Institut flr Architektur von Anwendungssystemen
Universitat Stuttgart
Universitatsstral3e 38
D-70569 Stuttgart

Diplomarbeit Nr. 3144

Ausflihrung von
Workflow-Fragmenten in BPEL

Alex Hummel

Studiengang: Softwaretechnik

Prufer: Jun.-Prof. Dr.-Ing. Dimka Karastoyanova
Betreuer: Dipl.-Inf. Mirko Sonntag

begonnen am: 13. Januar 2011

beendet am: 15.duli 2011

CR-Klassifikation: H.4.1

Inhaltsverzeichnis

1

Einleitung
1.1 Verwandte Arbeiten L oo
1.2 Aufgabenstellung L
Grundlagen
2.1 Workflows und Workflow Management Systeme
2.1.1 Dimensionen eines Workflows
2.1.2 Grundlagen von Worflow Management Systemen
2.2 Service Oriented Architecture (SOA), .
2.3 Web Services
23.1 SOAP e
2.3.2 Web Services Description Language (WSDL)
2.3.3 Web Service Verzeichnisdienste
24 WS-BPEL e
2.5 Java Persistence API (JPA) L
251 EntityManager oo oo
2.5.2 Zusammengesetzte Hauptschliissel
2.6 XSLT
2.6.1 XSLT style sheet Struktur
2.6.2 Verwendete XSLT Elemente
2.6.3 Beispiel einer XSLT Transformation
Konzept
3.1 Prozessfragmente o
3.1.1 Buildtime Komposition,
3.1.2 Runtime Komposition
3.1.3 Prozessfragmentelemente 0L,
3.2 Eingefithrte Aktivitdten,
3.3 Zusammensetzung von Fragmenten,
3.3.1 Komposition mit frg:fragmentFlow
3.3.2 Komposition mit frg:fragmentSeqeuence
3.3.3 Komposition mit frg:fragmentRegion
3.4 Mapping
3.5 Mediation
3.6 Schleifen e
3.7 Einschrdankungen bei der Komposition
3.8 Generische Architektur oo

11

13
13
13
14
15
16
17
17
19
21
25
26
27
27
28
29
29

33

33
33
33
34
36
37
39
40
40
41
45
46

48

39

Komposition-API

4 Ubersicht iiber Apache ODE

4.1
4.2
43
44

Architektur e e
Deployment
Versionierung
Apache ODE Channels

5 Umsetzung

5.1
5.2

53
54

55
5.6

5.7

Erweiterung der ODE BPEL Compiler Komponente
Erweiterung der ODE BPEL Runtime Komponente
5.2.1 Aktivitdtenlogik oL oo o
5.2.2 Zusatzliche Channels
5.2.3 Kleben von Prozessfragmenten
5.2.4 Verbinden von frg:fragmentExit und frq:fragmentEntry Aktivitdten
5.2.5 Ausfiihrung der Logik der eingefithrten APIs
526 FCAnalyser
Erweiterung der ODE Data Access Objects Komponente
Mediator-Komponente o o o
5.4.1 Variable Mediation o Lo oL
5.4.2 Correlation Set Mediation
Erweiterung der ODE Integrationlayer Komponente
Werkzeug fiir die Fragmentenkomposition
Erstellung von Prozessinstanzen

6 Anwendungsbeispiel

6.1
6.2

6.3

6.4
6.5

Ziel der Festkorpersimulation 00 L.
Uberblick tiber die Simulationsanwendung
6.2.1 Aufbau und Funktionsweise der Simulationsanwendung
6.22 OpalManager.
6.2.3 Ressourcen Management
6.2.4 Akquirieren eines Services L.
Prozesse der Simulationsanwendung
6.3.1 Haupt-Prozess
6.3.2 Nachbereitungsprozess
Aufteilung des Prozesses in Prozessfragmente
Zusammensetzung von Prozessfragmenten zur Laufzeit

7 Zusammenfassung und Ausblick

Literaturverzeichnis

Abbildungsverzeichnis

2.1
2.2
2.3
2.4
2.5

2.6

3.1
3.2
33
3-4
3-5
3.6
3-7
3.8
39
3.10
3.11
3.12
3-13
3-14
3-15

5.1
5.2
53

6.1
6.2
6.3
6.4
6.5
6.6
6.7

Workflow Dimensionen 14
WEMS Architektur 15
SOA Dreieck 16
Web Service Verzeichnisdienste 20
Zusammenhang zwischen <correlationSet>, <property>, <propertyAlias> und

der Nachricht. 25
Beziehungen zwischen den JPA Konzepten 26
Fragmentelemente 35
Legende 37
Kleben von Prozessfragmenten (geringere Schachtelungstiefe) 38
Kleben von Prozessfragmenten (grofiere Schachtelungstiefe) 39
fre:fragmentSequence Aktivitat L Lo L Lo 41
Komposition mit frg:fragmentSequence 42
Variablen-Mapping durch durch Loschen der Variablendefinition 43
Sichtbarkeit der Variablen beim Variablen Mapping 44
Variablenbenutzung im Prozessfragment 45
Mehrere frg:fragmentEntry Aktivititen in einem Prozessfragment 47
Generische Architektur L o 49
Erweiterte generische Architektur 50
Sequenzdiagramm glue(...) L o o 51
Sequenzdiagramm getAvailableVariables(...) 51
Optionale frg:fragmentExit Aktivitat 55
ODE Architektur 58
Kompilieren einer Aktivitat. 0L 62
Werkzeug fiir die Fragmentenkomposition 78
Apache ODE Web Interface 79
Aufbau der Simulationsanwendung o o Lo 82
Beispiel des Akquirierens eines Servicesin BPEL 84
Schematische Darstellung der Simulationsprozesse 85
Aufteilung des Prozesses in Prozessfragmente. 87
Startfragment der Simulationsanwendung. 88
OpalMC Prozessfragment der Simulationsanwendung. 89
OpalMCCallback Prozessfragment der Simulationsanwendung. 90

6.8

6.9

6.10
6.11
6.12
6.13
6.14
6.15
6.16

OpalMedia Prozessfragment der Simulationsanwendung. 91

Liste der Prozessinstanzen von Apache ODE 92
Einkleben von dem OpalMC Prozessfragment. 92
Verbinden von dem Startfragment mit dem OpalMC Prozessfragment 93
Einkleben von dem OpalMCCallback Prozessfragment.. 93
Verbinden von den OpalMC und OpalMCCallback Prozessfragmenten 94
Verbinden von den OpalMCCallback und OpalMC Prozessfragmenten 95
Einkleben von dem OpalMedia Prozessfragment. 95
Verbinden von den OpalMC und OpalMedia Prozessfragmenten 96

Verzeichnis der Listings

2.1
2.2
2.3
2.4

2.5
2.6

3.1
3.2
33
34
3-5
3.6
3.7
3.8
39
3.10
3.11
3.12

3-13

4.1
4.2

5.1
5.2
53
54

Beispiel einer SOAP Nachricht 18
Beispiel einer fehlerbeschreibenden SOAP Nachricht 19
EntityManagerFactory instantiierung 26
Beispiel XML-Dokument L o 30
Beispiel eines XSLT Stylesheets 30
Ausgabe der Transformation 31
frefragmentEntry 35
frefragmentExit 35
frefragmentRegiono 36
Beispiel zu frg:fragmentScope und frg:fragmentFlow 36
Beispiel zu frg:fragmentEntry Variablendefinition 43
Beispiel zu frg:fragmentRegion Variablendefinition 44
Beispiel eines Komplexen Datentyps fiir die Mediation 45
Schnittstelle der Mediator-Komponente 50
FragmentComposition Schnittstelle 52
Datenstruktur Activitylnfo o o 52
Datenstruktur VariableInfo 53
Datenstruktur Mapping 53
FragmentManagement Schnittstelle 55
Deployment Descriptor Wurzelelement 59
Service Binding im Deployment Descriptor 59
Pseudocode der Logik von der frg:fragmentFlow Aktivitat 64
Pseudocode der Logik von der frg:fragmentSequence Aktivitat 65
Pseudocode der Logik von der frg:fragmentRegion Aktivitat. 66
Pseudocode der Logik von der frg:fragmentEntry Aktivitat 67

55

5.7

5.8

59

5.10
5.11
5.12
5-13
5.14
5-15
5.16
5-17
5.18

519

Pseudocode der Logik von der frg:fragmentExit Aktivitat 68

FragmentComposition Channel 68
FragmentCompositionResponse Channel 68
FragmentEntryMappedChannel 68
Pseudocode der Operation glue(...) 69
Pseudocode der Operation wireAndMap(...) 70
FragmentCompositionResponse 70
SQL Ausdruck zum Erstellen der Tabelle fiir Speicherung der Channels 72
SQL Ausdruck zum Erstellen der Tabelle fiir den Mapping 72
Beispiel einer var_mediator.xslt Datei. 73

Interne Darstellung des Wertes einer boolean Variable mit dem Wert true in ODE 73
Interne Darstellung des Wertes einer integer Variable mit dem Wert 1 in ODE . 74

XML Darstellung eines initialisierten CorrelationSets 74
Beispiel einer cset_mediator.xslt Datei. 75
Web Service 76

1 Einleitung

Seit einiger Zeit besteht das Bestreben die Workflows modular aufzubauen und dadurch
die Steigende Komplexitdt der Prozesse zu bewiltigen, sowie die Wiederverwendung der
Prozessfragmenten zu erreichen. Dabei orientiert man sich oft an dem Konzept der Software-
komponenten, die eine bestimmte Funktionalitdt darstellen und bei bedarf wiederverwendet
werden konnen.

Traditionell muss ein Prozess vollstindig definiert werden, bevor es ausgefiihrt werden
kann. Das verursacht die Starrheit der Prozesse. So kann nur langsam auf sich d&ndernden
Umsténde reagiert werden, da die Prozesse aktualisiert, deployt und bei bedarf die laufenden
Prozessinstanzen auf die neuen Prozessmodelle migriert werden miissen.

Im Bereich von Business Workflows tritt zuséitzlich das Problem auf, dass das Wissen tiber
den Geschiftsprozess tiber mehrere Teilnehmer verteilt ist, was die Modellierung des Prozes-
ses als Ganzes erschwert. Es konnen dabei oft nicht alle moglichen Situationen vorhergesehen
und somit modelliert werden [ELU10]. Dieser Fakt erfordert von den Workflow Manage-
ment Systemen die Moglichkeit der Zusammensetzung von Prozessen zur Laufzeit. Somit
wdre es moglich, das lokale Wissen als Prozessfragmente zu modellieren und zur Laufzeit
zusammenzusetzen, die unvorhergesehene Ereignisse liefen sich durch Hinzufiigen neuer
Prozessfragmente abdecken.

Im Bereich der Scientific Workflows verwenden die Wissenschaftler Workflows, um die
Datenverarbeitung zu automatisieren. Dabei tritt das Problem auf, dass die Wissenschaftler
nicht vorhersehen konnen, welche Schritte ab einem bestimmten Punkt im Prozess vor-
genommen werden miissen. Sie brauchen eine Moglichkeit, die zur Laufzeit erzeugten
Daten zu analysieren, und abhédngig von den Daten die nédchsten Schritte im Prozess zu
modellieren, sowie die Prozessausfiihrung auf dem vervollstindigten Prozessmodell fortzu-
setzen [WOdog] [TDGSo6]. Eine mogliche Losung dieser Probleme ist Teile von Prozessen
als separate Prozessfragmente zu modellieren und diese in einem Workflow Management
System zur Laufzeit zu einem Prozess zusammensetzen lassen, was in dieser Diplomarbeit
behandelt wird.

1.1 Verwandte Arbeiten

Heute existieren mehrere Ansdtze, um den oben genannten Problemen entgegenzuwir-
ken. Die BPEL-SPE [BPEo5] Erweiterung von BPEL ermoglicht die Modularisierung und
Wiederverwendung von Prozessfragmenten als Subprozesse. Diese kénnen innerhalb von
Prozessen als inline Subprozesse, oder als separate Subprozesse definiert werden, die aus

1 Einleitung

unterschiedlichen Prozessen aufgerufen werden konnen. Der Schwerpunkt dabei liegt auf
der Kontrolle des Lebenszyklus des Subprozesses, es ist jedoch nicht vorgesehen die auf-
zurufende Subprozesse zur Laufzeit zu bestimmen. Die aufgerufene Subprozesse miissen
einen bestimmten Porttyp implementieren, dieser wird zur Build-Time bestimmt.

In [ATEA06] wird ein Konzept von Worklets vorgestellt. Worklets stellen Subprozesse dar,
und werden genutzt um die passende Logik fiir die im Prozess definierten abstrakten
Aktivitdten zu implementieren. Worklets werden mit Informationen erweitert, die den Kontext
beschreiben in dem diese ausgewihlt werden sollen. Die Auswahl von den auszufiihrenden
Worklets erfolgt zur Laufzeit abhingig von dem Kontext des Prozesses. Dieses Konzept
erlaubt Evolution von Prozessen ohne die Verdnderung des Prozessmodells. Die Worklets
jedoch stellen vollstandige Prozesse dar, was die im Konzept erreichte Flexibilitit der Prozesse
einschrankt. Eine andere Moglichkeit Flexibilitdt der Prozesse zu erreichen ist in [HBRo8]
beschrieben. Dabei werden im Prozess Punkte definiert an denen der Prozess verdndert
werden kann. Die moglichen Verdnderungen des Prozesses werden als Options bezeichnet
und beschreiben die prozessverdndernde Operationen wie Einfiigen neuer Aktivititen,
Loschen von Aktivitdten u.d. Die Options haben den Zweck Varianten eines Prozesses
durch die Abweichungen vom Standardprozess zu beschreiben. Obwohl dieser Ansatz die
Verdanderung des Prozesses zur Laufzeit erlaubt, bilden die Options keine eigenstandigen
Prozessfragmente. In [CFo4] wird ein Konzept beschrieben, bei dem die Aktivitdten mit
Aspekten versehen werden. Zur Laufzeit kann die Ausfithrung des Prozesses an diesen
Punkten unterbrochen werden um den Prozess durch weitere Aktivititen zu erweitern. Hier
vorgestelltes Konzept dient nur der Erhohung der Flexibilitdat der Prozesse, adressiert jedoch
keine Losungen beziiglich der Wiederverwendbarkeit von Prozessfragmenten.

In [EULog] wird ein Konzept von Prozessfragmenten vorgestellt. Es wird davon ausge-
gangen, dass das Wissen tiiber den Prozess iiber mehrere Personen verteilt ist und jeder
Prozessfragment das lokale Wissen iiber den Prozess darstellt. Diese Fragmente werden zu-
sammengesetzt um den vollstandigen Prozess zu erhalten. Dieses Konzept wird in [ELU10]
um backward und forward recovery Strategien erweitert. In [SAL™ 10] werden Prozessfrag-
mente benutzt um die Compliance von den Prozessen nachzuweisen. Dafiir wurde eine
Erweiterung von BPEL vorgestellt, die die Compliance-Fragmenten beschreibt. In [Tel10]
wurde ein Metamodell fiir die Prozessfragmente ausgearbeitet das auf Graphen basiert und
Regeln fiir die Navigation von Prozessfragmenten definiert.

Als Grundlage dieser Diplomarbeit werden die Arbeiten [EULog], [ELU10],[SAL10] und
[Tel10] verwendet.

Gliederung

Die Arbeit ist in folgender Weise gegliedert:
Kapitel 2 — Grundlagen beschreibt die Grundlagen, auf den diese Arbeit aufbaut.
Kapitel 3 — Konzept stellt das Losungskonzept fiir die im Kapitel 1.2 gestellte Aufgabe vor.

10

1.2 Aufgabenstellung

Kapitel 4 — Ubersicht iiber Apache ODE gibt einen Uberblick iiber Apache ODE, das zu et-
weiternde WFMS.

Kapitel 5 — Umsetzung stellt die Umsetzung des Losungskonzept vor.

Kapitel 6 — Anwendungsbeispiel beschreibt einen wissenschaftlichen Workflow, der verwen-
det wurde um das Losungskonzept zu priifen.

Kapitel 7 — Zusammenfassung und Ausblick fasst die Ergebnisse der Arbeit zusammen und
stellt Ankniipfungspunkte vor.

1.2 Aufgabenstellung

Das Ziel dieser Diplomarbeit ist BPEL so zu erweitern, dass die Ausfiihrung von unvollstan-
digen Prozessen (Prozessfragmenten) ermoglicht wird. Der ausgefiihrte Prozess wird zur
Laufzeit durch Ankleben weiterer Prozessfragmente vervollstandigt. Dabei wird von einem
Benutzer entschieden, welche Prozessfragmente wie an den ausgefiihrten Prozess geklebt
werden. Konzeptionell baut die Arbeit auf [Tel1o] auf. Eine Abbildung der graph-basierten
Konzepte auf BPEL und eine daraus resultierende Erweiterung der Konzepte ist allerdings
notig. Die in [ELU10] beschriebenen Transaktionskonzepte werden in dieser Diplomarbeit
nicht berticksichtigt. AufSerdem soll eine bestehende BPEL-Engine [ODEa] erweitert werden
um das Losungskonzept an einem wissenschaftlichen Workflow zu priifen.

11

2 Grundlagen

In diesem Kapitel werden Technologien Vorgestellt, die fiir das Verstehen dieser Diplomarbeit
notwendig sind.

2.1 Workflows und Workflow Management Systeme

In unserer Welt gibt es eine grofie Anzahl von Vorgidngen, die nach bestimmten Regeln
ablaufen. In der Business-Welt werden viele Vorgdnge immer wieder wiederholt. Diese
Vorgénge sind mit der Abwicklung bestimmter Arbeitsschritten verbunden um ein definiertes
Ziel zu erreichen. Die Workflow-Technoligie ist darauf ausgerichtet, diese Vorgange zu
automatisieren. Vorgang wird dabei als Prozess bezeichnet. Ein Prozessmodell beschreibt das
Muster und mit ihm verbundene Regeln, denen ein Prozess folgt. Ein Prozessmodell kann
instantiiert werden. Abhédngig von den Daten dieser Prozessinstanz, wird durch das Prozess
navigiert, und die Arbeitsschritte, die gemacht werden miissen, werden durchgefiihrt. Ein
Teil der auszufiihrenden Arbeitsschritte kann dabei von den Menschen und ein anderes Teil
von Computern ausgefiihrt werden.

2.1.1 Dimensionen eines Workflows

Ein Prozess besitzt drei Dimensionen, diese definieren wer, was und womit wahrend einer
bestimmten Arbeitseinheit (einer Aktivitat) ausfiihrt (Abbildung 2.1) [LRoo].

e Die Prozesslogik-Dimension beschreibt was und in welcher Reihenfolge ausgefiihrt
werden soll.

o Die Organisationsstrukturen-Dimension beschreibt die an der Organisation beteiligten
Abteilungen, Personen und Rollen. Die Organisationsstrukturen werden mit den einzel-
nen Aktivitdten mit Hilfe von Suchanfragen assoziiert. Diese Suchanfragen definieren,
welche Personen oder Computer eine bestimmte Aktivitdt ausfithren diirfen.

e Die IT-Infrastruktur-Dimension definiert womit eine Aktivitat ausgefiihrt werden soll.
Dazu gehoren die Ressourcen und Programme mit deren Hilfe eine Aktivitédt ausgefiihrt
werden soll.

13

2 Grundlagen

Prozesslogi
%
. (1,’0
R Y
X
IT-Infrastruktur

Abbildung 2.1: Dimensionen eines Workflows [LRoo].

2.1.2 Grundlagen von Worflow Management Systemen

Software, die den Ablauf von Prozessen steuert wird Workflow Management System (WFMS)
genannt.

Zu den Hauptkomponenten eines Workflow Management Systems zéahlen das Metamodell,
Design-Komponente, Laufzeit-Komponente und die Datenbank (Abbildung 2.2) [LRoo].

e Metamodell definiert die Konstrukte und die dazugehorigen Operationen, die vom
WEMS unterstiitzt werden. Dazu gehoren die allgemeine Struktur der unterstiitzten
Prozessmodelle und die Operationen, die auf einer Prozessinstanz ausgefiihrt werden
konnen.

e Design-Komponente ermoglicht dem Benutzer die im Metamodell erlaubten Kon-
strukte zu definieren. Dazu gehoren das Prozessmodell, die Organisationsstruktur, und
die IT-Aspekte.

e Laufzeit-Komponente dient der Ausfithrung der im Metamodell definierten Ope-
rationen wie z.B. das Erstellen einer Prozessinstanz und das Navigieren durch das
Prozessmodell.

e Datenbank ist fiir die Speicherung der von der Design- und der Laufzeit-Komponente
verwalteten Daten verantwortlich.

Damit ein Prozess von einem WEMS ausgefiihrt werden kann, wird eine maschinenlesbare
Sprache benétigt, die den auszufiihrenden Prozess beschreiben wiirde. In dieser Diplomarbeit
wurde Apache ODE verwendet, die die Ausfithrung von den in BPEL [BPEo7] beschriebenen
Prozessen unterstiitzt. Aus diesem Grund wird im Kapitel 2.4 ein kurzer Uberblick iiber
BPEL geboten.

14

2.2 Service Oriented Architecture (SOA)

Business Process Modeling,
Workflow Definition Tool

v
Process Model

A 4

Workflow Management System e
Database

4 4
v v

,—\ — Applications
* D & IT Tools

Buildtime

Runtime

Abbildung 2.2: WFMS Architektur [LRoo].

2.2 Service Oriented Architecture (SOA)

Damit ein WEMS erfolgreich in der Praxis eingesetzt werden kann, muss es mit Programmen
kommunizieren kdnnen unabhédngig von der Plattform, auf den sie laufen, sowie unabhéngig
von den Programmiersprachen, in den diese implementiert sind. Eine Losung dafiir bietet
Service Oriented Architecture [STF* 10]. Eine wichtige Eigenschaft von SOA ist die lose Kopplung,
d.h. die Dienste werden dynamisch zur Laufzeit gesucht und eingebunden, dabei ist das
wissen tiber die aufzurufenden Services wahrend Implementierung nicht notwendig.

In der SOA gibt es im wesentlichen drei Einheiten, die an der Kommunikation teilnehmen.

¢ Dienstnutzer hat das Ziel eine Komponente zu finden, die die von ihm benétigte Funk-
tionalitat anbietet, sowie die Funktionalitit der gefundenen Komponente aufzurufen.

¢ Dienstanbieter bietet bestimmte Dienste in Form von Komponenten an.

e Dienstverzeichnis ermoglicht das Registrieren und Auffinden von Diensten/Kompo-
nenten.

Das Zusammenspiel von diesen drei Einheiten in der SOA ist auf der Abbildung 2.3 darge-
stellt. Der Dienstanbieter mochte, dass sein Dienst von moglichst vielen Nutzern verwendet

15

2 Grundlagen

Dienst-
verzeichnis

3. Verweis auf

1. verdffentlichen Dienst

2. suchen

4. Abfrage der Beschreibnung

Dienst-

anbieter

5. Nutzung

Abbildung 2.3: SOA Dreieck. An [STF' 10] angelehnt.

wird. Zu diesem Zweck registriert er seinen Dienst bei einem Dienstverzeichnis. Ein Dienst-
nutzer sucht nach einem Dienst, der bestimmte Kriterien erfiillen soll. Dazu fragt er einen
entsprechenden Dienst bei dem Dienstverzeichnis an. Das Dienstverzeichnis liefert einen Ver-
weis auf den entsprechenden Dienst zurtick. Der Dienstnutzer fragt bei dem Dienstanbieter die
Beschreibung des Dienstes an. Die Beschreibung enthélt dabei die angebotenen Operationen
sowie die Art wie diese aufgerufen werden konnen. Mit diesem Wissen ist dem Dienstnutzer
nun moglich den gefundenen Dienst aufzurufen.

Um die Plattformunabhéngigkeit und Sprachunabhéngigkeit zu ermoglichen ist SOA auf of-
fene Standards angewiesen. Diese Standards sollen die Schnittstellenbeschreibungssprachen
und die Kommunikation zwischen den oben genannten Einheiten definieren [STF* 10].

2.3 Web Services

Web Services sind eine Umsetzung der SOA. W3C* Definiert Web Service als "A Web service is
a software system designed to support interoperable machine-to-machine interaction over a network. It
has an interface described in a machine-processable format (specifically WSDL). Other systems interact
with the Web service in a manner prescribed by its description using SOAP messages, typically
conveyed using HTTP with an XML serialization in conjunction with other Web-related standards.”
[WSAo4].

Ein Web Service entspricht dem Dienst in der SOA, der eine bestimmte Funktionalitdt kapselt,
die Schnittstellenbeschreibung erfolgt oft in WSDL [WSDoz1], das eine XML-basierte Sprache

Thttp://wuw.w3.org/

16

http://www.w3.org/

2.3 Web Services

darstellt. Damit ein Web Service von einem Dienstnutzer entdeckt werden kann, wird Web
Service bei einem UDDI-Dienst registriert, der die Funktionalitét eines Dienstverzeichnisses
tbernimmt. Die Kommunikation zwischen dem Dienstnutzer, der UDDI sowie dem Web
Service erfolgt oft mit Hilfe von SOAP [SOAo7]. Auf diese Standards wird in folgenden
Abschnitten eingegangen.

2.3.1 SOAP

SOAP [SOAo07] ist eine Spezifikation des Nachrichtenformats, das auf XML basiert und bei
der Kommunikation mit Web Services benutzt wird. Die Nachrichten kénnen dabei mit Hilfe
eines fast beliebigen Protokolls iibertragen werden.

Eine SOAP-Nachricht enthilt folgende Elemente:

e SOAP Envelope ist das Wurzelelement des XML-Dokuments und dient als ein Brief-
umschlag fiir die Nachricht. Dieses enthdlt SOAP Header- und SOAP Body-Elemente.
Listing 2.1 zeigt einen Beispiel einer SOAP-Nachricht.

e SOAP Header ist ein optionales Element und darf nur als erstes Element in SOAP
Envelope vorkommen. In der SOAP-Spezifikation ist nicht definiert was in SOAP Header
vorkommen kann, es ermoglicht lediglich die Anreicherung der SOAP-Nachricht mit
weiteren Informationen. So konnen im SOAP Header sicherheitsrelevante Informationen
enthalten sein.

e SOAP Body enthilt die Nutzdaten und muss in jeder SOAP-Nachricht vorkommen.
Die Nutzdaten miissen dabei im XML-Format vorliegen.

Wihrend der Kommunikation kénnen Fehler entstehen. Damit die an der Kommunikation
beteiligten Partner entsprechend auf die auftretenden Fehler reagieren konnen, definiert
SOAP ein entsprechendes Nachrichtenformat, das die auftretenden Fehler beschreibt.

