Institut fiir Rechnergestiitzte Ingenieursysteme

Universitit Stuttgart
Universititsstral3e 38
D - 70569 Stuttgart

Diplomarbeit Nr. 3145

Konzeption und Implementierung eines OTX
Test Frameworks fiir das emotive ODF

Hai-Lang Thai

Studiengang:

Priifer:
Betreuer:
begonnen am:
beendet am:

CR-Klassifikation:

Informatik

Prof. Dr. Dieter Roller
Dr. Jorg Supke
01.02.2011

03.08.2011

J.6

Danksagung

Ich danke unserem Gott und meinem Herrn und Retter Jesus Christus. Weiterer Dank geht an Herrn
Prof. Dr. Dieter Roller, der diese Arbeit iiberhaupt erst moglich gemacht hat. Auch meinen beiden
Betreuern Herr Dr. Jorg Supke und Herr Truong-An Nguyen mochte ich fiir ihre Unterstiitzung
besonderen Dank aussprechen. Nicht zuletzt mochte ich meiner Familie und allen meinen

Geschwistern fiir alle Ermutigung und Bestidrkung danken.

Inhaltsverzeichnis

1. EINIEIUNE cocceerveiiniraninisencnsnncssnnessaneossanesssasssssasssssssesssssessssssssasssssasssssasssssasssssassssssssssssssssasssses 3
2. GrUNAIAGEN c.ueeeerrerinsrencnssanessanncssaniossssssssssesssasssssasssssasessssssssasssssasssssassssssssssssssssssssssasssssasssssans 6
2.1. WOTKETOWS .ttt ettt e s e 6
2.2. Grundlegendes tiber das Testen in der Softwaretechnikcc.cccoceeiiiniiinininnes 9
2.3. Das Black-BoxX Verfahrencoccooiiiiiiiiiiiiiiieceeeee e 11
2.4. Das White-Box Verfahren..........cooouiiiiiiiiiiiiiieieeeteete e 13
2.5. Testen von WOrKflOWScooiiiiiiiiiiii e 16
2.6. OTX - Open Test sequence eXchange (ISO 13209)ccccceeviiiiiiiiiniieiniieiieeeen, 19
2.6.1. Hintergrund — Exkurs : Fahrzeugdiagnose.........c.ccceoeeriiiiiiniiiniiniiiieniceceseee 19
2.0.2. IMOLIVALION ..euiiiieiiie ettt ettt ettt ettt e et e et e st e e st teesabeeesabeeenabeeebbeessbeesane 22
2.6.3. OTX Core - Basisbibliothek............ccooeeiiiiiiiiiiiieceee e 23
2.6.4. DALENEYPEI cueiiieiiieeiiie ettt ettt ett e et e e st e et e s bteeebaeesabaeesabteesabeeenabeeebbeesareesane 25
2.6.5. BaSISKONZEPLE ...cccuvieeiiieeiiieeiiee et ettt et e et e et e e e taeestaeesstaeessseeenssaeessaeesseennns 25
2.6.6. Erweitungs-BibliotheKen.........ccocuiiiiiiiiiiiiiiiceeeee e 26
2.7. Open Diagnostic Frameworkccccooiiiiiiiiiiiiii e 28
3. MOAEIlI@IUNG o...ccvveeererenssnrcssrercssrnscssrnsssssnssssasssssasssnsssses 31
3.1. ANTOTAETUNZENeoniiiiiiiiiiiiie ettt ettt e et e et e e st e e sbeeeeanees 31
3.2. USE CASES .ttt ettt ettt e ettt e et e et e e et e et e e bbe e s bteesbeeesaneee 31
3.3. Analyse und Konzeption eines geeigneten Testing Ansatzes fiir OTX Workflows . 34
3.3.1. Simulierung des Inbound Datenstroms - Mock Objekte.........cccceevvureeriiieenieeenieen. 36
3.3.2. Assertions innerhalb eines WOrkflows...........coooceiiiiiiiiiiiniiiiiicceeeceeeeee 39
3.3.3. Priifung des Kontrollflusses durch 'must visit'-AKtiVItAten........ccccevvveerreeerieeenneenns 42
3.3.4. Weitere Konzepte/KOmMPONENLENccocueeiriiiiiieeiiiieeiieeeiie ettt eireeeireesieee e 46
4. IMPIEMENTIEIUNE ...cccvveeiiciirnricssssaneecssssseesssssssasssassssssss 53
4.1. GIODATCHILEKIUL «...eouiiiiiiiiiicei ettt et e 53
4.2. TESEIDALA ..t 55
4.2.1. Serializer & XmI-APL ..o 55
4.2.2. Files Manager / CaChingcceovuiiiiiiiiiiieeieeeie ettt et 62
4.2.3. SYNCRTONIZAIONviiiiiiieiieeeiie et eeteeeetee et e et e e et eesteeesbaeesssaeessseeensseeensseeensneeas 64
4.3. TESELCONLIOL. ...ttt ettt e e st 66
4.3.1. ODFCONNECTOT .cuuutteiiiieiiiiieeeiieieite et ee et ettt e ettt e st e e st e e sabeeesabeeesaseesnabeeensseesseeens 66
4.3.2. Test-Laufzeitumgebung (RUNIME)cccveeeiiieiiiieeiiieeiieeeire e 68
4.3.3. COAE-GONEIICTUNEuveiiiiieiiieiiiteeeiiteeeitee ettt e eiteeebt e e st e e sabeeesabeeesaseeeabeesnsseessreens 72
4.4. TESEGUL.. ettt ettt ettt be et e bt e beeneenaeens 75
4.4.1. Workflow/TestCase-DeSIZNETcoccueiiiiiiiiiiiiiiieeiieeete ettt 76
4.4.2. TeStSUILE MANAZET ...cccvveeeiiieeiiieeeiieeeieeeetee et e estteeeeaeesteeesstaeessseeessseeensseeensseeensneeas 77
4.4.3. Testrun - Darstellung der Test-Ergebnisse........coccueevuieeriiiiiniiieeniieeieeeieeeeee e 78
5. EVAIUIEIUING c.cuveiinianicssnnesssnnessnncsssnsessanscssasssssasssssasssssasssssasssssssesssssesssssssssssessssssssasssssasssses 79
5.1. Erstellung von Testfillen - Best PractiCes.........ccoceeviiiiiiiiiniiieiiiiieeienieeeeeee 79
S.LTL ASSEITIONS ..ottt ettt ettt et st sttt e ane 79
5.1.20 must VISTE-AKEVITAIEN «...eovuiiiiiiiiiiiiieeieeee ettt ettt e 85
6. Zusammenfassung UNd AUSDIICKcouvierveicisnicssnisssnrcsssanessssnesssnsssssssssssssssssssssssssssnsssses 87

1. Einleitung

Wir schreiben das Jahr 2016. Der Ausbau an der neuen Mikrochip-Fabrik in Reutlingen, die weltweit
eines der modernsten ist, wird fertig gestellt sein. Es ist ein Tag wie jeder andere, an dem das genannte
Bosch-Werk in 24 Stunden bis zu einer Millionen Mikrochips herstellt und seinen bescheidenen Teil
dazu beitrigt', die Weltbevolkerung mit einem Bestand von weltweit insgesamt einer Milliarden
Transistoren pro Kopf zu begliicken.”
Diese ungeheuer anmutende Zahl an Transistoren pro Kopf kann sich unserem Vorstellungsvermogen
nur entziehen und bleibt unserem Bewusstsein als eine nichts sagende Zahl verschlossen — und doch
hinterldsst sie bei uns das mulmige und etwas ungewisse Gefiihl nicht zu verstehen, was es fiir
Konsequenzen mit sich triagt bzw. was das wirklich fiir uns bedeutet.
Nur eines steht fest: Unsere Welt verdndert sich zusehends in rasant steigenden GroBenordnungen, die
wir nicht iiberblicken, geschweige denn kontrollieren kdnnen.
Es ist eine Ironie des Schicksals, dass der Mensch die Informatik gebraucht, um die Komplexitiit zu
bewiltigen, die auch, oder sogar vor Allem gerade durch eben jene kultiviert und multipliziert wurde.
Herr EDSGER WYBE DIJKSTRA sagt dazu:

"As long as there were no machines, programming was no problem at all; when we had a few

weak computers, programming became a mild problem, and now we have gigantic

computers, programming had become an equally gigantic problem. In this sense the
electronic industry has not solved a single problem, it has only created them."

(Dijkstra, 1972)

Wie dem auch sei, die Computertechnologie hélt erfolgreich Vormarsch in alle Bereiche unseres
taglichen Lebens. Jeder Durchschnittsbiirger in den westlichen Léndern darf sich iiber
schitzungsweise 80 Mikrochips erfreuen’, die ihm in seinem Umfeld in allen alltiglichen und nicht-
alltaglichen Belangen begleiten, und sogar mit Rat und Tat zur Hilfe stehen. Der Nutzen und die
Unterstiitzung, die der Mensch von diesen ,,intelligenten* Halbleiterschaltungen erhilt, sind immens
und nicht von der Hand zu weisen. Es war das Jahr 1958 als der Erfinder und Entwickler JACK KILBY
diese Technologie erstmals der Offentlichkeit vorstellte und es sollte ein halbes Jahrhundert dauern,
bis simtliche Systeme, in denen der Mensch lebt und agiert, von ihr durchdrungen werden. Heute ist
ein Leben ohne den Computer kaum mehr vorstellbar. Doch trotz oder gerade wegen aller Euphorie ist

Vorsicht geboten, denn:

! Dies ist kein fiktives Szenario. Bosch-Werk soll bis spitestens 2016 bis zu 100 Millionen Chips am Tag
produzieren kénnen. (Siehe [20]: Stuttgarter Nachrichten)

*Vgl. Originaltext: “Today, there are nearly a billion transistors per human” (Siehe [18]: Palmisano)

3 Vgl. [18]: Kandel

"Kein Produkt menschlicher Intelligenz kommt fehlerfrei zur Welt. Wir formulieren Scitze um,
trennen Ndihte wieder auf, setzen Pflanzen um, planen Hdiuser neu und reparieren Briicken.
Warum sollte es uns mit Software anders gehen?"

(Wiener, 1994)

Jeder Softwareentwickler wird, je ldnger er sich mit dem Entwerfen und Implementieren von Software
beschiftigt, sicher nicht die Erfahrung machen, dass er mit der Zeit fihig wird, Systeme mit weniger
oder keinen Fehlern zu entwickeln, sondern muss und wird nur mehr und mehr zu der Erkenntnis der
Tatsache des eben Zitierten gelangen.

Ist diese Einsicht erstmal vollzogen, muss die rationale Konsequenz und Forderung, ndmlich Software
sorgfiltig und griindlich zu testen, unbedingt beachtet und durchgefiihrt werden. Mit anderen Worten:
Da Fehler in Software ein ungeschriebenes Gesetz sind, ist das Testen von Software absolut
unabdingbar. Leider stellt sich heraus, dass selbst das Testen von Software nicht vollig fehlerfrei bzw.
vollstindig durchgefiihrt werden kann und somit in der Praxis nie ein vollig fehlerfreies Produkt
entsteht. Die Testphase der Entwicklung eines Produktes kann bis zu 50% der Zeit beanspruchen und
muss oft selbst nach der Auslieferung in der Wartung von Software weitergefiihrt werden. Unter

Software-Testern sagt man sich sinngemaf:
,» The last bug was found, when the last user of the software stopped using it.

Die vorliegende Arbeit will sich mit dem beschriebenen Thema des Software Testens speziell im
Bereich der Fahrzeugdiagnose beschiftigen. Denn auch gerade in der Automobilindustrie werden in
jiingster Zeit Mikrochips en masse verbaut. So hat ein gut ausgestatteter Mittelklassewagen bis zu 80
Steuergerite die zahlreiche Elektronikkomponenten des Fahrzeuges vernetzt und verwaltet. Und es
scheint erst der Anfang zu sein — Fiir die nichsten Jahre ist in den Mirkten fiir Fahrzeugdiagnose ein
Wachstum von bis zu 50% zu erwarten.

Wieder muss darauf aufmerksam gemacht werden, dass dieser hohe Grad an Komplexitit von
Software getestet werden muss! Ich will dazu kurz eine Anekdote bringen, die mir letzte Woche
wihrend einer Autofahrt widerfahren ist. Ich fuhr mit einem Bekannten gerade auf der Autobahn als
plotzlich der Wagen uns bei 130 km/h durch Warntdne offenbar etwas mitteilen wollte. Mein
Bekannter (Fahrer und Besitzer des Fahrzeugs) ignorierte diese Warnhinweise zunichst, schaltete nach
einigen Momenten dann doch das Parkpilot-System des Fahrzeugs aus und bemerkte mit einem kurzen
Licheln: ,,Das Parkpilot-System nervt manchmal, wenn es anfingt zu regnen“. Offenbar hatte es
angefangen zu regnen, und statt den Scheibenwischer an zu stellen, hielt der Wagen es fiir
notwendiger uns iiber die Gefahr eines ZusammenstoBes mit den unzdhligen Regentropfen zu
informieren. Wir waren nur froh, dass das Parkpilot-System noch nicht so ausgereift ist, dass es bei
bevorstehendem Crash eine Vollbremsung unternimmt.

Was sich in unserem gliicklichen Fall als harmlos und amiisant erweist, kann bei kritischen

Elektronikkomponenten wie ABS oder ESP Katastrophen bewirken. Umso wichtiger ist es, das Testen

und die Fehlersuche vor allem im Bereich der Fahrzeugdiagnose so optimal und prozesssicher wie

moglich zu gestalten.

Das Ziel dieser Arbeit ist es, ein geeignetes Test Framework fir das ODF (Open Diagnostic
Framework) zu entwickeln. ODF ist eine Entwicklungsumgebung, mit der sich Diagnoseablaufe fiir
Fahrzeuge spezifizieren, realisieren, validieren, dokumentieren, debuggen, testen und ausfiihren
lassen. Das Test Framework soll Funktionen bereitstellen, die ein automatisiertes und wiederholbares
Testen von den mit ODF erstellten Diagnoseabldufen ermoglicht.

In Kapitel 2 werden einige Grundlagen iiber das Testen allgemein und die Kern-Technologien die das
ODF verwendet besprochen.

Auf Basis dieser Grundlagen wird in Kapitel 3 ein Testing-Ansatz konzipiert und analysiert sowie
eine Konzeption fiir Test Framework entwickelt.

Kapitel 4 dokumentiert den Uberblick iiber den Aufbau und die technischen Details der
Implementierung des Frameworks.

Anschliefend fiihrt Kapitel 5 kurz in die Verwendung des Frameworks bzw. die Durchfithrung von
Tests ein.

Zum Schluss werden in Kapitel 6 noch einpaar Verbesserungen vorgeschlagen, sowie Grenzen und

Moglichkeiten aufgezeigt.

2. Grundlagen

2.1. Workflows

"The automation of a business process, in whole or part, during which documents,
information or tasks are passed from one participant to another for action, according to a set
of procedural rules.”

(WFMC Introduction)

Die einleitenden Worte, "automation of a business process"”, des Zitats (oben) aus der Workflow-
Einfithrung von WFMC sprechen fiir sich - bei Workflow-Management geht es im Wesentlichen um
eine Automatisierung von Geschéiftsprozessen.

Wir wollen uns zunéchst ndher mit dem Begriff Geschiftsprozess auseinandersetzen. Grundsitzlich
stellt ein Geschiftsprozess den Prozess dar, der fiir die Entwicklung bzw. Fertigstellung eines
bestimmten Produkts durchlaufen wird. Hierbei muss es sich nicht nur um materielle Giiter handeln,
sondern das Produkt kann auch eine Dienstleistung sein. In dieser Hinsicht gibt es Geschiftsprozesse
schon seit Menschengedenken - sei es ob die ersten Menschen sich aus Feigenblittern Schiirzen
flochten, oder sich die heutigen Menschen in humanitiren Organisationen betitigen. Der einzige
Unterschied besteht darin, dass der Mensch und seine Ideen bzw. Prozesse viel komplexer und
komplizierter geworden sind.

Wie aus dem eingangs erwéhnten Zitat auch hervorgeht, kann wihrend eines Geschiftsprozesses ein
Austausch oder eine Weiterleitung von Dokumenten, Daten oder Aufgaben zwischen vielen
Beteiligten in einem komplexen System stattfinden. Wéhrend es beispielsweise vor 2000 Jahren noch
sehr einfach, leicht verstidndlich und iiberschaubar war, sind Geschiftsprozesse von Unternehmen in
der heutigen Zeit hochkompliziert und, wie der Mensch nunmal fehlt und irrt, noch dazu sehr
fehleranfillig. Im Laufe der Zeit stellt sich immer mehr heraus, dass der Preis und die Qualitit eines
Produktes nicht nur von den zur Entwicklung benétigten Ressourcen abhingen, sondern hauptséchlich
auch von der Effizienz und Effektivitit seines Geschéftsprozesses. Im Falle einer Dienstleistung gilt
die Gleichung 'Produkt = Geschdiftsprozess’ sowieso. Wegen der zunechmenden Komplexheit und
Fehlerhaftigkeit, aber auch iiberaus groBen Wichtigkeit von Geschiftsprozessen, konnen/sollten
diese geplant, durchgefiihrt, wiederholt bzw. wiederverwendet und im Laufe der Zeit optimiert
werden. Das Workflow-Management deckt alle der eben genannten Aspekte ab und ermdoglicht aber
vor allem auch die zu Anfang erwihnte Automatisierung von Geschiftsprozessen.

Hierzu werden der gesamte Ablauf und die Struktur eines Geschiftsprozesses auf ein spezielles
Prozessmodell abgebildet, welches von einem entsprechenden Workflow-Management-System
verwaltet und ausgefiihrt werden kann.

Obwohl Prozessmodelle von Workflows in den meisten Féllen in XML spezifiziert werden, eignen

sich Workflows sehr gut dazu als ein Graph dargestellt zu werden. Die graphische Modellierung von

6

Workflows ist sehr intuitiv und auch fiir Nicht-IT-Spezialisten leicht erlernbar. Workflows spielen
demnach eine gewichtige Rolle darin, die sogenannte I7-Bussiness Gap zu schlielen.

Um dies zu erreichen, miissen alle relevanten Aspekte eines Geschiftsprozesses im Prozessmodell klar
spezifiziert sein. Die nétigen Arbeitsschritte eines Geschiftsprozesses werden in der Workflow-
Terminologie Aktivitidten genannt. Aktivitdten stellen also ausfiihrbare Einheiten dar, die von
menschlichen oder maschinellen Ressourcen durchgefiihrt werden. Neben den Aktivitdten definiert ein
Prozessmodell auch deren zeitlichen Ablauf, sowie den nétigen Datenaustausch zwischen ihnen, und
nicht zuletzt die bendtigten Ressourcen. Die graphische Reprisentation eines Workflows wiirde
Aktivititen als Knoten darstellen und den zeitlichen Ablauf der Aktivititen auf Kanten, bzw.
sogenannte Kontroll-Flows abbilden. Nach [2]: Leymann lisst sich ein Geschiftsprozess bzw. ein

Workflow im Wesentlichen durch 3 Dimensionen (What?, Who?, With?) beschreiben.

e What? (Prozesslogik): Die What?-Dimension fragt nach der zeitlichen Abfolge der einzelnen
Aktivitdten und den in diesem Zusammenhang benétigten Daten. Mit anderen Worten
definieren hier der Kontrollfluss und der Datenfluss die sogenannte Prozesslogik des
Workflow-Modells.

e Who? (Organisation): Die Who?-Dimension legt fest, wer oder was die Durchfiihrung einer
Aktivitét ibernimmt. Dies kann abhéingig von der Organisations-Struktur eine bestimmte
einzelne Person sein, aber auch Gruppen und Rollen.

e With? (IT Infrastruktur): Die With?-Dimension bestimmt die fiir die zu erledigende
Aktivitdt zugrunde liegende IT-Infrastruktur - also mit welchen Mitteln (Programme, Tools,...)

wird eine Aktivitdt durchgefiihrt.

Ist ein Workflow-Modell hinsichtlich dieser Dimensionen geniigend spezifiziert, so kann von diesem
in einem Workflow-Management-System eine Instanz erzeugt werden, die letztendlich ausgefiihrt
werden kann. Da Workflows oft in sehr gro3en und komplexen Szenarien eingesetzt werden, in denen
Geschiftsprozesse iiber verschiedene IT-Systeme oder sogar iiber Unternehmensgrenzen hinweg
ablaufen, muss ein Workflow-Management-System hochgradig interoperabel sein. Deshalb werden die
Schnittstellen solcher Systeme in der Praxis hédufig durch Web Services oder vergleichbare
Technologien definiert, die eine mdglichst lose Kopplung bereitstellen. Zudem hat die Workflow
Management Coalition (WfMC) ein Workflow-Referenz-Modell spezifiziert, um auf dieser Basis
Workflow-Management-Systeme zu entwickeln, die unter Anderem auch untereinander interoperabel

sind. In der néchsten Abbildung ist der grobe Aufbau des Referenz-Modells zu sehen.

Process
Definition

Interface 1

Workflow API and Interchange

Administration &

Monitoring Tools \”E& Workflow e "é‘l.:lol‘ilr&l:z;m;
Engine(s) H 9

Workflow Enactment Service

o Eor)
|
5 2
Invoked Wco[ig:t)w
Applications Application

Abb. 1: Workflow-Reference-Modell. Quelle: [6]: WM C

Die Funktionen der einzelnen Komponenten werden hier aufgelistet:

¢ Der Workflow Enactment Service stellt eine oder mehrere Workflow Engines zur
Verfiigung. Dies ist die Laufzeitumgebung der ausfithrbaren Workflows - das Herzstiick eines
jeden Workflow-Management-Systems. Hier wird die Instanz eines Workflows ins Leben
gerufen; hier werden alle An- und Abfragen verarbeitet; und hier wird die Koordination aller
Partizipanten bewerkstelligt.

¢ Die Process Definition ist die Spezifikation eines Prozess-Modells. Es gibt hierzu viele
verschiedene Tools, die die Entwicklung von Workflow-Modellen erleichtern. Workflow-
Modelle werden in einer speziellen Workflow-Beschreibungssprache (hiufig in einem XML-
Derivat) spezifiziert.

o Uber eine Workflow Client Application konnen sich menschliche Partizipanten ihre
sogenannte worklist abrufen, die zu bearbeitende Aktivititen (work-items) anzeigt. Der
Workflow Enactment Service muss dafiir sorgen, dass Aktivitditen als entsprechende work-items
in der worklist der richtigen Partizipanten angezeigt werden, sobald diese von einer Workflow-
Instanz aufgerufen werden.

e Die Schnittstelle zu Invoked Application dient dazu Programme aufzurufen, die bestimmte
Aktivitdten von Geschiftsprozessen implementieren und ausfithren (maschinelle Ressource als
Who ?-Dimension). Es ist aber auch moglich sich vom Workflow durch diese Schnittstelle ein
Programm zur Bearbeitung einer Aktivitdt aufrufen zu lassen (menschliche Ressource als

Who ?-Dimension mit maschineller Ressource als With?-Dimension).

e Das Interface 5 stellt dem System Administration & Monitoring Tools zur Verfiigung mit
Hilfe derer laufende und abgeschlossene Workflow-Instanzen mit all ihren Logging-, Statistik-
, und Audit-Trail -Daten verwaltet, beobachtet und analysiert werden kdnnen.

e Wegen der unbedingten Forderung nach Interopabilitit miissen Workflow-Management-
Systeme wohldefinierte Schnittstellen fiir und zu anderen Workflow Engines bereitstellen.

(Interface 4)

2.2. Grundlegendes iiber das Testen in der Softwaretechnik

Bevor wir uns speziell mit dem Testen von Workflow-Sprachen beschiftigen wollen, lohnt es sich
einen Blick auf grundlegende Konzepte fiir das Testen allgemein in der Softwaretechnik zu werfen.
Ich beginne mit einleitenden Worten iiber einige Grundbegriffe fiir das Testen von Software.

Das Testen von Software dient zur Qualititssicherung des entwickelten Produkts. Das heif3it, dass

sichergestellt werden soll, dass ein Produkt die an ihn gestellten Anforderungen erfiillt. Der

Begriff Softwarequalitéit ldsst sich nach der ISO-Norm 9126 auf folgende Dimensionen aufspannen:
Funktionalitét, Zuverlédssigkeit, Benutzbarkeit, Effizienz, Anderbarkeit und Ubertragbarkeit. Dies ist
schon auf dem ersten Blick als ein sehr breites Feld erkennbar und wir wollen uns hier auf die
Funktionalitdt und speziell auf dessen Teilmerkmal, ndmlich die Richtigkeit von Software, be-
schrinken. Mit anderen Worten soll der Fokus fiir das Testen von Software in dieser Arbeit vorder-
griindig darauf gerichtet sein, zu priifen, ob die Software das richtige bzw. das von ihm geforderte,
spezifizierte Verhalten zeigt. Mingel bzw. ein Fehler in der Software sind demnach Abweichungen
von einem erwarteten, spezifizierten Verhalten der Software. Ein Fehler liegt vor, wenn eine
Diskrepanz zwischen einem Ist-Verhalten, welches beim Testen festgestellt wird, und seinem vorher

festgelegten Soll-Verhalten vorliegt. Wir wollen zwischen dem Fehler (engl. fault) und die daraus

testbare bzw. feststellbare resultierende Fehlerwirkung (engl. failure) unterscheiden. Verschiedene
Fehler konnen zu ein und derselben Fehlerwirkung fiihren. D.h. auch, dass ein Test eine
Fehlerwirkung feststellen kann, wihrend der Fehler selbst nicht bekannt ist. Hier ldsst sich dann auch
die Grenze zum Debugging-Prozel3 ziehen, der Fehler lokalisieren und beheben soll, wihrend beim
Testen Fehler bzw. deren Fehlerwirkung "nur" festgestellt oder aufgedeckt werden sollen.

Des Weiteren ist es moglich, dass Fehler andere Defekte im Programm kompensieren - wir sprechen
dann von einer Fehlermaskierung. Die Fehlerwirkung bleibt aus und der Fehler wird erst offenbar,
wenn Fehler, die die Maskierung verursachen, behoben wurden.

Es ist daher einzusehen, dass selbst ein umfassender Test nicht immer alle Fehler bzw. deren
Fehlerwirkungen auffinden kann. Tatsdchlich ist es in der Praxis nicht einmal moglich
einen vollstindigen Test durchzufiihren, der alle Moglichkeiten und Eventualititen mit einschlief3t.

Dies wiirde einen Testdurchlauf mit allen mdoglichen Kombinationen aller moglichen Eingaben

9

bedeuten, der eine kaum einzugrenzende (in Bezug auf die Anzahl an Eingaben exponentiell
wachsende) Anzahl an Testféllen nach sich ziehen wiirde. Niichtern betrachtend muss man sagen, dass
durch ein Software-Test keine vollige Fehlerfreiheit gewéhrleistet werden kann.

Wir wollen den eben genannten Begriff eines Testfalles klarer definieren. Ein Testfall ist eine konkrete
Ausprigung der Ausfithrung der zu testenden Software mit festgelegten Eingaben und
Randbedingungen. Ferner wird durch einen Testfall eben diese Auspriagung (Ist-Verhalten) gegen das
gewiinschte, spezifische Verhalten (Soll-Verhalten) der Software gepriift. Die festgelegten Eingaben

und Randbedingungen sowie das gewiinschte Verhalten bzw. FErgebnis werden in der so
genannten Spezifikation des Testfalls festgelegt.

Testfille werden des Ofteren in Test-Suiten strukturiert bzw. gruppiert, die eine Funktion oder
bestimmte Arten von Funktionen testen. SchlieBlich sorgt die Ausfithrung von mehreren Test-Suiten in
einem Testlauf fiir die Automatisierung des Testens.

Ein Test Framework muss auflerdem je nach Bediirfnis dafiir Sorge tragen, dass Testfdlle (oder Test-
Suiten oder spitestens bei Testldufen) ohne Einfluss aufeinander ablaufen konnen, sodass deren
Ergebnisse reproduzierbar sind und generell die Wiederholbarkeit von Tests gegeben ist. Das Testen

von Software lasst sich im Laufe des Softwareentwicklungsprozess auf mehreren Ebenen durchfiihren.

Die nachstehende Abbildung stellt dies in dem allgemein bekannten V-Modell dar.

Abnahme
test

Grob-
entwurf

Anforde- System-
rung test

Impleme Integrati
ntation onstest
Fein-
Entwurf

Abb. 2: V-Diagramm nach Bohm

10

Der Modultest oder auch Unit-Test wird meistens vom Entwickler durchgefithrt um ein
implementiertes Softwaremodul isoliert zu testen. Isoliert heifit, dass sdmtliche Kommunikation mit
dem Restsystem durch festgelegte statische Werte simuliert wird und das Testen auf diese Weise
unabhiéngig und frei von Fehlereinfliissen anderer Module stattfinden kann.

