Institut fiir Softwaretechnologie
Universitat Stuttgart
Universitatsstral3e 38
D-70569 Stuttgart

Diplomarbeit Nr.3147

Priorisierung von
Testfall-Vorschlagen

Ralf Ebert

Studiengang:

Prifer:

Betreuer:

begonnen am:

beendet am:

CR-Klassifikation:

Softwaretechnik

Prof. Dr. rer. nat. Jochen Ludewig

Dipl.-Ing. Rainer Schmidberger

14. Februar 2011
16. August 2011

D.2.5

Inhalt

Der kombinierte Black-Box- und Glass-Box-Test bietet Moglichkeiten, neue Testfélle zu fin-
den, indem er uniiberdeckte Codeblocke aufzeigt. Jeder uniiberdeckte Codeblock entspricht
einem neuen potenziellen Testfall. Diese Liste von Testfallempfehlungen kann zur Verbesse-
rung einer existierenden Systemtestsuite verwendet werden. Eine Hiirde auf dem Weg zur
Verbesserung einer existierenden Systemtestsuite ist die notwendige Wirtschaftlichkeit. Die
Kosten der wahrscheinlich verhinderten Fehler miissen die Kosten der Testsuiteverbesserung
tibersteigen.

Um einem Tester die wirtschaftliche Abarbeitung der Testfallempfehlungen zu ermoglichen,
sollten diese priorisiert werden. So soll erreicht werden, dass der Tester seine Zeit fiir die
Erstellung von Testfdllen mit hoher Wahrscheinlichkeit, einen Fehler zu finden, einsetzt.

In dieser Diplomarbeit wird ein Modell fiir die Priorisierung von Testfallempfehlungen
vorgestellt. Das Modell basiert auf Heuristiken, die die Fehlerfindwahrscheinlichkeit und
mogliche Fehlerschwere von Testfallempfehlungen bewerten. Die Heuristiken nehmen ihre
Informationen dazu aus verschiedenen Quellen, unter anderem aus dem Quellcode und der
Versionsgeschichte des Programms. Alle Heuristiken stammen dabei aus der bestehenden
Literatur zu den Themen ,risikobasierter Test” und ,Fehlerprognose”. Das Priorisierungsmo-
dell ist allerdings nicht starr auf eine Menge von Heuristiken ausgelegt, sondern kann durch
zusitzliche Heuristiken erweitert werden.

Das Modell wurde als CodeCover-Erweiterung implementiert und fiigt der Eclipse-Integration
von CodeCover eine weitere Sicht hinzu. Mit Hilfe dieser CodeCover-Erweiterung kénnen
nach einem Testdurchlauf mit CodeCover Testfallempfehlungen generiert und mit Hilfe
mehrerer Heuristiken priorisiert werden. Die Implementierung ist dabei als Framework fiir
die Erprobung weiterer Heuristiken zur Priorisierung von Testfallempfehlungen geeignet.

Die Arbeit schliefit mit einer Erprobung der CodeCover-Erweiterung bei einem Industriepart-
ner.

Abstract

The combined black-box and glass-box test offers possibilities of finding new test cases by
showing uncovered code blocks. Every uncovered code block corresponds to a potential new
test case. This list of test case recommendations can be used to improve an existing suite of
system test cases. An obstacle on the way to the improvement of an existing system test suite
is the required cost effectiveness. The cost of the probably avoided errors in production must
outweigh the cost of test suite improvement.

To facilitate the cost-effective working off the test case recommendations they should be
priorized. Thus the tester can focus his time on the creation of test cases with a high
probability of finding an error.

In this diploma thesis a model for the priorization of test cases is presented. The model is
based on heuristics that rate the error finding probability and the potential covered error
severity of a test case recommendation. These heuristics rely on several sources such as the
source code and the version archive. The heuristics are extracted from the existing literature
about risk-based testing and error prediction. The priorization model is however not limited
to a certain set of heuristics but it can be extended to include further heuristics.

The model has been implemented as an extension for the tool CodeCover. It supplements
the Eclipse integration with another view. Using this view one can generate a list of test case
recommendations after a test execution and priorize them using multiple heuristics. The
implementation is fit to be used as a framework for the trial of further heuristics for the
priorization of test cases.

This work concludes with an experiment on the performance of the implementation at a
company.

Danksagungen

Ich mochte allen danken, die mir bei dieser Diplomarbeit geholfen haben, insbesondere Rainer
Schmidberger fiir die hervorragende Betreuung. Weiterhin mochte ich mich beim Industrie-
partner — vor allem bei Volker Werner — fiir die Unterstiitzung bei der Erprobung bedanken.
Abschlieiend mochte ich mich bei Giinter fiir die investierte Zeit, das Korrekturlesen und die
Anmerkungen herzlich bedanken.

Inhaltsverzeichnis

1 Einleitung

1.1
1.2

Aufgabenstellung
Motivation

2 Literaturrecherche

2.1
2.2

2.3
2.4
2.5
2.6

Risikobasierter Test
Fehlerprognose
CodeCover
Testsuite-Reduktion
Sonstiges

Schlussfolgerungen aus der Literaturrecherche

3 CodeCover

4 Priorisierungsmodell

4.1 Grundbegriffe des Modells o L L.
4.2 Bewertungsebenen L o o Lo
4.3 Uberblick iiber das Modell
4.4 Fehlerdatenquellen 0 ..
441 Quellcode
4.4.2 Versionsgeschichte
4.4.3 Stressfaktoren L L Lo
4.4.4 Expertenwissen L o
4.4.5 Verwendete Qualititssicherungsmafsnahmen
4.4.6 CodeCover-Uberdeckungouo.....
4.5 Bewertung der Fehlerwahrscheinlichkeit
4.6 Ablauf der Priorisierung L oo
4.7 BewertungdesModells
5 Umsetzung
51 Ziele ...
5.2 Umgesetzte Modellelemente,
5.3 Entwurf und Implementierung o L L L.
5.3.1 Datenstruktur
5.3.2 Ablauf der Priorisierung o0 L
5.3.3 Erweiterbarkeit L

5.3.4 Eclipse als notwendiger Ubersetzer

11
11
12

15
15
18
23
25
25
25

29

31
32
32
33
33
34
35
36
37
37

38
39
40

43
43
44
45
45
46

47

5.3.5 Speicherung von Zwischenergebnissen
5.3.6 Zukiinftige Verbesserungen oL
5.4 Screenshots
55 FazitzurUmsetzung
Erprobung
6.1 Testumgebung L
6.2 Geplanter Ablauf
6.2.1 Integration von Functional Tester mit CodeCover
6.22 Risiken L
6.3 Tatsdchlicher Ablauf
6.3.1 Auswahl des zu bearbeitenden Programms
6.3.2 Prifling
6.3.3 Einrichtung der Entwicklungsumgebung
6.3.4 Instrumentierung 0 o oL
6.3.5 Testumgebung und Testsuite
6.3.6 Auswertung der Ergebnisse o oo 0oL
6.4 Schlussfolgerungen aus der Erprobung

7 Zusammenfassung

Literaturverzeichnis

Abbildungsverzeichnis

Beispiel der CodeCover-Ausgabe der Uberdeckung einer Funktion 30
Uberblick iiber die Konzepte des Modells und ihre Beziehungen 34
Datenstruktur der CodeCover-Erweiterung 45
Ablauf der Priorisierung Lo 47
Konfiguration eines Fehlerindikators 50
Sicht zur Anzeige und Priorisierung der Testfallempfehlungen 50
Dialog zur Gewichtung der Fehlerdatenquellen 51
Dialog zum Filtern von Paketen 51
Detailansicht der Bewertung einer Testfallempfehlung 52

Boxplot der Verteilung Punkte der einzelnen Datenquellen sowie deren Summe 58

X/Y-Plot der Verteilung der Gesamtpunkte 60
Verteilung der Bewertungen der Fehlerdatenquellen. 61
Verteilung der Bewertungen der Fehlerdatenquellen ohne GUI-Code 61

Tabellenverzeichnis

2.1

6.1

Unvollstandige Liste der Hypothesen aus [FOoo] 19

Die 31 hochstgewichteten Empfehlungen mit LOC, Anzahl tangierender Test-
falle, Punkte der Fehlerdatenquellen Code, Versionsgeschichte und CodeCover-
Uberdeckung sowie der Summe der Punkte. Alle empfohlenen Code-Blocke
sind If-Blocke. Die Blocke mit null Codezeilen sind implizite Else-Blocke. . . 59

1 Einleitung

1.1 Aufgabenstellung

Vollstiandiges Zitat der Aufgabenstellung:
Hintergrund

Das Open-Source Glass-Box-Test-Werkzeug CodeCover unterstiitzt einen kombinierten
Black- Box-/Glass-Box-Testansatz, als dessen Resultat der Tester konkrete Vorschldge
fiir neue Testfélle erhilt. Der besondere Vorteil dieser Vorschldge ist der Bezug zu
bestehenden Black-Box- Testfillen, die der Tester als Grundlage fiir die neuen Testfille
nutzen kann. In der aktuellen CodeCover-Version werden diese Testfall-Vorschlage
vollstdndig in eine Tabelle geschrieben, die z.B. mit Excel gedffnet und ausgewertet
werden kann. Eine wichtige Funktion bilden dabei Priorisierungen oder Filterungen, da
die Anzahl der Vorschldge fiir Systeme der industriellen Praxis sonst unhandlich grof3
wird. Derzeit werden hierfiir die Sortier- und Filterfunktionen des Tabellensystems
genutzt, eine Integration in CodeCover gibt es nicht. Es gibt auch keine systematische
Hilfestellung fiir den Benutzer, also keinerlei Hinweise, in welchen Fallen welche Filter
oder Priorisierungen verwendet oder kombiniert werden sollen.

Aufgabenstellung

Um eine solche systematische Filterung und Priorisierung der Testfall-Vorschldge und
eine Integration dieser Funktionen in CodeCover geht es im ersten Abschnitt dieser
Arbeit. Im zweiten Abschnitt soll die CodeCover-Erweiterung an einem Beispiel aus
der industriellen Praxis erprobt werden.

Zu Beginn der Arbeit sollen die Priorisierungen des risikobasierten Testens in ei-
ner umfangreichen Literaturrecherche untersucht werden. Auch gibt es im Bereich
der Testsuite-Reduktion (im Zusammenhang mit Regressionstest) einige interessante
Ansédtze zur Testfall-Priorisierung. Die so ermittelten Priorisierungen sollen auf ihre
prinzipielle Anwendbarkeit und Praxistauglichkeit gepriift werden und als ein wich-
tiges Zwischenresultat tabellarisch zusammengefasst werden. Auch in dieser Phase
konnen ein oder mehrere Industriepartner im Rahmen von Interviews zur Bewertung
der Praxistauglichkeit mit einbezogen werden.

Zur Integration der Priorisierungsfunktionen in CodeCover ist zundchst eine kurze
Spezifikation zu erstellen. Die Integration soll anschlieffend implementiert werden.
Notwendig ist eine gute Benutzerfithrung; der Benutzer soll systematisch zu einer fiir
sein System und seine Testziele geeigneten Priorisierung gefiihrt werden.

1 Einleitung

In einem zweiten Abschnitt der Arbeit sollen die CodeCover-Erweiterung fiir ein System
der industriellen Praxis angewendet werden. Die Praxistauglichkeit der aus der Literatur
ermittelten Priorisierungen sowie die Bedienbarkeit der CodeCover-Erweiterung sollen
am konkreten Beispiel tiberpriift werden. Der konkrete Nutzen fiir den Tester soll
bewertet werden.

Folgende Teilaufgaben sind wihrend der Diplomarbeit durchzufiihren:

Erstellen eines Projektplans mit expliziter Angabe von Meilensteinen [DLLSo5]
Literaturrecherche zum Thema risikobasierter Test und Testsuite-Reduktion
Einarbeitung in CodeCover und den kombinierten GBT/BBT [Sch1o]
Zusammenstellung der Priorisierungen der Literatur

Erarbeiten konkreter Losungsvorschldge zur Umsetzung in CodeCover, Erstellen
der Spezifikation

Zwischenvortrag
Implementierung der CodeCover-Erweiterung

Erprobung an einem Beispiel aus der industriellen Praxis, Aufwands- und Nut-
zenbewertung

Prasentation der Ergebnisse der Diplomarbeit in einem Endvortrag.

Berichtserstellung

CodeCover steht unter der OpenSource-Lizenz EPL (Eclipse Public Licence). Die zu
implementierende Erweiterung soll ebenso unter EPL gestellt werden.

Vertrauliche Informationen der Praxiserprobung miissen ggf. in einem zum Bericht
getrennten Dokument verfasst werden. Die Ergebnisse werden im Bericht dann auf die
Zusammenfassung reduziert.

1.2 Motivation

Der Test einer Software ist eine Qualitdtssicherungsmafinahme, die nahezu {iberall eingesetzt
wird, weil ihr enorme Wichtigkeit zugeschrieben wird. Unter Test verstehen wir in dieser
Arbeit die — auch mehrfache — Ausfithrung eines Programms auf einem Rechner mit dem

Ziel, Fehler zu finden [LLo7].

Der Test besteht dabei aus der sequenziellen Ausfithrung vorher definierter Testfélle, die aus
Vorbedingung, Aktion und Nachbedingung bestehen. Ein Testfall hat dabei eine Wahrschein-
lichkeit zwischen null und hundert Prozent einen Fehler zu finden. Testfille, die sicher einen
Fehler anzeigen, und solche, die nie einen Fehler finden werden, brauchen nicht ausgefiihrt
werden. Von den verbleibenden Testfdllen sind insbesondere diejenigen interessant, die bei

12

1.2 Motivation

moglichst wenig Durchfiihrungsaufwand eine moglichst grofie Wahrscheinlichkeit aufweisen,
einen Fehler zu finden.

Die begrenzten Ressourcen an Zeit und Personal miissen moglichst effizient eingesetzt werden,
um moglichst viele Eingaben an das Programm abzudecken. Hierzu sind Testfédlle notwen-
dig, die durch hohe Fehlerfindwahrscheinlichkeit und geringen Durchfiihrungsaufwand
wirtschaftlich sind.

Der kombinierte Black-Box- und Glass-Box-Test bietet Moglichkeiten, neue Testfélle zu finden.
Die Testfallempfehlungen des Werkzeugs CodeCover sollen priorisiert werden, um dem
Tester Hilfestellung bei der Entwicklung neuer Testfédlle zu geben. Die Moglichkeiten des
Glass-Box-Tests, die Qualitit eines Testfalls in Bezug auf seine Codeiiberdeckung zu bewerten
werden dabei genutzt. Leider sind absolut objektive Bewertungen von Testfillen so nicht
moglich, so dass hier auf Heuristiken zuriickgegriffen werden muss.

Diese Arbeit bewegt sich im Bereich der heuristischen Priorisierung von Testfdllen. Aus
einer groflen Liste moglicher Testfélle sollen aufgrund verschiedener Kriterien diejenigen
ausgewdhlt werden, die die hochste Wahrscheinlichkeit haben, einen Fehler zu finden. Dazu
wird ein erweiterbares Modell zur Priorisierung von Testfallempfehlungen aufgestellt, im-
plementiert und erprobt. Der Tester hat damit die Moglichkeit, aus den besten Kandidaten
tatsachliche Testfélle zu erstellen und so wirtschaftlich die Qualitidt des Tests und damit die
Qualitdt des Endproduktes zu verbessern.

Diese Arbeit ist im Softwarelebenslauf nach dem Systemtest und der Inbetriebnahme ange-
siedelt. Die Verbesserung einer Testsuite nach Inbetriebnahme lohnt sich, wenn das Produkt
lange in Betrieb sein wird und wenn die Fehlerfolgekosten hoch sind, da die Erweiterung
der Testsuite wirtschaftlich bleiben muss. Zudem sind eine dokumentierte Testsuite und ein
Testprozess notwendig.

Gliederung der Arbeit

Die Arbeit besteht aus vier Blocken: Literaturrecherche, Entwurf eines Priorisierungsmodells,
Implementierung des Modells und Erprobung des Modells.

Wiéhrend der Literaturrecherche wurden die Grundlagen des risikobasierten Tests, die vor-
handenen Moglichkeiten zur Priorisierung von Testfallempfehlungen zusammengestellt und
in Form von Thesen notiert. Auf Basis dieser Thesen wurde ein Modell entworfen, das
die Priorisierung der von CodeCover generierten Testfallempfehlungen ermoglicht. Nach
einer knappen Beschreibung des Entwurfs und der Implementierung des Modells folgt die
Dokumentation der Erprobung des Modells beim Industriepartner.

13

2 Literaturrecherche

Die folgenden Themenbereiche in der Literatur scheinen fiir das Thema interessant:

¢ Risikobasierter Test: Der risikobasierte Test zielt auf einen wirtschaftlichen Test ab, der
durch Fokussierung auf die grofiten Risiken erreicht werden soll.

¢ Fehlerprognose: Fehlerprognose ist die Vorhersage der Position und Haufigkeit von
Fehlern. Es existieren viele Ansiatze und Verfahren, um die Fehlerzahl in einem Pro-
gramm(teil) vorherzusagen.

¢ Testsuite-Reduktion: Testsuite-Reduktion bezeichnet Verfahren, die darauf abzielen,
eine Menge an Testfédllen zu reduzieren, ohne deren Potenzial, einen Fehler zu finden,
wesentlich einzuschrinken.

¢ CodeCover: CodeCover ist das zentrale Werkzeug dieser Arbeit.
* Sonstiges: Literatur, die nicht in die anderen Kategorien passt.

Im Folgenden werden 14 Verdffentlichungen aus diesen Gebieten zusammengefasst.

2.1 Risikobasierter Test

Grundlagen

In [Amloo] beschreibt Amland die Grundlagen, Grundbegriffe und Konzepte des risiko-
basierten Tests. Er zeigt wie diese angewendet werden, gibt eine Vorgehensweise fiir den
risikobasierten Test an und schildert die Erfahrungen, die bei der Erprobung dieses Wissens
gemacht wurden.

Der risikobasierte Test ist eine Vorgehensweise, die bei der Auswahl der zu testenden Teile
und deren Testtiefe hilft, mit dem Ziel, eine gute Qualitdt innerhalb moglichst kurzer Zeit zu
erreichen.

Die Grundbegriffe sind:

* Programmeinheit: Fine Programmeinheit ist ein Teil des Quellcodes eines Programm:s.
Im Kontext der folgenden Definitionen kann eine Programmeinheit eine Methode, eine
Klasse, eine Funktionalitdt, ein GUI-Dialog, ein Modul oder ein ganzes Programm sein.

15

2 Literaturrecherche

¢ Problem: Ein Problem ist ein sicher eintretendes Ereignis mit negativer Auswirkung
auf das Projektziel. Im Gegensatz zum Risiko ist das Eintreten nicht von Wahrschein-
lichkeiten abhédngig, sondern sicher.

* Risiko: Ein Risiko ist ein mogliches Problem, das eintreten kann, aber nicht muss, aber
im Falle seines Eintretens negative Auswirkungen auf das Projektziel hat. Ein Risiko
kann durch seine Eintrittswahrscheinlichkeit und die im Schadensfall entstehenden
Risikokosten beschrieben werden. Das Produkt aus Eintrittswahrscheinlichkeit und
Risikokosten ergibt den Risikowert.

* Risikoidentifikation: Die Phase des Tests, in der die Arten der moglichen Risiken
zusammengetragen werden. Solche Arten konnen kaufménnische Risiken, technische
Risiken oder indirekte Risiken beispielsweise durch schlechte Usability sein. Zudem
wird hier die Risikostrategie festgelegt.

