
Institut für Parallele und Verteilte Systeme
Universität Stuttgart

Universitätsstraße 38
D–70569 Stuttgart

Diplomarbeit Nr. 3180

Konzeption und Realisierung
eines Sicherheitskonzepts zur

sicheren Datenstromverarbeitung
in einer verteilten

Ausführungsumgebung

Oliver Dörler

Studiengang: Informatik

Prüfer: Prof. Dr.-Ing. habil. Bernhard Mitschang

Betreuer: Dipl.-Inf. Nazario Cipriani

begonnen am: 2. November 2010

beendet am: 4. Mai 2011

CR-Klassifikation: H.2.0, H.2.4, H.3.4

Kurzfassung

Vorliegende Diplomarbeit entwickelt ein Sicherheitskonzept für NexusDS. Das Konzept definiert
Sicherheitsmechanismen um den Zugriff und die Verarbeitung von sensiblen und geschützten
Daten zu kontrollieren. Die Mechanismen beinhalten Funktionen um Daten zu Anonymisieren
und zu Verschleiern. Die Entwicklung des Konzeptes beinhaltet die Abgrenzung von Sicherheit
im Kontext von NexusDS, Erhebung von Anforderungen aus Anwendungsszenarien und Ne-
xusDS selbst, die Entwicklung entsprechend dienlicher Maßnahmen, deren Umsetzung in eine
Sicherheitsarchitektur und eine prototypische Implementierung in NexusDS.

Abstract

This diploma thesis develops a security concept for NexusDS. The concept defines a set of
mechanisms to limit the access on data with the purpose to control access on sensitive information.
The mechanisms also include functions to mask and anonymize data. For the development of the
concept, the thesis analyses the actual situation of the NexusDS and considers several scenarios
of use. Based on this analyze, a security architecture for NexusDS was developed and integrated
as a prototype implementation into NexusDS.

3

Inhaltsverzeichnis

1 Einleitung 9
1.1 Motivation . 10

1.2 Gliederung . 11

2 Sicherheit 13
2.1 Grundlagen der Sicherheit . 13

2.1.1 Begriffe der Sicherheit . 14

2.2 Security Engineering . 16

2.2.1 Methodiken . 16

2.2.2 Implementierung und Werkzeuge . 17

2.2.3 Prozesse . 18

2.3 Modelle zur Zugriffskontrolle . 19

2.3.1 Discretionary Access Control (DAC) . 19

2.3.2 Mandatory Access Control (MAC) . 20

2.3.3 Role Based Access Control (RBAC) . 20

2.4 Vorgehensmodell für NexusDS . 20

3 Nexus und NexusDS 23
3.1 Einführung in Nexus . 23

3.1.1 Nexus Architektur . 24

3.1.2 Das Augmented World Model . 24

3.2 NexusDS . 25

3.2.1 Architektur . 26

3.2.2 Service-Modell . 27

3.2.3 Operator-Modell . 27

3.3 Strukturanalyse von NexusDS . 29

3.3.1 Das NexusDS Ausführungsmodell . 29

3.3.2 Rollen in NexusDS . 31

3.4 Verwandte Arbeiten zu NexusDS . 32

4 Verwandte Sicherheitskonzepte 33
4.1 Zugriffskontrolle in DBMS . 33

5

4.2 Secure Borealis . 34

4.3 ACStream . 35

4.4 FENCE . 37

4.5 Zusammenfassung und Anwendbarkeit in NexusDS 39

5 Anforderungen 41
5.1 Anforderungen aus Anwendungsszenarien . 42

5.1.1 Börsenkurse von SuperQuotes . 42

5.1.2 Orts-bezogener Dienst Squebber . 43

5.1.3 Fehlerszenario in intelligenten Fabriken . 44

5.2 Anforderungen aus NexusDS . 45

5.2.1 Basisrollen von NexusDS . 46

5.2.2 Eigenschaften von NexusDS . 47

5.3 Zusammenfassung der Anforderungen . 49

6 Grundlagen des Sicherheitskonzeptes 51
6.1 Basisstruktur des Sicherheitskonzeptes . 51

6.1.1 Übersicht der Maßnahmen für das Sicherheitskonzept 51

6.2 Kontrollierte Datenstromverarbeitung in drei Sicherheitszonen 55

6.2.1 Sicherheitszone-Null . 55

6.2.2 Sicherheitszone-Mittel . 56

6.2.3 Sicherheitszone-Hoch . 57

7 Architektur des Sicherheitskonzeptes 59
7.1 Kommunikation in der Sicherheitsarchitektur . 59

7.2 Definition und Auswertung von Zugriffsrichtlinien 60

7.2.1 Administration und Verteilung von Zugriffsrichtlinien 61

7.2.2 Abbilden von Zugriffsbedingungen . 61

7.2.3 Definition von Zugriffsrichtlinien im Meta-Daten-Modell 62

7.2.4 Optionale Auswertungen von Zugriffsrichtlinien mit Evaluatoren 65

7.2.5 Transformation von Datenströmen mit Filter 67

7.3 Abhängigkeit von Datenströmen und Wiedereinflechtung von Zugriffsrichtlinien 68

7.3.1 Zuordnung von Dateneingänge auf Datenausgänge 69

7.3.2 Zeitpunkt der Einflechtung . 70

7.4 Kontrollierte Planung von Anfragen . 72

7.4.1 Secure Query Interface (SQI) . 72

7.4.2 Secure Query Planer (SQP) . 72

7.4.3 Secure Query Optimizer (SQO) . 76

7.4.4 Secure Query Fragmenter (SQF) . 76

7.4.5 Secure Execution Manager (SEM) . 77

7.5 Secure-Source, Architektur und Ausführungsmodell 78

7.6 Secure-Box, Architektur und Ausführungsmodell 80

7.7 Secure-Sink, Architektur und Ausführungsmodell 83

6

7.8 Services der Sicherheitsarchitektur . 83

7.8.1 Identity Administration Point (IAP) . 84

7.8.2 Role Administration Point (RAP) . 85

7.8.3 Policy Administration Point (PAP) . 87

7.8.4 Secure Operator Repository (SOR) . 88

7.8.5 Certificate Authority Point (CAP) . 88

7.8.6 Policy Decision Point (PDP) . 89

8 Implementierung 91
8.1 Implementierung der Services . 92

8.1.1 AWML Datenhaltung für Services . 92

8.1.2 Kommunikation mit den Services . 94

8.2 Zugriffsrichtlinien . 96

8.2.1 Abbildung der Zugriffsrichtlinien . 97

8.2.2 Implementierung von Evaluatoren . 98

8.2.3 Implementierung von Filter . 98

8.2.4 Propagierung von neuen Zugriffsrichtlinien 99

8.3 Planung von Anfragen . 100

8.3.1 Überprüfung der Ausführbarkeit von Operatoren 101

8.3.2 Überprüfung vorgelagerter Operatoren . 101

8.3.3 Anpassung von Anfragen . 102

8.4 Kontrollierte Ausführung von Operatoren . 103

8.4.1 Anpassungen der ProcessLine . 104

8.4.2 Transport von Zugriffsrichtlinien . 104

8.4.3 Auswertung und Wiederinterpunktion von Zugriffsrichtlinien 106

8.4.4 Ausführung von Filter . 108

9 Zusammenfassung und Ausblick 109
9.1 Abdeckung der Schutzziele . 109

9.2 Ausblick . 111

Literaturverzeichnis 113

7

Kapitel 1

Einleitung

Die Vision von Nexus [41, 5], ein Sonderforschungsbereich der Universität Stuttgart, ist eine
Zukunft in der die Mehrzahl der eingesetzten Anwendungen von Kontextinformation Gebrauch
machen. Basis der Vision ist die Idee, dass Kontextinformation direkt oder indirekt von nahezu
jeder Anwendung benutzt und erzeugt werden kann. Kontextinformationen sind Informationen,
die einen Bezug zu Objekten in der Realwelt modellieren. Das kann zum Beispiel die aktuelle
Position eines mobilen Gerätes sein, auf dem eine ortsabhängige Anwendung ausgeführt wird
oder stationäre Anwendungen, die zum Beispiel auf Arbeitsplatzrechner laufen. Auf einem
Arbeitsplatzrechner könnte zum Beispiel aus dem Verhalten des Benutzers Kontextinformation
gewinnen, die eine Müdigkeitserkennung realisiert, die den Benutzer auffordert, aus Gesund-
heitsgründen eine Pause einzulegen.

Angenommen Millionen von Nutzern würden ihren aktuellen Standort alle 30 Sekunden mithilfe
eines GPS-Empfängers in Nexus einspeisen. Ergebnis wären Millionen von kontinuierlichen
Datenströmen, die von Orts-bezogenen Diensten verwendet werden könnten. Die Verarbeitung
einer großen Zahl an Datenströmen kann von gewöhnlichen Systemen, die Daten im ersten
Schritt speichern und offline aufbereiten, häufig nicht effizient durchgeführt werden. Um diese
Lücke zu schließen, wurde zur Verarbeitung von Datenströmen NexusDS [13, 30, 14] entwickelt.
Besonderheit von NexusDS ist die verteile Ausführungsumgebung, die eine Zerlegung und
Verteilung der Datenverarbeitung auf mehrere Rechenknoten ermöglicht. Bei einer Verteilung auf
eine Infrastruktur es sein, dass die Gestalt der Rechenknoten sehr heterogen ausfällt. Verwandte
Konzepte zu NexusDS, wie zum Beispiel Aurora [1], sind auf eine homogene Infrastruktur
von Rechenknoten angewiesen. NexusDS hingegen erlaubt nicht nur die Ausführung in einer
heterogenen Infrastruktur, sondern ermöglich auch das gezielte Ausnutzen besonderer Eigen-
schaften der Rechenknoten durch die Verwendung von Constraints. Constraints sind Meta-Daten,
mit denen sich die Verarbeitung von Daten in NexusDS gezielt steuern lässt. Unterstützt ein
Rechenknoten beispielsweise OpenCL1, können gezielt Berechnungen diesem Rechenknoten
zugewiesen werden, die von dessen besonderer Eigenschaft profitieren.

1OpenCL steht für ein Framework namens Open Computing Language, das die Ausführung von Programmcode auf
CPU’s und GPU’s gleichermaßen unterstützt.

9

1 Einleitung

In der vorliegenden Ausprägung kennt NexusDS keinen kontrollierten Datenzugriff. Es steht
jedem Benutzer der Plattform frei, alle verfügbaren Daten, sofern ein physischer Zugriff mög-
lich ist, zu nutzen und auf in beliebiger Art und Weiße zu verwenden. Soll die Plattform zur
Verarbeitung von sensiblen Informationen eingesetzt werden, ist es zwingend notwendig Me-
chanismen einzuführen, die den Datenzugriff gemäß definierbarer Bedingungen einschränken.
Gleichzeit muss die Gestaltung der Restriktionen flexibel genug sein, dass eine uneingeschränkte
Weiterentwicklung von NexusDS möglich ist.

1.1 Motivation

Wesentlich für die Bereitstellung einer Plattform, die verschiedensten Anwendungen zu Verfü-
gung stehen soll, ist eine für dritte offene Struktur. Dritte sind zum Beispiel Anwendungsentwick-
ler, Unternehmungen, öffentliche Dienste oder private Benutzer die Anwendungen oder Daten
bereitstellen. Nur mit einer offenen Struktur kann den unterschiedlichsten Benutzergruppen die
Möglichkeit gegeben werden, neue Daten und neue Dienste in NexusDS zu integrieren. Um nicht
das Einsatzgebiet von NexusDS einzuschränken, sollte es daher möglich sein, auch sensible und
geschützte Daten ”sicher” Verarbeiten zu können. Benutzer überlassen, beziehungsweise akzep-
tieren NexusDS, im Allgemeinen nur dann, wenn verlässliche Zugriffskontrollen zu Verfügung
stehen, um sensible Daten vor Missbrauch zu schützen. Weitergehend ist es wünschenswert,
Fähigkeiten zur Anonymisierung beziehungsweise einer Verschleierung, von Daten vorzusehen.
Derartige Funktionen sind zum Beispiel bei Anwendungen mit Positionsinformationen von
großem Wert. Sie ermöglichen, dass Benutzer und Dienste den Detaillierungsgrad von privaten
Informationen je nach Einsatz gezielt steuern können. Die gezielte Verfeinerung eines kontrollier-
ten Datenzugriffes hebt die Beschränkung auf, dass ein Zugriff entweder nur vollständig auf alle
Details von Daten gestattet oder vollständig verboten werden muss.

Für NexusDS wurde bisher keine Untersuchung oder Implementierung zur Einführung von
Sicherheitsmechanismen durchgeführt, diese Lücke soll durch die Diplomarbeit geschlossen wer-
den. Trotz eines steigenden Interesses der Forschungsgemeinschaft an Datenstrom Management
Systemen (DSMS) und eine immer stärkeren Durchdringung kommerzieller Anwendungen mit
Kontextinformation, gerade im aktuellen Smartphone Boom, wurde das Thema Sicherheit in
DSMS bisher nur wenig untersucht [31]. Die Tatsache, dass bestehende Sicherheitskonzepte, zum
Beispiel aus den relationalen Datenbanken, nicht oder nur teilweise für DSMS eigenen [11, 23]
und das die bereits entwickelten Sicherheitskonzepte nur Teile von NexusDS abdecken, motiviert
die vorliegende Diplomarbeit.

1.2 Gliederung

Um ein Sicherheitskonzept für NexusDS zu entwickeln, ist im ersten Schritt, der von Kapitel 2 um-
gesetzt wird, eine Definition und Abgrenzung des Begriffs Sicherheit notwendig. Zusätzlich stellt

10

1.2 Gliederung

das Kapitel ein Vorgehensmodell vor, anhand dessen die Entwicklung des Sicherheitskonzeptes
in der Diplomarbeit strukturiert wird.

Kapitel 3 führt die Grundlagen von Nexus und NexusDS ein. Erläutert werden die Architektur,
eingesetzte Datenmodelle, die verschiedenen Komponenten aus denen Nexus und NexusDS
aufgebaut ist und deren Funktionsweise. Das Kapitel schließt mit einer kurzen Einordnung von
NexusDS im Bezug zu verwandten Arbeiten.

Das Kapitel 4 umreist zu Beginn kurz Zugriffskontrollen in relationalen Datenbanken und stellt
bisher vorgestellte Sicherheitskonzepte für DSMS vor. Nach der Vorstellung werden die Konzepte
zusammengefasst und parallel erörtert, inwieweit die vorgestellten Konzepte auf NexusDS
übertragbar sind.

Um einen Anforderungsrahmen für das zu Entwickelende Sicherheitskonzept aufzuspannen,
führt Kapitel 5 verschiedene Anwendungsszenarien ein. Die Untersuchung der Anwendungs-
szenarien bezieht sich auf Anforderungen, die das Sicherheitskonzept erfüllen muss, um einen
kontrollierten Datenzugriff sicherzustellen. Den Anwendungsszenarien folgt eine Untersuchung
von NexusDS auf Anforderungen bezüglich der technischen Details von NexusDS.

Nach der Erhebung der zu berücksichtigen Anforderungen folgt in Kapitel 6 der Entwurf eines
Sicherheitskonzeptes für NexusDS. Der Fokus liegt auf der Entwicklung und der Beschreibung
von Maßnahmen, die in der Lage sind, jede gestellte Anforderung umzusetzen.

Kapitel 7 entwickelt aus den Maßnahmen eine Sicherheitsarchitektur, die in NexusDS imple-
mentiert werden kann. Ergebnis sind konkrete Komponenten, die mit ihren Aufgaben und dem
jeweiligen Verhalten detailliert beschrieben werden.

Besonderheiten der prototypischen Implementierung stellt Kapitel 8 vor. Der Fokus liegt auf der
Vorstellung der wichtigsten Details zur Umsetzung der vorgestellten Architektur

Geschlossen wird die Diplomarbeit mit Kapitel 9, dass eine Zusammenfassung der wichtigsten
Punkte enthält und einen Ausblick auf zukünftige Arbeiten gibt.

11

Danksagung

Dank gilt allen, die mich bei der Erstellung der Diplomarbeit und im Laufe meines Studiums
unterstützt haben. Insbesondere meiner Eltern, die mich jederzeit in jeder Hinsicht unterstützt
haben und meinem Betreuer Nazario Cipriani, der mich als Gesprächspartner immer wieder zu
neuen Ideen inspirierte.

12

Kapitel 2

Sicherheit

Sicherheit ist ein vielgestaltiger Begriff. Um überhaupt ein Sicherheitskonzept für NexusDS
entwickeln zu können, müssen zuerst die grundlegenden Begrifflichkeiten für die Diplomarbeit
definiert werden. Dafür gibt der erste Abschnitt 2.1 eine kurze Einführung zum Thema Sicherheit,
die den Begriff Sicherheit für den weiteren Verlauf der Diplomarbeit abgrenzt.

Abschnitt 2.2 geht kurz auf Security Engineerings, dass verschiedene Ansätze zur Entwicklung
von sicheren System beschreibt. Die darin vorgestellten Grundlagen werden im weiteren Verlauf
der Ausarbeitung aufgegriffen.

Um einen ersten Eindruck zu erhalten, wie ein kontrollierter Datenzugriff umgesetzt werden
kann, stellt Abschnitt 2.3 drei verbreitete Modelle zur Zugriffsteuerung vor.

In Abschnitt 2.4 wird das Vorgehensmodell vorgestellt, das die Struktur der Erarbeitung des
Sicherheitskonzeptes für NexusDS illustriert. Das Vorgehensmodell strukturiert die Entwicklung
einer Sicherheitsarchitektur und liefert eine klare Schrittfolge für die Diplomarbeit.

2.1 Grundlagen der Sicherheit

Die Bedeutung des Wortes Sicherheit hängt von seiner Einbettung ab, dass bedeutet, es ist wichtig
zu beachten, in welcher Umgebung und Kontext wird Sicherheit betrachtet. Eine Einbettung
kann zum Beispiel Sicherheit im Straßenverkehr sein oder wie in der vorliegenden Diplomar-
beit die Informationstechnik. Wichtige Einflussgröße ist die Wahrnehmung von Sicherheit der
einzelnen Personen, denn verschiedene Personen haben nicht notwendigerweise die gleiche
Wahrnehmung von Sicherheit. Der Benutzer eines Computers kann der Meinung sein, dass
der einmalig installierte Virenscanner seinen Computer ausreichend vor allen Gefahren schützt
und weitere Maßnahmen unnötig sind. Andere Nutzer können der Überzeugung sein, dass ein
Virenscanner ohne regelmäßig durchgeführte Aktualisierungen der Virendefinitionen langfristig
nutzlos ist. Das Beispiel untermauert, dass der Begriff Sicherheit stark von der Subjektivität und
des Hintergrundwissens eines Betrachters abhängen kann.

13

2 Sicherheit

Eine sehr wichtige Einsicht für die Sicherheit ist, dass ein Sicherheitskonzept nur so stark ist wie
seine schwächste Komponente. So führt ein Einbruch über die schwächste Komponente zu einer
Ausbreitung über das gesamte System, ein typisches Problem in verteilten Systemen [17, 16].
Weitere sich häufig wiederholende Beispiele sind fahrlässig simple Passwörter oder unveränderte
Standardpasswörter im Auslieferungszustand von beispielsweise Routern oder Hardwarefire-
walls. Es ist also nicht nur wichtig technische Mechanismen zu implementieren, sondern auch
den Humanteil, die Nutzer eines Systems ausreichend für Sicherheit zu sensibilisieren [2].

Einflussreiche Größe für Sicherheit ist die Zeit. Werden beispielsweise Anwendungen wie Inter-
netbrowser betrachtet, die von einer großen Zahl an Benutzer eingesetzt werden, spielt die Zeit
zwischen Erkennen und schließen einer Sicherheitslücke eine bedeutende Rolle. Je mehr Zeit ver-
streicht, in der die Anwendung durch die Sicherheitslücke angreifbar ist, desto wahrscheinlicher
ist es, dass diese von einem Angreifer ausgenutzt wird. Stellen zum Beispiel die Daten auf dem
Computer, der den Browser ausführt, einen hohen Wert dar, kann eine hohe Anziehungskraft für
kriminelle Energie bestehen und Lücken werden besonders schnell für Angriffe ausgenutzt.

Ist eine Infrastruktur1 vielen Parteien zugänglich, ist Sicherheit schwerer zu gewährleisten als
in isolierten Systemen mit einem definierten, engen Benutzerkreis. Ebenfalls ist für ein Sicher-
heitskonzept wichtig das technische Wissen der Benutzer zu berücksichtigen. Gerade in einer
Umgebung mit einer hohen Anzahl an verschiedenen Benutzergruppen kann das Benutzerwis-
sen vom Laien bis zum Experten reichen, was einen differenzierten Umgang mit den Nutzern
erfordert. Differenzierter Umgang bedeutet, wie viele komplexe Sicherheitsmechanismen können
einem Benutzer zugemutet werden, sodass das System eine ausreichende Nutzerakzeptanz und
Ergonomie erzielt. Auf der anderen Seite kann es besonders in sensitiven Anwendungsbereichen
wie Banken oder öffentlichen Einrichtungen sein, dass die Erfüllung von gesetzlichen Regeln der
Ergonomie übergeordnet werden muss.

2.1.1 Begriffe der Sicherheit

Um den Begriff Sicherheit für die Diplomarbeit zu spezifizieren, muss die Einbettung definiert
werden, in der Sicherheit betrachtet wird. In der vorliegenden Arbeit ist die Einbettung bezüglich
eines Informationstechnologie-Systems (IT-System) gegeben. Nach Eckert [16] wird ein IT-System
wie folgt definiert:

”Ein IT-System ist ein geschlossenes oder offenes, dynamisches technisches System
mit der Fähigkeit zur Speicherung und Verarbeitung von Informationen.”

In Abschnitt 1.1 wurde bereits angesprochen, dass es sich bei NexusDS um ein offenes System
handelt. Es kann mit unterschiedlichster Hardware und Software verschiedenster Benutzer er-
weitert werden. Ein geschlossenes System wäre inkompatibel zu Technologien anderer Hersteller
und auf einen definierten Teilnehmerkreis beschränkt.

1Infrastruktur wird von dem lateinischen infra für unten, unterhalb abgeleitet. In der vorliegenden Arbeit steht
Infrastruktur für die allgemeinen Basiskomponenten, die notwendig sind, um ein IT-System zu betreiben.

14

2.1 Grundlagen der Sicherheit

In der Literatur [16, 18, 2] werden im Allgemeinen die Teilnehmer eines IT-Systems als Objekt
und Subjekt bezeichnet. Diese Bezeichnungen sollen auch hier zur Anwendung kommen und
sei wie folgt definiert.

Objekt: Ein Objekt bezeichnet Entitäten wie zum Beispiel eine Datei, ein Datenbankeintrag oder
ein ausführbares Stück Quellcode.

Subjekt: Benutzer von Objekten werden Subjekte genannte. Ein Subjekt kann zum Beispiel ein
Mensch sein, der ein Smartphone bedient oder auch ein Prozess auf dem Smartphone der
im Auftrag des Benutzers handelt.

Um unterschiedliche Sicherheitsanforderungen in einem IT-System zu klassifizieren, werden
Schutzziele definiert. Die Einteilung von Sicherheitsanforderungen erleichtert das Gruppieren
verschiedener Anforderungen und die Zuordnung an Komponenten eines Sicherheitssystems.
Gleichzeitig gewährleistet die Betrachtung der Schutzziele, dass die maßgeblichen Eckpunkte für
ein Sicherheitssystem abgedeckt werden. Die folgende Auflistung von Schutzzielen basierend
auf Eckert [16]. Weitere Verfeinerungen und Erweiterungen der Schutzziele sind möglich [6],
verlassen aber den Rahmen der Diplomarbeit, der sich auf die Herstellung eines kontrollierten
Zugriffes auf Daten bezieht. Die Schutzziele von Eckert zeichnen sich durch eine klare Zerlegung
aus und fördern eine stimmige Strukturierung und Analyse von Sicherheitsanforderungen im
weiteren Verlauf der Diplomarbeit.

Authentizität: Um die Echtheit beziehungsweise Glaubwürdigkeit von Objekten und Subjekten
zu bestimmen, muss deren Identität überprüft werden. Dieser Prozess des Abgleiches
von einer behaupteten Identität und der tatsächlichen hinterlegten Identität wird als
Authentifikation bezeichnet. Das Ergebnis ist ein bejahen oder verneinen der behaupteten
Identität. Sollte das Ergebnis positiv sein, wird das Objekt oder Subjekt als authentisch
bezeichnet.

Datenintegrität: Gewährleistet, dass es im System den Subjekten nicht möglich ist, geschützte
Daten unautorisiert und/oder unbemerkt zu verändern. Voraussetzung für Datenintegrität
ist die Festlegung von Zugriffsrichtlinien für Daten, die definieren, welche Zugriffe gestattet
sind.

Informationsvertraulichkeit: Sicherstellen von Informationsvertraulichkeit bedeutet, es besteht
keine Möglichkeit, dass Informationen von Subjekten gelesen werden können, für die das
Subjekt keine Freigabe besitzt. Dies gilt ebenfalls für Indirektionen über andere Subjekte
oder Objekte im Datenfluss. So soll ausgeschlossen werden, dass die Schutzmechanismen
unterlaufen werden können.

Verfügbarkeit: Stellt sicher, dass autorisierte Aktionen von Subjekten durchgeführt werden
können, ohne von nicht autorisierter Stellen in irgendeiner Form beeinträchtigt zu werden.
Beispielsweise mit gezielter Monopolisierung von CPU-Zeit oder Bandbreite, ohne das eine
entsprechende Berechtigung vorliegt.

15

2 Sicherheit

Verbindlichkeit: Bedeutet, dass ausgeführte Aktionen eindeutig dem Subjekt zugeordnet wer-
den, das die Aktion angestoßen hat. So wird eine Historie aufgebaut die gewährleistet, dass
im Nachhinein ausgeführte Aktionen nicht abgestritten werden können.

Anonymisierung: Die Veränderung personenbezogener Daten, sodass gar nicht, oder nur mit
sehr großem Aufwand, persönliche Verhältnisse zugeordnet werden können. Eine schwä-
chere Form ist die Pseudonymisierung, die lediglich eine Zuordnungsvorschrift umfasst,
um zum Beispiel Realnamen durch Pseudonyme zu ersetzen. Ein klassisches Beispiel dafür
sind die Nummernschilder an Fahrzeugen, die als Pseudonym für den Halter stehen.

2.2 Security Engineering

Security Engineering beschreibt die Anwendung des Ingenieur-Leitbildes auf den Aspekt IT-
Systeme sicher zu gestalten und konzentriert sich auf die dazu notwendige Nutzung von
Methodiken, Werkzeugen und Prozessen. Gestaltung umfasst sowohl die Entwicklung neuer,
sicherer IT-Systeme von Grund auf, als auch die Überarbeitung bereits vorhandener Systeme.
Dies umfasst die Entwicklung von Sicherheitskonzepten, deren Implementierung und Tests der
IT-Systeme. Laut Eckert [16] handelt es sich dabei noch um keine methodisch ausgearbeitete
Disziplin. Anderson [2] sieht in Security Engineering interdisziplinäre Anforderungen, sowohl in
Software und Hardware als auch in Psychologie, Evaluierungsmethoden und der Rechtswissen-
schaften. Der Abschnitt ist lediglich eine kurze Einführung in ein sehr weitreichendes Thema. Zu
Details sei der Leser angehalten, in der referenzierten Literatur nachzuschlagen.

2.2.1 Methodiken

Grundlegende, allgemeine Konstruktionsprinzipien, wurden von Saltzer und Schroeder bereits
1975 in [34] definiert. Zu diesen Prinzipien gehören zum Beispiel Fail-safe defaults die fordern,
dass grundsätzlich jeder Zugriff vorerst verboten ist. Für einen Zugriff muss zuerst eine explizite
Erlaubnis erteilt werden. Das weitere Prinzip Least privilege sagt aus, dass nur die minimalen
Rechte zur Erfüllung der Aufgabe vergeben werden sollten. Für die vollständige Übersicht und
Details wird in die originale Arbeit verwiesen.

Methoden in Form von Empfehlungen und Richtlinien zur Erstellung eines Sicherheitskonzeptes
für die Informationstechnik (zum Beispiel IT-Systeme, Netzwerke, Anwendungen) werden
vom Bundesamt für Sicherheit in der Informationstechnik (BSI) mit den IT-Grundschutz-Kataloge [9]
herausgegeben. Inhalt der Kataloge sind Sammlungen von Standardsicherheitsmaßnahmen, die
anhand von Eintrittswahrscheinlichkeiten und Schadensumfang von pauschalen Gefährdungen
verwendet werden. Die Methodik, die seit 1994 stetig weiterentwickelt wurde, stellt einen
Baukasten zur Etablierung und Aufrechterhaltung von Mechanismen zum Schutz von Information
einer Institution bereit. Auf Basis des Konzeptes kann auch eine Zertifizierung nach ISO 27001

vergeben werden.

16

2.2 Security Engineering

Eine Methodik, um Authentizität und Integrität von Daten zu sicherzustellen, ist eine Public-Key
Infrastruktur (PKI). Grundlage ist ein asymmetrisches Kryptosystem, in dem Subjekten krypto-
grafische Schlüssel zugeordnet werden. Jedes Subjekt besitzt ein Schlüsselpaar, dass aus einem
privaten Schlüssel, der geheim gehalten wird, und einem öffentlichen Schlüssel, der jedem
Subjekt frei verfügbar ist, besteht. Der private und der öffentliche Schlüssel stehen in einer mathe-
matischen Beziehung, sodass Daten, die mit dem öffentlichen Schlüssel verschlüsselt wurden, mit
dem privaten Schlüssel entschlüsselt werden können. Mit der mathematischen Beziehung können
Daten sicher zwischen Kommunikationspartnern ausgetauscht werden, ohne dass vorher ein
gemeinsamer geheimer Schlüssel über gegebenenfalls unsichere Wege austauscht werden müsste.
Will ein Absender Daten für einen Empfänger verschlüsseln, wählt er zur Verschlüsselung der
Daten den der Identität zugeordneten öffentlichen Schlüssel zur Verschlüsselung der Daten. Nur
der Besitzer des privaten Schlüssels kann die so geschützten Daten entschlüsseln und damit
wieder lesbar machen. Um echte Schlüssel von gefälschten Schlüsseln zu unterscheiden, werden
die Schlüssel in Zertifikate eingebettet. Die Zertifikate bestätigen die Vertrauenswürdigkeit der
behaupteten Identität eines eingebetteten Schlüssel. Ausgestellt werden die Zertifikate von einer
Zertifizierungsstelle, bei der sich der Teilnehmer zuvor korrekt ausgewiesen hat. Zertifikate kön-
nen auch dazu benutzt werden, um die Identität von Subjekten zu überprüfen. Dazu wird dem
Zertifikat-Inhaber eine zufällig genierte Zahl übermittelt, die dieser mit seinem privaten Schlüssel
verschlüsselt und an den Absender zurückschickt. Nun kann der Wert mit dem öffentlichen
Schlüssel entschlüsselt werden, stimmt das Ergebnis mit dem verschickten Wert überein, wurde
die Identität des Zertifikats-Inhabers bestätigt. Es gilt jedoch zu beachten, dass ein Zertifikat nur
so vertrauenswürdig ist, wie die Zertifizierungsstelle vertrauenswürdig ist.

2.2.2 Implementierung und Werkzeuge

Neben der konzeptionellen Arbeit, eine Sicherheitsarchitektur zu entwickeln, die die gewünsch-
ten Schutzziele realisiert, muss die Architektur mit einer Implementierung realisiert werden.
Bei der Implementierung der Sicherheitsarchitektur, und auch des zu schützenden IT-Systemes
kann es vorkommen, dass Anforderungen nicht korrekt umgesetzt werden. Ergebnis kann ein
ungewolltes Verhalten der Software sein, dass sich im Gegensatz zu Syntaxfehlern nicht direkt
bei der Übersetzung der Anwendung, sondern erst während der Laufzeit bemerkbar macht. Ein
derartiges ungewolltes Verhalten wird als logischer Fehler bezeichnet und kann weitreichende
Folgen haben. Beispielsweise könnte ein logischer Fehler bei der Implementierung der Funktiona-
lität zu Authentifizierung von Subjekten auftreten, der bei der Prüfung der behaupteten Identität
auftritt und einigen Objekten eine falsche Identität bestätigt. Wird ein Subjekt fälschlicherweise
mit einer Identität mit umfangreicheren Rechten als vorgesehen ausgestattet, kann dies zu seiner
Kompromittierung des Sicherheitskonzeptes führen.

Zum Auffinden der genannten Fehler können unterstützend Werkzeuge bei der Programm
Analyse eingesetzt werden. Eine Klasse wird als dynamische Programmanalyse bezeichnet, die
zur Laufzeit einer Anwendung durchgeführt wird. Zur Durchführung wird das Programm auf
Testdaten ausgeführt und das Verhalten untersucht. Beispielsweise unterstützt die von Intel ver-

17

2 Sicherheit

marktete Software Parallel Studio [21] die Analyse von Anwendungen, die auf mehrere Threads2

verteilt sind, nach möglichen data races oder deadlocks. Eine weitere Klasse von Werkzeugen wird
für die statische Programmanalyse eingesetzt. Die Analyse wird durchgeführt ohne das betreffende
Programm auszuführen, indem der Quellcode als Eingabe zu Untersuchungen verwendet wird.
Untersucht wird der Quellcode zum Beispiel nach Puffer Überläufen, Dereferenzierung von Null-
Pointer oder nach unerfüllbaren Vergleichen. Für die statische Suche nach Programmierfehlern
existierten sowohl frei Verfügbare als auch kommerzielle Software [4].

2.2.3 Prozesse

Microsoft adressiert die Entwicklung sicherer Software mit dem Security Development Lifecycle
(SDL) [29]. Im SDL definiert Microsoft einen Softwareentwicklungsprozess, der aus drei Ele-
menten besteht: vorbildliche Lösungen aus der Praxis (best practise), Prozessverbesserungen
und Metriken. Ziel ist die Verwundbarkeit des Softwaredesigns, der Codierung und Dokumen-
tation so früh und so weit wie möglich zu reduzieren. Damit soll ein pragmatischer Software
Entwicklungszyklus bereitgestellt werden, der unter anderem auch die bereits angesprochenen
Prinzipien von Saltzer und Schroeder [34] berücksichtigt.

Internationaler Standard zur Bewertung und Zertifizierung von IT-Systemen ist die Common
Criteria for Information Technology Security Evaluation (CC). Eine Bewertung wird durchgeführt,
indem Funktionalität und die Vertrauenswürdigkeit von IT-Systemen anhand von Kriterienkata-
logen geprüft wird. Je nach Ergebnis und Umfang der Prüfung können unterschiedlich starke
Zertifikate vergeben werden. Die aktuelle Version 3.1 ist mit ISO/IEC 15408 standardisiert und
löst den europäischen ITSEC-Standard3 und amerikanischen TCSEC-Standard4 ab, um einen
weltweit einheitlichen Standard zu schaffen.

Das BSI schlägt im BSI-Standard 100-2 [8] einen Informationssicherungsprozess vor, der auf Basis der
bereits unter Methodiken angesprochen IT-Grundschutz-Kataloge eine Auswahl und Realisierung
von Maßnahmen auf drei Ebenen begleitet. Die erste Ebene ist die strategische Ebene, sie beinhal-
tet die Initiierung des Sicherheitsprozesses mit der Erstellung einer Sicherheitsleitlinie, bestehend
aus den angestrebten Informationssicherheitszielen und der verfolgten Sicherheitsstrategie sowie
der Einrichtung eines IT-Sicherheitsmanagements. Auf der zweiten, der taktischen Ebene, wird ein
Sicherheitskonzept nach den IT-Grundschutzkatalogen erstellt. Letzte, die operative Ebene sorgt
für die Sensibilisierung und Schulung des Personals zur IT-Sicherheit und der Aufrechterhaltung
der Sicherheit im laufenden Betrieb. Unter Aufrechterhaltung wird ein sich wiederholender Pro-
zess verstanden, der nicht nur bei der Entwicklung, sondern auch während der Systemaktivität
eine Überwachung durchführt, um neue Schwachstellen zu erkennen. In folgenden Wiederholun-
gen des Prozesses können die neu erkannten Schwachstellen eliminiert werden. Im Wesentlichen

2Wird in Deutsch auch als Aktivitätsträger bezeichnet und beschreibt eine Folge von Arbeitsschritten eines Program-
mes, die sowohl sequenziell als auch parallel ausgeführt werden können.

3Information Technology Security Evaluation Criteria, 1991 von der Europäischen Kommission verabschiedet [19]
4Trusted Computer System Evaluation Criteria, wird auch als Orange Book bezeichnet, wurde von der US-Regierung

herausgegeben [15]

18

2.3 Modelle zur Zugriffskontrolle

DAC MAC RBAC
Nachteile Erzeuger der Daten

zwangsläufig Besitzer,
hoher Verwaltungsauf-
wand

Schreibzugriff kann
nachfolgende Lese-
zugriffe ungewollt
beschränken

Aufwendiges Modell
durch Indirektion

Vorteile Einfaches Modell Effizientes Regelsystem Leichte Verwaltung

Tabelle 2.1: Die Tabelle gibt eine Übersicht über die wichtigsten Vor- und Nachteile der vorge-
stellten Modelle zur Zugriffskontrolle.

bezieht sich das BSI-Modell auf Infrastrukturen von Institutionen. Darunter fallen beispielsweise
Büroräumen, einzelne Server oder die Installation von Standardanwendungen wie Microsoft
Outlook.

2.3 Modelle zur Zugriffskontrolle

Zur Umsetzung von Zugriffskontrollen existieren mit Discretionary Access Control, Abschnitt
2.3.1, und Mandatory Access Control, Abschnitt 2.3.2 zwei häufig verwendete Grundmodelle. Eine
abgeschwächte Form des Mandatory Access Control, welches eine höhere Flexibilität ermöglicht,
ist als Role Based Access Control bekannt und ist Thema des Abschnitt 2.3.3.

2.3.1 Discretionary Access Control (DAC)

Ein häufig eingesetztes Modell ist das Discretionary Access Control (DAC) Modell, veröffentlicht
von der TCSEC [15]. Bekanntes Einsatzbeispiel ist Microsoft Windows, dass eine leicht veränderte
Version, das als Discretionary Access Control List (DACL) bezeichnet wird, einsetzt [28]. In DAC
werden für jedes Subjekt s Berechtigungen festgelegt. Rechte r können aus einer Menge von
Zugriffsrechten wie zum Beispiel löschen, lesen oder schreiben sein. Ein Prädikat p legt ein
Zugriffsfenster, eine Einschränkung auf bestimmte Objekte, für das jeweilige Objekt fest. Daraus
entsteht das Tupel (s, o, t, p), welches mit einer Eigenschaft f ∈ {true, f alse} erweitert wird um
zu entscheiden, ob s die Rechte an ein weiteres Subjekt s′ weitergeben darf. Ergebnis ist das
Quintupel (s, o, t, p, f), das die Rechtevergabe beschreibt.

DAC ist ein einfach gehaltenes Modell, das Berechtigungen explizit zuordnet. Allerdings leidet es
unter einigen Schwächen. Erstens entsteht aus den Quintupeln unter Umständen eine sehr große
Matrix, die einen hohen Verwaltungsaufwand erfordert. Zudem geht das Konzept davon aus,
dass der Erzeuger von Daten als Eigner für die Sicherheit verantwortlich ist, was die Flexibilität
einschränkt.

19

2 Sicherheit

2.3.2 Mandatory Access Control (MAC)

Mandatory Access Control (MAC) [15] markiert alle Subjekte und Objekte mit einer injektiven
Abbildung auf eine Sicherheitseinstufung. Die Markierung kann aus einer beliebig definierten
Menge X sein. Voraussetzung ist, dass die Menge geordnet ist, sodass das Abgleichen der
Markierungen zu einem wohldefinierten Ergebnis führt. Jedes Subjekt s erhält eine Markierung
zur Stufe der Vertrauenswürdigkeit: vertrauenswuerdigkeit(s) → x. Alle Objekte o erhalten
einen Markierung, die die Sicherheitseinstufung definiert: klassi f izierung(o) → x. Das Objekt
o kann von Subjekt s nur gelesen werden, wenn die Stufe der Markierung ausreichend ist:
klassi f izierung(o) ≤ vertrauenswuerdigkeit(s). Wird ein Objekt geschrieben, muss es mindestens
die Berechtigungsstufe des schreibenden Subjekt s erhalten. Die Regel verhindert, dass nach einem
Schreibvorgang das Objekt von Subjekten gelesen werden kann, die zuvor keine Berechtigung
hatten: vertrauenswuerdigkeit(s) ≤ klassi f izierung(o).

Im Gegensatz zum DAC Modell verwendet das MAC Modell Regeln und definiert nicht für
jede Beziehung zwischen Subjekt und Objekt eine Relation. Dies erspart sehr große Matrizen
und deren hohen Verwaltungsaufwand. Nachteilig sind einige organisatorische Mängel. Mit
der letzten Regel, zur Steuerung des Datenflusses, wird die Einstufung von geschriebenen
Objekten unter Umständen auf ein zu hohes Level angehoben. So verlieren Subjekte mit niedriger
Einstufung ihre Leserechte. Zudem bedeutet die Notwendigkeit alle Objekte einstufen zu müssen
einen nicht unerheblichen Aufwand.

2.3.3 Role Based Access Control (RBAC)

Eine implizite Autorisierung wird mit dem Role Based Access Control (RBAC) [20] beschrieben.
Die grundlegende Struktur besteht aus Subjekten, Rollen und Zugriffsrichtlinien. Rollen können
verschiedene Zugriffsrichtlinien zugewiesen werden, die Berechtigungen zur Ausführung von
bestimmten Operationen vergeben. Werden Rollen hierarchisch angeordnet, können Organi-
sationsstrukturen abgebildet werden. So kann beispielsweise die Rolle Mitarbeiter der Rolle
Abteilungsleiter untergeordnet werden. Werden der Mitarbeitergruppe zusätzliche Berechtigun-
gen gewährt erhalten automatisch die Abteilungsleiter ebenfalls die Berechtigung. Subjekten
können Rollen zugewiesen, die so Sammlungen von Berechtigungen erhalten. Dies erleichtert die
Verwaltung von Zugriffsrichtlinien erheblich, da bei zur Aktualisierung nicht für jedes betroffene
Subjekt und Objekt die Änderungen einzeln ausgeführt werden müssen.

2.4 Vorgehensmodell für NexusDS

Zur Entwicklung einer verlässlichen Software ist eine strukturierte Vorgehensweise ratsam [26].
Mit Strukturierung lässt sich der Prozess der Entwicklung in Schritte unterteilen, die jeweils
klare und überprüfbare Ziele definieren. Dies erleichtert nicht nur die Entwicklung, sondern
unterstützt maßgeblich das Erzielen einer höheren Qualität des gesuchten Sicherheitskonzeptes
für NexusDS.

20

2.4 Vorgehensmodell für NexusDS

Struktur-
Analyse

• Struktur des System
analysieren

• Systemrollen ermitteln
• Systembesonderheiten

erfassen

Anforderungs-
Analyse

• Anforderungen aus
Schutzbedarf von
Anwendungsszenarien
ableiten

• Anforderungen der
beteiligten Rollen
ermitteln

• Anforderungen aus
Systembesonderheiten

Maßnahmen-
entwicklung

• Erstellung von
Maßnahmenpaket zur
Erfüllung der
Anforderungen

Sicherheits-
Architektur

• Transformation von
Maßnahmen in
Komponenten

• Homogene Einpassung
der Komponenten in
bestehende
Systemarchitektur

Realisierung

• Implementierung der
Komponenten

• Test der
Sicherheitsarchitektur
auf Erfüllung der
Anforderungen

Abbildung 2.1: Schritte und Teilaufgaben des Vorgehensmodells zur Entwicklung des Sicher-
heitskonzeptes für NexusDS.

In der Literatur zum Thema Sicherheit in der Informationstechnik werden die Vorgehensweisen
in der Regel auf Angriffsszenarien ausgerichtet. Für NexusDS soll in der Diplomarbeit erstmals
ein Sicherheitskonzept entwickelt werden, das einen kontrollierten Zugriff auf Information
einführt. Die Analyse, mit welchen speziellen Angriffen, wie zum Beispiel Buffer Overflow
Angriffe, die neu umzusetzenden Kontrollmechanismen ausgehebelt werden könnten, lässt der
der begrenzte Umfang der Diplomarbeit nicht zu. Deshalb soll ein Vorgehensmodell für die
Diplomarbeit verwendet werden, dass den Fokus auf die Sicherstellung eines kontrollierten
Zugriff auf Informationen legt und nicht auf die Abweisung verschiedener Angriffsszenarien.

Unter Auslassung der strategischen Ebene, zu den verschiedenen Ebene siehe Abschnitt 2.2.3,
bietet der BSI-Standard [8] eine solide Grundlage, um ein Vorgehensmodell für NexusDS abzulei-
ten. Das BSI-Modell bezieht sich im Wesentlichen auf Infrastrukturen von Institutionen, was eine
Anpassung auf NexusDS notwendig macht. Im Folgenden werden sowohl die Schritte vorgestellt,
als auch auf kurz, falls nötig, auf Veränderungen zum Original BSI-Modell eingegangen. Für die
detaillierte Beschreibung, wie die einzelnen Schritte vom BSI definiert werden, sei auf die Quelle
des BSI-Standards verweisen. Abbildung 2.1 stellt die Schrittfolge des Vorgehensmodell dar.