Gefundene Fehlerwirkungen lassen so eine klare Zuordnung des Fehlers in das zu testende Modul zu.
Ein solches Testen von kleinen Software-Einheiten (Units) ist viel iiberschaubarer und eine grofle
Anzahl an Fehlern ist viel schneller zu finden und leichter zu beheben als etwa in einem systemweiten
Test. Auf der anderen Seite werden im Modultest Fehler, die bei der Interaktion und aufgrund von
Wechselwirkung zwischen vielen Komponenten entstehen, nicht beriicksichtigt.

Diese Mingel werden in einem Integrationstest behoben. Hierbei wird davon ausgegangen, dass die
einzelnen Softwaremodule fiir sich schon mehr oder weniger korrekt funktionieren. Teile der Software
werden nun zu einem groBeren Teilsystem aufgebaut und zusammen integriert getestet.

Ein Systemtest testet das integrierte Softwaresystem als Ganzes in einer mdglichst produktionsnahen
Umgebung. D.h., dass wenn moglich auf Testtreiber oder sonstige Platzhalter verzichtet wird, und
moglichst dieselben Infrastrukturen (Sowohl Hardware- als auch Software -Komponenten) wie beim
Kunden genutzt werden. Es wird evaluiert, ob die spezifizierten Anforderungen an das Produkt erfiillt

wurden.

Der Abnahmetest ist mit einem Systemtest zu vergleichen, wird aber in einer Abnahmeumgebung
beim Kunden oder komplett vom Kunden selbst durchgefiihrt. Dabei wird das abzunehmende
Gesamtsystem daraufhin iiberpriift, ob aus Kundensicht die vertraglich festgelegten Anforderungen

bzw. Abnahmekriterien erfiillt werden.

Im Folgenden wollen wir uns mit einigen bekannten Verfahren und Ansétzen beschiftigen, die sich
vordergriindig fiir Unit-Tests eignen. Die verschiedenen Ansétze lassen sich grob in zwei Kategorien,

namlich das Black-Box Verfahren und das White-Box Verfahren, einteilen.

2.3. Das Black-Box Verfahren

Bei dem Black-Box Verfahren werden ausschlielich nur die eingehenden und ausgehenden Daten der
zu testenden Unit fiir einen Test mit einbezogen. Input/Output Daten werden mit den beziiglich des
Soll-Verhaltens zu erwarteten Werten verglichen. Die Kenntnis der internen Logik der Software wird
dabei nicht gebraucht und muss nicht einmal verfiigbar sein (z.B. nur Binary ohne Quellcode). Was
allein interessiert sind die Eingabe-Daten und die darauf berechneten Ausgabe-Daten, die mit den
spezifizierten Werten verglichen werden.

Da ein vollstindiger Test mit allen moglichen Eingaben praktisch nicht umsetzbar ist, miissen
Verfahren verwendet werden, die die Anzahl der Testfille stark eingrenzen. Eben zu diesem Zweck

werden im Folgenden die Aquivalenzklassenbildung und die Grenzwertanalyse vorgestellt.

11

Aquivalenzklassenbildung

Ziel und Zweck der Aquivalenzklassenbildung ist die Verminderung der exponentiell explodierenden
Anzahl an Testfillen bei einem vollstdndigen Test.

Das Verfahren der Aquivalenzklassenbildung teilt Eingabebereiche in Aquivalenzklassen auf. Dabei
wird die Einteilung so vollfiihrt, dass Eingabewerte, die in dieselbe Aquivalenzklasse fallen, ein
gleiches Verhalten bzw. die gleiche Verarbeitung in dem zu testenden Programmstiick ausldsen sollen.
Getestet wird dann nur je ein Reprdsentant bzw. nur einige wenige Repridsentanten einer
Aquivalenzklasse - und es kann mit einer tendenziell groBen Wahrscheinlichkeit daraus geschlossen
werden, dass alle oder die meisten anderen Elemente der jeweiligen Aquivalenzklasse ebenso
dieses Testverhalten aufweisen. Die Testfille beschrinken sich von allen moglichen Kombinationen
von Eingabewerten auf alle moglichen Kombinationen von Aquivalenzklassen, was in den meisten
Fillen eine Verminderungen um unzdhlbar viele Grolenordnungen bedeutet und so iiberhaupt erst
einen quasi-vollstindigen Test durchfithrbar macht.

Die Partitionierung oder Aufteilung in Aquivalenzklassen lisst sich aus der funktionalen Anforderung
an die Software bzw. dessen Spezifikation herleiten. Dabei ist zu beachten, dass neben Eingabedaten,
die der Spezifikation nach in einem giiltigen Definitionsbereich liegen, auch unzuléssige Eingabewerte
beriicksichtigt werden sollten. Es werden also ebenso Aquivalenzklassen mit ungiiltigen Werten
gebildet, um das Verhalten mit unzulédssigen Eingabedaten zu testen.

Es bleibt anzumerken, dass eine Aquivalenzklassenbildung aus der Spezifikation der Software keine
100%-ige Zusicherung dafiir geben kann, dass alle Aquivalenzklassenelemente im Test mit der
tatsdchlichen Implementierung letztendlich das erwartete Verhalten zeigen. Der Entwurf und die
Spezifikation der Software haben ein um mehrere Ebenen hoheres Abstraktionsniveau als die
Implementierung der Software, was zu einer in der Implementierung unter Umstdnden komplett
verschiedene Verarbeitung von Eingabewerten fiihrt, obwohl diese der Spezifikation nach in derselben
Aquivalenzklasse liegen. Um dies zu vermeiden, miisste die Entwicklung der Aquivalenzklassen auf
Grundlage der internen Ablauflogik des Programms erfolgen, was aber dann als ein White-Box

Verfahren angesehen werden miisste.

Grenzwertanalyse

Die Grenzwertanalyse ist eine sinnvolle Verbesserung des eben vorgestellten Ansatzes der
Aquivalenzklassenbildung. Wie der Name schon verlauten lisst, geht es hierbei darum, Grenzwerte
bzw. Grenzbereiche der Aquivalenzklassen niher zu untersuchen. Die Praxis zeigt, dass vor allem
Grenzwerte der Aquivalenzklassen durch fehlerhafte Implementierung nicht korrekt bzw. nicht wie
erwiinscht verarbeitet werden, weil sie dann in eine benachbarte Aquivalenzklasse fallen. Man stelle
sich ein ganz simples Beispiel vor, in der eine Fallunterscheidung in der Implementierung statt mit

'kleiner gleich’ nur mit 'kleiner’ gepriift wurde. Das zusétzliche Testen von Testfillen mit Grenzwerten

12

der Aquivalenzklassen birgt einen gut realisierbaren Mehraufwand, der einen groBen Teil von Fehlern

aufdeckt.

2.4. Das White-Box Verfahren

Allgemein bezeichnet der Begriff White-Box ein Testverfahren, welches die Software unter
Zuhilfenahme der inneren Logik und Struktur testet. Der bekannteste Ansatz ist, durch ein Verfahren
festzustellen bzw. sicherzustellen, dass die Testabdeckung moglichst hoch ist, also méglichst viel
Programmcode getestet wurde. Im Idealfall soll eine 100%ige sogenannte Code-Coverage erreicht

werden.

Code coverage

Verschiedene Kriterien und Metriken werden hierbei definiert, um zu bestimmen in wie fern ein
Programm hinsichtlich seines Quellcodes vollstindig getestet wurde. Es gibt in der Literatur dazu vier

verschiedenen Kriterien, die am folgenden Beispiel erklért und nachvollzogen werden kénnen.

manhattanzia,b)

manhattan2.c

// Bingabe: a:int, b:int
f/f Ergebni=s: |a| + |b]|

|
2
1
int manhattan2(int a, int b) 4
q-‘

{ :
if (a < 0) 6

a = —a; 7

if (b < 0) 8
return a-b; g
return a+b; 10
} 1

Abb. 3: Programmcode & Flussdiagramm. Quelle: [2]: Hoffmann, S.204

13

statement |Kriterium: Jede Anweisung wird mindestens einmal ausgefiihrt.
coverage
Minimale Anzahl Testfille fiir vollstindige CO-Uberdeckung: 2
Testfille: manhattan2(-1, -1) => {0, 1, 2, 3, 4, 6}
manhattan2(-1, 0) => {0, 1, 2, 3, 5, 6}
branch Kriterium: Jeder Zweig wird mindestens einmal ausgefiihrt.
coverage
Minimale Anzahl Testfille fiir vollstindige C1-Uberdeckung: 2
Testfille: manhattan2(-1, -1) => {0, 1, 2, 3, 4, 6}
manhattan2(0, 0) => {0, 1, 3, 5, 6}
condition [Erweiterung der ersten Bedingung bei Knoten 1 auf ((a<0) && (a<b))
coverage

Einfache Bedingungsiiberdeckung

Kriterium: Jedes atomare Wahrheitspriadikat einer Bedingung muss mindestens
einmal 'true’ und einmal false' getestet werden.

Minimale Anzahl Testfille fiir vollstindige C2-Uberdeckung: 2

Testfille a<0 | b<0| a<b | (a<0) &&
(a<b)
manhattan2(0, 1) | false | false true false =>{0,1,3,5,
6}
manhattan2(-1, -2) [true true false false =>{0,1,3,4,6}

Minimale Mehrfachbedingungsiiberdeckung

Kriterium: Jedes atomare oder zusammengesetzte Wahrheitspriadikat einer
Bedingung muss mindestens einmal true’ und einmal false’ getestet werden.

Minimale Anzahl Testflle fiir vollstindige C2-Uberdeckung: 2

Testfille a<0 | b<0| a<b | (a<0) &&
(a<b)
manhattan2(0, -1) | false true | false false =>{0, 1, 3, 4,
6}
manhattan2(-1, 0) | true false true true =>1{0,1,2,3,5,
6}

14

Mehrfachbedingungsiiberdeckung
Kriterium: Jede Kombination mit ‘zrue’ bzw. 'false’ aller atomaren
'Wahrheitsvariablen einer Bedingung.

Minimale Anzahl Testfille fiir vollstindige C2-Uberdeckung: nicht méglich

Testfiille a<0 | b<0| a<b | (a<0) &&
(a<b)
manhattan2(1, 0) | false | false | false false =>1{0,1,3,5, 6}
manhattan2(0, 1) | false | false | true false =>1{0,1,3,5,6}
manhattan2(0, -1) | false | true | false false =>{0, 1, 3,4, 6}
manhattan2(?, ?) | false | true | true false =>1{0,1, 3,4, 6}
manhattan2(?, ?) | true | false | false false =>1{0,1,3,5, 6}
manhattan2(-1, 0) | true | false | true true =>1{0,1,2,3,5, 6}
manhattan2(-1, -2) | true | true | false false =>{0,1,3,4,6}
manhattan2(-2, -1) | true | true | true true =>1{0,1,2,3,4, 6}
Path Kriterium: Jeder Pfad wird mindestens einmal ausgefiihrt.

coverage
Minimale Anzahl Testfille fiir vollstindige CO-Uberdeckung: 4
Testfille: manhattan2(0, 0) => {0, 1, 3, 5, 6}

manhattan2(0, -1) => {0, 1, 3, 4, 6}

manhattan2(-1, 0) => {0, 1, 2, 3, 5, 6}

manhattan2(-1, -1) => {0, 1, 2, 3, 4, 6}

Tabelle 1: Code Coverage Beispiel

Testcase Generation

Im Hinblick auf Code Coverage kdnnen automatisiert Testfille generiert werden, die im optimalem
Fall eine 100%ige Code Coverage bieten. Dabei wird der Programmcode in einem ersten Schritt
meistens in ein spezifisches Kontrollflussgraphen-ahnliches Modell transformiert. Anschliefend kann
durch einen geeigneten Graphendurchlauf die nétigen Bedingungen an den Verzweigungen gesammelt
werden.

Fiir Path Coverage etwa konnte man den Programmcode auf eine Baumstruktur abbilden und darauf
eine komplette Tiefensuche durchfiihren, die die Bedingungen sammelt; jedes Mal wenn ein Blatt
erreicht wird, werden die aktuellen Bedingungen von Blatt bis zur Wurzel festgehalten.

Zuletzt werden die Bedingungen in einem Constraint-System zusammengefasst und dadurch die

passenden Werte bzw. Wertebereiche fiir die Eingabe-Daten der einzelnen Testfélle berechnet.

15

2.5. Testen von Workflows

Obgleich Workflows in dem Bereich des imperativen Programmierparadigmas einzuordnen sind,
unterscheiden sie sich doch stark von klassischen imperativen Programmiersprachen. Wie im
vorherigen Abschnitt dargestellt wurde, werden Workflows zumeist genutzt um wiederkehrende
Abldufe/Prozesse zu organisieren und vor allem zu automatisieren. Es geht hier insbesondere nicht
hauptsédchlich darum mathematische Berechnungen durchzufithren und Ergebnisse zuriickzuliefern,
sondern - wenn iiberhaupt - Ergebnisse solcher Berechnungen zu sammeln, um diese, nach einem
definierten Ablauf, zur Weiterverarbeitung an einen geeigneten Verarbeiter weiterzuleiten.

Die Semantik von Workflows spiegelt sich demnach im Allgemeinen also nicht in den Ergebnissen,
die ein Workflow zuriickliefert, wider, sondern in dessen Ablauf und den durchgefiihrten Aktivititen.
Mochte man die Korrektheit eines Workflows in Hinsicht auf eine geforderte Semantik verifizieren,
reicht es folglich nicht aus, den Workflow in einem reinen Black-Box Verfahren auf seine Eingabe-
und Ausgabe-Daten hin zu testen.

Tatsédchlich ist es so, dass Ausgabeparameter eines Workflows oftmals nur eine Bestitigungsnachricht
beinhalten oder gar génzlich fehlen - und somit nicht selten gar keine Relevanz oder nicht geniigend
Indizien fiir eine Korrektheitsaussage iiber den Workflow haben. Dies ist insbesondere der Fall, wenn
ein Ablauf ausgefiihrt wird, ohne dass Ergebnisse oder Teilergebnisse den Aufrufer interessieren und

erwartet werden. Um dies zu veranschaulichen wollen wir ein simples Beispiel betrachten.

Selbst wenn auf dem ersten Blick aussagekriftige Ausgabeparameter definiert sind und das Black-Box
Verfahren die Korrektheit des Workflows verifiziert, ist es moglich, dass die interne Logik anders
arbeitet als es erwartet wird. Betrachten wir nachfolgenden abstrakten Workflow mit einem Testfall,
dessen Eingabeparameter die Bedingungen Condition 2 und Condition 7 zu ’true’ auswertet; der
Ausgabeparameter nimmt demnach den Wert 'success’ an. Der dann nach der Spezifikation imaginir
ablaufende Pfad ist griin gekennzeichnet. Nun nehmen wir an, dass Condition 1 und Condition 2
falsch implementiert wurden und der tatsichliche Pfad so verlduft, wie die roten Pfeile es
kennzeichnen. Der Testfall wiirde im Black-Box Verfahren als korrekt verifiziert. Der interne Ablauf
ist allerdings fehlerhaft. Die Aktivitit Task 3 sollte ausgefiihrt werden; tatsdchlich wurde aber
stattdessen Task 2 ausgefiihrt.

16

Condition 4
> fail
\\.
Specification ;
\
kS ..._,.-" ‘\“.—\
Input / \ Jrc=" =
;] -4 bl
A : = AN - —_—
/ ,’"i,NO’ [AAND:'BORC'F:tmi :‘ --------------- - Condition 6
i = ; fail
) 2 D —
2 (s
::’,' —
)/
' SE—
Fehlerhafte e
Implementierung 3 success
N—

Abb. 4: Workflow, Black-Box Test
Wir konnen also leicht einsehen, dass es in vielen Féllen schwierig bis gar nicht méglich ist, durch ein
paarweises Vergleichen der zu erwartenden Werten mit den Eingabe- und Ausgabe-Grofen eines
ausgefiihrten Workflows, die Korrektheit eines Workflows zu iiberpriifen.Man kann Eingabe- und
Ausgabeparameter verifizieren und doch ist unter Umstédnden noch keine Aussage dariiber getroffen,
ob der Workflow tut, was er soll. Da es klar ist, dass ein reiner Black-Box Ansatz fiir das Testen von
Workflows ungentiigend ist, werde ich im Folgenden die aus der Literatur bekannten und aktuellen

Ansitze eines White-Box Testings fiir Workflows vorstellen.

Code coverage & Test case generation

Im Hinblick auf Code coverage konnen automatisiert Testcases generiert werden, die im optimalen
Fall eine auf eine spezifische Metrik bezogene 100%ige Code Coverage bieten. Hierbei wird die
Workflow-Beschreibungssprache in einem ersten Schritt in ein simples graphenbasiertes Meta-Modell
transformiert, um anschliefend auf dem resultierenden Graphen durch eine Tiefensuche oder andere
Path Search Algorithmen alle Pfade abzulaufen. Alle Bedingungen, die bei den Verzweigungen in
einem Pfad auftreten, werden zu einem Constraint-System zusammengefasst und zu einem Testcase
ausgewertet. Dabei kann es durchaus vorkommen, dass nicht alle Eingabe-Werte voll definiert werden
konnen, da die entsprechende Variable oder nur ein Teil ihres Wertebereiches einen Einfluss auf den
Verlauf des Pfades hat. Diese nicht relevanten, variablen Daten konnen manuell festgelegt werden
oder automatisiert durch Zufallswerte generiert werden. Es ist verniinftig die erwarteten Ausgabewerte
manuell zu spezifizieren, um die Korrektheit der Semantik des Workflows nicht auf Grundlage des
eventuell fehlerhaft modellierten Workflows nachzupriifen. Nichtsdestotrotz ist es auch moglich die

Ausgabeparameter automatisch berechnen zu lassen und somit einen Testcase vollautomatisiert

17

generieren zu lassen. Selbstverstindlich miissen bei solchen Testcases dessen generierte

Ausgabeparameter der Semantik des Workflows entsprechend iiberpriift bzw. korrigiert werden.

Diese Art von White-Box Test - namlich Testfille auf Grundlage des Programmcodes zu erstellen -
wird auch fiir das Testen von Programmen konventioneller Programmiersprachen eingesetzt; indem
die generierten Testfille im Anschluss an das White-Box Verfahren als Eingabe- und Ausgabe-Werte
fiir einen nachfolgenden Black-Box Ansatz fungieren.

Wie wir schon festgestellt haben, eignet sich der Black-Box Ansatz fiir das Testen von Workflows in
vielen Fillen jedoch nur unzureichend. Dies dndert sich auch dann nicht, wenn Eingabe- und Ausgabe-
Parameter durch ein White-Box Verfahren generiert wurden. Die besprochene Testfall-Generierung
stellt "nur" die Zusicherung, dass im optimalen Fall alle moglichen Pfade abgedeckt sind - sagt aber
iiber die Korrektheit des Workflows erst dann etwas aus, wenn die Spezifikation der Ein- und
Ausgabeparameter die gewliinschte Semantik widerspiegeln. Eine vollautomatische Generierung dieser
Daten kann niemals Fehler des zugrunde liegenden Programms aufdecken. Zumindest die Ausgabe-
Daten eines Testes miissen manuell der Semantik entsprechend spezifiziert werden, um einen
aussagekriftigen Test durchzufiihren.

Es ist sicher ein groer Gewinn durch dieses Verfahren Eingabe-Daten zu erhalten, die eine gute
Code-Coverage bereitstellen; allerdings erst dann effektiv, wenn die generierten Eingaben mit einem

geeigneten Mittel kombiniert werden, welches die Korrektheit des inneren Ablaufs sicherstellt.

Kommunikations-Protokoll

In "BPELAWS Unit Testing: Framework and Implementation” stellen LI ET AL. einen interessanten
White-Box Ansatz vor, der sich hauptsiachlich auf die Interaktion zwischen dem PUT (Process under
Test), d.h. dem zu priifenden Workflow, und seiner Partner/externen Services bezieht. Dass dieser
Ansatz wahrscheinlich effektiv ist, ldsst sich aus der logischen Konsequenz schliefen, dass
Workflows, wie schon beschrieben, oftmals Abldufe modellieren, die viele externe Services aufrufen
bzw. mit ihnen interagiert.

In diesem Ansatz werden neben den Eingabe- und Ausgabe-Daten fiir einen Testfall zusétzlich noch
eine Art Kommunikations- oder Aufrufprotokoll spezifiziert, welches bestimmt in welcher
Reihenfolge Aufrufe an externe Partner stattfinden. Stimmen die Aufrufe bei der Ausfiihrung des
Workflows nicht mit dem Protokoll iiberein, ist der modellierte Workflow offensichtlich fehlerhaft.
MAYER hat diesen Ansatz in BPEL-Unit’ implementiert. Nachfolgend sehen wir die Struktur einer

Spezifikation fiir einen Testfall.

*[7]: Liet. al., 2005
3 Test Framework fiir BPEL (Siehe [4]: Mayer, 2006)

18

<testCases>
<testCase name="Travel Test">
<property name="useCase">245</property>
<clientTrack>
</eclientTrack>
<partnerTrack name="Airline"s
</partnerTrack>

</testCase>
</testCases

Abb. 5: Testfall Specification BPEL-Unit

2.6. OTX - Open Test sequence eXchange (ISO 13209)

OTX (Open Test sequence eXchange) wurde als ein XML-basiertes, Plattform und Tester unabhén-
giges Austauschformat modelliert. Dieser in der ISO 13209 spezifizierter Standard wurde mit dem
Ziel entwickelt, im Bereich der Fahrzeugdiagnose Testsequenzen mit einem hohen Abstraktionsniveau
graphisch modellieren zu konnen, zu spezifizieren und auch auszufiihren.

Da Testsequenzen fiir die Fahrzeugdiagnose im Grunde nichts anderes sind als Geschiftsprozesse oder
allgemeine Prozesse, kann man sagen, dass OTX im Wesentlichen eine dominen-spezifische

Workflow-Beschreibungssprache ist.

2.6.1. Hintergrund — Exkurs : Fahrzeugdiagnose

Um zu sehen welche Rolle OTX in der Fahrzeugdiagnose spielt, wollen wir an dieser Stelle einen
kurzen Exkurs in die Fahrzeugdiagnose antreten, um uns zur Standortsbestimmung sowie
Daseinsberechtigung von OTX eine grobe Ubersicht zu verschaffen.

Zu diesem Zweck zeigt die folgende Abbildung einen typischen Testablauf in einem modernen und

etablierten Applikations- und Diagnosesystem (ASAM).

19

4, Test- und Diagnoseanwendungen L
Wie groB ist die Kiihl-
wassertemperatur?

Wie lautet die PDU"
zum Auslesen der
Temperatur?

| Anfrage uber
N ShortName |
O

Stqti;rg_ce}éite

Die Kiihlwasser-
temperatur = 64 °C

Wie wird die PDU
in die Temperatur n
umgerechnet?

~. Ruckgabe
- Temperatur
—

te — o

s
)

Modular VCI

N re— Runtime System R m—
Ubergabe Rickgabe
der PDU (MVCI, 150 22900) der PDU |

Buskonfiguration &
Verpacken der PDU
in eine Botschaft

Entpacken der PDU
aus der Antwortbotschaft

Empfangen einer Bot- Bussysteme % und Protokolle Versenden einer Bot-
schaft auf den Bus ISO 11898 efc. | 1SO 14229, 10 15765 etc. |SChaft auf den Bus
(Response) (Request)

2.

'PDU = Protocoll Data Unit
Abb. 6: State of the Art — Diagnoseablauf in ASAM-System [8]:

Was auf den ersten Blick etwas kompliziert aussehen mag, lidsst sich schnell simplifizieren, indem

diese Darstellung in 5 Komponenten aufgeteilt wird:

e ECU’s (Eletronic Control Unit) stellen die Steuergerite im Fahrzeug dar, mit Hilfe derer man
die Elektronik im Fahrzeug ansteuern kann. Zusitzlich ist es moglich auf die im Fahrzeug
gespeicherten Daten zuzugreifen bzw. sie zu modifizieren.

e Uber externe Hardware-Testgerite, den so genannten VCI’s, wird mittels verschiedenen
Bussystemen und Protokollen die Verbindung und Kommunikation zu diesen Steuergeriten
hergestellt.

¢ Das MVCI Runtime System ist eine Abstraction-Layer tiber verschiedenen VCI’s. Aulerdem
stellt das MVCI die typischen und standardisierten Funktionsaufrufe fiir das Versenden,
Empfangen und Umrechnen in einer AP/ zur Verfiigung (M CD3-Schnittstelle) und erméglicht
so einen generischen Zugriff auf die Hardware(M CD[-Schnittstelle).

¢ Durch das standardisierte Diagnose-Datenaustauschformat ODX (Open Diagnostics data
eXchange) werden die fiir die Diagnose relevanten fahrzeug- und steuergerite-spezifischen
Daten in eine Datenbank ausgelagert. Man erreicht durch diese Auslagerung eine Entkopplung
der Diagnoseanwendung und den spezifischen Steuergeritevarianten in verschiedenen
Fahrzeugmodellen verschiedenster Fahrzeugherstellern. Die ODX-Datenbank ist durch die
MCD2-Schnittstelle mit dem MVCI-System verbunden.

® Ganz oben sitzt die Diagnoseanwendung, die sehr individuelle und hochspezialisierte

Diagnoseabldufe implementiert.

20

Der Vorteil eines solchen Diagnoselaufzeitsystems liegt auf der Hand und sollte schon durch die eben
aufgefiihrte Aufteilung hindurchgeschienen sein.

Auf Grundlage der Standards ODX und D-PDU API sorgt ein MVCI-System fiir die komplette interne
Kommunikationslogik zwischen der Diagnose-Testanwendung bis hin zum Steuergerit. Komplexe
Zusammenhinge von Diagnose. Kommunikationsprotokollen werden verborgen. Die Testanwendung
muss sich nicht um Diagnose- und Transportprotokolle kiimmern, d.h. der Transport-Layer und
selbstverstidndlich auch die darunterliegenden Schichten des OSI-Schichtenmodells werden fiir den
Tester komplett transparent und theoretisch irrelevant. In der vorangegangenen Abbildung sind die
einzelnen Schritte eines Diagnose-Funktionsaufrufs dargestellt, die von einer Tester-Applikation
ausgefiihrt werden miissten, wenn kein MVCI Runtime System vorhanden ist. Diese werden hier kurz

noch mal erldutert.

1. Die Diagnoseanwendung stellt iiber die D-Server API eine Anfrage an das MV CI-System die
Kiihlwassertemperatur auszulesen.

2. Das System startet eine Abfrage an die Diagnosedatenbank (ODX), um die, an das Steuergerét
zu sendende, Busbotschaft (auch PDU genannt) zu ermitteln. Ist die entsprechende, fiir die
betreffende Steuergerite-Variante spezifische PDU fiir das Auslesen der Temperatur
gefunden, wird diese an das VCI weitergegeben. AnschlieBend sendet das VCI die PDU
gepackt in einem spezifischen Diagnose-Request durch das Bussystem an das Steuergeriit.

3. Das V(I erhilt die Diagnose-Response und entpackt aus dieser wiederum eine PDU.
Ublicherweise werden die Riickgabewerte in einem je nach Steuergeriit spezifischen
Hexdezimalwert codiert und konnen durch Informationen aus der ODX-Datenbank
umgerechnet werden.

4. Das MVCI-System antwortet der Diagnoseanwendung mit der Botschaft:

“Kiihlwassertemperatur = 64° C*

Es gibt also im Wesentlichen drei Aufgabenbereiche, die ein MV CI-System in der Regel abdeckt.

1. Kommunikation mit Steuergerit durch Bussystem (MCD/-Schnittstelle).

2. Automatische Abfrage von ODX-Daten fiir Fahrzeugbaureihen zur Ermittlung der spezifischen
Busbotschaften, sowie ggf. der Umrechnungsfunktionen (M CD2-Schnittstelle).

3. Laufzeitsystem, welches die einzelnen Komponenten koppelt und schlieflich allen
Mehraufwand tridgt um Diagnoseabfragen zu realisieren. Dazu gehoren, wie erwihnt, bspw.
die zum Versenden, Empfangen und Umrechnen benétigten Algorithmen, die in einer AP/ zur

Verfiigung gestellt wird (MCD3-Schnittstelle).

