Institut fir Parallele und Verteilte Systeme
Universitat Stuttgart
Universitatsstra3e 38
D-70569 Stuttgart

Diplomarbeit Nr. 3180

Konzeption und Realisierung
eines Sicherheitskonzepts zur
sicheren Datenstromverarbeitung
in einer verteilten

Ausfuhrungsumgebung
Oliver Dérler
Studiengang: Informatik
Prufer: Prof. Dr.-Ing. habil. Bernhard Mitschang
Betreuer: Dipl.-Inf. Nazario Cipriani
begonnen am: 2.November 2010
beendet am: 4. Mai 2011

CR-Klassifikation: H.2.0,H.2.4, H.3.4

Kurzfassung

Vorliegende Diplomarbeit entwickelt ein Sicherheitskonzept fiir NexusDS. Das Konzept definiert
Sicherheitsmechanismen um den Zugriff und die Verarbeitung von sensiblen und geschiitzten
Daten zu kontrollieren. Die Mechanismen beinhalten Funktionen um Daten zu Anonymisieren
und zu Verschleiern. Die Entwicklung des Konzeptes beinhaltet die Abgrenzung von Sicherheit
im Kontext von NexusDS, Erhebung von Anforderungen aus Anwendungsszenarien und Ne-
xusDS selbst, die Entwicklung entsprechend dienlicher Mafsnahmen, deren Umsetzung in eine
Sicherheitsarchitektur und eine prototypische Implementierung in NexusDS.

Abstract

This diploma thesis develops a security concept for NexusDS. The concept defines a set of
mechanisms to limit the access on data with the purpose to control access on sensitive information.
The mechanisms also include functions to mask and anonymize data. For the development of the
concept, the thesis analyses the actual situation of the NexusDS and considers several scenarios
of use. Based on this analyze, a security architecture for NexusDS was developed and integrated
as a prototype implementation into NexusDS.

Inhaltsverzeichnis

1 Einleitung
1.1 Motivation L e e
1.2 Gliederung L

2 Sicherheit

2.1 Grundlagen der Sicherheit o oL
2.1.1 Begriffe der Sicherheit oo oo o
2.2 Security Engineering L Lo L o
22,1 Methodiken L
2.2.2 Implementierung und Werkzeuge
223 Prozesse
2.3 Modelle zur Zugriffskontrolle o L oL
2.3.1 Discretionary Access Control (DAC)
2.3.2 Mandatory Access Control MAC)
2.3.3 Role Based Access Control (RBAC)
2.4 Vorgehensmodell fiir NexusDS
3 Nexus und NexusDS
3.1 EinfihrunginNexus L L L
3.1.1 Nexus Architektur L
3.1.2 Das Augmented World Model
3.2 NexusDS oo
3.2.1 Architektur
3.2.2 Service-Modell
3.23 Operator-Modell L
3.3 Strukturanalyse von NexusDS.
3.3.1 Das NexusDS Ausfithrungsmodell
3.3.2 Rollenin NexusDS
3.4 Verwandte Arbeiten zu NexusDS Lo L.

4 Verwandte Sicherheitskonzepte
4.1 Zugriffskontrollein DBMS oL Lo

10
11

13
13
14
16
16
17
18
19
19
20
20
20

23
23
24
24
25
26
27
27
29
29
31
32

33
33

4.2 Secure Borealis e
4.3 ACStream
4.4 FENCE . . .
4.5 Zusammenfassung und Anwendbarkeit in NexusDS

Anforderungen

5.1 Anforderungen aus Anwendungsszenarien
5.1.1 BoOrsenkurse von SuperQuotes o0 L,
5.1.2 Orts-bezogener Dienst Squebber
5.1.3 Fehlerszenario in intelligenten Fabriken

5.2 Anforderungenaus NexusDS
5.2.1 Basisrollen von NexusDS
5.2.2 Eigenschaften von NexusDS

5.3 Zusammenfassung der Anforderungen

Grundlagen des Sicherheitskonzeptes

6.1 Basisstruktur des Sicherheitskonzeptes
6.1.1 Ubersicht der Mainahmen fiir das Sicherheitskonzept

6.2 Kontrollierte Datenstromverarbeitung in drei Sicherheitszonen
6.2.1 Sicherheitszone-Null o L
6.2.2 Sicherheitszone-Mittel L L.
6.2.3 Sicherheitszone-Hoch

Architektur des Sicherheitskonzeptes
7.1 Kommunikation in der Sicherheitsarchitektur
7.2 Definition und Auswertung von Zugriffsrichtlinien
7.2.1 Administration und Verteilung von Zugriffsrichtlinien
7.2.2 Abbilden von Zugriffsbedingungen 0L
7.2.3 Definition von Zugriffsrichtlinien im Meta-Daten-Modell
7.2.4 Optionale Auswertungen von Zugriffsrichtlinien mit Evaluatoren
7.2.5 Transformation von Datenstromen mit Filter
7.3 Abhidngigkeit von Datenstromen und Wiedereinflechtung von Zugriffsrichtlinien
7.3.1 Zuordnung von Dateneingidnge auf Datenausgédnge
7.3.2 Zeitpunkt der Einflechtung
7.4 Kontrollierte Planung von Anfragen
7.4.1 Secure Query Interface (SQI) L.
7.4.2 Secure Query Planer (SQP) L L
7.4.3 Secure Query Optimizer (SQO).
7.4.4 Secure Query Fragmenter (SQF)
7.4.5 Secure Execution Manager (SEM),
7.5 Secure-Source, Architektur und Ausfithrungsmodell
7.6 Secure-Box, Architektur und Ausfithrungsmodell
7.7 Secure-Sink, Architektur und Ausfithrungsmodell

68

7.8 Services der Sicherheitsarchitektur L.

7.8.1
7.8.2
7.8.3
7.8.4

7.8.5
7.8.6

Identity Administration Point (IAP)
Role Administration Point (RAP).
Policy Administration Point (PAP)
Secure Operator Repository (SOR)
Certificate Authority Point (CAP)
Policy Decision Point (PDP)

Implementierung

8.1 Implementierung der Services Lo L L.

8.1.1
8.1.2

AWML Datenhaltung fiir Services
Kommunikation mit den Services

8.2 Zugriffsrichtlinien o

8.2.1
8.2.2
8.2.3
8.2.4

Abbildung der Zugriffsrichtlinien
Implementierung von Evaluatoren
Implementierung von Filter
Propagierung von neuen Zugriffsrichtlinien

8.3 Planung von Anfragen L L

8.3.1
8.3.2
8.3.3

Uberpriifung der Ausfiihrbarkeit von Operatoren
Uberpriifung vorgelagerter Operatoren
Anpassung von Anfragen Lo oL L

8.4 Kontrollierte Ausfithrung von Operatoren.

8.4.1 Anpassungen der ProcessLine
8.4.2 Transport von Zugriffsrichtlinien
8.4.3 Auswertung und Wiederinterpunktion von Zugriffsrichtlinien
8.4.4 AusfihrungvonFilter o Lo
9 Zusammenfassung und Ausblick
9.1 Abdeckung der Schutzziele L.
9.2 Ausblick
Literaturverzeichnis

100
101
101
102
103
104
104
106
108

109
109
111

113

Kapitel 1

Einleitung

Die Vision von Nexus [41, 5], ein Sonderforschungsbereich der Universitidt Stuttgart, ist eine
Zukunft in der die Mehrzahl der eingesetzten Anwendungen von Kontextinformation Gebrauch
machen. Basis der Vision ist die Idee, dass Kontextinformation direkt oder indirekt von nahezu
jeder Anwendung benutzt und erzeugt werden kann. Kontextinformationen sind Informationen,
die einen Bezug zu Objekten in der Realwelt modellieren. Das kann zum Beispiel die aktuelle
Position eines mobilen Gerétes sein, auf dem eine ortsabhidngige Anwendung ausgefiihrt wird
oder stationdre Anwendungen, die zum Beispiel auf Arbeitsplatzrechner laufen. Auf einem
Arbeitsplatzrechner konnte zum Beispiel aus dem Verhalten des Benutzers Kontextinformation
gewinnen, die eine Miidigkeitserkennung realisiert, die den Benutzer auffordert, aus Gesund-
heitsgriinden eine Pause einzulegen.

Angenommen Millionen von Nutzern wiirden ihren aktuellen Standort alle 30 Sekunden mithilfe
eines GPS-Empfiangers in Nexus einspeisen. Ergebnis wéren Millionen von kontinuierlichen
Datenstromen, die von Orts-bezogenen Diensten verwendet werden konnten. Die Verarbeitung
einer grofien Zahl an Datenstromen kann von gewohnlichen Systemen, die Daten im ersten
Schritt speichern und offline aufbereiten, hdaufig nicht effizient durchgefiihrt werden. Um diese
Liicke zu schliefien, wurde zur Verarbeitung von Datenstromen NexusDS [13, 30, 14] entwickelt.
Besonderheit von NexusDS ist die verteile Ausfithrungsumgebung, die eine Zerlegung und
Verteilung der Datenverarbeitung auf mehrere Rechenknoten ermoglicht. Bei einer Verteilung auf
eine Infrastruktur es sein, dass die Gestalt der Rechenknoten sehr heterogen ausfallt. Verwandte
Konzepte zu NexusDS, wie zum Beispiel Aurora [1], sind auf eine homogene Infrastruktur
von Rechenknoten angewiesen. NexusDS hingegen erlaubt nicht nur die Ausfithrung in einer
heterogenen Infrastruktur, sondern ermoglich auch das gezielte Ausnutzen besonderer Eigen-
schaften der Rechenknoten durch die Verwendung von Constraints. Constraints sind Meta-Daten,
mit denen sich die Verarbeitung von Daten in NexusDS gezielt steuern ldsst. Unterstiitzt ein
Rechenknoten beispielsweise OpenCL", konnen gezielt Berechnungen diesem Rechenknoten
zugewiesen werden, die von dessen besonderer Eigenschaft profitieren.

'OpenCL steht fiir ein Framework namens Open Computing Language, das die Ausfithrung von Programmcode auf
CPU’s und GPU’s gleichermafien untersttitzt.

1 Einleitung

In der vorliegenden Auspragung kennt NexusDS keinen kontrollierten Datenzugriff. Es steht
jedem Benutzer der Plattform frei, alle verfiigbaren Daten, sofern ein physischer Zugriff mog-
lich ist, zu nutzen und auf in beliebiger Art und Weifse zu verwenden. Soll die Plattform zur
Verarbeitung von sensiblen Informationen eingesetzt werden, ist es zwingend notwendig Me-
chanismen einzufiihren, die den Datenzugriff gemafs definierbarer Bedingungen einschranken.
Gleichzeit muss die Gestaltung der Restriktionen flexibel genug sein, dass eine uneingeschriankte
Weiterentwicklung von NexusDS moglich ist.

1.1 Motivation

Wesentlich fiir die Bereitstellung einer Plattform, die verschiedensten Anwendungen zu Verfii-
gung stehen soll, ist eine fiir dritte offene Struktur. Dritte sind zum Beispiel Anwendungsentwick-
ler, Unternehmungen, 6ffentliche Dienste oder private Benutzer die Anwendungen oder Daten
bereitstellen. Nur mit einer offenen Struktur kann den unterschiedlichsten Benutzergruppen die
Moglichkeit gegeben werden, neue Daten und neue Dienste in NexusDS zu integrieren. Um nicht
das Einsatzgebiet von NexusDS einzuschrédnken, sollte es daher méglich sein, auch sensible und
geschiitzte Daten “sicher” Verarbeiten zu konnen. Benutzer iiberlassen, beziehungsweise akzep-
tieren NexusDS, im Allgemeinen nur dann, wenn verldssliche Zugriffskontrollen zu Verfligung
stehen, um sensible Daten vor Missbrauch zu schiitzen. Weitergehend ist es wiinschenswert,
Fahigkeiten zur Anonymisierung beziehungsweise einer Verschleierung, von Daten vorzusehen.
Derartige Funktionen sind zum Beispiel bei Anwendungen mit Positionsinformationen von
grofsem Wert. Sie ermoglichen, dass Benutzer und Dienste den Detaillierungsgrad von privaten
Informationen je nach Einsatz gezielt steuern konnen. Die gezielte Verfeinerung eines kontrollier-
ten Datenzugriffes hebt die Beschrankung auf, dass ein Zugriff entweder nur vollstandig auf alle
Details von Daten gestattet oder vollstandig verboten werden muss.

Fiir NexusDS wurde bisher keine Untersuchung oder Implementierung zur Einfithrung von
Sicherheitsmechanismen durchgefiihrt, diese Liicke soll durch die Diplomarbeit geschlossen wer-
den. Trotz eines steigenden Interesses der Forschungsgemeinschaft an Datenstrom Management
Systemen (DSMS) und eine immer starkeren Durchdringung kommerzieller Anwendungen mit
Kontextinformation, gerade im aktuellen Smartphone Boom, wurde das Thema Sicherheit in
DSMS bisher nur wenig untersucht [31]. Die Tatsache, dass bestehende Sicherheitskonzepte, zum
Beispiel aus den relationalen Datenbanken, nicht oder nur teilweise fiir DSMS eigenen [11, 23]
und das die bereits entwickelten Sicherheitskonzepte nur Teile von NexusDS abdecken, motiviert
die vorliegende Diplomarbeit.

1.2 Gliederung

Um ein Sicherheitskonzept fiir NexusDS zu entwickeln, ist im ersten Schritt, der von Kapitel 2 um-
gesetzt wird, eine Definition und Abgrenzung des Begriffs Sicherheit notwendig. Zusitzlich stellt

10

1.2 Gliederung

das Kapitel ein Vorgehensmodell vor, anhand dessen die Entwicklung des Sicherheitskonzeptes
in der Diplomarbeit strukturiert wird.

Kapitel 3 fithrt die Grundlagen von Nexus und NexusDS ein. Erldutert werden die Architektur,
eingesetzte Datenmodelle, die verschiedenen Komponenten aus denen Nexus und NexusDS
aufgebaut ist und deren Funktionsweise. Das Kapitel schliefst mit einer kurzen Einordnung von
NexusDS im Bezug zu verwandten Arbeiten.

Das Kapitel 4 umreist zu Beginn kurz Zugriffskontrollen in relationalen Datenbanken und stellt
bisher vorgestellte Sicherheitskonzepte fiir DSMS vor. Nach der Vorstellung werden die Konzepte
zusammengefasst und parallel erortert, inwieweit die vorgestellten Konzepte auf NexusDS
iibertragbar sind.

Um einen Anforderungsrahmen fiir das zu Entwickelende Sicherheitskonzept aufzuspannen,
fiihrt Kapitel 5 verschiedene Anwendungsszenarien ein. Die Untersuchung der Anwendungs-
szenarien bezieht sich auf Anforderungen, die das Sicherheitskonzept erfiillen muss, um einen
kontrollierten Datenzugriff sicherzustellen. Den Anwendungsszenarien folgt eine Untersuchung
von NexusDS auf Anforderungen beziiglich der technischen Details von NexusDS.

Nach der Erhebung der zu beriicksichtigen Anforderungen folgt in Kapitel 6 der Entwurf eines
Sicherheitskonzeptes fiir NexusDS. Der Fokus liegt auf der Entwicklung und der Beschreibung
von Mafsnahmen, die in der Lage sind, jede gestellte Anforderung umzusetzen.

Kapitel 7 entwickelt aus den Mafinahmen eine Sicherheitsarchitektur, die in NexusDS imple-
mentiert werden kann. Ergebnis sind konkrete Komponenten, die mit ihren Aufgaben und dem
jeweiligen Verhalten detailliert beschrieben werden.

Besonderheiten der prototypischen Implementierung stellt Kapitel 8 vor. Der Fokus liegt auf der
Vorstellung der wichtigsten Details zur Umsetzung der vorgestellten Architektur

Geschlossen wird die Diplomarbeit mit Kapitel 9, dass eine Zusammenfassung der wichtigsten
Punkte enthdlt und einen Ausblick auf zukiinftige Arbeiten gibt.

11

Danksagung

Dank gilt allen, die mich bei der Erstellung der Diplomarbeit und im Laufe meines Studiums
unterstiitzt haben. Insbesondere meiner Eltern, die mich jederzeit in jeder Hinsicht unterstiitzt
haben und meinem Betreuer Nazario Cipriani, der mich als Gesprachspartner immer wieder zu

neuen Ideen inspirierte.

12

Kapitel 2

Sicherheit

Sicherheit ist ein vielgestaltiger Begriff. Um tiberhaupt ein Sicherheitskonzept fiir NexusDS
entwickeln zu konnen, miissen zuerst die grundlegenden Begrifflichkeiten fiir die Diplomarbeit
definiert werden. Dafiir gibt der erste Abschnitt 2.1 eine kurze Einfithrung zum Thema Sicherheit,
die den Begriff Sicherheit fiir den weiteren Verlauf der Diplomarbeit abgrenzt.

Abschnitt 2.2 geht kurz auf Security Engineerings, dass verschiedene Ansétze zur Entwicklung
von sicheren System beschreibt. Die darin vorgestellten Grundlagen werden im weiteren Verlauf
der Ausarbeitung aufgegriffen.

Um einen ersten Eindruck zu erhalten, wie ein kontrollierter Datenzugriff umgesetzt werden
kann, stellt Abschnitt 2.3 drei verbreitete Modelle zur Zugriffsteuerung vor.

In Abschnitt 2.4 wird das Vorgehensmodell vorgestellt, das die Struktur der Erarbeitung des
Sicherheitskonzeptes fiir NexusDS illustriert. Das Vorgehensmodell strukturiert die Entwicklung
einer Sicherheitsarchitektur und liefert eine klare Schrittfolge fiir die Diplomarbeit.

2.1 Grundlagen der Sicherheit

Die Bedeutung des Wortes Sicherheit hidngt von seiner Einbettung ab, dass bedeutet, es ist wichtig
zu beachten, in welcher Umgebung und Kontext wird Sicherheit betrachtet. Eine Einbettung
kann zum Beispiel Sicherheit im Strafienverkehr sein oder wie in der vorliegenden Diplomar-
beit die Informationstechnik. Wichtige Einflussgrofie ist die Wahrnehmung von Sicherheit der
einzelnen Personen, denn verschiedene Personen haben nicht notwendigerweise die gleiche
Wahrnehmung von Sicherheit. Der Benutzer eines Computers kann der Meinung sein, dass
der einmalig installierte Virenscanner seinen Computer ausreichend vor allen Gefahren schiitzt
und weitere Mainahmen unnétig sind. Andere Nutzer konnen der Uberzeugung sein, dass ein
Virenscanner ohne regelmiflig durchgefiihrte Aktualisierungen der Virendefinitionen langfristig
nutzlos ist. Das Beispiel untermauert, dass der Begriff Sicherheit stark von der Subjektivitdt und
des Hintergrundwissens eines Betrachters abhdngen kann.

13

2 Sicherheit

Eine sehr wichtige Einsicht fiir die Sicherheit ist, dass ein Sicherheitskonzept nur so stark ist wie
seine schwdchste Komponente. So fithrt ein Einbruch tiber die schwéchste Komponente zu einer
Ausbreitung iiber das gesamte System, ein typisches Problem in verteilten Systemen [17, 16].
Weitere sich hdufig wiederholende Beispiele sind fahrldssig simple Passworter oder unveranderte
Standardpassworter im Auslieferungszustand von beispielsweise Routern oder Hardwarefire-
walls. Es ist also nicht nur wichtig technische Mechanismen zu implementieren, sondern auch
den Humanteil, die Nutzer eines Systems ausreichend fiir Sicherheit zu sensibilisieren [2].

Einflussreiche Grofe fiir Sicherheit ist die Zeit. Werden beispielsweise Anwendungen wie Inter-
netbrowser betrachtet, die von einer grofien Zahl an Benutzer eingesetzt werden, spielt die Zeit
zwischen Erkennen und schlieflen einer Sicherheitsliicke eine bedeutende Rolle. Je mehr Zeit ver-
streicht, in der die Anwendung durch die Sicherheitsliicke angreifbar ist, desto wahrscheinlicher
ist es, dass diese von einem Angreifer ausgenutzt wird. Stellen zum Beispiel die Daten auf dem
Computer, der den Browser ausfiihrt, einen hohen Wert dar, kann eine hohe Anziehungskraft fiir
kriminelle Energie bestehen und Liicken werden besonders schnell fiir Angriffe ausgenutzt.

Ist eine Infrastruktur® vielen Parteien zuganglich, ist Sicherheit schwerer zu gewdhrleisten als
in isolierten Systemen mit einem definierten, engen Benutzerkreis. Ebenfalls ist fiir ein Sicher-
heitskonzept wichtig das technische Wissen der Benutzer zu berticksichtigen. Gerade in einer
Umgebung mit einer hohen Anzahl an verschiedenen Benutzergruppen kann das Benutzerwis-
sen vom Laien bis zum Experten reichen, was einen differenzierten Umgang mit den Nutzern
erfordert. Differenzierter Umgang bedeutet, wie viele komplexe Sicherheitsmechanismen konnen
einem Benutzer zugemutet werden, sodass das System eine ausreichende Nutzerakzeptanz und
Ergonomie erzielt. Auf der anderen Seite kann es besonders in sensitiven Anwendungsbereichen
wie Banken oder offentlichen Einrichtungen sein, dass die Erfiillung von gesetzlichen Regeln der
Ergonomie iibergeordnet werden muss.

2.1.1 Begriffe der Sicherheit

Um den Begriff Sicherheit fiir die Diplomarbeit zu spezifizieren, muss die Einbettung definiert
werden, in der Sicherheit betrachtet wird. In der vorliegenden Arbeit ist die Einbettung beziiglich
eines Informationstechnologie-Systems (IT-System) gegeben. Nach Eckert [16] wird ein IT-System
wie folgt definiert:

”Ein IT-System ist ein geschlossenes oder offenes, dynamisches technisches System
mit der Fahigkeit zur Speicherung und Verarbeitung von Informationen.”

In Abschnitt 1.1 wurde bereits angesprochen, dass es sich bei NexusDS um ein offenes System
handelt. Es kann mit unterschiedlichster Hardware und Software verschiedenster Benutzer er-
weitert werden. Ein geschlossenes System wire inkompatibel zu Technologien anderer Hersteller
und auf einen definierten Teilnehmerkreis beschrankt.

'Infrastruktur wird von dem lateinischen infra fiir unten, unterhalb abgeleitet. In der vorliegenden Arbeit steht
Infrastruktur fiir die allgemeinen Basiskomponenten, die notwendig sind, um ein IT-System zu betreiben.

14

2.1 Grundlagen der Sicherheit

In der Literatur [16, 18, 2] werden im Allgemeinen die Teilnehmer eines IT-Systems als Objekt
und Subjekt bezeichnet. Diese Bezeichnungen sollen auch hier zur Anwendung kommen und
sei wie folgt definiert.

Objekt: Ein Objekt bezeichnet Entitidten wie zum Beispiel eine Datei, ein Datenbankeintrag oder
ein ausfithrbares Stiick Quellcode.

Subjekt: Benutzer von Objekten werden Subjekte genannte. Ein Subjekt kann zum Beispiel ein
Mensch sein, der ein Smartphone bedient oder auch ein Prozess auf dem Smartphone der
im Auftrag des Benutzers handelt.

Um unterschiedliche Sicherheitsanforderungen in einem IT-System zu klassifizieren, werden
Schutzziele definiert. Die Einteilung von Sicherheitsanforderungen erleichtert das Gruppieren
verschiedener Anforderungen und die Zuordnung an Komponenten eines Sicherheitssystems.
Gleichzeitig gewdhrleistet die Betrachtung der Schutzziele, dass die mafigeblichen Eckpunkte fiir
ein Sicherheitssystem abgedeckt werden. Die folgende Auflistung von Schutzzielen basierend
auf Eckert [16]. Weitere Verfeinerungen und Erweiterungen der Schutzziele sind moglich [6],
verlassen aber den Rahmen der Diplomarbeit, der sich auf die Herstellung eines kontrollierten
Zugriffes auf Daten bezieht. Die Schutzziele von Eckert zeichnen sich durch eine klare Zerlegung
aus und fordern eine stimmige Strukturierung und Analyse von Sicherheitsanforderungen im
weiteren Verlauf der Diplomarbeit.

Authentizitat: Um die Echtheit beziehungsweise Glaubwiirdigkeit von Objekten und Subjekten
zu bestimmen, muss deren Identitdt tiberpriift werden. Dieser Prozess des Abgleiches
von einer behaupteten Identitdt und der tatsdchlichen hinterlegten Identitdt wird als
Authentifikation bezeichnet. Das Ergebnis ist ein bejahen oder verneinen der behaupteten
Identitat. Sollte das Ergebnis positiv sein, wird das Objekt oder Subjekt als authentisch
bezeichnet.

Datenintegritat: Gewihrleistet, dass es im System den Subjekten nicht moglich ist, geschiitzte
Daten unautorisiert und/oder unbemerkt zu verdndern. Voraussetzung fiir Datenintegritdt
ist die Festlegung von Zugriffsrichtlinien fiir Daten, die definieren, welche Zugriffe gestattet
sind.

Informationsvertraulichkeit: Sicherstellen von Informationsvertraulichkeit bedeutet, es besteht
keine Moglichkeit, dass Informationen von Subjekten gelesen werden konnen, fiir die das
Subjekt keine Freigabe besitzt. Dies gilt ebenfalls fiir Indirektionen tiber andere Subjekte
oder Objekte im Datenfluss. So soll ausgeschlossen werden, dass die Schutzmechanismen
unterlaufen werden konnen.

Verfligbarkeit: Stellt sicher, dass autorisierte Aktionen von Subjekten durchgefiihrt werden
konnen, ohne von nicht autorisierter Stellen in irgendeiner Form beeintrachtigt zu werden.
Beispielsweise mit gezielter Monopolisierung von CPU-Zeit oder Bandbreite, ohne das eine
entsprechende Berechtigung vorliegt.

15

2 Sicherheit

Verbindlichkeit: Bedeutet, dass ausgefiihrte Aktionen eindeutig dem Subjekt zugeordnet wer-
den, das die Aktion angestofien hat. So wird eine Historie aufgebaut die gewdhrleistet, dass
im Nachhinein ausgefiihrte Aktionen nicht abgestritten werden kénnen.

Anonymisierung: Die Verdnderung personenbezogener Daten, sodass gar nicht, oder nur mit
sehr grofiem Aufwand, personliche Verhiltnisse zugeordnet werden kénnen. Eine schwé-
chere Form ist die Pseudonymisierung, die lediglich eine Zuordnungsvorschrift umfasst,
um zum Beispiel Realnamen durch Pseudonyme zu ersetzen. Ein klassisches Beispiel dafiir
sind die Nummernschilder an Fahrzeugen, die als Pseudonym fiir den Halter stehen.

2.2 Security Engineering

Security Engineering beschreibt die Anwendung des Ingenieur-Leitbildes auf den Aspekt IT-
Systeme sicher zu gestalten und konzentriert sich auf die dazu notwendige Nutzung von
Methodiken, Werkzeugen und Prozessen. Gestaltung umfasst sowohl die Entwicklung neuer,
sicherer IT-Systeme von Grund auf, als auch die Uberarbeitung bereits vorhandener Systeme.
Dies umfasst die Entwicklung von Sicherheitskonzepten, deren Implementierung und Tests der
IT-Systeme. Laut Eckert [16] handelt es sich dabei noch um keine methodisch ausgearbeitete
Disziplin. Anderson [2] sieht in Security Engineering interdisziplindre Anforderungen, sowohl in
Software und Hardware als auch in Psychologie, Evaluierungsmethoden und der Rechtswissen-
schaften. Der Abschnitt ist lediglich eine kurze Einfiihrung in ein sehr weitreichendes Thema. Zu
Details sei der Leser angehalten, in der referenzierten Literatur nachzuschlagen.

2.2.1 Methodiken

Grundlegende, allgemeine Konstruktionsprinzipien, wurden von Saltzer und Schroeder bereits
1975 in [34] definiert. Zu diesen Prinzipien gehoren zum Beispiel Fail-safe defaults die fordern,
dass grundsatzlich jeder Zugriff vorerst verboten ist. Fiir einen Zugriff muss zuerst eine explizite
Erlaubnis erteilt werden. Das weitere Prinzip Least privilege sagt aus, dass nur die minimalen
Rechte zur Erfiillung der Aufgabe vergeben werden sollten. Fiir die vollstandige Ubersicht und
Details wird in die originale Arbeit verwiesen.

Methoden in Form von Empfehlungen und Richtlinien zur Erstellung eines Sicherheitskonzeptes
fiir die Informationstechnik (zum Beispiel IT-Systeme, Netzwerke, Anwendungen) werden
vom Bundesamt fiir Sicherheit in der Informationstechnik (BSI) mit den IT-Grundschutz-Kataloge [9]
herausgegeben. Inhalt der Kataloge sind Sammlungen von Standardsicherheitsmaffnahmen, die
anhand von Eintrittswahrscheinlichkeiten und Schadensumfang von pauschalen Gefihrdungen
verwendet werden. Die Methodik, die seit 1994 stetig weiterentwickelt wurde, stellt einen
Baukasten zur Etablierung und Aufrechterhaltung von Mechanismen zum Schutz von Information
einer Institution bereit. Auf Basis des Konzeptes kann auch eine Zertifizierung nach ISO 27001
vergeben werden.

16

2.2 Security Engineering

Eine Methodik, um Authentizitdt und Integritdt von Daten zu sicherzustellen, ist eine Public-Key
Infrastruktur (PKI). Grundlage ist ein asymmetrisches Kryptosystem, in dem Subjekten krypto-
grafische Schliissel zugeordnet werden. Jedes Subjekt besitzt ein Schliisselpaar, dass aus einem
privaten Schliissel, der geheim gehalten wird, und einem o6ffentlichen Schliissel, der jedem
Subjekt frei verfligbar ist, besteht. Der private und der 6ffentliche Schliissel stehen in einer mathe-
matischen Beziehung, sodass Daten, die mit dem 6ffentlichen Schliissel verschliisselt wurden, mit
dem privaten Schliissel entschliisselt werden konnen. Mit der mathematischen Beziehung konnen
Daten sicher zwischen Kommunikationspartnern ausgetauscht werden, ohne dass vorher ein
gemeinsamer geheimer Schliissel {iber gegebenenfalls unsichere Wege austauscht werden miisste.
Will ein Absender Daten fiir einen Empfanger verschliisseln, wihlt er zur Verschliisselung der
Daten den der Identitdt zugeordneten offentlichen Schliissel zur Verschliisselung der Daten. Nur
der Besitzer des privaten Schliissels kann die so geschiitzten Daten entschliisseln und damit
wieder lesbar machen. Um echte Schliissel von gefdlschten Schliisseln zu unterscheiden, werden
die Schliissel in Zertifikate eingebettet. Die Zertifikate bestitigen die Vertrauenswiirdigkeit der
behaupteten Identitit eines eingebetteten Schliissel. Ausgestellt werden die Zertifikate von einer
Zertifizierungsstelle, bei der sich der Teilnehmer zuvor korrekt ausgewiesen hat. Zertifikate kon-
nen auch dazu benutzt werden, um die Identitdt von Subjekten zu iiberpriifen. Dazu wird dem
Zertifikat-Inhaber eine zufillig genierte Zahl tibermittelt, die dieser mit seinem privaten Schliissel
verschliisselt und an den Absender zuriickschickt. Nun kann der Wert mit dem o6ffentlichen
Schliissel entschliisselt werden, stimmt das Ergebnis mit dem verschickten Wert {iberein, wurde
die Identitdt des Zertifikats-Inhabers bestitigt. Es gilt jedoch zu beachten, dass ein Zertifikat nur
so vertrauenswiirdig ist, wie die Zertifizierungsstelle vertrauenswiirdig ist.

2.2.2 Implementierung und Werkzeuge

Neben der konzeptionellen Arbeit, eine Sicherheitsarchitektur zu entwickeln, die die gewiinsch-
ten Schutzziele realisiert, muss die Architektur mit einer Implementierung realisiert werden.
Bei der Implementierung der Sicherheitsarchitektur, und auch des zu schiitzenden IT-Systemes
kann es vorkommen, dass Anforderungen nicht korrekt umgesetzt werden. Ergebnis kann ein
ungewolltes Verhalten der Software sein, dass sich im Gegensatz zu Syntaxfehlern nicht direkt
bei der Ubersetzung der Anwendung, sondern erst wihrend der Laufzeit bemerkbar macht. Ein
derartiges ungewolltes Verhalten wird als logischer Fehler bezeichnet und kann weitreichende
Folgen haben. Beispielsweise konnte ein logischer Fehler bei der Implementierung der Funktiona-
litit zu Authentifizierung von Subjekten auftreten, der bei der Priifung der behaupteten Identitdt
auftritt und einigen Objekten eine falsche Identitdt bestatigt. Wird ein Subjekt falschlicherweise
mit einer Identitdt mit umfangreicheren Rechten als vorgesehen ausgestattet, kann dies zu seiner
Kompromittierung des Sicherheitskonzeptes fiihren.

Zum Auffinden der genannten Fehler konnen unterstiitzend Werkzeuge bei der Programm
Analyse eingesetzt werden. Eine Klasse wird als dynamische Programmanalyse bezeichnet, die
zur Laufzeit einer Anwendung durchgefiihrt wird. Zur Durchfithrung wird das Programm auf
Testdaten ausgefiihrt und das Verhalten untersucht. Beispielsweise unterstiitzt die von Intel ver-

17

2 Sicherheit

marktete Software Parallel Studio [21] die Analyse von Anwendungen, die auf mehrere Threads*
verteilt sind, nach moglichen data races oder deadlocks. Eine weitere Klasse von Werkzeugen wird
tiir die statische Programmanalyse eingesetzt. Die Analyse wird durchgefiihrt ohne das betreffende
Programm auszufiihren, indem der Quellcode als Eingabe zu Untersuchungen verwendet wird.
Untersucht wird der Quellcode zum Beispiel nach Puffer Uberldufen, Dereferenzierung von Null-
Pointer oder nach unerfiillbaren Vergleichen. Fiir die statische Suche nach Programmierfehlern
existierten sowohl frei Verfiigbare als auch kommerzielle Software [4].

2.2.3 Prozesse

Microsoft adressiert die Entwicklung sicherer Software mit dem Security Development Lifecycle
(SDL) [29]. Im SDL definiert Microsoft einen Softwareentwicklungsprozess, der aus drei Ele-
menten besteht: vorbildliche Losungen aus der Praxis (best practise), Prozessverbesserungen
und Metriken. Ziel ist die Verwundbarkeit des Softwaredesigns, der Codierung und Dokumen-
tation so frith und so weit wie moglich zu reduzieren. Damit soll ein pragmatischer Software
Entwicklungszyklus bereitgestellt werden, der unter anderem auch die bereits angesprochenen
Prinzipien von Saltzer und Schroeder [34] berticksichtigt.

Internationaler Standard zur Bewertung und Zertifizierung von IT-Systemen ist die Common
Criteria for Information Technology Security Evaluation (CC). Eine Bewertung wird durchgefiihrt,
indem Funktionalitdt und die Vertrauenswiirdigkeit von IT-Systemen anhand von Kriterienkata-
logen gepriift wird. Je nach Ergebnis und Umfang der Priifung konnen unterschiedlich starke
Zertifikate vergeben werden. Die aktuelle Version 3.1 ist mit ISO/IEC 15408 standardisiert und
16st den europdischen ITSEC-Standard3 und amerikanischen TCSEC-Standard* ab, um einen
weltweit einheitlichen Standard zu schaffen.

Das BSI schldgt im BSI-Standard 100-2 [8] einen Informationssicherungsprozess vor, der auf Basis der
bereits unter Methodiken angesprochen IT-Grundschutz-Kataloge eine Auswahl und Realisierung
von Mafinahmen auf drei Ebenen begleitet. Die erste Ebene ist die strategische Ebene, sie beinhal-
tet die Initiierung des Sicherheitsprozesses mit der Erstellung einer Sicherheitsleitlinie, bestehend
aus den angestrebten Informationssicherheitszielen und der verfolgten Sicherheitsstrategie sowie
der Einrichtung eines IT-Sicherheitsmanagements. Auf der zweiten, der taktischen Ebene, wird ein
Sicherheitskonzept nach den IT-Grundschutzkatalogen erstellt. Letzte, die operative Ebene sorgt
tiir die Sensibilisierung und Schulung des Personals zur IT-Sicherheit und der Aufrechterhaltung
der Sicherheit im laufenden Betrieb. Unter Aufrechterhaltung wird ein sich wiederholender Pro-
zess verstanden, der nicht nur bei der Entwicklung, sondern auch wéhrend der Systemaktivitat
eine Uberwachung durchfiihrt, um neue Schwachstellen zu erkennen. In folgenden Wiederholun-
gen des Prozesses konnen die neu erkannten Schwachstellen eliminiert werden. Im Wesentlichen

2Wird in Deutsch auch als Aktivititstriger bezeichnet und beschreibt eine Folge von Arbeitsschritten eines Program-
mes, die sowohl sequenziell als auch parallel ausgefiihrt werden kénnen.

3Information Technology Security Evaluation Criteria, 1991 von der Europédischen Kommission verabschiedet [19]

4Trusted Computer System Evaluation Criteria, wird auch als Orange Book bezeichnet, wurde von der US-Regierung
herausgegeben [15]

18

2.3 Modelle zur Zugriffskontrolle

DAC MAC RBAC

Nachteile | Erzeuger der Daten | Schreibzugriff kann | Aufwendiges Modell
zwangsldufig Besitzer, | nachfolgende Lese- | durch Indirektion
hoher Verwaltungsauf- | zugriffe ungewollt
wand beschranken

Vorteile | Einfaches Modell Effizientes Regelsystem | Leichte Verwaltung

Tabelle 2.1: Die Tabelle gibt eine Ubersicht {iber die wichtigsten Vor- und Nachteile der vorge-
stellten Modelle zur Zugriffskontrolle.

bezieht sich das BSI-Modell auf Infrastrukturen von Institutionen. Darunter fallen beispielsweise
Biirordumen, einzelne Server oder die Installation von Standardanwendungen wie Microsoft
Outlook.

2.3 Modelle zur Zugriffskontrolle

Zur Umsetzung von Zugriffskontrollen existieren mit Discretionary Access Control, Abschnitt
2.3.1, und Mandatory Access Control, Abschnitt 2.3.2 zwei hdufig verwendete Grundmodelle. Eine
abgeschwichte Form des Mandatory Access Control, welches eine hohere Flexibilitdt ermoglicht,
ist als Role Based Access Control bekannt und ist Thema des Abschnitt 2.3.3.

2.3.1 Discretionary Access Control (DAC)

Ein héufig eingesetztes Modell ist das Discretionary Access Control (DAC) Modell, veroffentlicht
von der TCSEC [15]. Bekanntes Einsatzbeispiel ist Microsoft Windows, dass eine leicht verdnderte
Version, das als Discretionary Access Control List (DACL) bezeichnet wird, einsetzt [28]. In DAC
werden fiir jedes Subjekt s Berechtigungen festgelegt. Rechte r konnen aus einer Menge von
Zugriffsrechten wie zum Beispiel 16schen, lesen oder schreiben sein. Ein Pradikat p legt ein
Zugriffsfenster, eine Einschrankung auf bestimmte Objekte, fiir das jeweilige Objekt fest. Daraus
entsteht das Tupel (s, 0, t, p), welches mit einer Eigenschaft f € {true, false} erweitert wird um
zu entscheiden, ob s die Rechte an ein weiteres Subjekt s’ weitergeben darf. Ergebnis ist das
Quintupel (s,0,t,p, f), das die Rechtevergabe beschreibt.

