Institut fir Visualisierung und Interaktive Systeme
Universitat Stuttgart
Universitatsstrafe 38

D—-70569 Stuttgart

Diplomarbeit Nr. 3154

Migration und Anpassung von
Dialoganwendungen fiir be-
riihrungsempfindliche
Bildschirme

Christian Wimmer

Studiengang: Softwaretechnik
Prifer: Prof. Dr. Thomas Ertl
Betreuer Jun.-Prof. Dr. Thomas Schlegel,

Dipl.-Phys. Michael Raschke

begonnen am: 1. Marz 2011
beendet am: 31. August 2011
CR-Klassifikation: D.2.2 Design Tools and Techniques

D.2.3 Coding Tools and Techniques
D.2.10 Design

D.2.11 Software Architectures

H.5.2 User Interfaces

Abstract

Berthrungsempfindliche Bildschirme wurden in den letzten Jahren immer gilinstiger und beliebter. Die gra-
fischen Benutzeroberflachen von Anwendungen fiir Desktop- und Laptopcomputer sind jedoch fiir eine sol-
che Eingabeart nicht ausgelegt und neue Programmversionen dndern diesen Umstand auch kaum. In dieser
Diplomarbeit wird daher eine Methode vorgestellt, um Entwicklern die Moglichkeit zu geben, ihre Dialoge
automatisch auf die Benutzung fir Touch anzupassen. Daflir wurde ein Prototyp entwickelt, der die auto-
matische Transformation von Dialogen in der Dialogbeschreibungssprache XAML erlaubt. Die Migration der
Dialoge wird durch eine parametrisierbare Transformationsvorschrift in XSLT durchgefiihrt. Zusatzlich kann
mit einer beliebigen .NET Sprache in den Migrationsprozess eingegriffen werden. Um die Funktionsfahigkeit
der beschriebenen Transformation zu zeigen, wurde im Rahmen dieser Diplomarbeit eine Studie auf einem
beriihrungsempfindlichen Bildschirm durchgefiihrt. Dazu wurden zwei Dialoge mehrmals transformiert, in-
dem die Steuerelemente automatisch verandert und ersetzt wurden. AuBerdem wurden einige Steuerele-
mente fir die Studie analysiert und entsprechend von Gestaltungsregeln fiir die Benutzung mit den Fingern
angepasst, um in der Studie bewertet zu werden.

Touch-sensitive screens became cheaper and more popular over the last few years. But the graphical user
interfaces of applications for desktop and also laptop computers do not support such a type of entry by de-
fault. Therefore, in this diploma thesis a new method is proposed that supports software engineers in
adapting their dialogs automatically to touch input. To implement this method, a prototype application was
developed to migrate dialogs that were created in the description language XAML. The migration itself was
performed by using a mapping process in XSLT. In addition, .NET programming languages can be integrated
into the process to influence the migration. To show the functionality of the migration process a user study
was conducted on a touch-sensitive monitor screen. Two dialogs were transformed several times by chang-
ing and replacing control elements automatically. Also some control elements were analyzed and adapted
to conform to design rules of touch input. In the study users had to test and evaluate the transformed dia-
logs.

Danksagung

Auch wenn Johann Wolfgang von Goethe einst sagte: ,Leider |dRt sich eine wahrhafte Dankbarkeit mit Worten
nicht ausdriicken.”, so will ich dennoch meine Dankbarkeit hier niederschreiben, damit sie nicht vergessen
wird. Zu allererst ist diese Diplomarbeit meiner Familie gewidmet, die mich immer und ausnahmslos bis zum
Abschluss begleitete und unterstiitzte. Danke an meine Eltern! Danke an meine kleine Schwester; am Montag
ist wieder Training! Vielen Dank méchte ich den Teilnehmern der Studie zukommen lassen. AulRerdem geht ein
groBes Dankeschon an die Korrekturleser, die sich durch den vielen Text gearbeitet haben. Danke Onur und
Alina! Weiterhin danke ich auch meinen Betreuern, die mir immer mit Rat zur Seite gestanden haben, als ich
mal wieder ratlos war. Danke dir Thomas, ohne dich ware dieses Thema nie zu einem Diplomarbeitsthema
gereift! Und auch Dankeschon an euch Michael und Florian, fiir eure konstruktive Kritik und eure Miihen; unse-
re Treffen haben mir immer viel Freude bereitet! Sollte ich noch jemanden vergessen haben, dann méchte ich
mich hiermit entschuldigen und meinen Dank nachreichen. War doch keine Absicht!

Zuletzt mochte ich auch an Sie, den Leser, meinen Dank richten. Eine Diplomarbeit zu schreiben, ohne dass
jemand sie liest, ist wie einen guten Wein zu keltern, ohne dass ihn jemand trinkt. Beide verstauben nur im
Regal und geraten in Vergessenheit. Lassen Sie mir daher Ihre Meinung zukommen.

Schreiben Sie mir: chriswimmer@gmx.de

Inhaltsverzeichnis

Inhaltsverzeichnis
Inhaltsverzeichnis als MiNd-IMIapcceeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeseeseesssnsssssssnnsnnnnnnnnns 3
AbbildunNgSVErzeiChNiS.......ccccueeiiiiiiiiiiirrr e aan e e 4
LI L+ Y= =TT = 7= 1] T PN 7
QU EXEVEIZEICHNIS ... citvee ittt e reeeiereeeeerereeseresssseresssseresssserensssesensssssensssesansssssensssssensssssansssssannssssannnns 8
R 1131 =11 40T - N 11
1.1 1Y Lo XY=L Ao o FS TSP OUPO R OPPTPPPPRRE 11
1.2 L XU o - 1 OO OO PSPPPPRR 12
13 BT T ettt ettt st e et s bt e et s bt e e bt e s b e e et e e sbeeeabeesbeeeareena 12
2 Grundlagen und Stand der TEChNIK.........ccccoeieiiiiiiiiirrrrrcccrrcr s s s s s s s s s s s s s s snnns 13
2.1 TEIMINOIOZIE ...ttt ettt ettt ettt b e s bt e bt e e bt e e bt e s b et e saee s beeeaeeeabeeebeesabeeenneesabeeenneesanes 13
2.2 Generationen der BenUtzersChNItESTEIENcc.viiiiiiiiiie et sre e sanees 14
23 Berlihrungsempfindliche INteraktioncociiiiiiiiiiie et sbe e s 18
2.3.1 =Tl 1Ty Lo oo 1= s USSR 18
2.3.2 INEEIAKEIONSIMETNOUEN ...ttt e ettt e e e e e e st a e e e e e s st aaaaeeesssasssenaeas 22
2.4 (D11 o = <SSR 24
2.4.1 EINFURIUNG ..ottt ettt sttt e s et e s e e st e st e st e sateanaseesaseenateasaseenanes 24
2.4.2 GESLAItUNGSGIUNUSALZE.ccc.eveeeeeeeeeeiee ettt e e et e e ettt e ettt e e e se s e e s taaaesassaasastsesassssssesasssasasssenanases 25
2.4.3 Taxonomie der BenUtZEriNteraKEIONENueeeeeeeeeeeieeeeeeeeeeeciteeeeeeeeeetitteeeeeeeeessssaresaseeesssssaresasenaans 27
2.4.4 DialogbesChreibUNGSSPIACREN.veeeeeeie ettt e e ettt e e e e ttte e esa e e e st s e e stsaaessssaeesssenananes 28
2.4.5 LV] e [ol 1 (=2 PSR 34
2.5 Yo A L V= A =TT [- RS 36
2.5.1 Forward Engineering am Beispiel der modellgetriebenen Entwicklungccccooceevcuvenvueencueensueennne. 36
2.5.2 REVEISE ENGIN@EOIING .ccccoeeeeeeieeeeeeee ettt ettt ettt et et et et et et e e e e et e e e s e saeesasesesssasasssasseaaees 41
2.6 Y 1= | A o T o TR PP OOPTPPPPPNE 44
2.7 ZUSAMIMENTASSUNE.....ueiiieiiiieeeiiieeectteeestteeeestteeeeeaaeeesebaeeaesstaeeeassseesssaaaaasbssseassseaeasssseessseaeaantseseansseessassenans 47
3 Problem-, Aufgabenstellung und LOSUNGSANSAtZ.......cccceiiiiiiiiiiiiiiiissisiissses 48
3.1 [o] o] =T 0 g A=Y | [N o = PSPPSR 48
3.2 Aufgabenstellung UNd LOSUNESANSATZ ..cccuuiiiiiiieeeiiieeieies e eeite e e sttt e e et e e s tee e e e st e e e saaeeesnreeeesnseeessnneaesnsseeens 50
4 Methode zur Umsetzung des LOSUNESANSALZEScccvvviiiiiiiiiiiiiiiiiiiiiiiiiisissssssssssssssss s sssssssssssssssssnens 52
4.1 [CTET= Lo o e g VA=Y o) { SR 52
4.2 UMEESETZEE METNOE .o e e e e e e st e e e e e e e sestbtaeeeaeeseanstaanaeeseeannnses 54
5 Anpassung der Steuerelemente fiir beriihrungsempfindliche Eingabencccoovviiiiiiiiiiiiniiininiisisssssssnisssnnnn, 56
5.1 [T) {81 VU 7= PSPPSR 56
5.2 Ry YU =T T =T g 1T o o =4 o LYY o TS 56
53 STEUETEIEMENTADSTANTE .. .iiiieiii ettt et st e e s bt e s st e e e s abte e e sbbe e e s abaeeseanbeeesbbeeens 57
5.4 KONEIOIKESTCREN .. ettt et e s e st e s abe e sabe e st e e sabeesabeesabeesbeesareesas 57
5.5 NUMEFISChE StEUETEIEMENTE ...ttt st e e e sttt e e st e e e s sabte e e sabbeeesabaeesaneas 57
5.6 BAUM@NSICREEN .ottt et sat e st e s at e e s abe e s at e e s a b e e s abee s beesabee s b e e sabeesbeenabeesbeesareena 59
5.7 [= o1 1= [o [T OO ORI TP PRPTPPRRP 59
T Vol 111 7= G {0 62
B.1 UDEISICNT ettt ettt ettt ettt ettt et et ae et et ae ettt et et e ettt et et teat et et et et etenseaetenseteteneane 62

6.2 1Y oo =] IR RSOSSN O PP PUPRRRRRORt 62

Migration und Anpassung von Dialoganwendungen fiir beriihrungsempfindliche Bildschirme

6.3 VW ettt ettt ettt et ettt ettt et e bt bt e e bt e e bt e e b et e bt e e bt e e bt e e bt e e b ee oAb e e e bt e e b et e bee et ae e bt e e baeenbee e beeenaeeeares 63
6.4 (60T a N o] 1=T o PP UPOTRPR 64

7 2 U 4 0113 71 | V- 67
7.1 BINTURIUNG ..ttt et e ht e st e e st e s bt e eab e e sabeeeabeesabeeeabeesabeesaseesas 67
7.2 Die BENULZEIODEITIACHE ..eeiiiieeei ettt e st s it e st e e sabe e sbeesabeesbeesabeena 68
7.3 Ubersicht Giber die ProjektkOMPONENTENcccvcviveviviteretieiiieeeeeet ettt e s sttt s as e s s s st seseseeas 71
7.4 Umsetzung der TransformatioNSENGINE.ccocuiiiiiiiieieiee e e e e e e e satr e e e rara e e e satreeeentaeeesnnnes 73
7.5 DL T N e Ta Iy fo g s Y AT a1 o] e A=Y USRI 74
7.5.1 Die TranSformMatiONSPIPEIINEccecveeeeeeiieeeeeee et eeee ettt e e ettt e e e sttt e e ste e e e ttesaessasesasseaeesssesaeanes 75
7.5.2 Grundlagen der TraNSFOrMOTION.cocueeiuiieiiiiiieeeee ettt ettt ettt e 81
7.5.3 Erweiterte Transformation mit ANNOLALIONEN..............ceeeevereeiiieeeecieeeeeeeeeesceeeesteeeeestaaasssseaeessesaeaans 90

7.6 Erweiterbarkeit durch das PIUG-IN-SyStemi.......ocuiiiiiiiieii et e 102
7.6.1 NEUES PIUG-IN @FSEEIIEN ...ttt e et e et ee e et e e e et a e e e e e s ataeaeassesanasssaessaseeaaas 104
7.6.2 Anpassung der KOMMUNIKGEIONc.coecueeevueeeiieieiei ettt ettt ettt et saeeesaneenaee e 104

7.7 [T T (o] o DO OSSP TPSTI 105

8 Technische Evaluation anhand der Durchfiihrung einer Touch-Studiecccevviiiiiiiiiiiinn, 107
8.1 1Y Lo X 1Y) { o] o FR P PP UPU T OPPPPPRPPRN: 107
8.2 K] (0o LTRSS UUTRRRRRR 107
8.2.1 HYPOTRESEI.c.....eeeeeeeeeeee ettt e e ettt e et e e e ettt e e e et eeaattaa e e tsaaaaastsaseesssaaeastasaeanssesenasssaeeassssanan 107
8.2.2 1Y =1 4T Yo L= S SR 108
8.2.3 L o T o] TR Y= S 113
8.24 0 TR [F ST 121

9 Zusammenfassung UNd AUSDIICKcccceiiiiiiiiiiiiicccccrcccrrrrrrrr e e e e e e e e e e e s s s s s s s s s e sesseesesseenananns 123
9.1 ZUSAMMENTASSUNE ... eeeiitiiiite ettt ettt ettt ettt et e e bt e sbe e e bt e s st e e s bt e e s ab e e bt e e sabeesbeeesaseesabeesabeesabeesabeesnseesareesaneenas 123
9.2 F YU 1 o] [ol PO UORPPPTPPRIO 123
9.2.1 Di@ ZUKUNFE VON LATTE ...oeeeeeee ettt e ettt ettt e e ettt e e ettt e e aastaa e s sseaesanstaasaastaasssseaassastesesansnassansenaans 123
9.2.2 Die ZUKUNFt AEI METROMEc..eveeeeeeeeeeeee ettt et e ettt e e ettt e e et a e e sttasaeetseaeessssaesaassnaans 125

I =T WLV =T =T ol oI 127
7Y 0] 4T T V- SR UPS R TTPTRN 134

2
c
<
2
]
N
—
v
>
(%]
=
(3]
<
IS

QpPOYIBIA 21239538WiN 71

sazjesues3unso sap Sunziadswn INZ IPOYIBN

1dazuoyjwesao Ty

z1esues3unsgl pun Sunjjeisuaqesiny z'€

zjesues8unsgl pun Sunj|isuagesjny ~wa|qoid €

Sun||21sWa|qoid T'E

Sunssejuswwesnz £z

uonessiN 9’z
Busaul8ug as4anay 2°S°T

BuueaulBul aiemyos gz

Sunppimul
uauagallag||apow Jap |aidsiag
we SupaauiBul piemiod 1°5'

N

APIPPUNd S'v'C

uayoeudss3ungiaiydsaqsolelq v'y'g

4931 43p puels

a8oeIq '
pun uage|punig ‘g

uoi|eIalUIaZINUDY ISP BIWOUOXR] €'1'T

aziespunugsduni|esan g'y'e

——

Sunuynjuia T'y'g

U3POYIBWISUOIBIBIU| T'E'T uomesal
ayolpuldwasduniyniag €7
——

ualSojouyda) T'€'T

U3|23SRIUYISIZINUDG

19 UBUOIRIBULD 7T ayusag €1

I9p|24UdISI] LS

uaiydisuewneg 9°'g

awnydsplig
aydypuidwassuniyniaq anj uasSunpuamuesojeiq
uoA Sunsseduy pun uonessin

a180jouIwIaL T°C

neqjny ¢'1

UOREANOIN T'T

Sunyauia ‘T

PIgsny pun

Sunssejuswwesnz ‘6

uaqesu13 aydljpulydwassuniyniaqg

9}UBWIA[IANIIS AYISUBWINN §'G
1N} 23UdWSI|2IaN3)S 4ap Sunsseduy °g

USYIISEY[|0IIU0N 'S

Ipuelsqejusws|aanals €'9

J43||043u0) ¥°9 u3g0JSIUAWD|IANAIS 7'

INPRIYIIY 9 MIIA €9

Sunuymyuiz 1°g

I9PON 2°9

Y1siaqn 19

uolissnyjsiq £'L

waisAS-u|-8n|d Sep yaunp 1dIeqIa1dMIT 9°L

Sunziaswn £

ssazoidsuonew.oysues] 4dQ G,

Sulguasuorjew.oysuel] Jap Sunzaswin 'L

uajuauodwoyRfo.d d1p Jaqn YdISIAAN €L

ayde|Iaqo.IazINUag 3la 2L

unynuia T

uoIssnysid v'Z'8

a1pnis-yanoy
Jauld Bunuynyyaing Jap pueyue
uollen|eag ayosiuyda] ‘g 9s551ugasi3 €°7'8

UOHEAROIN T'8

SPOYIBIN T'T'8
BIgsnY T 6

uasaylodAH 12’8

Sunssejuswwesnz 1'g

dejA-puIy S[E STUYDIISZISASI[BYU]

n Migration und Anpassung von Dialoganwendungen fiir beriihrungsempfindliche Bildschirme

Abbildungsverzeichnis

Abbildung 1 Die meisten Befehle aus MS DOS, wie copy, dir, echo, format, goto, mkdir, more, path und viele

mehr werden noch heute in der Kommandozeile unter Windows UNterstlitzt...........ccceeevvevvueesiuverseeniieensieeniieessieenanes 15
Abbildung 2 Der Dateisystemmanager MS DOS Shell und Norton Commander nutzten Textzeichen fiir Fenster

0Tl L L= 1O PRSPPI 16
Abbildung 3 Mendiis kénnen in einer Baumstruktur dargestellt werden. Die Struktur hat sich nicht gedndert,

jedoch die Darstellung: oben ein Menii im Textmodus unter DOS, unten links in Windows 3.1 und rechts

Lo (o1 SRS 16
Abbildung 4 Demonstrative und spielerische Anwendungen auf dem MS Surface fiir 15.000 Euro. (Quelle: links
[Microsoft, 2009], reChts [CNET NEWS.COMY]) ...c.uueeureiiuieeiuresiieeeitesiitesittesiseesseesssessssassaseassessssesssessssessssessssssssesssseesnses 17

Abbildung 5 Prototypen von interaktiven Papiercomputern. Mehrere solcher Gerdite lassen sich stapeln. Das
Durchbldttern von mehreren solcher Computer dndert ihren Inhalt analog zu einem Stapel Papier. [Holman, et

o] L0 USRI 18
Abbildung 6 Druckempfindliche Bildschirmoberfldchen bestehen aus mehreren Schichten. Durch den Druck des
Fingers beriihren sich die leitendenden Schichten und erméglichen so eine Bestimmung der Position. Bild: [Tyco
EIECEIONICS, 2010] ..c..eveeeeeeiee ettt e et e e ettt e e et e e eaaa e e e sttt e e s aate e e s nstaaesasseaesaasteasaassaaaaanteaeensteeeaanneaeeanseaaans 19
Abbildung 7 Ladungstransport bei Beriihrung der geladenen Bildschirmoberfldche. Der Finger ldsst bei einer
Beriihrung der Oberfldche die Spannung abfallen, so dass die Position der Beriihrung bestimmt werden kann.

2] Lo Y AR Y1 TSR 20
Abbildung 8 Surface Acoustic Wave verwendet ein Ultraschallwellenraster, das bei einer Beriihrung veréndert

wird. Eine Beriihrung der Scheibe absorbiert einen Teil der Wellen, so dass die Position der Beriihrung bestimmt

WEIden KANN. Bild: [VISAM]ou et eeeee et e et e et e ettt e e ettt e e aatea e s st e e s s tteasaasseaasansaaasansseaesassnassasssnasssssenananns 20
Abbildung 9 Verschiedene optische Bildschirmaufbauten (v.o.n.u. FTIR, DI, DSI). Eine Kamera nimmt unterhalb

der Bildschirmoberflédche Verinderungen auf der Oberfldche durch Lichtstreuung wahr. Bilder: [Roth, 2008]............ 22
Abbildung 10 Maustasten und das Mausrad kénnen durch Finger simuliert werden [Matejka, et al., 2009]. Die

rechte Maustaste und Scrollrad werden durch eine Fingerkombination ersetzt.c.ccceeveevceevveencieenseeniieenneenne. 23
Abbildung 11 Links eine Standardabfragedialog mit den bekannten Schaltknépfen. Der rechte Aufgabendialog

setzt die Abfrage des linken Dialogs mit grofifléichigen und selbsterkldrenden Befehlsschaltern um. 25
Abbildung 12 Benutzerinteraktionen in Dialogen kénnen in verschiedene Kategorien aufgeteilt werden.................... 28
Abbildung 13 Der Quelltext eines mit Turbo Vision erstellten Dialogs und die Darstellung des Dialogs in einer

Turbo Vision ANWENAUNG I IMIS DOS.ueeeeeeeeeeeeeeetee e e te e e ettt e e ettaa e ettt e e e e tse s e e s tssaeessssaeastssseessssssessssasesssesananes 30
Abbildung 14 Ein Dialog in Java mit dem Framework SWing @rStelltoccueeeecieeeeeeiieeiiieeeecieeeeecieeescieaessieeaeens 30

Abbildung 15 Mit Microsoft Visual Studio 2010 kénnen Dialoge sowohl als XAML Quelitext als auch in einem
Designer erstellt und bearbeitet werden. Im Gegensatz zu Expression Blend kann der Dialog mit Ereignissen

ausgestattet werden, die in einer .NET Sprache geschrieben WUIden.ccceeeecueeeeeciieesiiieeesiiieeeesivsesciieaessivieans 33
Abbildung 16 Fiir Designer und Nicht-Programmierer hat Microsoft den Expression Blend XAML Editor

entwickelt. Er ldsst sich dhnlich bedienen wie bekannte Bildbearbeitungsprogramme.cccccccveeevvveeeciveesscrennn. 33
Abbildung 17 XMLPad - Ein MS SDK Werkzeug zum schnellen Ausprobieren von XAML-Syntax.cccccceeeevvvvveenannn. 33
Abbildung 18 Die Formel zur Berechnung der Pixel Pro Zoll (Pixel Per Inch, kurz PPI) fiir einen Bildschirm 34
Abbildung 19 Unterschiedliche Punktdichten (hier 96 und 150 PPI) bei gleicher Auflésung und Fenstergrofe.
Steuerelemente werden bei 150 PPI gréfier dargestellt QIS Bei 96 PPI.............cooeeeeeeeecieeeeciieeeeeieaeecteeeesieeesaeaesenes 35
Abbildung 20 Typische Darstellungsprobleme bei h6heren PPl Einstellungen @ [GExperts] (Bildschirmfoto), @
[CnPack] (Bildschirmfoto), @ [MuUSGrave, 2009])..........cuueeeeeeeeeieeeeeieeessteeeeseteeeesteaesstttaessstaasssteasssssesesssesaesseeanas 35

Abbildung 21 Die Modellgetriebene Architektur erméglicht aus Geschdftsmodellen automatisch Quelltext zu

[0 LT L= 4 L= =1 ORI 38
Abbildung 22 Die Mdglichkeiten von MARIA [HIIS Laboratory] erlauben eine Anwendung auf verschiedensten

L o Lay fo g T=T (A I L= A =1 o T=1 IS 39
Abbildung 23 Nach [Lutteroth, 2008] besteht ein Bereich (,,Area”) aus den Koordinaten, Inhalt sowie Grenzen fiir

€INE ANAEIUNG AT GIOE. ...ttt ettt ettt et st ettt s sttt et s ss s e s s as s e tsasatasssstessasssssanaes 42

Inhaltsverzeichnis

Abbildung 24 Eine GUI migriert fiir ein Fernsehgerdt [Paterno, et al., 2008]. Die Elemente kénnen durch die
Fernbedienung DEAIENT WEITEN.cooveeeieieeieie ettt ettt ettt e et e st e e st e st e e seesaeaeasee s 46
Abbildung 25 Die Migration von AgilePlanner auf ein Multi-User ,, Touchtisch” mit 10 Mega Pixel Auflésung

[WANG, €1 Ql., 2008] ..ot ettt et e et e et e e et e sttt e e sttt e e ettt e e et e e et te e e ettt e e ntte e e atte e e e natneeeanteeeaas 46
Abbildung 26 Schematische Darstellung der Lésung. Die Transformation von Dialogen besteht aus einem

Gesamtkonzept, welches im Laufe dieser Arbeit konkretisiert und schliefSlich umgesetzt wird.cccceeevevueenen.. 50
Abbildung 27 Modellgetriebene Transformation zur Migration auf beriihrungsempfindliche Dialoge im

allgemeinen Fall bestehend aus Reverse Engineering, Transformation (auch Abbildung) und Codegenerierung......... 53
Abbildung 28 Ausschnitt des Transformationsprozesses Qus ABDIlAUNG 27cc...veeeeeueieeciieeeeciieeeeceeeescieeeesieaeens 54
Abbildung 29 Verschiedene Gréfien von Schaltern: 5, 7, 10, 15 und 20 Millimeter Seitenldnge. Die GréfSe hat

einen Einfluss auf die Bedienung mit AeN FINGEIN.cccueeeeiiueeeeseiiieeesceeeesiteaeetseeeesetsaaessssaasssesassssseseessseseessssanas 56

Abbildung 30 Mdégliche Ersatzelemente von Kontrollkéstchen. Links: Alte GUI-Elemente aus [Plaisant, et al.,
1992]. Rechts: Beispielhafte Umsetzung mit WPF als Widgets. Die Bedienung von Kontrollkdstchen wurde in der

Studie auUS KOPItel 8 UNTEISUCKTL.oooueiiieieeeeie ettt ettt ettt et e ettt e et e e st e sbeeenseeeans 57
Abbildung 31 Beispielhafte Erweiterung eines Zahlenfeldes mit einem Schiebregler, der beim Antippen des

Feldes aufspringt. Das Tastatursymbol wird von Windows automatisch eingeblendet.ccccceeeevvveeeccuvreencvennn. 58
Abbildung 32 Drehfelder mit gréf8eren Schaltfldchen kénnen einfacher mit dem Finger bedient werden..................... 58

Abbildung 33 Ein Zahlenfeld fiir die prézise Eingabe von Kommazahlen, das sogenannte numerische Tastenfeld.
Die Schaltfldche , Def” setzt den Wert im Textfeld auf die urspriingliche Eingabe zuriick. ,,Clear” belegt die
Eingabe mit dem Wert 0. ,,X“ schlief3t die Eingabe ab. Die Eingabe wird abgebrochen, indem der Bereich

auflerhalb des Tastenfeldes DErtNIt WIld.oeeecueeeeeieeieeeeieeeeeee e e eete e eete e e e ste e e ettt e e s tssaaestaaaeastseaessssssaesssseaaas 58
Abbildung 34 Eine illustrierte, flache Baumansicht mit Brotkrumennavigation erleichtert die Fingerbedienung 59
Abbildung 35 Ein Trommellistenelement fiir das Android Betriebssystem. Die Werte oben und unten scheinen

NACH NINEEN GEZOGEN ZU WEIUBN. ...ttt ettt ettt e s et e s e e st e st e nate e s teenateesaneenanes 60
Abbildung 36 Ein Listenfeld mit seitlicher Navigationsleiste, wie man es aus diversen Kioskanwendungen kennt....... 61
Abbildung 37 Beispielhafte Erweiterung einer Liste fiir die Mehrfachauswahl mit Kontrollkdstchen 61
Abbildung 38 Die Komponenten aufgeteilt Nach dem MVC MUSTETcceccueeeeeeieieeesiieeeeiieeeeciieeeeeiveeesissasesrasaseans 62
Abbildung 39 Klassendiagramm der KOmponente MOGEI..............ccccuueeeeecueeeeeiieeeecieeeeetieessteeessitaeeesstaaessaeasssssesannans 63
Abbildung 40 Klassendiagramm der View KOMPONENTEcoeeeeeeccuveiieiieeeseciitieaeeeesssitteaaaaeeeesisaeseaaseesssssasesaaeeanas 64
Abbildung 41 Klassendiagramm der Controller KOMPONENTEcoeeeueeeecceeeeeeeiiieeeieeescieeeestaessitaaesteaessrseaesnans 65
Abbildung 42 Komponentendiagramm mit Controller und Plug-In Komponenten. Plug-Ins ,,docken”an den Co......... 65
Abbildung 43 Klassendiagramm fiir ein Plug-In. Die Schnittstellen sind aufgeteilt nach Plug-In-Verwaltung

(Pluginintf) und Methoden fiir den Transformationsprozess (ProcessingIntf).ccoceeevvueieeiiueeeesieeeeeiieseeiieseesirenann, 66
Abbildung 44 Ubersicht iiber die verwendeten und umgesetzten Bestandteile VON LATTEccooeeeeeeveeereveeeereieennnns 67
Abbildung 45 Die View Komponente aus Kapitel 6 bildet die Schnittstelle zum Benutzercccccueeeeeeecccivveennannn. 68
Abbildung 46 Die LATTE Anwendung zur Transformation von Di@lOgenccueeeeecureesiieeeeiiiseeeiieeesiieeessieeennns 68
Abbildung 47 Der XSLT Editor fiir die Eingabe von AbbildungsvorsCAriftencccccvvueeeciieeeeciieeeecieeescieeeecveeeeans 69
Abbildung 48 XSLT Parameter Editor fiir die Steuerung der Abbildungsvorschriften............cccceeeevvveeeccvsesciieeesienenns 69

Abbildung 49 Parameterliste flir Plug-Ins fiir die Steuerung von PIUG-INSc.ueeeeeueeesieeeeeciieeeeiveeesiieaessiveeeeeans 70
Abbildung 50 Fehler, Warnungen und Nachrichten wdhrend der Transformation werden im Meldungsfenster

Lo (oo T2 (=] SO UUPRPN 70
Abbildung 51 Die LATTE Projekte aufgeteilt in Hauptanwendung und Plug-In (AddINS)ccocveeeeeeveeescieeeeiienaans 71
Abbildung 52 Die Klasse TransformationEngine von LATTE ist der zentrale Bestandteil der Controller

Komponente QUS der MVC ATCRIEEKEUNeeeeeeeeeeeee ettt e et e e et e e et a e ettt e e s ettt e e s asseaesasseaasastesesansesesansenanan 73
Abbildung 53 Das Klassendiagramm der Klasse TransformationEngine. Jede Transformation erhdlt eine Vielzahl

V0TI = 1 o o | o T=T OSSN 74
Abbildung 54 Die Model und Controller Komponenten von LATTE bilden den Transformationsprozess 74
Abbildung 55 Die Transformationspipeline, wie sie UmgeSetZt WUITEc..eeeecveeeeeiireesiiieeeiiieeescieeaesiaeaesssenaseans 75
Abbildung 56 Die Modellkomponente bildet die Grundlage fiir die Transformation von Dialogen.............................. 81
Abbildung 57 Anzupassender Dialog (Quelltext 45 siehe im ANRGNG)cooeeeeeeeecuiieeeeee e eecee e esea e siee e 82

Abbildung 58 Dialog mit vergrofSerten LiStENEINTIGGENc.ueeeeeveeeeeeeeeeeeieeeeeeteeeesteeeesiteeaeesseseeessaeesssssaessssesansans 84

n Migration und Anpassung von Dialoganwendungen fiir beriihrungsempfindliche Bildschirme

Abbildung 59 Dialog mit ersetztem KONtrolIKGSTCRENceccveeeeeiieeeeeee et ee e ettt e et a e e ea e e staeaesnaaaaesssanaesans 86
Abbildung 60 Links: Hohe angepasst, Rechts: Héhe und Breite angepasst............c.coccueeeceeirvueenieersiiensieessieeeiee e 88
Abbildung 61 Klassendiagramm der erstellten Annotationen flr XAML.............cceccveeeeeceeeeeiieeeeciieeeeiseeesiveaeessesanenns 91
Abbildung 62 Die Controller Komponente der MVC Architektur wird durch Plug-Ins erweitert...............ccccecuvevuen.e. 103
Abbildung 63 Die Add-In Pipeline in LATTE (angepasst aus [MacDonald, 2010]) und die Ausfiihrung eines

Methodenaufrufs dUIch di@ SCRICRTENccc.coiuieeieiiiieeee ettt et ettt st e et eesaee e 103

Abbildung 64 Der Aufbau des beriihrungsempfindlichen Bildschirms fiir die Benutzerstudie. Hinten rechts kam
ein Bildschirm zur Darstellung des aktuellen Aufgabentextes und zur Ablaufkontrolle zum Einsatz. Daneben liegt

ein Fragenkatalog, den die Teilnehmer fiir die Bearbeitung beantworteten.ccccveeeecveeeesieeeeesieeeesieeeesisenann. 109
Abbildung 65 In der Studie verwendeter Desktophintergrund fiir die einheitliche Positionierung der Dialoge an

=T L= I Y=ol s =Tol =3 ¢ OSSR 110
Abbildung 66 Vergleich der in der Studie eingesetzten Dialoge. Links: eine Nachbildung des originalen Offnen-

Dialogs fiir 01 und 02; Rechts: der transformierte Offnen-Dialog fiir die Aufgaben O3 bis O7.cccoveevevevvennne.. 111
Abbildung 67 Standarddialog fiir die Einstellung einer Druckerseite, wie er unter Windows eingesetzt werden

KON ..ottt ettt ettt s ettt et e sttt et e ettt e at e ettt e a e ettt at e ettt e a b e ettt et e ettt e et e e atteenate e tteenateentteenareen 112
Abbildung 68 Vergleich der transformierten Dialoge aus den Aufgaben S3 bis S6 (v.l.n.r. und v.o.n.u.)..................... 112
Abbildung 69 Vergleich der Abstdnde zwischen den Kontrollkdstchen in Aufgabe S7 Teil 1 bis 4 (v.l.n.r. und

(72 TN S 113
Abbildung 70 Eingesetzter Prototyp eines numerischen Tastenfeld fiir die Aufgaben S8 und S9.............cccccouvvveeuneenn. 113
Abbildung 71 Vergleich der durchschnittlich benétigten Zeit der Aufgaben 01 (Maus) und G2 (Touch) 115
Abbildung 72 Vergleich der durchschnittlich benétigten Zeit der Aufgaben S1 (Maus) und S2 (Touch)...................... 115
Abbildung 73 Durchschnittlich benétigte Zeit der AUfGaADeNn S3 Bis S6..........cocueeveienoeeeniieeieeeieeeeeeeeee e 115
Abbildung 74 Durchschnittlich benétigte Zeit der Aufgaben S7 Teil 1 bis Teil 4ccc.eveveeeeeeeeiieeeecieeeeeieeeecrieenn, 115
Abbildung 75 Der Fehlerquotient berechnet sich aus der Anzahl der gemachten Fehlern und der Zahl der

LT 1 TV Lo L1 OO USSR 116
Abbildung 76 Fehler pro Gesamtberiihrungen der Aufgaben O1 (mit Maus) und O2 (mit FiNGer)ccoevveeen.. 116
Abbildung 77 Fehler pro Gesamtberiihrungen der Aufgaben S1 (mit Maus) und S2 (mit Finger).............cccceeeeuveee... 116
Abbildung 78 Vergleich der Fehlerquotienten der Aufgaben 02, G4 Und O5cooeeeeeeeeveeeeeeeeieeeeeseeeesieenanns 117
Abbildung 79 Vergleich der Fehlerquotienten der AUfgaben S2 Dis S6cueeeeeceeeeeeeeeeeeiieeeeeiieeeesieaeesieeeessanaan 117
Abbildung 80 Vergleich der Fehlerquotienten der Aufgaben S8 UNA S9............eueeeeceeeeeeciieeeecieeecieeeesieeescieeessinaen 118

Abbildung 81 Wurden Ihre Erwartungen an die Bedienung des beriihrungsempfindlichen Bildschirms erfiillt?......... 118
Abbildung 82 Kénnen Sie sich vorstellen einen beriihrungsempfindlichen Bildschirm am PC oder Laptop zu
VEIWENGECNIP ...ttt ettt ettt ettt e e e e ettt e e st e e sttt e e et e e st e e e aast e e e st e e e et e e e s steeeeaubeeeanabbesenstaeesaseaeans 118
Abbildung 83 Viele Webseiten und Cloud Anwendungen lassen sich nur schwer und nicht ohne weiteres mit den
Fingern bedienen. Hier der Google Kalender. Diagonalverhéiltnis von originalem Tablet zu Bild ist 1 zu ca. 0,93.126
Abbildung 84 Sequenzdiagramm des implementierten TransformationSProzessesccovueeevveeeesvvsescieeersisennns 136
Abbildung 85 Plug-In Methoden Aufruf mit MAF am Beispiel vONn PreProCessingcc.cccoveeecveeeeesiveseesiveeesisenan. 137

Inhaltsverzeichnis

Tabellenverzeichnis

Tabelle 1 Gesten mit einem oder mehreren Fingern ldsen vielféiltige AKtiIONEeN QUS.cccceceerveenceinseenieeeeeae. 23
Tabelle 2 Die KIASSEN VON LATTEEcooueeiiteeieeeiieesie sttt ste ettt site e sttt e s e e sate e s ateesateesataesaseassteasasassabaesasessbeesasessaseessesss 72
Tabelle 3 Einige XSLT Standardelemente zur Verwendung fiir die Abbildungsvorschrift...........ccccoeceevveivvieenceinneennenn 79
Tabelle 4 Erkldrung zu den einzelnen Zeilen von QUEILEXE 7cc.ueeeveeeueeeieesieescieeesieessiee st sttt steassteessieessieesiee s 80
Tabelle 5 Einige XPath StandardfunKtionencccoovueeiuiienieeeiiesieeee ettt sttt 80
Tabelle 6 Beschreibung der AnnotationsKIaSSEN flr XAMLcoeeeueeeeeeieeeeeieeeeesteeeeceae ettt e e ssataeestaaaesisasaaesseaaenans 92
Tabelle 7 EBNF Produktionsregel fiir die entwickelten Annotationen in XAML...........ccccueeeveueeeessieseesiieeesiiieeessieeennns 93
Tabelle 8 Vor- und NACALEile der PrOZESSOIEN...........c.eecuierieesiiesieesiitesieesiitesteesiteesteesiteesteesitessssesasessseesasessaseenases 106
Tabelle 9 Benétigte Ausfiihrungsdauer der Teilnehmer fiir die Aufgaben 01-07 in Sekundenccccouvueun... 114
Tabelle 10 Benétigte Ausfiihrungsdauer der Teilnehmer fiir die Aufgaben S1-S9 in Sekunden................cccuveeuunen.. 114
Tabelle 11 Die Fehlerraten der Aufgaben 02, O4 und O4 sowie S2 bis S6 im direkten Vergleichc.c.cccuueen.. 117
Tabelle 12 Kriterien und Gewichtung fiir die Aufgabenbewertungen. Bei allen Fragen (aufler F15) eingesetzt. 119

Tabelle 13 Spezielle Kriterien mit Gewichtungen fiir die Aufgabenbewertungen. Nur fiir den Aufgabentyp F15. 119
Tabelle 14 Einige Fragen zu den StUdi@NQUIGADENcoecueeeeeiiiieeecieeeeeceeeeeceeeettte e eesata e e s ttasaesstseseesssasessaeaans 119
Tabelle 15 Ergebnisse der Befragung aus den Fragentypen F14, F20, F21 und F22 in den Kategorien C
(schwierig/leicht), D ([UI] reagiert schnell/langsam) und E (ungewohnt/gewohnt). Minimale/Maximale zu
VEIrgeDENAE PUNKLZANI: 6/48. ..ottt sttt ettt e sat et e st e st et e s te s st estenssnsessassessesssssnenssnsensens 120
Tabelle 16 Ergebnisse der Befragung des Fragentyps F15 in den Kategorien B (Ich konnte Steuerelemente

einfach treffen/anklicken/antippen.) und C (Der Einsatz von Maus/Finger in dieser Aufgabe fiel mir leicht.).

Minimale/Maximale zu vergebende PUNKEZANI: 6/48.c..ueeoeeeceeeceeeeeeeeeeeceeecveetteeetveesasestveessssesssesssessssesssseas 120
Tabelle 17 Steuerelemente: Bezeichnung, Symbol und Kurzbeschreibung basierend auf [Petzold, 1999],
[Erlenkétter, et al., 1997] UNA [WESSEI, 2002].......ccccooeeeuuueeieieeeieeiiriieeeeeieesiiaeeeeeeeeeesiisseeeseseeesssissssesseessssisssssssssessiisnes 134

Tabelle 18 Abbildungstabelle fiir Steuerelemente von Delphi, Dialog Ressource und XAML............ccccveveeeencuvencueennse. 135

n Migration und Anpassung von Dialoganwendungen fiir beriihrungsempfindliche Bildschirme

Quelltextverzeichnis

Quelltext 1 Dialoge kénnen aus komplizierten Strukturen bestehen. Hier der Quelltext fiir den Dialog aus

WY o) o] Lo [V T N SRS 31
Quelltext 2 Angehdingte Eigenschaften Canvas.Left und Canvas.Top bei einem Druckschalterccccooeevvvevnunennn. 32
Quelltext 3 Ein in XAML beschriebener Dialog beginnt immer mit dem Fenster-Element und enthdlt alle weiteren
Elemente in @INEIr BAUMSEIUKLULcoeevveieeieeesetieeeeetieeeeette et e e sttt e e et e e st a e s s ttaeesaataassaastaassasseaessstesssasseesssssenenas 32
Quelltext 4 Zugriff auf XML Knoten mit der KIasse XmMIDOCUMENTccoeeeueevseeesieeiiieesiisesiieesiieesiieesieessiiessiesssieesiee s 77
Quelltext 5 Eine Plug-IN MeIAUNG @IZEUGENcooueeeueeeiiieieeeee ettt sttt e e e st eeaee s 77
Quelltext 6 Plug-In Kommunikationsvertrag. Diese Methoden miissen implementiert werden.78
Quelltext 7 Ein XSLT Dokument. Diese Vorlage wird von LATTE fiir ein neues Projekt erzeugt.ccccceeeveevnueenen. 79
Quelltext 8 Einige Parameter in XSLT verwendet. xsl:param definiert einen Parameter, der durch SName

ANGEWENUECTE WIIG. ...ttt ettt et ettt e e ettt et e et e et e st e e bt e s bt e e st e s ateaeaseesteasaseens 81
Quelltext 9 Die Besonderheit des XAML Namensraums machen es erforderlich, in XSLT den Namensraum explizit

bV (=] o T4 =1 =3 ¢ PSS 81
Quelltext 10 Knoten mit Attribute in XSLT KOPIEIENc.eevcvveeseieeeiiieiiieesiieesieeesteeesitesstveesteessttesssessstsaesseessssesssessassessesen 82
Quelltext 11 Kopieren einer gesamten XAML SErUKEUEcooueeeeueeereeesieeeee ettt ettt tee s saeeenee s 82
Quelltext 12 XSLT Vorlagen, um alle Attribute und Knoten zu KOPIEreNcccccueeeeeeseiesveesiieesiieesiessssesssessssnesssnsns 83
Quelltext 13 Elemente mit XSLT RINZUFUGEN.........c.coeueieieeeieieiee ettt ettt ettt ettt e e saeaenee s 83
Quelltext 14 Elemente mit XSLT RINZUFUGEN (2.T@il).....cccuvevcveeeiieeiiiesie ettt ettt et sstte ettt e s sttesttesstteesieessbaesssessssaesseeen 84
Quelltext 15 Transformation €ines KONtrOIKGSECRENScceeueeeueieiiiieiiieeeee et 85
Quelltext 16 Erzeugtes Steuerelement CheCKBOXTOUCNSWILCRETcccuveeeueeeiiiiesiiiiiiiiesiisesiieesitsesiteesieessvessieessiaesiee s 85
Quelltext 17 Erzeugen eines Namensraum innerhalb eines Fenster-Elements ...85
Quelltext 18 Window-Element mit manuell eingefligtem NAMENSIAUMccccecvueeeveesesriiieesisesiieesieessieessseessieessiees 86
Quelltext 19 Transformation zum Verédndern von HOhe Und Breitec.cooceeeveeeiieeesieiesiieieeieeiee e 87
Quelltext 20 POStProcessing Mit HONE UNG BIreite..........cuuvcveeiueriiiieiieesiieesieeesieeesieessieeesiesssssesssesssssssssesssssesssesssssasssesen 89
Quelltext 21 XAML SETUKEUE JAAENc...eeeeeeeeeeeeeeeeete ettt e e ettt e e et e e e st teaeseattaesaastaassasseaesssteasassseaesassenenas 90
Quelltext 22 Definieren einer Annotation in XAML. Die Annotation wird als eine fremde Eigenschaft Attach an

Lo [o KR MR A=3} =3 (o e T o T=] 1 1o T o | P PSR 92
Quelltext 23 Eine annotierte Listendefinition in XAML. Die Annotation AnnotationParameter kann nur innerhalb

der Attach Eigenschaft definiert WAIAEN.ccueeeeecuiieeeeiieeeseeeetee e ette e e tea e et ta e e sttt e e sasteaesssstaassssteassasseassansenanns 93
Quelltext 24 Eine XSLT Transformation mit Priifung einer Annotation.... .94
Quelltext 25 Ein Listenelement wurde in XSLT QNNOLIEIt..........c.ccocuveeveeesiiieeeeieeeee ettt ettt 94
Quelltext 26 Annotationen eines Listenelements kopieren Und erweiterncccccveeeecvveeeeeseeesiiiivieeeeeeesisivreeaaeeans 95

Quelltext 27 Vereinigung von Annotationen bei einer Transformation (mit doppelten Metadaten

ANNOLALIONPAIAMELEL) ... et eeeee et eetteeeetaseeeeeaeseeeiavaeenssaeeeenans

Quelltext 28 Notation mit Namensraumdefinition: Ungiiltiger Syntax fiir XAML

Quelltext 29 Automatische Konvertierung von PrafiXe in XSLToeeeueeeeeeeeeeeeieeeesieeeeiteeseieeessttaesssvteaessaeaesansenaens
Quelltext 30 Die Methode PostProcessing empfdngt den volisténdigen XML Baum sowie den XAML

Namensraum. In der Methode kénnen so die Anpassungen direkt am XML Dokument durchgefiihrt werden. 96
Quelltext 31 Die Annotation eines bestimmten Elementes auswdhlen (BeiSpiel 1)cueeeeveeeeecueeeeeciieeeecieneecvennnn. 96
Quelltext 32 Die Annotationen aller Elemente einer Art ausw@hlen (BeiSpiel 2)ooeeeeeeeeceeeeesiiieeecieseeceeeesvenenn, 96
Quelltext 33 Alle Annotationen innerhalb eines XAML Elements ermitteln (Beispiel 3)...........cccceeeeveeeeeevveeecceneecrennnn. 97
Quelltext 34 Eine bestimmte Art von Annotation innerhalb von bestimmten XAML Elementen ermitteln (Beispiel

) ettt ettt ettt ettt ettt et ettt et ettt ettt ettt e et et s st et e et e e et s n e 97
Quelltext 35 XAML Beispielquelltext mit markierten Ergebnismenge der XPath Ausdriicke aus den Beispielen 1

o SRR 98

Quelltext 36 Annotationen kénnen aus XML Dokument geladen werden. AnnotationVerb unterstiitzt die
AUSFURIUNG VON METROGEN. ...ttt e ettt e ettt e e et e e e ettt a e e e tb e s e e aassaseasssaeatsaseeassssseaasssaenassesanaaes 98

Inhaltsverzeichnis _

Quelltext 37 Entsprechend dem Typ des XML Elements miissen die richtigen Annotationsklassen verwendet

=T o =7 ¢ PSR UPRRPN 99
Quelltext 38 Neue, wie auch verdnderte Annotationen kénnen zuriick ins XML Dokument serialisert werden. 99
Quelltext 39 Mit Annotation.GetAttach kénnen die Annotationen eines XAML Steuerelements ausgelesen

=T L= PSSP 100
Quelltext 40 Die Implementierung von Annotationlist.ListByType nutzt die generische Methode ListByHandler.
Selbstgestaltete Methoden kGNnNen genausO VEIfARNIEN.ccccveeeeecueeeesieeeeesiieeeecieeeesieeaesctaeaeesesaeassissessesssesaennns 100
Quelltext 41 Mehrere Optionsfelder werden durch eine selbsterstellte Annotation in einer Gruppe

bV Ko T T L= 1 Lo L= o KXY S SR SSNE 101
Quelltext 42 Attribute von Annotationen kénnen gewéhnliche Eigenschaften sein oder iiber das WPF System mit
Dependency Eigenschaften VerwirkliCht WEIGEN.ccuvueeeeueeeeeeeeeeeie et e et tte e e teeeesae e e s taaaaasateaeessaaasasaeaans 101
Quelltext 43 Die Methoden Serialize und Deserialize miissen iiberschrieben werden, um die Eigenschaften der
Annotation zu speichern
Quelltext 44 AnnotationVerb unterstiitzt Inhalte durch das Attribut ContentPropertyAttributcccccceevveeneennne 102
Quelltext 45 Ausgangsdialog fiir die Transformation in KQPItel 7.5.2cccueevuersveeseeesiieesisesiieesiieesiieesesesisssnneenns 138

Quelltext 46 Quelltext des transformierten Beispieldialogs aus Kapitel 6.3.2cccceeeveeeveivsveeseeeiieeseeesiieeseeeae 139

Migration und Anpassung von Dialoganwendungen fiir beriihrungsempfindliche Bildschirme

Einleitung

1 Einleitung

In Mitten der Schwierigkeiten liegt die Mdglichkeit.

Albert Einstein
theoretischer Physiker

1.1 Motivation

Beriihrungsempfindliche Bildschirme (Neudeutsch auch Touchbildschirm oder engl. touchscreen) werden von
Jahr zu Jahr attraktiver [Schoning, et al., 2008]. Besonders im Bereich der mobilen Geréte steigt die Attraktivitat
von PDAs, Tablets, Smartphones und E-Book-Reader mit berihrungsempfindlicher Oberflache. Kiosk- und In-
formationssysteme mit Fingereingabe sind mittlerweile unter Anderem schon in vielen Kaufhdusern und Ban-
ken zum Standard fiir Kunden geworden. Die Vorteile liegen auf der Hand. Die Benutzer kdnnen direkt mit den
Elementen (insbesondere Schaltflichen) interagieren und zusatzlicher Platz und Kosten fiir Hardware wie Tas-
tatur und Maus entfallen.

Doch zu Hause und bei der Arbeit sind LCD- und TFT-Monitore noch berihrungsunempfindlich. Fiir Soft-
warehersteller bedeutet dies keinen Aufwand in die Benutzbarkeit ihrer Software fiir Finger stecken zu missen.
Dies lasst wiederum Benutzer keinen Sinn darin sehen beriihrungsempfindliche Bildschirme zu kaufen, die
keinen wirklichen Mehrwert bringen und stattdessen Frustration erzeugen, etwa durch zu kleine Schaltflachen.
Wenn der Lustaspekt nicht vorhanden sei, so [Novak, et al., 2009], dann flhre dies zur Abneigung und schlieR-
lich zum Nichtnutzen der Technologie.

Mittlerweile unterstiitzt das neuste Betriebssystem Windows 7 aus dem Hause Microsoft standardmaRig die
bertihrungsempfindliche Eingabe zur Bedienung von Anwendungen. Dies geschieht seit Windows Vista auch
dann, wenn die Anwendung selbst nicht fir die Bedienung mit einem Finger entworfen wurde. Doch diese
Software ist nicht immer einfach mit den Fingern zu bedienen, da Steuerelemente und das gesamte Bedien-
konzept nur fir die Maus- und Tastatureingabe funktionieren (z.B. kleine Schalterflachen). Daher bietet
[Microsoft] eine Programmierschnittstelle an, das sogenannte Windows Touch SDK fiir Softwareentwickler, um
Multi-Touch sowie Gesten zu unterstiitzen. Auch wurden von [Microsoft] einige Gestaltungsrichtlinien fir die
Fingerbedienung unter Windows 7 herausgegeben. Solche Richtlinien gibt es auch von anderen Herstellern fir
deren jeweils eigene Plattform (eine Ubersicht gibt es bei [Experience Dynamics]). Doch eine Umsetzung der
Gestaltungsrichtlinien kann sich schwierig gestalten, da die Regeln oftmals nur in einer unscharfen Schriftform
vorliegen und dadurch keine automatische Anwendung z.B. in der Programmierung erlauben. AuRerdem kann
bereits eine einzelne Anwendung viele unterschiedliche Dialoge enthalten, so dass ein groRer Migrationsauf-
wand entstehen wirde, der eine Anpassung fir beriihrungsempfindliche Bildschirme nicht rechtfertigt.

Ziel dieser Diplomarbeit ist es daher die Bedienung von Anwendungen mit den Fingern zu verbessern. Dazu
wird ein Konzept aufgezeigt, das den Anwendungsentwickler bei der Migration seiner vorhandenen Dialoge
unterstitzen soll, indem es die Migration zu Teilen automatisiert.

Migration und Anpassung von Dialoganwendungen fiir beriihrungsempfindliche Bildschirme

1.2 Aufbau

Die Arbeit fihrt mit Kapitel 2 in die Grundlagen der beriihrungsempfindlichen Bildschirme und Generationen
von Benutzerschnittstellen ein. Zudem werden grundlegende Technologien und Methoden fiir eine beriih-
rungsempfindliche Bedienung erlautert. Der Interaktion folgt ein Kapitel GUber Dialoge, deren grundsatzliche
Gestaltung sowie Sprachen, um Dialoge zu entwickeln. Das Kapitel 2 schlieBt mit dem aktuellen Stand der
Technik bei der Migration von Dialogschnittstellen ab.

Das Kapitel 3 fUhrt in die aktuellen Probleme der beriihrungsempfindlichen Interaktion ein und stellt die Aufga-
ben der Diplomarbeit in einem Uberblick dar. Zu den vorgestellten Problemen und Aufgaben wird auRerdem
bereits ein Losungsansatz gezeigt und erlautert.

Um die Probleme und Schwachen der Dialoge fiir beriihrungsempfindliche Bildschirme aus Kapitel 3 zu tiber-
winden, wird in Kapitel 4 eine generische Methode vorgestellt. Diese Methode wird zudem konkretisiert, um
eine umsetzbare Grundlage fir die folgenden Kapitel zu erhalten.

Basierend auf den Grundlagen der Dialoggestaltung werden in Kapitel 5 mogliche Anpassungen der Steuerele-
mente in Dialoge fiir bertihrungsempfindliche Bildschirme analysiert und formuliert. AuRerdem werden neue
Arten von Steuerelementen vorgestellt, welche die vorhandene Elemente fir die beriihrungsempfindliche
Bedienung ersetzen und dadurch die Bedienbarkeit verbessern sollen.

Fir die aus Kapitel 4 bekannte Methode wird in Kapitel 6 eine Architektur prasentiert. Die Architektur dient als
Grundlage fir eine prototypische Umsetzung. Dieser Prototyp wird in dem darauf folgenden Kapitel 7 einge-
hend erldutert. Darin wird auRerdem der Transformationsprozess vorgestellt und wie dieser erweitert werden

kann.

Die Umsetzung wird anschlieRend in einer Studie mit mehreren Benutzern evaluiert. Dazu wurden zwei trans-
formierte Dialoge mit den aus Kapitel 5 angepassten Steuerelementen angepasst und auf deren Benutzbarkeit
auf einem berihrungsempfindlichen Bildschirm Gberprift. Im Kapitel 8 werden dafiir Hypothesen aufgestellt,

um die angepassten Dialoge in der Studie auf die Probe stellen zu kdnnen. Die daraus gewonnenen Ergebnisse
werden zudem prasentiert und diskutiert.

Kapitel 9 schlieRt die Diplomarbeit mit einer Zusammenfassung aller Themen ab. AuRerdem wird ein Ausblick
auf mogliche Erweiterungen sowie Verbesserungen der entwickelten Methode und des Prototyps gegeben.

1.3 Begriffe

In dieser Diplomarbeit werden durchgehend alle Begriffe in der deutschen Sprache wiedergegeben, sofern dies
moglich ist und der Kontext dies zuldsst. Dadurch soll eine bessere Lesbarkeit der Diplomarbeitsschrift ermég-
licht werden, denn Softwareentwickler sollten stets ihre Arbeitsdomane auch AuRenstehenden, sprich Nicht-
entwicklern oder Kunden, begreiflich machen kénnen. Fir viele verwendete, aber englische Begriffe existieren
deutsche Entsprechungen. In der Anwendungsentwicklung trifft dies insbesondere auf die Namen von Steuer-
elementen zu. ComboBox, Edit und Button moégen vielleicht Programmierern wohl bekannt sein, doch sind
diese aulRerhalb der Entwicklung fiir viele Menschen (und Leser) nicht unbedingt aussagekraftig. Flir einen
Softwareentwickler sollte es daher nicht zu viel verlangt sein, beide Welten zu kennen und zwischen ihnen eine
Briicke schlagen zu kénnen. In diesem Sinne nutzt der Entwickler die englischen Begriffe fir die Entwicklung
und auf der anderen Seite die deutschen Begriffe fiir die Erklarung. Fiir diejenigen, die die deutschen Namen
der Steuerelemente noch nicht kennengelernt haben, wurde eine Vergleichstabelle (Tabelle 17) im Anhang
erstellt. Diese beinhaltet neben einem Bild sowohl die deutschen als auch die englischen Bezeichner.

Grundlagen und Stand der Technik

2 Grundlagen und Stand der Technik

Sag es mir — und ich werde es vergessen.
Zeige es mir — und ich werde mich daran erinnern.
Beteilige mich — und ich werde es verstehen.

Lao Tse

chinesischer Philosoph

Das Grundlagenkapitel beginnt mit der Einfihrung von grundlegenden Begriffen, die im weiteren Verlauf der
Arbeit verwendet werden (Kapitel 2.1). Darauf folgt eine Einfiihrung in die Evolution der Benutzerschnittstellen,
von den Schnittstellen mit Kommandozeile bis hin zu den organischen Benutzerschnittstellen (Kapitel 2.2). Wie
bertihrungsempfindliche Bildschirme funktionieren und welche Interaktionsmoglichkeiten dazu existieren, wird
im Kapitel 2.3 prasentiert. Das Kapitel 2.4 beschéftigt sich mit dem Thema Dialoge. Darin wird erldutert, welche
grundlegenden Gestaltungsgesetze fur Dialoge existieren, wie die Taxonomie fiir Benutzerinteraktionen aus-
sieht und welche Arten von Benutzungsschnittstellen vorkommen kénnen. Das Kapitel 2.5 behandelt die mo-
dellgetriebenen Entwicklung. Darin werden Ansatze zur Entwicklung sowie Riickentwicklung von Oberflachen
mit Modellen aufgezeigt. Das Grundlagenkapitel schlieft mit dem Kapitel 2.6 ab, welches weitere Ansdtze und
Losungen prasentiert, um Oberflachen von einer Plattform auf eine andere zu tberfiihren.

2.1 Terminologie

In der heutigen Zeit und Welt ist es mittlerweile unmoglich geworden jeden Begriff genau zu kennen. Dies gilt
besonders fiir eine sich rasant verandernde IT Welt, die von englischen Begriffen wie Touch, Smartphone, Mi-
ddleware, Tablet, E-Book oder VPN regen Gebrauch macht und auch immer wieder neue Worter (z.B. Twitter)
erfindet. Doch auch deutsche Begriffe benotigen oftmals eine (erneute) Erklarung, um Unklarheiten oder Ver-
wechslungen beim Lesen zu vermeiden, weil Autor und Leser von unterschiedlichen Definitionen ausgehen.
Daher sind im Folgenden alle Begriffe aufgelistet, die in dieser Arbeit verwendet und damit als bekannt voraus-
gesetzt werden.

Benutzbarkeit (Usability)

Usability, libersetzt Bedienbarkeit oder Benutzbarkeit, beschreibt wie gut sich ein interaktives System von ei-
nem Benutzer erschliefen und erlenen lasst [Machate, 2003].

Usability wurde auch unter dem Begriff der Gebrauchstauglichkeit eines Produkts in der Norm ISO 9241-11
definiert. Darin ist die Gebrauchstauglichkeit ,das Ausmapf, in dem ein Produkt durch spezifische Benutzer in
einem spezifischen Nutzungskontext genutzt werden kann, um bestimmte Ziele effektiv, effizient und zufrieden-
stellend zu erreichen.”.

Interaktion

Die Interaktion beschreibt ein wechselseitiges Handeln zwischen Menschen, Prozessen und Geraten [Fischer, et
al., 2008]. Dabei beschrankt sich die Interaktion zwischen Mensch und Geréat auf die Manipulation von Benut-
zungsschnittstellen (siehe Kapitel 2.2), da Maschinen nicht interagieren, sondern auf Eingaben reagieren. Sys-
teme, die Gber Benutzungsschnittstellen gesteuert werden, werden interaktive Systeme genannt. Besitzt ein

Migration und Anpassung von Dialoganwendungen fiir beriihrungsempfindliche Bildschirme

interaktives Computersystem eine beriihrungsempfindliche Benutzungsschnittstelle und wird es durch Berih-
rung oder Anfassen gesteuert, so handelt es sich bei diesem Vorgang um eine beriihrungsempfindliche Interak-
tion.

Modell

Ein Modell ist ein unvollkommenes und interpretiertes Abbild eines komplexeren Systems oder der realen
Welt. Bei der Erschaffung von Modellen beschrankt man sich auf eine Untermenge der Vorgédnge und Gesetze
eines Systems und versucht durch die Interpretation des Modells das System besser verstehen zu kénnen
[Ludewig, et al., 2007]. Der Prozess der Modellbildung wird Abstraktion genannt und besteht aus dem Erken-
nen und Weglassen von Eigenschaften, die nicht von Interesse sind. Durch diesen Vorgang wird aus etwas Kon-
kretem etwas Abstraktes.

Touch (Multi-Touch)

Der Begriff Touch ist ein englisches Substantiv und bedeutet Kontakt oder Beriihrung. Touch wird oftmals in
Verbindung mit anderen Begriffen zu einer neuen Wortkombination vereint, um auszudriicken, dass eine Ma-
schine mit einer Bertihrung durch ein Werkzeug oder Finger bedient werden kann. Zum Beispiel Touchpad, ein
Mausersatz oder Touchbildschirm, ein beriihrungsempfindlicher Bildschirm. Die Interaktion kann aktiv oder
passiv erfolgen. Die passive Form, beispielsweise auf einem Fingerpad am Laptop, unterscheidet sich kaum von
der Eingabe mit einer Maus, die Elemente auf dem Bildschirm liber einen Zeiger manipuliert. Erst mit berih-
rungsempfindlichen Bildschirmen kdnnen Elemente mit dem Finger direkt auf dem Bildschirm anvisiert und
bedient werden. Zudem wird die Interaktion durch neue Technologien (siehe Kapitel 2.3.1) und Formen von
Benutzungsschnittstellen (siehe Kapitel 2.2) auch mit mehreren Fingern (Multi-Touch) oder sogar mit mehreren
Benutzern gleichzeitig (Multi User-Touch) moglich.

Gangige Touch-Gerate sind heutzutage: Tablet-PCs, Smartphones, E-Books, Touchpads und Bildschirme aller
Arten.

2.2 Generationen der Benutzerschnittstellen

Eine Benutzerschnittstelle (eigentlich Benutzungsschnittstelle) ist der Teil eines Computersystems, der es dem
Benutzer ermdoglicht mit dem Computer zu interagieren. Die ersten Benutzerschnittstellen bestanden aus
Schaltern und Lampen, die den Zustand des Computers andern und anzeigen konnten. Diese Art von Schnitt-
stelle war jedoch nicht einfach zu benutzen, daher kamen bald zeichen- bzw. befehlsorientierte Benutzer-
schnittstellen auf.

Seit den Anfangszeiten der Arbeit mit Computern wird daher versucht die Arbeit mit dem Computer einfachen
zu gestalten, indem die Schnittstelle den Bediirfnissen der Nutzer angepasst wird. Der Computer soll einfach,
effizient und angenehm zu bedienen sein [Radle, 2009]. Aus diesem Grund wurden in den ISO Normen die
Norm ISO 9241-110 definiert, welche Benutzungsschnittstelle wie folgt definiert:

»all components of an interactive system (software or hardware) that provide information and controls for the
user to accomplish specific tasks with the interactive system” (entnommen aus [Geis, 2006])

Mittlerweile gibt es verschiedenste Arten von computergestiitzten Schnittstellen. In ihrer Art und Weise wie sie
vom Benutzer bedient werden, kénnen nach [Radle, 2009] und [Chapman, 2008] die folgenden Schnittstellen
unterschieden werden:

Grundlagen und Stand der Technik

e Kommandozeilenorientierte (Benutzer-)Schnittstelle (Command Line Interface - CLI)
e Grafische Benutzerschnittstelle (Graphical User Interface - GUI)

e Natirliche Benutzerschnittstelle (Natural User Interface - NUI)

e Organische Benutzerschnittstelle (Organic User Interface - OUI)

Kommandozeilenorientierte Schnittstelle

Eine der ersten Benutzerschnittstellen, die mit Software verwirklicht wurden, sind die kommandoorientierten
Schnittstellen. Ihre Hauptaufgabe besteht darin Kommandobefehle in Form von Texteingaben Gber eine Tasta-
tur anzunehmen, zu interpretieren und das Resultat auf dem Bildschirm auszugeben.

Obwohl die Kommandozeile (auch Eingabeaufforderung oder engl. command prompt) einer der ersten Schnitt-
stellen war, ist sie heute noch in allen PC-Betriebssystemen verfligbar. lhr Vorteil liegt in der schnelleren Abar-
beitung von Befehlen sowie einem grofReren Befehlsumfang als der der grafischen Schnittstellen. Diese Vorteile
macht die Kommandozeile deshalb sehr attraktiv fir Experten, die immer wiederkehrende Aufgaben effizient
erledigen wollen. Die Einstiegshiirde fiir Anfanger ist jedoch entsprechend hoch und erfordert zudem nicht
selten ein intensives Studium der moglichen Befehle.

Sorts input.

fAssociates a path with a drive letter.

Copies MS-DOS system files and command interpreter to a disk you

specify.

Displays or sets the system tine.

Graphically displays the directory structure of a drive or path.
——More-——

B C\Windows\system32icmd.exe e

[For more information on a specific command, type FASTHELF command-name.
TYPE Displays the contents of a text file.

NDELETE Restores files previously deleted with the DEL command.
NFORMAT Restores a disk erased by the FORMAT command.

ER Displays the MS-DDS version.

ERIFY Directs MS-DOS to verify that your files are writtem correctly
to a disk.
Displays a disk volume label and serial number.
Continuously monitors your computer for viruses.
Copies files (except hidden and system files) and directory trees.

:\DOS>uer

5-D0S Version 6.22

INDOS> _

Abbildung 1 Die meisten Befehle aus MS DOS, wie copy, dir, echo, format, goto, mkdir, more, path und viele mehr werden noch heute
in der Kommandozeile unter Windows unterstiitzt.

Grafische Schnittstelle

Um die Einstiegshiirde zu senken und auch einer breiteren Bevélkerungsschicht den Umgang mit Computern zu
erleichtern wurden grafische Benutzerschnittstellen eingefiihrt. Beispielsweise kamen recht schnell fir das
kommandozeilenorientiere Microsoft DOS grafische Dateimanager zum Einsatz wie die MS DOS Shell oder die
ersten Versionen von Microsoft Windows. Die Oberflachengrafik bestand dabei oftmals nur aus geschickt zu-
sammengesetzten (farbigen) Zeichen, die u.a. Fensterrahmen bildeten. Die eingesetzte Bildschirmauflésung
war jedoch immer auf die verwendete Bildschirmauflésung der Kommandozeile beschrankt, d.h. gewdhnlich 80
Zeichen in der Breite und 25 Zeichen in der Hohe fiir MS-DOS Systeme. Diese Auflésung wurde auch als Text-
modus bezeichnet.

Mit der Einfihrung von Apples Lisa OS Anfang der 1980er Jahre wurden Betriebssysteme dann zunehmend mit
echten grafischen Schnittstellen ausgestattet. Zudem bildeten sich die ersten Begriffe wie ,,Desktop”, um die
Einstiegshiirde fir die Benutzung von Computern zu reduzieren [Radle, 2009].

