
Institut für Architektur von Anwendungssystemen
Universität Stuttgart

Universitätsstraße 38
D–70569 Stuttgart

Diplomarbeit Nr. 3144

Ausführung von
Workflow-Fragmenten in BPEL

Alex Hummel

Studiengang: Softwaretechnik

Prüfer: Jun.-Prof. Dr.-Ing. Dimka Karastoyanova

Betreuer: Dipl.-Inf. Mirko Sonntag

begonnen am: 13. Januar 2011

beendet am: 15. Juli 2011

CR-Klassifikation: H.4.1





Inhaltsverzeichnis

1 Einleitung 9
1.1 Verwandte Arbeiten . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.2 Aufgabenstellung . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2 Grundlagen 13
2.1 Workflows und Workflow Management Systeme . . . . . . . . . . . . . . . . . . 13

2.1.1 Dimensionen eines Workflows . . . . . . . . . . . . . . . . . . . . . . . . 13

2.1.2 Grundlagen von Worflow Management Systemen . . . . . . . . . . . . . 14

2.2 Service Oriented Architecture (SOA) . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.3 Web Services . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.3.1 SOAP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.3.2 Web Services Description Language (WSDL) . . . . . . . . . . . . . . . . 17

2.3.3 Web Service Verzeichnisdienste . . . . . . . . . . . . . . . . . . . . . . . 19

2.4 WS-BPEL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.5 Java Persistence API (JPA) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.5.1 Entity Manager . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.5.2 Zusammengesetzte Hauptschlüssel . . . . . . . . . . . . . . . . . . . . . 27

2.6 XSLT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.6.1 XSLT style sheet Struktur . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.6.2 Verwendete XSLT Elemente . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.6.3 Beispiel einer XSLT Transformation . . . . . . . . . . . . . . . . . . . . . 29

3 Konzept 33
3.1 Prozessfragmente . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.1.1 Buildtime Komposition . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.1.2 Runtime Komposition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.1.3 Prozessfragmentelemente . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.2 Eingeführte Aktivitäten . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.3 Zusammensetzung von Fragmenten . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.3.1 Komposition mit frg:fragmentFlow . . . . . . . . . . . . . . . . . . . . . . 39

3.3.2 Komposition mit frg:fragmentSeqeuence . . . . . . . . . . . . . . . . . . . 40

3.3.3 Komposition mit frg:fragmentRegion . . . . . . . . . . . . . . . . . . . . . 40

3.4 Mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.5 Mediation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.6 Schleifen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.7 Einschränkungen bei der Komposition . . . . . . . . . . . . . . . . . . . . . . . 46

3.8 Generische Architektur . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3



3.9 Komposition-API . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

4 Übersicht über Apache ODE 57
4.1 Architektur . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

4.2 Deployment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

4.3 Versionierung . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

4.4 Apache ODE Channels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

5 Umsetzung 61
5.1 Erweiterung der ODE BPEL Compiler Komponente . . . . . . . . . . . . . . . . 61

5.2 Erweiterung der ODE BPEL Runtime Komponente . . . . . . . . . . . . . . . . 63

5.2.1 Aktivitätenlogik . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

5.2.2 Zusätzliche Channels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

5.2.3 Kleben von Prozessfragmenten . . . . . . . . . . . . . . . . . . . . . . . . 67

5.2.4 Verbinden von frg:fragmentExit und frg:fragmentEntry Aktivitäten . . . . 69

5.2.5 Ausführung der Logik der eingeführten APIs . . . . . . . . . . . . . . . 70

5.2.6 FC Analyser . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

5.3 Erweiterung der ODE Data Access Objects Komponente . . . . . . . . . . . . . 71

5.4 Mediator-Komponente . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

5.4.1 Variable Mediation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

5.4.2 Correlation Set Mediation . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

5.5 Erweiterung der ODE Integrationlayer Komponente . . . . . . . . . . . . . . . . 76

5.6 Werkzeug für die Fragmentenkomposition . . . . . . . . . . . . . . . . . . . . . 77

5.7 Erstellung von Prozessinstanzen . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

6 Anwendungsbeispiel 81
6.1 Ziel der Festkörpersimulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

6.2 Überblick über die Simulationsanwendung . . . . . . . . . . . . . . . . . . . . . 81

6.2.1 Aufbau und Funktionsweise der Simulationsanwendung . . . . . . . . 81

6.2.2 Opal Manager . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

6.2.3 Ressourcen Management . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

6.2.4 Akquirieren eines Services . . . . . . . . . . . . . . . . . . . . . . . . . . 83

6.3 Prozesse der Simulationsanwendung . . . . . . . . . . . . . . . . . . . . . . . . 83

6.3.1 Haupt-Prozess . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

6.3.2 Nachbereitungsprozess . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

6.4 Aufteilung des Prozesses in Prozessfragmente . . . . . . . . . . . . . . . . . . . 84

6.5 Zusammensetzung von Prozessfragmenten zur Laufzeit . . . . . . . . . . . . . 89

7 Zusammenfassung und Ausblick 97

Literaturverzeichnis 99

4



Abbildungsverzeichnis

2.1 Workflow Dimensionen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.2 WFMS Architektur . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.3 SOA Dreieck . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.4 Web Service Verzeichnisdienste . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.5 Zusammenhang zwischen <correlationSet>, <property>, <propertyAlias> und
der Nachricht. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.6 Beziehungen zwischen den JPA Konzepten . . . . . . . . . . . . . . . . . . . . . 26

3.1 Fragmentelemente . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.2 Legende . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.3 Kleben von Prozessfragmenten (geringere Schachtelungstiefe) . . . . . . . . . . 38

3.4 Kleben von Prozessfragmenten (größere Schachtelungstiefe) . . . . . . . . . . . 39

3.5 frg:fragmentSequence Aktivität . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.6 Komposition mit frg:fragmentSequence . . . . . . . . . . . . . . . . . . . . . . . . 42

3.7 Variablen-Mapping durch durch Löschen der Variablendefinition . . . . . . . . 43

3.8 Sichtbarkeit der Variablen beim Variablen Mapping . . . . . . . . . . . . . . . . 44

3.9 Variablenbenutzung im Prozessfragment . . . . . . . . . . . . . . . . . . . . . . 45

3.10 Mehrere frg:fragmentEntry Aktivitäten in einem Prozessfragment . . . . . . . . 47

3.11 Generische Architektur . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.12 Erweiterte generische Architektur . . . . . . . . . . . . . . . . . . . . . . . . . . 50

3.13 Sequenzdiagramm glue(...) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

3.14 Sequenzdiagramm getAvailableVariables(...) . . . . . . . . . . . . . . . . . . . . 51

3.15 Optionale frg:fragmentExit Aktivität . . . . . . . . . . . . . . . . . . . . . . . . . 55

4.1 ODE Architektur . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

5.1 Kompilieren einer Aktivität. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

5.2 Werkzeug für die Fragmentenkomposition . . . . . . . . . . . . . . . . . . . . . 78

5.3 Apache ODE Web Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

6.1 Aufbau der Simulationsanwendung . . . . . . . . . . . . . . . . . . . . . . . . . 82

6.2 Beispiel des Akquirierens eines Services in BPEL . . . . . . . . . . . . . . . . . 84

6.3 Schematische Darstellung der Simulationsprozesse . . . . . . . . . . . . . . . . 85

6.4 Aufteilung des Prozesses in Prozessfragmente. . . . . . . . . . . . . . . . . . . . 87

6.5 Startfragment der Simulationsanwendung. . . . . . . . . . . . . . . . . . . . . . 88

6.6 OpalMC Prozessfragment der Simulationsanwendung. . . . . . . . . . . . . . . 89

6.7 OpalMCCallback Prozessfragment der Simulationsanwendung. . . . . . . . . . 90

5



6.8 OpalMedia Prozessfragment der Simulationsanwendung. . . . . . . . . . . . . 91

6.9 Liste der Prozessinstanzen von Apache ODE . . . . . . . . . . . . . . . . . . . . 92

6.10 Einkleben von dem OpalMC Prozessfragment. . . . . . . . . . . . . . . . . . . . 92

6.11 Verbinden von dem Startfragment mit dem OpalMC Prozessfragment . . . . . 93

6.12 Einkleben von dem OpalMCCallback Prozessfragment. . . . . . . . . . . . . . . . 93

6.13 Verbinden von den OpalMC und OpalMCCallback Prozessfragmenten . . . . . . 94

6.14 Verbinden von den OpalMCCallback und OpalMC Prozessfragmenten . . . . . . 95

6.15 Einkleben von dem OpalMedia Prozessfragment. . . . . . . . . . . . . . . . . . . 95

6.16 Verbinden von den OpalMC und OpalMedia Prozessfragmenten . . . . . . . . . 96

Verzeichnis der Listings

2.1 Beispiel einer SOAP Nachricht . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.2 Beispiel einer fehlerbeschreibenden SOAP Nachricht . . . . . . . . . . . . . . . 19

2.3 EntityManagerFactory instantiierung . . . . . . . . . . . . . . . . . . . . . . . . 26

2.4 Beispiel XML-Dokument . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.5 Beispiel eines XSLT Style sheets . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.6 Ausgabe der Transformation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.1 frg:fragmentEntry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.2 frg:fragmentExit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.3 frg:fragmentRegion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.4 Beispiel zu frg:fragmentScope und frg:fragmentFlow . . . . . . . . . . . . . . . . . 36

3.5 Beispiel zu frg:fragmentEntry Variablendefinition . . . . . . . . . . . . . . . . . . 43

3.6 Beispiel zu frg:fragmentRegion Variablendefinition . . . . . . . . . . . . . . . . . 44

3.7 Beispiel eines Komplexen Datentyps für die Mediation . . . . . . . . . . . . . . 45

3.8 Schnittstelle der Mediator-Komponente . . . . . . . . . . . . . . . . . . . . . . . 50

3.9 FragmentComposition Schnittstelle . . . . . . . . . . . . . . . . . . . . . . . . . 52

3.10 Datenstruktur ActivityInfo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

3.11 Datenstruktur VariableInfo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

3.12 Datenstruktur Mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

3.13 FragmentManagement Schnittstelle . . . . . . . . . . . . . . . . . . . . . . . . . 55

4.1 Deployment Descriptor Wurzelelement . . . . . . . . . . . . . . . . . . . . . . . 59

4.2 Service Binding im Deployment Descriptor . . . . . . . . . . . . . . . . . . . . . 59

5.1 Pseudocode der Logik von der frg:fragmentFlow Aktivität . . . . . . . . . . . . . 64

5.2 Pseudocode der Logik von der frg:fragmentSequence Aktivität . . . . . . . . . . 65

5.3 Pseudocode der Logik von der frg:fragmentRegion Aktivität . . . . . . . . . . . . 66

5.4 Pseudocode der Logik von der frg:fragmentEntry Aktivität . . . . . . . . . . . . 67

6



5.5 Pseudocode der Logik von der frg:fragmentExit Aktivität . . . . . . . . . . . . . 68

5.6 FragmentComposition Channel . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

5.7 FragmentCompositionResponse Channel . . . . . . . . . . . . . . . . . . . . . . 68

5.8 FragmentEntryMappedChannel . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

5.9 Pseudocode der Operation glue(...) . . . . . . . . . . . . . . . . . . . . . . . . . . 69

5.10 Pseudocode der Operation wireAndMap(...) . . . . . . . . . . . . . . . . . . . . 70

5.11 FragmentCompositionResponse . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

5.12 SQL Ausdruck zum Erstellen der Tabelle für Speicherung der Channels . . . . 72

5.13 SQL Ausdruck zum Erstellen der Tabelle für den Mapping . . . . . . . . . . . . 72

5.14 Beispiel einer var_mediator.xslt Datei. . . . . . . . . . . . . . . . . . . . . . . . . . 73

5.15 Interne Darstellung des Wertes einer boolean Variable mit dem Wert true in ODE 73

5.16 Interne Darstellung des Wertes einer integer Variable mit dem Wert 1 in ODE . 74

5.17 XML Darstellung eines initialisierten Correlation Sets . . . . . . . . . . . . . . . 74

5.18 Beispiel einer cset_mediator.xslt Datei. . . . . . . . . . . . . . . . . . . . . . . . . . 75

5.19 Web Service . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

7





1 Einleitung

Seit einiger Zeit besteht das Bestreben die Workflows modular aufzubauen und dadurch
die Steigende Komplexität der Prozesse zu bewältigen, sowie die Wiederverwendung der
Prozessfragmenten zu erreichen. Dabei orientiert man sich oft an dem Konzept der Software-
komponenten, die eine bestimmte Funktionalität darstellen und bei bedarf wiederverwendet
werden können.

Traditionell muss ein Prozess vollständig definiert werden, bevor es ausgeführt werden
kann. Das verursacht die Starrheit der Prozesse. So kann nur langsam auf sich ändernden
Umstände reagiert werden, da die Prozesse aktualisiert, deployt und bei bedarf die laufenden
Prozessinstanzen auf die neuen Prozessmodelle migriert werden müssen.

Im Bereich von Business Workflows tritt zusätzlich das Problem auf, dass das Wissen über
den Geschäftsprozess über mehrere Teilnehmer verteilt ist, was die Modellierung des Prozes-
ses als Ganzes erschwert. Es können dabei oft nicht alle möglichen Situationen vorhergesehen
und somit modelliert werden [ELU10]. Dieser Fakt erfordert von den Workflow Manage-
ment Systemen die Möglichkeit der Zusammensetzung von Prozessen zur Laufzeit. Somit
wäre es möglich, das lokale Wissen als Prozessfragmente zu modellieren und zur Laufzeit
zusammenzusetzen, die unvorhergesehene Ereignisse ließen sich durch Hinzufügen neuer
Prozessfragmente abdecken.

Im Bereich der Scientific Workflows verwenden die Wissenschaftler Workflows, um die
Datenverarbeitung zu automatisieren. Dabei tritt das Problem auf, dass die Wissenschaftler
nicht vorhersehen können, welche Schritte ab einem bestimmten Punkt im Prozess vor-
genommen werden müssen. Sie brauchen eine Möglichkeit, die zur Laufzeit erzeugten
Daten zu analysieren, und abhängig von den Daten die nächsten Schritte im Prozess zu
modellieren, sowie die Prozessausführung auf dem vervollständigten Prozessmodell fortzu-
setzen [WOd09] [TDGS06]. Eine mögliche Lösung dieser Probleme ist Teile von Prozessen
als separate Prozessfragmente zu modellieren und diese in einem Workflow Management
System zur Laufzeit zu einem Prozess zusammensetzen lassen, was in dieser Diplomarbeit
behandelt wird.

1.1 Verwandte Arbeiten

Heute existieren mehrere Ansätze, um den oben genannten Problemen entgegenzuwir-
ken. Die BPEL-SPE [BPE05] Erweiterung von BPEL ermöglicht die Modularisierung und
Wiederverwendung von Prozessfragmenten als Subprozesse. Diese können innerhalb von
Prozessen als inline Subprozesse, oder als separate Subprozesse definiert werden, die aus

9



1 Einleitung

unterschiedlichen Prozessen aufgerufen werden können. Der Schwerpunkt dabei liegt auf
der Kontrolle des Lebenszyklus des Subprozesses, es ist jedoch nicht vorgesehen die auf-
zurufende Subprozesse zur Laufzeit zu bestimmen. Die aufgerufene Subprozesse müssen
einen bestimmten Porttyp implementieren, dieser wird zur Build-Time bestimmt.

In [ATEA06] wird ein Konzept von Worklets vorgestellt. Worklets stellen Subprozesse dar,
und werden genutzt um die passende Logik für die im Prozess definierten abstrakten
Aktivitäten zu implementieren. Worklets werden mit Informationen erweitert, die den Kontext
beschreiben in dem diese ausgewählt werden sollen. Die Auswahl von den auszuführenden
Worklets erfolgt zur Laufzeit abhängig von dem Kontext des Prozesses. Dieses Konzept
erlaubt Evolution von Prozessen ohne die Veränderung des Prozessmodells. Die Worklets
jedoch stellen vollständige Prozesse dar, was die im Konzept erreichte Flexibilität der Prozesse
einschränkt. Eine andere Möglichkeit Flexibilität der Prozesse zu erreichen ist in [HBR08]
beschrieben. Dabei werden im Prozess Punkte definiert an denen der Prozess verändert
werden kann. Die möglichen Veränderungen des Prozesses werden als Options bezeichnet
und beschreiben die prozessverändernde Operationen wie Einfügen neuer Aktivitäten,
Löschen von Aktivitäten u.ä. Die Options haben den Zweck Varianten eines Prozesses
durch die Abweichungen vom Standardprozess zu beschreiben. Obwohl dieser Ansatz die
Veränderung des Prozesses zur Laufzeit erlaubt, bilden die Options keine eigenständigen
Prozessfragmente. In [CF04] wird ein Konzept beschrieben, bei dem die Aktivitäten mit
Aspekten versehen werden. Zur Laufzeit kann die Ausführung des Prozesses an diesen
Punkten unterbrochen werden um den Prozess durch weitere Aktivitäten zu erweitern. Hier
vorgestelltes Konzept dient nur der Erhöhung der Flexibilität der Prozesse, adressiert jedoch
keine Lösungen bezüglich der Wiederverwendbarkeit von Prozessfragmenten.

In [EUL09] wird ein Konzept von Prozessfragmenten vorgestellt. Es wird davon ausge-
gangen, dass das Wissen über den Prozess über mehrere Personen verteilt ist und jeder
Prozessfragment das lokale Wissen über den Prozess darstellt. Diese Fragmente werden zu-
sammengesetzt um den vollständigen Prozess zu erhalten. Dieses Konzept wird in [ELU10]
um backward und forward recovery Strategien erweitert. In [SAL+

10] werden Prozessfrag-
mente benutzt um die Compliance von den Prozessen nachzuweisen. Dafür wurde eine
Erweiterung von BPEL vorgestellt, die die Compliance-Fragmenten beschreibt. In [Tel10]
wurde ein Metamodell für die Prozessfragmente ausgearbeitet das auf Graphen basiert und
Regeln für die Navigation von Prozessfragmenten definiert.

Als Grundlage dieser Diplomarbeit werden die Arbeiten [EUL09], [ELU10],[SAL+
10] und

[Tel10] verwendet.

Gliederung

Die Arbeit ist in folgender Weise gegliedert:

Kapitel 2 – Grundlagen beschreibt die Grundlagen, auf den diese Arbeit aufbaut.

Kapitel 3 – Konzept stellt das Lösungskonzept für die im Kapitel 1.2 gestellte Aufgabe vor.

10



1.2 Aufgabenstellung

Kapitel 4 – Übersicht über Apache ODE gibt einen Überblick über Apache ODE, das zu er-
weiternde WFMS.

Kapitel 5 – Umsetzung stellt die Umsetzung des Lösungskonzept vor.

Kapitel 6 – Anwendungsbeispiel beschreibt einen wissenschaftlichen Workflow, der verwen-
det wurde um das Lösungskonzept zu prüfen.

Kapitel 7 – Zusammenfassung und Ausblick fasst die Ergebnisse der Arbeit zusammen und
stellt Anknüpfungspunkte vor.

1.2 Aufgabenstellung

Das Ziel dieser Diplomarbeit ist BPEL so zu erweitern, dass die Ausführung von unvollstän-
digen Prozessen (Prozessfragmenten) ermöglicht wird. Der ausgeführte Prozess wird zur
Laufzeit durch Ankleben weiterer Prozessfragmente vervollständigt. Dabei wird von einem
Benutzer entschieden, welche Prozessfragmente wie an den ausgeführten Prozess geklebt
werden. Konzeptionell baut die Arbeit auf [Tel10] auf. Eine Abbildung der graph-basierten
Konzepte auf BPEL und eine daraus resultierende Erweiterung der Konzepte ist allerdings
nötig. Die in [ELU10] beschriebenen Transaktionskonzepte werden in dieser Diplomarbeit
nicht berücksichtigt. Außerdem soll eine bestehende BPEL-Engine [ODEa] erweitert werden
um das Lösungskonzept an einem wissenschaftlichen Workflow zu prüfen.

11





2 Grundlagen

In diesem Kapitel werden Technologien Vorgestellt, die für das Verstehen dieser Diplomarbeit
notwendig sind.

2.1 Workflows und Workflow Management Systeme

In unserer Welt gibt es eine große Anzahl von Vorgängen, die nach bestimmten Regeln
ablaufen. In der Business-Welt werden viele Vorgänge immer wieder wiederholt. Diese
Vorgänge sind mit der Abwicklung bestimmter Arbeitsschritten verbunden um ein definiertes
Ziel zu erreichen. Die Workflow-Technoligie ist darauf ausgerichtet, diese Vorgänge zu
automatisieren. Vorgang wird dabei als Prozess bezeichnet. Ein Prozessmodell beschreibt das
Muster und mit ihm verbundene Regeln, denen ein Prozess folgt. Ein Prozessmodell kann
instantiiert werden. Abhängig von den Daten dieser Prozessinstanz, wird durch das Prozess
navigiert, und die Arbeitsschritte, die gemacht werden müssen, werden durchgeführt. Ein
Teil der auszuführenden Arbeitsschritte kann dabei von den Menschen und ein anderes Teil
von Computern ausgeführt werden.

2.1.1 Dimensionen eines Workflows

Ein Prozess besitzt drei Dimensionen, diese definieren wer, was und womit während einer
bestimmten Arbeitseinheit (einer Aktivität) ausführt (Abbildung 2.1) [LR00].

• Die Prozesslogik-Dimension beschreibt was und in welcher Reihenfolge ausgeführt
werden soll.

• Die Organisationsstrukturen-Dimension beschreibt die an der Organisation beteiligten
Abteilungen, Personen und Rollen. Die Organisationsstrukturen werden mit den einzel-
nen Aktivitäten mit Hilfe von Suchanfragen assoziiert. Diese Suchanfragen definieren,
welche Personen oder Computer eine bestimmte Aktivität ausführen dürfen.

• Die IT-Infrastruktur-Dimension definiert womit eine Aktivität ausgeführt werden soll.
Dazu gehören die Ressourcen und Programme mit deren Hilfe eine Aktivität ausgeführt
werden soll.

13



2 Grundlagen

Abbildung 2.1: Dimensionen eines Workflows [LR00].

2.1.2 Grundlagen von Worflow Management Systemen

Software, die den Ablauf von Prozessen steuert wird Workflow Management System (WFMS)
genannt.

Zu den Hauptkomponenten eines Workflow Management Systems zählen das Metamodell,
Design-Komponente, Laufzeit-Komponente und die Datenbank (Abbildung 2.2) [LR00].

• Metamodell definiert die Konstrukte und die dazugehörigen Operationen, die vom
WFMS unterstützt werden. Dazu gehören die allgemeine Struktur der unterstützten
Prozessmodelle und die Operationen, die auf einer Prozessinstanz ausgeführt werden
können.

• Design-Komponente ermöglicht dem Benutzer die im Metamodell erlaubten Kon-
strukte zu definieren. Dazu gehören das Prozessmodell, die Organisationsstruktur, und
die IT-Aspekte.

• Laufzeit-Komponente dient der Ausführung der im Metamodell definierten Ope-
rationen wie z.B. das Erstellen einer Prozessinstanz und das Navigieren durch das
Prozessmodell.

• Datenbank ist für die Speicherung der von der Design- und der Laufzeit-Komponente
verwalteten Daten verantwortlich.

Damit ein Prozess von einem WFMS ausgeführt werden kann, wird eine maschinenlesbare
Sprache benötigt, die den auszuführenden Prozess beschreiben würde. In dieser Diplomarbeit
wurde Apache ODE verwendet, die die Ausführung von den in BPEL [BPE07] beschriebenen
Prozessen unterstützt. Aus diesem Grund wird im Kapitel 2.4 ein kurzer Überblick über
BPEL geboten.

14



2.2 Service Oriented Architecture (SOA)

Abbildung 2.2: WFMS Architektur [LR00].

2.2 Service Oriented Architecture (SOA)

Damit ein WFMS erfolgreich in der Praxis eingesetzt werden kann, muss es mit Programmen
kommunizieren können unabhängig von der Plattform, auf den sie laufen, sowie unabhängig
von den Programmiersprachen, in den diese implementiert sind. Eine Lösung dafür bietet
Service Oriented Architecture [STF+

10]. Eine wichtige Eigenschaft von SOA ist die lose Kopplung,
d.h. die Dienste werden dynamisch zur Laufzeit gesucht und eingebunden, dabei ist das
wissen über die aufzurufenden Services während Implementierung nicht notwendig.

In der SOA gibt es im wesentlichen drei Einheiten, die an der Kommunikation teilnehmen.

• Dienstnutzer hat das Ziel eine Komponente zu finden, die die von ihm benötigte Funk-
tionalität anbietet, sowie die Funktionalität der gefundenen Komponente aufzurufen.

• Dienstanbieter bietet bestimmte Dienste in Form von Komponenten an.

• Dienstverzeichnis ermöglicht das Registrieren und Auffinden von Diensten/Kompo-
nenten.

