
Institut für Formale Methoden der Informatik
Universität Stuttgart

Universitätsstraße 38
D–70569 Stuttgart

Diplomarbeit Nr. 3141

Über die Billaudsche Vermutung

Tobias Walter

Studiengang: Informatik

Prüfer: Prof. Dr. Volker Diekert

Betreuer: Priv.-Doz. Dr. Dirk Nowotka

begonnen am: 1. Februar 2011

beendet am: 3. August 2011

CR-Klassifikation: F.4.3, G.2.1





Inhaltsverzeichnis

1 Einleitung 1

2 Grundlagen 3

3 Billauds Vermutung auf beschränkter Buchstabenanzahl 9
3.1 Billauds Vermutung auf drei Buchstaben . . . . . . . . . . . . . . . . . . . . . . 9
3.2 Billauds Vermutung auf vier Buchstaben . . . . . . . . . . . . . . . . . . . . . . 10

4 Maximale Erzeugende 19
4.1 Maximale Erzeugende mit |Σ′| = 2 . . . . . . . . . . . . . . . . . . . . . . . . . 19
4.2 Maximale Erzeugende mit |Σ′| ≥ 3 . . . . . . . . . . . . . . . . . . . . . . . . . 25

5 Beispiele 27
5.1 Zwillinge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
5.2 Kontextverschiebung und -erweiterung . . . . . . . . . . . . . . . . . . . . . . . 29

6 Zusammenfassung und Ausblick 31

iii





1 Einleitung

Die Kombinatorik auf Wörtern ist ein junges Gebiet der Mathematik. Es zählt sowohl als
Teilgebiet der theoretischen Informatik als auch der diskreten Mathematik. Erste Arbeiten
zur Kombinatorik auf Wörtern wurden von Thue in [Thu1906] anfangs des 20. Jahrhunderts
veröffentlicht. Damals wurden Ergebnisse in diesem Teilgebiet oft nur als Hilfsmittel für andere
Resultate genutzt. Eine Ausnahme stellte die kombinatorische Gruppentheorie dar. Insbesondere
nach der Veröffentlichung von Lothaire [Lot1983] entwickelte sich die Kombinatorik auf Wörtern
als eigenes Teilgebiet. Diese und weitere Informationen über die Geschichte der Kombinatorik
auf Wörter findet man in [BK2003].

Billaud hat sich zum ersten Mal 1988 mit Fixpunktwörtern beschäftigt, sich jedoch schnell vom
Problem abgewandt hat, vgl. [Bil2011]. Sein damaliger Kollege Filé erarbeitete daraufhin in
[Fil1989] ein Resultat über die Bilder eines Wortes unter Morphismen. Er zeigte, dass, falls
die Menge der Bilder zweier Wörter unter allen möglichen Morphismen dieselbe ist, sich die
Wörter mittels eines Morphismus ineinander überführen lassen. Dieses Konzept untersuchten
Reidenbach und Schneider in [RS2009]. Dabei definieren sie auch einen zu den Fixpunktwörtern
äquivalenten Begriff.

1993 veröffentlichte Billaud dann in der Newsgroup comp.theory seine Vermutung, vgl. [Bil1993].
Seine Vermutung handelt von einer Induktivität der Fixpunktwörter. Sind von einem Wort
w alle Teilwörter δa(w), die alle a’s löschen, Fixpunktwörter, so ist auch w ein Fixpunktwort.
Seitdem wurden wenige Resultate zur Vermutung gefunden. Geser und Zimmermann tauschten
sich mit Billaud über die Vermutung aus, vgl. [Ges1993, Zim1993]. Dabei löste Zimmermann
die Vermutung, wenn das Alphabet aus drei Elementen besteht.

Levé und Richomme konnten 2005 einen Spezialfall der Billaudschen Vermutung in [LR2005]
beweisen. Die Vermutung selbst konnte jedoch nicht signifikant vereinfacht werden.

Holub zeige 2009 in [Hol2009], dass FW ∈ P ist. Damit ist in Polynomialzeit entscheidbar, ob
ein Wort ein Fixpunktwort ist. Holubs Algorithmus konstruiert dazu einen Zeugen.

Diese Arbeit baut auf Teilen von [LR2005] auf und versucht weitere Teilresultate zur Billaud-
schen Vermutung zu zeigen. Dabei könnte die in Kapitel 4 formulierte schwächere Vermutung
ein wichtiger Zwischenschritt sein.

In Kapitel 2 werden die Grundlagen dieser Arbeit eingeführt. Es wird der zentrale Begriff
des Fixpunktworts definiert. Damit kann man dann die Billaudsche Vermutung formulieren.
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1 Einleitung

Aufbauend wird eine äquivalente kombinatorische Beschreibung von Fixpunktwörtern bewiesen
und für die weiteren Kapitel benötigte Lemmata bewiesen.

In Kapitel 3 betrachten wir die Billaudsche Vermutung auf einem kleinen Alphabet. Die
Vermutung wird auf einem Alphabet mit drei Buchstaben verifiziert. Mehrere Teilfälle der
Vermutung auf vier Buchstaben werden ebenfalls bewiesen.

In Kapitel 4 wird dann eine schwächere Version der Billaudschen Vermutung formuliert. Diese
schwächere Vermutung wird teilweise gelöst, so dass man sich nur noch auf endlich viele Teilfälle
beschränken muss.

In Kapitel 5 betrachten wir Beispiele für Fixpunktwörter und für Wörter, welche die Billaudsche
Vermutung erfüllen.

In Kapitel 6 wird die Arbeit zusammengefasst und ein Fazit gezogen.
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2 Grundlagen

In diesem Kapitel wird in die Grundlagen der vorliegenden Arbeit eingeführt. Dabei wer-
den grundlegende Kenntnisse in der Theorie der formalen Sprachen vorausgesetzt, wie sie
beispielsweise in [HU2000] stehen.

Zunächst führen wir den für diese Arbeit zentralen Begriff des Fixpunktwortes ein.

Definition 2.1. Sei w ein beliebiges Wort und sei Σ = alph(w) sein Alphabet. Wir nennen w
ein Fixpunktwort, falls es einen Morphismus f : Σ∗ → Σ∗ gibt mit f 6= id und f(w) = w. Wir
nennen f einen Zeugen von w und FW die Menge aller Fixpunktwörter.

Die Benennung eines Zeugen wurde von Geser in [Ges1993] vorgeschlagen.

Es wird sich als sinnvoll erweisen das Alphabet eines Fixpunktwortes w geeignet aufzuteilen.
Diese Aufteilung erfolgt in Abhängigkeit eines Zeugen f von w und stammt aus [LR2005].

Definition 2.2. Sei w ∈ FW gegeben und f ein Zeuge von w. Wir definieren

Cf = {c ∈ alph(w) | f(c) = c},
Mf = {c ∈ alph(w) | fn(c) = ε für ein n ∈ N},
Ef = {c ∈ alph(w) | f(c) = ucv für Wörter u, v mit uv ∈M+

f }.

Die Buchstaben aus Cf nennen wir konstant, jene aus Mf sterblich und die Buchstaben aus
Ef heißen expandierend oder erzeugend. Wir setzen auf exp(f) die kleinste natürliche Zahl, so
dass f exp(f)(a) = ε für a ∈Mf gilt und nennen exp(f) den Exponenten von f .

Wir zeigen zunächst, dass die Aufteilung in konstante, sterbliche und expandierende Buchstaben
eine disjunkte Zerlegung des Alphabets darstellt. Dazu benötigen wir eine Klassifikation der
Menge der Fixpunktwörter eines festen Morphismus.

Satz 2.3. Sei f ein Morphismus. Die Menge der Fixpunktwörter von f ist die Menge
f exp(f) (Cf ∪ Ef )∗.

Beweis. Vergleiche [Hea1981, HS1999].

Folgendes Lemma aus [LR2005] zeigt nun das oben angekündigte Resultat.
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2 Grundlagen

Lemma 2.4. Sei w ∈ FW und f ein Zeuge von w. Dann gilt

alph(w) = Cf ∪̇Mf ∪̇ Ef .

Beweis. Man sieht anhand der Definition sofort, dass die Vereinigung disjunkt sein muss.
Offensichtlich gilt Cf ∪ Mf ∪ Ef ⊆ alph(w) nach Definition. Da f(w) = w ist, gilt w ∈
f exp(f) (Cf ∪ Ef )∗ nach Satz 2.3. Man sieht leicht, dass f(Cf ) = Cf und f(Ef ) ⊆ (Ef ∪Mf )∗

ist. Also gilt w ∈ (Cf ∪Mf ∪ Ef )∗ und somit ist alph(w) ⊆ Cf ∪̇Mf ∪̇ Ef .

Das folgende Lemma aus [LR2005] zeigt, dass wir uns auf Zeugen konzentrieren können,
die idempotent sind. Idempotente Zeugen f haben die Eigenschaft, dass f(a) = ε gilt für
a ∈Mf . Dies erleichtert die Suche nach Zeugen und ist auch essentiell für die kombinatorische
Beschreibung von Fixpunktwörtern in Proposition 2.10. Außerdem gilt für idempotente Zeugen
f , dass der Träger von f genau Cf ∪ Ef ist. Es gilt somit supp(f) := {x ∈ alph(w) | f(x) 6=
ε} = Cf ∪ Ef .

Lemma 2.5. Für jedes w ∈ FW gibt es einen idempotenten Zeugen. Genauer gibt es für jeden
Zeugen f einen idempotenten Zeugen g mit Ef = Eg, Mf = Mg und Cf = Cg.

Beweis. Sei f ein Zeuge von w. Jede Potenz von f ist auch ein Zeuge von w da fn(w) =

fn−1(w) = . . . = w. Wir setzen g := f exp(f). Der Morphismus g ist dann ein Zeuge von
w. Offensichtlich gilt Cf ⊆ Cg, Ef ⊆ Eg und Mf ⊆ Mg. Nach Lemma 2.4 gilt alph(w) =

Cf ∪̇Mf ∪̇ Ef = Cg ∪̇Mg ∪̇ Eg. Da die Mengen disjunkt sind, folgt bereits die geforderte
Gleichheit. Noch zu zeigen bleibt also, dass g idempotent ist. Für a ∈Mg gilt g2(a) = g(a) = ε.
Für a ∈ Cg gilt g2(a) = g(a) = a und für a ∈ Eg gibt es Faktoren α, β ∈ M∗g so, dass
g(a) = αaβ gilt. Es gilt dann g2(a) = g(αaβ) = εg(a)ε = g(a). Mit alph(w) = Cg ∪̇Mg ∪̇ Eg
und der universellen Eigenschaft für Morphismen auf dem freien Monoid alph(w)∗ folgt dann,
dass g idempotent ist.

