
Institut für Rechnergestützte Ingenieursysteme 

 

 

 

 

Universität Stuttgart 

Universitätsstraße 38 

D - 70569 Stuttgart 
 

 

 

 

 

 

 

Diplomarbeit Nr. 3145 

 

 
Konzeption und Implementierung eines OTX 

 Test Frameworks für das emotive ODF 
 

 

Hai-Lang Thai 

 

 

 

 

 

 

 

 

 

 

 

 

Studiengang:  Informatik 

 

 

Prüfer:   Prof. Dr. Dieter Roller 

Betreuer:  Dr. Jörg Supke 

begonnen am:  01.02.2011 

beendet am:  03.08.2011 

 

 

CR-Klassifikation: J.6 



 1 

Danksagung 
 
Ich danke unserem Gott und meinem Herrn und Retter Jesus Christus. Weiterer Dank geht an Herrn 

Prof. Dr. Dieter Roller, der diese Arbeit überhaupt erst möglich gemacht hat. Auch meinen beiden 

Betreuern Herr Dr. Jörg Supke und Herr Truong-An Nguyen möchte ich für ihre Unterstützung 

besonderen Dank aussprechen. Nicht zuletzt möchte ich meiner Familie und allen meinen 

Geschwistern für alle Ermutigung und Bestärkung danken. 



 2 

Inhaltsverzeichnis 

 
1. Einleitung .............................................................................................................................. 3 
 
2. Grundlagen ........................................................................................................................... 6 
2.1. Workflows................................................................................................................... 6 
2.2. Grundlegendes über das Testen in der Softwaretechnik ............................................. 9 
2.3. Das Black-Box Verfahren ......................................................................................... 11 
2.4. Das White-Box Verfahren......................................................................................... 13 
2.5. Testen von Workflows .............................................................................................. 16 
2.6. OTX - Open Test sequence eXchange (ISO 13209) ................................................. 19 
 2.6.1. Hintergrund – Exkurs : Fahrzeugdiagnose................................................................ 19 
 2.6.2. Motivation ................................................................................................................. 22 
 2.6.3. OTX Core - Basisbibliothek...................................................................................... 23 
 2.6.4. Datentypen ................................................................................................................ 25 
 2.6.5. Basiskonzepte............................................................................................................ 25 
 2.6.6. Erweitungs-Bibliotheken........................................................................................... 26 
2.7. Open Diagnostic Framework .................................................................................... 28 
 
3. Modellierung....................................................................................................................... 31 
3.1. Anforderungen .......................................................................................................... 31 
3.2. Use Cases .................................................................................................................. 31 
3.3. Analyse und Konzeption eines geeigneten Testing Ansatzes für OTX Workflows . 34 
 3.3.1. Simulierung des Inbound Datenstroms - Mock Objekte........................................... 36 
 3.3.2. Assertions innerhalb eines Workflows...................................................................... 39 
 3.3.3. Prüfung des Kontrollflusses durch 'must visit'-Aktivitäten....................................... 42 
 3.3.4. Weitere Konzepte/Komponenten .............................................................................. 46 
 
4. Implementierung ................................................................................................................ 53 
4.1. Grobarchitektur ......................................................................................................... 53 
4.2. Test.Data ................................................................................................................... 55 
 4.2.1. Serializer & Xml-API................................................................................................ 55 
 4.2.2. Files Manager / Caching ........................................................................................... 62 
 4.2.3. Synchronization......................................................................................................... 64 
4.3. Test.Control............................................................................................................... 66 
 4.3.1. ODFConnector .......................................................................................................... 66 
 4.3.2. Test-Laufzeitumgebung (Runtime) ........................................................................... 68 
 4.3.3. Code-Generierung ..................................................................................................... 72 
4.4. Test.GUI.................................................................................................................... 75 
 4.4.1. Workflow/Testcase-Designer.................................................................................... 76 
 4.4.2. Testsuite Manager ..................................................................................................... 77 
 4.4.3. Testrun - Darstellung der Test-Ergebnisse................................................................ 78 
 
5. Evaluierung......................................................................................................................... 79 
5.1. Erstellung von Testfällen - Best Practices................................................................. 79 
 5.1.1. Assertions .................................................................................................................. 79 
 5.1.2. must visit-Aktivitäten ................................................................................................ 85 
 
6. Zusammenfassung und Ausblick ...................................................................................... 87 



 3 

1. Einleitung 

Wir schreiben das Jahr 2016. Der Ausbau an der neuen Mikrochip-Fabrik in Reutlingen, die weltweit 

eines der modernsten ist, wird fertig gestellt sein. Es ist ein Tag wie jeder andere, an dem das genannte 

Bosch-Werk in 24 Stunden bis zu einer Millionen Mikrochips herstellt und seinen bescheidenen Teil 

dazu beiträgt1, die Weltbevölkerung mit einem Bestand von weltweit insgesamt einer Milliarden 

Transistoren pro Kopf zu beglücken.2 

Diese ungeheuer anmutende Zahl an Transistoren pro Kopf kann sich unserem Vorstellungsvermögen 

nur entziehen und bleibt unserem Bewusstsein als eine nichts sagende Zahl verschlossen – und doch 

hinterlässt sie bei uns das mulmige und etwas ungewisse Gefühl nicht zu verstehen, was es für 

Konsequenzen mit sich trägt bzw. was das wirklich für uns bedeutet. 

Nur eines steht fest: Unsere Welt verändert sich zusehends in rasant steigenden Größenordnungen, die 

wir nicht überblicken, geschweige denn  kontrollieren können. 

Es ist eine Ironie des Schicksals, dass der Mensch die Informatik gebraucht, um die Komplexität zu 

bewältigen, die auch, oder sogar vor Allem gerade durch eben jene kultiviert und multipliziert wurde. 

Herr EDSGER WYBE DIJKSTRA sagt dazu: 

"As long as there were no machines, programming was no problem at all; when we had a few 
weak computers, programming became a mild problem, and now we have gigantic 

computers, programming had become an equally gigantic problem. In this sense the 
electronic industry has not solved a single problem, it has only created them." 

 (Dijkstra, 1972) 

Wie dem auch sei, die Computertechnologie hält erfolgreich Vormarsch in alle Bereiche unseres 

täglichen Lebens. Jeder Durchschnittsbürger in den westlichen Ländern darf sich über 

schätzungsweise 80 Mikrochips erfreuen3, die ihm in seinem Umfeld in allen alltäglichen und nicht-

alltäglichen Belangen begleiten, und sogar mit Rat und Tat zur Hilfe stehen. Der Nutzen und die 

Unterstützung, die der Mensch von diesen „intelligenten“ Halbleiterschaltungen erhält, sind immens 

und nicht von der Hand zu weisen. Es war das Jahr 1958 als der Erfinder und Entwickler JACK KILBY 

diese Technologie erstmals der Öffentlichkeit vorstellte und es sollte ein halbes Jahrhundert dauern, 

bis sämtliche Systeme, in denen der Mensch lebt und agiert, von ihr durchdrungen werden.  Heute ist 

ein Leben ohne den Computer kaum mehr vorstellbar. Doch trotz oder gerade wegen aller Euphorie ist 

Vorsicht geboten, denn: 

 

                                                 
1 Dies ist kein fiktives Szenario. Bosch-Werk soll bis spätestens 2016 bis zu 100 Millionen Chips am Tag 
produzieren können. ( Siehe [20]: Stuttgarter Nachrichten ) 
2 Vgl. Originaltext: “Today, there are nearly a billion transistors per human” ( Siehe [18]: Palmisano ) 
3 Vgl. [18]: Kandel  



 4 

"Kein Produkt menschlicher Intelligenz kommt fehlerfrei zur Welt. Wir formulieren Sätze um, 
trennen Nähte wieder auf, setzen Pflanzen um, planen Häuser neu und reparieren Brücken. 

Warum sollte es uns mit Software anders gehen?" 

 ( Wiener, 1994 ) 

Jeder Softwareentwickler wird, je länger er sich mit dem Entwerfen und Implementieren von Software 

beschäftigt, sicher nicht die Erfahrung machen, dass er mit der Zeit fähig wird, Systeme mit weniger  

oder keinen Fehlern zu entwickeln, sondern muss und wird nur mehr und mehr zu der Erkenntnis der 

Tatsache des eben Zitierten gelangen. 

Ist diese Einsicht erstmal vollzogen, muss die rationale Konsequenz und Forderung, nämlich Software 

sorgfältig und gründlich zu testen, unbedingt beachtet und durchgeführt werden. Mit anderen Worten: 

Da Fehler in Software ein ungeschriebenes Gesetz sind, ist das Testen von Software absolut 

unabdingbar. Leider stellt sich heraus, dass selbst das Testen von Software nicht völlig fehlerfrei  bzw. 

vollständig durchgeführt werden kann und somit in der Praxis nie ein völlig fehlerfreies Produkt 

entsteht. Die Testphase der Entwicklung eines Produktes kann bis zu 50% der Zeit beanspruchen und 

muss oft selbst nach der Auslieferung in der Wartung von Software weitergeführt werden. Unter 

Software-Testern sagt man sich sinngemäß: 

„The last bug was found, when the last user of the software stopped using it.“ 

Die vorliegende Arbeit will sich mit dem beschriebenen Thema des Software Testens speziell im 

Bereich der Fahrzeugdiagnose beschäftigen. Denn auch gerade in der Automobilindustrie werden in 

jüngster Zeit  Mikrochips en masse verbaut. So hat ein gut ausgestatteter Mittelklassewagen bis zu 80 

Steuergeräte die zahlreiche Elektronikkomponenten des Fahrzeuges vernetzt und verwaltet. Und es 

scheint erst der Anfang zu sein – Für die nächsten Jahre ist in den Märkten für Fahrzeugdiagnose ein 

Wachstum von bis zu 50% zu erwarten. 

Wieder muss darauf aufmerksam gemacht werden, dass dieser hohe Grad an Komplexität von 

Software getestet werden muss! Ich will dazu kurz eine Anekdote bringen, die mir letzte Woche 

während einer Autofahrt widerfahren ist. Ich fuhr mit einem Bekannten gerade auf der Autobahn als 

plötzlich der Wagen uns bei 130 km/h durch Warntöne offenbar etwas mitteilen wollte. Mein 

Bekannter (Fahrer und Besitzer des Fahrzeugs) ignorierte diese Warnhinweise zunächst, schaltete nach 

einigen Momenten dann doch das Parkpilot-System des Fahrzeugs aus und bemerkte mit einem kurzen 

Lächeln: „Das Parkpilot-System nervt manchmal, wenn es anfängt zu regnen“. Offenbar hatte es 

angefangen zu regnen, und statt den Scheibenwischer an zu stellen, hielt der Wagen es für 

notwendiger uns über die Gefahr eines Zusammenstoßes mit den unzähligen Regentropfen zu 

informieren. Wir waren nur froh, dass das Parkpilot-System noch nicht so ausgereift ist, dass es bei 

bevorstehendem Crash eine Vollbremsung unternimmt. 

Was sich in unserem glücklichen Fall als harmlos und amüsant erweist, kann bei kritischen 

Elektronikkomponenten wie ABS oder ESP Katastrophen bewirken. Umso wichtiger ist es, das Testen  



 5 

und die Fehlersuche vor allem im Bereich der Fahrzeugdiagnose so optimal und prozesssicher wie 

möglich zu gestalten. 

 

Das Ziel dieser Arbeit ist es, ein geeignetes Test Framework für das ODF (Open Diagnostic 

Framework) zu entwickeln. ODF ist eine Entwicklungsumgebung, mit der sich Diagnoseabläufe für 

Fahrzeuge spezifizieren, realisieren, validieren, dokumentieren, debuggen, testen und ausführen 

lassen. Das Test Framework soll  Funktionen bereitstellen, die ein automatisiertes und wiederholbares 

Testen von den mit ODF erstellten Diagnoseabläufen ermöglicht.  

In Kapitel 2 werden einige Grundlagen über das Testen allgemein und die Kern-Technologien die das 

ODF verwendet besprochen. 

Auf Basis dieser Grundlagen wird in Kapitel 3 ein Testing-Ansatz konzipiert und analysiert sowie 

eine Konzeption für Test Framework entwickelt. 

Kapitel 4 dokumentiert den Überblick über den Aufbau und die technischen Details der 

Implementierung des Frameworks. 

Anschließend führt Kapitel 5 kurz in die Verwendung des Frameworks bzw. die Durchführung von 

Tests ein. 

Zum Schluss werden in Kapitel 6 noch einpaar Verbesserungen vorgeschlagen, sowie Grenzen und 

Möglichkeiten aufgezeigt.  



 6 

2. Grundlagen 

2.1. Workflows 

"The automation of a business process, in whole or part, during which documents, 
information or tasks are passed from one participant to another for action, according to a set 

of procedural rules." 

(WFMC Introduction) 

Die einleitenden Worte, "automation of a business process", des Zitats (oben) aus der Workflow-

Einführung von WFMC sprechen für sich - bei Workflow-Management geht es im Wesentlichen um 

eine Automatisierung von Geschäftsprozessen. 

Wir wollen uns zunächst näher mit dem Begriff Geschäftsprozess auseinandersetzen. Grundsätzlich 

stellt ein Geschäftsprozess den Prozess dar, der für die Entwicklung bzw. Fertigstellung eines 

bestimmten Produkts durchlaufen wird. Hierbei muss es sich nicht nur um materielle Güter handeln, 

sondern das Produkt kann auch eine Dienstleistung sein. In dieser Hinsicht gibt es Geschäftsprozesse 

schon seit Menschengedenken - sei es ob die ersten Menschen sich aus Feigenblättern Schürzen 

flochten, oder sich die heutigen Menschen in humanitären Organisationen betätigen. Der einzige 

Unterschied besteht darin, dass der Mensch und seine Ideen bzw. Prozesse viel komplexer und 

komplizierter geworden sind.  

Wie aus dem eingangs erwähnten Zitat auch hervorgeht, kann während eines Geschäftsprozesses ein 

Austausch oder eine Weiterleitung von Dokumenten, Daten oder Aufgaben zwischen vielen 

Beteiligten in einem komplexen System stattfinden. Während es beispielsweise vor 2000 Jahren noch 

sehr einfach, leicht verständlich und überschaubar war, sind Geschäftsprozesse von Unternehmen in 

der heutigen Zeit hochkompliziert und, wie der Mensch nunmal fehlt und irrt, noch dazu sehr 

fehleranfällig. Im Laufe der Zeit stellt sich immer mehr heraus, dass der Preis und die Qualität eines 

Produktes nicht nur von den zur Entwicklung benötigten Ressourcen abhängen, sondern hauptsächlich 

auch von der Effizienz und Effektivität seines Geschäftsprozesses. Im Falle einer Dienstleistung gilt 

die Gleichung 'Produkt = Geschäftsprozess' sowieso. Wegen der zunehmenden Komplexheit und 

Fehlerhaftigkeit, aber auch überaus großen Wichtigkeit von Geschäftsprozessen, können/sollten 

diese geplant, durchgeführt, wiederholt bzw. wiederverwendet und im Laufe der Zeit optimiert 

werden. Das Workflow-Management deckt alle der eben genannten Aspekte ab und ermöglicht aber 

vor allem auch die zu Anfang erwähnte Automatisierung von Geschäftsprozessen. 

Hierzu werden der gesamte Ablauf und die Struktur eines Geschäftsprozesses auf ein spezielles 

Prozessmodell abgebildet, welches von einem entsprechenden Workflow-Management-System 

verwaltet und ausgeführt werden kann.  

Obwohl Prozessmodelle von Workflows in den meisten Fällen in XML spezifiziert werden, eignen 

sich Workflows sehr gut dazu als ein Graph dargestellt zu werden. Die graphische Modellierung von 



 7 

Workflows ist sehr intuitiv und auch für Nicht-IT-Spezialisten leicht erlernbar. Workflows spielen 

demnach eine gewichtige Rolle darin, die sogenannte IT-Bussiness Gap zu schließen. 

Um dies zu erreichen, müssen alle relevanten Aspekte eines Geschäftsprozesses im Prozessmodell klar 

spezifiziert sein. Die nötigen Arbeitsschritte eines Geschäftsprozesses werden in der Workflow-

Terminologie Aktivitäten genannt. Aktivitäten stellen also ausführbare Einheiten dar, die von 

menschlichen oder maschinellen Ressourcen durchgeführt werden. Neben den Aktivitäten definiert ein 

Prozessmodell auch deren zeitlichen Ablauf, sowie den nötigen Datenaustausch zwischen ihnen, und 

nicht zuletzt die benötigten Ressourcen. Die graphische Repräsentation eines Workflows würde 

Aktivitäten als Knoten darstellen und den zeitlichen Ablauf der Aktivitäten auf Kanten, bzw. 

sogenannte Kontroll-Flows abbilden. Nach [2]: Leymann lässt sich ein Geschäftsprozess bzw. ein 

Workflow im Wesentlichen durch  3 Dimensionen (What?, Who?, With?) beschreiben.  

• What? (Prozesslogik): Die What?-Dimension fragt nach der zeitlichen Abfolge der einzelnen 

Aktivitäten und den in diesem Zusammenhang benötigten Daten. Mit anderen Worten 

definieren hier der Kontrollfluss und der Datenfluss die sogenannte Prozesslogik des 

Workflow-Modells.  

• Who? (Organisation): Die Who?-Dimension legt fest, wer oder was die Durchführung einer 

Aktivität übernimmt. Dies kann abhängig von der Organisations-Struktur eine bestimmte 

einzelne Person sein, aber auch Gruppen und Rollen.  

• With? (IT Infrastruktur): Die With?-Dimension bestimmt die für die zu erledigende 

Aktivität zugrunde liegende IT-Infrastruktur - also mit welchen Mitteln (Programme, Tools,...) 

wird eine Aktivität durchgeführt.  

Ist ein Workflow-Modell hinsichtlich dieser Dimensionen genügend spezifiziert, so kann von diesem 

in einem Workflow-Management-System eine Instanz erzeugt werden, die letztendlich ausgeführt 

werden kann. Da Workflows oft in sehr großen und komplexen Szenarien eingesetzt werden, in denen 

Geschäftsprozesse über verschiedene IT-Systeme oder sogar über Unternehmensgrenzen hinweg 

ablaufen, muss ein Workflow-Management-System hochgradig interoperabel sein. Deshalb werden die 

Schnittstellen solcher Systeme in der Praxis häufig durch Web Services oder vergleichbare 

Technologien definiert, die eine möglichst lose Kopplung bereitstellen. Zudem hat die Workflow 

Management Coalition (WfMC) ein Workflow-Referenz-Modell spezifiziert, um auf dieser Basis 

Workflow-Management-Systeme zu entwickeln, die unter Anderem auch untereinander interoperabel 

sind. In der nächsten Abbildung ist der grobe Aufbau des Referenz-Modells zu sehen. 

 



 8 

Die Funktionen der einzelnen Komponenten werden hier aufgelistet: 

• Der Workflow Enactment Service stellt eine oder mehrere Workflow Engines zur 

Verfügung. Dies ist die Laufzeitumgebung der ausführbaren Workflows - das Herzstück eines 

jeden Workflow-Management-Systems. Hier wird die Instanz eines Workflows ins Leben 

gerufen; hier werden alle An- und Abfragen verarbeitet; und hier wird die Koordination aller 

Partizipanten bewerkstelligt.  

• Die Process Definition ist die Spezifikation eines Prozess-Modells. Es gibt hierzu viele 

verschiedene Tools, die die Entwicklung von Workflow-Modellen erleichtern. Workflow-

Modelle werden in einer speziellen Workflow-Beschreibungssprache (häufig in einem XML-

Derivat) spezifiziert. 

• Über eine Workflow Client Application können sich menschliche Partizipanten ihre 

sogenannte worklist abrufen, die zu bearbeitende Aktivitäten (work-items) anzeigt. Der 

Workflow Enactment Service muss dafür sorgen, dass Aktivitäten als entsprechende work-items 

in der worklist der richtigen Partizipanten angezeigt werden, sobald diese von einer Workflow-

Instanz aufgerufen werden.  

• Die Schnittstelle zu Invoked Application dient dazu Programme aufzurufen, die bestimmte 

Aktivitäten von Geschäftsprozessen implementieren und ausführen (maschinelle Ressource als 

Who?-Dimension). Es ist aber auch möglich sich vom Workflow durch diese Schnittstelle ein 

Programm zur Bearbeitung einer Aktivität aufrufen zu lassen (menschliche Ressource als 

Who?-Dimension mit maschineller Ressource als With?-Dimension). 

Abb. 1: Workflow-Reference-Modell. Quelle: [6]: WfMC 



 9 

• Das Interface 5 stellt dem System Administration & Monitoring Tools zur Verfügung mit 

Hilfe derer laufende und abgeschlossene Workflow-Instanzen mit all ihren Logging-, Statistik-

, und Audit-Trail -Daten verwaltet, beobachtet und analysiert werden können.   

• Wegen der unbedingten Forderung nach Interopabilität müssen Workflow-Management-

Systeme wohldefinierte Schnittstellen für und zu anderen Workflow Engines bereitstellen. 

(Interface 4) 

2.2. Grundlegendes über das Testen in der Softwaretechnik          

Bevor wir uns speziell mit dem Testen von Workflow-Sprachen beschäftigen wollen, lohnt es sich 

einen Blick auf grundlegende Konzepte für das Testen allgemein in der Softwaretechnik zu werfen. 

Ich beginne mit einleitenden Worten über einige Grundbegriffe für das Testen von Software. 

Das Testen von Software dient zur Qualitätssicherung des entwickelten Produkts. Das heißt, dass 

sichergestellt werden soll, dass ein Produkt die an ihn gestellten Anforderungen erfüllt. Der 

Begriff Softwarequalität lässt sich nach der ISO-Norm 9126 auf folgende Dimensionen aufspannen: 

Funktionalität, Zuverlässigkeit, Benutzbarkeit, Effizienz, Änderbarkeit und Übertragbarkeit. Dies ist 

schon auf dem ersten Blick als ein sehr breites Feld erkennbar und wir wollen uns hier auf die 

Funktionalität und speziell auf dessen Teilmerkmal, nämlich die Richtigkeit von Software, be-

schränken. Mit anderen Worten soll der Fokus für das Testen von Software in dieser Arbeit vorder-

gründig darauf gerichtet sein, zu prüfen, ob die Software das richtige bzw. das von ihm geforderte, 

spezifizierte Verhalten zeigt. Mängel bzw. ein Fehler in der Software sind demnach Abweichungen 

von einem erwarteten, spezifizierten Verhalten der Software. Ein Fehler liegt vor, wenn eine 

Diskrepanz zwischen einem Ist-Verhalten, welches beim Testen festgestellt wird, und seinem vorher 

festgelegten Soll-Verhalten vorliegt. Wir wollen zwischen dem Fehler (engl. fault) und die daraus 

testbare bzw. feststellbare resultierende Fehlerwirkung (engl. failure) unterscheiden. Verschiedene 

Fehler können zu ein und derselben Fehlerwirkung führen. D.h. auch, dass ein Test eine 

Fehlerwirkung feststellen kann, während der Fehler selbst nicht bekannt ist. Hier lässt sich dann auch 

die Grenze zum Debugging-Prozeß ziehen, der Fehler lokalisieren und beheben soll, während beim 

Testen Fehler bzw. deren Fehlerwirkung "nur" festgestellt oder aufgedeckt werden sollen. 

Des Weiteren ist es möglich, dass Fehler andere Defekte im Programm kompensieren - wir sprechen 

dann von einer Fehlermaskierung. Die Fehlerwirkung bleibt aus und der Fehler wird erst offenbar, 

wenn Fehler, die die Maskierung verursachen, behoben wurden. 