21

2.6.2. Motivation

OTX nun setzt da an, wo fiir gewohnlich sich spezielle Diagnoseanwendungen befinden, die die D-
Server API eines MVCI-Systems nutzen. OTX spezifiziert unter Anderem Diagnoseaufrufe an
Steuergerite, welche durch ein darunter liegendes MVCI-System realisiert werden konnen. Wahrend
ODX Daten beschreibt, die bendtigt werden, um einen bestimmten Funktionsaufruf an ein bestimmtes
Steuergerit durchzufiihren, beschreibt OTX einen ganzen Diagnoseablauf samt den ,,verschiedenen
Interaktionen zwischen einem Anwender (Entwicklungs-, Produktions- oder Werkstattpersonal), dem
Diagnosetester, den Steuergeriten und ggf. der externen Messtechnik®. Abb. 7: Abstrakter

Diagnoseablauf verdeutlicht dies.

Off-Board
Kommunikation

Hupen
Teste Hupe links und Hupe rechts

Teste Hupe links und

Hupe rechts Request/Response
-

Vorbedingungen

+ Spannungsversorgungvon Teil H10/1 wurde gepruft und
ist betriebsbereit.

- Das Hupenrelais wurde gepruft und ist betnebsbereit

+ Zugehoriger DTC ist gesetzt

ul
Steuergerate

Fehlerspeicherstatus

| B1Z3456: Das Hupen ist nicht funktionsfahig. Eshat | o jpoeyr
einen Kurzschiu

| B123457. Die Huy
nterbrechung erkannt.

Beschreibung des Testablaufs
+ Bediene die Hupe mit dem ,Next"-Button
- Fihre die Hupen-Testsequenz aus

Erwartetes Ergebnis
« Beide Hupen sind horbar

< t | "~ Rekursiver .
wrrev | P 1 ot > :
H Funktions-
GUI | ShowScreen aufruf

Externe Sensoren
& Aktoren

Diagnosetester
in Entwicklung, Produktion & Service

Abb. 7: Abstrakter Diagnoseablauf [8]:

Vorteile durch OTX:

e Spezifikation, Implementierung und Ausfiithrung von Diagnoseabliufen.

e Simple und graphische Modellierung von prozesssicheren Diagnoseabldufen.

¢ Entwicklung von OTX-Abldufen von Fachmann fiir Fahrzeugdiagnose ohne tiefe Kenntnisse in
der Softwareentwicklung.

® Automatische Generierung von Tester-Applikationen aus einem spezifizierten OTX-Ablauf .
Code-Erzeugung nicht mehr manuell durch einen Entwickler.

e Agile Anpassungen an Diagnoseabldufen ohne viel zusétzlichem Entwicklungsaufwand

moglich.

®[11]: SUPKE, J.: OTX - Hintergrund & Motivation. http://www.emotive.de (28.07.2011)[21]:
22

® Wissen iiber verifizierte, praxiserprobte und effektive Diagnoseabldufe konnen prozesssicher
abgelegt werden und wieder verwendet werden.

e Verkniipfung von siamtlichen Diagnoseschritten mit Diagnosedaten, sowie
Fehlerbeschreibungen und Ersatzteildatenbanken von Fahrzeugherstellern.

¢ Vollstindige Funktionstests durch Benutzung verschiedener Diagnosedienste.

¢ Benutzung in allen Bereichen, sowohl der Entwicklung, der Produktion als auch des Services.

2.6.3. OTX Core - Basisbibliothek

Das Datenmodell von OTX wird im Wesentlichen durch die OTX Core Basisbibiothek beschrieben. In
Form einer XML Schema-Definition (XSD) spezifiziert der OTX Core die Struktur von OTX-
Dokumenten, sowie die fiir die allgemeine Ablauflogik zur Verfiigung stehenden Elemente.

Die meisten der Hauptelemente sind die im klassischen Programmierparadigma wohlbekannten und
bewihrten Kontrollstrukturen, Deklarationen, Fehler- und Ereignisbehandlung, etc... und
unterscheiden sich nicht maBigeblich von anderen Workflow-Beschreibungssprachen oder allgemein
von anderen Programmiersprachen. Diese werden hier daher nur erwihnt und wenn notig kurz
beschrieben, um einen groben Eindruck iiber die Michtigkeit — d.h. Moglichkeiten, aber auch

Grenzen! - von OTX zu vermitteln.

OTX = Open Test sequence eXchange

AdminData Procedures Validities
| | | |

OTX Core Nodes

"End Nodes

| | |

Stark vereinfachte Darstellung

Abb. 8: Aufbau eines OTX-Dokumentes [8]:

Die Hauptelemente sind in Abb. 8: Aufbau eines OTX-Dokumentes zu sehen. Grob gesagt, besteht

ein OTX-Dokument aus einer oder mehreren Prozeduren, die jedes einen Ablauf beschreiben. Der

23

Ablauf wird durch einen Flow représentiert, der aus einem oder mehreren Knoten besteht, die je eine
atomare Aktivitdit oder zusammengesetzte Aktivititen darstellen. Im Folgenden werden einige
Erlduterungen gegeben, die erwédhnenswert sind.

Ein OTX-Dokument besteht unter Anderem aus:

¢ Deklarationen: Konstanten, globale Variablen, Kontext-Variablen,...
® beliebig vielen Prozeduren, die intern oder von extern aufgerufen werden konnen.

e Validities und Signaturen: siche Kapitel 2.6.5 Basiskonzepte

Spezifizierte Prozeduren eines OTX-Dokumentes bestehen unter Anderem aus:

e Parametern: Ubergabe- und Riickgabe- Parameter. Es wird zwischen drei Parameter-Typen
unterschieden:
o InParameter: Diese sind Ubergabe-Parameter und werden wie Konstanten behandelt
- konnen also nicht modifiziert werden.
o OutParameter: Diese sind nur Riickgabe-Parameter. Es wird der Prozedur kein Wert
iibergeben.
o InOutParameter: Es werden hier Referenzen iibergeben, d.h. Werte-Zuweisungen
werden direkt auf den Variablen des Aufrufers vollzogen.
e Deklarationen: Konstanten, lokale Variablen.
e cinem Flow, der den Ablauf von Aktivititen beschreibt.

¢ cinem Throws, welches unbehandelte Fehlerausnahmen (Exceptions) weitergibt.

Der Flow einer Prozedur ist eine Sequenz von OTX-Knoten. Diese kdnnen Instanzen von entweder
Atomic-Nodes oder Compound-Nodes sein. Atomic-Nodes sind einzelne Aktionen, wéhrend
Compound-Nodes wiederum einen Flow beinhalten und somit beliebig tief verschachtelt Sequenzen
von OTX-Knoten beherbergen kdnnen.

Atomic-Nodes:

¢ Action Node: Elemente die bestimmte Aufgaben/Aktionen durchfiihren. z.B.: Assignment,
ProcedureCall, ExecuteDiagService, MessageDialog

¢ Return, Continue, Break haben die iibliche allgemein bekannte Semantik.

e Throw: Eine explizite Ausnahme wird ausgelost und die Fehlerbehandlung (Handler) wird

ausgefiihrt.

Compound-Nodes:

¢ Group: Sequenzen von OTX-Knoten werden zur Ubersicht und logischen Strukturierung zu
einer Group zusammengefasst.
e Loop: Es gibt ForLoop, ForeachLoop, WhileLoop und DoWhileLoop, deren Semantik

selbsterklidrend sein sollte.

24

e Parallel: Macht es moglich Sequenzen parallel auszufiihren.
¢ Branch: Reprisentiert die bekannte If-Then-Else Kontrollstruktur.

e Handler: Stellt einen 7ry-Catch Block fiir die Fehlerbehandlung dar.

2.6.4. Datentypen

OTX verfolgt ein streng typisiertes Programmierparadigma. Variablen, Konstanten und Parameter
miissen zur Compile-Zeit statisch als bestimmte Datentypen deklariert sein. Der OTX-Standard
spezifiziert dazu eine Reihe von Basis-Datentypen. Weitere benutzerdefinierte Datentypen konnen als
komplexe Datentypen durch Erweiterungsbibliotheken zur Verfiigung gestellt werden. Die Basis-

Datentypen sind in Abb. 9: Datentypen von OTX zu sehen.

DataType

SimpleType ComplexType

= Boolean = List (Aray) = UserException

= Float = Map (Key-Value Pairs) » QutOfBoundsException

= ByteField » TypeMismatchException

* Integer » ArithmeticException

= String » InvalidReferenceException

Abb. 9: Datentypen von OTX [8]:

2.6.5. Basiskonzepte

Es gibt in OTX einige Basiskonzepte, die OTX von herkémmlichen Workflow-Beschreibungssprachen
unterscheidet und aufgrund von langjdhrigen Erfahrungen in der Fahrzeugdiagnose als dominen-

spezifische Aspekte in OTX eingefiihrt wurden.

Specification / Realisation - Konzept:

OTX beschreibt die Entwicklung von Diagnoseabldufen als einen drei-stufigen Prozess. In der
Spezifikations-Phase wird ein Ablauf grob modelliert, ohne dass implementierungs-technische Details
festgelegt werden. Funktion und Inhalte konnen allein aus Namen oder aus einer Prosa-Beschreibung
abgeleitet werden. In der Realisierungs-Phase beginnt man die Implementierung des Ablaufs. In
dieser Zwischenstufe gibt es Elemente mit Realisierung (Implementierung) und auch solche, die ohne

Realisierung nur spezifiziert sind.

25

Nach Beendigung der Realisierungs-Phase ist der Diagnoseablauf vollstindig realisiert und kann —

anders als in den vorangehenden Phasen, ohne Simulation - ausgefiihrt werden.

Kontext - Konzept:

Das Ziel von OTX ist unter Anderem moglichst generische Abldufe modellieren zu konnen, die
wintelligent genug sind, um auf verschiedene Fahrzeug—Modelle, Fahrzeug-Typen oder sonstige
Varianten reagieren zu konnen. Durch das Kontext-Konzept konnen dazu spezielle sogenannte
Kontext-Variablen deklariert werden, die vom Laufzeitsystem erkannt werden, und mit den nétigen
Informationen von der dariiberliegenden Diagnoseanwendung gemappt werden. Diese Daten sind
typischerweise Fahrzeugdaten, Benutzerdaten oder Umgebungsdaten, wie Fahrzeugmodell, Verkaufer,
Identifikationsnummer, Motorisierung, Sonderausstattungsdaten, Benutzername, Benutzerrechte,

Betriebssystemversion, verwendetes VCI, etc.. J

Validity — Konzept:

Das Validity-Konzept vervollstindigt das Kontext-Konzept insofern, dass Teile des OTX-Ablaufs
ausgeblendet werden konnen. Dazu kann bestimmten OTX-Elementen ein Validity-Term zugeordnet
werden, der als ein Boolean-Ausdruck entscheidet, ob dieses Element ausgefithrt wird oder nicht.
Verniinftigerweise setzt sich dieser Ausdruck unter Anderem auch vor Allem aus Kontext-Variablen

zusammen.

Signature — Konzept:

Durch das Signature-Konzept lidsst sich in einem OTX-Ablauf fiir einen Prozeduraufruf eine
Signature spezifizieren. Diese Signature ist wie eine Procedure ohne Implementierung —
d.h. es werden nur In- und Out- Parameter spezifiziert. Zur Laufzeit muss es eine oder mehrere
Procedures geben, die diese Signature implementieren. Das Laufzeitsystem entscheidet dann,

anhand eines ValidFor-Terms, welche Procedure aufgerufen wird.

2.6.6. Erweitungs-Bibliotheken

Neben dem zentralen Kern, dem OTX-Core, gibt es einige im Standard spezifizierte Erweiterungs-

Bibliotheken die den OTX-Core durch spezifische Funktionen erweitern.

"[22]: SUPKE, J.: OTX — Basiskonzepte. http://www.emotive.de (28.07.2011)
26

Diagnostic Tester Application

HMI Device
(e.g. Keyboard,
Mouse, Screen ...)

; ; ; Il Other Device
Diagnostic Runtime System Measurement (e.0 HILAPI

(e.g. MVCI Server, D-Server, ...) Data Acquisition ASAM GDI)

Abb. 10: Aufbau von OTX [8]:
In Abb. 10: Aufbau von OTX werden diese Bibliotheken dargestellt, die im Folgenden nur kurz

beschrieben werden sollen.

Environment: Diese Bibliothek ist fiir die Kommunikation mit der Umgebung, dem
Betriebssystem oder anderen Anwendungen verantwortlich.

Event: Diese Bibliothek spezifiziert alles rund um die Ereignisbehandlung von sowohl
internen (z.B. TimerEvent) als auch externen Ereignissen (z.B. Mausklick).

118n: Auch die Internalization genannt, sorgt diese Bibliothek fiir die Ubersetzung von allerlei
Zeichen und Werten zur Anpassung an regionale Bediirfnisse.

StringUtil: Bietet niitzliche Hilfsfunktionen zur Verarbeitung von Zeichenketten an.

Math: Erweitert den Core um weitere mathematische Hilfsfunktionen (z.B. log, sin, exp).
Quantities: Wird fiir Berechnungen mit verschiedenen Einheiten benutzt, um regionale
Unterschiede transparent zu machen.

HMI: Stellt Ul-Elemente zur Verfiigung, die eine Interaktion mit einem menschlichen Akteur
ermoglichen (Ein- und Ausgabe, Standarddialoge, etc...).

DiagCom: Beinhaltet Elemente, die eine Schnittstelle zur Offboard-Kommunikation mit dem
Fahrzeug aufbauen. In der Regel ist es, bei dem heutigem Stand der Technik, eine Schnittstelle
zu einem MVCI-System.

Flash: Ermoglicht durch spezielle Befehle eine autorisierte Programmierung von
Steuergeriten.

Measure: Bietet eine Schnittstelle fiir die externe Messtechnik.

27

2.7. Open Diagnostic Framework

Das Open Diagnostic Framework ist eine von der Firma emotive GmbH entwickelte
Entwicklungsumgebung, mit der sich Diagnoseabldufe auf Basis von OTX spezifizieren, realisieren,
validieren, dokumentieren, debuggen, testen und ausfiihren lassen. In erster Linie ist ODF also eine
Implementierung des OTX-Standards und stellt mit ODX und einem Diagnoselaufzeitsystem (z.B. ein

ASAM MVCI-System) eine komplette, prozesssichere Losung fiir die ganze Prozesskette der

Fahrzeugdiagnose dar.

ODF - Open Diagnostic Framework

Database-Modul OTX-Designer Screen-Designer Test-Environment

OTX-API ‘ Project-Explorer Control-Library Debugger

AXML-DB

OTX Runtime Environment
MVCI-Server + PDU- Slmulatlon ¢ D PDU API Legacy RT-Systems Simulation
SDX

Standardized Diagnostic RT-Systems = \Smss? Proprietary Diagnostic RT-Systems

Activity-Library Data-Binding Unit-Tests

L

(IIZ‘D?

VCI - Vehicle Communication Interface

"SDX = Simple Diagnostic Data Exchange
Format by emotive to support proprietary
Diagnostic Runtime Systems

Abb. 11: Aufbau des ODF’s [8]:

In Abb. 11: Aufbau des ODF’s ist der Aufbau des Open Diagnostic Frameworks zu sehen. Von
Anfang an wurde bei der Entwicklung wert darauf gelegt, dass das Framework modular aufgebaut ist,
um einzelne Komponenten des Frameworks auch auBlerhalb von ODF in anderen
Anwendungssystemen verwenden zu konnen. Wie man in der Abbildung sehen kann, setzt das
Framework auf einem bestehenden Diagnose-Laufzeitsystem auf. Das Framework sorgt fiir eine
Integration und Kommunikation mit der Hersteller-API verschiedener Diagnose-Laufzeitsystemen.
Dariiberhinaus gibt es fiinf Komponenten: das Database-Modul, der OTX-Designer, der Screen-

Designer und das Test-Environment.
Der OTX-Designer stellt das zentrale Werkzeug dar, um OTX-Abldaufe bzw. OTX-Dokumente zu
modellieren. Er besteht aus:

e cinem Workflow-Designer, in dem ein Ablauf graphisch als ein Flussdiagramm dargestellt

wird und dessen FEigenschaften und Daten durch Popup-Fenster editiert werden konnen,

28

¢ cinem Solution-Explorer, der fiir die Navigation durch das aktuelle Projekt, simtliche
Elemente von der Projekt-Root bis zur Procedure, bis hin zu Action-Nodes, Declarations,
Parameters, etc... bereithilt,

¢ ciner Toolbox, die simtliche OTX-Elemente mit Symbol und Text darstellt, welche per
Drag&Drop zu einem Diagnose-Ablauf im Workflow-Designer hinzufiigen kann,

¢ und aus einer Ausgabe, die verschiedene Ausgabefenster zum Logging, Tracing und

dergleichen anzeigt.

Die OTX-Daten, die durch den Workflow-Designer angezeigt und editiert werden kdnnen, werden iiber

das Database-Modul sowohl geladen als auch persistent gemacht.

Das Database-Modul kann als Manager fiir die OTX-Daten angesehen werden. Dieser stellt die
sogenannte OTX-API zur Verfiigung und sorgt fiir ein performantes Schreiben und einen performanten
Zugriff auf die zugrunde liegenden Daten in XML. Vor allem da OTX-Dokumente bzw. OTX-Projekte
sehr grol werden konnen und dieser Speicheraufwand fiir den Arbeitsspeicher nicht realisierbar ist,
bedient sich das Database-Modul einer XML-Datenbank eines Drittherstellers und ladt nur benétigte

Daten in den Arbeitsspeicher.

Durch den Screen-Designer ist es moglich, sogenannte Screens (einfache User-Interfaces) — dhnlich
wie beim Forms-Designer in Visual Studio - zu erzeugen und anzupassen. Zu diesem Zweck gibt es
eine erweiterbare Control-Library, die vorgefertigte Steuer-Elemente anbietet. Die erstellten Screens
dienen zur Ein- und Ausgabe fiir den Benutzer wihrend der Laufzeit eines Diagnose-Ablaufs. Dazu
findet ein Data-Binding zwischen Variablen des OTX-Ablaufs und entsprechenden Elementen der
Screens statt. Durch den Screen-Designer bzw. durch die entwickelten Screens realisiert ODF die

HMI (Human Machine Interface) Schnittstelle zwischen dem Anwender und dem Diagnoseablauf.

Die OTX Runtime Environment ist die Laufzeitumgebung fiir OTX-Abldufe. Nachdem ein OTX-
Ablauf vollstindig spezifiziert wurde und validiert wurde, kann er in der ODF-Entwicklungs-
Umgebung oder - falls das Binédr-Format schon vorliegt — mit Hilfe der stand-alone OTX-Runtime
Bibliothek ausgefiihrt werden. Um einen OTX-Ablauf auszufiihren, werden aus den OTX-Daten aus
der Datenbank Programmcode (aktuell C#) On-The-Fly erzeugt, anschliefend wird dieser in Binér-
Format iibersetzt und kann letztendlich vom Betriebssystem ausgefiihrt werden. Abb. 12: Ablauf der
OTX Runtime zeigt die besprochene Prozesskette fiir die Ausfithrung eines OTX-Ablaufs, der als
OTX-Format vorliegt.

29

OTX-Ablaufumgebung

o) (DLL
S By i < -

=
Datenbankmodul :
ODF-Runtime
v J
Platzbedarf auf der Festplatte ca. 20 MB ca. 3 MB

C#

2
N

(((

Dt/

~

Datenbereitstellung im OTX-Format Datenbereitstellung im Binar-Format
Abb. 12: Ablauf der OTX Runtime [8]:

Die OTX-Runtime sorgt, wihrend der Laufzeit eines Ablaufs, aulerdem auch fiir die Kommunikation
mit den darunterliegenden Diagnoselaufzeitsystemen (z.B. ein MVCI-System). Desweiteren verwaltet
sie diverse Prozeduraufrufe an andere OTX-Abldufe samt definierten Sichtbarkeiten und

Zugriffsrechten.

Das Test-Environment stellt Tools zur Verfiigung, die die Fehlersuche und das Testen in der

Entwicklung von OTX-Abldufen unterstiitzen. Es umfasst zwei Komponenten:

¢ einen Debugger, mit Hilfe dessen man noch wihrend der Modellierung die Fehlersuche
durchfiihren kann,

e und ein Unit-Test Framework, welches fertig gestellte Abldufe testen soll und vor allem die
Softwarequalitit gewihrleisten und erhalten soll (Qualititssicherung) - das genannte

Framework soll Ergebnis dieser Arbeit sein.

3. Modellierung

Diese Kapitel widmet sich der Konzeption und dem Entwurf des Test Frameworks. Wir beginnen mit

einer Liste der Anforderungen an ein Test Framework.

3.1.

3.2

Anforderungen

Test eines OTX Workflows als isolierte Unit, unabhiingig von Anderungen an externen
Service-Partnern.
Test von OTX Workflows mit u.U. fiir den Ablauf nicht relevanten oder keinen Eingabe- und
Ausgabe- Daten.
Das Testen eines OTX Workflows soll keine Anderungen bzw. Zusitze zur Workflow-
Quelldatei nach sich ziehen lassen.
Erstellung von Testfillen und automatisierte Ausfithrung einer Menge von Testfillen zur
Wiederholbarkeit von Tests und der Qualititssicherung des Workflows.
Testfille miissen voneinander unabhingig priifbar sein.
Verwaltung von unter Umsténden einer sehr groen Zahl von Testféllen (~10.000).
Einfache, graphisch unterstiitzte Spezifizierung von Testféllen durch integrierte Modellierung
am Workflow selbst - d.h. im OTX-Editor integriert.
Synchronisierung der Testdaten eines Testfalls mit einem OTX-Ablauf, der nach der Erstellung
des Testfalls modifiziert wurde.
Geeignete Darstellung der Testergebnisse

Abb. 12.1: Bei Tests mit unter Umstdnden groBen Mengen an Testféllen soll

Misserfolg/Erfolg auf einen Blick erkennbar sein.
Abb. 12.2: Optional: Lokalisierung des Fehlers und Verlinkung zum Fehlerort sowie
Fehlerbeschreibung.

Optional: Darstellung von Code Coverage Metriken.
Das Framework wird in C# unter der . NET-Umgebung mit der Version 3.5 implementiert.
Der fiir die Ausfithrung der Testfille bzw. Workflows erzeugter Programmcode sollte
ebenfalls kompatibler C#-Code der . Net-Version 3.5 sein. Spéter soll es moglich sein,

generisch auch andere Sprachen wie J#, Visual Basic, etc. zu unterstiitzen.

Use Cases

Die Funktionen, die das Test-Framework bereithalten soll, werden in diesem Kapitel durch ein Use

Case-Diagramm und Prosa-Beschreibungen spezifiziert. Abb. 13: Use Case-Diagramm bildet alle

Use-Cases graphisch ab. Die daran anschlieende Tabelle erlidutert die einzelnen Use-Cases.

31

Entwickler

HUSESH
Test dffnen

Test Framework

Testsuite
rusammenstellen /4
estergebnisse
auswerten

‘ Tusezn
Testlauf starten [Testlauf erstellen

ugxtendsh

Testsuite
hinzufigen

Testcase hinzufligen

mit OTX
ynchronisieren nextgndss

'must visit'

cextendss -Aktivitat hinzufigen

nextendss -
Assertion
hinzufigen
nextendss
Testdaten
spezifizieren

Testfalle suchen

Testcase
madellieren
v

Abb. 13: Use Case-Diagramm

Anwendungsfall

Test o6ffnen

Beschreibun

Dieser Anwendungsfall soll eine Generalisierung fiir das Offnen
von Testcases, Testsuites und Testruns beschreiben.

e Testcase: Nachdem ein OTX-Ablauf im OTX-Designer
geoffnet wurde, kann ein Testcase aus der Menge aller dem
Ablauf zugehdrigen Testcases zur Bearbeitung geoffnet
werden. Die Anreicherung von Testdaten durch den OTX-
Designer geschieht am aktuell gedffneten Testcase. Beim
Offnen von Testcases muss auBerdem eine
Synchronisierung mit den zugehdrigen Daten des OTX-
Ablaufs erfolgen.

e Testsuite: Zur Verwaltung und zum Editieren von
Testsuites kKann der Testsuite Manager gebffnet werden.

e Testrun: Ein vorher durchgefihrter Testrun soll auch
spater wieder getffnet werden kdnnen, um dessen
Testergebnisse abzurufen oder den Testlauf wiederholt
auszufuhren.

Test lI6schen

Dieser Anwendungsfall soll eine Generalisierung fir das Léschen
von Testcases, Testsuites und Testruns beschreiben. Beim Loschen
von Testcases und Testsuites muss beachtet werden, dass
vorhandene Referenzen angepasst werden massen.

32

Test speichern

Dieser Anwendungsfall soll eine Generalisierung fir das
Speichern von Testcases, Testsuites und Testruns beschreiben.
Das Speichern geschieht in einem fir das Test Framework
speziell spezifizierten XML-Derivat. Jeder Testcase bzw. Testsuite
oder Testrun wird separat in einer einzelnen Datei in einem
dedizierten Verzeichnis des Dateisystems vom Betriebssystem
gespeichert.

Testcase modellieren

Die Modellierung von Testcases findet integriert im OTX-Designer
statt.

Durch KontextmenUs soll es mdglich sein einer ausgewahlten
Aktivitat Assertions hinzuzufligen oder sie als must visit-Aktivitat zu
kennzeichnen.

Weitere Testdaten wie z.B. Eingansparameter oder erwartete
Ausgabeparameter sollen durch eine weitere Ansicht unterhalb
des dargestellten OTX-Ablaufs eingegeben werden kénnen.

must visit-Aktivitat
hinzufligen

Eine Aktivitat kann durch ein Kontextmeni im OTX-Designer als
must visit gekennzeichnet werden. Dies wird flr den aktuell
geobffneten Testcase durchgefihrt.

Assertion hinzufiigen

Durch das KontextmenU einer Aktivitat kann dem aktuell
geoffneten Testcase eine Assertion hinzugeflgt werden.

Testdaten
spezifizieren

Durch eine geeignete Ansicht unterhalb des Workflow-Designers
sollen alle Testdaten angezeigt und editiert, sprich spezifiziert
werden kénnen.

Mit Otx
synchronisieren

Die Testfallspezifikation kann automatisch mit den Daten des
OTX-Ablaufs synchronisiert werden. Anderungen am OTX-Ablauf
mussen am Testcase berticksichtigt bzw. aktualisiert werden.

Testsuite
zusammenstellen

Mit Hilfe eines Testsuite Managers lassen sich Testsuites verwalten
und zusammenstellen.

Dieser soll zwei Ansichten (Testsuites und Testcases) bieten, mit
Hilfe derer Testcases einfach per Drag&Drop zu Testsuites
hinzugefligt werden kénnen.

Testlauf erstellen

Um Tests durchzuflihren werden Testsuites bzw. Testcases flr
einen Testlauf ausgewahlt.

Tests hinzufligen

Tests kénnen Testsuites oder Testcases sein. Diese werden einem
Testlauf zur Ausfiihrung oder einem Testsuite zur Sammlung und
Organisation von Tests hinzugeflgt.

Testsuite hinzufligen

Eine Testsuite kann einem Testlauf zur Ausfiihrung oder wiederum

33

durch eine Referenz einer anderen Testsuite hinzugefligt werden.

Testcase hinzufiigen Ein Testcase kann einem Testlauf zur Ausfihrung oder durch eine
Referenz einer Testsuite hinzugefligt werden.

Testcases suchen Der Anwender kann projektweit in verschiedenen Kategorien
nach Testcases filtern bzw. suchen.

Testlauf starten Nach der Erstellung bzw. Zusammenstellung eines Testlaufs kann
dieser gestartet werden. Die Test-Laufzeitumgebung generiert
dazu aus den OTX-Daten einen ausfihrbaren Code und fihrt alle
Tests nacheinander durch.

Testlauf auswerten Waéhrend der Ausflihrung eines Testlaufs werden die
Testergebnisse sofort angezeigt.
Nach Beendigung des Testlaufes kann der Anwender durch die
Testergebnisse navigieren und auch ein Test-Report erstellen
lassen.

Tabelle 2: Use-Case Beschreibung

3.3. Analyse und Konzeption eines geeigneten Testing Ansatzes
fiir OTX Workflows

Wie bereits besprochen, geniigt ein einfacher Black-Box Ansatz mit Vergleich von Ist- und Soll-
Ausgabewerten nicht, da die Ausgabegrofien oft nicht aussagekriftig genug sind. Auch ist ein White-
Box Ansatz zur automatischen Generierung von Testféllen nicht effektiv, wenn nicht zusétzlich durch
ein geeignetes Verfahren die Korrektheit des Ablaufs eines Workflows verifiziert werden kann.