Für idempotente Morphismen f vereinfacht sich Satz 2.3 zu folgendem Korollar. Dieses findet
vor allem in Kapitel 3 Anwendung.

Korollar 2.6. Sei f ein idempotenter Morphismus. Die Menge der Fixpunktwörter von f ist
die Menge (Cf ∪ f(Ef ))∗.

Beweis. Für idempotente Morphismen f gilt exp(f) = 1. Wegen f(Cf ) = Cf folgt die Aussage
direkt aus Satz 2.3.
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Definition 2.7. Sei w ein Wort und A ⊆ alph(w). Wir definieren die beiden Morphismen δA
und πA auf alph(w) durch die universelle Eigenschaft. Für x ∈ alph(w) setzen wir dazu

δA(x) =

x , falls x 6∈ A
ε , falls x ∈ A

πA(x) =

ε , falls x 6∈ A
x , falls x ∈ A.

Für ein Teilwort w′ von w schreiben wir auch δw′ und πw′ anstatt δalph(w′) und πalph(w′). Intuitiv
löscht also δA alle Buchstaben aus w die in A enthalten sind, wobei πA das Wort w auf die
Buchstaben in A projiziert.

Es gilt offensichtlich δA(w) = πalph(w)\A(w) und πA(w) = δalph(w)\A(w). Zur besseren Lesbarkeit
werden jedoch beide Morphismen benutzt. Damit lässt sich bequem die Anzahl der Buchstaben
innerhalb eines Wortes definieren.

Definition 2.8. Sei w ∈ Σ∗ ein Wort. Wir definieren |w| als die Länge von w. Außerdem
setzen wir |w|Σ = |πΣ(w)| und insbesondere |w|a = |w|{a} für einen Buchstaben a ∈ Σ. Die
Menge aller Buchstaben, die in w minimal vorkommen, nennen wir

minLetters(w) :=
{
a ∈ alph(w)

∣∣ |w|a ≤ |w|x ∀x ∈ alph(w)
}
.

Wir betrachten ein Beispiel für den Begriff des Fixpunktwortes.

Beispiel 2.9. Sei der Morphismus f gegeben durch f(a) = ε, f(b) = ε und f(c) = w. Dann
ist f 6= id. Wir betrachten das Wort w = abacab. Es ist f(w) = w, also ist w ein Fixpunktwort.
Man sieht direkt, dass dies für alle Wörter funktioniert, die einen Buchstaben c besitzen
mit |w|c = 1. Das Wort w′ = abba ist kein Fixpunktwort, denn jeder Zeuge f ′ müsste einen
Buchstaben löschen. Dann wäre w′ = f ′(ab)2, aber w′ ist kein Quadrat.

Wir formulieren eine kombinatorische Aussage, die äquivalent zum Begriff des Fixpunktwortes
ist. Ein ähnlich formuliertes Resultat findet sich auch in [Hol2009].

Proposition 2.10. Sei w ∈ Σ∗. Genau dann ist w ein Fixpunktwort, wenn es eine Fak-
torisierung w =

∏n
i=1 ui gibt, mit ui ∈ {v1, . . . , vk}, k < |alph(w)| und Buchstaben ai mit

|vj |ai = δij.

Beweis. Sei w ∈ FW und f ein idempotenter Zeuge von w. Wir wählen die Buchstaben ai als
die Elemente aus Ef ∪Cf und setzen vi = f(ai). Dies liefert nach Korollar 2.6 eine Zerlegung der
gewünschten Form. Sei nun eine Faktorisierung vorgegeben. Wir setzen umgekehrt f(ai) = vi
und f(b) = ε für b 6∈ {a1, . . . , ak}. Dann ist f ein Zeuge für w.
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2 Grundlagen

Proposition 2.10 ist nützlich um Beispiele effizient auf die Zugehörigkeit zu FW zu testen.
Man muss auf diese Weise keine Abbildung suchen, sondern nur eine geeignete Faktorisierung
finden.

Wir demonstieren dies an einem Beispiel.

Beispiel 2.11. Sei w = abacabdeedeeabacab. Das Wort hat die folgende Faktorisierung.

a b a c a b d e e d e e a b a c a a

Es ist also v1 = abacab und v2 = dee. Die dazugehörigen Buchstaben sind a1 = c und a2 = d.
Ein Zeuge f von w ergibt sich nun mit f(a1) = v1, f(a2) = v2 und f(x) = ε für x ∈ {a, b, e}.

Wir formulieren jetzt die Vermutung von Billaud aus [Bil1993]. Billaud formulierte diese als
Kontraposition von der folgenden Vermutung.

Vermutung 2.12 (Billaud). Sei w ein Wort und δa(w) ∈ FW für alle a ∈ alph(w). Dann ist
auch w ∈ FW.

Auf einem einelementigen Alphabet gibt es keine Fixpunktwörter, da f(a) = a gelten müsste
und f somit die Identität ist. Dies impliziert, dass ein Wort w, das die Voraussetzung für
Vermutung 2.12 erfüllt, mindestens drei verschiedene Buchstaben enthält. Das Wort abcab
liefert dazu ein Beispiel mit genau drei verschiedenen Buchstaben.

Der Zeuge für δa(w) wird oft fa genannt. Wir schreiben dann kurz für die Mengen Efa , Mfa

und Cfa auch Ea, Ma und Ca.

Das folgende Lemma aus [LR2005] wird in Kapitel 3 genutzt. Es zeigt, dass sich minimale
Buchstaben unter bestimmten Voraussetzungen immer als erzeugend wählen lassen.

Lemma 2.13. Sei w ∈ FW ein beliebiges Wort und a ∈ minLetters(w). Sei f ein Zeuge von
w. Falls a ∈ Ef ∪Mf gilt, so kann man einen idempotenten Zeugen g wählen mit |Ef | = |Eg|
und a ∈ Eg.

Beweis. Wir nehmen nach Lemma 2.5 an, dass f idempotent ist. Sei

F =
{
x ∈ Ef

∣∣ |f(x)|a > 0
}

die Menge aller x ∈ Ef , die a erzeugen. Falls a ∈ F gilt, so können wir g = f wählen.

Sei also ohne Einschränkungen a 6∈ F . Wir können die Anzahl aller a auf folgende Weise zählen:

|w|a =
∑
x∈F
|w|x · |f(x)|a.
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Da |w|a minimal gewählt wurde, muss F = {e} gelten für ein e ∈ alph(w). Außerdem muss
|f(e)|a = 1 und somit |w|a = |w|e gelten. Da a ∈Mf und f idempotent ist, gilt f(a) = ε. Wir
ersetzen nun den Erzeugenden e durch a. Setze dafür g(e) = ε, g(a) = f(e) und g(x) = f(x)

für x 6∈ {e, a}. Es gilt damit Cg = Cf , Eg = (Ef \ {e}) ∪ {a} und Mg = (Mf \ {a}) ∪ {e}.
Es gilt g2(x) = f2(x) = f(x) = g(x) für x 6∈ {e, a}. Außerdem gilt g2(e) = ε = g(e) und
g2(a) = g(f(e)) = g(a). Damit ist g idempotent. Nach Korollar 2.6 gibt es eine Faktorisierung

w = w0

l∏
i=1

f(e)wi

mit Wörtern wi ∈ (f(Ef \ {e}) ∪ Cf )∗ = (g(Eg \ {a}) ∪ Cg)∗. Es gilt also

w = w0

l∏
i=1

g(a)wi.

Somit ist der Morphismus g nach Korollar 2.6 ein Zeuge von w.

Unter gewissen Voraussetzungen lässt sich aus den reduzierten Wörtern δa(w) auch das Wort
w rekonstruieren. Dies wird sich insbesondere in Kapitel 4 als wichtig erweisen.

Lemma 2.14. Seien w1, . . . , wn Wörter in Σ∗ und a, b, c paarweise verschiedene Buchstaben.
Gilt δa(wi) = δa(wj), δb(wi) = δb(wj) und δc(wi) = δc(wj) für alle 1 ≤ i, j ≤ n, so ist
w1 = w2 = . . . = wn.

Beweis. Mit Induktion kann man sich auf den Fall n = 2 beschränken. Da δa(w1) = δa(w2)

und δb(w1) = δb(w2) gilt, ist |w1| = |w2|. Die Position der a’s und b’s lässt sich jedoch mit Hilfe
von δc(w1) = δc(w2) bestimmen. Also gilt w1 = w2.
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3 Billauds Vermutung auf beschränkter
Buchstabenanzahl

3.1 Billauds Vermutung auf drei Buchstaben

1993 stellte Billaud die Vermutung 2.12 in [Bil1993] auf. Im gleichem Jahr löste Zimmermann
diese auf drei Buchstaben in [Zim1993]. Wir beweisen Vermutung 2.12 hier nochmals für drei
Buchstaben.

Lemma 3.1. Sei w ein Wort mit alph(w) = {a, b, c}. Erfüllt w die Bedingung δx(w) ∈ FW

für alle x ∈ alph(w), dann ist w ein Fixpunktwort.

Beweis. Seien Zeugen fa, fb, fc gegeben für die Wörter δa(w), δb(w) und δc(w). Wir führen eine
Fallunterscheidung nach der Anzahl der Vorkommen der Buchstaben durch. Dabei sei ohne
Einschränkung |w|a ≤ |w|b ≤ |w|c.

Fall 1 : |w|a = |w|b = |w|c.