Es ist daher einzusehen, dass selbst ein umfassender Test nicht immer alle Fehler bzw. deren 

Fehlerwirkungen auffinden kann. Tatsächlich ist es in der Praxis nicht einmal möglich 

einen vollständigen Test durchzuführen, der alle Möglichkeiten und Eventualitäten mit einschließt. 

Dies würde einen Testdurchlauf mit allen möglichen Kombinationen aller möglichen Eingaben 



 10 

bedeuten, der eine kaum einzugrenzende (in Bezug auf die Anzahl an Eingaben exponentiell 

wachsende) Anzahl an Testfällen nach sich ziehen würde. Nüchtern betrachtend muss man sagen, dass 

durch ein Software-Test keine völlige Fehlerfreiheit gewährleistet werden kann. 

Wir wollen den eben genannten Begriff eines Testfalles klarer definieren. Ein Testfall ist eine konkrete 

Ausprägung der Ausführung der zu testenden Software mit festgelegten Eingaben und 

Randbedingungen. Ferner wird durch einen Testfall eben diese Ausprägung (Ist-Verhalten) gegen das 

gewünschte, spezifische Verhalten (Soll-Verhalten) der Software geprüft. Die festgelegten Eingaben 

und Randbedingungen sowie das gewünschte Verhalten bzw. Ergebnis werden in der so 

genannten Spezifikation des Testfalls festgelegt. 

Testfälle werden des Öfteren in Test-Suiten strukturiert bzw. gruppiert, die eine Funktion oder 

bestimmte Arten von Funktionen testen. Schließlich sorgt die Ausführung von mehreren Test-Suiten in 

einem Testlauf für die Automatisierung des Testens. 

Ein Test Framework muss außerdem je nach Bedürfnis dafür Sorge tragen, dass Testfälle ( oder Test-

Suiten oder spätestens bei Testläufen) ohne Einfluss aufeinander ablaufen können, sodass deren 

Ergebnisse reproduzierbar sind und generell die Wiederholbarkeit von Tests gegeben ist. Das Testen 

von Software lässt sich im Laufe des Softwareentwicklungsprozess auf mehreren Ebenen durchführen. 

Die nachstehende Abbildung stellt dies in dem allgemein bekannten V-Modell dar. 

 

 

 
Abb. 2: V-Diagramm nach Böhm 



 11 

Der Modultest oder auch Unit-Test wird meistens vom Entwickler durchgeführt um ein 

implementiertes Softwaremodul isoliert zu testen. Isoliert heißt, dass sämtliche Kommunikation mit 

dem Restsystem durch festgelegte statische Werte simuliert wird und das Testen auf diese Weise 

unabhängig und frei von Fehlereinflüssen anderer Module stattfinden kann. 

Gefundene Fehlerwirkungen lassen so eine klare Zuordnung des Fehlers in das zu testende Modul zu. 

Ein solches Testen von kleinen Software-Einheiten (Units) ist viel überschaubarer und eine große 

Anzahl an Fehlern ist viel schneller zu finden und leichter zu beheben als etwa in einem systemweiten 

Test. Auf der anderen Seite werden im Modultest Fehler, die bei der Interaktion und aufgrund von 

Wechselwirkung zwischen vielen Komponenten entstehen, nicht berücksichtigt. 

Diese Mängel werden in einem Integrationstest behoben. Hierbei wird davon ausgegangen, dass die 

einzelnen Softwaremodule für sich schon mehr oder weniger korrekt funktionieren. Teile der Software 

werden nun zu einem größeren Teilsystem aufgebaut und zusammen integriert getestet.  

Ein Systemtest testet das integrierte Softwaresystem als Ganzes in einer möglichst produktionsnahen 

Umgebung. D.h., dass wenn möglich auf  Testtreiber oder sonstige Platzhalter verzichtet wird, und 

möglichst dieselben Infrastrukturen (Sowohl Hardware- als auch Software -Komponenten) wie beim 

Kunden genutzt werden. Es wird evaluiert, ob die spezifizierten Anforderungen an das Produkt erfüllt 

wurden. 

Der Abnahmetest ist mit einem Systemtest zu vergleichen, wird aber in einer Abnahmeumgebung 

beim Kunden oder komplett vom Kunden selbst durchgeführt. Dabei wird das abzunehmende 

Gesamtsystem daraufhin überprüft, ob aus Kundensicht die vertraglich festgelegten Anforderungen 

bzw. Abnahmekriterien erfüllt werden.   

 

Im Folgenden wollen wir uns mit einigen bekannten Verfahren und Ansätzen beschäftigen, die sich 

vordergründig für Unit-Tests eignen. Die verschiedenen Ansätze lassen sich grob in zwei Kategorien, 

nämlich das Black-Box Verfahren und das White-Box Verfahren, einteilen. 

2.3. Das Black-Box Verfahren 

Bei dem Black-Box Verfahren werden ausschließlich nur die eingehenden und ausgehenden Daten der 

zu testenden Unit für einen Test mit einbezogen. Input/Output Daten werden mit den bezüglich des 

Soll-Verhaltens zu erwarteten Werten verglichen. Die Kenntnis der internen Logik der Software wird 

dabei nicht gebraucht und muss nicht einmal verfügbar sein (z.B. nur Binary ohne Quellcode). Was 

allein interessiert sind die Eingabe-Daten und die darauf berechneten Ausgabe-Daten, die mit den 

spezifizierten Werten verglichen werden. 

Da ein vollständiger Test mit allen möglichen Eingaben praktisch nicht umsetzbar ist, müssen 

Verfahren verwendet werden, die die Anzahl der Testfälle stark eingrenzen. Eben zu diesem Zweck 

werden im Folgenden die Äquivalenzklassenbildung und die Grenzwertanalyse vorgestellt. 



 12 

Äquivalenzklassenbildung 

Ziel und Zweck der Äquivalenzklassenbildung ist die Verminderung der exponentiell explodierenden 

Anzahl an Testfällen bei einem vollständigen Test. 

Das Verfahren der Äquivalenzklassenbildung teilt Eingabebereiche in Äquivalenzklassen auf. Dabei 

wird die Einteilung so vollführt, dass Eingabewerte, die in dieselbe Äquivalenzklasse fallen, ein 

gleiches Verhalten bzw. die gleiche Verarbeitung in dem zu testenden Programmstück auslösen sollen. 

Getestet wird dann nur je ein Repräsentant bzw. nur einige wenige Repräsentanten einer 

Äquivalenzklasse - und es kann mit einer tendenziell großen Wahrscheinlichkeit daraus geschlossen 

werden, dass alle oder die meisten anderen Elemente der jeweiligen Äquivalenzklasse ebenso 

dieses Testverhalten aufweisen. Die Testfälle beschränken sich von allen möglichen Kombinationen 

von Eingabewerten auf alle möglichen Kombinationen von Äquivalenzklassen, was in den meisten 

Fällen eine Verminderungen um unzählbar viele Größenordnungen bedeutet und so überhaupt erst 

einen quasi-vollständigen Test durchführbar macht. 

Die Partitionierung oder Aufteilung in Äquivalenzklassen lässt sich aus der funktionalen Anforderung 

an die Software bzw. dessen Spezifikation herleiten. Dabei ist zu beachten, dass neben Eingabedaten, 

die der Spezifikation nach in einem gültigen Definitionsbereich liegen, auch unzulässige Eingabewerte 

berücksichtigt werden sollten. Es werden also ebenso Äquivalenzklassen mit ungültigen Werten 

gebildet, um das Verhalten mit unzulässigen Eingabedaten zu testen. 

Es bleibt anzumerken, dass eine Äquivalenzklassenbildung aus der Spezifikation der Software keine 

100%-ige Zusicherung dafür geben kann, dass alle Äquivalenzklassenelemente im Test mit der 

tatsächlichen Implementierung letztendlich das erwartete Verhalten zeigen. Der Entwurf und die 

Spezifikation der Software haben ein um mehrere Ebenen höheres Abstraktionsniveau als die 

Implementierung der Software, was zu einer in der Implementierung unter Umständen komplett 

verschiedene Verarbeitung von Eingabewerten führt, obwohl diese der Spezifikation nach in derselben 

Äquivalenzklasse liegen. Um dies zu vermeiden, müsste die Entwicklung der Äquivalenzklassen auf 

Grundlage der internen Ablauflogik des Programms erfolgen, was aber dann als ein White-Box 

Verfahren angesehen werden müsste.  

 

Grenzwertanalyse 

Die Grenzwertanalyse ist eine sinnvolle Verbesserung des eben vorgestellten Ansatzes der 

Äquivalenzklassenbildung. Wie der Name schon verlauten lässt, geht es hierbei darum, Grenzwerte 

bzw. Grenzbereiche der Äquivalenzklassen näher zu untersuchen. Die Praxis zeigt, dass vor allem 

Grenzwerte der Äquivalenzklassen durch fehlerhafte Implementierung nicht korrekt bzw. nicht wie 

erwünscht verarbeitet werden, weil sie dann in eine benachbarte Äquivalenzklasse fallen. Man stelle 

sich ein ganz simples Beispiel vor, in der eine Fallunterscheidung in der Implementierung statt mit 

'kleiner gleich' nur mit 'kleiner' geprüft wurde. Das zusätzliche Testen von Testfällen mit Grenzwerten 



 13 

der Äquivalenzklassen birgt einen gut realisierbaren Mehraufwand, der einen großen Teil von Fehlern 

aufdeckt.  

2.4. Das White-Box Verfahren 

Allgemein bezeichnet der Begriff White-Box ein Testverfahren, welches die Software unter 

Zuhilfenahme der inneren Logik und Struktur testet. Der bekannteste Ansatz ist, durch ein Verfahren 

festzustellen bzw. sicherzustellen, dass die Testabdeckung möglichst hoch ist, also möglichst viel 

Programmcode getestet wurde. Im Idealfall soll eine 100%ige sogenannte Code-Coverage erreicht 

werden.  

 

Code coverage 

Verschiedene Kriterien und Metriken werden hierbei definiert, um zu bestimmen in wie fern ein 

Programm hinsichtlich seines Quellcodes vollständig getestet wurde. Es gibt in der Literatur dazu vier 

verschiedenen Kriterien, die am folgenden Beispiel erklärt und nachvollzogen werden können. 

 

 

 
Abb. 3: Programmcode & Flussdiagramm. Quelle: [2]: Hoffmann, S.204 



 14 

statement 
coverage 

Kriterium: Jede Anweisung wird mindestens einmal ausgeführt. 
 
Minimale Anzahl Testfälle für vollständige C0-Überdeckung: 2 
Testfälle:  manhattan2(-1, -1) => {0, 1, 2, 3, 4, 6} 
                  manhattan2(-1,  0) => {0, 1, 2, 3, 5, 6} 

branch 
coverage 

Kriterium: Jeder Zweig wird mindestens einmal ausgeführt. 
 
Minimale Anzahl Testfälle für vollständige C1-Überdeckung: 2 
Testfälle:  manhattan2(-1, -1) => {0, 1, 2, 3, 4, 6} 
                  manhattan2( 0,  0) => {0, 1, 3, 5, 6} 

condition 
coverage  

Erweiterung der ersten Bedingung bei Knoten 1 auf ( (a<0) && (a<b) ) 
 
Einfache Bedingungsüberdeckung 
Kriterium: Jedes  atomare Wahrheitsprädikat einer Bedingung muss mindestens 
einmal 'true' und einmal 'false' getestet werden.  
 
Minimale Anzahl Testfälle für vollständige C2-Überdeckung: 2 

Testfälle a < 0  b < 0  a < b (a<0) && 
(a<b) 

  

manhattan2(  0,  1)  false  false  true false       => {0, 1, 3, 5, 
6}                 

manhattan2( -1, -2) true true   false false => {0, 1, 3, 4, 6} 

 
 
Minimale Mehrfachbedingungsüberdeckung 
Kriterium: Jedes atomare oder zusammengesetzte Wahrheitsprädikat einer 
Bedingung muss mindestens einmal 'true'  und einmal 'false' getestet werden. 
 
Minimale Anzahl Testfälle für vollständige C2-Überdeckung: 2 
   

Testfälle a < 0  b < 0  a < b (a<0) && 
(a<b) 

  

manhattan2(  0, -1)  false  true  false  false      => {0, 1, 3, 4, 
6}                 

manhattan2( -1,  0) true false   true true => {0, 1, 2, 3, 5, 
6} 

 

 

 

 

 



 15 

Mehrfachbedingungsüberdeckung 
Kriterium: Jede Kombination mit 'true' bzw. 'false' aller atomaren 
Wahrheitsvariablen einer Bedingung. 
 
Minimale Anzahl Testfälle für vollständige C2-Überdeckung: nicht möglich 

Testfälle a < 0  b < 0  a < b (a<0) && 
(a<b) 

  

manhattan2(  1,  0)  false  false  false false => {0, 1, 3, 5, 6} 

manhattan2(  0,  1) false false  true false => {0, 1, 3, 5, 6} 

manhattan2(  0, -1) false  true  false  false  => {0, 1, 3, 4, 6} 

manhattan2(  ?,  ?)   false true true   false => {0, 1, 3, 4, 6} 

manhattan2(  ?,  ?)  true  false  false  false => {0, 1, 3, 5, 6} 

manhattan2( -1,  0)  true false true   true => {0, 1, 2, 3, 5, 6} 

 manhattan2( -1, -2) true  true  false   false => {0, 1, 3, 4, 6} 

manhattan2( -2, -1) true  true  true   true => {0, 1, 2, 3, 4, 6} 
 

Path 
coverage 

Kriterium: Jeder Pfad wird mindestens einmal ausgeführt. 
 
Minimale Anzahl Testfälle für vollständige C0-Überdeckung: 4 
Testfälle:  manhattan2( 0,  0) => {0, 1, 3, 5, 6} 
                  manhattan2( 0, -1) => {0, 1, 3, 4, 6} 
                  manhattan2(-1,  0) => {0, 1, 2, 3, 5, 6} 
                  manhattan2(-1, -1) => {0, 1, 2, 3, 4, 6}  

 

 

Testcase Generation 

Im Hinblick auf Code Coverage können automatisiert Testfälle generiert werden, die im optimalem 

Fall eine 100%ige Code Coverage bieten. Dabei wird der Programmcode in einem ersten Schritt 

meistens in ein spezifisches Kontrollflussgraphen-ähnliches Modell transformiert. Anschließend kann 

durch einen geeigneten Graphendurchlauf die nötigen Bedingungen an den Verzweigungen gesammelt 

werden. 

Für Path Coverage etwa könnte man den Programmcode auf eine Baumstruktur abbilden und darauf 

eine komplette Tiefensuche durchführen, die die Bedingungen sammelt; jedes Mal wenn ein Blatt 

erreicht wird, werden die aktuellen Bedingungen von Blatt bis zur Wurzel festgehalten.  

Zuletzt werden die Bedingungen in einem Constraint-System zusammengefasst und dadurch die 

passenden Werte bzw. Wertebereiche für die Eingabe-Daten der einzelnen Testfälle berechnet. 

 

 

Tabelle 1: Code Coverage Beispiel 



 16 

2.5. Testen von Workflows 

Obgleich Workflows in dem Bereich des imperativen Programmierparadigmas einzuordnen sind, 

unterscheiden sie sich doch stark von klassischen imperativen Programmiersprachen. Wie im 

vorherigen Abschnitt dargestellt wurde, werden Workflows zumeist genutzt um wiederkehrende 

Abläufe/Prozesse zu organisieren und vor allem zu automatisieren. Es geht hier insbesondere nicht 

hauptsächlich darum mathematische Berechnungen durchzuführen und Ergebnisse zurückzuliefern, 

sondern - wenn überhaupt - Ergebnisse solcher Berechnungen zu sammeln, um diese, nach einem 

definierten Ablauf, zur Weiterverarbeitung an einen geeigneten Verarbeiter weiterzuleiten. 

Die Semantik von Workflows spiegelt sich demnach im Allgemeinen also nicht in den Ergebnissen, 

die ein Workflow zurückliefert, wider, sondern in dessen Ablauf und den durchgeführten Aktivitäten. 

Möchte man die Korrektheit eines Workflows in Hinsicht auf eine geforderte Semantik verifizieren, 

reicht es folglich nicht aus, den Workflow in einem reinen Black-Box Verfahren auf seine Eingabe- 

und Ausgabe-Daten hin zu testen.  

Tatsächlich ist es so, dass Ausgabeparameter eines Workflows oftmals nur eine Bestätigungsnachricht 

beinhalten oder gar gänzlich fehlen - und somit nicht selten gar keine Relevanz oder nicht genügend 

Indizien für eine Korrektheitsaussage über den Workflow haben. Dies ist insbesondere der Fall, wenn 

ein Ablauf ausgeführt wird, ohne dass Ergebnisse oder Teilergebnisse den Aufrufer interessieren und 

erwartet werden. Um dies zu veranschaulichen wollen wir ein simples Beispiel betrachten. 

 

Selbst wenn auf dem ersten Blick aussagekräftige Ausgabeparameter definiert sind und das Black-Box 

Verfahren die Korrektheit des Workflows verifiziert, ist es möglich, dass die interne Logik anders 

arbeitet als es erwartet wird. Betrachten wir nachfolgenden abstrakten Workflow mit einem Testfall, 

dessen Eingabeparameter die Bedingungen Condition 2 und Condition 7 zu ’true’ auswertet; der 

Ausgabeparameter nimmt demnach den Wert 'success' an. Der dann nach der Spezifikation imaginär 

ablaufende Pfad ist grün gekennzeichnet. Nun nehmen wir an, dass Condition 1 und Condition 2 

falsch implementiert wurden und der tatsächliche Pfad so verläuft, wie die roten Pfeile es 

kennzeichnen. Der Testfall würde im Black-Box Verfahren als korrekt verifiziert. Der interne Ablauf 

ist allerdings fehlerhaft. Die Aktivität Task 3 sollte ausgeführt werden; tatsächlich wurde aber 

stattdessen Task 2 ausgeführt. 

 



 17 

Wir können also leicht einsehen, dass es in vielen Fällen schwierig bis gar nicht möglich ist, durch ein 

paarweises Vergleichen der zu erwartenden Werten mit den Eingabe- und Ausgabe-Größen eines 

ausgeführten Workflows, die Korrektheit eines Workflows zu überprüfen.Man kann Eingabe- und 

Ausgabeparameter verifizieren und doch ist unter Umständen noch keine Aussage darüber getroffen, 

ob der Workflow tut, was er soll. Da es klar ist, dass ein reiner Black-Box Ansatz für das Testen von 

Workflows ungenügend ist, werde ich im Folgenden die aus der Literatur bekannten und aktuellen 

Ansätze eines White-Box Testings für Workflows vorstellen. 

 

Code coverage & Test case generation 

Im Hinblick auf Code coverage können automatisiert Testcases generiert werden, die im optimalen 

Fall eine auf eine spezifische Metrik bezogene 100%ige Code Coverage bieten. Hierbei wird die 

Workflow-Beschreibungssprache in einem ersten Schritt in ein simples graphenbasiertes Meta-Modell 

transformiert, um anschließend auf dem resultierenden Graphen durch eine Tiefensuche oder andere 

Path Search Algorithmen alle Pfade abzulaufen. Alle Bedingungen, die bei den Verzweigungen in 

einem Pfad auftreten, werden zu einem Constraint-System zusammengefasst und zu einem Testcase 

ausgewertet. Dabei kann es durchaus vorkommen, dass nicht alle Eingabe-Werte voll definiert werden 

können, da die entsprechende Variable oder nur ein Teil ihres Wertebereiches einen Einfluss auf den 

Verlauf des Pfades hat. Diese nicht relevanten, variablen Daten können manuell festgelegt werden 

oder automatisiert durch Zufallswerte generiert werden. Es ist vernünftig die erwarteten Ausgabewerte 

manuell zu spezifizieren, um die Korrektheit der Semantik des Workflows nicht auf Grundlage des 

eventuell fehlerhaft modellierten Workflows nachzuprüfen. Nichtsdestotrotz ist es auch möglich die 

Ausgabeparameter automatisch berechnen zu lassen und somit einen Testcase vollautomatisiert 

 
Abb. 4: Workflow,  Black-Box Test 



 18 

generieren zu lassen. Selbstverständlich müssen bei solchen Testcases dessen generierte 

Ausgabeparameter der Semantik des Workflows entsprechend überprüft bzw. korrigiert werden. 

 

Diese Art von White-Box Test - nämlich Testfälle auf Grundlage des Programmcodes zu erstellen - 

wird auch für das Testen von Programmen konventioneller Programmiersprachen eingesetzt; indem 

die generierten Testfälle im Anschluss an das White-Box Verfahren als Eingabe- und Ausgabe-Werte 

für einen nachfolgenden Black-Box Ansatz fungieren. 

Wie wir schon festgestellt haben, eignet sich der Black-Box Ansatz für das Testen von Workflows in 

vielen Fällen jedoch nur unzureichend. Dies ändert sich auch dann nicht, wenn Eingabe- und Ausgabe- 

Parameter durch ein White-Box Verfahren generiert wurden. Die besprochene Testfall-Generierung 

stellt "nur" die Zusicherung, dass im optimalen Fall alle möglichen Pfade abgedeckt sind - sagt aber 

über die Korrektheit des Workflows erst dann etwas aus, wenn die Spezifikation der Ein- und 

Ausgabeparameter die gewünschte Semantik widerspiegeln. Eine vollautomatische Generierung dieser 

Daten kann niemals Fehler des zugrunde liegenden Programms aufdecken. Zumindest die Ausgabe-

Daten eines Testes müssen manuell der Semantik entsprechend spezifiziert werden, um einen 

aussagekräftigen Test durchzuführen. 

Es ist sicher ein großer Gewinn durch dieses Verfahren Eingabe-Daten zu erhalten, die eine gute 

Code-Coverage bereitstellen; allerdings erst dann effektiv, wenn die generierten Eingaben mit einem 

geeigneten Mittel kombiniert werden, welches die Korrektheit des inneren Ablaufs sicherstellt. 

 

Kommunikations-Protokoll 

In "BPEL4WS Unit Testing: Framework and Implementation"4 stellen LI ET AL. einen interessanten 

White-Box Ansatz vor, der sich hauptsächlich auf die Interaktion zwischen dem PUT (Process under 

Test), d.h. dem zu prüfenden Workflow, und seiner Partner/externen Services bezieht. Dass dieser 

Ansatz wahrscheinlich effektiv ist, lässt sich aus der logischen Konsequenz schließen, dass 

Workflows, wie schon beschrieben, oftmals Abläufe modellieren, die viele externe Services aufrufen 

bzw. mit ihnen interagiert. 

In diesem Ansatz werden neben den Eingabe- und Ausgabe-Daten für einen Testfall zusätzlich noch 

eine Art Kommunikations- oder Aufrufprotokoll spezifiziert, welches bestimmt in welcher 

Reihenfolge Aufrufe an externe Partner stattfinden. Stimmen die Aufrufe bei der Ausführung des 

Workflows nicht mit dem Protokoll überein, ist der modellierte Workflow offensichtlich fehlerhaft. 

MAYER hat diesen Ansatz in BPEL-Unit5 implementiert. Nachfolgend sehen wir die Struktur einer 

Spezifikation für einen Testfall. 