Die Priifung der Interaktionen eines Workflows mit anderen Prozessen durch eine Art
Kommunikationsprotokoll, welches der Semantik des Workflows nach spezifiziert wird, deckt den
Bereich der Interaktionen bzw. Kommunikation des Workflows ab. Da Workflow-Systeme vor allem
im Hinblick darauf erfunden worden sind, Aktivititen und Unter- oder Neben-Prozesse in einem
Ablauf zu integrieren und zu automatisieren; und somit meistens Workflows verwalten, deren
Semantik im Wesentlichen aus dem Ablauf seiner Interaktionen mit den Partnern bestehen; ist dieser
Ansatz in den meisten Fillen schon ausreichend und gut geeignet um die Korrektheit des Workflows
zu gewihrleisten - obgleich ein Workflow aus mehr als "nur" seinen Interaktionen besteht. Wir wollen
uns dieses Konzept des Testens der Interaktionen eines Workflows im Hinterkopf behalten und es zu
einem spdteren Zeitpunkt in unsere Konzeption mit einflieBen lassen; wenn auch ein anderer

Implementierungsansatz gewihlt wird als bei MEYER (BPELUnit Framework)®.

8 Test Framework fiir BPEL (Siehe [4]: Mayer, 2006)

34

Doch zunichst wollen wir uns noch einmal dem einfachen Black-Box Ansatz zuwenden und dem eine
genauere Betrachtung schenken, um das Problem besser zu verstehen und zu sehen welche Losung es
dafiir gibt. Das erste Problem besteht darin, dass Eingabeparameter beim Aufrufen eines OTX
Workflows fehlen oder nicht geniigen um daraus Aussagen iiber die Korrektheit des Workflows zu
gewinnen. Dies liegt daran, dass der Ablauf eines Workflows nicht nur von den Eingabeparametern
abhingt, sondern auch von dem eingehenden Datenfluss von externen Abldufen. Werden fiir das
Black-Box Verfahren als Input nur die Eingabeparameter des Workflows festgelegt, so ist der Testfall
unterspezifiziert und Aussagen iiber das korrekte Verhalten des Workflows natiirlicherweise
eingeschrinkt. Die Losung liegt nahe: Samtliche eingehende Daten werden als Input fiir die Black-Box
miteinbezogen. Werden samtliche Eingangsgrofien spezifiziert so ist der Ablauf eines Workflows
vollstindig bestimmt und determiniert. In Abb. 14: Workflow ohne Eingabe- und Ausgabeparameter
wird ein Workflow in BPMN’ dargestellt, der keine Eingabeparameter besitzt. Erst mit der

Einbeziehung der restlichen Eingangsgrofien ist ein Black-Box-Test iiberhaupt erst moglich.

Input

<leer= W,
=ity -BlackBox |
- 21aCKbOoX

Kreditbhetrag: double
Einkommen: double

schufa:bool Kurdendaten
schulden:bool auslesen

Ausgaben:double
Gueterstand:enum
manue | 1Gewaehrt:bool .~ P e

\ N
\ +] Manuelle
Bearbeit
\ Einkommen < 1500 Euro | SrEi

shhufa-Auskuntt

" Vermogen,
Ausgaben,
Schulden prifen

Schufa OK manuell gewahrt
AND
Keine Schulden

"""""""""""""""""" Schufa OK
P SM T AND
Modifiziertes Szenario [~ hat Schuldenlast
AND
geringe Ausgaben

Schufa OK
AND
hat Schuldenlast

geringe Ausgaben
OR

guter Giterstand)

Output
<lear=

Abb. 14: Workflow ohne Eingabe- und Ausgabeparameter

° Business Process Modeling Notation, eine abstrakte Workflow Beschreibungssprache.

35

Beispielsweise werden von dem Aufruf an den externen Prozess Kundendaten auslesen die
Riickgabewerte 'Kreditbetrag' und 'Einkommen’ zuriickgeliefert. Von diesen zwei EingangsgréBen
hingt der Ablauf und somit die Semantik des Workflows stark ab. Um die Korrektheit des Workflows
durch Vergleichen von IST- und SOLL-Werten zu priifen, miissen unter Anderem diese beiden
EingangsgréBen selbstverstindlich mit beriicksichtigt werden.

Um alle EingangsgroBen eines Workflows statisch schon vor der Ausfithrung festzulegen — d.h. um
diese mit in die Test-Spezifikation aufzunehmen und zu priifen, eignet sich das Konzept von Mock-
Objekten besonders gut.

Im folgenden Abschnitt wird erklért, wozu Mock-Objekte verwendet werden und wie sie fiir das Test-

Framework genutzt werden kénnen.

3.3.1. Simulierung des Inbound Datenstroms - Mock Objekte

Mock-Objekte sind in der Softwaretechnik vor allem im Bereich Unit-Testing unverzichtbar.
Um das Unit-Testing eines Moduls abgekapselt und unabhingig von Anderungen/Fehlern auBerhalb
eben dieses Moduls zu ermoglichen, muss die Kommunikation mit anderen Modulen
emuliert/simuliert werden. Mock-Objekte implementieren die Schnittstelle von Modulen vollstiandig,
indem sie jedoch statische Daten verwenden, die vor Ausfithrung spezifiziert werden miissen. Ein
Mock-Objekt (engl. to mock = etwas vortduschen) simuliert also ein aufzurufendes Modul, indem es
die fiir einen Testfall spezifizierten Eingabe- und Riickgabewerte nutzt, um einen Aufruf
"vorzutduschen".

Die Nutzung von Mock-Objekten hat folgende Vorteile:

e Keine Abhingigkeiten des Units zu anderen Modulen. Fehler in anderen Modulen haben
keinen Einfluss auf den Unit-Test.

e Unit-Test eines Moduls ist moglich, ohne dass erforderliche Module vollstindig implementiert
oder iiberhaupt existieren miissen.

e Spezifikation von statischen Riickgabewerten des Mock-Objektes, um ein bestimmtes
Verhalten des zu testenden Moduls zu priifen. Speziell auch um sonst schwer auszuldsendes
Verhalten zu testen (z.B. Ausnahmefehlerbehandlung).

e Da nur statische Daten zuriickgegeben werden, wird quasi keine Zeit fiir den Aufruf gebraucht.

Diese Vorteile sind ebenso fiir das Testen von Workflows giiltig. Das Konzept von Mock-Objekten
lasst sich fiir Workflows leicht realisieren. Jeder Aufruf, den ein Workflow an einen externen Dienst
sendet, wird quasi vom Test Framework abgefangen und es werden statische Riickgabewerte
zurlickgegeben. Man konnte Mock-Objekte auch realisieren, indem ein tatsichlich generiertes Mock-
Modul, Eingabewerte entgegennimmt und beispielsweise aus einer Tabelle oder Datenbank die

entsprechenden Ausgabewerte zuriickliefert. Das Test Framework wiirde dann alle Aufrufe zu den

36

entsprechenden Mock-Objekten umleiten. Allerdings hat dies den Nachteil, dass Riickgabewerte nun
dynamisch berechnet werden und es somit schwieriger wird ein bestimmtes Verhalten in dem zu
testenden Workflow auszulosen (siehe oben: 3. Punkt bei den Vorteilen).

Ein anderer Ansatz wiirde die Riickgabewerte bei der Spezifikation eines Testfalles mit einbeziehen.
Jeder Testfall muss demnach zusitzlich zu den Eingabe- und Ausgabe-Parametern des Workflows
auch die Riickgabewerte externer Aufrufe spezifizieren. Die Spezifizierung von Eingabegroflen fiir
externe Aufrufe ist in dem Fall nicht nétig, da die Riickgabewerte fiir diesen Testfall statisch schon
festgelegt sind und nicht von Eingabegrofien abhiingig sind - eben darum ist ein gezieltes Triggern von
einem gewiinschtem Verhalten des Workflows moglich. Besonders Randfélle und Ausnahmefehler
(Exceptions/Faults) werden auf diese Weise testbar gemacht.

Zusitzlich ist damit die Moglichkeit gewonnen worden, schon vor Ausfiihrung des Workflows durch
diese Riickgabewerte sidmtlich eingehenden Datenfluss des Workflows festzulegen, um damit den

Input beim Black-Box Testing zu fiillen.

Wie wir einsehen konnen, I6sen Mock-Objekte unser beschriebenes Problem mit den
unterspezifizierten Eingangsgroflen fiir ein Workflow im Testgang. Wir wollen als nichstes ein
verwandtes Problem betrachten.

Ein Workflow kapselt oft viele Aktivititen und Prozesse in Teilabldufe bzw. Teilfunktionen zu einem
Gesamtablauf. Priift man in einem Black-Box Verfahren den Gesamtablauf, ist unter Umstinden. noch
nichts iiber die richtige Verarbeitung in den Teilabldufen ausgesagt. Dies spiegelt sich auch darin
wieder, dass die Ausgabeparameter eines Workflows oftmals nicht geniigend Informationen liefern,
um damit die Korrektheit des Workflows priifen zu kénnen. In Abb. 14: Workflow ohne Eingabe-
und Ausgabeparameter (siche oben) sehen wir einen Workflow, der gar keine Ausgabeparameter
zuriickgibt. Ein einfacher Black-Box-Test konnte somit keine Aussagen iiber die Korrektheit treffen.
Das Problem in diesem Beispiel liegt darin, dass die eigentliche Funktionalitit des Workflows
gekapselt wurde. Die relevante Information, ndmlich dass der Kredit gewihrt oder abgewiesen wurde,
wird durch die Aktivitit Antwort senden schon von dem Workflow selbst verarbeitet und nicht als
Ergebnis in den Ausgabeparametern des Workflows zuriickgeliefert. Natiirlich lieBe sich dieses
Problem umgehen, indem Workflows prinzipiell immer so modelliert werden, dass Eingabe- und
Ausgabe- Schnittstellen genau den Eingabe- und Ausgabemengen der erwiinschten Semantik-Funktion
entsprechen. Weitere Verarbeitung wiirde in einem separaten Workflow behandelt. In Abb. 15:
Workflow, abgekapselte Funktion wird die angesprochene Kapselung des Workflows in Abb. 14:
Workflow ohne Eingabe- und Ausgabeparameter aufgebrochen. Die hauptsichliche Funktion,
nidmlich einen Kredit zu priifen, wird von der restlichen Verarbeitung abgetrennt und kann so in einem

Black-Box Verfahren gepriift werden.

37

N
W,

Pt
Kundendaten
auslesen

}H

Kundendaten Antwort
auslesen senden o
Krealt prien

b,
i1

-

Einkommen :double Einkommen < 1500 Eura
F

Y Kreditbetrag > 10,000 Euro i
In l.“_: % | Manuelle "II Ao
Kreditbetrag:double [A - i sendzn

el
schulden:bog] ™
Ausgaben:double “hﬁhm“kmMN“

Glterstand:enum 4
ManuellGewaehrt :bool - | i /

ol

Schulden prifen

manuell gewahrt

Kredit
gewdhren

e

Modifiziertes Szenario

/Output
| 1sApproved:hool

geringe Ausgaben

Schufa OK
AND

hat Schuldeniast
AND
{ geringe Ausgaben
e

guter Guterstand)

Abb. 15: Workflow, abgekapselte Funktion

Der Gesamtprozess wird wie in der Abb. 15: Workflow, abgekapselte Funktion zu sehen ist, von zwei
verschiedenen Workflows implementiert. Allerdings ist dies nicht immer so erwiinscht und ist eine
Einschrinkung fiir den Entwickler. Es ist unrealistisch - d.h. praktisch nicht durchsetzbar, dass der
Entwickler in Hinsicht darauf modelliert, wie es geeignet wére um Tests durchzufiihren. Es ist nicht
die Aufgabe des Entwicklers, sondern die des Test Frameworks dafiir zu sorgen, dass ein Workflow
beliebiger Struktur testbar ist. Gesucht wird also ein Konzept, welches Unit-Tests von Workflows
ermoglicht, auch ohne dass die Funktionalitit eines Workflows durch seine Eingabe- und Ausgabe-
Parameter widergespiegelt wird. Da Eingabe- und Ausgabe- Parameter des Workflows also nicht
ausreichen und das Black-Box Testing seiner Definition nach nur Eingabe- und Ausgabe- Parameter in
den Testvorgang einbezieht, konnen wir im Folgenden nicht mehr von einem reinen Black-Box Test
sprechen.

Um beispielsweise die Funktionalitit der Kreditpriifung in dem besprochenen Workflow zu testen,
muss offensichtlich auf die interne Variable 'isApproved’ zugegriffen werden, dessen Wert von den
Aktivititen Kredit gewdhren bzw. Kredit abweisen gesetzt wird. Das Test-Framework muss demnach
die interne Struktur und Logik des Workflows kennen und innerhalb des Workflows einen
Mechanismus zur Priifung ansetzen. Wir werden im néchsten Abschnitt sehen, dass so genannte

Assertions innerhalb eines Workflows diesen Dienst erfiillen.

38

3.3.2. Assertions innerhalb eines Workflows

Der Begriff Assertion (lat./engl. fiir Aussage; Behauptung) wurde in der Informatik zum ersten Mal
von ROBERT FLOYD 1967 in seinem Artikel Assigning Meanings to Programs gebraucht. Floyd
schreibt in diesem Artikel dariiber, wie sich die Korrektheit von Flussdiagrammen durch
Zusicherungen (Assertions) beweisen ldsst. Spiter erweitert TONY HOARE diesen Ansatz um das
sogenannte Hoare-Kalkiil und legt damit den Grundstein fiir die formale Verifikation von Software.
Wenn auch fiir den Beweis der vollkommenen Korrektheit eines Programms viele Zusicherungen
notwendig sind, die z.T. Intelligenz und Rafinesse erfordern und somit auch viel Aufwand bedeuten,
kann die Korrektheit von Teilfunktionen des Programms recht leicht durch einzelne Assertions
sichergestellt werden.

Im modernen Softwaretest werden Assertions haufig genutzt, um sicherzustellen, dass der Wert eines

Datenobjektes mit einem erwarteten Wert iibereinstimmt. Beispiel:

GOLogic=2 +2;

assert(GOLogic == 5);
In diesem kurzen Code-Abschnitt wird durch die asser-Anweisung zugesichert, dass zu genau diesem
Zeitpunkt der Wert der Variable 'GOLogic' dem Wert ‘5’ entspricht. Sollte diese Zusicherung bei der
Ausfiihrung nicht erfiillt werden, so muss der Test als fehlgeschlagen ausgewertet werden.
Kehren wir nun zuriick zu unserem Beispiel der Kreditpriifung. Wie besprochen, benotigt das Test-
Framework einen Mechanismus, um auf die innere Struktur und Logik des Workflows zuzugreifen.
Durch Assertions, die innerhalb des Workflows an Kontrollfliissen gesetzt werden und in der Laufzeit
ausgewertet werden, lassen sich beliebige Teilfunktionen eines Workflows testen. In Abb. 16:
Workflow mit Assertion sehen wir wie die Variable i sApproved durch eine Assertion gepriift wird.

Die Assertion stellt sicher, dass ein Kredit je nach Testfall entweder gewihrt oder abgewiesen wird.

39

Input
Kreditbetrag:double

Kundendaten

auslesen

N

Antwort
senden

Einkommen :double

Schufa:bfgﬁl
Schulden:hool
Ausgaben:85ﬁ51é“ﬁ~‘h\“"
Gliterstand:enum

ManuellGewaehrt :hool .|

Modifiziertes Szenario

Schufa OK
AND
hat Schuldenlast
(geringe Ausgaben
OR

guter Glterstand)

Y\ | Kreditbetrag > 10,000 Euro
Manuelle
Einkommen < 1500 Euro Bearbeitung
Pl

Vermogen
Ausgaben,
Schulden prifen

4

Keine Schulden

Kredit
abwelisen

| manuen gewans

Kredit

Schufa OK
AND
"=t hat Schuldenlast
AND
geringe Ausgaben

’l gewahren
unter
besonderer

Beobachtung
stellen

Assertion
15, ov

==true/false

Output
1sApproved:bool

Abb. 16: Workflow mit Assertion

In einem weiteren Beispiel wollen wir mithilfe eines konkreten Testfalls nur die Teilfunktion der

automatischen Kreditpriifung desselben Workflows sicherstellen. Die Testspezifikation ist in den

magentafarben-umrandeten Kisten zu sehen.

Kreditbetrag=10000
Einkommen=1400

Kundendaten
auslesen

J Kreditbetrag > 10.000 Euro

%Y/\ [Eimkommen < 1500 Ewo
AN

Manuells
Bearbeitung

Schulden=false
Aus gaben=1000
Giterstand=schlecht

Schufa-Auskunft
Vermogen
Ausgaben,

2

Schulden pridfen

hat Schuldenlast

(geringe Ausgaben
OR

guter Giterstand)

l

Schufa OK

AND
Keine Schulden

Kredit
abweisen

manuell gewahrt

Kredit

Schufa OK
AND
"=e1. hat Schuldenlast
AND
geringe Ausgaben

gewahren

unter
besonderer

Beobachtung
stellen

Antwort
senden
Assertion
is oved==true
Output
isApproved=true

Abb. 17: Workflow, Priifung einer Teilfunktion

40

Anhand der Input-Daten lésst sich der Ablauf des Workflows nachverfolgen und erkennen, dass die
Aktivitdt Kredit gewdhren ausgefiihrt wird, die die Variable isApproved auf 'true’ setzt. Die
nachfolgende Assertion stellt sicher, dass zu diesem Zeitpunkt tatsichlich 'isApproved==true'
gilt und der Workflow mit dieser Zusicherung weiter ausgefiihrt wird. Unter der Annahme, dass der
Workflow korrekt implementiert wurde, wird die Assertion in diesem Fall positiv ausgewertet und
unser Testfall wird als erfolgreich beendet. Der Entwickler kann noch weitere Testfille spezifizieren
und verifizieren lassen, bis alle Testfélle abgedeckt sind und gesichert ist, dass der Workflow die
Kreditpriifung korrekt ausfithrt. In einem Optimierungsprozess soll nun die automatische
Kreditpriifung verbessert werden, indem der Giiterstand des Kreditnehmers mitberiicksichtigt wird.
Betrachten wir das modifizierte Szenario, welches die Condition eines Pfades (sieche Abbildung oben)
um den Status des Giiterstandes erweitert. Wir konnen leicht nachvollziehen, dass der Ablauf unter der
gegebenen Spezifikation auch in unserem modifizierten Szenario derselbe ist. Die Assertion gilt und
der Testfall lduft erfolgreich ab. Nehmen wir nun jedoch an, dass bei der besprochenen Condition ein
Implementierungsfehler unterlaufen ist und die Klammern in der Condition versehentlich weggelassen
wurden. Wir halten fest:

korrekte Implementierung

' Schufa OK AND hat Schuldenlast AND (geringe Ausgaben OR guter Giterstand)’

Implementierung mit Fehler:

' Schufa OK AND hat Schuldenlast AND geringe Ausgaben OR guter Giterstand '

Unter der gegebenen Spezifikation wiirden die Conditions der unteren beiden Pfade zu 'false'
ausgewertet und der Pfad zu der Aktivitidt Kredit abweisen wiirde ausgefithrt werden. Die Aktivitit
Kredit abbweisen setzt die Variable isApproved auf ’false’ und die nachfolgende Assertion wird
negativ ausgewertet. Der Testfall wird somit als fehlgeschlagen beendet und deutet damit auf einen
Fehler in der Implementierung hin.

Durch diese Testfallspezifikation, die sowohl vor als auch nach dem Optimierungsprozess dieselbe
geblieben ist, konnte ein Implementierungsfehler wihrend der Anderung des vorher korrekt
ablaufenden Prozesses gefunden werden. Zusammenfassend lésst sich sagen, dass wir durch geeignete
Testfallspezifikationen (Inputwerte und Assertion) eine Qualititssicherung der Software, bzw. des
Workflows, erreichen konnen.

Erwihnenswert ist beildufig noch, dass dieser Test mit einem Black-Box-Test von eben nur dieser
Teilfunktion vergleichbar ist. Wir sehen die Black-Box als blau-schattierten Bereich mit Input- und
Output- Parametern in den magentafarben-umrandeten Késten. Mit Hilfe von internen Assertions in
Workflows und das Konzept von Mock-Objekten lasst sich also ein quasi Black-Box-Test von
Teilfunktionen des zu testenden Workflows simulieren. Wobei sich die bestehende Tatsache natiirlich

nicht dndert, dass wir hier pro forma einen White-Box-Test auf unseren Workflow durchfiihren.

41

Wo dieses Beispiel noch gut iiberschaubar ist und ein umfassender Test zum Beweis der Korrektheit
noch recht einfach durchgefithrt werden kann, ist Softwaretest im Allgemeinen eine komplexe
Angelegenheit. Durch das Konzept der Assertions kdnnen an beliebiger Stellt Zusicherungen gesetzt
werden, die die Korrektheit von Funktionen des Programms sicherstellen. Allerdings erfordern
komplexe Programme oftmals intelligente und raffinierte Assertions um die Korrektheit festzustellen.
Im Abschnitt 5.1: Erstellung von Testfillen - Best Practices werden einpaar universelle Anleitungen
und Tipps fiir grundlegende, immer wiederkehrende, Testsituationen gegeben. Letzten Endes bleibt

das Testen von Software aber doch komplex und ist eine Profession fiir sich.

3.3.3. Priifung des Kontrollflusses durch 'must visit'-Aktivititen

Wir haben bisher das Konzept betrachtet durch Assertions sicherzustellen, dass bestimmte Variablen
bzw. Ausgabegrofien bestimmten Soll-Werten entsprechen. In gewisser Weise haben wir uns somit im
Bereich des Datenflusses des Workflows bewegt. Fiirs Weitere wollen wir betrachten in wie weit sich
durch Zusicherungen am Kontrollfluss des Workflows dessen Korrektheit verifizieren ldsst.

Das Konzept ist intuitiv leicht verstindlich und Testfélle lassen sich einfach und gut modellieren. Zu
den zu spezifizierenden EingabegroBen des Workflows werden zusitzlich noch Aktivititen (bzw. der
Pfad) angegeben, die in dem Testfall ausgefiihrt werden miissen. Wir wollen hierzu wieder unser
Kredit-Priifung-Szenario hernehmen. In der Abbildung sehen wir die fiir unseren Testfall
spezifizierten eingehenden Input-Daten des Workflows, sowie die Aktivitdten, die fiir diesen Testfall
ausgefithrt werden miissen. Die rot-gestrichelten Markierungen im Workflow zeigen die zu
besuchenden must visit-Aktivititen sowie den daraus eindeutig resultierenden, auszufiihrenden Pfad.
Sollte bei dem Testdurchlauf des Workflows eines dieser must visit-Aktivititen nicht ausgefiihrt

werden, so muss der Testfall als fehlgeschlagen bewertet werden.

42

Specification

Input P
_ —Nd
Kreditbetrag=5000 i

Einkommen=1000 et 4

Kundendaten

Schufa=0K S ausiesen |
Schulden=true P "

Ausgaben=700 "~ [i \
Gueterstand=gut ™~ _ 7" T \
g e i/ X Kreditbetrag > 10.000 Euro \"\\ 3

~ Ny
manuellGewaehrt=<null> | } : :
?'.\ Manuelle
e ¥ Einkommen < 1500 Euro Feambehm
i “\

Erforderliche :
Aktivitédten \

- Kundendaten ausTesen
- Schufa Auskunft etc.
- unter besonderer

Beobachtung stellen
- Kredit gewihren

N fSchutmoAtskunt

- Antwort senden ¢ T, Mombge A
“.| Y Ausgaben L’ o
“~Sehulden priten| -
i st Schufa OK -
AND
Keine Schulden
a Kredit
Y L . 7| gewdhren 7
""""""""""""" —— Schufa OK Crsomeamasaaee
R - T SR by
Modifiziertes Szenario 5 Tl hat Schuldeniast }
x, AND /
H ™, iz 7k
2 H geringe Ausgaben fumten. /
sgr;:aponc i N | besonderer |
£ e Beobacht A
hat Schuldenlast i == | = ung. I} .-

(geringe Ausgaben
OR

guter Giterstand)

Abb. 18: Workflow mit must visit-Aktivititen

Die Behauptung ist, dass die Testfallmodellierung mit must visit-Aktivititen in den meisten Féllen
genauso michtig ist wie eine Spezifikation des zu durchlaufenden Pfades. Mit anderen Worten soll es
moglich sein durch das Konzept der must visit-Aktivititen, genau den Pfad zu spezifizieren, den ein
Workflow durchléduft. Wenn wir uns also mit Pfaden beschiftigen, hei3t es, dass wir uns vor allem mit
Verzweigungen auseinandersetzen miissen. Pfade unterscheiden sich dadurch, dass sie verschiedene
Verzweigungen durchlaufen. Koénnen wir durch must visit-Aktivitiaten Testfélle so modellieren, dass
sie alle Verzweigungen beliebiger Pfade abdecken kdnnen, so ist unsere Behauptung erfiillt. Falls jede
Verzweigung eine Aktivitit ausfiihrt, so ist es klar. Wir konnen die Sperzifizierung aller Kanten
(Zweige) eines beliebigen Pfades durch die Spezifizierung einer jeweils in dem Zweig befindlichen
must visit-Aktivitit ersetzen.

Die Frage ist vielmehr, wie es sich mit Kanten verhilt, die keine Aktivititen besitzen.
In der Nachstehenden Abbildung sehen wir die Modellierung von vier Testfdllen. Im Testfall a) sehen
wir links die Spezifikation des auszufiihrenden Pfades nach der Verzweigung rot markiert. Rechts ist
die dazu dquivalente Spezifikation von must visit-Aktivititen. Wir wollen an dieser Stelle festlegen,
dass rot markierte Aktivititen ausgefiihrt werden miissen und nicht markierte Aktivititen nicht
ausgefithrt werden diirfen. Dann konnen wir sehen, dass wir in den Fillen a), b) und c) die
Spezifikation des durchlaufenden Pfades auf eine dquivalente Spezifikation mit must visit-Aktivitdten
reduzieren konnen - d.h. es gibt eine eindeutige Zuordnung zwischen dem zu durchlaufenden Pfad und
einer Menge von Aktivititen, die genau denselben Pfad eindeutig spezifizieren. Das Testszenario d)

macht mehr Schwierigkeiten. Es gibt keine Moglichkeit durch must visit-Aktivitdten zu unterscheiden,

43

ob die Kante cond2 oder cond3 durchlaufen wird. Das Problem liegt darin, dass die Pfade, die jeweils
eines dieser Kanten durchlaufen, paarweise keinen Unterschied in der Ausfithrung von Aktivitdten
zueinander zeigen - der Pfad iiber cond? ist bezogen auf die Ausfiihrung von Aktivititen dquivalent zu
einem Pfad liber cond3. Dieser Workflow macht so gesehen nicht viel Sinn - da die beiden Zweige
keinen Unterschied machen und eigentlich als nur ein Zweig mit der Bedingung 'cond2 OR
cond3 ' implementiert werden konnten. Dennoch ist es vorstellbar, dass solch ein Workflow vorab
schon auf diese Weise modelliert wird, weil zukiinftig noch Aktivitdten hinzugefiigt werden sollen.
Um das Testszenario d) zu realisieren, miissen wir das Konzept erweitern und zusétzlich zu der must
visi-Aktivitit Task 3 noch eine Assertion 'assert (false) ' setzen, die den Zweig mit cond3

ausschlief3t.

cond3

b)
X

A

eond3 condl card2 card3
il {Assertion}
= e

. ;

c) d)

Abb. 19: Steuerung des Kontrollflusses durch must visit-Aktivititen

Wir sehen also, dass wir durch das Konzept von must visit-Aktivititen die Moglichkeit haben, den
Kontrollfluss eines Workflows zu verifizieren. Natiirlich stellt sich die Frage wieso der Umweg iiber
Aktivititen gegangen wird und nicht gleich der Pfad selbst spezifiziert wird. Dies hat
implementierungstechnische Griinde und wird spiter klarer erklirt, wenn es um die Implementierung

geht. An dieser Stelle sei nur gesagt, dass es notwendig ist, Assertions an eine Aktivitit zu binden, da

44

eine Assertion nicht innerhalb eines OTX-Ablaufs spezifiziert wird, sondern extern in einer separaten
Testfall-Spezifikation — es ist nun einzusehen, dass eine Bindung an ein OTX-Element notwendig ist,
um spiter die Assertion an der richtigen Position auszufiihren.
Wir haben oben gefordert, dass alle nicht markierten Aktivititen nicht ausgefiihrt werden diirfen -
bzw. dass alle Aktivititen spezifiziert werden miissen, die auf dem auszufiihrenden Pfad liegen. Diese
Forderung an eine Testfall-Spezifikation stellt mit hoher Zuverldssigkeit das korrekte Verhalten eines
Workflows fest, allerdings ist so eine vollstindige Spezifikation des Pfades nicht immer erwiinscht
und vor allem bei sehr groen Workflows praktisch kaum durchsetzbar. Oftmals reicht es fiir einen
Testfall sicherzustellen, dass bestimmte Kern-Aktivititen ausgefiihrt werden, um die semantisch
korrekte Funktionalitit zu gewihrleisten. Wir lassen die Forderung, dass nicht markierte Aktivititen
nicht ausgefiihrt werden diirfen, fiir das Grundkonzept wieder fallen und bemerken, dass Kanten oder
Aktivititen, die nicht ausgefithrt werden sollen, auch explizit durch eine Assertion
'assert (false) ' sichergestellt werden konnen. Durch solche expliziten Assertions lassen sich

Uneindeutigkeiten, wie sie in der ndchsten Abbildung zu sehen sind, vermeiden.