MS-DOS Shell
B9 Options View Tree Help

[Open |5}

Run...

Search. ..

H:1 [

BOOT .con
COMHAND . COM

CONFIG .COM
IMGHOUNT . COH
INTRO .COM
KEYB .con
LOADFIX .COM

21N, x
LU TOEXEC . BAT

468 10-01-02)
10-01-62
10-01-62
10-01-62
10-01-62
10-01-62
10-01-62 |
10-01-62

Create Directory...

Hain

Exit Alt+F4

Fi0=Actions Shift+F9=

Command Prompt.

6:05p

L F
Z: 1 Name

D

C
ate | Time

Size D
10-01-02[12: 34p
2

5]
]

autoexec .bat

12 :34p|
12:34p
1Z:34p|
1Z:34p|
12:34p|
1Z:34p|
12:34p|
12 :34p|
12:34p
1Z:34p|
1Z:34p|

10-01-0Z 1Z:34p|

Migration und Anpassung von Dialoganwendungen fiir beriihrungsempfindliche Bildschirme

Right

Brief
d Full
Info
Tree
Quick view

Compressed File
Find file panel
Dire tory informatiom

Link
On/Off

{1 Hame
Extension
Tine
Size
Unsorted

Re-read
Filter...
Drive. ..

Ctrl-F2

Ctrl-F3
Ctrl-F4
Ctrl-F5
Ctrl-F6
Ctrl-F?

Abbildung 2 Der Dateisystemmanager MS DOS Shell und Norton Commander nutzten Textzeichen fiir Fenster und Meniis.

Die neuen grafischen Betriebssysteme nutzen die Metapher des Fensters (engl. window), um Texte oder Grafi-
ken darzustellen. Anwendungen kénnen nicht mehr den gesamten Bildschirm fiir sich alleine nutzen, wie es auf
der Kommandozeile Gblich war, sondern miissen ihre Inhalte und Benutzerinteraktion auf das Innere des Fens-
terbereichs beschranken. Zudem werden bei grafischen Betriebssystemen nicht mehr alle Steuerbefehle Gber
die Tastatur eingegeben, sondern durch anklickbare Symbole (engl. icons) prasentiert. Diese Symbole stellen
den dahinterliegenden Befehl durch eine stark vereinfachte Grafik dar und befinden sich z.B. auf Schaltflachen,
in der neuen Multifunktionsleiste (genannt Ribbon) aus Microsoft Office oder am bekanntesten Ort: auf dem

Desktop.

Ein weiteres wichtiges Mittel zur Interaktion bei grafischen Oberflachen sind Meniis (deutsch fiir Befehlsiiber-
sicht). Eine groBe Anzahl von Befehlen kann auf diese Weise lbersichtlich aufgelistet werden. Dazu werden die
Befehle in einer Baumstruktur mit Menieintragen und Untermenis (oder Untermeniieintrdgen) strukturiert.

Gleichartige Befehle kénnen so in ein Untermenii positioniert und durch einen Uberbegriff prasentiert werden.

Of fnen
SchlieBen

Datei2.txt

[

= Forml1 [+]= © Form3 -
Menii [Mend |
Datei Offnen Datei 3 Offren
Bearbeiten Schliefen Bearbeiten SchlieBen ‘
Hilfe Zuletzt geiiffnete Dateien Dateil.txt Hilfe Zuletzt geoffncte Dateien » Dateil txt
Beenden : Datei2.t=t Datei? bt

Abbildung 3 Meniis kénnen in einer Baumstruktur dargestellt werden. Die Struktur hat sich nicht gedndert, jedoch die Darstellung: oben
ein Menii im Textmodus unter DOS, unten links in Windows 3.1 und rechts Windows 7.

Eng verwandt mit grafischen Benutzerschnittstellen ist die Nutzung eines Zeigegerats oder auch Maus genannt.

Der Benutzer manipuliert damit die Steuerelemente der grafischen Oberflache indirekt Gber einen Mauszeiger

(engl. pointer), ohne dass er dafiir lange Befehlsketten auf der Tastatur eingeben miisste. Die Maus ist daher

ein einfaches Werkzeug, um Steuerelemente anzuklicken oder zu verschieben. lhr Erfolg besteht seit den

1970ern und ist bis heute ungebrochen.

Grundlagen und Stand der Technik

Natiirliche Benutzerschnittstelle

Natirliche Benutzerschnittstellen ergeben sich aus dem Nachteil der grafischen Benutzeroberflachen, die dem
WIMP (Window, Icon, Menu und Pointer) Paradigma folgen. Die Nutzung von Maus und Tastatur hat zwar Vor-
teile, trotzdem werden mit diesen Werkzeugen nur die Werte innerhalb des unsichtbaren Speichers manipu-
liert, indem Daten in Textfelder eingegeben oder Schiebregler bewegt werden. Das wichtigste Werkzeug des
Menschen, die Hand, wird dadurch zu einem passiven Hilfsmittel. Sie wird durch die Technik unnétig einge-
schrankt.

Mit den natirlichen Benutzerschnittstellen wird deshalb das Objekt selbst in den Vordergrund geriickt und
direkt durch Fingereingaben manipulierbar gemacht, indem es berihrt, vergréRert, verkleinert oder verscho-
ben wird. Die natlrlichen Oberflachen nutzen die menschlichen Bewegungen und Gesten mit einem oder meh-
reren Fingern (Multi-Touch), um virtuelle Elemente auf dem Bildschirm zu manipulieren als waren es physikali-
sche Objekte. Der Benutzer kann dadurch die Oberflache intuitiv und ohne bewusstes Vorwissen bedienen
[Koller, et al., 2010]. Die gréRte Anderung dabei, so schreibt [Radle, 2009 S. 12], ist das Fehlen einer physikali-
schen Tastatur und Maus, wo sie unnotig geworden sind (z.B. beim Internetseiten lesen). Derzeit lasst sich nur
schwer abschatzen, ob und in wieweit natirliche Benutzerschnittstellen die herkdmmlichen GUIs mit Fenstern
und Mens verdrdangen konnen. Dies mag auch daran liegen, dass bis jetzt (2011) nur spielerische oder de-
monstrative Umsetzungen (siehe Abbildung 4) von NUI vorhanden sind. Dabei sehen die Umsetzungen vielver-
sprechend aus, doch sie besitzen laut einer Studie des Fraunhofer Instituts kaum einen Anwendungsnutzen
[Fraunhofer IAQ, 2009 S. 70 und 78]. Zudem kann bereits die Anschaffung eines solchen Gerates am Preis
scheitern — das Microsoft Surface kostet ca. 15.000 Euro.

Abbildung 4 Demonstrative und spielerische Anwendungen auf dem MS Surface fiir 15.000 Euro.
(Quelle: links [Microsoft, 2009], rechts [CNET News.com])

Organische Benutzerschnittstelle

Die Moglichkeiten der natirlichen Benutzerschnittstelle sind weiterhin beschrankt auf die virtuellen Elemente,
die vom Computer auf einem Bildschirm dargestellt werden. Sie bleiben daher in den zweidimensionalen Berei-
chen und ermoglichen keine direkte Manipulation, wie wir es gewohnt sind, wenn wir z.B. eine Kaffeemaschine

bedienen oder eine Zeitung lesen.
[Holman, et al., 2008] definiert organische Benutzerschnittstellen wie folgt:

“An Organic User Interface is a computer interface that uses a non-planar display as a primary means of output,
as well as input. When flexible, OUIs have the ability to become the data on display through deformation, either
via manipulation or actuation. Their fluid physics-based graphics are shaped through multitouch and bimanual

gestures.”

Migration und Anpassung von Dialoganwendungen fiir beriihrungsempfindliche Bildschirme

Wenn die gesamte Maschine mit einer biegsamen Benutzeroberflache ausgestattet wird, so wird damit auch
der gesamte Computer zum Ein- und Ausgabemedium. Neue Interaktionsformen, die sonst nur mit realen Ob-
jekten moglich waren, kénnen so auch mit einem Computer verwendet werden. Eine recht eindrucksvolle Vor-
stellung sind biegsame Papiercomputer, die eine Eingabe durch die Interaktionsformen Verbiegen oder Stapeln
von mehreren Geraten erkennen (Abbildung 5).

Abbildung 5 Prototypen von interaktiven Papiercomputern. Mehrere solcher Gerate lassen sich stapeln. Das Durchbladttern von
mehreren solcher Computer d@ndert ihren Inhalt analog zu einem Stapel Papier. [Holman, et al., 2008]

Die ,Natirlichkeit” der neuen organischen Benutzerschnittstellen hat mehrere Vorteile gegeniiber den heuti-
gen Maschinen wie PC, Laptop oder Mobiltelefon. So ist die Zeitung oder das Buch aus Papier immer noch sehr
beliebt, da es nach [Holman, et al., 2008] auf viele verschiedene Arten mit beiden Handen gegriffen werden
kann. Eine Zeitung oder Buch kann zum Beispiel schnell oder langsam durchgeblattert, auf einen Tisch gelegt
und gestapelt werden. Neue Technologien wie flexible OLED-Bildschirme oder die Papiercomputer kénnen
bereits heute einen Einblick geben, wie organische Benutzerschnittstellen in Zukunft aussehen kénnten. Eine
ungeldste Frage besteht jedoch noch: Wie muss die Software fiir organische Benutzerschnittstellen gestaltet
werden?

2.3 Beriihrungsempfindliche Interaktion

Es existiert eine Vielzahl von verschiedenen Technologien, um eine direkte Interaktion auf einem Bildschirm
zuzulassen. Zudem kdnnen verschiedene Arten von Methoden der Interaktion auf einen solchen Bildschirm
angewendet werden. Die folgenden Kapitel stellen daher zuerst unterschiedliche Technologien fiir beriih-
rungsempfindliche Bildschirme vor (Kapitel 2.3.1), um danach Interaktionsmethoden fiir die beriihrungsemp-
findliche Eingabe zu beschreiben (Kapitel 2.3.2).

2.3.1 Technologien

Obwohl beriihrungsempfindliche Bildschirme schon seit den 1960er oder den 1970er Jahren existieren (nach
[Breier, 2010] bzw. [Schoning, et al., 2008]) wurden sie doch erst durch die Einfiihrung von mobilen Geréte bei
einer breiten Bevolkerungsschicht popular. Mittlerweile existieren verschiedene Technologien, die je nach
Anforderung und Preisklasse eingesetzt werden kdnnen:

Grundlagen und Stand der Technik

e Druckempfindliche Bildschirmoberflachen

e Ladungsempfindliche Bildschirmoberfldchen
e Akustische Bildschirmoberflachen

e Optische Bildschirmoberflachen

Druckempfindliche Bildschirmoberflachen

Die am haufigsten verwendete Touch-Technologie nach [Breier, 2010] nutzt zwei in Abstand gehaltene, strom-
leitende Schichten, die sich durch Druck auf eine Stelle verbinden kénnen. Dazu wird an den Rand einer der
Schichten eine Spannung angelegt, die zur anderen Seite gleichmaRig abfallt. Wird nun Druck, z.B. durch einen
Finger, auf die Bildschirmoberflache ausgelibt verbinden sich beide Schichten an dieser Stelle. Die Schichten
bilden damit einen sogenannten Spannungsteiler. An den Randern der zweiten Schicht kénnen so zwei ver-
schiedene Spannungen gemessen werden, deren Verhaltnis eine Dimension der Positionskoordinaten ist. Um
die zweite Dimension zu erhalten wird die Messung mit vertauschten Rollen der Schichten wiederholt (siehe
Abbildung 6).

Die Technik der druckempfindlichen Bildschirme erlaubt daher auch den Einsatz von beliebigen Werkzeugen
wie Stiften (z.B. dem Stylus) oder sogar Fingernagel. Doch lassen die Schichten nur 75 Prozent der Bildschirm-
helligkeit durch, so dass das Bild insgesamt dunkler wirkt und Menschen mit einer Sichtbehinderung das Lesen
erschwert wird [tiresias.org, 2009]. Zudem erschwert der Umstand, dass die leitenden Schichten durch Druck
sich beriihren missen, die Bedienung solcher Bildschirme. Ein zu gering ausgetbter Druck kann daher zu Einga-
befehlern, wie eine nicht erkannte Eingabe, fliihren und den Nutzen schmalern.

Widerstandsfahige Beschichtung
Leitende Oberschicht
Abstandshalter

Resistive Beschichtung
Glasscheibe

Bildschirmflache

4
5

ok wWNPE
e ———
e m—
o
w

Abbildung 6 Druckempfindliche Bildschirmoberflichen bestehen aus mehreren Schichten. Durch den Druck des Fingers beriihren sich die
leitendenden Schichten und erméglichen so eine Bestimmung der Position. Bild: [Tyco Electronics, 2010]

Ladungsempfindliche Bildschirmoberflachen

Im Gegensatz zu den druckempfindlichen Bildschirmoberflachen funktionieren die ladungsempfindlichen Bild-
schirmoberflachen ohne starken Druck auf die leitende Oberschicht. Stattdessen funktioniert der Bildschirm
wie ein Kondensator, dessen Ladung durch eine Beriihrung mit dem Finger abflieRt. Dieser Spannungsabfall
wird von einem integrierten Mikroprozessor erkannt und in Positionswerte umgerechnet. Gegeniiber druck-
empfindlichen Bildschirmen ist die ladungsempfindliche Technik resistenter gegenliber mechanischen Bescha-
digungen, da die Bildschirmoberflache nicht verformbar sein muss. Daher werden die ladungsempfindlichen
Bildschirme auch gerne in 6ffentlichen Automaten wie Fahrkartenschaltern eingesetzt [Schoning, et al., 2008].
Zudem besitzt diese Art von Bildschirmen eine héhere optische Transparenz, was sie zwar heller, jedoch auch
teurer als die druckempfindlichen Bildschirme macht.

Migration und Anpassung von Dialoganwendungen fir beriihrungsempfindliche Bildschirme

genaue Spannungsmenge an allen
Ecken des TauchScreens

gleichmakiges
elektrisches Feld

Die Berthrung nimmt den Stremflul der
Ecken auf, der Controller misst das Verhaltnis
der Stramungen um die Pasition der
Beruhrung zu ermitteln.

Abbildung 7 Ladungstransport bei Beriihrung der geladenen Bildschirmoberflache. Der Finger ldsst bei einer Berithrung der Oberfliche
die Spannung abfallen, so dass die Position der Beriihrung bestimmt werden kann. Bild: [VISAM]
Akustische Bildschirmoberflachen
Akustischen Bildschirmoberflachen nutzen Mikrofone an den Bildschirmrdandern einer Glasscheibe. Durch An-

tippen der Glasoberflache wird Schall erzeugt, der von den Mikrofonen erkannt wird. Die Laufzeitunterschiede
zu den verschiedenen Mikrofonen ermoglichen dabei die Position der Quelle zu ermitteln.

Enerlgiewandler Energiewandler
|

T
o

e i e e e
— e —
— e — e — e — i — - —
——
— - — - — - —
— e e e e e e
— - — - — - —
Bt i s s s
— e — - —
il e i
—_
— - — e — e — - — - —
— e e e e e
— i — - —

||I — e .

|
Energiewandler | Energiewandler

Reflektoren auf jeder Achse leiten die
Ultraschallwellen Ober den TouchScraen

Abbildung 8 Surface Acoustic Wave verwendet ein Ultraschallwellenraster, das bei einer Berithrung verdndert wird. Eine Beriihrung der
Scheibe absorbiert einen Teil der Wellen, so dass die Position der Beriihrung bestimmt werden kann. Bild: [VISAM]

Grundlagen und Stand der Technik

Die Technik Surface Acoustic Wave (SAW) setzt Ultraschallwellen in einer Glasscheibe ein. Die Schallwellen
werden von Sendern und Empfangern an den horizontalen Bildschirmrandern abgegeben und aufgenommen.
Dadurch ergibt sich ein Raster (siehe Abbildung 8), welches zur Positionsbestimmung genutzt wird. Bei einer
Beruhrung der Oberflache wird ein Teil der ausgesendeten Wellen absorbiert und ermaoglicht beim Empfanger
nicht nur eine Erkennung des Antippens, sondern auch die Kraft des Antippdrucks, je nachdem wie stark die
Welle gedampft wurde [VISAM].

Die Vorteile der akustischen Technik liegen in der hohen Lichttransparenz durch den Einsatz von durchsichti-
gem Glas. Die Robustheit gegentiiber Vandalismus wird zudem erhdht, wenn verstarktes Glas, sogenanntes
,Gorilla-Glas” eingesetzt wird. Die Bedienbarkeit ist jedoch auf die Finger mit oder ohne Handschuh beschrankt
und erfordert je nach Empfindlichkeit der Mikrofone mehr ein Klopfen anstatt eines Antippens der Glasplatte.
Durch diesen Umstand entfallt auch die Moglichkeit ziehenden Bewegungen auf der Oberflache (z.B. fir Drag &
Drop) durchzufiihren.

Optische Bildschirmoberflachen

Es existieren verschiedene Umsetzungen von optischen Bildschirmen. Alle gemeinsam nutzen Licht (meistens
im Infrarotbereich) und dessen Brechung und Zerstreuung an einem fast durchsichtigen Material (z.B. Acryl-
glas). Liegt ein Gegenstand auf dem Glas oder beriihrt ein Benutzer das Glas, so dndert sich die Lichtbrechung,
die dann durch eine Kamera unterhalb des Bildschirms erkannt werden kann. Die Techniken

e Diffuse Surface Illumination (DSI),
e Front Diffuse Illumination (FDI) und
e Frustrated Total Internal Reflection (FTIR) (vorgestellt in [Han, 2005])

sind Umsetzungen, die dieses Prinzip nutzen. Sie sind in Abbildung 9 dargestellt. Die darin eingesetzten Kame-
ras erzeugen Bilder, die in Echtzeit von einem Computer ausgewertet werden und dadurch eine fliissige Bedie-
nung der Benutzeroberflache ermdglichen.

Vorteil dieser Techniken ist die hohe Robustheit nach [Schéning, et al., 2008] und die zusatzliche Erkennung
von abgelegten Objekten an Hand ihrer Form (vgl. [Breier, 2010 S. 8]).

Eine weitere optische Technik nutzen auch Bildschirme, deren Oberflache selbst nicht beriihrungsempfindlich
ist. Stattdessen wird ein Raster aus Infrarotstrahlen knapp tber der Bildschirmoberflache durch Dioden er-
zeugt. Diese Dioden bilden mit Fotozellen als Empfanger ein Gitter, welches um den gesamten Rand des Bild-
schirms geht und das durch einen Finger oder Stylus unterbrochen werden kann. Die Unterbrechung von ein-
zelnen Infrarotstrahlen erméglicht so die Bestimmung des Beriihrungsortes auf der Bildschirmoberflache.

Diese Technik ist relativ billig und zudem unabhéangig von der notwendigen Leitfdhigkeit des Fingers, wie bei
ladungsempfindlichen Bildschirmoberflachen. Doch mit der Zeit kdnnen Schmutz und Staub, die sich an den
Bildschirmrdandern abgelagert haben, die Infrarotstrahlen unterbrechen und so eine Nutzung erschweren oder
gar verhindern [Porteck, 2011 S. 129].

Migration und Anpassung von Dialoganwendungen fur berihrungsempfindliche Bildschirme

FTIR
Frustrated Internal Reflection
Projection
Surface\ Sili Rubh
. - /— ilicone Rubber

IR LEDCT}: - B J ik ep
. ¥ 4
Total Internal Reflectlon_/ ¥y \ACf'Yllc

Camera
ETIM ROTH 2008

DI
Rear lllumination
DIfoSOF\

Plexuglas
Glass

IR llluminator

® . .
M.

ETIM ROTH 2008

Diffused Screen llluminaton

A A A A A A A A A A A X A A A

IR LED CDhiisditis 21 e {1 IR LED

Y Y YYYYY OYY Y Y Y vy v

Plexiglass
Endlighten

_-. Camera
ETIM ROTH 2008

Abbildung 9 Verschiedene optische Bildschirmaufbauten (v.o.n.u. FTIR, DI, DSI). Eine Kamera nimmt unterhalb der Bildschirmoberflache
Veranderungen auf der Oberflache durch Lichtstreuung wahr. Bilder: [Roth, 2008]

2.3.2 Interaktionsmethoden

Eine Methode ist nach [Fischer, et al., 2008] ein ,,[...] Weg bzw. Art, wie man zu einem angestrebten Ziel ge-
langt.” Damit beschreiben berihrungsempfindliche Interaktionsmethoden die Art und Weise, wie durch Bertih-
rung eine Aufgabe erledigt werden kann. Die Interaktionsméglichkeiten mit einem oder mehreren Fingern sind

in Touchumgebungen auf vier Arten beschrankt:

An-/Tippen (oder Klopfen)
Halten

Bewegen

Gestik

Hwn e

Dabei besteht die Gestik aus einer Kombination der drei ersten Interaktionsmoglichkeiten. Gesten sind daher
keine unabhéangige Eingabeart, sondern bestehen immer aus Antippen, Halten und Bewegen der Finger bzw.

Grundlagen und Stand der Technik

Hand. In einer Studie von [Blascheck, et al., 2010/2011] werden Handgesten basierend auf [Pavlovic, 1997] wie
folgt definiert: ,Eine Handgeste ist eine kontinuierliche, zeitliche Folge von Handposen (iber ein bestimmtes
Zeitintervall. Dabei ist eine Handpose die Form, Position und Orientierung der Hand und der Finger zu einem
bestimmten Zeitpunkt.” Erst der Einsatz von Gesten ermoglicht die effiziente Bedienung einer Benutzerschnitt-
stelle. Beispielsweise werden die bereits vorgestellte natiirlichen Benutzerschnittstellen aus Kapitel 2.2 aus-
schlieBlich Gber Finger bedient. Doch auch grafische Schnittstellen sind auf diese Weise zu manipulieren, wenn
die Interaktionsmethoden der Fingereingabe die Methoden von Maus und Tastatur ersetzen kdnnen. So stel-
len [Matejka, et al., 2009] eine Losung vor, um die Maussteuerung durch eine Fingergestik zu ersetzen.
Dadurch kann jede Maustaste durch Tippen von zwei oder mehreren Fingern emuliert werden (Abbildung 10).

Abbildung 10 Maustasten und das Mausrad kénnen durch Finger simuliert werden [Matejka, et al., 2009]. Die rechte Maustaste und
Scrollrad werden durch eine Fingerkombination ersetzt.

Neben Fingergesten kdnnen auch andere Arten von Gesten verwendet werden, um Elementen einer Benutzer-
oberflache zu steuern. In einem Dokument Giber Touch von [Microsoft] werden fiinf Gesten vorgestellt, die von
Anwendungen mit dem Windows Entwicklungstoolkit (Windows SDK) angewendet werden kénnen, um beriih-
rungsempfindliche Eingaben zu unterstiitzen:

Geste Beschreibung Darstellung
Verschieben, Ein Objekt oder eine Ansicht wird durch einen oder 1
Schwenken zwei Finger von einer Position zu einer anderen) T ~
(engl. panning) bewegt. Durch Loslassen wird die Geste beendet.

GroRendnderung Ein Objekt oder eine Ansicht wird durch zwei Finger, @?ﬁ@
(engl. zoom) die sich gleichzeitig auf dem Bildschirm befinden,

vergrofert oder verkleinert, indem die Finger sich
voneinander weg- oder aufeinander zubewegen.

Rotieren Ein Objekt oder eine Ansicht wird durch zwei Finger, (C‘ ;
(engl. rotate) die sich gleichzeitig auf dem Bildschirm befinden, um _ ,:3) - _ab St
einen Finger rotiert, indem der zweite Finger im -or- "

Kreis um den ersten bewegt wird.

Antippen mit zwei Diese Geste soll den voreingestellten Zustand der ! ! .
Fingern GroRRe oder Anzeige eines Objekts oder Ansicht wie- : H CO o F'.'.:
(engl. derherstellen. Die Geste wird ausgefiihrt, indem ",_ ™
two-finger tap) zwei Finger gleichzeitig die Oberflache antippen. >\

Halten und Tippen Diese Geste simuliert einen Rechtsklick mit der Maus

(engl. press and tap) am Ort des ersten Fingers. Die Geste beginnt mit X

dem Antippen und Halten eines Fingers auf dem
Objekt, gefolgt von einem zweiten Finger, der die
Geste durch ein einmaliges Klopfen beendet und
den Rechtsklick damit auslost.

=)

Tabelle 1 Gesten mit einem oder mehreren Fingern l6sen vielfdltige Aktionen aus.

Migration und Anpassung von Dialoganwendungen fiir beriihrungsempfindliche Bildschirme

2.4 Dialoge

Dialoge stellen ein zentrales Thema dieser Arbeit dar. Daher ist es notwendig, zuerst einmal zu wissen was
Dialoge sind und wie sie beschrieben werden konnen. Die folgenden Kapitel fiihren in die Grundlagen der Dia-
loge ein.

Zuerst wird in Kapitel 2.4.1 die grundlegendste Aufgabe von Dialogen erldutert und welche weiteren Formen
von Dialogen existieren. In den darauf folgenden Kapiteln wird erklart, wie Dialoge grundsatzlich gestaltet wer-
den sollten, wie Benutzer mit Dialogen interagieren kénnen und wie diese Interaktionsformen genannt werden.
Fir die Entwicklung von Dialogen ist ein Modell oder eine Sprache erforderlich, die den Dialog fiir Computer
beschreiben. Diese Arten von Dialogbeschreibungssprachen werden in Kapitel 2.4.4 erldutert. Abgeschlossen
wird das Kapitel Gber Dialoge mit einer Demonstration tiber den Einfluss der Punktdichte von Bildschirmen auf
Dialoge (Kapitel 2.4.5).

2.4.1 Einfiihrung

Dialogfenster dienen dem Benutzer zur Eingabe und Abfrage von Daten sowie zur Bestatigung derselben. Dia-
loge beinhalten dazu Steuerelemente (Textfelder, Schiebregler usw.), die es dem Benutzer erméglichen die
angezeigten Werte zu dndern, zu bestatigen (,0K“) oder auf voreingestellte Werte zuriickzusetzen (,,Abbre-
chen”).

Dialogfenster konnen modal oder nichtmodal betrieben werden. Modal bedeutet, dass die Fortsetzung des
Programmablaufs mit dem Schliefen des Dialogs verkniipft ist. So kdnnen Falscheingaben unterbunden und
Folgefehler verhindert werden. Nichtmodale Dialoge kénnen vom Benutzer auch wahrend das Hauptprogramm
lduft angesprochen werden (natirlich auch andersherum) und zeigen zum Beispiel Detailinformationen fiir im
Hauptprogramm ausgewdahlte Objekte an.

Betriebssystem APIs (z.B. MessageBox mit dem Windows SDK) und Frameworks (z.B. MessageDlg in Delphi)
bieten unterschiedliche Arten von vordefinierten Dialogen an. So erlauben Nachrichtendialoge kurze Textaus-
gaben zum aktuellen Status der Anwendung (d.h. Fehler-, Warn- oder Informationsmeldung). Meistens kann
der Benutzer den Dialog nur durch einen Klick auf einen Bestatigungsschaltknopf (,0K“) beenden. Es gibt aber
auch Dialoge, die dem Benutzer durch weitere Druckschalter (,,Ja“, ,,Nein”, ,lgnorieren”) eine gewisse Einfluss-
nahme auf den weiteren Programmablauf bieten.

Weitere Dialoge werden fiir das Offnen und Speichern von Dateien sowie zur Auswahl von Druckern angebo-
ten. Diese sogenannten Standarddialoge einer Benutzeroberflache ermdoglichen fir alle Anwendungen eines
Betriebssystems ein einheitliches Erscheinungsbild und eine gleichartige Benutzbarkeit. Zudem haben Stan-
darddialoge den Vorteil, dass Entwickler sich besser auf die eigentliche Programmentwicklung konzentrieren
konnen, ohne eigene Dialoge fiir diese Art von Standardfunktionen erstellen zu missen.

Eine neue Art von Standarddialogen, der sogenannte Aufgabendialog (engl. task dialog, siehe Abbildung 11
rechtes Bild) wurde mit Windows Vista eingeflihrt [Microsoft, 2011]. Sie sind weit aus flexibler als die Nachrich-
tendialoge, denn sie enthalten neben Steuerelementen auch groRe und selbsterklarende Befehlsschalter (engl.
command button). Die Aufgabendialoge kdnnen vom Anwendungsentwickler sehr flexibel gestaltet werden.
Trotzdem bleiben ihr Aufbau und ihre Bedienung auch liber Anwendungsgrenzen hinweg gleich, weil alle Auf-
gabendialoge aus einer Vorlage stammen.

Grundlagen und Stand der Technik

Spiel [[spiel =)

\'] Was machten 5ie gerne mit Ihrem laufenden Spielstand
* machen?

| Machten Sie Ihren Spielstand vorher speichern? ':

Ja_ | [MNein | [Abbrechen % Beenden und Spielstand speichern

= Beenden und Spielstand nicht
speichern

< Abbrechen und zum Spiel
zurlckkehren

"

Abbildung 11 Links eine Standardabfragedialog mit den bekannten Schaltknopfen. Der rechte Aufgabendialog setzt die Abfrage des
linken Dialogs mit groRflachigen und selbsterkldrenden Befehlsschaltern um.

2.4.2 Gestaltungsgrundsatze

Die Norm DIN EN ISO 9241-10 definiert sieben Grundsétze fiir die Gestaltung von Dialogen. Sie wurden unab-
hangig von der Art des Dialogs oder des verwendeten Interaktionsstils entworfen. Die Grundsatze sind Aufga-
benangemessenheit, Selbstbeschreibungsfahigkeit, Steuerbarkeit, Erwartungskonformitat, Fehlertoleranz,
Individualisierbarkeit und Lernforderlichkeit. Im Folgenden sollen diese kurz vorgestellt werden. Fur eine aus-
fiihrliche Behandlung kdnnen u.a. die folgenden Quellen genutzt werden, auf die sich auch die Ubersicht stiitzt:
[Heinecke, 2004 S. 168ff.], [Wessel, 2002 S. 38ff.] oder [K6th, 2001].

Aufgabenangemessenheit

Die Norm ISO 9241-10 definiert die Aufgabenangemessenheit von Dialogen wie folgt:

,Ein Dialog ist aufgabenangemessen, wenn er den Benutzer unterstiitzt, seine Arbeitsaufgabe effektiv und effi-
zient zu erledigen.”

Dialoge sollten nach dieser Empfehlung nur die notwendigen Informationen enthalten, die fir den Benutzer
zum aktuellen Zeitpunkt fir die Aufgabe nitzlich sind (z.B. keine Hardwareinformationen bei einem Kunden-
formular). Aufgaben, die automatisch ausgefiihrt werden kénnen, diirfen den Benutzer nicht mehr belasten
(,,Der Ordner Z existiert nicht. Soll er angelegt werden?”“). Zudem hat das Dialogsystem den Benutzer bei wie-
derkehrenden Aufgaben zu unterstitzen, indem z.B. Eingabemasken bereits mit voreingestellten Werten aus-
gefillt sind.

Selbstbeschreibungsfahigkeit

»Ein Dialog ist selbstbeschreibungsfdhig, wenn jeder einzelne Dialogschritt durch Riickmeldung des Dialogsys-
tems unmittelbar verstdndlich ist oder dem Benutzer auf Anfrage erkldrt wird.”

Dialogsysteme sollten die Benutzer durch Riickmeldungen (iber die Konsequenzen ihrer Handlung informieren,
beispielsweise wenn dadurch Daten unwiederbringlich verloren gehen konnten (,,M&chten Sie alle Daten aus
dem Formular durch voreingestellte ersetzen?“). Uber Fehler bei der Eingabe von Daten sollte nicht nur der
Benutzer informiert werden, sondern es sollte auch der Ursprung (z.B. ein bestimmtes Eingabefeld) und ein
Korrekturvorschlag angegeben werden (z.B. fir Datum TT.MM.JJJJ). Zudem sollte die Riickmeldung entspre-
chend den Kenntnissen des Benutzers angepasst sein, indem z.B. technische Informationen (Speicheradresse,
Ausnahmebezeichner) fiir Experten nur auf Anfrage (ein Schalter ,Mehr technische Informationen”) ausgege-
ben werden. Alle anderen Benutzer sollten dagegen nicht nur tiber den Fehler, sondern auch tber eine mogli-

Migration und Anpassung von Dialoganwendungen fiir beriihrungsempfindliche Bildschirme

che Losung aufgeklart werden (,,Der Suchbegriff ist zu kurz. Bitte geben Sie einen Suchbegriff mit mindestens 3
Zeichen ein und wiederholen Sie die Suche anschlieRend.”).

Steuerbarkeit

»Ein Dialog ist steuerbar, wenn der Benutzer in der Lage ist, den Dialogablauf zu starten sowie seine Richtung
und Geschwindigkeit zu beeinflussen, bis das Ziel erreicht ist."

Die Geschwindigkeit, in der ein oder mehrere Dialoge bearbeitet werden, sollte immer vom Benutzer abhangig
sein. D.h. ein Dialogfeld verschwindet erst, nachdem der Benutzer es abgeschlossen hat. Zur Steuerbarkeit
zahlt auch dem Benutzer die Moglichkeit zu geben, wie ein Dialog fortgesetzt (z.B. mit Eingabe- oder Tabulator-
taste) oder wie er jederzeit abgebrochen werden kann (z.B. mit Esc Taste). Eine weitere Empfehlung sieht zu-
dem vor bei mehreren Eingabegeraten (u.a. Maus, Stift oder Finger) dem Benutzer die Wahl zu lassen, welche
Eingabeart verwendet wird.

Erwartungskonformitat

»Ein Dialog ist erwartungskonform, wenn er konsistent ist und den Merkmalen des Benutzers entspricht, z. B.
seinen Kenntnissen aus dem Arbeitsgebiet, seiner Ausbildung und seiner Erfahrung sowie den allgemein aner-
kannten Konventionen.”

Eine gleichbleibende Bedienung eines Dialogsystems ist notwendig, um dem Benutzer die Arbeit so effizient
wie moglich erledigen zu lassen, ohne dass er sich auf die Bedienung konzentrieren muss. Dazu zdhlen, dass
Dialoge bei ahnlichen Aufgaben entsprechend dhnlich aussehen und sich gleich bedienen lassen (z.B. zwei ahn-
liche Dialoge fiir Kunden- und Mitarbeiterdatenerfassung). Die Bedienung des Dialogs sollte konsistent bleiben.
Beispielsweise mdochte der Benutzer eine Hilfe mit F1 erhalten oder zwischen Steuerelementen mit der Tabula-
tor Taste springen. Benotigt das System fiir die Bearbeitung einer Aufgabe auBerdem eine langere Zeitspanne,
dann sollte wahrend dieser Dauer ein Fortschrittsdialog angezeigt werden, welcher dem Benutzer den aktuel-
len Arbeitsverlauf mitteilt.

Fehlertoleranz

,Ein Dialog ist fehlertolerant, wenn das beabsichtigte Arbeitsergebnis trotz erkennbar fehlerhafter Eingaben
entweder mit keinem oder mit minimalem Korrekturaufwand seitens des Benutzers erreicht werden kann.“

Die Eingaben des Benutzers sollten vom Dialogsystem geprift und Fehler sowie eine Beschreibung dem Benut-
zer zuriickgemeldet werden. Es ist jedoch genauso moglich Fehler automatisch korrigieren zu lassen. In diesem
Fall sollte der Benutzer (iber die Korrektur informiert und eine Gelegenheit geboten werden, den Korrekturvor-
schlag zu Uberschreiben.

Individualisierbarkeit

»Ein Dialog ist individualisierbar, wenn das Dialogsystem Anpassungen an die Erfordernisse der Arbeitsaufgabe
sowie an die individuellen Féhigkeiten und Vorlieben des Benutzers zuldsst.”

Kann ein Dialog individualisiert werden, bedeutet dies flir den Benutzer den Dialog nach seinen Vorlieben und
Vorstellungen anzupassen. Dies kann z.B. die Sprache der Texte sein oder wie der Dialog und dessen Steue-
relemente dargestellt werden (z.B. Layout, GroRe und Position). Wahrend Einsteiger durch zusatzliche Informa-
tionen angeleitet werden kdnnen, wollen Experten moglichst effizient durch den Dialog gelangen, z.B. indem
sie Abkiirzungen (Shortcuts) verwenden.

Grundlagen und Stand der Technik

Lernforderlichkeit

»Ein Dialog ist lernférderlich, wenn er den Benutzer beim Erlernen des Dialogsystems unterstiitzt und anleitet.”
Dialoge sollten den Benutzer unterstitzen, sein Wissen selbstandig zu erweitern. Dies kann z.B. durch ein um-
fangreiches Hilfesystem oder durch kurze Hilfestellungen (engl. tooltips) zum jeweiligen Problembereich (z.B.
fokussiertes Steuerelement) erreicht werden. Zudem kann ein Benutzer auch beim Ausprobieren (,Learning by
doing”) unterstiitzt werden, indem jeder Schritt riickgdngig gemacht werden kann.

2.4.3 Taxonomie der Benutzerinteraktionen

Neben sensorischen Eingabearten (z.B. Gesichts-, Sprach- und Beriihrungserkennung) werden bei grafischen
Dialogsystemen groRtenteils einfache Benutzerinteraktionen eingesetzt (siehe Abbildung 12). [Paulenz, 2010]
beschreibt diese grundlegenden Interaktionen basierend auf [Barclay, et al., 1999] und [Meixner, et al., 2008]
und teilt sie in funf Kategorien ein:

Ausfiithrung

Die Ausfiihrung von Funktionen einer Anwendung ist die grundlegendste Interaktion zwischen einem Benutzer
und einem System. Die Ausfiihrung wird durch ein Kommando, das als Schaltknopf (siehe Tabelle 17 Steue-
relemente: Bezeichnung, Symbol und Kurzbeschreibung im Anhang auf Seite 134) oder Mendieintrag zur Ver-
fligung steht, ausgeldst und ermoglicht verschiedene Aktionen wie das Speichern eines Dokuments, das Wie-
derherstellen eines voreingestellten Wertes sowie das Bestatigen oder Abbrechen eines Dialogs.

Ausgabe

Die Ausgabe gehort strenggenommen auch zu den Benutzerinteraktionen. Mit der Ausgabe werden Riickmel-
dungen (engl. feedback) und die aktuellen Daten der Anwendung bezeichnet, die auf eine Benutzereingabe
folgen. Beispielsweise werden die zuletzt in einem Dialog eingegebenen Werte durch das Klicken eines Schalt-
knopfes geprift und bei moglichen aufgetretenen Fehlern eine Meldung ausgegeben.

Eingabe

Die Eingabe wird bestimmt durch die Ubermittlung von neuen Werten an ein System. Bei der Eingabe sind
keine Werte vorgegeben, sondern missen vollstdndig neu vom Benutzer eingegeben werden.

Bearbeitung

Die Bearbeitung erméglicht die Anderung oder das Anpassen von im System bereits vorhandenen Werten. Statt
leere Eingabefelder fiir Texte oder Zahlen dem Benutzer zu prasentieren, sind die Eingabefelder bereits mit
durch das System voreingestellten Werten gefiillt. Diese Werte kdnnen vom Hersteller vordefiniert worden
sein oder aus vorangegangenen Eingaben stammen. Die Bearbeitung ist daher ein Spezialfall der Eingabe und
vermeidet zusatzlichen Arbeitsaufwand fiir den Benutzer.

Migration und Anpassung von Dialoganwendungen fiir beriihrungsempfindliche Bildschirme

Auswahl

Mit der Auswahl kann der Benutzer ein oder mehrere Elemente aus einer Menge von Elementen auswahlen. Es
kdnnen drei Klassen unterschieden werden:

Die Einzelauswahl von Werten, wie es bei einem Dropdown-Listenfeld moglich ist.
Die Mehrfachauswahl von verschiedenen Werten, wie es bei Listen (z.B. Dateien im Windows Explo-
rer) moglich ist.

3. Die Bereichsauswahl von Werten, d.h. auch die Auswahl von Werten, die innerhalb eines bestimmten
Bereichs liegen.

Benutzer-
interaktion
Ausfiihrung Ausgabe Eingabe Bearbeitung Auswabhl

v v v

Einfach Mehrfach Bereich

Abbildung 12 Benutzerinteraktionen in Dialogen kénnen in verschiedene Kategorien aufgeteilt werden

2.4.4 Dialogbeschreibungssprachen

Dialoge sind Benutzungsschnittstellen, die durch ein Modell oder eine Dialogbeschreibungssprache spezifiziert
werden konnen. Die eigentliche Darstellung fiir den Benutzer erfolgt durch eine von dem eingesetzten Frame-
work abhangige Dialogbeschreibungssprache. Aus der modellgetriebenen Entwicklung (Model Driven Enginee-
ring) sind eine Menge von sogenannten Dialoggeneratoren bekannt (vgl. [Schlegel, et al., 2010]), die aus abs-
trakten Modellen interaktive Dialoge erstellen. Die Dialogbeschreibungssprachen kénnen in abstrakte und
konkrete Sprachen unterteilt werden, die im Folgenden vorgestellt werden.

Abstrakte Benutzungsschnittstellen

Abstrakte Benutzungsschnittstellen (AUI, engl. Abstract User Interface) kennzeichnen sich durch ihre Unabhan-
gigkeit von einem bestimmten Framework aus. lhre Inhalte werden durch Modelle definiert, die die eigentli-
chen Daten sowie ihren Nutzen (z.B. Uhrzeit, Datum oder Wahrung) beschreiben. Diese Beschreibungen ent-
halten daher keine Details, die von Frameworks gefordert werden, um die Darstellung auf dem Bildschirm oder
anderen Ausgabegeriten zu erreichen. Als Beispiel fir ein abstraktes Steuerelement liefert [Paterno, 2005] :

“[...] at a given point there is a need for a selection object without indicating whether the selection is performed
graphically or vocally or through a gesture or some other modality.”

AUls wurden durch die Entwicklung von modellbasierten Ansdtzen bekannt. Die Ansatze nutzen Modelle, um
Dialoge unabhangig von der einzusetzenden Plattform zu beschreiben. Nach [Paterno, et al., 2009] war eine
der ersten Entwicklungen das UIDE (User Interface Design Environment) von [Foley, et al., 1995], welches Dia-

Grundlagen und Stand der Technik

logoberflaichen durch Schemata aus Objekten und Aktionen erstellte. Dieses Projekt wird jedoch nicht mehr
weiterverfolgt.

Die nachfolgenden Ansétze verlieRen schlieBlich den objektorientierten Ansatz von [Foley, et al., 1995] und
arbeiten stattdessen mit einer semantischen Beschreibung der Interaktion. Dazu werden Aufgabenmodelle
(engl. task model) definiert, um Aktionen ausdriicken zu kénnen, die der Benutzer in der Oberflache ausfihren
kann. Ein Vertreter dieser Losung ist ConcurTaskTrees (CTT) von [Paterno, et al., 1997] (siehe auch Kapitel 2.5.2
Reverse Engineering und [W3C, 2009]). CTT ist eine grafische Notation, die eine hierarchische Struktur besitzt
und Aktivitaten einsetzt, um einen Aktion zu beschreiben. Eine zusatzliche Eigenschaft der CTT bildet die Unter-
stiitzung von Fehlerbehandlungen, die durch sogenante zeitliche Operatoren umgesetzt werden. Paterno et al.
argumentieren, dass CTT daher flexibler als andere Modelle ist, dennoch aber leicht verstédndlich bleibt.

Aktuell werden gerade auch wegen neuer Gerateplattformen im Mobilbereich verstarkt Modellierungsspra-
chen eingesetzt, die an die Gerate und ihren unterschiedlichen Merkmalen (Leistung, Auflésung, Eingabeart
usw.) angepasste Dialogformen erlauben. Diese Sprachen werden deshalb nicht mehr als ,,abstrakt” bezeich-
net, sondern beschreiben konkrete Benutzungsschnittstellen. Sie werden im nachsten Abschnitt beschrieben.

Konkrete & finale Benutzungsschnittstellen

Konkrete Benutzungsschnittstellen hdngen nach [Paterno, 2005] vom Typ der Plattform und vom Ausgabegerat
ab. Sie besitzen eine Vielzahl von Eigenschaften, die das Aussehen und Verhalten von Dialogen beeinflussen
kénnen, jedoch immer von der Zielplattform abhangig sind. Weiterhin definiert [Paterno, 2005] die finale Be-
nutzungsschnittstelle, die nicht nur von der eingesetzten Plattform abhangig ist, sondern auch von der verwen-
deten Softwareumgebung wie beispielsweise C# und XAML.

Im Folgenden werden zwei Arten, wie Dialoge fiir eine Plattform beschrieben werden kdnnen, vorgestellt.

1. Ein Dialog wird durch eine Programmiersprache (Java, C++) realisiert.
2. Ein Dialog wird in einer externen, vom Quelltext unabhangigen Form beschrieben : XAML

Programmiersprachen

Die offensichtlichste Art und Weise, um Oberflachen zu erstellen, sind die Klassen und Methoden eines Frame-
works direkt zu nutzen, indem Instanzen erstellt und Attribute gesetzt werden. Ohne einen Oberflachendesig-
ner ist dies meist auch die einzige Moglichkeit Oberflachen zu gestalten. Dabei vermischt sich der Quelltext fir
die Erstellung der Oberflache mit anderen Quelltextbestandteilen wie der Programmlogik und dem Ereignis-
management.

Es ist nicht verwunderlich, dass Frameworks zuerst keine grafischen Dialogeditoren besalRen. Sie wurden erst
spater oftmals durch Dritthersteller geliefert. So wurde Borlands Turbo Pascal 6.0 (1990) mit einer objektorien-
tierten GUI mit dem Namen Turbo Vision ausgestattet. Die Oberflaiche wurde dabei ausschlieBlich mit Objekten
im Quelltext erzeugt (Abbildung 13). Erst nachtraglich gab es von Hobbyprogrammierer erstellte Dialogdesig-
ner, die den Quelltext generierten.

_ Migration und Anpassung von Dialoganwendungen fiir beriihrungsempfindliche Bildschirme

File Edit Search Run Compjlle Debug
NBPM\EXAMFLES\DOS\TUDEMONTUDEND . PAS
[]=——————— \BP\EXAMPLES\DOS\IVDEMONMOUSEDLG . PAS
lconstructor THouseDialog.Init:

File Edit Search Window Options 17:58:37

S —— Untitled Calendar
Puzzle May 2011 & ¥
H Su Mo Tu Ue Th Fr Sa
12 3 45686 7
8 916 11 12 13 14
15 16 17 18 19 20 21
22 23 24 25 26 ZB
Calculator

R.Assign(0, 0, 34, 12);

inherited Init(R, ‘Mouse options’);
Options := Options or ofCentered; Hed iun
R.Assign(3, 4, 30, 5);

MouseScrol 1Bal New(PScrollBar, Init(R));

MouseScrol 1Bal SetParams(1, 1, 20, 20, 1);

MouseScrollBar .Options := MouseScrollBar .Options or ofSelectable;
MouseScrollBar .SetValue(DoubleDelay);

Insert (MouseScrollBar) ;

R.assign(2, 2, 21, 3); .

Insert(New(PLabel, Init(R, * M ouse double click’, HouseScrollBar)));

- ASCII Chart NIV Everse nouse buttons:
EEw oot JoOrHH 418
1 1548’ ()xs,— . 7012345

@ABCDEFGHIJKLMNOPQRSTU

“abcdefghi jklmopgrstu

Ciiéaaas 2600

afd ﬂi’.ixfguﬂl

S HE | &

R nZorpr36fdopeEn=:

sz, nzm

R.Assign(3, 3, 30, 4);
Insert (New(PClickTester, Init(R, ’'Fast Med ium Slow’)));

Char: Decimal: 0 Hex: 00

114:1
F1 Help FZ Save F3 Open nlt+F9 Compile F9 Make A1t+F10 Local menu

Abbildung 13 Der Quelltext eines mit Turbo Vision erstellten Dialogs und die Darstellung des Dialogs in einer Turbo Vision Anwendung
fir MS DOS.

Alt-X Exit F1 Help F3 Open Alt-F

Ein weiteres Beispiel ist Netbeans, eine von Oracle [Oracle]) entwickelte Entwicklungsumgebung. Sie bietet seit
langem einen Dialogdesigner fiir das Framework Swing, um Dialoge grafisch mit der Maus bearbeiten zu kén-
nen.

&) —)

Hello World

[JTree

o [colors
o [sports
o [food

Abbildung 14 Ein Dialog in Java mit dem Framework Swing erstellt

Abbildung 14 zeigt einen mit Java Swing in Netbeans erstellten Dialog. Bei Anderungen wird der Quelltext 1
automatisch erstellt und die manuellen Anderungen des Entwicklers werden verworfen. Die Elemente werden
als Instanzen in der Klasse abgelegt, um auch spater noch darauf einen Zugriff zu ermdéglichen. Das bedeutet,
der Entwickler kann jederzeit alle Attribute der Steuerelemente dndern oder sie sogar I6schen. Das Layout der
Elemente wird durch Panel-Elemente vorgenommen, die durch ihre Attribute das Aussehen und Ausrichtung
der in ihnen enthaltenen Kindelemente bestimmen.

/** This method is called from within the constructor to
* initialize the form.
* WARNING: Do NOT modify this code. The content of this method is
* always regenerated by the Form Editor.
*/
@SuppressWarnings("unchecked")
// <editor-fold defaultstate="collapsed" desc="Generated Code">
private void initComponents() {

jButtonl = new javax.swing.JButton();

jLabell = new javax.swing.JLabel();

jScrollPanel = new javax.swing.JScrollPane();

jTreel = new javax.swing.JTree();
setDefaultCloseOperation(javax.swing.WindowConstants.DISPOSE_ON_CLOSE);
jButtonl.setText("0Ok");

jLabell.setText("Hello World");

jScrollPanel.setViewportView(jTreel);

Grundlagen und Stand der Technik

javax.swing.GroupLayout layout = new javax.swing.GrouplLayout(getContentPane());
getContentPane().setLayout(layout);
layout.setHorizontalGroup(
layout.createParallelGroup(javax.swing.GroupLayout.Alignment.LEADING)
.addGroup(layout.createSequentialGroup()
.addGroup(layout.createParallelGroup(javax.swing.GroupLayout.Alignment.LEADING)
.addGroup(layout.createSequentialGroup()
.addGap(31, 31, 31)
.addComponent(jLabell, javax.swing.GroupLayout.PREFERRED_SIZE, 213,
javax.swing.GrouplLayout.PREFERRED_SIZE))
.addGroup(layout.createSequentialGroup()
.addGap(141, 141, 141)
.addComponent(jButtonl)))
.addContainerGap(57, Short.MAX_VALUE))
.addGroup(javax.swing.GroupLayout.Alignment.TRAILING, layout.createSequentialGroup()
.addContainerGap(22, Short.MAX_VALUE)
.addComponent(jScrollPanel, javax.swing.GrouplLayout.PREFERRED_SIZE, 2680,
javax.swing.GroupLayout.PREFERRED_SIZE)
.addGap(19, 19, 19))
)
[..1 // snip
pack();
}// </editor-fold>

Quelltext 1 Dialoge konnen aus komplizierten Strukturen bestehen. Hier der Quelltext fiir den Dialog aus Abbildung 14.

Um Anwendungen mit Oberflachen, die vollstandig oder zum groBten Teil mit Quelltext erstellt wurden auch
wirklich fiir die Fingerbedienung nutzbar zu machen, miissen groRe Teile des Quelltexts gelesen und verstan-
den werden. Es ist wohl zweifelhaft, ob dies Gberhaupt lohnenswert ist. Stattdessen wiirde man einfach ent-
scheiden, eine solche Anwendung nicht fir die Fingerbedienung zu tGberarbeiten.

Denn letztendlich ist es nur sehr aufwandig aus einem bestehenden Quelltext Informationen tber den Dialog
zu extrahieren. Auch wenn Dialoge teilweise als Ressource und Quelltext vorliegen macht dies die Sache nicht
einfacher. Denn die Verkniipfung zwischen Dialog und Quelltext maschinell zu erkennen erfordert einen zusatz-
lichen Entwicklungsaufwand fur einen Interpreter. Womdglich ware es in solch einem Fall einfacher die Ober-
flache mit einem moderneren Framework neu zu gestalten, als den Quelltext mit einem eigenen Parser zu
lesen und versuchen zu interpretieren. Weitere Nachteile, die Dialoge in Quelltextform mit sich bringen, sind in
[Draheim, et al., 2006] beschrieben.

XAML

Die Extensible Application Markup Language (XAML, ausgesprochen ,xemml” (siehe [Doberenz, et al., 2008]))
ist eine Oberflachenbeschreibungssprache in XML Syntax. Sie wurde zuerst von Microsoft fiir das WPF-
Framework entwickelt, wird mittlerweile jedoch auch in der Windows Workflow Foundation (siehe [WF]) ver-
wendet. Mit XAML wird eine strikte Trennung von Layout und Logik erreicht, so dass Entwickler und Designer
unabhangig voneinander an einer Anwendung arbeiten kénnen. Wahrend der Entwickler sich um die Logik
unterhalb der Oberflache kimmert, kann der Designer das Aussehen mit eigenen Grafiken und Themen (Aus-
sehen der Elemente) gestalten.

Ein einfaches Beispiel, fiir einen in XAML beschriebenen Dialog, zeigt der Quelltext 3. Die Beschreibung beginnt
mit dem Fenster-Element, welches XML-Attribute (in XAML Eigenschaften genannt) fir das Fenster selbst (un-
ter anderem Fenstertitel und -groRe) und Namensrdaume fir externe Eigenschaften (z.B. Elementname
,X:Name”) aus XAML enthalt. Darin sind weitere Elemente, auch verschachtelt, enthalten.

Laut XAML Definition kann nur ein Element unterhalb des Fenster-Elements platziert werden. Daher muss ein
Container-Element, hier das Element Grid, verwendet werden. Innerhalb des Grid-Elements werden dann die
Steuerelemente automatisch angeordnet und ausgerichtet. Um die Abstande zwischen den einzelnen Elemen-

Migration und Anpassung von Dialoganwendungen fiir beriihrungsempfindliche Bildschirme

ten zu dndern, wird die Eigenschaft Margin (Links, Oben, Rechts, Unten) eingesetzt. Ihre Langeneinheit ist dabei
standardmaRig gerdteunabhangig. Trotzdem wird sie Pixel genannt, obwohl dies nichts mit den Bildschirmpi-
xeln zu tun hat, sondern nur abhangig von der aktuellen PPI-Einstellung (siehe Kapitel 2.4.5) des Systems ist. Ein
Pixel entspricht dabei standardmaRig dem 96-sten Teil eines Zolls (ca. 0,3 Millimeter). Somit sind Dialoge in
XAML nicht abhéangig von einer eingestellten Punktdichte (siehe Kapitel 2.4.5), sondern lassen sich unabhangig
von der Bildschirmeinstellung beschreiben.

Jedes Steuerelement ist in XAML eine Objektinstanz, die zur Laufzeit Giber den optionalen Namen der Eigen-
schaft x:Name angesprochen werden kann. Die Elemente kénnen auch absolut platziert werden, indem die
Eigenschaften Top, Left, Width und Height gesetzt werden. Dies ist jedoch nur tGber die Eigenschaften eines
Canvas-Elements moglich, das eine absolute Platzierung erlaubt. Die Eigenschaften werden dabei durch Anhan-
gen an das Element gesetzt, denn das Element unterstiitzt diese standardmaRig nicht. In XAML werden diese
externen Eigenschaften auch ,attached properties” (angehangte Eigenschaften) genannt. Im Quelltext 2 wird
beispielhaft ein Schalterelement innerhalb eines Canvas-Elements mit den angehadngten Eigenschaften Left und
Top positioniert.

<Canvas Height="73" Name="canvasl" Width="227">

<Button Canvas.Left="150" Canvas.Top="19" Content="Button" Height="34" Width="62" />
</Canvas>
Quelltext 2 Angehidngte Eigenschaften Canvas.Left und Canvas.Top bei einem Druckschalter

<Window
xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation”
xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
xmlns:d="http://schemas.microsoft.com/expression/blend/2008"
xmlns:mc="http://schemas.openxmlformats.org/markup-compatibility/2006"
x:Class="WpfApplicationl.MainWindow"
x:Name="Window"
Title="MainWindow"
Width="374" Height="370"mc:Ignorable="d" ResizeMode="NoResize">

<Grid x:Name="LayoutRoot">
<Border Margin="8,8,8,55" BorderBrush="Black" BorderThickness="1">
<StackPanel Margin="-1,-1,-1,7" Name="Stack">
<GroupBox Margin="14,0,12,0" Height="133" Header="" >
<TextBlock Text="Hello World"
TextWrapping="Wrap" HorizontalAlignment="Center"
VerticalAlignment="Center"/>
</GroupBox>
<Button HorizontalAlignment="Right" Margin="0,0,134,19" VerticalAlignment="Bottom"
Width="118" Height="23" Content="0k"/>
<Button HorizontalAlignment="Right" Margin="0,0,8,19" VerticalAlignment="Bottom"
Width="122" Height="23" Content="Abbrechen"/>
</Grid>
</Window>
Quelltext 3 Ein in XAML beschriebener Dialog beginnt immer mit dem Fenster-Element und enthdlt alle weiteren Elemente in einer
Baumstruktur

Es existieren zwei komfortable Oberflacheneditoren fiir XAML: Der Dialogeditor in Visual Studio Designer 2008
und 2010 (Abbildung 15) sowie Expression Blend (Abbildung 16). Wahrend ersterer fiir Entwickler gedacht ist,
die auch mit dem Quelltext arbeiten, kann mit Expression Blend das Aussehen der Schnittstelle vollstandig
gedndert werden. Dazu unterstitzt es die Grafikbearbeitungsprogramme Photoshop und lllustrator von Adobe.
Ein einfaches aber nitzliches Werkzeug stellt XMLPad (Abbildung 17) dar. Das Programm ermaoglicht wie Visual
Studio und Blend eine sofortige Vorschau wahrend die XAML-Syntax in einem Editor gedndert wird. Im Gegen-
satz zu Visual Studio und Expression Blend ist es kostenlos tiber das Windows SDK von [Microsoft] erhaltlich
und ermoglicht ein schnelles Ausprobieren von Designanderungen.

Grundlagen und Stand der Technik

8] LA OReCT ATTRETES -|J 60 5 S0 5 el - |
DS HBE R L)

I T———
ERV

Gy

S Se———

Ly THE
A

s aacks- comprtdbiLisy s00s”

Abbildung 15 Mit Microsoft Visual Studio 2010 konnen Dialoge sowohl als XAML Quelltext als auch in einem Designer erstellt und
bearbeitet werden. Im Gegensatz zu Expression Blend kann der Dialog mit Ereignissen ausgestattet werden, die in einer .NET Sprache
geschrieben wurden.

Abbildung 16 Fiir Designer und Nicht-Programmierer hat Microsoft den Expression Blend XAML Editor entwickelt. Er ldsst sich dhnlich
bedienen wie bekannte Bildbearbeitungsprogramme.

=) XamiPad ==

Elauto Parse| b Retresh | - | Courier New o -elEl e

Visual Tree Explorer

4 Fage

Border

Hello World

Fraperty Tree Explarer

System.Windows.Controls Border

Ok Aptrechen

Dore. Markup saved to “E) 611 | Savecixam"

Abbildung 17 XMLPad - Ein MS SDK Werkzeug zum schnellen Ausprobieren von XAML-Syntax.

Migration und Anpassung von Dialoganwendungen fiir beriihrungsempfindliche Bildschirme

Die strikte Trennung von Logik und Oberflache ermdglicht Entwicklern und Designern sich nur in ihrem jeweili-
gen Aufgabengebiet zu bewegen. Der Entwickler bendtigt keinerlei Kenntnisse in der Erstellung und Gestaltung
von Schnittstellen mit hoher Benutzbarkeit, kann aber erst einmal mit einer einfachen Oberflache die Pro-
grammlogik testen. Auf der anderen Seite bendtigt der Designer kaum Programmierkenntnisse und mit Expres-
sion Blend auch keine funktionierende Programmlogik. Der Dialog kann mit seinen Inhalten ohne Quelltext
Giber Datenanbindungen (Dateien oder eine Datenbank) sofort angezeigt werden. Zusétzlich ermdglichen Stil-
vorlagen ein neues Aussehen aller Steuerelemente, ohne dass diese manuell angepasst werden missten.

Die XML Struktur von XAML bietet einen guten Angriffspunkt fiir XML Parser Gber XPath oder XQuery und ist
damit einfacher zu handhaben als beispielsweise ein selbstgeschriebener Parser. Mit C# findet XAML mittler-
weile in Microsoft Produkten Anwendung. Dazu zahlen u.a. Visual Studio 2010, Expression Blend und Microsoft
Touch Pack fir Windows 7.

Die Moglichkeiten der Dialogbeschreibungssprache XAML sind grof3. Besonders die Datenanbindung tber XPath
oder XQuery lasst kaum Wiinsche offen, ist jedoch auch recht kompliziert und daher fiir Programmieranfanger
weniger geeignet. Alle Steuerelemente, d.h. Eigenschaften der Elemente sind vollstandig Gber die XAML-Syntax
anpassbar; damit entfallt oftmals die Notwendigkeit zusatzlichen Quelltext einzusetzen.

2.4.5 Punktdichte

Mit Punktdichte wird die Anzahl der Punkte in einem Langenabschnitt bezeichnet (siehe Abbildung 18). Ge-
brauchliche Verhaltnisse fiir Drucker sind Rasterpunkte pro Zoll oder engl. Dots Per Inch (DPI). Bei der Punkt-
dichte von Bildschirmen spricht man sinngemaf aber nicht von Dots sondern von Pixeln, weshalb die Dichte
dort in Pixel per Inch (PPI) angegeben wird [Watson, 2011]. Der haufig als Synonym verwendete Begriff Aufl6-
sung hat jedoch nichts mit dieser Definition zu tun, denn eine Auflésung i.e.S. bezeichnet das Produkt der Zahl
von horizontalen und vertikalen Punkten eines gerasterten Bildes.

dpunke = VBreite? + Hohe? dpunke Diagonale Punkteanzahl
in Pixeln
PP] = dpunkt dphys Diagonale Lange des
dphys Bildschirms in Zoll

Abbildung 18 Die Formel zur Berechnung der Pixel Pro Zoll (Pixel Per Inch, kurz PPI) fiir einen Bildschirm

Heutzutage ist die am meisten verwendete Punktdichte 96 Pixel pro Zoll. Diese Punktdichte wird seit der ersten
Version von Microsoft Windows verwendet, um Schriften groRer darzustellen als sie der Entwickler angedacht
hat. Der Xerox Alto und Macintosh nutzten zuerst 72 PPl und konnten damit eine SchriftgroRe im gleichen Ver-
héltnis auf dem Monitor ausgeben. Mit einer 10 Punkte Schrift konnten daher Zeichen mit genau 10 Pixeln
ausgegeben werden. Diese GroRRe war fir viele Printmedien ausreichend, konnte jedoch bei Monitoren zu klein
sein, weil die Entfernung zwischen Benutzer und Bildschirm tendenziell groRRer ist [Hitchcock, 2005]. Microsoft
behob das Problem, indem Windows seitdem 96-PPI nutzt, was die Schriften um ein Drittel groRer macht. Der
Nachteil liegt nun in den unterschiedlichen Verhaltnissen, d.h. die Punkt- und Pixelanzahl von Druck- und Bild-
schirmschriften sind nicht mehr im Verhaltnis eins zu eins.

Seit der Einfihrung von 96 PPl wurden viele Anwendungen entwickelt, die Annahmen Uber die PixelgroRe ma-
chen oder diesen Wert als konstant betrachten. Besonders bei Bildschirmen mit hohen Auflésungen (bspw.
1920x1080, das ist Full-HD Standard) sind Symbole und Schriften mit 96 PPI fiir viele Menschen mit einer Seh-
schwache zu klein. Daher kann die Punktdichte softwaretechnisch erhéht werden, um Elemente groRer darzu-
stellen.

Grundlagen und Stand der Technik

- 1 ot o o M|
Abbildung 19 Unterschiedliche Punktdichten (hier 96 und 150 PPI) bei gleicher Auflésung und FenstergroBe. Steuerelemente werden bei
150 PPI groRer dargestelit als bei 96 PPI.

o

Daneben ermoglicht die vergroRerte Darstellung der Bildschirmelemente auch eine einfachere Bedienung mit
berthrungsempfindlichen Bildschirmen. Sie sind einfach leichter zu treffen. Doch das fiihrt auch zu Darstel-
lungsproblemen (siehe Abbildung 20), wie [Hitchcock, 2005] anmerkt:

“[...] these applications have made assumptions about the size of a pixel and many dialog boxes and web pages
have been designed around 96 PPI. As newer displays have come along, some, especially laptops have higher
pixel densities. Unfortunately if one adjusts for this by using PPIs besides 96, then there is a risk of some applica-
tions or web pages not working properly.”

A . -
! Message Dialog @ CnPack IDE Wizards' Tipp des Tages

Hinweis:

Message [¥]Ouote message text VW acotan Qia has

Es gibt ein Toggle Y¥ar Field Werkzsug in den Quelltext Editor
Einstellungen. Wenn Siz dessen Tastaturkirzel, welches
standarcmafig [STRG]+[¥] st betatigen, dann springt der
Cursor in den Bereich der Var-Delaration um ein Variable 2u
deklarieren. Durch nochmaliges Betatigen der
Tastenkombination oder durch driicken der [ESC] Taste
kénnen Sie an die Ursprungsstelle zuriickishren.

[Save as defa Frmbed v Help context 0 3 [irJzei Tips beim tarten
MeSSageDlg MessageBO)(/g—:)\ -4 Support Debugging Tool [=
Dia|og Type Options | Advanced N=/ || File Edit Tools Debugger Help Debug
B\ @b lconWarning . Support Debugging Tool
! b IconExclama Caption by Diavid Musgrave of Microsoft Dynamics GP Suppon - Asia Pa
- - Use Options 1o change setiings or use atherfest | Qptions - |
b lconStop [WICuote caption text Auttnatic Debugger Mode (uses Triggers with L [Tum On =
@ Vs Teerear Manusl Logging Made (uses all 3 options belaw, [Tum On
Omb IconHand Buttons Furction Resu Microsoft SQL Server Options

) mb_AbortRetryvc S0L Logging Note: Shared by all users anwarks [Tum On_|
© Defaull (DEXZOLLOG) |
Based on date and fime
Specified] C10yn ! 000yData\DEXSALLOG

i) & mb lconlnforma
-_,) () mb_IconAsterisk
Microsoft Dexterity Options
Dexerity Seript Logging [Tumon] |f

= © Default (3criptlog)
) mb_YeshoCarce B e o By s e ime)

Specified] C1Dyn 1 0004Datat Swript log
Ll Defaultbuth |1 |2

\.‘:) (O mb_lconQuestior

Dexterity Script Profiing [Tum0n]
© Defaul {Profile.t)

Based an User, Company, date and time

[IESt][Clipboa[d][QK l[Qancel] [Uelp] Specified| C:Dyn 10004Data|Profile.td

Abbildung 20 Typische Darstellungsprobleme bei h6heren PPI Einstellungen
@ [GExperts] (Bildschirmfoto), @ [CnPack] (Bildschirmfoto), ® [Musgrave, 2009])

Bei den immer groReren Bildschirmauflésungen und gleichbleibender PixelgroRe von Kontrollelementen wird
einmal auch jede noch so gut bedienbare Anwendung mit den Fingern nicht mehr zu benutzen sein. Es bleibt
also nichts anderes mehr Uibrig, als die Anwendungen, wie es Microsoft nennt, ,,DPI-Aware” zu entwickeln, um
der Miniaturisierung entgegenzuwirken. Denn letztendlich sollte ein Benutzer die globale Einstellung der PPI
nicht erhhen miissen, damit der Benutzer auch noch kleine Kontrollelemente mit seinen Fingern bedienen
kann.

Migration und Anpassung von Dialoganwendungen fiir beriihrungsempfindliche Bildschirme

2.5 Software Engineering

Software Engineering ist jede Aktivitdt, bei der es um die Erstellung oder Verdnderung von Software geht, so-
weit mit der Software Ziele verfolgt werden, die iiber die Software selbst hinausgehen.