DAC ist ein einfach gehaltenes Modell, das Berechtigungen explizit zuordnet. Allerdings leidet es
unter einigen Schwéchen. Erstens entsteht aus den Quintupeln unter Umstdnden eine sehr grofle
Matrix, die einen hohen Verwaltungsaufwand erfordert. Zudem geht das Konzept davon aus,
dass der Erzeuger von Daten als Eigner fiir die Sicherheit verantwortlich ist, was die Flexibilitat
einschrankt.

19

2 Sicherheit

2.3.2 Mandatory Access Control (MAC)

Mandatory Access Control (MAC) [15] markiert alle Subjekte und Objekte mit einer injektiven
Abbildung auf eine Sicherheitseinstufung. Die Markierung kann aus einer beliebig definierten
Menge X sein. Voraussetzung ist, dass die Menge geordnet ist, sodass das Abgleichen der
Markierungen zu einem wohldefinierten Ergebnis fiihrt. Jedes Subjekt s erhilt eine Markierung
zur Stufe der Vertrauenswiirdigkeit: vertrauenswuerdigkeit(s) — x. Alle Objekte o erhalten
einen Markierung, die die Sicherheitseinstufung definiert: klassifizierung(o) — x. Das Objekt
0 kann von Subjekt s nur gelesen werden, wenn die Stufe der Markierung ausreichend ist:
klassifizierung(o) < vertrauenswuerdigkeit(s). Wird ein Objekt geschrieben, muss es mindestens
die Berechtigungsstufe des schreibenden Subjekt s erhalten. Die Regel verhindert, dass nach einem
Schreibvorgang das Objekt von Subjekten gelesen werden kann, die zuvor keine Berechtigung
hatten: vertrauenswuerdigkeit(s) < klassifizierung(o).

Im Gegensatz zum DAC Modell verwendet das MAC Modell Regeln und definiert nicht fiir
jede Beziehung zwischen Subjekt und Objekt eine Relation. Dies erspart sehr grofie Matrizen
und deren hohen Verwaltungsaufwand. Nachteilig sind einige organisatorische Mangel. Mit
der letzten Regel, zur Steuerung des Datenflusses, wird die Einstufung von geschriebenen
Objekten unter Umstidnden auf ein zu hohes Level angehoben. So verlieren Subjekte mit niedriger
Einstufung ihre Leserechte. Zudem bedeutet die Notwendigkeit alle Objekte einstufen zu miissen
einen nicht unerheblichen Aufwand.

2.3.3 Role Based Access Control (RBAC)

Eine implizite Autorisierung wird mit dem Role Based Access Control (RBAC) [20] beschrieben.
Die grundlegende Struktur besteht aus Subjekten, Rollen und Zugriffsrichtlinien. Rollen kénnen
verschiedene Zugriffsrichtlinien zugewiesen werden, die Berechtigungen zur Ausfithrung von
bestimmten Operationen vergeben. Werden Rollen hierarchisch angeordnet, konnen Organi-
sationsstrukturen abgebildet werden. So kann beispielsweise die Rolle Mitarbeiter der Rolle
Abteilungsleiter untergeordnet werden. Werden der Mitarbeitergruppe zusitzliche Berechtigun-
gen gewdhrt erhalten automatisch die Abteilungsleiter ebenfalls die Berechtigung. Subjekten
konnen Rollen zugewiesen, die so Sammlungen von Berechtigungen erhalten. Dies erleichtert die
Verwaltung von Zugriffsrichtlinien erheblich, da bei zur Aktualisierung nicht fiir jedes betroffene
Subjekt und Objekt die Anderungen einzeln ausgefiihrt werden miissen.

2.4 Vorgehensmodell fiir NexusDS

Zur Entwicklung einer verldsslichen Software ist eine strukturierte Vorgehensweise ratsam [26].
Mit Strukturierung lasst sich der Prozess der Entwicklung in Schritte unterteilen, die jeweils
klare und tiberpriifbare Ziele definieren. Dies erleichtert nicht nur die Entwicklung, sondern
unterstiitzt mafigeblich das Erzielen einer hoheren Qualitdt des gesuchten Sicherheitskonzeptes
fiir NexusDS.

20

2.4 Vorgehensmodell fiir NexusDS

Struktur-
Analyse

o Struktur des System
analysieren

* Systemrollen ermitteln

* Systembesonderheiten

Anforderungs-
Analyse

* Anforderungen aus
Schutzbedarf von
Anwendungsszenarien
ableiten

MaRBnahmen-
entwicklung

e Erstellung von
MaRnahmenpaket zur
Erfiillung der
Anforderungen

Sicherheits-
Architektur

¢ Transformation von
MaRnahmenin
Komponenten

* Homogene Einpassung

Realisierung

¢ Implementierung der
Komponenten

¢ Test der
Sicherheitsarchitektur

der Komponenten in
bestehende
Systemarchitektur

* Anforderungen der
beteiligten Rollen
ermitteln

* Anforderungen aus
Systembesonderheiten

auf Erfiillung der
Anforderungen

erfassen

Abbildung 2.1: Schritte und Teilaufgaben des Vorgehensmodells zur Entwicklung des Sicher-
heitskonzeptes fiir NexusDS.

In der Literatur zum Thema Sicherheit in der Informationstechnik werden die Vorgehensweisen
in der Regel auf Angriffsszenarien ausgerichtet. Fiir NexusDS soll in der Diplomarbeit erstmals
ein Sicherheitskonzept entwickelt werden, das einen kontrollierten Zugriff auf Information
einfithrt. Die Analyse, mit welchen speziellen Angriffen, wie zum Beispiel Buffer Overflow
Angriffe, die neu umzusetzenden Kontrollmechanismen ausgehebelt werden konnten, lasst der
der begrenzte Umfang der Diplomarbeit nicht zu. Deshalb soll ein Vorgehensmodell fiir die
Diplomarbeit verwendet werden, dass den Fokus auf die Sicherstellung eines kontrollierten
Zugriff auf Informationen legt und nicht auf die Abweisung verschiedener Angriffsszenarien.

Unter Auslassung der strategischen Ebene, zu den verschiedenen Ebene siehe Abschnitt 2.2.3,
bietet der BSI-Standard [8] eine solide Grundlage, um ein Vorgehensmodell fiir NexusDS abzulei-
ten. Das BSI-Modell bezieht sich im Wesentlichen auf Infrastrukturen von Institutionen, was eine
Anpassung auf NexusDS notwendig macht. Im Folgenden werden sowohl die Schritte vorgestellt,
als auch auf kurz, falls notig, auf Veranderungen zum Original BSI-Modell eingegangen. Fiir die
detaillierte Beschreibung, wie die einzelnen Schritte vom BSI definiert werden, sei auf die Quelle
des BSI-Standards verweisen. Abbildung 2.1 stellt die Schrittfolge des Vorgehensmodell dar.

Das Vorgehensmodell beginnt mit der Strukturanalyse. In der Strukturanalyse miissen zuerst die
funktionalen Eigenschaften, die Systemumgebung und der Verwendungszweck analysiert werden.
Im BSI-Modell wird die Analyse hauptsdchlich zur Zerlegung in Komponenten (Anwendun-
gen, Informationen, Rdume, IT-Systeme, Kommunikationsnetze) passend fiir die Grundschutz-
Kataloge durchgefiihrt und lauft im Regelfall auf einen Netztopologieplan hinaus. Fiir NexusDS,
soll eine Topologie der verschiedenen Komponenten des Systems und deren Zusammenspiel
entwickelt werden. Ebenfalls miissen Kommunikationswege betrachtet werden, die in verteilten
Systemen eine elementare Grundlage bilden und als systemkritisch anzusehen sind. Zu beachten
ist, dass die Erhebung nicht im Kontext einer Sicherheitsarchitektur durchgefiihrt wird, sondern
Aufdecken soll, welche Komponenten von NexusDS in welcher weise untereinander Interagieren
beziehungsweise verbunden sind. Komponenten sind dabei sowohl von technischer, als auch von
menschlicher Natur, wie zum Beispiel die Rolle eines Benutzers.

In der Anforderungsanalyse werden aus Anwendungsszenarien Sicherheitsanforderungen, dar-
unter kann beispielsweise das Einschrdnken von Leserechten verstanden werden, an das Si-

21

2 Sicherheit

cherheitskonzept extrahiert. Anhand von Anwendungsszenarien ldsst sich der Rahmen fiir die
Diplomarbeit abstecken und eine anschauliche Erhebung durchfiihren. Um die verschiedenen
Anforderungen der Szenarien zu homogenisieren, werden die Anforderungen anhand der in
Abschnitt 2.1.1 vorgestellten Schutzziele klassifiziert. Zur Vervollstaindigung miissen ebenso die
spezifischen Eigenschaften von NexusDS im Kontext von Sicherheit betrachtet werden. Dazu
dient als Grundlage die im vorherigen Schritt durchgefiihrte Analyse der Struktur von NexusDS,
die unter dem Gesichtspunkt von Zugriffskontrollen nach Anforderungen untersucht wurde.

Der Schritt Mafinahmenentwicklung ist im Original BSI-Modell der Schritt Auswahl von Mafi-
nahmen. Die Auswahl im Original Modell bedeutet Mafinahmenempfehlungen aus den IT-
Grundschutz-Katalogen passend zu den definierten Gefahrenlagen zu entnehmen. Fiir den
vorliegenden Fall sind die fertigen Komponenten aber nur begrenzt anwendbar, da sich das BSI-
Modell mit Standardmafsnahmen, wie zum Beispiel Feuerloscher installieren, fiir NexusDS kaum
eignet. Deshalb wird der Schritt in die Entwicklung von angepassten Mafsnahmen fiir NexusDS
transformiert. Entwicklung von Mafsnahmen bedeutet, dass auf Basis der bis zu diesem Schritt
vorgenommenen Analysen, Mafinahmen entwickelt und vorgestellt werden, die die definierten
Anforderungen erfiillen und auf NexusDS anwendbar sind.

Im vorletzten Schritt Sicherheitsarchitektur werden die gewonnenen Mafinahmen aus dem
vorherigen Schritt in eine Sicherheitsarchitektur fiir NexusDS {tiberfiihrt. Schwerpunkt der Auf-
gabe ist, konkrete Systemkomponente und Erweiterungen zu entwickeln, die die definierten
Mafinahmen zuverldssig umsetzen. Dabei sollten sich die Umsetzungen moglichst harmonisch in
das Zielsystem einfiigen und von bereits vorhandenen Strukturen, soweit moglich, Gebrauch
gemacht werden.

Abgeschlossen wird das Vorgehensmodell mit der Realisierung der Sicherheitsarchitektur. Dabei
handelt es sich im Wesentlichen um die Implementierung der Architektur in NexusDS. Diese
sollte unter den Aspekten der in Abschnitt 2.2 erwdhnten Gesichtspunkte des Secure Enginee-
ring durchgefiihrt werden. Die Implementierung sollte dabei von Tests begleitet werden, die
sicherstellen, dass die definierten Anforderungen sachgerecht umgesetzt wurden.

Abschliefend noch ein kurzer Uberblick iiber die Verdnderungen der Schrittfolge zum Original
BSI-Modell. Der Schritt der Schutzbedarfsfeststellung wurde in eine Anforderungsanalyse umge-
wandelt, die eine Schutzbedarfserhebung fiir Anwendungsszenarien enthilt. Dadurch ldsst sich
die erstmalige Erhebung von Anforderungen und Schutz freier gestalten als im Original. Die
Schritte Bedrohungsanalyse und Risikoanalyse wurden ausgelassen, da wie bereits angesprochen
spezielle Angriffsszenarien nicht berticksichtigt werden sollen. Grundlegende Sicherheitskon-
struktionen, die einen Schutz vor Angriffen im Allgemeinen bieten, werden bereits von der
Anforderungsanalyse erhoben. Das vorgestellte Modell ist im Gegensatz zum Original nicht
iterativ. Nach der Realisierung einer ersten Sicherheitsarchitektur sollte zur Aufrechterhaltung der
Sicherheit ein iteratives Modell angewandt werden, dass auf der Basis des von der Diplomarbeit
initiierten Sicherheitskonzeptes kontinuierlich Verbesserungen umsetzt.

22

Kapitel 3

Nexus und NexusDS

Das Kapitel iiber Nexus und NexusDS fiihrt im ersten Abschnitt Grundlagen zu Nexus und dem
darauf aufsetzenden NexusDS ein. Es erldutert die Zielsetzung von Nexus, illustriert kurz dessen
Architektur und stellt das gemeinsam von Nexus und NexusDS verwendete Datenmodell vor.

Abschnitt 3.2 bezieht sich auf eine detailliertere Vorstellung von NexusDS. Vorgestellt werden die
Architektur von NexusDS, das Service- und Operator-Modell und die Gestaltung von Anfragen.
Aufsetzend auf der Vorstellung von NexusDS, fithrt Abschnitt 3.3 die vom Vorgehensmodell
vorgesehene Strukturanalyse von NexusDS aus.

Geschlossen wird das Kapitel mit Abschnitt 3.4, der eine kurze Ubersicht zu verwandten, bereits
vorgestellten Systemen zur Datenstromverarbeitung gibt.

3.1 Einfuhrung in Nexus

Ziel von Nexus ist eine ganzheitliche Modellierung der Real-Welt und den darin entstehenden
Bezug von Kontextinformation zu erfassen. Zur Abbildung werden lokale Kontext-Modelle
erstellt, die ein Teilgebiet der Real-Welt in einer je nach modellabhdngigen weise Abbilden.
Um die definierten Kontextmodelle in Korrelation mit der sich standig im Fluss befindlichen
Real-Welt zu halten, ist es notwendig eine Moglichkeit vorzusehen, stetige Aktualisierung tiber
den Zustand der Real-Welt einzuholen. Dazu greift Nexus auf die immense Zahl an Sensoren, die
in der modernen Welt kontinuierlich Aktualisierungen iiber den Zustand der Real-Welt liefern,
zuriick. Solche Sensoren konnen zum Beispiel Mobiltelefone, an das Internet angebundene
Webcams oder Webservices * sein, die Informationen aller Art generieren. Aktuelle Smartphones
verfiigen hdufig in der Standardausstattung tiber GPS-Empfanger und WLAN-Adapter. Diese
Geridte konnen mit wenig Aufwand genutzt werden, um eine exakte GPS-Standortinformation
des Benutzers zu sammeln. Verfiigt der Benutzer dazu noch {iiber eine Flatrate fiir mobiles
Internet oder einen anderen preiswerten Datenzugang, ist es ein Leichtes die aktuelle Position

"Ein Webservice definiert eine Standardisierung fiir verschiedene Softwareagenten um Informationen auszutauschen

23

3 Nexus und NexusDS

des Besitzers tiber grofie Zeitraume in Nexus einzuspeisen. Die Positionsinformation kann dann
von vielfdltigen Kontextmodellen genutzt werden um Orts-bezogene Dienste zu realisieren.
Neben Mobiltelefonen gehort zur Vielfdltigkeit moderner elektronischer Hilfsmittel heute eine
sehr grofse Anzahl an Navigationsgeriten, die ebenfalls als Sensoren fiir Nexus dienen kon-
nen. Immer hdufiger werden die Modelle mit Onlineverbindungen ausgestattet, um aktuelle
Verkehrsinformationen zu beziehen. Gleichzeitig Versorgen diese ihrerseits die Betreiber von
Verkehrsservices mit anonymisierten Statusinformationen des Fahrzeuges [40]. Sodass zum Bei-
spiel anhand der Bewegungsmuster, iibermittelt von den Navigationssystemen, und das in Bezug
setzen zu Strafienkarten und weiteren Verkehrsinformationen verbesserte Verkehrsinformationen
generiert werden kdnnen. Das Verkehrsszenario ist nur eine Moglichkeit zur Verwendung der
Informationen, so konnte die Information auch fiir verkehrsfremde Szenarien eingesetzt werden.
Die Information muss lediglich mit einem Nexus Kontextmodell in den gewiinschten Bezug
gesetzt werden.

3.1.1 Nexus Architektur

Die Architektur [5] von Nexus besteht aus drei Schichten, Application Tier, Federation Tier und
Service Tier.

Application Tier: Anwendungen, die die Nexus Plattform verwenden, sind in der Application
Tier angesiedelt. Sie konnen Kontextabfragen an den Federation Tier richten, Ereignisse
registrieren, um bei deren Eintreten benachrichtigt zu werden und gemeinsame Services
nutzen. Fin Service ist eine Anwendung, die im Gegensatz zu Anwendungen im Application
Tier, ihrerseits von anderen Anwendungen benutzt werden kann.

Federation Tier: Beherbergt sogenannte Nexus Nodes, in welchen Funktionen, Ereignisregistrie-
rung und Services der Nexus Plattform ausgefiihrt werden. Eingehende Anfragen aus dem
Application Tier werden analysiert und angeforderte Information aus den zustdndigen
Quellen abgefragt. Die Schicht vereinigt zudem alle lokalen Kontextmodelle zu einem
globalen Modell.

Service Tier: Schicht in der die lokalen Kontextmodelle vorgehalten werden. Die Kontextmodelle
werden von Servern bereitstellt, indem standardisierte Schnittstellen implementiert werden.
Die Datenstruktur wird in der Augmented World Model Language (AWML) und Abfragen
in der Augmented World Query Language (AWQL) formuliert.

3.1.2 Das Augmented World Model

Die Modellierung [5] des Kontext-Modells ist so gestaltet, dass es moglich ist, jede Art kontext-
abhingiger Anwendungen zu unterstiitzen. Ein globales, gemeinsam genutztes Kontext-Model,
namens Augmented World Model (AWM) modelliert die Beziige von Objekten der Real-Welt.
Einige Beispiele fiir Objekte der Real-Welt sind Personen, Hauser oder Fliisse. Aber es existieren

24

3.2 NexusDS

Datenquellen Operatoren Datensenke

Y
Datenstrom

Aktuelle -
Verkehrslage

~—

Filter Berechnen litten & Verteilen
Dot &(te Berechne SP tten & Verteilel
L r o Relevante Optimalen Treffpunk Losungen an Benutzer
GPS-Position X " X :
Informationen filtern ermitteln verteilen

Abbildung 3.1: [llustration einer Anfrage fiir NexusDS die mit Positionsdaten, Terminen und
Verkehrslage einen optimalen Zeit- und Treffpunkt fiir Benutzer von Smartphones
berechnet und verteilt.

nicht nur physische Objekte, sondern auch virtuelle Objekte, das konnen zum Beispiel Verweise
auf Dokumente oder auch Relationen zwischen Objekten sein.

Grundlage fiir das AWM ist die Augmented World Model Language (AWML) zur Datenmodel-
lierung und die Augmented World Query Language (AWQL) um Abfragen zu definieren. Beide
Sprachen basieren auf XML [43], der Extensible Markup Language, definiert vom World Wide
Web Consortium (W3C). XML ist eine Auszeichnungssprache um Daten zu strukturieren und den
Datenaustausch zwischen Computern zu erleichtern. Um eine einheitliche Struktur zu erhalten,
definiert Nexus verschiedene Schemas [42]. Das globale Schema definiert sich aus dem Nexus
Standard Class Schema (NSCS), die Basistypen des AWM mit den Nexus Standard Attribute
Types (NSAT) und dem Nexus Standard Attribute Schema (NSAS) um mehrere Attribute zu
gruppieren.

3.2 NexusDS

NexusDS ist ein Data Stream Processing System (DSMS), ein System zur Verarbeitung von
Stromdaten ohne vorheriges Zwischenspeichern von Daten. Ein Datenstrom ist ein kontinuierli-
cher Fluss an Information, der unendlich sein kann und auf den kein wahlfreier Zugriff moglich
ist. Beispiel fiir einen Datenstrom ist eine Folge aus Positionsdaten, die von einem GPS-Sensor
ermittelt werden. Bisher wurden verschiedene Vorschldge, wie zum Beispiel Borealis [7] oder
Aurora [1], zur Verarbeitung von Datenstrome vorgestellt. Unter den Vorschldgen finden sich
Konzepte, die die Datenverarbeitung wie NexusDS auf mehrere Rechenknoten verteilen. Dabei
werden Anfragen zerlegt und auf verschiedene Rechenknoten verteilt, dies kann zum Beispiel aus
Griinden der Lastverteilung geschehen. Alle bisherigen DSMS Konzepte haben hinsichtlich der

25

3 Nexus und NexusDS

L)

Nexus Applications and Extensions Application Operators [Application Services]]l
Nexus Domain Extensions Domain Operators [Domain Services]
_ L
(. ... s \
: Core Operators [Core Query Service (CQS)]
Nexus Core "
[Operator Repository] [Operator Execution]
Service (ORS, Service (OES,
_ (ORS) (OES) D
(\
P o o . Service Publisher
Communication and Monitoring [Monitoring Service (MS)] [Service (SPS)]
| J

Abbildung 3.2: Schichtarchitektur von NexusDS. Operatoren sind mit durchgezogenen Boxen
und Services mit gestrichelten Boxen dargestellt [13].

Verteilung eine gemeinsame Einschrankung gegeniiber NexusDS, die bereits in der Einleitung an-
gesprochene Fahigkeit, die Ausfiihrung in einem heterogenen Umfeld zu unterstiitzen. NexusDS
adressiert neben der generellen Ausfiihrbarkeit Szenarien, in denen es notwendig, oder von
Vorteil sein kann, dass Operationen spezifische Anforderungen an die Ausfithrungsumgebung
stellen. Zum Beispiel kann eine Anforderung spezielle Hardware sein, die OpenCL ermdoglicht.
Ein weiteres Beispiel kann ein Operator sein, der besonders hohe Leistungsanspriiche stellt, die
nur von ausgewdhlten Rechenknoten erfiillt werden konnen.

3.2.1 Architektur

Ziel der Architektur ist eine flexible und nahtlose Erweiterbarkeit zu gewdéhrleisten. Services defi-
nieren einen Rahmen um Dienste einzubringen, die dem klassischen Anfrage-Antwort Paradigma
folgen. Operatoren hingegen definieren Erweiterungen fiir die Verarbeitung der Datenstrome.
Im Folgenden eine kurze Vorstellung der in Abbildung 3.2 dargestellten Schichtarchitektur von
NexusDS.

Communication and Monitoring Layer: Die Schicht implementiert Kommunikationsfunktionen
die sich in Sachen Flexibilitdt und Skalierbarkeit an Peer2Peer* Netzwerke orientiert. Wich-
tige bereitgestellte Services sind der Monitoring Service (MS) und ein Service Publish
Service (SPS). Der Monitoring Service iiberwacht Rechenknoten und deren speziellen
Charakteristiken. Nutzung und Veroffentlichung der Services in NexusDS wird iiber den
SPS gesteuert. Es ist auflerdem moglich, mehrere Instanzen der Services zu starten, um die
Verfiigbarkeit zu verbessern.

2Unter Peer2Peer werden Netzwerke verstanden, deren Rechner im Gegensatz zur Client-Server Architekturen im
Regelfall gleichberechtigt sind [27].

26

3.2 NexusDS

Nexus Core Layer: Beinhaltet die verteilt ausgefiihrten, zentralen Services von NexusDS. Der Co-
re Query Service (CQS) ist fiir die Annahme, Verteilung und Ausfithrung der Anfragegra-
phen zustindig. Im Operator Repository Service (ORS) werden die Core Operators (CO)
mitsamt Metadaten vorgehalten, dazu gehoren auch Datenquellen und Datensenken. Zu-
gewiesene Anfragefragmente werden vom Operator Execution Service (OES) ausgefiihrt.
Dazu interagiert der Service mit den Core Services, um zum Beispiel fiir die Ausfiihrung
fehlende Operatoren aus Repositories zu laden.

Nexus Domain Extension Layer: Verfiigbare Operatoren und Services werden je nach Bedarf in
logischen Clustern zusammengefiihrt um unwichtige Details zu verstecken. So wird ein
Zuschnitt auf die benotigte Funktionalitdt einer Domain erzielt.

Nexus Applications and Extensions Layer: Spezielle Operatoren oder Services, die nur in ein-
zelnen Anwendungen zum Einsatz kommen, kdnnen mit dieser Schicht in die NexusDS
Infrastruktur ausgelagert werden. Das ist zum Beispiel fiir rechenintensive Teiloperationen
hilfreich, die nicht auf Endgerédten wie Smartphones ausgefiihrt werden konnen.

3.2.2 Service-Modell

Bei der Vorstellung der Architektur wurden bereits vorhandene Services in NexusDS erldutert.
Beispielsweise wurde erldutert, dass der Operator Repository Service (ORS) alle Operatoren und
Meta-Daten fiir das Operator-Modell vorhilt. Der ORS bildet so einen integralen Bestandteil der
NexusDS Architektur und realisiert einen Teil der Funktionalitdt. Services stellen aufserdem den
Verbindungspunkt fiir Anwendungen dar, die NexusDS zur Verarbeitung von Datenstromen
nutzen, um mit NexusDS zu kommunizieren. Soll NexusDS mit zusatzlicher Funktionalitit
erweitert werden, konnen dazu neue Services implementiert und in NexusDS registriert werden.
Das Operator-Modell ist fiir die Verarbeitung von Datenstromen vorgesehen und Operatoren
werden lediglich benutzt. Services hingegen interagieren untereinander und mit angebundenen
Anwendungen.

3.2.3 Operator-Modell

NexusDS verfiigt tiber ein flexibles Operator-Modell, das fiir beliebige Doméanen und Anwendun-
gen angepasst werden kann. Es bildet die Basis zur Umsetzung von Datentransformationen und
Auswertungen in Anfragen, indem Operatoren zur Datenverarbeitung im Rahmen des Modells
implementiert werden. Operatoren sind entweder aus der Gruppe logischer oder physischer
Operatoren. Ein logischer Operator kann mit unterschiedlichen physischen Implementierungen
realisiert sein und definiert nur eine gewisse Semantik der Operation. Jede physische Imple-
mentierung kann eine Spezialisierung sein, zum Beispiel angepasst an Hardwareeigenschaften
unterschiedlicher Rechenknoten.

Zur Erklarung des Modells ist beispielhaft eine Anfrage fiir NexusDS in Abbildung 3.1 dargestellt.
Daten stromen nach dem push Paradigma entlang der Verbindungskanten von Quellen zur
Verarbeitung in Operatoren. Quellen konnen sowohl Stromdaten, etwa ein GPS-Sensor, der

27

3 Nexus und NexusDS

Operator

............... ‘ *
el |
= il X
s il

Abbildung 3.3: Darstellung des Operator Modell mit Warteschlangen, Input Manager und Ope-
rator, die mogliche Parametrisierung und das Sammeln von Laufzeitstatistiken.

stetig eine Position misst, als auch statische Datenbanken mit Busfahrplanen sein. Operatoren
konnen nicht nur in Reihe geschaltet werden, sondern in verschiedenster Form untereinander
verkettet werden. Nach Abschluss der definierten Verarbeitungsschritte fliesen die Daten an ihr
Ziel, sogenannte Senken. Senken konnen zum Beispiel Dateien oder beliebige andere Ziele wie
ein Smartphone Display sein. Eine Anordnung von Quellen, Operatoren und Senken wird als
Anfrage bezeichnet und mithilfe des Nexus Plan Graph Model (NPGM) definiert.

Das von NexusDS eingesetzte Operator-Modell, basiert auf einem Boxen Paradigma. Abbildung
3.3 zeigt, aus welchen Komponenten eine Operator-Box aufgebaut ist. Direkt an den Dateneingan-
gen sind Warteschlangen vorgesehen um den kontinuierlichen Datenfluss zu puffern. Sie sind
zusdtzlich in der Lage die Daten nach Kriterien zu sortierten, beziehungsweise zu priorisieren,
falls der Puffer nicht mehr ausreicht, was einem gleitenden Datenfenster entspricht. Vorgehaltene
Daten werden von einem Input-Manager aus den Warteschlangen entnommen und in einer fiir
die Operation passenden Kombination, sofern mehrere Dateneingdnge vorhanden sind, in die
Operation gegeben. Offensichtlich ist in der vorliegenden Architektur der Operator ein passives
Objekt, das mit Daten bestiickt werden muss. Ein Beispiel fiir einen Operator ist eine Select-
Operation, die Datenelemente nach bestimmten Kriterien entweder weiterleitet oder verwirft.
Besonderheit des von NexusDS verwendetet Modell sind die bereits angesprochenen Meta-Daten,
bezeichnet als Constraints. Diese beschreiben das Verhalten der Komponenten, wie zum Beispiel
welche Datentypen an Ausgidngen und Eingdngen verarbeitet werden konnen, als auch die
Anforderungen (zum Beispiel spezielle Hardware oder Speicherplatz) die die Komponente an
die Ausfiihrungsumgebung stellt. Operationen kénnen parametrisiert werden um das Verhalten
der Komponente zu Laufzeit gezielt zu steuern. Zur Vereinfachung der Handhabung verschie-
denster Parameter von Komponenten kann der Entwickler Presets liefern, die zum Beispiel

28

3.3 Strukturanalyse von NexusDS

Standardeinstellungen beinhalten. Jede der Komponenten kann innerhalb der Spezifikationen frei
implementiert werden und zu einer individuellen Box zusammengestellt werden. Quellen und
Senken sind einfacher aufgebaut. Eine Quelle besteht nicht aus mehreren Komponenten und bei
einer Senke ist jedem Dateneingang eine Warteschlange zur Datenpufferung vorgelagert.

3.3 Strukturanalyse von NexusDS

Nach dem Vorgehensmodell aus Abschnitt 2.4, soll NexusDS zuerst in seine Komponenten
zerlegt werden. Die Zerlegung und Vorstellung der einzelnen Komponenten wurde bereits im
vorherigen Kapitel mit der Einfithrung von NexusDS abgeschlossen. Es bleibt die Aufgabe das
Zusammenspiel der einzelnen Komponenten zu analysieren. Gefragte Analyse ldsst sich anhand
des Ausfithrungsmodells, dass in Abbildung 3.4 vereinfacht dargestellt wird, ableiten.

Der Anfragegraph, in Form eines NPGM, muss zunéchst von einem Extension Developer erstellt
werden. Sollten von der Anfrage Operatoren bendtigt werden, die nicht bereits im Operator
Repository (ORS) verfiigbar sind, miissen diese ebenfalls entwickelt und im ORS verfiigbar
gemacht werden.

3.3.1 Das NexusDS Ausfiihrungsmodell

Die Ausfiithrung eines logischen Anfragegraphs beginnt, indem einem Core Query Service
(CQS) iiber das Query Interface (QI), ein ausgewdhlter logischer Anfragegraph zugefiihrt wird.
Das Interface nimmt die Anfrage entgegen und gibt dem Absender ein Feedback. War der Start
erfolgreich, ist das Feedback eine eindeutige Query-ID, die die Anfrage identifiziert. Trat im
Startvorgang ein Fehler auf, ist die Antwort eine Fehlermeldung und die Anfrageplanung wird
nicht weiter ausgefiihrt. War der Startvorgang erfolgreich, werden im folgenden Query Opti-
mizer (QO) Schritt Optimierungen der Anfrage durch Umschreiben durchgefiihrt. Der Query
Fragmenter (QF) ist fiir Aufbereitung der Anfrage zu einer physischen Anfrage zustdndig. Das
bedeutet, dass logischen Operatoren, die nur eine gewisse Semantik definieren durch passende
physische Operatoren ersetzt werden. Dabei wird eine Optimierung nach den physischen Belan-
gen der Anfrage durchgefiihrt und Rechnenknoten ermittelt, die nach statischen Auswertungen
und aktueller Verfuigbarkeit, fiir die entsprechenden Operatoren geeignet sind. Die Statistiken
werden wihrend der Ausfithrung vom Statistics Collector (SC) gesammelt. Basierend auf dieser
Untersuchung, wird die Anfrage passend zu einer optimierten Auswahl von Rechenknoten
zerlegt. Mithilfe des Execution Manager (EM) werden die Anfragefragmente verteilt. Wichtige
Aufgabe des EM ist mit dem Operator Execution Service (OES) in Verbindung zu bleiben, um
bei Verinderungen der Ausfithrungsumgebung neue Optimierungen vorzunehmen. Zur Uber-
wachung auf Verdnderungen ist der EM mit dem Query Fragmenter und dem Query Optimizer
verbunden.

Wie in der Abbildung 3.4, in Form von drei dicken Pfeilen dargestellt, werden die Fragmente der
Anfrage in verschiedene Execution Manager (EM) iibergeben. Die EM werden im Beispiel auf

29

3 Nexus und NexusDS

Abbildung 3.4: Vereinfachte Darstellung der Ausfithrung einer Anfrage, gezeigt ist die Inter-
aktion zwischen den verschiedenen Komponenten und Rollen im NexusDS

30

Anwendungen

Benutzer von
NexusDS

Core Query Service

Query Interface
(an

¥

> Query Optimizer

(QO)

¥

N Query Fragmenter

(QF)

v

Execution Manager
(EM)

NexusDS

Anwendung

v

Extension
Developer

Anfragegraph

!

H_H

Stream Input Manager

Operator Execution Service

Statistics Collector
(sC)

Operator
Repository Client
(ORC)

4

AV

Operator-Execution Sandbox

Teil-Anfragegraph

)

4

Operator Scheduler Execution Manager
(0S) (EM)

Stream Output Manager

Smartphone

Ausfithrungsmodell.

3.3 Strukturanalyse von NexusDS

verschiedenen Rechenknoten ausgefiihrt, was durch die Sockel der EM ausgedriickt wird. Jeder
EM priift bei der Initialisierung, ob alle notigen Operatoren im lokalen Operator Repository Cli-
ent (ORC) vorliegen, sollte dies nicht der Fall sein, werden sie aus dem OR geladen. Sobald alle
verfiigbar sind, werden die Operatoren geladen, parametrisiert und in der Operator-Execution
Sandbox ausgefiihrt. Wahrend der Ausfiihrung sammelt an dieser Stelle der SC Statistiken
iiber das Laufzeitverhalten der Operationen und Rechenknoten. Sollte sich eine oder mehrere
der Ausfithrungsumgebungen in ihren Eigenschaften verdndern, sind Anpassungen bei der
Ausfithrung notwendig. Anderungen werden entweder nach dem Lightweight Adaptation (LA)
oder Heavyweight Adaptation (HA) Schema durchgefiihrt. LA sieht nur eine Umsortierung der
Ausfiihrungsreihenfolge innerhalb des eigenen Anfragefragmentes und eine Verlangsamung der
vorgelagerten Anfragefragmente vor. Sollten diese Maffnahmen nicht ausreichen, um Pufferiiber-
laufe und einen allgemeinen Zusammenbruch der Anfrage zu verhindern, kann mit der HA tiber
den CQS nochmals der Prozess zu einer vollstindigen Neuverteilung der kompletten Anfrage
angestofsen werden. Sind die Vorbereitungen auf allen Rechenknoten fiir jeden beteiligten OES
abgeschlossen, wird die Ausfiihrung als stabil bezeichnet.

In der Abbildung ist die Kommunikation der einzelnen Anfragefragmente mit diinnen Pfeilen
dargestellt. Die Kommunikation ist unabhédngig davon, ob die Fragmente auf verschiedenen
oder auf demselben Rechenknoten ausgefiihrt werden. Ausgehende Daten werden vom Stream
Output Manager an das oder die Ziele weitergeleitet. Zum Beispiel werden in der Illustration
Daten in einem Zyklus vom leistungsstarken Server in den Stream Input Manager des GPU
gestiitzten PC geleitet. Selbige Daten gehen in ein Anfragefragment zu dem Smartphone und final
aus diesem an die NexusDS Anwendungen, die zu Beginn die Anfrage initiierte. Ausgefiihrt
wird die Anfrage, bis eine vorher definierte Lebensdauer ablauft oder die Anfrage explizit vom
Absender, mit der der Anfrage eindeutig zugeordneten Query-ID, beendet wird.

3.3.2 Rollen in NexusDS

In NexusDS lassen sich mehrere Rollen abgrenzen. Ausgehen von Abbildung 3.4 sind bereits
die Rolle des Benutzers und Extention Developer dargestellt. Die Benutzerrolle definiert den
tiblichen Anwender, der mit einer Anwendung interagiert, die NexusDS verwendet. Unter
Interaktion wird verstanden, dass der Benutzer sowohl Informationen von der Anwendung erhalt
als auch Information, wie zum Beispiel Anderungen an den Sicherheitseinstellungen, iiber die
Anwendung in NexusDS eingibt.

Die zweite Rolle des Extention Developer wurde bereits in der Einfithrung kurz angerissen. Bei
der Entwicklung einer Anfrage miissen von der Rolle alle notwendigen Operatoren entwickelt
werden, die die notwendigen Funktionen fiir die Anfrageverarbeitung realisieren. Dies gilt natiir-
lich nur, falls nicht schon entsprechende Operatoren zu Verfiigung stehen auf die zurtickgegriffen
werden konnte. Die Zusammenstellung der Anfrage, definiert den Datenfluss und die verschiede-
nen Schritte, die notwendig sind, um ein gefordertes Ergebnis zu erzeugen. Des weiteren miissen
Anfragen und Operatoren mit allen notigen Parametern und Spezifikationen versehen werden,
sodass sie korrekt arbeiten.

31

3 Nexus und NexusDS

Nicht in der Abbildung aufgefiihrte Rollen sind der Datenbesitzer und der Systemadministrator.
Ein Datenbesitzer speist Informationen in NexusDS ein, das heifst, es wird eine Quelle, zum
Beispiel ein GPS-Sensor, bereitgestellt. Der Systemadministrator erfiillt die klassische Rolle, die
aus Wartungs- und Konfigurationsaufgaben von NexusDS besteht.

3.4 Verwandte Arbeiten zu NexusDS

Neben NexusDS wurden weitere DSMS zur Verarbeitung von Datenstromen vorgestellt. Die
ersten Vorschldge beinhalteten keine verteilte Ausfithrungsumgebung, wie die tiber die NexusDS
verfiigt. Vorteil ist, dass diese Systeme Probleme wie Netzwerkverzogerungen reduzieren und
im allgemeinen Fragen der Verteilung von Verarbeitungsschritten nicht zu 16sen sind. Zu dieser
Gruppe gehoren zum Beispiel Aurora [1] und STREAM [3]. Angesprochene, zentralisierte Kon-
zepte sind bei hohem Benutzeraufkommen anfillig fiir Uberlastungen und eine Skalierbarkeit ist
nur eingeschrankt moglich. Aktuelle Konzepte, wie Borealis [7] oder StreamGlobe [38] verteilen
die Last der Anfrageverarbeitung iiber mehrere Rechenknoten, um zentrale Flaschenhilse zu
vermeiden.