Specification

Input

Kreditbetrag=5000
Einkommen=1000 e

schufa=0K
schulden=true s

-“ Kunclandaten'_
& auslesen
Ausgaben=700 -

Gueterstand=gut \\:Nlﬂﬂw";

- .,
manuellGewaehrt=<null> "\\;

A
Manuelle
Bearbeitung

%,
e ¥
H \ Einkommen < 1500 Euro

ErforderTiche : \\\

Aktivititen

- Kredit gewdhren

k!
4 :
k! Kredit
abweisen

N fSchufa-Auskuntt,
Vermagen

.\. Ausgaben, ..t RS T v
Schulden prifen o &

Schufa OK .
AND L
Keine Schulden i

manuell gewahrt

""""""""""""""" i Schufa OK
N | AND

Modifiziertes Szenario

T hat Schuldenlast ;
B AND — b
H -, A ben unter
ol H geringe Ausgal
Schufa OK i S ke besonderer]
AND H o -~1" Beobachtung
hat Schuldenlast - stellen

geringe Ausgaben
OR

guter Giterstand)

Abb. 20: Testfall mit Merhdeutigkeit

Wir sehen in der Abbildung einen Testfall, in dem es vor allem wichtig ist, dass unter den gegebenen
Input-Daten der Kredit gewéhrt wird. Wie zu sehen, gibt es drei verschiedene Pfade, die alle zum

gewiinschten Ergebnis fithren. Allerdings wire durch eine solche Spezifikation die korrekte interne

45

Verarbeitung noch nicht vollig gewihrleistet. Ein solcher Test hat Ahnlichkeiten mit einem Black-
Box-Test. Es macht konkret fiir diesen Testfall beispielsweise keinen Unterschied ob der interne
Ablauf des Workflows eine manuelle oder automatische Kreditpriifung verfolgt. Eine Assertion

’assert (false) ’ an der richtigen Stelle wiirde die manuelle Bearbeitung ausschlieBen.

3.3.4. Weitere Konzepte/Komponenten

OTX-Exceptions
In der folgenden Tabelle sind die Standard Ausnahmefehler (Exceptions) aus dem OTX-Core

aufgelistet, die in einem OTX-Ablauf auftreten kdnnen.

Durch das Test Framework soll ermoglicht werden, diese Ausnahmen an beliebiger Stelle des OTX-
Ablaufs auszulosen, um das Verhalten der Ausnahmefehlerbehandlung (Exception-Handling) des
Workflows gezielt zu testen. Es ist theoretisch auch vorstellbar, die Ausnahmefehlerbehandlung eines
Workflows zu testen, indem man die in den OTX-Ablauf eingehenden Daten in einem Testfall genau
so spezifiziert, sodass die zu priifende Ausnahmefehlerbehandlung eintritt. Jedoch ist es bei
komplexen Abldufen unter Umstinden ein mithsames Geschift, zuriickzuverfolgen, welche Testdaten
eine bestimmte Ausnahmefehlerbehandlung auszulosen vermogen. Allein der Name
Ausnahmefehlerbehandlung driickt schon aus, dass es sich hierbei um seltene Ausnahmen handelt, die
eigentlich in einem korrekten Ablauf mit verniinftigen Eingabedaten gar nicht auftreten sollten — es ist
somit umso mehr erschwert die notwendigen Testdaten zu finden, um das Verhalten der gewiinschten
Ausnahmebehandlung zu testen. Aus diesem Grund sollte das Test-Framework es unterstiitzen,
Fehlerausnahmen zu Testzwecken an beliebigen Stellen eines Workflows auszuldsen.

In meinem Ansatz werde ich dies dhnlich realisieren wie bereits bei den Assertions: Es soll moglich
sein ein sogenanntes Throw-Element an eine beliebige Aktivitdt zu binden. Dieses Throw-Element ist
nichts anderes als die Spezifikation bzw. der Name einer im Standard definierten OTX-Exception, die
geworfen werden soll, sobald die Ausfiithrung der gebundenen Aktivitit beendet wurde.

Nicht jede Aktivitit in OTX kann jede OTX-Exception auslosen. Um die Programmkomplexitét klein
zu halten, soll die Testfall-Modellierung jedoch jede Kombination von OTX-Exceptions und
Aktivitétstyp zulassen. Es macht zwar keinen Sinn etwa ein Throw-Element fiir DiagComExceptions
an beispielsweise eine Assignment-Aktivitit zu binden, stellt jedoch keine Beschrinkung des Test-
Frameworks dar, die Fehlerbehandlung eines OTX-Ablauf vollstindig zu testen.

Da der OTX-Standard bei ProcedureCalls auch eine throws-Klausel spezifiziert — sprich: unbehandelte
Ausnahmen in der aufgerufenen Prozedur werden einfach eine Ebene hoher an den Aufrufer
weitergegeben -, sollen auch ProcedureCall-Aktivititen nicht von diesem throws-Mechanismus
ausgeschlossen sein. Kurz: Es wird moglich sein ein throw-Element mit beliebiger Exception-

Spezifikation an jede beliebige Aktivitit zu binden.

46

Events

Ahnlich wie die Ausnahmefehlerbehandlung soll auch das Event-Handling gezielt testbar sein. Man
stelle sich vor, in einem OTX-Ablauf werde ein Event-Handler durch ein zeitliches Event (z.B.
wochentlich an einem bestimmtem Tag) angestoBen. Dieser Event-Handler konnte dann nur zu genau
diesem zeitlichen Event getestet werden.

Betrachten wir ein anderes Szenario, in dem ein OTX-Ablauf auf Benutzereingaben wartet (z.B.
Tastatureingabe, oder Mausklick), welche durch Events realisiert werden. Um nun Testfille
automatisiert ablaufen zu lassen, muss es moglich sein in einem solchen Ablauf diese
Benutzereingabe-Events zu simulieren bzw. durch das Test Framework auszulosen.

Analog zum throw-Element fiir Ausnahmefehler soll es also auch méglich sein ein throw-Element fiir
Events an Aktivititen zu binden. Der spezifizierte Event soll direkt nach der Ausfithrung der Aktivitit

geworfen werden.

DiagCom

Die DiagCom-Bibliothek stellt Elemente fiir die Kommunikation mit dem darunterliegenden
Diagnoselaufzeitsystem (z.B. MVCI) zur Verfiigung. Aktivititen, welche die DiagCom-Schnittstelle
betreffen, sollen durch Aufrufe an Mock-Objekte simuliert werden. Dieses Konzept ldsst sich analog
zu einem ProcedureCall realisieren. Riickgabeparameter von Aufrufen an DiagCom werden mit

statischen Daten gefiillt, die im Testfall spezifiziert wurden.

Kontext-Konzept

Kontext-Variablen sollen durch die in einem Testfall spezifizierten Werte festgelegt werden, statt
diese mit Daten aus der Diagnoseanwendung zu befiillen. So ist es moglich fiir den als generisch
modellierten OTX-Ablauf verschiedene Umgebungen zu simulieren, ohne diese Umgebungen explizit

fiir jeden Test herstellen zu miissen.

Validity-Konzept
Validities stellen (wie in Abschnitt 2.6.5 bereits besprochen) in OTX eine Moglichkeit dar, bestimmte

Aktivititen oder Elemente fiir die tatsdchliche Ausfiihrung ein- oder auszuklammern. Validities
werden durch einen Boolean-Term ausgewertet, die sich in der Praxis in den meisten Fillen auf
Kontext-Variablen beziehen. Solche Validities konnen gut durch das vorgestellte Konzept der must
visit-Aktivititen getestet werden. In einem Testfall werden zuerst die entsprechenden Kontext-
Variablen spezifiziert, nun konnen all diejenigen Validities, die der Semantik nach korrekterweise
eigentlich ’true’ auswerten sollten , als must visit-Aktivititen spezifiziert werden. Der Testfall stellt
sicher, dass in einem bestimmten Kontext, bestimmte Elemente ausgefiihrt werden — dies ist genau die

Funktion die das Kontext- und das Validities- Konzept realisieren.

47

Signature-Konzept

Signatures werden dazu eingesetzt, um in einem Ablauf unter verschiedenen Testumgebungen
dementsprechend auch verschiedene Implementierungen eines ProcedureCalls aufzurufen. Dieses

lasst sich testen, indem
1. die gewiinschte Testumgebung durch die Spezifizierung der Kontext-Variablen in einem
Testfall simuliert wird (wie soeben oben im Kontext-Konzept besprochen), und
2. dementsprechend die dazugehorige Implementierung durch die Spezifizierung eines

geeigneten Mock-Objektes in eben diesem Testfall simuliert wird.

3.4. Konzept/Uberblick

In diesem Abschnitt werden die erarbeiteten Aspekte und die wichtigsten Punkte noch einmal

zusammengefasst.

3.4.1. Testspezifikation

¢ Die Testspezifikation soll in einem vom OTX Workflow separatem 7CS-
Dokument (TestCaseSpecification-Dokument) festgehalten werden.

* Die Spezifikation von Eingabe- und Ausgabe- Groen des Workflows werden durch das
Konzept von Mock-Objekten realisiert. Wie besprochen sind keine Eingabe-Parameter fiir
externe Aufrufe notwendig, sondern es werden zu den jeweiligen Aktivititen nur die
Riickgabewerte spezifiziert.

e must visit-Aktivititen werden in einer einfachen Liste mit ihrem eindeutig referenzierbaren
Namen spezifiziert.

o Assertions innerhalb des Workflows werden durch boolesche Ausdriicke realisiert und miissen

eine eindeutige Referenz zu einer Aktivitit haben.

3.4.2. Testorganisation

e Um Testfille zu strukturieren, werden sie zu Testsuites organisiert.

e Damit gibt es die Moglichkeit eine Menge an Testfillen zusammenzufassen, die eine
bestimmte Funktion oder dhnliche Funktionen des Workflows testen.

¢ Eine Testsuite enthilt somit eine Menge von Testfdllen. Es ist dadurch moglich Testfille
wiederholt und automatisiert priifen zu lassen.

e In einem Testlauf (Testrun) konnen mehrere Testsuites sowie Testfille automatisiert

durchgefiihrt werden.

48

3.4.3. Testdurchfithrung

Bei der Ausfiihrung sind folgende Punkte zu beachten:

¢ Um den OTX-Workflow ausfiihrbar zu machen, wird C#-Code erzeugt. Das TCS-Dokument

muss wihrend der Code-Erzeugung in den OTX-Workflow integriert werden.

Anstelle von externen Prozeduraufrufen werden fiir Out- bzw. Inout- Parameter konstante

Werte gesetzt, die in dem 7CS-Dokument spezifiziert sind.

e Alternativ: Aufruf an dummy-Prozedur (Mock-Object), der keinen Code ausfiihrt,
sondern sofort die besagten konstanten Werte zuriickgibt.

Assertions werden im C#-Code nach einer Aktivitit gepriift.

Fehlgeschlagene Assertions brechen die Ausfithrung nicht ab.

Unbehandelte OTX-Exceptions miissen auf Testfall-Ebene abgefangen werden. Die

Ausfiihrung von anderen Testfillen darf nicht von einer unbehandelten Fehlerausnahme des

aktuellen Testfalls tangiert werden.

Nach Ausfithrung einer must visit-Aktivitit wird die Aktivitit in der Liste der must visit-

Aktivititen als "erfiillt" markiert.

Am Ende der Ausfiihrung des Workflows muss die Liste der must visit-Aktivitdten gepriift

werden.

Die Ergebnisse der Assertions sowie der must visit-Aktivititen miissen gesammelt und

gespeichert werden. Die Ergebnisse miissen auch nach Ausfiihrung des Testfalls zur

Prisentation bereitstehen.

® Es muss moglich sein eine Testsuite oder mehrere Testsuiten in einem Testdurchlauf

automatisiert durchlaufen zu lassen.

e Dabei ist zu beachten, dass die Ausfithrung der Testfille keinen Einfluss aufeinander haben

darf.

e Insbesondere unbehandelte Fehler, die beim Testdurchlauf von Workflows auftreten, diirfen

den Rest des Testdurchlaufs nicht abbrechen oder in irgendeiner Weise beeinflussen.

Faults/Exceptions miissen vom Test Framework abgefangen werden.

49

ODF Framework TeStCaSe (Test Harness)
5 o]

=,

OTX, TCS o - .

:!Illrlt :‘i’#-ﬂm‘ ities List
¥ vities = -

Executable workflow (Ck)

Procedure(inl, in2, ... , Results)

6
denerated Codd Results.Assert(bool)., 7
Ny

ODF Runtime

.' OTX Designer

5

Results.SetActivi tyvisi te;'d(acl;:i vityName)

Return out '

z OTX, TCS =

Results “ 7

~E ay new Testcase

“‘"w'l'_h.-.,g / Results
gy, Test-Results Presentation || 4 9

Abb. 21: Grobe Darstellung des Konzepts
In der obigen Abbildung ist eine grobe Ubersicht zu sehen, die die Durchfiihrung von Tests beschreibt.
Ein vorher mit dem Designer spezifizierter Testfall bzw. mehrere Testfélle in einem oder vielen Test-
Suiten werden in einem Test-Run durchgefiihrt. Das dafiir zustindige Test Run-Modul sammelt hierzu
die OTX- und TCS- Daten und erzeugt die fiir das Testen des Workflows benoétigte Test-Umgebung

(Test-Harness). Die einzelnen Schritte zur Ausfithrung eines Testfalles werden nachfolgend erldutert.

1. Daten tiber den Test Run und des auszufiihrenden Testsuites werden dem Modul Test-Results
Presentation zur Darstellung des Testlaufs iibergeben.

1. Das Test Run-Modul erzeugt und initialisiert eine TestCase-Klasse, die die Test-Umgebung
fiir die Ausfithrung des Workflows bereitstellt. Dabei werden das entsprechende OTX- und TCS-
Dokument iibergeben.

2. Aus dem TCS-Dokument werden die Input-Parameter fiir das Starten des Workflows und die
must visit-Liste ausgelesen.

3. Daten iiber den Testfall werden an das Test-Results Presentation-Modul iibergeben.

4. Das OTX- und TCS- Dokument wird zur Code-Generierung an die ODF Runtime iibergeben.
5. Aus dem OTX- und TCS- Dokument wird eine C#-Klasse generiert, die den Workflow
abbildet. Sie wird anschlieend von der TestCase-Klasse ausgefiihrt.

6. Eine Assertion wird wihrend der Ausfithrung ausgewertet, indem die assert () -Methode
des referenzierten Results-Objektes der entsprechenden TestCase-Klasse aufgerufen wird.

7. Auch das Konzept von must visit-Aktivititen wird durch eine Methode des Results-Objekts
realisiert. Hierzu wird die Methode SetActivityVisited () aufgerufen, um die

entsprechende Aktivitit als besucht zu markieren.

50

8. Anderungen am Results-Objekt konnen zur sofortigen Darstellung der Ergebnisse an das Test-
Results Presentation-Modul weitergegeben werden.

9. Nach Ausfithrung des Workflows wird die Liste der must-visi'-Aktivititen ausgewertet.

10. Die Referenz auf die ausfithrbare Workflow Klasse sollte geloscht werden, um Speicher
freizugeben.

11. Der Testfall ist abgeschlossen; der ndchste Testfall wird durchgefiihrt.

3.4.4. Darstellung

Testfallmodellierung

* Die Spezifizierung eines Testfalls sollte unmittelbar am Workflow selbst geschehen. Das heif3t,
dass der Entwickler keinen Quellcode schreiben muss, sondern bei der Modellierung mit
einem erweiterten OTX-Editor arbeitet. Evtl. sollte es einen Modus-Switch geben, der speziell
die Modellierung von Testfillen unterstiitzt.

e Zur Spezifikation eines Testfalles gehoren, wie gehabt, die Eingabe- und Ausgabe- Groflen des
Workflows, Assertions und must-visit-Aktivititen. Assertions und must visit-Aktivititen
werden als zusitzliche Properties den bestehenden Aktivititen im Workflow angereichert. Die
Erstellung von Assertions sollte mit einem Ausdruckseditor unterstiitzt werden.

o Fiir must visit-Aktivitidten reicht es, als Property ein einzelnes Flag zu setzen. Praktisch wére
auch ein Modus-Switch (durch Hotkey oder Klick auf ein Button), der es erlaubt Aktivititen
durch einen einfachen Mausklick zur der Liste der must visit-Aktivititen hinzuzufiigen bzw. zu
entfernen.

¢ Eingehende Daten kénnen auch als Properties an den entsprechenden Aktivititen modelliert
werden. Es ist jedoch vorteilhaft zusitzlich alle Eingabe- und Ausgabe- Daten gesammelt als
eine Ubersicht in einer editierbaren Tabelle festzuhalten. So ist auf einem Blick ersichtlich,
welche Testdaten der jeweilige Testfall spezifiziert, ohne dass auf die entsprechenden
Aktivititen einzeln zugegriffen werden muss, um deren Properties anzuzeigen. Die Fiillung
der Testdaten in einer Tabelle ist auch schneller. Des Weiteren ist schnell ersichtlich, ob evtl.
noch Parameter fehlen, oder falsch eingegeben wurden. Das Ausfiillen der Tabelle kann
natiirlich noch zusitzlich dadurch unterstiitzt werden, dass die Aktivitit des gerade zu
bearbeitenden Eintrags graphisch hervorgehoben wird - denn es ist nicht immer sofort klar, zu

welcher Aktivitit der Parameter gehort.

Testergebnisse

¢ Es muss davon ausgegangen werden, dass u.U. eine grole Zahl an Testsuites, mit wiederum

einer groflen Zahl an Testfillen, in einem Lauf getestet werden. Und einzelne Testfille

51

enthalten wiederum eine Menge an Zusicherungen. Die Darstellung der Testergebnisse sollte
iibersichtlich sein und es sollte schnell erkennbar sein, welche Tests erfolgreich verliefen und
welche davon fehlschlugen.

Es bietet sich hier eine Baumstruktur an, die als Wurzel den Testdurchlauf enthilt. Kinder
dieser Wurzel sind Testsuites, die wiederum Testfille als Kinder besitzen. Auf der untersten
Ebene unter den Testféllen befinden sich die Zusicherungen an die jeweiligen Testfille.
Fehlschlag oder Erfolg von Zusicherungen oder Testféllen oder Testsuites werden durch ein
rotes bzw. griilnes Symbol dargestellt. Dariiber hinaus sollten unbehandelte Fehler in einem

Testfall auch dargestellt werden.

52

4. Implementierung

4.1. Grobarchitektur

View /\

Test.GUI

Testcase Designer

Testsuite Manager

Testrun View
Model / \ Control

Test.Data Test.Control

Synchro-

ODFConnector \

/

Abb. 22: Test Framework Architecture

Das Framework ist in drei Teile aufgeteilt. Da in C# unter Visual Studio entwickelt wird, sind diese
drei Teile in Visual-Studio zu je einem Projekt zugeordnet — d.h. letzen Endes werden diese als drei
dil’s bzw. dotNET-Bibliotheken assembliert werden. Der Aufbau lehnt sich an das klassische MVC
Architektur-Entwurfsmuster (Model-View-Control).

In ODF integriert, werden fiir das Test Framework die folgenden Namen bzw. Namespaces verteilt:

Emotive.Odf.Test.Data, Emotive.Odf.Test.Runtime und Emotive.Odf.Test.Gui.

Test.Data (Model)

Test.Data ist das Datenmodell des Frameworks. Hier wird die Datenstruktur spezifiziert. Auerdem
sorgen die vier Module in diesem Teil fiir den Zugriff, die Modifikation, die Persistenz und die

automatische Aktualisierung aller fiir das Testen von OTX-Ablédufen benétigten Testdaten.

e Die Xml-API bietet hierzu die Schnittstelle fiir simtliche Funktionen an.

53

¢ Der Files Manager stellt die Verbindung zum Dateisystem des laufenden Betriebssystems her.
Er ist fiir das Lesen und Schreiben der serialisierten Daten zustindig, und sorgt zudem fiir die
Projektverwaltung und eine geeignete, festgelegte Ordnerstruktur.

e Der Serializer serialisiert bzw. deserialisiert C#-Klassen zum spezifizierten Datenformat und
umgekehrt.

e Das Caching-Modul hélt Testdaten im Speicher um Such- bzw. Filter- Anfragen,
Referenzenanpassungen, etc... einfach und effektiv umzusetzen.

e Dariiber sitzt das Synchronization-Modul, welches sdmtliche Funktionen bereithilt, um die

Testdaten mit den dazugehdrigen Daten des OTX-Ablaufs synchron zu halten.

Test.Control (Control)

Die Runtime stellt die Laufzeitumgebung fiir die Durchfiihrung der Tests an den Diagnoseabldufen
dar. Sie beinhaltet die komplette Steuerungslogik um Testldufe durchzufiihren und auszuwerten. Beim
Durchlauf eines Tests werden dazu aus den Testdaten und den OTX-Daten die notige Testumgebung
als sogenannte Test Harness'® initialisiert und der Programmcode zur Ausfithrung von Tests durch
das Code-Generation Modul dynamisch generiert. Die Test Harness stellt alle Daten des aktuell
auszufiithrenden Testfalles zur Verfiigung und bietet zudem sonstige Funktionen und Mechanismen zur
Priifung von Assertions oder must visit-Aktivititen, etc. Ergebnisse eines Testlaufes gehen iiber die
Xml-API an Test.Data — sie werden aber auch sogleich am User Interface dargestellt (sieche unten
Observer-Pattern).

Der ODFConnector stellt die Schittstelle fiir das ODF zur Verfiigung. Die gesamte Kommunikation

zwischen ODF und Test Framework lauft iiber dieses Modul ab.

Test.Gui (View)

Die Test.Gui ist die Prisentationsschicht und beinhaltet samtliche User Interfaces. Zu nennen wiren

da

e der Testcase Designer, der z.T. im Workflow-Designer (auch Otx-Editor) integriert ist und das
Interface zur Testfall Modellierung bereithélt.

e der Testsuite Manager, der eine einfache und effektive Zusammenstellung von Testsuites
unterstiitzt.

e der Testrun View, der einen Testlauf mit Ergebnissen iibersichtlich darzustellen hat.

Observer-Pattern

Fiir die Aktualisierung aller Views bzw. User-Interfaces wird das Observer-Pattern implementiert.
Test.Gui wird als Observer (Beobachter) bzw. Listener/Subscriber von Test.Data dem Event-
Publisher gehandelt. Verdnderungen im Datenmodell werden also durch Events sofort im User-

Interface dargestellt.

1% engl. fiir Testgeschirr

54

4.2. Test.Data

4.2.1. Serializer & Xml-API

Die zu einem OTX-Ablauf spezifizierten Testdaten werden als ein XM L-Dokument persistent gemacht.
Dabei eignet sich XML als sowohl Menschen- als auch Maschinen- lesbare Sprache zu solchen
Zwecken besonders gut, da sie eine méichtige und vor allem erweiterbare und selbstbeschreibende
Sprache ist, die in der modernen Softwareentwicklung allgemein bekannt, akzeptiert und weitldufig
Verwendung findet.

Das Datenmodell des Frameworks griindet auf der Xml/-Datenstruktur. Sdmtliche Testdaten zu einem
OTX-Ablauf werden letzten Endes in der Xml-Struktur abgelegt. Die Xmi-API stellt hierzu alle
Funktionen zur Verfiigung, die zum Lesen, Andern und Schreiben der Daten nétig sind. Desweiteren
kapselt sie aber auch die Funktionalitdt der Synchronisation zwischen Testdaten und OTX-Daten,
sowie die Funktionalititen der Datei- und Projekt- Verwaltung, die hintergriindig der File Manager
erledigt.

Das Transformieren der, im Speicher als C#-Klassen vorliegenden, Testdaten wird auch Serialisierung
genannt und wird von Haus aus vom doftNET-Framework unterstiitzt. Aus einer Xml-Schema
Definition (Beschreibung) lassen sich automatisiert C#-Klassen generieren, die der spezifizierten
Datenstruktur des Xml-Schemas entsprechen. Um Xml-Daten in diese Klassen einzulesen
(Deserialisierung), miissen nur die vom dotNET-Framework bereitgestellten Funktionen aufgerufen
werden — das gleiche gilt fiir den umgekehrten Fall, der Serialisierung.

Wir befassen uns nun mit der grundlegenden Datenstruktur. Um die Xml-Sprache an die Bediirfnisse
des Test Frameworks anzupassen bzw. zu erweitern, ist es notig eine Xml-Schema Definition zu
spezifizieren. An dieser Stelle will ich die Xml-Schema Definition nur einiger Hauptelemente

vorstellen und erldutern.

55

Testcase

Wir schauen uns als Erstes die Definition des iibergeordneten Testcase an:

<xzd:complexType name="TestCase™>
<xszd:complexContent>
«xzd:extension base="TestResultBase™>
<xad:zequence
<x=sd:element name="Id" type="xsd:string"/ >
x=sd:element name="WorkflowRef" tyvpe="xsd:string"/>
<x=sd:element name="Workflowlame" tvpe="xsd:string"/>
<xsd:element name="ContextVariables" type="tf:ContextVariables"/>
<usd:element name="InFarameters" type="tf:FParameters" />
<usd:element name="ExpectedCutcParametcers" type="tf:Parametcers"/>
<usd:element name="CutParameterlissertions" type="tf:hssertcions"/>
<x=d:element name="Mocks" type="tf:Mocks"/>
x=sd:element name="Activities" type="tf:Rctivities"/>
</x=d: sequence>
</xsd:extension>
</¥ad:complexContent>
</®ad:complexTvpe>
Abb. 23: Xml-Schema Definition, Testcase

Ein Testcase beinhaltet alle notwendigen Testdaten, um ein OTX-Ablauf bzw. - im Terminus von OTX

— eine Procedure auszufiihren und zu testen. Wichtig sind folgende Elemente:

¢ WorkflowRef: zur eindeutigen Referenzierung des Workflows bzw. der Procedure (ein OTX-
Ablauf ist durch das Otx-Package, das Otx-Document und die Otx-Procedure eindeutig
identifizierbar),

¢ ContextParameters: Testwerte fiir globale Kontextvariablen in einem OTX-Dokument.

e InParameters: Testwerte fiir die beim Prozeduraufruf iibergebenden Parametern,

¢ ExpectedOutParameters: Die vom Prozeduraufruf zuriickgegebenen, erwarteten Werte,

o Mocks: Simulationen von Prozeduraufrufen innerhalb der auszufiihrenden Prozedur,

e Activities: Aktivititen, die besucht werden miissen (must visit-Aktivitit) oder die an sie

gebundene Assertions besitzen.

56

Activities

<x=sd:complexType name="Activity™>
<x=d:complexContent>
<xsd:exXtension base="TestResultBase">
<x=d:=sequence>
<xsd:element name="Assertions" type="tf:Assertions"/>
<xsd:element name="Events" tyvpe="tf:ThrowEvents"/>»
<xsd:element name="Exceptions" type="tf:ThrowExceptions"/>
< /®ad:zequencer
</x=d:extension>
</x=d:complexContent>
</x=ad:complexType>
Abb. 24: Xml-Schema Definition, Activity

Da in den Anforderungen verlangt wird, die Testdaten fiir ein OTX-Ablauf separat von dem OTX-
Dokument abzulegen ist es notig Assertions an ein geeignetes OTX-Element zu binden, um sie zur
Testlaufzeit zur gewlinschten Zeit bzw. an der geforderten Stelle zu testen. Activities beinhalten je eine

oder mehrere Assertions. Das gesagte gilt gleichermallen auch fiir Events und Exceptions.

Assertions

<x=zd:complexType name="Assertion™>
<xsd:complexContent>
<xsd:extension base="TestResultBase">
<x=d:sequence>
<xsd:element name="Id" type="xsd:string"/>
<usd:element name="Expression"™ tyvpe="msd:string"/>
</x=d: segquence>
</x=d:extension>
</x=d:complexContent>
< /®ad:icomplexTvpe>

Abb. 25: Xml-Schema Definition, Assertion

Assertions besitzen zur Referenzierung eine eindeutige Id. AuBerdem spezifizieren sie ein Expression-
Element, welches aus einer Zeichenkette besteht, die ein giiltiger, auswertbarer Boolean-Ausdruck sein
muss. Dieser Ausdruck wird auch bei der Codegenerierung benutzt und wird bei der Testlaufzeit vom
Compiler ausgewertet. Die Priifung der must visit-Aktivititen werden durch spezielle Assertions
realisiert, deren Boolean-Ausdruck immer ’true’ ist. Und auch die Priifung der ausgehenden Parameter
des Ablaufs mit den erwarteten Werten wird intern durch Assertions realisiert. Diese speziellen
MustVisitAssertions und OutParamAssertion werden als Extension von der Assertiontype

abgeleitet.

