wir ein weiteres Attribut von Fixpunktwor-
tern.

Definition 3.3. Sei w € FW beliebiges Fixpunktwort. Wir setzen
minCardExp(w) = min {|Ey| ’ f Zeuge von w} .

Korollar 3.4. Sei w ein Wort mit |alph(w)| = 4. Erfillt w die Bedingung 6,(w) € FW und
minCardExp(d,(w)) = 2 fir alle x € alph(w), dann ist w ein Fizpunktwort.

Beweis. Seialph(w) = {a, b, ¢, d}. Ohne Einschréankung sei a so gewéhlt, dass a € minLetters(w)
ist. Wir wahlen ohne Einschrankung F, = {b,c}. Nach Lemma 2.13 koénnen wir a € E,, fiir
y # a annehmen. Falls d € E gilt, so ist |w|. > |w|q + |w|q > |w]q + |w]p + |w]c. Dies ergibt
einen Widerspruch. Damit ist £ = {a,c} und analog kénnen wir E, = {a, b} folgern. Ohne
Einschrankung kann man dann E; = {a, b} wéhlen. Die Aussage ergibt sich nun mit Lemma
3.2. O

In [LR2005] wurde fiir ein allgemeines Alphabet der Fall minCardExp(d,(w)) = 1 fiir alle
x € alph(w) bewiesen. Eine mogliche Strategie um Billauds Vermutung auf vier Buchstaben
zu zeigen, ist nun eine Fallunterscheidung nach der Anzahl der Buchstaben y zu fiihren,
so dass minCardExp(d,(w)) = 1 ist. Der Fall, dass es genau einen Buchstaben y gibt, mit
minCardExp(d,(w)) = 1, wird im folgenden Lemma behandelt.

Lemma 3.5. Sei w ein Wort mit |alph(w)| = 4. Falls §,(w) € FW mit Zeugen f, fir alle
x € alph(w) gilt und es einen Buchstaben y € alph(w) gibt mit |Ey| =1 und |E,| =2 fir alle
x # z € alph(w), dann ist w ein Fizpunktwort.

Beweis. Sei alph(w) = {a, b, c,d} und a € minLetters(w). Fiir x # a mit |E,| = 2 gilt wegen
lalph(d,(w))| = 3 bereits C,, = 0. Also ist a € M, U E,. Da a € minLetters(w) ist, wihlen wir
nach Lemma 2.13 einen Zeugen f,, so dass a € E, ist. Wir unterscheiden drei Fille. Ohne
Einschréankung gilt nach Lemma 2.13, dass entweder E, = {a} oder C, = {a} oder |E,| =1
und |wl|, < |wl, fiir x € {b, ¢, d} ist.

Fall 1: Cy = {a}.
Sei ohne Einschrankung Ej = {c} und M}, = {d}. Es gilt dann wieder mit Korollar 2.6

& (w) € {a, dicdj}*.
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3.2 Billauds Vermutung auf vier Buchstaben

Wir machen eine Fallunterscheidung nach den Erzeugenden aus E.. Weil nach Obigem a € E,
ist, sind dies die Félle b € E. oder d € E..

Fall 1.1: b € F..

Wegen 0p(w) € {a,dicdj}* ist |w|. < |w|g und da d € M, ist, erhalten wir
lwla = [wlo - [fe(b)]a + [wla - [fe(a)]a = |wlp + [wla > |wlp.

Wir betrachten d,(w).

Fall 1.1(i): d € E,.

Falls b € M, ist, so gilt |w|g < |w|q + |w|. < |w|p, was im Widerspruch zu |wl|, < |w|g steht.
Falls ¢ € M, gilt, so ist |w|q < |w|. und wir erhalten einen Widerspruch zu |w|, < |w|q. Somit
kann dieser Fall nicht auftreten.

Fall 1.1(i): E, = {b,c}.
Die Voraussetzung E, = {b, c} impliziert, dass
Ja(w) € {d%da’,dﬁcdﬁ’}*

ist. Wegen der Gestalt von d,(w) und §p(w) existieren Zahlen ki, ko € N mit i = 5+ k1 (a+ )
und j = 3’ + ko(a + o). Es folgt

So(w) € {(d%da’)kldﬁcdﬁ’ (dabda’)kz}*.

Man sieht nun leicht, dass

*

w e {a, (dbd® )1 dP cd® (do‘bda')’”}
ist und nach Proposition 2.10 das Wort w somit ein Fixpunktwort ist.

Fall 1.2: d € E..

In diesem Fall ist i
Se(w) € {bdldbd2,ba1aba2} .

Insbesondere folgt die Ungleichung |w|g < |w|p. Sei zunéchst i, 5 > 0. Es gilt dann
w e {bmabe, (b0 b=yt dbtctr b (5 b | p+g = dy + dQ}* .
Wir betrachten nun das Wort d4(w). Wenn b € Eq gilt, so ist ¢ € My und damit |w|, < |w|.. Da

&p(w) € {a,d'cd’}" ist, gilt allerdings auch |w|. < |w|s. Oben wurde aber bereits [w|q < |wlp
festgestellt, was einen Widerspruch darstellt. Somit muss E; = {a, ¢} gelten. Dann gilt

Sa(w) € {baaba’,bﬁcbﬂ’}*.
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3 Billauds Vermutung auf beschrankter Buchstabenanzahl

Durch 8 und f’ sind die Zahlen p und ¢ eindeutig bestimmt. Mit Proposition 2.10 folgt, dass
w € FW ist. Die Félle « = 0 und 5 = 0 lassen sich &hnlich beweisen.

Fall 2: E, = {b} und |w|, < |w|, fiir x € {b, ¢, d}.
Im Folgenden machen wir eine Fallunterscheidung nach F..
Fall 2.1: E. = {a,d}.

Es folgt direkt, dass |w|, = |wl|q - |fe(a)le + |wlq - |fe(d)|c ist und damit insbesondere die
Ungleichung |w|, > |wl|g erfiillt ist. Es gibt drei Moglichkeiten dafiir, welche sterblichen
Buchstaben fiir d,(w) in Frage kommen.

Fall 2.1(i): Cyq = {c} und M, = {d}.
Es folgt

[wlg = [wlo - [fa(b)la = |wls,
so dass wir einen Widerspruch zu |wl|, > |w|q erhalten.
Fall 2.1(i): My = {c,d}.
Es gilt dann |w|q > |w]p, im Widerspruch zu |wl, > |w|q.
Fall 2.1(iii): Cq = {d} und M, = {c}.