Das Vorgehensmodell beginnt mit der Strukturanalyse. In der Strukturanalyse müssen zuerst die
funktionalen Eigenschaften, die Systemumgebung und der Verwendungszweck analysiert werden.
Im BSI-Modell wird die Analyse hauptsächlich zur Zerlegung in Komponenten (Anwendun-
gen, Informationen, Räume, IT-Systeme, Kommunikationsnetze) passend für die Grundschutz-
Kataloge durchgeführt und läuft im Regelfall auf einen Netztopologieplan hinaus. Für NexusDS,
soll eine Topologie der verschiedenen Komponenten des Systems und deren Zusammenspiel
entwickelt werden. Ebenfalls müssen Kommunikationswege betrachtet werden, die in verteilten
Systemen eine elementare Grundlage bilden und als systemkritisch anzusehen sind. Zu beachten
ist, dass die Erhebung nicht im Kontext einer Sicherheitsarchitektur durchgeführt wird, sondern
Aufdecken soll, welche Komponenten von NexusDS in welcher weise untereinander Interagieren
beziehungsweise verbunden sind. Komponenten sind dabei sowohl von technischer, als auch von
menschlicher Natur, wie zum Beispiel die Rolle eines Benutzers.

In der Anforderungsanalyse werden aus Anwendungsszenarien Sicherheitsanforderungen, dar-
unter kann beispielsweise das Einschränken von Leserechten verstanden werden, an das Si-

21

2 Sicherheit

cherheitskonzept extrahiert. Anhand von Anwendungsszenarien lässt sich der Rahmen für die
Diplomarbeit abstecken und eine anschauliche Erhebung durchführen. Um die verschiedenen
Anforderungen der Szenarien zu homogenisieren, werden die Anforderungen anhand der in
Abschnitt 2.1.1 vorgestellten Schutzziele klassifiziert. Zur Vervollständigung müssen ebenso die
spezifischen Eigenschaften von NexusDS im Kontext von Sicherheit betrachtet werden. Dazu
dient als Grundlage die im vorherigen Schritt durchgeführte Analyse der Struktur von NexusDS,
die unter dem Gesichtspunkt von Zugriffskontrollen nach Anforderungen untersucht wurde.

Der Schritt Maßnahmenentwicklung ist im Original BSI-Modell der Schritt Auswahl von Maß-
nahmen. Die Auswahl im Original Modell bedeutet Maßnahmenempfehlungen aus den IT-
Grundschutz-Katalogen passend zu den definierten Gefahrenlagen zu entnehmen. Für den
vorliegenden Fall sind die fertigen Komponenten aber nur begrenzt anwendbar, da sich das BSI-
Modell mit Standardmaßnahmen, wie zum Beispiel Feuerlöscher installieren, für NexusDS kaum
eignet. Deshalb wird der Schritt in die Entwicklung von angepassten Maßnahmen für NexusDS
transformiert. Entwicklung von Maßnahmen bedeutet, dass auf Basis der bis zu diesem Schritt
vorgenommenen Analysen, Maßnahmen entwickelt und vorgestellt werden, die die definierten
Anforderungen erfüllen und auf NexusDS anwendbar sind.

Im vorletzten Schritt Sicherheitsarchitektur werden die gewonnenen Maßnahmen aus dem
vorherigen Schritt in eine Sicherheitsarchitektur für NexusDS überführt. Schwerpunkt der Auf-
gabe ist, konkrete Systemkomponente und Erweiterungen zu entwickeln, die die definierten
Maßnahmen zuverlässig umsetzen. Dabei sollten sich die Umsetzungen möglichst harmonisch in
das Zielsystem einfügen und von bereits vorhandenen Strukturen, soweit möglich, Gebrauch
gemacht werden.

Abgeschlossen wird das Vorgehensmodell mit der Realisierung der Sicherheitsarchitektur. Dabei
handelt es sich im Wesentlichen um die Implementierung der Architektur in NexusDS. Diese
sollte unter den Aspekten der in Abschnitt 2.2 erwähnten Gesichtspunkte des Secure Enginee-
ring durchgeführt werden. Die Implementierung sollte dabei von Tests begleitet werden, die
sicherstellen, dass die definierten Anforderungen sachgerecht umgesetzt wurden.

Abschließend noch ein kurzer Überblick über die Veränderungen der Schrittfolge zum Original
BSI-Modell. Der Schritt der Schutzbedarfsfeststellung wurde in eine Anforderungsanalyse umge-
wandelt, die eine Schutzbedarfserhebung für Anwendungsszenarien enthält. Dadurch lässt sich
die erstmalige Erhebung von Anforderungen und Schutz freier gestalten als im Original. Die
Schritte Bedrohungsanalyse und Risikoanalyse wurden ausgelassen, da wie bereits angesprochen
spezielle Angriffsszenarien nicht berücksichtigt werden sollen. Grundlegende Sicherheitskon-
struktionen, die einen Schutz vor Angriffen im Allgemeinen bieten, werden bereits von der
Anforderungsanalyse erhoben. Das vorgestellte Modell ist im Gegensatz zum Original nicht
iterativ. Nach der Realisierung einer ersten Sicherheitsarchitektur sollte zur Aufrechterhaltung der
Sicherheit ein iteratives Modell angewandt werden, dass auf der Basis des von der Diplomarbeit
initiierten Sicherheitskonzeptes kontinuierlich Verbesserungen umsetzt.

22

Kapitel 3

Nexus und NexusDS

Das Kapitel über Nexus und NexusDS führt im ersten Abschnitt Grundlagen zu Nexus und dem
darauf aufsetzenden NexusDS ein. Es erläutert die Zielsetzung von Nexus, illustriert kurz dessen
Architektur und stellt das gemeinsam von Nexus und NexusDS verwendete Datenmodell vor.

Abschnitt 3.2 bezieht sich auf eine detailliertere Vorstellung von NexusDS. Vorgestellt werden die
Architektur von NexusDS, das Service- und Operator-Modell und die Gestaltung von Anfragen.
Aufsetzend auf der Vorstellung von NexusDS, führt Abschnitt 3.3 die vom Vorgehensmodell
vorgesehene Strukturanalyse von NexusDS aus.

Geschlossen wird das Kapitel mit Abschnitt 3.4, der eine kurze Übersicht zu verwandten, bereits
vorgestellten Systemen zur Datenstromverarbeitung gibt.

3.1 Einführung in Nexus

Ziel von Nexus ist eine ganzheitliche Modellierung der Real-Welt und den darin entstehenden
Bezug von Kontextinformation zu erfassen. Zur Abbildung werden lokale Kontext-Modelle
erstellt, die ein Teilgebiet der Real-Welt in einer je nach modellabhängigen weise Abbilden.
Um die definierten Kontextmodelle in Korrelation mit der sich ständig im Fluss befindlichen
Real-Welt zu halten, ist es notwendig eine Möglichkeit vorzusehen, stetige Aktualisierung über
den Zustand der Real-Welt einzuholen. Dazu greift Nexus auf die immense Zahl an Sensoren, die
in der modernen Welt kontinuierlich Aktualisierungen über den Zustand der Real-Welt liefern,
zurück. Solche Sensoren können zum Beispiel Mobiltelefone, an das Internet angebundene
Webcams oder Webservices 1 sein, die Informationen aller Art generieren. Aktuelle Smartphones
verfügen häufig in der Standardausstattung über GPS-Empfänger und WLAN-Adapter. Diese
Geräte können mit wenig Aufwand genutzt werden, um eine exakte GPS-Standortinformation
des Benutzers zu sammeln. Verfügt der Benutzer dazu noch über eine Flatrate für mobiles
Internet oder einen anderen preiswerten Datenzugang, ist es ein Leichtes die aktuelle Position

1Ein Webservice definiert eine Standardisierung für verschiedene Softwareagenten um Informationen auszutauschen

23

3 Nexus und NexusDS

des Besitzers über große Zeiträume in Nexus einzuspeisen. Die Positionsinformation kann dann
von vielfältigen Kontextmodellen genutzt werden um Orts-bezogene Dienste zu realisieren.
Neben Mobiltelefonen gehört zur Vielfältigkeit moderner elektronischer Hilfsmittel heute eine
sehr große Anzahl an Navigationsgeräten, die ebenfalls als Sensoren für Nexus dienen kön-
nen. Immer häufiger werden die Modelle mit Onlineverbindungen ausgestattet, um aktuelle
Verkehrsinformationen zu beziehen. Gleichzeitig Versorgen diese ihrerseits die Betreiber von
Verkehrsservices mit anonymisierten Statusinformationen des Fahrzeuges [40]. Sodass zum Bei-
spiel anhand der Bewegungsmuster, übermittelt von den Navigationssystemen, und das in Bezug
setzen zu Straßenkarten und weiteren Verkehrsinformationen verbesserte Verkehrsinformationen
generiert werden können. Das Verkehrsszenario ist nur eine Möglichkeit zur Verwendung der
Informationen, so könnte die Information auch für verkehrsfremde Szenarien eingesetzt werden.
Die Information muss lediglich mit einem Nexus Kontextmodell in den gewünschten Bezug
gesetzt werden.

3.1.1 Nexus Architektur

Die Architektur [5] von Nexus besteht aus drei Schichten, Application Tier, Federation Tier und
Service Tier.

Application Tier: Anwendungen, die die Nexus Plattform verwenden, sind in der Application
Tier angesiedelt. Sie können Kontextabfragen an den Federation Tier richten, Ereignisse
registrieren, um bei deren Eintreten benachrichtigt zu werden und gemeinsame Services
nutzen. Ein Service ist eine Anwendung, die im Gegensatz zu Anwendungen im Application
Tier, ihrerseits von anderen Anwendungen benutzt werden kann.

Federation Tier: Beherbergt sogenannte Nexus Nodes, in welchen Funktionen, Ereignisregistrie-
rung und Services der Nexus Plattform ausgeführt werden. Eingehende Anfragen aus dem
Application Tier werden analysiert und angeforderte Information aus den zuständigen
Quellen abgefragt. Die Schicht vereinigt zudem alle lokalen Kontextmodelle zu einem
globalen Modell.

Service Tier: Schicht in der die lokalen Kontextmodelle vorgehalten werden. Die Kontextmodelle
werden von Servern bereitstellt, indem standardisierte Schnittstellen implementiert werden.
Die Datenstruktur wird in der Augmented World Model Language (AWML) und Abfragen
in der Augmented World Query Language (AWQL) formuliert.

3.1.2 Das Augmented World Model

Die Modellierung [5] des Kontext-Modells ist so gestaltet, dass es möglich ist, jede Art kontext-
abhängiger Anwendungen zu unterstützen. Ein globales, gemeinsam genutztes Kontext-Model,
namens Augmented World Model (AWM) modelliert die Bezüge von Objekten der Real-Welt.
Einige Beispiele für Objekte der Real-Welt sind Personen, Häuser oder Flüsse. Aber es existieren

24

3.2 NexusDS

Datenstrom
Aktuelle

Verkehrslage

Datenstrom
GPS-Position

Statische Daten
Terminanfragen

Filter
Relevante

Informationen filtern

Berechnen
Optimalen Treffpunk

ermitteln

Splitten & Verteilen
Lösungen an Benutzer

verteilen

Operatoren Datenquellen Datensenke

Abbildung 3.1: Illustration einer Anfrage für NexusDS die mit Positionsdaten, Terminen und
Verkehrslage einen optimalen Zeit- und Treffpunkt für Benutzer von Smartphones
berechnet und verteilt.

nicht nur physische Objekte, sondern auch virtuelle Objekte, das können zum Beispiel Verweise
auf Dokumente oder auch Relationen zwischen Objekten sein.

Grundlage für das AWM ist die Augmented World Model Language (AWML) zur Datenmodel-
lierung und die Augmented World Query Language (AWQL) um Abfragen zu definieren. Beide
Sprachen basieren auf XML [43], der Extensible Markup Language, definiert vom World Wide
Web Consortium (W3C). XML ist eine Auszeichnungssprache um Daten zu strukturieren und den
Datenaustausch zwischen Computern zu erleichtern. Um eine einheitliche Struktur zu erhalten,
definiert Nexus verschiedene Schemas [42]. Das globale Schema definiert sich aus dem Nexus
Standard Class Schema (NSCS), die Basistypen des AWM mit den Nexus Standard Attribute
Types (NSAT) und dem Nexus Standard Attribute Schema (NSAS) um mehrere Attribute zu
gruppieren.

3.2 NexusDS

NexusDS ist ein Data Stream Processing System (DSMS), ein System zur Verarbeitung von
Stromdaten ohne vorheriges Zwischenspeichern von Daten. Ein Datenstrom ist ein kontinuierli-
cher Fluss an Information, der unendlich sein kann und auf den kein wahlfreier Zugriff möglich
ist. Beispiel für einen Datenstrom ist eine Folge aus Positionsdaten, die von einem GPS-Sensor
ermittelt werden. Bisher wurden verschiedene Vorschläge, wie zum Beispiel Borealis [7] oder
Aurora [1], zur Verarbeitung von Datenströme vorgestellt. Unter den Vorschlägen finden sich
Konzepte, die die Datenverarbeitung wie NexusDS auf mehrere Rechenknoten verteilen. Dabei
werden Anfragen zerlegt und auf verschiedene Rechenknoten verteilt, dies kann zum Beispiel aus
Gründen der Lastverteilung geschehen. Alle bisherigen DSMS Konzepte haben hinsichtlich der

25

3 Nexus und NexusDS

Abbildung 3.2: Schichtarchitektur von NexusDS. Operatoren sind mit durchgezogenen Boxen
und Services mit gestrichelten Boxen dargestellt [13].

Verteilung eine gemeinsame Einschränkung gegenüber NexusDS, die bereits in der Einleitung an-
gesprochene Fähigkeit, die Ausführung in einem heterogenen Umfeld zu unterstützen. NexusDS
adressiert neben der generellen Ausführbarkeit Szenarien, in denen es notwendig, oder von
Vorteil sein kann, dass Operationen spezifische Anforderungen an die Ausführungsumgebung
stellen. Zum Beispiel kann eine Anforderung spezielle Hardware sein, die OpenCL ermöglicht.
Ein weiteres Beispiel kann ein Operator sein, der besonders hohe Leistungsansprüche stellt, die
nur von ausgewählten Rechenknoten erfüllt werden können.

3.2.1 Architektur

Ziel der Architektur ist eine flexible und nahtlose Erweiterbarkeit zu gewährleisten. Services defi-
nieren einen Rahmen um Dienste einzubringen, die dem klassischen Anfrage-Antwort Paradigma
folgen. Operatoren hingegen definieren Erweiterungen für die Verarbeitung der Datenströme.
Im Folgenden eine kurze Vorstellung der in Abbildung 3.2 dargestellten Schichtarchitektur von
NexusDS.

Communication and Monitoring Layer: Die Schicht implementiert Kommunikationsfunktionen
die sich in Sachen Flexibilität und Skalierbarkeit an Peer2Peer2 Netzwerke orientiert. Wich-
tige bereitgestellte Services sind der Monitoring Service (MS) und ein Service Publish
Service (SPS). Der Monitoring Service überwacht Rechenknoten und deren speziellen
Charakteristiken. Nutzung und Veröffentlichung der Services in NexusDS wird über den
SPS gesteuert. Es ist außerdem möglich, mehrere Instanzen der Services zu starten, um die
Verfügbarkeit zu verbessern.

2Unter Peer2Peer werden Netzwerke verstanden, deren Rechner im Gegensatz zur Client-Server Architekturen im
Regelfall gleichberechtigt sind [27].

26

3.2 NexusDS

Nexus Core Layer: Beinhaltet die verteilt ausgeführten, zentralen Services von NexusDS. Der Co-
re Query Service (CQS) ist für die Annahme, Verteilung und Ausführung der Anfragegra-
phen zuständig. Im Operator Repository Service (ORS) werden die Core Operators (CO)
mitsamt Metadaten vorgehalten, dazu gehören auch Datenquellen und Datensenken. Zu-
gewiesene Anfragefragmente werden vom Operator Execution Service (OES) ausgeführt.
Dazu interagiert der Service mit den Core Services, um zum Beispiel für die Ausführung
fehlende Operatoren aus Repositories zu laden.

Nexus Domain Extension Layer: Verfügbare Operatoren und Services werden je nach Bedarf in
logischen Clustern zusammengeführt um unwichtige Details zu verstecken. So wird ein
Zuschnitt auf die benötigte Funktionalität einer Domain erzielt.

Nexus Applications and Extensions Layer: Spezielle Operatoren oder Services, die nur in ein-
zelnen Anwendungen zum Einsatz kommen, können mit dieser Schicht in die NexusDS
Infrastruktur ausgelagert werden. Das ist zum Beispiel für rechenintensive Teiloperationen
hilfreich, die nicht auf Endgeräten wie Smartphones ausgeführt werden können.

3.2.2 Service-Modell

Bei der Vorstellung der Architektur wurden bereits vorhandene Services in NexusDS erläutert.
Beispielsweise wurde erläutert, dass der Operator Repository Service (ORS) alle Operatoren und
Meta-Daten für das Operator-Modell vorhält. Der ORS bildet so einen integralen Bestandteil der
NexusDS Architektur und realisiert einen Teil der Funktionalität. Services stellen außerdem den
Verbindungspunkt für Anwendungen dar, die NexusDS zur Verarbeitung von Datenströmen
nutzen, um mit NexusDS zu kommunizieren. Soll NexusDS mit zusätzlicher Funktionalität
erweitert werden, können dazu neue Services implementiert und in NexusDS registriert werden.
Das Operator-Modell ist für die Verarbeitung von Datenströmen vorgesehen und Operatoren
werden lediglich benutzt. Services hingegen interagieren untereinander und mit angebundenen
Anwendungen.

3.2.3 Operator-Modell

NexusDS verfügt über ein flexibles Operator-Modell, das für beliebige Domänen und Anwendun-
gen angepasst werden kann. Es bildet die Basis zur Umsetzung von Datentransformationen und
Auswertungen in Anfragen, indem Operatoren zur Datenverarbeitung im Rahmen des Modells
implementiert werden. Operatoren sind entweder aus der Gruppe logischer oder physischer
Operatoren. Ein logischer Operator kann mit unterschiedlichen physischen Implementierungen
realisiert sein und definiert nur eine gewisse Semantik der Operation. Jede physische Imple-
mentierung kann eine Spezialisierung sein, zum Beispiel angepasst an Hardwareeigenschaften
unterschiedlicher Rechenknoten.

Zur Erklärung des Modells ist beispielhaft eine Anfrage für NexusDS in Abbildung 3.1 dargestellt.
Daten strömen nach dem push Paradigma entlang der Verbindungskanten von Quellen zur
Verarbeitung in Operatoren. Quellen können sowohl Stromdaten, etwa ein GPS-Sensor, der

27

3 Nexus und NexusDS

Input Manager Warteschlangen Operator

Parametrisierung

Laufzeit Statistiken

Abbildung 3.3: Darstellung des Operator Modell mit Warteschlangen, Input Manager und Ope-
rator, die mögliche Parametrisierung und das Sammeln von Laufzeitstatistiken.

stetig eine Position misst, als auch statische Datenbanken mit Busfahrplänen sein. Operatoren
können nicht nur in Reihe geschaltet werden, sondern in verschiedenster Form untereinander
verkettet werden. Nach Abschluss der definierten Verarbeitungsschritte fliesen die Daten an ihr
Ziel, sogenannte Senken. Senken können zum Beispiel Dateien oder beliebige andere Ziele wie
ein Smartphone Display sein. Eine Anordnung von Quellen, Operatoren und Senken wird als
Anfrage bezeichnet und mithilfe des Nexus Plan Graph Model (NPGM) definiert.

Das von NexusDS eingesetzte Operator-Modell, basiert auf einem Boxen Paradigma. Abbildung
3.3 zeigt, aus welchen Komponenten eine Operator-Box aufgebaut ist. Direkt an den Dateneingän-
gen sind Warteschlangen vorgesehen um den kontinuierlichen Datenfluss zu puffern. Sie sind
zusätzlich in der Lage die Daten nach Kriterien zu sortierten, beziehungsweise zu priorisieren,
falls der Puffer nicht mehr ausreicht, was einem gleitenden Datenfenster entspricht. Vorgehaltene
Daten werden von einem Input-Manager aus den Warteschlangen entnommen und in einer für
die Operation passenden Kombination, sofern mehrere Dateneingänge vorhanden sind, in die
Operation gegeben. Offensichtlich ist in der vorliegenden Architektur der Operator ein passives
Objekt, das mit Daten bestückt werden muss. Ein Beispiel für einen Operator ist eine Select-
Operation, die Datenelemente nach bestimmten Kriterien entweder weiterleitet oder verwirft.
Besonderheit des von NexusDS verwendetet Modell sind die bereits angesprochenen Meta-Daten,
bezeichnet als Constraints. Diese beschreiben das Verhalten der Komponenten, wie zum Beispiel
welche Datentypen an Ausgängen und Eingängen verarbeitet werden können, als auch die
Anforderungen (zum Beispiel spezielle Hardware oder Speicherplatz) die die Komponente an
die Ausführungsumgebung stellt. Operationen können parametrisiert werden um das Verhalten
der Komponente zu Laufzeit gezielt zu steuern. Zur Vereinfachung der Handhabung verschie-
denster Parameter von Komponenten kann der Entwickler Presets liefern, die zum Beispiel

28

3.3 Strukturanalyse von NexusDS

Standardeinstellungen beinhalten. Jede der Komponenten kann innerhalb der Spezifikationen frei
implementiert werden und zu einer individuellen Box zusammengestellt werden. Quellen und
Senken sind einfacher aufgebaut. Eine Quelle besteht nicht aus mehreren Komponenten und bei
einer Senke ist jedem Dateneingang eine Warteschlange zur Datenpufferung vorgelagert.

3.3 Strukturanalyse von NexusDS

Nach dem Vorgehensmodell aus Abschnitt 2.4, soll NexusDS zuerst in seine Komponenten
zerlegt werden. Die Zerlegung und Vorstellung der einzelnen Komponenten wurde bereits im
vorherigen Kapitel mit der Einführung von NexusDS abgeschlossen. Es bleibt die Aufgabe das
Zusammenspiel der einzelnen Komponenten zu analysieren. Gefragte Analyse lässt sich anhand
des Ausführungsmodells, dass in Abbildung 3.4 vereinfacht dargestellt wird, ableiten.

Der Anfragegraph, in Form eines NPGM, muss zunächst von einem Extension Developer erstellt
werden. Sollten von der Anfrage Operatoren benötigt werden, die nicht bereits im Operator
Repository (ORS) verfügbar sind, müssen diese ebenfalls entwickelt und im ORS verfügbar
gemacht werden.

3.3.1 Das NexusDS Ausführungsmodell

Die Ausführung eines logischen Anfragegraphs beginnt, indem einem Core Query Service
(CQS) über das Query Interface (QI), ein ausgewählter logischer Anfragegraph zugeführt wird.
Das Interface nimmt die Anfrage entgegen und gibt dem Absender ein Feedback. War der Start
erfolgreich, ist das Feedback eine eindeutige Query-ID, die die Anfrage identifiziert. Trat im
Startvorgang ein Fehler auf, ist die Antwort eine Fehlermeldung und die Anfrageplanung wird
nicht weiter ausgeführt. War der Startvorgang erfolgreich, werden im folgenden Query Opti-
mizer (QO) Schritt Optimierungen der Anfrage durch Umschreiben durchgeführt. Der Query
Fragmenter (QF) ist für Aufbereitung der Anfrage zu einer physischen Anfrage zuständig. Das
bedeutet, dass logischen Operatoren, die nur eine gewisse Semantik definieren durch passende
physische Operatoren ersetzt werden. Dabei wird eine Optimierung nach den physischen Belan-
gen der Anfrage durchgeführt und Rechnenknoten ermittelt, die nach statischen Auswertungen
und aktueller Verfügbarkeit, für die entsprechenden Operatoren geeignet sind. Die Statistiken
werden während der Ausführung vom Statistics Collector (SC) gesammelt. Basierend auf dieser
Untersuchung, wird die Anfrage passend zu einer optimierten Auswahl von Rechenknoten
zerlegt. Mithilfe des Execution Manager (EM) werden die Anfragefragmente verteilt. Wichtige
Aufgabe des EM ist mit dem Operator Execution Service (OES) in Verbindung zu bleiben, um
bei Veränderungen der Ausführungsumgebung neue Optimierungen vorzunehmen. Zur Über-
wachung auf Veränderungen ist der EM mit dem Query Fragmenter und dem Query Optimizer
verbunden.

Wie in der Abbildung 3.4, in Form von drei dicken Pfeilen dargestellt, werden die Fragmente der
Anfrage in verschiedene Execution Manager (EM) übergeben. Die EM werden im Beispiel auf

29

3 Nexus und NexusDS

NexusDS
Anwendung

Leistungsstarker Server

GPU gestützter PC

Operator Execution Service

Smartphone

Core Query Service

Query Interface
(QI)

Query Optimizer
(QO)

Query Fragmenter
(QF)

Execution Manager
(EM)

Statistics Collector
(SC)

Operator
Repository Client

(ORC)

Operator Scheduler
(OS)

Execution Manager
(EM)

St
re

am
 O

u
tp

u
t

M
an

ag
er

St
re

am
 In

p
u

t
M

an
ag

er

Operator
Repository

Extension
Developer

Benutzer von
NexusDS

Anwendungen

Anfragegraph

Operator-Execution Sandbox

Teil-Anfragegraph

Abbildung 3.4: Vereinfachte Darstellung der Ausführung einer Anfrage, gezeigt ist die Inter-
aktion zwischen den verschiedenen Komponenten und Rollen im NexusDS
Ausführungsmodell.

30

3.3 Strukturanalyse von NexusDS

verschiedenen Rechenknoten ausgeführt, was durch die Sockel der EM ausgedrückt wird. Jeder
EM prüft bei der Initialisierung, ob alle nötigen Operatoren im lokalen Operator Repository Cli-
ent (ORC) vorliegen, sollte dies nicht der Fall sein, werden sie aus dem OR geladen. Sobald alle
verfügbar sind, werden die Operatoren geladen, parametrisiert und in der Operator-Execution
Sandbox ausgeführt. Während der Ausführung sammelt an dieser Stelle der SC Statistiken
über das Laufzeitverhalten der Operationen und Rechenknoten. Sollte sich eine oder mehrere
der Ausführungsumgebungen in ihren Eigenschaften verändern, sind Anpassungen bei der
Ausführung notwendig. Änderungen werden entweder nach dem Lightweight Adaptation (LA)
oder Heavyweight Adaptation (HA) Schema durchgeführt. LA sieht nur eine Umsortierung der
Ausführungsreihenfolge innerhalb des eigenen Anfragefragmentes und eine Verlangsamung der
vorgelagerten Anfragefragmente vor. Sollten diese Maßnahmen nicht ausreichen, um Pufferüber-
läufe und einen allgemeinen Zusammenbruch der Anfrage zu verhindern, kann mit der HA über
den CQS nochmals der Prozess zu einer vollständigen Neuverteilung der kompletten Anfrage
angestoßen werden. Sind die Vorbereitungen auf allen Rechenknoten für jeden beteiligten OES
abgeschlossen, wird die Ausführung als stabil bezeichnet.

In der Abbildung ist die Kommunikation der einzelnen Anfragefragmente mit dünnen Pfeilen
dargestellt. Die Kommunikation ist unabhängig davon, ob die Fragmente auf verschiedenen
oder auf demselben Rechenknoten ausgeführt werden. Ausgehende Daten werden vom Stream
Output Manager an das oder die Ziele weitergeleitet. Zum Beispiel werden in der Illustration
Daten in einem Zyklus vom leistungsstarken Server in den Stream Input Manager des GPU
gestützten PC geleitet. Selbige Daten gehen in ein Anfragefragment zu dem Smartphone und final
aus diesem an die NexusDS Anwendungen, die zu Beginn die Anfrage initiierte. Ausgeführt
wird die Anfrage, bis eine vorher definierte Lebensdauer abläuft oder die Anfrage explizit vom
Absender, mit der der Anfrage eindeutig zugeordneten Query-ID, beendet wird.

3.3.2 Rollen in NexusDS

In NexusDS lassen sich mehrere Rollen abgrenzen. Ausgehen von Abbildung 3.4 sind bereits
die Rolle des Benutzers und Extention Developer dargestellt. Die Benutzerrolle definiert den
üblichen Anwender, der mit einer Anwendung interagiert, die NexusDS verwendet. Unter
Interaktion wird verstanden, dass der Benutzer sowohl Informationen von der Anwendung erhält
als auch Information, wie zum Beispiel Änderungen an den Sicherheitseinstellungen, über die
Anwendung in NexusDS eingibt.

Die zweite Rolle des Extention Developer wurde bereits in der Einführung kurz angerissen. Bei
der Entwicklung einer Anfrage müssen von der Rolle alle notwendigen Operatoren entwickelt
werden, die die notwendigen Funktionen für die Anfrageverarbeitung realisieren. Dies gilt natür-
lich nur, falls nicht schon entsprechende Operatoren zu Verfügung stehen auf die zurückgegriffen
werden könnte. Die Zusammenstellung der Anfrage, definiert den Datenfluss und die verschiede-
nen Schritte, die notwendig sind, um ein gefordertes Ergebnis zu erzeugen. Des weiteren müssen
Anfragen und Operatoren mit allen nötigen Parametern und Spezifikationen versehen werden,
sodass sie korrekt arbeiten.

31

3 Nexus und NexusDS

Nicht in der Abbildung aufgeführte Rollen sind der Datenbesitzer und der Systemadministrator.
Ein Datenbesitzer speist Informationen in NexusDS ein, das heißt, es wird eine Quelle, zum
Beispiel ein GPS-Sensor, bereitgestellt. Der Systemadministrator erfüllt die klassische Rolle, die
aus Wartungs- und Konfigurationsaufgaben von NexusDS besteht.

3.4 Verwandte Arbeiten zu NexusDS

Neben NexusDS wurden weitere DSMS zur Verarbeitung von Datenströmen vorgestellt. Die
ersten Vorschläge beinhalteten keine verteilte Ausführungsumgebung, wie die über die NexusDS
verfügt. Vorteil ist, dass diese Systeme Probleme wie Netzwerkverzögerungen reduzieren und
im allgemeinen Fragen der Verteilung von Verarbeitungsschritten nicht zu lösen sind. Zu dieser
Gruppe gehören zum Beispiel Aurora [1] und STREAM [3]. Angesprochene, zentralisierte Kon-
zepte sind bei hohem Benutzeraufkommen anfällig für Überlastungen und eine Skalierbarkeit ist
nur eingeschränkt möglich. Aktuelle Konzepte, wie Borealis [7] oder StreamGlobe [38] verteilen
die Last der Anfrageverarbeitung über mehrere Rechenknoten, um zentrale Flaschenhälse zu
vermeiden.

NexusDS ermöglicht die individuelle Erweiterung mit neuer Funktionalität mit zusätzlichen
Services und Operatoren. Die Erweiterungen durch Operatoren ist nicht nur offline möglich,
sondern auch zur Laufzeit. In Borealis sind nur begrenzte Erweiterungen möglich. Zusätzliche
Operatoren müssen auf jedem Rechenknoten manuell installiert werden und können nicht wie in
NexusDS zur Laufzeit dynamisch aus Repositories geladen werden. StreamGlobe ermöglicht das
Mitsenden von notwendigen Operatoren in Anfragen, die die vorinstallierten Operatoren der
Rechenknoten erweitern. Was jedoch auch kein Laden von nicht mitgelieferten oder installierten
Operatoren zur Laufzeit ermöglicht.

Das Ausnutzen von spezifischen Eigenschaften der Rechenknoten, das bereits in Abschnitt 3.2 er-
wähnt wurde, wird von keinem der zur Zeit der Erstellung der Diplomarbeit bekannten Konzepte
umgesetzt. Lediglich StreamGlobe nutzt im begrenzten Maße die Eigenschaften unterschied-
licher Rechenknoten aus. Dazu klassifiziert es Rechenknoten in Speaker-Peers, die zusätzliche
Query-Optimierungen durchführen, Thin-Peers mit geringer Leistungsfähigkeit und Thick-Peers,
die komplexere Berechnungen ausführen können. Das steht jedoch in keinem Verhältnis zu
den umfangreichen Möglichkeiten in NexusDS, das durch gezielte Definitionen von Constraints
nahezu beliebige Eigenschaften klassifiziert und ausnutzen kann.

Zusammenfassend sind die wichtigsten Alleinstellungsmerkmale gegenüber verwandten Arbei-
ten zu NexusDS das Ausnutzen heterogener Rechenknoten, die individuelle Erweiterbarkeit
mit neuer Funktionalität und das zur Laufzeit dynamische Einbinden von Operatoren.

32

Kapitel 4

Verwandte Sicherheitskonzepte

Das Kapitel stellt zur Einführung im ersten Abschnitt kurz die Zugriffskontrolle in relationalen
Datenbanken vor. Die darauf folgenden Abschnitte bilden den Hauptteil und besprechen bereits
vorgestellte Sicherheitskonzepte für DSMS.

Überraschend zeigt sich, dass seit Beginn der Untersuchungen zu DSMS nur wenige ernsthafte
Sicherheitskonzepte bezüglich DSMS erarbeitet wurden. Mit einem der ersten Konzepte aus 2005

befasst sich Abschnitt 4.2, gefolgt von ACStream aus dem Jahre 2007, das Inhalt von Abschnitt
4.3 ist. Die aktuellste Entwicklung ist das Sicherheitskonzept FENCE, dessen Entwicklung 2008

begann und in Abschnitt 4.4 vorgestellt wird.

Abgeschlossen wird das Kapitel mit Abschnitt 4.5, dass die wichtigsten Punkte der vorgestellten
Konzepte zusammenfasst. In der Zusammenfassung wird zugleich kurz erörtert, inwieweit sich
die Sicherheitskonzepte auf NexusDS übertragen lassen.

4.1 Zugriffskontrolle in DBMS

Um Daten strukturiert zu speichern, werden häufig relationale Datenbanken eingesetzt und
legen Informationen in Tabellen ab, die Relationen definieren. Die Spalten der Tabellen bilden
die Attribute beziehungsweise Felder, während jede Zeile ein Datensatz ist. Zur Definition,
Manipulation und Abfrage von Daten in relationalen Datenbanken ist SQL1 ein weitverbreitet
Standard. Für die Datenabfrage steht zum Beispiel das SELECT Statement zur Auswahl, dass
Datensätzen unter Berücksichtigung bestimmter Kriterien Ausgewählt und INSERT um neue
Datensätze in die Datenhaltung einzufügen. Für eine detaillierte Ausführung wird der Leser
gebeten, in der entsprechen Standardliteratur, wie [22], nachzuschlagen.

Zur Zugriffskontrolle sieht SQL die Befehle grant, um Rechte zu gewähren, und revoke um
Rechte zu entziehen, vor. Beispiele für Datenbankhersteller, die Versionen ihrer DBMS mit MAC-
Modell, siehe Abschnitt 2.3.2, zur Zugriffskontrolle anbieten, sind Oracle, Ingres und Informix

1SQL ist der Nachfolger von SEQUEL, die aktuellsten Version ist in der ISO-Norm ISO/IEC 9075:2008 beschrieben

33

4 Verwandte Sicherheitskonzepte

Encrypted Transport

Control Channel

Session Manager

Authenticator Authorizer

User Abstraction layer

Catalog Admin QoS

En
cr

yp
te

d
 T

ra
n

sp
o

rt

Query Processor

Se
cF

ilt
er

Queue Manager

Queue

Queue

Queue

Operator Executer

Operator

Operator

Operator

Optimizer Admin QoS

I/
O

 In
p

u
t

C
h

an
n

el

En
cr

yp
te

d
 T

ra
n

sp
o

rt

I/
O

 O
u

tp
u

t
C

h
an

n
el

Request Admin

Abbildung 4.1: Generelle Sicherheitsarchitektur für DSMS nach Lindner und Meier [23]

[22]. Jedem Subjekt werden Nutzungsrechte für Operationen auf definierten Objekten eingeräumt.
Beispielsweise sind in PostgresSQL [36] eine freie Anzahl von Subjekten in Rollen zusammenge-
fasst. Rollen können wiederum Gruppen definieren, die ihrerseits andere Rollen als Mitglieder
enthalten. So lässt sich mit dem Befehl �CREATE ROLE donald;� eine neue Rolle donald erzeugen.
Mit �GRANT SELECT,INSERT ON geldspeicher TO donald WITH GRANT OPTION;� wird die Rolle
donald mit der Berechtigung ausgestattet, SELECT und INSERT auf der Tabelle geldspeicher

auszuführen und die Rechte an weitere Rollen weiterzugeben.

4.2 Secure Borealis

Eine der ersten Arbeiten, die zu Sicherheit in DSMS veröffentlicht wurde, stammt von den
Autoren Lindener und Maier [24]. Darin wird ein Konzept vorgestellt, das auf eine generische
Verwendbarkeit in unterschiedlichen DSMS ausgerichtet sein soll. Um dieses Ziel zu erreichen,
leiten die Autoren eine allgemeine Architektur für DSMS ab und erweitern diese um Kompo-
nenten zur Zugriffskontrolle. In einer aufsetzenden Arbeit [23], wird das Konzept für Borealis
realisiert und auf seine Performance gegenüber einem ungeschützten System untersucht.

34

4.3 ACStream

Abbildung 4.1 stellt die von den Autoren angenommene allgemeine Architektur für DSMS
mit hellgrauen Komponenten dar. Die Architektur wurde von verschiedenen DSMS Konzepten
abgeleitet, unter anderem auch Aurora, einem Vorgänger von Borealis. In der Architektur wird
zwischen administrativen Eingaben und Benutzereingaben unterschieden, wobei beide Typen von
Eingaben über den Control Channel in Empfang genommen werden. Der Catalog dient als Meta-
Daten Ablage, wie zum Beispiel Query-Beschreibungen. Eine Überwachung der Systemleistung
findet mit der QsQ Komponente statt. Der Kern des Systems, der Query Processor QP, wird
durch das Admin Modul kontrolliert. Im QP befindet sich der Optimizer, der anhand von
Informationen der Scheduler und Monitor Komponente Optimierungen der Anfrage vornimmt.
Die Queues befinden sich unter der Kontrolle des Queue Manager und beziehen ihre Daten
aus dem I/O Input Channel, an den die eingehenden Datenströme angebunden werden. Zur
Verarbeitung wird im Operator Executor die Anfrage ausgeführt. Final findet die Ausgabe über
den I/O Output Channel statt.

Die vorgeschlagene Sicherheitsarchitektur erweitert die vorhandene Architektur und kommt ohne
Modifikationen von bestehenden Komponenten aus. Die Erweiterungen sind in Abbildung 4.1
dunkelgrau hervorgehoben. Der Session Manager bindet jede Anfrage an eine Session, die einem
Subjekt zugeordnet ist. Um Subjekte korrekt zu identifizieren, wird ein Authentificator angedacht,
der über einen beliebigen Mechanismus, wie zum Beispiel Benutzername und Passwort, zur
Authentifikation verfügt. Mit der Autorizer Komponente wird entschieden, ob ein Subjekt
berechtigt, ist eine Aktion auszuführen. Zur Abbildung von Berechtigungen wird ein Modell
namens OxRBAC (owner-extendet RBAC) verwendet. Es ist ähnlich dem in Abschnitt 2.3.3
erläuterten RBAC Modell, es verfügt lediglich über zusätzliche Relationen um den Besitzer von
Objekten abzubilden. Hat ein Subjekt keine Rechte an Objekte, werden diese mit dem User
Abstraction Layer versteckt. Das ist der erste Teil der Sicherheitsstrategie, der als Object Level
Security bezeichnet wird. Zweiter Teil ist die Data Level Security ist mit der SecFilter Komponente
umgesetzt, die aktiv wird, sobald eine Anfrage startet. Dieser nachgelagerte Filter sorgt dafür,
dass Datenelemente, auf die kein Zugriff gestattet ist, vor Auslieferung eliminiert werden. Zur
Behandlung von Datenströmen, die verbunden oder aggregiert werden, wird jedes Datenelement
mit einer Markierung versehen, sodass diese auch später noch einem Datenstrom zugeordnet
werden können. Sind Datenelemente aus verschiedenen Datenströmen kombiniert, folgt ebenfalls
eine Kombinierung der Markierung, sodass eine Zuordnung zu den originalen Datenströmen
möglich ist und ein nachgelagertes Filtern auch von kombinierten Datenelementen möglich
ist. Um die Informationsübertragungen nach außen zu schützen, sind die Transportwege von
Anfragen, Steuerungsbefehlen und Datenströme über einen Encrypted Transport verschlüsselt.

4.3 ACStream

Ein weiteres Konzept wurde von Carminati, Ferrari und Tan in [11, 12] entwickelt, dass auf
Aurora [1] aufsetzt und auf dem Umschreiben von Anfragen basiert. In einer weiterführenden
Veröffentlichung wird das Konzept als ACStream [10] bezeichnet und für einen kommerziellen
Nachfolger von Aurora, für StreamBase [39], vorgestellt.

35

4 Verwandte Sicherheitskonzepte

Subjekt Streams Attribute Ausdrücke Recht GTC WTC
Offizier Position Pos, SID Position.Platoon = read - -

self.Platoon
Soldat Position Pos Pos ≥ Target(a)−δ ∧ avg [S(a), 1,1

Pos ≤ Target(a)+δ E(a)]
Doktor Health, Heart, Position.SID = Health.SID ∧ read [S(a), -

Position SID Pos ≥ Target(a)−δ ∧ E(a)]
Pos ≤ Target(a)+δ

Tabelle 4.1: Beispiele für Zugriffsrichtlinien eines militärischen Beispielszenario in ACStream,
entnommen aus [12]

Zur Motivation wurde als Anwendungsszenario die Überwachung von militärischen Operationen
gewählt. Für Soldaten werden zwei Datenstromschemas definiert, die Informationen zur Posi-
tion mit Position(TS, SID, Pos, Platoon) und der Gesundheitsstatus mit Health(TS, SID,

Platoon, Heart, BPressure). Jedes Datenelement eines Datenstromes hat die in Klammern
aufgeführten Attribute. Im Beispielszenario ein Zeitstempel (TS), eine eindeutige Identifikations-
nummer für jeden Soldaten (SID) und für die Kampfgruppe (Platton), die Position (POS) und zur
Gesundheitsüberwachung zusätzlich Herzfrequenz (Heart) und Blutdruck (BPressure).

Zugriffskontrollen können für Attribute, Datenelemente und Datenströme vergeben werden.
Tabelle 4.1 zeigt drei Beispiele. Beispielsweise werden für das Subjekt Offizier Leserechte, read,
auf dem Datenstrom Position für die Attribute Pos und SID vergeben. Anhand von Ausdrücken
wird eingeschränkt, für welche Datenelemente die Rechte angewendet werden. Zugriffe auf
Datenelemente für die kein expliziter Zugriff gestattet wurde sind grundsätzlich nach dem
least-privilege Prinzip verboten. Im Beispiel kann der Offizier nur Datenelemente lesen, die zu
Soldaten gehören, die seinem Kommando unterstehen.

Ferner erlaubt das Konzept die Berücksichtigung von temporalen Beschränkungen. Temporale
Beschränkungen ermöglichen, den Zugriff auf Datenelemente auf ein Zeitfenster zu limitieren.
Möglich ist sowohl ein generelles Fenster mit Obergrenze und Untergrenze General Time Constraint
(GTC), als auch ein Fenster das in Größe und Schrittweite beschränkt wird, bezeichnet als Window
Time Constraint (WTC). Anwendungsbeispiele sind ebenfalls in Tabelle 4.1 dargestellt. So können
die Subjekte Soldat und Doktor auf Datenelemente zugreifen, die sich auf Soldaten beziehen, die in
einem bestimmten Bereich um ein Ziel a befinden. Das Beispiel für das Subjekt Soldat autorisiert
die Durchschnittsfunktion avg in einem definierten Zeitintervall GTC relativ zu einem Ziel a mit
Startzeitpunkt S(a) und Endzeitpunkt E(a). Mit der Richtlinie darf die Durchschnittsfunktion über
den Tupel eines Fenster von der Größe und Schrittweite von einer Stunde ausgeführt werden,
definiert als WTC. Sehr ähnlich verhält es sich mit dem Beispiel des Subjektes Doktor. Hier ist das
Lesen von Datenelemente auf einen Zeitintervall begrenzt, der im Beispiel die Dienstzeit eines
Zieles a umfasst.

Realisiert wird das Konzept durch Umschreiben von Anfragen im Einklang mit den definierten
Zugriffsrichtlinien. Abbildung 4.2 stellt die Architektur auf Basis des kommerziellen Ablegers

36

4.4 FENCE

StreamBase
Client GUI

Secure
Read

Secure
Join

Secure
Aggregate

Policy Checker SysAuth

Umgeschriebene
Anfragen

StreamBase
Server

Monitor Original
Anfragen

Abbildung 4.2: Architektur von ACStream in StreamBase in Anlehnung an [10]

StreamBase vor. Über die StreamBase Client GUI werden Anfragen ohne spezielle Berücksichti-
gung von Zugriffskontrollen erstellt. Die Anfragen in StreamBase bestehen aus einem gerichteten
Graphen der Operatoren, in Form von Boxen, kreisfrei mit Kanten für den gewünschten Daten-
fluss anordnet. Bevor ein Benutzer erstmals Anfragen in das System einstellen kann, muss dieser
sich in ACStream als Subjekt registrieren, beziehungsweise Authentifizieren. Die originalen
Anfragen, die mit der regulären GUI erstellt wurden, werden vor Ausführung von der Monitor
Komponente überarbeitet. Dazu wird jede Box der Anfrage durch den Policy Checker unter
Zuhilfenahme der Zugriffsrichtlinien, wie in Tabelle 4.1 gezeigt, aus der zentralen SysAuth
Komponente geprüft. Sind Einschränkungen der Daten notwendig, kann die Anfrage mit zu-
sätzlichen Sicherheitsoperatoren versehen werden. Die notwendigen Sicherheitsoperatoren sind
in drei Klassen eingeteilt. Secure Read Operatoren filtern Datenelemente und Attribute, Secure
Join Operatoren ermöglichen Daten zu filtern, die aus mehreren Strömen zusammengesetzt
sind und Secure Agregate Operatoren kontrollieren Aggregatsfunktionen. Ist die Umschreibung
der Anfrage abgeschlossen, kann die Anfrage auf einem StreamBase Server zur Ausführung
gebracht werden.