[Ludewig, et al., 2007]

Die Softwareentwicklung unterlag schon immer stetiger Verdnderung. Mit traditionellen Prozessmodellen wie
dem Wasserfall- und dem V-Modell und den agilen Vorgehensmodellen wie dem Extreme Programming (XP)
wurden immer wieder neue Ansatze und Verfahren benutzt, um die Software nicht nur in der gegebenen Zeit
zum Abschluss zu bringen, sondern auch die Wartbarkeit nach dem Projektende auf einem hohen Niveau ge-
wahrleisten zu konnen. AuRerdem muss die Software nicht nur korrekt funktionieren, sondern auch an neue,
nachtragliche Anforderungen angepasst werden wie beispielsweise einer Portierung auf eine neue Plattform.
Doch Prozess- und Vorgehensmodelle sagen nur etwas liber den Ablauf des Projekts aus und stellen natirlich
kaum oder keine Forderungen an die Architektur und Datenverarbeitung der Software. Mit dem Anspruch auch
spater noch Anderungen an der Software vornehmen zu kénnen, miissen andere Ansitze gewahlt werden.

Die Entwicklung von Software mit der Hilfe von Modellen ist mittlerweile in vielen Sprachen (insbesondere
Java) angekommen und wird Uberall dort eingesetzt, wo die Software auch spater noch schnell und einfach
angepasst werden muss. Modelle beschreiben eine Untermenge der betrachteten Wirklichkeit. Da nicht immer
alle Eigenschaften interessant sind, werden sie bei der Beschreibung weggelassen (,,abstrahiert”). Ein wesentli-
cher Effekt davon ist, dass die Beschreibung einfacher und weniger komplex ist als die Wirklichkeit. Modelle
helfen also nicht nur die Realitat zu erfassen, sondern sie auch verstehen zu lernen (vgl. [Ludewig, et al., 2007]
und [Seidewitz, 2003]). Zur Beschreibung von Modellen werden Modellierungssprachen wie DSL (Domain Spe-
cific Language) oder UML (Unified Modeling Language) eingesetzt.

Mit dem vorwarts gerichteten Erzeugen (engl. Forward Engineering) von Software aus abstrakten Modellbe-
schreibungen [Chikofsky, et al., 1990] beschaftigt sich auch die Object Management Group (OMG). Die OMG
hat daher eine modellgetriebene Architektur vorgestellt, die die Wartbarkeit von Software erheblich verbes-
sern kann. Im folgenden Kapitel 2.5.1 werden dieses Prinzip der OMG sowie beispielhafte Softwareumsetzun-
gen gezeigt.

Unglucklicherweise wird oder kann nicht jede Software mit einem modellgetriebenen Ansatz entwickelt wer-
den und trotzdem ist auch in so einem Fall eine Anpassung notwendig, um eine teure Neuentwicklung zu ver-
meiden. Daher gibt es auch hier Ansatze, um Software zu verstehen, d.h. aus dem Design und der Kodierung
die Datenmodelle und Programmablaufe zuriickzuentwickeln. Das Kapitel 2.5.2 Reverse Engineering beschaftigt
sich mit der Riickgewinnung von abstrahierten Informationen aus dem Design von Anwendungsoberflachen.
Vorhandene Losungen und Anséatze fir eine GUI Erkennung und automatische Modellierung werden dort vor-
gestellt.

2.5.1 Forward Engineering am Beispiel der modellgetriebenen Entwicklung

Seit Ende des 20. Jahrhunderts beschleunigte sich die Entwicklung von Softwareprodukten dramatisch. Soft-
ware wurde als Losung fiir alles und jeden gesehen, denn sie half die Unmengen von Informationen zu bewalti-
gen, die das Informationszeitalter mit sich brachte. Doch auch wenn solch eine Software streng nach Plan zu-
sammengesetzt wurde, war sie nicht fir die Ewigkeit bestimmt (“[...]this application will only be needed for the
next few years” [Miller, et al., 2003]). Sobald sich die Gesetzeslage oder der Wirtschaftsprozess dnderte, muss-
te auch die gesamte Software an diese Umstdande angepasst werden. Daher wurde jede neue Technik als L6-
sung fir die aktuellen Probleme angepriesen und verkauft [Miller, et al., 2003]. Jedoch war und ist es immer
noch schwierig, Informationen fiir verschiedene, meist inkompatible Anwendungen zur Verfligung zu stellen

Grundlagen und Stand der Technik

und synchron zu halten. Es stehen eine Vielzahl von verteilten Daten, Objekten und Komponenten sowie Web-
dienste zur Verfligung, die nicht miteinander kommunizieren kénnen, weil sie streng nach Vorschrift —und
oftmals mit Scheuklappen — gebaut wurden. Aber was davon iiberlebt den stetigen Wandel in der IT? Es ist
immer wieder Uberraschend wie kurz- oder langlebig Software sein kann.

Es wurde daher notwendig die Verwaltung der Geschaftslogik nicht vollstandig mit der Programmlogik zu ver-
knipfen und stattdessen so viel Unabhdngigkeit zu bewahren wie moglich. Erst dadurch ist es moglich, dass
Geschaft und Software sich separat entwickeln kdnnen. Denn sollte die Software eines Tages veraltet sein,
kann eine neue deren Platz einnehmen [Leymann, 2008].

Eine Technik, welche die modellgetriebene Entwicklung (engl. Model Driven Engineering, kurz MDE) umsetzt,
ist die modellgetriebene Architektur (engl. Model Driven Architecture, kurz MDA). Sie wurde von der OMG
entwickelt und ermoglicht Ablaufe und Regeln formal zu spezifizieren und in Modelle zu packen, die unabhan-
gig von der eingesetzten Plattform sind. Denn verschiedene Plattformen (z.B. CORBA, J2EE, Microsoft .NET)
bieten oftmals Schnittstellen an, die nicht nur unterschiedlich definiert sein kénnen, sondern sich auch anders
verhalten und damit separate Entwicklungen erfordern (fiir Windows, Linux, Java, .NET, EJB usw.).

MDA unterstiitzt nach [Miller, et al., 2003] dabei die folgenden Ansatze:

e Ein Modell zu spezifizieren, das unabhdngig von der eingesetzten Plattform ist.
e Die Plattform auszuwdahlen oder selbst zu spezifizieren ...
e .. und die Modellspezifikation in eine Entsprechung fiir eine bestimmte Plattform zu tbertragen.

Durch die Trennung von Modell (Prozesse, Regeln) und Plattform gelingt es MDA plattformunabhéngig (auch
portabel), plattformiibergreifend (auch interoperabel) und wiederverwendbar zu sein. Dazu durchlauft ein
plattformunabhangiges Modell (engl. Platform Independent Model, kurz PIM) mehrere Transformationsschrit-
te bis es in einer Anwendung umgesetzt wird. Dieser Prozess wird im Englischen auch mit Forward Engineering
bezeichnet, um ihn, dort wo notwendig, vom Reverse Engineering zu unterscheiden [Chikofsky, et al., 1990].

Der Prozessablauf ist in Abbildung 21 dargestellt. Zuerst einmal wird aus Anwendungsféllen (engl. Use Cases)
und Beschreibungen fiir Problemlésungen (Domanenmodell) in einer Textform oder grafischen Notation (z.B.
Unified Modeling Language, kurz UML) per Hand ein plattformunabhéangiges Modell (Platform Independent
Model, kurz PIM) entworfen. Beispielsweise mochte ein Kunde sein Geld abheben. Diese Art von Beschreibun-
gen gibt normalerweise keine Auskunft iber die notwendigen Details mit denen gearbeitet werden soll. So
bendtigt ein Kunde u.a. einen Namen und ein Konto bei der Bank, um Geld abheben zu kénnen. Doch diese
Informationen sind eigentlich nur fiir das System notwendig, denn wie der Kunde sein Geld bekommt ist ihm
nicht wichtig. Geschaftsmodelle werden daher in MDA auch als berechnungsunabhangige Modelle bezeichnet
(Computation Independent Model, kurz CIM).

Aus der Transformation von CIM nach PIM entsteht ein erster Entwurf, der noch unabhangig von den einge-
setzten Technologien ist. Dies sind oftmals in UML notierte Diagramme, wie Klassendiagramme, die Klassen,
Attribute und Methoden spezifizieren. Mit solch einem Modell kann durch eine automatische Transformation
bereits ein plattformspezifisches Modell (kurz PSM) generiert werden. Bei Klassendiagrammen werden dazu
u.a. allgemeine Typen, wie Ganzzahl oder Text durch die jeweilige Sprache des Zielmodells ersetzt, also Integer
oder String. Das Modell ist daher an die jeweilige Plattform, die diese Typen unterstitzt, gebunden.

Die Generierung des PSM kann in MDA noch durch zusatzliche Faktoren beeinflusst werden, die von der einge-
setzten Plattform abhangen. So kann mit Optionen die Transformation beeinflusst werden, um beispielsweise
einen bestimmten Architekturstil zu erreichen oder anzupassen [Miller, et al., 2003 S. 13]. Mit bereits einge-
setzten Erfolgsmethoden (Best Practices) und Entwurfsmustern kann PSM um Funktionen erweitert werden,
die nicht zum PIM gehéren. So werden dadurch die Typen der PIM Klassen auf die entsprechenden Typen der
Zielsprache des PSM abgebildet oder Getter- und Setter-Methoden fiir den Zugriff auf Attribute generiert. Mit
Markierungen kdnnen Elemente im PIM auch auf einer semantischen Ebene situationsbedingt transformiert

Migration und Anpassung von Dialoganwendungen fiir beriihrungsempfindliche Bildschirme

werden. Dies ist besonders hilfreich, wenn es mehrere Entsprechungen im PSM gibt. So gibt es auf einer Platt-
form oftmals verschiedene Typen fiir Gleitpunktzahlen (Float, Double, Extended) und GUI Generatoren kénnen
ein Listenelement in ein einfaches Listenfeld oder Dropdown-Listenfeld (siehe auch Tabelle 17 Steuerelemente:
Bezeichnung, Symbol und Kurzbeschreibung) transformieren.

Der letzte Schritt besteht in der Umsetzung des plattformspezifischen Modells in Quelltextform, so dass die
Anwendung in einer gewdhlten Programmiersprache (Java, C# usw.) vervollstéandigt werden kann. Dazu werden
Klassendiagramme, die vorher noch sprachunabhangig waren, in Quelltext transformiert. Methoden, die durch
das PIM und PSM definiert wurden sind nun nicht nur definiert, sondern auch implementiert, d.h. ausfiihrbar,
auch wenn sie womaoglich noch keinen Code enthalten. Die letzte Transformation kann auch Oberflachen er-
zeugen, wenn die Modelle diese vorher beschrieben haben. Dadurch ist es leicht moglich, ganze Anwendungs-
geriste in kurzer Zeit zu erstellen.

Ein wichtiger Aspekt von MDA ist, dass die Generierung des plattformspezifischen Modells auch tbersprungen
werden kann [Miller, et al., 2003 S. 7]. Aus dem plattformunabh&ngigen Modell entsteht dabei ohne Umweg
sofort die Anwendung. Das PSM kdnnte nach MDA trotzdem abseits des normalen Anwendungsablaufs, z.B. fiir
die Fehlersuche, generiert und verwendet werden.

Neben der Trennung von Modellen innerhalb der modellgetriebenen Architektur, definiert OMG auch die Mo-
dell-Transformationen. Dabei kdnnen Modelle selbst wieder in Modelle abgebildet (Model to Model, kurz
M2M) oder daraus Code erzeugt werden (Model to Text, kurz M2T). Eine ,,Modell nach Modell Transformation“
kann dabei vertikal oder horizontal geschehen, d.h. die vertikale Transformation dndert die Abstraktionsstufe
(z.B. von PSM nach PIM) wahrend in der horizontalen Transformation lblicherweise nur die Darstellung des
Modells dndert (z.B. Refactoring, grafische Umgestaltung). Die Modelltransformation ist dabei nicht auf einzel-
ne Modelle beschrankt, sondern kann auch mehrere Quell- und Zielmodelle einbeziehen, die bei der Transfor-
mation bendtigt werden. OMG hat die M2M und M2T Transformationssprachen QVT
(Query/View/Transformation, [OMG, 2011]) und MOF (siehe [OMG, 2008]) spezifiziert, die von Dritten, mehr
oder weniger genau, umgesetzt wurden. Dazu zdhlen beispielsweise M2M, M2T und ATL von [The Eclipse
Foundation], dem proprietdren Werkzeug ModelMorf von [TCS] und dem Open Source Projekt [Tefkat].

Plattformun- Spezifikation eines Geschaftsmodells
abhéngiges z.B. mit UML Anwendungsfallen (CIM) und

|ndeper(1§l(:\::; Model Modell (PIM) Klassendiagrammen (PIM) modelliert

Computation

Transformation: Modell nach Modell

e Vorlagen mit zusatzlicher Information lber die Plattform

o Markierungen

Plattformspezifisches Modell (PSM) Modellsprachen:
XMI Dokument, IDL,.NET und EJB Modelle

Transformation: Modell nach Code,
Erzeugung von Quelltexten und Oberflachen

(generierter) Quelltext, spezifisch mit einem
Framework SOAP, WPF, Java oder CORBA imple-
mentiert

Anwendung

Abbildung 21 Die Modellgetriebene Architektur ermaglicht aus Geschédftsmodellen automatisch Quelltext zu generieren

Grundlagen und Stand der Technik

Frameworks und Werkzeuge, die eine modellgetriebene Architektur bereitstellen oder sie nutzen, gibt es eini-

ge. Eine Auswahl davon wurde in einer Studie von [Schlegel, et al., 2010] untersucht. Darin wurden Werkzeuge
und Frameworks zur Generierung von Benutzungsschnittstellen aus Modellen getestet,

u.a. OpenXava, JAXFron, Wicket RAD, JMatter und das Roma Framework. Zwei weitere Frameworks, die jedoch
nicht in der Studie getestet wurden, sind AndroMDA und MARIA, die im Folgenden vorgestellt werden.

MARIA

MARIA, ein Mischkurzwort fiir Model-based IAnguage foR Interactive Applications, ist, wie der Name schon
sagt, eine modellbasierte Sprache fiir interaktive Anwendungen. MARIA wurde von [Paterno, et al., 2009] ent-
worfen und entstand als eine Weiterentwicklung von TERESA. Mit MARIA sollte u.a. mehr Kontrolle und Flexibi-
litat fir den Entwickler moglich sein und die Transformationen nicht mehr in Quelltextform kodiert vorliegen.
Damit soll die Entwicklung in Richtung dienstorientierte Architekturen (engl. Service Oriented Architectures,
kurz SOA) in ubiquitdren Umgebungen erleichtert und geférdert werden. Das MARIA Framework besteht daher
aus einer Vielzahl von Beschreibungssprachen: fiir abstrakte, konkrete und vokale Uls sowie fiir mobile und
multimodale Oberflachen. MARIA erméglicht dies durch eine eigene plattformunabhéngige Sprache, der MA-
RIA Universal Declarative Language (siehe Abbildung 22). Die Sprache wurde in XML (MARIA XML) definiert und
besitzt einen modularen Aufbau, der die folgenden Haupteigenschaften ermdoglicht:

e Ein Datenmodell fir Eingabewerte und die Verkniipfung von Datenobjekte mit der Oberflache.

e Ereignisse fiir Anderungen an Eigenschaften in den abstrakten und konkreten Stufen

e Ein erweitertes Dialogmodell, das Bedingungen und Operatoren, beschrieben durch die CTT Notation,
definiert.

e Eine dynamisch anpassbare Menge von Benutzerelementen, um das Layout und die Navigation zwi-
schen den Darstellungen den Gegebenheiten anzupassen.

Multi-touch
IPhone

Digital TV

Universal
(Java) Declarative P
5 Language oSHIra
gﬁ‘ > \ Graphical C#
Vocal : if?;‘-;_-.-:‘
interfaces e
(VoiceXML)
< s
D|re_ct N e Graphical+Vocal
Manipulation Form-based X+V
XHTML/SVG XHTML

Abbildung 22 Die Moglichkeiten von MARIA [HIIS Laboratory] erlauben eine Anwendung auf verschiedensten Plattformen zu betreiben

Um das MARIA Framework herum wurden einige Werkzeuge entworfen. So wurde eine Entwicklungsumge-
bung MARIAE (siehe [HIIS Laboratory] und Maria Environment) gebaut, die Aufgabenmodelle in der CTT Nota-
tion beschreiben lasst. Weiterhin wurden mit ReverseMARIA und WebRevEng Werkzeuge entworfen, die aus
Webseiten Aufgabenmodelle als CTT generieren. Sie konnen in MARIA eingesetzt und weiterentwickelt wer-

den.

m Migration und Anpassung von Dialoganwendungen fiir beriihrungsempfindliche Bildschirme

AndroMDA

AndroMDA (ausgesprochen nach IPA: [an'drome da:], [AndroMDA, 2011]) ist ein Open Source Framework mit
modellgetriebener Architektur, das durch eine Vielzahl von Erweiterungsmoglichkeiten profitiert. Modelle
kénnen mit Hilfe von externen CASE Werkzeugen (z.B. UML Designer) erstellt und Glber XMl importiert werden.
Zusatzlich kdnnen Plug-Ins dazwischen geschaltet werden, um die Verwaltung und Generierung von benutzer-
definierten Ausgabekomponenten in Quellformaten wie Java, C# .NET, HTML und weitere zu erméglichen.
Derzeit bietet AndroMDA die gréf3te Unterstiitzung fir J2EE mit Projekt- und Codeschablonen. Um AndroMDA
nutzen zu kénnen muss Java mit Maven oder Ant installiert sein. Der generierte Code lauft dann auf einem
Applikationsserver wie JBoss oder Tomcat.

Der erste Schritt beim Aufsetzen eines Projektes besteht darin Schablonen zu nutzen und anzupassen, die fur
die Erzeugung von Quellcode verantwortlich sind. Sammlungen von Schablonen, sogenannte , cartridges” (engl.
fiir auswechselbare Einsitze), werden durch die ,,AndroMDA Code Generation Engine” zu Quelltext transfor-
miert. Es existieren bereits eine Menge solcher Sammlungen von Drittherstellern, die an die eigenen Bedurfnis-
se angepasst werden konnen. Sobald die Schablonen vorbereitet sind, kénnen Modelle verarbeitet werden.
Dabei unterstiitzt AndroMDA den XMI Standard von OMG, so dass ein beliebiges UML Werkzeug verwendet
werden kann.

Die Hauptaufgaben von AndroMDA bestehen darin, das UML-Modell (PIM) umzuwandeln, d.h. daraus einen
Klassenbaum zu erstellen und Quelltexte zu generieren. Der Objektbaum wird dazu nach den Stereotypen der
aufgelisteten Klassen untersucht und fiir jeden gefundenen Stereotyp ein entsprechendes , cartridge” zugeord-
net. Sobald dieser Vorgang abgeschlossen wurde, werden die anfangs ausgewahlten Schablonen fir jedes
»cartridge” aufgerufen. Sie analysieren das PIM und erzeugen daraus ein plattformspezifisches Modell (PSM),
das in den Schablonen genutzt wird, um letztendlich den Quelltext zu erzeugen.

AndroMDA ist durch den modularen Aufbau bestrebt eine hohe Erweiterbarkeit und Flexibilitat zu erreichen. Es
koénnen eigene Schablonen erstellt und genutzt werden oder aber auch eigene Einsadtze. AuRerdem kdnnen
Quelltexte fir andere Sprachen erzeugt werden, die standardmaRig nicht von AndroMDA unterstiitzt werden.
Wenn sich Schablonen und Einséatze fur das eigene Projekt finden lassen, kann so eine modellgetriebene Ent-
wicklung im Softwareprojekt genutzt werden. Dies kann besonders schnell gelingen, wenn Java eingesetzt wird.
Flr andere Sprachen mag der Einstieg jedoch nicht so einfach sein, weil es an den notwendigen Code-
Schablonen fehlt.

Der modellbasierte Ansatz besitzt, wie jede andere Technologie Starken (v') und Schwéchen (%). Einige davon
sind die Folgenden (nach [Leymann, 2008], [Schmid, 2010], [Wikipedia, 2011]):

v" Jedes Modell ist unabhingig von dem anderen und bildet eine eigene Einheit mit wohldefinierter Abs-
traktionsstufe (Modularitat). Wahrend Aufgabenmodelle die Geschéaftsprozesse definieren, imple-
mentieren konkrete Modelle die einzelnen Aufgaben (iber Klassenmodelle und Klassenbeziehungen
bis hin zur Codeebene.

v" MDA erméglicht unabhingig von Plattformen und Frameworks zu arbeiten, d.h. der Entwicklungs-
und Codierungsprozess ist streng getrennt. Andert sich ein Modell kann daraus immer wieder platt-
formspezifischer Code generiert werden. Aufwandige Codeanpassungen entfallen dadurch. Dies kann
besonders bei groRen und komplexen Anwendungssystemen haufig eine Fehlerquelle sein (Flexibili-
tat).

v Die Modelle kénnen geandert und die Anderungen durch {ibergeordnete Modelle verifiziert werden
(Sicherung der Korrektheit).

v" Durch die Automatisierung wird die Produktivitit gesteigert.

% Negativ kann sich der Aufwand bei der Erzeugung von geeigneten Modellen erweisen, wenn die An-
wendung nicht groR genug ist wie bei einmaligen Projektarbeiten. Stattdessen konnte in der gleichen
Zeit bereits die Anwendung umgesetzt werden.

Grundlagen und Stand der Technik

% Der modellbasierte Ansatz erfordert neue Denk- und Herangehensweisen fiir die Entwickler. Nicht je-
der Entwickler ist damit vertraut oder kann gut mit abstrakten Modellbeschreibungen umgehen.

2.5.2 Reverse Engineering

Reverse engineering is the process of analyzing a subject system to [a)] identifies the system’s components and
their interrelationships and [b)] create representations of the system in another form or at a higher level of
abstraction.

[Chikofsky, et al., 1990]

Eine Software zurlickzuentwickeln wird notwendig, sobald Quellen und Dokumentation fiir das System nicht
mehr vorhanden sind und dessen Wert erhalten bleiben soll. Dazu werden nach Chikofsky zuerst einmal die
Systemkomponenten erkannt und in Beziehung gebracht (Teil a). Dann kdnnen Quelltexte aus Bindrcode ent-
wickelt und Aufgabenmodelle, z.B. in UML, durch eine Systemanalyse erstellt werden (Teil b). Reverse Enginee-
ring (RE) bedeutet also den Entwicklungsprozess riickwarts durchzufiihren und das System zu verstehen. Mit RE
wird jedoch keine Anderung oder Erginzung am System durchgefiihrt. Dieser Schritt, das Anpassen der Soft-
ware an eine neue Umgebung oder Plattform, wird daher Migration oder Portierung genannt [Moore, et al.,
1993]. Im Migrationsprozess wird das Wissen des Reverse Engineerings verwendet, um schneller und kosten-
ginstiger, d.h. abgekirzt Software Engineering betreiben zu kénnen. Da die Migration die vorhandene Funktio-
nalitdt moglichst zu 100% tGbernehmen soll, sind groRe Teile zu verstehen und neu zu entwickeln (,,[Informati-
on systems] also tend to be very large systems, hundreds of thousands, even millions, of lines of code.”, [Moore,
1995]). Das bedeutet, dass die manuelle Migration nicht ohne groRe Kosten und Fehler zu bewerkstelligen ist.
Es mussen daher neue Methoden und Techniken gefunden werden einen Grofteil der Arbeit zumindest zu
halb-automatisieren.

Technisch wird Reverse Engineering auf zwei Arten durchgefihrt: dynamisch oder statisch (vgl. [Grilo, et al.,
2007]). Im ersten Fall wird das System analysiert, indem die vorhandenen Bestandteile (u.a. Variablen und
Klassen) erkannt und deren Beziehung (z.B. Vererbung und Methodenaufrufe) verstanden wird. Im Gegensatz
dazu wird beim dynamischen RE das System analysiert wahrend es ausgefiihrt wird. Dadurch kénnen u.a. Spei-
cherwerte, Methodenaufrufe und Nebenldufigkeit zur Laufzeit beobachtet oder sogar gedndert werden. Zudem
bleibt das dynamische RE die einzige Méglichkeit, die Software zu verstehen, wenn Quelltext und Dokumenta-
tion verloren gegangen sind. Doch ein System kann nur dann vollstandig verstanden werden, wenn es sowohl

statisch als auch dynamisch zurtickentwickelt wird [Grilo, et al., 2007].

Mit Reverse Engineering kdnnen nicht nur Klassenstrukturen und Programmabldufe verstanden werden, son-
dern auch Benutzungsschnittstellen. Bei neuen Plattformen missen dann insbesondere auch die Oberflachen
angepasst werden. Diese Anpassung stoRt jedoch auf eine Vielzahl von Problemen, wie [Moore, et al., 1993]
anmerken:

1. Bildschirme bieten heutzutage sehr unterschiedliche Auflosungen und Interaktionsmoglichkeiten
(,Touch”) an. (,,Display technologies”)

2. Es hat sich eine Vielzahl von unterschiedlichen Entwicklungsschnittstellen fiir Oberflachen etabliert.
(,Lack of standards*”)

3. Das Aussehen der Oberflachen kann sich zwischen Plattformen drastisch unterscheiden. Bei der Mig-
ration muss daher entschieden werden, ob das originale Aussehen der Oberflache beibehalten oder
an die neue Plattform angepasst wird. (,,Look and Feel”)

4. Funktionsunterschiede (z.B. Vorhandensein von bestimmten Steuerelementen) der Plattformen mis-
sen bei der Migration bertcksichtigt werden. (,,Functionality changes®)

Migration und Anpassung von Dialoganwendungen fiir beriihrungsempfindliche Bildschirme

5. Die Art und Weise, wie bei einer Software die Benutzungsschnittstelle umgesetzt wurde, d.h. voll-
standig getrennt, per Modul oder verteilt, bestimmt den Aufwand, der betrieben werden muss, um
die plattformabhangigen Oberflichenkomponenten zu migrieren. (,Integration of the user interface”)

Zum Reverse Engineering von bestehenden Dialoganwendungen existieren bereits einige Konzepte und Lésun-
gen. So wurde fiir die MDA Projekte MARIA und MARIAE von [HIIS Laboratory, 2010] das Werkzeug Reverse-
MARIA entwickelt, das die Modelle aus vorhandenen Webseiten zuriickentwickeln kann. Von derselben Stelle
stammt auch WebRevEng. Es kann Aufgabenmodelle in der ConcurTaskTrees-Notation aus HTML Quellen gene-
rieren und sie fiir die Weiterverarbeitung speichern. Eine dhnliche Lésung bieten auch [Bandelloni, et al., 2008]
mit ReverseAllUl. Damit kénnen fast beliebige Dialogbeschreibungssprachen (z.B. HTML, XHTML, aber auch
TERESA XML, siehe [Berti, et al., 2004]) in ein einheitliches Aufgabenmodell zuriickentwickelt werden. Modell-
getrieben arbeiten auch die Autoren [Sanchez Ramdn, et al., 2010], um Oberflachen aus Rapid Application
Development Softwareentwicklungen (RAD) zuriick zu gewinnen. Sie tiberfihren die Oberflache der Anwen-
dung in ein plattformunabhangiges Zwischenmodell (,RAD model“) und generieren daraus wieder ein neues
konkretes Ul Modell (,,Concrete User Interface Model”), welches als Ausgangsmodell fiir neue Oberflachen
dient.

Zwei weitere Losungen befassen sich mehr mit der Interpretation der Steuerelemente von Dialogen und ihrer
Anordnung. Der Algorithmus des Auckland Layout Model (siehe unten) sorgt beispielsweise dafir, dass Steue-
relemente entsprechend ihrer von Entwickler zugewiesenen Bedeutung mehr oder weniger Platz in einem
Dialog erhalten. Ein bestehendes Layout einer Altanwendung kann durch den Algorithmus zurtickentwickelt
werden, um eine spatere Neuanordnung der Steuerelemente zu ermoglichen. Weiterhin ist es fiir Reverse
Engineering von Oberflachen wichtig, die Steuerelemente zuverldssig erkennen zu kénnen, um, je nach Typ des
Elements, eine Abbildungsregel anwenden zu konnen. Da oftmals fir viele alte Anwendungen keine Quelltexte
mehr existieren, wurde fur die Migration dieser Anwendungen ein neuer Ansatz entwickelt. Unter Windows
wurden daher die Dialoge mit Funktionen der Windows API zur Laufzeit analysiert und kopiert. Dazu wurde
jedes Steuerelement erkannt und dessen Eigenschaften kopiert wie Typ und GréRe. In einer Studie wurde diese
Methode an mehreren Windows Anwendungen durchgefiihrt und tiberpriift.

Die letzten beiden Losungen befassen sich direkt mit Dialoganwendungen, die auch in dieser Arbeit das Thema
sind. Daher soll im Folgenden etwas ndher auf die Umsetzung dieser Losungen eingegangen werden.

Automated Reverse Engineering of Hard-Coded GUI Layouts

Mit dem Auckland Layout Model (ALM), benannt nach der Universitat des Autors [Lutteroth, 2008], beschreibt
der selbige eine mathematische Technik, die die Anordnung (,Layout”) von Oberflachenelementen spezifiziert.
Das ALM beschreibe dabei das Layout so exakt und formal, dass die Spezifikation auch ohne ein , Layout Mana-
ger” sinnvoll sei.

def definiert durch
area = ger (X 1, Y1, Xo, Y2, CONtENt, SIiZ€ min, SIZ€ pref, SIZ€ max) content Inhalt des Bereichs (area)
SiZ€min Minimale GroRe des Bereichs
Abbildung 23 Nach [Lutteroth, 2008] besteht ein Bereich (,,Area”) aus den S!Zepref BevquUgte G._roge des Ber_EIChS
Koordinaten, Inhalt sowie Grenzen fiir eine Anderung der GréRe. S1Z€max Maximale GroRe des Bereichs

Denn Luttheroth bemangelt die absolute Positionierung von Steuerelementen im Quelltext (,[...] the lack of
dynamic layout.”) und die daraus ergebenden Nachteile fiir den Benutzer der Anwendung (,,[...] users may
want to change the amount of screen real-estate that is allocated to a GUI by changing the size of its window”,
“[...] the content shown in a control may change so that its size needs to be adjusted”). Zudem sei das Mischen
von generierten und handgeschriebenem Quelltext fiir Oberflachen problematisch, weil Werkzeuge wie Ober-

Grundlagen und Stand der Technik

flacheneditoren mit selbstgeschriebenen Algorithmen nicht umzugehen verstehen (,, it is effectively not possible
anymore to use a GUI design tool”).

Das ALM kehrt der statischen Positionierung von Steuerelementen den Riicken und spezifiziert stattdessen
Invarianten fiir die Oberflache. Diese Invarianten werden als Bedingung fiir eine lineare Optimierung des Lay-
outs benutzt, sobald Anpassungen der Oberflache notwendig sind. Um die Invarianten fiir die lineare Optimie-
rung einfacher zu spezifizieren, fihrt Lutteroth zusatzliche Abstraktionen (, Features”), wie ,tabstops”, ,areas”
und ,linear constraints” ein. Mit Tabstopps wird ein virtuelles Raster fiir die Ausrichtung von Steuerelementen
definiert. Die Positionen der Elemente werden durch diese Tabstopps (x- und y-Richtung) ausgedriickt und erst
im Layout-Prozess mit konkreten Werten belegt. Mit Areas (siehe Abbildung 23) werden Flachen auf der Ober-
flache definiert, d.h. deren Position und GroRe (x1, y1, X, und y, in Tabstopps), das beinhaltete Steuerelement
(content) sowie minimale (sizey,), maximale (sizen,) und bevorzugte (size,.s) GroBendnderungen beschreiben.
Die Gleichung wird im Layout-Prozess eingesetzt, um die dadurch spezifizierten Invarianten beim dynamischen
Berechnen der GroRenveranderung der Oberflache zu bericksichtigen.

Da Tabstopps keine konkreten Werte (z.B. in Pixeln) enthalten, werden sie Gber lineare Beschrankungen (,,line-
ar constraints”) spezifiziert. So kdnnen absolute Positionen (x, = 100), GréRen (x; — X, = 100) oder komplizierte
Abhédngigkeiten (auch mit Ungleichungen) von Steuerelementen definiert werden. Doch nicht immer kénnen
alle Beschrankungen gemeinsam erfillt werden (keine Losung), so dass [Lutteroth, 2008] zwischen harten und
weichen Beschrankungen unterscheidet. Wahrend die harten Beschrankungen immer erfillt sein miissen, kon-
nen weiche Beschrankungen in ALM mit Kostenparametern versehen werden, die Durchsetzungsfahigkeit zu
anderen weichen Beschrankungen angeben.

Fir die Herstellung einer Dialogspezifikation im ALM nutzt Lutteroth einen Algorithmus, der die Anordnung der
Steuerelemente zuriickentwickelt. Dabei werden absolute Positions- und GroRenangaben in Tabstopps tiber-
flihrt und zueinander in Beziehung gesetzt (Reihenfolge der Elemente). Der Algorithmus ist laut dem Autor
schnell und kann daher beispielsweise mit wenig Aufwand auch nachtraglich das Layout wahrend der Laufzeit
vergréRern und verkleinern. Mit Hilfe der Heuristik kann der Algorithmus noch weiter verfeinert werden. So
kénnen etwa vom Entwickler schlecht ausgerichtete Elemente (,,A control might just be misplaced by a single
pixel, and the deviation might only be visible under closer observation. “) durch Definieren einer Epsilon Umge-
bung (z.B. fiir eine horizontale Ausrichtung:X,,;, < € < Xpax) immer noch auf dieselbe Tabstopp-Position
gebracht werden (,,Fuzzy Alignment”). Weiterhin konnen gleichartige Elemente einer Spalte auf dieselbe GroRe
gebracht werden (,Standardized Sizes“) oder die OberflachengroRe relativ zur BildschirmgroBe gewahlt wer-
den, indem die verwendete Einheit umgerechnet wird (,,Adjustment of Units").

Eine Umsetzung des ALM Algorithmus fand mit C# in Visual Studio statt. Die Implementierung von [Lutteroth,
2008] fuhrt zur Laufzeit das obige Reverse Engineering mit dem Algorithmus durch und ermaglicht so eine
nachtragliche Layoutverdanderung bei Windows Forms .NET Anwendungen. Die Dialogelemente werden dort
zur Entwicklungszeit als Quelltext statisch definiert und ermoglichen daher kein flexibles Layout.

User Interface Migration of Microsoft Windows Applications

Mit der Zurlickentwicklung und Portierung von Altanwendungen auf neue Plattformen beschaftigt sich [John,
2009]. Durch das Fehlen von Quelltexten geht er den Weg des dynamischen Zuriickentwickelns auf Windows
Betriebssystemen. Er erstellte dazu eine Anwendung in Visual Basic, welche die Elemente einer beliebigen
laufenden Dialoganwendung mit Hilfe der Low-Level Windows APl (EnumWindows, EnumChildWindows, Ge-
tWindowInfo) extrahiert und deren Elementeigenschaften in einer Datenbank speichert. D.h. es werden Positi-
on, GroRe, Text und einiges mehr ausgelesen, um spéater eine neue Oberflache rekonstruieren zu kénnen. Zu-
satzlich fugt [John, 2009] noch ein Bildschirmfoto des Dialogs bei, um, wie er schreibt, bei der Identifizierung
von Steuerelementtypen und deren Abbildung auf andere entsprechende Elemente zu unterstiitzen. Er ver-

m Migration und Anpassung von Dialoganwendungen fiir beriihrungsempfindliche Bildschirme

sucht dabei durch Vergleiche von vorhandenen Elementbildern unbekannte Steuerelemente zu erkennen und
neu zuzuordnen. Da dies nicht immer automatisch funktioniert, ist es moglich eine manuelle Anpassung vorzu-
nehmen. Der automatische Teil verwendet dagegen Abbildungsregeln, d.h. Elementtypen werden mit den
Typen aus einer Liste verglichen und entsprechenden neuen Elementen automatisch zugeordnet: Zum Beispiel
werden die Elemente TCheckBox und ThunderRTCheckBox zu CheckBox. Das Werkzeug wurde in einer Studie
an 20 bekannten Windows Anwendungen gepriift und konnte fast 76% der Steuerelemente erkennen und
neuen zuordnen. Doch einige Elemente wurden auch dann erkannt, obwohl sie normalerweise nur bei be-
stimmten Aktionen sichtbar werden (Hover-Effekt). Andere Elemente konnten zwar erkannt werden, deren
Sinn oder Zweck war jedoch durch ihre Generizitat (z.B. benutzerdefinierte Steuerelemente, Toolbar-Buttons)
nicht zu ermitteln. Zudem liefert die benutzte API keine Information tber die Farbgestaltung der Elemente, so
dass die Farben nur lber ein Foto erkannt werden kénnen. Die Erkennung lief dabei immer mit derselben Bild-
schirmauflésung (und vermutlich auch Punktdichte-Einstellung) und bildet die Dialoge daher immer im Original
ab. Nach dem Autor seien daher zusatzliche Kodierungen fir Skalierung und Positionsdnderung notwendig.

Die beschriebene Losung besitzt den Vorteil, dass damit fast jede beliebige GUI kopiert werden kann, deren
Quelltext nicht mehr vorhanden ist. Dabei werden alle Elemente, ob sichtbar oder nicht, gefunden und Ent-
wickler kdnnen diese in einem separaten Prozess neu mit dem Programmablauf verknipfen. Doch nicht alle
Oberflachen lassen sich mit der Low-Level API durchforsten. Sobald GUI Elemente nicht mit dem Windows API
Befehl CreateWindow erstellt wurden, konnen auch API Funktionen wie EnumChildWindows oder GetWindo-
winfo diese nicht ermitteln. Dies ist beispielsweise in Anwendungen der Fall, die ihre Oberflache mit DirectX
oder OpenGL zeichnen, wie dem Windows Presentation Foundation. Fiir die Windows API besteht dann eine
solche Anwendung nur aus einem Fenster mit unbekanntem Inhalt.

2.6 Migration

Die Migration (lat. Wanderung) beschreibt die Umristung einer Anwendung in eine neue Systemumgebung
[Fischer, et al., 2008]. Dieser Vorgang kann von einem Menschen oder einer Maschine vollstandig oder nur zum
Teil durchgefiihrt werden. Im besten Fall erzeugt die Umristung eine funktionale Kopie der Anwendung auf der
neuen Plattform. Eine Anwendung wird migriert, indem deren Komponenten analysiert, kopiert und angepasst
werden. Die einfachste Art der Migration ist das Kopieren von Komponenten (z.B. GUI, Programmlogik oder
Teile davon), d.h. die urspriingliche Funktion der Altanwendung wird vollstandig erhalten. Dies ist jedoch nur
moglich, falls die Zielplattform dies auch unterstitzt (z.B. Prozessorleistung, Bildschirmauflosung usw.). Ist dies
nicht der Fall, dann missen die Komponenten der Zielplattform angepasst werden und zwar so, dass sie unter
dem neuen System genutzt werden kénnen. Im schlechtesten Fall unterstiitzt die Zielplattform eine oder meh-
rere Funktionen nicht (z.B. 3D GUI auf Mobilgeraten oder biometrische Identifikation). Die Komponenten mis-
sen dann entweder ersetzt oder entfernt werden, um die Migration vervollstédndigen zu kénnen.

Bei der Migration von Benutzungsschnittstellen werden die Steuerelemente einer Plattform auf die entspre-
chenden Steuerelemente einer anderen Plattform abgebildet [Moore, et al., 1993]. Diese Aufgabe kann verein-
facht werden, indem Detailinformationen weggelassen und die Abbildungen damit abstrakter werden. So wird
das spezifische Element ,Schalter” zum generischen Eingabeelement oder das ,Dropdown-Listenfeld” wird mit
dem , Listenfeld” (vgl. Tabelle 17 auf Seite 134) zum allgemeinen Auswahlelement.

Die Durchfiihrung der Migration teilt Moore in drei Phasen ein:

1. Erkennung (,detection”) der Funktionalitdt der Benutzungsschnittstellen.
2. Prasentation (,representation”) und Dokumentation derselben.
3. Abbildung (,,transformation”) in die neue Umgebung.

In der Erkennungsphase werden das System analysiert und die Bestandteile erkannt, die fiir die Benutzerober-
flache zustandig sind. Dies kann per Hand geschehen oder durch Mustererkennung und syntakti-

Grundlagen und Stand der Technik

sche/semantische Analyse. Dabei bezieht sich Moore nur auf die Benutzungsschnittstellen, die im Quelltext
integriert vorliegen. Die Analyse von Oberflachenbeschreibungssprachen gehort daher auch in die Erkennungs-
phase, d.h. die Steuerelemente sowie deren Anordnung und Beziehungen zueinander werden analysiert und
fir die Prasentationsphase vorbereitet.

Mit der Prasentation werden die gewonnenen Erkenntnisse in eine bestimmte Darstellung gebracht. Diese
kénnen im Falle von Oberflachen abstrakte Beschreibungssprachen (,Abstract User Interface Design®), Zu-
standsautomaten (,,Since most user interfaces involve system states and transitions [...]“) oder auch andere
Modellformen (z.B. Objekte, Graphen, XML usw.) sein.

Die dritte und letzte Phase der Migration ist die Abbildung der Benutzungsschnittstellen auf die neue Plattform.
Diese Phase gehort nicht zum Reverse Engineering (vgl. Kapitel 2.5.2), sondern baut stattdessen darauf auf und
nutzt die daraus gewonnen Erkenntnisse fiir die Migration. Dabei werden die zuriickentwickelten Elemente der
Oberflachen auf die neue Plattform abgebildet und gegebenenfalls an die neue Umgebung angepasst. So kén-
nen Auswahlelemente als Listenfeld oder Dropdown-Listenfeld (vgl. Tabelle 17) platziert werden, je nachdem,
ob ein Dropdown-Listenfeld von der Zielplattform unterstitzt wird oder nicht. Zudem kann das Dropdown-
Listenfeld vorgezogen werden, wenn der Platz fiir die Oberfldche knapp ist und eine Liste zu viel Raum bean-
spruchen wiirde. Da dieser Vorgang sich auf vorhandene Abbildungsvorschriften stiitzt, wird er dementspre-
chend als wissens- oder regelbasierte Transformation (vgl. [Moore, 1995]) bezeichnet.

Die Probleme beim Migrieren konnen vielfaltig sein. [Moore, et al., 1993] zidhlen dazu die Unterschiede in den
Funktionen und den Architekturen der verschiedenen Plattformen sowie die Integration der Benutzeroberfla-
che in der Anwendung. Zudem sehen die Autoren im Fehlen von Standards bei Benutzeroberflachen eine Hiir-
de bei der Migration von Anwendungen. lhre Empfehlung lautet daher den Migrationsprozess methodisch
durchzufiihren und in Phasen (wie bereits erwahnt: Erkennung, Reprasentation und Transformation) einzutei-
len. Diese Vorgehensweise wurde auch in zwei Studien (dem TRANSOPEN Projekt und der Studie Knowledge
Worker Platform Analysis) angewendet und tberprift [Moore, et al., 1993].

Die Migration hangt offensichtlich stark mit dem Reverse und Software Engineering zusammen. Eine vorhan-
dene Anwendung muss zuerst verstanden sein, bevor sie fiir eine neue Plattform erstellt werden kann. Einige
Ansatze zur Migration setzen daher auf plattformunabhangige Modelle, die Anwendung und deren Interaktion
mit dem Benutzer beschreiben und aus denen Oberflachen generiert werden kénnen (Eine Menge von GUI
Generatoren wurden in [Schlegel, et al., 2010] evaluiert). Diese Ansatze nutzen dazu liblicherweise eine gera-
teunabhangige Beschreibungssprache wie beispielsweise [USIXML], UIML (siehe [Abrams, et al., 2004]) oder
XIML (siehe [Di Santo, et al., 2004]). Diesen Ansatzen ist allen gemein, dass die Migration zur Entwurfszeit pas-
siert. Dagegen erlauben andere Ansatze auch die Migration zur Laufzeit. Wie beispielsweise [Bandelloni, et al.,
2007] oder von [Bandelloni, et al., 2004] , die einen modellgestltzten Ansatz beschreiben, der zur Laufzeit
Webseiten fiir verschiedene Plattformen wie Mobilgerate oder auch als Sprachausgabe generieren kann.

Mit dem Aufkommen immer neuerer Mobilgerdte und Bildschirmaufldsungen kam auch die Notwendigkeit auf,
vorhandene Anwendungen auf die neuen Plattformen zu migrieren. Viele Ansatze befassen sich daher mit der
Migration von grafischen Oberflachen auf die Bediirfnisse von Geraten mit kleiner Anzeigeflache (z.B. Hand-
helds, Smartphone, Tablets). Darunter sind auch die bereits erwdhnten Arbeiten von Bandelloni et al. mit einer
weiteren Arbeit Flexible Interface Migration von denselben Autoren. Weitere Beitrage stammen von [Grolaux,
2004], [Canfora, et al., 2004] und [Wong, et al., 2002]. Letztere prasentieren ein Framework fiir Java, welche
»Scalable Graphical User Interfaces” nutzt, um Oberflachen zwischen verschiedenen Plattformen (hauptsach-
lich Mobilgerate) zu migrieren. Der Ansatz nutzt eine eigene Layoutspezifikation fiir jede Plattform und eine
Menge von Regeln fir die Migration von Steuerelementen. Zur Entwurfszeit wird ein Dialog entwickelt, der auf
verschiedene Plattformen migriert werden kann.

Im Gegensatz zu den bereits oben genannten Ansatzen gehen [Salminen, et al., 2007] einen gegensatzlichen
Weg und beschreiben eine Losung auf der Basis einer zwischengeschalteten Software (Middleware), die Diens-

m Migration und Anpassung von Dialoganwendungen fiir beriihrungsempfindliche Bildschirme

te fur Verbindungsaufbau, Suche und Kommunikation fiir Mobilgeradte auf Desktopcomputern ermdoglicht. Die
Autoren erstellen den Softwareprototyp, der die Kommunikation zwischen Mobilanwendung und migrierter
Desktopanwendung ermdglicht und evaluieren ihn, indem sie Benutzern die Méglichkeit geben SMS auf einer
Computertastatur schreiben und sofort senden zu lassen. Eine weitere Losung, die eine Middleware-Losung
nutzt, um grafische Benutzerschnittstellen auf verschiedenen Geraten nutzen zu kdnnen, ist unter [Paterno, et
al., 2008] zu finden. Die darin vorgestellte Migration unterstltzt sogar die Darstellung von Benutzerschnittstel-
len im Fernseher, wie in der Abbildung 24 zu sehen ist.

Category: MEAT

- Beef Steak 500g Euro 8,62

“ 4 Hamburger 5009 Euro 3,25

‘ Roastbeef 500g Euro 5,00 ==l

ELY 1 2 abc 3 def

B SclectUP ... mm Select DOW(RAR 90I NI KURNCRINEE

Page UP .m page DOWN 7 pars 8 tuv 9 wxyz
B View Keyboard canc

Abbildung 24 Eine GUI migriert fiir ein Fernsehgerat [Paterno, et al., 2008]. Die Elemente konnen durch die Fernbedienung bedient
werden.

Die Migration kann besonders aufwandig sein, wenn eine Anwendung auf ein anderes Betriebssystem umge-
ristet werden soll. Fiir die Migration von UNIX Anwendungen auf Windows gibt es dazu von Microsoft eine 600
Seiten starke Anleitung (siehe [Microsoft, 2003]). Weitere Strategien sowie Ansatze und Losungen fir die Mig-
ration von Windows Anwendungen gibt es unter [Gerdes, 2009], [Abramson, et al., 2002] und [Antoniol, et al.,
1995].

Abbildung 25 Die Migration von AgilePlanner auf ein Multi-User , Touchtisch”
mit 10 Mega Pixel Auflésung [Wang, et al., 2008]

Weiterhin sollen Anwendungen fir neue, populdr werdende Technologie, wie die berlihrungsempfindlichen
Bildschirme, angepasst werden. An der Universitat Calgary in Kanada wurde bereits eine Anwendung Agile-
Planner fur agile Projektsitzungen entwickelt, um den Teilnehmern ihre Projektplanung zu erleichtern. Die
Sitzungsteilnehmer nutzten AgilePlanner bereits auf ihren portablen Computern, ohne jedoch einen Vorteil bei
der Zusammenarbeit wahrend eines Meetings zu erhalten, da jeder Teilnehmer nur den eigenen Bildschirm
betrachtete. Deshalb wurde die Software von [Wang, et al., 2008] auf einen 183cm x 122 cm groRen Multi-

Grundlagen und Stand der Technik

User ,, Touchtisch”, ein sogenanntes Tabletop, migriert. Der Tisch erlaubt die Nutzung der Software von mehre-
ren Benutzern gleichzeitig und insbesondere gemeinsam.

Die Entwickler berichten liber ihre Erfahrungen bei der Migration der Anwendung und der Umsetzung von
Fingereingaben, Gesten und multiplen Simultaneingaben von mehreren Benutzern am Tisch. Aus ihren Evalua-
tionsergebnissen der migrierten Anwendung leiten sie u.a. die folgenden Richtlinien ab:

Komponenten der Oberflache sollten beweglich und drehbar sein

Fingergesten sollten gegeniiber traditionellen Menus vorgezogen werden

Texteingaben sollten Gber Handschriftenerkennung geschehen, statt eine Tastatur zu verwenden
Die GroRe von Steuerelemente sollte fiir Fingereingabe angepasst werden

el A S

2.7 Zusammenfassung

Das Grundlagenkapitel befasste sich mit dem aktuellen Wissensstand bei der Oberflaichenentwicklung. Zuerst
wurden wichtige Begriffe fir diese Arbeit definiert, u.a. die Begriffe Benutzbarkeit und Touch. Daraufhin wurde
die Geschichte der Benutzerschnittstellen vorgestellt und gezeigt, was in Zukunft mit organischen Benutzer-
schnittstellen moglich sein wird. Es folgte ein Kapitel iber beriihrungsempfindliche Technologien und Metho-
den. Dazu wurden der aktuelle Stand der Technik fir berihrungsempfindliche Bildschirme prasentiert und die
einzelnen Techniken wie druckempfindliche, ladungsempfindliche und optische Oberflachen erklart sowie die
Vor- und Nachteile dargelegt. Weiterhin wurde auf die Interaktionsmethoden bei einer ,, Toucheingabe” einge-
gangen und veranschaulicht wie Finger fiir verschiedene Bedienaktionen eingesetzt werden kénnen.

Das nachste Kapitel behandelte Dialoge und welchen Zweck — bekanntlich zur Eingabe und Abfrage von Daten
sowie zur Bestatigung derselben — diese erfiillen. Es wurden aulRerdem sieben Gestaltungsgrundséatze aus der
ISO Norm fiir die Entwicklung von Dialogen genannt, welche die Bedienbarkeit von Dialogen verbessern sollen.
Neben den Gestaltungsgrundsatzen wurden auRerdem fiinf mogliche Arten von Bedienaktionen gezeigt, die ein
Benutzer in einem grafischen Dialogsystem ausfiihren kann. Ein weiteres Kapitel tGber Dialoge fiihrte anschlie-
Rend in die Beschreibungssprachen von Dialogen ein. Dazu wurde zwischen zwei Arten von Benutzungsschnitt-
stellen unterschieden: den plattformabhangigen und —unabhangigen Dialogbeschreibungssprachen. Als Bei-
spiele kamen ConcurTaskTrees als plattformunabhangige Dialogbeschreibung sowie Programmiersprachen und
XAML als plattformabhédngige Sprachen zum Einsatz. Das Kapitel tiber Dialoge wurde schlieSt mit einem Exkurs
Gber die Punktdichte, und welche wichtige Rolle diese bei der Darstellung von Dialogen auf Bildschirmen spielt,

abgeschlossen.

Im Anschluss wurde in die Softwareentwicklung, insbesondere die modellgetriebene Entwicklung und das Re-
verse Engineering, eingefiihrt. Die modellgetriebene Entwicklung wurde erldutert und gezeigt welche Maoglich-
keiten sie fir die gleichzeitige Entwicklung auf verschiedenen Plattformen bietet. Als Beispiele wurden MARIA
als Modellsprache fiir interaktive Anwendungen sowie das Framework AndroMDA vorgestellt. Uberdies wurde
das Thema Reverse Engineering vorgestellt und Konzepte und Lésungen vorgebracht, um bereits bestehende
Dialogoberflachen zu analysieren und zurilickzuentwickeln, d.h. die Inhalte und Darstellung der Dialoginhalte
aus dem Programmquelltext oder einer Dialogbeschreibungssprache zu erlangen.

Zum Schluss wurde die Migration von Dialogsystemen behandelt. Verschiedene Losungen wurden dazu vorge-
stellt, die Dialogoberflachen fiir unterschiedliche Plattformen umriisten konnen. AuRerdem wurde ein Artikel
vorgestellt, bei dem die Autoren Uber ihre Erfahrungen mit der Migration einer bestehenden Desktop-
Anwendung zur Konferenzverwaltung auf einen groen Multi-Touch-Tisch berichteten.

m Migration und Anpassung von Dialoganwendungen fiir beriihrungsempfindliche Bildschirme

3 Problem-, Aufgabenstellung und Losungsansatz

Wer aufhért, besser sein zu wollen, hat aufgehért, gut zu sein.

Oliver Cromwell

englischer Militarfihrer und Politiker

Das folgende Kapitel 3.1 gibt einen Uberblick iiber die Aufgaben und Ziele dieser Diplomarbeit. Zuerst wird die
aktuelle Situation beschrieben und welche Nachteile dies mit sich bringt. Daraus ergeben sich die Aufgaben
dieser Diplomarbeit. Den Problemen und Aufgaben folgt zuletzt ein Uberblick des gewéhlten Lésungsansatzes
in Kapitel 3.2.

3.1 Problemstellung

Mit dem Erscheinen von Smartphones und Tablets PC ist es mittlerweile {iblich geworden, Mobilgerdte mit den
Fingern zu bedienen. Aber auch fir Desktopcomputer existieren schon lange beriihrungsempfindliche Bild-
schirme, fur die es hdufig jedoch an geeigneter Software mangelt. Um welche Probleme es sich dabei handelt
(Fehlende Touch- und Entwickler-Unterstiitzung), soll in den folgenden Abschnitten naher erldutert werden.

Fehlende Touch-Unterstiitzung

Man muss zugegeben, dass bei Desktopsystemen keine ibermaRig hohe Prioritat fiir den Einsatz von berih-
rungsempfindlicher Bedienung besteht. Einerseits sind Touchbildschirme nicht weit verbreitet, obwohl sie mitt-
lerweile kaum noch im Preis von normalen Flachbildschirmen zu unterscheiden sind. Und andererseits sind die
Nutzer an die Bedienung mit Maus und Tastatur gewohnt. Nur in speziellen Einsatzgebieten, wie Fahrkartenau-
tomaten Uberwiegt die Bedienung mit den Fingern, nicht zuletzt weil die Betreiber die Instandhaltungskosten
sparen wollen.

Diese Systeme sind jedoch geschlossen, d.h. nur von einem Anbieter. Zudem wird die Software dazu direkt fir
die eingesetzte Hardware entwickelt und darauf optimiert. Im Gegensatz dazu sind Anwendungen fiir Desk-
topcomputer nicht fiir ein spezielles System entwickelt worden. Sie sollen, wenn maoglich, jahrelang funktionie-
ren. Viele Anwendungen, insbesondere aus dem Bankensektor, stammen daher aus dem letzten Jahrtausend
und sind damit mehrere Jahrzehnte alt. Aber auch Anwendungen, die immer wieder in neue Versionen entwi-
ckelt wurden, sind nicht fir Touch ausgelegt, da oftmals die Funktionalitdt im Vordergrund steht und weniger
die Benutzbarkeit (obwohl wir hier auch Verbesserungen sehen kénnen). Diese lange etablierten Anwendun-
gen fir Desktopsysteme unterscheiden sich grundlegend von den Anwendungen, welche fiir die relative neue
Mobilgerategeneration von iPhone, iPad und Co entwickelt werden (Neudeutsch: ,,App“). Die Bedienung mit
den Fingern ist flir den Benutzer standardmaRig die einzige Moglichkeit zur Interaktion mit dem Mobilgerat.
Entsprechend hoch sind auch die Anforderungen fir mobile Anwendungen (oder ,,App“), denn wenn eine sol-
che Anwendung nicht gut genug mit den Fingern bedient werden kann, dann wird sie einfach nicht genutzt.

Entsprechend grol8 sind auch die Bestrebungen, den Entwicklern bei der Anwendungsentwicklung unter die
Arme zu greifen, indem Touch bereits von Anfang an von den Entwicklungswerkzeugen unterstiitzt wird. Mit
Windows Vista und Windows 7 ist mittlerweile auch fiir Windowsanwendungen die Fingerbedienung moglich.
Windows selbst bietet jedoch standardmaRig nur grundlegende Touchfédhigkeiten an. Es unterscheidet daher
zwischen Altanwendungen, die selbst nicht auf Berlihrungen reagieren kdnnen und Neuanwendungen, die
aktiv auf die Fingereingabe antworten, d.h. dafiir entwickelt wurden. Die alten Anwendungen werden mit den
liblichen Interaktionen versorgt, indem ihnen vorgespielt wird sie wiirden mit einer Maus bedient. Dazu zdhlen

Problem-, Aufgabenstellung und Lésungsansatz _

z.B. das Klicken und der Bildlauf mit ein oder zwei Fingern. Windows bietet jedoch keine Moglichkeiten an,
fremde Anwendungen gezielt einfacher und préaziser mit den Fingern zu bedienen, zum Beispiel durch vergro-
Berte Bedienelemente. Daher besteht in diesem Fall die einzige Moglichkeit darin, die Punktdichte des gesam-
ten Systems (und damit aller Anwendungen) zu erhéhen und mit den Nachteilen zu leben, welche durch An-
wendung entstehen, die damit nicht umgehen kénnen (vgl. Kapitel 2.4.5).

Fehlende Entwickler-Unterstiitzung

Die meisten Anwendungsentwickler werden sich kaum um die Fingerbedienung ihrer Anwendungen kiimmern,
wenn sie damit keine oder nur wenig Erfahrungen gemacht haben oder sie keinen bertiihrungsempfindlichen
Bildschirm besitzen. Mit Einfiihrung von Windows Vista gibt es zwar auch fiir die Entwicklerseite ein Entwick-
lungswerkzeug, welches Touchinteraktionen fir Anwendungen ermoglicht, jedoch erfordert dies immer einen
Anpassungsaufwand fir die Entwickler.

Denn eine betrachtliche Anzahl von Dialogen wurde bereits entwickelt und befindet sich damit im Einsatz.
Selbst in einer Firma, in der jahrelang Software entwickelt wurde, wadre ein einzelner Entwickler wohl tGberfor-
dert mit der Anpassung der Dialoge fir die Touchbedienung. Allerdings ist es fraglich, ob es fir kleine Firmen
oder selbststandige Entwickler wirtschaftlich sinnvoll ist, eine Arbeitskraft alleine mit der Anpassung zu betrau-
en. Und sogar fiir Firmen, die mehrere Arbeitskréfte einsetzen konnten, um ihre Dialoge entsprechend anzu-
passen, wiirden mit Probleme konfrontiert. Zuerst ware eine Art von Regelwerk erforderlich, das die Entwickler
anleitet, wie die Anpassung zu erfolgen hat. Jedoch ist kein Werk beliebig prazise, so dass darin immer Liicken
enthalten sind. Diese Liicken werden daher vom Entwickler selbst geschlossen, indem er seine eigene Erfah-
rung nutzt. Dies bedeutet allerdings, dass die Anpassung der Dialoge zwischen verschiedenen Entwicklern (und
besonders bei unterschiedlichen Kulturen, z.B. aus Europa und Asien) stark variieren kann und dadurch die
Bedienkonsistenz liber alle angepassten Dialoge leidet. Und selbst wenn es keine Liicken im Regelwerk gdbe,
kann die Konsistenz leiden, wenn der Anpassungsaufwand nur hoch genug ist. So kann die Qualitdt der ange-
passten Dialoge sich verandern, indem die Entwickler wahrend ihrer Arbeit dazulernen. Fehlt zu Beginn der
Arbeit die Erfahrung mit dem Regelwerk und Anpassungsprozess, so andert sich dies bis zum Schluss.

Ein weiteres Problem betrifft die eingesetzten Steuerelemente selbst. Denn nur einige sind fir die Fingerbedie-
nung geeignet und auch dann missen sie richtig eingesetzt werden. Wahrend Schalterknépfe (Buttons) flr
Touch bestens geeignet sein konnen, sind sie in sogenannten Drehfeldern (siehe Tabelle 17 im Anhang) durch
ihr geringes MaRe unbrauchbar. Die Entwickler kdnnen ohne ausreichend Erfahrung und Wissen nicht erken-
nen, welche Elemente wie eingesetzt werden, um gut bedienbar zu sein (Andernfalls ware die Benutzbarkeit
kein so groRes Forschungsfeld in der Wissenschaft und Industrie). Ein Entwickler muss bei der Anpassung au-
Rerdem immer wieder viele gleichartige problematische Stellen innerhalb des Dialogs erkennen und anpassen.
Er muss die Male der Elemente korrigieren, die Abstdnde vergroBern oder Steuerelemente austauschen. Diese
monotone Arbeit kann daher zu Fehlern fiihren, die nachtraglich korrigiert werden mussen.

Migration und Anpassung von Dialoganwendungen fiir beriihrungsempfindliche Bildschirme

3.2 Aufgabenstellung und Losungsansatz

Die folgenden Abschnitte beschreiben die Aufgaben der Diplomarbeit sowie den Lésungsansatz.

Aufgabenstellung

Um die aktuelle Situation und die erlauterten Probleme bei vorhandenen Desktopanwendungen zu verbessern,

wurden die folgenden Aufgaben fir diese Diplomarbeit konzipiert (siehe auch Abbildung 26).

1.

Recherche zum Thema, zu Beschreibungsmethoden, Frameworks und Transformatoren fiir die Anpas-
sung der Dialoge (Kapitel 2).

Recherche und Konzeptbildung zu Interaktionselementen und Gestaltungsregeln fiir die Fingerbedie-
nung (Kapitel 2 und 5).

Konzeption eines regel-/modellbasierten Ansatzes fiir die Transformation von klassischen Dialogen in
Touchanwendungen (Kapitel 4).

Erstellung einer Architektur und eines in die Implementierung Gberflihrbaren Konzepts (Kapitel 6).
Erstellung einer Implementierung auf der Basis der Windows Presentation Foundation und fir XAML
nutzbaren Transformationsanwendung (Kapitel 7).

Durchflihrung einer Nutzerstudie, in der entsprechende Bedienelemente und Regeln evaluiert wer-
den, um eine Basis fiir die Gestaltungsregeln und die Transformation zu erhalten (Kapitel 7.6).
Evaluation der Anwendung anhand der Erkenntnisse aus der Studie und mit Hilfe der Implementierung
anhand von realistischen Beispielen fiir Dialoganwendungen (Kapitel 7.6).

T N

Transformation

Gesamtkonzept (Kapitel 4.1)

\ Betriebenes Konzept (Kapitel 4.2) /

\ Abbildungskonzepte (Kapitel 5) /

\ Architektur (Kapitel 6) /
K \ Umsetzung (Kapitel 7)/ /

Abbildung 26 Schematische Darstellung der L6sung. Die Transformation von Dialogen besteht aus einem Gesamtkonzept, welches im

Laufe dieser Arbeit konkretisiert und schlieBlich umgesetzt wird.

Losungsansatz

Den Aufgaben und deren Bearbeitung ging zuerst eine Idee voraus, Dialogelemente mit der Hilfe von Regeln so

zu verandern, dass deren Bedienung auf beriihrungsempfindlichen Bildschirmen fiir Benutzer leichter fallt. Die

Idee wurde erweitert und es kam ein modellgetriebener Ansatz dazu, der sich durch die Moglichkeiten in der

modellgetriebenen Entwicklung inspirieren lieR. Denn die Idee bestand auch darin jede Art von Dialogbeschrei-

bungssprache transformieren zu konnen. Dies hatte jedoch bedeutet, die Transformationsregeln auf jede die-

Problem-, Aufgabenstellung und Lésungsansatz

ser Sprachen anwenden zu miissen. Doch der Ansatz sollte eine einheitliche Transformationssprache fiir meh-
rere Dialogsprachen sein, um den Wartungs- und Portieraufwand zu minimieren. Das Konzept bestand also
darin erst einmal verschiedene Dialogsprachen zu vereinheitlichen, um die Regeln auf dieser einheitlichen
Sprache anwenden zu kdnnen. Zum Schluss wiirde die Einheitssprache dann wieder in die urspriingliche Dia-
logsprache zuriickkonvertiert.

Wie es sich herausstellte war das urspriingliche Konzept bereits zu gro8, um vollstandig umgesetzt werden zu
konnen. Auf Grund dieses Umstandes wurde der zentrale und wichtige Teil, die Abbildung der Dialogelemente
in einer einheitlichen Sprache, in dieser Arbeit angegangen. Das Gesamtkonzept ist daher als Ansatz beschrie-
ben, der fir weitere Entwicklungen als Grundlage dienen kann.

Weiterhin war es fiir die Abbildung von Steuerelementen erforderlich zu wissen, wie diese Abbildungen Uber-
haupt aussehen kénnten. Daher wurden Konzepte entwickelt, welche die Steuerelemente fiir die Bedienung
mit Fingern verbessern sollten. Diese konzeptionellen Regeln bilden damit die Grundlage fiir die Abbildungsre-
geln des Transformationsprozesses und kdnnen mit Hilfe der entwickelten Anwendung fiir Dialoge eingesetzt
werden.

Migration und Anpassung von Dialoganwendungen fiir beriihrungsempfindliche Bildschirme

4 Methode zur Umsetzung des Losungsansatzes

Software is a thought process.
To patent it is comparable to patenting induction or deduction.

Tom DeMarco
amerikanischer Softwareentwickler

Im vorherigen Kapitel wurde bereits die Aufgabenstellung genannt, die aus der Problemstellung hergeleitet
wurde. Dazu wurde auRerdem ein Losungsansatz entwickelt, um die Umsetzung zu ermdoglichen. Das folgende
Kapitel konkretisiert diesen Losungsansatz und stellt eine grundlegende Vorgehensweise fiir die Umsetzung
bereit. Es beginnt daher mit der Beschreibung eines groRen Konzepts in Kapitel 4.1 und erldutert die moglichen
Wege und Methoden zur Transformation einer Oberflache. Fir die Umsetzung selbst wird in Kapitel 4.2 ein Teil
dieses Konzepts herausgenommen und naher erldutert, um eine umsetzbare Methode fir die Kapitel 6 und 7
zu erhalten.

4.1 Gesamtkonzept

Die Herausforderung, Altanwendungen auch fiir beriihrungsempfindliche Bildschirme anzupassen, macht es
erst einmal erforderlich ein Grundkonzept, d.h. eine Vorgehensweise zu entwickeln, die hier vorgestellt werden
soll. Eine solche Methode gibt die Abbildung 27 wieder.

Die Abbildung zeigt eine modellgetriebene Entwicklung aufgeteilt in zwei Seiten. Die linke Seite stellt die Dialo-
ganwendung ohne Unterstitzung und Anpassung fiir beriihrungsempfindliche Bildschirme dar (Legacy Seite),
wahrend die rechte Seite diese Anpassungen bereits besitzt (Touch Seite). Die Aufgabe besteht nun darin dia-
logbasierte Altanwendungen (linke Seite) Uber eine Transformation fiir die Benutzung auf beriihrungsempfind-
lichen Bildschirmen (rechte Seite) anzupassen.