                                                 
4 [7]: Li et. al., 2005 
5 Test Framework für BPEL (Siehe [4]: Mayer, 2006 ) 



 19 

2.6. OTX - Open Test sequence eXchange (ISO 13209) 

OTX  (Open Test sequence eXchange) wurde als ein XML-basiertes, Plattform und Tester unabhän-

giges Austauschformat modelliert. Dieser in der ISO 13209 spezifizierter Standard wurde mit dem 

Ziel entwickelt, im Bereich der Fahrzeugdiagnose Testsequenzen mit einem hohen Abstraktionsniveau 

graphisch modellieren zu können, zu spezifizieren und auch auszuführen. 

Da Testsequenzen für die Fahrzeugdiagnose im Grunde nichts anderes sind als Geschäftsprozesse oder 

allgemeine Prozesse, kann man sagen, dass OTX im Wesentlichen eine domänen-spezifische 

Workflow-Beschreibungssprache ist. 

2.6.1. Hintergrund – Exkurs : Fahrzeugdiagnose 

Um zu sehen welche Rolle OTX in der Fahrzeugdiagnose spielt, wollen wir an dieser Stelle einen 

kurzen Exkurs in die Fahrzeugdiagnose antreten, um uns zur Standortsbestimmung sowie 

Daseinsberechtigung von OTX eine grobe Übersicht zu verschaffen. 

Zu diesem Zweck zeigt die folgende Abbildung einen typischen Testablauf in einem modernen und 

etablierten Applikations- und Diagnosesystem (ASAM). 

 

 
Abb. 5: Testfall Specification BPEL-Unit 



 20 

Was auf den ersten Blick  etwas kompliziert aussehen mag, lässt sich schnell simplifizieren, indem 

diese Darstellung in 5 Komponenten aufgeteilt wird: 

• ECU’s (Eletronic Control Unit) stellen die Steuergeräte im Fahrzeug dar, mit Hilfe derer man 

die Elektronik im Fahrzeug ansteuern kann. Zusätzlich ist es möglich auf die im Fahrzeug 

gespeicherten Daten zuzugreifen bzw. sie zu modifizieren.  

• Über  externe Hardware-Testgeräte, den so genannten VCI’s, wird mittels verschiedenen 

Bussystemen und Protokollen die Verbindung und Kommunikation zu diesen Steuergeräten 

hergestellt. 

• Das MVCI Runtime System ist eine Abstraction-Layer über verschiedenen VCI’s. Außerdem 

stellt das MVCI die typischen und standardisierten Funktionsaufrufe für das Versenden, 

Empfangen und Umrechnen in einer API  zur Verfügung (MCD3-Schnittstelle) und ermöglicht 

so einen generischen Zugriff auf die Hardware(MCD1-Schnittstelle).  

• Durch das standardisierte Diagnose-Datenaustauschformat ODX (Open Diagnostics data 

eXchange) werden die für die Diagnose relevanten fahrzeug- und steuergeräte-spezifischen 

Daten in eine Datenbank ausgelagert. Man erreicht durch diese Auslagerung eine Entkopplung 

der Diagnoseanwendung und den spezifischen Steuergerätevarianten in verschiedenen 

Fahrzeugmodellen verschiedenster Fahrzeugherstellern. Die ODX-Datenbank ist durch die 

MCD2-Schnittstelle mit dem MVCI-System verbunden. 

• Ganz oben sitzt die Diagnoseanwendung, die sehr individuelle und hochspezialisierte 

Diagnoseabläufe implementiert. 

 
Abb. 6: State of the Art – Diagnoseablauf in ASAM-System [8]:  



 21 

Der Vorteil eines solchen Diagnoselaufzeitsystems liegt auf der Hand und sollte schon durch die eben 

aufgeführte Aufteilung hindurchgeschienen sein. 

Auf Grundlage der Standards ODX und D-PDU API sorgt ein MVCI-System für die komplette interne 

Kommunikationslogik zwischen der Diagnose-Testanwendung bis hin zum Steuergerät. Komplexe 

Zusammenhänge von Diagnose.Kommunikationsprotokollen werden verborgen. Die Testanwendung 

muss sich nicht um Diagnose- und Transportprotokolle kümmern, d.h. der Transport-Layer und 

selbstverständlich auch die darunterliegenden Schichten des OSI-Schichtenmodells werden für den 

Tester komplett transparent und theoretisch irrelevant. In der vorangegangenen Abbildung sind die 

einzelnen Schritte eines Diagnose-Funktionsaufrufs dargestellt, die von einer Tester-Applikation 

ausgeführt werden müssten, wenn kein MVCI Runtime System vorhanden ist. Diese werden hier kurz 

noch mal erläutert. 

1. Die Diagnoseanwendung stellt über die D-Server API eine Anfrage an das MVCI-System die 

Kühlwassertemperatur auszulesen. 

2. Das System startet eine Abfrage an die Diagnosedatenbank (ODX), um die, an das Steuergerät 

zu sendende, Busbotschaft (auch PDU genannt) zu ermitteln. Ist die entsprechende, für die 

betreffende Steuergeräte-Variante spezifische PDU für das Auslesen der Temperatur 

gefunden, wird diese an das VCI weitergegeben. Anschließend sendet das VCI die PDU 

gepackt in einem spezifischen Diagnose-Request durch das Bussystem an das Steuergerät. 

3. Das VCI erhält die Diagnose-Response und entpackt aus dieser wiederum eine PDU. 

Üblicherweise werden die Rückgabewerte in einem je nach Steuergerät spezifischen 

Hexdezimalwert codiert und können durch Informationen aus der ODX-Datenbank 

umgerechnet werden.   

4. Das MVCI-System antwortet der Diagnoseanwendung mit der Botschaft: 

“Kühlwassertemperatur = 64° C“ 

Es gibt also im Wesentlichen drei Aufgabenbereiche, die ein MVCI-System in der Regel abdeckt.  

1. Kommunikation mit Steuergerät durch Bussystem (MCD1-Schnittstelle). 

2. Automatische Abfrage von ODX-Daten für Fahrzeugbaureihen zur Ermittlung der spezifischen 

Busbotschaften, sowie ggf. der Umrechnungsfunktionen (MCD2-Schnittstelle). 

3. Laufzeitsystem, welches die einzelnen Komponenten koppelt und schließlich allen 

Mehraufwand trägt um Diagnoseabfragen zu realisieren. Dazu gehören, wie erwähnt, bspw. 

die zum Versenden, Empfangen und Umrechnen benötigten Algorithmen, die in einer API  zur 

Verfügung gestellt wird (MCD3-Schnittstelle). 

 

 

 



 22 

2.6.2. Motivation 

OTX nun setzt da an, wo für gewöhnlich sich spezielle Diagnoseanwendungen befinden, die die D-

Server API eines MVCI-Systems nutzen. OTX spezifiziert unter Anderem Diagnoseaufrufe an 

Steuergeräte, welche durch ein darunter liegendes MVCI-System realisiert werden können. Während 

ODX Daten beschreibt, die benötigt werden, um einen bestimmten Funktionsaufruf an ein bestimmtes 

Steuergerät durchzuführen, beschreibt OTX einen ganzen Diagnoseablauf samt den „verschiedenen 

Interaktionen zwischen einem Anwender (Entwicklungs-, Produktions- oder Werkstattpersonal), dem 

Diagnosetester, den Steuergeräten und ggf. der externen Messtechnik“6.  Abb. 7: Abstrakter 

Diagnoseablauf verdeutlicht dies. 

 

Vorteile durch OTX: 

• Spezifikation, Implementierung und Ausführung von Diagnoseabläufen.  

• Simple und graphische Modellierung von prozesssicheren Diagnoseabläufen. 

• Entwicklung von OTX-Abläufen von Fachmann für Fahrzeugdiagnose ohne tiefe Kenntnisse in 

der Softwareentwicklung. 

• Automatische Generierung von Tester-Applikationen aus einem spezifizierten OTX-Ablauf . 

Code-Erzeugung nicht mehr manuell durch einen Entwickler. 

• Agile Anpassungen an Diagnoseabläufen ohne viel zusätzlichem Entwicklungsaufwand 

möglich. 

                                                 
6 [11]: SUPKE, J.: OTX - Hintergrund & Motivation. http://www.emotive.de (28.07.2011)[21]:  

 
Abb. 7: Abstrakter Diagnoseablauf [8]:  



 23 

• Wissen über verifizierte, praxiserprobte und effektive Diagnoseabläufe können prozesssicher 

abgelegt werden und wieder verwendet werden. 

• Verknüpfung von sämtlichen Diagnoseschritten mit Diagnosedaten, sowie 

Fehlerbeschreibungen und Ersatzteildatenbanken von Fahrzeugherstellern. 

• Vollständige Funktionstests durch Benutzung verschiedener Diagnosedienste. 

• Benutzung in allen Bereichen, sowohl der Entwicklung, der Produktion als auch des Services.   

2.6.3. OTX Core - Basisbibliothek 

Das Datenmodell von OTX wird im Wesentlichen durch die OTX Core Basisbibiothek beschrieben. In 

Form einer XML Schema-Definition (XSD) spezifiziert der OTX Core die Struktur von OTX-

Dokumenten, sowie die für die allgemeine Ablauflogik zur Verfügung stehenden Elemente.  

Die meisten der Hauptelemente sind die im klassischen Programmierparadigma wohlbekannten und 

bewährten Kontrollstrukturen, Deklarationen, Fehler- und Ereignisbehandlung, etc… und 

unterscheiden sich nicht maßgeblich von anderen Workflow-Beschreibungssprachen oder allgemein 

von anderen Programmiersprachen. Diese werden hier daher nur erwähnt und wenn nötig kurz 

beschrieben, um einen groben Eindruck über die Mächtigkeit – d.h. Möglichkeiten, aber auch 

Grenzen! - von OTX zu vermitteln.  

 

Die Hauptelemente sind in Abb. 8: Aufbau eines OTX-Dokumentes zu sehen. Grob gesagt, besteht 

ein OTX-Dokument aus einer oder mehreren Prozeduren, die jedes einen Ablauf beschreiben. Der 

 
Abb. 8: Aufbau eines OTX-Dokumentes [8]:  



 24 

Ablauf wird durch einen Flow repräsentiert, der aus einem oder mehreren Knoten besteht, die je eine 

atomare Aktivität oder zusammengesetzte Aktivitäten darstellen. Im Folgenden werden einige 

Erläuterungen gegeben, die erwähnenswert sind. 

Ein OTX-Dokument  besteht unter Anderem aus: 

• Deklarationen: Konstanten, globale Variablen, Kontext-Variablen,… 

• beliebig vielen Prozeduren, die intern oder von extern aufgerufen werden können. 

• Validities und Signaturen: siehe Kapitel 2.6.5 Basiskonzepte 

Spezifizierte Prozeduren eines OTX-Dokumentes bestehen unter Anderem aus: 

• Parametern: Übergabe- und Rückgabe- Parameter. Es wird zwischen drei Parameter-Typen 

unterschieden: 

o InParameter: Diese sind Übergabe-Parameter und werden wie Konstanten behandelt 

- können also nicht modifiziert werden. 

o OutParameter: Diese sind nur Rückgabe-Parameter. Es wird der Prozedur kein Wert 

übergeben. 

o InOutParameter: Es werden hier Referenzen übergeben, d.h. Werte-Zuweisungen 

werden direkt auf den Variablen des Aufrufers vollzogen. 

• Deklarationen: Konstanten, lokale Variablen. 

• einem Flow, der den Ablauf von Aktivitäten beschreibt. 

• einem Throws, welches unbehandelte Fehlerausnahmen (Exceptions) weitergibt. 

Der Flow einer Prozedur ist eine Sequenz von OTX-Knoten. Diese können Instanzen von entweder 

Atomic-Nodes oder Compound-Nodes sein. Atomic-Nodes sind einzelne Aktionen, während 

Compound-Nodes wiederum einen Flow beinhalten und somit beliebig tief verschachtelt Sequenzen 

von OTX-Knoten beherbergen können. 

Atomic-Nodes: 

• Action Node: Elemente die bestimmte Aufgaben/Aktionen durchführen. z.B.:  Assignment, 

ProcedureCall, ExecuteDiagService, MessageDialog 

• Return, Continue, Break haben die übliche allgemein bekannte Semantik. 

• Throw: Eine explizite Ausnahme wird ausgelöst und die Fehlerbehandlung (Handler) wird 

ausgeführt. 

Compound-Nodes: 

• Group: Sequenzen von OTX-Knoten werden zur Übersicht und logischen Strukturierung zu 

einer Group zusammengefasst. 

• Loop: Es gibt ForLoop, ForeachLoop, WhileLoop und DoWhileLoop, deren Semantik 

selbsterklärend sein sollte. 



 25 

• Parallel: Macht es möglich Sequenzen parallel auszuführen. 

• Branch: Repräsentiert die bekannte If-Then-Else Kontrollstruktur. 

• Handler: Stellt einen Try-Catch Block für die Fehlerbehandlung dar. 

2.6.4. Datentypen 

OTX verfolgt ein streng typisiertes Programmierparadigma. Variablen, Konstanten und Parameter 

müssen zur Compile-Zeit statisch als bestimmte Datentypen deklariert sein. Der OTX-Standard 

spezifiziert dazu eine Reihe von Basis-Datentypen. Weitere benutzerdefinierte Datentypen können als 

komplexe Datentypen durch Erweiterungsbibliotheken zur Verfügung gestellt werden.  Die Basis-

Datentypen sind in Abb. 9: Datentypen von OTX zu sehen. 

 

2.6.5. Basiskonzepte 

Es gibt in OTX einige Basiskonzepte, die OTX von herkömmlichen Workflow-Beschreibungssprachen 

unterscheidet und aufgrund von langjährigen Erfahrungen in der Fahrzeugdiagnose als domänen-

spezifische Aspekte in OTX eingeführt wurden. 
 

Specification / Realisation - Konzept: 

OTX beschreibt die Entwicklung von Diagnoseabläufen als einen drei-stufigen Prozess. In der 

Spezifikations-Phase wird ein Ablauf grob modelliert, ohne dass implementierungs-technische Details 

festgelegt werden. Funktion und Inhalte können allein aus Namen oder aus einer Prosa-Beschreibung 

abgeleitet werden. In der Realisierungs-Phase beginnt man die Implementierung des Ablaufs. In 

dieser Zwischenstufe gibt es Elemente mit Realisierung (Implementierung) und auch solche, die ohne 

Realisierung nur spezifiziert sind. 

 
Abb. 9: Datentypen von OTX [8]:  



 26 

Nach Beendigung der Realisierungs-Phase ist der Diagnoseablauf vollständig realisiert und kann – 

anders als in den vorangehenden Phasen,  ohne Simulation - ausgeführt werden.  
 

Kontext - Konzept: 

Das Ziel von OTX ist unter Anderem möglichst generische Abläufe modellieren zu können, die 

„intelligent“ genug sind, um auf verschiedene Fahrzeug–Modelle, Fahrzeug-Typen oder sonstige 

Varianten reagieren zu können. Durch das Kontext-Konzept können dazu spezielle sogenannte 

Kontext-Variablen deklariert werden, die vom Laufzeitsystem erkannt werden, und mit den nötigen 

Informationen von der darüberliegenden Diagnoseanwendung gemappt werden. Diese Daten sind 

typischerweise Fahrzeugdaten, Benutzerdaten oder Umgebungsdaten, wie Fahrzeugmodell, Verkäufer, 

Identifikationsnummer, Motorisierung, Sonderausstattungsdaten, Benutzername, Benutzerrechte, 

Betriebssystemversion, verwendetes VCI, etc…7 

 

Validity – Konzept: 

Das Validity-Konzept vervollständigt das Kontext-Konzept insofern, dass Teile des OTX-Ablaufs 

ausgeblendet werden können. Dazu kann bestimmten OTX-Elementen ein Validity-Term zugeordnet 

werden, der als ein Boolean-Ausdruck entscheidet, ob dieses Element ausgeführt wird oder nicht. 

Vernünftigerweise setzt sich dieser Ausdruck unter Anderem auch vor Allem aus Kontext-Variablen 

zusammen.   
 

Signature – Konzept: 

Durch das Signature-Konzept lässt sich in einem OTX-Ablauf für einen Prozeduraufruf eine 

Signature spezifizieren. Diese Signature  ist wie eine Procedure ohne Implementierung – 

d.h. es werden nur In- und Out- Parameter spezifiziert. Zur Laufzeit muss es eine oder mehrere 

Procedures geben, die diese Signature implementieren. Das Laufzeitsystem entscheidet dann, 

anhand eines ValidFor-Terms, welche Procedure aufgerufen wird.   

2.6.6. Erweitungs-Bibliotheken 

Neben dem zentralen Kern, dem OTX-Core, gibt es einige im Standard spezifizierte Erweiterungs-

Bibliotheken die den OTX-Core durch spezifische Funktionen erweitern. 

 

                                                 
7 [22]:  SUPKE, J.: OTX – Basiskonzepte. http://www.emotive.de (28.07.2011)  



 27 

In Abb. 10: Aufbau von OTX werden diese Bibliotheken dargestellt, die im Folgenden nur kurz 

beschrieben werden sollen. 

• Environment: Diese Bibliothek ist für die Kommunikation mit der Umgebung, dem 

Betriebssystem oder anderen Anwendungen verantwortlich. 

• Event: Diese Bibliothek spezifiziert alles rund um die Ereignisbehandlung von sowohl 

internen (z.B. TimerEvent) als auch externen Ereignissen (z.B. Mausklick). 

• l18n: Auch die Internalization genannt, sorgt diese Bibliothek für die Übersetzung von allerlei 

Zeichen und Werten zur Anpassung an regionale Bedürfnisse. 

• StringUtil: Bietet nützliche Hilfsfunktionen zur Verarbeitung von Zeichenketten an. 

• Math: Erweitert den Core um weitere mathematische Hilfsfunktionen (z.B. log, sin, exp). 

• Quantities: Wird für Berechnungen mit verschiedenen Einheiten benutzt, um regionale 

Unterschiede transparent zu machen. 

• HMI: Stellt UI-Elemente zur Verfügung, die eine Interaktion mit einem menschlichen Akteur 

ermöglichen ( Ein- und Ausgabe, Standarddialoge, etc… ). 

• DiagCom: Beinhaltet Elemente, die eine Schnittstelle zur Offboard-Kommunikation mit dem 

Fahrzeug aufbauen. In der Regel ist es, bei dem heutigem Stand der Technik, eine Schnittstelle 

zu einem MVCI-System. 

• Flash: Ermöglicht durch spezielle Befehle eine autorisierte Programmierung von 

Steuergeräten. 

• Measure: Bietet eine Schnittstelle für die externe Messtechnik. 

 
Abb. 10: Aufbau von OTX  [8]:  



 28 

2.7. Open Diagnostic Framework 

Das Open Diagnostic Framework ist eine von der Firma emotive GmbH entwickelte 

Entwicklungsumgebung, mit der sich Diagnoseabläufe auf Basis von OTX spezifizieren, realisieren, 

validieren, dokumentieren, debuggen, testen und ausführen lassen. In erster Linie ist ODF also eine 

Implementierung des OTX-Standards und stellt mit ODX und einem Diagnoselaufzeitsystem (z.B. ein 

ASAM MVCI-System) eine komplette, prozesssichere Lösung für die ganze Prozesskette der 

Fahrzeugdiagnose dar.  

 

In Abb. 11: Aufbau des ODF’s ist der Aufbau des Open Diagnostic Frameworks zu sehen. Von 

Anfang an wurde bei der Entwicklung wert darauf gelegt, dass das Framework modular aufgebaut ist, 

um einzelne Komponenten des Frameworks auch außerhalb von ODF in anderen 

Anwendungssystemen verwenden zu können. Wie man in der Abbildung sehen kann, setzt das 

Framework auf einem bestehenden Diagnose-Laufzeitsystem auf. Das Framework sorgt für eine 

Integration und Kommunikation mit der Hersteller-API verschiedener Diagnose-Laufzeitsystemen. 

Darüberhinaus gibt es fünf Komponenten: das Database-Modul, der OTX-Designer, der Screen-

Designer und das Test-Environment. 
 

Der OTX-Designer stellt das zentrale Werkzeug dar, um OTX-Abläufe bzw. OTX-Dokumente zu 

modellieren. Er besteht aus: 

• einem Workflow-Designer, in dem ein Ablauf graphisch als ein Flussdiagramm dargestellt 

wird und dessen Eigenschaften und Daten durch Popup-Fenster editiert werden können, 

 
Abb. 11: Aufbau des ODF’s [8]:  



 29 

• einem Solution-Explorer, der für die Navigation durch das aktuelle Projekt, sämtliche 

Elemente von der Projekt-Root bis zur Procedure, bis hin zu Action-Nodes, Declarations, 

Parameters, etc... bereithält,  

• einer Toolbox, die sämtliche OTX-Elemente mit Symbol und Text darstellt, welche per 

Drag&Drop zu einem Diagnose-Ablauf im Workflow-Designer hinzufügen kann, 

• und aus einer Ausgabe, die verschiedene Ausgabefenster zum Logging, Tracing und 

dergleichen anzeigt. 

Die OTX-Daten, die durch den Workflow-Designer angezeigt und editiert werden können, werden über 

das Database-Modul sowohl geladen als auch persistent gemacht. 

 

Das Database-Modul kann als Manager für die OTX-Daten angesehen werden. Dieser stellt die 

sogenannte OTX-API zur Verfügung und sorgt für ein performantes Schreiben und einen performanten 

Zugriff auf die zugrunde liegenden Daten in XML. Vor allem da OTX-Dokumente bzw. OTX-Projekte 

sehr groß werden können und dieser Speicheraufwand für den Arbeitsspeicher nicht realisierbar ist, 

bedient sich das Database-Modul einer XML-Datenbank eines Drittherstellers und lädt nur benötigte 

Daten in den Arbeitsspeicher. 
 

Durch den Screen-Designer ist es möglich, sogenannte Screens (einfache User-Interfaces) – ähnlich 

wie beim Forms-Designer in Visual Studio - zu erzeugen und anzupassen. Zu diesem Zweck gibt es 

eine erweiterbare Control-Library, die vorgefertigte Steuer-Elemente anbietet. Die erstellten Screens 

dienen zur Ein- und Ausgabe für den Benutzer während der Laufzeit eines Diagnose-Ablaufs. Dazu 

findet ein Data-Binding zwischen Variablen des OTX-Ablaufs und entsprechenden Elementen der 

Screens statt. Durch den Screen-Designer bzw. durch die entwickelten Screens realisiert ODF die 

HMI (Human Machine Interface) Schnittstelle zwischen dem Anwender und dem Diagnoseablauf. 
 

Die OTX Runtime Environment ist die Laufzeitumgebung für OTX-Abläufe. Nachdem ein OTX-

Ablauf vollständig spezifiziert wurde und validiert wurde, kann er in der ODF-Entwicklungs-

Umgebung oder - falls das Binär-Format schon vorliegt – mit Hilfe der stand-alone OTX-Runtime 

Bibliothek ausgeführt werden. Um einen OTX-Ablauf auszuführen, werden aus den OTX-Daten aus 

der Datenbank Programmcode (aktuell C#) On-The-Fly erzeugt, anschließend wird dieser in Binär-

Format übersetzt und kann letztendlich vom Betriebssystem ausgeführt werden. Abb. 12: Ablauf der 

OTX Runtime zeigt die besprochene Prozesskette für die Ausführung eines OTX-Ablaufs, der als 

OTX-Format vorliegt.  

 



 30 

Die OTX-Runtime sorgt, während der Laufzeit eines Ablaufs, außerdem auch für die Kommunikation 

mit den darunterliegenden Diagnoselaufzeitsystemen (z.B. ein MVCI-System). Desweiteren verwaltet 

sie diverse Prozeduraufrufe an andere OTX-Abläufe samt definierten Sichtbarkeiten und 

Zugriffsrechten. 
 