Sei
Sa(w) € {c'be, d}*
und

Je(w) € {b”abm,b"‘dbl }

Da d € C, ist, liefert jeder Faktor b¥db! aus d.(w) einen Faktor (c'be/)kd(cibe?)! in w. Sei
n > 0 und m > 0. Dann liefern Faktoren der Form b"ab™ aus d.(w) einen Faktor der Form
(b )" LetbePacibe? (cbe? )™~ in w. Es gilt also

w e {(Cibcj)kd(cibcj)l, (b)) LetbeP actbe? (¢the? )™t ‘ p+q=1i-+ j}* .

Zu zeigen ist nun, dass p und ¢ in jedem Vorkommen gleich sind, denn dann ist w € FW. Falls
E; ={a,c} gilt, so ist |w|. < |w|p und wegen M, = {c} gilt damit, dass |w|. = |w|p ist. Ohne
Einschrankung gilt also, dass ¢ = 0 und j = 1 ist. Dann muss p = 1 und ¢ = 0 gelten und
somit ist w € FW. Sei Fy = {a, b} und deshalb gilt fy(a) = c¢®ac® und fy(b) = c**bc’?. Damit
erhalten wir, dass p = ba + a1 und ¢ = b1 + a9 ist. Mit Proposition 2.10 folgt, dass w € FW ist.
Die Falle n = 0 und m = 0 lassen sich dhnlich zeigen.

Fall 2.2: E. = {a,b}.
Sei f.(a) = d* ad® und f.(b) = d'bd’. Wir unterscheiden fiir C, drei Fille.

14



3.2 Billauds Vermutung auf vier Buchstaben

Fall 2.2(i): Co = {d}, M, = {c}.
Es gilt dann f,(b) = ¢*bc! und
0q(w) € {ckbcl,d}*.

Wegen f.(b) = d'bd’ erhalten wir

Jo(w) € {dickbcldj,d}*.
Aus der Betrachtung von d,4.(w) folgt

ba(w) € {d'chbcld, d“ld”}* .

Wegen der Gestalt von 6.(w) hat ein Faktor d’c*bcld’ aus d,(w) kein a im Urbild w. Es folgt

we {dickbcldj Y qd® }
und damit w € FW nach Proposition 2.10.
Fall 2.2(i1): Co = {c}, M, = {d}.

Falls E4 = {a, b} gilt, so kann man dies analog zu Fall 2.2(i) beweisen. Falls E; = {a, ¢} gilt,
so ist |w|, > |wlp. Dies ist nicht moglich, da nach Annahme |w|, < |w|p gilt.

Fall 2.2(ii3): M, = {c,d}.
Sei f,(b) = ubv. Es gilt
Sac(w) € {O:(u)bde(v)} N {d*d*, d'bd’}" .

Daraus folgt, dass zu jedem b mindestens ein a gehort, da die Anzahl der d’s in wv immer
gleich ist und deshalb grofer als i + j sein muss. Es gilt also |w|, > |w]p, ein Widerspruch zu
wla < |wlp.

Fall 3: Ey, = {a}.

Sei fp(a) = wav. Ohne Einschrankung nehmen wir an, dass d € M, gilt. Wir unterscheiden die
beiden Fille E, = {a,b} und E, = {a,d}.

Fall 3.1: E. = {a,b}.
Sei fo(a) = dad’ und f.(b) = d*bd!, also

Se(w) € {diadf',d’fbd’}*.

Durch das Betrachten von d,(w) folgt |ulg =i+ (k + 1)z und |v|g = j + (k + )22 fiir Zahlen
z1, 22 € N. Dies liefert fiir d.(w) die Form

e(w) € { (dhbd') d'ad? (dhbd')2
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3 Billauds Vermutung auf beschrankter Buchstabenanzahl

Fiir Cp = {c} ergibt sich
w e {(dkbdl)zldiadj(dkbdl)'z?,c} .

Wir konnen also C, = () annehmen. In diesem Fall gilt

op(w) € {uav}*.
Wir fiithren eine Fallunterscheidung nach E; durch.
Fall 3.1(i): Eq = {a,b}.

Sei .
dq(w) € {c“lac”,cblbch} .

Durch Betrachten von é.(w) ergibt sich dann
da(w) € {(cblbcl”)”(calacaz)(cblbch)Zz}* .
Nach Lemma 2.14 existieren dann Worter 4, € {b, ¢, d}* mit
w € {aav}*.
Es folgt mit Proposition 2.10, dass w ein Fixpunktwort ist.
Fall 3.1(ii): Eg = {a,c}.

Sei
da(w) € {b™ ab®, b b }*.

Aufgrund der Gestalt von d,(w) folgt
ba(w) € { (B bl (4 abe2) (b1 )P L
Nach Lemma 2.14 gibt es dann wieder Wérter @, 0 € {b, ¢, d}* so, dass
w € {aav}”
ist und wir erhalten w € FW.
Fall 3.2: E. = {a,d}.
Sei f.(a) = blab’/ und f.(d) = b*db'. Es folgt

Se(w) € {biaw,bkdb’}*
und das Betrachten von d,(w) liefert sogar

bo(w) € { (b ltiab (bkdb’)‘”‘d}*.
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3.2 Billauds Vermutung auf vier Buchstaben

Eine Fallunterscheidung nach E; schlieftt den Beweis ab.
Fall 3.2(i): Eq = {a,b}.

Sei .
dq(w) € {c“lac@,cblbch} .

Ist C, = {c}, also
I (w) € {uav, c}”

so sieht man leicht, dass
w € {cMuavc®, b} C {uav, ¢, b}*
ist. Damit ist in diesem Fall w € FW.

Ist Cp = 0, so ergibt sich
p(w) € {uav}™.

Definiere o = ‘z‘lszl und = |Z|16J:b22. Die Gesalt von d,(w) liefert die folgende Formel:

da(w) € {(cblbch)o‘calaca?(cblbch)ﬁ}* .
Nach Lemma 2.14 existieren Worter u, 0 € {b, c,d}* so, dass
w € {uav}”
ist und wir folgern w € FW.
Fall 3.2(ii): E; = {a,c}.
Sei fa(a) = b"ab® und fi(c) = b cb®. Es ergibt sich also
da(w) € {b™ab, b cb™}* .