Sei nach Lemma 2.13 ohne Einschränkung Ea = {b}. Es ergibt sich fa(b) = bc oder fa(b) = cb.
Wir nehmen einmal an, dass fa(b) = bc gilt. Es gilt somit δa(w) = (bc)|w|b . Außerdem
sei Eb = {a}. Es gilt entweder fb(a) = ac oder fb(a) = ca. Sei fb(a) = ac. Damit gilt
δb(w) = (ac)|w|a . Also ist vor jedem c entweder ein a oder ein b. Durch Betrachten von δc(w),
wobei δc(w) = (ab)|w|a oder δc(w) = (ba)|w|a ist, kann die relative Position der a’s zu den
b’s bestimmt werden. In jedem Fall gibt es eine Permutation σ : {a, b, c} ∼→ {a, b, c} mit
w = (σ(a)σ(b)σ(c))|w|a . Dies zeigt mit Proposition 2.10, dass w ∈ FW ist.

Fall 2 : |w|a < |w|b ≤ |w|c.

Mit Lemma 2.13 erhalten wir Eb = Ec = {a}. Gilt fa(c) 6= ε, so ergibt sich

|w|b = |w|c · |fa(c)|b ≥ |w|c ≥ |w|b

und man kann die Rollen von b und c vertauschen. Sei also ohne Einschränkung fa(c) = ε.
Seien i, j, l, k,m, p ∈ N so gewählt, dass

δc(w) = (biabj)|w|a

δb(w) = (clack)|w|a

δa(w) = (cmbcp)|w|b

9



3 Billauds Vermutung auf beschränkter Buchstabenanzahl

gilt. Damit lässt sich w als

w =

|w|a∏
r=1

(cmbcp)i−1cmbcqr︸ ︷︷ ︸
:=αr

a cp−qr(cmbcp)j︸ ︷︷ ︸
:=βr

darstellen. Mit |αr|c = l und |βr| = k folgt qr = qr′ für alle r, r′ ∈ {1, . . . , |w|a}. Also ist

w =
(
(cmbcp)i−1cmbcqacp−q(cmbcp)j

)|w|a ∈ FW

mit Proposition 2.10.

Fall 3 : |w|a = |w|b < |w|c.

Mit Lemma 2.13 können wir Ea = {b} und Eb = {a} annehmen. Sei fa(b) = cibcj und
fb(a) = ckacl. Wir nehmen ohne Einschränkung Ec = {a} an. Sei wegen |w|a = |w|b ohne
Einschränkung fc(a) = ab und i ≤ k. Dann gilt

w ∈
{
cibck−iacl

}∗
und Proposition 2.10 liefert, dass w ∈ FW ist.

3.2 Billauds Vermutung auf vier Buchstaben

Die Beweisidee von Lemma 3.1 stellt eine Klassifikation aller Wörter mit drei Buchstaben, welche
die Billaudvermutung erfüllen, dar. In den nächsten Lemmata versuchen wir diese Strategie
auch auf Wörter mit vier Buchstaben anzuwenden. Wir beweisen zunächst ein allgemeineres
Resultat, das dann in Korollar 3.4 auf einen Teilfall mit 4 Buchstaben angewendet wird.

Lemma 3.2. Sei w ein Wort mit {a, b, c, d} ⊆ alph(w). Erfüllt w die Bedingung δx(w) ∈ FW

für alle x ∈ {a, b, d} und es gibt Zeugen, so dass Ea = {b, c}, Ma = {d} = Mb, Eb = {a, c},
Ed = {a, b} und Md = {c} gilt, dann ist w ein Fixpunktwort.

Beweis. Seien fx Zeugen von δx(w) für alle x ∈ {a, b, c, d}. Sei nun

fa(b) = db1bdb2 fa(c) = dc1cdc2 fa(d) = ε,

fb(a) = da1ada2 fb(c) = dc3cdc4 fb(d) = ε,

fd(a) = clack fd(b) = cibcj fd(c) = ε.

Mit Korollar 2.6 ergibt sich dann, dass die reduzierten Wörter δx(w) mit x ∈ {a, b, d} in den
folgenden Mengen enthalten sind

δa(w) ∈
({
db1bdb2 , dc1cdc2

}
∪ Ca

)∗
δb(w) ∈

({
da1ada2 , dc3cdc4

}
∪ Cb

)∗
δd(w) ∈

({
clack, cibcj

}
∪ Cd

)∗
.
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3.2 Billauds Vermutung auf vier Buchstaben

Das Wort δd(w) gibt Aufschluss über die relative Positionierung von a, b und c. Die Faktoren
cibcj in δd(w) liefern Faktoren (dc1cdc2)idb1bdb2(dc1cdc2)j in δa(w) und die Faktoren clack in
δd(w) liefern Faktoren (dc1cdc2)l+k in δa(w). Es ergibt sich somit

δa(w) ∈
({

(dc1cdc2)idb1bdb2(dc1cdc2)j , (dc1cdc2)l+k
}
∪ Ca

)∗
und analog für δb(w) ergibt sich

δb(w) ∈
({

(dc3cdc4)lda1ada2(dc3cdc4)k, (dc3cdc4)l+k
}
∪ Cb

)∗
.

Um Aussagen über die Exponenten ci zu bekommen betrachten wir δab(w). Eine Darstellung
davon ergibt sich, indem man δa(w) bzw. δb(w) nochmals reduziert. Wir erhalten die folgende
Darstellung von δab(w)

δab(w) ∈
({

(dc1cdc2)idb1db2(dc1cdc2)j , (dc1cdc2)l+k
}
∪ Ca

)∗
∩
({

(dc3cdc4)lda1da2(dc3cdc4)k, (dc3cdc4)l+k
}
∪ Cb

)∗
.

Ohne Einschränkung kann man annehmen, dass πab(w) mit a beginnt. Wir unterscheiden drei
Fälle für Werte von l.

Fall 1 : l = 0.

Es gilt dann k > 0, da a ∈ Ed liegt. Betrachte ein Vorkommen von a in w. Dies liefert einen
Faktor der Form adβc in w. Da dieser auch in δb(w) vorkommen muss, gilt adβc = ada2dc3c.
Also ist der Faktor von a zum nächsten c bei jedem Vorkommen von a derselbe. Falls k > 1 ist,
ergibt sich also

w ∈
({

(dc1cdc2)idb1bdb2(dc1cdc2)j , a(dc1cdc2)k
}
∪ Ca

)∗
.

Falls k = 1 ist, ergibt sich

w ∈
({

(dc1cdc2)idb1bdb2(dc1cdc2)j , da1adβcdc2
}
∪ Ca

)∗
.

In beiden Fällen sieht man wieder direkt mit Proposition 2.10, dass w ∈ FW ist.

Fall 2 : l = 1.

Man kann ohne Einschränkung k > 0 annehmen. Der Fall k = 0 lässt sich symmetrisch zu
Fall 1 beweisen. Jedes Vorkommen von a induziert also einen Faktor der Form cdαadβc. Durch
Betrachten von δb(w) ergibt sich α = c4 + a1 und β = a2 + c3. Die Umgebung von jedem a ist
also fest. Damit ergibt sich

w ∈
({

(dc1cdc2)idb1bdb2(dc1cdc2)j , dc1cdc4+a1adc3+a2cdc2(dc1cdc2)k−1
}
∪ Ca

)∗
und somit w ∈ FW.
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3 Billauds Vermutung auf beschränkter Buchstabenanzahl

Fall 3 : l > 1.

Da πab(w) mit a beginnt, folgt nach Betrachten von δa(w) und δb(w), dass δa(w) die Präfixe
(dc1cdc2)l(dc1cdc2)k und (dc3cdc4)lda1da2(dc3cdc4)k hat. Es folgt, dass c1 = c3 und c2 = c4 ist.
Falls k > 0 gilt, so muss a1 + a2 = 0 sein, was im Widerspruch zu a ∈ Eb steht. Also gilt k = 0.
Dieser Fall ist symmetrisch zu Fall 1.

Um das nächste Korollar zu formulieren, definieren wir ein weiteres Attribut von Fixpunktwör-
tern.

Definition 3.3. Sei w ∈ FW beliebiges Fixpunktwort. Wir setzen

minCardExp(w) = min
{
|Ef |

∣∣ f Zeuge von w
}
.

Korollar 3.4. Sei w ein Wort mit |alph(w)| = 4. Erfüllt w die Bedingung δx(w) ∈ FW und
minCardExp(δx(w)) = 2 für alle x ∈ alph(w), dann ist w ein Fixpunktwort.

Beweis. Sei alph(w) = {a, b, c, d}. Ohne Einschränkung sei a so gewählt, dass a ∈ minLetters(w)

ist. Wir wählen ohne Einschränkung Ea = {b, c}. Nach Lemma 2.13 können wir a ∈ Ey für
y 6= a annehmen. Falls d ∈ Eb gilt, so ist |w|c ≥ |w|a + |w|d ≥ |w|a + |w|b + |w|c. Dies ergibt
einen Widerspruch. Damit ist Eb = {a, c} und analog können wir Ec = {a, b} folgern. Ohne
Einschränkung kann man dann Ed = {a, b} wählen. Die Aussage ergibt sich nun mit Lemma
3.2.

In [LR2005] wurde für ein allgemeines Alphabet der Fall minCardExp(δx(w)) = 1 für alle
x ∈ alph(w) bewiesen. Eine mögliche Strategie um Billauds Vermutung auf vier Buchstaben
zu zeigen, ist nun eine Fallunterscheidung nach der Anzahl der Buchstaben y zu führen,
so dass minCardExp(δy(w)) = 1 ist. Der Fall, dass es genau einen Buchstaben y gibt, mit
minCardExp(δy(w)) = 1, wird im folgenden Lemma behandelt.

Lemma 3.5. Sei w ein Wort mit |alph(w)| = 4. Falls δx(w) ∈ FW mit Zeugen fx für alle
x ∈ alph(w) gilt und es einen Buchstaben y ∈ alph(w) gibt mit |Ey| = 1 und |Ez| = 2 für alle
x 6= z ∈ alph(w), dann ist w ein Fixpunktwort.