Das Test-Environment stellt Tools zur Verfügung, die die Fehlersuche und das Testen in der 

Entwicklung von OTX-Abläufen unterstützen. Es umfasst zwei Komponenten:   

• einen Debugger, mit Hilfe dessen man noch während der Modellierung die Fehlersuche 

durchführen kann,  

• und ein Unit-Test Framework, welches fertig gestellte Abläufe testen soll und vor allem die 

Softwarequalität gewährleisten und erhalten soll (Qualitätssicherung) -  das genannte 

Framework soll Ergebnis dieser Arbeit sein.

Abb. 12: Ablauf der OTX Runtime [8]:  



 31 

3. Modellierung 

Diese Kapitel widmet sich der Konzeption und dem Entwurf des Test Frameworks. Wir beginnen mit 

einer Liste der Anforderungen an ein Test Framework. 

3.1. Anforderungen 

• Test eines OTX Workflows als isolierte Unit, unabhängig von Änderungen an externen 

Service-Partnern. 

• Test von OTX Workflows mit u.U. für den Ablauf nicht relevanten oder keinen Eingabe- und 

Ausgabe- Daten. 

• Das Testen eines OTX Workflows soll keine Änderungen bzw. Zusätze zur Workflow-

Quelldatei nach sich ziehen lassen. 

• Erstellung von Testfällen und automatisierte Ausführung einer Menge von Testfällen zur 

Wiederholbarkeit von Tests und der Qualitätssicherung des Workflows. 

• Testfälle müssen voneinander unabhängig prüfbar sein. 

• Verwaltung von unter Umständen einer sehr großen Zahl von Testfällen (~10.000).  

• Einfache, graphisch unterstützte Spezifizierung von Testfällen durch integrierte Modellierung 

am Workflow selbst - d.h. im OTX-Editor integriert. 

• Synchronisierung der Testdaten eines Testfalls mit einem OTX-Ablauf, der nach der Erstellung 

des Testfalls modifiziert wurde. 

• Geeignete Darstellung der Testergebnisse 

Abb. 12.1: Bei Tests mit unter Umständen großen Mengen an Testfällen soll 

Misserfolg/Erfolg auf einen Blick erkennbar sein. 

Abb. 12.2: Optional: Lokalisierung des Fehlers und Verlinkung zum Fehlerort sowie 

Fehlerbeschreibung. 

• Optional: Darstellung von Code Coverage Metriken. 

• Das Framework wird in C# unter der .NET-Umgebung mit der Version 3.5 implementiert. 

• Der für die Ausführung der Testfälle bzw. Workflows erzeugter Programmcode sollte 

ebenfalls kompatibler C#-Code der .Net-Version 3.5 sein. Später soll es möglich sein, 

generisch auch andere Sprachen wie J#, Visual Basic, etc. zu unterstützen. 

3.2. Use Cases 

Die Funktionen, die das Test-Framework bereithalten soll, werden in diesem Kapitel durch ein Use 

Case-Diagramm und Prosa-Beschreibungen spezifiziert. Abb. 13: Use Case-Diagramm bildet alle 

Use-Cases graphisch ab. Die daran anschließende Tabelle erläutert die einzelnen Use-Cases.  



 32 

 

 

Anwendungsfall Beschreibung 
 
Test öffnen 

 
Dieser Anwendungsfall soll eine Generalisierung für das Öffnen 
von Testcases, Testsuites und Testruns beschreiben.  

• Testcase: Nachdem ein OTX-Ablauf im OTX-Designer 
geöffnet wurde, kann ein Testcase aus der Menge aller dem 
Ablauf zugehörigen Testcases zur Bearbeitung geöffnet 
werden. Die Anreicherung von Testdaten durch den OTX-
Designer geschieht am aktuell geöffneten Testcase. Beim 
Öffnen von Testcases muss außerdem eine 
Synchronisierung mit den zugehörigen Daten des OTX-
Ablaufs erfolgen. 

• Testsuite: Zur Verwaltung und zum Editieren von 
Testsuites kann der Testsuite Manager geöffnet werden.   

• Testrun: Ein vorher durchgeführter Testrun soll auch 
später wieder geöffnet werden können, um dessen 
Testergebnisse abzurufen oder den Testlauf wiederholt 
auszuführen.  

 

 
Test löschen 

 
Dieser Anwendungsfall soll eine Generalisierung für das Löschen 
von Testcases, Testsuites und Testruns beschreiben. Beim Löschen 
von Testcases und Testsuites muss beachtet werden, dass 
vorhandene Referenzen angepasst werden müssen. 

 
Abb. 13: Use Case-Diagramm 



 33 

 
Test speichern 

 
Dieser Anwendungsfall soll eine Generalisierung für das 
Speichern von Testcases, Testsuites und Testruns beschreiben. 
Das Speichern geschieht in einem für das Test Framework 
speziell spezifizierten XML-Derivat. Jeder Testcase bzw. Testsuite 
oder Testrun wird separat in einer einzelnen Datei in einem 
dedizierten Verzeichnis des Dateisystems vom Betriebssystem 
gespeichert. 
 

 
Testcase modellieren 

 
Die Modellierung von Testcases findet integriert im OTX-Designer 
statt. 
Durch Kontextmenüs soll es möglich sein einer ausgewählten 
Aktivität Assertions hinzuzufügen oder sie als must visit-Aktivität zu 
kennzeichnen. 
Weitere Testdaten wie z.B. Eingansparameter oder erwartete 
Ausgabeparameter sollen durch eine weitere Ansicht unterhalb 
des dargestellten OTX-Ablaufs eingegeben werden können. 
 

 
must visit-Aktivität 
hinzufügen 
 

 
Eine Aktivität kann durch ein Kontextmenü im OTX-Designer als 
must visit gekennzeichnet werden. Dies wird für den aktuell 
geöffneten Testcase durchgeführt. 
 

 
Assertion hinzufügen 

 
Durch das Kontextmenü einer Aktivität kann dem aktuell 
geöffneten Testcase eine Assertion hinzugefügt werden. 
 

 
Testdaten 
spezifizieren 

 
Durch  eine geeignete Ansicht unterhalb des Workflow-Designers 
sollen alle Testdaten angezeigt und editiert, sprich spezifiziert 
werden können.  
 

 
Mit Otx 
synchronisieren 

 

 
Die Testfallspezifikation kann automatisch mit den Daten des 
OTX-Ablaufs synchronisiert werden. Änderungen am OTX-Ablauf 
müssen  am Testcase berücksichtigt bzw. aktualisiert werden.  
 

 
Testsuite 
zusammenstellen 

 
Mit Hilfe eines Testsuite Managers lassen sich Testsuites verwalten 
und zusammenstellen. 
Dieser soll zwei Ansichten (Testsuites und Testcases) bieten, mit 
Hilfe derer Testcases einfach per Drag&Drop zu Testsuites 
hinzugefügt werden können. 
 

 
Testlauf erstellen 

 
Um Tests durchzuführen werden Testsuites bzw. Testcases  für 
einen Testlauf ausgewählt. 
 

 
Tests hinzufügen 

 
Tests können Testsuites oder Testcases sein. Diese werden einem 
Testlauf zur Ausführung oder einem Testsuite zur  Sammlung und 
Organisation von Tests hinzugefügt. 

 
Testsuite hinzufügen 

 
Eine Testsuite kann einem Testlauf zur Ausführung oder wiederum 



 34 

durch eine Referenz einer anderen Testsuite hinzugefügt werden. 
 

 
Testcase hinzufügen 

 
Ein Testcase kann einem Testlauf zur Ausführung oder durch eine 
Referenz einer Testsuite hinzugefügt werden. 
 

 
Testcases suchen 

 
Der Anwender kann projektweit in verschiedenen Kategorien  
nach Testcases filtern bzw. suchen. 
 

 
Testlauf starten 

 
Nach der Erstellung bzw. Zusammenstellung eines Testlaufs kann 
dieser gestartet werden. Die Test-Laufzeitumgebung generiert 
dazu aus den OTX-Daten einen ausführbaren Code und führt alle 
Tests nacheinander durch.   
 

 
Testlauf auswerten 
 

 
Während der Ausführung eines Testlaufs werden die 
Testergebnisse sofort angezeigt. 
Nach Beendigung des Testlaufes kann der Anwender durch die 
Testergebnisse navigieren und auch ein Test-Report erstellen 
lassen. 
  

3.3. Analyse und Konzeption eines geeigneten Testing Ansatzes 
für OTX Workflows 

Wie bereits besprochen, genügt ein einfacher Black-Box Ansatz mit Vergleich von Ist- und Soll-

Ausgabewerten nicht, da die Ausgabegrößen oft nicht aussagekräftig genug sind. Auch ist ein White-

Box Ansatz zur automatischen Generierung von Testfällen nicht effektiv, wenn nicht zusätzlich durch 

ein geeignetes Verfahren die Korrektheit des Ablaufs eines Workflows verifiziert werden kann. 

Die Prüfung der Interaktionen eines Workflows mit anderen Prozessen durch eine Art 

Kommunikationsprotokoll, welches der Semantik des Workflows nach spezifiziert wird, deckt den 

Bereich der Interaktionen bzw. Kommunikation des Workflows ab. Da Workflow-Systeme vor allem 

im Hinblick darauf erfunden worden sind, Aktivitäten und Unter- oder Neben-Prozesse in einem 

Ablauf zu integrieren und zu automatisieren; und somit meistens Workflows verwalten, deren 

Semantik im Wesentlichen aus dem Ablauf seiner Interaktionen mit den Partnern bestehen; ist dieser 

Ansatz in den meisten Fällen schon ausreichend und gut geeignet um die Korrektheit des Workflows 

zu gewährleisten - obgleich ein Workflow aus mehr als "nur" seinen Interaktionen besteht. Wir wollen 

uns dieses Konzept des Testens der Interaktionen eines Workflows im Hinterkopf behalten und es zu 

einem späteren Zeitpunkt in unsere Konzeption mit einfließen lassen; wenn auch ein anderer 

Implementierungsansatz gewählt wird als bei MEYER (BPELUnit Framework)8. 

                                                 
8  Test Framework für BPEL (Siehe [4]: Mayer, 2006 ) 
  

Tabelle 2: Use-Case Beschreibung 



 35 

 

Doch zunächst wollen wir uns noch einmal dem einfachen Black-Box Ansatz zuwenden und dem eine 

genauere Betrachtung schenken, um das Problem besser zu verstehen und zu sehen welche Lösung es 

dafür gibt. Das erste Problem besteht darin, dass Eingabeparameter beim Aufrufen eines OTX 

Workflows fehlen oder nicht genügen um daraus Aussagen über die Korrektheit des Workflows zu 

gewinnen. Dies liegt daran, dass der Ablauf eines Workflows nicht nur von den Eingabeparametern 

abhängt, sondern auch von dem eingehenden Datenfluss von externen Abläufen. Werden für das 

Black-Box Verfahren als Input nur die Eingabeparameter des Workflows festgelegt, so ist der Testfall 

unterspezifiziert und Aussagen über das korrekte Verhalten des Workflows natürlicherweise 

eingeschränkt. Die Lösung liegt nahe: Sämtliche eingehende Daten werden als Input für die Black-Box 

miteinbezogen. Werden sämtliche Eingangsgrößen spezifiziert so ist der Ablauf eines Workflows 

vollständig bestimmt und determiniert. In Abb. 14: Workflow ohne Eingabe- und Ausgabeparameter 

wird ein Workflow in BPMN9 dargestellt, der keine Eingabeparameter besitzt. Erst mit der 

Einbeziehung der restlichen Eingangsgrößen ist ein Black-Box-Test überhaupt erst möglich. 

 

 

                                                 
9  Business Process Modeling Notation, eine abstrakte Workflow Beschreibungssprache. 

 
Abb. 14: Workflow ohne Eingabe- und Ausgabeparameter 



 36 

 

Beispielsweise werden von dem Aufruf an den externen Prozess Kundendaten auslesen die 

Rückgabewerte 'Kreditbetrag' und 'Einkommen' zurückgeliefert. Von diesen zwei Eingangsgrößen 

hängt der Ablauf und somit die Semantik des Workflows stark ab. Um die Korrektheit des Workflows 

durch Vergleichen von IST- und SOLL-Werten zu prüfen, müssen unter Anderem diese beiden 

Eingangsgrößen selbstverständlich mit berücksichtigt werden. 

Um alle Eingangsgrößen eines Workflows statisch schon vor der Ausführung festzulegen – d.h. um 

diese mit in die Test-Spezifikation aufzunehmen und zu prüfen, eignet sich das Konzept von Mock-

Objekten besonders gut. 

Im folgenden Abschnitt wird erklärt, wozu Mock-Objekte verwendet werden und wie sie für das Test-

Framework genutzt werden können. 

3.3.1. Simulierung des Inbound Datenstroms - Mock Objekte 

Mock-Objekte sind in der Softwaretechnik vor allem im Bereich Unit-Testing unverzichtbar.  

Um das Unit-Testing eines Moduls abgekapselt und unabhängig von Änderungen/Fehlern außerhalb 

eben dieses Moduls zu ermöglichen, muss die Kommunikation mit anderen Modulen 

emuliert/simuliert werden. Mock-Objekte implementieren die Schnittstelle von Modulen vollständig, 

indem sie jedoch statische Daten verwenden, die vor Ausführung spezifiziert werden müssen. Ein 

Mock-Objekt (engl. to mock = etwas vortäuschen) simuliert also ein aufzurufendes Modul, indem es 

die für einen Testfall spezifizierten Eingabe- und Rückgabewerte nutzt, um einen Aufruf 

"vorzutäuschen".  

Die Nutzung von Mock-Objekten hat folgende Vorteile: 

• Keine Abhängigkeiten des Units zu anderen Modulen. Fehler in anderen Modulen haben 

keinen Einfluss auf den Unit-Test. 

• Unit-Test eines Moduls ist möglich, ohne dass erforderliche Module vollständig implementiert 

oder überhaupt existieren müssen. 

• Spezifikation von statischen Rückgabewerten des Mock-Objektes, um ein bestimmtes 

Verhalten des zu testenden Moduls zu prüfen. Speziell auch um sonst schwer auszulösendes 

Verhalten zu testen (z.B. Ausnahmefehlerbehandlung). 

• Da nur statische Daten zurückgegeben werden, wird quasi keine Zeit für den Aufruf gebraucht. 

Diese Vorteile sind ebenso für das Testen von Workflows gültig. Das Konzept von Mock-Objekten 

lässt sich für Workflows leicht realisieren. Jeder Aufruf, den ein Workflow an einen externen Dienst 

sendet, wird quasi vom Test Framework abgefangen und es werden statische Rückgabewerte 

zurückgegeben. Man könnte Mock-Objekte auch realisieren, indem ein tatsächlich generiertes Mock-

Modul, Eingabewerte entgegennimmt und beispielsweise aus einer Tabelle oder Datenbank die 

entsprechenden Ausgabewerte zurückliefert. Das Test Framework würde dann alle Aufrufe zu den 



 37 

entsprechenden Mock-Objekten umleiten. Allerdings hat dies den Nachteil, dass Rückgabewerte nun 

dynamisch berechnet werden und es somit schwieriger wird ein bestimmtes Verhalten in dem zu 

testenden Workflow auszulösen (siehe oben: 3. Punkt bei den Vorteilen). 

Ein anderer Ansatz würde die Rückgabewerte bei der Spezifikation eines Testfalles mit einbeziehen. 

Jeder Testfall muss demnach zusätzlich zu den Eingabe- und Ausgabe-Parametern des Workflows 

auch die Rückgabewerte externer Aufrufe spezifizieren. Die Spezifizierung von Eingabegrößen für 

externe Aufrufe ist in dem Fall nicht nötig, da die Rückgabewerte für diesen Testfall statisch schon 

festgelegt sind und nicht von Eingabegrößen abhängig sind - eben darum ist ein gezieltes Triggern von 

einem gewünschtem Verhalten des Workflows möglich. Besonders Randfälle und Ausnahmefehler 

(Exceptions/Faults) werden auf diese Weise testbar gemacht. 

Zusätzlich ist damit die Möglichkeit gewonnen worden, schon vor Ausführung des Workflows durch 

diese Rückgabewerte sämtlich eingehenden Datenfluss des Workflows festzulegen, um damit den 

Input beim Black-Box Testing zu füllen. 

 

Wie wir einsehen können, lösen Mock-Objekte unser beschriebenes Problem mit den 

unterspezifizierten Eingangsgrößen für ein Workflow im Testgang. Wir wollen als nächstes ein 

verwandtes Problem betrachten. 

Ein Workflow kapselt oft viele Aktivitäten und Prozesse in Teilabläufe bzw. Teilfunktionen zu einem 

Gesamtablauf. Prüft man in einem Black-Box Verfahren den Gesamtablauf, ist unter Umständen. noch 

nichts über die richtige Verarbeitung in den Teilabläufen ausgesagt. Dies spiegelt sich auch darin 

wieder, dass die Ausgabeparameter eines Workflows oftmals nicht genügend Informationen liefern, 

um damit die Korrektheit des Workflows prüfen zu können. In Abb. 14: Workflow ohne Eingabe- 

und Ausgabeparameter (siehe oben) sehen wir einen Workflow, der gar keine Ausgabeparameter 

zurückgibt. Ein einfacher Black-Box-Test könnte somit keine Aussagen über die Korrektheit treffen.  

Das Problem in diesem Beispiel liegt darin, dass die eigentliche Funktionalität des Workflows 

gekapselt wurde. Die relevante Information, nämlich dass der Kredit gewährt oder abgewiesen wurde, 

wird durch die Aktivität Antwort senden schon von dem Workflow selbst verarbeitet und nicht als 

Ergebnis in den Ausgabeparametern des Workflows zurückgeliefert. Natürlich ließe sich dieses 

Problem umgehen, indem Workflows prinzipiell immer so modelliert werden, dass Eingabe- und 

Ausgabe- Schnittstellen genau den Eingabe- und Ausgabemengen der erwünschten Semantik-Funktion 

entsprechen. Weitere Verarbeitung würde in einem separaten Workflow behandelt. In Abb. 15: 

Workflow, abgekapselte Funktion wird die angesprochene Kapselung des Workflows in Abb. 14: 

Workflow ohne Eingabe- und Ausgabeparameter aufgebrochen. Die hauptsächliche Funktion, 

nämlich einen Kredit zu prüfen, wird von der restlichen Verarbeitung abgetrennt und kann so in einem 

Black-Box Verfahren geprüft werden. 

 



 38 

 

Der Gesamtprozess wird wie in der Abb. 15: Workflow, abgekapselte Funktion zu sehen ist, von zwei 

verschiedenen Workflows implementiert. Allerdings ist dies nicht immer so erwünscht und ist eine 

Einschränkung für den Entwickler. Es ist unrealistisch - d.h. praktisch nicht durchsetzbar, dass der 

Entwickler in Hinsicht darauf modelliert, wie es geeignet wäre um Tests durchzuführen. Es ist nicht 

die Aufgabe des Entwicklers, sondern die des Test Frameworks dafür zu sorgen, dass ein Workflow 

beliebiger Struktur testbar ist. Gesucht wird also ein Konzept, welches Unit-Tests von Workflows 

ermöglicht, auch ohne dass die Funktionalität eines Workflows durch seine Eingabe- und Ausgabe- 

Parameter widergespiegelt wird. Da Eingabe- und Ausgabe- Parameter des Workflows also nicht 

ausreichen und das Black-Box Testing seiner Definition nach nur Eingabe- und Ausgabe- Parameter in 

den Testvorgang einbezieht, können wir im Folgenden nicht mehr von einem reinen Black-Box Test 

sprechen. 

Um beispielsweise die Funktionalität der Kreditprüfung in dem besprochenen Workflow zu testen, 

muss offensichtlich auf die interne Variable 'isApproved' zugegriffen werden, dessen Wert von den 

Aktivitäten Kredit gewähren bzw. Kredit abweisen gesetzt wird. Das Test-Framework muss demnach 

die interne Struktur und Logik des Workflows kennen und innerhalb des Workflows einen 

Mechanismus zur Prüfung ansetzen. Wir werden im nächsten Abschnitt sehen, dass so genannte 

Assertions innerhalb eines Workflows diesen Dienst erfüllen. 

 

 
Abb. 15: Workflow, abgekapselte Funktion 



 39 

3.3.2. Assertions innerhalb eines Workflows 

Der Begriff Assertion (lat./engl. für Aussage; Behauptung) wurde in der Informatik zum ersten Mal 

von ROBERT FLOYD 1967 in seinem Artikel Assigning Meanings to Programs gebraucht. Floyd 

schreibt in diesem Artikel darüber, wie sich die Korrektheit von Flussdiagrammen durch 

Zusicherungen (Assertions) beweisen lässt. Später erweitert TONY HOARE diesen Ansatz um das 

sogenannte Hoare-Kalkül und legt damit den Grundstein für die formale Verifikation von Software. 

Wenn auch für den Beweis der vollkommenen Korrektheit eines Programms viele Zusicherungen 

notwendig sind, die z.T. Intelligenz und Rafinesse erfordern und somit auch viel Aufwand bedeuten, 

kann die Korrektheit von Teilfunktionen des Programms recht leicht durch einzelne Assertions 

sichergestellt werden.  

Im modernen Softwaretest werden Assertions häufig genutzt, um sicherzustellen, dass der Wert eines 

Datenobjektes mit einem erwarteten Wert übereinstimmt. Beispiel: 

GOLogic = 2 + 2 ;    
assert( GOLogic == 5 );   

In diesem kurzen Code-Abschnitt wird durch die assert-Anweisung zugesichert, dass zu genau diesem 

Zeitpunkt der Wert der Variable 'GOLogic' dem Wert '5' entspricht. Sollte diese Zusicherung bei der 

Ausführung nicht erfüllt werden, so muss der Test als fehlgeschlagen ausgewertet werden. 

Kehren wir nun zurück zu unserem Beispiel der Kreditprüfung. Wie besprochen, benötigt das Test-

Framework einen Mechanismus, um auf die innere Struktur und Logik des Workflows zuzugreifen. 

Durch Assertions, die innerhalb des Workflows an Kontrollflüssen gesetzt werden und in der Laufzeit 

ausgewertet werden, lassen sich beliebige Teilfunktionen eines Workflows testen. In Abb. 16: 

Workflow mit Assertion sehen wir wie die Variable isApproved durch eine Assertion geprüft wird. 

Die Assertion stellt sicher, dass ein Kredit je nach Testfall entweder gewährt oder abgewiesen wird. 

 



 40 

 

In einem weiteren Beispiel wollen wir mithilfe eines konkreten Testfalls nur die Teilfunktion der 

automatischen Kreditprüfung desselben Workflows sicherstellen. Die Testspezifikation ist in den 

magentafarben-umrandeten Kästen zu sehen. 

 

 
Abb. 16: Workflow mit Assertion 

 
Abb. 17: Workflow, Prüfung einer Teilfunktion 



 41 

Anhand der Input-Daten lässt sich der Ablauf des Workflows nachverfolgen und erkennen, dass die 

Aktivität Kredit gewähren ausgeführt wird, die die Variable isApproved auf 'true' setzt. Die 

nachfolgende Assertion stellt sicher, dass zu diesem Zeitpunkt tatsächlich 'isApproved==true' 

gilt und der Workflow mit dieser Zusicherung weiter ausgeführt wird. Unter der Annahme, dass der 

Workflow korrekt implementiert wurde, wird die Assertion in diesem Fall positiv ausgewertet und 

unser Testfall wird als erfolgreich beendet. Der Entwickler kann noch weitere Testfälle spezifizieren 

und verifizieren lassen, bis alle Testfälle abgedeckt sind und gesichert ist, dass der Workflow die 

Kreditprüfung korrekt ausführt. In einem Optimierungsprozess soll nun die automatische 

Kreditprüfung verbessert werden, indem der Güterstand des Kreditnehmers mitberücksichtigt wird. 