Die Nachricht, die einen Fehler beschreibt, darf dabei nur einen SOAP Fault Block innerhalb
von SOAP Body tibertragen (Listing 2.2). SOAP Fault Block hat zwei verpflichtende Elemente,
die den aufgetretenen Fehler beschreiben:

e Code Enthélt die von SOAP spezifizierte Kodierung der Fehlerquelle.

e Reason Enthilt die Textuelle Beschreibung des Fehlers.

2.3.2 Web Services Description Language (WSDL)

WSDL [WSDo1] ist eine von W3C standardisierte XML-basierte Sprache, die benutzt wird
um Web Services zu beschreiben. Zur Zeit existieren zwei Versionen von WSDL: WSDL
1.1 [WSDo1] und WSDL 2.0 [WSDo7]. In dieser Arbeit wird WSDL 1.1 beschrieben und
verwendet.

17

2 Grundlagen

Listing 2.1 Beispiel einer SOAP Nachricht [WCL"05]

<env:Envelope xmlns:env="http://www.w3.org/2003/05/soap-envelope"
xmlns:wsa="http://schemas.xmlsoap.org/ws/2003/03/addressing"
xmlns:wssec="http://schemas.xmlsoap.org/ws/2002/04/secext"
xmlns:wsrm="http://schemas.xmlsoap.org/ws/2003/03/rm">

<env:Header>
<wsa:ReplyTo>
<wsa:Address>http://business456.com/User12</wsa:Address>
</wsa:ReplyTo>
<wsa:To>http://fabrikam123.com/Traffic</wsa:To>
<wsa:Action>http://fabrikaml23.com/Traffic/Status</wsa:Action>
<wssec:Security>
<wssec:BinarySecurityToken ValueType="wssec:X509v3"
EncodingType="wssec:Base64Binary">
dWJzY3JpYmVyLVBic..... eFwOWMTEwMTAwMD
</ussec:BinarySecurityToken>
</wssec:Security>
<wsrm:Sequence>
<wsu:Identifier>http:fabrikam123.com/seq1234</wsu:Identifier>
<wsrm:MessageNumber>10</wsrm: MessageNumber>
</wsrm:Sequence>
</env:Header>

<env:Body>
<app:TrafficStatus xmlns:env="http://highwaymon.org/payloads">
<road>520W</road>
<speed>3MPH</speed>

</app:TrafficStatus>
</env:Body>
</env:Envelope>

WSDL-Beschreibung eines Web Services besteht aus einem abstrakten und einem konkreten
Teil. Der abstrakte Teil beschreibt dabei die Schnittstellen des Web Services und seine
Operationen. Der konkrete Teil beschreibt wie der Web Service aufgerufen werden kann.
Die Beschreibung der Semantik des Web Services ist jedoch kein Bestandteil der WSDL
[STF"10].

Die Struktur eines WSDL-Dokuments sieht wie folgt aus. Das XML-Wurzelelement ist
description. Dieses Element enthilt folgende Elemente:

e documentation enthilt die textuelle Beschreibung des Web Services.

types beschreibt die in den Nachrichten verwendeten Datentypen.

message beschreibt die bei der Kommunikation verwendeten Nachrichten.

portType definiert eine Menge von Operationen, die der Web Service anbietet, sowie
referenziert die entsprechenden ein- und ausgehenden Nachrichten.

binding beschreibt welches Protokoll und Datenformat fiir den Datenaustausch beim
Aufruf einer im portType beschriebenen Operation verwendet wird.

18

2.3 Web Services

Listing 2.2 Beispiel einer fehlerbeschreibenden SOAP Nachricht [WCL*o05]

<env:Envelope xmlns:env="http://www.w3.org/2003/05/soap-envelope"
xmlns:flt="http://example.org/faults">
<env:Body>
<env:Fault>

<env:Code>
<env:Value>env:Receiver</env:Value>
<env:Subcode>

<env:Value>flt:BadValue</env:Value>

</env:Subcode>

</env:Code>

<env:Reason>
<env:Text>A Fault occurred</env:Text>

</env:Reason>
<env:Detail>
<flt:MyDetails>
<flt:Message>Something went wrong at the
Receiver</flt:Message>
<flt:ErrorCode>1234</flt:ErrorCode>
</flt:MyDetails>
</env:Detail>
</env:Fault>
</env:Body>
</env:Envelope>

e port definiert einen Endpunkt fiir die Kommunikation mit dem Web Service und
spezifiziert die Adresse des Services.

e service beschreibt die Menge der ports des Web Services.

2.3.3 Web Service Verzeichnisdienste

Falls eine SOA viele Dienste umfassen sollte, wird ein Verzeichnisdienst notwendig. Dieser
erlaubt Dienste im Verzeichnis iiber standardisierte Schnittstellen zu suchen. In diesem
Kapitel werden Universal Description, Discovery and Integration (UDDI) und Web Services
Inspection Language (WS-Inspection) kurz vorgestellt. UDDI ist fiir wenige zentrale Web Service
Verzeichnisse und viele Web Service Anbieter konzipiert, WS-Inspection ist fiir viele kleinere
dezentrale Verzeichnisse und einen oder wenige Web Service Anbieter bestimmt (Abbildung
2.4) [STF*10].

uDDI

UDDI ermdoglicht eine zentralisierte Verwaltung, Registrierung und Auffinden von Web
Services im Web. Ein Web Service Anbieter kann seinen Web Service in einem UDDI-
Verzeichnis registrieren lasen, dazu ladt der Web Service Anbieter die WSDL-Beschreibung
seines Web Services auf den UDDI-Verzeichnis hoch. Ein Benutzer kann im UDDI-Verzeichnis
nach den passenden Web Services suchen und deren WSDL-Beschreibungen abfragen. Die

19

2 Grundlagen

kA

- = ———— - —— = = = = e = =]

T
[]\

Suchen | Suchen

ke

I

Suchen

Verzeichnis

RN

Veroffentlichen

v
NS

]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
UDDI !
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
: Anbieter Anbieter Anbieter

]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
! Suchen
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]

UDDI WS-Inspection

Abbildung 2.4: Web Service Verzeichnisdienste

Funktionalitdt eines UDDI-Verzeichnisses wird dabei als Web Service bereitgestellt und erlaubt
das Auffinden von Web Services fiir Menschen und Anwendungen.

Intern enthélt ein UDDI-Verzeichnis vier Haupttabellen in der UDDI-Datenbank.

20

e White Pages erlauben den Unternehmen, die Web Services anbieten, Informationen

tiber sich selbst zu veroffentlichen. Anhand dieser Informationen kann der poten-
tielle Web Service Benutzer eine Entscheidung treffen, ob er Web Services dieses
Unternehmens nutzen mochte.

Yellow Pages ermoglichen die Suche nach Web Services, falls der Name des Web
Service Anbieters nicht bekannt ist, jedoch die Kategorie zu der der gesuchte Web
Service Anbieter gehort.

Green Pages ermoglichen die Suche nach dem Web Service falls weder der Name des
Web Service Anbieters noch die Kategorie, zu der er gehort, dem Benutzer bekannt ist.
Mit Green Pages kann der Benutzer die Web Services manuell durchsuchen.

Service Type Registration speichert die Informationen iiber die verfiigbaren Web
Services in der maschinenlesbaren Form. Es ermoglicht die Suche nach den Web
Services fiir die Anwendungen.

-

2.4 WS-BPEL

Der UDDI-Ansatz bringt jedoch einige Probleme mit sich. Da es potentiell jeder im UDDI-
Verzeichnis seine Web Services registrieren lassen kann, ist es oft unbekannt wie die Qualitét
des registrierten Web Services ist, wie die Bezahlung fiir die Benutzung des Web Services
erfolgt und wer die Verantwortung fiir den Web Service tragt [STF'10].

WS-Inspection

WS-Inspection-Ansatz versucht die bei der UDDI aufgefiihrten Probleme zu beseitigen. WS-
Inspection ist dokumentenbasiert. Die von einem Anbieter angebotenen Web Services werden
auf der entsprechenden Web-Seite des Anbieters unter einem definiertem Dateinamen
gespeichert. Der Benutzer kann auf der Web-Seite des Anbieters mit Hilfe eines Web-
Browsers nach den gewiinschten Web Services suchen. Als Ergebnis der Suche wird eine
Liste der passenden Web Services sowie deren WSDL-Beschreibungen geliefert.

Ein WS-Inspection Dokument besteht aus beliebig vielen Service- und Link-Elementen. Ein
Service-Element enthélt die Beschreibung des Web Services, sowie die Beschreibung, wo
dieser zu finden ist. Ein Link-Element enthdlt einen Verweis auf eine externe Datenquelle.
Mit Hilfe von Link-Elementen konnen Hierarchien von den WS-Inspection Dokumenten
aufgebaut werden, was fiir die Kategorisierung der Web Services und deren Verwaltung von
nutzen ist [STF'10].

2.4 WS-BPEL

Web Services Business Process Execution Language (WS-BPEL) [BPEo7y] ist eine XML-basierte
Workflow-Sprache, die unter Mitarbeit von IBM und Microsoft entwickelt wurde. WS-BPEL
ermdoglicht die Modellierung von Prozessen, deren Teilfunktionalitdten als Web Services
implementiert sind. In dieser Arbeit wird WS-BPEL 2.0 beschrieben und verwendet.

Ein grundlegender Bestandteil von BPEL sind die Aktivitdten. Diese kann man in Basic
Activities und Structured Activites unterteilen. Die Basic Activities beschreiben elementare
Schritte eines Prozesses. Die Structured Activities konnen weitere Aktivitiaten enthalten und
den Kontrollfluss zwischen den enthaltenen Aktivititen definieren.

Zu den Basic Activities gehoren:
e <receive>
o <reply>
e <invoke>
e <assign>
o <validate>

o <throw>

21

2 Grundlagen

o <rethrow>

e <empty>

o <wait>

o <exit>

e <compensate>

e <compensateScope>

o <extensionActivity>
Zu den Structured Activities gehdren

e <sequence>

o <flow>

o <if>

e <while>

e <repeatUntil>

o <forEach>

o <pick>

e <scope>

BPEL ist aus den Sprachen Web Service Flow Language (WSFL) von IBM und XLANG von
Microsoft entstanden. Prozesse in WSFL werden als Graphen modelliert. Die Aktivititen
stellen dabei die Knoten dar und werden mit Links verbunden. Prozesse in XLANG werden
als eine Folge von sequenziellen und parallelen Blécken modelliert [WCL*o5]. BPEL vereinigt
diese beiden Ansdtze und enthilt die <flow> Aktivitdt um ein Prozess oder einen Teil
davon als einen Graph zu modellieren und die <sequence> Aktivitdt, die eine sequentielle
Ausfiihrung von Aktivitdten erlaubt.

BPEL erlaubt keine Zyklen, die mit Hilfe von <flow> modelliert werden konnten. Um die
wiederholte Ausfithrung von Aktivitdten zu unterstiitzen, enthdlt BPEL die <while>, <repeat-
Until> und <forEach> Aktivitdten. <while> Aktivitit erlaubt die wiederholte Ausfithrung
einer Aktivitdt, solange die in <while> definierte Bedingung wahr ist. <repeatUntil> dagegen
fihrt eine Aktivitat solange wiederholt aus, bis die in <repeatUntil> definierte Bedingung
wahr wird. Mit Hilfe der <forEach> Aktivitdt wird die enthaltene <scope> Aktivitit eine
bestimmte Anzahl von Iterationen wiederholt ausgefiihrt. Dafiir wird ein Zahler benutzt. Der
Startwert und Endwert des Zahlers wird in der <forEach> Aktivitit definiert. Es gibt dabei ei-
ne Moglichkeit die Iterationen parallel auszufiihren, dies wird mit Hilfe des parallel="yes | no”
Attributes definiert.

Die <if> Aktivitdt erlaubt die Ausfithrung von einer Aktivitdt aus einer definierten Menge
von den Aktivititen. Die Auswahl wird anhand von Bedingungen getroffen, die fiir die
einzelnen Aktivititen aus der oben genannten Menge definiert werden.

22

2.4 WS-BPEL

Die Aktivitdten <recevie>, <reply>, <invoke> und <pick> sind fiir die Kommunikation
zustdandig. <receive> und <reply> Aktivititen kommen oft als ein Paar vor, um einen
Synchronen Prozessaufruf zu implementieren. AufSerdem kann mit dem Empfang einer
Nachricht durch die <receive> Aktivitét eine Prozessinstanz erstellt werden, dafiir wird diese
Aktivitat mit dem Attribut createlnstance="yes” versehen. Falls eine <receive> Aktivitédt keine
Prozessinstanz erstellt (createlnstance="no"), dann blockiert diese Aktivitit den Kontrollfluss
bis diese Aktivitit eine Nachricht erhilt. Die <invoke> Aktivitdt dient dem Aufruf eines
Web Services. Dabei kann der Web Service sowohl synchron als auch asynchron aufgerufen
werden.

Die <pick> Aktivitdt ist fiir das Reagieren auf Ereignisse vorgesehen und wartet auf eine
Nachricht aus einer Menge moglichen Nachrichten. Diese Aktivitdt wird abgeschlossen falls
eine Nachricht eingeht und eine mit dieser Nachricht assoziierte Aktivitdt abgeschlossen
wird, oder bis eine gewisse Zeit vergeht (ein in der <pick> Aktivitdt definiertes Timeout).
Genau so wie die <receive> Aktivitdt kann auch die <pick> Aktivitdt mit dem Attribut
createlnstance="yes” versehen werden, damit bei einer eingehenden Nachricht eine neue
Prozessinstanz erstellt wird.

Die im Prozess verwendeten Daten werden in Variablen gespeichert. Mit Hilfe der <assign>
Aktivitat lassen sich die Variablen initialisieren und Werte von Variablen sowie den Partner
Links kopieren. Um einen Variablenwert auf die Ubereinstimmung mit der dazugehorigen
XSD- bzw. WSDL-Typdefinition zu priifen kann die <validate> Aktivitdt benutzt werden.

Die <throw> Aktivitit 16st eine Fehlerbehandlung aus, dabei muss der aufgetretene Fehler
in dieser Aktivitdt angegeben werden, damit die Fehlerbehandlung des angegebenen Fehlers
aufgerufen werden kann. Falls ein abgefangener Fehler weiter geworfen werden soll, wird
die Aktivitdt <rethrow> benutzt.

Die <compensate> Aktivitat wird benutzt, um die Kompensation aller im aktuellen <scope>
enthaltenen und abgeschlossen <scope> Aktivititen zu starten. Mit Hilfe von <compensateS-
cope> Aktivitdt wird <compensationHandler> einer bestimmten abgeschlossenen <scope>
Aktivitat innerhalb der aktuellen <scope> Aktivitdt ausgefiihrt. Die Aktivititen <compensa-
te> und <compensateScope> diirfen nur innerhalb von Fault Handlern verwendet werden.

Mit Hilfe der <wait> Aktivitat lasst sich der Kontrollfluss fiir eine bestimmte Zeit oder
bis zu einem definierten Zeitpunkt anhalten. Die Information iiber die Zeitdauer bzw. den
Zeitpunkt wird in den Kindelementen <for> bzw. <until> dieser Aktivitit angegeben.

Die <empty> Aktivitat besitzt keine Logik die ausgefiihrt werden soll und entspricht ei-
ner leeren Anweisung. Diese Aktivitdt kann in der <flow> Aktivitdt zur Synchronisierung
verwendet werden oder z.B. bei einer Fehlerbehandlung, falls der aufgetretene Fehler abge-
fangen und ignoriert werden soll.

Die <exit> Aktivitit wird benutzt um eine Prozessinstanz sofort zu beenden ohne termina-
tionHandler, faultHandler und compensationHandler auszufiihren.

23

2 Grundlagen

Die <scope> Aktivitdt erlaubt fiir eine Aktivitat (die Aktivitat kann auch eine Structured
Activity sein) Kontext zu definieren. Zu dem Kontext gehoren Variablen, PartnerLinks, Mes-
sageExchanges, CorrelationSets, EventHandlers, FaultHandlers, CompensationHandler und ein
TerminationHandler.

Mit Hilfe von <faultHandlers> Elements werden die im Prozess auftretenden Fehler abge-
fangen. Dabei kann fiir jeden Fehlertyp eine eigene Fehlerbehandlung definiert werden. Die
Fehlerbehandlung ist darauf ausgerichtet, die teilweise ausgefiihrte Arbeit innerhalb von
<scope> Aktivititen riickgangig zu machen [BPEoy]. compensationHandler Elemente werden
benutzt um die Schritte zu definieren, welche die in der ausgefiihrten <scope> Aktivitat
erledigte Arbeit kompensieren.

terminationHandler erlauben innerhalb von <scope> Aktivitdten einen definierten Zustand zu
erreichen falls eine Prozessinstanz terminiert wird.

Mit Hilfe von <eventHandlers> Elements konnen zu einer <scope> Aktivitdt Ereignisse
definiert werden, die parallel zu der <scope> Ausfiihrung verarbeitet werden. Die Ereignisse
konnen dabei die eingehenden Nachrichten und Timeout-Ereignisse sein.

Das Element <messageExchange> wird Benutzt um die Relation zwischen Aktivitdten die
eine Nachricht empfangen und <reply> Aktivitdten zu verdeutlichen. Es ist notwendig im
Falle, wenn mehrere Paare von nachrichtempfangenden Aktivititen mit <reply> Aktivitaten
auftreten konnen, z.B. wenn mehrere Paare von <receive> <reply> Aktivititen auf dem
selben Partner Link definiert sind, dieselbe Operation verwenden und parallel ausgefiihrt
werden.

Damit die in einem Prozessmodell eingehenden Nachrichten zu den dazugehorigen Pro-
zessinstanzen von einem WEMS geleitet werden konnen, wurde in BPEL <correlationSet>
Konstrukt eingefiihrt. Die Auswahl der zu der Nachricht gehdrenden Prozessinstanz wird
aufgrund des Inhalts der Nachricht getroffen. Dafiir werden in den Nachrichten bestimmte
Felder vorgesehen. Diese Felder enthalten Informationen, die die eindeutige Bestimmung
der Prozessinstanz ermoglichen. Als Beispiel fiir ein solches Feld in der Nachricht kann eine
Bestellnummer bei der Interaktion mit einem Online-Shop sein. Diese wird beim Kauf eines
Produkts erstellt und kann fiir das Abbestellen des gekauften Produkts verwendet werden.
Solche Felder werden in BPEL abstrakt als <property> Elemente deklariert. Damit so ein
Feld innerhalb einer eingehenden Nachricht gefunden werden kann, wird ein dazugehoriger
<propertyAlias> definiert. Dieses Element definiert, wie das gesuchte Feld in der Nachricht
gefunden wird, beispielsweise mit Hilfe eines definierten XPATH Ausdrucks (Abbildung

2.5).

Bei manchen Nachrichten werden mehrere Felder benutzt, um die dazugehorige Prozessin-
stanz eindeutig bestimmen zu kénnen, zu diesem Zweck werden <correlationSet> Elemente
definiert. Diese enthalten eine Liste der Namen von den beteiligten <property> Elementen
und werden mit Hilfe des Names von dem <correlationSet> referenziert. Die <correlationSet>
Elemente werden im <correlationSets> Element einer <scope> Aktivitdt oder des <process>
Elements definiert. Im Prozess werden die definierten <correlationSet> Elemente innerhalb
von <receive>, <reply>, <invoke> Aktivititen sowie dem <onMessage> Element der <pick>
Aktivitit referenziert.

24

2.5 Java Persistence API (JPA)

/\
<message> <propertyﬁlias I <correlationSet <receive>
g;or{)j.r;grtilrgri;"pmp L/ name="setName" <correlations>
messageType="p:type"> \pqpertiesf'pr Olp1 "> <correlation
<query> set="setName"
</message> 9
- ™~ \ / initiate="yes"/>
</query> <propert)N / </correlations>
</propertyAlias> name="prop1" </receive>
type="xsd:string" />

Abbildung 2.5: Zusammenhang zwischen <correlationSet>, <property>, <propertyAlias>
und der Nachricht.

Weitere fiir diese Diplomarbeit wichtige BPEL-Konstrukte sind <partnerLink> und <part-
nerLinkType>. Mit Hilfe von <partnerLinkType> werden die Beziehungen zwischen den
Kommunikationspartnern definiert. Ein <partnerLinkType> definiert Rollen, die ein Kommu-
nikationspartner wihrend der Kommunikation einnehmen kann, sowie die dazugehdorigen
Porttypen. Da jedoch ein Prozess mit mehreren Partnern kommunizieren kann, die die
gleichen Web Services anbieten, spielen diese auch die selben Rollen. Um diese Partner
zu unterscheiden wird <partnerLink> verwendet. <partnerLink> Element wird durch das
Attribut name identifiziert und wird durch einen <partnerLinkType> charakterisiert. Des wei-
teren wird im <partnerLink> angegeben, welche Rolle bei der Kommunikation der Prozess
und welche Rolle der Partner annimmt. Um die Verbindung mit dem Partner aufbauen zu
konnen, wird fiir den jeweiligen <partnerLink> eine endpoint reference (EPR) benétigt. Diese
kann wahren des Deployments statisch zugewiesen werden, oder zur Laufzeit mit Hilfe der
<assign> Aktivitdt. Im Gegensatz zu den anderen hier vorgestellten BPEL Elementen werden
die Elemente <partnerLinkType>, <property> und <propertyAlias> in den WSDL Dateien
definiert und nicht in der BPEL-Prozessbeschreibung.

BPEL unterstiitzt Erweiterungen, so konnen neue in BPEL nicht vorgesehene Aktivitdten mit
Hilfe des <extensionActivity> Elements verwendet werden. <extensionActivity> Element
wird als ein Umschlag (Wrapper) fiir die neue Aktivitdt benutzt [BPEo7].

2.5 Java Persistence API (JPA)

Java Persistence API [KSog] ist ein Framework, das hilft Daten aus Java Objekten in relatio-
nale Datenbanken zu speichern. Dabei werden die Klassen, die zu persistierenden Daten
modellieren, mit Annotationen versehen. Die Annotationen beschreiben die Abbildung von
den Daten auf Datenbanktabellen.

Die Klassen werden auf Entititen abgebildet und mit der Annotation @Entity markiert.
Mit Hilfe der @Id Annotation wird ein Attribut der Klasse markiert, der die Rolle des
Hauptschliissels in der Tabelle iibernehmen soll. Um die Objekte von annotierten Klassen zu
persistieren wird ein Entity Manager benutzt.

25

2 Grundlagen

Persistence
1

Creates Vv

*

« Configured B :
PersistenceUnit 1 J : EntityManagerFactory

1 1
Creates Creates ¥
- 4 Manages : -
PersistenceContext 1 - EntityManager

Abbildung 2.6: Beziehungen zwischen den JPA Konzepten [KSog]

Listing 2.3 EntityManagerFactory instantiierung

EntityManagerFactory emf = Persistence.createEntityManagerFactory("persistance unit
name'") ;
EntityManager em = emf.createEntityManager();

2.5.1 Entity Manager

Die Klasse EntityManager verwaltet die bekannten Entitdten und enthélt Methoden um die
Entitdten zu speichern, zu finden, zu aktualisieren und zu l6schen. Eine Entitdt wird dem
EntityManager bekannt, indem die Entitdt dem EntityManager als Parameter einer Operation
tibergeben wird, oder wenn EntityManager die Entitdat aus der Datenbank liest. Die Menge
der dem EntityManager bekannten Entitaten wird als persistence context bezeichnet. Die Klasse
EntityManager wird von EntityManagerFactory erzeugt (Abbildung 2.6). EntityManager Klasse
braucht Informationen tiber die zu verwendete Datenbank und die datenmodellierende
Klassen, um Daten persisitieren zu konnen. Diese Daten werden in der Konfigurationsdatei
persistence.xml als eine persistence unit angegeben und werden durch die EntityManagerFactory
Klasse in der EntityManager Instanz gesetzt.

Eine Instanz von EntityManagerFactory wird mit einer statischen Methode createEntityMa-
nagerFactory der Klasse Persistence erstellt, dabei wird als Parameter der Name der zu
verwendenden persistance unit angegeben (Listing 2.3). Die EntityManager Instanz wird mit
Hilfe der createEntityManager() Methode der EntityManagerFactory Klasse erzeugt.

Speichern einer Entitdt wird durch den Aufruf von persist() Methode von EntityManager
initiiert. Bis diese Methode ausgefiihrt ist, ist die zu speichernde Entitdt nichts anderes

26

2.6 XSLT

als ein Java Objekt. Falls ein Problem bei der Speicherung der Entitdt auftritt, wird eine
PersistenceException geworfen.

Um eine Entitdt in der Datenbank zu finden, wird die Methode find() verwendet. Als
Parameter werden dabei die Klasse der Entitdt sowie der Hauptschliissel angegeben. Falls
keine Entitdt gefunden wird, wird null zurtickgegeben.

Mit Hilfe der Methode remove() wird eine Entitdt aus der Datenbank geloscht. Diese Entitat
muss sich jedoch innerhalb von persistence context des EntityManagers befinden. Um das
sicherzustellen, kann vor dem Loschen nach der entsprechenden Entitdt mit Hilfe der find()
Methode in der Datenbank gesucht werden.

Um die Daten einer Entitdt, die sich im persistence context des EntityManagers befindet, zu
verdndern, konnen die Methoden der Entitdt gehoriger Klasse verwendet werden, z.B. die
setter Methoden. Ungleich den bis jetzt beschriebenen Methoden wird fiir die Aktualisierung
der Daten einer Entitdt keine Methode von EntityManger verwendet. Das erfordert jedoch,
dass die Entitét sich bereits im persistence context des EntityManagers befindet. Alle datenver-
andernde Operationen von EntityManger miissen innerhalb von einem Transaktionskontext
aufgerufen werden, ansonsten wird entweder ein Fehler geworfen, oder die Anderungen wer-
den nicht persistiert. Lediglich die find() Methode darf aufierhalb eines Transaktionskontexts
aufgerufen werden, da diese keine Daten verdndert.

JPA erlaubt auflerdem die Ausfithrung von Queries, diese werden jedoch nicht in SQL,
sondern in Java Persistence Query Language (JPQL) definiert.

Die Queries in JPA konnen sowohl statisch, als auch dynamisch definiert werden. Statische
Queries konnen durch Annotationen definiert werden. Diese Queries werden iiber deren
Namen identifiziert. Die dynamisch definierten Queries werden zur Laufzeit definiert, kosten
dafiir aber mehr Rechenzeit.