NexusDS ermoglicht die individuelle Erweiterung mit neuer Funktionalitdt mit zusatzlichen
Services und Operatoren. Die Erweiterungen durch Operatoren ist nicht nur offline moglich,
sondern auch zur Laufzeit. In Borealis sind nur begrenzte Erweiterungen moglich. Zusétzliche
Operatoren miissen auf jedem Rechenknoten manuell installiert werden und kénnen nicht wie in
NexusDS zur Laufzeit dynamisch aus Repositories geladen werden. StreamGlobe ermdglicht das
Mitsenden von notwendigen Operatoren in Anfragen, die die vorinstallierten Operatoren der
Rechenknoten erweitern. Was jedoch auch kein Laden von nicht mitgelieferten oder installierten
Operatoren zur Laufzeit ermoglicht.

Das Ausnutzen von spezifischen Eigenschaften der Rechenknoten, das bereits in Abschnitt 3.2 er-
wahnt wurde, wird von keinem der zur Zeit der Erstellung der Diplomarbeit bekannten Konzepte
umgesetzt. Lediglich StreamGlobe nutzt im begrenzten Mafse die Eigenschaften unterschied-
licher Rechenknoten aus. Dazu klassifiziert es Rechenknoten in Speaker-Peers, die zusédtzliche
Query-Optimierungen durchfiihren, Thin-Peers mit geringer Leistungsfahigkeit und Thick-Peers,
die komplexere Berechnungen ausfiihren konnen. Das steht jedoch in keinem Verhiltnis zu
den umfangreichen Moglichkeiten in NexusDS, das durch gezielte Definitionen von Constraints
nahezu beliebige Eigenschaften klassifiziert und ausnutzen kann.

Zusammenfassend sind die wichtigsten Alleinstellungsmerkmale gegentiiber verwandten Arbei-
ten zu NexusDS das Ausnutzen heterogener Rechenknoten, die individuelle Erweiterbarkeit
mit neuer Funktionalitdt und das zur Laufzeit dynamische Einbinden von Operatoren.

32

Kapitel 4

Verwandte Sicherheitskonzepte

Das Kapitel stellt zur Einfithrung im ersten Abschnitt kurz die Zugriffskontrolle in relationalen
Datenbanken vor. Die darauf folgenden Abschnitte bilden den Hauptteil und besprechen bereits
vorgestellte Sicherheitskonzepte fiir DSMS.

Uberraschend zeigt sich, dass seit Beginn der Untersuchungen zu DSMS nur wenige ernsthafte
Sicherheitskonzepte beziiglich DSMS erarbeitet wurden. Mit einem der ersten Konzepte aus 2005
befasst sich Abschnitt 4.2, gefolgt von ACStream aus dem Jahre 2007, das Inhalt von Abschnitt
4.3 ist. Die aktuellste Entwicklung ist das Sicherheitskonzept FENCE, dessen Entwicklung 2008
begann und in Abschnitt 4.4 vorgestellt wird.

Abgeschlossen wird das Kapitel mit Abschnitt 4.5, dass die wichtigsten Punkte der vorgestellten
Konzepte zusammenfasst. In der Zusammenfassung wird zugleich kurz erortert, inwieweit sich
die Sicherheitskonzepte auf NexusDS {iibertragen lassen.

4.1 Zugriffskontrolle in DBMS

Um Daten strukturiert zu speichern, werden hiufig relationale Datenbanken eingesetzt und
legen Informationen in Tabellen ab, die Relationen definieren. Die Spalten der Tabellen bilden
die Attribute beziehungsweise Felder, wahrend jede Zeile ein Datensatz ist. Zur Definition,
Manipulation und Abfrage von Daten in relationalen Datenbanken ist SQL' ein weitverbreitet
Standard. Fiir die Datenabfrage steht zum Beispiel das SELECT Statement zur Auswahl, dass
Datensdtzen unter Bertiicksichtigung bestimmter Kriterien Ausgewdhlt und INSERT um neue
Datensidtze in die Datenhaltung einzuftigen. Fiir eine detaillierte Ausfithrung wird der Leser
gebeten, in der entsprechen Standardliteratur, wie [22], nachzuschlagen.

Zur Zugriffskontrolle sieht SQL die Befehle grant, um Rechte zu gewédhren, und revoke um
Rechte zu entziehen, vor. Beispiele fiir Datenbankhersteller, die Versionen ihrer DBMS mit MAC-
Modell, siehe Abschnitt 2.3.2, zur Zugriffskontrolle anbieten, sind Oracle, Ingres und Informix

'SQL ist der Nachfolger von SEQUEL, die aktuellsten Version ist in der ISO-Norm ISO/IEC 9075:2008 beschrieben

33

4 Verwandte Sicherheitskonzepte

Admin ¢ ¢ Request

| Encrypted Transport |

v v

| Control Channel |

| Session Manager |

| Authenticator | | Authorizer |

| User Abstraction layer |

| Catalog | | Admin | | QoS |

Query Processor

Optimizer Admin QoS
st 3 st
ol | ___ gl s
o c c o
2 S Queue Manager Operator Executer o 2
o < (@] c
=l |O — ol e
= T B 5 > ueue > Operator = o
2”2 | Queve | P 5 2l |8
el | £ N NG N >
== 5P| 2 > Queue l— Operator S 1o 3]
= = w e =
w %) = w

Abbildung 4.1: Generelle Sicherheitsarchitektur fiir DSMS nach Lindner und Meier [23]

[22]. Jedem Subjekt werden Nutzungsrechte fiir Operationen auf definierten Objekten eingerdumt.
Beispielsweise sind in PostgresSQL [36] eine freie Anzahl von Subjekten in Rollen zusammenge-
fasst. Rollen konnen wiederum Gruppen definieren, die ihrerseits andere Rollen als Mitglieder
enthalten. So lasst sich mit dem Befehl *’CREATE ROLE donald;”’ eine neue Rolle donald erzeugen.
Mit ’GRANT SELECT,INSERT ON geldspeicher TO donald WITH GRANT OPTION;’’ wird die Rolle
donald mit der Berechtigung ausgestattet, SELECT und INSERT auf der Tabelle geldspeicher
auszufithren und die Rechte an weitere Rollen weiterzugeben.

4.2 Secure Borealis

Eine der ersten Arbeiten, die zu Sicherheit in DSMS veroffentlicht wurde, stammt von den
Autoren Lindener und Maier [24]. Darin wird ein Konzept vorgestellt, das auf eine generische
Verwendbarkeit in unterschiedlichen DSMS ausgerichtet sein soll. Um dieses Ziel zu erreichen,
leiten die Autoren eine allgemeine Architektur fiir DSMS ab und erweitern diese um Kompo-
nenten zur Zugriffskontrolle. In einer aufsetzenden Arbeit [23], wird das Konzept fiir Borealis
realisiert und auf seine Performance gegeniiber einem ungeschiitzten System untersucht.

34

4.3 ACStream

Abbildung 4.1 stellt die von den Autoren angenommene allgemeine Architektur fiir DSMS
mit hellgrauen Komponenten dar. Die Architektur wurde von verschiedenen DSMS Konzepten
abgeleitet, unter anderem auch Aurora, einem Vorgéanger von Borealis. In der Architektur wird
zwischen administrativen Eingaben und Benutzereingaben unterschieden, wobei beide Typen von
Eingaben tiber den Control Channel in Empfang genommen werden. Der Catalog dient als Meta-
Daten Ablage, wie zum Beispiel Query-Beschreibungen. Eine Uberwachung der Systemleistung
findet mit der QsQ Komponente statt. Der Kern des Systems, der Query Processor QP, wird
durch das Admin Modul kontrolliert. Im QP befindet sich der Optimizer, der anhand von
Informationen der Scheduler und Monitor Komponente Optimierungen der Anfrage vornimmt.
Die Queues befinden sich unter der Kontrolle des Queue Manager und beziehen ihre Daten
aus dem I/O Input Channel, an den die eingehenden Datenstrome angebunden werden. Zur
Verarbeitung wird im Operator Executor die Anfrage ausgefiihrt. Final findet die Ausgabe tiber
den I/O Output Channel statt.

Die vorgeschlagene Sicherheitsarchitektur erweitert die vorhandene Architektur und kommt ohne
Modifikationen von bestehenden Komponenten aus. Die Erweiterungen sind in Abbildung 4.1
dunkelgrau hervorgehoben. Der Session Manager bindet jede Anfrage an eine Session, die einem
Subjekt zugeordnet ist. Um Subjekte korrekt zu identifizieren, wird ein Authentificator angedacht,
der tiber einen beliebigen Mechanismus, wie zum Beispiel Benutzername und Passwort, zur
Authentifikation verfiigt. Mit der Autorizer Komponente wird entschieden, ob ein Subjekt
berechtigt, ist eine Aktion auszufiihren. Zur Abbildung von Berechtigungen wird ein Modell
namens OxRBAC (owner-extendet RBAC) verwendet. Es ist dhnlich dem in Abschnitt 2.3.3
erlduterten RBAC Modell, es verfiigt lediglich {iber zusitzliche Relationen um den Besitzer von
Objekten abzubilden. Hat ein Subjekt keine Rechte an Objekte, werden diese mit dem User
Abstraction Layer versteckt. Das ist der erste Teil der Sicherheitsstrategie, der als Object Level
Security bezeichnet wird. Zweiter Teil ist die Data Level Security ist mit der SecFilter Komponente
umgesetzt, die aktiv wird, sobald eine Anfrage startet. Dieser nachgelagerte Filter sorgt dafiir,
dass Datenelemente, auf die kein Zugriff gestattet ist, vor Auslieferung eliminiert werden. Zur
Behandlung von Datenstromen, die verbunden oder aggregiert werden, wird jedes Datenelement
mit einer Markierung versehen, sodass diese auch spater noch einem Datenstrom zugeordnet
werden konnen. Sind Datenelemente aus verschiedenen Datenstromen kombiniert, folgt ebenfalls
eine Kombinierung der Markierung, sodass eine Zuordnung zu den originalen Datenstromen
moglich ist und ein nachgelagertes Filtern auch von kombinierten Datenelementen moglich
ist. Um die Informationsiibertragungen nach aufSen zu schiitzen, sind die Transportwege von
Anfragen, Steuerungsbefehlen und Datenstrome tiber einen Encrypted Transport verschliisselt.

4.3 ACStream

Ein weiteres Konzept wurde von Carminati, Ferrari und Tan in [11, 12] entwickelt, dass auf
Aurora [1] aufsetzt und auf dem Umschreiben von Anfragen basiert. In einer weiterfithrenden
Veroffentlichung wird das Konzept als ACStream [10] bezeichnet und fiir einen kommerziellen
Nachfolger von Aurora, fiir StreamBase [39], vorgestellt.

35

4 Verwandte Sicherheitskonzepte

Subjekt Streams Attribute Ausdriicke Recht GTC WTC
Offizier Position Pos,SID Position.Platoon = read - -
self.Platoon
Soldat Position Pos Pos > Target(a)—4d A avg [S(a), 11
Pos < Target(a)+6 E(a)]
Doktor Health, Heart, Position.SID = Health.SID A read [S(a), -
Position SID Pos > Target(a)—4d A E(@)]

Pos < Target(a)+6

Tabelle 4.1: Beispiele fiir Zugriffsrichtlinien eines militdrischen Beispielszenario in ACStream,
entnommen aus [12]

Zur Motivation wurde als Anwendungsszenario die Uberwachung von militirischen Operationen
gewdhlt. Fiir Soldaten werden zwei Datenstromschemas definiert, die Informationen zur Posi-
tion mit Position (TS, SID, Pos, Platoon) und der Gesundheitsstatus mit Health(TS, SID,
Platoon, Heart, BPressure). Jedes Datenelement eines Datenstromes hat die in Klammern
aufgefiihrten Attribute. Im Beispielszenario ein Zeitstempel (TS), eine eindeutige Identifikations-
nummer fiir jeden Soldaten (SID) und fiir die Kampfgruppe (Platton), die Position (POS) und zur
Gesundheitsiiberwachung zuséatzlich Herzfrequenz (Heart) und Blutdruck (BPressure).

Zugriffskontrollen konnen fiir Attribute, Datenelemente und Datenstréme vergeben werden.
Tabelle 4.1 zeigt drei Beispiele. Beispielsweise werden fiir das Subjekt Offizier Leserechte, read,
auf dem Datenstrom Position fiir die Attribute Pos und SID vergeben. Anhand von Ausdriicken
wird eingeschrénkt, fiir welche Datenelemente die Rechte angewendet werden. Zugriffe auf
Datenelemente fiir die kein expliziter Zugriff gestattet wurde sind grundsitzlich nach dem
least-privilege Prinzip verboten. Im Beispiel kann der Offizier nur Datenelemente lesen, die zu
Soldaten gehoren, die seinem Kommando unterstehen.

Ferner erlaubt das Konzept die Berticksichtigung von temporalen Beschrinkungen. Temporale
Beschrankungen ermdglichen, den Zugriff auf Datenelemente auf ein Zeitfenster zu limitieren.
Moglich ist sowohl ein generelles Fenster mit Obergrenze und Untergrenze General Time Constraint
(GTQ), als auch ein Fenster das in GrofSe und Schrittweite beschrankt wird, bezeichnet als Window
Time Constraint (WNTC). Anwendungsbeispiele sind ebenfalls in Tabelle 4.1 dargestellt. So konnen
die Subjekte Soldat und Doktor auf Datenelemente zugreifen, die sich auf Soldaten beziehen, die in
einem bestimmten Bereich um ein Ziel a befinden. Das Beispiel fiir das Subjekt Soldat autorisiert
die Durchschnittsfunktion avg in einem definierten Zeitintervall GTC relativ zu einem Ziel a mit
Startzeitpunkt S(a) und Endzeitpunkt E(a). Mit der Richtlinie darf die Durchschnittsfunktion tiber
den Tupel eines Fenster von der Grofie und Schrittweite von einer Stunde ausgefiihrt werden,
definiert als WTC. Sehr dhnlich verhilt es sich mit dem Beispiel des Subjektes Doktor. Hier ist das
Lesen von Datenelemente auf einen Zeitintervall begrenzt, der im Beispiel die Dienstzeit eines
Zieles a umfasst.

Realisiert wird das Konzept durch Umschreiben von Anfragen im Einklang mit den definierten
Zugriffsrichtlinien. Abbildung 4.2 stellt die Architektur auf Basis des kommerziellen Ablegers

36

4.4 FENCE

" StreamBase
Policy Checker e —

A
Umgeschriebene I N (_g Original i
Anfragen Anfragen i~
StreamBase g v ’4
Server
Secure Secure Secure
Read Join Aggregate

Abbildung 4.2: Architektur von ACStream in StreamBase in Anlehnung an [10]

StreamBase vor. Uber die StreamBase Client GUI werden Anfragen ohne spezielle Beriicksichti-
gung von Zugriffskontrollen erstellt. Die Anfragen in StreamBase bestehen aus einem gerichteten
Graphen der Operatoren, in Form von Boxen, kreisfrei mit Kanten fiir den gewiinschten Daten-
fluss anordnet. Bevor ein Benutzer erstmals Anfragen in das System einstellen kann, muss dieser
sich in ACStream als Subjekt registrieren, beziehungsweise Authentifizieren. Die originalen
Anfragen, die mit der reguldren GUI erstellt wurden, werden vor Ausfiithrung von der Monitor
Komponente tiberarbeitet. Dazu wird jede Box der Anfrage durch den Policy Checker unter
Zuhilfenahme der Zugriffsrichtlinien, wie in Tabelle 4.1 gezeigt, aus der zentralen SysAuth
Komponente gepriift. Sind Einschrankungen der Daten notwendig, kann die Anfrage mit zu-
satzlichen Sicherheitsoperatoren versehen werden. Die notwendigen Sicherheitsoperatoren sind
in drei Klassen eingeteilt. Secure Read Operatoren filtern Datenelemente und Attribute, Secure
Join Operatoren ermoglichen Daten zu filtern, die aus mehreren Stromen zusammengesetzt
sind und Secure Agregate Operatoren kontrollieren Aggregatsfunktionen. Ist die Umschreibung
der Anfrage abgeschlossen, kann die Anfrage auf einem StreamBase Server zur Ausfithrung
gebracht werden.

4.4 FENCE

Der FENCE Ansatz basiert auf der Einflechtung von Zugriffsrichtlinien in die Datenstrome auf
Basis von Interpunktionen. Die Idee wurde erstmalig von Nehme, Rundensteiner und Bertino in
[33] vorgestellt. Es folgte 2009 StreamShield, dass das Konzept verfeinerte und 2010 das Framework
FENCE [32]. Das Framework zielt auf zentralisierte DSMS ab, die die {iiblichen Select, Projektion
und Join Operationen ausfiihren.

Unter Sicherheits Interpunktion beziehungsweise Security Punctations (SP), wird eine Methode
verstanden, die Zugriffsrichtlinien direkt zwischen die Datenelemente in Datenstrome integriert.
Die Abbildung 4.3 zeigt die Einbettung von Interpunktionen in den Datenstrom und aus welchen
Komponenten eine Interpunktion aufgebaut ist. Eine SP kann nicht nur Richtlinien fiir Datenele-
mente definieren, sondern ebenso Richtlinien fiir Anfragen. Zur Unterscheidung definiert die
erste Komponente den Typ, die die Interpunktion entweder als Data Security Predicates (DSP)
oder Query Sicherheit Pridikate (QSP) ausweist. Die zweite Komponente der Interpunktion, die

37

4 Verwandte Sicherheitskonzepte

Sicherheits-Interpunktion 1 (SP,)

TUpe|A M Typ || Daten Beschreibung || Zugriff || Signatur Zeit- Durchsetzung | [M Tupe|3 M TUpe'c N SPz 3y SPa M TUpeID
DSP/QSP || Stréme, Tupel, Attribute Richtlinie +/- Stempel 1/D

T

Abbildung 4.3: Komponenten und Einbettung der Sicherheits-Interpunktion in FENCE [32]

Daten Beschreibung, definiert, auf welche Objekte die Richtlinie anzuwenden ist. Objekte kon-
nen Datenstrome, Datenelemente oder Attribute sein. Unter Zugriff wird das Zugriffsmodell,
wie zum Beispiel RBAC und die betroffenen Subjekte definiert. Eine Signatur gibt an, ob die
Richtlinie angewendet wird, ”+”, oder mit ”-” wieder zuriickgenommen wird. Der Zeitstempel
speichert, wann die SP erzeugt wurde und in der letzten Komponente wird die Durchsetzung
definiert. Die Durchsetzung legt fest, wie streng die Richtlinie angewendet wird. Mit Immediate (I)
kommt es zur sofortigen Anwendung der SP auf alle Datenelemente, auch auf die, die noch mit
einer anderen Richtlinie gesendet wurden und sich noch in der Verarbeitung befinden. Deferred
(D) wendet die Richtlinie nur auf der SP folgenden Datenelementen an.

Umgesetzt wird das Interpunktionskonzept mit der in Abbildung 4.4 abstrakt dargestellten
Architektur. FENCE sieht drei Rollen vor, die erste Rolle kommt dem Daten Provider zu, der Da-
tenquellen bereitstellt. Beispielsweise ein Benutzer, der die Positionsdaten eines GPS-Empfdnger
tiir Orts-bezogene Dienste einspeist. Betritt der Trager des GPS einen Bereich, in dem er den
Zugriff auf seine Position beschranken will, flechtet er eine SP vom Typ DSP in den Datenstrom
ein, dass die Einschrankung spezifiziert. Ziel des Datenstroms ist der Kern des Sicherheitsframe-
work, die Security-Aware Continuous Query Processing (SA-CQP) Komponente. Die zweite
Rolle ist dem Anfrage Ersteller zugeordnet, der den Kontext in Form einer Anfrage definiert.
Die Anfrage wird ebenfalls in Form eines Datenstromes in den Security Analyzer iibertragen.
Die letzte Rolle, der DSMS Administrator stellt sicher, dass die in der Anfrage definierten Richt-
linien korrekt umgesetzt werden. Ergebnis sind Zugriffsrichtlinien fiir Anfragen, vom Typ QPS,
die aus dem Security Analyzer in das SA-CQP tibertragen werden. Im SA-CQP werden unter
Berticksichtigung der gesammelten Zugriffsrichtlinien die Operationen auf die Datenstrome
angewendet.

Zur Anwendung der Zugriffsrichtlinien in den Anfragen erortert FENCE verschiedene Ansitze.
Zunidchst wird ein naiver Ansatz betrachtet, der die Datenverarbeitung und die Anwendung
der Zugriffsrichtlinien getrennt ausfiihrt. Diese Strategie bestehen aus je einem vor- und einem
nachgeschalteten Filter. Nachteil ist, dass Datenelemente, die am Ende der Anfrage ausgefiltert
werden umsonst verarbeitet wurden. Vorteil ist die einfache Integration, die die bestehende
Architektur der Anfrageverarbeitung unberiihrt ldsst. Zweite Strategie wird als Security Filter
Approach (SFA) bezeichnet und wendet die Richtlinie mit einem von den Autoren entwickelten
SecurityShield Plus (SS1) Operator [33] an. Der Operator filtert gemaf der Zugriffsrichtlinien
Datenelemente aus, um sie vor unberechtigtem Zugriff zu schiitzen. Vorteil ist, dass mit den
direkt physisch in die Anfrage eingebrachten Operatoren, die Datenelemente zuverldssig und
ohne hohe Performanceverluste ausgefiltert werden. Es sind jedoch unter Umstdnden grofsere
Anderungen am DSMS notwendig um die korrekte Einbringung der Operatoren sicherzustellen.
Die letzte Strategie ist ein Umschreiben der Anfrage, bezeichnet als Query Rewrite Approach

38

4.5 Zusammenfassung und Anwendbarkeit in NexusDS

Daten

Provider DSMS

Security Prg(;‘iigtles Anfrage
Predicates Ergebnisse
—

Query
Security
Predicates

Anfrage
Ersteller

Security
Analyzer

D Dataelement Q Data Security Predicates “]]]]] Query Security Predicates

Abbildung 4.4: Abstrakte Architektur von FENCE mit den berticksichtigen Rollen [32]

(QRA). Der Kern ist eine speziell angepasste Komponente zur Umschreibung der Anfragen,
die je nach Zugriffsrichtlinien einen sicheren Anfragegraph erzeugt. Vorteilhaft ist, dass zur
Umsetzung auf gewohnliche Select Operatoren zuriickgegriffen werden kann. Nachteil ist, dass
bei jeder Verdnderung der Richtlinien die Anfrage gegebenenfalls neu angepasst werden muss.

4.5 Zusammenfassung und Anwendbarkeit in NexusDS

Die Umsetzung von Zugriffskontrollen in DBMS basiert in der Regel auf einer fest definierten
Menge von Bedingungen, die einmalig tiberpriift werden, sobald ein Subjekt eine Operation auf
Daten ausfiihren will. Ist das Subjekt authentifiziert und verfiigt tiber die notwendigen Rechte
fiir die Operation der Anfrage, wird die Anfrage ausgefiihrt. Im Fall von Datenstromen muss die
Anfrage nicht nur zu Beginn kontrolliert werden, sondern tiber die gesamte Ausfithrungszeit
der Anfrage. Andert sich wihrend der Ausfiihrungszeit die Berechtigung fiir Subjekte, muss
die Verarbeitung wahrend der Ausfiihrung angepasst werden. Dieser markante Unterschied
erschwert die Einsetzbarkeit der DBMS Konzepte in einem DSMS und begriindet eine gesonderte
Untersuchung von DSMS nach Sicherheitskonzepten [24, 11, 33].

Im Konzept Secure Borealis wird der Fokus auf einzelne Rechenknoten gelegt und keine ver-
teilte Ausfiihrung betrachtet. Kern des Konzeptes ist es, nach Verarbeitung einer Anfrage alle
Datenelemente der Datenstrome zur Laufzeit zu filtern, die nicht die gesetzten Berechtigun-
gen erfiillen. Unter Umstdnden wird zur Erzeugung von Ergebnissen sehr viel Rechenleistung
durch teurere Operationen verschwendet, die spéter eliminiert werden. Um Datenstréme zu
identifizieren, versieht die Architektur jedes Datenelement mit einem Identifikator. Sollten ver-
schiedene Datenstrome aggregiert werden, kann durch die Beibehaltung der Markierungen der
urspriinglichen Datenstrome auch nach deren Vereinigung fiir jedes Datenelement entschieden

39

4 Verwandte Sicherheitskonzepte

werden, ob es gefiltert werden muss oder nicht. Diese Strategie kann sich als nachteilig erweisen,
wenn einzelne Datenelemente mit mehrfachen Markierungen versehen werden miissen, unter
Umsténden folgt daraus ein grofier Datentiberhang. Fiir NexusDS ist das vorgestellte Konzept
nur begrenzt geeignet. Zwar konnten die Ergebnisse vor Auslieferung an Senken in Abhédngigkeit
der Zugriffsrichtlinien gefiltert werden, aber der Leistungsverlust verursacht durch unnétige
Berechnungen ist nicht wiinschenswert.

ACStream hingegen schreibt Anfragen unter Beriicksichtigung der gegebenen Bedingungen um
und setzt Secure Read, Secure Join und Secure Aggregate Operatoren ein um bereits vor der Verarbei-
tung die Datenelemente vorzufiltern. Daher leidet der Ansatz nicht wie der vorherige unter einer
Verschwendung von Rechenleistung. Der Vorgang zum Umschreiben berticksichtigt friithzeitig,
dass gewisse Berechnungen verworfen werden miissen. Voraussetzung ist, dass die Semantik
der Operatoren klar definiert ist, sodass algorithmisch ermittelt werden kann, welche Anderun-
gen der Anfrage notwendig sind. In NexusDS ist eine definierte Semantik der Operatoren nur
schwierig zu gewédhrleisten. Die Moglichkeit Operatoren individuell zu entwickeln erfordert eine
Beschreibung der Semantik, sodass fiir jede Anfrage eine Losung algorithmisch berechenbar
ist. Statten die Entwickler die Operatoren mit Metadaten beziiglich der Semantik aus, miisste
die Korrektheit jeder Angabe vor Einsatz gepriift werden, was in einem offenen System ein
erheblichen Aufwand bedeuten wiirde. Hervorstechend im Konzept ist die Einfiihrung der tem-
poralen Beschrankungen, dass Operationen auf einen Intervall von Datenelementen beschranken
kann. Soll die gleiche Fahigkeit im Sicherheitskonzept fiir NexusDS ermoglicht werden, muss
sichergestellt sein, dass die individuell entwickelten Operator-Boxen, siehe Abschnitt 3.2, in
NexusDS keine eigene Datenhaltung aufbauen und die Sicherheitseinstellung zum Intervall
aushebeln.

Das Interpunktionskonzept in FENCE zeichnet sich dadurch aus, dass es sich direkt in die
Datenstrome integriert, und stellt den homogensten und flexibelsten Ansatz dar. Die Flexibilitat
entsteht aus der direkten Integration von Richtlinien in Datenstrome, was eine dynamische
Reaktion auf verdnderte Zugriffsrichtlinien moglich macht. Ebenso vermeidet die Interpunktion
einen unnotigen Dateniiberhang durch Zusatzinformation in Datenelementen, wie dies im
Konzept von Lindener und Meier der Fall ist. Interpunktion ist ein vielversprechender Ansatz,
der sich zur nahtlosen Integration von Zugriffsrichtlinien auch fiir NexusDS eignet.

Nach Vorstellung der Konzepte und Bezugnahme auf NexusDS zeigt sich, dass allen eine
Betrachtung der Auswirkungen einer verteilten Ausfithrung, insbesondere auf heterogenen
Rechenknoten, fehlt. Die Ermittlung moglicher Liicken der Zugriffskontrollen, die durch eine
Verteilung auftreten konnen, wurde ebenso wenig betrachtet. Weiter fehlt die Moglichkeit,
sensible Daten in verschiedenen Detailstufen zu filtern. So konnen zum Beispiel Positionsdaten
lediglich verarbeitet oder nicht verarbeitet werden, eine Anonymisierung oder Verschleierung
wird nicht in Erwdgung bezogen. Damit ist klar, dass kein vorhandenes Sicherheitskonzept
ohne Weiteres auf NexusDS {iibertragen werden kann und eine weiterfithrende Untersuchung
notwendig ist.

40

Kapitel 5

Anforderungen

Bevor ein Sicherheitskonzept fiir NexusDS entworfen werden kann, muss klar sein, welche Anfor-
derungen das Sicherheitskonzept erfiillen soll. Dies soll in erster Linie eine Zugriffskontrolle fiir
in NexusDS verarbeitete Daten sein. Die Zugriffskontrolle soll den Datenzugriff nicht nur verbie-
ten oder erlauben, sondern eine feingranulare Zugriffssteuerung mit gezielter Anonymisierung
und Verschleierung von Daten realisieren. Nicht betrachtet werden Anforderungen um NexusDS
vor Angriffen zu schiitzen. Zu Angriffen zdhlt zum Beispiel das Ausnutzen von Buffer-Overflows
oder Social Engineering. Zum Thema Angriffe findet der interessierte Leser einen guten Einstieg
in [16].

Der erste Teil von Anforderungen wird in Abschnitt 5.1 erhoben, indem Anwendungssze-
narien vorgestellt und analysiert werden. Die Analyse besteht aus einer Untersuchung der
Anwendungsszenarien anhand der in Abschnitt 2.1 vorgestellten Schutzziele, wie zum Beispiel
Authentizitit und Informationsvertraulichkeit. Die Schutzziele definieren wichtige Eigenschaften
eines Sicherheitskonzeptes, die notwendig sind, um eine zuverldssige Zugriffskontrolle fiir Da-
ten sicherzustellen. Die Abarbeitung der Schutzziele gewahrleistet, dass die Untersuchung der
Anwendungsszenarien alle wichtigen Aspekte einer Zugriffskontrolle beriicksichtigt.

Nachdem Anforderungen aus verschiedenen Anwendungsszenarien erhoben wurden, adressiert
ein zweiter Schritt die technischen Aspekte des zu entwickelnden Sicherheitskonzeptes. Abschnitt
5.2 betrachtet und analysiert die Arbeitsweise und die besonderen Eigenschaften von NexusDS.
Die daraus gewonnenen Anforderungen definieren Bedingungen, die erfiillt werden miissen, um
die von den Anwendungsszenarien aufgestellten Anforderungen technisch in NexusDS umsetzen
zu konnen.

Um eine Deckung zwischen Anforderungen aus den Anwendungsszenarien und den Anfor-
derungen aus den technischen Eigenschaften von NexusDS sicherzustellen, wird in der Zu-
sammenfassung der erhobenen Anforderungen in Abschnitt 5.3 wieder auf die Schutzziele
zuriickgegriffen.

41

5 Anforderungen

5.1 Anforderungen aus Anwendungsszenarien

Der vorliegende Unterabschnitt stellt drei Anwendungsszenarien mit jeweils unterschiedlichem
Fokus vor. Jedes Szenario wird zuerst aus der Perspektive der Anwendung erldutert. Das
beinhaltet, wie die Anwendung aussieht, welche Funktionen realisiert werden und welche
Erwartung die Nutzer, beziehungsweise Entwickler, an das Verhalten der Anwendung stellen.
In der Beschreibung werden besonders relevante Bezeichner hervorgehoben und als Subjekte
oder Objekte identifiziert. Zur Erinnerung, als Subjekt wird bezeichnet, wer Aktionen in einer
Anwendung anstofst oder durchfiihrt. Das kann zum Beispiel ein Benutzer sein oder ein Prozess
oder Service, der im Auftrag eines Benutzer handelt. Werden Daten adressiert, wie zum Beispiel
ein Datenstrom von Bildern einer Kamera oder eine Liste von Subjekten, wird von einem Objekt
gesprochen.

Gefolgt wird die Beschreibung der Anwendungsszenarien von der Erhebung der Anforderungen.
Fiir jedes Schutzziel wird das beschriebene Anwendungsszenario nach Anforderungen unter-
sucht, die den Eigenschaften des Schutzzieles entsprechen. Daraus ergibt sich eine Menge von
Anforderungen, die nach Schutzzielen klassifiziert sind und den Schutzbedarf der einzelnen
Anforderungsszenarien abbilden.

5.1.1 Bodrsenkurse von SuperQuotes

Die fiktive Firma SuperQuotes bietet einen Datendienst fiir Borsenkurse (Objekte) an. Den
Nutzern dieses Dienstes werden Lizenzen verkauft, deren Giiltigkeit an ein definiertes Land
gebunden ist. Das bedeutet es ist nicht gestattet, die Daten in anderen Landern als Deutschland
zu verarbeiten. Die vergebene Lizenz an den Kunden (Subjekte) ist nicht kommerziell. Es diirfen
weder die Daten noch die Ergebnisse aus deren Verarbeitung weiterverkauft, verdffentlicht oder
an Dritte weitergegeben werden.

Der Schutzbedarf wird durch die Erfiillung der ersten vier Schutzziele gewéahrleistet, das Schutz-
ziel Anonymisierung spielt in diesem Szenario keine Rolle. Authentizitit von Subjekten und
Objekten ist notwendig um Kunden und Datenlieferant korrekt zu identifizieren. Es sollen nur
zahlende Kunden beliefert werden und der Kunde mochte sich sicher sein, die korrekten und
authentischen Daten zu beziehen. Datenintegritit stellt sicher, dass Borsenkurse vertrauenswiir-
dig sind und nicht von dritter Stelle manipuliert wurden. Mit Informationsvertraulichkeit wird
sichergestellt, dass nur authentifizierte Kunden die angebotenen Borsenkurse lesen kénnen. So
soll ein Abzweigen der Daten an Dritte, die keine Lizenz besitzen, unterbunden werden. Das
Schutzziel muss ebenfalls das Lesen oder Verarbeiten der Daten auf Rechenknoten aufierhalb von
Deutschland verhindern. Verfiigbarkeit spielt fiir viele Borsenanwendungen eine wichtige Rolle.
Der Service muss zu jeder Zeit verfiigbar sein und tiber eine ausreichende Leistungsfahigkeit
verfiigen, sodass auch in Zeiten starker Volatilitdt der Miarkte eine zuverldssige Ausfiihrung der
Anfragen sichergestellt ist. Die Verbindlichkeit von Aktionen ermoglicht SuperQuotes, illegale
Nutzung der Daten aufzudecken und verantwortliche Benutzer zu identifizieren. Voraussetzung
zur Erfiillung der verschiedenen Ziele ist, dass Subjekte und Objekte mit Bedingungen versehen
werden, die die erlaubten Aktionen definieren.

42

5.1 Anforderungen aus Anwendungsszenarien

5.1.2 Orts-bezogener Dienst Squebber

Mit dem fiktiven Dienst Squebber, fiir Smartphones mit GPS, konnen Benutzer (Subjekt) virtu-
elle Markierungen an Orten (Objekte) hinterlassen. Eine virtuelle Markierung (Objekt) kann
beliebigen Inhalt tragen, zum Beispiel eine Textnachricht (Objekt) oder eine beliebig andere
Orts-bezogene Funktionalitdt (Objekt/Subjekt). Solche Orts-bezogenen Funktionen kénnen auch
von dritten Diensten, wie zum Beispiel Facebook oder Google Maps bereitgestellt werden. Je-
der Benutzer von Squebber hat ein Profil in dem verschiedene personliche Daten (Objekte)
gespeichert sind, zum Beispiel Lieblingsfilme oder Beziehungsstatus.

Benutzer Tom hat heute Geburtstag und eine Favoritenliste (Objekt) von Orten, die von seinen
Freunden (Subjekte) taglich besucht werden. Tom will eine spontane Geburtstagsfeier organi-
sieren und hinterldsst an verschiedenen Orten aus der Favoritenliste virtuelle Markierungen.
Die virtuellen Markierungen enthalten Einladungen (Objekt) fiir seine Geburtstagsfeier. Die
Einladung wird automatisch auf dem Smartphone eingeblendet, wenn einer seiner Freude bei
Squebber den Ort passiert. Tom ist ein geselliger Mensch und hinterlédsst die Einladung nicht nur
fiir Freunde, sondern auch fiir weitere Benutzer, die in ihrem Profil den gleichen Lieblingsfilm
eingetragen haben. Passiert ein Squebber Mitglied einen der Orte, wird ein Abgleich der per-
sonlichen Daten durchgefiihrt und ein positives oder negatives Ergebnis entscheidet tiber die
Anzeige der Einladung.

Speist ein Benutzer permanent seine Positionsinformation (Objekt) ein, kann er durch Freunde
zu einem spontanen Treffen eingeladen werden. Zur Vereinfachung von spontanen Treffen
berechnet der Dienst einen optimalen Treffpunkt und eine optimale Route fiir alle eingeladenen
Benutzer. Die berechnete Route wird danach mit Hilfe von Google Maps visualisiert, sodass der
Benutzer sicher zum Treffpunkt geleitet werden kann. Die Positionsdaten kénnen aber auch von
dritten Diensten, wie Facebook, benutzt werden. Zur Kontrolle der personlichen Daten kann
die Einspeisung der Positionsinformation in unterschiedlicherweise eingeschrankt werden. Die
Verfligbarkeit kann auf bestimmte Zeitintervalle und bestimmte Benutzergruppen beschrankt
werden. Zusétzlich kann der Detailgrad der Positionsinformation je nach Empfanger eingestellt
werden, sodass zum Beispiel Freunde eine genaue Position und Arbeitskollegen (Subjekte) nur
den Landkreis erfahren, in dem sich der Benutzer befindet. Alle personlichen Daten, die in
Squebber hinterlegt sind, konnen auch mit Einstellungen zur Privatsphire versehen werden. Die
Einstellungen konnen zu jeder Zeit direkt vom Smartphone aus verandert werden.

Dieses Szenario beansprucht einen hoheren Schutzbedarf als das vorhergehende und erfordert
die Beriicksichtigung aller Schutzziele. Wie im vorherigen Szenario wird ebenso eine Vergabe von
Bedingungen zum Datenzugriff an Subjekt und Objekte vorausgesetzt. Um die verschiedenen
Subjekte zu identifizieren und nach ihrer Berechtigungsstufe zu behandeln, ist das Sicherstellen
von Authentizitit notwendig. Nur so konnen sensible personliche Informationen fehlerfrei und
ohne Verwechslungen zugeordnet werden. Datenintegritit schiitzt die Subjekte vor manipu-
lierten Objekten und Informationsvertraulichkeit ist unerlédsslich, um die personlichen Daten
vor unbefugtem Zugriff zu schiitzen. Die Verfiigbarkeit des Services kann Einfluss auf die
Beliebtheit nehmen und so sollten nach Moglichkeit groflere Unzuldnglichkeiten vermieden
werden. Gegebenenfalls will der Service Verstofie gegen eine Benutzerordnung ahnden, dazu

43

5 Anforderungen

ist eine Verbindlichkeit notig, um zum Beispiel einen Ausschluss von Nutzern hinreichend
zu begriinden. Entscheidend ist im Szenario die Anonymisierung zum Schutz personlicher
Daten. Es darf beim Abgleich der personlichen Profile und im Allgemeinen bei allen Funktionen
des Dienstes zu keiner Verletzung der Privatsphire der Benutzer kommen. Zusétzlich sollen
die Positionsdaten in Abhéngigkeit des abrufenden Benutzers verschleiert werden, indem zum
Beispiel der Detailgrad der Positionsinformation in Abhédngigkeit des Datenempfingers reduziert
wird. Mit der Moglichkeit dritte Dienste, wie zum Beispiel Facebook einzubinden, muss bei den
genannten Anforderungen bedacht werden, dass die Anonymisierung, auch bei der Interaktion
mit dritten Diensten, zuverldssig umgesetzt wird.

