
Institut für Softwaretechnologie
Universität Stuttgart

Universitätsstraße 38
D–70569 Stuttgart

Diplomarbeit Nr. 3147

Priorisierung von
Testfall-Vorschlägen

Ralf Ebert

Studiengang: Softwaretechnik

Prüfer: Prof. Dr. rer. nat. Jochen Ludewig

Betreuer: Dipl.-Ing. Rainer Schmidberger

begonnen am: 14. Februar 2011

beendet am: 16. August 2011

CR-Klassifikation: D.2.5

Inhalt

Der kombinierte Black-Box- und Glass-Box-Test bietet Möglichkeiten, neue Testfälle zu fin-
den, indem er unüberdeckte Codeblöcke aufzeigt. Jeder unüberdeckte Codeblock entspricht
einem neuen potenziellen Testfall. Diese Liste von Testfallempfehlungen kann zur Verbesse-
rung einer existierenden Systemtestsuite verwendet werden. Eine Hürde auf dem Weg zur
Verbesserung einer existierenden Systemtestsuite ist die notwendige Wirtschaftlichkeit. Die
Kosten der wahrscheinlich verhinderten Fehler müssen die Kosten der Testsuiteverbesserung
übersteigen.

Um einem Tester die wirtschaftliche Abarbeitung der Testfallempfehlungen zu ermöglichen,
sollten diese priorisiert werden. So soll erreicht werden, dass der Tester seine Zeit für die
Erstellung von Testfällen mit hoher Wahrscheinlichkeit, einen Fehler zu finden, einsetzt.

In dieser Diplomarbeit wird ein Modell für die Priorisierung von Testfallempfehlungen
vorgestellt. Das Modell basiert auf Heuristiken, die die Fehlerfindwahrscheinlichkeit und
mögliche Fehlerschwere von Testfallempfehlungen bewerten. Die Heuristiken nehmen ihre
Informationen dazu aus verschiedenen Quellen, unter anderem aus dem Quellcode und der
Versionsgeschichte des Programms. Alle Heuristiken stammen dabei aus der bestehenden
Literatur zu den Themen „risikobasierter Test“ und „Fehlerprognose“. Das Priorisierungsmo-
dell ist allerdings nicht starr auf eine Menge von Heuristiken ausgelegt, sondern kann durch
zusätzliche Heuristiken erweitert werden.

Das Modell wurde als CodeCover-Erweiterung implementiert und fügt der Eclipse-Integration
von CodeCover eine weitere Sicht hinzu. Mit Hilfe dieser CodeCover-Erweiterung können
nach einem Testdurchlauf mit CodeCover Testfallempfehlungen generiert und mit Hilfe
mehrerer Heuristiken priorisiert werden. Die Implementierung ist dabei als Framework für
die Erprobung weiterer Heuristiken zur Priorisierung von Testfallempfehlungen geeignet.

Die Arbeit schließt mit einer Erprobung der CodeCover-Erweiterung bei einem Industriepart-
ner.

3

Abstract

The combined black-box and glass-box test offers possibilities of finding new test cases by
showing uncovered code blocks. Every uncovered code block corresponds to a potential new
test case. This list of test case recommendations can be used to improve an existing suite of
system test cases. An obstacle on the way to the improvement of an existing system test suite
is the required cost effectiveness. The cost of the probably avoided errors in production must
outweigh the cost of test suite improvement.

To facilitate the cost-effective working off the test case recommendations they should be
priorized. Thus the tester can focus his time on the creation of test cases with a high
probability of finding an error.

In this diploma thesis a model for the priorization of test cases is presented. The model is
based on heuristics that rate the error finding probability and the potential covered error
severity of a test case recommendation. These heuristics rely on several sources such as the
source code and the version archive. The heuristics are extracted from the existing literature
about risk-based testing and error prediction. The priorization model is however not limited
to a certain set of heuristics but it can be extended to include further heuristics.

The model has been implemented as an extension for the tool CodeCover. It supplements
the Eclipse integration with another view. Using this view one can generate a list of test case
recommendations after a test execution and priorize them using multiple heuristics. The
implementation is fit to be used as a framework for the trial of further heuristics for the
priorization of test cases.

This work concludes with an experiment on the performance of the implementation at a
company.

4

Danksagungen

Ich möchte allen danken, die mir bei dieser Diplomarbeit geholfen haben, insbesondere Rainer
Schmidberger für die hervorragende Betreuung. Weiterhin möchte ich mich beim Industrie-
partner – vor allem bei Volker Werner – für die Unterstützung bei der Erprobung bedanken.
Abschließend möchte ich mich bei Günter für die investierte Zeit, das Korrekturlesen und die
Anmerkungen herzlich bedanken.

5

Inhaltsverzeichnis

1 Einleitung 11
1.1 Aufgabenstellung . 11

1.2 Motivation . 12

2 Literaturrecherche 15
2.1 Risikobasierter Test . 15

2.2 Fehlerprognose . 18

2.3 CodeCover . 23

2.4 Testsuite-Reduktion . 25

2.5 Sonstiges . 25

2.6 Schlussfolgerungen aus der Literaturrecherche 25

3 CodeCover 29

4 Priorisierungsmodell 31
4.1 Grundbegriffe des Modells . 32

4.2 Bewertungsebenen . 32

4.3 Überblick über das Modell . 33

4.4 Fehlerdatenquellen . 33

4.4.1 Quellcode . 34

4.4.2 Versionsgeschichte . 35

4.4.3 Stressfaktoren . 36

4.4.4 Expertenwissen . 37

4.4.5 Verwendete Qualitätssicherungsmaßnahmen 37

4.4.6 CodeCover-Überdeckung . 38

4.5 Bewertung der Fehlerwahrscheinlichkeit . 38

4.6 Ablauf der Priorisierung . 39

4.7 Bewertung des Modells . 40

5 Umsetzung 43
5.1 Ziele . 43

5.2 Umgesetzte Modellelemente . 44

5.3 Entwurf und Implementierung . 45

5.3.1 Datenstruktur . 45

5.3.2 Ablauf der Priorisierung . 46

5.3.3 Erweiterbarkeit . 46

5.3.4 Eclipse als notwendiger Übersetzer . 47

7

5.3.5 Speicherung von Zwischenergebnissen 48

5.3.6 Zukünftige Verbesserungen . 48

5.4 Screenshots . 49

5.5 Fazit zur Umsetzung . 49

6 Erprobung 53
6.1 Testumgebung . 53

6.2 Geplanter Ablauf . 54

6.2.1 Integration von Functional Tester mit CodeCover 55

6.2.2 Risiken . 55

6.3 Tatsächlicher Ablauf . 55

6.3.1 Auswahl des zu bearbeitenden Programms 55

6.3.2 Prüfling . 56

6.3.3 Einrichtung der Entwicklungsumgebung 56

6.3.4 Instrumentierung . 56

6.3.5 Testumgebung und Testsuite . 57

6.3.6 Auswertung der Ergebnisse . 57

6.4 Schlussfolgerungen aus der Erprobung . 62

7 Zusammenfassung 63

Literaturverzeichnis 65

8

Abbildungsverzeichnis

3.1 Beispiel der CodeCover-Ausgabe der Überdeckung einer Funktion 30

4.1 Überblick über die Konzepte des Modells und ihre Beziehungen 34

5.1 Datenstruktur der CodeCover-Erweiterung . 45

5.2 Ablauf der Priorisierung . 47

5.3 Konfiguration eines Fehlerindikators . 50

5.4 Sicht zur Anzeige und Priorisierung der Testfallempfehlungen 50

5.5 Dialog zur Gewichtung der Fehlerdatenquellen 51

5.6 Dialog zum Filtern von Paketen . 51

5.7 Detailansicht der Bewertung einer Testfallempfehlung 52

6.1 Boxplot der Verteilung Punkte der einzelnen Datenquellen sowie deren Summe 58

6.2 X/Y-Plot der Verteilung der Gesamtpunkte . 60

6.3 Verteilung der Bewertungen der Fehlerdatenquellen 61

6.4 Verteilung der Bewertungen der Fehlerdatenquellen ohne GUI-Code 61

Tabellenverzeichnis

2.1 Unvollständige Liste der Hypothesen aus [FO00] 19

6.1 Die 31 höchstgewichteten Empfehlungen mit LOC, Anzahl tangierender Test-
fälle, Punkte der Fehlerdatenquellen Code, Versionsgeschichte und CodeCover-
Überdeckung sowie der Summe der Punkte. Alle empfohlenen Code-Blöcke
sind If-Blöcke. Die Blöcke mit null Codezeilen sind implizite Else-Blöcke. . . 59

9

1 Einleitung

1.1 Aufgabenstellung

Vollständiges Zitat der Aufgabenstellung:

Hintergrund

Das Open-Source Glass-Box-Test-Werkzeug CodeCover unterstützt einen kombinierten
Black- Box-/Glass-Box-Testansatz, als dessen Resultat der Tester konkrete Vorschläge
für neue Testfälle erhält. Der besondere Vorteil dieser Vorschläge ist der Bezug zu
bestehenden Black-Box- Testfällen, die der Tester als Grundlage für die neuen Testfälle
nutzen kann. In der aktuellen CodeCover-Version werden diese Testfall-Vorschläge
vollständig in eine Tabelle geschrieben, die z.B. mit Excel geöffnet und ausgewertet
werden kann. Eine wichtige Funktion bilden dabei Priorisierungen oder Filterungen, da
die Anzahl der Vorschläge für Systeme der industriellen Praxis sonst unhandlich groß
wird. Derzeit werden hierfür die Sortier- und Filterfunktionen des Tabellensystems
genutzt, eine Integration in CodeCover gibt es nicht. Es gibt auch keine systematische
Hilfestellung für den Benutzer, also keinerlei Hinweise, in welchen Fällen welche Filter
oder Priorisierungen verwendet oder kombiniert werden sollen.

Aufgabenstellung

Um eine solche systematische Filterung und Priorisierung der Testfall-Vorschläge und
eine Integration dieser Funktionen in CodeCover geht es im ersten Abschnitt dieser
Arbeit. Im zweiten Abschnitt soll die CodeCover-Erweiterung an einem Beispiel aus
der industriellen Praxis erprobt werden.

Zu Beginn der Arbeit sollen die Priorisierungen des risikobasierten Testens in ei-
ner umfangreichen Literaturrecherche untersucht werden. Auch gibt es im Bereich
der Testsuite-Reduktion (im Zusammenhang mit Regressionstest) einige interessante
Ansätze zur Testfall-Priorisierung. Die so ermittelten Priorisierungen sollen auf ihre
prinzipielle Anwendbarkeit und Praxistauglichkeit geprüft werden und als ein wich-
tiges Zwischenresultat tabellarisch zusammengefasst werden. Auch in dieser Phase
können ein oder mehrere Industriepartner im Rahmen von Interviews zur Bewertung
der Praxistauglichkeit mit einbezogen werden.

Zur Integration der Priorisierungsfunktionen in CodeCover ist zunächst eine kurze
Spezifikation zu erstellen. Die Integration soll anschließend implementiert werden.
Notwendig ist eine gute Benutzerführung; der Benutzer soll systematisch zu einer für
sein System und seine Testziele geeigneten Priorisierung geführt werden.

11

1 Einleitung

In einem zweiten Abschnitt der Arbeit sollen die CodeCover-Erweiterung für ein System
der industriellen Praxis angewendet werden. Die Praxistauglichkeit der aus der Literatur
ermittelten Priorisierungen sowie die Bedienbarkeit der CodeCover-Erweiterung sollen
am konkreten Beispiel überprüft werden. Der konkrete Nutzen für den Tester soll
bewertet werden.

Folgende Teilaufgaben sind während der Diplomarbeit durchzuführen:

• Erstellen eines Projektplans mit expliziter Angabe von Meilensteinen [DLLS05]

• Literaturrecherche zum Thema risikobasierter Test und Testsuite-Reduktion

• Einarbeitung in CodeCover und den kombinierten GBT/BBT [Sch10]

• Zusammenstellung der Priorisierungen der Literatur

• Erarbeiten konkreter Lösungsvorschläge zur Umsetzung in CodeCover, Erstellen
der Spezifikation

• Zwischenvortrag

• Implementierung der CodeCover-Erweiterung

• Erprobung an einem Beispiel aus der industriellen Praxis, Aufwands- und Nut-
zenbewertung

• Präsentation der Ergebnisse der Diplomarbeit in einem Endvortrag.

• Berichtserstellung

CodeCover steht unter der OpenSource-Lizenz EPL (Eclipse Public Licence). Die zu
implementierende Erweiterung soll ebenso unter EPL gestellt werden.

Vertrauliche Informationen der Praxiserprobung müssen ggf. in einem zum Bericht
getrennten Dokument verfasst werden. Die Ergebnisse werden im Bericht dann auf die
Zusammenfassung reduziert.

1.2 Motivation

Der Test einer Software ist eine Qualitätssicherungsmaßnahme, die nahezu überall eingesetzt
wird, weil ihr enorme Wichtigkeit zugeschrieben wird. Unter Test verstehen wir in dieser
Arbeit die – auch mehrfache – Ausführung eines Programms auf einem Rechner mit dem
Ziel, Fehler zu finden [LL07].

Der Test besteht dabei aus der sequenziellen Ausführung vorher definierter Testfälle, die aus
Vorbedingung, Aktion und Nachbedingung bestehen. Ein Testfall hat dabei eine Wahrschein-
lichkeit zwischen null und hundert Prozent einen Fehler zu finden. Testfälle, die sicher einen
Fehler anzeigen, und solche, die nie einen Fehler finden werden, brauchen nicht ausgeführt
werden. Von den verbleibenden Testfällen sind insbesondere diejenigen interessant, die bei

12

1.2 Motivation

möglichst wenig Durchführungsaufwand eine möglichst große Wahrscheinlichkeit aufweisen,
einen Fehler zu finden.

Die begrenzten Ressourcen an Zeit und Personal müssen möglichst effizient eingesetzt werden,
um möglichst viele Eingaben an das Programm abzudecken. Hierzu sind Testfälle notwen-
dig, die durch hohe Fehlerfindwahrscheinlichkeit und geringen Durchführungsaufwand
wirtschaftlich sind.

Der kombinierte Black-Box- und Glass-Box-Test bietet Möglichkeiten, neue Testfälle zu finden.
Die Testfallempfehlungen des Werkzeugs CodeCover sollen priorisiert werden, um dem
Tester Hilfestellung bei der Entwicklung neuer Testfälle zu geben. Die Möglichkeiten des
Glass-Box-Tests, die Qualität eines Testfalls in Bezug auf seine Codeüberdeckung zu bewerten
werden dabei genutzt. Leider sind absolut objektive Bewertungen von Testfällen so nicht
möglich, so dass hier auf Heuristiken zurückgegriffen werden muss.

Diese Arbeit bewegt sich im Bereich der heuristischen Priorisierung von Testfällen. Aus
einer großen Liste möglicher Testfälle sollen aufgrund verschiedener Kriterien diejenigen
ausgewählt werden, die die höchste Wahrscheinlichkeit haben, einen Fehler zu finden. Dazu
wird ein erweiterbares Modell zur Priorisierung von Testfallempfehlungen aufgestellt, im-
plementiert und erprobt. Der Tester hat damit die Möglichkeit, aus den besten Kandidaten
tatsächliche Testfälle zu erstellen und so wirtschaftlich die Qualität des Tests und damit die
Qualität des Endproduktes zu verbessern.

Diese Arbeit ist im Softwarelebenslauf nach dem Systemtest und der Inbetriebnahme ange-
siedelt. Die Verbesserung einer Testsuite nach Inbetriebnahme lohnt sich, wenn das Produkt
lange in Betrieb sein wird und wenn die Fehlerfolgekosten hoch sind, da die Erweiterung
der Testsuite wirtschaftlich bleiben muss. Zudem sind eine dokumentierte Testsuite und ein
Testprozess notwendig.

Gliederung der Arbeit

Die Arbeit besteht aus vier Blöcken: Literaturrecherche, Entwurf eines Priorisierungsmodells,
Implementierung des Modells und Erprobung des Modells.

Während der Literaturrecherche wurden die Grundlagen des risikobasierten Tests, die vor-
handenen Möglichkeiten zur Priorisierung von Testfallempfehlungen zusammengestellt und
in Form von Thesen notiert. Auf Basis dieser Thesen wurde ein Modell entworfen, das
die Priorisierung der von CodeCover generierten Testfallempfehlungen ermöglicht. Nach
einer knappen Beschreibung des Entwurfs und der Implementierung des Modells folgt die
Dokumentation der Erprobung des Modells beim Industriepartner.

13

2 Literaturrecherche

Die folgenden Themenbereiche in der Literatur scheinen für das Thema interessant:

• Risikobasierter Test: Der risikobasierte Test zielt auf einen wirtschaftlichen Test ab, der
durch Fokussierung auf die größten Risiken erreicht werden soll.

• Fehlerprognose: Fehlerprognose ist die Vorhersage der Position und Häufigkeit von
Fehlern. Es existieren viele Ansätze und Verfahren, um die Fehlerzahl in einem Pro-
gramm(teil) vorherzusagen.

• Testsuite-Reduktion: Testsuite-Reduktion bezeichnet Verfahren, die darauf abzielen,
eine Menge an Testfällen zu reduzieren, ohne deren Potenzial, einen Fehler zu finden,
wesentlich einzuschränken.

• CodeCover: CodeCover ist das zentrale Werkzeug dieser Arbeit.

• Sonstiges: Literatur, die nicht in die anderen Kategorien passt.

Im Folgenden werden 14 Veröffentlichungen aus diesen Gebieten zusammengefasst.

2.1 Risikobasierter Test

Grundlagen

In [Aml00] beschreibt Amland die Grundlagen, Grundbegriffe und Konzepte des risiko-
basierten Tests. Er zeigt wie diese angewendet werden, gibt eine Vorgehensweise für den
risikobasierten Test an und schildert die Erfahrungen, die bei der Erprobung dieses Wissens
gemacht wurden.

Der risikobasierte Test ist eine Vorgehensweise, die bei der Auswahl der zu testenden Teile
und deren Testtiefe hilft, mit dem Ziel, eine gute Qualität innerhalb möglichst kurzer Zeit zu
erreichen.