Beweis. Sei alph(w) = {a, b, c, d} und a ∈ minLetters(w). Für x 6= a mit |Ex| = 2 gilt wegen
|alph(δx(w))| = 3 bereits Cx = ∅. Also ist a ∈Mx ∪ Ex. Da a ∈ minLetters(w) ist, wählen wir
nach Lemma 2.13 einen Zeugen fx, so dass a ∈ Ex ist. Wir unterscheiden drei Fälle. Ohne
Einschränkung gilt nach Lemma 2.13, dass entweder Eb = {a} oder Cb = {a} oder |Ea| = 1

und |w|a < |w|x für x ∈ {b, c, d} ist.

Fall 1 : Cb = {a}.

Sei ohne Einschränkung Eb = {c} und Mb = {d}. Es gilt dann wieder mit Korollar 2.6

δb(w) ∈
{
a, dicdj

}∗
.
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3.2 Billauds Vermutung auf vier Buchstaben

Wir machen eine Fallunterscheidung nach den Erzeugenden aus Ec. Weil nach Obigem a ∈ Ec
ist, sind dies die Fälle b ∈ Ec oder d ∈ Ec.

Fall 1.1 : b ∈ Ec.

Wegen δb(w) ∈
{
a, dicdj

}∗ ist |w|c ≤ |w|d und da d ∈Mc ist, erhalten wir

|w|d = |w|b · |fc(b)|d + |w|a · |fc(a)|d ≥ |w|b + |w|a > |w|b.

Wir betrachten δa(w).

Fall 1.1(i): d ∈ Ea.

Falls b ∈ Ma ist, so gilt |w|d < |w|d + |w|c ≤ |w|b, was im Widerspruch zu |w|b < |w|d steht.
Falls c ∈Ma gilt, so ist |w|d < |w|c und wir erhalten einen Widerspruch zu |w|c ≤ |w|d. Somit
kann dieser Fall nicht auftreten.

Fall 1.1(ii): Ea = {b, c}.

Die Voraussetzung Ea = {b, c} impliziert, dass

δa(w) ∈
{
dαbdα

′
, dβcdβ

′
}∗

ist. Wegen der Gestalt von δa(w) und δb(w) existieren Zahlen k1, k2 ∈ N mit i = β + k1(α+α′)

und j = β′ + k2(α+ α′). Es folgt

δa(w) ∈
{

(dαbdα
′
)k1dβcdβ

′
(dαbdα

′
)k2
}∗
.

Man sieht nun leicht, dass

w ∈
{
a, (dαbdα

′
)k1dβcdβ

′
(dαbdα

′
)k2
}∗

ist und nach Proposition 2.10 das Wort w somit ein Fixpunktwort ist.

Fall 1.2 : d ∈ Ec.

In diesem Fall ist
δc(w) ∈

{
bd1dbd2 , ba1aba2

}∗
.

Insbesondere folgt die Ungleichung |w|d < |w|b. Sei zunächst i, j > 0. Es gilt dann

w ∈
{
ba1aba2 , (bd1dbd2)i−1bd1dbqcbpdbd2(bd1dbd2)j−1

∣∣ p+ q = d1 + d2

}∗
.

Wir betrachten nun das Wort δd(w). Wenn b ∈ Ed gilt, so ist c ∈Md und damit |w|b ≤ |w|c. Da
δb(w) ∈

{
a, dicdj

}∗ ist, gilt allerdings auch |w|c ≤ |w|d. Oben wurde aber bereits |w|d < |w|b
festgestellt, was einen Widerspruch darstellt. Somit muss Ed = {a, c} gelten. Dann gilt

δd(w) ∈
{
bαabα

′
, bβcbβ

′
}∗
.
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3 Billauds Vermutung auf beschränkter Buchstabenanzahl

Durch β und β′ sind die Zahlen p und q eindeutig bestimmt. Mit Proposition 2.10 folgt, dass
w ∈ FW ist. Die Fälle i = 0 und j = 0 lassen sich ähnlich beweisen.

Fall 2 : Ea = {b} und |w|a < |w|x für x ∈ {b, c, d}.

Im Folgenden machen wir eine Fallunterscheidung nach Ec.

Fall 2.1 : Ec = {a, d}.

Es folgt direkt, dass |w|b = |w|a · |fc(a)|c + |w|d · |fc(d)|c ist und damit insbesondere die
Ungleichung |w|b > |w|d erfüllt ist. Es gibt drei Möglichkeiten dafür, welche sterblichen
Buchstaben für δa(w) in Frage kommen.

Fall 2.1(i): Ca = {c} und Ma = {d}.

Es folgt
|w|d = |w|b · |fa(b)|d ≥ |w|b,

so dass wir einen Widerspruch zu |w|b > |w|d erhalten.

Fall 2.1(ii): Ma = {c, d}.

Es gilt dann |w|d ≥ |w|b, im Widerspruch zu |w|b > |w|d.

Fall 2.1(iii): Ca = {d} und Ma = {c}.

Sei
δa(w) ∈

{
cibcj , d

}∗
und

δc(w) ∈
{
bnabm, bkdbl

}∗
.

Da d ∈ Ca ist, liefert jeder Faktor bkdbl aus δc(w) einen Faktor (cibcj)kd(cibcj)l in w. Sei
n > 0 und m > 0. Dann liefern Faktoren der Form bnabm aus δc(w) einen Faktor der Form
(cibcj)n−1cibcpacqbcj(cibcj)m−1 in w. Es gilt also

w ∈
{

(cibcj)kd(cibcj)l, (cibcj)n−1cibcpacqbcj(cibcj)m−1
∣∣ p+ q = i+ j

}∗
.

Zu zeigen ist nun, dass p und q in jedem Vorkommen gleich sind, denn dann ist w ∈ FW. Falls
Ed = {a, c} gilt, so ist |w|c ≤ |w|b und wegen Ma = {c} gilt damit, dass |w|c = |w|b ist. Ohne
Einschränkung gilt also, dass i = 0 und j = 1 ist. Dann muss p = 1 und q = 0 gelten und
somit ist w ∈ FW. Sei Ed = {a, b} und deshalb gilt fd(a) = ca1aca2 und fd(b) = cb1bcb2 . Damit
erhalten wir, dass p = b2 + a1 und q = b1 + a2 ist. Mit Proposition 2.10 folgt, dass w ∈ FW ist.
Die Fälle n = 0 und m = 0 lassen sich ähnlich zeigen.

Fall 2.2 : Ec = {a, b}.

Sei fc(a) = da1ada2 und fc(b) = dibdj . Wir unterscheiden für Ca drei Fälle.
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3.2 Billauds Vermutung auf vier Buchstaben

Fall 2.2(i): Ca = {d}, Ma = {c}.

Es gilt dann fa(b) = ckbcl und
δa(w) ∈

{
ckbcl, d

}∗
.

Wegen fc(b) = dibdj erhalten wir

δa(w) ∈
{
dickbcldj , d

}∗
.

Aus der Betrachtung von δac(w) folgt

δa(w) ∈
{
dickbcldj , da1da2

}∗
.

Wegen der Gestalt von δc(w) hat ein Faktor dickbcldj aus δa(w) kein a im Urbild w. Es folgt

w ∈
{
dickbcldj , da1ada2

}∗
und damit w ∈ FW nach Proposition 2.10.

Fall 2.2(ii): Ca = {c}, Ma = {d}.

Falls Ed = {a, b} gilt, so kann man dies analog zu Fall 2.2(i) beweisen. Falls Ed = {a, c} gilt,
so ist |w|a ≥ |w|b. Dies ist nicht möglich, da nach Annahme |w|a < |w|b gilt.

Fall 2.2(iii): Ma = {c, d}.

Sei fa(b) = ubv. Es gilt

δac(w) ∈
{
δc(u)bδc(v)

}∗ ∩ {da1da2 , dibdj}∗ .
Daraus folgt, dass zu jedem b mindestens ein a gehört, da die Anzahl der d’s in uv immer
gleich ist und deshalb größer als i+ j sein muss. Es gilt also |w|a ≥ |w|b, ein Widerspruch zu
|w|a < |w|b.

Fall 3 : Eb = {a}.

Sei fb(a) = uav. Ohne Einschränkung nehmen wir an, dass d ∈Mb gilt. Wir unterscheiden die
beiden Fälle Ec = {a, b} und Ec = {a, d}.

Fall 3.1 : Ec = {a, b}.

Sei fc(a) = diadj und fc(b) = dkbdl, also

δc(w) ∈
{
diadj , dkbdl

}∗
.

Durch das Betrachten von δb(w) folgt |u|d = i+ (k + l)z1 und |v|d = j + (k + l)z2 für Zahlen
z1, z2 ∈ N. Dies liefert für δc(w) die Form

δc(w) ∈
{

(dkbdl)z1diadj(dkbdl)z2
}∗
.
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3 Billauds Vermutung auf beschränkter Buchstabenanzahl

Für Cb = {c} ergibt sich
w ∈

{
(dkbdl)z1diadj(dkbdl)z2 , c

}∗
.

Wir können also Cb = ∅ annehmen. In diesem Fall gilt

δb(w) ∈ {uav}∗.

Wir führen eine Fallunterscheidung nach Ed durch.

Fall 3.1(i): Ed = {a, b}.

Sei
δd(w) ∈

{
ca1aca2 , cb1bcb2

}∗
.

Durch Betrachten von δc(w) ergibt sich dann

δd(w) ∈
{

(cb1bcb2)z2(ca1aca2)(cb1bcb2)z2
}∗
.

Nach Lemma 2.14 existieren dann Wörter ũ, ṽ ∈ {b, c, d}∗ mit

w ∈ {ũaṽ}∗ .

Es folgt mit Proposition 2.10, dass w ein Fixpunktwort ist.

Fall 3.1(ii): Ed = {a, c}.

Sei
δd(w) ∈ {ba1aba2 , bc1cbc2}∗ .

Aufgrund der Gestalt von δb(w) folgt

δd(w) ∈
{

(bc1cbc2)|u|c(ba1aba2)(bc1cbc2)|v|c
}∗
.

Nach Lemma 2.14 gibt es dann wieder Wörter ũ, ṽ ∈ {b, c, d}∗ so, dass

w ∈ {ũaṽ}∗

ist und wir erhalten w ∈ FW.

Fall 3.2 : Ec = {a, d}.