* Risikoabschitzung: Bei der Risikoabschdtzung werden die Eintrittswahrscheinlichkeit
und die Risikokosten fiir das Versagen jeder einzelnen Programmeinheit abgeschitzt.

* Risikostrategie: Die Risikostrategie definiert die Kriterien, nach denen der Test optimiert
werden soll. Beispiele solcher Kriterien sind , Keine Klasse soll einen Risikowert von tiber
1000 Euro haben” oder , Der Risikowert der Druckfunktion soll unter dem Risikowert
der Exportfunktion liegen”. Die Risikostrategie ist damit Interpretationsmittel fiir das
Ergebnis der Risikoabschdtzung, das sonst ohne Bedeutung wire. Sind alle in der
Risikostrategie angegebenen Kriterien erfiillt, gilt der Test als abgeschlossen, da alle
seine Ziele erreicht sind und das Risiko im Zielbereich liegt.

Das Vorgehen ist dabei ein Zyklus aus den Schritten Risikoidentifikation, Risikoabschitzung
und Risikominderung.

Risikominderung beschreibt hier den eigentlichen Test und das Beheben der Fehler, wodurch
ein Risiko gefunden und anschlieffend eliminiert wird. (D.h. die Eintrittswahrscheinlichkeit
des Problems soll auf Null gesenkt werden, wodurch es kein Risiko mehr ist.) Die Testfélle
werden nach der Risikoabschdtzung entsprechend des Risikowertes sortiert und bei der Test-
durchfiihrung in dieser Reihenfolge abgearbeitet, vom hochsten Risikowert zum niedrigsten.
Dabei wird laufend gepriift, ob die Kriterien der Risikostrategie erfiillt sind. Ist dies sicher der
Fall, wird der Test beendet. Zudem miissen laufend Zeit- und Ressourcenaufwand kontrolliert
werden, damit der risikobasierte Test nicht zum priorisierten Test verkommt. Mit Hilfe der
gesammelten Testaufwandsdaten lassen sich die fiir den weiteren Test benotigten Ressourcen
errechnen und mit den Risiken vergleichen, so dass ein optimales Testende fiir maximale
Wirtschaftlichkeit gewidhlt werden kann.

Ist nur begrenzt Zeit fiir die Testdurchfiihrung vorhanden wird automatisch sichergestellt,
dass fiir die grofsten Risiken die meisten Testressourcen aufgewendet wurden.

Der Artikel beschreibt die Anwendung des risikobasierten Tests auf einer Banksoftware im
Umfang von 730.000 SLOC". Bei der Risikobewertung zeigte sich, dass es sinnvoll ist, die

IStatement lines of code

16

2.1 Risikobasierter Test

Risiken griindlich zu bewerten. So wurden verschiedene Programmeinheiten mit hohem
Risikowert identifiziert, die aber teils sehr hohe Risikokosten bei moderater Eintrittswahr-
scheinlichkeit hatten und teils Programmeinheiten, die trotz geringen Risikokosten wegen
der hohen Eintrittswahrscheinlichkeit einen hohen Risikowert hatten. Als Nebenergebnis
war allen beteiligten Testern bekannt, auf was sie beim Test der jeweiligen Programmein-
heiten besonders Wert legen mussten (Probleme bei der Testdurchfithrung, zu erwartende
Fehlerarten).

Es standen nicht genug Ressourcen fiir eine detaillierte Risikoabschédtzung aller Komponenten
zur Verfligung. Daher wurde eine Top-20-Liste der wichtigsten Funktionen aus Kundensicht
zusammengestellt. Der weitere Test konzentrierte sich dann auf die Programmeinheiten, aus
denen diese Funktionen bestanden.

In dem beschriebenen Testprojekt wurden Metriken fiir verschiedene Zwecke eingesetzt. Zum
einen fiur die Identifikation von Bereichen mit besonders hohem Risiko, zum anderen fiir
die Messung des Testfortschritts. Dabei wurde gemessen, wie viel Zeit einzelne Testfélle
in Anspruch genommen haben und wie viel Zeit der Test einer Programmeinheit benotigt
hat. Zudem wurden fiir die Teststeuerung die gefundenen Fehler aufgezeichnet, um die
Effizienz des Tests einschidtzen zu konnen, beispielsweise in gefundenen Fehlern oder ge-
senkten Gesamtrisikowert pro Mannstunde. Diese Metriken konnen friithzeitig wesentliche
Informationen {iiber den Testfortschritt geben und das Testendekriterium moglicherweise
beeinflussen. Es ware durchaus denkbar, dass ein Team von Testern immer mehr Fehler pro
Zeiteinheit findet, denn es kennt das System immer besser.

Um das Risiko der Programmeinheiten tibersichtlich darzustellen, schldagt Amland ein Dia-
gramm mit den Achsen Eintrittswahrscheinlichkeit und Risikokosten vor. So konnen die
Betrachter u.a. durch farbliche Unterstiitzung schnell einen Uberblick iiber die Risikosituation
des Systems gewinnen und beispielsweise schnell sehen, ob das System mit vielen leichten,
oder mit wenigen schweren Problemen kampft.

Der Autor warnt davor, den risikobasierten Test als Allheilmittel zu betrachten und gibt zu
bedenken, dass der risikobasierte Test nur funktioniert, wenn schon ein funktionierender
Testprozess etabliert ist und wenn er von der Unternehmensorganisation unterstiitzt wird.
Ein Tester alleine kann keine Entscheidungen tiber Risiken fiir den Kunden treffen.

Amland gibt einen guten Uberblick iiber den risikobasierten Test und setzt seinen Fokus auf
die prinzipielle Durchfithrung und die organisatorischen Rahmenbedingungen und Vorteile
unter der Voraussetzung, dass ein Test in vielen Fallen nicht perfekt oder gut, sondern nur
,gut genug” sein muss. Diese Diplomarbeit wird sich in grofien Teilen um Metriken fiir die
Risikoabschédtzung kiimmern.

Anwendung

Der Artikel [Bacgg] von James Bach ist in Form eines Erfahrungsberichtes verfasst und
fokussiert sich auf die Erfahrungen des Autors im Bereich der Risikoidentifikation. Dabei
unterscheidet der Autor zwei Analyseansétze.

17

2 Literaturrecherche

¢ Qutside-in
¢ Inside-out

Der Outside-In-Ansatz verwendet als Basis vordefinierte Listen von moglichen Risiken. Diese
enthalten allgemeine Qualitdts- und Risikokriterien und entstehen aus Erfahrung des Testers.
Bei diesem Ansatz geht der Tester diese Listen durch und versucht festzustellen, ob diese
beim aktuellen Priifling in Frage kommen. Wo im Produkt nach Risiken gesucht wird, lasst
Bach offen. Die Risiken konnen also mit Hilfe der Spezifikation, aber auch im Quellcode
gesucht werden. Dieser Ansatz ist laut Bach allgemein gut und einfach verwendbar, geht
allerdings nicht unbedingt auf spezielle Merkmale des Priiflings ein, da nur nach den Risiken
in den vordefinierten Listen gesucht wird.

Bei der Inside-out-Vorgehensweise werden die Risiken im fertigen Programm, genauer im
Quelltext und im Entwurf, gesucht. Die Vorgehensweise ist also mit Glass-Box-Ansitzen
vergleichbar. Der Tester geht das Programm Teil fiir Teil durch und sucht nach moglicherweise
auftretenden Problemen. Dabei stellt er sich (oder einem Entwickler, der das Produkt gut
kennt) folgende Fragen:

¢ Welche Probleme konnten hier auftreten? Welche Schwéchen hat diese Komponente?
* Welche Eingaben oder Ereignisse konnten hier einen Fehler auslosen?

¢ Welche Komponenten wiirden von einem Fehler hier beeinflusst? Welche Konsequenzen
hétte ein Fehler hier?

* Wie wahrscheinlich ist es, dass diese Programmeinheit einen Fehler enthalt? [FOoo]

Der zweite Teil des Artikels handelt von der Organisation des risikobasierten Tests. Der
Autor stellt verschiedene Moglichkeiten vor, Risiken und Komponenten zu verwalten. Im
Schlusswort weist der Autor eindringlich darauf hin, dass das Arbeitsmaterial am Beginn
des risikobasierten Tests aus Gertiichten besteht. Der risikobasierte Test ist eine Heuristik
und liefert damit weder genaue noch vollstindige Ergebnisse. Wegen des Risikos, dass ein
risikobasierter Test in Friihstadien des Projekts nur eine schlechte Fehlererkennung leistet,
empfiehlt der Autor, statt ausschliefdlichem risikobasiertem Test auch andere Testverfahren
und moglichst breit gefacherte Datenquellen zu verwenden.

2.2 Fehlerprognose

Fenton und Ohlsson haben 1997 in [FOoo0] einige nahe liegende oder verbreitete Hypothesen
zur Fehlerverteilung in Programmen empirisch iiberpriift und sind dabei zu einigen teilweise
iiberraschenden Ergebnissen gelangt. Tabelle 2.1 zeigt die meisten Hypothesen und die
Ergebnisse deren empirischer Uberpriifung. Die meisten Hypothesen hielten der empirischen
Uberpriifung nicht stand. Die Uberpriifung wurde bei Ericsson Telecom AB auf bestehenden
Daten durchgefiihrt. Es wurden keine besonderen Experimentbedingungen aufgesetzt. Die
Codebarsis fiir die Untersuchung bestand aus 140 bzw. 246 Modulen mit je zwischen 1000 und
6000 LOC. Die Fehlerdaten wurden aus vier Testphasen gewonnen: Funktionstest, Systemtest,

18

2.2 Fehlerprognose

Nummer | Hypothese Belege gefunden?

1a Eine kleine Zahl an Modulen enthélt die meisten Fehler, | Ja - 20/60-Regel
die vor dem Release gefunden wurden

1b Wenn Hypothese 1a stimmt, liegt dies daran, dass diese | Nein
Module den meisten Code enthalten

2a Eine kleine Zahl von Modulen enthilt die meisten im | Ja - 20/80-Regel
Betrieb gefundenen Fehler

2b Wenn Hypothese 2a stimmt, liegt dies daran, dass diese | Nein, Belege fiir's
Module den meisten Code enthalten Gegenteil

3 Hohere Fehlerhdufigkeit im Funktionstest bedeutet hohe- | Schwacher Beleg
re Fehlerhdufigkeit im Systemtest

4 Hohere Fehlerhédufigkeit im Test vor dem Release bedeu- | Nein - starke Ab-
tet hohere Fehlerhdufigkeit im Betrieb lehnung

5a Kleinere Module sind weniger fehleranfillig als grofse Nein

5b Grofsenmetriken wie LOC eignen sich zur Vorhersage der | Schwacher Beleg
Fehlerzahl eines Moduls vor dem Release

5¢C Groflenmetriken wie LOC eignen sich zur Vorhersage der | Nein
Fehlerzahl eines Moduls nach dem Release

5d Grofsenmetriken wie LOC eignen sich zur Vorhersage der | Nein
Fehlerdichte eines Moduls vor dem Release

5e Groflenmetriken wie LOC eignen sich zur Vorhersage der | Nein
Fehlerdichte eines Moduls nach dem Release

6 Komplexitdtsmetriken sind besser zur Vorhersage geeig- | Nein, Schwacher
net, als einfache Grofienmetriken Beleg fiir SigFF-

Metriken *

8 In dhnlichen Bedingungen hergestellte Softwaresysteme | Ja
haben tiberwiegend dhnliche Fehlerdichten bei dhnlichen
Test- und Einsatzphasen

Tabelle 2.1: Unvollstindige Liste der Hypothesen aus [FOoo0]
“[OA96]

Fehler in den ersten 26 Betriebswochen und Fehler in den ersten 52 Betriebswochen. Der
Testprozess beim Unternehmen war iiber viele Jahre etabliert und wohl erprobt.

Bell, Ostrand und Weyuker haben 2006 in [BOWo06] ein sprachgesteuertes Telefonsystem
untersucht und dabei ein Modell zur Vorhersage der Fehlerdichte in einer Codedatei auf
Basis von Codemetriken entwickelt. Das Modell verwendet unter anderem die Heuristiken
LOC, Alter, Anderungsstatus und Programmiersprache. Die verwendeten Heuristiken wur-
den gewichtet, um den tatsdchlichen Fehlerdaten zu entsprechen. Der dabei entstehende
Vorhersager war dann in der Lage, mit den 20% der als am fehleranfélligsten identifizierten
Dateien 75% der tatsdchlichen Fehler abzudecken. Allerdings geben die Autoren zu bedenken,
dass diese Ergebnisse keinesfalls verallgemeinerbar sind und dass das Vorhersagemodell

19

2 Literaturrecherche

fiir jedes Projekt erst kalibriert werden muss, was viel Zeit in Anspruch nimmt und eine
umfangreiche Basis an verkniipfbaren Fehler- und Versionsdaten voraussetzt.

Neuhaus, Zimmermann, Holler und Zeller beschreiben in [NZZo7] die von ihnen durchge-
fiihrte Analyse des Mozilla-Browser-Quellcodes [Moz11] auf der Suche nach einem Zusam-
menhang von Quellcodeeigenschaften und Sicherheitsliicken. Weil eine Sicherheitsliicke auch
,nur” ein Fehler, wenn auch ein sehr spezieller, ist, konnen die Ergebnisse dieser Arbeit zu
einem gewissen Teil verallgemeinert werden. Im Gegensatz zu anderen Studien ([BOWo6],
[OWBos5], [FOo0], [Kimo3]), in denen eine Fehlerverteilung von ca. 80% der Fehler in 20% der
Module empirisch festgestellt wurde, wurden Sicherheitsliicken nur in 4% der Module von
Mozilla gefunden. Die Autoren durchsuchten daraufhin diese Module nach Gemeinsamkeiten
und stellten fest, dass Module, die bestimmte Headerdateien [Wik1o] importieren, zu 9o%-
100% Sicherheitsliicken enthielten. Ahnliche Ergebnisse ergeben sich fiir Aufrufe bestimmter
Funktionen, was allerdings mit den importierten Headerdateien korreliert, da nur vorher
importierte Funktionen aufgerufen werden konnen. Die Autoren haben diese Erkenntnisse
verwendet, um einen Vorhersager zu implementieren, der 45% aller verwundbaren Kompo-
nenten als solche markiert hat. Von den markierten Komponenten waren 70% tatsachlich
verwundbar, d.h. sie enthielten ausnutzbare Sicherheitsliicken.

In [NBZo6] beschreiben Nagappan, Ball und Zeller eine empirische Studie, in der in fiinf
verschiedenartigen Softwareprojekten von Microsoft ein Zusammenhang zwischen Code-
metriken und Fehlerdichte von Modulen gesucht und bei manchen Metriken und manchen
Projekten gefunden wurde.

Sie verfolgten das Ziel, der Qualitdtssicherung eine gezieltere Fehlersuche zu ermoglichen.
Dazu werden in dem Artikel zwei verschiedene Ansdtze zur Vorhersage der Fehlerdichte
von Modulen beschrieben und kombiniert angewendet. Die Ansédtze basieren auf den bereits
entdeckten Fehlern und dem aktuellen sowie fritheren Quellcode der Module, also auf deren
Versionsgeschichte.

Beim kombinierten Ansatz wurden die bereits entdeckten Fehler der einzelnen Module aus
den vorhandenen Fehlerdaten ermittelt und fiir diese Module wurden verschiedene Codeme-
triken® erhoben. AnschliefSfend wurden diese Daten einer Korrelationsanalyse unterzogen.

Die Ergebnisse dieser Analyse waren fiir jedes der fiinf Projekte sehr verschieden. Wéahrend in
zwei der Projekte die Codemetriken mit den gefundenen Fehlern stark korrelierten, waren in
den drei verbleibenden Projekten nur wenig Ubereinstimmungen zwischen Codekomplexitt
und gefundener Fehlerzahl vorhanden. Die Autoren konnten keine Gruppe von Metriken
finden, die in allen Projekten mit den tatsdchlichen Fehlern tibereinstimmende Ergebnisse
geliefert haben. Allerdings ist ihnen gelungen, mit vorher an einem Projekt kalibrierten
Metriken die Fehlerdichte in gleichartigen Projekten akkurat vorherzusagen. Die Autoren
begriinden die Unterschiede zwischen den Projekten unter anderem mit verschiedenen
Entwicklungsprozessen, die teilweise die spater verwendeten Metriken schon wihrend der
Entwicklung erheben und darauf reagieren.

2LOC, Klassen pro Modul, Funktionen pro Modul, globale Variablen pro Modul, Zeilen pro Funktion, Parameter
pro Funktion, etc.

20

2.2 Fehlerprognose

Aus den Ergebnissen ihrer Studie folgern die Autoren, dass es keine Menge von Codemetriken
gibt, die fiir jedes beliebige Projekt die zu erwartende Fehlerdichte eines Moduls mit niitzlicher
Genauigkeit vorhersagen kann. Zwar ist es moglich, fiir ein bestimmtes Projekt Metriken zu
finden und zu kalibrieren, um die Fehlerdichte eines Moduls vorherzusagen, dies ist aber
sehr aufwendig und setzt statistisches Expertenwissen voraus.

2010 haben Sliversky, Zimmermann und Zeller in [SZZo5] bei der Untersuchung des Eclipse-
Quellcodes, seiner Versions- und Fehlergeschichte festgestellt, dass freitags die meisten
fehlereinfithrenden Commits (,,fix-inducing change”) gemacht wurden. Es ist allerdings davon
auszugehen, dass der Artikel im Wesentlichen zur Demonstration der Datenkombination von
Versions- und Fehlergeschichte dient.

Hovemeyer und Pugh haben 2004 in [HPo4] einen Weg, Programmfehler auf Codeebene zu
finden, vorgestellt. In ihrem Artikel ,Finding Bugs is Easy” beschreiben sie das von ihnen
entwickelte Werkzeug FindBugs.

7

Die Autoren haben einige Methoden zur statischen Analyse auf der Basis sog. ,bug patterns’
entwickelt. Ein , bug pattern” oder Fehlermuster ist dabei eine Codefolge, die wahrscheinlich
einen Fehler enthdlt. Nach Meinung der Autoren sind Codedurchsichten zwar ein sehr
effektives Mittel, um Fehler zu finden, allerdings haben diese den Nachteil, zeitintensiv
zu sein. Zudem seien menschliche Priifer anféllig, im Code zu sehen, was der Code tun
soll, anstatt was er wirklich tut. Automatisierte Priifungen haben diesen Nachteil nicht.
Ein weiterer Vorteil dieser automatisierten statischen Analyse auf Codeebene ist, dass die
Ergebnisse dieser Priifung nicht von der Qualitdt und Menge der Testfdlle abhdngt.

Allerdings sind diese Priifungen keineswegs vollstandig. Die Korrektheit eines Programmes
zu beweisen ist in den meisten Fillen kaum moglich. Unvollstandige Verifikationen hingegen
konnen zu gewissen Teilen die Aufgaben einer Korrektheitspriifung ausfiihren. Sie erzeugen
dabei zwar auch Fehldiagnosen, sind aber relativ einfach machbar.

Die implementierten Fehlermustersucher (,,bug pattern detectors”) verwenden verschiede-
ne Strategien, um Fehler zu finden. Dabei werden die folgenden Aspekte des Quellcodes
analysiert. Alle Untersuchungen verwenden den compilierten Bytecode als Basis:

Klassen- und Vererbungsstruktur Hier wird nur die Struktur innerhalb der Klassen, sowie
deren Vererbung betrachtet. Die eigentlichen Anweisungen werden ignoriert.