Das Zusammenspiel von diesen drei Einheiten in der SOA ist auf der Abbildung 2.3 darge-
stellt. Der Dienstanbieter möchte, dass sein Dienst von möglichst vielen Nutzern verwendet

15



2 Grundlagen

Abbildung 2.3: SOA Dreieck. An [STF+
10] angelehnt.

wird. Zu diesem Zweck registriert er seinen Dienst bei einem Dienstverzeichnis. Ein Dienst-
nutzer sucht nach einem Dienst, der bestimmte Kriterien erfüllen soll. Dazu fragt er einen
entsprechenden Dienst bei dem Dienstverzeichnis an. Das Dienstverzeichnis liefert einen Ver-
weis auf den entsprechenden Dienst zurück. Der Dienstnutzer fragt bei dem Dienstanbieter die
Beschreibung des Dienstes an. Die Beschreibung enthält dabei die angebotenen Operationen
sowie die Art wie diese aufgerufen werden können. Mit diesem Wissen ist dem Dienstnutzer
nun möglich den gefundenen Dienst aufzurufen.

Um die Plattformunabhängigkeit und Sprachunabhängigkeit zu ermöglichen ist SOA auf of-
fene Standards angewiesen. Diese Standards sollen die Schnittstellenbeschreibungssprachen
und die Kommunikation zwischen den oben genannten Einheiten definieren [STF+

10].

2.3 Web Services

Web Services sind eine Umsetzung der SOA. W3C1 Definiert Web Service als ”A Web service is
a software system designed to support interoperable machine-to-machine interaction over a network. It
has an interface described in a machine-processable format (specifically WSDL). Other systems interact
with the Web service in a manner prescribed by its description using SOAP messages, typically
conveyed using HTTP with an XML serialization in conjunction with other Web-related standards.“
[WSA04].

Ein Web Service entspricht dem Dienst in der SOA, der eine bestimmte Funktionalität kapselt,
die Schnittstellenbeschreibung erfolgt oft in WSDL [WSD01], das eine XML-basierte Sprache

1http://www.w3.org/

16

http://www.w3.org/


2.3 Web Services

darstellt. Damit ein Web Service von einem Dienstnutzer entdeckt werden kann, wird Web
Service bei einem UDDI-Dienst registriert, der die Funktionalität eines Dienstverzeichnisses
übernimmt. Die Kommunikation zwischen dem Dienstnutzer, der UDDI sowie dem Web
Service erfolgt oft mit Hilfe von SOAP [SOA07]. Auf diese Standards wird in folgenden
Abschnitten eingegangen.

2.3.1 SOAP

SOAP [SOA07] ist eine Spezifikation des Nachrichtenformats, das auf XML basiert und bei
der Kommunikation mit Web Services benutzt wird. Die Nachrichten können dabei mit Hilfe
eines fast beliebigen Protokolls übertragen werden.

Eine SOAP-Nachricht enthält folgende Elemente:

• SOAP Envelope ist das Wurzelelement des XML-Dokuments und dient als ein Brief-
umschlag für die Nachricht. Dieses enthält SOAP Header- und SOAP Body-Elemente.
Listing 2.1 zeigt einen Beispiel einer SOAP-Nachricht.

• SOAP Header ist ein optionales Element und darf nur als erstes Element in SOAP
Envelope vorkommen. In der SOAP-Spezifikation ist nicht definiert was in SOAP Header
vorkommen kann, es ermöglicht lediglich die Anreicherung der SOAP-Nachricht mit
weiteren Informationen. So können im SOAP Header sicherheitsrelevante Informationen
enthalten sein.

• SOAP Body enthält die Nutzdaten und muss in jeder SOAP-Nachricht vorkommen.
Die Nutzdaten müssen dabei im XML-Format vorliegen.

Während der Kommunikation können Fehler entstehen. Damit die an der Kommunikation
beteiligten Partner entsprechend auf die auftretenden Fehler reagieren können, definiert
SOAP ein entsprechendes Nachrichtenformat, das die auftretenden Fehler beschreibt.

Die Nachricht, die einen Fehler beschreibt, darf dabei nur einen SOAP Fault Block innerhalb
von SOAP Body übertragen (Listing 2.2). SOAP Fault Block hat zwei verpflichtende Elemente,
die den aufgetretenen Fehler beschreiben:

• Code Enthält die von SOAP spezifizierte Kodierung der Fehlerquelle.

• Reason Enthält die Textuelle Beschreibung des Fehlers.

2.3.2 Web Services Description Language (WSDL)

WSDL [WSD01] ist eine von W3C standardisierte XML-basierte Sprache, die benutzt wird
um Web Services zu beschreiben. Zur Zeit existieren zwei Versionen von WSDL: WSDL
1.1 [WSD01] und WSDL 2.0 [WSD07]. In dieser Arbeit wird WSDL 1.1 beschrieben und
verwendet.

17



2 Grundlagen

Listing 2.1 Beispiel einer SOAP Nachricht [WCL+
05]

<env:Envelope xmlns:env="http://www.w3.org/2003/05/soap-envelope"

xmlns:wsa="http://schemas.xmlsoap.org/ws/2003/03/addressing"

xmlns:wssec="http://schemas.xmlsoap.org/ws/2002/04/secext"

xmlns:wsrm="http://schemas.xmlsoap.org/ws/2003/03/rm">

<env:Header>

<wsa:ReplyTo>

<wsa:Address>http://business456.com/User12</wsa:Address>

</wsa:ReplyTo>

<wsa:To>http://fabrikam123.com/Traffic</wsa:To>

<wsa:Action>http://fabrikam123.com/Traffic/Status</wsa:Action>

<wssec:Security>

<wssec:BinarySecurityToken ValueType="wssec:X509v3"

EncodingType="wssec:Base64Binary">

dWJzY3JpYmVyLVBic.....eFw0wMTEwMTAwMD

</wssec:BinarySecurityToken>

</wssec:Security>

<wsrm:Sequence>

<wsu:Identifier>http:fabrikam123.com/seq1234</wsu:Identifier>

<wsrm:MessageNumber>10</wsrm:MessageNumber>

</wsrm:Sequence>

</env:Header>

<env:Body>

<app:TrafficStatus xmlns:env="http://highwaymon.org/payloads">

<road>520W</road>

<speed>3MPH</speed>

</app:TrafficStatus>

</env:Body>

</env:Envelope>

WSDL-Beschreibung eines Web Services besteht aus einem abstrakten und einem konkreten
Teil. Der abstrakte Teil beschreibt dabei die Schnittstellen des Web Services und seine
Operationen. Der konkrete Teil beschreibt wie der Web Service aufgerufen werden kann.
Die Beschreibung der Semantik des Web Services ist jedoch kein Bestandteil der WSDL
[STF+

10].

Die Struktur eines WSDL-Dokuments sieht wie folgt aus. Das XML-Wurzelelement ist
description. Dieses Element enthält folgende Elemente:

• documentation enthält die textuelle Beschreibung des Web Services.

• types beschreibt die in den Nachrichten verwendeten Datentypen.

• message beschreibt die bei der Kommunikation verwendeten Nachrichten.

• portType definiert eine Menge von Operationen, die der Web Service anbietet, sowie
referenziert die entsprechenden ein- und ausgehenden Nachrichten.

• binding beschreibt welches Protokoll und Datenformat für den Datenaustausch beim
Aufruf einer im portType beschriebenen Operation verwendet wird.

18



2.3 Web Services

Listing 2.2 Beispiel einer fehlerbeschreibenden SOAP Nachricht [WCL+
05]

<env:Envelope xmlns:env="http://www.w3.org/2003/05/soap-envelope"

xmlns:flt="http://example.org/faults">

<env:Body>

<env:Fault>

<env:Code>

<env:Value>env:Receiver</env:Value>

<env:Subcode>

<env:Value>flt:BadValue</env:Value>

</env:Subcode>

</env:Code>

<env:Reason>

<env:Text>A Fault occurred</env:Text>

</env:Reason>

<env:Detail>

<flt:MyDetails>

<flt:Message>Something went wrong at the

Receiver</flt:Message>

<flt:ErrorCode>1234</flt:ErrorCode>

</flt:MyDetails>

</env:Detail>

</env:Fault>

</env:Body>

</env:Envelope>

• port definiert einen Endpunkt für die Kommunikation mit dem Web Service und
spezifiziert die Adresse des Services.

• service beschreibt die Menge der ports des Web Services.

2.3.3 Web Service Verzeichnisdienste

Falls eine SOA viele Dienste umfassen sollte, wird ein Verzeichnisdienst notwendig. Dieser
erlaubt Dienste im Verzeichnis über standardisierte Schnittstellen zu suchen. In diesem
Kapitel werden Universal Description, Discovery and Integration (UDDI) und Web Services
Inspection Language (WS-Inspection) kurz vorgestellt. UDDI ist für wenige zentrale Web Service
Verzeichnisse und viele Web Service Anbieter konzipiert, WS-Inspection ist für viele kleinere
dezentrale Verzeichnisse und einen oder wenige Web Service Anbieter bestimmt (Abbildung
2.4) [STF+

10].

UDDI

UDDI ermöglicht eine zentralisierte Verwaltung, Registrierung und Auffinden von Web
Services im Web. Ein Web Service Anbieter kann seinen Web Service in einem UDDI-
Verzeichnis registrieren lasen, dazu lädt der Web Service Anbieter die WSDL-Beschreibung
seines Web Services auf den UDDI-Verzeichnis hoch. Ein Benutzer kann im UDDI-Verzeichnis
nach den passenden Web Services suchen und deren WSDL-Beschreibungen abfragen. Die

19



2 Grundlagen

Abbildung 2.4: Web Service Verzeichnisdienste

Funktionalität eines UDDI-Verzeichnisses wird dabei als Web Service bereitgestellt und erlaubt
das Auffinden von Web Services für Menschen und Anwendungen.

Intern enthält ein UDDI-Verzeichnis vier Haupttabellen in der UDDI-Datenbank.

• White Pages erlauben den Unternehmen, die Web Services anbieten, Informationen
über sich selbst zu veröffentlichen. Anhand dieser Informationen kann der poten-
tielle Web Service Benutzer eine Entscheidung treffen, ob er Web Services dieses
Unternehmens nutzen möchte.

• Yellow Pages ermöglichen die Suche nach Web Services, falls der Name des Web
Service Anbieters nicht bekannt ist, jedoch die Kategorie zu der der gesuchte Web
Service Anbieter gehört.

• Green Pages ermöglichen die Suche nach dem Web Service falls weder der Name des
Web Service Anbieters noch die Kategorie, zu der er gehört, dem Benutzer bekannt ist.
Mit Green Pages kann der Benutzer die Web Services manuell durchsuchen.

• Service Type Registration speichert die Informationen über die verfügbaren Web
Services in der maschinenlesbaren Form. Es ermöglicht die Suche nach den Web
Services für die Anwendungen.

20



2.4 WS-BPEL

Der UDDI-Ansatz bringt jedoch einige Probleme mit sich. Da es potentiell jeder im UDDI-
Verzeichnis seine Web Services registrieren lassen kann, ist es oft unbekannt wie die Qualität
des registrierten Web Services ist, wie die Bezahlung für die Benutzung des Web Services
erfolgt und wer die Verantwortung für den Web Service trägt [STF+

10].

WS-Inspection

WS-Inspection-Ansatz versucht die bei der UDDI aufgeführten Probleme zu beseitigen. WS-
Inspection ist dokumentenbasiert. Die von einem Anbieter angebotenen Web Services werden
auf der entsprechenden Web-Seite des Anbieters unter einem definiertem Dateinamen
gespeichert. Der Benutzer kann auf der Web-Seite des Anbieters mit Hilfe eines Web-
Browsers nach den gewünschten Web Services suchen. Als Ergebnis der Suche wird eine
Liste der passenden Web Services sowie deren WSDL-Beschreibungen geliefert.

Ein WS-Inspection Dokument besteht aus beliebig vielen Service- und Link-Elementen. Ein
Service-Element enthält die Beschreibung des Web Services, sowie die Beschreibung, wo
dieser zu finden ist. Ein Link-Element enthält einen Verweis auf eine externe Datenquelle.
Mit Hilfe von Link-Elementen können Hierarchien von den WS-Inspection Dokumenten
aufgebaut werden, was für die Kategorisierung der Web Services und deren Verwaltung von
nutzen ist [STF+

10].

2.4 WS-BPEL

Web Services Business Process Execution Language (WS-BPEL) [BPE07] ist eine XML-basierte
Workflow-Sprache, die unter Mitarbeit von IBM und Microsoft entwickelt wurde. WS-BPEL
ermöglicht die Modellierung von Prozessen, deren Teilfunktionalitäten als Web Services
implementiert sind. In dieser Arbeit wird WS-BPEL 2.0 beschrieben und verwendet.

Ein grundlegender Bestandteil von BPEL sind die Aktivitäten. Diese kann man in Basic
Activities und Structured Activites unterteilen. Die Basic Activities beschreiben elementare
Schritte eines Prozesses. Die Structured Activities können weitere Aktivitäten enthalten und
den Kontrollfluss zwischen den enthaltenen Aktivitäten definieren.

Zu den Basic Activities gehören:

• <receive>

• <reply>

• <invoke>

• <assign>

• <validate>

• <throw>

21



2 Grundlagen

• <rethrow>

• <empty>

• <wait>

• <exit>

• <compensate>

• <compensateScope>

• <extensionActivity>

Zu den Structured Activities gehören

• <sequence>

• <flow>

• <if>

• <while>

• <repeatUntil>

• <forEach>

• <pick>

• <scope>

BPEL ist aus den Sprachen Web Service Flow Language (WSFL) von IBM und XLANG von
Microsoft entstanden. Prozesse in WSFL werden als Graphen modelliert. Die Aktivitäten
stellen dabei die Knoten dar und werden mit Links verbunden. Prozesse in XLANG werden
als eine Folge von sequenziellen und parallelen Blöcken modelliert [WCL+

05]. BPEL vereinigt
diese beiden Ansätze und enthält die <flow> Aktivität um ein Prozess oder einen Teil
davon als einen Graph zu modellieren und die <sequence> Aktivität, die eine sequentielle
Ausführung von Aktivitäten erlaubt.

BPEL erlaubt keine Zyklen, die mit Hilfe von <flow> modelliert werden könnten. Um die
wiederholte Ausführung von Aktivitäten zu unterstützen, enthält BPEL die <while>, <repeat-
Until> und <forEach> Aktivitäten. <while> Aktivität erlaubt die wiederholte Ausführung
einer Aktivität, solange die in <while> definierte Bedingung wahr ist. <repeatUntil> dagegen
führt eine Aktivität solange wiederholt aus, bis die in <repeatUntil> definierte Bedingung
wahr wird. Mit Hilfe der <forEach> Aktivität wird die enthaltene <scope> Aktivität eine
bestimmte Anzahl von Iterationen wiederholt ausgeführt. Dafür wird ein Zähler benutzt. Der
Startwert und Endwert des Zählers wird in der <forEach> Aktivität definiert. Es gibt dabei ei-
ne Möglichkeit die Iterationen parallel auszuführen, dies wird mit Hilfe des parallel="yes|no"
Attributes definiert.

Die <if> Aktivität erlaubt die Ausführung von einer Aktivität aus einer definierten Menge
von den Aktivitäten. Die Auswahl wird anhand von Bedingungen getroffen, die für die
einzelnen Aktivitäten aus der oben genannten Menge definiert werden.

22



2.4 WS-BPEL

Die Aktivitäten <recevie>, <reply>, <invoke> und <pick> sind für die Kommunikation
zuständig. <receive> und <reply> Aktivitäten kommen oft als ein Paar vor, um einen
Synchronen Prozessaufruf zu implementieren. Außerdem kann mit dem Empfang einer
Nachricht durch die <receive> Aktivität eine Prozessinstanz erstellt werden, dafür wird diese
Aktivität mit dem Attribut createInstance="yes" versehen. Falls eine <receive> Aktivität keine
Prozessinstanz erstellt (createInstance="no"), dann blockiert diese Aktivität den Kontrollfluss
bis diese Aktivität eine Nachricht erhält. Die <invoke> Aktivität dient dem Aufruf eines
Web Services. Dabei kann der Web Service sowohl synchron als auch asynchron aufgerufen
werden.

Die <pick> Aktivität ist für das Reagieren auf Ereignisse vorgesehen und wartet auf eine
Nachricht aus einer Menge möglichen Nachrichten. Diese Aktivität wird abgeschlossen falls
eine Nachricht eingeht und eine mit dieser Nachricht assoziierte Aktivität abgeschlossen
wird, oder bis eine gewisse Zeit vergeht (ein in der <pick> Aktivität definiertes Timeout).
Genau so wie die <receive> Aktivität kann auch die <pick> Aktivität mit dem Attribut
createInstance="yes" versehen werden, damit bei einer eingehenden Nachricht eine neue
Prozessinstanz erstellt wird.

Die im Prozess verwendeten Daten werden in Variablen gespeichert. Mit Hilfe der <assign>
Aktivität lassen sich die Variablen initialisieren und Werte von Variablen sowie den Partner
Links kopieren. Um einen Variablenwert auf die Übereinstimmung mit der dazugehörigen
XSD- bzw. WSDL-Typdefinition zu prüfen kann die <validate> Aktivität benutzt werden.

Die <throw> Aktivität löst eine Fehlerbehandlung aus, dabei muss der aufgetretene Fehler
in dieser Aktivität angegeben werden, damit die Fehlerbehandlung des angegebenen Fehlers
aufgerufen werden kann. Falls ein abgefangener Fehler weiter geworfen werden soll, wird
die Aktivität <rethrow> benutzt.

Die <compensate> Aktivität wird benutzt, um die Kompensation aller im aktuellen <scope>
enthaltenen und abgeschlossen <scope> Aktivitäten zu starten. Mit Hilfe von <compensateS-
cope> Aktivität wird <compensationHandler> einer bestimmten abgeschlossenen <scope>
Aktivität innerhalb der aktuellen <scope> Aktivität ausgeführt. Die Aktivitäten <compensa-
te> und <compensateScope> dürfen nur innerhalb von Fault Handlern verwendet werden.

Mit Hilfe der <wait> Aktivität lässt sich der Kontrollfluss für eine bestimmte Zeit oder
bis zu einem definierten Zeitpunkt anhalten. Die Information über die Zeitdauer bzw. den
Zeitpunkt wird in den Kindelementen <for> bzw. <until> dieser Aktivität angegeben.

Die <empty> Aktivität besitzt keine Logik die ausgeführt werden soll und entspricht ei-
ner leeren Anweisung. Diese Aktivität kann in der <flow> Aktivität zur Synchronisierung
verwendet werden oder z.B. bei einer Fehlerbehandlung, falls der aufgetretene Fehler abge-
fangen und ignoriert werden soll.

Die <exit> Aktivität wird benutzt um eine Prozessinstanz sofort zu beenden ohne termina-
tionHandler, faultHandler und compensationHandler auszuführen.

23



2 Grundlagen

Die <scope> Aktivität erlaubt für eine Aktivität (die Aktivität kann auch eine Structured
Activity sein) Kontext zu definieren. Zu dem Kontext gehören Variablen, PartnerLinks, Mes-
sageExchanges, CorrelationSets, EventHandlers, FaultHandlers, CompensationHandler und ein
TerminationHandler.

Mit Hilfe von <faultHandlers> Elements werden die im Prozess auftretenden Fehler abge-
fangen. Dabei kann für jeden Fehlertyp eine eigene Fehlerbehandlung definiert werden. Die
Fehlerbehandlung ist darauf ausgerichtet, die teilweise ausgeführte Arbeit innerhalb von
<scope> Aktivitäten rückgängig zu machen [BPE07]. compensationHandler Elemente werden
benutzt um die Schritte zu definieren, welche die in der ausgeführten <scope> Aktivität
erledigte Arbeit kompensieren.

terminationHandler erlauben innerhalb von <scope> Aktivitäten einen definierten Zustand zu
erreichen falls eine Prozessinstanz terminiert wird.

Mit Hilfe von <eventHandlers> Elements können zu einer <scope> Aktivität Ereignisse
definiert werden, die parallel zu der <scope> Ausführung verarbeitet werden. Die Ereignisse
können dabei die eingehenden Nachrichten und Timeout-Ereignisse sein.

Das Element <messageExchange> wird Benutzt um die Relation zwischen Aktivitäten die
eine Nachricht empfangen und <reply> Aktivitäten zu verdeutlichen. Es ist notwendig im
Falle, wenn mehrere Paare von nachrichtempfangenden Aktivitäten mit <reply> Aktivitäten
auftreten können, z.B. wenn mehrere Paare von <receive> <reply> Aktivitäten auf dem
selben Partner Link definiert sind, dieselbe Operation verwenden und parallel ausgeführt
werden.

Damit die in einem Prozessmodell eingehenden Nachrichten zu den dazugehörigen Pro-
zessinstanzen von einem WFMS geleitet werden können, wurde in BPEL <correlationSet>
Konstrukt eingeführt. Die Auswahl der zu der Nachricht gehörenden Prozessinstanz wird
aufgrund des Inhalts der Nachricht getroffen. Dafür werden in den Nachrichten bestimmte
Felder vorgesehen. Diese Felder enthalten Informationen, die die eindeutige Bestimmung
der Prozessinstanz ermöglichen. Als Beispiel für ein solches Feld in der Nachricht kann eine
Bestellnummer bei der Interaktion mit einem Online-Shop sein. Diese wird beim Kauf eines
Produkts erstellt und kann für das Abbestellen des gekauften Produkts verwendet werden.
Solche Felder werden in BPEL abstrakt als <property> Elemente deklariert. Damit so ein
Feld innerhalb einer eingehenden Nachricht gefunden werden kann, wird ein dazugehöriger
<propertyAlias> definiert. Dieses Element definiert, wie das gesuchte Feld in der Nachricht
gefunden wird, beispielsweise mit Hilfe eines definierten XPATH Ausdrucks (Abbildung
2.5).

Bei manchen Nachrichten werden mehrere Felder benutzt, um die dazugehörige Prozessin-
stanz eindeutig bestimmen zu können, zu diesem Zweck werden <correlationSet> Elemente
definiert. Diese enthalten eine Liste der Namen von den beteiligten <property> Elementen
und werden mit Hilfe des Names von dem <correlationSet> referenziert. Die <correlationSet>
Elemente werden im <correlationSets> Element einer <scope> Aktivität oder des <process>
Elements definiert. Im Prozess werden die definierten <correlationSet> Elemente innerhalb
von <receive>, <reply>, <invoke> Aktivitäten sowie dem <onMessage> Element der <pick>
Aktivität referenziert.

24



2.5 Java Persistence API (JPA)

Abbildung 2.5: Zusammenhang zwischen <correlationSet>, <property>, <propertyAlias>
und der Nachricht.

Weitere für diese Diplomarbeit wichtige BPEL-Konstrukte sind <partnerLink> und <part-
nerLinkType>. Mit Hilfe von <partnerLinkType> werden die Beziehungen zwischen den
Kommunikationspartnern definiert. Ein <partnerLinkType> definiert Rollen, die ein Kommu-
nikationspartner während der Kommunikation einnehmen kann, sowie die dazugehörigen
Porttypen. Da jedoch ein Prozess mit mehreren Partnern kommunizieren kann, die die
gleichen Web Services anbieten, spielen diese auch die selben Rollen. Um diese Partner
zu unterscheiden wird <partnerLink> verwendet. <partnerLink> Element wird durch das
Attribut name identifiziert und wird durch einen <partnerLinkType> charakterisiert. Des wei-
teren wird im <partnerLink> angegeben, welche Rolle bei der Kommunikation der Prozess
und welche Rolle der Partner annimmt. Um die Verbindung mit dem Partner aufbauen zu
können, wird für den jeweiligen <partnerLink> eine endpoint reference (EPR) benötigt. Diese
kann währen des Deployments statisch zugewiesen werden, oder zur Laufzeit mit Hilfe der
<assign> Aktivität. Im Gegensatz zu den anderen hier vorgestellten BPEL Elementen werden
die Elemente <partnerLinkType>, <property> und <propertyAlias> in den WSDL Dateien
definiert und nicht in der BPEL-Prozessbeschreibung.

BPEL unterstützt Erweiterungen, so können neue in BPEL nicht vorgesehene Aktivitäten mit
Hilfe des <extensionActivity> Elements verwendet werden. <extensionActivity> Element
wird als ein Umschlag (Wrapper) für die neue Aktivität benutzt [BPE07].

2.5 Java Persistence API (JPA)

Java Persistence API [KS09] ist ein Framework, das hilft Daten aus Java Objekten in relatio-
nale Datenbanken zu speichern. Dabei werden die Klassen, die zu persistierenden Daten
modellieren, mit Annotationen versehen. Die Annotationen beschreiben die Abbildung von
den Daten auf Datenbanktabellen.

Die Klassen werden auf Entitäten abgebildet und mit der Annotation @Entity markiert.
Mit Hilfe der @Id Annotation wird ein Attribut der Klasse markiert, der die Rolle des
Hauptschlüssels in der Tabelle übernehmen soll. Um die Objekte von annotierten Klassen zu
persistieren wird ein Entity Manager benutzt.