2.5.2 Zusammengesetzte Hauptschlissel

JPA unterstiitzt zusammengesetzte Hauptschliissel. Dafiir wird fiir den zusammengesetzten
Hauptschliissel eine separate Klasse erstellt, die mit der Annotation @Embeddable annotiert
wird. Diese Annotation fithrt dazu, dass die Attribute dieser Klasse ein Teil einer Entitit
werden, die diese Klasse referenziert. Die Klasse, die eine Entitédt reprasentiert und diesen
zusammengesetzten Hauptschliissel verwendet, muss einen Attribut der oben genannten
Klasse enthalten. Dieses Attribut wird mit Hilfe von der Annotation @Embeddedld anno-
tiert um zu kennzeichnen, dass dieses Attribut die Rolle des Hauptschliissels iibernimmt
[KSo9].

2.6 XSLT

Extensible Stylesheet Language for Transformations (XSLT) [XSL] [Tido8] ist eine flexible Sprache,
die die Beschreibung von Transformationen der XML-Dokumenten in etwas Anderes wie

27

2 Grundlagen

HTML, PDF, JPEG, oder wiederum in ein XML-Dokument erlauben. Zu diesem Zweck
wird ein XSLT style sheet definiert, der die Regeln der XML-Transformation beschreibt. Ein
XSLT-Prozessor iibernimmt dann die Transformation des gewiinschten XML-Dokuments nach
den in dem XSLT style sheet definierten Regeln.

2.6.1 XSLT style sheet Struktur

Die XSLT style sheets sind XML-Dokumente, die die Regeln der Transformation beschreiben.
Ein Style sheet besteht aus folgenden Elementen:

o <xsl:stylesheet> ist das Wurzelelement von XSLT style sheets, dieses definiert die
Version der verwendeten XSLT, sowie den Namensraum xsl.

o <xsl:output> Element definiert den Typ des erzeugten Dokuments. Es sind folgende
vier Werte erlaubt: xml, html, xhtml und text.

o <xsl:template> Element definiert eine Regel fiir die XML-Transformation. Mit Hilfe
des match Attributes wird ein Suchmuster mit Hilfe von XPath [XPAb] [XPAa] definiert.
Das Suchmuster beschreibt XML-Elemente, bei denen die Regel angewendet werden
soll. Die Ausgabe des XML-Elements, die durch das Anwenden dieser Regel erzeugt
wird, wird innerhalb des <xsl:template> Elements beschrieben.

Des Weiteren konnen folgende Elemente als Kinder des Elements <xsl:stylesheet> vorkom-
men:

o <xsl:iinclude> und <xsl:import> Elemente werden benutzt um andere Stylesheets zu
referenzieren.

o <xsl:strip-space> and <xsl:preserve-space> Elemente enthalten Listen von Elementen,
bei deren Transformationen Leerrdume (white spaces) entfernt bzw. beibehalten werden
sollen.

o <xsl:key> Elemente definieren Schliissel anhand deren bestimmte XML-Dokumentteile
gefunden werden konnen. Die Schliissel dhneln den Datenbankindizes.

e <xsl:variable> Element definiert eine Variable. Falls dieses Element als Kindelement
des <xsl:stylesheet> Elements vorkommt, ist die definierte Variable global. Die Varia-
blen diirfen in XSLT nur ein mal mit den Werten belegt werden.

e <xsl:param> Element definiert einen Parameter, der bei der Transformation bertick-
sichtigt werden soll. Falls Parameter als Kindelemente des <xsl:stylesheet> Elements
vorkommen, sind diese global. Auf die Werte der Parameter kann wie auf Variablen
zugegriffen werden.

28

2.6 XSLT

2.6.2 Verwendete XSLT Elemente

Die Ausgabe der Transformationsregeln in XSLT erfolgt mit Hilfe von XSLT definierten
XML-Elementen. Da XSLT zahlreiche Elemente definiert, werden hier nur die in dieser Arbeit
verwendeten Elemente vorgestellt.

o <xsl:element> Erzeugt in der Ausgabe ein XML-Element mit dem im Attribut name
definierten Namen.

e <xsl:copy-of> Element kopiert in die Ausgabe durch das Attribut select definierte
Elemente inklusive ihrer Kindelemente.

o <xsl:value-of> Element kopiert die Werte der durch das Attribut select definierten
Elemente in die Ausgabe.

o <xsl:text> Flement enthilt den Text, der in die Ausgabe geschrieben werden soll.

e <xslif> Element hat die Semantik einer if-Anweisung. Dieses Element enthilt das
Attribut test, das die Bedingung fiir die Anwendung der in diesem Element enthaltenen
Anweisungen definiert. Die Bedingung in dem Attribut fest muss dabei eine boolesche
Funktion darstellen und kann mit Hilfe von XPath erfolgen.

o <xsl:apply-templates> Element gibt die Anweisung alle Kindknoten des aktuellen
Knotens zu verarbeiten. Durch das Attribut select lassen sich Kindknoten auswihlen,
die verarbeitet werden sollen.

Um die Elemente eines XML-Dokumentes auszuwihlen wird in den Attributen match und
select der XSLT-Elementen XPath verwendet.

2.6.3 Beispiel einer XSLT Transformation

In diesem Kapitel wird ein Beispiel der XSLT Transformation behandelt um die vorgestellten
Sachverhalte zu verdeutlichen. In diesem Beispiel wird eine Log-Datei (Listing 2.4) eines
Zeiterfassungswerkzeugs zu einem Bericht transformiert. Der verwendete XSLT style sheet
(Listing 2.5) enthélt zwei Regeln. Die erste Regel (<xsl:template>) wird auf die XML-Elemente
<log> angewendet und erstellt fiir jedes Element ein <report> Element. Des weiteren wird in
dieser Regel definiert, dass die Kindelemente mit der zweiten Regel transformiert werden
und die Resultate der Transformation der Kindelemente als Kinder des <report> Elements
hinzugefiigt werden.

Die Zweite Regel erstellt fiir jedes <worker> Element ein <info> Element. In dieses Element
wird Text eingefiigt, der den Namen des Arbeiters sowie die geleisteten Arbeitsstunden
enthilt. Des weiteren wird in diesem Element vermerkt, wenn ein Arbeiter Uberstunden
geleistet hat. Die Ausgabe der Transformation ist in dem Listing 2.6 dargestellt.

29

2 Grundlagen

Listing 2.4 Beispiel XML-Dokument

<?xml version="1.0" encoding="UTF-8"7>

<log>

</log>

<worker>
<name>Worker1</name>
<worked-hours>7</worked-hours>
</worker>
<worker>
<name>Worker2</name>
<worked-hours>5</worked-hours>
</worker>
<worker>
<name>Worker3</name>
<worked-hours>10</worked-hours>
</worker>
<worker>
<name>Worker4</name>
<worked-hours>9</worked-hours>
</worker>

Listing 2.5 Beispiel eines XSLT Style sheets

<xsl:stylesheet version=’1.0’

xmlns:xsl="http://wuw.w3.org/1999/XSL/Transform’
xmlns:xs="http://www.w3.0org/2001/XMLSchema">
<xsl:output method="xml" />

<xsl:template match="log">
<xsl:element name="report'">
<xsl:apply-templates select="worker" />
</xsl:element>
</xsl:template>
<xsl:template match="worker">
<xsl:element name="info">
<xsl:value-of select="./name" />
<xsl:text> worked: </xsl:text>
<xsl:value-of select="./worked-hours" />
<xsl:text> hours today. </xsl:text>

<xsl:if test="./worked-hours > 8">
<xsl:value-of select="./worked-hours - 8" />
<xsl:text> hour(s) overtime.</xsl:text>
</xsl:if>
</xsl:element>
</xsl:template>

</xsl:stylesheet>

30

2.6 XSLT

Listing 2.6 Ausgabe der Transformation

<report>
<info>Workeril
<info>Worker2
<info>Worker3
<info>Worker4d
</report>

worked:
worked:
worked:
worked:

7 hours today. </info>
5 hours today. </info>
10 hours today. 2 hour(s) overtime.</info>
9 hours today. 1 hour(s) overtime.</info>

31

3 Konzept

3.1 Prozessfragmente

In dieser Arbeit wird der Begriff eines Prozessfragments verwendet. Unter einem Prozess-
fragment wird ein unvollstandiger Prozess, d.h. ein Teil des Prozesses verstanden. In einem
Prozessfragment im Gegensatz zu einem vollstandigen Prozess diirfen Teile des Prozesses
undefiniert bleiben. Prozessfragmente sollen dabei als wiederverwendbare Einheiten, die eine
bestimmte Funktionalitit realisieren, modelliert und verwendet werden. Damit ein Prozess
ausgefiihrt werden kann, soll dieser aus den Prozessfragmenten zusammengesetzt werden.
Dabei kann man zwischen Buildtime Komposition und Runtime Komposition unterscheiden.
Diese Unterscheidung basiert auf den jeweiligen Workflow-Lebenszyklen [Tel10].

3.1.1 Buildtime Komposition

Bei der Buildtime Komposition werden zuerst die einzelnen Prozessfragmente modelliert.
Diese konnen von verschiedenen Personen mit unterschiedlichen Werkzeugen modelliert
werden und so das lokale Wissen tiber den Prozess, bzw. die wiederverwendbare Prozessteile
definieren. Die modellierten Prozessfragmente werden anschlieffend in einem einheitlichen
Format in einem Repository gespeichert. Das Verwenden eines Repository soll dabei die
Wiederverwendbarkeit der enthaltenen Prozessfragmente ermoglichen. Wenn alle fiir den
Prozess benotigten Prozessfragmente in dem Repository vorhanden sind, konnen diese zu
einem vollstandigen Prozess zusammengesetzt werden. Der so erhaltene vollstindige Prozess
lasst sich anschlieffend von einer traditionellen Workflow-Engine ausfiihren. Dieser Ansatz
ermoglicht die Wiederverwendung von Prozessteilen. Es ist jedoch notwendig, dass alle
Prozessfragmente, sowie das Wissen tiber den zukiinftigen Prozessablauf bereits vor der
Prozessausfiihrung vorhanden sind [Tel1o]. Dies ist jedoch, wie in dem Kapitel 1 beschrieben
ist, nicht immer moglich. Dieser Nachteil wird mit Hilfe von Runtime Komposition beseitigt.

3.1.2 Runtime Komposition

Im Gegensatz zur Buildtime Komposition wird bei der Runtime Komposition erlaubt einen
Prozess auszufiihren, bevor alle bendtigten Prozessfragmente in dem Repository vorhanden
sind. Diese unvollstandigen Prozesse werden zur Laufzeit durch weitere Prozessfragmente
vervollstandigt. Die Prozessausfithrung beginnt dabei mit einem Startfragment, das aus dem

33

3 Konzept

Repository ausgewihlt und gestartet wird. Wenn bei der Navigation durch ein Prozessfrag-
ment festgestellt wird, dass ein weiterer Prozessfragment benétigt wird, wird ein passendes
Prozessfragment aus dem Repository ausgewdhlt und an den Prozess angeklebt, so dass
die Navigation fortgesetzt werden kann. Bei diesem Ansatz entsteht der Prozess iterativ zur
Laufzeit. Die Auswahl von den anzuklebenden Prozessfragmenten kann dabei abhingig von
dem Kontext des Prozesses getroffen werden [Tel1o]. Die Auswahl der passenden Prozess-
fragmente, sowie das Ankleben kann dabei sowohl manuell, als auch automatisch erfolgen.
Im Rahmen dieser Arbeit wird aufgrund der Aufgabenstellung nur die Runtime Komposition
mit manueller Fragmentenauswahl und Ankleben ausfiihrlich betrachtet. Es ware moglich
diese Operationen mit Hilfe von Annotationen der Prozessfragmente und durch Definition
von Regeln, nach denen die Komposition ablaufen soll, zu automatisieren.

3.1.3 Prozessfragmentelemente

In [EULo9g] werden Elemente von Prozessfragmenten vorgestellt, die dem Modellierer er-
lauben die bekannten Teile des Prozesses zu modellieren, sowie Teile des Prozesses zu
kennzeichnen, die dem Modellierer unbekannt sind. Die bekannten Teile des Prozesses wer-
den wie bei einem vollstindigen Prozess modelliert. In [EULog] werden Prozesse betrachtet,
die auf Graphen basieren, und somit als Prozesselemente Aktivitdten (die Knoten) und die
verbindende Links (die Kanten) verwenden.

Bei der Modellierung von unbekannten Prozessteilen konnen drei Situationen unterschieden
werden. Falls es unbekannt ist, was nach einer Aktivitat folgt, wird dies mit aus dieser Akti-
vitdt ausgehendem Link modelliert. Der Link wird mit keiner weiteren Aktivitit verbunden
(Abbildung 3.1 a)). Falls es unbekannt ist, welche Logik vor einer Aktivitit ausgefiihrt wird,
wird dies mit einem Link, das mit der bekannten Aktivitit verbunden ist, modelliert, das
andere Ende des Links wird jedoch mit keiner Aktivitit verbunden (Abbildung 3.1 b)). Falls
eine Aktivitdt A vor der Aktivitdt B ausgefiihrt werden soll, und es unbekannt ist, welche
Logik zwischen den Aktivititen A und B ausgefiihrt werden soll, so wird dieser Bereich mit
einem neuen Element Region modelliert. Region definiert dabei einen Bereich des Prozesses,
in dem der Prozessablauf unbekannt ist (Abbildung 3.1 c)). Dieser Bereich soll zur Laufzeit
durch entsprechende Logik ersetzt werden.

Da dieses Konzept auf Graphen basiert, muss dieses fiir BPEL adaptiert werden. In [SAL " 10]
wurden diese Konzepte benutzt um die Compliance von den Prozessen nachzuweisen. Dafiir
wurde eine Erweiterung von BPEL vorgestellt, die oben beschriebenen Elemente auf BPEL
abbildet. Die bekannten Teile der Prozesse werden mit standard BPEL Aktivititen modelliert,
um die Fille in BPEL modellieren zu kénnen, bei denen ein Link nur mit einer Aktivitit
verbunden ist, wurden Elemente frg:fragmentEntry und frq:fragmentExit eingefiihrt. Das Ele-
ment frg:fragmentEntry wird benutzt um die vor einer Aktivitit unbekannte Prozesslogik zu
kennzeichnen. frg:fragmentEntry muss mindestens einen ausgehenden Link und keine einge-
hende Links besitzen (Listing 3.1). Das Gegenstiick zu frg:fragmentEntry ist frg:fragmentExit.
frg:fragmentExit wird verwendet um die nach einer Aktivitiat folgende unbekannte Pro-
zesslogik zu kennzeichnen. Die Aktivitdt wird dabei tiber einen Link mit frg:fragmentExit

34

3.1 Prozessfragmente

a) b) C)

Abbildung 3.1: Fragmentelemente

Listing 3.1 frg:fragmentEntry [SAL" 10]

<frg:fragmentEntry name="entryName" type="mandatory|optional">
<bpws:sources>
<bpws:source linkName="linkName'/>+
</bpus:sources>
</frg:fragmentEntry>

verbunden. Somit muss frg:fragmentExit Element mindestens einen eingehenden Link und
darf keine ausgehenden Links besitzen (Listing 3.2).

Die frg:fragmentEntry und frg:fragmentExit Elemente werden verwendet um zwei Prozessfrag-
mente mit einander zu verbinden. Die dazugehorigen frq:fragmentEntry und frg:fragmentExit
Elemente werden bei der Komposition durch einen Link ersetzt.

Eine unbekannte Region in dem Prozess wird durch frg:fragmentRegion modelliert. Dieser
darf beliebig viele eingehenden sowie ausgehenden Links besitzen (Linsting 3.3). Dieser
Konstrukt wird vor der Prozessausfiihrung durch entsprechende Prozesslogik ersetzt.

Zusitzlich zu den in [EULog] beschriebenen Prozesselementen wurden in [SAL'10]
frg:fragmentScope und frg:fragmentFlow Elemente eingefiihrt (Listing 3.4). Diese Elemente
wurden von den Standard-BPEL-Aktivitidten <scope> und <flow> abgeleitet und dienen
der Klarheit der Semantik. Des weiteren diirfen frg:fragmentScope und frg:fragmentFlow Ele-
mente die Elemente frg:fragmentEntry, frg:fragmentExit und frg:fragmentRegion enthalten. Bei
der Komposition werden die frg:fragmetScope und frg:fragmentFlow entsprechend durch die
<scope> und <flow> BPEL-Aktivitdten ersetzt.

Listing 3.2 frg:fragmentExit [SAL" 10]

<frg:fragmentExit name="exitName" type="mandatory|optional'>
<bpws:targets>
<bpws:target linkName="linkName"/>+
</bpus:targets>
</frg:fragmentExit>

35

3 Konzept

Listing 3.3 frg:fragmentRegion [SAL" 10]

<frg:fragmentRegion name="regionName">
<bpws:targets>
<bpus:target linkName="linkName"/>+
</bpus:targets>
<bpws:sources>
<bpws:source linkName="linkName"/>+
</bpus:sources>
</frg:fragmentRegion>

Listing 3.4 Beispiel zu frq:fragmentScope und frg:fragmentFlow [SAL™ 10]

<bpws:extensionActivity>
<frg:fragmentScope name="fragmentScopeName'>
<bpws:variables>
<bpus:variable .../>+
</bpws:variables>
<!- Other context -->
<frg:fragmentFlow name="fragmentFlowName">
<bpws:1links>
<bpws:1link name="linkName" />*
</bpws:1links>
<frg:fragmentEntry ...

Das in [SAL"10] vorgestellte Konzept ist jedoch nur fiir die Buildtime Komposition vorgese-
hen. Die oben beschriebenen Elemente werden vor der Ausfiihrung durch Standard-BPEL-
Konstrukte ersetzt. Aus diesem Grund werden diese Konstrukte in dieser Arbeit fiir die
Runtime Komposition adaptiert.

3.2 Eingeflihrte Aktivitaten

Da die Komposition von Prozessfragmenten zur Laufzeit stattfinden soll, konnen die in
[SAL*10] eingefithrten Fragmentelemente nicht vor der Ausfithrung ersetzt werden. Aus
diesem Grund wurden diese Elemente als BPEL erweiternde Aktivitdten tibernommen.
Zusatzlich wurde die frg:fragmentSequence Aktivitédt eingefiihrt um blockbasierte Prozessfrag-
mentmodellierung zu unterstiitzen. Somit wurde BPEL um folgende Aktivititen erweitert:

o frg:fragmentScope

frg:fragmentRegion

frg:fragmentFlow

frg:fragmentSequence

frg:fragmentEntry

frg:fragmentExit

36

3.3 Zusammensetzung von Fragmenten

4 Process)

4 FragmentScope h

D frg:fragmentExit

Q beliebige FragmentFlow
Aktivitat B_’Q_’D

>)

)| frg:fragmentEntry

Abbildung 3.2: Legende. Auf der Linken Seite oben sind frg:fragmentEntry und die
fre:fragmentExit Aktivitaten dargestellt. Der Kreis (im Bild links unten) steht
stellvertretend fiir eine Aktivitit, ohne dass diese weiter definiert ist. Im Bild
Rechst ist ein mogliches Prozessfragment dargestellt.

Die in [SAL" 10] vorgestellten frg:fragmentEntry und frg:fragmentExit Elemente besitzen das
Attribut type="mandatory | optional”. Dieses Attribut wird in dieser Arbeit nicht verwendet,
da die Komposition zur Laufzeit stattfindet und vom Menschen durchgefiihrt wird. Die
Funktionalitidt zum Ignorieren der frg:fragmentEntry und frg:fragmentExit Elemente wird vom
Menschen aufgerufen und durch die im Kapitel 3.9 beschriebene Schnittstelle ermoglicht.

Auf den Abbildungen von Prozessfragmenten werden in dieser Arbeit der Prozess sowie die
Aktivitaten frg:fragmentScope, frg:fragmentRegion, frg:fragmentFlow und frg:fragmentSequence
als Rechtecke mit abgerundeten Ecken und einer entsprechenden Aktivitatsbezeichnung
dargestellt. Durch Kreise werden Aktivitdten dargestellt, die weiter nicht definiert sind und
lediglich als Beispiel einer Prozessstruktur dienen. Die Darstellung dieser Aktivitdten sowie
der frg:fragmentEntry und frg:fragmentExit Aktivitdten ist auf der Abbildung 3.2 zu sehen.

3.3 Zusammensetzung von Fragmenten

Bei der Beschreibung von Zusammensetzungen der Prozessfragmenten wird in dieser Arbeit
der Begriff eines Host-Prozessfragments verwendet. Mit dem Host-Prozessfragment wird in
dieser Arbeit ein Prozessfragment bezeichnet, in das ein anderes Prozessfragment eingeklebt
wird.

Bei der Zusammensetzung von Prozessfragmenten wird der Startfragment iterativ um
weitere Funktionalitdten (Prozessfragmente) erweitert. Aus dieser Uberlegung wird die
Funktionalitit (die Aktivitdten und deren Kontext) des einzufiigenden Prozessfragments in
das Startfragment eingefiigt. Das Einfiigen von den Aktivitdten und deren Kontext in das
Startfragment bringt die Vorteile, die mit Spezifikation von BPEL-SPE [BPEo5] angestrebt
werden, ndmlich die Kontrolle tiber die Ausfithrung von Subprozessen, in diesem Fall
von Prozessfragmenten. So wird es moglich, die in den eingeklebten Prozessfragmenten

37

3 Konzept

Process

g R
e FragmentScope N\
a)

FragmentFlow

(o o)
FragmentScope

4 FragmentScope\

FragmentFlow
(=) __|| FragmentFlow

A
FragmentScope

FragmentFlow

~ 7/

- =

Abbildung 3.3: Kleben von Prozessfragmenten (geringere Schachtelungstiefe). Das letzte
Prozessfragment wurde in die duflerste frg:fragmentFlow Aktivitat eingeklebt.

auftretenden und nicht abgefangenen Fehler im Host-Prozessfragment abzufangen, sowie
die Ausfithrung von den eingeklebten Prozessfragmenten zu terminieren im Fall, dass die
Prozessinstanz terminiert wird. Um die Aktivitdten und den Kontext zu kapseln, wird als
duflerste Aktivitdt in einem Prozessfragment frg:fragmentScope benutzt, die die Grenzen eines
Prozessfragments definieren soll.

Das Kleben von Prozessfragmenten ist nur an bestimmten Stellen im Prozess erlaubt. Es ist er-
laubt ein Prozessfragment in frg:fragmentFlow als eine neue Aktivitit einzukleben, die parallel
zu den anderen ausgefiihrt wird. In frg:fragmentSequence ist das Einkleben von Prozessfrag-
menten am Ende der Sequenz erlaubt und in frg:fragmentRegion darf ein Prozessfragment
als eine Kindaktivitdt eingeklebt werden. Falls es mehrere geschachtelten frg:fragmentFlow
fre:fragmentSequence Aktivitdten existieren, dann ist es erlaubt in der Hierarchie nach oben
von den unverbundenen frg:fragmentExit Aktivititen zu kleben. Dies erlaubt das Erzeugen
von Prozessen mit geringerer Schachtelungstiefe der Aktivititen (Abbildungen 3.3 und
3.4). In der Abbildung 3.3 wird bei der Komposition die duflerste frg:fragmentFlow Aktivitat
ausgewdhlt um den letzten Prozessfragment einzuftigen. In der Abbildung 3.4 wurde die
frg:fragmentFlow Aktivitdt des oberen Prozessfragments zum Kleben ausgewdhlt, was zu einer
grofieren Schachtelungstiefe fiihrte. Die Zusammensetzung von Prozessfragmenten wird
dabei vom Benutzer geleitet und wird durch die im Kapitel 3.9 beschriebene Schnittstelle
ermoglicht.

Das Kleben von den Prozessfragmenten findet auf der Ebene von Kompilierten Prozessen
statt, d.h. die beim Deployment erzeugte WFMSs interne Prozessrepresentationen werden

38

3.3 Zusammensetzung von Fragmenten

Process \

FragmentScope \

SO\)

d FragmentScope

Vars

FragmentFlow

FragmentFIow FragmentScope
FragmentFlow

\\
\ A l

FragmentScope)

FragmentFlow

S 2

Abbildung 3.4: Kleben von Prozessfragmenten (grofiere Schachtelungstiefe). Das letzte Pro-
zessfragment wurde in die frg:fragmentFlow Aktivitdt des oberen Prozess-
fragments eingeklebt.

geklebt. Das verhindert das wiederholte Parsen von den prozessbeschreibenden Dateien.
Das Kleben von Prozessfragmenten auf der Ebene von den prozessbeschreibenden Dateien
wiirde weitere Erweiterung von BPEL benotigen, um die Zustande der eingefiihrten Aktivi-
taten, sowie Mapping von den Variablen, Partner Links und Correlation Sets beim Kleben
festzuhalten.

3.3.1 Komposition mit frg:fragmentFlow

Nachdem ein neues Prozessfragment in eine frg:fragmentFlow Aktivitat eingeklebt wurde,
wird frg:fragmentScope des eingeklebten Prozessfragments sofort als parallele Aktivitat (und
damit die im Prozessfragment enthaltenen frg:FragmentEntry Aktivitdten) ausgefiihrt. Die in
dem eingeklebten Prozessfragment enthaltenen frg:fragmentEntry Aktivitdten blockieren den
Kontrollfluss, bis diese jeweils mit einer frg:fragmentExit Aktivitdt verbunden werden.

Dies ist notwendig, da die frg:fragmentEntry Aktivitit beim Mapping von Variablen, Partner
Links und Correlation Sets verwendet wird (Kapitel 3.4). Dabei werden die Werte von
Variablen, Partner Links und Correlation Sets aus dem Host-Prozessfragment ausgelesen
und an den eingeklebten Prozessfragment tibergeben. Zu diesem Zweck miissen die von
der frg:fragmentExit Aktivitat aus sichtbaren Variablen, Partner Links und Correlation Sets
ausgelesen werden konnen. Dies ist nur moglich, falls die entsprechende <scope> bzw.

39

3 Konzept

frg:fragmentScope Aktivitat aktiv ist. Um das sicherzustellen, blockiert die frg:fragmentExit
Aktivitdat den Kontrollfluss, bis diese mit einer frg:fragmentEntry Aktivitat verbunden wird.
Das Blockieren des Kontrollflusses bei den frg:fragmentEntry und frg:fragmentExit Aktivitaten
erfolgt durch das Warten auf eine Nachricht, die beim Verbinden der frg:fragmentExit Aktivitat
mit einer frg:fragmentEntry Aktivitat an die beteiligten Aktivitdaten geschickt wird.