Einfacher Codedurchlauf Analysiert die Methoden der Klassen um einen Zustandsautoma-
ten zu erstellen. Es wird nicht die komplette Kontrollflussinformation genutzt, sondern
an einigen Stellen werden Heuristiken eingesetzt.

Kontrollfluss Es wird ein genauer Kontrollflussgraph erstellt.

Datenfluss Der Datenfluss wird analysiert um beispielsweise Nul1PointerExceptions erken-
nen zu kénnen.

Mit Hilfe dieser Analyseansitze konnen Fehlermuster gefunden werden, die in die folgenden
Kategorien fallen:

¢ Single-Thread-Korrektheit

21

2 Literaturrecherche

* Multithread- / Synchronisierungskorrektheit
* Geschwindigkeitsproblem
* Sicherheitsliicken und Verwundbarkeiten
Einige Beispiele fiir Fehlermuster, nach denen FindBugs sucht:

Cloneable Not Implemented Correctly Eine Javaklasse, die clone() tuberschreibt, muss
super.clone() aufrufen.

Equal Objects Must Have Equal Hash-codes Eine Javaklasse, die equals(Object) uber-
schreibt muss auch hashCode () tiberschreiben. Eine Javaklasse, die hashCode () tiber-
schreibt, muss auch equals(0bject) tberschreiben.

Uninitialized Read in Constructor Es ergibt iiblicherweise keinen Sinn, im Konstruktor den
Wert eines Felds zu lesen, das nicht initialisiert wurde.

Null Pointer Dereference Warnt, wenn der Kontrollfluss es ermoglicht, eine Methode oder
ein Feld einer Variable aufzurufen, deren Wert null ist.

Im Jahr 2004 haben die Autoren die erste Version von FindBugs evaluiert, in dem sie FindBugs
den Code von sechs verschiedenartigen Java-Projekten analysieren lieffen. FindBugs erreichte
dabei eine Korrektheitsquote von erkannten Fehlern je nach Projekt zwischen 54% und 85%.
Dementsprechend lag die Quote der fdlschlicherweise angezeigten Fehlern (false positive)
zwischen 13% und 45%. Dabei geben die Autoren zu bedenken, dass die false-positive-
Quote mit der Dauer der Benutzung des Programmes steigt, denn sind alle von FindBugs
angezeigten tatsdchlichen Fehler behoben, bleiben nur die félschlicherweise angezeigten
tibrig.

FindBugs liegt unter anderem als standalone-Variante und als Eclipse-Plugin vor. In der
Zwischenzeit wurde FindBugs um viele weitere Fehlermuster erweitert.

Rutar et al. haben 2004 in [RAFo4] die fiinf automatischen Java-Fehlersuchwerkzeuge Find-
Bugs, JLint, PMD, Bandera und ESC/Java verglichen, in dem sie die Analyseergebnisse
von vier quelloffenen, verbreiteten Java-Programmen verglichen haben. Dabei haben sie
festgestellt, dass die erprobten Werkzeuge tiberwiegend disjunkte Warnungen generierten, so
dass es grundsitzlich wiinschenswert wére, ihre Ergebnisse mittels eines Meta-Werkzeuges
auszuwerten.

Die Werkzeuge verwenden unterschiedliche Methoden zur Analyse des Quellcodes. Syntax-
priifungen werden von FindBugs, JLint und PMD durchgefiihrt. Der Datenfluss wird von
FindBugs und JLint analysiert. Bandera basiert ausschliefilich und als einziges Werkzeug
auf Modellpriifung, was es fiir normale, nicht extensiv annotierte, Java-Programme nicht
anwendbar macht. ESC/Java verwendet formale Verifikation auf Basis von Bedingungen, die
der Programmierer in Form von Annotationen einfiigen muss.

Die Dauer der Analyse reicht von einigen Sekunden bei JLint iiber einige Minuten bei
FindBugs und PMD bis zu einigen Stunde bei ESC/Java.

22

2.3 CodeCover

FindBugs sticht unter den erprobten Werkzeugen durch eine niedrige Zahl generierter
Warnungen und eine geringe false-positive-Quote heraus, was es im Vergleich zu den anderen
Werkzeugen einfach zu bedienen macht. Dazu deckt FindBugs im Vergleich zu seinen
Konkurrenten die meisten Fehlerkategorien ab.

Die Autoren schlagen ein Meta-Werkzeug und eine Metrik vor, die die Ergebnisse mehrerer
Fehlersuchwerkzeuge kombinieren und werten kénnen. Die Implementierung eines solchen
Werkzeuges ist mit dieser Diplomarbeit teilweise erfolgt.

2.3 CodeCover

In [Scho8] werden die Grundlagen des Glass-Box-Tests beschrieben und die Entstehung des
Werkzeugs CodeCover, sowie dessen Funktionen, erklart. Der Glass-Box-Test ist im Gegensatz
zum Black-Box-Test nicht von einer Spezifikation abhdngig, um Testfdlle zu finden. Allerdings
konnen die aus der Spezifikation erstellten Testfdlle verwendet werden, um mit Hilfe von
CodeCover weitere Testfille zu finden.

Die Nutzen des Glass-Box-Tests werden wie folgt aufgezahlt:

Codeliberdeckung als Metrik zur Testgiite Die wihrend des Tests erhobenen Uberdeckungs—
werte eignen sich als objektive Metrik zur Messung der Testgtite

Testsuite-Erweiterung Mit den ermittelten Uberdeckungswerten ist es moglich, aus uniiber-
deckten Codestellen auf fehlende Testfélle zu schliefSen.

Testsuite-Reduktion Testfillen mit gleicher oder sehr dhnlicher Uberdeckung wird eine
geringere Chance auf das Auffinden von Fehlern eingerdumt als Testfdllen mit deutlich
unterschiedlicher Uberdeckung. Diese kénnen damit aus der Testsuite genommen oder
geringer priorisiert werden.

Grundlage fiir selektiven Regressionstest Weifs man, welche Testfille ein bestimmtes Stiick

Programmcode abdecken, reicht es, beim Regressionstest diese Testfédlle auszufiithren.
[Schoo]

Fiir einige dieser Zwecke muss man wissen, welcher Code von einzelnen Testfillen ausgefiihrt
wird. Daher unterstiitzt CodeCover den testfallselektiven Glass-Box-Test, mit dessen Hilfe die
Uberdeckung einzelner Testfdlle gemessen werden kann.

[Schio] geht ndher auf die Kombination von Black-Box- und Glass-Box-Test ein. Im Artikel
wird beschrieben, wie mit CodeCover eine Liste von Testfallempfehlungen unter Anwendung
eines solchen kombinierten Ansatzes generiert werden kann.

Dabei kommt neben dem Werkzeug CodeCover das Werkzeug Justus? zum Einsatz. Justus
ist ein Werkzeug fiir den Black-Box-Test. Zusétzlich bietet Justus eine Schnittstelle fiir die

3http:/ /justus.tigris.org

23

2 Literaturrecherche

Verwendung mit CodeCover, mit der die Ubermittlung der Testfallinformationen an Code-
Cover realisiert wird. Wahrend der Testdurchfiihrung mit Hilfe von Justus wird CodeCover
automatisch iiber Beginn und Ende eines Testfalles informiert, so dass eine testfallselektive
Auswertung der Ergebnisse moglich wird.

Der Denominator eines Codeelementes ist ein Codestiick, durch das jeder Kontrollfluss
in dieses Codeelement zuvor fiihrt. Die Liste von Testfallempfehlungen wird generiert,
indem nach Codeblocken gesucht wird, die selbst nicht ausgefiihrt werden, deren direkter
Denominator aber ausgefiihrt wird. Diese Codeblocke werden also tangiert, aber nicht
ausgefiihrt. Das Pradikat eines Codeblocks ist der Ausdruck, der den Kontrollfluss in diesen
Codeblock kontrolliert, beispielsweise der Ausdruck number == 3 einer If-Anweisung.

Diese tangierten, aber nicht ausgefiihrten, Codeblocke sind fiir die Herleitung neuer Testfille
von grofler Bedeutung, da sie ein Indiz fiir moglicherweise anders zu wihlende Eingabedaten
sind, die dann den Codeblock ausfiihren. Solche Empfehlungen kénnen nutzlos sein, wenn
die Erfiillung des Pradikats nicht moglich ist, der Tester das Pradikat nicht versteht oder das
Pradikat zur defensiven Programmierung gehort, also nie wahr werden kann.

Der Autor berichtet, dass fiir Programme aus der industriellen Praxis mit mehreren Tausend
Testfallempfehlungen zu rechnen ist. Prinzipiell ist jede Empfehlung, die mit dem oben
beschriebenen Verfahren gefunden wurde, geeignet, einen Fehler zu finden. Allerdings ist
es weder zumutbar noch wirtschaftlich, eine so lange Liste durchzuarbeiten und aus den
einzelnen Eintrdgen neue Testfille zu erstellen. Die Empfehlungen miissen daher priorisiert
werden. Der Autor schldgt die folgenden Kriterien vor:

Prioritét der tangierenden Testfélle Ein tangierender Testfall ist ein Testfall, dessen Kontroll-
fluss den uniiberdeckten Codeblock, der Ziel der Empfehlung ist, tangiert. Die Variante
eines wichtigen Testfalls ist vermutlich auch wichtig.

Aufwand zur Ausfiihrung Unter der Annahme, zwei Testfallempfehlungen sind ,,gleich gut”,
wiirde man die mit dem geringeren Ausfithrungsaufwand bevorzugen.

Bevorzugung spezifischer Testfélle Je weniger Testfédlle einen Codeblock tangieren, desto
geeigneter sind daraus entstandene Testfdlle. 4

Gewichtung der Code-Elemente Unwirksame if- oder else-Blocke haben im Allgemeinen
mehr Gewicht als unvollstindige Termiiberdeckung oder Schleifenwiederholungen.

Black-Box-Fehlerprognose Expertenwissen und Fehlerstatistik geben Anhaltspunkte, wo
bevorzugt nach besseren Empfehlungen zu suchen ist.

Fehlerdichte des Codes In bekannt fehleranfélligen Programmeinheiten sollte eher nach
weiteren Fehlern gesucht werden.

Der Autor weist darauf hin, dass die Priorisierung dem Tester lediglich eine methodische
Hilfestellung bei der Abarbeitung gibt. Eine Sicherheit, dass eine der gering priorisierten
Testfallempfehlungen keinen Fehler aufdecken kann, gibt es nicht.

4Dies ist ein Erfahrungswert der bei der Erprobung des Ansatzes zur Testsuiteverbesserung gewonnen wurde.

24

2.4 Testsuite-Reduktion

2.4 Testsuite-Reduktion

Die Techniken der Testsuite-Reduktion nehmen als Eingabe die Codetiberdeckung einzelner
Testfédlle und bewerten diese dann entsprechend ihrer Redundanz. Dieser Ansatz ist bei der
hier vorliegenden Problemstellung nicht anwendbar, da die Testfélle ja erst empfohlen werden
und daher noch keine Uberdeckung vorhanden ist.

In [RHRHo2] werden mehrere Studien zur Testsuite-Reduktion betrachtet, verglichen und es
werden deren Ergebnisse kritisch betrachtet. Die Autoren kommen dabei zu dem Schluss, dass
Testsuite-Reduktion das Fehlererkennungspotenzial einer Testsuite schwer beeintrachtigen
kann. Das Risiko, dass eine Testsuite bei der Anwendung von Reduktionstechniken unerwartet
viel an Fehlererkennungspotenzial einbiifst seien zu grofi.

Weil das Ziel der Arbeit die Findung guter neuer Testfalle, und nicht die Loschung schlechter,
ist, scheinen die Techniken der Testsuite-Reduktion nicht hilfreich zu sein.

2.5 Sonstiges

In [LLoy], Kap. 13 sagen die Autoren, dass Reviews ein gutes Mittel zur Steigerung der
Qualitdt der gepriiften Dokumente sind.

In [FAIg7] wird eine Studie beschrieben, in der gezeigt wurde, dass gestresste Softwareent-
wickler mehr Fehler machen.

2.6 Schlussfolgerungen aus der Literaturrecherche

Die oben zusammengefassten Artikel sind die Basis fiir die im Folgenden aufgestellten
Thesen, die die Grundlage der weiteren Kapitel der Diplomarbeit darstellen. Diese Thesen
sind Aussagen aus der Literatur. Sie sind nicht widerspruchsfrei. Dies ist allerdings fiir das
spdter vorgestellte Priorisierungsmodell nicht zwingend notwendig, da die Auswahl der
tatsdachlich verwendeten Thesen dem Benutzer tiberlassen wird. Mehr weiter unten.

Zur Gruppierung der Thesen mehr in Kapitel 4.

Code
1. Komplexititsmetriken 1: Komplexitdtsmetriken, insbesondere Metriken fiir objektori-
entierte Software, korrelieren positiv mit der Fehlerdichte. [NBZo6] [HPH" 09]

2. Komplexititsmetriken 2: Fiir jedes Projekt gibt es eine Menge von Komplexitatsmetri-
ken, die mit den gefundenen Fehlern korreliert. [NBZo6]

3. Dateigrofie: Grofiere Dateien haben eine hohere Fehlerdichte. [OWBos] [BOWo06]

25

2 Literaturrecherche

10.

11.

12.

13.

14.

15.

Kopplung: Kopplungsmetriken sind zur Fehlerprognose geeignet. [HPH " 09]

. Code smell: Sog. ,,Code smell metrics” sind zur Fehlerprognose geeignet. [HPH" 09]

[OWBos] [RAFo4] [HPo4]

. Abhiangigkeiten: Importe> bestimmter Komponenten korrelieren mit der Fehlerwahr-

scheinlichkeit. [SZZ06] [NZZo7]

Versionsgeschichte

Anderungshiufigkeit: Haufiger geinderte Dateien haben eine hohere Fehlerdichte.
[OWBo5] [BOWo06]

. Fehleranfilligkeitsprioritit: Die Erhohung der Uberdeckung lohnt besonders in Mo-

dulen mit hoher Fehlerdichte. [Sch10]

. Dateialter: Altere Dateien haben eine geringere Fehlerdichte. [OWBo5] [BOWo6]

Ubertragbarkeit der Fehlerdichte: Die Anzahl der Fehler im vergangenen Release ist
zur Fehlerprognose geeignet. War eine Programmeinheit in der Vergangenheit fehler-
anfallig, besteht Grund zur Annahme, dass sie weiterhin fehleranfillig ist. [OWBo5]
[NBZo6] [BOWO06]

Test
Priorititsvererbung: Die Variante eines wichtigen Testfalls ergibt eher einen wichtigen
Testfall, als die Variante eines unwichtigen Testfalls. [Sch1o]

Spezifitatsprioritit: Spezifische Testfille ergeben geeignetere Testfallempfehlungen.
[Schio]

Technische Pradikate: Technisch formulierte Pradikate eignen sich weniger fiir Testfall-
empfehlungen. [Sch1o]

Unit-Test: Durch Unit-Test qualitdtsgesicherte Programmeinheiten haben eine hohere
Qualitét als Programmeinheiten, die keinem Unit-Test unterzogen wurden. [HPH" 09]

If-Prioritit: Die Uberdeckung eines If-Blocks sollte der Term- oder Schleifenwiederho-
lungsiiberdeckung vorgezogen werden. [Sch1o]

5In Java die import-Anweisung, C die include-Anweisung etc.

26

2.6 Schlussfolgerungen aus der Literaturrecherche

16.
17.

18.

19.

20.

21.

22.

23.

24.

Fehler

Pareto-Verteilung: In ca. 20% der Dateien befinden sich ca. 80% der Fehler. [OWBos5]

Schadenspotenzial: Das Schadenspotenzial der Fehler ist nicht gleichméfSig {iber den
Quellcode verteilt. [HPH 09]

Getestetes Programm: Die Fehlerverteilung eines Programms nach Systemtest und
Produktionsfreigabe ist anders als die des ungetesteten Programmes. [FOoo] [NBZo6]

Fehlerprognose

Ubertragbarkeit der Vorhersagemodelle: Vorhersagemodelle sind nur dann présize,
wenn sie aus dem gleichen oder einem dhnlichen Projekt gewonnen wurden. Auf andere
Projekte tibertragen erreichen diese nicht zwingend die gleiche Genauigkeit. [NBZo6]

Verschiedenheit der Projekte: Es gibt keine Menge von Metriken, die fiir alle Projekte
als Fehlervorhersagemodell passt. [NBZo6]

Qualitat

Wesentliche Risiken: Eine Software kann hinreichend gut sein, wenn die wesentlichen
Risiken ausgeschlossen sind. [Amloo]

Uberdeckungsrelevanz: Codeiiberdeckung und Testgiite korrelieren. [HFGOg4]

Stressfaktoren: Der Stress des Entwicklers hat Einfluss auf die Programmqualitat.
[FAl97]

Review: Durch Reviews konnen Fehler in den gepriiften Dokumenten gefunden werden,
was deren Qualitit steigert. [LLoy] [HPH " 09]

27

3 CodeCover

CodeCover ist ein quelloffenes Glass-Box-Test-Werkzeug, das im Rahmen eines Studienpro-
jektes 2007 an der Universitdt Stuttgart entwickelt wurde. Es unterstiitzt den Glass-Box-Test
in Java- und Cobol-Programmen durch die Messung von u.a. Anweisungs-, Zweig- und
Termiiberdeckung. Dartiiberhinaus werden Threadsynchronisierungsiiberdeckungen erfasst
und es ist MC/DC-Uberdeckungsmessung moglich. CodeCover lauft auf verschiedenen
Plattformen, besitzt eine Eclipse-Integration und wurde unter der Eclipse Public Licence
(EPL) veroffentlicht [Cod11] [Scho8].

Wie die meisten Glass-Box-Test-Werkzeuge verwendet CodeCover Code-Instrumentierung,
um die Uberdeckungsmessung zu ermoglichen. Die Instrumentierung kann bei CodeCover
entweder iiber ein Batch-Programm, oder direkt in der Entwicklungsumgebung Eclipse
erfolgen, dann allerdings mit eingeschranktem Funktionsumfang. Wird das instrumentierte
Programm ausgefiihrt, hat es zusatzlich eine JMX-Schnittstelle [Ora11].

Eine Besonderheit von CodeCover ist die Fahigkeit, die Uberdeckungsmessung wihrend der
Programmausfiithrung zu beliebigen Zeitpunkten zuriickzusetzen, um so die Uberdeckung
einzelner Testfédlle messen zu konnen. CodeCover erkennt Beginn und Ende eines Testfalls
also nicht durch Programmstart und -ende, sondern der Tester gibt dies explizit an. Die
Anwendung muss hierzu nicht neu gestartet werden. So wird die Uberdeckung der einzelnen
Testfélle einer Systemtestsuite gemessen, ohne das zu testende Programm neu zu starten.

Realisiert wird das tiber die oben erwdhnte JMX-Schnittstelle, die dem Programm bei der
Instrumentierung hinzugefiigt wird. Diese Schnittstelle bietet zwei Methoden an, mit de-
nen dem instrumentierten Programm wahrend dessen Ausfithrung Beginn und Ende eines
Testfalls mitgeteilt werden kann. Ebenso kann der Download des Ergebnisses der Uberde-
ckungsmessung gestartet werden. Im CodeCover-Eclipse-Plugin steht hierfiir eine Sicht zur
Verfiigung.

Die Eclipse-Integration besteht aus einer Perspektive mit mehreren Sichten, Assistenten, Im-
und Exportfunktionalitdten etc.