25



2 Grundlagen

Abbildung 2.6: Beziehungen zwischen den JPA Konzepten [KS09]

Listing 2.3 EntityManagerFactory instantiierung
EntityManagerFactory emf = Persistence.createEntityManagerFactory("persistance unit

name");

EntityManager em = emf.createEntityManager();

2.5.1 Entity Manager

Die Klasse EntityManager verwaltet die bekannten Entitäten und enthält Methoden um die
Entitäten zu speichern, zu finden, zu aktualisieren und zu löschen. Eine Entität wird dem
EntityManager bekannt, indem die Entität dem EntityManager als Parameter einer Operation
übergeben wird, oder wenn EntityManager die Entität aus der Datenbank liest. Die Menge
der dem EntityManager bekannten Entitäten wird als persistence context bezeichnet. Die Klasse
EntityManager wird von EntityManagerFactory erzeugt (Abbildung 2.6). EntityManager Klasse
braucht Informationen über die zu verwendete Datenbank und die datenmodellierende
Klassen, um Daten persisitieren zu können. Diese Daten werden in der Konfigurationsdatei
persistence.xml als eine persistence unit angegeben und werden durch die EntityManagerFactory
Klasse in der EntityManager Instanz gesetzt.

Eine Instanz von EntityManagerFactory wird mit einer statischen Methode createEntityMa-
nagerFactory der Klasse Persistence erstellt, dabei wird als Parameter der Name der zu
verwendenden persistance unit angegeben (Listing 2.3). Die EntityManager Instanz wird mit
Hilfe der createEntityManager() Methode der EntityManagerFactory Klasse erzeugt.

Speichern einer Entität wird durch den Aufruf von persist() Methode von EntityManager
initiiert. Bis diese Methode ausgeführt ist, ist die zu speichernde Entität nichts anderes

26



2.6 XSLT

als ein Java Objekt. Falls ein Problem bei der Speicherung der Entität auftritt, wird eine
PersistenceException geworfen.

Um eine Entität in der Datenbank zu finden, wird die Methode find() verwendet. Als
Parameter werden dabei die Klasse der Entität sowie der Hauptschlüssel angegeben. Falls
keine Entität gefunden wird, wird null zurückgegeben.

Mit Hilfe der Methode remove() wird eine Entität aus der Datenbank gelöscht. Diese Entität
muss sich jedoch innerhalb von persistence context des EntityManagers befinden. Um das
sicherzustellen, kann vor dem Löschen nach der entsprechenden Entität mit Hilfe der find()
Methode in der Datenbank gesucht werden.

Um die Daten einer Entität, die sich im persistence context des EntityManagers befindet, zu
verändern, können die Methoden der Entität gehöriger Klasse verwendet werden, z.B. die
setter Methoden. Ungleich den bis jetzt beschriebenen Methoden wird für die Aktualisierung
der Daten einer Entität keine Methode von EntityManger verwendet. Das erfordert jedoch,
dass die Entität sich bereits im persistence context des EntityManagers befindet. Alle datenver-
ändernde Operationen von EntityManger müssen innerhalb von einem Transaktionskontext
aufgerufen werden, ansonsten wird entweder ein Fehler geworfen, oder die Änderungen wer-
den nicht persistiert. Lediglich die find() Methode darf außerhalb eines Transaktionskontexts
aufgerufen werden, da diese keine Daten verändert.

JPA erlaubt außerdem die Ausführung von Queries, diese werden jedoch nicht in SQL,
sondern in Java Persistence Query Language (JPQL) definiert.

Die Queries in JPA können sowohl statisch, als auch dynamisch definiert werden. Statische
Queries können durch Annotationen definiert werden. Diese Queries werden über deren
Namen identifiziert. Die dynamisch definierten Queries werden zur Laufzeit definiert, kosten
dafür aber mehr Rechenzeit.

2.5.2 Zusammengesetzte Hauptschlüssel

JPA unterstützt zusammengesetzte Hauptschlüssel. Dafür wird für den zusammengesetzten
Hauptschlüssel eine separate Klasse erstellt, die mit der Annotation @Embeddable annotiert
wird. Diese Annotation führt dazu, dass die Attribute dieser Klasse ein Teil einer Entität
werden, die diese Klasse referenziert. Die Klasse, die eine Entität repräsentiert und diesen
zusammengesetzten Hauptschlüssel verwendet, muss einen Attribut der oben genannten
Klasse enthalten. Dieses Attribut wird mit Hilfe von der Annotation @EmbeddedId anno-
tiert um zu kennzeichnen, dass dieses Attribut die Rolle des Hauptschlüssels übernimmt
[KS09].

2.6 XSLT

Extensible Stylesheet Language for Transformations (XSLT) [XSL] [Tid08] ist eine flexible Sprache,
die die Beschreibung von Transformationen der XML-Dokumenten in etwas Anderes wie

27



2 Grundlagen

HTML, PDF, JPEG, oder wiederum in ein XML-Dokument erlauben. Zu diesem Zweck
wird ein XSLT style sheet definiert, der die Regeln der XML-Transformation beschreibt. Ein
XSLT-Prozessor übernimmt dann die Transformation des gewünschten XML-Dokuments nach
den in dem XSLT style sheet definierten Regeln.

2.6.1 XSLT style sheet Struktur

Die XSLT style sheets sind XML-Dokumente, die die Regeln der Transformation beschreiben.
Ein Style sheet besteht aus folgenden Elementen:

• <xsl:stylesheet> ist das Wurzelelement von XSLT style sheets, dieses definiert die
Version der verwendeten XSLT, sowie den Namensraum xsl.

• <xsl:output> Element definiert den Typ des erzeugten Dokuments. Es sind folgende
vier Werte erlaubt: xml, html, xhtml und text.

• <xsl:template> Element definiert eine Regel für die XML-Transformation. Mit Hilfe
des match Attributes wird ein Suchmuster mit Hilfe von XPath [XPAb] [XPAa] definiert.
Das Suchmuster beschreibt XML-Elemente, bei denen die Regel angewendet werden
soll. Die Ausgabe des XML-Elements, die durch das Anwenden dieser Regel erzeugt
wird, wird innerhalb des <xsl:template> Elements beschrieben.

Des Weiteren können folgende Elemente als Kinder des Elements <xsl:stylesheet> vorkom-
men:

• <xsl:include> und <xsl:import> Elemente werden benutzt um andere Stylesheets zu
referenzieren.

• <xsl:strip-space> and <xsl:preserve-space> Elemente enthalten Listen von Elementen,
bei deren Transformationen Leerräume (white spaces) entfernt bzw. beibehalten werden
sollen.

• <xsl:key> Elemente definieren Schlüssel anhand deren bestimmte XML-Dokumentteile
gefunden werden können. Die Schlüssel ähneln den Datenbankindizes.

• <xsl:variable> Element definiert eine Variable. Falls dieses Element als Kindelement
des <xsl:stylesheet> Elements vorkommt, ist die definierte Variable global. Die Varia-
blen dürfen in XSLT nur ein mal mit den Werten belegt werden.

• <xsl:param> Element definiert einen Parameter, der bei der Transformation berück-
sichtigt werden soll. Falls Parameter als Kindelemente des <xsl:stylesheet> Elements
vorkommen, sind diese global. Auf die Werte der Parameter kann wie auf Variablen
zugegriffen werden.

28



2.6 XSLT

2.6.2 Verwendete XSLT Elemente

Die Ausgabe der Transformationsregeln in XSLT erfolgt mit Hilfe von XSLT definierten
XML-Elementen. Da XSLT zahlreiche Elemente definiert, werden hier nur die in dieser Arbeit
verwendeten Elemente vorgestellt.

• <xsl:element> Erzeugt in der Ausgabe ein XML-Element mit dem im Attribut name
definierten Namen.

• <xsl:copy-of> Element kopiert in die Ausgabe durch das Attribut select definierte
Elemente inklusive ihrer Kindelemente.

• <xsl:value-of> Element kopiert die Werte der durch das Attribut select definierten
Elemente in die Ausgabe.

• <xsl:text> Element enthält den Text, der in die Ausgabe geschrieben werden soll.

• <xsl:if> Element hat die Semantik einer if -Anweisung. Dieses Element enthält das
Attribut test, das die Bedingung für die Anwendung der in diesem Element enthaltenen
Anweisungen definiert. Die Bedingung in dem Attribut test muss dabei eine boolesche
Funktion darstellen und kann mit Hilfe von XPath erfolgen.

• <xsl:apply-templates> Element gibt die Anweisung alle Kindknoten des aktuellen
Knotens zu verarbeiten. Durch das Attribut select lassen sich Kindknoten auswählen,
die verarbeitet werden sollen.

Um die Elemente eines XML-Dokumentes auszuwählen wird in den Attributen match und
select der XSLT-Elementen XPath verwendet.

2.6.3 Beispiel einer XSLT Transformation

In diesem Kapitel wird ein Beispiel der XSLT Transformation behandelt um die vorgestellten
Sachverhalte zu verdeutlichen. In diesem Beispiel wird eine Log-Datei (Listing 2.4) eines
Zeiterfassungswerkzeugs zu einem Bericht transformiert. Der verwendete XSLT style sheet
(Listing 2.5) enthält zwei Regeln. Die erste Regel (<xsl:template>) wird auf die XML-Elemente
<log> angewendet und erstellt für jedes Element ein <report> Element. Des weiteren wird in
dieser Regel definiert, dass die Kindelemente mit der zweiten Regel transformiert werden
und die Resultate der Transformation der Kindelemente als Kinder des <report> Elements
hinzugefügt werden.

Die Zweite Regel erstellt für jedes <worker> Element ein <info> Element. In dieses Element
wird Text eingefügt, der den Namen des Arbeiters sowie die geleisteten Arbeitsstunden
enthält. Des weiteren wird in diesem Element vermerkt, wenn ein Arbeiter Überstunden
geleistet hat. Die Ausgabe der Transformation ist in dem Listing 2.6 dargestellt.

29



2 Grundlagen

Listing 2.4 Beispiel XML-Dokument
<?xml version="1.0" encoding="UTF-8"?>

<log>

<worker>

<name>Worker1</name>

<worked-hours>7</worked-hours>

</worker>

<worker>

<name>Worker2</name>

<worked-hours>5</worked-hours>

</worker>

<worker>

<name>Worker3</name>

<worked-hours>10</worked-hours>

</worker>

<worker>

<name>Worker4</name>

<worked-hours>9</worked-hours>

</worker>

</log>

Listing 2.5 Beispiel eines XSLT Style sheets
<xsl:stylesheet version='1.0'

xmlns:xsl='http://www.w3.org/1999/XSL/Transform'

xmlns:xs="http://www.w3.org/2001/XMLSchema">

<xsl:output method="xml" />

<xsl:template match="log">

<xsl:element name="report">

<xsl:apply-templates select="worker" />

</xsl:element>

</xsl:template>

<xsl:template match="worker">

<xsl:element name="info">

<xsl:value-of select="./name" />

<xsl:text> worked: </xsl:text>

<xsl:value-of select="./worked-hours" />

<xsl:text> hours today. </xsl:text>

<xsl:if test="./worked-hours &gt; 8">

<xsl:value-of select="./worked-hours - 8" />

<xsl:text> hour(s) overtime.</xsl:text>

</xsl:if>

</xsl:element>

</xsl:template>

</xsl:stylesheet>

30



2.6 XSLT

Listing 2.6 Ausgabe der Transformation
<report>

<info>Worker1 worked: 7 hours today. </info>

<info>Worker2 worked: 5 hours today. </info>

<info>Worker3 worked: 10 hours today. 2 hour(s) overtime.</info>

<info>Worker4 worked: 9 hours today. 1 hour(s) overtime.</info>

</report>

31





3 Konzept

3.1 Prozessfragmente

In dieser Arbeit wird der Begriff eines Prozessfragments verwendet. Unter einem Prozess-
fragment wird ein unvollständiger Prozess, d.h. ein Teil des Prozesses verstanden. In einem
Prozessfragment im Gegensatz zu einem vollständigen Prozess dürfen Teile des Prozesses
undefiniert bleiben. Prozessfragmente sollen dabei als wiederverwendbare Einheiten, die eine
bestimmte Funktionalität realisieren, modelliert und verwendet werden. Damit ein Prozess
ausgeführt werden kann, soll dieser aus den Prozessfragmenten zusammengesetzt werden.
Dabei kann man zwischen Buildtime Komposition und Runtime Komposition unterscheiden.
Diese Unterscheidung basiert auf den jeweiligen Workflow-Lebenszyklen [Tel10].

3.1.1 Buildtime Komposition

Bei der Buildtime Komposition werden zuerst die einzelnen Prozessfragmente modelliert.
Diese können von verschiedenen Personen mit unterschiedlichen Werkzeugen modelliert
werden und so das lokale Wissen über den Prozess, bzw. die wiederverwendbare Prozessteile
definieren. Die modellierten Prozessfragmente werden anschließend in einem einheitlichen
Format in einem Repository gespeichert. Das Verwenden eines Repository soll dabei die
Wiederverwendbarkeit der enthaltenen Prozessfragmente ermöglichen. Wenn alle für den
Prozess benötigten Prozessfragmente in dem Repository vorhanden sind, können diese zu
einem vollständigen Prozess zusammengesetzt werden. Der so erhaltene vollständige Prozess
lässt sich anschließend von einer traditionellen Workflow-Engine ausführen. Dieser Ansatz
ermöglicht die Wiederverwendung von Prozessteilen. Es ist jedoch notwendig, dass alle
Prozessfragmente, sowie das Wissen über den zukünftigen Prozessablauf bereits vor der
Prozessausführung vorhanden sind [Tel10]. Dies ist jedoch, wie in dem Kapitel 1 beschrieben
ist, nicht immer möglich. Dieser Nachteil wird mit Hilfe von Runtime Komposition beseitigt.

3.1.2 Runtime Komposition

Im Gegensatz zur Buildtime Komposition wird bei der Runtime Komposition erlaubt einen
Prozess auszuführen, bevor alle benötigten Prozessfragmente in dem Repository vorhanden
sind. Diese unvollständigen Prozesse werden zur Laufzeit durch weitere Prozessfragmente
vervollständigt. Die Prozessausführung beginnt dabei mit einem Startfragment, das aus dem

33



3 Konzept

Repository ausgewählt und gestartet wird. Wenn bei der Navigation durch ein Prozessfrag-
ment festgestellt wird, dass ein weiterer Prozessfragment benötigt wird, wird ein passendes
Prozessfragment aus dem Repository ausgewählt und an den Prozess angeklebt, so dass
die Navigation fortgesetzt werden kann. Bei diesem Ansatz entsteht der Prozess iterativ zur
Laufzeit. Die Auswahl von den anzuklebenden Prozessfragmenten kann dabei abhängig von
dem Kontext des Prozesses getroffen werden [Tel10]. Die Auswahl der passenden Prozess-
fragmente, sowie das Ankleben kann dabei sowohl manuell, als auch automatisch erfolgen.
Im Rahmen dieser Arbeit wird aufgrund der Aufgabenstellung nur die Runtime Komposition
mit manueller Fragmentenauswahl und Ankleben ausführlich betrachtet. Es wäre möglich
diese Operationen mit Hilfe von Annotationen der Prozessfragmente und durch Definition
von Regeln, nach denen die Komposition ablaufen soll, zu automatisieren.

3.1.3 Prozessfragmentelemente

In [EUL09] werden Elemente von Prozessfragmenten vorgestellt, die dem Modellierer er-
lauben die bekannten Teile des Prozesses zu modellieren, sowie Teile des Prozesses zu
kennzeichnen, die dem Modellierer unbekannt sind. Die bekannten Teile des Prozesses wer-
den wie bei einem vollständigen Prozess modelliert. In [EUL09] werden Prozesse betrachtet,
die auf Graphen basieren, und somit als Prozesselemente Aktivitäten (die Knoten) und die
verbindende Links (die Kanten) verwenden.

Bei der Modellierung von unbekannten Prozessteilen können drei Situationen unterschieden
werden. Falls es unbekannt ist, was nach einer Aktivität folgt, wird dies mit aus dieser Akti-
vität ausgehendem Link modelliert. Der Link wird mit keiner weiteren Aktivität verbunden
(Abbildung 3.1 a)). Falls es unbekannt ist, welche Logik vor einer Aktivität ausgeführt wird,
wird dies mit einem Link, das mit der bekannten Aktivität verbunden ist, modelliert, das
andere Ende des Links wird jedoch mit keiner Aktivität verbunden (Abbildung 3.1 b)). Falls
eine Aktivität A vor der Aktivität B ausgeführt werden soll, und es unbekannt ist, welche
Logik zwischen den Aktivitäten A und B ausgeführt werden soll, so wird dieser Bereich mit
einem neuen Element Region modelliert. Region definiert dabei einen Bereich des Prozesses,
in dem der Prozessablauf unbekannt ist (Abbildung 3.1 c)). Dieser Bereich soll zur Laufzeit
durch entsprechende Logik ersetzt werden.

Da dieses Konzept auf Graphen basiert, muss dieses für BPEL adaptiert werden. In [SAL+
10]

wurden diese Konzepte benutzt um die Compliance von den Prozessen nachzuweisen. Dafür
wurde eine Erweiterung von BPEL vorgestellt, die oben beschriebenen Elemente auf BPEL
abbildet. Die bekannten Teile der Prozesse werden mit standard BPEL Aktivitäten modelliert,
um die Fälle in BPEL modellieren zu können, bei denen ein Link nur mit einer Aktivität
verbunden ist, wurden Elemente frg:fragmentEntry und frg:fragmentExit eingeführt. Das Ele-
ment frg:fragmentEntry wird benutzt um die vor einer Aktivität unbekannte Prozesslogik zu
kennzeichnen. frg:fragmentEntry muss mindestens einen ausgehenden Link und keine einge-
hende Links besitzen (Listing 3.1). Das Gegenstück zu frg:fragmentEntry ist frg:fragmentExit.
frg:fragmentExit wird verwendet um die nach einer Aktivität folgende unbekannte Pro-
zesslogik zu kennzeichnen. Die Aktivität wird dabei über einen Link mit frg:fragmentExit

34



3.1 Prozessfragmente

Abbildung 3.1: Fragmentelemente

Listing 3.1 frg:fragmentEntry [SAL+
10]

<frg:fragmentEntry name="entryName" type="mandatory|optional">

<bpws:sources>

<bpws:source linkName="linkName"/>+

</bpws:sources>

</frg:fragmentEntry>

verbunden. Somit muss frg:fragmentExit Element mindestens einen eingehenden Link und
darf keine ausgehenden Links besitzen (Listing 3.2).

Die frg:fragmentEntry und frg:fragmentExit Elemente werden verwendet um zwei Prozessfrag-
mente mit einander zu verbinden. Die dazugehörigen frg:fragmentEntry und frg:fragmentExit
Elemente werden bei der Komposition durch einen Link ersetzt.

Eine unbekannte Region in dem Prozess wird durch frg:fragmentRegion modelliert. Dieser
darf beliebig viele eingehenden sowie ausgehenden Links besitzen (Linsting 3.3). Dieser
Konstrukt wird vor der Prozessausführung durch entsprechende Prozesslogik ersetzt.

Zusätzlich zu den in [EUL09] beschriebenen Prozesselementen wurden in [SAL+
10]

frg:fragmentScope und frg:fragmentFlow Elemente eingeführt (Listing 3.4). Diese Elemente
wurden von den Standard-BPEL-Aktivitäten <scope> und <flow> abgeleitet und dienen
der Klarheit der Semantik. Des weiteren dürfen frg:fragmentScope und frg:fragmentFlow Ele-
mente die Elemente frg:fragmentEntry, frg:fragmentExit und frg:fragmentRegion enthalten. Bei
der Komposition werden die frg:fragmetScope und frg:fragmentFlow entsprechend durch die
<scope> und <flow> BPEL-Aktivitäten ersetzt.

Listing 3.2 frg:fragmentExit [SAL+
10]

<frg:fragmentExit name="exitName" type="mandatory|optional">

<bpws:targets>

<bpws:target linkName="linkName"/>+

</bpws:targets>

</frg:fragmentExit>

35



3 Konzept

Listing 3.3 frg:fragmentRegion [SAL+
10]

<frg:fragmentRegion name="regionName">

<bpws:targets>

<bpws:target linkName="linkName"/>+

</bpws:targets>

<bpws:sources>

<bpws:source linkName="linkName"/>+

</bpws:sources>

</frg:fragmentRegion>

Listing 3.4 Beispiel zu frg:fragmentScope und frg:fragmentFlow [SAL+
10]

<bpws:extensionActivity>

<frg:fragmentScope name="fragmentScopeName">

<bpws:variables>

<bpws:variable .../>+

</bpws:variables>

<!- Other context -->

<frg:fragmentFlow name="fragmentFlowName">

<bpws:links>

<bpws:link name="linkName" />*

</bpws:links>

<frg:fragmentEntry ...

Das in [SAL+
10] vorgestellte Konzept ist jedoch nur für die Buildtime Komposition vorgese-

hen. Die oben beschriebenen Elemente werden vor der Ausführung durch Standard-BPEL-
Konstrukte ersetzt. Aus diesem Grund werden diese Konstrukte in dieser Arbeit für die
Runtime Komposition adaptiert.

3.2 Eingeführte Aktivitäten

Da die Komposition von Prozessfragmenten zur Laufzeit stattfinden soll, können die in
[SAL+

10] eingeführten Fragmentelemente nicht vor der Ausführung ersetzt werden. Aus
diesem Grund wurden diese Elemente als BPEL erweiternde Aktivitäten übernommen.
Zusätzlich wurde die frg:fragmentSequence Aktivität eingeführt um blockbasierte Prozessfrag-
mentmodellierung zu unterstützen. Somit wurde BPEL um folgende Aktivitäten erweitert:

• frg:fragmentScope

• frg:fragmentRegion

• frg:fragmentFlow

• frg:fragmentSequence

• frg:fragmentEntry

• frg:fragmentExit

36



3.3 Zusammensetzung von Fragmenten

Abbildung 3.2: Legende. Auf der Linken Seite oben sind frg:fragmentEntry und die
frg:fragmentExit Aktivitäten dargestellt. Der Kreis (im Bild links unten) steht
stellvertretend für eine Aktivität, ohne dass diese weiter definiert ist. Im Bild
Rechst ist ein mögliches Prozessfragment dargestellt.

Die in [SAL+
10] vorgestellten frg:fragmentEntry und frg:fragmentExit Elemente besitzen das

Attribut type="mandatory|optional". Dieses Attribut wird in dieser Arbeit nicht verwendet,
da die Komposition zur Laufzeit stattfindet und vom Menschen durchgeführt wird. Die
Funktionalität zum Ignorieren der frg:fragmentEntry und frg:fragmentExit Elemente wird vom
Menschen aufgerufen und durch die im Kapitel 3.9 beschriebene Schnittstelle ermöglicht.

Auf den Abbildungen von Prozessfragmenten werden in dieser Arbeit der Prozess sowie die
Aktivitäten frg:fragmentScope, frg:fragmentRegion, frg:fragmentFlow und frg:fragmentSequence
als Rechtecke mit abgerundeten Ecken und einer entsprechenden Aktivitätsbezeichnung
dargestellt. Durch Kreise werden Aktivitäten dargestellt, die weiter nicht definiert sind und
lediglich als Beispiel einer Prozessstruktur dienen. Die Darstellung dieser Aktivitäten sowie
der frg:fragmentEntry und frg:fragmentExit Aktivitäten ist auf der Abbildung 3.2 zu sehen.

3.3 Zusammensetzung von Fragmenten

Bei der Beschreibung von Zusammensetzungen der Prozessfragmenten wird in dieser Arbeit
der Begriff eines Host-Prozessfragments verwendet. Mit dem Host-Prozessfragment wird in
dieser Arbeit ein Prozessfragment bezeichnet, in das ein anderes Prozessfragment eingeklebt
wird.

Bei der Zusammensetzung von Prozessfragmenten wird der Startfragment iterativ um
weitere Funktionalitäten (Prozessfragmente) erweitert. Aus dieser Überlegung wird die
Funktionalität (die Aktivitäten und deren Kontext) des einzufügenden Prozessfragments in
das Startfragment eingefügt. Das Einfügen von den Aktivitäten und deren Kontext in das
Startfragment bringt die Vorteile, die mit Spezifikation von BPEL-SPE [BPE05] angestrebt
werden, nämlich die Kontrolle über die Ausführung von Subprozessen, in diesem Fall
von Prozessfragmenten. So wird es möglich, die in den eingeklebten Prozessfragmenten

37



3 Konzept

Abbildung 3.3: Kleben von Prozessfragmenten (geringere Schachtelungstiefe). Das letzte
Prozessfragment wurde in die äußerste frg:fragmentFlow Aktivität eingeklebt.

auftretenden und nicht abgefangenen Fehler im Host-Prozessfragment abzufangen, sowie
die Ausführung von den eingeklebten Prozessfragmenten zu terminieren im Fall, dass die
Prozessinstanz terminiert wird. Um die Aktivitäten und den Kontext zu kapseln, wird als
äußerste Aktivität in einem Prozessfragment frg:fragmentScope benutzt, die die Grenzen eines
Prozessfragments definieren soll.