5.1.3 Fehlerszenario in intelligenten Fabriken

Der fiktive Konzern EM (Subjekt) produziert Elektroautos in einer Kette intelligenter Fabriken
[25]. Nicht alle Fabriken gehoren dem Konzern selbst, viele Zwischenschritte der Produktion
werden von Zulieferer (Subjekte) in konzernfremden intelligenten Fabriken ausgefiihrt. Um eine
umfassende Uberwachung der Produktion in Echtzeit durchzufiihren, miissen Daten (Objekte)
aus verschiedensten Quellen zusammengefiihrt werden. Quellen fiir die Daten sind die verschie-
denen Fabriken der unterschiedlicher Konzerne (Subjekte), in denen Mitarbeiter (Subjekte) in
Organisationseinheiten arbeiten und Prozessen zugeordnet sein konnen.

Zur effektiven Uberwachung der gesamten Produktionskette ist es erforderlich, die genierten
Daten zeitnah zusammenzufiihren und auszuwerten. Die integrierte Auswertung von Daten aus
unterschiedlichen Konzernen, Organisationseinheiten, Prozessen und verschiedenen Mitarbeitern,
miissen Kompetenzen beachtet und geheime Daten geschiitzt werden. Beispielsweise haben
Abteilungsleiter erweiterte Kompetenzen fiir die Verarbeitung der Daten aus ihrer Abteilung
aber nur einen beschrankten oder gar kein Zugriff auf die Daten einer Organisationseinheit eines
konzernfremden Zulieferers. Zur Abgrenzung des Datenzugriffs werden Bedingungen an Daten
gebunden, die definieren wer und in welchem Detailgrad zugreifen darf. Bedingungen sollen auch
an Subjekte gebunden werden koénnen, die definieren, welche Zugriffe dem jeweiligen Subjekt
gestattet sind. In Konzernen mit einer hohen Anzahl an Mitarbeitern ist es wiinschenswert, dass
Bedingungen nicht nur an einzelne Subjekte, sondern an ganze Organisationseinheiten gebunden
werden konnen, in denen eine Menge an Subjekten zusammengefasst werden.

In einem Hochtechnologiebereich, wie im vorliegenden Fall, wollen die verschiedenen Zulieferer
ihr technisches Wissen schiitzen. Deshalb diirfen bestimmte Daten nur fiir ausgesuchte Organi-
sationseinheiten verfligbar sein. Fiir die Fehlersuche, die {iber mehrere Organisationseinheiten
hinweg durchgefiihrt wird, miissen Informationen in Echtzeit nach definierten Regeln verschleiert
werden, sodass eine Fehlersuche moglich ist, aber Betriebsgeheimnisse geschiitzt sind. Besonders
sensible Daten diirfen nur von ausgewéahlten konzerneigenen Rechenknoten verarbeitet werden
und die lokale Infrastruktur nicht verlassen. Um ein Einhalten von Vertragen zu gewihrleisten,
sollen alle Aktionen der Subjekte im System protokolliert werden.

44

5.2 Anforderungen aus NexusDS

Auch in diesem Szenario miissen fiir den Schutzbedarf alle Schutzziele betrachtet werden und
eine Zuordnung von Zugriffsbedingungen sichergestellt werden. Authentizitit muss erfiillt wer-
den, sodass alle Subjekte, die das System benutzten sicher identifiziert werden und der korrekten
Organisationseinheit und Prozessen zugeordnet werden konnen. Das gilt auch fiir Objekte, die
ebenfalls zweifelsfrei identifiziert werden miissen. Die Datenintegritit sorgt dafiir, dass Objek-
te nur dann gedndert werden, wenn die entsprechende Organisationseinheit oder ein Subjekt
tatsdchlich eine entsprechende Zustandigkeit besitzt. Informationsvertraulichkeit gewéhrleistet
den Schutz der Betriebsgeheimnisse und von Informationen, die nur ausgewdhlten Subjekten
oder Organisationsgruppen vorenthalten sind. In einer Produktionskette von mehreren miteinan-
der verzahnten Fabriken muss die Verfiigbarkeit jederzeit sichergestellt sein. Der Ausfall von
einzelnen Gliedern in der Produktionskette hat Auswirkungen auf die effektive Uberwachung
der gesamten Produktionskette. Zur Rechtssicherheit der verschiedenen Unternehmungen sollte
eine nachvollziehbare Verbindlichkeit fiir alle Aktionen bestehen. Der Anonymisierung kommt
in diesem Fall weniger ein Verbergen von personlichen Daten zu, sondern es soll eine gezielte
Verschleierung und Vereinfachung von Daten geleistet werden. Dabei muss die Reduktion des De-
tailgrades der Information gerade so stark sein, dass genug Aussagekraft fiir tiber Zugriffsgrenzen
hinwegreichende Aufgaben wie die Suche nach Produktionsfehlern erhalten bleibt. Gleichzeitig
aber interne Informationen, insbesondere Betriebsgeheimnisse ausreichend, geschiitzt werden.
Das erfordert die Moglichkeit, dass individuelle Transformationen zur Datenverschleierung und
Vereinfachung definiert werden konnen.

5.2 Anforderungen aus NexusDS

Nachdem im vorhergehenden Kapitel Anforderungen erhoben wurden, die sich auf die Anwen-
dungsseite von NexusDS beziehen, miissen noch die Anforderungen erhoben werde, die sich aus
der technischen Beschaffenheit von NexusDS ergeben. Aus den Anforderungen der technischen
Seite werden im weiteren Verlauf der Diplomarbeit konkrete Funktionen und Komponenten
abgeleitet, zum Beispiel Funktionen zur gezielten Unterbindung und Zulassung von Zugriffen
auf geschiitzte Informationen oder Komponenten zur Authentifizierung von Subjekten. Vorerst
werden jedoch nur Anforderungen gewonnen, ohne auf die technische Realisierung einzugehen.
Die Gewinnung der Anforderungen setzt auf den Abschnitt 3.2 auf. Dieser Abschnitt hat die
technischen Eigenschaften und Besonderheiten, wie zum Beispiel das Operator-Modell von
NexusDS, bereits ausfiihrlich erldutert.

Die Erhebung ist in zwei Teilen gegliedert. Der erste Teil untersucht jede Basis-Rolle von NexusDS
auf rollenspezifische Anforderungen. Jedes Subjekt das NexusDS benutzt, kann nach Verhalten in
eine der Basis-Rollen eingeteilt werden. Der zweite Teil untersucht NexusDS nach Anforderungen,
die sich aus der Architektur und den besonderen technischen Eigenschaften von NexusDS
ergeben.

45

5 Anforderungen

5.2.1 Basisrollen von NexusDS

Mit einer gezielten Erhebung von Anforderungen aus den Basis-Rollen in NexusDS, finden die
unterschiedlichen Bedtirfnisse von Benutzern im Sicherheitskonzept Beachtung. Wie bereits in
Kapitel 2 ausgefiihrt, spielt die Erfiillung der Benutzerbediirfnisse eine bedeutende Rolle, um die
Nutzerakzeptanz von NexusDS zu erhchen.

Benutzer: Die Rolle des Benutzers ist direkt an die eingesetzte Anwendung gebunden. Er er-

wartet eine sichere und zuverlédssige Ausfiihrung seiner Anwendung, die eine zugesicherte
Servicequalitdt erfiillt. Sicherheitseinstellungen, die der Benutzer setzt, sollen zuverladssig
umgesetzt werden und ohne Verzogerung in Kraft treten. Nach Moglichkeit erwartet der
Benutzer auflerdem eine benutzerfreundliche Darreichung der Sicherheitseinstellungen, die
sein technisches Verstdndnis fiir NexusDS nicht iibersteigt.

Datenbesitzer: Werden Daten in NexusDS bereitgestellt, will der Besitzer die Verwendung der

Daten kontrollieren. Grundlage zur Umsetzung ist die Moglichkeit, jeder Datenquelle
Besitzer und Bedingungen fiir den Zugriff zuordnen zu kénnen. Die Zuordnung muss
zuverldssig und eindeutig sein, sodass die Bedingungen bei der Verarbeitung der Daten
korrekt beachtet werden konnen. Bei der Gestaltung der Bedingungen sollte der Besitzer
die Moglichkeit haben, den erlaubten Zugriff in der Granularitét flexibel bestimmen zu
konnen. Beispielsweise den Detailgrad von Positionsinformationen oder den Zugriff auf
eine Teilmenge von Attributen eingespeister Datenelementen zu beschranken. Die Definition
soll sowohl fiir strukturierte als auch fiir unstrukturierte Daten moglich sein.

Extension Developer: Entwickler von neuer Funktionalitit und Anfragen fiir NexusDS wiin-

schen Bedingungen zur Verwendung und Ausfithrung der von ihnen bereitgestellten
Objekte vergeben. Beispielsweise will der Entwickler eines Input-Manager diesen nur fiir
ausgewdhlte Benutzer zu Verfiigung stellen, die eine Lizenzgebiihr entrichten. Die Gestal-
tung der Bedingungen muss flexibel genug sein, dass Entwickler in der Freiheit individuelle
neue Funktionen in NexusDS einzubringen nicht eingeschrankt werden. Ein flexibles Modell
erleichtert auflerdem bereits entwickelte Regelsysteme von vorhandene Anwendungsland-
schaften zu integrieren und die Migration bereits bestehenden Anwendungen auf NexusDS
wird erleichtert. Des Weiteren sollten zur Unterstiitzung von Entwickler Moglichkeiten
vorgesehen werden, Werkzeuge an das Sicherheitskonzept so anzubinden, dass Informa-
tionen tiber die Zugriffseinschrankungen bezogen werden kénnen. Zum Beispiel bei der
Erstellung von Anfragen ist ein vorzeitiger Abgleich von Beschrankungen hilfreich, sodass
keine Anfragen entwickelt werden, die aufgrund unbekannter Einschrankung wihrend der
Entwicklung von Anbeginn nicht lauffdhig sind.

Systemadministrator: Bedingungen, die fiir das gesamte IT-System oder auch nur fiir einzelne

46

Rechenknoten gelten, werden mit der Basisrolle Systemadministrator definiert. Darunter fal-
len zum Beispiel Einschrankungen, dass nur ausgewéhlte Operatoren zur Ausfiihrung auf
einem Rechenknoten zugelassen sind. Bei der Erstellung und Vergabe erwarten Administra-
toren die Moglichkeit, Bedingungen detailliert auf heterogene Rechenkonten zuschneiden

5.2 Anforderungen aus NexusDS

zu konnen. Dem Systemadministrator fallen im Zuge der Einfithrung einer Sicherheitsar-
chitektur fiir NexusDS auch Aufgaben zu, die Sicherheitsarchitektur zu tiberwachen. So
muss es der Rolle moglich sein, Protokolle und einen aktuellen Zustand der einzelnen
Komponenten der Sicherheitsarchitektur zu tiberwachen.

5.2.2 Eigenschaften von NexusDS

Die Anforderungen, die sich aus der technischen Seite von NexusDS ableiten, sind im vorliegen-
den Unterabschnitt in die Hauptaspekte von NexusDS eingeteilt. Hauptaspekte leiten sich aus
der Struktur, die in Abschnitt 3.2 vorgestellt wurde und dem Ausfithrungsmodell von NexusDS,
das in Abschnitt 3.3.1 vorgestellt wurden, ab. Ziel der Gliederung von Anforderungen anhand
der Hauptaspekte ist, dass das Sicherheitskonzept die Besonderheiten von NexusDS, wie die
Ausnutzung von Eigenschaften heterogener Rechenknoten, angemessen im Sicherheitskonzept
berticksichtigt werden.

Asynchrone Ausfiihrung von Anfragen: Ein DSMS fiihrt eine Anfrage {iber einen potentiell un-
beschrinkten Zeitraum T aus, in dem Anderungen an den Zugriffsbedingungen erfolgen
konnen. Gewohnliche Anfragen, zum Beispiel in einem DBMS, werden beziiglich der Zu-
griffseinstellungen zu einem festen Zeitpunkt t; € T ausgewertet und unter den ermittelten
Bedingungen ausgefiihrt und beendet. Bei einer unter Umstdnden sehr langen Ausfiih-
rungszeit einer Anfrage in einem DSMS, kann eine Anderung von Zugriffsbedingungen
zum Zeitpunkt t; € T, wobei t; > t;, eintreten. Diese Anderung kann dazu fiihren, dass
die Auswertung von Zeitpunkt ¢; ungiiltig wird und eine erneute Auswertung der Bedin-
gungen erzwingen. Um Anderungen der Bedingungen zu erkennen, ist eine durchgehende
Uberwachung der Bedingungen iiber die gesamte Ausfiihrungszeit hinweg notwendig.
Sollten sich Anderungen ergeben und eine erneute Auswertung zeigt, dass der vorliegende
Zustand der Ausfithrung nicht mehr bedingungskonform ist, muss die Anfrage zur Laufzeit
angepasst werden. Die Mechanismen zur Uberwachung miissen in der Lage sein, alle fiir
die Anfrage relevanten Bedingungen tiber die Ausfiithrungszeit tiberpriifen zu konnen.
Dennoch sollten die Mechanismen sich moglichst gering auf die Leistungsfdahigkeit von Ne-
xusDS auswirken, um die Einsetzbarkeit des DSMS, zum Beispiel in Echtzeitanwendungen,
nicht einzuschranken.

Individuelle Erweiterbarkeit: In NexusDS ist es moglich, individuelle Operatoren zur Erwei-
terung der Funktionalitdt zu entwickeln. Dazu steht ein Operator-Modell bereit, dass
Operator-Boxen aus verschiedenen Komponenten, wie bereits in Abschnitt 3.2 und Abbil-
dung 3.3 beschrieben, zusammensetzt. Das fithrt zu dem Problem, dass die individuelle
Programmierung der Komponenten ein Abzweigen oder anderes missbrauchliches Verwen-
den der Daten ermoglicht. Zur Unterbindung muss ein Mechanismus vorgesehen werden,
der alle Komponenten der Operator-Box, die mit zu schiitzenden Informationen in Beriih-
rung kommen, kontrolliert. Die Kontrolle muss so gestaltet sein, dass die Verarbeitung der
Daten nur im Einklang der definierten Bedingungen aller beteiligten Objekte und Subjekte
geschieht. Neben der Verarbeitung muss ebenso sichergestellt werden, dass keine Informa-
tionen unbemerkt weitergeleitet, unberechtigt zwischengespeichert, gelesen oder verdandert

47

5 Anforderungen

werden. Ist zum Beispiel eine Weiterleitung moglich, konnten die Daten nicht berechtigten
Zielen verfiigbar gemacht werden. Trotz der notwendigen Kontrolle von individuellen
Entwicklungen miissen die Zugriffsbedingungen und priifenden Mechanismen so gestaltet
sein, dass die Erweiterbarkeit von NexusDS nicht eingeschrankt wird.

NexusDS kann nicht nur mit Operatoren, sondern auch mit Services erweitert werden.
Steht ein Service in Bezug zu geschiitzten Daten, fiir die eine Zugriffskontrolle erzwungen
wird, muss der Service ebenfalls kontrolliert werden. Die Kontrolle erstreckt sich dariiber,
ob ein Service auf bestimmte Daten zugreifen darf und auf die Interaktion mit weiteren
Services oder Subjekten. Ein Service darf nur dann auf geschiitzte Daten zugreifen, wenn
er authentifiziert ist und alle relevanten Bedingungen den Zugriff gestatten. Relevant sind
die Bedingungen, die mit alle beteiligten Subjekte und Objekte der Aktion verbunden sind.

Einbindung von Operatoren zur Laufzeit: Ein Nachladen von Operatoren zur Laufzeit erfordert,

dass alle zu berticksichtigten Bedingungen dynamisch mit dem einzubindenden Operator
abgeglichen werden. Moglicherweise kann der Operator aufgrund bestehender Bedin-
gungen der betroffenen Anfrage oder Rechenknoten nicht verwendet werden. Ist das der
Fall, muss ein Ersatz gefunden werden und gegebenenfalls eine Umplanung der Anfrage
durchgefiihrt werden, sodass alle relevanten Bedingungen eingehalten werden.

Verteilte Architektur: Die Ausfiihrung von Anfragen und Services in NexusDS kann tiber meh-

rere Rechenknoten verteilt werden. Diese Knoten sind nicht notwendigerweise lokal, das
heifst, die Ausfithrung kann tiber ein Netzwerk, wie zum Beispiel iiber das Internet, auf
Rechenknoten verteilt werden. Aus dieser Begebenheit entsteht die Anforderung, dass alle
Kommunikationswege im Sicherheitskonzept gegen Abhoren und Manipulation geschiitzt
werden miissen. Bei der verteilten Verarbeitung von Anfragen muss sichergestellt werden,
dass die Bedingungen der Anfrage an allen Rechenknoten erfiillt sind, bevor es zu einer
Verarbeitung von Objekten kommt. Die Bedingungen miissen daher nicht nur rechtzeitig
vor der Verarbeitung betroffener Objekte verteilt werden, sondern es muss auch in Erwa-
gung gezogen werden, dass unter Umstinden die Verbindung zwischen Rechenknoten
unterbrochen wird. Sollten in dieser Zeit Bedingungen verandert werden, muss nach Wie-
derherstellung der Verbindung dafiir gesorgt werden, dass die neuen Bedingungen dem
Rechenknoten bekannt gemacht werden.

Heterogene Rechenknoten: Ein heterogenes Umfeld an Rechenknoten betrifft nicht nur die

48

Architektur der Recheneinheiten hinsichtlich der Hardware oder Softwareausstattung,
sondern kann sich ebenso in der Ausgestaltung der Zugriffseinstellungen niederschlagen.
Unterliegen die Rechenknoten bestimmten Einschriankungen, dass aufgrund der Eigen-
schaften des Rechenknotens gewisse Bedingungen nicht erfiillt werden kénnen, muss die
Einschrankung bei der Verteilung der Anfrage berticksichtigt werden. Stellt zum Beispiel
eine Bedingung der Anfrage die Forderung, dass auf Rechenknoten zur Ausfiihrung ei-
ne spezielle Betriebssystemiiberwachung installiert ist, miissen Rechenknoten mit dieser
Eigenschaft gefunden werden. Auf der Seite der Rechenknoten kénnen auch Bedingun-
gen definiert werden, die Verteilung von Anfragen unter Umstdnden beeinflusst. Zum
Beispiel konnte ein Systemadministrator eines Rechenknoten, die Ausfithrung bestimmter

5.3 Zusammenfassung der Anforderungen

Operatoren ausschliefien, was den Rechenknoten fiir Anfragen mit betroffenen Operatoren
unbrauchbar macht.

5.3 Zusammenfassung der Anforderungen

Die Anforderungen aus Anwendungsszenarien, Basis-Rollen und den Eigenschaften von Ne-
xusDS wurden in den vorhergehenden Abschnitten ausgearbeitet. Vorliegender Abschnitt fasst
die zentralen Aspekte der Anforderungen zusammen und konsolidiert die Aspekte in die
Schutzziele.

Authentizitat: Fiir die korrekte Zuordnung von Bedingungen ist eine zuverldssige Authentifi-
zierung von Subjekten und Objekten notwendig. Denn es kann nur dann eine eindeutige
Zuordnung sichergestellt werden, wenn jedes Subjekt und Objekt eindeutig identifiziert
werden kann. Das heifit jedes Subjekt und Objekt, dass an dem durch das Sicherheits-
konzept geschiitzten Teil von NexusDS teilnehmen will, muss eine eindeutige Identitat
zugeordnet werden. Die Authentizitdt wird dann sichergestellt, indem Mechanismen die
von einem Subjekt oder Objekt behauptete Identitit priifen und die Identititen nur dann
als echt bestatigen, falls es der wahren Identitdt des Subjektes oder Objektes entspricht.

Datenintegritét: Objekte diirfen nur mit entsprechender Berechtigung modifiziert werden, das
setzt voraus, dass fiir alle Subjekte und Objekte Zugriffsbedingungen fiir den Zugriff
zugeordnet sind. Wiinscht ein Subjekt die Veranderung von Objekten, wird vor Verdnderung
zuerst die Zulédssigkeit des Zugriffes gepriift. Ein Zugriff kann zum Beispiel die Erstellung
und Zuordnung neuer Bedingungen fiir den Zugriff auf ein Objekt sein. Zuldssig ist der
Zugriff nur dann, wenn alle an der Verdnderung beteiligten Subjekte und Objekte korrekt
authentifiziert wurden und alle zugeordneten Zugriffsbedingungen erfiillt werden. Ist
der Zugriff nicht zuldssig, muss sichergestellt werden, dass die Sicherheitsarchitektur den
Zugriff unterbindet.

Informationsvertraulichkeit: Die Informationsvertraulichkeit setzt eine korrekte Authentifizie-
rung von Subjekten und Objekten voraus. Weiter miissen Zugriffsbedingungen an die
zu schiitzende Informationen gebunden sein. Kern des Schutzzieles ist, dass Objekte in
unterschiedlicher Granularitdt vor unberechtigter Einsicht geschiitzt werden. Auch dann,
wenn sie von individuell entwickelten Operator-Boxen verarbeitet werden. Das umfasst die
Priifung aller beteiligten Objekte und Subjekte, zum Beispiel die Anfrage selbst, und die
eingesetzten Operatoren und Services die den Zugriff ausfiihren. Die Informationsvertrau-
lichkeit auch dann zu gewdhrleisten, wenn Komponenten individuell entwickelt wurden,
macht Mechanismen erforderlich, die trotz einer freien und individuellen Entwicklung eine
zuverldssige Kontrolle iiber geschiitzte Daten sicherstellten.

Verfiigbarkeit: Kommt es bei der Ausfithrung von Anfragen auf Rechenknoten zu Konflikten
bei der Ressourcenverteilung ist unter Umstdnden die Zuverladssigkeit sensibler Anfragen
gefdhrdet. Fiir die Diplomarbeit wird die Annahme getroffen, dass die Betreiber von Diens-
ten in NexusDS dafiir Sorge tragen, dass ausreichend Ressourcen fiir die Ausfithrung aller

49

5 Anforderungen

gestatteten Anfragen vorhanden sind. In diesem Fall kann ein Ressourcenkonflikt nur dann
auftreten, wenn nicht berechtigte Anfragen auf einem geschiitzten Rechenknoten des Dienst-
betreibers zur Ausfiihrung gebracht werden. Das Sicherheitskonzept muss dafiir Sorge
tragen, dass nur solche Anfragen auf geschiitzten Rechenknoten zur Ausfiihrung kommen,
die vom Besitzer des Rechenknotens gestattet sind. Eine detaillierte Vorgehensweise zur
Zuweisung von Prioritdten im Falle von Ressourcenkonflikten, sind kein unmittelbares
Thema der Diplomarbeit und werden nicht weiter vertieft.

Anonymisierung: Anonymisierung bedeutet, dass personliche Daten so verfdlscht oder gesperrt

50

werden, dass danach keine Riickschliisse auf personliche Verhiltnisse moglich sind. Die
gezeigten Anwendungsszenarien stellen hohere Anforderungen als ein einfaches Sperren
oder Zufilliges verfdlschen von Informationen. Die Anonymisierung in NexusDS muss
eine Filterung und Verschleierung von Objekten in Abhédngigkeit von individuellen Be-
dingungen und Anwendungsszenarien leisten. Zum Beispiel, dass der Detailgrad von
Positionsinformation in Abhédngigkeit des Empfangers der Information variiert, sodass
als Freunde definierte Datenempfianger einen genauen Standort und Arbeitskollegen nur
einen Landkreis empfangen. NexusDS stellt als Plattform keine Einschrankung an Daten-
strukturen oder im Allgemeinen wie Informationen dargestellt werden. Deshalb muss das
Sicherheitskonzept eine Moglichkeit vorsehen, beliebige Tranformationen auf mindestens
den Datentypen zu unterstiitzen, die auch NexusDS unterstiitzt.

Kapitel 6

Grundlagen des Sicherheitskonzeptes

Der néchste Schritt in der Entwicklung des Sicherheitskonzeptes ist, nach dem Vorgehensmodell
aus 2.4, Masnahmen zur Erfiillung der in Kapitel 5 aufgestellten Anforderungen zu entwickeln.

Das Kapitel stellt im ersten Abschnitt die zentralen Mafsnahmen des Sicherheitskonzeptes vor,
ohne bereits detaillierte Komponenten der Sicherheitsarchitektur zu entwerfen. Zur kontrollierten
Verarbeitung von Anfragen erldutert Abschnitt 6.2 drei Sicherheitszonen, die die kontrollierte
Anfrageverarbeitung in unterschiedliche Strenge umsetzen.

6.1 Basisstruktur des Sicherheitskonzeptes

Grundlage des Sicherheitskonzeptes ist eine Sammlung von Maffnahmen, die die zuvor auf-
gestellten Anforderungen umsetzen konnen. Es gilt zu beachten, dass die Mafisnahmen sich
gegenseitig ergdnzen und nicht alleinstehend betrachtet werden dtirfen.

6.1.1 Ubersicht der MaBnahmen fiir das Sicherheitskonzept

Um Bedingungen zum Zugriff auf Objekte zu strukturieren, wird ein Meta-Daten-Modell auf
Basis der Augmented World Model Language (AWML) eingefiihrt, dass die Spezifikation von Zu-
griffsrichtlinien erlaubt. Operatoren werden geschiitzt, indem sie in einer zentralen Datenhal-
tung fiir Operatoren in der Sicherheitsarchitektur verfiigbar gemacht werden. Die Datenhaltung
ersetzt das urspriingliche Operator Repository von NexusDS. Alle Operatoren aus dieser Datenhal-
tung konnen nur noch unter der Kontrolle der Sicherheitsarchitektur ausgefiihrt werden und
jeder Zugriff muss explizit mit einer an den Operator gebundenen Zugriffsrichtlinie erlaubt
werden. Das gilt ebenfalls fiir die Datenstrome, die die geschiitzten Operatoren generieren.
Zum Beispiel eine geschiitzte Quelle kann nur unter Beachtung der an die Quelle gebundenen
Zugriffsrichtlinien ausgefiihrt werden. Die Datenstrome, die die Quelle erzeugt, konnen ebenfalls
nur noch unter Beachtung der mit der Quelle verbundenen Zugriffsrichtlinien gelesen werden.
Zugriffsrichtlinien definieren, unter welchen Bedingungen Zugriffe erlaubt sind, alle nicht von
Zugriffsrichtlinien explizit definierten Zugriffe sind nicht erlaubt.

51

6 Grundlagen des Sicherheitskonzeptes

Zugriffsrichtlinien miissen in der verteilten Umgebung von NexusDS so vorgehalten werden,
dass Services zur Entscheidung ob ein Zugriff gestattet ist, die aktuell giiltigen Zugriffsrichtlinien
abrufen konnen. Dazu wird ein zentraler Service zur Verwaltung von Zugriffsrichtlinien einge-
tiihrt, der alle Zugriffsrichtlinien vorhélt. An diesem zentralen Service werden Zugriffsrichtlinien
erstellt, geandert und geloscht. Alle Subjekte, Services und Anwendungen die Zugriffsrichtli-
nien definieren wollen, verbinden sich direkt mit diesem Service. Die weitere Verteilung der
Zugriffsrichtlinien wird von der Sicherheitsarchitektur selbst abgewickelt.

Um Subjekte in der Sicherheitsarchitektur korrekt zu identifizieren, ist eine Zuordnung von
eindeutigen Identitdten und einem Mechanismus zur Bestidtigung von Identitdten notwendig.
Diese Aufgabe wird von einem zentralen Service zur Verwaltung von Identititen realisiert. Alle
Subjekte, die von der Sicherheitsarchitektur geschiitzte Operatoren verwenden wollen, miissen
sich tiber den zentralen Service mit einer eindeutigen Identitit registrieren. Zudem trifft der
Service mit dem jeweiligen Subjekt eine Vereinbarung, wie die Identitédt bestitigt werden kann.
Handelt es sich bei der Identitit um einen Benutzer, wird eine eindeutige Kombination aus
Benutzername und Passwort vergeben. Zur Priifung der Identitdten eines Rechenknotens werden
je Rechenknoten eindeutige Identifikatoren vergeben, die den Rechenknoten eindeutig charakteri-
sieren. Identitdten von Operatoren bestehen aus einem Bezeichner, der bei der Verfiigbarmachung
des Operators im zentralen Operator Repository der Sicherheitsarchitektur zugewiesen wird.
Bestatigt wird die Identitdt durch einen eindeutigen Hashwert, der iiber die Implementierung
des Operators gebildet wird.

Wird die Ausfiihrung einer Anfrage angestofSen, durchlduft die Anfrage verschiedene Schritte im
bereits vorgestellten Ausfithrungsmodell, Abschnitt 3.3.1, von NexusDS. Verantwortlicher Service
fur die Aufgabe ist der Core Query Service (CQS), der fiir das Sicherheitskonzept so erweitert
wird, dass wahrend der Planung alle fiir die Anfrage relevanten Zugriffsrichtlinien berticksichtigt
werden. Relevant sind alle die Zugriffsrichtlinien, die an Operatoren der auszufiihrenden Anfrage
gebunden sind. Zum Beispiel falls Datenelemente einer Quelle nur von bestimmten Operatoren
gelesen werden diirfen. Daraus entsteht eine kontrollierte Anfrageplanung, die nur die Anfrage
zur Ausfithrung bringt, deren Zugriffe durch Zugriffsrichtlinien gedeckt sind.

Wird eine Zugriffsrichtlinie zum Zeitpunkt tp definiert, muss diese fiir alle durch die Richtlinie
betroffenen Datenelemente, die zum Zeitpunkt ty > tp in die Verarbeitung gehen, durchgesetzt
werden. Wiirde das Sicherheitskonzept nur eine zentrale Datenhaltung fiir Zugriffsrichtlinien vor-
sehen, kann aber nicht ausgeschlossen werden, dass bei der verteilten Ausfithrung ein Zeitraum
ty — tp > 0 bis zur Durchsetzung verstreicht. Denn die Zugriffsrichtlinien miissen zuerst von
der definierenden Stelle an den zentralen Speicher tibertragen werden. Von der zentralen Stelle
wiederum an die verarbeitende Stelle, was eine gewisse Ubertragungszeit beansprucht. In der
verstrichenen Ubertragungszeit Tgetay = tv — tp, wobei Tyeqy > 0, kdnnten Datenelemente bereits
mit veralteten Zugriffsrichtlinien verarbeitet worden sein, was die Gefahr von Verletzungen von
Zugriffsrichtlinien birgt. Das in Abschnitt 4.4 vorgestellte Framework FENCE 16st das Problem
durch Einflechten von Zugriffsinterpunktionen in den Datenstrom. Es arbeitet unabhingig
von moglichen Verzogerungen bei der verteilten Ausfithrung und transportiert die Zugriffsricht-
linien direkt an die Stelle, an der die Verarbeitung stattfindet. Wiirde eine globale Verteilung

52

6.1 Basisstruktur des Sicherheitskonzeptes

stattfinden, indem eine zentrale Komponente alle Zugriffsrichtlinien an die betroffenen Operato-
ren weiterleitet, dann ist eine globale Zeitreferenz notwendig. Anhand der Zeitreferenz konnten
Zeitstempel fiir Zugriffsrichtlinien definieren, ab wann eintreffende Datenelemente mit der neuen
Zugriffsrichtlinie zu verarbeiten sind. Jedoch kann in einer verteilten Ausfithrungsumgebung,
wie bereits besprochen nicht davon ausgegangen werden, dass die Zugriffsrichtlinien an alle
Stellen mindestens zu dem Zeitpunkt eintreffen, wenn betroffene Zugriffsrichtlinien angewandt
werden miissen. Es wéare dann moglich, dass ein Teil der Operatoren, verteilt tiber verschiedene
Rechenknoten, die Zugriffsrichtlinie rechtzeitig erhalten, der verbleibende Teil der Operatoren
aber nicht. Damit wiirde ein Teil der Anfrage auf Basis aktueller und ein weiterer Teil auf Basis
veralteter Zugriffsrichtlinien arbeiten. Die Einflechtung vermeidet derartige Probleme, da sich
die Zugriffsrichtlinien auf dem gleichen Weg wie die betroffenen Datenelemente fortbewegen.

Aus diesen Griinden wird das Konzept der Interpunktionen fiir die Diplomarbeit iibernom-
men und mit einer zentralen Datenhaltung kombiniert. Die zentrale Datenhaltung bildet den
zentralen Punkt zur Bearbeitung von Zugriffsrichtlinien. Gleichzeitig dienen sie als Quelle fiir
Zugriffsrichtlinien bei der kontrollierten Planung der Anfrage und zur Synchronisation von
Zugriftsrichtlinien, falls Verbindungsabbriiche bei der verteilten Ausfiihrung auftreten. Soll eine
Zugriffsrichtlinie unmittelbar giiltig werden und sich auch auf die bereits in der Verarbeitung
befindlichen Datenelemente auswirken, kann die sofortige Anwendung erzwungen werden.
Dies muss dann explizit in den Zugriffsrichtlinien definiert werden, die unmittelbar auf alle
Datenelemente angewendet werden sollen. Wird eine Zugriffsrichtlinie definiert, die die sofortige
Anwendung erzwingt, verteilt die Sicherheitsarchitektur die Zugriffsrichtlinien an alle in der
Ausfithrung betroffenen Operatoren.

Die Services des Sicherheitskonzeptes erhalten ein System zur Protokollierung. Das Protokoll
enthilt alle Informationen tiber die durchgefiihrten Verdanderungen, sodass nachvollzogen werden
kann, von welchem Subjekt welche Anderungen zu welcher Zeit getitigt wurden. Zum Beispiel
falls Veranderungen am Datenbestand der Zugriffsrichtlinien durchgefiihrt werden. Ebenso
werden ausgefiihrte Anfragen zu Protokoll gebracht. Hierzu hélt die kontrollierte Anfrageplanung
die Anfrage selbst, Zeitpunkt und die Identitdt des Subjektes fest, dass die Anfrage abgeschickt
hat. Dadurch lasst sich die Verwendung von Operatoren und Datenstromen von Subjekten
nachvollziehen.

Die Services, aus denen die Sicherheitsarchitektur besteht, miissen mit weiteren Services der
Sicherheitsarchitektur kommunizieren. Jeder Service der Sicherheitsarchitektur verfiigt, sofern
dieser mit Services kommunizieren will, iiber ein digitales Zertifikat, das zu Beginn einer Kom-
munikation tiberpriift wird. Die Erstellung, die Verwaltung und die Zuordnung von Zertifikaten
werden tiber eine Public-Key-Infrastruktur, siehe Abschnitt 2.2.1, realisiert. Die Zertifikate er-
moglichen eine zuverldssige, gegenseitige Authentifizierung von Services. Will ein Subjekt eine
Verbindung mit einem Service aufbauen, zum Beispiel um neue Zugriffsrichtlinien zu erstellen,
tiberpriift es ebenfalls zuvor das digitale Zertifikat des Services. Der Service seinerseits kann tiber
den zentralen Service zur Verwaltung von Identitdten iiberpriifen, ob das Subjekt authentisch ist.
So ist sichergestellt, dass nur dann sensitive Information ausgetauscht wird, wenn beide Seiten
verldsslich authentifiziert wurden.

53

6 Grundlagen des Sicherheitskonzeptes

Bisher vorgestellte Sicherheitskonzepte fiir NexusDS dhnliche Systeme, in Abschnitt 4 wurde eine
Auswabhl vorgestellt, erlauben oder verbieten den Zugriff auf Datenelemente in Abhédngigkeit der
definierten Zugriffsbedingungen. Die Sicherheitsarchitektur fiir NexusDS ermoglicht nicht nur
das einfache Verbieten eines Zugriffes, sondern auch eine Transformation der Datenelemente um
Zugriffsbedingungen zu erfiillen. Da NexusDS grundsétzlich jeden Typ von Daten untersttitzt,
muss das Sicherheitskonzept flexibel genug sein, um beliebige Transformationen durchfiihren
zu konnen. Zur Unterstiitzung von beliebigen Datentypen und Transformationen erlaubt die
Sicherheitsarchitektur das Implementieren von Filtern. Filter werden von NexusDS Extenti-
on Developer implementiert und in der Sicherheitsarchitektur in einer zentralen Datenhaltung
verfligbar gemacht. Filter miissen explizit in Zugriffsrichtlinien definiert werden. Bezieht sich
eine Zugriffsrichtlinie auf eine Quelle, muss definiert werden, auf welche Datenausgédnge der
Filter angewendet werden soll. Handelt es sich um eine Operation oder Senke, miissen die
Dateneingédnge definiert werden, auf die der Filter angewendet wird. Fiir einen Datenausgang
oder Dateneingang ist moglich, mehrere Filter zu definieren. Sollte das der Fall sein, werden die
Filter nach einer in den Zugriffsrichtlinien definierten Reihenfolge hintereinander ausgefiihrt.

Zur Sicherung der Kommunikationswege werden alle Datenkanile verschliisselt. Eine Ver-
schliisselung der Datenstrome schiitzt vor unberechtigtem Lesen und Manipulation der Daten.
Das betrifft sowohl Datenstrome, die in Anfragen verarbeitet werden, als auch Kanile zum
Ubertragen von zum Beispiel neuen Zugriffsrichtlinien in die Datenhaltung.

Mit einer expliziten Definition in Zugriffsrichtlinien, konnen geschiitzte Datenstrome fiir den
ungeschiitzten Teil von NexusDS freigegeben werden. Zum Beispiel konnte fiir eine Quel-
le, die GPS-Positionsinformationen erzeugt eine Zugriffsrichtlinie definiert werden, die unter
Anwendung eines Filters fiir das urspriingliche NexusDS freigegeben wird. Der Filter kann
eine Transformation realisieren, die den Detailgrad der Positionsinformation reduziert, die dem
Besitzer der Positionsinformation als Anonymisierung ausreicht.

Das Anwendungsszenario der intelligenten Fabriken aus Abschnitt 5.1.3 deutete an, dass Ne-
xusDS in komplexen Anwendungslandschaften eingesetzt werden kann. Haufig bestehen in
umfangreichen Anwendungslandschaften vielfiltige Datenhaltungen, die fiir die Entscheidung
einer Zugriffsberechtigung ausgewertet werden miissen. Zur Vereinfachung der Integration beste-
hender Systeme ermoglicht die Sicherheitsarchitektur den Einsatz von Evaluatoren. Evaluatoren
werden von NexusDS Exention Developer entwickelt und in einer zentralen Datenhaltung der
Sicherheitsarchitektur verfiigbar gemacht. Mit der Referenzierung auf Evaluatoren in Zugriffs-
richtlinien wird die Auswertung von Zugriffsberechtigungen nicht mehr von der Sicherheitsar-
chitektur selbst, sondern von den individuellen Evaluatoren vorgenommen. Dadurch vereinfacht
sich die Integration der Sicherheitsarchitektur in bereits vorhandene Anwendungslandschaften
wesentlich.

54

6.2 Kontrollierte Datenstromverarbeitung in drei Sicherheitszonen

 Anfrage Fragment . | Anfrage Fragment

Secure-Source

Secure-Box

Operator
Box

Decoder Encoder

Source

Anfrage Fragment

Source

Secure-Source

=P

Secure-Sink

H Sink

Decoder

Encoder

Abbildung 6.1: Vereinfachtes Modell der Verarbeitung von Datenstrémen in Anfragen der
Sicherheitszone-Mittel und Sicherheitszone-Hoch.