Abbildung 3.1 zeigt die Uberdeckungsmarkierungen von CodeCover zur Uberdeckung einer
Funktion. Das Pradikat des ersten If-Statement ist nie wahr, daher wird der darunterstehende
If-Block nie ausgefiihrt, ist also rot markiert. Da der If-Block nicht ausgefiihrt wird, sind nicht
alle Zweige der If-Anweisung ausgefiihrt, weswegen das Statement selbst gelb eingefarbt
wird. Dieser If-Block wird tangiert, aber nicht ausgefiihrt. Ein nicht ausgefiihrter Block,
dessen Bedingungsstatement ausgewertet wurde, wird als tangierter Block bezeichnet.

Es werden beide Zweige der in der Schleife stehenden If-Anweisung ausgefiihrt. Das If-
Statement ist daher griin markiert. Die dort im If-Block verschachtelte If-Anweisung wird

29

3 CodeCover

ausgefiihrt, allerdings nicht vollstandig. Der implizite Else-Block wiirde nur ausgefiihrt
werden, wenn number != 4, was aber nicht der Fall ist.

Weitere Dokumentation zu CodeCover unter [Cod11].

public static woid main{String[] args) {

int number = 3; Uberdecktes Statement
G Statement, das den Blocktyp angibt.
“number == 5" ist das Pridikat.
callAMethod(); . ,
System.ouwt.println("Number is 5"); Unﬁberdectcter_, aber E?ngmﬂer Code-
doSomethingElse(); block, sog. “1f-Bloc

for {(int 1 = 1; 1 == 2; 1443 {
if Cnumber == 43 | If- und Else-Block wurden ausgefiihrt.
System.out.println{"Number is 4");

if (number == 43 {
System.out.println{"Number is still 4"); Uberdeckter T £-Block, mit implizitem,
} uniiberdecktem E1s=e-Block

} else {
System.out.println("Number is not 4");

}

number = 4;

]

} /4 End main

Abbildung 3.1: Beispiel der CodeCover-Ausgabe der Uberdeckung einer Funktion

[Schi1o] beschreibt ausfiihrlich ein neues Zusatzmodul fiir CodeCover. Dieses Zusatzmodul
erlaubt die Analyse der gesammelten Daten zur Generierung von Testfallempfehlungen.
Ergebnis der Analyse ist eine Liste von tangierten Codeblocken. Jeder dieser Codeblocke
entspricht einer Testfallempfehlung. Diese Liste ist allerdings bei Programmen aus der indus-
triellen Praxis mehrere tausend Eintrdge lang und unsortiert. Die erheblichen Unterschiede
in Umsetzungsaufwand einer Empfehlung in einen Testfall und erwarteter Fehlerfindwahr-
scheinlichkeit machen eine Priorisierung der Empfehlungen notwendig.

30

4 Priorisierungsmodell

Teilaufgabe der Diplomarbeit ist die Konzeption und Umsetzung einer Erweiterung fiir Code-
Cover fiir die Anzeige und Priorisierung von Testfallempfehlungen. In diesem Kapitel wird
ein allgemein verwendbares Modell zur Priorisierung von Testfallempfehlungen vorgestellt,
das die Grundlage einer solchen CodeCover-Erweiterung darstellt. Mit diesem Modell konnen
Quellcodeblocke nach ihrer Wahrscheinlichkeit, einen Fehler zu enthalten, sortiert werden.

Eine Implementierung des Modells kann eine Liste von Testfallempfehlungen, wie die von
CodeCover generierte, priorisieren. Die Empfehlungen werden nach zwei groben Kriterien
gepriift und sortiert. Diese entsprechen den Begriffen ,Risikokosten” und , Eintrittswahr-
scheinlichkeit” des risikobasierten Tests.

Fehlerschwere Nicht alle Fehler wiegen gleich schwer. Fehler, die dem Programmablauf
bzw. dem Benutzer mehr schaden, sollten bevorzugt vor denen behandelt werden,
die den Programmablauf bzw. den Benutzer nicht storen. Codeblocke, die potenziell
schwerwiegendere Fehler enthalten, sollten bevorzugt durch einen Testfall abgedeckt
werden.

Fehlerwahrscheinlichkeit Nicht in jedem uniiberdeckten Codeblock befindet sich mit gleicher
Wahrscheinlichkeit ein Fehler. Die Codeblocke, die eine hohere Wahrscheinlichkeit
aufweisen, einen Fehler zu enthalten, sollten bevorzugt durch einen Testfall abgedeckt
werden.

Weder Fehlerschwere noch Fehlerwahrscheinlichkeit sind objektiv exakt ermittelbar. Da also
keine Verfahren zum Errechnen der tatsdchlichen Werte fiir Fehlerschwere und Fehlerwahr-
scheinlichkeit in einem Codeblock zur Verfiigung stehen, ist ein Modell zur Fehlerprognose
grundsitzlich auf Heuristiken angewiesen. Ein Priorisierungsmodell mit guten Heuristiken
kann aber als wesentliches Ergebnis die zehn besten Ergebnisse ausgeben. Als Vergleich bietet
sich ein Suchergebnis einer Web-Suchmaschine an. Ein solches Suchergebnis enthilt oft weit
tiber 200.000 Webseiten. Relevant sind aber nur die ersten zehn Ergebnisse. Auch diese Priori-
sierung wird mit Hilfe von Heuristiken vorgenommen und geniigt den Anforderungen.

In diesem Kapitel werden die Grundbegriffe, Bewertungsebenen, Heuristiken und Annahmen,
auf denen das Priorisierungsmodell basiert, vorgestellt. Anschlieflend wird die Wertung der
Ergebnisse der einzelnen Heuristiken besprochen und wie diese untereinander gewichtet und
verrechnet werden. Danach wird beschrieben wie die Priorisierung in einzelnen Schritten,
ablauft.

Das Priorisierungsmodell ist nicht starr auf eine Menge von Heuristiken ausgelegt, sondern
kann durch zusitzliche Heuristiken erweitert werden, wenn diese geeignet erscheinen.

31

4 Priorisierungsmodell

4.1

Grundbegriffe des Modells

In diesem Abschnitt werden die zum Verstdndnis des Modells notwendigen Begriffe erklart.

4.2

Ein Fehlerindikator ist eine Information, die zur Fehlerprognose verwendet werden
kann. Beispiele sind ,,LOC einer Datei” oder ,Modul durch Unit-Tests getestet”.

Eine Fehlerdatenquelle ist eine Informationskategorie, die Hinweise auf mogliche
Fehler gibt. Eine Fehlerdatenquelle kann dabei ein Teil des Produktes, eine Person oder
Dokumentation sein. Fehlerindikatoren sind einzelne Informationsaspekte und ergeben
zusammen eine Fehlerdatenquelle. Ein Beispiel ist die Fehlerdatenbank ,Quellcode”, zu
der mehrere Codemetriken gehoren.

Die Ausgabe der Analyse eines mit CodeCover ausgefiihrten Tests besteht aus Test-
fallempfehlungen. Eine Testfallempfehlung enthilt ein uniiberdecktes Stiick Code,
beispielsweise einen If-Block. Zudem ist das Pradikat bekannt, das den Kontrollfluss in
den Block kontrolliert.

Die Fehlerfindwahrscheinlichkeit einer Testfallempfehlung ist die vom Modell einer
Testfallempfehlung zugeschriebene Wahrscheinlichkeit, einen Fehler zu finden. Die
Fehlerfindwahrscheinlichkeit wird in Punkten auf einer offenen Skala angegeben und
ist relativ zu der Punktbewertung anderer Empfehlungen zu verstehen.

Die Bewertung oder Wertung bezeichnet die von einer Heuristik an eine Datei, Zeile
oder an einen Block vergebene Fehlerfindwahrscheinlichkeit in Punkten. Die Gewich-
tung bezeichnet die Multiplikation einer Bewertung mit einem Faktor, den entweder
der Benutzer vorgegeben hat oder der im Modell vorgegeben ist.

Bewertungsebenen

Heuristiken zur Fehlerwahrscheinlichkeit und Fehlerschwere geben ihre Bewertungen fiir
verschiedene Ebenen ab. Manche Heuristiken geben die Fehlerwahrscheinlichkeit fiir eine
Datei an, andere fiir Codeblocke, manche sogar fiir Bereiche von Codezeilen oder einzelne
Zeilen.

Um die Wahrscheinlichkeit eines Fehlers in einem uniiberdeckten Codeblock zu bewerten,
muss das Modell daher die Heuristiken fiir Codeblock, Datei und Zeilen kombinieren. Bei
der Untersuchung eines Codeblocks werden deshalb die Werte fiir diesen Codeblock, fiir
die Datei, in der er sich befindet, und fiir die Zeilen im Codeblock zusammengezdhlt. Die
Summe der einzelnen Heuristiken ergibt so die Bewertung fiir den Codeblock.

32

4.3 Uberblick tiber das Modell

4.3 Uberblick iiber das Modell

Abbildung 4.1 gibt einen Uberblick tiber die Funktionsweise des Priorisierungsmodells und
zeigt, wie Informationen iiber eine Empfehlung gewonnen werden.

Eine CodeCover-Testfallempfehlung besteht hauptsichlich aus einer Referenz auf einen
uniiberdeckten Codeblock. Zuséatzlich ist noch bekannt, welche Testfille den Codeblock
tangiert haben und welches Pradikat den Kontrollfluss zum Codeblock kontrolliert.

Der Codeblock befindet sich in einer Datei und besteht aus einzelnen Zeilen in dieser Datei.
Datei und Zeile werden durch einzelne Fehlerdatenquellen bewertet. Diese Bewertungen
fliefen in die Bewertung des Codeblocks ein, dessen Bewertung die Bewertung der Testfall-
empfehlung ausmacht.

Die untersten fiinf Boxen bezeichnen Fehlerdatenquellen. Die Inhalte dieser Boxen sind
Fehlerindikatoren. Weitere Fehlerindikatoren der in der Grafik nicht explizit aufgefiihrten
Fehlerdatenquelle ,,CodeCover-Uberdeckung” sind die Inhalte der Boxen , Pradikat” und
,Black-Box-Testfall”. Die im Modell verwendeten Fehlerdatenquellen und -indikatoren werden
im folgenden Kapitel ndher vorgestellt.

4.4 Fehlerdatenquellen

Das Priorisierungsmodell stiitzt sich auf sechs Fehlerdatenquellen, die wiederum einzelne
Fehlerindikatoren beinhalten. Die verwendeten Fehlerdatenquellen sind:

¢ Quellcode (Thesen 1-6)

¢ Versionsgeschichte (Thesen 7-10)

Stressfaktoren (These 23)

¢ Expertenwissen (Thesen 8, 10, 12, 16, 17)

Verwendete Qualitdtssicherungsmafinahmen (Thesen 14, 24)

CodeCover-Uberdeckung (Thesen 11-13, 15, 22)

In den folgenden Abschnitten werden diese Fehlerdatenquellen vorgestellt. Es werden ihre
Relevanz und ihre praktische Anwendbarkeit, also das Beschaffen und Auswerten der Daten,
diskutiert. Dabei wird auf die in der Literaturrecherche aufgestellten Thesen (siehe 2.6)
referenziert.

33

4 Priorisierungsmodell

bewertet — | <« bewertet

Testfall-Empfehlung

besteht aus besteht aus

besteht aus T

l bewertet
Black-Box-Testfall Codeblock Pradikat
Prioritat #LOC Lange
Typ Anzahl Operatoren
Vergleiche mit null

5

befindet sich in besteht aus
bewertet
r bewertet Datei Zeilen

Versionsgeschichte | bewertet J ‘L bewertet bewertet
Alter der Datei bewertet bewertet
Anderungshaufigkeit
Fehlerhaufigkeit

Expertenwissen QS-MalRnahmen Codemetriken Stressfaktoren

Fehleranfallige Module Unit Tests LOC der Datei Commits wahrend
Module mit problemat. Architektur / Pair Programming Komplexitatsmetriken Uberstunden
funktionaler Komplexitat / Bedarf Reviews "Code smell" Metriken Commits wahrend
an Refactoring Projekt im Verzug

Abbildung 4.1: Uberblick iiber die Konzepte des Modells und ihre Beziehungen

4.4.1 Quellcode

Im Quellcode eines Programms befinden sich die bei der Implementierung gemachten Fehler.
Fehler, die in fritheren Phasen der Entwicklung der Software gemacht wurden, manifestieren
sich hier. Es liegt also nahe, den Quellcode des zu testenden Programms nach Fehlern zu
untersuchen. Zwei Moglichkeiten hierfiir sind die Auswertung von Codemetriken und die
Suche nach Fehlermustern.

Wahrscheinlich sind im Zielprojekt nicht alle Metriken zur Fehlerprognose geeignet (Thesen
19 und 20). Manche werden nicht oder nur schwach mit der tatsdchlichen Fehlerdichte
korrelieren, manche hingegen sehr gut [NBZo6]. Daraus folgt, dass die hier angegebenen
Metriken nicht fiir jedes Projekt gleich gute Ergebnisse liefern. Es bleibt dem Tester tiberlassen,
fiir sein Projekt die richtigen Metriken zu wéhlen.

34

4.4 Fehlerdatenquellen

Werkzeuge zur statischen Codeanalyse suchen mittels Verfahren wie Datenflussanalyse, Uber-
priifung von Zusicherungen, Kontrollflussanalyse oder Vergleich mit typischen Fehlermustern
nach moglichen Fehlern. Sie sind eine einfache Moglichkeit, eine gute Fehlerprognose zu
erhalten. Das Werkzeug FindBugs scheint dafiir wegen der vergleichsweise niedrigen Zahl
an Warnungen und der sehr geringen false-positive-Quote gut geeignet zu sein [RAFo4].
Zudem wird vom Entwickler kein Aufwand durch das Schreiben von Annotationen oder
Zusicherungen verlangt, was fiir die universelle und einfache Anwendbarkeit von FindBugs
sorgt. Fiir den Einsatz in diesem Priorisierungsmodell sind andere Werkzeuge zur statischen
Codeanalyse zur Fehlermustersuche auch denkbar. Beispiele solcher Werkzeuge finden sich
in [RAFo4].

Folgende Fehlerindikatoren gehoren zur Fehlerdatenquelle ,Quellcode”:

LOC einer Datei Die Lines Of Code einer Datei ist eine sehr einfach zu erhebende Metrik, die
haufig zur Fehlerprognose herangezogen wird ([BOWo6], [OWBo5], [Neuos], These 3).

LOC einer Methode Die LOC einer Methode ist laut [Amloo] zur Fehlerprognose geeignet.
Anzahl der Unteraufrufe in einer Methode Laut [Neuos] gut zur Fehlerprognose geeignet.

Komplexitatsmetriken Es gibt viele Komplexitatsmetriken, die zur Fehlerprognose verwendet
werden konnen. Beispiele sind die zyklomatische Komplexitidt nach McCabe oder
die Metriken fiir objektorientierte Software von Chidamber und Kemerer, sowie die
Kopplungsmetriken von Martin ((HPH"09], Thesen 1, 4, 6).

FindBugs-Warnungen pro Datei Die Ausgabe von FindBugs besteht aus Warnungen und
Fehlern. Eine Warnung ist ein verddchtiges Codemuster, ein Fehler ist eine Warnung
mit deutlich hoherer Trefferwahrscheinlichkeit. Die Ausgabe von FindBugs wird daher
im Modell auf zwei verschiedene Arten ausgewertet. Bei diesem Fehlerindikator werden
die Warnungen einer Datei gezdhlt und auf die Fehlerwahrscheinlichkeit der Datei
angerechnet (vgl. 4.2).

FindBugs-fehlermarkierte Zeilen Die Fehlermarkierungen auf Zeilenebene von FindBugs
werden auf die entsprechenden Zeilen angerechnet.

4.4.2 Versionsgeschichte

Die Versionsgeschichte einer Datei bezeichnet die Summe aller Anderungen an dieser Datei,
die im Versionskontrollsystem festgehalten sind. Die Versionsgeschichte beginnt mit dem
ersten Checkin der Datei und setzt sich iiber die daran vorgenommenen Anderungen fort.
Eine Anderung enthélt den Zustand vor und nach der Anderung, sowie Autor und Zeitpunkt
der Anderung. Damit lassen sich aus der Anderung die gednderten Dateien, Methoden und
Zeilen sowie Zeitpunkt und Autor der Anderung ermitteln. Das Alter lasst sich aus dem
Datum des ersten Checkins ableiten.

Daraus ergeben sich die Fehlerindikatoren:

35

4 Priorisierungsmodell

Alter der Datei Je linger eine Datei im System ist, desto geringer ist die Wahrscheinlichkeit,
dass sie einen Fehler enthilt ((BOWo06] [OWBos5] [Bacgg], These 9). Denn je langer die
Datei im System war, desto mehr Zeit hatte ein Fehler, entdeckt zu werden oder einen
Fehlerzustand bei der Ausfithrung zu verursachen.

Anderungen im letzten Release / Jahr Die Anzahl der Anderungen an einer Datei ist ein
Hinweis auf mogliche Fehler, da mit einer gewissen Wahrscheinlichkeit Anderungen
und Problembehebungen neue Fehler in das System einfiihren ([SZZo5]). Wurde eine
Datei im letzten Entwicklungszeitraum (hdufig) bearbeitet, ist dies daher ein Indiz
fiir Fehler ((BOWo06] [Amloo] [Bacgg] [Neuos], Thesen 7 und 10). Mehr Anderungen
sprechen fiir eine hohere Fehlerwahrscheinlichkeit.

Eine mit Versionsinformationen kombinierbare Fehlerdatenquelle ist eine Fehlerdatenbank,
bzw. die gesammelten Daten des Fehlerverwaltungssystems. Aus ihnen ldsst sich ablesen, wel-
che Stellen der Software Fehler enthielten. Enthalten die einzelnen Fehlereintrage Referenzen
zu Commits im Versionskontrollsystem (oder andersherum), lassen sich die Datenbestdnde
von Versionskontrollsystem und Fehlerdatenbank kombinieren [SZZo5].

Die Kombination der Daten von Versionskontrollsystem und Fehlerdatenbank setzt entwe-
der eine automatische, technisch erzwungene, Losung oder viel Disziplin auf Seiten der
Entwickler voraus. Werden die Fehler nicht vollstindig mit den Anderungen im Versions-
kontrollsystem verkniipft, ergeben sich grofie Ungenauigkeiten in der Auswertung. Sollten
diese Daten allerdings verfiigbar sein, konnen zusétzlich die folgenden Fehlerindikatoren
verwendet werden:

Im letzten Release fehleranfillige Dateien Es lisst sich ermitteln, in welchen Dateien im
letzten Release Fehler gefunden wurden. Diese Dateien haben eine erhohte Wahrschein-
lichkeit, wieder Fehler zu enthalten ([Myeo1], Thesen 8 und 10).

Dateien mit fehlerreicher Vergangenheit Ebenso kann tiber den Zeitraum des letzten Relea-
ses hinaus nach Fehlern in der Vergangenheit einer Datei gesucht werden. (These
10)

4.4.3 Stressfaktoren

Die Arbeitsbedingungen, insbesondere der auf den Entwicklern lastende Zeitdruck, wirken
sich auf die Programmqualitdt aus (These 23). Ein beim Industriepartner befragter Entwickler
bestitigt diese These. Steht ein Entwickler unter starkem Zeitdruck oder liegt sein Projekt
weit hinter dem Zeitplan, so vermutet er, dass die Arbeit eine hohere Fehlerrate aufweist.
Aus einem Projektbericht (z.B. ein Burn Down Chart im Scrum-Prozess) oder aus einer
Arbeitszeitdokumentation lassen sich Zeiten hoher Arbeitsbelastung ablesen.

Fehlerindikatoren aus der Fehlerdatenquelle Stressfaktoren:

Anderungen, wihrend Uberstunden gemacht wurden Uberstunden erhhen die Arbeitsbe-
lastung des Entwicklers, was zu niedrigerer Konzentration fithrt und Fehler fordert.