Das Kleben von Prozessfragmenten ist nur an bestimmten Stellen im Prozess erlaubt. Es ist er-
laubt ein Prozessfragment in frg:fragmentFlow als eine neue Aktivität einzukleben, die parallel
zu den anderen ausgeführt wird. In frg:fragmentSequence ist das Einkleben von Prozessfrag-
menten am Ende der Sequenz erlaubt und in frg:fragmentRegion darf ein Prozessfragment
als eine Kindaktivität eingeklebt werden. Falls es mehrere geschachtelten frg:fragmentFlow
frg:fragmentSequence Aktivitäten existieren, dann ist es erlaubt in der Hierarchie nach oben
von den unverbundenen frg:fragmentExit Aktivitäten zu kleben. Dies erlaubt das Erzeugen
von Prozessen mit geringerer Schachtelungstiefe der Aktivitäten (Abbildungen 3.3 und
3.4). In der Abbildung 3.3 wird bei der Komposition die äußerste frg:fragmentFlow Aktivität
ausgewählt um den letzten Prozessfragment einzufügen. In der Abbildung 3.4 wurde die
frg:fragmentFlow Aktivität des oberen Prozessfragments zum Kleben ausgewählt, was zu einer
größeren Schachtelungstiefe führte. Die Zusammensetzung von Prozessfragmenten wird
dabei vom Benutzer geleitet und wird durch die im Kapitel 3.9 beschriebene Schnittstelle
ermöglicht.

Das Kleben von den Prozessfragmenten findet auf der Ebene von Kompilierten Prozessen
statt, d.h. die beim Deployment erzeugte WFMSs interne Prozessrepresentationen werden

38



3.3 Zusammensetzung von Fragmenten

Abbildung 3.4: Kleben von Prozessfragmenten (größere Schachtelungstiefe). Das letzte Pro-
zessfragment wurde in die frg:fragmentFlow Aktivität des oberen Prozess-
fragments eingeklebt.

geklebt. Das verhindert das wiederholte Parsen von den prozessbeschreibenden Dateien.
Das Kleben von Prozessfragmenten auf der Ebene von den prozessbeschreibenden Dateien
würde weitere Erweiterung von BPEL benötigen, um die Zustände der eingeführten Aktivi-
täten, sowie Mapping von den Variablen, Partner Links und Correlation Sets beim Kleben
festzuhalten.

3.3.1 Komposition mit frg:fragmentFlow

Nachdem ein neues Prozessfragment in eine frg:fragmentFlow Aktivität eingeklebt wurde,
wird frg:fragmentScope des eingeklebten Prozessfragments sofort als parallele Aktivität (und
damit die im Prozessfragment enthaltenen frg:FragmentEntry Aktivitäten) ausgeführt. Die in
dem eingeklebten Prozessfragment enthaltenen frg:fragmentEntry Aktivitäten blockieren den
Kontrollfluss, bis diese jeweils mit einer frg:fragmentExit Aktivität verbunden werden.

Dies ist notwendig, da die frg:fragmentEntry Aktivität beim Mapping von Variablen, Partner
Links und Correlation Sets verwendet wird (Kapitel 3.4). Dabei werden die Werte von
Variablen, Partner Links und Correlation Sets aus dem Host-Prozessfragment ausgelesen
und an den eingeklebten Prozessfragment übergeben. Zu diesem Zweck müssen die von
der frg:fragmentExit Aktivität aus sichtbaren Variablen, Partner Links und Correlation Sets
ausgelesen werden können. Dies ist nur möglich, falls die entsprechende <scope> bzw.

39



3 Konzept

frg:fragmentScope Aktivität aktiv ist. Um das sicherzustellen, blockiert die frg:fragmentExit
Aktivität den Kontrollfluss, bis diese mit einer frg:fragmentEntry Aktivität verbunden wird.
Das Blockieren des Kontrollflusses bei den frg:fragmentEntry und frg:fragmentExit Aktivitäten
erfolgt durch das Warten auf eine Nachricht, die beim Verbinden der frg:fragmentExit Aktivität
mit einer frg:fragmentEntry Aktivität an die beteiligten Aktivitäten geschickt wird.

Beim Verbinden von einer frg:fragmentExit Aktivität mit einer frg:fragmentEntry Aktivität
wird ein Link zwischen den beiden hinzugefügt. Dies ist notwendig für den Fall, wenn die
frg:fragmentFlow Aktivität sich innerhalb einer Schleife befindet, um die richtige Reihenfolge
der Ausführung, nämlich die frg:fragmentExit Aktivität vor der frg:fragmentEntry Aktivität
sicherzustellen. Die frg:fragmentExit Aktivität muss vor der frg:fragmentEntry Aktivität aus-
geführt werden, da innerhalb von Schleifen bei der zweiten und weiteren Iterationen die
frg:fragmentExit Aktivität den automatischen Mapping anstoßt.

3.3.2 Komposition mit frg:fragmentSeqeuence

Bei der Komposition mit frg:fragmentSequence gibt es mehrere Stellen innerhalb der Sequenz
an denen ein neues Prozessfragment eingeklebt werden könnte, nämlich am Anfang, in der
Mitte, und am Ende der Sequenz. Falls das Einkleben des Prozessfragments am Anfang oder
in der Mitte der Sequenz benötigt wird, entspricht dies der Semantik der frg:fragmentRegion
Aktivität, die an diesen Stellen in der Sequenz vorhanden sein muss. Das Einkleben eines
Prozessfragments am Ende der Sequenz kann auch ohne einer frg:fragmentRegion Aktivität
erfolgen. Falls es unbekannt ist, welche Prozesslogik nach der Ausführung der Sequenz
ausgeführt werden soll, wird es mit der frg:fragmentExit Aktivität am Ende der Sequenz
modelliert (Abbildung 3.5). Somit muss es möglich sein ein Prozessfragment als letzte
Aktivität der Sequenz einzukleben (Abbildung 3.6). Das eingeklebte Prozessfragment wird
dann nach dem Verbinden der frg:fragmentExit mit der entsprechenden frg:fragmentEntry
Aktivität ausgeführt.

3.3.3 Komposition mit frg:fragmentRegion

Die frg:fragmentRegion Aktivität kapselt einen unbekannten Teil des Prozesses. Der unbekann-
te Teil des Prozesses wird durch ein Prozessfragment beschrieben und zur Laufzeit in diese
Aktivität als eine Kindaktivität eingefügt. Da es bei der Modellierung des einzufügenden
Prozessfragments unbekannt ist, an welchen Stellen in einem Prozess es eingefügt wird, und
somit unbekannt ist was vor und nach dem Prozessfragment ausgeführt wird, wird jedes
Prozessfragment, abgesehen von den Startfragmenten, mit mindestens einer frg:fragmentEntry
Aktivität und optional mit einer oder mehreren frg:fragmentExit Aktivitäten modelliert. Aus
dieser Überlegung und der notwendigen Möglichkeit des Datenaustauschs zwischen dem
Host- und dem eingeklebten Prozessfragment wird erlaubt frg:fragmentRegion Aktivität mit
frg:fragmentEntry und frg:fragmentExit Aktivitäten zu verbinden. Die frg:fragmentEntry und
frg:fragmentExit Aktivitäten müssen dabei dem in die frg:fragmentRegion Aktivität eingekleb-
ten Prozessfragment gehören.

40



3.4 Mapping

Abbildung 3.5: Die frg:fragmentEntry darf in einer frg:fragmentSequence Aktivität nur am
Anfang der Sequenz vorkommen. frg:fragmentExit Aktivität darf nur am Ende
der Sequenz vorkommen. frg:fragmentRegion Aktivität darf an beliebiger
Stelle in der Sequenz auftreten.

3.4 Mapping

Um den Datenaustausch zwischen den Prozessfragmenten zu ermöglichen wird das Konzept
des Mappings von Variablen, Partner Links und Correlation Sets eingeführt. Der Datenaus-
tausch ähnelt dabei einem Call-by-Value Aufruf einer Methode, d.h. die Werte von bestimm-
ten Variablen, Partner Links, bzw. Correlation Sets werden aus dem Host-Prozessfragment
kopiert, und als Werte der dazugehörigen Elementen des eingefügten Prozessfragments
gesetzt. Das Kopieren ermöglicht die Modellierung von Prozessfragmenten ohne das Wis-
sen, in welchem Prozessfragment das modellierte Prozessfragment benutzt wird und ohne
Konventionen für die Namensgebung der Variablen, Partner Links und Correlation Sets
benutzen zu müssen.

Eine andere Möglichkeit Mapping zu realisieren wäre das Löschen von den Definitionen
der zu mappenden Elemente im eingefügten Prozessfragment, so dass die Elemente des
Host-Prozessfragments referenziert werden, wie es auf der Abbildung 3.7 dargestellt ist.
Dies würde nicht in allen Fällen funktionieren, da es zu den Namenskollisionen kommen
kann, und die Umbenennung von gleichnamigen Variablen den Benutzer verwirren wür-
de. Außerdem kann es Fälle geben, in denen die von dem eingeklebten Prozessfragment
benötigten Elemente in diesem nicht sichtbar sind (Abbildung 3.8). Ein weiterer Vorteil des
Kopierens ist die Kontrolle über die Veränderungen von den Werten der Variablen, Partner
Links und Correlation Sets, die von mehreren Prozessfragmenten benutzt werden. Wenn

41



3 Konzept

Abbildung 3.6: Das neue Prozessfragment wird am Ende der Sequenz eingefügt.

diese Änderungen beabsichtigt sind, lassen sich diese durch das Zurückkopieren mit Hilfe
der frg:fragmentRegion Aktivität umsetzen.

Für das Kopieren von Daten über die Prozessfragmentgrenzen werden frg:fragmentExit und
frg:fragmentEntry Aktivitäten benutzt. Mit Hilfe der frg:fragmentEntry Aktivität wird während
der Modellierung definiert, welche Daten der Prozessfragment benötigt (Listing 3.5). Zur
Laufzeit, nach dem Einkleben von dem Prozessfragment, muss bei dem Verbinden von den
dazugehörigen frg:fragmentExit und frg:fragmentEntry Aktivitäten angegeben werden, welche
Variablen, Partner Links und Correlation Sets Werte im Host-Prozessfragment enthalten,
die von dem eingefügten Prozessfragment benötigt werden. Während das Kopieren von
Variablen und Partner Links selbsterklärend ist, wird beim Kopieren von Correlation Sets
das Initialisieren des Correlation Sets des eingeklebten Prozessfragments mit den Daten,
die beim Initialisieren des Correlation Sets des Host-Prozessfragments verwendet wurden
verstanden.

Das Kopieren von den Variablen, Partner Links und Correlation Sets über die Prozessfrag-
mentgrenzen findet in zwei Schritten statt. Der erste Schritt findet dabei in der Aktivität
statt, in die ein Prozessfragment eingeklebt wurde. Dieser Schritt wird beim Verbinden
von einer frg:fragmentExit mit einer frg:fragmentEntry Aktivität ausgeführt. In diesem Schritt

42



3.4 Mapping

Abbildung 3.7: Variablen-Mapping durch durch Löschen der Variablendefinition in dem
eingeklebten Prozessfragment

Listing 3.5 Beispiel zu frg:fragmentEntry Variablendefinition
<frg:fragmentEntry>

<elementsToMap>?

<variableToMap name="..."/>*

<partnerLinkToMap name="..."/>*

<correlationSetToMap name="..."/>*

</elementsToMap>

</frg:fragmentEntry>

werden die Werte der notwendigen Variablen, Partner Links, bzw. Correlation Sets gelesen
und in der Datenbank zwischengespeichert. Im zweiten Schritt werden die kopierten Werte
während der Ausführung der dazugehörigen frg:fragmentEntry Aktivität den entsprechenden
Variablen, Partner Links, bzw. Correlation Sets zugewiesen. Der Grund für das Kopieren in
zwei Schritten ist die Sichtbarkeit von den beim Mapping beteiligten Elementen. Beispiel für
eine Situation, die das Kopieren in zwei Schritten notwendig macht, ist auf der Abbildung 3.8
dargestellt. Die in die äußere frg:fragmentFlow Aktivität eingeklebten Prozessfragmente haben
lokale Variablen: Variable A und Variable B. Dabei soll beim Variablen Mapping der Variable B
der Wert der Variable A zugewiesen werden. Innerhalb keiner <scope> bzw. frg:fragmentScope
Aktivität sind beide Variablen sichtbar, was das Kopieren des Variablenwertes in zwei
Schritten erfordert.

Eine Besonderheit beim Mapping tritt bei der frg:fragmentRegion Aktivität auf. Diese spielt
beim Mapping die Rollen sowohl von frg:fragmentExit als auch frg:fragmentEntry Aktivitäten.
Bei dem Mapping von Daten aus dem Host-Prozessfragment in das eingeklebte Prozess-
fragment nimmt frg:fragmentRegion die Rolle von der frg:fragmentExit Aktivität ein. Dabei
wird frg:fragmentRegion Aktivität mit der frg:fragmentEntry Aktivität des eingeklebten Pro-
zessfragments verbunden und kopiert die Variablenwerte aus dem Host-Prozessfragment.
Beim dem Mapping von dem eingeklebten Prozessfragment in das Host-Prozessfragment
nimmt die frg:fragmentRegion Aktivität die Rolle der frg:fragmentEntry Aktivität ein. Dabei

43



3 Konzept

Abbildung 3.8: Sichtbarkeit der Variablen.

Listing 3.6 Beispiel zu frg:fragmentRegion Variablendefinition
<frg:fragmentRegion>

<elementsToMap>?

<variableToMap name="..."/>*

<partnerLinkToMap name="..."/>*

<correlationSetToMap name="..."/>*

</elementsToMap>

</frg:fragmentRegion>

wird frg:fragmentExit Aktivität des eingeklebten Prozessfragments mit der frg:fragmentRegion
Aktivität verbunden. Die frg:fragmentRegion Aktivität setzt die entsprechenden Werte von
Elementen im Host-Prozessfragment bevor die Ausführung dieser Aktivität abgeschlossen
wird.

Um die beim Mapping von dem eingefügten Prozessfragment in den Host-Prozessfragment
benötigten Elemente zu definieren wird die frg:fragmentRegion Aktivität ähnlich der
frg:fragmentEntry Aktivität mit dem Element <elementsToMap> versehen (Listing 3.6).

Falls ein Prozessfragment mehrere frg:fragmentEntry Aktivitäten besitzt, können die benötig-
ten Daten in verschiedenen frg:fragmentEntry Aktivitäten definiert werden. Das ermöglicht
die Ausführung eines Teils des Prozessfragments falls noch nicht alle Daten in dem Prozess-
fragment vorhanden sind, d.h. nicht alle frg:fragmentEntry Aktivitäten ausgeführt wurden, die
die Daten kopieren (Abbildung 3.9). Dies muss aber auch die Semantik des Prozessfragments
erlauben.

44



3.5 Mediation

Abbildung 3.9: Teile eines Fragments benötigen unterschiedliche Variablen und können
unabhängig von einander ausgeführt werden.

Listing 3.7 Beispiel eines Komplexen Datentyps für die Mediation
<customer name="Max Mustermann">

<address>

<street>Musterstrasse</street>

<city>Musterstadt</city>

<zip>12345</zip>

...

</assress>

...

</customer>

3.5 Mediation

Unter Mediation wird in dieser Arbeit das automatische Konvertieren von Datentypen
verstanden. Da die Prozessfragmente unabhängig von einander modelliert werden, kann
es zu Situationen kommen, in denen die Datentypen der ausgetauschten Daten zwischen
den Prozessfragmenten kompatibel sind, jedoch nicht übereinstimmen. Beispiel für solche
Situation wäre, wenn die Daten im Host-Prozessfragment als double vorliegen, und im
eingeklebten Prozessfragment werden diese Daten als long benötigt. Ein anderes Beispiel
für solche Situation mit Verwendung von komplexen Datentypen wäre, wenn die im Host-
Prozessfragment Daten des Kunden in einer Variable des customer Datentyps (Listing 3.7)
vorliegen, und im eingeklebten Prozessfragment nur die Kundenadresse als address Datentyp
benötigt wird.

Damit solche Datentyp-Konvertierung automatisiert ablaufen kann, müssen Regeln definiert
werden, nach denen die Konvertierung ablaufen soll. Diese Regeln werden beim Mapping

45



3 Konzept

von Variablen angewendet, falls die Datentypen der beteiligten Variablen nicht überein-
stimmen. Die Mediation beim Partner Link Mapping wird nicht angewendet, da die Werte
von Partner Links lediglich endpoint references darstellen. Beim Mapping von Correlation
Sets wird jedes Mal Mediation aufgerufen, da die Correlation Sets keine Typen besitzen,
deren Übereinstimmung man als Kriterium für das Anwenden der Mediation verwenden
könnte. Bei der Mediation der Correlation Sets wird eine Regel anhand von den beteiligten
Prozessfragmenten, den Namen der Correlation Sets, sowie den Namen der Scopes, die diese
Correlation Sets definieren, ausgewählt. Die Regel für die Konvertierung der Correlation
Sets kann die Werte der einzelnen Properties der zu konvertierenden Correlation Sets lesen
und diese auf die Properties des gewünschten Correlation Sets abbilden.

3.6 Schleifen

Bis jetzt wurden nur die linearen Konstrukte von BPEL betrachtet, BPEL enthält jedoch
auch Schleifen-Konstrukte wie <while>, <repeatUntil> und <forEach> Aktivitäten. Falls
innerhalb einer Schleife ein Prozessfragment eingeklebt wird und die frg:fragmentExit mit
frg:fragmentEntry Aktivitäten verbunden werden, wird dies nur bei der ersten Iteration
gemacht, bei den weiteren Iterationen wird der eingeklebte Prozessfragment wieder ver-
wendet, der Mapping findet dabei automatisch statt, d.h. die gleichen Elemente werden bei
jeder Iteration auf einander abgebildet, wie es bei der ersten Iteration definiert wurde. Laut
BPEL-Spezifikation [BPE07, S. 104-105] dürfen keine Links die Grenzen von Schleifen über-
brücken, so dürfen es auch die Verbindungen zwischen frg:fragmentExit und frg:fragmentEntry
Aktivitäten nicht.

3.7 Einschränkungen bei der Komposition

Bei der Modellierung von Prozessfragmenten ist dem Modellierer oft unbekannt, welche
Prozesslogik vor und welche nach dem zu modellierenden Prozessfragment ausgeführt
wird. In diesem Fall wird die unbekannte Prozesslogik von dem zu modellierenden Pro-
zessfragment durch die Aktivitäten frg:fragmentEntry bzw. frg:fragmentExit abgegrenzt. Die
frg:fragmentEntry Aktivitäten fehlen in einem Prozessfragment nur, wenn es sich dabei um
einen Startfragment handelt. Bei der Komposition von den Prozessfragmenten müssen also
zu jedem einzufügenden Prozessfragment mindestens eine frg:fragmentExit Aktivität im
Host-Prozessfragment vorhanden sein. Das Einkleben von Startfragmenten in ein Prozess
widerspricht der modellierten Semantik von Prozessfragmenten.

Aus diesem Grund ist nur eine begrenzte Anzahl von Klebeoperationen innerhalb eines Pro-
zesses möglich. Diese Anzahl gleicht der Anzahl der aktiven unverbundenen frg:fragmentExit
Aktivitäten plus die Anzahl der aktiven frg:fragmentRegion Aktivitäten des Prozesses, in die
kein Prozessfragment eingeklebt wurde. Ob es Klebeoperationen innerhalb eines Prozesses
erlaubt sind, soll von dem WFMS kontrolliert werden.

46



3.7 Einschränkungen bei der Komposition

Abbildung 3.10: Der Pfeil deutet die Verbindung von frg:fragmentExit und frg:fragmentEntry
Aktivitäten an, es wird dabei jedoch kein Link erstellt. Die zweite
frg:fragmentEntry Aktivität kann nicht mehr verbunden werden ohne Zyklen
im Prozess zu erzeugen.

Des weiteren kann es bei der Komposition von Prozessfragmenten zu Situationen kommen,
dass bestimmte frg:fragmentEntry Aktivitäten nicht mehr mit frg:fragmentExit Aktivitäten
verbunden werden können. Diese Situationen treten beim Ankleben von Prozessfragmenten
mit mehreren frg:fragmentEntry Aktivitäten auf, falls im Host-Prozessfragment nur eine
unverbundene frg:fragmentExit bzw. frg:fragmentRegion Aktivität vorhanden ist. In diesem Fall
ist das Verbinden von einem frg:fragmentExit frg:fragmentEntry Paar möglich, alle weiteren
frg:fragmentEntry Aktivitäten des eingeklebten Prozessfragments können nicht mehr verbun-
den werden ohne Zyklen zu erzeugen. Beispiel für solche Situation ist auf der Abbildung
3.10 dargestellt. In dieser Situation ist es nicht möglich die frg:fragmentEntry Aktivität, die
sich links unten im Bild befindet, mit einer frg:fragmentExit Akivität zu verbinden ohne
Zyklen im Prozess zu erzeugen.

47



3 Konzept

3.8 Generische Architektur

Die generische Architektur eines WFMSs (Abbildung 3.11) besteht im wesentlichen aus
folgenden Komponenten:

• Navigator ist für das Navigieren durch die Prozesse und die Ausführung der Aktivitä-
ten zuständig.

• Service Provider bietet die deployten Prozessmodelle als Web Services an.

• Service Invoker wird benutzt um Web Services der Partner aufzurufen.

• Scheduler ist für die verzögerte Ausführung von Aktivitäten wie <wait> Aktivität
zuständig.

• Buildtime Datenbank dient der Speicherung der verfügbaren Prozessmodelle.

• Runtime Datenbank wird für die Speicherung von Prozessinstanz-Zuständen und
den Daten benutzt, die von den Prozessinstanzen verwendet und erzeugt werden.

• Auditing Datenbank wird für die Speicherung der Informationen über die ausgeführ-
ten Prozessinstanzen und deren Aktivitäten benutzt.

• Management API stellt die Funktionalitäten für die Steuerung des WFMSs zur Verfü-
gung. Beispielsweise Deployen/Undeployen von Prozessmodellen, Terminieren von
Prozessinstanzen, abfragen der Auditing-Informationen etc.

Damit ein WFMS Prozessfragmente ausführen kann, soll diese Architektur erweitert werden.
Dazu muss diese um die Schnittstellen FragmentManagement API und FragmentComposition
API erweitert werden (Abbilung 3.12). Die Funktionalität wird dabei in zwei unterschiedli-
chen Schnittstellen angeboten, da die Schnittstelle FragmentManagement API keine Interaktion
mit der Navigator Komponente benötigt, sondern lediglich die Verbindung mit der Buildtime
Datenbank um die Informationen über die verfügbaren Prozessfragmenten abfragen zu kön-
nen. Die Schnittstelle FragmentComposition API benötigt die Verbindung mit der Navigator
Komponente um die Runtime Komposition durchführen zu können. Die Navigator Kompo-
nente muss dabei um die in dieser Arbeit eingeführten Aktivitäten erweitert werden. Die
Aktivitäten frg:fragmentEntry, frg:fragmentExit und frg:fragmentRegion sollen dabei ähnlich
der <receive> Aktivität den Kontrollfluss blockieren können bis eine bestimmte Nachricht
empfangen wird, bzw. eine Operation dieser Aktivität ausgeführt wird.

Die Schnittstelle FragmentComposition API leitet die Anfragen an die Navigator Komponente
weiter. Navigator erzeugt dabei den Kontext der benötigten Prozessinstanz und leitet die
Anfrage an die FragmentComposition Proxy Komponente weiter. Diese Komponente leitet
die glue(...), wireAndMap(...), ignoreFragmentEntry(...) und ignoreFragmentExit(...) Anfragen
an die entsprechenden Aktivitäten der Prozessinstanz weiter (Abbildung 3.13), und leitet
die restlichen Anfragen an die Komponente FragmentCompositionAnalyzer weiter (Abbildung
3.14). Diese sammelt Informationen über die aktuelle Fragmentkomposition des Prozesses
und benötigt keine Interaktion mit den Aktivitäten der Prozessinstanz. Des weiteren muss die
Buildtime Datenbank erweitert werden, damit Prozessfragmente gespeichert werden können.

48



3.8 Generische Architektur

Abbildung 3.11: Generische Architektur

Damit Prozessfragmente deployt werden können, muss auch der Deployment des WFMSs
erweitert werden.

Die Mediator-Komponente übernimmt die Aufgabe der automatischen Konvertierung von
Variablen, sowie den Correlation Sets. Die Schnittstelle dieser Komponente (Listing 3.8)
bietet zwei Operationen an. Die Operation mediateVariable(...) ist für die Konvertierung von
Variablen unterschiedlicher Datentypen zuständig. Als Parameter wird der Datentyp der zu
konvertierenden Variable, der gewünschte Datentyp, sowie der Wert der zu konvertierenden
Variable angegeben. Die zweite Operation mediateCorrelationSet(...) ist für die Transformation
von Correlation Sets zuständig. Wie im Kapitel 3.5 beschrieben ist, wird Mediation der
Correlation Sets jedes mal beim Mapping von Correlation Sets aufgerufen. Dabei werden
die Correlation Sets anhand von dem Prozessfragmentnamen, dem Namen vom Correlation
Set, sowie dem Namen des Correlation Set deklarierenden Scopes unterschieden. Die zu
konvertierenden Daten, sowie die Resultate der Konvertierung werden dabei durch XML
DOM Objekte repräsentiert. Falls die Mediator-Komponente keine Transformation durch-
führen kann, weil keine entsprechende Transformationsregel definiert ist, oder die Eingabe
fehlerhaft ist, wird ein Ausnahmefehler MediationException geworfen.