Fir die meisten Dialoganwendungen wird entweder eine Dialogbeschreibungssprache verwendet oder sie sind
durch ein mehr oder weniger abstraktes Modell spezifiziert. Die Vielzahl von Dialogbeschreibungssprachen und
Dialogmodellen macht die Aufgabe der Migration nicht einfach. Daher besteht die Losung darin, nicht die Dia-
logsprachen selbst zu migrieren, sondern einen Dialog erst einmal in ein einfacher zu migrierendes Modell
zurtickzuentwickeln (Reverse Engineering, Symbol @ in der Abbildung). Der Reverse Engineering Schritt muss
fiir verschiedene Arten von Beschreibungssprachen einmalig unternommen werden. Danach kann die Migrati-
on (®) jedoch stets auf demselben Modell stattfinden. In dieser Arbeit soll das XAML Modell verwendet wer-
den, da es auf XML aufsetzt und daher leicht automatisch zu interpretieren und anzupassen ist. Der Weg liber
XAML ist aber nicht der einzige. Die modellgetriebene Softwareentwicklung (MDE) nutzt Modelle fiir Dialoge
und Anwendungen, die noch unabhangig von der eingesetzten Plattform sind. Ein abstraktes Dialogmodell in
XML Notation, wie es UsiXML (siehe [USIXML]) implementiert, kann zum Einsatz kommen, wenn kein .NET, C#
oder XAML moglich ist wie z.B. bei Webseiten mit HTML. Es ist daher genauso mdoglich Abbildungsregeln (@)
auf der Modellebene der Stufe 3 (PIM) und héher einzusetzen. Wie im MDE ublich, durchlduft die Codegenerie-
rung nicht alle untergeordneten Stufen, sondern kann sofort die notwendige Zielsprache erzeugen. D.h. XAML
ist nicht fur die Transformation mit héheren Modellen notwendig (D).

Die Abbildung der Dialogelemente in eine Modellsprache und wieder zurtick (vertikale Transformation, ® und
@) wurde in dieser Arbeit nicht untersucht, weil die Abbildung von Alt- auf Neudialogen (horizontale Trans-
formation, ®) im Blickpunkt stehen sollte. Ansatze und Umsetzungen fiir die Konvertierung von Dialogspra-
chen in Modelle und zuriick wurden jedoch bereits in den Kapiteln 2.5.1 und 2.5.2 genannt.

Methode zur Umsetzung des Losungsansatzes

Legacy Seite Touch Seite
A weiteres weiteres Modellebene
Modell Modell PIM
Abbildungsregeln @ Stufe 4
0N Q oo
b abstraktes abstraktes Modellebene
ao Dialogmodell Abbildungsregeln Dialogmodell PIM
S plattformunabhangig Stufe 3
g
@
el o @
Q0
< ®
E, v
9 konkretes konkretes Modellebene
2 Dialogmodell _ Dialogmodell PSM
p in XAML Abbildungsregeln in XAML stufe 2
-8 XAML spezifisch
m©
£
“g %D A @ 0o
c S g
o o Fud
~ £ @
Q Qo0 3]
° ® g 2 @
5 & b
> (]
3]
o
GUI-Sprache GUI-Sprache Quelltextebene
Legacy Legacy Stufe 1
horizontale Transformation (gleicher Abstraktionsgrad)

>

Abbildung 27 Modellgetriebene Transformation zur Migration auf beriihrungsempfindliche Dialoge im allgemeinen Fall bestehend aus
Reverse Engineering, Transformation (auch Abbildung) und Codegenerierung

Wird XAML als Zielmodell gewahlt, hat dies jedoch drei Vorteile:

1. XAML st erstens anpassbar durch véllig neuartige und selbst erstellte Steuerelemente und kann
dadurch sehr aufwandig gestaltete Oberflachen produzieren.

2. XAML beruht auf dem XML Standard und ist somit mit XML DOM Parsern nutzbar.

3. Die XAML Dialoge kdnnen in einem Designer wie Visual Studio betrachtet und bearbeitet werden, um
beispielsweise ihr Aussehen zu optimieren.

Ob nun XAML oder ein anderes Modell verwendet wird, der Abbildungsprozess (®) bleibt der gleiche. Kann das
Modell jedoch mit XML beschrieben werden, ist letztlich nur ein XML Parser notwendig und zudem das , Wis-
sen” wie die Steuerelemente migriert werden kénnen. Das Lesen von XML gestaltet sich mit Hilfe von XQuery
und XPath auRerdem sehr einfach und flexibel. Und viele Programmiersprachen unterstiitzen XML standard-
maRig durch eigene Klassen und Methoden. Zur Transformation von XML hat sich mit der Sprache XSLT (Exten-
sible Stylesheet Language Transformation) ein weiterer Standard gebildet. XSLT ist eine Turing-vollstandige
Sprache, die in dieser Arbeit zur Migration von Dialogen in XAML verwendet wird (Eine in XSL gebaute Turing-
maschine ist unter [Unidex Inc., 2001] zu finden).

Migration und Anpassung von Dialoganwendungen fiir beriihrungsempfindliche Bildschirme

Ein letzter LOsungsansatz betrifft die Abbildungsregeln selbst. Abbildung 27 zeigt Regeln auf verschiedenen
Modelebenen, die eine vertikale Transformation (®) durchlaufen. Die Idee dahinter ist eine einfache Sprache
fur den Benutzer zu haben, in der sie/er die Abbildungsregeln beschreibt. Die Regeln werden schlieBlich in
einem vertikalen Transformationsprozess auf die gewiinschte Modellstufe (z.B. Stufe 2 mit XSLT) abgebildet, so
dass beispielsweise der Benutzer sich nicht direkt mit XSLT, XPATH (von XSLT verwendet) und den Eigenschaf-
ten von XAML auseinander setzen muss. Dazu missen die Abbildungsregeln in einer einfach gestalteten Spra-
che spezifiziert werden. Dies kann z.B. eine Untermenge der natiirlichen Sprache sein, die unabhangig von der
eingesetzten Plattform und Dialogbeschreibungssprache die Abbildungsregeln bestimmt. Das folgende Beispiel
einer einfachen Abbildungsvorschrift bildet die Steuerelemente eines Dialogs ab:

Set size of all elements where type is Button to minimum 1 centimeter.
Replace all elements where type contains ListBox with element ListBoxTouch.

Das Beispiel erinnert entfernt an SQL Anweisungen bei Datenbanksystemen. SQL wird seit vielen Jahren erfolg-
reich eingesetzt und ist auch fiir Anfanger einfach zu lernen und zu verwenden. Doch in den Beispielen existiert
noch eine gewisse Ungenauigkeit, die durch eine vertikale Transformation (®) entfernt werden muss. Einer-
seits ist die Eigenschaft size sicher nicht in allen Dialogsprachen vorhanden, sondern wird beispielsweise durch
width und height ausgedriickt. Und andererseits benutzen die wenigsten Dialogsprachen metrische Langenein-
heiten oder nennen ihre Listenelemente ListBox (vgl. Tabelle 18 Abbildungstabelle fiir Steuerelemente von
Delphi, Dialog Ressource und XAML im Anhang). Vor der Transformation miissen daher die Abbildungsregeln
von allen Ungenauigkeiten befreit werden, d.h. die korrekten Bezeichner und GréBen missen fiir die jeweils
eingesetzte Dialogbeschreibungssprache konvertiert werden.

4.2 Umgesetzte Methode

Im Rahmen dieser Diplomarbeit wird der im Kern der Abbildung 27 sitzende Transformationsprozess bearbeitet
(Ein Auszug ist in Abbildung 28). Darin wird die Migration von Dialogen fir den Gebrauch auf beriihrungsemp-
findlichen Bildschirmen behandelt. Der Transformationsprozess wird in Kapitel 7.5 beschrieben und stellt nur
einen Teil der Hauptaufgabe dar. Die andere Aufgabe besteht darin Abbildungen zu finden, die Dialoge flr
bertihrungsempfindliche Bildschirme verbessern.

Fir den Transformationsprozess selbst wurde eine Anwendung in C# geschrieben, die einem Benutzer die Mog-
lichkeit bietet einen Dialog, geschrieben in der Sprache XAML, zu transformieren. Es ist moglich, die meisten
Dialoge bereits in der Anwendung zu betrachten und Anderungen am Transformationsprozess vorzunehmen.
Die Transformation wird dabei tiber einen XSLT-Text-Editor beschrieben und gesteuert. Ein Plug-In-System
ermoglicht wahrend des Betriebs den Einsatz von externen in .NET geschriebenen Algorithmen. Die Anwen-
dung und ihre Architektur werden in Kapitel 7.1 und 6 behandelt.

konkretes konkretes Modellebene
Dial dell Dial dell

N O)g(:q'\(:”_e Abbildungsregeln ' OEZ"\;LE PSM

" XAML spezifisch n Stufe 2

Abbildung 28 Ausschnitt des Transformationsprozesses aus Abbildung 27

Methode zur Umsetzung des Losungsansatzes

Die Transformation von Dialogen wird mit der Hilfe von XSLT, der Extensible Stylesheet Language Transforma-
tionssprache, durchgefiihrt. Dazu werden XAML Elemente ersetzt oder entfernt bzw. neue Elemente hinzuge-
fagt, indem in XSLT geschriebene Abbildungsregeln darauf angewendet werden. Zudem kdénnen auch Eigen-
schaften bzw. Attribute der Elemente in XSLT angepasst werden, um die Darstellung und das Verhalten des
Elements zu beeinflussen. Parameter in XSLT werden auBerdem die Transformation vor jeder Durchfiihrung
beeinflussen kdnnen, so dass Transformationen nicht statisch bleiben, sondern ohne gréReren Aufwand fir die

eigene Bedurfnisse angepasst werden kénnen.

Migration und Anpassung von Dialoganwendungen fiir beriihrungsempfindliche Bildschirme
5 Anpassung der Steuerelemente fiir beriihrungsempfindliche Eingaben

A common mistake that people make
when trying to design something completely foolproof
is to underestimate the ingenuity of complete fools.

Douglas Adams
britischer Schriftsteller

Dieses Kapitel behandelt die Abbildung von Steuerelementen fiir die Nutzung auf beriihrungsempfindlichen
Bildschirmen. Zuerst werden die Eigenschaften von Steuerelementen fiir die beriihrungsempfindliche Eingabe
in den Kapitel 5.2 und 5.3 analysiert. Darauf folgt eine Analyse der am meisten benutzten Steuerelemente wie
Druckschalter, Kontrollkastchen, Textfelder, Baumansichten und Listenfelder in den Kapiteln 5.4 bis 5.7. Fiir
diese Steuerelemente werden zudem eigene Ersatzelemente vorgestellt, die eine bessere Touchbedienung
ermoglichen sollen.

5.1 Einfithrung

Ein Entwickler, der eine Anwendung beriihrungssensitiv auslegen oder sie dafiir optimieren soll, wird sich die
Frage stellen, wie seine Dialoge und deren Elemente gestaltet werden missen, um einfach mit den Fingern
bedient werden zu konnen. Neben den GroRenanpassungen, Abstanden und Interaktionskonzepten wie Ges-
ten, kdnnte zudem die Frage aufkommen, ob fiir die eingesetzten Steuerelemente Giberhaupt eine verbesserte
Version fir die beriihrungsempfindliche Eingabe vorhanden ist. Daher werden im Folgenden in dieser Hinsicht
verbesserte Steuerelemente vorgeschlagen. Jedoch sind die folgenden Empfehlungen fiir den beriihrungsemp-
findlichen Betrieb von Steuerelementen nur eine Auswahl von mehreren. Mit dieser Auswahl wird eine bei-
spielhafte Umsetzung demonstriert. Einige der vorgeschlagenen Steuerelemente sollen zudem im Rahmen
einer Studie (siehe Kapitel 8) untersucht werden.

5.2 Steuerelementgrofien

Die Flache einzelner Steuerelemente hat einen entscheidenden Einfluss auf die Bedienbarkeit. Je groRer die
Trefferflache ist, desto einfacher ist die Bedienung des Elements. Dies wird von verschiedenen Quellen besta-
tigt (siehe [Sears, et al., 1991], Touch in [Microsoft], [Parhi, et al., 2006], [Kwon, et al., 2009] und [Rozlog,
2009]). Die in Abbildung 29 unten dargestellten Schaltflichen verdeutlichen die Unterschiede zwischen ver-
schiedenen FlachengroRen. Empfehlungen aus den verschiedenen Quellen nennen eine minimale Seitenlange
zwischen 10 und 20 Millimeter (38 und 75 Pixel bei 96 PPI). In der Studie aus Kapitel 8 wurde die Auswirkung
verschiedener GréRen innerhalb eines Dialogs untersucht.

Abbildung 29 Verschiedene GroRen von Schaltern: 5, 7, 10, 15 und 20 Millimeter Seitenldnge. Die GroRe hat einen Einfluss auf die Be-
dienung mit den Fingern.

Anpassung der Steuerelemente fiir beriihrungsempfindliche Eingaben

5.3 Steuerelementabstinde

Wie die GroRRe von Steuerelementen tragt ein Abstand zwischen Steuerelementen zur besseren Bedienbarkeit
bei. Bei nahe beieinanderliegenden Steuerelementen besteht die Gefahr, dass der Benutzer ungewollt ein an-
deres Element aktiviert. Der Abstand soll mindestens 5 Pixel betragen [Microsoft]. Liegen die Steuerelemente
zu weit auseinander besteht jedoch die Gefahr, dass der Benutzer diese nicht mehr als zusammengehorig er-
achtet und Bedienfehler auftreten (z.B. bei Optionsfeldern oder Kontrollkastchen).

Weiterhin kénnen zu groRe Abstinde zu einem aufgeblahten Dialog fiihren. Besonders bei vielen Steuerele-
menten innerhalb eines Dialoges fuhrt dies zu einem hohen Platzverbrauch auf dem Bildschirm. Dies wiederum
hat zur Folge, dass der Benutzer grofRere Strecken mit dem Finger zuriicklegen muss. Daher wurden verschie-
dene Abstdnde von Steuerelementen in der Studie aus Kapitel 8 untersucht.

5.4 Kontrollkistchen

Anwendungsentwickler nutzen gerne Kontrollkdstchen und Optionsfelder zur Konfiguration von Einstellungen.
Die GroRe und Ausrichtung dieser Elemente kann jedoch den Bedienkomfort auf beriihrungsempfindlichen
Bildschirmen schmalern, wenn diese Elemente zu nahe beieinander liegen. Zudem lasst sich der aktuelle Zu-
stand (an, aus) nicht erkennen, wenn der Finger das Steuerelement liberdeckt. Daher sollten Kontrollkadstchen
und Optionsfelder so gestaltet werden, dass sie leicht zu treffen, jedoch nicht unbeabsichtigt aktiviert werden
kdnnen. Fiir den Einsatz auf beriihrungsempfindlichen Bildschirmen bietet sich daher ein Ersatzelement an, das
diese Aufgaben erfiillt. Abbildung 30 zeigt Ersatzelemente fiir ein Kontrollkadstchen, die sich aufgrund ihrer
GroRe und Zustandsanzeige gut fir die Fingerbedienung eignen kénnen.

Beschriftung

on B Beschriftung
"] .

ON{(J==a0FF — an Beschriftung

Abbildung 30 Mogliche Ersatzelemente von Kontrollkdstchen. Links: Alte GUI-Elemente aus [Plaisant, et al., 1992]. Rechts: Beispielhafte
Umsetzung mit WPF als Widgets. Die Bedienung von Kontrollkdstchen wurde in der Studie aus Kapitel 8 untersucht.

5.5 Numerische Steuerelemente

Die beriihrungsempfindliche Eingabe mit den Fingern ist nur sehr bedingt geeignet fiir die Eingabe von Text-
oder Zahlenwerten, denn dazu wird offensichtlich eine Tastatur benétigt. Mit Windows kommen zwar Bedien-
werkzeuge wie virtuelle Tastatur oder Schriftenerkennung automatisch zum Einsatz, trotzdem erfordert diese
Art der Bedienung zusatzliche Handgriffe (das Tastatursymbol) und Einarbeitungszeit. Besonders Felder fir die
Eingabe von Zahlen kénnen einfach durch Steuerelemente ersetzt werden, die eine Anderung durch Klicken,
Ziehen oder Schieben ermdglichen. Schiebregler erlauben diese Art von Bewegungen mit den Fingern durchzu-
flihren, ohne dass eine Texterkennung notwendig ware. Allerdings besitzen Schiebregler immer eine obere und
untere Grenze, so dass nicht jede beliebige Zahl vom Benutzer eingeben werden kann. Der Entwickler muss
dafiir sorgen, dass der Schiebregler zumindest die am meisten verwendeten Werte ansteuern kann. Die restli-
chen, selten verwendeten Werte kdnnen dann direkt im Zahlenfeld Gber Tastatur oder Schrifterkennung einge-
geben werden. Aus diesen Griinden wurde das folgende Zahlenelement entwickelt, welches aus einem Einga-
befeld und einem Schiebregler besteht. Der Schiebregler kann durch Anklicken des Feldes dargestellt werden.
Der Benutzer hat in diesem Moment die Wahl, ob er den Schiebregler bedient oder eine Tastatur darstellen
I3sst.

Migration und Anpassung von Dialoganwendungen fiir beriihrungsempfindliche Bildschirme

Abbildung 31 Beispielhafte Erweiterung eines Zahlenfeldes mit einem Schiebregler, der beim Antippen des Feldes aufspringt. Das Tasta-
tursymbol wird von Windows automatisch eingeblendet.

Des Weiteren sollen auch die sogenannten Drehfelder (Siehe Tabelle 17) ersetzt werden. Drehfelder ermdgli-
chen durch das Anklicken von Auf- und Abschaltern, den Wert zu erhdhen oder zu verringern. Diese Art von
Zahleneingabe ist durch die geringe GroRRe der daneben platzierten Druckschalter jedoch schwer mit den Fin-
gern zu bedienen. Zudem muss fiir jede Anderung des Wertes der Auf- oder Abschalter prizise angetippt wer-
den. Denn ein Antippen und Halten funktioniert standardmaRig nicht, sondern das Drehfeld muss mit einem
RepeatButton-Element (siehe MSDN) selbst hergestellt werden. AuRerdem sind groRere Werte mit den Fingern
nicht bequem zu erreichen, da entweder oft der Schalter angetippt werden muss oder man lange auf die ge-
wiinschte Zahl beim Halten warten muss. Daher soll auch dieses Steuerelement fiir die Bedienung mit den
Fingern angepasst werden.

1.00 |#™
0.00 [

Abbildung 32 Drehfelder mit gr6Beren Schaltflichen kénnen einfacher mit dem Finger bedient werden

Fiir ein Drehfeld wurde dazu eine groRere Variante gewahlt, bei der die Schalter einfacher zu treffen sind (siehe
Abbildung 32). Zudem wurde ein virtuelles Tastenfeld entwickelt, das die Eingabe einer Zahl Giber ein Druck-
schalter erlaubt. Insbesondere Zahlen mit Nachkommastellen sollen so besser eingegeben werden kdnnen.
Beide Varianten wurden in der Studie in Kapitel 8 untersucht.

Abbildung 33 Ein Zahlenfeld fiir die prazise Eingabe von Kommazahlen, das sogenannte numerische Tastenfeld. Die Schaltfliche ,Def”
setzt den Wert im Textfeld auf die urspriingliche Eingabe zuriick. ,,Clear” belegt die Eingabe mit dem Wert 0. ,X“ schlieBt die Eingabe
ab. Die Eingabe wird abgebrochen, indem der Bereich auBerhalb des Tastenfeldes beriihrt wird.

Anpassung der Steuerelemente fir beriihrungsempfindliche Eingaben

5.6 Baumansichten

Baumansichten oder Hierarchien sind ein beliebtes Mittel in Dialogen, um Werte zu gliedern. Ein bekanntes
Beispiel ist die Dateiordneransicht im Offnen- und Speichern-Dialog. Fiir die Nutzung mit dem Fingern besitzt
das Element der Baumansicht jedoch mehrere Unzuldnglichkeiten. Als erstes ist die Flache der einzelnen Ele-
mente vertikal haufig zu gering, um mit Fingern getroffen werden zu kénnen. Zudem besitzen diese Elemente
haufig kleine Symbole in Form eines Plus- oder Minuszeichens, welche die Moglichkeit bieten die untergeord-
neten Werte ein- oder auszublenden. Als Losung kénnten Baumansichten einfach vergroRert dargestellt wer-
den, jedoch kann es dann leicht passieren, dass durch die Untergliederung der seitliche Platz nicht ausreicht.
Untergeordnete Werte werden dadurch nicht mehr vollstandig angezeigt, d.h. durch den Rand abgeschnitten.
Der Benutzer muss deshalb zusatzlich seitlich scrollen, um die abgeschnittenen Texte lesen zu kdnnen.

Fir Elemente, wie Baumansichten, kann daher der folgende Ersatz angewendet werden. Dazu stellt das Steue-
relement in einer einfachen Liste immer nur die untergeordneten Werte des aktuell ausgewdhlten Wertes dar.
Zum Beispiel werden in dem Steuerelement zuerst alle Ordner des Laufwerks C aufgelistet. Tippt der Benutzer
einen angezeigten Ordner an, dann werden dessen Unterordner dargestellt. Damit der Benutzer jederzeit in
eine Gbergeordnete Ebene wechseln kann, wird eine Brotkrumennavigation zusatzlich benotigt. Diese Bauman-
sicht mit Brotkrumennavigation wurde in der durchgefiihrten Studie (Kapitel 8) eingesetzt und dabei deren
Bedienbarkeit Gberprift.

Windows (C:) » |Programme | b

Windows Defender

Windows Journal

Windows Mail

Windows Media Player

Windows NT

Windows Photo Viewer

Windows Portable Devices

Windows Sidebar

m

Windows XP Mode

Abbildung 34 Eine illustrierte, flache Baumansicht mit Brotkrumennavigation erleichtert die Fingerbedienung

5.7 Listenfelder

Listenfelder oder Listenansichten (fiir den Unterschied siehe Tabelle 17) werden genutzt, eine Menge von Wer-
ten gleichzeitig darzustellen. AuRerdem erméglichen sie die Auswahl von mehreren Werten, indem die Werte
markiert werden. Die Listenfelder stehen somit im Gegensatz zu Dropdown-Listenfeldern, die nur ein Element,
namlich das ausgewahlte, standig darstellen kénnen.

m Migration und Anpassung von Dialoganwendungen fiir beriihrungsempfindliche Bildschirme

Fir die Fingerbedienung sind Listenfelder, genauso wie die Baumansichten, nur dann gut geeignet, sofern die
Flache der einzelnen Werte grol genug ist. Allerdings gilt auch hier: Je groRRer die angezeigten Werte werden,
desto weniger Werte kénnen im sichtbaren Bereich angezeigt werden. Besonders bei kleinen Listenfeldern
wird so schnell erreicht, dass nur ein paar wenige Werte angezeigt werden kénnen und die restlichen dadurch
nur Uber einen ausgiebigen Bildlauf (oder neudeutsch Scrollen) erreicht werden. Allerdings kann der Bildlauf
mit Gesten durchgefiihrt werden (siehe weiter unten). Die Nutzung von zusétzlichen Bildlaufleisten ist dadurch
nicht notwendig, denn diese wiirden den bereits knappen Platz weiter verringern. Als Lésung kann entweder
ein verniinftiger Bereich fiir die GroRe der Werte gefunden werden (abhéngig von der ListengréRe) oder die
Liste kann dynamisch vom Benutzer verkleinert und vergroBert werden. Letzteres bietet sich immer dann an,
wenn der Dialog selbst in seiner GroRe verandert werden kann.

Ein weiterer Losungsansatz — der hier nur der Vollstéandigkeit genannt werden soll — sind Listenansichten, die
ihre Werte auf eine spezielle Art und Weise darstellen und somit mehr Platz gewinnen. Sogenannte Trommel-
listen besitzen standig einen ausgewdhlten Wert, der in der Mitte der Liste dargestellt wird. Es wird angenom-
men, dass Werte, die sich weiter weg befinden fiir den Benutzer weniger interessant sind. Solche Werte wer-
den daher in Richtung der oberen und unteren Rander kleiner dargestellt. Der dadurch erzeugte visuelle Effekt
ahnelt einer Trommel auf deren langlichen Seite die Werte aufgedruckt sind.

July

August
September

Abbildung 35 Ein Trommellistenelement fiir das Android Betriebssystem.
Die Werte oben und unten scheinen nach hinten gezogen zu werden.

Ein wichtiger Aspekt bei Listenansichten ist der Bildlauf. Wie bereits erwdhnt, kdnnen Gesten einfach benutzt
werden, um Bildlaufleisten zu vermeiden und das Mausrad zu simulieren. Allerdings sind Gesten wie Tasten-
kiirzel oftmals nur mit Vorwissen zu verwenden und kénnen ohne Ubung frustrierend sein, wenn sie von der
Anwendung nicht, wie vom Benutzer gewollt, erkannt werden. Aus dem Bereich der natiirlichen Benutzer-
schnittstellen stammen die sogenannten kinetischen Gesten (Kinetik: Anderung der Bewegung). Sie werden
bereits in Listenfeldern fiir Smartphones eingesetzt. Durch die Geschwindigkeit der Fingerbewegung innerhalb
einer Liste werden die Werte entsprechend langsamer oder schneller geblattert. Dieser Vorgang dhnelt dem
Drehen der oben vorgestellten Trommelliste. Das Scrollen der Liste mit den Fingern simuliert eine physikalische
Beschleunigung sowie Reibung. Der Bildlauf einer Liste wird durch die wiederholte Einwirkung des Fingers zum
Beschleunigen gebracht. Ohne weitere Einwirkung kommt der Bildlauf nach einer kurzen Verzégerung durch
die Simulation von Reibung zum Stehen.

In Kioskanwendungen wie Bahnschaltern wird gewdéhnlich auf Gesten verzichtet, da die eingesetzte Technolo-
gie — es sind meistens akustische Bildschirmoberflachen (siehe Seite 20) — dies nicht erlaubt. Stattdessen wird
zu jeder Liste eine Reihe von Navigationsflachen angeboten. Die Art und Anzahl von moglichen Schaltern kann
sich je nach Aufgabengebiet unterscheiden. Beispielsweise ist es sinnlos eine seitenweise Navigation zu erlau-
ben, wenn die Werte nur eine Seite beanspruchen. Die Abbildung 36 zeigt eine Liste mit seitlich angeordneter
Navigation, die sogenannte Navigationsleiste. Die mittleren Schalter (®) ermdglichen zum vorherigen bzw.
nachsten Element zu springen. Die Schalter mit dem Symbol @ setzen den Auswahlbalken entweder um meh-

Anpassung der Steuerelemente fiir beriihrungsempfindliche Eingaben

rere Elemente oder eine Seite weiter bzw. zuriick. An das Ende bzw. den Anfang der Liste gelangt man mit den
Schaltern®. Die Navigationsleiste wurde in der durchgefiihrten Studie (Kapitel 8) eingesetzt und untersucht.

Juni 2011]
Juli 2011
September 2011
Oktober 2011
November 2011
Dezember 2011
Januar 2012

) s T B M |
T ———

@ ® ©

[

@ ©® o

Abbildung 36 Ein Listenfeld mit seitlicher Navigationsleiste, wie man es aus diversen Kioskanwendungen kennt

Zuletzt bieten Listenfelder die Moglichkeit, mehrere Werte gleichzeitig auszuwahlen. Dies wird normalerweise
durch das Halten der Steuerungstaste und Anklicken mit der Maus erreicht. Leider ist jedoch die Mehrfachaus-
wabhl bei einer reinen Fingerbedienung so nicht moglich. Stattdessen besteht eine Losung darin, jedem Wert ein
Kontrollkdstchen anzufiigen, so dass der Benutzer einen Wert markieren kann, indem er das Kontrollkdstchen
antippt. Natlrlich muss auch das Kontrollkdstchen entsprechend fingerfreundlich angepasst werden.

Marz 2011 :
"] April 2011

| Mai 2011

[]Juni 2011

[]Juli 2011

| September 2011
[¥| Oktober 2011 _E

1 F

m|

Al A .4

Abbildung 37 Beispielhafte Erweiterung einer Liste fiir die Mehrfachauswahl mit Kontrollkdastchen

Migration und Anpassung von Dialoganwendungen fiir beriihrungsempfindliche Bildschirme

6 Architektur

Jede neue Situation erfordert eine neue Architektur.

Jean Nouvel

franzosischer Architekt

In dem vorangegangenen Kapitel 4 wurde bereits die Methode fiir die Umsetzung fir den Losungsansatz be-
schrieben. Die in Kapitel 5 vorgestellten Steuerelemente ersetzen durch die besprochene Methode andere
Elemente in einem Transformationsprozess. Im aktuellen Kapitel soll daher eine grundlegende Architektur fiir
die zu entwickelnden Transformationsanwendung aus Kapitel 7 vorgestellt werden. Dazu wird zuerst das ver-
wendete Architekturmuster MVC beschrieben (Kapitel 6.1), um daraufhin die einzelnen Komponenten Model,
View und Controller (Kapitel 6.2, 6.3 und 6.46.3) sowie ihr Zusammenspiel zu erldutern.

6.1 Ubersicht

Die hier vorgestellte Architektur wurde nach dem Model View Controller Paradigma (MVC, [Krasner, et al.,
1988]) entwickelt. Sie besteht daher aus drei Teilen, denen verschiedene Komponenten zugeordnet sind. Ab-
bildung 38 illustriert die Aufteilung der Komponenten in den verschiedenen Bereichen von MVC. Im Folgenden
werden die einzelnen Komponenten des MVC Musters beschrieben.

View
Hauptanwendung
Dialogeditor
Dialogvorschau
Parametereditor

Model Controller

Projektdaten Transformation
XAML Dialogsprache XSLT Prozessor
XSL Transformations- Plug-In-Verwaltung

vorschrift

Abbildung 38 Die Komponenten aufgeteilt nach dem MVC Muster

6.2 Model

Das Modell enthalt die darzustellenden Daten fiir die Anwendung. Diese werden in einer Projektklasse verwal-
tet, wie sie in Abbildung 39 zu sehen ist. Zu den wichtigsten Daten darin gehdren die Dialogbeschreibungsspra-
che XAML und die Transformationsvorschrift XSL. Diese Daten enthalten den Quelltext fiir den zu transformie-
renden Dialog sowie den Quelltext fiir die Transformation selbst. Im Projekt sind beide durch einen Verweis auf
eine externe Datei gegeben, um einen Export und Import in und aus einer Entwicklungsumgebung (z.B. Visual

Studio) zu ermoglichen.

Architektur

Der Dialogquelltext besteht, wie bereits erwahnt, in dieser Umsetzung aus der XAML Syntax. Der Benutzer
bearbeitet dabei den XAML Quelltext und sieht eine Vorschau des Dialogs. Fir die Vorschau muss der Quelltext
in ein Klassenmodell, d.h. in eine ausfiihrbare Form, umgewandelt werden. Dies geschieht innerhalb der Kom-
ponente XAMLEditor im Abschnitt 6.3 (,,View”). Fiir das Modell besteht der Dialog daher aus einem Quelltext
und einer Klassenstruktur, die synchron zu halten sind.

Weiterhin enthalt ein Projekt zusatzliche Daten fiir Verwaltungszwecke. Darunter fallen der Projektname, eine
Beschreibung und eine Projektversion. Diese Daten dienen in erster Linie zur ldentifizierung eines Projekts (fur
den Benutzer) und Vermeidung von Fehlern (z.B. durch das Laden von nicht unterstiitzen Versionen).

Die Transformation soll durch Parameter (oder auch Eigenschaften) beeinflusst werden kénnen. Diese werden
fir Plug-Ins (PluginProperties) und die XSL Transformation (Xs/tProperties) separat verwaltet. Dadurch ist ein
Austausch des XSLT Quelltexts zusammen mit den dafiir definierten Parametern einfacher méglich, als wenn
diese unter den Plug-In Parametern verstreut liegen wirden.

»

Project
Class

Eigenschaften

i

Description : string

' IsModified : bool

2 Name: string

= PluginProperties : List<XsltProperty>
' SourceModelFilePath : string

= TargetModelFilePath : string

ZF TransformationFilePath : string

' Version : decimal

' XsltProperties : List<XsltProperty>

* Methoden

= XsltProperty

5

XsltProperty
Class

= Eigenschaften
' Name : string
= i string
2 Value : string
* Methoden

Abbildung 39 Klassendiagramm der Komponente Model

6.3 View

Die Ansicht definiert die Oberflache der spater umzusetzenden Anwendung. Der Benutzer soll in der Lage sein
eine Dialogbeschreibungssprache (hier XAML) in einen Editor zu laden und bearbeiten zu kdnnen. Weiterhin
soll der Benutzer die Transformation durch eine weitere Sprache, der ,,Extensible Stylesheet Language Trans-
formations” (kurz XSLT), zur Laufzeit steuern kdnnen. Dies geschieht durch den Einsatz von Texteditoren. Fir
die Dialogdarstellung soll zudem eine grafische Vorschau auf den Dialog moglich sein. Abbildung 40 verdeut-
licht die Komponente View und die darin zu realisierenden Klassen. Im Folgenden werden diese Klassen naher

beschrieben.

Migration und Anpassung von Dialoganwendungen fiir beriihrungsempfindliche Bildschirme

MainWindow A
Class

= Eigenschaften
- Project : Project
b 4 transformationEngine : TransformationEngine
e UserOptions : Options

* Methoden

TransformEdit
2 TransformEditor ! S XAMLEditor

TransformEditor
Class

XAMLEditor £
Class

= Felder P TextEditor\ TextEditor ¥ | 2 Texttditor = Felder
Class ~ 1
¥ Editor : TextEditor ¥ Designer : DesignSurface

¥ PluginParametersEditor : ListBox ¥ Editor : TextEditor

¥ XSLTParameterEditor : ListBox =l Ereignisse
DesignSurface v 2 DesignSurface ¥ OnError : OnErrorHandler
Class. < * Geschachtelte Typen

Abbildung 40 Klassendiagramm der View Komponente

MainWindow

Das Hauptfenster ist die zentrale Benutzerschnittstelle fiir den Benutzer. Darin kénnen Projekte, Dialoge und
Transformationsbeschreibungen geladen, bearbeiten und die Transformation durchgefiihrt werden, um die
Ergebnisse weiterzuverwenden. Aulerdem kann ein Benutzer ein neues Transformationsprojekt erstellen. Das
Projekt enthélt, wie bereits besprochen, alle notwendigen Daten fir eine Transformation. Projekte kénnen
daher vom Benutzer gespeichert und wieder nach dem Programmstart geladen werden. Das Hauptfenster stellt
dafiir entsprechende Interaktionsmoglichkeiten zur Verfiigung (d.h. ein Meni und Werkzeugleiste).

TransformEditor

Der Transformationseditor stellt die Oberflache fiir die Bearbeitung (TextEditor) der Transformationssprache
XSLT sowie der Beeinflussung der Transformation zur Verfiigung. Der Benutzer soll XSLT bequem betrachten
und verdndern kdnnen (Syntaxhervorhebung). Weiterhin stellt der Transformationseditor zur Beeinflussung
der Transformation Parametereditoren zur Verfligung. Darin kdnnen Parameter fiir XSLT und Plug-Ins hinzuge-
flgt und bearbeitet werden.

XAMLEditor

Der XAMLEditor stellt die Oberflache fiir die Bearbeitung (TextEditor) sowie grafischen Vorschau (De-
signSurface) der Dialogbeschreibungssprache zur Verfligung. Der Benutzer soll XAML bequem bearbeiten kon-
nen (Syntaxhervorhebung) und die Anderung zudem auch grafisch, d.h. in einer Art von Dialogvorschau, darge-
stellt bekommen. Die Vorschau wird durch eine Transformation des XAML Quelltextes in die Klassenstruktur
von WPF ermoglicht. WPF stellt dazu bereits eine entsprechende Losung (die Klasse XAMLReader) zur Verfii-
gung.

6.4 Controller

Der Controller enthalt die zentrale Komponente fiir die zu entwickelnde Anwendung: die Transformationsengi-
ne (oder auch Transformationseinheit). Diese Klasse soll alle notwendigen Methoden und Eigenschaften ent-

Architektur

halten, um eine Transformation durchfiihren zu kénnen. Zu den wichtigsten Eigenschaften zdhlen die Dialogbe-

schreibungssprache XAML und die Transformationssprache XSLT.

e
TransformationEngine

~

(>

Class

=l Eigenschaften

= Input : Stream

“f' OnError : OnErrorHandler

g Output : Stream

= PluginArguments : List<Parameter>

= StyleSheet : Stream

- XslExtensionObjectArguments : List<Paramete...
- o XsltArguments : List<Parameter>

* Methoden
*l Geschachtelte Typen
. /
' Controller
PluginController A
Class
* Methoden J

PluginInt
Interface

<<

o Plugin

/
Plugin

-

Class

= Eigenschaften

S Name: string

= Ppublisher string
' Version : string

(>

ja Plugin

by Plugins (PIuginCollection v

Class
L'P Collection<Plugin>

Abbildung 41 Klassendiagramm der Controller Komponente

Ein weiterer wichtiger Bestandteil der Controller Komponente soll darin bestehen, Plug-Ins zu laden und zu

verwalten, um diese wahrend der Transformation auszufiihren. Die Abbildung 42 stellt das Zusammenspiel

zwischen Controller und Plug-In als ein Komponentendiagramm dar. Jedes Plug-In kann durch die Implementie-

rung zweier Schnittstellen Pluginint und Processingintf an den Controller ,,andocken”. Dadurch wird der Klasse
TransformationEngine erméglicht auf die Plug-In Implementierung (Pluginimpl und Processingimpl) zuzugrei-

fen.

<<source>> <<source>>
XAML XSLT
<<use>> <<use>>

2]

Controller

TransformationEngine

=

PluginController }— Plugin

Pluginint

o] |

2l
Plug-In
<<interface>> <<interface>>
Pluginint Processingintf
“~ Pluginimpl Processingimpl

Abbildung 42 Komponentendiagramm mit Controller und Plug-In Komponenten. Plug-Ins ,,docken” an den Co

m Migration und Anpassung von Dialoganwendungen fiir beriihrungsempfindliche Bildschirme

TransformationEngine

Die Klasse TransformationEngine bietet Methoden und Eigenschaften, um eine Transformation eines XAML
Quelltexts durchzufiihren. Sie fuhrt dazu den XSLT Prozessor auf den XAML und XSLT Daten aus und liefert das
Ergebnis zurlick. Weiterhin ladt die Klasse alle verfiigbaren Plug-Ins, die durch die Klasse PluginController ge-
funden wurden und fiihrt sie nacheinander aus. Eine detaillierte Beschreibung der Umsetzung der Klasse Trans-
formationEngine wird in Kapitel 7.4 durchgefihrt.

PluginController

Die Verwaltung der Plug-Ins wird durch die Klasse PluginController ibernommen, welche sie Plug-Ins in den
Speicher ladt und nach Gebrauch wieder entlddt. Die Plug-In Moduldateien kénnen so auch zur Laufzeit ersetzt
werden, wahrend die umzusetzende Anwendung lauft. Dazu wird das ,,Managed Extension Framework" (kurz
MAF) eingesetzt. Eine detaillierte Beschreibung der Funktionalitdt von MAF und wie dieses verwendet wird,
werden im Kapitel 7.6 geliefert.

Plugin

Die Klasse Plugin verwaltet ein geladenes Plug-In. Sie enthdlt den Name sowie den Hersteller und die Version
des Plug-Ins. Ferner enthélt die Klasse Plugin einen Verweis (Eigenschaft Plugin, siehe Abbildung 42) zur Imple-
mentierung des geladenen Plug-Ins in Form der Schnittstellendefinitionen Pluginintf (Abbildung 43). Das Plug-
In implementiert diese Schnittstellen und zusétzlich Processingintf, deren Methoden von der Klasse Transfor-
mationEngine zu Kommunikationszwecke aufgerufen werden. Die Schnittstellen sind damit aufgeteilt nach
Plug-In-Verwaltung (Pluginintf) und Methoden fir den Transformationsprozess (Processingintf).

.] _—_ ' .)
PluginIntf 3 ProcessingIntf ES
Interface Interface
= Methoden S0 processinglntf = Methoden

W GetFeatures() : Feature W GetProcessingMessages() : List
W GetName() : string W InitProperties() : void

W GetNameSpace() : string W PostProcessing() : bool

W GetProcessing() : Processingintf W PreProcessing() : bool

pS v o J
Feature R
Enum

None

Preprocessing
Postprocessing
Engineering

Abbildung 43 Klassendiagramm fiir ein Plug-In. Die Schnittstellen sind aufgeteilt nach Plug-In-Verwaltung (Pluginintf) und Methoden fiir
den Transformationsprozess (Processingintf).

Umsetzung

7 Umsetzung

Every wall is a door.

Ralph Waldo Emerson

amerikanischer Philosoph

Ein Ziel der Diplomarbeit war es, einen Prototyp zu erstellen, der das Konzept der Transformation von in XAML
geschriebenen Quelltexten umsetzt. Die folgenden Kapitel befassen sich mit dieser Anwendung, die den Na-
men LATTE tragt. LATTE ist ein Apronym und steht fur die englische Bezeichnung Legacy Application Transfor-
mation to Touch Environments. Die Anwendung stellt die Oberflache und die Grundlagen fir die Durchfiihrung
des Transformationsprozesses zur Verfligung. Als Grundlage fir die Anwendung dient die im vorangegangenen
Kapitel 6 beschrieben Architektur.

In Kapitel 7.1 wird die Umsetzung von LATTE beschrieben. Das nachste Kapitel 7.2 beginnt mit der Einflihrung
in die Oberflache. Darauf folgend wird im Kapitel 7.3 die umgesetzten Komponenten von LATTE erldutert, um
dann den Transformationsprozess, dessen Umsetzung und Anwendung in den Kapiteln 7.4 und 7.5 zu beschrei-
ben. Die Umsetzung und Nutzung des Plug-In Systems wird in Kapitel 7.6 erldutert. Das letzte Kapitel 7.7 disku-
tiert die Vor- und Nachteile des Transformationsprozesses.

7.1 Einfithrung

Die Hauptbestandteile von LATTE sind die Oberflache, die Transformationseinheit und das Plug-In System. Die
gesamte Anwendung wurde mit dem .NET Framework 4.0 entwickelt. Die Oberflache von LATTE nutzt das
Framework Windows Presentation Foundation (WPF) und das darin zu Grunde liegende ModelView ViewModel
Architekturmuster (MVVM, MSDN Magazin Februar 2009 [Microsoft, 2009]). Es handelt sich dabei um ein er-
weitertes MVC Muster, welches den Controller insoweit ersetzt, dass die Datenbindungen bereits im View
(d.h. in XAML Notation) umgesetzt werden. Trotzdem ist es auch weiterhin unumganglich einen Controller in
der Form einer Programmlogik zu implementieren, da Daten zur Laufzeit erzeugt werden missen (Transforma-
tion). LATTE nutzt daher beide Ansdtze MVC (siehe Kapitel 6) und MVVM, um die Dialogtransformation fiir den
Benutzer zur Verflgung zu stellen. Mit der Hilfe des Plug-In Systems werden auRerdem Plug-Ins eingebunden
und ausgefiihrt. Abbildung 44 illustriert den schematischen Aufbau der Anwendung LATTE sowie die darin
verwendeten Komponenten.

LATTE Plug-Ins (Kapitel 7.5.2, 7.6)
——— | Plug-In System (7.6,

LATTE Anwendung (7.2, 7.3)

Transformationsengine
(XSLT, Plug-In, Annotatio-
Windows Presentation Framework (2.4.4 - XAML) nen) (7.4, 7.5)

.NET Framework 4

Abbildung 44 Ubersicht iiber die verwendeten und umgesetzten Bestandteile von LATTE

m Migration und Anpassung von Dialoganwendungen fir beriihrungsempfindliche Bildschirme

7.2 Die Benutzeroberflache

View
Hauptanwendung
Dialogeditor

Dialogvorschau
Parametereditor

Model Controller

Rrojekidaten Transformation
XAML Dialogsprache
XSL Transformations-

vorschrift Plug-In-Verwaltung

XSLT Prozessor

Abbildung 45 Die View Komponente aus Kapitel 6 bildet die Schnittstelle zum Benutzer

In der Benutzeroberflache von LATTE wurde die View Komponente der Architektur (Kapitel 6) umgesetzt. LATTE
besteht aus einer Oberflache (Abbildung 46), die beinahe frei gestalten werden kann. D.h. die Fensterauftei-
lung ist beliebig und wird neben anderen Benutzereinstellungen fiir spatere Sitzungen gespeichert. Transfor-
mationsprojekte, welche die XAML Dialog- und XSLT-Dateien verwalten, konnen erstellt, gespeichert und gela-
den werden. Die Dialoge werden in einen Editor geladen, der die Schlisselworte im Text farbig darstellt. Au-
RBerdem kénnen die Dialoge grafisch dargestellt werden, um eine Vorschau zu erhalten und die Anpassung zu
unterstitzen. Der Transformationsprozess wird innerhalb eines XML Texteditors in der Sprache XSLT gesteuert.
Auch dieser Editor kann den Text in unterschiedlichen Farben darstellen. Fir die Transformation unterstitzt
LATTE externe ausfiihrbare Steckmodule, sogenannte Cartridges oder Plug-Ins. Sie werden kurz vor der Trans-
formation geladen und dann entsprechend ausgefiihrt. Meldungen, die wahrend dieser Transformation auftre-
ten, kdnnen in einer Liste betrachtet werden. Sie stellt die Meldungen mit verschiedenen Kriterien dar wie Typ
(z.B. Warnung, Fehler) und Ursprung der Nachricht (d.h. XSLT oder Plug-In).

03 LaTTE [E=EER
File Project View Options

Hp @ ddly O, oDy

/schemas microsoft. /y 201
/ ‘microsoft com/winfi/ 2006 xami”

006"

ttp-//schemas microsoft com/winfi/2006/xaml/
? ATTEE _

Title="DefaultWindowXAML"
Width="300"
Herght="200"

Click Me
<l meIgnorable="ann"> >

>
<Grid>
<Button Content="Click Me" Width="50" Height="25"/>
</Grid>
</Window=>

< m »

Designer | Editor | Designer | Editor

<?xml version="1.0" encoding="utf-8" 7>
<xsl:stylesheet version="1.0" H
xmlns-xsl="http://swww w3 org/1999/XSL/Transform"

xmlns'msxsl="um:schemas-microsoft-comxsIt"

xmlns="http:/s ‘winfx/2006/xaml/y i
xmlins-xamins="http-//sct /winfx/2006/xaml/presentation”
wmineT ATTE="T ATTE"I B

Editor | XSLT Parameters | Plugin Parameters |

Results -1
| @ 0Errors] (. 0 Warnings| @ 4Messages| |Autoscroll| =

Lline Description Source Path

@1 Transformation started... TransformationEngine

@2 Output path is empty. Using C:\Users\Christian\AppDatalLocal\Temp\LATTETemp_kyk03dog\ TransformationEngine H
H Output path is empty, Using C:\Users\ChristianiAppDatalLocal TemphLATTETemp_2fpceaiS\ TransformationEngine

Abbildung 46 Die LATTE Anwendung zur Transformation von Dialogen

Umsetzung [ICEINNNN

XSLT Editor

Der XSLT Editor ermdglicht die Eingabe und Korrektur von XSLT Befehlen fiir den Transformationsprozess. Er
befindet sich in einem Register unterhalb der Dialogeditoren und neben den weiteren Editoren fir XSLT und
Plug-In Parameter.

<7eml version="1.0" encoding="utf-8" 7> o

<xsl:stylesheet version="1.0" xmlnsxsl="http:/'www.w3.org/1999 XS] Transform"
xmlns:msxsl="urn schemas-microsoft-com-xslht” exclude-result-prefives="msxsl"l>
<xsl:output method="xml" indent="yes">

<xsl:template match="@* | node()">
<xslcopy>
=xsl:apply-templates select="@" | node()">
<l eome
4 L3

Editor | XSLT Parameters | Plugin Parameters |

Abbildung 47 Der XSLT Editor fiir die Eingabe von Abbildungsvorschriften

XSLT Parameter Editor

Der Parameter Editor fiir XSLT (Abbildung 48) erméglicht die Erstellung und Anderung von Parametern sowie
deren Werte, die im XSLT Quelltext verwendet werden sollen. Der Editor befindet sich in einem Register unter-
halb der Dialogeditoren und neben dem XSLT Editor.

Ein Parameter besteht aus einem Namen, einen Wert und einen Namensraum. Neue Parameter kdnnen hinzu-
gefligt werden, indem das Symbol ® angeklickt wird. Ein oder mehrere ausgewahlte Parameter kbnnen durch
das Schaltersymbol = entfernt werden. Um die Parameterwerte zu bearbeiten, kann einfach ein Listeneintrag
ausgewihlt werden. Dadurch werden die Werte in Textfeldern zum Andern angezeigt.

Weitere Informationen zu XSLT Parametern kdnnen im Abschnitt XSLT Prozessor des Kapitels 7.5.1 nachgelesen
werden.

& -

MNarne Value MNameSpace

Parameter 1

Editor | XSLT Parameters | Plugin Parameters

Abbildung 48 XSLT Parameter Editor fiir die Steuerung der Abbildungsvorschriften

Plug-Ins Parameter Editor

Mit der Hilfe des Parameter Editors konnen Parameter fiir Plug-Ins festgelegt werden. Auf diese Art kénnen
Plug-Ins abhangig vom aktuellen Projekt zusatzlich zur XSLT gesteuert werden (z.B. um Plug-Ins generell zu
deaktivieren). Der Editor befindet sich in einem Register unterhalb der Dialogeditoren und neben dem XSLT
Parameter Editor. Parameter bestehen aus einem Namen, Wert und Namensraum. Letzterer bestimmt welches
Plug-In den Parameter zu sehen bekommt. Der Parameternamensraum muss dazu mit dem Namen des Plug-Ins

Migration und Anpassung von Dialoganwendungen fir beriihrungsempfindliche Bildschirme

Ubereinstimmen. Ein leerer Namensraum ermdoglicht allen Plug-Ins den Parameter zu nutzen.
Die Bedienung gestaltet sich gleich der Benutzung des XSLT Parameter Editors (Abbildung 48).

-1

MNarne Value NameSpace

Active true WPFPlugin

| Editor | HKSLT Parameters | Plugin Parameters

Abbildung 49 Parameterliste fiir Plug-Ins fiir die Steuerung von Plug-Ins

Meldungsfenster

Das Meldungsfenster (Abbildung 50) befindet sich am unteren Rand der LATTE Anwendung. Es enthélt Nach-
richten, Warnungen und Fehler aus allen Teilen der Anwendung. Dazu zdhlen die Dialogeditoren, der XSLT
Editor und die Plug-Ins. Meldungen besitzen mehrere Kategorien, die in der Liste angezeigt werden. Dazu zdh-

len:

e der Typ der Meldung: Nachricht, Warnung und Fehler als Kreissymbole in blau, gelb und rot.
e die Nummer der Meldung (#), damit die Reihenfolge des Auftretens ermittelt werden kann
e eine Zeilennummer, wo der Fehler auftrat (nur fur Dialog- und XSLT Editoren)

e eine Beschreibung (engl. description) der Meldung, die von der Quelle geliefert wird

e die Quelle (engl. source) der Meldung, welche den Autor identifiziert (z.B. ein Plug-In)

e ein Ordnerpfad fiir Nachrichten, die eine Datei betreffen.

Weiterhin kann mit der Werkzeugleiste die Darstellung des Listenfelds beeinflusst werden. Dazu kénnen die
verschiedenen Arten von Meldungen ein- und ausgeblendet und die neuste Meldung immer (Schalter Auto-
scroll) ins Blickfeld gertickt werden. Veraltete Meldungen werden nicht automatisch entfernt, so dass das Beta-
tigen des Schalters = alle Meldungen 16scht. AuRerdem kdnnen ein oder mehrere ausgewahlte Meldungen mit
der Tastenkombination Strg + C in die Zwischenablage kopiert werden.

Results -0
|. lIZIErru::nr's|) 1Wamings| o 3Messages| |15.utc:5croll| -

Line Description Source Path
['-_'] 1 Project has been opened successfully. MewProject. LATTE.xml Witemph1'
[;I 2 Transformation started.. TransformationEngine
(#1) Mode not found WPF XAML Transformation Plugin

Abbildung 50 Fehler, Warnungen und Nachrichten wéhrend der Transformation werden im Meldungsfenster dargestelit

Umsetzung

7.3 Ubersicht iiber die Projektkomponenten

Die Anwendung LATTE wurde mit Visual Studio 2010 C# .NET 4 und der WPF entwickelt. Das Hauptprojekt be-
steht aus der LATTE Anwendung und elf Assemblyprojekten (Abbildung 51), welche die Oberflache und die
Transformationspipeline stellen. Die Aufteilung richtet sich nach der Aufgabe der jeweiligen Komponente (LAT-
TE fir die Oberflache, LATTEE fir den Transformationsprozess usw.). Alle Komponenten der Hauptanwendung
befinden sich auf der sogenannten Host Side, wahrend die Komponenten der Plug-Ins sich auf der ,,Addin Side,,
befinden. Die fiir die Plug-In-Kommunikation benétigten Komponenten befinden sich unter Addin. Mit
LATTEC_WPF im Ordner Addins ist bereits ein Plug-In als Beispiel implementiert worden.

; Projeltmappe "LATTE"
% AddIn Side
4 7 Addins
. L= LATTEC_WPF
. [LATTE_AddIn.Adapters
[LATTE_AddIn View
4 7% Host Side
a4 % Addn
» E LATTE_Host.Adapter
- 2 LATTE Host.View
. [LATTE
> ,E LATTE Controls
» ,E LATTE Resources
» [Zf] LATTEE
E LATTEE_Annotations
> =¥ LocalAdorners
> ,E LocalConverters
» ,E Contracts
" E DebugTeools
. [LATTE_SharedPlugin

]

=

=

=

=

Abbildung 51 Die LATTE Projekte aufgeteilt in Hauptanwendung und Plug-In (AddIns)

LATTE
Die Anwendung wird durch das Projekt LATTE mit Visual Studio zu Binadrdateien libersetzt. Die Ubersetzung
erzeugt die notwendige Ordnerstruktur und alle Assemblydateien. Zu den Ordnern zdhlen die Verzeichnisse

AddlIns, AddInSideAdapters, AddInViews, Contracts und HostSideAdapters fiir die Plug-In-Verwaltung. Die An-
wendung LATTE kann durch die ausfiihrbare Datei LATTE.exe gestartet werden.

LATTE_Controls

Die Assembly LATTE_Controls beinhaltet alle Steuerelemente, die in LATTE verwendet werden. Dazu zdhlen die
XAML, XSLT und Parameter Editoren. Zudem enthalten sie die Vorlagendateien fiir ein neues Projekt mit LATTE.

LATTE_Resources

LATTE_Resources stellt einige gemeinsam benutzte Ressourcen wie XAML Styles zur Verfligung. Zudem enthalt
es einige neu erstellte Elemente fiir die Touchbedienung (siehe Kapitel 7.5.2).

Migration und Anpassung von Dialoganwendungen fiir beriihrungsempfindliche Bildschirme

LATTEE

Die Transformationspipeline (siehe Kapitel 7.5.1) wurde in der Assembly LATTEE implementiert. Das Apronym
steht fiir Legacy App Transformation to Touch Environments Engine. LATTEE stellt die folgenden Klassen zur

Verfugung:

Name der Klasse Quelltextdatei Beschreibung

PluginData PluginController.cs PluginData enthalt die Instanz eines geladenen Plug-Ins
sowie weitere Information wie Name, Version oder Her-
steller.

PluginController PluginController.cs PluginController ist zustandig fur das Laden und Beenden
von Plug-Ins.

TransformationEngine TransformationEngine.cs Dije Klasse TransformationEngine stellt Methoden bereit,

um Eingaben mit der Hilfe der Transformationspipeline
zu verarbeiten.

LATTEE_XsltExtensionObject TransformationEngine.cs | ATTEE_XsltExtensionObject stellt Methoden zur Verfii-
gung, die in XSLT als Erweiterung genutzt werden kon-
nen.

Tabelle 2 Die Klassen von LATTEE

LATTEE_Annotations

Die Assembly LATTEE_Annotations enthalt die Implementierung der Annotationen. Diese werden genutzt, um
in XAML Steuerelemente mit zusatzlichen Informationen auszustatten (siehe Kapitel 7.5.3). Projekte, die Anno-
tationen erweitern mussen auf LATTEE_Annotations verweisen.

LocalAdordner

Diese Assembly stellt dekorative Elemente zur Verfligung. Diese Elemente erweitern Steuerelemente in XAML
in ihrem Aussehen (z.B. zur Anzeige eines Dreiecks, um der Sortierrichtung im Listenkopf anzuzeigen).

LocalConverters

XAML erfordert fiir die Konvertierung von Datenwerten sogenannte Converter, die eine bestimmte Schnittstel-
le implementieren (IValueConverter oder IMultiValueConverter). In dieser Assembly werden einige Con-
verter-Klassen implementiert, die fir LATTE notwendig sind.

LATTE_Host.Adapter und LATTE_Host.View < LATTE_AddIn.Adapters und LATTE_AddIn.View

Diese Projekte sind die Kommunikationsschnittstelle fiir die Anwendung LATTE und Plug-Ins. Die Klassen in den
Adaptorprojekten (LATTE_Host.Adapter und LATTE_AddIn.Adapters) ibernehmen das Marshalling (De-
/Serialisieren von Daten) von Methodenaufrufen zwischen der Anwendung und den Plug-Ins. Im Gegensatz
dazu stellen die View-Projekte die eigentlichen Klassen bereit, um die Methodenaufrufe zu ermdglichen. Sie
konvertieren intern alle Methodenparameter in Streamobjekte und wieder zurtick.

Weitere Informationen zum Plug-In System finden sich in Kapitel 7.6.

Umsetzung

Contracts

Die Contracts Assembly definiert Schnittstellen, welche die Kommunikation zwischen LATTE und den Plug-Ins
vereinbaren. Die Adaptorenklassen von LATTE und Plug-Ins missen diese Schnittstellen implementieren.

DebugTools und LATTE_SharedPlugin

Die Assembly DebugTools implementiert Methoden zur Erfassung von Ausnahmefehlern und ihres Ursprungs.
In LATTE_SharedPlugin wurden Klassen und Methoden implementiert, die von LATTE und Plug-Ins gemeinsam
genutzt werden. Dazu zdhlen Klassen fiir Plug-In Parameter und Ubertragung von Meldungen (Fehler, Warnun-
gen). Zudem stehen mit der Klasse XxAMLUtility Methoden zur Verfligung, um XAML Dialoge aus XML oder
Texten (in C# String) zu laden.

7.4 Umsetzung der Transformationsengine

Controller

Transformation
XSLT Prozessor

Plug-In-Verwaltung

Abbildung 52 Die Klasse TransformationEngine von LATTE ist der zentrale Bestandteil der Controller Komponente aus der MVC
Architektur

Die Transformationsengine oder auch Transformationseinheit genannt, ist ein Teil von LATTE, der fiir die Uber-
fihrung der Dialoge mit Hilfe von XSLT und den Plug-Ins zustandig ist. Die Einheit wird durch die Klasse Trans-
formationEngine (siehe Abbildung 53) implementiert und bildet die Grundlage fiir den gesamten Transformati-
onsprozess. Die Durchfihrung des Prozesses findet anhand der Transformationspipeline (siehe Abbildung 55
und Kapitel 7.5.1) statt, welche die Abfolge und Ausfiihrung der XSLT und Plug-In Prozessoren bestimmen.

Nach der Initialisierung der Klasseninstanz kann die Transformation durch die Methode Transform() gestartet
werden. Der Ablauf folgt der Transformationspipeline. Wie in Abbildung 84 des Sequenzdiagrammes im An-
hang abgebildet, werden zuerst alle Plug-Ins geladen und auf ihre Unterstltzung von Pra- und Postprozessor
gepriift. Zudem erhalten die Plug-Ins alle vom Benutzer eingegeben Parameter aus dem Plug-Ins Parameter
Editor (vgl. Abbildung 48). Zusatzlich wird flr die Plug-Ins ein Speicherort fiir temporare Dateien als Eigenschaft
WorkingPath der Parameterliste hinzugefiigt.

Nach dieser Vorbereitung folgt die erste Phase der Transformationspipeline. Alle Plug-Ins mit Praprozessor
werden ausgefiihrt und erhalten den Dialogquelltext aus der Klasseneigenschaft Input als XmIDocument. Das
erste Plug-In bearbeitet das XML Dokument und liefert es an die Transformationseinheit (d.h. Transform())
zuriick, worauf diese es dem nédchsten Praprozessor tUibergibt. Dieser Vorgang wiederholt sich bis entweder kein
Plug-In mit Praprozessor mehr vorhanden ist oder bis ein Plug-In einen Ausnahmefehler erzeugt.

Migration und Anpassung von Dialoganwendungen fiir beriihrungsempfindliche Bildschirme

Nachdem die erste Phase erfolgreich abgeschlossen wurde, kann die Transformation mit XSL stattfinden. Dazu
werden fir die Transformation notwendigen XSLT Argumente aus dem XSLT Parameter Editor geladen und
zusammen mit dem XSLT Quelltext (Eigenschaft StyleSheet) an den XSLT Transformator Gbergeben. Die XSLT
Komponente prift den Quelltext und fihrt ihn anschlieBend mit der Ausgabe des letzten Praprozessors aus.
Der letztgenannte Schritt entfallt, wenn der XSLT Quelltext Fehler enthalt. Dadurch wird jedoch auch der Trans-
formationsvorgang abgebrochen und dem Benutzer der Fehler gemeldet.

Mit dem dritten und letzten Schritt der Transformationseinheit wird die XML Ausgabe der XSLT Transformation
an die Postprozessoren uUbergeben. Die letzte Phase |duft analog zur ersten ab, indem alle Plug-Ins mit einem
Postprozessor hintereinander ausgefiihrt werden. Die Ausgabe des letzten Plug-Ins wird im Klassenattribut
Output gespeichert und stellt das Ergebnis der Transformation dar.

>

| TransformationEngine
Class

=

= Eigenschaften

Input

CnErrer

Cutput
Plugin&rguments
StyleSheet
WorkingPath
AsltArguments

= Methoden

% Transform

Ly Ly gy iy i Ly Ly

% TransformaticnEngine

Geschachtelte Typen

Abbildung 53 Das Klassendiagramm der Klasse TransformationEngine. Jede Transformation erhdlt eine Vielzahl von Eingaben.

7.5 Der Transformationsprozess

Model Controller

Projektdaten Transformation
XAML Dialogsprache

XSL Transformations-
vorschrift

XSLT Prozessor
Plug-In-Verwaltung

Abbildung 54 Die Model und Controller Komponenten von LATTE bilden den Transformationsprozess

Umsetzung

Der Transformationsprozess ist der Kern der Anwendung LATTE. Ein Prozess ist eine Folge von Schritten, um
einem bestimmten Zweck zu dienen (Ubersetzt aus IEEE Std 610.12 (1990)). In diesem Fall werden die XAML
Dialogbeschreibungssprache eingelesen, die Plug-Ins geladen, die XSLT Befehle kompiliert und aufgetretene
Fehler und andere Meldungen zuriick an den Benutzer gemeldet. Am Ende des Prozesses entsteht ein trans-
formierter Dialog.

Die folgenden Kapitel behandeln diesen Prozess und geben Beispiele, wie die sogenannte Transformationspipe-
line genutzt werden kann, um Dialoge zu transformieren.

7.5.1 Die Transformationspipeline

Die Transformationspipeline ist der Teil der LATTE Architektur, der die Transformation ausfiihrt. Die Pipeline ist,
wie in Abbildung 55 unten zu sehen, in fiinf Abschnitte (Eingabe, Praprozessor, XSLT Prozessor, PostProzessor
und Ausgabe) eingeteilt, die durch Leitungen (blaue Pfeile) verbunden sind. Der Transformationsprozess be-
ginnt bei der Eingabe eines Dialogs in XAML und endet mit der Ausgabe eines angepassten Dialogs in XAML. Die
eigentliche Durchfiihrung der Transformation findet dabei in den Zwischenschritten Praprozessor, XSLT Prozes-
sor und Postprozessor statt. Die XAML Daten werden in jedem Schritt bearbeitet und zum nachsten Plug-In
oder Prozessor weitergereicht, wo weitere Anderungen durchgefiihrt werden kénnen.

Alle Plug-Ins werden vor dem Transformationsprozess geladen und bei der Registrierung gefragt, welche Pro-
zessortypen (Pra- und/oder Postprozessor) sie implementieren. So ist es moglich, dass ein Plug-In keinen Pra-
prozessor implementiert, sondern nur einen Postprozessor. Dies ist beispielsweise bei der Erstellung eines
neuen Plug-Ins hilfreich, wenn ein Postprozessor getestet werden soll und dieser nicht durch den Préprozessor
beeinflusst werden darf.

Jedes Plug-In bearbeitet die XAML Struktur und liefert sie im Erfolgsfall an das nachste Plug-In in der Reihe. Dies
geschieht solange bis entweder kein Plug-In mehr vorhanden ist, ein Plug-In den Prozess als gescheitert signali-
siert oder eine Ausnahme (Exception) geworfen wird. Der Vorgang wiederholt sich nach der XSL Transformati-
on schlieBlich im Postprozessor und fiihrt zu einem transformierten XAML Dialog als Ausgabe.

Eingabe Praprozessor XSLT Prozessor Postprozessor Ausgabe
m
£
S XAML [> Plug-In 1 Plug-In 1
e Eingabe
S
£ N]\/l
[
'g Plug-In 2 Plug-In 2
g XSLT
s _\I ‘/_ Eingab
“:,9, ingabe V
o Plug-In x Plug-In x
|_
)
2 \/ \/
*q:)’ XAML
> |:> Ausgabe

<€

Richtung der Transformation (horizontale EinbahnstralRe)

>

Abbildung 55 Die Transformationspipeline, wie sie umgesetzt wurde

Migration und Anpassung von Dialoganwendungen fiir beriihrungsempfindliche Bildschirme

Die XSL Transformation im Mittelpunkt ist die einzige Moglichkeit die Transformation ohne einen externen
Compiler (hier C#) durchfiihren zu kénnen. Die Transformation wird dabei mit Hilfe einer Skriptsprache, der
XSLT (Extensible Stylesheet Language Transformation), realisiert. LATTE stellt daflir einen Editor zur Verfiigung.
Bei jeder Transformation wird der XSLT Quelltext validiert und auf den aktuellen Dialog ausgefuhrt.

Die Umsetzung und Schnittstellen wurden recht einfach gehalten. Jedoch steigerte das eingesetzte und zwin-
gend notwendige Managed Add-in Framework (MAF, siehe Kapitel 7.6) die Komplexitat. Daher wird MAF in den
folgenden vier Hauptabschnitten

Prozessstart
Praprozessor,
Postprozessor und
XSLT Prozessor

A w N

ausgeblendet und nur die Implementierung ohne MAF erldutert.

Prozessstart

Der Benutzer startet den Transformationsprozess, indem sie/er F6 driickt oder im Projektment bzw. in der
Werkzeugleiste das © Symbol klickt. Wie in der Abbildung 84 zu sehen wird dadurch in der Klasse Transforma-
tionEngine die Methode Transform() aufgerufen. Neben einigen Verwaltungsaufgaben veranlasst diese Metho-
de alle Plug-Ins aus dem Addins Ordner zu laden, indem sie die Methode LoadPlugins() der statischen Klasse
PluginController aufruft. Die Kommunikation zwischen Anwendung und Plug-Ins lduft dann Gber die Processin-
gAddInView Klasse (Quelltext 6), die von dem jeweiligen Plug-In implementiert werden muss.

Nachdem alle Plug-Ins schlieBlich geladen wurden, kann der eigentliche Transformationsprozess mit dem ers-
ten Schritt, dem Praprozessor, beginnen.

Praprozessor

Der erste Schritt bei der Transformation des Dialogs dient der Vorverarbeitung des XAML Dokuments, bevor
Uberhaupt eine XSL Transformation angewendet wird. Dies kann zur Vereinfachung der XAML Struktur gesche-
hen, indem z.B. Datenbindungen (WPF Bindings) durch ihre eigentlichen Werte ersetzt werden. Es ist dadurch
moglich, diese auch dann mit XSL auszuwerten, wenn die Bindung ihren Wert erst durch eine Programmlogik
erhalt.