Beim Verbinden von einer frg:fragmentExit Aktivitdt mit einer frg:fragmentEntry Aktivitat
wird ein Link zwischen den beiden hinzugefiigt. Dies ist notwendig fiir den Fall, wenn die
fre:fragmentFlow Aktivitat sich innerhalb einer Schleife befindet, um die richtige Reihenfolge
der Ausfiithrung, namlich die frg:fragmentExit Aktivitat vor der frg:fragmentEntry Aktivitat
sicherzustellen. Die frg:fragmentExit Aktivitat muss vor der frg:fragmentEntry Aktivitat aus-
gefiihrt werden, da innerhalb von Schleifen bei der zweiten und weiteren Iterationen die
frg:fragmentExit Aktivitdt den automatischen Mapping anstof3t.

3.3.2 Komposition mit frg:fragmentSeqeuence

Bei der Komposition mit frg:fragmentSequence gibt es mehrere Stellen innerhalb der Sequenz
an denen ein neues Prozessfragment eingeklebt werden konnte, ndmlich am Anfang, in der
Mitte, und am Ende der Sequenz. Falls das Einkleben des Prozessfragments am Anfang oder
in der Mitte der Sequenz benétigt wird, entspricht dies der Semantik der frg:fragmentRegion
Aktivitat, die an diesen Stellen in der Sequenz vorhanden sein muss. Das Einkleben eines
Prozessfragments am Ende der Sequenz kann auch ohne einer frg:fragmentRegion Aktivitat
erfolgen. Falls es unbekannt ist, welche Prozesslogik nach der Ausfithrung der Sequenz
ausgefiihrt werden soll, wird es mit der frg:fragmentExit Aktivitdit am Ende der Sequenz
modelliert (Abbildung 3.5). Somit muss es moglich sein ein Prozessfragment als letzte
Aktivitdt der Sequenz einzukleben (Abbildung 3.6). Das eingeklebte Prozessfragment wird
dann nach dem Verbinden der frg:fragmentExit mit der entsprechenden frg:fragmentEntry
Aktivitat ausgefiihrt.

3.3.3 Komposition mit frg:fragmentRegion

Die frg:fragmentRegion Aktivitat kapselt einen unbekannten Teil des Prozesses. Der unbekann-
te Teil des Prozesses wird durch ein Prozessfragment beschrieben und zur Laufzeit in diese
Aktivitdt als eine Kindaktivitit eingeftigt. Da es bei der Modellierung des einzufiigenden
Prozessfragments unbekannt ist, an welchen Stellen in einem Prozess es eingefiigt wird, und
somit unbekannt ist was vor und nach dem Prozessfragment ausgefiihrt wird, wird jedes
Prozessfragment, abgesehen von den Startfragmenten, mit mindestens einer frg:fragmentEntry
Aktivitat und optional mit einer oder mehreren frq:fragmentExit Aktivititen modelliert. Aus
dieser Uberlegung und der notwendigen Moglichkeit des Datenaustauschs zwischen dem
Host- und dem eingeklebten Prozessfragment wird erlaubt frg:fragmentRegion Aktivitat mit
frg:fragmentEntry und frg:fragmentExit Aktivitdten zu verbinden. Die frg:fragmentEntry und
fre:fragmentExit Aktivititen miissen dabei dem in die frg:fragmentRegion Aktivitdt eingekleb-
ten Prozessfragment gehoren.

40

3.4 Mapping

/ Process

/ Fragment
Scope
(Fragment)

Sequence

)
O

Region
O
I

Abbildung 3.5: Die frg:fragmentEntry darf in einer frg:fragmentSequence Aktivitit nur am
Anfang der Sequenz vorkommen. frg:fragmentExit Aktivitat darf nur am Ende
der Sequenz vorkommen. frg:fragmentRegion Aktivitat darf an beliebiger
Stelle in der Sequenz auftreten.

3.4 Mapping

Um den Datenaustausch zwischen den Prozessfragmenten zu ermoglichen wird das Konzept
des Mappings von Variablen, Partner Links und Correlation Sets eingefiihrt. Der Datenaus-
tausch dhnelt dabei einem Call-by-Value Aufruf einer Methode, d.h. die Werte von bestimm-
ten Variablen, Partner Links, bzw. Correlation Sets werden aus dem Host-Prozessfragment
kopiert, und als Werte der dazugehorigen Elementen des eingefiigten Prozessfragments
gesetzt. Das Kopieren ermoglicht die Modellierung von Prozessfragmenten ohne das Wis-
sen, in welchem Prozessfragment das modellierte Prozessfragment benutzt wird und ohne
Konventionen fiir die Namensgebung der Variablen, Partner Links und Correlation Sets
benutzen zu miissen.

Eine andere Moglichkeit Mapping zu realisieren wire das Loschen von den Definitionen
der zu mappenden Elemente im eingefiigten Prozessfragment, so dass die Elemente des
Host-Prozessfragments referenziert werden, wie es auf der Abbildung 3.7 dargestellt ist.
Dies wiirde nicht in allen Fillen funktionieren, da es zu den Namenskollisionen kommen
kann, und die Umbenennung von gleichnamigen Variablen den Benutzer verwirren wiir-
de. Aufserdem kann es Fille geben, in denen die von dem eingeklebten Prozessfragment
benoétigten Elemente in diesem nicht sichtbar sind (Abbildung 3.8). Ein weiterer Vorteil des
Kopierens ist die Kontrolle iiber die Verdnderungen von den Werten der Variablen, Partner
Links und Correlation Sets, die von mehreren Prozessfragmenten benutzt werden. Wenn

41

3 Konzept

/" Process |\
/ FragmentScopa

Vars

/ Fragment

Sequence
@
@

J

[FragmentScope \

(Fragment

Sequense

1

QO)
———

Abbildung 3.6: Das neue Prozessfragment wird am Ende der Sequenz eingefiigt.

diese Anderungen beabsichtigt sind, lassen sich diese durch das Zuriickkopieren mit Hilfe
der frg:fragmentRegion Aktivitat umsetzen.

Fiir das Kopieren von Daten tiber die Prozessfragmentgrenzen werden frg:fragmentExit und
frg:fragmentEntry Aktivitaten benutzt. Mit Hilfe der frg:fragmentEntry Aktivitat wird wahrend
der Modellierung definiert, welche Daten der Prozessfragment benétigt (Listing 3.5). Zur
Laufzeit, nach dem Einkleben von dem Prozessfragment, muss bei dem Verbinden von den
dazugehorigen frqg:fragmentExit und frq:fragmentEntry Aktivititen angegeben werden, welche
Variablen, Partner Links und Correlation Sets Werte im Host-Prozessfragment enthalten,
die von dem eingefiigten Prozessfragment benotigt werden. Wahrend das Kopieren von
Variablen und Partner Links selbsterkldrend ist, wird beim Kopieren von Correlation Sets
das Initialisieren des Correlation Sets des eingeklebten Prozessfragments mit den Daten,
die beim Initialisieren des Correlation Sets des Host-Prozessfragments verwendet wurden
verstanden.

Das Kopieren von den Variablen, Partner Links und Correlation Sets tiber die Prozessfrag-
mentgrenzen findet in zwei Schritten statt. Der erste Schritt findet dabei in der Aktivitat
statt, in die ein Prozessfragment eingeklebt wurde. Dieser Schritt wird beim Verbinden
von einer frg:fragmentExit mit einer frg:fragmentEntry Aktivitat ausgefiihrt. In diesem Schritt

42

3.4 Mapping

4 Process N Process N

4 N\ 7 N
FragmentScope FragmentScope -

c D c Q)

FragmentFlow [FragmentScope | FragmentFlow [FragmentScope \

®) o) e
FragmentFlow FragmentFlowy

Read A Read A

=) \&

N,

\S =

Abbildung 3.7: Variablen-Mapping durch durch Loschen der Variablendefinition in dem
eingeklebten Prozessfragment

Listing 3.5 Beispiel zu frg:fragmentEntry Variablendefinition

<frg:fragmentEntry>
<elementsToMap>?
<variableToMap name="..."/>*
<partnerLinkToMap name="..."/>*
<correlationSetToMap name="..."/>*
</elementsToMap>
</frg:fragmentEntry>

werden die Werte der notwendigen Variablen, Partner Links, bzw. Correlation Sets gelesen
und in der Datenbank zwischengespeichert. Im zweiten Schritt werden die kopierten Werte
wihrend der Ausfiihrung der dazugehorigen frg:fragmentEntry Aktivitdt den entsprechenden
Variablen, Partner Links, bzw. Correlation Sets zugewiesen. Der Grund fiir das Kopieren in
zwei Schritten ist die Sichtbarkeit von den beim Mapping beteiligten Elementen. Beispiel fiir
eine Situation, die das Kopieren in zwei Schritten notwendig macht, ist auf der Abbildung 3.8
dargestellt. Die in die dufSere frq:fragmentFlow Aktivitit eingeklebten Prozessfragmente haben
lokale Variablen: Variable A und Variable B. Dabei soll beim Variablen Mapping der Variable B
der Wert der Variable A zugewiesen werden. Innerhalb keiner <scope> bzw. frg:fragmentScope
Aktivitdt sind beide Variablen sichtbar, was das Kopieren des Variablenwertes in zwei
Schritten erfordert.

Eine Besonderheit beim Mapping tritt bei der frg:fragmentRegion Aktivitat auf. Diese spielt
beim Mapping die Rollen sowohl von frg:fragmentExit als auch frg:fragmentEntry Aktivitaten.
Bei dem Mapping von Daten aus dem Host-Prozessfragment in das eingeklebte Prozess-
fragment nimmt frg:fragmentRegion die Rolle von der frg:fragmentExit Aktivitat ein. Dabei
wird frg:fragmentRegion Aktivitat mit der frg:fragmentEntry Aktivitat des eingeklebten Pro-
zessfragments verbunden und kopiert die Variablenwerte aus dem Host-Prozessfragment.
Beim dem Mapping von dem eingeklebten Prozessfragment in das Host-Prozessfragment
nimmt die frg:fragmentRegion Aktivitit die Rolle der frg:fragmentEntry Aktivitat ein. Dabei

43

3 Konzept

4 Process

\
4 FragmentScope)
é -)

Ve
EragmentElo FragmentScope FragmentScope
g W Variable B

FragmentFlow
Q > > L
N

Abbildung 3.8: Sichtbarkeit der Variablen.

(FragmentFlow

.

\—/

\:T____

\S =

Listing 3.6 Beispiel zu frg:fragmentRegion Variablendefinition

<frg:fragmentRegion>
<elementsToMap>?
<variableToMap name="..."/>%
<partnerLinkToMap name="..."/>*
<correlationSetToMap name="..."/>*
</elementsToMap>
</frg:fragmentRegion>

wird frg:fragmentExit Aktivitat des eingeklebten Prozessfragments mit der frg:fragmentRegion
Aktivitat verbunden. Die frg:fragmentRegion Aktivitit setzt die entsprechenden Werte von
Elementen im Host-Prozessfragment bevor die Ausfithrung dieser Aktivitdt abgeschlossen
wird.

Um die beim Mapping von dem eingefiigten Prozessfragment in den Host-Prozessfragment
benotigten Elemente zu definieren wird die frg:fragmentRegion Aktivitat dhnlich der
fre:fragmentEntry Aktivitat mit dem Element <elementsToMap> versehen (Listing 3.6).

Falls ein Prozessfragment mehrere frg:fragmentEntry Aktivitaten besitzt, konnen die benétig-
ten Daten in verschiedenen frg:fragmentEntry Aktivitaten definiert werden. Das ermoglicht
die Ausfithrung eines Teils des Prozessfragments falls noch nicht alle Daten in dem Prozess-
fragment vorhanden sind, d.h. nicht alle frg:fragmentEntry Aktivititen ausgefiihrt wurden, die
die Daten kopieren (Abbildung 3.9). Dies muss aber auch die Semantik des Prozessfragments
erlauben.

44

3.5 Mediation

4 Process)
4 FragmentScope)
~

f FragmentFlow

)

S 2

Abbildung 3.9: Teile eines Fragments benotigen unterschiedliche Variablen und kénnen
unabhingig von einander ausgefiihrt werden.

Listing 3.7 Beispiel eines Komplexen Datentyps fiir die Mediation

<customer name="Max Mustermann">
<address>
<street>Musterstrasse</street>
<city>Musterstadt</city>
<zip>12345</zip>

</assress>

</customer>

3.5 Mediation

Unter Mediation wird in dieser Arbeit das automatische Konvertieren von Datentypen
verstanden. Da die Prozessfragmente unabhéngig von einander modelliert werden, kann
es zu Situationen kommen, in denen die Datentypen der ausgetauschten Daten zwischen
den Prozessfragmenten kompatibel sind, jedoch nicht iibereinstimmen. Beispiel fiir solche
Situation wire, wenn die Daten im Host-Prozessfragment als double vorliegen, und im
eingeklebten Prozessfragment werden diese Daten als long benétigt. Ein anderes Beispiel
fiir solche Situation mit Verwendung von komplexen Datentypen wére, wenn die im Host-
Prozessfragment Daten des Kunden in einer Variable des customer Datentyps (Listing 3.7)
vorliegen, und im eingeklebten Prozessfragment nur die Kundenadresse als address Datentyp
benotigt wird.

Damit solche Datentyp-Konvertierung automatisiert ablaufen kann, miissen Regeln definiert
werden, nach denen die Konvertierung ablaufen soll. Diese Regeln werden beim Mapping

45

3 Konzept

von Variablen angewendet, falls die Datentypen der beteiligten Variablen nicht {iberein-
stimmen. Die Mediation beim Partner Link Mapping wird nicht angewendet, da die Werte
von Partner Links lediglich endpoint references darstellen. Beim Mapping von Correlation
Sets wird jedes Mal Mediation aufgerufen, da die Correlation Sets keine Typen besitzen,
deren Ubereinstimmung man als Kriterium fiir das Anwenden der Mediation verwenden
konnte. Bei der Mediation der Correlation Sets wird eine Regel anhand von den beteiligten
Prozessfragmenten, den Namen der Correlation Sets, sowie den Namen der Scopes, die diese
Correlation Sets definieren, ausgewdhlt. Die Regel fiir die Konvertierung der Correlation
Sets kann die Werte der einzelnen Properties der zu konvertierenden Correlation Sets lesen
und diese auf die Properties des gewiinschten Correlation Sets abbilden.

3.6 Schleifen

Bis jetzt wurden nur die linearen Konstrukte von BPEL betrachtet, BPEL enthalt jedoch
auch Schleifen-Konstrukte wie <while>, <repeatUntil> und <forEach> Aktivitidten. Falls
innerhalb einer Schleife ein Prozessfragment eingeklebt wird und die frg:fragmentExit mit
frg:fragmentEntry Aktivititen verbunden werden, wird dies nur bei der ersten Iteration
gemacht, bei den weiteren Iterationen wird der eingeklebte Prozessfragment wieder ver-
wendet, der Mapping findet dabei automatisch statt, d.h. die gleichen Elemente werden bei
jeder Iteration auf einander abgebildet, wie es bei der ersten Iteration definiert wurde. Laut
BPEL-Spezifikation [BPEo7, S. 104-105] diirfen keine Links die Grenzen von Schleifen iiber-
briicken, so diirfen es auch die Verbindungen zwischen frg:fragmentExit und frg:fragmentEntry
Aktivitaten nicht.

3.7 Einschrankungen bei der Komposition

Bei der Modellierung von Prozessfragmenten ist dem Modellierer oft unbekannt, welche
Prozesslogik vor und welche nach dem zu modellierenden Prozessfragment ausgefiihrt
wird. In diesem Fall wird die unbekannte Prozesslogik von dem zu modellierenden Pro-
zessfragment durch die Aktivitdten frg:fragmentEntry bzw. frg:fragmentExit abgegrenzt. Die
fre:fragmentEntry Aktivitaten fehlen in einem Prozessfragment nur, wenn es sich dabei um
einen Startfragment handelt. Bei der Komposition von den Prozessfragmenten miissen also
zu jedem einzuftigenden Prozessfragment mindestens eine frg:fragmentExit Aktivitat im
Host-Prozessfragment vorhanden sein. Das Einkleben von Startfragmenten in ein Prozess
widerspricht der modellierten Semantik von Prozessfragmenten.

Aus diesem Grund ist nur eine begrenzte Anzahl von Klebeoperationen innerhalb eines Pro-
zesses moglich. Diese Anzahl gleicht der Anzahl der aktiven unverbundenen frg:fragmentExit
Aktivitdten plus die Anzahl der aktiven frg:fragmentRegion Aktivititen des Prozesses, in die
kein Prozessfragment eingeklebt wurde. Ob es Klebeoperationen innerhalb eines Prozesses
erlaubt sind, soll von dem WEMS kontrolliert werden.

46

3.7 Einschrankungen bei der Komposition

f Process \

/ FragmentScope\

/~ Fragment
Sequence

O

O
-

7
4 FragmentScope\

Vars

FragmentFlow

— —

Abbildung 3.10: Der Pfeil deutet die Verbindung von frg:fragmentExit und frg:fragmentEntry
Aktivititen an, es wird dabei jedoch kein Link erstellt. Die zweite
frg:fragmentEntry Aktivitat kann nicht mehr verbunden werden ohne Zyklen
im Prozess zu erzeugen.

Des weiteren kann es bei der Komposition von Prozessfragmenten zu Situationen kommen,
dass bestimmte frg:fragmentEntry Aktivititen nicht mehr mit frg:fragmentExit Aktivitdten
verbunden werden konnen. Diese Situationen treten beim Ankleben von Prozessfragmenten
mit mehreren frg:fragmentEntry Aktivititen auf, falls im Host-Prozessfragment nur eine
unverbundene frg:fragmentExit bzw. frg:fragmentRegion Aktivitat vorhanden ist. In diesem Fall
ist das Verbinden von einem frg:fragmentExit frg:fragmentEntry Paar moglich, alle weiteren
frg:fragmentEntry Aktivititen des eingeklebten Prozessfragments konnen nicht mehr verbun-
den werden ohne Zyklen zu erzeugen. Beispiel fiir solche Situation ist auf der Abbildung
3.10 dargestellt. In dieser Situation ist es nicht moglich die frg:fragmentEntry Aktivitat, die
sich links unten im Bild befindet, mit einer frg:fragmentExit Akivitdt zu verbinden ohne
Zyklen im Prozess zu erzeugen.

47

3 Konzept

3.8 Generische Architektur

Die generische Architektur eines WFMSs (Abbildung 3.11) besteht im wesentlichen aus
folgenden Komponenten:

e Navigator ist fiir das Navigieren durch die Prozesse und die Ausfiithrung der Aktivita-
ten zustandig.

o Service Provider bietet die deployten Prozessmodelle als Web Services an.
e Service Invoker wird benutzt um Web Services der Partner aufzurufen.

e Scheduler ist fiir die verzogerte Ausfithrung von Aktivititen wie <wait> Aktivitat
zustandig.

e Buildtime Datenbank dient der Speicherung der verfiigbaren Prozessmodelle.

e Runtime Datenbank wird fiir die Speicherung von Prozessinstanz-Zustanden und
den Daten benutzt, die von den Prozessinstanzen verwendet und erzeugt werden.

¢ Auditing Datenbank wird fiir die Speicherung der Informationen tiber die ausgefiihr-
ten Prozessinstanzen und deren Aktivitidten benutzt.

e Management API stellt die Funktionalitdten fiir die Steuerung des WFEMSs zur Verfii-
gung. Beispielsweise Deployen/Undeployen von Prozessmodellen, Terminieren von
Prozessinstanzen, abfragen der Auditing-Informationen etc.

Damit ein WEMS Prozessfragmente ausfiihren kann, soll diese Architektur erweitert werden.
Dazu muss diese um die Schnittstellen FragmentManagement API und FragmentComposition
API erweitert werden (Abbilung 3.12). Die Funktionalitdt wird dabei in zwei unterschiedli-
chen Schnittstellen angeboten, da die Schnittstelle FragmentManagement API keine Interaktion
mit der Navigator Komponente benétigt, sondern lediglich die Verbindung mit der Buildtime
Datenbank um die Informationen {iber die verfiigbaren Prozessfragmenten abfragen zu kon-
nen. Die Schnittstelle FragmentComposition API benotigt die Verbindung mit der Navigator
Komponente um die Runtime Komposition durchfithren zu konnen. Die Navigator Kompo-
nente muss dabei um die in dieser Arbeit eingefiihrten Aktivititen erweitert werden. Die
Aktivitaten frq:fragmentEntry, frg:fragmentExit und frg:fragmentRegion sollen dabei dhnlich
der <receive> Aktivitidt den Kontrollfluss blockieren kdnnen bis eine bestimmte Nachricht
empfangen wird, bzw. eine Operation dieser Aktivitat ausgefiihrt wird.

Die Schnittstelle FragmentComposition API leitet die Anfragen an die Navigator Komponente
weiter. Navigator erzeugt dabei den Kontext der benotigten Prozessinstanz und leitet die
Anfrage an die FragmentComposition Proxy Komponente weiter. Diese Komponente leitet
die glue(...), wireAndMap(...), ignoreFragmentEntry(...) und ignoreFragmentExit(...) Anfragen
an die entsprechenden Aktivitdten der Prozessinstanz weiter (Abbildung 3.13), und leitet
die restlichen Anfragen an die Komponente FragmentCompositionAnalyzer weiter (Abbildung
3.14). Diese sammelt Informationen tiiber die aktuelle Fragmentkomposition des Prozesses
und benétigt keine Interaktion mit den Aktivitdten der Prozessinstanz. Des weiteren muss die
Buildtime Datenbank erweitert werden, damit Prozessfragmente gespeichert werden konnen.

48

3.8 Generische Architektur

e

Service Service WF Management API
Invoker Provider

A

Scheduler

NEWI[eEI(o]@ll BPEL Aktivitaten

Abbildung 3.11: Generische Architektur

Damit Prozessfragmente deployt werden kénnen, muss auch der Deployment des WFMSs
erweitert werden.

Die Mediator-Komponente tibernimmt die Aufgabe der automatischen Konvertierung von
Variablen, sowie den Correlation Sets. Die Schnittstelle dieser Komponente (Listing 3.8)
bietet zwei Operationen an. Die Operation mediateVariable(...) ist fiir die Konvertierung von
Variablen unterschiedlicher Datentypen zustdndig. Als Parameter wird der Datentyp der zu
konvertierenden Variable, der gewiinschte Datentyp, sowie der Wert der zu konvertierenden
Variable angegeben. Die zweite Operation mediateCorrelationSet(...) ist fiir die Transformation
von Correlation Sets zustandig. Wie im Kapitel 3.5 beschrieben ist, wird Mediation der
Correlation Sets jedes mal beim Mapping von Correlation Sets aufgerufen. Dabei werden
die Correlation Sets anhand von dem Prozessfragmentnamen, dem Namen vom Correlation
Set, sowie dem Namen des Correlation Set deklarierenden Scopes unterschieden. Die zu
konvertierenden Daten, sowie die Resultate der Konvertierung werden dabei durch XML
DOM Objekte reprasentiert. Falls die Mediator-Komponente keine Transformation durch-
fiihren kann, weil keine entsprechende Transformationsregel definiert ist, oder die Eingabe
fehlerhaft ist, wird ein Ausnahmefehler MediationException geworfen.

49

3 Konzept

A

% * WF Management API
FragmentManagement API

Service Service

Scheduler | Invoker Provider FragmentComposition API

Mediator

NEVIlEIG]@ FC Proxy @ FC Analyzer

T BPEL Aktivitaten Fragment Elemente
Transformations-
regeln

__

Abbildung 3.12: Erweiterte generische Architektur

Listing 3.8 Schnittstelle der Mediator-Komponente

public Node mediateVariable(QName fromDataType, QName toDataType, Node xmlData)
throws MediationException;

public Node mediateCorrelationSet(CSetMediationInfo from, CSetMediationInfo to, Node
xmlData) throws MediationException;

CSetMediationInfo {
(QName processName;
String scopeName;
String correlationSetName;

50

3.8 Generische Architektur

sd Kleben eines ProzessfragmentsJ

FragmentComposition API Navigator FC Proxy fragmentFlow

> 1.1 processMessage() »_!_

1: glue()

1.1.1: createContext()

1.1.2: glue()

1.1.2.1: glue()

Abbildung 3.13: Aufruf einer glue(...) Operation des FragmentComposition API

sd Abfrage der Liste verfligbarer Variablen J

FragmentComposition API ‘ ‘ Navigator ‘ FC Proxy FC Analyzer
[T

1: getAvailableVariables() > 1.1: processMessage() |

»
JEERE createContext()

1.1.2: getAvailableVariables() .

I
|
I
|
I
|
I
1.1.2.1: getAvailableVariables() . |
»

Abbildung 3.14: Aufruf einer getAvailableVariables(...) Operation des FragmentComposition
API

51

3 Konzept

Listing 3.9 FragmentComposition Schnittstelle

public boolean glue(Long instanceld, int containerId, String newFragmentName) throws
FragmentCompositionException, InstanceNotFoundException;

public boolean wireAndMap(Long instanceld, int fragmentExitId, int fragmentEntryId,
Mapping[] mappings) throws FragmentCompositionException,
InstanceNotFoundException;

public boolean ignoreFragmentExit(Long instanceld, int fragmentExitId) throws
FragmentCompositionException, InstanceNotFoundException;

public boolean ignoreFragmentEntry(Long instanceld, int fragmentEntryId) throws
FragmentCompositionException, InstanceNotFoundException;

public byte[] getProcessImage(Long instanceld) throws InstanceNotFoundException;

public ActivityInfolist getFragmentContainers(Long instanceld) throws
InstanceNotFoundException;

public ActivityInfolist getDanglingExits(Long instanceId) throws
InstanceNotFoundException;

public ActivityInfolist getDanglingEntries(Long instanceId) throws
InstanceNotFoundException;

public ActivityInfolList getIgnorableExits(Long instanceIld) throws
InstanceNotFoundException;

public ActivityInfolist getIgnorableEntries(Long instanceld) throws
InstanceNotFoundException;

public VariableInfolist getVariablesToMap(Long instanceld, int elementId) throws
InstanceNotFoundException;

Stringlist getPartnerLinksToMap(Long instanceld, int elementId) throws
InstanceNotFoundException;

public Stringlist getCorrelationSetsToMap(Long instanceld, int elementId) throws
InstanceNotFoundException;

public VariableInfolist getAvailableVariables(Long instanceld, int elementId) throws
FragmentCompositionException, InstanceNotFoundException;

public Stringlist getAvailablePartnerLinks(Long instanceld, int elementId) throws
FragmentCompositionException, InstanceNotFoundException;

public Stringlist getAvailableCorrelationSets(Long instanceld, int elementId) throws
FragmentCompositionException, InstanceNotFoundException;

Listing 3.10 Datenstruktur Activitylnfo

ActivityInfo {
String name;
Integer id;

3.9 Komposition-API

Laut der Aufgabenstellung dieser Diplomarbeit wird die Komposition von den Prozessfrag-
menten von einem Menschen geleitet. Um dies zu ermoglichen muss das verwendete WFMS
entsprechende Schnittstellen implementieren. Zu diesem Zweck werden die Schnittstellen
FragmentComposition und FragmentManagement eingefiihrt (Listings 3.9 und 3.13).