49



3 Konzept

Abbildung 3.12: Erweiterte generische Architektur

Listing 3.8 Schnittstelle der Mediator-Komponente
public Node mediateVariable(QName fromDataType, QName toDataType, Node xmlData)

throws MediationException;

public Node mediateCorrelationSet(CSetMediationInfo from, CSetMediationInfo to, Node

xmlData) throws MediationException;

CSetMediationInfo {

QName processName;

String scopeName;

String correlationSetName;

}

50



3.8 Generische Architektur

Abbildung 3.13: Aufruf einer glue(...) Operation des FragmentComposition API

Abbildung 3.14: Aufruf einer getAvailableVariables(...) Operation des FragmentComposition
API

51



3 Konzept

Listing 3.9 FragmentComposition Schnittstelle
public boolean glue(Long instanceId, int containerId, String newFragmentName) throws

FragmentCompositionException, InstanceNotFoundException;

public boolean wireAndMap(Long instanceId, int fragmentExitId, int fragmentEntryId,

Mapping[] mappings) throws FragmentCompositionException,

InstanceNotFoundException;

public boolean ignoreFragmentExit(Long instanceId, int fragmentExitId) throws

FragmentCompositionException, InstanceNotFoundException;

public boolean ignoreFragmentEntry(Long instanceId, int fragmentEntryId) throws

FragmentCompositionException, InstanceNotFoundException;

public byte[] getProcessImage(Long instanceId) throws InstanceNotFoundException;

public ActivityInfoList getFragmentContainers(Long instanceId) throws

InstanceNotFoundException;

public ActivityInfoList getDanglingExits(Long instanceId) throws

InstanceNotFoundException;

public ActivityInfoList getDanglingEntries(Long instanceId) throws

InstanceNotFoundException;

public ActivityInfoList getIgnorableExits(Long instanceId) throws

InstanceNotFoundException;

public ActivityInfoList getIgnorableEntries(Long instanceId) throws

InstanceNotFoundException;

public VariableInfoList getVariablesToMap(Long instanceId, int elementId) throws

InstanceNotFoundException;

StringList getPartnerLinksToMap(Long instanceId, int elementId) throws

InstanceNotFoundException;

public StringList getCorrelationSetsToMap(Long instanceId, int elementId) throws

InstanceNotFoundException;

public VariableInfoList getAvailableVariables(Long instanceId, int elementId) throws

FragmentCompositionException, InstanceNotFoundException;

public StringList getAvailablePartnerLinks(Long instanceId, int elementId) throws

FragmentCompositionException, InstanceNotFoundException;

public StringList getAvailableCorrelationSets(Long instanceId, int elementId) throws

FragmentCompositionException, InstanceNotFoundException;

Listing 3.10 Datenstruktur ActivityInfo
ActivityInfo {

String name;

Integer id;

}

3.9 Komposition-API

Laut der Aufgabenstellung dieser Diplomarbeit wird die Komposition von den Prozessfrag-
menten von einem Menschen geleitet. Um dies zu ermöglichen muss das verwendete WFMS
entsprechende Schnittstellen implementieren. Zu diesem Zweck werden die Schnittstellen
FragmentComposition und FragmentManagement eingeführt (Listings 3.9 und 3.13).

52



3.9 Komposition-API

Listing 3.11 Datenstruktur VariableInfo
VariableInfo {

String name;

QName type;

}

Listing 3.12 Datenstruktur Mapping
enum ElementType { VARIABLE, PARTNER_LINK, CORRELATION_SET };

Mapping {

ElementType type;

String fromVar;

String toVar;

}

Im folgenden werden die Operationen der FragmentComposition Schnittstelle vorgestellt:

• Mit Hilfe der glue(...) Operation wird ein Prozessfragment in ein so genantes Container in
einer Prozessinstanz eingefügt. Container steht dabei stellvertretend für die Aktivitäten
frg:fragmentFlow, frg:fragmentSequence und frg:fragmentRegion.

• Die Operation wireAndMap(...) dient dem Verbinden von frg:fragmentEntry und
frg:fragmentExit, bzw. frg:fragmentRegion Aktivitäten. Diese Operation benötigt die
Ids der zu verbindenden Aktivitäten, sowie eine Liste mit Angaben über die beim
Mapping beteiligten Elemente. Die Angaben zum Mapping erfolgen durch die Anga-
ben von Elementen-Namen, sowie dem Typ der Elemente, die auf einander abgebildet
werden sollen (Listing 3.12).

• Die Operation ignoreFragmentExit(...) schließt die Ausführung einer frg:fragmentExit
Aktivität ab, ohne diese mit einer frg:fragmentEntry Aktivität zu verbinden. Das Igno-
rieren der frg:fragmentExit Aktivitäten ist in den Situationen nützlich, wenn nicht Alle
frg:fragmentExit Aktivitäten mit den entsprechenden frg:fragmentEntry Aktivitäten ver-
bunden werden sollen, da diese die optionalen Prozesszweige darstellen (Abbildung
3.15). In diesem Fall können solche frg:fragmentExit Aktivitäten ignoriert werden, d.h.
deren Ausführung wird erfolgreich beendet.

• Die Operation ignoreFragmentEntry(...) schließt die Ausführung einer frg:fragmentEntry
Aktivität ab, ohne diese mit einer frg:fragmentExit Aktivität zu verbinden. Falls die
frg:fragmentEntry Aktivität sich in der frg:fragmentFlow Aktivität befindet, dann werden
die Transition-Conditions der ausgehenden Links aus dieser Aktivität auf false gesetzt,
somit wird Dead Path Elimination [LR00] ausgelöst. Falls die frg:fragmentEntry Aktivität
sich in der frg:fragmentSequence Aktivität befindet, dann wird die frg:fragmentEntry
Aktivität abgeschlossen und die Ausführung der Sequenz fortgesetzt.

Das Ignorieren der frg:fragmentEntry Aktivitäten ist in den Situationen nützlich, wenn
diese zur Synchronisation mit anderen Prozessfragmenten vorgesehen sind, werden
aber in der aktuellen Zusammenstellung der Prozessfragmente nicht benötigt.

53



3 Konzept

• Die Operation getProcessImage(...) erstellt eine graphische Darstellung des Prozesses und
dient der Übersicht über die aktuelle Prozessstruktur. Diese zeigt auch die Aktivitäten
Ids, die beim Aufruf bestimmter Operationen dieser Schnittstelle benötigt werden.

• Die Operation getFragmentContainers(...) liefert die Containers, die Aktiv sind und das
Einfügen eines Prozessfragments erlauben.

• Die Operation getDanglingExits(...) liefert eine Liste von aktiven und nicht verbun-
denen frg:fragmentExit, sowie frg:fragmentRegion Aktivitäten, falls diese die Rolle der
frg:fragmentExit Aktivität übernehmen. Die Aktivitäten werden dabei durch die Activi-
tyInfo Elemente (Listing 3.10) dargestellt.

• Die Operation getDanglingEntries(...) liefert eine Liste von aktiven und nicht verbun-
denen frg:fragmentEntry, sowie frg:fragmentRegion Aktivitäten, falls diese die Rolle der
frg:fragmentEntry Aktivität übernehmen.

• Die Operation getIgnorableExits(...) liefert die aktiven und nicht verbundenen
frg:fragmentExit Aktivitäten, die ignoriert werden können.

• Die Operation getIgnorableEntries(...) liefert die aktiven und nicht verbundenen
frg:fragmentEntry Aktivitäten, die ignoriert werden können.

• Die Operation getVariablesToMap(...) gibt die Variablen zurück, die in frg:fragmentEntry
bzw. frg:fragmentRegion definiert sind und Mapping benötigen.

• Die Operation getPartnerLinksToMap(...) gibt die Partner Links zurück, die in
frg:fragmentEntry bzw. frg:fragmentRegion definiert sind und Mapping benötigen.

• Die Operation getCorrelationSetsToMap(...) gibt die Correlation Sets zurück, die in
frg:fragmentEntry bzw. frg:fragmentRegion definiert sind und Mapping benötigen.

• Die Operation getAvailableVariables(...) liefert die von einer Aktivität aus sichtbaren
Variablen.

• Die Operation getAvailablePartnerLinks(...) liefert die von einer Aktivität aus sichtbaren
Partner Links.

• Die Operation getAvailableCorrelationSets(...) liefert die von einer Aktivität aus sichtbaren
Correlation Sets.

In dieser Schnittstelle werden zur Identifikation der Aktivitäten die Aktivitäten Id verwendet.
Die Aktivitäts Id wird jeder Aktivität von dem WFMS vergeben. Jede Aktivitäts Id ist
innerhalb der Prozessinstanz eindeutig. Das ermöglicht das wiederholte Einfügen von den
gleichen Prozessfragmenten in den selben Prozess und vermeidet die möglichen Kollisionen,
die beim Verwenden von Aktivitätennamen auftreten könnten. Die Aktivitäten Id sind auf
der graphischen Darstellung der aktuellen Prozessstruktur angegeben.

Die Operationen getFragmentContainers(...), getDanglingExits(...), getDanglingEntries(...), ge-
tIgnorableExits(...) und getIgnorableEntries(...) liefern eine Liste der Aktivitäten zurück. Die
Aktivitäten werden dabei durch die Datenstruktur ActivityInfo (Listing 3.10) dargestellt.
Die Operationen getVariablesToMap(...) und getAvailableVariables(...) liefern eine Liste von

54



3.9 Komposition-API

Abbildung 3.15: Eine frg:fragmentExit Aktivität wird mit keiner frg:fragmentEntry Aktivi-
tät verbunden, da diese ein optionales Prozesszweig darstellt und kann
ignoriert werden.

Listing 3.13 FragmentManagement Schnittstelle
StringList getAvailableFragments() throws ManagementFault;

StringList getAvailableStartFragments() throws ManagementFault;

StringList getAvailableNonStartFragments() throws ManagementFault;

Variablen zurück. Die Variablen werden dabei durch die Datenstruktur VariableInfo (Listing
3.11) dargestellt. Die Operationen getPartnerLinksToMap(...), getCorrelationSetsToMap(...), getA-
vailablePartnerLinks(...) und getAvailableCorrelationSets(...) geben eine Liste von strings zurück,
die die Namen der entsprechenden Elementen enthalten.

Im folgenden werden die Operationen der FragmentManagement Schnittstelle (Listing 3.13)
beschrieben:

• Die Operation getAvailableFragments() gibt Ids aller verfügbaren Prozessfragmente
zurück.

• Die Operation getAvailableStartFragments() gibt die Ids der verfügbaren Startfragmente
zurück.

• Die Operation getAvailableNonStartFragments() gibt die Ids der verfügbaren Prozessfrag-
mente zurück, die keine Startfragmente sind, und somit in andere Prozessfragmente
eingeklebt werden können.

Die Operationen dieser Schnittstelle geben jeweils eine Liste von strings mit den entsprechen-
den Ids zurück.

55



3 Konzept

Diese Methoden werden in einer separaten Schnittstelle definiert, da diese im Gegensatz zu
den Operationen der FragmentComposition Schnittstelle keine Interaktion mit BPEL-Engine
benötigen, sondern lediglich den Zugriff auf die Buildtime Datenbank.

56



4 Übersicht über Apache ODE

Apache ODE [ODEa] ist eine Open Source Workflow-Engine, die BPEL-Prozesse ausführen
kann und in dieser Arbeit verwendet wird, um den im Kapitel 3 beschriebenen Konzept
umzusetzen.

4.1 Architektur

In diesem Kapitel wird ein kurzer Überblick über die Architektur der Apache ODE gegeben.
Die Architektur von Apache ODE (Abbildung 4.1) besteht aus folgenden Komponenten
[ODEa]:

• BPEL Compiler erstellt aus den prozessbeschreibenden Dateien (BPEL, WSDL und
XSD Dateien) eine ausführbare interne Repräsentation des Prozesses. Diese interne
Repräsentation wird in eine .cbp Datei serialisiert. Die .cbp Dateien werden von der
ODE BPEL Runtime Komponente verwendet um Prozesse auszuführen.

• ODE BPEL Runtime übernimmt die Ausführung von BEPL-Prozessen und enthält
die Implementierung der Logik von den einzelnen BPEL-Konstrukten. Des weiteren
übernimmt diese Komponente die Zuordnung von den eingehenden Nachrichten zu
den entsprechenden Prozessinstanzen.

• Jacob Komponente befindet sich innerhalb von ODE BPEL Runtime Komponente
und stellt die Laufzeitumgebung für die auszuführenden Arbeitseinheiten dar. Als
Arbeitseinheiten wird die Logik der einzelnen Aktivitäten der Apache ODE umgesetzt.
Es erlaubt parallele Ausführung von Arbeitseinheiten innerhalb eines Threads, sowie
das Anhalten der Ausführung und Persistieren von dem Ausführungszustand der
Arbeitseinheiten.

• ODE Data Access Objects übernehmen die Rolle der Vermittlung bei der Datenspei-
cherung zwischen der ODE BPEL Runtime Komponente und der Datenbank.

• ODE Integration Layer dient als Kommunikationsmittel mit der ODE BPEL Runtime.
Mit Hilfe von AXIS2 [AXI] als Integrationsschicht ist es möglich mit ODE über Web Ser-
vices zu kommunizieren. Die JBI [JBI05] Implementierung von der Integrationsschicht
ermöglicht die Kommunikation über JBI Message Bus.

57



4 Übersicht über Apache ODE

Abbildung 4.1: ODE Architektur [ODEa]

4.2 Deployment

Um einen Prozess in Apache ODE zu deployen wird die dazugehörige .bpel Prozessbeschrei-
bung benötigt, die .wsdl Dateien von den angebotenen und aufzurufenden Web Services,
sowie die benötigten .xsd Beschreibungen und dem Deployment Descriptor. Diese Dateien
werden vor dem Deployment in eine .zip Detei komprimiert und anschließend deployt.

Apache ODE bietet zwei Möglichkeiten Prozesse zu deployen.

• Kopieren von der .zip Datei in den processes Ordner der deployten Apache ODE

• Durch die Operation deploy(...) des Management API [ODEa].

Als Deployment Descriptor dient für die Apache ODE die Datei mit dem Namen "deploy.xml".
In dieser Datei werden die Binding-Informationen für die im Prozess benutzten Partner
Links angegeben. Als Wurzelelement des Deployment Descriptors dient <deploy> Element.

58



4.3 Versionierung

Listing 4.1 Deployment Descriptor Wurzelelement [ODEa]
<deploy>

<process name=QName ...>*

...

</process>

</deploy>

Listing 4.2 Service Binding im Deployment Descriptor [ODEa]
<provide partnerLink=NCName>

<service name=QName port=NCName?>

</provide>

Für jeden Prozess in der zu deployten .zip Datei wird <process> Element als Kind des Wur-
zelelements hinzugefügt. Das Attribut name des <process> Elements gibt den Namen des
zu deployten Prozesses an. Der Name muss dabei mit dem in der .bpel Datei angegebenem
Prozessnamen übereinstimmen (Listing 4.1). Jedes <prozess> Element muss dabei angeben,
welche Services dieser anbietet, sowie deren Binding. Dies wird mit dem Element <provide>
beschrieben. Das Attribut partnerLink gibt den Namen des verwendeten Partner Links an.
Das Kindelement <service> gibt den dazugehörigen Binding an (Listing 4.2). Die aufzuru-
fenden Services im Prozess müssen durch das Element <invoke> im Deployment Descriptor
angegeben werden. Die vollständige Schema-Beschreibung des Deployment Descriptors
kann in [ddS] nachgeschlagen werden [ODEa].

4.3 Versionierung

Apache ODE unterstützt Versionierung von Prozessen. Diese Funktionalität erlaubt die
Verwendung von neuen Versionen von Prozessmodellen ohne den Betrieb der veralteten
Prozesse zu stören. Beim Deployment einer neuen Version des bestehenden Prozesses werden
die vorhandenen Prozessinstanzen nach der alten Version des Prozessmodells ausgeführt, die
neuen Prozessinstanzen werden dabei von der aktuellen Version des Prozessmodells erstellt.
Das ermöglicht einen fließenden Übergang zwischen den Versionen von den Prozessmodellen
ohne den Betrieb von veralteten Prozessmodellen zu stören [ODEa].

4.4 Apache ODE Channels

Die Channels in Apache ODE sind Schnittstellen, die Kommunikation zwischen den Akti-
vitäten erlauben. Die Channels besitzen keine Implementierung. Damit eine Reaktion auf
einen Methodenaufruf eines Cahnnels erfolgen kann, muss eine Aktivität einen dem Channel
zugeordnete ChannelListener Schnittstelle implementieren. Der Aufruf der entsprechenden
Methode des ChannelListeners erfolgt dabei verzögert. Es wird eine Arbeitseinheit erstellt, die
die entsprechende Methode des ChannelListeners aufruft. Diese Arbeitseinheit wird an Jacob

59



4 Übersicht über Apache ODE

Komponente übergeben, die die Ausführung dieser Arbeitseinheit entsprechend einplant
[ODEa].

60



5 Umsetzung

Bei der Umsetzung des Konzepts müssen folgende Komponenten von Apache ODE erweitert
werden:

• ODE BPEL Compiler

• ODE BPEL Runtime

• ODE Data Access Objects, sowie das Datenbankschema

• ODE Integrationlayer

5.1 Erweiterung der ODE BPEL Compiler Komponente

Damit die Apache ODE die im Kapitel 3.2 eingeführten Aktivitäten aus den BPEL-
Prozessbeschreibungen in die interne Darstellung transformieren kann, muss ODE BPEL
Compiler Komponente erweitert werden. Apache ODE unterstützt die <extensionActivity> nicht
[ODEb], aus diesem Grund werden die neuen Aktivitäten als Standard-BPEL-Aktivitäten
umgesetzt. Standard-BPEL-Aktivitäten werden in Apache ODE durch Java-Klassen repräsen-
tiert. Die Benennung dieser Klassen folgt dem Schema O + Aktivitätsname. Für die <empty>
Aktivität heißt die entsprechende Klasse OEmpty. Eine kompilierte Darstellung des Prozesses
bildet dabei einen Baum dieser Java-Klassen mit der Wurzel OProcess. Jede dieser Klassen
enthält alle für die Ausführung benötigten Daten. Bei der <receive> Aktivität sind das
z.B. der verwendete Partner Link mit dem entsprechenden Binding sowie die verwendeten
Correlation Sets.

Klassen, die in der ODE BPEL Compiler Komponente die Aktivitäten und den Prozess an
sich repräsentieren, kann man in mehrere Gruppen unterteilen. Zunächst wird die BPEL-
Datei geparst und ein DOM-Baum erstellt. Die Klassen mit dem Suffix Activity des Pakets
org.apache.ode.bpel.compiler.bom dienen der XML-unabhängigen Darstellung der Aktivitäten
und besitzen Methoden um auf die Eigenschaften von Aktivitäten im DOM-Baum zugreifen
zu können. Mit Hilfe von Klassen mit dem Suffix Generator des org.apache.ode.bpel.compiler
Paktes können aus diesen XML-abstrahierenden Aktivitätsklassen die Aktivitäten (Klassen
mit dem Prefix O des Pakets org.apache.ode.bpel.o) in der internen Darstellung erzeugt werden
(Abbildung 5.1). Diese Klassen enthalten alle für die Ausführung notwendigen Daten,
enthalten jedoch keine Implementierung der Aktivitätenlogik, sondern sind eine interne
Darstellung des Prozesses. Diese interne Darstellung wird nach dem Kompilieren in eine
.cbp (Compiled BPEL Process) Datei serialisiert. Diese Datei wird von der ODE BPEL Runtime
Komponente benutzt um den Prozess auszuführen.

61



5 Umsetzung

Abbildung 5.1: Kompilieren einer Aktivität. Symbol * steht stellvertretend für den Namen
der zu kompilierenden Aktivität.

Um diese Komponente zu erweitern, wurden für jede Aktivität entsprechende XML-
abstrahierende Klassen im Paket org.apache.ode.bpel.compiler.bom, die entsprechenden Ak-
tivitätsgeneratoren im Paket org.apache.ode.bpel.compiler, sowie die interne Repräsentation
der Aktivitäten im Paket org.apache.ode.bpel.o erstellt. Damit die ODE BPEL Compiler Kompo-
nente für die neuen BPEL-Aktivitäten entsprechende XML-abstrahierende Klassen finden
kann, wurden entsprechende Assoziationen in der Klasse BpelObjectFactory des Pakets
org.apache.ode.bpel.compiler.bom hinzugefügt. Des weiteren wurden die XML-abstrahierende
Klassen mit den dazugehörigen Aktivitätsgeneratoren assoziiert. Dies wurde in der Klasse
BpelCompiler20 des Pakets org.apache.ode.bpel.compiler gemacht.

62



5.2 Erweiterung der ODE BPEL Runtime Komponente

5.2 Erweiterung der ODE BPEL Runtime Komponente

5.2.1 Aktivitätenlogik

Damit die interne Repräsentation der eingeführten Aktivitäten ausgeführt werden kann,
muss für jede neue Aktivität entsprechende Logik implementiert werden. Die Logik der
Aktivitäten wird in Klassen des Pakets org.apache.ode.bpel.runtime implementiert, die von der
Klasse ACTIVITY abgeleitet sind. Objekte dieser Klassen stellen Arbeitseinheiten dar und
werden von Jacob Komponente ausgeführt. Um die Logik einer Aktivität auszuführen, ruft
Jacob Komponente die run() Methode der Aktivitäten auf.

Um die ODE BPEL Runtime Komponente um die Logik neuer Aktivitäten zu erweitern, wur-
den entsprechende Klassen erstellt, die von der Klasse ACTIVITY ableiten und entsprechend
die Methode run() implementieren. Des weiteren wurde die Klasse ActivityTemplateFactory
des Pakets org.apache.ode.bpel.runtime erweitert, damit diese für die internen Repräsentationen
der neuen Aktivitäten die entsprechenden Objekte der Logik implementierenden Klassen
zurückgibt.

Die Logik der eingeführten Aktivitäten wird in Listings 5.1, 5.2, 5.3, 5.4 und 5.5 in Pseudocode
dargestellt.

5.2.2 Zusätzliche Channels

Um die Funktionalität der Aktivitäten aufrufen zu können, werden drei neue Channel-
Typen eingeführt. FragmentCompositionChannel (Listing 5.6) besitzt vier Operationen glue(...),
wireAndMap(...), ignoreFragmentEntry(...) und ignoreFragmentExit(...). Channels dieses Typs
sind mit den Containers verbunden. In den Listings 5.1, 5.2 und 5.3 heißen die durch
den FragmentCompositionChannel aufgerufene Operationen onGlue(...), onWireAndMap(...),
onIgnoreFragmentEntry(...) und onIgnoreFragmentExit(...).

Die Channels des Types FragmentCompositionResponseChannel (Listing 5.7) sind mit den akti-
ven und unverbundenen frg:fragmentExit Aktivitäten verbunden. Der Aufruf der Operation
fragmentCompositionCompleted() dieses Channels ruft die onFragmentCompositionCompleted()
Operation der entsprechenden frg:fragmentExit Aktivität (Listing 5.5) und beendet die Aus-
führung dieser Aktivität.

Die Channels des Types FragmentEntryMappedChannel (Listing 5.8) sind mit den aktiven
und unverbundenen frg:fragmentEntry Aktivitäten verbunden. Der Aufruf der Operation
fragmentEntryMapped() dieses Channels ruft die onFragmentEntryMapped() Operation der
entsprechenden frg:fragmentEntry Aktivität (Listing 5.4), weist die beim Mapping zwischen-
gespeicherten Daten den entsprechenden Elementen zu und beendet die Ausführung dieser
Aktivität. Die Operation ignoreEntry() dieses Channels ruft die onIgnoreEntry() Operation der
entsprechenden frg:fragmentEntry Aktivität (Listing 5.4) und beendet die Ausführung dieser
Aktivität ohne Mapping durchzuführen.