Ein Plug-In wird als Praprozessor genutzt, wenn es lber seine Schnittstellenmethode ProcessingAddIn-
View::GetFeatures() das Bit Feature.Preprocessing im Riickgabewert setzt. Daraufhin wird die durch das Plug-In
implementierte Methode ProcessingAddInView::PreProcessing() aufgerufen, welche den Algorithmus enthalt.
Wie im Quelltext 6 an der Methodendeklaration zu sehen ist, empfangt die Methode zwei Parameter. Der erste
Parameter document enthalt die eigentliche XAML Struktur als XmIDocument Klasse, die durch das .NET
Framework (im Namensraum System.Xml) definiert wird. Die Instanz enthalt die XAML Struktur so wie sie im
Editor angezeigt wird oder von einem vorangegangenen Plug-In bearbeitet wurde.

Der zweite Parameter nameSpace der Methode PreProcessing() enthalt weitere Namensraume, die verwendet
werden konnen. Derzeit wird dort nur ein Namensraum mit dem Bezeichner xamlins (fiir xaml namespace)
definiert, der den voreingestellten Namensraum (engl. default namespace, gewohnlich ist dies in XAML
“http.//schemas.microsoft.com/winfx/2006/xaml/presentation”) kopiert. Dies ist eine Besonderheit von XPath,
die zu beachten ist, da in XAML alle XML Knoten ohne einen Namensraum (<Button>, <ListBox> usw.) diesen
voreingestellten Namensraum implizit zugewiesen bekommen (z.B.
<“http://schemas.microsoft.com/winfx/2006/xaml/presentation“:Button>). Eine Suche mit XPath oder Giber die
Methoden XmIDocument::SelectSingleNode() und SelectNodes() ohne vorangestellten Namensraum (z.B.

Umsetzung

//Button) nutzt jedoch immer den leeren Namensraum (,,“). Dieser stimmt aber bei XAML nicht mit dem vor-
eingestellten Gberein, so dass die Suche keine Knoten liefert. Stattdessen muss der Namensraum xamins bei
jedem Zugriff mit der XmIDocument Klasse angegeben werden. Der Quelltext 4 zeigt wie ein Aufruf auszusehen
hat.

public override bool PreProcessing(ref System.Xml.XmlDocument document, XmlNamespaceManager nameSpace)

{

XmlNode node = document.SelectSingleNode("//xamlns:Button", nameSpace);

Quelltext 4 Zugriff auf XML Knoten mit der Klasse XmIDocument

Neben den Parametern der PreProcessing() Methode kann der Algorithmus auch durch den Benutzer beein-
flusst werden. Dazu werden dem Plug-In Eigenschaften als textuelle Werte liber die Methode InitProperties()
Gibergeben (Abbildung 84). Eine Eigenschaft wird durch ihren Namen und einen Wert vom Typ String im LATTE
Plug-In Parameter Editor (siehe Abbildung 49) definiert. Sie gelten generell fiir alle Plug-Ins, so dass eine Na-
mensraumnotation notwendig wird, um keine Kollision mit neuen Plug-Ins zu erzeugen. Einer Eigenschaft wird
dazu ein Namensraum zugewiesen, wie z.B. ,, WPFPlugin“. Diese Notation wird von der Anwendung aufgezwun-
gen, d.h. jedes Plug-In bekommt Uber InitProperties() nur diejenigen Eigenschaftswerte zu sehen, deren Na-
mensraum mit dem von PluginAddinView::GetNameSpace() zurlickgelieferten Namensraum (Quelltext 6)
Gbereinstimmt. Eine Ausnahme bilden leere Namensrdume, die alle Plug-Ins zu sehen bekommen.

Wahrend der Ausfiihrung des Prozessors kann es notwendig sein, den aktuellen Status oder die Fehlermeldun-
gen des Plug-Ins an den Benutzer zuriickzumelden. Dazu fragt die Anwendung das Plug-In Giber die Methode
GetProcessingMessages() nach einer Liste von Meldungen, die im Meldungsfenster von LATTE (siehe Abbil-
dung 50) angezeigt werden. Die Meldungen kénnen Fehler, Warnungen oder Nachrichten sein und werden
durch den Klassentyp ProcessingMessage noch weiter beschrieben. So kénnen Zeilennummer und Spaltenposi-
tion sowie eine Bezeichner Nummer (ID) und auch ein Meldungstext zuriickgegeben werden. Dies kann die
Fehlerkorrektur erheblich erleichtern. Da GetProcessingMessages() erst nach PreProcessing() aufgerufen wird,
mussen die Meldungen zundchst in einem Variablenfeld zwischengespeichert werden. Dieses Feld kann dann
von GetProcessingMessages() zurlickgegeben werden. Der Quelltext 5 zeigt, wie Meldungen erzeugt werden
kénnen.

//innerhalb der Plug-In Klasse
private readonly ProcessingMessagelist messagelList = new ProcessingMessagelist();

public override bool PreProcessing(ref System.Xml.XmlDocument document, XmlNamespaceManager namespace)

{

messagelList.Clear(); //alte Nachrichten 1dschen

//.. arbeiten

messagelList.Add(new ProcessingMessage(MessageType.Warning,

null/*no line*/, null/*no column*/, 1/*message ID*/, “Node not found”));
¥
public override ProcessingMessagelist GetProcessingMessages()
{
return messagelist;

¥

Quelltext 5 Eine Plug-In Meldung erzeugen

Es muss beachtet werden, dass eine erzeugte Fehlermeldung den Transformationsprozess nicht abbricht. Ein
Prozessor kann die Pipeline nur auf zwei Arten vorzeitig beenden:

1. Die Prozessormethode (PreProcessing(), PostProcessing()) wird mit dem booleschen Wert FALSE be-
endet.
2. Der Parameter document, der die XAML Struktur enthalt, wurde auf null gesetzt.

Es ist daher moglich, dass ein Plug-In einen Fehler in der Verarbeitung erzeugt, dies meldet, aber die XAML
Struktur unverandert Iasst, so dass die Transformation fortgesetzt werden kann.

Migration und Anpassung von Dialoganwendungen fiir beriihrungsempfindliche Bildschirme

Eine weitere Fehlerquelle sind unbehandelte Ausnahmen. Wird eine Ausnahme erzeugt und nicht im Plug-In
abgefangen, wertet LATTE dies als Totalversagen und schlief8t das Plug-In fiir den aktuellen Transformations-
prozess aus. Das Plug-In wird dann erst wieder in einer neuen Transformation beriicksichtigt.

Postprozessor

Ein Postprozessor wird analog zum Praprozessor ausgefiihrt. Die Unterschiede in der Implementierung sind
daher marginal:

1. Der Methodenname lautet PostProcessing() ist jedoch sonst gleich (Quelltext 6) in ihrer Spezifikation.
2. Die Ausfiihrung liegt nach der Transformation durch den XSLT Prozessor (Abbildung 55 und Abbildung
84)

Im Gegensatz zum Praprozessor empfangt der Postprozessor eine bereits veranderte XAML Struktur. Sie wurde
durch vorangegangene Praprozessoren oder durch die XSL Transformation verandert und bendtigt moglicher-
weise nun noch eine letzte Anpassung. Zum Beispiel konnen Datenbindungen, die im Praprozessor durch Werte
ersetzt wurden, wiederhergestellt oder das Layout noch angepasst werden.

Wahrend der Préaprozessor am Anfang der Transformation steht und daher nur durch Plug-In-Eigenschaften
beeinflusst werden kann, ist der Postprozessor das letzte Glied in der Transformationspipeline. D.h. Praprozes-
soren sowie die XSL Transformation konnen dem XAML Dokument Informationen beifiigen, die den Postpro-
zessor lenken. Diese Informationen werden als sogenannten Annotationen in die XAML Struktur eingebettet.
Ein Postprozessor kann daher entweder durch vorangegangene Prozessoren oder durch die Eingabe von XSLT
Befehlen flexibel gesteuert werden. Annotationen werden im Kapitel 7.5.3 besprochen.

public abstract class ProcessingAddInView

{
public abstract void InitProperties(PropertylList properties);
public bool PreProcessing(ref XmlDocument document, XmlNamespaceManager namespace);
public bool PostProcessing(ref XmlDocument document, XmlNamespaceManager namespace);
public ProcessingMessagelist GetProcessingMessages();
}
public abstract class PluginAddInView
{
public String GetName();
public String GetNameSpace();
public Feature GetFeatures();
public ProcessingAddInView GetProcessing();
}

Quelltext 6 Plug-In Kommunikationsvertrag. Diese Methoden miissen implementiert werden.

XSLT Prozessor

Der XSLT Prozessor ist die zentrale Steuereinheit der Transformationspipeline (Abbildung 55). Er wird durch die
Programmiersprache XSLT [W3C, 1999] implementiert, die in LATTE mit Hilfe des XSLT Editors eingegeben wer-
den kann (vgl. Abbildung 47). Die XSLT Sprache transformiert mit der Hilfe von Regeln den XML Baum in eine
neue Struktur, die nicht unbedingt wieder XML sein muss. In dieser Arbeit wird der Transformationsprozess
jedoch auf die Ausgabe von XAML beschrankt. D.h. XSLT wird benutzt, um die XAML Struktur zu transformieren
und den Postprozessor zu steuern.

Der XSLT Quelltext wird in der Methode TransformationEngine::Transform() eingelesen, validiert und schlie3-
lich auf die XAML Struktur angewendet. Die eigentliche Transformation mit XSLT findet dabei Gber die .NET
Klasse XslCompiledTransform statt, deren Methode Transform() die Umwandlung ausfihrt. Fehler, die dabei

Umsetzung

auftreten, oder Meldungen, die im Quelltext (iber <xsl:message> eingebettet sind, werden im Meldungsfenster
von LATTE (vgl. Abbildung 50) angezeigt. Fehler flihren dabei immer zum Abbruch der gesamten Transformati-
on.

Die XSLT Sprache als eine vollstandige Turingmaschine (siehe [Unidex Inc., 2001]) bietet eine Vielzahl von XML
Befehlen, die (iber den Namensraum xsl aufgerufen werden konnen. Die Méglichkeiten kdnnen sogar mit ex-
ternen Bibliotheken erweitert werden. Diese stellen dann eigene Elemente und Funktionen zur Nutzung zur
Verfligung. Die Transformation ist daher nicht auf die mit XSLT gelieferten Elemente und Funktionen be-
schrankt, sondern kann bei Bedarf erweitert werden. Eine Auswahl der Standardelemente bietet unten Tabelle
3 an, die aus der XSLT Spezifikation [W3C, 1999] erstellt wurde. Dort oder unter [W3Schools, 2011] kdnnen
weitergehende Informationen zu der Vielzahl von Befehlen bezogen werden.

Elementname Beschreibung

xsl:stylesheet Wurzelelement eines XSLT Dokuments

xsl:include/xsl:import Zusétzliche Style-Regeln importieren

xsl:template Definiert eine Regel, die bei einem positiven Mustervergleich angewendet
wird.

xsl:apply-templates Regeln auf den aktuellen Knoten neu anwenden.

xsl:element Erstellt ein XML Knoten im Ausgabedokument.

xsl:attribute Erstellt ein XML Attribut im Ausgabedokument.

xsl:comment Erstellt ein XML Kommentar im Ausgabedokument.

xsl:copy Kopiert den aktuellen Knoten ins Ausgabedokument.

xsl:value-of Ermittelt den Wert eines XML Elements.

xsl:for-each Eine Schleife fur XML Elemente.

xsl:if/xsl:choose Bedingung auf ein XML Element anwenden.

Tabelle 3 Einige XSLT Standardelemente zur Verwendung fiir die Abbildungsvorschrift

Ein XSLT Dokument besteht aus dem Wurzelelement <xsl:stylesheet>, welches alle Regeln enthilt, die bei einer
XML Transformation angewendet werden sollen. Jede Regel wird durch das Element <xsl:template> definiert
und enthélt neben dem zu erkennenden Muster (match Attribut) den Inhalt, der in die Ausgabe geschrieben
werden soll. Dabei kénnen (fast) alle XSL Befehle verwendet werden, um Werte zu verdndern, XML Knoten zu
kopieren und damit die Ausgabe anzupassen.

1 <xsl:stylesheet version="1.0"

2 xmlns:xsl="http://www.w3.0rg/1999/XSL/Transform"

3 xmlns:msxsl="urn:schemas-microsoft-com:xslt"

4

5 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation”

6 xmlns:xamlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation”
7 xmlns:LATTE="LATTE"

8

9 exclude-result-prefixes="msxsl LATTE xamlns">

10 <xsl:namespace-alias stylesheet-prefix="xamlns" result-prefix="#default"/>
11 <!-- Parameter value by LATTE, it is set to xaml namespace -->

12 <xsl:param name="LATTE:xamlns"/>

13

14 <!-- Begin here -->

15 <xsl:output method="xml" indent="yes"/>

16 <xsl:template match="@* | node()">

17 <xsl:copy>

18 <xsl:apply-templates select="@* | node()"/>

19 </xsl:copy>
20 </xsl:template>

21 </xsl:stylesheet>
Quelltext 7 Ein XSLT Dokument. Diese Vorlage wird von LATTE fiir ein neues Projekt erzeugt.

m Migration und Anpassung von Dialoganwendungen fiir beriihrungsempfindliche Bildschirme

Quelltext 7 zeigt eine XSL Transformation, die mit einer Regel (Zeile 16) alle XML Knoten und Attribute unver-
andert ins Ausgabedokument kopiert. Diese Vorlage wird von LATTE fiir neue Projekte automatisch generiert.
Damit kénnen schon sofort alle XML Elemente (iber das XSL Element template (Vorlage) ohne Anderung trans-
formiert werden. Die Zeilen eins bis zwolf werden in Tabelle 4 unten erlautert:

Zeile Bedeutung

1-3 Diese Zeilen definieren die Standardnamensrdume fiir XSLT Elemente sowie Elemente aus der XSLT
Bibliothek von Microsoft. Damit kdnnen zusatzliche Funktionen verwendet werden. Ein Beispiel ist die
Funktion node-set(), die in Quelltext 17 verwendet wird.

5 WPF definiert den voreingestellten Namensraum fiir XAML auf die in Zeile 5 definierte URL. Damit
XSLT Elemente ohne Namensraum in der Ausgabe als XAML Elemente erkannt werden, wird der vor-
eingestellte Namensraum in der Zeile 5 definiert. Der Quelltext 14 zeigt ein Beispiel mit List-
Box.IltemTemplate und DataTemplate dazu. Ohne diese Einstellung wiirden alle Elemente ohne Namens-
raum ein Namensraumattribut (xmlns=““) in der Ausgabe erhalten, was bei ListBox.ltemTemplate als
XAML Eigenschaft einen Fehler in XAML auslost.

6 Bei XPath Abfragen muss dieser Namensraum fiir alle XAML Elemente angegeben werden. Zusatzlich
muss er aber auch fiir XSLT definiert werden. Fiir ein Beispiel siehe dazu Quelltext 10.

7 Der Namensraum LATTE wird definiert, um die Parameter, Elemente und Funktionen von LATTE nut-
zen zu kénnen.

9 In dieser Zeile werden die durch Leerzeichen getrennten Namensrdaume aus dem Ausgabedokument
ausgeschlossen. Normalerweise wiirden sie sonst in der XAML Struktur unnétigerweise auftauchen.

10 Der Befehl namespace-alias ersetzt den Namensraum im Ausgabedokument durch den voreingestell-

ten Namensraum (wie bei XAML (blich). Damit enthalt die neue XAML Struktur keinen Namensraum
xamlns mehr, der nur fir XSLT gebraucht wird.

12 In dieser Zeile wird ein Eingabeparameter fiir die XSLT Transformation definiert. Der Parameter LAT-
TE:xamlns wird von LATTE automatisch zugewiesen und enthalt den Namensraum von XAML.

Tabelle 4 Erkldrung zu den einzelnen Zeilen von Quelltext 7

Im Hauptteil (ab Zeile 15) wird jedes XML Element mit dem im Attribut match definierten Ausdruck durch den
XSLT Prozessor verglichen und bei Gleichheit auf die Vorlage angewendet. Der Ausdruck wird in der Sprache
XPath (siehe [W3C, 1999]) geschrieben, die auch bei der Navigation in XML Dokumenten verwendet wird. Der
Ausdruck bedeutet, dass alle Attribute (@*) sowie der aktuelle XML Knoten (node()) von der Regel genutzt
werden soll. Tabelle 5 listet einige der XPath Funktionen auf. Eine vollstandige Beschreibung kann unter [W3C,
1999] oder [W3Schools, 2011] eingesehen werden.

Funktionsname Beschreibung

last() Liefert die Nummer des letzten Elements zurtick.

count() Liefert die Anzahl der Elemente zurick.

name() / local-name() Liefert den Namen mit oder ohne Namensraum zu-
rick.

node() Liefert den aktuellen Knoten zurick.

Tabelle 5 Einige XPath Standardfunktionen

Oft ist es notwendig, dass XSLT Quelltexte erst wahrend des Transformationsprozesses Werte benutzen sollen,
die beim Schreiben des Codes noch nicht bekannt waren (z.B. um wie viel Prozent der neue Dialog gréRer sein
soll). Dazu bietet XSLT sogenannte Parameter an, die in XSLT wie Variablen verwendet werden kdnnen. LATTE
ermoglicht das Setzen von Parametern iber den XSLT Parameter Editor (siehe Abbildung 48) an. Die dort ein-
gegebenen Werte konnen im XSLT Quelltext geladen und verwendet werden. Der Quelltext 8 unten zeigt, wie
Parameter genutzt werden kdnnen, um in allen XAML Elementen eine Eigenschaft sowie einen Wert zu setzen.
Zu beachten ist, dass Parameternamen mit einem Dollarzeichen ($) beginnen. Sollen Parameter jedoch in XSLT
Attributen verwendet werden, die keinen XPath Ausdruck (name) enthalten, so miissen sie noch zuséatzlich in
geschweiften Klammern (,,{“ und ,}“) eingebettet werden, andernfalls wird ein Fehler vom XSLT Prozessor
erzeugt.

Umsetzung

<xsl:stylesheet version="1.0" xmlns:xsl="http://www.w3.0rg/1999/XSL/Transform"
xmlns:msxsl="urn:schemas-microsoft-com:xslt" exclude-result-prefixes="msxsl">
<xsl:output method="xml" indent="yes"/>
<xsl:param name="AttributeName"/>
<xsl:param name="AttributeValue"/>
<xsl:template match="@* | node()">
<xsl:copy>
<xsl:if test="$AttributeName != ''">
<xsl:attribute name="{$AttributeName}">
<xsl:value-of select="$AttributeValue"/>
</xsl:attribute>
</xsl:if>
<xsl:apply-templates select="@* | node()"/>
</xsl:copy>
</xsl:template>
</xsl:stylesheet>
Quelltext 8 Einige Parameter in XSLT verwendet. xsl:param definiert einen Parameter, der durch SName angewendet wird.

Bei der Programmierung von XSLT ist, wie auch schon beim Praprozessor beschrieben, zu beachten, dass XPath
nur mit XAML genutzt werden kann, wenn der Namensraum xamlns vorangestellt wird. Die Transformations-
engine erzeugt diesen Namensraum in einem XSLT Dokument automatisch, so dass er ohne Umstande genutzt
werden kann (Quelltext 9).

<xsl:template match="xamlns:Button">

</xsl:template>
Quelltext 9 Die Besonderheit des XAML Namensraums machen es erforderlich, in XSLT den Namensraum explizit zu deklarieren

7.5.2 Grundlagen der Transformation

Model

Projektdaten
XAML Dialogsprache
XSL Transformations-

vorschrift

Abbildung 56 Die Modellkomponente bildet die Grundlage fiir die Transformation von Dialogen

Wie bereits erldutert, kann die Transformation entweder Uber eine Programmiersprache in .NET oder mit der
Hilfe von XSLT durchgefiihrt werden. In diesem Kapitel werden beide Ansatze erldutert und Beispiele gezeigt,
wie eine XAML Struktur transformiert werden kann. Eine Transformation besteht dabei aus vier grundlegenden
Aufgaben: Léschen, Kopieren, Einfiigen und Ersetzen. Durch Kombinationen, Bedingungen und Wiederholung
jeder Aufgabe kénnen komplizierte Transformationen entstehen, die helfen sollen Dialoge flir neue Eingabear-
ten anzupassen. Im Folgenden werden daher die Grundlagen der Transformation besprochen und wie diese
umgesetzt werden kénnen. Das darauf folgende Kapitel 7.5.3 geht auf eine Erweiterung der Transformation
ein, die in einem kombinierten Einsatz von XSLT und Plug-In die Kommunikation vereinfacht und standardisiert.

Als Beispiel soll ein Dialog fir die Nutzung auf berihrungsempfindlichen Bildschirmen angepasst werden. Der
Dialog in Abbildung 57 unten ist zwar einfach mit der Maus zu bedienen, doch fiir die Nutzung mit einem Finger
ist er offensichtlich nicht ausgelegt. Dazu sind die Elemente zu klein und liegen zu nahe beieinander. So ist die

Migration und Anpassung von Dialoganwendungen fiir beriihrungsempfindliche Bildschirme

Gefahr groR, dass ein falsches Steuerelement bertihrt wird oder der Benutzer einfach die Maus statt den Fin-
gern benutzt.

p
1 ° Confirmation [‘:' =l &J

The following tasks are left? What do you want to do?

Readme. et
ImportantBusiness.doc
HotHetHotjpg
Dealerxs

De-/Select them all
0 Save selected one
_) Save them all
_) Release them all

Abbildung 57 Anzupassender Dialog (Quelltext 45 siehe im Anhang)

Loschen und Kopieren

Das Kopieren von Elementen ist die am meisten ausgefiihrte Aufgabe bei der Transformation. Viele XML Kno-
ten und Attribute missen mit XSLT manuell kopiert werden. Existiert keine Regel oder wurde kein Befehl zum
Kopieren in XSLT erzeugt, wird das Element nicht ins Ausgabedokument Glbernommen (=Léschen). Dies kann

ein Vorteil sein, wenn man die Transformation z.B. in Schritten durchfiihren will, um die Elemente einzeln an-

zupassen.
1 «<xsl:template match="xamlns:Button">
2 <xsl:copy>
4 <xsl:for-each select=" attribute::*">
5 <xsl:copy/>
6 </xsl:for-each>

7 </xsl:copy>
8 </xsl:template>
Quelltext 10 Knoten mit Attribute in XSLT kopieren

Eine Standardtransformation, die alle XML Knoten und Attribute kopiert, wurde bereits mit dem Quelltext 7
vorgestellt. Soll nur eine bestimmte Art von XML Knoten kopiert werden, kann das Template Element ange-
passt werden. Quelltext 10 zeigt eine Moglichkeit ein XAML Druckschalter zu kopieren. Dabei werden keine
Unterelemente mitkopiert, sondern nur der aktuelle Knoten (Zeile 2) und dessen Attribute (Zeile 4 und 5). Mit
attribute::* (oder auch @*) werden Attribute mit beliebigen Namen im Element ausgewahlt und kopiert. Wie
bereits erwdhnt, miissen XAML Elemente, damit diese erkannt werden, mit dem xamlns Namensraum verse-
hen und die GroRR- und Kleinschreibung beachtet werden.

1 <xsl:template match="xamlns:Window | xamlns:Canvas | xamlns:Button">
2 <xsl:copy>
3 <xsl:for-each select="@*">
4 <xsl:copy/>
5 </xsl:for-each>
6 <xsl:apply-templates select="child::*"/>
7 </xsl:copy>
8 </xsl:template>
Quelltext 11 Kopieren einer gesamten XAML Struktur

Umsetzung

Die Ausgabe genligt jedoch nicht den Anforderungen von XAML, da eine Struktur entsteht, die nur zwei Schal-
ter enthilt, aber kein Gbergeordnetes Fenster. Um die Struktur korrekt abzubilden, ist es daher erforderlich
auch die anderen notwendigen Elemente zu kopieren. Dies wird in Quelltext 11 bewerkstelligt. Darin werden
alle Fenster-, Canvas- und Schalter-Elemente erfasst (Zeile 1), deren Attribute kopiert (Zeile 3-5) sowie die Vor-
lage erneut auf alle Kinderelemente des aktuellen Knotens ausgefiihrt (Zeile 6).

Einfiigen

Auf die vorgestellte Art und Weise ist es sehr aufwandig alle Arten von Knoten zu kopieren. Dazu miisste man
alle Namen der auftretenden Elemente kennen und fir diese fir jeden Dialog neu anpassen. Es ware win-
schenswert auch unbekannte Steuerelemente unbeachtet zu kopieren und dabei neue Elemente in die XAML
Struktur einfligen zu kénnen. Daher wird Quelltext 7 im Folgenden als Grundlage verwendet. D.h. alle folgen-
den Quelltexte setzen die darin enthaltene Vorlage (siehe Quelltext 12) ein, um alle XAML Elemente einschlief3-
lich deren Eigenschaften zu kopieren. Da die neuen Vorlagen vor die Zeile 16 eingefiigt werden, kénnen einige
Elemente speziell behandelt werden, wahrend die restlichen Elemente einfach kopiert werden.

16 <xsl:template match="@* | node()">
17 <xsl:copy>
18 <xsl:apply-templates select="@* | node()"/>
19 </xsl:copy>
20 </xsl:template>
Quelltext 12 XSLT Vorlagen, um alle Attribute und Knoten zu kopieren

Eine mogliche Aufgabe bei der Transformation kann darin bestehen, neue XAML Elemente zu erstellen. Im
Beispieldialog soll dies genutzt werden, um die Liste einfacher mit einem Finger bedienen zu kénnen. Dazu
kann in XAML die sogenannte ItemTemplate Eigenschaft des Listenfelds (das ListBox-Element) gedndert wer-
den. Diese Eigenschaft definiert das Aussehen jedes Eintrags innerhalb des Listenfelds. XML Knoten kdnnen in
XSLT entweder durch <xsl:element > erzeugt werden oder durch die direkt Deklaration der Elemente innerhalb
von XSLT. Daher sind die Beispiele in Quelltext 13 und Quelltext 14 gleichbedeutend. In beiden Fallen wird die
Hohe eines Listeneintrags auf feste 30 Dialogeinheiten gesetzt, so dass die Eintrage besser mit den Fingern zu
treffen sind.

1 <xsl:attribute-set name="ItemTemplate">

2 <xsl:attribute name="Text">{Binding Path=.}</xsl:attribute>
3 <xsl:attribute name="Height">30</xsl:attribute>

4 </xsl:attribute-set>

5

6 <xsl:template match="xamlns:ListBox">

7 <xsl:copy>

8 <xsl:apply-templates select="@*"/>

9 <xsl:element name="ListBox.ItemTemplate" >

10 <xsl:element name="DataTemplate">

11 <xsl:element name="TextBlock" use-attribute-sets="ItemTemplate"/>
12 </xsl:element>

13 </xsl:element>

14 <xsl:apply-templates select="child::*"/>

15 </xsl:copy>
16 </xsl:template>
Quelltext 13 Elemente mit XSLT hinzufiigen

Die Erstellung von Knoten und Attribute in XSLT ist, so wie in Quelltext 13 gezeigt, jedoch sehr aufwandig und
nicht unbedingt einfach zu verstehen oder nachtraglich anzupassen. Mit XSLT ist es daher auch méglich den
bereits vorhandenen XAML Quelltext in die Transformation einzubetten. (siehe Quelltext 14). Der Nachteil ist
jedoch, dass die geschweiften Klammern besonders behandelt werden miissen, da sie von XSLT fir spezielle

Migration und Anpassung von Dialoganwendungen fiir beriihrungsempfindliche Bildschirme

Ausdriicke genutzt werden. In Zeile 6 ist daher die XAML Datenbindung mit doppelten Klammern versehen
worden. In der Ausgabe steht dann natirlich nur jeweils eine geschweifte Klammer.

Bei beiden Quelltexten muss zusatzlich der voreingestellte Namensraum xmins korrekt gesetzt werden. Sonst
bindet XSLT zusatzliche Namensraume in die XML Knoten ein, was bei der angehdngten Eigenschaft <List-
Box.ItemTemplate> einen Fehler im XAML Editor erzeugt, da Eigenschaften in XAML selbst keine XML Attribute
besitzen dirfen. Die von LATTE erzeugte XSLT Vorlage (Quelltext 7) setzt diese Bedingung bereits korrekt um,
so dass nichts angepasst werden muss.

1 <xsl:template match="xamlns:ListBox">

2 <xsl:copy>

3 <xsl:apply-templates select="@*"/>

4 <ListBox.ItemTemplate>

5 <DataTemplate>

6 <TextBlock Text="{{Binding Path=.}}" Height="30" />
7 </DataTemplate>

8 </ListBox.ItemTemplate>

9 <xsl:apply-templates select="child::*"/>

10 </xsl:copy>

11 </xsl:template>
Quelltext 14 Elemente mit XSLT hinzufiigen (2.Teil)

Der so erzeugte Dialogquelltext kann direkt in einer Anwendung verwendet werden. Die Abbildung 58 zeigt den
Dialog mit vergréRerten Eintrigen. Alle anderen Elemente wurden vorerst ohne Anderung tibernommen.

1 | Confirmation [‘:' E éj

The following tasks are left? What do you want to do?

ImportantBusiness.doc s

HotHetHotjpg D

De-/Select them all
@ Save selected one
_) S5ave them all

_) Release them all

Abbildung 58 Dialog mit vergroBerten Listeneintragen

Ersetzen

Oftmals reichen die vorhandenen Steuerelemente nicht aus, um alle Bedirfnisse zu befriedigen. Daher kénnen
Steuerelemente auch vollstandig ersetzt werden. Dies geschieht im Quelltext 15, indem der XML Knoten nicht
mit <xsl:copy> kopiert wird, sondern einfach ein neues Element liber XSLT eingefugt wird (Zeile 7). Die restli-
chen Attribute des alten Steuerelements werden wieder mit <xsl:copy-of > (Zeile 8) lbernommen. Dies ist natdir-
lich nur dann mdglich, wenn das neue Steuerelement diese Eigenschaften zur Verfiigung stellt. Hier wurde
jedoch ein neu eingefiihrtes Element CheckBoxTouchSwitcher verwendet, welches alle Eigenschaften einer XAML
CheckBox unterstiitzt.

Das neue Kontrollkdstchen wird lGber die Assembly LATTE_Resources (siehe auch Seite 71) zur Verfligung ge-
stellt, die nicht nur im transformierten XAML Quelltext bekannt sein muss, sondern auch dem XSLT Prozessor.
Das bedeutet den Namensraum auch im XSLT Quelltext zu definieren (Zeile 3). So definiert, wird der Namens-
raum dann automatisch dem Element im erzeugten XAML Dokument angehdngt (Quelltext 16).

Umsetzung

<xsl:stylesheet version="1.0"

xmlns:touch="clr-namespace:LATTE_Resources;assembly=LATTE_Resources"
>

<xsl:template match="xamlns:CheckBox">
<touch:CheckBoxTouchSwitcher>
<xsl:copy-of select="@*" />
<xsl:apply-templates select="@*|node()"/>
10 </touch:CheckBoxTouchSwitcher>
11 </xsl:template>
Quelltext 15 Transformation eines Kontrollkdstchens

1
2
3
4
5
6
7
8
9

Dies ist jedoch nicht immer vorteilhaft, insbesondere dann, wenn mehrere Steuerelemente in demselben Na-
mensraum im Dokument verteilt liegen. Denn die Deklaration des Namensraums kann auch in einem Uberge-
ordneten Element erfolgen, so dass alle Unterelemente diesen Namensraum verwenden kénnen. In XAML
definiert man Gblicherweise alle benutzten Namensrdume im Wurzelelement, das normalerweise ein
<Window> Element ist. D.h. es ware notwendig ein Attribut als Namensraum dort einzufiigen. Unglicklicher-
weise ist dies in XSLT 1.0 nicht so einfach umzusetzen, da ein Name wie xmlIns:touch von XSLT als qualifizierter
Bezeichner ausgewertet wird und damit nicht ins Ausgabedokument gelangt. Die Lésung kann aber mit exter-
nen Skripten umgesetzt werden. Microsoft stellt dazu bereits eine Bibliothek zur Verfligung. Aber auch andere
Hersteller bieten Skripte dafiir an (siehe [Stewart, et al., 2006] und [Mangano, 2006 S. 631ff.]).

<touch:CheckBoxTouchSwitcher
Name="checkBox4" [..] xmlns:touch="clr-namespace:LATTE_Resources;assembly=LATTE_Resources" />

Quelltext 16 Erzeugtes Steuerelement CheckBoxTouchSwitcher

Die verwendete Losung stammt urspriinglich aus [Georges, 2007] und wurde flr den Quelltext 17 gekiirzt. Sie
wird auf ein Fenster-Element angewendet (Zeile 1) und ruft eine weitere Vorlage auf (Zeile 3-6), die fir die
Erzeugung des Namensraums zustandig ist.

1 <xsl:template match="xamlns:Window">

2 <xsl:copy>

3 <xsl:call-template name="make-namespace-node">

4 <xsl:with-param name="prefix">touch</xsl:with-param>

5 <xsl:with-param name="uri">clr-namespace:LATTE_Resources;assembly=LATTE_Resources</xsl:with-param>
6 </xsl:call-template>

7 <xsl:apply-templates select="@*|node()"/>

8 </xsl:copy>

9 </xsl:template>

10

11 <xsl:template name="make-namespace-node">

12 <xsl:param name="prefix"/>

13 <xsl:param name="uri"/>

14 <xsl:variable name="dummy">

15 <xsl:element name="{ $prefix }:e" namespace="{ $uri }"/>
16 </xsl:variable>

17 <xsl:copy-of select="msxsl:node-set($dummy)/*/namespace::*"/>

18 </xsl:template>
Quelltext 17 Erzeugen eines Namensraum innerhalb eines Fenster-Elements

Die Vorlage definiert neben den Parametern prefix und uri (Zeile 12 und 13) auch eine Variable dummy (Zeile
14), die als Wert einen XML Knoten enthalt. Dessen Name besteht aus dem (ibergebenen Préfix (hier ,,touch”)
und einem beliebig gewahlten Namen (hier ,,e“). Der Namensraum des Elements (Zeile 15) wird schlieRlich
noch auf den Parameter prefix gesetzt, der spater den Namen der Assembly LATTE_Resources zugewiesen
bekommt. Der so erzeugte Dummy-Knoten wird in Zeile 17 verwendet, um dessen Namensraum in den aktuel-

m Migration und Anpassung von Dialoganwendungen fiir beriihrungsempfindliche Bildschirme

len Knoten (hier Window, Zeile 1) einzufligen. Der Skriptbefehl msxsl:node-set in Zeile 17 konvertiert dazu den
Wert der Variable dummy in eine Knotenmenge, die dann mit XPath durchsucht werden kann. Der Umweg ist
notwendig, da in XSLT der Wert der Variable dummy nicht automatisch fir XPath in eine Knotenmenge konver-
tiert wird. Letztendlich werden in der Knotenmenge die Namensrdume (/namespace::*) aller Elemente (/*) in
den aktuelle Knoten des Aufrufers kopiert (Zeile 3 bis 6). Mit dem Aufruf der Vorlage in Zeile 3 kénnen so dem
Fenster-Element beliebige neue Namensrdaume zugewiesen werden.

<Window Title="Confirmation" [..]
xmlns:touch="clr-namespace:LATTE_Resources;assembly=LATTE_Resources">
Quelltext 18 Window-Element mit manuell eingefiigtem Namensraum

Das Ergebnis der Bemiihungen ist ein <Window> Element mit dem vorgegebenen Namensraum (Quelltext 18)
und ein Dialog mit einem verdnderten Kontrollkdstchen (Abbildung 59).

1 | Confirmation l‘:' B |

The following tasks are left? What do you want to do?

Readme txt

ImportantBusiness.doc

Ut gt fn

(M cff) De-/Select them all

@ Save selected one
Save them all
Release them all

Ok | Cancel |

Abbildung 59 Dialog mit ersetztem Kontrollkdstchen

Zuletzt bleibt im Dialog noch die Abstande zwischen den Steuerelemente zu vergroRern. Dies kann in XAML auf
mehrere Arten geschehen:

e Die Hohe und Breite des Steuerelements kann vergroRert werden.
e Ein Rand kann um das Steuerelement gesetzt werden, der es von anderen Elementen raumlich ab-

trennt.

Die Umsetzung hangt sehr von der eingesetzten Layout Technik ab. Wird ein Canvas eingesetzt, also die Steue-
relemente absolut positioniert, miissen alle Elemente abhangig von der GroRe und Position neu ausgerichtet
werden. Dazu existieren bereits umfangreiche Arbeiten, die im Kapitel 2.5.2 Reverse Engineering besprochen
wurden wie z.B. das Auckland Layout Model (siehe Seite 42).

Fir dieses Beispiel wird ein einfacherer Ansatz gewdhlt. Die Steuerelemente wurden dazu im Dialog bereits mit
einem Layout-Panel versehen (siehe Quelltext 45 im Anhang), so dass GréRendnderungen automatisch umge-
setzt werden.

In XAML werden Rander durch die Eigenschaft Margin definiert. Margin wird von XAML als eine Folge von Pi-
xelabstdanden interpretiert. Vier durch Komma getrennte Zahlen geben den Abstand des Steuerelements in alle
vier Richtungen an (z.B. 5, 5, 5, 5“). Weiterhin kann auch nur eine Zahl fir alle vier Abstdnde verwendet wer-
den. Da die Interpretation dieses Formats in XSLT schwer umzusetzen ist, wird stattdessen die Hoheneigen-
schaft der Elemente angepasst. Dazu sollen alle Steuerelemente in ihrer Hohe um einen bestimmten Wert, der
von der Art des Elements abhangt, vergroRert werden.

Die erste Idee ware eine einzelne, neue Vorlage zu erstellen, die einfach alle Steuerelemente enthilt, deren
Hohe angepasst werden soll. Dieser Ansatz ist in XSLT so nicht umzusetzen, da XML Elemente nur immer ein-
mal auf eine Vorlage angewendet werden kénnen (die erste passende Vorlage). Damit ware es nicht mehr

Umsetzung

moglich das Kontrollkdstchen (CheckBox) oder das Listenfeld (ListBox) zu konvertieren, weil sie ja bereits durch
eine andere Vorlage in ihrer Hohe transformiert wurden. Jedoch ware es sehr wohl méglich die GroRRe des
Kontrollkdstchens oder des Listenfelds in den bereits existierenden Vorlagen zusatzlich zu behandeln und alle
restlichen Elemente gemeinsam in einer Vorlage zu transformieren. Allerdings gibt es einen noch besseren
Ansatz.

Mit XSLT kénnen Vorlagen erstellt werden, die nicht nur Knoten behandeln, sondern auch Attribute. Auf diese
Weise ist es moglich die XAML Eigenschaft Height fiir jedes Steuerelement separat anzupassen, indem das
Elternelement mit dem gewiinschten Name verglichen wird. Der Quelltext 19 definiert ein Vorlage setSize, die
als Parameter den Attributnamen (@Width oder @Height) sowie den Namen der XAML Eigenschaft (Width
oder Height) Gbergeben bekommt.

Damit nicht alle Steuerelemente in ihrer GroRe angepasst werden, wird in der Vorlage geprift, zu welchem
Steuerelement das Attribut gehért (Zeilen 9, 12 und 15). Alle anderen Elemente werden ohne Anderungen
weitergereicht (Zeile 6 und 19), darunter fallt auch das Fenster-Element.

Der Wert, um den die GréRe verandert wird, ist natiirlich abhdngig von dem eingesetzten Element. In den Zei-
len 10, 13 und 16 werden die GroRendifferenzen als Konstanten zur aktuellen GréRe des Elements addiert. Das
ist fur den Beispieldialog in Ordnung, konnte aber in anderen Fallen zu grof oder zu klein sein, so dass man hier
Uberlegen sollte Parameter zu nutzen, die vor der Transformation im XSLT Parameter Editor (vgl. Abbildung 48)
angegeben werden.

1 «<xsl:template name="setSize">

2 <xsl:param name="AttributeName" select="@Height"/>

3 <xsl:param name="PropertyName" select="Height" />

4

5 <xsl:choose>

6 <xsl:when test="parent::xamlns:Window|parent::xamlns:StackPanel">

7 <xsl:copy/>

8 </xsl:when>

9 <xsl:when test="parent::xamlns:ListBox">

10 <xsl:attribute name="{$PropertyName}"><xsl:value-of select="$AttributeName + 64"/></xsl:attribute>
11 </xsl:when>

12 <xsl:when test="parent::xamlns:RadioButton | parent::xamlns:CheckBox">

13 <xsl:attribute name="{$PropertyName}"><xsl:value-of select="$AttributeName + 16"/></xsl:attribute>
14 </xsl:when>

15 <xsl:when test="parent::xamlns:Button">

16 <xsl:attribute name="{$PropertyName}"><xsl:value-of select="$AttributeName + 14"/></xsl:attribute>
17 </xsl:when>

18 <xsl:otherwise>

19 <xsl:copy/>
20 </xsl:otherwise>
21 </xsl:choose>
22 </xsl:template>
23
24 <xsl:template match="@Height | @Width">

25 <xsl:call-template name="setSize">

26 <xsl:with-param name="AttributeName"><xsl:value-of select="."/></xsl:with-param>

27 <xsl:with-param name="PropertyName"><xsl:value-of select="local-name()"/></xsl:with-param>
28 </xsl:call-template>

29 </xsl:template>
Quelltext 19 Transformation zum Verdandern von Héhe und Breite

SchlieRlich wird die Vorlage setSize durch die Vorlage in Zeile 24 auf die Hohe und Breite aller Attribute ange-
wendet. Dazu werden die Vorlagenparameter auf das Attribut (@Height oder @Width) und den Name der
Eigenschaft (Height oder Width) gesetzt. Da im Dialog alle Steuerelemente diese beiden Eigenschaften besit-
zen, erzeugt die Transformation den rechten Dialog der Abbildung 60. Wird in Zeile 24 nur die Eigenschaft Hohe

Migration und Anpassung von Dialoganwendungen fiir beriihrungsempfindliche Bildschirme

angepasst, stellt sich der Dialog langgezogen dar, wie auf der Abbildung 60 links zu sehen ist. Der vollstdandige
Quelltext (Quelltext 46) des abgebildeten Dialogs kann im Anhang eingesehen werden.

' r
7 Confirmation E@g i | Confirmation E@g

The following tasks are left? What do you want to do? The following tasks are left? What do you want to do?

Readme bt . Readme txt
HotHotHotjpg HotHotHotjpg
Dealer.xds

% De-/Select them all

() Save selected one

@ Save selected one

) Save them all _
) Save them all

) Release them all

Abbildung 60 Links: H6he angepasst, Rechts: Hohe und Breite angepasst

() Release them all

Transformation mit Plug-Ins

Die Transformation mit reinem XSLT mag besonders anfangs grofRe Probleme bereiten, weil das Verhalten des
XSLT Prozessors nicht immer den Erwartungen entspricht. Aber obwohl XSLT turing-vollstandig ist, so bedeutet
dies nicht, dass jedes Problem einfach gelést werden kann. Letztendlich soll ein Problem so einfach wie moglich
gelost werden, daher ist es notwendig auch moderne Programmiersprachen im Transformationsprozess einzu-
setzen. Einige Transformationen, wie die der GrofR3e, konnen so einfacher gepriift, zwischengespeichert und
auch mehrmals verandert werden.

Der Einstiegspunkt fiir Plug-Ins ist mit den Methoden PreProcessing und PostProcessing (siehe Quelltext 6 auf
Seite 78) definiert. Sie empfangen die XAML Struktur, die angepasst werden soll. Mit dem Projekt LATTEC_WPF
(das C steht fiir Cartdrige, zu dtsch. Steckmodul) steht eine Vorlage bereit, die fir weitere Plug-Ins genutzt
werden kann. Die eigentliche Implementierung steckt in der Datei Pluginimpl.cs und muss entsprechend ange-
passt werden. Die Beispiele Quelltext 19 und folgende zeigen, wie dies geschehen kann.

Mit dem Quelltext 20 wird dieselbe Transformation durchgefiihrt wie in Quelltext 19. Mit SelectNodes() (Zeile
7) werden alle Attribute Height und Width des XML Baums abgefragt und versucht, deren Inhaltswert als Dou-
ble zu interpretieren (TryParse()). Wahrend in XSLT ungdltige, numerische Werte, wie z.B. * oder ,Auto” fir
automatische GroRe, ohne jede Anderung ins Ausgabedokument {ibernommen werden, kénnen diese Werte
mit .NET etwas einfacher interpretiert und ausgewertet werden (Zeile 6). Es ist jedoch trotzdem maglich in
XSLT die Erkennung und Transformation vorzunehmen, wenn auch mit mehr Aufwand. Ein weiterer Vorteil von
PostProcessing besteht darin, dass Meldungen, Warnungen und Fehler direkt als solche mit zusatzlichen Infor-
mationen an LATTE gesendet werden konnen. Die eingefligte Warnung in Zeile 40 wird durch LATTE nach dem
Methodenaufruf PostProcessing ausgewertet und im Meldungsfenster angezeigt.

Wahrend PostProcessing nach der XSLT Transformation ausgefiihrt wird und alle Werte aus dieser Transforma-
tion bereits enthalt, konnte ein Beispiel fir die Methode PreProcessing sein, bestimmte Werte in eine einfa-
chere Form fiir XSLT umzuformen. Die bereits erwadhnte Eigenschaft Margin kann so in mehrere XML Attribute
aufgeteilt werden und ist in XSLT damit einfacher lesbar. Zusammengefasst kann der Praprozessor damit die

Umsetzung [ECTRINN

XSLT Verarbeitung beeinflussen, indem XML oder XAML Elemente zusatzlich eingefiigt, verandert oder geldscht

werden.
1 public override bool PostProcessing(
2 ref System.Xml.XmlDocument document,
3 XmlNamespaceManager nameSpace)
4 {
5 messagelList.Clear();
6
7 XmlNodelList nodes = document.SelectNodes("//@Height | //@Width");
8
9 if (nodes != null)
10 {
11 foreach (XmlAttribute item in nodes)
12 {
13 String strSize = item.Value;
14 double size = 0;
15
16 if (Double.TryParse(strSize, out size))
17 {
18 switch (item.OwnerElement.LocalName)
19 {
20 case "Window": break;
21 case "ListBox":
22 size += 64;
23 break;
24 case "CheckBoxTouchSwitcher":
25 case "CheckBox":
26 case "RadioButton":
27 size += 16;
28 break;
29 case "Button":
30 size += 14;
31 break;
32 }
33
34 item.vValue = size.ToString();
35 }
36 }
37 }
38 else
39 {
40 messagelList.Add(new ProcessingMessage(MessageType.Warning,
41 /*LineNumber*/null, /*LinePosition*/null, /*MessageID*/1001,
42 "No nodes found"));
43 b
44 }

Quelltext 20 PostProcessing mit Hohe und Breite

Diese Art der Kommunikation zwischen den Prozessoren besitzt jedoch den Nachteil, dass zuséatzliche Elemente
die Prozessoren anderer Hersteller stéren konnten. Daher wird in Kapitel 7.5.3 die Annotation eingefiihrt. Sie
definiert die Kommunikationsschnittstelle als XAML Element und unterstiitzt auch mehrere Plug-Ins gleichzeitig
im Prozess.

Nutzen eines XAML Laders

WPF besitzt die Moglichkeit eine XAML Struktur in eine Klassenstruktur transformieren zu kénnen. Die entspre-
chende .NET Klasse nennt sich XamlLoader und ermdglicht durch den Aufruf von statischen Methoden eine

m Migration und Anpassung von Dialoganwendungen fiir beriihrungsempfindliche Bildschirme

Fensterinstanz zu erzeugen, die alle Dialogsteuerelemente enthalt. Damit kénnen die Elemente und ihre Werte
Uber Klasseninstanzen und Eigenschaften zugegriffen werden, ohne den Syntax von XPath nutzen zu mussen.

1 XmlTextReader reader = new XmlTextReader("DialogFile.xaml");
2 Window x = XamlReader.Load(reader) as Window;
3

4 x.Margin = new Thickness(l1e, 20, 20, 190);
Quelltext 21 XAML Struktur laden

Eine perfekte Losung ware gewesen, wenn die geladene XAML Struktur auch wieder als XAML Quelltext hatte
geschrieben werden kdnnen. Die Riickwartstransformation kann zwar mit der Methode Save der Klasse Xam-
IWriter durchgefiihrt werden, jedoch ist die Riickumwandlung in XAML Code aus verschiedenen Griinden nicht
vollstéandig. Sie ist daher nur von sehr begrenztem Nutzen. Die Autoren von Serialization Limitations of
XamlWriter.Save in [Microsoft, 2011] und [Hillberg, 2006]) nennen die folgenden Einschrankungen fir Xam-
IWriter:

e Das Steuerelement wird in dem Zustand, den es zur Laufzeit besitzt, als XAML Reprdsentation gespei-
chert. Die erzeugte XAML Struktur kann sich daher vom Original unterscheiden.

e Alle verwendeten Ressourcen werden in die XAML Struktur eingebettet. Ressourcen wie Style oder
DataProvider werden direkt in XAML gespeichert, d.h. ein aus mehreren Dateien bestehender XAML
Dialog wird zur einer Quelldatei zusammengefasst.

e Datenbindungen werden nicht in ihrer urspriinglichen Form in die XAML Struktur zuriickgeschrieben,
sondern nur deren Werte. D.h. Datenbindungen wie Binding, StaticResource und DynamicResource
werden zur Laufzeit (d.h. beim Laden) ausgewertet und beim Speichern durch den aktuellen Wert er-
setzt.

e Ereignisroutinen werden nicht in die XAML Struktur Gbernommen, sondern ignoriert.

Zwei Quellen bieten dazu mehr oder weniger funktionierende Lésungen an (siehe [Richter, 2007] und [AlexDov,
2008]). Doch eine Uberpriifung ergab immer wieder Schwierigkeiten mit verschiedenen XAML Strukturen
(Templates, Datenbindungen, Stile), so dass auch hier keine vollstdndige Losung prasentiert werden kann.

7.5.3 Erweiterte Transformation mit Annotationen

Annotationen sind aus den Hochsprachen wie Java und C# schon lange Zeit bekannt. Annotationen, auch , At-
tribute” genannt, sind Anmerkungen, die Klassen, Methoden oder anderen Deklaration durch zuséatzliche In-
formationen, sogenannte Metadaten, erweitern. Diese Metadaten kénnen zur Laufzeit oder von externen
Werkzeugen (auch der Kompiler) eingelesen und interpretiert werden.

Die Frameworks von Java und C# stellen eigene Klassen und Methoden zur Verfiigung, um zur Laufzeit auf An-
notationen (in Java [Sun, 2005 S. 281]) oder Attribute (in C# [Microsoft, 2011]) zugreifen zu kénnen. Durch den
Einsatz von externen Werkzeugen ist es aber genauso moglich, in Sprachen Annotationen zu verwenden, die
sonst nicht Bestandteil der Sprache sind, beispielsweise als Kommentar. Diese sind jedoch nur vor und wahrend
der Ubersetzung vorhanden, um von den externen Werkzeugen erkannt zu werden; nicht jedoch zur Laufzeit.

Fiir XML oder genauer gesagt XAML wurde eine Klassenstruktur entwickelt, die in XAML eingebettete Annota-
tionen erlaubt. Annotationen in XAML kdnnen als Mittel zur Ablaufsteuerung innerhalb des Transformations-
prozesses benutzt werden. Somit ist es moéglich, dass entlang der Transformationspipeline Informationen an
XAML Elemente angehangt werden, um in einer spateren Phase der Pipeline durch einen Prozessor (Pra-, XSLT-
oder Postprozessor) ausgewertet werden zu konnen. Die Auswertung ist dabei nicht auf die horizontale Trans-
formation (siehe Abbildung 55) beschrankt, sondern kann auch zwischen Plug-Ins erfolgen (vertikale Transfor-
mation).

Umsetzung

INotifyCollectionChanged

INotifyPropertyChanged
DependencyObject ¥ ObservableCollection<T> ¥
Class Generic Class
= DispatcherObject =+ Collection<T>
2 J
" AnnotationBase ¥ AnnotationList ¥

i Abstract Class Class

i — DependencyObject
1

T

IEnumerable<AnnotationBase >
|

-+ ObservableCollection <AnnotationBase >

Annotation ¥ AnnotationVerb ¥ AnnotationObject<T> ¥ |
Class Class Generic Abstract Class
=+ AnnotationBase <+ AnnotationBase + AnnotationBase

I

AnnotationParameter

Class

+ AnnotationObject<string >
- J

Ve

&«

Abbildung 61 Klassendiagramm der erstellten Annotationen fiir XAML

Das Klassendiagramm in Abbildung 61 gibt einen Uberblick {iber die entwickelte Klassenstruktur fiir Annotatio-
nen. Eine Beschreibung der Klassen kann man aus Tabelle 6 entnehmen.

Die Klassen flir Annotationen sind mit WPF entwickelt worden und kénnen daher direkt als Objekte in einem
XAML Quelltext eingesetzt werden, ohne die visuelle Darstellung zu dndern. Annotiert werden kénnen alle
Objekte in XAML, die von der Klasse DependencyObject abgeleitet wurden. Das sind in erster Linie alle sichtba-
ren Steuerelemente (u.a. die WPF Klassen Control, Label, Button, ListBox, ListBoxitem, Window, Text oder auch
ComboBox), jedoch keine Datenbindungen oder vordefinierte Objekte wie Farben (z.B. Colors.Green), Pinsel
(z.B. Brushes.Blue) usw. Eine grafische Ubersicht zu den XAML Elementen und welche von DependencyObject
abgeleitet sind findet sich unter [Chattopadhyay, 2010].

Aus den Elementen erzeugt ein XAML Parser automatisch die entsprechenden Instanzen. Zusatzlich wurde fir
diese Arbeit eine Deserialisierung und Serialisierung den Klassen hinzugefiigt, so dass eine XAML Struktur und
deren Annotationen auch (iber einen XML Parser gelesen und geschrieben werden kénnen. Sind die vorhande-
nen Klassen fir die eigenen Bediirfnisse nicht ausreichend, kdnnen zudem einfach neue abgeleitete Annotati-

onsklassen erstellt und verwendet werden.

XAML Annotationen sind in erster Linie nicht sichtbare Elemente in der XAML Struktur. Eine Annotation wird als
eine angehéangte Eigenschaft (engl. attached property) definiert und Iasst sich daher an beliebige XAML Steue-
relemente anhangen. Diese Art von Eigenschaften verhilt sich dabei wie jede normale Eigenschaft eines XAML
Elements, jedoch wird sie einem Element ohne dessen Wissen hinzugefiigt. Das mit WPF eingefiihrte Konzept
erweitert damit die Liste der zugreifbaren Eigenschaften eines Elements ohne den Quelltext des Elements an-
passen zu mussen. Im Folgenden wird gezeigt, wie Annotationen genutzt werden kdnnen, um zusatzliche In-
formationen in XAML Quelltexte einzubetten.

Migration und Anpassung von Dialoganwendungen fiir beriihrungsempfindliche Bildschirme

Klasse/XAML Element Beschreibung

AnnotationList AnnotationList ist selbst kein XAML Element, sondern definiert eine Hilfsklasse fiir
eine Sammlung von Annotationen. Die Klasse Annotation nutzt AnnotationList zur
Verwaltung von Annotationen.

AnnotationBase AnnotationBase definiert eine abstrakte Klasse, von der alle Annotationsklassen
abgeleitet werden missen. Sie definiert eine Eigenschaft Name sowie den Na-
mensraum (Prefix, Uri) der Annotation flr die Serialisierung.

Annotationsklassen, die innerhalb einer anderen Annotation (Annotation oder
AnnotationList) auftreten sollen, jedoch nicht an einem XAML Element angehangt
sein diirfen, kénnen von dieser Klasse abgeleitet werden.

Annotation Annotation ist die Basisklasse aller Annotations und bietet die angehangte Eigen-
schaft Attach als Einstiegspunkt fiir XAML Annotationen an. Sie erlaubt als Un-
terelemente weitere Annotationen zu definieren.

Neue Annotationsklassen, die an XAML Elemente angehangt werden diirfen, kén-
nen von dieser Klasse abgeleitet werden.

AnnotationVerb AnnotationVerb ist eine Annotation, die eine auszufiihrende Funktion definiert.
Die Funktion wird Uber die Eigenschaft Verb benannt und kann beliebig viele Pa-
rameter beinhalten. Der Name und Wert jedes Parameters werden dabei mit An-
notationParameter ibergeben. Die Semantik wird durch den jeweiligen Nutzer
bestimmt. Plug-Ins kdnnen AnnotationVerb mit einer eigenen Klassenmethode
verknipfen, die dadurch ausgefihrt werden kann.

AnnotationObject AnnotationObject ist eine abstrakte Klasse flir Annotationen mit XML Inhalt (in
XAML Content genannt). Abgeleitete Klassen konnen so XAML Elemente definie-
ren, die einen Inhalt prasentieren.

Neue Annotationsklassen kdnnen von dieser Klasse abgeleitet werden.

AnnotationParameter AnnotationParameter definiert einen Parameter mit Name und Wert. Die Klasse
wird aber nicht ausschlieBlich fiir AnnotationVerb verwendet, sondern kann auch
fir eigene Annotationen wiederverwendet werden.

Tabelle 6 Beschreibung der Annotationsklassen fiir XAML

Annotationen in XAML verwenden

Damit ein XAML Parser die Annotationen erkennen kann und keinen Fehler erzeugt, muss die Assembly LAT-
TE_Annotations durch einen Namensraum mit einem Prafix bekannt gemacht werden. Dies passiert Ublicher-
weise im Fenster-Element kann aber auch an jedem, der Annotation tUbergeordneten Elementen vorgenom-
men werden. Es ist jedoch nicht moglich den Namensraum direkt in der Annotation zu setzen, weil die Syntax
von XAML keine XML Attribute an angehangten Eigenschaften erlaubt.

1 <Window xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation”
2 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"

3 xmlns:ann="clr-namespace:Annotations;assembly=LATTEE_Annotations">
4 <StackPanel>

5 <ListBox Name="1listBox1">

6 <ann:Annotation.Attach>

7 .

8 </ann:Annotation.Attach>

9 </ListBox>

10 </StackPanel>

11 </Window>
Quelltext 22 Definieren einer Annotation in XAML. Die Annotation wird als eine fremde Eigenschaft Attach an das Listenfeld angehangt.

Der Quelltext 22 zeigt wie eine Annotation bekannt gemacht (Zeile 3) und an ein Listenelement gehangt wird
(Zeile 6). Zu beachten ist dabei, dass im Gegensatz zu den Annotationen in Programmiersprachen, die Annota-
tion in XAML innerhalb eines XAML Steuerelements deklariert werden und nicht vor dem zu annotierenden
Element. Die Annotation selbst beginnt mit der Deklaration der angehdngten Eigenschaft Attach (Zeile 6) im
Element ListBox. In XAML ist somit dieses Steuerelement um die Eigenschaft Attach erweitert worden und kann
daher auch als Objekteigenschaft benutzt werden. Eine explizite Verkniipfung (z.B. durch Nennung des Ele-

Umsetzung

mentbezeichners in der Annotation) zwischen Annotation und Steuerelement ist somit nicht notwendig, da die
angehangte Eigenschaft bereits dem Steuerelement angehort. Auerdem spielt es keine Rolle an welcher Stelle
die Annotation innerhalb des Steuerelements gesetzt wird.

Zwischen den Zeilen 6 und 8 (Quelltext 22) kdnnen beliebige Annotationselemente eingefligt werden. Die der-
zeit moglichen Kombinationen sind in einer angepassten Version der erweiterten Backus-Naur-Form in Tabelle
7 dargestellt. Symbolnamen sind dabei in den Produktionsregeln mit geschweiften Klammern dargestellt, da
die Zeichen < und > bereits fir XML verwendet werden.

Symbolname Produktionsregel

S <{Prdfix}:Annotation.Attach>{Annotation}</{Prafix}:Annotation.Attach>

Annotation {AnnotationBase}{Annotation} |
<{Prafix}:Annotation [Name="{Name}"]>{Annotation}</{Préfix}:Annotation> |
{AnnotationVerb}{Annotation} |

{}

AnnotationVerb <{Prifix}:AnnotationVerb Verb={Name}>{Parameter}</{Préfix}:AnnotationVerb>

Parameter <{Prdfix}:AnnotationParameter
[Name="{Name}"]>{Wert}</{Prafix}:AnnotationParameter>{Parameter} |
{}
AnnotationBase {AnnotationBase kann nicht direkt verwendet werden, aber jede von AnnotationBase abgeleitete und
(abstrakt) nicht abstrakte Klasse. Das Prafix muss nicht mit dem Prafix in S ibereinstimmen, sondern kann auch
auf eine Assembly eines Drittherstellers verweisen.}
Prafix {Beliebiger Name fir XML Namensraume. Diese missen jedoch als Namensraum definiert worden
sein.}
Name {Beliebiger Name fiir XML Attribute}

Wert {Beliebiger Wert fir XML Inhalte}

Tabelle 7 EBNF Produktionsregel fiir die entwickelten Annotationen in XAML

Annotationen in XSLT verwenden

Annotationen wurden entwickelt, um in XSLT eine Steuerung des Postprozessors zu ermdglichen. Der Quelltext
des XSLT Prozessors kann direkt in LATTE bearbeitet werden. Daher ist es normalerweise nicht notwendig, den
XSLT Prozessor mit dem Praprozessor zu steuern. Manchmal ist es dennoch niitzlich bestimmte XSLT Aktionen
zu ignorieren und ein Steuerelement direkt an den Postprozessor, ohne Anderung, (ibergeben zu lassen.

Im folgenden Beispiel wurde dazu eine Annotation (Quelltext 23) erstellt, um den XSLT Prozessor (Quelltext 24)
zu veranlassen einen Vorlagen-Befehl zu ignorieren. Die Annotation, die auch von einem Praprozessor stam-
men konnte, definiert dazu einen Parameter mit dem Namen Ignore. Da der Name beliebig gewahlt werden
kann, wurde noch ein zusétzlicher Bezeichner im Attribut CUri (Custom Unified Resource Identifier) definiert.
Damit konnen unterschiedliche Plug-Ins identische Bezeichner nutzen, ohne dass eine Namenskollision zu be-
flrchten ware.

1 <ListBox Name="listBox1" Width="309" Height="73" SelectionMode="Extended">

2 <ann:Annotation.Attach>
3 <ann:AnnotationParameter Name="Ignore" CUri="WPF_Plugin">true</ann:AnnotationParameter>
4 </ann:Annotation.Attach>

5 </ListBox>
Quelltext 23 Eine annotierte Listendefinition in XAML. Die Annotation AnnotationParameter kann nur innerhalb der Attach Eigenschaft
definiert warden.

Annotationen zu nutzen kann insbesondere mit XSLT 1.0 aufwéandig sein. Wie im Quelltext 24 zu sehen wurde
eine Bedingung erstellt, welche die oben genannte Annotation prift. In Zeile 3 wurde dazu ein Ausdruck in
XPath erstellt, der innerhalb der Vorlage (hier xamlIns:ListBox) nach einem Element AnnotationParameter
sucht, dessen Attribute Name und CUri die dargestellten Werte besitzen. Zusatzlich muss AnnotationParameter

Migration und Anpassung von Dialoganwendungen fiir beriihrungsempfindliche Bildschirme

innerhalb der angehangten Eigenschaft Annotation.Attach definiert worden sein, um andere, spater definierte
Annotationen mit denselben Eigenschaften auszuschlieRen.

1 <xsl:template match="xamlns:ListBox">

2 <xsl:choose>

3 <xsl:when test="LATTE:ConvertBoolean(./ann:Annotation.Attach/ann:AnnotationParameter GED
[@Name="Ignore' and @CUri='WPF_Plugin'])">

<xsl:copy><xsl:apply-templates select="child::*"/></xsl:copy>
</xsl:when>

<xsl:otherwise>
<!-- ListBox konvertieren -->
</xsl:otherwise>
9 </xsl:choose>
10 </xsl:template>
Quelltext 24 Eine XSLT Transformation mit Priifung einer Annotation

0 N O b

Damit eine Prifung mit verschiedenen Wahrheitswerten (z.B. True, true, TRUE oder 1) ohne zu groRen Auf-
wand durchgefiihrt werden kann, wurde ein Erweiterungsobjekt im Namensraum LATTE zur Verfligung gestellt.
So kann mit der Methode ConvertBoolean ein Wahrheitswert leichter aus einem Text erzeugt werden. Der
Nachteil jedoch besteht darin, dass das XSLT nur mit LATTE ausgefiihrt werden kann.

Annotationen mit XSLT verwenden

Der Einsatz von Annotationen zur Steuerung des Postprozessors gestaltet sich einfach, wenn der Préprozessor
keine eigenen Annotationen einsetzt. Um eigene Annotationen in XSLT zu erzeugen, kénnen die aus Kapitels
7.5.2 bekannten Méglichkeiten zum Einfligen von Elementen genutzt werden. In Quelltext 25 wird mit XSLT
eine Annotation an ein Listenfeld gehangt. Es kann spater (siehe Abschnitt Verwendung in Plug-Ins (C#)) von
einem Postprozessor abgefragt werden. Die im Beispiel angegeben Parameter sind nur von der Implementie-
rung des Plug-Ins abhangig.

1 «<xsl:template match="xamlns:ListBox">

2 <ann:Annotation.Attach>

3 <ann:AnnotationVerb Name="Convert" CUri="WPF_Plugin">

4 <ann:AnnotationParameter Name="TargetTemplate">ListBoxTouch</ann:AnnotationParameter>
5 <ann:AnnotationParameter Name="ItemHeight">50</ann:AnnotationParameter>

6 </ann:AnnotationVerb>

7 </ann:Annotation.Attach>

8 </xsl:template>
Quelltext 25 Ein Listenelement wurde in XSLT annotiert

Weitere Annotationen innerhalb eines Elements zu erstellen ist, wie gesehen, denkbar einfach. Jedoch kann es
vorkommen, dass bereits der Praprozessor Annotationen flr ein Element gesetzt hat. Da man nicht wissen
kann, welche Annotationen im Element eingesetzt werden, missen alle Annotationen — zusatzlich zu den neu
eingefiihrten — kopiert werden. Das bedeutet, Annotationen kénnen nicht nur in der Ausgabe doppelt vor-
kommen, sondern sie kdnnen auch unterschiedliche Werte besitzen. Dieses Problem ist allerdings dadurch zu
umgehen, dass Annotation, die als erstes definiert wurden, Vorrang haben. Denn eine Abfrage mit XPath resul-
tiert immer in einer Menge von XML Knoten, deren Reihenfolge mit der Reihenfolge im XML Baum liberein-
stimmt. Doppelt auftretende Annotationen werden mit XPath dadurch ignoriert, indem nur das erste XML
Element in der Ergebnismenge verwendet wird.

Zu beachten ist allerdings, dass diese Regel nicht fiir die Deklaration der Annotation mit Annotation.Attach gilt.
Denn XAML lasst eine angehangte Eigenschaft nur einmal zu. Jede weitere Deklaration einer angehangten Ei-
genschaft wird mit einem Fehler bestraft. Daher missen alle im Praprozessor definierten Annotationen mit
XSLT kopiert und erweitert werden.

Umsetzung

Der Quelltext 26 zeigt, wie Annotationen aus dem Praprozessor innerhalb einer Annotation.Attach kopiert wer-
den. Wenn die in der XSLT definierten Annotationen eine hohe Prioritdt genielRen sollen, miissen sie zuerst
innerhalb von Annotation.Attach definiert werden. Andernfalls kdnnen die Zeilen 5 und 6 vertauscht werden.

<xsl:template match="xamlns:ListBox">
<xsl:copy>
<xsl:apply-templates select="@*|child::*[local-name() != 'Annotation.Attach']"/>

<ann:AnnotationParameter Name="Ignore" CUri="WPF_Plugin">true</ann:AnnotationParameter>

1

2

3

4 <ann:Annotation.Attach>

5

6 <xsl:apply-templates select="./ann:Annotation.Attach/child::*"/>
7

</ann:Annotation.Attach>
8 </xsl:copy>

9 </xsl:template>
Quelltext 26 Annotationen eines Listenelements kopieren und erweitern

Eine groRe Bedeutung besitzt der Befehl xsl:apply-templates in Zeile 3. Darin werden alle Attribute (@*) und
alle Unterelemente (child::*), aulRer der Annotation selbst, kopiert (local-name() !='Annotation.Attach'). D.h.
die gesamte Struktur des Listenelements (Zeile 1) bleibt erhalten, ohne jedoch die Annotationen zu kopieren.
Denn diese miisse erst noch angepasst werden. Stattdessen wird ein neues Annotations-Element in Zeile 4
erstellt und mit zusatzlichen Metadaten (Zeile 5) erweitert. In Zeile 6 werden letztendlich die bereits vorhande-
nen Annotationen kopiert. Wie bereits erwahnt ist die Reihenfolge wichtig, da spater die Annotationen von
vorne nach hinten durchsucht werden und nur der erste Treffer zahlt.