57

Mocks & ProcedureCall

<xad:complexType name="Mocks">
<xsd: sequence>
<xsd:element name="ProcedureCall”™ tvpe="tf:ProcedureCall™ maxOccurs="unbounded"” />

</®ad:sequence>
</x=d:complexType>

<xsd:complexType name="ProcedureCall™>
<x=d:complexContent>
<#zd:extension base="TestBase">
«<xsd:sequence>
<xzsd:element name="COutParameters" type="tf:FParameters"/>
</%=d: sequence>
</xsd:extension>
</x=d:complexContent>
</%=d:complexType>

Abb. 26: Xml-Schema Definition, Mocks

Simulationen von Prozeduraufrufen werden durchgefiihrt, indem Ausgabeparameter mit in der
Designzeit festgelegten Testwerten belegt werden. Der Mocks-Typ listet dazu alle Prozeduraufrufe

auf, die wiederum im Element QOutparameters die Parameter bzw. ihre Riickgabewerte festlegen.

Parameters

<xad:complexType name="Parameters™>
<xazd: sequence>
<xadielement name="Param" type="tf:Parameter" maxOccurz="unbounded" />
</xad:sequence>
</xed:complexTyvper

<xad:complexType name="Parameter™ abstract="trues">
<xad:complexContent>
<x=sd:extension base="TestBase">
<x=d: sequencel>
<xzdielement name="Datatype" tyvpe="tf:dataTypes"/>
<xsd:element name="Modifier"™ tvpe="tf:paramModifier"/>
</¥ad:sequencex
«/xsd:extension>
</¥x3d:complexContent>
</x=d:complexType>

Abb. 27: Xml-Schema Definition, Parameters
Die Werte, der in den OTX-Ablauf eingehenden Daten, werden in dem Parameter-Element

gespeichert. Auch der dazugehorige Datentyp und die Modifier (in, out, inout) werden hier

festgehalten.

58

<xzd:complexType name="IntegerType™>
<x=d:complexContent>
<x=zd:extension base="Parameter™>
<xad:=sequence
<x=sd:element name="Value"™ type="x=d:long"/>
<x=sd:element name="InitValue"™ type="xs=d:long"/>
</x=d: sequence>
</xsd:extension>
< /®xad:complexContent>
< /®ad:complexTyvpe>

Abb. 28: Xml-Schema Definition, IntegerType

Abb. 28: Xml-Schema Definition, IntegerType zeigt als Beispiel die Datenstruktur fiir einen Integer-
Wert mit Initial-Wert (siche OTX-Standard: initValue).

Base-Elemente

<xsd:complexType name="TestBase">
<x=3d: sequence>
<xsd:element name="Hame" type="mxsd:string"”/>
<xsd:element name="Description" type="xsd:string"/>
</x=sd:sequence>
</x=d:complexType>

<xsd:conplexType name="TestResultBase">
<xsd:complexContent>
<xsd:extension base="TestBase">
<x=d: zequencel
<x=sd:element name="TestResults" type="tf:TestResults" minfccurs="0" />
</x=ad:zequence
</x=adiexten=sion>
</x=2d:complexContent
</x=d:complexType>

<xsd:complexType name="TestResults">
<x=3d: sequence>
<xsd:element name="Result" type="tf:ResultEnum™ />
<xsd:element name="ResultString™ type="x=sd:string™ />
<xsd:element name="ExecutionDate" type="mxsd:date™ [»
<xsd:element name="Duration" type="zsd:double™ />
</x=3d: sequence
</x=d:complexType>

Abb. 29: Xml-Schema Definition, Base-Elemente

Alle fiir das Framework spezifizierten Xml-Typen werden als extension vom Typ TestBase
modelliert. Das heif3it, dass sie alle die Elemente Name und Description von TestBase erben. Dies
ist verniinftig, da alle Typen, einen Namen und eine Beschreibung besitzen miissen bzw. kénnen.

Die Typen Testcase, Activity, Assertion und noch einige andere werden von

TestResultBase abgeleitet, welches wiederum von TestBase ableitet. Diese sind Typen, die in

59

einem Testdurchlauf ein Ergebnis zuriickgeben - nimlich ’success’, ’fail’, oder ’skip’.
Dementsrechend besitzen sie neben Namen und Description noch weitere Elemente, wie z.B. Result,
zur Speicherung der Ergebnisdaten. Eine Extension in der Xml-Schema Definition wird in C# durch

eine Subclass der extension base abgebildet.

Dieser Abschnitt umfasst nur einen Teilausschnitt der Xml-Datenstruktur. Ein vollstindigeres Bild
iiber die Datenstruktur sowie dessen Interaktion mit dem restlichen Datenmodell liefert das
Klassendiagramm auf der nédchsten Seite. Es ist zu sehen, dass die aus der Xml-Schema generierten
C#-Klassen um viele weitere Felder und Methoden erweitert sind, um die Funktionalitdten der Xml-
API 7u realisieren. Das dotNET-Framework bietet dazu an bei der Klassendeklaration das Keyword
partial zu verwenden, um Klassen iiber mehrere Dateien hinweg zu implementieren. Die automatisch

generierten C#-Klassen sind standardméaBig allesamt mit partial gekennzeichnet.

Hinweis (betrifft alle Klassendiagramme dieser Arbeit): Wenn auch die Klassendiagramme in dieser
Arbeit allesamt eine ,,nur* vereinfachte Darstellung der tatsdchlichen Implementierung geben, setzen
sie den Fokus doch auf die Hauptelemente und Funktionen des Frameworks und stellen so eine gute
Ubersicht und Zusammenfassung iiber die technische Funktionsweise des Frameworks dar. Die
Klassendiagramme erheben somit also keinen Anspruch auf Vollstindigkeit (Beispielsweise sind in
der nichsten Abbildung nicht alle Datentypen von OTX abgebildet. Auch sind eine Menge privater

Methoden, die fiir das Verstdndnis des Grundkonzepts unerheblich sind, ausgeblendet.).

60

TestResults

+result @ ResultEnum

+resultstring - string

+executionDate - System. DateTime

+duration : double

+PropertyChangsd : PropertyChangedEvent-Handler

+MotifyPropertyChanged()

Test.Data

TestBase

IntegerType

TypedParameterFactory

+name - string
+description : string
+PropertyChanged - PropertyChangsdEventHandler

+walue @ long
+inmitValus - long

+Initizlize|]
+MaotifyPropertyChanged|eing. propertyMame : string)
+SerializaToXmilString]) - string

Activity

—d+assertions @ QbservablekeyedCollection=Assertion>
+Evants : ObservableayedCaollection<EventThrows>

_|-Exceptions : Observablabayed Collection<ExcaptionThrows=

1 TestResultBaze
e +testResults : TestResults

+Imitialize()

+UpdateFromOTx(]

+addAssartion|eing. name : string, sing. dascription : st
eing. expression : string, ing. mustVisit - bool)

ring, & £|\—\

ByteFieldType

+wvalus - oyts
+initWalue : byte

-otTypehap @ <Tyoe, Type=

+CreateTypedParameterieing. typs - Type) - object

FloatType StringType
+valus - string
+initWalue : string

+valus : doubls

Parameter

-dataTypes : DTEnum
-modifiar : MadifierEnum

i

’ I

+

Assertion

Testlase

+GetTypedWaluel) - object
+SetTypedvalus(eing. valus - object)

ime

-id © strimg
-Exprassion @ string
+3etResultString])

+id - string

+axpectedCutParam
MustWisitAssertion +acTivit

+workflowRef - string
+oontextVarizbles | ObservableleyedCollection=Contexx\Variable>
+inParamsatsrs - DbhzernvablekeyedCollection<Parametar>

=ters - QbhservablsKeyedCollection=Parametsr>

igs ; ObssrvablekeyedCollection<Activity=
+miocks @ Observableleyedlollection=ProcedureCall=

ProcedureCall

+outParamsters : ObservableXeyedCollection=Paramster>

+Hmitialize()
+Updzt=FromOTxl =i
+UpdzteFromOTx| =i

+SetResultString(]

OutParamfssertion

+GEetAszertionslausg
—-paramater - Paramster

ng. procedure : Emotive. Ot Model. Procedure)
ng. flow : Emotive. Ot Model. Flow)

+UpdzteParametzrsFromOTE|=ing. params : List<Emotive. Ot Modsel Declarations)

. azsertions : List<Ass=rtion=]

+EetMustVisitActivities(eing. activities ; List <Activing=)

+UpdateFromOTX(zing. proceduraCzll -
Emotive. Ot Model. FrocedureCall)

- ContextVariable

*

AP

TestSuite

TestRun

+SetResultString(] +Zave(]
+Deletal]
1
s ExceptionThrow : TestBase
+ld : string

+TestCase | Observab

+TestSuite @ Observable¥eyedCollection<Tastsuite>

+Id - string
slayadCollection=Tastlasa>

+TastCase | Dbservablekeyedlollection=TestCass>
+TastSuite : Obssrvablebeyedlollection=Testsuite>

_.I EventThrow : TestBase

+Initizlizel}

+PrepareForfun()
+Sawel]

+AddTestCassleing. testCase : Testlass)
+AddTestSuite|zing. tastSuite : TestSuite)
+RemoweTestCass(eing. testCase : TestCase)
+RemoveTaestSuite|eing. testSuite - TestIuite)

+Initialize()

+PreparaForfun(]
+Zave|)

+AddTestCass|eing. testlase : TestCase)
+addTestSuite{eing. testSuite : TestSuitz)
+RamowveTestCase|aing. testCase | TestCase)
+RemoveTestSuite|eing. testSuite : TestSuite)

+0penTastProject|eing. projectPath - string)
+0p=nTastCase(eing. testCaseld - string)
+CresteTestlase(sing. prooedurs :
Emotive. Otx. Maodel Procedure)] - Testlass
+CreateTastSuite|) - TestSuite
+DeleteTestCasze(eing. testCase - Testlass)
+0=leteTestiuite|sing. tastiuite - Test3uite)
+GetTestlases(eing. workflowRef : string] :
ObssrvablekeysdCollection<Ttem>=
+GatTestlaszes|) - ObservableKeyedCollection=Tltem:>
+0penTastRun|eing. path : string) : TestRun
+CresteTastRun() : TestRun

+GEetiDoenTestilase|) : TestCase

Abb. 30: UML Klassendiagramm, Test.Data pt.1

4.2.2. Files Manager / Caching

In dieser Abbildung ist die Fortsetzung des Klassendiagramms von Test.Data abgebildet. Hier sehen

wir vor allem die Funktionalitit des Files Managers sowie des Caching-Mechanismus.

Folder

CacheObject

ObservableKeyedCollection<Tltem:

+path : string
+parentFaolder : Folder
+childFolders : Folder

+projectPath : string
+rootFolder : Folder
=TestCases : ObzervablzKeyedCollection=TestCase>
+Testiuites | ObservableXeyedCallaction=TasSuitex

-dictionaryCreationThreshold - int
-obszrvedCollaction - Collection<Tiem=
-dictionary : Dictionary<string, Tltem:=
+parent

<Inititalize()

+CreataDirectory|zing. path - string) +LoadTestDatal) +rollectionChanged : CollectionChangedEventHandler
+LozdFolder|) 0.1 [#CacheTCass() +Gatltem|eing. key : string) - Titem
-LoadChildFolders() +CacheTSuite|) +Count{] -int

-LoadTestFiles|) +GetTestCaselsing. id : string) +Contains(eing. item - Titem) - bool
<SaveToFiledystam|eing. testObject - IFileable) +GetTestSuite|eing. id - string) +Add|eing. item : Tltem)

+DelzteFilz(=ing. fileNams : string] +GetTestCases|sing. workflowRaf @ string)

+Clean)
File +NotifyCollectionChangedi)
=filalams dinterface® Seriali
- +parantTolder : Folder IFileable erializers
= LoadTestrile]) +Gethiome!) -serizlizerMap - Dictionary=Tyoe, 3ystem.¥ml 3zrialization.Xml3erializer=
+SaveTofiledystemieing. testObject - Fileable) ToXmiString(]| |+5erizlizeTokmiStringlaing. s00jzct : abject) : string
+Dalat=() +SaveTofilesystem() +DaserizlizeFrom¥ml|eing. path : string, sing. targ=tType : Typ=) - object

Abb. 31: UML Klassendiagramm, Test.Data pt.2

Files Manager
Der Files Manager ist fiir die Datei- und Projekt-Verwaltung zustindig. Fiir jedes OTX-Projekt wird

dazu ein dediziertes Verzeichnis erstellt, der die gesamten Testdaten enthilt. Es gibt zudem spezielle
Unterverzeichnisse fiir Testcases, Testsuites und Testruns (Testlauf). Die Verzeichnisstruktur ist wie

folgt aufgebaut:

® Root: ~ProjectHome\TestUnits\

e Testsuites: ~ProjectHome\TestUnits\Testsuites\

e Testruns: ~ProjectHome\TestUnits\Testruns\

e Testcases: ~ProjectHome\TestUnits\Testcases\$ { OtxPackage-Name }\${ OtxDocument-
Name }\${ OtxProcedure-Name }\

Die Verzeichnisstruktur wird (falls notig) beim Offnen eines Projektes, bzw. zur Erstellung eines
Testfalls automatisch angelegt. Beim Laden eines Projektes wird die Verzeichnisstruktur im Speicher
durch die Klassen Folder und File nachgebildet. Jeder Klassentyp der im Dateisystem persistent
gemacht werden kann, muss mit einer File-Instanz gelinkt sein und das Interface IFileable
implementieren, welches Informationen und Funktionen zur Serialisierung und zum Speichern
zugreifbar macht. Soll eine Instanz mit TFi1eable-Implentierung im Dateisystem abgelegt werden,
muss lediglich die Methode SaveToFilesystem aufgerufen werden. Die Erstellung der

Verzeichnisstruktur und alles weitere erledigt der Files Manager.

62

Caching

Aufgrund der Referenzen von Testsuites und Testruns auf Testcases und zur Realisierung der Such-
und Filteralgorithmen werden alle projektweiten Testcases zum jetztigen Stand der Entwicklung
vollkommen in den Speicher geladen und durch die CacheObject-Klasse zugreifbar gemacht. Die
Abb. 32: UML Sequenzdiagramm, LoadTestData zeigt einen Ladevorgang withrend des Offnens
eines Testprojektes. Hier werden die einzelnen Schritte zum Laden der Testdaten in das

CacheOb ject in einem Sequenzdiagramm graphisch veranschlaulicht.

CacheObject RootFolder

i
m

Serializers

LoadTestDatal)

L

j_'_'} CreateDirectory(path)

i i
1 1
1 1
| |
1 1
1 1
1 1
P _ | |
1 1 1
i 1 1
1 1 1
1 1
LoadFalder() i i i
. I 1
T ——— o)]]
______,:’ LoedChildFolders() : !
——— 1 1
__F_F,') LozdTastFilzs() | |
— ! !
LoadTestFilel) ! !
] I
DeserializeFromXmilpath, targe:T-,'gE : Type]
testCase
e J—I
i CacheTCase() !
|
e A = |
|
1
- =]
1
1
e I ,
1
1
1
1
1

D L |

Abb. 32: UML Sequenzdiagramm, LoadTestData

ObservableKeyedCollection

Um auf der einen Seite auf die Menge der Testdaten effizient zugreifen zu konnen und auf der anderen
Seite aber auch einen moglichst geringen Speicherverbrauch zu erreichen, wurde fiir das Test
Framework eine geeignete Datenstruktur entwickelt. Das dotNET-Framework generiert fiir Xml-
Strukturen die einen Container fiir eine beliebige Anzahl eines Elementes modellieren, standardméBig
eine Array-Datenstruktur. Array-Zugriffe sind wie bekannt sehr schnell. Fiir die Suche nach einem
Element, der einen bestimmten Namen hat, ist eine Array-Struktur jedoch weniger effizient (worst
case: O(n)).

Da im Test Framework unter Umstinden eine sehr hohe Anzahl an Testfillen (>10.000) verarbeitet
werden miissen und auf diese sowie andere Datentypen iiber ein Bezeichner (Name oder Id)

zugegriffen wird, eignen sich Hash-Datenstrukturen besser. Der Zugriff iiber einen Bezeichner kann

63

dadurch mit O(1) erfolgen. ObservableKeyedCollection implementiert eine generische
Klasse, die eine Menge von Datentypen einer Sorte sammelt, d.h. referenziert. Dariiber hinaus miissen
die gesammelten Datentypen das Interface IKeyInterfaced implementieren. Dieses Interface
stellt die Methode offen, die verwendet wird, um auf den Bezeichner eines Datentyps zuzugreifen.
Instanzen dieses Datentyps werden dann mit diesem Bezeichner als Key und einem Hash in einer
Dictionary-Klasseninstanz gespeichert, die privat in der ObservableKeyedCollect ion gehalten
wird. Auf diesem Weg ist es moglich den Bezeichner bzw. Key — meistens Id oder Name — durch die
bereitgestellte Interface-Methode in dem Datentyp selbst festzulegen.

Da ObservableKeyedCollection aber auch fiir Datentypen genutzt wird, von denen in einer
Collection nur wenige Instanzen gesammelt werden, ist es nicht ratsam den Mehraufwand sprich den
erhohten Speicherbedarf eines Dictionary’s zu betreiben. Zum Beispiel wird in der Praxis an eine
Activity oft nur eine Assertion und in den meisten Fillen sicher unter fiinf Assertions gebunden — oder
ein Prozeduraufruf wird in den seltensten Féllen mehr als zehn Parameter haben. Aus diesem Grund
wird die interne Verwaltung nicht standardméfig mit einem Dictionary vollzogen, sondern es ladsst
sich fiir eine ObservableKeyedCollection-Instanz eine DictionaryCreationThreshold
festlegen, die die numerische Grenze fiir die Erstellung eines Dictionary’s beschreibt.

Eine weitere Funktion der ObservableKeyedCollection ist die observable-Eigenschaft. Diese
Funktion ldsst einen Beobachter bzw. Subscriber der Collection zu, der benachrichtigt wird, sobald
Schreib-Aktionen (z.B. Add oder Delete) an der Collection stattgefunden haben. Diese
Implementierung des Observer-Patterns ist vor allem fiir die Aktualisierung des User-Interfaces

gedacht und wird in Kapitel 4.4: Test. GUI niher erldutert.

4.2.3. Synchronization

In diesem Abschnitt geht es um die Synchronisation der Testdaten, d.h. in erster Linie die
Testfallspezifikation, mit den Daten der zugeordneten OTX-Prozedur. Um einen erfolgreichen
Testdurchlauf zu gewihrleisten, miissen die Testdaten sowie die OTX-Daten sozusagen miteinander
kompatibel bzw. synchron sein. Zum Beispiel miissen Testwerte fiir Parameteriibergaben vom
Datentyp her, mit den in OTX spezifizierten Datentypen iibereinstimmen. Oder, der bool sche
Ausdruck einer Assertion muss giiltig, bzw. auswertbar sein. Das Test Framework sorgt direkt bei der
Erstellung dieser Daten fiir eine Priifung bzw. Synchronisation. Allerdings kann eine nachtrégliche
Anderung von OTX-Daten zu einer Inkonsistenz fiihren, die unter Umstiinden den Testfall nicht mehr
ablauffihig macht. Noch schlimmer wire der denkbare Fall, in dem eine gemachte Verdnderung zwar
den Ablauf nicht stort, aber zu falschen Ergebnissen fiihrt.

Wir sehen also, dass es sehr wichtig ist, Testdaten und OTX-Daten konsistent zu halten. Wie erwihnt

soll das Test Framework schon bei der Erstellung von Testfédllen die Konsistenz wahren. Weiter ist es

64

verniinftig eine Priifung und Aktualisierung bei jedem Offnen eines vorhandenen Testfalls bzw. vor

jeder Ausfiihrung eines Testlaufs durchzufiihren.

Der Priifungs- und Aktualisierungs- Prozess durchlduft bei seiner Durchfithrung rekursiv den

gesamten OTX-Baum eines Ablaufs und priift bzw. vergleicht die Daten. Die folgende Tabelle fasst

zusammen, welcher Handlungsbedarf je im Falle eines bestimmten inkonsistenten Datenbefundes

notwendig ist.

Befund

Handlung

(immer am Testcase - keine Modifikation des OTX-Dokumentes!)

1. OTX: Aktivitat fehlt.

Léische Aktivitdt samt Assertions loschen.

Optional: Markiere als inaktiv.

2. TestCase: Aktivitit fehlt.

Ok. Aktivitdit hat noch keine Assertions.

3. OTX: Name der Aktivitédt gedndert.

Aquivalent zu Fall 1 und 2

4. OTX: Parameter fehlt.

Losche Parameter.

5. Testcase: Parameter fehlt.

Fiige Parameter hinzu .

6. inkompatibler Parametertyp

Generiere Parameter neu.

7. Testcase: Expression der Assertion ungiiltig.

Setze Expression = true’.

8. Bei jeglicher Inkosistenz

Verfahre nach 1.-7. und markiere zusdtzlich mit

Changed-Flag

Tabelle 3: Synchronisierung mit OTX

Die Synchronisation wird in den betreffenden Klassen durch die Methode UpdateFromOTX

implementiert (siehe dazu vorangegangene Abb. 30:UML Klassendiagramm, Test.Data pt.1).

65

4.3. Test.Control

Die nachfolgende Abbildung stellt das Klassendiagramm von 7est. Control dar.

Test.Control

TestCaseHarness ApplicatonException TestFramework
-harmessMap : Dictionary<string, TestCaseHarness>
-testData : TestCase T —— 3 —
3 e . . Ty ; [+0penTastProject|eing. sender : object)
RuntimeBase workfloveAssembly : System. Reflection.Assembly - v S
+Createlnstancelzing. tastData - TestCase) él‘i‘. +DEHT'51&ESI',EI,F"' sendsr : object]
Runinstancel) +CreatETastDas_E|,E|r'g. sender: object]
+Run{} +R_unl.i.r,:,rkf|0.,;-[', TFException +:::§ser\trﬂ_’::flr'.5: sgn_:ler: Dbilen] biact)
+RunList]) CheckDutputParams(] + ustVisitdctivity(eing. sender : objact)
Fa +CheckMustVisitAssartions|]
+Aszartieing. axpr : bool, ing. assertionld : string)
| Mock
S5ample0THProject #testData : TestCase
RuntimeTestRun RuntimeTest5uite #actionid : string
stactData : TestRun| [+testDatz - TestSuite inE]] +nithiockDataleing. testCaseld : string, eing. actionld : string) : Mook
+Runinstance() +Runinstance(} +Dizposel] |) ﬁ}t
+RunTestProcedurs|) SampleMaock
CodeGenerator

+hiock - Samplehock

-ccu - System.Codedom CodeCompilsUnit

+GenerateMockCodeieing. package : string,
sing. otxDocument : string)
-Genarateloda(]

+TestCzll{zing. testStr : string, sing. testint : int)

-GenarateStaticCztr{]) Assembily

-GensratehockProcedurss()

_GenerateStatements!] -mackfssembliss : Dictionary<string, Assembly=

-GenerateParamaters() +ZenerateAssemblyleing. testData - Testlasze)

-CenaratePropertyl) -GenerateMockAssembly(eing. otxPackage : string, eing. otxDocumant - string, ausg. assembly : Assembly]
-GenzrateField|() +Gethockdssemblizsizing. testDats - TestCase, ausg. assemblies : List=Assembly=)
-GenarzteMamespace]] +DeleteCldAssemblizs)

-Genaratellass(] +CompileCode(eing. inputCode : string)

Abb. 33: UML Klassendiagramm, Test.Control

4.3.1. ODFConnector

Der ODFConnector stellt die Verbindung zwischen dem ODF und dem Test Framework her. Da die
Testcase-Modellierung mit dem Workflow-Designer des ODF’s integriert ist, muss dem OTX-
Designer entsprechende Funktionen bereitgestellt werden.

Die Klasse Test.Control.TestFramework stellt diesen Connector dar, der diese Funktionen
offen legt. In dem Klassendiagramm von Test.Control konnen wir die gelisteten Funktionen
besehen. Betrachten wir einige dieser Funktionen. Durch die Methode OpenTestProject werden
alle Testdaten fiir das aktuelle OTX-Projekt geladen. Nachdem beispielsweise ein OTX-Ablauf
geoffnet wurde, kann iiber ein Kontextmenu im Workflow-Designer ein neuer Testcase durch die
Methode CreateNewTestCase erzeugt werden. Anschlieend kdnnte etwa eine Assertion an eine
Aktivitat durch AddAssertion gebunden werden. Die folgende Abbildung veranschaulicht den

Prozess der Erstellung und Bindung einer Assertion an eine Aktivitit.

66

Desianer ActivityDasiznar Test.Control TestFramework Test.Data AP Testlaszs Bctivity ActivityTresMode
N T
Oninsertassert|) | | ! | |
1
—) : | : :
AddAssertion|sender) i ! 1 |
| i |
1
GetOpenTestlase|) : | :
i : l
testlase 1 :
1
|
____________ |
testCasa. Activitizs[activityMame] ! |
. I
activity J_| :
I
______________________ i
AddAssertionname, description, expression, mustVisit) :
CollectionChanged|)
*
I 1]
e :
TestCasesTree AssertionTresMaode
FocusMode(path, celiName) i :
i
— > i
FocusCell| cellName | |
Ll
e m e |—|.
1
e L
1
Machrichtl :
f—mmmmmm- Ll i

Abb. 34: UML SequenzDiagramm, AddAssertion

Einige erwdhnenswerte Schritte werden erldutert:

1.

Prozessverarbeitung obliegt von hier an dem Test Framework.

aktuell gedffneten Testcase.

Der ActivityDesigner des ODF ruft die AddAssert ion-Methode auf. Die

Es kann zu einem Workflow mehrere Testfille geben. Get OpenTestCase() liefert den

testCase.Activities[activityName] liefert die gesuchte Aktivitdt durch den

Zugriff auf die ObservableKeyedCollection liber den Namen der Aktivitt.

Nachdem eine Assertion zur Aktivitit hinzugefiigt wurde, miissen durch ein

CollectionChanged () Event die betroffenen User Interfaces (in unserem Fall:

ActivityTreenode) benachrichtigt werden.

. Nachdem das User Interface die Aktualisierung vorgenommen hat, gibt es einen neuen

AssertionTreenode, der sofort den Fokus erhalten soll, damit der Benutzer die Testdaten

der neu erstellten Assertion festlegt.

67

4.3.2. Test-Laufzeitumgebung (Runtime)

Die Laufzeitumgebung des Test Frameworks implementiert das Umfeld und die Logik fiir die
automatisierte Ausfithrung von gesammelten Testfillen bzw. Testsuiten. Nachdem durch das User
Interface die auszufiihrenden Tests ausgewihlt und markiert wurden, werden sie in einem Testrun
(Testlauf) zusammengefasst und der Laufzeitumgebung zur Ausfithrung iibergeben.

Die Ausfiihrung eines Testlaufes muss in einem neuen getrennten Thread gestartet werden, da eine
Live-Aktualisierung der Testergebnisse im User-Interface sichtbar sein soll und die Ausfiihrung den
Rest der Applikation (ODF) nicht beeintrichtigen soll. Vielmehr sollte es dem Anwender moglich sein
nebenher weiterzuarbeiten. Des Weiteren ist es notig den Testlauf in einer neuen App-Domain zu
starten, weil es nicht moglich ist, einzelne Klassen oder Assemblies zu entladen, sondern nur Ganze
App-Domains. Da fiir jeden Testcase der C#-Code des entsprechenden OTX-Ablaufs dynamisch
generiert wird und zur Ausfithrung als eine Assembly geladen werden muss, wiirde dies auf lange Sicht
zur ungenutzten Belegung groBer Mengen an Arbeitsspeicher fiihren.