36

4.4 Fehlerdatenquellen

Anderungen, wihrend das Projekt im Verzug war Ist ein Projekt in Verzug, wird i.d.R.
schneller und haufig schlampiger gearbeitet, um die verlorene Zeit wieder zu gewinnen.
Dies fiihrt laut befragtem Entwickler zu mehr Fehlern.

4.4.4 Expertenwissen

Da samtliche bisher beschriebene Verfahren eines gewissen Analyseaufwandes bediirfen,
liegt es nahe, auch einen Entwickler oder Tester, der das Produkt gut kennt, zu befragen.
Arbeitet ein Entwickler langer an einem Produkt, wird er das Produkt gut kennen. Er wird
wahrscheinlich Erfahrungswerte haben, welche Stellen des Produktes weniger gut als andere
sind.

Diese Fehlerdatenquellen gehoren zur Fehlerdatenquelle Expertenwissen:

Module oder Dateien mit schlechter Entwurfs-Qualitét Ein Entwickler, der das Produkt gut
kennt, kann moglicherweise Dateien oder Module mit schlechter Entwurfsqualitat
nennen. In diesen Modulen ist die Fehlerdichte evtl. hoher.

Module oder Dateien mit hoher funktionaler Komplexitat Schwierige Berechnungen, solche,
die hohe Genauigkeit erfordern oder fiir den Kunden besonders wichtig sind, kann ein
Entwickler identifizieren. Dort ist die Fehlerwahrscheinlichkeit hoher als in simpleren
Dateien und Modulen.

Die 20% der Module mit der vermuteten héchsten Fehleranfélligkeit Nach These 16 ent-
spricht die Fehlerverteilung im Programmcode ungefdhr einer 20/8o0-Pareto-Verteilung.
Es liegt also nahe, einen Entwickler zu bitten, das fiinftel der Module auszusuchen, in
denen er die hochste Fehlerdichte vermutet.

Module oder Dateien, die der Entwickler gerne neu schreiben wiirde Ein Entwickler kann
moglicherweise Codestellen angeben, die er gerne neu schreiben wiirde. In diesen
sollte besonders nach Fehlern gesucht werden.

4.4.5 Verwendete QualitatssicherungsmaBnahmen

Waéhrend des Entwurfs und der Codierung durchgefiihrte Qualitdtssicherungsmafinahmen
sollen die Anzahl der Fehler im Quellcode senken. Codebereiche, die solchen Qualititssi-
cherungsmafinahmen unterzogen wurden, haben demnach eine geringere Fehlerdichte als
vergleichbare Module, bei denen solche Mafinahmen nicht durchgefiihrt wurden.

Fehlerindikatoren aus der Fehlerdatenquelle verwendete Qualitdtssicherungsmafsnahmen:

Uberdeckung durch Unit-Tests Es ist anzunehmen, dass ein Modul, das mit Unit-Tests ge-
priift wurde, weniger Fehler enthilt als ein dhnliches Modul, bei dem auf Unit-Tests
verzichtet wurde. Die prozentuale Uberdeckung eines Moduls kann dann als Indikator
verwendet werden.

37

4 Priorisierungsmodell

Modul unter Einsatz von Pair-Programming entwickelt Pair Programming dient zur Steige-
rung der Qualitdt [LLo7]. Ein unter Pair Programming entwickeltes Modul hat demnach
eine geringere Fehlerdichte.

Modul wurde Reviews oder Durchsichten unterzogen Ein durch Reviews oder Durchsichten
gepriiftes Stiick Code hat eine geringere Fehlerdichte als ein vergleichbares Stiick Code,
das nicht so gepriift wurde.

4.4.6 CodeCover-Uberdeckung

Aus einer Testdurchfithrung mit CodeCover ldsst sich eine Liste von uniiberdeckten Co-
destellen nach [Sch1o] erstellen. Aus dieser Liste selbst lassen sich Priorisierungskriterien
ableiten. In diesem Sinne sind die hier angegebenen Indikatoren nicht alle Indikatoren fiir
die Fehlerwahrscheinlichkeit, da sich einige mit der Fehlerschwere und der Erhohung der
Uberdeckung befassen. Aus Konsistenzgriinden wurde der Begriff jedoch beibehalten.

Fehlerindikatoren aus der Fehlerdatenquelle CodeCover-Uberdeckung:

Typ des uniiberdeckten Codeblocks Nach [Schio] sollten If-Blocke relativ hoch gegeniiber
unwirksamen Bedingungstermen oder Schleifenwiederholungen (abhéngig vom Test-
ziel) gewichtet werden (These 15).

Anzahl der uniiberdeckten Codezeilen Ist es moglich, mit einem einzigen Testfall relativ
viele weitere Zeilen zu tiberdecken, sollte dieser hoher gewichtet werden.

Anzahl der Operatoren im Pradikat Ist das Pradikat iiberaus komplex, spricht dies fiir hohe
funktionale Komplexitdt im Code, die moglicherweise Fehler nach sich zieht.

Prioritdt des zu Grunde liegenden Black-Box-Testfalls Da jede uniiberdeckte Codestelle bei
der Durchfiihrung eines Black-Box-Testfalls gefunden wurde, bietet es sich an, Code-
stellen, die durch hoch priorisierte Testfdlle tangiert wurden, hoher zu bewerten (These
11).

Anzahl der tangierenden Testfdlle Wird eine Codestelle von sehr vielen Testfédllen passiert,
handelt es sich vermutlich um haufig ausgefiihrten Code, in dem ein Fehler vermutlich
eher auffillt, als in Codestellen, die nur von sehr wenigen (oder nur einem einzigen)
Testfdllen tiberdeckt werden. Daher sollten Codestellen, die nur von wenigen Testfédllen
tiberdeckt werden, hoher gewichtet werden (These 12).

4.5 Bewertung der Fehlerwahrscheinlichkeit

Das vorgestellte Modell verwendet die oben beschriebenen sechs Fehlerdatenquellen, um eine
Bewertung der Fehlerwahrscheinlichkeit eines uniiberdeckten Codeblocks zu ermdglichen.
Das Modell lasst allerdings die genaue Verrechnung der Bewertungen der einzelnen Fehlerin-
dikatoren offen. Griinde hierfiir sind die Probleme, die das Aufstellen einer vordefinierten
Berechnungsvorschrift erschweren. Eine Implementierung des Modells muss die folgenden

38

4.6 Ablauf der Priorisierung

Probleme durch vordefinierte Gewichtungen losen, oder dem Benutzer die Gewichtung
tiberlassen:

Die Bewertungen der Fehlerindikatoren liegen auf verschiedenen Skalen Wihrend manche
Indikatoren Werte auf einer nach oben offenen Rationalskala liefern, liefern manche
Indikatoren Werte auf einer Ordinalskala. Die Metriken LOC und die meisten ande-
ren Komplexitidtsmetriken liefern Werte auf einer Rationalskala. Die Prioritédt eines
iiberdeckten Testfalls liegt auf einer Ordinalskala. Ob eine Codezeile durch einen Com-
mit beeinflusst wurde, wiahrend das Projekt im Verzug war, wird nur durch einen
Wahrheitswert angeben.

Abbildung auf Rationalskala Um die Werte der Ordinalskalen auf eine Rationalskala zum
Verrechnen abzubilden, miissen den Werten dieser Skalen Zahlenwerte zugewiesen
werden.

Skalierung der Zahlenwerte Die Wahrheitswerte true und false konnen auf die Zahlenwerte
1 und o abgebildet werden, aber auch auf die Zahlenwerte 10 und 5. Es muss eine
Skalierung und Verschiebung, also eine Gewichtung der Werte, vorgenommen werden
konnen. Die Resultate der einzelnen Fehlerindikatoren sollten dabei so skaliert werden,
dass kein Indikator gegeniiber den anderen unbedeutend ist.

Verschiedenheit der Zielprojekte Eine Gewichtung der Indikatoren mag fiir ein Programm
gute Ergebnisse liefern. Wie in [NBZo6] festgestellt unterscheiden sich Programme
aber so sehr, dass die Gewichtungen, die in einem Programm gute Ergebnisse liefern,
in einem anderen schlechte Ergebnisse liefern konnen. In einem Programm haben
moglicherweise besonders lange Dateien die grofste Fehlerdichte, wiahrend in einem
anderen die korrekte Ausfiihrung von Catch-Blocken besonders wichtig ist.

4.6 Ablauf der Priorisierung

Der prinzipielle Ablauf der Priorisierung mit Hilfe des vorgestellten Modells besteht aus drei
Schritten.

1. Erstellung der unpriorisierten Liste von Testfallempfehlungen: Die CodeCover-
Messergebnisse werden vom Benutzer angegeben und anschlieffend automatisch aus-
gewertet. Hierbei entsteht die Liste von Testfallempfehlungen. Die einzelnen Empfeh-
lungen enthalten den uniiberdeckten Codeblock (angegeben als Datei + Offset vom
Dateianfang). Bei If- und Switch-Anweisungen sowie Schleifen ist das Pradikat ange-
geben. Bei Catch-Blocken die Art der Exception.

2. Bewertung der Fehlerdatenquellen und Fehlerindikatoren: Fiir jede Testfallempfeh-
lung wird jeder Fehlerindikator nach seiner Wertung ,befragt”. Dabei werden entweder
automatische Auswertungen durchgefiihrt oder vom Benutzer definierte Dateien mit
diesen Informationen werden eingelesen.

39

4 Priorisierungsmodell

3. Die Liste wird sortiert: Die uniiberdeckten Codeblocke enthalten nun Bewertungen der
verschiedenen Fehlerindikatoren. Diese werden anhand der vom Benutzer eingestellten
Gewichtungen bewertet (siehe 4.5) und nach der Summe der Werte der Fehlerdaten-
quellen sortiert. Diese Liste stellt das Endergebnis der Priorisierung dar. Der Benutzer
sollte nun die Testfallempfehlungen von hoher zu niedriger Wertung hin bearbeiten.

4.7 Bewertung des Modells

Mochte ein Tester ohne konkrete, aus der Auswertung eines Glass-Box-Tests gewonnene,
Testfallempfehlungen eine Testsuite verbessern, stehen ihm dafiir als Anhaltspunkte der
gesamte Quellcode, das Wissen der Entwickler sowie Spezifikationsdokumente zur Verfiigung.
Er muss also aus diesen teilweise unkonkreten Informationen konkrete Testfdlle gewinnen.
Dabei lduft er Gefahr, dass zum einen redundanten Testfille entstehen, zum anderen ist es
nicht wirtschaftlich, eine schon bestehende Testsuite durch das Hinzuftigen weiterer zufalliger
Testfdlle zu erweitern. Besser wére es, die Testfédlle dort anzusiedeln, wo beispielsweise bisher
nicht durch Tests tiberdeckter Code steht, oder wo Fehlerwahrscheinlichkeit und Fehlerkosten
besonders hoch sind.

Die von CodeCover generierte Empfehlungsliste ist ein erster Schritt auf diesem Weg. Mit
dieser Liste hat der Tester Anhaltspunkte fiir Code, der bisher nicht von der Testsuite erfasst
worden ist. Allerdings ist die Empfehlungsliste in der Regel uniiberblickbar lang [Sch1o]. Der
Entwickler miisste die Liste der Reihe nach abarbeiten oder sich zuféllig einige Empfehlungen
heraussuchen. Auch dies ist nicht wirtschaftlich, da der Zeitaufwand enorm ist und es keine
Anhaltspunkte fiir die Qualitdt der neuen Testfélle gibt.

Eine nach mehreren Heuristiken priorisierte Liste von Testfdllen erlaubt dem Tester jedoch,
seine Testfallauswahl auf die Testfille zu konzentrieren, die eine hohere Wahrscheinlichkeit
haben, einen Fehler aufzudecken oder einen gravierenderen Fehler zu finden. Unter der
Annahme, dass das getestete Programm eine Fehlerdichte von fiinf Fehlern pro 1000 LOC
hat, bedeuten 200 weitere {iberdeckte Codezeilen durchschnittlich einen gefundenen Fehler.
Geht man davon aus, dass die vorgeschlagenen Codeblocke tatsdchlich die fehleranfalligeren
sind und eine dreifache Fehlerdichte gegentiber dem Rest des Programmes haben, reicht die
Uberdeckung von ca. 70 Zeilen aus, um einen weiteren Fehler zu finden.

Ob sich die Entwicklung weiterer Testfélle lohnt, ist von den wirtschaftlichen Rahmenbedin-
gungen abhéngig. Bei einem Programm, das nur noch drei Monate im Einsatz ist und bei
dem nur geringe Fehlerfolgekosten entstehen, wird es sich selten rentieren, neue Testfdlle zu
suchen. Ist ein Programm hingegen noch einige Jahre in Dienst und der Hersteller haftet fiir
durch Programmfehler entstehende Schdden, kann es sehr wohl wirtschaftlich sein, Aufwand
in die Suche von Fehlern zu investieren. Ein gutes Mittel dazu ist die Vervollstindigung der
vorhandenen Testsuite.

Mit dem Modell ist es jedoch nicht moglich, den genauen Ort eines bestimmten Fehlers
mit Gewissheit anzugeben. Genausowenig garantiert das Modell, dass ein Testfall, der aus
einer sehr hoch bewerteten Empfehlung entstanden ist, einen Fehler aufdeckt. Es konnte

40

4.7 Bewertung des Modells

im entsprechenden Codeblock schlicht kein Fehler sein. Auch kann das Modell nicht fiir
jeden potenziell vorhandenen Fehler eine erhohte Wahrscheinlichkeit erkennen, wenn keine
Heuristik dafiir vorliegt. Den Anspruch der ultimativen Sicherheit kann weder das Modell
noch sonstwer erfiillen.

Die im Modell enthaltenen Fehlerdatenquellen und Fehlerindikatoren sind eine erste Auswahl
der in der Literatur vorhandenen Heuristiken zur Fehlersuche. Das Modell kann und sollte
durch weitere Heuristiken erweitert werden, um weitere Informationen iiber die Fehleranfal-
ligkeit einzubringen.

41

5 Umsetzung

In den folgenden Abschnitten wird die Umsetzung des beschriebenen Modells in eine
Eclipse-Sicht und einen Priorisierungsalgorithmus beschrieben. Dazu gehoren die Ziele der
Umsetzung sowie die Grundziige der Architektur der Umsetzung, insbesondere mit Fokus
auf die Verwendung als Framework zur Erprobung weiterer Heuristiken.

5.1 Ziele

Ziele der Umsetzung sind die folgenden. Diese wurden alle erreicht:

Sprachunterstiitzung fiir Java.

Der Benutzer soll mit wenig Aufwand in einer neuen Sicht eine priorisierte Liste von
Testfallempfehlungen aus einem in die CodeCover-Ansicht in Eclipse importierten
Test-Session-Container® erhalten konnen.

Der Benutzer soll die Gewichtung der Fehlerdatenquellen einstellen konnen.
Der Benutzer soll nach Paketen filtern kénnen.

Der Benutzer soll nach dem Typ des uniiberdeckten Blocks filtern kénnen.

So viele Fehlerindikatoren wie mdoglich sollen automatisch ausgewertet werden.

Der Benutzer soll sich die Details der Bewertung einer Empfehlung anschauen konnen.
Die Punktevergabe soll nachvollziehbar angezeigt werden.

Der Benutzer soll einzelne Klassen schnell ausschliefien konnen.

Dem Benutzer soll Hilfestellung zur Erstellung von Fehlerinformationsdateien gegeben
werden.

Die generierte Empfehlungsliste soll exportiert werden konnen.
Fehlerindikatoren sollen konfigurierbar sein, d.h. einfach einstellbare Parameter haben.

Die gemachten Einstellungen sollen nach Neustart von Eclipse erhalten bleiben.

'Ein Test-Session-Container ist eine Datei im XML-Format, die von CodeCover wahrend der Instrumentierung
angelegt wird. Sie enthalt den gesamten Quellcode des Projektes und die Uberdeckungsmessergebnisse der
Testdurchfithrung

43

5 Umsetzung

5.2

Die Implementierung des Modells soll erweiterbar sein, d.h. es soll mit geringem
Aufwand moglich sein, weitere Fehlerdatenquellen und Fehlerindikatoren hinzuzufiigen,
so dass die implementierte Erweiterung als Framework fiir die Erprobung weiterer
Priorisierungsverfahren verwendet werden kann. Die automatische Auswertung von
Fehlerindikatoren soll auch nachtraglich hinzugefiigt werden kénnen.

Umgesetzte Modellelemente

Die Implementierung des Modells setzt alle wesentlichen Elemente des Fehlerprognosemo-
dells im letzten Kapitel um. Die Generierung der Basisempfehlungen, Fehlerdatenquellen,
Fehlerindikatoren, sowie deren Gewichtung und Auswertung sind enthalten.

Die folgenden Fehlerindikatoren sind im Modell vorhanden und kénnen automatisch ausge-
wertet werden:

Code: LOC einer Datei

Code: FindBugs-Warnungen pro Datei

Code: FindBugs-fehlermarkierte Zeilen

Versionsgeschichte: Alter der Datei

CodeCover-Uberdeckung: Typ des Codeblocks

CodeCover-Uberdeckung: Anzahl der uniiberdeckten Codezeilen
CodeCover-Uberdeckung: Prioritit des zu Grunde liegenden Black-Box-Testfalls
CodeCover-Uberdeckung: Anzahl der tangierenden Testfille
CodeCover-Uberdeckung: Linge des Pradikats

Die folgenden Fehlerindikatoren sind in der Implementierung vorhanden, benétigen aber
eine manuelle Eingabe der Daten:

44

Versionsgeschichte: Anderungshaufigkeit seit letztem Release
Versionsgeschichte: Gefundene Fehler im letzten Release

Versionsgeschichte: In der Vergangenheit fehleranfillige Dateien

Stressfaktoren: Commits wihrend Uberstunden

Stressfaktoren: Commits wihrend Projekt im Verzug

Expertenwissen: Module oder Dateien mit schlechter Entwurfsqualitét
Expertenwissen: Module oder Dateien mit hoher funktionaler Komplexitat
Expertenwissen: 20% der Module mit der vermuteten hochsten Fehleranfilligkeit

Expertenwissen: Module oder Dateien, die der Entwickler gerne neu schreiben wiirde

5.3 Entwurf und Implementierung

* QS-Mafsnahmen: Modul durch Unit-Tests getestet
¢ QS-Mafsinahmen: Modul unter Einsatz von Pair-Programming entwickelt
* QS-Mafsinahmen: Modul wurde Reviews oder Durchsichten unterzogen

Die Implementierung unterstiitzt die Gewichtung von Fehlerdatenquellen, jedoch nicht die
Gewichtung einzelner Fehlerindikatoren.

5.3 Entwurf und Implementierung

5.3.1 Datenstruktur

Die wesentliche Datenstruktur der CodeCover-Erweiterung ist die Datenstruktur der Fehlerda-
tenquellen (ErrorDataSource) und Fehlerindikatoren (ErrorIndicator). Deren Hierarchie ist
in Abbildung 5.1 abgebildet. Der RecommendationGenerator ist die Basisklasse des Priorisie-
rungsalgorithmus. Er verwaltet die Fehlerdatenquellen, die wiederum aus Fehlerindikatoren
bestehen. Diese haben optional Parameter und optional genau einen DataCollector. Ein
DataCollector ist ein Interface, das von Algorithmen zur automatischen Erstellung von
Priorisierungsinformationen implementiert werden muss.

Der rechte Teil des Diagramms wird in Abschnitt 5.3.3 erldutert.