Betrachten wir das modifizierte Szenario, welches die Condition eines Pfades (siehe Abbildung oben) 

um den Status des Güterstandes erweitert. Wir können leicht nachvollziehen, dass der Ablauf unter der 

gegebenen Spezifikation auch in unserem modifizierten Szenario derselbe ist. Die Assertion gilt und 

der Testfall läuft erfolgreich ab. Nehmen wir nun jedoch an, dass bei der besprochenen Condition ein 

Implementierungsfehler unterlaufen ist und die Klammern in der Condition versehentlich weggelassen 

wurden. Wir halten fest: 

korrekte Implementierung 

' Schufa OK AND hat Schuldenlast AND ( geringe Ausgaben OR guter Güterstand )' 

Implementierung mit Fehler:                    

' Schufa OK AND hat Schuldenlast AND   geringe Ausgaben OR guter Güterstand  ' 

Unter der gegebenen Spezifikation würden die Conditions der unteren beiden Pfade zu 'false' 

ausgewertet und der Pfad zu der Aktivität Kredit abweisen würde ausgeführt werden. Die Aktivität 

Kredit abbweisen setzt die Variable isApproved auf ’false’ und die nachfolgende Assertion wird 

negativ ausgewertet. Der Testfall wird somit als fehlgeschlagen beendet und deutet damit auf einen 

Fehler in der Implementierung hin. 

Durch diese Testfallspezifikation, die sowohl vor als auch nach dem Optimierungsprozess dieselbe 

geblieben ist, konnte ein Implementierungsfehler während der Änderung des vorher korrekt 

ablaufenden Prozesses gefunden werden. Zusammenfassend lässt sich sagen, dass wir durch geeignete 

Testfallspezifikationen (Inputwerte und Assertion) eine Qualitätssicherung der Software, bzw. des 

Workflows, erreichen können. 

Erwähnenswert ist beiläufig noch, dass dieser Test mit einem Black-Box-Test von eben nur dieser 

Teilfunktion vergleichbar ist. Wir sehen die Black-Box als blau-schattierten Bereich mit Input- und 

Output- Parametern in den magentafarben-umrandeten Kästen. Mit Hilfe von internen Assertions in 

Workflows und das Konzept von Mock-Objekten lässt sich also ein quasi Black-Box-Test von 

Teilfunktionen des zu testenden Workflows simulieren. Wobei sich die bestehende Tatsache natürlich 

nicht ändert, dass wir hier pro forma einen White-Box-Test auf unseren Workflow durchführen. 



 42 

Wo dieses Beispiel noch gut überschaubar ist und ein umfassender Test zum Beweis der Korrektheit 

noch recht einfach durchgeführt werden kann, ist Softwaretest im Allgemeinen eine komplexe 

Angelegenheit. Durch das Konzept der Assertions können an beliebiger Stellt Zusicherungen gesetzt 

werden, die die Korrektheit von Funktionen des Programms sicherstellen. Allerdings erfordern 

komplexe Programme oftmals intelligente und raffinierte Assertions um die Korrektheit festzustellen. 

Im Abschnitt 5.1: Erstellung von Testfällen - Best Practices werden einpaar universelle Anleitungen 

und Tipps für grundlegende, immer wiederkehrende, Testsituationen gegeben. Letzten Endes bleibt 

das Testen von Software aber doch komplex und ist eine Profession für sich. 

3.3.3. Prüfung des Kontrollflusses durch 'must visit'-Aktivitäten 

Wir haben bisher das Konzept betrachtet durch Assertions sicherzustellen, dass bestimmte Variablen 

bzw. Ausgabegrößen bestimmten Soll-Werten entsprechen. In gewisser Weise haben wir uns somit im 

Bereich des Datenflusses des Workflows bewegt. Fürs Weitere wollen wir betrachten in wie weit sich 

durch Zusicherungen am Kontrollfluss des Workflows dessen Korrektheit verifizieren lässt. 

Das Konzept ist intuitiv leicht verständlich und Testfälle lassen sich einfach und gut modellieren. Zu 

den zu spezifizierenden Eingabegrößen des Workflows werden zusätzlich noch Aktivitäten (bzw. der 

Pfad) angegeben, die in dem Testfall ausgeführt werden müssen. Wir wollen hierzu wieder unser 

Kredit-Prüfung-Szenario hernehmen. In der Abbildung sehen wir die für unseren Testfall 

spezifizierten eingehenden Input-Daten des Workflows, sowie die Aktivitäten, die für diesen Testfall 

ausgeführt werden müssen. Die rot-gestrichelten Markierungen im Workflow zeigen die zu 

besuchenden must visit-Aktivitäten sowie den daraus eindeutig resultierenden, auszuführenden Pfad. 

Sollte bei dem Testdurchlauf des Workflows eines dieser must visit-Aktivitäten nicht ausgeführt 

werden, so muss der Testfall als fehlgeschlagen bewertet werden. 

 



 43 

Die Behauptung ist, dass die Testfallmodellierung mit must visit-Aktivitäten in den meisten Fällen 

genauso mächtig ist wie eine Spezifikation des zu durchlaufenden Pfades. Mit anderen Worten soll es 

möglich sein durch das Konzept der must visit-Aktivitäten, genau den Pfad zu spezifizieren, den ein 

Workflow durchläuft. Wenn wir uns also mit Pfaden beschäftigen, heißt es, dass wir uns vor allem mit 

Verzweigungen auseinandersetzen müssen. Pfade unterscheiden sich dadurch, dass sie verschiedene 

Verzweigungen durchlaufen. Können wir durch must visit-Aktivitäten Testfälle so modellieren, dass 

sie alle Verzweigungen beliebiger Pfade abdecken können, so ist unsere Behauptung erfüllt. Falls jede 

Verzweigung eine Aktivität ausführt, so ist es klar. Wir können die Spezifizierung aller Kanten 

(Zweige) eines beliebigen Pfades durch die Spezifizierung einer jeweils in dem Zweig befindlichen 

must visit-Aktivität ersetzen. 

Die Frage ist vielmehr, wie es sich mit Kanten verhält, die keine Aktivitäten besitzen. 

In der Nachstehenden Abbildung sehen wir die Modellierung von vier Testfällen. Im Testfall a) sehen 

wir links die Spezifikation des auszuführenden Pfades nach der Verzweigung rot markiert. Rechts ist 

die dazu äquivalente Spezifikation von must visit-Aktivitäten. Wir wollen an dieser Stelle festlegen, 

dass rot markierte Aktivitäten ausgeführt werden müssen und nicht markierte Aktivitäten nicht 

ausgeführt werden dürfen. Dann können wir sehen, dass wir in den Fällen a), b) und c) die 

Spezifikation des durchlaufenden Pfades auf eine äquivalente Spezifikation mit must visit-Aktivitäten 

reduzieren können - d.h. es gibt eine eindeutige Zuordnung zwischen dem zu durchlaufenden Pfad und 

einer Menge von Aktivitäten, die genau denselben Pfad eindeutig spezifizieren. Das Testszenario d) 

macht mehr Schwierigkeiten. Es gibt keine Möglichkeit durch must visit-Aktivitäten zu unterscheiden, 

 
Abb. 18: Workflow mit must visit-Aktivitäten 



 44 

ob die Kante cond2 oder cond3 durchlaufen wird. Das Problem liegt darin, dass die Pfade, die jeweils 

eines dieser Kanten durchlaufen, paarweise keinen Unterschied in der Ausführung von Aktivitäten 

zueinander zeigen - der Pfad über cond2 ist bezogen auf die Ausführung von Aktivitäten äquivalent zu 

einem Pfad über cond3. Dieser Workflow macht so gesehen nicht viel Sinn - da die beiden Zweige 

keinen Unterschied machen und eigentlich als nur ein Zweig mit der Bedingung 'cond2 OR 

cond3' implementiert werden könnten. Dennoch ist es vorstellbar, dass solch ein Workflow vorab 

schon auf diese Weise modelliert wird, weil zukünftig noch Aktivitäten hinzugefügt werden sollen. 

Um das Testszenario d) zu realisieren, müssen wir das Konzept erweitern und zusätzlich zu der must 

visi-Aktivität Task 3 noch eine Assertion 'assert(false)' setzen, die den Zweig mit cond3 

ausschließt.  

 

Wir sehen also, dass wir durch das Konzept von must visit-Aktivitäten die Möglichkeit haben, den 

Kontrollfluss eines Workflows zu verifizieren. Natürlich stellt sich die Frage wieso der Umweg über 

Aktivitäten gegangen wird und nicht gleich der Pfad selbst spezifiziert wird. Dies hat 

implementierungstechnische Gründe und wird später klarer erklärt, wenn es um die Implementierung 

geht. An dieser Stelle sei nur gesagt, dass es notwendig ist, Assertions an eine Aktivität zu binden, da 

 
Abb. 19: Steuerung des Kontrollflusses durch must visit-Aktivitäten 



 45 

eine Assertion nicht innerhalb eines OTX-Ablaufs spezifiziert wird, sondern extern  in einer separaten 

Testfall-Spezifikation – es ist nun einzusehen, dass eine Bindung an ein OTX-Element notwendig ist, 

um später die Assertion an der richtigen Position auszuführen.  

Wir haben oben gefordert, dass alle nicht markierten Aktivitäten nicht ausgeführt werden dürfen - 

bzw. dass alle Aktivitäten spezifiziert werden müssen, die auf dem auszuführenden Pfad liegen. Diese 

Forderung an eine Testfall-Spezifikation stellt mit hoher Zuverlässigkeit das korrekte Verhalten eines 

Workflows fest, allerdings ist so eine vollständige Spezifikation des Pfades nicht immer erwünscht 

und vor allem bei sehr großen Workflows praktisch kaum durchsetzbar. Oftmals reicht es für einen 

Testfall sicherzustellen, dass bestimmte Kern-Aktivitäten ausgeführt werden, um die semantisch 

korrekte Funktionalität zu gewährleisten. Wir lassen die Forderung, dass nicht markierte Aktivitäten 

nicht ausgeführt werden dürfen, für das Grundkonzept wieder fallen und bemerken, dass Kanten oder 

Aktivitäten, die nicht ausgeführt werden sollen, auch explizit durch eine Assertion 

'assert(false)' sichergestellt werden können. Durch solche expliziten Assertions lassen sich 

Uneindeutigkeiten, wie sie in der nächsten Abbildung zu sehen sind, vermeiden. 

 

Wir sehen in der Abbildung einen Testfall, in dem es vor allem wichtig ist, dass unter den gegebenen 

Input-Daten der Kredit gewährt wird. Wie zu sehen, gibt es drei verschiedene Pfade, die alle zum 

gewünschten Ergebnis führen. Allerdings wäre durch eine solche Spezifikation die korrekte interne 

 
Abb. 20: Testfall mit Merhdeutigkeit 



 46 

Verarbeitung noch nicht völlig gewährleistet. Ein solcher Test hat Ähnlichkeiten mit einem Black-

Box-Test. Es macht konkret für diesen Testfall beispielsweise keinen Unterschied ob der interne 

Ablauf des Workflows eine manuelle oder automatische Kreditprüfung verfolgt. Eine Assertion 

’assert(false)’ an der richtigen Stelle würde die manuelle Bearbeitung ausschließen.  

3.3.4. Weitere Konzepte/Komponenten 

OTX-Exceptions 

In der folgenden Tabelle sind die Standard Ausnahmefehler (Exceptions) aus dem OTX-Core 

aufgelistet, die in einem OTX-Ablauf auftreten können. 

Durch das Test Framework soll ermöglicht werden, diese Ausnahmen an beliebiger Stelle des OTX-

Ablaufs auszulösen, um das Verhalten der Ausnahmefehlerbehandlung (Exception-Handling) des 

Workflows gezielt zu testen. Es ist theoretisch auch vorstellbar, die Ausnahmefehlerbehandlung eines 

Workflows zu testen, indem man die in den OTX-Ablauf eingehenden Daten in einem Testfall genau 

so spezifiziert, sodass die zu prüfende Ausnahmefehlerbehandlung eintritt. Jedoch ist es bei 

komplexen Abläufen unter Umständen ein mühsames Geschäft, zurückzuverfolgen, welche Testdaten 

eine bestimmte Ausnahmefehlerbehandlung auszulösen vermögen. Allein der Name 

Ausnahmefehlerbehandlung drückt schon aus, dass es sich hierbei um seltene Ausnahmen handelt, die 

eigentlich in einem korrekten Ablauf mit vernünftigen Eingabedaten gar nicht auftreten sollten – es ist 

somit umso mehr erschwert die notwendigen Testdaten zu finden, um das Verhalten der gewünschten 

Ausnahmebehandlung zu testen. Aus diesem Grund sollte das Test-Framework es unterstützen, 

Fehlerausnahmen zu Testzwecken an beliebigen Stellen eines Workflows auszulösen.  

In meinem Ansatz werde ich dies ähnlich realisieren wie bereits bei den Assertions: Es soll möglich 

sein ein sogenanntes Throw-Element an eine beliebige Aktivität zu binden. Dieses Throw-Element ist 

nichts anderes als die Spezifikation bzw. der Name einer im Standard definierten OTX-Exception, die 

geworfen werden soll, sobald die Ausführung der gebundenen Aktivität beendet wurde. 

Nicht jede Aktivität in OTX kann jede OTX-Exception auslösen. Um die Programmkomplexität klein 

zu halten, soll die Testfall-Modellierung jedoch jede Kombination von OTX-Exceptions und 

Aktivitätstyp zulassen. Es macht zwar keinen Sinn etwa ein Throw-Element für DiagComExceptions 

an beispielsweise eine Assignment-Aktivität zu binden, stellt jedoch keine Beschränkung des Test-

Frameworks dar, die Fehlerbehandlung eines OTX-Ablauf vollständig zu testen.  

Da der OTX-Standard bei ProcedureCalls auch eine throws-Klausel spezifiziert – sprich: unbehandelte 

Ausnahmen in der aufgerufenen Prozedur werden einfach eine Ebene höher an den Aufrufer 

weitergegeben -, sollen auch ProcedureCall-Aktivitäten nicht von diesem throws-Mechanismus 

ausgeschlossen sein. Kurz: Es wird möglich sein ein throw-Element mit beliebiger Exception-

Spezifikation an jede beliebige Aktivität zu binden.   

 
 



 47 

Events 

Ähnlich wie die Ausnahmefehlerbehandlung soll auch das Event-Handling gezielt testbar sein. Man 

stelle sich vor, in einem OTX-Ablauf werde ein Event-Handler durch ein zeitliches Event (z.B. 

wöchentlich an einem bestimmtem Tag) angestoßen. Dieser Event-Handler könnte dann nur zu genau 

diesem zeitlichen Event getestet werden. 

Betrachten wir ein anderes Szenario, in dem ein OTX-Ablauf auf Benutzereingaben wartet (z.B. 

Tastatureingabe, oder Mausklick), welche durch Events realisiert werden. Um nun Testfälle 

automatisiert ablaufen zu lassen, muss es möglich sein in einem solchen Ablauf diese 

Benutzereingabe-Events zu simulieren bzw. durch das Test Framework auszulösen. 

Analog zum throw-Element für Ausnahmefehler soll es also auch möglich sein ein throw-Element für 

Events an Aktivitäten zu binden. Der spezifizierte Event soll direkt nach der Ausführung der Aktivität 

geworfen werden.      
 

DiagCom 

Die DiagCom-Bibliothek stellt Elemente für die Kommunikation mit dem darunterliegenden 

Diagnoselaufzeitsystem (z.B. MVCI) zur Verfügung. Aktivitäten, welche die DiagCom-Schnittstelle 

betreffen, sollen durch Aufrufe an Mock-Objekte simuliert werden. Dieses Konzept lässt sich analog 

zu einem ProcedureCall realisieren. Rückgabeparameter von Aufrufen an DiagCom werden mit 

statischen Daten gefüllt, die im Testfall spezifiziert wurden.    
 

Kontext-Konzept 

Kontext-Variablen sollen durch die in einem Testfall spezifizierten Werte festgelegt werden, statt 

diese mit Daten aus der Diagnoseanwendung zu befüllen. So ist es möglich für den als generisch 

modellierten OTX-Ablauf  verschiedene Umgebungen zu simulieren, ohne diese Umgebungen explizit 

für jeden Test herstellen zu müssen.  
 

Validity-Konzept 

Validities stellen (wie in Abschnitt 2.6.5 bereits besprochen) in OTX eine Möglichkeit dar, bestimmte 

Aktivitäten oder Elemente für die tatsächliche Ausführung ein- oder auszuklammern. Validities 

werden durch einen Boolean-Term ausgewertet, die sich in der Praxis in den meisten Fällen auf 

Kontext-Variablen beziehen. Solche Validities können gut durch das vorgestellte Konzept der must 

visit-Aktivitäten getestet werden. In einem Testfall werden zuerst die entsprechenden Kontext-

Variablen spezifiziert, nun können all diejenigen Validities, die der Semantik nach korrekterweise 

eigentlich ’true’ auswerten sollten ‚ als must visit-Aktivitäten spezifiziert werden. Der Testfall stellt 

sicher, dass in einem bestimmten Kontext, bestimmte Elemente ausgeführt werden – dies ist genau die 

Funktion die das Kontext- und das Validities- Konzept realisieren.  

 

 

 
 



 48 

Signature-Konzept 

Signatures werden dazu eingesetzt, um in einem Ablauf unter verschiedenen Testumgebungen 

dementsprechend auch verschiedene Implementierungen eines ProcedureCalls aufzurufen. Dieses 

lässt sich testen, indem 

1. die gewünschte Testumgebung durch die Spezifizierung der Kontext-Variablen in einem 

Testfall simuliert wird (wie soeben oben im Kontext-Konzept besprochen), und 

2. dementsprechend die dazugehörige Implementierung durch die Spezifizierung eines 

geeigneten Mock-Objektes in eben diesem Testfall simuliert wird.  

3.4. Konzept/Überblick  

In diesem Abschnitt werden die erarbeiteten Aspekte und die wichtigsten Punkte noch einmal 

zusammengefasst. 

3.4.1. Testspezifikation 

• Die Testspezifikation soll in einem vom OTX Workflow separatem TCS-

Dokument (TestCaseSpecification-Dokument) festgehalten werden. 

• Die Spezifikation von Eingabe- und Ausgabe- Größen des Workflows werden durch das 

Konzept von Mock-Objekten realisiert. Wie besprochen sind keine Eingabe-Parameter für 

externe Aufrufe notwendig, sondern es werden zu den jeweiligen Aktivitäten nur die 

Rückgabewerte spezifiziert. 

• must visit-Aktivitäten werden in einer einfachen Liste mit ihrem eindeutig referenzierbaren 

Namen spezifiziert. 

• Assertions innerhalb des Workflows werden durch boolesche Ausdrücke realisiert und müssen 

eine eindeutige Referenz zu einer Aktivität haben.  

3.4.2. Testorganisation 

• Um Testfälle zu strukturieren, werden sie zu Testsuites organisiert.  

• Damit gibt es die Möglichkeit eine Menge an Testfällen zusammenzufassen, die eine 

bestimmte Funktion oder ähnliche Funktionen des Workflows testen. 

• Eine Testsuite enthält somit eine Menge von Testfällen. Es ist dadurch möglich Testfälle 

wiederholt und automatisiert prüfen zu lassen. 

• In einem Testlauf (Testrun) können mehrere Testsuites sowie Testfälle automatisiert 

durchgeführt werden. 



 49 

3.4.3. Testdurchführung 

Bei der Ausführung sind folgende Punkte zu beachten: 

• Um den OTX-Workflow ausführbar zu machen, wird C#-Code erzeugt. Das TCS-Dokument 

muss während der Code-Erzeugung in den OTX-Workflow integriert werden. 

• Anstelle von externen Prozeduraufrufen werden für Out- bzw. Inout- Parameter konstante 

Werte gesetzt, die in dem TCS-Dokument spezifiziert sind. 

• Alternativ: Aufruf an dummy-Prozedur (Mock-Object), der keinen Code ausführt, 

sondern sofort die besagten konstanten Werte zurückgibt. 

• Assertions werden im C#-Code nach einer Aktivität geprüft. 

• Fehlgeschlagene Assertions brechen die Ausführung nicht ab. 

• Unbehandelte OTX-Exceptions müssen auf Testfall-Ebene abgefangen werden. Die 

Ausführung von anderen Testfällen darf nicht von einer unbehandelten Fehlerausnahme des 

aktuellen Testfalls tangiert werden.  

• Nach Ausführung einer must visit-Aktivität wird die Aktivität in der Liste der must visit-

Aktivitäten als "erfüllt" markiert. 

• Am Ende der Ausführung des Workflows muss die Liste der must visit-Aktivitäten geprüft 

werden. 

• Die Ergebnisse der Assertions sowie der must visit-Aktivitäten müssen gesammelt und 

gespeichert werden. Die Ergebnisse müssen auch nach Ausführung des Testfalls zur 

Präsentation bereitstehen.  

• Es muss möglich sein eine Testsuite oder mehrere Testsuiten in einem Testdurchlauf 

automatisiert durchlaufen zu lassen. 

• Dabei ist zu beachten, dass die Ausführung der Testfälle keinen Einfluss aufeinander haben 

darf. 

• Insbesondere unbehandelte Fehler, die beim Testdurchlauf von Workflows auftreten, dürfen 

den Rest des Testdurchlaufs nicht abbrechen oder in irgendeiner Weise beeinflussen. 

Faults/Exceptions müssen vom Test Framework abgefangen werden. 

 



 50 

In der obigen Abbildung ist eine grobe Übersicht zu sehen, die die Durchführung von Tests beschreibt. 

Ein vorher mit dem Designer spezifizierter Testfall bzw. mehrere Testfälle in einem oder vielen Test-

Suiten werden in einem Test-Run durchgeführt. Das dafür zuständige Test Run-Modul sammelt hierzu 

die OTX- und TCS- Daten und erzeugt die für das Testen des Workflows benötigte Test-Umgebung 

(Test-Harness). Die einzelnen Schritte zur Ausführung eines Testfalles werden nachfolgend erläutert. 

1. Daten über den Test Run und des auszuführenden Testsuites werden dem Modul Test-Results 

Presentation zur Darstellung des Testlaufs übergeben. 

1. Das Test Run-Modul erzeugt und initialisiert eine TestCase-Klasse, die die Test-Umgebung 

für die Ausführung des Workflows bereitstellt. Dabei werden das entsprechende OTX- und TCS- 

Dokument übergeben. 

2. Aus dem TCS-Dokument werden die Input-Parameter für das Starten des Workflows und die 

must visit-Liste ausgelesen. 

3. Daten über den Testfall werden an das Test-Results Presentation-Modul übergeben. 

4. Das OTX- und TCS- Dokument wird zur Code-Generierung an die ODF Runtime übergeben. 

5. Aus dem OTX- und TCS- Dokument wird eine C#-Klasse generiert, die den Workflow 

abbildet. Sie wird anschließend von der TestCase-Klasse ausgeführt. 

6. Eine Assertion wird während der Ausführung ausgewertet, indem die assert()-Methode 

des referenzierten Results-Objektes der entsprechenden TestCase-Klasse aufgerufen wird. 

7. Auch das Konzept von must visit-Aktivitäten wird durch eine Methode des Results-Objekts 

realisiert. Hierzu wird die Methode SetActivityVisited() aufgerufen, um die 

entsprechende Aktivität als besucht zu markieren. 