Ist Cp = 0, so ist
baw) € { (b7 eb)let ab (o b2l |
und wie bereits oben mehrmals benutzt, erhalten wir mit Lemma 2.14 die Aussage w € FW.

— O Q : _ ulg(k+)+i—ax _ vla(k+D)+i—az . .
Ist C, = {c}, so setzen wir a = S T, und f = =S 2. Dann ist a + 3 die Anzahl

der ¢’s, die pro Faktor aus 0.(w) geloscht wurden. Es ergibt sich damit
(w) € {cauavcﬂ}

und wir konnen den Fall C, = {b} auf den Fall Cj, = () reduzieren. O
Um die Billaudsche Vermutung 2.12 auf vier Buchstaben zu beweisen, fehlen also noch
zwei Falle. Dies sind die Falle, dass es genau zwei bzw. genau drei Buchstaben gy gibt, mit

minCardExp(d,(w)) = 1. Diese Félle lassen sich vermutlich dhnlich zu obigem Lemma bewei-
se1m.
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4 Maximale Erzeugende

In diesem Kapitel betrachten wir die folgende Vermutung, die eine Abschwéchung der Billaud-
schen Vermutung 2.12 ist. Dabei nehmen wir an, dass die Zeugen der reduzierten Worter eine
bestimmte Form haben. Wir teilen das Alphabet in zwei disjunkte Teile ¥ und ¥’ auf. Die
Elemente aus X stellen wir uns als die Erzeugenden vor, die Elemente aus Y’ als sterbliche
Buchstaben.

Vermutung 4.1. Sei alph(w) = XUY und |X'| > 2. Ist 6,(w) € FW fiir alle x € alph(w) und
gibt es Zeugen fo fir 64(w) so, dass E,UC, = X fiir alle a € X' gilt, so ist w ein Fizpunktwort.

Die Elemente aus ¥ sind dabei in gewisser Weise maximal, da sie den Tréger von f, fiir alle
Elemente a € ¥’ bilden. Folgender Spezialfall dieser Vermutung lasst sich leicht beweisen.

Lemma 4.2. Sei alph(w) = X UY mit ¥ = {y}. Ist 6,(w) € FW fiir alle x € alph(w) und
gibt es Zeugen fo fir 64(w) so, dass E, =X und Co = 0 fir alle a € 3 gilt, so ist w € FW.

Beweis. Nach Lemma 3.1 kénnen wir annehmen, dass |alph(w)| > 4 und somit |¥'| > 3 ist. Sei
fa(y) = aqyB, fiir a € 3. Die Worter ag, 8, liefern die relative Position aller Buchstaben in
Y. Damit lassen sich nach Lemma 2.14 eindeutige Worter a, 8 konstruieren mit d,(a) = aq
und 0,(8) = f, fir alle a € ¥'. Also gilt w € {ayf}* mit |af|, = 0. Es folgt w € FW. O

Je nach Anzahl der sterblichen Buchstaben aus ¥’ gibt es verschiedene Beweisansitze fir
Vermutung 4.1. Wir unterscheiden die beiden Fille [¥'| = 2 und |¥'| > 3.

4.1 Maximale Erzeugende mit |>'| = 2

Folgendes Lemma wird mehrmals in Lemma 4.4 benutzt werden.

Lemma 4.3. Sei alph(w) = YUY, Seil, die Linge eines Kontextes links von einem Buchstaben
x € ¥ und ry die Linge eines Kontextes rechts von x € 3. Das heifit fir jeden Faktor xay mit
z,y € X, € X gilt |a| = 1y + 1y und fir das Prific ax (Suffic xoo) von w mit x € ¥, a0 € X
gilt o] =1y (o] =rg). Istl, + 1, > 0 fiir ein z € ¥ und §,(w) € v* mit |y, =1 fir 2 € 2,
so ist w € FW ein Fizpunktwort.
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4 Maximale Erzeugende

Beweis. Anhand der Informationen tiber den Kontext der Buchstaben aus X konstruieren wir
eine Darstellung des Wortes w. Sei d,(w) =~"™ und v = «ap Hi:l zio; mit z; € ¥ und o € Y.
Wir konstruieren w = 4™ mit 4 = &g Hé:o x;0;. Dazu setzen wir

Qg falls |ap| = Iy

a0, 1]z 17 (ao[ni—1,n:)2) aof|ao] — oy — 72, |ao]]  sonst
mlt n; = lz + Z(lz + rz) uIld S = 4‘a0|_(llzz:_::+l$1)
von Index ¢ bis Index j. Analog lassen sich die &; konstruieren. Die Zuordnung ist aufgrund
der Voraussetzung [, + 7. > 0 eindeutig und es gilt |a;| = |Qi|aiph(w)\{z}- Somit erhalten wir
w = 4" mit |§|,, = 1 und mit Proposition 2.10 folgt w € FW. O

. Dabei bezeichnet ay[i, j] das Teilwort von «yg

Lemma 4.4. Sei w ein Wort und alph(w) = X U{a,b} mit |alph(w)| = 5. Ist 6,(w) € FW fiir
alle x € alph(w) und gibt es Zeugen fo, fo fir d,(w) und dp(w) so, dass Eq = 3 = Ej, gilt, so
ist w € FW ein Fizpunktwort.

Beweis. Sei f,(x) = blrxb* und fy(z) = al*za’> fir € ¥. Wegen 2 € E, und x € Ej, ist
iz + kg > 0und j, + [, > 0 flir x € . Die zu x gehorigen a’s und b’s nennen wir den Kontext
von z. Der Kontext von x muss nicht fiir jedes x derselbe Faktor in w sein. Wir fixieren ein
x € X und betrachten die verschiedenen Fille die fiir E,,C, und M, auftreten kénnen. Wir
wahlen dabei x so, dass a & M, oder b & M, gilt. Wenn dies nicht méglich ist, so tritt Fall 2
der folgenden Fallunterscheidung auf.

Fall 1: a,b e C,.

Man kann f|aiph(w)\{z} = fz und f(x) = = wihlen. Dies ist ein Zeuge fiir w, da jedes Vorkommen
von x neben einem Vorkommen eines a’s oder b’s steht. Also kann man = konstant wahlen.

Fall 2: a,b€ My Va' € 3.