4.4 FENCE

Der FENCE Ansatz basiert auf der Einflechtung von Zugriffsrichtlinien in die Datenströme auf
Basis von Interpunktionen. Die Idee wurde erstmalig von Nehme, Rundensteiner und Bertino in
[33] vorgestellt. Es folgte 2009 StreamShield, dass das Konzept verfeinerte und 2010 das Framework
FENCE [32]. Das Framework zielt auf zentralisierte DSMS ab, die die üblichen Select, Projektion
und Join Operationen ausführen.

Unter Sicherheits Interpunktion beziehungsweise Security Punctations (SP), wird eine Methode
verstanden, die Zugriffsrichtlinien direkt zwischen die Datenelemente in Datenströme integriert.
Die Abbildung 4.3 zeigt die Einbettung von Interpunktionen in den Datenstrom und aus welchen
Komponenten eine Interpunktion aufgebaut ist. Eine SP kann nicht nur Richtlinien für Datenele-
mente definieren, sondern ebenso Richtlinien für Anfragen. Zur Unterscheidung definiert die
erste Komponente den Typ, die die Interpunktion entweder als Data Security Predicates (DSP)
oder Query Sicherheit Prädikate (QSP) ausweist. Die zweite Komponente der Interpunktion, die

37

4 Verwandte Sicherheitskonzepte

TupelA

Sicherheits-Interpunktion 1 (SP1)

Typ
DSP / QSP

Daten Beschreibung
Ströme, Tupel, Attribute

Zugriff
Richtlinie

Signatur
+ / -

Zeit-
Stempel

Durchsetzung
I / D

TupelB TupelC SP2 SP3 TupelD

Abbildung 4.3: Komponenten und Einbettung der Sicherheits-Interpunktion in FENCE [32]

Daten Beschreibung, definiert, auf welche Objekte die Richtlinie anzuwenden ist. Objekte kön-
nen Datenströme, Datenelemente oder Attribute sein. Unter Zugriff wird das Zugriffsmodell,
wie zum Beispiel RBAC und die betroffenen Subjekte definiert. Eine Signatur gibt an, ob die
Richtlinie angewendet wird, ”+”, oder mit ”-” wieder zurückgenommen wird. Der Zeitstempel
speichert, wann die SP erzeugt wurde und in der letzten Komponente wird die Durchsetzung
definiert. Die Durchsetzung legt fest, wie streng die Richtlinie angewendet wird. Mit Immediate (I)
kommt es zur sofortigen Anwendung der SP auf alle Datenelemente, auch auf die, die noch mit
einer anderen Richtlinie gesendet wurden und sich noch in der Verarbeitung befinden. Deferred
(D) wendet die Richtlinie nur auf der SP folgenden Datenelementen an.

Umgesetzt wird das Interpunktionskonzept mit der in Abbildung 4.4 abstrakt dargestellten
Architektur. FENCE sieht drei Rollen vor, die erste Rolle kommt dem Daten Provider zu, der Da-
tenquellen bereitstellt. Beispielsweise ein Benutzer, der die Positionsdaten eines GPS-Empfänger
für Orts-bezogene Dienste einspeist. Betritt der Träger des GPS einen Bereich, in dem er den
Zugriff auf seine Position beschränken will, flechtet er eine SP vom Typ DSP in den Datenstrom
ein, dass die Einschränkung spezifiziert. Ziel des Datenstroms ist der Kern des Sicherheitsframe-
work, die Security-Aware Continuous Query Processing (SA-CQP) Komponente. Die zweite
Rolle ist dem Anfrage Ersteller zugeordnet, der den Kontext in Form einer Anfrage definiert.
Die Anfrage wird ebenfalls in Form eines Datenstromes in den Security Analyzer übertragen.
Die letzte Rolle, der DSMS Administrator stellt sicher, dass die in der Anfrage definierten Richt-
linien korrekt umgesetzt werden. Ergebnis sind Zugriffsrichtlinien für Anfragen, vom Typ QPS,
die aus dem Security Analyzer in das SA-CQP übertragen werden. Im SA-CQP werden unter
Berücksichtigung der gesammelten Zugriffsrichtlinien die Operationen auf die Datenströme
angewendet.

Zur Anwendung der Zugriffsrichtlinien in den Anfragen erörtert FENCE verschiedene Ansätze.
Zunächst wird ein naiver Ansatz betrachtet, der die Datenverarbeitung und die Anwendung
der Zugriffsrichtlinien getrennt ausführt. Diese Strategie bestehen aus je einem vor- und einem
nachgeschalteten Filter. Nachteil ist, dass Datenelemente, die am Ende der Anfrage ausgefiltert
werden umsonst verarbeitet wurden. Vorteil ist die einfache Integration, die die bestehende
Architektur der Anfrageverarbeitung unberührt lässt. Zweite Strategie wird als Security Filter
Approach (SFA) bezeichnet und wendet die Richtlinie mit einem von den Autoren entwickelten
SecurityShield Plus (SS+) Operator [33] an. Der Operator filtert gemäß der Zugriffsrichtlinien
Datenelemente aus, um sie vor unberechtigtem Zugriff zu schützen. Vorteil ist, dass mit den
direkt physisch in die Anfrage eingebrachten Operatoren, die Datenelemente zuverlässig und
ohne hohe Performanceverluste ausgefiltert werden. Es sind jedoch unter Umständen größere
Änderungen am DSMS notwendig um die korrekte Einbringung der Operatoren sicherzustellen.
Die letzte Strategie ist ein Umschreiben der Anfrage, bezeichnet als Query Rewrite Approach

38

4.5 Zusammenfassung und Anwendbarkeit in NexusDS

DSMS

Data
Security

Predicates

Query
Security

Predicates

Query
Predicates

Security
Analyzer

Daten
Provider

DSMS
Administrator

Anfrage
Ersteller

Anfrage
Ergebnisse

Dataelement Data Security Predicates Query Security Predicates

SA-CQP

Abbildung 4.4: Abstrakte Architektur von FENCE mit den berücksichtigen Rollen [32]

(QRA). Der Kern ist eine speziell angepasste Komponente zur Umschreibung der Anfragen,
die je nach Zugriffsrichtlinien einen sicheren Anfragegraph erzeugt. Vorteilhaft ist, dass zur
Umsetzung auf gewöhnliche Select Operatoren zurückgegriffen werden kann. Nachteil ist, dass
bei jeder Veränderung der Richtlinien die Anfrage gegebenenfalls neu angepasst werden muss.

4.5 Zusammenfassung und Anwendbarkeit in NexusDS

Die Umsetzung von Zugriffskontrollen in DBMS basiert in der Regel auf einer fest definierten
Menge von Bedingungen, die einmalig überprüft werden, sobald ein Subjekt eine Operation auf
Daten ausführen will. Ist das Subjekt authentifiziert und verfügt über die notwendigen Rechte
für die Operation der Anfrage, wird die Anfrage ausgeführt. Im Fall von Datenströmen muss die
Anfrage nicht nur zu Beginn kontrolliert werden, sondern über die gesamte Ausführungszeit
der Anfrage. Ändert sich während der Ausführungszeit die Berechtigung für Subjekte, muss
die Verarbeitung während der Ausführung angepasst werden. Dieser markante Unterschied
erschwert die Einsetzbarkeit der DBMS Konzepte in einem DSMS und begründet eine gesonderte
Untersuchung von DSMS nach Sicherheitskonzepten [24, 11, 33].

Im Konzept Secure Borealis wird der Fokus auf einzelne Rechenknoten gelegt und keine ver-
teilte Ausführung betrachtet. Kern des Konzeptes ist es, nach Verarbeitung einer Anfrage alle
Datenelemente der Datenströme zur Laufzeit zu filtern, die nicht die gesetzten Berechtigun-
gen erfüllen. Unter Umständen wird zur Erzeugung von Ergebnissen sehr viel Rechenleistung
durch teurere Operationen verschwendet, die später eliminiert werden. Um Datenströme zu
identifizieren, versieht die Architektur jedes Datenelement mit einem Identifikator. Sollten ver-
schiedene Datenströme aggregiert werden, kann durch die Beibehaltung der Markierungen der
ursprünglichen Datenströme auch nach deren Vereinigung für jedes Datenelement entschieden

39

4 Verwandte Sicherheitskonzepte

werden, ob es gefiltert werden muss oder nicht. Diese Strategie kann sich als nachteilig erweisen,
wenn einzelne Datenelemente mit mehrfachen Markierungen versehen werden müssen, unter
Umständen folgt daraus ein großer Datenüberhang. Für NexusDS ist das vorgestellte Konzept
nur begrenzt geeignet. Zwar könnten die Ergebnisse vor Auslieferung an Senken in Abhängigkeit
der Zugriffsrichtlinien gefiltert werden, aber der Leistungsverlust verursacht durch unnötige
Berechnungen ist nicht wünschenswert.

ACStream hingegen schreibt Anfragen unter Berücksichtigung der gegebenen Bedingungen um
und setzt Secure Read, Secure Join und Secure Aggregate Operatoren ein um bereits vor der Verarbei-
tung die Datenelemente vorzufiltern. Daher leidet der Ansatz nicht wie der vorherige unter einer
Verschwendung von Rechenleistung. Der Vorgang zum Umschreiben berücksichtigt frühzeitig,
dass gewisse Berechnungen verworfen werden müssen. Voraussetzung ist, dass die Semantik
der Operatoren klar definiert ist, sodass algorithmisch ermittelt werden kann, welche Änderun-
gen der Anfrage notwendig sind. In NexusDS ist eine definierte Semantik der Operatoren nur
schwierig zu gewährleisten. Die Möglichkeit Operatoren individuell zu entwickeln erfordert eine
Beschreibung der Semantik, sodass für jede Anfrage eine Lösung algorithmisch berechenbar
ist. Statten die Entwickler die Operatoren mit Metadaten bezüglich der Semantik aus, müsste
die Korrektheit jeder Angabe vor Einsatz geprüft werden, was in einem offenen System ein
erheblichen Aufwand bedeuten würde. Hervorstechend im Konzept ist die Einführung der tem-
poralen Beschränkungen, dass Operationen auf einen Intervall von Datenelementen beschränken
kann. Soll die gleiche Fähigkeit im Sicherheitskonzept für NexusDS ermöglicht werden, muss
sichergestellt sein, dass die individuell entwickelten Operator-Boxen, siehe Abschnitt 3.2, in
NexusDS keine eigene Datenhaltung aufbauen und die Sicherheitseinstellung zum Intervall
aushebeln.

Das Interpunktionskonzept in FENCE zeichnet sich dadurch aus, dass es sich direkt in die
Datenströme integriert, und stellt den homogensten und flexibelsten Ansatz dar. Die Flexibilität
entsteht aus der direkten Integration von Richtlinien in Datenströme, was eine dynamische
Reaktion auf veränderte Zugriffsrichtlinien möglich macht. Ebenso vermeidet die Interpunktion
einen unnötigen Datenüberhang durch Zusatzinformation in Datenelementen, wie dies im
Konzept von Lindener und Meier der Fall ist. Interpunktion ist ein vielversprechender Ansatz,
der sich zur nahtlosen Integration von Zugriffsrichtlinien auch für NexusDS eignet.

Nach Vorstellung der Konzepte und Bezugnahme auf NexusDS zeigt sich, dass allen eine
Betrachtung der Auswirkungen einer verteilten Ausführung, insbesondere auf heterogenen
Rechenknoten, fehlt. Die Ermittlung möglicher Lücken der Zugriffskontrollen, die durch eine
Verteilung auftreten können, wurde ebenso wenig betrachtet. Weiter fehlt die Möglichkeit,
sensible Daten in verschiedenen Detailstufen zu filtern. So können zum Beispiel Positionsdaten
lediglich verarbeitet oder nicht verarbeitet werden, eine Anonymisierung oder Verschleierung
wird nicht in Erwägung bezogen. Damit ist klar, dass kein vorhandenes Sicherheitskonzept
ohne Weiteres auf NexusDS übertragen werden kann und eine weiterführende Untersuchung
notwendig ist.

40

Kapitel 5

Anforderungen

Bevor ein Sicherheitskonzept für NexusDS entworfen werden kann, muss klar sein, welche Anfor-
derungen das Sicherheitskonzept erfüllen soll. Dies soll in erster Linie eine Zugriffskontrolle für
in NexusDS verarbeitete Daten sein. Die Zugriffskontrolle soll den Datenzugriff nicht nur verbie-
ten oder erlauben, sondern eine feingranulare Zugriffssteuerung mit gezielter Anonymisierung
und Verschleierung von Daten realisieren. Nicht betrachtet werden Anforderungen um NexusDS
vor Angriffen zu schützen. Zu Angriffen zählt zum Beispiel das Ausnutzen von Buffer-Overflows
oder Social Engineering. Zum Thema Angriffe findet der interessierte Leser einen guten Einstieg
in [16].

Der erste Teil von Anforderungen wird in Abschnitt 5.1 erhoben, indem Anwendungssze-
narien vorgestellt und analysiert werden. Die Analyse besteht aus einer Untersuchung der
Anwendungsszenarien anhand der in Abschnitt 2.1 vorgestellten Schutzziele, wie zum Beispiel
Authentizität und Informationsvertraulichkeit. Die Schutzziele definieren wichtige Eigenschaften
eines Sicherheitskonzeptes, die notwendig sind, um eine zuverlässige Zugriffskontrolle für Da-
ten sicherzustellen. Die Abarbeitung der Schutzziele gewährleistet, dass die Untersuchung der
Anwendungsszenarien alle wichtigen Aspekte einer Zugriffskontrolle berücksichtigt.

Nachdem Anforderungen aus verschiedenen Anwendungsszenarien erhoben wurden, adressiert
ein zweiter Schritt die technischen Aspekte des zu entwickelnden Sicherheitskonzeptes. Abschnitt
5.2 betrachtet und analysiert die Arbeitsweise und die besonderen Eigenschaften von NexusDS.
Die daraus gewonnenen Anforderungen definieren Bedingungen, die erfüllt werden müssen, um
die von den Anwendungsszenarien aufgestellten Anforderungen technisch in NexusDS umsetzen
zu können.

Um eine Deckung zwischen Anforderungen aus den Anwendungsszenarien und den Anfor-
derungen aus den technischen Eigenschaften von NexusDS sicherzustellen, wird in der Zu-
sammenfassung der erhobenen Anforderungen in Abschnitt 5.3 wieder auf die Schutzziele
zurückgegriffen.

41

5 Anforderungen

5.1 Anforderungen aus Anwendungsszenarien

Der vorliegende Unterabschnitt stellt drei Anwendungsszenarien mit jeweils unterschiedlichem
Fokus vor. Jedes Szenario wird zuerst aus der Perspektive der Anwendung erläutert. Das
beinhaltet, wie die Anwendung aussieht, welche Funktionen realisiert werden und welche
Erwartung die Nutzer, beziehungsweise Entwickler, an das Verhalten der Anwendung stellen.
In der Beschreibung werden besonders relevante Bezeichner hervorgehoben und als Subjekte
oder Objekte identifiziert. Zur Erinnerung, als Subjekt wird bezeichnet, wer Aktionen in einer
Anwendung anstößt oder durchführt. Das kann zum Beispiel ein Benutzer sein oder ein Prozess
oder Service, der im Auftrag eines Benutzer handelt. Werden Daten adressiert, wie zum Beispiel
ein Datenstrom von Bildern einer Kamera oder eine Liste von Subjekten, wird von einem Objekt
gesprochen.

Gefolgt wird die Beschreibung der Anwendungsszenarien von der Erhebung der Anforderungen.
Für jedes Schutzziel wird das beschriebene Anwendungsszenario nach Anforderungen unter-
sucht, die den Eigenschaften des Schutzzieles entsprechen. Daraus ergibt sich eine Menge von
Anforderungen, die nach Schutzzielen klassifiziert sind und den Schutzbedarf der einzelnen
Anforderungsszenarien abbilden.

5.1.1 Börsenkurse von SuperQuotes

Die fiktive Firma SuperQuotes bietet einen Datendienst für Börsenkurse (Objekte) an. Den
Nutzern dieses Dienstes werden Lizenzen verkauft, deren Gültigkeit an ein definiertes Land
gebunden ist. Das bedeutet es ist nicht gestattet, die Daten in anderen Ländern als Deutschland
zu verarbeiten. Die vergebene Lizenz an den Kunden (Subjekte) ist nicht kommerziell. Es dürfen
weder die Daten noch die Ergebnisse aus deren Verarbeitung weiterverkauft, veröffentlicht oder
an Dritte weitergegeben werden.

Der Schutzbedarf wird durch die Erfüllung der ersten vier Schutzziele gewährleistet, das Schutz-
ziel Anonymisierung spielt in diesem Szenario keine Rolle. Authentizität von Subjekten und
Objekten ist notwendig um Kunden und Datenlieferant korrekt zu identifizieren. Es sollen nur
zahlende Kunden beliefert werden und der Kunde möchte sich sicher sein, die korrekten und
authentischen Daten zu beziehen. Datenintegrität stellt sicher, dass Börsenkurse vertrauenswür-
dig sind und nicht von dritter Stelle manipuliert wurden. Mit Informationsvertraulichkeit wird
sichergestellt, dass nur authentifizierte Kunden die angebotenen Börsenkurse lesen können. So
soll ein Abzweigen der Daten an Dritte, die keine Lizenz besitzen, unterbunden werden. Das
Schutzziel muss ebenfalls das Lesen oder Verarbeiten der Daten auf Rechenknoten außerhalb von
Deutschland verhindern. Verfügbarkeit spielt für viele Börsenanwendungen eine wichtige Rolle.
Der Service muss zu jeder Zeit verfügbar sein und über eine ausreichende Leistungsfähigkeit
verfügen, sodass auch in Zeiten starker Volatilität der Märkte eine zuverlässige Ausführung der
Anfragen sichergestellt ist. Die Verbindlichkeit von Aktionen ermöglicht SuperQuotes, illegale
Nutzung der Daten aufzudecken und verantwortliche Benutzer zu identifizieren. Voraussetzung
zur Erfüllung der verschiedenen Ziele ist, dass Subjekte und Objekte mit Bedingungen versehen
werden, die die erlaubten Aktionen definieren.

42

5.1 Anforderungen aus Anwendungsszenarien

5.1.2 Orts-bezogener Dienst Squebber

Mit dem fiktiven Dienst Squebber, für Smartphones mit GPS, können Benutzer (Subjekt) virtu-
elle Markierungen an Orten (Objekte) hinterlassen. Eine virtuelle Markierung (Objekt) kann
beliebigen Inhalt tragen, zum Beispiel eine Textnachricht (Objekt) oder eine beliebig andere
Orts-bezogene Funktionalität (Objekt/Subjekt). Solche Orts-bezogenen Funktionen können auch
von dritten Diensten, wie zum Beispiel Facebook oder Google Maps bereitgestellt werden. Je-
der Benutzer von Squebber hat ein Profil in dem verschiedene persönliche Daten (Objekte)
gespeichert sind, zum Beispiel Lieblingsfilme oder Beziehungsstatus.

Benutzer Tom hat heute Geburtstag und eine Favoritenliste (Objekt) von Orten, die von seinen
Freunden (Subjekte) täglich besucht werden. Tom will eine spontane Geburtstagsfeier organi-
sieren und hinterlässt an verschiedenen Orten aus der Favoritenliste virtuelle Markierungen.
Die virtuellen Markierungen enthalten Einladungen (Objekt) für seine Geburtstagsfeier. Die
Einladung wird automatisch auf dem Smartphone eingeblendet, wenn einer seiner Freude bei
Squebber den Ort passiert. Tom ist ein geselliger Mensch und hinterlässt die Einladung nicht nur
für Freunde, sondern auch für weitere Benutzer, die in ihrem Profil den gleichen Lieblingsfilm
eingetragen haben. Passiert ein Squebber Mitglied einen der Orte, wird ein Abgleich der per-
sönlichen Daten durchgeführt und ein positives oder negatives Ergebnis entscheidet über die
Anzeige der Einladung.

Speist ein Benutzer permanent seine Positionsinformation (Objekt) ein, kann er durch Freunde
zu einem spontanen Treffen eingeladen werden. Zur Vereinfachung von spontanen Treffen
berechnet der Dienst einen optimalen Treffpunkt und eine optimale Route für alle eingeladenen
Benutzer. Die berechnete Route wird danach mit Hilfe von Google Maps visualisiert, sodass der
Benutzer sicher zum Treffpunkt geleitet werden kann. Die Positionsdaten können aber auch von
dritten Diensten, wie Facebook, benutzt werden. Zur Kontrolle der persönlichen Daten kann
die Einspeisung der Positionsinformation in unterschiedlicherweise eingeschränkt werden. Die
Verfügbarkeit kann auf bestimmte Zeitintervalle und bestimmte Benutzergruppen beschränkt
werden. Zusätzlich kann der Detailgrad der Positionsinformation je nach Empfänger eingestellt
werden, sodass zum Beispiel Freunde eine genaue Position und Arbeitskollegen (Subjekte) nur
den Landkreis erfahren, in dem sich der Benutzer befindet. Alle persönlichen Daten, die in
Squebber hinterlegt sind, können auch mit Einstellungen zur Privatsphäre versehen werden. Die
Einstellungen können zu jeder Zeit direkt vom Smartphone aus verändert werden.

Dieses Szenario beansprucht einen höheren Schutzbedarf als das vorhergehende und erfordert
die Berücksichtigung aller Schutzziele. Wie im vorherigen Szenario wird ebenso eine Vergabe von
Bedingungen zum Datenzugriff an Subjekt und Objekte vorausgesetzt. Um die verschiedenen
Subjekte zu identifizieren und nach ihrer Berechtigungsstufe zu behandeln, ist das Sicherstellen
von Authentizität notwendig. Nur so können sensible persönliche Informationen fehlerfrei und
ohne Verwechslungen zugeordnet werden. Datenintegrität schützt die Subjekte vor manipu-
lierten Objekten und Informationsvertraulichkeit ist unerlässlich, um die persönlichen Daten
vor unbefugtem Zugriff zu schützen. Die Verfügbarkeit des Services kann Einfluss auf die
Beliebtheit nehmen und so sollten nach Möglichkeit größere Unzulänglichkeiten vermieden
werden. Gegebenenfalls will der Service Verstöße gegen eine Benutzerordnung ahnden, dazu

43

5 Anforderungen

ist eine Verbindlichkeit nötig, um zum Beispiel einen Ausschluss von Nutzern hinreichend
zu begründen. Entscheidend ist im Szenario die Anonymisierung zum Schutz persönlicher
Daten. Es darf beim Abgleich der persönlichen Profile und im Allgemeinen bei allen Funktionen
des Dienstes zu keiner Verletzung der Privatsphäre der Benutzer kommen. Zusätzlich sollen
die Positionsdaten in Abhängigkeit des abrufenden Benutzers verschleiert werden, indem zum
Beispiel der Detailgrad der Positionsinformation in Abhängigkeit des Datenempfängers reduziert
wird. Mit der Möglichkeit dritte Dienste, wie zum Beispiel Facebook einzubinden, muss bei den
genannten Anforderungen bedacht werden, dass die Anonymisierung, auch bei der Interaktion
mit dritten Diensten, zuverlässig umgesetzt wird.

5.1.3 Fehlerszenario in intelligenten Fabriken

Der fiktive Konzern EM (Subjekt) produziert Elektroautos in einer Kette intelligenter Fabriken
[25]. Nicht alle Fabriken gehören dem Konzern selbst, viele Zwischenschritte der Produktion
werden von Zulieferer (Subjekte) in konzernfremden intelligenten Fabriken ausgeführt. Um eine
umfassende Überwachung der Produktion in Echtzeit durchzuführen, müssen Daten (Objekte)
aus verschiedensten Quellen zusammengeführt werden. Quellen für die Daten sind die verschie-
denen Fabriken der unterschiedlicher Konzerne (Subjekte), in denen Mitarbeiter (Subjekte) in
Organisationseinheiten arbeiten und Prozessen zugeordnet sein können.

Zur effektiven Überwachung der gesamten Produktionskette ist es erforderlich, die genierten
Daten zeitnah zusammenzuführen und auszuwerten. Die integrierte Auswertung von Daten aus
unterschiedlichen Konzernen, Organisationseinheiten, Prozessen und verschiedenen Mitarbeitern,
müssen Kompetenzen beachtet und geheime Daten geschützt werden. Beispielsweise haben
Abteilungsleiter erweiterte Kompetenzen für die Verarbeitung der Daten aus ihrer Abteilung
aber nur einen beschränkten oder gar kein Zugriff auf die Daten einer Organisationseinheit eines
konzernfremden Zulieferers. Zur Abgrenzung des Datenzugriffs werden Bedingungen an Daten
gebunden, die definieren wer und in welchem Detailgrad zugreifen darf. Bedingungen sollen auch
an Subjekte gebunden werden können, die definieren, welche Zugriffe dem jeweiligen Subjekt
gestattet sind. In Konzernen mit einer hohen Anzahl an Mitarbeitern ist es wünschenswert, dass
Bedingungen nicht nur an einzelne Subjekte, sondern an ganze Organisationseinheiten gebunden
werden können, in denen eine Menge an Subjekten zusammengefasst werden.

In einem Hochtechnologiebereich, wie im vorliegenden Fall, wollen die verschiedenen Zulieferer
ihr technisches Wissen schützen. Deshalb dürfen bestimmte Daten nur für ausgesuchte Organi-
sationseinheiten verfügbar sein. Für die Fehlersuche, die über mehrere Organisationseinheiten
hinweg durchgeführt wird, müssen Informationen in Echtzeit nach definierten Regeln verschleiert
werden, sodass eine Fehlersuche möglich ist, aber Betriebsgeheimnisse geschützt sind. Besonders
sensible Daten dürfen nur von ausgewählten konzerneigenen Rechenknoten verarbeitet werden
und die lokale Infrastruktur nicht verlassen. Um ein Einhalten von Verträgen zu gewährleisten,
sollen alle Aktionen der Subjekte im System protokolliert werden.

44

5.2 Anforderungen aus NexusDS

Auch in diesem Szenario müssen für den Schutzbedarf alle Schutzziele betrachtet werden und
eine Zuordnung von Zugriffsbedingungen sichergestellt werden. Authentizität muss erfüllt wer-
den, sodass alle Subjekte, die das System benutzten sicher identifiziert werden und der korrekten
Organisationseinheit und Prozessen zugeordnet werden können. Das gilt auch für Objekte, die
ebenfalls zweifelsfrei identifiziert werden müssen. Die Datenintegrität sorgt dafür, dass Objek-
te nur dann geändert werden, wenn die entsprechende Organisationseinheit oder ein Subjekt
tatsächlich eine entsprechende Zuständigkeit besitzt. Informationsvertraulichkeit gewährleistet
den Schutz der Betriebsgeheimnisse und von Informationen, die nur ausgewählten Subjekten
oder Organisationsgruppen vorenthalten sind. In einer Produktionskette von mehreren miteinan-
der verzahnten Fabriken muss die Verfügbarkeit jederzeit sichergestellt sein. Der Ausfall von
einzelnen Gliedern in der Produktionskette hat Auswirkungen auf die effektive Überwachung
der gesamten Produktionskette. Zur Rechtssicherheit der verschiedenen Unternehmungen sollte
eine nachvollziehbare Verbindlichkeit für alle Aktionen bestehen. Der Anonymisierung kommt
in diesem Fall weniger ein Verbergen von persönlichen Daten zu, sondern es soll eine gezielte
Verschleierung und Vereinfachung von Daten geleistet werden. Dabei muss die Reduktion des De-
tailgrades der Information gerade so stark sein, dass genug Aussagekraft für über Zugriffsgrenzen
hinwegreichende Aufgaben wie die Suche nach Produktionsfehlern erhalten bleibt. Gleichzeitig
aber interne Informationen, insbesondere Betriebsgeheimnisse ausreichend, geschützt werden.
Das erfordert die Möglichkeit, dass individuelle Transformationen zur Datenverschleierung und
Vereinfachung definiert werden können.

5.2 Anforderungen aus NexusDS

Nachdem im vorhergehenden Kapitel Anforderungen erhoben wurden, die sich auf die Anwen-
dungsseite von NexusDS beziehen, müssen noch die Anforderungen erhoben werde, die sich aus
der technischen Beschaffenheit von NexusDS ergeben. Aus den Anforderungen der technischen
Seite werden im weiteren Verlauf der Diplomarbeit konkrete Funktionen und Komponenten
abgeleitet, zum Beispiel Funktionen zur gezielten Unterbindung und Zulassung von Zugriffen
auf geschützte Informationen oder Komponenten zur Authentifizierung von Subjekten. Vorerst
werden jedoch nur Anforderungen gewonnen, ohne auf die technische Realisierung einzugehen.
Die Gewinnung der Anforderungen setzt auf den Abschnitt 3.2 auf. Dieser Abschnitt hat die
technischen Eigenschaften und Besonderheiten, wie zum Beispiel das Operator-Modell von
NexusDS, bereits ausführlich erläutert.

Die Erhebung ist in zwei Teilen gegliedert. Der erste Teil untersucht jede Basis-Rolle von NexusDS
auf rollenspezifische Anforderungen. Jedes Subjekt das NexusDS benutzt, kann nach Verhalten in
eine der Basis-Rollen eingeteilt werden. Der zweite Teil untersucht NexusDS nach Anforderungen,
die sich aus der Architektur und den besonderen technischen Eigenschaften von NexusDS
ergeben.

45

5 Anforderungen

5.2.1 Basisrollen von NexusDS

Mit einer gezielten Erhebung von Anforderungen aus den Basis-Rollen in NexusDS, finden die
unterschiedlichen Bedürfnisse von Benutzern im Sicherheitskonzept Beachtung. Wie bereits in
Kapitel 2 ausgeführt, spielt die Erfüllung der Benutzerbedürfnisse eine bedeutende Rolle, um die
Nutzerakzeptanz von NexusDS zu erhöhen.

Benutzer: Die Rolle des Benutzers ist direkt an die eingesetzte Anwendung gebunden. Er er-
wartet eine sichere und zuverlässige Ausführung seiner Anwendung, die eine zugesicherte
Servicequalität erfüllt. Sicherheitseinstellungen, die der Benutzer setzt, sollen zuverlässig
umgesetzt werden und ohne Verzögerung in Kraft treten. Nach Möglichkeit erwartet der
Benutzer außerdem eine benutzerfreundliche Darreichung der Sicherheitseinstellungen, die
sein technisches Verständnis für NexusDS nicht übersteigt.

Datenbesitzer: Werden Daten in NexusDS bereitgestellt, will der Besitzer die Verwendung der
Daten kontrollieren. Grundlage zur Umsetzung ist die Möglichkeit, jeder Datenquelle
Besitzer und Bedingungen für den Zugriff zuordnen zu können. Die Zuordnung muss
zuverlässig und eindeutig sein, sodass die Bedingungen bei der Verarbeitung der Daten
korrekt beachtet werden können. Bei der Gestaltung der Bedingungen sollte der Besitzer
die Möglichkeit haben, den erlaubten Zugriff in der Granularität flexibel bestimmen zu
können. Beispielsweise den Detailgrad von Positionsinformationen oder den Zugriff auf
eine Teilmenge von Attributen eingespeister Datenelementen zu beschränken. Die Definition
soll sowohl für strukturierte als auch für unstrukturierte Daten möglich sein.

Extension Developer: Entwickler von neuer Funktionalität und Anfragen für NexusDS wün-
schen Bedingungen zur Verwendung und Ausführung der von ihnen bereitgestellten
Objekte vergeben. Beispielsweise will der Entwickler eines Input-Manager diesen nur für
ausgewählte Benutzer zu Verfügung stellen, die eine Lizenzgebühr entrichten. Die Gestal-
tung der Bedingungen muss flexibel genug sein, dass Entwickler in der Freiheit individuelle
neue Funktionen in NexusDS einzubringen nicht eingeschränkt werden. Ein flexibles Modell
erleichtert außerdem bereits entwickelte Regelsysteme von vorhandene Anwendungsland-
schaften zu integrieren und die Migration bereits bestehenden Anwendungen auf NexusDS
wird erleichtert. Des Weiteren sollten zur Unterstützung von Entwickler Möglichkeiten
vorgesehen werden, Werkzeuge an das Sicherheitskonzept so anzubinden, dass Informa-
tionen über die Zugriffseinschränkungen bezogen werden können. Zum Beispiel bei der
Erstellung von Anfragen ist ein vorzeitiger Abgleich von Beschränkungen hilfreich, sodass
keine Anfragen entwickelt werden, die aufgrund unbekannter Einschränkung während der
Entwicklung von Anbeginn nicht lauffähig sind.

Systemadministrator: Bedingungen, die für das gesamte IT-System oder auch nur für einzelne
Rechenknoten gelten, werden mit der Basisrolle Systemadministrator definiert. Darunter fal-
len zum Beispiel Einschränkungen, dass nur ausgewählte Operatoren zur Ausführung auf
einem Rechenknoten zugelassen sind. Bei der Erstellung und Vergabe erwarten Administra-
toren die Möglichkeit, Bedingungen detailliert auf heterogene Rechenkonten zuschneiden

46

5.2 Anforderungen aus NexusDS

zu können. Dem Systemadministrator fallen im Zuge der Einführung einer Sicherheitsar-
chitektur für NexusDS auch Aufgaben zu, die Sicherheitsarchitektur zu überwachen. So
muss es der Rolle möglich sein, Protokolle und einen aktuellen Zustand der einzelnen
Komponenten der Sicherheitsarchitektur zu überwachen.

5.2.2 Eigenschaften von NexusDS

Die Anforderungen, die sich aus der technischen Seite von NexusDS ableiten, sind im vorliegen-
den Unterabschnitt in die Hauptaspekte von NexusDS eingeteilt. Hauptaspekte leiten sich aus
der Struktur, die in Abschnitt 3.2 vorgestellt wurde und dem Ausführungsmodell von NexusDS,
das in Abschnitt 3.3.1 vorgestellt wurden, ab. Ziel der Gliederung von Anforderungen anhand
der Hauptaspekte ist, dass das Sicherheitskonzept die Besonderheiten von NexusDS, wie die
Ausnutzung von Eigenschaften heterogener Rechenknoten, angemessen im Sicherheitskonzept
berücksichtigt werden.

Asynchrone Ausführung von Anfragen: Ein DSMS führt eine Anfrage über einen potentiell un-
beschränkten Zeitraum T aus, in dem Änderungen an den Zugriffsbedingungen erfolgen
können. Gewöhnliche Anfragen, zum Beispiel in einem DBMS, werden bezüglich der Zu-
griffseinstellungen zu einem festen Zeitpunkt t1 ∈ T ausgewertet und unter den ermittelten
Bedingungen ausgeführt und beendet. Bei einer unter Umständen sehr langen Ausfüh-
rungszeit einer Anfrage in einem DSMS, kann eine Änderung von Zugriffsbedingungen
zum Zeitpunkt t2 ∈ T, wobei t2 > t1, eintreten. Diese Änderung kann dazu führen, dass
die Auswertung von Zeitpunkt t1 ungültig wird und eine erneute Auswertung der Bedin-
gungen erzwingen. Um Änderungen der Bedingungen zu erkennen, ist eine durchgehende
Überwachung der Bedingungen über die gesamte Ausführungszeit hinweg notwendig.
Sollten sich Änderungen ergeben und eine erneute Auswertung zeigt, dass der vorliegende
Zustand der Ausführung nicht mehr bedingungskonform ist, muss die Anfrage zur Laufzeit
angepasst werden. Die Mechanismen zur Überwachung müssen in der Lage sein, alle für
die Anfrage relevanten Bedingungen über die Ausführungszeit überprüfen zu können.
Dennoch sollten die Mechanismen sich möglichst gering auf die Leistungsfähigkeit von Ne-
xusDS auswirken, um die Einsetzbarkeit des DSMS, zum Beispiel in Echtzeitanwendungen,
nicht einzuschränken.

Individuelle Erweiterbarkeit: In NexusDS ist es möglich, individuelle Operatoren zur Erwei-
terung der Funktionalität zu entwickeln. Dazu steht ein Operator-Modell bereit, dass
Operator-Boxen aus verschiedenen Komponenten, wie bereits in Abschnitt 3.2 und Abbil-
dung 3.3 beschrieben, zusammensetzt. Das führt zu dem Problem, dass die individuelle
Programmierung der Komponenten ein Abzweigen oder anderes missbräuchliches Verwen-
den der Daten ermöglicht. Zur Unterbindung muss ein Mechanismus vorgesehen werden,
der alle Komponenten der Operator-Box, die mit zu schützenden Informationen in Berüh-
rung kommen, kontrolliert. Die Kontrolle muss so gestaltet sein, dass die Verarbeitung der
Daten nur im Einklang der definierten Bedingungen aller beteiligten Objekte und Subjekte
geschieht. Neben der Verarbeitung muss ebenso sichergestellt werden, dass keine Informa-
tionen unbemerkt weitergeleitet, unberechtigt zwischengespeichert, gelesen oder verändert

47

5 Anforderungen

werden. Ist zum Beispiel eine Weiterleitung möglich, könnten die Daten nicht berechtigten
Zielen verfügbar gemacht werden. Trotz der notwendigen Kontrolle von individuellen
Entwicklungen müssen die Zugriffsbedingungen und prüfenden Mechanismen so gestaltet
sein, dass die Erweiterbarkeit von NexusDS nicht eingeschränkt wird.

NexusDS kann nicht nur mit Operatoren, sondern auch mit Services erweitert werden.
Steht ein Service in Bezug zu geschützten Daten, für die eine Zugriffskontrolle erzwungen
wird, muss der Service ebenfalls kontrolliert werden. Die Kontrolle erstreckt sich darüber,
ob ein Service auf bestimmte Daten zugreifen darf und auf die Interaktion mit weiteren
Services oder Subjekten. Ein Service darf nur dann auf geschützte Daten zugreifen, wenn
er authentifiziert ist und alle relevanten Bedingungen den Zugriff gestatten. Relevant sind
die Bedingungen, die mit alle beteiligten Subjekte und Objekte der Aktion verbunden sind.

Einbindung von Operatoren zur Laufzeit: Ein Nachladen von Operatoren zur Laufzeit erfordert,
dass alle zu berücksichtigten Bedingungen dynamisch mit dem einzubindenden Operator
abgeglichen werden. Möglicherweise kann der Operator aufgrund bestehender Bedin-
gungen der betroffenen Anfrage oder Rechenknoten nicht verwendet werden. Ist das der
Fall, muss ein Ersatz gefunden werden und gegebenenfalls eine Umplanung der Anfrage
durchgeführt werden, sodass alle relevanten Bedingungen eingehalten werden.

Verteilte Architektur: Die Ausführung von Anfragen und Services in NexusDS kann über meh-
rere Rechenknoten verteilt werden. Diese Knoten sind nicht notwendigerweise lokal, das
heißt, die Ausführung kann über ein Netzwerk, wie zum Beispiel über das Internet, auf
Rechenknoten verteilt werden. Aus dieser Begebenheit entsteht die Anforderung, dass alle
Kommunikationswege im Sicherheitskonzept gegen Abhören und Manipulation geschützt
werden müssen. Bei der verteilten Verarbeitung von Anfragen muss sichergestellt werden,
dass die Bedingungen der Anfrage an allen Rechenknoten erfüllt sind, bevor es zu einer
Verarbeitung von Objekten kommt. Die Bedingungen müssen daher nicht nur rechtzeitig
vor der Verarbeitung betroffener Objekte verteilt werden, sondern es muss auch in Erwä-
gung gezogen werden, dass unter Umständen die Verbindung zwischen Rechenknoten
unterbrochen wird. Sollten in dieser Zeit Bedingungen verändert werden, muss nach Wie-
derherstellung der Verbindung dafür gesorgt werden, dass die neuen Bedingungen dem
Rechenknoten bekannt gemacht werden.

Heterogene Rechenknoten: Ein heterogenes Umfeld an Rechenknoten betrifft nicht nur die
Architektur der Recheneinheiten hinsichtlich der Hardware oder Softwareausstattung,
sondern kann sich ebenso in der Ausgestaltung der Zugriffseinstellungen niederschlagen.
Unterliegen die Rechenknoten bestimmten Einschränkungen, dass aufgrund der Eigen-
schaften des Rechenknotens gewisse Bedingungen nicht erfüllt werden können, muss die
Einschränkung bei der Verteilung der Anfrage berücksichtigt werden. Stellt zum Beispiel
eine Bedingung der Anfrage die Forderung, dass auf Rechenknoten zur Ausführung ei-
ne spezielle Betriebssystemüberwachung installiert ist, müssen Rechenknoten mit dieser
Eigenschaft gefunden werden. Auf der Seite der Rechenknoten können auch Bedingun-
gen definiert werden, die Verteilung von Anfragen unter Umständen beeinflusst. Zum
Beispiel könnte ein Systemadministrator eines Rechenknoten, die Ausführung bestimmter

48

5.3 Zusammenfassung der Anforderungen

Operatoren ausschließen, was den Rechenknoten für Anfragen mit betroffenen Operatoren
unbrauchbar macht.

5.3 Zusammenfassung der Anforderungen

Die Anforderungen aus Anwendungsszenarien, Basis-Rollen und den Eigenschaften von Ne-
xusDS wurden in den vorhergehenden Abschnitten ausgearbeitet. Vorliegender Abschnitt fasst
die zentralen Aspekte der Anforderungen zusammen und konsolidiert die Aspekte in die
Schutzziele.

Authentizität: Für die korrekte Zuordnung von Bedingungen ist eine zuverlässige Authentifi-
zierung von Subjekten und Objekten notwendig. Denn es kann nur dann eine eindeutige
Zuordnung sichergestellt werden, wenn jedes Subjekt und Objekt eindeutig identifiziert
werden kann. Das heißt jedes Subjekt und Objekt, dass an dem durch das Sicherheits-
konzept geschützten Teil von NexusDS teilnehmen will, muss eine eindeutige Identität
zugeordnet werden. Die Authentizität wird dann sichergestellt, indem Mechanismen die
von einem Subjekt oder Objekt behauptete Identität prüfen und die Identitäten nur dann
als echt bestätigen, falls es der wahren Identität des Subjektes oder Objektes entspricht.

Datenintegrität: Objekte dürfen nur mit entsprechender Berechtigung modifiziert werden, das
setzt voraus, dass für alle Subjekte und Objekte Zugriffsbedingungen für den Zugriff
zugeordnet sind. Wünscht ein Subjekt die Veränderung von Objekten, wird vor Veränderung
zuerst die Zulässigkeit des Zugriffes geprüft. Ein Zugriff kann zum Beispiel die Erstellung
und Zuordnung neuer Bedingungen für den Zugriff auf ein Objekt sein. Zulässig ist der
Zugriff nur dann, wenn alle an der Veränderung beteiligten Subjekte und Objekte korrekt
authentifiziert wurden und alle zugeordneten Zugriffsbedingungen erfüllt werden. Ist
der Zugriff nicht zulässig, muss sichergestellt werden, dass die Sicherheitsarchitektur den
Zugriff unterbindet.

Informationsvertraulichkeit: Die Informationsvertraulichkeit setzt eine korrekte Authentifizie-
rung von Subjekten und Objekten voraus. Weiter müssen Zugriffsbedingungen an die
zu schützende Informationen gebunden sein. Kern des Schutzzieles ist, dass Objekte in
unterschiedlicher Granularität vor unberechtigter Einsicht geschützt werden. Auch dann,
wenn sie von individuell entwickelten Operator-Boxen verarbeitet werden. Das umfasst die
Prüfung aller beteiligten Objekte und Subjekte, zum Beispiel die Anfrage selbst, und die
eingesetzten Operatoren und Services die den Zugriff ausführen. Die Informationsvertrau-
lichkeit auch dann zu gewährleisten, wenn Komponenten individuell entwickelt wurden,
macht Mechanismen erforderlich, die trotz einer freien und individuellen Entwicklung eine
zuverlässige Kontrolle über geschützte Daten sicherstellten.

Verfügbarkeit: Kommt es bei der Ausführung von Anfragen auf Rechenknoten zu Konflikten
bei der Ressourcenverteilung ist unter Umständen die Zuverlässigkeit sensibler Anfragen
gefährdet. Für die Diplomarbeit wird die Annahme getroffen, dass die Betreiber von Diens-
ten in NexusDS dafür Sorge tragen, dass ausreichend Ressourcen für die Ausführung aller

49

5 Anforderungen

gestatteten Anfragen vorhanden sind. In diesem Fall kann ein Ressourcenkonflikt nur dann
auftreten, wenn nicht berechtigte Anfragen auf einem geschützten Rechenknoten des Dienst-
betreibers zur Ausführung gebracht werden. Das Sicherheitskonzept muss dafür Sorge
tragen, dass nur solche Anfragen auf geschützten Rechenknoten zur Ausführung kommen,
die vom Besitzer des Rechenknotens gestattet sind. Eine detaillierte Vorgehensweise zur
Zuweisung von Prioritäten im Falle von Ressourcenkonflikten, sind kein unmittelbares
Thema der Diplomarbeit und werden nicht weiter vertieft.

Anonymisierung: Anonymisierung bedeutet, dass persönliche Daten so verfälscht oder gesperrt
werden, dass danach keine Rückschlüsse auf persönliche Verhältnisse möglich sind. Die
gezeigten Anwendungsszenarien stellen höhere Anforderungen als ein einfaches Sperren
oder Zufälliges verfälschen von Informationen. Die Anonymisierung in NexusDS muss
eine Filterung und Verschleierung von Objekten in Abhängigkeit von individuellen Be-
dingungen und Anwendungsszenarien leisten. Zum Beispiel, dass der Detailgrad von
Positionsinformation in Abhängigkeit des Empfängers der Information variiert, sodass
als Freunde definierte Datenempfänger einen genauen Standort und Arbeitskollegen nur
einen Landkreis empfangen. NexusDS stellt als Plattform keine Einschränkung an Daten-
strukturen oder im Allgemeinen wie Informationen dargestellt werden. Deshalb muss das
Sicherheitskonzept eine Möglichkeit vorsehen, beliebige Tranformationen auf mindestens
den Datentypen zu unterstützen, die auch NexusDS unterstützt.