Die Grundbegriffe sind:

• Programmeinheit: Eine Programmeinheit ist ein Teil des Quellcodes eines Programms.
Im Kontext der folgenden Definitionen kann eine Programmeinheit eine Methode, eine
Klasse, eine Funktionalität, ein GUI-Dialog, ein Modul oder ein ganzes Programm sein.

15

2 Literaturrecherche

• Problem: Ein Problem ist ein sicher eintretendes Ereignis mit negativer Auswirkung
auf das Projektziel. Im Gegensatz zum Risiko ist das Eintreten nicht von Wahrschein-
lichkeiten abhängig, sondern sicher.

• Risiko: Ein Risiko ist ein mögliches Problem, das eintreten kann, aber nicht muss, aber
im Falle seines Eintretens negative Auswirkungen auf das Projektziel hat. Ein Risiko
kann durch seine Eintrittswahrscheinlichkeit und die im Schadensfall entstehenden
Risikokosten beschrieben werden. Das Produkt aus Eintrittswahrscheinlichkeit und
Risikokosten ergibt den Risikowert.

• Risikoidentifikation: Die Phase des Tests, in der die Arten der möglichen Risiken
zusammengetragen werden. Solche Arten können kaufmännische Risiken, technische
Risiken oder indirekte Risiken beispielsweise durch schlechte Usability sein. Zudem
wird hier die Risikostrategie festgelegt.

• Risikoabschätzung: Bei der Risikoabschätzung werden die Eintrittswahrscheinlichkeit
und die Risikokosten für das Versagen jeder einzelnen Programmeinheit abgeschätzt.

• Risikostrategie: Die Risikostrategie definiert die Kriterien, nach denen der Test optimiert
werden soll. Beispiele solcher Kriterien sind „Keine Klasse soll einen Risikowert von über
1000 Euro haben“ oder „Der Risikowert der Druckfunktion soll unter dem Risikowert
der Exportfunktion liegen“. Die Risikostrategie ist damit Interpretationsmittel für das
Ergebnis der Risikoabschätzung, das sonst ohne Bedeutung wäre. Sind alle in der
Risikostrategie angegebenen Kriterien erfüllt, gilt der Test als abgeschlossen, da alle
seine Ziele erreicht sind und das Risiko im Zielbereich liegt.

Das Vorgehen ist dabei ein Zyklus aus den Schritten Risikoidentifikation, Risikoabschätzung
und Risikominderung.

Risikominderung beschreibt hier den eigentlichen Test und das Beheben der Fehler, wodurch
ein Risiko gefunden und anschließend eliminiert wird. (D.h. die Eintrittswahrscheinlichkeit
des Problems soll auf Null gesenkt werden, wodurch es kein Risiko mehr ist.) Die Testfälle
werden nach der Risikoabschätzung entsprechend des Risikowertes sortiert und bei der Test-
durchführung in dieser Reihenfolge abgearbeitet, vom höchsten Risikowert zum niedrigsten.
Dabei wird laufend geprüft, ob die Kriterien der Risikostrategie erfüllt sind. Ist dies sicher der
Fall, wird der Test beendet. Zudem müssen laufend Zeit- und Ressourcenaufwand kontrolliert
werden, damit der risikobasierte Test nicht zum priorisierten Test verkommt. Mit Hilfe der
gesammelten Testaufwandsdaten lassen sich die für den weiteren Test benötigten Ressourcen
errechnen und mit den Risiken vergleichen, so dass ein optimales Testende für maximale
Wirtschaftlichkeit gewählt werden kann.

Ist nur begrenzt Zeit für die Testdurchführung vorhanden wird automatisch sichergestellt,
dass für die größten Risiken die meisten Testressourcen aufgewendet wurden.

Der Artikel beschreibt die Anwendung des risikobasierten Tests auf einer Banksoftware im
Umfang von 730.000 SLOC1. Bei der Risikobewertung zeigte sich, dass es sinnvoll ist, die

1Statement lines of code

16

2.1 Risikobasierter Test

Risiken gründlich zu bewerten. So wurden verschiedene Programmeinheiten mit hohem
Risikowert identifiziert, die aber teils sehr hohe Risikokosten bei moderater Eintrittswahr-
scheinlichkeit hatten und teils Programmeinheiten, die trotz geringen Risikokosten wegen
der hohen Eintrittswahrscheinlichkeit einen hohen Risikowert hatten. Als Nebenergebnis
war allen beteiligten Testern bekannt, auf was sie beim Test der jeweiligen Programmein-
heiten besonders Wert legen mussten (Probleme bei der Testdurchführung, zu erwartende
Fehlerarten).

Es standen nicht genug Ressourcen für eine detaillierte Risikoabschätzung aller Komponenten
zur Verfügung. Daher wurde eine Top-20-Liste der wichtigsten Funktionen aus Kundensicht
zusammengestellt. Der weitere Test konzentrierte sich dann auf die Programmeinheiten, aus
denen diese Funktionen bestanden.

In dem beschriebenen Testprojekt wurden Metriken für verschiedene Zwecke eingesetzt. Zum
einen für die Identifikation von Bereichen mit besonders hohem Risiko, zum anderen für
die Messung des Testfortschritts. Dabei wurde gemessen, wie viel Zeit einzelne Testfälle
in Anspruch genommen haben und wie viel Zeit der Test einer Programmeinheit benötigt
hat. Zudem wurden für die Teststeuerung die gefundenen Fehler aufgezeichnet, um die
Effizienz des Tests einschätzen zu können, beispielsweise in gefundenen Fehlern oder ge-
senkten Gesamtrisikowert pro Mannstunde. Diese Metriken können frühzeitig wesentliche
Informationen über den Testfortschritt geben und das Testendekriterium möglicherweise
beeinflussen. Es wäre durchaus denkbar, dass ein Team von Testern immer mehr Fehler pro
Zeiteinheit findet, denn es kennt das System immer besser.

Um das Risiko der Programmeinheiten übersichtlich darzustellen, schlägt Amland ein Dia-
gramm mit den Achsen Eintrittswahrscheinlichkeit und Risikokosten vor. So können die
Betrachter u.a. durch farbliche Unterstützung schnell einen Überblick über die Risikosituation
des Systems gewinnen und beispielsweise schnell sehen, ob das System mit vielen leichten,
oder mit wenigen schweren Problemen kämpft.

Der Autor warnt davor, den risikobasierten Test als Allheilmittel zu betrachten und gibt zu
bedenken, dass der risikobasierte Test nur funktioniert, wenn schon ein funktionierender
Testprozess etabliert ist und wenn er von der Unternehmensorganisation unterstützt wird.
Ein Tester alleine kann keine Entscheidungen über Risiken für den Kunden treffen.

Amland gibt einen guten Überblick über den risikobasierten Test und setzt seinen Fokus auf
die prinzipielle Durchführung und die organisatorischen Rahmenbedingungen und Vorteile
unter der Voraussetzung, dass ein Test in vielen Fällen nicht perfekt oder gut, sondern nur
„gut genug“ sein muss. Diese Diplomarbeit wird sich in großen Teilen um Metriken für die
Risikoabschätzung kümmern.

Anwendung

Der Artikel [Bac99] von James Bach ist in Form eines Erfahrungsberichtes verfasst und
fokussiert sich auf die Erfahrungen des Autors im Bereich der Risikoidentifikation. Dabei
unterscheidet der Autor zwei Analyseansätze.

17

2 Literaturrecherche

• Outside-in

• Inside-out

Der Outside-In-Ansatz verwendet als Basis vordefinierte Listen von möglichen Risiken. Diese
enthalten allgemeine Qualitäts- und Risikokriterien und entstehen aus Erfahrung des Testers.
Bei diesem Ansatz geht der Tester diese Listen durch und versucht festzustellen, ob diese
beim aktuellen Prüfling in Frage kommen. Wo im Produkt nach Risiken gesucht wird, lässt
Bach offen. Die Risiken können also mit Hilfe der Spezifikation, aber auch im Quellcode
gesucht werden. Dieser Ansatz ist laut Bach allgemein gut und einfach verwendbar, geht
allerdings nicht unbedingt auf spezielle Merkmale des Prüflings ein, da nur nach den Risiken
in den vordefinierten Listen gesucht wird.

Bei der Inside-out-Vorgehensweise werden die Risiken im fertigen Programm, genauer im
Quelltext und im Entwurf, gesucht. Die Vorgehensweise ist also mit Glass-Box-Ansätzen
vergleichbar. Der Tester geht das Programm Teil für Teil durch und sucht nach möglicherweise
auftretenden Problemen. Dabei stellt er sich (oder einem Entwickler, der das Produkt gut
kennt) folgende Fragen:

• Welche Probleme könnten hier auftreten? Welche Schwächen hat diese Komponente?

• Welche Eingaben oder Ereignisse könnten hier einen Fehler auslösen?

• Welche Komponenten würden von einem Fehler hier beeinflusst? Welche Konsequenzen
hätte ein Fehler hier?

• Wie wahrscheinlich ist es, dass diese Programmeinheit einen Fehler enthält? [FO00]

Der zweite Teil des Artikels handelt von der Organisation des risikobasierten Tests. Der
Autor stellt verschiedene Möglichkeiten vor, Risiken und Komponenten zu verwalten. Im
Schlusswort weist der Autor eindringlich darauf hin, dass das Arbeitsmaterial am Beginn
des risikobasierten Tests aus Gerüchten besteht. Der risikobasierte Test ist eine Heuristik
und liefert damit weder genaue noch vollständige Ergebnisse. Wegen des Risikos, dass ein
risikobasierter Test in Frühstadien des Projekts nur eine schlechte Fehlererkennung leistet,
empfiehlt der Autor, statt ausschließlichem risikobasiertem Test auch andere Testverfahren
und möglichst breit gefächerte Datenquellen zu verwenden.

2.2 Fehlerprognose

Fenton und Ohlsson haben 1997 in [FO00] einige nahe liegende oder verbreitete Hypothesen
zur Fehlerverteilung in Programmen empirisch überprüft und sind dabei zu einigen teilweise
überraschenden Ergebnissen gelangt. Tabelle 2.1 zeigt die meisten Hypothesen und die
Ergebnisse deren empirischer Überprüfung. Die meisten Hypothesen hielten der empirischen
Überprüfung nicht stand. Die Überprüfung wurde bei Ericsson Telecom AB auf bestehenden
Daten durchgeführt. Es wurden keine besonderen Experimentbedingungen aufgesetzt. Die
Codebasis für die Untersuchung bestand aus 140 bzw. 246 Modulen mit je zwischen 1000 und
6000 LOC. Die Fehlerdaten wurden aus vier Testphasen gewonnen: Funktionstest, Systemtest,

18

2.2 Fehlerprognose

Nummer Hypothese Belege gefunden?
1a Eine kleine Zahl an Modulen enthält die meisten Fehler,

die vor dem Release gefunden wurden
Ja - 20/60-Regel

1b Wenn Hypothese 1a stimmt, liegt dies daran, dass diese
Module den meisten Code enthalten

Nein

2a Eine kleine Zahl von Modulen enthält die meisten im
Betrieb gefundenen Fehler

Ja - 20/80-Regel

2b Wenn Hypothese 2a stimmt, liegt dies daran, dass diese
Module den meisten Code enthalten

Nein, Belege für's
Gegenteil

3 Höhere Fehlerhäufigkeit im Funktionstest bedeutet höhe-
re Fehlerhäufigkeit im Systemtest

Schwacher Beleg

4 Höhere Fehlerhäufigkeit im Test vor dem Release bedeu-
tet höhere Fehlerhäufigkeit im Betrieb

Nein - starke Ab-
lehnung

5a Kleinere Module sind weniger fehleranfällig als große Nein
5b Größenmetriken wie LOC eignen sich zur Vorhersage der

Fehlerzahl eines Moduls vor dem Release
Schwacher Beleg

5c Größenmetriken wie LOC eignen sich zur Vorhersage der
Fehlerzahl eines Moduls nach dem Release

Nein

5d Größenmetriken wie LOC eignen sich zur Vorhersage der
Fehlerdichte eines Moduls vor dem Release

Nein

5e Größenmetriken wie LOC eignen sich zur Vorhersage der
Fehlerdichte eines Moduls nach dem Release

Nein

6 Komplexitätsmetriken sind besser zur Vorhersage geeig-
net, als einfache Größenmetriken

Nein, Schwacher
Beleg für SigFF-
Metriken a

8 In ähnlichen Bedingungen hergestellte Softwaresysteme
haben überwiegend ähnliche Fehlerdichten bei ähnlichen
Test- und Einsatzphasen

Ja

Tabelle 2.1: Unvollständige Liste der Hypothesen aus [FO00]

a[OA96]

Fehler in den ersten 26 Betriebswochen und Fehler in den ersten 52 Betriebswochen. Der
Testprozess beim Unternehmen war über viele Jahre etabliert und wohl erprobt.

Bell, Ostrand und Weyuker haben 2006 in [BOW06] ein sprachgesteuertes Telefonsystem
untersucht und dabei ein Modell zur Vorhersage der Fehlerdichte in einer Codedatei auf
Basis von Codemetriken entwickelt. Das Modell verwendet unter anderem die Heuristiken
LOC, Alter, Änderungsstatus und Programmiersprache. Die verwendeten Heuristiken wur-
den gewichtet, um den tatsächlichen Fehlerdaten zu entsprechen. Der dabei entstehende
Vorhersager war dann in der Lage, mit den 20% der als am fehleranfälligsten identifizierten
Dateien 75% der tatsächlichen Fehler abzudecken. Allerdings geben die Autoren zu bedenken,
dass diese Ergebnisse keinesfalls verallgemeinerbar sind und dass das Vorhersagemodell

19

2 Literaturrecherche

für jedes Projekt erst kalibriert werden muss, was viel Zeit in Anspruch nimmt und eine
umfangreiche Basis an verknüpfbaren Fehler- und Versionsdaten voraussetzt.

Neuhaus, Zimmermann, Holler und Zeller beschreiben in [NZZ07] die von ihnen durchge-
führte Analyse des Mozilla-Browser-Quellcodes [Moz11] auf der Suche nach einem Zusam-
menhang von Quellcodeeigenschaften und Sicherheitslücken. Weil eine Sicherheitslücke auch
„nur“ ein Fehler, wenn auch ein sehr spezieller, ist, können die Ergebnisse dieser Arbeit zu
einem gewissen Teil verallgemeinert werden. Im Gegensatz zu anderen Studien ([BOW06],
[OWB05], [FO00], [Kim03]), in denen eine Fehlerverteilung von ca. 80% der Fehler in 20% der
Module empirisch festgestellt wurde, wurden Sicherheitslücken nur in 4% der Module von
Mozilla gefunden. Die Autoren durchsuchten daraufhin diese Module nach Gemeinsamkeiten
und stellten fest, dass Module, die bestimmte Headerdateien [Wik10] importieren, zu 90%-
100% Sicherheitslücken enthielten. Ähnliche Ergebnisse ergeben sich für Aufrufe bestimmter
Funktionen, was allerdings mit den importierten Headerdateien korreliert, da nur vorher
importierte Funktionen aufgerufen werden können. Die Autoren haben diese Erkenntnisse
verwendet, um einen Vorhersager zu implementieren, der 45% aller verwundbaren Kompo-
nenten als solche markiert hat. Von den markierten Komponenten waren 70% tatsächlich
verwundbar, d.h. sie enthielten ausnutzbare Sicherheitslücken.

In [NBZ06] beschreiben Nagappan, Ball und Zeller eine empirische Studie, in der in fünf
verschiedenartigen Softwareprojekten von Microsoft ein Zusammenhang zwischen Code-
metriken und Fehlerdichte von Modulen gesucht und bei manchen Metriken und manchen
Projekten gefunden wurde.

Sie verfolgten das Ziel, der Qualitätssicherung eine gezieltere Fehlersuche zu ermöglichen.
Dazu werden in dem Artikel zwei verschiedene Ansätze zur Vorhersage der Fehlerdichte
von Modulen beschrieben und kombiniert angewendet. Die Ansätze basieren auf den bereits
entdeckten Fehlern und dem aktuellen sowie früheren Quellcode der Module, also auf deren
Versionsgeschichte.

Beim kombinierten Ansatz wurden die bereits entdeckten Fehler der einzelnen Module aus
den vorhandenen Fehlerdaten ermittelt und für diese Module wurden verschiedene Codeme-
triken2 erhoben. Anschließend wurden diese Daten einer Korrelationsanalyse unterzogen.

Die Ergebnisse dieser Analyse waren für jedes der fünf Projekte sehr verschieden. Während in
zwei der Projekte die Codemetriken mit den gefundenen Fehlern stark korrelierten, waren in
den drei verbleibenden Projekten nur wenig Übereinstimmungen zwischen Codekomplexität
und gefundener Fehlerzahl vorhanden. Die Autoren konnten keine Gruppe von Metriken
finden, die in allen Projekten mit den tatsächlichen Fehlern übereinstimmende Ergebnisse
geliefert haben. Allerdings ist ihnen gelungen, mit vorher an einem Projekt kalibrierten
Metriken die Fehlerdichte in gleichartigen Projekten akkurat vorherzusagen. Die Autoren
begründen die Unterschiede zwischen den Projekten unter anderem mit verschiedenen
Entwicklungsprozessen, die teilweise die später verwendeten Metriken schon während der
Entwicklung erheben und darauf reagieren.

2LOC, Klassen pro Modul, Funktionen pro Modul, globale Variablen pro Modul, Zeilen pro Funktion, Parameter
pro Funktion, etc.

20

2.2 Fehlerprognose

Aus den Ergebnissen ihrer Studie folgern die Autoren, dass es keine Menge von Codemetriken
gibt, die für jedes beliebige Projekt die zu erwartende Fehlerdichte eines Moduls mit nützlicher
Genauigkeit vorhersagen kann. Zwar ist es möglich, für ein bestimmtes Projekt Metriken zu
finden und zu kalibrieren, um die Fehlerdichte eines Moduls vorherzusagen, dies ist aber
sehr aufwendig und setzt statistisches Expertenwissen voraus.

2010 haben Sliversky, Zimmermann und Zeller in [SZZ05] bei der Untersuchung des Eclipse-
Quellcodes, seiner Versions- und Fehlergeschichte festgestellt, dass freitags die meisten
fehlereinführenden Commits („fix-inducing change“) gemacht wurden. Es ist allerdings davon
auszugehen, dass der Artikel im Wesentlichen zur Demonstration der Datenkombination von
Versions- und Fehlergeschichte dient.