52

3.9 Komposition-API

Listing 3.11 Datenstruktur VariableInfo

VariableInfo {
String name;
QName type;

Listing 3.12 Datenstruktur Mapping
enum ElementType { VARIABLE, PARTNER_LINK, CORRELATION_SET };

Mapping {
ElementType type;
String fromVar;
String toVar;

Im folgenden werden die Operationen der FragmentComposition Schnittstelle vorgestellt:

o Mit Hilfe der glue(...) Operation wird ein Prozessfragment in ein so genantes Container in
einer Prozessinstanz eingefiigt. Container steht dabei stellvertretend fiir die Aktivitaten
frg:fragmentFlow, frg:fragmentSequence und frg:fragmentRegion.

e Die Operation wireAndMap(...) dient dem Verbinden von frg:fragmentEntry und
frg:fragmentExit, bzw. frg:fragmentRegion Aktivititen. Diese Operation benétigt die
Ids der zu verbindenden Aktivitdten, sowie eine Liste mit Angaben iiber die beim
Mapping beteiligten Elemente. Die Angaben zum Mapping erfolgen durch die Anga-
ben von Elementen-Namen, sowie dem Typ der Elemente, die auf einander abgebildet
werden sollen (Listing 3.12).

e Die Operation ignoreFragmentExit(...) schliefdt die Ausfiihrung einer frg:fragmentExit
Aktivitdt ab, ohne diese mit einer frg:fragmentEntry Aktivitat zu verbinden. Das Igno-
rieren der frq:fragmentExit Aktivitdten ist in den Situationen niitzlich, wenn nicht Alle
frg:fragmentExit Aktivititen mit den entsprechenden frg:fragmentEntry Aktivitaten ver-
bunden werden sollen, da diese die optionalen Prozesszweige darstellen (Abbildung
3.15). In diesem Fall kénnen solche frg:fragmentExit Aktivitdten ignoriert werden, d.h.
deren Ausfithrung wird erfolgreich beendet.

e Die Operation ignoreFragmentEntry(...) schliefit die Ausfiihrung einer frg:fragmentEntry
Aktivitat ab, ohne diese mit einer frg:fragmentExit Aktivitat zu verbinden. Falls die
frg:fragmentEntry Aktivitat sich in der frg:fragmentFlow Aktivitat befindet, dann werden
die Transition-Conditions der ausgehenden Links aus dieser Aktivitit auf false gesetzt,
somit wird Dead Path Elimination [LRoo] ausgelost. Falls die frg:fragmentEntry Aktivitat
sich in der frg:fragmentSequence Aktivitat befindet, dann wird die frg:fragmentEntry
Aktivitdt abgeschlossen und die Ausfithrung der Sequenz fortgesetzt.

Das Ignorieren der frg:fragmentEntry Aktivitdten ist in den Situationen niitzlich, wenn
diese zur Synchronisation mit anderen Prozessfragmenten vorgesehen sind, werden
aber in der aktuellen Zusammenstellung der Prozessfragmente nicht benétigt.

53

3 Konzept

Die Operation getProcessImage(...) erstellt eine graphische Darstellung des Prozesses und
dient der Ubersicht iiber die aktuelle Prozessstruktur. Diese zeigt auch die Aktivitdten
Ids, die beim Aufruf bestimmter Operationen dieser Schnittstelle benttigt werden.

Die Operation getFragmentContainers(...) liefert die Containers, die Aktiv sind und das
Einfiigen eines Prozessfragments erlauben.

Die Operation getDanglingExits(...) liefert eine Liste von aktiven und nicht verbun-
denen frqg:fragmentExit, sowie frg:fragmentRegion Aktivitdten, falls diese die Rolle der
frg:fragmentExit Aktivitat ibernehmen. Die Aktivitdten werden dabei durch die Activi-
tyInfo Elemente (Listing 3.10) dargestellt.

Die Operation getDanglingEntries(...) liefert eine Liste von aktiven und nicht verbun-
denen frg:fragmentEntry, sowie frg:fragmentRegion Aktivitdten, falls diese die Rolle der
frg:fragmentEntry Aktivitat ibernehmen.

Die Operation getlgnorableExits(...) liefert die aktiven und nicht verbundenen
frg:fragmentExit Aktivitaten, die ignoriert werden kénnen.

Die Operation getlgnorableEntries(...) liefert die aktiven und nicht verbundenen
frg:fragmentEntry Aktivitaten, die ignoriert werden konnen.

Die Operation getVariablesToMap(...) gibt die Variablen zuriick, die in frg:fragmentEntry
bzw. frqg:fragmentRegion definiert sind und Mapping benétigen.

Die Operation getPartnerLinksToMap(...) gibt die Partner Links zuriick, die in
fre:fragmentEntry bzw. frg:fragmentRegion definiert sind und Mapping benotigen.

Die Operation getCorrelationSetsToMap(...) gibt die Correlation Sets zurtick, die in
fre:fragmentEntry bzw. frg:fragmentRegion definiert sind und Mapping benotigen.

Die Operation getAuvailableVariables(...) liefert die von einer Aktivitit aus sichtbaren
Variablen.

Die Operation getAvailablePartnerLinks(...) liefert die von einer Aktivitdt aus sichtbaren
Partner Links.

Die Operation getAvailableCorrelationSets(...) liefert die von einer Aktivitét aus sichtbaren
Correlation Sets.

In dieser Schnittstelle werden zur Identifikation der Aktivititen die Aktivititen Id verwendet.
Die Aktivitdts Id wird jeder Aktivitit von dem WEFMS vergeben. Jede Aktivitits Id ist
innerhalb der Prozessinstanz eindeutig. Das ermdglicht das wiederholte Einfiigen von den
gleichen Prozessfragmenten in den selben Prozess und vermeidet die moglichen Kollisionen,
die beim Verwenden von Aktivitdtennamen auftreten konnten. Die Aktivitdten Id sind auf
der graphischen Darstellung der aktuellen Prozessstruktur angegeben.

Die Operationen getFragmentContainers(...), getDanglingExits(...), getDanglingEntries(...), ge-
tignorableExits(...) und getlgnorableEntries(...) liefern eine Liste der Aktivitdten zuriick. Die
Aktivititen werden dabei durch die Datenstruktur Activitylnfo (Listing 3.10) dargestellt.
Die Operationen getVariablesToMap(...) und getAvailableVariables(...) liefern eine Liste von

54

3.9 Komposition-API

4 Process)

4 FragmentScope N
N
N

e
FragmentFlow /FragmentSCOpe

FragmentFlow

= =)

Abbildung 3.15: Eine frg:fragmentExit Aktivitit wird mit keiner frg:fragmentEntry Aktivi-
tat verbunden, da diese ein optionales Prozesszweig darstellt und kann
ignoriert werden.

Listing 3.13 FragmentManagement Schnittstelle

Stringlist getAvailableFragments() throws ManagementFault;
Stringlist getAvailableStartFragments() throws ManagementFault;
Stringlist getAvailableNonStartFragments() throws ManagementFault;

Variablen zuriick. Die Variablen werden dabei durch die Datenstruktur Variablelnfo (Listing
3.11) dargestellt. Die Operationen getPartnerLinksToMap(...), getCorrelationSetsToMap(...), getA-
vailablePartnerLinks(...) und getAvailableCorrelationSets(...) geben eine Liste von strings zurtick,
die die Namen der entsprechenden Elementen enthalten.

Im folgenden werden die Operationen der FragmentManagement Schnittstelle (Listing 3.13)
beschrieben:

e Die Operation getAvailableFragments() gibt Ids aller verfligbaren Prozessfragmente
zuriick.

e Die Operation getAvailableStartFragments() gibt die Ids der verfiigbaren Startfragmente
zuriick.

e Die Operation getAvailableNonStartFragments() gibt die Ids der verfiigbaren Prozessfrag-
mente zurtick, die keine Startfragmente sind, und somit in andere Prozessfragmente
eingeklebt werden konnen.

Die Operationen dieser Schnittstelle geben jeweils eine Liste von strings mit den entsprechen-
den Ids zuriick.

55

3 Konzept

Diese Methoden werden in einer separaten Schnittstelle definiert, da diese im Gegensatz zu
den Operationen der FragmentComposition Schnittstelle keine Interaktion mit BPEL-Engine
benotigen, sondern lediglich den Zugriff auf die Buildtime Datenbank.

56

4 Ubersicht iiber Apache ODE

Apache ODE [ODEa] ist eine Open Source Workflow-Engine, die BPEL-Prozesse ausfiihren
kann und in dieser Arbeit verwendet wird, um den im Kapitel 3 beschriebenen Konzept
umzusetzen.

4.1 Architektur

In diesem Kapitel wird ein kurzer Uberblick {iber die Architektur der Apache ODE gegeben.
Die Architektur von Apache ODE (Abbildung 4.1) besteht aus folgenden Komponenten
[ODEa]:

BPEL Compiler erstellt aus den prozessbeschreibenden Dateien (BPEL, WSDL und
XSD Dateien) eine ausfiihrbare interne Repridsentation des Prozesses. Diese interne
Représentation wird in eine .cbp Datei serialisiert. Die .cbp Dateien werden von der
ODE BPEL Runtime Komponente verwendet um Prozesse auszufiihren.

ODE BPEL Runtime tibernimmt die Ausfithrung von BEPL-Prozessen und enthalt
die Implementierung der Logik von den einzelnen BPEL-Konstrukten. Des weiteren
tibernimmt diese Komponente die Zuordnung von den eingehenden Nachrichten zu
den entsprechenden Prozessinstanzen.

Jacob Komponente befindet sich innerhalb von ODE BPEL Runtime Komponente
und stellt die Laufzeitumgebung fiir die auszufithrenden Arbeitseinheiten dar. Als
Arbeitseinheiten wird die Logik der einzelnen Aktivitdten der Apache ODE umgesetzt.
Es erlaubt parallele Ausfiihrung von Arbeitseinheiten innerhalb eines Threads, sowie
das Anhalten der Ausfithrung und Persistieren von dem Ausfithrungszustand der
Arbeitseinheiten.

ODE Data Access Objects tibernehmen die Rolle der Vermittlung bei der Datenspei-
cherung zwischen der ODE BPEL Runtime Komponente und der Datenbank.

ODE Integration Layer dient als Kommunikationsmittel mit der ODE BPEL Runtime.
Mit Hilfe von AXIS2 [AXI] als Integrationsschicht ist es moglich mit ODE iiber Web Ser-
vices zu kommunizieren. Die JBI [JBlos] Implementierung von der Integrationsschicht
ermoglicht die Kommunikation tiber JBI Message Bus.

57

4 Ubersicht (iber Apache ODE

@PEL Process Definitions, WSDID

0

ODE BPEL Compiler

0

(Compiled Process Definitions)

0

ODE BPEL Runtime
 |nstantiation of Processes
* Implementation of BPEL Consturcts
* Routing of Incomming Messages

3d0

SNdda)

Jacob

¢ Persistency of Execution State
¢ Concurrency

¢ Navigation

Web
Services

JaAejuoneibau|

ejeg 3ao

-0

O
O

$109[qO SS90y

N

Abbildung 4.1: ODE Architektur [ODEa]

4.2 Deployment

Um einen Prozess in Apache ODE zu deployen wird die dazugehorige .bpel Prozessbeschrei-
bung benétigt, die .wsdl Dateien von den angebotenen und aufzurufenden Web Services,
sowie die bendtigten .xsd Beschreibungen und dem Deployment Descriptor. Diese Dateien
werden vor dem Deployment in eine .zip Detei komprimiert und anschliefflend deployt.

Apache ODE bietet zwei Moglichkeiten Prozesse zu deployen.
e Kopieren von der .zip Datei in den processes Ordner der deployten Apache ODE
e Durch die Operation deploy(...) des Management API [ODEa].

Als Deployment Descriptor dient fiir die Apache ODE die Datei mit dem Namen “deploy.xml”.
In dieser Datei werden die Binding-Informationen fiir die im Prozess benutzten Partner
Links angegeben. Als Wurzelelement des Deployment Descriptors dient <deploy> Element.

58

4.3 Versionierung

Listing 4.1 Deployment Descriptor Wurzelelement [ODEa]

<deploy>
<process name=QName ...>*

</process>
</deploy>

Listing 4.2 Service Binding im Deployment Descriptor [ODEa]

<provide partnerLink=NCName>
<service name=(QName port=NCName?>
</provide>

Fiir jeden Prozess in der zu deployten .zip Datei wird <process> Element als Kind des Wur-
zelelements hinzugefiigt. Das Attribut name des <process> Elements gibt den Namen des
zu deployten Prozesses an. Der Name muss dabei mit dem in der .bpel Datei angegebenem
Prozessnamen iibereinstimmen (Listing 4.1). Jedes <prozess> Element muss dabei angeben,
welche Services dieser anbietet, sowie deren Binding. Dies wird mit dem Element <provide>
beschrieben. Das Attribut partnerLink gibt den Namen des verwendeten Partner Links an.
Das Kindelement <service> gibt den dazugehorigen Binding an (Listing 4.2). Die aufzuru-
fenden Services im Prozess miissen durch das Element <invoke> im Deployment Descriptor
angegeben werden. Die vollstindige Schema-Beschreibung des Deployment Descriptors
kann in [ddS] nachgeschlagen werden [ODEa].

4.3 Versionierung

Apache ODE unterstiitzt Versionierung von Prozessen. Diese Funktionalitdt erlaubt die
Verwendung von neuen Versionen von Prozessmodellen ohne den Betrieb der veralteten
Prozesse zu storen. Beim Deployment einer neuen Version des bestehenden Prozesses werden
die vorhandenen Prozessinstanzen nach der alten Version des Prozessmodells ausgefiihrt, die
neuen Prozessinstanzen werden dabei von der aktuellen Version des Prozessmodells erstellt.
Das erméglicht einen flieBenden Ubergang zwischen den Versionen von den Prozessmodellen
ohne den Betrieb von veralteten Prozessmodellen zu storen [ODEa].

4.4 Apache ODE Channels

Die Channels in Apache ODE sind Schnittstellen, die Kommunikation zwischen den Akti-
vitdten erlauben. Die Channels besitzen keine Implementierung. Damit eine Reaktion auf
einen Methodenaufruf eines Cahnnels erfolgen kann, muss eine Aktivitit einen dem Channel
zugeordnete ChannelListener Schnittstelle implementieren. Der Aufruf der entsprechenden
Methode des ChannelListeners erfolgt dabei verzogert. Es wird eine Arbeitseinheit erstellt, die
die entsprechende Methode des ChannelListeners aufruft. Diese Arbeitseinheit wird an Jacob

59

4 Ubersicht (iber Apache ODE

Komponente tibergeben, die die Ausfiihrung dieser Arbeitseinheit entsprechend einplant
[ODEa].

60

5 Umsetzung

Bei der Umsetzung des Konzepts miissen folgende Komponenten von Apache ODE erweitert
werden:

e ODE BPEL Compiler
e ODE BPEL Runtime
e ODE Data Access Objects, sowie das Datenbankschema

e ODE Integrationlayer

5.1 Erweiterung der ODE BPEL Compiler Komponente

Damit die Apache ODE die im Kapitel 3.2 eingefiihrten Aktivititen aus den BPEL-
Prozessbeschreibungen in die interne Darstellung transformieren kann, muss ODE BPEL
Compiler Komponente erweitert werden. Apache ODE unterstiitzt die <extensionActivity> nicht
[ODEDb], aus diesem Grund werden die neuen Aktivititen als Standard-BPEL-Aktivitdten
umgesetzt. Standard-BPEL-Aktivitdten werden in Apache ODE durch Java-Klassen représen-
tiert. Die Benennung dieser Klassen folgt dem Schema O + Aktivititsname. Fiir die <empty>
Aktivitat heifst die entsprechende Klasse OEmpty. Eine kompilierte Darstellung des Prozesses
bildet dabei einen Baum dieser Java-Klassen mit der Wurzel OProcess. Jede dieser Klassen
enthélt alle fiir die Ausfiithrung benoétigten Daten. Bei der <receive> Aktivitit sind das
z.B. der verwendete Partner Link mit dem entsprechenden Binding sowie die verwendeten
Correlation Sets.

Klassen, die in der ODE BPEL Compiler Komponente die Aktivititen und den Prozess an
sich reprédsentieren, kann man in mehrere Gruppen unterteilen. Zunéchst wird die BPEL-
Datei geparst und ein DOM-Baum erstellt. Die Klassen mit dem Suffix Activity des Pakets
org.apache.ode.bpel.compiler.bom dienen der XML-unabhédngigen Darstellung der Aktivitidten
und besitzen Methoden um auf die Eigenschaften von Aktivititen im DOM-Baum zugreifen
zu konnen. Mit Hilfe von Klassen mit dem Suffix Generator des org.apache.ode.bpel.compiler
Paktes konnen aus diesen XML-abstrahierenden Aktivitatsklassen die Aktivitdten (Klassen
mit dem Prefix O des Pakets org.apache.ode.bpel.0) in der internen Darstellung erzeugt werden
(Abbildung 5.1). Diese Klassen enthalten alle fiir die Ausfithrung notwendigen Daten,
enthalten jedoch keine Implementierung der Aktivitidtenlogik, sondern sind eine interne
Darstellung des Prozesses. Diese interne Darstellung wird nach dem Kompilieren in eine
.cbp (Compiled BPEL Process) Datei serialisiert. Diese Datei wird von der ODE BPEL Runtime
Komponente benutzt um den Prozess auszufiihren.

61

5 Umsetzung

sd Kompilieren einer Aktivitat J

*ActivityGenerator
|

- <<create>>
1: newlInstance(activity)

*Activity

|
p— 1.1 createMessage()>

2: compile(output, activity)

DOM Baum

2.1.1: getValue()

Abbildung 5.1: Kompilieren einer Aktivitdt. Symbol * steht stellvertretend fiir den Namen

der zu kompilierenden Aktivitat.

Um diese Komponente zu erweitern, wurden fiir jede Aktivitit entsprechende XML-
abstrahierende Klassen im Paket org.apache.ode.bpel.compiler.bom, die entsprechenden Ak-
tivitatsgeneratoren im Paket org.apache.ode.bpel.compiler, sowie die interne Reprdsentation
der Aktivitdten im Paket org.apache.ode.bpel.o erstellt. Damit die ODE BPEL Compiler Kompo-
nente fiir die neuen BPEL-Aktivititen entsprechende XML-abstrahierende Klassen finden
kann, wurden entsprechende Assoziationen in der Klasse BpelObjectFactory des Pakets
org.apache.ode.bpel.compiler.bom hinzugefiigt. Des weiteren wurden die XML-abstrahierende
Klassen mit den dazugehorigen Aktivititsgeneratoren assoziiert. Dies wurde in der Klasse

BpelCompiler2o des Pakets org.apache.ode.bpel.compiler gemacht.

62

5.2 Erweiterung der ODE BPEL Runtime Komponente

5.2 Erweiterung der ODE BPEL Runtime Komponente

5.2.1 Aktivitatenlogik

Damit die interne Reprédsentation der eingefiihrten Aktivitidten ausgefiihrt werden kann,
muss fiir jede neue Aktivitdt entsprechende Logik implementiert werden. Die Logik der
Aktivitdten wird in Klassen des Pakets org.apache.ode.bpel.runtime implementiert, die von der
Klasse ACTIVITY abgeleitet sind. Objekte dieser Klassen stellen Arbeitseinheiten dar und
werden von Jacob Komponente ausgefiihrt. Um die Logik einer Aktivitdt auszufiihren, ruft
Jacob Komponente die run() Methode der Aktivititen auf.

Um die ODE BPEL Runtime Komponente um die Logik neuer Aktivitdten zu erweitern, wur-
den entsprechende Klassen erstellt, die von der Klasse ACTIVITY ableiten und entsprechend
die Methode run() implementieren. Des weiteren wurde die Klasse ActivityTemplateFactory
des Pakets org.apache.ode.bpel.runtime erweitert, damit diese fiir die internen Reprasentationen
der neuen Aktivitidten die entsprechenden Objekte der Logik implementierenden Klassen
zuriickgibt.

Die Logik der eingefiihrten Aktivitdten wird in Listings 5.1, 5.2, 5.3, 5.4 und 5.5 in Pseudocode
dargestellt.

5.2.2 Zusatzliche Channels

Um die Funktionalitdt der Aktivititen aufrufen zu konnen, werden drei neue Channel-
Typen eingefiihrt. FragmentCompositionChannel (Listing 5.6) besitzt vier Operationen gluel...),
wireAndMap(...), ignoreFragmentEntry(...) und ignoreFragmentExit(...). Channels dieses Typs
sind mit den Containers verbunden. In den Listings 5.1, 5.2 und 5.3 heiflen die durch
den FragmentCompositionChannel aufgerufene Operationen onGlue(...), onWireAndMap(...),
onlgnoreFragmentEntry(...) und onlgnoreFragmentExit(...).

Die Channels des Types FragmentCompositionResponseChannel (Listing 5.7) sind mit den akti-
ven und unverbundenen frg:fragmentExit Aktivititen verbunden. Der Aufruf der Operation
fragmentCompositionCompleted() dieses Channels ruft die onFragmentCompositionCompleted()
Operation der entsprechenden frg:fragmentExit Aktivitat (Listing 5.5) und beendet die Aus-
fithrung dieser Aktivitat.

Die Channels des Types FragmentEntryMappedChannel (Listing 5.8) sind mit den aktiven
und unverbundenen frg:fragmentEntry Aktivititen verbunden. Der Aufruf der Operation
fragmentEntryMapped() dieses Channels ruft die onFragmentEntryMapped() Operation der
entsprechenden frg:fragmentEntry Aktivitat (Listing 5.4), weist die beim Mapping zwischen-
gespeicherten Daten den entsprechenden Elementen zu und beendet die Ausfiihrung dieser
Aktivitat. Die Operation ignoreEntry() dieses Channels ruft die onlgnoreEntry() Operation der
entsprechenden frg:fragmentEntry Aktivitat (Listing 5.4) und beendet die Ausfiihrung dieser
Aktivitat ohne Mapping durchzufiihren.

63

5 Umsetzung

Listing 5.1 Pseudocode der Logik von der frg:fragmentFlow Aktivitat

onGlue (QName newFragmentName, FragmentCompositionResponse response){

if (isGlueAllowed()) {
OProcess toGlue = getProcess(newFragmentName) ;
OFragmentScope scope = getScopeToGlue (toGlue) ;
glueProcesses(thisProcess, toGlue); // Listing 5.9
addParallelActivity(scope) ;
response.returnValue (true) ;

} else {
response.returnValue(false) ;

}
onWireAndMap(int fragmentExitId, int fragmentEntryId, Mapping[] mappings,
FragmentCompositionResponse response){
try {
wireAndMap (fragmentExitId, fragmentEntryIld, mappings); // Listing 5.10
addLinkIfNeeded (fragmentExitId, fragmentEntryId);
serializeOProcess (process);
FragmentCompositionResponseChannel channel =
getFragmentExitChannel (instanceld, fragmentExitId);
channel.fragmentCompositionCompleted() ;
removeFragmentExitChannel (instanceld, fragmentExitId);
response.returnValue (true) ;
} catch (Exception e){
response.throwException(e) ;

}

onIgnoreFragmentExit (int fragmentExitId, FragmentCompositionResponse response)q{
markExitAsIgnored (fragmentExitId) ;
FragmentCompositionResponseChannel channel = getFragmentExitChannel(instanceld,
fragmentExitId);
channel . fragmentCompositionCompleted() ;
removeFragmentExitChannel (instanceld, fragmentExitId);
response.returnValue(true) ;

onIgnoreFragmentEntry (int fragmentEntryIld, FragmentCompositionResponse response)q{

markEntryAsIgnored (fragmentExitId) ;

setTransitionConditionToFalse();

FragmentEntryMappedChannel channel = getFragmentEntryChannel (instanceld,
fragmentEntryId) ;

channel.ignoreEntry();

removeFragmentEntryChannel (instanceld, fragmentEntryId);

response.returnValue (true) ;

execute () {
createActivityInstances(parallelActivities);
addFragmentCompositionChannel (instanceld, flowActivityId, new
FragmentCompositionChannel());

64

5.2 Erweiterung der ODE BPEL Runtime Komponente

Listing 5.2 Pseudocode der Logik von der frg:fragmentSequence Aktivitat

onGlue (QName newFragmentName, FragmentCompositionResponse response){

if (isGlueAllowed()){
OProcess toGlue = getProcess(newFragmentName) ;
OFragmentScope scope = getScopeToGlue(toGlue) ;
glueProcesses(thisProcess, toGlue); // Listing 5.9
addActivityIntoSequence (scope);
response.returnValue (true) ;

} else {
response.returnValue (false) ;

}
onWireAndMap(int fragmentExitId, int fragmentEntryId, Mapping[] mappings,
FragmentCompositionResponse response){
try {
wireAndMap (fragmentExitId, fragmentEntryIld, mappings); // Listing 5.10
serializeOProcess (process);
FragmentCompositionResponseChannel channel =
getFragmentExitChannel (instanceld, fragmentExitId);
channel.fragmentCompositionCompleted() ;
removeFragmentExitChannel (instanceld, fragmentExitId);
response.returnValue (true) ;
} catch (Exception e){
response.throwException(e) ;

}

onIgnoreFragmentExit (int fragmentExitId, FragmentCompositionResponse response){
markExitAsIgnored (fragmentExitId);
FragmentCompositionResponseChannel channel = getFragmentExitChannel (instanceld,
fragmentExitId);
channel . fragmentCompositionCompleted() ;
removeFragmentExitChannel (instanceld, fragmentExitId);
response.returnValue (true) ;

onIgnoreFragmentEntry(int fragmentEntryId, FragmentCompositionResponse response){
markEntryAsIgnored(fragmentEntryId) ;
FragmentEntryMappedChannel channel = getFragmentEntryChannel (instanceld,
fragmentEntryId) ;
channel.ignoreEntry () ;
removeFragmentEntryChannel (instanceld, fragmentEntryId);
response.returnValue (true) ;

execute () {
if (firstTimeInvoked){
addFragmentCompositionChannel (instanceld, sequenceActId, new
FragmentCompositionChannel());
}
DActivity activity = getNextActivityInSequence();
createActivityInstance(activity);