50

Kapitel 6

Grundlagen des Sicherheitskonzeptes

Der nächste Schritt in der Entwicklung des Sicherheitskonzeptes ist, nach dem Vorgehensmodell
aus 2.4, Maßnahmen zur Erfüllung der in Kapitel 5 aufgestellten Anforderungen zu entwickeln.

Das Kapitel stellt im ersten Abschnitt die zentralen Maßnahmen des Sicherheitskonzeptes vor,
ohne bereits detaillierte Komponenten der Sicherheitsarchitektur zu entwerfen. Zur kontrollierten
Verarbeitung von Anfragen erläutert Abschnitt 6.2 drei Sicherheitszonen, die die kontrollierte
Anfrageverarbeitung in unterschiedliche Strenge umsetzen.

6.1 Basisstruktur des Sicherheitskonzeptes

Grundlage des Sicherheitskonzeptes ist eine Sammlung von Maßnahmen, die die zuvor auf-
gestellten Anforderungen umsetzen können. Es gilt zu beachten, dass die Maßnahmen sich
gegenseitig ergänzen und nicht alleinstehend betrachtet werden dürfen.

6.1.1 Übersicht der Maßnahmen für das Sicherheitskonzept

Um Bedingungen zum Zugriff auf Objekte zu strukturieren, wird ein Meta-Daten-Modell auf
Basis der Augmented World Model Language (AWML) eingeführt, dass die Spezifikation von Zu-
griffsrichtlinien erlaubt. Operatoren werden geschützt, indem sie in einer zentralen Datenhal-
tung für Operatoren in der Sicherheitsarchitektur verfügbar gemacht werden. Die Datenhaltung
ersetzt das ursprüngliche Operator Repository von NexusDS. Alle Operatoren aus dieser Datenhal-
tung können nur noch unter der Kontrolle der Sicherheitsarchitektur ausgeführt werden und
jeder Zugriff muss explizit mit einer an den Operator gebundenen Zugriffsrichtlinie erlaubt
werden. Das gilt ebenfalls für die Datenströme, die die geschützten Operatoren generieren.
Zum Beispiel eine geschützte Quelle kann nur unter Beachtung der an die Quelle gebundenen
Zugriffsrichtlinien ausgeführt werden. Die Datenströme, die die Quelle erzeugt, können ebenfalls
nur noch unter Beachtung der mit der Quelle verbundenen Zugriffsrichtlinien gelesen werden.
Zugriffsrichtlinien definieren, unter welchen Bedingungen Zugriffe erlaubt sind, alle nicht von
Zugriffsrichtlinien explizit definierten Zugriffe sind nicht erlaubt.

51

6 Grundlagen des Sicherheitskonzeptes

Zugriffsrichtlinien müssen in der verteilten Umgebung von NexusDS so vorgehalten werden,
dass Services zur Entscheidung ob ein Zugriff gestattet ist, die aktuell gültigen Zugriffsrichtlinien
abrufen können. Dazu wird ein zentraler Service zur Verwaltung von Zugriffsrichtlinien einge-
führt, der alle Zugriffsrichtlinien vorhält. An diesem zentralen Service werden Zugriffsrichtlinien
erstellt, geändert und gelöscht. Alle Subjekte, Services und Anwendungen die Zugriffsrichtli-
nien definieren wollen, verbinden sich direkt mit diesem Service. Die weitere Verteilung der
Zugriffsrichtlinien wird von der Sicherheitsarchitektur selbst abgewickelt.

Um Subjekte in der Sicherheitsarchitektur korrekt zu identifizieren, ist eine Zuordnung von
eindeutigen Identitäten und einem Mechanismus zur Bestätigung von Identitäten notwendig.
Diese Aufgabe wird von einem zentralen Service zur Verwaltung von Identitäten realisiert. Alle
Subjekte, die von der Sicherheitsarchitektur geschützte Operatoren verwenden wollen, müssen
sich über den zentralen Service mit einer eindeutigen Identität registrieren. Zudem trifft der
Service mit dem jeweiligen Subjekt eine Vereinbarung, wie die Identität bestätigt werden kann.
Handelt es sich bei der Identität um einen Benutzer, wird eine eindeutige Kombination aus
Benutzername und Passwort vergeben. Zur Prüfung der Identitäten eines Rechenknotens werden
je Rechenknoten eindeutige Identifikatoren vergeben, die den Rechenknoten eindeutig charakteri-
sieren. Identitäten von Operatoren bestehen aus einem Bezeichner, der bei der Verfügbarmachung
des Operators im zentralen Operator Repository der Sicherheitsarchitektur zugewiesen wird.
Bestätigt wird die Identität durch einen eindeutigen Hashwert, der über die Implementierung
des Operators gebildet wird.

Wird die Ausführung einer Anfrage angestoßen, durchläuft die Anfrage verschiedene Schritte im
bereits vorgestellten Ausführungsmodell, Abschnitt 3.3.1, von NexusDS. Verantwortlicher Service
für die Aufgabe ist der Core Query Service (CQS), der für das Sicherheitskonzept so erweitert
wird, dass während der Planung alle für die Anfrage relevanten Zugriffsrichtlinien berücksichtigt
werden. Relevant sind alle die Zugriffsrichtlinien, die an Operatoren der auszuführenden Anfrage
gebunden sind. Zum Beispiel falls Datenelemente einer Quelle nur von bestimmten Operatoren
gelesen werden dürfen. Daraus entsteht eine kontrollierte Anfrageplanung, die nur die Anfrage
zur Ausführung bringt, deren Zugriffe durch Zugriffsrichtlinien gedeckt sind.

Wird eine Zugriffsrichtlinie zum Zeitpunkt tD definiert, muss diese für alle durch die Richtlinie
betroffenen Datenelemente, die zum Zeitpunkt tV ≥ tD in die Verarbeitung gehen, durchgesetzt
werden. Würde das Sicherheitskonzept nur eine zentrale Datenhaltung für Zugriffsrichtlinien vor-
sehen, kann aber nicht ausgeschlossen werden, dass bei der verteilten Ausführung ein Zeitraum
tV − tD > 0 bis zur Durchsetzung verstreicht. Denn die Zugriffsrichtlinien müssen zuerst von
der definierenden Stelle an den zentralen Speicher übertragen werden. Von der zentralen Stelle
wiederum an die verarbeitende Stelle, was eine gewisse Übertragungszeit beansprucht. In der
verstrichenen Übertragungszeit Tdelay = tV − tD, wobei Tdelay > 0, könnten Datenelemente bereits
mit veralteten Zugriffsrichtlinien verarbeitet worden sein, was die Gefahr von Verletzungen von
Zugriffsrichtlinien birgt. Das in Abschnitt 4.4 vorgestellte Framework FENCE löst das Problem
durch Einflechten von Zugriffsinterpunktionen in den Datenstrom. Es arbeitet unabhängig
von möglichen Verzögerungen bei der verteilten Ausführung und transportiert die Zugriffsricht-
linien direkt an die Stelle, an der die Verarbeitung stattfindet. Würde eine globale Verteilung

52

6.1 Basisstruktur des Sicherheitskonzeptes

stattfinden, indem eine zentrale Komponente alle Zugriffsrichtlinien an die betroffenen Operato-
ren weiterleitet, dann ist eine globale Zeitreferenz notwendig. Anhand der Zeitreferenz könnten
Zeitstempel für Zugriffsrichtlinien definieren, ab wann eintreffende Datenelemente mit der neuen
Zugriffsrichtlinie zu verarbeiten sind. Jedoch kann in einer verteilten Ausführungsumgebung,
wie bereits besprochen nicht davon ausgegangen werden, dass die Zugriffsrichtlinien an alle
Stellen mindestens zu dem Zeitpunkt eintreffen, wenn betroffene Zugriffsrichtlinien angewandt
werden müssen. Es wäre dann möglich, dass ein Teil der Operatoren, verteilt über verschiedene
Rechenknoten, die Zugriffsrichtlinie rechtzeitig erhalten, der verbleibende Teil der Operatoren
aber nicht. Damit würde ein Teil der Anfrage auf Basis aktueller und ein weiterer Teil auf Basis
veralteter Zugriffsrichtlinien arbeiten. Die Einflechtung vermeidet derartige Probleme, da sich
die Zugriffsrichtlinien auf dem gleichen Weg wie die betroffenen Datenelemente fortbewegen.

Aus diesen Gründen wird das Konzept der Interpunktionen für die Diplomarbeit übernom-
men und mit einer zentralen Datenhaltung kombiniert. Die zentrale Datenhaltung bildet den
zentralen Punkt zur Bearbeitung von Zugriffsrichtlinien. Gleichzeitig dienen sie als Quelle für
Zugriffsrichtlinien bei der kontrollierten Planung der Anfrage und zur Synchronisation von
Zugriffsrichtlinien, falls Verbindungsabbrüche bei der verteilten Ausführung auftreten. Soll eine
Zugriffsrichtlinie unmittelbar gültig werden und sich auch auf die bereits in der Verarbeitung
befindlichen Datenelemente auswirken, kann die sofortige Anwendung erzwungen werden.
Dies muss dann explizit in den Zugriffsrichtlinien definiert werden, die unmittelbar auf alle
Datenelemente angewendet werden sollen. Wird eine Zugriffsrichtlinie definiert, die die sofortige
Anwendung erzwingt, verteilt die Sicherheitsarchitektur die Zugriffsrichtlinien an alle in der
Ausführung betroffenen Operatoren.

Die Services des Sicherheitskonzeptes erhalten ein System zur Protokollierung. Das Protokoll
enthält alle Informationen über die durchgeführten Veränderungen, sodass nachvollzogen werden
kann, von welchem Subjekt welche Änderungen zu welcher Zeit getätigt wurden. Zum Beispiel
falls Veränderungen am Datenbestand der Zugriffsrichtlinien durchgeführt werden. Ebenso
werden ausgeführte Anfragen zu Protokoll gebracht. Hierzu hält die kontrollierte Anfrageplanung
die Anfrage selbst, Zeitpunkt und die Identität des Subjektes fest, dass die Anfrage abgeschickt
hat. Dadurch lässt sich die Verwendung von Operatoren und Datenströmen von Subjekten
nachvollziehen.

Die Services, aus denen die Sicherheitsarchitektur besteht, müssen mit weiteren Services der
Sicherheitsarchitektur kommunizieren. Jeder Service der Sicherheitsarchitektur verfügt, sofern
dieser mit Services kommunizieren will, über ein digitales Zertifikat, das zu Beginn einer Kom-
munikation überprüft wird. Die Erstellung, die Verwaltung und die Zuordnung von Zertifikaten
werden über eine Public-Key-Infrastruktur, siehe Abschnitt 2.2.1, realisiert. Die Zertifikate er-
möglichen eine zuverlässige, gegenseitige Authentifizierung von Services. Will ein Subjekt eine
Verbindung mit einem Service aufbauen, zum Beispiel um neue Zugriffsrichtlinien zu erstellen,
überprüft es ebenfalls zuvor das digitale Zertifikat des Services. Der Service seinerseits kann über
den zentralen Service zur Verwaltung von Identitäten überprüfen, ob das Subjekt authentisch ist.
So ist sichergestellt, dass nur dann sensitive Information ausgetauscht wird, wenn beide Seiten
verlässlich authentifiziert wurden.

53

6 Grundlagen des Sicherheitskonzeptes

Bisher vorgestellte Sicherheitskonzepte für NexusDS ähnliche Systeme, in Abschnitt 4 wurde eine
Auswahl vorgestellt, erlauben oder verbieten den Zugriff auf Datenelemente in Abhängigkeit der
definierten Zugriffsbedingungen. Die Sicherheitsarchitektur für NexusDS ermöglicht nicht nur
das einfache Verbieten eines Zugriffes, sondern auch eine Transformation der Datenelemente um
Zugriffsbedingungen zu erfüllen. Da NexusDS grundsätzlich jeden Typ von Daten unterstützt,
muss das Sicherheitskonzept flexibel genug sein, um beliebige Transformationen durchführen
zu können. Zur Unterstützung von beliebigen Datentypen und Transformationen erlaubt die
Sicherheitsarchitektur das Implementieren von Filtern. Filter werden von NexusDS Extenti-
on Developer implementiert und in der Sicherheitsarchitektur in einer zentralen Datenhaltung
verfügbar gemacht. Filter müssen explizit in Zugriffsrichtlinien definiert werden. Bezieht sich
eine Zugriffsrichtlinie auf eine Quelle, muss definiert werden, auf welche Datenausgänge der
Filter angewendet werden soll. Handelt es sich um eine Operation oder Senke, müssen die
Dateneingänge definiert werden, auf die der Filter angewendet wird. Für einen Datenausgang
oder Dateneingang ist möglich, mehrere Filter zu definieren. Sollte das der Fall sein, werden die
Filter nach einer in den Zugriffsrichtlinien definierten Reihenfolge hintereinander ausgeführt.

Zur Sicherung der Kommunikationswege werden alle Datenkanäle verschlüsselt. Eine Ver-
schlüsselung der Datenströme schützt vor unberechtigtem Lesen und Manipulation der Daten.
Das betrifft sowohl Datenströme, die in Anfragen verarbeitet werden, als auch Kanäle zum
Übertragen von zum Beispiel neuen Zugriffsrichtlinien in die Datenhaltung.

Mit einer expliziten Definition in Zugriffsrichtlinien, können geschützte Datenströme für den
ungeschützten Teil von NexusDS freigegeben werden. Zum Beispiel könnte für eine Quel-
le, die GPS-Positionsinformationen erzeugt eine Zugriffsrichtlinie definiert werden, die unter
Anwendung eines Filters für das ursprüngliche NexusDS freigegeben wird. Der Filter kann
eine Transformation realisieren, die den Detailgrad der Positionsinformation reduziert, die dem
Besitzer der Positionsinformation als Anonymisierung ausreicht.

Das Anwendungsszenario der intelligenten Fabriken aus Abschnitt 5.1.3 deutete an, dass Ne-
xusDS in komplexen Anwendungslandschaften eingesetzt werden kann. Häufig bestehen in
umfangreichen Anwendungslandschaften vielfältige Datenhaltungen, die für die Entscheidung
einer Zugriffsberechtigung ausgewertet werden müssen. Zur Vereinfachung der Integration beste-
hender Systeme ermöglicht die Sicherheitsarchitektur den Einsatz von Evaluatoren. Evaluatoren
werden von NexusDS Exention Developer entwickelt und in einer zentralen Datenhaltung der
Sicherheitsarchitektur verfügbar gemacht. Mit der Referenzierung auf Evaluatoren in Zugriffs-
richtlinien wird die Auswertung von Zugriffsberechtigungen nicht mehr von der Sicherheitsar-
chitektur selbst, sondern von den individuellen Evaluatoren vorgenommen. Dadurch vereinfacht
sich die Integration der Sicherheitsarchitektur in bereits vorhandene Anwendungslandschaften
wesentlich.

54

6.2 Kontrollierte Datenstromverarbeitung in drei Sicherheitszonen

Anfrage Fragment

Anfrage Fragment Anfrage Fragment

Secure-Source

Encoder Source Filter

Secure-Box

Encoder

Operator
Box

Encoder

Decoder

Decoder

Secure-Sink

Sink

Decoder

Decoder

Secure-Source

Encoder Filter

Source

Encoder

Filter

Abbildung 6.1: Vereinfachtes Modell der Verarbeitung von Datenströmen in Anfragen der
Sicherheitszone-Mittel und Sicherheitszone-Hoch.

6.2 Kontrollierte Datenstromverarbeitung in drei Sicherheitszonen

Das Sicherheitskonzept teilt die Ausführung von Anfragen in drei Sicherheitszonen ein, die im
Folgenden vorgestellt werden. Sicherheitszone-Null entspricht dem bestehenden NexusDS ohne
Zugriffskontrollen. Die Sicherheitszone-Mittel realisiert eine kontrollierte Verarbeitung von
Anfragen, die es erlaubt, bestehende Quellen, Operatoren und Senken von NexusDS weiterzu-
verwenden. Um Risiken durch unkontrolliertes Verhalten des Operator-Modells auszuschließen,
erzwingt die Sicherheitszone-Hoch die Nutzung von zertifizierten Komponenten des Operator-
Modells.

6.2.1 Sicherheitszone-Null

NexusDS in der vorliegenden Form, ohne Sicherheitskonzept, repräsentiert Sicherheitszone-Null.
Es werden grundsätzlich keine Kontrollmechanismen vorgesehen, die den Datenzugriff in Anfra-
gen einschränken. Datenelemente von geschützten Operatoren, können in der Sicherheitszone-Null
nur mit klar definierten Ausnahmen verwendet werden. Die Ausnahme muss explizit in Zu-
griffsrichtlinien definiert werden, indem ein Datenausgang als ungeschützt deklariert wird. Falls
gewünscht können dem Datenausgang Filter vorgelagert werden, sodass die Daten nur in einem
durch die Filter bestimmten Detailgrad ungeschützt weiterverarbeitet werden.

55

6 Grundlagen des Sicherheitskonzeptes

6.2.2 Sicherheitszone-Mittel

Sicherheitszone-Mittel betten die Ausführung von Quellen, Operator-Boxen und Senken in eine
kontrollierte Umgebung ein. Abbildung 6.1 illustriert die Einbettung der Boxen, die unverändert
aus dem ursprünglichen NexusDS übernommen werden können. Für jeden Boxentyp existiert
ein spezifischer Baustein der Sicherheitsarchitektur, der als Einbettung bezeichnet wird. Für
Quellen die Secure-Source, für Operatoren die Secure-Box und für Senken die Secure-Sink.
Die Datenströme zwischen den Einbettungen werden mit einem symmetrischen Schlüssel ver-
schlüsselt, was gegenüber asymmetrischen Kryptosystemen einen Geschwindigkeitsvorteil birgt
[16]. Da der Schlüssel nicht an Stellen außerhalb der Sicherheitsarchitektur gegeben wird, ist
ein asymmetrisches Verfahren aus privatem und öffentlichem Schlüssel nicht notwendig. Jede
Anfrage erhält einen eigenen geheimen Schlüssel, der von dem Service verwaltet wird, der die
betroffene Anfrage geplant hat. Der Schlüssel wird mit einer Verfallszeit von 48 Stunden versehen,
um die Wahrscheinlichkeit eines Bekanntwerdens des geheimen Schlüssels zu reduzieren. Läuft
ein Schlüssel zur Ausführungszeit einer Anfrage ab, kümmern sich die Einbettungen um eine
Erneuerung, sodass die Ausführung unterbrechungsfrei auf einen neuen geheimen Schlüssel
umgestellt werden kann. Zur Geheimhaltung des Schlüssels ist dieser nur dem Service zur
Verwaltung der Anfrageplanung und den jeweiligen Einbettungen bekannt, er wird nicht den
eingebetteten Operatoren oder anderen Teilen von NexusDS verfügbar gemacht. In Abbildung 6.1
ist zu sehen, wie ausgehende Datenströme durch Encoder verschlüsselt werden und eingehende
Datenströme mit Decoder entschlüsselt werden. So werden die Datenströme zwischen Boxen
direkt verschlüsselt und damit unlesbar zwischen verschiedenen Anfragen und für alle Subjekte
außerhalb der Sicherheitsarchitektur.

Jede geschützte Quelle wird in eine Secure-Source eingebettet. Filter sind, wie in Abbildung
6.1 zu sehen, direkt der eingebetteten Quelle nachgelagert und transformieren Datenelemente
der Quelle. Welche Filter zur Anwendung kommen, wird von den mit der Quelle verbundenen
Zugriffsrichtlinien definiert. Neben der optionalen Transformation von Datenelementen durch
Filter stellt die Secure-Source Einbettung sicher, dass nur dann Datenelemente von der Quelle
weitergeleitet werden, wenn der Zugriff auf die Datenelemente gestattet ist. Wird eine Anfra-
ge zur Ausführung gebracht, wird dies von der kontrollierten Anfrageplanung sichergestellt.
Ändern sich jedoch zur Ausführungszeit Zugriffsrichtlinien, die die Quelle betreffen und eine
weitere Ausführung verbieten, sperrt die Quelle die Datenausgänge. Dass Zugriffsrichtlinien sich
gegenseitig ausschließen, ist nicht möglich, da jede Zugriffsrichtlinie einer Erlaubnis entspricht.
Wird während der Ausführungszeit eine Zugriffsrichtlinie zurückgenommen, die die Ausführung
einer Secure-Source erlaubt, sperrt die Secure-Source sofort die Weiterleitung der Datenelemente
der eingebetteten Quelle. Gleichzeitig meldet die Secure-Source der Ausführungsumgebung, dass
die Anfrage abgebrochen werden muss. Bevor Datenelemente die Quelle verlassen, werden diese
mit dem Encoder verschlüsselt. Neben dem Verschlüsseln von Datenelementen interpunktiert
der Encoder alle für die Quelle definierten Zugriffsrichtlinien, die ebenfalls verschlüsselt werden,
in den Datenstrom.

56

6.2 Kontrollierte Datenstromverarbeitung in drei Sicherheitszonen

Um die Datenelemente von geschützten Operatoren verarbeiten zu können, müssen die Opera-
toren der betroffenen Anfragen in jeweils eine Secure-Box eingebettet werden. Die Secure-Box
erhält Zugriff auf den geheimen Schlüssel, um die eingehenden verschlüsselten Datenströme
zu entschlüsseln und die interpunktierten Zugriffsrichtlinien zu entfernen, sodass der eingebet-
tete Operator die Datenelemente verarbeiten kann. Sollten in Zugriffsrichtlinien Filter für die
eingebettete Operator-Box definiert sein, werden sie nach dem Encoder wie in Abbildung 6.1 zu
sehen den Eingängen der Operator-Box vorgelagert. Werden neue Zugriffsrichtlinien bekannt,
entweder über eingehende Interpunktionen oder die Secure-Box wird von dem zentralen Service
zur Verwaltung der Zugriffsrichtlinien benachrichtigt, überprüft die Secure-Box Bedingungen
der Zugriffsrichtlinie. Zum Beispiel kann der Fall eintreten, dass eine neue Zugriffsrichtlinie die
Ausführung eines Operators O auf wenige ausgewählte Rechenknoten beschränkt und alle ande-
ren Zugriffsrichtlinien, die die Ausführung des Operators vorher erlaubten, zurück genommen
werden. Ist eine Secure-Box betroffen, da diese O einbettet, überprüft die Secure-Box, ob die
Bedingungen der neuen Zugriffsrichtlinie erfüllt sind. Ist das nicht der Fall, sperrt die Secure-Box
alle Datenausgänge und beendet die Anfrage analog zur Secure-Sink.

Über die Dateneingänge eingehende Zugriffsrichtlinien müssen auch den nachfolgenden Boxen
zur Verfügung gestellt werden, was eine Wiederinterpunktion notwendig macht. Die Wiederinter-
punktion einer Zugriffsrichtlinie muss in alle Datenausgänge erfolgen, die von dem Datenstrom
abhängen, über den die Zugriffsrichtlinie eingetroffen ist. Zu welchem Zeitpunkt die Wiederinter-
punktion erfolgt, hängt von der Relation zwischen der Anzahl der eingehenden und ausgehenden
Datenelemente ab. Die Details zur Wiederinterpunktion werden im weiteren Verlauf erörtert.
Bevor die verarbeiteten Datenelemente und Interpunktion die Secure-Box verlassen, wird der
Datenstrom analog zur Secure-Source wieder mit dem geheimen Schlüssel der Anfrage verschlüs-
selt.

Das Senken die Ergebnisse von geschützten Anfragen lesen können, müssen sie jeweils in
eine Secure-Sink eingebettet werden. Zentrale Aufgabe ist die eingehenden Datenströme zu
entschlüsseln, gegebenenfalls Filter den Dateneingängen vorzulagern und die Datenelemente an
die eingebettete Senke weiterzureichen. Parallel nimmt die Secure-Sink noch die Aufgabe wahr,
die für die Senke relevanten Zugriffsrichtlinien zu überprüfen. Sollte sich eine Änderung in den
Zugriffsrichtlinien ergeben, die die eingebettete Senke betrifft, wird analog zur Secure-Sink und
Secure-Box vorgegangen.

6.2.3 Sicherheitszone-Hoch

Die vorgestellte Sicherheitszone-Mittel bettet Quellen, Operator-Boxen und Senken so ein, dass
nur auf die Datenelemente zugegriffen wird, für die eine Zugriffsrichtlinie den Zugriff erlaubt.
Das Verhalten der eingebetteten Komponenten kann jedoch nicht automatisch von der Sicher-
heitsarchitektur überprüft oder überwacht werden. Beispielsweise könnte ein Input-Manager
nach wie vor einen Datenkanal öffnen, alle eingehenden Datenelemente kopieren und an eine
unautorisierte Stelle weiterleiten. Ein weiteres Beispiel wäre der Fall, dass es Operatoren lediglich
erlaubt sein soll, dass Durchschnitte nur über maximal x Datenelemente gebildet werden dürfen.
Ein Operator könnte aber eine Datenhaltung führen die x + n, wobei n > 0, Datenelemente

57

6 Grundlagen des Sicherheitskonzeptes

speichert und darüber einen Durchschnitt bilden. Um der offenen Lücke zu begegnen, erzwingt
die Sicherheitszone-Hoch eine digitale Signierung von Operatoren von ausgewählten Prüfern nach
einem definierten Kriterienkatalog. Dazu können Zugriffsrichtlinien Signaturen definieren, die
von der Anfrageplanung und Einbettungen überprüft werden. Die höhere Sicherheit hat aber
einen Preis. Alle Komponenten, die in der Sicherheitszone eingesetzt werden sollen, müssen
manuell überprüft und signiert werden.

Jeder Prüfer der Komponenten signieren möchte, muss als Prüfer an einem zentralen Service
der Sicherheitsarchitektur registriert werden. Die Signierung basiert auf einem asymmetrischen
Kryptosystem wie in Abschnitt 2.2.1 vorgestellt. Der öffentliche Schlüssel wird in der zentralen
Datenhaltung für Zertifizierungen abgelegt, sodass der öffentliche Schlüssel zur Prüfung von
Signaturen frei verfügbar ist. Hat ein Prüfer ein Operator inspiziert, berechnet er die Signatur
der Komponente, verschlüsselt sie mit seinem privaten Schlüssel und legt die verschlüsselte
Signatur in der zentralen Datenhaltung für geschützte Operatoren ab. Fordern Zugriffsricht-
linien digitale Signaturen für Operatoren, sorgt die kontrollierte Anfrageplanung dafür, dass
nur Operatoren zur Ausführung kommen, die digitale Signaturen nach den Angaben in den
betreffenden Zugriffsrichtlinien aufweisen. Zur Laufzeit von Anfragen stellen die Einbettungen
sicher, dass die Angaben von Signaturen erfüllt werden. Bei Änderungen zur Laufzeit wird
analog zur vorherigen Sicherheitsstufe eine Prüfung durchgeführt und bei einem Fehlschlag
die Anfrage abgebrochen. Es ist keine Einschränkung vorgesehen, dass eine Box mit nur einer
digitalen Signatur versehen werden darf. Werden durch die Zugriffsrichtlinien mehrere Signatu-
ren definiert, wird die betroffene Komponente auf die korrekte Signatur von allen definierten
Prüfern untersucht. Nur falls alle Zertifizierungen erfüllt sind, wird der Zugriff gestattet. Es ist zu
beachten, besteht die Box wie im Falle eines Operators und Senke aus mehreren Komponenten,
muss die Signatur für alle Komponenten gelten.

Das Stellen von Prüfern und wie eine Prüfung zur Zertifizierung abläuft, hängt von den Anwen-
dern von NexusDS ab. Als Grundlage für Kriterien zur Zertifizierung wurde in Abschnitt 2.2.3
die Common Criteria for Information Technology Security Evaluation vorgestellt, die als internationaler
Standard eine Referenz sein könnten. Die Möglichkeit verschiedene digitale Signaturen und
damit verschiedene Prüfer zu wählen, eröffnet die Möglichkeit verschiedene Vertrauensinstanzen
zu schaffen. Beispielsweise könnten alle Komponenten, die von Google entwickelt werden, mit
einer Google Standardsignatur versehen werden. Die Prüfungsrichtlinien hinter der Signatur
verspricht womöglich keine vollständige und detaillierte Überprüfung des Programmcodes, mag
aber für einige Anwendungsszenarien als Garantie ausreichen.

Das Versehen von Komponenten der Operator-Boxen mit Signaturen zur Zertifizierung darf
nicht mit den bereits besprochenen Identitäten verwechselt werden. Jede Komponente einer
Operator-Box hat auch ohne Zertifizierung eine Identität. Dies sagt jedoch nichts darüber aus,
ob die Komponente in irgendeiner Form überprüft wurde, sondern ist lediglich dazu da, die
Objekte eindeutig und zweifelsfrei zu identifizieren.

58

Kapitel 7

Architektur des Sicherheitskonzeptes

Auf die Vorstellung des Sicherheitskonzeptes im vorherigen Kapitel folgt die Umsetzung des
Konzeptes zu einer Sicherheitsarchitektur. Die Sicherheitsarchitektur besteht aus mehreren Ser-
vices und Bausteinen, die im vorliegenden Kapitel ausführlich erläutert werden. Zur Erläuterung
gehören eine detaillierte Beschreibung des Zusammenspiels mit den weiteren Teilen der Sicher-
heitsarchitektur und die Funktionsweise und Aufgaben jedes Services und Bausteines.

Im ersten Abschnitt 7.1 werden die Grundlagen zur Kommunikation in der Sicherheitsarchitektur
erläutert. Die Definition und Auswertung von Zugriffsrichtlinien wird in Abschnitt 7.2 ausführlich
erläutert. Abschnitt 7.3 adressiert die Wiedereinflechtung von Zugriffsrichtlinien in Datenströme
nach Operator-Boxen.

Der Secure Core Query Services (SCQS) ist für die kontrollierte Planung von Anfragen verantwort-
lich und wird in Abschnitt 7.4 vorgestellt. Die bereits erwähnten Einbettungen sind je in Abschnitt
7.5 zur Secure-Source, Abschnitt 7.6 zur Secure-Box und Abschnitt 7.7 zur Secure-Sink erläutert.
Die folgenden Abschnitte erläutern die Services der Sicherheitsarchitektur. Neben dem SCQS
existiert noch eine weitere Zahl an Services, die für die Ausführung der Sicherheitsarchitektur
verantwortlich sind und werden in Abschnitt 7.8 erläutert.

7.1 Kommunikation in der Sicherheitsarchitektur

In der Einleitung zum Kapitel wurde angedeutet, dass die Sicherheitsarchitektur aus mehre-
ren Services besteht. Jeder Service realisiert eine Aufgabe, sodass zur Aufgabenerfüllung die
Notwendigkeit besteht, dass Services Informationen austauschen. Um zu verhindern, dass der
Informationsaustausch eine Schwachstelle der Sicherheitsarchitektur ist, muss sichergestellt sein,
dass die Kommunikationspartner sich authentifizieren können. Was nur dann möglich ist, wenn
jeder Service eine eindeutige Identität erhält, die von den Kommunikationspartner verifiziert
werden kann. Für diesen Zweck erhält jeder Service der Sicherheitsarchitektur ein digitales
Zertifikat. Mit dem zugewiesenen Zertifikat bestätigt ein Service seine Mitgliedschaft in der
Sicherheitsarchitektur und kann sich für die Interaktion mit anderen Services ausweisen. Die

59

7 Architektur des Sicherheitskonzeptes

Vergabe von Zertifikaten erfolgt nach einer Public-Key Infrastruktur, die eine hierarchische Ver-
gabe von Zertifikaten ermöglicht. Die generelle Funktionsweise wurde bereits in Unterabschnitt
2.2.1 erläutert und wird an dieser Stelle nicht weiter ausgeführt.

Als Zertifizierungsinstanz, die das Signieren von Zertifikatsanträgen übernimmt, und Vali-
dierungsdienst, der die ausgestellten Zertifikate enthält, dient der zentrale Service Certificate
Autority Point (CAP). Der Service wird in Unterabschnitt 7.8.5 noch im Detail vorgestellt. Vor-
liegende Ausprägung der Authentifizierung erlaubt mit der Vergabe von Zertifikaten nur zu
definieren, ob ein Klient eine Verbindung mit Services der Sicherheitsarchitektur aufbauen darf.
Die Entscheidung, welche Informationen ein Klient von einem Service beziehen darf, entscheidet
jeder Service selbst. Zur Entscheidung kann ein Service alle oder nur eine Teilmenge der ausge-
stellten Zertifikate des CAP akzeptieren. Zur Vereinfachung definiert die Diplomarbeit, dass alle
Services die über ein digitales Zertifikat des CAP verfügen, unbeschränkt Informationen austau-
schen. Auf die Diplomarbeit folgende Erweiterungen der Sicherheitsarchitektur können aber auch
Zertifikatsketten bilden, die je nach Wurzelzertifikat unterschiedlichen Informationsaustausch
gestattet. Der interessierte Leser findet einen Einstieg zu dieser Thematik in [16].

Ein weiterer Fall, der zu betrachten ist, dass Subjekte Kontakt mit Services der Sicherheitsarchitek-
tur aufnehmen. Das ist zum Beispiel dann der Fall, wenn ein Subjekt eine neue Zugriffsrichtlinie
erstellen will. In diesem Fall erlauben die Zertifikate dem Subjekt zu verifizieren, dass es sich mit
einem authentischen Service der Sicherheitsarchitektur verbindet. Das stellt sicher, dass Subjekte
sensible Informationen nur an vertrauenswürdige Services der Sicherheitsarchitektur übermitteln.
Welchen Subjekten Zugriffe auf den Service erlaubt sind, legt jeder Service individuell fest und
wird jeweils für jeden Service später erörtert.

Grundsätzlich gilt für die Sicherheitsarchitektur, die Datenkanäle zur Kommunikation zwischen
Services und von Subjekten zu Services sind verschlüsselt. Das erschwert ein Abhören von
sensiblen Informationen, wenn Verbindungen mit Services aufgebaut werden. Datenströme in
der kontrollierten Anfrageverarbeitung, werden ebenso verschlüsselt, was noch im Verlauf des
Kapitels erörtert wird.

7.2 Definition und Auswertung von Zugriffsrichtlinien

Zugriffsrichtlinien definieren, unter welchen Bedingungen, ein Zugriff auf von der Sicherheitsar-
chitektur geschützte Operatoren gestattet wird. Ein Zugriff in der Sicherheitsarchitektur ist zum
Beispiel die Ausführung eines Input-Manager oder die Verarbeitung von Datenelementen, die
von einer Quelle während der Ausführung in einer Anfrage generiert werden. Operatoren werden
geschützt, indem sie nicht in dem ursprünglichen NexusDS verfügbar gemacht werden, sondern
nur in der Sicherheitsarchitektur von NexusDS. Ist das der Fall, sind auch alle Datenelemente,
die von einem geschützten Operator in einer Anfrage zur Ausführungszeit generiert werden,
geschützt. Das Secure Operator Repository (SOR) bildet den zentralen Ort der Sicherheitsarchi-
tektur, die alle zu schützenden Operatoren beherbergt. Es ist nur noch dann die Ausführung
und die Verarbeitung der von dem Operator erzeugten Datenelemente möglich, wenn an den
Operator gebundene Zugriffsrichtlinien den Zugriff explizit gestatten.

60

7.2 Definition und Auswertung von Zugriffsrichtlinien

Der vorliegende Abschnitt erläutert die Verwendung und den Aufbau von Zugriffsrichtlinien.
Abschnitt 7.2.1 führt ein, wie Zugriffsrichtlinien erstellt und verteilt werden. Das Abbilden von
Bedingungen, die den Zugriff auf Operatoren definieren, führt Abschnitt 7.2.2 ein. Die detaillierte
Struktur von Zugriffsrichtlinien folgt in Abschnitt 7.2.3 gefolgt von den Abschnitten 7.2.4 und
7.2.5, die auf Details zu Evaluatoren und Filter eingehen.

7.2.1 Administration und Verteilung von Zugriffsrichtlinien

Administriert werden Zugriffsrichtlinien an einem zentralen Service der Sicherheitsarchitektur,
der als Policy Administration Point (PAP) bezeichnet wird. Über den Service können neue
Zugriffsrichtlinien eingebracht und bestehende Zugriffsrichtlinien verändert oder gelöscht wer-
den. Der Service ist die zentrale Schnittstelle für Subjekte um die Zugriffsrichtlinien für die
Sicherheitsarchitektur zu bearbeiten. Der Service sorgt für eine konsistente Datenhaltung und
für die Verteilung von Zugriffsrichtlinien an alle Punkte der Sicherheitsarchitektur, die von einer
Änderung betroffen sind. Wird eine Anfrage geplant, werden zur kontrollierten Anfrageplanung
alle relevanten Zugriffsrichtlinien aus dem PAP bezogen. Sind von Änderungen an Zugriffsricht-
linien auch in der Ausführung befindliche Operatoren betroffen, dann müssen die neuen oder
veränderten Zugriffsrichtlinien aktiv den Operatoren zugestellt werden. Für die Weiterleitung
arbeitet der PAP mit dem Secure Core Query Service (SCQS) zusammen. Der genaue Ablauf
wird im weiteren Verlauf der Diplomarbeit erörtert.

7.2.2 Abbilden von Zugriffsbedingungen

Ein Zugriff geht immer von einem Subjekt auf ein Objekt. Zur Erinnerung, Objekte sind passive
Daten, zum Beispiel auf einer Festplatte abgelegte Dateien. Subjekte sind Benutzer oder Operato-
ren, die im Auftrag eines Benutzers handeln. Zum Beispiel ist die Implementierung einer Quelle
ein Objekt. Befindet sich die Quelle in der Ausführung, dann ist sie ein Subjekt, da es sich nicht
mehr um ein passives Stück Information handelt. Deshalb besteht die Ausführung einer Anfrage
aus den Zugriffen �execute� und �read�. Im ersten Schritt müssen die Implementierungen der
Operatoren zur Ausführung gebracht werden, das beschreibt der Zugriffstyp �execute�. Im
zweiten Schritt sollen die Daten, die von Operatoren erzeugt werden, von weiteren Operatoren
verarbeitet werden. Das erfordert die Prüfung auf den Zugriffstyp �read�, der definiert, ob ein
Operator die von einem anderen Operator erzeugten Datenelemente lesen darf oder nicht. Eine
explizite Betrachtung eines Zugriffstyps �write� findet im Kontext von der Verarbeitung von
Anfragen nicht statt. Per Definition wird festgelegt, dass in Operatoren eingehende Datenelemen-
te gelesen werden und es sich bei den ausgehenden Datenelementen um neue Datenelemente
handelt. Das heißt, es werden Datenelemente aus Sicht der Sicherheitsarchitektur an Operatoren
grundsätzlich neu erstellt und nicht überschrieben. Jedoch hängen die neu erzeugten Datenele-
mente von den Datenströmen ab, aus denen sie erzeugt wurden. Dies wird noch im weiteren
Verlauf genauer erörtert.

Der Zugriffstyp �execute� ist abhängig von dem Subjekt, dass eine Anfrage zur Ausführung
bringen will. Die Operatoren der Anfrage sollen nur dann ausgeführt werden, wenn dem

61

7 Architektur des Sicherheitskonzeptes

Subjekt die Ausführung gestattet ist. Das ermöglicht die Einschränkung der Nutzung von
Operatoren auf ausgewählte Benutzergruppen. Eine weitere Einschränkung ist eine Restriktion,
die definiert auf welchen Rechenknoten Operatoren von einem Subjekt ausgeführt werden dürfen.
Die Ausführung auf bestimmte Rechenknoten zu beschränken ergibt sich aus der Nutzung der
Rechenknotenressourcen durch Operatoren. Daraus ergibt sich die Möglichkeit einzuschränken,
dass nur ausgewählte Subjekte, die Ressourcen von Rechenknoten mit den Fähigkeiten von
Operatoren nutzen können, um Ergebnisse in einer Anfrage zu erzeugen. Zum Beispiel ein
Operator, der den GPS-Sensor eines Mobiltelefons ausliest. Dieser nutzt als Ressource den
GPS-Sensor des Mobiltelefons, wenn er auf einem Rechenknoten des Mobiltelefones ausgeführt
wird. Würde nur beschränkt, ob ein Subjekt einen Operator ausführen darf oder nicht, könnte
das Subjekt den Operator auf jedem Mobiltelefon zur Ausführung bringen und Positionsdaten
auslesen. Dadurch würde der Besitz an der Positionsinformation nicht ausreichend berücksichtigt,
um den Zugriff auf die Positionsinformation zu kontrollieren. Die fehlende Bindung wird
hergestellt, indem die Ausführung des Operators auch von dem auszuführenden Rechenknoten
abhängt. Das heißt, sowohl der Besitzer des Operators, zum Beispiel der Entwickler, als auch der
Besitzer des Rechenknotens, im Beispiel der Besitzer des Mobiltelefons, müssen der Verarbeitung
ihrer Ressourcen mit einer Zugriffsrichtlinie zustimmen.

Nachdem die generierten Datenelemente an den erzeugenden Operator und dessen ausführenden
Rechenknoten gebunden sind, muss die Weiterverarbeitung der generierten Datenelemente
reglementiert werden. Dies geschieht über die Auswertung des Zugriffstyps �read�, der festlegt
von welchen Operatoren, auf welchen Rechenknoten Datenelemente verarbeiten werden dürfen.
Der Bezug auf die zu verarbeitenden Datenelemente wird hergestellt, indem Bezug auf den
Operator und Rechenknoten genommen wird, der der Ursprung der Datenelemente ist. Will nun
ein Operator A die Datenelemente eines vorgelagerten Operators B lesen, muss für den Operator
A eine Menge von Zugriffsrichtlinien vorliegen, die den Zugriff auf den vorgelagerten Operator
B erlauben. Sollte der vorgelagerte Operator A wiederum Operatoren vorgelagert haben, dann
muss A auch für diese Operatoren ein Leserecht besitzen. Denn jeder Operator, der an der
Verarbeitung eines Datenelementes teilnimmt, erlangt einen Besitz an dem Datenelement, somit
muss Operator A ein Leserecht an allen vorgelagerten Operatoren besitzen.

Die Auswertung der genannten Zugriffstypen wird in der Sicherheitsarchitektur von dem Policy
Decision Point (PDP) durchgeführt. Der Service wird später noch im Detail erörtert.

7.2.3 Definition von Zugriffsrichtlinien im Meta-Daten-Modell

Die Ausgestaltung der Zugriffsrichtlinien wird mit einem Meta-Daten-Modell auf Basis der
AWML, vorgestellt in Abschnitt 3.2, definiert. Die AWML bietet als XML Dialekt die Möglichkeit
beliebige Daten strukturiert abzubilden und integriert sich nahtlos in die vorhandene NexusDS
Architektur. Des Weiteren lassen sich über Attribute, Klassen und Schemas flexibel Datenstruktu-
ren definieren und erweitern. Das erleichtert einen zukünftigen Ausbau des Meta-Daten-Modells
zur Abbildung der Zugriffsrichtlinien, wenn das Sicherheitskonzept neuen Anforderungen
angepasst werden soll.

62

7.2 Definition und Auswertung von Zugriffsrichtlinien

Attribut K Beschreibung
policyID 1 Eindeutige Identität der ZR

timestamp 1 Definiert ab wann die ZR gültig ist
role 1..n Rollen für die die ZR gilt

roleInherit 1 Ob die ZR auf untergeordnete Rollen vererbt werden soll
operator 1..n Menge Operatoren für die ZR gilt

access 1 Zugriffstyp aus der Menge {read,execute}

node 1..n Operatoren dürfen auf diesen Rechenknoten ausgeführt werden
signatureK 0..1 Öffentlicher Schlüssel der geforderten Signaturen
immediate 1..1 Boolescher Wert, der die sofortige Anwendung der ZR definiert

use 0..1 Definiert mit �+� oder �-� Anwendung der ZR
policyS 0..1 Digitale Signatur der ZR

Attribut K Beschreibung
slotID 1 Gilt für Datenausgang mit dieser SlotID
with 1..n Zugriff auf Datenelemente ist diesen Operatoren gestattet
on 1..n Zugriff auf die Objekte darf auf diesen Rechenknoten erfolgen

unprotected 1 Boolescher Wert um Datenstrom ungeschützt freizugeben

Tabelle 7.1: Basisattribute einer Zugriffsrichtlinie (ZR), Spalte K steht für die Kardinalität der
Attribute.