63



5 Umsetzung

Listing 5.1 Pseudocode der Logik von der frg:fragmentFlow Aktivität
onGlue(QName newFragmentName, FragmentCompositionResponse response){

if (isGlueAllowed()) {

OProcess toGlue = getProcess(newFragmentName);

OFragmentScope scope = getScopeToGlue(toGlue);

glueProcesses(thisProcess, toGlue); // Listing 5.9

addParallelActivity(scope);

response.returnValue(true);

} else {

response.returnValue(false);

}

}

onWireAndMap(int fragmentExitId, int fragmentEntryId, Mapping[] mappings,

FragmentCompositionResponse response){

try {

wireAndMap(fragmentExitId, fragmentEntryId, mappings); // Listing 5.10

addLinkIfNeeded(fragmentExitId, fragmentEntryId);

serializeOProcess(process);

FragmentCompositionResponseChannel channel =

getFragmentExitChannel(instanceId, fragmentExitId);

channel.fragmentCompositionCompleted();

removeFragmentExitChannel(instanceId, fragmentExitId);

response.returnValue(true);

} catch (Exception e){

response.throwException(e);

}

}

onIgnoreFragmentExit(int fragmentExitId, FragmentCompositionResponse response){

markExitAsIgnored(fragmentExitId);

FragmentCompositionResponseChannel channel = getFragmentExitChannel(instanceId,

fragmentExitId);

channel.fragmentCompositionCompleted();

removeFragmentExitChannel(instanceId, fragmentExitId);

response.returnValue(true);

}

onIgnoreFragmentEntry(int fragmentEntryId, FragmentCompositionResponse response){

markEntryAsIgnored(fragmentExitId);

setTransitionConditionToFalse();

FragmentEntryMappedChannel channel = getFragmentEntryChannel(instanceId,

fragmentEntryId);

channel.ignoreEntry();

removeFragmentEntryChannel(instanceId, fragmentEntryId);

response.returnValue(true);

}

execute(){

createActivityInstances(parallelActivities);

addFragmentCompositionChannel(instanceId, flowActivityId, new

FragmentCompositionChannel());

}

64



5.2 Erweiterung der ODE BPEL Runtime Komponente

Listing 5.2 Pseudocode der Logik von der frg:fragmentSequence Aktivität
onGlue(QName newFragmentName, FragmentCompositionResponse response){

if (isGlueAllowed()){

OProcess toGlue = getProcess(newFragmentName);

OFragmentScope scope = getScopeToGlue(toGlue);

glueProcesses(thisProcess, toGlue); // Listing 5.9

addActivityIntoSequence(scope);

response.returnValue(true);

} else {

response.returnValue(false);

}

}

onWireAndMap(int fragmentExitId, int fragmentEntryId, Mapping[] mappings,

FragmentCompositionResponse response){

try {

wireAndMap(fragmentExitId, fragmentEntryId, mappings); // Listing 5.10

serializeOProcess(process);

FragmentCompositionResponseChannel channel =

getFragmentExitChannel(instanceId, fragmentExitId);

channel.fragmentCompositionCompleted();

removeFragmentExitChannel(instanceId, fragmentExitId);

response.returnValue(true);

} catch (Exception e){

response.throwException(e);

}

}

onIgnoreFragmentExit(int fragmentExitId, FragmentCompositionResponse response){

markExitAsIgnored(fragmentExitId);

FragmentCompositionResponseChannel channel = getFragmentExitChannel(instanceId,

fragmentExitId);

channel.fragmentCompositionCompleted();

removeFragmentExitChannel(instanceId, fragmentExitId);

response.returnValue(true);

}

onIgnoreFragmentEntry(int fragmentEntryId, FragmentCompositionResponse response){

markEntryAsIgnored(fragmentEntryId);

FragmentEntryMappedChannel channel = getFragmentEntryChannel(instanceId,

fragmentEntryId);

channel.ignoreEntry();

removeFragmentEntryChannel(instanceId, fragmentEntryId);

response.returnValue(true);

}

execute(){

if (firstTimeInvoked){

addFragmentCompositionChannel(instanceId, sequenceActId, new

FragmentCompositionChannel());

}

OActivity activity = getNextActivityInSequence();

createActivityInstance(activity);

}

65



5 Umsetzung

Listing 5.3 Pseudocode der Logik von der frg:fragmentRegion Aktivität
onGlue(QName newFragmentName, FragmentCompositionResponse response){

if (!regionHasChild()){

OProcess toGlue = getProcess(newFragmentName);

OFragmentScope scope = getScopeToGlue(toGlue);

glueProcesses(thisProcess, toGlue); // Listing 5.9

setRegionChild(scope);

response.returnValue(true);

} else { response.returnValue(false); }

}

onWireAndMap(int fragmentExitId, int fragmentEntryId, Mapping[] mappings,

FragmentCompositionResponse response){

try {

wireAndMap(fragmentExitId, fragmentEntryId, mappings); // Listing 5.10

serializeOProcess(process);

OActivity activity = getActivity(fragmentExitId);

if (activity is frg:fragmentExit ){

FragmentCompositionResponseChannel channel =

getFragmentExitChannel(instanceId, fragmentExitId);

channel.fragmentCompositionCompleted();

removeFragmentExitChannel(instanceId, fragmentExitId);

} else if (activity is frg:fragmentRegion ){

FragmentEntryMappedChannel channel =

getFragmentEntryChannel(instanceId, fragmentExitId);

channel.fragmentEntryMapped();

removeFragmentEntryChannel(instanceId, fragmentEntryId);

}

createActivityInstance(regionChild);

response.returnValue(true);

} catch (Exception e){ response.throwException(e); }

}

onIgnoreFragmentExit(int fragmentExitId, FragmentCompositionResponse response){

// Die Semantik von frg:fragmentRegion Aktivität verbietet es.

response.returnValue(false);

}

onIgnoreFragmentEntry(int fragmentEntryId, FragmentCompositionResponse response){

// Die Semantik von frg:fragmentRegion Aktivität verbietet es.

response.returnValue(false);

}

onCompleteActivity(){

List<MappingInfo> mappingInfos = getMappingInfo(instanceId, activityId);

assignVariableValues(mappingInfos);

assignPartnerLinkValues(mappingInfos);

assignCorrelationSetValues(mappingInfos);

removeMappings(instanceId, activityId);

Activity_Completed();

}

execute(){

if (!isRegionExitMapped()){

// Nur einemal hinzufüghen, falls es in einer Schleife ausgeführt wird

addFragmentCompositionChannel(instanceId, regionActId(), new

FragmentCompositionChannel());

} else {

// frg:fragmentRegion ist in einer Schleife und wurde schon verbunden.

onWireAndMap(regionId, fragmentEntryId, mappings, new DummyResponse());

}

}

66



5.2 Erweiterung der ODE BPEL Runtime Komponente

Listing 5.4 Pseudocode der Logik von der frg:fragmentEntry Aktivität
onFragmentEntryMapped(){

List<MappingInfo> mappingInfos = getMappingInfo(instanceId, activityId);

assignVariableValues(mappingInfos);

assignPartnerLinkValues(mappingInfos);

assignCorrelationSetValues(mappingInfos);

removeMappings(instanceId, activityId);

Activity_Completed();

}

onIgnoreEntry(){

Activity_Completed();

}

execute(){

FragmentEntryMappedChannel channel = new FragmentEntryMappedChannel()

if (fragmentEntryIsMapped()){

// Prozessfragment wurde am Ende einer frg:fragmentSequence Aktivität eingefügt

// und wurde mit einer frg:fragmentExit Aktivität verbunden

// bevor frg:fragmentEntry Aktivität aktiviert werden konnte.

channel.fragmentEntryMapped();

} else {

addFragmentEntryMappedChannel(instanceId, entryActivityId(), channel);

}

}

5.2.3 Kleben von Prozessfragmenten

Das Kleben von Prozessfragmenten kann mit dem Pseudocode aus dem Listing 5.9 dar-
gestellt werden. Als erstes wird die kompilierte Darstellung von dem einzuklebenden
Prozessfragment abgefragt, und in diesem die frg:fragmentScope Aktivität gefunden, es ist die
Kindaktivität des Prozess-Scopes. Abhängig davon welche Aktivität die Rolle des Containers
spielt, wird die gefundene frg:fragmentScope Aktivität im Falle der frg:fragmentFlow Aktivität
als eine parallele Aktivität, im Falle der frg:fragmentSequence als letzte Aktivität, und im Falle
der frg:fragmentRegion Aktivität als eine Kindaktivität in die kompilierte Repräsentation des
Host-Prozesses eingefügt. In der Wurzel der kompilierten Prozessrepräsentationen werden
die benutzten Datentypen referenziert, die fehlenden Datentypen im Host-Prozess müssen
dabei hinzugefügt werden.

Die geklebte Prozessrepräsentation muss in .cbp Datei serialisiert werden, damit die Ände-
rungen des Prozessmodells beim Neustart der Apache ODE erhalten bleiben. Da jedoch zur
Laufzeit nicht nur die Kompilierte Repräsentation des Prozesses benötigt wird, sondern
auch die WSDL und XSD Dateien um die Web Services anzubieten bzw. aufzurufen, müssen
die WSDL und XSD Dateien des Host-Prozessfragments mit neuen WSDL und XSD Dateien
vervollständigt werden. Dafür werden die WSDL und XSD Dateien des einzufügenden Pro-
zessfragments in den Ordner des Host-Prozessfragments kopiert. Falls Namenskollisionen
auftreten wird ein neuer Name für die Datei generiert, indem eine Zahl am Ende des Datein-
amens angehängt wird. Falls der Name der Datei geändert wurde, werden alle Referenzen

67



5 Umsetzung

Listing 5.5 Pseudocode der Logik von der frg:fragmentExit Aktivität
execute(){

addFragmentExitChannel(instanceId, fragmentExitId, new

FragmentCompositionResponseChannel())

if (isExitWired(exit)) {

// Die Aktivität ist bereits mit einer frg:fragmentEntry verbunden,

// d.h. es wird innerhalb einer Schleife ausgeführt

int containerId = findEnclosingFragmentContainer(process, exitId);

FragmentCompositionChannel channel = getFragmentCompositionChannel(instanceId,

containerId);

if (isExitIgnored(exit)){

// frg:fragmentExit wurde vorher ignoriert, also wird es nochmal

gemacht.

fcChannel.ignoreFragmentExit(exitId);

} else {

// sonst wurde wireAndMap ausgeführt

fcChannel.wireAndMap(exitId, exit.fragmentEntryId, exit.mappings);

}

}

}

onFragmentCompositionCompleted(){

int fragmentEntryId = getEntryIdExitIsMappedTo();

OActivity activity = findActivity(fragmentEntryId);

if (activity is frg:fragmentEntry ){

FragmentEntryMappedChannel channel = getFragmentEntryChannel(instanceId,

fragmentExitId);

channel.fragmentEntryMapped();

removeFragmentEntryChannel(instanceId, fragmentEntryId);

} else {

// frg:fragmentExit ist mit frg:fragmentRegion verbunden

}

Activity_Completed();

}

Listing 5.6 FragmentComposition Channel
glue(QName newFragmentName, FragmentCompositionResponse response);

wireAndMap(int fragmentExitId, int fragmentEntryId, Mapping[] mappings,

FragmentCompositionResponse response);

ignoreFragmentExit(int fragmentExitId, FragmentCompositionResponse response);

ignoreFragmentEntry(int fragmentEntryId, FragmentCompositionResponse response);

Listing 5.7 FragmentCompositionResponse Channel
fragmentCompositionCompleted();

Listing 5.8 FragmentEntryMappedChannel
fragmentEntryMapped();

ignoreEntry();

68



5.2 Erweiterung der ODE BPEL Runtime Komponente

Listing 5.9 Pseudocode der Operation glue(...)
OActivity container;

OProcess toGlue = getProcessToGlue(processname);

OFragmentScope scope = getFragmentScope(toGlue);

container.addChild(scope);

copyDeclaredTypesFrom(toGlue);

serializeOProcess(hostOProcess);

mergeXSDFiles();

mergeWSDLFiles();

mergeDeploymentDescriptors();

reloadHostProcess();

auf diese Datei aktualisiert. Falls beide an der Komposition beteiligten Prozessfragmente den
gleichen Web Service referenzieren kommt bei der Komposition dazu, dass derselbe Web Ser-
vice durch zwei WSDL Dateien beschrieben wird. Um das zu verhindern wird beim Kopieren
von WSDL Dateien darauf geachtet, welche Web Services in dem Host-Prozessfragment
bereits definiert sind. Falls der Web Service bereits existiert, wird aus der WSDL Datei des
einzufügenden Prozessfragments die Definition dieses Web Services entfernt. Da es jedoch
sein kann, dass die WSDL Datei des einzufügenden Prozessfragments weitere Web Services
oder weitere Datentypen definiert, die in dem Prozessfragment benötigt werden, wird der
übrig gebliebene Inhalt in den Ordner des Host-Prozessfragments geschrieben.

Zuletzt sollen die vom einzufügenden Prozessfragment benutzten und angebotenen Web
Services im Host-Prozessfragment verfügbar gemacht werden. Dazu müssen die Bindings der
Web Services aus dem Deployment Descriptor des einzufügenden Prozessfragments in das
Deployment Descriptor des Host-Prozessfragments kopiert werden. Damit die Bindings der
Web Services des eingefügten Prozessfragments gelesen und angewendet werden, muss das
Host-Prozessfragment neu geladen werden, dabei wird die serialisierte Repräsentation des
Prozesses gelesen, sowie die Einstellungen aus dem aktualisierten Deployment Descriptor.

5.2.4 Verbinden von frg:fragmentExit und frg:fragmentEntry Aktivitäten

Bei dem Aufruf von der Operation wireAndMap(...) werden die beteiligten frg:fragmentExit und
frg:fragmentEntry bzw. frg:fragmentRegion Aktivitäten anhand ihrer Id identifiziert. Diese Akti-
vitäten werden in dem Prozess gefunden und überprüft, ob für alle von der frg:fragmentEntry
bzw. frg:fragmentRegion Aktivität verlangten Variablen, Partner Links und Correlation Sets
entsprechende Abbildungen (Mappings) angegeben sind. Falls alle Daten beim Mapping
angegeben wurden, werden die Werte der angegebenen Variablen, Partner Links und Cor-
relation Sets gelesen und in der Datenbank gespeichert. Danach wird die frg:fragmentExit
Aktivität als verbunden markiert und die Id der dazugehörigen frg:fragmentEntry Aktivi-
tät gespeichert. Die dazugehörige frg:fragmentEntry Aktivität wird ebenfalls als verbunden
markiert. Des weiteren werden die Informationen über den Mapping in der frg:fragmentExit
Aktivität gespeichert. Diese Informationen sowie die Id der dazugehörigen frg:fragmentEntry
Aktivität werden bei dem Automatischen Mapping innerhalb von Schleifen verwendet.

69



5 Umsetzung

Listing 5.10 Pseudocode der Operation wireAndMap(...)
if (variableMappingOk()){

readAndStoreVariables(mapping);

markFragmentExitAsMappedTo(entryId);

setFragmentExitMappings(mapping);

markFragmentEntryAsMapped();

} else {

throw new Exception("Not all Elements are mapped!");

}

Listing 5.11 FragmentCompositionResponse
FragmentCompositionResponse{

returnValue(Object value);

throwException(Exception e);

}

Damit die frg:fragmentExit Aktivität abgeschlossen wird, wird die Operation fragmentCom-
positionCompleted() des entsprechenden Channels aufgerufen. Die hier beschriebene Logik
wird in dem Listing 5.10 als Pseudocode dargestellt. Nach dem die frg:fragmentExit Aktivität
ausgeführt wurde, werden bei der Ausführung der dazugehörigen frg:fragmentEntry Aktivität
die gespeicherten Werte von den Variablen, Partner Links und Correlation Sets gelesen und
als Werte der entsprechenden Elementen zugewiesen. Mapping bei der frg:fragmentRegion Ak-
tivität verläuft nach dem ähnlichen Muster, da diese Aktivität die Rollen von frg:fragmentExit
und frg:fragmentEntry Aktivitäten beim Mapping übernimmt.

5.2.5 Ausführung der Logik der eingeführten APIs

Damit die Nachrichten von den Web Services der FragmentManagement API und Fragment-
Composition API von den richtigen Prozessinstanzen verarbeitet werden können, wird anhand
von der Instanz Id im Inhalt der Nachricht die richtige Prozessinstanz ausgewählt. Anhand
des Namens des Web Services wird entschieden, ob eine Nachricht an die FC Proxy Kompo-
nente (siehe Kapitel 3.8) übergeben wird, oder ob diese von dem Prozess selbst behandelt
werden soll. Beim Aufruf von den Operationen des Web Services der FragmentComposition
API Schnittstelle wird eine gleichnamige Methode der Klasse FragmentCompositionAPIIm-
pl aufgerufen. Um die Operationen glue(...), wireAndMap(...), ignoreFragmentEntry(...) und
ignoreFragmentExit(...) der Aktivitäten aufrufen zu können, werden die Channels benutzt.
Der Aufruf einer Operation eines Channels wird dabei als eine Arbeitseinheit von der Jacob
Komponente verarbeitet. Da die Channels keine Rückgabeparameter erlauben, wird bei den
Aufrufen dieser Operationen außer den für die Komposition der Prozessfragmenten notwen-
digen Informationen noch ein Objekt der Klasse FragmentCompositionResponse (Listing 5.11)
übergeben. Diese Klasse erlaubt das Senden des Ergebnisses der aufgerufenen Operation an
den Web Service aufrufenden Partner.

70



5.3 Erweiterung der ODE Data Access Objects Komponente

5.2.6 FC Analyser

Die Operationen getFragmentContainers(...), getDanglingExits(...), getDanglingEntries(...), getVa-
riablesToMap(...), getPartnerLinksToMap(...), getCorrelationSetsToMap(...), getIgnorableEntries(...),
getIgnorableExits(...), getAvailableVariables(...), getAvailablePartnerLinks(...), getAvailableCorrelati-
onSets(...) und getProcessImage(...) verändern den Prozessablauf nicht und dienen lediglich
dem Abfragen des aktuellen Zustands der Prozesskomposition. Aus diesem Grund werden
diese Operationen durch analysieren der kompilieren Prozessdarstellung umgesetzt.

In diesem Abschnitt wird nur auf die Operationen getFragmentContainers(...) und getProcessI-
mage(...) näher eingegangen, da die Umsetzung der restlichen Operationen keine komplexen
Algorithmen erfordert.

Die Operation getFragmentContainers(...) liefert die aktiven frg:fragmentRegion, frg:fragmentFlow
und frg:fragmentSequence Aktivitäten, die das Einkleben der neuen Prozessfragmenten er-
lauben. Dafür wird die Menge von frg:fragmentRegion Aktivitäten gebildet, in die noch kein
Prozessfragment eingeklebt wurde. In diese Menge werden die frg:fragmentFlow Aktivitäten
hinzugefügt, die sich in dem Prozessbaum über den unverbundenen frg:fragmentExit Akti-
vitäten befinden. Diese Menge wird anschließend mit den frg:fragmentSequence Aktivitäten
vervollständigt, die am ende der Sequenz eine unverbundene frg:fragmentExit Aktivität
enthalten. Um nur die Aktiven Container zurückzugeben wird diese Menge mit der Menge
der aktiven Containers geschnitten. Dies ist notwendig um nur die Aktiven Containers
zu erhalten. Zurückgeben der Menge der Aktiven Containers wäre dabei inkorrekt, da die
frg:fragmentRegion Aktivitäten jeweils nur eine Klebeoperation erlauben und nach dem Kleben
noch Aktiv sind bis diese durch Verbinden mit einer frg:fragmentExit Aktivität abgeschlos-
sen werden. Des weiteren wird geprüft, ob die Anzahl der eingeklebten Prozessfragmente
kleiner ist als die Anzahl der möglichen Klebeoperationen. Falls dies der Fall ist, wird die
oben beschriebene Menge von Containern zurückgegeben, sonst wird eine leere Menge
zurückgegeben, da keine Klebeoperationen mehr möglich sind.

Die Operation getProcessImage(...) liefert die graphische Darstellung von dem Prozessmodell.
Der Aufbau des Bildes erfolgt dabei rekursiv. Zuerst wird rekursiv die Größe der graphischen
Darstellung jeder Aktivität ermittelt und deren Position auf der Zeichenfläche bestimmt.
Danach wird die entsprechend große Zeichenfläche erstellt um den gesamten Prozess
abbilden zu können. Schließlich werden die graphische Darstellungen der Aktivitäten
gezeichnet.

Die Resultate dieser Operationen werden ähnlich den glue(...), wireAndMap(...), ignoreFrag-
mentEntry(...) und ignoreFragmentExit(...) Operationen mit Hilfe der Klasse FragmentComposi-
tionResponse zurückgegeben.

5.3 Erweiterung der ODE Data Access Objects Komponente

Damit zu jeder Aktivität der entsprechende Channel gefunden werden kann, wird die Abbil-
dung {Prozessinstanz Id, Aktivitäts Id} -> {Channel, Channel Typ} in der Datenbank gespeichert.

71



5 Umsetzung

Listing 5.12 SQL Ausdruck zum Erstellen der Tabelle für Speicherung der Channels
CREATE TABLE IF NOT EXISTS `ode_channel_selector` (

`PROCESS_IID` bigint(20),

`ELEMENT_ID` bigint(20),

`CHANNEL` varchar(255) DEFAULT NULL,

`CHANNEL_TYPE` bigint(20),

PRIMARY KEY (`PROCESS_IID`, `ELEMENT_ID`)

) ENGINE=InnoDB DEFAULT CHARSET=latin1;

Listing 5.13 SQL Ausdruck zum Erstellen der Tabelle für den Mapping
CREATE TABLE IF NOT EXISTS `ode_element_mapping` (

`PROCESS_IID` bigint(20),

`ACTIVITY_ID` bigint(20),

`ELEMENT_ID` bigint(20),

`MAPPING_DATA` text,

PRIMARY KEY (`PROCESS_IID`, `ACTIVITY_ID`, `ELEMENT_ID`)

) ENGINE=InnoDB DEFAULT CHARSET=latin1;

Des weiteren muss Mapping persistent gehalten werden. Dafür wird die Abbildung {Pro-
zessinstanz Id, Activity Id, Element Id} -> {Element-Wert} verwendet. Zu diesem Zweck werden
zusätzliche Data Access Objects Benötigt. Data Access Objects werden in Apache ODE mit Hilfe
von Java Persistence API umgesetzt. Die {Prozessinstanz Id, Aktivitäts Id} und {Prozessinstanz Id,
Activity Id, Element Id} Tupeln spielen dabei die Rolle der Hauptschlüssel der entsprechenden
Tabellen. Entsprechend dieser Erweiterung muss das Datenbankschema, wie in Listings 5.12

und 5.13 gezeigt ist, erweitert werden.

Dabei werden nicht die Channels selbst, sondern deren Ids gespeichert. Jacob Komponente
erlaubt das Auffinden von dem Channel nach seiner Id, was genutzt wird, nachdem die
Channel Id aus der Datenbanktabelle abgefragt wird.

5.4 Mediator-Komponente

Die Mediator-Komponente ist für die Konvertierung von Variablen, sowie Correlation Sets
benötigt. Diese Komponente soll um neue Transformationsregeln erweiterbar sein, ohne
den Quellcode neu kompilieren zu müssen. Zu diesem Zweck wird XSLT 2.0 (Kapitel
2.6) eingesetzt. Die Transformationsregeln für die Variablen werden dabei in der Datei
var_mediator.xslt und für die Correlation Sets in der Datei cset_mediator.xslt beschrieben. Diese
lassen sich bei bedarf erweitern, ohne den Quellcode kompilieren zu müssen.

5.4.1 Variable Mediation

Im Listing 5.14 wird der Inhalt der var_mediator.xslt Datei mit dem Beispiel einer Regel
der Konvertierung des boolean Datentyps zum integer Datentyp gezeigt. Diese enthält zwei
globale Parameter.

72



5.4 Mediator-Komponente

Listing 5.14 Beispiel einer var_mediator.xslt Datei mit der Regel der Konvertierung von boolean
Datentypen zum integer Datentypen.
<xsl:stylesheet version='1.0'

xmlns:xsl='http://www.w3.org/1999/XSL/Transform'

xmlns:xs="http://www.w3.org/2001/XMLSchema">

<xsl:variable name="integerType" as="xs:QName"

select="QName('http://www.w3.org/2001/XMLSchema','integer')" />

<xsl:variable name="booleanType" as="xs:QName"

select="QName('http://www.w3.org/2001/XMLSchema','boolean')" />

<xsl:param name="from" as="xs:QName" />

<xsl:param name="to" as="xs:QName" />

<xsl:output method="xml" />

<xsl:template match="/">

<xsl:if test="$from = $booleanType and $to = $integerType">

<xsl:element name="temporary-simple-type-wrapper">

<xsl:if test="xs:boolean(/)">

<xsl:text>1</xsl:text>

</xsl:if>

<xsl:if test="xs:boolean(/) != true()">

<xsl:text>0</xsl:text>

</xsl:if>

</xsl:element>

</xsl:if>

</xsl:template>

</xsl:stylesheet>

Listing 5.15 Interne Darstellung des Wertes einer boolean Variable mit dem Wert true in ODE
<temporary-simple-type-wrapper>true</temporary-simple-type-wrapper>

• from Parameter gibt an, in welchem Datentyp die zu konvertierenden Daten vorliegen.

• to Parameter gibt an, in welchen Datentyp die Daten konvertiert werden sollen.

Der Wert der zu transformierenden Variable wird als XML dem XSLT Transformator überge-
ben.