Sei alph(w) = {a,b, x,y, z} das Alphabet von w. Da die Langen der Kontexte von Buchstaben
aus X durch die Worter d,(w) und d5(w) bekannt sind, reicht es zu zeigen, dass diese Kontexte
bei jedem Vorkommen dieselben sind. Seien ndmlich «, und 3, der linke und rechte Kontext
von x € ¥, so kann man einen Zeugen f konstruieren. Setze dazu f(a) = f(b) = € und

f(x) = O‘xxﬁam

Wir betrachten den Trager von f, mit x € 3. Gibt es einen Buchstaben aus X, der nicht in F,
ist, so muss dieser nach Lemma 4.3 ohne Einschréinkung in C, sein. Ist dieser ndmlich in M,
so lasst sich w € FW mit Hilfe von Lemma 4.3 beweisen.

Haben wir den Fall y € E, und z € C,, so sind die Kontexte von y und z fest. Also kann
dieser Fall hochstens einmal auftreten, sonst sind die Kontexte aller Buchstaben aus X fest. Es
bleiben also ohne Einschrankung die folgenden beiden Félle.

Fall 2.1: y€ B,z € Cp, x,y € B, und o, 2 € By,
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4.1 Maximale Erzeugende mit |¥'| = 2

Auf Grund des Zeugens f, von d,(w) gehoren alle Buchstaben aus ¥/ bereits zu y. Also hat es
zu jedem Vorkommen von y dieselbe Anzahl an a’s und b’s vor und hinter diesem y. Betrachtet
man nun das Wort d,(w), so sieht man, dass die Buchstaben aus ¥’ von = und y erzeugt werden.
Mit Obigem folgt, dass 7, ,(w) € {z'yx’}* fiir zwei Zahlen 7, j € N ist. Es gilt

o-(w) € {(£-(@) L) (L)}
Die Voraussetzungen von Lemma 4.3 sind somit erfiillt und es folgt w € FW.
Fall 2.2: y,z € By, x,y € £, und z,2 € E,.

Ohne Einschréankung nehmen wir an, dass 7x(w) mit y beginnt. Sei f.(y) = oy 2yBy.. fiir
z,y € ¥. Da my,(w) mit y beginnt, entspricht die Lénge von a, , der Lange des linken Teiles
vom Kontext von y, d.h. es gilt |ay »| = iy + j,. Wir fithren eine Fallunterscheidung nach |3, .|
durch.

Fall 2.2(i): |By x| = ky + 1.

In diesem Fall sind die Kontexte von = komplett von f,(z) aufgenommen worden. Ein Vergleich
der Léngen, analog zum Beweis von Lemma 4.3, zeigt die Positionen der x innerhalb von f,(z).
Es lésst sich somit ein Zeuge f konstruieren, mit a,b,x € My und z,z € Ey. Es folgt, dass
w € FW ein Fixpunktwort ist.

Fall 2.2(ii): Byl > ky + 1.

Da y ein Préfix von 7y (w) ist, muss |oy .| = iy + jy sein. Also ist der Kontext von y in
diesem Fall fest. Wir fithren eine Fallunterscheidung nach den Suffixen von 7s;(w) durch. Da

|/8yvx

sein. Wie in Fall 2.2(i) lasst sich aus den Langen von f,, und a., die Positionen der x

> ky + 1, ist, kann y kein Suffix von 7y (w) sein. Ist z ein Suffix, so muss |B, .| = k. + 1.

feststellen und wir folgern, dass w € FW ein Fixpunktwort ist. Also ist ohne Einschrankung z
ein Suffix von 75;(w). Wir betrachten nun das Wort §,(w) und machen eine Fallunterscheidung
nach den Préfixen von 7y (w). Wir wissen bereits, dass y ein Préfix von ms(w) ist.

Falls es ein Prifix der Form y*z gibt, so ist der Kontext von x fest, denn es gilt |8y | = ky + Iy
und |agy| > iz + ju. Der Kontext von z ist aber auch fest, denn es gilt immer |a, | > i, + j..
Falls |5, 4] < k; + [, ist, so wird immer derselbe Kontext von ¢y, aufgenommen und der
Kontext von z ist fest. Ist |3, 4] > k, + [, so folgt direkt, dass der Kontext von z fest ist. In
beiden Fiéllen kann man also w € FW folgern.

Gibt es ein Prifix der Form y*z, so gilt |a | > i, + j, und |Bgy| = ks + l;. Analog zu oben
kann man wieder folgern, dass die Kontexte der Buchstaben aus ¥ alle fest sind und wir, dass
w € FW ein Fixpunktwort ist.

Fall 2.2(iii): |By.a| < ky + 1.
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4 Maximale Erzeugende

Da y ein Teil seines Kontextes fehlt, muss dieser immer von o , kommen. Der Kontext von y
ist somit fest. Nach Obigem gilt |, »| = 7, + j, und z kann somit rechts keinen Kontext von y
bekommen. Dies impliziert |5, .| > k, + 1., so dass der Kontext von z fest ist.

Wir betrachten nun d,(w). Analog ergeben sich auch hier die drei Félle abhéngig von der
Lénge |3y .|. Der Fall |5, .| = ky + [, 1asst sich analog zu oben lésen. Im Fall |5, .| < k, + 1,
ergibt sich, dass x fest ist. Damit ist in diesem Fall w € FW ein Fixpunktwort. Sei also ohne
Einschrénkung |8y, .| > ky + . Wie oben in Fall 2.2(ii) ergibt sich dann, dass z ein Suffix von
w sein muss. Damit gilt |3, ;| = k. + [, und z kann seinen Kontext in d,(w) nicht verdndern.
Durch Betrachten der Lénge von a , findet man Zahlen k,! € N mit mx(w) € {ymkz,xlz}*.
Man beachte, dass hierbei [ > k gilt. Es folgt insbesondere, dass der Kontext von y grofer als
der Kontext von z ist. Konkret gilt |8, .| > |0z 205 2]

Wir betrachten nun &, (w). Nehmen wir zunéichst £ > 0 an. Da ya*z ein Prifix von s (w)

2 in 7s(w)

ist, muss z den Kontext von y aufnehmen. Da es einen Faktor der Form yz*zz
geben muss, nimmt x einen Teil des Kontextes von z auf. Dies ist ein Widerspruch dazu, dass
z ein Suffix von 7y (w) ist. Damit gilt & = 0. Also ist yz ein Prifix von ny(w) und z nimmt
den Kontext von y auf. Somit muss |oy, .| = 0, |ag 2| = 0, |8y 2| = |Bz,2] und I = 1 gelten.
Insbesondere besitzt z links einen leeren Kontext. Durch Betrachten von §,(w) sieht man,
dass der Kontext von x nach rechts fest ist. Also ist der Kontext von x fest und es folgt, dass

w € FW ein Fixpunktwort ist.