Tabelle 7.1 zeigt die Grundmenge an Attribute, die für eine Zugriffsrichtlinie definiert wer-
den können. Die Kardinalität (K) gibt an, ob ein Attribut option, verpflichtend oder beliebig
häufig vorkommen kann. Das Attribut policyID definiert einen eindeutigen Identifikator für
die Zugriffsrichtlinie und ist verpflichtend. Der Identifikator der Zugriffsrichtlinie entspricht
der Identität der Zugriffsrichtlinie. Der Zeitpunkt, zu dem die Zugriffsrichtlinie definiert wird
und damit gültig ist, ist als Zeitstempel im Attribut timestamp festgehalten, was ebenfalls eine
verpflichtende Angabe ist. Für welche Subjekte die Zugriffsrichtlinie gilt, definiert das Attribut
roles. Die Kardinalität fordert mindestens ein Eintrag, es können jedoch endlich viele Einträ-
ge zugewiesen werden, sodass die Zugriffsrichtlinie für alle Eintragungen gilt. Im weiteren
Verlauf wird noch erörtert werden, dass Zugriffsrichtlinien vererbt werden können. Um eine
Vererbung für die Zugriffsrichtlinie auszuschließen, wird das Attribut roleInherit mit false
belegt, sonst mit true. Für welche Operatoren die Zugriffsrichtlinie gilt wird über das Attribut
operator festgelegt. Auch hier sind Mehrfacheinträge erlaubt, es muss jedoch mindestens ein
Operator definiert werden. Als Angabe sind sowohl eindeutige Identitäten einzelner Operatoren
möglich, als auch die Angabe von Domänen, die Mengen von Operatoren umfassen. Der mit
der Zugriffsrichtlinie adressierte Zugriff definiert das verpflichtende Attribut access, das mit
{�read�,�execute�} belegt werden kann. Die Bedeutung der einzelnen Zugriffskonstanten wur-
de bereits erläutert. Soll die Zugriffsrichtlinie sofort an allen Stellen durchgesetzt werden, kann
das boolesche Attribut immediate mit true belegt werden. Dann wirkt sich die Zugriffsrichtlinie

63

7 Architektur des Sicherheitskonzeptes

Attribut K Beschreibung
evaluatorURI 1 Identität des Evaluators

evaluatorV 1 Nummerische Angabe zur Version des Evaluators
evaluatorS 1 Signatur des Evaluators zur Prüfung der Authentizität

rule 0..1 Individuelle Meta-Daten für den Evaluator

Attribut K Beschreibung
filterURI 1 Falls ein Filter angewendet werden soll, die Identität des Evaluators

filterV 1 Numerische Angabe zur Version des Filters
filterS 1 Signatur des Filters zur Prüfung der Authentizität
slotID 1..n slotIDs der Datenausgänge, auf die der Filter anzuwenden ist
rule 0..1 Individuelle Meta-Daten für den Filter

order 1 Relative Reihenfolge falls mehr als ein Filter pro slotID definiert ist

Tabelle 7.2: Optionale Attributmenge zur Definition eines Evaluators (oben) und eines Filters
(unten), Spalte K steht für die Kardinalität der Attribute.

auch auf die Datenelemente aus, die sich bereits in der Verarbeitung befinden und sonst noch zu
den vorherigen Bedingungen ausgewertet werden würden.

Im vorherigen Abschnitt wurde erörtert, dass Rechenknoten zur Ausführung von Operatoren
explizit zu definieren sind. Hierzu wird das Attribut node mit einer Menge von Rechenknoten-
Identitäten belegt, auf denen die Ausführung des Operators gestattet ist. Es muss mindestens
ein Rechenknoten benannt werden, sonst wäre der Operator nicht ausführbar. Anstatt einzel-
ner Identitäten können auch Domänen angegeben werden, die Mengen von Rechenknoten
enthalten.

Ist als Zugriffstyp �read� definiert, bezieht sich die Zugriffsrichtlinie auf die von dem Operator
erzeugten Datenelemente. Der untere Teil der Tabelle 7.1 definiert die Menge von Attributen, die
je Datenausgang der refrenzierten Operatoren vergeben werden können. Eine slotID ist aus dem
ursprünglichen Operator-Modell von NexusDS und indexiert eindeutig Dateneingänge und Da-
tenausgänge. Das Attribut slotID in der Zugriffsrichtlinie definiert den Index des Datenausgangs,
auf die sich die Attribute with und on beziehen. Sie erlauben die Einschränkungen anzugeben,
von welchen Operatoren, Attribut with, auf welchen Rechenknoten, Attribut on, die ausgehenden
Datenelemente verarbeitet werden dürfen. Das boolesche Attribut unprotected legt fest, ob der
Datenausgang in von Anfragen außerhalb der kontrollierten Ausführungsumgebung lesbar ist.
Wird dieses mit wahr belegt, ist der Datenausgang unverschlüsselt und es können Operatoren des
ursprünglichen NexusDS an den Datenausgang angebunden werden. Für jeden Datenausgang
muss eine Definition vorhanden sein, wenn die Datenelemente für andere Operatoren lesbar sein
sollen.

Soll bestimmt werden, dass die ausgehenden Datenelemente der in Attribut operator definierten
Operatoren nur von zertifizierten Objekten verarbeitet werden, kann mit dem Attribut signatureK

64

7.2 Definition und Auswertung von Zugriffsrichtlinien

Menge an Zugriffsrichtlinien,
die den Zugriff erfüllen

Datenkanäle zur Abfrage von
Informationen
(Implementierungsabhängig)

Zugriffsrichtlinie

Evaluator Zugriffstyp, Subjekt,
Operator, Teil-Anfrage

Abbildung 7.1: Schema eines Evaluators mit Eingabe und Ausgabe.

der öffentlicher Schlüssel des gewünschten Prüfers definiert werden. Ein Eintrag für dieses
Attribut impliziert die Ausführung in Sicherheitszone-Drei.

Tritt der Fall ein, dass eine Zugriffsrichtlinie zur Ausführungszeit einer Anfrage zurückgenommen
wird. Müssen alle sich in der Ausführung befindlichen Operatoren, die von der Zugriffsrichtlinie
referenziert sind, über die Änderung benachrichtigt werden. Hierzu setzt die Sicherheitsarchi-
tektur unter Anderem auf die Interpunktion von Zugriffsrichtlinien in Datenströme. Für die
Operatoren, die die Interpunktionen empfangen, muss erkennbar sein, ob die interpunktierte
Zugriffsrichtlinie zurückgenommen oder angewendet werden soll. Für diesen Zweck existiert
ein Attribut use, dass mit einem Zeichen �+� oder �-� definiert, ob die interpunktierte Zugriffs-
richtlinie angewendet oder zurückgenommen werden soll. Verwendet wird das Attribut nur
dann, wenn die Zugriffsrichtlinie in einen Datenstrom eingeflochten wird. Das Konzept wurde
bereits, wie auch die Interpunktion mit Zugriffsrichtlinien in den Datenstrom von FENCE in
4.4 vorgestellt. Ebenfalls nur für die Interpunktion genutztes Attribut ist policyS, indem eine
digitale Signatur der Zugriffsrichtlinie eingetragen wird. Diese wird vor der ersten Interpunktion
erzeugt und berechnet sich aus dem eindeutigen Hashwert der Zugriffsrichtlinie, auf den der
geheime Schlüssel der Anfrage angewendet wurde. Der Signaturwert wird von jeder Einbettung
vor Verwendung der Zugriffsrichtlinie überprüft, um sicherzustellen, dass ein eingebetteter
Operator keine selbst erzeugten Zugriffsrichtlinien in die Datenströme einschleust. Ein Kopieren
der Signatur ist für die Operatoren nicht möglich, denn sie Verfügen nicht über den geheimen
Schlüssel der Anfrage.

7.2.4 Optionale Auswertungen von Zugriffsrichtlinien mit Evaluatoren

Es wurde bereits erwähnt, dass Zugriffsrichtlinien entschieden werden müssen, was einen Mecha-
nismus zu deren Auswertung notwendig macht. Zur Auswertung betrachtet der Policy Decision
Point (PDP) die zu einem Operator definierten Zugriffsrichtlinien und vergleicht den geforderten
Zugriff mit dem von den Zugriffsrichtlinien erlaubten Zugriff. In Abschnitt 5.1.3 wurde das
Anwendungsszenario der intelligenten Fabriken vorgestellt, in dem komplexe Zugriffe kontrol-
liert werden müssen. Um zu vermeiden, dass bereits bestehende Systeme zur Entscheidung
von Zugriffen in die Zugriffsrichtlinienarchitektur von NexusDS vollständig übertragen werden

65

7 Architektur des Sicherheitskonzeptes

müsse, erlaubt die Sicherheitsarchitektur die Definition von Evaluatoren. Evaluatoren sind aus-
führbare Objekte, die einen beliebigen Algorithmus zur Entscheidungsfindung implementieren.
Um den PDP anzuweisen, zur Entscheidung eines Zugriffes einen Evaluatoren zu verwenden,
wird eine Zugriffsrichtlinie zusätzlich mit den in Tabelle 7.2 gezeigten Attribute versehen. Die
Angabe muss die eindeutige Identität über Attribut evaluatorURI, eine Versionsangabe über
Attribut evaluatorV und die digitale Signatur über Attribut evaluatorS des Evaluator definie-
ren. Unterschiedliche Versionen erleichtern den Entwicklern von Evaluatoren einen gezielteren
Einsatz von unterschiedlichen Versionen, was zum Beispiel die Einführung neuer Evaluatoren
erleichtert. Die Signatur stellt sicher, dass der Evaluator genau die Implementierung aufweist,
die die Zugriffsrichtlinie fordert. Sodass die sicherheitskritische Auswertung genau von der
Evaluator-Implementierung vorgenommen wird, der gefordert ist. Berechnet wird die Signatur
vom zentralen Secure Operator Repository (SOR), dass Evaluatoren vorhält. Attribut rule ist
ein frei definierbares Feld für Meta-Daten, das die Implementierung des Evaluators selbst auswer-
tet. Das erlaubt die flexiblere Nutzung von einer Implementierung für verschiedene Aufgaben,
frei nach der Realisierung des Entwicklers.

Für jede Zugriffsrichtlinie kann nur ein Evaluator definiert werden. Weiter ist zu beachten, dass
Zugriffsrichtlinien mit Evaluatoren immer Zugriffsrichtlinien ohne Evaluatoren nachgeordnet
werden. Das heißt, wenn eine Entscheidung getroffen werden soll, ob ein Zugriff gestattet ist
oder nicht und es werden mehrere Zugriffsrichtlinien mit und ohne Evaluator für den Zugriff
gefunden. Dann werden zuerst die Zugriffsrichtlinien ohne Evaluator ausgewertet, erfüllt eine
davon den Zugriff, werden die Zugriffsrichtlinien mit Evaluator nicht mehr beachtet. Nur
falls keine Zugriffsrichtlinie ohne Evaluator den Zugriff erfüllt, werden Zugriffsrichtlinien mit
Evaluator ausgewertet. Dadurch wird eine gegebenenfalls sehr aufwendige Prüfung durch
Evaluatoren vermieden, wenn gewöhnliche Zugriffsrichtlinien den Zugriff erfüllen. Die genaue
Rangfolge der Auswertung, sofern mehrere Zugriffsrichtlinien mit Evaluator vorhanden sind,
wird später noch erläutert.

Als Eingabe erhält ein Evaluator die Identität der Zugriffsrichtlinie, die ihn definiert, die Art des
gewünschten Zugriffes aus den Zugriffskonstanten {read,execute}, die Identität des Subjektes
das den Zugriff wünscht und den Operator, auf den der Zugriff erfolgen soll. Soll der Zugriffstyp
�read� ausgewertet werden, erhält der Evaluator noch einen Anfrageteilgraph, der dem zu
prüfenden Operator in der Anfrage vorgelagert ist. Die Details dazu werden im Abschnitt 7.4, zur
kontrollierten Anfrageplanung, erläutert. Als Ergebnis muss der Evaluator den Zugriff gestattet
oder ablehnen. Sollte der Zugriff erlaubt werden, liefert der Evaluator eine nicht leere Menge von
Zugriffsrichtlinien zurück, die die Anfrage erfüllen. Mit den zurückgelieferten Zugriffsrichtlinien
kann die Sicherheitsarchitektur weitere Auswertungen vornehmen und hat die Bestätigung das
der Zugriff erlaubt ist.

Abbildung 7.1 zeigt das Schema eines Evaluators mit den genannten Eingaben. Mit der gelieferten
Information kann die Sicherheitsarchitektur einen Abgleich durchführen, ob der Zugriff gestattet
ist oder nicht. Wie die Implementierung zu einem Ergebnis kommt, ist dem Entwickler des
Evaluators überlassen. Denkbar ist zum Beispiel der Zugriff auf anwendungsinterne Datenban-
ken, die NexusDS nicht bekannt sind. Im Anwendungsszenario von Squebber, siehe Abschnitt
5.1.2, könnten das zum Beispiel Freundeslisten sein, die definieren, dass Subjekte befreundet

66

7.2 Definition und Auswertung von Zugriffsrichtlinien

Transformierte
Datenelemente

Datenkanäle zur Abfrage von
Informationen
(Implementierungsabhängig)

Zugriffsrichtlinie

Filter
Subjekt, Operator, SlotID

Datenelemente

Abbildung 7.2: Schemas eines Filters mit Eingängen und Ausgängen.

sind und so gegenseitig auf Daten zugreifen dürfen. Die Implementierung von Evaluatoren
erleichtert bestehenden Anwendungen, die Sicherheitsarchitektur effizient zu nutzen. Will die
Implementierung auf die Services der Sicherheitsarchitektur zur Entscheidungsfindung zugreifen,
benötigt die Implementierung eine Zertifizierung des zentralen Service Certificate Autority Point
(CAP). Nur dann kann die Implementierung eine Verbindung herstellen. Wo die Evaluatoren zur
Ausführung gebracht werden, wird später erläutert.

7.2.5 Transformation von Datenströmen mit Filter

Um den Zugriff auf Datenelemente in Anfragen zu verfeinern und nicht den Zugriff nur vollstän-
dig zuzulassen oder vollständig zu blockieren, können Operatoren mit Filter versehen werden.
Dazu werden analog zum Evaluator Filter in Zugriffsrichtlinien definiert. Tabelle 7.2 zeigt die
dazu notwendigen Attribute. Zusätzliches Attribut ist die slotID, die definiert, an welchen
Datenausgang, im Falle einer Quelle und an welchen Dateneingang, im Fall einer Operation oder
Senke, der Filter zu verwenden ist. Die Attribute bilden eine Gruppe und können mehrfach in
einer Zugriffsrichtlinie definiert werden um je slotID mehrere Filter anzubringen. Für Warte-
schlangen und Input-Manager können ebenfalls Zugriffsrichtlinien mit Filter definiert werden.
Ist das der Fall, werden diese mit den Filtern der Operation, der die Warteschlangen und der
Input-Manager vorgelagert ist, vereinigt. Ein Zwischenschalten in die Kette von Warteschlange,
Input-Manager und Operation wäre aus Komplexitätsgründen nicht sinnvoll. Die Reihenfolge
der Ausführung von Filter wird später noch erläutert.

Sollten für eine slotID mehrere Filter definiert sein, wird das Attribut order ausgewertet. Es
ist mit einer natürlichen Zahl zu belegen, nach deren aufsteigender Reihenfolge die Filter
angeordnet werden. Der Filter mit der kleinsten Zahl führt die erste Transformation durch und
der Filter mit der höchsten Zahl die letzte Transformation. Befinden mehrere Filter auf der
gleichen Ordnungsstufe, aus verschiedenen Zugriffsrichtlinien, wird die Ordnung nach Alter der
Zugriffsrichtlinie ausgewertet, von der ältesten zur jüngsten Zugriffsrichtlinie. Die Subjekte, die
Zugriffsrichtlinien mit Filter spezifizieren, müssen darauf achten, dass die Transformationen von
hintereinander ausgeführten Filtern kompatibel sind. Lediglich das Datenformat ist festgelegt und
entspricht genau dem, das durch den zu filternden Dateneingang beziehungsweise Datenausgang
des Operators gegeben ist.

67

7 Architektur des Sicherheitskonzeptes

Wird eine Menge von Operatoren im Attribut operator definiert, dann bezieht sich der definierte
Filter für jeden Operator auf dieselbe slotID. Muss eine Unterscheidung festgelegt werden, weil
die Operatoren zum Beispiel unterschiedliche Datentypen an der gleichen slotID verarbeiten,
müssen getrennte Zugriffsrichtlinien definiert werden. Ob ein Filter mit dem jeweiligen Daten-
ausgang beziehungsweise Dateneingang kompatibel ist, legen mit Implementierung des Filters
assoziierte Meta-Daten fest. Abbildung 7.2 illustriert das Schema eines Filters. Es handelt sich ana-
log zum Evaluator um ein ausführbares Objekt. Welche Transformation der Filter implementiert,
ist dem jeweiligen Entwickler überlassen. Soll der Filter mit Services der Sicherheitsarchitektur
interagieren, ist wie für den Evaluator eine Zertifizierung des zentralen Certificate Autority
Point (CAP) Service notwendig. Die Vorhaltung der Filter ist analog zum Evaluator im zentralen
Secure Operator Repository (SOR).

Zu Ausführungsbeginn eines Filters erhält der Filter die Identität der Zugriffsrichtlinie, die den
Filter definiert. Anhand der eindeutigen Identität kann die Implementierung des Filters sich, falls
nötig, die Zugriffsrichtlinie zur Auswertung beschaffen. Zudem die Identität des Subjektes, dass
die Anfrage ausführt, in der der Filter eingesetzt werden soll und die Identität des Operators
und die slotID, der der Filter vor- oder nachgelagert ist. Mit diesen zusätzlichen Informationen
kann die Implementierung des Filters individuell auf die Einsatzumgebung reagieren. Daneben
besitzen Filter genau einen Dateneingang, an den der zu transformierende Datenstrom angebun-
den wird, und genau einen Datenausgang, der den transformierten Datenstrom ausgibt. Über
diesen Dateneingang und Datenausgang wird der Filter in den betroffenen Datenstrom zwischen-
geschaltet. Aus Gründen der Effizient werden die Filter immer auf demselben Rechenknoten
ausgeführt wie der referenzierte Operator.

7.3 Abhängigkeit von Datenströmen und Wiedereinflechtung von
Zugriffsrichtlinien

In den vorherigen Abschnitten wurde bereits angedeutet, dass es notwendig ist, den Fluss
von Datenelementen zu verfolgen. Das ist dann der Fall, wenn für den Zugriffstyp �read�

ermittelt werden muss, von welchen Operatoren ein Datenstrom erzeugt wurde. Zur Ermittlung
des Pfades in der Anfrage, der die Entstehung und Bearbeitung des Datenstromes beschreibt,
ist es notwendig zu wissen, welche Dateneingänge für welche Datenausgänge relevant sind.
Abbildung 7.3 zeigt die drei möglichen Fälle, die auftreten können, wenn Datenströme von einer
Operator-Box verarbeitet werden. Abschnitt 7.3.1 erörtert die Möglichkeiten, eine zuverlässige
Zuordnungen von Dateneingängen auf Datenausgänge vorzunehmen.

Neben der Aufgabe der Zuordnung muss für die Wiederinterpunktion von Zugriffsrichtlinien
ein korrekter Zeitpunkt bestimmt werden. Wiederinterpunktion beschreibt die Aufgabe, Zugriffs-
richtlinien, die über die Datenströme interpunktiert verteilt werden, nach dem Verarbeiten des
Datenstromes durch eine Operator-Box wieder in Datenströme einzubringen. Das erfordert zum
Ersten eine korrekte Zuordnung, aus welchen eingehenden die ausgehenden Datenströme erzeugt
werden und zum Zweiten die Ermittlung des korrekten Zeitpunktes zur Wiederinterpunktion.
Diese Fragestellung erörtert Abschnitt 7.3.2.

68

7.3 Abhängigkeit von Datenströmen und Wiedereinflechtung von Zugriffsrichtlinien

Operator
Box

Operator
Box

a) Symmetrisch
n=|Eingänge|=|Ausgänge|=m

b) Aggregation
n=|Eingänge|>|Ausgänge|=m

Operator
Box

c) Aufspaltung
n=|Eingänge|<|Ausgänge|=m Zugriffsrichtlinien Interpunktion Tupel

Abbildung 7.3: Mögliche Fälle zur Zuordnung von Dateneingänge auf Datenausgänge.

7.3.1 Zuordnung von Dateneingänge auf Datenausgänge

Die Zuordnung von eingehenden Datenströmen auf die ausgehenden Datenströme hängt von
dem Ursprung der Datenströme und der durchgeführten Operation der Operator-Box ab. Der Ur-
sprung der Datenströme spielt insoweit eine Rolle, dass ermittelt werden kann, welche Operatoren
für die Information eines Datenstromes verantwortlich sind. Ist ein Datenstrom mit Zugriffs-
richtlinien interpunktiert, müssen alle ausgehenden Datenströme, die mithilfe des geschützten
Datenstromes berechnet wurden, ebenfalls mit den ursprünglichen Zugriffsrichtlinien versehen
werden. Welche ausgehenden Datenströme welchen eingehenden Datenströmen zugeordnet
werden müssen, ist abhängig von der Operation, die die Operator-Box durchführt.

Wie bereits in der Erläuterung zu den drei Sicherheitszonen in Abschnitt 6.2 beschrieben, kann
die Sicherheitsarchitektur nicht ohne Weiteres eine zuverlässige Annahme treffen, wie die von
der Box durchgeführte Operation gestaltet ist. Für alle Fälle die in Abbildung 7.3 gezeigt sind,
bestehen zahlreiche Möglichkeiten der Abbildung von Dateneingängen auf die Datenausgänge.
Beispielsweise könnte in Fall a) für n > 1, jeder zweite Dateneingang auf den letzten Daten-
ausgang abgebildet werden oder alle Dateneingänge auf alle Datenausgänge. Deshalb muss
entweder bei der Zuordnung eingehender Datenströme auf die ausgehenden Datenströme eine
Heuristik zum Einsatz kommen, oder der Operator muss mit ausreichend Information versehen
werden, sodass die Zuordnung zuverlässig durchgeführt werden kann.

Zum Versehen der Operation mit Informationen zur Zuordnung von eingehenden Datenströmen
auf ausgehende Datenströme, wird das Meta-Daten-Modell von NexusDS zur Beschreibung der
Operationen erweitert. Tabelle7.3 zeigt die zusätzlichen Attribute, die dem Operator Meta-Daten-
Modell hinzugefügt werden. Die Erweiterung erlaubt für jeden Datenausgang zu definieren,
von welchen Dateneingängen der generierte Datenstrom abhängt. Zwar wäre auch eine Klas-

69

7 Architektur des Sicherheitskonzeptes

Attribut K Beschreibung
outputSlotID 1 Index des zu beschreibenden Datenausgangs
inputSlotID 0..n Indexmenge der abhängigen Dateneingänge
independent 1 Boolean ob Datenausgang unabhängig ist

Tabelle 7.3: Attribute zur Beschreibung der Abhängigkeit von Datenausgängen zu Dateneingän-
gen, Spalte K steht für die Kardinalität der Attribute.

sifizierung von Operatoren möglich, sodass zum Beispiel ein Operator der Klasse Aggregation,
wie in der Abbildung mit Fall b) dargestellt, dennoch wäre auch dann nicht genau klar, welche
Dateneingänge in welche Datenausgänge aggregiert werden. Somit ist eine bloße Klassifizierung
nicht ausreichend, um eine exakte Zuordnung zu definieren. Sollte eine Operation einen neu-
en Datenstrom erzeugen, der unabhängig von allen eingehenden Datenströmen ist, muss der
Sachverhalt explizit vermerkt werden. Sollte die Beschreibung unvollständig sein, das heißt, ein
oder mehrere Datenausgänge haben weder Verweise auf Dateneingänge noch einen expliziten
Ausschluss, kommt eine Heuristik zum Einsatz. In Sicherheitszone-Hoch sind die Angaben zur
Zuordnung von eingehenden Datenströmen auf ausgehende Datenströme und eine explizite
Definition von zugriffsrichtlinienfreien Ausgängen verpflichtend. Die verantwortlichen Prüfer, die
die Operatoren verifizieren, haben das Vorhandensein und die korrekte Zuordnung zu prüfen.

Sollten in der Sicherheitszone-Mittel keine oder nur unvollständige Angaben vorhanden sein,
kommt eine Heuristik zum Einsatz. Sie geht grundsätzlich davon aus, dass ausgehende Daten-
ströme, die keine eingehenden Datenströme referenzieren und nicht als unabhängige Datenströme
markiert sind, von allen Dateneingängen abhängig sind. Das heißt, für die Wiederinterpunktion,
dass in den Datenausgang die Zugriffsrichtlinien aller Dateneingänge wiederinterpunktiert
werden. Würde die Heuristik umgekehrt arbeiten und alle keinerlei Zugriffsrichtlinien wieder-
interpunktieren, dann würde dieser Ausgang aufgrund des generellen Zugriffsverbotes nicht
mehr weiterverarbeitet werden können. Da das Sicherheitskonzept aber die Möglichkeit vorse-
hen will, dass bereits vorhandene Operatoren von NexusDS verwendet werden können, ist die
Vorgehensweise nicht sinnvoll. Sonst müsste jeder Operator über die erweiterten Meta-Daten
verfügen, dass nachfolgende Operatoren Datenelemente verarbeiten dürfen. Nicht erkennbar
für die Heuristik ist, ob die Menge der Zuweisungen auf Datenausgänge vollständig ist. Bei-
spielsweise könnte ein Datenausgang Z mit Zuweisungen auf Eingang A und B versehen sein,
es müsste aber, dass die Zuweisung vollständig ist, auch Dateneingang C auf Z verweisen. Soll
diese mögliche Lücke ausgeschlossen werden, muss eine Zugriffsrichtlinie signierte Operationen
der Sicherheitszone-Hoch erzwingen.

7.3.2 Zeitpunkt der Einflechtung

Trifft eine Zugriffsrichtlinie zum Zeitpunkt t an einer Operator-Box ein, muss diese für alle
Datenelemente, die ab Zeitpunkt t verarbeitet werden auch für nachgelagerte Boxen gelten. Die
Wiederinterpunktion in die ausgehenden Datenströme der Box darf deswegen nicht zu früh
und nicht zu spät stattfinden. Wird zu früh interpunktiert, rutscht die Zugriffsrichtlinie in die

70

7.3 Abhängigkeit von Datenströmen und Wiedereinflechtung von Zugriffsrichtlinien

Attribut K Beschreibung
outputSlotID 1 Index des zu beschreibenden Datenausgangs

outgoing 1 Zahl ausgehender Datenelemente, k
incoming 1..n Menge aus {inputSlotID, n} für abhängige Dateneingänge

Tabelle 7.4: Attribute zur Beschreibung der eingehenden Datenelemente im Verhältnis der ausge-
henden Datenelemente, Spalte K steht für die Kardinalität der Attribute.

Zukunft und gilt bereits für Datenelemente, für die die Zugriffsrichtlinie noch keine Gültigkeit
haben sollten. Eine zu späte Interpunktion verletzt den Schutz der Datenelemente, da die
Datenelemente vor der Interpunktion noch mit veralteten Zugriffsrichtlinien verarbeitet werden.
Analog zur Betrachtung der Zuordnung von Dateneingängen auf Datenausgänge gilt, dass der
Sicherheitsarchitektur nicht ohne Weiteres klar ist, wann eine Zugriffsrichtlinie interpunktiert
werden muss.

Für die korrekte Einflechtung von Zugriffsrichtlinien zwischen die Datenelemente muss bekannt
sein, aus wie vielen eingehenden Datenelementen, wie viele ausgehende Datenelemente entste-
hen. Ebenfalls muss klar sein, auf welche Dateneingänge und Datenausgänge sich die Angaben
beziehen. Wenn zum Beispiel bekannt ist, dass aus drei eingehenden Datenelementen in Daten-
eingang A und zwei eingehende Datenelemente in Dateneingang B genau ein Datenelement
an Datenausgang C entsteht, kann die Einflechtung exakt vorgenommen werden. Dann muss
lediglich berücksichtigt werden, wie viele Datenelemente sich in den jeweiligen Warteschlangen
aufhalten und ob momentan eine Datenverarbeitung stattfindet. Auf Basis der Informationen
wird dann berechnet, ab welchem Datenpaket das die Operation verlässt, die Zugriffsrichtlinie in
den Datenstrom interpunktiert werden muss. Zur Spezifikation wird wie bei der Verteilung der
Zugriffsrichtlinien auf Datenausgänge das Meta-Daten-Modell des Operatoren-Modell erweitert.
Tabelle 7.4 zeigt die Erweiterung. Zu jedem Datenausgang, der nicht unabhängig ist, muss
definiert werden, wie viele Datenelemente von welchen Dateneingängen notwendig sind. Das
Attribut incoming beschreibt für jeden eingehenden Dateneingang, identifiziert mit inputSlotID,
die Anzahl eingehender Datenelemente n, sodass k Datenelement aus dem Operator in den
spezifizierenden Datenausgang gegeben werden. Die Anzahl der ausgehenden Datenelemente k
muss deshalb definiert werden, da ein Operator aus einer beliebigen Anzahl an eingehenden
Datenelementen eine beliebige Anzahl an ausgehenden Datenelementen generieren kann. Die Zu-
verlässigkeit der Angaben hängt von den Zugriffsrichtlinien gewählten Sicherheitszonen ab. Nur
in Sicherheitszone-Hoch, kann von einer vollständigen und korrekten Spezifikation ausgegangen
werden.

Analog zur Verteilung der Zugriffsrichtlinien auf Datenausgänge muss geklärt werden, wie
sich die Sicherheitsarchitektur verhält, falls keine vollständigen Angaben vorhanden sind. Für
Datenausgänge, die nicht als zugriffsrichtlinienfrei definiert sind oder für die keine Angaben
vorhanden sind, werden Zugriffsrichtlinien sofort interpunktiert. Denn es kann keine zuverlässige
Annahme getroffen werden, wie viele Datenelemente von der Operation aus der Warteschlange
entnommen werden und wie viele Datenelemente nach einer Entnahme generiert werden.
Deshalb ist zur Gewährleistung der Zugriffskontrolle eine Verschiebung der Zugriffsrichtlinie in

71

7 Architektur des Sicherheitskonzeptes

die Zukunft der Möglichkeit vorzuziehen, dass Datenelemente mit veralteten Zugriffsrichtlinien
verarbeitet werden. Der sichere Ausschluss einer Verschiebung der Zugriffsrichtlinie auf der
Zeitachse kann nur mit dem Erzwingen der Sicherheitsstufe-Hoch gewährleistet werden.

7.4 Kontrollierte Planung von Anfragen

Die Planung von Anfragen muss unter Berücksichtigung der Zugriffsrichtlinien durchgeführt
werden. Im Falle einer Planung ohne Beachtung kann nicht davon ausgegangen werden, dass
eine Anfrage lauffähig ist und sofort abgebrochen werden muss. Dafür wird der ursprüngliche
Core Query Service zum Secure Core Query Services (SCQS) erweitert. Dieser führt die Planung
von Anfragen unter Berücksichtigung der aktuellen Zugriffsrichtlinien durch.

Die Ausführung geschützter Operatoren kann nur über den SCQS erfolgen. Dessen Komponenten,
die im vorliegenden Abschnitt erläutert werden, erhalten Zugang zu dem zentralen SOR. Nur im
SOR sind geschützte Operatoren verfügbar, sodass die ursprüngliche Anfrageplanung keinen
Zugriff auf die Operatoren hat. Auf das ursprüngliche Operator Repository (OR) besteht vom
SCQS ebenfalls Zugriff, da eine Anfrage sowohl aus geschützten Operatoren als auch aus
ungeschützten Operatoren bestehen kann. In diesem Fall können ungeschützte Operatoren aber
nur an Datenausgänge verbunden sein, die explizit über Zugriffsrichtlinien als ungeschützt
deklariert wurden. Der Austausch von Information zwischen den Komponenten des SCQS ist
durch digitale Zertifikate geschützt. Das heißt, andere Services, die nicht über entsprechende
Zertifikate verfügen, können sich nicht in die Anfrageplanung einmischen.

7.4.1 Secure Query Interface (SQI)

Die geschützte Variante des Query Interfaces unterscheidet sich gegenüber der ungeschützten
Variante dadurch, dass nicht jede Anfrage akzeptiert wird. Es können nur die Subjekte Anfragen
absetzen, die über eine registrierte Identität verfügen, die als authentisch bestätigt werden kann

Im ersten Schritt wird vom Absender (Subjekt) der Anfrage eine gesicherte Verbindung zum
Secure Query Interface (SQI) aufgebaut (1). Nach Aufbau der Verbindung überprüft das SQI
den Absender der Anfrage, der zum Verbindungsaufbau Identität und Passwort übertrug. Die
Prüfung wird über den Identity Administration Point (IAP) durchgeführt. Bestätigt dieser
die Identität des Subjekts, ist es authentifiziert. Zum Abschluss gibt das SQI die Anfrage mit
der Identität des Subjektes, das die Anfrage ausführen will, an den Secure Query Optimizer
(SQO).

7.4.2 Secure Query Planer (SQP)

Der Secure Query Planer (SQP) überprüft Anfragen mit geschützten Operatoren nach den in der
Sicherheitsarchitektur gegebenen Zugriffsrichtlinien. Die Überprüfung besteht aus dem Abgleich,
ob das Subjekt, dass die Anfrage ausführen will, die geschützten Operatoren der Anfrage zur

72

7.4 Kontrollierte Planung von Anfragen

Secure Core
Query Service (SCQS)

Anfragegraph
Identity

Administration
Point (IAP)

Policy
Decision

Point (PDP)

2. Identität von Subjekt

bestätigen

3a. Prüfen Subjekt

Operatoren in der Anfrage
ausführen darf

3b. Leserecht auf Vorgänger

Operatoren prüfen

Anfrage
Fragment

Anfrage
Fragment Anfrage

Fragment

1. Anfrage abschicken

5. Ausführung der

Anfrage

4. Laden von

Operatoren und
Filtern

Secure Query
Interface (SQI)

Secure Query
Optimizer (SQO)

Secure Query
Fragmenter (SQF)

Secure Execution
Manager (SEM)

Secure Query
Planer (SQP)

Secure
Operator

Repository
(SOR)

Operator
Repository

(OR)

Abbildung 7.4: Veränderte Anfrageplanung in der Sicherheitsarchitektur, die Zugriffsrichtlinien
für die Verteilung der Anfrage berücksichtigt.

Ausführung bringen darf. Des Weiteren wird bei der Überprüfung bereits eingeschränkt, auf
welchen Rechenknoten die Ausführung gestattet ist. Darauf folgt die Überprüfung, ob jeder
Operator die Datenelemente seiner vorgeschalteten Operatoren verarbeiten darf. Nur wenn für
beide Teile eine erfolgreiche Überprüfung stattfand, leitet der SQP die Anfrage in den nächsten
Schritt weiter. Die Anfrage selbst ist dann mit zusätzlichen Meta-Daten aufbereitet, sodass
die nachfolgenden Schritte der Anfrageplanung, die Planung und Verteilung im Einklang der
Zugriffsrichtlinien durchführen können.

Die Prüfung ob eine Anfrage ausgeführt werden darf findet in drei Schritten statt. Im ersten
Schritt wird geprüft, ob das Subjekt, dass die Anfrage ausführen will jeden Operator der Anfrage
ausführen darf. Das betrifft Zugriffsrichtlinien mit dem Zugriffstyp �execute�. Im zweiten
Schritt wird sichergestellt, das die hintereinander angeordneten Operatoren, die Datenelemente
ihrer Vorgänger lesen dürfen. Das betrifft den Zugriffstyp �read�. In jedem Schritt kann eine
Menge von Rechenknoten definiert sein, für die die Ausführung gestattet ist. Sollte im dritten
Schritt aus der Kombination der möglichen Rechenknoten, auf denen die Operatoren ausgeführt
werden dürfen, keine Lösung gefunden werden, kann die Anfrage nicht ausgeführt werden und
die Anfrageplanung wird Abgebrochen. Allgemein gilt, wird wird die Anfrage abgebrochen,
erhält der Absender eine Fehlermeldung.

Schritt Eins, Prüfung der Ausführbarkeit aller Operatoren. Für jeden Operator wird über den
zentralen Policy Decision Point (PDP) abgefragt, ob dem Subjekt die Ausführung des Operators
gestattet ist. Dazu wird eine verschlüsselte Verbindung zum PDP hergestellt und für jeden
Operator die folgende Anfrage stellt. Als Zugriff �execute�, die Identität des Subjektes, dass die
Anfrage ausführt und die Identität des zu prüfenden Operators. Ist die Ausführung gestattet,

73

7 Architektur des Sicherheitskonzeptes

Quelle

Quelle

Senke Operator-Box

Quelle1

Quelle2

Warteschlange1

Input-Manager1 Operation1 Senke1 Warteschlange3

Warteschlange2

Abbildung 7.5: Vereinfachte Darstellung einer Anfrage als Graph, in der jeder Operator ein
Knoten darstellt.

erhält der SQP die Menge an Zugriffsrichtlinien, die den Zugriff erfüllen (3a). Die Menge wird
dem Operator zugeordnet und mit dem nächsten Operator der Anfrage in gleicher Weise verfah-
ren. Die Auswertungsreihenfolge der Operatoren spielt keine Rolle, sie können einzeln betrachtet
werden, da für den Zugriffstyp �execute� keine Abhängigkeit zwischen den Operatoren besteht.
Sollte für einen Operator kein Zugriff erlaubt sein, wird die Planung abgebrochen.

Schritt Zwei, Prüfung, ob der lesende Zugriff auf die dem Operator vorgelagerten Operatoren
gestattet ist. Vorgelagert sind genau die Operatoren, die auf dem Pfad liegen, der in einen
Dateneingang des zu überprüfenden Operators eingeht. Abbildung 7.5 illustriert die Betrachtung
einer Anfrage als Graph. So ist in der Abbildung Senke1 auf jeden Fall die Operator-Menge
Warteschlange3, Operation1 und Input-Manager1 vorgelagert. Die weiteren Vorgänger unterlie-
gen einer Fallunterscheidung, je nachdem wie die Dateneingänge auf die Datenausgänge von
Operation1 verzweigen. Ist in der Abbildung der Datenausgang von Operation1 sowohl von dem
Dateneingang mit Quelle1 und Quelle2 abhängig, wäre die Menge der vorgelagerten Operatoren
Warteschlange3, Operation1, Input-Manager1, Warteschlange1, Warteschlange2, Quelle1 und
Quelle2. Ist der Datenausgang nur von Quelle1 abhängig, wäre es die Menge Warteschlange3,
Operation1, Input-Manager1, Warteschlange1 und Quelle1, der Fall mit nur Quelle2 ist symme-
trisch. Die Menge der Knoten (Operatoren), mit den jeweiligen Kanten (Verbindungen) sind ein
Teilgraph des Anfragegraphs. Der Teilgraph enthält sowohl die Operatoren also auch die jeweils
abhängigen Verbindungen von Datenausgängen zu Dateneingängen. Wie die Verzweigungen im
Detail aufgelöst werden, entscheidet entweder eine Heuristik oder es bestehen Angaben in den
Meta-Daten der Operation, die der verzweigende Knoten ist. Abschnitt 7.3.1 hat die Handhabung
erläutert und soll hier nicht mehr erläutert werden.

Anfragen an den PDP werden nun wie folgt formuliert. Zugriffstyp ist �read�, Subjekt das die
Anfrage ausführt analog zum vorherigen Schritt, der zu prüfender Operator und der Teilgraph
V der Vorgänger, der oben Beschreiben wurde. Zu jedem Knoten des Teilgraphs vi, wird noch
die Menge an Rechenknoten mitgeliefert, auf denen der Operator des Knotens ausgeführt
werden darf. Die Menge der möglichen Rechenknoten kann mit den Zugriffsrichtlinien aus
dem vorherigen Schritt mit Zugriffstyp �execute� berechnet werden, die jedem vi zugeordnet
wurden. Mit diesen wird die Vereinigung des Attributes node gebildet, welche dann genau alle
die Rechenknoten enthält, auf denen Operator vi ausgeführt werden darf (3b). Ergebnis ist im

74

7.4 Kontrollierte Planung von Anfragen

Erfolgsfall wieder eine Menge an Zugriffsrichtlinien für den überprüften Operator, die ebenfalls
für den Operator vermerkt wird. Der Schritt wird für jeden Operator im Graph vorgenommen.
Wird für einen Operator keine erfüllenden Zugriffsrichtlinien gefunden, wird die Planung
abgebrochen.

Schritt Drei sucht für jeden Operator nach einer nicht leeren Menge an Rechenknoten, auf denen
die Ausführung gestattet ist. Jeder Operator hat in beiden vorherigen Schritten eine Menge an
Zugriffsrichtlinien zugeordnet bekommen, die wie folgt verarbeitet wird.

Die Menge der Zugriffsrichtlinien vom Zugriffstyp �read� wird über dem Attribut on geschnitten.
Ist die Menge nicht leer und die übrig gebliebenen Zugriffsrichtlinien enthalten alle vi, existiert
mindestens ein Rechenknoten auf dem alle Vorgänger gemeinsam verarbeitet werden dürfen.
Sonst wird die Verarbeitung abgebrochen. Danach wird die ermittelte Menge an Rechenknoten,
auf denen die Verarbeitung aller Vorgänger erlaubt ist, mit dem Attribut node der Zugriffsrichtli-
nien vom Zugriffstyp �execute� geschnitten. Übrig bleibt eine Menge von Rechenknoten, auf
denen das Subjekt den Operator ausführen darf und der Operator alle vorgelagerten Operatoren
lesen darf.

Aus den erläuterten Teilschritten muss nun eine Kombination gefunden werden, die jedem
Operator einen Rechenknoten zuordnet, sodass jeweils die Datenelemente der vorgelagerten
Operatoren gelesen werden können. Ist das nicht möglich, wird die Anfrage abgebrochen. Sollte
für einen Operator mehr als eine Zugriffsrichtlinie den Zugriff je Zugriffstyp �execute� und
�read� gestattet, wird für jeden Operator die Menge der Zugriffsrichtlinien nach Rang geordnet.
Höchsten Rang haben die Zugriffsrichtlinien, die weder Filter noch digitale Signaturen definieren.
Es folgen absteigend sortiert die Ränge Zugriffsrichtlinien mit Filter, mit digitalen Signaturen
und als letztes Zugriffsrichtlinien mit Filter und digitale Signaturen. Unterscheidungen in
jedem Rang werden getroffen über die Anzahl der Filter und digitalen Signaturen. Das heißt,
es ist die Zugriffsrichtlinie höher im Rang, die eine kleinere Anzahl an Filter oder digitale
Signaturen definiert. Die Vorgehensweise wurde gewählt, weil sonst in einem offenen System wie
NexusDS, es sehr schnell zu Einschränkungen kommen kann. Das folgt daraus, dass eine hohe
Anzahl an Subjekten für verschiedenste Operatoren Zugriffsrichtlinien vergeben können. Die
Auswahl von Zugriffsrichtlinien von nicht maximalem Rang, würde mit zusätzlichen Filtern den
Detailgrad von Informationen einschränken, obwohl weitere Zugriffsrichtlinien eine detailliertere
Verarbeitung zulassen würden. In zukünftigen Erweiterungen der Sicherheitsarchitektur könnte
noch eine Auswertung vorgesehen werden, die anhand einer zusätzlichen Beschreibung von
Filtern abschätzt, wie stark der Detailgrad von Information durch einen bestimmten Filter
beschränkt wird. Dadurch würde eine noch feinere Auswahl möglich, denn in der vorliegenden
Rangfolge wäre eine Zugriffsrichtlinie mit einem Filter der alle Datenelemente löscht höher,
als eine Zugriffsrichtlinie mit zwei Filtern, die keine Veränderungen vornehmen. Aus Gründen
des Umfanges muss jedoch für die Diplomarbeit auf eine feinere Unterscheidung verzichtet
werden.

Nach Beendigung von Schritt Drei steht für jeden Operator eine Auswahl von nach Rang
sortierten Zugriffsrichtlinien bereit. Auf Basis der Zugriffsrichtlinien, die den höchsten Rang
besitzen, wird die Anfrage mit zusätzlichen Meta-Daten angereichert. Die Meta-Daten beschreiben
für jeden Operator, auf welchen Rechenknoten dieser ausgeführt werden darf und definieren

75

7 Architektur des Sicherheitskonzeptes

die Filter, die an die jeweiligen Dateneingänge und Datenausgänge in welcher Reihenfolge
angeordnet werden müssen. Die Reihenfolge der Filter besteht zum einen aus dem in den
Zugriffsrichtlinien definierten Attribut order, dem Zugriffstyp �read� oder �execute� und den
Filtern die aufgrund der Forderungen vorgelagerter Operatoren eingebunden werden müssen.
Zuerst sortiert der SQP alle Filter der Zugriffsrichtlinien in der Reihenfolge des order Attributes,
von der kleinsten natürlichen Zahl zur höchsten. Tritt der Fall auf, dass auf einer Zahl mehr als
nur ein Filter definiert ist, kommt es zu einer Fallunterscheidung. Filter von Zugriffsrichtlinien
mit Zugriffstyp �read� stehen vor Filter des Zugriffstyp �execute�, sind immer noch Filter auf
der gleichen Ordnung, wird nach Zeitstempel der Zugriffsrichtlinien unterschieden. Filter in
Zugriffsrichtlinien mit älteren Zeitstempeln stehen vor jüngeren, sind die Zeitstempel gleich,
was sehr unwahrscheinlich ist, ist die Reihung nicht deterministisch und folgt aus der zufälligen
Reihenfolge der Datenstruktur. Anhand der definierten Reihenfolge kann bei der Definition
von Zugriffsrichtlinien eine gewisse Abschätzung getroffen werden, in welcher Reihenfolge
Filter von der Anfrageplanung angeordnet werden. Als weiteres Meta-Datum wird die jeweilige
Zugriffsrichtlinie angefügt, die den execute Zugriff gestattet und den read Zugriff für jeden der
jeweilig vorgelagerten Operatoren. Dies wird noch für die Interpunktion mit Zugriffsrichtlinien
eine Rolle spielen und später erörtert. Der Schlüssel, mit dem die Datenströme der Anfrage
verschlüsselt werden, berechnet ebenfalls der Secure Query Planer (SQP) und wird als Meta-
Datum der gesamten Anfrage hinzugefügt.

7.4.3 Secure Query Optimizer (SQO)

Bisher werden von NexusDS keine Optimierung durchführt, weswegen dieser Schritt über-
sprungen wird und die Erläuterung der kontrollierten Anfrageplanung direkt am Secure Query
Fragmenter (SQF) anschließt. Es seien jedoch einige Einschränkungen erwähnt, die bei der
Optimierung auf jeden Fall berücksichtigt werden müssen.