Nach der Code-Erzeugung und einigen Initialisierungsprozessen fiihrt die Laufzeitumgebung
nacheinander alle enthaltenen Testsuites bzw. Testcases aus. Fiir die Ausfithrung der Testcases hilt die
Laufzeitumgebung die notigen Testdaten bereit, sowie einige Methoden zur Priifung von Assertions,
Ausgabeparametern und must visit-Aktivititen. Darliber hinaus muss die Ausfiihrungslogik auch die
Behandlung von Exceptions beriicksichtigen, die vom OTX-Ablauf nicht behandelt wurden. Durch die
bereitgestellten Mock-Objekte konnen Prozeduraufrufe umgelenkt und durch statische Testdaten
simuliert werden. In der Fachsprache spricht man auch von einem Test-Harness (Test-Geschirr), der
all diese Funktionen und notigen Testdaten kapselt und bereitstellt. Die Klasse TestCaseHarness
implementiert eine solche eben genannte Komponente und ist somit das Herzstiick des Test-
Laufzeitsystems. In Abb. 35:UML-Sequenzdiagramm, Runtime wird der grobe Ablauf eines

Testlaufs im Laufzeitsystem dargestellt.

68

RuntimaTestrun RuntimsTestSuits

TestCzseHarness Azzemibly CodeGenerator

Runi)

|

RunList{}
— |

1
Runi) 1

l‘) RunList{}

Createinstance|t=stData) |

L I
GetMockAssemblies|testData, assemblies : List<fAssembly=)

GeneratzMockassembly

GeneratelockCode|package, owDocument)
i h

H:_) CompileCode|inputCods]

GenerateAssamaolyitestData) IOTXRuntims

‘ Compile0TX | procedure, testData | :

'

assembly ass=mily zssembly]_I
L ,L ____________________

.7—> RuriWorkfiow{)| 3¢n- Assembi dyn. MockAssembl

¥ T
RunTestProcadure!] | |
. |

InthiockData(testCasald, actionld) !

Assert|expr, assertionld)

N %

S)
ﬂ:) CheckMust\isitAsz=rtionsi)

‘;,___

‘__) CheckOutputParams()

il

Abb. 35: UML-Sequenzdiagramm, Runtime

Wir konnen die Laufzeit der TestCaseHarness in drei Phasen aufteilen:

1. Pre-Run: Erstellung, Initialisierung und Code-Generierung
2. Run: Tatsichliche Ausfiithrung des Testablaufs
3. Post-Run: Priifung der Testdaten

69

1. Phase: Pre-Run

Die Erstellung des TestCaseHarness erfolgt durch die statische Methode CreateInstance. Diese
ruft einige Initialisierungsmethoden auf. AnschlieBend wird der C#-Code fiir den OTX-Ablauf
inklusive der Assertion-, Event-, Exception-, und ProcedureCall- Codezusitze sowie der Code fiir die
Mock-Objekte generiert — Zu diesem Zweck werden die Methoden GetMockAssemblies und
GenerateAssembly aufgerufen. Die Code-Generierung wird gesondert im Abschnitt 4.3.3: Code-

Generierung behandelt.

2. Phase: Run

Nach der Initialisierung und Code-Generierung kann der Testablauf ausgefiihrt werden. Da der
auszufilhrende C#-Code erst zur Laufzeit dynamisch generiert und geladen wird, muss {iiber
Reflection-Methoden des Namespaces System.Reflection auf die dynamisch generierte und
geladene Assembly zugegriffen werden. Durch den von dotNET-Framework bereitgestellten
Reflection-Mechanismus lassen sich Informationen iiber Methoden, Felder, etc. von Klassen zur
Laufzeit abrufen. AuBerdem ist es moglich mit der Kenntnis iiber die Struktur der Klasse auf
Methoden und Felder, etc. zuzugreifen. In Code Listing 1: RunWorkflow wird iiber Reflection die

Methode RunTestProcedure der generierten Assembly aufgerufen.

private void RunWorkflow()
{
Cbject workflow = Workflowhssembly.CreateInstance (TestCaseData.WorkflowRefTokens.Pack:
BindingFlags.Public, null, null, System.Globalization.CultureInfo.CurrentCulture,

workflow.GetType () .GetMethod ("RunTestProcedure™) . Invoke (workflow, new object[] { }):

Code Listing 1: RunWorkflow

Bei der Codeerzeugung wird immer die Methode mit dem Namen RunTestProcedure generiert,
die sozusagen den Einstiegspunkt fiir die Assembly darstellt, und die die eigentliche Prozedur — d.h.

den zu testenden OTX-Ablauf - mit den spezifizierten Test-Parametern aufruft.

Steht wihrend der Ausfithrung des OTX-Ablaufs die Priifung einer Assertion an, wird die Methode
Assert des TestCaseHarness mit dem Boolean-Ausdruck und einer Assertionld aufgerufen.

Die Assertionld wird bendtigt, um die entsprechende Assertion im Datenmodell zu referenzieren und
das Ergebnis der Auswertung festzuhalten. Das User Interface wird als Event-Listener (Beobachter)
der Assertion automatisch aktualisiert.

Falls der Boolean-Ausdruck als ‘false® ausgewertet wird, wird eine TFException (Test Framework -
Exception) geworfen, um die weitere Ausfithrung des aktuellen OTX-Ablaufs zu unterbrechen. Das
Framework fingt die geworfene TFException ab und fihrt mit dem nichsten Testcase fort. Das Code-

Listing der Assert-Methode ist in Code Listing 2: Assert zu sehen.

70

public woid Assert (bool expr, String assertionId)
{
Emotive.0df.Test.Data.k=s=sercion assertion = assertions[assertionId]:;
assertion.SetResultString ()
if (assertion.IsSkip)
{

return;
if (expr)
{
azsertion.TestResults.Result = EesultEnum.Success;
assertion.TestResults.NotifyPropertyChanged (TestResults.ProperctyNames.Result.TeString ())
else
i
assertion.TestResults.Result = ResultEnum.fail;
assertion.TestResults.NotifyPropertyChanged (TestResults. PropertyNames. Result . ToString ())
f/f5et Results for Parent Activity
{{TesctResultBase)assertion.Parent) .TestResults.Result = ResultcEnum.fail;
{{TestResu =)assertion.Parent) .TeatResults.ResultString = assertion.TestResults.Result
{{TesctResultBase)assertion.Parent) .TestResults . .NotifyPropertyChanged (TestResults. Propertyl
throw new TFException (assertion.TestResults.ResultString):

Code Listing 2: Assert
Kommt es bei der Ausfiithrung des OTX-Ablaufs zu einem Prozeduraufruf, so wird statt eines anderen
OTX-Ablaufs eine Simulation durch eine generierte Prozedur im Mock-Objekt ausgefiihrt. Lediglich
die Riickgabeparameter werden mit den Testdaten belegt — mehr tut diese Mock-Prozedur nicht. Code

Listing 5: Generated Mock C#-Code (siehe S.73) stellt eine solche Mock-Prozedur dar.

3. Phase: Post-Run

Nach der Ausfithrung des OTX-Ablaufs miissen die Ausgabeparameter der Prozedur gepriift werden.
Die Methode CheckOuputParams fiihrt hierzu einen Vergleich der Ausgabeparameter mit den im
Testcase spezifizierten, erwarteten Werten durch.

Zum Schluss werden noch die must visit-Aktivititen darauthin gepriift, ob sie tatsdchlich ausgefiihrt
wurden. must visit-Aktivititen werden, wie erwihnt, durch spezielle an sie gebundene must visit-
Assertions realisiert, die immer ‘frue‘ auswerten. Wie der Name schon suggeriert sind dies Assertions,
die besucht bzw. ausgefiihrt werden miissen. Durch die Methode CheckMustVisitAssertions priift das
Framework nach kompletter Ausfithrung des OTX-Ablaufs, ob alle must visit-Assertions tatsdchlich

ausgefiihrt wurden und wirft bei negativer Auswertung einen Fehler.

Exception-Handling

Das TestcaseHarness muss aulerdem fiir die Behandlung bzw. das Abfangen von Ausnahmefehlern
sorgen. Ein unbehandelter Ausnahmefehler darf nicht die Ausfithrung des Testruns bzw. andere
Testcases unterbrechen. In Code Listing 3: Exception Handling ist zu sehen, wie dies durch einen
Try-Catch-Block realisiert wird. Die Ausnahmefehler werden abgefangen (catch) und die

entsprechenden Fehlerinformationen werden in den Test-Ergebnissen (TestResults) festgehalten.

71

Initialize():

try

{
RunWorkflow () ;
CheckMustVisitAssertions ()
CheckCutputParams () ;

catch (TFException ex)

{
TestResults.Result = EesultEnum.fail:
TestResults.ResultString = ex.Message;

return;
catch (Exception ex)
ex is Emotive.Otx.Data.l
ex is Emotive.Otx.Data.

I

|| ex is Emotive.Otx.Data.
|| ex is Emotive.Otx.Data.
Il
Il

ex i=s Emotive.Otx.Data.InvalidReferenceException
{ ex.ITnnerException '= mull || ex.InnerException is TFException)}
)
{
TestResults.Result = ResulcEnum.fail;

TestResults.ResultString = ex.InnerException.Mes=age;

else

{
TestResults.Result = ResultEnum.error;
TestResults.ResulctString = ex.Message:;

TestResults.NotifyPropertyChanged (TestResults. Propercylames . Result.TaScring ()) !
return;

Code Listing 3: Exception Handling

4.3.3. Code-Generierung

Um wihrend der Laufzeit aus dem OTX-Dokument und den Testdaten dynamisch Code zu generieren
werden die vom dotNET-Framework unter dem Namespace System.CodeDOM bereitgestellten
Klassen genutzt.

Mit Hilfe von CodeDOM lésst sich durch verschiedene Methoden ein Code-Baum erzeugen, dessen
Knoten und Blitter verschiedene Code-Elemente darstellen und letztendlich den gewiinschten
Programm-Code wiederspiegeln. Ist der Code-Baum vollstindig aufgebaut, kann mit Hilfe eines
Graphen-Durchlaufs der Programm-Code erzeugt werden. Da dieser Baum quasi ein generischer
Reprisentant des erwiinschten Codes ist, ist es mit CodeDOM mdglich Code fiir verschiedene
Sprachen erzeugen zu lassen. Mit einer Reihe von CodeDOM-Methoden konnen alle moéglichen
Sprachelemente erzeugt werden. In Code Listing 4: CodeDOM, Assignment etwa sehen wir ein Code-

Sample, um beispielsweise ein Assignment-Statement fiir ein Mock-Objekt zu erzeugen.

72

CodelszignStatement assign = new Codellssi

assign.Left = new CodeVariableReferenceExpression(name);

assign.Right = new CodeCastExpression(type, new CodePr

new Co

yvReferenceExpression |

new CodelndexerEx

» "MocksDic™)
, new CodePropertyReferenceExpression(
new CodeT sReferenceExpression ()
, "ActionId"))
, "OutParametersDic")
r Dnew CodePrimitiveExpression(name))

, "TypedValue™) }:

Code Listing 4: CodeDOM, Assignment
Der aus diesem Abschnitt generierte Code entspricht einem Assign-Statement in Code Listing 5:

Generated Mock C#-Code), welches eine Prozedur eines generierten Mock-Objektes darstellt.

public woid TestCall (long TestCallIn, cout long TestCallCut, ref string TestCallInlCut)
i
TescCallOut = ((long) (this.TestCaseData.MocksDic[this.AccionId].
CutParametersDic["TestCallCut™] .TypedvValue)) ;

TestCallInOut = ((string) (this.TestCaseData.MocksDic|[this.ActionId].

CucParametersDic["TestCallInCut™] .TypedValue)) ;

Code Listing 5: Generated Mock C#-Code

In Code Listing 6: Generated Otx C#-Code ist der generierte OTX-Code eines sehr simplen Ablaufs
zu sehen, welcher eine einzige Aktivitit, ndmlich einen Prozeduraufruf, ausfiihrt. Der OTX-Ablauf tut
demnach weiter nichts als nur die Prozedur Testcall aufzurufen. Die Testdaten des Testcases
spezifizieren zusitzlich eine Assertion und ein Throw-Element mit dem Typ
Emotive.Otx.Data.ArithmeticException.

Nach dem Prozeduraufruf TestCall ist dementsprechend die Assert-Anweisung gefolgt von einer
throws Anweisung zu sehen. Wir sehen: Ein Throw-Element wird also durch eine C#-throws
Anweisung implementiert.

Um den eigentlichen OTX-Ablauf WorkflowlProcedure nun auszufithren, wird dieser vom Test
Framework nicht direkt aufgerufen, sondern iiber die Methode RunTestProcedure, die vorher und
nachher noch fiir die Belegung und Riickbelegung der Eingabe- und Ausgabe- Parameter sorgt.

Die Erzeugung des Programmcodes fiir die Mock-Objekte wird durch die Methode
GenerateMockCode der Klasse Test.Control.CodeGenerator angestolen. Die
Codezusitze fiir das Testen eines OTX-Ablaufs werden integriert wihrend der Codeerzeugung eines

OTX-Dokumentes im ODF mit eingebunden.

73

public static wvoid RunTestProcedure ()

{

[/ Get TestCase Harness, that holds TestFramework Data and Methods

Emotiwve.2df.Test.Runtime.TestCaseHarness testCaseHarness =

Emotive.0df.Test.Runtime.TestCaseHarness . HarnessMap["62a2a2274-dd7d-4beb-b4ad-Sle6f47c48427];

i

rf

string InParameterDeclarationl;

InParameterDeclarationl = ((string) (testCaseHarness.InParameters|["InParameterDeclarationl™] .TypedValue)) ;

rf

long CutParameterDeclarationl;

i

string InCutParameterDeclarationl;

InCutParameterDeclarationl = ((string) (testCaseHarness.InParameters["InfCutParameterDeclarationl™].IvpedValue)):

rr

J/ Call Te=st Procedure

Package.CDFFroject3.WorkflowlProcedure (

InParameterDeclarationl, out CutParameterDeclarationl, ref InCutParameterDeclarationl):;

rr

testCaseHarness.OutParameters ["OutParameterDeclarationl™] .TypedValue = QutParameterDeclarationl;

testCaseHarness.OutParameters ["InCutParameterDeclarationl™] . TypedValue = InOutParameterDeclarationl;
}

public static volid WorkflowlProcedure (string InParameterDeclarationl, out long CutParameterDeclarationl, ref string InCutParameterDeclarationl)
{

J/ Action - ProcedureCalll - id 285edcaes 9f0c_ 466a 9a58_bl164935324f5

procedureCall = [(Package.ODFProject3.TestCall)

[(Emotive.0df.Tesc.Runtime.Package .O0DFProject3.Mock["62aa2274-dd7d-4beb-b4ad-51e6f47c4842", "ProcedureCalli™].TestCall)):
if ((procedureCall '= null))
{

[{Package .ODFProject3.TestCall) (procedureCall)) (5, cut TestCallCutInt, ref InOutParameterDeclarationl):

Emotive.0df.Test.Runtime.Assert.IsTrue (
InParameterDeclarationl = InfutParameterDeclarationl, "62aa2274-ddT7d-4beb-bd4ad-5Sle&fd47c4842.45cbcelb-5828c-4881-b234-438d9%bb3EEF0™) ;2
throw new Emotive.Otx.Data.ArithmeticException("Test Exception™):;
H

Code Listing 6: Generated Otx C#-Code

74

4.4. Test.GUI

Die nachfolgende Abbildung stellt das Klassendiagramm von Test . GUT dar.

Test.GUI

TreeViewControl

#ottn3awve @ DevComponents.DotMatBar. Buthonltam
#ottnSawvedll : DevComponents.DotMetBar Buttonltem
#ottnStart : DewComponsnts. DotMet3ar. Buttonlt=am
#ottnadd : DevComponents. DothetBar Buttonltem
#ottnFilter - DevComponents. DotNetBar Buttonltem
FiBFiltermask - DevComponants.DotMatBar Buttanitam
+Tres

-Toolbar : DevComponents. DotMetBar. Toolbar

TestRunViewContral

#bttnAdd @ DevComponents. DotNetBar Buthonltem
#httnStart | Deviomponents. DotMetBar. Buttonitem

#lnitToolbarizems|)

TestSuiteViewControl

#bttnAdd @ DevComponents. DotNetBar Buthonltem
#httnStart | Deviomponents. DotMetBar. Buttonitem

HinitTooloarltzms))
FbttnStart_Click()
#httnSawve_Click()
#httnSaveall_Clickl)
sbttnadd_Clickl]
#ottnFilter_Click(]
#tBFiltermask_TextChangad|)
H#SetFilterOni)

H5etFilter ()

#lnitToolbarizems|)

TestCaseViewControl

-wiorkflowRef © string
#bttnAdd @ DevComponents. DotNetBar Buthonltem
#bttnStart : DewvComponents. DotMetBar. Suttonitem

#|nitToolbaritams|)

DevComponents.AdvTree. AdvTree

+OpznTastCasesieing. workflowRsf - string)
+0pznAllTestCasas()

CustomTree

#3etTreeOptions()

+InitializeTrae()

+GetNode|zing. path : string)

+FocusModeleing. path @ string, 2ing. cellMame : string)
#DoDragandDropl)

+&poplyFilter|=ing. flterhask : string)

+BuildSubTrea()

L

DevComponents.AdvTree.Node

CustomTreeModa

-contextMenuStrip : ContextMenuStrip

+GetMode|zing. nodePath : string) —
#addContexthMenustrips()
#3ubscribefslistenar]
+Unsubscribelistenar])

+BuildSubTres()
#isualizeTestDatzChanged|)
#CollzctionChangad|)

+&pplyFilter|zing. filtarMask : string)
+IsModeFiltered(eing. filterMask - string)
#Dizposel]

TestCasesTres 1
-workflowRsf : string
+InitizlizeTres(eing. workflowRef - string)
#SetTreelptions])
+2uildSubtreal]
#0olragandlrop])

TestRunTree TestSuitesTres
+InitizlizeTres(] +InitializeTrae()
#SetTreeDptions]) #SetTreeDpticons|)
+BuildSubtreal) +BuildSubtrae()
#DoDragandDrop|) #DaDragendCrop|)

|
1
1
TestResultTreeMods
+testData : TestBase
#Subscribafslistener) .;:]—
+lnSubscribelistenar)
#restData_PropertyChanged|)
FAddCells])
TestBaseTreeNode
ActivityTreeMode

+testData : TestBase

#Subscribedslistener()
+lin3Subscribelistenar)
#testData_PropertyChanged|)
+0nCzlDataChanged()

+testData : TestBase

#Subscricefslistenar]
+UnSubscribelistenar)
#testData_PropertyChanged|)

+CheckMamalsUniqual) #addContextManuStrips|)
#addCells) #addCells]) =BuildsubTrez()
Abb. 36: UML-Klassendiagramm, Test.GUI

75

4.4.1. Workflow/Testcase-Designer

Um dem Anwender eine einfache und intuitive 7estcase-Modellierung zu ermoglichen, ist letztere mit
dem Workflow-Designer integriert bzw. verkniipft. Assertions konnen beispielsweise direkt im
Designer durch ein Kontext-Menii einer Aktivitét hinzugefiigt werden.

Die Testdaten werden iiber Methoden der Klasse Test.Control.TestFramework (alias
ODFConnector) hinzugefiigt. Zusidtzlich zum Workflow-Designer gibt es noch das
TestCaseViewControl zur detaillierten Bearbeitung der Testdaten. In diesem Control werden alle
Testfille zum gedffneten OTX-Ablauf in einer Baumstruktur angezeigt. Jeder Testfall-Knoten hat eine
Unterbaumstruktur zur Anzeige und Bearbeitung von Eingangsparametern, erwarteten
Ausgangsparametern, Riickgabeparametern von Prozeduraufrufen, Assertions, etc.

Die Baumstruktur TestCasesTree verwendet die AdvTree-Komponente der Firma
DevComponents, die zusitzliche Funktionen gegeniiber dem standardméBigen TreeView-Control von
dotNet bietet. Fiir unseren Testcase-Designer werden vor allem die zusitzlichen Spalten zur
Darstellung und Editierung der Testdaten verwendet. Die Baumstruktur besteht hauptsdchlich aus
Knoten die allesamt von DevComponents.AdvTree.Node ableiten miissen. Um eine einfache
und ausreichende Individualisierung von Knoten verschiedener Art zu ermoglichen, wird fiir jede Art
von Knoten eine eigene Klasse implementiert, die von DevComponents.AdvTree.Node ableitet.
Alle Knoten die Testdaten enthalten sollen, sind von TestBaseTreeNode abgeleitet, welches
selbstverstandlich wiederum von DevComponents.AdvTree.Node abgeleitet ist und
standardmifig Funktionen zur Anzeige und Bearbeitung zur Verfiigung stellt. In dem
Klassendiagramm fiir Test .GUI (siehe oben) kdnnen wir einige Knoten-Klassen sehen. Aufgrund
der groen Anzahl der verschiedenen Arten von Knoten (z.B. TestcaseNode, ParameterNode,
AssertionNode, ActivityNode, etc...) wird nur ein Teil von ihnen abgebildet. Tatsédchlich gibt
es noch etliche weitere Klassen, die von TestBaseTreeNode bzw. von TestResultBaseNode
ableiten. In Abb. 37: UML Sequenzdiagramm, OpenTestCases ist der Ablauf fiir den Aufbau eines
TestCasesTree dargestellt. In diesem Beispiel werden alle Testcases eines OTX-Ablaufs samt ihrer

Unterbaumstruktur aufgebaut. Ein TestCaseTreeNode stellt je einen Testcase dar.

76

TestCazsViswControl TestCazesTrae TestCaseTreshods TestCaszs Mode

OpenTestCases{workflowRef)
1

nitizlizeTres{warkflowRef)

l—_ :_; BuildSubTraal)
-
‘-'—

BuildSubTres()

" AddContextMenuStrips()

> AddCells(]

_:} SubscribedsListanar]]

1
1
1
1
1
I
1
i
1
1
1
1
1
1
1
1
i
1
I
1
1
1
1
:
PropertyChanged_Subscrine :
1
1
I
1
I
i
1
1
i
I

h

Build3ubTrez()

g S

&y
I

Abb. 37: UML Sequenzdiagramm, OpenTestCases

Durch die Methode BuildSubTree wird rekursiv der Aufbau der ganzen Unterbaumstruktur
ausgefiihrt. Es werden dabei noch einige Initialisierungsprozesse fiir das Laden des Kontextmeniis und
der Testdaten gestartet. Wichtig ist auch die Methode SubscribeAsListener, welche die
Beobachterfunktion des Knotens auf die Testdaten aktiviert und das erwdhnte Observer-Pattern
implementiert. Sobald Testdaten aktualisiert werden, werden die Knoten im User Interface ebenso
aktualisiert. Es ist hierbei &duBlerst wichtig fiir ein Subscribe auch eine entsprechende
Unsubscribe-Funktion zu implementieren und diese aufzurufen sobald das Objekt nicht mehr
genutzt wird. Da eine Subscription immer bedeutet, dass ein Verweis vom beobachteten Objekt auf
den Beobachter erzeugt wird, wiirde das Beobachter-Objekt nie vom Garbage-Collector gesammelt
und zerstort werden, solange dieser Verweis noch besteht. Ein ,,geschlampertes® Unsubscribe fiihrt

also dazu, dass ein nicht benutztes Objekt weiterhin Speicher belegt.

4.4.2. Testsuite Manager

Um Testsuites komfortabel zusammenzustellen gibt es den Testsuite Manager, der aus einem
TestcaseViewControl und einem TestsuiteViewControl besteht. Das TestsuiteViewControl enthilt

einen TestsuiteTree welches dhnlich aufgebaut ist wie ein TestcaseTree und hier nicht niher

77

vorgestellt wird. Das TestsuiteViewControl stellt alle projektweit vorhandenen Testsuites dar und stellt
Funktionen zur Verfligung Testsuites zu erstellen, zu verwalten und zu l6schen.

Uber das TestcaseViewControl lassen sich Testcases schnell und einfach finden und konnen dann per
Drag&Drop einer Testsuite hinzugefiigt werden. Das TestcaseViewControl hilt dazu eine
Filtereingabe bereit, womit projektweit nach verschiedenen Kriterien gefiltert werden kann. So liele
sich etwa die Anzeige anpassen, sodass nur alle Testcases einer bestimmten Otx-Package oder eines
bestimmten Otx-Documents erscheinen. Vom Testsuite Manager aus konnen beliebige Testsuites und

Testcases ausgewihlt und in einem Testlauf ausgefiihrt werden.

4.4.3. Testrun - Darstellung der Test-Ergebnisse

Der Testlauf bzw. Testrun wird ebenfalls durch eine Baumstruktur implementiert, da dies einen sehr
iibersichtlichen und effektiven Uberblick iiber den Testlauf ermoglicht. Die TestRun-TestSuite-
Testcase-Assertion Hierarchie ldsst sich wunderbar durch einen Baum darstellen. Testergebnisse
werden in einer zweiten Spalte festgehalten, wobei deren Darstellungslogik auch sehr gut in einer
Baumstruktur umgesetzt werden kann. Sollte ein Testcase fehlschlagen, so gilt die Testsuite und
weiter auch der Testrun als fehlgeschlagen. Dies kann in der Baumstruktur gut wiedergegeben werden
und es ist wie gefordert auf einem Blick schnell ersichtlich, ob ein Testrun bzw. eine Testsuite
erfolgreich war oder nicht. Es miissen nicht alle Informationen iiber alle Testcases angezeigt werden.
Jene Testcases die ohnehin erfolgreich durchlaufen sind, interessieren bei einem Fehler-Test nicht.
Will ein Anwender genauere Ergebnisse liber eine Testsuite oder einem Testcase erhalten, so kann er
durch die Baumstruktur navigieren.

Die Darstellung eines Testlaufs tibernimmt das TestRunViewControl. Dieser beherbergt einen
TestrunTree, der den gleichen Aufbau hat wie der TestcaseTree. Speziell zu erwédhnen sind die
TestResultTreeNodes, von denen alle Knoten des TestrunTrees abgeleitet sind, die Ergebnisse
zurlickliefern. Zum Beispiel ist eine AssertionNode ein TestResultTreeNode und hat als SubTyp eines
TestBaseTreeNode selbstverstindlich auch einen Verweis auf ein Test.Data. TestBase-Objekt,
welches in der Tat sogar ein Test.Data.TestResultBase- bzw. ein
Test.Data.Assertion-Objekt ist. Uber den Verweis werden die Testdaten, aber auch
Testergebnisse abgerufen und angezeigt. Die Assertion-Node ist als TestBaseNode standardmifBig
Beobachter des PropertyChanged-Event des Assertion-Objektes und kann auf alle Dateninderungen
des Assertion-Objektes reagieren. Wihrend der Ausfithrung eines Testcases aktualisiert die Test-
Laufzeitumgebung nach der Priifung einer Assertion dessen Ergebnisse am Assertion-Objekt von
Test.Data. Da der AssertionNode Beobachter ist, kann er die Testergebnisse sofort anpassen und
der TestRunTree kann die Ergebnisse direkt anzeigen. Bei der Ausfithrung eines Testlaufes werden
also nacheinander die Ergebnisse von Assertions, Testcases, etc. angezeigt. Um dies zu realisieren ist

es jedoch notig die Ausfithrung des Testlaufes in einem neuen Thread zu starten.

78

5. Evaluierung

5.1. Erstellung von Testfillen - Best Practices

5.1.1. Assertions

Betrachten wir fiir den Anfang einen einfachen Workflow, der die Geldausgabe an einem
Der Workflow bekommt
Parameteriibergabe. Die Aktivitdat PIN-Priifung priift die PIN-Nummer auf ihre Giiltigkeit und gibt als

Bankautomaten steuert.

Antwort einen Boolean-Wert zuriick. Sollte die Antwort positiv sein, wird der Zugriff auf das Konto

die PIN-Nummer

eines

gewihrt, solange der Kontostand nicht negativ ist - andernfalls wird der Zugriff verweigert.

Kontostand
auslesen

/Nn | Konto iberzogen

Zugriff
gewdhren

X.. [zugrift==true

Zugriff==false

Abb. 38: Best Practice, Assertions 1

mmamEEmEEEES e

Specification

‘,_.-'
Input B
“PIN=... ;

‘fKontostand=1000

isPINvalid=true -~

Assertions

assert(Zugriff==true)

Assertion
: Zugritt = true

Betrag Betrag
eingeben auszahlen

Benutzers

Um sicherzustellen, dass Geld nur ausgegeben wird, wenn der Zugriff gewihrt wurde (Sollverhalten),
wiirde man auf dem ersten Blick naiverweise die Zusicherung assert (Zugriff==true) auf
den gleichen Pfad setzen, in dem das Geld ausgezahlt wird (siehe ausgegraute Assertion in obiger
Abbildung). Logisch: Geld wird ausgezahlt, wenn 'Zugriff==true ' zugesichert wird.

Dass eine solche Zusicherung nicht sehr effektiv ist, sollte auf dem zweiten Blick ersichtlich sein: Der
Pfad auf dem unsere Zusicherung 'Zugriff==true’' liegt, wird genau dann ausgefiihrt, wenn die
Condition ohnehin dieselbe Bedingung, ndmlich 'Zugriff==true’', positiv auswertet. Eine
solche Zusicherung in so einem Kontext ist logisch korrekt und gilt immer, d.h. fiir jeden Testfall - hat
somit aber keinen effektiven Nutzen.