Hovemeyer und Pugh haben 2004 in [HP04] einen Weg, Programmfehler auf Codeebene zu
finden, vorgestellt. In ihrem Artikel „Finding Bugs is Easy“ beschreiben sie das von ihnen
entwickelte Werkzeug FindBugs.

Die Autoren haben einige Methoden zur statischen Analyse auf der Basis sog. „bug patterns“
entwickelt. Ein „bug pattern“ oder Fehlermuster ist dabei eine Codefolge, die wahrscheinlich
einen Fehler enthält. Nach Meinung der Autoren sind Codedurchsichten zwar ein sehr
effektives Mittel, um Fehler zu finden, allerdings haben diese den Nachteil, zeitintensiv
zu sein. Zudem seien menschliche Prüfer anfällig, im Code zu sehen, was der Code tun
soll, anstatt was er wirklich tut. Automatisierte Prüfungen haben diesen Nachteil nicht.
Ein weiterer Vorteil dieser automatisierten statischen Analyse auf Codeebene ist, dass die
Ergebnisse dieser Prüfung nicht von der Qualität und Menge der Testfälle abhängt.

Allerdings sind diese Prüfungen keineswegs vollständig. Die Korrektheit eines Programmes
zu beweisen ist in den meisten Fällen kaum möglich. Unvollständige Verifikationen hingegen
können zu gewissen Teilen die Aufgaben einer Korrektheitsprüfung ausführen. Sie erzeugen
dabei zwar auch Fehldiagnosen, sind aber relativ einfach machbar.

Die implementierten Fehlermustersucher („bug pattern detectors“) verwenden verschiede-
ne Strategien, um Fehler zu finden. Dabei werden die folgenden Aspekte des Quellcodes
analysiert. Alle Untersuchungen verwenden den compilierten Bytecode als Basis:

Klassen- und Vererbungsstruktur Hier wird nur die Struktur innerhalb der Klassen, sowie
deren Vererbung betrachtet. Die eigentlichen Anweisungen werden ignoriert.

Einfacher Codedurchlauf Analysiert die Methoden der Klassen um einen Zustandsautoma-
ten zu erstellen. Es wird nicht die komplette Kontrollflussinformation genutzt, sondern
an einigen Stellen werden Heuristiken eingesetzt.

Kontrollfluss Es wird ein genauer Kontrollflussgraph erstellt.

Datenfluss Der Datenfluss wird analysiert um beispielsweise NullPointerExceptions erken-
nen zu können.

Mit Hilfe dieser Analyseansätze können Fehlermuster gefunden werden, die in die folgenden
Kategorien fallen:

• Single-Thread-Korrektheit

21

2 Literaturrecherche

• Multithread- / Synchronisierungskorrektheit

• Geschwindigkeitsproblem

• Sicherheitslücken und Verwundbarkeiten

Einige Beispiele für Fehlermuster, nach denen FindBugs sucht:

Cloneable Not Implemented Correctly Eine Javaklasse, die clone() überschreibt, muss
super.clone() aufrufen.

Equal Objects Must Have Equal Hash-codes Eine Javaklasse, die equals(Object) über-
schreibt muss auch hashCode() überschreiben. Eine Javaklasse, die hashCode() über-
schreibt, muss auch equals(Object) überschreiben.

Uninitialized Read in Constructor Es ergibt üblicherweise keinen Sinn, im Konstruktor den
Wert eines Felds zu lesen, das nicht initialisiert wurde.

Null Pointer Dereference Warnt, wenn der Kontrollfluss es ermöglicht, eine Methode oder
ein Feld einer Variable aufzurufen, deren Wert null ist.

Im Jahr 2004 haben die Autoren die erste Version von FindBugs evaluiert, in dem sie FindBugs
den Code von sechs verschiedenartigen Java-Projekten analysieren ließen. FindBugs erreichte
dabei eine Korrektheitsquote von erkannten Fehlern je nach Projekt zwischen 54% und 85%.
Dementsprechend lag die Quote der fälschlicherweise angezeigten Fehlern (false positive)
zwischen 13% und 45%. Dabei geben die Autoren zu bedenken, dass die false-positive-
Quote mit der Dauer der Benutzung des Programmes steigt, denn sind alle von FindBugs
angezeigten tatsächlichen Fehler behoben, bleiben nur die fälschlicherweise angezeigten
übrig.

FindBugs liegt unter anderem als standalone-Variante und als Eclipse-Plugin vor. In der
Zwischenzeit wurde FindBugs um viele weitere Fehlermuster erweitert.

Rutar et al. haben 2004 in [RAF04] die fünf automatischen Java-Fehlersuchwerkzeuge Find-
Bugs, JLint, PMD, Bandera und ESC/Java verglichen, in dem sie die Analyseergebnisse
von vier quelloffenen, verbreiteten Java-Programmen verglichen haben. Dabei haben sie
festgestellt, dass die erprobten Werkzeuge überwiegend disjunkte Warnungen generierten, so
dass es grundsätzlich wünschenswert wäre, ihre Ergebnisse mittels eines Meta-Werkzeuges
auszuwerten.

Die Werkzeuge verwenden unterschiedliche Methoden zur Analyse des Quellcodes. Syntax-
prüfungen werden von FindBugs, JLint und PMD durchgeführt. Der Datenfluss wird von
FindBugs und JLint analysiert. Bandera basiert ausschließlich und als einziges Werkzeug
auf Modellprüfung, was es für normale, nicht extensiv annotierte, Java-Programme nicht
anwendbar macht. ESC/Java verwendet formale Verifikation auf Basis von Bedingungen, die
der Programmierer in Form von Annotationen einfügen muss.

Die Dauer der Analyse reicht von einigen Sekunden bei JLint über einige Minuten bei
FindBugs und PMD bis zu einigen Stunde bei ESC/Java.

22

2.3 CodeCover

FindBugs sticht unter den erprobten Werkzeugen durch eine niedrige Zahl generierter
Warnungen und eine geringe false-positive-Quote heraus, was es im Vergleich zu den anderen
Werkzeugen einfach zu bedienen macht. Dazu deckt FindBugs im Vergleich zu seinen
Konkurrenten die meisten Fehlerkategorien ab.

Die Autoren schlagen ein Meta-Werkzeug und eine Metrik vor, die die Ergebnisse mehrerer
Fehlersuchwerkzeuge kombinieren und werten können. Die Implementierung eines solchen
Werkzeuges ist mit dieser Diplomarbeit teilweise erfolgt.

2.3 CodeCover

In [Sch08] werden die Grundlagen des Glass-Box-Tests beschrieben und die Entstehung des
Werkzeugs CodeCover, sowie dessen Funktionen, erklärt. Der Glass-Box-Test ist im Gegensatz
zum Black-Box-Test nicht von einer Spezifikation abhängig, um Testfälle zu finden. Allerdings
können die aus der Spezifikation erstellten Testfälle verwendet werden, um mit Hilfe von
CodeCover weitere Testfälle zu finden.

Die Nutzen des Glass-Box-Tests werden wie folgt aufgezählt:

Codeüberdeckung als Metrik zur Testgüte Die während des Tests erhobenen Überdeckungs-
werte eignen sich als objektive Metrik zur Messung der Testgüte

Testsuite-Erweiterung Mit den ermittelten Überdeckungswerten ist es möglich, aus unüber-
deckten Codestellen auf fehlende Testfälle zu schließen.

Testsuite-Reduktion Testfällen mit gleicher oder sehr ähnlicher Überdeckung wird eine
geringere Chance auf das Auffinden von Fehlern eingeräumt als Testfällen mit deutlich
unterschiedlicher Überdeckung. Diese können damit aus der Testsuite genommen oder
geringer priorisiert werden.

Grundlage für selektiven Regressionstest Weiß man, welche Testfälle ein bestimmtes Stück
Programmcode abdecken, reicht es, beim Regressionstest diese Testfälle auszuführen.
[Sch09]

Für einige dieser Zwecke muss man wissen, welcher Code von einzelnen Testfällen ausgeführt
wird. Daher unterstützt CodeCover den testfallselektiven Glass-Box-Test, mit dessen Hilfe die
Überdeckung einzelner Testfälle gemessen werden kann.

[Sch10] geht näher auf die Kombination von Black-Box- und Glass-Box-Test ein. Im Artikel
wird beschrieben, wie mit CodeCover eine Liste von Testfallempfehlungen unter Anwendung
eines solchen kombinierten Ansatzes generiert werden kann.

Dabei kommt neben dem Werkzeug CodeCover das Werkzeug Justus3 zum Einsatz. Justus
ist ein Werkzeug für den Black-Box-Test. Zusätzlich bietet Justus eine Schnittstelle für die

3http://justus.tigris.org

23

2 Literaturrecherche

Verwendung mit CodeCover, mit der die Übermittlung der Testfallinformationen an Code-
Cover realisiert wird. Während der Testdurchführung mit Hilfe von Justus wird CodeCover
automatisch über Beginn und Ende eines Testfalles informiert, so dass eine testfallselektive
Auswertung der Ergebnisse möglich wird.

Der Denominator eines Codeelementes ist ein Codestück, durch das jeder Kontrollfluss
in dieses Codeelement zuvor führt. Die Liste von Testfallempfehlungen wird generiert,
indem nach Codeblöcken gesucht wird, die selbst nicht ausgeführt werden, deren direkter
Denominator aber ausgeführt wird. Diese Codeblöcke werden also tangiert, aber nicht
ausgeführt. Das Prädikat eines Codeblocks ist der Ausdruck, der den Kontrollfluss in diesen
Codeblock kontrolliert, beispielsweise der Ausdruck number == 3 einer If-Anweisung.

Diese tangierten, aber nicht ausgeführten, Codeblöcke sind für die Herleitung neuer Testfälle
von großer Bedeutung, da sie ein Indiz für möglicherweise anders zu wählende Eingabedaten
sind, die dann den Codeblock ausführen. Solche Empfehlungen können nutzlos sein, wenn
die Erfüllung des Prädikats nicht möglich ist, der Tester das Prädikat nicht versteht oder das
Prädikat zur defensiven Programmierung gehört, also nie wahr werden kann.

Der Autor berichtet, dass für Programme aus der industriellen Praxis mit mehreren Tausend
Testfallempfehlungen zu rechnen ist. Prinzipiell ist jede Empfehlung, die mit dem oben
beschriebenen Verfahren gefunden wurde, geeignet, einen Fehler zu finden. Allerdings ist
es weder zumutbar noch wirtschaftlich, eine so lange Liste durchzuarbeiten und aus den
einzelnen Einträgen neue Testfälle zu erstellen. Die Empfehlungen müssen daher priorisiert
werden. Der Autor schlägt die folgenden Kriterien vor:

Priorität der tangierenden Testfälle Ein tangierender Testfall ist ein Testfall, dessen Kontroll-
fluss den unüberdeckten Codeblock, der Ziel der Empfehlung ist, tangiert. Die Variante
eines wichtigen Testfalls ist vermutlich auch wichtig.

Aufwand zur Ausführung Unter der Annahme, zwei Testfallempfehlungen sind „gleich gut“,
würde man die mit dem geringeren Ausführungsaufwand bevorzugen.

Bevorzugung spezifischer Testfälle Je weniger Testfälle einen Codeblock tangieren, desto
geeigneter sind daraus entstandene Testfälle. 4

Gewichtung der Code-Elemente Unwirksame if- oder else-Blöcke haben im Allgemeinen
mehr Gewicht als unvollständige Termüberdeckung oder Schleifenwiederholungen.

Black-Box-Fehlerprognose Expertenwissen und Fehlerstatistik geben Anhaltspunkte, wo
bevorzugt nach besseren Empfehlungen zu suchen ist.

Fehlerdichte des Codes In bekannt fehleranfälligen Programmeinheiten sollte eher nach
weiteren Fehlern gesucht werden.

Der Autor weist darauf hin, dass die Priorisierung dem Tester lediglich eine methodische
Hilfestellung bei der Abarbeitung gibt. Eine Sicherheit, dass eine der gering priorisierten
Testfallempfehlungen keinen Fehler aufdecken kann, gibt es nicht.

4Dies ist ein Erfahrungswert der bei der Erprobung des Ansatzes zur Testsuiteverbesserung gewonnen wurde.

24

2.4 Testsuite-Reduktion

2.4 Testsuite-Reduktion

Die Techniken der Testsuite-Reduktion nehmen als Eingabe die Codeüberdeckung einzelner
Testfälle und bewerten diese dann entsprechend ihrer Redundanz. Dieser Ansatz ist bei der
hier vorliegenden Problemstellung nicht anwendbar, da die Testfälle ja erst empfohlen werden
und daher noch keine Überdeckung vorhanden ist.

In [RHRH02] werden mehrere Studien zur Testsuite-Reduktion betrachtet, verglichen und es
werden deren Ergebnisse kritisch betrachtet. Die Autoren kommen dabei zu dem Schluss, dass
Testsuite-Reduktion das Fehlererkennungspotenzial einer Testsuite schwer beeinträchtigen
kann. Das Risiko, dass eine Testsuite bei der Anwendung von Reduktionstechniken unerwartet
viel an Fehlererkennungspotenzial einbüßt seien zu groß.

Weil das Ziel der Arbeit die Findung guter neuer Testfälle, und nicht die Löschung schlechter,
ist, scheinen die Techniken der Testsuite-Reduktion nicht hilfreich zu sein.

2.5 Sonstiges

In [LL07], Kap. 13 sagen die Autoren, dass Reviews ein gutes Mittel zur Steigerung der
Qualität der geprüften Dokumente sind.

In [FAI97] wird eine Studie beschrieben, in der gezeigt wurde, dass gestresste Softwareent-
wickler mehr Fehler machen.

2.6 Schlussfolgerungen aus der Literaturrecherche

Die oben zusammengefassten Artikel sind die Basis für die im Folgenden aufgestellten
Thesen, die die Grundlage der weiteren Kapitel der Diplomarbeit darstellen. Diese Thesen
sind Aussagen aus der Literatur. Sie sind nicht widerspruchsfrei. Dies ist allerdings für das
später vorgestellte Priorisierungsmodell nicht zwingend notwendig, da die Auswahl der
tatsächlich verwendeten Thesen dem Benutzer überlassen wird. Mehr weiter unten.

Zur Gruppierung der Thesen mehr in Kapitel 4.

Code

1. Komplexitätsmetriken 1: Komplexitätsmetriken, insbesondere Metriken für objektori-
entierte Software, korrelieren positiv mit der Fehlerdichte. [NBZ06] [HPH+

09]

2. Komplexitätsmetriken 2: Für jedes Projekt gibt es eine Menge von Komplexitätsmetri-
ken, die mit den gefundenen Fehlern korreliert. [NBZ06]

3. Dateigröße: Größere Dateien haben eine höhere Fehlerdichte. [OWB05] [BOW06]

25

2 Literaturrecherche

4. Kopplung: Kopplungsmetriken sind zur Fehlerprognose geeignet. [HPH+
09]

5. Code smell: Sog. „Code smell metrics“ sind zur Fehlerprognose geeignet. [HPH+
09]

[OWB05] [RAF04] [HP04]

6. Abhängigkeiten: Importe5 bestimmter Komponenten korrelieren mit der Fehlerwahr-
scheinlichkeit. [SZZ06] [NZZ07]

Versionsgeschichte

7. Änderungshäufigkeit: Häufiger geänderte Dateien haben eine höhere Fehlerdichte.
[OWB05] [BOW06]

8. Fehleranfälligkeitspriorität: Die Erhöhung der Überdeckung lohnt besonders in Mo-
dulen mit hoher Fehlerdichte. [Sch10]

9. Dateialter: Ältere Dateien haben eine geringere Fehlerdichte. [OWB05] [BOW06]

10. Übertragbarkeit der Fehlerdichte: Die Anzahl der Fehler im vergangenen Release ist
zur Fehlerprognose geeignet. War eine Programmeinheit in der Vergangenheit fehler-
anfällig, besteht Grund zur Annahme, dass sie weiterhin fehleranfällig ist. [OWB05]
[NBZ06] [BOW06]

Test

11. Prioritätsvererbung: Die Variante eines wichtigen Testfalls ergibt eher einen wichtigen
Testfall, als die Variante eines unwichtigen Testfalls. [Sch10]

12. Spezifitätspriorität: Spezifische Testfälle ergeben geeignetere Testfallempfehlungen.
[Sch10]

13. Technische Prädikate: Technisch formulierte Prädikate eignen sich weniger für Testfall-
empfehlungen. [Sch10]

14. Unit-Test: Durch Unit-Test qualitätsgesicherte Programmeinheiten haben eine höhere
Qualität als Programmeinheiten, die keinem Unit-Test unterzogen wurden. [HPH+

09]

15. If-Priorität: Die Überdeckung eines If-Blocks sollte der Term- oder Schleifenwiederho-
lungsüberdeckung vorgezogen werden. [Sch10]

5In Java die import-Anweisung, C die include-Anweisung etc.

26

2.6 Schlussfolgerungen aus der Literaturrecherche

Fehler

16. Pareto-Verteilung: In ca. 20% der Dateien befinden sich ca. 80% der Fehler. [OWB05]

17. Schadenspotenzial: Das Schadenspotenzial der Fehler ist nicht gleichmäßig über den
Quellcode verteilt. [HPH+

09]

18. Getestetes Programm: Die Fehlerverteilung eines Programms nach Systemtest und
Produktionsfreigabe ist anders als die des ungetesteten Programms. [FO00] [NBZ06]

Fehlerprognose

19. Übertragbarkeit der Vorhersagemodelle: Vorhersagemodelle sind nur dann präsize,
wenn sie aus dem gleichen oder einem ähnlichen Projekt gewonnen wurden. Auf andere
Projekte übertragen erreichen diese nicht zwingend die gleiche Genauigkeit. [NBZ06]

20. Verschiedenheit der Projekte: Es gibt keine Menge von Metriken, die für alle Projekte
als Fehlervorhersagemodell passt. [NBZ06]

Qualität

21. Wesentliche Risiken: Eine Software kann hinreichend gut sein, wenn die wesentlichen
Risiken ausgeschlossen sind. [Aml00]

22. Überdeckungsrelevanz: Codeüberdeckung und Testgüte korrelieren. [HFGO94]

23. Stressfaktoren: Der Stress des Entwicklers hat Einfluss auf die Programmqualität.
[FAI97]

24. Review: Durch Reviews können Fehler in den geprüften Dokumenten gefunden werden,
was deren Qualität steigert. [LL07] [HPH+

09]

27

3 CodeCover

CodeCover ist ein quelloffenes Glass-Box-Test-Werkzeug, das im Rahmen eines Studienpro-
jektes 2007 an der Universität Stuttgart entwickelt wurde. Es unterstützt den Glass-Box-Test
in Java- und Cobol-Programmen durch die Messung von u.a. Anweisungs-, Zweig- und
Termüberdeckung. Darüberhinaus werden Threadsynchronisierungsüberdeckungen erfasst
und es ist MC/DC-Überdeckungsmessung möglich. CodeCover läuft auf verschiedenen
Plattformen, besitzt eine Eclipse-Integration und wurde unter der Eclipse Public Licence
(EPL) veröffentlicht [Cod11] [Sch08].