Das Ergebnis aus der Transformation sieht man im Quelltext 28. Die mit AnnotationParameter definierten Meta-
daten sind durch den XSLT Prozessor und einem Prdprozessor entstanden. In einer spateren Auswertung mit
dem Postprozessor wird nur das erste Metadatum (Zeile 3) ausgewertet. D.h. der Postprozessor, der auf den
Namensraumbezeichner WPF_Plugin hort, wird angewiesen das Element nicht zu ignorieren, obwohl zwei
gegensatzliche Anweisungen existieren.

1 <ListBox Name="listBox1" Width="373" Height="137" SelectionMode="Extended">

2 <ann:Annotation.Attach>

3 <ann:AnnotationParameter Name="Ignore" CUri="WPF_Plugin">false</ann:AnnotationParameter>
4 <ann:AnnotationParameter Name="Ignore" CUri="WPF_Plugin">true</ann:AnnotationParameter>
5 </ann:Annotation.Attach>

6 </ListBox>
Quelltext 27 Vereinigung von Annotationen bei einer Transformation (mit doppelten Metadaten AnnotationParameter)

Das Prifix der Annotationen

In den Beispielen wurden Annotationen mit einem ,ann“-Prafix versehen. Es ist zu beachten, dass die Pra-
fixnamen fir XAML und XSLT gleich sein sollten. Der Grund liegt im XSLT Prozessor. Unterscheiden sich Prafixe
in XSLT und XAML, wird bei der Transformation das Prafix am Element Annotation.Attach definiert (siehe Quell-
text 28). Dies ist jedoch nach den Regeln von XAML ein Fehler, so dass das Ergebnis nicht ohne Anpassung ge-
nutzt werden kann.

<annx:Annotation.Attach xmlns:annx="clr-namespace:Annotations;assembly=LATTEE_Annotations">
Quelltext 28 Notation mit Namensraumdefinition: Ungiiltiger Syntax fiir XAML

Ist eine Anderung des Prafixnamens fiir Annotationen notwendig (z.B. weil es bereits von dritter Seite verwen-
det wird), dann muss das neue Préfix in einem (ibergeordneten Element der Annotation definiert werden. Das
kann z.B. das Steuerelement der angehangten Annotation oder auch das Fensterelement sein. Zum Einfligen
des Prafixes mit Namensraum kann der Quelltext 17 aus Kapitel 7.5.2 genutzt werden. Natdrlich ist es auch
moglich den Praprozessor dafiir einzusetzen. Soll der Prafix lediglich im transformierten XAML Quelltext an-
ders lauten (z.B. newAnn), kann mit XSLT der Name automatisch geandert werden, indem ein Alias am Anfang

m Migration und Anpassung von Dialoganwendungen fiir beriihrungsempfindliche Bildschirme

des XSLT Codes definiert wird. Dabei muss das neue Prafix im XSLT und im XAML Quelltext definiert werden.
Dieser Aufwand ist jedoch nicht notwendig, wenn einfach das Standardpréafix verwendet wird, denn LATTE
erzeugt automatisch das Prafix ,ann” fiir alle neuen Projekte.

<xsl:namespace-alias stylesheet-prefix="ann" result-prefix="newAnn"/>

Quelltext 29 Automatische Konvertierung von Prafixe in XSLT

Verwendung in Plug-Ins (C#) mit XmlDocument

Plug-Ins verwenden, wie bereits erwahnt, die Klasse XmIDocument, um Elemente zu transformieren.
Annotationen unterscheiden sich bei der Nutzung mit XmIDocument nicht von anderen XML Elementen und
sind daher genauso zu verwenden. Die folgenden Quelltexte geben einen Einblick, wie bestimmte Annotatio-
nen aus der XML Dokument gelesen werden kénnen. Dazu wird jedes Beispiel innerhalb der PostProcessing
Methode eines beispielhaften Plug-Ins ausgefiihrt.

public override bool PostProcessing(ref System.Xml.XmlDocument document,

XmlNamespaceManager nameSpace)
Quelltext 30 Die Methode PostProcessing empfangt den vollstindigen XML Baum sowie den XAML Namensraum. In der Methode kon-
nen so die Anpassungen direkt am XML Dokument durchgefiihrt werden.

Die folgenden Beispiele erzeugen ein oder mehrere Annotationen als XML Knotenmenge. Die Ergebnisse sind
dazu im Quelltext 35 entsprechend kenntlich gemacht worden, um den jeweiligen XPath Ausdruck besser ver-
stehen zu kdnnen.

Beispiel 1: Die Annotation eines bestimmten Steuerelements auswahlen

Haufig kann es notwendig sein, einfach alle Annotationen eines bestimmten, einzelnen Steuerelementes zu
erfahren. Um z.B. die Annotation des Fensterelements in XAML als XmIElement zu erhalten, kann der folgende
Quelltext verwendet werden. Die Ergebnismenge ist im Quelltext 35 mit dem Symbol @ (fur Beispiel 1) ge-
kennzeichnet und umfasst alle Zeilen mit dem gleichen Symbol.

XmlNodelList nodes = xmlDoc.SelectNodes(

"//xamlns:Window/*[local-name()="Annotation.Attach']", nameSpace);
Quelltext 31 Die Annotation eines bestimmten Elementes auswahlen (Beispiel 1)

Beispiel 2: Die Annotationen aller Steuerelemente einer Art auswiahlen

Um die Annotationen zu erhalten, die innerhalb eines StackPanels von bestimmten XAML Elementen getragen
werden, kann der Ausdruck aus Quelltext 32 verwendet werden. Dies ist zum Beispiel nltzlich, wenn mehrere
Steuerelemente derselben Art transformiert werden sollen und der Vorgang von der jeweiligen Annotation
abhangt.

"//xamlns:Window/xamlns:StackPanel/*[local-name()="RadioButton’] @

/*[local-name()="Annotation.Attach']"
Quelltext 32 Die Annotationen aller Elemente einer Art auswahlen (Beispiel 2)

Umsetzung

Beispiel 3: Alle Annotationen innerhalb eines XAML Steuerelements ermitteln
Das folgende Beispiel ermittelt alle Annotationen innerhalb des Fenster-Elements. Damit werden nicht nur die

Annotationen des Fenster-Elements, sondern auch die der untergeordneten Steuerelemente gefunden. Alle
verfligbaren Annotationen einer XAML Struktur kdnnen so auf einen Schlag ermittelt werden.

//xamlns:Window/descendant::*[local-name()="Annotation.Attach"]
Quelltext 33 Alle Annotationen innerhalb eines XAML Elements ermitteln (Beispiel 3)

Beispiel 4: Eine bestimmte Art von Annotation innerhalb von bestimmten Steuerelementen ermitteln

Kompliziertere XPath Ausdriicke ermoglichen auch direkt nach bestimmten Annotationen innerhalb von Anno-
tation.Attach zu suchen.

Das folgende Beispiel ermittelt alle Annotationen vom Typ AnnotationVerb, die den Wert ,,Convert” durch das
Attribut Verb definiert haben und innerhalb eines Optionsfeldes (RadioButton) oder Labels stehen.

//xamlns:Window/xamlns:StackPanel/*[local-name()="RadioButton' @

or local-name()="Label']/child::*[local-name()="Annotation.Attach'] @
/*[local-name()="AnnotationVerb' and @Verb='Convert']

Quelltext 34 Eine bestimmte Art von Annotation innerhalb von bestimmten XAML Elementen ermitteln (Beispiel 4)

Die ermittelten Annotationen missen nicht weiter mit Hilfe von XmINode oder anderen XML Klassen in Attri-

bute und Inhalte zerlegt werden. Die Annotationen von LATTE unterstiitzen die Deserialisierung von XML Ele-

menten durch die Methoden Deserialize und DeserializeByElement. Damit kann ein Element aus einem XPath

Ergebnis direkt in eine Klasseninstanz verwandelt und eingesetzt werden, ohne weitere XPath Ausdriicke zum
Ermitteln der anderen Werte (d.h. Typ, Name usw.) nutzen zu missen.

Der Unterschied zwischen den Methoden Deserialize und DeserializeByElement liegt darin, welche Art von
XML Elemente verwendet werden kénnen. Wahrend die Methode Deserialize einen angegebenen XML Knoten
direkt als Annotation deserialisiert, kann bei DeserializeByElement der libergeordnete Elternknoten angegeben
werden, um die Annotation zu erhalten. Dadurch ist es nicht notwendig, selbst den Typ des Annotationsele-
ments innerhalb eines XML Knotens zu suchen und zu deserialiseren. Neben dem Aufruf von Deserialize kann
auch einfach das XML Element dem Konstruktor der Annotationsklasse tibergeben werden.

Auf diese Weise kann das Ergebnis des ersten Beispiels , Die Annotation eines bestimmten Elementes auswah-
len” mit der Hilfe der Klassenmethode AnnotationlList.DeserializeByElement und allen darin eingeschlossenen
Annotation in entsprechende Klasseninstanzen konvertiert werden. Es ist dabei zu beachten, dass die Annota-
tion Annotation.Attach nicht vom Typ Annotation ist, sondern die Klasse AnnotationList darstellt, da die ange-
héangte Eigenschaft Attach diesen Klassentyp besitzt. Daher muss DeserializeByElement aus der Klasse Annota-
tionList verwendet werden und nicht aus Annotation.

Der Quelltext 36 nutzt das Beispiel aus Quelltext 35, indem darin die Annotationsliste geladen wird (Zeile 4)
und alle Annotationen des Typs AnnotationVerb aufgelistet werden (Zeile 6). Weiterhin unterstitzt Annotati-
onVerb die automatische Ausfiihrung des angegeben Verbs durch eine benutzerdefinierte Methode in .NET.
Die Verben kénnen im Plug-In ausgefiihrt werden, dadurch dass eine im Plug-In implementierte Methode mit
AnnotationVerb.Invoke aufgerufen wird (Zeile 9). Die Methode erhalt dann die in XML eingegebenen Parame-
ter (hier Paral und Para2 mit den Werten A Text und 1,00). Der Methode Invoke wird dazu ein Objekt zuge-
wiesen, welches die Methode mit dem im Quelltext angegebenen Namen Verb1 enthilt. Ist keine Methode
dieses Namens vorhanden oder kdnnen die Parameter nicht korrekt zugeordnet werden, d.h. die Parameterlis-
te ist zu klein oder enthélt unpassende Datentypen, so wird eine Ausnahme NotSupportedException erzeugt.

m Migration und Anpassung von Dialoganwendungen fiir beriihrungsempfindliche Bildschirme

Treffermenge Quelltext
Nr. des Beispiels

<Window xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation”
xmlns:ann="clr-namespace:Annotations;assembly=LATTEE_Annotations"
xmlns:annc="clr-namespace:AnnotationsEx;assembly=Annotationsgx">
<ann:Annotation.Attach>
<ann:AnnotationVerb Verb="Verbl" CUri="Example">
<ann:AnnotationParameter Name="Paral" >A Text</ann:AnnotationParameter>
<ann:AnnotationParameter Name="Para2"
DataType="Double">1,00</ann:AnnotationParameter>
</ann:AnnotationVerb>
</ann:Annotation.Attach>
<StackPanel>
<Label Name="labell"
Content="The following tasks are left? What do you want to do?" >

O 0006
@O 00O

@06 <ann:Annotation.Attach>
@e® <ann:AnnotationVerb Verb="Verb2">
@3® <ann:AnnotationParameter Name="Parameterl">Valuel</ann:AnnotationParameter>
@036 </ann:AnnotationVerb>
@06 </ann:Annotation.Attach>

</Label>

<RadioButton Name="Box1l" Content="Save selected one">
@06 <ann:Annotation.Attach>
@0 <annc:AnnotationGroup GroupName="Radios" CUri="PlugEx"/>
@0 </ann:Annotation.Attach>

</RadioButton>

<RadioButton Name="Box2" Content="Save them all">
@06 <ann:Annotation.Attach>
@0 <annc:AnnotationGroup GroupName="Radios" CUri="PlugEx"/>
@0 </ann:Annotation.Attach>

</RadioButton>

</StackPanel>
</Window>

Quelltext 35 XAML Beispielquelltext mit markierten Ergebnismenge der XPath Ausdriicke aus den Beispielen 1 bis 4.

Die Standardeinstellung der Methode AnnotationVerb.Invoke ignoriert die Namen der Parameter, d.h. die
Reihenfolge der Parameter im Quelltext muss mit der Reihenfolge der Methode (hier Verb1) in der angegebe-
nen Klasseninstanz (Zeile 9, Invoke(this)) Ubereinstimmen. Durch die Eigenschaft Annotation-
Verb.InvokelgnoresParameterNames kann jedoch dieses Verhalten umgekehrt werden. Die Parameternamen
im XAML Quelltext missen dann mit den Namen der Methodenparameter (im Beispiel unten v1 und v2) tGber-

einstimmen.
1 if (nodes[@] != null)
2 {
3 AnnotationList ann = new AnnotationList();
4 ann.Deserialize(nodes[@] as XmlElement); //oder dem Konstruktor ibergeben
5
6 List<AnnotationVerb> verbs = ann.ListByType<AnnotationVerb>("Example");
7 if (verbs.Count > @)
8 {
9 String s = (verbs[@]).Invoke(this) as String;
10 }
11 }

Zusatzlich wurde diese Methode in derselben Klasse implementiert, um von Invoke aufgerufen werden zu kdnnen.

1 public String Verbl(String vi1, Double v2)

2 {

3 return String.Format("{@} = {1}", vi, v2);
4}

Quelltext 36 Annotationen kénnen aus XML Dokument geladen werden. AnnotationVerb unterstiitzt die Ausfithrung von Methoden.

Umsetzung [ECTRNNN

Das Laden von angehangten Annotationen aus XML gestaltet sich jedes Mal gleich. Das vorgestellte vierte Bei-
spiel von Seite 97 erfordert jedoch einen anderen Typ von Annotation, weil das Ergebnis nun nicht mehr vom
Typ AnnotationList (Annotation.Attach) ist, sondern von AnnotationVerb. Entsprechend muss die Deserialisie-
rungsmethode Deserialize der AnnotationVerb Klasse aufgerufen werden, um eine Instanz erhalten zu kdnnen.

if (nodes[@] != null)
{

AnnotationVerb annVerb = new AnnotationVerb ();
annVerb.Deserialize(nodes[@] as XmlElement); //oder dem Konstruktor iibergeben

}

Quelltext 37 Entsprechend dem Typ des XML Elements miissen die richtigen Annotationsklassen verwendet werden.

Ein letzter Schritt bei der Nutzung von Annotationen mit XmlIDocument besteht darin die Annotationen wieder
zuriick in die XAML Struktur zu schreiben. Die Annotationsklassen bieten dazu die Methode Serialize und Seria-
lizeByElement an. Die Instanzen der Annotationen zu verdndern erfordert daher jedes Mal die Serialisierung
derselben. Der folgende Quelltext 38 zeigt beispielhaft, wie eine Serialisierung von neuen, geldschten oder
angepassten Annotationen durchgefiihrt werden kann. Er basiert auf dem Quelltext 36, entfernt nun jedoch
die Annotation Verb (Zeile 9) und fligt eine neue hinzu (Zeilen 11 bis 16). Genauso gut hatte die vorhandene
Verb Annotation aber auch abgeandert werden kénnen. Zuletzt wird SerializeByElement aufgerufen (Zeile 18),
welches dafiir sorgt die Annotation des Fenster-Elements (siehe Quelltext 35) zu entfernen, bevor eine neue
hinzugefiigt wird. So befindet sich immer genau eine angehangte Eigenschaft Annotation.Attach im tGbergeord-
neten Steuerelement (nodes[0].ParentNode). Serialize wird in diesem Fall intern von SerializeByElement aufge-
rufen, um die Annotationen zu speichern.

1 if (nodes[@] != null)

2 {

3 AnnotationList ann = new AnnotationList();

4 ann.Deserialize(nodes[@] as XmlElement);

5

6 List<AnnotationVerb> verbs = ann.ListByType<AnnotationVerb>("Example");
7 if (verbs.Count > @)

8 {

9 ann.Remove(verbs[0]);

10 }

11 var verb = new AnnotationVerb();

12 verb.CUri = "Example";

13 verb.Verb = "Verbl";

14 verb.Parameters.Add(new AnnotationParameter { Content = "Valuel" });
15 verb.Parameters.Add(new AnnotationParameter { Content = "Value2" });
16 ann.Add(verb);

17

18 ann.SerializeByElement(nodes[@].ParentNode as XmlElement);

19 }

Quelltext 38 Neue, wie auch verdnderte Annotationen kénnen zuriick ins XML Dokument serialisert werden.

Da SerializeByElement sich um alles kimmert, sollte es bevorzugt fir die Serialisierung von Annotationen ge-
nutzt werden. Die hier gezeigten Beispiele (1-4) funktionieren ohne Unterscheidung mit SerializeByElement, so
dass sich jede Art von Annotationsklasse (auch selbst erstellte) wieder zurtick in das XmIDocument schreiben
lasst.

Verwendung des XAML Laders in Plug-Ins (C#)

Annotationen in XAML kénnen, wie jedes andere XAML Element, durch den XAML Lader zur Klasseninstanzen
transformiert werden. Da angehangte Eigenschaften nicht direkt einem Steuerelement angehdren, missen sie
iber die Methode GetAttach der Klasse Annotation aus einem XAML Steuerelement gelesen werden.

al0[of Migration und Anpassung von Dialoganwendungen fiir beriihrungsempfindliche Bildschirme

AnnotationList annotations = Annotation.GetAttach(anElement);
Quelltext 39 Mit Annotation.GetAttach kénnen die Annotationen eines XAML Steuerelements ausgelesen werden.

Auf diese Art kénnen Annotationen vollstandig aus der XAML Struktur gelesen und zurlick in Klasseninstanzen
konvertiert werden. Existiert keine solch angehédngte Annotation, liefert GetAttach null zurtick. Es ist zu beach-
ten, dass spezielle Annotationen, wie AnnotationVerb, nur Gber den oben beschriebenen Weg mit Annotation-
List eingelesen werden kdnnen. Es ist z.B. nicht moglich, wie mit XPath, direkt ein AnnotationVerb Element zu
erhalten. AnnotationList bietet jedoch Methoden an, um jede Art von Annotation zu finden. Neben den Me-
thoden All, Any, AsEnumarble, ElementAt, First und Last, die von der Basisklasse ObservableCollection (siehe
[MSDN, 2011]) bereitgestellt werden, wurden zusatzlich ListByHandler und ListByType in AnnotationList im-
plementiert. ListByType wurde bereits in vorangegangenen Quelltexten vorgestellt. Daher wird, um die Vielsei-
tigkeit von ListByHandler darzulegen, als Beispiel die Implementierung der Methode ListByType gezeigt.

public List<T> ListByHandler<T>(FindItemHandler<T> itemHandler)
where T : AnnotationBase;

public List<T> ListByType<T>(String CUri = null) where T : AnnotationBase
{

return ListByHandler<T>((item) =>

{
return ((CUri != null) && (CUri == item.CUri)) || (CUri == null);

s
}

Quelltext 40 Die Implementierung von AnnotationList.ListByType nutzt die generische Methode ListByHandler. Selbstgestaltete Metho-
den kdnnen genauso verfahren.

Zum Schluss muss erwdhnt werden, dass Annotationen nicht mit der WPF Klasse XamI|Writer zuriick in den
XAML Quelltext geschrieben werden kdnnen. Die Annotationen bleiben nicht erhalten, stattdessen bleibt ein-
fach das Steuerelement in XAML zuriick. Die genauen Griinde konnten auch nach grindlicher Recherche nicht
herausgefunden werden. Vermutlich wirken sich die im Abschnitt ,,Nutzen eines XAML Laders” (Seite 89) be-
sprochenen Nachteile der Klasse Xam|Writer auch bei den Annotationen aus. Darum unterstitzen die Annota-
tionsklassen die Serialisierung mit XmIDocument und setzen nicht alleine auf XamIReader und Xam|Writer.

Annotationen mit benutzerdefinierten Eigenschaften erweitern

Falls die vorhandenen Annotationsklassen (Tabelle 6) nicht ausreichen sollten, knnen diese erweitert werden.
Es ist moglich von jeder der vorhandenen Annotationsklassen eine neue Klasse abzuleiten, zu erganzen und mit
LATTE einzusetzen. Die Basis aller Klassen bleibt jedoch immer AnnotationBase, welche die notwendigen Eigen-
schaften (Namensraum, Uri und Name) implementiert.

Vor der Erstellung einer Annotation sollte entschieden werden, welche Attribute die Annotation unterstiitzt
und ob das XAML Element einen einzelnen oder mehrere Inhalte umfassen kann. Der Inhalt ist dabei der innere
Text eines XML Elements, d.h. zwischen dem 6ffnenden und schlieBenden XML Tag (z.B. <tag>Inhalt</tag>).
Dieser kann entweder aus einem reinen Text bestehen oder weitere XAML Elemente enthalten. Beispielsweise
kann die Annotationsklasse AnnotationParameter nur einen Text enthalten, wahrend AnnotationList weitere
Annotationen als Inhalt unterstitzt.

Im folgenden Beispiel soll eine neue Annotation erstellt werden, die ein Steuerelement mit anderen Steue-
relementen zu einer Gruppe zusammenfiigt. Dies kann z.B. die Migration von bestimmten Elementen erleich-
tern, die zusammengefasst ein neues Element bilden sollen. Der folgende Quelltext 41 zeigt die Anwendung
von Annotationen an mehreren Optionsfeldern, die spater in einem Plug-In erkannt und entsprechend den

Umsetzung

vorherigen Abschnitten dieses Kapitels verarbeitet werden kénnte. Auf die Umsetzung des Plug-Ins wurde
jedoch verzichtet.

1 <RadioButton Name="Box1l" Content="Save selected one">

2 <ann:Annotation.Attach>

3 <annc:AnnotationGroup GroupName="Radios" CUri="PlugEx"/>
4 </ann:Annotation.Attach>

5 </RadioButton>

6 <RadioButton Name="Box2" Content="Save them all">

7 <ann:Annotation.Attach>

8 <annc:AnnotationGroup GroupName="Radios" CUri="PlugEx"/>
9 </ann:Annotation.Attach>

10 </RadioButton>

11 <RadioButton Name="Box3" Content="Release them all">

12 <ann:Annotation.Attach>

13 <annc:AnnotationGroup GroupName="Radios" CUri="PlugEx"/>
14 </ann:Annotation.Attach>

15 </RadioButton>
Quelltext 41 Mehrere Optionsfelder werden durch eine selbsterstellte Annotation in einer Gruppe zusammengefasst.

Um neue Annotationen fiir LATTE zu erstellen, ist als erster Schritt erforderlich eine neue .NET Assembly zu
erstellen, welche die Annotationsklassen aus Assembly LATTEE_Annotations nutzt. AuRerdem muss der .NET
Namensraum Annotations fiir den Zugriff auf Klassen eingebunden werden (mittels using Direktive). Im Beispiel
wurde dazu in XAML der Namensraum annc eingefiihrt, der auf die Assembly und deren Namensraum wie
gewohnt verweist.

Die neue Annotationsklasse AnnotationGroup wird von der Basisklasse AnnotationBase abgeleitet und um die
Eigenschaft GroupName erweitert. Wie in Quelltext 41 zu sehen ist, wurde die Annotation auch mit der Eigen-
schaft CUri ausgestattet. Es ist jedoch zu beachten, dass CUri aus der verwendeten Basisklasse stammt und
nicht implementiert werden muss.

Die neue Eigenschaft GroupName kann, wie jede .NET Eigenschaft, mit Setter und Getter definiert werden.
Objektinstanzen wie z.B. String und andere Klassen missen jedoch von Anfang an mit einem Wert initialisiert
werden, da sonst die Deserialisierung fehlschlagen konnte (Verwendung eines null Wertes). Dies geschieht
iblicherweise im Konstruktor der Annotationsklasse, jedoch wird mit der in WPF eingefiihrten Abhdngigkeits-
eigenschaft DependencyProperty ein machtigeres Mittel flir XAML zur Verfligung gestellt. Denn diese Art von
Eigenschaft l3sst sich schon bei ihrer Deklaration initialisieren und auf Anderungen iiberwachen. Weitere In-
formationen dazu bietet das Microsoft Developer Network unter [Microsoft, 2011] (siehe Dependency Proper-
ties Overview). In Quelltext 42 wird eine Instanz der Klasse DependencyProperty in Kombination mit Frame-
workPropertyMetadata erstellt (Zeile 9), um die Eigenschaft GroupName mit leerem Inhalt zu erstellen. Die
Deklaration von GroupNameProperty ist zwar statisch, also fir alle Klassen gleich, doch intern bekommt jede
Klasseninstanz ihren eigenen Eigenschaftswert zugeteilt. Der Wert kann folglich tGber die Setter und Getter in
Zeile 3 und 4 gelesen und verdandert werden.

1 public String GroupName

2 {

3 get { return (String)GetValue(GroupNameProperty); }

4 set { SetValue(GroupNameProperty, value); }

5}

6 public static DependencyProperty GroupNameProperty =

7 DependencyProperty.Register("GroupName",

8 typeof(String), typeof(AnnotationGroup),

9 new FrameworkPropertyMetadata(""));
Quelltext 42 Attribute von Annotationen kénnen gewohnliche Eigenschaften sein oder liber das WPF System mit Dependency Eigen-
schaften verwirklicht werden.

alopA Migration und Anpassung von Dialoganwendungen fiir beriihrungsempfindliche Bildschirme

Weiterhin muss die neue Klasse eine Serialisierung und Deserialisierung fiir die neuen Eigenschaften imple-
mentieren. Dies gilt jedoch nur, wenn die Annotation in einem Plug-In mit der Klasse XmIDocument gelesen
und geschrieben werden soll. Ein XAML Lader verwendet den hier vorgestellten Weg nicht.

Die neue Annotationsklasse kann mit Xm|Document verwendet werden, indem die Methoden Serialize und
Deserialize der Basisklasse AnnotationBase liberschrieben werden. AnnotationBase bietet die zusatzlichen
Hilfsmethoden SerializeAttribute und DeserializeAttribute an, um Eigenschaften in oder aus einem XML Knoten
zu schreiben oder zu lesen. Es ist auerdem immer notwendig die gleichnamigen Vorgdangermethoden der
Basisklasse aufzurufen, damit die De-/Serialisierung vollstandig durchgefiihrt werden kann. Um die korrekten
Namensraume und Prafixe in der XAML Struktur kimmert sich letztendlich AnnotationBase (siehe Abschnitt
Das Priifix der Annotationen). Die Umsetzung ist daher, wie der untenstehende Quelltext zeigt, kurz.

1 public override XmlElement Serialize(XmlElement parent)
2 {
3 var node = base.Serialize(parent);
4 SerializeAttribute(node, GroupNameProperty);
5 return node;
6 }
7 public override void Deserialize(XmlElement node)
8 {
9 base.Deserialize(node);
10 DeserializeAttribute(node, GroupNameProperty);
11 }

Quelltext 43 Die Methoden Serialize und Deserialize miissen iiberschrieben werden, um die Eigenschaften der Annotation zu speichern.

Die Annotationsklasse AnnotationGroup ist nun bereit, in einem XAML Dokument verwendet werden zu kon-
nen. Auf diese Art kdnnen auch weitere Eigenschaften hinzugefligt werden, um noch mehr Funktionalitat zu
erhalten. Weiterhin kann eine einzelne Eigenschaft des Elements als Inhaltseigenschaft des XML Elements defi-
niert werden. Dadurch wird der Wert (z.B. eine weitere Annotation) zwischen den Start- und Endetags des XML
Elements automatisch dieser Eigenschaft zugewiesen. Dies ist schnell realisiert, indem das Attribut Content-
PropertyAttribute an die neue Annotationsklasse angehdngt wird. Die Klasse AnnotationVerb in LATTE besitzt
beispielsweise die Eigenschaft Parameters als Inhaltseigenschaft, um weitere Annotationselemente aufnehmen
zu kénnen.

[ContentPropertyAttribute("Parameters")]
public class AnnotationVerb : AnnotationBase

{
public ObservableCollection<AnnotationParameter> Parameters
{
get { .. }
set { .. }
}

public static readonly DependencyProperty ParameterProperty =
DependencyProperty.Register("Parameters”,
typeof(ObservableCollection<AnnotationParameter>),typeof(AnnotationVerb),
new PropertyMetadata());

Quelltext 44 AnnotationVerb unterstiitzt Inhalte durch das Attribut ContentPropertyAttribut

7.6 Erweiterbarkeit durch das Plug-In-System

Mit LATTE wurde ein Plug-In System entwickelt, das auf dem Managed Addin Framework (MAF) von Microsoft
(Add-ins and Extensibility [Microsoft, 2011]) aufsetzt. MAF ermdglicht das Spezifizieren von Schnittstellen zur

Umsetzung

Kommunikation zwischen der Anwendung LATTE und Plug-Ins. Plug-Ins fiir LATTE werden dabei in sogenannten
Assemblys untergebracht, welche DLL Dateien aus Windows dhneln. LATTE Iadt diese Dateien jedoch nicht
direkt, sondern kommuniziert Giber die Grenze der eigenen Anwendungsdoméne (Application Domain
[Microsoft, 2011]) mit den Plug-Ins. Die Ausfiihrung der Plug-Ins erfolgt daher in einem separaten Prozess, um
die Hauptanwendung nicht zu beeinflussen (z.B. durch unerwiinschte Speichermanipulationen) oder gar zum
Absturz zu bringen.

Controller

Transformation

XSLT Prozessor
Plug-In-Verwaltung

Abbildung 62 Die Controller Komponente der MVC Architektur wird durch Plug-Ins erweitert

Neben dem Sicherheitsaspekt besitzt MAF den fiir LATTE wichtigen Vorteil, dass Plug-Ins geladen und auch
wieder entladen werden kénnen. Normalerweise kénnen Assemblys, die mit .NET geladen wurden nicht mehr
entladen werden; d.h. der Entladezeitpunkt kann nicht selbst festgelegt werden, sondern wird von der .NET
Laufzeitumgebung bestimmt. Da die Transformationseinheit jedoch die Plug-In Dateien nach einer Transforma-
tion freigeben muss — der Benutzer kdnnte sich entscheiden, eine Anderung am Plug-In vorzunehmen — ist es
notwendig, dass die Plug-Ins auf jeden Fall nicht mehr im Speicher vorhanden sind. Mit MAF kénnen die DLL
Dateien ersetzt, kopiert oder geléscht werden, weil MAF jedes Plug-In in einen eigenstandigen .NET Prozess
|adt. Der eigenstandige Prozess wird nach der Transformation beendet und die Plug-In Dateien dadurch freige-

geben.
Host Prozess Add-In Prozess
LATTE AppDomain Grenze Plug-In
LATTE_Host LATTE_Addin Plug-In
LATTE Adapter Adapters
: (DLL) (DLL) | (DLL)
1 1
i i
LATTE_Host Contracts LATTE_AddIn
View (DLL) e
(DLL) (DLL)
i = = i
Host ! Schicht i Vertrag | Schicht ! Plug-In
1 1
Methodenaufruf - i Serialisierung - i Daten- i Deserialisierung - i Ausfuhrung
Ruckgabewert 1 & Deserialisierung | strom | < Serialisierung i <Riickgabe

Abbildung 63 Die Add-In Pipeline in LATTE (angepasst aus [MacDonald, 2010]) und
die Ausfiihrung eines Methodenaufrufs durch die Schichten

a8 Migration und Anpassung von Dialoganwendungen fiir beriihrungsempfindliche Bildschirme

Der Nachteil dieser Vorgehensweise besteht in der aufwandigen Umsetzung der Kommunikation. Die Metho-
denaufrufe kdnnen nicht mehr einfach umgesetzt werden, weil sie nun Gber eine Prozessgrenze hinweg statt-
finden. Die Parameter und auch der Riickgabewert miissen daher zuerst serialisiert, d.h. in einen Datenstrom
umgewandelt werden. In der anderen Richtung wird aus dem Datenstrom wieder ein Objekt mit Typinformati-
on (z.B. ein Integer) erstellt, d.h. die Information wurde deserialisiert (Abbildung 63). Zu diesem Zweck setzt
MAF auf ein System aus Komponenten, das die Kommunikation zwischen der Anwendung und den Plug-Ins
Ubernimmt. Die moglichen Methoden fiir Kommunikation werden dazu in sogenannten Vertragen (engl.
contracts) festgelegt, die einfache Schnittstellenbeschreibungen (in C# interface) sind. Die Kommunikations-
partner benutzen diese Schnittstellen jedoch nicht direkt, sondern kommunizieren liber eine jeweils eigene
Schicht zur Anwendungsgrenze hin. LATTE und Plug-Ins implementieren in ihrer jeweiligen Schicht die soge-
nannten View- und Adaptorenklassen. Wahrend die View-Klassen dem Benutzer den Schein eines normalen
Objekts vorspielen, konvertieren die Adaptorenklassen die Methodenparameter in oder aus einem Daten-
strom.

In LATTE wird MAF durch die Visual Studio Projekte LATTE_Host.View und LATTE_Host.Adapter auf der Host-
Anwendungsseite umgesetzt und durch LATTE_AddIn.View sowie LATTE_AddIn.Adapters fur Plug-Ins zur Ver-
fligung gestellt. Die Schnittstellendeklarationen der Vertrage sind im Projekt Contracts definiert.

7.6.1 Neues Plug-In erstellen

Ein neues Plug-In wird schnell und einfach hergestellt, indem das Visual Studio Projekt LATTEC_WPF als Vorlage
verwendet wird. Die Kopie kann dann nach Belieben angepasst werden. Dazu wird die Implementierung der
Datei Pluginlmpl.cs verandert. Zudem sollten die Assemblyinformationen in den Projekteinstellungen sowie
die Annotation AddIn der Klasse PluginImpl, d.h. Name, Version, Beschreibung und Autor gedndert werden.

Jedes neue Plug-In muss drei Vorrausetzungen erfiillen, damit es mit LATTE verwendet werden kann:

1. Die Add-In Assembly muss auf die folgenden Assemblys verweisen:

e LATTE_AddIn.View und
e LATTE_AddIn.Adapters fiir die Kommunikation
e LATTE_SharedPlugin zur Nutzung und Austausch von gemeinsam genutzten Datenstruktu-
ren (ProcessingMessage, Properties)
e System.Addin zur Einbindung des MAF
2. Die folgenden Standardklassen missen abgeleitet und implementiert werden:

e ProcessingAddinView (AddInView.cs)
e PluginAddinView (AddInView.cs)

3. Das Plug-In muss einen eindeutigen und von anderen Plug-Ins unterscheidbaren Namen und Namens-
raum Uber die Methoden GetName() und GetNameSpace() der Klasse PluginAddInView zurickliefern.

7.6.2 Anpassung der Kommunikation

Das Hinzufiigen oder Andern von Methoden oder Schnittstellen im Vertrag erfordert die Anpassung aller ge-
nannten Projekte, also Contracts, LATTE_Host.View, LATTE_Host.Adapter, LATTE_AddIn.View und LAT-
TE_AddIn.Adapters. AuRerdem ist es notwendig, dass die Typen der Methodenparameter, die komplexe Objek-
te darstellen (z.B. Xm1Document) in den Adaptoren sowie in der Contracts Assembly als .NET Klasse Stream
deklariert werden. Einfache Klassentypen, wie Integer oder String kénnen von MAF automatisch serialisiert und
deserialisert werden und mussen daher nicht als Stream deklariert werden. Nur die View Klassen erhalten die
tatsachlichen Parametertypen wie XmlDocument.

Die Adaptorenklassen ibernehmen die Serialisierung und Deserialisierung der Parameter. Fiir eigene komplexe
Objekte muss entsprechend die Datenstruktur in einen Datenstrom konvertiert werden, um fiir die Kommuni-

Umsetzung

kation eingesetzt werden zu kdnnen. Fiir die Klassen XmIDocument, XmINamesapceManager und PropertyList
(benutzt in InitProperties(), siehe Quelltext 6) wurden dazu bereits Routinen geschrieben, die sich in der Klasse
Converters in der Assembly Contracts befinden (Namensraum Contracts.Shared). Die darin enthaltenen stati-
schen Methoden konvertieren u.a. XML Objekte in einen Datenstrom und wieder zuriick. Die Konvertierungs-
methoden unterstitzen auch den null Zustand eines Objektes und kdnnen diesen tber die Grenze der Anwen-
dungsdomane erhalten. Dieser Anwendungsfall ist zu beachten, da null sonst nicht serialisiert werden kann.

7.7 Diskussion

In den vorangegangenen Kapiteln wurde die Umsetzung der Anwendung LATTE und insbesondere der Trans-
formationsprozess vorgestellt. Darin wurde auch der Prototyp LATTE erldutert, der aus drei Bestandteile nach
dem MVC Muster besteht: der Oberflache, der Transformationseinheit und dem Plug-In System. Diese Umset-
zung ermoglicht die Transformationen von Dialogen mit XSLT sowie mit einer .NET Programmiersprache, z.B. in
C#. Fur die Kommunikation entlang der Transformationspipeline werden Annotationen in den XAML Quelltext
eingefiigt, welche die Darstellung des Dialogs nicht beeintrachtigen. Stattdessen kénnen so Praprozessoren und
XSLT die nachfolgenden Prozessoren XSLT und Postprozessor beeinflussen und sogar steuern. Das Ergebnis ist
ein fur berihrungsempfindliche Bildschirme angepasster Dialog.

Die Kapitel der Umsetzung konnten allerdings nur einen Teil der Grundlagen {iber den Transformationsprozess
behandeln. Der bestehende Prototyp kann in einigen Bereichen verbessert werden, um die Transformation
noch méachtiger werden zu lassen. Diese Verbesserungen sollen hier geschildert werden.

Eine erste Verbesserung ist die Unterstiitzung fiir die hinter den Dialogen liegende Programmierlogik oder
Quelltexte. Fiir neue oder ausgetauschte Dialogelemente kann es manchmal erforderlich sein, dass auch eine
Programmlogik eingebaut werden muss. Mit dem aktuellen Prototyp ist das noch nicht moglich. Doch mit den
Plug-Ins sollte dies kaum ein Problem darstellen. Aber auch mit XSLT ist es denkbar, dass externe Funktionen
die Moglichkeit bereitstellen, die Programmlogik anzupassen. Besonders mit partiellen Klassen, d.h. Klassen,
die Gber mehrere Quelldateien verstreut liegen konnen, ist diese Umsetzung moglicherweise leicht zu bewerk-
stelligen.

Ein weiterer Ansatzpunkt fiir Verbesserungen ist die eingesetzte XSLT Sprache. Fir die Durchfiihrung wurde das
XSLT Framework von Microsoft eingesetzt, welches die XSLT Version 1.0 von 1999 unterstitzt. Diese Version ist
bereits ausreichend fiir den Transformationsprozess, da sie Turin-vollstandig ist. Doch mit der neuen Version
kommen auch zahlreiche Erleichterungen fiir den Entwickler wie beispielsweise mehrere Ausgabedokumente
und benutzerdefinierte Funktionen fiir XPath Ausdriicke. Jedoch sieht Microsoft es bis heute nicht fiir not-
wendig an, die neue Version 2.0 von 2007 (siehe [W3C, 2007]) zu implementieren: ,As for XSLT 2.0 - we’ve
heard from customers and understand the improvements in XSLT 2.0 over XSLT 1.0, but right now we’re in the
middle of a big strategic investment in LINQ and EDM for the future of the data programming platform [..]. But
we are always re-evaluating our technology investments so if your readers want to ramp up their volume on
XSLT 2.0 please ask them to drop us a line with their comments. “ [Lovett, 2006]. Stattdessen wird auf andere
Hersteller verwiesen wie z.B. das teilweise proprietdre SAXON.NET [Saxonica Limited, 2010]. Der Einsatz von
SAXON.NET in LATTE wurde jedoch verworfen, da der Implementierungsaufwand mit SAXON hoher einge-
schatzt wurde als der mit dem Microsoft .NET Framework. AuRerdem setzt SAXON vollsténdig auf JAVA, so dass
fr Aufrufe aus einer .NET Umgebung (wie C# Anwendungen) zuerst eine Java Laufzeitumgebung gestartet
werden muss, um die Methoden und Klassen von SAXON nutzen zu kénnen.

Auch wenn XSLT in Version 1.0 verwendet wird, ist es moglich die Sprache durch eigene Funktionen zu erwei-
tern, wie es im Quelltext 24 mit LATTE:ConvertBoolean demonstriert wurde. Dadurch kdnnen komplizierte
Vergleich oder String-Manipulationen vereinfacht werden. Wem das nicht reicht, der kann mit EXSLT (siehe
[Stewart, et al., 2006]) weitere XSLT Elemente einsetzen, die noch mehr Mdoglichkeiten bieten. Natrlich kon-
nen auch eigene XSLT Elemente erstellt und verwendet werden.

Migration und Anpassung von Dialoganwendungen fur berihrungsempfindliche Bildschirme

Eine weitere Moglichkeit besteht darin, Plug-In als Ersatz flir XSLT zu verwenden, z.B. wenn man sich noch nicht
gut genug mit XSLT auskennt. Dies ist jedoch auf lange Sicht nicht zu empfehlen, da Anderungen am Transfor-
mationsprozess in LATTE nur miihsam {iber eine separate Entwicklungsumgebung wie Visual Studio erreicht
werden konnen. Stattdessen sollte XSLT erst einmal zum Experimentieren verwendet werden und einige weni-
ge Abbildungsvorschriften ausprobiert oder die Vielzahl von Mdéglichkeiten von XSLT und XPath ausgelotet
werden. Fiir besonders komplizierte oder aufwandige Transformationen kann zuletzt immer noch auf reinen
.NET Code (z.B. C#, VB# oder Delphi Prism) zurlckgegriffen werden und XSLT zur Steuerung der Plug-Ins ver-
wendet werden.

Annotationen sind ein machtiges Mittel, um Plug-Ins und damit den Transformationsprozess steuern zu kén-
nen. Die in dieser Arbeit vorgestellten Annotationen bilden die Grundlage fiir zukiinftige Transformationen und
konnen durch Erweiterungen, d.h. neue Annotationsklassen, fiir Plug-Ins vielseitig einsetzbar gemacht werden.
Dies gilt besonders, weil Plug-Ins spezielle Aufgaben Gbernehmen kénnen, um beispielsweise nur eine Art von
Steuerelement zu transformieren. Fiir diese Spezialfélle konnten auch benutzerdefinierte Annotationen einge-
setzt werden, welche die Transformation innerhalb des Plug-Ins regeln. Doch Plug-Ins kdnnen mit der Hilfe von
Annotationen als eine Art Bibliothek flr XSLT dienen. Mit AnnotationVerb.Invoke sind so beliebige Methoden
eines Plug-Ins liber die Annotation AnnotationVerb innerhalb des XSLT Quelltexts aufrufbar.

Wie bereits erwdhnt gestaltet sich das Schreiben von XAML Strukturen schwierig. Microsoft unterstutzt zwar
das Einlesen von XAML, das Schreiben in XAML wird jedoch nur oberflachlich unterstiitzt (siehe Abschnitt Nut-
zen eines XAML Laders auf Seite 89). Daher wurde mehr Wert auf den Umgang mit XmIDocument innerhalb
von Plug-Ins gelegt als auf den XAML Lader. Trotzdem bietet XAML den Vorteil, die Dialoge ohne grofRen Auf-
wand grafisch darzustellen. In LATTE wurde dies benutzt, um eine Vorschau des transformierten Dialogs zu
ermoglichen. Dazu wurde der Dialogdesigner des quelloffenen SharpDevelop Projekts verwendet, welcher
zusatzliche Funktionen besitzt, um die Steuerelemente zu verschieben und deren GréfRe anzupassen. Fir das
Projekt wurden diese Moglichkeiten jedoch deaktiviert, da eine vollstédndige Integration des Designers zu viel
Zeit gekostet hatte. Ein bedeutender Vorteil des SharpDevelop Editors fiir LATTE ist jedoch, dass er Fenster-
und XAML Seitenelemente (<Window> und <Page>) auf die gleiche Art und Weise darstellt. Der XAML Lader
von Microsoft kann zwar Seitenelemente innerhalb eines Fensters darstellen, dagegen kdnnen Fensterelemen-
te selbst nur als eigenstandige Fenster auBerhalb der LATTE Umgebung dargestellt werden.

Letztendlich kann man erkennen, dass die vorgestellten Umsetzungen noch etwas Feinschliff erfordern, um in
der Produktion eingesetzt werden zu kénnen. Doch der Autor dieser Zeilen denkt, dass die vorgestellten Grund-
lagen und Konzepte die kiinftigen Aufgaben gut [6sen konnen. Zum Schluss und weil die Pra-, Post- und XSLT
Prozessoren das Herz der Transformationspipeline darstellen, soll hier noch eine kurze Ubersicht zu deren Vor-
und Nachteilen (Tabelle 8) gegeben werden.

Vorteile Nachteile
Pra- und Post- e Kann mit beliebiger .NET Sprache ge- e Prozessor muss bei Anderungen neu in
prozessor schrieben werden eine DLL-Datei kompiliert und in den Plug-
(Plug-Ins) e Syntax von C# oder VB.NET ist einfach zu In Ordner kopiert werden.
verwenden e Das Laden und Ausfiihren von Plug-Ins vor
dem Transformationsprozess dauert eini-
ge Zeit.
XSLT e Machtige Transformationssprache e Mit XPath muss eine weitere Sprache
Prozessor e Turing-vollstandig gelernt werden
e Kann direkt im Editor erstellt und in der e Einige Probleme sind nur umstand-
Transformation verwendet werden. An- lich zu 16sen, dadurch dass XSLT re-
derungen sind daher schnell moglich. gelbasiert ist.

e Durch .NET Implementierung beschrankt
auf XSLT 1.0 Syntax.

Tabelle 8 Vor- und Nachteile der Prozessoren

Technische Evaluation anhand der Durchfiihrung einer Touch-Studie [k

8 Technische Evaluation anhand der Durchfithrung einer Touch-Studie

To measure is to know.

James Clerk Maxwell
schottischer Physiker

Dieses Kapitel beschaftigt sich mit einer im Rahmen der Diplomarbeit durchgefiihrten Benutzerstudie, um die
Effektivitat der beschriebenen Lésungsmethode und Umsetzung zu untersuchen. Uber die Durchfithrung der
Studie und deren Ergebnisse wird im Kapitel 8.2.2 und 8.2.3 berichtet. Eine Diskussion der Ergebnisse halt das
Kapitel 8.2.4 bereit.

8.1 Motivation

Es existiert eine Vielzahl von Experimenten, die den Einsatz von beriihrungsempfindlichen Bildschirmen in ver-
schiedenen Umgebungen und Situationen priifen. Eines der ersten experimentellen Vergleiche zwischen Maus
und berihrungsempfindlichen Bildschirm wurde von Ben Shneidermann (vgl. [Sears, et al., 1991]) durchge-
fuhrt. Seitdem befassen sich viele Untersuchungen auch mit Themen wie der Prézision der Fingereingabe (u.a.
[Gleeson, et al., 2004], [Schmidt, 2008 S. 34ff.] und [Holz, et al., 2011]), mit Gesteninteraktion (vgl. [Matejka, et
al., 2009] und [Mauney, 2010]) oder mit der Bewertung, wie Formen auf einem berihrungsempfindlichen Bild-
schirm prasentiert und manipuliert werden kénnen (u.a. [Anslow, 2010] und [Raschke, et al., 2010]). Es konnte
jedoch keine Studie gefunden werden, die ganze Dialoge (insbesondere Standarddialoge wie Offnen und Dru-
cken) von handelsiiblichen Desktopsystemen wie Windows fiir die Touchbedienung untersucht.

Zudem sollte die in dieser Diplomarbeit gezeigte Losung sowie Umsetzung, d.h. die Transformationsmethode
(Kapitel 4) und der Prototyp (Kapitel 7), tiberprift werden. Dass die Umsetzung bereits Dialoge transformieren
kann, wurde schon wahrend der Umsetzung in Kapitel 7.5.2 (,,Grundlagen der Transformation) gezeigt. Es war
jedoch zusatzlich notwendig zu prifen, ob auf diese Art die Dialoge mit den Fingern tGberhaupt bedienbar wer-
den.

8.2 Studie

In einer Benutzerstudie sollte zuerst die Bedienung von Standarddialogen wie , Datei 6ffnen” oder Druckseiten-
einstellung mit den Fingern untersucht werden. Diese Dialoge werden fiir gewdhnlich sehr oft im Alltag ge-
nutzt, so dass man bei einem Einsatz von bertihrungsempfindlichen Bildschirmen dort ansetzen sollte. AuRRer-
dem wurde eine Auswahl von den vorgeschlagenen Steuerelementen aus Kapitel 5 fiir die Transformation
verwendet. Fiur jeden Dialog wurde eine Reihe von liblichen Tatigkeiten erstellt, die die Teilnehmer durchzu-
flihren hatten, wie z.B. eine Datei zu 6ffnen oder eine Einstellung vorzunehmen. AnschlieRend bewerteten die
Teilnehmer die Dialoge und Steuerelemente mit einem Fragebogen.

8.2.1 Hypothesen

Vor der Durchfiihrung der Studie wurden die folgenden Hypothesen aufgestellt, um prifen zu kénnen, ob eine
Verbesserung durch die vorgestellte Losung (Kapitel 4, 5 und 7) aufgetreten ist:

1. Esist ausreichend die Eigenschaften von einzelnen Elementen zu verdandern, um die Elemente mit
den Fingern besser bedienen zu kénnen. Mit dieser These soll gepriift werden, dass die Anderung von
Eigenschaften wie GroRe und Abstande von bestehenden Steuerelementen eine einfache und schnelle

Migration und Anpassung von Dialoganwendungen fiir beriihrungsempfindliche Bildschirme

Verbesserung fir die Fingerbedienung darstellt. Flr eine Fingerbedienung muss es also nicht unbe-
dingt erforderlich sein, Dialoge vollstandig neu zu gestalten oder gar NUI zu generieren.

2. Esist ausreichend Steuerelemente in einem Dialog auszutauschen oder zu erweitern (mit zusatzli-
chen Elementen), um diesen Dialog besser mit den Fingern bedienen zu kénnen. Mit dieser These
soll Uberprift werden, dass liberall dort, wo es nicht ausreicht Eigenschaften von Steuerelementen zu
andern, diese Elemente durch neue oder verbesserte Versionen ersetzt werden kénnen.

3. Die eingefiihrten Steuerelemente, als Ersatz vorhandener Elemente, sind fiir die Nutzung mit den
Fingern geeignet. Damit soll gezeigt werden, dass die in Kapitel 5 eingefiihrten Steuerelemente als Er-
satz fur die Standardelemente in Dialogen dienen kdnnen und so die Bedienung des Dialogs mit den
Fingern erleichtern. In dieser Studie wurden allerdings aus Zeitgriinden nur die folgenden Steuerele-
mente verwendet: das vergroRerte Kontrollkdstchen (Kapitel 5.4), das numerische Tastenfeld (5.5), die
Brotkrumennavigation (5.6) und die Navigationsleiste fiir Listenfelder (5.7).

Daraus lasst sich folgern, dass wenn diese Hypothesen bestatigt werden, die in der Umsetzung vorgestellte
Transformation ausreichend ist, um Steuerelemente in Dialogen semi-automatisch an berihrungsempfindliche
Bildschirme anzupassen.

8.2.2 Methode

Die Studie wurde als ein between-subjects-Design mit sechs Teilnehmern entworfen. Die Teilnehmer mussten
die ihnen gestellten Aufgaben an einem berlihrungsempfindlichen Bildschirm erledigen und darauf folgend
Fragen zu ihren Praferenzen beantworten. Zudem wurden wahrend der Durchfliihrung die Tatigkeiten sowie
Gesprochenes durch den Studienleiter (d.h. der Autor) aufgenommen.

Experimenteller Aufbau und Umgebungsbedingungen

Die Studie wurde in einem Privatraum durchgefiihrt, der wahrend den Aufgaben von duRRerlichen Ablenkungen
abgeschottet wurde. Die Dialoge wurden fir die Bedienung auf einem 23 Zoll groRen und berihrungsempfind-
lichen TFT Bildschirm mit einer Auflésung von 1920x1080 Pixeln durchgefiihrt. Es handelte sich dabei um einen
Bildschirm der Marke Acer, den T230H Breitbildschirm mit Multi-Touch (zwei Berlihrungen gleichzeitig). Die im
Gerét verbaute Technik nutzt ein Raster aus Infrarotstrahlen, das tiber die Bildschirmscheibe gelegt ist. Diese
Technik wurde bereits im Kapitel 2.3.1 (,, Technologien”) im Unterabschnitt ,Optische Bildschirmoberflachen”
erlautert. Weiterhin wurde der Bildschirm von seinem mitgelieferten Standful® getrennt, um eine bessere Be-
dienung zu ermdglichen. Dazu wurde der Bildschirm auf einem Untergrund aus Polystyrol gebettet und auf
einen Neigungswinkel von knapp 35 Grad gebracht. Dieser Winkel wurde als fur den Aufbau ideal befunden, da
ein kleinerer Winkel die Lichtspiegelung an der Bildschirmscheibe verstarkt und ein groRerer Winkel die Integri-
tat des Polystyrols gefdhrdet hatte. Fir die Hand- und Armablage wurde eine handelsiibliche Tastaturmatte
den Teilnehmern zur Nutzung lberlassen. Zudem wurde fiir zwei Aufgaben eine Maus benétigt, die deshalb
entsprechend gestellt wurde.

Wahrend die Teilnehmer die Aufgaben bearbeiteten, wurde der Bildschirm mit einem Videoprogramm aufge-
nommen, um spater die Beriihrungen zu zdhlen und die Treffer von den ,Vertippern“ unterscheiden zu kén-
nen. Jede Berlihrung konnte in der Aufnahme als kleiner werdender Kreis wahrgenommen werden. Zudem
wurde den Teilnehmern vorgegeben, dass sie ihre Tatigkeit kommentieren und Erfolge, Probleme, Unstimmig-
keiten oder Ahnliches mitteilen. Die Kommentare der Teilnehmer wurden wihrend der Aufgabe in das Bild-
schirmvideo integriert, so dass sie mit den Tatigkeiten auf dem Bildschirm direkt in Beziehung gebracht werden
konnten.

Technische Evaluation anhand der Durchfiihrung einer Touch-Studie

Abbildung 64 Der Aufbau des beriihrungsempfindlichen Bildschirms fiir die Benutzerstudie. Hinten rechts kam ein Bildschirm zur Dar-
stellung des aktuellen Aufgabentextes und zur Ablaufkontrolle zum Einsatz. Daneben liegt ein Fragenkatalog,
den die Teilnehmer fiir die Bearbeitung beantworteten.

Die Aufnahme wurde durch den Leiter gestartet, nachdem der Teilnehmer die Aufgabe gelesen und dies besta-
tigt hatte. Die Aufnahme wurde nach der Aufgabe manuell beendet, als der Teilnehmer den Dialog, wie von der
Aufgabenstellung verlangt, durch Betatigen des Ok Schalters beenden wollte. Der Dialog wurde dadurch jedoch
nicht geschlossen, sondern es wurde nur die Aktion durch einen Nachrichtendialog bestatigt. Der Teilnehmer
konnte so auch noch im Anschluss der Aufgabe den Dialog betrachten und Erinnerungen fir die Befragung
wachrufen.

Teilnehmer

Fir die Evaluation wurde eine Studie durchgefiihrt, die sechs Teilnehmer zwischen 20 und 60 Jahren absolvier-
ten. Der Altersdurchschnitt lag bei 36 Jahren. Von den Teilnehmern waren zwei weiblich und vier mannlich.
Dies wurde jedoch nicht als Einflussfaktor gesehen. Die Studienteilnehmer gaben an, dass sie keinen beriih-
rungsempfindlichen Bildschirm besdRen, sondern alle nur Mobilgerédte (Smartphone, Navigationsgerate) oder
Kiosksysteme mit den Fingern bedient hatten. Jedoch waren alle gut mit der Maus und Tastatur vertraut und
kannten sich mit der Oberflache von Windows 7 aus. Als Dankeschon fir die Absolvierung der Studie bekamen
die Teilnehmer am Ende eine siiBe Aufmerksamkeit geschenkt.

Durchfiihrung

Zuerst mussten die Teilnehmer einen Fragebogen ausfillen, der sie zu ihrem Alter und ihren Mediengewohn-
heiten wie Nutzungsdauer von PC sowie dem Vorwissen zu beriihrungsempfindlichen Technologien (Smart-
phone, Tablet usw.) befragte. AuRerdem wurden die Teilnehmer bereits vorher befragt, was sie von der Be-
dienung eines berihrungsempfindlichen Bildschirms erwarteten.

Vor dem Beginn der Aufgabendurchfiihrung durften sich die Teilnehmer mit dem Bildschirm vertraut machen.
Dazu wurde die Anwendung Surface Collage aus dem Microsoft Touch Pack fir Windows 7 gestartet. Mit dieser
Software konnten die Teilnehmer sich auf die kommenden Aufgaben einstimmen, so dass bereits bei der ers-
ten Aufgabe ein Lerneffekt auftreten konnte. Die Anwendung Surface Collage hatte jedoch nichts mit den Auf-
gaben zu tun, so dass die Teilnehmer nicht wissen konnten, was sie erwartet. Die Ubungsdauer lag zwischen
fanf und zehn Minuten.

109

B[Migration und Anpassung von Dialoganwendungen fiir beriihrungsempfindliche Bildschirme

AnschlieRend wurden sie tiber den anstehenden Aufgabenverlauf informiert. Dazu wurde ihnen auf einem
zweiten Bildschirm ein Browserfenster in ausreichender GréRe dargestellt, das sie iber den Studienablauf auf-
klarte. Dieses Fenster wurde aulRerdem Uber die gesamte Dauer der Studie fiir die zu bearbeitende Aufgaben-
beschreibung verwendet. Die Teilnehmer konnten die Aufgabe daher wiederholt lesen, wahrend sie die Aufga-
be bearbeiteten. Wahrend der Aufgaben und der Beantwortung der Fragen konnten die Teilnehmer zu jeder
Zeit zum aktuellen Fragebogen, zur Aufgabenstellung oder zum Aufgabenablauf Fragen stellen, um Probleme
oder Fehldeutungen zu vermeiden. Die Teilnehmer konnten jederzeit eine Pause einlegen oder sogar die Studie
abbrechen, was sie jedoch beides nicht taten.

Die Aufgaben liefen stets gleich ab. Zuerst wurde auf dem Webseitenfenster die neue Aufgabe prasentiert, die
die Teilnehmer sofort lesen durften. Dazu wurde auf dem beriihrungsempfindlichen Bildschirm der zur Aufgabe
gehorende Dialog positioniert. Damit sich die anfangliche Position niemals dnderte, wurde der Desktophinter-
grund von Windows durch ein Bild mit weillen Rechtecken ersetzt. Die Dialoge wurden mit ihrer linken, oberen
Ecke ndaherungsweise in diese Rechtecke mit der Maus positioniert. Die Rechtecke besalRen dazu die Ausmalie
der entsprechenden Dialoge. Den Teilnehmern war es zwar erlaubt, die Dialoge zu verschieben, jedoch machte
keiner davon Gebrauch. Weiterhin waren die Rechtecke auf dem Desktop so platziert, dass die Dialoge die
rechte untere Halfte des Bildschirms beanspruchten, so dass sie mit der rechten Hand auf der Ablage benutzt
werden konnten. Fir Linkshander wurden die Dialoge an der Mittelachse auf die andere Bildschirmseite ge-
spiegelt.

Abbildung 65 In der Studie verwendeter Desktophintergrund fiir die einheitliche Positionierung der Dialoge an weien Rechtecken.

Nachdem die Teilnehmer Bereitschaft meldeten, konnten sie die eigentlichen Aufgaben angehen. Die ersten
Aufgaben nutzten einen Nachbau des Standarddialogs , Datei 6ffnen” aus Windows, der mit WPF und XAML
erstellt wurde. Der Nachbau erméglichte Anderungen einzelner Steuerelemente, die in den Aufgaben entspre-
chend eingesetzt wurden. Im Folgenden werden die fir die Studie entwickelten Aufgaben erlautert. Die Aufga-
ben wurden dazu in zwei Teile aufgeteilt, in denen zwei unterschiedliche Arten von Dialoge untersucht wurden.
In den ersten sieben Aufgaben sollten die Teilnehmer die Bedienung eines Standard Offnen-Dialogs von
Windows 7 bewerten, wahrend im zweiten Teil die Teilnehmer in neun Aufgaben einen Seiteneinstellungsdia-
log fiir Drucker bedienen sollten. Beide Dialoge enthielten unterschiedliche Arten von Steuerelementen. Wah-
rend der Offnen-Dialog mit Listen und Navigationsleisten ausgestattet war, wurde der Seiteneinstellungsdialog
mit Elementen wie Dropdown-Listenfeld, Drehfeldern und Kontrollkdstchen aufgebaut. Einzelne Dialoge wur-
den entsprechend der Aufgabenstellung angepasst, um verschiedene Steuerelemente und Eigenschaften zu
prifen. AuBerdem wurde gemaR den Hypothesen verschiedene SchaltergroRen, ListenelementgréoRen und
Steuerelementgroflen eingesetzt.

Technische Evaluation anhand der Durchfiihrung einer Touch-Studie

] Durchsuchen SHICRC X"] Durchsuchen =8
& O [ro » Studie * Namensiste * Namen * B * = [42] | suchen attrape) @ 8 TR S [| suchen atape)
Settings “ 1| Name Type Time Size. == || &7
ShargDevelop . —_—
o s Directory 04082011 2348 Directory] Name Ty Name T Time Sne
Studie @ Bachmann.docx Microsoft Word 17.07.201112:33 0 kb
Studie 2 o Baerzip WinRAR-ZIP-Arc 17.07.201112:33 0k w
swn | . l
Aufbau Bilder B Baverrar WinRAR-Archiv 17.07.201112:33 Ok /\ " /\
Bilder &) Baum.docx Microsoft Word 17.07.20111233 0k f zip. ‘
DialogBild Bachr di Baer.: B: g
D:;:g; < 1] Baumannbt Textdokument 170720111233 Ok il REAMAD G S comlt
ES : - S I
Ordnerstruktur _] Bayerxs Microsoft Excel ¢ 17.07.201112:33 0 kb G w x
Attgeben & Beckerzip WinRAR-ZIP-Arc 17.07.201112:33 0k =
Probanden - NICHT AUF DVD || 1 Beckmann.docx Microsoft Word 1707.20111233 o | . et ip.
Studie [Bergmann.txt Textdokument 17.07.201112:33 0 kb Baum.docx Baumann.txt Bayerxls Beckerzip
Namensiiste Z|| & Bodenzip WinRAR-ZIP-Ard 17.07.201112:33 0k
svn __ Brahmstixt Textdokument 1707.201112:33 0kl a1 w ——
Liste
Namen 1) Brand.docx Microsoft Word | 17.07.201112:33 0k ‘ B ‘
T s oV B o \WInRAR-Archiv - 1707.20111233 Ok \/ Beckmanndoc Bergmenntxt Bodenzip Brahmstbct \/
5, [Buchertxt Textdokument 17.07.2011 1233 Okby C mm |
ynergy -
Synergyl &) Buhmann.ds Microsoft Excel ¢ 17.07.201112:33 o ' xl
Tests 2
_ A\ ‘ = AT
. = i D . i D pateiname BeCkerzip ‘Alle Dateien () -
Dateiname Bachmann.docx Alle Dateien (1) - -
[] Nur im Lesemodus offnen Abbrechen | AUS| Nurim Lesemodus sffnen Offnen Abbrechen

Abbildung 66 Vergleich der in der Studie eingesetzten Dialoge. Links: eine Nachbildung des originalen Offnen-Dialogs fiir 01 und 62;
Rechts: der transformierte Offnen-Dialog fiir die Aufgaben 03 bis 07.

Die Aufgabe 1 (in der Studie O1 genannt) und Aufgabe 2 (02) unterschieden sich nicht in der Aufgabenstel-
lung, sondern nur in der Bedienung (Abbildung 66). Die Teilnehmer sollten dazu jeweils eine Datei 6ffnen, die
sich unterschiedlich tief in der Ordnerhierarchie befand. Die Aufgabe konnte dadurch gel6st werden, indem mit
der Maus und spater mit den Fingern die Ordnernamen angeklickt bzw. getippt wurden, um so die Datei sicht-
bar zu machen. Ein Vergleich bei gleichem Dialog mit unterschiedlichen Eingabearten sollte priifen, ob und in
wie weit die aktuellen Dialoge eine Schwierigkeit fiir die Fingereingabe darstellen.

Die Aufgabe 03 prisentierte den Teilnehmern das erste Mal eine angepasste Version des Offnen-Dialogs. Die
Teilnehmer sollten dazu eine bereits sichtbare Datei im Listenfenster markieren und 6ffnen (durch Doppeltip-
pen oder durch den Offnen-Schalter). Die Aufgabe wurde fiir den Einstieg sehr einfach gehalten. So konnten
sich die Teilnehmer an die ungewdohnlich groRen Dateisymbole (2,5 x 2,5 Zentimeter) und Schaltflachen ge-

wohnen.

Die nichste Aufgabe 04 erweiterte die vorangegangene Aufgabe, indem eine Datei gedffnet werden sollte, die
nicht sichtbar war. Dazu mussten die Teilnehmer ohne das Vorhandensein einer Bildlaufleiste die Datei in den
sichtbaren Bereich der Liste bringen, um diese zu 6ffnen. Diese Aufgabe sollte einen Vergleich mit der nachsten
Aufgabe 05 erbringen, in der fiir das Blattern in der Liste eine Navigationsleiste vorgeschrieben war. Den Teil-
nehmern war es freigestellt, welche Pfeile sie von der Navigationsleiste nutzen konnten.

Ein weiterer Vergleich wurde mit den Aufgaben 06 und 07 angestrebt. Die Teilnehmer sollten dazu zu einem
bestimmten Ordner navigieren, der oberhalb des aktuellen Ordners in der Hierarchie lag. Dafiir sollte die Brot-
krumennavigation genutzt werden. Jeder lGibergeordneter Ordner wurde dabei als Schalter in der Leiste der
Brotkrumennavigation angezeigt und konnte so durch einfaches Antippen erreicht werden. Der Unterschied
zwischen 06 und 07 bestand darin, dass in 06 die Teilnehmer nicht iiber die Brotkrumennavigation aufgeklart
wurden, im Gegensatz zu O7. AuBerdem wurde in beiden Aufgaben die Baumansicht der Ordner durch eine
einfache Liste mit den Unterordner des aktuellen Ordners ersetzt, um eine einfachere Fingerbedienung durch
eine Liste zu erhalten (vgl. Kapitel 5.6).

111

112

Migration und Anpassung von Dialoganwendungen fur berihrungsempfindliche Bildschirme

' ™y
B Seitendruck einstellen E@g
Papier Vorschau
GréBe: (a2 -]
Quelle: [Aulcmatlsch 3 -]
Ausrichtung Rander
'@ Hochformat Links: 0.00 Rechts:
) Querformat Oben: 100 5] unten:
Kopfzeile: head -
FuBzeile foot -
Cptionen
[Z] Entwurfdruck anwenden
[C] Graustufen statt Farbe verwenden
[C] Randlos drucken zwingen
[C]1n Datei drucken
[T Duplex drucken
Ok |[Abbrechen

Abbildung 67 Standarddialog fiir die Einstellung einer Druckerseite, wie er unter Windows eingesetzt werden kann.