Fiir einen effektiven Test sollte die gegenteilige Zusicherung 'assert (Zugriff==false)'
gesetzt werden. Nachfolgende Abb. 39: Best Practice, Assertions 2 zeigt den Testfall, der das
besprochene Sollverhalten des Workflows verifiziert. Wir bereiten samtliche Input-Daten des
Workflows auf ein solches Szenario vor, in dem der Zugriff - semantisch gesehen! - verweigert
werden sollte. In unserem Beispiel wird eine falsche PIN-Nummer iibergeben. Sollte nun wider
Erwarten, aufgrund fehlerhafter Implementierung des Workflows, trotzdem der Pfad ausgefiihrt
werden, in dem der Zugriff gewdhrt wurde und das Geld ausgezahlt wird, wird die Zusicherung
'assert (Zugriff==false)' negativ ausgewertet und der Testfall schligt somit fehl.
Tatsdchlich sichert der Testfall in obiger Abb. 38: Best Practice, Assertions 1 ein anderes
Sollverhalten des Workflows zu. Der Testfall sichert den komplementéren Fall zu - ndmlich, dass der

Geldausgabe-Prozess ausgefiihrt wird, wenn der Zugriff gewihrt werden soll.

80

Specification
Kontostand A
auslesen) \‘\ Input /
Fein=...

isPINvalid=true -~
.Kontostand=-500

] Assertions

assert(2ugriff==Ffalse)

Zugriff
gewahren

4

Zugriff==true

Assertion
Zugritf — false

Betrag
eingeben

"

Betrag
auszahlen

/\‘

Zugriff=="false

Abb. 39: Best Practice, Assertions 2
Ein anderer Ansatz die Korrektheit des Workflows zu testen, wire eine Assertion zu stellen, die
zusichert, dass die PIN-Nummer giiltig ist, wenn Geld ausgezahlt wird. Nachfolgende Abbildung zeigt

eine Testspezifikation (7Testfall A), die ein solches Sollverhalten priift.

81

\I.
j
\ {
xS | Specification /
Kontostand . | Input /
auslesen . ri
“PIN=...
-Kontostand=1000
Testfall A: isPINvalid=false
Testfall B: isPINvalid=true
Assertions
Testfall A:
e A e -assert(isPINvalid==true)
gewahren . e
P Testfall B:
e assert(isPINvalid==false
OR
\ Kontostand<Q) ™.
.,\!
Z -ﬁ= = I..IIIIIIII-II-IIII-II-II-III:IIIIIIIIIIIII! L%
s] * Ass ertion H Batrag Betrag \
— gisPINvalid = frue eingeben auszahlen {
mw ‘/’

Zugrifte=false R R T O o eree e crnnrer e
L fisPINvalid = false
: OR

Kontostand<0

Abb. 40: Best Practice, Assertions 3

Die Assertion von Testfall A stellt sicher, dass die PIN-Nummer giiltig ist, wenn Geld ausgezahlt wird.
Wir testen dies, indem in der Testspezifikation die PIN-Priifung einen negativen Wert fiir 'isPINvalid’
zurlickgibt - sprich die PIN-Nummer ist ungiiltig. Wird der Zugriff von einem fehlerhaften Workflow
trotz ungiiltiger PIN-Nummer gewihrt, so schlidgt der Testfall wegen der Zusicherung
'isPINvalid == true' auf dem folgendem Pfad fehl. Ahnlich dazu lisst sich der Testfall B
auswerten, welcher zusichern soll, dass kein Geld ausgezahlt wird, wenn die PIN-Nummer giiltig ist
oder der Kontostand negativ ist. Betrachtet man die vorgestellten Testfille genauer, so fillt auf, dass
diese genau so spezifiziert wurden, dass Assertions auf Pfade liegen, die korrekterweise (d.h. die
Semantik betreffend) nicht ausgefiihrt werden sollten; und ferner, dass diese Assertions, sollte einer
dieser Pfade filschlicherweise doch ausgefiihrt werden, aufgrund der Testspezifikation und des

Ablaufs immer negativ ausgewertet werden.

82

Um die Modellierung von Testfillen zu vereinfachen, lassen sich in solchen und dhnlichen Szenarien
diese Assertions einfach durch Zusicherungen der Art 'assert (false) ' ersetzen. Die Bedeutung
der Zusicherung 'assert (false) ' ist jene, dass sie immer negativ ausgewertet wird und ein
Testfall somit automatisch fehlschligt, sobald ein Pfad mit einer solchen Assertion erreicht wird. Das

solche Assertion durchaus sinnvoll sind, stellt nachfolgender Testfall dar.

PINPrifung | T T e
g

Specification >
Kontostand : 74

auslesen
. | Input P

"PIN=... o
isPINvalid=true -
.Kontostand=-500

s Assertions

assert(false)

Zugriff
gewahren

\ Zugriff==true =
L Assertion Betrag Betrag
5 false eingeben suszahlen

Zugriff==false

Abb. 41: Best Practice, Assertions 4

Es ist bemerkenswert, dass dieser Testfall viel leichter nachzuvollziehen ist, als die vorherigen
Testfille, obwohl er das gleiche Sollverhalten des Workflows liberpriift. Der Testspezifikation nach
sollte der Workflow den Geldausgabeprozess nicht ausfiihren. Sollte dies aufgrund von Fehlern doch
passieren, so sorgt die Zusicherung 'assert (false)' im selben Pfad fiir einen negativen

Testausgang. Der andere Fall mit positivem Kontostand und giiltiger PIN-Nummer muss die

83

Zusicherung 'assert (false) ' auf den unteren Pfad mit der Condition 'Zugriff==false'

setzen. Die folgende Abbildung fasst das Besprochene nochmal allgemein zusammen.

Specification a) b)
Input
varl=...
var2=... (condl==false)
var3=... —
vard=... condl==true cond1==true
Assertions

Assertion Assertion
assert(condl==false) condl == false " false
Alternativ:
assert(false)

' - [‘] B

Abb. 42: Best Practice, Assertions 5

Wir sehen in dieser Abbildung nur einen Teilausschnitt eines Workflows, der die eingehenden
Variablen Varl, Var2, Var3, Var4 in einem beliebigen, uns nicht sichtbaren und nicht zu
interessierenden, Berechnungsvorgang schon vorher verarbeitet hat.

Das zu priifende Sollverhalten ist, dass Aktivitdt A nur dann ausgefiihrt wird, wenn 'condl==true'’
wahr ist. Wir modellieren dazu die komplementiren Testfille mit den nétigen Input-Daten, die die
Condition condl zu ’false’ auswerten sollen, um zu priifen, dass in keinen dieser Testfille die Aktivitdt
A ausgefiihrt wird. Wir gehen nun davon aus, dass condl zu ’false’ ausgewertet wird. Unabhéngig
davon, welche Verzweigung ausgefiihrt werden soll, miisste demnach die Assertion
'assert (condl==false) ' halten. Wir konnen die Assertion 'assert (condl==false) '
also an beiden Verzweigungen setzen, wie es unter Punkt a) in der Abbildung zu sehen ist. Die
Assertion in der Verzweigung mit der Condition 'condl==false' (also die Verzweigung die zur
Aktivitdt B fiihrt) kann auch weggelassen werden, da die Zusicherung mit der Condition der
Verzweigung iibereinstimmt und somit immer erfiillt wird. Sollte in einem dieser Testfélle die
Verzweigung der Aktivitit A ausgefiihrt werden, wird die Assertion negativ ausgewertet, der Testfall
schldgt fehl und wir wissen, dass sich ein Fehler im Workflow befindet.

Wir konnen von der Assertion in a), die, sofern sie gepriift wird, immer negativ ausgewertet wird,
abstrahieren, und ebenso gut mit 'assert (false) ' ersetzen. Dieser Testfall ist unter b) zu sehen
und ist vollig dquivalent zu dem Testfall unter a). Wie gehabt spezifizieren wir die Testfille so, dass
Aktivitdt A nicht ausgefiihrt wird und setzen dann eine 'assert (false) ' Assertion auf die
Verzweigung mit der Aktivitit A. Wir sichern in den Testfdllen im Prinzip zu, dass der Workflow
bestimmte Zweige nicht ausfiihrt - in unserem Fall darf die Verzweigung mit der Aktivitit A nicht

ausgefiihrt werden.

84

Eine weitere Abstraktion ldsst uns also feststellen, dass Assertions der Art 'assert (false) ' ein
Test-Konzept fiir Workflows realisieren, welches durch Priifung des durchlaufenden Pfades die
Korrektheit des Workflows testet. Die Zusicherung 'assert (false) ' stellt sicher, dass der Pfad,
auf dem die Assertion liegt, nicht ausgefiihrt wird. Wollten wir einen Workflow auf seine Korrektheit
priifen, indem fiir bestimmte Eingangsdaten des Workflows der erwiinschte Kontrollfluss (oder Pfad)
des Workflows mitspezifiziert wird, so kann dies durch Assertions der Art 'assert (false)'
erreicht werden, indem alle anderen Pfade, die nicht ausgefiihrt werden sollen, mit eben solchen
Assertions zugesichert werden. In unserem Standardbeispiel der Kreditpriifung lieBe sich

beispielsweise durch zwei Assertions die Ausfithrung des rot markierten Pfades zusichern.

specification

Input

Kreditbetrag=5000
Einkommen=1000 e

dendate
schufa=0K prrimets
schulden=true P e
Ausgaben=700 "~ . S
= e

Gueterstand=gut T 47

s
ot Syl Kreditbetrag > 10.000 Euro =
manuellGewaehrt=<null>

AR R L ANENERLY i iy

o

i "\ # Einkommen < 1500 Euro }—m]_‘
Erforderliche P

Aktivitdten Assertion
false
- Kundendaten ausTlesen =
- schufa Auskunft etc. bj%%%-f-éwﬂ iR
- unter besonderer Gt
Beobachtung stellen K
- Kredit gewahren y o/
- Antwort senden et
Sl o
Schufa OK manuell gewahrt /"(
AND -
Keine Schulden ———
Kredit
gewdhren .
""""""""""""""" Schuta OK e \
e B : AND
Modifiziertes Szenario i N =) hat Schuldeniast]
'~._\ AND P ¥l
S:Z"LBOK geringe Ausgaben - ,..M-Suov:t&;;.._ S
hat Schuldenlast \“*--.,_“_ ______________] %E.O;.;(l;:‘f?q

geringe Ausgaben
OR

guter Giterstand)

Abb. 43: Best Practice, Assertions 6

5.1.2. must visit-AKktivititen

Es ist oft einfacher und weniger Arbeit, den Pfad anzugeben, der ausgefiihrt werden soll, als alle
anderen Pfade durch Assertions auszuschlieBen. Es ist auch intuitiv und leichter iiberschaubar
Aktivititen anzugeben, die zu einem spezifischen Testfall ausgefiihrt werden miissen. In vielen Féllen
ist es moglich schon durch die Angabe von wenigen Aktivititen, die oft auch die Hauptfunktionen des

Ablaufs darstellen, das korrekte Verhalten fiir einen Testfall sicherzustellen. Wie wir in den

85

nachfolgenden Beispielen sehen werden, gibt es auch da einpaar Dinge, die man sich bewusst machen

und beachten sollte.

f'_ ™)
- =
- e
= -
. L
- ““\ o
*, /.
noll==1 2 e
= L 1] ; condl==true
o
{ '
= 3
¥ b - - -
¥ - - -
y
»
#

B p

("‘
7
z

Abb. 44: Best Practice, Assertions 7

Im Testfall a) wird nur die Aktivitdt C als must visit spezifiziert. Der Pfad der durchlaufen werden
kann, ist in diesem Fall nicht eindeutig. Will man einen eindeutigen Pfad festlegen, so muss wie in b)
oder c) bei einer Verzweigung fiir mindestens einen Zweig mindestens eine Aktivitit markiert sein.
Man konnte auch den Weg wihlen generell immer alle Aktivititen eines Pfades mitzuspezifizieren,
wie es in d) zu sehen ist. In den meisten Fillen ist der Pfad dann eindeutig bestimmt. Es gibt jedoch
Ausnahmen wie wir in e) sehen konnen. Der zu durchlaufende Zweig nach dem Gateway hat keine
markierbare Aktivitdt. Wir miissen zusitzlich durch eine Assertion den Pfad tiber Aktivitit B

ausschlief3en.

86

6. Zusammenfassung und Ausblick

Das Ziel dieser Arbeit war es, ein Framework zu entwickeln und zu implementieren, welches
geeignete Funktionalitiiten bietet, um die mit ODF entwickelten OTX-Ablédufe automatisiert zu testen.
Das vorgestellte Test Framework realisiert dazu ein Unit-Testing, das durch ein mit dem ODF
integrierten Testcase-Designer spezifiziert wird. Die Testcase-Modellierung geschieht quasi ,.direkt*
im Workflow selbst und ist dadurch intuitiv und leicht verstindlich. Alle Testdaten werden in einem
speziell fiir das Framework angepassten XML-Derivat gespeichert und werden somit in einem
zukunftstrichtigen Austauschformat aufgehoben. Durch einen Testsuite-Manager kdnnen Testsuites
und Testcases in einer hierarchischen Struktur organisiert werden und vom Test-Laufzeitsystem in
einem Testlauf automatisiert ausgefiihrt werden. Diese Testldufe konnen zur spiteren Abrufung von
Testergebnissen gespeichert werden und zur Qualitétssicherung der Software auch wiederholt
ausgefiihrt werden. Bei Konsistenzproblemen zwischen OTX-Daten und Test-Daten findet dabei eine
automatische Synchronisation statt.

Bei der Modellierung des Datenmodells wurde darauf Wert gelegt geeignete Datenstrukturen zu
verwenden, die grole Datenmengen effizient verarbeiten konnen, da es unter Umsténden eine sehr
groBe Anzahl an OTX-Abldaufen und daraus folgend eine noch grofere Anzahl an Testcases zu
verwalten gibt.

Allerdings werden noch alle projektweiten Testdaten gédnzlich in den Arbeitsspeicher geladen. Es ist in
Zukunft notwendig ein Lazy-Loading Konzept zu implementieren bzw. eventuell eine Xml-
Datenbank einzubinden, um den Speicherplatz im Arbeitsspeicher nicht zu iiberanspruchen.

Bis zum Zeitpunkt des Verfassens dieser Arbeit wurde das Event-Konzept von OTX durch ODF noch
nicht funktionalisiert. Erst nach der Vervollstindigung der Implementierung von Events kann auch das
Test Framework das Testen mit FEvents unterstiitzen. Wie dem auch sei, das Konzept zur
Unterstiitzung von Events wurde bereits besprochen und kann nachtriiglich implementiert werden.

Fiir die Dokumentation von ausgefiihrten Testliufen wire auBlerdem eine automatische Erzeugung
eines ausdruckbaren Test-Reports in Form von Html oder dhnliches sehr vorteilhaft. Ein Test-Report
konnte neben den Testergebnissen und diversen Statistiken den Anteil von getestetem Code anzeigen.
Dazu miisste ein Konzept fiir die Bestimmung der Code Coverage entwickelt und implementiert
werden.

Um die Testfallerstellung zu erleichtern und um eine gute Code Coverage zu erreichen, kann das Test
Framework um die Funktion einer automatischen Testcase Generation erweitert werden. So kénnen
automatisiert Testfdlle mit entsprechenden Testdaten erzeugt werden, die eine gute oder sogar
vollstindige Code Coverage bieten.

Zuletzt mochte ich noch den Bezug auf die Formale Verifikation von Software nehmen, der
sicherlich noch Stoff fiir interessante Arbeiten aufbietet. Durch einige grundlegende Techniken der

formalen Verifikation ist es moglich die Korrektheit von Programmen mathematisch zu beweisen.

87

Durch das Hoare-Kalkiil bzw. die Hoare-Regeln konnen fiir einzelne Anweisungen und kombiniert
auch fir Anweisungsblocke Zusicherungen getroffen werden, die eine bestimmte Funktion
verifizieren. Diese Regeln konnen fiir OTX-Sprachelemente angepasst werden und zu einem Hoare-
System zusammengefasst werden, sodass dadurch eine formale Verifizierung von OTX-Abldufen
moglich wird.

Solche Zusicherungen kdnnten durch Assertions dem OTX-Ablauf angereichert werden und wiirden so
die Funktion des Ablaufs priifen. Ein mit solchen Regeln gefiihrter Beweis liber die Korrektheit einer
Funktion eines OTX-Ablaufs wiirde die 100%ige Korrektheit eben dieser Funktion sicherstellen. Da
ein solcher Beweis wie besprochen jedoch in den meisten Fillen nicht trivial bis quasi undurchfiihrbar

ist, hat dieser an sich interessante Ansatz nicht viel praktischen Nutzen.

88

Literaturverzeichnis

[1]: DLIKSTRA, E.W.: The Humble Programmer. Commun. ACM 15: 859-866 (1972)
[2]: HOFFMANN, DIRK W.: Software-Qualitit. Springer Berlin, Heidelberg, 2008

[3]: LEYMANN, F.; ROLLER, D.; SCHMIDT, M.-T.: Web services and business process

management. IBM Systems Journal, Vol. 41, No.2, 2002

[4]: MAYER, P.: Design and Implementation of a Framework for Testing BPEL Comp-

ositions. Gottfried Wilhelm Leibniz Universitidt, Hannover, 2006

[5]: WIENER, L.R.: Digitales Verhdngnis, Gefahren der Abhingigkeit von Computern und
Programmen. Addison-Wesley, Miinchen, 1994

[6]: WFMC: Workflow: An Introduction. Workflow Management Coalition.

[7]: LI, Z.; SUN, W.; JIANG Z. B.; ZHANG X.: BPEL4WS Unit Testing: Framework and
Implementation. Proceedings of the IEEE International Conference on Web Services (

ICWS), 2005

[8]: SUPKE, J.: Diagnosesysteme im Automobil. Seminarunterlagen der Technischen

Akademie Esslingen, 2008.

[9]: LUBKE, D.; SINGER L.; SALNIKOW A.: Calculating BPEL Test Coverage through

Instrumentation. Leibniz Universitit, Hannover

[10]: DONG, W.: Test Case Generation Method for BPEL-based Testing. Chinese Academy
of Science, Beijing, 2009

[11]: ZAKARIA Z.; ATAN R.; AZIM A.; GHANI A.; SANI N. F.: Unit Testing Approaches for
BPEL: A Systematic Review. Asia-Pacific Software Engineering Conference, 2009

[12]: LNk J.: Unit-Tests mit Java. dpunkt.verlag GmbH, Heidelberg, 1.Auflage 2002

[13]: SPILLNER A.; LINZ T.: Basiswissen Softwaretest. dpunkt.verlag GmbH, Heidelberg,
2.Auflage 2004

[14]: ALONSO, G.; CASATI, F.; KUNO, H.; MACHIRAJU, V.: Web Services: Concepts,
Architectures and Applications. Springer Berlin, 2004

89

[15]: AALST, W. V. D.; HEE, K. V.: Workflow Management, Models, Methods, and
Systems. The MIT Press, Cambridge, Massachusetts London, England, 2002

[16]: GAMMA, E., HELM, R., JOHNSON, R., VLISSIDES, J., DESIGN PATTERNS: Elements of

Reusable Object-Oriented Software, Addison-Wesley Professional; 1995

[17]: LEYMANN, F.; ROLLER, D.: Production workflow: concepts and techniques. Upper

Saddle River, NJ, USA : Prentice Hall PTR, 2000.

Internetquellen

[18]: KANDEL, DUNJA: Lars Thomsen iiber die Zukunft von RFID im Alltag.
http://www.rfid-im-blick.de/200907131520/Sprechende-Joghurtbecher-und-intelligente-

Spiegel.html (28.07.2011)

[19]: PALMISANO, SAM J.: A Smart Transportation System: Improving Mobility for the 21"
Century.

http://www.ibm.com/smarterplanet/us/en/transportation_systems/article/

palmisano_itsa_speech.html (28.07.2011)

[20]: STUTTGARTER NACHRICHTEN: Kohler erdffnet Boschs Chipfabrik in Reutlingen.
http://www.stuttgarter-nachrichten.de/inhalt.koehler-eroeffnet-boschs-chipfabrik-in-

reutlingen.d6852d03-d64c-4157-80be-63b0fbdfd906.html (28.07.2011)

[21]: SUPKE, J.: OTX - Hintergrund & Motivation. http://www.emotive.de (28.07.2011)

[22]: SUPKE, J.: OTX — Basiskonzepte. http://www.emotive.de (28.07.2011)

90

Abbildungsverzeichnis

Abb.
Abb.
Abb.
Abb.
Abb.
Abb.
Abb.
Abb.
Abb.
Abb.
Abb.
Abb.
Abb.
Abb.
Abb.
Abb.
Abb.
Abb.
Abb.
Abb.
Abb.
Abb.
Abb.
Abb.
Abb.
Abb.
Abb.
Abb.
Abb.
Abb.
Abb.
Abb.
Abb.
Abb.
Abb.
Abb.
Abb.
Abb.
Abb.
Abb.
Abb.
Abb.
Abb.
Abb.

1: Workflow-Reference-Modell. Quelle: [6]: WEMCcooovmieeiiiiiiiiieeeeeee e 8
2: V-Diagramm nach BONMooiiiiiiiiiiiicce e 10
3: Programmcode & Flussdiagramm. Quelle: [2]: Hoffmann, S.204cccceeuveennee. 13
4: Workflow, BIack-BoX TesSt. .. .ottt e, 17
5: Testfall Specification BPEL-URItccccooiiiiiiiiiiiiiiieeiceeeeeeee e 19
6: State of the Art — Diagnoseablauf in ASAM-System [8]:.......ccovviiriiiiiiiiiiniiiienieene 20
7: Abstrakter Diagnoseablauf [8]:cccvuiiiiiiiiiiieiieeeeeee e 22
8: Aufbau eines OTX-DoKUMENLES [8]: ...evvvrrriiiiiiiiiiiiiiiiieeiieieieeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeees 23
9: Datentypen VON OTX [8]: .oeooiiieiiieeieeeeeee et 25
10: Aufbau VON OT X [8]:uuuueeueieiiiiiieiiiiieiteiiiiiesaerersasssaessaasaasrassssaaaaasaasaresa—a———————————. 27
11: AUTDAU AES OD S [8] e sssssnsssnsnnnnns 28
12: Ablauf der OTX RUNIME [8]:..uuuuurueieieiiriiiiiiiiiiiiiiiiiiriireseresssseasssseaeeaseseeeeaaeaa——————————— 30
13: Use Case-DIiagramimlccccueeeriieiiiieeiieeeiieeeiieeesieeeeieeesseeesseeessseesssseesssseesssseennns 32
14: Workflow ohne Eingabe- und Ausgabeparameterccocceevvuveeriiieenieennieennneennn 35
15: Workflow, abgekapselte FUNKLIONcc.cooiiiiiiiiiieiiieieeciee e 38
16: WOTKEIOW Mt ASSEITIONuuvvrrieeeeeeeeieiiirireeeeeeeeeeiiitrrreeeeeeeeeeeitrreeeeeeeeesesinrrsreeeseeeenans 40
17: Workflow, Priifung einer Teilfunktion...........cccccuveeiiieriiieniiiieiie e 40
18: Workflow mit must ViSit-AKEVITALEILvvveeeeeiieieiiiiieeiee e e e e eeecrrree e e e e e e 43
19: Steuerung des Kontrollflusses durch must visit-AKtivitaten...........cceevveeerveeernneenns 44
20: Testfall mit MerhdeUtiGKeIt.eeeriiiiiiiiiiieeiieeeee e 45
21: Grobe Darstellung des KONZEPLS........eevuiieeiiiieiiiieeeiieesiee et esiee e 50
22: Test Framework ArChiteCtUIC..........cooccvvviiiieiiieiciiiieeeee et e e e e e 53
23: Xml-Schema Definition, TESICASEueeeeeeeeeeeeeeee e e e eeeeereeeeeeeeeeeeeaeans 56
24: Xml-Schema Definition, ACHVILYcoviiiiriieiiiieeieeeiiee ettt 57
25: Xml-Schema Definition, ASSEITIONeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeereeeaaeeeeeeeereenennans 57
26: Xml-Schema Definition, IMOCKSueeiiiiiiiiiiiieeeee ettt e e v 58
27: Xml-Schema Definition, Parameters.ooovvvuuummeeeeeeeeeeeeeeeeeee e eeeeeeeeeeeeeeeeeeeeneens 58
28: Xml-Schema Definition, INteZerTyPe.......cccveiviieiiiiiiiiieniiieeieeeeeeeeee e 59
29: Xml-Schema Definition, Base-Elementeuuuuuueeeieeieeieeeiiieiieeeieeieeieieeeeeneeenanes 59
30: UML Klassendiagramm, Test.Data pt.1.......cccccoeviiiiiiiiiiiiiiniiiiiieeieeeeeee e, 61
31: UML Klassendiagramm, Test.Data Pt.2........ccccceevvieeriieeiiieeieeeiieeeiee e esvee e 62
32: UML Sequenzdiagramm, LoadTestData...........cccocueerviiiiiiiiniieeniieenieeeeieeeee e, 63
33: UML Klassendiagramm, Test.CONrol..........cccveeriieeriieeniieeieeeiieeeee e esee e 66
34: UML SequenzDiagramm, AddASSEITIONcc.eeervieeriieeriiieeieeeireeeieeeeieeeseveeeenees 67
35: UML-Sequenzdiagramm, RUNGIMEccocuiiiiiiiiiiiiiiiieiieeeieeeeeeeeeeeee e 69
36: UML-Klassendiagramm, Test.GUIL...........cccccooiiiriiiiiiiiieiieeeeceeee e 75
37: UML Sequenzdiagramm, OpenTestCasescovveerriiirrieerniieeniieeniieenieeeseee e 77
38: Best Practice, ASSEITIONS 1cooviiiiiiiiiiiiiiiiiiiiieeeeeeeeeeeeeeeeeeeeee ettt e eeeees 79
30: BeSt PractiCe, ASSEITIONS 2 ...uuueeeeeeeiiiieeieeeeeeeetitreeieeeeeeeesessseeesesesesssmmnnesesssssesssmnnnns 81
40: Best PractiCe, ASSEITIONS 3 . iiiiieeeieeeeeeeeeeteeee e e e eeeeteeeeeeeeeeeeeeaenaaaeeeeeeeennennaaaeeees 82
471: Best PractiCe, ASSEITIONS Q. ..ccovvuuueeeeieieeeiiieeeeeeeeeee ettt e e e e e eteeaareeeeseeeeesssaaesees 83
42 Best PractiCe, ASSEITIONS 5 . eeieeeeeieeeeeeeeeeeeeee e e e e e eeeeeeeeeeeeeeeeeeeeaeaeeeeeeeeeaennaaaeeeeas 84
43: Best PractiCe, ASSEITIONS O ...ccovvvvuueiieieiieiiiiieeeeeeeeee ettt e e e e eeeeeaaeeeeeseeeeesasaeeseeas 85
44 Best PractiCe, ASSEITIONS 7 ..oeeeeeeeeieeeeeeeeeeeeeee e e e e e e eeeeeeeeeeeeeeeeeeeaeaeeeeeeeeenenaaaeeeeas 86

91

Tabellenverzeichnis

Tabelle 1: Code Coverage BeiSpiel.......coccuviiiiieiiiieeiiieeiee ettt 15
Tabelle 2: Use-Case BeSChIeibung.........cooouueiiiiiiiiiiiiiieeeiiectceee e 34
Tabelle 3: Synchronisierung mit OTXcccciiiiiiiiiiiieeieeriee e e 65

Abkiirzungsverzeichnis

ABS Anti-Blockier-System

ESP Elektronisches Stabilitits-Programm
ODF Open Diagnostic Framework

WEMC Workflow Management Coalition
WEMS Workflow Management System

ISO International Standards Organisation
ASAM Association for Standardization

of Automation and Measuring Systems

BPEL Business Process Execution Language
ECU Electric Control Unit

MVCI Modular Vehicle Communication Interface
VCI Vehicle Communication Interface
API Application Programming Interface
0ODX Open Diagnostic Exchange

OSI Open Systems Interconnection

PDU Protocol Data Unit

XSD XML Schema Definition

XML eXtensible Markup Language

ODF Open Diagnostic Framework

Ul User Interface

HMI Human Machine Interface

BPMN Business Process Modeling Notation
MVC Model-View-Control

PIN Personal Identification Number

92

Erklarung

Hiermit versichere ich, diese Arbeit selbststindig verfasst und nur die angegebenen Quellen
benutzt zu haben.

Unterschrift:

< Ort, Datum >