Wie die meisten Glass-Box-Test-Werkzeuge verwendet CodeCover Code-Instrumentierung,
um die Überdeckungsmessung zu ermöglichen. Die Instrumentierung kann bei CodeCover
entweder über ein Batch-Programm, oder direkt in der Entwicklungsumgebung Eclipse
erfolgen, dann allerdings mit eingeschränktem Funktionsumfang. Wird das instrumentierte
Programm ausgeführt, hat es zusätzlich eine JMX-Schnittstelle [Ora11].

Eine Besonderheit von CodeCover ist die Fähigkeit, die Überdeckungsmessung während der
Programmausführung zu beliebigen Zeitpunkten zurückzusetzen, um so die Überdeckung
einzelner Testfälle messen zu können. CodeCover erkennt Beginn und Ende eines Testfalls
also nicht durch Programmstart und -ende, sondern der Tester gibt dies explizit an. Die
Anwendung muss hierzu nicht neu gestartet werden. So wird die Überdeckung der einzelnen
Testfälle einer Systemtestsuite gemessen, ohne das zu testende Programm neu zu starten.

Realisiert wird das über die oben erwähnte JMX-Schnittstelle, die dem Programm bei der
Instrumentierung hinzugefügt wird. Diese Schnittstelle bietet zwei Methoden an, mit de-
nen dem instrumentierten Programm während dessen Ausführung Beginn und Ende eines
Testfalls mitgeteilt werden kann. Ebenso kann der Download des Ergebnisses der Überde-
ckungsmessung gestartet werden. Im CodeCover-Eclipse-Plugin steht hierfür eine Sicht zur
Verfügung.

Die Eclipse-Integration besteht aus einer Perspektive mit mehreren Sichten, Assistenten, Im-
und Exportfunktionalitäten etc.

Abbildung 3.1 zeigt die Überdeckungsmarkierungen von CodeCover zur Überdeckung einer
Funktion. Das Prädikat des ersten If-Statement ist nie wahr, daher wird der darunterstehende
If-Block nie ausgeführt, ist also rot markiert. Da der If-Block nicht ausgeführt wird, sind nicht
alle Zweige der If-Anweisung ausgeführt, weswegen das Statement selbst gelb eingefärbt
wird. Dieser If-Block wird tangiert, aber nicht ausgeführt. Ein nicht ausgeführter Block,
dessen Bedingungsstatement ausgewertet wurde, wird als tangierter Block bezeichnet.

Es werden beide Zweige der in der Schleife stehenden If-Anweisung ausgeführt. Das If-
Statement ist daher grün markiert. Die dort im If-Block verschachtelte If-Anweisung wird

29

3 CodeCover

ausgeführt, allerdings nicht vollständig. Der implizite Else-Block würde nur ausgeführt
werden, wenn number != 4, was aber nicht der Fall ist.

Weitere Dokumentation zu CodeCover unter [Cod11].

Abbildung 3.1: Beispiel der CodeCover-Ausgabe der Überdeckung einer Funktion

[Sch10] beschreibt ausführlich ein neues Zusatzmodul für CodeCover. Dieses Zusatzmodul
erlaubt die Analyse der gesammelten Daten zur Generierung von Testfallempfehlungen.
Ergebnis der Analyse ist eine Liste von tangierten Codeblöcken. Jeder dieser Codeblöcke
entspricht einer Testfallempfehlung. Diese Liste ist allerdings bei Programmen aus der indus-
triellen Praxis mehrere tausend Einträge lang und unsortiert. Die erheblichen Unterschiede
in Umsetzungsaufwand einer Empfehlung in einen Testfall und erwarteter Fehlerfindwahr-
scheinlichkeit machen eine Priorisierung der Empfehlungen notwendig.

30

4 Priorisierungsmodell

Teilaufgabe der Diplomarbeit ist die Konzeption und Umsetzung einer Erweiterung für Code-
Cover für die Anzeige und Priorisierung von Testfallempfehlungen. In diesem Kapitel wird
ein allgemein verwendbares Modell zur Priorisierung von Testfallempfehlungen vorgestellt,
das die Grundlage einer solchen CodeCover-Erweiterung darstellt. Mit diesem Modell können
Quellcodeblöcke nach ihrer Wahrscheinlichkeit, einen Fehler zu enthalten, sortiert werden.

Eine Implementierung des Modells kann eine Liste von Testfallempfehlungen, wie die von
CodeCover generierte, priorisieren. Die Empfehlungen werden nach zwei groben Kriterien
geprüft und sortiert. Diese entsprechen den Begriffen „Risikokosten“ und „Eintrittswahr-
scheinlichkeit“ des risikobasierten Tests.

Fehlerschwere Nicht alle Fehler wiegen gleich schwer. Fehler, die dem Programmablauf
bzw. dem Benutzer mehr schaden, sollten bevorzugt vor denen behandelt werden,
die den Programmablauf bzw. den Benutzer nicht stören. Codeblöcke, die potenziell
schwerwiegendere Fehler enthalten, sollten bevorzugt durch einen Testfall abgedeckt
werden.

Fehlerwahrscheinlichkeit Nicht in jedem unüberdeckten Codeblock befindet sich mit gleicher
Wahrscheinlichkeit ein Fehler. Die Codeblöcke, die eine höhere Wahrscheinlichkeit
aufweisen, einen Fehler zu enthalten, sollten bevorzugt durch einen Testfall abgedeckt
werden.

Weder Fehlerschwere noch Fehlerwahrscheinlichkeit sind objektiv exakt ermittelbar. Da also
keine Verfahren zum Errechnen der tatsächlichen Werte für Fehlerschwere und Fehlerwahr-
scheinlichkeit in einem Codeblock zur Verfügung stehen, ist ein Modell zur Fehlerprognose
grundsätzlich auf Heuristiken angewiesen. Ein Priorisierungsmodell mit guten Heuristiken
kann aber als wesentliches Ergebnis die zehn besten Ergebnisse ausgeben. Als Vergleich bietet
sich ein Suchergebnis einer Web-Suchmaschine an. Ein solches Suchergebnis enthält oft weit
über 200.000 Webseiten. Relevant sind aber nur die ersten zehn Ergebnisse. Auch diese Priori-
sierung wird mit Hilfe von Heuristiken vorgenommen und genügt den Anforderungen.

In diesem Kapitel werden die Grundbegriffe, Bewertungsebenen, Heuristiken und Annahmen,
auf denen das Priorisierungsmodell basiert, vorgestellt. Anschließend wird die Wertung der
Ergebnisse der einzelnen Heuristiken besprochen und wie diese untereinander gewichtet und
verrechnet werden. Danach wird beschrieben wie die Priorisierung in einzelnen Schritten,
abläuft.

Das Priorisierungsmodell ist nicht starr auf eine Menge von Heuristiken ausgelegt, sondern
kann durch zusätzliche Heuristiken erweitert werden, wenn diese geeignet erscheinen.

31

4 Priorisierungsmodell

4.1 Grundbegriffe des Modells

In diesem Abschnitt werden die zum Verständnis des Modells notwendigen Begriffe erklärt.

• Ein Fehlerindikator ist eine Information, die zur Fehlerprognose verwendet werden
kann. Beispiele sind „LOC einer Datei“ oder „Modul durch Unit-Tests getestet“.

• Eine Fehlerdatenquelle ist eine Informationskategorie, die Hinweise auf mögliche
Fehler gibt. Eine Fehlerdatenquelle kann dabei ein Teil des Produktes, eine Person oder
Dokumentation sein. Fehlerindikatoren sind einzelne Informationsaspekte und ergeben
zusammen eine Fehlerdatenquelle. Ein Beispiel ist die Fehlerdatenbank „Quellcode“, zu
der mehrere Codemetriken gehören.

• Die Ausgabe der Analyse eines mit CodeCover ausgeführten Tests besteht aus Test-
fallempfehlungen. Eine Testfallempfehlung enthält ein unüberdecktes Stück Code,
beispielsweise einen If-Block. Zudem ist das Prädikat bekannt, das den Kontrollfluss in
den Block kontrolliert.

• Die Fehlerfindwahrscheinlichkeit einer Testfallempfehlung ist die vom Modell einer
Testfallempfehlung zugeschriebene Wahrscheinlichkeit, einen Fehler zu finden. Die
Fehlerfindwahrscheinlichkeit wird in Punkten auf einer offenen Skala angegeben und
ist relativ zu der Punktbewertung anderer Empfehlungen zu verstehen.

• Die Bewertung oder Wertung bezeichnet die von einer Heuristik an eine Datei, Zeile
oder an einen Block vergebene Fehlerfindwahrscheinlichkeit in Punkten. Die Gewich-
tung bezeichnet die Multiplikation einer Bewertung mit einem Faktor, den entweder
der Benutzer vorgegeben hat oder der im Modell vorgegeben ist.

4.2 Bewertungsebenen

Heuristiken zur Fehlerwahrscheinlichkeit und Fehlerschwere geben ihre Bewertungen für
verschiedene Ebenen ab. Manche Heuristiken geben die Fehlerwahrscheinlichkeit für eine
Datei an, andere für Codeblöcke, manche sogar für Bereiche von Codezeilen oder einzelne
Zeilen.

Um die Wahrscheinlichkeit eines Fehlers in einem unüberdeckten Codeblock zu bewerten,
muss das Modell daher die Heuristiken für Codeblock, Datei und Zeilen kombinieren. Bei
der Untersuchung eines Codeblocks werden deshalb die Werte für diesen Codeblock, für
die Datei, in der er sich befindet, und für die Zeilen im Codeblock zusammengezählt. Die
Summe der einzelnen Heuristiken ergibt so die Bewertung für den Codeblock.

32

4.3 Überblick über das Modell

4.3 Überblick über das Modell

Abbildung 4.1 gibt einen Überblick über die Funktionsweise des Priorisierungsmodells und
zeigt, wie Informationen über eine Empfehlung gewonnen werden.

Eine CodeCover-Testfallempfehlung besteht hauptsächlich aus einer Referenz auf einen
unüberdeckten Codeblock. Zusätzlich ist noch bekannt, welche Testfälle den Codeblock
tangiert haben und welches Prädikat den Kontrollfluss zum Codeblock kontrolliert.

Der Codeblock befindet sich in einer Datei und besteht aus einzelnen Zeilen in dieser Datei.
Datei und Zeile werden durch einzelne Fehlerdatenquellen bewertet. Diese Bewertungen
fließen in die Bewertung des Codeblocks ein, dessen Bewertung die Bewertung der Testfall-
empfehlung ausmacht.

Die untersten fünf Boxen bezeichnen Fehlerdatenquellen. Die Inhalte dieser Boxen sind
Fehlerindikatoren. Weitere Fehlerindikatoren der in der Grafik nicht explizit aufgeführten
Fehlerdatenquelle „CodeCover-Überdeckung“ sind die Inhalte der Boxen „Prädikat“ und
„Black-Box-Testfall“. Die im Modell verwendeten Fehlerdatenquellen und -indikatoren werden
im folgenden Kapitel näher vorgestellt.

4.4 Fehlerdatenquellen

Das Priorisierungsmodell stützt sich auf sechs Fehlerdatenquellen, die wiederum einzelne
Fehlerindikatoren beinhalten. Die verwendeten Fehlerdatenquellen sind:

• Quellcode (Thesen 1-6)

• Versionsgeschichte (Thesen 7-10)

• Stressfaktoren (These 23)

• Expertenwissen (Thesen 8, 10, 12, 16, 17)

• Verwendete Qualitätssicherungsmaßnahmen (Thesen 14, 24)

• CodeCover-Überdeckung (Thesen 11-13, 15, 22)

In den folgenden Abschnitten werden diese Fehlerdatenquellen vorgestellt. Es werden ihre
Relevanz und ihre praktische Anwendbarkeit, also das Beschaffen und Auswerten der Daten,
diskutiert. Dabei wird auf die in der Literaturrecherche aufgestellten Thesen (siehe 2.6)
referenziert.

33

4 Priorisierungsmodell

Black-Box-Testfall
Priorität

Testfall-Empfehlung

Prädikat
Länge
Anzahl Operatoren
Vergleiche mit null

Codeblock
LOC
Typ

Datei Zeilen

Stressfaktoren
Commits während
Überstunden
Commits während
Projekt im Verzug

Codemetriken
LOC der Datei
Komplexitätsmetriken
"Code smell" Metriken

QS-Maßnahmen
Unit Tests
Pair Programming
Reviews

Expertenwissen
Fehleranfällige Module
Module mit problemat. Architektur /
funktionaler Komplexität / Bedarf
an Refactoring

Versionsgeschichte
Alter der Datei
Änderungshäufigkeit
Fehlerhäufigkeit

bewertet

bewertet

bewertet
bewertet

bewertet

bewertet

befindet sich in besteht aus

besteht aus

besteht aus besteht aus

bewertet

bewertet

bewertet bewertet

Abbildung 4.1: Überblick über die Konzepte des Modells und ihre Beziehungen

4.4.1 Quellcode

Im Quellcode eines Programms befinden sich die bei der Implementierung gemachten Fehler.
Fehler, die in früheren Phasen der Entwicklung der Software gemacht wurden, manifestieren
sich hier. Es liegt also nahe, den Quellcode des zu testenden Programms nach Fehlern zu
untersuchen. Zwei Möglichkeiten hierfür sind die Auswertung von Codemetriken und die
Suche nach Fehlermustern.

Wahrscheinlich sind im Zielprojekt nicht alle Metriken zur Fehlerprognose geeignet (Thesen
19 und 20). Manche werden nicht oder nur schwach mit der tatsächlichen Fehlerdichte
korrelieren, manche hingegen sehr gut [NBZ06]. Daraus folgt, dass die hier angegebenen
Metriken nicht für jedes Projekt gleich gute Ergebnisse liefern. Es bleibt dem Tester überlassen,
für sein Projekt die richtigen Metriken zu wählen.

34

4.4 Fehlerdatenquellen

Werkzeuge zur statischen Codeanalyse suchen mittels Verfahren wie Datenflussanalyse, Über-
prüfung von Zusicherungen, Kontrollflussanalyse oder Vergleich mit typischen Fehlermustern
nach möglichen Fehlern. Sie sind eine einfache Möglichkeit, eine gute Fehlerprognose zu
erhalten. Das Werkzeug FindBugs scheint dafür wegen der vergleichsweise niedrigen Zahl
an Warnungen und der sehr geringen false-positive-Quote gut geeignet zu sein [RAF04].
Zudem wird vom Entwickler kein Aufwand durch das Schreiben von Annotationen oder
Zusicherungen verlangt, was für die universelle und einfache Anwendbarkeit von FindBugs
sorgt. Für den Einsatz in diesem Priorisierungsmodell sind andere Werkzeuge zur statischen
Codeanalyse zur Fehlermustersuche auch denkbar. Beispiele solcher Werkzeuge finden sich
in [RAF04].

Folgende Fehlerindikatoren gehören zur Fehlerdatenquelle „Quellcode“:

LOC einer Datei Die Lines Of Code einer Datei ist eine sehr einfach zu erhebende Metrik, die
häufig zur Fehlerprognose herangezogen wird ([BOW06], [OWB05], [Neu05], These 3).

LOC einer Methode Die LOC einer Methode ist laut [Aml00] zur Fehlerprognose geeignet.

Anzahl der Unteraufrufe in einer Methode Laut [Neu05] gut zur Fehlerprognose geeignet.

Komplexitätsmetriken Es gibt viele Komplexitätsmetriken, die zur Fehlerprognose verwendet
werden können. Beispiele sind die zyklomatische Komplexität nach McCabe oder
die Metriken für objektorientierte Software von Chidamber und Kemerer, sowie die
Kopplungsmetriken von Martin ([HPH+

09], Thesen 1, 4, 6).

FindBugs-Warnungen pro Datei Die Ausgabe von FindBugs besteht aus Warnungen und
Fehlern. Eine Warnung ist ein verdächtiges Codemuster, ein Fehler ist eine Warnung
mit deutlich höherer Trefferwahrscheinlichkeit. Die Ausgabe von FindBugs wird daher
im Modell auf zwei verschiedene Arten ausgewertet. Bei diesem Fehlerindikator werden
die Warnungen einer Datei gezählt und auf die Fehlerwahrscheinlichkeit der Datei
angerechnet (vgl. 4.2).

FindBugs-fehlermarkierte Zeilen Die Fehlermarkierungen auf Zeilenebene von FindBugs
werden auf die entsprechenden Zeilen angerechnet.

4.4.2 Versionsgeschichte

Die Versionsgeschichte einer Datei bezeichnet die Summe aller Änderungen an dieser Datei,
die im Versionskontrollsystem festgehalten sind. Die Versionsgeschichte beginnt mit dem
ersten Checkin der Datei und setzt sich über die daran vorgenommenen Änderungen fort.
Eine Änderung enthält den Zustand vor und nach der Änderung, sowie Autor und Zeitpunkt
der Änderung. Damit lassen sich aus der Änderung die geänderten Dateien, Methoden und
Zeilen sowie Zeitpunkt und Autor der Änderung ermitteln. Das Alter lässt sich aus dem
Datum des ersten Checkins ableiten.

Daraus ergeben sich die Fehlerindikatoren:

35

4 Priorisierungsmodell

Alter der Datei Je länger eine Datei im System ist, desto geringer ist die Wahrscheinlichkeit,
dass sie einen Fehler enthält ([BOW06] [OWB05] [Bac99], These 9). Denn je länger die
Datei im System war, desto mehr Zeit hatte ein Fehler, entdeckt zu werden oder einen
Fehlerzustand bei der Ausführung zu verursachen.