65

5 Umsetzung

Listing 5.3 Pseudocode der Logik von der frg:fragmentRegion Aktivitat

onGlue (QName newFragmentName, FragmentCompositionResponse response){
if (!regionHasChild()){
OProcess toGlue = getProcess(newFragmentName) ;
OFragmentScope scope = getScopeToGlue(toGlue);
glueProcesses(thisProcess, toGlue); // Listing 5.9
setRegionChild(scope) ;
response.returnValue(true) ;
} else { response.returnValue(false); }
}
onWireAndMap (int fragmentExitId, int fragmentEntryId, Mapping[] mappings,
FragmentCompositionResponse response)q{
try {
wireAndMap (fragmentExitId, fragmentEntryId, mappings); // Listing 5.10
serialize(OProcess (process);
OActivity activity = getActivity(fragmentExitId);
if (activity is frg:fragmentEzit){
FragmentCompositionResponseChannel channel =
getFragmentExitChannel (instanceld, fragmentExitId);
channel. fragmentCompositionCompleted() ;
removeFragmentExitChannel (instanceld, fragmentExitId);
} else if (activity is frg:fragmentRegion){
FragmentEntryMappedChannel channel =
getFragmentEntryChannel (instanceld, fragmentExitId);
channel. fragmentEntryMapped() ;
removeFragmentEntryChannel (instanceld, fragmentEntryId);
}
createActivityInstance(regionChild);
response.returnValue(true) ;
} catch (Exception e){ response.throwException(e); }
}
onlgnoreFragmentExit (int fragmentExitId, FragmentCompositionResponse response)q{
// Die Semantik von frg:fragmentRegion Aktivitdt verbietet es.
response.returnValue (false) ;
}
onIgnoreFragmentEntry(int fragmentEntryId, FragmentCompositionResponse response){
// Die Semantik von frg:fragmentRegion Aktivitdt verbietet es.
response.returnValue(false) ;
}
onCompleteActivity () {
List<MappingInfo> mappingInfos = getMappingInfo(instanceld, activityId);
assignVariableValues (mappingInfos);
assignPartnerLinkValues (mappingInfos) ;
assignCorrelationSetValues (mappingInfos) ;
removeMappings (instanceld, activityId);
Activity_Completed();
}
execute () {
if (!'isRegionExitMapped()){
// Nur einemal hinzufiighen, falls es in einer Schleife ausgefiihrt wird
addFragmentCompositionChannel (instanceld, regionActId(), new
FragmentCompositionChannel());
} else {
// frg:fragmentRegion ist in einer Schleife und wurde schon verbunden.
onWireAndMap(regionId, fragmentEntryId, mappings, new DummyResponse());

66

5.2 Erweiterung der ODE BPEL Runtime Komponente

Listing 5.4 Pseudocode der Logik von der frg:fragmentEntry Aktivitat

onFragmentEntryMapped () {
List<MappingInfo> mappingInfos = getMappingInfo(instanceld, activityId);
assignVariableValues (mappingInfos);
assignPartnerLinkValues (mappingInfos) ;
assignCorrelationSetValues (mappingInfos) ;
removeMappings (instanceld, activityId);
Activity_Completed();

}

onIgnoreEntry(){
Activity_Completed();

}

execute () {

FragmentEntryMappedChannel channel = new FragmentEntryMappedChannel ()

if (fragmentEntryIsMapped()){
// Prozessfragment wurde am Ende einer frg:fragmentSequence Aktivitidt eingefiigt
// und wurde mit einer frg:fragmentEzit Aktivitdt verbunden
// bevor frg:fragmentEntry Aktivitdt aktiviert werden konnte.
channel.fragmentEntryMapped() ;

} else {
addFragmentEntryMappedChannel (instanceld, entryActivityId(), channel);

}

5.2.3 Kleben von Prozessfragmenten

Das Kleben von Prozessfragmenten kann mit dem Pseudocode aus dem Listing 5.9 dar-
gestellt werden. Als erstes wird die kompilierte Darstellung von dem einzuklebenden
Prozessfragment abgefragt, und in diesem die frg:fragmentScope Aktivitit gefunden, es ist die
Kindaktivitdt des Prozess-Scopes. Abhidngig davon welche Aktivitit die Rolle des Containers
spielt, wird die gefundene frg:fragmentScope Aktivitat im Falle der frg:fragmentFlow Aktivitat
als eine parallele Aktivitdt, im Falle der frg:fragmentSequence als letzte Aktivitdt, und im Falle
der frg:fragmentRegion Aktivitat als eine Kindaktivitdt in die kompilierte Reprasentation des
Host-Prozesses eingefiigt. In der Wurzel der kompilierten Prozessreprdsentationen werden
die benutzten Datentypen referenziert, die fehlenden Datentypen im Host-Prozess miissen
dabei hinzugeftigt werden.

Die geklebte Prozessreprisentation muss in .cbp Datei serialisiert werden, damit die Ande-
rungen des Prozessmodells beim Neustart der Apache ODE erhalten bleiben. Da jedoch zur
Laufzeit nicht nur die Kompilierte Reprasentation des Prozesses benottigt wird, sondern
auch die WSDL und XSD Dateien um die Web Services anzubieten bzw. aufzurufen, miissen
die WSDL und XSD Dateien des Host-Prozessfragments mit neuen WSDL und XSD Dateien
vervollstindigt werden. Dafiir werden die WSDL und XSD Dateien des einzufiigenden Pro-
zessfragments in den Ordner des Host-Prozessfragments kopiert. Falls Namenskollisionen
auftreten wird ein neuer Name fiir die Datei generiert, indem eine Zahl am Ende des Datein-
amens angehédngt wird. Falls der Name der Datei gedndert wurde, werden alle Referenzen

67

5 Umsetzung

Listing 5.5 Pseudocode der Logik von der frg:fragmentExit Aktivitat

execute () {
addFragmentExitChannel (instanceld, fragmentExitId, new
FragmentCompositionResponseChannel())

if (isExitWired(exit)) {
// Die Aktivitdt ist bereits mit einer frg:fragmentEntry verbunden,
// d.h. es wird innerhalb einer Schleife ausgefiihrt
int containerId = findEnclosingFragmentContainer (process, exitId);
FragmentCompositionChannel channel = getFragmentCompositionChannel (instanceld,
containerId);
if (isExitIgnored(exit)){
// frg:fragmentExit wurde vorher ignoriert, also wird es nochmal
gemacht.
fcChannel.ignoreFragmentExit (exitId) ;
} else {
// sonst wurde wireAndMap ausgefiihrt
fcChannel.wireAndMap(exitId, exit.fragmentEntryId, exit.mappings);

}
onFragmentCompositionCompleted(){
int fragmentEntryId = getEntryIdExitIsMappedTo();
OActivity activity = findActivity(fragmentEntryId);
if (activity is frg:fragmentEntry){
FragmentEntryMappedChannel channel = getFragmentEntryChannel (instanceld,
fragmentExitId) ;
channel.fragmentEntryMapped() ;
removeFragmentEntryChannel (instanceld, fragmentEntryId);
} else {
// frg:fragmentEzit ist mit frg:fragmentRegion verbunden
}
Activity_Completed();

Listing 5.6 FragmentComposition Channel

glue (QName newFragmentName, FragmentCompositionResponse response);

wireAndMap(int fragmentExitId, int fragmentEntryId, Mapping[] mappings,
FragmentCompositionResponse response);

ignoreFragmentExit (int fragmentExitId, FragmentCompositionResponse response) ;

ignoreFragmentEntry (int fragmentEntryld, FragmentCompositionResponse response);

Listing 5.7 FragmentCompositionResponse Channel

fragmentCompositionCompleted() ;

Listing 5.8 FragmentEntryMappedChannel

fragmentEntryMapped() ;
ignoreEntry();

68

5.2 Erweiterung der ODE BPEL Runtime Komponente

Listing 5.9 Pseudocode der Operation glue(...)

OActivity container;

OProcess toGlue = getProcessToGlue(processname) ;
OFragmentScope scope = getFragmentScope(toGlue);
container.addChild(scope) ;
copyDeclaredTypesFrom(toGlue) ;

serializeOProcess (hostOProcess) ;
mergeXSDFiles () ;

mergeWSDLFiles () ;

mergeDeploymentDescriptors () ;
reloadHostProcess() ;

auf diese Datei aktualisiert. Falls beide an der Komposition beteiligten Prozessfragmente den
gleichen Web Service referenzieren kommt bei der Komposition dazu, dass derselbe Web Ser-
vice durch zwei WSDL Dateien beschrieben wird. Um das zu verhindern wird beim Kopieren
von WSDL Dateien darauf geachtet, welche Web Services in dem Host-Prozessfragment
bereits definiert sind. Falls der Web Service bereits existiert, wird aus der WSDL Datei des
einzufiigenden Prozessfragments die Definition dieses Web Services entfernt. Da es jedoch
sein kann, dass die WSDL Datei des einzufiigenden Prozessfragments weitere Web Services
oder weitere Datentypen definiert, die in dem Prozessfragment benotigt werden, wird der
tibrig gebliebene Inhalt in den Ordner des Host-Prozessfragments geschrieben.

Zuletzt sollen die vom einzufiigenden Prozessfragment benutzten und angebotenen Web
Services im Host-Prozessfragment verfiigbar gemacht werden. Dazu miissen die Bindings der
Web Services aus dem Deployment Descriptor des einzufiigenden Prozessfragments in das
Deployment Descriptor des Host-Prozessfragments kopiert werden. Damit die Bindings der
Web Services des eingeftigten Prozessfragments gelesen und angewendet werden, muss das
Host-Prozessfragment neu geladen werden, dabei wird die serialisierte Reprasentation des
Prozesses gelesen, sowie die Einstellungen aus dem aktualisierten Deployment Descriptor.

5.2.4 Verbinden von frg:fragmentExit und frg:fragmentEntry Aktivitaten

Bei dem Aufruf von der Operation wireAndMap(...) werden die beteiligten frg:fragmentExit und
frg:fragmentEntry bzw. frg:fragmentRegion Aktivitdten anhand ihrer Id identifiziert. Diese Akti-
vitdten werden in dem Prozess gefunden und tiberpriift, ob fiir alle von der frg:fragmentEntry
bzw. frg:fragmentRegion Aktivitdt verlangten Variablen, Partner Links und Correlation Sets
entsprechende Abbildungen (Mappings) angegeben sind. Falls alle Daten beim Mapping
angegeben wurden, werden die Werte der angegebenen Variablen, Partner Links und Cor-
relation Sets gelesen und in der Datenbank gespeichert. Danach wird die frg:fragmentExit
Aktivitat als verbunden markiert und die Id der dazugehorigen frg:fragmentEntry Aktivi-
tat gespeichert. Die dazugehorige frg:fragmentEntry Aktivitat wird ebenfalls als verbunden
markiert. Des weiteren werden die Informationen tiber den Mapping in der frq:fragmentExit
Aktivitat gespeichert. Diese Informationen sowie die Id der dazugehorigen frq:fragmentEntry
Aktivitat werden bei dem Automatischen Mapping innerhalb von Schleifen verwendet.

69

5 Umsetzung

Listing 5.10 Pseudocode der Operation wireAndMap(...)

if (variableMappingOk()){
readAndStoreVariables (mapping) ;
markFragmentExitAsMappedTo (entryId) ;
setFragmentExitMappings (mapping) ;
markFragmentEntryAsMapped () ;

} else {
throw new Exception("Not all Elements are mapped!");

Listing 5.11 FragmentCompositionResponse

FragmentCompositionResponse{
returnValue (Object value);
throwException(Exception e);

Damit die frg:fragmentExit Aktivitat abgeschlossen wird, wird die Operation fragmentCom-
positionCompleted() des entsprechenden Channels aufgerufen. Die hier beschriebene Logik
wird in dem Listing 5.10 als Pseudocode dargestellt. Nach dem die frg:fragmentExit Aktivitat
ausgefiihrt wurde, werden bei der Ausfiihrung der dazugehorigen frq:fragmentEntry Aktivitat
die gespeicherten Werte von den Variablen, Partner Links und Correlation Sets gelesen und
als Werte der entsprechenden Elementen zugewiesen. Mapping bei der frg:fragmentRegion Ak-
tivitdt verlduft nach dem dhnlichen Muster, da diese Aktivitdt die Rollen von frg:fragmentExit
und frg:fragmentEntry Aktivititen beim Mapping tibernimmt.

5.2.5 Ausfiihrung der Logik der eingefuihrten APls

Damit die Nachrichten von den Web Services der FragmentManagement APl und Fragment-
Composition API von den richtigen Prozessinstanzen verarbeitet werden kénnen, wird anhand
von der Instanz Id im Inhalt der Nachricht die richtige Prozessinstanz ausgewahlt. Anhand
des Namens des Web Services wird entschieden, ob eine Nachricht an die FC Proxy Kompo-
nente (siehe Kapitel 3.8) tibergeben wird, oder ob diese von dem Prozess selbst behandelt
werden soll. Beim Aufruf von den Operationen des Web Services der FragmentComposition
API Schnittstelle wird eine gleichnamige Methode der Klasse FragmentComposition APIIm-
pl aufgerufen. Um die Operationen glue(...), wireAndMap(...), ignoreFragmentEntry(...) und
ignoreFragmentExit(...) der Aktivitidten aufrufen zu konnen, werden die Channels benutzt.
Der Aufruf einer Operation eines Channels wird dabei als eine Arbeitseinheit von der Jacob
Komponente verarbeitet. Da die Channels keine Riickgabeparameter erlauben, wird bei den
Aufrufen dieser Operationen aufer den fiir die Komposition der Prozessfragmenten notwen-
digen Informationen noch ein Objekt der Klasse FragmentCompositionResponse (Listing 5.11)
tibergeben. Diese Klasse erlaubt das Senden des Ergebnisses der aufgerufenen Operation an
den Web Service aufrufenden Partner.

70

5.3 Erweiterung der ODE Data Access Objects Komponente

5.2.6 FC Analyser

Die Operationen getFragmentContainers(...), getDanglingExits(...), getDanglingEntries(...), getVa-
riablesToMap!(...), getPartnerLinksToMap(...), getCorrelationSetsToMap(...), getlgnorableEntries(...),
getlgnorableExits(...), getAvailableVariables(...), get AvailablePartnerLinks(...), get AvailableCorrelati-
onSets(...) und getProcessImage(...) verandern den Prozessablauf nicht und dienen lediglich
dem Abfragen des aktuellen Zustands der Prozesskomposition. Aus diesem Grund werden
diese Operationen durch analysieren der kompilieren Prozessdarstellung umgesetzt.

In diesem Abschnitt wird nur auf die Operationen getFragmentContainers(...) und getProcessl-
mage(...) ndher eingegangen, da die Umsetzung der restlichen Operationen keine komplexen
Algorithmen erfordert.

Die Operation getFragmentContainers(...) liefert die aktiven frq:fragmentRegion, frg:fragmentFlow
und frg:fragmentSequence Aktivititen, die das Einkleben der neuen Prozessfragmenten er-
lauben. Dafiir wird die Menge von frg:fragmentRegion Aktivititen gebildet, in die noch kein
Prozessfragment eingeklebt wurde. In diese Menge werden die frg:fragmentFlow Aktivitaten
hinzugefiigt, die sich in dem Prozessbaum tiber den unverbundenen frg:fragmentExit Akti-
vitdten befinden. Diese Menge wird anschlieflend mit den frg:fragmentSequence Aktivitaten
vervollstindigt, die am ende der Sequenz eine unverbundene frg:fragmentExit Aktivitat
enthalten. Um nur die Aktiven Container zuriickzugeben wird diese Menge mit der Menge
der aktiven Containers geschnitten. Dies ist notwendig um nur die Aktiven Containers
zu erhalten. Zuriickgeben der Menge der Aktiven Containers wire dabei inkorrekt, da die
frg:fragmentRegion Aktivitdten jeweils nur eine Klebeoperation erlauben und nach dem Kleben
noch Aktiv sind bis diese durch Verbinden mit einer frg:fragmentExit Aktivitat abgeschlos-
sen werden. Des weiteren wird gepriift, ob die Anzahl der eingeklebten Prozessfragmente
kleiner ist als die Anzahl der moglichen Klebeoperationen. Falls dies der Fall ist, wird die
oben beschriebene Menge von Containern zuriickgegeben, sonst wird eine leere Menge
zuriickgegeben, da keine Klebeoperationen mehr moglich sind.

Die Operation getProcessImage(...) liefert die graphische Darstellung von dem Prozessmodell.
Der Aufbau des Bildes erfolgt dabei rekursiv. Zuerst wird rekursiv die Grofie der graphischen
Darstellung jeder Aktivitat ermittelt und deren Position auf der Zeichenfliche bestimmt.
Danach wird die entsprechend grofie Zeichenfldche erstellt um den gesamten Prozess
abbilden zu konnen. Schliefslich werden die graphische Darstellungen der Aktivititen
gezeichnet.

Die Resultate dieser Operationen werden dhnlich den glue(...), wireAndMap(...), ignoreFrag-
mentEntry(...) und ignoreFragmentExit(...) Operationen mit Hilfe der Klasse FragmentComposi-
tionResponse zuriickgegeben.

5.3 Erweiterung der ODE Data Access Objects Komponente

Damit zu jeder Aktivitit der entsprechende Channel gefunden werden kann, wird die Abbil-
dung {Prozessinstanz 1d, Aktivitits 1d} -> {Channel, Channel Typ} in der Datenbank gespeichert.

71

5 Umsetzung

Listing 5.12 SQL Ausdruck zum Erstellen der Tabelle fiir Speicherung der Channels

CREATE TABLE IF NOT EXISTS ‘ode_channel_selector‘ (
‘PROCESS_IID‘ bigint(20),
‘ELEMENT_ID¢ bigint (20),
‘CHANNEL® varchar(255) DEFAULT NULL,
‘CHANNEL_TYPE‘ bigint (20),
PRIMARY KEY (‘PROCESS_IID¢, ‘ELEMENT_ID®)

) ENGINE=InnoDB DEFAULT CHARSET=latini;

Listing 5.13 SQL Ausdruck zum Erstellen der Tabelle fiir den Mapping

CREATE TABLE IF NOT EXISTS ‘ode_element_mapping‘ (
‘PROCESS_IID‘ bigint(20),
‘ACTIVITY_ID® bigint(20),
‘ELEMENT_ID‘ bigint (20),
‘MAPPING_DATA® text,
PRIMARY KEY (‘PROCESS_IID®, ‘ACTIVITY_ID, ‘ELEMENT_ID®)
) ENGINE=InnoDB DEFAULT CHARSET=latini;

Des weiteren muss Mapping persistent gehalten werden. Dafiir wird die Abbildung {Pro-
zessinstanz 1d, Activity 1d, Element Id} -> {Element-Wert} verwendet. Zu diesem Zweck werden
zusétzliche Data Access Objects Benotigt. Data Access Objects werden in Apache ODE mit Hilfe
von Java Persistence API umgesetzt. Die {Prozessinstanz Id, Aktivitits Id} und { Prozessinstanz Id,
Activity Id, Element Id} Tupeln spielen dabei die Rolle der Hauptschliissel der entsprechenden
Tabellen. Entsprechend dieser Erweiterung muss das Datenbankschema, wie in Listings 5.12
und 5.13 gezeigt ist, erweitert werden.

Dabei werden nicht die Channels selbst, sondern deren Ids gespeichert. Jacob Komponente
erlaubt das Auffinden von dem Channel nach seiner Id, was genutzt wird, nachdem die
Channel Id aus der Datenbanktabelle abgefragt wird.

5.4 Mediator-Komponente

Die Mediator-Komponente ist fiir die Konvertierung von Variablen, sowie Correlation Sets
bendtigt. Diese Komponente soll um neue Transformationsregeln erweiterbar sein, ohne
den Quellcode neu kompilieren zu miissen. Zu diesem Zweck wird XSLT 2.0 (Kapitel
2.6) eingesetzt. Die Transformationsregeln fiir die Variablen werden dabei in der Datei
var_mediator.xslt und fiir die Correlation Sets in der Datei cset_mediator.xslt beschrieben. Diese
lassen sich bei bedarf erweitern, ohne den Quellcode kompilieren zu miissen.

5.4.1 Variable Mediation

Im Listing 5.14 wird der Inhalt der var_mediator.xslt Datei mit dem Beispiel einer Regel
der Konvertierung des boolean Datentyps zum integer Datentyp gezeigt. Diese enthélt zwei
globale Parameter.

72

5.4 Mediator-Komponente

Listing 5.14 Beispiel einer var_mediator.xslt Datei mit der Regel der Konvertierung von boolean
Datentypen zum integer Datentypen.

<xsl:stylesheet version=’1.0’
xmlns:xsl="http://wuw.w3.0rg/1999/XSL/Transform’
xmlns:xs="http://wuw.w3.0rg/2001/XMLSchema">
<xsl:variable name="integerType" as="xs:(QName"
select="QName (*http://www.w3.0rg/2001/XMLSchema’, ’integer’)" />
<xsl:variable name="booleanType" as="xs:(Name"
select="QName (*http://www.w3.0rg/2001/XMLSchema’, ’boolean’)" />

<xsl:param name="from" as="xs:QName" />
<xsl:param name="to" as="xs:QName" />
<xsl:output method="xml" />

<xsl:template match="/">
<xsl:if test="$from = $booleanType and $to = $integerType">
<xsl:element name="temporary-simple-type-wrapper">
<xsl:if test="xs:boolean(/)">
<xsl:text>1</xsl:text>

</xsl:if>
<xsl:if test="xs:boolean(/) != true()">
<xsl:text>0</xsl:text>
</xsl:if>
</xsl:element>

</xsl:if>
</xsl:template>
</xsl:stylesheet>

Listing 5.15 Interne Darstellung des Wertes einer boolean Variable mit dem Wert true in ODE

<temporary-simple-type-wrapper>true</temporary-simple-type-wrapper>

e from Parameter gibt an, in welchem Datentyp die zu konvertierenden Daten vorliegen.
e to Parameter gibt an, in welchen Datentyp die Daten konvertiert werden sollen.

Der Wert der zu transformierenden Variable wird als XML dem XSLT Transformator tiberge-
ben.

Der im Listing 5.14 definierte Template wird auf das Wurzelelement der zu transformie-
renden XML Daten angewendet. Falls der from Parameter gleich xsd:boolean und der to
Parameter gleich xsd:integer ist, wird die Regel angewendet. Dabei wird ein <temporary-
simple-type-wrapper> Element erstellt, das als Wrapper bei der Speicherung von einfachen
Datentypen in ODE verwendet wird. Als Wert dieses Elements wird "1” gesetzt falls der Wert
des Wurzelelements (des <temporary-simple-type-wrapper> Elements Listing 5.15) gleich
‘true’ ist, und '0” sonst. Somit wiirde im Listing 5.15 dargestellte Variable zu der im Listing
5.16 dargestellten Variable transformiert.

73

5 Umsetzung

Listing 5.16 Interne Darstellung des Wertes einer integer Variable mit dem Wert 1 in ODE

<temporary-simple-type-wrapper>1</temporary-simple-type-wrapper>

Listing 5.17 XML Darstellung eines initialisierten Correlation Sets

<?xml version="1.0" encoding="UTF-8"7>
<CorrelationSet>

<property name="qO:propertyl"
xmlns:q0="http://example. com/bpel/process">Wert1</property>
<property name="qO:property2"
xmlns:q0="http://example.com/bpel/process">Wert2</property>

</CorrelationSet>

5.4.2 Correlation Set Mediation

In ODE werden die Werte von Correlation Sets als eine Liste von Strings gespeichert. Um Cor-
relation Set transformieren zu konnen werden diese Werte mit den dazugehorigen Properties
als XML dargestellt, durch die Mediator-Komponente transformiert und wieder in eine
Liste von Strings umgewandelt. Die XML Darstellung eines initialisierten Correlation Sets
ist im Listing 5.17 dargestellt. Das Wurzelelement <CorrelationSet> enthilt die <property>
Elemente, die fiir Properties des zu transformierenden Correlation Sets stehen. Diese werden
durch das Attribut name identifiziert. Wert der Property wird dabei als Wert des <property>
Elements angegeben.

Der Inhalt der cset_mediator.xslt Datei, die zur Konvertierung von Correlation Sets verwendet
wird, ist im Listing 5.18 dargestellt. Diese enthélt sechs globale Parameter

fromProcess Parameter gibt an, aus welchem Prozessfragment der Wert des Correlation
Sets transformiert wird.

toProcess Parameter gibt an, welchem Prozessfragment der Correlation Set gehort, in
deren Darstellung die Daten transformiert werden sollen.

fromCSetName Parameter gibt den Namen des zu transformierenden Correlation Sets
an.

toCSetName Parameter gibt den Namen des Correlation Sets an, zu dem die Daten
transformiert werden sollen.

fromScopeName Parameter gibt den Namen des Scopes an, der den Correlation Set
definiert, der im fromCSetName Parameter angegebenen ist.

toScopeName Parameter gibt den Namen des Scopes an, der den Correlation Set
definiert, der im toCSetName Parameter angegebenen ist.

Die zu transformierenden Daten werden wie im Listing 5.17 gezeigt dargestellt.

74

5.4 Mediator-Komponente

Listing 5.18 Beispiel einer cset_mediator.xslt Datei.

<xsl:stylesheet version=’1.0’
xmlns:xsl="http://wuw.w3.o0rg/1999/XSL/Transform’
xmlns:xs="http://wuw.w3.0rg/2001/XMLSchema">

<xsl:

<xsl:

<xsl:

<xsl:

<xsl:

<xsl:
<xsl:

<xsl:
<xsl:

<xsl:

<xsl:

variable name="fragmentl" as="xs:(Name"

select="QName (*http://example.com/bpel/process’,’fragmentl’)" />
variable name="fragment2" as="xs:(Name"

select="QName (*http://example.com/bpel/process’,’fragment2’)" />

variable name="property2" as="xs:(Name"
select="(QName (*http://example.com/bpel/process’,’property2’)" />

param name="fromProcess" as="xs:QName" />
param name="toProcess" as="xs:Q(Name" />

param name="fromCSetName" as="xs:string" />
param name="toCSetName" as="xs:string" />

param name="fromScopeName" as="xs:string" />
param name="toScopeName" as="xs:string" />
output method="xml" />

template match="/CorrelationSet">
<xsl:element name="CorrelationSet">
<xsl:apply-templates select="./property" />
</xsl:element>

</xsl:template>

<xsl:

template match="property">
<xsl:if test="$fromProcess = $fragmentl and $toProcess = $fragment2 and
$fromCSetName = ’corr_setl’ and $toCSetName = ’corr_set2’">
<xsl:if test="resolve-QName(./@name, .) = $property2">

<xsl:copy-of select="." />
</xsl:if>
</xsl:if>
<xsl:if test="$fromCSetName = $toCSetName'">
<xsl:copy-of select="." />
</xsl:if>

</xsl:template>
</xsl:stylesheet>

Listing 5.18 enthdlt eine Transformationsregel. Diese Regel weist XSLT-Prozessor
an die Property mit dem QName {http://example.com/bpel/process}propertyz zu ko-
pieren falls Correlation Set mit dem Namen corr_set1 des Prozessfragments
{http://example.com/bpel/process}fragmentr auf den Correlation Set mit dem Namen
corr_set2 des Prozessfragments {http://example.com/bpel/process}fragment2 abgebildet wird.
Sowie alle Properties unabhéngig davon, welche Prozessfragmente beteiligt sind zu kopieren,
falls die Namen der Correlation Sets tibereinstimmen.