 
Abb. 21: Grobe Darstellung des Konzepts 



 51 

8. Änderungen am Results-Objekt können zur sofortigen Darstellung der Ergebnisse an das Test-

Results Presentation-Modul weitergegeben werden. 

9. Nach Ausführung des Workflows wird die Liste der must-visi'-Aktivitäten ausgewertet. 

10. Die Referenz auf die ausführbare Workflow Klasse sollte gelöscht werden, um Speicher 

freizugeben. 

11. Der Testfall ist abgeschlossen; der nächste Testfall wird durchgeführt. 

3.4.4. Darstellung 
 

Testfallmodellierung 

• Die Spezifizierung eines Testfalls sollte unmittelbar am Workflow selbst geschehen. Das heißt, 

dass der Entwickler keinen Quellcode schreiben muss, sondern bei der Modellierung mit 

einem erweiterten OTX-Editor arbeitet. Evtl. sollte es einen Modus-Switch geben, der speziell 

die Modellierung von Testfällen unterstützt. 

• Zur Spezifikation eines Testfalles gehören, wie gehabt, die Eingabe- und Ausgabe- Größen des 

Workflows, Assertions und must-visit-Aktivitäten. Assertions und must visit-Aktivitäten 

werden als zusätzliche Properties den bestehenden Aktivitäten im Workflow angereichert. Die 

Erstellung von Assertions sollte mit einem Ausdruckseditor unterstützt werden. 

• Für must visit-Aktivitäten reicht es, als Property ein einzelnes Flag zu setzen. Praktisch wäre 

auch ein Modus-Switch (durch Hotkey oder Klick auf ein Button), der es erlaubt Aktivitäten 

durch einen einfachen Mausklick zur der Liste der must visit-Aktivitäten hinzuzufügen bzw. zu 

entfernen. 

• Eingehende Daten können auch als Properties an den entsprechenden Aktivitäten modelliert 

werden. Es ist jedoch vorteilhaft zusätzlich alle Eingabe- und Ausgabe- Daten gesammelt als 

eine Übersicht in einer editierbaren Tabelle festzuhalten. So ist auf einem Blick ersichtlich, 

welche Testdaten der jeweilige Testfall spezifiziert, ohne dass auf die entsprechenden 

Aktivitäten einzeln zugegriffen werden muss, um deren Properties anzuzeigen. Die Füllung 

der Testdaten in einer Tabelle ist auch schneller. Des Weiteren ist schnell ersichtlich, ob evtl. 

noch Parameter fehlen, oder falsch eingegeben wurden. Das Ausfüllen der Tabelle kann 

natürlich noch zusätzlich dadurch unterstützt werden, dass die Aktivität des gerade zu 

bearbeitenden Eintrags graphisch hervorgehoben wird - denn es ist nicht immer sofort klar, zu 

welcher Aktivität der Parameter gehört.  

 

Testergebnisse 

• Es muss davon ausgegangen werden, dass u.U. eine große Zahl an Testsuites, mit wiederum 

einer großen Zahl an Testfällen, in einem Lauf getestet werden. Und einzelne Testfälle 



 52 

enthalten wiederum eine Menge an Zusicherungen. Die Darstellung der Testergebnisse sollte 

übersichtlich sein und es sollte schnell erkennbar sein, welche Tests erfolgreich verliefen und 

welche davon fehlschlugen. 

• Es bietet sich hier eine Baumstruktur an, die als Wurzel den Testdurchlauf enthält. Kinder 

dieser Wurzel sind Testsuites, die wiederum Testfälle als Kinder besitzen. Auf der untersten 

Ebene unter den Testfällen befinden sich die Zusicherungen an die jeweiligen Testfälle. 

• Fehlschlag oder Erfolg von Zusicherungen oder Testfällen oder Testsuites werden durch ein 

rotes bzw. grünes Symbol dargestellt. Darüber hinaus sollten unbehandelte Fehler in einem 

Testfall auch dargestellt werden. 



 53 

4. Implementierung 

4.1. Grobarchitektur 

 

Das Framework ist in drei Teile aufgeteilt. Da in C# unter Visual Studio entwickelt wird, sind diese 

drei Teile in Visual-Studio zu je einem Projekt zugeordnet – d.h. letzen Endes werden diese als drei 

dll’s bzw. dotNET-Bibliotheken assembliert werden. Der Aufbau lehnt sich an das klassische MVC 

Architektur-Entwurfsmuster (Model-View-Control). 

In ODF integriert, werden für das Test Framework die folgenden Namen bzw. Namespaces verteilt: 

Emotive.Odf.Test.Data, Emotive.Odf.Test.Runtime und Emotive.Odf.Test.Gui. 
 

Test.Data (Model)  

Test.Data ist das Datenmodell des Frameworks. Hier wird die Datenstruktur spezifiziert. Außerdem 

sorgen die vier Module in diesem Teil für den Zugriff, die Modifikation, die Persistenz und die 

automatische Aktualisierung aller für das Testen von OTX-Abläufen benötigten Testdaten. 

• Die Xml-API bietet hierzu die Schnittstelle für sämtliche Funktionen an. 

 
Abb. 22: Test Framework Architecture 



 54 

• Der Files Manager stellt die Verbindung zum Dateisystem des laufenden Betriebssystems her. 

Er ist für das Lesen und Schreiben der serialisierten Daten zuständig, und sorgt zudem für die 

Projektverwaltung und eine geeignete, festgelegte Ordnerstruktur. 

• Der Serializer serialisiert bzw. deserialisiert C#-Klassen zum spezifizierten Datenformat und 

umgekehrt. 

• Das Caching-Modul hält Testdaten im Speicher um Such- bzw. Filter- Anfragen, 

Referenzenanpassungen, etc… einfach und effektiv umzusetzen. 

• Darüber sitzt das Synchronization-Modul, welches sämtliche Funktionen bereithält, um die 

Testdaten mit den dazugehörigen Daten des OTX-Ablaufs synchron zu halten.  

Test.Control (Control) 

Die Runtime stellt die Laufzeitumgebung für die Durchführung der Tests an den Diagnoseabläufen 

dar. Sie beinhaltet die komplette Steuerungslogik um Testläufe durchzuführen und auszuwerten. Beim 

Durchlauf eines Tests werden dazu aus den Testdaten und den OTX-Daten die nötige Testumgebung 

als sogenannte Test Harness10 initialisiert und der Programmcode zur Ausführung von Tests durch 

das Code-Generation Modul dynamisch generiert. Die Test Harness stellt alle Daten des aktuell 

auszuführenden Testfalles zur Verfügung und bietet zudem sonstige Funktionen und Mechanismen zur 

Prüfung von Assertions oder must visit-Aktivitäten, etc. Ergebnisse eines Testlaufes gehen über die 

Xml-API an Test.Data – sie werden aber auch sogleich am User Interface dargestellt (siehe unten 

Observer-Pattern). 

Der ODFConnector stellt die Schittstelle für das ODF zur Verfügung. Die gesamte Kommunikation 

zwischen ODF und Test Framework läuft über dieses Modul ab. 
  

Test.Gui (View) 

Die Test.Gui ist die Präsentationsschicht und beinhaltet sämtliche User Interfaces. Zu nennen wären 

da  

• der Testcase Designer, der z.T. im Workflow-Designer (auch Otx-Editor) integriert ist und das 

Interface zur Testfall Modellierung bereithält. 

• der Testsuite Manager, der eine einfache und effektive Zusammenstellung von Testsuites 

unterstützt. 

• der Testrun View, der einen Testlauf mit Ergebnissen übersichtlich darzustellen hat. 

Observer-Pattern 

Für die Aktualisierung aller Views bzw. User-Interfaces wird das Observer-Pattern implementiert. 

Test.Gui wird als Observer (Beobachter) bzw. Listener/Subscriber von Test.Data dem Event-

Publisher gehandelt. Veränderungen im Datenmodell werden also durch Events sofort im User-

Interface dargestellt. 

                                                 
10 engl. für Testgeschirr 



 55 

4.2. Test.Data 

4.2.1. Serializer & Xml-API 

Die zu einem OTX-Ablauf spezifizierten Testdaten werden als ein XML-Dokument persistent gemacht. 

Dabei eignet sich XML  als sowohl Menschen- als auch Maschinen- lesbare Sprache zu solchen 

Zwecken besonders gut, da sie eine mächtige und vor allem erweiterbare und selbstbeschreibende 

Sprache ist, die in der modernen Softwareentwicklung allgemein bekannt, akzeptiert und weitläufig 

Verwendung findet. 

Das Datenmodell des Frameworks gründet auf der Xml-Datenstruktur. Sämtliche Testdaten zu einem 

OTX-Ablauf werden letzten Endes in der Xml-Struktur abgelegt. Die Xml-API stellt hierzu alle 

Funktionen zur Verfügung, die zum Lesen, Ändern und Schreiben der Daten nötig sind. Desweiteren 

kapselt sie aber auch die Funktionalität der Synchronisation zwischen Testdaten und OTX-Daten, 

sowie die Funktionalitäten der Datei- und Projekt- Verwaltung, die hintergründig der File Manager 

erledigt. 

Das Transformieren der, im Speicher als C#-Klassen vorliegenden, Testdaten wird auch Serialisierung 

genannt und wird von Haus aus vom dotNET-Framework unterstützt. Aus einer Xml-Schema 

Definition (Beschreibung) lassen sich automatisiert C#-Klassen generieren, die der spezifizierten 

Datenstruktur des Xml-Schemas entsprechen. Um Xml-Daten in diese Klassen einzulesen 

(Deserialisierung), müssen nur die vom dotNET-Framework bereitgestellten Funktionen aufgerufen 

werden – das gleiche gilt für den umgekehrten Fall, der Serialisierung. 

Wir befassen uns nun mit der grundlegenden Datenstruktur. Um die Xml-Sprache an die Bedürfnisse 

des Test Frameworks anzupassen bzw. zu erweitern, ist es nötig eine Xml-Schema Definition zu 

spezifizieren. An dieser Stelle will ich die Xml-Schema Definition nur einiger Hauptelemente 

vorstellen und erläutern.  
 

 

 

 

 

 

 

 

 

 

 

 

 



 56 

Testcase 

Wir schauen uns als Erstes die Definition des übergeordneten Testcase an: 

 

Ein Testcase beinhaltet alle notwendigen Testdaten, um ein OTX-Ablauf bzw. - im Terminus von OTX 

– eine Procedure auszuführen und zu testen. Wichtig sind folgende Elemente: 

• WorkflowRef: zur eindeutigen Referenzierung des Workflows bzw. der Procedure (ein OTX-

Ablauf ist durch das Otx-Package, das Otx-Document und die Otx-Procedure eindeutig 

identifizierbar), 

• ContextParameters: Testwerte für globale Kontextvariablen in einem OTX-Dokument. 

• InParameters: Testwerte für die beim Prozeduraufruf übergebenden Parametern, 

• ExpectedOutParameters: Die vom Prozeduraufruf zurückgegebenen, erwarteten  Werte, 

• Mocks: Simulationen von Prozeduraufrufen innerhalb der auszuführenden Prozedur, 

• Activities: Aktivitäten, die besucht werden müssen (must visit-Aktivität) oder die an sie 

gebundene Assertions besitzen. 

 

 

 

 

 

 

 

 

 
Abb. 23: Xml-Schema Definition, Testcase 



 57 

Activities 

 

Da in den Anforderungen verlangt wird, die Testdaten für ein OTX-Ablauf separat von dem OTX-

Dokument abzulegen ist es nötig Assertions an ein geeignetes OTX-Element zu binden, um sie zur 

Testlaufzeit zur gewünschten Zeit bzw. an der geforderten Stelle zu testen. Activities beinhalten je eine 

oder mehrere Assertions. Das gesagte gilt gleichermaßen auch für Events und Exceptions. 
 

Assertions 

 

Assertions besitzen zur Referenzierung eine eindeutige Id. Außerdem spezifizieren sie ein Expression- 

Element, welches aus einer Zeichenkette besteht, die ein gültiger, auswertbarer Boolean-Ausdruck sein 

muss. Dieser Ausdruck wird auch bei der Codegenerierung benutzt und wird bei der Testlaufzeit vom 

Compiler ausgewertet. Die Prüfung der must visit-Aktivitäten werden durch spezielle Assertions 

realisiert, deren Boolean-Ausdruck immer ’true’ ist. Und auch die Prüfung der ausgehenden Parameter 

des Ablaufs mit den erwarteten Werten wird intern durch Assertions realisiert. Diese speziellen 

MustVisitAssertions und OutParamAssertion werden als Extension von der Assertiontype 

abgeleitet.  

 

 

 

 
Abb. 24: Xml-Schema Definition, Activity 

 
Abb. 25: Xml-Schema Definition, Assertion 



 58 

 

Mocks & ProcedureCall 

 

Simulationen von Prozeduraufrufen werden durchgeführt, indem Ausgabeparameter mit in der 

Designzeit festgelegten Testwerten belegt werden. Der Mocks-Typ listet dazu alle Prozeduraufrufe 

auf, die wiederum im Element Outparameters die Parameter bzw. ihre Rückgabewerte festlegen. 
 

Parameters 

 

Die Werte, der in den OTX-Ablauf eingehenden Daten, werden in dem Parameter-Element 

gespeichert. Auch der dazugehörige Datentyp und die Modifier (in, out, inout) werden hier 

festgehalten.  

 

 

 
Abb. 26: Xml-Schema Definition, Mocks 

 
Abb. 27: Xml-Schema Definition, Parameters 



 59 

 

Abb. 28: Xml-Schema Definition, IntegerType zeigt als Beispiel die Datenstruktur für einen Integer-

Wert mit Initial-Wert (siehe OTX-Standard: initValue). 

 

Base-Elemente 

 

Alle für das Framework spezifizierten Xml-Typen werden als extension vom Typ TestBase 

modelliert. Das heißt, dass sie alle die Elemente Name und Description von TestBase erben. Dies 

ist vernünftig, da alle Typen, einen Namen und eine Beschreibung besitzen müssen bzw. können. 

Die Typen Testcase, Activity, Assertion und noch einige andere werden von 

TestResultBase abgeleitet, welches wiederum von TestBase ableitet. Diese sind Typen, die in 

 
Abb. 28: Xml-Schema Definition, IntegerType 

 
Abb. 29: Xml-Schema Definition, Base-Elemente 



 60 

einem Testdurchlauf ein Ergebnis zurückgeben – nämlich ’success’, ’fail’, oder ’skip’. 

Dementsrechend besitzen sie neben Namen und Description noch weitere Elemente, wie z.B. Result, 

zur Speicherung der Ergebnisdaten. Eine Extension in der Xml-Schema Definition wird in C# durch 

eine Subclass der extension base abgebildet.  

 

Dieser Abschnitt umfasst nur einen Teilausschnitt der Xml-Datenstruktur. Ein vollständigeres Bild 

über die Datenstruktur sowie dessen Interaktion mit dem restlichen Datenmodell liefert das 

Klassendiagramm auf der nächsten Seite. Es ist zu sehen, dass die aus der Xml-Schema generierten 

C#-Klassen um viele weitere Felder und Methoden erweitert sind, um die Funktionalitäten der Xml-

API zu realisieren. Das dotNET-Framework bietet dazu an bei der Klassendeklaration das Keyword 

partial zu verwenden, um Klassen über mehrere Dateien hinweg zu implementieren. Die automatisch 

generierten C#-Klassen sind standardmäßig allesamt mit partial gekennzeichnet. 

 

Hinweis (betrifft alle Klassendiagramme dieser Arbeit): Wenn auch die Klassendiagramme in dieser 

Arbeit allesamt eine „nur“ vereinfachte Darstellung der tatsächlichen Implementierung geben, setzen 

sie den Fokus doch auf die Hauptelemente und Funktionen des Frameworks und stellen so eine gute 

Übersicht und Zusammenfassung über die technische Funktionsweise des Frameworks dar.  Die 

Klassendiagramme erheben somit also keinen Anspruch auf Vollständigkeit (Beispielsweise sind in 

der nächsten Abbildung nicht alle Datentypen von OTX abgebildet. Auch sind eine Menge privater 

Methoden, die für das Verständnis des Grundkonzepts unerheblich sind, ausgeblendet.). 



 61 
 

Abb. 30: UML Klassendiagramm, Test.Data pt.1 



 62 

4.2.2. Files Manager / Caching 

In dieser Abbildung ist die Fortsetzung des Klassendiagramms von Test.Data abgebildet. Hier sehen 

wir vor allem die Funktionalität des Files Managers sowie des Caching-Mechanismus. 

 

Files Manager 

Der Files Manager ist für die Datei- und Projekt-Verwaltung zuständig. Für jedes OTX-Projekt wird 

dazu ein dediziertes Verzeichnis erstellt, der die gesamten Testdaten enthält. Es gibt zudem spezielle 

Unterverzeichnisse für Testcases, Testsuites und Testruns (Testlauf). Die Verzeichnisstruktur ist wie 

folgt aufgebaut: 

• Root: ~ProjectHome\TestUnits\ 

• Testsuites: ~ProjectHome\TestUnits\Testsuites\ 

• Testruns: ~ProjectHome\TestUnits\Testruns\ 

• Testcases: ~ProjectHome\TestUnits\Testcases\${OtxPackage-Name}\${OtxDocument-

Name}\${OtxProcedure-Name}\ 

Die Verzeichnisstruktur wird (falls nötig) beim Öffnen eines Projektes, bzw. zur Erstellung eines 

Testfalls automatisch angelegt. Beim Laden eines Projektes wird die Verzeichnisstruktur im Speicher 

durch die Klassen Folder und File nachgebildet. Jeder Klassentyp der im Dateisystem persistent 

gemacht werden kann, muss mit einer File-Instanz gelinkt sein und das Interface IFileable 

implementieren, welches Informationen und Funktionen zur Serialisierung und zum Speichern 

zugreifbar macht. Soll eine Instanz mit IFileable-Implentierung im Dateisystem abgelegt werden, 

muss lediglich die Methode SaveToFilesystem aufgerufen werden. Die Erstellung der 

Verzeichnisstruktur und alles weitere erledigt der Files Manager. 

 

 
 

 
Abb. 31: UML Klassendiagramm, Test.Data pt.2 



 63 

Caching   

Aufgrund der Referenzen von Testsuites und Testruns auf Testcases und zur Realisierung der Such- 

und Filteralgorithmen werden alle projektweiten Testcases zum jetztigen Stand der Entwicklung 

vollkommen in den Speicher geladen und durch die CacheObject-Klasse zugreifbar gemacht. Die 

Abb. 32: UML Sequenzdiagramm, LoadTestData zeigt einen Ladevorgang während des Öffnens 

eines Testprojektes. Hier werden die einzelnen Schritte zum Laden der Testdaten in das 

CacheObject in einem Sequenzdiagramm graphisch veranschlaulicht.  

 
 

ObservableKeyedCollection 

Um auf der einen Seite auf die Menge der Testdaten effizient zugreifen zu können und auf der anderen 

Seite aber auch einen möglichst geringen Speicherverbrauch zu erreichen, wurde für das Test 

Framework eine geeignete Datenstruktur entwickelt. Das dotNET-Framework generiert für Xml-

Strukturen die einen Container für eine beliebige Anzahl eines Elementes modellieren, standardmäßig 

eine Array-Datenstruktur. Array-Zugriffe sind wie bekannt sehr schnell. Für die Suche nach einem 

Element, der einen bestimmten Namen hat, ist eine Array-Struktur jedoch weniger effizient (worst 

case: O(n)). 

Da im Test Framework unter Umständen eine sehr hohe Anzahl an Testfällen (>10.000) verarbeitet 

werden müssen und auf diese sowie andere Datentypen über ein Bezeichner (Name oder Id) 

zugegriffen wird, eignen sich Hash-Datenstrukturen besser. Der Zugriff über einen Bezeichner kann 

 
Abb. 32: UML Sequenzdiagramm, LoadTestData   



 64 

dadurch mit O(1) erfolgen. ObservableKeyedCollection implementiert eine generische 

Klasse, die eine Menge von Datentypen einer Sorte sammelt, d.h. referenziert. Darüber hinaus müssen 

die gesammelten Datentypen das Interface IKeyInterfaced implementieren. Dieses Interface 

stellt die Methode offen, die verwendet wird, um auf den Bezeichner eines Datentyps zuzugreifen. 

Instanzen dieses Datentyps werden dann mit diesem Bezeichner als Key und einem Hash in einer 

Dictionary-Klasseninstanz gespeichert, die privat in der ObservableKeyedCollection gehalten 

wird. Auf diesem Weg ist es möglich den Bezeichner bzw. Key – meistens Id oder Name – durch die 

bereitgestellte Interface-Methode in dem Datentyp selbst festzulegen.  

Da ObservableKeyedCollection aber auch für Datentypen genutzt wird, von denen in einer 

Collection nur wenige Instanzen gesammelt werden, ist es nicht ratsam den Mehraufwand sprich den 

erhöhten Speicherbedarf eines Dictionary’s zu betreiben. Zum Beispiel wird in der Praxis an eine 

Activity oft nur eine Assertion und in den meisten Fällen sicher unter fünf Assertions gebunden – oder 

ein Prozeduraufruf wird in den seltensten Fällen mehr als zehn Parameter haben. Aus diesem Grund 

wird die interne Verwaltung nicht standardmäßig mit einem Dictionary vollzogen, sondern es lässt 

sich für eine ObservableKeyedCollection-Instanz eine DictionaryCreationThreshold 

festlegen, die die numerische Grenze für die Erstellung eines Dictionary’s beschreibt. 

Eine weitere Funktion der ObservableKeyedCollection ist die observable-Eigenschaft. Diese 

Funktion lässt einen Beobachter bzw. Subscriber der Collection zu, der benachrichtigt wird, sobald 

Schreib-Aktionen (z.B. Add oder Delete) an der Collection stattgefunden haben. Diese 

Implementierung des Observer-Patterns ist vor allem für die Aktualisierung des User-Interfaces 

gedacht und wird in Kapitel 4.4: Test.GUI näher erläutert. 

4.2.3. Synchronization 

In diesem Abschnitt geht es um die Synchronisation der Testdaten, d.h. in erster Linie die 

Testfallspezifikation, mit den Daten der zugeordneten OTX-Prozedur. Um einen erfolgreichen 

Testdurchlauf zu gewährleisten, müssen die Testdaten sowie die OTX-Daten sozusagen miteinander 

kompatibel bzw. synchron sein. Zum Beispiel müssen Testwerte für Parameterübergaben vom 

Datentyp her, mit den in OTX spezifizierten Datentypen übereinstimmen. Oder, der bool’sche 

Ausdruck einer Assertion muss gültig, bzw. auswertbar sein. Das Test Framework sorgt direkt bei der 

Erstellung dieser Daten für eine Prüfung bzw. Synchronisation. Allerdings kann eine nachträgliche 

Änderung von OTX-Daten zu einer Inkonsistenz führen, die unter Umständen den Testfall nicht mehr 

ablauffähig macht. Noch schlimmer wäre der denkbare Fall, in dem eine gemachte Veränderung zwar 

den Ablauf nicht stört, aber zu falschen Ergebnissen führt. 

Wir sehen also, dass es sehr wichtig ist, Testdaten und OTX-Daten konsistent zu halten. Wie erwähnt 

soll das Test Framework schon bei der Erstellung von Testfällen die Konsistenz wahren. Weiter ist es 



 65 

vernünftig eine Prüfung und Aktualisierung bei jedem Öffnen eines vorhandenen Testfalls bzw. vor 

jeder Ausführung eines Testlaufs durchzuführen. 