Der im Listing 5.14 definierte Template wird auf das Wurzelelement der zu transformie-
renden XML Daten angewendet. Falls der from Parameter gleich xsd:boolean und der to
Parameter gleich xsd:integer ist, wird die Regel angewendet. Dabei wird ein <temporary-
simple-type-wrapper> Element erstellt, das als Wrapper bei der Speicherung von einfachen
Datentypen in ODE verwendet wird. Als Wert dieses Elements wird ’1’ gesetzt falls der Wert
des Wurzelelements (des <temporary-simple-type-wrapper> Elements Listing 5.15) gleich
’true’ ist, und ’0’ sonst. Somit würde im Listing 5.15 dargestellte Variable zu der im Listing
5.16 dargestellten Variable transformiert.

73



5 Umsetzung

Listing 5.16 Interne Darstellung des Wertes einer integer Variable mit dem Wert 1 in ODE
<temporary-simple-type-wrapper>1</temporary-simple-type-wrapper>

Listing 5.17 XML Darstellung eines initialisierten Correlation Sets
<?xml version="1.0" encoding="UTF-8"?>

<CorrelationSet>

<property name="q0:property1"

xmlns:q0="http://example.com/bpel/process">Wert1</property>

<property name="q0:property2"

xmlns:q0="http://example.com/bpel/process">Wert2</property>

</CorrelationSet>

5.4.2 Correlation Set Mediation

In ODE werden die Werte von Correlation Sets als eine Liste von Strings gespeichert. Um Cor-
relation Set transformieren zu können werden diese Werte mit den dazugehörigen Properties
als XML dargestellt, durch die Mediator-Komponente transformiert und wieder in eine
Liste von Strings umgewandelt. Die XML Darstellung eines initialisierten Correlation Sets
ist im Listing 5.17 dargestellt. Das Wurzelelement <CorrelationSet> enthält die <property>
Elemente, die für Properties des zu transformierenden Correlation Sets stehen. Diese werden
durch das Attribut name identifiziert. Wert der Property wird dabei als Wert des <property>
Elements angegeben.

Der Inhalt der cset_mediator.xslt Datei, die zur Konvertierung von Correlation Sets verwendet
wird, ist im Listing 5.18 dargestellt. Diese enthält sechs globale Parameter

• fromProcess Parameter gibt an, aus welchem Prozessfragment der Wert des Correlation
Sets transformiert wird.

• toProcess Parameter gibt an, welchem Prozessfragment der Correlation Set gehört, in
deren Darstellung die Daten transformiert werden sollen.

• fromCSetName Parameter gibt den Namen des zu transformierenden Correlation Sets
an.

• toCSetName Parameter gibt den Namen des Correlation Sets an, zu dem die Daten
transformiert werden sollen.

• fromScopeName Parameter gibt den Namen des Scopes an, der den Correlation Set
definiert, der im fromCSetName Parameter angegebenen ist.

• toScopeName Parameter gibt den Namen des Scopes an, der den Correlation Set
definiert, der im toCSetName Parameter angegebenen ist.

Die zu transformierenden Daten werden wie im Listing 5.17 gezeigt dargestellt.

74



5.4 Mediator-Komponente

Listing 5.18 Beispiel einer cset_mediator.xslt Datei.
<xsl:stylesheet version='1.0'

xmlns:xsl='http://www.w3.org/1999/XSL/Transform'

xmlns:xs="http://www.w3.org/2001/XMLSchema">

<xsl:variable name="fragment1" as="xs:QName"

select="QName('http://example.com/bpel/process','fragment1')" />

<xsl:variable name="fragment2" as="xs:QName"

select="QName('http://example.com/bpel/process','fragment2')" />

<xsl:variable name="property2" as="xs:QName"

select="QName('http://example.com/bpel/process','property2')" />

<xsl:param name="fromProcess" as="xs:QName" />

<xsl:param name="toProcess" as="xs:QName" />

<xsl:param name="fromCSetName" as="xs:string" />

<xsl:param name="toCSetName" as="xs:string" />

<xsl:param name="fromScopeName" as="xs:string" />

<xsl:param name="toScopeName" as="xs:string" />

<xsl:output method="xml" />

<xsl:template match="/CorrelationSet">

<xsl:element name="CorrelationSet">

<xsl:apply-templates select="./property" />

</xsl:element>

</xsl:template>

<xsl:template match="property">

<xsl:if test="$fromProcess = $fragment1 and $toProcess = $fragment2 and

$fromCSetName = 'corr_set1' and $toCSetName = 'corr_set2'">

<xsl:if test="resolve-QName(./@name, .) = $property2">

<xsl:copy-of select="." />

</xsl:if>

</xsl:if>

<xsl:if test="$fromCSetName = $toCSetName">

<xsl:copy-of select="." />

</xsl:if>

</xsl:template>

</xsl:stylesheet>

Listing 5.18 enthält eine Transformationsregel. Diese Regel weist XSLT-Prozessor
an die Property mit dem QName {http://example.com/bpel/process}property2 zu ko-
pieren falls Correlation Set mit dem Namen corr_set1 des Prozessfragments
{http://example.com/bpel/process}fragment1 auf den Correlation Set mit dem Namen
corr_set2 des Prozessfragments {http://example.com/bpel/process}fragment2 abgebildet wird.
Sowie alle Properties unabhängig davon, welche Prozessfragmente beteiligt sind zu kopieren,
falls die Namen der Correlation Sets übereinstimmen.

75



5 Umsetzung

Listing 5.19 Web Service
AxisConfiguration axisConf;

FragmentManagement _fragmentMgmt;

...

WSDLReader wsdlReader = WSDLFactory.newInstance().newWSDLReader();

File fcmwsdlFile = new File(rootpath + "/fcmapi.wsdl");

Definition fcdef = wsdlReader.readWSDL(fcmwsdlFile.toURI().toString());

AxisService fmService = ODEAxisService.createService(

axisConfig, FM_SERVICE_NAME, FM_PORT_NAME, FM_AXIS2_NAME,

fcdef, new DynamicMessageReceiver<FragmentManagement>(_fragmentMgmt));

axisConfig.addService(fmService);

5.5 Erweiterung der ODE Integrationlayer Komponente

Zugriff auf die Services des Management API der Apache ODE wird durch die ODE In-
tegration Layer ermöglicht. Entsprechend werden auch die FragmentManagement API und
FragmentComposition API Schnittstellen angeboten. In dieser Diplomarbeit wird AXIS2 als
ODE Integration Layer Komponente verwendet, somit werden diese Schnittstellen als Web
Services angeboten.

Die Management API von Apache ODE wird mit Hilfe der Klasse ManagementService als Web
Services angeboten. Diese muss auch erweitert werden um die Schnittstelle FragmentMana-
gement API als Web Service anzubieten. Zu diesem Zweck wird die dazugehörige WSDL
Datei eingelesen und wie in Listsing 5.19 gezeigt ein Web Service erstellt. Die Logik des
Web Services wird in diesem Listing durch die Klasse FragmentManagement implementiert.
Beim Aufruf dieses Web Services wird mit Hilfe von Reflections die Methode der Klasse
FragmentManagement aufgerufen, die den gleichen Namen wie die aufgerufene Web Service
Operation trägt. Dieser Ansatz passt für die Schnittstelle FragmentManagement API, da diese
keine Interaktion mit den Aktivitäten benötigt und deren Operationen sofort ausgeführt
werden können.

Die Nachrichten für die Web Services, die von den Prozessen angeboten werden, werden mit
der Klasse ODEService empfangen und an die ODE BPEL Runtime Komponente weitergeleitet.
Um die zwischen den Komponenten ODE Integrationlayer und ODE BPEL Runtime ausge-
tauschten Nachrichten zu repräsentieren, wird die Schnittstelle MessageExchange benutzt.
Diese ermöglicht den Zugriff auf die Daten über die aufgerufene Web Service Operation,
sowie auf die empfangene Nachricht. Damit diese Daten im Falle eines Absturzes nicht
verloren gehen, werden diese persistiert. Ähnlich werden auch die Nachrichten von dem Web
Service der FragmentComposition API Schnittstelle an die ODE BPEL Runtime Komponente
übergeben.

76



5.6 Werkzeug für die Fragmentenkomposition

5.6 Werkzeug für die Fragmentenkomposition

Um die Zusammensetzung von Prozessfragmenten benutzerfreundlich zu gestalten, wird
ein Werkzeug benötigt, das die FragmentManagement API und die FragmentComposition
API benutzt und deren Funktionalität über graphische Benutzeroberfläche anbietet. Die
Apache ODE besitzt eine Web-Schnittstelle, die dem Benutzer die Verwaltung der Apache
ODE durch die Verwendung der Management API erlaubt. Aus diesem Grund wurde die
Funktionalität der eingeführten Schnittstellen in diese Web-Schnittstelle integriert (Abbildung
5.2). Die Management API der Apache ODE ist in die Web-Schnittstelle wie folgt integriert
(Abbildung 5.3). Die Apache ODE besitzt statische HTML-Seiten, die mit Hilfe eines Browsers
abgerufen werden können. Die HTML-Seiten referenzieren JavaScript, der die Funktionalität
der Management API durch die entsprechenden Web Service Aufrufe nutzt. Die von den
Web Services erhaltene Daten werden durch JavaScript in die HTML-Seiten im Browser
eingefügt. Dieses Prinzip wurde auch bei der Integration von den FragmentManagement
API und FragmentComposition API in die Web-Schnittstelle verwendet. Zu diesem Zweck
wurde eine neue HTML-Seite erstellt, die die Daten der Fragmentkomposition darstellt,
diese referenziert den JavaScript für die Aufrufe von Web Services der FragmentManagement
API und FragmentComposition API. Dieser fügt anschließend die empfangenen Daten in die
HTML-Seite ein.

5.7 Erstellung von Prozessinstanzen

Bei der Verwendung von Prozessfragmenten ist für jede Prozessinstanz ein separates Pro-
zessmodell notwendig. Das folgt aus der Tatsache, dass zwei Prozessinstanzen des gleichen
Startfragments durch Ankleben unterschiedlicher Prozessfragmenten unterschiedliche Pro-
zessmodelle bilden.

Eine Möglichkeit dieses Problem zu lösen ist in [Tel10] vorgestellt. Dabei wird bei dem
Ankleben eines Prozessfragments ein neues Prozessmodell erstellt und die laufende Prozess-
instanz auf das neue Prozessmodell migriert. Eine andere Möglichkeit ist bei dem Erstellen
einer Prozessinstanz automatisch eine neue Kopie von dem Startfragment zu deployen und
diese Kopie als Prozessmodell für die neue Prozessinstanz zu verwenden. Diese kann zur
Laufzeit auf der Ebene der internen Repräsentation des Prozesses durch Ankleben von
Prozessfragmenten geändert werden, ohne die Prozessinstanzmigration durchführen zu
müssen. Der letzte Ansatz wurde in dieser Diplomarbeit angewendet. Um eine Kopie des
Startfragments bei der Erstellung einer neuen Prozessinstanz zu deployen, wird Web Service
der Management API der Apache ODE verwendet. Dazu müssen die zu dem Startfragment
gehörigen Dateien zu einem ZIP-Archive komprimiert werden und mit Base64 kodiert an den
Web Service geschickt werden. Anschließend wird das deployte Prozessmodell abgefragt
und für die Erstellung der Prozessinstanz benutzt.

77



5 Umsetzung

Abbildung 5.2: Werkzeug für die Fragmentenkomposition

78



5.7 Erstellung von Prozessinstanzen

Abbildung 5.3: Apache ODE Web Interface

79





6 Anwendungsbeispiel

Um das in dieser Arbeit vorgestellte Konzept sowie seine Umsetzung zu prüfen, wurde ein
wissenschaftlicher Workflow für die Festkörpersimulation aus [Hot10] verwendet. Dieser
Prozess wurde in Prozessfragmente aufgeteilt, die zur Laufzeit zusammengesetzt wurden
um vollständigen Prozess zu bilden. In folgenden Abschnitten wird auf den verwendeten
Prozess näher eingegangen, sowie auf die erzeugten Prozessfragmente und deren Zusam-
mensetzung.

6.1 Ziel der Festkörpersimulation

Die mit Workflow-Technologie realisierte Simulation erlaubt strukturelle Veränderungen
eines metallischen Festkörpers über längere Zeiträume zu simulieren. Die Simulation selbst
erfolgt mit Hilfe von Fortran77 Anwendungen, diese werden durch Web Service Aufrufe
gestartet. Die Workflow-Technologie kommt dabei zum Einsatz, um Festkörpersimulationen
inklusive Vor- und Nachbereitung automatisiert durchführen zu können [Hot10].

6.2 Überblick über die Simulationsanwendung

In diesem Kapitel wird ein kurzer Überblick über die Funktionsweise der Simulationsanwen-
dung geboten.

6.2.1 Aufbau und Funktionsweise der Simulationsanwendung

Die Simulationsanwendung besteht aus folgenden Fortran Anwendungen:

• OpalBCC

• OpalABCD

• OpalMC

• OpalCLUS

• OpalXYZR

81



6 Anwendungsbeispiel

OpalBCC OpalABCD

OpalMC

OpalCLUS

OpalXYZR

V
o
rgeh

en
sw

eise

Abbildung 6.1: Aufbau der Simulationsanwendung [Hot10].

Die Reihenfolge der Ausführung von diesen Anwendungen ist auf der Abbildung 6.1
dargestellt.

Die Anwendungen OpalBCC und OpalABCD werden benutzt, um die Konfigurationsdateien
für die Simulation zu erstellen. Die OpalBCC Anwendung ist für das Erstellen der Kristallgit-
ters zuständig. Die OpalABCD erstellt die Energiekonfigurationen für die Simulation. Diese
generierten Kristallgitter- und Energiekonfigurationen werden als Ausgangsdaten benutzt
um die Simulation durchzuführen. Die Simulation selbst erfolgt mit Hilfe eines Monte-Carlo
Algorithmus, dieser wurde in der OpalMC Anwendung implementiert. Um den Verlauf der
Simulation analysieren zu können, erlaubt diese Anwendung mit einer bestimmten Frequenz
Snapshots, also den Zustand der Simulation (die Positionen aller Atome im Kristallgitter) zu
speichern. Diese Snapshots werden von den Anwendungen OpalCLUS und OpalXYZR für die
Analyse benutzt. Die OpalCLUS Anwendung ist für das Auffinden von Clustern von Atomen
sowie der Identifizierung der Atomen innerhalb eines Clusters zuständig. Die OpalXYZR
Anwendung berechnet die Radien der gefundenen Cluster im Kristallgitter [Hot10].

6.2.2 Opal Manager

Opal Manager stellt das Bindeglied zwischen dem Benutzer und der Simulationsanwendung
dar und hat die Aufgabe die Simulationen zu erstellen und zu verwalten. Opal Manager
erlaubt auch die zentralisierte Speicherung von den Kristallgitter und Energiekonfigurationen,
die beim Start einer Simulation ausgewählt werden können.

6.2.3 Ressourcen Management

Die verwendete Simulation besteht aus rechenintensiven Anwendungen, die bei paralleler
Ausführung den Rechner überlasten können. Dies kann vor allem dann auftreten, wenn meh-

82



6.3 Prozesse der Simulationsanwendung

rere Simulationen parallel ausgeführt werden. Um dem entgegenzuwirken wurde Ressourcen-
Manager Komponente entwickelt. Diese koordiniert die Aufrufe der rechenintensiven Web
Services und verhindert somit die Rechnerüberlastung. Um eine Anwendung über Web
Service im Simulations-Workflow aufzurufen, ist es notwendig den gewünschten Service zu
akquirieren. Dies ermöglicht die Kontrolle über die Last der für die Simulation verwendeten
Rechnern. Wenn ein benötigter Service und somit die Rechenkapazität frei wird, wird EPR
des angeforderten Services als Resultat des Akquirierens asynchron zurückgegeben.

Zusätzlich zu dieser Aufgabe übernimmt Ressourcen-Manager die Aufgabe der zentralen
Datenspeicherung. Die Operationen zum Lesen und Schreiben von Dateien werden von dem
Ressourcen-Manager über Web Service Aufrufe ermöglicht [Hot10].

6.2.4 Akquirieren eines Services

Als Beispiel des Akquirierens eines Services kann der auf der Abbildung 6.2 dargestellte
Prozessausschnitt verwendet werden. Als Erstes in diesem Ausschnitt wird eine Correlation
Id beim Ressourcen Manager angefordert. Diese wird bei der Korrelation der asynchro-
nen Operationen des Ressourcen Managers verwendet. Als nächstes wird die Nachricht
der Service-Anfrage erzeugt, in dieser Nachricht wird die Correlation Id angegeben. An-
schließend wird die Operation acquireService des Ressourcen Managers aufgerufen um den
gewünschten Service zu akquirieren. Da als Rückgabe dieser Operation unterschiedliche
Nachrichten empfangen werden sollen, wird pick Aktivität benutzt. Falls die Nachricht
aquireServiceCallback empfangen wird, wird der Service auf die erhaltene EPR gebunden und
kann benutzt werden. Wenn der Service nicht mehr benötigt wird, muss er mit Hilfe der
releaseService Operation des Ressourcen Managers freigegeben werden.

6.3 Prozesse der Simulationsanwendung

Die Simulationsanwendung besteht aus zwei Prozessen. Der erste Prozess OpalMainProc
führt die eigentliche Simulation durch, der Prozess OpalSnapProcLink analysiert die erstellten
Snapshots. Diese Prozesse werden auf der Abbildung 6.3 schematisch dargestellt.

6.3.1 Haupt-Prozess

Der Haupt-Prozess beginnt mit dem Initialisieren des Prozesses, was die Registrierung
der Prozessinstanz bei OpalManager und Abfragen einer Correlation Id einschließt, die bei
Kommunikation mit der Prozessinstanz benutzt wird. Die Ausführung von den OpalBCC
und OpalABCD Anwendungen ist in den Prozess nicht eingeschlossen, da nicht für jede
Simulation eine neue Konfiguration benötigt wird. Nach der Initialisierung des Prozesses
wird OpalMC Dienst Akquiriert und aufgerufen, anschließend wartet Haupt-Prozess auf die
Rückgabe vom OpalMC Dienst. Als Rückgabe können ein Snapshot für die Nachbearbei-
tung, oder eine Nachricht sein, die den Abschluss der Simulation signalisiert. Um mehrere

83



6 Anwendungsbeispiel

Abbildung 6.2: Beispiel des Akquirierens eines Services in BPEL [Hot10].

Nachrichten vom OpalMC Dienst empfangen zu können, befindet sich die entsprechende
pick Aktivität innerhalb einer Schleife. Für jeden erhaltenen Snapshot wird ein Nachberei-
tungsprozess gestartet. In der nächsten Schleife des Haupt-Prozesses wird auf das Ende
der Nachbereitung aller Snapshots gewartet. Wurden alle Snapshots verarbeitet, so wird die
Visualisierung der verarbeiteten Snapshots durchgeführt.

6.3.2 Nachbereitungsprozess

Der Nachbereitungsprozess akquiriert den OpalCLUS Dienst und ruft diesen auf um den
Snapshot zu analysieren. Nachdem der OpalCLUS Dienst die Datenverarbeitung abschließt,
wird der Dienst wieder freigegeben und der Hauptprozess über den Abschluss der Verarbei-
tung benachrichtigt.

6.4 Aufteilung des Prozesses in Prozessfragmente

Im Folgenden wird die Aufteilung des Haupt-Prozesses in Prozessfragmente erläutert. Der
Nachbereitungsprozess wird in Prozessfragmente nicht aufgeteilt, da dieser Prozess für

84



6.4 Aufteilung des Prozesses in Prozessfragmente

Abbildung 6.3: Schematische Darstellung der Simulationsprozessen [Hot10].

jeden Snapshot aufgerufen wird, und man für jeden Snapshot den Nachbereitungsprozess
neu aus Prozessfragmenten zusammensetzen müsste.

Der Haupt-Prozess besteht aus drei logischen Blöcken die nacheinander ausgeführt wer-
den: Prozessinitialisierung, Ausführung der Monte-Carlo Simulation und Visualisierung.
Entsprechend dieser Einteilung wird der Haupt-Prozess in Prozessfragmente aufgeteilt.
Zusätzlich wurde der Block von Monte-Carlo Simulation in zwei Prozessfragmente aufgeteilt.
Im ersten Prozessfragment der Monte-Carlo Simulation wird OpalMC Dienst akquiriert, und
im zweiten wird dieser Aufgerufen. Somit ergibt die Aufteilung des Simulationsprozesses,
wie es auf der Abbildung 6.4 gezeigt ist.

Das Startfragment der Simulationsanwendung ist für das Initialisieren der Simulation
zuständig und ist auf der Abbildung 6.5 dargestellt. Dieser Prozessfragment registriert die

85



6 Anwendungsbeispiel

Prozessinstanz beim OpalManager, und benachrichtigt diesen über den Start der Simulation.
Anschließend fragt dieses Prozessfragment die Correlation Id beim Ressourcen Manager ab.
Um an dieses Prozessfragment einen anderen Prozessfragment ankleben zu können wurde
eine frg:fragmentExit Aktivität am Ende der Sequenz hinzugefügt.

Das OpalMC Prozessfragment (Abbildung 6.6) akquiriert den OpalMC dienst und ent-
hält Anweisungen für die Fehlerbehandlung. Im Falle der erfolgreichen Akquirierung
des Dienstes wird das weitere Vorgehen des Prozesses nicht spezifiziert und durch eine
frg:fragmentRegion Aktivität erlaubt die entsprechende Logik einzufügen. Um dieses Prozess-
fragment in andere Prozessfragmente einfügen zu können, wurde am Anfang der Sequenz
die frg:fragmentEntry Aktivität und am Ende der Sequenz die frg:fragmentExit Aktivität hinzu-
gefügt. Die frg:fragmentEntry Aktivität definiert folgende Elemente die Mapping benötigen:

• Variable corrIDResponse: Diese Variable speichert die im Startfragment abgefragte
Correlation Id, diese wird bei der Kommunikation mit dem Ressourcen Manager benutzt.

• Variable runOpalMainProcRequest: Diese Variable speichert die für die Simulation
wichtigen Daten, wie Kontext Id, Anzahl der gewünschten Snapshots etc.

• Correlation Set corrOpalManager: Dieser Correlation Set wird benötigt, um die Nachricht
für den Abbruch der Simulation korrelieren zu können.

Der OpalMCCallback Prozessfragment (Abbildung 6.7) ruft den OpalMC Dienst auf und emp-
fängt die Snapshots der Simulation von diesem Dienst. Falls ein Snapshot empfangen wird,
wird der Prozess für die Snapshot-Verarbeitung gestartet. Das Prozessfragment wartet bis die
Ausführung des OpalMC Dienstes abgeschlossen ist und alle Snapshots verarbeitet wurden.
Um diese Arbeitsschritte durchführen zu können, werden die von der frg:fragmentEntry
Aktivität definierten Daten benötigt:

• Variable runOpalMainProcRequest: Diese Variable speichert die für die Simulation
wichtigen Daten, wie Kontext Id, Anzahl der gewünschten Snapshots etc.

• Variable corrIDResponse: Diese Variable speichert die im Startfragment abgefragte
Correlation Id, diese wird bei der Kommunikation mit dem Ressourcen Manager benutzt.

• Variable ServiceTicketID: Diese Variable speichert eine Ticket Id, die beim Akquirieren
des Dienstes erstellt wird. Diese Id wird in der Nachricht für den Aufruf des OpalMC
Services benötigt.

• Partner Link OpalMCLink11: Dieser Partner Link wird benutzt, um den OpalMC dienst
Aufzurufen.

• Correlation Set corrResourceManager: Dieser Correlation Set wird benutzt um auf die
Nachrichten im Fehlerfall reagieren zu können.

• Correlation Set corrOpalManager: Dieser Correlation Set wird benutzt, um die Nachricht
über den Abbruch der Simulation korrelieren zu können.

86



6.4 Aufteilung des Prozesses in Prozessfragmente

Abbildung 6.4: Aufteilung des Prozesses in Prozessfragmente.

87



6 Anwendungsbeispiel

Abbildung 6.5: Startfragment der Simulationsanwendung.

Der OpalMedia Prozessfragment (Abbildung 6.8) akquiriert und ruft den OpalMedia Dienst auf,
um die Daten der Snapshots zu visualisieren. Zuletzt wird OpalManager über den Abschluss
des Simulationsprozesses benachrichtigt. Die frg:fragmentEntry Aktivität am Anfang der
Sequenz dieses Prozessfragments definiert folgende Elemente, die Mapping benötigen:

• Variable corrIDResponse: Diese Variable speichert die im Startfragment abgefragte
Correlation Id, diese wird bei der Kommunikation mit dem Ressourcen Manager benutzt.

• Variable ctxID: Diese Variable speichert die Kontext Id der Simulation, diese wird
benutzt, um auf die Dateien der Simulation zugreifen zu können.

• Variable callbackBaseURL: Diese Variable speichert URL des Servers (z.B.
http://localhost:8080/), auf dem der Haupt-Prozess läuft und wird benutzt, um
die Callback EPR zu erzeugen, die für das Akquirieren eines Services benutzt wird.