Änderungen im letzten Release / Jahr Die Anzahl der Änderungen an einer Datei ist ein
Hinweis auf mögliche Fehler, da mit einer gewissen Wahrscheinlichkeit Änderungen
und Problembehebungen neue Fehler in das System einführen ([SZZ05]). Wurde eine
Datei im letzten Entwicklungszeitraum (häufig) bearbeitet, ist dies daher ein Indiz
für Fehler ([BOW06] [Aml00] [Bac99] [Neu05], Thesen 7 und 10). Mehr Änderungen
sprechen für eine höhere Fehlerwahrscheinlichkeit.

Eine mit Versionsinformationen kombinierbare Fehlerdatenquelle ist eine Fehlerdatenbank,
bzw. die gesammelten Daten des Fehlerverwaltungssystems. Aus ihnen lässt sich ablesen, wel-
che Stellen der Software Fehler enthielten. Enthalten die einzelnen Fehlereinträge Referenzen
zu Commits im Versionskontrollsystem (oder andersherum), lassen sich die Datenbestände
von Versionskontrollsystem und Fehlerdatenbank kombinieren [SZZ05].

Die Kombination der Daten von Versionskontrollsystem und Fehlerdatenbank setzt entwe-
der eine automatische, technisch erzwungene, Lösung oder viel Disziplin auf Seiten der
Entwickler voraus. Werden die Fehler nicht vollständig mit den Änderungen im Versions-
kontrollsystem verknüpft, ergeben sich große Ungenauigkeiten in der Auswertung. Sollten
diese Daten allerdings verfügbar sein, können zusätzlich die folgenden Fehlerindikatoren
verwendet werden:

Im letzten Release fehleranfällige Dateien Es lässt sich ermitteln, in welchen Dateien im
letzten Release Fehler gefunden wurden. Diese Dateien haben eine erhöhte Wahrschein-
lichkeit, wieder Fehler zu enthalten ([Mye01], Thesen 8 und 10).

Dateien mit fehlerreicher Vergangenheit Ebenso kann über den Zeitraum des letzten Relea-
ses hinaus nach Fehlern in der Vergangenheit einer Datei gesucht werden. (These
10)

4.4.3 Stressfaktoren

Die Arbeitsbedingungen, insbesondere der auf den Entwicklern lastende Zeitdruck, wirken
sich auf die Programmqualität aus (These 23). Ein beim Industriepartner befragter Entwickler
bestätigt diese These. Steht ein Entwickler unter starkem Zeitdruck oder liegt sein Projekt
weit hinter dem Zeitplan, so vermutet er, dass die Arbeit eine höhere Fehlerrate aufweist.
Aus einem Projektbericht (z.B. ein Burn Down Chart im Scrum-Prozess) oder aus einer
Arbeitszeitdokumentation lassen sich Zeiten hoher Arbeitsbelastung ablesen.

Fehlerindikatoren aus der Fehlerdatenquelle Stressfaktoren:

Änderungen, während Überstunden gemacht wurden Überstunden erhöhen die Arbeitsbe-
lastung des Entwicklers, was zu niedrigerer Konzentration führt und Fehler fördert.

36

4.4 Fehlerdatenquellen

Änderungen, während das Projekt im Verzug war Ist ein Projekt in Verzug, wird i.d.R.
schneller und häufig schlampiger gearbeitet, um die verlorene Zeit wieder zu gewinnen.
Dies führt laut befragtem Entwickler zu mehr Fehlern.

4.4.4 Expertenwissen

Da sämtliche bisher beschriebene Verfahren eines gewissen Analyseaufwandes bedürfen,
liegt es nahe, auch einen Entwickler oder Tester, der das Produkt gut kennt, zu befragen.
Arbeitet ein Entwickler länger an einem Produkt, wird er das Produkt gut kennen. Er wird
wahrscheinlich Erfahrungswerte haben, welche Stellen des Produktes weniger gut als andere
sind.

Diese Fehlerdatenquellen gehören zur Fehlerdatenquelle Expertenwissen:

Module oder Dateien mit schlechter Entwurfs-Qualität Ein Entwickler, der das Produkt gut
kennt, kann möglicherweise Dateien oder Module mit schlechter Entwurfsqualität
nennen. In diesen Modulen ist die Fehlerdichte evtl. höher.

Module oder Dateien mit hoher funktionaler Komplexität Schwierige Berechnungen, solche,
die hohe Genauigkeit erfordern oder für den Kunden besonders wichtig sind, kann ein
Entwickler identifizieren. Dort ist die Fehlerwahrscheinlichkeit höher als in simpleren
Dateien und Modulen.

Die 20% der Module mit der vermuteten höchsten Fehleranfälligkeit Nach These 16 ent-
spricht die Fehlerverteilung im Programmcode ungefähr einer 20/80-Pareto-Verteilung.
Es liegt also nahe, einen Entwickler zu bitten, das fünftel der Module auszusuchen, in
denen er die höchste Fehlerdichte vermutet.

Module oder Dateien, die der Entwickler gerne neu schreiben würde Ein Entwickler kann
möglicherweise Codestellen angeben, die er gerne neu schreiben würde. In diesen
sollte besonders nach Fehlern gesucht werden.

4.4.5 Verwendete Qualitätssicherungsmaßnahmen

Während des Entwurfs und der Codierung durchgeführte Qualitätssicherungsmaßnahmen
sollen die Anzahl der Fehler im Quellcode senken. Codebereiche, die solchen Qualitätssi-
cherungsmaßnahmen unterzogen wurden, haben demnach eine geringere Fehlerdichte als
vergleichbare Module, bei denen solche Maßnahmen nicht durchgeführt wurden.

Fehlerindikatoren aus der Fehlerdatenquelle verwendete Qualitätssicherungsmaßnahmen:

Überdeckung durch Unit-Tests Es ist anzunehmen, dass ein Modul, das mit Unit-Tests ge-
prüft wurde, weniger Fehler enthält als ein ähnliches Modul, bei dem auf Unit-Tests
verzichtet wurde. Die prozentuale Überdeckung eines Moduls kann dann als Indikator
verwendet werden.

37

4 Priorisierungsmodell

Modul unter Einsatz von Pair-Programming entwickelt Pair Programming dient zur Steige-
rung der Qualität [LL07]. Ein unter Pair Programming entwickeltes Modul hat demnach
eine geringere Fehlerdichte.

Modul wurde Reviews oder Durchsichten unterzogen Ein durch Reviews oder Durchsichten
geprüftes Stück Code hat eine geringere Fehlerdichte als ein vergleichbares Stück Code,
das nicht so geprüft wurde.

4.4.6 CodeCover-Überdeckung

Aus einer Testdurchführung mit CodeCover lässt sich eine Liste von unüberdeckten Co-
destellen nach [Sch10] erstellen. Aus dieser Liste selbst lassen sich Priorisierungskriterien
ableiten. In diesem Sinne sind die hier angegebenen Indikatoren nicht alle Indikatoren für
die Fehlerwahrscheinlichkeit, da sich einige mit der Fehlerschwere und der Erhöhung der
Überdeckung befassen. Aus Konsistenzgründen wurde der Begriff jedoch beibehalten.

Fehlerindikatoren aus der Fehlerdatenquelle CodeCover-Überdeckung:

Typ des unüberdeckten Codeblocks Nach [Sch10] sollten If-Blöcke relativ hoch gegenüber
unwirksamen Bedingungstermen oder Schleifenwiederholungen (abhängig vom Test-
ziel) gewichtet werden (These 15).

Anzahl der unüberdeckten Codezeilen Ist es möglich, mit einem einzigen Testfall relativ
viele weitere Zeilen zu überdecken, sollte dieser höher gewichtet werden.

Anzahl der Operatoren im Prädikat Ist das Prädikat überaus komplex, spricht dies für hohe
funktionale Komplexität im Code, die möglicherweise Fehler nach sich zieht.

Priorität des zu Grunde liegenden Black-Box-Testfalls Da jede unüberdeckte Codestelle bei
der Durchführung eines Black-Box-Testfalls gefunden wurde, bietet es sich an, Code-
stellen, die durch hoch priorisierte Testfälle tangiert wurden, höher zu bewerten (These
11).

Anzahl der tangierenden Testfälle Wird eine Codestelle von sehr vielen Testfällen passiert,
handelt es sich vermutlich um häufig ausgeführten Code, in dem ein Fehler vermutlich
eher auffällt, als in Codestellen, die nur von sehr wenigen (oder nur einem einzigen)
Testfällen überdeckt werden. Daher sollten Codestellen, die nur von wenigen Testfällen
überdeckt werden, höher gewichtet werden (These 12).

4.5 Bewertung der Fehlerwahrscheinlichkeit

Das vorgestellte Modell verwendet die oben beschriebenen sechs Fehlerdatenquellen, um eine
Bewertung der Fehlerwahrscheinlichkeit eines unüberdeckten Codeblocks zu ermöglichen.
Das Modell lässt allerdings die genaue Verrechnung der Bewertungen der einzelnen Fehlerin-
dikatoren offen. Gründe hierfür sind die Probleme, die das Aufstellen einer vordefinierten
Berechnungsvorschrift erschweren. Eine Implementierung des Modells muss die folgenden

38

4.6 Ablauf der Priorisierung

Probleme durch vordefinierte Gewichtungen lösen, oder dem Benutzer die Gewichtung
überlassen:

Die Bewertungen der Fehlerindikatoren liegen auf verschiedenen Skalen Während manche
Indikatoren Werte auf einer nach oben offenen Rationalskala liefern, liefern manche
Indikatoren Werte auf einer Ordinalskala. Die Metriken LOC und die meisten ande-
ren Komplexitätsmetriken liefern Werte auf einer Rationalskala. Die Priorität eines
überdeckten Testfalls liegt auf einer Ordinalskala. Ob eine Codezeile durch einen Com-
mit beeinflusst wurde, während das Projekt im Verzug war, wird nur durch einen
Wahrheitswert angeben.

Abbildung auf Rationalskala Um die Werte der Ordinalskalen auf eine Rationalskala zum
Verrechnen abzubilden, müssen den Werten dieser Skalen Zahlenwerte zugewiesen
werden.

Skalierung der Zahlenwerte Die Wahrheitswerte true und false können auf die Zahlenwerte
1 und 0 abgebildet werden, aber auch auf die Zahlenwerte 10 und 5. Es muss eine
Skalierung und Verschiebung, also eine Gewichtung der Werte, vorgenommen werden
können. Die Resultate der einzelnen Fehlerindikatoren sollten dabei so skaliert werden,
dass kein Indikator gegenüber den anderen unbedeutend ist.

Verschiedenheit der Zielprojekte Eine Gewichtung der Indikatoren mag für ein Programm
gute Ergebnisse liefern. Wie in [NBZ06] festgestellt unterscheiden sich Programme
aber so sehr, dass die Gewichtungen, die in einem Programm gute Ergebnisse liefern,
in einem anderen schlechte Ergebnisse liefern können. In einem Programm haben
möglicherweise besonders lange Dateien die größte Fehlerdichte, während in einem
anderen die korrekte Ausführung von Catch-Blöcken besonders wichtig ist.

4.6 Ablauf der Priorisierung

Der prinzipielle Ablauf der Priorisierung mit Hilfe des vorgestellten Modells besteht aus drei
Schritten.

1. Erstellung der unpriorisierten Liste von Testfallempfehlungen: Die CodeCover-
Messergebnisse werden vom Benutzer angegeben und anschließend automatisch aus-
gewertet. Hierbei entsteht die Liste von Testfallempfehlungen. Die einzelnen Empfeh-
lungen enthalten den unüberdeckten Codeblock (angegeben als Datei + Offset vom
Dateianfang). Bei If- und Switch-Anweisungen sowie Schleifen ist das Prädikat ange-
geben. Bei Catch-Blöcken die Art der Exception.

2. Bewertung der Fehlerdatenquellen und Fehlerindikatoren: Für jede Testfallempfeh-
lung wird jeder Fehlerindikator nach seiner Wertung „befragt“. Dabei werden entweder
automatische Auswertungen durchgeführt oder vom Benutzer definierte Dateien mit
diesen Informationen werden eingelesen.

39

4 Priorisierungsmodell

3. Die Liste wird sortiert: Die unüberdeckten Codeblöcke enthalten nun Bewertungen der
verschiedenen Fehlerindikatoren. Diese werden anhand der vom Benutzer eingestellten
Gewichtungen bewertet (siehe 4.5) und nach der Summe der Werte der Fehlerdaten-
quellen sortiert. Diese Liste stellt das Endergebnis der Priorisierung dar. Der Benutzer
sollte nun die Testfallempfehlungen von hoher zu niedriger Wertung hin bearbeiten.

4.7 Bewertung des Modells

Möchte ein Tester ohne konkrete, aus der Auswertung eines Glass-Box-Tests gewonnene,
Testfallempfehlungen eine Testsuite verbessern, stehen ihm dafür als Anhaltspunkte der
gesamte Quellcode, das Wissen der Entwickler sowie Spezifikationsdokumente zur Verfügung.
Er muss also aus diesen teilweise unkonkreten Informationen konkrete Testfälle gewinnen.
Dabei läuft er Gefahr, dass zum einen redundanten Testfälle entstehen, zum anderen ist es
nicht wirtschaftlich, eine schon bestehende Testsuite durch das Hinzufügen weiterer zufälliger
Testfälle zu erweitern. Besser wäre es, die Testfälle dort anzusiedeln, wo beispielsweise bisher
nicht durch Tests überdeckter Code steht, oder wo Fehlerwahrscheinlichkeit und Fehlerkosten
besonders hoch sind.

Die von CodeCover generierte Empfehlungsliste ist ein erster Schritt auf diesem Weg. Mit
dieser Liste hat der Tester Anhaltspunkte für Code, der bisher nicht von der Testsuite erfasst
worden ist. Allerdings ist die Empfehlungsliste in der Regel unüberblickbar lang [Sch10]. Der
Entwickler müsste die Liste der Reihe nach abarbeiten oder sich zufällig einige Empfehlungen
heraussuchen. Auch dies ist nicht wirtschaftlich, da der Zeitaufwand enorm ist und es keine
Anhaltspunkte für die Qualität der neuen Testfälle gibt.

Eine nach mehreren Heuristiken priorisierte Liste von Testfällen erlaubt dem Tester jedoch,
seine Testfallauswahl auf die Testfälle zu konzentrieren, die eine höhere Wahrscheinlichkeit
haben, einen Fehler aufzudecken oder einen gravierenderen Fehler zu finden. Unter der
Annahme, dass das getestete Programm eine Fehlerdichte von fünf Fehlern pro 1000 LOC
hat, bedeuten 200 weitere überdeckte Codezeilen durchschnittlich einen gefundenen Fehler.
Geht man davon aus, dass die vorgeschlagenen Codeblöcke tatsächlich die fehleranfälligeren
sind und eine dreifache Fehlerdichte gegenüber dem Rest des Programmes haben, reicht die
Überdeckung von ca. 70 Zeilen aus, um einen weiteren Fehler zu finden.

Ob sich die Entwicklung weiterer Testfälle lohnt, ist von den wirtschaftlichen Rahmenbedin-
gungen abhängig. Bei einem Programm, das nur noch drei Monate im Einsatz ist und bei
dem nur geringe Fehlerfolgekosten entstehen, wird es sich selten rentieren, neue Testfälle zu
suchen. Ist ein Programm hingegen noch einige Jahre in Dienst und der Hersteller haftet für
durch Programmfehler entstehende Schäden, kann es sehr wohl wirtschaftlich sein, Aufwand
in die Suche von Fehlern zu investieren. Ein gutes Mittel dazu ist die Vervollständigung der
vorhandenen Testsuite.

Mit dem Modell ist es jedoch nicht möglich, den genauen Ort eines bestimmten Fehlers
mit Gewissheit anzugeben. Genausowenig garantiert das Modell, dass ein Testfall, der aus
einer sehr hoch bewerteten Empfehlung entstanden ist, einen Fehler aufdeckt. Es könnte

40

4.7 Bewertung des Modells

im entsprechenden Codeblock schlicht kein Fehler sein. Auch kann das Modell nicht für
jeden potenziell vorhandenen Fehler eine erhöhte Wahrscheinlichkeit erkennen, wenn keine
Heuristik dafür vorliegt. Den Anspruch der ultimativen Sicherheit kann weder das Modell
noch sonstwer erfüllen.

Die im Modell enthaltenen Fehlerdatenquellen und Fehlerindikatoren sind eine erste Auswahl
der in der Literatur vorhandenen Heuristiken zur Fehlersuche. Das Modell kann und sollte
durch weitere Heuristiken erweitert werden, um weitere Informationen über die Fehleranfäl-
ligkeit einzubringen.

41

5 Umsetzung

In den folgenden Abschnitten wird die Umsetzung des beschriebenen Modells in eine
Eclipse-Sicht und einen Priorisierungsalgorithmus beschrieben. Dazu gehören die Ziele der
Umsetzung sowie die Grundzüge der Architektur der Umsetzung, insbesondere mit Fokus
auf die Verwendung als Framework zur Erprobung weiterer Heuristiken.

5.1 Ziele

Ziele der Umsetzung sind die folgenden. Diese wurden alle erreicht:

• Sprachunterstützung für Java.

• Der Benutzer soll mit wenig Aufwand in einer neuen Sicht eine priorisierte Liste von
Testfallempfehlungen aus einem in die CodeCover-Ansicht in Eclipse importierten
Test-Session-Container1 erhalten können.

• Der Benutzer soll die Gewichtung der Fehlerdatenquellen einstellen können.

• Der Benutzer soll nach Paketen filtern können.

• Der Benutzer soll nach dem Typ des unüberdeckten Blocks filtern können.

• So viele Fehlerindikatoren wie möglich sollen automatisch ausgewertet werden.

• Der Benutzer soll sich die Details der Bewertung einer Empfehlung anschauen können.
Die Punktevergabe soll nachvollziehbar angezeigt werden.

• Der Benutzer soll einzelne Klassen schnell ausschließen können.

• Dem Benutzer soll Hilfestellung zur Erstellung von Fehlerinformationsdateien gegeben
werden.

• Die generierte Empfehlungsliste soll exportiert werden können.

• Fehlerindikatoren sollen konfigurierbar sein, d.h. einfach einstellbare Parameter haben.