Sei fc(a) = biabj und fc(d) = bkdbl. Es folgt

δc(w) ∈
{
biabj , bkdbl

}∗
und das Betrachten von δa(w) liefert sogar

δc(w) ∈
{

(bkdbl)|u|dbiabj(bkdbl)|v|d
}∗
.
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3.2 Billauds Vermutung auf vier Buchstaben

Eine Fallunterscheidung nach Ed schließt den Beweis ab.

Fall 3.2(i): Ed = {a, b}.

Sei
δd(w) ∈

{
ca1aca2 , cb1bcb2

}∗
.

Ist Cb = {c}, also
δb(w) ∈ {uav, c}∗

so sieht man leicht, dass

w ∈ {ca1uavca2 , cb1bcb2}∗ ⊂ {uav, c, b}∗

ist. Damit ist in diesem Fall w ∈ FW.

Ist Cb = ∅, so ergibt sich
δb(w) ∈ {uav}∗.

Definiere α = |u|c−a1
b1+b2

und β = |v|c−a2
b1+b2

. Die Gesalt von δb(w) liefert die folgende Formel:

δd(w) ∈
{

(cb1bcb2)αca1aca2(cb1bcb2)β
}∗
.

Nach Lemma 2.14 existieren Wörter ũ, ṽ ∈ {b, c, d}∗ so, dass

w ∈ {ũaṽ}∗

ist und wir folgern w ∈ FW.

Fall 3.2(ii): Ed = {a, c}.

Sei fd(a) = ba1aba2 und fd(c) = bc1cbc2 . Es ergibt sich also

δd(w) ∈ {ba1aba2 , bc1cbc2}∗ .

Ist Cb = ∅, so ist
δd(w) ∈

{
(bc1cbc2)|u|cba1aba2(bc1cbc2)|v|c

}∗
und wie bereits oben mehrmals benutzt, erhalten wir mit Lemma 2.14 die Aussage w ∈ FW.

Ist Cb = {c}, so setzen wir α = |u|d(k+l)+i−a1
c1+c2

und β = |v|d(k+l)+i−a2
c1+c2

. Dann ist α+β die Anzahl
der c’s, die pro Faktor aus δc(w) gelöscht wurden. Es ergibt sich damit

δb(w) ∈
{
cαuavcβ

}∗
und wir können den Fall Cb = {b} auf den Fall Cb = ∅ reduzieren.

Um die Billaudsche Vermutung 2.12 auf vier Buchstaben zu beweisen, fehlen also noch
zwei Fälle. Dies sind die Fälle, dass es genau zwei bzw. genau drei Buchstaben y gibt, mit
minCardExp(δy(w)) = 1. Diese Fälle lassen sich vermutlich ähnlich zu obigem Lemma bewei-
sen.
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4 Maximale Erzeugende

In diesem Kapitel betrachten wir die folgende Vermutung, die eine Abschwächung der Billaud-
schen Vermutung 2.12 ist. Dabei nehmen wir an, dass die Zeugen der reduzierten Wörter eine
bestimmte Form haben. Wir teilen das Alphabet in zwei disjunkte Teile Σ und Σ′ auf. Die
Elemente aus Σ stellen wir uns als die Erzeugenden vor, die Elemente aus Σ′ als sterbliche
Buchstaben.

Vermutung 4.1. Sei alph(w) = Σ ∪̇Σ′ und |Σ′| ≥ 2. Ist δx(w) ∈ FW für alle x ∈ alph(w) und
gibt es Zeugen fa für δa(w) so, dass Ea∪Ca = Σ für alle a ∈ Σ′ gilt, so ist w ein Fixpunktwort.

Die Elemente aus Σ sind dabei in gewisser Weise maximal, da sie den Träger von fa für alle
Elemente a ∈ Σ′ bilden. Folgender Spezialfall dieser Vermutung lässt sich leicht beweisen.

Lemma 4.2. Sei alph(w) = Σ ∪̇ Σ′ mit Σ = {y}. Ist δx(w) ∈ FW für alle x ∈ alph(w) und
gibt es Zeugen fa für δa(w) so, dass Ea = Σ und Ca = ∅ für alle a ∈ Σ′ gilt, so ist w ∈ FW.

Beweis. Nach Lemma 3.1 können wir annehmen, dass |alph(w)| ≥ 4 und somit |Σ′| ≥ 3 ist. Sei
fa(y) = αayβa für a ∈ Σ′. Die Wörter αa, βa liefern die relative Position aller Buchstaben in
Σ′. Damit lassen sich nach Lemma 2.14 eindeutige Wörter α, β konstruieren mit δa(α) = αa
und δa(β) = βa für alle a ∈ Σ′. Also gilt w ∈ {αyβ}∗ mit |αβ|y = 0. Es folgt w ∈ FW.

Je nach Anzahl der sterblichen Buchstaben aus Σ′ gibt es verschiedene Beweisansätze für
Vermutung 4.1. Wir unterscheiden die beiden Fälle |Σ′| = 2 und |Σ′| ≥ 3.

4.1 Maximale Erzeugende mit |Σ′| = 2

Folgendes Lemma wird mehrmals in Lemma 4.4 benutzt werden.

Lemma 4.3. Sei alph(w) = Σ∪̇Σ′. Sei lx die Länge eines Kontextes links von einem Buchstaben
x ∈ Σ und rx die Länge eines Kontextes rechts von x ∈ Σ. Das heißt für jeden Faktor xαy mit
x, y ∈ Σ, α ∈ Σ′∗ gilt |α| = rx + ly und für das Präfix αx (Suffix xα) von w mit x ∈ Σ, α ∈ Σ′∗

gilt |α| = lx (|α| = rx). Ist lz + rz > 0 für ein z ∈ Σ und δz(w) ∈ γ∗ mit |γ|z′ = 1 für z′ ∈ Σ,
so ist w ∈ FW ein Fixpunktwort.
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4 Maximale Erzeugende

Beweis. Anhand der Informationen über den Kontext der Buchstaben aus Σ konstruieren wir
eine Darstellung des Wortes w. Sei δz(w) = γn und γ = α0

∏l
i=1 xiαi mit xi ∈ Σ und αi ∈ Σ′∗.

Wir konstruieren w = γ̃n mit γ̃ = α̃0
∏l
i=0 xiα̃i. Dazu setzen wir

α̃0 =

α0 falls |α0| = lx1

α0[0, lz]z
∏s
i=1 (α0[ni−1, ni]z)α0[|α0| − lx1 − rz, |α0|] sonst

mit ni = lz + i(lz + rz) und s =
|α0|−(lz+rz+lx1 )

lz+rz
. Dabei bezeichnet α0[i, j] das Teilwort von α0

von Index i bis Index j. Analog lassen sich die α̃i konstruieren. Die Zuordnung ist aufgrund
der Voraussetzung lz + rz > 0 eindeutig und es gilt |αi| = |α̃i|alph(w)\{z}. Somit erhalten wir
w = γ̃n mit |γ̃|z′ = 1 und mit Proposition 2.10 folgt w ∈ FW.

Lemma 4.4. Sei w ein Wort und alph(w) = Σ ∪̇ {a, b} mit |alph(w)| = 5. Ist δx(w) ∈ FW für
alle x ∈ alph(w) und gibt es Zeugen fa, fb für δa(w) und δb(w) so, dass Ea = Σ = Eb gilt, so
ist w ∈ FW ein Fixpunktwort.

Beweis. Sei fa(x) = bixxbkx und fb(x) = ajxxalx für x ∈ Σ. Wegen x ∈ Ea und x ∈ Eb ist
ix + kx > 0 und jx + lx > 0 für x ∈ Σ. Die zu x gehörigen a’s und b’s nennen wir den Kontext
von x. Der Kontext von x muss nicht für jedes x derselbe Faktor in w sein. Wir fixieren ein
x ∈ Σ und betrachten die verschiedenen Fälle die für Ex, Cx und Mx auftreten können. Wir
wählen dabei x so, dass a 6∈Mx oder b 6∈Mx gilt. Wenn dies nicht möglich ist, so tritt Fall 2
der folgenden Fallunterscheidung auf.

Fall 1 : a, b ∈ Cx.

Man kann f |alph(w)\{x} = fx und f(x) = x wählen. Dies ist ein Zeuge für w, da jedes Vorkommen
von x neben einem Vorkommen eines a’s oder b’s steht. Also kann man x konstant wählen.

Fall 2 : a, b ∈Mx′ ∀x′ ∈ Σ.

Sei alph(w) = {a, b, x, y, z} das Alphabet von w. Da die Längen der Kontexte von Buchstaben
aus Σ durch die Wörter δa(w) und δb(w) bekannt sind, reicht es zu zeigen, dass diese Kontexte
bei jedem Vorkommen dieselben sind. Seien nämlich αx und βx der linke und rechte Kontext
von x ∈ Σ, so kann man einen Zeugen f konstruieren. Setze dazu f(a) = f(b) = ε und
f(x) = αxxβx.

Wir betrachten den Träger von fx mit x ∈ Σ. Gibt es einen Buchstaben aus Σ, der nicht in Ex
ist, so muss dieser nach Lemma 4.3 ohne Einschränkung in Cx sein. Ist dieser nämlich in Mx,
so lässt sich w ∈ FW mit Hilfe von Lemma 4.3 beweisen.

Haben wir den Fall y ∈ Ex und z ∈ Cx, so sind die Kontexte von y und z fest. Also kann
dieser Fall höchstens einmal auftreten, sonst sind die Kontexte aller Buchstaben aus Σ fest. Es
bleiben also ohne Einschränkung die folgenden beiden Fälle.

Fall 2.1 : y ∈ Ex, z ∈ Cx, x, y ∈ Ez und x, z ∈ Ey.
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4.1 Maximale Erzeugende mit |Σ′| = 2

Auf Grund des Zeugens fx von δx(w) gehören alle Buchstaben aus Σ′ bereits zu y. Also hat es
zu jedem Vorkommen von y dieselbe Anzahl an a’s und b’s vor und hinter diesem y. Betrachtet
man nun das Wort δz(w), so sieht man, dass die Buchstaben aus Σ′ von x und y erzeugt werden.
Mit Obigem folgt, dass πx,y(w) ∈ {xiyxj}∗ für zwei Zahlen i, j ∈ N ist. Es gilt

δz(w) ∈
{

(fz(x))i fz(y)(fz(x))j
}∗
.