• Variable simID: Diese Variable speichert die Simulations Id und wird benutzt, um den
Status der Simulation an OpalManager zu melden.

• Correlation Set corrOpalManager: Dieser Correlation Set wird benutzt, um die Nachricht
über den Abbruch der Simulation empfangen zu können.

88



6.5 Zusammensetzung von Prozessfragmenten zur Laufzeit

Abbildung 6.6: OpalMC Prozessfragment der Simulationsanwendung.

6.5 Zusammensetzung von Prozessfragmenten zur Laufzeit

Für das Starten einer Simulation wurde in [Hot10] die Anwendung OpalClientApplication
entwickelt. Diese Anwendung wird weiterhin benutzt, da die Aufteilung des Prozesses in
Prozessfragmente für diese Anwendung transparent ist. Beim Starten einer neuen Simulation
wird das Startfragment des Haupt-Prozesses instantiiert und ausgeführt. Der Kontrollfluss
wird dabei an der frg:fragmentExit Aktivität am Ende der Sequenz angehalten und es besteht
die Möglichkeit ein Prozessfragment einzukleben. Die Prozessfragmente abgesehen von
dem Startprozessfragment können zum beliebigen Zeitpunkt deployt werden, diese müssen
jedoch vor dem Einkleben deployt sein.

89



6 Anwendungsbeispiel

Abbildung 6.7: OpalMCCallback Prozessfragment der Simulationsanwendung.

90



6.5 Zusammensetzung von Prozessfragmenten zur Laufzeit

Abbildung 6.8: OpalMedia Prozessfragment der Simulationsanwendung.

91



6 Anwendungsbeispiel

Abbildung 6.9: Liste der Prozessinstanzen von Apache ODE

Abbildung 6.10: Einkleben von dem OpalMC Prozessfragment.

Um die Komposition der Prozessfragmente durchzuführen, kann Web-Interface von ODE
benutzt werden. Dafür soll die erstellte Prozessinstanz in der Liste der Prozessinstanzen
des Web-Interfaces gefunden werden und auf den Button Composition gedrückt werden
(Abbildung 6.9). Somit gelangt man zur Maske für die Komposition von Prozessfragmenten
(Abbildung 5.2).

Da nach der Initialisierung des Prozesses die Monte-Carlo Simulation ausgeführt werden
soll, muss in die frg:fragmentSequence Aktivität mit dem Namen MainProcess das OpalMC
Prozessfragment eingeklebt werden (Abbildung 6.10).

Nachdem das Prozessfragment eingeklebt wurde, müssen die frg:fragmentExit Aktivität mit
dem Namen mainProcessExit und die frg:fragmentEntry Aktivität mit dem Namen MCEntry
verbunden werden (Abbildung 6.11). Dabei müssen die Variablen corrIDResponse, runO-
palMainProcRequest und der Correlation Set corrOpalManager gemappt werden. Um diesen
Vorgang übersichtlich zu halten, wurden die dazugehörigen Variablen in den Prozessfrag-
menten gleich genannt. Somit müssen die gleichen Namen von Variablen und Correlation

92



6.5 Zusammensetzung von Prozessfragmenten zur Laufzeit

Abbildung 6.11: Verbinden von der frg:fragmentExit Aktivität des Startfragments und der
frg:fragmenEntry Aktivität des OpalMC Prozessfragments.

Abbildung 6.12: Einkleben von dem OpalMCCallback Prozessfragment.

Sets beim Mapping angegeben werden. Eine Ausnahme bilden die Partner Links, da das
Vorhandensein von zwei Partner Links mit dem gleichen Namen innerhalb eines Prozesses
bei der Apache ODE zu Problemen führt, wurde bei den gleichen Partner Links am Ende
des Namens eine Zahl angehängt.

Nachdem die oben genannten Aktivitäten verbunden wurden, wird OpalMC Service akqui-
riert und man muss das OpalMCCallback Prozessfragment in die frg:fragmentRegion mit dem
Namen callbackRegion einkleben (Abbildung 6.12).

Nach dem Einleben müssen die frg:fragmentRegion Aktivität mit dem Namen callbackRegion
und die frg:fragmentEntry Aktivität mit dem Namen pickServiceCallbackEntry verbunden wer-
den (Abbildung 6.13). Beim Mapping soll man, wie oben beschrieben ist, die gleichnamigen
Elemente auswählen. Die Ausnahme dabei bilden die Variable mit dem Namen Service-
TicketID und der Partner Link mit dem Namen OpalMCLink11. Die Variable ServiceTicketID
existiert in dem Prozessfragment OpalMC nicht. Aus diesem Grund soll beim Mapping die-
ser Variable die Variable mit dem Namen AcquireServiceResponse ausgewählt werden. Diese

93



6 Anwendungsbeispiel

Abbildung 6.13: Verbinden von der frg:fragmentRegion Aktivität des Prozessfragments
OpalMC und der frg:fragmentExit Aktivität des OpalMCCallback Prozessfrag-
ments.

enthält die benötigte Ticket Id. Die Konvertierung von den Datentypen wird dabei durch
Mediation automatisch durchgeführt. Für den Mapping des Partner Links mit dem Namen
OpalMCLink11 soll der Partner Link mit dem Namen OpalMCLink1 ausgewählt werden. Bei
diesem Vorgang muss man jedoch beachten, dass der erhaltene Ticket nur eine gewisse Zeit
gültig ist. Ist der Ticket abgelaufen, so muss der Simulationsprozess neu gestartet werden.

Nachdem die frg:fragmentRegion Aktivität mit der frg:fragmentEntry Aktivität verbunden
wurden, beginnt die Ausführung der Monte-Carlo Simulation. Dies kann einige Zeit in
Anspruch nehmen. Nachdem die Simulation durchgeführt wurde, und alle Snapshots analy-
siert wurden, muss man die Web-Seite aktualisieren um die aktuellen Daten in der Maske
anzeigen zu lassen. Anschließend müssen die frg:fragmentExit Aktivität mit dem Namen
pickServiceCallbackExit und die frg:fragmentRegion Aktivität mit dem Namen callbackRegion
verbunden werden (Abbildung 6.14). Bei dieser Operation wird kein Mapping benötigt.

Als nächstes muss das Prozessfragment mit dem Namen OpalMedia in die frg:fragmentSequence
Aktivität mit dem Namen fragmentSequence-activity-line-214 eingeklebt werden (Abbildung
6.15). Zuletzt müssen die frg:fragmentExit Aktivität mit dem Namen mcSuccessExit und die
frg:fragmentEntry Aktivität mit dem Namen OpalMediaEntry verbunden werden (Abbildung

94



6.5 Zusammensetzung von Prozessfragmenten zur Laufzeit

Abbildung 6.14: Verbinden von der frg:fragmentExit Aktivität des Prozessfragments OpalMC-
Callback und der frg:fragmentRegion Aktivität des OpalMC Prozessfragments.

Abbildung 6.15: Einkleben von dem OpalMedia Prozessfragment.

6.16). Beim Mapping sollen die gleichnamigen Elemente ausgewählt werden. Die Ausnahme
bilden die Variablen ctxID, simID und callbackBaseURL. Für den Mapping dieser Variablen soll
die Variable mit dem Namen runOpalMainProcRequest angegeben werden. Die Konvertierung
der Datentypen wird automatisch von der Mediator Komponente durchgeführt.

Wenn man nun die Liste der Simulationen in der OpalClientApplication Anwendung aktuali-
siert, wird der Zustand der aktuellen Simulation als finished angegeben, was einen über die
erfolgreiche Durchführung der Simulation informiert.

95



6 Anwendungsbeispiel

Abbildung 6.16: Verbinden von der frg:fragmentExit Aktivität des OpalMC Prozessfragments
und der frg:fragmenEntry Aktivität des OpalMedia Prozessfragments.

96



7 Zusammenfassung und Ausblick

In dieser Diplomarbeit wurde BPEL um die Aktivitäten frg:fragmentScope, frg:fragmentFlow,
frg:fragmentSequence, frg:fragmentRegion, frg:fragmentExit und frg:fragmentEntry erweitert. Diese
Erweiterung ermöglicht die Definition von unvollständigen Prozessen, den Prozessfragmen-
ten. Weiterhin wurde ein Konzept für die dynamische Zusammensetzung von Prozessfrag-
menten zur Laufzeit erarbeitet. Für den Datenaustausch zwischen den zusammengesetzten
Prozessfragmenten wurde Konzept des Mappings von Variablen, Partner Links und Cor-
relation Sets eingeführt. Da es bei dem Datenaustausch zwischen den zusammengesetzten
Prozessfragmenten zu den Fällen kommen kann, bei den die auszutauschende Daten unter-
schiedliche Datentypen haben, wurde Mediation Funktionalität vorgestellt, die mit Hilfe von
XSLT Transformationen die Datentypkonvertierung ermöglicht. An dem Beispiel einer gene-
rischen Architektur der Workflow Management Systemen wurden die für die Umsetzung
dieses Konzeptes benötigten Erweiterungen gezeigt.

Um das Konzept auf die möglichen Schwachstellen zu prüfen, wurde das bestehende
WFMS, die Apache ODE [ODEa], entsprechend erweitert. Als Beispielprozess wurde ein
wissenschaftlicher Workflow aus der Diplomarbeit [Hot10] verwendet. Dieser Prozess wurde
in Prozessfragmente aufgeteilt und zur Laufzeit wieder zusammengesetzt.

Ein Erkenntnis der Aufteilung des Prozesses und deren Zusammensetzung zur Laufzeit
war, dass es ungünstig ist, die zusammengehörige invoke und receive bzw. pick Aktivitäten in
unterschiedliche Prozessfragmente aufzuteilen, da die durch receive bzw. pick Aktivität zu
empfangene Nachricht vor dem Einkleben des entsprechenden Prozessfragmentes an das
WFMS geschickt und von dem WFMS ignoriert werden kann.

Ausblick

Das in dieser Diplomarbeit entwickelte Konzept beschränkt sich auf die manuelle Run-
time Komposition, dieses Konzept kann jedoch erweitert werden, um die Komposition
abhängig von dem Kontext des Prozesses automatisch durchführen zu können. Weiterhin
kann das in dieser Arbeit vorgestellte Konzept um die in der Arbeit [ELU10] vorgestellten
Transaktionskonzepte erweitert werden.

Außerdem kann der in dieser Arbeit auf Basis von Apache ODE entwickelte Prototyp, um die
Prüfung der Korrektheit der Prozessfragmente erweitert werden. So muss z.B. sichergestellt
werden, dass die frg:fragmentEntry und frg:fragmentExit Aktivitäten sich nicht innerhalb von
Standard-BPEL-Aktivitäten befinden. Weiterhin ist es in dem Prototyp möglich durch Verbin-
den von frg:framgentExit und frg:fragmentEntry Aktivitäten im Prozess Zyklen zu erzeugen,

97



7 Zusammenfassung und Ausblick

sowie diese Aktivitäten über die Schleifengrenzen hinweg zu verbinden. Bei dem Verbinden
von frg:fragmentExit und frg:fragmentEntry Aktivitäten soll das WFMS die Komposition auf
diese Situationen prüfen und wenn notwendig die Komposition verhindern.

Das in dieser Arbeit vorgestellte Konzept wurde mit Hilfe eines wissenschaftlichen Work-
flows überprüft, dies reicht jedoch im allgemeinen nicht, um über Praxistauglichkeit des
Konzeptes eine Aussage zu treffen. Aus diesem Grund werden weitere Erfahrungen aus
der Praxis benötigt, um den ausgearbeiteten Konzept zu beurteilen und möglicherweise zu
verbessern.

98



Literaturverzeichnis

[ATEA06] M. Adams, Ter, D. Edmond, W. van der Aalst. Worklets: A Service-Oriented
Implementation of Dynamic Flexibility in Workflows. pp. 291–308. 2006. doi:
10.1007/11914853\_18. URL http://dx.doi.org/10.1007/11914853_18. (Zitiert
auf Seite 10)

[AXI] Apache Software Foundation. Apache Axis2/Java. URL http://axis.apache.

org/axis2/java/core/. (Zitiert auf Seite 57)

[BPE05] WS-BPEL Extension for Sub-processes – BPEL-SPE, 2005. URL http://xml.

coverpages.org/BPEL-SPE-Subprocesses.pdf. (Zitiert auf den Seiten 9 und 37)

[BPE07] Web Services Business Process Execution Language Version 2.0, 2007. URL
http://docs.oasis-open.org/wsbpel/2.0/wsbpel-v2.0.pdf. (Zitiert auf den
Seiten 14, 21, 24, 25 und 46)

[CF04] C. Courbis, A. Finkelstein. Towards an Aspect Weaving BPEL engine. In Y. Coady,
D. H. Lorenz, editors, the Third AOSD Workshop on Aspects, Components, and
Patterns for Infrastructure Software. Lancaster, United Kingdom, 2004. (Zitiert auf
Seite 10)

[ddS] Apache ODE deployment descriptor Schema. URL http://svn.apache.org/

viewvc/ode/trunk/bpel-schemas/src/main/xsd/dd.xsd?view=markup. (Zitiert
auf Seite 59)

[ELU10] H. Eberle, F. Leymann, T. Unger. Transactional Process Fragments - Recovery
Strategies for Flexible Workflows with Process Fragments. In Proceedings of APSCC
2010, pp. 1–8. IEEE Xplore, 2010. URL http://www2.informatik.uni-stuttgart.

de/cgi-bin/NCSTRL/NCSTRL_view.pl?id=INPROC-2010-100&engl=0. (Zitiert auf
den Seiten 9, 10, 11 und 97)

[EUL09] H. Eberle, T. Unger, F. Leymann. Process Fragments. In R. Meersman, T. Dillon,
P. Herrero, editors, On the Move to Meaningful Internet Systems: OTM 2009, Part I,
volume 5870 of Lecture Notes in Computer Science, pp. 398–405. Springer, 2009. doi:
10.1007/978-3-642-05148-7_29. URL http://www2.informatik.uni-stuttgart.

de/cgi-bin/NCSTRL/NCSTRL_view.pl?id=INPROC-2009-73&engl=0. (Zitiert auf
den Seiten 10, 34 und 35)

[HBR08] A. Hallerbach, T. Bauer, M. Reichert. Issues in Modeling Process Variants with
Provop. In Business Process Management Workshops, pp. 56–67. 2008. (Zitiert auf
Seite 10)

99

http://dx.doi.org/10.1007/11914853_18
http://axis.apache.org/axis2/java/core/
http://axis.apache.org/axis2/java/core/
http://xml.coverpages.org/BPEL-SPE-Subprocesses.pdf
http://xml.coverpages.org/BPEL-SPE-Subprocesses.pdf
http://docs.oasis-open.org/wsbpel/2.0/wsbpel-v2.0.pdf
http://svn.apache.org/viewvc/ode/trunk/bpel-schemas/src/main/xsd/dd.xsd?view=markup
http://svn.apache.org/viewvc/ode/trunk/bpel-schemas/src/main/xsd/dd.xsd?view=markup
http://www2.informatik.uni-stuttgart.de/cgi-bin/NCSTRL/NCSTRL_view.pl?id=INPROC-2010-100&engl=0
http://www2.informatik.uni-stuttgart.de/cgi-bin/NCSTRL/NCSTRL_view.pl?id=INPROC-2010-100&engl=0
http://www2.informatik.uni-stuttgart.de/cgi-bin/NCSTRL/NCSTRL_view.pl?id=INPROC-2009-73&engl=0
http://www2.informatik.uni-stuttgart.de/cgi-bin/NCSTRL/NCSTRL_view.pl?id=INPROC-2009-73&engl=0


Literaturverzeichnis

[Hot10] S. Hotta. Ausführung von Festkörpersimulationen auf Basis der Workflow
Technologie, 2010. (Zitiert auf den Seiten 81, 82, 83, 84, 85, 89 und 97)

[JBI05] Java Business Integration (JBI) 1.0, 2005. URL http://www.jcp.org/aboutJava/

communityprocess/final/jsr208/index.html. (Zitiert auf Seite 57)

[KS09] M. Keith, M. Schincariol. Pro JPA 2: Mastering the Java Persistence API. Apress,
Berkely, CA, USA, 1st edition, 2009. (Zitiert auf den Seiten 25, 26 und 27)

[LR00] F. Leymann, D. Roller. Production Workflow - Concepts and Techniques. PTR Pren-
tice Hall, 2000. URL http://www2.informatik.uni-stuttgart.de/cgi-bin/

NCSTRL/NCSTRL_view.pl?id=BOOK-2000-01&engl=0. (Zitiert auf den Seiten 13,
14, 15 und 53)

[ODEa] Apache Software Foundation. Apache Orchestration Director Engine (ODE). URL
http://ode.apache.org/. (Zitiert auf den Seiten 11, 57, 58, 59, 60 und 97)

[ODEb] Apache Software Foundation. WS-BPEL 2.0 Specification Compliance of Apache
ODE. URL http://ode.apache.org/ws-bpel-20-specification-compliance.

html. (Zitiert auf Seite 61)

[SAL+
10] D. Schumm, T. Anstett, F. Leymann, D. Schleicher, S. Strauch. Essential Aspects

of Compliance Management with Focus on Business Process Automation. In
Proceedings of the 3rd International Conference on Business Processes and Services
Computing (BPSC) – INFORMATIK 2010, 27-28 September 2010, Leipzig, Germany,
volume P-177 of Lecture Notes in Informatics (LNI), pp. 127–138. Gesellschaft für
Informatik e.V. (GI), 2010. (Zitiert auf den Seiten 10, 34, 35, 36 und 37)

[SOA07] SOAP Version 1.2 Part 0: Primer (Second Edition), 2007. URL http://www.w3.

org/TR/2007/REC-soap12-part0-20070427/. (Zitiert auf Seite 17)

[STF+
10] E. Sebastian, A. Hilliger von Thile, M. Flehmig, P. Tröger, B. Rudolph, B. Stumm,

M. Lipp, P. Sauter, J. Vajda, W. Dostal, M. Jeckle. Service-orientierte Architekturen
mit Web Services: Konzepte - Standards - Praxis. Spektrum Akademischer Verlag,
2010. (Zitiert auf den Seiten 15, 16, 18, 19 und 21)

[TDGS06] I. J. Taylor, E. Deelman, D. B. Gannon, M. Shields. Workflows for e-Science: Scientific
Workflows for Grids. Springer-Verlag New York, Inc., Secaucus, NJ, USA, 2006.
(Zitiert auf Seite 9)

[Tel10] S. Telezhnikov. Prozessfragmente: Metamodell und Ausführung, 2010. (Zitiert
auf den Seiten 10, 11, 33, 34 und 77)

[Tid08] D. Tidwell. XSLT: Mastering XML Transformations. O’Reilly, Sebastopol, CA, 2.
edition, 2008. (Zitiert auf Seite 27)

[WCL+
05] S. Weerawarana, F. Curbera, F. Leymann, T. Storey, D. F. Ferguson. Web Services

Platform Architecture: SOAP, WSDL, WS-Policy, WS-Addressing, WS-BPEL, WS-
Reliable Messaging and More. Prentice Hall PTR, Upper Saddle River, NJ, USA,
2005. (Zitiert auf den Seiten 18, 19 und 22)

100

http://www.jcp.org/aboutJava/communityprocess/final/jsr208/index.html
http://www.jcp.org/aboutJava/communityprocess/final/jsr208/index.html
http://www2.informatik.uni-stuttgart.de/cgi-bin/NCSTRL/NCSTRL_view.pl?id=BOOK-2000-01&engl=0
http://www2.informatik.uni-stuttgart.de/cgi-bin/NCSTRL/NCSTRL_view.pl?id=BOOK-2000-01&engl=0
http://ode.apache.org/
http://ode.apache.org/ws-bpel-20-specification-compliance.html
http://ode.apache.org/ws-bpel-20-specification-compliance.html
http://www.w3.org/TR/2007/REC-soap12-part0-20070427/
http://www.w3.org/TR/2007/REC-soap12-part0-20070427/


Literaturverzeichnis

[WOd09] I. Wassink, M. Ooms, P. V. van der. Designing Workflows on the Fly Using
e-BioFlow. In L. Baresi, C.-H. Chi, J. Suzuki, editors, Service-Oriented Computing,
Lecture Notes in Computer Science 5900, pp. 470–484. Berlin, 2009. URL http:

//doc.utwente.nl/68648/. (Zitiert auf Seite 9)

[WSA04] Web Services Architecture, 2004. URL http://www.w3.org/TR/ws-arch/. (Zitiert
auf Seite 16)

[WSD01] Web Services Description Language (WSDL) 1.1, 2001. URL http://www.w3.org/

TR/wsdl. (Zitiert auf den Seiten 16 und 17)

[WSD07] Web Services Description Language (WSDL) Version 2.0 Part 1: Core Language,
2007. URL http://www.w3.org/TR/wsdl20/. (Zitiert auf Seite 17)

[XPAa] XML Path Language (XPath) 2.0 (Second Edition). URL http://www.w3.org/TR/

xpath20/. (Zitiert auf Seite 28)

[XPAb] XML Path Language (XPath) Version 1.0. URL http://www.w3.org/TR/xpath/.
(Zitiert auf Seite 28)

[XSL] XSL Transformations (XSLT) Version 2.0. URL http://www.w3.org/TR/xslt20/.
(Zitiert auf Seite 27)

Alle URLs wurden zuletzt am 13.07.2011 geprüft.

101

http://doc.utwente.nl/68648/
http://doc.utwente.nl/68648/
http://www.w3.org/TR/ws-arch/
http://www.w3.org/TR/wsdl
http://www.w3.org/TR/wsdl
http://www.w3.org/TR/wsdl20/
http://www.w3.org/TR/xpath20/
http://www.w3.org/TR/xpath20/
http://www.w3.org/TR/xpath/
http://www.w3.org/TR/xslt20/




Erklärung

Hiermit versichere ich, diese Arbeit selbständig
verfasst und nur die angegebenen Quellen
benutzt zu haben.

(Alex Hummel)


	1 Einleitung
	1.1 Verwandte Arbeiten
	1.2 Aufgabenstellung

	2 Grundlagen
	2.1 Workflows und Workflow Management Systeme
	2.1.1 Dimensionen eines Workflows
	2.1.2 Grundlagen von Worflow Management Systemen

	2.2 Service Oriented Architecture (SOA)
	2.3 Web Services
	2.3.1 SOAP
	2.3.2 Web Services Description Language (WSDL)
	2.3.3 Web Service Verzeichnisdienste

	2.4 WS-BPEL
	2.5 Java Persistence API (JPA)
	2.5.1 Entity Manager
	2.5.2 Zusammengesetzte Hauptschlüssel

	2.6 XSLT
	2.6.1 XSLT style sheet Struktur
	2.6.2 Verwendete XSLT Elemente
	2.6.3 Beispiel einer XSLT Transformation


	3 Konzept
	3.1 Prozessfragmente
	3.1.1 Buildtime Komposition
	3.1.2 Runtime Komposition
	3.1.3 Prozessfragmentelemente

	3.2 Eingeführte Aktivitäten
	3.3 Zusammensetzung von Fragmenten
	3.3.1 Komposition mit frg:fragmentFlow
	3.3.2 Komposition mit frg:fragmentSeqeuence
	3.3.3 Komposition mit frg:fragmentRegion

	3.4 Mapping
	3.5 Mediation
	3.6 Schleifen
	3.7 Einschränkungen bei der Komposition
	3.8 Generische Architektur
	3.9 Komposition-API

	4 Übersicht über Apache ODE
	4.1 Architektur
	4.2 Deployment
	4.3 Versionierung
	4.4 Apache ODE Channels

	5 Umsetzung
	5.1 Erweiterung der ODE BPEL Compiler Komponente
	5.2 Erweiterung der ODE BPEL Runtime Komponente
	5.2.1 Aktivitätenlogik
	5.2.2 Zusätzliche Channels
	5.2.3 Kleben von Prozessfragmenten
	5.2.4 Verbinden von frg:fragmentExit und frg:fragmentEntry Aktivitäten
	5.2.5 Ausführung der Logik der eingeführten APIs
	5.2.6 FC Analyser

	5.3 Erweiterung der ODE Data Access Objects Komponente
	5.4 Mediator-Komponente
	5.4.1 Variable Mediation
	5.4.2 Correlation Set Mediation

	5.5 Erweiterung der ODE Integrationlayer Komponente
	5.6 Werkzeug für die Fragmentenkomposition
	5.7 Erstellung von Prozessinstanzen

	6 Anwendungsbeispiel
	6.1 Ziel der Festkörpersimulation
	6.2 Überblick über die Simulationsanwendung
	6.2.1 Aufbau und Funktionsweise der Simulationsanwendung
	6.2.2 Opal Manager
	6.2.3 Ressourcen Management
	6.2.4 Akquirieren eines Services

	6.3 Prozesse der Simulationsanwendung
	6.3.1 Haupt-Prozess
	6.3.2 Nachbereitungsprozess

	6.4 Aufteilung des Prozesses in Prozessfragmente
	6.5 Zusammensetzung von Prozessfragmenten zur Laufzeit

	7 Zusammenfassung und Ausblick
	Literaturverzeichnis