• Die gemachten Einstellungen sollen nach Neustart von Eclipse erhalten bleiben.

1Ein Test-Session-Container ist eine Datei im XML-Format, die von CodeCover während der Instrumentierung
angelegt wird. Sie enthält den gesamten Quellcode des Projektes und die Überdeckungsmessergebnisse der
Testdurchführung

43

5 Umsetzung

• Die Implementierung des Modells soll erweiterbar sein, d.h. es soll mit geringem
Aufwand möglich sein, weitere Fehlerdatenquellen und Fehlerindikatoren hinzuzufügen,
so dass die implementierte Erweiterung als Framework für die Erprobung weiterer
Priorisierungsverfahren verwendet werden kann. Die automatische Auswertung von
Fehlerindikatoren soll auch nachträglich hinzugefügt werden können.

5.2 Umgesetzte Modellelemente

Die Implementierung des Modells setzt alle wesentlichen Elemente des Fehlerprognosemo-
dells im letzten Kapitel um. Die Generierung der Basisempfehlungen, Fehlerdatenquellen,
Fehlerindikatoren, sowie deren Gewichtung und Auswertung sind enthalten.

Die folgenden Fehlerindikatoren sind im Modell vorhanden und können automatisch ausge-
wertet werden:

• Code: LOC einer Datei

• Code: FindBugs-Warnungen pro Datei

• Code: FindBugs-fehlermarkierte Zeilen

• Versionsgeschichte: Alter der Datei

• CodeCover-Überdeckung: Typ des Codeblocks

• CodeCover-Überdeckung: Anzahl der unüberdeckten Codezeilen

• CodeCover-Überdeckung: Priorität des zu Grunde liegenden Black-Box-Testfalls

• CodeCover-Überdeckung: Anzahl der tangierenden Testfälle

• CodeCover-Überdeckung: Länge des Prädikats

Die folgenden Fehlerindikatoren sind in der Implementierung vorhanden, benötigen aber
eine manuelle Eingabe der Daten:

• Versionsgeschichte: Änderungshäufigkeit seit letztem Release

• Versionsgeschichte: Gefundene Fehler im letzten Release

• Versionsgeschichte: In der Vergangenheit fehleranfällige Dateien

• Stressfaktoren: Commits während Überstunden

• Stressfaktoren: Commits während Projekt im Verzug

• Expertenwissen: Module oder Dateien mit schlechter Entwurfsqualität

• Expertenwissen: Module oder Dateien mit hoher funktionaler Komplexität

• Expertenwissen: 20% der Module mit der vermuteten höchsten Fehleranfälligkeit

• Expertenwissen: Module oder Dateien, die der Entwickler gerne neu schreiben würde

44

5.3 Entwurf und Implementierung

• QS-Maßnahmen: Modul durch Unit-Tests getestet

• QS-Maßnahmen: Modul unter Einsatz von Pair-Programming entwickelt

• QS-Maßnahmen: Modul wurde Reviews oder Durchsichten unterzogen

Die Implementierung unterstützt die Gewichtung von Fehlerdatenquellen, jedoch nicht die
Gewichtung einzelner Fehlerindikatoren.

5.3 Entwurf und Implementierung

5.3.1 Datenstruktur

Die wesentliche Datenstruktur der CodeCover-Erweiterung ist die Datenstruktur der Fehlerda-
tenquellen (ErrorDataSource) und Fehlerindikatoren (ErrorIndicator). Deren Hierarchie ist
in Abbildung 5.1 abgebildet. Der RecommendationGenerator ist die Basisklasse des Priorisie-
rungsalgorithmus. Er verwaltet die Fehlerdatenquellen, die wiederum aus Fehlerindikatoren
bestehen. Diese haben optional Parameter und optional genau einen DataCollector. Ein
DataCollector ist ein Interface, das von Algorithmen zur automatischen Erstellung von
Priorisierungsinformationen implementiert werden muss.

Der rechte Teil des Diagramms wird in Abschnitt 5.3.3 erläutert.

RecommendationGenerator

ErrorDataSource

DataCollector

View

ErrorDataWizard

ErrorDataWizardPageErrorIndicator

Parameter

liest

generiert

generiert

fragt ab

verwaltet

konfiguriert

konfiguriert

Abbildung 5.1: Datenstruktur der CodeCover-Erweiterung

45

5 Umsetzung

5.3.2 Ablauf der Priorisierung

Abbildung 5.2 zeigt den Ablauf der vom Benutzer angestoßenen Priorisierung. Nachdem der
Benutzer die Priorisierung angestoßen hat, wird zunächst die unsortierte Empfehlungsliste
generiert.

Anschließend werden rekursiv mit ihren invoke-Methoden alle Fehlerdatenquellen und
damit alle Fehlerindikatoren aufgefordert ihre Informationen auszuwerten. Dabei wird für
jede Fehlerdatenquelle ein Thread gestartet, was die Dauer des Gesamtvorgangs erheblich
senkt2.

Wird ein Fehlerindikator nicht automatisch ausgewertet (hat keinen DataCollector), liest er
nach dem Aufruf seiner invoke-Methode die eingestellte Fehlerinformationsdatei aus, anstatt
den Aufruf an den DataCollector weiterzureichen.

Im zweiten Schritt iteriert der RecommendationGenerator über die vorhin generierten Roh-
empfehlungen und befragt jede Fehlerdatenquelle nach ihrer Punktzahl für diese Empfehlung
(getValueFor()). Die Fehlerdatenquellen geben diesen Aufruf wiederum rekursiv an ihre
Fehlerindikatoren weiter, die die tatsächlichen Fehlerpunktzahlen gespeichert haben.

Der letzte Schritt ist die Sortierung. Nun werden die Fehlerpunktzahlen der Fehlerdatenquel-
len nach den Vorgaben des Benutzers gewichtet (Abbildung 5.5) und sortiert ausgegeben.

5.3.3 Erweiterbarkeit

Die implementierte CodeCover-Erweiterung kann als Framework zum Ausprobieren weiterer
Priorisierungsverfahren verwendet werden. Bei Entwurf und Implementierung wurde Wert
darauf gelegt, dass neue Fehlerdatenquellen und Fehlerindikatoren mit wenig Program-
mieraufwand hinzugefügt werden können. Um künftigen Bedürfnissen gerecht zu werden,
können Fehlerindikatoren mit Parametern versehen werden, die deren Bewertung bei au-
tomatischer Auswertung verändern. Beispielsweise könnte dem Fehlerindikator „LOC der
Datei“ ein Parameter für die kritische Zeilenzahl hinzugefügt werden, ab der die doppelten
Fehlerpunkte vergeben werden.

Die Fehlerdatenquellen, Fehlerindikatoren und Parameter werden in der Klasse
RecommendationGenerator einmal angegeben. Sollte ein Indikator automatisch ausge-
wertet werden können, muss noch eine Implementierung des Interfaces DataCollector

angegeben werden. Für jede Fehlerdatenquelle wird aus diesen Informationen ein Einstel-
lungsassistent generiert, der für jeden Indikator den Modus (aus, automatisch, manuell,
siehe Abbildung 5.3) sowie die definierten Parameter abfragt. Die andernfalls notwendige
zeitraubende Implementierung von Benutzeroberflächen für die Konfiguration entfällt.

2Beispielsweise sind Auswertungen des Versionskontrollsystems von der Netzwerkgeschwindigkeit abhängig,
während die Auswertung von FindBugs von der lokalen Rechenleistung abhängt.

46

5.3 Entwurf und Implementierung

View

View

RecommendationGenerator

RecommendationGenerator

ErrorDataSource

ErrorDataSource

ErrorIndicator

ErrorIndicator

DataCollector

DataCollector

getSortedList

getRecommendations

invoke

invoke

invoke

addErrorInformation

addErrorInformation

getValueFor(codeblock)

getValueFor(codeblock)

sort

Abbildung 5.2: Ablauf der Priorisierung

Dies erspart dem Programmierer wesentlichen Aufwand beim Einbinden weiterer Fehlerda-
tenquellen und Fehlerindikatoren und unterstützt so das effiziente Bewerten neuer Priorisie-
rungsverfahren.

Abbildung 5.1 zeigt den Zusammenhang zwischen den Elementen der Datenstruktur und
den Elementen der Konfigurationsassistenten. Ein Assistent (Wizard) konfiguriert eine Fehler-
datenquelle. Pro Dialogseite des Assistenten wird ein Fehlerindikator konfiguriert. Auf einer
Seite werden alle Parameter eines Fehlerindikators abgefragt.

5.3.4 Eclipse als notwendiger Übersetzer

CodeCover speichert den Quellcode des Prüflings sowie die Überdeckungsmessergebnisse in
einer XML-Datei ab, dem sogenannten Test-Session-Container. Dieser enthält zwar den reinen
Quellcode des Prüflings, allerdings leider keine vollständigen Informationen über den Pfad
einer Quelldatei innerhalb ihres Projektes. Es ist aber notwendig zu wissen, in welcher Datei
auf dem Dateisystem sich eine Codestelle befindet, um automatische Auswertungen wie die
FindBugs-Analyse oder die Analyse der Versionsgeschichte durchführen zu können, da diese
Auswertungen auf Basis des Test-Session-Containers alleine nicht möglich sind. Auch für

47

5 Umsetzung

die Auswertung manueller Fehlerinformationsdateien muss der absolute Pfad einer Datei
bekannt sein, da nur so eine Datei eindeutig referenziert werden kann.

Da es mit CodeCover-Bordmitteln nicht möglich ist, diese Information zu erhalten, wurden die
semantischen Möglichkeiten von Eclipse verwendet, um die Abbildung vom Code bzw. einer
Klasse darin auf die enthaltende Datei zu ermöglichen. Das Eclipse-Java-Modell-Framework
ist in der Lage anzugeben, in welcher Datei eine Klasse enthalten ist. Auf diese Art ist es auch
möglich, mithilfe des Subversion-Plugins Subclipse [Sub11a] an die Versionsinformationen
der Software im Versionsverwaltungssystem Subversion (SVN) [Sub11b] zu gelangen.

5.3.5 Speicherung von Zwischenergebnissen

Während des Auswertungs- und Priorisierungsprozesses muss eine Kette von zusammengehö-
renden Informationen des zugrundeliegenden Code-Datenmodells aufgebaut werden. Dieses
umfasst die Abbildung von unüberdeckten Zeilen über CodeCover-Code-Hierarchielevels
zu Eclipse-Java-Elementen, Datei-Deskriptoren und kompilierbaren Einheiten. Auch muss
bekannt sein, Welche Testfälle den Inhalt einer Datei (teilweise) abdecken. Beim Auswerten
der Versionsgeschichte muss bekannt sein, welche „Remote-Resource“ zu einer lokalen Datei
gehört. CodeCover gibt Codestellen als Offset vom Beginn der Datei an, FindBugs hingegen
rechnet in Zeilennummern, so dass eine Abbildung von Zeichen-Offset in einer Datei auf
Zeilennummern nötig ist.

Alle diese Informationen werden bei Bedarf ermittelt und anschließend zur späteren Verwen-
dung zwischengespeichert. Ohne diese Optimierungen wäre die Auswertung nicht in akzep-
tabler Zeit möglich. Realisiert wird dieser Zwischenspeicher (Cache) durch Java-HashMaps.

5.3.6 Zukünftige Verbesserungen

Aufgrund des experimentellen Charakters der Implementierung ist diese zwar technisch
solide, aber nicht in allen Details abgeschlossen. Folgende Punkte könnten noch erledigt
werden:

• Ansprechendere Icons in der Symbolleiste der RecommendationsView

• Sortierung der Empfehlungen nach anderen Kriterien (LOC, Typ des Codeblocks, ...).
Die Tabelle sollte nach allen Spalten sortiert werden können.

• Der Benutzer sollte die Gewichtung nicht nur auf Ebene der Fehlerdatenquellen, sondern
auch auf Ebene der Fehlerindikatoren vornehmen können. Hierfür eignen sich die schon
vorhandenen Parameter.

• Übersichtlichere Darstellung der ausgewählten Fehlerdatenquellen und Fehlerindikato-
ren mit Parametern und Gewichtung.

48

5.4 Screenshots

• Nicht überdeckte implizite Else-Blöcke werden in der Ausgabe als If-Blöcke mit einer
Länge von null Zeilen angegeben. Dies ist zwar technisch korrekt, aber für den Benutzer
nicht intuitiv. Der Codeblock-Typ sollte in diesem Fall als Impl. else o.ä. angegeben
werden.

• Das Eclipse-Plugin „Metrics“ könnte in CodeCover integriert werden. Seine Möglichkei-
ten zur Berechnung verschiedener Metriken könnten zur automatischen Auswertung
einiger Fehlerindikatoren interessant sein.

• Statt der „Länge des Prädikates“ sollte im gleichnamigen Fehlerindikator die Komplexi-
tät des Prädikates betrachtet werden.

5.4 Screenshots

Dieser Abschnitt enthält einige Screenshots der implementierten Erweiterung, die im folgen-
den kurz besprochen werden.

Abbildungen 5.4 zeigt die ganze neue Eclipse-Sicht. Sie besteht aus der Tabelle, die die
Empfehlungen (priorisiert) anzeigt. Die Spalten enthalten die Methode, die den Codeblock
enthält, das Prädikat bzw. Statement, das den Kontrollfluss in den Block kontrolliert, den
Typ des Blocks, die Summe der Werte der Fehlerdatenquellen und die Werte der einzelnen
Fehlerdatenquellen.

Die Konfiguration erfolgt über die Werkzeugleistenknöpfe in der rechten oberen Ecke. Dort
werden die Assistenten zur Konfiguration der Fehlerdatenquellen aufgerufen (siehe Abbil-
dung 5.3), die Gewichtung eingestellt (siehe Abbildung 5.5), Filter eingestellt (siehe Abbildung
5.6) und die Priorisierung wie in Abschnitt 5.3.2 geschildert.

In der Tabelle werden dem Benutzer die wesentlichen Informationen zu einer Testfallempfeh-
lung angezeigt: Methode, in der der unüberdeckte Codeblock ist, das Statement bzw. Prädikat
des Codeblocks, sein Typ sowie die Bewertungen der Fehlerdatenquellen. Weitere Details zu
einer Empfehlung können über das Kontextmenü aufgerufen werden. Siehe dazu Abbildung
5.7.

5.5 Fazit zur Umsetzung

CodeCover wurde durch eine weitere Eclipse-Sicht zur Priorisierung von Testfallempfehlun-
gen erweitert. Die Erweiterung stellt ein Framework dar, mit dem Methoden zur Priorisierung
von Testfallempfehlungen evaluiert und mit anderen Methoden verglichen werden können.
Dies ermöglicht die schnelle und aufwandsarme weitere Forschung auf diesem Gebiet.

49

5 Umsetzung

Abbildung 5.3: Konfiguration eines Fehlerindikators

Abbildung 5.4: Sicht zur Anzeige und Priorisierung der Testfallempfehlungen

Es ist ein Grundstock an Fehlerindikatoren implementiert, der in Zukunft auf zweierlei Art
erweitert werden kann:

• Es können weitere Fehlerindikatoren zur automatischen Ermittlung von Priorisierungs-
informationen aufgerüstet werden. Dadurch sinkt der Aufwand zur Durchführung der
Priorisierung und es entfällt die manuelle Pflege von Fehlerinformationsdateien im
XML-Format.

• Es können weitere Fehlerindikatoren und Fehlerdatenquellen gesucht und der
CodeCover-Erweiterung hinzugefügt werden.

50

5.5 Fazit zur Umsetzung

Abbildung 5.5: Dialog zur Gewichtung der Fehlerdatenquellen

Abbildung 5.6: Dialog zum Filtern von Paketen

51

5 Umsetzung

Abbildung 5.7: Detailansicht der Bewertung einer Testfallempfehlung

52

6 Erprobung

Die Erprobung der neu implementierten CodeCover-Erweiterung fand bei einem Indus-
triepartner statt. Zielsetzung war, festzustellen, ob das verwendete Modell seinen Zweck
erfüllen und bei einem der beim Industriepartner entwickelten Programme neue Testfälle
empfehlen kann, die besser sind als eine zufällige Auswahl von Testfällen aus der Liste der
CodeCover-Empfehlungen.

6.1 Testumgebung

Beim Industriepartner gehört Testautomatisierung seit einigen Jahren zum Testprozess, so
dass für die meisten Programme soweit möglich automatisierte Testsuiten vorliegen. Als
Werkzeug für die Oberflächentestautomatisierung kommt vor allem IBM Rational Functional
Tester (RFT) zum Einsatz.

RFT ist ein Werkzeug für die Testautomatisierung und den Regressionstest insbesondere von
Programmen mit graphischer Benutzerschnittstelle. Testskripte (eigentlich Java-Programme)
können dabei mit Hilfe eines Aktionsrekorders aufgenommen oder direkt programmiert
werden. Das bedeutet, dass alle vom Benutzer durchgeführten Klicks und Eingaben an ein
Programm aufgezeichnet werden. RFT generiert daraus Java-Code und Oberflächenobjekt-
beschreibungen, die sich auf die direkten Eigenschaften eines Objektes sowie seine Position
in der Oberflächenhierarchie stützen. Mit Hilfe des Java-Code wird mit diesen Objekten
interagiert. So können Benutzeraktionen wie z.B. Klicks aufgeführt werden, in dem der
Aufruf button_ok().click() ausgeführt wird.

RFT ist gut erweiter- und anpassbar. Unter anderem bietet RFT benutzerdefinierbare Callback-
Methoden an, die bei bestimmten Ereignissen, u.a. Testskriptbeginn und -ende ausgeführt
werden.

Weitere Informationen zu IBM Functional Tester finden sich in [Rat11].

Die Testfälle selbst werden mit IBM Rational ClearQuest TestManager (CQ) verwaltet. Dort
sind Metadaten wie Name, Autor, etc. gespeichert. RFT-Skripte referenzieren mit Hilfe einer
Testfall-ID auf die Testfälle in ClearQuest. Es existiert die Möglichkeit, diese Verbindung und
damit den Testfallnamen programmatisch abzufragen.