6.2 Kontrollierte Datenstromverarbeitung in drei Sicherheitszonen

Das Sicherheitskonzept teilt die Ausfithrung von Anfragen in drei Sicherheitszonen ein, die im
Folgenden vorgestellt werden. Sicherheitszone-Null entspricht dem bestehenden NexusDS ohne
Zugriffskontrollen. Die Sicherheitszone-Mittel realisiert eine kontrollierte Verarbeitung von
Anfragen, die es erlaubt, bestehende Quellen, Operatoren und Senken von NexusDS weiterzu-
verwenden. Um Risiken durch unkontrolliertes Verhalten des Operator-Modells auszuschlieflen,
erzwingt die Sicherheitszone-Hoch die Nutzung von zertifizierten Komponenten des Operator-
Modells.

6.2.1 Sicherheitszone-Null

NexusDS in der vorliegenden Form, ohne Sicherheitskonzept, reprasentiert Sicherheitszone-Null.
Es werden grundsétzlich keine Kontrollmechanismen vorgesehen, die den Datenzugriff in Anfra-
gen einschrdanken. Datenelemente von geschiitzten Operatoren, konnen in der Sicherheitszone-Null
nur mit klar definierten Ausnahmen verwendet werden. Die Ausnahme muss explizit in Zu-
griffsrichtlinien definiert werden, indem ein Datenausgang als ungeschiitzt deklariert wird. Falls
gewiinscht konnen dem Datenausgang Filter vorgelagert werden, sodass die Daten nur in einem
durch die Filter bestimmten Detailgrad ungeschiitzt weiterverarbeitet werden.

55

6 Grundlagen des Sicherheitskonzeptes

6.2.2 Sicherheitszone-Mittel

Sicherheitszone-Mittel betten die Ausfithrung von Quellen, Operator-Boxen und Senken in eine
kontrollierte Umgebung ein. Abbildung 6.1 illustriert die Einbettung der Boxen, die unverandert
aus dem urspriinglichen NexusDS i{ibernommen werden konnen. Fiir jeden Boxentyp existiert
ein spezifischer Baustein der Sicherheitsarchitektur, der als Einbettung bezeichnet wird. Fiir
Quellen die Secure-Source, fiir Operatoren die Secure-Box und fiir Senken die Secure-Sink.
Die Datenstrome zwischen den Einbettungen werden mit einem symmetrischen Schliissel ver-
schliisselt, was gegeniiber asymmetrischen Kryptosystemen einen Geschwindigkeitsvorteil birgt
[16]. Da der Schliissel nicht an Stellen aufSerhalb der Sicherheitsarchitektur gegeben wird, ist
ein asymmetrisches Verfahren aus privatem und 6ffentlichem Schliissel nicht notwendig. Jede
Anfrage erhilt einen eigenen geheimen Schliissel, der von dem Service verwaltet wird, der die
betroffene Anfrage geplant hat. Der Schliissel wird mit einer Verfallszeit von 48 Stunden versehen,
um die Wahrscheinlichkeit eines Bekanntwerdens des geheimen Schliissels zu reduzieren. Lauft
ein Schliissel zur Ausfiihrungszeit einer Anfrage ab, kiimmern sich die Einbettungen um eine
Erneuerung, sodass die Ausfithrung unterbrechungsfrei auf einen neuen geheimen Schliissel
umgestellt werden kann. Zur Geheimhaltung des Schliissels ist dieser nur dem Service zur
Verwaltung der Anfrageplanung und den jeweiligen Einbettungen bekannt, er wird nicht den
eingebetteten Operatoren oder anderen Teilen von NexusDS verfiigbar gemacht. In Abbildung 6.1
ist zu sehen, wie ausgehende Datenstrome durch Encoder verschliisselt werden und eingehende
Datenstrome mit Decoder entschliisselt werden. So werden die Datenstréme zwischen Boxen
direkt verschliisselt und damit unlesbar zwischen verschiedenen Anfragen und fiir alle Subjekte
auflerhalb der Sicherheitsarchitektur.

Jede geschiitzte Quelle wird in eine Secure-Source eingebettet. Filter sind, wie in Abbildung
6.1 zu sehen, direkt der eingebetteten Quelle nachgelagert und transformieren Datenelemente
der Quelle. Welche Filter zur Anwendung kommen, wird von den mit der Quelle verbundenen
Zugriffsrichtlinien definiert. Neben der optionalen Transformation von Datenelementen durch
Filter stellt die Secure-Source Einbettung sicher, dass nur dann Datenelemente von der Quelle
weitergeleitet werden, wenn der Zugriff auf die Datenelemente gestattet ist. Wird eine Anfra-
ge zur Ausfithrung gebracht, wird dies von der kontrollierten Anfrageplanung sichergestellt.
Andern sich jedoch zur Ausfithrungszeit Zugriffsrichtlinien, die die Quelle betreffen und eine
weitere Ausfithrung verbieten, sperrt die Quelle die Datenausgénge. Dass Zugriffsrichtlinien sich
gegenseitig ausschliefien, ist nicht moglich, da jede Zugriffsrichtlinie einer Erlaubnis entspricht.
Wird wihrend der Ausfiihrungszeit eine Zugriffsrichtlinie zurtickgenommen, die die Ausfiihrung
einer Secure-Source erlaubt, sperrt die Secure-Source sofort die Weiterleitung der Datenelemente
der eingebetteten Quelle. Gleichzeitig meldet die Secure-Source der Ausfithrungsumgebung, dass
die Anfrage abgebrochen werden muss. Bevor Datenelemente die Quelle verlassen, werden diese
mit dem Encoder verschliisselt. Neben dem Verschliisseln von Datenelementen interpunktiert
der Encoder alle fiir die Quelle definierten Zugriffsrichtlinien, die ebenfalls verschliisselt werden,
in den Datenstrom.

56

6.2 Kontrollierte Datenstromverarbeitung in drei Sicherheitszonen

Um die Datenelemente von geschiitzten Operatoren verarbeiten zu konnen, miissen die Opera-
toren der betroffenen Anfragen in jeweils eine Secure-Box eingebettet werden. Die Secure-Box
erhilt Zugriff auf den geheimen Schliissel, um die eingehenden verschliisselten Datenstrome
zu entschliisseln und die interpunktierten Zugriffsrichtlinien zu entfernen, sodass der eingebet-
tete Operator die Datenelemente verarbeiten kann. Sollten in Zugriffsrichtlinien Filter fiir die
eingebettete Operator-Box definiert sein, werden sie nach dem Encoder wie in Abbildung 6.1 zu
sehen den Eingédngen der Operator-Box vorgelagert. Werden neue Zugriffsrichtlinien bekannt,
entweder iiber eingehende Interpunktionen oder die Secure-Box wird von dem zentralen Service
zur Verwaltung der Zugriffsrichtlinien benachrichtigt, tiberpriift die Secure-Box Bedingungen
der Zugriffsrichtlinie. Zum Beispiel kann der Fall eintreten, dass eine neue Zugriffsrichtlinie die
Ausfiihrung eines Operators O auf wenige ausgewdéhlte Rechenknoten beschrankt und alle ande-
ren Zugriffsrichtlinien, die die Ausfithrung des Operators vorher erlaubten, zuriick genommen
werden. Ist eine Secure-Box betroffen, da diese O einbettet, tiberpriift die Secure-Box, ob die
Bedingungen der neuen Zugriffsrichtlinie erfiillt sind. Ist das nicht der Fall, sperrt die Secure-Box
alle Datenausgénge und beendet die Anfrage analog zur Secure-Sink.

Uber die Dateneinginge eingehende Zugriffsrichtlinien miissen auch den nachfolgenden Boxen
zur Verfligung gestellt werden, was eine Wiederinterpunktion notwendig macht. Die Wiederinter-
punktion einer Zugriffsrichtlinie muss in alle Datenausgénge erfolgen, die von dem Datenstrom
abhingen, tiber den die Zugriffsrichtlinie eingetroffen ist. Zu welchem Zeitpunkt die Wiederinter-
punktion erfolgt, hangt von der Relation zwischen der Anzahl der eingehenden und ausgehenden
Datenelemente ab. Die Details zur Wiederinterpunktion werden im weiteren Verlauf erortert.
Bevor die verarbeiteten Datenelemente und Interpunktion die Secure-Box verlassen, wird der
Datenstrom analog zur Secure-Source wieder mit dem geheimen Schliissel der Anfrage verschliis-
selt.

Das Senken die Ergebnisse von geschiitzten Anfragen lesen konnen, miissen sie jeweils in
eine Secure-Sink eingebettet werden. Zentrale Aufgabe ist die eingehenden Datenstrome zu
entschliisseln, gegebenenfalls Filter den Dateneingidngen vorzulagern und die Datenelemente an
die eingebettete Senke weiterzureichen. Parallel nimmt die Secure-Sink noch die Aufgabe wahr,
die fiir die Senke relevanten Zugriffsrichtlinien zu iiberpriifen. Sollte sich eine Anderung in den
Zugriffsrichtlinien ergeben, die die eingebettete Senke betrifft, wird analog zur Secure-Sink und
Secure-Box vorgegangen.

6.2.3 Sicherheitszone-Hoch

Die vorgestellte Sicherheitszone-Mittel bettet Quellen, Operator-Boxen und Senken so ein, dass
nur auf die Datenelemente zugegriffen wird, fiir die eine Zugriffsrichtlinie den Zugriff erlaubt.
Das Verhalten der eingebetteten Komponenten kann jedoch nicht automatisch von der Sicher-
heitsarchitektur tiberpriift oder tiberwacht werden. Beispielsweise konnte ein Input-Manager
nach wie vor einen Datenkanal 6ffnen, alle eingehenden Datenelemente kopieren und an eine
unautorisierte Stelle weiterleiten. Ein weiteres Beispiel wire der Fall, dass es Operatoren lediglich
erlaubt sein soll, dass Durchschnitte nur tiber maximal x Datenelemente gebildet werden diirfen.
Ein Operator konnte aber eine Datenhaltung fiihren die x + 1, wobei n > 0, Datenelemente

57

6 Grundlagen des Sicherheitskonzeptes

speichert und dartiber einen Durchschnitt bilden. Um der offenen Liicke zu begegnen, erzwingt
die Sicherheitszone-Hoch eine digitale Signierung von Operatoren von ausgewdhlten Priifern nach
einem definierten Kriterienkatalog. Dazu kénnen Zugriffsrichtlinien Signaturen definieren, die
von der Anfrageplanung und Einbettungen tiberpriift werden. Die hohere Sicherheit hat aber
einen Preis. Alle Komponenten, die in der Sicherheitszone eingesetzt werden sollen, miissen
manuell tiberpriift und signiert werden.

Jeder Priifer der Komponenten signieren mochte, muss als Priifer an einem zentralen Service
der Sicherheitsarchitektur registriert werden. Die Signierung basiert auf einem asymmetrischen
Kryptosystem wie in Abschnitt 2.2.1 vorgestellt. Der 6ffentliche Schliissel wird in der zentralen
Datenhaltung fiir Zertifizierungen abgelegt, sodass der offentliche Schliissel zur Priifung von
Signaturen frei verfiigbar ist. Hat ein Priifer ein Operator inspiziert, berechnet er die Signatur
der Komponente, verschliisselt sie mit seinem privaten Schliissel und legt die verschliisselte
Signatur in der zentralen Datenhaltung fiir geschiitzte Operatoren ab. Fordern Zugriffsricht-
linien digitale Signaturen fiir Operatoren, sorgt die kontrollierte Anfrageplanung dafiir, dass
nur Operatoren zur Ausfithrung kommen, die digitale Signaturen nach den Angaben in den
betreffenden Zugriffsrichtlinien aufweisen. Zur Laufzeit von Anfragen stellen die Einbettungen
sicher, dass die Angaben von Signaturen erfiillt werden. Bei Anderungen zur Laufzeit wird
analog zur vorherigen Sicherheitsstufe eine Priifung durchgefiihrt und bei einem Fehlschlag
die Anfrage abgebrochen. Es ist keine Einschrankung vorgesehen, dass eine Box mit nur einer
digitalen Signatur versehen werden darf. Werden durch die Zugriffsrichtlinien mehrere Signatu-
ren definiert, wird die betroffene Komponente auf die korrekte Signatur von allen definierten
Priifern untersucht. Nur falls alle Zertifizierungen erfiillt sind, wird der Zugriff gestattet. Es ist zu
beachten, besteht die Box wie im Falle eines Operators und Senke aus mehreren Komponenten,
muss die Signatur fiir alle Komponenten gelten.

Das Stellen von Priifern und wie eine Priifung zur Zertifizierung ablduft, hangt von den Anwen-
dern von NexusDS ab. Als Grundlage fiir Kriterien zur Zertifizierung wurde in Abschnitt 2.2.3
die Common Criteria for Information Technology Security Evaluation vorgestellt, die als internationaler
Standard eine Referenz sein konnten. Die Moglichkeit verschiedene digitale Signaturen und
damit verschiedene Priifer zu wihlen, erdffnet die Moglichkeit verschiedene Vertrauensinstanzen
zu schaffen. Beispielsweise konnten alle Komponenten, die von Google entwickelt werden, mit
einer Google Standardsignatur versehen werden. Die Priifungsrichtlinien hinter der Signatur
verspricht woméglich keine vollstandige und detaillierte Uberpriifung des Programmcodes, mag
aber fiir einige Anwendungsszenarien als Garantie ausreichen.

Das Versehen von Komponenten der Operator-Boxen mit Signaturen zur Zertifizierung darf
nicht mit den bereits besprochenen Identitidten verwechselt werden. Jede Komponente einer
Operator-Box hat auch ohne Zertifizierung eine Identitét. Dies sagt jedoch nichts dartiber aus,
ob die Komponente in irgendeiner Form {tiberpriift wurde, sondern ist lediglich dazu da, die
Objekte eindeutig und zweifelsfrei zu identifizieren.

58

Kapitel 7

Architektur des Sicherheitskonzeptes

Auf die Vorstellung des Sicherheitskonzeptes im vorherigen Kapitel folgt die Umsetzung des
Konzeptes zu einer Sicherheitsarchitektur. Die Sicherheitsarchitektur besteht aus mehreren Ser-
vices und Bausteinen, die im vorliegenden Kapitel ausfiihrlich erlautert werden. Zur Erlduterung
gehoren eine detaillierte Beschreibung des Zusammenspiels mit den weiteren Teilen der Sicher-
heitsarchitektur und die Funktionsweise und Aufgaben jedes Services und Bausteines.

Im ersten Abschnitt 7.1 werden die Grundlagen zur Kommunikation in der Sicherheitsarchitektur
erldutert. Die Definition und Auswertung von Zugriffsrichtlinien wird in Abschnitt 7.2 ausfiihrlich
erldutert. Abschnitt 7.3 adressiert die Wiedereinflechtung von Zugriffsrichtlinien in Datenstrome
nach Operator-Boxen.

Der Secure Core Query Services (SCQS) ist fiir die kontrollierte Planung von Anfragen verantwort-
lich und wird in Abschnitt 7.4 vorgestellt. Die bereits erwdhnten Einbettungen sind je in Abschnitt
7.5 zur Secure-Source, Abschnitt 7.6 zur Secure-Box und Abschnitt 7.7 zur Secure-Sink erlautert.
Die folgenden Abschnitte erldutern die Services der Sicherheitsarchitektur. Neben dem SCQS
existiert noch eine weitere Zahl an Services, die fiir die Ausfiihrung der Sicherheitsarchitektur
verantwortlich sind und werden in Abschnitt 7.8 erldutert.

7.1 Kommunikation in der Sicherheitsarchitektur

In der Einleitung zum Kapitel wurde angedeutet, dass die Sicherheitsarchitektur aus mehre-
ren Services besteht. Jeder Service realisiert eine Aufgabe, sodass zur Aufgabenerfiillung die
Notwendigkeit besteht, dass Services Informationen austauschen. Um zu verhindern, dass der
Informationsaustausch eine Schwachstelle der Sicherheitsarchitektur ist, muss sichergestellt sein,
dass die Kommunikationspartner sich authentifizieren kénnen. Was nur dann moglich ist, wenn
jeder Service eine eindeutige Identitdt erhdlt, die von den Kommunikationspartner verifiziert
werden kann. Fiir diesen Zweck erhilt jeder Service der Sicherheitsarchitektur ein digitales
Zertifikat. Mit dem zugewiesenen Zertifikat bestétigt ein Service seine Mitgliedschaft in der
Sicherheitsarchitektur und kann sich fiir die Interaktion mit anderen Services ausweisen. Die

59

7 Architektur des Sicherheitskonzeptes

Vergabe von Zertifikaten erfolgt nach einer Public-Key Infrastruktur, die eine hierarchische Ver-
gabe von Zertifikaten ermoglicht. Die generelle Funktionsweise wurde bereits in Unterabschnitt
2.2.1 erldutert und wird an dieser Stelle nicht weiter ausgefiihrt.

Als Zertifizierungsinstanz, die das Signieren von Zertifikatsantrdgen tibernimmt, und Vali-
dierungsdienst, der die ausgestellten Zertifikate enthilt, dient der zentrale Service Certificate
Autority Point (CAP). Der Service wird in Unterabschnitt 7.8.5 noch im Detail vorgestellt. Vor-
liegende Auspragung der Authentifizierung erlaubt mit der Vergabe von Zertifikaten nur zu
definieren, ob ein Klient eine Verbindung mit Services der Sicherheitsarchitektur aufbauen darf.
Die Entscheidung, welche Informationen ein Klient von einem Service beziehen darf, entscheidet
jeder Service selbst. Zur Entscheidung kann ein Service alle oder nur eine Teilmenge der ausge-
stellten Zertifikate des CAP akzeptieren. Zur Vereinfachung definiert die Diplomarbeit, dass alle
Services die iiber ein digitales Zertifikat des CAP verfiigen, unbeschrankt Informationen austau-
schen. Auf die Diplomarbeit folgende Erweiterungen der Sicherheitsarchitektur konnen aber auch
Zertifikatsketten bilden, die je nach Wurzelzertifikat unterschiedlichen Informationsaustausch
gestattet. Der interessierte Leser findet einen Einstieg zu dieser Thematik in [16].

Ein weiterer Fall, der zu betrachten ist, dass Subjekte Kontakt mit Services der Sicherheitsarchitek-
tur aufnehmen. Das ist zum Beispiel dann der Fall, wenn ein Subjekt eine neue Zugriffsrichtlinie
erstellen will. In diesem Fall erlauben die Zertifikate dem Subjekt zu verifizieren, dass es sich mit
einem authentischen Service der Sicherheitsarchitektur verbindet. Das stellt sicher, dass Subjekte
sensible Informationen nur an vertrauenswiirdige Services der Sicherheitsarchitektur {ibermitteln.
Welchen Subjekten Zugriffe auf den Service erlaubt sind, legt jeder Service individuell fest und
wird jeweils fiir jeden Service spater erortert.

Grundsatzlich gilt fiir die Sicherheitsarchitektur, die Datenkanédle zur Kommunikation zwischen
Services und von Subjekten zu Services sind verschliisselt. Das erschwert ein Abhoren von
sensiblen Informationen, wenn Verbindungen mit Services aufgebaut werden. Datenstrome in
der kontrollierten Anfrageverarbeitung, werden ebenso verschliisselt, was noch im Verlauf des
Kapitels erortert wird.

7.2 Definition und Auswertung von Zugriffsrichtlinien

Zugriffsrichtlinien definieren, unter welchen Bedingungen, ein Zugriff auf von der Sicherheitsar-
chitektur geschiitzte Operatoren gestattet wird. Ein Zugriff in der Sicherheitsarchitektur ist zum
Beispiel die Ausfiihrung eines Input-Manager oder die Verarbeitung von Datenelementen, die
von einer Quelle wihrend der Ausfiihrung in einer Anfrage generiert werden. Operatoren werden
geschiitzt, indem sie nicht in dem urspriinglichen NexusDS verfiigbar gemacht werden, sondern
nur in der Sicherheitsarchitektur von NexusDS. Ist das der Fall, sind auch alle Datenelemente,
die von einem geschiitzten Operator in einer Anfrage zur Ausfiihrungszeit generiert werden,
geschiitzt. Das Secure Operator Repository (SOR) bildet den zentralen Ort der Sicherheitsarchi-
tektur, die alle zu schiitzenden Operatoren beherbergt. Es ist nur noch dann die Ausfiithrung
und die Verarbeitung der von dem Operator erzeugten Datenelemente moglich, wenn an den
Operator gebundene Zugriffsrichtlinien den Zugriff explizit gestatten.

60

7.2 Definition und Auswertung von Zugriffsrichtlinien

Der vorliegende Abschnitt erldutert die Verwendung und den Aufbau von Zugriffsrichtlinien.
Abschnitt 7.2.1 fiihrt ein, wie Zugriffsrichtlinien erstellt und verteilt werden. Das Abbilden von
Bedingungen, die den Zugriff auf Operatoren definieren, fiihrt Abschnitt 7.2.2 ein. Die detaillierte
Struktur von Zugriffsrichtlinien folgt in Abschnitt 7.2.3 gefolgt von den Abschnitten 7.2.4 und
7.2.5, die auf Details zu Evaluatoren und Filter eingehen.

7.2.1 Administration und Verteilung von Zugriffsrichtlinien

Administriert werden Zugriffsrichtlinien an einem zentralen Service der Sicherheitsarchitektur,
der als Policy Administration Point (PAP) bezeichnet wird. Uber den Service kdnnen neue
Zugriffsrichtlinien eingebracht und bestehende Zugriffsrichtlinien verdndert oder geldscht wer-
den. Der Service ist die zentrale Schnittstelle fiir Subjekte um die Zugriffsrichtlinien fiir die
Sicherheitsarchitektur zu bearbeiten. Der Service sorgt fiir eine konsistente Datenhaltung und
fir die Verteilung von Zugriffsrichtlinien an alle Punkte der Sicherheitsarchitektur, die von einer
Anderung betroffen sind. Wird eine Anfrage geplant, werden zur kontrollierten Anfrageplanung
alle relevanten Zugriffsrichtlinien aus dem PAP bezogen. Sind von Anderungen an Zugriffsricht-
linien auch in der Ausfiihrung befindliche Operatoren betroffen, dann miissen die neuen oder
verdnderten Zugriffsrichtlinien aktiv den Operatoren zugestellt werden. Fiir die Weiterleitung
arbeitet der PAP mit dem Secure Core Query Service (SCQS) zusammen. Der genaue Ablauf
wird im weiteren Verlauf der Diplomarbeit erortert.

7.2.2 Abbilden von Zugriffsbedingungen

Ein Zugriff geht immer von einem Subjekt auf ein Objekt. Zur Erinnerung, Objekte sind passive
Daten, zum Beispiel auf einer Festplatte abgelegte Dateien. Subjekte sind Benutzer oder Operato-
ren, die im Auftrag eines Benutzers handeln. Zum Beispiel ist die Implementierung einer Quelle
ein Objekt. Befindet sich die Quelle in der Ausfiihrung, dann ist sie ein Subjekt, da es sich nicht
mehr um ein passives Stiick Information handelt. Deshalb besteht die Ausfiihrung einer Anfrage
aus den Zugriffen “’execute” und *’read’’. Im ersten Schritt miissen die Implementierungen der
Operatoren zur Ausfiihrung gebracht werden, das beschreibt der Zugriffstyp *’execute’. Im
zweiten Schritt sollen die Daten, die von Operatoren erzeugt werden, von weiteren Operatoren
verarbeitet werden. Das erfordert die Priifung auf den Zugriffstyp *’read”’, der definiert, ob ein
Operator die von einem anderen Operator erzeugten Datenelemente lesen darf oder nicht. Eine
explizite Betrachtung eines Zugriffstyps *>write’’ findet im Kontext von der Verarbeitung von
Anfragen nicht statt. Per Definition wird festgelegt, dass in Operatoren eingehende Datenelemen-
te gelesen werden und es sich bei den ausgehenden Datenelementen um neue Datenelemente
handelt. Das heifst, es werden Datenelemente aus Sicht der Sicherheitsarchitektur an Operatoren
grundsétzlich neu erstellt und nicht {iberschrieben. Jedoch hingen die neu erzeugten Datenele-
mente von den Datenstromen ab, aus denen sie erzeugt wurden. Dies wird noch im weiteren
Verlauf genauer erortert.

Der Zugriffstyp *’execute’’ ist abhdngig von dem Subjekt, dass eine Anfrage zur Ausfithrung
bringen will. Die Operatoren der Anfrage sollen nur dann ausgefiihrt werden, wenn dem

61

7 Architektur des Sicherheitskonzeptes

Subjekt die Ausfithrung gestattet ist. Das ermoglicht die Einschrankung der Nutzung von
Operatoren auf ausgewdhlte Benutzergruppen. Eine weitere Einschrankung ist eine Restriktion,
die definiert auf welchen Rechenknoten Operatoren von einem Subjekt ausgefiihrt werden diirfen.
Die Ausfiithrung auf bestimmte Rechenknoten zu beschranken ergibt sich aus der Nutzung der
Rechenknotenressourcen durch Operatoren. Daraus ergibt sich die Moglichkeit einzuschranken,
dass nur ausgewdhlte Subjekte, die Ressourcen von Rechenknoten mit den Fahigkeiten von
Operatoren nutzen konnen, um Ergebnisse in einer Anfrage zu erzeugen. Zum Beispiel ein
Operator, der den GPS-Sensor eines Mobiltelefons ausliest. Dieser nutzt als Ressource den
GPS-Sensor des Mobiltelefons, wenn er auf einem Rechenknoten des Mobiltelefones ausgefiihrt
wird. Wiirde nur beschrankt, ob ein Subjekt einen Operator ausfithren darf oder nicht, konnte
das Subjekt den Operator auf jedem Mobiltelefon zur Ausfithrung bringen und Positionsdaten
auslesen. Dadurch wiirde der Besitz an der Positionsinformation nicht ausreichend berticksichtigt,
um den Zugriff auf die Positionsinformation zu kontrollieren. Die fehlende Bindung wird
hergestellt, indem die Ausfithrung des Operators auch von dem auszufithrenden Rechenknoten
abhéngt. Das heifit, sowohl der Besitzer des Operators, zum Beispiel der Entwickler, als auch der
Besitzer des Rechenknotens, im Beispiel der Besitzer des Mobiltelefons, miissen der Verarbeitung
ihrer Ressourcen mit einer Zugriffsrichtlinie zustimmen.

Nachdem die generierten Datenelemente an den erzeugenden Operator und dessen ausfiihrenden
Rechenknoten gebunden sind, muss die Weiterverarbeitung der generierten Datenelemente
reglementiert werden. Dies geschieht tiber die Auswertung des Zugriffstyps ’read’’, der festlegt
von welchen Operatoren, auf welchen Rechenknoten Datenelemente verarbeiten werden diirfen.
Der Bezug auf die zu verarbeitenden Datenelemente wird hergestellt, indem Bezug auf den
Operator und Rechenknoten genommen wird, der der Ursprung der Datenelemente ist. Will nun
ein Operator A die Datenelemente eines vorgelagerten Operators B lesen, muss fiir den Operator
A eine Menge von Zugriffsrichtlinien vorliegen, die den Zugriff auf den vorgelagerten Operator
B erlauben. Sollte der vorgelagerte Operator A wiederum Operatoren vorgelagert haben, dann
muss A auch fiir diese Operatoren ein Leserecht besitzen. Denn jeder Operator, der an der
Verarbeitung eines Datenelementes teilnimmt, erlangt einen Besitz an dem Datenelement, somit
muss Operator A ein Leserecht an allen vorgelagerten Operatoren besitzen.

Die Auswertung der genannten Zugriffstypen wird in der Sicherheitsarchitektur von dem Policy
Decision Point (PDP) durchgefiihrt. Der Service wird spater noch im Detail erortert.

7.2.3 Definition von Zugriffsrichtlinien im Meta-Daten-Modell

Die Ausgestaltung der Zugriffsrichtlinien wird mit einem Meta-Daten-Modell auf Basis der
AWML, vorgestellt in Abschnitt 3.2, definiert. Die AWML bietet als XML Dialekt die Moglichkeit
beliebige Daten strukturiert abzubilden und integriert sich nahtlos in die vorhandene NexusDS
Architektur. Des Weiteren lassen sich iiber Attribute, Klassen und Schemas flexibel Datenstruktu-
ren definieren und erweitern. Das erleichtert einen zukiinftigen Ausbau des Meta-Daten-Modells
zur Abbildung der Zugriffsrichtlinien, wenn das Sicherheitskonzept neuen Anforderungen
angepasst werden soll.

62

7.2 Definition und Auswertung von Zugriffsrichtlinien

Attribut K | Beschreibung
policylD 1 | Eindeutige Identitdt der ZR
timestamp 1 Definiert ab wann die ZR giiltig ist
role 1.n | Rollen fiir die die ZR gilt
roleInherit 1 Ob die ZR auf untergeordnete Rollen vererbt werden soll
operator 1.n | Menge Operatoren fiir die ZR gilt
access 1 | Zugriffstyp aus der Menge {read,execute}
node 1.n | Operatoren diirfen auf diesen Rechenknoten ausgefiihrt werden
signatureK | o..1 | Offentlicher Schliissel der geforderten Signaturen
immediate 1.1 | Boolescher Wert, der die sofortige Anwendung der ZR definiert
use 0.1 | Definiert mit >+ oder ’-> Anwendung der ZR
policyS o..1 | Digitale Signatur der ZR
Attribut K | Beschreibung
slotID 1 Gilt fiir Datenausgang mit dieser SlotID
with 1.n | Zugriff auf Datenelemente ist diesen Operatoren gestattet
on 1.n | Zugriff auf die Objekte darf auf diesen Rechenknoten erfolgen
unprotected 1 | Boolescher Wert um Datenstrom ungeschiitzt freizugeben

Tabelle 7.1: Basisattribute einer Zugriffsrichtlinie (ZR), Spalte K steht fiir die Kardinalitdt der
Attribute.

Tabelle 7.1 zeigt die Grundmenge an Attribute, die fiir eine Zugriffsrichtlinie definiert wer-
den konnen. Die Kardinalitdt (K) gibt an, ob ein Attribut option, verpflichtend oder beliebig
héufig vorkommen kann. Das Attribut policyID definiert einen eindeutigen Identifikator fiir
die Zugriffsrichtlinie und ist verpflichtend. Der Identifikator der Zugriffsrichtlinie entspricht
der Identitdt der Zugriffsrichtlinie. Der Zeitpunkt, zu dem die Zugriffsrichtlinie definiert wird
und damit giiltig ist, ist als Zeitstempel im Attribut timestamp festgehalten, was ebenfalls eine
verpflichtende Angabe ist. Fiir welche Subjekte die Zugriffsrichtlinie gilt, definiert das Attribut
roles. Die Kardinalitdt fordert mindestens ein Eintrag, es konnen jedoch endlich viele Eintra-
ge zugewiesen werden, sodass die Zugriffsrichtlinie fiir alle Eintragungen gilt. Im weiteren
Verlauf wird noch erortert werden, dass Zugriffsrichtlinien vererbt werden konnen. Um eine
Vererbung fiir die Zugriffsrichtlinie auszuschlieflen, wird das Attribut roleInherit mit false
belegt, sonst mit true. Fiir welche Operatoren die Zugriffsrichtlinie gilt wird tiber das Attribut
operator festgelegt. Auch hier sind Mehrfacheintrége erlaubt, es muss jedoch mindestens ein
Operator definiert werden. Als Angabe sind sowohl eindeutige Identitdten einzelner Operatoren
moglich, als auch die Angabe von Doménen, die Mengen von Operatoren umfassen. Der mit
der Zugriffsrichtlinie adressierte Zugriff definiert das verpflichtende Attribut access, das mit
{"’read”,’execute’’} belegt werden kann. Die Bedeutung der einzelnen Zugriffskonstanten wur-
de bereits erldutert. Soll die Zugriffsrichtlinie sofort an allen Stellen durchgesetzt werden, kann
das boolesche Attribut immediate mit true belegt werden. Dann wirkt sich die Zugriffsrichtlinie

63

7 Architektur des Sicherheitskonzeptes

Attribut K | Beschreibung
evaluatorURI 1 Identitdt des Evaluators
evaluatorV 1 | Nummerische Angabe zur Version des Evaluators
evaluatorS 1 | Signatur des Evaluators zur Priifung der Authentizitat
rule 0.1 | Individuelle Meta-Daten fiir den Evaluator
Attribut K | Beschreibung
filterURI 1 Falls ein Filter angewendet werden soll, die Identitidt des Evaluators
filterV 1 | Numerische Angabe zur Version des Filters
filterS 1 | Signatur des Filters zur Priifung der Authentizitat
slotID 1.n | slotIDs der Datenausgange, auf die der Filter anzuwenden ist
rule 0.1 | Individuelle Meta-Daten fiir den Filter
order 1 | Relative Reihenfolge falls mehr als ein Filter pro s1otID definiert ist

Tabelle 7.2: Optionale Attributmenge zur Definition eines Evaluators (oben) und eines Filters
(unten), Spalte K steht fiir die Kardinalitdt der Attribute.

auch auf die Datenelemente aus, die sich bereits in der Verarbeitung befinden und sonst noch zu
den vorherigen Bedingungen ausgewertet werden wiirden.

Im vorherigen Abschnitt wurde erortert, dass Rechenknoten zur Ausfithrung von Operatoren
explizit zu definieren sind. Hierzu wird das Attribut node mit einer Menge von Rechenknoten-
Identitdten belegt, auf denen die Ausfithrung des Operators gestattet ist. Es muss mindestens
ein Rechenknoten benannt werden, sonst wére der Operator nicht ausfiihrbar. Anstatt einzel-
ner Identititen konnen auch Domdnen angegeben werden, die Mengen von Rechenknoten
enthalten.

Ist als Zugriffstyp *’read”’ definiert, bezieht sich die Zugriffsrichtlinie auf die von dem Operator
erzeugten Datenelemente. Der untere Teil der Tabelle 7.1 definiert die Menge von Attributen, die
je Datenausgang der refrenzierten Operatoren vergeben werden konnen. Eine s1otID ist aus dem
urspriinglichen Operator-Modell von NexusDS und indexiert eindeutig Dateneingénge und Da-
tenausginge. Das Attribut s10tID in der Zugriffsrichtlinie definiert den Index des Datenausgangs,
auf die sich die Attribute with und on beziehen. Sie erlauben die Einschrankungen anzugeben,
von welchen Operatoren, Attribut with, auf welchen Rechenknoten, Attribut on, die ausgehenden
Datenelemente verarbeitet werden diirfen. Das boolesche Attribut unprotected legt fest, ob der
Datenausgang in von Anfragen auflerhalb der kontrollierten Ausfithrungsumgebung lesbar ist.
Wird dieses mit wahr belegt, ist der Datenausgang unverschliisselt und es konnen Operatoren des
urspriinglichen NexusDS an den Datenausgang angebunden werden. Fiir jeden Datenausgang
muss eine Definition vorhanden sein, wenn die Datenelemente fiir andere Operatoren lesbar sein
sollen.

Soll bestimmt werden, dass die ausgehenden Datenelemente der in Attribut operator definierten
Operatoren nur von zertifizierten Objekten verarbeitet werden, kann mit dem Attribut signaturek

7.2 Definition und Auswertung von Zugriffsrichtlinien

Datenkandle zur Abfrage von
Informationen
(Implementierungsabhangig)

S e

Zugriffsrichtlinie

Menge an Zugriffsrichtlinien,
die den Zugriff erfullen
Zugriffstyp, Subjekt, Evaluator >
Operator, Teil-Anfrage

Abbildung 7.1: Schema eines Evaluators mit Eingabe und Ausgabe.

der offentlicher Schliissel des gewiinschten Priifers definiert werden. Ein Eintrag fiir dieses
Attribut impliziert die Ausfithrung in Sicherheitszone-Drei.

Tritt der Fall ein, dass eine Zugriffsrichtlinie zur Ausfiihrungszeit einer Anfrage zuriickgenommen
wird. Miissen alle sich in der Ausfithrung befindlichen Operatoren, die von der Zugriffsrichtlinie
referenziert sind, iiber die Anderung benachrichtigt werden. Hierzu setzt die Sicherheitsarchi-
tektur unter Anderem auf die Interpunktion von Zugriffsrichtlinien in Datenstrome. Fiir die
Operatoren, die die Interpunktionen empfangen, muss erkennbar sein, ob die interpunktierte
Zugriffsrichtlinie zuriickgenommen oder angewendet werden soll. Fiir diesen Zweck existiert
ein Attribut use, dass mit einem Zeichen **+’ oder *’->> definiert, ob die interpunktierte Zugriffs-
richtlinie angewendet oder zurtickgenommen werden soll. Verwendet wird das Attribut nur
dann, wenn die Zugriffsrichtlinie in einen Datenstrom eingeflochten wird. Das Konzept wurde
bereits, wie auch die Interpunktion mit Zugriffsrichtlinien in den Datenstrom von FENCE in
4.4 vorgestellt. Ebenfalls nur fiir die Interpunktion genutztes Attribut ist policys, indem eine
digitale Signatur der Zugriffsrichtlinie eingetragen wird. Diese wird vor der ersten Interpunktion
erzeugt und berechnet sich aus dem eindeutigen Hashwert der Zugriffsrichtlinie, auf den der
geheime Schliissel der Anfrage angewendet wurde. Der Signaturwert wird von jeder Einbettung
vor Verwendung der Zugriffsrichtlinie {iberpriift, um sicherzustellen, dass ein eingebetteter
Operator keine selbst erzeugten Zugriffsrichtlinien in die Datenstrome einschleust. Ein Kopieren
der Signatur ist fiir die Operatoren nicht moglich, denn sie Verfiigen nicht {iber den geheimen
Schliissel der Anfrage.

7.2.4 Optionale Auswertungen von Zugriffsrichtlinien mit Evaluatoren

Es wurde bereits erwdhnt, dass Zugriffsrichtlinien entschieden werden miissen, was einen Mecha-
nismus zu deren Auswertung notwendig macht. Zur Auswertung betrachtet der Policy Decision
Point (PDP) die zu einem Operator definierten Zugriffsrichtlinien und vergleicht den geforderten
Zugriff mit dem von den Zugriffsrichtlinien erlaubten Zugriff. In Abschnitt 5.1.3 wurde das
Anwendungsszenario der intelligenten Fabriken vorgestellt, in dem komplexe Zugriffe kontrol-
liert werden miissen. Um zu vermeiden, dass bereits bestehende Systeme zur Entscheidung
von Zugriffen in die Zugriffsrichtlinienarchitektur von NexusDS vollstindig tibertragen werden

7 Architektur des Sicherheitskonzeptes

miisse, erlaubt die Sicherheitsarchitektur die Definition von Evaluatoren. Evaluatoren sind aus-
fihrbare Objekte, die einen beliebigen Algorithmus zur Entscheidungsfindung implementieren.
Um den PDP anzuweisen, zur Entscheidung eines Zugriffes einen Evaluatoren zu verwenden,
wird eine Zugriffsrichtlinie zusdtzlich mit den in Tabelle 7.2 gezeigten Attribute versehen. Die
Angabe muss die eindeutige Identitdt tiber Attribut evaluatorURI, eine Versionsangabe iiber
Attribut evaluatorV und die digitale Signatur iiber Attribut evaluatorS des Evaluator definie-
ren. Unterschiedliche Versionen erleichtern den Entwicklern von Evaluatoren einen gezielteren
Einsatz von unterschiedlichen Versionen, was zum Beispiel die Einfithrung neuer Evaluatoren
erleichtert. Die Signatur stellt sicher, dass der Evaluator genau die Implementierung aufweist,
die die Zugriffsrichtlinie fordert. Sodass die sicherheitskritische Auswertung genau von der
Evaluator-Implementierung vorgenommen wird, der gefordert ist. Berechnet wird die Signatur
vom zentralen Secure Operator Repository (SOR), dass Evaluatoren vorhalt. Attribut rule ist
ein frei definierbares Feld fiir Meta-Daten, das die Implementierung des Evaluators selbst auswer-
tet. Das erlaubt die flexiblere Nutzung von einer Implementierung fiir verschiedene Aufgaben,
frei nach der Realisierung des Entwicklers.