Jede durchgeführte Optimierung muss sich im Rahmen der definierten Zugriffsrichtlinien bewe-
gen. Das heißt, Operatoren können nur dann durch Optimierungen ersetzt werden, wenn das
Subjekt das Recht hat, die Optimierung auszuführen. Des Weiteren können Veränderungen der
Operatoren weitreichende Folgen auf die Zugriffsrechte zum Verarbeiten von Datenelementen
haben. Sollte zum Beispiel ein Operator in der Anfrage definiert sein, weil das Subjekt nur mit
diesem Operator Datenelemente einer verbundenen Quelle verarbeiten darf, dann kann der
Operator nicht durch eine Optimierung ersetzt werden. Ähnliches gilt für die Auswahl von
Rechenknoten, diese Optimierung muss ebenfalls unter den Einschränkungen der jeweilig gelten-
den Zugriffsrichtlinien betrachtet werden. Es kann also nur dann eine erfolgreiche Optimierung
durchgeführt werden, wenn sie in enger Koordination mit den vorhandenen Zugriffsrichtlinien
der Sicherheitsarchitektur abgestimmt wird.

7.4.4 Secure Query Fragmenter (SQF)

Die Fragmentierung der Anfrage darf nun nur noch auf Basis der Einschränkungen des Se-
cure Query Planer (SQP) durchgeführt werden. Dazu sind zu jedem Operator die Angaben

76

7.4 Kontrollierte Planung von Anfragen

vorhanden, auf welchen Rechenknoten der Operator ausgeführt werden darf. Zum Abschluss
der Fragmentierung wird noch ein Eintrag mit Zeitstempel im Protokoll des SQF erstellt, der
eine Kopie der Anfrage und die Identität des Subjektes enthält, dass die Anfrage abgeschickt hat.
Damit lässt sich nachvollziehen, welche Subjekte, welche Anfragen zu welcher Zeit ausgeführt
haben. Sonst ist die Fragmentierung keinen weiteren Einschränkungen unterlegen.

7.4.5 Secure Execution Manager (SEM)

Nachdem die Anfrage in Fragmente zerlegt wurde, geht sie an die zuständigen Secure Execution
Manager (SEM). Die SEM erfüllen grundsätzlich die gleiche Aufgabe wie die ursprünglichen
Execution Manager (EM), verfügt aber über zusätzliche Funktionen zur Initialisierung und Aus-
führung von kontrollierten Anfragen. Das Verhalten zur Ausführungszeit unterscheidet sich
vom ursprünglichen EM insofern, das er eine Benachrichtigung über einen Zugriffsfehler in der
Ausführung erhalten kann. Dann leitet der SEM den Abbruch der Anfrage über den Secure Core
Query Service (SCQS) ein, der wiederum eine Fehlermeldung an den Absender der Anfrage
absetzt und die gesamte Abfrage abbricht. Zudem ist die Aufgabe des SEM neue oder veränderte
Zugriffsrichtlinien an die Einbettungen weiterzuleiten, die der SEM aus dem Secure Core Query
Service erhält. Es werden immer nur auf die eingebettete Operation passende Zugriffsrichtlinien
an die Einbettungen weitergeleitet. Passend sind sie dann, wenn sie die Operator-Identität im
Attribut operator referenzieren.

Zu jedem Operator der aus dem Secure Operator Repository (SOR) bezogen wird, muss die
jeweilige Einbettung aufgebaut werden (5). Bei der Einbettung handelt es sich um eine logische
Konstruktion, die aus verschiedenen Komponenten zusammengesetzt wird. Die Komponenten
für alle drei Einbettungstypen, Secure-Source, Secure-Box und Secure-Sink sind gleich. Sie werden
lediglich in unterschiedlicher Form zusammengesetzt. Deren genauer Aufbau wird im folgenden
Abschnitt erläutert. Die Komponenten sind ebenfalls im SOR vorgehalten und werden zum Start
des Fragmentes vom SEM bezogen. Für jeden geschützten Operator baut der SEM die jeweilige
Einbettung zusammen, versieht die Komponenten der Einbettungen mit Verbindungen zur
Datenübertragung und instantiiert diese in der ursprünglichen Ausführungsumgebung von Ne-
xusDS. Während der Instanziierung wird jede Komponente der Einbettung mit den notwendigen
Informationen versehen, die diese für die Ausführung benötigt. Das heißt Decoder und Encoder
erhalten den geheimen Schlüssel zur Ent- und Verschlüsselung der Anfrage. Der Local Policy
Administration Point (L-PAP) erhält alle Zugriffsrichtlinien, die die Ausführung des Operators
ermöglichen und nach dem höchsten Rang ausgewählt wurden. Neben den Zugriffsrichtlinien
erhält der L-PAP alle digitalen Signaturen, über die der Operator verfügt. Ebenso die Identität
des Operators und dessen Meta-Daten sowie alle Identitäten der dem Operator vorgelagerten
Operatoren. Die Meta-Daten des Operators werden auch an die Encoder gegeben, da diese
unter Umständen Angaben zum Zeitpunkt der Wiederinterpunktion von Zugriffsrichtlinien
beinhalten. Filter werden mit der Zugriffsrichtlinie parametrisiert, die sie definieren, dem Subjekt
das die Anfrage ausführt, der zugeordneten Operator-Identität und der jeweiligen slotID. Die
Informationen für den SEM sind bereits in Meta-Daten der Anfrage enthalten und wurden von

77

7 Architektur des Sicherheitskonzeptes

dem Secure Query Planer (SQP) erzeugt. Es folgt die Parametrisierung und Ausführung der
Operatoren, nach dem Schema des ursprünglichen Execution Managers (EM) (6).

Während der SEM ein Fragmente zur Ausführung bringt, wird in einer Datenhaltung des
SCQS vermerkt, welche Operator-Identität der SEM zur Ausführung bringt. Die Information ist
notwendig um neue und veränderte Zugriffsrichtlinien in sich in der Ausführung befindlichen
Operatoren weiterzuleiten. Nach der Eintragung wird überprüft, ob in der Zwischenzeit der
Planung am SCQS geänderte Zugriffsrichtlinien eingetroffen sind, die einen der Operatoren der
geplanten Anfrage betrafen. Ist das der Fall, werden diese direkt an die zuständigen Einbettungen
übertragen, sodass die neuen Zugriffsrichtlinien direkt zu Ausführungsbeginn der Anfrage
interpunktiert werden und der aktuelle Stand der Zugriffsbedingungen abgebildet wird.

7.5 Secure-Source, Architektur und Ausführungsmodell

Die logische Konstruktion der Secure-Source kapselt eine Quelle, wie sie bisher in NexusDS
verwendet wird, um sie in der ursprünglichen Ausführungsumgebung von NexusDS kontrolliert
auszuführen. Logisch heißt, dass sie vom Secure Execution Manager (SEM) vor der Ausführung
aus den hier erläuterten Komponenten zusammengesetzt wird. Die Secure-Source kommt sowohl
in Sicherheitszone-Mittel als auch in Sicherheitszone-Hoch zum Einsatz, integriert Filter in die
Datenströme und schützt die Datenströme der Datenquelle vor unkontrolliertem Zugriff durch
Verschlüsselung. Die Erläuterung zur Architektur und der Funktionsweise der Secure-Source
geht nur auf die Komponenten innerhalb der Secure-Source ein. Die Komponenten außerhalb
der Secure-Source, mit denen die Secure-Source interagiert, werden noch in den nachfolgenden
Abschnitten im Detail erläutert. Abbildung 7.6 illustriert den Aufbau der Secure-Source. Die im
folgenden genannten Schritte, entstammen dieser Abbildung.

Die Secure-Source schaltet die von zuordneten Zugriffsrichtlinien definierten Filter zwischen
die Datenausgänge der eingebetteten Quelle und den Datenausgängen vorgelagerten Encodern.
So ist sichergestellt, dass alle definierten Filter zur Anwendung kommen. Sind Datenausgänge
explizit für den unkontrollierten Teil von NexusDS freigegeben, dann wird keine Verschlüsselung
der Datenelemente und keine Interpunktion vorgenommen und sie können an ursprüngliche
Operatoren angebunden werden. Reihenfolge und Auswahl der Filter werden noch im Abschnitt
zur Anfrageplanung erläutert und hier nicht weiter ausgeführt. Die direkt vor den Datenausgän-
gen arbeitenden Encoder, interpunktieren den zugeordneten Datenstrom mit Zugriffsrichtlinien
und verschlüsseln alle ausgehenden Datenelemente, inklusive der Zugriffsrichtlinien. Die Ver-
schlüsselung erfolgt auf Basis eines symmetrischen Schlüssels, der exklusiv für jeweils eine
Anfrage gilt und während der Anfrageplanung erzeugt wird.

Der Local Policy Administration Point (L-PAP) steuert die Ausführung der Secure-Source. Zum
Start der Anfrage erhielt der L-PAP von dem verantwortlichen Secure Execution Manager (SEM)
alle Zugriffsrichtlinien, die die Ausführung der Quelle erlauben. Die Menge wird als lokale
Zugriffsrichtlinienmenge bezeichnet. Zur Laufzeit übergibt der SEM nur neue oder geänderte
Zugriffsrichtlinien an die Secure-Source, wenn diese betroffen ist (1). Das ist dann der Fall,
wenn das Attribut operator die Identität der von der Secure-Source eingebetteten Quelle enthält.

78

7.5 Secure-Source, Architektur und Ausführungsmodell

Secure-Source

Source

Zugriffsrichtlinien Interpunktion Verschlüsseltes Datenelement

4. Neuen Schlüssel

Anfordern

5. Schlüssel ausgeben Secure Core
Query Service

(SCQS)

1. Übermittlung neuer

oder veränderter
Zugriffsrichtlinien

3. Fehlermeldung

zum Abbruch der
Anfrage

Secure
Execution

Manager (SEM)

Filteri Filteri+1 Encoder

Local Policy Administration Point
(L-PAP)

Local Key
Administration
Point (L-KAP)

Encoder

Secure Operator
Repository

(SOR)

2a. Abfrage ob

gegebene Identität mit
gegebenen öffentlichen
Schlüssel signiert ist

2b.
Antwort Ja
oder Nein

Abbildung 7.6: Illustration der Architektur der Secure-Source. Die gestrichelten Pfeile stellen die
Interaktion der Komponenten dar, als durchgezogener Pfeil der von der Quelle
erzeuge Datenstrom aus Datenelementen.

Das Attribut nodes muss nicht überprüft werden, wäre die Secure-Source nicht auf einem
Rechenknoten, dass das Attribut definiert, wäre die Zugriffsrichtlinie nicht übertragen worden.
Erhält die Secure-Source eine Zugriffsrichtlinie vom SEM, wird sie sofort über die Encoder in die
ausgehenden Datenströme interpunktiert. Vorher berechnet der Encoder noch einen eindeutigen
Hashwert der Zugriffsrichtlinie, mit einer global definierten Funktion und verschlüsselt das
Ergebnis mit dem geheimen Schlüssel der Anfrage. Das Ergebnis wird dann dem Attribut policyS
zugewiesen und die so modifizierte Zugriffsrichtlinie interpunktiert. Trifft eine Zugriffsrichtlinie
ein, die im Attribut use mit �+� markiert ist, prüft der L-PAP, ob sie von der Quelle erfüllt wird.
Das gilt dann, wenn der Quelle alle in der Zugriffsrichtlinie definierten Filter, an den definierten
Datenausgängen vorgelagert sind. Falls von der Zugriffsrichtlinie digitale Signaturen definiert
werden, prüft der L-PAP zuerst, ob diese bereits zu Ausführungsbeginn von SEM übergeben
wurde. Ist das nicht der Fall, kann der L-PAP über das zentrale Secure Operator Repository
(SOR) prüfen, ob diese mittlerweile für den Operator verfügbar ist. Dazu stellt der L-PAP eine
Anfrage an das SOR. Die Anfrage besteht aus den öffentlichen Schlüsseln der Zugriffsrichtlinie
und der Identität der eingebetteten Quelle, die überprüft werden soll (2). Sind die korrekten
Filter vorgelagert und die digitale Signatur stimmt überein (2b), wird die Zugriffsrichtlinie
zur lokalen Zugriffsrichtlinienmenge hinzugefügt, falls nicht verworfen. An dieser Stellte tritt
die Überlegung in den Vordergrund, auch vom Rang höhere Zugriffsrichtlinien der lokalen
Zugriffsrichtlinienmenge zuzuordnen, die nur eine Teilmenge der eingesetzten Filter definieren

79

7 Architektur des Sicherheitskonzeptes

und damit den Informationsdetailgrad weniger einschränkend. Jedoch widerspricht dies dem
Ansatz, die Verarbeitung auf dem höchsten möglichen Detailgrad durchzuführen. Die lokale
Menge an Zugriffsrichtlinien dient dazu, dass wenn eine der Zugriffsrichtlinien zurückgenommen
werden sollte, eventuell noch weitere vorhanden sind um die Ausführung gewähren zu lassen.
Erhält die Secure-Source eine Zugriffsrichtlinie, die im Attribut use mit �-� markiert ist, wird
geprüft, ob diese in der Menge der lokalen Zugriffsrichtlinien vorhanden ist. Wenn ja, wird sie
entfernt. Wurde die letzte Zugriffsrichtlinie gelöscht, die den Zugriffstyp �execute� erlaubt, ist
die Ausführung nicht weiter gestattet. Dann sperrt die Secure-Source sofort alle Datenausgänge
und sendet eine Fehlermeldung an den Secure Execution Manager (SEM), der die Anfrage
abbricht (3). Der Zugriffstyp �read� ist für eine Quelle nicht relevant, da diese nicht ihre selbst
produzierten Datenelemente liest.

Zur Sicherstellung, dass die Secure-Source zu jeder Zeit über den gültigen geheimen Schlüssel für
die Anfrage verfügt, ist der Local Key Administration Point (L-KAP) vorgesehen. Er überwacht
zur Ausführungszeit, ob die Gültigkeit des geheimen Schlüssels, der der Secure-Source bei der
kontrollierten Anfrageplanung zugewiesen wurde, noch gültig ist. Sollte die Gültigkeit nur noch
weniger als 10 Minuten betragen, was als ausreichendes Zeitpolster betrachtet werden kann,
fordert der L-KAP einen neuen Schlüssel vom für die Anfrage verantwortlichen Secure Core
Query Service (SCQS) an (4). Daraufhin erhält dieser einen neuen Schlüssel, der ab Ablauf des
vorherigen Schlüssels für die gesamte Anfrage gilt (4). Läuft der geheime Schlüssel ab, wird
er sofort durch den neuen Schlüssel ersetzt, indem der S-KAP den Schlüssel an die Encoder
übergibt.

7.6 Secure-Box, Architektur und Ausführungsmodell

Sollen die verschlüsselten Datenströme aus einer Secure-Source von Operator-Boxen verarbeitet
werden, dann muss jede ursprüngliche Operator-Box, bestehend aus Warteschlangen, Input-
Manger und Operator in eine Secure-Box eingebettet werden. Das ist auch dann der Fall,
wenn eine Operator-Box die Datenströme einer Secure-Box verarbeiten will. Die Secure-Box
entschlüsselt eintreffende Datenströme, transformiert die Datenelemente mit Filtern gemäß der
in Zugriffsrichtlinien definierten Filter und reicht sie an die Operator-Box weiter. Nach der
Verarbeitung der Datenelemente durch die eingebettete Operator-Box werden Zugriffsrichtlinien
wiederinterpunktiert und mit den ausgehenden Datenströmen verschlüsselt. Die Secure-Box
verhält sich analog zur bereits vorgestellten Secure-Source. Die folgende Erläuterung geht nur
noch auf die Unterschiede und Erweiterungen gegenüber der Secure-Source ein. Abbildung
7.7 illustriert den Aufbau einer Secure-Box, die angegebenen Schrittzahlen beziehen sich auf
Erläuterungen im Text. Einige Interaktionen sind vereinfacht dargestellt und verhalten sich wie
in Abbildung 7.6, die die Secure-Source illustriert.

Im Gegensatz zu einer Secure-Source können in einer Secure-Box Zugriffsrichtlinien nicht nur
über den Secure Execution Manager (SEM) eintreffen, sondern auch als Interpunktionen über
die Dateneingänge (1). Die Auswertung der interpunktierten Zugriffsrichtlinien unterscheidet sich
in der Auswertung gegenüber denen, die über den SEM eintreffen. Denn diese Zugriffsrichtlinien

80

7.6 Secure-Box, Architektur und Ausführungsmodell

Secure-Box

Operator
Box

Zugriffsrichtlinien Interpunktion Verschlüsseltes Datenelement

Filteri Filteri+1

Filterj

2. Zähler erhöhen, geht an alle Encoder

Local Key
Administration
Point (L-KAP)

Secure Core
Query Service

(SCQS)

Local Policy
Administration Point (L-PAP)

Secure
Execution

Manager (SEM)

Secure Operator
Repository

(SOR)

Decoder

Decoder

1. Interpunktierte

Zugriffsrichtlinien

Encoder

Encoder

Encoder

Zugriffsrichtlinien zu den
Encodern zur Interpunktion

Abbildung 7.7: Architektur der Secure-Box. Die gestrichelten Pfeile stellen vereinfacht Teile der
Interaktion zwischen den Komponenten dar, als durchgezogener Pfeil der von
der Quelle erzeugte Datenstrom aus Datenelementen.

definieren im Attribut operator ein in der Ausführung befindliches Objekt, dass der Secure-Box
vorgelagert ist und dessen Datenelemente von der eingebetteten Operator-Box gelesen werden
sollen. In diesem Fall müssen die Attribute with, on und signatureK ausgewertet werden. Ist
die Identität eines Operators der eingebetteten Operator-Box im Attribut with enthalten und der
die Operator-Box ausführende Rechenknoten in on, dann gilt die Zugriffsrichtlinie für den oder
die Operator-Identitäten der eingebetteten Box. Die weitere Prüfung, ob die Zugriffsrichtlinie
gilt, verläuft analog zu dem Vorgang der Secure-Source. Je nach Markierung im Attribut use
mit �+� oder �-� wird die Zugriffsrichtlinie dann, wenn sie zutreffend, der lokalen Zugriffsricht-
linienmenge im Local Policy Administration Point (L-PAP) hinzugefügt oder entfernt. Es gilt
wieder, analog zur Secure-Source, dass für jeden Operator der Operator-Box mindestens eine
Zugriffsrichtlinie existieren muss, die den Zugriff �execute� erlaubt. Für den Zugriff �read�
muss nicht nur für jeden Operator der Operator-Box eine Zugriffsrichtlinie existieren, sondern
auch für alle vorgelagerten Operatoren. Um diesen Abgleich durchzuführen, hat der L-PAP von
der Anfrageplanung die Menge der vorgelagerten Operatoren mitgeteilt bekommen. Verliert die
lokale Zugriffsrichtlinienmenge alle Zugriffsrichtlinien, die das Lesen einer der vorgelagerten
Operatoren erlauben, muss die Anfrage abgebrochen werden.

Weitere Unterschiede sind das Filter in der Secure-Box den Dateneingängen vorgelagert sind
und Decoder die eingehenden Datenströme entschlüsseln. Erkennen die Encoder, dass eine
Zugriffsrichtlinie entschlüsselt wurde, wird zuerst die Signatur aus Attribut policyS überprüft.

81

7 Architektur des Sicherheitskonzeptes

Secure-Sink

Zugriffsrichtlinien Interpunktion Verschlüsseltes Datenelement

Secure Core
Query Service

(SCQS)

Secure
Execution

Manager (SEM)

Sink
Filteri

Local Key
Administration
Point (L-KAP)

Secure Operator
Repository

(SOR)

Decoder

Local Policy Administration Point
(L-PAP)

1. Sperren

Encoder

Abbildung 7.8: Architektur der Secure-Sink. Die gestrichelten Pfeile stellen vereinfacht Teile der
Interaktion der Komponenten dar, als durchgezogener Pfeil der von der Quelle
erzeugte Datenstrom aus Datenelementen.

Dazu wird wieder mit der global bekannten und eindeutigen Hashfunktion die digitale Signatur
der Zugriffsrichtlinie, ohne das Attribut policyS, berechnet und mit dem geheimen Schlüssel
der Anfrage verschlüsselt. Stimmt das Ergebnis mit der Signatur in Attribut policyS überein,
ist die Zugriffsrichtlinie authentisch und wird an den L-PAP weitergeleitet (1). Es folgt die
bereits oben erwähnte Auswertung. Neben der Auswertung trifft der L-PAP auf Basis der in
Abschnitt 7.3 definierten Vorganges die Entscheidung, in welche Datenausgänge eintreffende
Zugriffsrichtlinien wiederinterpunktiert werden müssen. Zur Bestimmung des Zeitpunktes
der Wiedereinflechtung müssen Datenelemente abgezählt werden, was ebenso im genannten
Abschnitt erläutert wurde. Deshalb stellt jeder Decoder eine Verbindung zu jedem Encoder
her und für jedes eingehende Datenelement wird eine kurze Nachricht abgesetzt, sodass der
Encoder einen Zähler für den Dateneingang inkrementieren kann (2). In der Abbildung ist dies
nur für einen Encoder angedeutet, der Kanal besteht jedoch zu allen Encodern. Anhand einer
Zählerdifferenz von eingegangenen Datenelementen und ausgehenden Datenelementen ist dem
Encoder immer bekannt, wie viele Datenelemente sich in der Verarbeitung befinden. Auf Basis
von zusätzlichen Meta-Daten der eingebetteten Operation und der Zähler kann der Encoder die
Zugriffsrichtlinie zum richtigen Zeitpunkt interpunktieren. Die Meta-Daten erhalten die Encoder
vom SEM zu Ausführungsbeginn. Die Laufzeit der Nachricht zum Inkrementieren des Zählers
kann vernachlässigt werden, da die direkte Verbindung zwischen Decoder und Encoder eine
kürzere Laufzeit hat als die eines Datenelementes bis zum Ausgang der Operation.

82

7.7 Secure-Sink, Architektur und Ausführungsmodell

7.7 Secure-Sink, Architektur und Ausführungsmodell

Die Aufgabe der Secure-Sink ist eingehende verschlüsselte Datenströme zu entschlüsseln, Zugriffs-
richtlinieninterpunktion zu berücksichtigen und gegebenenfalls Filter anzuwenden. Abbildung
7.8 zeigt die Architektur der Secure-Source. Nicht explizit erwähnte Interaktionen beziehen sich
auf die Abbildung der Secure-Source 7.6 und der Secure-Box 7.7.

Das Verhalten ist analog zur Secure-Box mit dem Unterschied, dass Zugriffsrichtlinien nicht
weiter in Datenströme eingeflochten werden müssen. Die Überprüfung auf Änderungen der
Zugriffsrichtlinien ist ebenfalls analog zur Secure-Box. Sollten sich Änderungen ergeben, sodass
die weitere Ausführung der Secure-Sink nicht mehr gestattet ist, werden die Decoder gesperrt (1)
und der Secure Execution Manager (SEM) über den Fehler benachrichtigt.

7.8 Services der Sicherheitsarchitektur

Die Sicherheitsarchitektur besteht aus mehreren Services, die unterschiedliche Funktionen rea-
lisieren. Jeder der Services besitzt ein digitales Zertifikat, ausgestellt vom zentralen Certificate
Authority Point (CAP). Immer dann, wenn zwei Services in Interaktion treten, überprüft jede
Seite die Gültigkeit des Zertifikates der Gegenseite über den CAP. Nur falls die Überprüfung
erfolgreich war, treten die Services in Interaktion. Die Sicherheitsarchitektur ist deshalb in ver-
schiedene Services zerlegt, um die Erweiterbarkeit zu erleichtern und die Services mehrfach,
beziehungsweise verteilt auszuführen. Dadurch wird es möglich, Services die einer hohen Last
unterliegen, gezielt auf Rechenknoten mit einer hohen Anzahl an Anfragen auszuführen und so
die Latenz der Antworten zu reduzieren. Weiter eröffnet sich die Möglichkeit, verschiedene Da-
tenhaltungen, zum Beispiel im Anwendungsszenario der intelligenten Fabriken, siehe Abschnitt
5.1.3, als verteilte Datenhaltungen zu realisieren [22]. Fragestellungen, die sich aus der Verteilung
der Services ergeben, wie konsistente Datenhaltung und Verteilung der Daten, wird von der
Diplomarbeit nicht weiter erläutert. Es wird mit der Architektur lediglich eine diesbezügliche
Erweiterung grundsätzlich unterstützt.

In Abschnitt 7.8.1 wird zuerst der zentrale Service Identity Administration Point (IAP) zur
Registratur und Verwaltung von Subjekt-Identitäten vorgestellt. Jedes Subjekt, das mit der Si-
cherheitsarchitektur interagieren will, muss von diesem Service authentifiziert werden können.
Zur Organisation von Subjekten existiert der Role Administration Point (RAP), der ein Rol-
lenmodell verwaltet. In Zugriffsrichtlinien werden Rollen definiert, anstatt die Identitäten von
Objekten direkt zu referenzieren. Die genaue Funktionsweise erläutert Abschnitt 7.8.2. Zur
zentralen Verwaltung und Vorhaltung von Zugriffsrichtlinien beschreibt Abschnitt 7.8.3 den
Policy Administration Point (PAP). Alle geschützten Operatoren sind nur im zentralen Secure
Operator Repository (SOR) verfügbar, der detailliert in Abschnitt 7.8.4 vorgestellt wird. Der
bereits erwähnte Service zur Vergabe und Prüfung von Zertifikaten ist der Certificate Authority
Point (CAP), der in Abschnitt 7.8.5 erläutert wird. Die Entscheidung, ob Zugriffsrichtlinien die
Ausführung oder das Lesen von Datenelementen bestimmter Operatoren erlauben, wird über
Policy Decision Point (PDP) entschieden. Details zum PDP erläutert Abschnitt 7.8.6.

83

7 Architektur des Sicherheitskonzeptes

7.8.1 Identity Administration Point (IAP)

Unentbehrlich für den Aufbau der Sicherheitsarchitektur ist, dass Subjekte zweifelsfrei und zu-
verlässig authentifiziert werden können. Das setzt voraus, dass jedes Subjekt über eine eindeutige
Identität identifiziert werden kann. Weiter muss ein Mechanismus existieren, mit dem Subjekte
ihre Identität nachweisen können, sodass die von der Sicherheitsarchitektur angenommenen
Identitäten der tatsächlichen Identitäten der Subjekte entsprechen. Diese Aufgabe wird von dem
zentralen Identity Administration Point (IAP) übernommen.

Der Charakter von digitalen Identitäten und Mechanismen zum Authentifizieren von behaupteten
Identitäten kann in unterschiedlichster Art und Weiße gestaltet werden. In aktuellen Entwicklun-
gen werden bereits Personalausweise mit digitalen Identitäten versehen, über die sich eine Person
zum Beispiel im Internet ausweisen kann, um rechtsverbindliche Verträge digital abzuschließen.
Auch Mechanismen zur Authentifizierung in verteilten und offenen Systemen, wie NexusDS,
existieren bereits, bekannt ist zum Beispiel Kerberos1. In der vorliegenden Diplomarbeit steht
aber nicht im Vordergrund, eines der besten oder neuesten Verfahren zur Abbildung digitalen
Identitäten und deren Authentifikation zum Einsatz zu bringen. Es soll lediglich ein solides und
zuverlässiges Verfahren zum Aufbau und Darlegung des Sicherheitskonzeptes eingesetzt werden.
Deswegen wird für Subjekte das hinlänglich bekannte System eines eindeutigen Benutzernamens
und eines Passworts verwendet. Zu beachten ist auch, dass Rechenknoten Subjekte sind, die
Operatoren ausführen. Deshalb muss auch für Rechenknoten eine eindeutige Identifikation
möglich sein, um in Zugriffsrichtlinien eindeutig auf Rechenknoten verweisen zu können. Nur
so kann sichergestellt werden, dass nur eine beschränkte Gruppe von NexusDS Teilnehmern die
Ausführung von Operatoren auf geschützten Rechenknoten erlaubt ist. Zur Identifikation von
Rechenknoten können zum Beispiel Trusted Platform Module2 eingesetzt werden, die einen Com-
puter mit einer eindeutigen Identität versehen. Zur Vereinfachung verwendet die Diplomarbeit
zur Identifikation eines Rechenknoten, die MAC-Adresse des Netzwerkadapters, der von dem
Rechenknoten zum Datenaustausch mit weiteren Rechenknoten verwendet wird. Bei der Adresse
handelt es ich um einen eindeutigen Wert, der jedem Netzwerkadapter zugewiesen ist.

Kern des IAP ist eine Datenhaltung, in der die Authentifizierungsinformationen zu Subjekten
abgelegt werden. Subjekte registrieren sich unter Angabe von Benutzername und Passwort.
Der Service nimmt die Informationen über eine verschlüsselte Verbindung entgegen und prüft,
ob der Benutzername schon vorhanden ist. Sollte das der Fall sein, wird das Subjekt aufgefordert,
einen anderen Benutzernamen zu wählen. Ist der Benutzername eindeutig, wird das Passwort
mit einem kryptografischen Verfahren verschlüsselt, sodass es zum Beispiel vor dem Einblick der
Administratoren, die direkten Zugriff auf die Datenhaltung besitzen, geschützt ist. Das Verfahren
setzt eine kryptografische Hashfunktion ein, die einen eindeutigen Wert liefert. Danach wird
der Benutzername zusammen mit dem Hashwert in die Datenhaltung des Service eingelagert.
Gelöscht werden kann eine Identität nur unter Angabe von Benutzernahme und Passwort.

1Definition der aktuellen Version 5 unter http://tools.ietf.org/html/rfc4120

2Weiterführende Informationen von Infineon auf http://www.infineon.com/tpm

84

7.8 Services der Sicherheitsarchitektur

Rechenknoten werden ebenfalls über den IAP registriert und mit der entsprechenden MAC-
Adresse als Identität abgelegt. Zu jeder Rechenknotenidentität kann eine Menge von Rollen
definiert werden, die Zugriffsrichtlinien für die Rechenknoten vergeben dürfen. Weiter wer-
den einzelne Subjektidentitäten einem Rechenknoten hinzugefügt, die als Administration die
Rollenzuweisungen verweisen. Auf weitere Details wird in der Diplomarbeit aus Gründen des
Umfanges nicht eingegangen.

Will ein Service der Sicherheitsarchitektur überprüfen, ob die Identität eines Subjektes authentisch
ist, überträgt der Service den vom Subjekt angegebenen Benutzernamen und das Password an
den Service. Der Service prüft, ob die gegebenen Einträge in der Identitätsdatenhaltung vorhan-
den sind. Ist für den Benutzernamen das gegebene Passwort hinterlegt, wird der Benutzername
als Identität bestätigt, andernfalls erfolgt die Ablehnung mit einer Fehlermeldung.

Das besprochene Modell birgt einige Schwachstellen. Darunter fällt die Auswahl schwacher
Passwörter, wie zum Beispiel 12345. Dies kann abgemildert werden, wenn die Subjekte ge-
zwungen sind, sicherere Passwörter zu wählen, indem diese algorithmisch auf ihre Qualität
geprüft werden. Aber auch nach der Wahl eines sicheren Passwortes muss es geheim gehalten
werden. Die Subjekte dürfen es nicht weitergeben, die Verbindungen über die Passwörter im
Klartext übertragen werden, müssen abhörsicher sein und die Ziele für die Passwörter müssen
vor Übertragung zweifelsfrei als berechtigte Empfänger verifiziert werden. Die Sicherheit von
Mechanismen zur Authentifizierung ist kein direktes Thema der Diplomarbeit, eine detailliertere
Abhandlung findet sich in [16] oder einschlägigen wissenschaftlichen Abhandlungen.

7.8.2 Role Administration Point (RAP)

Bereits in den Anforderungen der Anwendungsszenarien in Abschnitt 5.1 wurde angedeutet,
dass die Sicherheitsarchitektur unter Umständen eine große Zahl an Subjekten verwalten muss.
Zur Abbildung wird das Role Based Access Control Modell (RBAC) [20] verwendet, dass neben
den Modellen MAC und DAC bereits in Abschnitt 2.3 mit Vor- und Nachteilen erläutert wurde.
RBAC wird ausgewählt, da es gegenüber den anderen vorgestellten Modellen Vorteile bei der
Verwaltung großer Anzahlen von Subjekten bietet und wegen seines hohen Verbreitungsgrades
allgemein gut verstanden wird. Ein gutes Verständnis wirkt sich positiv auf die Sicherheit aus,
da weniger Fehler bei der Verwendung zu weniger Lücken in Sicherheitseinstellungen führen.

Abbildung 7.9 zeigt, wie Zugriffsrichtlinien indirekt über Rollen Subjekten zugeordnet werden.
Mit der Zuweisung über Rollen lassen sich leicht Mengen von Zugriffsrichtlinien mit Mengen
von Subjekten verbinden, ohne dass jede Zugriffsrichtlinie jedem Subjekt Einzel zugewiesen
werden muss. Gleichzeitig ergibt sich mit der Anordnung von Rollen eine Hierarchie, in der
Abbildung als gerichtete Kanten visualisiert, in der Zugriffsrichtlinien vererbt werden kön-
nen. Das ist insbesondere dann von Vorteil, wenn Organisationsstrukturen, wie im Beispiel
des Anwendungsszenarios der intelligenten Fabriken aus Abschnitt 5.1.3, abgebildet werden
sollen. Beispielsweise könnten in einer Abteilungsleiterrolle alle Rollen der mit der Abteilung
verbunden Subjekte untergeordnet werden. Im einfachsten Vererbungsfall, dass alle Zugriffs-
richtlinien vererbt werden, erhalten die Subjekte mit zugeordneter Abteilungsleiter-Rolle alle

85

7 Architektur des Sicherheitskonzeptes

Extention
Developer

Subjekt

Zugriffs-
richtlinine

Zugriffs-
richtlinine

Zugriffs-
richtlinine

Subjekt

Daten-
besitzer

Benutzer
System-

Administrator

Individuelle
Rolle B

Individuelle
Rolle C

Individuelle
Rolle A

Individuelle
Rollen

Basis
Rollen

Abbildung 7.9: RBAC Modell das Subjekten Rollen zuweist und Zugriffsrichtlinien an Rollen
bindet [20].

Zugriffsrichtlinien der Mitarbeiter-Rolle. Umgekehrt beinhaltet die Mitarbeiter-Rolle keine Zu-
griffsrichtlinien der Abteilungsleiter-Rolle. Grundsätzlich gilt, ist eine Rolle über eine gerichtete
Kante zugeordnet, werden alle Zugriffsrichtlinien an die Ziel-Rolle vererbt, sofern die Definition
der Zugriffsrichtlinie eine Vererbung nicht verbietet. Konflikte in der Vererbungskette können
nicht auftreten, da Zugriffsrichtlinien nur Zugriffe erlauben und nicht verbieten. Abbildung
7.9 zeigt ein Beispiel für eine mögliche Mehrfachvererbung, in der die Individuelle Rolle C alle
nicht explizit ausgeschlossenen Zugriffsrichtlinien von Individuelle Rolle C und den Basis-Rollen
Extention Developer und System-Administrator erbt. Auch bei Veränderungen der Relationen von
Subjekten und Zugriffsrichtlinien spielt RBAC Vorteile aus. Veränderungen, die mehrere Subjekte
betreffen, müssen nicht für jedes einzelne Subjekt durchgeführt werden, was möglicherweise
zu einem Übersehen einzelner Subjekte führen kann, sondern es wird nur die Zuordnung zur
betroffenen Rolle angepasst. Die Anpassung wirkt sich auf alle mit der Rolle verbundenen
Subjekte aus und pflanzt sich automatisch in der gegebenen Vererbungshierarchie fort. Um jede
Rolle einem gewissen Typus in NexusDS zuordnen zu können, endet die Vererbungskette von
individuellen Rolle an einer Basis-Rolle. Beispielsweise können nur Subjekte einem Rechenknoten
als Administrator zugeordnet werden, die über die Vererbungskette der Basis-Rolle Administrator
zugeordnet sind.

Rollen und Subjekten werden verbunden, indem für jede Rolle die Benutzernamen aller zugeord-
neten Subjekte abgelegt werden. Der Benutzername entspricht der Identität der Subjekte und
definiert so eine eindeutige Zuordnung. Die Zuordnungen werden im zentralen Role Administra-
tion Point (RAP) Service administriert. Der RAP ist dafür zuständig, neue Rollen aufzunehmen,

86

7.8 Services der Sicherheitsarchitektur

Rollen zu löschen und die Zuordnungen von Subjekten zu Rollen abzubilden. Jeder Rolle können
Besitzer zugeordnet werden, Besitzer dürfen Subjekte löschen, hinzufügen und neue Rollen
erzeugen, die den Rollen untergeordnet werden dürfen, von denen sie selbst Besitzer sind. Sie
können ebenfalls Besitzer hinzufügen und löschen, es muss aber mindestens immer ein Besitzer
existieren. Wird eine Rolle neu erstellt, ist das erstellende Subjekt der Besitzer.

7.8.3 Policy Administration Point (PAP)

Im Wesentlichen erfüllt der Service die Aufgaben einer zentralen Administration und Daten-
haltung für Zugriffsrichtlinien. Sollen aktuelle Zugriffsrichtlinien abgefragt werden, ist der
Policy Administration Point (PAP) der zentrale Service für Anfragen. Werden neue Zugriffs-
richtlinien erstellt oder bestehende verändert, überträgt der PDP diese an jeden sich in der
Ausführung befindlichen Secure Core Query Services (SCQS). Der wiederum die Aufgabe hat,
Zugriffsrichtlinien auf sich in der Ausführung befindliche Operatoren weiterzuleiten. Sollte eine
Zugriffsrichtlinie verändert oder gelöscht werden, besteht die Übertragung an den SCQS aus zwei
Zugriffsrichtlinien. Einmal die Ursprüngliche, im Attribut use mit �-� versehen und einmal der
veränderten Zugriffsrichtlinie mit �+�. Erstere sorgt als Interpunktion dafür, dass alle betroffenen
Einbettungen für Operatoren darüber informiert werden, welche Zugriffsrichtlinie nicht mehr
gilt. Umgekehrt zur Markierung �-� weist die Markierung �+� Zugriffsrichtlinien als gültig aus.
Im Fall, dass eine Zugriffsrichtlinie neu erstellt wurde, besteht die Übertragung an den SCQS
nur aus einer Zugriffsrichtlinie, die mit �+� markiert ist. Das Markieren der Zugriffsrichtlinien
wird vom PAP automatisch durchgeführt.

Neue Zugriffsrichtlinien dürfen von jedem Subjekt erstellt werden, das mit einer eindeutigen
Identität am zentralen Identity Adminstration Point (IAP) authentifiziert werden kann. Die
Belegung der Zugriffsrichtlinien-Attribute unterliegt jedoch Bedingungen. Ein Subjekt kann nur
dann für einen Operator Zugriffsrichtlinien vergeben, wenn es Mitglied einer Rolle ist, die im
zentralen Secure Operator Repository (SOR) für den Operator zur Zugriffsrichtlinienvergabe
eingetragen ist. Gleiches gilt für Angabe auf welchen Rechenknoten ein Operator ausgeführt
werden darf. Es können nur die Identitäten von Rechenknoten für das Attribut nodes eingetragen
werden, für die das Subjekt als Besitzer im IAP vermerkt ist. Alle anderen Attribute können
beliebig belegt werden und unterliegen keinen Restriktionen. Jedoch stellt der PAP sicher, dass
das Subjekt einen Bezeichner für die Zugriffsrichtlinie wählt, der eindeutig ist. Die Belegung der
Attribute bezüglich Evaluatoren und Filter ist nicht eingeschränkt. Das ermöglicht in dieser Versi-
on der Sicherheitsarchitektur deren freie Verwendung. Die Vereinfachung wurde gewählt, um den
Rahmen der Diplomarbeit nicht zu sprengen. Denn eine diesbezügliche Zugriffsbeschränkung,
erhöht die Komplexität der Anfrageplanung erheblich.

Wollen andere Services oder Werkzeuge, zum Beispiel grafische Werkzeuge zum Erstellen von
Zugriffsrichtlinien, Informationen vom PAP abrufen, müssen sie über ein gültiges Zertifikat der
Sicherheitsarchitektur verfügen, das vom zentralen Certifiate Authority Point (CAP) ausgestellt
wurde.

87

7 Architektur des Sicherheitskonzeptes

7.8.4 Secure Operator Repository (SOR)

Operatoren werden in der ursprünglichen Version von NexusDS im Operator Repository (OR)
vorgehalten. Für die Ablage von geschützten Komponenten ist das Repository jedoch nicht
geeignet, da den Operatoren digitale Signaturen zugeordnet werden sollen. Ebenfalls muss der
Zugriff auf die eingelagerten Operatoren beschränkt werden, sodass nur die Anfrage eingelagerte
Operatoren laden können, die von Zugriffsrichtlinien erfüllt werden. Für diese Aufgabe wird das
ursprüngliche Repository erweitert und durch das Secure Operator Repository (SOR) ergänzt.
Abgerufen werden können die Implementierungen der eingelagerten Operatoren nur von den
Subjekten, die als Besitzer eingetragen sind oder von Services, die über ein bestätigtes Zertifikat
des zentralen Certificate Authority Point (CAP) verfügen. Weitere Detaillierungen sind nicht
vorgesehen, um die Komplexität zu begrenzen.

Neue Operatoren können von jedem Subjekt eingespielt werden, das mit einer eindeutigen
Identität authentifiziert werden kann. Es wird dann gleichzeitig als Besitzer des Operators
hinterlegt. Besitzer können weitere Subjekte als Besitzer hinzufügen oder löschen, es muss aber
mindestens immer ein Besitzer vorhanden sein. Sollte ein Besitzer den Operator löschen, wird
dieser aus der Datenhaltung mit den Zuweisungen von Besitzern gelöscht. Jeder Operator wird
unter einer eindeutigen Identität hinterlegt, die vom Subjekt bei Erstellen des Eintrages gewählt
wird. Die Identität ist analog zu dem Bezeichner, der im ursprünglichen OR gewählt ist, um
Operatoren eindeutig in Anfragen zu referenzieren. Weitere Angabe ist eine Zuordnung von
Rollen, die definiert, welche Subjekte Zugriffsrichtlinien für den Operator vergeben dürfen.

Will ein Subjekt, das ein Prüfer für Operatoren ist, eine digitale Signatur zu Operator ablegen,
muss das Subjekt sich mit einer eindeutigen Identität authentifizieren. So wird sichergestellt, dass
ein Prüfer nur mit seiner wahren Identität Operatoren zertifizieren kann. Der Prüfer überträgt
die Identität des geprüften Operators und die berechnete digitale Signatur. Die Signatur wurde
vom Prüfer über die Implementierung des Operators mit einer global bekannten Hashfunktion
berechnet und verschlüsselt. Der Schlüssel zur Verschlüsselung ist der private Schlüssel aus
dem Zertifikat, dass dem Prüfer am CAP ausweist. Dadurch, dass der öffentliche Schlüssel
jedem Subjekt bekannt ist, kann der öffentliche Schlüssel in Zugriffsrichtlinien vergeben werden.
Stellt ein Service eine Anfrage, ob ein Operator von einem Prüfer P zertifiziert wurde, muss
nur die Identität des Operators und der öffentliche Schlüssel von P übertragen werden. Das
SOR berechnet daraufhin den Hashwert des Operators analog zum Prüfer und entschlüsselt
die verschlüsselte Signatur mit dem in der Anfrage gelieferten öffentlichen Schlüssel. Stimmen
beide Werte überein, wurde der Operator von Prüfer P zertifiziert. Dann kann die Anfrage bejaht
werden, sonst verneint.

7.8.5 Certificate Authority Point (CAP)

Der zentrale Certificate Authority Point (CAP) ist die Vertrauensinstanz der Sicherheitsarchitektur.
Sie stellt digitale Zertifikate gemäß einer Public-Key Infrastruktur (PKI) aus, die bereits in Abschnitt
2.2.1 erläutert wurde. Die Hintergründe zu PKI sind nicht Thema der Diplomarbeit, es werden

88

7.8 Services der Sicherheitsarchitektur

deshalb lediglich die Aufgaben und die Interaktion des CAP in der Sicherheitsarchitektur
erläutert. Für Details zu PKI und digitalen Zertifikaten wird in [16] verwiesen.

Der Service arbeitet als Registrierungsstelle, die zur Ausfertigung von digitalen Zertifikaten
für Services der Sicherheitsarchitektur und Prüfer, die Operatoren digital signieren, dient. Will
ein weiterer Service mit einem der Services der Sicherheitsarchitektur kommunizieren, muss er
zuerst über den CAP registriert werden. Das dann ausgestellte Zertifikat ermöglicht dem Service,
mit den Services der Sicherheitsarchitektur zu kommunizieren. Das gilt auch, wenn Werkzeuge,
zum Beispiel zur Erstellung von Zugriffsrichtlinien Informationen an der Sicherheitsarchitektur
abfragen wollen.

Weitere Aufgabe ist für die Sicherheitsarchitektur als Validierungsdienst zu arbeiten. Über den
CAP werden dann im Fall vom Aufbau von Verbindungen die Details zu Zertifikaten abgefragt,
sodass die Services der Sicherheitsarchitektur einen unbekannten Kommunikationspartner sicher
authentifizieren können.

Neben dem Ausstellen von digitalen Zertifikaten für Prüfer, die Operatoren mit digitalen Signatu-
ren versehen, dient der Service auch als Verzeichnisdienst. Über ihn können die den Zertifikaten
zugeordneten öffentlichen Schlüssel abgerufen werden, die eine Prüfung durch einen mit dem
Zertifikat verbundenen Prüfer implizieren. Das ist notwendig um in Zugriffsrichtlinien den
öffentlichen Schlüssel eines gewünschten Prüfers einzutragen.