Die Voraussetzungen von Lemma 4.3 sind somit erfüllt und es folgt w ∈ FW.

Fall 2.2 : y, z ∈ Ex, x, y ∈ Ez und x, z ∈ Ey.

Ohne Einschränkung nehmen wir an, dass πΣ(w) mit y beginnt. Sei fx(y) = αy,xyβy,x für
x, y ∈ Σ. Da πΣ(w) mit y beginnt, entspricht die Länge von αy,x der Länge des linken Teiles
vom Kontext von y, d. h. es gilt |αy,x| = iy + jy. Wir führen eine Fallunterscheidung nach |βy,x|
durch.

Fall 2.2(i): |βy,x| = ky + ly.

In diesem Fall sind die Kontexte von x komplett von fx(z) aufgenommen worden. Ein Vergleich
der Längen, analog zum Beweis von Lemma 4.3, zeigt die Positionen der x innerhalb von fx(z).
Es lässt sich somit ein Zeuge f konstruieren, mit a, b, x ∈ Mf und x, z ∈ Ef . Es folgt, dass
w ∈ FW ein Fixpunktwort ist.

Fall 2.2(ii): |βy,x| > ky + ly.

Da y ein Präfix von πΣ(w) ist, muss |αy,x| = iy + jy sein. Also ist der Kontext von y in
diesem Fall fest. Wir führen eine Fallunterscheidung nach den Suffixen von πΣ(w) durch. Da
|βy,x| > ky + ly ist, kann y kein Suffix von πΣ(w) sein. Ist z ein Suffix, so muss |βz,x| = kz + lz
sein. Wie in Fall 2.2(i) lässt sich aus den Längen von βy,x und αz,x die Positionen der x
feststellen und wir folgern, dass w ∈ FW ein Fixpunktwort ist. Also ist ohne Einschränkung x
ein Suffix von πΣ(w). Wir betrachten nun das Wort δy(w) und machen eine Fallunterscheidung
nach den Präfixen von πΣ(w). Wir wissen bereits, dass y ein Präfix von πΣ(w) ist.

Falls es ein Präfix der Form y+x gibt, so ist der Kontext von x fest, denn es gilt |βx,y| = kx + lx
und |αx,y| > ix + jx. Der Kontext von z ist aber auch fest, denn es gilt immer |αz,y| ≥ iz + jz.
Falls |βz,y| < kz + lz ist, so wird immer derselbe Kontext von αx,y aufgenommen und der
Kontext von z ist fest. Ist |βz,y| ≥ kz + lz so folgt direkt, dass der Kontext von z fest ist. In
beiden Fällen kann man also w ∈ FW folgern.

Gibt es ein Präfix der Form y+z, so gilt |αz,y| ≥ iz + jz und |βx,y| = kx + lx. Analog zu oben
kann man wieder folgern, dass die Kontexte der Buchstaben aus Σ alle fest sind und wir, dass
w ∈ FW ein Fixpunktwort ist.

Fall 2.2(iii): |βy,x| < ky + ly.
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4 Maximale Erzeugende

Da y ein Teil seines Kontextes fehlt, muss dieser immer von αz,x kommen. Der Kontext von y
ist somit fest. Nach Obigem gilt |αy,x| = iy + jy und z kann somit rechts keinen Kontext von y
bekommen. Dies impliziert |βz,x| ≥ kz + lz, so dass der Kontext von z fest ist.

Wir betrachten nun δz(w). Analog ergeben sich auch hier die drei Fälle abhängig von der
Länge |βy,z|. Der Fall |βy,z| = ky + ly lässt sich analog zu oben lösen. Im Fall |βy,z| < ky + ly
ergibt sich, dass x fest ist. Damit ist in diesem Fall w ∈ FW ein Fixpunktwort. Sei also ohne
Einschränkung |βy,z| > ky + ly. Wie oben in Fall 2.2(ii) ergibt sich dann, dass z ein Suffix von
w sein muss. Damit gilt |βz,x| = kz + lz und z kann seinen Kontext in δx(w) nicht verändern.
Durch Betrachten der Länge von αz,x findet man Zahlen k, l ∈ N mit πΣ(w) ∈

{
yxkz, xlz

}∗.
Man beachte, dass hierbei l > k gilt. Es folgt insbesondere, dass der Kontext von y größer als
der Kontext von x ist. Konkret gilt |βy,z| ≥ |αx,zβx,z|.

Wir betrachten nun δy(w). Nehmen wir zunächst k > 0 an. Da yxkz ein Präfix von πΣ(w)

ist, muss x den Kontext von y aufnehmen. Da es einen Faktor der Form yxkzxlz in πΣ(w)

geben muss, nimmt x einen Teil des Kontextes von z auf. Dies ist ein Widerspruch dazu, dass
z ein Suffix von πΣ(w) ist. Damit gilt k = 0. Also ist yz ein Präfix von πΣ(w) und z nimmt
den Kontext von y auf. Somit muss |αy,z| = 0, |αx,z| = 0, |βy,z| = |βx,z| und l = 1 gelten.
Insbesondere besitzt x links einen leeren Kontext. Durch Betrachten von δz(w) sieht man,
dass der Kontext von x nach rechts fest ist. Also ist der Kontext von x fest und es folgt, dass
w ∈ FW ein Fixpunktwort ist.

Fall 3 : a ∈Mx, b ∈ Cx.

Wir untersuchen diesen Fall mit einer Fallunterscheidung nach Ex.

Fall 3.1 : y 6∈ Ex.

Wir erkennen zunächst, dass z nur die a’s des Kontextes eines Buchstabens aus Σ aufnehmen
kann, denn die zu z gehörigen b’s trennen auf einer Seite ab.

Fall 3.1(i): y ∈Mx.

Der Buchstabe z kann nur die a’s eines Buchstabens aufnehmen. Da z wegen y ∈Mx immer
die a’s von y aufnehmen muss, werden die a’s aus dem Kontext von x nicht erzeugt. Damit
kann es diesen Fall nicht geben.

Fall 3.1(ii): y ∈ Cx.

Seien ohne Einschränkung die b’s, die zum Kontext von z gehören, links von z. Ein Vorkommen
von z in δx(w) hat dann eine Umgebung der Form b+aizaj . Dabei muss i = jz und j − lz =

jx+lx = jy+ly sein. Nach jedem z kommt also genau ein x oder y und es gilt πΣ(w) ∈ {zx, zy}∗.
Da die b’s von x bzw. y rechts von allen a’s aus dem Kontext sind, ist der Kontext dieser
Buchstaben fest. Wir konstruieren einen Zeugen f für w. Setze dazu f(a) = f(b) = f(z) = ε,
f(x) = bizajzzalz+jxbixxalxbkx und f(y) = bizajzzalz+jybiyybky . Man beachte dabei, dass die
Voraussetzungen implizieren, dass entweder ix = 0 oder lx = 0 ist.
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4.1 Maximale Erzeugende mit |Σ′| = 2

Fall 3.2 : z 6∈ Ex.

Dieser Fall lässt sich analog zu Fall 3.1 beweisen.

Fall 3.3 : y, z ∈ Ex.

Ohne Einschränkung betrachten wir den Fall, dass yx ein Faktor von πΣ(w) ist und y einen
Teil des Kontextes von x aufnimmt.

Fall 3.3(i): y nimmt nicht den gesamten Kontext von x auf.

Ein y kann nicht den Rest des Kontextes aufnehmen, da ein b rechts von y abtrennt. Dann
muss z den Rest des Kontextes von x aufnehmen. Also gibt es einen Faktor der Form
b+a∗ya∗a∗b+a∗a∗za∗b+ in δx(w). Es folgt dann leicht, dass πΣ(w) ∈ {yxz}∗ ist. Je nach
Position von x kann man dann einen Zeugen f für w konstruieren mit x ∈Mf oder x ∈ Cf .

Fall 3.3(ii): y nimmt den gesamten Kontext von x auf.

Ähnlich wie in Fall 3.1(ii) konstruieren wir einen Zeugen f von w. Wir setzen f(x) = f(a) =

f(b) = ε und f(y) = biyajyyaly+jxbixxalxbkx . Dabei gilt wieder ix = 0 oder lx = 0.

Falls z seinen Kontext nicht erweitert, also |fx(z)|a = |fb(z)|a gilt, so kann man f(z) =

bizajzzalzbkz setzen. Erweitert z seinen Kontext, so muss er die a’s eines x aufnehmen. Wir
können analog zu f(y) von oben, den Wert von f(z) konstruieren.

In allen Fällen ist f ein Zeuge von w und somit w ein Fixpunktwort.

Fall 4 : a ∈ Ex.

Wir führen eine Fallunterscheidung nach dem Alphabet des Wortes fx(a), also nach jenen
Buchstaben, die von a erzeugt werden.

Fall 4.1 : Es gibt ein y ∈ Σ mit y ∈ alph(fx(a)).

Dann gilt

|w| ≥ |w|a · |fx(a)|alph(fx(a))\{b} + |w|b + |w|x ≥ |w|a · 2 + |w|b + |w|x.

Durch Subtraktion von |w|a und |w|b folgt dann
∑

z∈Σ |w|z ≥ |w|a + |w|x. Wegen |fb(z)|a > 0

gehört zu jedem Buchstaben z ∈ Σ mindestens ein a und somit gilt∑
z∈Σ

|w|z ≤ |w|a.

Daraus erhalten wir |w|x = 0, was ein Widerspruch ist.

Fall 4.2 : alph(fx(a)) = {a, b}.

Sei fx(a) = biabj . Wir nehmen an, dass kein Zeuge f direkt aus fx konstruierbar ist. Also gibt es
ohne Einschränkung einen Faktor der Form bi1xbi2abj mit i1 +i2 = i in w. Betrachtet man einen
beliebigen Faktor yz aus πΣ\{x}(w) in δx(w), so hat dieser die Form (biabj)∗y(biabj)∗z(biabj)∗.