Fall 8: a € M,,b € C,.

Wir untersuchen diesen Fall mit einer Fallunterscheidung nach FE,.
Fall 3.1: y ¢ E,.

Wir erkennen zunéchst, dass z nur die a’s des Kontextes eines Buchstabens aus ¥ aufnehmen
kann, denn die zu z gehorigen b’s trennen auf einer Seite ab.

Fall 8.1(1): y € M.

Der Buchstabe z kann nur die a’s eines Buchstabens aufnehmen. Da z wegen y € M, immer
die a’s von y aufnehmen muss, werden die a’s aus dem Kontext von x nicht erzeugt. Damit
kann es diesen Fall nicht geben.

Fall 3.1(i1): y € C;.

Seien ohne Einschriankung die b’s, die zum Kontext von z gehéren, links von z. Ein Vorkommen
von z in d,(w) hat dann eine Umgebung der Form b*a’za’. Dabei muss i = j, und j — I, =
Jo+1le = jy+1, sein. Nach jedem z kommt also genau ein x oder y und es gilt s (w) € {zz, zy}*.
Da die b’s von = bzw. y rechts von allen a’s aus dem Kontext sind, ist der Kontext dieser
Buchstaben fest. Wir konstruieren einen Zeugen f fiir w. Setze dazu f(a) = f(b) = f(z) = ¢,
f(z) = b=a?= zal=FIebiegal=bF= und f(y) = b a’? zal*TIvbivybkv. Man beachte dabei, dass die
Voraussetzungen implizieren, dass entweder i, = 0 oder [, = 0 ist.
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4.1 Maximale Erzeugende mit |¥'| = 2

Fall 3.2: z ¢ E,.
Dieser Fall lasst sich analog zu Fall 3.1 beweisen.
Fall 3.3: y,z € E,.

Ohne Einschrankung betrachten wir den Fall, dass yx ein Faktor von 7s;(w) ist und y einen
Teil des Kontextes von x aufnimmt.

Fall 3.3(i): y nimmt nicht den gesamten Kontext von x auf.

Fin y kann nicht den Rest des Kontextes aufnehmen, da ein b rechts von y abtrennt. Dann
muss z den Rest des Kontextes von z aufnehmen. Also gibt es einen Faktor der Form
bTa*ya*a*bta*a*za*bt in §,(w). Es folgt dann leicht, dass mx(w) € {yzz}* ist. Je nach
Position von x kann man dann einen Zeugen f fiir w konstruieren mit x € My oder x € CYy.

Fall 3.3(ii): y nimmt den gesamten Kontext von x auf.

Ahnlich wie in Fall 3.1(ii) konstruieren wir einen Zeugen f von w. Wir setzen f(z) = f(a) =
f(b) = e und f(y) = bvalvyalvtizbi=zal=bF=. Dabei gilt wieder i, = 0 oder I, = 0.

Falls z seinen Kontext nicht erweitert, also |f;(2)|a = |fo(2)|a gilt, so kann man f(z) =
bi=al* zal*b** setzen. Erweitert z seinen Kontext, so muss er die a’s eines  aufnehmen. Wir
konnen analog zu f(y) von oben, den Wert von f(z) konstruieren.

In allen Fillen ist f ein Zeuge von w und somit w ein Fixpunktwort.
Fall /: a € E,.

Wir fithren eine Fallunterscheidung nach dem Alphabet des Wortes f;(a), also nach jenen
Buchstaben, die von a erzeugt werden.

Fall 4.1: Es gibt ein y € ¥ mit y € alph(fz(a)).

Dann gilt
[w| > [wla - | fa(a)laph( . @)\ o3 + [w0]e + [w]e 2 |wla - 2+ [w]s + [w]a.

Durch Subtraktion von |w|, und |w|y folgt dann ) s |w|. > |w|q + |w].. Wegen |f(2)]a > 0
gehort zu jedem Buchstaben z € 3 mindestens ein a und somit gilt

Z [, < |wlg.
2€%
Daraus erhalten wir |w|, = 0, was ein Widerspruch ist.
Fall 4.2: alph(fz(a)) = {a,b}.

Sei fz(a) = blab’. Wir nehmen an, dass kein Zeuge f direkt aus f, konstruierbar ist. Also gibt es
ohne Einschrankung einen Faktor der Form b*' zb*2ab’ mit i1 4142 = i in w. Betrachtet man einen
beliebigen Faktor yz aus ms (51 (w) in d,(w), so hat dieser die Form (b'ab?)*y(b'ab’)*z(b'ab?)*.
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4 Maximale Erzeugende

Ohne Einschrdnkung kann man dann den Zeugen f, so wéahlen, dass y,z € C, ist. Wir
betrachten nun d,(w) fiir ein  # y € . Nach obigen Betrachtungen in Fall 1 und Fall 3
miissen noch die Félle e € £, und b € M,, b € Ey, und a € M, oder a € M, und b € M,
untersucht werden.

Gilt b € £, und a € M, so sind a und b dquivalent. Diese Situation wird noch in Lemma 5.7
untersucht und es wird in diesem Fall w € FW bewiesen.

Sei a € Ey,b € M. Es folgt wieder fy(a) = blab’ und wir kénnen den Morphismus f mit
f(a) =bab’, f(b) = ¢ und f(z) = z fiir alle z € ¥ als Zeugen wihlen.

Wir kénnen somit annehmen, dass a,b € M, gilt. Wir fiihren eine Fallunterscheidung fiir die
Buchstaben z,y durch.

Fall 4.2(1): x € M, oder z € M,.
Die Voraussetzungen von Lemma 4.3 sind in diesem Fall erfiillt. Es ergibt sich damit w € FW.
Fall 4.2(ii): x € Cy.