75

5 Umsetzung

Listing 5.19 Web Service

AxisConfiguration axisConf;
FragmentManagement _fragmentMgmt;

WSDLReader wsdlReader = WSDLFactory.newInstance() .newWSDLReader() ;
File fcmwsdlFile = new File(rootpath + "/fcmapi.wsdl");
Definition fcdef = wsdlReader.readWSDL(fcmwsdlFile.toURI().toString());

AxisService fmService = ODEAxisService.createService(

axisConfig, FM_SERVICE_NAME, FM_PORT_NAME, FM_AXIS2_NAME,

fcdef, new DynamicMessageReceiver<FragmentManagement>(_fragmentMgmt)) ;
axisConfig.addService (fmService) ;

5.5 Erweiterung der ODE Integrationlayer Komponente

Zugriff auf die Services des Management API der Apache ODE wird durch die ODE In-
tegration Layer ermoglicht. Entsprechend werden auch die FragmentManagement API und
FragmentComposition API Schnittstellen angeboten. In dieser Diplomarbeit wird AXISz als
ODE Integration Layer Komponente verwendet, somit werden diese Schnittstellen als Web
Services angeboten.

Die Management API von Apache ODE wird mit Hilfe der Klasse ManagementService als Web
Services angeboten. Diese muss auch erweitert werden um die Schnittstelle FragmentMana-
gement API als Web Service anzubieten. Zu diesem Zweck wird die dazugehorige WSDL
Datei eingelesen und wie in Listsing 5.19 gezeigt ein Web Service erstellt. Die Logik des
Web Services wird in diesem Listing durch die Klasse FragmentManagement implementiert.
Beim Aufruf dieses Web Services wird mit Hilfe von Reflections die Methode der Klasse
FragmentManagement aufgerufen, die den gleichen Namen wie die aufgerufene Web Service
Operation tragt. Dieser Ansatz passt fiir die Schnittstelle FragmentManagement API, da diese
keine Interaktion mit den Aktivitidten bendtigt und deren Operationen sofort ausgefiihrt
werden konnen.

Die Nachrichten fiir die Web Services, die von den Prozessen angeboten werden, werden mit
der Klasse ODEService empfangen und an die ODE BPEL Runtime Komponente weitergeleitet.
Um die zwischen den Komponenten ODE Integrationlayer und ODE BPEL Runtime ausge-
tauschten Nachrichten zu reprasentieren, wird die Schnittstelle MessageExchange benutzt.
Diese ermoglicht den Zugriff auf die Daten tiber die aufgerufene Web Service Operation,
sowie auf die empfangene Nachricht. Damit diese Daten im Falle eines Absturzes nicht
verloren gehen, werden diese persistiert. Ahnlich werden auch die Nachrichten von dem Web
Service der FragmentComposition API Schnittstelle an die ODE BPEL Runtime Komponente
iibergeben.

76

5.6 Werkzeug fiir die Fragmentenkomposition

5.6 Werkzeug flir die Fragmentenkomposition

Um die Zusammensetzung von Prozessfragmenten benutzerfreundlich zu gestalten, wird
ein Werkzeug benotigt, das die FragmentManagement API und die FragmentComposition
API benutzt und deren Funktionalitdt iiber graphische Benutzeroberflache anbietet. Die
Apache ODE besitzt eine Web-Schnittstelle, die dem Benutzer die Verwaltung der Apache
ODE durch die Verwendung der Management API erlaubt. Aus diesem Grund wurde die
Funktionalitat der eingefiihrten Schnittstellen in diese Web-Schnittstelle integriert (Abbildung
5.2). Die Management API der Apache ODE ist in die Web-Schnittstelle wie folgt integriert
(Abbildung 5.3). Die Apache ODE besitzt statische HTML-Seiten, die mit Hilfe eines Browsers
abgerufen werden kénnen. Die HTML-Seiten referenzieren JavaScript, der die Funktionalitat
der Management API durch die entsprechenden Web Service Aufrufe nutzt. Die von den
Web Services erhaltene Daten werden durch JavaScript in die HTML-Seiten im Browser
eingeftigt. Dieses Prinzip wurde auch bei der Integration von den FragmentManagement
API und FragmentComposition API in die Web-Schnittstelle verwendet. Zu diesem Zweck
wurde eine neue HTML-Seite erstellt, die die Daten der Fragmentkomposition darstellt,
diese referenziert den JavaScript fiir die Aufrufe von Web Services der FragmentManagement
API und FragmentComposition API. Dieser fiigt anschlieffend die empfangenen Daten in die
HTML-Seite ein.

5.7 Erstellung von Prozessinstanzen

Bei der Verwendung von Prozessfragmenten ist fiir jede Prozessinstanz ein separates Pro-
zessmodell notwendig. Das folgt aus der Tatsache, dass zwei Prozessinstanzen des gleichen
Startfragments durch Ankleben unterschiedlicher Prozessfragmenten unterschiedliche Pro-
zessmodelle bilden.

Eine Moglichkeit dieses Problem zu ldsen ist in [Tel1o] vorgestellt. Dabei wird bei dem
Ankleben eines Prozessfragments ein neues Prozessmodell erstellt und die laufende Prozess-
instanz auf das neue Prozessmodell migriert. Eine andere Moglichkeit ist bei dem Erstellen
einer Prozessinstanz automatisch eine neue Kopie von dem Startfragment zu deployen und
diese Kopie als Prozessmodell fiir die neue Prozessinstanz zu verwenden. Diese kann zur
Laufzeit auf der Ebene der internen Représentation des Prozesses durch Ankleben von
Prozessfragmenten gedndert werden, ohne die Prozessinstanzmigration durchfiihren zu
miissen. Der letzte Ansatz wurde in dieser Diplomarbeit angewendet. Um eine Kopie des
Startfragments bei der Erstellung einer neuen Prozessinstanz zu deployen, wird Web Service
der Management API der Apache ODE verwendet. Dazu miissen die zu dem Startfragment
gehorigen Dateien zu einem ZIP-Archive komprimiert werden und mit Base64 kodiert an den
Web Service geschickt werden. Anschlieffend wird das deployte Prozessmodell abgefragt
und fiir die Erstellung der Prozessinstanz benutzt.

77

5 Umsetzung

Apache ODE

Home Fro g Deployment

Glue

Parent element for new fragment:l bainProcess (id:1 4Eljj

Fragmentto glue: | {http:/fopal simtech.ustutt defprocesses/main}OpalhdC-13 j

Wire and Map

Wire fru:um:l mainFrocessExit (id:EDEJj Wire 1|:|:| j

Ighore fragmentExit
FragmentExit name:l mainProcessExit (id:ZDEJj
Ighore fragmentEntry

FragrentEntry name:l 'l

u Process (id:113)

9 fragmentScape {d:114)

-
S MainProcess (id:140)

|* receivelnput fd:1413

— initopalMainProcParams (id:144)

— assign-registerinstance (id:153)

z redgisterinstance {(d:169)

&= assign-simstatus §d:175)

: notifSimREunning (id:189)

: createCarrelationID {id:196)

i mainProcessExit {d:202)

Abbildung 5.2: Werkzeug fiir die Fragmentenkomposition
78

5.7 Erstellung von Prozessinstanzen

sd Apache ODE Web Interface)

3: insertData()

=

Browser Apache ODE
| |
! 1: getHtmI() !
K — — — — — — — — t|i|
JavaScript :
2: apiCall()
< ——— = - - - = tD

Abbildung 5.3: Apache ODE Web Interface

79

6 Anwendungsbeispiel

Um das in dieser Arbeit vorgestellte Konzept sowie seine Umsetzung zu priifen, wurde ein
wissenschaftlicher Workflow fiir die Festkorpersimulation aus [Hot1o] verwendet. Dieser
Prozess wurde in Prozessfragmente aufgeteilt, die zur Laufzeit zusammengesetzt wurden
um vollstdndigen Prozess zu bilden. In folgenden Abschnitten wird auf den verwendeten
Prozess nidher eingegangen, sowie auf die erzeugten Prozessfragmente und deren Zusam-
mensetzung.

6.1 Ziel der Festkorpersimulation

Die mit Workflow-Technologie realisierte Simulation erlaubt strukturelle Verdnderungen
eines metallischen Festkorpers tiber lingere Zeitraume zu simulieren. Die Simulation selbst
erfolgt mit Hilfe von Fortranyy7 Anwendungen, diese werden durch Web Service Aufrufe
gestartet. Die Workflow-Technologie kommt dabei zum Einsatz, um Festkorpersimulationen
inklusive Vor- und Nachbereitung automatisiert durchfiihren zu kénnen [Hot1o].

6.2 Uberblick iiber die Simulationsanwendung

In diesem Kapitel wird ein kurzer Uberblick iiber die Funktionsweise der Simulationsanwen-
dung geboten.

6.2.1 Aufbau und Funktionsweise der Simulationsanwendung

Die Simulationsanwendung besteht aus folgenden Fortran Anwendungen:
e OpalBCC

OpalABCD

OpalMC

OpalCLUS

OpalXYZR

81

6 Anwendungsbeispiel

[OpalBCC J[OpalABCD J

[OpalMC J

[OpalCLUS J

GS!GMSUGqGSJO/\

[OpalXYZR J

Abbildung 6.1: Aufbau der Simulationsanwendung [Hot1o].

Die Reihenfolge der Ausfiithrung von diesen Anwendungen ist auf der Abbildung 6.1
dargestellt.

Die Anwendungen OpalBCC und Opal ABCD werden benutzt, um die Konfigurationsdateien
tiir die Simulation zu erstellen. Die OpalBCC Anwendung ist fiir das Erstellen der Kristallgit-
ters zustdandig. Die OpalABCD erstellt die Energiekonfigurationen fiir die Simulation. Diese
generierten Kristallgitter- und Energiekonfigurationen werden als Ausgangsdaten benutzt
um die Simulation durchzufiihren. Die Simulation selbst erfolgt mit Hilfe eines Monte-Carlo
Algorithmus, dieser wurde in der OpalMC Anwendung implementiert. Um den Verlauf der
Simulation analysieren zu konnen, erlaubt diese Anwendung mit einer bestimmten Frequenz
Snapshots, also den Zustand der Simulation (die Positionen aller Atome im Kristallgitter) zu
speichern. Diese Snapshots werden von den Anwendungen OpalCLUS und OpalXYZR fiir die
Analyse benutzt. Die OpalCLUS Anwendung ist fiir das Auffinden von Clustern von Atomen
sowie der Identifizierung der Atomen innerhalb eines Clusters zustindig. Die OpalXYZR
Anwendung berechnet die Radien der gefundenen Cluster im Kristallgitter [Hot1o0].

6.2.2 Opal Manager
Opal Manager stellt das Bindeglied zwischen dem Benutzer und der Simulationsanwendung
dar und hat die Aufgabe die Simulationen zu erstellen und zu verwalten. Opal Manager

erlaubt auch die zentralisierte Speicherung von den Kristallgitter und Energiekonfigurationen,
die beim Start einer Simulation ausgewéhlt werden kénnen.

6.2.3 Ressourcen Management

Die verwendete Simulation besteht aus rechenintensiven Anwendungen, die bei paralleler
Ausfiihrung den Rechner tiberlasten konnen. Dies kann vor allem dann auftreten, wenn meh-

82

6.3 Prozesse der Simulationsanwendung

rere Simulationen parallel ausgefiihrt werden. Um dem entgegenzuwirken wurde Ressourcen-
Manager Komponente entwickelt. Diese koordiniert die Aufrufe der rechenintensiven Web
Services und verhindert somit die Rechnertiberlastung. Um eine Anwendung tiber Web
Service im Simulations-Workflow aufzurufen, ist es notwendig den gewtiinschten Service zu
akquirieren. Dies ermoglicht die Kontrolle {iber die Last der fiir die Simulation verwendeten
Rechnern. Wenn ein benétigter Service und somit die Rechenkapazitit frei wird, wird EPR
des angeforderten Services als Resultat des Akquirierens asynchron zuriickgegeben.

Zusétzlich zu dieser Aufgabe tibernimmt Ressourcen-Manager die Aufgabe der zentralen
Datenspeicherung. Die Operationen zum Lesen und Schreiben von Dateien werden von dem
Ressourcen-Manager tiber Web Service Aufrufe ermoglicht [Hot1o].

6.2.4 Akquirieren eines Services

Als Beispiel des Akquirierens eines Services kann der auf der Abbildung 6.2 dargestellte
Prozessausschnitt verwendet werden. Als Erstes in diesem Ausschnitt wird eine Correlation
Id beim Ressourcen Manager angefordert. Diese wird bei der Korrelation der asynchro-
nen Operationen des Ressourcen Managers verwendet. Als ndchstes wird die Nachricht
der Service-Anfrage erzeugt, in dieser Nachricht wird die Correlation Id angegeben. An-
schlieSend wird die Operation acquireService des Ressourcen Managers aufgerufen um den
gewiinschten Service zu akquirieren. Da als Riickgabe dieser Operation unterschiedliche
Nachrichten empfangen werden sollen, wird pick Aktivitidt benutzt. Falls die Nachricht
aquireServiceCallback empfangen wird, wird der Service auf die erhaltene EPR gebunden und
kann benutzt werden. Wenn der Service nicht mehr benottigt wird, muss er mit Hilfe der
releaseService Operation des Ressourcen Managers freigegeben werden.

6.3 Prozesse der Simulationsanwendung

Die Simulationsanwendung besteht aus zwei Prozessen. Der erste Prozess OpalMainProc
fiihrt die eigentliche Simulation durch, der Prozess OpalSnapProcLink analysiert die erstellten
Snapshots. Diese Prozesse werden auf der Abbildung 6.3 schematisch dargestellt.

6.3.1 Haupt-Prozess

Der Haupt-Prozess beginnt mit dem Initialisieren des Prozesses, was die Registrierung
der Prozessinstanz bei OpalManager und Abfragen einer Correlation Id einschliefst, die bei
Kommunikation mit der Prozessinstanz benutzt wird. Die Ausfiithrung von den OpalBCC
und Opal ABCD Anwendungen ist in den Prozess nicht eingeschlossen, da nicht fiir jede
Simulation eine neue Konfiguration benétigt wird. Nach der Initialisierung des Prozesses
wird OpalMC Dienst Akquiriert und aufgerufen, anschlieffend wartet Haupt-Prozess auf die
Riickgabe vom OpalMC Dienst. Als Riickgabe konnen ein Snapshot fiir die Nachbearbei-
tung, oder eine Nachricht sein, die den Abschluss der Simulation signalisiert. Um mehrere

6 Anwendungsbeispiel

& createCorrelationlD
= assign-ServiceRequest
& acquireService

& pickAcquireServiceCallbacks

acquireServiceCallback acquireServiceFaultCallback

= Sequence 1% Throw

= assign-ServiceEPR
UseTheService

,'-:'J‘} releaseService

Abbildung 6.2: Beispiel des Akquirierens eines Services in BPEL [Hot1o].

Nachrichten vom OpalMC Dienst empfangen zu konnen, befindet sich die entsprechende
pick Aktivitat innerhalb einer Schleife. Fiir jeden erhaltenen Snapshot wird ein Nachberei-
tungsprozess gestartet. In der ndchsten Schleife des Haupt-Prozesses wird auf das Ende
der Nachbereitung aller Snapshots gewartet. Wurden alle Snapshots verarbeitet, so wird die
Visualisierung der verarbeiteten Snapshots durchgefiihrt.

6.3.2 Nachbereitungsprozess

Der Nachbereitungsprozess akquiriert den OpalCLUS Dienst und ruft diesen auf um den
Snapshot zu analysieren. Nachdem der OpalCLUS Dienst die Datenverarbeitung abschliefst,
wird der Dienst wieder freigegeben und der Hauptprozess iiber den Abschluss der Verarbei-
tung benachrichtigt.

6.4 Aufteilung des Prozesses in Prozessfragmente

Im Folgenden wird die Aufteilung des Haupt-Prozesses in Prozessfragmente erldutert. Der
Nachbereitungsprozess wird in Prozessfragmente nicht aufgeteilt, da dieser Prozess fiir

6.4 Aufteilung des Prozesses in Prozessfragmente

MainProcess

&| receivelnput
& acquireOpalMCMDService

@ | acquireOpalMCIMDServiceCallback
_
& runOpalMCIMD

processSnapshot
@) collectOpalMCIMDCallbacks =

_w @/ receivelnput

&> pickOpalMCIMDCallback s
m 2 e " | & acquireOpalCLUSService
runOpalMCIMDCallback runOpalMCIMDResultCallback 1T
1 & | acquireOpalCLUSServiceCallback
& releaseOpalMCIMD & processSnapshot -~

& runOpalCLUS

= @ | runOpalCLUSCallback

(Z) collectProcessSnapshotCallbacks

& releaseOpalCLUS

@ | processSnapshotCallback ¢ -------------—--—--—-—-—~ & processSnapshotCallback
¢ createDOADPIlot @
+
0

Abbildung 6.3: Schematische Darstellung der Simulationsprozessen [Hot10].

jeden Snapshot aufgerufen wird, und man fiir jeden Snapshot den Nachbereitungsprozess
neu aus Prozessfragmenten zusammensetzen miisste.

Der Haupt-Prozess besteht aus drei logischen Blocken die nacheinander ausgefiihrt wer-
den: Prozessinitialisierung, Ausfithrung der Monte-Carlo Simulation und Visualisierung.
Entsprechend dieser Einteilung wird der Haupt-Prozess in Prozessfragmente aufgeteilt.
Zusitzlich wurde der Block von Monte-Carlo Simulation in zwei Prozessfragmente aufgeteilt.
Im ersten Prozessfragment der Monte-Carlo Simulation wird OpalMC Dienst akquiriert, und
im zweiten wird dieser Aufgerufen. Somit ergibt die Aufteilung des Simulationsprozesses,
wie es auf der Abbildung 6.4 gezeigt ist.

Das Startfragment der Simulationsanwendung ist fiir das Initialisieren der Simulation
zustdandig und ist auf der Abbildung 6.5 dargestellt. Dieser Prozessfragment registriert die

85

6 Anwendungsbeispiel

Prozessinstanz beim OpalManager, und benachrichtigt diesen tiber den Start der Simulation.
Anschlieflend fragt dieses Prozessfragment die Correlation Id beim Ressourcen Manager ab.
Um an dieses Prozessfragment einen anderen Prozessfragment ankleben zu kénnen wurde
eine frg:fragmentExit Aktivitdit am Ende der Sequenz hinzugefiigt.

Das OpalMC Prozessfragment (Abbildung 6.6) akquiriert den OpalMC dienst und ent-
hdlt Anweisungen fiir die Fehlerbehandlung. Im Falle der erfolgreichen Akquirierung
des Dienstes wird das weitere Vorgehen des Prozesses nicht spezifiziert und durch eine
fre:fragmentRegion Aktivitédt erlaubt die entsprechende Logik einzufiigen. Um dieses Prozess-
fragment in andere Prozessfragmente einfiigen zu kénnen, wurde am Anfang der Sequenz
die frg:fragmentEntry Aktivitit und am Ende der Sequenz die frg:fragmentExit Aktivitat hinzu-
gefiigt. Die frg:fragmentEntry Aktivitat definiert folgende Elemente die Mapping bendtigen:

e Variable corrIDResponse: Diese Variable speichert die im Startfragment abgefragte
Correlation Id, diese wird bei der Kommunikation mit dem Ressourcen Manager benutzt.

e Variable runOpalMainProcRequest: Diese Variable speichert die fiir die Simulation
wichtigen Daten, wie Kontext Id, Anzahl der gewiinschten Snapshots etc.

o Correlation Set corrOpalManager: Dieser Correlation Set wird benotigt, um die Nachricht
fiir den Abbruch der Simulation korrelieren zu konnen.

Der OpalMCCallback Prozessfragment (Abbildung 6.7) ruft den OpalMC Dienst auf und emp-
fangt die Snapshots der Simulation von diesem Dienst. Falls ein Snapshot empfangen wird,
wird der Prozess fiir die Snapshot-Verarbeitung gestartet. Das Prozessfragment wartet bis die
Ausfiihrung des OpalMC Dienstes abgeschlossen ist und alle Snapshots verarbeitet wurden.
Um diese Arbeitsschritte durchfiihren zu konnen, werden die von der frg:fragmentEntry
Aktivitat definierten Daten benotigt:

e Variable runOpalMainProcRequest: Diese Variable speichert die fiir die Simulation
wichtigen Daten, wie Kontext Id, Anzahl der gewiinschten Snapshots etc.

e Variable corrIDResponse: Diese Variable speichert die im Startfragment abgefragte
Correlation Id, diese wird bei der Kommunikation mit dem Ressourcen Manager benutzt.

e Variable ServiceTicketID: Diese Variable speichert eine Ticket Id, die beim Akquirieren
des Dienstes erstellt wird. Diese Id wird in der Nachricht fiir den Aufruf des OpalMC
Services benotigt.

e Partner Link OpalMCLink11: Dieser Partner Link wird benutzt, um den OpalMC dienst
Aufzurufen.

o Correlation Set corrResourceManager: Dieser Correlation Set wird benutzt um auf die
Nachrichten im Fehlerfall reagieren zu konnen.

o Correlation Set corrOpalManager: Dieser Correlation Set wird benutzt, um die Nachricht
tiber den Abbruch der Simulation korrelieren zu konnen.

86

6.4 Aufteilung des Prozesses in Prozessfragmente

=
= MainProcess
=
Startfragment
& | receivelnput
OpalMC & acquireOpalMCIMDService

& | acquireOpalMCIMDServiceCallback

OpalMCCallback | # runOpalMamD

(=) collectOpalMCIMDCallbacks

& pickOpalMCIMDCallback

(2 collectProcessSnapshotCallbacks

& | processSnapshotCallback

runOpalMCIMDCallback runOpalMCIMDResultCallback

& releaseOpalMCIMD & processSnapshot

. = createDOADPIlot
OpalMedia 1 ' = —

©

Abbildung 6.4: Aufteilung des Prozesses in Prozessfragmente.

6 Anwendungsbeispiel

> MainProcess

& | receivelnput
,:;53‘ reqisterInstance
‘:;;§> notifySimRunning

& createCorrelationID

D mainProcessExit

Abbildung 6.5: Startfragment der Simulationsanwendung.

Der OpalMedia Prozessfragment (Abbildung 6.8) akquiriert und ruft den OpalMedia Dienst auf,
um die Daten der Snapshots zu visualisieren. Zuletzt wird OpalManager tiber den Abschluss
des Simulationsprozesses benachrichtigt. Die frg:fragmentEntry Aktivitit am Anfang der
Sequenz dieses Prozessfragments definiert folgende Elemente, die Mapping benétigen:

e Variable corrIDResponse: Diese Variable speichert die im Startfragment abgefragte
Correlation Id, diese wird bei der Kommunikation mit dem Ressourcen Manager benutzt.

e Variable ctxID: Diese Variable speichert die Kontext Id der Simulation, diese wird
benutzt, um auf die Dateien der Simulation zugreifen zu konnen.

e Variable callbackBaseURL: Diese Variable speichert URL des Servers (z.B.
http://localhost:8080/), auf dem der Haupt-Prozess lauft und wird benutzt, um
die Callback EPR zu erzeugen, die fiir das Akquirieren eines Services benutzt wird.

e Variable simID: Diese Variable speichert die Simulations Id und wird benutzt, um den
Status der Simulation an OpalManager zu melden.

e Correlation Set corrOpalManager: Dieser Correlation Set wird benutzt, um die Nachricht
tiber den Abbruch der Simulation empfangen zu kénnen.

88

6.5 Zusammensetzung von Prozessfragmenten zur Laufzeit

w

o OpalMC

3 MCEntry
;? acquireCpalMCService

& pickAcquireOpalMCServiceCallback

acquireServiceCallback, acquireServiceFaultCallback,
r Sequence r Sequence
= assignEPR & notifySimFailed

callbackRegion

D MCExit

®

Abbildung 6.6: OpalMC Prozessfragment der Simulationsanwendung.

6.5 Zusammensetzung von Prozessfragmenten zur Laufzeit

Fiir das Starten einer Simulation wurde in [Hot1o] die Anwendung OpalClientApplication
entwickelt. Diese Anwendung wird weiterhin benutzt, da die Aufteilung des Prozesses in
Prozessfragmente fiir diese Anwendung transparent ist. Beim Starten einer neuen Simulation
wird das Startfragment des Haupt-Prozesses instantiiert und ausgefiihrt. Der Kontrollfluss
wird dabei an der frg:fragmentExit Aktivitdt am Ende der Sequenz angehalten und es besteht
die Moglichkeit ein Prozessfragment einzukleben. Die Prozessfragmente abgesehen von
dem Startprozessfragment konnen zum beliebigen Zeitpunkt deployt werden, diese miissen
jedoch vor dem Einkleben deployt sein.

6 Anwendungsbeispiel

OpalMCCallback.

3 pickserviceCallbackEntry
5> runCpalMCIob

'\;§:=-< processOpalMCResults

& pickOpalMCCalback

runZpalMCCallback runCpalMCResultCallback
Sequence o Sequence
5> releaseCpalMiC -:,;? runCpalsnapProc

'.,_i;-w processPostProcRespones

Sequence

cﬁ}\a pickPostProcResponse
+

D pickserviceCallbackExit

®

Abbildung 6.7: OpalMCCallback Prozessfragment der Simulationsanwendung.

90

6.5 Zusammensetzung von Prozessfragmenten zur Laufzeit

 Sequence
1=

Y OpalMediaEntry

= createOpalMedia

\? acquireOpalMediaService

&) pickAcquireCpalMediaServiceCallback
=]

acquireServiceCallback

= Sequence

& createDOADPIot

& pickOpalMediaCallback

createDOADPlotCallback createDOADPIotFaultCallback

\? releaseCpalMediaService = Sequence
=l

{? notifySimFailing

& releaseOpalMediaservice

Abbildung 6.8: OpalMedia Prozessfragment der Simulationsanwendung.