Der Prüfungs- und Aktualisierungs- Prozess durchläuft bei seiner Durchführung rekursiv den 

gesamten OTX-Baum eines Ablaufs und prüft bzw. vergleicht die Daten. Die folgende Tabelle fasst 

zusammen, welcher Handlungsbedarf je im Falle eines bestimmten inkonsistenten Datenbefundes 

notwendig ist. 

 

 

Die Synchronisation wird in den betreffenden Klassen durch die Methode UpdateFromOTX 

implementiert (siehe dazu vorangegangene Abb. 30:UML Klassendiagramm, Test.Data pt.1). 

 

 

 

 

 

 

 

 

 

 

   

Befund Handlung 

(immer am Testcase - keine Modifikation des OTX-Dokumentes!) 

1. OTX: Aktivität fehlt. 
Läsche Aktivität samt Assertions löschen. 

Optional: Markiere als inaktiv. 

2. TestCase: Aktivität fehlt. Ok. Aktivität hat noch keine Assertions. 

3. OTX: Name der Aktivität geändert. Äquivalent zu Fall 1 und 2 

4. OTX: Parameter fehlt. Lösche Parameter. 

5. Testcase: Parameter fehlt. Füge Parameter hinzu . 

6. inkompatibler Parametertyp Generiere Parameter neu. 

7. Testcase: Expression der Assertion ungültig. Setze Expression = ’true’. 

8. Bei jeglicher Inkosistenz 
Verfahre nach 1.-7. und markiere zusätzlich mit 

Changed-Flag 

 

Tabelle 3: Synchronisierung mit OTX 



 66 

4.3. Test.Control 

Die nachfolgende Abbildung stellt das Klassendiagramm von Test.Control dar. 

 

4.3.1. ODFConnector 

Der ODFConnector stellt die Verbindung zwischen dem ODF und dem Test Framework her. Da die 

Testcase-Modellierung mit dem Workflow-Designer des ODF’s integriert ist, muss dem OTX-

Designer entsprechende Funktionen bereitgestellt werden. 

 Die Klasse Test.Control.TestFramework stellt diesen Connector dar, der diese Funktionen 

offen legt. In dem Klassendiagramm von Test.Control können wir die gelisteten Funktionen 

besehen. Betrachten wir einige dieser Funktionen. Durch die Methode OpenTestProject werden 

alle Testdaten für das aktuelle OTX-Projekt geladen. Nachdem beispielsweise ein OTX-Ablauf 

geöffnet wurde, kann über ein Kontextmenu im Workflow-Designer ein neuer Testcase durch die 

Methode CreateNewTestCase erzeugt werden. Anschließend könnte etwa eine Assertion an eine 

Aktivität durch AddAssertion gebunden werden. Die folgende Abbildung veranschaulicht den 

Prozess der Erstellung und Bindung einer Assertion an eine Aktivität. 

 

 
Abb. 33: UML Klassendiagramm, Test.Control 



 67 

 

Einige erwähnenswerte Schritte werden erläutert: 

1. Der ActivityDesigner des ODF ruft die AddAssertion-Methode auf. Die 

Prozessverarbeitung obliegt von hier an dem Test Framework. 

2. Es kann zu einem Workflow mehrere Testfälle geben. GetOpenTestCase( ) liefert den 

aktuell geöffneten Testcase. 

3. testCase.Activities[activityName] liefert die gesuchte Aktivität durch den 

Zugriff auf die ObservableKeyedCollection über den Namen der Aktivität. 

4. Nachdem eine Assertion zur Aktivität hinzugefügt wurde, müssen durch ein 

CollectionChanged() Event die betroffenen User Interfaces (in unserem Fall: 

ActivityTreenode) benachrichtigt werden. 

5. Nachdem das User Interface die Aktualisierung vorgenommen hat, gibt es einen neuen 

AssertionTreenode, der sofort den Fokus erhalten soll, damit der Benutzer die Testdaten 

der neu erstellten Assertion festlegt.  

 

 

 

 

 
Abb. 34: UML SequenzDiagramm, AddAssertion 



 68 

4.3.2. Test-Laufzeitumgebung (Runtime) 

Die Laufzeitumgebung des Test Frameworks implementiert das Umfeld und die Logik für die 

automatisierte Ausführung von gesammelten Testfällen bzw. Testsuiten. Nachdem durch das User 

Interface die auszuführenden Tests ausgewählt und markiert wurden, werden sie in einem Testrun 

(Testlauf) zusammengefasst und der Laufzeitumgebung zur Ausführung übergeben. 

Die Ausführung eines Testlaufes muss in einem neuen getrennten Thread gestartet werden, da eine 

Live-Aktualisierung der Testergebnisse im User-Interface sichtbar sein soll und die Ausführung den 

Rest der Applikation (ODF) nicht beeinträchtigen soll. Vielmehr sollte es dem Anwender möglich sein 

nebenher weiterzuarbeiten. Des Weiteren ist es nötig den Testlauf in einer neuen App-Domain zu 

starten, weil es nicht möglich ist, einzelne Klassen oder Assemblies zu entladen, sondern nur Ganze 

App-Domains. Da für jeden Testcase der C#-Code des entsprechenden OTX-Ablaufs dynamisch 

generiert wird und zur Ausführung als eine Assembly geladen werden muss, würde dies auf lange Sicht 

zur ungenutzten Belegung großer Mengen an Arbeitsspeicher führen.  

Nach der Code-Erzeugung und einigen Initialisierungsprozessen führt die Laufzeitumgebung 

nacheinander alle enthaltenen Testsuites bzw. Testcases aus. Für die Ausführung der Testcases hält die 

Laufzeitumgebung die nötigen Testdaten bereit, sowie einige Methoden zur Prüfung von Assertions, 

Ausgabeparametern und must visit-Aktivitäten. Darüber hinaus muss die Ausführungslogik auch die 

Behandlung von Exceptions berücksichtigen, die vom OTX-Ablauf nicht behandelt wurden. Durch die 

bereitgestellten Mock-Objekte können Prozeduraufrufe umgelenkt und durch statische Testdaten 

simuliert werden. In der Fachsprache spricht man auch von einem Test-Harness (Test-Geschirr), der 

all diese Funktionen und nötigen Testdaten kapselt und bereitstellt. Die Klasse TestCaseHarness 

implementiert eine solche eben genannte Komponente und ist somit das Herzstück des Test-

Laufzeitsystems. In Abb. 35:UML-Sequenzdiagramm, Runtime wird der grobe Ablauf eines 

Testlaufs im Laufzeitsystem dargestellt. 

 



 69 

 

Wir können die Laufzeit der TestCaseHarness in drei Phasen aufteilen:  

1. Pre-Run: Erstellung, Initialisierung und Code-Generierung  

2. Run: Tatsächliche Ausführung des Testablaufs 

3. Post-Run: Prüfung der Testdaten 

 
Abb. 35: UML-Sequenzdiagramm, Runtime 



 70 

1. Phase: Pre-Run 

Die Erstellung des TestCaseHarness erfolgt durch die statische Methode CreateInstance. Diese 

ruft einige Initialisierungsmethoden auf. Anschließend wird der C#-Code für den OTX-Ablauf 

inklusive der Assertion-, Event-, Exception-, und ProcedureCall- Codezusätze sowie der Code für die 

Mock-Objekte generiert – Zu diesem Zweck werden die Methoden GetMockAssemblies und 

GenerateAssembly aufgerufen. Die Code-Generierung wird gesondert im Abschnitt 4.3.3: Code-

Generierung behandelt. 
 

2. Phase: Run 

Nach der Initialisierung und Code-Generierung kann der Testablauf ausgeführt werden. Da der 

auszuführende C#-Code erst zur Laufzeit dynamisch generiert und geladen wird, muss über 

Reflection-Methoden des Namespaces System.Reflection auf die dynamisch generierte und 

geladene Assembly zugegriffen werden. Durch den von dotNET-Framework bereitgestellten 

Reflection-Mechanismus lassen sich Informationen über Methoden, Felder, etc. von Klassen zur 

Laufzeit abrufen. Außerdem ist es möglich mit der Kenntnis über die Struktur der Klasse auf 

Methoden und Felder, etc. zuzugreifen. In Code Listing 1:  RunWorkflow wird über Reflection die 

Methode RunTestProcedure der generierten Assembly aufgerufen.  

 

Bei der Codeerzeugung wird immer die Methode mit dem Namen RunTestProcedure generiert, 

die sozusagen den Einstiegspunkt für die Assembly darstellt, und die die eigentliche Prozedur – d.h. 

den zu testenden OTX-Ablauf - mit den spezifizierten Test-Parametern aufruft. 

 

Steht während der Ausführung des OTX-Ablaufs die Prüfung einer Assertion an, wird die Methode 

Assert des TestCaseHarness mit dem Boolean-Ausdruck und einer AssertionId aufgerufen. 

Die AssertionId wird benötigt, um die entsprechende Assertion im Datenmodell zu referenzieren und 

das Ergebnis der Auswertung festzuhalten. Das User Interface wird als Event-Listener (Beobachter) 

der Assertion automatisch aktualisiert. 

Falls der Boolean-Ausdruck als ‘false‘ ausgewertet wird, wird eine TFException (Test Framework - 

Exception) geworfen, um die weitere Ausführung des aktuellen OTX-Ablaufs zu unterbrechen. Das 

Framework fängt die geworfene TFException ab und fährt mit dem nächsten Testcase fort. Das Code-

Listing der Assert-Methode ist in Code Listing 2: Assert zu sehen. 

 

 
Code Listing 1:  RunWorkflow 



 71 

Kommt es bei der Ausführung des OTX-Ablaufs zu einem Prozeduraufruf, so wird statt eines anderen 

OTX-Ablaufs eine Simulation durch eine generierte Prozedur im Mock-Objekt  ausgeführt. Lediglich 

die Rückgabeparameter werden mit den Testdaten belegt – mehr tut diese Mock-Prozedur nicht. Code 

Listing 5: Generated Mock C#-Code (siehe S.73) stellt eine solche Mock-Prozedur dar. 

 

3. Phase: Post-Run 

Nach der Ausführung des OTX-Ablaufs müssen die Ausgabeparameter der Prozedur geprüft werden. 

Die Methode CheckOuputParams führt hierzu einen Vergleich der Ausgabeparameter mit den im 

Testcase spezifizierten, erwarteten Werten durch. 

Zum Schluss werden noch die must visit-Aktivitäten daraufhin geprüft, ob sie tatsächlich ausgeführt 

wurden. must visit-Aktivitäten werden, wie erwähnt, durch spezielle an sie gebundene  must visit-

Assertions realisiert, die immer ‘true‘ auswerten. Wie der Name schon suggeriert sind dies Assertions, 

die besucht bzw. ausgeführt werden müssen. Durch die Methode CheckMustVisitAssertions prüft das 

Framework nach kompletter Ausführung des OTX-Ablaufs, ob alle must visit-Assertions tatsächlich 

ausgeführt wurden und wirft bei negativer Auswertung einen Fehler.  
 

Exception-Handling 

Das TestcaseHarness muss außerdem für die Behandlung bzw. das Abfangen von Ausnahmefehlern 

sorgen. Ein unbehandelter Ausnahmefehler darf nicht die Ausführung des Testruns bzw. andere 

Testcases unterbrechen. In Code Listing 3:  Exception Handling ist zu sehen, wie  dies durch einen 

Try-Catch-Block realisiert wird. Die Ausnahmefehler werden abgefangen (catch) und die 

entsprechenden Fehlerinformationen werden in den Test-Ergebnissen (TestResults) festgehalten.  

 

 
Code Listing 2: Assert 



 72 

4.3.3. Code-Generierung 

Um während der Laufzeit aus dem OTX-Dokument und den Testdaten dynamisch Code zu generieren 

werden die vom dotNET-Framework unter dem Namespace System.CodeDOM bereitgestellten 

Klassen genutzt. 

Mit Hilfe von CodeDOM lässt sich durch verschiedene Methoden ein Code-Baum erzeugen, dessen 

Knoten und Blätter verschiedene Code-Elemente darstellen und letztendlich den gewünschten 

Programm-Code wiederspiegeln. Ist der Code-Baum vollständig aufgebaut, kann mit Hilfe eines 

Graphen-Durchlaufs der Programm-Code erzeugt werden. Da dieser Baum quasi ein generischer 

Repräsentant des erwünschten Codes ist, ist es mit CodeDOM möglich Code für verschiedene 

Sprachen erzeugen zu lassen. Mit einer Reihe von CodeDOM-Methoden können alle möglichen 

Sprachelemente erzeugt werden. In Code Listing 4: CodeDOM, Assignment etwa sehen wir ein Code-

Sample, um beispielsweise ein Assignment-Statement für ein Mock-Objekt zu erzeugen. 

 

 
Code Listing 3:  Exception Handling 

 



 73 

Der aus diesem Abschnitt generierte Code entspricht einem Assign-Statement in Code Listing 5: 

Generated Mock C#-Code), welches eine Prozedur eines generierten Mock-Objektes darstellt. 

 

In Code Listing 6: Generated Otx C#-Code ist der generierte OTX-Code eines sehr simplen Ablaufs 

zu sehen, welcher eine einzige Aktivität, nämlich einen Prozeduraufruf, ausführt. Der OTX-Ablauf tut 

demnach weiter nichts als nur die Prozedur Testcall aufzurufen. Die Testdaten des Testcases 

spezifizieren zusätzlich eine Assertion und ein Throw-Element mit dem Typ 

Emotive.Otx.Data.ArithmeticException. 

Nach dem Prozeduraufruf TestCall ist dementsprechend die Assert-Anweisung gefolgt von einer 

throws Anweisung zu sehen. Wir sehen: Ein Throw-Element wird also durch eine C#-throws 

Anweisung implementiert. 

Um den eigentlichen OTX-Ablauf Workflow1Procedure nun auszuführen, wird dieser vom Test 

Framework nicht direkt aufgerufen, sondern über die Methode RunTestProcedure, die vorher und 

nachher noch für die Belegung und Rückbelegung der Eingabe- und Ausgabe- Parameter sorgt. 

Die Erzeugung des Programmcodes für die Mock-Objekte wird durch die Methode 

GenerateMockCode der Klasse Test.Control.CodeGenerator angestoßen. Die 

Codezusätze für das Testen eines OTX-Ablaufs werden integriert während der Codeerzeugung eines 

OTX-Dokumentes im ODF mit eingebunden.  

 
Code Listing 4: CodeDOM, Assignment 

 
Code Listing 5: Generated Mock C#-Code 



 74 

 
Code Listing 6: Generated Otx C#-Code 



 75 

4.4. Test.GUI 

Die nachfolgende Abbildung stellt das Klassendiagramm von Test.GUI dar. 

 

 
Abb. 36: UML-Klassendiagramm, Test.GUI 



 76 

4.4.1. Workflow/Testcase-Designer 

Um dem Anwender eine einfache und intuitive Testcase-Modellierung zu ermöglichen, ist letztere mit 

dem Workflow-Designer integriert bzw. verknüpft. Assertions können beispielsweise direkt im 

Designer durch ein Kontext-Menü einer Aktivität hinzugefügt werden. 

Die Testdaten werden über Methoden der Klasse Test.Control.TestFramework (alias 

ODFConnector) hinzugefügt. Zusätzlich zum Workflow-Designer gibt es noch das 

TestCaseViewControl zur detaillierten Bearbeitung der Testdaten. In diesem Control werden alle 

Testfälle zum geöffneten OTX-Ablauf in einer Baumstruktur angezeigt. Jeder Testfall-Knoten hat eine 

Unterbaumstruktur zur Anzeige und Bearbeitung von Eingangsparametern, erwarteten 

Ausgangsparametern, Rückgabeparametern von Prozeduraufrufen, Assertions, etc. 

Die Baumstruktur TestCasesTree verwendet die AdvTree-Komponente der Firma 

DevComponents, die zusätzliche Funktionen gegenüber dem standardmäßigen TreeView-Control von 

dotNet bietet. Für unseren Testcase-Designer werden vor allem die zusätzlichen Spalten zur 

Darstellung und Editierung der Testdaten verwendet. Die Baumstruktur besteht hauptsächlich aus 

Knoten die allesamt von DevComponents.AdvTree.Node ableiten müssen. Um eine einfache 

und ausreichende  Individualisierung von Knoten verschiedener Art zu ermöglichen, wird für jede Art 

von Knoten eine eigene Klasse implementiert, die von DevComponents.AdvTree.Node ableitet. 

Alle Knoten die Testdaten enthalten sollen, sind von TestBaseTreeNode abgeleitet, welches 

selbstverständlich wiederum von DevComponents.AdvTree.Node abgeleitet ist und 

standardmäßig Funktionen zur Anzeige und Bearbeitung zur Verfügung stellt. In dem 

Klassendiagramm für Test.GUI (siehe oben) können wir einige Knoten-Klassen sehen. Aufgrund 

der großen Anzahl der verschiedenen Arten von Knoten (z.B. TestcaseNode, ParameterNode, 

AssertionNode, ActivityNode, etc…) wird nur ein Teil von ihnen abgebildet. Tatsächlich gibt 

es noch etliche weitere Klassen, die von TestBaseTreeNode bzw. von TestResultBaseNode 

ableiten.   In Abb. 37: UML Sequenzdiagramm, OpenTestCases ist der Ablauf für den Aufbau eines 

TestCasesTree dargestellt. In diesem Beispiel werden alle Testcases eines OTX-Ablaufs samt ihrer 

Unterbaumstruktur aufgebaut. Ein TestCaseTreeNode stellt je einen Testcase dar. 

 



 77 

 

 

Durch die Methode BuildSubTree wird rekursiv der Aufbau der ganzen Unterbaumstruktur 

ausgeführt. Es werden dabei noch einige Initialisierungsprozesse für das Laden des Kontextmenüs und 

der Testdaten gestartet. Wichtig ist auch die Methode SubscribeAsListener, welche die 

Beobachterfunktion des Knotens auf die Testdaten aktiviert und  das erwähnte Observer-Pattern 

implementiert. Sobald Testdaten aktualisiert werden, werden die Knoten im User Interface ebenso 

aktualisiert. Es ist hierbei äußerst wichtig für ein Subscribe auch eine entsprechende 

Unsubscribe-Funktion zu implementieren und diese aufzurufen sobald das Objekt nicht mehr 

genutzt wird. Da eine Subscription immer bedeutet, dass ein Verweis vom beobachteten Objekt auf 

den Beobachter erzeugt wird, würde das Beobachter-Objekt nie vom Garbage-Collector gesammelt 

und zerstört werden, solange dieser Verweis noch besteht. Ein „geschlampertes“ Unsubscribe führt 

also dazu, dass ein nicht benutztes Objekt weiterhin Speicher belegt.  

4.4.2. Testsuite Manager 

Um Testsuites komfortabel zusammenzustellen gibt es den Testsuite Manager, der aus einem 

TestcaseViewControl und einem TestsuiteViewControl besteht. Das TestsuiteViewControl enthält 

einen TestsuiteTree welches ähnlich aufgebaut ist wie ein TestcaseTree und hier nicht näher 

 
Abb. 37: UML Sequenzdiagramm, OpenTestCases 



 78 

vorgestellt wird. Das TestsuiteViewControl stellt alle projektweit vorhandenen Testsuites dar und stellt 

Funktionen zur Verfügung Testsuites zu erstellen, zu verwalten und zu löschen. 

Über das TestcaseViewControl lassen sich Testcases schnell und einfach finden und können dann per 

Drag&Drop einer Testsuite hinzugefügt werden. Das TestcaseViewControl hält dazu eine 

Filtereingabe bereit, womit projektweit nach verschiedenen Kriterien gefiltert werden kann. So ließe 

sich etwa die Anzeige anpassen, sodass  nur alle Testcases einer bestimmten Otx-Package oder eines 

bestimmten Otx-Documents erscheinen. Vom Testsuite Manager aus können beliebige Testsuites und 

Testcases ausgewählt und in einem Testlauf ausgeführt werden.  

4.4.3. Testrun - Darstellung der Test-Ergebnisse 

Der  Testlauf bzw. Testrun wird ebenfalls durch eine Baumstruktur implementiert, da dies einen sehr 

übersichtlichen und effektiven Überblick über den Testlauf ermöglicht. Die TestRun-TestSuite-

Testcase-Assertion Hierarchie lässt sich wunderbar durch einen Baum darstellen. Testergebnisse 

werden in einer zweiten Spalte festgehalten, wobei  deren Darstellungslogik auch sehr gut in einer 

Baumstruktur umgesetzt werden kann. Sollte ein Testcase fehlschlagen, so gilt die Testsuite und 

weiter auch der Testrun als fehlgeschlagen. Dies kann in der Baumstruktur gut wiedergegeben werden 

und es ist wie gefordert auf einem Blick schnell ersichtlich, ob ein Testrun bzw. eine Testsuite 

erfolgreich war oder nicht. Es müssen nicht alle Informationen über alle Testcases angezeigt werden. 

Jene Testcases die ohnehin erfolgreich durchlaufen sind, interessieren bei einem Fehler-Test nicht. 

Will ein Anwender genauere Ergebnisse über eine Testsuite oder einem Testcase erhalten, so kann er 

durch die Baumstruktur navigieren. 

Die Darstellung eines Testlaufs übernimmt das TestRunViewControl. Dieser beherbergt einen 

TestrunTree, der den gleichen Aufbau hat wie der TestcaseTree. Speziell zu erwähnen sind die 

TestResultTreeNodes, von denen alle Knoten des TestrunTrees abgeleitet sind, die Ergebnisse 

zurückliefern. Zum Beispiel ist eine AssertionNode ein  TestResultTreeNode und hat als SubTyp eines 

TestBaseTreeNode selbstverständlich auch einen Verweis auf ein Test.Data.TestBase-Objekt, 

welches in der Tat sogar ein Test.Data.TestResultBase- bzw. ein 

Test.Data.Assertion-Objekt ist. Über den Verweis werden die Testdaten, aber auch 

Testergebnisse abgerufen und angezeigt. Die Assertion-Node ist als TestBaseNode standardmäßig 

Beobachter des PropertyChanged-Event des Assertion-Objektes und kann auf alle Datenänderungen 

des Assertion-Objektes reagieren. Während der Ausführung eines Testcases aktualisiert die Test-

Laufzeitumgebung nach der Prüfung einer Assertion dessen Ergebnisse am Assertion-Objekt von 

Test.Data. Da der AssertionNode Beobachter ist, kann er die Testergebnisse sofort anpassen und 

der TestRunTree kann die Ergebnisse direkt anzeigen. Bei der Ausführung eines Testlaufes werden 

also nacheinander die Ergebnisse von Assertions, Testcases, etc. angezeigt. Um dies zu realisieren ist 

es jedoch nötig die Ausführung des Testlaufes in einem neuen Thread zu starten. 



 79 

5. Evaluierung 

5.1. Erstellung von Testfällen - Best Practices  

5.1.1. Assertions 

Betrachten wir für den Anfang einen einfachen Workflow, der die Geldausgabe an einem 

Bankautomaten steuert. Der Workflow bekommt die PIN-Nummer eines Benutzers als 

Parameterübergabe. Die Aktivität PIN-Prüfung prüft die PIN-Nummer auf ihre Gültigkeit und gibt als 

Antwort einen Boolean-Wert zurück. Sollte die Antwort positiv sein, wird der Zugriff auf das Konto 

gewährt, solange der Kontostand nicht negativ ist - andernfalls wird der Zugriff verweigert. 