RecommendationGenerator |«——— verwaltet View

generiert
! 1

ErrorDataSource «——konfiguriert — | ErrorDataWizard

generiert
! k

<« konfiguriert

ErrorDataWizardPage

Errorindicator

—
fragt ab
L——o4 Parameter >o—‘

liest J

Abbildung 5.1: Datenstruktur der CodeCover-Erweiterung

DataCollector

45

5 Umsetzung

5.3.2 Ablauf der Priorisierung

Abbildung 5.2 zeigt den Ablauf der vom Benutzer angestofienen Priorisierung. Nachdem der
Benutzer die Priorisierung angestofSen hat, wird zunédchst die unsortierte Empfehlungsliste
generiert.

Anschlieffend werden rekursiv mit ihren invoke-Methoden alle Fehlerdatenquellen und
damit alle Fehlerindikatoren aufgefordert ihre Informationen auszuwerten. Dabei wird fiir
jede Fehlerdatenquelle ein Thread gestartet, was die Dauer des Gesamtvorgangs erheblich
senkt?.

Wird ein Fehlerindikator nicht automatisch ausgewertet (hat keinen DataCollector), liest er
nach dem Aufruf seiner invoke-Methode die eingestellte Fehlerinformationsdatei aus, anstatt
den Aufruf an den DataCollector weiterzureichen.

Im zweiten Schritt iteriert der RecommendationGenerator iiber die vorhin generierten Roh-
empfehlungen und befragt jede Fehlerdatenquelle nach ihrer Punktzahl fiir diese Empfehlung
(getValueFor()). Die Fehlerdatenquellen geben diesen Aufruf wiederum rekursiv an ihre
Fehlerindikatoren weiter, die die tatsachlichen Fehlerpunktzahlen gespeichert haben.

Der letzte Schritt ist die Sortierung. Nun werden die Fehlerpunktzahlen der Fehlerdatenquel-
len nach den Vorgaben des Benutzers gewichtet (Abbildung 5.5) und sortiert ausgegeben.

5.3.3 Erweiterbarkeit

Die implementierte CodeCover-Erweiterung kann als Framework zum Ausprobieren weiterer
Priorisierungsverfahren verwendet werden. Bei Entwurf und Implementierung wurde Wert
darauf gelegt, dass neue Fehlerdatenquellen und Fehlerindikatoren mit wenig Program-
mieraufwand hinzugefiigt werden kdnnen. Um kiinftigen Bediirfnissen gerecht zu werden,
konnen Fehlerindikatoren mit Parametern versehen werden, die deren Bewertung bei au-
tomatischer Auswertung verdndern. Beispielsweise konnte dem Fehlerindikator , LOC der
Datei” ein Parameter fiir die kritische Zeilenzahl hinzugefiigt werden, ab der die doppelten
Fehlerpunkte vergeben werden.

Die Fehlerdatenquellen, Fehlerindikatoren und Parameter werden in der Klasse
RecommendationGenerator einmal angegeben. Sollte ein Indikator automatisch ausge-
wertet werden konnen, muss noch eine Implementierung des Interfaces DataCollector
angegeben werden. Fiir jede Fehlerdatenquelle wird aus diesen Informationen ein Einstel-
lungsassistent generiert, der fiir jeden Indikator den Modus (aus, automatisch, manuell,
siehe Abbildung 5.3) sowie die definierten Parameter abfragt. Die andernfalls notwendige
zeitraubende Implementierung von Benutzeroberflachen fiir die Konfiguration entfallt.

*Beispielsweise sind Auswertungen des Versionskontrollsystems von der Netzwerkgeschwindigkeit abhéngig,
wihrend die Auswertung von FindBugs von der lokalen Rechenleistung abhéngt.

46

5.3 Entwurf und Implementierung

View RecommendationGenerator ErrorDataSource Errorindicator DataCollector

getSortedList l

getRecommendations D

invoke

invoke

invoke

addErrorinformation

addErrorinformation

getValueFor(codeblock)

getValueFor(codeblock)

i)

View RecommendationGenerator ErrorDataSource Errorindicator DataCollector

Abbildung 5.2: Ablauf der Priorisierung

Dies erspart dem Programmierer wesentlichen Aufwand beim Einbinden weiterer Fehlerda-
tenquellen und Fehlerindikatoren und unterstiitzt so das effiziente Bewerten neuer Priorisie-
rungsverfahren.

Abbildung 5.1 zeigt den Zusammenhang zwischen den Elementen der Datenstruktur und
den Elementen der Konfigurationsassistenten. Ein Assistent (Wizard) konfiguriert eine Fehler-
datenquelle. Pro Dialogseite des Assistenten wird ein Fehlerindikator konfiguriert. Auf einer
Seite werden alle Parameter eines Fehlerindikators abgefragt.

5.3.4 Eclipse als notwendiger Ubersetzer

CodeCover speichert den Quellcode des Priiflings sowie die Uberdeckungsmessergebnisse in
einer XML-Datei ab, dem sogenannten Test-Session-Container. Dieser enthilt zwar den reinen
Quellcode des Priiflings, allerdings leider keine vollstindigen Informationen tiber den Pfad
einer Quelldatei innerhalb ihres Projektes. Es ist aber notwendig zu wissen, in welcher Datei
auf dem Dateisystem sich eine Codestelle befindet, um automatische Auswertungen wie die
FindBugs-Analyse oder die Analyse der Versionsgeschichte durchfiihren zu kénnen, da diese
Auswertungen auf Basis des Test-Session-Containers alleine nicht moglich sind. Auch fiir

47

5 Umsetzung

die Auswertung manueller Fehlerinformationsdateien muss der absolute Pfad einer Datei
bekannt sein, da nur so eine Datei eindeutig referenziert werden kann.

Da es mit CodeCover-Bordmitteln nicht moglich ist, diese Information zu erhalten, wurden die
semantischen Moglichkeiten von Eclipse verwendet, um die Abbildung vom Code bzw. einer
Klasse darin auf die enthaltende Datei zu ermoglichen. Das Eclipse-Java-Modell-Framework
ist in der Lage anzugeben, in welcher Datei eine Klasse enthalten ist. Auf diese Art ist es auch
moglich, mithilfe des Subversion-Plugins Subclipse [Sub11a] an die Versionsinformationen
der Software im Versionsverwaltungssystem Subversion (SVN) [Sub11b] zu gelangen.

5.3.5 Speicherung von Zwischenergebnissen

Wihrend des Auswertungs- und Priorisierungsprozesses muss eine Kette von zusammengeho-
renden Informationen des zugrundeliegenden Code-Datenmodells aufgebaut werden. Dieses
umfasst die Abbildung von uniiberdeckten Zeilen iiber CodeCover-Code-Hierarchielevels
zu Eclipse-Java-Elementen, Datei-Deskriptoren und kompilierbaren Einheiten. Auch muss
bekannt sein, Welche Testfédlle den Inhalt einer Datei (teilweise) abdecken. Beim Auswerten
der Versionsgeschichte muss bekannt sein, welche , Remote-Resource” zu einer lokalen Datei
gehort. CodeCover gibt Codestellen als Offset vom Beginn der Datei an, FindBugs hingegen
rechnet in Zeilennummern, so dass eine Abbildung von Zeichen-Offset in einer Datei auf
Zeilennummern notig ist.

Alle diese Informationen werden bei Bedarf ermittelt und anschlieffend zur spateren Verwen-
dung zwischengespeichert. Ohne diese Optimierungen wire die Auswertung nicht in akzep-
tabler Zeit moglich. Realisiert wird dieser Zwischenspeicher (Cache) durch Java-HashMaps.

5.3.6 Zukunftige Verbesserungen

Aufgrund des experimentellen Charakters der Implementierung ist diese zwar technisch
solide, aber nicht in allen Details abgeschlossen. Folgende Punkte kénnten noch erledigt
werden:

* Ansprechendere Icons in der Symbolleiste der RecommendationsView

¢ Sortierung der Empfehlungen nach anderen Kriterien (LOC, Typ des Codeblocks, ...).
Die Tabelle sollte nach allen Spalten sortiert werden konnen.

¢ Der Benutzer sollte die Gewichtung nicht nur auf Ebene der Fehlerdatenquellen, sondern
auch auf Ebene der Fehlerindikatoren vornehmen kénnen. Hierfiir eignen sich die schon
vorhandenen Parameter.

o Ubersichtlichere Darstellung der ausgewihlten Fehlerdatenquellen und Fehlerindikato-
ren mit Parametern und Gewichtung.

48

5.4 Screenshots

* Nicht iiberdeckte implizite E1se-Blocke werden in der Ausgabe als If-Blocke mit einer
Lange von null Zeilen angegeben. Dies ist zwar technisch korrekt, aber fiir den Benutzer
nicht intuitiv. Der Codeblock-Typ sollte in diesem Fall als Impl. else 0.4d. angegeben
werden.

¢ Das Eclipse-Plugin ,Metrics” konnte in CodeCover integriert werden. Seine Moglichkei-
ten zur Berechnung verschiedener Metriken konnten zur automatischen Auswertung
einiger Fehlerindikatoren interessant sein.

e Statt der ,Lange des Pradikates” sollte im gleichnamigen Fehlerindikator die Komplexi-
tat des Pradikates betrachtet werden.

5.4 Screenshots

Dieser Abschnitt enthélt einige Screenshots der implementierten Erweiterung, die im folgen-
den kurz besprochen werden.

Abbildungen 5.4 zeigt die ganze neue Eclipse-Sicht. Sie besteht aus der Tabelle, die die
Empfehlungen (priorisiert) anzeigt. Die Spalten enthalten die Methode, die den Codeblock
enthilt, das Pradikat bzw. Statement, das den Kontrollfluss in den Block kontrolliert, den
Typ des Blocks, die Summe der Werte der Fehlerdatenquellen und die Werte der einzelnen
Fehlerdatenquellen.

Die Konfiguration erfolgt iiber die Werkzeugleistenknopfe in der rechten oberen Ecke. Dort
werden die Assistenten zur Konfiguration der Fehlerdatenquellen aufgerufen (siehe Abbil-
dung 5.3), die Gewichtung eingestellt (sieche Abbildung 5.5), Filter eingestellt (siche Abbildung
5.6) und die Priorisierung wie in Abschnitt 5.3.2 geschildert.

In der Tabelle werden dem Benutzer die wesentlichen Informationen zu einer Testfallempfeh-
lung angezeigt: Methode, in der der uniiberdeckte Codeblock ist, das Statement bzw. Pradikat
des Codeblocks, sein Typ sowie die Bewertungen der Fehlerdatenquellen. Weitere Details zu
einer Empfehlung kénnen tiber das Kontextmenti aufgerufen werden. Siehe dazu Abbildung

57

5.5 Fazit zur Umsetzung

CodeCover wurde durch eine weitere Eclipse-Sicht zur Priorisierung von Testfallempfehlun-
gen erweitert. Die Erweiterung stellt ein Framework dar, mit dem Methoden zur Priorisierung
von Testfallempfehlungen evaluiert und mit anderen Methoden verglichen werden kénnen.
Dies ermdglicht die schnelle und aufwandsarme weitere Forschung auf diesem Gebiet.

49

5 Umsetzung

806

Alter der Datei

Wie lange ist die Datei schon im System? Je dlter, desto weniger fehleranfillig dirfte sie sein.

G‘ Indikator nicht verwenden [E] Automatisch ermitteln G‘ Manuelle Dateieingabe (XML)

'@:‘ { < Back :_. .: Mext > 30 Cancel :, F Finish 3

Abbildung 5.3: Konfiguration eines Fehlerindikators

[Test Sessions |=m Coverage | Boolean Analyzer | |2 Pick Test Cases [HH Correlation [[£(Problems | 4k servers | E] Console [(@ Recommendationsview 53 =0
CSV-Export Neue Info-Datei anlegen @& 3¢ |% 6'a C WV cc P Exos ¥
Methode Statement Typ Summe Code Vers.ge: CC-Test Expe Proz QS & LOC # Testfille
Actions.init m.getCorrespondingMembership(y 1= null && { (iTerm 62,8 15,8 11 36 1] [} 0 7 3
Actions.doEditWorkeffort enteredMember == null If 56,8 158 11 30 0 a 0 2 1
Actions.doEditWorkeffort workMembership == null If 56,8 15,8 11 30 0 i} 0 3 1 m
Actions.doEditWorkeffort everythingOk IF 56,8 15,8 11 30 0 1} 0 1 1
Actions.doAddWorkeffort checkConsistency(newWaorkeffort, viewltem.getNumb Term 54,8 15,8 11 28 0 i} 0 2 2
- Actions.doAddWorkeffort checkConsistency(newWorkeffort, viewltem.getNumb Term 54,8 15,8 11 28 0 1} 0 2 2
Membership.getCalculatedindivReference this.getCorrespondingMembership() != null && this Term 54,3 8,3 11 35 0 1} 0 5 2
W Season.eguals I{obj instanceof WorkSeason) If 53,9 22,9 11 20 1] o 0 [} 1
.doEditWorkeffort catch (ParseException e) Catch 53,8 15,8 11 27 1] 0 0 2 1
.doEditWorkeffort catch (ParseException e) Catch 53,8 15,8 11 27 1] i} 0 2 1
.doEditWorkeffort catch (ParseException e) Catch 53,8 15,8 11 27 0 1} 0 2 1
.doAddWorkeffort assignTo == null IF 53,8 15,8 11 27 0 [} 0 2 2
.doAddWorkeffort this.effortsOfweek |= null I 53,8 158 11 27 0 o0 0 2
.fillData WorkMembership membership : this.currentWorkSea Schleife 51,8 15,8 11 25 0 [} 0 10 2
fillData ‘WorkMembership membership : this.currentWorkSea Schleife 51,8 15,8 11 25 0 1} 0 1} 2
.doAddWorkeffort Workeffort w : persistifOkList Schleife 51,8 15,8 11 25 1] 1] 0 5 2
[init sumToDoMinutes != 0 I 50,8 158 11 24 0 a 0 1 3
.showAddWaorkeffo ;run.before(this.currentWorkSeason.getEnd()); run.ad Schleife 49,8 15,8 11 23 0 o 0 2 2
showaddWorkeffo ;run.before(this.currentWorkSeason.getEnd(): run.ad Schleife 49,8 15,8 11 23 1] [} 0 [} 2
init Workeffort w @ | Schleife 48,8 158 11 22 0 0 0 1 3
.init Workeffort w : | Schleife 48,8 15,8 11 22 0 o 0 o 3
.nit WorkMembership m - workMembershipList Schleife 48,8 15,8 11 22 0 1} 0 13 3
.nit ‘WorkMembership m : workMembershipList Schleife 48,8 15,8 11 22 0 1} 0 1} 3
.nit WorkMembership wMS : workMembershiplList Schleife 48,8 15,8 11 22 0 1} 0 8 3
.nit ‘WorkMembership wMS : workMembershipList Schleife 48,8 15,8 11 22 0 0 0 1} 3
- .showSingleMembe catch (NumberFormatException &) Catch 47,8 15,8 11 21 1] 0 0 0 1 H
Membership.getCalculatedindivReference this.getCorrespondingMembership() I= null && this.c Term 47,3 8,3 11 28 1] i} 0 4 5 v

Abbildung 5.4: Sicht zur Anzeige und Priorisierung der Testfallempfehlungen

Es ist ein Grundstock an Fehlerindikatoren implementiert, der in Zukunft auf zweierlei Art
erweitert werden kann:

¢ Es konnen weitere Fehlerindikatoren zur automatischen Ermittlung von Priorisierungs-
informationen aufgeriistet werden. Dadurch sinkt der Aufwand zur Durchfithrung der
Priorisierung und es entfillt die manuelle Pflege von Fehlerinformationsdateien im
XML-Format.

¢ Es konnen weitere Fehlerindikatoren und Fehlerdatenquellen gesucht und der
CodeCover-Erweiterung hinzugefiigt werden.

50

5.5 Fazit zur Umsetzung

_

Gewichtung einstellen

Bitte die zu verwendende Gewichtung der einzelnen Fehlerdatenguellen einstellen

Cewichtung Code: (B V4 Wert: 1.0
Gewichtung Versionsgeschichte: | B Y4 e Wert: 1.5
Gewichtung CC-Test: W =] G4 Wert: 1.0
Gewichtung Arbeitsdruck: (. =) D4 Wert: 2.0
Gewichtung Expertenwissen: ¥ =] Ja|»! Wert 1.0
Gewichtung QS-Maknahmen: W =] V4 »! Wert: 1.0

@ [Cancel j M

#

Abbildung 5.5: Dialog zur Gewichtung der Fehlerdatenquellen

aan

Paketfilter

Wihlen Sie hier die Paketfilter aus. Sie knnen nach Blacklist- oder Whitelistmethode vorgehen und eine Liste von Paketen auswihlen.

M oo e Pakete auswihlen, die je nach Auswahl in der Black- oder Whitelist sein sollen

S 205 — S5 b~

(*) Pakete ausschlieBen () Pakete auswihlen

Pakete auswahlen...

S cntities — - src

S entities.base - s/ src

B intern — s

» intern.actionbeans - s fsre

© intern.actionbeans.datamodels - « o Jsrc

HH

+ intern.actionbeans.process — s nysrc

S intern.actionbeans.process.inithelper - s [src
S intern.actionbeans.viewitems - & o fsre

S (NTErn.helper - ——src

“ o intern.helper.converters - « o Jsrc

S intern.helper.exporters - o s

“ o intern.helper.exporters.csy - o fsrc
“oointern.helper.exporters.xls - o s ¥

rEREREREREREREREREREREREED
Te

| £ £ £ £ £ £ £ £ £ £ 6 6 6

®

[Cancel) M .
T ———————————— | 4

Abbildung 5.6: Dialog zum Filtern von Paketen

51

5 Umsetzung

8.0 Recommendations\iew

1 Ergebnisse der ErrorDataSources und Errorindicators: |
. EDS: Code
El-file: LOC der Datei: 15.78 |
EDS: Versionsgeschichte
El-file: Alter der Datei: 11.0
EDS: CC-Test |
El-branch: Typ des unuberdeckten Codeblocks: 5.0
El-branch: Anzahl der uniberdeckten Zeilen: 10.0 |
El-branch: Anzahl der tangierenden Testfille: 15.0
EDS: Expertenwissen |
EDS: Q5-Maknahmen
EDS: Prozess [

o) |

Abbildung 5.7: Detailansicht der Bewertung einer Testfallempfehlung

52

6 Erprobung

Die Erprobung der neu implementierten CodeCover-Erweiterung fand bei einem Indus-
triepartner statt. Zielsetzung war, festzustellen, ob das verwendete Modell seinen Zweck
erfiillen und bei einem der beim Industriepartner entwickelten Programme neue Testfille
empfehlen kann, die besser sind als eine zufillige Auswahl von Testfdllen aus der Liste der
CodeCover-Empfehlungen.

6.1 Testumgebung

Beim Industriepartner gehort Testautomatisierung seit einigen Jahren zum Testprozess, so
dass fiir die meisten Programme soweit moglich automatisierte Testsuiten vorliegen. Als
Werkzeug fiir die Oberflichentestautomatisierung kommt vor allem IBM Rational Functional
Tester (RFT) zum Einsatz.

RFT ist ein Werkzeug fiir die Testautomatisierung und den Regressionstest insbesondere von
Programmen mit graphischer Benutzerschnittstelle. Testskripte (eigentlich Java-Programme)
konnen dabei mit Hilfe eines Aktionsrekorders aufgenommen oder direkt programmiert
werden. Das bedeutet, dass alle vom Benutzer durchgefiihrten Klicks und Eingaben an ein
Programm aufgezeichnet werden. RFT generiert daraus Java-Code und Oberflachenobjekt-
beschreibungen, die sich auf die direkten Eigenschaften eines Objektes sowie seine Position
in der Oberflachenhierarchie stiitzen. Mit Hilfe des Java-Code wird mit diesen Objekten
interagiert. So konnen Benutzeraktionen wie z.B. Klicks aufgefiihrt werden, in dem der
Aufruf button_ok().click() ausgefiithrt wird.

RFT ist gut erweiter- und anpassbar. Unter anderem bietet RFT benutzerdefinierbare Callback-
Methoden an, die bei bestimmten Ereignissen, u.a. Testskriptbeginn und -ende ausgefiihrt
werden.

Weitere Informationen zu IBM Functional Tester finden sich in [Rat11].

Die Testfille selbst werden mit IBM Rational ClearQuest TestManager (CQ) verwaltet. Dort
sind Metadaten wie Name, Autor, etc. gespeichert. RFT-Skripte referenzieren mit Hilfe einer
Testfall-ID auf die Testfélle in ClearQuest. Es existiert die Moglichkeit, diese Verbindung und
damit den Testfallnamen programmatisch abzufragen.

53

6 Erprobung

6.2 Geplanter Ablauf

Wesentliches Ergebnis der Diplomarbeit ist eine Methode zur Priorisierung von Testfallemp-
fehlungen von CodeCover, also von uniiberdeckten Codeblocken. Bei der Erprobung an einer
Software aus der Praxis soll festgestellt werden, ob das vorgeschlagene Priorisierungsmodell
bzw. seine Implementierung geeignet sind, eine Menge von Testfdllen zur Implementierung
vorzuschlagen, die einer zufdlligen Auswahl von Testféllen tiberlegen ist.

Der Industriepartner gewinnt dabei Informationen {iiber fehlende Testfdlle im gewédhlten
Priifling.

Die Dauer der Erprobung war im Projektplan auf zwei Wochen limitiert.

Da beim Industriepartner mehrere moglicherweise geeignete Clientprogramme vorhanden
sind, muss zundchst eines ausgewihlt werden, das die folgenden Kriterien erfiillt:

* Programmiersprache Java

Mit CodeCover instrumentier- und auswertbar

Entwicklung abgeschlossen

Fiir den Kunden bestimmtes Programm im Produktiveinsatz

Vollstandige automatisierte Testsuite
* Noch lidngere Zeit im Einsatz

Diese Kriterien sollen sicher stellen, dass die Untersuchung machbar ist und fiir beide Parteien
niitzliche Ergebnisse liefert.

Zunichst soll der Priifling von CodeCover instrumentiert und anschlieffend von der automa-
tischen Testsuite getestet werden. Aus dem sich hieraus ergebenden Test-Session-Container
werden die Testfallempfehlungen generiert und sortiert. Sollten die Gewichtungen der Fehler-
datenquellen ein verzerrtes Ergebnisbild ergeben, werden diese angepasst.

Zur Uberpriifung, ob das Modell seinen Anforderungen entspricht, sollen einem Experten
fiir den Priifling zwei Mengen von Testfallempfehlungen vorgelegt werden: Zum ersten eine
zufallige Auswahl von 20 Testfallempfehlungen aus den unsortierten Empfehlungen und
zum zweiten die 20 hochstbewertesten Ergebnisse der Priorisierung. Die zweite Methode zur
Uberpriifung besteht darin, dem Experten 20 Testfallempfehlungen zu zeigen, von denen zehn
zuféllig ausgewdhlt wurden und zehn vom Priorisierungsmodell als gut bewertet wurden.

Vom Industriepartner benotigte Ressourcen sind zum einen ein Rechnerarbeitsplatz mit
Zugang zum Quellcode des Priiflings sowie Lesezugang zum Versionskontrollsystem. Zur
Durchfiihrung des Tests sind dazu RFT und CQ mit Zugang zu den Testfallen notwendig. Zum
anderen sind einige Stunden eines Experten fiir den Priifling notig, um ggf. Unterstiitzung bei
der Instrumentierung zu leisten, sowie um Fragen zum Priifling zu beantworten, insbesondere
fiir die Fehlerdatenquellen Expertenwissen, Stressfaktoren und QS-Mafsnahmen.

54

6.3 Tatsachlicher Ablauf

6.2.1 Integration von Functional Tester mit CodeCover

Um das von CodeCover instrumentierte Programm {iber Beginn und Ende eines Testfalles zu
informieren, muss dem instrumentierten Programm bei Beginn und Ende einer Testfalls je
eine JMX-Nachricht gesendet werden. Functional Tester bietet fiir diesen Zweck benutzerdefi-
nierbare Callback-Methoden an, die zu Beginn und am Ende eines Testskriptes ausgefiihrt
werden. Diese Methoden wurden soweit vorhanden erweitert, dass sie die benotigte JMX-
Nachricht an den instrumentierten Priifling schicken, wenn ein Testfall beginnt oder endet.
Weitere Modifikationen der Testumgebung waren nicht notwendig.

6.2.2 Risiken

Im Vorfeld der Erprobung wurden mehrere Risiken identifiziert. Einige davon haben im
Eintrittsfall Auswirkungen auf die Durchfithrungsdauer der Erprobung, andere auf die
Qualitdt des Ergebnisses, manche auf die grundsitzliche Durchfiihrbarkeit der Untersuchung
beim Industriepartner. Einige dieser Risiken sind eingetreten.

¢ Technische Schwierigkeiten:
— Probleme bei der Einrichtung der Entwicklungsumgebung des Clients
— Probleme bei der Instrumentierung des Clients

— Probleme bei der Ausfiithrung des Clients (fehlende Testdaten, Testsystem nicht
verfiligbar)

— Probleme mit der automatisierten Testsuite
¢ Organisatorische Schwierigkeiten:
— Kein Mitarbeiter fiir die Einrichtung der Entwicklungsumgebung verfiigbar

- Kein Mitarbeiter fiir die Befragung fiir die Fehlerdatenquellen Prozess, QS und
Expertenwissen verfiigbar

— Kein Mitarbeiter fiir den Vergleich der Testfallempfehlungen verfiigbar

6.3 Tatsachlicher Ablauf

6.3.1 Auswahl des zu bearbeitenden Programms

Beim Industriepartner existieren mehrere Clientprogramme, die prinzipiell fiir die Erprobung
geeignet sind. Alle diese Clients sind Java-Programme, die tiber eine SOAP-Schnittstelle
mit den Servern Daten austauschen und in einer lokalen Entwicklungsumgebung gestartet
werden konnen.

55

6 Erprobung

Die neueste Generation dieser Clients hatte vor ca. einem halben Jahr ihre Markteinfithrung,
ist also noch vergleichsweise jung. Diese Clients sind mit SWT entwickelt worden, setzen also
auf einer Eclipse-Plattform auf und sind als Plugins fiir diese implementiert. Fiir zwei dieser
Clients existiert eine automatisierte Testsuite, so dass diese als erstes Ziel ins Auge gefasst
wurden. Nach der langwierigen Installation und Einrichtung der Entwicklungsumgebung
stellte sich dann heraus, dass der Ablauf der Functional Tester Skripte bei lokaler Ausfithrung
unmdoglich ist. Die Autoren der RFT-Integration vermochten das Problem nicht zu 16sen.

Die édltere Generation von Clients hat auch eine Testsuite, die allerdings wegen der Au-
Berbetriebnahme der Clients nicht mehr gewartet wird. Die Clients selbst sind noch im
Produktiveinsatz, der allerdings bald auslduft, weswegen der Code nicht mehr gewartet wird
und keine Experten dafiir vorhanden sind. Der Priifling ist ein solcher und wurde wegen der
Verfiigbarkeit einer (halbwegs) brauchbaren Testsuite verwendet.

6.3.2 Prifling

Das zur Erprobung verwendete Programm ist ein Java-Programm mit Swing-Oberfldche. Die
fachliche Bedeutung des Programms ist fiir die Erprobung irrelevant und wird daher nicht
weiter ausgefiihrt.

Das Programm (im Folgenden , Priifling”) kommuniziert iiber eine SOAP-Schnittstelle mit
den Servern beim Industriepartner. Die so erhaltenen Daten kdnnen angezeigt, gefiltert und
auf verschiedene Art manipuliert werden.

Entwicklungsseitig ist der Priifling recht einfach gehalten. Es handelt sich um ein normales
Java-Projekt, das ohne eine Vielzahl an Build-Skripten ausfiihrbar ist, wodurch die Instrumen-
tierung und Ausfiihrung vereinfacht wird.

6.3.3 Einrichtung der Entwicklungsumgebung

Der Priifling ist ein einfaches Java-Programm, das im Versionskontrollsystem als Eclipse-
Projekt vorliegt. Zur Einrichtung musste es nur aus dem Versionskontrollsystem ausgecheckt
und als Eclipse-Projekt importiert werden.

6.3.4 Instrumentierung

Die Instrumentierung direkt in Eclipse mithilfe des CodeCover-Plugins funktionierte nicht.
Das Ubersetzen der instrumentierten Klassen brach in mehreren Uberdeckungsvarianten mit
Fehlermeldung ab. Die Batch-Instrumentierung funktionierte hingegen und der Priifling lief3
sich mit Instrumentierung und JMX-Schnittstelle fiir den Empfang von Testfallinformationen
starten.

56

6.3 Tatsachlicher Ablauf

6.3.5 Testumgebung und Testsuite

Wegen Arbeiten am Testsystems war dieses im Zeitraum der Erprobung nicht verfiigbar,
so dass serverseitig auf das Entwicklungssystem ausgewichen werden musste. Dort war
die Testausfithrung zwar moglich, allerdings mit Einschrankungen. Es waren nicht die von
den Testskripten erwarteten Testdaten verfligbar und Fehler im System verhinderten den
normalen Ablauf der Testskripte. Diese mussten teilweise einzeln angepasst werden, damit sie
auch mit den nicht idealen Bedingungen abliefen. Dadurch trat eine gewisse Abweichung vom
Normalablauf auf, die das Uberdeckungsergebnis moglicherweise abgefélscht hat. Zudem
war die Anpassung der einzelnen Testskripte mithsam und war nur dank reichlich Erfahrung
mit RFT und der Testumgebung beim Industriepartner moglich.

6.3.6 Auswertung der Ergebnisse

Es konnte durch die Ausfiihrung der vorhandenen und funktionierenden Testskripte eine An-
weisungsiiberdeckung von 38%, eine Zweigiiberdeckung von 23%, eine Schleifeniiberdeckung
von 13% sowie eine Termiiberdeckung von 22% erreicht werden. Diese Werte schwankten
zwischen Model-, View- und Controller-Paketen nur wenig. Einige Funktionalititsgruppen
konnten mangels Testdaten bzw. volliger Nichtfunktion der Testskripte gar nicht verwendet
bzw. getestet werden.

Wegen des Alters des Priiflings standen keine nutzbaren Daten zu Anderungen in letzter Zeit
zur Verfiigung. Da die Entwicklung vor vielen Jahren extern stattfand, sind keine Daten iiber
wihrend der Implementierung moglicherweise verwendete Qualitatssicherungsmafinahmen
verfiigbar. Expertenwissen iiber den Quellcode des Priiflings stand ebenfalls nicht zur Verfii-
gung, bzw. eine Befragung war durch Zeitdruck der Entwickler nicht realisierbar. Es konnte
auch kein Entwickler zur Qualitdt der Testfallempfehlungen befragt werden.

Damit blieben als verftigbare Fehlerdatenquellen der Code selbst, die Versionsgeschichte und
die Informationen aus der CodeCover-Uberdeckung {ibrig. Ausgewertete Fehlerindikatoren
waren:

¢ Code: LOC der Datei

¢ Code: FindBugs-Resultate

¢ Versionsgeschichte: Alter der Datei

» CodeCover-Uberdeckung: Typ des Codeblocks

» CodeCover-Uberdeckung: Anzahl der Codezeilen
 CodeCover-Uberdeckung: Anzahl der tangierenden Testfille

» CodeCover-Uberdeckung: Linge des Pradikats

57

6 Erprobung

Diese relativ schmale Datenbasis ist leider nicht geeignet um das angewandte Verfahren
ausfiihrlich bewerten zu konnen.

Die Liste der generierten Empfehlungen enthilt ca. 1700 Eintrage. Bei 640 Eintragen enthalt
das Pradikat einen Vergleich mit null. Lasst man den Oberflichen-Code weg, bleiben ca. 800
Empfehlungen iibrig, von denen bei 350 das Pradikat einen Vergleich mit null enthalt.

Ca. 24% der Empfehlungen bezogen sich auf uniiberdeckte If-Blocke, 34% auf uniiberdeckte
implizite Else-Blocke , 28% auf Schleifeniiberdeckung, 8% auf Termiiberdeckung und je ca.
3% auf Catch- und Switch-Blocke.

Die ersten 50 Empfehlungen (2,3%) haben summiert 2,96% der Punkte erhalten. Die beste
Empfehlung bekam 76,3 Punkte, die schlechteste 16,9. Der Durchschnitt betrug 43,5 Punkte,
der Median 42,7. 80% der Empfehlungen bewegten sich zwischen 30 Punkten und 58 Punkten.
Abbildungen 6.1 und 6.2 zeigen die Verteilung der Gesamtpunkte. Es ist ersichtlich, dass die
Fehlerdatenquelle Versionsgeschichte gleichmafsig zwischen 8 und 15 Punkten schwankt. Sie
hat keine wesentliche Auswirkung auf die Summe.

Verteilung der Summe
der Empfehlungen

X

80

R

Punkte

20

T
Summe

Abbildung 6.1: Boxplot der Verteilung Punkte der einzelnen Datenquellen sowie deren
Summe

Die Abbildungen 6.3 und 6.4 zeigen die Punkteverteilungen der einzelnen Fehlerdatenquellen,
wiederum ohne und inkl. GUI-Code. Es fillt auf, dass die Versionsgeschichte, im Gegensatz
zu CodeCover und Code relativ undifferenzierte Ergebnisse geliefert hat.

Eine Bewertung der Ergebnisse durch einen Programmierer oder Tester beim Industriepartner
war nicht moglich, weil aus Zeitgriinden kein Mitarbeiter zur Verfiigung stand.

58

6.3 Tatsachlicher Ablauf

Pradikat LOC|#TF|C |V |CC |Summe|
cache.get (FBZWConstants.CACHE_MONTHLY_TIMEMGMT_SUM) != null 4 1 [31,3|11 (34 [76,3
removedSumDate.size() > 0 1 1 (31,311 (30 [72,3
removedDetailsData.size() > 0 1 1 (31,311 (30 [72,3
removedEventsData.size() > 0 1 1 [31,3[11 |30 |72,3
FBZWConstants.CACHE_TIMEMGMT_EVENTS.equals(key) [1 [31,3[11 |30 |72,3
isUpdate 0 1 [31,3(11 |30 |72,3
(driverIdsListLeft.containsAll(driverIdsListRight) || 0 1 (21 |9 (42 |72
driverIdsListRight.containsAll(driverIdsListLeft)) &&

driverIdsListLeft.size() == driverIdsListRight.size()
activityComboBox.getItemAt(i).toString().equals(res.getDisplayLabels(o 1 |20 |13 (38 |71
LabelConstants.FILTER_DRVTIME_LIST + ."+ FBZWConstants.ONLY_MESSAGES))"

((TimemgmtSumRequestD0) requestInput).getMonth() != null 1 1 |21,3|]11 |34 |66,3
map.containsKey(dataKey) && map.get(dataKey) != driverlMap.get(dataKey) 2 1 |21,3|11 (34 [66,3

res.getDisplayLabels(LabelConstants.DRIVINGTIME_FILTER_VEHICLELIST_ALL) 11 |1 |20 |13 |33 |66
.equalsIgnoreCase(vehicleSelection)

ResourceManager.getUserProperties() .getLastSelectedTab() == 1 1 |20 |13 |31 |64
((JTabbedPane)getParent()) .getSelectedIndex()

ResourceManager.getUserProperties() .getLastSelectedTab() == 2 1 |21 |9 (33 |63
((JTabbedPane)getParent()) .getSelectedIndex()

beginActivityList != null o 1 |20 |13 |30 |63
filterPane == null 0 1 |20 |13 |30 |63
vehicle[i].getLicenceNumber() != null && 1 1 |20 |13 |30 |63
(!vehicle[i] .getLicenceNumber() .equals("))

fromDateChooser.getSpinner().isEnabled() && 3 1 |20 |13 (30 |63
toDateChooser.getSpinner().isEnabled()

timemgmtDetailsRequestD0.getTimeRange (). 5 1 |20 |13 |30 |63
equalsIgnoreCase (FBZWConstants.PERIOD)
filterD0.getBeginActivity().equalsIgnoreCase(FBZWConstants.PERIOD) 10 |1 |20 |13 |30 |63
driverPath != null && driverPath.getPath().length <= 2 5 1 |20 |13 (30 |63

update && selectedDriverIds != null &% (timemgmtSumFilterDO != null) &% 5 1 |20 |12 |31 |63
timemgmtSumFilterD0.equals(getFilterSettingD0())

ResourceManager.getUserProperties() .getLastSelectedTab() == 1 1 |20 |12 |31 |63
((JTabbedPane)getParent()) .getSelectedIndex()

tkey.toString() .equalsIgnoreCase(1 1 [21,3|11 (30 [62,3
FBZWConstants.CACHE_LATEST_TIMEMGMT_DETAILS)

requestInput instanceof TimemgmtDetailsRequestDO 39 1 21,3|11 (30 (62,3
map == null [1 [21,3|11 (30 [62,3
driverMap != null [1 [21,3|11 (30 [62,3
_next != null 1 1 [21,3|11 (30 [62,3
driverMap != null o 1 |21,3|11 |30 [62,3
! _removed.isEmpty() 1 1 [21,3|11 (30 [62,3
'datalist.isEmpty () 1 1 [21,3|11 (30 [62,3
requestInput instanceof TimemgmtSumRequestD0O () 1 21,3|11 (30 (62,3

Tabelle 6.1: Die 31 hochstgewichteten Empfehlungen mit LOC, Anzahl tangierender Testfille,
Punkte der Fehlerdatenquellen Code, Versionsgeschichte und
CodeCover-Uberdeckung sowie der Summe der Punkte. Alle empfohlenen
Code-Blocke sind If-Blocke. Die Blocke mit null Codezeilen sind implizite
Else-Blocke.

59

6 Erprobung

Verteilung der Bewertungen

807
1 - Versionsgeschichte
1. = CodeCover
707 Code
i + Summe
601 =__
50 ——
[Te—
é 40 1 an - - an] _-‘
= [] - %
m -: L} L} Ll I N L} L] - - - L B
304--7- —.- -- .--l-: él l-ll- -l-- -—- :.-- . l- - .
20 == =l B lac i 2+ " e '.. .
1o i SRR S oy, St
0] T T T T T T T T T T T
0 500 1.000

Empfehlung auf Rang

Abbildung 6.2: X/Y-Plot der Verteilung der Gesamtpunkte

Tabelle 6.1 zeigt die 31 bestbewerteten Testfallempfehlungen. Dies entspricht den besten 0,88%.
Ausgelassen wurden sehr dhnliche Empfehlungen und solche mit sehr langen Pradikaten.
If-Blocke mit null Codezeilen stellen implizite else-Blocke dar, was bedeutet, dass das
Pradikat der entsprechenden If-Anweisung stets wahr war. Es féllt auf, dass alle Codeblocke
nur von einem Testfall tangiert wurden, was wahrscheinlich den Eigenschaften der Testsuite
zuzuschreiben ist.