Fiir jede Zugriffsrichtlinie kann nur ein Evaluator definiert werden. Weiter ist zu beachten, dass
Zugriffsrichtlinien mit Evaluatoren immer Zugriffsrichtlinien ohne Evaluatoren nachgeordnet
werden. Das heifst, wenn eine Entscheidung getroffen werden soll, ob ein Zugriff gestattet ist
oder nicht und es werden mehrere Zugriffsrichtlinien mit und ohne Evaluator fiir den Zugriff
gefunden. Dann werden zuerst die Zugriffsrichtlinien ohne Evaluator ausgewertet, erfiillt eine
davon den Zugriff, werden die Zugriffsrichtlinien mit Evaluator nicht mehr beachtet. Nur
falls keine Zugriffsrichtlinie ohne Evaluator den Zugriff erfiillt, werden Zugriffsrichtlinien mit
Evaluator ausgewertet. Dadurch wird eine gegebenenfalls sehr aufwendige Priifung durch
Evaluatoren vermieden, wenn gewohnliche Zugriffsrichtlinien den Zugriff erfiillen. Die genaue
Rangfolge der Auswertung, sofern mehrere Zugriffsrichtlinien mit Evaluator vorhanden sind,
wird spéter noch erldutert.

Als Eingabe erhilt ein Evaluator die Identitdt der Zugriffsrichtlinie, die ihn definiert, die Art des
gewiinschten Zugriffes aus den Zugriffskonstanten {read, execute}, die Identitdt des Subjektes
das den Zugriff wiinscht und den Operator, auf den der Zugriff erfolgen soll. Soll der Zugriffstyp
read’’ ausgewertet werden, erhilt der Evaluator noch einen Anfrageteilgraph, der dem zu
priifenden Operator in der Anfrage vorgelagert ist. Die Details dazu werden im Abschnitt 7.4, zur
kontrollierten Anfrageplanung, erldutert. Als Ergebnis muss der Evaluator den Zugriff gestattet
oder ablehnen. Sollte der Zugriff erlaubt werden, liefert der Evaluator eine nicht leere Menge von
Zugriffsrichtlinien zuriick, die die Anfrage erfiillen. Mit den zuriickgelieferten Zugriffsrichtlinien
kann die Sicherheitsarchitektur weitere Auswertungen vornehmen und hat die Bestdtigung das
der Zugriff erlaubt ist.

Abbildung 7.1 zeigt das Schema eines Evaluators mit den genannten Eingaben. Mit der gelieferten
Information kann die Sicherheitsarchitektur einen Abgleich durchfiihren, ob der Zugriff gestattet
ist oder nicht. Wie die Implementierung zu einem Ergebnis kommt, ist dem Entwickler des
Evaluators tiberlassen. Denkbar ist zum Beispiel der Zugriff auf anwendungsinterne Datenban-
ken, die NexusDS nicht bekannt sind. Im Anwendungsszenario von Squebber, siehe Abschnitt
5.1.2, konnten das zum Beispiel Freundeslisten sein, die definieren, dass Subjekte befreundet

66

7.2 Definition und Auswertung von Zugriffsrichtlinien

Datenkandle zur Abfrage von
Informationen
(Implementierungsabhangig)

¢------->

Zugriffsrichtlinie

Cd
Transformierte

Subjekt, Operator, SlotID _ | Datenelemente

> Filter

Datenelemente

Abbildung 7.2: Schemas eines Filters mit Eingdngen und Ausgéngen.

sind und so gegenseitig auf Daten zugreifen diirfen. Die Implementierung von Evaluatoren
erleichtert bestehenden Anwendungen, die Sicherheitsarchitektur effizient zu nutzen. Will die
Implementierung auf die Services der Sicherheitsarchitektur zur Entscheidungsfindung zugreifen,
benotigt die Implementierung eine Zertifizierung des zentralen Service Certificate Autority Point
(CAP). Nur dann kann die Implementierung eine Verbindung herstellen. Wo die Evaluatoren zur
Ausfiihrung gebracht werden, wird spéter erldutert.

7.2.5 Transformation von Datenstromen mit Filter

Um den Zugriff auf Datenelemente in Anfragen zu verfeinern und nicht den Zugriff nur vollstan-
dig zuzulassen oder vollstindig zu blockieren, konnen Operatoren mit Filter versehen werden.
Dazu werden analog zum Evaluator Filter in Zugriffsrichtlinien definiert. Tabelle 7.2 zeigt die
dazu notwendigen Attribute. Zusitzliches Attribut ist die slotID, die definiert, an welchen
Datenausgang, im Falle einer Quelle und an welchen Dateneingang, im Fall einer Operation oder
Senke, der Filter zu verwenden ist. Die Attribute bilden eine Gruppe und kénnen mehrfach in
einer Zugriffsrichtlinie definiert werden um je s1otID mehrere Filter anzubringen. Fiir Warte-
schlangen und Input-Manager konnen ebenfalls Zugriffsrichtlinien mit Filter definiert werden.
Ist das der Fall, werden diese mit den Filtern der Operation, der die Warteschlangen und der
Input-Manager vorgelagert ist, vereinigt. Ein Zwischenschalten in die Kette von Warteschlange,
Input-Manager und Operation wire aus Komplexitiatsgriinden nicht sinnvoll. Die Reihenfolge
der Ausfiihrung von Filter wird spéter noch erldutert.

Sollten fiir eine slotID mehrere Filter definiert sein, wird das Attribut order ausgewertet. Es
ist mit einer nattirlichen Zahl zu belegen, nach deren aufsteigender Reihenfolge die Filter
angeordnet werden. Der Filter mit der kleinsten Zahl fiihrt die erste Transformation durch und
der Filter mit der hochsten Zahl die letzte Transformation. Befinden mehrere Filter auf der
gleichen Ordnungsstufe, aus verschiedenen Zugriffsrichtlinien, wird die Ordnung nach Alter der
Zugriffsrichtlinie ausgewertet, von der éltesten zur jiingsten Zugriffsrichtlinie. Die Subjekte, die
Zugriffsrichtlinien mit Filter spezifizieren, miissen darauf achten, dass die Transformationen von
hintereinander ausgefiihrten Filtern kompatibel sind. Lediglich das Datenformat ist festgelegt und
entspricht genau dem, das durch den zu filternden Dateneingang beziehungsweise Datenausgang
des Operators gegeben ist.

7 Architektur des Sicherheitskonzeptes

Wird eine Menge von Operatoren im Attribut operator definiert, dann bezieht sich der definierte
Filter fiir jeden Operator auf dieselbe s1otID. Muss eine Unterscheidung festgelegt werden, weil
die Operatoren zum Beispiel unterschiedliche Datentypen an der gleichen s1otID verarbeiten,
miissen getrennte Zugriffsrichtlinien definiert werden. Ob ein Filter mit dem jeweiligen Daten-
ausgang beziehungsweise Dateneingang kompatibel ist, legen mit Implementierung des Filters
assoziierte Meta-Daten fest. Abbildung 7.2 illustriert das Schema eines Filters. Es handelt sich ana-
log zum Evaluator um ein ausfiihrbares Objekt. Welche Transformation der Filter implementiert,
ist dem jeweiligen Entwickler iiberlassen. Soll der Filter mit Services der Sicherheitsarchitektur
interagieren, ist wie fiir den Evaluator eine Zertifizierung des zentralen Certificate Autority
Point (CAP) Service notwendig. Die Vorhaltung der Filter ist analog zum Evaluator im zentralen
Secure Operator Repository (SOR).

Zu Ausfithrungsbeginn eines Filters erhélt der Filter die Identitdt der Zugriffsrichtlinie, die den
Filter definiert. Anhand der eindeutigen Identitit kann die Implementierung des Filters sich, falls
notig, die Zugriffsrichtlinie zur Auswertung beschaffen. Zudem die Identitdt des Subjektes, dass
die Anfrage ausfiihrt, in der der Filter eingesetzt werden soll und die Identitdt des Operators
und die slotID, der der Filter vor- oder nachgelagert ist. Mit diesen zusétzlichen Informationen
kann die Implementierung des Filters individuell auf die Einsatzumgebung reagieren. Daneben
besitzen Filter genau einen Dateneingang, an den der zu transformierende Datenstrom angebun-
den wird, und genau einen Datenausgang, der den transformierten Datenstrom ausgibt. Uber
diesen Dateneingang und Datenausgang wird der Filter in den betroffenen Datenstrom zwischen-
geschaltet. Aus Griinden der Effizient werden die Filter immer auf demselben Rechenknoten
ausgefiihrt wie der referenzierte Operator.

7.3 Abhangigkeit von Datenstromen und Wiedereinflechtung von
Zugriffsrichtlinien

In den vorherigen Abschnitten wurde bereits angedeutet, dass es notwendig ist, den Fluss
von Datenelementen zu verfolgen. Das ist dann der Fall, wenn fiir den Zugriffstyp *’read”
ermittelt werden muss, von welchen Operatoren ein Datenstrom erzeugt wurde. Zur Ermittlung
des Pfades in der Anfrage, der die Entstehung und Bearbeitung des Datenstromes beschreibt,
ist es notwendig zu wissen, welche Dateneingédnge fiir welche Datenausgéinge relevant sind.
Abbildung 7.3 zeigt die drei moglichen Falle, die auftreten konnen, wenn Datenstrome von einer
Operator-Box verarbeitet werden. Abschnitt 7.3.1 erortert die Moglichkeiten, eine zuverldssige
Zuordnungen von Dateneingdngen auf Datenausgidnge vorzunehmen.

Neben der Aufgabe der Zuordnung muss fiir die Wiederinterpunktion von Zugriffsrichtlinien
ein korrekter Zeitpunkt bestimmt werden. Wiederinterpunktion beschreibt die Aufgabe, Zugriffs-
richtlinien, die tiber die Datenstrome interpunktiert verteilt werden, nach dem Verarbeiten des
Datenstromes durch eine Operator-Box wieder in Datenstrome einzubringen. Das erfordert zum
Ersten eine korrekte Zuordnung, aus welchen eingehenden die ausgehenden Datenstrome erzeugt
werden und zum Zweiten die Ermittlung des korrekten Zeitpunktes zur Wiederinterpunktion.
Diese Fragestellung erortert Abschnitt 7.3.2.

68

7.3 Abhangigkeit von Datenstrémen und Wiedereinflechtung von Zugriffsrichtlinien

Operator

a) Symmetrisch
n=|Eingdnge|=|Ausgdnge|=m

b) Aggregation
n=|Eingdnge|>|Ausgédnge|=m
Operator

c) Aufspaltung
n=|Einginge | <| Ausginge |=m] Tupel Zugriffsrichtlinien Interpunktion

Abbildung 7.3: Mogliche Fille zur Zuordnung von Dateneingidnge auf Datenausgange.

7.3.1 Zuordnung von Dateneingange auf Datenausgange

Die Zuordnung von eingehenden Datenstrémen auf die ausgehenden Datenstrome hdngt von
dem Ursprung der Datenstrome und der durchgefiihrten Operation der Operator-Box ab. Der Ur-
sprung der Datenstrome spielt insoweit eine Rolle, dass ermittelt werden kann, welche Operatoren
fiir die Information eines Datenstromes verantwortlich sind. Ist ein Datenstrom mit Zugriffs-
richtlinien interpunktiert, miissen alle ausgehenden Datenstréme, die mithilfe des geschiitzten
Datenstromes berechnet wurden, ebenfalls mit den urspriinglichen Zugriffsrichtlinien versehen
werden. Welche ausgehenden Datenstrome welchen eingehenden Datenstromen zugeordnet
werden miissen, ist abhéngig von der Operation, die die Operator-Box durchfiihrt.

Wie bereits in der Erlduterung zu den drei Sicherheitszonen in Abschnitt 6.2 beschrieben, kann
die Sicherheitsarchitektur nicht ohne Weiteres eine zuverldssige Annahme treffen, wie die von
der Box durchgefiihrte Operation gestaltet ist. Fiir alle Falle die in Abbildung 7.3 gezeigt sind,
bestehen zahlreiche Moglichkeiten der Abbildung von Dateneingéngen auf die Datenausgange.
Beispielsweise konnte in Fall a) fiir n > 1, jeder zweite Dateneingang auf den letzten Daten-
ausgang abgebildet werden oder alle Dateneingédnge auf alle Datenausgédnge. Deshalb muss
entweder bei der Zuordnung eingehender Datenstrome auf die ausgehenden Datenstrome eine
Heuristik zum Einsatz kommen, oder der Operator muss mit ausreichend Information versehen
werden, sodass die Zuordnung zuverldssig durchgefiihrt werden kann.

Zum Versehen der Operation mit Informationen zur Zuordnung von eingehenden Datenstromen
auf ausgehende Datenstrome, wird das Meta-Daten-Modell von NexusDS zur Beschreibung der
Operationen erweitert. Tabelle7.3 zeigt die zusatzlichen Attribute, die dem Operator Meta-Daten-
Modell hinzugefiigt werden. Die Erweiterung erlaubt fiir jeden Datenausgang zu definieren,
von welchen Dateneingdngen der generierte Datenstrom abhédngt. Zwar wére auch eine Klas-

69

7 Architektur des Sicherheitskonzeptes

Attribut ‘ K ‘ Beschreibung
outputSlotID 1 | Index des zu beschreibenden Datenausgangs
inputSlotID o.n | Indexmenge der abhingigen Dateneingédnge
independent 1 Boolean ob Datenausgang unabhingig ist

Tabelle 7.3: Attribute zur Beschreibung der Abhéngigkeit von Datenausgédngen zu Dateneingén-
gen, Spalte K steht fiir die Kardinalitat der Attribute.

sifizierung von Operatoren moglich, sodass zum Beispiel ein Operator der Klasse Aggregation,
wie in der Abbildung mit Fall b) dargestellt, dennoch wire auch dann nicht genau klar, welche
Dateneingédnge in welche Datenausgiange aggregiert werden. Somit ist eine blofse Klassifizierung
nicht ausreichend, um eine exakte Zuordnung zu definieren. Sollte eine Operation einen neu-
en Datenstrom erzeugen, der unabhingig von allen eingehenden Datenstromen ist, muss der
Sachverhalt explizit vermerkt werden. Sollte die Beschreibung unvollstiandig sein, das heifit, ein
oder mehrere Datenausgidnge haben weder Verweise auf Dateneingédnge noch einen expliziten
Ausschluss, kommt eine Heuristik zum Einsatz. In Sicherheitszone-Hoch sind die Angaben zur
Zuordnung von eingehenden Datenstromen auf ausgehende Datenstrome und eine explizite
Definition von zugriffsrichtlinienfreien Ausgéngen verpflichtend. Die verantwortlichen Priifer, die
die Operatoren verifizieren, haben das Vorhandensein und die korrekte Zuordnung zu priifen.

Sollten in der Sicherheitszone-Mittel keine oder nur unvollstindige Angaben vorhanden sein,
kommt eine Heuristik zum Einsatz. Sie geht grundsétzlich davon aus, dass ausgehende Daten-
strome, die keine eingehenden Datenstrome referenzieren und nicht als unabhiangige Datenstrome
markiert sind, von allen Dateneingdngen abhédngig sind. Das heifst, fiir die Wiederinterpunktion,
dass in den Datenausgang die Zugriffsrichtlinien aller Dateneingdnge wiederinterpunktiert
werden. Wiirde die Heuristik umgekehrt arbeiten und alle keinerlei Zugriffsrichtlinien wieder-
interpunktieren, dann wiirde dieser Ausgang aufgrund des generellen Zugriffsverbotes nicht
mehr weiterverarbeitet werden konnen. Da das Sicherheitskonzept aber die Moglichkeit vorse-
hen will, dass bereits vorhandene Operatoren von NexusDS verwendet werden konnen, ist die
Vorgehensweise nicht sinnvoll. Sonst miisste jeder Operator tiber die erweiterten Meta-Daten
verfiigen, dass nachfolgende Operatoren Datenelemente verarbeiten diirfen. Nicht erkennbar
fiir die Heuristik ist, ob die Menge der Zuweisungen auf Datenausgidnge vollstindig ist. Bei-
spielsweise konnte ein Datenausgang Z mit Zuweisungen auf Eingang A und B versehen sein,
es miisste aber, dass die Zuweisung vollstandig ist, auch Dateneingang C auf Z verweisen. Soll
diese mogliche Liicke ausgeschlossen werden, muss eine Zugriffsrichtlinie signierte Operationen
der Sicherheitszone-Hoch erzwingen.

7.3.2 Zeitpunkt der Einflechtung

Trifft eine Zugriffsrichtlinie zum Zeitpunkt t an einer Operator-Box ein, muss diese fiir alle
Datenelemente, die ab Zeitpunkt ¢ verarbeitet werden auch fiir nachgelagerte Boxen gelten. Die
Wiederinterpunktion in die ausgehenden Datenstrome der Box darf deswegen nicht zu friih
und nicht zu spit stattfinden. Wird zu friih interpunktiert, rutscht die Zugriffsrichtlinie in die

70

7.3 Abhangigkeit von Datenstrémen und Wiedereinflechtung von Zugriffsrichtlinien

Attribut ‘ K ‘ Beschreibung
outputSlotID 1 | Index des zu beschreibenden Datenausgangs
outgoing 1 Zahl ausgehender Datenelemente, k
incoming 1.n | Menge aus {inputSlotID, n} fiir abhdngige Dateneingédnge

Tabelle 7.4: Attribute zur Beschreibung der eingehenden Datenelemente im Verhiltnis der ausge-
henden Datenelemente, Spalte K steht fiir die Kardinalitdt der Attribute.

Zukunft und gilt bereits fiir Datenelemente, fiir die die Zugriffsrichtlinie noch keine Giiltigkeit
haben sollten. Eine zu spidte Interpunktion verletzt den Schutz der Datenelemente, da die
Datenelemente vor der Interpunktion noch mit veralteten Zugriffsrichtlinien verarbeitet werden.
Analog zur Betrachtung der Zuordnung von Dateneingédngen auf Datenausgédnge gilt, dass der
Sicherheitsarchitektur nicht ohne Weiteres klar ist, wann eine Zugriffsrichtlinie interpunktiert
werden muss.

Fiir die korrekte Einflechtung von Zugriffsrichtlinien zwischen die Datenelemente muss bekannt
sein, aus wie vielen eingehenden Datenelementen, wie viele ausgehende Datenelemente entste-
hen. Ebenfalls muss klar sein, auf welche Dateneingédnge und Datenausgénge sich die Angaben
beziehen. Wenn zum Beispiel bekannt ist, dass aus drei eingehenden Datenelementen in Daten-
eingang A und zwei eingehende Datenelemente in Dateneingang B genau ein Datenelement
an Datenausgang C entsteht, kann die Einflechtung exakt vorgenommen werden. Dann muss
lediglich berticksichtigt werden, wie viele Datenelemente sich in den jeweiligen Warteschlangen
aufhalten und ob momentan eine Datenverarbeitung stattfindet. Auf Basis der Informationen
wird dann berechnet, ab welchem Datenpaket das die Operation verldsst, die Zugriffsrichtlinie in
den Datenstrom interpunktiert werden muss. Zur Spezifikation wird wie bei der Verteilung der
Zugriftsrichtlinien auf Datenausgénge das Meta-Daten-Modell des Operatoren-Modell erweitert.
Tabelle 7.4 zeigt die Erweiterung. Zu jedem Datenausgang, der nicht unabhédngig ist, muss
definiert werden, wie viele Datenelemente von welchen Dateneingdngen notwendig sind. Das
Attribut incoming beschreibt fiir jeden eingehenden Dateneingang, identifiziert mit inputS1otID,
die Anzahl eingehender Datenelemente 7, sodass k Datenelement aus dem Operator in den
spezifizierenden Datenausgang gegeben werden. Die Anzahl der ausgehenden Datenelemente k
muss deshalb definiert werden, da ein Operator aus einer beliebigen Anzahl an eingehenden
Datenelementen eine beliebige Anzahl an ausgehenden Datenelementen generieren kann. Die Zu-
verladssigkeit der Angaben hangt von den Zugriffsrichtlinien gewéahlten Sicherheitszonen ab. Nur
in Sicherheitszone-Hoch, kann von einer vollstindigen und korrekten Spezifikation ausgegangen
werden.

Analog zur Verteilung der Zugriffsrichtlinien auf Datenausgdnge muss gekldrt werden, wie
sich die Sicherheitsarchitektur verhilt, falls keine vollstaindigen Angaben vorhanden sind. Fiir
Datenausgénge, die nicht als zugriffsrichtlinienfrei definiert sind oder fiir die keine Angaben
vorhanden sind, werden Zugriffsrichtlinien sofort interpunktiert. Denn es kann keine zuverldssige
Annahme getroffen werden, wie viele Datenelemente von der Operation aus der Warteschlange
entnommen werden und wie viele Datenelemente nach einer Entnahme generiert werden.
Deshalb ist zur Gewihrleistung der Zugriffskontrolle eine Verschiebung der Zugriffsrichtlinie in

71

7 Architektur des Sicherheitskonzeptes

die Zukunft der Moglichkeit vorzuziehen, dass Datenelemente mit veralteten Zugriffsrichtlinien
verarbeitet werden. Der sichere Ausschluss einer Verschiebung der Zugriffsrichtlinie auf der
Zeitachse kann nur mit dem Erzwingen der Sicherheitsstufe-Hoch gewéhrleistet werden.

7.4 Kontrollierte Planung von Anfragen

Die Planung von Anfragen muss unter Berticksichtigung der Zugriffsrichtlinien durchgefiihrt
werden. Im Falle einer Planung ohne Beachtung kann nicht davon ausgegangen werden, dass
eine Anfrage lauffdhig ist und sofort abgebrochen werden muss. Dafiir wird der urspriingliche
Core Query Service zum Secure Core Query Services (SCQS) erweitert. Dieser fiihrt die Planung
von Anfragen unter Beriicksichtigung der aktuellen Zugriffsrichtlinien durch.

Die Ausfiithrung geschiitzter Operatoren kann nur iiber den SCQS erfolgen. Dessen Komponenten,
die im vorliegenden Abschnitt erldutert werden, erhalten Zugang zu dem zentralen SOR. Nur im
SOR sind geschiitzte Operatoren verfiigbar, sodass die urspriingliche Anfrageplanung keinen
Zugriff auf die Operatoren hat. Auf das urspriingliche Operator Repository (OR) besteht vom
SCQS ebenfalls Zugriff, da eine Anfrage sowohl aus geschiitzten Operatoren als auch aus
ungeschiitzten Operatoren bestehen kann. In diesem Fall konnen ungeschiitzte Operatoren aber
nur an Datenausgéinge verbunden sein, die explizit {iber Zugriffsrichtlinien als ungeschiitzt
deklariert wurden. Der Austausch von Information zwischen den Komponenten des SCQS ist
durch digitale Zertifikate geschiitzt. Das heifit, andere Services, die nicht iiber entsprechende
Zertifikate verfiigen, konnen sich nicht in die Anfrageplanung einmischen.

7.4.1 Secure Query Interface (SQl)

Die geschiitzte Variante des Query Interfaces unterscheidet sich gegentiber der ungeschiitzten
Variante dadurch, dass nicht jede Anfrage akzeptiert wird. Es konnen nur die Subjekte Anfragen
absetzen, die iiber eine registrierte Identitét verfiigen, die als authentisch bestétigt werden kann

Im ersten Schritt wird vom Absender (Subjekt) der Anfrage eine gesicherte Verbindung zum
Secure Query Interface (SQI) aufgebaut (1). Nach Aufbau der Verbindung tiberpriift das SQI
den Absender der Anfrage, der zum Verbindungsaufbau Identitit und Passwort tibertrug. Die
Priiffung wird iiber den Identity Administration Point (IAP) durchgefiihrt. Bestitigt dieser
die Identitdt des Subjekts, ist es authentifiziert. Zum Abschluss gibt das SQI die Anfrage mit
der Identitdt des Subjektes, das die Anfrage ausfiihren will, an den Secure Query Optimizer

(SQO).

7.4.2 Secure Query Planer (SQP)

Der Secure Query Planer (SQP) iiberpriift Anfragen mit geschiitzten Operatoren nach den in der
Sicherheitsarchitektur gegebenen Zugriffsrichtlinien. Die Uberpriifung besteht aus dem Abgleich,
ob das Subjekt, dass die Anfrage ausfiihren will, die geschiitzten Operatoren der Anfrage zur

72

7.4 Kontrollierte Planung von Anfragen

1. Anfrage abschicken Secure Core
Query Service (SCQS)
Anfragegraph 2. Identitat von Subjekt
bestatigen Identity
- —> secure QUETY g b o e e > Administration
Interface (SQl) X
Point (IAP)
Secure Query S
1
Flaner (SCF) 3a. Priifen Subjekt v
Q Operatoren in der Anfrage
ausfiihren darf Policy
_yf SecureQuery 3b. Leserecht auf Vorginger Decision
Optimizer (SQO)
Operator Pl Operatoren priifen Point (PDP)
Repository [p=========-] v
(OR) i
Secure Query
1
4. Laden von | > Fragmenter (SQF)
Operatoren und }
Secure Filtern 1 v
1
R:pz;?tt:rr 1 || Secure Execution N
P LA L --» Manager (SEM) > 5. Ausfiihrung der
(SOR)
Anfrage

Abbildung 7.4: Verdnderte Anfrageplanung in der Sicherheitsarchitektur, die Zugriffsrichtlinien
tir die Verteilung der Anfrage berticksichtigt.

Ausfiihrung bringen darf. Des Weiteren wird bei der Uberpriifung bereits eingeschrankt, auf
welchen Rechenknoten die Ausfithrung gestattet ist. Darauf folgt die Uberpriifung, ob jeder
Operator die Datenelemente seiner vorgeschalteten Operatoren verarbeiten darf. Nur wenn fiir
beide Teile eine erfolgreiche Uberpriifung stattfand, leitet der SQP die Anfrage in den néchsten
Schritt weiter. Die Anfrage selbst ist dann mit zusédtzlichen Meta-Daten aufbereitet, sodass
die nachfolgenden Schritte der Anfrageplanung, die Planung und Verteilung im Einklang der
Zugriffsrichtlinien durchfiihren kénnen.

Die Priifung ob eine Anfrage ausgefiihrt werden darf findet in drei Schritten statt. Im ersten
Schritt wird gepriift, ob das Subjekt, dass die Anfrage ausfiihren will jeden Operator der Anfrage
ausfiihren darf. Das betrifft Zugriffsrichtlinien mit dem Zugriffstyp ~’execute”. Im zweiten
Schritt wird sichergestellt, das die hintereinander angeordneten Operatoren, die Datenelemente
ihrer Vorgédnger lesen diirfen. Das betrifft den Zugriffstyp *’read”’. In jedem Schritt kann eine
Menge von Rechenknoten definiert sein, fiir die die Ausfithrung gestattet ist. Sollte im dritten
Schritt aus der Kombination der moéglichen Rechenknoten, auf denen die Operatoren ausgefiihrt
werden diirfen, keine Losung gefunden werden, kann die Anfrage nicht ausgefiihrt werden und
die Anfrageplanung wird Abgebrochen. Allgemein gilt, wird wird die Anfrage abgebrochen,
erhélt der Absender eine Fehlermeldung.

Schritt Eins, Priifung der Ausfiihrbarkeit aller Operatoren. Fiir jeden Operator wird tiber den
zentralen Policy Decision Point (PDP) abgefragt, ob dem Subjekt die Ausfiihrung des Operators
gestattet ist. Dazu wird eine verschliisselte Verbindung zum PDP hergestellt und fiir jeden
Operator die folgende Anfrage stellt. Als Zugriff ’execute’’, die Identitdt des Subjektes, dass die
Anfrage ausfiihrt und die Identitdt des zu priifenden Operators. Ist die Ausfithrung gestattet,

73

7 Architektur des Sicherheitskonzeptes

Quelle Operator-Box Senke

L Quelle, } >|L Warteschlange,

el Input—ManagerlH Operation, } >|L Warteschlange3H Senke, J
uelle

L Quelle, } >|L Warteschlange,

Abbildung 7.5: Vereinfachte Darstellung einer Anfrage als Graph, in der jeder Operator ein
Knoten darstellt.

erhilt der SQP die Menge an Zugriffsrichtlinien, die den Zugriff erfiillen (3a). Die Menge wird
dem Operator zugeordnet und mit dem néchsten Operator der Anfrage in gleicher Weise verfah-
ren. Die Auswertungsreihenfolge der Operatoren spielt keine Rolle, sie konnen einzeln betrachtet
werden, da fiir den Zugriffstyp *’execute’” keine Abhédngigkeit zwischen den Operatoren besteht.
Sollte fiir einen Operator kein Zugriff erlaubt sein, wird die Planung abgebrochen.

Schritt Zwei, Priifung, ob der lesende Zugriff auf die dem Operator vorgelagerten Operatoren
gestattet ist. Vorgelagert sind genau die Operatoren, die auf dem Pfad liegen, der in einen
Dateneingang des zu tiberpriifenden Operators eingeht. Abbildung 7.5 illustriert die Betrachtung
einer Anfrage als Graph. So ist in der Abbildung Senke; auf jeden Fall die Operator-Menge
Warteschlanges, Operation; und Input-Manager; vorgelagert. Die weiteren Vorgianger unterlie-
gen einer Fallunterscheidung, je nachdem wie die Dateneingdnge auf die Datenausgédnge von
Operation; verzweigen. Ist in der Abbildung der Datenausgang von Operation; sowohl von dem
Dateneingang mit Quelle; und Quelle; abhidngig, wire die Menge der vorgelagerten Operatoren
Warteschlanges, Operation;, Input-Manager;, Warteschlange;, Warteschlange;, Quelle; und
Quelles. Ist der Datenausgang nur von Quelle; abhédngig, wére es die Menge Warteschlanges,
Operation;, Input-Manager;, Warteschlange; und Quelleq, der Fall mit nur Quelle; ist symme-
trisch. Die Menge der Knoten (Operatoren), mit den jeweiligen Kanten (Verbindungen) sind ein
Teilgraph des Anfragegraphs. Der Teilgraph enthalt sowohl die Operatoren also auch die jeweils
abhingigen Verbindungen von Datenausgédngen zu Dateneingéngen. Wie die Verzweigungen im
Detail aufgelost werden, entscheidet entweder eine Heuristik oder es bestehen Angaben in den
Meta-Daten der Operation, die der verzweigende Knoten ist. Abschnitt 7.3.1 hat die Handhabung
erldutert und soll hier nicht mehr erldutert werden.

Anfragen an den PDP werden nun wie folgt formuliert. Zugriffstyp ist *’read”’, Subjekt das die
Anfrage ausfiihrt analog zum vorherigen Schritt, der zu priifender Operator und der Teilgraph
V der Vorginger, der oben Beschreiben wurde. Zu jedem Knoten des Teilgraphs v;, wird noch
die Menge an Rechenknoten mitgeliefert, auf denen der Operator des Knotens ausgefiihrt
werden darf. Die Menge der moglichen Rechenknoten kann mit den Zugriffsrichtlinien aus
dem vorherigen Schritt mit Zugriffstyp ~’execute’ berechnet werden, die jedem v; zugeordnet
wurden. Mit diesen wird die Vereinigung des Attributes node gebildet, welche dann genau alle
die Rechenknoten enthilt, auf denen Operator v; ausgefiihrt werden darf (3b). Ergebnis ist im

74

7.4 Kontrollierte Planung von Anfragen

Erfolgsfall wieder eine Menge an Zugriffsrichtlinien fiir den tiberpriiften Operator, die ebenfalls
fiir den Operator vermerkt wird. Der Schritt wird fiir jeden Operator im Graph vorgenommen.
Wird fiir einen Operator keine erfiillenden Zugriffsrichtlinien gefunden, wird die Planung
abgebrochen.

Schritt Drei sucht fiir jeden Operator nach einer nicht leeren Menge an Rechenknoten, auf denen
die Ausfithrung gestattet ist. Jeder Operator hat in beiden vorherigen Schritten eine Menge an
Zugriffsrichtlinien zugeordnet bekommen, die wie folgt verarbeitet wird.

Die Menge der Zugriffsrichtlinien vom Zugriffstyp >’read’’ wird tiber dem Attribut on geschnitten.
Ist die Menge nicht leer und die iibrig gebliebenen Zugriffsrichtlinien enthalten alle v;, existiert
mindestens ein Rechenknoten auf dem alle Vorgénger gemeinsam verarbeitet werden diirfen.
Sonst wird die Verarbeitung abgebrochen. Danach wird die ermittelte Menge an Rechenknoten,
auf denen die Verarbeitung aller Vorgéanger erlaubt ist, mit dem Attribut node der Zugriffsrichtli-
nien vom Zugriffstyp ’execute’ geschnitten. Ubrig bleibt eine Menge von Rechenknoten, auf
denen das Subjekt den Operator ausfiihren darf und der Operator alle vorgelagerten Operatoren
lesen darf.

Aus den erlduterten Teilschritten muss nun eine Kombination gefunden werden, die jedem
Operator einen Rechenknoten zuordnet, sodass jeweils die Datenelemente der vorgelagerten
Operatoren gelesen werden konnen. Ist das nicht moglich, wird die Anfrage abgebrochen. Sollte
fiir einen Operator mehr als eine Zugriffsrichtlinie den Zugriff je Zugriffstyp ’execute’” und
»read”’ gestattet, wird fiir jeden Operator die Menge der Zugriffsrichtlinien nach Rang geordnet.
Hochsten Rang haben die Zugriffsrichtlinien, die weder Filter noch digitale Signaturen definieren.
Es folgen absteigend sortiert die Rédnge Zugriffsrichtlinien mit Filter, mit digitalen Signaturen
und als letztes Zugriffsrichtlinien mit Filter und digitale Signaturen. Unterscheidungen in
jedem Rang werden getroffen tiber die Anzahl der Filter und digitalen Signaturen. Das heifst,
es ist die Zugriffsrichtlinie hoher im Rang, die eine kleinere Anzahl an Filter oder digitale
Signaturen definiert. Die Vorgehensweise wurde gewdhlt, weil sonst in einem offenen System wie
NexusDS, es sehr schnell zu Einschrankungen kommen kann. Das folgt daraus, dass eine hohe
Anzahl an Subjekten fiir verschiedenste Operatoren Zugriffsrichtlinien vergeben kénnen. Die
Auswahl von Zugriffsrichtlinien von nicht maximalem Rang, wiirde mit zuséatzlichen Filtern den
Detailgrad von Informationen einschranken, obwohl weitere Zugriffsrichtlinien eine detailliertere
Verarbeitung zulassen wiirden. In zukiinftigen Erweiterungen der Sicherheitsarchitektur konnte
noch eine Auswertung vorgesehen werden, die anhand einer zusitzlichen Beschreibung von
Filtern abschatzt, wie stark der Detailgrad von Information durch einen bestimmten Filter
beschrankt wird. Dadurch wiirde eine noch feinere Auswahl moglich, denn in der vorliegenden
Rangfolge ware eine Zugriffsrichtlinie mit einem Filter der alle Datenelemente 16scht hoher,
als eine Zugriffsrichtlinie mit zwei Filtern, die keine Verdnderungen vornehmen. Aus Griinden
des Umfanges muss jedoch fiir die Diplomarbeit auf eine feinere Unterscheidung verzichtet
werden.

Nach Beendigung von Schritt Drei steht fiir jeden Operator eine Auswahl von nach Rang
sortierten Zugriffsrichtlinien bereit. Auf Basis der Zugriffsrichtlinien, die den hochsten Rang
besitzen, wird die Anfrage mit zusétzlichen Meta-Daten angereichert. Die Meta-Daten beschreiben
fiir jeden Operator, auf welchen Rechenknoten dieser ausgefiihrt werden darf und definieren

75

7 Architektur des Sicherheitskonzeptes

die Filter, die an die jeweiligen Dateneingdnge und Datenausginge in welcher Reihenfolge
angeordnet werden miissen. Die Reihenfolge der Filter besteht zum einen aus dem in den
Zugriffsrichtlinien definierten Attribut order, dem Zugriffstyp *’read’’ oder ~’execute’ und den
Filtern die aufgrund der Forderungen vorgelagerter Operatoren eingebunden werden miissen.
Zuerst sortiert der SQP alle Filter der Zugriffsrichtlinien in der Reihenfolge des order Attributes,
von der kleinsten natiirlichen Zahl zur hdchsten. Tritt der Fall auf, dass auf einer Zahl mehr als
nur ein Filter definiert ist, kommt es zu einer Fallunterscheidung. Filter von Zugriffsrichtlinien
mit Zugriffstyp *’read’’ stehen vor Filter des Zugriffstyp *’execute’’, sind immer noch Filter auf
der gleichen Ordnung, wird nach Zeitstempel der Zugriffsrichtlinien unterschieden. Filter in
Zugriffsrichtlinien mit <eren Zeitstempeln stehen vor jiingeren, sind die Zeitstempel gleich,
was sehr unwahrscheinlich ist, ist die Reihung nicht deterministisch und folgt aus der zufélligen
Reihenfolge der Datenstruktur. Anhand der definierten Reihenfolge kann bei der Definition
von Zugriffsrichtlinien eine gewisse Abschidtzung getroffen werden, in welcher Reihenfolge
Filter von der Anfrageplanung angeordnet werden. Als weiteres Meta-Datum wird die jeweilige
Zugriffsrichtlinie angefiigt, die den execute Zugriff gestattet und den read Zugriff fiir jeden der
jeweilig vorgelagerten Operatoren. Dies wird noch fiir die Interpunktion mit Zugriffsrichtlinien
eine Rolle spielen und spater erortert. Der Schliissel, mit dem die Datenstrome der Anfrage
verschliisselt werden, berechnet ebenfalls der Secure Query Planer (SQP) und wird als Meta-
Datum der gesamten Anfrage hinzugefiigt.

7.4.3 Secure Query Optimizer (SQO)

Bisher werden von NexusDS keine Optimierung durchfiihrt, weswegen dieser Schritt {iber-
sprungen wird und die Erlduterung der kontrollierten Anfrageplanung direkt am Secure Query
Fragmenter (SQF) anschliefit. Es seien jedoch einige Einschrankungen erwahnt, die bei der
Optimierung auf jeden Fall berticksichtigt werden miissen.