7.8.6 Policy Decision Point (PDP)

Der Policy Decision Point (PDP) entscheidet, ob ein Zugriff auf einen Operator gestattet ist
oder nicht. Dazu kann jeder Service, eine Verbindung zum PDP aufbauen, der die Verbindung
akzeptiert, sofern der Service über ein gültiges Zertifikat des Certificate Authority Point (CAP)
verfügt. Das können aber auch zum Beispiel Werkzeuge sein, die die Planung von Anfragen
unterstützen, unter der Voraussetzung, sie verfügen über ein digitales Zertifikat des CAP. Eine
Anfrage an den PDP besteht immer aus einem Zugriff, aus der Menge {”read”,”execute”}, die die
Art der Prüfung und die Struktur der Anfrage bestimmt. Zu jeder Anfrage kann ein boolscher
Parameter short übergeben werden, der bestimmt wie weit die Auswertung von Zugriffsricht-
linien ausgeführt wird. Ist der Parameter mit wahr belegt, stoppt die Prüfung, sobald eine
Zugriffsrichtlinie gefunden wurde, die die Anfrage erfüllt. Sonst werden alle Zugriffsrichtlinien
ausgewertet und zurückgegeben, das ist zum Beispiel bei der kontrollierten Anfrageplanung
notwendig. Dieser Parameter ist dann sehr hilfreich, wenn nur eine Antwort benötigt wird, ob
ein Zugriff gestattet ist. So lassen sich umfangreiche Auswertungen bei einer hohen Anzahl von
Zugriffsrichtlinien begrenzen.

Im Fall einer Anfrage mit dem Zugriff �execute�, ist die Anfrage wie folgt aufgebaut. Identität
des Subjektes, das die Anfrage ausführt wird als S bezeichnet. Die Identität des Operators, der
ausgeführt werden soll, wird als O bezeichnet.

Zur Auswertung bezieht der PDP zuerst alle mit S verbundenen Rollen aus dem Role Adminis-
tration Point (RAP). Zurückgeliefert werden alle die Rollen, denen das Subjekt zugeordnet ist.

89

7 Architektur des Sicherheitskonzeptes

Falls das Subjekt nur direkt einer Rolle zugewiesen ist und nicht durch Vererbung Mitglied ist,
enthält die Rolle hierzu eine Markierung. Dann alle Zugriffsrichtlinien aus dem Policy Adminis-
tration Point (PAP), in denen eine der gefundenen Rollen unter dem Attribut role eingetragen ist.
Sollte in der Zugriffsrichtlinie das Attribut roleInherit auf falsch gesetzt sein, dann gelten nur
die gefundenen Rollen, die markiert sind. Denn in diesem Fall erlaubt die Zugriffsrichtlinie keine
Vererbung. Weiter muss das Attribut access mit �execute� belegt sein und in Attribut operator
die Identität von O vorkommen. Ist die Abfrage am PAP leer, ist der Zugriff nicht gestattet und
es wird Zugriff verboten geantwortet. Wird eine Menge von Zugriffsrichtlinien gefunden, die
keinen Evaluator definieren, antwortet der PDP mit Zugriff erlaubt und gibt die gefundenen
Zugriffsrichtlinien ohne Evaluator zurück. Finden sich nur Zugriffsrichtlinien mit Evaluator,
werden diese in aufsteigender Reihenfolge nach dem Attribut timestamp der Zugriffsrichtlinien
ausgewertet. Zur Auswertung wird der für die Zugriffsrichtlinie definierte Evaluator aus dem
Secure Operator Repository (SOR) geladen und von dem PDP zur Ausführung gebracht. Die
Beschreibung des Verhaltens eines Evaluators wurde in Abschnitt 7.2.4 bereits besprochen. Sollte
eine der Zugriffsrichtlinien digitale Signaturen anfordern, überprüft der PAP über das SOR, ob
für den gegebenen öffentlichen Schlüssel in der Zugriffsrichtlinie eine digitale Signatur vorhan-
den ist. Sobald eine Zugriffsrichtlinie erfolgreich ausgewertet wurde und short mit wahr belegt
ist, antwortet der PDP Zugriff erlaubt und gibt die positiv ausgewerteten Zugriffsrichtlinien
zurück. Sonst wird die Auswertung für alle Zugriffsrichtlinien durchgeführt, die die gegebene
Rolle und Operator betreffen und alle erfüllenden Zugriffsrichtlinien zurückgegeben.

Im Fall einer Anfrage mit dem Zugriff �read�, ist die Anfrage wie folgt aufgebaut. S und O
sind analog definiert. Zudem ein Teilgraph der Anfrage, der alle Operatoren V und Verbindungen
enthält, die vor O liegen. Zu jedem Operator der vor O liegt, bezeichnet als vi, wird eine Menge
an Rechenknoten mitgeliefert, Ri, die definiert, auf welchen Rechenknoten vi ausgeführt werden
darf.

Nun wird für jedes vi überprüft, ob eine Zugriffsrichtlinie gefunden werden kann, die die
folgende Bedingungen erfüllt. Eine der S zugeordneten Rollen findet sich in dem Attribut role,
abhängig der bereits oben erwähnten Vererbung, das Attribut access ist mit �read� belegt und
für jeden Datenausgang von vi, findet sich im Attribut with ein Eintrag für O und das Attribut
�on� enthält einen der Rechenknoten Ri. Kann für jedes vi eine Zugriffsrichtlinie gefunden werden,
antwortet der PDP Zugriff erlaubt und es wird für jedes vi, alle gefundenen Zugriffsrichtlinien
zurückgegeben. Die Auswertung mit Evaluatoren ist analog, nur dass im Erfolgsfall nur maximal
eine Zugriffsrichtlinie zurückgeliefert wird. So wird verhindert, das unter Umständen sehr viele
Evaluatoren zur Ausführung gebracht werden müssen, obwohl bereits der Zugriff erlaubt ist.
Falls mehrere Zugriffsrichtlinien vorhanden sind, die einen Evaluator bestimmen, werden zuerst
die ausgewertet, die am wenigsten Einschränkungen definieren. Die hierzu definierte Rangfolge
wurde bereits bei der kontrollieren Anfrageplanung erörtert.

90

Kapitel 8

Implementierung

In den vorhergehenden Kapiteln wurde ausführlich der Aufbau einer Sicherheitsarchitektur für
die verteilte Datenstromverarbeitung in Kontext von NexusDS erläutert. Nach dem Vorgehens-
modell der Diplomarbeit erläutert das vorliegende Kapitel die prototypische Einbringung der
Sicherheitsarchitektur in die aktuelle Implementierung von NexusDS. Es geht nur auf die wich-
tigsten Implementierungsdetails ein. Erörtert werden Designentscheidungen, die grundsätzliche
Vorgehensweise und die wichtigsten Veränderungen an NexusDS, die vorgenommen werden
mussten.

Die Implementierung des Prototyps wird wie NexusDS selbst in Java realisiert, um Schnittstel-
lenprobleme mit der vorhandenen Implementierung zu vermeiden. Besonderer Wert wird auf
eine homogene Einbringung der Sicherheitsarchitektur gelegt, sodass die Fähigkeit, Anfragen
kontrolliert auszuführen sich nicht mehr als nötig auf das ursprüngliche NexusDS auswirkt.
Diesem Ziel wurde ein ”sicheres” Programmieren, das in Kapitel 2 erläutert wurde, übergeordnet.
Zur Vertiefung der Entwicklung sicherer Software mit Java, sei der Leser in [17] verwiesen.

Der erste Abschnitt 8.1 stellt die Struktur der Services der Sicherheitsarchitektur vor. Im Vorder-
grund steht das Konzept der Implementierung und die Realisierung der Kommunikation. Der
Abschnitt geht nicht auf die individuellen Interaktionen der Services ein, diese wurde bereits in
den vorherigen Kapiteln ausführlich erläutert.

Die Abbildung von Zugriffsrichtlinien, deren optionale Auswertung mit Evaluatoren und die
Implementierung von Filtern beschreibt Abschnitt 8.2.1. Weiter wird erläutert, wie Zugriffsricht-
linien ausgehen vom Policy Decicion Point (PDP) durch an sich in der Ausführung befindliche
Operatoren propagiert wird. Der Abschnitt enthält ebenfalls eine kurze Einführung in die
Implementierung der AWML.

Abschnitt 8.3 erörtert die Vorgehensweise zur Implementierung der kontrollierten Anfragepla-
nung. Diesbezüglich sind einige Randbedingungen zu beachten, die sich aus der noch prototypi-
schen Implementierung von NexusDS ergeben. Die Umsetzung der Einbettungen, Ausführung
von Filtern und die Realisierung von Interpunktionen erläutert Abschnitt 8.4.

91

8 Implementierung

8.1 Implementierung der Services

Die Sicherheitsarchitektur besteht aus mehreren Services, die unterschiedliche Aufgaben wahr-
nehmen. Darunter gehören zum Beispiel der Role Administration Point (RAP), der Subjekte eine
oder mehrere Rollen zuordnet. Im Allgemeinen besitzen die Services der Sicherheitsarchitektur
einen gemeinsamen Aufbau, der von diesem Abschnitt erläutert wird. In Abschnitt 8.1.1 wird
auf die Datenhaltung von Services eingegangen und in Abschnitt 8.1.2 die Implementierung der
Kommunikation von Subjekt zu Service und von Service zu Service erläutert.

8.1.1 AWML Datenhaltung für Services

Häufig werden Datenhaltungen in Form von relationalen Datenbanken realisiert. Ein bekanntes
Beispiel ist Hibernate1, ein für Java und .NET verfügbares Open-Source Persistenz Framework,
dass über Objekt-Relationale Zuordnungen die Beziehungen zwischen Objekten, deren Attributen
und Methoden in relationalen Datenbanken ablegt. Punkte, die für eine Verwendung von
Hibernate für die Datenhaltung der Sicherheitsarchitektur sprechen, sind die umfangreichen
Funktionen und eine große Entwicklergemeinde, die für eine ständige Weiterentwicklung und
Werkzeugunterstützung sorgt. Gegen die Verwendung spricht, dass Hibernate mit seinem großen
Funktionsumfang eine nicht unerhebliche Komplexität in die Sicherheitsarchitektur einbringt.
Die Komplexität und die Einbindung eines externen Frameworks birgt zusätzliche Fehlerquellen,
die unter Umständen die Sicherheit der Datenhaltung negativ beeinflussen kann. Ein weiterer
negativer Aspekt ist, dass sich Hibernate nicht homogen in die von Nexus genutzte Struktur
für Kontextmodelle einfügt, weswegen zusätzliche Erweiterungen und Typtransformationen
eingeführt werden müssten. Diese Überlegung führt direkt zu dem Ansatz, die Argumented
World Language (AWML) als Modell zur Datenhaltung einzusetzen. Mit der Nutzung der AWML
lassen sich die Informationen, die für die Sicherheitsarchitektur erzeugt werden, wiederum in
Kontextmodellen verwenden. Zudem können bereits vorhandene Werkzeuge von Nexus weiter
eingesetzt werden.

Um die AWML für die Datenhaltungen der Services verwenden zu können, müssen die
Schemas, die die XML basierende Datenstruktur der AWML definieren, erweitert wer-
den. Alle Erweiterungen betreffend der Datenhaltungen sind über das Extended Attribu-
te Schema AccessControlDataStoreExtendedAttributeSchema und das Extended Class Schema
AccessControlDataStoreExtendedClassSchema definiert2. Listing 8.1 zeigt ein Beispiel, wie der
XML-Dialekt der AWML mit einem Typ erweitert wird. Der gezeigte Ausschnitt definiert den Typ
NexusAccessControlIdentitySubjectAttributeType, das die Identität eines Subjektes enthält
und in der Datenhaltung des Identity Administration Point (IAP) zum Einsatz kommt.

Die Basisfunktionalität zur Bereitstellung einer AWML-Datenhaltung für die Services ist in
der abstrakten Klasse AbstractAWMLDataStore gekapselt. Sie enthält ein ResultSet in dem alle

1Hibernate ist verfügbar unter http://www.hibernate.org
2Alle aufgeführten Schemas finden sich gesammelt im dem Nexus Projekt nexus–federation–streamFederation–

services–core—accessControl.

92

8.1 Implementierung der Services

Abbildung 8.1: Klassenstruktur zur Implementierung eines Services der Sicherheitsarchitektur.
Die Klassen sind vereinfacht dargestellt und enthalten nicht alle Attribute und
Funktionen. Zur Darstellung wurde beispielhaft die Implementierung des Policy
Administration Point (PDP) gewählt.

93

8 Implementierung

1 <complexType name="NexusAccessControlIdentitySubjectAttributeType">

2 <sequence>

3 <element name="value">

4 <complexType>

5 <sequence>

6 <element name="username" type="nsat:NexusStringType" minOccurs="1" maxOccurs="1"/>

7 <element name="password" type="nsat:NexusStringType" minOccurs="1" maxOccurs="1"/>

8 </sequence>

9 </complexType>

10 </element>

11 <element ref="nsas:meta" minOccurs="0"/>

12 </sequence>

13 </complexType>

Listing 8.1: Gekürztes Beispiel für einen komplexen Typ zur Definition einer Subjekt Identität.

Daten des Services abgelegt werden und eine Referenz auf eine AWML-Datei zur persistenten
Speicherung des ResultSet. Die notwendigen Vorgänge zum Anlegen einer neuen Datei, das
Laden und Speichern wird von der abstrakten Klasse übernommen. Der Umgang mit einer an
die Klasse übergebenen Datei hängt davon, ob die Datei leer ist. Im Falle einer nicht leeren
Datei wird versucht, die Datei entsprechend als ResultSet zu laden, ansonsten wird ein neues
ResultSet angelegt. Sollte zur Laufzeit über setAwmlFile(String:awmlFile) eine neue Dateire-
ferenz angegeben werden, wird der aktuelle Zustand der Datenhaltung der vorherigen Datei
abgelegt und die neue Dateireferenz zur Persistenz vorgesehen. Die Funktion dient dazu, dass
die Datenhaltungen von Services zur Laufzeit umgestellt werden können. Beispielsweise falls
ein Service mehrfach ausgeführt wird und als Cache arbeitet, dann kann über die Funktion die
Datenhaltung regelmäßig aktualisiert werden, ohne den Service neu starten zu müssen.

Jeder Service implementiert eine eigene Spezialisierung zur Datenhaltung als Erweiterung
der abstrakten AbstractAWMLDataStore Klasse. Beispielsweise im Fall des Policy Administrati-
on Point (PAP) die Klasse PAPDataStore. Die Klasse implementiert die Funktionen, die von
dem zugeordneten Service benötigt werden um Zugriffsrichtlinien in das ResultSet der Da-
tenhaltung abzubilden. Für die Klasse PAPDataStore wäre hierzu ein Beispiel die Funktion
checkPolicyID(ResultSet:rsPolicy) mit einem booleschen Rückgabetyp, die zu einer gegebe-
nen Zugriffsrichtlinie ermittelt, ob deren Identifikator bereits in der Datenhaltung vorhanden ist.
So werden die speziellen Funktionen des jeweiligen Services klar getrennt und gleichbleibende
Aufgaben wie das Laden und Speichern der Datenhaltung müssen nicht mehrfach implementiert
werden.

8.1.2 Kommunikation mit den Services

Die Kommunikation von Service zu Service und von Subjekt zu Service läuft grundsätzlich
verschlüsselt ab. Dazu werden alle Datenkanäle über das Secure Sockets Layer (SSL) Protokoll
aufgebaut, welches von der Java-Erweiterung Secure Socket Extension (JSSE) hinreichend unter-
stützt wird. Zur Behandlung von Anfragen erwartet der Service an einem SSL-Socket eingehende
Verbindungen. Die Verbindungen können entweder dazu aufgebaut werden, um dem Service

94

8.1 Implementierung der Services

Subjekt Policy Administration Point (PAP)

Verbindung herstellen

Sendet Willkommensnachricht

Sendet eigene Identität zur
Authentifizierung

Identity Administration Point (IAP)

Abfrage ob Subjekt
authentisch ist

Übermittelt Ergebnis mit
M_ALLOWED oder M_DENIED

Fehlermeldung oder Übertragung
der Zugriffsrichtlinie anfordern

Abfrage ob Subjekt für in der Zugriffsrichtlinie
gegebene Rechenknoten Vergaberechte besitzt

Übermittelt Ergebnis mit
M_ALLOWED oder M_DENIED

Fehlermeldung absetzen und
Verbindung schließen

Bestätigung der Erstellung mit
M_POLICY_CREATED

Übertragung der Zugriffsrichtlinie

Secure Operator Repository (SOR)

Abfrage ob Subjekt für in der Zugriffsrichtlinie gegebene
Operatoren Vergaberechte besitzt

Übermittelt Ergebnis mit M_ALLOWED oder M_DENIED

Falls M_DENIED absetzten einer
Fehlermeldung und Verbindung

schließen

Prüfen ob Zugriffsrichtlinie
bereits vorhanden

Falls M_DENIED absetzten einer
Fehlermeldung und Verbindung

schließen

Neue Zugriffsrichtlinie der
Datenhaltung hinzufügen

Abbildung 8.2: Sequenzdiagramm für die Erstellung einer neuer Zugriffsrichtlinie am Policy
Administration Point (PAP).

neue Daten zuzuspielen, wie zum Beispiel Zugriffsrichtlinien im Fall des Policy Administration
Point (PAP), oder zum Abrufen von Information. Information kann entweder von weiteren Ser-
vices abgerufen werden, Subjekten oder auch von Werkzeugen, die an den Service angebunden
werden. Für den PAP könnte dies zum Beispiel ein grafisches Werkzeug zur Erstellung von
Zugriffsrichtlinien sein. Aus diesen Gründen eignet sich die Realisierung als öffentlicher Socket,
sodass beliebige Erweiterungen und Anwendung lediglich unter Angabe von Hostname und
Port mit dem Service in Kontakt treten können.

Zur Abwicklung der eingehenden Verbindungen implementiert jeder Service die abstrakte
Klasse AbstractConnectionHandlerThread. Sie enthält die grundlegenden Funktionen, um an
den Service gerichtete Verbindung anzunehmen. Eingehende Verbindungen werden nur über das

95

8 Implementierung

SSL-Protokoll akzeptiert. Falls der Klient der eingehenden Verbindung über ein digitales Zertifikat
verfügt, wird es über den zentralen Certificate Authority Point (CAP) überprüft. Solle die Prüfung
erfolgreich sein, erhält der Klient Zugriffsrechte auf alle Daten des Services. Die vorliegende
Implementierung unterscheidet in diesem Fall keine detaillierteren Zugriffsbeschränkungen.
Sollte der Klient über kein Zertifikat verfügen, da es sich zum Beispiel um ein Subjekt handelt,
das neue Zugriffsrichtlinien eintragen will, muss die Implementierung des Service die Prüfung
auf ausreichende Rechte vornehmen. Das kann zum Beispiel durch eine Kontaktaufnahme
zum Identity Administration Point (IAP) geschehen, der eine gegebene Identität bestätigt oder
ablehnt. Jede eingehende Verbindung wird an eine Implementierung der abstrakten Klasse
AbstractHandleRequest übergeben. Diese läuft in einem eigenen Thread, sodass Anfragen
behandelt werden können, ohne den Service für weitere Anfragen zu blockieren.

Zur Bearbeitung von Anfragen wird die abstrakte Klasse AbstractHandleRequest mit der Funk-
tion processCommand(MSG:msg) implementiert. Die Funktion erhält eine Instanz der Klasse MSG,
die die eingehende Anfrage darstellt. Eine Anfrage besteht aus einem String, der mit einem
Befehl oder einer Nachricht belegt werden kann und einem ResultSet, für Informationen auf
Basis der AWML. In der Funktion behandelt die individuelle Implementierung die Anfrage und
liefert als Antwort an den Klienten wiederum eine Instanz der Klasse MSG. Als Beispiel wird
eine Anfrage an den Service Role Administration Point (RAP) angeführt, die den Zweck hat eine
Menge von Rollen für eine Subjektidentität abzufragen. Als String für den Befehl wird eine
Konstante eingetragen, die den Abruf von Rollen zu einem Subjekt definiert. Der RAP liefert
dann als Antwort eine Nachricht über Erfolg oder Misserfolg und bei Erfolg zusätzlich ein
ResultSet mit den gefundenen Rollen. Zur Auswertung von Anfragen greift der Service in der
Regel auf die angeschlossene AWML-Datenhaltung zurück, indem Information abgefragt oder
verändert wird. Abbildung 8.2 zeigt in Form eines Sequenzdiagrammes3 beispielhaft, wie die
Interaktion zwischen den Services der Sicherheitsarchitektur abläuft, wenn ein Subjekt am Policy
Administration Point (PAP) eine neue Zugriffsrichtlinie eintragen will.

8.2 Zugriffsrichtlinien

Der Abschnitt 8.2.1 gibt einen kurzen Einblick in die Implementierung der Argumented World
Language (AWML) und beschreibt, wie die Attribute der Zugriffsrichtlinien in die AWML
abgebildet werden. Zur Auswertung von Zugriffsrichtlinien werden die bereits im vorherigen
Kapitel erläuterten Vergleiche durchgeführt. Die Vergleiche basieren dabei immer auf der Suche
nach Zugriffsrichtlinien, die einen geforderten Zugriff abdecken. Um diese einfache Art der
Vergleiche zu erweitern, wurden Evaluatoren vorgestellt, deren Implementierung in Abschnitt
8.2.2 beschrieben wird. Dass Individuelle transformieren von Datenelementen, um Information
vor einer Verarbeitung zu löschen oder zu verschleiern, wird mit Filtern realisiert. Wie Filter
individuell implementiert werden können, beschreibt Abschnitt 8.2.3.

3Ergänzende Sequenzidiagramme für die weiteren Services befinden sich im Nexus Projekt nexus–federation–
streamFederation–services–core—accessControl.

96

8.2 Zugriffsrichtlinien

Abbildung 8.3: Unvollständiger Ausschnitt der Abbildung von Zugriffsrichtlinien in die AWML,
die vollständige Menge an Attribute findet sich in den erwähnten Schemas in
Abschnitt 8.2.1.

8.2.1 Abbildung der Zugriffsrichtlinien

Die Abbildung von Zugriffsrichtlinien erfolgt in der AWML mit den Sche-
mas AccessControlPolicyExtendedAttributeSchema zur Definition der Typen und
AccessControlPolicyExtendedClassSchema zur Definition der Klassen. Die Attribute wurden
bereits in Abschnitt 7.2 umfassend erläutert und werden direkt in die AWML abgebildet.
Unterschiede finden sich lediglich in der Gruppierung, da in der AWML Attribute nicht beliebig
tief verschachtelt werden können. Abbildung 8.3 zeigt einen unvollständigen Ausschnitt, wie
die Attribute abgebildet werden. Zum besseren Verständnis der nachfolgenden Erläuterungen
folgt eine kurze Einführung in das Modell der AWML. Basiselement ist ein ResultSet, dass
eine beliebige Anzahl von GenericObject Instanzen enthält. Jedes GenericObject verfügt
wiederum über eine beliebige Anzahl von GenericAttributeInstance. Sie bilden den Container
für eine Gruppe von GenericAttributPart Instanzen, die die Werte für die Attribute der
Zugriffsrichtlinien abbilden. In diesen drei Ebenen werden die Zugriffsrichtlinien abgebildet,
indem jedes Attribut einer bestimmten Gruppe zugeordnet wird. Jede Zugriffsrichtlinie ist
ein GenericObject und enthält für die erste Attributgruppe eine GenericAttributeInstance

vom Typ policyDescription. Sie erfasst die wichtigsten Attribute zur Beschreibung einer
Zugriffsrichtlinie wie zum Beispiel policyID und access. Mit der Attributgruppe wird die
Zugriffsrichtlinie identifiziert und die elementaren Eigenschaften beschreiben, weshalb sie genau
einmal vorkommen muss. Im Gegensatz dazu darf die Gruppe policyAssignment beliebig
häufig vorkommen, mindestens aber einmal. Sie fasst die Attribute zusammen, an welche

97

8 Implementierung

Rolle role, Operator operator und Rechenknoten node die Zugriffsrichtlinie gebunden ist. Die
Gruppe policyRead fasst alle Attribute zur Beschreibung des Lesezugriffs zusammen. Das heißt,
eine slotID auf die sich der lesende Zugriff bezieht, das Attribut with zur Referenzierung
von Operatoren und das Attribut on, zur Definition auf welchen Rechenknoten das Lesen
der ausgehenden Datenelemente des Operators erlaubt ist. Da diese Gruppe nur im Falle
des Zugriffstyp �read� notwendig ist, muss sie nicht zwangsläufig vorkommen. Sollte der
Zugriffstyp jedoch �read� sein, muss sichergestellt werden, dass die Gruppe mindestens einmal
vorkommt. Derartige Restriktionen sind allerdings mit der aktuellen Version der AWML nicht
möglich, weshalb die Implementierung der Policy Administration Point (PAP) die Einhaltung
überwacht. Die Definition der Attributgruppen policyEvaluator zur Definition von einem
Evaluator, die maximal einmal vorkommen darf, und die Gruppe policyFilter zur Definition
von Filtern verhalten sich analog.

8.2.2 Implementierung von Evaluatoren

Evaluatoren können optional anstelle der Sicherheitsarchitektur die Entscheidungen treffen,
ob ein Zugriff gestattet ist oder nicht. Dazu werden Zugriffsrichtlinien zur Auswertung an
Evaluatoren übergeben. Welcher Evaluator das ist, wird von der auszuwertenden Zugriffsrichtli-
nie bestimmt. Implementiert werden Evaluatoren mit dem Interface Evaluator und unter der
Verwendung der abstrakten Klasse AbstractEvaluator. Die abstrakte Klasse realisiert bereits
die grundlegenden Funktionen, auf denen individuelle Evaluatoren aufgebaut werden können.
Zur Ausführung gebracht werden die Operatoren im Policy Decision Point (PDP), der nach Be-
darf die Evaluatoren aus dem Secure Operator Repository (SOR) lädt, instanziiert und mit den
notwendigen in Abschnitt 7.2.4 beschriebenen Parametern versorgt. Danach wird die Funktion
evaluate() ausführt, die im Erfolgsfall ein ResultSet zurückliefert. Im erfolgreichen Fall enthält
das ResultSet eine Zugriffsrichtlinie nach dem bereits definierten Schema, das dann die ur-
sprüngliche Zugriffsrichtlinie für die Auswertung ersetzt. Zu beachten ist, die Ersetzung ist nur
temporär für die Weiterverarbeitung der Zugriffsrichtlinie und nicht von Dauer. Das erleichtert
die Weiterverarbeitung im Falle der Anfrageplanung, weil die Rückgabe des Evaluators wie eine
reguläre Zugriffsrichtlinie verarbeitet werden kann. Sollte der Zugriff nicht gestattet worden sein,
wird anstatt einem ResultSet nur null zurück geliefert.

8.2.3 Implementierung von Filter

Filter ermöglichen, wie in Abschnitt 7.2.5 beschrieben, beliebige Transformationen auf Daten-
elemente durchzuführen. Sie können grundsätzlich im Rahmen ihrer Spezifikation frei im-
plementiert werden. Die Spezifikation wird vom Interface Filter<T> vorgegeben, dass das
Minimum an Funktionen definiert, die ein Filter implementieren muss. Dazu gehört die Funktion
process(T:element), die die Transformation des Filters implementiert und deren Rückgabe-
typ ebenfalls von Typ T ist. Implementierungen von Filter müssen auf die abstrakte Klasse
AbstractFilter<T> aufsetzen, die die grundlegenden Funktionen für einen Filter implementiert.
Darunter fallen zum Beispiel setter Methoden, die den Filter mit Parameter versorgen, wie

98

8.2 Zugriffsrichtlinien

StreamNode

StreamNode

StreamNode

StreamNodeGroup
Policy

Administration
Point

Zugriffsrichtlinien
Verteilen

Zugriffsrichtlinienänderung

Registriert sich beim Start

Abbildung 8.4: Schema wie neue Zugriffsrichtlinien von der Sicherheitsarchitektur an sich in der
Ausführung befindliche Operatoren weitergeleitet werden.

zum Beispiel welches Subjekt die Anfrage ausführt. Zur Beschreibung des Datentyps, der vom
Filter verarbeitet wird, greift die Implementierung auf das Meta-Daten-Modell der Operatoren
zurück. Die direkte Übernahme bietet sich deshalb an, da die Filter direkt an die Operatoren
die Datenausgänge und Dateneingänge angeheftet werden, deren Datentyp kompatible sein
muss. Für den Prototyp wird nur die Definition des Typs NexusSlotAttributeType aus dem
OperatorExtendedAttributeSchema beachtet, die direkt mit den Angaben zur jeweilig zugeord-
neten slotID der Operatoren abgeglichen werden kann. Die Meta-Daten werden jeweils im Paket
des Filters, in einer Datei namens Descriptor.awml abgelegt.

Der Prototyp der Sicherheitsarchitektur implementiert zur Illustration des Konzeptes den Filter
ResultSetFilter. Dieser Filter erhält über das Zugriffsrichtlinien Attribut rule ein ResultSet,
dass über die Kette von GenericObject, GenericAttributInstance und GenericAttributPart

definiert, welche Instanzen aus eingehenden ResultSets zu löschen sind. Wie in Abbildung
8.3 kann ein ResultSet als Baum dargestellt werden. Der Filter löscht genau dann jeweils
die im ResultSet bestehenden Blätter aus den eingehenden ResultSets. Zum Beispiel falls
ein GenericObject keine Kindobjekte besitzt, dann werden alle eingehenden GenericObject

dieses Typs gelöscht. Besitzt das GenericObject mehrere GenericAttributInstance Kinder, die
keine Kindobjekte besitzt, werden alle GenericAttributInstance vom gleichen Typ gelöscht.
Mit dieser Konvention müssen keine zusätzlichen Attribute eingeführt werden, die explizit ein
Löschen von einzelnen Teilen definieren, sondern es werden immer die Blätter des Baumes der
AWML-Struktur aus eingehenden ResultSets geschnitten.

8.2.4 Propagierung von neuen Zugriffsrichtlinien

Werden neue Zugriffsrichtlinien am Policy Administration Point (PAP) erstellt und betreffen diese
sich in der Ausführung befindliche Operatoren, müssen diese über die Änderung benachrichtigt
werden. Hierzu muss der PAP in der Lage sein, die entsprechenden Operatoren zu erreichen, um
die Zugriffsrichtlinien zu übermitteln. Handelt es sich um eine Zugriffsrichtlinie, die im Attribut

99

8 Implementierung

immediate mit falsch belegt ist, dann müssen nur Quellen benachrichtigt werden, die ihrerseits
die Zugriffsrichtlinie in die Datenströme interpunktieren und so die Änderung der Operatoren
in der Anfrage bekannt werden. Ist das Attribut immediate mit wahr belegt, muss der PAP alle
Operatoren erreichen, denn die Zugriffsrichtlinie soll umgehend durchgesetzt werden und nicht
die Verbreitung über die Interpunktion abgewartet werden. Im vorliegenden prototypischen
NexusDS, lässt sich die im Konzept definierte Zuteilung der Zugriffsrichtlinien nicht direkt
umsetzten. Deswegen wurde für den Prototyp der Sicherheitsarchitektur ein Weg gewählt, indem
der PAP darüber informiert wird, an welche Stellen Zugriffsrichtlinien zu leiten sind.

Abbildung 8.4 zeigt, wie die Weiterleitung realisiert wird. Innerhalb eines StreamNodes befinden
sich die ProcessLines, die die Operatoren eines Anfragefragmentes ausführen. Jeder StreamNo-
de ist wiederum Mitglied in einer StreamNodeGroup, die sich zu Beginn der Ausführung an
dem zentralen PAP anmeldet. Kommt es zu einer Veränderung von Zugriffsrichtlinien, indem
vorhandene angepasst, gelöscht oder neue Zugriffsrichtlinien erstellt werden, leitet der PAP
die Zugriffsrichtlinien an alle registrierten StreamNodeGroups weiter. Die StreamNodes erhalten
nur die Zugriffsrichtlinien, für die sie als Rechenknoten eingetragen sind und leiten dann die
Zugriffsrichtlinien an die betroffenen, sich in der Ausführung befindlichen Operatoren, weiter.
Gleiches Konzept kommt dann zum Einsatz, wenn eine Zugriffsrichtlinie das Attribut immediate
mit wahr belegt. Dann wird die Zugriffsrichtlinie an alle Operatoren der Anfragen weitergeleitet,
in denen sich eine Instanz des von der Zugriffsrichtlinie betroffenen in der Ausführung befindet.
Auf diese Weiße wird die Zugriffsrichtlinie sofort durchgesetzt und es entsteht keine Wartezeit
durch die Übertragung als Interpunktion.

8.3 Planung von Anfragen

Wesentlicher Teil zur kontrollierten Ausführung von Anfragen ist eine Anfrageplanung, die
nur die Anfrage zur Ausführung bringt, die durch Zugriffsrichtlinien gedeckt sind. Kern ist,
bevor eine Anfrage zur Ausführung gebracht wird zu prüfen, ob alle Operatoren von dem
Absender der Anfrage ausgeführt werden dürfen und ob diese über ausreichend Leserechte
an den Datenelementen ihrer vorgeschalteten Operatoren verfügen. In Abschnitt 7.4 wurde
der Ablauf bereits ausführlich beschrieben. Zur Umsetzung geht die Implementierung der
Anfrageplanung nach dem in Abbildung 8.5 gezeigten Flussdiagramms durch die Menge der
Operatoren einer Anfrage. Der erste Schritt ist die Prüfung der Ausführungsrechte, Abschnitt
8.3.1, der zweite Schritt die Kontrolle der Leserechte, Abschnitt 8.3.2 und abschließend die
Einbringung von zusätzlichen Meta-Daten in die Anfrage, Abschnitt 8.3.2.

In der bestehenden prototypischen Implementierung von NexusDS ist der Core Query Service
(CQS) noch nicht vollständig realisiert. Deshalb wird die prototypische Implementierung des
Secure Core Query Services (SCQS) auf den wesentlichen Teil, den Secure Query Planer (SQP)
reduziert. Die Implementierung realisiert die Klasse SecureQueryPlaner und ist so gestaltet, dass
sie in die zukünftige Implementierung des SCQS direkt eingebunden werden kann.

100

8.3 Planung von Anfragen

8.3.1 Überprüfung der Ausführbarkeit von Operatoren

Zu Beginn der Überprüfung erwartet SecureQueryPlaner über die Funktion
checkQuery(ResultSet:Query, String:Subject) sowohl die Anfrage, als auch die Identität
des Subjektes, dass die Anfrage zur Ausführung bringen will. Die Ausführbarkeit wird getestet,
indem für jede Instanz eines GenericAttributInstance vom Typ NexusBlockAttributeType

überprüft wird, ob mindestens eine Zugriffsrichtlinie dem Subjekt die Ausführung gestattet.
Hierzu öffnet der SQP eine SSL gesicherte Verbindung zum PDP und überträgt die Identität
des Subjektes und ein ResultSet mit dem zu prüfenden Operator. Als Identität für Operatoren
wird die classURI oder eine NOL verwendet, die in der vorliegenden Implementierung von
NexusDS bereits zur eindeutigen Identifikation von Operatoren verwendet wird. Unter welchem
Hostnamen und Port der verantwortliche PDP zu erreichen ist, wurde dem Secure Query
Planer (SQP) zur Instanziierung mitgeteilt. Konnte ein Operator erfolgreich überprüft werden,
erhält der SQP ein ResultSet zurück, dass mindestens eine Zugriffsrichtlinie enthält. Jede
gefundene Zugriffsrichtlinie wird dann dem überprüften Operator zugeordnet. Die gleiche
Vorgehensweise gilt für Einträge des Typs NexusInputManagerAttributeType für Input-Manager
und NexusQueueAttributeType für Warteschlangen. Konnte der Schritt für jeden Eintrag der
Anfrage erfolgreich durchführt werden, geht die Planung in den zweiten Schritt über, sonst
wird die Planung abgebrochen. Der Implementierte Algorithmus geht iterativ durch die Menge
der Operatoren, was zu einer Laufzeit von Θ(n) führt, wobei n als Anzahl der geschützten
Operatoren definiert ist. Für nicht geschützte Operatoren ist die Überprüfung nicht notwendig.

8.3.2 Überprüfung vorgelagerter Operatoren

Der zweite Schritt überprüft, dass jeder Operator Leserechte an seinen vorgelagerten Opera-
toren besitzt. Dazu durchläuft die Implementierung ausgehend von den ersten Operatoren,
die geschützten Quellen nachgelagert sind, den Anfragegraph. Für jeden Operator wird der
entsprechende vorgelagerte Teilgraph abgetrennt und zur Auswertung an den PDP übertragen.
Der PDP verfolgt dann rekursiv alle in den zu prüfenden Operator eingehenden Kanten und
prüft, ob für den adjazenten Operator eine Zugriffsrichtlinie gefunden werden kann. Von da
aus geht wiederum die Verfolgung der Kanten rekursiv weiter, für alle die Kanten, die von
der eingehenden Kante abhängen, über die der Rekursionsschritt eingetroffen ist. Die Abhän-
gigkeit von Dateneingängen und Datenausgängen lassen sich entweder über die Meta-Daten
des Operators oder über eine eingesetzte Heuristik ermitteln, die in Abschnitt 7.3.1 erläutert
wurde. Sollte die Überprüfung zu einem erfolgreichen Abschluss kommen, erhält der SQP eine
Menge von Zugriffsrichtlinien, die den Lesezugriff für jeden vorgelagerten Operator enthält.
Schlug die Prüfung fehl, ist das ResultSet leer, wird die Planung mit einer Fehlermeldung
abgebrochen. Sei n wieder die Anzahl der geschützten Operatoren (Knoten) und m die Anzahl
der Verbindungen (Kanten). Dann benötigt die Prüfung O(n ∗ (n + m)) Schritte, wobei abhängig
von der Anzahl der Kanten entweder n oder m dominiert. Grundsätzlich ist es nicht möglich, den
Algorithmus durch eine geschickte Wiederverwendung von vorherigen Schritten asymptotisch zu
optimieren. Das liegt daran, dass für die Überprüfung eines Operators die Ergebnismengen eines
vorhergehenden Schrittes zwar weiterverwendet werden können, aber dennoch jedes Mal eine

101

8 Implementierung

Beginn der
Überprüfung

PDP sucht
erfüllende

Zugriffsrichtlinien

JA

Anfrage
Zurückweisen

Mindestens eine
gefunden

Rückgabe der
Zugriffsrichtlinien

Operatoren
für Zugriffstyp
"execution"

stehen zur Prüfung
aus

Keine
Zugriffsrichtlinie

gefunden

Operatoren
für Zugriffstyp

"read"
stehen zur Prüfung

aus

NEIN

JA

Anfrage
Ausführen

NEIN

Rückgabe der
Zugriffsrichtlinien

Anfrage mit
Meta-Daten zur kontrollierten

Verarbeitung anreichern

Abbildung 8.5: Schema des Ablaufes der Überprüfung einer Anfrage durch den Secure Query
Planer (SQP).

Suche nach Zugriffsrichtlinien für den zu überprüfenden Operator notwendig ist. Die weitere
Berechnung der Schnittmengen an Rechenknoten, was schon in Abschnitt 7.4.2 ausführlich
erläutert wurde, ist NP-Vollständig und lässt sich auf das Problem Bin-Packing reduzieren. Es
handelt sich dabei um eine sehr ähnliche Problemstellung wie die Berechnung einer optimalen
Verteilung von Operatoren auf verschiedene Rechenknoten, die sich auch als NP-Vollständig
erweist. Deswegen ist dieser Schritt der Anfrageplanung sehr aufwendig und die Planung ent-
hält einen Zwischenspeicher, der bei einem erneuten Aufruf mit gleichen Parametern auf ein
vorberechnetes Ergebnis zurückgreift. Vor Rückgriff wird jedoch geprüft, ob sich Änderungen in
betroffenen Zugriffsrichtlinien, Rollen oder Rechenknoten Zuordnungen ergaben. Dadurch lässt
sich die aufwendige Berechnung der Vorgänger und einer Lösung zur Rechenknotenverteilung
unter Umständen vermeiden.

8.3.3 Anpassung von Anfragen

Ist die Prüfung für alle Operatoren erfolgreich abgeschlossen, wird die Anfrage mit zusätzlichen
Informationen versehen. Hierzu wurden die Schemas SNSetupExtendedAttributeSchema und
SNSetupExtendedClassSchema erweitert, sodass zusätzliche Informationen vermerkt werden
können. Zum einen ist das die Information, welche Filter, in welcher Reihenfolge, an welchen
Dateneingängen und Datenausgängen an Operatoren angebunden werden müssen. Zweites eine

102

8.4 Kontrollierte Ausführung von Operatoren

Auswahl an Rechenknoten, auf denen die Ausführung gestattet ist. Die Information wird dann
wiederum beim Start der Ausführung einer Anfrage ausgelesen, was im folgenden Abschnitt
erörtert wird. Wie im Folgenden noch erörtert wird, werden Filter im Fall von Operator-Boxen und
Senken in den vorgelagerten Warteschlangen angewendet. Deshalb müssen die Warteschlangen,
die an geschützte Operatoren angebracht werden, das Interface SecureQueue<E> implementieren.
Für den Prototyp werden nicht alle bereits existierenden Warteschlangen erweitert, sondern
beispielhaft die Warteschlange SecureCountBasedQueue<E> implementiert. Die Implementierung
der erweiterten Anfrageplanung ersetzt dann all Warteschlangen vom Typ CountBasedQueue<E>

mit der genannten, erweiterten Warteschlange. Sollen Operatoren geschützt werden, die andere
Warteschlangen fordern, müssen diese noch entsprechend erweitert werden.

8.4 Kontrollierte Ausführung von Operatoren

Das Konzept der Sicherheitsarchitektur bettet die Operatoren in eine spezifische Einbettung ein,
die Secure-Source für Quellen, die Secure-Box für Operator-Boxen und die Secure-Sink für Senken.
Hauptaufgaben der Einbettungen sind der Einsatz von Filtern, um Datenströme zu transformieren
und die Reaktion auf Zugriffsrichtlinien zur Ausführungszeit. Im Architekturkapitel wurde
bereits angemerkt, dass die Einbettungen von logischer Natur sind und nicht direkt als physische
Komponenten vorgesehen sind. Für die Implementierung ist nach Möglichkeit ein Ansatz zu
wählen, der die bestehende Implementierung von NexusDS so wenig wie möglich beeinflusst,
um die Funktionalität von NexusDS nicht unnötig zu beschränken.

Aus dieser Überlegung lassen sich zwei Hauptansätze entwickeln. Der Erste fügt neue Kom-
ponenten zu NexusDS hinzu, die die Operatoren umschließen und Datenelemente mit Filter
vorverarbeiten oder im Fall von Quellen nachverarbeiten. Dies käme einer verhältnismäßig direk-
ten Abbildung der Einbettungen gleich, die sich zum Beispiel durch den Einsatz von speziell für
die Sicherheitsarchitektur entwickelten Operatoren umsetzten lassen würde. Nachteilig wirkt
sich der entstehende Zusatzaufwand aus, der die Verwaltung von einer deutlich höheren Anzahl
an Operatoren nach sich zieht. Das ist zum Beispiel dann der Fall, wenn mehrere Filter zum
Einsatz kommen und jeder Filter als einzelner Operator ausgeführt wird. Daraus folgt der Ansatz,
eine stärkere Integration anzustreben und die Einbettungen in die bestehenden Operatoren zu
integrieren. Dadurch wird zusätzlicher Verwaltungsaufwand vermieden und die notwendigen
Prozesse der Einbettungen direkt in den betroffenen Operatoren abgewickelt. Weshalb der Ansatz
der direkten Integration für die prototypische Implementierung gewählt wurde.

Die Verschlüsselung der einzelnen Datenelemente wird für die Realisierung des Prototyps
vereinfacht. Innerhalb einer Ausführungsumgebung, der sogenannten ProcessLine, wird keine
Verschlüsselung durchgeführt. Im bestehenden Prototyp von NexusDS wird je Anfragefragment
eine ProcessLine vorgesehen, weshalb der Austausch von Informationen zwischen verschiedenen
Fragmenten nicht ohne weiteres möglich ist. Zwar besteht durch gezielte Manipulation an
NexusDS während der Ausführung die Gefahr, dass Informationen abgegriffen werden, jedoch
ist die Abwehr nicht Thema der vorliegenden Diplomarbeit. Ferner würde eine Verschlüsselung
innerhalb einer ProcessLine größere Änderungen an NexusDS erfordern, denn jedes Datenelement

103

8 Implementierung

würde verschlüsselt nicht mehr seinem ursprünglichen Datentyp entsprechen. Wichtig ist die
Verschlüsselung jedoch bei einem Datentransfer über ProcessLine hinweg. Das ist dann der Fall,
wenn Plattform-Senken und Plattform-Quellen Datenkanäle über die Grenzen von einzelnen
ProcessLines öffnen. Weshalb in diesem Fall die Verschlüsselung zum Einsatz kommt.

Der integrative Ansatz besteht aus drei wesentlichen Teilen. Erstens erfordert die Verwendung von
Interpunktionen eine Erweiterung, sodass Datenelemente von Zugriffsrichtlinien getrennt werden
können. Abschnitt 8.4.2 erörtert die hierzu durchgeführten Erweiterungen der Implementierung
von NexusDS. Zweitens die Reaktion auf Zugriffsrichtlinien und die Wiedereinflechtung von
Zugriffsrichtlinien, was von Abschnitt 8.4.3 erläutert wird. Drittens in Abschnitt 8.4.4, die
Anwendung von Filtern, bevor Datenelemente eine Quelle verlassen, von Operatoren verarbeitet
oder von Senken an ihr Ziel weitergeleitet werden.

8.4.1 Anpassungen der ProcessLine

Im vorherigen Abschnitt wurde bereits besprochen, dass Anfragen um zusätzliche Attribute
erweitert werden, um die zusätzlichen Informationen zu Filtern abzubilden. Die Instanziierung
der Filter wird parallel mit der Instanziierung der Operatoren beim Starten von Anfragen
durchgeführt. Hierzu wird die ProcessLine angepasst, die aus eingehenden Anfragen die
zusätzlichen Informationen bezüglich der Filter aus Anfragen extrahiert. Die extrahierten Daten
werden dann während direkt and die betroffenen Operatoren weitergereicht, im Fall von Quellen
an die Quelle selbst und für Operator-Boxen und Senken wie bereits erläutert an die jeweilige
Warteschlange.