 

 
Abb. 38: Best Practice, Assertions 1 



 80 

Um sicherzustellen, dass Geld nur ausgegeben wird, wenn der Zugriff gewährt wurde (Sollverhalten), 

würde man auf dem ersten Blick naiverweise die Zusicherung assert( Zugriff==true ) auf 

den gleichen Pfad setzen, in dem das Geld ausgezahlt wird (siehe ausgegraute Assertion in obiger 

Abbildung ). Logisch: Geld wird ausgezahlt, wenn 'Zugriff==true' zugesichert wird. 

Dass eine solche Zusicherung nicht sehr effektiv ist, sollte auf dem zweiten Blick ersichtlich sein: Der 

Pfad auf dem unsere Zusicherung 'Zugriff==true' liegt, wird genau dann ausgeführt, wenn die 

Condition ohnehin dieselbe Bedingung, nämlich 'Zugriff==true', positiv auswertet. Eine 

solche Zusicherung in so einem Kontext ist logisch korrekt und gilt immer, d.h. für jeden Testfall - hat 

somit aber keinen effektiven Nutzen. 

Für einen effektiven Test sollte die gegenteilige Zusicherung 'assert(Zugriff==false)' 

gesetzt werden. Nachfolgende Abb. 39: Best Practice, Assertions 2 zeigt den Testfall, der das 

besprochene Sollverhalten des Workflows verifiziert. Wir bereiten sämtliche Input-Daten des 

Workflows auf ein solches Szenario vor, in dem der Zugriff - semantisch gesehen! - verweigert 

werden sollte. In unserem Beispiel wird eine falsche PIN-Nummer übergeben. Sollte nun wider 

Erwarten, aufgrund fehlerhafter Implementierung des Workflows, trotzdem der Pfad ausgeführt 

werden, in dem der Zugriff gewährt wurde und das Geld ausgezahlt wird, wird die Zusicherung 

'assert( Zugriff==false)'  negativ ausgewertet und der Testfall schlägt somit fehl. 

Tatsächlich sichert der Testfall in obiger Abb. 38: Best Practice, Assertions 1 ein anderes 

Sollverhalten des Workflows zu. Der Testfall sichert den komplementären Fall zu - nämlich, dass der 

Geldausgabe-Prozess ausgeführt wird, wenn der Zugriff gewährt werden soll.  

 



 81 

Ein anderer Ansatz die Korrektheit des Workflows zu testen, wäre eine Assertion zu stellen, die 

zusichert, dass die PIN-Nummer gültig ist, wenn Geld ausgezahlt wird. Nachfolgende Abbildung zeigt 

eine Testspezifikation (Testfall A), die ein solches Sollverhalten prüft. 

 

 

 
Abb. 39: Best Practice, Assertions 2 



 82 

Die Assertion von Testfall A stellt sicher, dass die PIN-Nummer gültig ist, wenn Geld ausgezahlt wird. 

Wir testen dies, indem in der Testspezifikation die PIN-Prüfung einen negativen Wert für 'isPINvalid' 

zurückgibt - sprich die PIN-Nummer ist ungültig. Wird der Zugriff von einem fehlerhaften Workflow 

trotz ungültiger PIN-Nummer gewährt, so schlägt der Testfall wegen der Zusicherung 

'isPINvalid == true' auf dem folgendem Pfad fehl. Ähnlich dazu lässt sich der Testfall B 

auswerten, welcher zusichern soll, dass kein Geld ausgezahlt wird, wenn die PIN-Nummer gültig ist 

oder der Kontostand negativ ist. Betrachtet man die vorgestellten Testfälle genauer, so fällt auf, dass 

diese genau so spezifiziert wurden, dass Assertions auf Pfade liegen, die korrekterweise (d.h. die 

Semantik betreffend) nicht ausgeführt werden sollten; und ferner, dass diese Assertions, sollte einer 

dieser Pfade fälschlicherweise doch ausgeführt werden, aufgrund der Testspezifikation und des 

Ablaufs immer negativ ausgewertet werden. 

 
Abb. 40: Best Practice, Assertions 3 



 83 

Um die Modellierung von Testfällen zu vereinfachen, lassen sich in solchen und ähnlichen Szenarien 

diese Assertions einfach durch Zusicherungen der Art 'assert(false)' ersetzen. Die Bedeutung 

der Zusicherung 'assert(false)' ist jene, dass sie immer negativ ausgewertet wird und ein 

Testfall somit automatisch fehlschlägt, sobald ein Pfad mit einer solchen Assertion erreicht wird. Das 

solche Assertion durchaus sinnvoll sind, stellt nachfolgender Testfall dar. 

 

 

Es ist bemerkenswert, dass dieser Testfall viel leichter nachzuvollziehen ist, als die vorherigen 

Testfälle, obwohl er das gleiche Sollverhalten des Workflows überprüft. Der Testspezifikation nach 

sollte der Workflow den Geldausgabeprozess nicht ausführen. Sollte dies aufgrund von Fehlern doch 

passieren, so sorgt die Zusicherung 'assert(false)' im selben Pfad für einen negativen 

Testausgang. Der andere Fall mit positivem Kontostand und gültiger PIN-Nummer muss die 

 
Abb. 41: Best Practice, Assertions 4 



 84 

Zusicherung 'assert(false)' auf den unteren Pfad mit der Condition 'Zugriff==false' 

setzen. Die folgende Abbildung fasst das Besprochene nochmal allgemein zusammen. 

 

Wir sehen in dieser Abbildung nur einen Teilausschnitt eines Workflows, der die eingehenden 

Variablen Var1, Var2, Var3, Var4 in einem beliebigen, uns nicht sichtbaren und nicht zu 

interessierenden, Berechnungsvorgang schon vorher verarbeitet hat. 

Das zu prüfende Sollverhalten ist, dass Aktivität A nur dann ausgeführt wird, wenn 'cond1==true' 

wahr ist. Wir modellieren dazu die komplementären Testfälle mit den nötigen Input-Daten, die die 

Condition cond1 zu ’false’ auswerten sollen, um zu prüfen, dass in keinen dieser Testfälle die Aktivität 

A ausgeführt wird. Wir gehen nun davon aus, dass cond1 zu ’false’ ausgewertet wird. Unabhängig 

davon, welche Verzweigung ausgeführt werden soll, müsste demnach die Assertion 

'assert(cond1==false)' halten. Wir können die Assertion 'assert(cond1==false)' 

also an beiden Verzweigungen setzen, wie es unter Punkt a) in der Abbildung zu sehen ist. Die 

Assertion in der Verzweigung mit der Condition 'cond1==false' (also die Verzweigung die zur 

Aktivität B führt) kann auch weggelassen werden, da die Zusicherung mit der Condition der 

Verzweigung übereinstimmt und somit immer erfüllt wird. Sollte in einem dieser Testfälle die 

Verzweigung der Aktivität A ausgeführt werden, wird die Assertion negativ ausgewertet, der Testfall 

schlägt fehl und wir wissen, dass sich ein Fehler im Workflow befindet. 

Wir können von der Assertion in a), die, sofern sie geprüft wird, immer negativ ausgewertet wird, 

abstrahieren, und ebenso gut mit 'assert(false)' ersetzen. Dieser Testfall ist unter b) zu sehen 

und ist völlig äquivalent zu dem Testfall unter a). Wie gehabt spezifizieren wir die Testfälle so, dass 

Aktivität A nicht ausgeführt wird und setzen dann eine 'assert(false)' Assertion auf die 

Verzweigung mit der Aktivität A. Wir sichern in den Testfällen im Prinzip zu, dass der Workflow 

bestimmte Zweige nicht ausführt - in unserem Fall darf die Verzweigung mit der Aktivität A nicht 

ausgeführt werden. 

 
Abb. 42: Best Practice, Assertions 5 



 85 

Eine weitere Abstraktion lässt uns also feststellen, dass Assertions der Art 'assert(false)' ein 

Test-Konzept für Workflows realisieren, welches durch Prüfung des durchlaufenden Pfades die 

Korrektheit des Workflows testet. Die Zusicherung 'assert(false)' stellt sicher, dass der Pfad, 

auf dem die Assertion liegt, nicht ausgeführt wird. Wollten wir einen Workflow auf seine Korrektheit 

prüfen, indem für bestimmte Eingangsdaten des Workflows der erwünschte Kontrollfluss (oder Pfad) 

des Workflows mitspezifiziert wird, so kann dies durch Assertions der Art 'assert(false)' 

erreicht werden, indem alle anderen Pfade, die nicht ausgeführt werden sollen, mit eben solchen 

Assertions zugesichert werden. In unserem Standardbeispiel der Kreditprüfung ließe sich 

beispielsweise durch zwei Assertions die Ausführung des rot markierten Pfades zusichern. 

 

5.1.2. must visit-Aktivitäten 

Es ist oft einfacher und weniger Arbeit, den Pfad anzugeben, der ausgeführt werden soll, als alle 

anderen Pfade durch Assertions auszuschließen. Es ist auch intuitiv und leichter überschaubar 

Aktivitäten anzugeben, die zu einem spezifischen Testfall ausgeführt werden müssen. In vielen Fällen 

ist es möglich schon durch die Angabe von wenigen Aktivitäten, die oft auch die Hauptfunktionen des 

Ablaufs darstellen, das korrekte Verhalten für einen Testfall sicherzustellen. Wie wir in den 

 
Abb. 43: Best Practice, Assertions 6 



 86 

nachfolgenden Beispielen sehen werden, gibt es auch da einpaar Dinge, die man sich bewusst machen 

und beachten sollte.      

 

Im Testfall a) wird nur die Aktivität C als must visit spezifiziert. Der Pfad der durchlaufen werden 

kann, ist in diesem Fall nicht eindeutig. Will man einen eindeutigen Pfad festlegen, so muss wie in b) 

oder c) bei einer Verzweigung für mindestens einen Zweig mindestens eine Aktivität markiert sein. 

Man könnte auch den Weg wählen generell immer alle Aktivitäten eines Pfades mitzuspezifizieren, 

wie es in d) zu sehen ist. In den meisten Fällen ist der Pfad dann eindeutig bestimmt. Es gibt jedoch 

Ausnahmen wie wir in e) sehen können. Der zu durchlaufende Zweig nach dem Gateway hat keine 

markierbare Aktivität. Wir müssen zusätzlich durch eine Assertion den Pfad über Aktivität B 

ausschließen. 

 
Abb. 44: Best Practice, Assertions 7 



 87 

6. Zusammenfassung und Ausblick 

Das Ziel dieser Arbeit war es, ein Framework zu entwickeln und zu implementieren, welches 

geeignete Funktionalitäten bietet, um die mit ODF entwickelten OTX-Abläufe automatisiert zu testen. 

Das vorgestellte Test Framework realisiert dazu ein Unit-Testing, das durch ein mit dem ODF 

integrierten Testcase-Designer spezifiziert wird. Die Testcase-Modellierung geschieht quasi „direkt“ 

im Workflow selbst und ist dadurch intuitiv und leicht verständlich. Alle Testdaten werden in einem 

speziell für das Framework angepassten XML-Derivat gespeichert und werden somit in einem 

zukunftsträchtigen Austauschformat aufgehoben. Durch einen Testsuite-Manager können Testsuites 

und Testcases in einer hierarchischen Struktur organisiert werden und vom Test-Laufzeitsystem in 

einem Testlauf automatisiert ausgeführt werden. Diese Testläufe können zur späteren Abrufung von 

Testergebnissen gespeichert werden und zur Qualitätssicherung der Software auch wiederholt 

ausgeführt werden. Bei Konsistenzproblemen zwischen OTX-Daten und Test-Daten findet dabei eine 

automatische Synchronisation statt. 

Bei der Modellierung des Datenmodells wurde darauf Wert gelegt geeignete Datenstrukturen zu 

verwenden, die große Datenmengen effizient verarbeiten können, da es unter Umständen eine sehr 

große Anzahl an OTX-Abläufen und daraus folgend eine noch größere Anzahl an Testcases zu 

verwalten gibt. 

Allerdings werden noch alle projektweiten Testdaten gänzlich in den Arbeitsspeicher geladen. Es ist in 

Zukunft notwendig ein Lazy-Loading Konzept zu implementieren bzw. eventuell eine Xml-

Datenbank einzubinden, um den Speicherplatz im Arbeitsspeicher nicht zu überanspruchen.  

Bis zum Zeitpunkt des Verfassens dieser Arbeit wurde das Event-Konzept von OTX durch ODF noch 

nicht funktionalisiert. Erst nach der Vervollständigung der Implementierung von Events kann auch das 

Test Framework das Testen mit Events unterstützen. Wie dem auch sei, das Konzept zur 

Unterstützung von Events wurde bereits besprochen und kann nachträglich implementiert werden. 

Für die Dokumentation von ausgeführten Testläufen wäre außerdem eine automatische Erzeugung 

eines ausdruckbaren Test-Reports in Form von Html oder ähnliches sehr vorteilhaft. Ein Test-Report 

könnte neben den Testergebnissen und diversen Statistiken den Anteil von getestetem Code anzeigen. 

Dazu müsste ein Konzept für die Bestimmung der Code Coverage entwickelt und implementiert 

werden.   

Um die Testfallerstellung zu erleichtern und um eine gute Code Coverage zu erreichen, kann das Test 

Framework um die Funktion einer automatischen Testcase Generation erweitert werden. So können 

automatisiert Testfälle mit entsprechenden Testdaten erzeugt werden, die eine gute oder sogar 

vollständige Code Coverage bieten. 

Zuletzt möchte ich noch den Bezug auf die Formale Verifikation von Software nehmen, der 

sicherlich noch Stoff für interessante Arbeiten aufbietet. Durch einige grundlegende Techniken der 

formalen Verifikation ist es möglich die Korrektheit von Programmen mathematisch zu beweisen. 



 88 

Durch das Hoare-Kalkül bzw. die Hoare-Regeln können für einzelne Anweisungen und kombiniert 

auch für Anweisungsblöcke Zusicherungen getroffen werden, die eine bestimmte Funktion 

verifizieren. Diese Regeln können für OTX-Sprachelemente angepasst werden und zu einem Hoare-

System zusammengefasst werden, sodass dadurch eine formale Verifizierung von OTX-Abläufen 

möglich wird. 

Solche Zusicherungen könnten durch Assertions dem OTX-Ablauf angereichert werden und würden so 

die Funktion des Ablaufs prüfen. Ein mit solchen Regeln geführter Beweis über die Korrektheit einer 

Funktion eines OTX-Ablaufs würde die 100%ige Korrektheit eben dieser Funktion sicherstellen. Da 

ein solcher Beweis wie besprochen jedoch in den meisten Fällen nicht trivial bis quasi undurchführbar 

ist, hat dieser an sich interessante Ansatz nicht viel praktischen Nutzen. 



 89 

Literaturverzeichnis 

[1]:  DIJKSTRA, E.W.: The Humble Programmer. Commun. ACM 15: 859-866 (1972) 

[2]:  HOFFMANN, DIRK W.: Software-Qualität. Springer Berlin, Heidelberg, 2008 

[3]:  LEYMANN, F.; ROLLER, D.; SCHMIDT, M.-T.: Web services and business process 

management. IBM Systems Journal, Vol. 41, No.2, 2002 

[4]:  MAYER, P.: Design and Implementation of a Framework for Testing BPEL Comp-

ositions. Gottfried Wilhelm Leibniz Universität, Hannover, 2006 

[5]:  WIENER, L.R.: Digitales Verhängnis, Gefahren der Abhängigkeit von Computern und 

Programmen. Addison-Wesley, München, 1994 

[6]:  WFMC: Workflow: An Introduction. Workflow Management Coalition. 

[7]:  LI, Z.; SUN, W.; JIANG Z. B.; ZHANG X.: BPEL4WS Unit Testing: Framework and 

Implementation. Proceedings of the IEEE International Conference on Web Services ( 

ICWS ), 2005 

[8]:  SUPKE, J.: Diagnosesysteme im Automobil. Seminarunterlagen der Technischen 

Akademie Esslingen, 2008.  

[9]:  LÜBKE, D.; SINGER L.; SALNIKOW A.: Calculating BPEL Test Coverage through 

Instrumentation. Leibniz Universität, Hannover 

[10]:  DONG, W.: Test Case Generation Method for BPEL-based Testing. Chinese Academy 

of Science, Beijing, 2009 

[11]:  ZAKARIA Z.; ATAN R.; AZIM A.; GHANI A.; SANI N. F.: Unit Testing Approaches for 

BPEL: A Systematic Review. Asia-Pacific Software Engineering Conference, 2009 

[12]:  LINK J.: Unit-Tests mit Java. dpunkt.verlag GmbH, Heidelberg, 1.Auflage 2002 

[13]:  SPILLNER A.; LINZ T.: Basiswissen Softwaretest. dpunkt.verlag GmbH, Heidelberg, 

2.Auflage 2004 

[14]:  ALONSO, G.; CASATI, F.; KUNO, H.; MACHIRAJU, V.: Web Services: Concepts, 

Architectures and Applications. Springer Berlin, 2004 



 90 

[15]:  AALST, W. V. D.; HEE, K. V.: Workflow Management, Models, Methods, and 

Systems. The MIT Press, Cambridge, Massachusetts London, England, 2002 

[16]:  GAMMA, E., HELM, R., JOHNSON, R., VLISSIDES, J., DESIGN PATTERNS: Elements of 

Reusable Object-Oriented Software, Addison-Wesley Professional; 1995 

[17]:  LEYMANN, F.; ROLLER, D.: Production workflow: concepts and techniques. Upper 

Saddle River, NJ, USA : Prentice Hall PTR, 2000. 

 

Internetquellen 
 

[18]:  KANDEL, DUNJA: Lars Thomsen über die Zukunft von RFID im Alltag.  

http://www.rfid-im-blick.de/200907131520/Sprechende-Joghurtbecher-und-intelligente-

Spiegel.html (28.07.2011) 

[19]:  PALMISANO, SAM J.: A Smart Transportation System: Improving Mobility for the 21st

                              Century.   

http://www.ibm.com/smarterplanet/us/en/transportation_systems/article/ 

palmisano_itsa_speech.html (28.07.2011) 

[20]:  STUTTGARTER NACHRICHTEN: Köhler eröffnet Boschs Chipfabrik in Reutlingen. 

http://www.stuttgarter-nachrichten.de/inhalt.koehler-eroeffnet-boschs-chipfabrik-in-

reutlingen.d6852d03-d64c-4157-80be-63b0fbdfd906.html (28.07.2011) 

[21]:  SUPKE, J.: OTX - Hintergrund & Motivation. http://www.emotive.de (28.07.2011) 

[22]:  SUPKE, J.: OTX – Basiskonzepte. http://www.emotive.de (28.07.2011) 

 

 



 91 

Abbildungsverzeichnis 

Abb. 1: Workflow-Reference-Modell. Quelle: [6]: WfMC ....................................................... 8 
Abb. 2: V-Diagramm nach Böhm ............................................................................................ 10 
Abb. 3: Programmcode & Flussdiagramm. Quelle: [2]: Hoffmann, S.204 ............................. 13 
Abb. 4: Workflow, Black-Box Test…………………………………………………………..17 
Abb. 5: Testfall Specification BPEL-Unit ............................................................................... 19 
Abb. 6: State of the Art – Diagnoseablauf in ASAM-System [8]:........................................... 20 
Abb. 7: Abstrakter Diagnoseablauf [8]: ................................................................................... 22 
Abb. 8: Aufbau eines OTX-Dokumentes [8]: .......................................................................... 23 
Abb. 9: Datentypen von OTX [8]: ........................................................................................... 25 
Abb. 10: Aufbau von OTX  [8]:............................................................................................... 27 
Abb. 11: Aufbau des ODF’s [8]:.............................................................................................. 28 
Abb. 12: Ablauf der OTX Runtime [8]:................................................................................... 30 
Abb. 13: Use Case-Diagramm ................................................................................................. 32 
Abb. 14: Workflow ohne Eingabe- und Ausgabeparameter .................................................... 35 
Abb. 15: Workflow, abgekapselte Funktion ............................................................................ 38 
Abb. 16: Workflow mit Assertion............................................................................................ 40 
Abb. 17: Workflow, Prüfung einer Teilfunktion...................................................................... 40 
Abb. 18: Workflow mit must visit-Aktivitäten ........................................................................ 43 
Abb. 19: Steuerung des Kontrollflusses durch must visit-Aktivitäten..................................... 44 
Abb. 20: Testfall mit Merhdeutigkeit....................................................................................... 45 
Abb. 21: Grobe Darstellung des Konzepts............................................................................... 50 
Abb. 22: Test Framework Architecture.................................................................................... 53 
Abb. 23: Xml-Schema Definition, Testcase............................................................................. 56 
Abb. 24: Xml-Schema Definition, Activity ............................................................................. 57 
Abb. 25: Xml-Schema Definition, Assertion ........................................................................... 57 
Abb. 26: Xml-Schema Definition, Mocks ............................................................................... 58 
Abb. 27: Xml-Schema Definition, Parameters......................................................................... 58 
Abb. 28: Xml-Schema Definition, IntegerType....................................................................... 59 
Abb. 29: Xml-Schema Definition, Base-Elemente .................................................................. 59 
Abb. 30: UML Klassendiagramm, Test.Data pt.1.................................................................... 61 
Abb. 31: UML Klassendiagramm, Test.Data pt.2.................................................................... 62 
Abb. 32: UML Sequenzdiagramm, LoadTestData................................................................... 63 
Abb. 33: UML Klassendiagramm, Test.Control ...................................................................... 66 
Abb. 34: UML SequenzDiagramm, AddAssertion .................................................................. 67 
Abb. 35: UML-Sequenzdiagramm, Runtime ........................................................................... 69 
Abb. 36: UML-Klassendiagramm, Test.GUI........................................................................... 75 
Abb. 37: UML Sequenzdiagramm, OpenTestCases ................................................................ 77 
Abb. 38: Best Practice, Assertions 1 ........................................................................................ 79 
Abb. 39: Best Practice, Assertions 2 ........................................................................................ 81 
Abb. 40: Best Practice, Assertions 3 ........................................................................................ 82 
Abb. 41: Best Practice, Assertions 4 ........................................................................................ 83 
Abb. 42: Best Practice, Assertions 5 ........................................................................................ 84 
Abb. 43: Best Practice, Assertions 6 ........................................................................................ 85 
Abb. 44: Best Practice, Assertions 7 ........................................................................................ 86 
 



 92 

Tabellenverzeichnis 

Tabelle 1: Code Coverage Beispiel ................................................................................... 15 
Tabelle 2: Use-Case Beschreibung.................................................................................... 34 
Tabelle 3: Synchronisierung mit OTX .............................................................................. 65 
 

 

Abkürzungsverzeichnis 

ABS    Anti-Blockier-System 

ESP    Elektronisches Stabilitäts-Programm 

ODF    Open Diagnostic Framework 

WfMC    Workflow Management Coalition 

WfMS    Workflow Management System 

ISO    International Standards Organisation 

ASAM    Association for Standardization 

of Automation and Measuring Systems 

BPEL    Business Process Execution Language 

ECU    Electric Control Unit 

MVCI    Modular Vehicle Communication Interface 

VCI    Vehicle Communication Interface 

API    Application Programming Interface 

ODX    Open Diagnostic Exchange 

OSI    Open Systems Interconnection 

PDU    Protocol Data Unit 

XSD    XML Schema Definition 

XML    eXtensible Markup Language 

ODF    Open Diagnostic Framework 

UI    User Interface 

HMI    Human Machine Interface 

BPMN    Business Process Modeling Notation 

MVC    Model-View-Control 

PIN    Personal Identification Number 

 



Erklärung

Hiermit versichere ich, diese Arbeit selbstständig verfasst und nur die angegebenen Quellen

benutzt zu haben.

< Ort, Datum >

Unterschrift:


