
 

 

Institut für Visualisierung und Interaktive Systeme 

Universität Stuttgart 

Universitätsstraße 38 

D–70569 Stuttgart 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Studiengang: 
 
 

Softwaretechnik 

 Prüfer: 
 

Prof. Dr. Thomas Ertl 

 Betreuer 
 

Jun.-Prof. Dr. Thomas Schlegel,  
Dipl.-Phys. Michael Raschke 
 

   

 begonnen am: 
 

1. März 2011 

 beendet am: 
 

31. August 2011 

 CR-Klassifikation: D.2.2 Design Tools and Techniques 
 D.2.3  Coding Tools and Techniques 
 D.2.10 Design 
 D.2.11 Software Architectures 
 H.5.2 User Interfaces 
   

 

  

Diplomarbeit Nr. 3154 

Migration und Anpassung von  
Dialoganwendungen für be-

rührungsempfindliche  
Bildschirme 

 
Christian Wimmer 





 

Abstract 

Berührungsempfindliche Bildschirme wurden in den letzten Jahren immer günstiger und beliebter. Die gra-

fischen Benutzeroberflächen von Anwendungen für Desktop- und Laptopcomputer sind jedoch für eine sol-

che Eingabeart nicht ausgelegt und neue Programmversionen ändern diesen Umstand auch kaum. In dieser 

Diplomarbeit wird daher eine Methode vorgestellt, um Entwicklern die Möglichkeit zu geben, ihre Dialoge 

automatisch auf die Benutzung für Touch anzupassen. Dafür wurde ein Prototyp entwickelt, der die auto-

matische Transformation von Dialogen in der Dialogbeschreibungssprache XAML erlaubt. Die Migration der 

Dialoge wird durch eine parametrisierbare Transformationsvorschrift in XSLT durchgeführt. Zusätzlich kann 

mit einer beliebigen .NET Sprache in den Migrationsprozess eingegriffen werden. Um die Funktionsfähigkeit 

der beschriebenen Transformation zu zeigen, wurde im Rahmen dieser Diplomarbeit eine Studie auf einem 

berührungsempfindlichen Bildschirm durchgeführt. Dazu wurden zwei Dialoge mehrmals transformiert, in-

dem die Steuerelemente automatisch verändert und ersetzt wurden. Außerdem wurden einige Steuerele-

mente für die Studie analysiert und entsprechend von Gestaltungsregeln für die Benutzung mit den Fingern 

angepasst, um in der Studie bewertet zu werden.  

 

 

 

 

 

 

 

 

 

 

 

 

Touch-sensitive screens became cheaper and more popular over the last few years. But the graphical user 

interfaces of applications for desktop and also laptop computers do not support such a type of entry by de-

fault. Therefore, in this diploma thesis a new method is proposed that supports software engineers in 

adapting their dialogs automatically to touch input. To implement this method, a prototype application was 

developed to migrate dialogs that were created in the description language XAML. The migration itself was 

performed by using a mapping process in XSLT. In addition, .NET programming languages can be integrated 

into the process to influence the migration. To show the functionality of the migration process a user study 

was conducted on a touch-sensitive monitor screen. Two dialogs were transformed several times by chang-

ing and replacing control elements automatically. Also some control elements were analyzed and adapted 

to conform to design rules of touch input. In the study users had to test and evaluate the transformed dia-

logs. 



 

Danksagung 

Auch wenn Johann Wolfgang von Goethe einst sagte: „Leider läßt sich eine wahrhafte Dankbarkeit mit Worten 

nicht ausdrücken.“, so will ich dennoch meine Dankbarkeit hier niederschreiben, damit sie nicht vergessen 

wird. Zu allererst ist diese Diplomarbeit meiner Familie gewidmet, die mich immer und ausnahmslos bis zum 

Abschluss begleitete und unterstützte. Danke an meine Eltern! Danke an meine kleine Schwester; am Montag 

ist wieder Training! Vielen Dank möchte ich den Teilnehmern der Studie zukommen lassen. Außerdem geht ein 

großes Dankeschön an die Korrekturleser, die sich durch den vielen Text gearbeitet haben. Danke Onur und 

Alina! Weiterhin danke ich auch meinen Betreuern, die mir immer mit Rat zur Seite gestanden haben, als ich 

mal wieder ratlos war. Danke dir Thomas, ohne dich wäre dieses Thema nie zu einem Diplomarbeitsthema 

gereift! Und auch Dankeschön an euch Michael und Florian, für eure konstruktive Kritik und eure Mühen; unse-

re Treffen haben mir immer viel Freude bereitet! Sollte ich noch jemanden vergessen haben, dann möchte ich 

mich hiermit entschuldigen und meinen Dank nachreichen. War doch keine Absicht! 

Zuletzt möchte ich auch an Sie, den Leser, meinen Dank richten. Eine Diplomarbeit zu schreiben, ohne dass 

jemand sie liest, ist wie einen guten Wein zu keltern, ohne dass ihn jemand trinkt. Beide verstauben nur im 

Regal und geraten in Vergessenheit. Lassen Sie mir daher Ihre Meinung zukommen.  

Schreiben Sie mir:  

 



 

1 Inhaltsverzeichnis 

Inhaltsverzeichnis 

Inhaltsverzeichnis als Mind-Map .............................................................................................................................. 3 

Abbildungsverzeichnis .............................................................................................................................................. 4 

Tabellenverzeichnis .................................................................................................................................................. 7 

Quelltextverzeichnis ................................................................................................................................................. 8 

1 Einleitung ....................................................................................................................................................... 11 

1.1 Motivation ...................................................................................................................................................... 11 

1.2 Aufbau ............................................................................................................................................................ 12 

1.3 Begriffe ........................................................................................................................................................... 12 

2 Grundlagen und Stand der Technik ................................................................................................................. 13 

2.1 Terminologie .................................................................................................................................................. 13 

2.2 Generationen der Benutzerschnittstellen ...................................................................................................... 14 

2.3 Berührungsempfindliche Interaktion ............................................................................................................. 18 

2.3.1 Technologien .......................................................................................................................................... 18 

2.3.2 Interaktionsmethoden ............................................................................................................................ 22 

2.4 Dialoge ........................................................................................................................................................... 24 

2.4.1 Einführung .............................................................................................................................................. 24 

2.4.2 Gestaltungsgrundsätze........................................................................................................................... 25 

2.4.3 Taxonomie der Benutzerinteraktionen ................................................................................................... 27 

2.4.4 Dialogbeschreibungssprachen ................................................................................................................ 28 

2.4.5 Punktdichte ............................................................................................................................................ 34 

2.5 Software Engineering ..................................................................................................................................... 36 

2.5.1 Forward Engineering am Beispiel der modellgetriebenen Entwicklung ................................................. 36 

2.5.2 Reverse Engineering ............................................................................................................................... 41 

2.6 Migration ........................................................................................................................................................ 44 

2.7 Zusammenfassung.......................................................................................................................................... 47 

3 Problem-, Aufgabenstellung und Lösungsansatz ............................................................................................. 48 

3.1 Problemstellung ............................................................................................................................................. 48 

3.2 Aufgabenstellung und Lösungsansatz ............................................................................................................ 50 

4 Methode zur Umsetzung des Lösungsansatzes ............................................................................................... 52 

4.1 Gesamtkonzept .............................................................................................................................................. 52 

4.2 Umgesetzte Methode .................................................................................................................................... 54 

5 Anpassung der Steuerelemente für berührungsempfindliche Eingaben ......................................................... 56 

5.1 Einführung ...................................................................................................................................................... 56 

5.2 Steuerelementgrößen .................................................................................................................................... 56 

5.3 Steuerelementabstände ................................................................................................................................. 57 

5.4 Kontrollkästchen ............................................................................................................................................ 57 

5.5 Numerische Steuerelemente ......................................................................................................................... 57 

5.6 Baumansichten ............................................................................................................................................... 59 

5.7 Listenfelder..................................................................................................................................................... 59 

6 Architektur ..................................................................................................................................................... 62 

6.1 Übersicht ........................................................................................................................................................ 62 

6.2 Model ............................................................................................................................................................. 62 



 

2 Migration und Anpassung von Dialoganwendungen für berührungsempfindliche Bildschirme 

6.3 View ................................................................................................................................................................ 63 

6.4 Controller ....................................................................................................................................................... 64 

7 Umsetzung ..................................................................................................................................................... 67 

7.1 Einführung ...................................................................................................................................................... 67 

7.2 Die Benutzeroberfläche ................................................................................................................................. 68 

7.3 Übersicht über die Projektkomponenten ...................................................................................................... 71 

7.4 Umsetzung der Transformationsengine ......................................................................................................... 73 

7.5 Der Transformationsprozess .......................................................................................................................... 74 

7.5.1 Die Transformationspipeline .................................................................................................................. 75 

7.5.2 Grundlagen der Transformation ............................................................................................................. 81 

7.5.3 Erweiterte Transformation mit Annotationen ........................................................................................ 90 

7.6 Erweiterbarkeit durch das Plug-In-System ................................................................................................... 102 

7.6.1 Neues Plug-In erstellen ......................................................................................................................... 104 

7.6.2 Anpassung der Kommunikation ........................................................................................................... 104 

7.7 Diskussion ..................................................................................................................................................... 105 

8 Technische Evaluation anhand der Durchführung einer Touch-Studie .......................................................... 107 

8.1 Motivation .................................................................................................................................................... 107 

8.2 Studie ........................................................................................................................................................... 107 

8.2.1 Hypothesen ........................................................................................................................................... 107 

8.2.2 Methode ............................................................................................................................................... 108 

8.2.3 Ergebnisse ............................................................................................................................................ 113 

8.2.4 Diskussion ............................................................................................................................................. 121 

9 Zusammenfassung und Ausblick ................................................................................................................... 123 

9.1 Zusammenfassung........................................................................................................................................ 123 

9.2 Ausblick ........................................................................................................................................................ 123 

9.2.1 Die Zukunft von LATTE .......................................................................................................................... 123 

9.2.2 Die Zukunft der Methode ..................................................................................................................... 125 

Literaturverzeichnis .............................................................................................................................................. 127 

Anhang ................................................................................................................................................................. 134 

Erklärung .............................................................................................................................................................. 161 

 

  



 

3 Inhaltsverzeichnis 

 

 

Inhaltsverzeichnis als Mind-Map 

 

 

 

  

 M
ig

ra
ti

o
n

 u
n

d
 A

n
p

as
su

n
g 

vo
n

 
D

ia
lo

ga
n

w
e

n
d

u
n

ge
n

 f
ü

r 
b

e
rü

h
ru

n
gs

e
m

p
fi

n
d

lic
h

e
 

B
ild

sc
h

ir
m

e
 

1
. E

in
le

it
u

n
g

1
.1

 M
o

ti
va

ti
o

n

1
.2

 A
u

fb
au

1
.3

 B
eg

ri
ff

e

2
. G

ru
n

d
la

ge
n

 u
n

d
 

St
an

d
 d

er
 T

ec
h

n
ik

3
. P

ro
b

le
m

-,
 A

u
fg

ab
en

st
el

lu
n

g 
u

n
d

 L
ö

su
n

gs
an

sa
tz

4
. M

et
h

o
d

e 
zu

r 
U

m
se

tz
u

n
g 

d
es

 L
ö

su
n

gs
an

sa
tz

es
5

. A
n

p
as

su
n

g 
d

er
 S

te
u

er
el

em
en

te
 f

ü
r 

b
er

ü
h

ru
n

gs
em

p
fi

n
d

lic
h

e 
Ei

n
ga

b
en

6
. A

rc
h

it
ek

tu
r

7
. U

m
se

tz
u

n
g

8
. T

ec
h

n
is

ch
e 

Ev
al

u
at

io
n

 
an

h
an

d
 d

er
 D

u
rc

h
fü

h
ru

n
g 

ei
n

er
 

To
u

ch
-S

tu
d

ie

9
. Z

u
sa

m
m

en
fa

ss
u

n
g 

u
n

d
 A

u
sb

lic
k

9
.1

 Z
u

sa
m

m
en

fa
ss

u
n

g

9
. 2

 A
u

sb
lic

k

7
.1

 E
in

fü
h

ru
n

g

7
.2

 D
ie

 B
en

u
tz

er
o

b
er

fl
äc

h
e

7
.3

 Ü
b

er
si

ch
t 

ü
b

er
 d

ie
 P

ro
je

kt
ko

m
p

o
n

en
te

n

7
.4

 U
m

se
tz

u
n

g 
d

er
 T

ra
n

sf
o

rm
at

io
n

se
n

gi
n

e

7
.5

 D
er

 T
ra

n
sf

o
rm

at
io

n
sp

ro
ze

ss

7
.6

 E
rw

ei
te

rb
ar

ke
it

 d
u

rc
h

 d
as

 P
lu

g-
In

-S
ys

te
m

7
.7

 D
is

ku
ss

io
n

2
.1

 T
er

m
in

o
lo

gi
e

2
.2

 G
en

er
at

io
n

en
 d

er
 

B
en

u
tz

er
sc

h
n

it
ts

te
lle

n

2
.3

 B
er

ü
h

ru
n

gs
em

p
fi

n
d

lic
h

e 
In

te
ra

kt
io

n

2
.4

 D
ia

lo
ge

2
.5

 S
o

ft
w

ar
e 

En
gi

n
ee

ri
n

g

2
.6

 M
ig

ra
ti

o
n

2
.3

.1
 T

ec
h

n
o

lo
gi

en

2
.3

.2
 In

te
ra

kt
io

n
sm

et
h

o
d

en

2
.4

.1
 E

in
fü

h
ru

n
g

2
.4

.2
 G

es
ta

lt
u

n
gs

gr
u

n
d

sä
tz

e

2
.4

.3
 T

ax
o

n
o

m
ie

 d
er

 B
en

u
tz

er
in

te
ra

kt
io

n

2
.4

.4
 D

ia
lo

gb
es

ch
re

ib
u

n
gs

sp
ra

ch
en

2
.4

.5
 P

u
n

kt
d

ic
h

te

2
.5

.1
 F

o
rw

ar
d

 E
n

gi
n

ee
ri

n
g 

am
 

B
ei

sp
ie

l d
er

 m
o

d
el

lg
et

ri
eb

en
en

 
En

tw
ic

kl
u

n
g

2
.5

.2
 R

ev
er

se
 E

n
gi

n
ee

ri
n

g

3
.1

 P
ro

b
le

m
st

el
lu

n
g

3
.2

 A
u

fg
ab

en
st

el
lu

n
g 

u
n

d
 L

ö
su

n
gs

an
sa

tz

4
.1

 G
es

am
tk

o
n

ze
p

t

4
.2

 U
m

ge
se

tz
te

 M
et

h
o

d
e

5
.1

 E
in

fü
h

ru
n

g

5
.2

 S
te

u
er

el
em

en
tg

rö
ß

en

5
.3

 S
te

u
er

el
em

en
ta

b
st

än
d

e

5
.4

 K
o

n
tr

o
llk

äs
tc

h
en

5
.5

 N
u

m
er

is
ch

e 
St

eu
er

el
em

en
te

5
.6

 B
au

m
an

si
ch

te
n

5
.7

 L
is

te
n

fe
ld

er

6
.1

 Ü
b

er
si

ch
t

6
.2

 M
o

d
el

6
.3

 V
ie

w

6
.4

 C
o

n
tr

o
lle

r

8
.1

 M
o

ti
va

ti
o

n

8
.2

 S
tu

d
ie

8
.2

.1
 H

yp
o

th
es

en

8
.2

.2
 M

et
h

o
d

e

8
.2

.3
 E

rg
eb

n
is

se

8
.2

.4
 D

is
ku

ss
io

n

2
.7

 Z
u

sa
m

m
en

fa
ss

u
n

g

è
 è

 
è

 è
 

In
h
al
ts
ve
rz
ei
ch
n
is
 a
ls
 M
in
d

-M
ap

 



 

4 Migration und Anpassung von Dialoganwendungen für berührungsempfindliche Bildschirme 

Abbildungsverzeichnis 

 
Abbildung 1 Die meisten Befehle aus MS DOS, wie copy, dir, echo,  format, goto, mkdir, more, path und viele 

mehr werden noch heute in der Kommandozeile unter Windows unterstützt............................................................... 15 

Abbildung 2 Der Dateisystemmanager MS DOS Shell und Norton Commander nutzten Textzeichen für Fenster 

und Menüs. .................................................................................................................................................................... 16 

Abbildung 3 Menüs können in einer Baumstruktur dargestellt werden. Die Struktur hat sich nicht geändert, 

jedoch die Darstellung: oben ein Menü im  Textmodus unter DOS, unten links in Windows 3.1 und rechts 

Windows 7. ..................................................................................................................................................................... 16 

Abbildung 4 Demonstrative und spielerische Anwendungen auf dem MS Surface für 15.000 Euro.  (Quelle: links 

[Microsoft, 2009], rechts [CNET News.com]) ................................................................................................................. 17 

Abbildung 5 Prototypen von interaktiven Papiercomputern. Mehrere solcher Geräte lassen sich stapeln. Das 

Durchblättern von mehreren solcher Computer ändert ihren Inhalt analog zu einem Stapel Papier. [Holman, et 

al., 2008] ........................................................................................................................................................................ 18 

Abbildung 6 Druckempfindliche Bildschirmoberflächen bestehen aus mehreren Schichten. Durch den Druck des 

Fingers berühren sich die leitendenden Schichten und ermöglichen so eine Bestimmung der Position.  Bild:  [Tyco 

Electronics, 2010] ........................................................................................................................................................... 19 

Abbildung 7 Ladungstransport bei Berührung der geladenen Bildschirmoberfläche. Der Finger lässt bei einer 

Berührung der Oberfläche die  Spannung abfallen, so dass die Position der Berührung bestimmt werden kann.  

Bild:  [VISAM] ................................................................................................................................................................. 20 

Abbildung 8 Surface Acoustic Wave verwendet ein Ultraschallwellenraster, das bei einer Berührung verändert 

wird. Eine Berührung der Scheibe absorbiert einen Teil der Wellen, so dass die Position der Berührung bestimmt 

werden kann.  Bild: [VISAM] ........................................................................................................................................... 20 

Abbildung 9 Verschiedene optische Bildschirmaufbauten (v.o.n.u. FTIR, DI, DSI). Eine Kamera nimmt unterhalb 

der Bildschirmoberfläche Veränderungen auf der Oberfläche durch Lichtstreuung wahr. Bilder: [Roth, 2008] ............ 22 

Abbildung 10 Maustasten und das Mausrad können durch Finger simuliert werden [Matejka, et al., 2009]. Die 

rechte Maustaste und Scrollrad werden durch eine Fingerkombination ersetzt. .......................................................... 23 

Abbildung 11 Links eine Standardabfragedialog mit den bekannten Schaltknöpfen. Der rechte Aufgabendialog 

setzt die Abfrage des linken Dialogs mit großflächigen und selbsterklärenden Befehlsschaltern um. .......................... 25 

Abbildung 12 Benutzerinteraktionen  in Dialogen können in verschiedene Kategorien aufgeteilt werden ................... 28 

Abbildung 13 Der Quelltext eines mit Turbo Vision erstellten Dialogs und die Darstellung des Dialogs in einer 

Turbo Vision Anwendung für MS DOS. ........................................................................................................................... 30 

Abbildung 14 Ein Dialog in Java mit dem Framework Swing erstellt ............................................................................. 30 

Abbildung 15 Mit Microsoft Visual Studio 2010 können Dialoge sowohl als XAML Quelltext als auch in einem 

Designer erstellt und bearbeitet werden. Im Gegensatz zu Expression Blend kann der Dialog mit Ereignissen 

ausgestattet werden, die in einer .NET Sprache geschrieben wurden. .......................................................................... 33 

Abbildung 16 Für Designer und Nicht-Programmierer hat Microsoft den Expression Blend XAML Editor 

entwickelt. Er lässt sich ähnlich bedienen wie bekannte Bildbearbeitungsprogramme. ............................................... 33 

Abbildung 17 XMLPad - Ein MS SDK Werkzeug zum schnellen Ausprobieren von XAML-Syntax. .................................. 33 

Abbildung 18 Die Formel zur Berechnung der Pixel Pro Zoll (Pixel Per Inch, kurz PPI) für einen Bildschirm .................. 34 

Abbildung 19 Unterschiedliche Punktdichten (hier 96 und 150 PPI) bei gleicher Auflösung und Fenstergröße. 

Steuerelemente werden bei 150 PPI größer dargestellt als bei 96 PPI........................................................................... 35 

Abbildung 20 Typische Darstellungsprobleme bei höheren PPI Einstellungen   [GExperts] (Bildschirmfoto),    

[CnPack] (Bildschirmfoto),    [Musgrave, 2009]) ........................................................................................................... 35 

Abbildung 21 Die Modellgetriebene Architektur ermöglicht aus Geschäftsmodellen automatisch Quelltext zu 

generieren ...................................................................................................................................................................... 38 

Abbildung 22 Die Möglichkeiten von MARIA [HIIS Laboratory] erlauben eine Anwendung auf verschiedensten 

Plattformen zu betreiben ............................................................................................................................................... 39 

Abbildung 23 Nach [Lutteroth, 2008+ besteht ein Bereich („Area“) aus den Koordinaten, Inhalt sowie Grenzen für 

eine Änderung der Größe. .............................................................................................................................................. 42 



 

5 Inhaltsverzeichnis 

Abbildung 24 Eine GUI migriert für ein Fernsehgerät [Paternò, et al., 2008]. Die Elemente können durch die 

Fernbedienung bedient werden. .................................................................................................................................... 46 

Abbildung 25 Die Migration von AgilePlanner auf ein Multi-User „Touchtisch“ mit 10 Mega Pixel Auflösung 

[Wang, et al., 2008] ....................................................................................................................................................... 46 

Abbildung 26 Schematische Darstellung der Lösung. Die Transformation von Dialogen besteht aus einem 

Gesamtkonzept, welches im Laufe dieser Arbeit konkretisiert und schließlich umgesetzt wird. ................................... 50 

Abbildung 27 Modellgetriebene Transformation zur Migration auf berührungsempfindliche Dialoge im 

allgemeinen Fall bestehend aus Reverse Engineering, Transformation (auch Abbildung) und Codegenerierung ......... 53 

Abbildung 28 Ausschnitt des Transformationsprozesses aus Abbildung 27 ................................................................... 54 

Abbildung 29 Verschiedene Größen von Schaltern: 5, 7, 10, 15 und 20 Millimeter Seitenlänge. Die Größe hat 

einen Einfluss auf die Bedienung mit den Fingern. ......................................................................................................... 56 

Abbildung 30 Mögliche Ersatzelemente von Kontrollkästchen. Links: Alte GUI-Elemente aus [Plaisant, et al., 

1992]. Rechts: Beispielhafte Umsetzung mit WPF als Widgets. Die Bedienung von Kontrollkästchen wurde in der 

Studie aus Kapitel 8 untersucht. ..................................................................................................................................... 57 

Abbildung 31 Beispielhafte Erweiterung eines Zahlenfeldes mit einem Schiebregler, der beim Antippen des 

Feldes aufspringt. Das Tastatursymbol wird von Windows automatisch eingeblendet. ............................................... 58 

Abbildung 32 Drehfelder mit größeren Schaltflächen können einfacher mit dem Finger bedient werden .................... 58 

Abbildung 33 Ein Zahlenfeld für die präzise Eingabe von Kommazahlen, das sogenannte numerische Tastenfeld. 

Die Schaltfläche „Def“ setzt den Wert im Textfeld auf die ursprüngliche Eingabe zurück. „Clear“  belegt die 

Eingabe mit dem Wert 0. „X“ schließt die Eingabe ab. Die Eingabe wird abgebrochen, indem der Bereich 

außerhalb des Tastenfeldes berührt wird. ..................................................................................................................... 58 

Abbildung 34 Eine illustrierte, flache Baumansicht mit Brotkrumennavigation erleichtert die Fingerbedienung ......... 59 

Abbildung 35 Ein Trommellistenelement für das Android Betriebssystem.  Die Werte oben und unten scheinen 

nach hinten gezogen zu werden. .................................................................................................................................... 60 

Abbildung 36 Ein Listenfeld mit seitlicher Navigationsleiste, wie man es aus diversen Kioskanwendungen kennt ....... 61 

Abbildung 37 Beispielhafte Erweiterung einer Liste für die Mehrfachauswahl mit Kontrollkästchen ........................... 61 

Abbildung 38 Die Komponenten aufgeteilt nach dem MVC Muster .............................................................................. 62 

Abbildung 39 Klassendiagramm der Komponente Model .............................................................................................. 63 

Abbildung 40 Klassendiagramm der View Komponente ................................................................................................ 64 

Abbildung 41 Klassendiagramm der Controller Komponente ........................................................................................ 65 

Abbildung 42 Komponentendiagramm mit Controller und Plug-In Komponenten. Plug-Ins „docken“ an den Co ......... 65 

Abbildung 43 Klassendiagramm für ein Plug-In. Die Schnittstellen sind aufgeteilt nach Plug-In-Verwaltung 

(PluginIntf) und Methoden für den Transformationsprozess (ProcessingIntf). .............................................................. 66 

Abbildung 44 Übersicht über die verwendeten und umgesetzten Bestandteile von LATTE ........................................... 67 

Abbildung 45 Die View Komponente aus Kapitel 6 bildet die Schnittstelle zum Benutzer ............................................. 68 

Abbildung 46 Die LATTE Anwendung zur Transformation von Dialogen ....................................................................... 68 

Abbildung 47 Der XSLT Editor für die Eingabe von Abbildungsvorschriften ................................................................... 69 

Abbildung 48 XSLT Parameter Editor für die Steuerung der Abbildungsvorschriften ..................................................... 69 

Abbildung 49 Parameterliste für Plug-Ins für die Steuerung von Plug-Ins ..................................................................... 70 

Abbildung 50 Fehler, Warnungen und Nachrichten während der Transformation werden im Meldungsfenster 

dargestellt ...................................................................................................................................................................... 70 

Abbildung 51 Die LATTE Projekte aufgeteilt in Hauptanwendung und Plug-In (AddIns) ............................................... 71 

Abbildung 52 Die Klasse TransformationEngine von LATTE ist der zentrale Bestandteil der Controller 

Komponente aus der MVC Architektur ........................................................................................................................... 73 

Abbildung 53 Das Klassendiagramm der Klasse TransformationEngine. Jede Transformation erhält eine Vielzahl 

von Eingaben. ................................................................................................................................................................. 74 

Abbildung 54 Die Model und Controller Komponenten von LATTE bilden den Transformationsprozess ....................... 74 

Abbildung 55 Die Transformationspipeline, wie sie umgesetzt wurde .......................................................................... 75 

Abbildung 56 Die Modellkomponente bildet die Grundlage für die Transformation von Dialogen ............................... 81 

Abbildung 57 Anzupassender Dialog (Quelltext 45 siehe im Anhang) ........................................................................... 82 

Abbildung 58 Dialog mit vergrößerten Listeneinträgen ................................................................................................. 84 



 

6 Migration und Anpassung von Dialoganwendungen für berührungsempfindliche Bildschirme 

Abbildung 59 Dialog mit ersetztem Kontrollkästchen .................................................................................................... 86 

Abbildung 60 Links: Höhe angepasst, Rechts: Höhe und Breite angepasst .................................................................... 88 

Abbildung 61 Klassendiagramm der erstellten Annotationen für XAML........................................................................ 91 

Abbildung 62 Die Controller Komponente der MVC Architektur wird durch Plug-Ins erweitert................................... 103 

Abbildung 63 Die Add-In Pipeline in LATTE (angepasst aus [MacDonald, 2010]) und  die Ausführung eines 

Methodenaufrufs durch die Schichten ......................................................................................................................... 103 

Abbildung 64 Der Aufbau des berührungsempfindlichen Bildschirms für die Benutzerstudie. Hinten rechts kam 

ein Bildschirm zur Darstellung des aktuellen Aufgabentextes und zur Ablaufkontrolle zum Einsatz. Daneben liegt 

ein Fragenkatalog,  den die Teilnehmer für die Bearbeitung beantworteten. ............................................................. 109 

Abbildung 65 In der Studie verwendeter Desktophintergrund für die einheitliche Positionierung der Dialoge an 

weißen Rechtecken....................................................................................................................................................... 110 

Abbildung 66 Vergleich der in der Studie eingesetzten Dialoge. Links: eine Nachbildung des originalen Öffnen-

Dialogs für Ö1 und Ö2;  Rechts: der transformierte Öffnen-Dialog für die Aufgaben Ö3 bis Ö7. ................................ 111 

Abbildung 67 Standarddialog für die Einstellung einer Druckerseite, wie er unter Windows eingesetzt werden 

kann.............................................................................................................................................................................. 112 

Abbildung 68 Vergleich der transformierten Dialoge aus den Aufgaben S3 bis S6 (v.l.n.r. und v.o.n.u.) ..................... 112 

Abbildung 69 Vergleich der Abstände zwischen den Kontrollkästchen in Aufgabe S7 Teil 1 bis 4 (v.l.n.r. und 

v.o.n.u.) ........................................................................................................................................................................ 113 

Abbildung 70 Eingesetzter Prototyp eines numerischen Tastenfeld für die Aufgaben S8 und S9 ................................ 113 

Abbildung 71 Vergleich der durchschnittlich benötigten Zeit der Aufgaben Ö1 (Maus) und Ö2 (Touch) .................... 115 

Abbildung 72 Vergleich der durchschnittlich benötigten Zeit der Aufgaben S1 (Maus) und S2 (Touch) ...................... 115 

Abbildung 73 Durchschnittlich benötigte Zeit  der Aufgaben S3 bis S6 ........................................................................ 115 

Abbildung 74 Durchschnittlich benötigte Zeit  der Aufgaben S7 Teil 1 bis Teil 4 ......................................................... 115 

Abbildung 75 Der Fehlerquotient berechnet sich aus der Anzahl der gemachten Fehlern und der Zahl der 

Berührungen................................................................................................................................................................. 116 

Abbildung 76 Fehler pro Gesamtberührungen der  Aufgaben Ö1 (mit Maus) und Ö2 (mit Finger) ............................. 116 

Abbildung 77 Fehler pro Gesamtberührungen der  Aufgaben S1 (mit Maus) und S2 (mit Finger) ............................... 116 

Abbildung 78 Vergleich der Fehlerquotienten der Aufgaben Ö2, Ö4 und Ö5 .............................................................. 117 

Abbildung 79 Vergleich der Fehlerquotienten der Aufgaben S2 bis S6 ........................................................................ 117 

Abbildung 80 Vergleich der Fehlerquotienten der Aufgaben S8 und S9 ....................................................................... 118 

Abbildung 81 Wurden Ihre Erwartungen an die Bedienung des berührungsempfindlichen Bildschirms erfüllt? ......... 118 

Abbildung 82 Können Sie sich vorstellen einen berührungsempfindlichen Bildschirm am PC oder Laptop zu 

verwenden? .................................................................................................................................................................. 118 

Abbildung 83 Viele Webseiten und Cloud Anwendungen lassen sich nur schwer und nicht ohne weiteres mit den 

Fingern bedienen.  Hier der Google Kalender. Diagonalverhältnis von originalem Tablet zu Bild ist 1 zu ca. 0,93. .... 126 

Abbildung 84 Sequenzdiagramm des implementierten Transformationsprozesses .................................................... 136 

Abbildung 85 Plug-In Methoden Aufruf mit MAF am Beispiel von PreProcessing ....................................................... 137 

 

  



 

7 Inhaltsverzeichnis 

Tabellenverzeichnis 

 
Tabelle 1 Gesten mit einem oder mehreren Fingern lösen vielfältige Aktionen aus. ..................................................... 23 

Tabelle 2 Die Klassen von LATTEE .................................................................................................................................. 72 

Tabelle 3 Einige XSLT Standardelemente zur Verwendung für die Abbildungsvorschrift ............................................... 79 

Tabelle 4 Erklärung zu den einzelnen Zeilen von Quelltext 7 ......................................................................................... 80 

Tabelle 5 Einige XPath Standardfunktionen ................................................................................................................... 80 

Tabelle 6 Beschreibung der Annotationsklassen für XAML ............................................................................................ 92 

Tabelle 7 EBNF Produktionsregel für die entwickelten Annotationen in XAML.............................................................. 93 

Tabelle 8 Vor- und Nachteile der Prozessoren .............................................................................................................. 106 

Tabelle 9 Benötigte Ausführungsdauer der Teilnehmer für die Aufgaben Ö1-Ö7 in Sekunden ................................... 114 

Tabelle 10 Benötigte Ausführungsdauer der Teilnehmer für die Aufgaben S1-S9  in Sekunden .................................. 114 

Tabelle 11 Die Fehlerraten der Aufgaben Ö2, Ö4 und Ö4 sowie S2 bis S6 im direkten Vergleich ................................ 117 

Tabelle 12 Kriterien und Gewichtung für die Aufgabenbewertungen. Bei allen Fragen (außer F15) eingesetzt. ........ 119 

Tabelle 13 Spezielle Kriterien mit Gewichtungen für die Aufgabenbewertungen. Nur für den Aufgabentyp F15. ...... 119 

Tabelle 14 Einige Fragen zu den Studienaufgaben ...................................................................................................... 119 

Tabelle 15 Ergebnisse der Befragung aus den Fragentypen F14, F20, F21 und F22 in den Kategorien C 

(schwierig/leicht),  D ([UI] reagiert schnell/langsam) und E (ungewohnt/gewohnt). Minimale/Maximale zu 

vergebende Punktzahl: 6/48. ....................................................................................................................................... 120 

Tabelle 16 Ergebnisse der Befragung des Fragentyps F15 in den Kategorien B (Ich konnte Steuerelemente 

einfach  treffen/anklicken/antippen.) und C (Der Einsatz von Maus/Finger in dieser Aufgabe fiel mir leicht.).  

Minimale/Maximale zu vergebende Punktzahl: 6/48. ................................................................................................. 120 

Tabelle 17 Steuerelemente: Bezeichnung, Symbol und Kurzbeschreibung basierend auf [Petzold, 1999], 

[Erlenkötter, et al., 1997] und [Wessel, 2002] .............................................................................................................. 134 

Tabelle 18 Abbildungstabelle für Steuerelemente von Delphi, Dialog Ressource und XAML ....................................... 135 

  



 

8 Migration und Anpassung von Dialoganwendungen für berührungsempfindliche Bildschirme 

Quelltextverzeichnis 

 
Quelltext 1 Dialoge können aus komplizierten Strukturen bestehen. Hier der Quelltext für den Dialog aus 

Abbildung 14. ................................................................................................................................................................. 31 

Quelltext 2 Angehängte Eigenschaften Canvas.Left und Canvas.Top bei einem Druckschalter .................................... 32 

Quelltext 3 Ein in XAML beschriebener Dialog beginnt immer mit dem Fenster-Element und enthält alle weiteren 

Elemente in einer Baumstruktur .................................................................................................................................... 32 

Quelltext 4 Zugriff auf XML Knoten mit der Klasse XmlDocument ................................................................................. 77 

Quelltext 5 Eine Plug-In Meldung erzeugen ................................................................................................................... 77 

Quelltext 6 Plug-In Kommunikationsvertrag. Diese Methoden müssen implementiert werden. ................................... 78 

Quelltext 7 Ein XSLT Dokument. Diese Vorlage wird von LATTE für ein neues Projekt erzeugt. ..................................... 79 

Quelltext 8 Einige Parameter in XSLT verwendet. xsl:param definiert einen Parameter, der durch $Name 

angewendet wird. .......................................................................................................................................................... 81 

Quelltext 9 Die Besonderheit des XAML Namensraums machen es erforderlich, in XSLT den Namensraum explizit 

zu deklarieren ................................................................................................................................................................. 81 

Quelltext 10 Knoten mit Attribute in XSLT kopieren ....................................................................................................... 82 

Quelltext 11 Kopieren einer gesamten XAML Struktur ................................................................................................... 82 

Quelltext 12 XSLT Vorlagen, um alle Attribute und Knoten zu kopieren ........................................................................ 83 

Quelltext 13 Elemente mit XSLT hinzufügen................................................................................................................... 83 

Quelltext 14 Elemente mit XSLT hinzufügen (2.Teil) ....................................................................................................... 84 

Quelltext 15 Transformation eines Kontrollkästchens ................................................................................................... 85 

Quelltext 16 Erzeugtes Steuerelement CheckBoxTouchSwitcher ................................................................................... 85 

Quelltext 17 Erzeugen  eines Namensraum innerhalb eines Fenster-Elements ............................................................. 85 

Quelltext 18 Window-Element mit manuell eingefügtem Namensraum ....................................................................... 86 

Quelltext 19 Transformation zum Verändern von Höhe und Breite ............................................................................... 87 

Quelltext 20 PostProcessing mit Höhe und Breite .......................................................................................................... 89 

Quelltext 21 XAML Struktur laden .................................................................................................................................. 90 

Quelltext 22 Definieren einer Annotation in XAML. Die Annotation wird als eine fremde Eigenschaft Attach an 

das Listenfeld angehängt. .............................................................................................................................................. 92 

Quelltext 23 Eine annotierte Listendefinition in XAML. Die Annotation AnnotationParameter kann nur innerhalb 

der Attach Eigenschaft definiert warden. ...................................................................................................................... 93 

Quelltext 24 Eine XSLT Transformation mit Prüfung einer Annotation .......................................................................... 94 

Quelltext 25 Ein Listenelement wurde in XSLT annotiert................................................................................................ 94 

Quelltext 26 Annotationen eines Listenelements kopieren und erweitern .................................................................... 95 

Quelltext 27 Vereinigung von Annotationen bei einer Transformation (mit doppelten Metadaten 

AnnotationParameter) ................................................................................................................................................... 95 

Quelltext 28 Notation mit Namensraumdefinition: Ungültiger Syntax für XAML .......................................................... 95 

Quelltext 29 Automatische Konvertierung von Präfixe in XSLT ...................................................................................... 96 

Quelltext 30 Die Methode PostProcessing empfängt den vollständigen XML Baum sowie den XAML 

Namensraum. In der Methode können so die Anpassungen direkt am XML Dokument durchgeführt werden. ............ 96 

Quelltext 31 Die Annotation eines bestimmten Elementes  auswählen (Beispiel 1) ...................................................... 96 

Quelltext 32 Die Annotationen aller Elemente einer Art auswählen (Beispiel 2) ........................................................... 96 

Quelltext 33 Alle Annotationen innerhalb eines XAML Elements ermitteln (Beispiel 3) ................................................. 97 

Quelltext 34 Eine bestimmte Art von Annotation innerhalb von bestimmten XAML Elementen ermitteln (Beispiel 

4) .................................................................................................................................................................................... 97 

Quelltext 35 XAML Beispielquelltext mit markierten Ergebnismenge der XPath Ausdrücke aus den Beispielen 1 

bis 4. ............................................................................................................................................................................... 98 

Quelltext 36 Annotationen können aus XML Dokument geladen werden. AnnotationVerb unterstützt die 

Ausführung von Methoden. ........................................................................................................................................... 98 



 

9 Inhaltsverzeichnis 

Quelltext 37 Entsprechend dem Typ des XML Elements müssen die richtigen Annotationsklassen verwendet 

werden. .......................................................................................................................................................................... 99 

Quelltext 38 Neue, wie auch veränderte Annotationen können zurück ins XML Dokument serialisert werden. ........... 99 

Quelltext 39 Mit Annotation.GetAttach können die Annotationen eines XAML Steuerelements ausgelesen 

werden. ........................................................................................................................................................................ 100 

Quelltext 40 Die Implementierung von AnnotationList.ListByType nutzt die generische Methode ListByHandler. 

Selbstgestaltete Methoden können genauso verfahren. ............................................................................................. 100 

Quelltext 41 Mehrere Optionsfelder werden durch eine selbsterstellte Annotation in einer Gruppe 

zusammengefasst. ....................................................................................................................................................... 101 

Quelltext 42 Attribute von Annotationen können gewöhnliche Eigenschaften sein oder über das WPF System mit 

Dependency Eigenschaften verwirklicht werden. ......................................................................................................... 101 

Quelltext 43 Die Methoden Serialize und Deserialize müssen überschrieben werden, um die Eigenschaften der 

Annotation zu speichern............................................................................................................................................... 102 

Quelltext 44 AnnotationVerb unterstützt Inhalte durch das Attribut ContentPropertyAttribut .................................. 102 

Quelltext 45 Ausgangsdialog für die Transformation in Kapitel 7.5.2 ......................................................................... 138 

Quelltext 46 Quelltext des transformierten Beispieldialogs aus Kapitel 6.3.2 ............................................................. 139 

  



 

10 Migration und Anpassung von Dialoganwendungen für berührungsempfindliche Bildschirme 

Diese Seite wurde absichtlich leer gelassen 



 
11 Einleitung 

 

1 Einleitung 
 

 

1.1 Motivation 
 

Berührungsempfindliche Bildschirme (Neudeutsch auch Touchbildschirm oder engl. touchscreen) werden von 

Jahr zu Jahr attraktiver [Schöning, et al., 2008]. Besonders im Bereich der mobilen Geräte steigt die Attraktivität 

von PDAs, Tablets, Smartphones und E-Book-Reader mit berührungsempfindlicher Oberfläche. Kiosk- und In-

formationssysteme mit Fingereingabe sind mittlerweile unter Anderem schon in vielen Kaufhäusern  und Ban-

ken zum Standard für Kunden geworden. Die Vorteile liegen auf der Hand. Die Benutzer können direkt mit den 

Elementen (insbesondere Schaltflächen) interagieren und zusätzlicher Platz und Kosten für Hardware wie Tas-

tatur und Maus entfallen. 

Doch zu Hause und bei der Arbeit sind LCD- und TFT-Monitore noch berührungsunempfindlich. Für Soft-

warehersteller bedeutet dies keinen Aufwand in die Benutzbarkeit ihrer Software für Finger stecken zu müssen. 

Dies lässt wiederum Benutzer keinen Sinn darin sehen berührungsempfindliche Bildschirme zu kaufen, die 

keinen wirklichen Mehrwert bringen und stattdessen Frustration erzeugen, etwa durch zu kleine Schaltflächen. 

Wenn der Lustaspekt nicht vorhanden sei, so [Novak, et al., 2009], dann führe dies zur Abneigung und schließ-

lich zum Nichtnutzen der Technologie. 

Mittlerweile unterstützt das neuste Betriebssystem Windows 7 aus dem Hause Microsoft standardmäßig die 

berührungsempfindliche Eingabe zur Bedienung von Anwendungen. Dies geschieht seit Windows Vista auch 

dann, wenn die Anwendung selbst nicht für die Bedienung mit einem Finger entworfen wurde. Doch diese 

Software ist nicht immer einfach mit den Fingern zu bedienen, da Steuerelemente und das gesamte Bedien-

konzept nur für die Maus- und Tastatureingabe funktionieren (z.B. kleine Schalterflächen). Daher bietet 

[Microsoft] eine Programmierschnittstelle an, das sogenannte Windows Touch SDK  für Softwareentwickler, um 

Multi-Touch sowie Gesten zu unterstützen. Auch wurden von [Microsoft] einige Gestaltungsrichtlinien für die 

Fingerbedienung unter Windows 7 herausgegeben. Solche Richtlinien gibt es auch von anderen Herstellern für 

deren jeweils eigene Plattform (eine Übersicht gibt es bei [Experience Dynamics]). Doch eine Umsetzung der 

Gestaltungsrichtlinien kann sich schwierig gestalten, da die Regeln oftmals nur in einer unscharfen Schriftform 

vorliegen und dadurch keine automatische Anwendung z.B. in der Programmierung erlauben. Außerdem kann 

bereits eine einzelne Anwendung  viele unterschiedliche Dialoge enthalten, so dass ein großer Migrationsauf-

wand entstehen würde, der eine Anpassung für berührungsempfindliche Bildschirme nicht rechtfertigt. 

Ziel dieser Diplomarbeit ist es daher die Bedienung von Anwendungen mit den Fingern zu verbessern. Dazu 

wird ein Konzept aufgezeigt, das den Anwendungsentwickler bei der Migration seiner vorhandenen Dialoge 

unterstützen soll, indem es die Migration zu Teilen automatisiert. 

  

In Mitten der Schwierigkeiten liegt die Möglichkeit.  

Albert Einstein 
theoretischer Physiker 

 



 
12 Migration und Anpassung von Dialoganwendungen für berührungsempfindliche Bildschirme 

1.2 Aufbau 
 

Die Arbeit führt mit Kapitel 2 in die Grundlagen der berührungsempfindlichen Bildschirme und Generationen 

von Benutzerschnittstellen ein. Zudem werden grundlegende Technologien und Methoden für eine berüh-

rungsempfindliche Bedienung erläutert. Der Interaktion folgt ein Kapitel über Dialoge, deren grundsätzliche 

Gestaltung sowie Sprachen, um Dialoge zu entwickeln. Das Kapitel 2 schließt mit dem aktuellen Stand der 

Technik bei der Migration von Dialogschnittstellen ab. 

Das Kapitel 3 führt in die aktuellen Probleme der berührungsempfindlichen Interaktion ein und stellt die Aufga-

ben der Diplomarbeit in einem Überblick dar. Zu den vorgestellten Problemen und Aufgaben wird außerdem 

bereits ein Lösungsansatz gezeigt und erläutert. 

Um die Probleme und Schwächen der Dialoge für berührungsempfindliche Bildschirme aus Kapitel 3 zu über-

winden, wird in Kapitel 4 eine generische Methode vorgestellt. Diese Methode wird zudem konkretisiert, um 

eine umsetzbare Grundlage für die folgenden Kapitel zu erhalten. 

Basierend auf den Grundlagen der Dialoggestaltung werden in Kapitel 5 mögliche Anpassungen der Steuerele-

mente in Dialoge für berührungsempfindliche Bildschirme analysiert und formuliert. Außerdem werden neue 

Arten von Steuerelementen vorgestellt, welche die vorhandene Elemente für die berührungsempfindliche 

Bedienung ersetzen und dadurch die Bedienbarkeit verbessern sollen. 

Für die aus Kapitel 4 bekannte Methode wird in Kapitel 6 eine Architektur präsentiert. Die Architektur dient als 

Grundlage für eine prototypische Umsetzung. Dieser Prototyp wird in dem darauf folgenden Kapitel 7 einge-

hend erläutert. Darin wird außerdem der Transformationsprozess vorgestellt und wie dieser erweitert werden 

kann. 

Die Umsetzung wird anschließend in einer Studie mit mehreren Benutzern evaluiert. Dazu wurden zwei trans-

formierte Dialoge mit den aus Kapitel 5 angepassten Steuerelementen angepasst und auf deren Benutzbarkeit 

auf einem berührungsempfindlichen Bildschirm überprüft. Im Kapitel 8 werden dafür Hypothesen aufgestellt, 

um die angepassten Dialoge in der Studie auf die Probe stellen zu können. Die daraus gewonnenen Ergebnisse 

werden zudem präsentiert und diskutiert. 

Kapitel 9 schließt die Diplomarbeit mit einer Zusammenfassung aller Themen ab. Außerdem wird ein Ausblick 

auf mögliche Erweiterungen sowie Verbesserungen der entwickelten Methode und des Prototyps gegeben. 

1.3 Begriffe 
 

In dieser Diplomarbeit werden durchgehend alle Begriffe in der deutschen Sprache wiedergegeben, sofern dies 

möglich ist und der Kontext dies zulässt. Dadurch soll eine bessere Lesbarkeit der Diplomarbeitsschrift ermög-

licht werden, denn Softwareentwickler sollten stets ihre Arbeitsdomäne auch Außenstehenden, sprich Nicht-

entwicklern oder Kunden, begreiflich machen können. Für viele verwendete, aber englische Begriffe existieren 

deutsche Entsprechungen. In der Anwendungsentwicklung trifft dies insbesondere auf die Namen von Steuer-

elementen zu.  ComboBox, Edit und Button mögen vielleicht Programmierern wohl bekannt sein, doch sind 

diese außerhalb der Entwicklung für viele Menschen (und Leser) nicht unbedingt aussagekräftig. Für einen 

Softwareentwickler sollte es daher nicht zu viel verlangt sein, beide Welten zu kennen und zwischen ihnen eine 

Brücke schlagen zu können. In diesem Sinne nutzt der Entwickler die englischen Begriffe für die Entwicklung 

und auf der anderen Seite die deutschen Begriffe für die Erklärung. Für diejenigen, die die deutschen Namen 

der Steuerelemente noch nicht kennengelernt haben, wurde eine Vergleichstabelle (Tabelle 17) im Anhang 

erstellt. Diese beinhaltet neben einem Bild sowohl die deutschen als auch die englischen Bezeichner.  

  



 
13 Grundlagen und Stand der Technik 

2 Grundlagen und Stand der Technik 
 

 

Das Grundlagenkapitel beginnt mit der Einführung von grundlegenden Begriffen, die im weiteren Verlauf der 

Arbeit verwendet werden (Kapitel 2.1). Darauf folgt eine Einführung in die Evolution der Benutzerschnittstellen, 

von den Schnittstellen mit Kommandozeile bis hin zu den organischen Benutzerschnittstellen (Kapitel 2.2). Wie 

berührungsempfindliche Bildschirme funktionieren und welche Interaktionsmöglichkeiten dazu existieren, wird 

im Kapitel 2.3 präsentiert. Das Kapitel 2.4 beschäftigt sich mit dem Thema Dialoge. Darin wird erläutert, welche 

grundlegenden Gestaltungsgesetze für Dialoge existieren, wie die Taxonomie für Benutzerinteraktionen aus-

sieht und welche Arten von Benutzungsschnittstellen vorkommen können. Das Kapitel 2.5 behandelt die mo-

dellgetriebenen Entwicklung. Darin werden Ansätze zur Entwicklung sowie Rückentwicklung von Oberflächen 

mit Modellen aufgezeigt. Das Grundlagenkapitel schließt mit dem Kapitel 2.6 ab, welches weitere Ansätze und 

Lösungen präsentiert, um Oberflächen von einer Plattform auf eine andere zu überführen. 

 

2.1 Terminologie 
 

In der heutigen Zeit und Welt ist es mittlerweile unmöglich geworden jeden Begriff genau zu kennen. Dies gilt 

besonders für eine sich rasant verändernde IT Welt, die von englischen Begriffen wie Touch, Smartphone, Mi-

ddleware, Tablet, E-Book oder VPN regen Gebrauch macht und auch immer wieder neue Wörter (z.B. Twitter) 

erfindet. Doch auch deutsche Begriffe benötigen oftmals eine (erneute) Erklärung, um Unklarheiten oder Ver-

wechslungen beim Lesen zu vermeiden, weil Autor und Leser von unterschiedlichen Definitionen ausgehen. 

Daher sind im Folgenden alle Begriffe aufgelistet, die in dieser Arbeit verwendet und damit als bekannt voraus-

gesetzt werden.  

 

Benutzbarkeit  (Usability) 

 

Usability, übersetzt Bedienbarkeit oder Benutzbarkeit, beschreibt wie gut sich ein interaktives System von ei-

nem Benutzer erschließen und erlenen lässt [Machate, 2003].  

Usability wurde auch unter dem Begriff der Gebrauchstauglichkeit eines Produkts in der Norm ISO 9241-11 

definiert. Darin ist die Gebrauchstauglichkeit „das Ausmaß, in dem ein Produkt durch spezifische Benutzer in 

einem spezifischen Nutzungskontext genutzt werden kann, um bestimmte Ziele effektiv, effizient und zufrieden-

stellend zu erreichen.“.  

 

Interaktion 

 

Die Interaktion beschreibt ein wechselseitiges Handeln zwischen Menschen, Prozessen und Geräten [Fischer, et 

al., 2008]. Dabei beschränkt sich die Interaktion zwischen Mensch und Gerät auf die Manipulation von Benut-

zungsschnittstellen (siehe Kapitel 2.2), da Maschinen nicht interagieren, sondern auf Eingaben reagieren. Sys-

teme, die über Benutzungsschnittstellen gesteuert werden, werden interaktive Systeme genannt. Besitzt ein 

Sag es mir – und ich werde es vergessen. 

Zeige es mir – und ich werde mich daran erinnern. 

Beteilige mich – und ich werde es verstehen.  

Lao Tse 
chinesischer Philosoph 

 



 
14 Migration und Anpassung von Dialoganwendungen für berührungsempfindliche Bildschirme 

interaktives Computersystem eine berührungsempfindliche Benutzungsschnittstelle und wird es durch Berüh-

rung oder Anfassen gesteuert, so handelt es sich bei diesem Vorgang um eine berührungsempfindliche Interak-

tion. 

 

Modell 

 

Ein Modell ist ein unvollkommenes und interpretiertes Abbild eines komplexeren Systems oder der realen 

Welt.  Bei der Erschaffung von Modellen beschränkt man sich auf eine Untermenge der Vorgänge und Gesetze 

eines Systems und versucht durch die Interpretation des Modells das System besser verstehen zu können 

[Ludewig, et al., 2007]. Der Prozess der Modellbildung wird Abstraktion genannt und besteht aus dem Erken-

nen und Weglassen von Eigenschaften, die nicht von Interesse sind. Durch diesen Vorgang wird aus etwas Kon-

kretem etwas Abstraktes.  

 

Touch (Multi-Touch) 

 

Der Begriff Touch ist ein englisches Substantiv und bedeutet Kontakt oder Berührung. Touch wird oftmals in 

Verbindung mit anderen Begriffen zu einer neuen Wortkombination vereint, um auszudrücken, dass eine Ma-

schine mit einer Berührung durch ein Werkzeug oder Finger bedient werden kann. Zum Beispiel Touchpad, ein 

Mausersatz oder Touchbildschirm, ein berührungsempfindlicher Bildschirm. Die Interaktion kann aktiv oder 

passiv erfolgen. Die passive Form, beispielsweise auf einem Fingerpad am Laptop, unterscheidet sich kaum von 

der Eingabe mit einer Maus, die Elemente auf dem Bildschirm über einen Zeiger manipuliert. Erst mit berüh-

rungsempfindlichen Bildschirmen können Elemente mit dem Finger direkt auf dem Bildschirm anvisiert und 

bedient werden. Zudem wird die Interaktion durch neue Technologien (siehe Kapitel 2.3.1) und Formen von 

Benutzungsschnittstellen (siehe Kapitel 2.2) auch mit mehreren Fingern (Multi-Touch) oder sogar mit mehreren 

Benutzern gleichzeitig (Multi User-Touch) möglich. 

Gängige Touch-Geräte sind heutzutage: Tablet-PCs, Smartphones, E-Books, Touchpads und Bildschirme aller 

Arten. 

 

2.2 Generationen der Benutzerschnittstellen 
 

Eine Benutzerschnittstelle (eigentlich Benutzungsschnittstelle) ist der Teil eines Computersystems, der es dem 

Benutzer ermöglicht mit dem Computer zu interagieren. Die ersten Benutzerschnittstellen bestanden aus 

Schaltern und Lampen, die den Zustand des Computers ändern und anzeigen konnten. Diese Art von Schnitt-

stelle war jedoch nicht einfach zu benutzen, daher kamen bald zeichen- bzw. befehlsorientierte Benutzer-

schnittstellen auf. 

Seit den Anfangszeiten der Arbeit mit Computern wird daher versucht die Arbeit mit dem Computer einfachen 

zu gestalten, indem die Schnittstelle den Bedürfnissen der Nutzer angepasst wird. Der Computer soll einfach, 

effizient und angenehm zu bedienen sein [Rädle, 2009].  Aus diesem Grund wurden in den ISO Normen die 

Norm ISO 9241-110 definiert, welche Benutzungsschnittstelle wie folgt definiert: 

„all components of an interactive system (software or hardware) that provide information and controls for the 

user to accomplish specific tasks with the interactive system” (entnommen aus [Geis, 2006]) 

Mittlerweile gibt es verschiedenste Arten von computergestützten Schnittstellen. In ihrer Art und Weise wie sie 

vom Benutzer bedient werden, können nach [Rädle, 2009] und [Chapman, 2008] die folgenden Schnittstellen 

unterschieden werden: 



 
15 Grundlagen und Stand der Technik 

 Kommandozeilenorientierte (Benutzer-)Schnittstelle (Command Line Interface - CLI) 

 Grafische Benutzerschnittstelle (Graphical User Interface - GUI) 

 Natürliche Benutzerschnittstelle (Natural User Interface - NUI) 

 Organische Benutzerschnittstelle (Organic User Interface - OUI) 

 

 

Kommandozeilenorientierte Schnittstelle 

 

Eine der ersten Benutzerschnittstellen, die mit Software verwirklicht wurden, sind die kommandoorientierten 

Schnittstellen. Ihre Hauptaufgabe besteht darin Kommandobefehle in Form von Texteingaben über eine Tasta-

tur anzunehmen, zu interpretieren und das Resultat auf dem Bildschirm auszugeben.  

Obwohl die Kommandozeile (auch Eingabeaufforderung oder engl. command prompt) einer der ersten Schnitt-

stellen war, ist sie heute noch in allen PC-Betriebssystemen verfügbar. Ihr Vorteil liegt in der schnelleren Abar-

beitung von Befehlen sowie einem größeren Befehlsumfang als der der grafischen Schnittstellen. Diese Vorteile 

macht die Kommandozeile deshalb sehr attraktiv für Experten, die immer wiederkehrende Aufgaben effizient 

erledigen wollen. Die Einstiegshürde für Anfänger ist jedoch entsprechend hoch und erfordert zudem nicht 

selten ein intensives Studium der möglichen Befehle. 

 
 

Abbildung 1 Die meisten Befehle aus MS DOS, wie copy, dir, echo,  format, goto, mkdir, more, path und viele mehr werden noch heute 
in der Kommandozeile unter Windows unterstützt. 

 

Grafische Schnittstelle 

 

Um die Einstiegshürde zu senken und auch einer breiteren Bevölkerungsschicht den Umgang mit Computern zu 

erleichtern wurden grafische Benutzerschnittstellen eingeführt. Beispielsweise kamen recht schnell für das 

kommandozeilenorientiere Microsoft DOS grafische Dateimanager zum Einsatz wie die MS DOS Shell oder die 

ersten Versionen von Microsoft Windows. Die Oberflächengrafik bestand dabei oftmals nur aus geschickt zu-

sammengesetzten (farbigen) Zeichen, die u.a. Fensterrahmen bildeten. Die eingesetzte Bildschirmauflösung 

war jedoch immer auf die verwendete Bildschirmauflösung der Kommandozeile beschränkt, d.h. gewöhnlich 80 

Zeichen in der Breite und 25 Zeichen in der Höhe für MS-DOS Systeme. Diese Auflösung wurde auch als Text-

modus bezeichnet. 

 

Mit der Einführung von Apples Lisa OS Anfang der 1980er Jahre wurden Betriebssysteme dann zunehmend mit 

echten grafischen Schnittstellen ausgestattet. Zudem bildeten sich die ersten Begriffe wie „Desktop“, um die 

Einstiegshürde für die Benutzung von Computern zu reduzieren [Rädle, 2009].  



 
16 Migration und Anpassung von Dialoganwendungen für berührungsempfindliche Bildschirme 

  
Abbildung 2 Der Dateisystemmanager MS DOS Shell und Norton Commander nutzten Textzeichen für Fenster und Menüs. 

 

Die neuen grafischen Betriebssysteme nutzen die Metapher des Fensters (engl. window), um Texte oder Grafi-

ken darzustellen. Anwendungen können nicht mehr den gesamten Bildschirm für sich alleine nutzen, wie es auf 

der Kommandozeile üblich war, sondern müssen ihre Inhalte und Benutzerinteraktion auf das Innere des Fens-

terbereichs beschränken. Zudem werden bei grafischen Betriebssystemen nicht mehr alle Steuerbefehle über 

die Tastatur eingegeben, sondern durch anklickbare Symbole (engl. icons) präsentiert. Diese Symbole stellen 

den dahinterliegenden Befehl durch eine stark vereinfachte Grafik dar und befinden sich z.B. auf Schaltflächen, 

in der neuen Multifunktionsleiste (genannt Ribbon) aus Microsoft Office oder am bekanntesten Ort: auf dem 

Desktop. 

Ein weiteres wichtiges Mittel zur Interaktion bei grafischen Oberflächen sind Menüs (deutsch für Befehlsüber-

sicht). Eine große Anzahl von Befehlen kann auf diese Weise übersichtlich aufgelistet werden. Dazu werden die 

Befehle in einer Baumstruktur mit Menüeintragen und Untermenüs (oder Untermenüeinträgen) strukturiert. 

Gleichartige Befehle können so in ein Untermenü positioniert und durch einen Überbegriff präsentiert werden.  

 

 

  

Abbildung 3 Menüs können in einer Baumstruktur dargestellt werden. Die Struktur hat sich nicht geändert, jedoch die Darstellung: oben 
ein Menü im  Textmodus unter DOS, unten links in Windows 3.1 und rechts Windows 7. 

Eng verwandt mit grafischen Benutzerschnittstellen ist die Nutzung eines Zeigegeräts oder auch Maus genannt. 

Der Benutzer manipuliert damit die Steuerelemente der grafischen Oberfläche indirekt über einen Mauszeiger 

(engl. pointer), ohne dass er dafür lange Befehlsketten auf der Tastatur eingeben müsste. Die Maus ist daher 

ein einfaches Werkzeug, um Steuerelemente anzuklicken oder zu verschieben. Ihr Erfolg besteht seit den 

1970ern und ist bis heute ungebrochen. 

 



 
17 Grundlagen und Stand der Technik 

Natürliche Benutzerschnittstelle 

 

Natürliche Benutzerschnittstellen ergeben sich aus dem Nachteil der grafischen Benutzeroberflächen, die dem 

WIMP (Window, Icon, Menu und Pointer) Paradigma folgen. Die Nutzung von Maus und Tastatur hat zwar Vor-

teile, trotzdem werden mit diesen Werkzeugen nur die Werte innerhalb des unsichtbaren Speichers manipu-

liert, indem Daten in Textfelder eingegeben oder Schiebregler bewegt werden. Das wichtigste Werkzeug des 

Menschen, die Hand, wird dadurch zu einem passiven Hilfsmittel. Sie wird durch die Technik unnötig einge-

schränkt.  

Mit den natürlichen Benutzerschnittstellen wird deshalb das Objekt selbst in den Vordergrund gerückt und 

direkt durch Fingereingaben manipulierbar gemacht, indem es berührt, vergrößert, verkleinert oder verscho-

ben wird. Die natürlichen Oberflächen nutzen die menschlichen Bewegungen und Gesten mit einem oder meh-

reren Fingern (Multi-Touch), um virtuelle Elemente auf dem Bildschirm zu manipulieren als wären es physikali-

sche Objekte. Der Benutzer kann dadurch die Oberfläche intuitiv und ohne bewusstes Vorwissen bedienen 

[Koller, et al., 2010]. Die größte Änderung dabei, so schreibt [Rädle, 2009 S. 12], ist das Fehlen einer physikali-

schen Tastatur und Maus, wo sie unnötig geworden sind (z.B. beim Internetseiten lesen). Derzeit lässt sich nur 

schwer abschätzen, ob und in wieweit natürliche Benutzerschnittstellen die herkömmlichen GUIs mit Fenstern 

und Menüs verdrängen können. Dies mag auch daran liegen, dass bis jetzt (2011) nur spielerische oder de-

monstrative Umsetzungen (siehe Abbildung 4) von NUI vorhanden sind. Dabei sehen die Umsetzungen vielver-

sprechend aus, doch sie besitzen laut einer Studie des Fraunhofer Instituts  kaum einen Anwendungsnutzen 

[Fraunhofer IAO, 2009 S. 70 und 78]. Zudem kann bereits die Anschaffung eines solchen Gerätes am  Preis 

scheitern – das Microsoft Surface kostet ca. 15.000 Euro.  

  
Abbildung 4 Demonstrative und spielerische Anwendungen auf dem MS Surface für 15.000 Euro.  

(Quelle: links [Microsoft, 2009], rechts [CNET News.com]) 

 

Organische Benutzerschnittstelle 

 

Die Möglichkeiten der natürlichen Benutzerschnittstelle sind weiterhin beschränkt auf die virtuellen Elemente, 

die vom Computer auf einem Bildschirm dargestellt werden. Sie bleiben daher in den zweidimensionalen Berei-

chen und ermöglichen keine direkte Manipulation, wie wir es gewohnt sind, wenn wir z.B. eine Kaffeemaschine 

bedienen oder eine Zeitung lesen.  

[Holman, et al., 2008] definiert organische Benutzerschnittstellen wie folgt: 

“An Organic User Interface is a computer interface that uses a non-planar display as a primary means of output, 

as well as input. When flexible, OUIs have the ability to become the data on display through deformation, either 

via manipulation or actuation. Their fluid physics-based graphics are shaped through multitouch and bimanual 

gestures.” 



 
18 Migration und Anpassung von Dialoganwendungen für berührungsempfindliche Bildschirme 

Wenn die gesamte Maschine mit einer biegsamen Benutzeroberfläche ausgestattet wird, so wird damit auch 

der gesamte Computer zum Ein- und Ausgabemedium. Neue Interaktionsformen, die sonst nur mit realen Ob-

jekten möglich waren, können so auch mit einem Computer verwendet werden. Eine recht eindrucksvolle Vor-

stellung sind biegsame Papiercomputer, die eine Eingabe durch die Interaktionsformen Verbiegen oder Stapeln 

von mehreren Geräten erkennen (Abbildung 5). 

 

 

Abbildung 5 Prototypen von interaktiven Papiercomputern. Mehrere solcher Geräte lassen sich stapeln. Das Durchblättern von 
mehreren solcher Computer ändert ihren Inhalt analog zu einem Stapel Papier. [Holman, et al., 2008] 

Die „Natürlichkeit“ der neuen organischen Benutzerschnittstellen hat mehrere Vorteile gegenüber den heuti-

gen Maschinen wie PC, Laptop oder Mobiltelefon. So ist die Zeitung oder das Buch aus Papier immer noch sehr 

beliebt, da es nach  [Holman, et al., 2008] auf viele verschiedene Arten mit beiden Händen gegriffen werden 

kann. Eine Zeitung oder Buch kann zum Beispiel schnell oder langsam durchgeblättert, auf einen Tisch gelegt 

und gestapelt werden. Neue Technologien wie flexible OLED-Bildschirme oder die Papiercomputer können 

bereits heute einen Einblick geben, wie organische Benutzerschnittstellen in Zukunft aussehen könnten. Eine 

ungelöste Frage besteht jedoch noch: Wie muss die Software für organische Benutzerschnittstellen gestaltet 

werden? 

 

2.3 Berührungsempfindliche Interaktion 
 

Es existiert eine Vielzahl von verschiedenen Technologien, um eine direkte Interaktion auf einem Bildschirm 

zuzulassen. Zudem können verschiedene Arten von Methoden der Interaktion auf einen solchen Bildschirm 

angewendet werden.  Die folgenden Kapitel stellen daher zuerst unterschiedliche Technologien für berüh-

rungsempfindliche Bildschirme vor (Kapitel 2.3.1), um danach Interaktionsmethoden für die berührungsemp-

findliche Eingabe zu beschreiben (Kapitel 2.3.2). 

2.3.1 Technologien 

 

Obwohl berührungsempfindliche Bildschirme schon seit den 1960er oder den 1970er Jahren existieren (nach 

[Breier, 2010] bzw. [Schöning, et al., 2008]) wurden sie doch erst durch die Einführung von mobilen Geräte bei 

einer breiten Bevölkerungsschicht populär. Mittlerweile existieren verschiedene Technologien, die je nach 

Anforderung und Preisklasse eingesetzt werden können: 

 

 



 
19 Grundlagen und Stand der Technik 

 Druckempfindliche Bildschirmoberflächen 

 Ladungsempfindliche Bildschirmoberflächen 

 Akustische Bildschirmoberflächen 

 Optische Bildschirmoberflächen 

Druckempfindliche Bildschirmoberflächen 

 

Die am häufigsten verwendete Touch-Technologie nach [Breier, 2010] nutzt zwei in Abstand gehaltene, strom-

leitende Schichten, die sich durch Druck auf eine Stelle verbinden können. Dazu wird an den Rand einer der 

Schichten eine Spannung angelegt, die zur anderen Seite gleichmäßig abfällt. Wird nun Druck, z.B. durch einen 

Finger, auf die Bildschirmoberfläche ausgeübt verbinden sich beide Schichten an dieser Stelle. Die Schichten 

bilden damit einen sogenannten Spannungsteiler. An den Rändern der zweiten Schicht können so zwei ver-

schiedene Spannungen gemessen werden, deren Verhältnis eine Dimension der Positionskoordinaten ist. Um 

die zweite Dimension zu erhalten wird die Messung mit vertauschten Rollen der Schichten wiederholt (siehe 

Abbildung 6). 

Die Technik der druckempfindlichen Bildschirme erlaubt daher auch den Einsatz von beliebigen Werkzeugen 

wie Stiften (z.B. dem Stylus) oder sogar Fingernägel. Doch lassen die Schichten nur 75 Prozent der Bildschirm-

helligkeit durch, so dass das Bild insgesamt dunkler wirkt und Menschen mit einer Sichtbehinderung das Lesen 

erschwert wird [tiresias.org, 2009]. Zudem erschwert der Umstand, dass die leitenden Schichten durch Druck 

sich berühren müssen, die Bedienung solcher Bildschirme. Ein zu gering ausgeübter Druck kann daher zu Einga-

befehlern, wie eine nicht erkannte Eingabe, führen und den Nutzen schmälern.  

 

 

1. Widerstandsfähige Beschichtung 

2. Leitende Oberschicht 

3. Abstandshalter 

4. Resistive Beschichtung 

5. Glasscheibe 

6. Bildschirmfläche 

 
Abbildung 6 Druckempfindliche Bildschirmoberflächen bestehen aus mehreren Schichten. Durch den Druck des Fingers berühren sich die 

leitendenden Schichten und ermöglichen so eine Bestimmung der Position.  Bild:  [Tyco Electronics, 2010] 

 

Ladungsempfindliche Bildschirmoberflächen 

 

Im Gegensatz zu den druckempfindlichen Bildschirmoberflächen funktionieren die ladungsempfindlichen Bild-

schirmoberflächen ohne starken Druck auf die leitende Oberschicht. Stattdessen funktioniert der Bildschirm 

wie ein Kondensator, dessen Ladung durch eine Berührung mit dem Finger abfließt. Dieser Spannungsabfall 

wird von einem integrierten Mikroprozessor erkannt und in Positionswerte umgerechnet. Gegenüber druck-

empfindlichen Bildschirmen ist die ladungsempfindliche Technik resistenter gegenüber mechanischen Beschä-

digungen, da die Bildschirmoberfläche nicht verformbar sein muss. Daher werden die ladungsempfindlichen 

Bildschirme auch gerne in öffentlichen Automaten wie  Fahrkartenschaltern eingesetzt [Schöning, et al., 2008]. 

Zudem besitzt diese Art von Bildschirmen eine höhere optische Transparenz, was sie zwar heller, jedoch auch 

teurer als die druckempfindlichen Bildschirme macht. 



 
20 Migration und Anpassung von Dialoganwendungen für berührungsempfindliche Bildschirme 

 

Abbildung 7 Ladungstransport bei Berührung der geladenen Bildschirmoberfläche. Der Finger lässt bei einer Berührung der Oberfläche 
die  Spannung abfallen, so dass die Position der Berührung bestimmt werden kann.  Bild:  [VISAM] 

 

Akustische Bildschirmoberflächen 

 

Akustischen Bildschirmoberflächen nutzen Mikrofone an den Bildschirmrändern einer Glasscheibe. Durch An-

tippen der Glasoberfläche wird Schall erzeugt, der von den Mikrofonen erkannt wird. Die Laufzeitunterschiede 

zu den verschiedenen Mikrofonen ermöglichen dabei die Position der Quelle zu ermitteln. 

 

 

Abbildung 8 Surface Acoustic Wave verwendet ein Ultraschallwellenraster, das bei einer Berührung verändert wird. Eine Berührung der 
Scheibe absorbiert einen Teil der Wellen, so dass die Position der Berührung bestimmt werden kann.  Bild: [VISAM] 

 



 
21 Grundlagen und Stand der Technik 

Die Technik Surface Acoustic Wave (SAW) setzt Ultraschallwellen in einer Glasscheibe ein. Die Schallwellen 

werden von Sendern und Empfängern an den horizontalen Bildschirmrändern abgegeben und aufgenommen. 

Dadurch ergibt sich ein Raster (siehe Abbildung 8), welches zur Positionsbestimmung genutzt wird. Bei einer 

Berührung der Oberfläche wird ein Teil der ausgesendeten Wellen absorbiert und ermöglicht beim Empfänger 

nicht nur eine Erkennung des Antippens, sondern auch die Kraft des Antippdrucks, je nachdem wie stark die 

Welle gedämpft wurde [VISAM]. 

Die Vorteile der akustischen Technik liegen in der hohen Lichttransparenz durch den Einsatz von durchsichti-

gem Glas. Die Robustheit gegenüber Vandalismus wird zudem erhöht, wenn verstärktes Glas, sogenanntes 

„Gorilla-Glas“ eingesetzt wird. Die Bedienbarkeit ist jedoch auf die Finger mit oder ohne Handschuh beschränkt 

und erfordert je nach Empfindlichkeit der Mikrofone mehr ein Klopfen anstatt eines Antippens der Glasplatte. 

Durch diesen Umstand entfällt auch die Möglichkeit ziehenden Bewegungen auf der Oberfläche (z.B. für Drag & 

Drop) durchzuführen. 

 

Optische Bildschirmoberflächen 

 

Es existieren verschiedene Umsetzungen von optischen Bildschirmen. Alle gemeinsam nutzen Licht (meistens 

im Infrarotbereich) und dessen Brechung und Zerstreuung an einem fast durchsichtigen Material (z.B. Acryl-

glas). Liegt ein Gegenstand auf dem Glas oder berührt ein Benutzer das Glas, so ändert sich die Lichtbrechung, 

die dann durch eine Kamera unterhalb des Bildschirms erkannt werden kann. Die Techniken 

 Diffuse Surface Illumination (DSI),   

 Front  Diffuse Illumination (FDI) und   

 Frustrated  Total  Internal Reflection (FTIR) (vorgestellt in [Han, 2005]) 

sind Umsetzungen, die dieses Prinzip nutzen. Sie sind in Abbildung 9 dargestellt. Die darin eingesetzten Kame-

ras erzeugen Bilder, die in Echtzeit von einem Computer ausgewertet werden und dadurch eine flüssige Bedie-

nung der Benutzeroberfläche ermöglichen. 

Vorteil dieser Techniken ist die hohe Robustheit nach [Schöning, et al., 2008] und die zusätzliche Erkennung 

von abgelegten Objekten an Hand ihrer Form (vgl. [Breier, 2010 S. 8]). 

Eine weitere optische Technik nutzen auch Bildschirme, deren Oberfläche selbst nicht berührungsempfindlich 

ist. Stattdessen wird ein Raster aus Infrarotstrahlen knapp über der Bildschirmoberfläche durch Dioden er-

zeugt. Diese Dioden bilden mit Fotozellen als Empfänger ein Gitter, welches um den gesamten Rand des Bild-

schirms geht und das durch einen Finger oder Stylus unterbrochen werden kann. Die Unterbrechung von ein-

zelnen Infrarotstrahlen ermöglicht so die Bestimmung des Berührungsortes auf der Bildschirmoberfläche.  

Diese Technik ist relativ billig und zudem unabhängig von der notwendigen Leitfähigkeit des Fingers, wie bei 

ladungsempfindlichen Bildschirmoberflächen. Doch mit der Zeit können Schmutz und Staub, die sich an den 

Bildschirmrändern abgelagert haben, die Infrarotstrahlen unterbrechen und so eine Nutzung erschweren oder 

gar verhindern [Porteck, 2011 S. 129].  

 



 
22 Migration und Anpassung von Dialoganwendungen für berührungsempfindliche Bildschirme 

 

 
 

 
Abbildung 9 Verschiedene optische Bildschirmaufbauten (v.o.n.u. FTIR, DI, DSI). Eine Kamera nimmt unterhalb der Bildschirmoberfläche 

Veränderungen auf der Oberfläche durch Lichtstreuung wahr. Bilder: [Roth, 2008] 

2.3.2 Interaktionsmethoden  

 

Eine Methode ist nach [Fischer, et al., 2008] ein „*…+ Weg bzw. Art, wie man zu einem angestrebten Ziel ge-

langt.“ Damit beschreiben berührungsempfindliche Interaktionsmethoden die Art und Weise, wie durch Berüh-

rung eine Aufgabe erledigt werden kann. Die Interaktionsmöglichkeiten mit einem oder mehreren Fingern sind 

in Touchumgebungen auf vier Arten beschränkt:  

1. An-/Tippen (oder Klopfen) 

2. Halten 

3. Bewegen 

4. Gestik 

Dabei besteht die Gestik aus einer Kombination der drei ersten Interaktionsmöglichkeiten. Gesten sind daher 

keine unabhängige Eingabeart, sondern bestehen immer aus Antippen, Halten und Bewegen der Finger bzw. 



 
23 Grundlagen und Stand der Technik 

Hand. In einer Studie von [Blascheck, et al., 2010/2011] werden Handgesten basierend auf [Pavlovic, 1997] wie 

folgt definiert: „Eine Handgeste ist eine kontinuierliche, zeitliche Folge von Handposen über ein bestimmtes 

Zeitintervall. Dabei ist eine Handpose die Form, Position und Orientierung der Hand und der Finger zu einem 

bestimmten Zeitpunkt.“ Erst der Einsatz von Gesten ermöglicht die effiziente Bedienung einer Benutzerschnitt-

stelle. Beispielsweise werden die bereits vorgestellte natürlichen Benutzerschnittstellen aus Kapitel 2.2 aus-

schließlich über Finger bedient. Doch auch grafische Schnittstellen sind auf diese Weise zu manipulieren, wenn 

die  Interaktionsmethoden der Fingereingabe die Methoden von Maus und Tastatur ersetzen können. So stel-

len [Matejka, et al., 2009] eine Lösung vor, um die Maussteuerung durch eine Fingergestik zu ersetzen. 

Dadurch kann jede Maustaste durch Tippen von zwei oder mehreren Fingern emuliert werden (Abbildung 10). 

 

Abbildung 10 Maustasten und das Mausrad können durch Finger simuliert werden [Matejka, et al., 2009]. Die rechte Maustaste und 
Scrollrad werden durch eine Fingerkombination ersetzt. 

Neben Fingergesten können auch andere Arten von Gesten verwendet werden, um Elementen einer Benutzer-

oberfläche zu steuern. In einem Dokument über Touch von [Microsoft] werden fünf Gesten vorgestellt, die von 

Anwendungen mit dem Windows Entwicklungstoolkit (Windows SDK) angewendet werden können, um berüh-

rungsempfindliche Eingaben zu unterstützen: 

Geste Beschreibung Darstellung 

Verschieben, 
Schwenken 
(engl. panning) 

Ein Objekt oder eine Ansicht wird durch einen oder 
zwei Finger von einer Position zu einer anderen 
bewegt. Durch Loslassen wird die Geste beendet. 

 
Größenänderung 
(engl. zoom) 

Ein Objekt oder eine Ansicht wird durch zwei Finger, 
die sich gleichzeitig auf dem Bildschirm befinden, 
vergrößert oder verkleinert, indem die Finger sich 
voneinander weg- oder aufeinander zubewegen. 

 
Rotieren 
(engl. rotate) 

Ein Objekt oder eine Ansicht wird durch zwei Finger, 
die sich gleichzeitig auf dem Bildschirm befinden, um 
einen Finger rotiert, indem der zweite Finger im 
Kreis um den ersten bewegt wird. 

 
Antippen mit zwei 
Fingern 
(engl.  
two-finger tap) 

Diese Geste soll den voreingestellten Zustand der 
Größe oder Anzeige eines Objekts oder Ansicht wie-
derherstellen. Die Geste wird ausgeführt, indem 
zwei Finger gleichzeitig die Oberfläche antippen.  
  

Halten und Tippen 
(engl. press and tap) 

Diese Geste simuliert einen Rechtsklick mit der Maus 
am Ort des ersten Fingers. Die Geste beginnt mit 
dem Antippen und Halten eines Fingers auf dem 
Objekt, gefolgt von einem zweiten Finger, der die 
Geste durch ein einmaliges Klopfen beendet  und 
den Rechtsklick damit auslöst. 

 

Tabelle 1 Gesten mit einem oder mehreren Fingern lösen vielfältige Aktionen aus.  

 



 
24 Migration und Anpassung von Dialoganwendungen für berührungsempfindliche Bildschirme 

2.4 Dialoge 
 

Dialoge stellen ein zentrales Thema dieser Arbeit dar. Daher ist es notwendig, zuerst einmal zu wissen was 

Dialoge sind und wie sie beschrieben werden können. Die folgenden Kapitel führen in die Grundlagen der Dia-

loge ein.  

Zuerst wird in Kapitel 2.4.1 die grundlegendste Aufgabe von Dialogen erläutert und welche weiteren Formen 

von Dialogen existieren. In den darauf folgenden Kapiteln wird erklärt, wie Dialoge grundsätzlich gestaltet wer-

den sollten, wie Benutzer mit Dialogen interagieren können und wie diese Interaktionsformen genannt werden. 

Für die Entwicklung von Dialogen ist ein Modell oder eine Sprache erforderlich, die den Dialog für Computer 

beschreiben. Diese Arten von Dialogbeschreibungssprachen werden in Kapitel 2.4.4 erläutert. Abgeschlossen 

wird das Kapitel über Dialoge mit einer Demonstration über den Einfluss der Punktdichte von Bildschirmen auf 

Dialoge (Kapitel 2.4.5). 

 

2.4.1 Einführung 

 

Dialogfenster dienen dem Benutzer zur Eingabe und Abfrage von Daten sowie zur Bestätigung derselben. Dia-

loge beinhalten dazu Steuerelemente (Textfelder, Schiebregler usw.), die es dem Benutzer ermöglichen die 

angezeigten Werte zu ändern, zu bestätigen („OK“) oder auf voreingestellte Werte zurückzusetzen („Abbre-

chen“). 

Dialogfenster können modal oder nichtmodal betrieben werden. Modal bedeutet, dass die Fortsetzung des 

Programmablaufs mit dem Schließen des Dialogs verknüpft ist. So können Falscheingaben unterbunden und 

Folgefehler verhindert werden. Nichtmodale Dialoge können vom Benutzer auch während das Hauptprogramm 

läuft angesprochen werden (natürlich auch andersherum) und zeigen zum Beispiel Detailinformationen für im 

Hauptprogramm ausgewählte Objekte an. 

Betriebssystem APIs (z.B. MessageBox mit dem Windows SDK) und Frameworks (z.B. MessageDlg in Delphi) 

bieten unterschiedliche Arten von vordefinierten Dialogen an. So erlauben Nachrichtendialoge kurze Textaus-

gaben zum aktuellen Status der Anwendung (d.h. Fehler-, Warn- oder Informationsmeldung). Meistens kann 

der Benutzer den Dialog nur durch einen Klick auf einen Bestätigungsschaltknopf („OK“) beenden. Es gibt aber 

auch Dialoge, die dem Benutzer durch weitere Druckschalter („Ja“, „Nein“, „Ignorieren“) eine gewisse Einfluss-

nahme auf den weiteren Programmablauf bieten. 

 

Weitere Dialoge werden für das Öffnen und Speichern von Dateien sowie zur Auswahl von Druckern angebo-

ten. Diese sogenannten Standarddialoge einer Benutzeroberfläche ermöglichen für alle Anwendungen eines 

Betriebssystems ein einheitliches Erscheinungsbild und eine gleichartige Benutzbarkeit. Zudem haben Stan-

darddialoge den Vorteil, dass Entwickler sich besser auf die eigentliche Programmentwicklung konzentrieren 

können, ohne eigene Dialoge für diese Art von Standardfunktionen erstellen zu müssen. 

Eine neue Art von Standarddialogen, der sogenannte Aufgabendialog (engl. task dialog, siehe Abbildung 11 

rechtes Bild) wurde mit Windows Vista eingeführt [Microsoft, 2011]. Sie sind weit aus flexibler als die Nachrich-

tendialoge, denn sie enthalten neben Steuerelementen auch große und selbsterklärende Befehlsschalter (engl. 

command button). Die Aufgabendialoge können vom Anwendungsentwickler sehr flexibel gestaltet werden. 

Trotzdem bleiben ihr Aufbau und ihre Bedienung auch über Anwendungsgrenzen hinweg gleich, weil alle Auf-

gabendialoge aus einer Vorlage stammen. 



 
25 Grundlagen und Stand der Technik 

 

 
Abbildung 11 Links eine Standardabfragedialog mit den bekannten Schaltknöpfen. Der rechte Aufgabendialog setzt die Abfrage des 

linken Dialogs mit großflächigen und selbsterklärenden Befehlsschaltern um. 

 

2.4.2 Gestaltungsgrundsätze 

 

Die Norm DIN EN ISO 9241-10 definiert sieben Grundsätze für die Gestaltung von Dialogen. Sie wurden unab-

hängig von der Art des Dialogs oder des verwendeten Interaktionsstils entworfen. Die Grundsätze sind Aufga-

benangemessenheit, Selbstbeschreibungsfähigkeit, Steuerbarkeit, Erwartungskonformität, Fehlertoleranz, 

Individualisierbarkeit und Lernförderlichkeit. Im Folgenden sollen diese kurz vorgestellt werden. Für eine aus-

führliche Behandlung können u.a. die folgenden Quellen genutzt werden, auf die sich auch die Übersicht stützt: 

[Heinecke, 2004 S. 168ff.], [Wessel, 2002 S. 38ff.] oder [Köth, 2001]. 

 

Aufgabenangemessenheit 

 

Die Norm ISO 9241-10 definiert die Aufgabenangemessenheit von Dialogen wie folgt:  

„Ein Dialog ist aufgabenangemessen, wenn er den Benutzer unterstützt, seine Arbeitsaufgabe effektiv und effi-

zient zu erledigen.“ 

Dialoge sollten nach dieser Empfehlung nur die notwendigen Informationen enthalten, die für den Benutzer 

zum aktuellen Zeitpunkt für die Aufgabe nützlich sind (z.B. keine Hardwareinformationen bei einem Kunden-

formular). Aufgaben, die automatisch ausgeführt werden können, dürfen den Benutzer nicht mehr belasten 

(„Der Ordner Z existiert nicht. Soll er angelegt werden?“). Zudem hat das Dialogsystem den Benutzer bei wie-

derkehrenden Aufgaben zu unterstützen, indem z.B. Eingabemasken bereits mit voreingestellten Werten aus-

gefüllt sind. 

 

Selbstbeschreibungsfähigkeit 

 

„Ein Dialog ist selbstbeschreibungsfähig, wenn jeder einzelne Dialogschritt durch Rückmeldung des Dialogsys-

tems unmittelbar verständlich ist oder dem Benutzer auf Anfrage erklärt wird.“ 

Dialogsysteme sollten die Benutzer durch Rückmeldungen über die Konsequenzen ihrer Handlung informieren, 

beispielsweise wenn dadurch Daten unwiederbringlich verloren gehen könnten („Möchten Sie alle Daten aus 

dem Formular durch voreingestellte ersetzen?“). Über Fehler bei der Eingabe von Daten sollte nicht nur der 

Benutzer informiert werden, sondern es sollte auch der Ursprung (z.B. ein bestimmtes Eingabefeld) und ein 

Korrekturvorschlag angegeben werden (z.B. für Datum TT.MM.JJJJ). Zudem sollte die Rückmeldung entspre-

chend den Kenntnissen des Benutzers angepasst sein, indem z.B. technische Informationen (Speicheradresse, 

Ausnahmebezeichner) für Experten nur auf Anfrage (ein Schalter „Mehr technische Informationen“) ausgege-

ben werden. Alle anderen Benutzer sollten dagegen nicht nur über den Fehler, sondern auch über eine mögli-



 
26 Migration und Anpassung von Dialoganwendungen für berührungsempfindliche Bildschirme 

che Lösung aufgeklärt werden („Der Suchbegriff ist zu kurz. Bitte geben Sie einen Suchbegriff mit mindestens 3 

Zeichen ein und wiederholen Sie die Suche anschließend.“). 

 

Steuerbarkeit 

 

„Ein Dialog ist steuerbar, wenn der Benutzer in der Lage ist, den Dialogablauf zu starten sowie seine Richtung 

und Geschwindigkeit zu beeinflussen, bis das Ziel erreicht ist.“ 

Die Geschwindigkeit, in der ein oder mehrere Dialoge bearbeitet werden, sollte immer vom Benutzer abhängig 

sein. D.h. ein Dialogfeld verschwindet erst, nachdem der Benutzer es abgeschlossen hat.  Zur Steuerbarkeit 

zählt auch dem Benutzer die Möglichkeit zu geben, wie ein Dialog fortgesetzt (z.B. mit Eingabe- oder Tabulator-

taste) oder wie er jederzeit abgebrochen werden kann (z.B. mit Esc Taste). Eine weitere Empfehlung sieht zu-

dem vor bei mehreren Eingabegeräten (u.a. Maus, Stift oder Finger) dem Benutzer die Wahl zu lassen, welche 

Eingabeart verwendet wird. 

 

Erwartungskonformität 

 

„Ein Dialog ist erwartungskonform, wenn er konsistent ist und den Merkmalen des Benutzers entspricht, z. B. 

seinen Kenntnissen aus dem Arbeitsgebiet, seiner Ausbildung und seiner Erfahrung sowie den allgemein aner-

kannten Konventionen.“ 

Eine gleichbleibende Bedienung eines Dialogsystems ist notwendig, um dem Benutzer die Arbeit so effizient 

wie möglich erledigen zu lassen, ohne dass er sich auf die Bedienung konzentrieren muss. Dazu zählen, dass 

Dialoge bei ähnlichen Aufgaben entsprechend ähnlich aussehen und sich gleich bedienen lassen (z.B. zwei ähn-

liche Dialoge für Kunden- und Mitarbeiterdatenerfassung). Die Bedienung des Dialogs sollte konsistent bleiben. 

Beispielsweise möchte der Benutzer eine Hilfe mit F1 erhalten oder zwischen Steuerelementen mit der Tabula-

tor Taste springen. Benötigt das System für die Bearbeitung einer Aufgabe außerdem eine längere Zeitspanne, 

dann sollte während dieser Dauer ein Fortschrittsdialog angezeigt werden, welcher dem Benutzer den aktuel-

len Arbeitsverlauf mitteilt.  

 

Fehlertoleranz 

 

„Ein Dialog ist fehlertolerant, wenn das beabsichtigte Arbeitsergebnis trotz erkennbar fehlerhafter Eingaben 

entweder mit keinem oder mit minimalem Korrekturaufwand seitens des Benutzers erreicht werden kann.“ 

Die Eingaben des Benutzers sollten vom Dialogsystem geprüft und Fehler sowie eine Beschreibung dem Benut-

zer zurückgemeldet werden. Es ist jedoch genauso möglich Fehler automatisch korrigieren zu lassen. In diesem 

Fall sollte der Benutzer über die Korrektur informiert und eine Gelegenheit geboten werden, den Korrekturvor-

schlag zu überschreiben. 

 

Individualisierbarkeit 

 

„Ein Dialog ist individualisierbar, wenn das Dialogsystem Anpassungen an die Erfordernisse der Arbeitsaufgabe 

sowie an die individuellen Fähigkeiten und Vorlieben des Benutzers zulässt.“ 

Kann ein Dialog individualisiert werden,  bedeutet dies für den Benutzer den Dialog nach seinen Vorlieben und 

Vorstellungen anzupassen. Dies kann  z.B. die Sprache der Texte sein oder wie der Dialog und dessen Steue-

relemente dargestellt werden (z.B. Layout, Größe und Position). Während Einsteiger durch zusätzliche Informa-

tionen angeleitet werden können, wollen Experten möglichst effizient durch den Dialog gelangen, z.B. indem 

sie Abkürzungen (Shortcuts) verwenden.  



 
27 Grundlagen und Stand der Technik 

 

Lernförderlichkeit 

 

„Ein Dialog ist lernförderlich, wenn er den Benutzer beim Erlernen des Dialogsystems unterstützt und anleitet.“ 

Dialoge sollten den Benutzer unterstützen, sein Wissen selbständig zu erweitern. Dies kann z.B. durch ein um-

fangreiches Hilfesystem oder durch kurze Hilfestellungen (engl. tooltips)  zum jeweiligen Problembereich (z.B. 

fokussiertes Steuerelement) erreicht werden. Zudem kann ein Benutzer auch beim Ausprobieren („Learning by 

doing“) unterstützt werden, indem jeder Schritt rückgängig gemacht werden kann.  

 

2.4.3 Taxonomie der Benutzerinteraktionen 

 

Neben sensorischen Eingabearten (z.B. Gesichts-, Sprach- und Berührungserkennung) werden bei grafischen 

Dialogsystemen größtenteils einfache Benutzerinteraktionen eingesetzt (siehe Abbildung 12).  [Paulenz, 2010] 

beschreibt diese grundlegenden Interaktionen basierend auf [Barclay, et al., 1999] und [Meixner, et al., 2008] 

und teilt sie in fünf Kategorien ein: 

 

Ausführung 

 

Die Ausführung von Funktionen einer Anwendung ist die grundlegendste Interaktion zwischen einem Benutzer 

und einem System. Die Ausführung wird durch ein Kommando, das als Schaltknopf (siehe Tabelle 17 Steue-

relemente: Bezeichnung, Symbol und Kurzbeschreibung  im Anhang auf Seite 134) oder Menüeintrag zur Ver-

fügung steht, ausgelöst und ermöglicht verschiedene Aktionen wie das Speichern eines Dokuments, das Wie-

derherstellen eines voreingestellten Wertes sowie das Bestätigen oder Abbrechen eines Dialogs. 

 

Ausgabe 

 

Die Ausgabe gehört strenggenommen auch zu den Benutzerinteraktionen. Mit der Ausgabe werden Rückmel-

dungen (engl. feedback) und die aktuellen Daten der Anwendung bezeichnet, die auf eine Benutzereingabe 

folgen. Beispielsweise werden die zuletzt in einem Dialog eingegebenen Werte durch das Klicken eines Schalt-

knopfes geprüft und bei möglichen aufgetretenen Fehlern eine Meldung ausgegeben. 

 

Eingabe 

 

Die Eingabe wird bestimmt durch die Übermittlung von neuen Werten an ein System. Bei der Eingabe sind 

keine Werte vorgegeben, sondern müssen vollständig neu vom Benutzer eingegeben werden. 

 

Bearbeitung 

 

Die Bearbeitung ermöglicht die Änderung oder das Anpassen von im System bereits vorhandenen Werten. Statt 

leere Eingabefelder für Texte oder Zahlen dem Benutzer zu präsentieren, sind die Eingabefelder bereits mit  

durch das System voreingestellten Werten gefüllt. Diese Werte können vom Hersteller vordefiniert worden 

sein oder aus vorangegangenen Eingaben stammen. Die Bearbeitung ist daher ein Spezialfall der Eingabe und 

vermeidet zusätzlichen Arbeitsaufwand für den Benutzer.  

 



 
28 Migration und Anpassung von Dialoganwendungen für berührungsempfindliche Bildschirme 

Auswahl 

 

Mit der Auswahl kann der Benutzer ein oder mehrere Elemente aus einer Menge von Elementen auswählen. Es 

können drei Klassen unterschieden werden: 

1. Die Einzelauswahl von Werten, wie es bei einem Dropdown-Listenfeld möglich ist. 

2. Die Mehrfachauswahl von verschiedenen Werten, wie es bei Listen (z.B. Dateien im Windows Explo-

rer) möglich ist. 

3. Die Bereichsauswahl von Werten, d.h. auch die Auswahl von Werten, die innerhalb eines bestimmten 

Bereichs liegen. 

 

Abbildung 12 Benutzerinteraktionen  in Dialogen können in verschiedene Kategorien aufgeteilt werden 

 

2.4.4 Dialogbeschreibungssprachen 

 

Dialoge sind Benutzungsschnittstellen, die durch ein Modell oder eine Dialogbeschreibungssprache spezifiziert 

werden können. Die eigentliche Darstellung für den Benutzer erfolgt durch eine von dem eingesetzten Frame-

work abhängige Dialogbeschreibungssprache. Aus der modellgetriebenen Entwicklung (Model Driven Enginee-

ring) sind eine Menge von sogenannten Dialoggeneratoren bekannt (vgl. [Schlegel, et al., 2010]), die aus abs-

trakten Modellen interaktive Dialoge erstellen. Die Dialogbeschreibungssprachen können in abstrakte und 

konkrete Sprachen unterteilt werden, die im Folgenden vorgestellt werden. 

 

Abstrakte Benutzungsschnittstellen 

 

Abstrakte Benutzungsschnittstellen (AUI, engl. Abstract User Interface) kennzeichnen sich durch ihre Unabhän-

gigkeit von einem bestimmten Framework aus. Ihre Inhalte werden durch Modelle definiert, die die eigentli-

chen Daten sowie ihren Nutzen (z.B. Uhrzeit, Datum oder Währung) beschreiben. Diese Beschreibungen ent-

halten daher keine Details, die von Frameworks gefordert werden, um die Darstellung auf dem Bildschirm oder 

anderen Ausgabegeräten zu erreichen. Als Beispiel für ein abstraktes Steuerelement liefert [Paternò, 2005] : 

“*…+ at a given point there is a need for a selection object without indicating whether the selection is performed 

graphically or vocally or through a gesture or some other modality.” 

AUIs wurden durch die Entwicklung von modellbasierten Ansätzen bekannt. Die Ansätze nutzen Modelle, um 

Dialoge unabhängig von der einzusetzenden Plattform zu beschreiben. Nach [Paternò, et al., 2009] war eine 

der ersten Entwicklungen das UIDE (User Interface Design Environment) von [Foley, et al., 1995], welches Dia-

Benutzer-

interaktion 

Ausgabe Auswahl Ausführung Eingabe  Bearbeitung 

Einfach Mehrfach Bereich 



 
29 Grundlagen und Stand der Technik 

logoberflächen durch Schemata aus Objekten und Aktionen erstellte. Dieses Projekt wird jedoch nicht mehr 

weiterverfolgt.  

Die nachfolgenden Ansätze verließen schließlich den objektorientierten Ansatz von [Foley, et al., 1995] und 

arbeiten stattdessen mit einer semantischen Beschreibung der Interaktion. Dazu werden Aufgabenmodelle 

(engl. task model) definiert, um Aktionen ausdrücken zu können, die der Benutzer in der Oberfläche ausführen 

kann. Ein Vertreter dieser Lösung ist ConcurTaskTrees (CTT) von [Paternò, et al., 1997] (siehe auch Kapitel 2.5.2 

Reverse Engineering und [W3C, 2009]). CTT ist eine grafische Notation, die eine hierarchische Struktur besitzt 

und Aktivitäten einsetzt, um einen Aktion zu beschreiben. Eine zusätzliche Eigenschaft der CTT bildet die Unter-

stützung von Fehlerbehandlungen, die durch sogenante zeitliche Operatoren umgesetzt werden. Paternò et al. 

argumentieren, dass CTT daher flexibler als andere Modelle ist, dennoch aber leicht verständlich bleibt. 

Aktuell werden gerade auch wegen neuer Geräteplattformen im Mobilbereich verstärkt Modellierungsspra-

chen eingesetzt, die an die Geräte und ihren unterschiedlichen Merkmalen (Leistung, Auflösung, Eingabeart 

usw.) angepasste Dialogformen erlauben. Diese Sprachen werden deshalb nicht mehr als „abstrakt“ bezeich-

net, sondern beschreiben konkrete Benutzungsschnittstellen. Sie werden im nächsten Abschnitt beschrieben. 

 

Konkrete & finale Benutzungsschnittstellen 

 

Konkrete Benutzungsschnittstellen hängen nach [Paternò, 2005] vom Typ der Plattform und vom Ausgabegerät 

ab. Sie besitzen eine Vielzahl von Eigenschaften, die das Aussehen und Verhalten von Dialogen beeinflussen 

können, jedoch immer von der Zielplattform abhängig sind. Weiterhin definiert [Paternò, 2005] die finale Be-

nutzungsschnittstelle, die nicht nur von der eingesetzten Plattform abhängig ist, sondern auch von der verwen-

deten Softwareumgebung wie beispielsweise C# und XAML.  

Im Folgenden werden zwei Arten, wie Dialoge für eine Plattform beschrieben werden können, vorgestellt.  

1. Ein Dialog wird durch eine Programmiersprache (Java, C++) realisiert. 

2. Ein Dialog wird in einer externen, vom Quelltext unabhängigen Form beschrieben : XAML 

 

 

Programmiersprachen 

 

Die offensichtlichste Art und Weise, um Oberflächen zu erstellen, sind die Klassen und Methoden eines Frame-

works direkt zu nutzen, indem Instanzen erstellt und Attribute gesetzt werden. Ohne einen Oberflächendesig-

ner ist dies meist auch die einzige Möglichkeit Oberflächen zu gestalten. Dabei vermischt sich der Quelltext für 

die Erstellung der Oberfläche mit anderen Quelltextbestandteilen wie der Programmlogik und dem Ereignis-

management.  

Es ist nicht verwunderlich, dass Frameworks zuerst keine grafischen Dialogeditoren besaßen. Sie wurden erst 

später oftmals durch Dritthersteller geliefert. So wurde Borlands Turbo Pascal 6.0 (1990) mit einer objektorien-

tierten GUI mit dem Namen Turbo Vision ausgestattet. Die Oberfläche wurde dabei ausschließlich mit Objekten 

im Quelltext erzeugt (Abbildung 13). Erst nachträglich gab es von Hobbyprogrammierer erstellte Dialogdesig-

ner, die den Quelltext generierten.  



 
30 Migration und Anpassung von Dialoganwendungen für berührungsempfindliche Bildschirme 

  
Abbildung 13 Der Quelltext eines mit Turbo Vision erstellten Dialogs und die Darstellung des Dialogs in einer Turbo Vision Anwendung 

für MS DOS. 

 

Ein weiteres Beispiel ist Netbeans, eine von Oracle [Oracle]) entwickelte Entwicklungsumgebung. Sie bietet seit 

langem einen Dialogdesigner für das Framework Swing, um Dialoge grafisch mit der Maus bearbeiten zu kön-

nen.  

 

Abbildung 14 Ein Dialog in Java mit dem Framework Swing erstellt 

Abbildung 14 zeigt einen mit Java Swing in Netbeans erstellten Dialog. Bei Änderungen wird der Quelltext 1 

automatisch erstellt und die manuellen Änderungen des Entwicklers werden verworfen. Die Elemente werden 

als Instanzen in der Klasse abgelegt, um auch später noch darauf einen Zugriff zu ermöglichen. Das bedeutet, 

der Entwickler kann jederzeit alle Attribute der Steuerelemente ändern oder sie sogar löschen. Das Layout der 

Elemente wird durch Panel-Elemente vorgenommen, die durch ihre Attribute das Aussehen und Ausrichtung 

der in ihnen enthaltenen Kindelemente bestimmen.  

 

    /** This method is called from within the constructor to 
     * initialize the form. 
     * WARNING: Do NOT modify this code. The content of this method is 
     * always regenerated by the Form Editor. 
     */ 
    @SuppressWarnings("unchecked") 
    // <editor-fold defaultstate="collapsed" desc="Generated Code"> 
    private void initComponents() { 
 
        jButton1 = new javax.swing.JButton(); 
        jLabel1 = new javax.swing.JLabel(); 
        jScrollPane1 = new javax.swing.JScrollPane(); 
        jTree1 = new javax.swing.JTree(); 
 
        setDefaultCloseOperation(javax.swing.WindowConstants.DISPOSE_ON_CLOSE); 
 
        jButton1.setText("Ok"); 
 
        jLabel1.setText("Hello World"); 
 
        jScrollPane1.setViewportView(jTree1); 
 



 
31 Grundlagen und Stand der Technik 

        javax.swing.GroupLayout layout = new javax.swing.GroupLayout(getContentPane()); 
        getContentPane().setLayout(layout); 
        layout.setHorizontalGroup( 
            layout.createParallelGroup(javax.swing.GroupLayout.Alignment.LEADING) 
            .addGroup(layout.createSequentialGroup() 
                .addGroup(layout.createParallelGroup(javax.swing.GroupLayout.Alignment.LEADING) 
                    .addGroup(layout.createSequentialGroup() 
                        .addGap(31, 31, 31) 
                        .addComponent(jLabel1, javax.swing.GroupLayout.PREFERRED_SIZE, 213, 
javax.swing.GroupLayout.PREFERRED_SIZE)) 
                    .addGroup(layout.createSequentialGroup() 
                        .addGap(141, 141, 141) 
                        .addComponent(jButton1))) 
                .addContainerGap(57, Short.MAX_VALUE)) 
            .addGroup(javax.swing.GroupLayout.Alignment.TRAILING, layout.createSequentialGroup() 
                .addContainerGap(22, Short.MAX_VALUE) 
                .addComponent(jScrollPane1, javax.swing.GroupLayout.PREFERRED_SIZE, 260, 
javax.swing.GroupLayout.PREFERRED_SIZE) 
                .addGap(19, 19, 19)) 
        ); 
 […]  // snip 
        pack(); 
    }// </editor-fold> 

Quelltext 1 Dialoge können aus komplizierten Strukturen bestehen. Hier der Quelltext für den Dialog aus Abbildung 14. 

 

Um Anwendungen mit Oberflächen, die vollständig oder zum größten Teil mit Quelltext erstellt wurden auch 

wirklich für die Fingerbedienung nutzbar zu machen, müssen große Teile des Quelltexts gelesen und verstan-

den werden. Es ist wohl zweifelhaft, ob dies überhaupt lohnenswert ist. Stattdessen würde man einfach ent-

scheiden, eine solche Anwendung nicht für die Fingerbedienung zu überarbeiten. 

Denn letztendlich ist es nur sehr aufwändig aus einem bestehenden Quelltext Informationen über den Dialog  

zu extrahieren. Auch wenn Dialoge teilweise als Ressource und Quelltext vorliegen macht dies die Sache nicht 

einfacher. Denn die Verknüpfung zwischen Dialog und Quelltext maschinell zu erkennen erfordert einen zusätz-

lichen Entwicklungsaufwand für einen Interpreter. Womöglich wäre es in solch einem Fall einfacher die Ober-

fläche mit einem moderneren Framework neu zu gestalten, als den Quelltext mit einem eigenen Parser zu 

lesen und versuchen zu interpretieren. Weitere Nachteile, die Dialoge in Quelltextform mit sich bringen, sind in 

[Draheim, et al., 2006] beschrieben. 

 

XAML 

 

Die Extensible Application Markup Language (XAML, ausgesprochen „xemml“ (siehe [Doberenz, et al., 2008])) 

ist eine Oberflächenbeschreibungssprache in XML Syntax. Sie wurde zuerst von Microsoft für das WPF-

Framework entwickelt, wird mittlerweile jedoch auch in der Windows Workflow Foundation (siehe [WF]) ver-

wendet. Mit XAML wird eine strikte Trennung von Layout und Logik erreicht, so dass Entwickler und Designer 

unabhängig voneinander an einer Anwendung arbeiten können. Während der Entwickler sich um die Logik 

unterhalb der Oberfläche kümmert, kann der Designer das Aussehen mit eigenen Grafiken und Themen (Aus-

sehen der Elemente) gestalten.  

Ein einfaches Beispiel, für einen in XAML beschriebenen Dialog, zeigt der Quelltext 3. Die Beschreibung beginnt 

mit dem Fenster-Element, welches XML-Attribute (in XAML Eigenschaften genannt) für das Fenster selbst (un-

ter anderem Fenstertitel und -größe) und Namensräume für externe Eigenschaften (z.B. Elementname 

„x:Name“) aus XAML enthält. Darin sind weitere Elemente, auch verschachtelt, enthalten. 

Laut XAML Definition kann nur ein Element unterhalb des Fenster-Elements platziert werden. Daher muss ein 

Container-Element, hier das Element  Grid, verwendet werden. Innerhalb des Grid-Elements werden dann die 

Steuerelemente automatisch angeordnet und ausgerichtet. Um die Abstände zwischen den einzelnen Elemen-



 
32 Migration und Anpassung von Dialoganwendungen für berührungsempfindliche Bildschirme 

ten zu ändern, wird die Eigenschaft Margin (Links, Oben, Rechts, Unten) eingesetzt. Ihre Längeneinheit ist dabei 

standardmäßig geräteunabhängig. Trotzdem wird sie Pixel genannt, obwohl dies nichts mit den Bildschirmpi-

xeln zu tun hat, sondern nur abhängig von der aktuellen PPI-Einstellung (siehe Kapitel 2.4.5) des Systems ist. Ein 

Pixel entspricht dabei  standardmäßig dem 96-sten Teil eines Zolls (ca. 0,3 Millimeter). Somit sind Dialoge in 

XAML nicht abhängig von einer eingestellten Punktdichte (siehe Kapitel 2.4.5), sondern lassen sich unabhängig 

von der Bildschirmeinstellung beschreiben.  

Jedes Steuerelement ist in XAML eine Objektinstanz, die zur Laufzeit über den optionalen Namen der Eigen-

schaft x:Name angesprochen werden kann. Die Elemente können auch absolut platziert werden, indem die 

Eigenschaften Top, Left, Width und Height gesetzt werden. Dies ist jedoch nur über die Eigenschaften eines 

Canvas-Elements möglich, das eine absolute Platzierung erlaubt. Die Eigenschaften werden dabei durch Anhän-

gen an das Element gesetzt, denn das Element unterstützt diese standardmäßig nicht. In XAML werden diese 

externen Eigenschaften auch „attached properties“ (angehängte Eigenschaften) genannt. Im Quelltext 2 wird 

beispielhaft ein Schalterelement innerhalb eines Canvas-Elements mit den angehängten Eigenschaften Left und 

Top positioniert. 

<Canvas Height="73" Name="canvas1" Width="227"> 
   <Button Canvas.Left="150" Canvas.Top="19" Content="Button" Height="34" Width="62" /> 
</Canvas> 
Quelltext 2 Angehängte Eigenschaften Canvas.Left und Canvas.Top bei einem Druckschalter 

 

<Window 
   xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation" 
   xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml" 
   xmlns:d="http://schemas.microsoft.com/expression/blend/2008"  
   xmlns:mc="http://schemas.openxmlformats.org/markup-compatibility/2006" 
   x:Class="WpfApplication1.MainWindow" 
   x:Name="Window" 
   Title="MainWindow" 
   Width="374" Height="370"mc:Ignorable="d" ResizeMode="NoResize"> 
  
   <Grid x:Name="LayoutRoot"> 
      <Border Margin="8,8,8,55" BorderBrush="Black" BorderThickness="1"> 
         <StackPanel Margin="-1,-1,-1,7" Name="Stack"> 
            <GroupBox Margin="14,0,12,0" Height="133" Header="" > 
                     <TextBlock Text="Hello World"  
                                         TextWrapping="Wrap" HorizontalAlignment="Center"  
                                         VerticalAlignment="Center"/> 
            </GroupBox>               
            <Button HorizontalAlignment="Right" Margin="0,0,134,19" VerticalAlignment="Bottom"  
                          Width="118" Height="23" Content="Ok"/> 
            <Button HorizontalAlignment="Right" Margin="0,0,8,19" VerticalAlignment="Bottom"  
                           Width="122" Height="23" Content="Abbrechen"/> 
   </Grid> 
</Window> 
Quelltext 3 Ein in XAML beschriebener Dialog beginnt immer mit dem Fenster-Element und enthält alle weiteren Elemente in einer 
Baumstruktur 

Es existieren zwei komfortable Oberflächeneditoren für XAML:  Der Dialogeditor in Visual Studio Designer 2008 

und 2010 (Abbildung 15) sowie Expression Blend (Abbildung 16). Während ersterer für Entwickler gedacht ist, 

die auch mit dem Quelltext arbeiten, kann mit Expression Blend das Aussehen der Schnittstelle vollständig 

geändert werden. Dazu unterstützt es die Grafikbearbeitungsprogramme Photoshop und Illustrator von Adobe. 

Ein einfaches aber nützliches Werkzeug stellt XMLPad (Abbildung 17) dar. Das Programm ermöglicht wie Visual 

Studio und Blend eine sofortige Vorschau während die XAML-Syntax in einem Editor geändert wird. Im Gegen-

satz zu Visual Studio und Expression Blend ist es kostenlos über das Windows SDK von [Microsoft] erhältlich 

und ermöglicht ein schnelles Ausprobieren von Designänderungen. 



 
33 Grundlagen und Stand der Technik 

 

Abbildung 15 Mit Microsoft Visual Studio 2010 können Dialoge sowohl als XAML Quelltext als auch in einem Designer erstellt und 
bearbeitet werden. Im Gegensatz zu Expression Blend kann der Dialog mit Ereignissen ausgestattet werden, die in einer .NET Sprache 

geschrieben wurden. 

 

Abbildung 16 Für Designer und Nicht-Programmierer hat Microsoft den Expression Blend XAML Editor entwickelt. Er lässt sich ähnlich 
bedienen wie bekannte Bildbearbeitungsprogramme. 

 

Abbildung 17 XMLPad - Ein MS SDK Werkzeug zum schnellen Ausprobieren von XAML-Syntax.  



 
34 Migration und Anpassung von Dialoganwendungen für berührungsempfindliche Bildschirme 

 

Die strikte Trennung von Logik und Oberfläche ermöglicht Entwicklern und Designern sich nur in ihrem jeweili-

gen Aufgabengebiet zu bewegen. Der Entwickler benötigt keinerlei Kenntnisse in der Erstellung und Gestaltung 

von  Schnittstellen mit hoher Benutzbarkeit, kann aber erst einmal mit einer einfachen Oberfläche die Pro-

grammlogik testen. Auf der anderen Seite benötigt der Designer kaum Programmierkenntnisse und mit Expres-

sion Blend auch keine funktionierende Programmlogik. Der Dialog kann mit seinen Inhalten ohne Quelltext 

über Datenanbindungen (Dateien oder eine Datenbank) sofort angezeigt werden. Zusätzlich ermöglichen Stil-

vorlagen ein neues Aussehen aller Steuerelemente, ohne dass diese manuell angepasst werden müssten.  

Die XML Struktur von XAML bietet einen guten Angriffspunkt für XML Parser über XPath oder XQuery und ist 

damit einfacher zu handhaben als beispielsweise ein selbstgeschriebener Parser. Mit C# findet XAML mittler-

weile in Microsoft Produkten Anwendung. Dazu zählen u.a. Visual Studio 2010, Expression Blend und Microsoft 

Touch Pack für Windows 7. 

Die Möglichkeiten der Dialogbeschreibungssprache XAML sind groß. Besonders die Datenanbindung über XPath 

oder XQuery lässt kaum Wünsche offen, ist jedoch auch recht kompliziert und daher für Programmieranfänger 

weniger geeignet. Alle Steuerelemente, d.h. Eigenschaften der Elemente sind vollständig über die XAML-Syntax 

anpassbar; damit entfällt oftmals die Notwendigkeit zusätzlichen Quelltext einzusetzen.  

 

2.4.5 Punktdichte 

 

Mit Punktdichte wird die Anzahl der Punkte in einem Längenabschnitt bezeichnet (siehe Abbildung 18). Ge-

bräuchliche Verhältnisse für Drucker sind Rasterpunkte pro Zoll oder engl. Dots Per Inch (DPI). Bei der Punkt-

dichte von Bildschirmen spricht man sinngemäß aber nicht von Dots sondern von Pixeln, weshalb die Dichte 

dort in Pixel per Inch (PPI) angegeben wird [Watson, 2011]. Der häufig als Synonym verwendete Begriff Auflö-

sung hat jedoch nichts mit dieser Definition zu tun, denn eine Auflösung i.e.S. bezeichnet das Produkt der Zahl 

von horizontalen und vertikalen Punkten eines gerasterten Bildes. 

        √      
        

     
      

     
 

Abbildung 18 Die Formel zur Berechnung der Pixel Pro Zoll (Pixel Per Inch, kurz PPI) für einen Bildschirm 

Heutzutage ist die am meisten verwendete Punktdichte 96 Pixel pro Zoll. Diese Punktdichte wird seit der ersten 

Version von Microsoft Windows verwendet, um Schriften größer darzustellen als sie der Entwickler angedacht 

hat. Der Xerox Alto und Macintosh nutzten zuerst 72 PPI und konnten damit eine Schriftgröße im gleichen Ver-

hältnis auf dem Monitor ausgeben. Mit einer 10 Punkte Schrift konnten daher Zeichen mit genau 10 Pixeln 

ausgegeben werden. Diese Größe war für viele Printmedien ausreichend, konnte jedoch bei Monitoren zu klein 

sein, weil die Entfernung zwischen Benutzer und Bildschirm tendenziell größer ist [Hitchcock, 2005]. Microsoft 

behob das Problem, indem Windows seitdem 96-PPI nutzt, was die Schriften um ein Drittel größer macht. Der 

Nachteil liegt nun in den unterschiedlichen Verhältnissen, d.h. die Punkt- und Pixelanzahl von Druck- und Bild-

schirmschriften sind nicht mehr im Verhältnis  eins zu eins.  

Seit der Einführung von 96 PPI wurden viele Anwendungen entwickelt, die Annahmen über die Pixelgröße ma-

chen oder diesen Wert als konstant betrachten. Besonders bei Bildschirmen mit hohen Auflösungen (bspw. 

1920x1080, das ist Full-HD Standard) sind Symbole und Schriften mit 96 PPI für viele Menschen mit einer Seh-

schwäche zu klein. Daher kann die Punktdichte softwaretechnisch erhöht werden, um Elemente größer darzu-

stellen. 

𝑑𝑝𝑢𝑛𝑘𝑡  Diagonale Punkteanzahl 
in Pixeln 

𝑑𝑝ℎ𝑦𝑠 Diagonale Länge des 
Bildschirms in Zoll 

 



 
35 Grundlagen und Stand der Technik 

  
Abbildung 19 Unterschiedliche Punktdichten (hier 96 und 150 PPI) bei gleicher Auflösung und Fenstergröße. Steuerelemente werden bei 

150 PPI größer dargestellt als bei 96 PPI. 

 

Daneben ermöglicht die vergrößerte Darstellung der Bildschirmelemente auch eine einfachere Bedienung mit 

berührungsempfindlichen Bildschirmen. Sie sind einfach leichter zu treffen. Doch das führt auch zu Darstel-

lungsproblemen (siehe Abbildung 20), wie [Hitchcock, 2005] anmerkt: 

“*…+ these applications have made assumptions about the size of a pixel and many dialog boxes and web pages 

have been designed around 96 PPI. As newer displays have come along, some, especially laptops have higher 

pixel densities. Unfortunately if one adjusts for this by using PPIs besides 96, then there is a risk of some applica-

tions or web pages not working properly.” 

 

 

 
 

  

Abbildung 20 Typische Darstellungsprobleme bei höheren PPI Einstellungen 
  [GExperts] (Bildschirmfoto),    [CnPack] (Bildschirmfoto),    [Musgrave, 2009]) 

 

Bei den immer größeren Bildschirmauflösungen und gleichbleibender Pixelgröße von Kontrollelementen wird 

einmal auch jede noch so gut bedienbare Anwendung mit den Fingern nicht mehr zu benutzen sein. Es bleibt 

also nichts anderes mehr übrig, als die Anwendungen, wie es Microsoft nennt, „DPI-Aware“ zu entwickeln, um 

der Miniaturisierung entgegenzuwirken. Denn letztendlich sollte ein Benutzer die globale Einstellung der PPI 

nicht erhöhen müssen, damit der Benutzer auch noch kleine Kontrollelemente mit seinen Fingern bedienen 

kann. 



 
36 Migration und Anpassung von Dialoganwendungen für berührungsempfindliche Bildschirme 

2.5 Software Engineering 
 

Software Engineering ist jede Aktivität, bei der es um die Erstellung oder Veränderung von Software geht, so-

weit mit der Software Ziele verfolgt werden, die über die Software selbst hinausgehen. 

[Ludewig, et al., 2007] 

Die Softwareentwicklung unterlag schon immer stetiger Veränderung. Mit traditionellen Prozessmodellen wie 

dem Wasserfall- und dem V-Modell und den agilen Vorgehensmodellen wie dem Extreme Programming (XP) 

wurden immer wieder neue Ansätze und Verfahren benutzt, um die Software nicht nur in der gegebenen Zeit 

zum Abschluss zu bringen, sondern auch die Wartbarkeit nach dem Projektende auf einem hohen Niveau ge-

währleisten zu können. Außerdem muss die Software nicht nur korrekt funktionieren, sondern auch an neue, 

nachträgliche Anforderungen angepasst werden wie beispielsweise einer Portierung auf eine neue Plattform. 

Doch Prozess- und Vorgehensmodelle sagen nur etwas über den Ablauf des Projekts aus und stellen natürlich 

kaum oder keine Forderungen an die Architektur und Datenverarbeitung der Software. Mit dem Anspruch auch 

später noch Änderungen an der Software vornehmen zu können, müssen andere Ansätze gewählt werden.  

Die Entwicklung von Software mit der Hilfe von Modellen ist mittlerweile in vielen Sprachen (insbesondere 

Java) angekommen und wird überall dort eingesetzt, wo die Software auch später noch schnell und einfach 

angepasst werden muss. Modelle beschreiben eine Untermenge der betrachteten Wirklichkeit. Da nicht immer 

alle Eigenschaften interessant sind, werden sie bei der Beschreibung weggelassen („abstrahiert“). Ein wesentli-

cher Effekt davon  ist, dass die Beschreibung einfacher und weniger komplex ist als die Wirklichkeit. Modelle 

helfen also nicht nur die Realität zu erfassen, sondern sie auch verstehen zu lernen (vgl. [Ludewig, et al., 2007] 

und [Seidewitz, 2003]). Zur Beschreibung von Modellen werden Modellierungssprachen wie DSL (Domain Spe-

cific Language) oder UML (Unified Modeling Language) eingesetzt.  

Mit dem vorwärts gerichteten Erzeugen (engl. Forward Engineering) von Software aus abstrakten Modellbe-

schreibungen [Chikofsky, et al., 1990] beschäftigt sich auch die Object Management Group (OMG). Die OMG 

hat daher eine modellgetriebene Architektur vorgestellt, die die Wartbarkeit von Software erheblich verbes-

sern kann. Im folgenden Kapitel 2.5.1 werden dieses Prinzip der OMG sowie beispielhafte Softwareumsetzun-

gen gezeigt.  

Unglücklicherweise wird oder kann nicht jede Software mit einem modellgetriebenen Ansatz entwickelt wer-

den und trotzdem ist auch in so einem Fall eine Anpassung notwendig, um eine teure Neuentwicklung zu ver-

meiden. Daher gibt es auch hier Ansätze, um Software zu verstehen, d.h. aus dem Design und der Kodierung 

die Datenmodelle und Programmabläufe zurückzuentwickeln. Das Kapitel 2.5.2 Reverse Engineering beschäftigt 

sich mit der Rückgewinnung von abstrahierten Informationen aus dem Design von Anwendungsoberflächen. 

Vorhandene Lösungen und Ansätze für eine GUI Erkennung und automatische Modellierung werden dort vor-

gestellt. 

 

2.5.1 Forward Engineering am Beispiel der modellgetriebenen Entwicklung 

 

Seit Ende des 20. Jahrhunderts beschleunigte sich die Entwicklung von Softwareprodukten dramatisch. Soft-

ware wurde als Lösung für alles und jeden gesehen, denn sie half die Unmengen von Informationen zu bewälti-

gen, die das Informationszeitalter mit sich brachte. Doch auch wenn solch eine Software streng nach Plan zu-

sammengesetzt wurde, war sie nicht für die Ewigkeit bestimmt (“*…+this application will only be needed for the 

next few years” [Miller, et al., 2003]). Sobald sich die Gesetzeslage oder der Wirtschaftsprozess änderte, muss-

te auch die gesamte Software an diese Umstände angepasst werden. Daher wurde jede neue Technik als Lö-

sung für die aktuellen Probleme angepriesen und verkauft [Miller, et al., 2003]. Jedoch war und ist es immer 

noch schwierig, Informationen für verschiedene, meist inkompatible Anwendungen zur Verfügung zu stellen 



 
37 Grundlagen und Stand der Technik 

und synchron zu halten. Es stehen eine Vielzahl von verteilten Daten, Objekten und Komponenten sowie Web-

dienste zur Verfügung, die nicht miteinander kommunizieren können, weil sie streng nach Vorschrift  – und 

oftmals mit Scheuklappen – gebaut wurden. Aber was davon überlebt den stetigen Wandel in der IT? Es ist 

immer wieder überraschend wie kurz- oder langlebig Software sein kann. 

Es wurde daher notwendig die Verwaltung der Geschäftslogik nicht vollständig mit der Programmlogik zu ver-

knüpfen und stattdessen so viel Unabhängigkeit zu bewahren wie möglich. Erst dadurch ist es möglich, dass 

Geschäft und Software sich separat entwickeln können. Denn sollte die Software eines Tages veraltet sein, 

kann eine neue deren Platz einnehmen [Leymann, 2008]. 

Eine Technik, welche die modellgetriebene Entwicklung (engl. Model Driven Engineering, kurz MDE) umsetzt, 

ist die modellgetriebene Architektur (engl. Model Driven Architecture, kurz MDA). Sie wurde von der OMG 

entwickelt und ermöglicht Abläufe und Regeln formal zu spezifizieren und in Modelle zu packen, die unabhän-

gig von der eingesetzten Plattform sind. Denn verschiedene Plattformen (z.B. CORBA, J2EE, Microsoft .NET) 

bieten oftmals Schnittstellen an, die nicht nur unterschiedlich definiert sein können, sondern sich auch anders 

verhalten und damit separate Entwicklungen erfordern (für Windows, Linux, Java, .NET, EJB usw.).  

MDA unterstützt nach [Miller, et al., 2003] dabei die folgenden Ansätze: 

 Ein Modell zu spezifizieren, das unabhängig von der eingesetzten Plattform ist. 

 Die Plattform auszuwählen oder selbst zu spezifizieren … 

 … und die Modellspezifikation in eine Entsprechung für eine bestimmte Plattform zu übertragen. 

Durch die Trennung von Modell (Prozesse, Regeln) und  Plattform gelingt es MDA plattformunabhängig (auch 

portabel), plattformübergreifend (auch interoperabel) und wiederverwendbar zu sein. Dazu durchläuft ein 

plattformunabhängiges Modell  (engl. Platform Independent  Model, kurz PIM) mehrere Transformationsschrit-

te bis es in einer Anwendung umgesetzt wird. Dieser Prozess wird im Englischen auch mit Forward Engineering 

bezeichnet, um ihn, dort wo notwendig, vom Reverse Engineering zu unterscheiden [Chikofsky, et al., 1990]. 

Der Prozessablauf ist in Abbildung 21 dargestellt. Zuerst einmal wird aus Anwendungsfällen (engl. Use Cases) 

und Beschreibungen für Problemlösungen (Domänenmodell) in einer Textform oder grafischen Notation (z.B. 

Unified Modeling Language, kurz UML) per Hand ein plattformunabhängiges Modell (Platform Independent 

Model, kurz PIM) entworfen. Beispielsweise möchte ein Kunde sein Geld abheben. Diese Art von Beschreibun-

gen gibt normalerweise keine Auskunft über die notwendigen Details mit denen gearbeitet werden soll. So 

benötigt ein Kunde u.a. einen Namen und ein Konto bei der Bank, um Geld abheben zu können. Doch diese 

Informationen sind eigentlich nur für das System notwendig, denn wie der Kunde sein Geld bekommt ist ihm 

nicht wichtig. Geschäftsmodelle werden daher in MDA auch als berechnungsunabhängige Modelle bezeichnet 

(Computation Independent Model, kurz CIM). 

Aus der Transformation von CIM nach PIM entsteht ein erster Entwurf, der noch unabhängig von den einge-

setzten Technologien ist. Dies sind oftmals in UML notierte Diagramme, wie Klassendiagramme, die Klassen, 

Attribute und Methoden spezifizieren.  Mit solch einem Modell kann durch eine automatische Transformation 

bereits ein plattformspezifisches Modell (kurz PSM) generiert werden. Bei Klassendiagrammen werden dazu 

u.a. allgemeine Typen, wie Ganzzahl oder Text  durch die jeweilige Sprache des Zielmodells ersetzt, also Integer 

oder String. Das Modell ist daher an die jeweilige Plattform, die diese Typen unterstützt, gebunden.  

Die Generierung des PSM kann in MDA noch durch zusätzliche Faktoren beeinflusst werden, die von der einge-

setzten Plattform abhängen. So kann mit Optionen die Transformation beeinflusst werden, um beispielsweise 

einen bestimmten Architekturstil zu erreichen oder  anzupassen [Miller, et al., 2003 S. 13]. Mit bereits einge-

setzten Erfolgsmethoden (Best Practices) und Entwurfsmustern kann PSM um Funktionen erweitert werden, 

die nicht zum PIM gehören. So werden dadurch die Typen der PIM Klassen auf die entsprechenden Typen der 

Zielsprache des PSM abgebildet oder Getter- und Setter-Methoden für den Zugriff auf Attribute generiert. Mit 

Markierungen können Elemente im PIM auch auf einer semantischen Ebene situationsbedingt transformiert 



 
38 Migration und Anpassung von Dialoganwendungen für berührungsempfindliche Bildschirme 

werden. Dies ist besonders hilfreich, wenn es mehrere Entsprechungen im PSM gibt. So gibt es auf einer Platt-

form oftmals verschiedene Typen für Gleitpunktzahlen (Float, Double, Extended) und GUI Generatoren können 

ein Listenelement in ein einfaches Listenfeld oder Dropdown-Listenfeld (siehe auch Tabelle 17 Steuerelemente: 

Bezeichnung, Symbol und Kurzbeschreibung) transformieren. 

Der letzte Schritt besteht in der Umsetzung des plattformspezifischen Modells in Quelltextform, so dass die 

Anwendung in einer gewählten Programmiersprache (Java, C# usw.) vervollständigt werden kann. Dazu werden 

Klassendiagramme, die vorher noch sprachunabhängig waren, in Quelltext transformiert.  Methoden, die durch 

das PIM und PSM definiert wurden sind nun nicht nur definiert, sondern auch implementiert, d.h. ausführbar, 

auch wenn sie womöglich noch keinen Code enthalten. Die letzte Transformation kann auch Oberflächen er-

zeugen, wenn die Modelle diese vorher beschrieben haben. Dadurch ist es leicht möglich, ganze Anwendungs-

gerüste in kurzer Zeit zu erstellen.  

Ein wichtiger Aspekt von MDA ist, dass die Generierung des plattformspezifischen Modells auch übersprungen 

werden kann [Miller, et al., 2003 S. 7]. Aus dem plattformunabhängigen Modell entsteht dabei ohne Umweg 

sofort die Anwendung. Das PSM könnte nach MDA trotzdem abseits des normalen Anwendungsablaufs, z.B. für 

die Fehlersuche, generiert und verwendet werden. 

Neben der Trennung von Modellen innerhalb der modellgetriebenen Architektur, definiert OMG auch die Mo-

dell-Transformationen. Dabei können Modelle selbst wieder in Modelle abgebildet (Model to Model, kurz 

M2M) oder daraus Code erzeugt werden (Model to Text, kurz M2T). Eine „Modell nach Modell Transformation“ 

kann dabei vertikal oder horizontal geschehen, d.h. die vertikale Transformation ändert die Abstraktionsstufe 

(z.B. von PSM nach PIM) während in der horizontalen Transformation üblicherweise nur die Darstellung des 

Modells ändert (z.B. Refactoring, grafische Umgestaltung). Die Modelltransformation ist dabei nicht auf einzel-

ne Modelle beschränkt, sondern kann auch mehrere Quell- und Zielmodelle einbeziehen, die bei der Transfor-

mation benötigt werden. OMG hat die M2M und M2T Transformationssprachen QVT 

(Query/View/Transformation, [OMG, 2011]) und MOF (siehe [OMG, 2008]) spezifiziert, die von Dritten, mehr 

oder weniger genau, umgesetzt wurden. Dazu zählen beispielsweise M2M, M2T und ATL von [The Eclipse 

Foundation], dem proprietären Werkzeug ModelMorf  von [TCS] und dem Open Source Projekt [Tefkat].

 

Abbildung 21 Die Modellgetriebene Architektur ermöglicht aus Geschäftsmodellen automatisch Quelltext zu generieren 

Plattformspezifisches Modell (PSM) 

Anwendung 

 
Spezifikation eines Geschäftsmodells  
z.B. mit UML Anwendungsfällen (CIM) und 
Klassendiagrammen (PIM) modelliert  

Transformation: Modell nach Modell  

mit zusätzlicher Information über die Plattform 

Modellsprachen: 

XMI Dokument, IDL,.NET und EJB Modelle 

 

Plattformun-
abhängiges 

Modell (PIM) 

(generierter) Quelltext, spezifisch mit einem 

Framework SOAP, WPF, Java oder CORBA imple-

mentiert 

Transformation: Modell nach Code,  

Erzeugung von Quelltexten und Oberflächen 

Plattformmodel (PM) 

Optionen 

Vorlagen 

Markierungen 

  

  

Computation 

Independent Model 

(CIM) 



 
39 Grundlagen und Stand der Technik 

Frameworks und Werkzeuge, die eine modellgetriebene Architektur bereitstellen oder sie nutzen, gibt es eini-

ge. Eine Auswahl davon wurde in einer Studie von [Schlegel, et al., 2010] untersucht. Darin wurden Werkzeuge 

und Frameworks zur Generierung von Benutzungsschnittstellen aus Modellen getestet,  

u.a. OpenXava, JAXFron, Wicket RAD, JMatter und das Roma Framework. Zwei weitere Frameworks, die jedoch 

nicht in der Studie getestet wurden, sind AndroMDA und MARIA, die im Folgenden vorgestellt werden. 

  

MARIA 

 

MARIA, ein Mischkurzwort für Model-based lAnguage foR Interactive Applications, ist, wie der Name schon 

sagt, eine modellbasierte Sprache für interaktive Anwendungen. MARIA wurde von [Paternò, et al., 2009] ent-

worfen und entstand als eine Weiterentwicklung von TERESA. Mit MARIA sollte u.a. mehr Kontrolle und Flexibi-

lität für den Entwickler möglich sein und die Transformationen nicht mehr in Quelltextform kodiert vorliegen. 

Damit soll die Entwicklung in Richtung dienstorientierte Architekturen (engl. Service Oriented Architectures, 

kurz SOA) in ubiquitären Umgebungen erleichtert und gefördert werden. Das MARIA Framework besteht daher 

aus einer Vielzahl von Beschreibungssprachen: für abstrakte, konkrete und vokale UIs sowie für mobile und 

multimodale Oberflächen. MARIA ermöglicht dies durch eine eigene plattformunabhängige Sprache, der MA-

RIA Universal Declarative Language (siehe Abbildung 22). Die Sprache wurde in XML (MARIA XML) definiert und 

besitzt einen modularen Aufbau, der die folgenden Haupteigenschaften ermöglicht: 

 Ein Datenmodell für Eingabewerte und die Verknüpfung von Datenobjekte mit der Oberfläche. 

 Ereignisse für Änderungen an Eigenschaften in den abstrakten und konkreten Stufen 

 Ein erweitertes Dialogmodell, das Bedingungen und Operatoren, beschrieben durch die CTT Notation, 

definiert. 

 Eine dynamisch anpassbare Menge von Benutzerelementen, um das Layout und die Navigation zwi-

schen den Darstellungen den Gegebenheiten anzupassen. 

 

Abbildung 22 Die Möglichkeiten von MARIA [HIIS Laboratory] erlauben eine Anwendung auf verschiedensten Plattformen zu betreiben 

Um das MARIA Framework herum wurden einige Werkzeuge entworfen. So wurde eine Entwicklungsumge-

bung MARIAE (siehe [HIIS Laboratory] und Maria Environment) gebaut, die Aufgabenmodelle in der CTT Nota-

tion  beschreiben lässt. Weiterhin wurden mit ReverseMARIA und WebRevEng Werkzeuge entworfen, die aus 

Webseiten Aufgabenmodelle als CTT generieren. Sie können in MARIA eingesetzt und weiterentwickelt wer-

den.  



 
40 Migration und Anpassung von Dialoganwendungen für berührungsempfindliche Bildschirme 

AndroMDA 

 

AndroMDA (ausgesprochen nach IPA: [anˈdʀɔmeˌdaː], [AndroMDA, 2011]) ist ein Open Source Framework mit 

modellgetriebener Architektur, das durch eine Vielzahl von Erweiterungsmöglichkeiten profitiert. Modelle 

können mit Hilfe von externen CASE Werkzeugen (z.B. UML Designer) erstellt und über XMI importiert werden. 

Zusätzlich können Plug-Ins dazwischen geschaltet werden, um die Verwaltung und Generierung von benutzer-

definierten Ausgabekomponenten in Quellformaten wie Java, C# .NET, HTML und weitere zu ermöglichen. 

Derzeit bietet AndroMDA die größte Unterstützung für J2EE mit Projekt- und Codeschablonen. Um AndroMDA 

nutzen zu können muss Java mit Maven oder Ant installiert sein. Der generierte Code läuft dann auf einem 

Applikationsserver wie JBoss oder Tomcat. 

Der erste Schritt beim Aufsetzen eines Projektes besteht darin Schablonen zu nutzen und anzupassen, die für 

die Erzeugung von Quellcode verantwortlich sind. Sammlungen von Schablonen, sogenannte „cartridges“ (engl. 

für auswechselbare Einsätze), werden durch die „AndroMDA Code Generation Engine“ zu Quelltext transfor-

miert. Es existieren bereits eine Menge solcher Sammlungen von Drittherstellern, die an die eigenen Bedürfnis-

se angepasst werden können. Sobald die Schablonen vorbereitet sind, können Modelle verarbeitet werden. 

Dabei unterstützt AndroMDA den XMI Standard von OMG, so dass ein beliebiges UML Werkzeug verwendet 

werden kann.  

Die Hauptaufgaben von AndroMDA bestehen darin, das UML-Modell (PIM) umzuwandeln, d.h. daraus einen 

Klassenbaum zu erstellen und Quelltexte zu generieren. Der Objektbaum wird dazu nach den Stereotypen der 

aufgelisteten Klassen untersucht und für jeden gefundenen Stereotyp ein entsprechendes „cartridge“ zugeord-

net. Sobald dieser Vorgang abgeschlossen wurde, werden die anfangs ausgewählten Schablonen für jedes 

„cartridge“ aufgerufen. Sie analysieren das PIM und erzeugen daraus ein plattformspezifisches Modell (PSM), 

das in den Schablonen genutzt wird, um letztendlich den Quelltext zu erzeugen. 

AndroMDA ist durch den modularen Aufbau bestrebt eine hohe Erweiterbarkeit und Flexibilität zu erreichen. Es 

können eigene Schablonen erstellt und genutzt werden oder aber auch eigene Einsätze. Außerdem können 

Quelltexte für andere Sprachen erzeugt werden, die standardmäßig nicht von AndroMDA unterstützt werden. 

Wenn sich Schablonen und Einsätze für das eigene Projekt finden lassen, kann so eine modellgetriebene Ent-

wicklung im Softwareprojekt genutzt werden. Dies kann besonders schnell gelingen, wenn Java eingesetzt wird. 

Für andere Sprachen mag der Einstieg jedoch nicht so einfach sein, weil es an den notwendigen Code-

Schablonen fehlt.  

Der modellbasierte Ansatz besitzt, wie jede andere Technologie Stärken () und Schwächen (). Einige davon 

sind die Folgenden (nach [Leymann, 2008], [Schmid, 2010], [Wikipedia, 2011]): 

 Jedes Modell ist unabhängig von dem anderen und bildet eine eigene Einheit mit wohldefinierter Abs-

traktionsstufe  (Modularität). Während Aufgabenmodelle die Geschäftsprozesse definieren, imple-

mentieren konkrete Modelle die einzelnen Aufgaben über Klassenmodelle und Klassenbeziehungen 

bis hin zur Codeebene. 

 MDA ermöglicht unabhängig von Plattformen und Frameworks zu arbeiten, d.h. der Entwicklungs- 

und Codierungsprozess ist streng getrennt. Ändert sich ein Modell kann daraus immer wieder platt-

formspezifischer Code generiert werden. Aufwändige Codeanpassungen entfallen dadurch. Dies kann 

besonders bei großen und komplexen Anwendungssystemen häufig eine Fehlerquelle sein (Flexibili-

tät). 

 Die Modelle können geändert und die Änderungen durch übergeordnete Modelle verifiziert werden 

(Sicherung der Korrektheit). 

 Durch die Automatisierung wird die Produktivität gesteigert. 

 

 Negativ kann sich der Aufwand bei der Erzeugung von geeigneten Modellen erweisen, wenn die An-

wendung nicht groß genug ist wie bei einmaligen Projektarbeiten. Stattdessen könnte in der gleichen 

Zeit bereits die Anwendung  umgesetzt werden. 



 
41 Grundlagen und Stand der Technik 

 Der modellbasierte Ansatz erfordert neue Denk- und Herangehensweisen für die Entwickler. Nicht je-

der Entwickler ist damit vertraut oder kann gut mit abstrakten Modellbeschreibungen umgehen. 

 

2.5.2 Reverse Engineering 

 

Reverse engineering is the process of analyzing a subject system to *a)+ identifies the system’s components and 

their interrelationships and [b)] create representations of the system in another form or at a higher level of 

abstraction. 

[Chikofsky, et al., 1990] 

Eine Software zurückzuentwickeln wird notwendig, sobald Quellen und Dokumentation für das System nicht 

mehr vorhanden sind und dessen Wert erhalten bleiben soll. Dazu werden nach Chikofsky zuerst einmal die  

Systemkomponenten erkannt und in Beziehung gebracht (Teil a). Dann können Quelltexte aus Binärcode ent-

wickelt und Aufgabenmodelle, z.B. in UML, durch eine Systemanalyse erstellt werden (Teil b). Reverse Enginee-

ring (RE) bedeutet also den Entwicklungsprozess rückwärts durchzuführen und das System zu verstehen. Mit RE 

wird jedoch keine Änderung oder Ergänzung am System durchgeführt. Dieser Schritt, das Anpassen der Soft-

ware an eine neue Umgebung oder Plattform, wird daher Migration oder Portierung genannt [Moore, et al., 

1993]. Im Migrationsprozess wird das Wissen des Reverse Engineerings verwendet, um schneller und kosten-

günstiger, d.h. abgekürzt Software Engineering betreiben zu können. Da die Migration die vorhandene Funktio-

nalität möglichst zu 100% übernehmen soll,  sind große Teile zu verstehen und neu zu entwickeln („[Informati-

on systems] also tend to be very large systems, hundreds of thousands, even millions, of lines of code.“, [Moore, 

1995]). Das bedeutet, dass die manuelle Migration nicht ohne große Kosten und Fehler zu bewerkstelligen ist.  

Es müssen daher neue Methoden und Techniken gefunden werden einen Großteil der Arbeit zumindest zu 

halb-automatisieren. 

Technisch wird Reverse Engineering auf zwei Arten durchgeführt: dynamisch oder statisch (vgl. [Grilo, et al., 

2007]). Im ersten Fall wird das System analysiert, indem die vorhandenen Bestandteile (u.a. Variablen und 

Klassen) erkannt und deren Beziehung (z.B. Vererbung und Methodenaufrufe) verstanden wird. Im Gegensatz 

dazu wird beim dynamischen RE das System analysiert während es ausgeführt wird. Dadurch können u.a. Spei-

cherwerte, Methodenaufrufe und Nebenläufigkeit zur Laufzeit beobachtet oder sogar geändert werden. Zudem 

bleibt das dynamische RE die einzige Möglichkeit, die Software zu verstehen, wenn Quelltext und Dokumenta-

tion verloren gegangen sind. Doch ein System kann nur dann vollständig verstanden werden, wenn es sowohl 

statisch als auch dynamisch zurückentwickelt wird [Grilo, et al., 2007]. 

Mit Reverse Engineering können nicht nur Klassenstrukturen und Programmabläufe verstanden werden, son-

dern auch Benutzungsschnittstellen. Bei neuen Plattformen  müssen dann insbesondere auch die Oberflächen 

angepasst werden. Diese Anpassung stößt jedoch auf eine Vielzahl von Problemen, wie [Moore, et al., 1993] 

anmerken: 

1. Bildschirme bieten heutzutage sehr unterschiedliche Auflösungen und Interaktionsmöglichkeiten 

(„Touch“) an. („Display technologies“) 

2. Es hat sich eine Vielzahl von unterschiedlichen Entwicklungsschnittstellen für Oberflächen etabliert. 

(„Lack of standards“) 

3. Das Aussehen der Oberflächen kann sich zwischen Plattformen drastisch unterscheiden. Bei der Mig-

ration muss daher entschieden werden, ob das originale Aussehen der Oberfläche beibehalten oder 

an die neue Plattform angepasst wird. („Look and Feel”) 

4. Funktionsunterschiede (z.B. Vorhandensein von bestimmten Steuerelementen) der Plattformen müs-

sen bei der Migration berücksichtigt werden. („Functionality changes“) 



 
42 Migration und Anpassung von Dialoganwendungen für berührungsempfindliche Bildschirme 

5. Die Art und Weise, wie bei einer Software die Benutzungsschnittstelle umgesetzt wurde, d.h. voll-

ständig getrennt, per Modul oder verteilt, bestimmt den Aufwand, der betrieben werden muss, um 

die plattformabhängigen Oberflächenkomponenten zu migrieren. („Integration of the user interface“) 

Zum Reverse Engineering von bestehenden Dialoganwendungen existieren bereits einige Konzepte und Lösun-

gen. So wurde für die MDA Projekte MARIA und MARIAE von [HIIS Laboratory, 2010] das Werkzeug Reverse-

MARIA entwickelt, das die Modelle aus vorhandenen Webseiten zurückentwickeln kann. Von derselben Stelle 

stammt auch WebRevEng. Es kann Aufgabenmodelle in der ConcurTaskTrees-Notation aus HTML Quellen gene-

rieren und sie für die Weiterverarbeitung speichern. Eine ähnliche Lösung bieten auch [Bandelloni, et al., 2008] 

mit ReverseAllUI.  Damit können fast beliebige Dialogbeschreibungssprachen (z.B. HTML, XHTML, aber auch 

TERESA XML, siehe [Berti, et al., 2004]) in ein einheitliches Aufgabenmodell zurückentwickelt werden. Modell-

getrieben arbeiten auch die Autoren [Sánchez Ramón, et al., 2010], um Oberflächen aus Rapid Application 

Development  Softwareentwicklungen (RAD) zurück zu gewinnen. Sie überführen die Oberfläche der Anwen-

dung in ein plattformunabhängiges Zwischenmodell („RAD model“) und generieren daraus wieder ein neues 

konkretes UI Modell  („Concrete User Interface Model“), welches als Ausgangsmodell für neue Oberflächen 

dient. 

Zwei weitere Lösungen befassen sich mehr mit der Interpretation der Steuerelemente von Dialogen und ihrer 

Anordnung. Der Algorithmus des Auckland Layout Model (siehe unten) sorgt beispielsweise dafür, dass Steue-

relemente entsprechend ihrer von Entwickler zugewiesenen Bedeutung mehr oder weniger Platz in einem 

Dialog erhalten. Ein bestehendes Layout einer Altanwendung kann durch den Algorithmus zurückentwickelt 

werden, um eine spätere Neuanordnung der Steuerelemente zu ermöglichen. Weiterhin ist es für Reverse 

Engineering von Oberflächen wichtig, die Steuerelemente zuverlässig erkennen zu können, um, je nach Typ des 

Elements, eine Abbildungsregel anwenden zu können. Da oftmals für viele alte Anwendungen keine Quelltexte 

mehr existieren, wurde für die Migration dieser Anwendungen ein neuer Ansatz entwickelt. Unter Windows 

wurden daher die Dialoge mit Funktionen der Windows API zur Laufzeit analysiert und kopiert. Dazu wurde 

jedes Steuerelement erkannt und dessen Eigenschaften kopiert wie Typ und Größe. In einer Studie wurde diese 

Methode an mehreren Windows Anwendungen durchgeführt und überprüft.  

Die letzten beiden Lösungen befassen sich direkt mit Dialoganwendungen, die auch in dieser Arbeit das Thema 

sind. Daher  soll im Folgenden etwas näher auf die Umsetzung dieser Lösungen eingegangen werden. 

 

Automated Reverse Engineering of Hard-Coded GUI Layouts 

 

Mit dem Auckland Layout Model (ALM), benannt nach der Universität des Autors [Lutteroth, 2008], beschreibt 

der selbige eine mathematische Technik, die die  Anordnung („Layout“) von Oberflächenelementen spezifiziert. 

Das ALM beschreibe dabei das Layout so exakt und formal, dass die Spezifikation auch ohne ein „Layout Mana-

ger“ sinnvoll sei.  

  
area = def (x 1, y1, x2, y2, content, size min, size pref, size max ) 

Abbildung 23 Nach [Lutteroth, 2008] besteht ein Bereich („Area“) aus den 
Koordinaten, Inhalt sowie Grenzen für eine Änderung der Größe. 

 

def definiert durch 
content Inhalt des Bereichs (area) 
sizemin Minimale Größe des Bereichs 
sizepref Bevorzugte Größe des Bereichs 
sizemax Maximale Größe des Bereichs 

 

Denn Luttheroth bemängelt die absolute Positionierung von Steuerelementen im Quelltext („*…+ the  lack of  

dynamic  layout.“) und die daraus ergebenden Nachteile für den Benutzer der Anwendung („*…+ users may 

want to change the amount of screen real-estate that is allocated to a GUI by changing the size of its window“, 

“*…+ the content shown in a control may change so that its size needs to be adjusted”). Zudem sei das Mischen 

von generierten und handgeschriebenem Quelltext für Oberflächen problematisch, weil Werkzeuge wie Ober-



 
43 Grundlagen und Stand der Technik 

flächeneditoren mit selbstgeschriebenen Algorithmen nicht umzugehen verstehen („it is effectively not possible 

anymore to use a GUI design tool“). 

Das ALM kehrt der statischen Positionierung von Steuerelementen den Rücken und spezifiziert stattdessen 

Invarianten für die Oberfläche.  Diese Invarianten werden als Bedingung für eine lineare Optimierung des Lay-

outs benutzt, sobald Anpassungen der Oberfläche notwendig sind. Um die Invarianten für die lineare Optimie-

rung einfacher zu spezifizieren, führt Lutteroth zusätzliche Abstraktionen („Features“), wie „tabstops“, „areas“ 

und  „linear constraints“ ein. Mit Tabstopps wird ein virtuelles Raster für die Ausrichtung von Steuerelementen 

definiert. Die Positionen der Elemente werden durch diese Tabstopps (x- und y-Richtung) ausgedrückt und erst 

im Layout-Prozess mit konkreten Werten belegt. Mit Areas (siehe Abbildung 23) werden Flächen auf der Ober-

fläche definiert, d.h. deren Position und Größe (x1 , y1 , x2 und y2 in Tabstopps), das beinhaltete Steuerelement 

(content) sowie minimale (sizemin), maximale (sizemax) und bevorzugte (sizepref) Größenänderungen beschreiben. 

Die Gleichung wird im Layout-Prozess eingesetzt, um die dadurch spezifizierten Invarianten beim dynamischen 

Berechnen der Größenveränderung der Oberfläche zu berücksichtigen. 

Da Tabstopps keine konkreten Werte (z.B. in Pixeln) enthalten, werden sie über lineare Beschränkungen („line-

ar constraints“) spezifiziert. So können absolute Positionen (x1 = 100), Größen (x1 – x2 = 100) oder komplizierte 

Abhängigkeiten (auch mit Ungleichungen) von Steuerelementen definiert werden. Doch nicht immer können 

alle Beschränkungen gemeinsam erfüllt werden (keine Lösung), so dass [Lutteroth, 2008] zwischen harten und 

weichen Beschränkungen unterscheidet. Während die harten Beschränkungen immer erfüllt sein müssen, kön-

nen weiche Beschränkungen in ALM mit Kostenparametern versehen werden, die Durchsetzungsfähigkeit zu 

anderen weichen Beschränkungen angeben. 

Für die Herstellung einer Dialogspezifikation im ALM nutzt Lutteroth einen Algorithmus, der die Anordnung der 

Steuerelemente zurückentwickelt. Dabei werden absolute Positions- und Größenangaben in Tabstopps über-

führt und zueinander in Beziehung gesetzt (Reihenfolge der Elemente). Der Algorithmus ist laut dem Autor 

schnell und kann daher beispielsweise mit wenig Aufwand auch nachträglich das Layout während der Laufzeit 

vergrößern und verkleinern. Mit Hilfe der Heuristik kann der Algorithmus noch weiter verfeinert werden. So 

können etwa vom Entwickler schlecht ausgerichtete Elemente („A control might just be misplaced by a single 

pixel, and the deviation might only be visible under closer observation. “) durch Definieren einer Epsilon Umge-

bung (z.B. für eine horizontale Ausrichtung:             ) immer noch auf dieselbe Tabstopp-Position 

gebracht werden („Fuzzy Alignment“). Weiterhin können gleichartige Elemente einer Spalte auf dieselbe Größe 

gebracht werden („Standardized Sizes“) oder die Oberflächengröße relativ zur Bildschirmgröße gewählt wer-

den, indem die verwendete Einheit umgerechnet wird („Adjustment of Units“).  

Eine Umsetzung des ALM Algorithmus fand mit C# in Visual Studio statt. Die Implementierung von [Lutteroth, 

2008] führt zur Laufzeit das obige Reverse Engineering mit dem Algorithmus durch und ermöglicht so eine 

nachträgliche Layoutveränderung bei Windows Forms .NET Anwendungen. Die Dialogelemente werden dort 

zur Entwicklungszeit als Quelltext statisch definiert und ermöglichen daher kein flexibles Layout.  

 

User Interface Migration of Microsoft Windows Applications 

 

Mit der Zurückentwicklung und Portierung von Altanwendungen auf neue Plattformen beschäftigt sich [John, 

2009]. Durch das Fehlen von Quelltexten geht er den Weg des dynamischen Zurückentwickelns auf Windows 

Betriebssystemen. Er erstellte dazu eine Anwendung in Visual Basic, welche die Elemente einer beliebigen 

laufenden Dialoganwendung mit Hilfe der Low-Level Windows API (EnumWindows, EnumChildWindows, Ge-

tWindowInfo) extrahiert und deren Elementeigenschaften in einer Datenbank speichert. D.h. es werden Positi-

on, Größe, Text und einiges mehr ausgelesen, um später eine neue Oberfläche rekonstruieren zu können. Zu-

sätzlich fügt [John, 2009] noch ein Bildschirmfoto des Dialogs bei, um, wie er schreibt, bei der Identifizierung 

von Steuerelementtypen und deren Abbildung auf andere entsprechende Elemente zu unterstützen. Er ver-



 
44 Migration und Anpassung von Dialoganwendungen für berührungsempfindliche Bildschirme 

sucht dabei durch Vergleiche von vorhandenen Elementbildern unbekannte Steuerelemente zu erkennen und 

neu zuzuordnen. Da dies nicht immer automatisch funktioniert, ist es möglich eine manuelle Anpassung vorzu-

nehmen. Der automatische Teil verwendet dagegen Abbildungsregeln, d.h. Elementtypen werden mit den 

Typen aus einer Liste verglichen und entsprechenden neuen Elementen automatisch zugeordnet: Zum Beispiel 

werden die Elemente TCheckBox und ThunderRTCheckBox zu CheckBox. Das Werkzeug wurde in einer Studie 

an 20 bekannten Windows Anwendungen geprüft und konnte fast 76% der Steuerelemente erkennen und 

neuen zuordnen. Doch einige Elemente wurden auch dann erkannt, obwohl sie normalerweise nur bei be-

stimmten Aktionen sichtbar werden (Hover-Effekt). Andere Elemente konnten zwar erkannt werden, deren 

Sinn oder Zweck war jedoch durch ihre Generizität (z.B. benutzerdefinierte Steuerelemente, Toolbar-Buttons) 

nicht zu ermitteln. Zudem liefert die benutzte API keine Information über die Farbgestaltung der Elemente, so 

dass die Farben nur über ein Foto erkannt werden können. Die Erkennung lief dabei immer mit derselben Bild-

schirmauflösung (und vermutlich auch Punktdichte-Einstellung) und bildet die Dialoge daher immer im Original 

ab. Nach dem Autor seien daher zusätzliche Kodierungen für Skalierung und Positionsänderung notwendig. 

Die beschriebene Lösung besitzt den Vorteil, dass damit fast jede beliebige GUI kopiert werden kann, deren 

Quelltext nicht mehr vorhanden ist. Dabei werden alle Elemente, ob sichtbar oder nicht, gefunden und Ent-

wickler können diese in einem separaten Prozess neu mit dem Programmablauf verknüpfen. Doch nicht alle 

Oberflächen lassen sich mit der Low-Level API durchforsten. Sobald GUI Elemente nicht mit dem Windows API 

Befehl CreateWindow erstellt wurden, können auch API Funktionen wie EnumChildWindows oder GetWindo-

wInfo diese nicht ermitteln. Dies ist beispielsweise in Anwendungen der Fall, die ihre Oberfläche mit DirectX 

oder OpenGL zeichnen, wie dem Windows Presentation Foundation. Für die Windows API besteht dann eine 

solche Anwendung nur aus einem Fenster mit unbekanntem Inhalt. 

 

2.6 Migration 
 

Die Migration (lat. Wanderung) beschreibt die Umrüstung einer Anwendung in eine neue Systemumgebung 

[Fischer, et al., 2008]. Dieser Vorgang kann von einem Menschen oder einer Maschine vollständig oder nur zum 

Teil durchgeführt werden. Im besten Fall erzeugt die Umrüstung eine funktionale Kopie der Anwendung auf der 

neuen Plattform. Eine Anwendung wird migriert, indem deren Komponenten analysiert, kopiert und angepasst 

werden. Die einfachste Art der Migration ist das Kopieren von Komponenten (z.B. GUI, Programmlogik oder 

Teile davon), d.h. die ursprüngliche Funktion der Altanwendung wird vollständig erhalten. Dies ist jedoch nur 

möglich, falls die Zielplattform dies auch unterstützt (z.B. Prozessorleistung, Bildschirmauflösung usw.). Ist dies 

nicht der Fall, dann müssen die Komponenten der Zielplattform angepasst werden und zwar so, dass sie unter 

dem neuen System genutzt werden können. Im schlechtesten Fall unterstützt die Zielplattform eine oder meh-

rere Funktionen nicht  (z.B. 3D GUI auf Mobilgeräten oder biometrische Identifikation). Die Komponenten müs-

sen dann entweder ersetzt oder entfernt werden, um die Migration vervollständigen zu können. 

Bei der Migration von Benutzungsschnittstellen werden die Steuerelemente einer Plattform auf die entspre-

chenden Steuerelemente einer anderen Plattform abgebildet [Moore, et al., 1993]. Diese Aufgabe kann verein-

facht werden, indem Detailinformationen weggelassen und die Abbildungen damit abstrakter werden. So wird 

das spezifische Element „Schalter“ zum generischen Eingabeelement oder das „Dropdown-Listenfeld“ wird mit 

dem „Listenfeld“ (vgl. Tabelle 17 auf Seite 134) zum allgemeinen Auswahlelement. 

Die Durchführung der Migration teilt Moore in drei Phasen ein: 

1. Erkennung („detection“) der Funktionalität der Benutzungsschnittstellen. 

2. Präsentation („representation“) und Dokumentation derselben. 

3. Abbildung („transformation“) in die neue Umgebung. 

In der Erkennungsphase werden das System analysiert und die Bestandteile erkannt, die für die Benutzerober-

fläche zuständig sind. Dies kann per Hand geschehen oder durch Mustererkennung und syntakti-



 
45 Grundlagen und Stand der Technik 

sche/semantische Analyse. Dabei bezieht sich Moore nur auf die Benutzungsschnittstellen, die im Quelltext 

integriert vorliegen. Die Analyse von Oberflächenbeschreibungssprachen gehört daher auch in die Erkennungs-

phase, d.h. die Steuerelemente sowie deren Anordnung und Beziehungen zueinander werden analysiert und 

für die Präsentationsphase vorbereitet. 

Mit der Präsentation werden die gewonnenen Erkenntnisse in eine bestimmte Darstellung gebracht. Diese 

können im Falle von Oberflächen abstrakte Beschreibungssprachen („Abstract User Interface Design“), Zu-

standsautomaten („Since most user interfaces involve system states and transitions *…+“) oder auch andere 

Modellformen (z.B. Objekte, Graphen, XML usw.) sein.  

Die dritte und letzte Phase der Migration ist die Abbildung der Benutzungsschnittstellen auf die neue Plattform. 

Diese Phase gehört nicht zum Reverse Engineering (vgl. Kapitel 2.5.2), sondern baut stattdessen darauf auf und 

nutzt die daraus gewonnen Erkenntnisse für die Migration. Dabei werden die zurückentwickelten Elemente der 

Oberflächen auf die neue Plattform abgebildet und gegebenenfalls an die neue Umgebung angepasst. So kön-

nen Auswahlelemente als Listenfeld oder Dropdown-Listenfeld (vgl. Tabelle 17) platziert werden, je nachdem, 

ob ein Dropdown-Listenfeld von der Zielplattform unterstützt wird oder nicht.  Zudem kann das Dropdown-

Listenfeld vorgezogen werden, wenn der Platz für die Oberfläche knapp ist und eine Liste zu viel Raum bean-

spruchen würde. Da dieser Vorgang sich auf vorhandene Abbildungsvorschriften stützt, wird er dementspre-

chend als wissens- oder regelbasierte Transformation (vgl. [Moore, 1995] ) bezeichnet.  

Die Probleme beim Migrieren können vielfältig sein. [Moore, et al., 1993] zählen dazu die Unterschiede in den 

Funktionen und den Architekturen der verschiedenen Plattformen sowie die Integration der Benutzeroberflä-

che in der Anwendung. Zudem sehen die Autoren im Fehlen von Standards bei Benutzeroberflächen eine Hür-

de bei der Migration von Anwendungen. Ihre Empfehlung lautet daher den Migrationsprozess methodisch 

durchzuführen und in Phasen (wie bereits erwähnt: Erkennung, Repräsentation und Transformation) einzutei-

len. Diese Vorgehensweise wurde auch in zwei Studien (dem TRANSOPEN Projekt und der Studie Knowledge 

Worker Platform Analysis) angewendet und überprüft [Moore, et al., 1993]. 

Die Migration hängt offensichtlich stark mit dem Reverse und Software Engineering zusammen. Eine vorhan-

dene Anwendung muss zuerst verstanden sein, bevor sie für eine neue Plattform erstellt werden kann. Einige 

Ansätze zur Migration setzen daher auf plattformunabhängige Modelle, die Anwendung und deren Interaktion 

mit dem Benutzer beschreiben und aus denen Oberflächen generiert werden können (Eine Menge von GUI 

Generatoren wurden in [Schlegel, et al., 2010] evaluiert). Diese Ansätze nutzen dazu üblicherweise eine gerä-

teunabhängige Beschreibungssprache wie beispielsweise [USIXML], UIML (siehe [Abrams, et al., 2004]) oder 

XIML (siehe [Di Santo, et al., 2004]). Diesen Ansätzen ist allen gemein, dass die Migration zur Entwurfszeit pas-

siert. Dagegen erlauben andere Ansätze auch die Migration zur Laufzeit. Wie beispielsweise [Bandelloni, et al., 

2007] oder von [Bandelloni, et al., 2004] , die einen modellgestützten Ansatz beschreiben, der zur Laufzeit 

Webseiten für verschiedene Plattformen wie Mobilgeräte oder auch als Sprachausgabe generieren kann.  

Mit dem Aufkommen immer neuerer Mobilgeräte und Bildschirmauflösungen kam auch die Notwendigkeit auf, 

vorhandene Anwendungen auf die neuen Plattformen zu migrieren. Viele Ansätze befassen sich daher mit der 

Migration von grafischen Oberflächen auf die Bedürfnisse von Geräten mit kleiner Anzeigefläche (z.B. Hand-

helds, Smartphone, Tablets). Darunter sind auch die bereits erwähnten Arbeiten von Bandelloni et al. mit einer 

weiteren Arbeit Flexible Interface Migration von denselben Autoren. Weitere Beiträge stammen von [Grolaux, 

2004], [Canfora, et al., 2004] und [Wong, et al., 2002]. Letztere präsentieren ein Framework für Java, welche 

„Scalable Graphical User Interfaces“ nutzt, um Oberflächen zwischen verschiedenen Plattformen (hauptsäch-

lich Mobilgeräte) zu migrieren. Der Ansatz nutzt eine eigene Layoutspezifikation für jede Plattform und eine 

Menge von Regeln für die Migration von Steuerelementen. Zur Entwurfszeit wird ein Dialog entwickelt, der auf 

verschiedene Plattformen migriert werden kann.  

Im Gegensatz zu den bereits oben genannten Ansätzen gehen [Salminen, et al., 2007] einen gegensätzlichen 

Weg und beschreiben eine Lösung auf der Basis einer zwischengeschalteten Software (Middleware), die Diens-



 
46 Migration und Anpassung von Dialoganwendungen für berührungsempfindliche Bildschirme 

te für Verbindungsaufbau, Suche und Kommunikation für Mobilgeräte auf Desktopcomputern ermöglicht. Die 

Autoren erstellen den Softwareprototyp, der die Kommunikation zwischen Mobilanwendung und migrierter 

Desktopanwendung ermöglicht und evaluieren ihn, indem sie Benutzern die Möglichkeit geben SMS auf einer 

Computertastatur schreiben und sofort senden zu lassen. Eine weitere Lösung, die eine Middleware-Lösung 

nutzt, um grafische Benutzerschnittstellen auf verschiedenen Geräten nutzen zu können, ist unter [Paternò, et 

al., 2008] zu finden. Die darin vorgestellte Migration unterstützt sogar die Darstellung von Benutzerschnittstel-

len im Fernseher, wie in der Abbildung 24 zu sehen ist. 

 

Abbildung 24 Eine GUI migriert für ein Fernsehgerät [Paternò, et al., 2008]. Die Elemente können durch die Fernbedienung bedient 
werden. 

Die Migration kann besonders aufwändig sein, wenn eine Anwendung auf ein anderes Betriebssystem umge-

rüstet werden soll. Für die Migration von UNIX Anwendungen auf Windows gibt es dazu von Microsoft eine 600 

Seiten starke Anleitung (siehe [Microsoft, 2003]). Weitere Strategien sowie Ansätze und Lösungen für die Mig-

ration von Windows Anwendungen gibt es unter [Gerdes, 2009], [Abramson, et al., 2002] und [Antoniol, et al., 

1995].  

 

Abbildung 25 Die Migration von AgilePlanner auf ein Multi-User „Touchtisch“ 
mit 10 Mega Pixel Auflösung [Wang, et al., 2008] 

Weiterhin sollen Anwendungen für neue, populär werdende Technologie, wie die berührungsempfindlichen 

Bildschirme, angepasst werden. An der Universität Calgary in Kanada wurde bereits eine Anwendung Agile-

Planner für agile Projektsitzungen entwickelt, um den Teilnehmern ihre Projektplanung zu erleichtern. Die 

Sitzungsteilnehmer  nutzten AgilePlanner bereits auf ihren portablen Computern, ohne jedoch einen Vorteil bei 

der Zusammenarbeit während eines Meetings zu erhalten, da jeder Teilnehmer nur den eigenen Bildschirm 

betrachtete. Deshalb wurde die Software von [Wang, et al., 2008] auf einen 183cm x  122 cm großen Multi-



 
47 Grundlagen und Stand der Technik 

User „Touchtisch“, ein sogenanntes Tabletop, migriert. Der Tisch erlaubt die Nutzung  der Software von mehre-

ren Benutzern gleichzeitig und insbesondere gemeinsam. 

Die Entwickler berichten über ihre Erfahrungen bei der Migration der Anwendung und der Umsetzung von 

Fingereingaben, Gesten und multiplen Simultaneingaben von mehreren Benutzern am Tisch. Aus ihren Evalua-

tionsergebnissen der migrierten Anwendung leiten sie u.a. die folgenden Richtlinien ab: 

1. Komponenten der Oberfläche sollten beweglich und drehbar sein 

2. Fingergesten sollten gegenüber traditionellen Menüs vorgezogen werden 

3. Texteingaben sollten über Handschriftenerkennung geschehen, statt eine Tastatur zu verwenden 

4. Die Größe von Steuerelemente sollte für Fingereingabe angepasst werden 

 

2.7 Zusammenfassung 
 

Das Grundlagenkapitel befasste sich mit dem aktuellen Wissensstand bei der Oberflächenentwicklung. Zuerst 

wurden wichtige Begriffe für diese Arbeit definiert, u.a. die Begriffe Benutzbarkeit und Touch. Daraufhin wurde 

die Geschichte der Benutzerschnittstellen vorgestellt und gezeigt, was in Zukunft mit organischen Benutzer-

schnittstellen möglich sein wird. Es folgte ein Kapitel über berührungsempfindliche Technologien und Metho-

den. Dazu wurden der aktuelle Stand der Technik für berührungsempfindliche Bildschirme präsentiert und die 

einzelnen Techniken wie druckempfindliche, ladungsempfindliche und optische Oberflächen erklärt sowie die 

Vor- und Nachteile dargelegt. Weiterhin wurde auf die Interaktionsmethoden bei einer „Toucheingabe“ einge-

gangen und veranschaulicht wie Finger für verschiedene Bedienaktionen eingesetzt werden können.  

Das nächste Kapitel behandelte Dialoge und welchen Zweck – bekanntlich zur Eingabe und Abfrage von Daten 

sowie zur Bestätigung derselben – diese erfüllen. Es wurden außerdem sieben Gestaltungsgrundsätze aus der 

ISO Norm für die Entwicklung von Dialogen genannt, welche die Bedienbarkeit von Dialogen verbessern sollen. 

Neben den Gestaltungsgrundsätzen wurden außerdem fünf mögliche Arten von Bedienaktionen gezeigt, die ein 

Benutzer in einem grafischen Dialogsystem ausführen kann. Ein weiteres Kapitel über Dialoge führte anschlie-

ßend in die Beschreibungssprachen von Dialogen ein. Dazu wurde zwischen zwei Arten von Benutzungsschnitt-

stellen unterschieden: den plattformabhängigen und –unabhängigen Dialogbeschreibungssprachen. Als Bei-

spiele kamen ConcurTaskTrees als plattformunabhängige Dialogbeschreibung sowie Programmiersprachen und 

XAML als plattformabhängige Sprachen zum Einsatz. Das Kapitel über Dialoge wurde schließt mit einem Exkurs 

über die Punktdichte, und welche wichtige Rolle diese bei der Darstellung von Dialogen auf Bildschirmen spielt, 

abgeschlossen. 

Im Anschluss wurde in die Softwareentwicklung, insbesondere die modellgetriebene Entwicklung und das Re-

verse Engineering, eingeführt. Die modellgetriebene Entwicklung wurde erläutert und gezeigt welche Möglich-

keiten sie für die gleichzeitige Entwicklung auf verschiedenen Plattformen bietet. Als Beispiele wurden MARIA 

als Modellsprache für interaktive Anwendungen sowie das Framework AndroMDA vorgestellt. Überdies wurde 

das Thema Reverse Engineering vorgestellt und Konzepte und Lösungen vorgebracht, um bereits bestehende 

Dialogoberflächen zu analysieren und zurückzuentwickeln, d.h. die Inhalte und Darstellung der Dialoginhalte 

aus dem Programmquelltext oder einer Dialogbeschreibungssprache zu erlangen.  

Zum Schluss wurde die Migration von Dialogsystemen behandelt. Verschiedene Lösungen wurden dazu vorge-

stellt, die Dialogoberflächen für unterschiedliche Plattformen umrüsten können. Außerdem wurde ein Artikel 

vorgestellt, bei dem die Autoren über ihre Erfahrungen mit der Migration einer bestehenden Desktop-

Anwendung zur Konferenzverwaltung auf einen großen Multi-Touch-Tisch berichteten. 

  



 
48 Migration und Anpassung von Dialoganwendungen für berührungsempfindliche Bildschirme 

3 Problem-, Aufgabenstellung und Lösungsansatz 
 

 

Das folgende Kapitel 3.1 gibt einen Überblick über die Aufgaben und Ziele dieser Diplomarbeit. Zuerst wird die 

aktuelle Situation beschrieben und welche Nachteile dies mit sich bringt. Daraus ergeben sich die Aufgaben 

dieser Diplomarbeit. Den Problemen und Aufgaben folgt zuletzt ein Überblick des gewählten Lösungsansatzes 

in Kapitel 3.2. 

 

3.1 Problemstellung  
 

Mit dem Erscheinen von Smartphones und Tablets PC ist es mittlerweile üblich geworden, Mobilgeräte mit den 

Fingern zu bedienen. Aber auch für Desktopcomputer existieren schon lange berührungsempfindliche Bild-

schirme, für die es häufig jedoch an geeigneter Software mangelt. Um welche Probleme es sich dabei handelt 

(Fehlende Touch- und Entwickler-Unterstützung), soll in den folgenden Abschnitten näher erläutert werden. 

 

Fehlende Touch-Unterstützung 

 

Man muss zugegeben, dass bei Desktopsystemen keine übermäßig hohe Priorität für den Einsatz von berüh-

rungsempfindlicher Bedienung besteht. Einerseits sind Touchbildschirme nicht weit verbreitet, obwohl sie mitt-

lerweile kaum noch im Preis von normalen Flachbildschirmen zu unterscheiden sind. Und andererseits sind die 

Nutzer an die Bedienung mit Maus und Tastatur gewohnt. Nur in speziellen Einsatzgebieten, wie Fahrkartenau-

tomaten überwiegt die Bedienung mit den Fingern, nicht zuletzt weil die Betreiber die Instandhaltungskosten 

sparen wollen. 

Diese Systeme sind jedoch geschlossen, d.h. nur von einem Anbieter. Zudem wird die Software dazu direkt für 

die eingesetzte Hardware entwickelt und darauf optimiert.  Im Gegensatz dazu sind Anwendungen für Desk-

topcomputer nicht für ein spezielles System entwickelt worden. Sie sollen, wenn möglich, jahrelang funktionie-

ren. Viele Anwendungen, insbesondere aus dem Bankensektor, stammen daher aus dem letzten Jahrtausend 

und sind damit mehrere Jahrzehnte alt. Aber auch Anwendungen, die immer wieder in neue Versionen entwi-

ckelt wurden, sind nicht für Touch ausgelegt, da oftmals die Funktionalität im Vordergrund steht und weniger 

die Benutzbarkeit (obwohl wir hier auch Verbesserungen sehen können). Diese lange etablierten Anwendun-

gen für Desktopsysteme unterscheiden sich grundlegend von den Anwendungen, welche für die relative neue 

Mobilgerätegeneration von iPhone, iPad und Co entwickelt werden (Neudeutsch: „App“). Die Bedienung mit 

den Fingern ist für den Benutzer standardmäßig die einzige Möglichkeit zur Interaktion mit dem Mobilgerät. 

Entsprechend hoch sind auch die Anforderungen für mobile Anwendungen (oder „App“), denn wenn eine sol-

che Anwendung nicht gut genug mit den Fingern bedient werden kann, dann wird sie einfach nicht genutzt. 

Entsprechend groß sind auch die Bestrebungen, den Entwicklern bei der Anwendungsentwicklung unter die 

Arme zu greifen, indem Touch bereits von Anfang an von den Entwicklungswerkzeugen unterstützt wird. Mit 

Windows Vista und Windows 7 ist mittlerweile auch für Windowsanwendungen die Fingerbedienung möglich. 

Windows selbst bietet jedoch standardmäßig nur grundlegende Touchfähigkeiten an. Es unterscheidet daher 

zwischen Altanwendungen, die selbst nicht auf Berührungen reagieren können und Neuanwendungen, die 

aktiv auf die Fingereingabe antworten, d.h. dafür entwickelt wurden. Die alten Anwendungen werden mit den 

üblichen Interaktionen versorgt, indem ihnen vorgespielt wird sie würden mit einer Maus bedient. Dazu zählen 

Wer aufhört, besser sein zu wollen, hat aufgehört, gut zu sein.  

Oliver Cromwell 
englischer Militärführer und Politiker 



 
49 Problem-, Aufgabenstellung und Lösungsansatz 

z.B. das Klicken und der Bildlauf mit ein oder zwei Fingern. Windows bietet jedoch keine Möglichkeiten an, 

fremde Anwendungen gezielt einfacher und präziser mit den Fingern zu bedienen, zum Beispiel durch vergrö-

ßerte Bedienelemente. Daher besteht in diesem Fall die einzige Möglichkeit darin, die Punktdichte des gesam-

ten Systems (und damit aller Anwendungen) zu erhöhen und mit den Nachteilen zu leben, welche durch An-

wendung entstehen, die damit nicht umgehen können (vgl. Kapitel 2.4.5). 

 

Fehlende Entwickler-Unterstützung 

 

Die meisten Anwendungsentwickler werden sich kaum um die Fingerbedienung ihrer Anwendungen kümmern, 

wenn sie damit keine oder nur wenig Erfahrungen gemacht haben oder sie keinen berührungsempfindlichen 

Bildschirm besitzen. Mit Einführung von Windows Vista gibt es zwar auch für die Entwicklerseite ein Entwick-

lungswerkzeug, welches Touchinteraktionen für Anwendungen ermöglicht, jedoch erfordert dies immer einen 

Anpassungsaufwand für die Entwickler. 

Denn eine beträchtliche Anzahl von Dialogen wurde bereits entwickelt und befindet sich damit im Einsatz. 

Selbst in einer Firma, in der jahrelang Software entwickelt wurde, wäre ein einzelner Entwickler wohl überfor-

dert mit der Anpassung der Dialoge für die Touchbedienung. Allerdings ist es fraglich, ob es für kleine Firmen 

oder selbstständige Entwickler wirtschaftlich sinnvoll ist, eine Arbeitskraft alleine mit der Anpassung zu betrau-

en. Und sogar für Firmen, die mehrere Arbeitskräfte einsetzen könnten, um ihre Dialoge entsprechend anzu-

passen, würden mit Probleme konfrontiert. Zuerst wäre eine Art von Regelwerk erforderlich, das die Entwickler 

anleitet, wie die Anpassung zu erfolgen hat. Jedoch ist kein Werk beliebig präzise, so dass darin immer Lücken 

enthalten sind. Diese Lücken werden daher vom Entwickler selbst geschlossen, indem er seine eigene Erfah-

rung nutzt. Dies bedeutet allerdings, dass die Anpassung der Dialoge zwischen verschiedenen Entwicklern (und 

besonders bei unterschiedlichen Kulturen, z.B. aus Europa und Asien) stark variieren kann und dadurch die 

Bedienkonsistenz über alle angepassten Dialoge leidet. Und selbst wenn es keine Lücken im Regelwerk gäbe, 

kann die Konsistenz leiden, wenn der Anpassungsaufwand nur hoch genug ist. So kann die Qualität der ange-

passten Dialoge sich verändern, indem die Entwickler während ihrer Arbeit dazulernen. Fehlt zu Beginn der 

Arbeit die Erfahrung mit dem Regelwerk und Anpassungsprozess, so ändert sich dies bis zum Schluss. 

Ein weiteres Problem betrifft die eingesetzten Steuerelemente selbst. Denn nur einige sind für die Fingerbedie-

nung geeignet und auch dann müssen sie richtig eingesetzt werden. Während Schalterknöpfe (Buttons) für 

Touch bestens geeignet sein können, sind sie in sogenannten Drehfeldern (siehe Tabelle 17 im Anhang) durch 

ihr geringes Maße unbrauchbar. Die Entwickler können ohne ausreichend Erfahrung und Wissen nicht erken-

nen, welche Elemente wie eingesetzt werden, um gut bedienbar zu sein (Andernfalls wäre die Benutzbarkeit 

kein so großes Forschungsfeld in der Wissenschaft und Industrie). Ein Entwickler muss bei der Anpassung au-

ßerdem immer wieder viele gleichartige problematische Stellen innerhalb des Dialogs erkennen und anpassen. 

Er muss die Maße der Elemente korrigieren, die Abstände vergrößern oder Steuerelemente austauschen. Diese 

monotone Arbeit kann daher zu Fehlern führen, die nachträglich korrigiert werden müssen. 

  



 
50 Migration und Anpassung von Dialoganwendungen für berührungsempfindliche Bildschirme 

3.2 Aufgabenstellung und Lösungsansatz 
 

Die folgenden Abschnitte beschreiben die Aufgaben der Diplomarbeit sowie den Lösungsansatz.  

Aufgabenstellung 

 

Um die aktuelle Situation und die erläuterten Probleme bei vorhandenen Desktopanwendungen zu verbessern, 

wurden die folgenden Aufgaben für diese Diplomarbeit konzipiert (siehe auch Abbildung 26).  

1. Recherche zum Thema, zu Beschreibungsmethoden, Frameworks und Transformatoren für die Anpas-

sung der Dialoge (Kapitel 2). 

2. Recherche und Konzeptbildung zu Interaktionselementen und Gestaltungsregeln für die Fingerbedie-

nung (Kapitel 2 und 5). 

3. Konzeption eines regel-/modellbasierten Ansatzes für die Transformation von klassischen Dialogen in 

Touchanwendungen (Kapitel 4). 

4. Erstellung einer Architektur und eines in die Implementierung überführbaren Konzepts (Kapitel 6). 

5. Erstellung einer Implementierung auf der Basis der Windows Presentation Foundation und für XAML 

nutzbaren Transformationsanwendung (Kapitel 7). 

6. Durchführung einer Nutzerstudie, in der entsprechende Bedienelemente und  Regeln evaluiert wer-

den, um eine Basis für die Gestaltungsregeln und die Transformation zu erhalten (Kapitel 7.6). 

7. Evaluation der Anwendung anhand der Erkenntnisse aus der Studie und mit Hilfe der Implementierung 

anhand von realistischen Beispielen für Dialoganwendungen (Kapitel 7.6). 

 

Abbildung 26 Schematische Darstellung der Lösung. Die Transformation von Dialogen besteht aus einem Gesamtkonzept, welches im 
Laufe dieser Arbeit konkretisiert und schließlich umgesetzt wird. 

 

Lösungsansatz 

 

Den Aufgaben und deren Bearbeitung ging zuerst eine Idee voraus, Dialogelemente mit der Hilfe von Regeln so 

zu verändern, dass deren Bedienung auf berührungsempfindlichen Bildschirmen für Benutzer leichter fällt. Die 

Idee wurde erweitert und es kam ein modellgetriebener Ansatz dazu, der sich durch die Möglichkeiten in der 

modellgetriebenen Entwicklung inspirieren ließ. Denn die Idee bestand auch darin jede Art von Dialogbeschrei-

bungssprache transformieren zu können. Dies hätte jedoch bedeutet, die Transformationsregeln auf jede die-

Betriebenes Konzept (Kapitel 4.2) 

  Umsetzung (Kapitel 7)  

 Abbildungskonzepte (Kapitel 5) 

Gesamtkonzept (Kapitel 4.1) 

Transformation 

  Architektur (Kapitel 6)  



 
51 Problem-, Aufgabenstellung und Lösungsansatz 

ser Sprachen anwenden zu müssen. Doch der Ansatz sollte eine einheitliche Transformationssprache für meh-

rere Dialogsprachen sein, um den Wartungs- und Portieraufwand zu minimieren. Das Konzept bestand also 

darin erst einmal verschiedene Dialogsprachen zu vereinheitlichen, um die Regeln auf dieser einheitlichen 

Sprache anwenden zu können. Zum Schluss würde die Einheitssprache dann wieder in die ursprüngliche Dia-

logsprache zurückkonvertiert. 

Wie es sich herausstellte war das ursprüngliche Konzept bereits zu groß, um vollständig umgesetzt werden zu 

können. Auf Grund dieses Umstandes wurde der zentrale und wichtige Teil, die Abbildung der Dialogelemente 

in einer einheitlichen Sprache, in dieser Arbeit angegangen. Das Gesamtkonzept ist daher als Ansatz beschrie-

ben, der für weitere Entwicklungen als Grundlage dienen kann. 

Weiterhin war es für die Abbildung von Steuerelementen erforderlich zu wissen, wie diese Abbildungen über-

haupt aussehen könnten. Daher wurden Konzepte entwickelt, welche die Steuerelemente für die Bedienung 

mit Fingern verbessern sollten. Diese konzeptionellen Regeln bilden damit die Grundlage für die Abbildungsre-

geln des Transformationsprozesses und können mit Hilfe der entwickelten Anwendung für Dialoge eingesetzt 

werden. 

  



 
52 Migration und Anpassung von Dialoganwendungen für berührungsempfindliche Bildschirme 

4 Methode zur Umsetzung des Lösungsansatzes 
 

 

Im vorherigen Kapitel wurde bereits die Aufgabenstellung genannt, die aus der Problemstellung hergeleitet 

wurde. Dazu wurde außerdem ein Lösungsansatz entwickelt, um die Umsetzung zu ermöglichen. Das folgende 

Kapitel konkretisiert diesen Lösungsansatz und stellt eine grundlegende Vorgehensweise für die Umsetzung 

bereit. Es beginnt daher mit der Beschreibung eines großen Konzepts in Kapitel 4.1 und erläutert die möglichen 

Wege und Methoden zur Transformation einer Oberfläche. Für die Umsetzung selbst wird in Kapitel 4.2 ein Teil 

dieses Konzepts herausgenommen und näher erläutert, um eine umsetzbare Methode für die Kapitel 6 und 7 

zu erhalten. 

 

4.1 Gesamtkonzept 
 

Die Herausforderung, Altanwendungen auch für berührungsempfindliche Bildschirme anzupassen, macht es 

erst einmal erforderlich ein Grundkonzept, d.h. eine Vorgehensweise zu entwickeln, die hier vorgestellt werden 

soll. Eine solche Methode gibt die Abbildung 27 wieder.  

Die Abbildung zeigt eine modellgetriebene Entwicklung aufgeteilt in zwei Seiten. Die linke Seite stellt die Dialo-

ganwendung ohne Unterstützung und Anpassung für berührungsempfindliche Bildschirme dar (Legacy Seite), 

während die rechte Seite diese Anpassungen bereits besitzt (Touch Seite). Die Aufgabe besteht nun darin dia-

logbasierte Altanwendungen (linke Seite) über eine Transformation für die Benutzung auf berührungsempfind-

lichen Bildschirmen (rechte Seite) anzupassen. 

Für die meisten Dialoganwendungen wird entweder eine Dialogbeschreibungssprache verwendet oder sie sind 

durch ein mehr oder weniger abstraktes Modell spezifiziert. Die Vielzahl von Dialogbeschreibungssprachen und 

Dialogmodellen macht die Aufgabe der Migration nicht einfach. Daher besteht die Lösung darin, nicht die Dia-

logsprachen selbst zu migrieren, sondern einen Dialog erst einmal in ein einfacher zu migrierendes Modell 

zurückzuentwickeln (Reverse Engineering, Symbol   in der Abbildung). Der Reverse Engineering Schritt muss 

für verschiedene Arten von Beschreibungssprachen einmalig unternommen werden. Danach kann die Migrati-

on ( ) jedoch stets auf demselben Modell stattfinden. In dieser Arbeit soll das XAML Modell verwendet wer-

den, da es auf XML aufsetzt und daher leicht automatisch zu interpretieren und anzupassen ist.  Der Weg über 

XAML ist aber nicht der einzige. Die modellgetriebene Softwareentwicklung (MDE) nutzt Modelle für Dialoge 

und Anwendungen, die noch unabhängig von der eingesetzten Plattform sind. Ein abstraktes Dialogmodell in 

XML Notation, wie es UsiXML (siehe [USIXML]) implementiert, kann zum Einsatz kommen, wenn kein .NET, C# 

oder XAML möglich ist wie z.B. bei Webseiten mit HTML.  Es ist daher genauso möglich Abbildungsregeln ( ) 

auf der Modellebene der Stufe 3 (PIM) und höher einzusetzen. Wie im MDE üblich, durchläuft die Codegenerie-

rung nicht alle untergeordneten Stufen, sondern kann sofort die notwendige Zielsprache erzeugen. D.h. XAML 

ist nicht für die Transformation mit höheren Modellen notwendig ( ). 

Die Abbildung der Dialogelemente in eine Modellsprache und wieder zurück (vertikale Transformation,   und 

) wurde in dieser Arbeit nicht untersucht, weil die Abbildung von Alt- auf  Neudialogen (horizontale Trans-

formation,  ) im Blickpunkt stehen sollte. Ansätze und Umsetzungen für die Konvertierung von Dialogspra-

chen in Modelle und zurück wurden jedoch bereits in den Kapiteln 2.5.1 und 2.5.2 genannt. 

Software is a thought process.  

To patent it is comparable to patenting induction or deduction. 

Tom DeMarco  
amerikanischer Softwareentwickler 

 



 
53 Methode zur Umsetzung des Lösungsansatzes 

 

Abbildung 27 Modellgetriebene Transformation zur Migration auf berührungsempfindliche Dialoge im allgemeinen Fall bestehend aus 
Reverse Engineering, Transformation (auch Abbildung) und Codegenerierung 

 

Wird XAML als Zielmodell gewählt, hat dies jedoch drei Vorteile: 

1. XAML ist erstens anpassbar durch völlig neuartige und selbst erstellte Steuerelemente und kann 

dadurch sehr aufwändig gestaltete Oberflächen produzieren.  

2. XAML beruht auf dem XML Standard und ist somit mit XML DOM Parsern nutzbar.  

3. Die XAML Dialoge können in einem Designer wie Visual Studio betrachtet und bearbeitet werden, um 

beispielsweise ihr Aussehen zu optimieren.  

Ob nun XAML oder ein anderes Modell verwendet wird, der Abbildungsprozess ( ) bleibt der gleiche. Kann das 

Modell jedoch mit XML beschrieben werden, ist letztlich nur ein XML Parser notwendig und zudem das „Wis-

sen“ wie die Steuerelemente migriert werden können.  Das Lesen von XML gestaltet sich mit Hilfe von XQuery 

und XPath außerdem sehr einfach und flexibel. Und viele Programmiersprachen unterstützen XML standard-

mäßig durch eigene Klassen und Methoden. Zur Transformation von XML hat sich mit der Sprache XSLT (Exten-

sible Stylesheet Language Transformation) ein weiterer Standard gebildet. XSLT ist eine Turing-vollständige 

Sprache, die in dieser Arbeit zur Migration von Dialogen in XAML verwendet wird (Eine in XSL gebaute Turing-

maschine ist unter [Unidex Inc., 2001] zu finden).  

 

 

GUI-Sprache 

Legacy 

konkretes 

Dialogmodell 

in XAML 

abstraktes 

Dialogmodell 

weiteres 

Modell 

GUI-Sprache 

Legacy 

konkretes 

Dialogmodell 

in XAML 

abstraktes 

Dialogmodell 

weiteres 

Modell 
Modellebene 

PIM 

Stufe 4 

Modellebene 
PIM 

Stufe 3 

Modellebene 
PSM 

Stufe 2 

Quelltextebene 

Stufe 1 

Abbildungsregeln 

XAML spezifisch 

fg
ff

gd
fg

sd
fg

s-

R
ev

er
se

 E
n

gi
n

ee
ri

n
g fg

ffg
d
fg

sd
fg

s-

C
o

d
eg

en
er

ie
ru

n
g 

Abbildungsregeln 

plattformunabhängig 

Abbildungsregeln 

Legacy Seite Touch Seite 

horizontale Transformation (gleicher Abstraktionsgrad) 

ve
rt

ik
al

e 
Tr

an
sf

o
rm

at
io

n
 (

h
ö

h
er

er
 A

b
st

ra
kt

io
n

sg
ra

d
→

) 

fg
ffg

fg
f

fg
ff

g
d

f
fg

f

fg
ff

g
f

  

  

  

  

 

 

 

 

 



 
54 Migration und Anpassung von Dialoganwendungen für berührungsempfindliche Bildschirme 

Ein letzter Lösungsansatz betrifft die Abbildungsregeln selbst. Abbildung 27 zeigt Regeln auf verschiedenen 

Modelebenen, die eine vertikale Transformation () durchlaufen. Die Idee dahinter ist eine einfache Sprache 

für den Benutzer zu haben, in der sie/er die Abbildungsregeln beschreibt. Die Regeln werden schließlich in 

einem vertikalen Transformationsprozess auf  die gewünschte Modellstufe (z.B. Stufe 2 mit XSLT) abgebildet, so 

dass beispielsweise der Benutzer sich nicht direkt mit XSLT, XPATH (von XSLT verwendet) und den Eigenschaf-

ten von XAML auseinander setzen muss. Dazu müssen die Abbildungsregeln in einer einfach gestalteten Spra-

che spezifiziert werden. Dies kann z.B. eine Untermenge der natürlichen Sprache sein, die unabhängig von der 

eingesetzten Plattform und Dialogbeschreibungssprache die Abbildungsregeln bestimmt.  Das folgende Beispiel 

einer einfachen Abbildungsvorschrift bildet die Steuerelemente eines Dialogs ab: 

Set size of all elements where type is Button to minimum 1 centimeter. 

Replace all elements where type contains ListBox with element ListBoxTouch. 

Das Beispiel erinnert entfernt an SQL Anweisungen bei Datenbanksystemen. SQL wird seit vielen Jahren erfolg-

reich eingesetzt und ist auch für Anfänger einfach zu lernen und zu verwenden. Doch in den Beispielen existiert 

noch eine gewisse Ungenauigkeit, die durch eine vertikale Transformation () entfernt werden muss. Einer-

seits ist die Eigenschaft size sicher nicht in allen Dialogsprachen vorhanden, sondern wird beispielsweise durch 

width und height ausgedrückt. Und andererseits benutzen die wenigsten Dialogsprachen metrische Längenein-

heiten oder nennen ihre Listenelemente ListBox (vgl. Tabelle 18 Abbildungstabelle für Steuerelemente von 

Delphi, Dialog Ressource und XAML im Anhang). Vor der Transformation müssen daher die Abbildungsregeln 

von allen Ungenauigkeiten befreit werden, d.h. die korrekten Bezeichner und Größen müssen für die jeweils 

eingesetzte Dialogbeschreibungssprache konvertiert werden.  

 

4.2 Umgesetzte Methode 
 

Im Rahmen dieser Diplomarbeit wird der im Kern der Abbildung 27 sitzende Transformationsprozess bearbeitet 

(Ein Auszug ist in Abbildung 28). Darin wird  die Migration von Dialogen für den Gebrauch auf berührungsemp-

findlichen Bildschirmen behandelt. Der Transformationsprozess wird in Kapitel 7.5 beschrieben und stellt nur 

einen Teil der Hauptaufgabe dar. Die andere Aufgabe besteht darin Abbildungen zu finden, die Dialoge für 

berührungsempfindliche Bildschirme verbessern.  

Für den Transformationsprozess selbst wurde eine Anwendung in C# geschrieben, die einem Benutzer die Mög-

lichkeit bietet einen Dialog, geschrieben in der Sprache XAML, zu transformieren. Es ist möglich, die meisten 

Dialoge bereits in der Anwendung zu betrachten und Änderungen am Transformationsprozess vorzunehmen. 

Die Transformation wird dabei über einen XSLT-Text-Editor beschrieben und gesteuert. Ein Plug-In-System 

ermöglicht während des Betriebs den Einsatz von externen in .NET geschriebenen Algorithmen. Die Anwen-

dung und ihre Architektur werden in Kapitel 7.1 und 6 behandelt.

 

Abbildung 28 Ausschnitt des Transformationsprozesses aus Abbildung 27 

 

  

konkretes 

Dialogmodell 

in XAML 

konkretes 

Dialogmodell 

in XAML 

Modellebene 
PSM 

Stufe 2 
Abbildungsregeln 

XAML spezifisch 



 
55 Methode zur Umsetzung des Lösungsansatzes 

Die Transformation von Dialogen wird mit der Hilfe von XSLT, der Extensible Stylesheet Language Transforma-

tionssprache, durchgeführt. Dazu werden XAML Elemente ersetzt oder entfernt bzw. neue Elemente hinzuge-

fügt, indem in XSLT geschriebene Abbildungsregeln darauf angewendet werden. Zudem können auch Eigen-

schaften bzw. Attribute der Elemente in XSLT angepasst werden, um die Darstellung und das Verhalten des 

Elements zu beeinflussen. Parameter in XSLT werden außerdem die Transformation vor jeder Durchführung 

beeinflussen können, so dass Transformationen nicht statisch bleiben, sondern ohne größeren Aufwand für die 

eigene Bedürfnisse angepasst werden können. 

  



 
56 Migration und Anpassung von Dialoganwendungen für berührungsempfindliche Bildschirme 

5 Anpassung der Steuerelemente für berührungsempfindliche Eingaben 
 

 

Dieses Kapitel behandelt die Abbildung von Steuerelementen für die Nutzung auf berührungsempfindlichen 

Bildschirmen. Zuerst werden die Eigenschaften von Steuerelementen für die berührungsempfindliche Eingabe 

in den Kapitel 5.2 und 5.3 analysiert. Darauf folgt eine Analyse der am meisten benutzten Steuerelemente wie 

Druckschalter, Kontrollkästchen, Textfelder, Baumansichten und Listenfelder in den Kapiteln 5.4 bis 5.7. Für 

diese Steuerelemente werden zudem eigene Ersatzelemente vorgestellt, die eine bessere Touchbedienung 

ermöglichen sollen.  

 

5.1 Einführung 
 

Ein Entwickler, der eine Anwendung berührungssensitiv auslegen oder sie dafür optimieren soll, wird sich die 

Frage stellen, wie seine Dialoge und deren Elemente gestaltet werden müssen, um einfach mit den Fingern 

bedient werden zu können. Neben den Größenanpassungen, Abständen und Interaktionskonzepten wie Ges-

ten, könnte zudem die Frage aufkommen, ob für die eingesetzten Steuerelemente überhaupt eine verbesserte 

Version für die berührungsempfindliche Eingabe vorhanden ist. Daher werden im Folgenden in dieser Hinsicht 

verbesserte Steuerelemente vorgeschlagen. Jedoch sind die folgenden Empfehlungen für den berührungsemp-

findlichen Betrieb von Steuerelementen nur eine Auswahl von mehreren. Mit dieser Auswahl wird eine bei-

spielhafte Umsetzung demonstriert. Einige der vorgeschlagenen Steuerelemente sollen zudem im Rahmen 

einer Studie (siehe Kapitel 8) untersucht werden.  

 

5.2 Steuerelementgrößen 
 

Die Fläche einzelner Steuerelemente hat einen entscheidenden Einfluss auf die Bedienbarkeit. Je größer die 

Trefferfläche ist, desto einfacher ist die Bedienung des Elements. Dies wird von verschiedenen Quellen bestä-

tigt (siehe [Sears, et al., 1991], Touch in [Microsoft], [Parhi, et al., 2006], [Kwon, et al., 2009] und [Rozlog, 

2009]). Die in Abbildung 29 unten dargestellten Schaltflächen verdeutlichen die Unterschiede zwischen ver-

schiedenen Flächengrößen. Empfehlungen aus den verschiedenen Quellen nennen eine minimale Seitenlänge 

zwischen 10 und 20 Millimeter (38 und 75 Pixel bei 96 PPI). In der Studie aus Kapitel 8 wurde die Auswirkung 

verschiedener Größen innerhalb eines Dialogs untersucht. 

 

Abbildung 29 Verschiedene Größen von Schaltern: 5, 7, 10, 15 und 20 Millimeter Seitenlänge. Die Größe hat einen Einfluss auf die Be-
dienung mit den Fingern. 

 

 

 

A common mistake that people make  

when trying to design something completely foolproof  

is to underestimate the ingenuity of complete fools. 

Douglas Adams 
britischer Schriftsteller 



 
57 Anpassung der Steuerelemente für berührungsempfindliche Eingaben 

 

5.3 Steuerelementabstände 
 

Wie die Größe von Steuerelementen trägt ein Abstand zwischen Steuerelementen zur besseren Bedienbarkeit 

bei. Bei nahe beieinanderliegenden Steuerelementen besteht die Gefahr, dass der Benutzer ungewollt ein an-

deres Element aktiviert. Der Abstand  soll mindestens 5 Pixel betragen [Microsoft]. Liegen die Steuerelemente 

zu weit auseinander besteht jedoch die Gefahr, dass der Benutzer diese nicht mehr als zusammengehörig er-

achtet und Bedienfehler auftreten (z.B. bei Optionsfeldern oder Kontrollkästchen).  

Weiterhin können zu große Abstände zu einem aufgeblähten Dialog führen. Besonders bei vielen Steuerele-

menten innerhalb eines Dialoges führt dies zu einem hohen Platzverbrauch auf dem Bildschirm. Dies wiederum 

hat zur Folge, dass der Benutzer größere Strecken mit dem Finger zurücklegen muss. Daher wurden verschie-

dene Abstände von Steuerelementen in der Studie aus Kapitel 8 untersucht. 

 

5.4 Kontrollkästchen 
 

Anwendungsentwickler nutzen gerne Kontrollkästchen und Optionsfelder zur Konfiguration von Einstellungen. 

Die Größe und Ausrichtung dieser Elemente kann jedoch den Bedienkomfort auf berührungsempfindlichen 

Bildschirmen schmälern, wenn diese Elemente zu nahe beieinander liegen. Zudem lässt sich der aktuelle Zu-

stand (an, aus) nicht erkennen, wenn der Finger das Steuerelement überdeckt. Daher sollten Kontrollkästchen 

und Optionsfelder so gestaltet werden, dass sie leicht zu treffen, jedoch nicht unbeabsichtigt aktiviert werden 

können. Für den Einsatz auf berührungsempfindlichen Bildschirmen bietet sich daher ein Ersatzelement an, das 

diese Aufgaben erfüllt. Abbildung 30 zeigt Ersatzelemente für ein Kontrollkästchen, die sich aufgrund ihrer 

Größe und Zustandsanzeige gut für die Fingerbedienung eignen können. 

 

  
Abbildung 30 Mögliche Ersatzelemente von Kontrollkästchen. Links: Alte GUI-Elemente aus [Plaisant, et al., 1992]. Rechts: Beispielhafte 

Umsetzung mit WPF als Widgets. Die Bedienung von Kontrollkästchen wurde in der Studie aus Kapitel 8 untersucht. 
 

5.5 Numerische Steuerelemente 
 

Die berührungsempfindliche Eingabe mit den Fingern ist nur sehr bedingt geeignet für die Eingabe von Text- 

oder Zahlenwerten, denn dazu wird offensichtlich eine Tastatur benötigt. Mit Windows kommen zwar Bedien-

werkzeuge wie virtuelle Tastatur oder Schriftenerkennung automatisch zum Einsatz, trotzdem erfordert diese 

Art der Bedienung zusätzliche Handgriffe (das Tastatursymbol) und Einarbeitungszeit. Besonders Felder für die 

Eingabe von Zahlen können einfach durch Steuerelemente ersetzt werden, die eine Änderung durch Klicken, 

Ziehen oder Schieben ermöglichen. Schiebregler erlauben diese Art von Bewegungen mit den Fingern durchzu-

führen, ohne dass eine Texterkennung notwendig wäre. Allerdings besitzen Schiebregler immer eine obere und 

untere Grenze, so dass nicht jede beliebige Zahl vom Benutzer eingeben werden kann. Der Entwickler muss 

dafür sorgen, dass der Schiebregler zumindest die am meisten verwendeten Werte ansteuern kann. Die restli-

chen, selten verwendeten Werte können dann direkt im Zahlenfeld über Tastatur oder Schrifterkennung einge-

geben werden. Aus diesen Gründen wurde das folgende Zahlenelement entwickelt, welches aus einem Einga-

befeld und einem Schiebregler besteht. Der Schiebregler kann durch Anklicken des Feldes dargestellt werden. 

Der Benutzer hat in diesem Moment die Wahl, ob er den Schiebregler bedient oder eine Tastatur darstellen 

lässt.  



 
58 Migration und Anpassung von Dialoganwendungen für berührungsempfindliche Bildschirme 

 

 
Abbildung 31 Beispielhafte Erweiterung eines Zahlenfeldes mit einem Schiebregler, der beim Antippen des Feldes aufspringt. Das Tasta-

tursymbol wird von Windows automatisch eingeblendet. 

Des Weiteren sollen auch die sogenannten Drehfelder (Siehe Tabelle 17) ersetzt werden. Drehfelder ermögli-

chen durch das Anklicken von Auf- und Abschaltern, den Wert zu erhöhen oder zu verringern. Diese Art von 

Zahleneingabe ist durch die geringe Größe der daneben platzierten Druckschalter jedoch schwer mit den Fin-

gern zu bedienen. Zudem muss für jede Änderung des Wertes der Auf- oder Abschalter präzise angetippt wer-

den. Denn ein Antippen und Halten funktioniert standardmäßig nicht, sondern das Drehfeld muss mit einem 

RepeatButton-Element (siehe MSDN) selbst hergestellt werden. Außerdem sind größere Werte mit den Fingern 

nicht bequem zu erreichen, da entweder oft der Schalter angetippt werden muss oder man lange auf die ge-

wünschte Zahl beim Halten warten muss.  Daher soll auch dieses Steuerelement für die Bedienung mit den 

Fingern angepasst werden. 

 

 

Abbildung 32 Drehfelder mit größeren Schaltflächen können einfacher mit dem Finger bedient werden 

 

Für ein Drehfeld wurde dazu eine größere Variante gewählt, bei der die Schalter einfacher zu treffen sind (siehe 

Abbildung 32). Zudem wurde ein virtuelles Tastenfeld entwickelt, das die Eingabe einer Zahl über ein Druck-

schalter erlaubt. Insbesondere Zahlen mit Nachkommastellen sollen so besser eingegeben werden können. 

Beide Varianten wurden in der Studie in Kapitel 8 untersucht. 

 

Abbildung 33 Ein Zahlenfeld für die präzise Eingabe von Kommazahlen, das sogenannte numerische Tastenfeld. Die Schaltfläche „Def“ 
setzt den Wert im Textfeld auf die ursprüngliche Eingabe zurück. „Clear“  belegt die Eingabe mit dem Wert 0. „X“ schließt die Eingabe 

ab. Die Eingabe wird abgebrochen, indem der Bereich außerhalb des Tastenfeldes berührt wird. 



 
59 Anpassung der Steuerelemente für berührungsempfindliche Eingaben 

5.6 Baumansichten 
 

Baumansichten oder Hierarchien sind ein beliebtes Mittel in Dialogen, um Werte zu gliedern. Ein bekanntes 

Beispiel ist die Dateiordneransicht im Öffnen- und Speichern-Dialog. Für die Nutzung mit dem Fingern besitzt 

das Element der Baumansicht jedoch mehrere Unzulänglichkeiten. Als erstes ist die Fläche der einzelnen Ele-

mente vertikal häufig zu gering, um mit Fingern getroffen werden zu können.  Zudem besitzen diese Elemente 

häufig kleine Symbole in Form eines Plus- oder Minuszeichens, welche die Möglichkeit bieten die untergeord-

neten Werte ein- oder auszublenden. Als Lösung könnten Baumansichten einfach vergrößert dargestellt wer-

den, jedoch kann es dann leicht passieren, dass durch die Untergliederung  der seitliche Platz nicht ausreicht. 

Untergeordnete Werte werden dadurch nicht mehr vollständig angezeigt, d.h. durch den Rand abgeschnitten. 

Der Benutzer muss deshalb zusätzlich seitlich scrollen, um die abgeschnittenen Texte lesen zu können.  

 

Für Elemente, wie Baumansichten, kann daher der folgende Ersatz angewendet werden. Dazu stellt das Steue-

relement in einer einfachen Liste immer nur die untergeordneten Werte des  aktuell ausgewählten Wertes dar. 

Zum Beispiel werden in dem Steuerelement zuerst alle Ordner des Laufwerks C aufgelistet. Tippt der Benutzer 

einen angezeigten Ordner an, dann werden dessen Unterordner dargestellt. Damit der Benutzer jederzeit in 

eine übergeordnete Ebene wechseln kann, wird eine Brotkrumennavigation zusätzlich benötigt. Diese Bauman-

sicht mit Brotkrumennavigation wurde in der durchgeführten Studie (Kapitel 8) eingesetzt und dabei deren 

Bedienbarkeit überprüft. 

 

 

Abbildung 34 Eine illustrierte, flache Baumansicht mit Brotkrumennavigation erleichtert die Fingerbedienung 

 

5.7 Listenfelder 
 

Listenfelder oder Listenansichten (für den Unterschied siehe Tabelle 17) werden genutzt, eine Menge von Wer-

ten gleichzeitig darzustellen. Außerdem ermöglichen sie die Auswahl von mehreren Werten, indem die Werte 

markiert werden. Die Listenfelder stehen somit im Gegensatz zu Dropdown-Listenfeldern, die nur ein Element, 

nämlich das ausgewählte, ständig darstellen können.  



 
60 Migration und Anpassung von Dialoganwendungen für berührungsempfindliche Bildschirme 

 

Für die Fingerbedienung sind Listenfelder, genauso wie die Baumansichten, nur dann gut geeignet, sofern die 

Fläche der einzelnen Werte groß genug ist. Allerdings gilt auch hier: Je größer die angezeigten Werte werden, 

desto weniger Werte können im sichtbaren Bereich angezeigt werden. Besonders bei kleinen Listenfeldern 

wird so schnell erreicht, dass nur ein paar wenige Werte angezeigt werden können und die restlichen dadurch 

nur über einen ausgiebigen Bildlauf (oder neudeutsch Scrollen) erreicht werden. Allerdings kann der Bildlauf 

mit Gesten durchgeführt werden (siehe weiter unten).  Die Nutzung von zusätzlichen Bildlaufleisten ist dadurch 

nicht notwendig, denn diese würden den bereits knappen Platz weiter verringern. Als Lösung kann entweder 

ein vernünftiger Bereich für die Größe der Werte gefunden werden (abhängig von der Listengröße) oder die 

Liste kann dynamisch vom Benutzer verkleinert und vergrößert  werden. Letzteres bietet sich immer dann an, 

wenn der Dialog selbst in seiner Größe verändert werden kann.  

 

Ein weiterer Lösungsansatz – der  hier nur der Vollständigkeit genannt werden soll – sind Listenansichten, die 

ihre Werte auf eine spezielle Art und Weise darstellen und somit mehr Platz gewinnen. Sogenannte Trommel-

listen besitzen ständig einen ausgewählten Wert, der in der Mitte der Liste dargestellt wird. Es wird angenom-

men, dass Werte, die sich weiter weg befinden für den Benutzer weniger interessant sind. Solche Werte wer-

den daher in Richtung der oberen und unteren Ränder kleiner dargestellt. Der dadurch erzeugte visuelle Effekt 

ähnelt einer Trommel auf deren länglichen Seite die Werte aufgedruckt sind.  

 

 
Abbildung 35 Ein Trommellistenelement für das Android Betriebssystem.  

Die Werte oben und unten scheinen nach hinten gezogen zu werden.  

Ein wichtiger Aspekt bei Listenansichten ist der Bildlauf. Wie bereits erwähnt, können Gesten einfach benutzt 

werden, um Bildlaufleisten zu vermeiden und das Mausrad zu simulieren. Allerdings sind Gesten wie Tasten-

kürzel oftmals nur mit Vorwissen zu verwenden und können ohne Übung frustrierend sein, wenn sie von der 

Anwendung nicht, wie vom Benutzer gewollt, erkannt werden. Aus dem Bereich der natürlichen Benutzer-

schnittstellen stammen die sogenannten kinetischen Gesten (Kinetik: Änderung der Bewegung). Sie werden 

bereits in Listenfeldern für Smartphones eingesetzt. Durch die Geschwindigkeit der Fingerbewegung innerhalb 

einer Liste werden die Werte entsprechend langsamer oder schneller geblättert. Dieser Vorgang ähnelt  dem 

Drehen der oben vorgestellten Trommelliste. Das Scrollen der Liste mit den Fingern simuliert eine physikalische 

Beschleunigung sowie Reibung. Der Bildlauf einer Liste wird durch die wiederholte Einwirkung des Fingers zum 

Beschleunigen gebracht.  Ohne weitere Einwirkung kommt der Bildlauf nach einer kurzen Verzögerung durch 

die Simulation von Reibung zum Stehen. 

In Kioskanwendungen wie Bahnschaltern wird gewöhnlich auf Gesten verzichtet, da die eingesetzte Technolo-

gie – es sind meistens akustische Bildschirmoberflächen (siehe Seite 20) – dies nicht erlaubt. Stattdessen wird 

zu jeder Liste eine Reihe von Navigationsflächen angeboten.  Die Art und Anzahl von möglichen Schaltern kann 

sich je nach Aufgabengebiet unterscheiden. Beispielsweise ist es sinnlos eine seitenweise Navigation zu erlau-

ben, wenn die Werte nur eine Seite beanspruchen. Die Abbildung 36 zeigt eine Liste mit seitlich angeordneter 

Navigation, die sogenannte Navigationsleiste. Die mittleren Schalter ( ) ermöglichen zum vorherigen bzw. 

nächsten Element zu springen. Die Schalter mit dem Symbol   setzen den Auswahlbalken entweder um meh-



 
61 Anpassung der Steuerelemente für berührungsempfindliche Eingaben 

rere Elemente oder eine Seite weiter bzw. zurück. An das Ende bzw. den Anfang der Liste gelangt man mit den 

Schaltern . Die Navigationsleiste wurde in der durchgeführten Studie (Kapitel 8) eingesetzt und untersucht. 

 

 

Abbildung 36 Ein Listenfeld mit seitlicher Navigationsleiste, wie man es aus diversen Kioskanwendungen kennt 

Zuletzt bieten Listenfelder die Möglichkeit, mehrere Werte gleichzeitig auszuwählen. Dies wird normalerweise 

durch das Halten der Steuerungstaste und Anklicken mit der Maus erreicht. Leider ist jedoch die Mehrfachaus-

wahl bei einer reinen Fingerbedienung so nicht möglich. Stattdessen besteht eine Lösung darin, jedem Wert ein 

Kontrollkästchen anzufügen, so dass der Benutzer einen Wert markieren kann, indem er das Kontrollkästchen 

antippt. Natürlich muss auch das Kontrollkästchen entsprechend fingerfreundlich angepasst werden. 

 

 

Abbildung 37 Beispielhafte Erweiterung einer Liste für die Mehrfachauswahl mit Kontrollkästchen 

  

 

  

 

 

  

 

 

 

 

  



 
62 Migration und Anpassung von Dialoganwendungen für berührungsempfindliche Bildschirme 

6 Architektur 
 

 

In dem vorangegangenen Kapitel 4 wurde bereits die Methode für die Umsetzung für den Lösungsansatz be-

schrieben. Die in Kapitel 5 vorgestellten Steuerelemente ersetzen durch die besprochene Methode  andere 

Elemente in einem Transformationsprozess. Im aktuellen Kapitel soll daher eine grundlegende Architektur für 

die zu entwickelnden Transformationsanwendung aus Kapitel 7 vorgestellt werden. Dazu wird zuerst das ver-

wendete Architekturmuster MVC beschrieben (Kapitel 6.1), um daraufhin die einzelnen Komponenten Model, 

View und Controller (Kapitel 6.2, 6.3 und 6.46.3) sowie ihr Zusammenspiel zu erläutern. 

 

6.1 Übersicht 
 

Die hier vorgestellte Architektur wurde nach dem Model View Controller Paradigma (MVC, [Krasner, et al., 

1988]) entwickelt. Sie besteht daher aus drei Teilen, denen verschiedene Komponenten zugeordnet sind. Ab-

bildung 38 illustriert die Aufteilung der Komponenten in den verschiedenen Bereichen von MVC. Im Folgenden 

werden die einzelnen Komponenten des MVC Musters beschrieben. 

 

Abbildung 38 Die Komponenten aufgeteilt nach dem MVC Muster 

 

6.2 Model 
 

Das Modell enthält die darzustellenden Daten für die Anwendung. Diese werden in einer Projektklasse verwal-

tet, wie sie in Abbildung 39 zu sehen ist. Zu den wichtigsten Daten darin gehören die Dialogbeschreibungsspra-

che XAML und die Transformationsvorschrift XSL. Diese Daten enthalten den Quelltext für den zu transformie-

renden Dialog sowie den Quelltext für die Transformation selbst. Im Projekt sind beide durch einen Verweis auf 

eine externe Datei gegeben, um einen Export und Import in und aus einer Entwicklungsumgebung (z.B. Visual 

Studio) zu ermöglichen. 

Jede neue Situation erfordert eine neue Architektur. 

Jean Nouvel 
französischer Architekt 

View 

 

 

Hauptanwendung 

Dialogeditor 

Dialogvorschau 

Parametereditor 

 

Model 

 

 

Projektdaten 

XAML Dialogsprache 

XSL Transformations-

vorschrift 

 

Controller 

 

 

Transformation 

XSLT Prozessor 

Plug-In-Verwaltung 

 

 



 
63 Architektur 

Der Dialogquelltext besteht, wie bereits erwähnt, in dieser Umsetzung aus der XAML Syntax. Der Benutzer 

bearbeitet dabei den XAML Quelltext und sieht eine Vorschau des Dialogs. Für die Vorschau muss der Quelltext 

in ein Klassenmodell, d.h. in eine ausführbare Form, umgewandelt werden. Dies geschieht innerhalb der Kom-

ponente XAMLEditor im Abschnitt 6.3 („View“). Für das Modell besteht der Dialog daher aus einem Quelltext 

und einer Klassenstruktur, die synchron zu halten sind. 

Weiterhin enthält ein Projekt zusätzliche Daten für Verwaltungszwecke. Darunter fallen der Projektname, eine 

Beschreibung und eine Projektversion. Diese Daten dienen in erster Linie zur Identifizierung eines Projekts (für 

den Benutzer) und Vermeidung von Fehlern (z.B. durch das Laden von nicht unterstützen Versionen).  

Die Transformation soll durch Parameter (oder auch Eigenschaften) beeinflusst werden können. Diese werden 

für Plug-Ins (PluginProperties) und die XSL Transformation (XsltProperties ) separat verwaltet. Dadurch ist ein 

Austausch des XSLT Quelltexts zusammen mit den dafür definierten Parametern einfacher möglich, als wenn 

diese unter den Plug-In Parametern verstreut liegen würden.  

 

Abbildung 39 Klassendiagramm der Komponente Model 

 

6.3 View 
 

Die Ansicht definiert die Oberfläche der später umzusetzenden Anwendung. Der Benutzer soll in der Lage sein 

eine Dialogbeschreibungssprache (hier XAML) in einen Editor zu laden und bearbeiten zu können. Weiterhin 

soll der Benutzer die Transformation durch eine weitere Sprache, der „Extensible Stylesheet Language Trans-

formations“ (kurz XSLT), zur Laufzeit steuern können. Dies geschieht durch den Einsatz von Texteditoren. Für 

die Dialogdarstellung soll zudem eine grafische Vorschau auf den Dialog möglich sein. Abbildung 40 verdeut-

licht die Komponente View und die darin zu realisierenden Klassen. Im Folgenden werden diese Klassen näher 

beschrieben. 

 

 Project 
 Class 
 
 Eigenschaften 

 Description : string 
 IsModified : bool 

 Name : string 

 PluginProperties : List<XsltProperty> 

 SourceModelFilePath : string 

 TargetModelFilePath : string 

 TransformationFilePath : string 

 Version : decimal 
 XsltProperties : List<XsltPropety> 

 Methoden 
 
 

 XsltProperty 
 
 XsltProperty 
 Class 
  

 Eigenschaften 

  Name : string 

  Uri : string 
  Value : string 

 Methoden 

 



 
64 Migration und Anpassung von Dialoganwendungen für berührungsempfindliche Bildschirme 

 

Abbildung 40 Klassendiagramm der View Komponente 

 

MainWindow 

 

Das Hauptfenster ist die zentrale Benutzerschnittstelle für den Benutzer. Darin können Projekte, Dialoge und 

Transformationsbeschreibungen geladen, bearbeiten und die Transformation durchgeführt werden, um die 

Ergebnisse weiterzuverwenden. Außerdem kann ein Benutzer ein neues Transformationsprojekt erstellen. Das 

Projekt enthält, wie bereits besprochen, alle notwendigen Daten für eine Transformation. Projekte können 

daher vom Benutzer gespeichert und wieder nach dem Programmstart geladen werden. Das Hauptfenster stellt 

dafür entsprechende Interaktionsmöglichkeiten zur Verfügung (d.h. ein Menü und Werkzeugleiste).  

 

TransformEditor 

 

Der Transformationseditor stellt die Oberfläche für die Bearbeitung (TextEditor) der Transformationssprache  

XSLT sowie  der Beeinflussung der Transformation zur Verfügung. Der Benutzer soll XSLT bequem betrachten 

und verändern können (Syntaxhervorhebung). Weiterhin stellt  der Transformationseditor zur Beeinflussung 

der Transformation Parametereditoren zur Verfügung.  Darin können Parameter für XSLT und Plug-Ins hinzuge-

fügt und bearbeitet werden. 

 

XAMLEditor 

 

Der XAMLEditor stellt die Oberfläche für die Bearbeitung (TextEditor) sowie grafischen Vorschau (De-

signSurface) der Dialogbeschreibungssprache zur Verfügung. Der Benutzer soll XAML bequem bearbeiten kön-

nen (Syntaxhervorhebung) und die Änderung zudem auch grafisch, d.h. in einer Art von Dialogvorschau, darge-

stellt bekommen. Die Vorschau wird durch eine Transformation des XAML Quelltextes in die Klassenstruktur 

von WPF ermöglicht. WPF stellt dazu bereits eine entsprechende Lösung (die Klasse XAMLReader) zur Verfü-

gung. 

 

6.4 Controller 
 

Der Controller enthält die zentrale Komponente für die zu entwickelnde Anwendung: die Transformationsengi-

ne (oder auch Transformationseinheit). Diese Klasse soll alle notwendigen Methoden und Eigenschaften ent-

 TransformEditor 

TransformEditor 
Class 

 Felder 
 Editor : TextEditor  

 PluginParametersEditor : Listbox 

 XSLTParameterEditor : ListBox 

 

MainWindow 
Class 

  Eigenschaften 

 Project : Project 
 transformationEngine: TransformationEngine 
 UserOptions : Options 

Methoden 

 
 XAMLEditor 

 XAMLEditor 

 Class 

 
TextEditor TextEditor TextEditor 

Felder 

 Class Designer: DesignSurface 

 Editor : TextEditor 

 Ereignisse 

 DesignSurface DesignSurface OnError : OnErrorHandler 

 Class Geschachtelte Typen 

 



 
65 Architektur 

halten, um eine Transformation durchführen zu können. Zu den wichtigsten Eigenschaften zählen die Dialogbe-

schreibungssprache XAML und die Transformationssprache XSLT. 

 

Abbildung 41 Klassendiagramm der Controller Komponente 

 

Ein weiterer wichtiger Bestandteil der Controller Komponente soll darin bestehen, Plug-Ins zu laden und zu 

verwalten, um diese während der Transformation auszuführen. Die Abbildung 42 stellt das Zusammenspiel 

zwischen Controller und Plug-In als ein Komponentendiagramm dar. Jedes Plug-In kann durch die Implementie-

rung zweier Schnittstellen PluginInt und ProcessingIntf an den Controller „andocken“. Dadurch wird der Klasse 

TransformationEngine ermöglicht auf die Plug-In Implementierung (PluginImpl und ProcessingImpl) zuzugrei-

fen. 

Controller
Plug-In

TransformationEngine

PluginController Plugin
*

<<source>>
XAML

<<source>>
XSLT

<<use>> <<use>>

PluginInt

PluginImpl

<<interface>>
PluginInt

<<interface>>
ProcessingIntf

ProcessingImpl
1

 

Abbildung 42 Komponentendiagramm mit Controller und Plug-In Komponenten. Plug-Ins „docken“ an den Co 

 

  

 PluginInt 

 Interface 

  

 Plugin 

  

  

 Plugin 

 Class 

  

 Eigenschaften 

 Name : string 

 Publisher : string 

 Version : string 

  

 Plugin 

  

  

  

 Plugins PluginCollection 

 Class 

 Collection<Plugin> 

 

 TransformationEngine 

 Class 

   

 Eigenschaften 

 Input : Stream 

 OnError : OnErrorHandler 

 Output : Stream 

 PluginArguments : List<Parameter> 

 StyleSheel : Stream 

 XslExtensionObjectArguments : List<Parameter> 

 XsltArguments : List<Parameter> 

 Methoden 

 Geschachtelte Typen 

 

 

 
 

 Controller 

 PluginController 

 Class 

 

 Methoden 

  

 



 
66 Migration und Anpassung von Dialoganwendungen für berührungsempfindliche Bildschirme 

TransformationEngine 

 

Die Klasse TransformationEngine bietet Methoden und Eigenschaften, um eine Transformation eines XAML 

Quelltexts durchzuführen. Sie führt dazu den XSLT Prozessor auf den XAML und XSLT Daten aus und liefert das 

Ergebnis zurück. Weiterhin lädt die Klasse alle verfügbaren Plug-Ins, die durch die Klasse PluginController ge-

funden wurden und führt sie nacheinander aus. Eine detaillierte Beschreibung der Umsetzung der Klasse Trans-

formationEngine wird in Kapitel 7.4 durchgeführt.  

 

PluginController 

 

Die Verwaltung der Plug-Ins  wird durch die Klasse PluginController übernommen, welche sie Plug-Ins in den 

Speicher lädt und nach Gebrauch wieder entlädt. Die Plug-In Moduldateien können so auch zur Laufzeit ersetzt 

werden, während die umzusetzende Anwendung läuft.  Dazu wird das „Managed Extension Framework“ (kurz 

MAF) eingesetzt. Eine detaillierte Beschreibung der Funktionalität von MAF und wie dieses verwendet wird, 

werden im Kapitel 7.6 geliefert. 

 

Plugin 

 

Die Klasse Plugin verwaltet ein geladenes Plug-In. Sie enthält den Name sowie den Hersteller und die Version 

des Plug-Ins. Ferner enthält die Klasse Plugin einen Verweis (Eigenschaft Plugin, siehe Abbildung 42) zur Imple-

mentierung des geladenen Plug-Ins in Form der Schnittstellendefinitionen PluginIntf  (Abbildung 43). Das Plug-

In implementiert diese Schnittstellen und zusätzlich ProcessingIntf, deren Methoden von der Klasse Transfor-

mationEngine zu Kommunikationszwecke aufgerufen werden. Die Schnittstellen sind damit aufgeteilt nach 

Plug-In-Verwaltung (PluginIntf) und Methoden für den Transformationsprozess (ProcessingIntf).  

 

Abbildung 43 Klassendiagramm für ein Plug-In. Die Schnittstellen sind aufgeteilt nach Plug-In-Verwaltung (PluginIntf) und Methoden für 
den Transformationsprozess (ProcessingIntf). 

 PluginIntf 
 Interface 

  

 Methoden 

 GetFeatures() : Feature 

 GetName() : String 

 GetNameSpace() : String 

 GetProcessing() : ProcessingIntf 

  

  

 Feature 

 Enum 

  

 None 

 Preprocessing 

 Postprocessing 

 Engineering 

  

 

 ProcessingIntf 

 Interface 
  

 ProcessingIntf Methoden 

  GetProcessingMessages() : List 

  InitProperties() : void 

  PostProcessing() : bool 

  PreProcessing() : bool 

  

 



 
67 Umsetzung 

7 Umsetzung 
 

 

Ein Ziel der Diplomarbeit war es, einen Prototyp zu erstellen, der das Konzept der Transformation von in XAML 

geschriebenen Quelltexten umsetzt. Die folgenden Kapitel befassen sich mit dieser Anwendung, die den Na-

men LATTE trägt. LATTE ist ein Apronym und steht für die englische Bezeichnung Legacy Application Transfor-

mation to Touch Environments. Die Anwendung stellt die Oberfläche und die Grundlagen für die Durchführung 

des Transformationsprozesses zur Verfügung. Als Grundlage für die Anwendung dient die im vorangegangenen 

Kapitel 6 beschrieben Architektur. 

In Kapitel 7.1 wird die Umsetzung von LATTE beschrieben. Das nächste Kapitel 7.2 beginnt mit der Einführung 

in die Oberfläche. Darauf folgend wird im Kapitel 7.3 die umgesetzten Komponenten von LATTE erläutert, um 

dann den Transformationsprozess, dessen Umsetzung und Anwendung in den Kapiteln 7.4 und 7.5 zu beschrei-

ben. Die Umsetzung und Nutzung des Plug-In Systems wird in Kapitel 7.6 erläutert. Das letzte Kapitel 7.7 disku-

tiert die Vor- und Nachteile des Transformationsprozesses. 

 

7.1 Einführung 
 

Die Hauptbestandteile von LATTE sind die Oberfläche, die Transformationseinheit und das Plug-In System. Die 

gesamte Anwendung wurde mit dem .NET Framework 4.0 entwickelt. Die Oberfläche von LATTE nutzt das 

Framework Windows Presentation Foundation (WPF) und das darin zu Grunde liegende ModelView ViewModel 

Architekturmuster (MVVM, MSDN Magazin Februar 2009 [Microsoft, 2009]). Es handelt sich dabei um ein er-

weitertes MVC Muster, welches den Controller insoweit ersetzt, dass die Datenbindungen  bereits im View 

(d.h. in XAML Notation) umgesetzt werden. Trotzdem ist es auch weiterhin unumgänglich einen Controller in 

der Form einer Programmlogik zu implementieren, da Daten zur Laufzeit erzeugt werden müssen (Transforma-

tion). LATTE nutzt daher beide Ansätze MVC (siehe Kapitel 6) und MVVM, um die Dialogtransformation für den 

Benutzer zur Verfügung zu stellen. Mit der Hilfe des Plug-In Systems werden außerdem Plug-Ins eingebunden 

und ausgeführt.  Abbildung 44 illustriert den schematischen Aufbau der Anwendung LATTE sowie die darin 

verwendeten Komponenten. 

 

Abbildung 44 Übersicht über die verwendeten und umgesetzten Bestandteile von LATTE 

 

Every wall is a door.  

Ralph Waldo Emerson 
amerikanischer Philosoph 

 

LATTE Plug-Ins (Kapitel 7.5.2, 7.6) 
Plug-In System (7.6, 

7.5.2) 

Transformationsengine 

(XSLT, Plug-In, Annotatio-

nen) (7.4, 7.5) 

LATTE Anwendung (7.2, 7.3) 

Windows Presentation Framework (2.4.4 - XAML) 

.NET Framework 4 

MAF 



 
68 Migration und Anpassung von Dialoganwendungen für berührungsempfindliche Bildschirme 

7.2 Die Benutzeroberfläche 
 

 

Abbildung 45 Die View Komponente aus Kapitel 6 bildet die Schnittstelle zum Benutzer 

In der Benutzeroberfläche von LATTE wurde die View Komponente der Architektur (Kapitel 6) umgesetzt. LATTE 

besteht aus einer Oberfläche (Abbildung 46), die beinahe frei gestalten werden kann. D.h. die Fensterauftei-

lung ist beliebig und wird neben anderen Benutzereinstellungen für spätere Sitzungen gespeichert. Transfor-

mationsprojekte, welche die XAML Dialog- und XSLT-Dateien verwalten, können erstellt, gespeichert und gela-

den werden. Die Dialoge werden in einen Editor geladen, der die Schlüsselworte im Text farbig darstellt. Au-

ßerdem können die Dialoge grafisch dargestellt werden, um eine Vorschau zu erhalten und die Anpassung zu 

unterstützen. Der Transformationsprozess wird innerhalb eines XML Texteditors in der Sprache XSLT gesteuert. 

Auch dieser Editor kann den Text in unterschiedlichen Farben darstellen. Für die Transformation unterstützt 

LATTE externe ausführbare Steckmodule, sogenannte Cartridges oder Plug-Ins. Sie werden kurz vor der Trans-

formation geladen und dann entsprechend ausgeführt. Meldungen, die während dieser Transformation auftre-

ten, können in einer Liste betrachtet werden. Sie stellt die Meldungen mit verschiedenen Kriterien dar wie Typ 

(z.B. Warnung, Fehler) und Ursprung der Nachricht (d.h. XSLT oder Plug-In). 

 

Abbildung 46 Die LATTE Anwendung zur Transformation von Dialogen 

View 

 

 

Hauptanwendung 

Dialogeditor 

Dialogvorschau 

Parametereditor 

 

Model 

 

 

Projektdaten 

XAML Dialogsprache 

XSL Transformations-

vorschrift 

 

Controller 

 

 

Transformation 

XSLT Prozessor 

Plug-In-Verwaltung 

 



 
69 Umsetzung 

XSLT Editor 

 

Der XSLT Editor ermöglicht die Eingabe und Korrektur von XSLT Befehlen für den Transformationsprozess. Er 

befindet sich in einem Register unterhalb der Dialogeditoren und neben den weiteren Editoren für XSLT und 

Plug-In Parameter. 

 

Abbildung 47 Der XSLT Editor für die Eingabe von Abbildungsvorschriften 

 

XSLT Parameter Editor 

 

Der Parameter Editor für XSLT (Abbildung 48) ermöglicht die Erstellung und Änderung von Parametern sowie 

deren Werte, die im XSLT Quelltext verwendet werden sollen. Der Editor befindet sich in einem Register unter-

halb der Dialogeditoren und neben dem XSLT Editor. 

Ein Parameter besteht aus einem Namen, einen Wert und einen Namensraum. Neue Parameter können hinzu-

gefügt werden, indem das Symbol  angeklickt wird. Ein oder mehrere ausgewählte Parameter können durch 

das Schaltersymbol  entfernt werden. Um die Parameterwerte zu bearbeiten, kann einfach ein Listeneintrag 

ausgewählt werden. Dadurch werden die Werte in Textfeldern zum Ändern angezeigt. 

Weitere Informationen zu XSLT Parametern können im Abschnitt XSLT Prozessor des Kapitels 7.5.1 nachgelesen 

werden. 

 

Abbildung 48 XSLT Parameter Editor für die Steuerung der Abbildungsvorschriften 

Plug-Ins Parameter Editor 

 

Mit der Hilfe des Parameter Editors  können Parameter für Plug-Ins festgelegt werden. Auf diese Art können 

Plug-Ins abhängig vom aktuellen Projekt zusätzlich zur XSLT gesteuert werden (z.B. um Plug-Ins generell zu 

deaktivieren). Der Editor befindet sich in einem Register unterhalb der Dialogeditoren und neben dem XSLT 

Parameter Editor. Parameter bestehen aus einem Namen, Wert und Namensraum. Letzterer bestimmt welches 

Plug-In den Parameter zu sehen bekommt. Der Parameternamensraum muss dazu mit dem Namen des Plug-Ins 



 
70 Migration und Anpassung von Dialoganwendungen für berührungsempfindliche Bildschirme 

übereinstimmen. Ein leerer Namensraum ermöglicht allen Plug-Ins den Parameter zu nutzen. 

Die Bedienung  gestaltet sich gleich der Benutzung des XSLT Parameter Editors (Abbildung 48).  

 

Abbildung 49 Parameterliste für Plug-Ins für die Steuerung von Plug-Ins 

 

Meldungsfenster 

 

Das Meldungsfenster (Abbildung 50) befindet sich am unteren Rand der LATTE Anwendung. Es enthält Nach-

richten, Warnungen und Fehler aus allen Teilen der Anwendung. Dazu zählen die Dialogeditoren, der XSLT 

Editor und die Plug-Ins. Meldungen besitzen mehrere Kategorien, die in der Liste angezeigt werden. Dazu zäh-

len: 

 der Typ der Meldung: Nachricht, Warnung und Fehler als Kreissymbole in blau, gelb und rot. 

 die Nummer der Meldung  (#), damit die Reihenfolge des Auftretens ermittelt werden kann 

 eine Zeilennummer, wo der Fehler auftrat (nur für Dialog- und XSLT Editoren) 

 eine Beschreibung (engl. description) der Meldung, die von der Quelle geliefert wird 

 die Quelle (engl. source) der Meldung, welche den Autor identifiziert (z.B. ein Plug-In) 

 ein Ordnerpfad für Nachrichten, die eine Datei betreffen. 

Weiterhin kann mit der Werkzeugleiste die Darstellung des Listenfelds beeinflusst werden. Dazu können die 

verschiedenen Arten von Meldungen ein- und ausgeblendet und die neuste Meldung immer (Schalter Auto-

scroll) ins Blickfeld gerückt werden. Veraltete Meldungen werden nicht automatisch entfernt, so dass das Betä-

tigen des Schalters  alle Meldungen löscht. Außerdem können ein oder mehrere ausgewählte Meldungen mit 

der Tastenkombination Strg + C in die Zwischenablage kopiert werden. 

 

 

Abbildung 50 Fehler, Warnungen und Nachrichten während der Transformation werden im Meldungsfenster dargestellt 

 



 
71 Umsetzung 

7.3 Übersicht über die Projektkomponenten 
 

Die Anwendung LATTE wurde mit Visual Studio 2010 C# .NET 4 und der WPF entwickelt. Das Hauptprojekt be-

steht aus der LATTE Anwendung und elf Assemblyprojekten (Abbildung 51), welche die Oberfläche und die 

Transformationspipeline stellen. Die Aufteilung richtet sich nach der Aufgabe der jeweiligen Komponente (LAT-

TE für die Oberfläche, LATTEE für den Transformationsprozess usw.). Alle Komponenten der Hauptanwendung 

befinden sich auf der sogenannten Host Side, während die Komponenten der Plug-Ins sich auf der „AddIn Side„ 

befinden. Die für die Plug-In-Kommunikation benötigten Komponenten befinden sich unter AddIn. Mit 

LATTEC_WPF im Ordner AddIns ist bereits ein Plug-In als Beispiel implementiert worden. 

 

Abbildung 51 Die LATTE Projekte aufgeteilt in Hauptanwendung und Plug-In (AddIns) 

LATTE 

 

Die Anwendung wird durch das Projekt LATTE mit Visual Studio zu Binärdateien übersetzt. Die Übersetzung 

erzeugt die notwendige Ordnerstruktur und alle Assemblydateien. Zu den Ordnern zählen die Verzeichnisse 

AddIns, AddInSideAdapters, AddInViews, Contracts und HostSideAdapters für die Plug-In-Verwaltung. Die An-

wendung LATTE kann durch die ausführbare Datei LATTE.exe gestartet werden. 

 

LATTE_Controls 

 

Die Assembly LATTE_Controls beinhaltet alle Steuerelemente, die in LATTE verwendet werden. Dazu zählen die 

XAML, XSLT und Parameter Editoren. Zudem enthalten sie die Vorlagendateien für ein neues Projekt mit LATTE. 

 

LATTE_Resources 

 

LATTE_Resources stellt einige gemeinsam benutzte Ressourcen wie XAML Styles zur Verfügung. Zudem enthält 

es einige neu erstellte Elemente für die Touchbedienung (siehe Kapitel 7.5.2). 

 

Projektmappe „LATTE“ 

 AddIn Side 

 AddIns 

 LATTEC_WPF 

 LATTE_AddIn.Adapters 

 LATTE_AddIn.View 

 Host Side 

 AddIn 

 LATTE_Host.Adapter 

 LATTE_Host.View 

 LATTE 

 LATTE_Controls 

 LATTE_Resources 

 LATTEE 

 LATTEE_Annotations 

 LocalAdordners 

 LocalConverters 

 Contracts 

 DebugTools 

 LATTE_SharedPlugin 

 
 



 
72 Migration und Anpassung von Dialoganwendungen für berührungsempfindliche Bildschirme 

LATTEE 

 

Die Transformationspipeline (siehe Kapitel 7.5.1) wurde in der Assembly LATTEE implementiert. Das Apronym 

steht für Legacy App Transformation to Touch Environments Engine. LATTEE stellt die folgenden Klassen zur 

Verfügung: 

Name der Klasse Quelltextdatei Beschreibung 

PluginData PluginController.cs PluginData enthält die Instanz eines geladenen Plug-Ins 
sowie weitere Information wie Name, Version oder Her-
steller. 

PluginController PluginController.cs PluginController ist zuständig für das Laden und Beenden 
von Plug-Ins. 

TransformationEngine TransformationEngine.cs Die Klasse TransformationEngine stellt Methoden bereit, 
um Eingaben mit der Hilfe der Transformationspipeline 
zu verarbeiten. 

LATTEE_XsltExtensionObject TransformationEngine.cs LATTEE_XsltExtensionObject stellt Methoden zur Verfü-
gung, die in XSLT als Erweiterung genutzt werden kön-
nen. 

Tabelle 2 Die Klassen von LATTEE 

 

LATTEE_Annotations 

 
Die Assembly LATTEE_Annotations enthält die Implementierung der Annotationen. Diese werden genutzt, um 
in XAML Steuerelemente mit zusätzlichen Informationen auszustatten (siehe Kapitel 7.5.3). Projekte, die Anno-
tationen erweitern müssen auf LATTEE_Annotations verweisen. 
 

LocalAdordner 

 

Diese Assembly stellt dekorative Elemente zur Verfügung. Diese Elemente erweitern Steuerelemente in XAML 
in ihrem Aussehen (z.B. zur Anzeige eines Dreiecks, um der Sortierrichtung im Listenkopf anzuzeigen). 
 

LocalConverters 

 

XAML erfordert für die Konvertierung von Datenwerten sogenannte Converter, die eine bestimmte Schnittstel-
le implementieren (IValueConverter oder IMultiValueConverter). In dieser Assembly werden einige Con-
verter-Klassen implementiert, die für LATTE notwendig sind. 
 
 

LATTE_Host.Adapter und LATTE_Host.View ↔ LATTE_AddIn.Adapters und LATTE_AddIn.View 

 

Diese Projekte sind die Kommunikationsschnittstelle für die Anwendung LATTE und Plug-Ins. Die Klassen in den 

Adaptorprojekten (LATTE_Host.Adapter und LATTE_AddIn.Adapters) übernehmen das Marshalling (De-

/Serialisieren von Daten) von Methodenaufrufen zwischen der Anwendung und den Plug-Ins. Im Gegensatz 

dazu stellen die View-Projekte die eigentlichen Klassen bereit, um die Methodenaufrufe zu ermöglichen. Sie 

konvertieren intern alle Methodenparameter in Streamobjekte und wieder zurück.  

Weitere Informationen zum Plug-In System finden sich in Kapitel 7.6. 

 



 
73 Umsetzung 

Contracts 

 

Die Contracts Assembly definiert Schnittstellen, welche die Kommunikation zwischen LATTE und den Plug-Ins 

vereinbaren. Die Adaptorenklassen von LATTE und Plug-Ins müssen diese Schnittstellen implementieren. 

 

DebugTools und LATTE_SharedPlugin 

 

Die Assembly DebugTools implementiert Methoden zur Erfassung von Ausnahmefehlern und ihres Ursprungs. 

In LATTE_SharedPlugin wurden Klassen  und Methoden implementiert, die von LATTE und Plug-Ins gemeinsam 

genutzt werden. Dazu zählen Klassen für Plug-In Parameter und Übertragung von Meldungen (Fehler, Warnun-

gen). Zudem stehen mit der Klasse XAMLUtility Methoden zur Verfügung, um XAML Dialoge aus XML oder 

Texten (in C# String) zu laden. 

 

7.4 Umsetzung der Transformationsengine 
 

 

Abbildung 52 Die Klasse TransformationEngine von LATTE ist der zentrale Bestandteil der Controller Komponente aus der MVC 
Architektur 

Die Transformationsengine oder auch Transformationseinheit genannt, ist ein Teil von LATTE, der für die Über-

führung der Dialoge mit Hilfe von XSLT und den Plug-Ins zuständig ist. Die Einheit wird durch die Klasse Trans-

formationEngine (siehe Abbildung 53) implementiert und bildet die Grundlage für den gesamten Transformati-

onsprozess. Die Durchführung des Prozesses findet anhand der Transformationspipeline (siehe Abbildung 55 

und Kapitel 7.5.1) statt, welche die Abfolge und Ausführung der XSLT und Plug-In Prozessoren bestimmen.  

Nach der Initialisierung der Klasseninstanz kann die Transformation durch die Methode Transform() gestartet 

werden. Der Ablauf folgt der Transformationspipeline. Wie in Abbildung 84 des Sequenzdiagrammes im An-

hang abgebildet, werden zuerst alle Plug-Ins geladen und auf ihre Unterstützung von Prä- und Postprozessor 

geprüft. Zudem erhalten die Plug-Ins alle vom Benutzer eingegeben Parameter aus dem Plug-Ins Parameter 

Editor (vgl. Abbildung 48). Zusätzlich wird für die Plug-Ins ein Speicherort für temporäre Dateien als Eigenschaft 

WorkingPath der Parameterliste hinzugefügt.  

Nach dieser Vorbereitung folgt die erste Phase der Transformationspipeline. Alle Plug-Ins mit Präprozessor 

werden ausgeführt und erhalten den Dialogquelltext aus der Klasseneigenschaft Input als XmlDocument. Das 

erste Plug-In bearbeitet das XML Dokument und liefert es an die Transformationseinheit (d.h. Transform()) 

zurück, worauf diese es dem nächsten Präprozessor übergibt. Dieser Vorgang wiederholt sich bis entweder kein 

Plug-In mit Präprozessor mehr vorhanden ist oder bis ein Plug-In einen Ausnahmefehler erzeugt.  

View 

 

 

Hauptanwendung 

Dialogeditor 

Dialogvorschau 

Parametereditor 

 

Model 

 

 

Projektdaten 

XAML Dialogsprache 

XSL Transformations-

vorschrift 

 

Controller 

 

 

Transformation 

XSLT Prozessor 

Plug-In-Verwaltung 

 



 
74 Migration und Anpassung von Dialoganwendungen für berührungsempfindliche Bildschirme 

Nachdem die erste Phase erfolgreich abgeschlossen wurde, kann die Transformation mit XSL stattfinden. Dazu 

werden für die Transformation notwendigen XSLT Argumente aus dem XSLT Parameter Editor geladen und 

zusammen mit dem XSLT Quelltext (Eigenschaft StyleSheet) an den XSLT Transformator übergeben. Die XSLT 

Komponente prüft den Quelltext und führt ihn anschließend mit der Ausgabe des letzten Präprozessors aus. 

Der letztgenannte Schritt entfällt, wenn der XSLT Quelltext Fehler enthält. Dadurch wird jedoch auch der Trans-

formationsvorgang abgebrochen und dem Benutzer der Fehler gemeldet. 

Mit dem dritten und letzten Schritt der Transformationseinheit wird die XML Ausgabe der XSLT Transformation 

an die Postprozessoren übergeben. Die letzte Phase läuft analog zur ersten ab, indem alle Plug-Ins mit einem 

Postprozessor hintereinander ausgeführt werden. Die Ausgabe des letzten Plug-Ins wird im Klassenattribut 

Output gespeichert und stellt das Ergebnis der Transformation dar. 

 

Abbildung 53 Das Klassendiagramm der Klasse TransformationEngine. Jede Transformation erhält eine Vielzahl von Eingaben. 

 

7.5 Der Transformationsprozess 
 

 

Abbildung 54 Die Model und Controller Komponenten von LATTE bilden den Transformationsprozess 

TransformationEngine 

Class 

 

 Eigenschaft 

 Input 

 OnError 

 Output 

 PluginArguments 

 StyleSheet 

 WorkingPath 

 XsltArguments 

 Methoden 

 Tranform 

 TransformationEngine 

 

View 

 

 

Hauptanwendung 

Dialogeditor 

Dialogvorschau 

Parametereditor 

 

Model 

 

 

Projektdaten 

XAML Dialogsprache 

XSL Transformations-

vorschrift 

 

Controller 

 

 

Transformation 

XSLT Prozessor 

Plug-In-Verwaltung 

 



 
75 Umsetzung 

Der Transformationsprozess ist der Kern der Anwendung LATTE.  Ein Prozess ist eine Folge von Schritten, um 

einem bestimmten Zweck zu dienen (übersetzt aus IEEE Std 610.12 (1990)). In diesem Fall werden die XAML 

Dialogbeschreibungssprache eingelesen, die Plug-Ins geladen, die XSLT Befehle kompiliert und aufgetretene 

Fehler und andere Meldungen zurück an den Benutzer gemeldet. Am Ende des Prozesses entsteht ein trans-

formierter Dialog. 

Die folgenden Kapitel behandeln diesen Prozess und geben Beispiele, wie die sogenannte Transformationspipe-

line genutzt werden kann, um Dialoge zu transformieren. 

 

7.5.1 Die Transformationspipeline 

 

Die Transformationspipeline ist der Teil der LATTE Architektur, der die Transformation ausführt. Die Pipeline ist, 

wie in Abbildung 55 unten zu sehen, in fünf Abschnitte (Eingabe, Präprozessor, XSLT Prozessor, PostProzessor 

und Ausgabe) eingeteilt, die durch Leitungen (blaue Pfeile) verbunden sind. Der Transformationsprozess be-

ginnt bei der Eingabe eines Dialogs in XAML und endet mit der Ausgabe eines angepassten Dialogs in XAML. Die 

eigentliche Durchführung der Transformation findet dabei in den Zwischenschritten Präprozessor, XSLT Prozes-

sor und Postprozessor statt. Die XAML Daten werden in jedem Schritt bearbeitet und zum nächsten Plug-In 

oder Prozessor weitergereicht, wo weitere Änderungen durchgeführt werden können. 

Alle Plug-Ins werden vor dem Transformationsprozess geladen und bei der Registrierung gefragt, welche Pro-

zessortypen (Prä- und/oder Postprozessor) sie implementieren. So ist es möglich, dass ein Plug-In keinen Prä-

prozessor implementiert, sondern nur einen Postprozessor. Dies ist beispielsweise bei der Erstellung eines 

neuen Plug-Ins hilfreich, wenn ein Postprozessor getestet werden soll und dieser nicht durch den Präprozessor 

beeinflusst werden darf. 

Jedes Plug-In bearbeitet die XAML Struktur und liefert sie im Erfolgsfall an das nächste Plug-In in der Reihe. Dies 

geschieht solange bis entweder kein Plug-In mehr vorhanden ist, ein Plug-In den Prozess als gescheitert signali-

siert oder eine Ausnahme (Exception) geworfen wird. Der Vorgang wiederholt sich nach der XSL Transformati-

on schließlich im Postprozessor und führt zu einem transformierten XAML Dialog als Ausgabe. 

 

Abbildung 55 Die Transformationspipeline, wie sie umgesetzt wurde 

XAML 

Eingabe 

XAML 

Ausgabe 

XSLT 

Eingabe 

Plug-In 1 

Plug-In 2 

Plug-In x 

Eingabe Präprozessor XSLT Prozessor Postprozessor Ausgabe 
 

… 

Plug-In 1 

Plug-In 2 

Plug-In x 

… 

 

 

 Richtung der Transformation (horizontale Einbahnstraße) 

 v
er

ti
ka

le
 T

ra
n

sf
o

rm
at

io
n

 (
n

u
r 

P
lu

g-
In

s)
 



 
76 Migration und Anpassung von Dialoganwendungen für berührungsempfindliche Bildschirme 

Die XSL Transformation im Mittelpunkt ist die einzige Möglichkeit die Transformation ohne einen externen 

Compiler (hier C#) durchführen zu können. Die Transformation wird dabei mit Hilfe einer Skriptsprache, der 

XSLT (Extensible Stylesheet Language Transformation), realisiert. LATTE stellt dafür einen Editor zur Verfügung. 

Bei jeder Transformation wird der XSLT Quelltext validiert und auf den aktuellen Dialog ausgeführt. 

Die Umsetzung und Schnittstellen wurden recht einfach gehalten. Jedoch steigerte das eingesetzte  und zwin-

gend notwendige Managed Add-in Framework (MAF, siehe Kapitel 7.6) die Komplexität. Daher wird MAF in den 

folgenden vier Hauptabschnitten 

1. Prozessstart 

2. Präprozessor,  

3. Postprozessor und  

4. XSLT Prozessor  

ausgeblendet und nur die Implementierung ohne MAF erläutert. 

 

Prozessstart 

 

Der Benutzer startet den Transformationsprozess, indem sie/er F6 drückt oder im Projektmenü bzw. in der 

Werkzeugleiste das  Symbol klickt. Wie in der Abbildung 84 zu sehen wird dadurch in der Klasse Transforma-

tionEngine die Methode Transform() aufgerufen. Neben einigen Verwaltungsaufgaben veranlasst diese Metho-

de alle Plug-Ins aus dem AddIns Ordner zu laden, indem sie die Methode  LoadPlugins() der statischen Klasse 

PluginController aufruft. Die Kommunikation zwischen Anwendung und Plug-Ins läuft dann über die Processin-

gAddInView Klasse (Quelltext 6), die von dem jeweiligen Plug-In implementiert werden muss.  

Nachdem alle Plug-Ins schließlich geladen wurden, kann der eigentliche Transformationsprozess mit dem ers-

ten Schritt, dem Präprozessor, beginnen. 

 

Präprozessor 

 

Der erste Schritt bei der Transformation des Dialogs dient der Vorverarbeitung des XAML Dokuments, bevor 

überhaupt eine XSL Transformation angewendet wird. Dies kann zur Vereinfachung der XAML Struktur gesche-

hen, indem z.B. Datenbindungen (WPF Bindings) durch ihre eigentlichen Werte ersetzt werden. Es ist dadurch 

möglich, diese auch dann mit XSL auszuwerten, wenn die Bindung ihren Wert erst durch eine Programmlogik 

erhält. 

Ein Plug-In wird als Präprozessor genutzt, wenn es über seine Schnittstellenmethode ProcessingAddIn-

View::GetFeatures() das Bit Feature.Preprocessing im Rückgabewert setzt. Daraufhin wird die durch das Plug-In 

implementierte Methode ProcessingAddInView::PreProcessing() aufgerufen, welche den Algorithmus enthält. 

Wie im Quelltext 6 an der Methodendeklaration zu sehen ist, empfängt die Methode zwei Parameter. Der erste 

Parameter document enthält die eigentliche XAML Struktur als XmlDocument Klasse, die durch das .NET 

Framework (im Namensraum System.Xml) definiert wird. Die Instanz enthält die XAML Struktur so wie sie im 

Editor angezeigt wird oder von einem vorangegangenen Plug-In bearbeitet wurde.  

Der zweite Parameter nameSpace der Methode PreProcessing() enthält weitere Namensräume, die verwendet 

werden können. Derzeit wird dort nur ein Namensraum mit dem Bezeichner xamlns (für xaml namespace) 

definiert, der den voreingestellten Namensraum (engl. default namespace, gewöhnlich ist dies in XAML 

“http://schemas.microsoft.com/winfx/2006/xaml/presentation“) kopiert. Dies ist eine Besonderheit von XPath, 

die zu beachten ist, da in XAML alle XML Knoten ohne einen Namensraum (<Button>, <ListBox> usw.) diesen 

voreingestellten Namensraum implizit zugewiesen bekommen (z.B. 

<“http://schemas.microsoft.com/winfx/2006/xaml/presentation“:Button>). Eine Suche mit XPath oder über die 

Methoden XmlDocument::SelectSingleNode() und SelectNodes() ohne vorangestellten Namensraum (z.B. 



 
77 Umsetzung 

//Button) nutzt jedoch immer den leeren Namensraum („“). Dieser stimmt aber bei XAML nicht mit dem vor-

eingestellten überein, so dass die Suche keine Knoten liefert. Stattdessen muss der Namensraum xamlns bei 

jedem Zugriff mit der XmlDocument Klasse angegeben werden. Der Quelltext 4 zeigt wie ein Aufruf auszusehen 

hat. 

public override bool PreProcessing(ref System.Xml.XmlDocument document, XmlNamespaceManager nameSpace) 
{ 
     XmlNode node = document.SelectSingleNode("//xamlns:Button", nameSpace); 
     …  

Quelltext 4 Zugriff auf XML Knoten mit der Klasse XmlDocument 

Neben den Parametern der PreProcessing() Methode kann der Algorithmus auch durch den Benutzer beein-

flusst werden. Dazu werden dem Plug-In Eigenschaften als textuelle Werte über die Methode InitProperties() 

übergeben (Abbildung 84). Eine Eigenschaft wird durch ihren Namen und einen Wert vom Typ String im LATTE 

Plug-In Parameter Editor (siehe Abbildung 49) definiert. Sie gelten generell für alle Plug-Ins, so dass eine Na-

mensraumnotation notwendig wird, um keine Kollision mit neuen Plug-Ins zu erzeugen. Einer Eigenschaft wird 

dazu ein Namensraum zugewiesen, wie z.B. „WPFPlugin“. Diese Notation wird von der Anwendung aufgezwun-

gen, d.h. jedes Plug-In bekommt über InitProperties() nur diejenigen Eigenschaftswerte zu sehen, deren Na-

mensraum mit dem von PluginAddInView::GetNameSpace() zurückgelieferten Namensraum (Quelltext 6)  

übereinstimmt. Eine Ausnahme bilden leere Namensräume, die alle Plug-Ins zu sehen bekommen.  

 

Während der Ausführung des Prozessors kann es notwendig sein, den aktuellen Status oder die Fehlermeldun-

gen des Plug-Ins an den Benutzer zurückzumelden. Dazu fragt die Anwendung das Plug-In über die Methode 

GetProcessingMessages()  nach einer Liste von Meldungen, die im Meldungsfenster von LATTE (siehe Abbil-

dung 50) angezeigt werden. Die Meldungen können Fehler, Warnungen oder Nachrichten sein und werden 

durch den Klassentyp ProcessingMessage noch weiter beschrieben. So können Zeilennummer und Spaltenposi-

tion sowie eine Bezeichner Nummer  (ID) und auch ein Meldungstext zurückgegeben werden. Dies kann die 

Fehlerkorrektur erheblich erleichtern. Da GetProcessingMessages() erst nach PreProcessing() aufgerufen wird, 

müssen die Meldungen zunächst in einem Variablenfeld zwischengespeichert werden. Dieses Feld kann dann 

von GetProcessingMessages()  zurückgegeben werden. Der Quelltext 5 zeigt, wie Meldungen erzeugt werden 

können. 

 

//innerhalb der Plug-In Klasse 
private readonly ProcessingMessageList messageList = new ProcessingMessageList(); 
 
public override bool PreProcessing(ref System.Xml.XmlDocument document, XmlNamespaceManager namespace) 
{ 
    messageList.Clear();  //alte Nachrichten löschen 
 
    //… arbeiten 
    messageList.Add(new ProcessingMessage(MessageType.Warning,  
        null/*no line*/, null/*no column*/, 1/*message ID*/, “Node not found”)); 
    … 
} 
 
public override ProcessingMessageList GetProcessingMessages() 
{ 
   return messageList; 
} 

Quelltext 5 Eine Plug-In Meldung erzeugen 

Es muss beachtet werden, dass eine erzeugte Fehlermeldung den Transformationsprozess nicht abbricht. Ein 

Prozessor kann die Pipeline nur auf zwei Arten vorzeitig beenden: 

1. Die Prozessormethode (PreProcessing(), PostProcessing()) wird mit dem booleschen Wert FALSE be-

endet. 

2. Der Parameter document, der die XAML Struktur enthält, wurde auf null gesetzt. 

Es ist daher möglich, dass ein Plug-In einen Fehler in der Verarbeitung erzeugt, dies meldet, aber die XAML 

Struktur unverändert lässt, so dass die Transformation fortgesetzt werden kann.  



 
78 Migration und Anpassung von Dialoganwendungen für berührungsempfindliche Bildschirme 

Eine weitere Fehlerquelle sind unbehandelte Ausnahmen. Wird eine Ausnahme erzeugt und nicht im Plug-In 

abgefangen, wertet LATTE dies als Totalversagen und schließt das Plug-In für den aktuellen Transformations-

prozess aus. Das Plug-In wird dann erst wieder in einer neuen Transformation berücksichtigt.  

 

Postprozessor 

 

Ein Postprozessor wird analog zum Präprozessor ausgeführt. Die Unterschiede in der Implementierung sind 

daher marginal: 

1. Der Methodenname lautet PostProcessing() ist jedoch sonst gleich (Quelltext 6) in ihrer Spezifikation. 

2. Die Ausführung liegt nach der Transformation durch den XSLT Prozessor (Abbildung 55 und Abbildung 

84) 

Im Gegensatz zum Präprozessor empfängt der Postprozessor eine bereits veränderte XAML Struktur. Sie wurde 

durch vorangegangene Präprozessoren oder durch die XSL Transformation verändert und benötigt möglicher-

weise nun noch eine letzte Anpassung. Zum Beispiel können Datenbindungen, die im Präprozessor durch Werte 

ersetzt wurden, wiederhergestellt oder das Layout noch angepasst werden.  

Während der Präprozessor am Anfang der Transformation steht und daher nur durch Plug-In-Eigenschaften 

beeinflusst werden kann, ist der Postprozessor das letzte Glied in der Transformationspipeline. D.h. Präprozes-

soren sowie die XSL Transformation können dem XAML Dokument Informationen beifügen, die den Postpro-

zessor lenken. Diese Informationen werden als sogenannten Annotationen in die XAML Struktur eingebettet. 

Ein Postprozessor kann daher entweder durch vorangegangene Prozessoren oder durch die Eingabe von XSLT 

Befehlen flexibel gesteuert werden. Annotationen werden im Kapitel 7.5.3 besprochen.  

Quelltext 6 Plug-In Kommunikationsvertrag. Diese Methoden müssen implementiert werden. 

XSLT Prozessor 

 

Der XSLT Prozessor ist die zentrale Steuereinheit der Transformationspipeline (Abbildung 55). Er wird durch die 

Programmiersprache XSLT [W3C, 1999] implementiert, die in LATTE mit Hilfe des XSLT Editors eingegeben wer-

den kann (vgl. Abbildung 47). Die XSLT Sprache transformiert mit der Hilfe von Regeln den XML Baum in eine 

neue Struktur, die nicht unbedingt wieder XML sein muss. In dieser Arbeit wird der Transformationsprozess 

jedoch auf die Ausgabe von XAML beschränkt. D.h. XSLT wird benutzt, um die XAML Struktur zu transformieren 

und den Postprozessor zu steuern. 

Der XSLT Quelltext wird in der Methode TransformationEngine::Transform() eingelesen, validiert und schließ-

lich auf die XAML Struktur angewendet. Die eigentliche Transformation mit XSLT findet dabei über die .NET 

Klasse XslCompiledTransform statt, deren Methode Transform() die Umwandlung ausführt. Fehler, die dabei 

public abstract class ProcessingAddInView 

{ 

    public abstract void InitProperties(PropertyList properties); 

  

    public bool PreProcessing(ref XmlDocument document, XmlNamespaceManager namespace); 

    public bool PostProcessing(ref XmlDocument document, XmlNamespaceManager namespace); 

  

    public ProcessingMessageList GetProcessingMessages(); 

} 

  

public abstract class PluginAddInView 

{ 

    public String GetName(); 

    public String GetNameSpace(); 

    public Feature GetFeatures();    

    public ProcessingAddInView GetProcessing(); 

} 



 
79 Umsetzung 

auftreten, oder Meldungen, die im Quelltext über <xsl:message> eingebettet sind, werden im Meldungsfenster 

von LATTE (vgl.  Abbildung 50) angezeigt. Fehler führen dabei immer zum Abbruch der gesamten Transformati-

on. 

Die XSLT Sprache als eine vollständige Turingmaschine (siehe [Unidex Inc., 2001]) bietet eine Vielzahl von XML 

Befehlen, die über den Namensraum xsl aufgerufen werden können. Die Möglichkeiten können sogar mit ex-

ternen Bibliotheken erweitert werden. Diese stellen dann eigene Elemente und Funktionen zur Nutzung zur 

Verfügung. Die Transformation ist daher nicht auf die mit XSLT gelieferten Elemente und Funktionen be-

schränkt, sondern kann bei Bedarf erweitert werden. Eine Auswahl der Standardelemente bietet unten Tabelle 

3 an, die aus der XSLT Spezifikation [W3C, 1999] erstellt wurde. Dort oder unter [W3Schools, 2011] können 

weitergehende Informationen zu der Vielzahl von Befehlen bezogen werden.  

Elementname Beschreibung 

xsl:stylesheet Wurzelelement eines XSLT Dokuments 

xsl:include/xsl:import Zusätzliche Style-Regeln importieren 

xsl:template Definiert eine Regel, die bei einem positiven Mustervergleich angewendet 
wird. 

xsl:apply-templates Regeln auf den aktuellen Knoten neu anwenden. 

xsl:element Erstellt ein XML Knoten im Ausgabedokument. 

xsl:attribute Erstellt ein XML Attribut im Ausgabedokument. 

xsl:comment Erstellt ein XML Kommentar im Ausgabedokument. 

xsl:copy Kopiert den aktuellen Knoten ins Ausgabedokument. 

xsl:value-of Ermittelt den Wert eines XML Elements. 

xsl:for-each Eine Schleife für XML Elemente. 

xsl:if/xsl:choose Bedingung auf ein XML Element anwenden. 
Tabelle 3 Einige XSLT Standardelemente zur Verwendung für die Abbildungsvorschrift 

Ein XSLT Dokument besteht aus dem Wurzelelement <xsl:stylesheet>, welches alle Regeln enthält, die bei einer 

XML Transformation angewendet werden sollen. Jede Regel wird durch das Element <xsl:template> definiert 

und enthält neben dem zu erkennenden Muster (match Attribut) den Inhalt, der in die Ausgabe geschrieben 

werden soll. Dabei können (fast) alle XSL Befehle verwendet werden, um Werte zu verändern, XML Knoten zu 

kopieren und damit die Ausgabe anzupassen. 

1 <xsl:stylesheet version="1.0" 

2     xmlns:xsl="http://www.w3.org/1999/XSL/Transform" 

3     xmlns:msxsl="urn:schemas-microsoft-com:xslt" 

4 
 5     xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation" 

6     xmlns:xamlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation" 

7     xmlns:LATTE="LATTE" 

8      

9     exclude-result-prefixes="msxsl LATTE xamlns"> 

10   <xsl:namespace-alias stylesheet-prefix="xamlns" result-prefix="#default"/> 

11     <!-- Parameter value by LATTE, it is set to xaml namespace --> 

12   <xsl:param  name="LATTE:xamlns"/>  

13 
 14   <!-- Begin here --> 

15   <xsl:output method="xml" indent="yes"/> 

16     <xsl:template match="@* | node()"> 

17         <xsl:copy> 

18             <xsl:apply-templates select="@* | node()"/> 

19         </xsl:copy> 

20     </xsl:template> 

21 </xsl:stylesheet> 
Quelltext 7 Ein XSLT Dokument. Diese Vorlage wird von LATTE für ein neues Projekt erzeugt. 



 
80 Migration und Anpassung von Dialoganwendungen für berührungsempfindliche Bildschirme 

 
Quelltext 7 zeigt eine XSL Transformation, die mit einer Regel (Zeile 16) alle XML Knoten und Attribute unver-

ändert ins Ausgabedokument kopiert.  Diese Vorlage wird von LATTE für neue Projekte automatisch generiert. 

Damit können schon sofort alle XML Elemente über das XSL Element template (Vorlage) ohne Änderung trans-

formiert werden. Die Zeilen eins bis zwölf werden in Tabelle 4 unten erläutert: 

 

Zeile Bedeutung 

1-3 Diese Zeilen definieren die Standardnamensräume für XSLT Elemente sowie Elemente aus der XSLT 
Bibliothek von Microsoft. Damit können zusätzliche Funktionen verwendet werden. Ein Beispiel ist die 
Funktion node-set(), die in Quelltext 17 verwendet wird. 

5 WPF definiert den voreingestellten Namensraum für XAML auf die in Zeile 5 definierte URL. Damit 
XSLT Elemente ohne Namensraum in der Ausgabe als XAML Elemente erkannt werden, wird der vor-
eingestellte Namensraum in der Zeile 5 definiert. Der Quelltext 14 zeigt ein Beispiel mit List-

Box.ItemTemplate und DataTemplate dazu. Ohne diese Einstellung würden alle Elemente ohne Namens-
raum ein Namensraumattribut (xmlns=““) in der Ausgabe erhalten, was bei ListBox.ItemTemplate  als 
XAML Eigenschaft einen Fehler in XAML auslöst. 

6 Bei XPath Abfragen muss dieser Namensraum für alle XAML Elemente angegeben werden. Zusätzlich 
muss er aber auch für XSLT definiert werden. Für ein Beispiel siehe dazu Quelltext 10. 

7 Der Namensraum LATTE wird definiert, um die Parameter, Elemente und Funktionen von LATTE nut-
zen zu können.  

9 In dieser Zeile werden die durch Leerzeichen getrennten Namensräume aus dem Ausgabedokument 
ausgeschlossen. Normalerweise würden sie sonst in der XAML Struktur unnötigerweise auftauchen. 

10 Der Befehl namespace-alias ersetzt den Namensraum im Ausgabedokument durch den voreingestell-
ten Namensraum (wie bei XAML üblich). Damit enthält die neue XAML Struktur keinen Namensraum 
xamlns mehr, der nur für XSLT gebraucht wird. 

12 In dieser Zeile wird ein Eingabeparameter für die XSLT Transformation definiert. Der Parameter LAT-
TE:xamlns wird von LATTE automatisch zugewiesen und enthält den Namensraum von XAML. 

Tabelle 4 Erklärung zu den einzelnen Zeilen von Quelltext 7 

Im Hauptteil (ab Zeile 15) wird jedes XML Element mit dem im Attribut match definierten Ausdruck durch den 

XSLT Prozessor verglichen und bei Gleichheit auf die Vorlage angewendet. Der Ausdruck wird in der Sprache 

XPath (siehe [W3C, 1999]) geschrieben, die auch bei der Navigation in XML Dokumenten verwendet wird. Der 

Ausdruck bedeutet, dass alle Attribute (@*) sowie der aktuelle XML Knoten (node()) von der Regel genutzt 

werden soll. Tabelle 5 listet einige der XPath Funktionen auf. Eine vollständige Beschreibung kann unter [W3C, 

1999] oder [W3Schools, 2011] eingesehen werden. 

Funktionsname Beschreibung 

last() Liefert die Nummer des letzten Elements zurück. 
count() Liefert die Anzahl der Elemente zurück. 
name() / local-name() Liefert den Namen mit oder ohne Namensraum zu-

rück. 
node() Liefert den aktuellen Knoten zurück. 
Tabelle 5 Einige XPath Standardfunktionen 

Oft ist es notwendig, dass XSLT Quelltexte erst während des Transformationsprozesses Werte benutzen sollen, 

die beim Schreiben des Codes noch nicht bekannt waren (z.B. um wie viel Prozent der neue Dialog größer sein 

soll). Dazu bietet XSLT sogenannte Parameter an, die in XSLT wie Variablen verwendet werden können. LATTE 

ermöglicht das Setzen von Parametern über den XSLT Parameter Editor (siehe Abbildung 48) an. Die dort ein-

gegebenen Werte können im XSLT Quelltext geladen und verwendet werden. Der Quelltext 8 unten zeigt, wie 

Parameter genutzt werden können, um in allen XAML Elementen eine Eigenschaft sowie einen Wert zu setzen. 

Zu beachten ist, dass Parameternamen mit einem Dollarzeichen ($) beginnen. Sollen Parameter jedoch in XSLT 

Attributen verwendet werden, die keinen XPath Ausdruck (name) enthalten, so müssen sie noch zusätzlich in 

geschweiften Klammern („,“  und „-“ ) eingebettet werden, andernfalls wird ein Fehler vom XSLT Prozessor 

erzeugt. 



 
81 Umsetzung 

<xsl:stylesheet version="1.0" xmlns:xsl="http://www.w3.org/1999/XSL/Transform" 
    xmlns:msxsl="urn:schemas-microsoft-com:xslt" exclude-result-prefixes="msxsl"> 
  <xsl:output method="xml" indent="yes"/> 
  <xsl:param name="AttributeName"/> 
  <xsl:param name="AttributeValue"/> 
  <xsl:template match="@* | node()"> 
    <xsl:copy> 
      <xsl:if test="$AttributeName != ''"> 
        <xsl:attribute name="{$AttributeName}"> 
          <xsl:value-of select="$AttributeValue"/> 
        </xsl:attribute> 
      </xsl:if> 
      <xsl:apply-templates select="@* | node()"/> 
    </xsl:copy> 
  </xsl:template> 
</xsl:stylesheet> 
Quelltext 8 Einige Parameter in XSLT verwendet. xsl:param definiert einen Parameter, der durch $Name angewendet wird. 

Bei der Programmierung von XSLT ist, wie auch schon beim Präprozessor beschrieben, zu beachten, dass XPath 

nur mit XAML genutzt werden kann, wenn der Namensraum xamlns vorangestellt wird. Die Transformations-

engine erzeugt diesen Namensraum in einem XSLT Dokument automatisch, so dass er ohne Umstände genutzt 

werden kann (Quelltext 9).  

<xsl:template match="xamlns:Button"> 
... 
</xsl:template> 
Quelltext 9 Die Besonderheit des XAML Namensraums machen es erforderlich, in XSLT den Namensraum explizit zu deklarieren 

 

7.5.2 Grundlagen der Transformation  

 

 

Abbildung 56 Die Modellkomponente bildet die Grundlage für die Transformation von Dialogen 

 

Wie bereits erläutert, kann die Transformation entweder über eine Programmiersprache in .NET oder mit der 

Hilfe von XSLT durchgeführt werden. In diesem Kapitel werden beide Ansätze erläutert und Beispiele gezeigt, 

wie eine XAML Struktur transformiert werden kann. Eine Transformation besteht dabei aus vier grundlegenden 

Aufgaben: Löschen, Kopieren, Einfügen und Ersetzen. Durch Kombinationen, Bedingungen und Wiederholung 

jeder Aufgabe können komplizierte Transformationen entstehen, die helfen sollen Dialoge für neue Eingabear-

ten anzupassen. Im Folgenden werden daher die Grundlagen der Transformation besprochen und wie diese 

umgesetzt werden können. Das darauf folgende Kapitel 7.5.3 geht auf eine Erweiterung der Transformation 

ein, die in einem kombinierten Einsatz von XSLT und Plug-In die Kommunikation vereinfacht und standardisiert.  

Als Beispiel soll ein Dialog für die Nutzung auf berührungsempfindlichen Bildschirmen angepasst werden. Der 

Dialog in Abbildung 57 unten ist zwar einfach mit der Maus zu bedienen, doch für die Nutzung mit einem Finger 

ist er offensichtlich nicht ausgelegt. Dazu sind die Elemente zu klein und liegen zu nahe beieinander. So ist die 

View 

 

 

Hauptanwendung 

Dialogeditor 

Dialogvorschau 

Parametereditor 

 

Model 

 

 

Projektdaten 

XAML Dialogsprache 

XSL Transformations-

vorschrift 

 

Controller 

 

 

Transformation 

XSLT Prozessor 

Plug-In-Verwaltung 

 



 
82 Migration und Anpassung von Dialoganwendungen für berührungsempfindliche Bildschirme 

Gefahr groß, dass ein falsches Steuerelement berührt wird oder der Benutzer einfach die Maus statt den Fin-

gern benutzt. 

 

Abbildung 57 Anzupassender Dialog (Quelltext 45 siehe im Anhang) 

 

Löschen und Kopieren 

 

Das Kopieren von Elementen ist die am meisten ausgeführte Aufgabe bei der Transformation. Viele XML Kno-

ten und Attribute müssen mit XSLT manuell kopiert werden. Existiert keine Regel oder wurde kein Befehl zum 

Kopieren in XSLT erzeugt, wird das Element nicht ins Ausgabedokument übernommen (=Löschen). Dies kann 

ein Vorteil sein, wenn man die Transformation z.B. in Schritten durchführen will, um die Elemente einzeln an-

zupassen. 

1 <xsl:template match="xamlns:Button"> 

2    <xsl:copy> 

4       <xsl:for-each select=" attribute::*"> 

5          <xsl:copy/> 

6       </xsl:for-each>           

7    </xsl:copy> 

8 </xsl:template> 
Quelltext 10 Knoten mit Attribute in XSLT kopieren 

Eine Standardtransformation, die alle XML Knoten und Attribute kopiert, wurde bereits mit dem Quelltext 7 

vorgestellt. Soll nur eine bestimmte Art von XML Knoten kopiert werden, kann das Template Element ange-

passt werden. Quelltext 10 zeigt eine Möglichkeit ein XAML Druckschalter zu kopieren. Dabei werden keine 

Unterelemente mitkopiert, sondern nur der aktuelle Knoten (Zeile 2) und dessen Attribute (Zeile 4 und 5). Mit 

attribute::*  (oder auch @*) werden Attribute mit beliebigen Namen im Element ausgewählt und kopiert. Wie 

bereits erwähnt, müssen XAML Elemente, damit diese erkannt werden,  mit dem xamlns Namensraum verse-

hen und die Groß- und Kleinschreibung beachtet werden.  

1 <xsl:template match="xamlns:Window | xamlns:Canvas | xamlns:Button"> 

2    <xsl:copy> 

3       <xsl:for-each select="@*"> 

4          <xsl:copy/> 
5       </xsl:for-each> 

6       <xsl:apply-templates select="child::*"/> 

7    </xsl:copy> 

8 </xsl:template> 
Quelltext 11 Kopieren einer gesamten XAML Struktur 

 



 
83 Umsetzung 

Die Ausgabe genügt jedoch nicht den Anforderungen von XAML, da eine Struktur entsteht, die nur zwei Schal-

ter enthält, aber kein übergeordnetes Fenster. Um die Struktur korrekt abzubilden, ist es daher erforderlich 

auch die anderen notwendigen Elemente zu kopieren. Dies wird in Quelltext 11 bewerkstelligt. Darin werden 

alle Fenster-, Canvas- und Schalter-Elemente erfasst (Zeile 1), deren Attribute kopiert (Zeile 3-5) sowie die Vor-

lage erneut auf alle Kinderelemente des aktuellen Knotens ausgeführt (Zeile 6). 

 

Einfügen 

 

Auf die vorgestellte Art und Weise ist es sehr aufwändig alle Arten von Knoten zu kopieren. Dazu müsste man 

alle Namen der auftretenden Elemente kennen und für diese für jeden Dialog  neu anpassen. Es wäre wün-

schenswert auch unbekannte Steuerelemente unbeachtet zu kopieren und dabei neue Elemente in die XAML 

Struktur einfügen zu können. Daher wird Quelltext 7 im Folgenden als Grundlage verwendet. D.h. alle folgen-

den Quelltexte setzen die darin enthaltene Vorlage (siehe Quelltext 12) ein, um alle XAML Elemente einschließ-

lich deren Eigenschaften zu kopieren. Da die neuen Vorlagen vor die Zeile 16 eingefügt werden, können einige 

Elemente speziell behandelt werden, während die restlichen Elemente einfach kopiert werden. 

…  

16 <xsl:template match="@* | node()"> 

17    <xsl:copy> 

18       <xsl:apply-templates select="@* | node()"/> 
19    </xsl:copy> 

20 </xsl:template> 
Quelltext 12 XSLT Vorlagen, um alle Attribute und Knoten zu kopieren 

Eine mögliche Aufgabe bei der Transformation kann darin bestehen, neue XAML Elemente zu erstellen. Im 

Beispieldialog soll dies genutzt werden, um die Liste einfacher mit einem Finger bedienen zu können. Dazu 

kann in XAML die sogenannte ItemTemplate Eigenschaft des Listenfelds (das ListBox-Element) geändert wer-

den. Diese Eigenschaft definiert das Aussehen jedes Eintrags innerhalb des Listenfelds. XML Knoten können in 

XSLT entweder durch <xsl:element > erzeugt werden oder durch die direkt Deklaration der Elemente innerhalb 

von XSLT. Daher sind die Beispiele in Quelltext 13 und Quelltext 14 gleichbedeutend. In beiden Fällen wird die 

Höhe eines Listeneintrags auf feste 30 Dialogeinheiten gesetzt, so dass die Einträge besser mit den Fingern zu 

treffen sind. 

1 <xsl:attribute-set name="ItemTemplate"> 

2   <xsl:attribute name="Text">{Binding Path=.}</xsl:attribute> 

3   <xsl:attribute name="Height">30</xsl:attribute> 
4 </xsl:attribute-set>  

5 
 6 <xsl:template match="xamlns:ListBox"> 

7   <xsl:copy> 

8     <xsl:apply-templates select="@*"/> 

9       <xsl:element name="ListBox.ItemTemplate" > 

10     <xsl:element name="DataTemplate"> 
11       <xsl:element name="TextBlock" use-attribute-sets="ItemTemplate"/> 

12     </xsl:element> 

13       </xsl:element>             

14     <xsl:apply-templates select="child::*"/> 

15   </xsl:copy> 
16 </xsl:template> 

Quelltext 13 Elemente mit XSLT hinzufügen 

Die Erstellung von Knoten und Attribute in XSLT ist, so wie in Quelltext 13 gezeigt, jedoch sehr aufwändig und 

nicht unbedingt einfach zu verstehen oder nachträglich anzupassen. Mit XSLT ist es daher auch möglich den 

bereits vorhandenen XAML Quelltext in die Transformation einzubetten. (siehe Quelltext 14). Der Nachteil ist 

jedoch, dass die geschweiften Klammern besonders behandelt werden müssen, da sie von XSLT für spezielle 



 
84 Migration und Anpassung von Dialoganwendungen für berührungsempfindliche Bildschirme 

Ausdrücke genutzt werden. In Zeile 6 ist daher die XAML Datenbindung mit doppelten Klammern versehen 

worden. In der Ausgabe steht dann natürlich nur jeweils eine geschweifte Klammer.  

Bei beiden Quelltexten muss zusätzlich der voreingestellte Namensraum xmlns korrekt gesetzt werden. Sonst 

bindet XSLT zusätzliche Namensräume in die XML Knoten ein, was bei der angehängten Eigenschaft <List-

Box.ItemTemplate> einen Fehler im XAML Editor erzeugt, da Eigenschaften in XAML selbst keine XML Attribute 

besitzen dürfen. Die von LATTE erzeugte XSLT Vorlage (Quelltext 7) setzt diese Bedingung bereits korrekt um, 

so dass nichts angepasst werden muss. 

1 <xsl:template match="xamlns:ListBox"> 

2   <xsl:copy> 

3     <xsl:apply-templates select="@*"/> 

4     <ListBox.ItemTemplate> 

5       <DataTemplate> 

6         <TextBlock Text="{{Binding Path=.}}" Height="30" /> 

7       </DataTemplate> 

8     </ListBox.ItemTemplate> 

9     <xsl:apply-templates select="child::*"/> 

10   </xsl:copy> 

11 </xsl:template> 
Quelltext 14 Elemente mit XSLT hinzufügen (2.Teil) 

Der so erzeugte Dialogquelltext kann direkt in einer Anwendung verwendet werden. Die Abbildung 58 zeigt den 

Dialog mit vergrößerten Einträgen. Alle anderen Elemente wurden vorerst ohne Änderung übernommen. 

 

Abbildung 58 Dialog mit vergrößerten Listeneinträgen 

Ersetzen 

 

Oftmals reichen die vorhandenen Steuerelemente nicht aus, um alle Bedürfnisse zu befriedigen. Daher können 

Steuerelemente auch vollständig ersetzt werden. Dies geschieht im Quelltext 15, indem der XML Knoten nicht 

mit <xsl:copy> kopiert wird, sondern einfach ein neues Element über XSLT eingefügt wird (Zeile 7). Die restli-

chen Attribute des alten Steuerelements werden wieder mit <xsl:copy-of > (Zeile 8) übernommen. Dies ist natür-

lich nur dann möglich, wenn das neue Steuerelement diese Eigenschaften zur Verfügung stellt. Hier wurde 

jedoch ein neu eingeführtes Element CheckBoxTouchSwitcher verwendet, welches alle Eigenschaften einer XAML 

CheckBox unterstützt.  

Das neue Kontrollkästchen wird über die Assembly LATTE_Resources (siehe auch Seite 71) zur Verfügung ge-

stellt, die nicht nur im transformierten XAML Quelltext bekannt sein muss, sondern auch dem XSLT Prozessor. 

Das bedeutet den Namensraum auch im XSLT Quelltext zu definieren (Zeile 3). So definiert, wird der Namens-

raum dann automatisch dem Element im erzeugten XAML Dokument angehängt (Quelltext 16).   

 



 
85 Umsetzung 

 

1 <xsl:stylesheet version="1.0"  

2  … 

3   xmlns:touch="clr-namespace:LATTE_Resources;assembly=LATTE_Resources" 

4 > 

5 … 

6 <xsl:template match="xamlns:CheckBox"> 

7    <touch:CheckBoxTouchSwitcher> 

8    <xsl:copy-of select="@*" /> 

9      <xsl:apply-templates select="@*|node()"/> 

10    </touch:CheckBoxTouchSwitcher> 

11 </xsl:template> 
Quelltext 15 Transformation eines Kontrollkästchens 

Dies ist jedoch nicht immer vorteilhaft, insbesondere dann, wenn mehrere Steuerelemente in demselben Na-

mensraum im Dokument verteilt liegen. Denn die Deklaration des Namensraums kann auch in einem überge-

ordneten Element erfolgen, so dass alle Unterelemente diesen Namensraum verwenden können. In XAML 

definiert man üblicherweise alle benutzten Namensräume im Wurzelelement, das normalerweise ein 

<Window> Element ist. D.h. es wäre notwendig ein Attribut als Namensraum dort einzufügen. Unglücklicher-

weise ist dies in XSLT 1.0 nicht so einfach umzusetzen, da ein Name wie xmlns:touch von XSLT als qualifizierter 

Bezeichner ausgewertet wird und damit nicht ins Ausgabedokument gelangt. Die Lösung kann aber mit exter-

nen Skripten umgesetzt werden. Microsoft stellt dazu bereits eine Bibliothek zur Verfügung. Aber auch andere 

Hersteller bieten Skripte dafür an (siehe [Stewart, et al., 2006] und [Mangano, 2006 S. 631ff.]). 

<touch:CheckBoxTouchSwitcher  

    Name="checkBox4"  […]  xmlns:touch="clr-namespace:LATTE_Resources;assembly=LATTE_Resources" /> 

Quelltext 16 Erzeugtes Steuerelement CheckBoxTouchSwitcher 

Die verwendete Lösung stammt ursprünglich aus [Georges, 2007] und wurde für den Quelltext 17 gekürzt. Sie 

wird auf ein Fenster-Element angewendet (Zeile 1) und ruft eine weitere Vorlage auf (Zeile 3-6), die für die 

Erzeugung des Namensraums zuständig ist. 

1 <xsl:template match="xamlns:Window"> 

2    <xsl:copy> 

3       <xsl:call-template name="make-namespace-node"> 

4          <xsl:with-param name="prefix">touch</xsl:with-param> 

5          <xsl:with-param name="uri">clr-namespace:LATTE_Resources;assembly=LATTE_Resources</xsl:with-param> 

6       </xsl:call-template> 

7       <xsl:apply-templates select="@*|node()"/> 

8    </xsl:copy> 

9 </xsl:template> 

10 
 11 <xsl:template name="make-namespace-node"> 

12    <xsl:param name="prefix"/> 

13    <xsl:param name="uri"/> 

14       <xsl:variable name="dummy"> 

15          <xsl:element name="{ $prefix }:e" namespace="{ $uri }"/> 

16       </xsl:variable> 

17    <xsl:copy-of select="msxsl:node-set($dummy)/*/namespace::*"/> 

18 </xsl:template> 
Quelltext 17 Erzeugen  eines Namensraum innerhalb eines Fenster-Elements 

Die Vorlage definiert neben den Parametern prefix und uri (Zeile 12 und 13) auch eine Variable dummy (Zeile 

14), die als Wert einen XML Knoten enthält. Dessen Name besteht aus dem übergebenen Präfix (hier „touch“) 

und einem beliebig gewählten Namen (hier „e“). Der Namensraum des Elements (Zeile 15) wird schließlich 

noch auf den Parameter prefix gesetzt, der später den Namen der Assembly LATTE_Resources zugewiesen 

bekommt. Der so erzeugte Dummy-Knoten wird in Zeile 17 verwendet, um dessen Namensraum in den aktuel-



 
86 Migration und Anpassung von Dialoganwendungen für berührungsempfindliche Bildschirme 

len Knoten (hier Window, Zeile 1) einzufügen. Der Skriptbefehl msxsl:node-set  in Zeile 17 konvertiert dazu den 

Wert der Variable dummy in eine Knotenmenge, die dann mit XPath durchsucht werden kann. Der Umweg ist 

notwendig, da in XSLT der Wert der Variable dummy nicht automatisch für XPath in eine Knotenmenge konver-

tiert wird. Letztendlich werden in der Knotenmenge die Namensräume (/namespace::*) aller Elemente (/*) in 

den aktuelle Knoten des Aufrufers kopiert (Zeile 3 bis 6). Mit dem Aufruf der Vorlage in Zeile 3 können so dem 

Fenster-Element beliebige neue Namensräume zugewiesen werden. 

<Window Title="Confirmation" […] 
        xmlns:touch="clr-namespace:LATTE_Resources;assembly=LATTE_Resources"> 

Quelltext 18 Window-Element mit manuell eingefügtem Namensraum 

Das Ergebnis der Bemühungen ist ein <Window> Element mit dem vorgegebenen Namensraum (Quelltext 18) 

und ein Dialog mit einem veränderten Kontrollkästchen (Abbildung 59). 

 

Abbildung 59 Dialog mit ersetztem Kontrollkästchen 

Zuletzt bleibt im Dialog noch die Abstände zwischen den Steuerelemente zu vergrößern. Dies kann in XAML auf 

mehrere Arten geschehen: 

 Die Höhe und Breite des Steuerelements kann vergrößert werden. 

 Ein Rand kann um das Steuerelement gesetzt werden, der es von anderen Elementen räumlich ab-

trennt. 

Die Umsetzung hängt sehr von der eingesetzten Layout Technik ab. Wird ein Canvas eingesetzt, also die Steue-

relemente absolut positioniert, müssen alle Elemente abhängig von der Größe und Position neu ausgerichtet 

werden. Dazu existieren bereits umfangreiche Arbeiten, die im Kapitel 2.5.2 Reverse Engineering besprochen 

wurden wie z.B. das Auckland Layout Model (siehe Seite 42).  

Für dieses Beispiel wird ein einfacherer Ansatz gewählt. Die Steuerelemente wurden dazu im Dialog bereits mit 

einem Layout-Panel versehen (siehe Quelltext 45 im Anhang), so dass Größenänderungen automatisch umge-

setzt werden.  

In XAML werden Ränder durch die Eigenschaft Margin definiert. Margin wird von XAML als eine Folge von Pi-

xelabständen interpretiert. Vier durch Komma getrennte Zahlen geben den Abstand des Steuerelements in alle 

vier Richtungen an (z.B. „5, 5, 5, 5“). Weiterhin kann auch nur eine Zahl für alle vier Abstände verwendet wer-

den. Da die Interpretation dieses Formats in XSLT schwer umzusetzen ist, wird stattdessen die Höheneigen-

schaft der Elemente angepasst. Dazu sollen alle Steuerelemente in ihrer Höhe um einen bestimmten Wert, der 

von der Art des Elements abhängt, vergrößert werden.  

Die erste Idee wäre eine einzelne, neue Vorlage zu erstellen, die einfach alle Steuerelemente enthält, deren 

Höhe angepasst werden soll. Dieser Ansatz ist in XSLT so nicht umzusetzen, da XML Elemente nur immer ein-

mal auf eine Vorlage angewendet werden können (die erste passende Vorlage). Damit wäre es nicht mehr 



 
87 Umsetzung 

möglich das Kontrollkästchen (CheckBox) oder das Listenfeld (ListBox) zu konvertieren, weil sie ja bereits durch 

eine andere Vorlage in ihrer Höhe transformiert wurden. Jedoch wäre es sehr wohl möglich die Größe des 

Kontrollkästchens oder des Listenfelds in den bereits existierenden Vorlagen zusätzlich zu behandeln und alle 

restlichen Elemente gemeinsam in einer Vorlage zu transformieren. Allerdings gibt es einen noch besseren 

Ansatz.  

Mit XSLT können Vorlagen erstellt werden, die nicht nur Knoten behandeln, sondern auch Attribute. Auf diese 

Weise ist es möglich die XAML Eigenschaft Height für jedes Steuerelement separat anzupassen, indem das 

Elternelement mit dem gewünschten Name verglichen wird. Der Quelltext 19 definiert ein Vorlage setSize, die 

als Parameter den Attributnamen (@Width oder @Height) sowie den Namen der XAML Eigenschaft (Width 

oder Height) übergeben bekommt.  

Damit nicht alle Steuerelemente in ihrer Größe angepasst werden, wird in der Vorlage geprüft, zu welchem 

Steuerelement das Attribut gehört (Zeilen 9, 12 und 15). Alle anderen Elemente werden ohne Änderungen 

weitergereicht (Zeile 6 und 19), darunter fällt auch das Fenster-Element. 

Der Wert, um den die Größe verändert wird, ist natürlich abhängig von dem eingesetzten Element. In den Zei-

len 10, 13 und 16 werden die Größendifferenzen als Konstanten zur aktuellen Größe des Elements addiert. Das 

ist für den Beispieldialog in Ordnung, könnte aber in anderen Fällen zu groß oder zu klein sein, so dass man hier 

überlegen sollte Parameter zu nutzen, die vor der Transformation im XSLT Parameter Editor (vgl. Abbildung 48) 

angegeben werden. 

1 <xsl:template name="setSize"> 

2    <xsl:param name="AttributeName" select="@Height"/> 

3    <xsl:param name="PropertyName" select="Height" /> 

4             

5    <xsl:choose> 

6       <xsl:when test="parent::xamlns:Window|parent::xamlns:StackPanel"> 

7          <xsl:copy/> 

8       </xsl:when> 

9       <xsl:when test="parent::xamlns:ListBox"> 

10          <xsl:attribute name="{$PropertyName}"><xsl:value-of select="$AttributeName + 64"/></xsl:attribute> 

11       </xsl:when> 

12       <xsl:when test="parent::xamlns:RadioButton | parent::xamlns:CheckBox"> 

13          <xsl:attribute name="{$PropertyName}"><xsl:value-of select="$AttributeName + 16"/></xsl:attribute> 

14       </xsl:when> 

15       <xsl:when test="parent::xamlns:Button"> 

16          <xsl:attribute name="{$PropertyName}"><xsl:value-of select="$AttributeName + 14"/></xsl:attribute> 

17       </xsl:when> 

18       <xsl:otherwise> 

19          <xsl:copy/> 

20       </xsl:otherwise> 

21    </xsl:choose>       

22 </xsl:template> 

23      

24 <xsl:template match="@Height | @Width"> 

25    <xsl:call-template name="setSize"> 

26       <xsl:with-param name="AttributeName"><xsl:value-of select="."/></xsl:with-param> 

27       <xsl:with-param name="PropertyName"><xsl:value-of  select="local-name()"/></xsl:with-param> 

28    </xsl:call-template>  

29 </xsl:template> 

Quelltext 19 Transformation zum Verändern von Höhe und Breite 

Schließlich wird die Vorlage setSize durch die Vorlage in Zeile 24 auf die Höhe und Breite aller Attribute ange-

wendet. Dazu werden die Vorlagenparameter auf das Attribut (@Height oder @Width) und den Name der 

Eigenschaft (Height oder Width) gesetzt. Da im Dialog alle Steuerelemente diese beiden Eigenschaften besit-

zen, erzeugt die Transformation den rechten Dialog der Abbildung 60. Wird in Zeile 24 nur die Eigenschaft Höhe 



 
88 Migration und Anpassung von Dialoganwendungen für berührungsempfindliche Bildschirme 

angepasst, stellt sich der Dialog langgezogen dar, wie auf der Abbildung 60 links zu sehen ist. Der vollständige 

Quelltext (Quelltext 46) des abgebildeten Dialogs kann im Anhang eingesehen werden.  

  
Abbildung 60 Links: Höhe angepasst, Rechts: Höhe und Breite angepasst 

 

Transformation mit Plug-Ins 

 

Die Transformation mit reinem XSLT mag besonders anfangs große Probleme bereiten, weil das Verhalten des 

XSLT Prozessors nicht immer den Erwartungen entspricht. Aber obwohl XSLT turing-vollständig ist, so bedeutet 

dies nicht, dass jedes Problem einfach gelöst werden kann. Letztendlich soll ein Problem so einfach wie möglich 

gelöst werden, daher ist es notwendig auch moderne Programmiersprachen im Transformationsprozess einzu-

setzen. Einige Transformationen, wie  die der Größe, können so einfacher geprüft, zwischengespeichert und 

auch mehrmals verändert werden.  

Der Einstiegspunkt für Plug-Ins ist mit den Methoden PreProcessing und PostProcessing (siehe Quelltext 6 auf 

Seite 78) definiert. Sie empfangen die XAML Struktur, die angepasst werden soll. Mit dem Projekt LATTEC_WPF 

(das C steht für Cartdrige, zu dtsch. Steckmodul) steht eine Vorlage bereit, die für weitere Plug-Ins genutzt 

werden kann. Die eigentliche Implementierung steckt in der Datei PluginImpl.cs und muss entsprechend ange-

passt werden. Die Beispiele Quelltext 19 und folgende zeigen, wie dies geschehen kann. 

Mit dem Quelltext 20 wird dieselbe Transformation durchgeführt wie in Quelltext 19. Mit SelectNodes()  (Zeile 

7) werden alle Attribute Height und Width des XML Baums abgefragt und versucht, deren Inhaltswert als Dou-

ble zu interpretieren (TryParse()). Während in XSLT ungültige, numerische Werte, wie z.B. * oder „Auto“  für 

automatische Größe, ohne jede Änderung ins Ausgabedokument übernommen werden, können diese Werte 

mit .NET etwas einfacher interpretiert und ausgewertet werden (Zeile 6). Es ist jedoch trotzdem möglich in 

XSLT die Erkennung und Transformation vorzunehmen, wenn auch mit mehr Aufwand. Ein weiterer Vorteil von 

PostProcessing besteht darin, dass Meldungen, Warnungen und Fehler direkt als solche mit zusätzlichen Infor-

mationen an LATTE gesendet werden können. Die eingefügte Warnung in Zeile 40 wird durch LATTE nach dem 

Methodenaufruf PostProcessing ausgewertet und im Meldungsfenster angezeigt. 

Während PostProcessing nach der XSLT Transformation ausgeführt wird und alle Werte aus dieser Transforma-

tion bereits enthält, könnte ein Beispiel für die Methode PreProcessing sein, bestimmte Werte in eine einfa-

chere Form für XSLT umzuformen. Die bereits erwähnte Eigenschaft Margin kann so in mehrere XML Attribute 

aufgeteilt werden und ist in XSLT damit einfacher lesbar. Zusammengefasst kann der Präprozessor damit die 



 
89 Umsetzung 

XSLT Verarbeitung beeinflussen, indem XML oder XAML Elemente zusätzlich eingefügt, verändert oder gelöscht 

werden.  

1 public override bool PostProcessing( 

2         ref System.Xml.XmlDocument document,  

3             XmlNamespaceManager nameSpace) 

4 { 

5     messageList.Clear(); 

6   

7     XmlNodeList nodes = document.SelectNodes("//@Height | //@Width"); 

8   

9     if (nodes != null) 

10     { 

11         foreach (XmlAttribute item in nodes) 

12         { 

13             String strSize = item.Value; 

14             double size = 0; 

15   

16             if (Double.TryParse(strSize, out size)) 

17             { 

18                 switch (item.OwnerElement.LocalName) 

19                 { 

20                     case "Window": break; 

21                     case "ListBox": 

22                         size += 64; 

23                         break; 

24                     case "CheckBoxTouchSwitcher": 

25                     case "CheckBox": 

26                     case "RadioButton": 

27                         size += 16; 

28                         break; 

29                     case "Button": 

30                         size += 14; 

31                         break; 

32                 } 

33   

34                 item.Value = size.ToString(); 

35             } 

36         } 

37     } 

38     else 

39     { 

40         messageList.Add(new ProcessingMessage(MessageType.Warning, 

41             /*LineNumber*/null, /*LinePosition*/null, /*MessageID*/1001,  

42             "No nodes found")); 

43     } 

44 } 
Quelltext 20 PostProcessing mit Höhe und Breite 

Diese Art der Kommunikation zwischen den Prozessoren besitzt jedoch den Nachteil, dass zusätzliche Elemente 

die Prozessoren anderer Hersteller stören könnten.  Daher wird in Kapitel 7.5.3 die Annotation eingeführt. Sie 

definiert die Kommunikationsschnittstelle als XAML Element und unterstützt auch mehrere Plug-Ins gleichzeitig 

im Prozess. 

 

Nutzen eines XAML Laders 

 

WPF besitzt die Möglichkeit eine XAML Struktur in eine Klassenstruktur transformieren zu können. Die entspre-

chende .NET Klasse nennt sich XamlLoader und ermöglicht durch den Aufruf von statischen Methoden eine 



 
90 Migration und Anpassung von Dialoganwendungen für berührungsempfindliche Bildschirme 

Fensterinstanz zu erzeugen, die alle Dialogsteuerelemente enthält. Damit können die Elemente und ihre Werte 

über Klasseninstanzen und Eigenschaften zugegriffen werden, ohne den Syntax von XPath nutzen zu müssen.  

1 XmlTextReader reader = new XmlTextReader("DialogFile.xaml"); 

2 Window x = XamlReader.Load(reader) as Window; 

3   

4 x.Margin = new Thickness(10, 20, 20, 10); 
Quelltext 21 XAML Struktur laden 

Eine perfekte Lösung wäre gewesen, wenn die geladene XAML Struktur auch wieder als XAML Quelltext hätte  

geschrieben werden können. Die Rückwärtstransformation kann zwar mit der Methode Save der Klasse Xam-

lWriter durchgeführt werden, jedoch ist die Rückumwandlung in XAML Code aus verschiedenen Gründen nicht 

vollständig. Sie ist daher nur von sehr begrenztem Nutzen. Die Autoren von Serialization Limitations of 

XamlWriter.Save in [Microsoft, 2011] und [Hillberg, 2006]) nennen die folgenden Einschränkungen für Xam-

lWriter: 

 Das Steuerelement wird in dem Zustand, den es zur Laufzeit besitzt, als XAML Repräsentation gespei-

chert. Die erzeugte XAML Struktur kann sich daher vom Original unterscheiden. 

 Alle verwendeten Ressourcen werden in die XAML Struktur eingebettet. Ressourcen wie Style oder 

DataProvider werden direkt in XAML gespeichert, d.h. ein aus mehreren Dateien bestehender XAML 

Dialog wird zur einer Quelldatei zusammengefasst. 

 Datenbindungen werden nicht in ihrer ursprünglichen Form in die XAML Struktur zurückgeschrieben, 

sondern nur deren Werte. D.h. Datenbindungen wie Binding, StaticResource und DynamicResource 

werden zur Laufzeit (d.h. beim Laden) ausgewertet und beim Speichern durch den aktuellen Wert er-

setzt. 

 Ereignisroutinen werden nicht in die XAML Struktur übernommen, sondern ignoriert. 

Zwei Quellen bieten dazu mehr oder weniger funktionierende Lösungen an (siehe [Richter, 2007] und [AlexDov, 

2008]). Doch eine Überprüfung ergab immer wieder Schwierigkeiten mit verschiedenen XAML Strukturen 

(Templates, Datenbindungen, Stile), so dass auch hier keine vollständige Lösung präsentiert werden kann.  

 

7.5.3 Erweiterte Transformation mit Annotationen 

 

Annotationen sind aus den Hochsprachen wie Java und C# schon lange Zeit bekannt. Annotationen, auch „At-

tribute“ genannt, sind Anmerkungen, die Klassen, Methoden oder anderen Deklaration durch zusätzliche In-

formationen, sogenannte Metadaten, erweitern. Diese Metadaten können zur Laufzeit oder von externen 

Werkzeugen (auch der Kompiler) eingelesen und interpretiert werden.  

Die Frameworks von Java und C# stellen eigene Klassen und Methoden zur Verfügung, um zur Laufzeit auf An-

notationen (in Java [Sun, 2005 S. 281]) oder Attribute (in C# [Microsoft, 2011]) zugreifen zu können. Durch den 

Einsatz von externen Werkzeugen ist es aber genauso möglich, in Sprachen Annotationen zu verwenden, die 

sonst nicht Bestandteil der Sprache sind, beispielsweise als Kommentar. Diese sind jedoch nur vor und während 

der Übersetzung vorhanden, um von den externen Werkzeugen erkannt zu werden; nicht jedoch zur Laufzeit. 

Für XML oder genauer gesagt XAML wurde eine Klassenstruktur entwickelt, die  in XAML eingebettete Annota-

tionen erlaubt.  Annotationen in XAML können als Mittel zur Ablaufsteuerung innerhalb des Transformations-

prozesses benutzt werden. Somit ist es möglich, dass entlang der Transformationspipeline Informationen an 

XAML Elemente angehängt werden, um in einer späteren Phase der Pipeline durch einen Prozessor (Prä-, XSLT- 

oder Postprozessor) ausgewertet werden zu können. Die Auswertung ist dabei nicht auf die horizontale Trans-

formation (siehe Abbildung 55) beschränkt, sondern kann auch zwischen Plug-Ins erfolgen (vertikale Transfor-

mation).  



 
91 Umsetzung 

 

Abbildung 61 Klassendiagramm der erstellten Annotationen für XAML 

Das Klassendiagramm in Abbildung 61 gibt einen Überblick über die entwickelte Klassenstruktur für Annotatio-

nen. Eine Beschreibung der Klassen kann man aus Tabelle 6 entnehmen. 

Die Klassen für Annotationen sind mit WPF entwickelt worden und können daher direkt als Objekte in einem 

XAML Quelltext eingesetzt werden, ohne die visuelle Darstellung zu ändern. Annotiert werden können alle 

Objekte in XAML, die von der Klasse DependencyObject abgeleitet wurden. Das sind in erster Linie alle sichtba-

ren Steuerelemente (u.a. die WPF Klassen Control, Label, Button, ListBox, ListBoxItem, Window, Text oder auch 

ComboBox), jedoch keine Datenbindungen oder vordefinierte Objekte wie Farben (z.B. Colors.Green), Pinsel 

(z.B. Brushes.Blue) usw. Eine grafische Übersicht zu den XAML Elementen und welche von DependencyObject 

abgeleitet sind findet sich unter [Chattopadhyay, 2010]. 

Aus den Elementen erzeugt ein XAML Parser automatisch die entsprechenden Instanzen. Zusätzlich wurde für 

diese Arbeit eine Deserialisierung und Serialisierung den Klassen hinzugefügt, so dass eine XAML Struktur und 

deren Annotationen auch über einen XML Parser gelesen und geschrieben werden können. Sind die vorhande-

nen Klassen für die eigenen Bedürfnisse nicht ausreichend, können zudem einfach neue abgeleitete Annotati-

onsklassen erstellt und verwendet werden. 

XAML Annotationen sind in erster Linie nicht sichtbare Elemente in der XAML Struktur. Eine Annotation wird als 

eine angehängte Eigenschaft (engl. attached property) definiert und lässt sich daher an beliebige XAML Steue-

relemente anhängen. Diese Art von Eigenschaften verhält sich dabei wie jede normale Eigenschaft eines XAML 

Elements, jedoch wird sie einem Element ohne dessen Wissen hinzugefügt. Das mit WPF eingeführte Konzept 

erweitert damit die Liste der zugreifbaren Eigenschaften eines Elements ohne den Quelltext des Elements an-

passen zu müssen. Im Folgenden wird gezeigt, wie Annotationen genutzt werden können, um zusätzliche In-

formationen in XAML Quelltexte einzubetten. 

 

AnnotationParameter 

AnnotationObject<string> 
Class 

AnnotationVerb 

AnnotationBase 
Class 

Annotation 

AnnotationBase 
Class 

AnnotationBase 

DependencyObject 
Abstract Class 

AnnotationList 

ObservableCollection<AnnotationBase> Class 

AnnotationObject<T> 

AnnotationBase 
Generic Abstract Class 

DependencyObject 

DispatcherObject 
Class 

ObservableCollection<T> 

Collection<T> 
Generic Class 

IEnumerable<AnnotationBase> 

INotifyCollectionChanged 
INotifyPropertyChanged 

Class 



 
92 Migration und Anpassung von Dialoganwendungen für berührungsempfindliche Bildschirme 

Klasse/XAML Element Beschreibung 

AnnotationList AnnotationList  ist selbst kein XAML Element, sondern definiert eine Hilfsklasse für 
eine Sammlung von Annotationen. Die Klasse Annotation nutzt AnnotationList zur 
Verwaltung von Annotationen. 

AnnotationBase AnnotationBase definiert eine abstrakte Klasse, von der alle Annotationsklassen 
abgeleitet werden müssen.  Sie definiert eine Eigenschaft Name sowie den Na-
mensraum (Prefix, Uri) der Annotation für die Serialisierung. 
Annotationsklassen, die innerhalb einer anderen Annotation (Annotation oder 
AnnotationList)  auftreten sollen, jedoch nicht an einem XAML Element angehängt 
sein dürfen, können von dieser Klasse abgeleitet werden. 

Annotation Annotation ist die Basisklasse aller Annotations und bietet die angehängte Eigen-
schaft Attach als Einstiegspunkt für XAML Annotationen an. Sie erlaubt als Un-
terelemente weitere Annotationen zu definieren.  
Neue Annotationsklassen, die an XAML Elemente angehängt werden dürfen, kön-
nen von dieser Klasse abgeleitet werden. 

AnnotationVerb AnnotationVerb ist eine Annotation, die eine auszuführende Funktion definiert. 
Die Funktion wird über die Eigenschaft Verb benannt und kann beliebig viele Pa-
rameter beinhalten. Der Name und Wert jedes Parameters werden dabei mit An-
notationParameter übergeben. Die Semantik wird durch den jeweiligen Nutzer 
bestimmt. Plug-Ins können AnnotationVerb mit einer eigenen Klassenmethode 
verknüpfen, die dadurch ausgeführt werden kann. 

AnnotationObject AnnotationObject ist eine abstrakte Klasse für Annotationen mit XML Inhalt (in 
XAML Content genannt). Abgeleitete Klassen können so XAML Elemente definie-
ren, die einen Inhalt präsentieren. 
Neue Annotationsklassen können von dieser Klasse abgeleitet werden. 

AnnotationParameter AnnotationParameter definiert einen Parameter mit Name und Wert. Die Klasse 
wird aber nicht ausschließlich für AnnotationVerb verwendet, sondern kann auch 
für eigene Annotationen wiederverwendet werden. 

Tabelle 6 Beschreibung der Annotationsklassen für XAML 

 

Annotationen in XAML verwenden 

 

Damit ein XAML Parser die Annotationen erkennen kann und keinen Fehler erzeugt, muss die Assembly LAT-

TE_Annotations  durch einen Namensraum mit einem Präfix bekannt gemacht werden. Dies passiert üblicher-

weise im Fenster-Element kann aber auch an jedem, der Annotation übergeordneten Elementen vorgenom-

men werden. Es ist jedoch nicht möglich den Namensraum direkt in der Annotation zu setzen, weil die Syntax 

von XAML keine XML Attribute an angehängten Eigenschaften erlaubt. 

1 <Window xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation" 

2         xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml" 

3         xmlns:ann="clr-namespace:Annotations;assembly=LATTEE_Annotations"> 

4     <StackPanel> 

5         <ListBox Name="listBox1"> 

6             <ann:Annotation.Attach> 

7                 ... 

8             </ann:Annotation.Attach> 

9         </ListBox> 

10     </StackPanel> 

11 </Window> 
Quelltext 22 Definieren einer Annotation in XAML. Die Annotation wird als eine fremde Eigenschaft Attach an das Listenfeld angehängt. 

Der Quelltext 22 zeigt wie eine Annotation bekannt gemacht (Zeile 3) und an ein Listenelement gehängt wird 

(Zeile 6). Zu beachten ist dabei, dass im Gegensatz zu den Annotationen in Programmiersprachen, die Annota-

tion in XAML innerhalb eines XAML Steuerelements deklariert werden und nicht vor dem zu annotierenden 

Element. Die Annotation selbst beginnt mit der Deklaration der angehängten Eigenschaft Attach (Zeile 6) im 

Element ListBox. In XAML ist somit dieses Steuerelement um die Eigenschaft Attach erweitert worden und kann 

daher auch als Objekteigenschaft benutzt werden. Eine explizite Verknüpfung (z.B. durch Nennung des Ele-



 
93 Umsetzung 

mentbezeichners in der Annotation) zwischen Annotation und Steuerelement ist somit nicht notwendig, da die 

angehängte Eigenschaft bereits dem Steuerelement angehört. Außerdem spielt es keine Rolle an welcher Stelle 

die Annotation innerhalb des Steuerelements gesetzt wird. 

 

Zwischen den Zeilen 6 und 8 (Quelltext 22) können beliebige Annotationselemente eingefügt werden. Die der-

zeit möglichen Kombinationen sind in einer angepassten Version der erweiterten Backus-Naur-Form in Tabelle 

7 dargestellt. Symbolnamen sind dabei in den Produktionsregeln mit geschweiften Klammern dargestellt, da 

die Zeichen < und > bereits für XML verwendet werden. 

 

Symbolname Produktionsregel 

S <{Präfix}:Annotation.Attach>{Annotation}</{Präfix}:Annotation.Attach> 

Annotation {AnnotationBase}{Annotation} |  
<{Präfix}:Annotation [Name="{Name}"]>{Annotation}</{Präfix}:Annotation> |  
{AnnotationVerb}{Annotation} |  
{} 

AnnotationVerb <{Präfix}:AnnotationVerb Verb={Name}>{Parameter}</{Präfix}:AnnotationVerb> 

Parameter <{Präfix}:AnnotationParameter 
[Name="{Name}"]>{Wert}</{Präfix}:AnnotationParameter>{Parameter} |  
{} 

AnnotationBase 
(abstrakt) 

{AnnotationBase kann nicht direkt verwendet werden, aber jede von AnnotationBase abgeleitete und 
nicht abstrakte Klasse. Das Präfix muss nicht mit dem Präfix in S übereinstimmen, sondern kann auch 
auf eine Assembly eines Drittherstellers verweisen.} 

Präfix {Beliebiger Name für XML Namensräume. Diese müssen jedoch als Namensraum definiert worden 
sein.} 

Name {Beliebiger Name für XML Attribute} 

Wert {Beliebiger Wert für XML Inhalte} 

Tabelle 7 EBNF Produktionsregel für die entwickelten Annotationen in XAML 

 

Annotationen in  XSLT verwenden 

 

Annotationen wurden entwickelt, um in XSLT eine Steuerung des Postprozessors zu ermöglichen. Der Quelltext 

des XSLT Prozessors kann direkt in LATTE bearbeitet werden.  Daher ist es normalerweise nicht notwendig, den 

XSLT Prozessor mit dem Präprozessor zu steuern. Manchmal ist es dennoch nützlich bestimmte XSLT Aktionen 

zu ignorieren und ein Steuerelement direkt an den Postprozessor, ohne Änderung, übergeben zu lassen. 

 

Im folgenden Beispiel wurde dazu eine Annotation (Quelltext 23) erstellt, um den XSLT Prozessor (Quelltext 24) 

zu veranlassen einen Vorlagen-Befehl zu ignorieren. Die Annotation, die auch von einem Präprozessor stam-

men könnte, definiert dazu einen Parameter mit dem Namen Ignore. Da der Name beliebig gewählt werden 

kann, wurde noch ein zusätzlicher Bezeichner im Attribut CUri (Custom Unified Resource Identifier) definiert. 

Damit können unterschiedliche Plug-Ins identische Bezeichner nutzen, ohne dass eine Namenskollision zu be-

fürchten wäre. 

1 <ListBox Name="listBox1" Width="309" Height="73" SelectionMode="Extended"> 

2     <ann:Annotation.Attach> 

3         <ann:AnnotationParameter Name="Ignore" CUri="WPF_Plugin">true</ann:AnnotationParameter> 

4     </ann:Annotation.Attach> 

5 </ListBox> 

Quelltext 23 Eine annotierte Listendefinition in XAML. Die Annotation AnnotationParameter kann nur innerhalb der Attach Eigenschaft 
definiert warden. 

Annotationen zu nutzen kann insbesondere mit XSLT 1.0 aufwändig sein. Wie im Quelltext 24 zu sehen wurde 

eine Bedingung erstellt, welche die oben genannte Annotation prüft. In Zeile 3 wurde dazu ein Ausdruck in 

XPath erstellt, der innerhalb der Vorlage (hier xamlns:ListBox) nach einem Element AnnotationParameter 

sucht, dessen Attribute Name und CUri die dargestellten Werte besitzen. Zusätzlich muss AnnotationParameter 



 
94 Migration und Anpassung von Dialoganwendungen für berührungsempfindliche Bildschirme 

innerhalb der angehängten Eigenschaft Annotation.Attach definiert worden sein, um andere, später definierte 

Annotationen mit denselben Eigenschaften auszuschließen. 

1 <xsl:template match="xamlns:ListBox"> 

2   <xsl:choose> 

3     <xsl:when test="LATTE:ConvertBoolean(./ann:Annotation.Attach/ann:AnnotationParameter  
  [@Name='Ignore' and @CUri='WPF_Plugin'])"> 

4       <xsl:copy><xsl:apply-templates select="child::*"/></xsl:copy> 
5     </xsl:when> 

6     <xsl:otherwise> 

7       <!-- ListBox konvertieren -->  

8     </xsl:otherwise> 

9   </xsl:choose> 

10 </xsl:template> 

Quelltext 24 Eine XSLT Transformation mit Prüfung einer Annotation 

 

Damit eine Prüfung mit verschiedenen Wahrheitswerten (z.B. True, true, TRUE oder 1) ohne zu großen Auf-

wand durchgeführt werden kann, wurde ein Erweiterungsobjekt im Namensraum LATTE zur Verfügung gestellt. 

So kann mit der Methode ConvertBoolean ein Wahrheitswert leichter aus einem Text erzeugt werden. Der 

Nachteil jedoch besteht darin, dass das XSLT nur mit LATTE ausgeführt werden kann.  

 

Annotationen mit XSLT verwenden 

 

Der Einsatz von Annotationen zur Steuerung des Postprozessors gestaltet sich einfach, wenn der Präprozessor 

keine eigenen Annotationen einsetzt. Um eigene Annotationen in XSLT zu erzeugen, können die aus Kapitels 

7.5.2 bekannten Möglichkeiten zum Einfügen von Elementen genutzt werden. In Quelltext 25 wird mit XSLT 

eine Annotation an ein Listenfeld gehängt. Es kann später (siehe Abschnitt Verwendung in Plug-Ins (C#)) von 

einem Postprozessor abgefragt werden. Die im Beispiel angegeben Parameter sind nur von der Implementie-

rung des Plug-Ins abhängig.  

1 <xsl:template match="xamlns:ListBox"> 

2    <ann:Annotation.Attach> 

3        <ann:AnnotationVerb Name="Convert" CUri="WPF_Plugin"> 

4           <ann:AnnotationParameter Name="TargetTemplate">ListBoxTouch</ann:AnnotationParameter> 

5           <ann:AnnotationParameter Name="ItemHeight">50</ann:AnnotationParameter> 

6        </ann:AnnotationVerb>         

7    </ann:Annotation.Attach>    

8 </xsl:template> 
Quelltext 25 Ein Listenelement wurde in XSLT annotiert 

Weitere Annotationen innerhalb eines Elements zu erstellen ist, wie gesehen, denkbar einfach. Jedoch kann es 

vorkommen, dass bereits der Präprozessor Annotationen für ein Element gesetzt hat. Da man nicht wissen 

kann, welche Annotationen im Element eingesetzt werden, müssen alle Annotationen – zusätzlich zu den neu 

eingeführten – kopiert werden. Das bedeutet, Annotationen können nicht nur in der Ausgabe doppelt vor-

kommen, sondern sie können auch unterschiedliche Werte besitzen.  Dieses Problem ist allerdings dadurch zu 

umgehen, dass Annotation, die als erstes definiert wurden, Vorrang haben. Denn eine Abfrage mit XPath resul-

tiert immer in einer Menge von XML Knoten, deren Reihenfolge mit der Reihenfolge im XML Baum überein-

stimmt. Doppelt auftretende Annotationen werden mit XPath dadurch ignoriert, indem nur das erste XML 

Element in der Ergebnismenge verwendet wird. 

Zu beachten ist allerdings, dass diese Regel nicht für die Deklaration der Annotation mit Annotation.Attach gilt. 

Denn XAML lässt eine angehängte Eigenschaft nur einmal zu. Jede weitere Deklaration einer angehängten Ei-

genschaft wird mit einem Fehler bestraft. Daher müssen alle im Präprozessor definierten Annotationen mit 

XSLT kopiert und erweitert werden.  



 
95 Umsetzung 

Der Quelltext 26 zeigt, wie Annotationen aus dem Präprozessor innerhalb einer Annotation.Attach kopiert wer-

den. Wenn die in der XSLT definierten Annotationen eine hohe Priorität genießen sollen, müssen sie zuerst 

innerhalb von Annotation.Attach definiert werden. Andernfalls können die Zeilen 5 und 6 vertauscht werden. 

1 <xsl:template match="xamlns:ListBox"> 

2   <xsl:copy>    

3     <xsl:apply-templates select="@*|child::*[local-name() != 'Annotation.Attach']"/> 

4     <ann:Annotation.Attach> 

5       <ann:AnnotationParameter Name="Ignore" CUri="WPF_Plugin">true</ann:AnnotationParameter> 

6       <xsl:apply-templates select="./ann:Annotation.Attach/child::*"/> 

7    </ann:Annotation.Attach>    

8   </xsl:copy>    

9 </xsl:template> 
Quelltext 26 Annotationen eines Listenelements kopieren und erweitern 

Eine große Bedeutung besitzt der Befehl xsl:apply-templates in Zeile 3. Darin werden alle Attribute (@*) und 

alle Unterelemente (child::*), außer der Annotation selbst, kopiert (local-name() != 'Annotation.Attach'). D.h. 

die gesamte Struktur des Listenelements (Zeile 1) bleibt erhalten, ohne jedoch die Annotationen zu kopieren. 

Denn diese müsse erst noch angepasst werden. Stattdessen wird ein neues Annotations-Element in Zeile 4 

erstellt und mit zusätzlichen Metadaten (Zeile 5) erweitert. In Zeile 6 werden letztendlich die bereits vorhande-

nen Annotationen kopiert. Wie bereits erwähnt ist die Reihenfolge wichtig, da später die Annotationen von 

vorne nach hinten durchsucht werden und nur der erste Treffer zählt.  

 

Das Ergebnis aus der Transformation sieht man im Quelltext 28. Die mit AnnotationParameter  definierten Meta-

daten sind durch den XSLT Prozessor und einem Präprozessor entstanden. In einer späteren Auswertung mit 

dem Postprozessor wird nur das erste Metadatum (Zeile 3) ausgewertet. D.h. der Postprozessor, der auf den 

Namensraumbezeichner WPF_Plugin hört, wird angewiesen das Element nicht zu ignorieren, obwohl zwei 

gegensätzliche Anweisungen existieren. 

1 <ListBox Name="listBox1" Width="373" Height="137" SelectionMode="Extended"> 

2   <ann:Annotation.Attach> 

3     <ann:AnnotationParameter Name="Ignore" CUri="WPF_Plugin">false</ann:AnnotationParameter> 

4     <ann:AnnotationParameter Name="Ignore" CUri="WPF_Plugin">true</ann:AnnotationParameter> 

5   </ann:Annotation.Attach> 

6 </ListBox> 
Quelltext 27 Vereinigung von Annotationen bei einer Transformation (mit doppelten Metadaten AnnotationParameter) 

 

Das Präfix der Annotationen 

 

In den Beispielen wurden Annotationen  mit einem „ann“-Präfix versehen. Es ist zu beachten, dass die Prä-

fixnamen für XAML und XSLT gleich sein sollten. Der Grund liegt im XSLT Prozessor. Unterscheiden sich Präfixe 

in XSLT und XAML, wird bei der Transformation das Präfix am Element Annotation.Attach definiert (siehe Quell-

text 28). Dies ist jedoch nach den Regeln von XAML ein Fehler, so dass das Ergebnis nicht ohne Anpassung ge-

nutzt werden kann.  

 
   <annx:Annotation.Attach xmlns:annx="clr-namespace:Annotations;assembly=LATTEE_Annotations"> 

Quelltext 28 Notation mit Namensraumdefinition: Ungültiger Syntax für XAML 

Ist eine Änderung des Präfixnamens für Annotationen notwendig (z.B. weil es bereits von dritter Seite verwen-

det wird), dann muss das neue Präfix in einem übergeordneten Element der Annotation definiert werden. Das 

kann z.B. das Steuerelement der angehängten Annotation oder auch das Fensterelement sein. Zum Einfügen 

des Präfixes mit Namensraum kann der Quelltext 17 aus Kapitel 7.5.2 genutzt werden. Natürlich ist es auch 

möglich den Präprozessor dafür einzusetzen.  Soll der Präfix lediglich im transformierten XAML Quelltext an-

ders lauten (z.B. newAnn), kann mit XSLT der Name automatisch geändert werden, indem ein Alias am Anfang 



 
96 Migration und Anpassung von Dialoganwendungen für berührungsempfindliche Bildschirme 

des XSLT Codes definiert wird. Dabei muss das neue Präfix im XSLT und im XAML Quelltext definiert werden. 

Dieser Aufwand ist jedoch nicht notwendig, wenn einfach das Standardpräfix verwendet wird, denn LATTE 

erzeugt automatisch das Präfix „ann“ für alle neuen Projekte. 

 

<xsl:namespace-alias stylesheet-prefix="ann" result-prefix="newAnn"/>  

Quelltext 29 Automatische Konvertierung von Präfixe in XSLT 

 

Verwendung in Plug-Ins (C#) mit XmlDocument 

 

Plug-Ins verwenden, wie bereits erwähnt, die Klasse XmlDocument, um Elemente zu transformieren.  

Annotationen unterscheiden sich bei der Nutzung mit XmlDocument nicht von anderen XML Elementen und 

sind daher genauso zu verwenden. Die folgenden Quelltexte geben einen Einblick, wie bestimmte Annotatio-

nen aus der XML Dokument gelesen werden können.  Dazu wird jedes Beispiel innerhalb der PostProcessing 

Methode eines beispielhaften Plug-Ins ausgeführt. 

 

public override bool PostProcessing(ref System.Xml.XmlDocument document,  

                            XmlNamespaceManager nameSpace) 
Quelltext 30 Die Methode PostProcessing empfängt den vollständigen XML Baum sowie den XAML Namensraum. In der Methode kön-
nen so die Anpassungen direkt am XML Dokument durchgeführt werden.  

Die folgenden Beispiele erzeugen ein oder mehrere Annotationen als XML Knotenmenge. Die Ergebnisse sind 

dazu im Quelltext 35 entsprechend kenntlich gemacht worden, um den jeweiligen XPath Ausdruck besser ver-

stehen zu können. 

 

Beispiel 1:  Die Annotation eines bestimmten Steuerelements  auswählen 

Häufig kann es notwendig sein, einfach alle Annotationen eines bestimmten, einzelnen Steuerelementes zu 

erfahren. Um z.B. die Annotation des Fensterelements in XAML als XmlElement zu erhalten, kann der folgende 

Quelltext verwendet werden. Die Ergebnismenge ist im Quelltext 35 mit dem Symbol   (für Beispiel 1) ge-

kennzeichnet und umfasst alle Zeilen mit dem gleichen Symbol. 

XmlNodeList nodes = xmlDoc.SelectNodes( 

"//xamlns:Window/*[local-name()='Annotation.Attach']", nameSpace); 
Quelltext 31 Die Annotation eines bestimmten Elementes  auswählen (Beispiel 1) 

 

Beispiel 2:  Die Annotationen aller Steuerelemente einer Art auswählen 

Um die Annotationen zu erhalten, die innerhalb eines StackPanels von bestimmten XAML Elementen getragen 

werden, kann der Ausdruck aus Quelltext 32 verwendet werden. Dies ist zum Beispiel nützlich, wenn mehrere 

Steuerelemente derselben Art transformiert werden sollen und der Vorgang von der jeweiligen Annotation 

abhängt. 

"//xamlns:Window/xamlns:StackPanel/*[local-name()='RadioButton']                                                    
 /*[local-name()='Annotation.Attach']" 

Quelltext 32 Die Annotationen aller Elemente einer Art auswählen (Beispiel 2) 

  



 
97 Umsetzung 

Beispiel 3:  Alle Annotationen innerhalb eines XAML Steuerelements ermitteln 

Das folgende Beispiel ermittelt alle Annotationen innerhalb des Fenster-Elements. Damit werden nicht nur die 

Annotationen des Fenster-Elements, sondern auch die der untergeordneten Steuerelemente gefunden. Alle 

verfügbaren Annotationen einer XAML Struktur können so auf einen Schlag ermittelt werden. 

//xamlns:Window/descendant::*[local-name()='Annotation.Attach'] 
Quelltext 33 Alle Annotationen innerhalb eines XAML Elements ermitteln (Beispiel 3) 

 

Beispiel 4:  Eine bestimmte Art von Annotation innerhalb von bestimmten Steuerelementen ermitteln 

Kompliziertere XPath Ausdrücke ermöglichen auch direkt nach bestimmten Annotationen innerhalb von Anno-

tation.Attach zu suchen.  

Das folgende Beispiel ermittelt alle Annotationen vom Typ AnnotationVerb, die den Wert „Convert“ durch das 

Attribut Verb definiert haben und innerhalb eines Optionsfeldes (RadioButton) oder Labels stehen. 

//xamlns:Window/xamlns:StackPanel/*[local-name()='RadioButton'  

 or local-name()='Label']/child::*[local-name()='Annotation.Attach']  

 /*[local-name()='AnnotationVerb' and @Verb='Convert'] 

Quelltext 34 Eine bestimmte Art von Annotation innerhalb von bestimmten XAML Elementen ermitteln (Beispiel 4) 

Die ermittelten Annotationen müssen nicht weiter mit Hilfe von XmlNode oder anderen XML Klassen in Attri-

bute und Inhalte zerlegt werden. Die Annotationen von LATTE unterstützen die Deserialisierung von XML Ele-

menten durch die Methoden Deserialize und DeserializeByElement. Damit kann ein Element aus einem XPath 

Ergebnis direkt in eine  Klasseninstanz verwandelt und eingesetzt werden, ohne weitere XPath Ausdrücke zum 

Ermitteln der anderen Werte (d.h. Typ, Name usw.) nutzen zu müssen.  

 

Der Unterschied zwischen den  Methoden Deserialize und DeserializeByElement liegt darin, welche Art von 

XML Elemente verwendet werden können. Während die Methode Deserialize einen angegebenen XML Knoten 

direkt als Annotation deserialisiert, kann bei DeserializeByElement der übergeordnete Elternknoten angegeben 

werden, um die Annotation zu erhalten. Dadurch ist es nicht notwendig, selbst den Typ des Annotationsele-

ments innerhalb eines XML Knotens zu suchen und zu deserialiseren. Neben dem Aufruf von Deserialize kann 

auch einfach das XML Element dem Konstruktor der Annotationsklasse übergeben werden. 

 

Auf diese Weise kann das Ergebnis des ersten Beispiels „Die Annotation eines bestimmten Elementes  auswäh-

len“ mit der Hilfe der Klassenmethode AnnotationList.DeserializeByElement  und allen darin eingeschlossenen 

Annotation in entsprechende Klasseninstanzen konvertiert werden. Es ist dabei zu beachten, dass die Annota-

tion Annotation.Attach nicht vom Typ Annotation ist, sondern die Klasse AnnotationList darstellt, da die ange-

hängte Eigenschaft Attach diesen Klassentyp besitzt. Daher muss DeserializeByElement  aus der Klasse Annota-

tionList verwendet werden und nicht aus Annotation. 

 

Der Quelltext 36 nutzt das Beispiel aus Quelltext 35, indem darin die Annotationsliste geladen wird (Zeile 4) 

und alle Annotationen des Typs AnnotationVerb aufgelistet werden (Zeile 6). Weiterhin unterstützt Annotati-

onVerb die automatische Ausführung des angegeben Verbs durch eine benutzerdefinierte Methode in .NET. 

Die Verben können im Plug-In ausgeführt werden, dadurch dass eine im Plug-In implementierte Methode mit 

AnnotationVerb.Invoke aufgerufen wird (Zeile 9). Die Methode erhält dann die in XML eingegebenen Parame-

ter (hier Para1 und  Para2 mit den Werten A Text und 1,00). Der Methode Invoke wird dazu ein Objekt zuge-

wiesen, welches die Methode mit dem im Quelltext angegebenen Namen Verb1 enthält.  Ist keine Methode 

dieses Namens vorhanden oder können die Parameter nicht korrekt zugeordnet werden, d.h. die Parameterlis-

te ist zu klein oder enthält unpassende Datentypen, so wird eine Ausnahme NotSupportedException erzeugt. 

 

  



 
98 Migration und Anpassung von Dialoganwendungen für berührungsempfindliche Bildschirme 

Treffermenge 

Nr. des Beispiels 
Quelltext 

 <Window xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation" 

         xmlns:ann="clr-namespace:Annotations;assembly=LATTEE_Annotations" 

         xmlns:annc="clr-namespace:AnnotationsEx;assembly=AnnotationsEx"> 

         <ann:Annotation.Attach> 

             <ann:AnnotationVerb Verb="Verb1" CUri="Example"> 

                 <ann:AnnotationParameter Name="Para1" >A Text</ann:AnnotationParameter> 

                 <ann:AnnotationParameter Name="Para2"  

                                     DataType="Double">1,00</ann:AnnotationParameter> 

             </ann:AnnotationVerb> 

         </ann:Annotation.Attach> 

     <StackPanel> 

         <Label Name="label1" 

                Content="The following tasks are left? What do you want to do?" > 

                 <ann:Annotation.Attach> 

                   <ann:AnnotationVerb Verb="Verb2"> 

                    <ann:AnnotationParameter Name="Parameter1">Value1</ann:AnnotationParameter> 

                   </ann:AnnotationVerb> 

                 </ann:Annotation.Attach> 

         </Label> 

         <RadioButton Name="Box1" Content="Save selected one"> 

                 <ann:Annotation.Attach> 

                     <annc:AnnotationGroup GroupName="Radios" CUri="PlugEx"/> 

                 </ann:Annotation.Attach> 

         </RadioButton> 

         <RadioButton Name="Box2" Content="Save them all"> 

                 <ann:Annotation.Attach> 

                     <annc:AnnotationGroup GroupName="Radios" CUri="PlugEx"/> 

                 </ann:Annotation.Attach> 

         </RadioButton> 

     </StackPanel> 

 </Window> 

 Quelltext 35 XAML Beispielquelltext mit markierten Ergebnismenge der XPath Ausdrücke aus den Beispielen 1 bis 4. 

Die Standardeinstellung der Methode AnnotationVerb.Invoke ignoriert die Namen der Parameter, d.h. die 

Reihenfolge der Parameter im Quelltext muss mit der Reihenfolge der Methode (hier Verb1) in der angegebe-

nen Klasseninstanz (Zeile 9, Invoke(this)) übereinstimmen. Durch die Eigenschaft Annotation-

Verb.InvokeIgnoresParameterNames kann jedoch dieses Verhalten umgekehrt werden. Die Parameternamen 

im XAML Quelltext müssen dann mit den Namen der Methodenparameter (im Beispiel unten v1 und v2) über-

einstimmen. 

1 if (nodes[0] != null) 

2 { 

3     AnnotationList ann = new AnnotationList(); 

4     ann.Deserialize(nodes[0] as XmlElement); //oder dem Konstruktor übergeben 

5   

6     List<AnnotationVerb> verbs = ann.ListByType<AnnotationVerb>("Example"); 

7     if (verbs.Count > 0) 

8     { 

9         String s = (verbs[0]).Invoke(this) as String; 

10     } 

11 } 

Zusätzlich wurde diese Methode in derselben Klasse implementiert, um von Invoke aufgerufen werden zu können. 

1 public String Verb1(String v1, Double v2) 

2 { 

3     return String.Format("{0} = {1}", v1, v2); 

4 } 
Quelltext 36 Annotationen können aus XML Dokument geladen werden. AnnotationVerb unterstützt die Ausführung von Methoden. 
 



 
99 Umsetzung 

Das Laden von angehängten Annotationen aus XML gestaltet sich jedes Mal gleich. Das vorgestellte vierte Bei-

spiel von Seite 97 erfordert jedoch einen anderen Typ von Annotation,  weil das Ergebnis nun nicht mehr vom 

Typ AnnotationList (Annotation.Attach) ist, sondern von AnnotationVerb. Entsprechend muss die Deserialisie-

rungsmethode Deserialize der AnnotationVerb Klasse aufgerufen werden, um eine Instanz erhalten zu können. 

if (nodes[0] != null) 

{ 

    AnnotationVerb annVerb = new AnnotationVerb (); 
    annVerb.Deserialize(nodes[0] as XmlElement); //oder dem Konstruktor übergeben 
    … 
} 

Quelltext 37 Entsprechend dem Typ des XML Elements müssen die richtigen Annotationsklassen verwendet werden. 

Ein letzter Schritt bei der Nutzung von Annotationen mit XmlDocument besteht darin die Annotationen wieder 

zurück in die XAML Struktur zu schreiben. Die Annotationsklassen bieten dazu die Methode Serialize und Seria-

lizeByElement an.  Die Instanzen der Annotationen zu verändern erfordert daher jedes Mal die Serialisierung 

derselben. Der folgende Quelltext 38 zeigt beispielhaft, wie eine Serialisierung von neuen, gelöschten oder 

angepassten Annotationen durchgeführt werden kann.  Er basiert auf dem Quelltext 36, entfernt nun jedoch 

die Annotation Verb (Zeile 9) und fügt eine neue hinzu (Zeilen 11 bis 16). Genauso gut hätte die vorhandene 

Verb Annotation aber auch abgeändert werden können. Zuletzt wird SerializeByElement aufgerufen (Zeile 18), 

welches dafür sorgt die Annotation des Fenster-Elements (siehe Quelltext 35) zu entfernen, bevor eine neue 

hinzugefügt wird. So befindet sich immer genau eine angehängte Eigenschaft Annotation.Attach im übergeord-

neten Steuerelement (nodes[0].ParentNode). Serialize wird in diesem Fall intern von SerializeByElement aufge-

rufen, um die Annotationen zu speichern. 

1 if (nodes[0] != null) 

2 { 

3     AnnotationList ann = new AnnotationList(); 

4     ann.Deserialize(nodes[0] as XmlElement); 

5   

6     List<AnnotationVerb> verbs = ann.ListByType<AnnotationVerb>("Example"); 

7     if (verbs.Count > 0) 

8     { 

9         ann.Remove(verbs[0]); 

10     } 

11     var verb = new AnnotationVerb(); 

12     verb.CUri = "Example"; 

13     verb.Verb = "Verb1"; 

14     verb.Parameters.Add(new AnnotationParameter { Content = "Value1" }); 

15     verb.Parameters.Add(new AnnotationParameter { Content = "Value2" }); 

16     ann.Add(verb); 

17   

18     ann.SerializeByElement(nodes[0].ParentNode as XmlElement); 

19 } 
Quelltext 38 Neue, wie auch veränderte Annotationen können zurück ins XML Dokument serialisert werden. 

Da SerializeByElement sich um alles kümmert, sollte es bevorzugt für die Serialisierung von Annotationen ge-

nutzt werden. Die hier gezeigten Beispiele (1-4) funktionieren ohne Unterscheidung mit SerializeByElement, so 

dass sich jede Art von Annotationsklasse (auch selbst erstellte) wieder zurück in das XmlDocument schreiben 

lässt. 

 

Verwendung des XAML Laders in Plug-Ins (C#) 

 

Annotationen in XAML können, wie jedes andere XAML Element, durch den XAML Lader zur Klasseninstanzen 

transformiert werden. Da angehängte Eigenschaften nicht direkt einem Steuerelement angehören, müssen sie 

über die Methode GetAttach der Klasse Annotation aus einem XAML Steuerelement gelesen werden. 



 
100 Migration und Anpassung von Dialoganwendungen für berührungsempfindliche Bildschirme 

 

AnnotationList annotations = Annotation.GetAttach(anElement); 

Quelltext 39 Mit Annotation.GetAttach können die Annotationen eines XAML Steuerelements ausgelesen werden. 

Auf diese Art können Annotationen vollständig aus der XAML Struktur gelesen und zurück in Klasseninstanzen 

konvertiert werden. Existiert keine solch angehängte Annotation, liefert GetAttach null zurück. Es ist zu beach-

ten, dass spezielle Annotationen, wie AnnotationVerb, nur über den oben beschriebenen Weg mit Annotation-

List eingelesen werden können. Es ist z.B. nicht möglich, wie mit XPath, direkt ein AnnotationVerb Element zu 

erhalten. AnnotationList bietet jedoch Methoden an, um jede Art von Annotation zu finden. Neben den Me-

thoden All, Any, AsEnumarble, ElementAt, First und Last, die von der Basisklasse ObservableCollection (siehe 

[MSDN, 2011]) bereitgestellt werden, wurden zusätzlich ListByHandler und ListByType in AnnotationList im-

plementiert. ListByType wurde bereits in vorangegangenen Quelltexten vorgestellt. Daher wird, um die Vielsei-

tigkeit von ListByHandler darzulegen, als Beispiel die Implementierung der Methode ListByType gezeigt. 

public List<T> ListByHandler<T>(FindItemHandler<T> itemHandler) 
where T : AnnotationBase; 

 
public List<T> ListByType<T>(String CUri = null) where T : AnnotationBase 

{ 

    return ListByHandler<T>((item) => 

        { 

            return ((CUri != null) && (CUri == item.CUri)) || (CUri == null); 

        }); 

} 
Quelltext 40 Die Implementierung von AnnotationList.ListByType nutzt die generische Methode ListByHandler. Selbstgestaltete Metho-
den können genauso verfahren. 

Zum Schluss muss erwähnt werden, dass Annotationen nicht mit der WPF Klasse XamlWriter zurück in den 

XAML Quelltext geschrieben werden können. Die Annotationen bleiben nicht erhalten, stattdessen bleibt ein-

fach das Steuerelement in XAML zurück. Die genauen Gründe konnten auch nach gründlicher Recherche nicht 

herausgefunden werden. Vermutlich wirken sich die im Abschnitt „Nutzen eines XAML Laders“ (Seite 89) be-

sprochenen Nachteile der Klasse XamlWriter auch bei den Annotationen aus. Darum unterstützen die Annota-

tionsklassen die Serialisierung mit XmlDocument und setzen nicht alleine  auf XamlReader und XamlWriter. 

 

Annotationen mit benutzerdefinierten Eigenschaften erweitern 

 

Falls die vorhandenen Annotationsklassen (Tabelle 6) nicht ausreichen sollten, können diese erweitert werden. 

Es ist möglich von jeder der vorhandenen Annotationsklassen eine neue Klasse abzuleiten, zu ergänzen und mit 

LATTE einzusetzen. Die Basis aller Klassen bleibt jedoch immer AnnotationBase, welche die notwendigen Eigen-

schaften (Namensraum, Uri und Name) implementiert.  

Vor der Erstellung einer Annotation sollte entschieden werden, welche Attribute die Annotation unterstützt 

und ob das XAML Element einen einzelnen oder mehrere Inhalte umfassen kann. Der Inhalt ist dabei der innere 

Text eines XML Elements, d.h. zwischen dem öffnenden und schließenden XML Tag (z.B. <tag>Inhalt</tag>). 

Dieser kann entweder aus einem reinen Text bestehen oder weitere XAML Elemente enthalten. Beispielsweise 

kann die Annotationsklasse AnnotationParameter nur einen Text enthalten, während AnnotationList weitere 

Annotationen als Inhalt unterstützt. 

Im folgenden Beispiel soll eine neue Annotation erstellt werden, die ein Steuerelement mit anderen Steue-

relementen zu einer Gruppe zusammenfügt. Dies kann z.B. die Migration von bestimmten Elementen erleich-

tern, die zusammengefasst ein neues Element bilden sollen. Der folgende Quelltext 41 zeigt die Anwendung 

von Annotationen an mehreren Optionsfeldern, die später in einem Plug-In erkannt und entsprechend  den 



 
101 Umsetzung 

vorherigen Abschnitten dieses Kapitels verarbeitet werden könnte. Auf die Umsetzung des Plug-Ins wurde 

jedoch verzichtet. 

1 <RadioButton Name="Box1" Content="Save selected one"> 

2   <ann:Annotation.Attach> 

3     <annc:AnnotationGroup GroupName="Radios" CUri="PlugEx"/> 

4   </ann:Annotation.Attach>                 

5 </RadioButton> 

6 <RadioButton Name="Box2" Content="Save them all"> 

7   <ann:Annotation.Attach> 

8     <annc:AnnotationGroup GroupName="Radios" CUri="PlugEx"/> 

9   </ann:Annotation.Attach> 

10 </RadioButton> 

11 <RadioButton Name="Box3" Content="Release them all"> 

12   <ann:Annotation.Attach> 

13     <annc:AnnotationGroup GroupName="Radios" CUri="PlugEx"/> 

14   </ann:Annotation.Attach> 

15 </RadioButton> 
Quelltext 41 Mehrere Optionsfelder werden durch eine selbsterstellte Annotation in einer Gruppe zusammengefasst. 

Um neue Annotationen für LATTE zu erstellen, ist als erster Schritt erforderlich eine neue .NET Assembly zu 

erstellen, welche die Annotationsklassen aus Assembly LATTEE_Annotations nutzt.  Außerdem muss der .NET 

Namensraum Annotations für den Zugriff auf Klassen eingebunden werden (mittels using Direktive). Im Beispiel 

wurde dazu in XAML der Namensraum annc eingeführt, der auf die Assembly und deren Namensraum wie 

gewohnt verweist. 

Die neue Annotationsklasse AnnotationGroup wird von der Basisklasse AnnotationBase abgeleitet und um die 

Eigenschaft GroupName erweitert. Wie in Quelltext 41 zu sehen ist, wurde die Annotation auch mit der Eigen-

schaft CUri ausgestattet. Es ist jedoch zu beachten, dass CUri aus der verwendeten Basisklasse stammt und 

nicht implementiert werden muss.  

Die neue Eigenschaft GroupName kann, wie jede .NET Eigenschaft, mit Setter und Getter definiert werden. 

Objektinstanzen wie z.B. String und andere Klassen müssen jedoch von Anfang an mit einem Wert initialisiert 

werden, da sonst die Deserialisierung fehlschlagen könnte (Verwendung eines null Wertes). Dies geschieht 

üblicherweise im Konstruktor der Annotationsklasse, jedoch wird mit der in WPF eingeführten Abhängigkeits-

eigenschaft DependencyProperty ein mächtigeres Mittel für XAML zur Verfügung gestellt. Denn diese Art von 

Eigenschaft lässt sich schon bei ihrer Deklaration initialisieren und auf Änderungen überwachen. Weitere In-

formationen dazu bietet das Microsoft Developer Network unter [Microsoft, 2011] (siehe Dependency Proper-

ties Overview). In Quelltext 42 wird eine Instanz der Klasse DependencyProperty in Kombination mit  Frame-

workPropertyMetadata erstellt (Zeile 9), um die Eigenschaft GroupName mit leerem Inhalt zu erstellen. Die 

Deklaration von GroupNameProperty ist zwar statisch, also für alle Klassen gleich, doch intern bekommt jede 

Klasseninstanz ihren eigenen Eigenschaftswert zugeteilt. Der Wert kann folglich über die Setter und Getter in 

Zeile 3 und 4 gelesen und verändert werden. 

1 public String GroupName 

2 { 

3   get { return (String)GetValue(GroupNameProperty); } 

4   set { SetValue(GroupNameProperty, value); } 

5 } 

6 public static DependencyProperty GroupNameProperty =  

7                 DependencyProperty.Register("GroupName",  

8                    typeof(String), typeof(AnnotationGroup),  

9                    new FrameworkPropertyMetadata("")); 
Quelltext 42 Attribute von Annotationen können gewöhnliche Eigenschaften sein oder über das WPF System mit Dependency Eigen-
schaften verwirklicht werden. 



 
102 Migration und Anpassung von Dialoganwendungen für berührungsempfindliche Bildschirme 

Weiterhin muss die neue Klasse eine Serialisierung und Deserialisierung für die neuen Eigenschaften imple-

mentieren. Dies gilt jedoch nur, wenn die Annotation in einem Plug-In mit der Klasse XmlDocument gelesen 

und geschrieben werden soll. Ein XAML Lader verwendet den hier vorgestellten Weg nicht. 

Die neue Annotationsklasse kann mit XmlDocument verwendet werden, indem die Methoden Serialize und 

Deserialize der Basisklasse AnnotationBase überschrieben werden. AnnotationBase bietet die zusätzlichen 

Hilfsmethoden SerializeAttribute und  DeserializeAttribute an, um Eigenschaften in oder aus einem XML Knoten 

zu schreiben oder zu lesen. Es ist außerdem immer notwendig die gleichnamigen Vorgängermethoden der 

Basisklasse aufzurufen, damit die De-/Serialisierung vollständig durchgeführt werden kann. Um die korrekten 

Namensräume und Präfixe in der XAML Struktur kümmert sich letztendlich AnnotationBase (siehe Abschnitt 

Das Präfix der Annotationen). Die Umsetzung ist daher, wie der untenstehende Quelltext zeigt, kurz. 

1 public override XmlElement Serialize(XmlElement parent) 

2 { 

3     var node = base.Serialize(parent); 

4     SerializeAttribute(node, GroupNameProperty); 

5     return node; 

6 } 

7 public override void Deserialize(XmlElement node) 

8 { 

9     base.Deserialize(node); 

10     DeserializeAttribute(node, GroupNameProperty); 

11 } 
Quelltext 43 Die Methoden Serialize und Deserialize müssen überschrieben werden, um die Eigenschaften der Annotation zu speichern. 

 

Die Annotationsklasse AnnotationGroup ist nun bereit, in einem XAML Dokument verwendet werden zu kön-

nen.  Auf diese Art können auch weitere Eigenschaften hinzugefügt werden, um noch mehr Funktionalität zu 

erhalten. Weiterhin kann eine einzelne Eigenschaft des Elements als Inhaltseigenschaft des XML Elements defi-

niert werden. Dadurch wird der Wert (z.B. eine weitere Annotation) zwischen den Start- und Endetags des XML 

Elements automatisch dieser Eigenschaft zugewiesen.  Dies ist schnell realisiert, indem das Attribut Content-

PropertyAttribute an die neue Annotationsklasse angehängt wird.  Die Klasse AnnotationVerb in LATTE besitzt 

beispielsweise die Eigenschaft Parameters als Inhaltseigenschaft, um weitere Annotationselemente aufnehmen 

zu können. 

[ContentPropertyAttribute("Parameters")] 

public class AnnotationVerb : AnnotationBase 

{ 

 … 

    public ObservableCollection<AnnotationParameter> Parameters 

    { 

        get { … } 

        set { … } 

    } 

    public static readonly DependencyProperty ParameterProperty = 

        DependencyProperty.Register("Parameters", 

        typeof(ObservableCollection<AnnotationParameter>),typeof(AnnotationVerb), 

        new PropertyMetadata()); 

 … 
Quelltext 44 AnnotationVerb unterstützt Inhalte durch das Attribut ContentPropertyAttribut 

 

7.6 Erweiterbarkeit durch das Plug-In-System 
 

Mit LATTE wurde ein Plug-In System entwickelt, das auf dem Managed Addin Framework (MAF) von Microsoft 

(Add-ins and Extensibility [Microsoft, 2011]) aufsetzt. MAF ermöglicht das Spezifizieren von Schnittstellen zur 



 
103 Umsetzung 

Kommunikation zwischen der Anwendung LATTE und Plug-Ins. Plug-Ins für LATTE werden dabei in sogenannten 

Assemblys untergebracht, welche DLL Dateien aus Windows ähneln. LATTE lädt diese Dateien jedoch nicht 

direkt, sondern kommuniziert über die Grenze der eigenen Anwendungsdomäne (Application Domain 

[Microsoft, 2011]) mit den Plug-Ins. Die Ausführung der Plug-Ins erfolgt daher in einem separaten Prozess, um 

die Hauptanwendung nicht zu beeinflussen (z.B. durch unerwünschte Speichermanipulationen) oder gar zum 

Absturz zu bringen. 

 

 

Abbildung 62 Die Controller Komponente der MVC Architektur wird durch Plug-Ins erweitert 

Neben dem Sicherheitsaspekt besitzt MAF den für LATTE wichtigen Vorteil, dass Plug-Ins geladen und auch 

wieder entladen werden können. Normalerweise können Assemblys, die mit .NET geladen wurden nicht mehr 

entladen werden; d.h. der Entladezeitpunkt kann nicht selbst festgelegt werden, sondern wird von der .NET 

Laufzeitumgebung bestimmt. Da die Transformationseinheit jedoch die Plug-In Dateien nach einer Transforma-

tion freigeben muss – der Benutzer könnte sich entscheiden, eine Änderung am Plug-In vorzunehmen – ist es 

notwendig, dass die Plug-Ins auf jeden Fall nicht mehr im Speicher vorhanden sind. Mit MAF können die DLL 

Dateien ersetzt, kopiert oder gelöscht werden, weil MAF jedes Plug-In in einen eigenständigen .NET Prozess 

lädt. Der eigenständige Prozess wird nach der Transformation beendet und die Plug-In Dateien dadurch freige-

geben.  

 

Abbildung 63 Die Add-In Pipeline in LATTE (angepasst aus [MacDonald, 2010]) und  
die Ausführung eines Methodenaufrufs durch die Schichten 

View 

 

 

Hauptanwendung 

Dialogeditor 

Dialogvorschau 

Parametereditor 

 

Model 

 

 

Projektdaten 

XAML Dialogsprache 

XSL Transformations-

vorschrift 

 

Controller 

 

 

Transformation 

XSLT Prozessor 

Plug-In-Verwaltung 

 

Host Schicht Vertrag Schicht Plug-In 

Methodenaufruf → Serialisierung → Daten- Deserialisierung → Ausführung  

Rückgabewert  Deserialisierung strom  Serialisierung Rückgabe 

 

LATTE_AddIn 

Adapters  

(DLL) 

Plug-In 

(DLL)  

 LATTE_AddIn 

View 

(DLL) 

LATTE 
 LATTE_Host 

Adapter 

(DLL) 

LATTE_Host 

View 

(DLL) 

 Contracts 

(DLL) 

Host Prozess Add-In Prozess 
 LATTE AppDomain Grenze Plug-In  
 



 
104 Migration und Anpassung von Dialoganwendungen für berührungsempfindliche Bildschirme 

Der Nachteil dieser Vorgehensweise besteht in der aufwändigen Umsetzung der Kommunikation. Die Metho-

denaufrufe können nicht mehr einfach umgesetzt werden, weil sie nun über eine Prozessgrenze hinweg statt-

finden. Die Parameter und auch der Rückgabewert müssen daher zuerst serialisiert, d.h. in einen Datenstrom 

umgewandelt werden. In der anderen Richtung wird aus dem Datenstrom wieder ein Objekt mit Typinformati-

on (z.B. ein Integer) erstellt, d.h. die Information wurde deserialisiert (Abbildung 63). Zu diesem Zweck setzt 

MAF auf ein System aus Komponenten, das die Kommunikation zwischen der Anwendung und den Plug-Ins 

übernimmt. Die möglichen Methoden für Kommunikation werden dazu in sogenannten Verträgen (engl. 

contracts) festgelegt, die einfache Schnittstellenbeschreibungen (in C# interface) sind. Die Kommunikations-

partner benutzen diese Schnittstellen jedoch nicht direkt, sondern kommunizieren über eine jeweils eigene 

Schicht zur Anwendungsgrenze hin. LATTE und Plug-Ins implementieren in ihrer jeweiligen Schicht die soge-

nannten View- und Adaptorenklassen. Während die View-Klassen dem Benutzer den Schein eines normalen 

Objekts vorspielen, konvertieren die Adaptorenklassen die Methodenparameter in oder aus einem Daten-

strom.  

In LATTE wird MAF durch die Visual Studio Projekte LATTE_Host.View und LATTE_Host.Adapter auf der Host-

Anwendungsseite  umgesetzt und durch LATTE_AddIn.View sowie LATTE_AddIn.Adapters für Plug-Ins zur Ver-

fügung gestellt. Die Schnittstellendeklarationen der Verträge sind im Projekt Contracts definiert. 

 

7.6.1 Neues Plug-In erstellen 

 

Ein neues Plug-In wird schnell und einfach hergestellt, indem das Visual Studio Projekt LATTEC_WPF als Vorlage 

verwendet wird. Die Kopie kann dann nach Belieben angepasst werden. Dazu wird die Implementierung der 

Datei PluginImpl.cs verändert. Zudem sollten die Assemblyinformationen in den Projekteinstellungen sowie  

die Annotation AddIn der Klasse PluginImpl, d.h. Name, Version, Beschreibung und Autor geändert werden. 

Jedes neue Plug-In muss drei Vorrausetzungen erfüllen, damit es mit LATTE verwendet werden kann: 

1. Die Add-In Assembly muss auf die folgenden Assemblys verweisen: 

 LATTE_AddIn.View und 

 LATTE_AddIn.Adapters für die Kommunikation 

 LATTE_SharedPlugin zur Nutzung und Austausch von gemeinsam genutzten Datenstruktu-
ren (ProcessingMessage, Properties) 

 System.Addin zur Einbindung des MAF 
2. Die folgenden Standardklassen müssen abgeleitet und implementiert werden: 

 ProcessingAddInView (AddInView.cs) 

 PluginAddInView (AddInView.cs) 

3. Das Plug-In muss einen eindeutigen und von anderen Plug-Ins unterscheidbaren Namen und Namens-

raum über die Methoden GetName() und GetNameSpace() der Klasse PluginAddInView zurückliefern.  

 

7.6.2 Anpassung der Kommunikation 

 

Das Hinzufügen oder Ändern von Methoden oder Schnittstellen im Vertrag erfordert die Anpassung aller ge-

nannten Projekte, also Contracts, LATTE_Host.View, LATTE_Host.Adapter, LATTE_AddIn.View und LAT-

TE_AddIn.Adapters. Außerdem ist es notwendig, dass die Typen der Methodenparameter, die komplexe Objek-

te darstellen (z.B. XmlDocument) in den Adaptoren sowie in der Contracts Assembly als .NET Klasse Stream 

deklariert werden. Einfache Klassentypen, wie Integer oder String können von MAF automatisch serialisiert und 

deserialisert werden und müssen daher nicht als Stream deklariert werden. Nur die View Klassen erhalten die 

tatsächlichen Parametertypen wie  XmlDocument.  

Die Adaptorenklassen übernehmen die Serialisierung und Deserialisierung der Parameter. Für eigene komplexe 

Objekte muss entsprechend die Datenstruktur in einen Datenstrom konvertiert werden, um für die Kommuni-



 
105 Umsetzung 

kation eingesetzt werden zu können. Für die Klassen XmlDocument, XmlNamesapceManager und PropertyList 

(benutzt in InitProperties(), siehe Quelltext 6) wurden dazu bereits Routinen geschrieben, die sich in der Klasse 

Converters in der Assembly Contracts befinden (Namensraum Contracts.Shared). Die darin enthaltenen stati-

schen Methoden konvertieren u.a. XML Objekte in einen Datenstrom und wieder zurück. Die Konvertierungs-

methoden unterstützen auch den null Zustand eines Objektes und können diesen über die Grenze der Anwen-

dungsdomäne erhalten. Dieser Anwendungsfall ist zu beachten, da null sonst nicht serialisiert werden kann.  

7.7 Diskussion 
 

In den vorangegangenen Kapiteln wurde die Umsetzung der Anwendung LATTE und insbesondere der  Trans-

formationsprozess vorgestellt. Darin wurde auch der Prototyp LATTE erläutert, der aus drei Bestandteile nach 

dem MVC Muster besteht: der Oberfläche, der Transformationseinheit und dem Plug-In System. Diese Umset-

zung ermöglicht die Transformationen von Dialogen mit XSLT sowie mit einer .NET Programmiersprache, z.B. in 

C#. Für die Kommunikation entlang der Transformationspipeline werden Annotationen in den XAML Quelltext 

eingefügt, welche die Darstellung des Dialogs nicht beeinträchtigen. Stattdessen können so Präprozessoren und 

XSLT die nachfolgenden Prozessoren XSLT und Postprozessor beeinflussen und sogar steuern. Das Ergebnis ist 

ein für berührungsempfindliche Bildschirme angepasster Dialog.  

Die Kapitel der Umsetzung konnten allerdings nur einen Teil der Grundlagen über den Transformationsprozess 

behandeln. Der bestehende Prototyp kann in einigen Bereichen verbessert werden, um die Transformation 

noch mächtiger werden zu lassen. Diese Verbesserungen sollen hier geschildert werden. 

Eine erste Verbesserung ist die Unterstützung für die hinter den Dialogen liegende Programmierlogik oder 

Quelltexte. Für neue oder ausgetauschte Dialogelemente kann es manchmal erforderlich sein, dass auch eine 

Programmlogik eingebaut werden muss. Mit dem aktuellen Prototyp ist das noch nicht möglich. Doch mit den 

Plug-Ins sollte dies kaum ein Problem darstellen. Aber auch mit XSLT ist es denkbar, dass externe Funktionen 

die Möglichkeit bereitstellen, die Programmlogik anzupassen. Besonders mit partiellen Klassen, d.h. Klassen, 

die über mehrere Quelldateien verstreut liegen können, ist diese Umsetzung möglicherweise leicht zu bewerk-

stelligen. 

Ein weiterer Ansatzpunkt für Verbesserungen ist die eingesetzte XSLT Sprache. Für die Durchführung wurde das 

XSLT Framework von Microsoft eingesetzt, welches die XSLT Version 1.0 von 1999 unterstützt. Diese Version ist 

bereits ausreichend für den Transformationsprozess, da sie Turin-vollständig ist.  Doch mit der neuen Version 

kommen auch zahlreiche Erleichterungen für den Entwickler wie beispielsweise mehrere Ausgabedokumente 

und benutzerdefinierte Funktionen für XPath Ausdrücke. Jedoch sieht Microsoft es bis heute nicht für not-

wendig an, die neue Version 2.0 von 2007 (siehe [W3C, 2007]) zu implementieren: „As for XSLT 2.0 - we’ve 

heard from customers and understand the improvements in XSLT 2.0 over XSLT 1.0, but right now we’re in the 

middle of a big strategic investment in LINQ and EDM for the future of the data programming platform [..]. But 

we are always re-evaluating our technology investments so if your readers want to ramp up their volume on 

XSLT 2.0 please ask them to drop us a line with their comments. “ [Lovett, 2006]. Stattdessen wird auf andere 

Hersteller verwiesen wie z.B. das teilweise proprietäre SAXON.NET [Saxonica Limited, 2010]. Der Einsatz von 

SAXON.NET in LATTE wurde jedoch verworfen, da der Implementierungsaufwand mit SAXON höher einge-

schätzt wurde als der mit dem Microsoft .NET Framework. Außerdem setzt SAXON vollständig auf JAVA, so dass 

für Aufrufe aus einer .NET Umgebung (wie C# Anwendungen) zuerst eine Java Laufzeitumgebung gestartet 

werden muss, um die Methoden und Klassen von SAXON nutzen zu können.  

Auch wenn XSLT in Version 1.0 verwendet wird, ist es möglich die Sprache durch eigene Funktionen zu erwei-

tern, wie es im Quelltext 24 mit LATTE:ConvertBoolean demonstriert wurde. Dadurch können komplizierte 

Vergleich oder String-Manipulationen vereinfacht werden. Wem das nicht reicht, der kann mit EXSLT (siehe 

[Stewart, et al., 2006]) weitere XSLT Elemente einsetzen, die noch mehr Möglichkeiten bieten. Natürlich kön-

nen auch eigene XSLT Elemente erstellt und verwendet werden. 



 
106 Migration und Anpassung von Dialoganwendungen für berührungsempfindliche Bildschirme 

Eine weitere Möglichkeit besteht darin, Plug-In als Ersatz für XSLT zu verwenden, z.B. wenn man sich noch nicht 

gut genug mit XSLT auskennt. Dies ist jedoch auf lange Sicht nicht zu empfehlen, da Änderungen am Transfor-

mationsprozess in LATTE nur mühsam über eine separate Entwicklungsumgebung wie Visual Studio erreicht 

werden können. Stattdessen sollte XSLT erst einmal zum Experimentieren verwendet werden und einige weni-

ge Abbildungsvorschriften ausprobiert oder die Vielzahl von Möglichkeiten von XSLT und XPath ausgelotet 

werden. Für besonders komplizierte oder aufwändige Transformationen kann zuletzt immer noch auf reinen 

.NET Code (z.B. C#, VB# oder Delphi Prism) zurückgegriffen werden und XSLT zur Steuerung der Plug-Ins ver-

wendet werden. 

Annotationen sind ein mächtiges Mittel, um Plug-Ins und damit den Transformationsprozess steuern zu kön-

nen. Die in dieser Arbeit vorgestellten Annotationen bilden die Grundlage für zukünftige Transformationen und 

können durch Erweiterungen, d.h. neue Annotationsklassen, für Plug-Ins vielseitig einsetzbar gemacht werden. 

Dies gilt besonders, weil Plug-Ins spezielle Aufgaben übernehmen können, um beispielsweise nur eine Art von 

Steuerelement zu transformieren. Für diese Spezialfälle könnten auch benutzerdefinierte Annotationen einge-

setzt werden, welche die Transformation innerhalb des Plug-Ins regeln. Doch Plug-Ins können mit der Hilfe von 

Annotationen als eine Art Bibliothek für XSLT dienen. Mit AnnotationVerb.Invoke sind so beliebige Methoden 

eines Plug-Ins über die Annotation AnnotationVerb innerhalb des XSLT Quelltexts aufrufbar.  

Wie bereits erwähnt gestaltet sich das Schreiben von XAML Strukturen schwierig. Microsoft unterstützt zwar 

das Einlesen von XAML, das Schreiben in XAML wird jedoch nur oberflächlich unterstützt (siehe Abschnitt Nut-

zen eines XAML Laders auf Seite 89).  Daher wurde mehr Wert auf den Umgang mit XmlDocument innerhalb 

von Plug-Ins  gelegt als auf den XAML Lader. Trotzdem bietet XAML den Vorteil, die Dialoge ohne großen Auf-

wand grafisch darzustellen. In LATTE wurde dies benutzt, um eine Vorschau des transformierten Dialogs zu 

ermöglichen. Dazu wurde der Dialogdesigner des quelloffenen SharpDevelop Projekts verwendet, welcher 

zusätzliche Funktionen besitzt, um die Steuerelemente zu verschieben und deren Größe anzupassen. Für das 

Projekt wurden diese Möglichkeiten jedoch deaktiviert, da eine vollständige Integration des Designers zu viel 

Zeit gekostet hätte. Ein bedeutender Vorteil des SharpDevelop Editors für LATTE ist jedoch, dass er Fenster- 

und XAML Seitenelemente (<Window> und <Page>) auf die gleiche Art und Weise darstellt. Der XAML Lader 

von Microsoft kann zwar Seitenelemente innerhalb eines Fensters darstellen, dagegen können Fensterelemen-

te selbst nur als eigenständige Fenster außerhalb der LATTE Umgebung dargestellt werden.  

Letztendlich kann man erkennen, dass die vorgestellten Umsetzungen noch etwas Feinschliff erfordern, um in 

der Produktion eingesetzt werden zu können. Doch der Autor dieser Zeilen denkt, dass die vorgestellten Grund-

lagen und Konzepte die künftigen Aufgaben gut lösen können.  Zum Schluss und weil die Prä-, Post- und XSLT 

Prozessoren das Herz der Transformationspipeline darstellen, soll hier noch eine kurze Übersicht zu deren Vor- 

und Nachteilen (Tabelle 8) gegeben werden. 

 Vorteile Nachteile 

Prä- und Post-
prozessor 
(Plug-Ins) 

 Kann mit beliebiger .NET Sprache ge-
schrieben werden 

 Syntax von C# oder VB.NET ist einfach zu 
verwenden 
 

 Prozessor muss bei Änderungen neu in 
eine DLL-Datei kompiliert und in den Plug-
In Ordner kopiert werden. 

 Das Laden und Ausführen von Plug-Ins vor 
dem Transformationsprozess dauert eini-
ge Zeit. 

XSLT  
Prozessor 

 Mächtige Transformationssprache 

 Turing-vollständig 

 Kann direkt im Editor erstellt und in der 
Transformation verwendet werden. Än-
derungen sind daher schnell möglich. 

 Mit XPath muss eine weitere Sprache 
gelernt werden 

 Einige Probleme sind nur umständ-
lich zu lösen, dadurch dass XSLT re-
gelbasiert ist. 

 Durch .NET Implementierung beschränkt 
auf XSLT 1.0 Syntax. 

Tabelle 8 Vor- und Nachteile der Prozessoren 



 
107 Technische Evaluation anhand der Durchführung einer Touch-Studie 

8 Technische Evaluation anhand der Durchführung einer Touch-Studie 
 

 

Dieses Kapitel beschäftigt sich mit einer im Rahmen der Diplomarbeit durchgeführten Benutzerstudie, um die 

Effektivität der beschriebenen Lösungsmethode und Umsetzung zu untersuchen. Über die Durchführung der 

Studie und deren Ergebnisse wird im Kapitel 8.2.2  und 8.2.3 berichtet. Eine Diskussion der Ergebnisse hält das 

Kapitel 8.2.4 bereit. 

 

8.1 Motivation 
 

Es existiert eine Vielzahl von Experimenten, die den Einsatz von berührungsempfindlichen Bildschirmen in ver-

schiedenen Umgebungen und Situationen prüfen. Eines der ersten experimentellen Vergleiche zwischen Maus 

und berührungsempfindlichen Bildschirm wurde von Ben Shneidermann (vgl. [Sears, et al., 1991]) durchge-

führt. Seitdem befassen sich viele Untersuchungen auch mit Themen wie der Präzision der Fingereingabe (u.a. 

[Gleeson, et al., 2004], [Schmidt, 2008 S. 34ff.] und [Holz, et al., 2011]), mit Gesteninteraktion (vgl. [Matejka, et 

al., 2009] und [Mauney, 2010]) oder mit der Bewertung, wie Formen auf einem berührungsempfindlichen Bild-

schirm präsentiert und manipuliert werden können (u.a. [Anslow, 2010] und [Raschke, et al., 2010]). Es konnte 

jedoch keine Studie gefunden werden, die ganze Dialoge (insbesondere Standarddialoge wie Öffnen und Dru-

cken) von handelsüblichen Desktopsystemen wie Windows für die Touchbedienung untersucht.  

Zudem sollte die in dieser Diplomarbeit gezeigte Lösung sowie Umsetzung, d.h. die Transformationsmethode 

(Kapitel 4) und der Prototyp (Kapitel 7), überprüft werden. Dass die Umsetzung bereits Dialoge transformieren 

kann, wurde schon während der Umsetzung in Kapitel 7.5.2 („Grundlagen der Transformation“) gezeigt. Es war 

jedoch zusätzlich notwendig zu prüfen, ob auf diese Art die Dialoge mit den Fingern überhaupt bedienbar wer-

den. 

 

8.2 Studie 
 

In einer Benutzerstudie sollte zuerst die Bedienung von Standarddialogen wie „Datei öffnen“ oder Druckseiten-

einstellung mit den Fingern untersucht werden. Diese Dialoge werden für gewöhnlich sehr oft im Alltag ge-

nutzt, so dass man bei einem Einsatz von berührungsempfindlichen Bildschirmen dort ansetzen sollte. Außer-

dem wurde eine Auswahl von den vorgeschlagenen Steuerelementen aus Kapitel 5 für die Transformation 

verwendet. Für jeden Dialog wurde eine Reihe von üblichen Tätigkeiten erstellt, die die Teilnehmer durchzu-

führen hatten, wie  z.B. eine Datei zu öffnen oder eine Einstellung vorzunehmen. Anschließend bewerteten die 

Teilnehmer die Dialoge und Steuerelemente mit einem Fragebogen. 

 

8.2.1 Hypothesen 

 

Vor der Durchführung der Studie wurden die folgenden Hypothesen aufgestellt, um prüfen zu können, ob eine 

Verbesserung durch die vorgestellte Lösung (Kapitel 4, 5 und 7) aufgetreten ist: 

1. Es ist ausreichend die Eigenschaften von einzelnen Elementen zu verändern, um die Elemente mit 

den Fingern besser bedienen zu können. Mit dieser These soll geprüft werden, dass die Änderung von 

Eigenschaften wie Größe und Abstände von bestehenden Steuerelementen eine einfache und schnelle 

To measure is to know. 

 James Clerk Maxwell 
schottischer Physiker 



 
108 Migration und Anpassung von Dialoganwendungen für berührungsempfindliche Bildschirme 

Verbesserung für die Fingerbedienung darstellt. Für eine Fingerbedienung muss es also nicht unbe-

dingt erforderlich sein, Dialoge vollständig neu zu gestalten oder gar NUI zu generieren. 

2. Es ist ausreichend Steuerelemente in einem Dialog auszutauschen oder zu erweitern (mit zusätzli-

chen Elementen), um diesen Dialog besser mit den Fingern bedienen zu können.  Mit dieser These 

soll überprüft werden, dass überall dort, wo es nicht ausreicht Eigenschaften von Steuerelementen zu 

ändern, diese Elemente durch neue oder verbesserte Versionen ersetzt werden können.  

3. Die eingeführten Steuerelemente, als Ersatz vorhandener Elemente, sind für die Nutzung mit den 

Fingern geeignet. Damit soll gezeigt werden, dass die in Kapitel 5 eingeführten Steuerelemente als Er-

satz für die Standardelemente in Dialogen dienen können und so die Bedienung des Dialogs mit den 

Fingern erleichtern. In dieser Studie wurden allerdings aus Zeitgründen nur die folgenden Steuerele-

mente verwendet: das vergrößerte Kontrollkästchen (Kapitel 5.4), das numerische Tastenfeld (5.5), die 

Brotkrumennavigation (5.6) und die Navigationsleiste für Listenfelder (5.7).   

Daraus lässt sich folgern, dass wenn diese Hypothesen bestätigt werden, die in der Umsetzung vorgestellte 

Transformation ausreichend ist, um Steuerelemente in Dialogen semi-automatisch an berührungsempfindliche 

Bildschirme anzupassen. 

 

8.2.2 Methode 

 

Die Studie wurde als ein between-subjects-Design mit sechs Teilnehmern entworfen. Die Teilnehmer mussten 

die ihnen gestellten Aufgaben an einem berührungsempfindlichen Bildschirm erledigen und darauf folgend 

Fragen zu ihren Präferenzen beantworten. Zudem wurden während der Durchführung die Tätigkeiten sowie 

Gesprochenes durch den Studienleiter (d.h. der Autor) aufgenommen. 

 

Experimenteller Aufbau und Umgebungsbedingungen 

 

Die Studie wurde in einem Privatraum durchgeführt, der während den Aufgaben von äußerlichen Ablenkungen 

abgeschottet wurde. Die Dialoge wurden für die Bedienung auf einem 23 Zoll großen und berührungsempfind-

lichen TFT Bildschirm mit einer Auflösung von 1920x1080 Pixeln durchgeführt. Es handelte sich dabei um einen 

Bildschirm der Marke Acer, den T230H Breitbildschirm mit Multi-Touch (zwei Berührungen gleichzeitig). Die im 

Gerät verbaute Technik nutzt ein Raster aus Infrarotstrahlen, das über die Bildschirmscheibe gelegt ist. Diese 

Technik wurde bereits im Kapitel 2.3.1 („Technologien“) im Unterabschnitt „Optische Bildschirmoberflächen“ 

erläutert. Weiterhin wurde der Bildschirm von seinem mitgelieferten Standfuß getrennt, um eine bessere Be-

dienung zu ermöglichen. Dazu wurde der Bildschirm auf einem Untergrund aus Polystyrol gebettet und auf 

einen Neigungswinkel von knapp 35 Grad gebracht. Dieser Winkel wurde als für den Aufbau ideal befunden, da 

ein kleinerer Winkel die Lichtspiegelung an der Bildschirmscheibe verstärkt und ein größerer Winkel die Integri-

tät des Polystyrols gefährdet hätte. Für die Hand- und Armablage wurde eine handelsübliche Tastaturmatte 

den Teilnehmern zur Nutzung überlassen. Zudem wurde für zwei Aufgaben eine Maus benötigt, die deshalb 

entsprechend gestellt wurde. 

Während die Teilnehmer die Aufgaben bearbeiteten, wurde der Bildschirm mit einem Videoprogramm aufge-

nommen, um später die Berührungen zu zählen und die Treffer von den „Vertippern“ unterscheiden zu kön-

nen. Jede Berührung konnte in der Aufnahme als kleiner werdender Kreis wahrgenommen werden. Zudem 

wurde den Teilnehmern vorgegeben, dass sie ihre Tätigkeit kommentieren und Erfolge, Probleme, Unstimmig-

keiten oder Ähnliches mitteilen. Die Kommentare der Teilnehmer wurden während der Aufgabe in das Bild-

schirmvideo integriert, so dass sie mit den Tätigkeiten auf dem Bildschirm direkt in Beziehung gebracht werden 

konnten. 



 
109 Technische Evaluation anhand der Durchführung einer Touch-Studie 

 

Abbildung 64 Der Aufbau des berührungsempfindlichen Bildschirms für die Benutzerstudie. Hinten rechts kam ein Bildschirm zur Dar-
stellung des aktuellen Aufgabentextes und zur Ablaufkontrolle zum Einsatz. Daneben liegt ein Fragenkatalog,  

den die Teilnehmer für die Bearbeitung beantworteten. 

 

Die Aufnahme wurde durch den Leiter gestartet, nachdem der Teilnehmer die Aufgabe gelesen und dies bestä-

tigt hatte. Die Aufnahme wurde nach der Aufgabe manuell beendet, als der Teilnehmer den Dialog, wie von der 

Aufgabenstellung verlangt, durch Betätigen des Ok Schalters beenden wollte. Der Dialog wurde dadurch jedoch 

nicht geschlossen, sondern es wurde nur die Aktion durch einen Nachrichtendialog bestätigt. Der Teilnehmer 

konnte so auch noch im Anschluss der Aufgabe den Dialog betrachten und Erinnerungen für die Befragung 

wachrufen. 

 

Teilnehmer 

 

Für die Evaluation wurde eine Studie durchgeführt, die sechs Teilnehmer zwischen 20 und 60 Jahren absolvier-

ten. Der Altersdurchschnitt lag bei 36 Jahren. Von den Teilnehmern waren zwei weiblich und vier männlich. 

Dies wurde jedoch nicht als Einflussfaktor gesehen. Die Studienteilnehmer gaben an, dass sie keinen berüh-

rungsempfindlichen Bildschirm besäßen, sondern alle nur Mobilgeräte (Smartphone, Navigationsgeräte) oder 

Kiosksysteme mit den Fingern bedient hätten. Jedoch waren alle gut mit der Maus und Tastatur vertraut und 

kannten sich mit der Oberfläche  von Windows 7 aus. Als Dankeschön für die Absolvierung der Studie bekamen 

die Teilnehmer am Ende eine süße Aufmerksamkeit geschenkt.  

 

Durchführung 

 

Zuerst mussten die Teilnehmer einen Fragebogen ausfüllen, der sie zu ihrem Alter und ihren Mediengewohn-

heiten wie Nutzungsdauer von PC sowie dem Vorwissen zu berührungsempfindlichen Technologien (Smart-

phone, Tablet usw.) befragte. Außerdem wurden die Teilnehmer bereits vorher befragt, was sie von  der Be-

dienung eines berührungsempfindlichen Bildschirms erwarteten. 

Vor dem Beginn der Aufgabendurchführung durften sich die Teilnehmer mit dem Bildschirm vertraut machen. 

Dazu wurde die Anwendung Surface Collage aus dem Microsoft Touch Pack für Windows 7 gestartet. Mit dieser 

Software konnten die Teilnehmer sich auf die kommenden Aufgaben einstimmen, so dass bereits bei der ers-

ten Aufgabe ein Lerneffekt auftreten konnte. Die Anwendung Surface Collage hatte jedoch nichts mit den Auf-

gaben zu tun, so dass die Teilnehmer nicht wissen konnten, was sie erwartet. Die Übungsdauer lag zwischen 

fünf und zehn Minuten. 



 
110 Migration und Anpassung von Dialoganwendungen für berührungsempfindliche Bildschirme 

Anschließend wurden sie über den anstehenden Aufgabenverlauf informiert. Dazu wurde ihnen auf einem 

zweiten Bildschirm ein Browserfenster in ausreichender Größe dargestellt, das sie über den Studienablauf auf-

klärte. Dieses Fenster wurde außerdem über die gesamte Dauer der Studie für die zu bearbeitende Aufgaben-

beschreibung verwendet. Die Teilnehmer konnten die Aufgabe daher wiederholt lesen, während sie die Aufga-

be bearbeiteten. Während der Aufgaben und der Beantwortung der Fragen konnten die Teilnehmer zu jeder 

Zeit zum aktuellen Fragebogen, zur Aufgabenstellung oder zum Aufgabenablauf Fragen stellen, um Probleme 

oder Fehldeutungen zu vermeiden. Die Teilnehmer konnten jederzeit eine Pause einlegen oder sogar die Studie 

abbrechen, was sie jedoch beides nicht taten. 

Die Aufgaben liefen stets gleich ab. Zuerst wurde auf dem Webseitenfenster die neue Aufgabe präsentiert, die 

die Teilnehmer sofort lesen durften. Dazu wurde auf dem berührungsempfindlichen Bildschirm der zur Aufgabe 

gehörende Dialog positioniert. Damit sich die anfängliche Position niemals änderte, wurde der Desktophinter-

grund von Windows durch ein Bild mit weißen Rechtecken ersetzt. Die Dialoge wurden mit ihrer linken, oberen 

Ecke näherungsweise in diese Rechtecke mit der Maus positioniert. Die Rechtecke besaßen dazu die Ausmaße 

der entsprechenden Dialoge. Den Teilnehmern war es zwar erlaubt, die Dialoge zu verschieben, jedoch machte 

keiner davon Gebrauch. Weiterhin waren die Rechtecke auf dem Desktop so platziert, dass die Dialoge die 

rechte untere Hälfte des Bildschirms beanspruchten, so dass sie mit der rechten Hand auf der Ablage benutzt 

werden konnten. Für Linkshänder wurden die Dialoge an der Mittelachse auf die andere Bildschirmseite ge-

spiegelt. 

 

Abbildung 65 In der Studie verwendeter Desktophintergrund für die einheitliche Positionierung der Dialoge an weißen Rechtecken. 

Nachdem die Teilnehmer Bereitschaft meldeten, konnten sie die eigentlichen Aufgaben angehen. Die ersten 

Aufgaben nutzten einen Nachbau des Standarddialogs „Datei öffnen“ aus Windows, der mit WPF und XAML 

erstellt wurde. Der Nachbau ermöglichte Änderungen einzelner Steuerelemente, die in den Aufgaben entspre-

chend eingesetzt wurden. Im Folgenden werden die für die Studie entwickelten Aufgaben erläutert. Die Aufga-

ben wurden dazu in zwei Teile aufgeteilt, in denen zwei unterschiedliche Arten von Dialoge untersucht wurden. 

In den ersten sieben Aufgaben sollten die Teilnehmer die Bedienung eines Standard Öffnen-Dialogs von 

Windows 7 bewerten, während im zweiten Teil die Teilnehmer in neun Aufgaben einen Seiteneinstellungsdia-

log für Drucker bedienen sollten. Beide Dialoge enthielten unterschiedliche Arten von Steuerelementen. Wäh-

rend der Öffnen-Dialog mit Listen und Navigationsleisten ausgestattet war, wurde der Seiteneinstellungsdialog 

mit Elementen wie Dropdown-Listenfeld, Drehfeldern und Kontrollkästchen aufgebaut. Einzelne Dialoge wur-

den entsprechend der Aufgabenstellung angepasst, um verschiedene Steuerelemente und Eigenschaften zu 

prüfen. Außerdem wurde gemäß den Hypothesen verschiedene Schaltergrößen, Listenelementgrößen und 

Steuerelementgrößen eingesetzt. 



 
111 Technische Evaluation anhand der Durchführung einer Touch-Studie 

  
Abbildung 66 Vergleich der in der Studie eingesetzten Dialoge. Links: eine Nachbildung des originalen Öffnen-Dialogs für Ö1 und Ö2;  

Rechts: der transformierte Öffnen-Dialog für die Aufgaben Ö3 bis Ö7. 

 
 

Die Aufgabe 1 (in der Studie Ö1 genannt)  und Aufgabe 2 (Ö2) unterschieden sich nicht in der Aufgabenstel-

lung, sondern nur in der Bedienung (Abbildung 66). Die Teilnehmer sollten dazu jeweils eine Datei öffnen, die 

sich unterschiedlich tief in der Ordnerhierarchie befand. Die Aufgabe konnte dadurch gelöst werden, indem mit 

der Maus und später mit den Fingern die Ordnernamen angeklickt bzw. getippt wurden, um so die Datei sicht-

bar zu machen. Ein Vergleich bei gleichem Dialog mit unterschiedlichen Eingabearten sollte prüfen, ob und in 

wie weit die aktuellen Dialoge eine Schwierigkeit für die Fingereingabe darstellen.  

Die Aufgabe Ö3 präsentierte den Teilnehmern das erste Mal eine angepasste Version des Öffnen-Dialogs. Die 

Teilnehmer sollten dazu eine bereits sichtbare Datei  im Listenfenster markieren und öffnen (durch Doppeltip-

pen oder durch den Öffnen-Schalter). Die Aufgabe wurde für den Einstieg sehr einfach gehalten. So konnten 

sich die Teilnehmer an die ungewöhnlich großen Dateisymbole (2,5 x 2,5 Zentimeter) und Schaltflächen ge-

wöhnen. 

Die nächste Aufgabe Ö4 erweiterte die vorangegangene Aufgabe, indem eine Datei geöffnet werden sollte, die 

nicht sichtbar war. Dazu mussten die Teilnehmer ohne das Vorhandensein einer Bildlaufleiste die Datei in den 

sichtbaren Bereich der Liste bringen, um diese zu öffnen. Diese Aufgabe sollte einen Vergleich mit der nächsten 

Aufgabe Ö5 erbringen, in der für das Blättern in der Liste eine Navigationsleiste vorgeschrieben war. Den Teil-

nehmern war es freigestellt, welche Pfeile sie von der Navigationsleiste nutzen konnten.  

Ein weiterer Vergleich wurde mit den Aufgaben Ö6 und Ö7 angestrebt. Die Teilnehmer sollten dazu zu einem 

bestimmten Ordner navigieren, der oberhalb des aktuellen Ordners in der Hierarchie lag. Dafür sollte  die Brot-

krumennavigation genutzt werden. Jeder übergeordneter Ordner wurde dabei als Schalter in der Leiste der 

Brotkrumennavigation angezeigt und konnte so durch einfaches Antippen erreicht werden. Der Unterschied 

zwischen Ö6 und Ö7 bestand darin, dass in Ö6 die Teilnehmer nicht über die Brotkrumennavigation aufgeklärt 

wurden, im Gegensatz zu Ö7. Außerdem wurde in beiden Aufgaben die Baumansicht der Ordner durch eine 

einfache Liste mit den Unterordner des aktuellen Ordners ersetzt, um eine einfachere Fingerbedienung durch 

eine Liste zu erhalten (vgl. Kapitel 5.6).  

 



 
112 Migration und Anpassung von Dialoganwendungen für berührungsempfindliche Bildschirme 

 

Abbildung 67 Standarddialog für die Einstellung einer Druckerseite, wie er unter Windows eingesetzt werden kann. 

Mit den Aufgaben S1 und S2 begann der zweite Teil der Studie, in der ein selbst gebauter Dialog zur Einstellung 

der Druckseite eingesetzt wurde. Die beiden Aufgaben sollten wie in Ö1 und Ö2 prüfen, ob der Dialog mit den 

Fingern besser oder schlechter zu bedienen ist. Die Aufgabenstellung war entsprechend ähnlich und unter-

schied sich, um einen Lerneffekt zu verhindern, nur in Einzelheiten wie z.B. den Papiergrößen (A2, COM-10 

usw.), den Größen für die Ränder (z.B. 1,5 Zentimeter) und die Kombination von aktivierten Kontrollkästchen.  

 
 

 

 
Abbildung 68 Vergleich der transformierten Dialoge aus den Aufgaben S3 bis S6 (v.l.n.r. und v.o.n.u.) 

Die folgenden Aufgaben S3 bis S6 stellten den Teilnehmer Steuerelemente von verschiedenen Größen bereit. 

Die Dialoge unterschieden sich in größer werdenden Kontrollkästchen, Dropdown-Listenfeldern, Options- so-

wie Drehfeldern. Die Ausmaße betrugen dabei jeweils 0,5cm, 0,7 cm, 1,0cm und zuletzt 1,5cm. Außerdem wur-

den wie in S2 die einzugebenden Werte (Papiergröße, Ränder und Optionen)  geändert, um einen Lerneffekt zu 

verhindern.  



 
113 Technische Evaluation anhand der Durchführung einer Touch-Studie 

  

  
Abbildung 69 Vergleich der Abstände zwischen den Kontrollkästchen in Aufgabe S7 Teil 1 bis 4 (v.l.n.r. und v.o.n.u.) 

 

Als nächste Aufgabe S7 wurden die Abstände zwischen Kontrollkästchen der Optionenliste verändert, um de-

ren Einfluss auf die Bedienbarkeit zu überprüfen. Die Abstände der Kontrollkästchen untereinander wurden 

dazu in vier Teilaufgaben beginnend bei 35mm über 25mm und 17,5mm auf 5mm verkleinert. Zusätzlich muss-

ten die Teilnehmer in jeder Aufgabe andere Kontrollkästchen aktivieren. 

 

Abbildung 70 Eingesetzter Prototyp eines numerischen Tastenfeld für die Aufgaben S8 und S9 

Die letzten Aufgaben S8 und S9 nutzten das in Kapitel 5.5 vorgestellte numerische Tastenfeld. Die Teilnehmer 

nutzten dieses Feld statt den Drehfeldern, um die Ränder einer Druckseite einzustellen. Die Aufgaben unter-

schieden sich nur durch verschiedene Werte der Ränder. Auf diese Weise sollte überprüft werden, ob ein Lern-

effekt bessere Ergebnisse bei dem Tastenfeld erreichen kann oder ob das Tastenfeld auch intuitiv gut zu bedie-

nen ist. 

Zuletzt wurden zu jeder Aufgabe zwei bis vier Fragen gestellt, um einen subjektiven Eindruck der Bedienung 

des Dialogs und der eingesetzten Steuerelemente zu bekommen. Die Fragen konnten die Teilnehmer durch das 

Vergeben von einem bis acht Punkten auf einer Likert-Skala beantworten. Jeder Teilnehmer konnte so jeweils 

bis zu acht Punkte in sechs Kategorien verteilen. Die Fragen können im Anhang eingesehen werden. Die Ergeb-

nisse der Fragen werden auf Seite 119 besprochen.   

 

8.2.3 Ergebnisse 

 

Für die durchgeführte Studie wurden sechs Teilnehmer eingeladen. Die Zahl der Teilnehmer lässt daher nur 

eine qualitative Auswertung der Ergebnisse zu. Trotzdem kann die Studie einen Einblick in die Welt der Finger-

bedienung an Desktop- und Laptopsystemen geben.  

Weiterhin werden nicht alle Ergebnisse dargestellt, um den Rahmen dieser Arbeit nicht zu sprengen. Deshalb 

werden die Ergebnisse entweder zusammengefasst oder nur die ergiebigsten und interessantesten aufgezählt. 



 
114 Migration und Anpassung von Dialoganwendungen für berührungsempfindliche Bildschirme 

Die vollständigen Daten können aus dem Studiendokument auf der beiliegenden CD entnommen werden. 

   

Aufgabenausführungsdauer 

 

Von jedem Teilnehmer wurde die Ausführungsdauer gemessen. Der Startzeitpunkt war dabei die erste Bedie-

nung, d.h. Klick oder Berührung, eines Steuerelements. Das Ende der Zeitmessung wurde durch das Bestätigen 

des Dialogs (Schalter OK oder Abbrechen) ausgelöst. 

Die Zeitdauer über alle Aufgaben bieten die Tabellen 9 und 10 unten. Für jede Aufgabe wurden zudem der 

Mittelwert und Median angegeben. Es zeigte sich, dass die Teilnehmer sehr unterschiedlich an die Aufgaben 

herangingen und deshalb die Ausführungszeiten innerhalb derselben Aufgabe stark variieren. Die Tabellen 

zeigen außerdem, dass die älteren Teilnehmer allgemein sich etwas länger Zeit gelassen haben oder benötig-

ten, um die Aufgabe zu erledigen.  

                                   Aufgaben 
 

Probanden (Alter) Ö1 Ö2 Ö3 Ö4 Ö5 Ö6 Ö7 

1 (20-30 Jahre) 12 23 2 22 39 23 49 

2 (20-30 Jahre) 19 10 17 12 24 55 90 

3 (20-30 Jahre) 6 24 1 20 26 63 46 

4 (50-60 Jahre) 29 23 9 18 21 239 77 

5 (20-30 Jahre) 20 28 4 15 15 31 44 

6 (50-60 Jahre) 22 32 6 40 35 39 62 

Mittelwert 18,0 23,3 6,5 21,2 26,7 75,0 61,3 

Median 19,5 23,5 5,0 19,0 25,0 47,0 55,5 

Min/Max 6/29 10/32 1/17 12/40 15/39 23/239 44/90 
Tabelle 9 Benötigte Ausführungsdauer der Teilnehmer für die Aufgaben Ö1-Ö7 in Sekunden 

                                   Aufgaben 
 
Probanden 1 2 3 4 5 6 7 8 9 

1 (20-30 Jahre) 35 112 66 36 33 53 15 47 37 

2 (20-30 Jahre) 35 46 39 52 44 34 22 18 37 

3 (20-30 Jahre) 37 61 62 39 70 60 18 44 44 

4 (50-60 Jahre) 53 74 91 51 54 84 18 53 43 

5 (20-30 Jahre) 34 55 45 37 51 40 16 20 31 

6 (50-60 Jahre) 44 89 73 48 55 73 25 55 38 

Mittelwert 39,7 72,8 62,7 43,8 51,2 57,3 18,7 39,5 38,3 

Median 36,0 67,5 64,0 43,5 52,5 56,5 18,1 45,5 37,5 

Min/Max 34/53 46/112 39/91 36/52 33/70 34/84 14,5/24,5 18/55 31/44 
Tabelle 10 Benötigte Ausführungsdauer der Teilnehmer für die Aufgaben S1-S9  in Sekunden 

 

Einige Aufgaben wurden außerdem so konzipiert, dass deren Ausführungsdauer direkt miteinander verglichen 

werden konnten. Dazu zählen jeweils die Aufgaben 1 und 2 des Öffnen- und Seiteneinstellungs-Dialogs.  Zusätz-

lich wurden die Aufgaben 3 bis 6, die vier Teile der Aufgabe 7 und 8 bis 9 des Seiteneinstellungsdialogs für ei-

nen Vergleich erstellt.  

Die Ergebnisse zeigen, dass die Bedienung von Standarddialogen mit den Fingern länger dauern kann. Während 

die Ausführungsdauer der Aufgabe Ö2 (mit den Fingern) noch nahe an der Dauer der Aufgabe Ö1 (mit der 

Maus) liegt, ist der Zeitunterschied zwischen den Aufgaben S1 und S2 bereits deutlicher. 



 
115 Technische Evaluation anhand der Durchführung einer Touch-Studie 

 
Abbildung 71 Vergleich der durchschnittlich benötigten Zeit der 

Aufgaben Ö1 (Maus) und Ö2 (Touch) 

 
Abbildung 72 Vergleich der durchschnittlich benötigten Zeit der 

Aufgaben S1 (Maus) und S2 (Touch) 

 

Die Aufgaben S3 bis S4 unterschieden sich nur durch die Größe der einzelnen Elemente (0,5cm; 0,7cm; 1,0cm 

und 1,5cm). Dadurch entstanden teils stark unterschiedliche Ausführungszeiten der Teilnehmer wie es in Ab-

bildung 73 unten zu sehen ist. In Aufgabe 7 wurden, wie bereits erläutert, unterschiedliche Abstände zwischen 

Kontrollkästchen untersucht. Die Abbildung 74 zeigt, dass die Teilnehmer die Einstellung in der Liste, umso 

schneller vornehmen konnten, je kleiner der Abstand wurde (35mm, 25mm, 17,5mm und 5mm). Dies endete 

erst mit der vierten und letzten Aufgabe, als die Abstände so gering waren, dass die Teilnehmer benachbarte 

Kontrollkästchen versehentlich berühren konnten. 

 
Abbildung 73 Durchschnittlich benötigte Zeit  

der Aufgaben S3 bis S6 

 

 
Abbildung 74 Durchschnittlich benötigte Zeit  

der Aufgaben S7 Teil 1 bis Teil 4 

 

 

Genauigkeit 

 

Die Genauigkeit der Teilnehmer wurde bestimmt, indem die aufgetretenen Fehler gezählt wurden. Dazu wur-

den die gemachten Bildschirm- und Audioaufnahmen der Teilnehmer zur Beurteilung herangezogen.  Ein Fehler 

wurde dazu folgendermaßen definiert: 

1. Ein Steuerelement wird nicht getroffen. Stattdessen wird der Dialoghintergrund oder ein benachbar-

tes Steuerelement getroffen. Die Absicht ein bestimmtes Element zu treffen ergibt sich dabei aus der 

Aufgabenstellung. Beispielsweise sollte ein bestimmter Wert mit den beiden Schaltern des Drehfelds 

eingestellt werden. Die Teilnehmer mussten dazu den Aufwärtsschalter betätigen. Eine Berührung 

wurde als Fehler gezählt, wenn stattdessen der Abwärtsschalter getroffen wurde. Die Audioaufnah-

men halfen zudem leichter bestimmen zu können, ob eine bestimmte Bedienungstätigkeit absichtlich 

durchgeführt wurde. Die Teilnehmer kommentierten solche Fehlaktionen in vielen Fällen mit entspre-

chenden Bemerkungen. 

2. Ein Doppeltippen wird nicht erkannt. Die Aufgaben (insbesondere Ö1 bis Ö7) konnten alle ohne ein 

doppeltes Tippen abgeschlossen werden. Trotzdem nutzten alle Teilnehmer ein Doppeltippen bei-

spielsweise um eine Datei zu öffnen. Wurde das Tippen zu schnell oder zu langsam ausgeführt oder 

18 

23 

0

10

20

30

Aufgaben

Ze
it

 in
 S

e
ku

n
d

e
n

 

Aufgabe Ö1

Aufgabe Ö2 40 

73 

0

20

40

60

80

Aufgaben

Ze
it

 in
 S

e
ku

n
d

e
n

 

Aufgabe S1

Aufgabe S2

63 

44 
51 

57 

0

20

40

60

80

Aufgaben

Ze
it

 in
 S

e
ku

n
d

e
n

 

Aufgabe S3 Aufgabe S4

Aufgabe S5 Aufgabe S6

19 18 

13 

25 

0

5

10

15

20

25

30

Aufgaben

Ze
it

 in
 S

e
ku

n
d

e
n

 

S7 Teil 1 S7 Teil 2 S7 Teil 3 S7 Teil 4



 
116 Migration und Anpassung von Dialoganwendungen für berührungsempfindliche Bildschirme 

fanden beide Berührungen nicht innerhalb eines 1 Zentimeter Radius statt, dann wurde dies als ein 

Fehler gewertet. In diesem Fall wurde das Doppeltippen als zwei einzelne Berührungen bewertet und 

von der UI erkannt. 

Die Fehlerrate ist der Quotient aus den gesamten Berührungen und den Fehlern. Entsprechend ist die Treffer-

rate der Kehrwert des Quotienten QF. 

    
          

                    
 

Abbildung 75 Der Fehlerquotient berechnet sich aus der Anzahl der gemachten Fehlern und der Zahl der Berührungen 

Ein Vergleich der Aufgaben Ö1 mit Ö2 sowie S1 mit S2 zeigt deutlich die Probleme aktueller Dialoge, wenn sie 

mit den Fingern bedient werden. Während in den jeweils ersten Aufgaben Ö1 und S1 noch die Maus  benutzt 

werden durfte, wurde derselbe Dialog im zweiten Teil Ö2 und S2 nur noch mit den Fingern bedient. Dabei stie-

gen nicht nur die gemachten Fehler, sondern auch die Gesamtzahl der Berührungen, da die Teilnehmer die 

Fehler korrigieren mussten. Während die meisten Teilnehmer bei der Bedienung des Öffnen-Dialogs noch die 

wenigsten Probleme hatten, änderte sich dies beim Bedienen des Seiteneinstellungsdialogs mit Standardsteue-

relementen. Die Abbildung 76 sowie Abbildung 77 stellen den Fehlerquotient aufgeschlüsselt in Fehler- und 

Berührungsgesamtzahl dar. Ö1 und S1 wurden jeweils mit der Maus durchgeführt; Ö2 und S2 jeweils mit dem 

Finger. 

  

Abbildung 76 Fehler pro Gesamtberührungen der  
Aufgaben Ö1 (mit Maus) und Ö2 (mit Finger) 

Abbildung 77 Fehler pro Gesamtberührungen der  
Aufgaben S1 (mit Maus) und S2 (mit Finger) 

Die nachfolgenden Aufgaben wurden nur noch mit den Fingern durchgeführt. Trotzdem kam kein Teilnehmer 

mehr an die hohen Fehlerraten der Aufgaben Ö2 ( ) heran (Abbildung 78). In Ö4 ( ) und Ö5 ( ) sollten die 

Teilnehmer eine Datei analog zu Ö2 ( ) in einem Unterordner öffnen. Während sie in Ö4 ( ) die Liste direkt 

mit den Fingern verschieben durften, um die entsprechenden Ordnereinträge sichtbar zu machen, sollten die 

Teilnehmer in Ö5 ( ) die Navigationsleiste aus Kapitel 5.7 benutzen. Dabei traten gehäuft zwischen einem und 

zwei Fehler auf. Außerdem gab es auch fehlerlose Durchgänge, die nicht auf dem direkten Weg zum Ziel ka-

men, sondern z.B. länger nach der geforderten Datei suchen mussten. Daher sind die Symbole  und   auf 

der X-Achse entsprechend verteilt. 

Einen weiteren Vergleich der Genauigkeit zeigt die Abbildung 79 für die Aufgaben S2 bis S6. Man kann erken-

nen, dass die Fehlerzahl ab der Aufgabe S2 ( ) bis zur Aufgabe S5 ( ) zuerst zurückgeht, um dann bei der 

letzten Aufgabe S6 ( ) wieder einen Sprung nach oben macht. Die Aufgaben S4 ( ) und S5 ( ) sind dabei 

kaum voneinander zu unterscheiden. Die meisten fehlerlosen Durchgänge (3) wurden in Aufgabe S5 ( ) er-

reicht. Dagegen machten die Teilnehmer bei Aufgabe S4 ( )  noch mindestens einen Fehler. 

3x 0

1

2

3

4

5

6

7

8

0 5 10 15 20

Fe
h

le
rz

ah
l (

"V
e

rt
ip

p
e

r"
) 

Zahl der Berührungen bis zum Abschluss der Aufgabe 

Aufgabe Ö1 Aufgabe Ö2

0

5

10

15

20

25

30

0 20 40 60 80

Zahl der Berührungen bis zum Abschluss der Aufgabe 

Aufgabe S1 Aufgabe S2



 
117 Technische Evaluation anhand der Durchführung einer Touch-Studie 

 

 Fehlerrate Ø     Fehlerrate Ø  

 Aufgabe Ö2  38%    Aufgabe S2  40%  

 Aufgabe Ö4  19%    Aufgabe S3  17%  

 Aufgabe Ö5  9%    Aufgabe S4  8%  

     Aufgabe S5  2%  

     Aufgabe S6  11%  

Tabelle 11 Die Fehlerraten der Aufgaben Ö2, Ö4 und Ö4 sowie S2 bis S6 im direkten Vergleich 

 

  
Abbildung 78 Vergleich der Fehlerquotienten der 

Aufgaben Ö2, Ö4 und Ö5 
Abbildung 79 Vergleich der Fehlerquotienten der Aufgaben S2 bis S6 

 

Noch deutlicher beschreiben die Werte der Tabelle 11 den Fehlerverlauf der einzelnen Aufgaben. Sie zeigen für 

den Öffnen-Dialog eine leicht bessere Bedienbarkeit mit der Navigationsleiste (Aufgabe Ö5). Auf der anderen 

Seite führen im Seiteneinstellungsdialog größere Elemente und ein ersetztes Drehfeld zu weniger Fehlern.  Als 

Ausnahme steht, wie bereits aus den vorherigen Abbildung 79 bekannt, die Aufgabe S6. Die Steuerelemente 

sind darin 1,5 Zentimeter groß. 

Für numerische Eingabeelemente wurde bereits das numerische Tastenfeld im Kapitel 5.7 vorgestellt. In den 

letzten beiden Aufgaben S8 und S9 sollte dieses Steuerelement auf dessen Bedienbarkeit getestet werden. Es 

ist anzumerken, dass auf eine genauere Untersuchung verzichtet wurde, da die Bewertung dieses einzelnen 

Steuerelements nicht im Vordergrund stand. Die Aufgaben unterschieden sich ausschließlich durch die einzu-

gebenden Zahlen, so dass ein Unterschied nur durch einen Lerneffekt bestehen sollte. Die Ergebnisse der wie-

derholten Aufgabe zeigten jedoch kaum nennenswerte Unterschiede. Es konnte beobachtet werden, dass die 

große Menge an Berührungen dadurch möglich wurde, dass die Teilnehmer sich beim Ablesen der Zahlen aus 

der Szenarienbeschreibung irrten. Die Teilnehmer nutzten jedoch das numerische Tastenfeld trotz der höheren 

Eingabezahl mit nur maximal zwei Fehlern. 

2x 

0

1

2

3

4

5

6

7

8

0 5 10 15 20

Fe
h

le
rz

ah
l (

"V
e

rt
ip

p
e

r"
) 

Zahl der Berührungen bis zum Abschluss der Aufgabe 

Aufgabe Ö2 Aufgabe Ö4 Aufgabe Ö5

0

5

10

15

20

25

30

0 10 20 30 40 50 60

Zahl der Berührungen bis zum Abschluss der Aufgabe 

Aufgabe S2 Aufgabe S3 Aufgabe S4

Aufgabe S5 Aufgabe S6



 
118 Migration und Anpassung von Dialoganwendungen für berührungsempfindliche Bildschirme 

 

Abbildung 80 Vergleich der Fehlerquotienten der Aufgaben S8 und S9 

Subjektive Präferenzen 

 

Vor Beginn der Aufgaben wurden alle Teilnehmer gefragt, was sie bei der Bedienung von Oberflächen mit der 

Hilfe eines berührungsempfindlichen Bildschirms erwarten. Die Antworten waren: 

 3 x „einfach“ (zu bedienen) 

 2 x „schnelle Reaktion“ (der UI)  

 „intuitiv“ (zu bedienen) 

 „leichtgängig“ 

 „effektiv“ 

 „haptisch“ (als Rückmeldung) 

Es ist deutlich, dass die einfache Bedienung ein K.O.-Kriterium darstellt, gefolgt von einer schnellen Reaktions-

fähigkeit der Oberfläche.  

Am Ende der Studie wurden die Teilnehmer gefragt, ob ihre Erwartungen erfüllt wurden und wenn nicht wa-

rum. Die Teilnehmer waren darüber allerdings geteilter Meinung wie Abbildung 81 zeigt. Zudem wurden sie 

gefragt, ob und in welcher Kombination (mit Tastatur und/oder Maus) sie einen berührungsempfindlichen 

Bildschirm am PC verwenden würden (Abbildung 82). Die meisten entschieden sich dafür den Bildschirm nur als 

zusätzliches Eingabegerät neben Maus und Tastatur verwenden zu wollen. Eine Person hätte den Bildschirm 

auch einzeln für bestimmte Anwendungen benutzt, während ein anderer Teilnehmer von Touch Abstand nahm. 

  
Abbildung 81 Wurden Ihre Erwartungen an die Bedienung des 

berührungsempfindlichen Bildschirms erfüllt? 
Abbildung 82 Können Sie sich vorstellen einen berührungsempfindlichen 

Bildschirm am PC oder Laptop zu verwenden? 

 

Eine weitere Frage wurde gestellt, um herauszufinden, welche Art von Anwendung die Teilnehmer sich am PC 

als Touchanwendung vorstellen könnten. Die meisten entschieden sich für Spieleanwendungen oder Browser 

0

1

2

3

15 20 25 30

Fe
h

le
rz

ah
l (

"V
e

rt
ip

p
e

r"
) 

Zahl der Berührungen bis zum Abschluss der Aufgabe 

Aufgabe S8

Aufgabe S9

0

3

6

erfüllt nicht erfüllt

0

1

2

3

4

Touch am PC Kein Touch Nur mit
Tastatur

Nur mit
Tastatur und

Maus



 
119 Technische Evaluation anhand der Durchführung einer Touch-Studie 

(Internet), aber auch zum Zeichnen (Paint) oder zur Grafikmodellierung (3D). Dagegen wurde die Textverarbei-

tung für die Fingerbedienung ausgeschlossen. 

In den Studienaufgaben selbst wurde jede Aufgabe durch zwei bis vier Fragen begleitet, bei denen der Teil-

nehmer seine Präferenz zum Ausdruck bringen sollte. Eine Frage konnte in sechs Unterscheidungsmerkmalen 

(A bis F) mit jeweils einem bis acht Punkten auf einer Likert-Skala bewertet werden (Tabelle 12). Zusätzlich 

sollten die Teilnehmer drei weitere Merkmale (A bis C) an Hand der gleichen Skala mit eins bis acht Punkten 

bewerten (Tabelle 13). Insgesamt kann die Summe der Bewertungen aller Teilnehmer damit zwischen sechs 

und 48 Punkten liegen, wobei letztere Punktzahl die beste mögliche Bewertung darstellt. Für die folgenden 

Ergebnisse werden die Kategorien A bis F bzw. A bis C mit der Nummer der jeweiligen Fragen verwendet, um 

einen Ergebniswert zu erhalten. Beispielsweise gibt F14.C an, wie viele Punkte die Teilnehmer bei der Frage 

nach der Bedienung des Dialogs (F14) im Kriterium C (schwierig bis leicht) vergeben haben.  

Kategorie Min. Kriterium 1 Punkt 1-8 Max. Kriterium 8 Punkte 

A Frustrierend … Motivierend 
B Langweilig … Stimulierend / Spannend 
C Schwierig … Leicht 
D Reagiert langsam … Reagiert schnell 
E Ungewohnt … Gewohnt 
F Körperlich sehr anstrengend … Körperlich kaum anstrengend 
Tabelle 12 Kriterien und Gewichtung für die Aufgabenbewertungen. Bei allen Fragen (außer F15) eingesetzt. 

Kat. Kriterium 1 Punkt 1-8 8 Punkte 

A Die optische Darstellung des Dialogs gefiel mir. Trifft nicht zu … Trifft zu 

B Ich konnte Steuerelemente einfach  
treffen/anklicken/antippen. 

Trifft nicht zu … Trifft zu 

C Der Einsatz von Maus/Finger in dieser Aufgabe fiel mir leicht. Trifft nicht zu … Trifft zu 

Tabelle 13 Spezielle Kriterien mit Gewichtungen für die Aufgabenbewertungen. Nur für den Aufgabentyp F15. 

Aufgaben-
nummer 

Frage zur jeweiligen Aufgabe 

F14 Wie beurteilen Sie die Bedienung des Dialogs während der gesamten Aufgabe? (Kriterien in 
Tabelle 12). 

F15 Bitte bewerten Sie die Aufgabe nach den folgenden Kriterien? (Kriterien in Tabelle 13) 
F20 Wie beurteilen Sie die Bedienung des Steuerelements Drehfeld während der Aufgabe? (Krite-

rien in Tabelle 12).   
F21 Wie beurteilen Sie die Bedienung des Steuerelements Tastenfeld für Zahleneingabe (am Dreh-

feld) während der Aufgabe? (Kriterien in Tabelle 12). 
F22 Wie beurteilen Sie die Bedienung des Steuerelements Liste mit Kontrollkästchen während der 

Aufgabe? (Kriterien in Tabelle 12). 
Tabelle 14 Einige Fragen zu den Studienaufgaben 

Die Ergebnisse aus Tabelle 15 und Tabelle 16 spiegeln zum großen Teil die Ergebnisse der Abschnitte Aufga-

benausführungsdauer und Genauigkeit wider. Diese Tabellen enthalten die vergebene Gesamtpunktzahl der 

Teilnehmer pro Frage und Kategorie. Die vorherigen Ergebnisse zeigten hohe Fehlerraten bei der Bedienung 

der Dialoge von Ö2 und S2. Die Teilnehmer bewerteten die Bedienung des Dialogs Ö2 entsprechend schlecht. 

Die Bedienung mit dem Finger sind nach Tabelle 15  schwerer (F14.C: 28 Punkte) und ungewohnter (F14.E: 19 

Punkte) zu bedienen als mit der Maus (Ö1: C: 46 und E:39 Punkte). Die Steuerelemente der Aufgaben Ö2  und 

S2 waren den Teilnehmern nach Tabelle 16 damit zu klein (F15.B: 14 Punkte) und konnten nur schwer mit den 

Fingern getroffen werden (F15.C: 19 Punkte). Analog wurden die Aufgaben S1 und S2 bewertet. Auch dort 

sahen die Teilnehmer eine Zunahme des Schwierigkeitsgrades (F14.C: 14 Punkte) bei der Bedienung. Die klei-

nen Steuerelemente in S2 straften sie mit niedrigen Bewertungen in F15.B und F15.C  (14 und 13 Punkte) ab. 

Insbesondere die kleinen Schalter der Drehfelder wurden als schwer zu treffen bewertet (F20.C: 14 von 48 

Punkten). Die Aufgabe wurde zudem als „fast nicht machbar“ kommentiert. 



 
120 Migration und Anpassung von Dialoganwendungen für berührungsempfindliche Bildschirme 

Die Bedienung der Dialoge in den Aufgaben Ö3 bis Ö7 wurde von den Teilnehmern wieder besser als Ö2 gewer-

tet. Der allgemeine Schwierigkeitsgrad F14.C ging den Teilnehmern zufolge deutlich zurück und die vergebenen 

Punkte erhöhten sich bis auf das Reihenmaximum von 46 in Ö3. Die Teilnehmer befanden außerdem, dass sie 

bei jeder neuen Aufgabe die Steuerelemente besser treffen würden (F15.B) und der Dialog einfacher mit dem 

Finger zu bedienen sei (F15.C).  

Im Seiteneinstellungsdialog der Aufgaben S3 bis S6 sahen die Teilnehmer eine sichtbare Verbesserung gegen-

über dem Dialog aus S1 und S2. Die größer werdenden Flächen der Steuerelemente fanden entsprechende 

Punktzahlen beim Schwierigkeitsgrad (F14.D): Die vergebenen Punkte (40, 46, 47 und 45) sind höher als beim 

Dialog in Originalgröße (29 Punkte). Zudem konnten die Steuerelemente einfacher getroffen werden (F15.B, 

von 14 auf maximal 44 Punkte). Die letzte Aufgabe S6 verursachten jedoch einen leichten Rückgang der hohen 

Punktzahl von 47 auf 45 Punkte. Dies liegt an den Kontrollkästchen, die von den Teilnehmern in einer separaten 

Bewertung F22 evaluiert wurden. Der Schwierigkeitsgrad der Liste mit Kontrollkästchen wurde in F22.C (Tabelle 

15) festgehalten. Die 27 Punkte der Aufgabe S6 (F22.C) reflektieren deutlich, welche Mühen die Teilnehmer 

hatten, um die Kontrollkästchenliste zu bedienen. Und das, obwohl die Kontrollkästchen selbst gut zu treffen 

waren, wie F15.B mit 40 Punkten zeigt. Weiterhin befanden die meisten Teilnehmer, dass die Bedienung der 

Dialoge in den Aufgabe S4 und S5 am wenigsten gewöhnungsbedürftig sei, indem sie 45 Punkte in F22.E verga-

ben. Das sind jeweils 9 und 10 Punkte mehr als noch in den Aufgaben S3 und S6.  

Aufgabe F14.C F14.D F14.E F20.C F20.D F20.E F21.C F21.D F21.E F22.C F22.D F22.E 

Ö1 46 39 41          

Ö2 28 19 26          

Ö3 46 31 30          

Ö4 40 36 30          

Ö5 34 34 29          

Ö6 40 38 34          

Ö7 42 41 34          

S1 38 39 38 45 45 45    47 48 46 

S2 29 44 34 14 46 15    33 45 31 

S3 40 43 41 35 45 37    35 46 36 

S4 46 45 43 47 46 43    43 46 45 

S5 47 44 43 46 45 40    42 46 45 

S6 45 45 44 44 47 39    27 45 35 

S7 29 45 34          

S7.1          16 37 25 

S7.2          25 44 35 

S7.3          33 42 34 

S7.4          33 45 37 

S8 43 43 35    45 41 38    

S9 45 46 40    45 45 41    

Tabelle 15 Ergebnisse der Befragung aus den Fragentypen F14, F20, F21 und F22 in den Kategorien C (schwierig/leicht),  
D ([UI] reagiert schnell/langsam) und E (ungewohnt/gewohnt). Minimale/Maximale zu vergebende Punktzahl: 6/48.  

Aufgabe F15.B  F15.C  Aufgabe F15.B F15.C  Aufgabe F15.B F15.C 

Ö1 40 48  S1 46 48  S7.1 16 29 

Ö2 14 19  S2 14 13  S7.2 22 35 

Ö3 29 28  S3 29 32  S7.3 29 39 

Ö4 44 40  S4 44 46  S7.4 32 35 

Ö5 42 39  S5 43 44  S8 43 44 

Ö6 44 45  S6 40 40  S9 44 43 

Ö7 47 44 
Tabelle 16 Ergebnisse der Befragung des Fragentyps F15 in den Kategorien B (Ich konnte Steuerelemente einfach  tref-
fen/anklicken/antippen.) und C (Der Einsatz von Maus/Finger in dieser Aufgabe fiel mir leicht.).  
Minimale/Maximale zu vergebende Punktzahl: 6/48. 



 
121 Technische Evaluation anhand der Durchführung einer Touch-Studie 

Mit den Aufgaben Ö4 und Ö5 wurde ein Vergleich durchgeführt, der das Blättern in einer Dateiliste mit einem 

Finger (durch Halten der Berührung und Bewegen des Fingers) oder mit einer Navigationsleiste (grüne Pfeile) 

bewerten sollten. Die Teilnehmer bewerteten dabei die Bedienung (F14.C) der Navigationsleiste schwerer (Ö5: 

34 Punkte) als direkt mit dem Finger in der Liste zu blättern (Ö4: 40 Punkte). Dies liegt allerdings nach Tabelle 

16 nicht an zu kleinen Schaltflächen (F15.B)  in der Navigationsleiste, denn der Einsatz des Fingers in Aufgabe 

Ö4 und Ö5 fiel den Teilnehmern in etwa gleich schwer oder einfach (44 zu 42 und 40 zu 39 Punkten). Es muss 

dazu gesagt werden, dass die beiden ältesten Teilnehmer (50-60 Jahre) die Navigationsleiste immer mit 8 Punk-

te in den Kategorien F14.C, F15.B und F15.C bewerteten. Die jüngeren Teilnehmer zogen allgemein vor, in der 

Liste mit dem Finger zu blättern. 

Das zuletzt in den Aufgaben S8 und S9 eingesetzte numerische Tastenfeld kam bei den Teilnehmern besser an 

als die Drehfelder der Aufgaben S3 bis S6. Den Schwierigkeitsgrad bewerteten die Nutzer daher niedrig (F14.C: 

43 und 45 Punkte). Zudem wurden die Schalterelemente als einfach zu treffen gewertet (F15.B: 43 und 44 von 

48 möglichen Punkten) genauso wie den gesamten Einsatz des Fingers (F15.C: 44 und 43). Die Teilnehmer be-

mängelten lediglich die Symbole der Schalter und Positionierung des Eingabefeldes nahe dem unteren Bild-

schirmrand als missglückt. Zudem rüffelten sie auch die fehlende, optische Verknüpfung mit dem Zahlenfeld. 

Das aktuelle Feld hätte hervorgehoben werden müssen. 

 

8.2.4 Diskussion 

 

Diese durchgeführte Studie produzierte nicht nur eine Menge interessanter Daten, sondern auch eine Menge 

Erfahrungswerte. So stellte es sich erst im Nachhinein heraus, dass die Datenerhebung mit Fragebogen einen 

beträchtlichen Aufwand darstellte. Die Nutzung von automatisierten oder Onlinefragebögen wäre doch deut-

lich schneller gegangen. Außerdem war die Zeitdauer pro Teilnehmer von bis zu 1,5 Stunden zu lang, so dass 

entweder weniger Fragen oder Aufgaben hätten gestellt werden müssen.  

Allgemein lassen die Ergebnisse erkennen, dass die Bediendung von Dialogen mit den Fingern etwas länger 

dauern und mehr „Vertipper“ hervorbringen kann. Die liegt vor allem an der Positionierung des Fingers auf 

dem Bildschirm, die weit weniger präzise ist als die Maus und zudem sofort als Klick vom Dialog gewertet wird. 

Ein Mauszeiger muss dagegen nicht nur positioniert, sondern auch noch explizit zum Klicken gebracht werden. 

Die Ergebnisse zeigten jedoch, dass eine Änderung der Steuerelementgröße bereits eine deutliche Verbesse-

rung in beiden Dialogen (Öffnen und Seiteneinstellung) für die Bedienung hervorbrachte. Auch die Dialoge in 

späteren Aufgaben, die mit entsprechend mit größeren Steuerelementen gestaltet worden waren, zeigten eine 

hohe Trefferrate mit dem Finger. Die erste Hypothese („Es ist ausreichend die Eigenschaften von einzelnen 

Elementen zu verändern, um die Elemente mit den Fingern besser bedienen zu können.“) sehe ich daher als 

bestätigt an. Allerdings muss man beachten, dass größer auch nicht immer besser ist. Insbesondere Steuerele-

mente, die in Listen eingebettet sind wie Kontrollkästchen waren letztendlich durch ihre Größe von 1,5 Zenti-

meter zu groß, so dass die Teilnehmer keine Übersicht hatten und ständig in der Liste blättern mussten. Dies 

verursachte jedoch weitere Fehler und Unsicherheiten, ob nun alle verlangten Kontrollkästchen aktiviert wa-

ren. Dieser Umstand sollte beachtet werden, wenn Dialoge transformiert werden.  

Eine weitere Frage, die in der Studie geklärt werden sollte, bestand darin, ob die vorgestellten Steuerelemente 

aus dem Kapitel 5 („Anpassung der Steuerelemente für berührungsempfindliche Eingaben“) vorteilhaft für die 

Fingerbedienung sind. Geprüft wurden dabei die Steuerelemente Kontrollkästchen (Kapitel 5.4), das numeri-

sches Tastenfeld (Kapitel 5.5), die Brotkrumennavigation (Kapitel 5.6) und die Navigationsleiste für Listenfelder 

(5.7).  Die Kontrollkästchen wurden dafür erweitert, um eine Vergrößerung zu erreichen, da die Größe der Box 

und des Hakens im Standardelement von WPF unveränderlich sind. Stattdessen wurde eine abgeleitete Klasse 

mit dem Namen CheckBoxTouch erstellt, die eine Größenänderung zuließ. Der Aufwand lohnte sich auch, denn 

die Studienergebnisse zeigten, dass dadurch die Treffersicherheit stieg. Dies galt ebenso für das numerische 

Tastenfeld, welches außerdem von den Teilnehmern besser aufgenommen wurde als die vergrößerten Dreh-

felder. Ein weiterer Vorteil gegenüber den Drehfeldern war zudem die Platzersparnis. Die großen Drehfeld-



 
122 Migration und Anpassung von Dialoganwendungen für berührungsempfindliche Bildschirme 

schaltflächen nehmen immer wertvolle Dialogfläche in Besitz, auch wenn sie nicht benötigt werden. Die Navi-

gationsleiste wurde, wie bereits erwähnt, von den jungen Teilnehmern nicht gut angenommen. Die älteren 

Teilnehmer dagegen nutzten sie gerne. Daher ist der Einsatz einer solchen Leiste sehr vom Geschmack und 

Gewohnheitsempfinden des Benutzers abhängig. Ist er oder sie bereits gewohnt an das Blättern mit den Fin-

gern, können die Pfeile eher stören und wertvollen Platz in Anspruch nehmen. Dagegen sind Anfänger und 

weniger Technik affine Menschen besser mit der Navigationsleiste vertraut, da sie ein offensichtliches Werk-

zeug zum Blättern darstellt. Nicht zuletzt sind solche Pfeile bereits von vielen Kiosksystemen wie Fahrkarten-

schalter bekannt. Daher ist der Einsatz eines solchen Steuerelements von der Zielbenutzergruppe abhängig, die 

vor der Transformation bekannt sein sollte. Ein anderes Steuerelement konnte in der Studie leider nicht genü-

gend bewertet werden. Es handelt sich dabei um die Brotkrumennavigation, die für hierarchische Listen ge-

dacht war. Die Teilnehmer nutzten, um eine Ordnerebene aufwärts zu kommen, nicht die vorgesehene Brot-

krumennavigation, sondern den Zurück-Schalter des Verlaufs daneben. Die Aufgaben oder der Dialog hätten 

also entsprechend anders gestaltet werden müssen. Die gewonnene Erkenntnis war trotzdem aufschlussreich: 

Für die Teilnehmer kam die Brotkrumenleiste nicht als Navigationswerkzeug in Frage. Womöglich müssen die 

Schaltelemente innerhalb der Leiste besser als solche erkennbar gestaltet werden. Der bei der Brotkrumenna-

vigation genutzte Stil (oder in Neudeutsch „Theme“) von Windows war so eher kontraproduktiv. Der Stil ver-

birgt die Schaltelemente innerhalb der Leiste bis der Mauszeiger darüber schwebt. Für eine Fingerbedienung ist 

dies natürlich hinderlich. Die zweite Hypothese („Es ist ausreichend Steuerelemente in einem Dialog auszutau-

schen oder zu erweitern (mit zusätzlichen Elementen), um diesen Dialog besser mit den Fingern bedienen zu 

können. “) kann jedoch trotzdem als erfüllt angesehen werden, denn der Erfolg des neuen Steuerelements 

hängt von dessen Umsetzung sowie von der Zielbenutzergruppe ab. In diesem Fall waren die vergrößerten 

Kontrollkästchen und das numerische Tastenfeld ausschlaggebend für eine verbesserte Bedienung mit den 

Fingern.  

Die Bewertung der dritten Hypothese („Die eingeführten Steuerelemente, als Ersatz vorhandener Elemente, 

sind für die Nutzung mit den Fingern geeignet.“) gestaltet sich nicht so eindeutig. Die Navigationsleiste kam 

nicht gut bei den jungen Teilnehmern an und die Brotkrumennavigation wurde nicht als Navigationshilfe er-

kannt. Die schlechtere, subjektive Bewertung der Navigationsleiste steht allerdings der besseren Trefferrate 

(vgl. Tabelle 11 auf Seite 117) entgegen. Die Brotkrumennavigation dagegen müsste erneut bewertet werden 

mit besseren, sichtbaren Schaltern. Abgesehen davon sind die vorgestellten Steuerelemente für die Nutzung 

auf berührungsempfindlichen Bildschirmen geeignet.  

Letztendlich sollte mit der durchgeführten Studie gezeigt werden, dass es für eine berührungsempfindliche 

Oberfläche nicht unbedingt notwendig ist den natürlichen Oberflächen (NUI) zu folgen und NUI damit zum 

neuen Oberflächenstandard zu definieren. Die Studie lieferte wichtige Hinweise, dass die Umgestaltung von 

Dialogen eine ausreichende Maßnahme zur Verbesserung der Bedienbarkeit darstellen kann.  Die Größe der 

Steuerelemente spielt letztendlich eine entscheidende Rolle, sie ist jedoch kein alleiniger Faktor für eine besse-

re Bedienung. Denn es zeigte sich, wie bereits erwähnt, dass Zahlen in Dialogen besser mit einem extra dafür 

geschaffenen numerischen Tastenfeld bedient werden können als mit Drehfeldern.  

Aus allen zuvor genannten Gründen bin ich daher zu der Überzeugung gelangt, dass die zu Anfang genannten 

Hypothesen bestätigt wurden. Damit sehe ich die Umsetzung LATTE als erfolgreich an. Es muss dabei jedoch 

beachtet werden, dass dies nicht bedeutet, dass die so transformierten Dialoge in jeder Hinsicht ideal für die 

berührungsempfindliche Eingabe geworden sind. Es scheitert, wie so oft im Leben, am Spezialfall. So sind Dia-

loge, die als reine Formulare zur Text- und Zahleneingabe dienen kaum für die Fingerbedienung geeignet, so-

fern die Eingaben nicht überwiegend aus vorgefertigten Auswahllisten entnommen werden können. Für die 

weniger speziellen Dialoge zeigte sich allerdings, dass bereits durch einfache Änderungen und Ersetzungen von 

Steuerelementen die Bedienbarkeit mit den Fingern objektiv und subjektiv deutlich verbessern lässt.   



 
123 Zusammenfassung und Ausblick 

9 Zusammenfassung und Ausblick 
 

 

Das letzte Kapitel dieser Diplomarbeit widmet sich der Übersicht über die vorangegangenen Themen, um im 

Rückblick noch einmal die wichtigsten Aspekte hervorzuheben (Kapitel 9.1). Der Abschluss bildet einen Ausblick 

über die zukünftige Weiterentwicklung der Methode und ihrer Umsetzung (Kapitel 9.2). 

 

9.1 Zusammenfassung 
 

Das Ziel dieser Diplomarbeit war es Dialoge automatisiert für die Nutzung auf berührungsempfindliche Bild-

schirme anzupassen. Dazu wurde eine Methode entwickelt, die verschiedene Dialogsprachen in eine gemein-

same Sprache überführt, damit darauf eine Transformationsvorschrift ausgeführt werden kann. Auf diese Wei-

se wandelt die Transformation den gewünschten Dialog in eine bessere mit den Fingern bedienbare Darstel-

lung um. Für die Umsetzung wurde die Methode so weit konkretisiert, dass als Ausgangs- und Zielsprache für 

Dialoge die Sprache XAML festgelegt wurde, um darauf eine Transformation mit der Hilfe von XSL (Extended 

Stylesheet) ausführen zu können.  

Die Transformation sollte in dieser Arbeit durch eine Anwendung erfolgen von der als Erstes eine Architektur 

erstellt wurde. Mit der gewählten Architektur wurde schließlich eine Anwendung mit WPF und C# entwickelt, 

welche die Transformation von XAML-Dialogen durch eine flexibel und anpassbare Transformationsvorschrift 

ermöglicht. Zusätzlich wurden externe Module (oder auch Plug-Ins) zugelassen, um in den Transformationspro-

zess eingreifen zu können. 

Um die Funktionsfähigkeit der entwickelten Methode und Anwendung zu demonstrieren, wurde zuletzt eine 

Studie durchgeführt. Für die Studie wurden zunächst einmal die notwendigen Anpassungen von Steuerelemen-

te eines Dialoges untersucht, um herauszufinden welche Steuerelemente auf welche Art für die Finger ange-

passt werden müssen. Diese Erkenntnisse wurden in Form einer parametrisierten Transformationsvorschrift 

auf zwei unterschiedliche Dialoge angewendet, welche anschließend in der Studie von den Teilnehmern ge-

prüft wurden. Die Studie ergab schlussendlich, dass die Umsetzung und die angepasste Steuerelemente eine 

Verbesserung für die Bedienung mit den Fingern darstellen. 

 

9.2 Ausblick 
 

Die Bearbeitung des Diplomarbeitsthemas erzeugte eine Menge weiterer Ideen und Möglichkeiten, die leider 

aus Zeitgründen nicht umgesetzt werden konnten. Diese sollen jedoch nicht unerwähnt bleiben, so dass die 

Ideen nicht verloren gehen und stattdessen von anderen aufgenommen und weiterentwickelt werden können.  

 

9.2.1 Die Zukunft von LATTE 

 

LATTE wurde als Prototyp entwickelt, so dass nur die grundlegendsten Funktionen enthalten sind. Daher ist 

eine Weiterentwicklung notwendig. Im Folgenden werden einige Erweiterungsmöglichkeiten beschrieben. 

 

Wer all seine Ziele erreicht, hat sie zu niedrig gewählt.  

Herbert von Karajan 
österreichischer Dirigent 



 
124 Migration und Anpassung von Dialoganwendungen für berührungsempfindliche Bildschirme 

Integrierte Entwicklungsumgebung 

 

Die Oberfläche von LATTE wurde von Grund auf mit WPF entwickelt. Es ist jedoch auch denkbar eine vorhan-

dene Entwicklungsumgebung sowie deren Funktionalität wie Quelltexteditor und Dialogdesigner wiederzuver-

wenden. Beispielsweise stellt Microsoft Visual Studio für 2010 eine umfangreiche Modulschnittstelle zur Verfü-

gung. Aber auch andere Entwicklungsumgebungen wie Eclipse stellen solche Schnittstellen bereit und können 

natürlich als Plattform für LATTE genutzt werden. Diese Umgebungen stellen bereits ein ausgeklügeltes Fens-

termanagement zur Verfügung und können außerdem den besprochenen Transformationsprozess in die Ent-

wicklung des Programms integrieren. 

 

Erweiterung der Transformationsvorschrift für XAML 

 

Die vorgestellten Abbildungen für Steuerelemente sind bei weitem nicht vollständig. Es existieren viele Steue-

relemente, die nicht erkannt werden, obwohl sie in Dialogen auftauchen könnten. Dazu zählen beispielsweise 

Register oder Kontextmenüs. Zusätzlich müssen dazu Überlegungen und Prüfungen unternommen werden, wie 

diese Elemente für die berührungsempfindliche Bedienung angepasst werden können. Es wird nie ausreichend 

sein, Steuerelemente einfach zu transformieren, ohne zu wissen, ob dies ein Vorteil für die Bedienung mit den 

Fingern sein wird. 

 

Grafischer Designer für die Dialogvorschau 

 

LATTE unterstützt die Vorschau des originalen sowie des transformierten Dialogs. Allerdings ist es nicht mög-

lich, diese Dialoge wie in Visual Studio mit der Maus zu ändern. Der Entwickler kann nur den Quelltext des 

Dialogs direkt anpassen, jedoch werden Änderungen im transformierten Quelltext immer überschrieben. Eine 

Verbesserung wäre daher, einen grafischen Designer für die Dialoge einzuführen, der zudem manuelle Ände-

rungen im Zieldialog konserviert, damit diese eine Transformation überstehen können. So können manuelle 

Änderungen des Entwicklers in LATTE direkt vorgenommen werden, ohne dass ein externer Editor notwendig 

wäre.  

 

Grafischer Designer für die Transformationsvorschrift 

 

Die Sprache XSL kann sehr aufwändig zu nutzen sein, insbesondere wenn die Abbildungsvorschrift kompliziert 

ist. Die Idee ist daher, die Sprache zu vereinfachen, indem ein grafischer Editor verwendet wird, der es dem 

Benutzer erlaubt eine Transformationsvorschrift aus vorgefertigten Bausteinen zusammen bauen zu lassen. 

Entweder kann dies durch grafische Objekte geschehen, die ähnlich UML in einem Editor zusammengesetzt 

werden oder die Erstellung einer Transformationsvorschrift wird durch Auswahl von Werten in einem Dialog 

ermöglicht. Der Dialog stellt dazu entsprechende Steuerelemente zur Verfügung, um Steueranweisungen er-

stellen zu können (z.B. Wenn-Abfrage, Schleife, Zuweisung, Zahlenwerte und Variablen). Letzteres wurde be-

reits im Blizzards Warcraft 3 Editor zur Steuerung des Spielgeschehens eingesetzt. 

 

 

Integration der Plug-Ins in LATTE 

 

Die Erstellung von Plug-Ins kann den Transformationsprozess erleichtern. Allerdings muss dazu ständig eine 

Entwicklungsumgebung gestartet sein und die notwendigen Dateien müssen in das Plug-In Verzeichnis kopiert 

werden. Mit dem Kommandozeilenprogramm msbuild von Microsoft ist es allerdings möglich Quelltexte auto-

matisiert zu kompilieren. Die quelloffenen Entwicklungsumgebung SharpDevelop für C# demonstriert dies 

bereits eindrucksvoll. Plug-Ins könnten so direkt innerhalb der LATTE Umgebung geändert und neu erstellt 



 
125 Zusammenfassung und Ausblick 

werden, ohne dass der Entwickler die Umgebung von LATTE verlassen müssten.  

 

Transformation auf der Kommandozeile 

 

Entwicklungsumgebungen für C# und andere Sprachen bieten dem Entwickler häufig die Möglichkeit weitere 

Prozesse vor und nach der Kompilation des Programms auszuführen, z.B. um die Anwendung automatisch zu 

signieren. Es ist jedoch genauso denkbar, dass die eingesetzten Dialoge noch vor der Erstellung des Programms 

transformiert werden müssen, um im Endprodukt ihren Platz zu finden. Ein Kommandozeilenprogramm für die 

Transformation von Dialogen würde diesen Prozess beschleunigen. Zudem ist es nicht immer notwendig einen 

Editor zu starten, weil z.B. die Transformationsvorschrift bereits vorliegt und nur ein oder mehrere Dialoge 

transformiert werden müssen. 

 

9.2.2 Die Zukunft der Methode 

 

Zusätzlich zu den Verbesserungen für LATTE, bietet auch die vorgestellte Methode Spielraum für weitere An-

sätze und Verbesserungen. Zwei davon sind nachstehend beschrieben. 

 

Einsatz von plattformunabhängigen Dialogbeschreibungssprachen und Modellen 

 

In der konkreten Umsetzung der Methode wurde XAML verwendet, unter anderem weil für XAML bereits eine 

Unterstützung für die Quelltextanzeige und Dialogvorschau besteht. Allerdings wäre es denkbar, auch andere 

Dialogbeschreibungssprachen zu verwenden, beispielsweise UsiXML, UIML oder XIML. Damit kann noch tiefer 

in die modellgetriebene Entwicklung eingestiegen werden. Ein Dialog existiert dann nur noch in einer abstrak-

ten Beschreibungssprache und kann nach Belieben in verschiedene Darstellungsformen entwickelt werden. In 

diesem Fall ist nicht mehr die Fingerbedienung im Vordergrund, sondern sie ist nur noch eine Möglichkeit von 

vielen, einen Dialog darzustellen. Auf diese Weise kann der gleiche Dialog auf einem Computerbildschirm, auf 

einem Smartphone, in einem Kiosksystem am Bahnhof oder in einem Altenheim benutzt werden. Die Anforde-

rungen aller Plattformen können sich dabei stark unterscheiden. Dazu zählt auch die Bedienung mit den Fin-

gern. Doch mit der modellgetriebenen Entwicklung bestimmt nur noch die Zielplattform das Aussehen des 

Dialogs, nicht mehr der Entwickler.  

 

Einsatz im Internet 

 

Mit jeder neuen Version von Windows und auch anderen Betriebssystemen, wird man ein Stück näher zur 

reinen berührungsempfindlichen Bedienung kommen. Mit der Ankündigung in Windows 8 eine komplett neue 

Benutzerschnittstelle in HTML 5 und JavaScript einzusetzen (siehe [Dow Jones & Company Inc., 2011]), könnte 

der in dieser Arbeit vorgestellte Ansatz von XAML auf HTML verlegt werden. Dies würde zudem den vielen 

Webseiten und insbesondere den Oberflächen des Cloud Computing eine bessere Bedienung mit den Fingern 

verschaffen. Das große Problem stellen jedoch die Unterschiedlichen HTML Standards sowie die vielen Tricks 

und Kniffe von Webseitenentwicklern dar, um die Oberfläche in den jeweiligen Browsers optimal darstellen zu 

können. Außerdem ist HTML 5 zum aktuellen Zeitpunkt noch nicht weit verbreitet, Windows 8 noch in der 

Entwicklung und viele Webseiten setzen auf geschlossene Formate wie Flash und Quick Time. Trotzdem liegt in 

HTML die Zukunft der Oberflächenentwicklung, denn Tablet-Computer wie das iPad werden immer kosten-

günstiger und sind daher auf dem Vormarsch. In Zukunft müssen Webdesigner mehr Wert und Aufwand in die 

berührungsempfindliche Bedienung ihrer Webseiten stecken, damit diese auch mit der neuen Gerätegenerati-

on ohne Probleme genutzt werden können (Abbildung 83).  



 
126 Migration und Anpassung von Dialoganwendungen für berührungsempfindliche Bildschirme 

 

Abbildung 83 Viele Webseiten und Cloud Anwendungen lassen sich nur schwer und nicht ohne weiteres mit den Fingern bedienen.  
Hier der Google Kalender. Diagonalverhältnis von originalem Tablet zu Bild ist 1 zu ca. 0,93. 



 
127 Literaturverzeichnis 

 

Literaturverzeichnis 

 
.NET Framework Developer Center: Windows Workflow Foundation... [Online] http://msdn.microsoft.com/en-

us/netframework/aa663328. 

Abrams, M. und Helms, J. 2004. User Interface Markup Language Specification Version 3.1. OASIS. [Online] 

2004. http://www.oasis-open.org. 

Abramson, D., Watson, G. und Dung, Le Phu. 2002. Guard: A Tool for Migrating Scientific Applications to 

the.NET Framework. 2002. 

AlexDov. 2008. XamlWriter and Bindings Serialization. [Online] 29. Juni 2008. 

http://www.codeproject.com/KB/WPF/xamlwriterandbinding.aspx. 

AndroMDA. 2011. What is AndroMDA. [Online] 2011. http://www.andromda.org/docs/whatisit.html. 

Anslow, Craig. 2010. Multi-touch Table User Interfaces for Collaborative Visual Software Analytics. Wellington : 

Victoria University of Wellington, 2010. 

Antoniol, G., et al. 1995. Application and user interface migration from BASIC to Visual C++. 11th International 

Conference on Software Maintenance (ICSM'95). 1995. 

Bandelloni, R., Bert, S. und Paternò., F. 2004. Mixed-Initiative, Trans-Modal Interface Migration. Proceedings 

Mobile HCI’04. 2004, S. 216-227. 

Bandelloni, R., Mori, G. und Paternò, F. 2007. Automatic User Interface Generation and Migration in Multi-

Device Environments. ACM Transaction on Computer-Human Interaction. 2007. 

Bandelloni, R., Paternò, F. und Santoro, C. 2008. Reverse Engineering Cross-Modal User Interfaces for 

Ubiquitous Environments. 2008. 

Barclay, P., et al. 1999. The Teallach Tool: Using Models for Flexible User Interface Design. Glasgow, 

Großbritannien : s.n., 1999. 

Berti, S., et al. 2004. TERESA: a transformation-based environment for designing and developing multi-device 

interfaces. 2004. 

Blascheck, T., Bold, D. und Muhler, D. 2010/2011. Interaktionskonzepte für Multi-Touch. Stuttgart : Universität 

Stuttgart, 2010/2011. 

Breier, F. 2010. Multitouch 3D Interaktion mit 3D Objekten. Stuttgart : s.n., 2010. 

Canfora, G., Di Santo, G. und Zimeo, E. 2004. Toward Seamless Migration of Java AWT-Based Applications to 

Personal Wireless Devices. Proceedings of the 11th Working Conference on Reverse Engineering. 2004, S. 38-47. 

Chapman, S. 2008. Windows 7 NUI: Stepping Beyond the GUI. [Online] 4. Juni 2008. 

http://msftkitchen.com/2008/06/windows-7-nui-stepping-beyond-gui.html. 

Chattopadhyay, S. 2010. WPF Simplified Part 10: WPF Framework Class Hierarchy. [Online] 10. Januar 2010. 

http://soumya.wordpress.com/2010/01/10/wpf-simplified-part-10-wpf-framework-class-hierarchy. 

Chikofsky, E.J. und Cross II, J.H. 1990. Reverse Engineering and Design Recovery: A Taxonomy. IEEE Softw. 

1990, Bd. 7, 1, S. 13-17. 



 
128 Migration und Anpassung von Dialoganwendungen für berührungsempfindliche Bildschirme 

CNET News.com. CNET News.com. [Online] http://asia.cnet.com/domino-theories-for-microsofts-surface-pc-

62033135.htm. 

CnPack. [Online] http://www.cnpack.org. 

Di Santo, G. und Zimeo, E. 2004. Reversing GUIs to XIML descriptions for the adaptation to heterogeneous 

devices. Proceedings of the 2007 ACM symposium on Applied computing. 2004, S. 1456-1460. 

Doberenz, W. und Gewinnus, T. 2008. Visual C# 2008. Frankfurt/Oder : Hanser, 2008. 

Dow Jones & Company Inc. 2011. Microsoft Windows President Steven Sinofsky Introduces the New Look of 

Windows. [Online] 1. Juni 2011. http://allthingsd.com/20110601/up-next-at-d9-microsoft-windows-president-

steven-sinofsky-live-at-d9/. 

Draheim, D., Lutteroth, C. und Weber, G. 2006. Graphical user interfaces as documents. Proceedings of the 7th 

ACM SIGCHI New Zealand chapter's international conference on Computer-human interaction: design centered 

HCI. 2006. 

Erlenkötter, H. und Reher, V. 1997. C++ für Windows 95/NT. Hamburg : Rowohlt, 1997. 

Experience Dynamics. User Interface Style Guides. http://www.experiencedynamics.com/science-usability/ui-

style-guides. [Online]  

Fischer, P. und Hofer, P. 2008. Lexikon der Informatik. [Hrsg.] Springer. 14. Luzern : s.n., 2008. 

Foley, J. und Sukaviriya, N. 1995. Results, and Bibliography of the User Interface Design Environment (UIDE), 

an Early Model-Based System for User Interface Design and Implementation. Interactive Systems: Design, 

Specification, and Verification. 1995, S. 3-10. 

Fraunhofer IAO. 2009. Studie Multi-Touch. [Dokument] 2009. 

Geis, T. 2006. ProContext - The new ISO 9241-110 "Dialogue principles". [Online] 11. August 2006. 

http://www.procontext.com/en/news/2006-08-11.html. 

Georges, F. 2007. Nightly thoughts (Blog). [Online] 18. Januar 2007. 

http://fgeorges.blogspot.com/2007/01/creating-namespace-nodes-in-xslt-10.html. 

Gerdes, J. 2009. User Interface Migration of Microsoft Windows Applications. Journal of Software Maintenance 

and Evolution: Research and Practice. 3, 2009, Bd. 21, S. 171–187. 

GExperts. Programming Tools For Delphi and C++ Builder. [Online] http://www.gexperts.org. 

Gleeson, M., Stanger, N. und Ferguson, E. 2004. Design strategies for GUI items with touch screen based 

information systems: assessing the ability of a touch screen overlay as a selection device. [Hrsg.] University of 

Otago. Information Science Discussion Papers Series. 2004. 

Grilo, A.M.P., Paiva, A.C.R. und Faria, J.P. 2007. Reverse Engineering of GUI Models. FMICS'07 Proceedings of 

the 12th international conference on Formal methods for industrial critical systems. 2007. 

Grolaux, D. 2004. Migratable User Interfaces: Beyond Migratory User Interfaces. MOBIQUITOUS IEEE Computer 

Society Press, Los Alamitos. 2004, S. 22-25. 

Han, J. Y. 2005. Low-Cost Multi-Touch Sensing through Frustrated Total Internal Reflection. Proceedings of the 

18th annual ACM symposium on User interface software and technology. 2005. 

Heinecke, A. M. 2004. Mensch- Computer- Interaktion. s.l. : Fachbuchverlag Leipzig, 2004. 



 
129 Literaturverzeichnis 

 

HIIS Laboratory. MARIA. [Online] http://giove.isti.cnr.it/tools/MARIA/home. 

—. MARIAE. [Online] http://giove.isti.cnr.it/tools/MARIAE/home. 

—. 2010. Tools - MARIA, MARIAE, CTT, ReverseMARIA und andere. [Online] 2010. 

http://giove.isti.cnr.it/tools.php. 

Hillberg, M. 2006. Data See, Data Do - Being written by XamlWriter. [Online] 16. 9 2006. 

http://blogs.msdn.com/b/mikehillberg/archive/2006/09/16/xamlwriter.aspx. 

Hitchcock, G. 2005. Where does 96 DPI come from in Windows? [Online] Where does 96 DPI come from in 

Windows?, 8. Oktober 2005. http://blogs.msdn.com/b/fontblog/archive/2005/11/08/490490.aspx. 

Holman, D. und Vertegaal, R. 2008. Organic user interfaces: designing computers in any way, shape, or form. 

Communications of the ACM - Organic user interfaces. 2008, Bd. 51, 6. 

Holz, C. und Baudisch, P. 2011. Understanding Touch. Potsdam, Germany : Hasso Plattner Institute, 2011. 

IC#Code. 2009. SharpDevelop. [Online] 2009. http://www.icsharpcode.net. 

John, Jr., G. 2009. User Interface Migration of Microsoft Windows Applications. Journal of Software 

Maintenance and Evolution: Research and Practice. 2009, Bd. 21, 3, S. 171-187. 

Koller, F. und Burmester, M. 2010. Technik natürlich nutzen – NUI-Design in der Praxis. s.l. : Usability 

Professionals, 2010. 

Köth, Y. 2001. User Interface für ein generisches Modellierungswerkzeug. Dresden : Technische Universität 

Dresden, 2001. 

Krasner, G.E. und Pope, S.T. 1988. A Cookbook for Using the Model-View-Controller User Interface Paradigm in 

Smalltalk-80. Journal of Object-Oriented Programming, SIGS Publication. 5, 1988, S. 26-49. 

Kwon, S., Lee, D. und Chung, Min K. 2009. Effect of key size and activation area on the performance of a 

regional error correction method in a touch-screen QWERTY keyboard. International Journal of Industrial 

Ergonomics. 2009, Bd. 39, 5, S. 888-893. 

Leymann, F. 2008. MDA. [PDF] Stuttgart : Institute of Architecture of Application Systems, 2008. 

Lovett, C. 2006. Microsoft XML Team's WebLog. [Online] 16. November 2006. 

http://blogs.msdn.com/b/xmlteam/archive/2007/11/16/chris-lovett-interview.aspx. 

Ludewig, J. und Lichter, H. 2007. Software Engineering. Stuttgart : dpunkt.verlag, 2007. 

Lutteroth, C. 2008. Automated Reverse Engineering of Hard-Coded GUI Layouts. AUIC '08 Proceedings of the 

ninth conference on Australasian user interface. 2008, Bd. 76. 

MacDonald, M. 2010. Pro WPF in C# 2010. 1. New York : Apress, 2010. 

Machate, J. 2003. User Interface Tuning. Frankfurt : Software & Support Verlag, GmbH, 2003. 

Mangano, S. 2006. XSLT Kochbuch. 2. Köln : O'Reilly, 2006. 

Matejka, J., et al. 2009. The Design and Evaluation of Multi-Finger Mouse Emulation Techniques. CHI '09 

Proceedings of the 27th international conference on Human factors in computing systems. 2009. 

Mauney, D. 2010. TouchThinking - Gesture Research Part 1 - 4. [Online] 20. Mai 2010. 

http://www.touchthinking.com. 



 
130 Migration und Anpassung von Dialoganwendungen für berührungsempfindliche Bildschirme 

Meixner, G. und Görlich, D. 2008. Aufgabenmodellierung als Kernelement eines nutzerzentrierten 

Entwicklungsprozesses für Bedienoberflächen. Kaiserslautern : s.n., 2008. 

Microsoft. 2011. About Task Dialogs. [Online] 2011. http://msdn.microsoft.com/en-

us/library/bb760441%28VS.85%29.aspx. 

—. 2011. Add-ins and Extensibility. [Online] 2011. http://msdn.microsoft.com/de-de/library/bb384200.aspx. 

—. 2011. Application Domains Overview. [Online] 2011. http://msdn.microsoft.com/en-

us/library/2bh4z9hs%28VS.71%29.aspx. 

—. 2011. Attributes. [Online] 2011. http://msdn.microsoft.com/en-us/library/z0w1kczw.aspx. 

—. 2011. Dependency Properties Overview. [Online] 2011. http://msdn.microsoft.com/en-

us/library/ms752914.aspx. 

—. 2009. Microsoft News Center. [Online] 2009. 

http://www.microsoft.com/presspass/features/2009/Apr09/04-06SurfaceHIMSS2.mspx. 

—. MSDN Developer Center - CONTROL Control. [Online] http://msdn.microsoft.com/en-

us/library/aa380911%28VS.85%29.aspx. 

—. MSDN Library: Touch (Gestaltungsrichtlinie). http://msdn.microsoft.com/en-us/library/cc872774.aspx. 

[Online]  

—. MSDN Library: Windows Touch SDK. http://msdn.microsoft.com/en-

us/library/dd562197%28VS.85%29.aspx. [Online]  

—. 2011. Resource-Definition Statements. [Online] 19. April 2011. http://msdn.microsoft.com/en-

us/library/aa381043%28VS.85%29.aspx. 

—. 2011. Serialization Limitations of XamlWriter.Save. [Online] 2011. http://msdn.microsoft.com/de-

de/library/ms754193.aspx. 

—. 2003. UNIX Application Migration Guide. Redmond : s.n., 2003. 

—. Windows SDK. [Online] http://msdn.microsoft.com/de-de/windows/bb980924. 

—. 2009. WPF-Anwendungen mit dem Model-View-ViewModel-Entwurfsmuster. MSDN Magazin. 2009, 

Februar. 

Miller, J. und Mukerji, J. 2003. MDA Guide Version 1.01. [PDF] s.l. : OMG, 2003. omg/2003-06-01. 

Moore, M. M. und Rugaber, S. 1993. Issues in User Interface Migration. Proceeding of 3rd Internation Software 

Engineering Research Forum. 1993. 

Moore, M. 1995. Reverse Engineering User Interfaces - A Technique. Proceedings of the 1995 Software 

Developer's Conference. 1995. 

MSDN. 2011. ObservableCollection. [Online] 2011. http://msdn.microsoft.com/de-de/library/ms668604.aspx. 

Musgrave, D. 2009. MSDN Blogs: Windows 7, bitmap fonts and Microsoft Dynamics GP. [Online] Microsoft, 24. 

November 2009. http://blogs.msdn.com/b/developingfordynamicsgp/archive/2009/11/25/windows-7-bitmap-

fonts-and-microsoft-dynamics-gp.aspx. 



 
131 Literaturverzeichnis 

 

Novak, J. und Schmidt, S. 2009. When joy matters: the importance of hedonic stimulation in collocated 

collaboration with large-displays. 12th IFIP TC 13 International Conference. 2009, 5727, S. 618-629. 

OMG. 2008. MOF - Model to Text Transformation Language. [Online] Januar 2008. 

http://www.omg.org/spec/MOFM2T. 

—. 2011. QVT - Query/View/Transformation. [Online] Januar 2011. http://www.omg.org/spec/QVT. 

Oracle. Netbeans. [Online] http://netbeans.org. 

Parhi, P. und Oulu, M. 2006. Target Size Study for One-Handed Thumb Use on Small Touchscreen Devices. In 

Proc. MobileHCI 2006. 2006, S. 203-210. 

Paternò, F. 2005. Model-based tools for pervasive usability. Interacting with Computers. 2005, Bd. 17, S. 291-

315. 

Paternò, F., Mancini, C. und Meniconi, S. 1997. ConcurTaskTrees: A Diagrammatic Notation for Specifying Task 

Models. INTERACT '97 Proceedings of the IFIP TC13 Interantional Conference on Human-Computer Interaction. 

1997. 

Paternò, F., Santoro, C. und Scorcia, A. 2008. User Interface Migration between Mobile Devices and Digital TV. 

2nd Conference on Human-Centered Software Engineering. 2008, S. 287-292. 

Paternò, F., Santoro, C. und Spano, Lucio D. 2009. MARIA: A Universal, Declarative, Multiple Abstraction-Level 

Language for Service-Oriented Applications in Ubiquitous Environments. [Hrsg.] ACM. Transactions on 

Computer-Human Interaction. November 2009, Bd. 16, 4, S. 30. 

Paulenz, M.D. 2010. Modellgestütztes End-User-Development für Multi-Touch-Benutzungsschnittstellen. 

Stuttgart : s.n., 2010. 

Pavlovic, V.I., Sharma, R., Huang, T.S. 1997. Visual Interpretation of Hand Gestures for Human-Computer 

Interaction: A Review. IEEE TPAMI. 1997, S. 677–695. 

Petzold, C. 1999. Windows Programmierung. 5. s.l. : Microsoft Press, 1999. 

Plaisant, C. und Wallace, D. 1992. Touchscreen toggle design. Proceedings of the SIGCHI conference on Human 

factors in computing systems. 1992, S. 667-668. 

Porteck, S. 2011. Anfassbar - Sieben Touchscreen-Monitore ab 22 Zoll. c't - Magazin für Computer Technik. 

2011, 5. 

Rädle, R. 2009. Squidy - A Zoomable Design Environment for Natural User Interfaces. In CHI EA '09: Proceedings 

of the 27th international conference extended abstracts on Human factors in computing systems. 2009, S. 4561-

4566. 

Raschke, M., et al. 2010. Evaluation of different interaction techniques for touch devices. Stuttgart : Universität 

Stuttgart, 2010. 

Richter, B. 2007. An XAML Serializer Preserving Bindings. [Online] 1. November 2007. 

http://www.codeproject.com/KB/WPF/XamlSerializer.aspx. 

Roth, Tim. 2008. MultiTouch Dev Blog. [Online] 9. Juni 2008. http://iad.projects.zhdk.ch/multitouch/?p=90. 

Rozlog, M. 2009. DevX.com - Top Five Touch UI-Related Design Guidelines. [Online] 2. November 2009. 

http://www.devx.com/enterprise/Article/43185. 



 
132 Migration und Anpassung von Dialoganwendungen für berührungsempfindliche Bildschirme 

Salminen, T., Hosio, S. und Riekki, J. 2007. Middleware based user interface migration: implementation and 

evaluation. 4th International Conference on Mobile Technology. 2007, S. 358-363. 

Sánchez Ramón, Ó., Sánchez Cuadrado, J. und García Molina, J. 2010. Model-Driven Reverse Engineering of 

Legacy Graphical User Interfaces. Proceedings of the IEEE/ACM international conference on Automated 

software engineering. 2010, S. 147-150. 

Saxonica Limited. 2010. The XSLT and XQuery Processor. [Online] 30. Oktober 2010. 

http://saxon.sourceforge.net/. 

Schlegel, T., et al. 2010. Evaluation of current User Interface Generator Frameworks for Graphical Interactive 

Systems. IADIS International Conferences Interfaces and Human Computer Interaction and Game and 

Entertainment Technologies. 2010, S. 385-390. 

Schmid, D. 2010. Modellgetriebene generative Softwareentwicklung. [Vorlesung] Karlsruhe : s.n., 2010. 

“Entwurf eingebetteter Systeme”. 

Schmidt, T. 2008. Interaction Concepts for Multi-Touch User Interfaces: Design and Implementations. Konstanz : 

Universität Konstanz, 2008. 

Schöning, J., et al. 2008. Multi-Touch Surfaces: A Technical Guide. München, Deutschland : s.n., 2008. 

Sears, A. und Shneiderman, B. 1991. High Precision Touchscreens: Design Strategies and Comparisons with a 

Mouse. International Journal of Man-Machine Studies. 1991, 34, S. 593-613. 

Seidewitz, E. 2003. What models mean. Software IEEE. Sept.-Okt. 2003, Bd. 20, 5, S. 26-32. 

Stackoverflow. 2009. What is the current state of XSLT 2.0 availability within .NET. [Online] 6. Mai 2009. 

http://stackoverflow.com/questions/831300/what-is-the-current-state-of-xslt-2-0-availability-within-

net/831321#831321. 

Stewart, C., et al. 2006. EXSLT Downloads. [Online] 2006.  

Sun. 2005. The Java Language Specification. 3. California, U.S.A. : Addison-Wesley, 2005. 

TCS. ModelMorf - A Model Transformer. [Online] http://www.tcs-

trddc.com/trddc_website/ModelMorf/ModelMorf.htm. 

Tefkat. Tefkat - The EMF Transformation Engine. [Online] http://tefkat.sourceforge.net. 

The Eclipse Foundation. Eclipse Modeling Project. [Online] http://www.eclipse.org/modeling. 

tiresias.org. 2009. Touchscreens. [Online] 20. November 2009. 

http://www.tiresias.org/research/guidelines/touch.htm. 

Tyco Electronics. 2010. Funktionsweise von AccuTouch-Touchscreens. [Online] 2010. 

http://www.elotouch.de/Produkte/Touchscreens/AccuTouch/accworks.asp. 

Unidex Inc. 2001. Universal Turing Machine in XSLT. [Online] Unidex, 2001. 

http://www.unidex.com/turing/utm.htm. 

USIXML. USIXML - USer Interface eXtensible Markup Language. [Online] http://www.usixml.org. 

VISAM. Touchscreen Technik. [Online] http://www.visam.de/04_service/touch.php. 



 
133 Literaturverzeichnis 

 

W3C. 2009. W3C Wiki. [Online] 2009. schreibgeschütztes Wiki. http://www.w3.org/2005/Incubator/model-

based-ui/wiki/ConcurTaskTrees. 

—. 1999. XPath 1.0 Specification. [Online] 1999. http://www.w3.org/TR/xpath/. 

—. 1999. XSL Transformations (XSLT) 1.0. [Online] 1999. http://www.w3.org/TR/1999/REC-xslt-19991116. 

—. 2007. XSL Transformations (XSLT) Version 2.0. [Online] 2007. http://www.w3.org/TR/xslt20/. 

W3Schools. 2011. XPath. [Online] 2011. http://www.w3schools.com/XPath. 

—. 2011. XSLT. [Online] 2011. http://www.w3schools.com/xsl/. 

Wang, X., Ghanam, Y. und Maurer, F. 2008. From Desktop to Tabletop: Migrating the User Interface of 

AgilePlanner. Pisa, Italien : Springer-Verlag, 2008. S. 263-270. 

Watson, K. 2011. All About Digital Photos - The Myth of DPI. [Online] 2011. http://www.rideau-

info.com/photos/mythdpi.html. 

Wessel, I. 2002. GUI-Design. 2. Berlin : Hanser, 2002. 

Wikipedia. 2011. Model-driven architecture. [Online] Permanent Revision ID: 417932142, 2011. 

http://en.wikipedia.org/w/index.php?title=Model-driven_architecture&oldid=417932142. 

Wong, C., Chu, H. und Katagiri, M. 2002. GUI Migration across Heterogenous Java Profiles. In Proceeding of the 

ACM SIGCHI-NZ’02. 2002. 

 

Alle Onlinequellen wurden zuletzt am 27. August 2011 geprüft.  

 

  



 
134 Migration und Anpassung von Dialoganwendungen für berührungsempfindliche Bildschirme 

Anhang 
 

Steuerelementname Engl. Bezeichner Symbol Beschreibung 

Befehlsschaltfläche, 
Schaltknopf,  
(Druck-)Schalter 

button 

 

Ein Schalter zum Auslösen einer 
Aktion. 

Textfeld,  
Texteingabe, 
Eingabefeld 

edit, edit box, 
textbox 

 

Ein Feld zur Eingabe von beliebigen 
textuellen Werten. 

Dropdown-Listenfeld combobox 

 

Ein spezielles Eingabefeld mit 
Auswahlmöglichkeit aus einer 
Menge von vorgegebenen Werten. 
Es kann auch nur auf diese 
beschränkt sein. 

Listenfeld, Liste listbox 

 

Eine Menge von Elementen, die zur 
Auswahl stehen. Auch 
Mehrfachauswahl ist möglich.  

Statisches Textfeld, 
Label 

statictext, 
textblock, label  

Ein Anzeigeelement zur Ausgabe 
von Texten, Werten und 
Beschriftungen. 

Rahmen groupbox, frame 

 

Ein visuelles Element zur Gruppie-
rung von Elementen. 

Kontrollkästchen checkbox 
 

Ein boolesches Eingabeelement. 

Optionsfeld radiobutton 

 

Ein boolesches Eingabeelement, 
das abhängig von weiteren Opti-
onsfeldern geschaltet wird. 

Schiebregler slider 

 

Ein Regler zur Eingabe von Werten 
innerhalb bestimmter Grenzen. 

Bildlaufleiste scrollbar 
 

Ein Steuerelement zur Änderung 
des sichtbaren Ausschnitts. 

Baumansicht treeview 

 

Ein Steuerelement, dessen Werte 
in einer hierarchischen 
Baumansicht dargestellt sind. 

Listenansicht listview 

 

Ein Steuerelement, das Objekte mit 
deren Eigenschaften darstellen 
kann. 

Register tabcontrol 

 

Ein Containerelement, das Inhalte 
durch Karteireiter trennt. 

Drehfeld spinedit 

 

Ein Textfeld zur Eingabe eines 
Zahlenwertes, der neben der 
direkten Eingabe auch durch Auf- 
und Abwärtsschalter erhöht oder 
verkleinert werden kann. 

Tabelle 17 Steuerelemente: Bezeichnung, Symbol und Kurzbeschreibung basierend auf [Petzold, 1999], [Erlenkötter, et al., 1997] und 
[Wessel, 2002] 

  



 
135 Anhang 

Steuerelementname Embarcadero 
Delphi Element 

Ressource Elemente  
(MFC Klasse) 

XAML Element 

Befehlsschaltfläche, 
Schaltknopf,  
(Druck-)Schalter 

TButton PUSHBUTTON 
(CButton) 

Button 

Textfeld,  
Texteingabe, 
Eingabefeld 

TEdit/TMemo EDITTEXT 
(CEdit) 

TextBox 

Dropdown-Listenfeld TComboBox COMBOBOX 
(CComboBox) 

ComboBox 

Listenfeld, Liste TListBox LISTBOX 
(CListBox) 

ListBox 

Statisches Textfeld, 
Label 

TStaticText 
TLabel 

CTEXT, LTEXT,RTEXT 
(CStaticText) 

TextBlock 
Label 

Rahmen TGroupBox GROUPBOX 
(CStatic) 

GroupBox 

Kontrollkästchen TCheckBox CONTROL  
(CButton) 

CheckBox 

Optionsfeld TRadioButton CONTROL  
(int ) 

RadioButton 

Schiebregler TSlider CONTROL  
(CSliderCtrl) 

Slider 

Bildlaufleiste TScrollBar/ 
TScrollbox 

SCROLLBAR 
(CScrollBar) 

ScrollBar/ScrollViewer 

Baumansicht TTreeView CONTROL  
(CTreeCtrl) 

TreeView 

Listenansicht TListView CONTROL  
(CListCtrl) 

ListView 

Register TTabControl CONTROL  
(CTabCtrl) 

TabControl 

Benutzerdefiniertes 
Element 

TControl CONTROL  UserControl 

  Aus Resource-Definition Statements: [Microsoft, 2011] 
  Das generische CONTROL Element wird zur Laufzeit durch ein mit Name registriertes Steuerelement ersetzt 
(CONTROL: [Microsoft]) 
  Jedes Optionsfeld wird in MFC als Bitkombinationswert einer Ganzzahl (int) betrachtet. 
Tabelle 18 Abbildungstabelle für Steuerelemente von Delphi, Dialog Ressource und XAML 

  



 
136  Migration und Anpassung von Dialoganwendungen für berührungsempfindliche Bildschirme 

 

 

Abbildung 84 Sequenzdiagramm des implementierten Transformationsprozesses 



 
137Anhang 

 

Abbildung 85 Plug‐In Methoden Aufruf mit MAF am Beispiel von PreProcessing 

 

   

LATTE_Host.View Plugin LATTE_Host.Adapter LATTE_AddIn.Adapters Plugin implementiert  
LATTE_AddIn.ViewTransformationEngine AppDomain Border

bool PreProcessing(ref XmlDocument, XmlNamespaceManager)

<<return bool, ref XmlDocument>>

bool PreProcessing(ref XmlDocument, XmlNamespaceManager)

<<return bool, , ref XmlDocument>>

Stream PreProcessing(Stream, Stream)

<<return Stream>>

bool PreProcessing(ref XmlDocument, XmlNamespaceManager)

<<return bool>>

Converters.XmlDocumentToStream()

Converters.XmlNamespaceManagerToStream()

Converters.XmlDocumentToStream()

Converters.XmlDocumentFromStream()

Converters.XmlNamespaceManagerFromStream()

Converters.XmlDocumentFromStream()

Stream.WriteByte(returnValue)

returnValue = Stream.ReadByte()

Host Seite Plug-In Seite

XmlDocument wird als Referenz  
Parameter (ref) übergeben



 
138 Migration und Anpassung von Dialoganwendungen für berührungsempfindliche Bildschirme 

1 <Window xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation" 

2         xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml" 

3         Title="Confirmation" 

4         SizeToContent="WidthAndHeight"> 

5 
 6     <Window.Resources> 

7         <x:Array xmlns:sys="clr-namespace:System;assembly=mscorlib" 

8                  x:Key="FileItems" 

9                  Type="{x:Type sys:String}"> 

10             <sys:String>Readme.txt</sys:String> 

11             <sys:String>ImportantBusiness.doc</sys:String> 

12             <sys:String>HotHotHot.jpg</sys:String> 

13             <sys:String>Dealer.xls</sys:String> 

14         </x:Array> 

15     </Window.Resources> 

16     <StackPanel Margin="10"> 

17         <Label Name="label1" Width="309" Height="29" 

18                Content="The following tasks are left? What do you want to do?" /> 

19         <ListBox Name="listBox1" Width="309" Height="73" 

20                  ItemsSource="{Binding Source={StaticResource FileItems}}" 

21                  SelectionMode="Extended" /> 

22         <CheckBox Name="checkBox4" Width="306" Height="16" 

23                   Content="De-/Select them all" 

24                   IsChecked="{x:Null}" 

25                   IsThreeState="True" /> 

26         <RadioButton Name="checkBox1" Width="123" Height="16" 

27                      Content="Save selected one" /> 

28         <RadioButton Name="checkBox2" Width="123" Height="16" 

29                      Content="Save them all" /> 

30         <RadioButton Name="checkBox3" Width="123" Height="16" 

31                      Content="Release them all" /> 

32         <StackPanel HorizontalAlignment="Center" Orientation="Horizontal"> 

33             <Button Name="button2" Width="41" Height="23" 

34                     Margin="0,0,5,0" Content="Ok" /> 

35             <Button Name="button1" Width="55" Height="23" 

36                     Content="Cancel" /> 

37         </StackPanel> 

38     </StackPanel> 

39 </Window> 
Quelltext 45 Ausgangsdialog für die Transformation in Kapitel 7.5.2 

  



 
139 Anhang 

1 <Window Title="Confirmation" SizeToContent="WidthAndHeight"  

2   xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"  

3   xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"  

4   xmlns:touch="clr-namespace:LATTE_Resources;assembly=LATTE_Resources"  

5   xmlns:xamlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"> 

6   <Window.Resources> 

7     <x:Array x:Key="FileItems" Type="{x:Type sys:String}"  

8       xmlns:sys="clr-namespace:System;assembly=mscorlib"> 

9       <sys:String>Readme.txt</sys:String> 

10       <sys:String>ImportantBusiness.doc</sys:String> 

11       <sys:String>HotHotHot.jpg</sys:String> 

12       <sys:String>Dealer.xls</sys:String> 

13     </x:Array> 

14   </Window.Resources> 

15   <StackPanel Margin="10"> 

16     <Label Name="label1" Width="309" Height="29"  

17       Content="The following tasks are left? What do you want to do?" /> 

18     <ListBox Name="listBox1" Width="373" Height="137" 

19       ItemsSource="{Binding Source={StaticResource FileItems}}"  

20       SelectionMode="Extended"> 

21       <ListBox.ItemTemplate> 

22         <DataTemplate> 

23           <TextBlock Text="{Binding Path=.}" Height="30" /> 

24         </DataTemplate> 

25       </ListBox.ItemTemplate> 

26     </ListBox> 

27     <touch:CheckBoxTouchSwitcher Name="checkBox4"  

28       Width="322" Height="32" Content="De-/Select them all"  

29       IsChecked="{x:Null}" IsThreeState="True" /> 

30     <RadioButton Name="checkBox1" Width="139" Height="32" 

31       Content="Save selected one" /> 

32     <RadioButton Name="checkBox2" Width="139" Height="32"  

33       Content="Save them all" /> 

34     <RadioButton Name="checkBox3" Width="139" Height="32"  

35       Content="Release them all" /> 

36     <StackPanel HorizontalAlignment="Center" Orientation="Horizontal"> 

37       <Button Name="button2" Width="57" Height="39"  

38         Margin="0,0,5,0" Content="Ok" /> 

39       <Button Name="button1" Width="71" Height="39"  

40         Content="Cancel" /> 

41     </StackPanel> 

42   </StackPanel> 

43 </Window> 
Quelltext 46 Quelltext des transformierten Beispieldialogs aus Kapitel 6.3.2 

  



 
140 Migration und Anpassung von Dialoganwendungen für berührungsempfindliche Bildschirme 

Eingangsfragen 

Alter:   ______ F1 

 

Geschlecht :   F2 

W Weiblich M männlich 

 

Wie lange in der Woche nutzen Sie einen PC zum Arbeiten, im Internet surfen, spielen usw.? 
(Mehrfachnennung möglich) 

F3 

A gar nicht D 3 bis 4 Stunden 

B weniger als eine Stunde E 4 bis 10 Stunden 

C 1 bis 2 Stunden F mehr als 10 Stunden 

 

Welche berührungsempfindlichen Geräte haben Sie bereits einmal genutzt?  
(Mehrfachnennung möglich) 

F4 

A gar keine F Öffentliche Systeme (Fahrkartenautomat) 

B Smpartphone / Mobiltelefon G Navigationsgeräte 

C Tablet-PC mit Tastatur H Kopiergeräte und/oder Drucker 

D Tablet-PC (z.B. iPad) ohne Tastatur I 
Berührungsempfindlicher Monitor mit Standfuß 
(TFT, LCD usw.) für PC 

E sonstige, bitte unten angeben J Laptop mit berührungsempfindlichen Bildschirm 

 

 

 

Welche berührungsempfindlichen Geräte nutzen Sie regelmäßig? 
(Mehrfachnennung möglich) 

F5 

A gar keine F Öffentliche Systeme (Fahrkartenautomat) 

B Smpartphone / Mobiltelefon G Navigationsgeräte 

C Tablet-PC mit Tastatur H Kopiergeräte und/oder Drucker 

D Tablet-PC (z.B. iPad) ohne Tastatur I 
Berührungsempfindlicher Monitor mit Standfuß 
(TFT, LCD usw.) für PC 

E sonstige, bitte unten angeben J Laptop mit berührungsempfindlichen Bildschirm 

 

  



 
141 Anhang 

 Wie lange nutzen Sie Ihr berührungsempfindliches Gerät pro Woche? (Nur ein Kästchen ausfüllen) F6 

A gar nicht D 3 bis 4 Stunden 

B weniger als eine Stunde E 4 bis 10 Stunden 

C 1 bis 2 Stunden F mehr als 10 Stunden 

 

Welche der folgenden Softwaretypen haben Sie bereits mehrmals genutzt? F7 

A gar keine D Medienwiedergabe (Musik, DVD usw.) 

B Bildbearbeitung / CAD / Videoschnitt E Programmierumgebung (IDE) 

C Textverarbeitung / Office-Anwendung F Internet-Browser 

 

Welche der folgenden Systeme haben Sie bereits für Spiele benutzt? (Mehrfachnennung möglich) F8 

A gar keine F XBox ohne Kinect (Kamerasteuerung) 

B Nintendo DS/3DS  G XBox mit Kinect (Kamerasteuerung) 

C Nintendo Wii H Handy 

D Playstation 3 ohne Kamera I PC 

E Playstation 3 mit Kamera 

 

Welche Erwartungen haben Sie an die Bedienung eines berührungsempfindlichen Bildschirms am Desk-
top-PC / Laptop? 

F9 

 

 

 

 

 

  



 
142 Migration und Anpassung von Dialoganwendungen für berührungsempfindliche Bildschirme 

Aufgabe Ö 1 

Wie beurteilen Sie die Bedienung des Dialogs während der gesamten Aufgabe? 
(Pro Reihe maximal ein Kreuz) 

F14 

Frustrierend 1 2 3 4 5 6 7 8 Motivierend 

Langweilig 1 2 3 4 5 6 7 8 Stimulierend / Spannend 

Schwierig 1 2 3 4 5 6 7 8 Leicht 

Reagiert langsam 1 2 3 4 5 6 7 8 Reagiert schnell 

Ungewohnt 1 2 3 4 5 6 7 8 Gewohnt 

Körperlich sehr anstrengend 1 2 3 4 5 6 7 8 Körperlich kaum anstrengend 

 

Bitte bewerten Sie die Aufgabe nach den folgenden Kriterien: 
(Pro Reihe maximal ein Kreuz) 

F15 

Die optische Darstellung des Dialogs gefiel 
mir. 

Trifft nicht 
zu 

1 2 3 4 5 6 7 8 Trifft zu 

Ich konnte Steuerelemente einfach tref-
fen/anklicken/antippen. 

Trifft nicht 
zu 

1 2 3 4 5 6 7 8 Trifft zu 

Der Einsatz von Maus/Finger in dieser Auf-
gabe fiel mir leicht. 

Trifft nicht 
zu 

1 2 3 4 5 6 7 8 Trifft zu 

 

Wie beurteilen Sie die Bedienung des Steuerelements Listenfeld (Dateianzeige), wenn vorhanden, wäh-
rend der Aufgabe? (Pro Reihe maximal ein Kreuz) (Aufgaben Ö1, Ö2, Ö3, Ö4, Ö5) 

F16 

Frustrierend 1 2 3 4 5 6 7 8 Motivierend 

Langweilig 1 2 3 4 5 6 7 8 Stimulierend / Spannend 

Schwierig 1 2 3 4 5 6 7 8 Leicht 

Reagiert langsam 1 2 3 4 5 6 7 8 Reagiert schnell 

Ungewohnt 1 2 3 4 5 6 7 8 Gewohnt 

Körperlich sehr anstrengend 1 2 3 4 5 6 7 8 Körperlich kaum anstrengend 

 

Wie beurteilen Sie die Bedienung des Steuerelements Baumansicht (Ordneranzeige), wenn vorhanden, 
während der Aufgabe? (Pro Reihe maximal ein Kreuz) (Aufgaben Ö1, Ö2) 

F17 

Frustrierend 1 2 3 4 5 6 7 8 Motivierend 

Langweilig 1 2 3 4 5 6 7 8 Stimulierend / Spannend 

Schwierig 1 2 3 4 5 6 7 8 Leicht 

Reagiert langsam 1 2 3 4 5 6 7 8 Reagiert schnell 

Ungewohnt 1 2 3 4 5 6 7 8 Gewohnt 

Körperlich sehr anstrengend 1 2 3 4 5 6 7 8 Körperlich kaum anstrengend 

 



 
143 Anhang 

Aufgabe Ö 2 

Wie beurteilen Sie die Bedienung des Dialogs während der gesamten Aufgabe? 
(Pro Reihe maximal ein Kreuz) 

F14 

Frustrierend 1 2 3 4 5 6 7 8 Motivierend 

Langweilig 1 2 3 4 5 6 7 8 Stimulierend / Spannend 

Schwierig 1 2 3 4 5 6 7 8 Leicht 

Reagiert langsam 1 2 3 4 5 6 7 8 Reagiert schnell 

Ungewohnt 1 2 3 4 5 6 7 8 Gewohnt 

Körperlich sehr anstrengend 1 2 3 4 5 6 7 8 Körperlich kaum anstrengend 

 

Bitte bewerten Sie die Aufgabe nach den folgenden Kriterien: 
(Pro Reihe maximal ein Kreuz) 

F15 

Die optische Darstellung des Dialogs gefiel 
mir. 

Trifft nicht 
zu 

1 2 3 4 5 6 7 8 Trifft zu 

Ich konnte Steuerelemente einfach tref-
fen/anklicken/antippen. 

Trifft nicht 
zu 

1 2 3 4 5 6 7 8 Trifft zu 

Der Einsatz von Maus/Finger in dieser Auf-
gabe fiel mir leicht. 

Trifft nicht 
zu 

1 2 3 4 5 6 7 8 Trifft zu 

 

Wie beurteilen Sie die Bedienung des Steuerelements Listenfeld (Dateianzeige), wenn vorhanden, wäh-
rend der Aufgabe? (Pro Reihe maximal ein Kreuz) (Aufgaben Ö1, Ö2, Ö3, Ö4, Ö5) 

F16 

Frustrierend 1 2 3 4 5 6 7 8 Motivierend 

Langweilig 1 2 3 4 5 6 7 8 Stimulierend / Spannend 

Schwierig 1 2 3 4 5 6 7 8 Leicht 

Reagiert langsam 1 2 3 4 5 6 7 8 Reagiert schnell 

Ungewohnt 1 2 3 4 5 6 7 8 Gewohnt 

Körperlich sehr anstrengend 1 2 3 4 5 6 7 8 Körperlich kaum anstrengend 

 

Wie beurteilen Sie die Bedienung des Steuerelements Baumansicht (Ordneranzeige), wenn vorhanden, 
während der Aufgabe? (Pro Reihe maximal ein Kreuz) (Aufgaben Ö1, Ö2) 

F17 

Frustrierend 1 2 3 4 5 6 7 8 Motivierend 

Langweilig 1 2 3 4 5 6 7 8 Stimulierend / Spannend 

Schwierig 1 2 3 4 5 6 7 8 Leicht 

Reagiert langsam 1 2 3 4 5 6 7 8 Reagiert schnell 

Ungewohnt 1 2 3 4 5 6 7 8 Gewohnt 

Körperlich sehr anstrengend 1 2 3 4 5 6 7 8 Körperlich kaum anstrengend 

 



 
144 Migration und Anpassung von Dialoganwendungen für berührungsempfindliche Bildschirme 

Aufgabe Ö 3 

Wie beurteilen Sie die Bedienung des Dialogs während der gesamten Aufgabe? 
(Pro Reihe maximal ein Kreuz) 

F14 

Frustrierend 1 2 3 4 5 6 7 8 Motivierend 

Langweilig 1 2 3 4 5 6 7 8 Stimulierend / Spannend 

Schwierig 1 2 3 4 5 6 7 8 Leicht 

Reagiert langsam 1 2 3 4 5 6 7 8 Reagiert schnell 

Ungewohnt 1 2 3 4 5 6 7 8 Gewohnt 

Körperlich sehr anstrengend 1 2 3 4 5 6 7 8 Körperlich kaum anstrengend 

 

Bitte bewerten Sie die Aufgabe nach den folgenden Kriterien: 
(Pro Reihe maximal ein Kreuz) 

F15 

Die optische Darstellung des Dialogs gefiel 
mir. 

Trifft nicht zu 1 2 3 4 5 6 7 8 Trifft zu 

Ich konnte Steuerelemente einfach tref-
fen/anklicken/antippen. 

Trifft nicht zu 1 2 3 4 5 6 7 8 Trifft zu 

Der Einsatz von Maus/Finger in dieser Aufga-
be fiel mir leicht. 

Trifft nicht zu 1 2 3 4 5 6 7 8 Trifft zu 

 

Wie beurteilen Sie die Bedienung des Steuerelements Listenfeld (Dateianzeige), wenn vorhanden, während 
der Aufgabe? (Pro Reihe maximal ein Kreuz) (Aufgaben Ö1, Ö2, Ö3, Ö4, Ö5) 

F16 

Frustrierend 1 2 3 4 5 6 7 8 Motivierend 

Langweilig 1 2 3 4 5 6 7 8 Stimulierend / Spannend 

Schwierig 1 2 3 4 5 6 7 8 Leicht 

Reagiert langsam 1 2 3 4 5 6 7 8 Reagiert schnell 

Ungewohnt 1 2 3 4 5 6 7 8 Gewohnt 

Körperlich sehr anstrengend 1 2 3 4 5 6 7 8 Körperlich kaum anstrengend 

  



 
145 Anhang 

Aufgabe Ö 4 

Wie beurteilen Sie die Bedienung des Dialogs während der gesamten Aufgabe? 
(Pro Reihe maximal ein Kreuz) 

F14 

Frustrierend 1 2 3 4 5 6 7 8 Motivierend 

Langweilig 1 2 3 4 5 6 7 8 Stimulierend / Spannend 

Schwierig 1 2 3 4 5 6 7 8 Leicht 

Reagiert langsam 1 2 3 4 5 6 7 8 Reagiert schnell 

Ungewohnt 1 2 3 4 5 6 7 8 Gewohnt 

Körperlich sehr anstrengend 1 2 3 4 5 6 7 8 Körperlich kaum anstrengend 

 

Bitte bewerten Sie die Aufgabe nach den folgenden Kriterien: 
(Pro Reihe maximal ein Kreuz) 

F15 

Die optische Darstellung des Dialogs gefiel 
mir. 

Trifft nicht zu 1 2 3 4 5 6 7 8 Trifft zu 

Ich konnte Steuerelemente einfach tref-
fen/anklicken/antippen. 

Trifft nicht zu 1 2 3 4 5 6 7 8 Trifft zu 

Der Einsatz von Maus/Finger in dieser Aufga-
be fiel mir leicht. 

Trifft nicht zu 1 2 3 4 5 6 7 8 Trifft zu 

 

Wie beurteilen Sie die Bedienung des Steuerelements Listenfeld (Dateianzeige), wenn vorhanden, während 
der Aufgabe? (Pro Reihe maximal ein Kreuz) (Aufgaben Ö1, Ö2, Ö3, Ö4, Ö5) 

F16 

Frustrierend 1 2 3 4 5 6 7 8 Motivierend 

Langweilig 1 2 3 4 5 6 7 8 Stimulierend / Spannend 

Schwierig 1 2 3 4 5 6 7 8 Leicht 

Reagiert langsam 1 2 3 4 5 6 7 8 Reagiert schnell 

Ungewohnt 1 2 3 4 5 6 7 8 Gewohnt 

Körperlich sehr anstrengend 1 2 3 4 5 6 7 8 Körperlich kaum anstrengend 

  



 
146 Migration und Anpassung von Dialoganwendungen für berührungsempfindliche Bildschirme 

Aufgabe Ö 5 

Wie beurteilen Sie die Bedienung des Dialogs während der gesamten Aufgabe? 
(Pro Reihe maximal ein Kreuz) 

F14 

Frustrierend 1 2 3 4 5 6 7 8 Motivierend 

Langweilig 1 2 3 4 5 6 7 8 Stimulierend / Spannend 

Schwierig 1 2 3 4 5 6 7 8 Leicht 

Reagiert langsam 1 2 3 4 5 6 7 8 Reagiert schnell 

Ungewohnt 1 2 3 4 5 6 7 8 Gewohnt 

Körperlich sehr anstrengend 1 2 3 4 5 6 7 8 Körperlich kaum anstrengend 

 

Bitte bewerten Sie die Aufgabe nach den folgenden Kriterien: 
(Pro Reihe maximal ein Kreuz) 

F15 

Die optische Darstellung des Dialogs gefiel 
mir. 

Trifft nicht zu 1 2 3 4 5 6 7 8 Trifft zu 

Ich konnte Steuerelemente einfach tref-
fen/anklicken/antippen. 

Trifft nicht zu 1 2 3 4 5 6 7 8 Trifft zu 

Der Einsatz von Maus/Finger in dieser Aufga-
be fiel mir leicht. 

Trifft nicht zu 1 2 3 4 5 6 7 8 Trifft zu 

 

Wie beurteilen Sie die Bedienung des Steuerelements Listenfeld (Dateianzeige), wenn vorhanden, während 
der Aufgabe? (Pro Reihe maximal ein Kreuz) (Aufgaben Ö1, Ö2, Ö3, Ö4, Ö5) 

F16 

Frustrierend 1 2 3 4 5 6 7 8 Motivierend 

Langweilig 1 2 3 4 5 6 7 8 Stimulierend / Spannend 

Schwierig 1 2 3 4 5 6 7 8 Leicht 

Reagiert langsam 1 2 3 4 5 6 7 8 Reagiert schnell 

Ungewohnt 1 2 3 4 5 6 7 8 Gewohnt 

Körperlich sehr anstrengend 1 2 3 4 5 6 7 8 Körperlich kaum anstrengend 

 

Wie beurteilen Sie die Bedienung des Steuerelements Navigationsbar (grüne Pfeile), wenn vorhanden, wäh-
rend der Aufgabe? (Pro Reihe maximal ein Kreuz) (Aufgaben Ö5, Ö6, Ö7) 

F19 

Frustrierend 1 2 3 4 5 6 7 8 Motivierend 

Langweilig 1 2 3 4 5 6 7 8 Stimulierend / Spannend 

Schwierig 1 2 3 4 5 6 7 8 Leicht 

Reagiert langsam 1 2 3 4 5 6 7 8 Reagiert schnell 

Ungewohnt 1 2 3 4 5 6 7 8 Gewohnt 

Körperlich sehr anstrengend 1 2 3 4 5 6 7 8 Körperlich kaum anstrengend 

  



 
147 Anhang 

Aufgabe Ö 6 

Wie beurteilen Sie die Bedienung des Dialogs während der gesamten Aufgabe? 
(Pro Reihe maximal ein Kreuz) 

F14 

Frustrierend 1 2 3 4 5 6 7 8 Motivierend 

Langweilig 1 2 3 4 5 6 7 8 Stimulierend / Spannend 

Schwierig 1 2 3 4 5 6 7 8 Leicht 

Reagiert langsam 1 2 3 4 5 6 7 8 Reagiert schnell 

Ungewohnt 1 2 3 4 5 6 7 8 Gewohnt 

Körperlich sehr anstrengend 1 2 3 4 5 6 7 8 Körperlich kaum anstrengend 

 

Bitte bewerten Sie die Aufgabe nach den folgenden Kriterien: 
(Pro Reihe maximal ein Kreuz) 

F15 

Die optische Darstellung des Dialogs gefiel 
mir. 

Trifft nicht zu 1 2 3 4 5 6 7 8 Trifft zu 

Ich konnte Steuerelemente einfach tref-
fen/anklicken/antippen. 

Trifft nicht zu 1 2 3 4 5 6 7 8 Trifft zu 

Der Einsatz von Maus/Finger in dieser Aufga-
be fiel mir leicht. 

Trifft nicht zu 1 2 3 4 5 6 7 8 Trifft zu 

 

Wie beurteilen Sie die Bedienung des Steuerelements Listenfeld (Ordneranzeige), wenn vorhanden, während 
der Aufgabe? (Pro Reihe maximal ein Kreuz) (Aufgaben Ö6, Ö7) 

F18 

Frustrierend 1 2 3 4 5 6 7 8 Motivierend 

Langweilig 1 2 3 4 5 6 7 8 Stimulierend / Spannend 

Schwierig 1 2 3 4 5 6 7 8 Leicht 

Reagiert langsam 1 2 3 4 5 6 7 8 Reagiert schnell 

Ungewohnt 1 2 3 4 5 6 7 8 Gewohnt 

Körperlich sehr anstrengend 1 2 3 4 5 6 7 8 Körperlich kaum anstrengend 

 

Wie beurteilen Sie die Bedienung des Steuerelements Navigationsbar (grüne Pfeile), wenn vorhanden, wäh-
rend der Aufgabe? (Pro Reihe maximal ein Kreuz) (Aufgaben Ö5, Ö6, Ö7) 

F19 

Frustrierend 1 2 3 4 5 6 7 8 Motivierend 

Langweilig 1 2 3 4 5 6 7 8 Stimulierend / Spannend 

Schwierig 1 2 3 4 5 6 7 8 Leicht 

Reagiert langsam 1 2 3 4 5 6 7 8 Reagiert schnell 

Ungewohnt 1 2 3 4 5 6 7 8 Gewohnt 

Körperlich sehr anstrengend 1 2 3 4 5 6 7 8 Körperlich kaum anstrengend 

  



 
148 Migration und Anpassung von Dialoganwendungen für berührungsempfindliche Bildschirme 

Aufgabe Ö 7 

Wie beurteilen Sie die Bedienung des Dialogs während der gesamten Aufgabe? 
(Pro Reihe maximal ein Kreuz) 

F14 

Frustrierend 1 2 3 4 5 6 7 8 Motivierend 

Langweilig 1 2 3 4 5 6 7 8 Stimulierend / Spannend 

Schwierig 1 2 3 4 5 6 7 8 Leicht 

Reagiert langsam 1 2 3 4 5 6 7 8 Reagiert schnell 

Ungewohnt 1 2 3 4 5 6 7 8 Gewohnt 

Körperlich sehr anstrengend 1 2 3 4 5 6 7 8 Körperlich kaum anstrengend 

 

Bitte bewerten Sie die Aufgabe nach den folgenden Kriterien: 
(Pro Reihe maximal ein Kreuz) 

F15 

Die optische Darstellung des Dialogs gefiel 
mir. 

Trifft nicht zu 1 2 3 4 5 6 7 8 Trifft zu 

Ich konnte Steuerelemente einfach tref-
fen/anklicken/antippen. 

Trifft nicht zu 1 2 3 4 5 6 7 8 Trifft zu 

Der Einsatz von Maus/Finger in dieser Aufga-
be fiel mir leicht. 

Trifft nicht zu 1 2 3 4 5 6 7 8 Trifft zu 

 

Wie beurteilen Sie die Bedienung des Steuerelements Listenfeld (Ordneranzeige), wenn vorhanden, während 
der Aufgabe? (Pro Reihe maximal ein Kreuz) (Aufgaben Ö6, Ö7) 

F18 

Frustrierend 1 2 3 4 5 6 7 8 Motivierend 

Langweilig 1 2 3 4 5 6 7 8 Stimulierend / Spannend 

Schwierig 1 2 3 4 5 6 7 8 Leicht 

Reagiert langsam 1 2 3 4 5 6 7 8 Reagiert schnell 

Ungewohnt 1 2 3 4 5 6 7 8 Gewohnt 

Körperlich sehr anstrengend 1 2 3 4 5 6 7 8 Körperlich kaum anstrengend 

 

Wie beurteilen Sie die Bedienung des Steuerelements Navigationsbar (grüne Pfeile), wenn vorhanden, wäh-
rend der Aufgabe? (Pro Reihe maximal ein Kreuz) (Aufgaben Ö5, Ö6, Ö7) 

F19 

Frustrierend 1 2 3 4 5 6 7 8 Motivierend 

Langweilig 1 2 3 4 5 6 7 8 Stimulierend / Spannend 

Schwierig 1 2 3 4 5 6 7 8 Leicht 

Reagiert langsam 1 2 3 4 5 6 7 8 Reagiert schnell 

Ungewohnt 1 2 3 4 5 6 7 8 Gewohnt 

Körperlich sehr anstrengend 1 2 3 4 5 6 7 8 Körperlich kaum anstrengend 

 



 
149 Anhang 

Aufgabe S1 

Wie beurteilen Sie die Bedienung des Dialogs während der gesamten Aufgabe? 
(Pro Reihe maximal ein Kreuz) 

F14 

Frustrierend 1 2 3 4 5 6 7 8 Motivierend 

Langweilig 1 2 3 4 5 6 7 8 Stimulierend / Spannend 

Schwierig 1 2 3 4 5 6 7 8 Leicht 

Reagiert langsam 1 2 3 4 5 6 7 8 Reagiert schnell 

Ungewohnt 1 2 3 4 5 6 7 8 Gewohnt 

Körperlich sehr anstrengend 1 2 3 4 5 6 7 8 Körperlich kaum anstrengend 

 

Bitte bewerten Sie die Aufgabe nach den folgenden Kriterien: 
(Pro Reihe maximal ein Kreuz) 

F15 

Die optische Darstellung des Dialogs gefiel 
mir. 

Trifft nicht zu 1 2 3 4 5 6 7 8 Trifft zu 

Ich konnte Steuerelemente einfach tref-
fen/anklicken/antippen. 

Trifft nicht zu 1 2 3 4 5 6 7 8 Trifft zu 

Der Einsatz von Maus/Finger in dieser Aufga-
be fiel mir leicht. 

Trifft nicht zu 1 2 3 4 5 6 7 8 Trifft zu 

 

Wie beurteilen Sie die Bedienung des Steuerelements Drehfeld (Ränder-Zahlenfelder), wenn vorhanden, 
während der Aufgabe? (Pro Reihe maximal ein Kreuz) (Aufgaben S1, S2, S3, S4, S5, S6) 

F20 

Frustrierend 1 2 3 4 5 6 7 8 Motivierend 

Langweilig 1 2 3 4 5 6 7 8 Stimulierend / Spannend 

Schwierig 1 2 3 4 5 6 7 8 Leicht 

Reagiert langsam 1 2 3 4 5 6 7 8 Reagiert schnell 

Ungewohnt 1 2 3 4 5 6 7 8 Gewohnt 

Körperlich sehr anstrengend 1 2 3 4 5 6 7 8 Körperlich kaum anstrengend 

 

Wie beurteilen Sie die Bedienung des Steuerelements Liste mit Kontrollkästchen, wenn vorhanden, während 
der Aufgabe? (Pro Reihe maximal ein Kreuz) (Aufgaben S1, S3, S4, S5, S6, S7) 

F22 

Frustrierend 1 2 3 4 5 6 7 8 Motivierend 

Langweilig 1 2 3 4 5 6 7 8 Stimulierend / Spannend 

Schwierig 1 2 3 4 5 6 7 8 Leicht 

Reagiert langsam 1 2 3 4 5 6 7 8 Reagiert schnell 

Ungewohnt 1 2 3 4 5 6 7 8 Gewohnt 

Körperlich sehr anstrengend 1 2 3 4 5 6 7 8 Körperlich kaum anstrengend 

  



 
150 Migration und Anpassung von Dialoganwendungen für berührungsempfindliche Bildschirme 

Aufgabe S2 

Wie beurteilen Sie die Bedienung des Dialogs während der gesamten Aufgabe? 
(Pro Reihe maximal ein Kreuz) 

F14 

Frustrierend 1 2 3 4 5 6 7 8 Motivierend 

Langweilig 1 2 3 4 5 6 7 8 Stimulierend / Spannend 

Schwierig 1 2 3 4 5 6 7 8 Leicht 

Reagiert langsam 1 2 3 4 5 6 7 8 Reagiert schnell 

Ungewohnt 1 2 3 4 5 6 7 8 Gewohnt 

Körperlich sehr anstrengend 1 2 3 4 5 6 7 8 Körperlich kaum anstrengend 

 

Bitte bewerten Sie die Aufgabe nach den folgenden Kriterien: 
(Pro Reihe maximal ein Kreuz) 

F15 

Die optische Darstellung des Dialogs gefiel 
mir. 

Trifft nicht zu 1 2 3 4 5 6 7 8 Trifft zu 

Ich konnte Steuerelemente einfach tref-
fen/anklicken/antippen. 

Trifft nicht zu 1 2 3 4 5 6 7 8 Trifft zu 

Der Einsatz von Maus/Finger in dieser Aufga-
be fiel mir leicht. 

Trifft nicht zu 1 2 3 4 5 6 7 8 Trifft zu 

 

Wie beurteilen Sie die Bedienung des Steuerelements Drehfeld (Ränder-Zahlenfelder), wenn vorhanden, 
während der Aufgabe? (Pro Reihe maximal ein Kreuz) (Aufgaben S1, S2, S3, S4, S5, S6) 

F20 

Frustrierend 1 2 3 4 5 6 7 8 Motivierend 

Langweilig 1 2 3 4 5 6 7 8 Stimulierend / Spannend 

Schwierig 1 2 3 4 5 6 7 8 Leicht 

Reagiert langsam 1 2 3 4 5 6 7 8 Reagiert schnell 

Ungewohnt 1 2 3 4 5 6 7 8 Gewohnt 

Körperlich sehr anstrengend 1 2 3 4 5 6 7 8 Körperlich kaum anstrengend 

 

Wie beurteilen Sie die Bedienung des Steuerelements Liste mit Kontrollkästchen, wenn vorhanden, während 
der Aufgabe? (Pro Reihe maximal ein Kreuz) (Aufgaben S1, S2, S3, S4, S5, S6, S7) 

F22 

Frustrierend 1 2 3 4 5 6 7 8 Motivierend 

Langweilig 1 2 3 4 5 6 7 8 Stimulierend / Spannend 

Schwierig 1 2 3 4 5 6 7 8 Leicht 

Reagiert langsam 1 2 3 4 5 6 7 8 Reagiert schnell 

Ungewohnt 1 2 3 4 5 6 7 8 Gewohnt 

Körperlich sehr anstrengend 1 2 3 4 5 6 7 8 Körperlich kaum anstrengend 

 

  



 
151 Anhang 

Aufgabe S3 

Wie beurteilen Sie die Bedienung des Dialogs während der gesamten Aufgabe? 
(Pro Reihe maximal ein Kreuz) 

F14 

Frustrierend 1 2 3 4 5 6 7 8 Motivierend 

Langweilig 1 2 3 4 5 6 7 8 Stimulierend / Spannend 

Schwierig 1 2 3 4 5 6 7 8 Leicht 

Reagiert langsam 1 2 3 4 5 6 7 8 Reagiert schnell 

Ungewohnt 1 2 3 4 5 6 7 8 Gewohnt 

Körperlich sehr anstrengend 1 2 3 4 5 6 7 8 Körperlich kaum anstrengend 

 

Bitte bewerten Sie die Aufgabe nach den folgenden Kriterien: 
(Pro Reihe maximal ein Kreuz) 

F15 

Die optische Darstellung des Dialogs gefiel 
mir. 

Trifft nicht zu 1 2 3 4 5 6 7 8 Trifft zu 

Ich konnte Steuerelemente einfach tref-
fen/anklicken/antippen. 

Trifft nicht zu 1 2 3 4 5 6 7 8 Trifft zu 

Der Einsatz von Maus/Finger in dieser Aufga-
be fiel mir leicht. 

Trifft nicht zu 1 2 3 4 5 6 7 8 Trifft zu 

 

Wie beurteilen Sie die Bedienung des Steuerelements Drehfeld (Ränder-Zahlenfelder), wenn vorhanden, 
während der Aufgabe? (Pro Reihe maximal ein Kreuz) (Aufgaben S1, S2, S3, S4, S5, S6) 

F20 

Frustrierend 1 2 3 4 5 6 7 8 Motivierend 

Langweilig 1 2 3 4 5 6 7 8 Stimulierend / Spannend 

Schwierig 1 2 3 4 5 6 7 8 Leicht 

Reagiert langsam 1 2 3 4 5 6 7 8 Reagiert schnell 

Ungewohnt 1 2 3 4 5 6 7 8 Gewohnt 

Körperlich sehr anstrengend 1 2 3 4 5 6 7 8 Körperlich kaum anstrengend 

 

Wie beurteilen Sie die Bedienung des Steuerelements Liste mit Kontrollkästchen, wenn vorhanden, während 
der Aufgabe? (Pro Reihe maximal ein Kreuz) (Aufgaben S1, S2, S3, S4, S5, S6, S7) 

F22 

Frustrierend 1 2 3 4 5 6 7 8 Motivierend 

Langweilig 1 2 3 4 5 6 7 8 Stimulierend / Spannend 

Schwierig 1 2 3 4 5 6 7 8 Leicht 

Reagiert langsam 1 2 3 4 5 6 7 8 Reagiert schnell 

Ungewohnt 1 2 3 4 5 6 7 8 Gewohnt 

Körperlich sehr anstrengend 1 2 3 4 5 6 7 8 Körperlich kaum anstrengend 

 



 
152 Migration und Anpassung von Dialoganwendungen für berührungsempfindliche Bildschirme 

Aufgabe S4 

Wie beurteilen Sie die Bedienung des Dialogs während der gesamten Aufgabe? 
(Pro Reihe maximal ein Kreuz) 

F14 

Frustrierend 1 2 3 4 5 6 7 8 Motivierend 

Langweilig 1 2 3 4 5 6 7 8 Stimulierend / Spannend 

Schwierig 1 2 3 4 5 6 7 8 Leicht 

Reagiert langsam 1 2 3 4 5 6 7 8 Reagiert schnell 

Ungewohnt 1 2 3 4 5 6 7 8 Gewohnt 

Körperlich sehr anstrengend 1 2 3 4 5 6 7 8 Körperlich kaum anstrengend 

 

Bitte bewerten Sie die Aufgabe nach den folgenden Kriterien: 
(Pro Reihe maximal ein Kreuz) 

F15 

Die optische Darstellung des Dialogs gefiel 
mir. 

Trifft nicht zu 1 2 3 4 5 6 7 8 Trifft zu 

Ich konnte Steuerelemente einfach tref-
fen/anklicken/antippen. 

Trifft nicht zu 1 2 3 4 5 6 7 8 Trifft zu 

Der Einsatz von Maus/Finger in dieser Aufga-
be fiel mir leicht. 

Trifft nicht zu 1 2 3 4 5 6 7 8 Trifft zu 

 

Wie beurteilen Sie die Bedienung des Steuerelements Drehfeld (Ränder-Zahlenfelder), wenn vorhanden, 
während der Aufgabe? (Pro Reihe maximal ein Kreuz) (Aufgaben S1, S2, S3, S4, S5, S6) 

F20 

Frustrierend 1 2 3 4 5 6 7 8 Motivierend 

Langweilig 1 2 3 4 5 6 7 8 Stimulierend / Spannend 

Schwierig 1 2 3 4 5 6 7 8 Leicht 

Reagiert langsam 1 2 3 4 5 6 7 8 Reagiert schnell 

Ungewohnt 1 2 3 4 5 6 7 8 Gewohnt 

Körperlich sehr anstrengend 1 2 3 4 5 6 7 8 Körperlich kaum anstrengend 

 

Wie beurteilen Sie die Bedienung des Steuerelements Liste mit Kontrollkästchen, wenn vorhanden, während 
der Aufgabe? (Pro Reihe maximal ein Kreuz) (Aufgaben S1, S2, S3, S4, S5, S6, S7) 

F22 

Frustrierend 1 2 3 4 5 6 7 8 Motivierend 

Langweilig 1 2 3 4 5 6 7 8 Stimulierend / Spannend 

Schwierig 1 2 3 4 5 6 7 8 Leicht 

Reagiert langsam 1 2 3 4 5 6 7 8 Reagiert schnell 

Ungewohnt 1 2 3 4 5 6 7 8 Gewohnt 

Körperlich sehr anstrengend 1 2 3 4 5 6 7 8 Körperlich kaum anstrengend 

 

  



 
153 Anhang 

Aufgabe S5 

Wie beurteilen Sie die Bedienung des Dialogs während der gesamten Aufgabe? 
(Pro Reihe maximal ein Kreuz) 

F14 

Frustrierend 1 2 3 4 5 6 7 8 Motivierend 

Langweilig 1 2 3 4 5 6 7 8 Stimulierend / Spannend 

Schwierig 1 2 3 4 5 6 7 8 Leicht 

Reagiert langsam 1 2 3 4 5 6 7 8 Reagiert schnell 

Ungewohnt 1 2 3 4 5 6 7 8 Gewohnt 

Körperlich sehr anstrengend 1 2 3 4 5 6 7 8 Körperlich kaum anstrengend 

 

Bitte bewerten Sie die Aufgabe nach den folgenden Kriterien: 
(Pro Reihe maximal ein Kreuz) 

F15 

Die optische Darstellung des Dialogs gefiel 
mir. 

Trifft nicht zu 1 2 3 4 5 6 7 8 Trifft zu 

Ich konnte Steuerelemente einfach tref-
fen/anklicken/antippen. 

Trifft nicht zu 1 2 3 4 5 6 7 8 Trifft zu 

Der Einsatz von Maus/Finger in dieser Aufga-
be fiel mir leicht. 

Trifft nicht zu 1 2 3 4 5 6 7 8 Trifft zu 

 

Wie beurteilen Sie die Bedienung des Steuerelements Drehfeld (Ränder-Zahlenfelder), wenn vorhanden, 
während der Aufgabe? (Pro Reihe maximal ein Kreuz) (Aufgaben S1, S2, S3, S4, S5, S6) 

F20 

Frustrierend 1 2 3 4 5 6 7 8 Motivierend 

Langweilig 1 2 3 4 5 6 7 8 Stimulierend / Spannend 

Schwierig 1 2 3 4 5 6 7 8 Leicht 

Reagiert langsam 1 2 3 4 5 6 7 8 Reagiert schnell 

Ungewohnt 1 2 3 4 5 6 7 8 Gewohnt 

Körperlich sehr anstrengend 1 2 3 4 5 6 7 8 Körperlich kaum anstrengend 

 

Wie beurteilen Sie die Bedienung des Steuerelements Liste mit Kontrollkästchen, wenn vorhanden, während 
der Aufgabe? (Pro Reihe maximal ein Kreuz) (Aufgaben S1, S2, S3, S4, S5, S6, S7) 

F22 

Frustrierend 1 2 3 4 5 6 7 8 Motivierend 

Langweilig 1 2 3 4 5 6 7 8 Stimulierend / Spannend 

Schwierig 1 2 3 4 5 6 7 8 Leicht 

Reagiert langsam 1 2 3 4 5 6 7 8 Reagiert schnell 

Ungewohnt 1 2 3 4 5 6 7 8 Gewohnt 

Körperlich sehr anstrengend 1 2 3 4 5 6 7 8 Körperlich kaum anstrengend 

 

  



 
154 Migration und Anpassung von Dialoganwendungen für berührungsempfindliche Bildschirme 

Aufgabe S6 

Wie beurteilen Sie die Bedienung des Dialogs während der gesamten Aufgabe? 
(Pro Reihe maximal ein Kreuz) 

F14 

Frustrierend 1 2 3 4 5 6 7 8 Motivierend 

Langweilig 1 2 3 4 5 6 7 8 Stimulierend / Spannend 

Schwierig 1 2 3 4 5 6 7 8 Leicht 

Reagiert langsam 1 2 3 4 5 6 7 8 Reagiert schnell 

Ungewohnt 1 2 3 4 5 6 7 8 Gewohnt 

Körperlich sehr anstrengend 1 2 3 4 5 6 7 8 Körperlich kaum anstrengend 

 

Bitte bewerten Sie die Aufgabe nach den folgenden Kriterien: 
(Pro Reihe maximal ein Kreuz) 

F15 

Die optische Darstellung des Dialogs gefiel 
mir. 

Trifft nicht zu 1 2 3 4 5 6 7 8 Trifft zu 

Ich konnte Steuerelemente einfach tref-
fen/anklicken/antippen. 

Trifft nicht zu 1 2 3 4 5 6 7 8 Trifft zu 

Der Einsatz von Maus/Finger in dieser Aufga-
be fiel mir leicht. 

Trifft nicht zu 1 2 3 4 5 6 7 8 Trifft zu 

 

Wie beurteilen Sie die Bedienung des Steuerelements Drehfeld (Ränder-Zahlenfelder), wenn vorhanden, 
während der Aufgabe? (Pro Reihe maximal ein Kreuz) (Aufgaben S1, S2, S3, S4, S5, S6) 

F20 

Frustrierend 1 2 3 4 5 6 7 8 Motivierend 

Langweilig 1 2 3 4 5 6 7 8 Stimulierend / Spannend 

Schwierig 1 2 3 4 5 6 7 8 Leicht 

Reagiert langsam 1 2 3 4 5 6 7 8 Reagiert schnell 

Ungewohnt 1 2 3 4 5 6 7 8 Gewohnt 

Körperlich sehr anstrengend 1 2 3 4 5 6 7 8 Körperlich kaum anstrengend 

 

Wie beurteilen Sie die Bedienung des Steuerelements Liste mit Kontrollkästchen, wenn vorhanden, während 
der Aufgabe? (Pro Reihe maximal ein Kreuz) (Aufgaben S1, S2, S3, S4, S5, S6, S7) 

F22 

Frustrierend 1 2 3 4 5 6 7 8 Motivierend 

Langweilig 1 2 3 4 5 6 7 8 Stimulierend / Spannend 

Schwierig 1 2 3 4 5 6 7 8 Leicht 

Reagiert langsam 1 2 3 4 5 6 7 8 Reagiert schnell 

Ungewohnt 1 2 3 4 5 6 7 8 Gewohnt 

Körperlich sehr anstrengend 1 2 3 4 5 6 7 8 Körperlich kaum anstrengend 

  



 
155 Anhang 

Aufgabe S7 

Teil 1 

Bitte bewerten Sie die Aufgabe nach den folgenden Kriterien: 
(Pro Reihe maximal ein Kreuz) 

F15 

Die optische Darstellung des Dialogs gefiel 
mir. 

Trifft nicht zu 1 2 3 4 5 6 7 8 Trifft zu 

Ich konnte Steuerelemente einfach tref-
fen/anklicken/antippen. 

Trifft nicht zu 1 2 3 4 5 6 7 8 Trifft zu 

Der Einsatz von Maus/Finger in dieser Aufga-
be fiel mir leicht. 

Trifft nicht zu 1 2 3 4 5 6 7 8 Trifft zu 

 

Wie beurteilen Sie die Bedienung des Steuerelements Liste mit Kontrollkästchen, wenn vorhanden, während 
der Aufgabe? (Pro Reihe maximal ein Kreuz) (Aufgaben S1, S2, S3, S4, S5, S6, S7) 

F22 

Frustrierend 1 2 3 4 5 6 7 8 Motivierend 

Langweilig 1 2 3 4 5 6 7 8 Stimulierend / Spannend 

Schwierig 1 2 3 4 5 6 7 8 Leicht 

Reagiert langsam 1 2 3 4 5 6 7 8 Reagiert schnell 

Ungewohnt 1 2 3 4 5 6 7 8 Gewohnt 

Körperlich sehr anstrengend 1 2 3 4 5 6 7 8 Körperlich kaum anstrengend 

 

Teil 2 

Bitte bewerten Sie die Aufgabe nach den folgenden Kriterien: 
(Pro Reihe maximal ein Kreuz) 

F15 

Die optische Darstellung des Dialogs gefiel 
mir. 

Trifft nicht zu 1 2 3 4 5 6 7 8 Trifft zu 

Ich konnte Steuerelemente einfach tref-
fen/anklicken/antippen. 

Trifft nicht zu 1 2 3 4 5 6 7 8 Trifft zu 

Der Einsatz von Maus/Finger in dieser Aufga-
be fiel mir leicht. 

Trifft nicht zu 1 2 3 4 5 6 7 8 Trifft zu 

 

Wie beurteilen Sie die Bedienung des Steuerelements Liste mit Kontrollkästchen, wenn vorhanden, während 
der Aufgabe? (Pro Reihe maximal ein Kreuz) (Aufgaben S1, S2, S3, S4, S5, S6, S7) 

F22 

Frustrierend 1 2 3 4 5 6 7 8 Motivierend 

Langweilig 1 2 3 4 5 6 7 8 Stimulierend / Spannend 

Schwierig 1 2 3 4 5 6 7 8 Leicht 

Reagiert langsam 1 2 3 4 5 6 7 8 Reagiert schnell 

Ungewohnt 1 2 3 4 5 6 7 8 Gewohnt 

Körperlich sehr anstrengend 1 2 3 4 5 6 7 8 Körperlich kaum anstrengend 



 
156 Migration und Anpassung von Dialoganwendungen für berührungsempfindliche Bildschirme 

Teil 3 

Bitte bewerten Sie die Aufgabe nach den folgenden Kriterien: 
(Pro Reihe maximal ein Kreuz) 

F15 

Die optische Darstellung des Dialogs gefiel 
mir. 

Trifft nicht zu 1 2 3 4 5 6 7 8 Trifft zu 

Ich konnte Steuerelemente einfach tref-
fen/anklicken/antippen. 

Trifft nicht zu 1 2 3 4 5 6 7 8 Trifft zu 

Der Einsatz von Maus/Finger in dieser Aufga-
be fiel mir leicht. 

Trifft nicht zu 1 2 3 4 5 6 7 8 Trifft zu 

 

Wie beurteilen Sie die Bedienung des Steuerelements Liste mit Kontrollkästchen, wenn vorhanden, während 
der Aufgabe? (Pro Reihe maximal ein Kreuz) (Aufgaben S1, S2, S3, S4, S5, S6, S7) 

F22 

Frustrierend 1 2 3 4 5 6 7 8 Motivierend 

Langweilig 1 2 3 4 5 6 7 8 Stimulierend / Spannend 

Schwierig 1 2 3 4 5 6 7 8 Leicht 

Reagiert langsam 1 2 3 4 5 6 7 8 Reagiert schnell 

Ungewohnt 1 2 3 4 5 6 7 8 Gewohnt 

Körperlich sehr anstrengend 1 2 3 4 5 6 7 8 Körperlich kaum anstrengend 

 

Teil 4 

Bitte bewerten Sie die Aufgabe nach den folgenden Kriterien: 
(Pro Reihe maximal ein Kreuz) 

F15 

Die optische Darstellung des Dialogs gefiel 
mir. 

Trifft nicht zu 1 2 3 4 5 6 7 8 Trifft zu 

Ich konnte Steuerelemente einfach tref-
fen/anklicken/antippen. 

Trifft nicht zu 1 2 3 4 5 6 7 8 Trifft zu 

Der Einsatz von Maus/Finger in dieser Aufga-
be fiel mir leicht. 

Trifft nicht zu 1 2 3 4 5 6 7 8 Trifft zu 

 

Wie beurteilen Sie die Bedienung des Steuerelements Liste mit Kontrollkästchen, wenn vorhanden, während 
der Aufgabe? (Pro Reihe maximal ein Kreuz) (Aufgaben S1, S2, S3, S4, S5, S6, S7) 

F22 

Frustrierend 1 2 3 4 5 6 7 8 Motivierend 

Langweilig 1 2 3 4 5 6 7 8 Stimulierend / Spannend 

Schwierig 1 2 3 4 5 6 7 8 Leicht 

Reagiert langsam 1 2 3 4 5 6 7 8 Reagiert schnell 

Ungewohnt 1 2 3 4 5 6 7 8 Gewohnt 

Körperlich sehr anstrengend 1 2 3 4 5 6 7 8 Körperlich kaum anstrengend 

 

  



 
157 Anhang 

Wie beurteilen Sie die Bedienung des Dialogs während der gesamten Aufgabe? 
(Pro Reihe maximal ein Kreuz) 

F14 

Frustrierend 1 2 3 4 5 6 7 8 Motivierend 

Langweilig 1 2 3 4 5 6 7 8 Stimulierend / Spannend 

Schwierig 1 2 3 4 5 6 7 8 Leicht 

Reagiert langsam 1 2 3 4 5 6 7 8 Reagiert schnell 

Ungewohnt 1 2 3 4 5 6 7 8 Gewohnt 

Körperlich sehr anstrengend 1 2 3 4 5 6 7 8 Körperlich kaum anstrengend 

  



 
158 Migration und Anpassung von Dialoganwendungen für berührungsempfindliche Bildschirme 

Aufgabe S8 

Wie beurteilen Sie die Bedienung des Dialogs während der gesamten Aufgabe? 
(Pro Reihe maximal ein Kreuz) 

F14 

Frustrierend 1 2 3 4 5 6 7 8 Motivierend 

Langweilig 1 2 3 4 5 6 7 8 Stimulierend / Spannend 

Schwierig 1 2 3 4 5 6 7 8 Leicht 

Reagiert langsam 1 2 3 4 5 6 7 8 Reagiert schnell 

Ungewohnt 1 2 3 4 5 6 7 8 Gewohnt 

Körperlich sehr anstrengend 1 2 3 4 5 6 7 8 Körperlich kaum anstrengend 

 

Bitte bewerten Sie die Aufgabe nach den folgenden Kriterien: 
(Pro Reihe maximal ein Kreuz) 

F15 

Die optische Darstellung des Dialogs gefiel 
mir. 

Trifft nicht zu 1 2 3 4 5 6 7 8 Trifft zu 

Ich konnte Steuerelemente einfach tref-
fen/anklicken/antippen. 

Trifft nicht zu 1 2 3 4 5 6 7 8 Trifft zu 

Der Einsatz von Maus/Finger in dieser Aufga-
be fiel mir leicht. 

Trifft nicht zu 1 2 3 4 5 6 7 8 Trifft zu 

 

Wie beurteilen Sie die Bedienung des Steuerelements Tastenfeld für Zahleneingabe (am Drehfeld), wenn 
vorhanden, während der Aufgabe? (Pro Reihe maximal ein Kreuz) (Aufgaben S8, S9) 

F21 

Frustrierend 1 2 3 4 5 6 7 8 Motivierend 

Langweilig 1 2 3 4 5 6 7 8 Stimulierend / Spannend 

Schwierig 1 2 3 4 5 6 7 8 Leicht 

Reagiert langsam 1 2 3 4 5 6 7 8 Reagiert schnell 

Ungewohnt 1 2 3 4 5 6 7 8 Gewohnt 

Körperlich sehr anstrengend 1 2 3 4 5 6 7 8 Körperlich kaum anstrengend 

  



 
159 Anhang 

Aufgabe S9 

Wie beurteilen Sie die Bedienung des Dialogs während der gesamten Aufgabe? 
(Pro Reihe maximal ein Kreuz) 

F14 

Frustrierend 1 2 3 4 5 6 7 8 Motivierend 

Langweilig 1 2 3 4 5 6 7 8 Stimulierend / Spannend 

Schwierig 1 2 3 4 5 6 7 8 Leicht 

Reagiert langsam 1 2 3 4 5 6 7 8 Reagiert schnell 

Ungewohnt 1 2 3 4 5 6 7 8 Gewohnt 

Körperlich sehr anstrengend 1 2 3 4 5 6 7 8 Körperlich kaum anstrengend 

 

Bitte bewerten Sie die Aufgabe nach den folgenden Kriterien: 
(Pro Reihe maximal ein Kreuz) 

F15 

Die optische Darstellung des Dialogs gefiel 
mir. 

Trifft nicht zu 1 2 3 4 5 6 7 8 Trifft zu 

Ich konnte Steuerelemente einfach tref-
fen/anklicken/antippen. 

Trifft nicht zu 1 2 3 4 5 6 7 8 Trifft zu 

Der Einsatz von Maus/Finger in dieser Aufga-
be fiel mir leicht. 

Trifft nicht zu 1 2 3 4 5 6 7 8 Trifft zu 

 

Wie beurteilen Sie die Bedienung des Steuerelements Tastenfeld für Zahleneingabe (am Drehfeld), wenn 
vorhanden, während der Aufgabe? (Pro Reihe maximal ein Kreuz) (Aufgaben S8, S9) 

F21 

Frustrierend 1 2 3 4 5 6 7 8 Motivierend 

Langweilig 1 2 3 4 5 6 7 8 Stimulierend / Spannend 

Schwierig 1 2 3 4 5 6 7 8 Leicht 

Reagiert langsam 1 2 3 4 5 6 7 8 Reagiert schnell 

Ungewohnt 1 2 3 4 5 6 7 8 Gewohnt 

Körperlich sehr anstrengend 1 2 3 4 5 6 7 8 Körperlich kaum anstrengend 

 

  



 
160 Migration und Anpassung von Dialoganwendungen für berührungsempfindliche Bildschirme 

Anschlussfragen 

 

Wurden Ihre Erwartungen an die Bedienung des berührungsempfindlichen Bildschirms erfüllt? 
(Nur ein Kästchen ausfüllen) 

F10 

A Ja 

B Nein, weil … 

 

 

Können Sie sich vorstellen einen berührungsempfindlichen Bildschirm am PC oder Laptop zu ver-
wenden? (Nur ein Kästchen ausfüllen) 

F11 

A Ja B Nein 

C Nur in Kombination mit Tastatur D Nur in Kombination mit Tastatur und Maus 

 

 

Welche Anwendung(-en) können Sie sich als Touch-Anwendung für PC oder Laptop vorstellen? F12 

 

 

 

 

Wie empfanden Sie den Umgang mit dem berührungsempfindlichen Bildschirm generell? 
(Pro Reihe maximal ein Kreuz) 

F13 

Frustrierend 1 2 3 4 5 6 7 8 Motivierend 

Langweilig 1 2 3 4 5 6 7 8 Stimulierend / Spannend 

Schwierig 1 2 3 4 5 6 7 8 Leicht 

Reagiert langsam 1 2 3 4 5 6 7 8 Reagiert schnell 

Ungewohnt 1 2 3 4 5 6 7 8 Gewohnt 

Körperlich sehr anstrengend 1 2 3 4 5 6 7 8 Körperlich kaum anstrengend 

 

  



 

Erklärung 
 

Hiermit versichere ich, dass ich diese Arbeit 

selbständig  verfasst  und  nur die angegebe-

nen Hilfsmittel verwendet habe. 

 

 

Christian Wimmer 

 