Mit den Aufgaben S1 und S2 begann der zweite Teil der Studie, in der ein selbst gebauter Dialog zur Einstellung
der Druckseite eingesetzt wurde. Die beiden Aufgaben sollten wie in O1 und O2 priifen, ob der Dialog mit den
Fingern besser oder schlechter zu bedienen ist. Die Aufgabenstellung war entsprechend dhnlich und unter-
schied sich, um einen Lerneffekt zu verhindern, nur in Einzelheiten wie z.B. den PapiergroRen (A2, COM-10
usw.), den GréRen fiir die Rander (z.B. 1,5 Zentimeter) und die Kombination von aktivierten Kontrollkastchen.

) Seitendruck enstellen [~] Setendruck emstellen ===
Papier Varschau Papier Vorschau
Grote ma = [M J
Quelle: ‘m'm oibley M ‘ Quelle: Automatisch susmahlen - ‘
Ausrchtong Rincir
pusrchion Ricdr
tnks 100 [@N[WP|Rechs om0 (AN[WP & A~ AR
Hochfor Links 100 Rechts: 000
[oveoma | o om AN e o AV s W] e f
Koptaie - = Queriormat | Ober: 000 N[Unten 000 AN
Fubzeile foot - Kopfzeile: head
Ovn?:nen Fubzeile foot
Entwurfdruck anwenden '
]] Gptionen
Graustfen sattFasbe verwenden 3
[[] entwuricruck armerden
[Randios drucken zuingen B
1 D ke [outsensot e vrwencen
[0 J[s [—
ox Avbrechen
&) Seitendruck einstellen BT &) Setendruck exmstelien (o []
Papier Verschau Papier Verschay
Grode: M ‘ Groe: M ‘
Quelle: Automatisch auswhlen
Quetie: ‘Atomatich ausashien
Ausrichtung Rander
e A|v s 00 AN P ——
Links: 00 PN Rechts 000 N NP

Quetoma | obe nmAlv v o AN

Kopfzeile: head
Queriormat | Oben: 000 4% NP Unten 000 N NP
Fubcsie foot |
Sptonen Kopteeie head
EI Entwuridruck anwenden =]
Fulizeile foot
[R —
————— Optionen
Ok Abbrechen -
D Entwurfdruck anwenden

Ok Aabbrechen

Abbildung 68 Vergleich der transformierten Dialoge aus den Aufgaben S3 bis S6 (v.l.n.r. und v.o.n.u.)

Die folgenden Aufgaben S3 bis S6 stellten den Teilnehmer Steuerelemente von verschiedenen GréRen bereit.
Die Dialoge unterschieden sich in groBer werdenden Kontrollkdstchen, Dropdown-Listenfeldern, Options- so-
wie Drehfeldern. Die AusmaRe betrugen dabei jeweils 0,5cm, 0,7 cm, 1,0cm und zuletzt 1,5cm. AuBerdem wur-
den wie in S2 die einzugebenden Werte (PapiergrofRe, Rander und Optionen) gedndert, um einen Lerneffekt zu

verhindern.

Technische Evaluation anhand der Durchfiihrung einer Touch-Studie [FukE]

Optionen Optionen

[T] Entwurfdruck anwenden [C] Entwurfdruck anwenden

e tufen statt Farb 4 [C] Graustufen statt Farhe verwenden
raustufen s arbe verwenden

N [C] Randlos drucken zwingen =

Optionen Optionen

[] Entwurfdruck anwenden il [C] Entwurfdruck anwenden -

[] Graustufen statt Farbe verwenden

[C] Graustufen statt Farbe verwenden [[] Randlos drucken zwingen

[T] Randlos drucken zwingen [C]1n Datei drucken
= [C] Duplex drucken N

Abbildung 69 Vergleich der Abstdande zwischen den Kontrollkdstchen in Aufgabe S7 Teil 1 bis 4 (v.l.n.r. und v.o.n.u.)

Als ndchste Aufgabe S7 wurden die Abstdnde zwischen Kontrollkdstchen der Optionenliste verdandert, um de-
ren Einfluss auf die Bedienbarkeit zu liberpriifen. Die Abstande der Kontrollkdstchen untereinander wurden
dazu in vier Teilaufgaben beginnend bei 35mm tber 25mm und 17,5mm auf 5mm verkleinert. Zusatzlich muss-
ten die Teilnehmer in jeder Aufgabe andere Kontrollkdstchen aktivieren.

[Seitendruck einstellen S| |

Papier Varschau
GréBe: M

Quelle: Automatisch auswahlen

Ausrichtung Rander

Links: o‘oo}A|V Rechts: 000 AIV -

Kopfaeile: head

Fubzeile ot | 1 2 3 Def.

Optionen

D Entwurfdruck anwenden

Ok Abbrechen

Abbildung 70 Eingesetzter Prototyp eines numerischen Tastenfeld fiir die Aufgaben S8 und S9

Die letzten Aufgaben S8 und S9 nutzten das in Kapitel 5.5 vorgestellte numerische Tastenfeld. Die Teilnehmer
nutzten dieses Feld statt den Drehfeldern, um die Rander einer Druckseite einzustellen. Die Aufgaben unter-
schieden sich nur durch verschiedene Werte der Rander. Auf diese Weise sollte Uberprift werden, ob ein Lern-
effekt bessere Ergebnisse bei dem Tastenfeld erreichen kann oder ob das Tastenfeld auch intuitiv gut zu bedie-
nen ist.

Zuletzt wurden zu jeder Aufgabe zwei bis vier Fragen gestellt, um einen subjektiven Eindruck der Bedienung
des Dialogs und der eingesetzten Steuerelemente zu bekommen. Die Fragen konnten die Teilnehmer durch das
Vergeben von einem bis acht Punkten auf einer Likert-Skala beantworten. Jeder Teilnehmer konnte so jeweils
bis zu acht Punkte in sechs Kategorien verteilen. Die Fragen kdnnen im Anhang eingesehen werden. Die Ergeb-
nisse der Fragen werden auf Seite 119 besprochen.

8.2.3 Ergebnisse

Flr die durchgefiihrte Studie wurden sechs Teilnehmer eingeladen. Die Zahl der Teilnehmer lasst daher nur
eine qualitative Auswertung der Ergebnisse zu. Trotzdem kann die Studie einen Einblick in die Welt der Finger-
bedienung an Desktop- und Laptopsystemen geben.

Weiterhin werden nicht alle Ergebnisse dargestellt, um den Rahmen dieser Arbeit nicht zu sprengen. Deshalb
werden die Ergebnisse entweder zusammengefasst oder nur die ergiebigsten und interessantesten aufgezahlt.

(MBS Migration und Anpassung von Dialoganwendungen fiir beriihrungsempfindliche Bildschirme

Die vollstandigen Daten konnen aus dem Studiendokument auf der beiliegenden CD entnommen werden.

Aufgabenausfiihrungsdauer

Von jedem Teilnehmer wurde die Ausfiihrungsdauer gemessen. Der Startzeitpunkt war dabei die erste Bedie-
nung, d.h. Klick oder Beriihrung, eines Steuerelements. Das Ende der Zeitmessung wurde durch das Bestatigen
des Dialogs (Schalter OK oder Abbrechen) ausgel6st.

Die Zeitdauer Uber alle Aufgaben bieten die Tabellen 9 und 10 unten. Fiir jede Aufgabe wurden zudem der
Mittelwert und Median angegeben. Es zeigte sich, dass die Teilnehmer sehr unterschiedlich an die Aufgaben
herangingen und deshalb die Ausfiihrungszeiten innerhalb derselben Aufgabe stark variieren. Die Tabellen
zeigen aulerdem, dass die dlteren Teilnehmer allgemein sich etwas langer Zeit gelassen haben oder benétig-
ten, um die Aufgabe zu erledigen.

Aufgaben
Probanden (Alter) 01 02 03 04 05 06 07
1(20-30 Jahre) 12 23 2 22 39 23 49
2 (20-30 Jahre) 19 10 17 12 24 55 90
3 (20-30 Jahre) 6 24 1 20 26 63 46
4 (50-60 Jahre) 29 23 9 18 21 239 77
5 (20-30 Jahre) 20 28 4 15 15 31 44
6 (50-60 Jahre) 22 32 6 40 35 39 62
Mittelwert 18,0 23,3 6,5 21,2 26,7 75,0 61,3
Median 19,5 23,5 5,0 19,0 25,0 47,0 55,5
Min/Max 6/29 10/32 1/17 12/40 15/39 23/239 44/90
Tabelle 9 Bendtigte Ausfiihrungsdauer der Teilnehmer fiir die Aufgaben 01-07 in Sekunden
Aufgaben
Probanden 1 2 3 4 5 6 7 8 9
1 (20-30 Jahre) 35 112 66 36 33 53 15 47 37
2 (20-30 Jahre) 35 46 39 52 44 34 22 18 37
3 (20-30 Jahre) 37 61 62 39 70 60 18 44 44
4 (50-60 Jahre) 53 74 91 51 54 84 18 53 43
5 (20-30 Jahre) 34 55 45 37 51 40 16 20 31
6 (50-60 Jahre) 44 89 73 48 55 73 25 55 38
Mittelwert 39,7 72,8 62,7 43,8 51,2 57,3 18,7 39,5 38,3
Median 36,0 67,5 64,0 43,5 52,5 56,5 18,1 45,5 37,5
Min/Max 34/53 46/112 39/91 36/52 33/70 34/84 14,5/24,5 18/55 31/44

Tabelle 10 Benotigte Ausfiihrungsdauer der Teilnehmer fiir die Aufgaben S1-S9 in Sekunden

Einige Aufgaben wurden auBerdem so konzipiert, dass deren Ausfiihrungsdauer direkt miteinander verglichen
werden konnten. Dazu zdhlen jeweils die Aufgaben 1 und 2 des Offnen- und Seiteneinstellungs-Dialogs. Zusétz-
lich wurden die Aufgaben 3 bis 6, die vier Teile der Aufgabe 7 und 8 bis 9 des Seiteneinstellungsdialogs fiir ei-
nen Vergleich erstellt.

Die Ergebnisse zeigen, dass die Bedienung von Standarddialogen mit den Fingern langer dauern kann. Wahrend
die Ausfiihrungsdauer der Aufgabe 02 (mit den Fingern) noch nahe an der Dauer der Aufgabe 01 (mit der
Maus) liegt, ist der Zeitunterschied zwischen den Aufgaben S1 und S2 bereits deutlicher.

Technische Evaluation anhand der Durchfiihrung einer Touch-Studie

c 30 c 80
5 3
£ 20) £ 0
§ m Aufgabe O1 E 40 - B Aufgabe S1
.5 10 4 m Aufgabe 02 E 20 - m Aufgabe S2
.a 'a
N 0 - N o -
Aufgaben Aufgaben

Abbildung 71 Vergleich der durchschnittlich benétigten Zeit der Abbildung 72 Vergleich der durchschnittlich benétigten Zeit der
Aufgaben 01 (Maus) und O2 (Touch) Aufgaben S1 (Maus) und S2 (Touch)

Die Aufgaben S3 bis S4 unterschieden sich nur durch die GroRRe der einzelnen Elemente (0,5cm; 0,7cm; 1,0cm
und 1,5cm). Dadurch entstanden teils stark unterschiedliche Ausfiihrungszeiten der Teilnehmer wie es in Ab-
bildung 73 unten zu sehen ist. In Aufgabe 7 wurden, wie bereits erldutert, unterschiedliche Abstdnde zwischen
Kontrollkdstchen untersucht. Die Abbildung 74 zeigt, dass die Teilnehmer die Einstellung in der Liste, umso
schneller vornehmen konnten, je kleiner der Abstand wurde (35mm, 25mm, 17,5mm und 5mm). Dies endete
erst mit der vierten und letzten Aufgabe, als die Abstdnde so gering waren, dass die Teilnehmer benachbarte
Kontrollkdstchen versehentlich beriihren konnten.

B Aufgabe S3 B Aufgabe S4 HS7Teill MS7Teil2 mS7Teil3 WS7 Teil 4

m Aufgabe S5 m Aufgabe S6

w
o

80 € 25
'§ 60 - % 15
= n]
v 40 -
: S0
pe 20 - E i
T
N 0 4 0 -
Aufgaben Aufgaben
Abbildung 73 Durchschnittlich benétigte Zeit Abbildung 74 Durchschnittlich benétigte Zeit
der Aufgaben S3 bis S6 der Aufgaben S7 Teil 1 bis Teil 4

Genauigkeit

Die Genauigkeit der Teilnehmer wurde bestimmt, indem die aufgetretenen Fehler gezahlt wurden. Dazu wur-
den die gemachten Bildschirm- und Audioaufnahmen der Teilnehmer zur Beurteilung herangezogen. Ein Fehler

wurde dazu folgendermaRen definiert:

1. Ein Steuerelement wird nicht getroffen. Stattdessen wird der Dialoghintergrund oder ein benachbar-
tes Steuerelement getroffen. Die Absicht ein bestimmtes Element zu treffen ergibt sich dabei aus der
Aufgabenstellung. Beispielsweise sollte ein bestimmter Wert mit den beiden Schaltern des Drehfelds
eingestellt werden. Die Teilnehmer mussten dazu den Aufwartsschalter betatigen. Eine Beriihrung
wurde als Fehler gezahlt, wenn stattdessen der Abwartsschalter getroffen wurde. Die Audioaufnah-
men halfen zudem leichter bestimmen zu kénnen, ob eine bestimmte Bedienungstatigkeit absichtlich
durchgefiihrt wurde. Die Teilnehmer kommentierten solche Fehlaktionen in vielen Fallen mit entspre-
chenden Bemerkungen.

2. Ein Doppeltippen wird nicht erkannt. Die Aufgaben (insbesondere 01 bis O7) konnten alle ohne ein
doppeltes Tippen abgeschlossen werden. Trotzdem nutzten alle Teilnehmer ein Doppeltippen bei-
spielsweise um eine Datei zu 6ffnen. Wurde das Tippen zu schnell oder zu langsam ausgefiihrt oder

115

B Migration und Anpassung von Dialoganwendungen fiir beriihrungsempfindliche Bildschirme

fanden beide Beriihrungen nicht innerhalb eines 1 Zentimeter Radius statt, dann wurde dies als ein
Fehler gewertet. In diesem Fall wurde das Doppeltippen als zwei einzelne Beriihrungen bewertet und
von der Ul erkannt.

Die Fehlerrate ist der Quotient aus den gesamten Beriihrungen und den Fehlern. Entsprechend ist die Treffer-
rate der Kehrwert des Quotienten Q.

_ Fehlerzahl
" Zahl der Beriihrungen

Qr

Abbildung 75 Der Fehlerquotient berechnet sich aus der Anzahl der gemachten Fehlern und der Zahl der Beriihrungen

Ein Vergleich der Aufgaben 01 mit 02 sowie S1 mit S2 zeigt deutlich die Probleme aktueller Dialoge, wenn sie
mit den Fingern bedient werden. Wihrend in den jeweils ersten Aufgaben O1 und S1 noch die Maus benutzt
werden durfte, wurde derselbe Dialog im zweiten Teil 02 und S2 nur noch mit den Fingern bedient. Dabei stie-
gen nicht nur die gemachten Fehler, sondern auch die Gesamtzahl der Beriihrungen, da die Teilnehmer die
Fehler korrigieren mussten. Wihrend die meisten Teilnehmer bei der Bedienung des Offnen-Dialogs noch die
wenigsten Probleme hatten, dnderte sich dies beim Bedienen des Seiteneinstellungsdialogs mit Standardsteue-
relementen. Die Abbildung 76 sowie Abbildung 77 stellen den Fehlerquotient aufgeschlisselt in Fehler- und
Beriihrungsgesamtzahl dar. 01 und S1 wurden jeweils mit der Maus durchgefiihrt; 02 und S2 jeweils mit dem

Finger.
B Aufgabe 01 @ Aufgabe 02 M Aufgabe S1 @ Aufgabe S2
8 30 L
Y7 * 25
g6 ¢ 20 *
=}
§ 5 L 4
= L)
E . 10 *%
52 =
51 Ol >
0 B 0 o
0 5 10 15 20 0 20 40 60 80
Zahl der Beriihrungen bis zum Abschluss der Aufgabe Zahl der Beriihrungen bis zum Abschluss der Aufgabe
Abbildung 76 Fehler pro Gesamtberiihrungen der Abbildung 77 Fehler pro Gesamtberiihrungen der
Aufgaben 01 (mit Maus) und 02 (mit Finger) Aufgaben S1 (mit Maus) und S2 (mit Finger)

Die nachfolgenden Aufgaben wurden nur noch mit den Fingern durchgefiihrt. Trotzdem kam kein Teilnehmer
mehr an die hohen Fehlerraten der Aufgaben 02 (®) heran (Abbildung 78). In O4 (l) und 05 (&) sollten die
Teilnehmer eine Datei analog zu &2 (®) in einem Unterordner 6ffnen. Wahrend sie in 04 (.) die Liste direkt
mit den Fingern verschieben durften, um die entsprechenden Ordnereintrédge sichtbar zu machen, sollten die
Teilnehmer in O5 (44) die Navigationsleiste aus Kapitel 5.7 benutzen. Dabei traten gehduft zwischen einem und
zwei Fehler auf. AuRerdem gab es auch fehlerlose Durchgange, die nicht auf dem direkten Weg zum Ziel ka-
men, sondern z.B. ldnger nach der geforderten Datei suchen mussten. Daher sind die Symbole A und Bl auf
der X-Achse entsprechend verteilt.

Einen weiteren Vergleich der Genauigkeit zeigt die Abbildung 79 fiir die Aufgaben S2 bis S6. Man kann erken-
nen, dass die Fehlerzahl ab der Aufgabe S2 (®) bis zur Aufgabe S5 (X) zuerst zuriickgeht, um dann bei der
letzten Aufgabe S6 (-X) wieder einen Sprung nach oben macht. Die Aufgaben S4 (A) und S5 (X) sind dabei
kaum voneinander zu unterscheiden. Die meisten fehlerlosen Durchgange (3) wurden in Aufgabe S5 (X) er-
reicht. Dagegen machten die Teilnehmer bei Aufgabe S4 (£1) noch mindestens einen Fehler.

Technische Evaluation anhand der Durchfiihrung einer Touch-Studie [kl

Fehlerrate @ Fehlerrate @
@ Aufgabe 02 38% @ Aufgabe S2 40%
M Aufgabe 04 19% M Aufgabe S3 17%
Aufgabe 05 9% Aufgabe S4 8%
X Aufgabe S5 2%
K Aufgabe S6 11%

Tabelle 11 Die Fehlerraten der Aufgaben 62, 4 und 04 sowie S2 bis S6 im direkten Vergleich

@ Aufgabe 02 B Aufgabe 04 A Aufgabe 05 ® Aufgabe S2 B Aufgabe S3 A Aufgabe S4

8 X Aufgabe S5 X Aufgabe S6
=7 30
: g
.% s 25
3 *
£a Io 20
S
g 3 o 15 i®
22] 10 ’- * >
()]
1 me® 5 '_l X

[|
0 R
i 0 K
0 5 10 15 20

0 10 20 30 40 50 60

Zahl der Beriihrungen bis zum Abschluss der Aufgabe
Zahl der Beriihrungen bis zum Abschluss der Aufgabe

Abbildung 78 Vergleich der Fehlerquotienten der Abbildung 79 Vergleich der Fehlerquotienten der Aufgaben S2 bis S6
Aufgaben 62, 64 und 05

Noch deutlicher beschreiben die Werte der Tabelle 11 den Fehlerverlauf der einzelnen Aufgaben. Sie zeigen fir
den Offnen-Dialog eine leicht bessere Bedienbarkeit mit der Navigationsleiste (Aufgabe 05). Auf der anderen
Seite flihren im Seiteneinstellungsdialog groRere Elemente und ein ersetztes Drehfeld zu weniger Fehlern. Als
Ausnahme steht, wie bereits aus den vorherigen Abbildung 79 bekannt, die Aufgabe S6. Die Steuerelemente
sind darin 1,5 Zentimeter groR.

Fir numerische Eingabeelemente wurde bereits das numerische Tastenfeld im Kapitel 5.7 vorgestellt. In den
letzten beiden Aufgaben S8 und S9 sollte dieses Steuerelement auf dessen Bedienbarkeit getestet werden. Es
ist anzumerken, dass auf eine genauere Untersuchung verzichtet wurde, da die Bewertung dieses einzelnen
Steuerelements nicht im Vordergrund stand. Die Aufgaben unterschieden sich ausschlieRlich durch die einzu-
gebenden Zahlen, so dass ein Unterschied nur durch einen Lerneffekt bestehen sollte. Die Ergebnisse der wie-
derholten Aufgabe zeigten jedoch kaum nennenswerte Unterschiede. Es konnte beobachtet werden, dass die
groRe Menge an Beriihrungen dadurch maéglich wurde, dass die Teilnehmer sich beim Ablesen der Zahlen aus
der Szenarienbeschreibung irrten. Die Teilnehmer nutzten jedoch das numerische Tastenfeld trotz der héheren
Eingabezahl mit nur maximal zwei Fehlern.

Migration und Anpassung von Dialoganwendungen fiir beriihrungsempfindliche Bildschirme

3
H
a?2 L g L g L
t
(Y
s
= @ Aufgabe S8
s
g 1 < LS OO M Aufgabe S9
=
(]
[

0 L L

15 20 25 30

Zahl der Beriithrungen bis zum Abschluss der Aufgabe

Abbildung 80 Vergleich der Fehlerquotienten der Aufgaben S8 und S9

Subjektive Praferenzen

Vor Beginn der Aufgaben wurden alle Teilnehmer gefragt, was sie bei der Bedienung von Oberflachen mit der
Hilfe eines berthrungsempfindlichen Bildschirms erwarten. Die Antworten waren:

e 3 x,einfach” (zu bedienen)

e 2x,schnelle Reaktion” (der Ul)
e intuitiv” (zu bedienen)

e leichtgédngig”

o effektiv”

e ,haptisch” (als Rickmeldung)

Es ist deutlich, dass die einfache Bedienung ein K.O.-Kriterium darstellt, gefolgt von einer schnellen Reaktions-
fahigkeit der Oberflache.

Am Ende der Studie wurden die Teilnehmer gefragt, ob ihre Erwartungen erfillt wurden und wenn nicht wa-
rum. Die Teilnehmer waren dartber allerdings geteilter Meinung wie Abbildung 81 zeigt. Zudem wurden sie
gefragt, ob und in welcher Kombination (mit Tastatur und/oder Maus) sie einen beriihrungsempfindlichen
Bildschirm am PC verwenden wirden (Abbildung 82). Die meisten entschieden sich daftir den Bildschirm nur als
zusatzliches Eingabegerat neben Maus und Tastatur verwenden zu wollen. Eine Person hatte den Bildschirm
auch einzeln fir bestimmte Anwendungen benutzt, wihrend ein anderer Teilnehmer von Touch Abstand nahm.

6 4
3
2
3 -
Sl BN BN
0 T r T
0 - . . Toucham PC Kein Touch Nur mit Nur mit
£l ich £l Tastatur Tastatur und
ertullt nicht ertullt Maus

Abbildung 81 Wurden Ihre Erwartungen an die Bedienung des Abbildung 82 Kdnnen Sie sich vorstellen einen beriihrungsempfindlichen
beriihrungsempfindlichen Bildschirms erfiillt? Bildschirm am PC oder Laptop zu verwenden?

Eine weitere Frage wurde gestellt, um herauszufinden, welche Art von Anwendung die Teilnehmer sich am PC
als Touchanwendung vorstellen konnten. Die meisten entschieden sich fiir Spieleanwendungen oder Browser

Technische Evaluation anhand der Durchfiihrung einer Touch-Studie [FHkE)

(Internet), aber auch zum Zeichnen (Paint) oder zur Grafikmodellierung (3D). Dagegen wurde die Textverarbei-
tung fir die Fingerbedienung ausgeschlossen.

In den Studienaufgaben selbst wurde jede Aufgabe durch zwei bis vier Fragen begleitet, bei denen der Teil-
nehmer seine Praferenz zum Ausdruck bringen sollte. Eine Frage konnte in sechs Unterscheidungsmerkmalen
(A bis F) mit jeweils einem bis acht Punkten auf einer Likert-Skala bewertet werden (Tabelle 12). Zusétzlich
sollten die Teilnehmer drei weitere Merkmale (A bis C) an Hand der gleichen Skala mit eins bis acht Punkten
bewerten (Tabelle 13). Insgesamt kann die Summe der Bewertungen aller Teilnehmer damit zwischen sechs
und 48 Punkten liegen, wobei letztere Punktzahl die beste mégliche Bewertung darstellt. Fur die folgenden
Ergebnisse werden die Kategorien A bis F bzw. A bis C mit der Nummer der jeweiligen Fragen verwendet, um
einen Ergebniswert zu erhalten. Beispielsweise gibt F14.C an, wie viele Punkte die Teilnehmer bei der Frage
nach der Bedienung des Dialogs (F14) im Kriterium C (schwierig bis leicht) vergeben haben.

Kategorie Min. Kriterium 1 Punkt 1-8 Max. Kriterium 8 Punkte

A Frustrierend Motivierend

B Langweilig ... Stimulierend / Spannend

C Schwierig ... Leicht

D Reagiert langsam Reagiert schnell

E Ungewohnt .. Gewohnt

F Korperlich sehr anstrengend Korperlich kaum anstrengend

Tabelle 12 Kriterien und Gewichtung fiir die Aufgabenbewertungen. Bei allen Fragen (auBer F15) eingesetzt.

Kat. Kriterium 1 Punkt 1-8 8 Punkte

A Die optische Darstellung des Dialogs gefiel mir. Trifft nicht zu Trifft zu

B Ich konnte Steuerelemente einfach Trifft nicht zu Trifft zu
treffen/anklicken/antippen.

C Der Einsatz von Maus/Finger in dieser Aufgabe fiel mir leicht. Trifft nicht zu Trifft zu

Tabelle 13 Spezielle Kriterien mit Gewichtungen fiir die Aufgabenbewertungen. Nur fiir den Aufgabentyp F15.

Aufgaben- Frage zur jeweiligen Aufgabe

nummer

F14 Wie beurteilen Sie die Bedienung des Dialogs wahrend der gesamten Aufgabe? (Kriterien in
Tabelle 12).

F15 Bitte bewerten Sie die Aufgabe nach den folgenden Kriterien? (Kriterien in Tabelle 13)

F20 Wie beurteilen Sie die Bedienung des Steuerelements Drehfeld wahrend der Aufgabe? (Krite-
rien in Tabelle 12).

F21 Wie beurteilen Sie die Bedienung des Steuerelements Tastenfeld fiir Zahleneingabe (am Dreh-
feld) wahrend der Aufgabe? (Kriterien in Tabelle 12).

F22 Wie beurteilen Sie die Bedienung des Steuerelements Liste mit Kontrollkdastchen wahrend der

Aufgabe? (Kriterien in Tabelle 12).

Tabelle 14 Einige Fragen zu den Studienaufgaben

Die Ergebnisse aus Tabelle 15 und Tabelle 16 spiegeln zum grofRen Teil die Ergebnisse der Abschnitte Aufga-
benausfiihrungsdauer und Genauigkeit wider. Diese Tabellen enthalten die vergebene Gesamtpunktzahl der
Teilnehmer pro Frage und Kategorie. Die vorherigen Ergebnisse zeigten hohe Fehlerraten bei der Bedienung
der Dialoge von 02 und S2. Die Teilnehmer bewerteten die Bedienung des Dialogs 02 entsprechend schlecht.
Die Bedienung mit dem Finger sind nach Tabelle 15 schwerer (F14.C: 28 Punkte) und ungewohnter (F14.E: 19
Punkte) zu bedienen als mit der Maus (O1: C: 46 und E:39 Punkte). Die Steuerelemente der Aufgaben 02 und
S2 waren den Teilnehmern nach Tabelle 16 damit zu klein (F15.B: 14 Punkte) und konnten nur schwer mit den
Fingern getroffen werden (F15.C: 19 Punkte). Analog wurden die Aufgaben S1 und S2 bewertet. Auch dort
sahen die Teilnehmer eine Zunahme des Schwierigkeitsgrades (F14.C: 14 Punkte) bei der Bedienung. Die klei-
nen Steuerelemente in S2 straften sie mit niedrigen Bewertungen in F15.B und F15.C (14 und 13 Punkte) ab.
Insbesondere die kleinen Schalter der Drehfelder wurden als schwer zu treffen bewertet (F20.C: 14 von 48
Punkten). Die Aufgabe wurde zudem als ,fast nicht machbar” kommentiert.

Migration und Anpassung von Dialoganwendungen fur berihrungsempfindliche Bildschirme

Die Bedienung der Dialoge in den Aufgaben 03 bis 07 wurde von den Teilnehmern wieder besser als 02 gewer-
tet. Der allgemeine Schwierigkeitsgrad F14.C ging den Teilnehmern zufolge deutlich zuriick und die vergebenen
Punkte erhdhten sich bis auf das Reihenmaximum von 46 in O3. Die Teilnehmer befanden auBerdem, dass sie
bei jeder neuen Aufgabe die Steuerelemente besser treffen wiirden (F15.B) und der Dialog einfacher mit dem
Finger zu bedienen sei (F15.C).

Im Seiteneinstellungsdialog der Aufgaben S3 bis S6 sahen die Teilnehmer eine sichtbare Verbesserung gegen-
Gber dem Dialog aus S1 und S2. Die groRer werdenden Flachen der Steuerelemente fanden entsprechende
Punktzahlen beim Schwierigkeitsgrad (F14.D): Die vergebenen Punkte (40, 46, 47 und 45) sind hoher als beim
Dialog in OriginalgroRe (29 Punkte). Zudem konnten die Steuerelemente einfacher getroffen werden (F15.B,
von 14 auf maximal 44 Punkte). Die letzte Aufgabe S6 verursachten jedoch einen leichten Riickgang der hohen
Punktzahl von 47 auf 45 Punkte. Dies liegt an den Kontrollkastchen, die von den Teilnehmern in einer separaten
Bewertung F22 evaluiert wurden. Der Schwierigkeitsgrad der Liste mit Kontrollkdstchen wurde in F22.C (Tabelle
15) festgehalten. Die 27 Punkte der Aufgabe S6 (F22.C) reflektieren deutlich, welche Miihen die Teilnehmer
hatten, um die Kontrollkdstchenliste zu bedienen. Und das, obwohl die Kontrollkdstchen selbst gut zu treffen
waren, wie F15.B mit 40 Punkten zeigt. Weiterhin befanden die meisten Teilnehmer, dass die Bedienung der
Dialoge in den Aufgabe S4 und S5 am wenigsten gewdhnungsbediirftig sei, indem sie 45 Punkte in F22.E verga-
ben. Das sind jeweils 9 und 10 Punkte mehr als noch in den Aufgaben S3 und S6.

Aufgabe F14.C F14.D F14.E | F20.C F20.D F20.E | F21.C F21.D F21.E | F22.C F22.0 F22.E
01 46 39 41

62 28 19 26

03 46 31 30

(o7} 40 36 30

05 34 34 29

o6 40 38 34

07 42 41 34

s1 38 39 38 45 45 45 47 48 46
S2 29 44 34 14 46 15 33 45 31
s3 40 43 41 35 45 37 35 46 36
s4 46 45 43 47 46 43 43 46 45
S5 47 44 43 46 45 40 42 46 45
S6 45 45 44 44 47 39 27 45 35
s7 29 45 34

$7.1 16 37 25
§7.2 25 44 35
$7.3 33 42 34
$7.4 33 45 37
S8 43 43 35 45 41 38

S9 45 46 40 45 45 41

Tabelle 15 Ergebnisse der Befragung aus den Fragentypen F14, F20, F21 und F22 in den Kategorien C (schwierig/leicht),
D ([UI] reagiert schnell/langsam) und E (ungewohnt/gewohnt). Minimale/Maximale zu vergebende Punktzahl: 6/48.

Aufgabe F15.B F15.C Aufgabe F15.B F15.C Aufgabe F15.B F15.C
61 40 48 s1 46 48 s7.1 16 29
62 14 19 Ss2 14 13 §7.2 22 35
63 29 28 s3 29 32 $7.3 29 39
64 44 40 S4 44 46 S7.4 32 35
(0] 42 39 S5 43 44 S8 43 44
66 44 45 S6 40 40 S9 a4 43
07 47 44

Tabelle 16 Ergebnisse der Befragung des Fragentyps F15 in den Kategorien B (Ich konnte Steuerelemente einfach tref-
fen/anklicken/antippen.) und C (Der Einsatz von Maus/Finger in dieser Aufgabe fiel mir leicht.).
Minimale/Maximale zu vergebende Punktzahl: 6/48.

Technische Evaluation anhand der Durchfiihrung einer Touch-Studie [ibAL

Mit den Aufgaben 04 und O5 wurde ein Vergleich durchgefiihrt, der das Blattern in einer Dateiliste mit einem
Finger (durch Halten der Beriihrung und Bewegen des Fingers) oder mit einer Navigationsleiste (griine Pfeile)
bewerten sollten. Die Teilnehmer bewerteten dabei die Bedienung (F14.C) der Navigationsleiste schwerer (O5:
34 Punkte) als direkt mit dem Finger in der Liste zu blattern (O4: 40 Punkte). Dies liegt allerdings nach Tabelle
16 nicht an zu kleinen Schaltflachen (F15.B) in der Navigationsleiste, denn der Einsatz des Fingers in Aufgabe
04 und 05 fiel den Teilnehmern in etwa gleich schwer oder einfach (44 zu 42 und 40 zu 39 Punkten). Es muss
dazu gesagt werden, dass die beiden dltesten Teilnehmer (50-60 Jahre) die Navigationsleiste immer mit 8 Punk-
te in den Kategorien F14.C, F15.B und F15.C bewerteten. Die jlingeren Teilnehmer zogen allgemein vor, in der
Liste mit dem Finger zu blattern.

Das zuletzt in den Aufgaben S8 und S9 eingesetzte numerische Tastenfeld kam bei den Teilnehmern besser an
als die Drehfelder der Aufgaben S3 bis S6. Den Schwierigkeitsgrad bewerteten die Nutzer daher niedrig (F14.C:
43 und 45 Punkte). Zudem wurden die Schalterelemente als einfach zu treffen gewertet (F15.B: 43 und 44 von
48 moglichen Punkten) genauso wie den gesamten Einsatz des Fingers (F15.C: 44 und 43). Die Teilnehmer be-
mangelten lediglich die Symbole der Schalter und Positionierung des Eingabefeldes nahe dem unteren Bild-
schirmrand als missgliickt. Zudem riffelten sie auch die fehlende, optische Verkniipfung mit dem Zahlenfeld.
Das aktuelle Feld hatte hervorgehoben werden miissen.

8.2.4 Diskussion

Diese durchgefiihrte Studie produzierte nicht nur eine Menge interessanter Daten, sondern auch eine Menge
Erfahrungswerte. So stellte es sich erst im Nachhinein heraus, dass die Datenerhebung mit Fragebogen einen
betrdchtlichen Aufwand darstellte. Die Nutzung von automatisierten oder Onlinefragebégen wére doch deut-
lich schneller gegangen. Aullerdem war die Zeitdauer pro Teilnehmer von bis zu 1,5 Stunden zu lang, so dass
entweder weniger Fragen oder Aufgaben hatten gestellt werden missen.

Allgemein lassen die Ergebnisse erkennen, dass die Bediendung von Dialogen mit den Fingern etwas langer
dauern und mehr ,Vertipper” hervorbringen kann. Die liegt vor allem an der Positionierung des Fingers auf
dem Bildschirm, die weit weniger préazise ist als die Maus und zudem sofort als Klick vom Dialog gewertet wird.
Ein Mauszeiger muss dagegen nicht nur positioniert, sondern auch noch explizit zum Klicken gebracht werden.
Die Ergebnisse zeigten jedoch, dass eine Anderung der SteuerelementgréRRe bereits eine deutliche Verbesse-
rung in beiden Dialogen (Offnen und Seiteneinstellung) fiir die Bedienung hervorbrachte. Auch die Dialoge in
spateren Aufgaben, die mit entsprechend mit groReren Steuerelementen gestaltet worden waren, zeigten eine
hohe Trefferrate mit dem Finger. Die erste Hypothese (,,Es ist ausreichend die Eigenschaften von einzelnen
Elementen zu verdndern, um die Elemente mit den Fingern besser bedienen zu kénnen.“) sehe ich daher als
bestatigt an. Allerdings muss man beachten, dass gréRer auch nicht immer besser ist. Insbesondere Steuerele-
mente, die in Listen eingebettet sind wie Kontrollkdstchen waren letztendlich durch ihre GréRe von 1,5 Zenti-
meter zu groR, so dass die Teilnehmer keine Ubersicht hatten und stindig in der Liste blattern mussten. Dies
verursachte jedoch weitere Fehler und Unsicherheiten, ob nun alle verlangten Kontrollkastchen aktiviert wa-
ren. Dieser Umstand sollte beachtet werden, wenn Dialoge transformiert werden.

Eine weitere Frage, die in der Studie geklart werden sollte, bestand darin, ob die vorgestellten Steuerelemente
aus dem Kapitel 5 (,,Anpassung der Steuerelemente fiir beriihrungsempfindliche Eingaben”) vorteilhaft fur die
Fingerbedienung sind. Gepriift wurden dabei die Steuerelemente Kontrollkdstchen (Kapitel 5.4), das numeri-
sches Tastenfeld (Kapitel 5.5), die Brotkrumennavigation (Kapitel 5.6) und die Navigationsleiste fiir Listenfelder
(5.7). Die Kontrollkdstchen wurden dafiir erweitert, um eine VergréRerung zu erreichen, da die GréRe der Box
und des Hakens im Standardelement von WPF unveranderlich sind. Stattdessen wurde eine abgeleitete Klasse
mit dem Namen CheckBoxTouch erstellt, die eine GroBenanderung zulieR. Der Aufwand lohnte sich auch, denn
die Studienergebnisse zeigten, dass dadurch die Treffersicherheit stieg. Dies galt ebenso fir das numerische
Tastenfeld, welches auBerdem von den Teilnehmern besser aufgenommen wurde als die vergroBerten Dreh-
felder. Ein weiterer Vorteil gegeniiber den Drehfeldern war zudem die Platzersparnis. Die groRen Drehfeld-

Migration und Anpassung von Dialoganwendungen fiir beriihrungsempfindliche Bildschirme

schaltflaichen nehmen immer wertvolle Dialogflache in Besitz, auch wenn sie nicht bendtigt werden. Die Navi-
gationsleiste wurde, wie bereits erwahnt, von den jungen Teilnehmern nicht gut angenommen. Die alteren
Teilnehmer dagegen nutzten sie gerne. Daher ist der Einsatz einer solchen Leiste sehr vom Geschmack und
Gewohnheitsempfinden des Benutzers abhdngig. Ist er oder sie bereits gewohnt an das Blattern mit den Fin-
gern, konnen die Pfeile eher storen und wertvollen Platz in Anspruch nehmen. Dagegen sind Anfanger und
weniger Technik affine Menschen besser mit der Navigationsleiste vertraut, da sie ein offensichtliches Werk-
zeug zum Blattern darstellt. Nicht zuletzt sind solche Pfeile bereits von vielen Kiosksystemen wie Fahrkarten-
schalter bekannt. Daher ist der Einsatz eines solchen Steuerelements von der Zielbenutzergruppe abhéangig, die
vor der Transformation bekannt sein sollte. Ein anderes Steuerelement konnte in der Studie leider nicht genu-
gend bewertet werden. Es handelt sich dabei um die Brotkrumennavigation, die flr hierarchische Listen ge-
dacht war. Die Teilnehmer nutzten, um eine Ordnerebene aufwarts zu kommen, nicht die vorgesehene Brot-
krumennavigation, sondern den Zuriick-Schalter des Verlaufs daneben. Die Aufgaben oder der Dialog hatten
also entsprechend anders gestaltet werden missen. Die gewonnene Erkenntnis war trotzdem aufschlussreich:
Fir die Teilnehmer kam die Brotkrumenleiste nicht als Navigationswerkzeug in Frage. Womaglich missen die
Schaltelemente innerhalb der Leiste besser als solche erkennbar gestaltet werden. Der bei der Brotkrumenna-
vigation genutzte Stil (oder in Neudeutsch ,, Theme®) von Windows war so eher kontraproduktiv. Der Stil ver-
birgt die Schaltelemente innerhalb der Leiste bis der Mauszeiger dariiber schwebt. Fir eine Fingerbedienung ist
dies natdrlich hinderlich. Die zweite Hypothese (,,Es ist ausreichend Steuerelemente in einem Dialog auszutau-
schen oder zu erweitern (mit zusatzlichen Elementen), um diesen Dialog besser mit den Fingern bedienen zu
kénnen. “) kann jedoch trotzdem als erfiillt angesehen werden, denn der Erfolg des neuen Steuerelements
hangt von dessen Umsetzung sowie von der Zielbenutzergruppe ab. In diesem Fall waren die vergrofRerten
Kontrollkdstchen und das numerische Tastenfeld ausschlaggebend fiir eine verbesserte Bedienung mit den
Fingern.

Die Bewertung der dritten Hypothese (,,Die eingefiihrten Steuerelemente, als Ersatz vorhandener Elemente,
sind fur die Nutzung mit den Fingern geeignet.”) gestaltet sich nicht so eindeutig. Die Navigationsleiste kam
nicht gut bei den jungen Teilnehmern an und die Brotkrumennavigation wurde nicht als Navigationshilfe er-
kannt. Die schlechtere, subjektive Bewertung der Navigationsleiste steht allerdings der besseren Trefferrate
(vgl. Tabelle 11 auf Seite 117) entgegen. Die Brotkrumennavigation dagegen musste erneut bewertet werden
mit besseren, sichtbaren Schaltern. Abgesehen davon sind die vorgestellten Steuerelemente fir die Nutzung
auf bertihrungsempfindlichen Bildschirmen geeignet.

Letztendlich sollte mit der durchgefiihrten Studie gezeigt werden, dass es fiir eine berihrungsempfindliche
Oberflache nicht unbedingt notwendig ist den natiirlichen Oberflachen (NUI) zu folgen und NUI damit zum
neuen Oberflachenstandard zu definieren. Die Studie lieferte wichtige Hinweise, dass die Umgestaltung von
Dialogen eine ausreichende MalRnahme zur Verbesserung der Bedienbarkeit darstellen kann. Die GroRRe der
Steuerelemente spielt letztendlich eine entscheidende Rolle, sie ist jedoch kein alleiniger Faktor fiir eine besse-
re Bedienung. Denn es zeigte sich, wie bereits erwdhnt, dass Zahlen in Dialogen besser mit einem extra dafir
geschaffenen numerischen Tastenfeld bedient werden kdnnen als mit Drehfeldern.

Aus allen zuvor genannten Griinden bin ich daher zu der Uberzeugung gelangt, dass die zu Anfang genannten
Hypothesen bestatigt wurden. Damit sehe ich die Umsetzung LATTE als erfolgreich an. Es muss dabei jedoch
beachtet werden, dass dies nicht bedeutet, dass die so transformierten Dialoge in jeder Hinsicht ideal fiir die
berihrungsempfindliche Eingabe geworden sind. Es scheitert, wie so oft im Leben, am Spezialfall. So sind Dia-
loge, die als reine Formulare zur Text- und Zahleneingabe dienen kaum fiir die Fingerbedienung geeignet, so-
fern die Eingaben nicht iberwiegend aus vorgefertigten Auswahllisten entnommen werden kdnnen. Fiir die
weniger speziellen Dialoge zeigte sich allerdings, dass bereits durch einfache Anderungen und Ersetzungen von
Steuerelementen die Bedienbarkeit mit den Fingern objektiv und subjektiv deutlich verbessern lasst.

Zusammenfassung und Ausblick

9 Zusammenfassung und Ausblick

Wer all seine Ziele erreicht, hat sie zu niedrig gewdhlt.

Herbert von Karajan
Osterreichischer Dirigent

Das letzte Kapitel dieser Diplomarbeit widmet sich der Ubersicht (iber die vorangegangenen Themen, um im
Rickblick noch einmal die wichtigsten Aspekte hervorzuheben (Kapitel 9.1). Der Abschluss bildet einen Ausblick
Gber die zukiinftige Weiterentwicklung der Methode und ihrer Umsetzung (Kapitel 9.2).

9.1 Zusammenfassung

Das Ziel dieser Diplomarbeit war es Dialoge automatisiert fiir die Nutzung auf beriihrungsempfindliche Bild-
schirme anzupassen. Dazu wurde eine Methode entwickelt, die verschiedene Dialogsprachen in eine gemein-
same Sprache Uberfiihrt, damit darauf eine Transformationsvorschrift ausgefiihrt werden kann. Auf diese Wei-
se wandelt die Transformation den gewiinschten Dialog in eine bessere mit den Fingern bedienbare Darstel-
lung um. Fir die Umsetzung wurde die Methode so weit konkretisiert, dass als Ausgangs- und Zielsprache fir
Dialoge die Sprache XAML festgelegt wurde, um darauf eine Transformation mit der Hilfe von XSL (Extended
Stylesheet) ausfiihren zu kénnen.

Die Transformation sollte in dieser Arbeit durch eine Anwendung erfolgen von der als Erstes eine Architektur
erstellt wurde. Mit der gewahlten Architektur wurde schlieBlich eine Anwendung mit WPF und C# entwickelt,
welche die Transformation von XAML-Dialogen durch eine flexibel und anpassbare Transformationsvorschrift
ermoglicht. Zusatzlich wurden externe Module (oder auch Plug-Ins) zugelassen, um in den Transformationspro-
zess eingreifen zu kénnen.

Um die Funktionsfdhigkeit der entwickelten Methode und Anwendung zu demonstrieren, wurde zuletzt eine
Studie durchgefiihrt. Fir die Studie wurden zunachst einmal die notwendigen Anpassungen von Steuerelemen-
te eines Dialoges untersucht, um herauszufinden welche Steuerelemente auf welche Art fir die Finger ange-
passt werden missen. Diese Erkenntnisse wurden in Form einer parametrisierten Transformationsvorschrift
auf zwei unterschiedliche Dialoge angewendet, welche anschliefend in der Studie von den Teilnehmern ge-
prift wurden. Die Studie ergab schlussendlich, dass die Umsetzung und die angepasste Steuerelemente eine
Verbesserung fiir die Bedienung mit den Fingern darstellen.

9.2 Ausblick
Die Bearbeitung des Diplomarbeitsthemas erzeugte eine Menge weiterer Ideen und Mdoglichkeiten, die leider

aus Zeitgrinden nicht umgesetzt werden konnten. Diese sollen jedoch nicht unerwahnt bleiben, so dass die
Ideen nicht verloren gehen und stattdessen von anderen aufgenommen und weiterentwickelt werden kénnen.

9.2.1 Die Zukunft von LATTE

LATTE wurde als Prototyp entwickelt, so dass nur die grundlegendsten Funktionen enthalten sind. Daher ist
eine Weiterentwicklung notwendig. Im Folgenden werden einige Erweiterungsmoglichkeiten beschrieben.

ipZI88 Migration und Anpassung von Dialoganwendungen fiir beriihrungsempfindliche Bildschirme

Integrierte Entwicklungsumgebung

Die Oberflache von LATTE wurde von Grund auf mit WPF entwickelt. Es ist jedoch auch denkbar eine vorhan-
dene Entwicklungsumgebung sowie deren Funktionalitdt wie Quelltexteditor und Dialogdesigner wiederzuver-
wenden. Beispielsweise stellt Microsoft Visual Studio fiir 2010 eine umfangreiche Modulschnittstelle zur Verfi-
gung. Aber auch andere Entwicklungsumgebungen wie Eclipse stellen solche Schnittstellen bereit und kénnen
natlrlich als Plattform fur LATTE genutzt werden. Diese Umgebungen stellen bereits ein ausgekligeltes Fens-
termanagement zur Verfliigung und kénnen aulRerdem den besprochenen Transformationsprozess in die Ent-
wicklung des Programms integrieren.

Erweiterung der Transformationsvorschrift fiir XAML

Die vorgestellten Abbildungen fiir Steuerelemente sind bei weitem nicht vollstandig. Es existieren viele Steue-
relemente, die nicht erkannt werden, obwohl sie in Dialogen auftauchen kénnten. Dazu zahlen beispielsweise
Register oder Kontextmeniis. Zusatzlich miissen dazu Uberlegungen und Priifungen unternommen werden, wie
diese Elemente fir die beriihrungsempfindliche Bedienung angepasst werden konnen. Es wird nie ausreichend
sein, Steuerelemente einfach zu transformieren, ohne zu wissen, ob dies ein Vorteil fir die Bedienung mit den
Fingern sein wird.

Grafischer Designer fiir die Dialogvorschau

LATTE unterstitzt die Vorschau des originalen sowie des transformierten Dialogs. Allerdings ist es nicht mog-
lich, diese Dialoge wie in Visual Studio mit der Maus zu dndern. Der Entwickler kann nur den Quelltext des
Dialogs direkt anpassen, jedoch werden Anderungen im transformierten Quelltext immer iiberschrieben. Eine
Verbesserung wire daher, einen grafischen Designer fiir die Dialoge einzufiihren, der zudem manuelle Ande-
rungen im Zieldialog konserviert, damit diese eine Transformation tberstehen kénnen. So kénnen manuelle
Anderungen des Entwicklers in LATTE direkt vorgenommen werden, ohne dass ein externer Editor notwendig
wadre.

Grafischer Designer fiir die Transformationsvorschrift

Die Sprache XSL kann sehr aufwandig zu nutzen sein, insbesondere wenn die Abbildungsvorschrift kompliziert
ist. Die Idee ist daher, die Sprache zu vereinfachen, indem ein grafischer Editor verwendet wird, der es dem
Benutzer erlaubt eine Transformationsvorschrift aus vorgefertigten Bausteinen zusammen bauen zu lassen.
Entweder kann dies durch grafische Objekte geschehen, die ahnlich UML in einem Editor zusammengesetzt
werden oder die Erstellung einer Transformationsvorschrift wird durch Auswahl von Werten in einem Dialog
ermoglicht. Der Dialog stellt dazu entsprechende Steuerelemente zur Verfliigung, um Steueranweisungen er-
stellen zu kbnnen (z.B. Wenn-Abfrage, Schleife, Zuweisung, Zahlenwerte und Variablen). Letzteres wurde be-
reits im Blizzards Warcraft 3 Editor zur Steuerung des Spielgeschehens eingesetzt.

Integration der Plug-Ins in LATTE

Die Erstellung von Plug-Ins kann den Transformationsprozess erleichtern. Allerdings muss dazu standig eine
Entwicklungsumgebung gestartet sein und die notwendigen Dateien missen in das Plug-In Verzeichnis kopiert
werden. Mit dem Kommandozeilenprogramm msbuild von Microsoft ist es allerdings moglich Quelltexte auto-
matisiert zu kompilieren. Die quelloffenen Entwicklungsumgebung SharpDevelop fir C# demonstriert dies
bereits eindrucksvoll. Plug-Ins kdnnten so direkt innerhalb der LATTE Umgebung gedndert und neu erstellt

Zusammenfassung und Ausblick

werden, ohne dass der Entwickler die Umgebung von LATTE verlassen missten.

Transformation auf der Kommandozeile

Entwicklungsumgebungen fiir C# und andere Sprachen bieten dem Entwickler hdufig die Moglichkeit weitere
Prozesse vor und nach der Kompilation des Programms auszufiihren, z.B. um die Anwendung automatisch zu
signieren. Es ist jedoch genauso denkbar, dass die eingesetzten Dialoge noch vor der Erstellung des Programms
transformiert werden miissen, um im Endprodukt ihren Platz zu finden. Ein Kommandozeilenprogramm fiir die
Transformation von Dialogen wiirde diesen Prozess beschleunigen. Zudem ist es nicht immer notwendig einen
Editor zu starten, weil z.B. die Transformationsvorschrift bereits vorliegt und nur ein oder mehrere Dialoge
transformiert werden mussen.

9.2.2 Die Zukunft der Methode

Zusétzlich zu den Verbesserungen fur LATTE, bietet auch die vorgestellte Methode Spielraum fiir weitere An-
satze und Verbesserungen. Zwei davon sind nachstehend beschrieben.

Einsatz von plattformunabhéangigen Dialogbeschreibungssprachen und Modellen

In der konkreten Umsetzung der Methode wurde XAML verwendet, unter anderem weil flir XAML bereits eine
Unterstitzung fiir die Quelltextanzeige und Dialogvorschau besteht. Allerdings ware es denkbar, auch andere
Dialogbeschreibungssprachen zu verwenden, beispielsweise UsiXML, UIML oder XIML. Damit kann noch tiefer
in die modellgetriebene Entwicklung eingestiegen werden. Ein Dialog existiert dann nur noch in einer abstrak-
ten Beschreibungssprache und kann nach Belieben in verschiedene Darstellungsformen entwickelt werden. In
diesem Fall ist nicht mehr die Fingerbedienung im Vordergrund, sondern sie ist nur noch eine Méglichkeit von
vielen, einen Dialog darzustellen. Auf diese Weise kann der gleiche Dialog auf einem Computerbildschirm, auf
einem Smartphone, in einem Kiosksystem am Bahnhof oder in einem Altenheim benutzt werden. Die Anforde-
rungen aller Plattformen kénnen sich dabei stark unterscheiden. Dazu zahlt auch die Bedienung mit den Fin-
gern. Doch mit der modellgetriebenen Entwicklung bestimmt nur noch die Zielplattform das Aussehen des
Dialogs, nicht mehr der Entwickler.

Einsatz im Internet

Mit jeder neuen Version von Windows und auch anderen Betriebssystemen, wird man ein Stlick naher zur
reinen berihrungsempfindlichen Bedienung kommen. Mit der Ankiindigung in Windows 8 eine komplett neue
Benutzerschnittstelle in HTML 5 und JavaScript einzusetzen (siehe [Dow Jones & Company Inc., 2011]), kénnte
der in dieser Arbeit vorgestellte Ansatz von XAML auf HTML verlegt werden. Dies wiirde zudem den vielen
Webseiten und insbesondere den Oberflachen des Cloud Computing eine bessere Bedienung mit den Fingern
verschaffen. Das groRe Problem stellen jedoch die Unterschiedlichen HTML Standards sowie die vielen Tricks
und Kniffe von Webseitenentwicklern dar, um die Oberflache in den jeweiligen Browsers optimal darstellen zu
kénnen. AuBRerdem ist HTML 5 zum aktuellen Zeitpunkt noch nicht weit verbreitet, Windows 8 noch in der
Entwicklung und viele Webseiten setzen auf geschlossene Formate wie Flash und Quick Time. Trotzdem liegt in
HTML die Zukunft der Oberflachenentwicklung, denn Tablet-Computer wie das iPad werden immer kosten-
glnstiger und sind daher auf dem Vormarsch. In Zukunft missen Webdesigner mehr Wert und Aufwand in die
berthrungsempfindliche Bedienung ihrer Webseiten stecken, damit diese auch mit der neuen Gerategenerati-
on ohne Probleme genutzt werden kénnen (Abbildung 83).

iPI8 Migration und Anpassung von Dialoganwendungen fiir beriihrungsempfindliche Bildschirme

uaguniauuni3

zInyasualeq
sje uadazue YPIW
qiejuiua]
Sunqiaiyasag

lapuajey
Japudjey ooy &

New-3

ERTEEEE 2
12O IPAIN

A dn-doy

-~

plepuels

0l
)|

WIUANO
A UoINUN
NNUIN

1njeyosag

AL

4

g alepue
Uauuoy aysen

llﬂ:‘.l\jl\ﬂlll[alsen

ualiaqieaq ujiiie |

uapejue uauos

Abbildung 83 Viele Webseiten und Cloud Anwendungen lassen sich nur schwer und nicht ohne weiteres mit den Fingern bedienen.
Hier der Google Kalender. Diagonalverhaltnis von originalem Tablet zu Bild ist 1 zu ca. 0,93.

Literaturverzeichnis b/

Literaturverzeichnis

.NET Framework Developer Center: Windows Workflow Foundation... [Online] http://msdn.microsoft.com/en-
us/netframework/aa663328.

Abrams, M. und Helms, J. 2004. User Interface Markup Language Specification Version 3.1. OASIS. [Online]
2004. http://www.oasis-open.org.

Abramson, D., Watson, G. und Dung, Le Phu. 2002. Guard: A Tool for Migrating Scientific Applications to
the.NET Framework. 2002.

AlexDov. 2008. XamIWriter and Bindings Serialization. [Online] 29. Juni 2008.
http://www.codeproject.com/KB/WPF/xamlwriterandbinding.aspx.

AndroMDA. 2011. What is AndroMDA. [Online] 2011. http://www.andromda.org/docs/whatisit.html.

Anslow, Craig. 2010. Multi-touch Table User Interfaces for Collaborative Visual Software Analytics. Wellington :
Victoria University of Wellington, 2010.

Antoniol, G., et al. 1995. Application and user interface migration from BASIC to Visual C++. 11th International
Conference on Software Maintenance (ICSM'95). 1995.

Bandelloni, R., Bert, S. und Paterno., F. 2004. Mixed-Initiative, Trans-Modal Interface Migration. Proceedings
Mobile HCI’'04. 2004, S. 216-227.

Bandelloni, R., Mori, G. und Paterno, F. 2007. Automatic User Interface Generation and Migration in Multi-
Device Environments. ACM Transaction on Computer-Human Interaction. 2007.

Bandelloni, R., Paterno, F. und Santoro, C. 2008. Reverse Engineering Cross-Modal User Interfaces for
Ubiquitous Environments. 2008.

Barclay, P., et al. 1999. The Teallach Tool: Using Models for Flexible User Interface Design. Glasgow,
GroRbritannien : s.n., 1999.

Berti, S., et al. 2004. TERESA: a transformation-based environment for designing and developing multi-device
interfaces. 2004.

Blascheck, T., Bold, D. und Muhler, D. 2010/2011. Interaktionskonzepte fiir Multi-Touch. Stuttgart : Universitat
Stuttgart, 2010/2011.

Breier, F. 2010. Multitouch 3D Interaktion mit 3D Objekten. Stuttgart : s.n., 2010.

Canfora, G., Di Santo, G. und Zimeo, E. 2004. Toward Seamless Migration of Java AWT-Based Applications to
Personal Wireless Devices. Proceedings of the 11th Working Conference on Reverse Engineering. 2004, S. 38-47.

Chapman, S. 2008. Windows 7 NUI: Stepping Beyond the GUI. [Online] 4. Juni 2008.
http://msftkitchen.com/2008/06/windows-7-nui-stepping-beyond-gui.html.

Chattopadhyay, S. 2010. WPF Simplified Part 10: WPF Framework Class Hierarchy. [Online] 10. Januar 2010.
http://soumya.wordpress.com/2010/01/10/wpf-simplified-part-10-wpf-framework-class-hierarchy.

Chikofsky, E.J. und Cross Il, J.H. 1990. Reverse Engineering and Design Recovery: A Taxonomy. IEEE Softw.
1990, Bd. 7,1, S. 13-17.

Migration und Anpassung von Dialoganwendungen fiir beriihrungsempfindliche Bildschirme

CNET News.com. CNET News.com. [Online] http://asia.cnet.com/domino-theories-for-microsofts-surface-pc-
62033135.htm.

CnPack. [Online] http://www.cnpack.org.

Di Santo, G. und Zimeo, E. 2004. Reversing GUIs to XIML descriptions for the adaptation to heterogeneous
devices. Proceedings of the 2007 ACM symposium on Applied computing. 2004, S. 1456-1460.

Doberenz, W. und Gewinnus, T. 2008. Visual C# 2008. Frankfurt/Oder : Hanser, 2008.

Dow Jones & Company Inc. 2011. Microsoft Windows President Steven Sinofsky Introduces the New Look of
Windows. [Online] 1. Juni 2011. http://allthingsd.com/20110601/up-next-at-d9-microsoft-windows-president-
steven-sinofsky-live-at-d9/.

Draheim, D., Lutteroth, C. und Weber, G. 2006. Graphical user interfaces as documents. Proceedings of the 7th
ACM SIGCHI New Zealand chapter's international conference on Computer-human interaction: design centered
HCI. 2006.

Erlenkétter, H. und Reher, V. 1997. C++ fiir Windows 95/NT. Hamburg : Rowohlt, 1997.

Experience Dynamics. User Interface Style Guides. http.//www.experiencedynamics.com/science-usability/ui-
style-guides. [Online]

Fischer, P. und Hofer, P. 2008. Lexikon der Informatik. [Hrsg.] Springer. 14. Luzern : s.n., 2008.

Foley, J. und Sukaviriya, N. 1995. Results, and Bibliography of the User Interface Design Environment (UIDE),
an Early Model-Based System for User Interface Design and Implementation. Interactive Systems: Design,
Specification, and Verification. 1995, S. 3-10.

Fraunhofer IAO. 2009. Studie Multi-Touch. [Dokument] 2009.

Geis, T. 2006. ProContext - The new ISO 9241-110 "Dialogue principles". [Online] 11. August 2006.
http://www.procontext.com/en/news/2006-08-11.html.

Georges, F. 2007. Nightly thoughts (Blog). [Online] 18. Januar 2007.
http://fgeorges.blogspot.com/2007/01/creating-namespace-nodes-in-xslt-10.html.

Gerdes, J. 2009. User Interface Migration of Microsoft Windows Applications. Journal of Software Maintenance
and Evolution: Research and Practice. 3, 2009, Bd. 21, S. 171-187.

GExperts. Programming Tools For Delphi and C++ Builder. [Online] http://www.gexperts.org.

Gleeson, M., Stanger, N. und Ferguson, E. 2004. Design strategies for GUI items with touch screen based
information systems: assessing the ability of a touch screen overlay as a selection device. [Hrsg.] University of
Otago. Information Science Discussion Papers Series. 2004.

Grilo, A.M.P., Paiva, A.C.R. und Faria, J.P. 2007. Reverse Engineering of GUI Models. FMICS'07 Proceedings of
the 12th international conference on Formal methods for industrial critical systems. 2007.

Grolaux, D. 2004. Migratable User Interfaces: Beyond Migratory User Interfaces. MOBIQUITOUS IEEE Computer
Society Press, Los Alamitos. 2004, S. 22-25.

Han, J. Y. 2005. Low-Cost Multi-Touch Sensing through Frustrated Total Internal Reflection. Proceedings of the
18th annual ACM symposium on User interface software and technology. 2005.

Heinecke, A. M. 2004. Mensch- Computer- Interaktion. s.l. : Fachbuchverlag Leipzig, 2004.

Literaturverzeichnis L)

HIIS Laboratory. MARIA. [Online] http://giove.isti.cnr.it/tools/MARIA/home.
—. MARIAE. [Online] http://giove.isti.cnr.it/tools/MARIAE/home.

—. 2010. Tools - MARIA, MARIAE, CTT, ReverseMARIA und andere. [Online] 2010.
http://giove.isti.cnr.it/tools.php.

Hillberg, M. 2006. Data See, Data Do - Being written by XamI|Writer. [Online] 16. 9 2006.
http://blogs.msdn.com/b/mikehillberg/archive/2006/09/16/xamlwriter.aspx.

Hitchcock, G. 2005. Where does 96 DPI come from in Windows? [Online] Where does 96 DPl come from in
Windows?, 8. Oktober 2005. http://blogs.msdn.com/b/fontblog/archive/2005/11/08/490490.aspx.

Holman, D. und Vertegaal, R. 2008. Organic user interfaces: designing computers in any way, shape, or form.
Communications of the ACM - Organic user interfaces. 2008, Bd. 51, 6.

Holz, C. und Baudisch, P. 2011. Understanding Touch. Potsdam, Germany : Hasso Plattner Institute, 2011.
IC#Code. 2009. SharpDevelop. [Online] 2009. http://www.icsharpcode.net.

John, Jr., G. 2009. User Interface Migration of Microsoft Windows Applications. Journal of Software
Maintenance and Evolution: Research and Practice. 2009, Bd. 21, 3, S. 171-187.

Koller, F. und Burmester, M. 2010. Technik natiirlich nutzen — NUI-Design in der Praxis. s.l. : Usability
Professionals, 2010.

Kéth, Y. 2001. User Interface fiir ein generisches Modellierungswerkzeug. Dresden : Technische Universitat
Dresden, 2001.

Krasner, G.E. und Pope, S.T. 1988. A Cookbook for Using the Model-View-Controller User Interface Paradigm in
Smalltalk-80. Journal of Object-Oriented Programming, SIGS Publication. 5, 1988, S. 26-49.

Kwon, S., Lee, D. und Chung, Min K. 2009. Effect of key size and activation area on the performance of a
regional error correction method in a touch-screen QWERTY keyboard. International Journal of Industrial
Ergonomics. 2009, Bd. 39, 5, S. 888-893.

Leymann, F. 2008. MDA. [PDF] Stuttgart : Institute of Architecture of Application Systems, 2008.

Lovett, C. 2006. Microsoft XML Team's WebLog. [Online] 16. November 2006.
http://blogs.msdn.com/b/xmlteam/archive/2007/11/16/chris-lovett-interview.aspx.

Ludewig, J. und Lichter, H. 2007. Software Engineering. Stuttgart : dpunkt.verlag, 2007.

Lutteroth, C. 2008. Automated Reverse Engineering of Hard-Coded GUI Layouts. AUIC '08 Proceedings of the
ninth conference on Australasian user interface. 2008, Bd. 76.

MacDonald, M. 2010. Pro WPF in C# 2010. 1. New York : Apress, 2010.
Machate, J. 2003. User Interface Tuning. Frankfurt : Software & Support Verlag, GmbH, 2003.
Mangano, S. 2006. XSLT Kochbuch. 2. KéIn : O'Reilly, 2006.

Matejka, J., et al. 2009. The Design and Evaluation of Multi-Finger Mouse Emulation Techniques. CHI '09
Proceedings of the 27th international conference on Human factors in computing systems. 2009.

Mauney, D. 2010. TouchThinking - Gesture Research Part 1 - 4. [Online] 20. Mai 2010.
http://www.touchthinking.com.

il Migration und Anpassung von Dialoganwendungen fiir beriihrungsempfindliche Bildschirme

Meixner, G. und Gorlich, D. 2008. Aufgabenmodellierung als Kernelement eines nutzerzentrierten
Entwicklungsprozesses fiir Bedienoberfldchen. Kaiserslautern : s.n., 2008.

Microsoft. 2011. About Task Dialogs. [Online] 2011. http://msdn.microsoft.com/en-
us/library/bb760441%28VS.85%29.aspx.

—. 2011. Add-ins and Extensibility. [Online] 2011. http://msdn.microsoft.com/de-de/library/bb384200.aspx.

—. 2011. Application Domains Overview. [Online] 2011. http://msdn.microsoft.com/en-
us/library/2bh4z9hs%28VS.71%29.aspx.

—. 2011. Attributes. [Online] 2011. http://msdn.microsoft.com/en-us/library/z0w1kczw.aspx.

—. 2011. Dependency Properties Overview. [Online] 2011. http://msdn.microsoft.com/en-
us/library/ms752914.aspx.

—. 2009. Microsoft News Center. [Online] 2009.
http://www.microsoft.com/presspass/features/2009/Apr09/04-06SurfaceHIMSS2.mspx.

—. MSDN Developer Center - CONTROL Control. [Online] http://msdn.microsoft.com/en-
us/library/aa380911%28VS.85%29.aspx.

—. MSDN Library: Touch (Gestaltungsrichtlinie). http://msdn.microsoft.com/en-us/library/cc872774.aspx.
[Online]

—. MSDN Library: Windows Touch SDK. http://msdn.microsoft.com/en-
us/library/dd562197%28VS.85%29.aspx. [Online]

—. 2011. Resource-Definition Statements. [Online] 19. April 2011. http://msdn.microsoft.com/en-
us/library/aa381043%28VS.85%29.aspx.

—. 2011. Serialization Limitations of XamIWriter.Save. [Online] 2011. http://msdn.microsoft.com/de-
de/library/ms754193.aspx.

—. 2003. UNIX Application Migration Guide. Redmond : s.n., 2003.
—. Windows SDK. [Online] http://msdn.microsoft.com/de-de/windows/bb980924.

—. 2009. WPF-Anwendungen mit dem Model-View-ViewModel-Entwurfsmuster. MSDN Magazin. 2009,
Februar.

Miller, J. und Mukeriji, J. 2003. MDA Guide Version 1.01. [PDF] s.l. : OMG, 2003. omg/2003-06-01.