53

6 Erprobung

6.2 Geplanter Ablauf

Wesentliches Ergebnis der Diplomarbeit ist eine Methode zur Priorisierung von Testfallemp-
fehlungen von CodeCover, also von unüberdeckten Codeblöcken. Bei der Erprobung an einer
Software aus der Praxis soll festgestellt werden, ob das vorgeschlagene Priorisierungsmodell
bzw. seine Implementierung geeignet sind, eine Menge von Testfällen zur Implementierung
vorzuschlagen, die einer zufälligen Auswahl von Testfällen überlegen ist.

Der Industriepartner gewinnt dabei Informationen über fehlende Testfälle im gewählten
Prüfling.

Die Dauer der Erprobung war im Projektplan auf zwei Wochen limitiert.

Da beim Industriepartner mehrere möglicherweise geeignete Clientprogramme vorhanden
sind, muss zunächst eines ausgewählt werden, das die folgenden Kriterien erfüllt:

• Programmiersprache Java

• Mit CodeCover instrumentier- und auswertbar

• Entwicklung abgeschlossen

• Für den Kunden bestimmtes Programm im Produktiveinsatz

• Vollständige automatisierte Testsuite

• Noch längere Zeit im Einsatz

Diese Kriterien sollen sicher stellen, dass die Untersuchung machbar ist und für beide Parteien
nützliche Ergebnisse liefert.

Zunächst soll der Prüfling von CodeCover instrumentiert und anschließend von der automa-
tischen Testsuite getestet werden. Aus dem sich hieraus ergebenden Test-Session-Container
werden die Testfallempfehlungen generiert und sortiert. Sollten die Gewichtungen der Fehler-
datenquellen ein verzerrtes Ergebnisbild ergeben, werden diese angepasst.

Zur Überprüfung, ob das Modell seinen Anforderungen entspricht, sollen einem Experten
für den Prüfling zwei Mengen von Testfallempfehlungen vorgelegt werden: Zum ersten eine
zufällige Auswahl von 20 Testfallempfehlungen aus den unsortierten Empfehlungen und
zum zweiten die 20 höchstbewertesten Ergebnisse der Priorisierung. Die zweite Methode zur
Überprüfung besteht darin, dem Experten 20 Testfallempfehlungen zu zeigen, von denen zehn
zufällig ausgewählt wurden und zehn vom Priorisierungsmodell als gut bewertet wurden.

Vom Industriepartner benötigte Ressourcen sind zum einen ein Rechnerarbeitsplatz mit
Zugang zum Quellcode des Prüflings sowie Lesezugang zum Versionskontrollsystem. Zur
Durchführung des Tests sind dazu RFT und CQ mit Zugang zu den Testfällen notwendig. Zum
anderen sind einige Stunden eines Experten für den Prüfling nötig, um ggf. Unterstützung bei
der Instrumentierung zu leisten, sowie um Fragen zum Prüfling zu beantworten, insbesondere
für die Fehlerdatenquellen Expertenwissen, Stressfaktoren und QS-Maßnahmen.

54

6.3 Tatsächlicher Ablauf

6.2.1 Integration von Functional Tester mit CodeCover

Um das von CodeCover instrumentierte Programm über Beginn und Ende eines Testfalles zu
informieren, muss dem instrumentierten Programm bei Beginn und Ende einer Testfalls je
eine JMX-Nachricht gesendet werden. Functional Tester bietet für diesen Zweck benutzerdefi-
nierbare Callback-Methoden an, die zu Beginn und am Ende eines Testskriptes ausgeführt
werden. Diese Methoden wurden soweit vorhanden erweitert, dass sie die benötigte JMX-
Nachricht an den instrumentierten Prüfling schicken, wenn ein Testfall beginnt oder endet.
Weitere Modifikationen der Testumgebung waren nicht notwendig.

6.2.2 Risiken

Im Vorfeld der Erprobung wurden mehrere Risiken identifiziert. Einige davon haben im
Eintrittsfall Auswirkungen auf die Durchführungsdauer der Erprobung, andere auf die
Qualität des Ergebnisses, manche auf die grundsätzliche Durchführbarkeit der Untersuchung
beim Industriepartner. Einige dieser Risiken sind eingetreten.

• Technische Schwierigkeiten:

– Probleme bei der Einrichtung der Entwicklungsumgebung des Clients

– Probleme bei der Instrumentierung des Clients

– Probleme bei der Ausführung des Clients (fehlende Testdaten, Testsystem nicht
verfügbar)

– Probleme mit der automatisierten Testsuite

• Organisatorische Schwierigkeiten:

– Kein Mitarbeiter für die Einrichtung der Entwicklungsumgebung verfügbar

– Kein Mitarbeiter für die Befragung für die Fehlerdatenquellen Prozess, QS und
Expertenwissen verfügbar

– Kein Mitarbeiter für den Vergleich der Testfallempfehlungen verfügbar

6.3 Tatsächlicher Ablauf

6.3.1 Auswahl des zu bearbeitenden Programms

Beim Industriepartner existieren mehrere Clientprogramme, die prinzipiell für die Erprobung
geeignet sind. Alle diese Clients sind Java-Programme, die über eine SOAP-Schnittstelle
mit den Servern Daten austauschen und in einer lokalen Entwicklungsumgebung gestartet
werden können.

55

6 Erprobung

Die neueste Generation dieser Clients hatte vor ca. einem halben Jahr ihre Markteinführung,
ist also noch vergleichsweise jung. Diese Clients sind mit SWT entwickelt worden, setzen also
auf einer Eclipse-Plattform auf und sind als Plugins für diese implementiert. Für zwei dieser
Clients existiert eine automatisierte Testsuite, so dass diese als erstes Ziel ins Auge gefasst
wurden. Nach der langwierigen Installation und Einrichtung der Entwicklungsumgebung
stellte sich dann heraus, dass der Ablauf der Functional Tester Skripte bei lokaler Ausführung
unmöglich ist. Die Autoren der RFT-Integration vermochten das Problem nicht zu lösen.

Die ältere Generation von Clients hat auch eine Testsuite, die allerdings wegen der Au-
ßerbetriebnahme der Clients nicht mehr gewartet wird. Die Clients selbst sind noch im
Produktiveinsatz, der allerdings bald ausläuft, weswegen der Code nicht mehr gewartet wird
und keine Experten dafür vorhanden sind. Der Prüfling ist ein solcher und wurde wegen der
Verfügbarkeit einer (halbwegs) brauchbaren Testsuite verwendet.

6.3.2 Prüfling

Das zur Erprobung verwendete Programm ist ein Java-Programm mit Swing-Oberfläche. Die
fachliche Bedeutung des Programms ist für die Erprobung irrelevant und wird daher nicht
weiter ausgeführt.

Das Programm (im Folgenden „Prüfling“) kommuniziert über eine SOAP-Schnittstelle mit
den Servern beim Industriepartner. Die so erhaltenen Daten können angezeigt, gefiltert und
auf verschiedene Art manipuliert werden.

Entwicklungsseitig ist der Prüfling recht einfach gehalten. Es handelt sich um ein normales
Java-Projekt, das ohne eine Vielzahl an Build-Skripten ausführbar ist, wodurch die Instrumen-
tierung und Ausführung vereinfacht wird.

6.3.3 Einrichtung der Entwicklungsumgebung

Der Prüfling ist ein einfaches Java-Programm, das im Versionskontrollsystem als Eclipse-
Projekt vorliegt. Zur Einrichtung musste es nur aus dem Versionskontrollsystem ausgecheckt
und als Eclipse-Projekt importiert werden.

6.3.4 Instrumentierung

Die Instrumentierung direkt in Eclipse mithilfe des CodeCover-Plugins funktionierte nicht.
Das Übersetzen der instrumentierten Klassen brach in mehreren Überdeckungsvarianten mit
Fehlermeldung ab. Die Batch-Instrumentierung funktionierte hingegen und der Prüfling ließ
sich mit Instrumentierung und JMX-Schnittstelle für den Empfang von Testfallinformationen
starten.

56

6.3 Tatsächlicher Ablauf

6.3.5 Testumgebung und Testsuite

Wegen Arbeiten am Testsystems war dieses im Zeitraum der Erprobung nicht verfügbar,
so dass serverseitig auf das Entwicklungssystem ausgewichen werden musste. Dort war
die Testausführung zwar möglich, allerdings mit Einschränkungen. Es waren nicht die von
den Testskripten erwarteten Testdaten verfügbar und Fehler im System verhinderten den
normalen Ablauf der Testskripte. Diese mussten teilweise einzeln angepasst werden, damit sie
auch mit den nicht idealen Bedingungen abliefen. Dadurch trat eine gewisse Abweichung vom
Normalablauf auf, die das Überdeckungsergebnis möglicherweise abgefälscht hat. Zudem
war die Anpassung der einzelnen Testskripte mühsam und war nur dank reichlich Erfahrung
mit RFT und der Testumgebung beim Industriepartner möglich.

6.3.6 Auswertung der Ergebnisse

Es konnte durch die Ausführung der vorhandenen und funktionierenden Testskripte eine An-
weisungsüberdeckung von 38%, eine Zweigüberdeckung von 23%, eine Schleifenüberdeckung
von 13% sowie eine Termüberdeckung von 22% erreicht werden. Diese Werte schwankten
zwischen Model-, View- und Controller-Paketen nur wenig. Einige Funktionalitätsgruppen
konnten mangels Testdaten bzw. völliger Nichtfunktion der Testskripte gar nicht verwendet
bzw. getestet werden.

Wegen des Alters des Prüflings standen keine nutzbaren Daten zu Änderungen in letzter Zeit
zur Verfügung. Da die Entwicklung vor vielen Jahren extern stattfand, sind keine Daten über
während der Implementierung möglicherweise verwendete Qualitätssicherungsmaßnahmen
verfügbar. Expertenwissen über den Quellcode des Prüflings stand ebenfalls nicht zur Verfü-
gung, bzw. eine Befragung war durch Zeitdruck der Entwickler nicht realisierbar. Es konnte
auch kein Entwickler zur Qualität der Testfallempfehlungen befragt werden.

Damit blieben als verfügbare Fehlerdatenquellen der Code selbst, die Versionsgeschichte und
die Informationen aus der CodeCover-Überdeckung übrig. Ausgewertete Fehlerindikatoren
waren:

• Code: LOC der Datei

• Code: FindBugs-Resultate

• Versionsgeschichte: Alter der Datei

• CodeCover-Überdeckung: Typ des Codeblocks

• CodeCover-Überdeckung: Anzahl der Codezeilen

• CodeCover-Überdeckung: Anzahl der tangierenden Testfälle

• CodeCover-Überdeckung: Länge des Prädikats

57

6 Erprobung

Diese relativ schmale Datenbasis ist leider nicht geeignet um das angewandte Verfahren
ausführlich bewerten zu können.

Die Liste der generierten Empfehlungen enthält ca. 1700 Einträge. Bei 640 Einträgen enthält
das Prädikat einen Vergleich mit null. Lässt man den Oberflächen-Code weg, bleiben ca. 800

Empfehlungen übrig, von denen bei 350 das Prädikat einen Vergleich mit null enthält.

Ca. 24% der Empfehlungen bezogen sich auf unüberdeckte If-Blöcke, 34% auf unüberdeckte
implizite Else-Blöcke , 28% auf Schleifenüberdeckung, 8% auf Termüberdeckung und je ca.
3% auf Catch- und Switch-Blöcke.

Die ersten 50 Empfehlungen (2,3%) haben summiert 2,96% der Punkte erhalten. Die beste
Empfehlung bekam 76,3 Punkte, die schlechteste 16,9. Der Durchschnitt betrug 43,5 Punkte,
der Median 42,7. 80% der Empfehlungen bewegten sich zwischen 30 Punkten und 58 Punkten.
Abbildungen 6.1 und 6.2 zeigen die Verteilung der Gesamtpunkte. Es ist ersichtlich, dass die
Fehlerdatenquelle Versionsgeschichte gleichmäßig zwischen 8 und 15 Punkten schwankt. Sie
hat keine wesentliche Auswirkung auf die Summe.

Verteilung der Summe
der Empfehlungen

Pu
nk

te

0

20

40

60

80

Summe

Abbildung 6.1: Boxplot der Verteilung Punkte der einzelnen Datenquellen sowie deren
Summe

Die Abbildungen 6.3 und 6.4 zeigen die Punkteverteilungen der einzelnen Fehlerdatenquellen,
wiederum ohne und inkl. GUI-Code. Es fällt auf, dass die Versionsgeschichte, im Gegensatz
zu CodeCover und Code relativ undifferenzierte Ergebnisse geliefert hat.

Eine Bewertung der Ergebnisse durch einen Programmierer oder Tester beim Industriepartner
war nicht möglich, weil aus Zeitgründen kein Mitarbeiter zur Verfügung stand.

58

6.3 Tatsächlicher Ablauf

Prädikat LOC #TF C V CC Summe
cache.get(FBZWConstants.CACHE_MONTHLY_TIMEMGMT_SUM) != null 4 1 31,3 11 34 76,3
removedSumDate.size() > 0 1 1 31,3 11 30 72,3
removedDetailsData.size() > 0 1 1 31,3 11 30 72,3
removedEventsData.size() > 0 1 1 31,3 11 30 72,3
FBZWConstants.CACHE_TIMEMGMT_EVENTS.equals(key) 0 1 31,3 11 30 72,3
isUpdate 0 1 31,3 11 30 72,3
(driverIdsListLeft.containsAll(driverIdsListRight) ||

driverIdsListRight.containsAll(driverIdsListLeft)) &&

driverIdsListLeft.size() == driverIdsListRight.size()

0 1 21 9 42 72

activityComboBox.getItemAt(i).toString().equals(res.getDisplayLabels(

LabelConstants.FILTER_DRVTIME_LIST + ."+ FBZWConstants.ONLY_MESSAGES))"

0 1 20 13 38 71

((TimemgmtSumRequestDO) requestInput).getMonth() != null 1 1 21,3 11 34 66,3
map.containsKey(dataKey) && map.get(dataKey) != driverMap.get(dataKey) 2 1 21,3 11 34 66,3
res.getDisplayLabels(LabelConstants.DRIVINGTIME_FILTER_VEHICLELIST_ALL)

.equalsIgnoreCase(vehicleSelection)

11 1 20 13 33 66

ResourceManager.getUserProperties().getLastSelectedTab() ==

((JTabbedPane)getParent()).getSelectedIndex()

1 1 20 13 31 64

ResourceManager.getUserProperties().getLastSelectedTab() ==

((JTabbedPane)getParent()).getSelectedIndex()

2 1 21 9 33 63

beginActivityList != null 0 1 20 13 30 63

filterPane == null 0 1 20 13 30 63

vehicle[i].getLicenceNumber() != null &&

(!vehicle[i].getLicenceNumber().equals("))

1 1 20 13 30 63

fromDateChooser.getSpinner().isEnabled() &&

toDateChooser.getSpinner().isEnabled()

3 1 20 13 30 63

timemgmtDetailsRequestDO.getTimeRange().

equalsIgnoreCase(FBZWConstants.PERIOD)

5 1 20 13 30 63

filterDO.getBeginActivity().equalsIgnoreCase(FBZWConstants.PERIOD) 10 1 20 13 30 63

driverPath != null && driverPath.getPath().length <= 2 5 1 20 13 30 63

update && selectedDriverIds != null && (timemgmtSumFilterDO != null) &&

timemgmtSumFilterDO.equals(getFilterSettingDO())

5 1 20 12 31 63

ResourceManager.getUserProperties().getLastSelectedTab() ==

((JTabbedPane)getParent()).getSelectedIndex()

1 1 20 12 31 63

!key.toString().equalsIgnoreCase(

FBZWConstants.CACHE_LATEST_TIMEMGMT_DETAILS)

1 1 21,3 11 30 62,3

requestInput instanceof TimemgmtDetailsRequestDO 39 1 21,3 11 30 62,3
map == null 0 1 21,3 11 30 62,3
driverMap != null 0 1 21,3 11 30 62,3
_next != null 1 1 21,3 11 30 62,3
driverMap != null 0 1 21,3 11 30 62,3
!_removed.isEmpty() 1 1 21,3 11 30 62,3
!dataList.isEmpty() 1 1 21,3 11 30 62,3
requestInput instanceof TimemgmtSumRequestDO 0 1 21,3 11 30 62,3

Tabelle 6.1: Die 31 höchstgewichteten Empfehlungen mit LOC, Anzahl tangierender Testfälle,
Punkte der Fehlerdatenquellen Code, Versionsgeschichte und

CodeCover-Überdeckung sowie der Summe der Punkte. Alle empfohlenen
Code-Blöcke sind If-Blöcke. Die Blöcke mit null Codezeilen sind implizite

Else-Blöcke.

59

6 Erprobung

Verteilung der Bewertungen
Pu

nk
te

0

10

20

30

40

50

60

70

80

Empfehlung auf Rang
0 500 1.000 1.500

Versionsgeschichte
CodeCover
Code
Summe

Abbildung 6.2: X/Y-Plot der Verteilung der Gesamtpunkte

Tabelle 6.1 zeigt die 31 bestbewerteten Testfallempfehlungen. Dies entspricht den besten 0,88%.
Ausgelassen wurden sehr ähnliche Empfehlungen und solche mit sehr langen Prädikaten.
If-Blöcke mit null Codezeilen stellen implizite else-Blöcke dar, was bedeutet, dass das
Prädikat der entsprechenden If-Anweisung stets wahr war. Es fällt auf, dass alle Codeblöcke
nur von einem Testfall tangiert wurden, was wahrscheinlich den Eigenschaften der Testsuite
zuzuschreiben ist.

Ca. 15 der besten 31 Empfehlungen scheinen Prädikate zu enthalten, die auf technische
Details prüfen, oder zur defensiven Programmierung gehören. Es dürfte einem Tester, der
den Quellcode des Programms nicht kennt, nicht einfach möglich sein, aus den Prädikaten
neue Testfälle zu entwickeln, da die Prädikate in den meisten Fällen nicht „sprechend“ sind,
also keinen direkten Rückschluss auf ggf. zu ändernde Eingabedaten zulassen.