23



4 Maximale Erzeugende

Ohne Einschränkung kann man dann den Zeugen fx so wählen, dass y, z ∈ Cx ist. Wir
betrachten nun δy(w) für ein x 6= y ∈ Σ. Nach obigen Betrachtungen in Fall 1 und Fall 3
müssen noch die Fälle a ∈ Ey und b ∈ My, b ∈ Ey und a ∈ My oder a ∈ My und b ∈ My

untersucht werden.

Gilt b ∈ Ey und a ∈My so sind a und b äquivalent. Diese Situation wird noch in Lemma 5.7
untersucht und es wird in diesem Fall w ∈ FW bewiesen.

Sei a ∈ Ey, b ∈ My. Es folgt wieder fy(a) = biabj und wir können den Morphismus f mit
f(a) = biabj , f(b) = ε und f(z) = z für alle z ∈ Σ als Zeugen wählen.

Wir können somit annehmen, dass a, b ∈My gilt. Wir führen eine Fallunterscheidung für die
Buchstaben x, y durch.

Fall 4.2(i): x ∈My oder z ∈My.

Die Voraussetzungen von Lemma 4.3 sind in diesem Fall erfüllt. Es ergibt sich damit w ∈ FW.

Fall 4.2(ii): x ∈ Cy.

Aufgrund der Existenz eines Faktors der Form bi1xbi2abj in w, gibt es einen Faktor der Form
fy(z)xfy(z) in δy(w). Betrachten wir πxz(w), so sieht man damit, dass z weder Präfix noch
Suffix sein kann. Wäre z beispielsweise ein Suffix von πxz(w), so gibt es i1-viele Vorkommen
von b’s auf der rechten Seite zu viel, die zu keinem Kontext gehören. Dies kann wegen δa(w)

nicht sein. Dann muss jedoch xz ein Präfix und zx ein Suffix von πxz(w) sein. Das erste bzw.
letzte x haben dann aber links bzw. rechts kein z, das ihnen ihren Kontext liefert. Daraus
würde |fa(x)| = |fb(x)| = 1 folgen, also würde x keinen Kontext besitzen. Ein Widerspruch zur
Voraussetzung x ∈ Ea bzw. x ∈ Eb.

Fall 4.2(iii): z ∈ Cy.

Der Kontext von x ist dann durch fy(x) festgelegt. Der Kontext von y ist auch festgelegt, da
der linke bzw. rechte Teil des Kontextes von y ein Präfix bzw. Suffix von (biabj)|fb(z)|a der
entsprechenden Länge ist. Analog ist der Kontext von z fest. Es lässt sich dann daraus ein
Zeuge f konstruieren mit a, b ∈Mf und x, y, z ∈ Ef . Sei dazu αi der linke und βi der rechte
Kontext von i ∈ {x, y, z}. Man setze dann f(i) = αiiβi und f(a) = f(b) = ε. Es ergibt sich
f(w) = w nach Konstruktion.

Fall 4.2(iv): x, z ∈ Ey.

Wir betrachten πxz(w). Für den Fall, dass πxz(w) mit demselben Buchstaben anfängt und
aufhört, sieht man leicht, dass abj ein Suffix von πab(fy(x)) und bia ein Präfix von πab(fy(x))

ist. Ist x Suffix und z Präfix (x Präfix und z Suffix geht analog), von πxz(w), so ist bia ein
Präfix von πab(fy(z)) und abj ein Suffix von πab(fy(x)). Ist abj kein Suffix von πab(fy(z)), so
darf bia auch kein Präfix von πab(fy(x)) sein und es gilt πΣ(w) ∈ {zylx} für ein festes l ∈ N.
Ein Zeuge f für w lässt sich leicht konstruieren. Wir nehmen daher an, dass abj ein Suffix
von πab(fy(x)) und bia ein Präfix von πab(fy(x)) ist. Also ist bi1xbi2abj ein Faktor von fy(x).
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4.2 Maximale Erzeugende mit |Σ′| ≥ 3

Damit ist der Kontext von jedem x gleich. Wie oben in Fall 4.2(iii) lässt sich ein Zeuge f für w
konstruieren mit a, b ∈Mf und x, y, z ∈ Ef .

Bemerkung 4.5. Der Beweis von Lemma 4.4 lässt sich für vier Buchstaben verallgemeinern.
Es gilt dann Σ = {x, y} und Σ′ = {a, b}. Fall 1 aus Lemma 4.4 lässt sich analog beweisen. Die
Fälle 2 und 4 lassen sich direkt mit Lemma 4.3 beweisen.

Man muss also nur den Fall 3 mit a ∈Mx und b ∈ Cx untersuchen. Sei also δx(w) ∈ {aiyaj , b}∗.
Da jedes y in seinem Kontext mindestens ein b hat, ist ohne Einschränkungen bkaiy ein Präfix
von w und es gilt δx(w) ∈ {bkaiyaj , b}∗. D. h. der Kontext von x liegt innerhalb des aj Blocks.
Da jedes x in seinem Kontext mindestens ein b hat, gibt es nur ein x im Block. Es gilt somit
w ∈ {bkaiyalyajxxalxbkx}∗ und damit ist w ∈ FW ein Fixpunktwort.

4.2 Maximale Erzeugende mit |Σ′| ≥ 3

Wir untersuchen nun Vermutung 4.1 mit |Σ′| ≥ 3. Sei für diesen Abschnitt das Wort w so
gewählt, dass w die Bedingungen aus Vermutung 4.1 erfüllt mit |Σ′| ≥ 3. Wir setzen die Zeugen
fa auf fa(x) = βx,axγx,a und zeigen zunächst, dass die sterblichen Buchstaben zwischen zwei
Erzeugenden aus Σ immer gleich auftauchen.

Lemma 4.6. Sei xy ein Faktor in πΣ(w) und seien xα1y, . . . , xαny Faktoren in w mit αi ∈ Σ′∗.
Dann sind alle αi identisch, d. h. α1 = . . . = αn.

Beweis. Da |Σ′| ≥ 3 ist, existieren paarweise verschiedene Buchstaben a, b, c ∈ Σ′. Betrachten
wir δa(w), so gibt es einen Zeugen fa. Es gilt fa(x) = βx,axγx,a für x ∈ Σ. Wir erhalten also
δa(αi) = γx,aβy,a für alle i. Die Vorraussetzungen aus Lemma 2.14 sind somit erfüllt und es
gilt α1 = . . . = αn.

Im Gegensatz zum Fall |Σ′| = 2 sind hier die Faktoren fest. Das Problem ist nun, dass
die Kontextlänge von Buchstaben aus Σ nicht bekannt ist. Wir werden im Folgenden die
Kontextlänge bestimmen. Zunächst stellen wir die Relation der Buchstaben aus Σ in einem
Graphen dar.

Definition 4.7. Wir definieren einen GraphGw = (V,E) mit V = Σ∪Σ̃, wobei Σ̃ = {x̃ | x ∈ Σ}
eine disjunkte Kopie ist, und E = {(x, ỹ) | xy ist ein Faktor von πΣ(w)}. Außerdem definieren
wir eine totale Quasiordnung a ≤x b für a, b ∈ Σ′, x ∈ Σ falls δb(γx,a) ein Präfix von δa(γx,b) ist.
Analog definieren wir a x≤ b für die linke Seite mit Hilfe von βx,a.

Wir können damit folgendes Lemma beweisen.

Lemma 4.8. Sind x, x′ ∈ Σ ⊂ V in derselben Zusammenhangskomponente aus Gw, so folgt
aus a ≤x b auch a ≤x′ b.
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4 Maximale Erzeugende

Beweis. Wir beschränken uns auf den Fall, dass es ein y ∈ Σ gibt mit (x, ỹ), (x′, ỹ) ∈ E. Sei
xαy ein Faktor in w. Da δa(α) = γx,aβy,a und δb(α) = γx,bβy,b ist, impliziert a ≤x b in direkter
Weise a y≤ b. Analog impliziert dies dann a ≤x′ b.

Auf gleiche Weise kann man Lemma 4.8 auch für ỹ, ỹ′ ∈ Ṽ und a y≤ b beweisen.

Im Fall |Σ′| ≥ 5 geben wir nun einen konstruktiven Beweis an, dass w ∈ FW gilt. Wir zeigen
dazu, dass es Wörter ux, vx gibt, so dass βx,a = δa(ux), γx,a = δa(vx) und α = vxuy gelten,
wobei xαy mit α ∈ Σ′∗ der eindeutige Faktor zwischen x und y ist. Damit ergibt sich dann ein
Zeuge f für w mit f(x) = uxxvx.

Proposition 4.9. Vermutung 4.1 gilt für |Σ′| ≥ 5.

Beweis. Seien a, b, c, d, e ∈ Σ′ und sei x ∈ Σ. Betrachte ein y ∈ Σ mit (x, ỹ) ∈ E. Wir
konstruieren nun vx. Gibt es kein y ∈ Σ mit (x, ỹ) ∈ E, so liegt x am Rand von w und wir
setzen vx so, dass vx ∈ Σ′∗ ist und xvx ein Suffix von w ist. Sei also xαy mit α ∈ Σ′∗ ein Faktor
von w. Seien αi ≤p α die maximalen Präfixe, so dass δi(αi) = γx,i gilt mit i ∈ {a, b, c, d, e}. Wir
wählen die Buchstaben a, b, c, d, e ohne Einschränkung so, dass αa ≤p αb ≤p αc ≤p αd ≤p αe ist.
Wir zeigen nun, dass αc unabhängig von y ist. Sei also (x, ỹ′) ∈ E ein weiteres Paar. Konstruiere
analog α′i für y

′. Es gilt nun aber δi(αc) = δi(α
′
c) für i ∈ {c, d, e}. Nach Lemma 2.14 ist damit

αc = α′c. Wir setzen vx = αc. Symmetrisch lässt sich uy berechnen, indem man minimale Suffixe
wählt. Lemma 4.8 stellt sicher, dass diese Wahl innerhalb der Zusammenhangskomponente
gültig ist. Für jede Zusammenhangskomponente Z kann man nun unabhängig ux und vx
ausrechnen für x ∈ Z. Wir setzen damit f(x) = uxxvx für x ∈ Σ und f(η) = ε für η ∈ Σ′. Es
gilt f(w) = w nach Konstruktion und damit w ∈ FW.