Moore, M. M. und Rugaber, S. 1993. Issues in User Interface Migration. Proceeding of 3rd Internation Software
Engineering Research Forum. 1993.

Moore, M. 1995. Reverse Engineering User Interfaces - A Technique. Proceedings of the 1995 Software
Developer's Conference. 1995.

MSDN. 2011. ObservableCollection. [Online] 2011. http://msdn.microsoft.com/de-de/library/ms668604.aspx.

Musgrave, D. 2009. MSDN Blogs: Windows 7, bitmap fonts and Microsoft Dynamics GP. [Online] Microsoft, 24.
November 2009. http://blogs.msdn.com/b/developingfordynamicsgp/archive/2009/11/25/windows-7-bitmap-
fonts-and-microsoft-dynamics-gp.aspx.

Literaturverzeichnis [kl

Novak, J. und Schmidt, S. 2009. When joy matters: the importance of hedonic stimulation in collocated
collaboration with large-displays. 12th IFIP TC 13 International Conference. 2009, 5727, S. 618-629.

OMG. 2008. MOF - Model to Text Transformation Language. [Online] Januar 2008.
http://www.omg.org/spec/MOFM2T.

—. 2011. QVT - Query/View/Transformation. [Online] Januar 2011. http://www.omg.org/spec/QVT.
Oracle. Netbeans. [Online] http://netbeans.org.

Parhi, P. und Oulu, M. 2006. Target Size Study for One-Handed Thumb Use on Small Touchscreen Devices. In
Proc. MobileHCI 2006. 2006, S. 203-210.

Paterno, F. 2005. Model-based tools for pervasive usability. Interacting with Computers. 2005, Bd. 17, S. 291-
315.

Paterno, F., Mancini, C. und Meniconi, S. 1997. ConcurTaskTrees: A Diagrammatic Notation for Specifying Task
Models. INTERACT '97 Proceedings of the IFIP TC13 Interantional Conference on Human-Computer Interaction.
1997.

Paterno, F., Santoro, C. und Scorcia, A. 2008. User Interface Migration between Mobile Devices and Digital TV.
2nd Conference on Human-Centered Software Engineering. 2008, S. 287-292.

Paterno, F., Santoro, C. und Spano, Lucio D. 2009. MARIA: A Universal, Declarative, Multiple Abstraction-Level
Language for Service-Oriented Applications in Ubiquitous Environments. [Hrsg.] ACM. Transactions on
Computer-Human Interaction. November 2009, Bd. 16, 4, S. 30.

Paulenz, M.D. 2010. Modellgestiitztes End-User-Development fiir Multi-Touch-Benutzungsschnittstellen.
Stuttgart : s.n., 2010.

Pavlovic, V.l., Sharma, R., Huang, T.S. 1997. Visual Interpretation of Hand Gestures for Human-Computer
Interaction: A Review. I[EEE TPAMI. 1997, S. 677-695.

Petzold, C. 1999. Windows Programmierung. 5. s.l. : Microsoft Press, 1999.

Plaisant, C. und Wallace, D. 1992. Touchscreen toggle design. Proceedings of the SIGCHI conference on Human
factors in computing systems. 1992, S. 667-668.

Porteck, S. 2011. Anfassbar - Sieben Touchscreen-Monitore ab 22 Zoll. ¢'t - Magazin fiir Computer Technik.
2011, 5.

Rédle, R. 2009. Squidy - A Zoomable Design Environment for Natural User Interfaces. In CHI EA '09: Proceedings
of the 27th international conference extended abstracts on Human factors in computing systems. 2009, S. 4561-
4566.

Raschke, M., et al. 2010. Evaluation of different interaction techniques for touch devices. Stuttgart : Universitat
Stuttgart, 2010.

Richter, B. 2007. An XAML Serializer Preserving Bindings. [Online] 1. November 2007.
http://www.codeproject.com/KB/WPF/XamlSerializer.aspx.

Roth, Tim. 2008. MultiTouch Dev Blog. [Online] 9. Juni 2008. http://iad.projects.zhdk.ch/multitouch/?p=90.

Rozlog, M. 2009. DevX.com - Top Five Touch Ul-Related Design Guidelines. [Online] 2. November 2009.
http://www.devx.com/enterprise/Article/43185.

Migration und Anpassung von Dialoganwendungen fiir beriihrungsempfindliche Bildschirme

Salminen, T., Hosio, S. und Riekki, J. 2007. Middleware based user interface migration: implementation and
evaluation. 4th International Conference on Mobile Technology. 2007, S. 358-363.

Sanchez Ramén, 0., Sanchez Cuadrado, J. und Garcia Molina, J. 2010. Model-Driven Reverse Engineering of
Legacy Graphical User Interfaces. Proceedings of the IEEE/ACM international conference on Automated
software engineering. 2010, S. 147-150.

Saxonica Limited. 2010. The XSLT and XQuery Processor. [Online] 30. Oktober 2010.
http://saxon.sourceforge.net/.

Schlegel, T., et al. 2010. Evaluation of current User Interface Generator Frameworks for Graphical Interactive
Systems. IADIS International Conferences Interfaces and Human Computer Interaction and Game and
Entertainment Technologies. 2010, S. 385-390.

Schmid, D. 2010. Modellgetriebene generative Softwareentwicklung. [Vorlesung] Karlsruhe : s.n., 2010.
“Entwurf eingebetteter Systeme”.

Schmidt, T. 2008. Interaction Concepts for Multi-Touch User Interfaces: Design and Implementations. Konstanz :
Universitat Konstanz, 2008.

Schoning, J., et al. 2008. Multi-Touch Surfaces: A Technical Guide. Miinchen, Deutschland : s.n., 2008.

Sears, A. und Shneiderman, B. 1991. High Precision Touchscreens: Design Strategies and Comparisons with a
Mouse. International Journal of Man-Machine Studies. 1991, 34, S. 593-613.

Seidewitz, E. 2003. What models mean. Software IEEE. Sept.-Okt. 2003, Bd. 20, 5, S. 26-32.

Stackoverflow. 2009. What is the current state of XSLT 2.0 availability within .NET. [Online] 6. Mai 2009.
http://stackoverflow.com/questions/831300/what-is-the-current-state-of-xslt-2-0-availability-within-
net/831321#831321.

Stewart, C., et al. 2006. EXSLT Downloads. [Online] 2006.
Sun. 2005. The Java Language Specification. 3. California, U.S.A. : Addison-Wesley, 2005.

TCS. ModelMorf - A Model Transformer. [Online] http://www.tcs-
trddc.com/trddc_website/ModelMorf/ModelMorf.htm.

Tefkat. Tefkat - The EMF Transformation Engine. [Online] http://tefkat.sourceforge.net.
The Eclipse Foundation. Eclipse Modeling Project. [Online] http://www.eclipse.org/modeling.

tiresias.org. 2009. Touchscreens. [Online] 20. November 2009.
http://www.tiresias.org/research/guidelines/touch.htm.

Tyco Electronics. 2010. Funktionsweise von AccuTouch-Touchscreens. [Online] 2010.
http://www.elotouch.de/Produkte/Touchscreens/AccuTouch/accworks.asp.

Unidex Inc. 2001. Universal Turing Machine in XSLT. [Online] Unidex, 2001.
http://www.unidex.com/turing/utm.htm.

USIXML. USIXML - USer Interface eXtensible Markup Language. [Online] http://www.usixml.org.

VISAM. Touchscreen Technik. [Online] http://www.visam.de/04_service/touch.php.

Literaturverzeichnis k]

W3C. 2009. W3C Wiki. [Online] 2009. schreibgeschiitztes Wiki. http://www.w3.0rg/2005/Incubator/model-
based-ui/wiki/ConcurTaskTrees.

—. 1999. XPath 1.0 Specification. [Online] 1999. http://www.w3.org/TR/xpath/.

—. 1999. XSL Transformations (XSLT) 1.0. [Online] 1999. http://www.w3.0rg/TR/1999/REC-xslt-19991116.
—. 2007. XSL Transformations (XSLT) Version 2.0. [Online] 2007. http://www.w3.org/TR/xslt20/.
W3Schools. 2011. XPath. [Online] 2011. http://www.w3schools.com/XPath.

—. 2011. XSLT. [Online] 2011. http://www.w3schools.com/xsl/.

Wang, X., Ghanam, Y. und Maurer, F. 2008. From Desktop to Tabletop: Migrating the User Interface of
AgilePlanner. Pisa, Italien : Springer-Verlag, 2008. S. 263-270.

Watson, K. 2011. All About Digital Photos - The Myth of DPI. [Online] 2011. http://www.rideau-
info.com/photos/mythdpi.html.

Wessel, 1. 2002. GUI-Design. 2. Berlin : Hanser, 2002.

Wikipedia. 2011. Model-driven architecture. [Online] Permanent Revision ID: 417932142, 2011.
http://en.wikipedia.org/w/index.php?title=Model-driven_architecture&oldid=417932142.

Wong, C., Chu, H. und Katagiri, M. 2002. GUI Migration across Heterogenous Java Profiles. In Proceeding of the
ACM SIGCHI-NZ’02. 2002.

Alle Onlinequellen wurden zuletzt am 27. August 2011 gepriift.

Migration und Anpassung von Dialoganwendungen fir berihrungsempfindliche Bildschirme

Anhang

Steuerelementname Engl. Bezeichner Symbol Beschreibung
Befehlsschaltfliche, button Ein Schalter zum Auslésen einer
Schaltknopf, ’ Button] Aktion.
(Druck-)Schalter
Textfeld, edit, edit box, Ein Feld zur Eingabe von beliebigen
Texteingabe, textbox Edit textuellen Werten.
Eingabefeld
Dropdown-Listenfeld combobox | ' Ein spezielles Eingabefeld mit
Auswahlmoglichkeit aus einer
mit | Menge von vorgegebenen Werten.
angehiingter Es kann auch nur auf diese
Liste beschrankt sein.
Listenfeld, Liste listbox Listhox Eine Menge von Elementen, die zur
mit Auswahl stehen. Auch
weiteren Mehrfachauswahl ist moglich.
Eintrégen
Statisches Textfeld, statictext, Ein Anzeigeelement zur Ausgabe
Label textblock, label Static Text von Texten, Werten und
Beschriftungen.
Rahmen groupbox, frame Groupbox Ein visuelles Element zur Gruppie-
rung von Elementen.
Kontrollkastchen checkbox |:| Chedkbox Ein boolesches Eingabeelement.

Optionsfeld

Schiebregler
Bildlaufleiste

Baumansicht

Listenansicht

Register

Drehfeld

radiobutton

slider

scrollbar

treeview

listview

tabcontrol

spinedit

(") Radiobutton

0 -

I element

Column Mame
listview list
item2 subitem

whitemd | tabitem2 |

! =

Ein boolesches Eingabeelement,
das abhadngig von weiteren Opti-
onsfeldern geschaltet wird.

Ein Regler zur Eingabe von Werten
innerhalb bestimmter Grenzen.
Ein Steuerelement zur Anderung
des sichtbaren Ausschnitts.

Ein Steuerelement, dessen Werte
in einer hierarchischen
Baumansicht dargestellt sind.

Ein Steuerelement, das Objekte mit
deren Eigenschaften darstellen
kann.

Ein Containerelement, das Inhalte
durch Karteireiter trennt.

Ein Textfeld zur Eingabe eines
Zahlenwertes, der neben der
direkten Eingabe auch durch Auf-
und Abwartsschalter erhoht oder
verkleinert werden kann.

Tabelle 17 Steuerelemente: Bezeichnung, Symbol und Kurzbeschreibung basierend auf [Petzold, 1999], [Erlenkétter, et al., 1997] und

[Wessel, 2002]

Anhang

Steuerelementname

Embarcadero

Delphi Element

Ressource Elemente®
(MFC Klasse)

XAML Element

Befehlsschaltflache,
Schaltknopf,
(Druck-)Schalter
Textfeld,
Texteingabe,
Eingabefeld
Dropdown-Listenfeld
Listenfeld, Liste
Statisches Textfeld,
Label

Rahmen
Kontrollkdstchen
Optionsfeld
Schiebregler
Bildlaufleiste
Baumansicht
Listenansicht

Register

Benutzerdefiniertes
Element

TButton

TEdit/TMemo

TComboBox
TListBox
TStaticText
TLabel
TGroupBox
TCheckBox
TRadioButton
TSlider
TScrollBar/
TScrollbox
TTreeView
TListView

TTabControl

TControl

PUSHBUTTON
(CButton)

EDITTEXT
(CEdit)

COMBOBOX
(CComboBox)
LISTBOX
(CListBox)
CTEXT, LTEXT,RTEXT
(CStaticText)
GROUPBOX
(CStatic)
CONTROL®@
(CButton)
CONTROL®@
(int®)
CONTROL®@
(CSliderCtrl)
SCROLLBAR
(CScrollBar)
CONTROL®@
(CTreeCtrl)
CONTROL®@
(CListCtrl)
CONTROL®@
(CTabCtrl)
CONTROL®@

@ Aus Resource-Definition Statements: [Microsoft, 2011]
@ Das generische CONTROL Element wird zur Laufzeit durch ein mit Name registriertes Steuerelement ersetzt

(CONTROL: [Microsoft])

Button

TextBox

ComboBox
ListBox
TextBlock
Label
GroupBox
CheckBox
RadioButton
Slider
ScrollBar/ScrollViewer
TreeView
ListView

TabControl

UserControl

® Jedes Optionsfeld wird in MFC als Bitkombinationswert einer Ganzzahl (int) betrachtet.

Tabelle 18 Abbildungstabelle fiir Steuerelemente von Delphi, Dialog Ressource und XAML

(1598 Migration und Anpassung von Dialoganwendungen fiir bertihrungsempfindliche Bildschirme

R B =

<<create>>

Transform

LoadPlugins()

<<create>>

<<create>>

<<return>>

<<return>>

Processing(ProcessingType.PreProcessing, ...)

for each plugin

Plugin.GetFeatures()

<<return Feature>>

PreProcessing(...)

<<return ProcessingMessageList>>

XslCompiledTransform::Transform

L

for each plugin

o

Plugin.GetFeatures()

<<return Feature>>

PostProcessing(...)

<<return>>

Abbildung 84 Sequenzdiagramm des implementierten Transformationsprozesses

Anhang [IEEZANININNN

. . . A o Plugin implementiert
[TransformationEngine] [LATTE_Host.View Plugin][LATTE_Host.Adapter][AppDomain Border][LATTE_AddIn.Adapters][LATTE_AddIn.View

Host Seite I% Plug-In Seite %

bool PreProcessing(ref XmiDocument, XmINamespaceManager)

Parameter (ref) Uibergeben

XmlIDocument wird als Referenz B‘

bool PreProcessing(ref XmIDocul Xi 1ager)

Converters.XmlDocumentToStream()

Converters. 1agerT 0

Stream PreProcessing(Stream, Stream)

Converters.XmlDocumentFromStream()

Converters. ragerf)

bool PrePi ing(ref XmID)

<<return bool>>

Stream.WriteByte(returnValue)

Converters.XmIDocumentToStream()

<<return Stream>>

returnValue = Stream.ReadByte()

Converters.XmlDocumentFromStream()

<<return bool, , ref XmIDocument>>

<<return bool, ref XmIDocument>>

X X X N X X

Abbildung 85 Plug-In Methoden Aufruf mit MAF am Beispiel von PreProcessing

Migration und Anpassung von Dialoganwendungen fiir beriihrungsempfindliche Bildschirme

1 <Window xmins="http://schemas.microsoft.com/winfx/2006/xaml|/presentation"
2 xmins:x="http://schemas.microsoft.com/winfx/2006/xaml"
3 Title="Confirmation"
4 SizeToContent="WidthAndHeight">
5
6 <Window.Resources>
7 <x:Array xmlIns:sys="clr-namespace:System;assembly=mscorlib"
8 x:Key="Fileltems"
9 Type="{x:Type sys:String}">
10 <sys:String>Readme.txt</sys:String>
11 <sys:String>ImportantBusiness.doc</sys:String>
12 <sys:String>HotHotHot.jpg</sys:String>
13 <sys:String>Dealer.xls</sys:String>
14 </x:Array>

15 </Window.Resources>

16 <StackPanel Margin="10">

17 <Label Name="labell" Width="309" Height="29"

18 Content="The following tasks are left? What do you want to do?" />
19 <ListBox Name="listBox1" Width="309" Height="73"

20 ItemsSource="{Binding Source={StaticResource Fileltems}}"
21 SelectionMode="Extended" />

22 <CheckBox Name="checkBox4" Width="306" Height="16"

23 Content="De-/Select them all"

24 IsChecked="{x:Null}"

25 IsThreeState="True" />

26 <RadioButton Name="checkBox1" Width="123" Height="16"

27 Content="Save selected one" />

28 <RadioButton Name="checkBox2" Width="123" Height="16"

29 Content="Save them all" />

30 <RadioButton Name="checkBox3" Width="123" Height="16"

31 Content="Release them all" />

32 <StackPanel HorizontalAlignment="Center" Orientation="Horizontal">
33 <Button Name="button2" Width="41" Height="23"

34 Margin="0,0,5,0" Content="0k" />

35 <Button Name="button1" Width="55" Height="23"

36 Content="Cancel" />

37 </StackPanel>

38 </StackPanel>

39 </Window>
Quelltext 45 Ausgangsdialog fiir die Transformation in Kapitel 7.5.2

<Window Title="Confirmation" SizeToContent="WidthAndHeight"
xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"

xmlns:touch="clr-namespace:LATTE_Resources;assembly=LATTE_Resources"

1
2
3
4
5 xmlns:xamIns="http://schemas.microsoft.com/winfx/2006/xaml/presentation">
6 <Window.Resources>

7 <x:Array x:Key="Fileltems" Type="{x:Type sys:String}"

8 xmlns:sys="clr-namespace:System;assembly=mscorlib">

9 <sys:String>Readme.txt</sys:String>

10 <sys:String>lmportantBusiness.doc</sys:String>

11 <sys:String>HotHotHot.jpg</sys:String>

12 <sys:String>Dealer.xls</sys:String>

13 </x:Array>

14 </Window.Resources>

15 <StackPanel Margin="10">

16 <Label Name="labell" Width="309" Height="29"

17 Content="The following tasks are left? What do you want to do?" />

18 <ListBox Name="listBox1" Width="373" Height="137"

19 ItemsSource="{Binding Source={StaticResource Fileltems}}"

20 SelectionMode="Extended">

21 <ListBox.ltemTemplate>

22 <DataTemplate>

23 <TextBlock Text="{Binding Path=.}" Height="30" />
24 </DataTemplate>

25 </ListBox.ltemTemplate>

26 </ListBox>

27 <touch:CheckBoxTouchSwitcher Name="checkBox4"

28 Width="322" Height="32" Content="De-/Select them all"
29 IsChecked="{x:Null}" IsThreeState="True" />

30 <RadioButton Name="checkBox1" Width="139" Height="32"
31 Content="Save selected one" />

32 <RadioButton Name="checkBox2" Width="139" Height="32"
33 Content="Save them all" />

34 <RadioButton Name="checkBox3" Width="139" Height="32"
35 Content="Release them all" />

36 <StackPanel HorizontalAlignment="Center" Orientation="Horizontal">
37 <Button Name="button2" Width="57" Height="39"

38 Margin="0,0,5,0" Content="0k" />

39 <Button Name="button1" Width="71" Height="39"

40 Content="Cancel" />

41 </StackPanel>

42 </StackPanel>

43 </Window>
Quelltext 46 Quelltext des transformierten Beispieldialogs aus Kapitel 6.3.2

Migration und Anpassung von Dialoganwendungen fiir beriihrungsempfindliche Bildschirme

Eingangsfragen

Alter: F1
Geschlecht : F2
Weiblich mannlich
Wie lange in der Woche nutzen Sie einen PC zum Arbeiten, im Internet surfen, spielen usw.? F3
(Mehrfachnennung moglich)
gar nicht 3 bis 4 Stunden
weniger als eine Stunde 4 bis 10 Stunden
1 bis 2 Stunden mehr als 10 Stunden
Welche beriihrungsempfindlichen Gerate haben Sie bereits einmal genutzt? F4
(Mehrfachnennung moglich)
gar keine Offentliche Systeme (Fahrkartenautomat)
Smpartphone / Mobiltelefon Navigationsgerate
Tablet-PC mit Tastatur Kopiergerate und/oder Drucker

Berihrungsempfindlicher Monitor mit StandfuR

Tablet-PC (z.B. iPad) ohne Tastatur (TFT, LCD usw.) filr PC

sonstige, bitte unten angeben Laptop mit berihrungsempfindlichen Bildschirm
Welche berihrungsempfindlichen Gerate nutzen Sie regelmaRig? F5
(Mehrfachnennung moglich)

gar keine Offentliche Systeme (Fahrkartenautomat)

Smpartphone / Mobiltelefon Navigationsgerate

Tablet-PC mit Tastatur Kopiergerate und/oder Drucker

Berihrungsempfindlicher Monitor mit Standfuf
(TFT, LCD usw.) fiir PC

sonstige, bitte unten angeben Laptop mit berihrungsempfindlichen Bildschirm

Tablet-PC (z.B. iPad) ohne Tastatur

gar nicht

weniger als eine Stunde

1 bis 2 Stunden

Anhang

Wie lange nutzen Sie |hr berihrungsempfindliches Gerat pro Woche? (Nur ein Kastchen ausfillen) F6

3 bis 4 Stunden

4 bis 10 Stunden

mehr als 10 Stunden

Welche der folgenden Softwaretypen haben Sie bereits mehrmals genutzt? F7

gar keine

Bildbearbeitung / CAD / Videoschnitt

Textverarbeitung / Office-Anwendung

gar keine

Nintendo DS/3DS

Nintendo Wii

Playstation 3 ohne Kamera

Playstation 3 mit Kamera

Medienwiedergabe (Musik, DVD usw.)

Programmierumgebung (IDE)

Internet-Browser

Welche der folgenden Systeme haben Sie bereits fiir Spiele benutzt? (Mehrfachnennung moglich) F8

XBox ohne Kinect (Kamerasteuerung)
XBox mit Kinect (Kamerasteuerung)
Handy

PC

Welche Erwartungen haben Sie an die Bedienung eines beriihrungsempfindlichen Bildschirms am Desk- F9

top-PC / Laptop?

iZyA8 Migration und Anpassung von Dialoganwendungen flr beriihrungsempfindliche Bildschirme

Aufgabe 01

Wie beurteilen Sie die Bedienung des Dialogs wahrend der gesamten Aufgabe? F14

(Pro Reihe maximal ein Kreuz)

Frustrierend | 1 2

Langweilig | 1 | 2

Schwierig | 1 | 2

Reagiert langsam | 1 | 2

Ungewohnt | 1 | 2

Korperlich sehr anstrengend | 1 | 2

3145
3141|5
3141|5
3145
3141|5
3141|5

Bitte bewerten Sie die Aufgabe nach den folgenden Kriterien:

(Pro Reihe maximal ein Kreuz)

Motivierend
Stimulierend / Spannend
Leicht

Reagiert schnell
Gewohnt

Korperlich kaum anstrengend

F15

Dlg optische Darstellung des Dialogs gefiel Trifft nicht als el 71 8| Trifft
mir. zu
Ich konn.te Steuerglemente einfach tref- Trifft nicht als el 71 8| Trifft 2
fen/anklicken/antippen. zu
Der E|r‘1$atz‘vorT Maus/Finger in dieser Auf- Trifft nicht als el 71 8| Trifft
gabe fiel mir leicht. Zu
Wie beurteilen Sie die Bedienung des Steuerelements Listenfeld (Dateianzeige), wenn vorhanden, wah- F16
rend der Aufgabe? (Pro Reihe maximal ein Kreuz)
Frustrierend | 1 | 2 | 3 | 4 | 5 Motivierend
Langweilig| 1 | 2 | 3 | 4 | 5 Stimulierend / Spannend
Schwierig| 1 | 2 | 3 | 4 | 5 Leicht
Reagiertlangsam | 1 | 2 | 3 | 4 | 5 Reagiert schnell
Ungewohnt | 1 | 2 | 3 | 4 | 5 Gewohnt
Korperlich sehranstrengend | 1 | 2 | 3 | 4 | 5 Korperlich kaum anstrengend
Wie beurteilen Sie die Bedienung des Steuerelements Baumansicht (Ordneranzeige), wenn vorhanden, F17

wahrend der Aufgabe? (Pro Reihe maximal ein Kreuz)

Frustrierend | 1 | 2 | 3 | 4 | 5

Langweilig| 1 | 2 | 3 | 4 | 5

Schwierig| 1 | 2 | 3 | 4 | 5

Reagiertlangsam | 1 | 2 | 3 | 4 | 5
Ungewohnt | 1 | 2 | 3 | 4 | 5

Korperlich sehranstrengend | 1 | 2 | 3 | 4 | 5

Motivierend
Stimulierend / Spannend
Leicht

Reagiert schnell
Gewohnt

Korperlich kaum anstrengend

Aufgabe 02

Anhang

Wie beurteilen Sie die Bedienung des Dialogs wahrend der gesamten Aufgabe? F14

(Pro Reihe maximal ein Kreuz)

Frustrierend | 1 2

Langweilig | 1 | 2

Schwierig | 1 | 2

Reagiert langsam | 1 | 2

Ungewohnt | 1 | 2

Korperlich sehr anstrengend | 1 | 2

3145
3141|5
3141|5
3145
3141|5
3141|5

Motivierend
Stimulierend / Spannend
Leicht

Reagiert schnell
Gewohnt

Korperlich kaum anstrengend

Bitte bewerten Sie die Aufgabe nach den folgenden Kriterien: F15
(Pro Reihe maximal ein Kreuz)
Dl.e optische Darstellung des Dialogs gefiel Trifft nicht als el 71 s | Trifft 2
mir. zu
Ich konn.te Steuerglemente einfach tref- Trifft nicht als el 71 s | Trifft 2
fen/anklicken/antippen. zu
Der E|r.15atz.von. Maus/Finger in dieser Auf- Trifft nicht als el 71 s | Trifft 2
gabe fiel mir leicht. zu
Wie beurteilen Sie die Bedienung des Steuerelements Listenfeld (Dateianzeige), wenn vorhanden, wah- F16
rend der Aufgabe? (Pro Reihe maximal ein Kreuz)
Frustrierend | 1 | 2 | 3 | 4 | 5 Motivierend
Langweilig| 1 | 2 | 3 | 4 | 5 Stimulierend / Spannend
Schwierig| 1 | 2 | 3 |4 | 5 Leicht
Reagiertlangsam | 1 | 2 | 3 | 4 | 5 Reagiert schnell
Ungewohnt | 1 | 2 | 3 | 4 | 5 Gewohnt
Korperlich sehranstrengend | 1 | 2 | 3 | 4 | 5 Korperlich kaum anstrengend
Wie beurteilen Sie die Bedienung des Steuerelements Baumansicht (Ordneranzeige), wenn vorhanden, F17
wahrend der Aufgabe? (Pro Reihe maximal ein Kreuz)
Frustrierend | 1 | 2 | 3 | 4 | 5 Motivierend
Langweilig| 1 | 2 | 3 | 4 | 5 Stimulierend / Spannend
Schwierig| 1 | 2 | 3 | 4 | 5 Leicht
Reagiertlangsam | 1 | 2 | 3 | 4 | 5 Reagiert schnell
Ungewohnt | 1 | 2 | 3 | 4 | 5 Gewohnt
Korperlich sehranstrengend | 1 | 2 | 3 | 4 | 5 Korperlich kaum anstrengend

(ZVBS Migration und Anpassung von Dialoganwendungen fir beriihrungsempfindliche Bildschirme

Aufgabe 03

Wie beurteilen Sie die Bedienung des Dialogs wahrend der gesamten Aufgabe? F14

(Pro Reihe maximal ein Kreuz)

Frustrierend | 1

Langweilig | 1

Schwierig | 1

Reagiert langsam | 1

Ungewohnt | 1

Korperlich sehr anstrengend | 1

4|5
4|5
4|5
4|5
4|5
4|5

Bitte bewerten Sie die Aufgabe nach den folgenden Kriterien:

(Pro Reihe maximal ein Kreuz)
Die optische Darstellung des Dialogs gefiel
mir.

Trifft nicht zu

Motivierend
Stimulierend / Spannend
Leicht

Reagiert schnell
Gewohnt

Korperlich kaum anstrengend

F15

3 4 5 6 7 8 | Trifft zu

Ich konnte Steuerelemente einfach tref-
fen/anklicken/antippen.

Trifft nicht zu

3 4 5 6 7 8 | Trifft zu

Der Einsatz von Maus/Finger in dieser Aufga-

be fiel mir leicht.

Trifft nicht zu

3 4 5 6 7 8 | Trifft zu

Wie beurteilen Sie die Bedienung des Steuerelements Listenfeld (Dateianzeige), wenn vorhanden, wihrend F16
der Aufgabe? (Pro Reihe maximal ein Kreuz)

Motivierend

Stimulierend / Spannend

Leicht

Reagiert schnell

Gewohnt

Frustrierend | 1 | 2 | 3 | 4 | 5

Langweilig | 1 | 2 | 3 | 4 | 5

Schwierig| 1 | 2 | 3 | 4 | 5

Reagiertlangsam | 1 | 2 | 3 | 4 | 5
Ungewohnt | 1 | 2 | 3 | 4 | 5

Korperlich sehr anstrengend | 1 | 2 | 3 | 4 | 5

Korperlich kaum anstrengend

Aufgabe 04

Anhang

Wie beurteilen Sie die Bedienung des Dialogs wahrend der gesamten Aufgabe? F14

(Pro Reihe maximal ein Kreuz)

Frustrierend | 1 2

Langweilig | 1 | 2

Schwierig | 1 | 2

Reagiert langsam | 1 | 2

Ungewohnt | 1 | 2

Korperlich sehr anstrengend | 1 | 2

4|5
4|5
4|5
4|5
4|5
4|5

Bitte bewerten Sie die Aufgabe nach den folgenden Kriterien:

(Pro Reihe maximal ein Kreuz)
Die optische Darstellung des Dialogs gefiel
mir.

Trifft nicht zu

Motivierend
Stimulierend / Spannend
Leicht

Reagiert schnell
Gewohnt

Korperlich kaum anstrengend

F15

3 4 5 6 7 8 | Trifft zu

Ich konnte Steuerelemente einfach tref-
fen/anklicken/antippen.

Trifft nicht zu

3 4 5 6 7 8 | Trifft zu

Der Einsatz von Maus/Finger in dieser Aufga-
be fiel mir leicht.

Trifft nicht zu

3 4 5 6 7 8 | Trifft zu

Wie beurteilen Sie die Bedienung des Steuerelements Listenfeld (Dateianzeige), wenn vorhanden, wihrend F16

der Aufgabe? (Pro Reihe maximal ein Kreuz)

Frustrierend | 1 2

Motivierend

Langweilig | 1 | 2

Stimulierend / Spannend

Schwierig | 1 | 2

Leicht

Reagiert langsam | 1 | 2

Reagiert schnell

Ungewohnt | 1 | 2

Gewohnt

Korperlich sehr anstrengend | 1 | 2

31415
31415
3145
31415
31415
3145

Korperlich kaum anstrengend

IS Migration und Anpassung von Dialoganwendungen fir bertihrungsempfindliche Bildschirme

Aufgabe 05

Wie beurteilen Sie die Bedienung des Dialogs wahrend der gesamten Aufgabe? F14
(Pro Reihe maximal ein Kreuz)

Frustrierend | 1 2 3 4 5 6 7 8 | Motivierend

Langweilig| 1 | 2 | 3 | 4 | 5| 6 | 7 | 8 | Stimulierend /Spannend

Schwierig| 1 | 2 | 3 |4 |5 | 6 | 7 | 8 | Leicht

Reagiertlangsam | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | Reagiert schnell

Ungewohnt | 1 | 2 | 3 | 4 | 5| 6 | 7 | 8 | Gewohnt

Korperlich sehranstrengend | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | Kbrperlich kaum anstrengend

Bitte bewerten Sie die Aufgabe nach den folgenden Kriterien: F15
(Pro Reihe maximal ein Kreuz)

Die optische Darstellung des Dialogs gefiel
mir.

Trifft nichtzu | 1 2 3 4 5 6 7 8 | Trifft zu

Ich konnte Steuerelemente einfach tref-

. . Trifftnichtzu| 1 | 2 | 3 | 4 | 5| 6 | 7 | 8 | Trifftzu
fen/anklicken/antippen.

Der Einsatz von Maus/Finger in dieser Aufga-

. . Trifft nichtzu | 1 2 3 4 5 6 7 8 | Trifft zu
be fiel mir leicht.

Wie beurteilen Sie die Bedienung des Steuerelements Listenfeld (Dateianzeige), wenn vorhanden, wihrend F16
der Aufgabe? (Pro Reihe maximal ein Kreuz)

Frustrierend | 1 2 3 4 5 6 7 8 | Motivierend

Langweilig| 1 | 2 | 3 | 4 | 5| 6 | 7 | 8 | Stimulierend/Spannend

Schwierig| 1 | 2 | 3 | 4 | 5| 6 | 7 | 8 | Leicht

Reagiertlangsam | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | Reagiertschnell

Ungewohnt | 1 | 2 | 3 | 4 | 5| 6 | 7 | 8 | Gewohnt

Korperlich sehranstrengend | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | Korperlich kaum anstrengend

Wie beurteilen Sie die Bedienung des Steuerelements Navigationsbar (griine Pfeile), wenn vorhanden, wéh- F19
rend der Aufgabe? (Pro Reihe maximal ein Kreuz)

Frustrierend | 1 2 3 4 5 6 7 8 | Motivierend

Langweilig| 1 | 2 | 3 | 4 | 5| 6 | 7 | 8 | Stimulierend/Spannend

Schwierig| 1 | 2 | 3 | 4 | 5| 6 | 7 | 8 | Leicht

Reagiertlangsam | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | Reagiert schnell

Ungewohnt | 1 | 2 | 3 | 4 |5 | 6 | 7 | 8 | Gewohnt

Korperlich sehranstrengend | 1 | 2 | 3 | 4 | 5| 6 | 7 | 8 | Korperlich kaum anstrengend

Anhang

Aufgabe 06

Wie beurteilen Sie die Bedienung des Dialogs wahrend der gesamten Aufgabe? F14
(Pro Reihe maximal ein Kreuz)

Frustrierend | 1 2 3 4 5 6 7 8 | Motivierend

Langweilig| 1 | 2 | 3 | 4 | 5| 6 | 7 | 8 | Stimulierend /Spannend

Schwierig| 1 | 2 | 3 |4 |5 | 6 | 7 | 8 | Leicht

Reagiertlangsam | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | Reagiert schnell

Ungewohnt | 1 | 2 | 3 | 4 | 5| 6 | 7 | 8 | Gewohnt

Korperlich sehranstrengend | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | Kbrperlich kaum anstrengend

Bitte bewerten Sie die Aufgabe nach den folgenden Kriterien: F15
(Pro Reihe maximal ein Kreuz)

Die optische Darstellung des Dialogs gefiel
mir.

Trifft nichtzu | 1 2 3 4 5 6 7 8 | Trifft zu

Ich konnte Steuerelemente einfach tref-

. . Trifftnichtzu| 1 | 2 | 3 | 4 | 5| 6 | 7 | 8 | Trifftzu
fen/anklicken/antippen.

Der Einsatz von Maus/Finger in dieser Aufga-

. . Trifft nichtzu | 1 2 3 4 5 6 7 8 | Trifft zu
be fiel mir leicht.

Wie beurteilen Sie die Bedienung des Steuerelements Listenfeld (Ordneranzeige), wenn vorhanden, wahrend F18
der Aufgabe? (Pro Reihe maximal ein Kreuz)

Frustrierend | 1 2 3 4 5 6 7 8 | Motivierend

Langweilig| 1 | 2 | 3 | 4 | 5| 6 | 7 | 8 | Stimulierend/Spannend

Schwierig| 1 | 2 | 3 | 4 | 5| 6 | 7 | 8 | Leicht

Reagiertlangsam | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | Reagiertschnell

Ungewohnt | 1 | 2 | 3 | 4 | 5| 6 | 7 | 8 | Gewohnt

Korperlich sehranstrengend | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | Korperlich kaum anstrengend

Wie beurteilen Sie die Bedienung des Steuerelements Navigationsbar (griine Pfeile), wenn vorhanden, wéh- F19
rend der Aufgabe? (Pro Reihe maximal ein Kreuz)

Frustrierend | 1 2 3 4 5 6 7 8 | Motivierend

Langweilig| 1 | 2 | 3 | 4 |5 | 6 | 7 | 8 | Stimulierend/Spannend

Schwierig| 1 | 2 | 3 | 4 | 5| 6 | 7 | 8 | Leicht

Reagiertlangsam | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | Reagiertschnell

Ungewohnt | 1 | 2 | 3 | 4 | 5| 6 | 7 | 8 | Gewohnt

Korperlich sehranstrengend | 1 | 2 | 3 | 4 | 5| 6 | 7 | 8 | Korperlich kaum anstrengend

iEE Migration und Anpassung von Dialoganwendungen fir berihrungsempfindliche Bildschirme

Aufgabe 07

Wie beurteilen Sie die Bedienung des Dialogs wahrend der gesamten Aufgabe? F14
(Pro Reihe maximal ein Kreuz)

Frustrierend | 1 2 3 4 5 6 7 8 | Motivierend

Langweilig| 1 | 2 | 3 | 4 | 5| 6 | 7 | 8 | Stimulierend /Spannend

Schwierig| 1 | 2 | 3 |4 |5 | 6 | 7 | 8 | Leicht

Reagiertlangsam | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | Reagiert schnell

Ungewohnt | 1 | 2 | 3 | 4 | 5| 6 | 7 | 8 | Gewohnt

Korperlich sehranstrengend | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | Kbrperlich kaum anstrengend

Bitte bewerten Sie die Aufgabe nach den folgenden Kriterien: F15
(Pro Reihe maximal ein Kreuz)

Die optische Darstellung des Dialogs gefiel
mir.

Trifft nichtzu | 1 2 3 4 5 6 7 8 | Trifft zu

Ich konnte Steuerelemente einfach tref-

. . Trifftnichtzu| 1 | 2 | 3 | 4 | 5| 6 | 7 | 8 | Trifftzu
fen/anklicken/antippen.

Der Einsatz von Maus/Finger in dieser Aufga-

. . Trifft nichtzu | 1 2 3 4 5 6 7 8 | Trifft zu
be fiel mir leicht.

Wie beurteilen Sie die Bedienung des Steuerelements Listenfeld (Ordneranzeige), wenn vorhanden, wahrend F18
der Aufgabe? (Pro Reihe maximal ein Kreuz)

Frustrierend | 1 2 3 4 5 6 7 8 | Motivierend

Langweilig| 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | Stimulierend / Spannend

Schwierig| 1 | 2 | 3 | 4 | 5| 6 | 7 | 8 | Leicht

Reagiertlangsam | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | Reagiertschnell

Ungewohnt | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | Gewohnt

Korperlich sehranstrengend | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | Korperlich kaum anstrengend

Wie beurteilen Sie die Bedienung des Steuerelements Navigationsbar (griine Pfeile), wenn vorhanden, wéh- F19
rend der Aufgabe? (Pro Reihe maximal ein Kreuz)

Frustrierend | 1 2 3 4 5 6 7 8 | Motivierend

Langweilig| 1 | 2 | 3 | 4 | 5| 6 | 7 | 8 | Stimulierend / Spannend

Schwierig| 1 | 2 | 3 | 4 | 5| 6 | 7 | 8 | Leicht

Reagiertlangsam | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | Reagiertschnell

Ungewohnt | 1 | 2 | 3 | 4 | 5| 6 | 7 | 8 | Gewohnt

Korperlich sehranstrengend | 1 | 2 | 3 | 4 | 5| 6 | 7 | 8 | Korperlich kaum anstrengend

Anhang

Aufgabe S1

Wie beurteilen Sie die Bedienung des Dialogs wahrend der gesamten Aufgabe? F14
(Pro Reihe maximal ein Kreuz)

Frustrierend | 1 2 3 4 5 6 7 8 | Motivierend

Langweilig| 1 | 2 | 3 | 4 | 5| 6 | 7 | 8 | Stimulierend /Spannend

Schwierig| 1 | 2 | 3 |4 |5 | 6 | 7 | 8 | Leicht

Reagiertlangsam | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | Reagiert schnell

Ungewohnt | 1 | 2 | 3 | 4 | 5| 6 | 7 | 8 | Gewohnt

Korperlich sehranstrengend | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | Kbrperlich kaum anstrengend

Bitte bewerten Sie die Aufgabe nach den folgenden Kriterien: F15
(Pro Reihe maximal ein Kreuz)

Die optische Darstellung des Dialogs gefiel
mir.

Trifft nichtzu | 1 2 3 4 5 6 7 8 | Trifft zu

Ich konnte Steuerelemente einfach tref-

. . Trifftnichtzu| 1 | 2 | 3 | 4 | 5| 6 | 7 | 8 | Trifftzu
fen/anklicken/antippen.

Der Einsatz von Maus/Finger in dieser Aufga-

. . Trifft nichtzu | 1 2 3 4 5 6 7 8 | Trifft zu
be fiel mir leicht.

Wie beurteilen Sie die Bedienung des Steuerelements Drehfeld (Rander-Zahlenfelder), wenn vorhanden, F20
wahrend der Aufgabe? (Pro Reihe maximal ein Kreuz)

Frustrierend | 1 2 3 4 5 6 7 8 | Motivierend

Langweilig| 1 | 2 | 3 | 4 | 5| 6 | 7 | 8 | Stimulierend/Spannend

Schwierig| 1 | 2 | 3 | 4 | 5| 6 | 7 | 8 | Leicht

Reagiertlangsam | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | Reagiertschnell

Ungewohnt | 1 | 2 | 3 |4 | 5| 6 | 7 | 8 | Gewohnt

Korperlich sehranstrengend | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | Korperlich kaum anstrengend

Wie beurteilen Sie die Bedienung des Steuerelements Liste mit Kontrollkastchen, wenn vorhanden, wahrend F22
der Aufgabe? (Pro Reihe maximal ein Kreuz)

Frustrierend | 1 2 3 4 5 6 7 8 | Motivierend

Langweilig| 1 | 2 | 3 | 4 | 5| 6 | 7 | 8 | Stimulierend / Spannend

Schwierig| 1 | 2 | 3 | 4 | 5| 6 | 7 | 8 | Leicht

Reagiertlangsam | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | Reagiertschnell

Ungewohnt | 1 | 2 | 3 | 4 | 5| 6 | 7 | 8 | Gewohnt

Korperlich sehranstrengend | 1 | 2 | 3 | 4 | 5| 6 | 7 | 8 | Korperlich kaum anstrengend

Migration und Anpassung von Dialoganwendungen fiir beriihrungsempfindliche Bildschirme

Aufgabe S2

Wie beurteilen Sie die Bedienung des Dialogs wahrend der gesamten Aufgabe? F14

(Pro Reihe maximal ein Kreuz)

Frustrierend | 1

8 | Motivierend

Langweilig | 1

8 | Stimulierend / Spannend

Schwierig | 1

8 | Leicht

Reagiert langsam | 1

8 | Reagiert schnell

Ungewohnt | 1

8 | Gewohnt

Korperlich sehr anstrengend | 1

4|5
4|5
4|5
4|5
4|5
4|5

8 | Korperlich kaum anstrengend

Bitte bewerten Sie die Aufgabe nach den folgenden Kriterien:

(Pro Reihe maximal ein Kreuz)
Die optische Darstellung des Dialogs gefiel
mir.

Trifft nicht zu

F15

2 3 4 5 6 7 8 | Trifft zu

Ich konnte Steuerelemente einfach tref-
fen/anklicken/antippen.

Trifft nicht zu

2 3 4 5 6 7 8 | Trifft zu

Der Einsatz von Maus/Finger in dieser Aufga-

be fiel mir leicht.

Trifft nicht zu

2 3 4 5 6 7 8 | Trifft zu

8 | Motivierend

8 | Stimulierend / Spannend

8 | Leicht

8 | Reagiert schnell

8 | Gewohnt

Wie beurteilen Sie die Bedienung des Steuerelements Drehfeld (Rander-Zahlenfelder), wenn vorhanden, F20
wahrend der Aufgabe? (Pro Reihe maximal ein Kreuz)
Frustrierend | 1 | 2 | 3 | 4 | 5
Langweilig | 1 | 2 | 3 | 4 | 5
Schwierig| 1 | 2 | 3 | 4 | 5
Reagiertlangsam | 1 | 2 | 3 | 4 | 5
Ungewohnt | 1 | 2 | 3 | 4 | 5
Korperlich sehranstrengend | 1 | 2 | 3 | 4 | 5

8 | Korperlich kaum anstrengend

Wie beurteilen Sie die Bedienung des Steuerelements Liste mit Kontrollkdastchen, wenn vorhanden, wahrend F22
der Aufgabe? (Pro Reihe maximal ein Kreuz)

8 | Motivierend

8 | Stimulierend / Spannend

8 | Leicht

8 | Reagiert schnell

8 | Gewohnt

Frustrierend | 1 | 2 | 3 | 4 | 5

Langweilig | 1 | 2 | 3 | 4 | 5

Schwierig| 1 | 2 | 3 | 4 | 5

Reagiertlangsam | 1 | 2 | 3 | 4 | 5
Ungewohnt | 1 | 2 | 3 | 4 | 5

Korperlich sehranstrengend | 1 | 2 | 3 | 4 | 5

8 | Korperlich kaum anstrengend

Anhang

Aufgabe S3

Wie beurteilen Sie die Bedienung des Dialogs wahrend der gesamten Aufgabe? F14
(Pro Reihe maximal ein Kreuz)

Frustrierend | 1 2 3 4 5 6 7 8 | Motivierend

Langweilig| 1 | 2 | 3 | 4 | 5| 6 | 7 | 8 | Stimulierend /Spannend

Schwierig| 1 | 2 | 3 |4 |5 | 6 | 7 | 8 | Leicht

Reagiertlangsam | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | Reagiert schnell

Ungewohnt | 1 | 2 | 3 | 4 | 5| 6 | 7 | 8 | Gewohnt

Korperlich sehranstrengend | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | Kbrperlich kaum anstrengend

Bitte bewerten Sie die Aufgabe nach den folgenden Kriterien: F15
(Pro Reihe maximal ein Kreuz)

Die optische Darstellung des Dialogs gefiel
mir.

Trifft nichtzu | 1 2 3 4 5 6 7 8 | Trifft zu

Ich konnte Steuerelemente einfach tref-

. . Trifftnichtzu| 1 | 2 | 3 | 4 | 5| 6 | 7 | 8 | Trifftzu
fen/anklicken/antippen.

Der Einsatz von Maus/Finger in dieser Aufga-

. . Trifft nichtzu | 1 2 3 4 5 6 7 8 | Trifft zu
be fiel mir leicht.

Wie beurteilen Sie die Bedienung des Steuerelements Drehfeld (Rander-Zahlenfelder), wenn vorhanden, F20
wdahrend der Aufgabe? (Pro Reihe maximal ein Kreuz)

Frustrierend | 1 2 3 4 5 6 7 8 | Motivierend

Langweilig| 1 | 2 | 3 | 4 | 5| 6 | 7 | 8 | Stimulierend/Spannend

Schwierig| 1 | 2 | 3 | 4 | 5| 6 | 7 | 8 | Leicht

Reagiertlangsam | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | Reagiertschnell

Ungewohnt | 1 | 2 | 3 | 4 | 5| 6 | 7 | 8 | Gewohnt

Korperlichsehranstrengend | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | Korperlich kaum anstrengend

Wie beurteilen Sie die Bedienung des Steuerelements Liste mit Kontrollkdastchen, wenn vorhanden, wahrend F22
der Aufgabe? (Pro Reihe maximal ein Kreuz)

Frustrierend | 1 2 3 4 5 6 7 8 | Motivierend

Langweilig| 1 | 2 | 3 | 4 | 5| 6 | 7 | 8 | Stimulierend/Spannend

Schwierig| 1 | 2 | 3 | 4 | 5| 6 | 7 | 8 | Leicht

Reagiertlangsam | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | Reagiert schnell

Ungewohnt | 1 | 2 | 3 | 4 | 5| 6 | 7 | 8 | Gewohnt

Korperlich sehranstrengend | 1 | 2 | 3 | 4 | 5| 6 | 7 | 8 | Korperlich kaum anstrengend

i5PA Migration und Anpassung von Dialoganwendungen fir beriihrungsempfindliche Bildschirme

Aufgabe S4

Wie beurteilen Sie die Bedienung des Dialogs wahrend der gesamten Aufgabe? F14

(Pro Reihe maximal ein Kreuz)

Frustrierend | 1

8 | Motivierend

Langweilig | 1

8 | Stimulierend / Spannend

Schwierig | 1

8 | Leicht

Reagiert langsam | 1

8 | Reagiert schnell

Ungewohnt | 1

8 | Gewohnt

Korperlich sehr anstrengend | 1

4|5
4|5
4|5
4|5
4|5
4|5

8 | Korperlich kaum anstrengend

Bitte bewerten Sie die Aufgabe nach den folgenden Kriterien:

(Pro Reihe maximal ein Kreuz)
Die optische Darstellung des Dialogs gefiel
mir.

Trifft nicht zu

F15

2 3 4 5 6 7 8 | Trifft zu

Ich konnte Steuerelemente einfach tref-
fen/anklicken/antippen.

Trifft nicht zu

2 3 4 5 6 7 8 | Trifft zu

Der Einsatz von Maus/Finger in dieser Aufga-

be fiel mir leicht.

Trifft nicht zu

2 3 4 5 6 7 8 | Trifft zu

8 | Motivierend

8 | Stimulierend / Spannend

8 | Leicht

8 | Reagiert schnell

8 | Gewohnt

Wie beurteilen Sie die Bedienung des Steuerelements Drehfeld (Rander-Zahlenfelder), wenn vorhanden, F20
wahrend der Aufgabe? (Pro Reihe maximal ein Kreuz)
Frustrierend | 1 | 2 | 3 | 4 | 5
Langweilig | 1 | 2 | 3 | 4 | 5
Schwierig| 1 | 2 | 3 | 4 | 5
Reagiertlangsam | 1 | 2 | 3 | 4 | 5
Ungewohnt | 1 | 2 | 3 | 4 | 5
Korperlich sehranstrengend | 1 | 2 | 3 | 4 | 5

8 | Korperlich kaum anstrengend

Wie beurteilen Sie die Bedienung des Steuerelements Liste mit Kontrollkdastchen, wenn vorhanden, wahrend F22
der Aufgabe? (Pro Reihe maximal ein Kreuz)

8 | Motivierend

8 | Stimulierend / Spannend

8 | Leicht

8 | Reagiert schnell

8 | Gewohnt

Frustrierend | 1 | 2 | 3 | 4 | 5

Langweilig | 1 | 2 | 3 | 4 | 5

Schwierig| 1 | 2 | 3 | 4 | 5

Reagiertlangsam | 1 | 2 | 3 | 4 | 5
Ungewohnt | 1 | 2 | 3 | 4 | 5

Korperlich sehranstrengend | 1 | 2 | 3 | 4 | 5

8 | Korperlich kaum anstrengend

Anhang

Aufgabe S5

Wie beurteilen Sie die Bedienung des Dialogs wahrend der gesamten Aufgabe? F14
(Pro Reihe maximal ein Kreuz)

Frustrierend | 1 2 3 4 5 6 7 8 | Motivierend

Langweilig| 1 | 2 | 3 | 4 | 5| 6 | 7 | 8 | Stimulierend /Spannend

Schwierig| 1 | 2 | 3 |4 |5 | 6 | 7 | 8 | Leicht

Reagiertlangsam | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | Reagiert schnell

Ungewohnt | 1 | 2 | 3 | 4 | 5| 6 | 7 | 8 | Gewohnt

Korperlich sehranstrengend | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | Kbrperlich kaum anstrengend

Bitte bewerten Sie die Aufgabe nach den folgenden Kriterien: F15
(Pro Reihe maximal ein Kreuz)

Die optische Darstellung des Dialogs gefiel
mir.

Trifft nichtzu | 1 2 3 4 5 6 7 8 | Trifft zu

Ich konnte Steuerelemente einfach tref-

. . Trifftnichtzu| 1 | 2 | 3 | 4 | 5| 6 | 7 | 8 | Trifftzu
fen/anklicken/antippen.

Der Einsatz von Maus/Finger in dieser Aufga-

. . Trifft nichtzu | 1 2 3 4 5 6 7 8 | Trifft zu
be fiel mir leicht.

Wie beurteilen Sie die Bedienung des Steuerelements Drehfeld (Rander-Zahlenfelder), wenn vorhanden, F20
wahrend der Aufgabe? (Pro Reihe maximal ein Kreuz)

Frustrierend | 1 2 3 4 5 6 7 8 | Motivierend

Langweilig| 1 | 2 | 3 | 4 | 5| 6 | 7 | 8 | Stimulierend/Spannend

Schwierig| 1 | 2 | 3 | 4 | 5| 6 | 7 | 8 | Leicht

Reagiertlangsam | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | Reagiertschnell

Ungewohnt | 1 | 2 | 3 |4 | 5| 6 | 7 | 8 | Gewohnt

Korperlichsehranstrengend | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | Korperlich kaum anstrengend

Wie beurteilen Sie die Bedienung des Steuerelements Liste mit Kontrollkdastchen, wenn vorhanden, wahrend F22
der Aufgabe? (Pro Reihe maximal ein Kreuz)

Frustrierend | 1 2 3 4 5 6 7 8 | Motivierend

Langweilig| 1 | 2 | 3 | 4 | 5| 6 | 7 | 8 | Stimulierend/Spannend

Schwierig| 1 | 2 | 3 | 4 | 5| 6 | 7 | 8 | Leicht

Reagiertlangsam | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | Reagiert schnell

Ungewohnt | 1 | 2 | 3 | 4 | 5| 6 | 7 | 8 | Gewohnt

Korperlich sehranstrengend | 1 | 2 | 3 | 4 | 5| 6 | 7 | 8 | Korperlich kaum anstrengend

578 Migration und Anpassung von Dialoganwendungen fir bertihrungsempfindliche Bildschirme

Aufgabe S6

Wie beurteilen Sie die Bedienung des Dialogs wahrend der gesamten Aufgabe? F14

(Pro Reihe maximal ein Kreuz)

Frustrierend | 1

8 | Motivierend

Langweilig | 1

8 | Stimulierend / Spannend

Schwierig | 1

8 | Leicht

Reagiert langsam | 1

8 | Reagiert schnell

Ungewohnt | 1

8 | Gewohnt

Korperlich sehr anstrengend | 1

4|5
4|5
4|5
4|5
4|5
4|5

8 | Korperlich kaum anstrengend

Bitte bewerten Sie die Aufgabe nach den folgenden Kriterien:

(Pro Reihe maximal ein Kreuz)
Die optische Darstellung des Dialogs gefiel
mir.

Trifft nicht zu

F15

2 3 4 5 6 7 8 | Trifft zu

Ich konnte Steuerelemente einfach tref-
fen/anklicken/antippen.

Trifft nicht zu

2 3 4 5 6 7 8 | Trifft zu

Der Einsatz von Maus/Finger in dieser Aufga-

be fiel mir leicht.

Trifft nicht zu

2 3 4 5 6 7 8 | Trifft zu

8 | Motivierend

8 | Stimulierend / Spannend

8 | Leicht

8 | Reagiert schnell

8 | Gewohnt

Wie beurteilen Sie die Bedienung des Steuerelements Drehfeld (Rander-Zahlenfelder), wenn vorhanden, F20
wahrend der Aufgabe? (Pro Reihe maximal ein Kreuz)
Frustrierend | 1 | 2 | 3 | 4 | 5
Langweilig | 1 | 2 | 3 | 4 | 5
Schwierig| 1 | 2 | 3 | 4 | 5
Reagiertlangsam | 1 | 2 | 3 | 4 | 5
Ungewohnt | 1 | 2 | 3 | 4 | 5
Korperlich sehranstrengend | 1 | 2 | 3 | 4 | 5

8 | Korperlich kaum anstrengend

Wie beurteilen Sie die Bedienung des Steuerelements Liste mit Kontrollkdastchen, wenn vorhanden, wahrend F22
der Aufgabe? (Pro Reihe maximal ein Kreuz)

8 | Motivierend

8 | Stimulierend / Spannend

8 | Leicht

8 | Reagiert schnell

8 | Gewohnt

Frustrierend | 1 | 2 | 3 | 4 | 5

Langweilig | 1 | 2 | 3 | 4 | 5

Schwierig| 1 | 2 | 3 | 4 | 5

Reagiertlangsam | 1 | 2 | 3 | 4 | 5
Ungewohnt | 1 | 2 | 3 | 4 | 5

Korperlich sehranstrengend | 1 | 2 | 3 | 4 | 5

8 | Korperlich kaum anstrengend

Anhang

Aufgabe S7

Teil 1

Bitte bewerten Sie die Aufgabe nach den folgenden Kriterien: F15
(Pro Reihe maximal ein Kreuz)

Die optische Darstellung des Dialogs gefiel
mir.

Trifft nichtzu | 1 2 3 4 5 6 7 8 | Trifft zu

Ich konnte Steuerelemente einfach tref-

. . Trifftnichtzu| 1 | 2 | 3 | 4 | 5| 6 | 7 | 8 | Trifftzu
fen/anklicken/antippen.

Der Einsatz von Maus/Finger in dieser Aufga-

. . Trifft nichtzu | 1 2 3 4 5 6 7 8 | Trifft zu
be fiel mir leicht.

Wie beurteilen Sie die Bedienung des Steuerelements Liste mit Kontrollkdstchen, wenn vorhanden, wahrend F22
der Aufgabe? (Pro Reihe maximal ein Kreuz)

Frustrierend | 1 2 3 4 5 6 7 8 | Motivierend

Langweilig| 1 | 2 | 3 | 4 | 5| 6 | 7 | 8 | Stimulierend/Spannend

Schwierig| 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | Leicht

Reagiertlangsam | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | Reagiertschnell

Ungewohnt | 1 | 2 | 3 | 4 | 5| 6 | 7 | 8 | Gewohnt

Korperlich sehranstrengend | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | Korperlich kaum anstrengend

Teil 2

Bitte bewerten Sie die Aufgabe nach den folgenden Kriterien: F15
(Pro Reihe maximal ein Kreuz)

Die optische Darstellung des Dialogs gefiel
mir.

Trifft nichtzu | 1 2 3 4 5 6 7 8 | Trifft zu

Ich konnte Steuerelemente einfach tref-

. . Trifftnichtzu| 1 | 2 | 3 | 4 | 5| 6 | 7 | 8 | Trifftzu
fen/anklicken/antippen.

Der Einsatz von Maus/Finger in dieser Aufga-

. . Trifft nichtzu | 1 2 3 4 5 6 7 8 | Trifft zu
be fiel mir leicht.

Wie beurteilen Sie die Bedienung des Steuerelements Liste mit Kontrollkastchen, wenn vorhanden, wahrend F22
der Aufgabe? (Pro Reihe maximal ein Kreuz)

Frustrierend | 1 2 3 4 5 6 7 8 | Motivierend

Langweilig| 1 | 2 | 3 | 4 | 5| 6 | 7 | 8 | Stimulierend / Spannend

Schwierig| 1 | 2 | 3 | 4 | 5| 6 | 7 | 8 | Leicht

Reagiertlangsam | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | Reagiertschnell

Ungewohnt | 1 | 2 | 3 | 4 | 5| 6 | 7 | 8 | Gewohnt

Korperlich sehranstrengend | 1 | 2 | 3 | 4 | 5| 6 | 7 | 8 | Korperlich kaum anstrengend

5158 Migration und Anpassung von Dialoganwendungen fir bertihrungsempfindliche Bildschirme

Teil 3

Bitte bewerten Sie die Aufgabe nach den folgenden Kriterien: F15
(Pro Reihe maximal ein Kreuz)

Die optische Darstellung des Dialogs gefiel
mir.

Trifft nichtzu | 1 2 3 4 5 6 7 8 | Trifft zu

Ich konnte Steuerelemente einfach tref-

fen/anklicken/antippen. Trifftnichtzu | 1 1 2 1 3 1 4 1516 | 7|8 |Trifftzu

Der Einsatz von Maus/Finger in dieser Aufga-

be fiel mir leicht. Trifft nichtzu | 1 2 3 4 5 6 7 8 | Trifft zu

Wie beurteilen Sie die Bedienung des Steuerelements Liste mit Kontrollkastchen, wenn vorhanden, wahrend F22
der Aufgabe? (Pro Reihe maximal ein Kreuz)

Frustrierend | 1 2 3 4 5 6 7 8 | Motivierend

Langweilig| 1 | 2 | 3 | 4 | 5| 6 | 7 | 8 | Stimulierend/Spannend

Schwierig| 1 | 2 | 3 | 4 | 5| 6 | 7 | 8 | Leicht

Reagiertlangsam | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | Reagiertschnell

Ungewohnt | 1 | 2 | 3 | 4 | 5| 6 | 7 | 8 | Gewohnt

Korperlich sehranstrengend | 1 | 2 | 3 | 4 | 5| 6 | 7 | 8 | Korperlich kaum anstrengend

Teil 4

Bitte bewerten Sie die Aufgabe nach den folgenden Kriterien: F15
(Pro Reihe maximal ein Kreuz)

Die optische Darstellung des Dialogs gefiel
mir.

Trifft nichtzu | 1 2 3 4 5 6 7 8 | Trifft zu

Ich konnte Steuerelemente einfach tref-

fen/anklicken/antippen. Trifftnichtzu | 1 | 2 | 3 | 4 5|6 7|8 Trifftzu

Der Einsatz von Maus/Finger in dieser Aufga-

be fiel mir leicht. Trifft nichtzu | 1 2 3 4 5 6 7 8 | Trifft zu

Wie beurteilen Sie die Bedienung des Steuerelements Liste mit Kontrollkdastchen, wenn vorhanden, wahrend F22
der Aufgabe? (Pro Reihe maximal ein Kreuz)

Frustrierend | 1 2 3 4 5 6 7 8 | Motivierend

Langweilig| 1 | 2 | 3 | 4 | 5| 6 | 7 | 8 | Stimulierend/Spannend

Schwierig| 1 | 2 | 3 | 4 | 5 Leicht
Reagiertlangsam | 1 | 2 | 3 | 4 | 5 Reagiert schnell
Ungewohnt | 1 | 2 | 3 | 4 | 5 Gewohnt
Korperlich sehranstrengend | 1 | 2 | 3 | 4 | 5 Korperlich kaum anstrengend

Anhang

Wie beurteilen Sie die Bedienung des Dialogs wahrend der gesamten Aufgabe? F14

(Pro Reihe maximal ein Kreuz)

Frustrierend
Langweilig
Schwierig
Reagiert langsam
Ungewohnt

Korperlich sehr anstrengend

Motivierend
Stimulierend / Spannend
Leicht

Reagiert schnell
Gewohnt

Korperlich kaum anstrengend

518 Migration und Anpassung von Dialoganwendungen fir bertihrungsempfindliche Bildschirme

Aufgabe S8

Wie beurteilen Sie die Bedienung des Dialogs wahrend der gesamten Aufgabe? F14

(Pro Reihe maximal ein Kreuz)

Frustrierend | 1

Langweilig | 1

Schwierig | 1

Reagiert langsam | 1

Ungewohnt | 1

Korperlich sehr anstrengend | 1

4|5
4|5
4|5
4|5
4|5
4|5

Bitte bewerten Sie die Aufgabe nach den folgenden Kriterien:

(Pro Reihe maximal ein Kreuz)
Die optische Darstellung des Dialogs gefiel
mir.

Trifft nicht zu

Motivierend
Stimulierend / Spannend
Leicht

Reagiert schnell
Gewohnt

Korperlich kaum anstrengend

F15

3 4 5 6 7 8 | Trifft zu

Ich konnte Steuerelemente einfach tref-
fen/anklicken/antippen.

Trifft nicht zu

3 4 5 6 7 8 | Trifft zu

Der Einsatz von Maus/Finger in dieser Aufga-

be fiel mir leicht.

Trifft nicht zu

3 4 5 6 7 8 | Trifft zu

Motivierend

Stimulierend / Spannend

Leicht

Reagiert schnell

Gewohnt

Wie beurteilen Sie die Bedienung des Steuerelements Tastenfeld fiir Zahleneingabe (am Drehfeld), wenn F21
vorhanden, wahrend der Aufgabe? (Pro Reihe maximal ein Kreuz)
Frustrierend | 1 | 2 | 3 | 4 | 5 | 6
Langweilig| 1 | 2 | 3 | 4|5 | 6
Schwierig| 1 | 2 | 3 | 4 | 5| 6
Reagiertlangsam | 1 | 2 | 3 | 4 | 5 | 6
Ungewohnt | 1 | 2 | 3 | 4 | 5| 6
Korperlich sehranstrengend | 1 | 2 | 3 | 4 | 5 | 6

Korperlich kaum anstrengend

Aufgabe S9

Anhang

Wie beurteilen Sie die Bedienung des Dialogs wahrend der gesamten Aufgabe? F14

(Pro Reihe maximal ein Kreuz)

Frustrierend | 1 2

Langweilig | 1 | 2

Schwierig | 1 | 2

Reagiert langsam | 1 | 2

Ungewohnt | 1 | 2

Korperlich sehr anstrengend | 1 | 2

4|5
4|5
4|5
4|5
4|5
4|5

Motivierend
Stimulierend / Spannend
Leicht

Reagiert schnell
Gewohnt

Korperlich kaum anstrengend

Bitte bewerten Sie die Aufgabe nach den folgenden Kriterien: F15
(Pro Reihe maximal ein Kreuz)
zlie; optische Darstellung des Dialogs gefiel Trifft nicht zu slalslel 71| 8| Trfftzu
Ich konn.te Steuerglemente einfach tref- Trifft nicht zu slalslel 71| 8| Trfftzu
fen/anklicken/antippen.
Der.Emsa?tz v.on Maus/Finger in dieser Aufga- Trifft nicht zu 3 4 5 6 7 3 | Trifft zu
be fiel mir leicht.
Wie beurteilen Sie die Bedienung des Steuerelements Tastenfeld fiir Zahleneingabe (am Drehfeld), wenn F21
vorhanden, wahrend der Aufgabe? (Pro Reihe maximal ein Kreuz)
Frustrierend | 1 | 2 | 3 | 4 | 5 | 6 Motivierend
Langweilig| 1 | 2 | 3 | 4 | 5| 6 Stimulierend / Spannend
Schwierig| 1 | 2 | 3 | 4 | 5| 6 Leicht
Reagiertlangsam | 1 | 2 | 3 | 4 | 5 | 6 Reagiert schnell
Ungewohnt | 1 | 2 | 3 | 4 | 5 | 6 Gewohnt
Korperlich sehranstrengend | 1 | 2 | 3 | 4 | 5 | 6 Korperlich kaum anstrengend

Migration und Anpassung von Dialoganwendungen fiir beriihrungsempfindliche Bildschirme

Anschlussfragen

Wurden lhre Erwartungen an die Bedienung des berihrungsempfindlichen Bildschirms erfullt? F10
(Nur ein Kastchen ausfiillen)

Ja

Nein, weil ...
Kénnen Sie sich vorstellen einen beriihrungsempfindlichen Bildschirm am PC oder Laptop zu ver- F11

wenden? (Nur ein Kastchen ausfillen)

Ja Nein

Nur in Kombination mit Tastatur Nur in Kombination mit Tastatur und Maus

Welche Anwendung(-en) kénnen Sie sich als Touch-Anwendung fiir PC oder Laptop vorstellen? F12

Wie empfanden Sie den Umgang mit dem beriihrungsempfindlichen Bildschirm generell? F13
(Pro Reihe maximal ein Kreuz)

Frustrierend

Langweilig

Schwierig

Reagiert langsam

Ungewohnt

Korperlich sehr anstrengend

Motivierend
Stimulierend / Spannend
Leicht

Reagiert schnell
Gewohnt

Korperlich kaum anstrengend

Erkldarung

Hiermit versichere ich, dass ich diese Arbeit
selbstandig verfasst und nur die angegebe-
nen Hilfsmittel verwendet habe.

Christian Wimmer