Jede durchgefiihrte Optimierung muss sich im Rahmen der definierten Zugriffsrichtlinien bewe-
gen. Das heifst, Operatoren konnen nur dann durch Optimierungen ersetzt werden, wenn das
Subjekt das Recht hat, die Optimierung auszufiihren. Des Weiteren konnen Verdnderungen der
Operatoren weitreichende Folgen auf die Zugriffsrechte zum Verarbeiten von Datenelementen
haben. Sollte zum Beispiel ein Operator in der Anfrage definiert sein, weil das Subjekt nur mit
diesem Operator Datenelemente einer verbundenen Quelle verarbeiten darf, dann kann der
Operator nicht durch eine Optimierung ersetzt werden. Ahnliches gilt fiir die Auswahl von
Rechenknoten, diese Optimierung muss ebenfalls unter den Einschrankungen der jeweilig gelten-
den Zugriffsrichtlinien betrachtet werden. Es kann also nur dann eine erfolgreiche Optimierung
durchgefiihrt werden, wenn sie in enger Koordination mit den vorhandenen Zugriffsrichtlinien
der Sicherheitsarchitektur abgestimmt wird.

7.4.4 Secure Query Fragmenter (SQF)

Die Fragmentierung der Anfrage darf nun nur noch auf Basis der Einschrankungen des Se-
cure Query Planer (SQP) durchgefiihrt werden. Dazu sind zu jedem Operator die Angaben

76

7.4 Kontrollierte Planung von Anfragen

vorhanden, auf welchen Rechenknoten der Operator ausgefiihrt werden darf. Zum Abschluss
der Fragmentierung wird noch ein Eintrag mit Zeitstempel im Protokoll des SQF erstellt, der
eine Kopie der Anfrage und die Identitdt des Subjektes enthilt, dass die Anfrage abgeschickt hat.
Damit ldsst sich nachvollziehen, welche Subjekte, welche Anfragen zu welcher Zeit ausgefiihrt
haben. Sonst ist die Fragmentierung keinen weiteren Einschrankungen unterlegen.

7.4.5 Secure Execution Manager (SEM)

Nachdem die Anfrage in Fragmente zerlegt wurde, geht sie an die zustindigen Secure Execution
Manager (SEM). Die SEM erfiillen grundsatzlich die gleiche Aufgabe wie die urspriinglichen
Execution Manager (EM), verfiigt aber tiber zusatzliche Funktionen zur Initialisierung und Aus-
fiihrung von kontrollierten Anfragen. Das Verhalten zur Ausfiithrungszeit unterscheidet sich
vom urspriinglichen EM insofern, das er eine Benachrichtigung tiber einen Zugriffsfehler in der
Ausfiihrung erhalten kann. Dann leitet der SEM den Abbruch der Anfrage {iber den Secure Core
Query Service (SCQS) ein, der wiederum eine Fehlermeldung an den Absender der Anfrage
absetzt und die gesamte Abfrage abbricht. Zudem ist die Aufgabe des SEM neue oder verdnderte
Zugriffsrichtlinien an die Einbettungen weiterzuleiten, die der SEM aus dem Secure Core Query
Service erhilt. Es werden immer nur auf die eingebettete Operation passende Zugriffsrichtlinien
an die FEinbettungen weitergeleitet. Passend sind sie dann, wenn sie die Operator-Identitit im
Attribut operator referenzieren.

Zu jedem Operator der aus dem Secure Operator Repository (SOR) bezogen wird, muss die
jeweilige Einbettung aufgebaut werden (5). Bei der Einbettung handelt es sich um eine logische
Konstruktion, die aus verschiedenen Komponenten zusammengesetzt wird. Die Komponenten
tiir alle drei Einbettungstypen, Secure-Source, Secure-Box und Secure-Sink sind gleich. Sie werden
lediglich in unterschiedlicher Form zusammengesetzt. Deren genauer Aufbau wird im folgenden
Abschnitt erldutert. Die Komponenten sind ebenfalls im SOR vorgehalten und werden zum Start
des Fragmentes vom SEM bezogen. Fiir jeden geschiitzten Operator baut der SEM die jeweilige
Einbettung zusammen, versieht die Komponenten der Einbettungen mit Verbindungen zur
Datentibertragung und instantiiert diese in der urspriinglichen Ausfithrungsumgebung von Ne-
xusDS. Wahrend der Instanziierung wird jede Komponente der Einbettung mit den notwendigen
Informationen versehen, die diese fiir die Ausfiihrung benétigt. Das heifist Decoder und Encoder
erhalten den geheimen Schliissel zur Ent- und Verschliisselung der Anfrage. Der Local Policy
Administration Point (L-PAP) erhilt alle Zugriffsrichtlinien, die die Ausfithrung des Operators
ermdoglichen und nach dem hochsten Rang ausgewidhlt wurden. Neben den Zugriffsrichtlinien
erhélt der L-PAP alle digitalen Signaturen, iiber die der Operator verfiigt. Ebenso die Identitat
des Operators und dessen Meta-Daten sowie alle Identitdten der dem Operator vorgelagerten
Operatoren. Die Meta-Daten des Operators werden auch an die Encoder gegeben, da diese
unter Umstdnden Angaben zum Zeitpunkt der Wiederinterpunktion von Zugriffsrichtlinien
beinhalten. Filter werden mit der Zugriffsrichtlinie parametrisiert, die sie definieren, dem Subjekt
das die Anfrage ausfiihrt, der zugeordneten Operator-Identitdt und der jeweiligen slotID. Die
Informationen fiir den SEM sind bereits in Meta-Daten der Anfrage enthalten und wurden von

77

7 Architektur des Sicherheitskonzeptes

dem Secure Query Planer (SQP) erzeugt. Es folgt die Parametrisierung und Ausfithrung der
Operatoren, nach dem Schema des urspriinglichen Execution Managers (EM) (6).

Wihrend der SEM ein Fragmente zur Ausfithrung bringt, wird in einer Datenhaltung des
SCQS vermerkt, welche Operator-Identitit der SEM zur Ausfiihrung bringt. Die Information ist
notwendig um neue und verdnderte Zugriffsrichtlinien in sich in der Ausfiithrung befindlichen
Operatoren weiterzuleiten. Nach der Eintragung wird tiberpriift, ob in der Zwischenzeit der
Planung am SCQS gednderte Zugriffsrichtlinien eingetroffen sind, die einen der Operatoren der
geplanten Anfrage betrafen. Ist das der Fall, werden diese direkt an die zustdndigen Einbettungen
tibertragen, sodass die neuen Zugriffsrichtlinien direkt zu Ausfithrungsbeginn der Anfrage
interpunktiert werden und der aktuelle Stand der Zugriffsbedingungen abgebildet wird.

7.5 Secure-Source, Architektur und Ausfithrungsmodell

Die logische Konstruktion der Secure-Source kapselt eine Quelle, wie sie bisher in NexusDS
verwendet wird, um sie in der urspriinglichen Ausfiihrungsumgebung von NexusDS kontrolliert
auszufiihren. Logisch heifit, dass sie vom Secure Execution Manager (SEM) vor der Ausfithrung
aus den hier erlduterten Komponenten zusammengesetzt wird. Die Secure-Source kommt sowohl
in Sicherheitszone-Mittel als auch in Sicherheitszone-Hoch zum Einsatz, integriert Filter in die
Datenstrome und schiitzt die Datenstrome der Datenquelle vor unkontrolliertem Zugriff durch
Verschliisselung. Die Erlauterung zur Architektur und der Funktionsweise der Secure-Source
geht nur auf die Komponenten innerhalb der Secure-Source ein. Die Komponenten aufSerhalb
der Secure-Source, mit denen die Secure-Source interagiert, werden noch in den nachfolgenden
Abschnitten im Detail erldutert. Abbildung 7.6 illustriert den Aufbau der Secure-Source. Die im
folgenden genannten Schritte, entstammen dieser Abbildung.

Die Secure-Source schaltet die von zuordneten Zugriffsrichtlinien definierten Filter zwischen
die Datenausgénge der eingebetteten Quelle und den Datenausgidngen vorgelagerten Encodern.
So ist sichergestellt, dass alle definierten Filter zur Anwendung kommen. Sind Datenausgénge
explizit fiir den unkontrollierten Teil von NexusDS freigegeben, dann wird keine Verschliisselung
der Datenelemente und keine Interpunktion vorgenommen und sie kdnnen an urspriingliche
Operatoren angebunden werden. Reihenfolge und Auswahl der Filter werden noch im Abschnitt
zur Anfrageplanung erldutert und hier nicht weiter ausgefiihrt. Die direkt vor den Datenausgan-
gen arbeitenden Encoder, interpunktieren den zugeordneten Datenstrom mit Zugriffsrichtlinien
und verschliisseln alle ausgehenden Datenelemente, inklusive der Zugriffsrichtlinien. Die Ver-
schliisselung erfolgt auf Basis eines symmetrischen Schliissels, der exklusiv fiir jeweils eine
Anfrage gilt und wahrend der Anfrageplanung erzeugt wird.

Der Local Policy Administration Point (L-PAP) steuert die Ausfithrung der Secure-Source. Zum
Start der Anfrage erhielt der L-PAP von dem verantwortlichen Secure Execution Manager (SEM)
alle Zugriffsrichtlinien, die die Ausfithrung der Quelle erlauben. Die Menge wird als lokale
Zugriffsrichtlinienmenge bezeichnet. Zur Laufzeit {ibergibt der SEM nur neue oder gednderte
Zugriffsrichtlinien an die Secure-Source, wenn diese betroffen ist (1). Das ist dann der Fall,
wenn das Attribut operator die Identitdt der von der Secure-Source eingebetteten Quelle enthilt.

78

7.5 Secure-Source, Architektur und Ausfiihrungsmodell

5. Schliissel ausgeben Secure Core
|SEEEEEETEEEEEEe - Query Service
0 (scas)
4 *
Secure-Source Local Key A

Administration == = e e m m e e —-———————
Point (L-KAP) 4. Neuen Schliissel
Anfordern

Encoder

Source 2

Filter; M Filter;,, M Encoder
TA
11

Local Policy Administration Point

\ (L-PAP)

1

1

1

1

1

1

1. Ubermittlungneuer 1 | 3. Fehlermeldung 1 2a. Abfrage ob : 2b.

oder verdanderter : 1 zum Abbruch der gegebene Identitat mit : Antwort Ja
Zugriffsrichtlinien : 1 Anfrage gegebenen o6ffentlichen 1 oder Nein

[Schliissel signiert ist :

1V H 1

H 1

Secure : Secure Operator :

Execution | =00 8 S=m=—=-—- > Repository =

Manager (SEM) (SOR)

[Verschlisseltes Datenelement Zugriffsrichtlinien Interpunktion

Abbildung 7.6: Illustration der Architektur der Secure-Source. Die gestrichelten Pfeile stellen die
Interaktion der Komponenten dar, als durchgezogener Pfeil der von der Quelle
erzeuge Datenstrom aus Datenelementen.

Das Attribut nodes muss nicht tiberpriift werden, wére die Secure-Source nicht auf einem
Rechenknoten, dass das Attribut definiert, wére die Zugriffsrichtlinie nicht tibertragen worden.
Erhélt die Secure-Source eine Zugriffsrichtlinie vom SEM, wird sie sofort iiber die Encoder in die
ausgehenden Datenstrome interpunktiert. Vorher berechnet der Encoder noch einen eindeutigen
Hashwert der Zugriffsrichtlinie, mit einer global definierten Funktion und verschliisselt das
Ergebnis mit dem geheimen Schliissel der Anfrage. Das Ergebnis wird dann dem Attribut policyS
zugewiesen und die so modifizierte Zugriffsrichtlinie interpunktiert. Trifft eine Zugriffsrichtlinie
ein, die im Attribut use mit *’+’ markiert ist, priift der L-PAP, ob sie von der Quelle erfiillt wird.
Das gilt dann, wenn der Quelle alle in der Zugriffsrichtlinie definierten Filter, an den definierten
Datenausgdngen vorgelagert sind. Falls von der Zugriffsrichtlinie digitale Signaturen definiert
werden, priift der L-PAP zuerst, ob diese bereits zu Ausfiihrungsbeginn von SEM {ibergeben
wurde. Ist das nicht der Fall, kann der L-PAP tiber das zentrale Secure Operator Repository
(SOR) priifen, ob diese mittlerweile fiir den Operator verftigbar ist. Dazu stellt der L-PAP eine
Anfrage an das SOR. Die Anfrage besteht aus den offentlichen Schliisseln der Zugriffsrichtlinie
und der Identitdt der eingebetteten Quelle, die iiberpriift werden soll (2). Sind die korrekten
Filter vorgelagert und die digitale Signatur stimmt tiberein (2b), wird die Zugriffsrichtlinie
zur lokalen Zugriffsrichtlinienmenge hinzugefiigt, falls nicht verworfen. An dieser Stellte tritt
die Uberlegung in den Vordergrund, auch vom Rang hohere Zugriffsrichtlinien der lokalen
Zugriffsrichtlinienmenge zuzuordnen, die nur eine Teilmenge der eingesetzten Filter definieren

79

7 Architektur des Sicherheitskonzeptes

und damit den Informationsdetailgrad weniger einschrankend. Jedoch widerspricht dies dem
Ansatz, die Verarbeitung auf dem hochsten moglichen Detailgrad durchzufiihren. Die lokale
Menge an Zugriffsrichtlinien dient dazu, dass wenn eine der Zugriffsrichtlinien zuriickgenommen
werden sollte, eventuell noch weitere vorhanden sind um die Ausfiihrung gewihren zu lassen.
Erhélt die Secure-Source eine Zugriffsrichtlinie, die im Attribut use mit *’-*> markiert ist, wird
gepriift, ob diese in der Menge der lokalen Zugriffsrichtlinien vorhanden ist. Wenn ja, wird sie
entfernt. Wurde die letzte Zugriffsrichtlinie geloscht, die den Zugriffstyp ’execute’ erlaubt, ist
die Ausfiihrung nicht weiter gestattet. Dann sperrt die Secure-Source sofort alle Datenausgiange
und sendet eine Fehlermeldung an den Secure Execution Manager (SEM), der die Anfrage
abbricht (3). Der Zugriffstyp *’read”’ ist fiir eine Quelle nicht relevant, da diese nicht ihre selbst
produzierten Datenelemente liest.

Zur Sicherstellung, dass die Secure-Source zu jeder Zeit iiber den giiltigen geheimen Schliissel fiir
die Anfrage verfiigt, ist der Local Key Administration Point (L-KAP) vorgesehen. Er iiberwacht
zur Ausfithrungszeit, ob die Giiltigkeit des geheimen Schliissels, der der Secure-Source bei der
kontrollierten Anfrageplanung zugewiesen wurde, noch giiltig ist. Sollte die Giiltigkeit nur noch
weniger als 10 Minuten betragen, was als ausreichendes Zeitpolster betrachtet werden kann,
fordert der L-KAP einen neuen Schliissel vom fiir die Anfrage verantwortlichen Secure Core
Query Service (SCQS) an (4). Daraufhin erhilt dieser einen neuen Schliissel, der ab Ablauf des
vorherigen Schliissels fiir die gesamte Anfrage gilt (4). Lauft der geheime Schliissel ab, wird
er sofort durch den neuen Schliissel ersetzt, indem der S-KAP den Schliissel an die Encoder
tibergibt.

7.6 Secure-Box, Architektur und Ausfiihrungsmodell

Sollen die verschliisselten Datenstrome aus einer Secure-Source von Operator-Boxen verarbeitet
werden, dann muss jede urspriingliche Operator-Box, bestehend aus Warteschlangen, Input-
Manger und Operator in eine Secure-Box eingebettet werden. Das ist auch dann der Fall,
wenn eine Operator-Box die Datenstrome einer Secure-Box verarbeiten will. Die Secure-Box
entschliisselt eintreffende Datenstrome, transformiert die Datenelemente mit Filtern gemaf3 der
in Zugriffsrichtlinien definierten Filter und reicht sie an die Operator-Box weiter. Nach der
Verarbeitung der Datenelemente durch die eingebettete Operator-Box werden Zugriffsrichtlinien
wiederinterpunktiert und mit den ausgehenden Datenstrémen verschliisselt. Die Secure-Box
verhilt sich analog zur bereits vorgestellten Secure-Source. Die folgende Erlduterung geht nur
noch auf die Unterschiede und Erweiterungen gegeniiber der Secure-Source ein. Abbildung
7.7 illustriert den Aufbau einer Secure-Box, die angegebenen Schrittzahlen beziehen sich auf
Erlauterungen im Text. Einige Interaktionen sind vereinfacht dargestellt und verhalten sich wie
in Abbildung 7.6, die die Secure-Source illustriert.

Im Gegensatz zu einer Secure-Source konnen in einer Secure-Box Zugriffsrichtlinien nicht nur
iiber den Secure Execution Manager (SEM) eintreffen, sondern auch als Interpunktionen {iiber
die Dateneingénge (1). Die Auswertung der interpunktierten Zugriffsrichtlinien unterscheidet sich
in der Auswertung gegeniiber denen, die iiber den SEM eintreffen. Denn diese Zugriffsrichtlinien

8o

7.6 Secure-Box, Architektur und Ausfihrungsmodell

Secure Operator Secure Secure Core
Repository Execution Query Service
(SOR) Manager (SEM) (SCQs)
A A A
1 1 1
1 1 1
1 1 1
1 1]
[1 v
Y Secure-Box
- Local Key
R . . o o o] > Administration
e Zugriffsrichtlinien zu den Point (L-KAP)
? A Encodern zur Interpunktion 1T
1
1 1 1. Interpunktierte : : :
: : Zugriffsrichtlinien 11V
: : Encoder
Decoder 9 Filter; é Filter;,, v
T Operator
1 Box Encoder
Decoder —) Filter; \ 2
' Encoder
1
1 A
: 2. Zihler erhohen, geht an alle Encoder JI

[J verschlisseltes Datenelement Zugriffsrichtlinien Interpunktion

Abbildung 7.7: Architektur der Secure-Box. Die gestrichelten Pfeile stellen vereinfacht Teile der
Interaktion zwischen den Komponenten dar, als durchgezogener Pfeil der von
der Quelle erzeugte Datenstrom aus Datenelementen.

definieren im Attribut operator ein in der Ausfiihrung befindliches Objekt, dass der Secure-Box
vorgelagert ist und dessen Datenelemente von der eingebetteten Operator-Box gelesen werden
sollen. In diesem Fall miissen die Attribute with, on und signatureK ausgewertet werden. Ist
die Identitdt eines Operators der eingebetteten Operator-Box im Attribut with enthalten und der
die Operator-Box ausfithrende Rechenknoten in on, dann gilt die Zugriffsrichtlinie fiir den oder
die Operator-Identitdten der eingebetteten Box. Die weitere Priifung, ob die Zugriffsrichtlinie
gilt, verlauft analog zu dem Vorgang der Secure-Source. Je nach Markierung im Attribut use
mit >+ oder *’->’ wird die Zugriffsrichtlinie dann, wenn sie zutreffend, der lokalen Zugriffsricht-
linienmenge im Local Policy Administration Point (L-PAP) hinzugefiigt oder entfernt. Es gilt
wieder, analog zur Secure-Source, dass fiir jeden Operator der Operator-Box mindestens eine
Zugriffsrichtlinie existieren muss, die den Zugriff ’execute’” erlaubt. Fiir den Zugriff *’read”’
muss nicht nur fiir jeden Operator der Operator-Box eine Zugriffsrichtlinie existieren, sondern
auch fiir alle vorgelagerten Operatoren. Um diesen Abgleich durchzufiihren, hat der L-PAP von
der Anfrageplanung die Menge der vorgelagerten Operatoren mitgeteilt bekommen. Verliert die
lokale Zugriffsrichtlinienmenge alle Zugriffsrichtlinien, die das Lesen einer der vorgelagerten
Operatoren erlauben, muss die Anfrage abgebrochen werden.

Weitere Unterschiede sind das Filter in der Secure-Box den Dateneingédngen vorgelagert sind
und Decoder die eingehenden Datenstrome entschliisseln. Erkennen die Encoder, dass eine
Zugriffsrichtlinie entschliisselt wurde, wird zuerst die Signatur aus Attribut policyS tiberpriift.

81

7 Architektur des Sicherheitskonzeptes

Secure Core
Query Service [€====m===== -

(scas) ;
v .
p— Secure-Slrh

Administration
Point (L-KAP)

Decoder H Filter;

HEE
: 1 1. Sperren
| |

Local Policy Administration Point

(L-PAP)
Y Y

A /

Secure Operator Secure
Repository Execution
(SOR) Manager (SEM)

[J verschliisseltes Datenelement Zugriffsrichtlinien Interpunktion

Abbildung 7.8: Architektur der Secure-Sink. Die gestrichelten Pfeile stellen vereinfacht Teile der
Interaktion der Komponenten dar, als durchgezogener Pfeil der von der Quelle
erzeugte Datenstrom aus Datenelementen.

Dazu wird wieder mit der global bekannten und eindeutigen Hashfunktion die digitale Signatur
der Zugriffsrichtlinie, ohne das Attribut policyS, berechnet und mit dem geheimen Schliissel
der Anfrage verschliisselt. Stimmt das Ergebnis mit der Signatur in Attribut policyS tiberein,
ist die Zugriffsrichtlinie authentisch und wird an den L-PAP weitergeleitet (1). Es folgt die
bereits oben erwahnte Auswertung. Neben der Auswertung trifft der L-PAP auf Basis der in
Abschnitt 7.3 definierten Vorganges die Entscheidung, in welche Datenausginge eintreffende
Zugriffsrichtlinien wiederinterpunktiert werden miissen. Zur Bestimmung des Zeitpunktes
der Wiedereinflechtung miissen Datenelemente abgezdhlt werden, was ebenso im genannten
Abschnitt erldutert wurde. Deshalb stellt jeder Decoder eine Verbindung zu jedem Encoder
her und fiir jedes eingehende Datenelement wird eine kurze Nachricht abgesetzt, sodass der
Encoder einen Zihler fiir den Dateneingang inkrementieren kann (2). In der Abbildung ist dies
nur fiir einen Encoder angedeutet, der Kanal besteht jedoch zu allen Encodern. Anhand einer
Zidhlerdifferenz von eingegangenen Datenelementen und ausgehenden Datenelementen ist dem
Encoder immer bekannt, wie viele Datenelemente sich in der Verarbeitung befinden. Auf Basis
von zusédtzlichen Meta-Daten der eingebetteten Operation und der Zihler kann der Encoder die
Zugriffsrichtlinie zum richtigen Zeitpunkt interpunktieren. Die Meta-Daten erhalten die Encoder
vom SEM zu Ausfiihrungsbeginn. Die Laufzeit der Nachricht zum Inkrementieren des Zahlers
kann vernachléssigt werden, da die direkte Verbindung zwischen Decoder und Encoder eine
kiirzere Laufzeit hat als die eines Datenelementes bis zum Ausgang der Operation.

82

7.7 Secure-Sink, Architektur und Ausflihrungsmodell

7.7 Secure-Sink, Architektur und Ausfiihrungsmodell

Die Aufgabe der Secure-Sink ist eingehende verschliisselte Datenstrome zu entschliisseln, Zugriffs-
richtlinieninterpunktion zu berticksichtigen und gegebenenfalls Filter anzuwenden. Abbildung
7.8 zeigt die Architektur der Secure-Source. Nicht explizit erwédhnte Interaktionen beziehen sich
auf die Abbildung der Secure-Source 7.6 und der Secure-Box 7.7.

Das Verhalten ist analog zur Secure-Box mit dem Unterschied, dass Zugriffsrichtlinien nicht
weiter in Datenstrome eingeflochten werden miissen. Die Uberpriifung auf Anderungen der
Zugriffsrichtlinien ist ebenfalls analog zur Secure-Box. Sollten sich Anderungen ergeben, sodass
die weitere Ausfiihrung der Secure-Sink nicht mehr gestattet ist, werden die Decoder gesperrt (1)
und der Secure Execution Manager (SEM) iiber den Fehler benachrichtigt.

7.8 Services der Sicherheitsarchitektur

Die Sicherheitsarchitektur besteht aus mehreren Services, die unterschiedliche Funktionen rea-
lisieren. Jeder der Services besitzt ein digitales Zertifikat, ausgestellt vom zentralen Certificate
Authority Point (CAP). Inmer dann, wenn zwei Services in Interaktion treten, tiberpriift jede
Seite die Giiltigkeit des Zertifikates der Gegenseite iiber den CAP. Nur falls die Uberpriifung
erfolgreich war, treten die Services in Interaktion. Die Sicherheitsarchitektur ist deshalb in ver-
schiedene Services zerlegt, um die Erweiterbarkeit zu erleichtern und die Services mehrfach,
beziehungsweise verteilt auszufiithren. Dadurch wird es moglich, Services die einer hohen Last
unterliegen, gezielt auf Rechenknoten mit einer hohen Anzahl an Anfragen auszufiihren und so
die Latenz der Antworten zu reduzieren. Weiter erdffnet sich die Moglichkeit, verschiedene Da-
tenhaltungen, zum Beispiel im Anwendungsszenario der intelligenten Fabriken, siehe Abschnitt
5.1.3, als verteilte Datenhaltungen zu realisieren [22]. Fragestellungen, die sich aus der Verteilung
der Services ergeben, wie konsistente Datenhaltung und Verteilung der Daten, wird von der
Diplomarbeit nicht weiter erldutert. Es wird mit der Architektur lediglich eine diesbeziigliche
Erweiterung grundsitzlich unterstiitzt.

In Abschnitt 7.8.1 wird zuerst der zentrale Service Identity Administration Point (IAP) zur
Registratur und Verwaltung von Subjekt-Identitidten vorgestellt. Jedes Subjekt, das mit der Si-
cherheitsarchitektur interagieren will, muss von diesem Service authentifiziert werden kénnen.
Zur Organisation von Subjekten existiert der Role Administration Point (RAP), der ein Rol-
lenmodell verwaltet. In Zugriffsrichtlinien werden Rollen definiert, anstatt die Identitdten von
Objekten direkt zu referenzieren. Die genaue Funktionsweise erldutert Abschnitt 7.8.2. Zur
zentralen Verwaltung und Vorhaltung von Zugriffsrichtlinien beschreibt Abschnitt 7.8.3 den
Policy Administration Point (PAP). Alle geschiitzten Operatoren sind nur im zentralen Secure
Operator Repository (SOR) verfiigbar, der detailliert in Abschnitt 7.8.4 vorgestellt wird. Der
bereits erwidhnte Service zur Vergabe und Priifung von Zertifikaten ist der Certificate Authority
Point (CAP), der in Abschnitt 7.8.5 erldutert wird. Die Entscheidung, ob Zugriffsrichtlinien die
Ausfiihrung oder das Lesen von Datenelementen bestimmter Operatoren erlauben, wird iiber
Policy Decision Point (PDP) entschieden. Details zum PDP erldutert Abschnitt 7.8.6.

83

7 Architektur des Sicherheitskonzeptes

7.8.1 Identity Administration Point (IAP)

Unentbehrlich fiir den Aufbau der Sicherheitsarchitektur ist, dass Subjekte zweifelsfrei und zu-
verldssig authentifiziert werden konnen. Das setzt voraus, dass jedes Subjekt tiber eine eindeutige
Identitat identifiziert werden kann. Weiter muss ein Mechanismus existieren, mit dem Subjekte
ihre Identitdt nachweisen konnen, sodass die von der Sicherheitsarchitektur angenommenen
Identitdten der tatsdchlichen Identitdten der Subjekte entsprechen. Diese Aufgabe wird von dem
zentralen Identity Administration Point (IAP) iibernommen.

Der Charakter von digitalen Identitdten und Mechanismen zum Authentifizieren von behaupteten
Identitaten kann in unterschiedlichster Art und Weifie gestaltet werden. In aktuellen Entwicklun-
gen werden bereits Personalausweise mit digitalen Identitdten versehen, iiber die sich eine Person
zum Beispiel im Internet ausweisen kann, um rechtsverbindliche Vertrdge digital abzuschliefien.
Auch Mechanismen zur Authentifizierung in verteilten und offenen Systemen, wie NexusDS,
existieren bereits, bekannt ist zum Beispiel Kerberos'. In der vorliegenden Diplomarbeit steht
aber nicht im Vordergrund, eines der besten oder neuesten Verfahren zur Abbildung digitalen
Identitdten und deren Authentifikation zum Einsatz zu bringen. Es soll lediglich ein solides und
zuverldssiges Verfahren zum Aufbau und Darlegung des Sicherheitskonzeptes eingesetzt werden.
Deswegen wird fiir Subjekte das hinldanglich bekannte System eines eindeutigen Benutzernamens
und eines Passworts verwendet. Zu beachten ist auch, dass Rechenknoten Subjekte sind, die
Operatoren ausfithren. Deshalb muss auch fiir Rechenknoten eine eindeutige Identifikation
moglich sein, um in Zugriffsrichtlinien eindeutig auf Rechenknoten verweisen zu konnen. Nur
so kann sichergestellt werden, dass nur eine beschrankte Gruppe von NexusDS Teilnehmern die
Ausfiihrung von Operatoren auf geschiitzten Rechenknoten erlaubt ist. Zur Identifikation von
Rechenknoten konnen zum Beispiel Trusted Platform Module* eingesetzt werden, die einen Com-
puter mit einer eindeutigen Identitdt versehen. Zur Vereinfachung verwendet die Diplomarbeit
zur Identifikation eines Rechenknoten, die MAC-Adresse des Netzwerkadapters, der von dem
Rechenknoten zum Datenaustausch mit weiteren Rechenknoten verwendet wird. Bei der Adresse
handelt es ich um einen eindeutigen Wert, der jedem Netzwerkadapter zugewiesen ist.

Kern des IAP ist eine Datenhaltung, in der die Authentifizierungsinformationen zu Subjekten
abgelegt werden. Subjekte registrieren sich unter Angabe von Benutzername und Passwort.
Der Service nimmt die Informationen tiber eine verschliisselte Verbindung entgegen und priift,
ob der Benutzername schon vorhanden ist. Sollte das der Fall sein, wird das Subjekt aufgefordert,
einen anderen Benutzernamen zu wihlen. Ist der Benutzername eindeutig, wird das Passwort
mit einem kryptografischen Verfahren verschliisselt, sodass es zum Beispiel vor dem Einblick der
Administratoren, die direkten Zugriff auf die Datenhaltung besitzen, geschiitzt ist. Das Verfahren
setzt eine kryptografische Hashfunktion ein, die einen eindeutigen Wert liefert. Danach wird
der Benutzername zusammen mit dem Hashwert in die Datenhaltung des Service eingelagert.
Geloscht werden kann eine Identitdt nur unter Angabe von Benutzernahme und Passwort.

"Definition der aktuellen Version 5 unter http:/ /tools.ietf.org/html/rfc4120
>Weiterfiihrende Informationen von Infineon auf http:/ /www.infineon.com/tpm

84

7.8 Services der Sicherheitsarchitektur

Rechenknoten werden ebenfalls tiber den IAP registriert und mit der entsprechenden MAC-
Adresse als Identitdt abgelegt. Zu jeder Rechenknotenidentitdt kann eine Menge von Rollen
definiert werden, die Zugriffsrichtlinien fiir die Rechenknoten vergeben diirfen. Weiter wer-
den einzelne Subjektidentititen einem Rechenknoten hinzugefiigt, die als Administration die
Rollenzuweisungen verweisen. Auf weitere Details wird in der Diplomarbeit aus Griinden des
Umfanges nicht eingegangen.

Will ein Service der Sicherheitsarchitektur tiberpriifen, ob die Identitdt eines Subjektes authentisch
ist, tibertrdgt der Service den vom Subjekt angegebenen Benutzernamen und das Password an
den Service. Der Service priift, ob die gegebenen Eintrage in der Identitdtsdatenhaltung vorhan-
den sind. Ist fiir den Benutzernamen das gegebene Passwort hinterlegt, wird der Benutzername
als Identitdt bestdtigt, andernfalls erfolgt die Ablehnung mit einer Fehlermeldung.

Das besprochene Modell birgt einige Schwachstellen. Darunter féllt die Auswahl schwacher
Passworter, wie zum Beispiel 12345. Dies kann abgemildert werden, wenn die Subjekte ge-
zwungen sind, sicherere Passworter zu wahlen, indem diese algorithmisch auf ihre Qualitat
gepriift werden. Aber auch nach der Wahl eines sicheren Passwortes muss es geheim gehalten
werden. Die Subjekte diirfen es nicht weitergeben, die Verbindungen iiber die Passworter im
Klartext iibertragen werden, miissen abhorsicher sein und die Ziele fiir die Passworter miissen
vor Ubertragung zweifelsfrei als berechtigte Empfanger verifiziert werden. Die Sicherheit von
Mechanismen zur Authentifizierung ist kein direktes Thema der Diplomarbeit, eine detailliertere
Abhandlung findet sich in [16] oder einschldgigen wissenschaftlichen Abhandlungen.

7.8.2 Role Administration Point (RAP)

Bereits in den Anforderungen der Anwendungsszenarien in Abschnitt 5.1 wurde angedeutet,
dass die Sicherheitsarchitektur unter Umstdnden eine grofse Zahl an Subjekten verwalten muss.
Zur Abbildung wird das Role Based Access Control Modell (RBAC) [20] verwendet, dass neben
den Modellen MAC und DAC bereits in Abschnitt 2.3 mit Vor- und Nachteilen erlautert wurde.
RBAC wird ausgewihlt, da es gegeniiber den anderen vorgestellten Modellen Vorteile bei der
Verwaltung grofier Anzahlen von Subjekten bietet und wegen seines hohen Verbreitungsgrades
allgemein gut verstanden wird. Ein gutes Verstandnis wirkt sich positiv auf die Sicherheit aus,
da weniger Fehler bei der Verwendung zu weniger Liicken in Sicherheitseinstellungen fiihren.

Abbildung 7.9 zeigt, wie Zugriffsrichtlinien indirekt iiber Rollen Subjekten zugeordnet werden.
Mit der Zuweisung iiber Rollen lassen sich leicht Mengen von Zugriffsrichtlinien mit Mengen
von Subjekten verbinden, ohne dass jede Zugriffsrichtlinie jedem Subjekt Einzel zugewiesen
werden muss. Gleichzeitig ergibt sich mit der Anordnung von Rollen eine Hierarchie, in der
Abbildung als gerichtete Kanten visualisiert, in der Zugriffsrichtlinien vererbt werden koén-
nen. Das ist insbesondere dann von Vorteil, wenn Organisationsstrukturen, wie im Beispiel
des Anwendungsszenarios der intelligenten Fabriken aus Abschnitt 5.1.3, abgebildet werden
sollen. Beispielsweise konnten in einer Abteilungsleiterrolle alle Rollen der mit der Abteilung
verbunden Subjekte untergeordnet werden. Im einfachsten Vererbungsfall, dass alle Zugriffs-
richtlinien vererbt werden, erhalten die Subjekte mit zugeordneter Abteilungsleiter-Rolle alle

7 Architektur des Sicherheitskonzeptes

Basis Daten- Extention System- Zugriffs-
Benutzer . . P
Rollen besitzer Developer Administrator richtlinine

| Zugriffs-
___________ richtlinine
Individuelle Individuelle po=®
Rolle A Rolle B
Individuelle | \N. /a2l S T
Rolen | —®R 7 X/ F T~
Individuelle Zugriffs-
Rolle C richtlinine

Abbildung 7.9: RBAC Modell das Subjekten Rollen zuweist und Zugriffsrichtlinien an Rollen
bindet [20].

Zugriffsrichtlinien der Mitarbeiter-Rolle. Umgekehrt beinhaltet die Mitarbeiter-Rolle keine Zu-
griffsrichtlinien der Abteilungsleiter-Rolle. Grundsétzlich gilt, ist eine Rolle iiber eine gerichtete
Kante zugeordnet, werden alle Zugriffsrichtlinien an die Ziel-Rolle vererbt, sofern die Definition
der Zugriffsrichtlinie eine Vererbung nicht verbietet. Konflikte in der Vererbungskette konnen
nicht auftreten, da Zugriffsrichtlinien nur Zugriffe erlauben und nicht verbieten. Abbildung
7.9 zeigt ein Beispiel fiir eine mogliche Mehrfachvererbung, in der die Individuelle Rolle C alle
nicht explizit ausgeschlossenen Zugriffsrichtlinien von Individuelle Rolle C und den Basis-Rollen
Extention Developer und System-Administrator erbt. Auch bei Verdnderungen der Relationen von
Subjekten und Zugriffsrichtlinien spielt RBAC Vorteile aus. Verdnderungen, die mehrere Subjekte
betreffen, miissen nicht fiir jedes einzelne Subjekt durchgefiihrt werden, was moglicherweise
zu einem Ubersehen einzelner Subjekte fithren kann, sondern es wird nur die Zuordnung zur
betroffenen Rolle angepasst. Die Anpassung wirkt sich auf alle mit der Rolle verbundenen
Subjekte aus und pflanzt sich automatisch in der gegebenen Vererbungshierarchie fort. Um jede
Rolle einem gewissen Typus in NexusDS zuordnen zu kénnen, endet die Vererbungskette von
individuellen Rolle an einer Basis-Rolle. Beispielsweise konnen nur Subjekte einem Rechenknoten
als Administrator zugeordnet werden, die iiber die Vererbungskette der Basis-Rolle Administrator
zugeordnet sind.

Rollen und Subjekten werden verbunden, indem fiir jede Rolle die Benutzernamen aller zugeord-
neten Subjekte abgelegt werden. Der Benutzername entspricht der Identitdt der Subjekte und
definiert so eine eindeutige Zuordnung. Die Zuordnungen werden im zentralen Role Administra-
tion Point (RAP) Service administriert. Der RAP ist dafiir zustdndig, neue Rollen aufzunehmen,

86

7.8 Services der Sicherheitsarchitektur

Rollen zu 16schen und die Zuordnungen von Subjekten zu Rollen abzubilden. Jeder Rolle konnen
Besitzer zugeordnet werden, Besitzer diirfen Subjekte 16schen, hinzuftigen und neue Rollen
erzeugen, die den Rollen untergeordnet werden diirfen, von denen sie selbst Besitzer sind. Sie
konnen ebenfalls Besitzer hinzuftigen und loschen, es muss aber mindestens immer ein Besitzer
existieren. Wird eine Rolle neu erstellt, ist das erstellende Subjekt der Besitzer.

7.8.3 Policy Administration Point (PAP)

Im Wesentlichen erfiillt der Service die Aufgaben einer zentralen Administration und Daten-
haltung fir Zugriffsrichtlinien. Sollen aktuelle Zugriffsrichtlinien abgefragt werden, ist der
Policy Administration Point (PAP) der zentrale Service fiir Anfragen. Werden neue Zugriffs-
richtlinien erstellt oder bestehende verdndert, tibertrdgt der PDP diese an jeden sich in der
Ausfiihrung befindlichen Secure Core Query Services (SCQS). Der wiederum die Aufgabe hat,
Zugriffsrichtlinien auf sich in der Ausfiihrung befindliche Operatoren weiterzuleiten. Sollte eine
Zugriffsrichtlinie verdndert oder geloscht werden, besteht die Ubertragung an den SCQS aus zwei
Zugriffsrichtlinien. Einmal die Urspriingliche, im Attribut use mit -’ versehen und einmal der
verdanderten Zugriffsrichtlinie mit **+°. Erstere sorgt als Interpunktion dafiir, dass alle betroffenen
Einbettungen fiir Operatoren dariiber informiert werden, welche Zugriffsrichtlinie nicht mehr
gilt. Umgekehrt zur Markierung *’->> weist die Markierung *’+ Zugriffsrichtlinien als giiltig aus.
Im Fall, dass eine Zugriffsrichtlinie neu erstellt wurde, besteht die Ubertragung an den SCQS
nur aus einer Zugriffsrichtlinie, die mit ’+’ markiert ist. Das Markieren der Zugriffsrichtlinien
wird vom PAP automatisch durchgefiihrt.