Aufgrund der Existenz eines Faktors der Form b zb2ab’ in w, gibt es einen Faktor der Form
fy(2)z fy(2) in 6,(w). Betrachten wir 7, (w), so sieht man damit, dass z weder Préfix noch
Suffix sein kann. Wére z beispielsweise ein Suffix von 7, (w), so gibt es i;-viele Vorkommen
von b’s auf der rechten Seite zu viel, die zu keinem Kontext gehdren. Dies kann wegen d,(w)
nicht sein. Dann muss jedoch zz ein Préfix und zz ein Suffix von 7. (w) sein. Das erste bzw.
letzte x haben dann aber links bzw. rechts kein z, das ihnen ihren Kontext liefert. Daraus
wiirde | fo(z)| = | fo(x)| = 1 folgen, also wiirde = keinen Kontext besitzen. Ein Widerspruch zur
Voraussetzung = € E, bzw. x € E},.

Fall 4.2(iii): z € C,,.

Der Kontext von z ist dann durch f,(x) festgelegt. Der Kontext von y ist auch festgelegt, da
der linke bzw. rechte Teil des Kontextes von g ein Priiffix bzw. Suffix von (b'ab?)/s()le der
entsprechenden Lénge ist. Analog ist der Kontext von z fest. Es ldsst sich dann daraus ein
Zeuge f konstruieren mit a,b € My und z,y,2 € Ey. Sei dazu «; der linke und f3; der rechte
Kontext von ¢ € {x,y,z}. Man setze dann f(i) = «;if3; und f(a) = f(b) = . Es ergibt sich
f(w) = w nach Konstruktion.

Fall 4.2(i): x,z € Ey.

Wir betrachten m,,(w). Fiir den Fall, dass m,,(w) mit demselben Buchstaben anfingt und
aufhort, sieht man leicht, dass ab’ ein Suffix von mu(fy(z)) und ba ein Prifix von map(fy(x))
ist. Ist = Suffix und 2 Priifix (z Prifix und z Suffix geht analog), von ., (w), so ist b'a ein
Priifix von ma(fy(2)) und ab’ ein Suffix von map(fy(z)). Ist ab’ kein Suffix von ma(fy(2)), so
darf bia auch kein Priifix von ma(f,(2)) sein und es gilt 7s(w) € {zy'x} fiir ein festes [ € N.
Ein Zeuge f fiir w ldsst sich leicht konstruieren. Wir nehmen daher an, dass ab’ ein Suffix
von ma(fy(x)) und bla ein Priifix von map(fy (7)) ist. Also ist b xb2ab’ ein Faktor von f, ().

24



4.2 Maximale Erzeugende mit |X'| > 3

Damit ist der Kontext von jedem x gleich. Wie oben in Fall 4.2(iii) ldsst sich ein Zeuge f fiir w
konstruieren mit a,b € My und z,y,2 € Ey. ]

Bemerkung 4.5. Der Beweis von Lemma 4.4 lasst sich fiir vier Buchstaben verallgemeinern.
Es gilt dann ¥ = {z,y} und ¥/ = {a,b}. Fall 1 aus Lemma 4.4 lasst sich analog beweisen. Die
Félle 2 und 4 lassen sich direkt mit Lemma 4.3 beweisen.

Man muss also nur den Fall 3 mit a € M, und b € C, untersuchen. Sei also 6, (w) € {a’ya’, b}*.
Da jedes y in seinem Kontext mindestens ein b hat, ist ohne Einschrinkungen b*a’y ein Prifix
von w und es gilt §,(w) € {b*a’ya?,b}*. D.h. der Kontext von x liegt innerhalb des a’ Blocks.
Da jedes = in seinem Kontext mindestens ein b hat, gibt es nur ein  im Block. Es gilt somit
w € {bFalya'valz ral=bk=}* und damit ist w € FW ein Fixpunktwort.

4.2 Maximale Erzeugende mit [>'| > 3

Wir untersuchen nun Vermutung 4.1 mit |X/| > 3. Sei fiir diesen Abschnitt das Wort w so
gewdhlt, dass w die Bedingungen aus Vermutung 4.1 erfiillt mit |¥'| > 3. Wir setzen die Zeugen
fa auf fo(z) = By ox7V2,q und zeigen zunéchst, dass die sterblichen Buchstaben zwischen zwei
Erzeugenden aus ¥ immer gleich auftauchen.

Lemma 4.6. Seizy ein Faktor in ms,(w) und seien xaqy, . .., xayy Faktoren in w mit o; € X'*.
Dann sind alle o identisch, d. h. a1 = ... = ay,.

Beweis. Da |X'| > 3 ist, existieren paarweise verschiedene Buchstaben a, b, ¢ € ¥'. Betrachten
wir d4(w), so gibt es einen Zeugen f,. Es gilt f,(x) = By 027z, fiir x € £. Wir erhalten also
0a(ti) = Ya,aBy,q fir alle i. Die Vorraussetzungen aus Lemma 2.14 sind somit erfiillt und es
gilt o1 = ... = ay. O

Im Gegensatz zum Fall [¥'| = 2 sind hier die Faktoren fest. Das Problem ist nun, dass
die Kontextlinge von Buchstaben aus ¥ nicht bekannt ist. Wir werden im Folgenden die
Kontextlénge bestimmen. Zunéchst stellen wir die Relation der Buchstaben aus ¥ in einem
Graphen dar.

Definition 4.7. Wir definieren einen Graph Gy, = (V, E) mit V = YUY, wobei ¥ = {& | z € ¥}
eine disjunkte Kopie ist, und F = {(z,9) | zy ist ein Faktor von my(w)}. Aukerdem definieren
wir eine totale Quasiordnung a <, b fiir a,b € X',z € ¥ falls 0p(7z,q) ein Préfix von dq(7vzp) ist.
Analog definieren wir a ,< b fiir die linke Seite mit Hilfe von 3, ,.

Wir kénnen damit folgendes Lemma beweisen.

Lemma 4.8. Sind x,2’ € ¥ C V in derselben Zusammenhangskomponente aus G, so folgt
aus a <, b auch a <, b.
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4 Maximale Erzeugende

Beweis. Wir beschranken uns auf den Fall, dass es ein y € X gibt mit (z,7), (2/,9) € E. Sei
xzay ein Faktor in w. Da 0,(a) = Vz,a8y,a und 8p() = 74,58y ist, impliziert a <, b in direkter
Weise a , < b. Analog impliziert dies dann a <,/ b. [

Auf gleiche Weise kann man Lemma 4.8 auch fiir 4,9 € V und a y< b beweisen.

Im Fall |¥'| > 5 geben wir nun einen konstruktiven Beweis an, dass w € FW gilt. Wir zeigen
dazu, dass es Worter g, v, gibt, so dass 834 = da(Uz), Ye,e = 0a(vz) und a = vyu, gelten,
wobel zay mit a € ¥ der eindeutige Faktor zwischen x und y ist. Damit ergibt sich dann ein
Zeuge f fir w mit f(x) = uzzv,.

Proposition 4.9. Vermutung 4.1 gilt fir |X'| > 5.

Beweis. Seien a,b,c,d,e € ¥/ und sei z € Y. Betrachte ein y € ¥ mit (z,§) € E. Wir
konstruieren nun v,. Gibt es kein y € ¥ mit (z,9) € E, so liegt x am Rand von w und wir
setzen v, so, dass v, € X* ist und zv, ein Suffix von w ist. Sei also zay mit o € ¥* ein Faktor
von w. Seien a; <, o die maximalen Prifixe, so dass 6;(c;) = vz, gilt mit i € {a,b, ¢, d, e}. Wir
wahlen die Buchstaben a, b, ¢, d, e ohne Einschrankung so, dass aq <p ap <pp e <pp g <pp e st
Wir zeigen nun, dass a, unabhéngig von y ist. Sei also (z,7’) € FE ein weiteres Paar. Konstruiere
analog o fiir y'. Es gilt nun aber §;(a.) = d;(a) fiir i € {c,d,e}. Nach Lemma 2.14 ist damit
a. = o, Wir setzen v, = a. Symmetrisch lisst sich uy berechnen, indem man minimale Suffixe
wahlt. Lemma 4.8 stellt sicher, dass diese Wahl innerhalb der Zusammenhangskomponente
giiltig ist. Fiir jede Zusammenhangskomponente Z kann man nun unabhéngig u, und v,
ausrechnen fiir z € Z. Wir setzen damit f(z) = uzav, fir x € ¥ und f(n) =€ fir n € X', Es
gilt f(w) = w nach Konstruktion und damit w € FW. O

Bemerkung 4.10. In Proposition 4.9 wurde nur die Information d,(w) € FW mit a € ¥/
benutzt. Proposition 4.9 gilt also auch ohne die Voraussetzung 0,(w) € FW fir z € X.

Dabei kann man auf die Voraussetzung |X'| > 5 ohne weiteres nicht verzichten. Die drei
reduzierten Worter d,(w), die fiir den Beweis von Lemma 2.14 vorausgesetzt werden mussten,
sind bereits minimal. Diese werden jedoch in beide Richtungen, eimal fiir «, und einmal fiir v,,
benotigt.
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5 Beispiele

Um ein besseres Versténdnis fiir die Menge der Worter zu entwickeln, welche die Billaudsche
Vermutung erfiillen, ist es hilfreich, Beispiele zu betrachten. Wir schranken zunéchst die Menge
der Beispiele auf primitive Worter ein.

Definition 5.1. Sei w ein Wort. Das kleinste Wort u, fiir das es ein n € N gibt mit w = u",
nennen wir die primitive Wurzel von w. Stimmt w mit seiner primitiven Wurzel iiberein, so
nennen wir w primitiv.

Lemma 5.2. Sei w ein Wort. Genau dann ist w ein Fizpunktwort, wenn seine primitive
Wurzel ein Fixpunktwort ist.

Beweis. Sei w = u™ und u die primitive Wurzel von w. Sei f ein Zeuge von w. Es gilt
u" =w = f(w) = f(u") = f(u)". Ein Vergleich der Léngen liefert f(u) = u. Ein Zeuge von u
ist auf Grund derselben Rechnung auch ein Zeuge von w und somit folgt die Aussage. O

Lemma 5.2 zeigt, dass man sich auf primitive Worter beschranken kann.

5.1 Zwillinge

Wir lehnen uns an die Notation von [Hol2009] an. Wir betrachten ein Wort w. Sei r, das grofste
gemeinsame Préfix aller Suffixe von w, die mit a starten. Sei 1, analog das grofite gemeinsame
Suffix aller Prafixe von w, die mit a enden. Sei n, = l,ar, der maximale gemeinsame Kontext
aller @ in w. Wir nennen a einen Zwilling von b, falls n, = n; gilt und schreiben dann al|b.

Wir betrachten zunéchst ein Beispiel, um zu zeigen, wann Zwillinge auftreten kénnen.

Beispiel 5.3. Wir betrachten das Wort w = acdcdcbdedebdedacded. Das Wort w ist ein
Fixpunktwort, wie die folgende Abbildung zeigt.

aleldlcla]elpld]c]da|c[bld]c[d|alc|[d]c]d

Wir untersuchen nun, ob w den Bedingungen der Billaudschen Vermutung geniigt. Fiir §,(w)
mit = € {c¢,d} kann man nahezu denselben Zeugen wie auch fiir w nehmen. Exemplarisch sieht
dies fiir 0.(w) folgendermafen aus.
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5 Beispiele

Sc(w)= la d d|b d d|b d d|la d d

Wir betrachten nun was passiert, falls wir einen der Erzeugenden a oder b 16schen. In d,(w)
erzeugt sich dann der Kontext von a und b selbst.

Ip(w) = ‘a c‘d c‘d c‘d c‘d c‘d c‘d a c‘d c‘d‘

Das Wort d,(w) ist allerdings kein Fixpunktwort. Der Kontext von a kann sich weder selbst
erzeugen, noch von einem anderen Buchstaben aufgenommen werden. Um trotzdem sicher zu
stellen, dass w die Billaudsche Vermutung erfiillt, kann man w so modifizieren, dass a einen
Zwilling bekommt. Setze w’ = acdedgebdedebdedacdedg. Es ist dann al|g und in §,(w) kann g
den Kontext von a aufnehmen und umgekehrt. Die Zeugen von d,(w) fiir z € {b, ¢, d} koénnen
iibernommen werden, wenn man ¢ in den Kontext von a aufnimmt.

Ein Beweis der Billaudschen Vermutung auf Wérter, die einen Zwilling haben, wére niitzlich.
Leider reicht das Wissen aus Beispiel 5.3 nicht aus. Anhand des néchsten Beispiels sehen wir,
dass die lokale Information eines Zwillings a||b zusammen mit geeigneten Zeugen f,, fp fir
dq(w) und dp(w) nicht ausreicht.