Bemerkung 4.10. In Proposition 4.9 wurde nur die Information δa(w) ∈ FW mit a ∈ Σ′

benutzt. Proposition 4.9 gilt also auch ohne die Voraussetzung δx(w) ∈ FW für x ∈ Σ.

Dabei kann man auf die Voraussetzung |Σ′| ≥ 5 ohne weiteres nicht verzichten. Die drei
reduzierten Wörter δa(w), die für den Beweis von Lemma 2.14 vorausgesetzt werden mussten,
sind bereits minimal. Diese werden jedoch in beide Richtungen, eimal für uy und einmal für vx,
benötigt.
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5 Beispiele

Um ein besseres Verständnis für die Menge der Wörter zu entwickeln, welche die Billaudsche
Vermutung erfüllen, ist es hilfreich, Beispiele zu betrachten. Wir schränken zunächst die Menge
der Beispiele auf primitive Wörter ein.

Definition 5.1. Sei w ein Wort. Das kleinste Wort u, für das es ein n ∈ N gibt mit w = un,
nennen wir die primitive Wurzel von w. Stimmt w mit seiner primitiven Wurzel überein, so
nennen wir w primitiv.

Lemma 5.2. Sei w ein Wort. Genau dann ist w ein Fixpunktwort, wenn seine primitive
Wurzel ein Fixpunktwort ist.

Beweis. Sei w = un und u die primitive Wurzel von w. Sei f ein Zeuge von w. Es gilt
un = w = f(w) = f(un) = f(u)n. Ein Vergleich der Längen liefert f(u) = u. Ein Zeuge von u
ist auf Grund derselben Rechnung auch ein Zeuge von w und somit folgt die Aussage.

Lemma 5.2 zeigt, dass man sich auf primitive Wörter beschränken kann.

5.1 Zwillinge

Wir lehnen uns an die Notation von [Hol2009] an. Wir betrachten ein Wort w. Sei ra das größte
gemeinsame Präfix aller Suffixe von w, die mit a starten. Sei la analog das größte gemeinsame
Suffix aller Präfixe von w, die mit a enden. Sei na = laara der maximale gemeinsame Kontext
aller a in w. Wir nennen a einen Zwilling von b, falls na = nb gilt und schreiben dann a||b.

Wir betrachten zunächst ein Beispiel, um zu zeigen, wann Zwillinge auftreten können.

Beispiel 5.3. Wir betrachten das Wort w = acdcdcbdcdcbdcdacdcd. Das Wort w ist ein
Fixpunktwort, wie die folgende Abbildung zeigt.

a c d c d c b d c d c b d c d a c d c d

Wir untersuchen nun, ob w den Bedingungen der Billaudschen Vermutung genügt. Für δx(w)

mit x ∈ {c, d} kann man nahezu denselben Zeugen wie auch für w nehmen. Exemplarisch sieht
dies für δc(w) folgendermaßen aus.
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5 Beispiele

δc(w) = a d d b d d b d d a d d

Wir betrachten nun was passiert, falls wir einen der Erzeugenden a oder b löschen. In δb(w)

erzeugt sich dann der Kontext von a und b selbst.

δb(w) = a c d c d c d c d c d c d a c d c d

Das Wort δa(w) ist allerdings kein Fixpunktwort. Der Kontext von a kann sich weder selbst
erzeugen, noch von einem anderen Buchstaben aufgenommen werden. Um trotzdem sicher zu
stellen, dass w die Billaudsche Vermutung erfüllt, kann man w so modifizieren, dass a einen
Zwilling bekommt. Setze w′ = acdcdgcbdcdcbdcdacdcdg. Es ist dann a||g und in δa(w) kann g
den Kontext von a aufnehmen und umgekehrt. Die Zeugen von δx(w) für x ∈ {b, c, d} können
übernommen werden, wenn man g in den Kontext von a aufnimmt.

Ein Beweis der Billaudschen Vermutung auf Wörter, die einen Zwilling haben, wäre nützlich.
Leider reicht das Wissen aus Beispiel 5.3 nicht aus. Anhand des nächsten Beispiels sehen wir,
dass die lokale Information eines Zwillings a||b zusammen mit geeigneten Zeugen fa, fb für
δa(w) und δb(w) nicht ausreicht.

Beispiel 5.4. Aus δa(w), δb(w) ∈ FW, a||b und aus der Existenz von Zeugen fa, fb mit
alph(lara) ⊆Ma ∩Mb folgt nicht w ∈ FW. Betrachte dazu das Wort

w = x a c d c b c z x c z x c z x a c d c b c z

Es gilt dort alph(lara) = Ma = Mb = {c, d}. Das Wort w ist kein Fixpunktwort, da weder x
noch z das c aus einem Faktor xcz aufnehmen können. In δa(w) ist dies jedoch möglich, da a
die anderen x von einem c getrennt hat.

δa(w) = x c d c b c z x c z x c z x c d c b c z

Analog sieht man, dass δb(w) ein Fixpunktwort ist.

Man sieht also, dass die Situation mit Zwillingen nicht offensichtlich ist. Einfacher ist dies mit
Drillingen.

Lemma 5.5. Sei a||b||c und aβbγc ein Faktor von na. Sei außerdem alph(βγ) ⊆Mb für einen
geeigneten Zeugen fb. Dann ist w ∈ FW.
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5.2 Kontextverschiebung und -erweiterung

Beweis. Betrachte ein Vorkommen eines Faktors aβγc in δb(w). Dann ist dies entweder ein
Faktor von fb(x)fb(y) oder ein Faktor von fb(x) für x, y ∈ alph(w). Im ersten Fall sei ohne
Einschränkungen aβ ein Faktor von fb(x). In beiden Fällen setzen wir f(x) auf fb(x), wobei
der Faktor aβ auf aβb ergänzt wird. Die restlichen Werte von f ergeben sich direkt aus fb.
Wir setzen f(z) = fb(z) für z 6= x, b und f(b) = ε. Es gilt nach Konstruktion f(w) = w und
f 6= id.

Wir definieren noch einen Spezialfall von Zwillingen. Für diese Art von Zwillingen lässt sich
leicht beweisen, dass sie nur in Fixpunktwörtern auftreten.

Definition 5.6. Sei w ein Wort und a, b ∈ alph(w). Wir nennen a und b äquivalent, falls a||b
und ab ein Faktor von na ist.

Lemma 5.7. Sei w ein Wort, in dem a und b äquivalent sind. Dann ist w ∈ FW.

Beweis. Wähle f : alph(w)∗ → alph(w)∗ mit f(a) = ab, f(b) = ε und f(x) = x für alle
x ∈ alph(w) \ {a, b}. Der Morphismus f ist dann ein Zeuge von w.

5.2 Kontextverschiebung und -erweiterung

In Beispiel 5.3 wurde bereits beobachtet, dass der Kontext eines Erzeugenden x in δx(w) sich
selbst erzeugt oder aufgenommen werden muss. Daraus ergeben sich Effekte auf die Weise, dass
andere Buchstaben ihren Kontext erweitern oder verschieben. Wir betrachten dieses Phänomen
in einem Beispiel.

Beispiel 5.8. Betrachte das folgende Fixpunktwort w wobei α = aβ ist. Seien α und β so
gewählt, dass d, e, f 6∈ alph(α) gilt und es einen Buchstaben b 6= a gibt mit |α|b = 1. Eine
mögliche Wahl von α wäre α = aabca.

w = f α α α a d β α f α e α α f α e α α f α α α a d β α

Ein Zeuge für δx(w) mit x ∈ alph(α) ergibt sich durch Anwenden von δx auf die Bilder des
Zeugens von w. Für δd(w) ergibt sich ein Zeuge durch f 7→ f, e 7→ e, b 7→ α und x 7→ ε

für x ∈ alph(w) \ {b, e, f}. Die Kontexte erzeugen sich also dort selbst. In δe(w) tritt eine
Kontexterweiterung von f auf. Betrachte dazu die folgende Faktorisierung von δe(w).

δe(w) = f α α α a d β α f α α α f α α α f α α α a d β α

Wir betrachten nun noch ein Beispiel, in dem ein Buchstabe seinen Kontext nicht erweitert,
sondern verschiebt.
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5 Beispiele

Beispiel 5.9. Wir betrachten das folgende Wort w.

w = d d e a b d d e c d d e c d d e a d d e a b d d e a

Es erfüllt die Bedingungen der Billaudschen Vermutung 2.12 und insbesondere die Bedingungen
der abgeschwächten Vermutung 4.1. Wähle dazu Σ = {a, b, c}. Der Kontext von c ist hierbei
d2ec. In δa(w) kann sich dieser Kontext jedoch verschieben, wie man an folgender Faktorisierung
erkennt. Gleichzeitig erweitert b seinen Kontext.

δa(w) = d d e b d d e c d d e c d d e d d e b d d e

In diesem Beispiel ist diese Verschiebung jedoch nicht nötig. Alternativ könnte man die
Abbildung e 7→ d2e und x 7→ x für x 6∈ {d, e} als Zeugen wählen.
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6 Zusammenfassung und Ausblick

In dieser Arbeit wurde die Billaudsche Vermutung thematisiert und weitere Ergebnisse zur
Vermutung gefunden. Es wurden Resultate auf beschränkter Alphabetgröße erzielt. Zudem
wurde eine neue, abgeschwächte Vermutung eingeführt und teilweise bewiesen. Es ist unklar,
inwieweit die Vermutung 4.1 die Billaudsche Vermutung abdeckt. Dem Autor ist bislang kein
Beispiel bekannt, das die Voraussetzungen der Billaudsche Vermutung erfüllt, aber keine Zeugen
besitzt, welche den Voraussetzungen von Vermutung 4.1 genügen.

Bisher wurde noch kein Ansatz gefunden, die Billaudsche Vermutung in ein anderes Problem
einzubetten. Das resultiert in langen, elementaren Beweisen. Es könnte hilfreich sein, wenn sich
Verbindungen zur Graphentheorie oder anderen Resultaten aus der Kombinatorik auf Wörtern
finden lassen.

Eine Verallgemeinerung der Vermutung auf unendliche Wörter wurde bislang nicht untersucht.
Ergebnisse darüber könnten nützlich sein für die Vermutung auf endlichen Wörtern.
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