Ca. 15 der besten 31 Empfehlungen scheinen Pradikate zu enthalten, die auf technische
Details priifen, oder zur defensiven Programmierung gehoren. Es diirfte einem Tester, der
den Quellcode des Programms nicht kennt, nicht einfach moglich sein, aus den Pradikaten
neue Testfdlle zu entwickeln, da die Pradikate in den meisten Féllen nicht , sprechend” sind,
also keinen direkten Riickschluss auf ggf. zu &ndernde Eingabedaten zulassen.

60

6.3 Tatsachlicher Ablauf

Punkteverteilung der ausgewerteten Fehlerdatenquellen

50+
1 [Versionsgeschichte x
1 |[_] CodeCover
40 Code
30 T
o]
kv]
c
s
o 4 [u]
20

T T T
Versionsgeschichte CodeCover Code

Abbildung 6.3: Verteilung der Bewertungen der Fehlerdatenquellen

40-

30

Punkte

Punkteverteilung der ausgewerteten Fehlerdatenquellen
ohne GUI-Code

[] Versionsgeschichte
[] CodeCover
. Code *

o

B X

Abbildung 6.4:

T T I
Versionsgeschichte CodeCover Code

Verteilung der Bewertungen der Fehlerdatenquellen ohne GUI-Code

61

6 Erprobung

6.4 Schlussfolgerungen aus der Erprobung

Die Erprobung konnte nicht wie gewiinscht durchgefiihrt werden. Folgende Probleme haben
eine umfassendere Erprobung verhindert:

e Aktuelle Dokumente und Entwickler, die den Quellcode des Zeitwirtschaftsclients
kennen, standen nicht zur Verfiigung. Daher konnten die meisten Fehlerindikatoren des
Modells nicht eingesetzt werden. Die verbleibenden sieben Fehlerindikatoren konnten
zwar ausgewertet werden, allerdings kann auf dieser spérlichen Datenmenge das Modell
nicht angemessen bewertet werden.

¢ Die Ergebnisse der Priorisierung konnten keinem Entwickler zur Bewertung vorgelegt
werden. So bleibt die Bewertung der Testfallempfehlungen dem Autor der Diplomarbeit
tiberlassen, der den Quellcode nicht kennt und die Qualitdt der Empfehlungen damit
nicht ausreichend beurteilen kann.

Jedoch lassen sich ohne detaillierte Kenntnisse der Anwendung die folgenden allgemeinen
Beobachtungen aus den obigen Diagrammen sowie der Liste an Empfehlungen feststellen:

* Die unpriorisierte Liste ist mit 1700 Eintrdgen zu lang, um sie einzeln durchzuarbeiten.
Eine automatisierte Priorisierung ist erforderlich.

¢ Die Empfehlungen, deren Prddikat den String ,null” enthilt, scheinen technische
Pradikate zu sein. Diese sind grofstenteils nicht ,,sprechend” und beziehen sich nicht
direkt auf durch Testfdlle manipulierbare Eingabedaten.

* Beim getesteten Programm liegen die Punktzahlen des Fehlerindikators ,Alter der
Datei”, der den einzigen Fehlerindikator der Fehlerdatenquelle , Versionsgeschichte”
ausgemacht hat, sehr nah zusammen. Die Werte erscheinen wie zufillige Werte und
beeinflussen das Ergebnis nicht. Siehe Abbildungen 6.2 und 6.3.

62

7 Zusammenfassung

Im Rahmen der Diplomarbeit wurde zunéchst in der Literatur nach Moglichkeiten zur
Priorisierung von Testfallempfehlungen gesucht. Neben Veroffentlichungen zu CodeCover
wurden Veroffentlichungen der Themen risikobasierter Test und Fehlerprognose studiert
und geeignete Vertreter zusammengefasst. Aus diesen Veroffentlichungen wurden Thesen
extrahiert, die die Grundlage fiir das im Hauptteil der Arbeit erstellte Modell zur Priorisierung
von Testfallempfehlungen bilden.

Zum Modell gehoren die Beschreibung einiger Heuristiken zur Fehlerprognose auf Basis des
Quellcodes, der Versionsgeschichte, des Wissens der Entwickler, der eingesetzten Qualitéts-
sicherungsmafsnahmen, der wahrend der Entwicklung herrschenden Stressfaktoren sowie
den Eigenschaften der Testfallempfehlung selbst. Weiterhin gibt das Modell auch an, wie die
Resultate dieser Heuristiken zu einer Gesamtempfehlung verrechnet werden kénnen und
beschreibt den Ablauf der Priorisierung. Durch die Anwendung des Priorisierungsmodells
ist es einem Tester moglich, sich aus einer grofien Menge von Testfallempfehlungen diejeni-
gen auszusuchen, die die heuristisch besten sind, was die Wirtschaftlichkeit seiner Arbeit
erhoht.

Danach wurde das Modell als CodeCover-Erweiterung implementiert. Der Eclipse-Integration
von CodeCover wurde dabei eine weitere Sicht hinzufiigt. Mit Hilfe dieser Sicht kénnen nach
einem Testdurchlauf mit CodeCover Testfallempfehlungen generiert und mit Hilfe mehre-
rer Heuristiken priorisiert werden. Die Implementierung ist dabei als Framework fiir die
Erprobung weiterer Heuristiken zur Testfallpriorisierung ausgelegt. Durch die Framework-
Funktionen entféllt die zeitraubende Implementierung von Oberflichen zur Konfiguration
von Fehlerindikatoren. Weiter Fehlerdatenquellen, Fehlerindikatoren und automatische Aus-
werter kdnnen mit wenig Zeitaufwand eingebaut werden. Einige Heuristiken wurden mit
automatischer Auswertung implementiert, fiir einige muss der Tester selbst die Daten lie-
fern.

Es ist dem Tester nun moglich, sich nach der Testdurchfiihrung mit CodeCover eine Liste
von Empfehlungen anzeigen zu lassen. Diese kann er mit Hilfe der konfigurierbaren Heu-
ristiken dann sortieren lassen. Der Tester bekommt damit eine Auswahl von heuristisch
guten Testfallempfehlungen angezeigt. Mit diesen kann er eine Testsuite mit relativ wenig
Aufwand verbessern. Diese Wirtschaftlichkeit konnte es ermoglichen, eine Testsuite trotz
engem Zeitplan zu verbessern.

Die Erprobung beim Industriepartner konnte eingeschrankt durchgefiihrt werden. Es kam
dabei nur eine kleine Auswahl der Heuristiken im Modell zum Einsatz. Die Bewertung der
hochstpriorisierten Testfallempfehlungen war nicht moglich. Dennoch hat die Erprobung

63

7 Zusammenfassung

gezeigt, dass eine Priorisierung mit Hilfe dieses Verfahrens moglich ist und differenzierte
Ergebnisse liefert.

64

Literaturverzeichnis

[Amloo]

[Bacgyo]
[BOWo6]

[Cod11]

[DLLSos5]

[FAIg7]

[FOo0]

[HFGOg4]

[HPo4]

S. Amland. Risk-based testing: Risk analysis fundamentals and metrics for
software testing including a financial application case study. Journal of Systems and
Software, 53(3):287 — 295, 2000. doi:DOI:10.1016/50164-1212(00)00019-4. URL http:
//www.sciencedirect.com/science/article/pii/S0164121200000194. (Zitiert
auf den Seiten 15, 27, 35 und 36)

J. Bach. Heuristic Risk-Based Testing. 1999. (Zitiert auf den Seiten 17 und 36)

R. M. Bell, T. J. Ostrand, E. J. Weyuker. Looking for bugs in all the right places.
pp- 61—72, 2006. doi:http://doi.acm.org/10.1145/1146238.1146246. URL http:
//doi.acm.org/10.1145/1146238.1146246. (Zitiert auf den Seiten 19, 20, 25, 26,
35 und 36)

CodeCover. CodeCover-Homepage. 2011. URL http://codecover.org/. [Online;
Stand 28. Juni 2011]. (Zitiert auf den Seiten 29 und 30)

M. Deininger, H. Lichter, J. Ludewig, K. Schneider. Studien-Arbeiten — ein Leitfaden
zur Vorbereitung, Durchfiihrung und Betreuung von Studien-, Diplom- und Doktorarbei-
ten am Beispiel Informatik. 2005. (Zitiert auf Seite 12)

T. Furuyama, Y. Arai, K. lio. Analysis of fault generation caused by
stress during software development, volume 38. 1997. doi:DOI:10.1016/
S0164-1212(97)00064-2. URL http://www.sciencedirect.com/science/article/
pii/S0164121297000642. Achieving Quality in Software. (Zitiert auf den Seiten 25
und 27)

N. Fenton, N. Ohlsson. Quantitative analysis of faults and failures in a complex
software system. Software Engineering, IEEE Transactions on, 26(8):797 —814, 2000.
doi:10.1109/32.879815. (Zitiert auf den Seiten 9, 18, 19, 20 und 27)

M. Hutchins, H. Foster, T. Goradia, T. Ostrand. Experiments of the effectiveness
of dataflow- and controlflow-based test adequacy criteria. ICSE "94. IEEE Computer
Society Press, Los Alamitos, CA, USA, 1994. URL http://portal.acm.org/
citation.cfm?id=257734.257766. (Zitiert auf Seite 27)

D. Hovemeyer, W. Pugh. Finding bugs is easy. SIGPLAN Not., 39:92—-106, 2004.
doi:http://doi.acm.org/10.1145/1052883.1052895. URL http://doi.acm.org/10.
1145/1052883.1052895. (Zitiert auf den Seiten 21 und 26)

65

http://www.sciencedirect.com/science/article/pii/S0164121200000194
http://www.sciencedirect.com/science/article/pii/S0164121200000194
http://doi.acm.org/10.1145/1146238.1146246
http://doi.acm.org/10.1145/1146238.1146246
http://codecover.org/
http://www.sciencedirect.com/science/article/pii/S0164121297000642
http://www.sciencedirect.com/science/article/pii/S0164121297000642
http://portal.acm.org/citation.cfm?id=257734.257766
http://portal.acm.org/citation.cfm?id=257734.257766
http://doi.acm.org/10.1145/1052883.1052895
http://doi.acm.org/10.1145/1052883.1052895

Literaturverzeichnis

[HPH"09] T. Holschuh, M. Pauser, K. Herzig, T. Zimmermann, R. Premraj, A. Zeller. Pre-

[Kimo3]

[LLo7]

[Moz11]

[Myeo1]

[NBZ06]

[Neuos]

INZZo7]

[OA96]

[Ora11]

[OWBos]

[RAFo4]

[Rat11]

66

dicting defects in SAP Java code: An experience report. pp. 172 —181, 2009.
doi:10.1109/ICSE-COMPANION.2009.5070975. (Zitiert auf den Seiten 25, 26, 27
und 35)

Y. W. Kim. Efficient use of code coverage in large-scale software development. pp.
145-155, 2003. URL http://portal.acm.org/citation.cfm?id=961322.961347.
(Zitiert auf Seite 20)

J. Ludewig, H. Lichter. Software Engineering - Grundlagen, Menschen, Prozesse,
Techniken. dpunkt.verlag, 2007. (Zitiert auf den Seiten 12, 25, 27 und 38)

Mozilla. Website der Mozilla Corporation. 2011. URL http://www.mozilla.com/.
[Online; Stand 28. Juni 2011]. (Zitiert auf Seite 20)

G. Myers. Methodisches Testen von Programmen. Oldenbourg, 2001. URL http:
//books.google.com/books?id=srqkL751iPkC. (Zitiert auf Seite 36)

N. Nagappan, T. Ball, A. Zeller. Mining metrics to predict component failures.
PpP- 452—461, 2006. doi:http://doi.acm.org/10.1145/1134285.1134349. URL http:
//doi.acm.org/10.1145/1134285.1134349. (Zitiert auf den Seiten 20, 25, 26, 27,

34 und 39)

D. Neun. Codemetriken zur Bewertung und Prognose der Fehlerhdufigkeit. 2005.
URL http://elib.uni-stuttgart.de/opus/volltexte/2005/2399. (Zitiert auf
den Seiten 35 und 36)

S. Neuhaus, T. Zimmermann, A. Zeller. Predicting Vulnerable Software Com-
ponents. 2007. (Zitiert auf den Seiten 20 und 26)

N. Ohlsson, H. Alberg. Predicting Fault-Prone Software Modules in Telephone
Switches. IEEE Transactions on Software Engineering, 22:886—894, 1996. doi:http:
/ /doi.ieeecomputersociety.org/10.1109/32.553637. (Zitiert auf Seite 19)

Oracle. JMX Technology Home Page. 2011. URL http://www.oracle.com/
technetwork/java/javase/tech/javamanagement-140525.html. [Online; Stand
29. Juni 2011]. (Zitiert auf Seite 29)

T. J. Ostrand, E. J. Weyuker, R. M. Bell. Predicting the Location and Number
of Faults in Large Software Systems. IEEE Transactions on Software Engineering,
31:340—-355, 2005. doi:http://doi.ieeecomputersociety.org/10.1109/TSE.2005.49.
(Zitiert auf den Seiten 20, 25, 26, 27, 35 und 36)

N. Rutar, C. B. Almazan, J. S. Foster. A Comparison of Bug Finding Tools for
Java. pp. 245-256, 2004. doi:10.1109/ISSRE.2004.1. URL http://portal.acm.org/
citation.cfm?id=1032654.1033833. (Zitiert auf den Seiten 22, 26 und 35)

I. Rational. Functional Tester Homepage. 2011. URL http://www-01.1ibm.com/
software/awdtools/tester/functional/. [Online; Stand 5. August 2011]. (Zi-
tiert auf Seite 53)

http://portal.acm.org/citation.cfm?id=961322.961347
http://www.mozilla.com/
http://books.google.com/books?id=srqkL75liPkC
http://books.google.com/books?id=srqkL75liPkC
http://doi.acm.org/10.1145/1134285.1134349
http://doi.acm.org/10.1145/1134285.1134349
http://elib.uni-stuttgart.de/opus/volltexte/2005/2399
http://www.oracle.com/technetwork/java/javase/tech/javamanagement-140525.html
http://www.oracle.com/technetwork/java/javase/tech/javamanagement-140525.html
http://portal.acm.org/citation.cfm?id=1032654.1033833
http://portal.acm.org/citation.cfm?id=1032654.1033833
http://www-01.ibm.com/software/awdtools/tester/functional/
http://www-01.ibm.com/software/awdtools/tester/functional/

Literaturverzeichnis

[RHRHo2] G. Rothermel, M. J. Harrold, J. von Ronne, C. Hong. Empirical studies of test-suite

[Scho8]

[Schog]

[Sch1o]

[Sub11a]

[Sub11b]

[SZZo5]

[SZZ06]

[Wik1o0]

reduction, volume 12. John Wiley & Sons, Ltd., 2002. doi:10.1002/stvr.256. URL
http://dx.doi.org/10.1002/stvr.256. (Zitiert auf Seite 25)

R. Schmidberger. Glassboxtest zur Testsuite-Optimierung. 2008. (Zitiert auf den
Seiten 23 und 29)

S. Schumm. Praxistaugliche Unterstiitzung beim selektiven Regressionstest.
2009. URL http://www2.informatik.uni-stuttgart.de/cgi-bin/NCSTRL/
NCSTRL_view.pl?id=DIP-2923&engl=0. (Zitiert auf Seite 23)

R. Schmidberger. Ein kombinierter Black-Box- und Glass-Box-Test. 2010. (Zitiert auf
den Seiten 12, 23, 26, 30, 38 und 40)

Subclipse. Subclipse-Projekt-Homepage. 2011. URL http://subclipse.tigris.org/.
[Online; Stand 28. Juni 2011]. (Zitiert auf Seite 48)

Subversion. Subversion-Projekt-Homepage. 2011. URL http://subversion.apache.
org/. [Online; Stand 28. Juni 2011]. (Zitiert auf Seite 48)

J. Sliwerski, T. Zimmermann, A. Zeller. Don’t Program on Fridays! How to Locate
Fix-Inducing Changes. 2005. (Zitiert auf den Seiten 21 und 36)

A. Schroter, T. Zimmermann, A. Zeller. Predicting component failures at design
time. pp. 18-27, 2006. doi:http://doi.acm.org/10.1145/1159733.1159739. URL
http://doi.acm.org/10.1145/1159733.1159739. (Zitiert auf Seite 26)

Wikipedia. Header-Datei — Wikipedia, Die freie Enzyklopidie. 2010. URL http:
//de.wikipedia.org/w/index.php?title=Header-Datei&oldid=82784591. [On-
line; Stand 28. Juni 2011]. (Zitiert auf Seite 20)

Alle URLs wurden zuletzt am 15.08.2011 gepriift.

http://dx.doi.org/10.1002/stvr.256
http://www2.informatik.uni-stuttgart.de/cgi-bin/NCSTRL/NCSTRL_view.pl?id=DIP-2923&engl=0
http://www2.informatik.uni-stuttgart.de/cgi-bin/NCSTRL/NCSTRL_view.pl?id=DIP-2923&engl=0
http://subclipse.tigris.org/
http://subversion.apache.org/
http://subversion.apache.org/
http://doi.acm.org/10.1145/1159733.1159739
http://de.wikipedia.org/w/index.php?title=Header-Datei&oldid=82784591
http://de.wikipedia.org/w/index.php?title=Header-Datei&oldid=82784591

Erklarung

Hiermit versichere ich, diese Arbeit selbstindig
verfasst und nur die angegebenen Quellen
benutzt zu haben.

(Ralf Ebert)

	1 Einleitung
	1.1 Aufgabenstellung
	1.2 Motivation

	2 Literaturrecherche
	2.1 Risikobasierter Test
	2.2 Fehlerprognose
	2.3 CodeCover
	2.4 Testsuite-Reduktion
	2.5 Sonstiges
	2.6 Schlussfolgerungen aus der Literaturrecherche

	3 CodeCover
	4 Priorisierungsmodell
	4.1 Grundbegriffe des Modells
	4.2 Bewertungsebenen
	4.3 Überblick über das Modell
	4.4 Fehlerdatenquellen
	4.4.1 Quellcode
	4.4.2 Versionsgeschichte
	4.4.3 Stressfaktoren
	4.4.4 Expertenwissen
	4.4.5 Verwendete Qualitätssicherungsmaßnahmen
	4.4.6 CodeCover-Überdeckung

	4.5 Bewertung der Fehlerwahrscheinlichkeit
	4.6 Ablauf der Priorisierung
	4.7 Bewertung des Modells

	5 Umsetzung
	5.1 Ziele
	5.2 Umgesetzte Modellelemente
	5.3 Entwurf und Implementierung
	5.3.1 Datenstruktur
	5.3.2 Ablauf der Priorisierung
	5.3.3 Erweiterbarkeit
	5.3.4 Eclipse als notwendiger Übersetzer
	5.3.5 Speicherung von Zwischenergebnissen
	5.3.6 Zukünftige Verbesserungen

	5.4 Screenshots
	5.5 Fazit zur Umsetzung

	6 Erprobung
	6.1 Testumgebung
	6.2 Geplanter Ablauf
	6.2.1 Integration von Functional Tester mit CodeCover
	6.2.2 Risiken

	6.3 Tatsächlicher Ablauf
	6.3.1 Auswahl des zu bearbeitenden Programms
	6.3.2 Prüfling
	6.3.3 Einrichtung der Entwicklungsumgebung
	6.3.4 Instrumentierung
	6.3.5 Testumgebung und Testsuite
	6.3.6 Auswertung der Ergebnisse

	6.4 Schlussfolgerungen aus der Erprobung

	7 Zusammenfassung
	Literaturverzeichnis