60

6.3 Tatsächlicher Ablauf

Punkteverteilung der ausgewerteten Fehlerdatenquellen
Pu

nk
te

0

10

20

30

40

50

Versionsgeschichte CodeCover Code

Versionsgeschichte
CodeCover
Code

Abbildung 6.3: Verteilung der Bewertungen der Fehlerdatenquellen

Punkteverteilung der ausgewerteten Fehlerdatenquellen
ohne GUI-Code

Pu
nk

te

0

10

20

30

40

50

Versionsgeschichte CodeCover Code

Versionsgeschichte
CodeCover
Code

Abbildung 6.4: Verteilung der Bewertungen der Fehlerdatenquellen ohne GUI-Code

61

6 Erprobung

6.4 Schlussfolgerungen aus der Erprobung

Die Erprobung konnte nicht wie gewünscht durchgeführt werden. Folgende Probleme haben
eine umfassendere Erprobung verhindert:

• Aktuelle Dokumente und Entwickler, die den Quellcode des Zeitwirtschaftsclients
kennen, standen nicht zur Verfügung. Daher konnten die meisten Fehlerindikatoren des
Modells nicht eingesetzt werden. Die verbleibenden sieben Fehlerindikatoren konnten
zwar ausgewertet werden, allerdings kann auf dieser spärlichen Datenmenge das Modell
nicht angemessen bewertet werden.

• Die Ergebnisse der Priorisierung konnten keinem Entwickler zur Bewertung vorgelegt
werden. So bleibt die Bewertung der Testfallempfehlungen dem Autor der Diplomarbeit
überlassen, der den Quellcode nicht kennt und die Qualität der Empfehlungen damit
nicht ausreichend beurteilen kann.

Jedoch lassen sich ohne detaillierte Kenntnisse der Anwendung die folgenden allgemeinen
Beobachtungen aus den obigen Diagrammen sowie der Liste an Empfehlungen feststellen:

• Die unpriorisierte Liste ist mit 1700 Einträgen zu lang, um sie einzeln durchzuarbeiten.
Eine automatisierte Priorisierung ist erforderlich.

• Die Empfehlungen, deren Prädikat den String „null“ enthält, scheinen technische
Prädikate zu sein. Diese sind größtenteils nicht „sprechend“ und beziehen sich nicht
direkt auf durch Testfälle manipulierbare Eingabedaten.

• Beim getesteten Programm liegen die Punktzahlen des Fehlerindikators „Alter der
Datei“, der den einzigen Fehlerindikator der Fehlerdatenquelle „Versionsgeschichte“
ausgemacht hat, sehr nah zusammen. Die Werte erscheinen wie zufällige Werte und
beeinflussen das Ergebnis nicht. Siehe Abbildungen 6.2 und 6.3.

62

7 Zusammenfassung

Im Rahmen der Diplomarbeit wurde zunächst in der Literatur nach Möglichkeiten zur
Priorisierung von Testfallempfehlungen gesucht. Neben Veröffentlichungen zu CodeCover
wurden Veröffentlichungen der Themen risikobasierter Test und Fehlerprognose studiert
und geeignete Vertreter zusammengefasst. Aus diesen Veröffentlichungen wurden Thesen
extrahiert, die die Grundlage für das im Hauptteil der Arbeit erstellte Modell zur Priorisierung
von Testfallempfehlungen bilden.

Zum Modell gehören die Beschreibung einiger Heuristiken zur Fehlerprognose auf Basis des
Quellcodes, der Versionsgeschichte, des Wissens der Entwickler, der eingesetzten Qualitäts-
sicherungsmaßnahmen, der während der Entwicklung herrschenden Stressfaktoren sowie
den Eigenschaften der Testfallempfehlung selbst. Weiterhin gibt das Modell auch an, wie die
Resultate dieser Heuristiken zu einer Gesamtempfehlung verrechnet werden können und
beschreibt den Ablauf der Priorisierung. Durch die Anwendung des Priorisierungsmodells
ist es einem Tester möglich, sich aus einer großen Menge von Testfallempfehlungen diejeni-
gen auszusuchen, die die heuristisch besten sind, was die Wirtschaftlichkeit seiner Arbeit
erhöht.

Danach wurde das Modell als CodeCover-Erweiterung implementiert. Der Eclipse-Integration
von CodeCover wurde dabei eine weitere Sicht hinzufügt. Mit Hilfe dieser Sicht können nach
einem Testdurchlauf mit CodeCover Testfallempfehlungen generiert und mit Hilfe mehre-
rer Heuristiken priorisiert werden. Die Implementierung ist dabei als Framework für die
Erprobung weiterer Heuristiken zur Testfallpriorisierung ausgelegt. Durch die Framework-
Funktionen entfällt die zeitraubende Implementierung von Oberflächen zur Konfiguration
von Fehlerindikatoren. Weiter Fehlerdatenquellen, Fehlerindikatoren und automatische Aus-
werter können mit wenig Zeitaufwand eingebaut werden. Einige Heuristiken wurden mit
automatischer Auswertung implementiert, für einige muss der Tester selbst die Daten lie-
fern.

Es ist dem Tester nun möglich, sich nach der Testdurchführung mit CodeCover eine Liste
von Empfehlungen anzeigen zu lassen. Diese kann er mit Hilfe der konfigurierbaren Heu-
ristiken dann sortieren lassen. Der Tester bekommt damit eine Auswahl von heuristisch
guten Testfallempfehlungen angezeigt. Mit diesen kann er eine Testsuite mit relativ wenig
Aufwand verbessern. Diese Wirtschaftlichkeit könnte es ermöglichen, eine Testsuite trotz
engem Zeitplan zu verbessern.

Die Erprobung beim Industriepartner konnte eingeschränkt durchgeführt werden. Es kam
dabei nur eine kleine Auswahl der Heuristiken im Modell zum Einsatz. Die Bewertung der
höchstpriorisierten Testfallempfehlungen war nicht möglich. Dennoch hat die Erprobung

63

7 Zusammenfassung

gezeigt, dass eine Priorisierung mit Hilfe dieses Verfahrens möglich ist und differenzierte
Ergebnisse liefert.

64

Literaturverzeichnis

[Aml00] S. Amland. Risk-based testing: Risk analysis fundamentals and metrics for
software testing including a financial application case study. Journal of Systems and
Software, 53(3):287 – 295, 2000. doi:DOI:10.1016/S0164-1212(00)00019-4. URL http:

//www.sciencedirect.com/science/article/pii/S0164121200000194. (Zitiert
auf den Seiten 15, 27, 35 und 36)

[Bac99] J. Bach. Heuristic Risk-Based Testing. 1999. (Zitiert auf den Seiten 17 und 36)

[BOW06] R. M. Bell, T. J. Ostrand, E. J. Weyuker. Looking for bugs in all the right places.
pp. 61–72, 2006. doi:http://doi.acm.org/10.1145/1146238.1146246. URL http:

//doi.acm.org/10.1145/1146238.1146246. (Zitiert auf den Seiten 19, 20, 25, 26,
35 und 36)

[Cod11] CodeCover. CodeCover-Homepage. 2011. URL http://codecover.org/. [Online;
Stand 28. Juni 2011]. (Zitiert auf den Seiten 29 und 30)

[DLLS05] M. Deininger, H. Lichter, J. Ludewig, K. Schneider. Studien-Arbeiten – ein Leitfaden
zur Vorbereitung, Durchführung und Betreuung von Studien-, Diplom- und Doktorarbei-
ten am Beispiel Informatik. 2005. (Zitiert auf Seite 12)

[FAI97] T. Furuyama, Y. Arai, K. Iio. Analysis of fault generation caused by
stress during software development, volume 38. 1997. doi:DOI:10.1016/
S0164-1212(97)00064-2. URL http://www.sciencedirect.com/science/article/

pii/S0164121297000642. Achieving Quality in Software. (Zitiert auf den Seiten 25

und 27)

[FO00] N. Fenton, N. Ohlsson. Quantitative analysis of faults and failures in a complex
software system. Software Engineering, IEEE Transactions on, 26(8):797 –814, 2000.
doi:10.1109/32.879815. (Zitiert auf den Seiten 9, 18, 19, 20 und 27)

[HFGO94] M. Hutchins, H. Foster, T. Goradia, T. Ostrand. Experiments of the effectiveness
of dataflow- and controlflow-based test adequacy criteria. ICSE ’94. IEEE Computer
Society Press, Los Alamitos, CA, USA, 1994. URL http://portal.acm.org/

citation.cfm?id=257734.257766. (Zitiert auf Seite 27)

[HP04] D. Hovemeyer, W. Pugh. Finding bugs is easy. SIGPLAN Not., 39:92–106, 2004.
doi:http://doi.acm.org/10.1145/1052883.1052895. URL http://doi.acm.org/10.

1145/1052883.1052895. (Zitiert auf den Seiten 21 und 26)

65

http://www.sciencedirect.com/science/article/pii/S0164121200000194
http://www.sciencedirect.com/science/article/pii/S0164121200000194
http://doi.acm.org/10.1145/1146238.1146246
http://doi.acm.org/10.1145/1146238.1146246
http://codecover.org/
http://www.sciencedirect.com/science/article/pii/S0164121297000642
http://www.sciencedirect.com/science/article/pii/S0164121297000642
http://portal.acm.org/citation.cfm?id=257734.257766
http://portal.acm.org/citation.cfm?id=257734.257766
http://doi.acm.org/10.1145/1052883.1052895
http://doi.acm.org/10.1145/1052883.1052895

Literaturverzeichnis

[HPH+
09] T. Holschuh, M. Pauser, K. Herzig, T. Zimmermann, R. Premraj, A. Zeller. Pre-

dicting defects in SAP Java code: An experience report. pp. 172 –181, 2009.
doi:10.1109/ICSE-COMPANION.2009.5070975. (Zitiert auf den Seiten 25, 26, 27

und 35)

[Kim03] Y. W. Kim. Efficient use of code coverage in large-scale software development. pp.
145–155, 2003. URL http://portal.acm.org/citation.cfm?id=961322.961347.
(Zitiert auf Seite 20)

[LL07] J. Ludewig, H. Lichter. Software Engineering - Grundlagen, Menschen, Prozesse,
Techniken. dpunkt.verlag, 2007. (Zitiert auf den Seiten 12, 25, 27 und 38)

[Moz11] Mozilla. Website der Mozilla Corporation. 2011. URL http://www.mozilla.com/.
[Online; Stand 28. Juni 2011]. (Zitiert auf Seite 20)

[Mye01] G. Myers. Methodisches Testen von Programmen. Oldenbourg, 2001. URL http:

//books.google.com/books?id=srqkL75liPkC. (Zitiert auf Seite 36)

[NBZ06] N. Nagappan, T. Ball, A. Zeller. Mining metrics to predict component failures.
pp. 452–461, 2006. doi:http://doi.acm.org/10.1145/1134285.1134349. URL http:

//doi.acm.org/10.1145/1134285.1134349. (Zitiert auf den Seiten 20, 25, 26, 27,
34 und 39)

[Neu05] D. Neun. Codemetriken zur Bewertung und Prognose der Fehlerhäufigkeit. 2005.
URL http://elib.uni-stuttgart.de/opus/volltexte/2005/2399. (Zitiert auf
den Seiten 35 und 36)

[NZZ07] S. Neuhaus, T. Zimmermann, A. Zeller. Predicting Vulnerable Software Com-
ponents. 2007. (Zitiert auf den Seiten 20 und 26)

[OA96] N. Ohlsson, H. Alberg. Predicting Fault-Prone Software Modules in Telephone
Switches. IEEE Transactions on Software Engineering, 22:886–894, 1996. doi:http:
//doi.ieeecomputersociety.org/10.1109/32.553637. (Zitiert auf Seite 19)

[Ora11] Oracle. JMX Technology Home Page. 2011. URL http://www.oracle.com/

technetwork/java/javase/tech/javamanagement-140525.html. [Online; Stand
29. Juni 2011]. (Zitiert auf Seite 29)

[OWB05] T. J. Ostrand, E. J. Weyuker, R. M. Bell. Predicting the Location and Number
of Faults in Large Software Systems. IEEE Transactions on Software Engineering,
31:340–355, 2005. doi:http://doi.ieeecomputersociety.org/10.1109/TSE.2005.49.
(Zitiert auf den Seiten 20, 25, 26, 27, 35 und 36)

[RAF04] N. Rutar, C. B. Almazan, J. S. Foster. A Comparison of Bug Finding Tools for
Java. pp. 245–256, 2004. doi:10.1109/ISSRE.2004.1. URL http://portal.acm.org/

citation.cfm?id=1032654.1033833. (Zitiert auf den Seiten 22, 26 und 35)

[Rat11] I. Rational. Functional Tester Homepage. 2011. URL http://www-01.ibm.com/

software/awdtools/tester/functional/. [Online; Stand 5. August 2011]. (Zi-
tiert auf Seite 53)

66

http://portal.acm.org/citation.cfm?id=961322.961347
http://www.mozilla.com/
http://books.google.com/books?id=srqkL75liPkC
http://books.google.com/books?id=srqkL75liPkC
http://doi.acm.org/10.1145/1134285.1134349
http://doi.acm.org/10.1145/1134285.1134349
http://elib.uni-stuttgart.de/opus/volltexte/2005/2399
http://www.oracle.com/technetwork/java/javase/tech/javamanagement-140525.html
http://www.oracle.com/technetwork/java/javase/tech/javamanagement-140525.html
http://portal.acm.org/citation.cfm?id=1032654.1033833
http://portal.acm.org/citation.cfm?id=1032654.1033833
http://www-01.ibm.com/software/awdtools/tester/functional/
http://www-01.ibm.com/software/awdtools/tester/functional/

Literaturverzeichnis

[RHRH02] G. Rothermel, M. J. Harrold, J. von Ronne, C. Hong. Empirical studies of test-suite
reduction, volume 12. John Wiley & Sons, Ltd., 2002. doi:10.1002/stvr.256. URL
http://dx.doi.org/10.1002/stvr.256. (Zitiert auf Seite 25)

[Sch08] R. Schmidberger. Glassboxtest zur Testsuite-Optimierung. 2008. (Zitiert auf den
Seiten 23 und 29)

[Sch09] S. Schumm. Praxistaugliche Unterstützung beim selektiven Regressionstest.
2009. URL http://www2.informatik.uni-stuttgart.de/cgi-bin/NCSTRL/

NCSTRL_view.pl?id=DIP-2923&engl=0. (Zitiert auf Seite 23)

[Sch10] R. Schmidberger. Ein kombinierter Black-Box- und Glass-Box-Test. 2010. (Zitiert auf
den Seiten 12, 23, 26, 30, 38 und 40)

[Sub11a] Subclipse. Subclipse-Projekt-Homepage. 2011. URL http://subclipse.tigris.org/.
[Online; Stand 28. Juni 2011]. (Zitiert auf Seite 48)

[Sub11b] Subversion. Subversion-Projekt-Homepage. 2011. URL http://subversion.apache.

org/. [Online; Stand 28. Juni 2011]. (Zitiert auf Seite 48)

[SZZ05] J. Sliwerski, T. Zimmermann, A. Zeller. Don’t Program on Fridays! How to Locate
Fix-Inducing Changes. 2005. (Zitiert auf den Seiten 21 und 36)

[SZZ06] A. Schröter, T. Zimmermann, A. Zeller. Predicting component failures at design
time. pp. 18–27, 2006. doi:http://doi.acm.org/10.1145/1159733.1159739. URL
http://doi.acm.org/10.1145/1159733.1159739. (Zitiert auf Seite 26)

[Wik10] Wikipedia. Header-Datei — Wikipedia, Die freie Enzyklopädie. 2010. URL http:

//de.wikipedia.org/w/index.php?title=Header-Datei&oldid=82784591. [On-
line; Stand 28. Juni 2011]. (Zitiert auf Seite 20)

Alle URLs wurden zuletzt am 15.08.2011 geprüft.

67

http://dx.doi.org/10.1002/stvr.256
http://www2.informatik.uni-stuttgart.de/cgi-bin/NCSTRL/NCSTRL_view.pl?id=DIP-2923&engl=0
http://www2.informatik.uni-stuttgart.de/cgi-bin/NCSTRL/NCSTRL_view.pl?id=DIP-2923&engl=0
http://subclipse.tigris.org/
http://subversion.apache.org/
http://subversion.apache.org/
http://doi.acm.org/10.1145/1159733.1159739
http://de.wikipedia.org/w/index.php?title=Header-Datei&oldid=82784591
http://de.wikipedia.org/w/index.php?title=Header-Datei&oldid=82784591

Erklärung

Hiermit versichere ich, diese Arbeit selbständig
verfasst und nur die angegebenen Quellen
benutzt zu haben.

(Ralf Ebert)

	1 Einleitung
	1.1 Aufgabenstellung
	1.2 Motivation

	2 Literaturrecherche
	2.1 Risikobasierter Test
	2.2 Fehlerprognose
	2.3 CodeCover
	2.4 Testsuite-Reduktion
	2.5 Sonstiges
	2.6 Schlussfolgerungen aus der Literaturrecherche

	3 CodeCover
	4 Priorisierungsmodell
	4.1 Grundbegriffe des Modells
	4.2 Bewertungsebenen
	4.3 Überblick über das Modell
	4.4 Fehlerdatenquellen
	4.4.1 Quellcode
	4.4.2 Versionsgeschichte
	4.4.3 Stressfaktoren
	4.4.4 Expertenwissen
	4.4.5 Verwendete Qualitätssicherungsmaßnahmen
	4.4.6 CodeCover-Überdeckung

	4.5 Bewertung der Fehlerwahrscheinlichkeit
	4.6 Ablauf der Priorisierung
	4.7 Bewertung des Modells

	5 Umsetzung
	5.1 Ziele
	5.2 Umgesetzte Modellelemente
	5.3 Entwurf und Implementierung
	5.3.1 Datenstruktur
	5.3.2 Ablauf der Priorisierung
	5.3.3 Erweiterbarkeit
	5.3.4 Eclipse als notwendiger Übersetzer
	5.3.5 Speicherung von Zwischenergebnissen
	5.3.6 Zukünftige Verbesserungen

	5.4 Screenshots
	5.5 Fazit zur Umsetzung

	6 Erprobung
	6.1 Testumgebung
	6.2 Geplanter Ablauf
	6.2.1 Integration von Functional Tester mit CodeCover
	6.2.2 Risiken

	6.3 Tatsächlicher Ablauf
	6.3.1 Auswahl des zu bearbeitenden Programms
	6.3.2 Prüfling
	6.3.3 Einrichtung der Entwicklungsumgebung
	6.3.4 Instrumentierung
	6.3.5 Testumgebung und Testsuite
	6.3.6 Auswertung der Ergebnisse

	6.4 Schlussfolgerungen aus der Erprobung

	7 Zusammenfassung
	Literaturverzeichnis