Beispiel 5.4. Aus §q(w),d(w) € FW, a||b und aus der Existenz von Zeugen fq, fi, mit
alph(l,ry) € M, N M, folgt nicht w € FW. Betrachte dazu das Wort

gl 13 5 0 N e [ R e [

Es gilt dort alph(lyr,) = M, = My = {c,d}. Das Wort w ist kein Fixpunktwort, da weder
noch z das c aus einem Faktor xzcz aufnehmen kénnen. In J,(w) ist dies jedoch moglich, da a
die anderen x von einem c getrennt hat.

dg(w) = ‘x‘c d‘c‘b‘c zlxlc|z x‘c z x‘c d‘c‘b‘c z‘

Analog sieht man, dass dp(w) ein Fixpunktwort ist.

Man sieht also, dass die Situation mit Zwillingen nicht offensichtlich ist. Einfacher ist dies mit
Drillingen.

Lemma 5.5. Sei al|b||c und aBbyc ein Faktor von n,. Sei auflerdem alph(8v) C M, fir einen
geeigneten Zeugen f,. Dann ist w € FW.
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5.2 Kontextverschiebung und -erweiterung

Beweis. Betrachte ein Vorkommen eines Faktors afyc in §(w). Dann ist dies entweder ein
Faktor von fy(z)fy(y) oder ein Faktor von fi(z) fiir z,y € alph(w). Im ersten Fall sei ohne
Einschrankungen af ein Faktor von f;(z). In beiden Féllen setzen wir f(x) auf fy(x), wobei
der Faktor af auf afb ergénzt wird. Die restlichen Werte von f ergeben sich direkt aus f3.
Wir setzen f(z) = fip(2) fiir z # x,b und f(b) = e. Es gilt nach Konstruktion f(w) = w und

f#id. 0

Wir definieren noch einen Spezialfall von Zwillingen. Fiir diese Art von Zwillingen lésst sich
leicht beweisen, dass sie nur in Fixpunktwortern auftreten.

Definition 5.6. Sei w ein Wort und a, b € alph(w). Wir nennen a und b dquivalent, falls al|b
und ab ein Faktor von n, ist.

Lemma 5.7. Sei w ein Wort, in dem a und b dquivalent sind. Dann ist w € FW.

Beweis. Wéhle f : alph(w)* — alph(w)* mit f(a) = ab, f(b) = € und f(z) = z fir alle
x € alph(w) \ {a, b}. Der Morphismus f ist dann ein Zeuge von w. O

5.2 Kontextverschiebung und -erweiterung

In Beispiel 5.3 wurde bereits beobachtet, dass der Kontext eines Erzeugenden z in d,(w) sich
selbst erzeugt oder aufgenommen werden muss. Daraus ergeben sich Effekte auf die Weise, dass
andere Buchstaben ihren Kontext erweitern oder verschieben. Wir betrachten dieses Phdnomen
in einem Beispiel.

Beispiel 5.8. Betrachte das folgende Fixpunktwort w wobei o = a8 ist. Seien « und 8 so
gewdhlt, dass d, e, f ¢ alph(«) gilt und es einen Buchstaben b # a gibt mit |a], = 1. Eine
mogliche Wahl von a wire a = aabca.

w = (7 e 2 - i = e | e iR

Ein Zeuge fiir 0, (w) mit = € alph(a) ergibt sich durch Anwenden von §, auf die Bilder des
Zeugens von w. Fiir §4(w) ergibt sich ein Zeuge durch f — f,e — e,b — a und = +— ¢
fir € alph(w) \ {b,e, f}. Die Kontexte erzeugen sich also dort selbst. In J.(w) tritt eine
Kontexterweiterung von f auf. Betrachte dazu die folgende Faktorisierung von d,(w).

be(w) = [flalalalald[Ble|flalalal|flalala|flalolalald fla

Wir betrachten nun noch ein Beispiel, in dem ein Buchstabe seinen Kontext nicht erweitert,
sondern verschiebt.
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5 Beispiele

Beispiel 5.9. Wir betrachten das folgende Wort w.

w=d|d|e[a|b|d|d|e|c|d]d]e|c|d]d]e|a|d][d]e[a|b|d]d]e]a

Es erfiillt die Bedingungen der Billaudschen Vermutung 2.12 und insbesondere die Bedingungen
der abgeschwichten Vermutung 4.1. Wéhle dazu ¥ = {a, b, c¢}. Der Kontext von c ist hierbei
d%ec. In 6,(w) kann sich dieser Kontext jedoch verschieben, wie man an folgender Faktorisierung
erkennt. Gleichzeitig erweitert b seinen Kontext.

fu(w) = [d]d|e]b]d]|d|e|cld]|d]e|c]ld]|d]e|d]|d|elbld]|d]e]

In diesem Beispiel ist diese Verschiebung jedoch nicht nétig. Alternativ kénnte man die
Abbildung e — d%e und x — x fiir ¢ {d, e} als Zeugen wihlen.

30



6 Zusammenfassung und Ausblick

In dieser Arbeit wurde die Billaudsche Vermutung thematisiert und weitere Ergebnisse zur
Vermutung gefunden. Es wurden Resultate auf beschrankter Alphabetgrofse erzielt. Zudem
wurde eine neue, abgeschwéchte Vermutung eingefiihrt und teilweise bewiesen. Es ist unklar,
inwieweit die Vermutung 4.1 die Billaudsche Vermutung abdeckt. Dem Autor ist bislang kein
Beispiel bekannt, das die Voraussetzungen der Billaudsche Vermutung erfiillt, aber keine Zeugen
besitzt, welche den Voraussetzungen von Vermutung 4.1 geniigen.

Bisher wurde noch kein Ansatz gefunden, die Billaudsche Vermutung in ein anderes Problem
einzubetten. Das resultiert in langen, elementaren Beweisen. Es konnte hilfreich sein, wenn sich
Verbindungen zur Graphentheorie oder anderen Resultaten aus der Kombinatorik auf Woértern
finden lassen.

Eine Verallgemeinerung der Vermutung auf unendliche Worter wurde bislang nicht untersucht.
Ergebnisse dariiber kénnten niitzlich sein fiir die Vermutung auf endlichen Wortern.
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