8.4.2 Transport von Zugriffsrichtlinien

Das bisherige Konzept Daten zwischen Quellen, Operator-Boxen und Senken auszutauschen,
basiert auf der Implementierung des Interface Receivern<T>. Über die Klassen, die das Interface
implementieren, wird eine Koppelung zwischen den Operatoren innerhalb einer ProcessLine
hergestellt. Zur Ausführungszeit wird dann die implementierte Funktion receive(int:InputID,

T:Data) aufgerufen, die ein Datenelement an den mit der InputID gekoppelten Datenein-
gang eines Operators weiterreicht4. Der Datentyp des zu übertragenden Datenelementes ist
dabei mit dem Typ T festgelegt, was eine Übermittlung der Zugriffsrichtlinien, die vom Typ
ResultSet sind, über den gleichen Weg ausschließt. Um dieses als Templates bezeichnete Kon-
zept zu erhalten, mit dem jeder Operator einen eigenen Datentyp definieren kann, werden die
Receiver so erweitert, dass parallel Zugriffsrichtlinien übertragen werden können. Das führt
zu der Einführung des SecureReceiver<T>, der das Interface Receivern<T> um die Funktion
receivePolicy(int:InputID, ResultSet:Policy) erweitert. Abbildung 8.6 zeigt die Erweite-
rung im oberen Teil a). Auf diesem Weg lassen sich Zugriffsrichtlinien parallel zu den Da-
tenelementen zu den angebundenen Operatoren transportieren, ohne das bereits bestehende

4Weitere Details dazu finden sich in der Masterarbeit von Daniel García Sardina [35].

104

8.4 Kontrollierte Ausführung von Operatoren

Abbildung 8.6: Erweiterung der Receiver Implementierung zum Transport von Zugriffsrichtlini-
en und zur Benachrichtigung von Operatoren über neue Zugriffsrichtlinien.

105

8 Implementierung

Konzept zu beeinflussen. Der Prototyp der Sicherheitsarchitektur implementiert die Erweiterung
für BoxReceiver<T> und SinkReceiver<T>, sodass die vom NexusDS Prototyp implementierten
Standardoperatoren unterstützt werden. Für die Quelle ist das Interface nicht zu implementieren,
da diese nur direkt von der Anfrageplanung über neue Zugriffsrichtlinien informiert werden
kann und selbst nicht über Dateneingänge verfügt, über die die Quelle Zugriffsrichtlinien erhalten
könnte.

Um die von den Receivern realisierten Transport zu unterstützen, muss auch die Implementierung
der Operatoren angepasst werden, dazu sind die in Abbildung 8.6 im unteren Teil b) gezeigten
Interfaces PolicyForward und PolicyReceive vorgesehen. Erstes Interface um Zugriffsrichtlinien
an nachfolgende Operatoren weitergeben zu können und zweites Interface um Zugriffsrichtlinien
empfangen zu können. Eine Quelle leitet offenbar nur Zugriffsrichtlinien weiter, weshalb sie
nur das Interface PolicyForward implementieren muss. Eine Operator-Box, repräsentiert mit
dem Interface Box, jedoch beide Interfaces, da diese Zugriffsrichtlinien sowohl empfängt als
auch weiterleitet. Die Quelle empfängt lediglich Zugriffsrichtlinien und implementiert nur das
Interface PolicyReceive.

Wie bereits in der Einleitung für den Abschnitt erläutert, ist für die Kombination aus Plattform-
Senke und Plattform-Quelle eine verschlüsselte Verbindung notwendig. Bisher wird im Prototyp
eine Verbindung zwischen Plattform-Senke und Plattform-Quelle über einen Socket hergestellt
und ein serialisiertes Datenelement im Klartext übertragen. Für die Deserialisierung ist aufgrund
des bereits erwähnten Template Konzeptes klar, um welchen Datentyp es sich handelt. Soll auf
gleichem Wege Zugriffsrichtlinien in der Form von ResultSets übertragen werden, muss eine
Unterscheidung zur Deserialisierung eines verschlüsselten Objektes getroffen werden, ob es sich
um eine Zugriffsrichtlinie oder um ein Datenelement handelt. Das Problem wird gelöst, indem
eine serialisierbare Klasse zwei Byte Arrays beinhaltet, wobei Erstere für ein Datenelement und
die zweite für eine Zugriffsrichtlinie vorgesehen ist. Je nachdem, ob eine Zugriffsrichtlinie oder
ein Datenelement übertragen wird, ist eine der Variablen leer. Dadurch kommt es nur zu einem
sehr geringen Überhang und der Aufbau der Plattform-Senken und Plattform-Quellen kann weit-
gehend beibehalten werden. Denn je nachdem, welche Variable belegt ist, wird der ursprüngliche
Mechanismus einer Plattform-Quelle aufgerufen oder die Zugriffsrichtlinie direkt deserialisiert
und an die Plattform-Quelle angebunden Operatoren weitergeleitet. Vor Übertragung wird die
serialiserte Instanz verschlüsselt, sodass die übertragenen Datenelemente bei der Übertragung
durch unbekannte Netze geschützt sind. Die Plattform-Quelle verfügt von der Anfrageplanung
über den gleichen Schlüssel wie zu zugehörige Plattform-Senke und kann die Daten wieder
entschlüsseln.

8.4.3 Auswertung und Wiederinterpunktion von Zugriffsrichtlinien

Neben dem Empfang von Zugriffsrichtlinien über Dateneingänge werden Zugriffsrichtlinien zur
Ausführungszeit auch direkt an Operatoren übermittelt. Das ist dann notwendig, wenn eine neue
Zugriffsrichtlinie erstellt wird und ein in der Ausführung befindlicher Operator betroffen ist.
Für diesen Zweck implementiert jeder Operator das Interface PolicyNotify, das die Funktion
notifyPolicy(ResultSet:Policy) definiert. Der Aufruf der Funktion bewirkt, dass der Operator

106

8.4 Kontrollierte Ausführung von Operatoren

eine Überprüfung bezüglich des Attributes use der gelieferten Zugriffsrichtlinien vornimmt,
um zu überprüfen, ob der Operator betroffen ist. Die jeweilige Vorgehensweise wurde schon
ausführlich in den Erläuterungen der Einbettungen, in Abschnitt 7.5 bis Abschnitt 7.7 beleuchtet.
Im Prototypen der Sicherheitsarchitektur wird die Auswertung wie beschrieben durchführt und
im Fall, dass die Anfrage abgebrochen werden muss eine NoPolicyException ausgelöst, die zum
Abbruch der Anfrage führt. Neben der Auswertung wird bei einem Aufruf der Funktion auch die
Wiederinterpunktion für Quellen und Operator-Boxen behandelt. Im Fall von Quellen folgt eine
unmittelbare Interpunktierung der Zugriffsrichtlinie. Bei einer Senke wird eine Zugriffsrichtlinie
nicht weitergeleitet, die Senke wertet die Zugriffsrichtlinie lediglich aus. Für Operator-Boxen
müssen wie bei der Wiederinterpunktion noch weitere Bedingungen beachtet werden, die im
Folgenden beschrieben werden.

Treffen Interpunktionen über Datenströme an einer Operator-Box ein, die im NexusDS Prototyp
mit der Klasse QueuedBox implementiert wird, ist einer Wiederinterpunktion der Zugriffsricht-
linien notwendig. Um die Interpunktion nur an den Datenausgängen zu Interpunktieren, die
von dem Dateneingang abhängig sind über den die Zugriffsrichtlinie einging, wird das Meta-
Daten Schema der Operatoren erweitert. Die Schemas OperatorExtendedAttributeSchema und
OperatorExtendedClassSchema erhalten zusätzliche Attribute, die eine genaue Zuordnung von
jedem Dateneingang auf die Datenausgänge ermöglicht. Bei der Initialisierung der QueuedBox
werden die Meta-Daten gelesen, die definieren, in welche Datenausgänge eintreffende Zu-
griffsrichtlinien wiederinterpunktiert werden. Falls keine Angaben vorhanden waren, ruft die
QueuedBox die sendPolicy(int:OutputID, ResultSet:Policy) für alle Datenausgänge auf.

Der Zeitpunkt des Aufrufs ist abhängig von Meta-Daten, die dem Operator zugeordnet werden
können. Abschnitt 7.3.2 erläuterte die Details zur Bestimmung des Zeitpunktes der Wiederinter-
punktion. Dazu notwendig sind Zähler, die sowohl an Dateneingängen und Datenausgängen
angebracht werden. Anhand der Zählerdifferenz kann bestimmt werden, wie viele Datenelemente
sich in der Verarbeitung, beziehungsweise in den Warteschlangen befinden. Die Meta-Daten
definieren, an welchen Dateneingängen, wie viele Datenelemente eintreffen müssen, dass ei-
ne bestimmte Anzahl von Datenelementen an einem definierten Datenausgang ausgegeben
werden. Triff eine Zugriffsrichtlinie ein, werden die Werte der Zähler festgehalten. Für jeden
Datenausgang, an dem die Zugriffsrichtlinie interpunktiert werden soll, wird berechnet, wie
viele Datenelemente sich in der Verarbeitung befinden. Das ergibt sich aus der Differenz der
Zähler der abhängigen Dateneingänge und des Datenausganges und der Proportion, die die
Mata-Daten des Operators definieren. Die Implementierung wartet dann die berechnete Anzahl
an Datenelementen für den Datenausgang ab und interpunktiert die Zugriffsrichtlinie über
sendPolicy(int:OutputID, ResultSet:Policy) genau dann, wenn alle noch in der Verarbei-
tung gewesenen Elemente ausgegeben wurden. Sollten keine Meta-Daten vorhanden sein, die die
Zählung ermöglichen, werden die Zugriffsrichtlinien nach der in Abschnitt 7.3.2 besprochenen
Heuristik sofort interpunktiert.

107

8 Implementierung

8.4.4 Ausführung von Filter

Filter werden auf zwei unterschiedlichen Wegen angewendet, entweder in Warteschlangen oder
direkt im Operator. Handelt es sich um eine Operator-Box oder Senke, ist jedem Dateneingang
eine Warteschlange zugeordnet. Die Warteschlangen laden zur Initialisierung die in der Anfrage
definierten Filter und binden sie so ein, dass wenn ein Datenelement in die Warteschlange
gegeben wird, die Transformationen der Filter angewendet werden und anschließend das Da-
tenelement in der Warteschlange abgelegt wird. Im Fall von Quellen sind keine Warteschlangen
an die Datenausgänge angebunden, deshalb müssen die Filter direkt in der Quelle, vor der
Auslieferung des Datenelementes, angewendet. Die Anwendung findet im Fall der Quelle di-
rekt in der Funktion send(E:Data, int:OutputID) statt, bevor das Element an die Empfänger
weitergereicht wird. Der Weg ist weniger vorteilhaft, da die Implementierung der Quelle di-
rekt abgeändert werden muss, um die Filter auszuführen. Dagegen führt die Anwendung in
Warteschlangen zu einer getrennten Ausführung der Filter je Dateneingang, was keine zusätz-
lichen Fallunterscheidungen notwendig macht, welche Filter für welchen Dateneingang oder
Datenausgang angewendet werden müssen. Zudem lässt sich die Implementierung so für alle
Operatoren wiederverwenden, indem die entsprechende Warteschlange angebracht wird. Der
Prototyp der Sicherheitsarchitektur implementiert dazu beispielhaft die SecureCountBasedQueue,
die die vorhandene CountBasedQueue um die Funktionen zur Filterausführung erweitert.

108

Kapitel 9

Zusammenfassung und Ausblick

Das Kapitel fasst im ersten Abschnitt 9.1 zusammen wie die Sicherheitsarchitektur jedes der
zu Anfang der Diplomarbeit definierten Schutzziele erfüllt. Es wird damit gezeigt, dass die
Sicherheitsarchitektur den gewünschten kontrollierten Zugriff für NexusDS bezüglich des aufge-
spannten Rahmens an Anforderungen abdeckt.

Der begrenzte Umfang der Diplomarbeit erforderte die Einschränkung verschiedener Zugriffskon-
trollen. Abschnitt 9.2 gibt einen Ausblick auf mögliche Erweiterungen der Sicherheitsarchitektur,
die von der Diplomarbeit nicht mehr berücksichtigt werden konnten.

9.1 Abdeckung der Schutzziele

Der vorliegende Abschnitt fasst die Fähigkeiten des Sicherheitskonzeptes anhand der Schutzziele
zusammen. Tabelle 9.1 gibt eine Übersicht, in welchem Umfang die Schutzziele je Sicherheitszone
für das individuelle Operatoren-Modell durchgesetzt werden. Es ist zu beachten, dass die im
Folgenden vorgestellten Fähigkeitn in der Sicherheitszone-Mittel und Sicherheitszone-Hoch gelten.
Sicherheitszone-Null ist ohne Zugriffskontrolle und entspricht NexusDS vor der Einbringung einer
Sicherheitsarchitektur. Die Zone wird in der Zusammenfassung nicht explizit betrachtet.

Authentizität: Wird sichergestellt, indem Subjekte mit einer eindeutigen Identität registriert
werden müssen. Bevor die Identität eines Subjektes anerkannt wird, wird dessen behauptete
Identität überprüft. Subjekte, die der Prüfung nicht standhalten, werden von der Teilnahme
am gesicherten Teil von NexusDS ausgeschlossen. Zur Bestätigung der Authentizität von
Operatoren können in Zugriffsrichtlinien digitale Signaturen gefordert werden. Die Ablage
von durch den Prüfer verschlüsselten Signaturen im Secure Operator Repository (SOR)
stellt sicher, dass eine eindeutige Beziehung hergestellt wird. Der private Schlüssel zur
Verschlüsselung der digitalen Signaturen steht nur dem Prüfer zur Verfügung, damit ist
das Einbringen von gefälschten Signaturen nicht möglich. Solange der Prüfer den Schlüssel
geheim hält.

109

9 Zusammenfassung und Ausblick

Datenintegrität: Ein Operator ist geschützt, wenn dieser nur im zentralen Secure Operator
Repository (SOR) verfügbar gemacht wird. Danach kann der Operator nur von authen-
tifizierten und berechtigten Subjekten gelöscht oder ersetzt werden. Gleiches gilt für die
Vergabe von Zugriffsrichtlinien, es ist nur den Subjekten möglich, die explizit dafür be-
rechtigt wurden. Die Bearbeitung von Rollen im Role Administration Point (RAP) ist
in gleicherweise geschützt. Für die Erstellung und Veränderung von Zugriffsrichtlinien,
werden die gegebenen Berechtigungen zur Vergabe an die referenzierten Operatoren und
Rechenknoten gleichfalls überprüft. Somit ist die Datenintegrität der Zugriffsdefinitionen
in der Sicherheitsarchitektur gewährleistet.

Die Datenströme, die zur Ausführungszeit zwischen geschützten Operatoren übertragen
werden, sind mit einem einmaligen und geheimen Schlüssel je Anfrage codiert. Der Schlüs-
sel ist nur der kontrollierten Anfrageplanung Secure Core Query Service (SCQS) und den
Einbettungen in der Anfrage bekannt. Deshalb ist es nicht möglich, dass unberechtigte
Subjekte die Datenintegrität der Datenströme beeinflussen.

Informationsvertraulichkeit: Mit der kontrollierten Anfrageplanung Secure Core Query Service
(SCQS) ist sichergestellt, dass nur die Operatoren zur Ausführung kommen, für die Zu-
griffsrichtlinien explizit dem Subjekt, das eine Anfrage ausführen möchte, die Ausführung
gestatten. Die ursprüngliche Anfrageplanung von NexusDS hat keinen Zugriff auf das Se-
cure Operator Repository (SOR), in dem die geschützten Operatoren vorgehalten werden.
Der SCQS trägt ebenfalls Sorge, dass Operatoren nur die Datenelemente von vorgelagerten
Operatoren verarbeiten, für die Zugriffsrichtlinien den Zugriff decken. Das Vergeben von
Zugriffsrichtlinien am Policy Administration Point (PAP) ist nur den Subjekten möglich,
die über die Erlaubnis verfügen, in Zugriffsrichtlinien auf die Operatoren zu referenzieren.
Die Mengen von Subjekten, die für die Zuweisung von Zugriffsrichtlinien vorgesehen sind,
können ebenfalls nur unter der Kontrolle der Sicherheitsarchitektur verändert werden.

Analog zur Datenintegrität ist der Lesezugriff gegenüber nicht autorisierten Subjekten
durch die Verschlüsselung der Datenströme gesichert. Tritt eine Veränderung der Zugriffs-
richtlinien zur Ausführungszeit ein, sorgt die Interpunktion mit Zugriffsrichtlinien an
den Einbettungen zu einer direkten Umsetzung der Bedingungen. Damit wird zu jeder
Zeit sichergestellt, dass aktuelle Veränderungen bezüglich der Informationsvertraulich-
keit umgesetzt werden. Den Missbrauch von Datenelementen, auf die Operatoren und
Senken Zugriff erhalten, zum Beispiel durch Weiterleitung an unberechtigte Dritte, kann
in Sicherheitszone-Mittel nicht ausgeschlossen werden. Zur vollständigen Kontrolle der
ausgeführten Operatoren und Senken muss die in Sicherheitszone-Hoch mögliche Zertifizie-
rung angewendet werden. Sonst kann die Informationsvertraulichkeit nur eingeschränkt
gewährleistet werden.

Der Informationsaustausch zwischen Services und Subjekten ist reglementiert. Services
benötigen digitale Zertifikate, die vom zentralen Certificate Authority Point (CAP) verge-
ben und validiert werden. Damit können Services und Subjekte überprüfen, ob ein Service
authentisch ist und die Informationsvertraulichkeit wahrt. Umgekehrt stellen Services
sicher, dass Subjekte korrekt über den Identity Administration Point (IAP) authentifiziert
sind.

110

9.2 Ausblick

Sicherheitsstufe Authentizität Datenintegrität Informationsvertraulichkeit
Hoch Ja Ja Ja
Mittel Ja Ja Teilweise
Null Nein Nein Nein

Sicherheitsstufe Verfügbarkeit Verbindlichkeit Anonymisierung
Hoch Ja Ja Ja
Mittel Ja Teilweise Ja
Null Nein Nein Nein

Tabelle 9.1: Tabelle über die Erfüllung der Schutzziele in den Sicherheitszonen, der Eintrag
teilweise steht für eine nur partielle Erfüllung.

Verfügbarkeit: Zugriffsrichtlinien können das Ausführen von Quellen, Operatoren und Senken
auf eine nur begrenzte Auswahl von Rechenknoten erlauben. Für die erweiterte Anfragepla-
nung können Einschränkungen vorgesehen werden, dass nur geschützte Anfragefragmente
auf die ausgewählten Rechenknoten ausgebracht werden. Dann können nur noch die
Anfragen auf den ausgewählten Rechenknoten ausgeführt werden, die alle relevanten Zu-
griffsrichtlinien erfüllen. Somit können unberechtigte Subjekte auf den Rechenknoten keine
Anfragen zur Ausführung bringen, die deren Leistungsfähigkeit unberechtigt beeinträchtigt.

Verbindlichkeit: Das Sicherheitskonzept sieht Protokolle vor, die Veränderungen an den Daten-
haltungen der Sicherheitsarchitektur, wie zum Beispiel für Zugriffsrichtlinien, festhalten.
Ebenfalls wird festgehalten, welche Anfragen welche Datenströme verarbeiten. Protokolliert
werden Zeiten, beteiligte Subjekte und Objekte. Anhand der Protokolle, dass manipulati-
onssicher vorgehalten wird, kann eine verbindliche Zuordnung von Zugriffen in NexusDS
vorgenommen werden.

Anonymisierung: Die Secure-Source kann Filter auf die Datenelemente der eingebetteten Quelle
anwenden. Filter können frei implementiert werden und so eine feingranulare Anony-
misierung der Informationen vornehmen. Besondere Fähigkeit der feingranularen An-
onymisierung ist die Möglichkeit neben verschlüsselten Datenströmen, unverschlüsselte
Datenströme mit verschleierter Information in das ungeschützte NexusDS zurückzuführen.
Der unverschlüsselte Datenstrom kann dann in Sicherheitszone-Null frei verwendet werden.
Ein öffentlicher Datenstrom wird nur dann zugelassen, wenn die Zugriffsrichtlinien diesen
explizit definieren.

9.2 Ausblick

Die Verwaltung des Rollenmodells und die Zugriffskontrolle welche Subjekte Zugriffsrichtlinien
für Operatoren und Rechenknoten vergeben dürfen ist vereinfacht realisiert worden. Mögliche

111

9 Zusammenfassung und Ausblick

Erweiterungen könnten die Vergabe gezielter Steuern, um den Verwaltungsaufwand zu redu-
zieren. Filter und Evaluatoren sind bezüglich der Zugriffskontrolle vollständig ausgeschlossen
worden. Eine Berücksichtigung erfordert eine Verfeinerung der kontrollierten Anfrageplanung,
sodass auch diesbezüglich eine Zugriffskontrolle eingefordert wird. Zu beachten ist, dass eine
Zugriffskontrolle, ob Subjekte in Zugriffsrichtlinien definierte Evaluatoren und Filter einsetzen
dürfen, die Auswertung erheblich aufwendiger ausfallen lässt. Das impliziert eine effizientere
Auswertung der Zugriffsrichtlinien gegenüber dem vorgestellten Modell der kontrollierten An-
frageplanung. Die Authentifizierung zwischen Services findet bisher nur über die Prüfung von
digitalen Zertifikaten auf deren Gültigkeit statt. Eine Einführung einer feineren Zugriffskontrolle
würde die Anbindung externer Werkzeuge erleichtern. So ist es bisher nur möglich, einem
Werkzeug den vollen Zugriff auf die Sicherheitsarchitektur zu gewähren. Eine Verfeinerung
zur gezielten Steuerung des Zugriffes würde zu einer Erhöhung der Sicherheit führen, da das
Werkzeug nicht mehr potentiell auf den gesamten Datenbestand zugreifen könnte, sondern nur
noch auf ausgewählte Teile. Daraus folgt gleichzeitig ein breites Spektrum an Werkzeugen, da je
nach Zuverlässigkeit des Werkzeugs die Menge der verfügbaren Daten beschränkt werden könnte.
Gleiches gilt für Evaluatoren und Filter, die ebenfalls nur über digitale Zertifikate angebunden
werden könne.

Eine zukünftige Erweiterung, die die Flexibilität der Sicherheitsarchitektur maßgeblich erhöhen
würde, ist die dynamische Umgestaltung von Anfragen zur Ausführungszeit. Jedoch ist bisher
die Plattform NexusDS nicht in der Lage, Anfragen zur Laufzeit unterbrechungsfrei zu verändern.
Ist dies in Zukunft möglich, könnten zur Laufzeit im Fall von veränderten Zugriffsrichtlinien
Filter dynamisch aus den Datenströmen entfernt und eingefügt werden. Gleiches gilt für Zu-
griffsrichtlinien, die die Ausführung von Operatoren auf Rechenknoten betreffen oder deren
Zertifizierung. Auch hierbei könnte eine dynamische Umplanung zur Laufzeit die Möglichkeit
eröffnen, Anfrage unterbrechungsfrei an veränderte Zugriffsrichtlinien anzupassen.

Eine Abfolge von Filtern, die sich aus den für einen Operator relevanten Zugriffsrichtlinien
ergibt, orientiert sich nur an einer einfachen Rangfolge. Zukünftige Erweiterungen könnten
eine Beschreibung der Semantik der jeweiligen Filtertransformation vorsehen und eine durch
Werkzeuge und algorithmisch gestützte Optimierung von Filterketten vorsehen. Damit wür-
de die Spezifikation von Zugriffsrichtlinien bezüglich der notwendigen Filter erleichtert und
gegebenenfalls Optimierungen möglich, sodass nicht notwendige Filteroperationen eingespart
werden.

Die Sicherheitsarchitektur berücksichtigt nicht, wie die Verarbeitung von Datenelementen nach
den Senken einer Anfrage weitergeht. Zwar wird eine Verschlüsselung innerhalb der Anfragen,
über Plattform-Senken zu Plattform-Quellen aufrechterhalten, es besteht aber keine Kontrolle
über den Zugriff, nachdem die Datenelemente einer Senke zugestellt wurden. Hierzu könnten
zukünftige Arbeiten zum Beispiel Markierungen definieren, die nachfolgende Anfragen darüber
in Kenntnis setzen, von welchen Quellen ein Datenelement abstammt und von welchen Operatio-
nen und Filtern Transformationen durchgeführt wurden. Einen Einstieg findet der Interessierte
Leser in [37].

112

Literaturverzeichnis

[1] Abadi, Daniel J. ; Carney, Don ; Çetintemel, Ugur ; Cherniack, Mitch ; Convey, Christian
; Lee, Sangdon ; Stonebraker, Michael ; Tatbul, Nesime ; Zdonik, Stan: Aurora: a new
model and architecture for data stream management. In: The VLDB Journal 12 (2003), August,
S. 120–139. – ISSN 1066–8888 (Zitiert auf den Seiten 9, 25, 32 und 35)

[2] Anderson, Ross J.: Security Engineering: A Guide to Building Dependable Distributed Systems.
2. Wiley Publishing, 2008. – ISBN 9780470068526 (Zitiert auf den Seiten 14, 15 und 16)

[3] Arasu, A. ; Babcock, B. ; Babu, S. ; Cieslewicz, J. ; Datar, M. ; Ito, K. ; Motwani, R. ;
Srivastava, U. ; Widom, J.: Stream: The stanford data stream management systems. In: a
book on data stream management edited by Garofalakis, Gehrke, and Rastogi (2004) (Zitiert auf
Seite 32)

[4] Ayewah, N. ; Hovemeyer, D. ; Morgenthaler, J.D. ; Penix, J. ; Pugh, W.: Using Static
Analysis to Find Bugs. In: Software, IEEE 25 (2008), Nr. 5, S. 22 –29. http://dx.doi.org/10.
1109/MS.2008.130. – DOI 10.1109/MS.2008.130. – ISSN 0740–7459 (Zitiert auf Seite 18)

[5] Bauer, Martin ; Dürr, Frank ; Geiger, Jan ; Grossmann, Matthias ; Hönle, Nicola ;
Joswig, Jean ; Nicklas, Daniela ; Schwarz, Thomas: Information Management and Ex-
change in the Nexus Platform / Universität Stuttgart : Sonderforschungsbereich SFB 627

(Nexus: Umgebungsmodelle für mobile kontextbezogene Systeme), Germany. Version: Juli
2004. http://www2.informatik.uni-stuttgart.de/cgi-bin/NCSTRL/NCSTRL_view.pl?id=
TR-2004-04&engl=0. Universität Stuttgart, Institut für Parallele und Verteilte Systeme, Ver-
teilte Systeme; Universität Stuttgart, Institut für Parallele und Verteilte Systeme, Anwender-
software, Juli 2004 (2004/04). – Technischer Bericht Informatik. – 58 S. (Zitiert auf den
Seiten 9 und 24)

[6] Bedner, Mark ; Ackermann, Tobias: Schutzziele der IT-Sicherheit. In: Datenschutz und
Datensicherheit (DuD) 33 (2010), Mai, Nr. 5, S. 323–328 (Zitiert auf Seite 15)

[7] Brandeis University, Brown U. ; MIT: Borealis - Distributed Stream Processing Engine.
http://www.cs.brown.edu/research/borealis/public/ (Zitiert auf den Seiten 25 und 32)

113

http://dx.doi.org/10.1109/MS.2008.130
http://dx.doi.org/10.1109/MS.2008.130
http://www2.informatik.uni-stuttgart.de/cgi-bin/NCSTRL/NCSTRL_view.pl?id=TR-2004-04&engl=0
http://www2.informatik.uni-stuttgart.de/cgi-bin/NCSTRL/NCSTRL_view.pl?id=TR-2004-04&engl=0
http://www.cs.brown.edu/research/borealis/public/

Literaturverzeichnis

[8] Bundesamt für Sicherheit in der Informationstechnik: BSI-Standard 100-2 IT-
Grundschutz-Vorgehensweise. Bd. 2.0. Bundesamt für Sicherheit in der Informations-
technik, 2008 https://www.bsi.bund.de/SharedDocs/Downloads/DE/BSI/Publikationen/

ITGrundschutzstandards/standard_1002.pdf (Zitiert auf den Seiten 18 und 21)

[9] Bundesamt für Sicherheit in der Informationstechnik: IT-Grundschutz-Kataloge. Bd. 11.
Bundesamt für Sicherheit in der Informationstechnik, 2009 http://www.bsi.bund.de/

grundschutz (Zitiert auf Seite 16)

[10] Cao, Jianneng ; Carminati, B. ; Ferrari, E. ; Tan, Kian-Lee: ACStream: Enforcing Access
Control over Data Streams. In: Data Engineering, 2009. ICDE ’09. IEEE 25th International
Conference on, 2009. – ISSN 1084–4627, S. 1495 –1498 (Zitiert auf den Seiten 35 und 37)

[11] Carminati, Barbara ; Ferrari, Elena ; Tan, Kian: Specifying Access Control Policies on
Data Streams. In: Kotagiri, Ramamohanarao (Hrsg.) ; Krishna, P. (Hrsg.) ; Mohania,
Mukesh (Hrsg.) ; Nantajeewarawat, Ekawit (Hrsg.): Advances in Databases: Concepts, Systems
and Applications Bd. 4443. Springer Berlin / Heidelberg, 2007, S. 410–421 (Zitiert auf den
Seiten 10, 35 und 39)

[12] Carminati, Barbara ; Ferrari, Elena ; Tan, Kian L.: Enforcing access control over data
streams. In: Proceedings of the 12th ACM symposium on Access control models and technologies.
New York, NY, USA : ACM, 2007 (SACMAT ’07). – ISBN 978–1–59593–745–2, 21–30 (Zitiert
auf den Seiten 35 und 36)

[13] Cipriani, Nazario ; Eissele, Mike ; Brodt, Andreas ; Grossmann, Matthias ; Mitschang,
Bernhard: NexusDS: a flexible and extensible middleware for distributed stream processing.
In: Proceedings of the 2009 International Database Engineering; Applications Symposium. New
York, NY, USA : ACM, 2009 (IDEAS ’09). – ISBN 978–1–60558–402–7, 152–161 (Zitiert auf
den Seiten 9 und 26)

[14] Cipriani, Nazario ; Nicklas, Daniela ; Großmann, Matthias ; Hönle, Nicola ; Lübbe, Carlos
; Mitschang, Bernhard: Verteilte Datenstromverarbeitung von Sensordaten. In: Datenbank-
Spektrum 9 (2009), Februar, Nr. 28, 37–43. http://www2.informatik.uni-stuttgart.de/

cgi-bin/NCSTRL/NCSTRL_view.pl?id=ART-2009-08&engl= (Zitiert auf Seite 9)

[15] Department of Defence Standard: Trusted Computer System Evaluation Criteria, DoD
5200.28-STD. http://csrc.nist.gov/publications/history/dod85.pdf. Version: August
1982 (Zitiert auf den Seiten 18, 19 und 20)

[16] Eckert, Claudia: IT-Sicherheit. Bd. 6. Auflage. München [u.a.] : Oldenbourg, 2009. – ISBN
978–3–486–58999–3 (Zitiert auf den Seiten 14, 15, 16, 41, 56, 60, 85 und 89)

[17] Englbrecht, Michael: Entwicklung sicherer Software. Heidelberg [u.a.] : Spektrum Akad. Verl,
2004. – ISBN 3–8274–1432–6 (Zitiert auf den Seiten 14 und 91)

[18] Eschweiler, Jörg ; Psille, Daniel E. A.: Security@Work: Pragmatische Konzeption und Im-
plementierung von IT-Sicherheit mit Lösungsbeispielen auf Open-Source-Basis (X.systems.press).
Secaucus, NJ, USA : Springer-Verlag New York, Inc., 2006. – ISBN 3540220283 (Zitiert auf
Seite 15)

114

https://www.bsi.bund.de/SharedDocs/Downloads/DE/BSI/Publikationen/ITGrundschutzstandards/standard_1002.pdf
https://www.bsi.bund.de/SharedDocs/Downloads/DE/BSI/Publikationen/ITGrundschutzstandards/standard_1002.pdf
http://www.bsi.bund.de/grundschutz
http://www.bsi.bund.de/grundschutz
http://www2.informatik.uni-stuttgart.de/cgi-bin/NCSTRL/NCSTRL_view.pl?id=ART-2009-08&engl=
http://www2.informatik.uni-stuttgart.de/cgi-bin/NCSTRL/NCSTRL_view.pl?id=ART-2009-08&engl=
http://csrc.nist.gov/publications/history/dod85.pdf

Literaturverzeichnis

[19] Europäischen Kommission: Information Technology Security Evaluation Criteria.
https://www.bsi.bund.de/cae/servlet/contentblob/471346/publicationFile/30220/

itsec-en_pdf.pdf. Version: 1991 (Zitiert auf Seite 18)

[20] Ferraiolo, David ; Kuhn, Richard: Role-Based Access Control. In: In 15th NIST-NCSC
National Computer Security Conference, 1992, S. 554–563 (Zitiert auf den Seiten 20, 85 und 86)

[21] Intel: Intel Parallel Studio 2011. http://software.intel.com/sites/products/

collateral/studio/Intel_Parallel_Studio_Brief_081610_HighRes.pdf (Zitiert auf Sei-
te 18)

[22] Kemper, Alfons ; Eickler, André: Datenbanksysteme - Eine Einführung, 6. Auflage. Oldenbourg,
2006. – ISBN 3–486–57690–9 (Zitiert auf den Seiten 33, 34 und 83)

[23] Lindner, Wolfgang ; Meier, Jorg: Securing the Borealis Data Stream Engine. In: IDEAS
’06: Proceedings of the 10th International Database Engineering and Applications Symposium.
Washington, DC, USA : IEEE Computer Society, 2006. – ISBN 0–7695–2577–6, S. 137–147

(Zitiert auf den Seiten 10 und 34)

[24] Lindner, Wolfgang ; Meier, Jörg: Towards a secure data stream management system. In: in
TEAA 2005, 2005, S. 114–128 (Zitiert auf den Seiten 34 und 39)

[25] Lucke, Dominik ; Constantinescu, Carmen ; Westkämper, Engelbert: Smart Factory -
A Step towards the Next Generation of Manufacturing. Version: 2008. http://dx.doi.

org/10.1007/978-1-84800-267-8_23. In: Mitsuishi, Mamoru (Hrsg.) ; Ueda, Kanji (Hrsg.)
; Kimura, Fumihiko (Hrsg.): Manufacturing Systems and Technologies for the New Frontier.
Springer London, 2008. – ISBN 978–1–84800–267–8, 115-118 (Zitiert auf Seite 44)

[26] Ludewig, Jochen ; Lichter, Horst: Software Engineering. 1. Aufl. Heidelberg
: dpunkt, 2007 http://gso.gbv.de/DB=2.1/CMD?ACT=SRCHA&SRT=YOP&IKT=1016&TRM=ppn+

381003574&sourceid=fbw_bibsonomy. – ISBN 978–3–89864–268–2 (Zitiert auf Seite 20)

[27] Mahlmann, Peter ; Schindelhauer, Christian: Peer-to-Peer-Netzwerke. Springer Berlin, 2007

(Zitiert auf Seite 26)

[28] Microsoft: Access Control Lists. http://msdn.microsoft.com/en-us/library/aa374872(v=
VS.85).aspx (Zitiert auf Seite 19)

[29] Microsoft: Security Development Lifecycle. http://www.microsoft.com/security/sdl.
Version: November 2010 (Zitiert auf Seite 18)

[30] Nazario Cipriani, Carlos L.: Ausnutzung von Restriktionen zur Verbesserung des Deployment-
Vorgangs des Verteilten Datenstromverarbeitungssystems NexusDS. 2007 (Zitiert auf Seite 9)

[31] Nehme, Rimma V. ; Lim, Hyo-Sang ; Bertino, Elisa ; Rundensteiner, Elke A.: StreamShield:
a stream-centric approach towards security and privacy in data stream environments. In:
SIGMOD ’09: Proceedings of the 35th SIGMOD international conference on Management of data.
New York, NY, USA : ACM, 2009. – ISBN 978–1–60558–551–2, S. 1027–1030 (Zitiert auf
Seite 10)

115

https://www.bsi.bund.de/cae/servlet/contentblob/471346/publicationFile/30220/itsec-en_pdf.pdf
https://www.bsi.bund.de/cae/servlet/contentblob/471346/publicationFile/30220/itsec-en_pdf.pdf
http://software.intel.com/sites/products/collateral/studio/Intel_Parallel_Studio_Brief_081610_HighRes.pdf
http://software.intel.com/sites/products/collateral/studio/Intel_Parallel_Studio_Brief_081610_HighRes.pdf
http://dx.doi.org/10.1007/978-1-84800-267-8_23
http://dx.doi.org/10.1007/978-1-84800-267-8_23
http://gso.gbv.de/DB=2.1/CMD?ACT=SRCHA&SRT=YOP&IKT=1016&TRM=ppn+381003574&sourceid=fbw_bibsonomy
http://gso.gbv.de/DB=2.1/CMD?ACT=SRCHA&SRT=YOP&IKT=1016&TRM=ppn+381003574&sourceid=fbw_bibsonomy
http://msdn.microsoft.com/en-us/library/aa374872(v=VS.85).aspx
http://msdn.microsoft.com/en-us/library/aa374872(v=VS.85).aspx
http://www.microsoft.com/security/sdl

Literaturverzeichnis

[32] Nehme, R.V. ; Lim, Hyo-Sang ; Bertino, E.: FENCE: Continuous access control enforce-
ment in dynamic data stream environments. In: Data Engineering (ICDE), 2010 IEEE 26th
International Conference on, 2010, S. 940 –943 (Zitiert auf den Seiten 37, 38 und 39)

[33] Nehme, R.V. ; Rundensteiner, E.A. ; Bertino, E.: A Security Punctuation Framework for
Enforcing Access Control on Streaming Data. In: Data Engineering, 2008. ICDE 2008. IEEE
24th International Conference on, 2008, S. 406 –415 (Zitiert auf den Seiten 37, 38 und 39)

[34] Saltzer, J.H. ; Schroeder, M.D.: The protection of information in computer systems. In:
Proceedings of the IEEE 63 (1975), Nr. 9, S. 1278 – 1308. http://dx.doi.org/10.1109/PROC.
1975.9939. – DOI 10.1109/PROC.1975.9939. – ISSN 0018–9219 (Zitiert auf den Seiten 16

und 18)

[35] Sardina, Daniel G.: Framework for Distributed Data Processing, Universität Stuttgart, Diplom-
arbeit, 2008 (Zitiert auf Seite 104)

[36] Scherbaum, Andreas: PostgreSQL - Datenbankpraxis für Anwender, Administratoren und
Entwickler. Open Source Press, 2009. – 518 S. (Zitiert auf Seite 34)

[37] Simmhan, Yogesh L. ; Plale, Beth ; Gannon, Dennis: A survey of data provenance in
e-science. In: SIGMOD Rec. 34 (2005), September, S. 31–36. – ISSN 0163–5808 (Zitiert auf
Seite 112)

[38] Stegmaier, Bernhard ; Kuntschke, Richard ; Kemper, Alfons: StreamGlobe: Adaptive query
processing and optimization in streaming P2P environments. In: In Proc. of the Intl. Workshop
on Data Management for Sensor Networks, 2004, S. 88–97 (Zitiert auf Seite 32)

[39] StreamBase Systems, Inc.: StreamBase Event Processing Platform. http://www.streambase.
com (Zitiert auf Seite 35)

[40] TomTom: TomTom Hintergrund - HDTraffic Manifest. http://www.tomtom.com/landing_

pages/trafficmanifesto/index-project.php?Lid=3. Version: Oktober 2010 (Zitiert auf
Seite 24)

[41] Universtität Stuttgart: Nexus Projekt Webseite. http://www.nexus.uni-stuttgart.de

(Zitiert auf Seite 9)

[42] Universtität Stuttgart: XML-Schema Definitionen der Nexus Plattform. http://www.nexus.
uni-stuttgart.de/de/forschung/dokumente/ (Zitiert auf Seite 25)

[43] W3C: Extensible Markup Language. http://www.w3.org/XML/ (Zitiert auf Seite 25)

Alle URLs wurden zuletzt am 28.04.2011 geprüft.

116

http://dx.doi.org/10.1109/PROC.1975.9939
http://dx.doi.org/10.1109/PROC.1975.9939
http://www.streambase.com
http://www.streambase.com
http://www.tomtom.com/landing_pages/trafficmanifesto/index-project.php?Lid=3
http://www.tomtom.com/landing_pages/trafficmanifesto/index-project.php?Lid=3
http://www.nexus.uni-stuttgart.de
http://www.nexus.uni-stuttgart.de/de/forschung/dokumente/
http://www.nexus.uni-stuttgart.de/de/forschung/dokumente/
http://www.w3.org/XML/

Erklärung

Hiermit versichere ich, diese Arbeit selbständig
verfasst und nur die angegebenen Quellen
benutzt zu haben.

(Oliver Dörler)

	1 Einleitung
	1.1 Motivation
	1.2 Gliederung

	2 Sicherheit
	2.1 Grundlagen der Sicherheit
	2.1.1 Begriffe der Sicherheit

	2.2 Security Engineering
	2.2.1 Methodiken
	2.2.2 Implementierung und Werkzeuge
	2.2.3 Prozesse

	2.3 Modelle zur Zugriffskontrolle
	2.3.1 Discretionary Access Control (DAC)
	2.3.2 Mandatory Access Control (MAC)
	2.3.3 Role Based Access Control (RBAC)

	2.4 Vorgehensmodell für NexusDS

	3 Nexus und NexusDS
	3.1 Einführung in Nexus
	3.1.1 Nexus Architektur
	3.1.2 Das Augmented World Model

	3.2 NexusDS
	3.2.1 Architektur
	3.2.2 Service-Modell
	3.2.3 Operator-Modell

	3.3 Strukturanalyse von NexusDS
	3.3.1 Das NexusDS Ausführungsmodell
	3.3.2 Rollen in NexusDS

	3.4 Verwandte Arbeiten zu NexusDS

	4 Verwandte Sicherheitskonzepte
	4.1 Zugriffskontrolle in DBMS
	4.2 Secure Borealis
	4.3 ACStream
	4.4 FENCE
	4.5 Zusammenfassung und Anwendbarkeit in NexusDS

	5 Anforderungen
	5.1 Anforderungen aus Anwendungsszenarien
	5.1.1 Börsenkurse von SuperQuotes
	5.1.2 Orts-bezogener Dienst Squebber
	5.1.3 Fehlerszenario in intelligenten Fabriken

	5.2 Anforderungen aus NexusDS
	5.2.1 Basisrollen von NexusDS
	5.2.2 Eigenschaften von NexusDS

	5.3 Zusammenfassung der Anforderungen

	6 Grundlagen des Sicherheitskonzeptes
	6.1 Basisstruktur des Sicherheitskonzeptes
	6.1.1 Übersicht der Maßnahmen für das Sicherheitskonzept

	6.2 Kontrollierte Datenstromverarbeitung in drei Sicherheitszonen
	6.2.1 Sicherheitszone-Null
	6.2.2 Sicherheitszone-Mittel
	6.2.3 Sicherheitszone-Hoch

	7 Architektur des Sicherheitskonzeptes
	7.1 Kommunikation in der Sicherheitsarchitektur
	7.2 Definition und Auswertung von Zugriffsrichtlinien
	7.2.1 Administration und Verteilung von Zugriffsrichtlinien
	7.2.2 Abbilden von Zugriffsbedingungen
	7.2.3 Definition von Zugriffsrichtlinien im Meta-Daten-Modell
	7.2.4 Optionale Auswertungen von Zugriffsrichtlinien mit Evaluatoren
	7.2.5 Transformation von Datenströmen mit Filter

	7.3 Abhängigkeit von Datenströmen und Wiedereinflechtung von Zugriffsrichtlinien
	7.3.1 Zuordnung von Dateneingänge auf Datenausgänge
	7.3.2 Zeitpunkt der Einflechtung

	7.4 Kontrollierte Planung von Anfragen
	7.4.1 Secure Query Interface (SQI)
	7.4.2 Secure Query Planer (SQP)
	7.4.3 Secure Query Optimizer (SQO)
	7.4.4 Secure Query Fragmenter (SQF)
	7.4.5 Secure Execution Manager (SEM)

	7.5 Secure-Source, Architektur und Ausführungsmodell
	7.6 Secure-Box, Architektur und Ausführungsmodell
	7.7 Secure-Sink, Architektur und Ausführungsmodell
	7.8 Services der Sicherheitsarchitektur
	7.8.1 Identity Administration Point (IAP)
	7.8.2 Role Administration Point (RAP)
	7.8.3 Policy Administration Point (PAP)
	7.8.4 Secure Operator Repository (SOR)
	7.8.5 Certificate Authority Point (CAP)
	7.8.6 Policy Decision Point (PDP)

	8 Implementierung
	8.1 Implementierung der Services
	8.1.1 AWML Datenhaltung für Services
	8.1.2 Kommunikation mit den Services

	8.2 Zugriffsrichtlinien
	8.2.1 Abbildung der Zugriffsrichtlinien
	8.2.2 Implementierung von Evaluatoren
	8.2.3 Implementierung von Filter
	8.2.4 Propagierung von neuen Zugriffsrichtlinien

	8.3 Planung von Anfragen
	8.3.1 Überprüfung der Ausführbarkeit von Operatoren
	8.3.2 Überprüfung vorgelagerter Operatoren
	8.3.3 Anpassung von Anfragen

	8.4 Kontrollierte Ausführung von Operatoren
	8.4.1 Anpassungen der ProcessLine
	8.4.2 Transport von Zugriffsrichtlinien
	8.4.3 Auswertung und Wiederinterpunktion von Zugriffsrichtlinien
	8.4.4 Ausführung von Filter

	9 Zusammenfassung und Ausblick
	9.1 Abdeckung der Schutzziele
	9.2 Ausblick

	Literaturverzeichnis