91

6 Anwendungsbeispiel

Apache ODE

Haorme Frocesses Instances Deployiment

Currently Availabie instances

Instance 10: 301

Process: thitp:fopal simtech.ustutt.defprocessesimainiopalainStart-5

Date Started: 2011-08-30T16:42:49.000+02:00

|_Terminate || suspend_|

Abbildung 6.9: Liste der Prozessinstanzen von Apache ODE

Glue

Farent element far newfragment:l bainFrocess (id:1 4Djj

Fragrmentto glue: f{http:dopal sirmtech ustutt de/proces sesimaintOpaltC-22 j

Abbildung 6.10: Einkleben von dem OpalMC Prozessfragment.

Um die Komposition der Prozessfragmente durchzufiihren, kann Web-Interface von ODE
benutzt werden. Dafiir soll die erstellte Prozessinstanz in der Liste der Prozessinstanzen
des Web-Interfaces gefunden werden und auf den Button Composition gedriickt werden
(Abbildung 6.9). Somit gelangt man zur Maske fiir die Komposition von Prozessfragmenten
(Abbildung 5.2).

Da nach der Initialisierung des Prozesses die Monte-Carlo Simulation ausgefiihrt werden
soll, muss in die frg:fragmentSequence Aktivitat mit dem Namen MainProcess das OpalMC
Prozessfragment eingeklebt werden (Abbildung 6.10).

Nachdem das Prozessfragment eingeklebt wurde, miissen die frg:fragmentExit Aktivitat mit
dem Namen mainProcessExit und die frg:fragmentEntry Aktivitdt mit dem Namen MCEntry
verbunden werden (Abbildung 6.11). Dabei miissen die Variablen corrIDResponse, runO-
palMainProcRequest und der Correlation Set corrOpalManager gemappt werden. Um diesen
Vorgang tibersichtlich zu halten, wurden die dazugehorigen Variablen in den Prozessfrag-
menten gleich genannt. Somit miissen die gleichen Namen von Variablen und Correlation

92

6.5 Zusammensetzung von Prozessfragmenten zur Laufzeit

Wire and Map

Wiiire frarm: | mainProcessExit (id:EDZJj Wire to: | MCEntry [id:BFEJj

Yariable Mapping

Map frnm:l corDResponse j Map to: | currIDF{espDnsej

Wap frorm: § runOpalMainProcRedue st j Maptn:lrunOpaIMainPrucRequestﬂ

CorrelationSet Mapping

Map frnm:l cnrrOpaIManagerj Map 1|:|:| CDrrOpaIManagerj

Abbildung 6.11: Verbinden von der frg:fragmentExit Aktivitit des Startfragments und der
frg:fragmenEntry Aktivitat des OpalMC Prozessfragments.

Glue

Parent elernant for new fragrnent | callbackRegion (id:423) j

Fragrnent to glue:l{ht‘tp:,-’,."c:pal.simtech.ustuﬂ.de,’pmcesses,“main}OpaIMCCallback—21j

Abbildung 6.12: Einkleben von dem OpalMCCallback Prozessfragment.

Sets beim Mapping angegeben werden. Eine Ausnahme bilden die Partner Links, da das
Vorhandensein von zwei Partner Links mit dem gleichen Namen innerhalb eines Prozesses
bei der Apache ODE zu Problemen fiihrt, wurde bei den gleichen Partner Links am Ende
des Namens eine Zahl angehéngt.

Nachdem die oben genannten Aktivititen verbunden wurden, wird OpalMC Service akqui-
riert und man muss das OpalMCCallback Prozessfragment in die frg:fragmentRegion mit dem
Namen callbackRegion einkleben (Abbildung 6.12).

Nach dem Einleben miissen die frg:fragmentRegion Aktivitit mit dem Namen callbackRegion
und die frg:fragmentEntry Aktivitit mit dem Namen pickServiceCallbackEntry verbunden wer-
den (Abbildung 6.13). Beim Mapping soll man, wie oben beschrieben ist, die gleichnamigen
Elemente auswihlen. Die Ausnahme dabei bilden die Variable mit dem Namen Service-
TicketID und der Partner Link mit dem Namen OpalMCLink11. Die Variable ServiceTicketID
existiert in dem Prozessfragment OpalMC nicht. Aus diesem Grund soll beim Mapping die-
ser Variable die Variable mit dem Namen AcquireServiceResponse ausgewadhlt werden. Diese

93

6 Anwendungsbeispiel

Wire and Map

Wilire fru:um:l callbackRegion (id:423jj Wifire 1|:|:| pickSerdceCallbackEntry [id:E41)j

Variable Mapping

Mapfrom:lrunDpaIMainPrDcRequest j Maptn:lrunOpaIMainPrncRequestﬂ

Map from: | corrlDResponse j Map 1|:|:| currIDRespDnsej

Mapfrum:|AcquireSewiceRespDnse j Maptn:lSemiceTicketle

PartnerLink Mapping

Map from: | OpalMCLink] =l wap to: [OipalMCLinkTi =]

CorrelationSet Mapping

Map from: | currResuurceManagerﬂ Map to: | CDrrResuurceManagerj

tap fror: § corDpaltdansger j Mapto:lcurrOpalManagerj

Abbildung 6.13: Verbinden von der frg:fragmentRegion Aktivitit des Prozessfragments
OpalMC und der frg:fragmentExit Aktivitat des OpalMCCallback Prozessfrag-
ments.

enthélt die benotigte Ticket Id. Die Konvertierung von den Datentypen wird dabei durch
Mediation automatisch durchgefiihrt. Fiir den Mapping des Partner Links mit dem Namen
OpalMCLinkz11 soll der Partner Link mit dem Namen OpalMCLink1 ausgewdhlt werden. Bei
diesem Vorgang muss man jedoch beachten, dass der erhaltene Ticket nur eine gewisse Zeit
gliltig ist. Ist der Ticket abgelaufen, so muss der Simulationsprozess neu gestartet werden.

Nachdem die frg:fragmentRegion Aktivitat mit der frg:fragmentEntry Aktivitiat verbunden
wurden, beginnt die Ausfiihrung der Monte-Carlo Simulation. Dies kann einige Zeit in
Anspruch nehmen. Nachdem die Simulation durchgefiihrt wurde, und alle Snapshots analy-
siert wurden, muss man die Web-Seite aktualisieren um die aktuellen Daten in der Maske
anzeigen zu lassen. AnschliefSfend miissen die frg:fragmentExit Aktivitdt mit dem Namen
pickServiceCallbackExit und die frg:fragmentRegion Aktivitdt mit dem Namen callbackRegion
verbunden werden (Abbildung 6.14). Bei dieser Operation wird kein Mapping bendotigt.

Als néchstes muss das Prozessfragment mit dem Namen OpalMedia in die frg:fragmentSequence
Aktivitat mit dem Namen fragmentSequence-activity-line-214 eingeklebt werden (Abbildung
6.15). Zuletzt miissen die frg:fragmentExit Aktivitat mit dem Namen mcSuccessExit und die
fre:fragmentEntry Aktivitdt mit dem Namen OpalMediaEntry verbunden werden (Abbildung

94

6.5 Zusammensetzung von Prozessfragmenten zur Laufzeit

Wire and Map

wire frorm: | pickServiceCallbackExit (id:870) | wire to: | callbackRegion (id:423) 7]

Abbildung 6.14: Verbinden von der frg:fragmentExit Aktivitat des Prozessfragments OpalMC-
Callback und der frg:fragmentRegion Aktivitdat des OpalMC Prozessfragments.

Glue

Farent element for new fragment: | fragrmentSequence-activity-line-214 (id:41 ?jﬂ

Fragment to glue: | fhitt:jfopal sirmtech ustutt de/fprocesses/maintOpaliedia-2 3 j

Abbildung 6.15: Einkleben von dem OpalMedia Prozessfragment.

6.16). Beim Mapping sollen die gleichnamigen Elemente ausgewéhlt werden. Die Ausnahme
bilden die Variablen ctxID, simID und callbackBaseURL. Fiir den Mapping dieser Variablen soll
die Variable mit dem Namen runOpalMainProcRequest angegeben werden. Die Konvertierung
der Datentypen wird automatisch von der Mediator Komponente durchgefiihrt.

Wenn man nun die Liste der Simulationen in der OpalClientApplication Anwendung aktuali-
siert, wird der Zustand der aktuellen Simulation als finished angegeben, was einen tiber die
erfolgreiche Durchfithrung der Simulation informiert.

95

6 Anwendungsbeispiel

Wire and Map

Wire frnm:l mcSuccessExit [id:424jj Wiire 1|:|:| OpaltdediaEntry (id:1 D4?jj

Yariable Mapping

Map from:l corlDResponse j Map 1|:|:| u:u:urrIDF{espDnsej

Mapfmm:lrunOpaIMainPrucFﬁequest j Maptn:ln:bcID'I

Mapfrum:lrunOpaIMainPrDcRequest j Maptn:lsimIDVI

Mapfmm:lrunOpaIMainPrucFﬁequest j Maptn:lcallbackBaseURLﬂ

Correlationset Mapping

Wap from: fcorOpalManager j Maptn:lcurrOpalManagerﬂ

Abbildung 6.16: Verbinden von der frg:fragmentExit Aktivitat des OpalMC Prozessfragments
und der frg:fragmenEntry Aktivitat des OpalMedia Prozessfragments.

96

7 Zusammenfassung und Ausblick

In dieser Diplomarbeit wurde BPEL um die Aktivitdten frg:fragmentScope, frg:fragmentFlow,
frg:fragmentSequence, frg:fragmentRegion, frg:fragmentExit und frg:fragmentEntry erweitert. Diese
Erweiterung ermoglicht die Definition von unvollstindigen Prozessen, den Prozessfragmen-
ten. Weiterhin wurde ein Konzept fiir die dynamische Zusammensetzung von Prozessfrag-
menten zur Laufzeit erarbeitet. Fiir den Datenaustausch zwischen den zusammengesetzten
Prozessfragmenten wurde Konzept des Mappings von Variablen, Partner Links und Cor-
relation Sets eingefiihrt. Da es bei dem Datenaustausch zwischen den zusammengesetzten
Prozessfragmenten zu den Fallen kommen kann, bei den die auszutauschende Daten unter-
schiedliche Datentypen haben, wurde Mediation Funktionalitdt vorgestellt, die mit Hilfe von
XSLT Transformationen die Datentypkonvertierung ermoglicht. An dem Beispiel einer gene-
rischen Architektur der Workflow Management Systemen wurden die fiir die Umsetzung
dieses Konzeptes bendtigten Erweiterungen gezeigt.

Um das Konzept auf die moglichen Schwachstellen zu priifen, wurde das bestehende
WEFMS, die Apache ODE [ODEa], entsprechend erweitert. Als Beispielprozess wurde ein
wissenschaftlicher Workflow aus der Diplomarbeit [Hot1o] verwendet. Dieser Prozess wurde
in Prozessfragmente aufgeteilt und zur Laufzeit wieder zusammengesetzt.

Ein Erkenntnis der Aufteilung des Prozesses und deren Zusammensetzung zur Laufzeit
war, dass es ungiinstig ist, die zusammengehorige invoke und receive bzw. pick Aktivititen in
unterschiedliche Prozessfragmente aufzuteilen, da die durch receive bzw. pick Aktivitit zu
empfangene Nachricht vor dem Einkleben des entsprechenden Prozessfragmentes an das
WEMS geschickt und von dem WEMS ignoriert werden kann.

Ausblick

Das in dieser Diplomarbeit entwickelte Konzept beschriankt sich auf die manuelle Run-
time Komposition, dieses Konzept kann jedoch erweitert werden, um die Komposition
abhingig von dem Kontext des Prozesses automatisch durchfiihren zu kénnen. Weiterhin
kann das in dieser Arbeit vorgestellte Konzept um die in der Arbeit [ELU10] vorgestellten
Transaktionskonzepte erweitert werden.

Aufierdem kann der in dieser Arbeit auf Basis von Apache ODE entwickelte Prototyp, um die
Priifung der Korrektheit der Prozessfragmente erweitert werden. So muss z.B. sichergestellt
werden, dass die frg:fragmentEntry und frg:fragmentExit Aktivitdten sich nicht innerhalb von
Standard-BPEL-Aktivitdten befinden. Weiterhin ist es in dem Prototyp moglich durch Verbin-
den von frg:framgentExit und frg:fragmentEntry Aktivitaten im Prozess Zyklen zu erzeugen,

97

7 Zusammenfassung und Ausblick

sowie diese Aktivitdten {iber die Schleifengrenzen hinweg zu verbinden. Bei dem Verbinden
von frg:fragmentExit und frg:fragmentEntry Aktivitaten soll das WEMS die Komposition auf
diese Situationen priifen und wenn notwendig die Komposition verhindern.

Das in dieser Arbeit vorgestellte Konzept wurde mit Hilfe eines wissenschaftlichen Work-
flows tiberpriift, dies reicht jedoch im allgemeinen nicht, um tiber Praxistauglichkeit des
Konzeptes eine Aussage zu treffen. Aus diesem Grund werden weitere Erfahrungen aus
der Praxis benotigt, um den ausgearbeiteten Konzept zu beurteilen und moglicherweise zu
verbessern.

98

Literaturverzeichnis

[ATEA06] M. Adams, Ter, D. Edmond, W. van der Aalst. Worklets: A Service-Oriented

[AXI]

[BPEos5]

[BPEoy]

[CFo4]

[ddS]

[ELU10]

[EULo9]

[HBRo8]

Implementation of Dynamic Flexibility in Workflows. pp. 291-308. 2006. doi:
10.1007/11914853_18. URL http://dx.doi.org/10.1007/11914853_18. (Zitiert
auf Seite 10)

Apache Software Foundation. Apache Axis2/Java. URL http://axis.apache.
org/axis2/java/core/. (Zitiert auf Seite 57)

WS-BPEL Extension for Sub-processes — BPEL-SPE, 2005. URL http://xml.
coverpages.org/BPEL-SPE-Subprocesses.pdf. (Zitiert auf den Seiten 9 und 37)

Web Services Business Process Execution Language Version 2.0, 2007. URL
http://docs.oasis-open.org/wsbpel/2.0/wsbpel-v2.0.pdf. (Zitiert auf den
Seiten 14, 21, 24, 25 und 46)

C. Courbis, A. Finkelstein. Towards an Aspect Weaving BPEL engine. In Y. Coady,
D. H. Lorenz, editors, the Third AOSD Workshop on Aspects, Components, and
Patterns for Infrastructure Software. Lancaster, United Kingdom, 2004. (Zitiert auf
Seite 10)

Apache ODE deployment descriptor Schema. URL http://svn.apache.org/
viewvc/ode/trunk/bpel-schemas/src/main/xsd/dd.xsd?view=markup. (Zitiert
auf Seite 59)

H. Eberle, F. Leymann, T. Unger. Transactional Process Fragments - Recovery
Strategies for Flexible Workflows with Process Fragments. In Proceedings of APSCC
2010, pp. 1-8. IEEE Xplore, 2010. URL http://www2.informatik.uni-stuttgart.
de/cgi-bin/NCSTRL/NCSTRL_view.pl?id=INPROC-2010-100&engl=0. (Zitiert auf
den Seiten 9, 10, 11 und 97)

H. Eberle, T. Unger, F. Leymann. Process Fragments. In R. Meersman, T. Dillon,
P. Herrero, editors, On the Move to Meaningful Internet Systems: OTM 2009, Part I,
volume 5870 of Lecture Notes in Computer Science, pp. 398—405. Springer, 2009. doi:
10.1007/978-3-642-05148-7_29. URL http://www2.informatik.uni-stuttgart.
de/cgi-bin/NCSTRL/NCSTRL_view.pl?id=INPROC-2009-73&engl=0. (Zitiert auf
den Seiten 10, 34 und 35)

A. Hallerbach, T. Bauer, M. Reichert. Issues in Modeling Process Variants with
Provop. In Business Process Management Workshops, pp. 56—67. 2008. (Zitiert auf
Seite 10)

99

http://dx.doi.org/10.1007/11914853_18
http://axis.apache.org/axis2/java/core/
http://axis.apache.org/axis2/java/core/
http://xml.coverpages.org/BPEL-SPE-Subprocesses.pdf
http://xml.coverpages.org/BPEL-SPE-Subprocesses.pdf
http://docs.oasis-open.org/wsbpel/2.0/wsbpel-v2.0.pdf
http://svn.apache.org/viewvc/ode/trunk/bpel-schemas/src/main/xsd/dd.xsd?view=markup
http://svn.apache.org/viewvc/ode/trunk/bpel-schemas/src/main/xsd/dd.xsd?view=markup
http://www2.informatik.uni-stuttgart.de/cgi-bin/NCSTRL/NCSTRL_view.pl?id=INPROC-2010-100&engl=0
http://www2.informatik.uni-stuttgart.de/cgi-bin/NCSTRL/NCSTRL_view.pl?id=INPROC-2010-100&engl=0
http://www2.informatik.uni-stuttgart.de/cgi-bin/NCSTRL/NCSTRL_view.pl?id=INPROC-2009-73&engl=0
http://www2.informatik.uni-stuttgart.de/cgi-bin/NCSTRL/NCSTRL_view.pl?id=INPROC-2009-73&engl=0

Literaturverzeichnis

[Hot10]

[JBlos]
[KSo9]

[LRoo]

[ODEa]

[ODEb]

[SAL"10]

[SOA07]

[STF'10]

[TDGSo6]

[Tel1o0]
[Tido8]

[WCL"o5]

100

S. Hotta. Ausfithrung von Festkorpersimulationen auf Basis der Workflow
Technologie, 2010. (Zitiert auf den Seiten 81, 82, 83, 84, 85, 89 und 97)

Java Business Integration (JBI) 1.0, 2005. URL http://www.jcp.org/aboutJava/
communityprocess/final/jsr208/index.html. (Zitiert auf Seite 57)

M. Keith, M. Schincariol. Pro JPA 2: Mastering the Java Persistence API. Apress,
Berkely, CA, USA, 1st edition, 2009. (Zitiert auf den Seiten 25, 26 und 27)

F. Leymann, D. Roller. Production Workflow - Concepts and Techniques. PTR Pren-
tice Hall, 2000. URL http://www2.informatik.uni-stuttgart.de/cgi-bin/
NCSTRL/NCSTRL_view.pl?id=B00K-2000-01&engl=0. (Zitiert auf den Seiten 13,

14, 15 und 53)

Apache Software Foundation. Apache Orchestration Director Engine (ODE). URL
http://ode.apache.org/. (Zitiert auf den Seiten 11, 57, 58, 59, 60 und 97)

Apache Software Foundation. WS-BPEL 2.0 Specification Compliance of Apache
ODE. URL http://ode.apache.org/ws-bpel-20-specification-compliance.
html. (Zitiert auf Seite 61)

D. Schumm, T. Anstett, FE. Leymann, D. Schleicher, S. Strauch. Essential Aspects
of Compliance Management with Focus on Business Process Automation. In
Proceedings of the 3rd International Conference on Business Processes and Services
Computing (BPSC) — INFORMATIK 2010, 27-28 September 2010, Leipzig, Germany,
volume P-177 of Lecture Notes in Informatics (LNI), pp. 127-138. Gesellschaft fiir
Informatik e.V. (GI), 2010. (Zitiert auf den Seiten 10, 34, 35, 36 und 37)

SOAP Version 1.2 Part o: Primer (Second Edition), 2007. URL http://www.w3.
org/TR/2007/REC-soapl2-part0-20070427/. (Zitiert auf Seite 17)

E. Sebastian, A. Hilliger von Thile, M. Flehmig, P. Troger, B. Rudolph, B. Stumm,
M. Lipp, P. Sauter, J. Vajda, W. Dostal, M. Jeckle. Service-orientierte Architekturen
mit Web Services: Konzepte - Standards - Praxis. Spektrum Akademischer Verlag,
2010. (Zitiert auf den Seiten 15, 16, 18, 19 und 21)

L. J. Taylor, E. Deelman, D. B. Gannon, M. Shields. Workflows for e-Science: Scientific
Workflows for Grids. Springer-Verlag New York, Inc., Secaucus, NJ, USA, 2006.
(Zitiert auf Seite 9)

S. Telezhnikov. Prozessfragmente: Metamodell und Ausfiihrung, 2010. (Zitiert
auf den Seiten 10, 11, 33, 34 und 77)

D. Tidwell. XSLT: Mastering XML Transformations. O’Reilly, Sebastopol, CA, 2.
edition, 2008. (Zitiert auf Seite 27)

S. Weerawarana, F. Curbera, F. Leymann, T. Storey, D. E. Ferguson. Web Services
Platform Architecture: SOAP, WSDL, WS-Policy, WS-Addressing, WS-BPEL, WS-
Reliable Messaging and More. Prentice Hall PTR, Upper Saddle River, NJ, USA,
2005. (Zitiert auf den Seiten 18, 19 und 22)

http://www.jcp.org/aboutJava/communityprocess/final/jsr208/index.html
http://www.jcp.org/aboutJava/communityprocess/final/jsr208/index.html
http://www2.informatik.uni-stuttgart.de/cgi-bin/NCSTRL/NCSTRL_view.pl?id=BOOK-2000-01&engl=0
http://www2.informatik.uni-stuttgart.de/cgi-bin/NCSTRL/NCSTRL_view.pl?id=BOOK-2000-01&engl=0
http://ode.apache.org/
http://ode.apache.org/ws-bpel-20-specification-compliance.html
http://ode.apache.org/ws-bpel-20-specification-compliance.html
http://www.w3.org/TR/2007/REC-soap12-part0-20070427/
http://www.w3.org/TR/2007/REC-soap12-part0-20070427/

Literaturverzeichnis

[WOdoo]

[WSAo4]

[WSDo1]

[WSDo7]

[XPAa]

[XPAD]

[XSL]

I. Wassink, M. Ooms, P. V. van der. Designing Workflows on the Fly Using
e-BioFlow. In L. Baresi, C.-H. Chi, J. Suzuki, editors, Service-Oriented Computing,
Lecture Notes in Computer Science 5900, pp. 470—-484. Berlin, 2009. URL http:
//doc.utwente.nl/68648/. (Zitiert auf Seite 9)

Web Services Architecture, 2004. URL http://www.w3.org/TR/ws-arch/. (Zitiert
auf Seite 16)

Web Services Description Language (WSDL) 1.1, 2001. URL http://www.w3.org/
TR/wsdl. (Zitiert auf den Seiten 16 und 17)

Web Services Description Language (WSDL) Version 2.0 Part 1: Core Language,
2007. URL http://www.w3.org/TR/wsd120/. (Zitiert auf Seite 17)

XML Path Language (XPath) 2.0 (Second Edition). URL http://www.w3.org/TR/
xpath20/. (Zitiert auf Seite 28)

XML Path Language (XPath) Version 1.0. URL http://www.w3.org/TR/xpath/.
(Zitiert auf Seite 28)

XSL Transformations (XSLT) Version 2.0. URL http://www.w3.o0rg/TR/xs1t20/.
(Zitiert auf Seite 27)

Alle URLs wurden zuletzt am 13.07.2011 gepriift.

101

http://doc.utwente.nl/68648/
http://doc.utwente.nl/68648/
http://www.w3.org/TR/ws-arch/
http://www.w3.org/TR/wsdl
http://www.w3.org/TR/wsdl
http://www.w3.org/TR/wsdl20/
http://www.w3.org/TR/xpath20/
http://www.w3.org/TR/xpath20/
http://www.w3.org/TR/xpath/
http://www.w3.org/TR/xslt20/

Erkldrung

Hiermit versichere ich, diese Arbeit selbstindig
verfasst und nur die angegebenen Quellen
benutzt zu haben.

(Alex Hummel)

	1 Einleitung
	1.1 Verwandte Arbeiten
	1.2 Aufgabenstellung

	2 Grundlagen
	2.1 Workflows und Workflow Management Systeme
	2.1.1 Dimensionen eines Workflows
	2.1.2 Grundlagen von Worflow Management Systemen

	2.2 Service Oriented Architecture (SOA)
	2.3 Web Services
	2.3.1 SOAP
	2.3.2 Web Services Description Language (WSDL)
	2.3.3 Web Service Verzeichnisdienste

	2.4 WS-BPEL
	2.5 Java Persistence API (JPA)
	2.5.1 Entity Manager
	2.5.2 Zusammengesetzte Hauptschlüssel

	2.6 XSLT
	2.6.1 XSLT style sheet Struktur
	2.6.2 Verwendete XSLT Elemente
	2.6.3 Beispiel einer XSLT Transformation

	3 Konzept
	3.1 Prozessfragmente
	3.1.1 Buildtime Komposition
	3.1.2 Runtime Komposition
	3.1.3 Prozessfragmentelemente

	3.2 Eingeführte Aktivitäten
	3.3 Zusammensetzung von Fragmenten
	3.3.1 Komposition mit frg:fragmentFlow
	3.3.2 Komposition mit frg:fragmentSeqeuence
	3.3.3 Komposition mit frg:fragmentRegion

	3.4 Mapping
	3.5 Mediation
	3.6 Schleifen
	3.7 Einschränkungen bei der Komposition
	3.8 Generische Architektur
	3.9 Komposition-API

	4 Übersicht über Apache ODE
	4.1 Architektur
	4.2 Deployment
	4.3 Versionierung
	4.4 Apache ODE Channels

	5 Umsetzung
	5.1 Erweiterung der ODE BPEL Compiler Komponente
	5.2 Erweiterung der ODE BPEL Runtime Komponente
	5.2.1 Aktivitätenlogik
	5.2.2 Zusätzliche Channels
	5.2.3 Kleben von Prozessfragmenten
	5.2.4 Verbinden von frg:fragmentExit und frg:fragmentEntry Aktivitäten
	5.2.5 Ausführung der Logik der eingeführten APIs
	5.2.6 FC Analyser

	5.3 Erweiterung der ODE Data Access Objects Komponente
	5.4 Mediator-Komponente
	5.4.1 Variable Mediation
	5.4.2 Correlation Set Mediation

	5.5 Erweiterung der ODE Integrationlayer Komponente
	5.6 Werkzeug für die Fragmentenkomposition
	5.7 Erstellung von Prozessinstanzen

	6 Anwendungsbeispiel
	6.1 Ziel der Festkörpersimulation
	6.2 Überblick über die Simulationsanwendung
	6.2.1 Aufbau und Funktionsweise der Simulationsanwendung
	6.2.2 Opal Manager
	6.2.3 Ressourcen Management
	6.2.4 Akquirieren eines Services

	6.3 Prozesse der Simulationsanwendung
	6.3.1 Haupt-Prozess
	6.3.2 Nachbereitungsprozess

	6.4 Aufteilung des Prozesses in Prozessfragmente
	6.5 Zusammensetzung von Prozessfragmenten zur Laufzeit

	7 Zusammenfassung und Ausblick
	Literaturverzeichnis