Neue Zugriffsrichtlinien diirfen von jedem Subjekt erstellt werden, das mit einer eindeutigen
Identitdt am zentralen Identity Adminstration Point (IAP) authentifiziert werden kann. Die
Belegung der Zugriffsrichtlinien-Attribute unterliegt jedoch Bedingungen. Ein Subjekt kann nur
dann fiir einen Operator Zugriffsrichtlinien vergeben, wenn es Mitglied einer Rolle ist, die im
zentralen Secure Operator Repository (SOR) fiir den Operator zur Zugriffsrichtlinienvergabe
eingetragen ist. Gleiches gilt fiir Angabe auf welchen Rechenknoten ein Operator ausgefiihrt
werden darf. Es konnen nur die Identitdten von Rechenknoten fiir das Attribut nodes eingetragen
werden, fiir die das Subjekt als Besitzer im IAP vermerkt ist. Alle anderen Attribute konnen
beliebig belegt werden und unterliegen keinen Restriktionen. Jedoch stellt der PAP sicher, dass
das Subjekt einen Bezeichner fiir die Zugriffsrichtlinie wahlt, der eindeutig ist. Die Belegung der
Attribute beziiglich Evaluatoren und Filter ist nicht eingeschrankt. Das ermoglicht in dieser Versi-
on der Sicherheitsarchitektur deren freie Verwendung. Die Vereinfachung wurde gewiéhlt, um den
Rahmen der Diplomarbeit nicht zu sprengen. Denn eine diesbeztigliche Zugriffsbeschrankung,
erhoht die Komplexitdt der Anfrageplanung erheblich.

Wollen andere Services oder Werkzeuge, zum Beispiel grafische Werkzeuge zum Erstellen von
Zugriffsrichtlinien, Informationen vom PAP abrufen, miissen sie iiber ein giiltiges Zertifikat der
Sicherheitsarchitektur verfiigen, das vom zentralen Certifiate Authority Point (CAP) ausgestellt
wurde.

7 Architektur des Sicherheitskonzeptes

7.8.4 Secure Operator Repository (SOR)

Operatoren werden in der urspriinglichen Version von NexusDS im Operator Repository (OR)
vorgehalten. Fiir die Ablage von geschiitzten Komponenten ist das Repository jedoch nicht
geeignet, da den Operatoren digitale Signaturen zugeordnet werden sollen. Ebenfalls muss der
Zugriff auf die eingelagerten Operatoren beschrankt werden, sodass nur die Anfrage eingelagerte
Operatoren laden konnen, die von Zugriffsrichtlinien erfiillt werden. Fiir diese Aufgabe wird das
urspriingliche Repository erweitert und durch das Secure Operator Repository (SOR) ergianzt.
Abgerufen werden kdnnen die Implementierungen der eingelagerten Operatoren nur von den
Subjekten, die als Besitzer eingetragen sind oder von Services, die iiber ein bestatigtes Zertifikat
des zentralen Certificate Authority Point (CAP) verfiigen. Weitere Detaillierungen sind nicht
vorgesehen, um die Komplexitdt zu begrenzen.

Neue Operatoren kdnnen von jedem Subjekt eingespielt werden, das mit einer eindeutigen
Identitdt authentifiziert werden kann. Es wird dann gleichzeitig als Besitzer des Operators
hinterlegt. Besitzer konnen weitere Subjekte als Besitzer hinzufiigen oder l6schen, es muss aber
mindestens immer ein Besitzer vorhanden sein. Sollte ein Besitzer den Operator 16schen, wird
dieser aus der Datenhaltung mit den Zuweisungen von Besitzern geldscht. Jeder Operator wird
unter einer eindeutigen Identitdt hinterlegt, die vom Subjekt bei Erstellen des Eintrages gewahlt
wird. Die Identitdt ist analog zu dem Bezeichner, der im urspriinglichen OR gewdhlt ist, um
Operatoren eindeutig in Anfragen zu referenzieren. Weitere Angabe ist eine Zuordnung von
Rollen, die definiert, welche Subjekte Zugriffsrichtlinien fiir den Operator vergeben diirfen.

Will ein Subjekt, das ein Priifer fiir Operatoren ist, eine digitale Signatur zu Operator ablegen,
muss das Subjekt sich mit einer eindeutigen Identitit authentifizieren. So wird sichergestellt, dass
ein Priifer nur mit seiner wahren Identitdt Operatoren zertifizieren kann. Der Priifer tibertragt
die Identitdt des gepriiften Operators und die berechnete digitale Signatur. Die Signatur wurde
vom Priifer iiber die Implementierung des Operators mit einer global bekannten Hashfunktion
berechnet und verschliisselt. Der Schliissel zur Verschliisselung ist der private Schliissel aus
dem Zertifikat, dass dem Priifer am CAP ausweist. Dadurch, dass der offentliche Schliissel
jedem Subjekt bekannt ist, kann der offentliche Schliissel in Zugriffsrichtlinien vergeben werden.
Stellt ein Service eine Anfrage, ob ein Operator von einem Priifer P zertifiziert wurde, muss
nur die Identitdt des Operators und der 6ffentliche Schliissel von P iibertragen werden. Das
SOR berechnet darauthin den Hashwert des Operators analog zum Priifer und entschliisselt
die verschliisselte Signatur mit dem in der Anfrage gelieferten 6ffentlichen Schliissel. Stimmen
beide Werte iiberein, wurde der Operator von Priifer P zertifiziert. Dann kann die Anfrage bejaht
werden, sonst verneint.

7.8.5 Certificate Authority Point (CAP)

Der zentrale Certificate Authority Point (CAP) ist die Vertrauensinstanz der Sicherheitsarchitektur.
Sie stellt digitale Zertifikate gemaf3 einer Public-Key Infrastruktur (PKI) aus, die bereits in Abschnitt
2.2.1 erlautert wurde. Die Hintergriinde zu PKI sind nicht Thema der Diplomarbeit, es werden

88

7.8 Services der Sicherheitsarchitektur

deshalb lediglich die Aufgaben und die Interaktion des CAP in der Sicherheitsarchitektur
erldutert. Fiir Details zu PKI und digitalen Zertifikaten wird in [16] verwiesen.

Der Service arbeitet als Registrierungsstelle, die zur Ausfertigung von digitalen Zertifikaten
fiir Services der Sicherheitsarchitektur und Priifer, die Operatoren digital signieren, dient. Will
ein weiterer Service mit einem der Services der Sicherheitsarchitektur kommunizieren, muss er
zuerst iiber den CAP registriert werden. Das dann ausgestellte Zertifikat ermoglicht dem Service,
mit den Services der Sicherheitsarchitektur zu kommunizieren. Das gilt auch, wenn Werkzeuge,
zum Beispiel zur Erstellung von Zugriffsrichtlinien Informationen an der Sicherheitsarchitektur
abfragen wollen.

Weitere Aufgabe ist fiir die Sicherheitsarchitektur als Validierungsdienst zu arbeiten. Uber den
CAP werden dann im Fall vom Aufbau von Verbindungen die Details zu Zertifikaten abgefragt,
sodass die Services der Sicherheitsarchitektur einen unbekannten Kommunikationspartner sicher
authentifizieren konnen.

Neben dem Ausstellen von digitalen Zertifikaten fiir Priifer, die Operatoren mit digitalen Signatu-
ren versehen, dient der Service auch als Verzeichnisdienst. Uber ihn konnen die den Zertifikaten
zugeordneten offentlichen Schliissel abgerufen werden, die eine Priifung durch einen mit dem
Zertifikat verbundenen Priifer implizieren. Das ist notwendig um in Zugriffsrichtlinien den
offentlichen Schliissel eines gewiinschten Priifers einzutragen.

7.8.6 Policy Decision Point (PDP)

Der Policy Decision Point (PDP) entscheidet, ob ein Zugriff auf einen Operator gestattet ist
oder nicht. Dazu kann jeder Service, eine Verbindung zum PDP aufbauen, der die Verbindung
akzeptiert, sofern der Service {iber ein giiltiges Zertifikat des Certificate Authority Point (CAP)
verfligt. Das konnen aber auch zum Beispiel Werkzeuge sein, die die Planung von Anfragen
unterstiitzen, unter der Voraussetzung, sie verfiigen iiber ein digitales Zertifikat des CAP. Eine
Anfrage an den PDP besteht immer aus einem Zugriff, aus der Menge {”read”,”execute”}, die die
Art der Priifung und die Struktur der Anfrage bestimmt. Zu jeder Anfrage kann ein boolscher
Parameter short iibergeben werden, der bestimmt wie weit die Auswertung von Zugriffsricht-
linien ausgefiihrt wird. Ist der Parameter mit wahr belegt, stoppt die Priifung, sobald eine
Zugriffsrichtlinie gefunden wurde, die die Anfrage erfiillt. Sonst werden alle Zugriffsrichtlinien
ausgewertet und zuriickgegeben, das ist zum Beispiel bei der kontrollierten Anfrageplanung
notwendig. Dieser Parameter ist dann sehr hilfreich, wenn nur eine Antwort benétigt wird, ob
ein Zugriff gestattet ist. So lassen sich umfangreiche Auswertungen bei einer hohen Anzahl von
Zugriffsrichtlinien begrenzen.

Im Fall einer Anfrage mit dem Zugriff “’execute’’, ist die Anfrage wie folgt aufgebaut. Identitat
des Subjektes, das die Anfrage ausfiihrt wird als S bezeichnet. Die Identitdt des Operators, der
ausgefiihrt werden soll, wird als O bezeichnet.

Zur Auswertung bezieht der PDP zuerst alle mit S verbundenen Rollen aus dem Role Adminis-
tration Point (RAP). Zuriickgeliefert werden alle die Rollen, denen das Subjekt zugeordnet ist.

89

7 Architektur des Sicherheitskonzeptes

Falls das Subjekt nur direkt einer Rolle zugewiesen ist und nicht durch Vererbung Mitglied ist,
enthdlt die Rolle hierzu eine Markierung. Dann alle Zugriffsrichtlinien aus dem Policy Adminis-
tration Point (PAP), in denen eine der gefundenen Rollen unter dem Attribut role eingetragen ist.
Sollte in der Zugriffsrichtlinie das Attribut roleInherit auf falsch gesetzt sein, dann gelten nur
die gefundenen Rollen, die markiert sind. Denn in diesem Fall erlaubt die Zugriffsrichtlinie keine
Vererbung. Weiter muss das Attribut access mit ’execute’” belegt sein und in Attribut operator
die Identitdt von O vorkommen. Ist die Abfrage am PAP leer, ist der Zugriff nicht gestattet und
es wird Zugriff verboten geantwortet. Wird eine Menge von Zugriffsrichtlinien gefunden, die
keinen Evaluator definieren, antwortet der PDP mit Zugriff erlaubt und gibt die gefundenen
Zugriffsrichtlinien ohne Evaluator zuriick. Finden sich nur Zugriffsrichtlinien mit Evaluator,
werden diese in aufsteigender Reihenfolge nach dem Attribut timestamp der Zugriffsrichtlinien
ausgewertet. Zur Auswertung wird der fiir die Zugriffsrichtlinie definierte Evaluator aus dem
Secure Operator Repository (SOR) geladen und von dem PDP zur Ausfiihrung gebracht. Die
Beschreibung des Verhaltens eines Evaluators wurde in Abschnitt 7.2.4 bereits besprochen. Sollte
eine der Zugriffsrichtlinien digitale Signaturen anfordern, tiberpriift der PAP iiber das SOR, ob
fir den gegebenen offentlichen Schliissel in der Zugriffsrichtlinie eine digitale Signatur vorhan-
den ist. Sobald eine Zugriffsrichtlinie erfolgreich ausgewertet wurde und short mit wahr belegt
ist, antwortet der PDP Zugriff erlaubt und gibt die positiv ausgewerteten Zugriffsrichtlinien
zuriick. Sonst wird die Auswertung fiir alle Zugriffsrichtlinien durchgefiihrt, die die gegebene
Rolle und Operator betreffen und alle erfiillenden Zugriffsrichtlinien zuriickgegeben.

Im Fall einer Anfrage mit dem Zugriff *’read”, ist die Anfrage wie folgt aufgebaut. S und O
sind analog definiert. Zudem ein Teilgraph der Anfrage, der alle Operatoren V und Verbindungen
enthilt, die vor O liegen. Zu jedem Operator der vor O liegt, bezeichnet als v;, wird eine Menge
an Rechenknoten mitgeliefert, R;, die definiert, auf welchen Rechenknoten v; ausgefiihrt werden
darf.

Nun wird fiir jedes v; tiberpriift, ob eine Zugriffsrichtlinie gefunden werden kann, die die
folgende Bedingungen erfiillt. Eine der S zugeordneten Rollen findet sich in dem Attribut role,
abhéngig der bereits oben erwdhnten Vererbung, das Attribut access ist mit “’read’’ belegt und
fiir jeden Datenausgang von v;, findet sich im Attribut with ein Eintrag fiir O und das Attribut
on’’ enthilt einen der Rechenknoten R;. Kann fiir jedes v; eine Zugriffsrichtlinie gefunden werden,
antwortet der PDP Zugriff erlaubt und es wird fiir jedes v;, alle gefundenen Zugriffsrichtlinien
zurlickgegeben. Die Auswertung mit Evaluatoren ist analog, nur dass im Erfolgsfall nur maximal
eine Zugriffsrichtlinie zurtickgeliefert wird. So wird verhindert, das unter Umstdnden sehr viele
Evaluatoren zur Ausfiihrung gebracht werden miissen, obwohl bereits der Zugriff erlaubt ist.
Falls mehrere Zugriffsrichtlinien vorhanden sind, die einen Evaluator bestimmen, werden zuerst
die ausgewertet, die am wenigsten Einschrankungen definieren. Die hierzu definierte Rangfolge
wurde bereits bei der kontrollieren Anfrageplanung erortert.

90

Kapitel 8

Implementierung

In den vorhergehenden Kapiteln wurde ausfiihrlich der Aufbau einer Sicherheitsarchitektur fiir
die verteilte Datenstromverarbeitung in Kontext von NexusDS erldutert. Nach dem Vorgehens-
modell der Diplomarbeit erldutert das vorliegende Kapitel die prototypische Einbringung der
Sicherheitsarchitektur in die aktuelle Implementierung von NexusDS. Es geht nur auf die wich-
tigsten Implementierungsdetails ein. Erortert werden Designentscheidungen, die grundsitzliche
Vorgehensweise und die wichtigsten Verdnderungen an NexusDS, die vorgenommen werden
mussten.

Die Implementierung des Prototyps wird wie NexusDS selbst in Java realisiert, um Schnittstel-
lenprobleme mit der vorhandenen Implementierung zu vermeiden. Besonderer Wert wird auf
eine homogene Einbringung der Sicherheitsarchitektur gelegt, sodass die Fahigkeit, Anfragen
kontrolliert auszufiihren sich nicht mehr als notig auf das urspriingliche NexusDS auswirkt.
Diesem Ziel wurde ein ”“sicheres” Programmieren, das in Kapitel 2 erldutert wurde, {ibergeordnet.
Zur Vertiefung der Entwicklung sicherer Software mit Java, sei der Leser in [17] verwiesen.

Der erste Abschnitt 8.1 stellt die Struktur der Services der Sicherheitsarchitektur vor. Im Vorder-
grund steht das Konzept der Implementierung und die Realisierung der Kommunikation. Der
Abschnitt geht nicht auf die individuellen Interaktionen der Services ein, diese wurde bereits in
den vorherigen Kapiteln ausfiihrlich erldutert.

Die Abbildung von Zugriffsrichtlinien, deren optionale Auswertung mit Evaluatoren und die
Implementierung von Filtern beschreibt Abschnitt 8.2.1. Weiter wird erldutert, wie Zugriffsricht-
linien ausgehen vom Policy Decicion Point (PDP) durch an sich in der Ausfiihrung befindliche
Operatoren propagiert wird. Der Abschnitt enthélt ebenfalls eine kurze Einfiithrung in die
Implementierung der AWML.

Abschnitt 8.3 erortert die Vorgehensweise zur Implementierung der kontrollierten Anfragepla-
nung. Diesbeziiglich sind einige Randbedingungen zu beachten, die sich aus der noch prototypi-
schen Implementierung von NexusDS ergeben. Die Umsetzung der Einbettungen, Ausfithrung
von Filtern und die Realisierung von Interpunktionen erldutert Abschnitt 8.4.

91

8 Implementierung

8.1 Implementierung der Services

Die Sicherheitsarchitektur besteht aus mehreren Services, die unterschiedliche Aufgaben wahr-
nehmen. Darunter gehoren zum Beispiel der Role Administration Point (RAP), der Subjekte eine
oder mehrere Rollen zuordnet. Im Allgemeinen besitzen die Services der Sicherheitsarchitektur
einen gemeinsamen Aufbau, der von diesem Abschnitt erldutert wird. In Abschnitt 8.1.1 wird
auf die Datenhaltung von Services eingegangen und in Abschnitt 8.1.2 die Implementierung der
Kommunikation von Subjekt zu Service und von Service zu Service erldutert.

8.1.1 AWML Datenhaltung fiir Services

Haufig werden Datenhaltungen in Form von relationalen Datenbanken realisiert. Ein bekanntes
Beispiel ist Hibernate', ein fiir Java und .NET verfiigbares Open-Source Persistenz Framework,
dass tiber Objekt-Relationale Zuordnungen die Beziehungen zwischen Objekten, deren Attributen
und Methoden in relationalen Datenbanken ablegt. Punkte, die fiir eine Verwendung von
Hibernate fiir die Datenhaltung der Sicherheitsarchitektur sprechen, sind die umfangreichen
Funktionen und eine grofie Entwicklergemeinde, die fiir eine standige Weiterentwicklung und
Werkzeugunterstiitzung sorgt. Gegen die Verwendung spricht, dass Hibernate mit seinem groflen
Funktionsumfang eine nicht unerhebliche Komplexitit in die Sicherheitsarchitektur einbringt.
Die Komplexitdt und die Einbindung eines externen Frameworks birgt zusdtzliche Fehlerquellen,
die unter Umstdnden die Sicherheit der Datenhaltung negativ beeinflussen kann. Ein weiterer
negativer Aspekt ist, dass sich Hibernate nicht homogen in die von Nexus genutzte Struktur
fiir Kontextmodelle einfiigt, weswegen zusétzliche Erweiterungen und Typtransformationen
eingefiihrt werden miissten. Diese Uberlegung fiihrt direkt zu dem Ansatz, die Argumented
World Language (AWML) als Modell zur Datenhaltung einzusetzen. Mit der Nutzung der AWML
lassen sich die Informationen, die fiir die Sicherheitsarchitektur erzeugt werden, wiederum in
Kontextmodellen verwenden. Zudem konnen bereits vorhandene Werkzeuge von Nexus weiter
eingesetzt werden.

Um die AWML fiir die Datenhaltungen der Services verwenden zu konnen, miissen die
Schemas, die die XML basierende Datenstruktur der AWML definieren, erweitert wer-
den. Alle Erweiterungen betreffend der Datenhaltungen sind {iber das Extended Attribu-
te Schema AccessControlDataStoreExtendedAttributeSchema und das Extended Class Schema
AccessControlDataStoreExtendedClassSchema definiert®. Listing 8.1 zeigt ein Beispiel, wie der
XML-Dialekt der AWML mit einem Typ erweitert wird. Der gezeigte Ausschnitt definiert den Typ
NexusAccessControlIdentitySubjectAttributeType, das die Identitdt eines Subjektes enthalt
und in der Datenhaltung des Identity Administration Point (IAP) zum Einsatz kommt.

Die Basisfunktionalitdt zur Bereitstellung einer AWML-Datenhaltung fiir die Services ist in
der abstrakten Klasse AbstractAWMLDataStore gekapselt. Sie enthélt ein ResultSet in dem alle

'Hibernate ist verfiigbar unter http:/ /www.hibernate.org
2Alle aufgefiihrten Schemas finden sich gesammelt im dem Nexus Projekt nexus—federation—streamFederation—
services—core—accessControl.

92

8.1 Implementierung der Services

<<interface>>

Service

+ start() : void
+ stop() : void
+ invoke(XMLDocument:XMLDoc) : XMLDocument

B

<<abstract>>

AbstractAccessControlService

connectionHandlerThread : AbstractConnectionHandler

awmlFac : AWMLFactory

+ closeRequest() : void
+ start() : void
+ close() : void

7

<<abstract>>

AbstractAdministrationPoint

awml|DataStore : AbstractAWMLDataStore
awmlFileLocation : String

+ closeRequest() : void

7

PAP

<<abstract>>

AbstractConnectionHandlerThread

ConnectionID : connection

+ createHandler(Socket:Socket, int:Port, boolean:Certificated) : void

+ run() : void

7

+ PAP(String:Hostname, int:Port)
+ init() : void

)
PAPDataStore

+ checkPolicylD(ResultSet:Policy) : boolean
+ addPolicy(ResultSet:Policy) : boolean
+ removePolicy(ResultSet:Policy) : boolean
+ getPolicy(String:PolicyID) : ResultSet

v

<<abstract>>

AbstractAWMLDataStore

awmlFile : File
rsDataStore : ResultSet

+ setAwmlFile(String:filePath) : void
+ doSave() : void
getResultSet() : ResultSet

0| PAPConnectionHandler

4
PAPHandleRequest

processCommand(MSG:Msg) : MSG
+ PAP(String:Hostname, int:Port)

+ init() : void

<<abstract>>

AbstractHandleRequest

processCommand(MSG:Msg) : MGS

Abbildung 8.1: Klassenstruktur zur Implementierung eines Services der Sicherheitsarchitektur.

Die Klassen sind vereinfacht dargestellt und enthalten nicht alle Attribute und
Funktionen. Zur Darstellung wurde beispielhaft die Implementierung des Policy
Administration Point (PDP) gewéhlt.

93

8 Implementierung

1 <complexType name="NexusAccessControlIdentitySubjectAttributeType">

2 <sequence>

3 <element name="value'">

4 <complexType>

5 <sequence>

6 <element name="username" type='"nsat:NexusStringType" minOccurs="1" maxOccurs="1"/>
7 <element name="password" type='"nsat:NexusStringType" minOccurs="1" maxOccurs="1"/>
8 </sequence>

9 </complexType>

10 </element>

11 <element ref="nsas:meta" minOccurs="0"/>

12 </sequence>
13 </complexType>

Listing 8.1: Gekiirztes Beispiel fiir einen komplexen Typ zur Definition einer Subjekt Identitit.

Daten des Services abgelegt werden und eine Referenz auf eine AWML-Datei zur persistenten
Speicherung des ResultSet. Die notwendigen Vorgiange zum Anlegen einer neuen Datei, das
Laden und Speichern wird von der abstrakten Klasse iibernommen. Der Umgang mit einer an
die Klasse tibergebenen Datei hiangt davon, ob die Datei leer ist. Im Falle einer nicht leeren
Datei wird versucht, die Datei entsprechend als ResultSet zu laden, ansonsten wird ein neues
ResultSet angelegt. Sollte zur Laufzeit iiber setAwmlFile(String:awmlFile) eine neue Dateire-
ferenz angegeben werden, wird der aktuelle Zustand der Datenhaltung der vorherigen Datei
abgelegt und die neue Dateireferenz zur Persistenz vorgesehen. Die Funktion dient dazu, dass
die Datenhaltungen von Services zur Laufzeit umgestellt werden konnen. Beispielsweise falls
ein Service mehrfach ausgefiihrt wird und als Cache arbeitet, dann kann tiber die Funktion die
Datenhaltung regelmifSig aktualisiert werden, ohne den Service neu starten zu miissen.

Jeder Service implementiert eine eigene Spezialisierung zur Datenhaltung als Erweiterung
der abstrakten AbstractAWMLDataStore Klasse. Beispielsweise im Fall des Policy Administrati-
on Point (PAP) die Klasse PAPDataStore. Die Klasse implementiert die Funktionen, die von
dem zugeordneten Service bendtigt werden um Zugriffsrichtlinien in das ResultSet der Da-
tenhaltung abzubilden. Fiir die Klasse PAPDataStore wire hierzu ein Beispiel die Funktion
checkPolicyID(ResultSet:rsPolicy) mit einem booleschen Riickgabetyp, die zu einer gegebe-
nen Zugriffsrichtlinie ermittelt, ob deren Identifikator bereits in der Datenhaltung vorhanden ist.
So werden die speziellen Funktionen des jeweiligen Services klar getrennt und gleichbleibende
Aufgaben wie das Laden und Speichern der Datenhaltung miissen nicht mehrfach implementiert
werden.

8.1.2 Kommunikation mit den Services

Die Kommunikation von Service zu Service und von Subjekt zu Service lduft grundséatzlich
verschliisselt ab. Dazu werden alle Datenkanéle iiber das Secure Sockets Layer (SSL) Protokoll
aufgebaut, welches von der Java-Erweiterung Secure Socket Extension (JSSE) hinreichend unter-
stiitzt wird. Zur Behandlung von Anfragen erwartet der Service an einem SSL-Socket eingehende
Verbindungen. Die Verbindungen konnen entweder dazu aufgebaut werden, um dem Service

94

8.1 Implementierung der Services

Subjekt Policy Administration Point (PAP) Identity Administration Point (IAP) Secure Operator Repository (SOR)

| |
i i
] |
Verbindung herstellen i

Sendet Willkommensnachricht

Sendet eigene Identitat zur Abfrage ob Subjekt
Authentifizierung o authentisch ist .
Ll L
Fehlermeldung oder Ubertragung Ubermittelt Ergebnis mit
b der Zugriffsrichtlinie anfordern <M_ALLOWED oder M_DENIED

Ubertragung der Zugriffsrichtlinie -

Ll B S

">< Priifen ob Zugriffsrichtlinie
Fehlermeldung absetzen und) bereits vorhanden
- _Verbindung schliefen_____ =" |
|
Abfrage ob Subjekt fiir in der Zugriffsrichtlinie

gegebene Rechenknoten Vergaberechte besitzt

| -
L
Falls M_DENIED absetzten einer B
Fehlermeldung und Verbindung Ubermittelt Ergebnis mit
schlieBen M_ALLOWED oder M_DENIED
<_ ______________________ <_ ____________________ T

Abfrage ob Subjekt fir in derI Zugriffsrichtlinie gegebene

Operatoren Vergaberechte besitzt
T
Falls M_DENIED absetzten einer i
Fehlermeldung und Verbindung . !
2 schlieRen 2 Ubermittelt Ergebnis mit M_ALLOWED oder M_DENIED
__ T T ___

Bestatigung der Erstellung mit , Neue Zugriffsrightlini'g der
M POLICY CREATED _.7 Datenhaltung hinzufiigep
< - - o L -~ |

A 4

Abbildung 8.2: Sequenzdiagramm fiir die Erstellung einer neuer Zugriffsrichtlinie am Policy
Administration Point (PAP).

neue Daten zuzuspielen, wie zum Beispiel Zugriffsrichtlinien im Fall des Policy Administration
Point (PAP), oder zum Abrufen von Information. Information kann entweder von weiteren Ser-
vices abgerufen werden, Subjekten oder auch von Werkzeugen, die an den Service angebunden
werden. Fiir den PAP konnte dies zum Beispiel ein grafisches Werkzeug zur Erstellung von
Zugriffsrichtlinien sein. Aus diesen Griinden eignet sich die Realisierung als 6ffentlicher Socket,
sodass beliebige Erweiterungen und Anwendung lediglich unter Angabe von Hostname und
Port mit dem Service in Kontakt treten konnen.

Zur Abwicklung der eingehenden Verbindungen implementiert jeder Service die abstrakte
Klasse AbstractConnectionHandlerThread. Sie enthilt die grundlegenden Funktionen, um an
den Service gerichtete Verbindung anzunehmen. Eingehende Verbindungen werden nur {iber das

95

8 Implementierung

SSL-Protokoll akzeptiert. Falls der Klient der eingehenden Verbindung tiber ein digitales Zertifikat
verfiigt, wird es tiber den zentralen Certificate Authority Point (CAP) tiberpriift. Solle die Priifung
erfolgreich sein, erhilt der Klient Zugriffsrechte auf alle Daten des Services. Die vorliegende
Implementierung unterscheidet in diesem Fall keine detaillierteren Zugriffsbeschrankungen.
Sollte der Klient iiber kein Zertifikat verfiigen, da es sich zum Beispiel um ein Subjekt handelt,
das neue Zugriffsrichtlinien eintragen will, muss die Implementierung des Service die Priifung
auf ausreichende Rechte vornehmen. Das kann zum Beispiel durch eine Kontaktaufnahme
zum Identity Administration Point (IAP) geschehen, der eine gegebene Identitat bestatigt oder
ablehnt. Jede eingehende Verbindung wird an eine Implementierung der abstrakten Klasse
AbstractHandleRequest iibergeben. Diese lduft in einem eigenen Thread, sodass Anfragen
behandelt werden konnen, ohne den Service fiir weitere Anfragen zu blockieren.

Zur Bearbeitung von Anfragen wird die abstrakte Klasse AbstractHandleRequest mit der Funk-
tion processCommand (MSG:msg) implementiert. Die Funktion erhilt eine Instanz der Klasse MSG,
die die eingehende Anfrage darstellt. Eine Anfrage besteht aus einem String, der mit einem
Befehl oder einer Nachricht belegt werden kann und einem ResultSet, fiir Informationen auf
Basis der AWML. In der Funktion behandelt die individuelle Implementierung die Anfrage und
liefert als Antwort an den Klienten wiederum eine Instanz der Klasse MSG. Als Beispiel wird
eine Anfrage an den Service Role Administration Point (RAP) angefiihrt, die den Zweck hat eine
Menge von Rollen fiir eine Subjektidentitdt abzufragen. Als String fiir den Befehl wird eine
Konstante eingetragen, die den Abruf von Rollen zu einem Subjekt definiert. Der RAP liefert
dann als Antwort eine Nachricht tiber Erfolg oder Misserfolg und bei Erfolg zusitzlich ein
ResultSet mit den gefundenen Rollen. Zur Auswertung von Anfragen greift der Service in der
Regel auf die angeschlossene AWML-Datenhaltung zuriick, indem Information abgefragt oder
verdndert wird. Abbildung 8.2 zeigt in Form eines Sequenzdiagrammes3 beispielhaft, wie die
Interaktion zwischen den Services der Sicherheitsarchitektur ablduft, wenn ein Subjekt am Policy
Administration Point (PAP) eine neue Zugriffsrichtlinie eintragen will.

8.2 Zugriffsrichtlinien

Der Abschnitt 8.2.1 gibt einen kurzen Einblick in die Implementierung der Argumented World
Language (AWML) und beschreibt, wie die Attribute der Zugriffsrichtlinien in die AWML
abgebildet werden. Zur Auswertung von Zugriffsrichtlinien werden die bereits im vorherigen
Kapitel erlduterten Vergleiche durchgefiihrt. Die Vergleiche basieren dabei immer auf der Suche
nach Zugriffsrichtlinien, die einen geforderten Zugriff abdecken. Um diese einfache Art der
Vergleiche zu erweitern, wurden Evaluatoren vorgestellt, deren Implementierung in Abschnitt
8.2.2 beschrieben wird. Dass Individuelle transformieren von Datenelementen, um Information
vor einer Verarbeitung zu loschen oder zu verschleiern, wird mit Filtern realisiert. Wie Filter
individuell implementiert werden kénnen, beschreibt Abschnitt 8.2.3.

3Erganzende Sequenzidiagramme fiir die weiteren Services befinden sich im Nexus Projekt nexus—federation—
streamFederation—services—core—accessControl.

96

8.2 Zugriffsrichtlinien

ResultSet

1.n

4

<<NexusAccessControlPolicies>>

GenericObject

policy : NexusAccessControlPolicyAttribute Type
policyRead : NexusAccessControlPolicyReadAttribute Type

<<NexusAccessControlPolicyAttribute Type>> <<NexusAccessControlPolicyReadAttribute Type>>
GenericAttributinstance GenericAttributinstance
1.1 1.n 1.1 1.n 1.n
)
<<NexusStringType>> <<NexusStringType>> <<NexuslntegerType>> <<NexusStringType>> <<NexusStringType>>
GenericAttributPart GenericAttributPart GenericAttributPart GenericAttributPart GenericAttributPart
policylD roles slotID with on

Abbildung 8.3: Unvollstandiger Ausschnitt der Abbildung von Zugriffsrichtlinien in die AWML,
die vollstindige Menge an Attribute findet sich in den erwdhnten Schemas in
Abschnitt 8.2.1.

8.2.1 Abbildung der Zugriffsrichtlinien

Die Abbildung von Zugriffsrichtlinien erfolgt in der AWML mit den Sche-
mas AccessControlPolicyExtendedAttributeSchema zur Definition der Typen und
AccessControlPolicyExtendedClassSchema zur Definition der Klassen. Die Attribute wurden
bereits in Abschnitt 7.2 umfassend erldutert und werden direkt in die AWML abgebildet.
Unterschiede finden sich lediglich in der Gruppierung, da in der AWML Attribute nicht beliebig
tief verschachtelt werden konnen. Abbildung 8.3 zeigt einen unvollstindigen Ausschnitt, wie
die Attribute abgebildet werden. Zum besseren Verstdndnis der nachfolgenden Erlduterungen
folgt eine kurze Einfithrung in das Modell der AWML. Basiselement ist ein ResultSet, dass
eine beliebige Anzahl von GenericObject Instanzen enthilt. Jedes GenericObject verfligt
wiederum tiber eine beliebige Anzahl von GenericAttributeInstance. Sie bilden den Container
fiir eine Gruppe von GenericAttributPart Instanzen, die die Werte fiir die Attribute der
Zugriffsrichtlinien abbilden. In diesen drei Ebenen werden die Zugriffsrichtlinien abgebildet,
indem jedes Attribut einer bestimmten Gruppe zugeordnet wird. Jede Zugriffsrichtlinie ist
ein GenericObject und enthdlt fiir die erste Attributgruppe eine GenericAttributeInstance
vom Typ policyDescription. Sie erfasst die wichtigsten Attribute zur Beschreibung einer
Zugriffsrichtlinie wie zum Beispiel policyID und access. Mit der Attributgruppe wird die
Zugriffsrichtlinie identifiziert und die elementaren Eigenschaften beschreiben, weshalb sie genau
einmal vorkommen muss. Im Gegensatz dazu darf die Gruppe policyAssignment beliebig
héufig vorkommen, mindestens aber einmal. Sie fasst die Attribute zusammen, an welche

97

8 Implementierung

Rolle role, Operator operator und Rechenknoten node die Zugriffsrichtlinie gebunden ist. Die
Gruppe policyRead fasst alle Attribute zur Beschreibung des Lesezugriffs zusammen. Das heifst,
eine slotID auf die sich der lesende Zugriff bezieht, das Attribut with zur Referenzierung
von Operatoren und das Attribut on, zur Definition auf welchen Rechenknoten das Lesen
der ausgehenden Datenelemente des Operators erlaubt ist. Da diese Gruppe nur im Falle
des Zugriffstyp >’read’’ notwendig ist, muss sie nicht zwangsldaufig vorkommen. Sollte der
Zugriffstyp jedoch *’read’’ sein, muss sichergestellt werden, dass die Gruppe mindestens einmal
vorkommt. Derartige Restriktionen sind allerdings mit der aktuellen Version der AWML nicht
moglich, weshalb die Implementierung der Policy Administration Point (PAP) die Einhaltung
tiberwacht. Die Definition der Attributgruppen policyEvaluator zur Definition von einem
Evaluator, die maximal einmal vorkommen darf, und die Gruppe policyFilter zur Definition
von Filtern verhalten sich analog.

8.2.2 Implementierung von Evaluatoren

Evaluatoren konnen optional anstelle der Sicherheitsarchitektur die Entscheidungen treffen,
ob ein Zugriff gestattet ist oder nicht. Dazu werden Zugriffsrichtlinien zur Auswertung an
Evaluatoren iibergeben. Welcher Evaluator das ist, wird von der auszuwertenden Zugriffsrichtli-
nie bestimmt. Implementiert werden Evaluatoren mit dem Interface Evaluator und unter der
Verwendung der abstrakten Klasse AbstractEvaluator. Die abstrakte Klasse realisiert bereits
die grundlegenden Funktionen, auf denen individuelle Evaluatoren aufgebaut werden konnen.
Zur Ausfithrung gebracht werden die Operatoren im Policy Decision Point (PDP), der nach Be-
darf die Evaluatoren aus dem Secure Operator Repository (SOR) ladt, instanziiert und mit den
notwendigen in Abschnitt 7.2.4 beschriebenen Parametern versorgt. Danach wird die Funktion
evaluate () ausfiihrt, die im Erfolgsfall ein ResultSet zuriickliefert. Im erfolgreichen Fall enthilt
das ResultSet eine Zugriffsrichtlinie nach dem bereits definierten Schema, das dann die ur-
spriingliche Zugriffsrichtlinie fiir die Auswertung ersetzt. Zu beachten ist, die Ersetzung ist nur
temporadr fiir die Weiterverarbeitung der Zugriffsrichtlinie und nicht von Dauer. Das erleichtert
die Weiterverarbeitung im Falle der Anfrageplanung, weil die Riickgabe des Evaluators wie eine
reguldre Zugriffsrichtlinie verarbeitet werden kann. Sollte der Zugriff nicht gestattet worden sein,
wird anstatt einem ResultSet nur null zuriick geliefert.

8.2.3 Implementierung von Filter

Filter ermoglichen, wie in Abschnitt 7.2.5 beschrieben, beliebige Transformationen auf Daten-
elemente durchzufiihren. Sie konnen grundséitzlich im Rahmen ihrer Spezifikation frei im-
plementiert werden. Die Spezifikation wird vom Interface Filter<T> vorgegeben, dass das
Minimum an Funktionen definiert, die ein Filter implementieren muss. Dazu gehort die Funktion
process(T:element), die die Transformation des Filters implementiert und deren Riickgabe-
typ ebenfalls von Typ T ist. Implementierungen von Filter miissen auf die abstrakte Klasse
AbstractFilter<T> aufsetzen, die die grundlegenden Funktionen fiir einen Filter implementiert.
Darunter fallen zum Beispiel setter Methoden, die den Filter mit Parameter versorgen, wie

98

8.2 Zugriffsrichtlinien

\ \ Registriert sich beim Start

| !

/ 7
‘ Policy

Administration }

Point ‘

/ Zugriffsrichtlinien
Verteilen

| StreamNode }: ‘ StreamNodeGroup ‘

\

A

Zugriffsrichtlinienanderung

Abbildung 8.4: Schema wie neue Zugriffsrichtlinien von der Sicherheitsarchitektur an sich in der
Ausfiihrung befindliche Operatoren weitergeleitet werden.

zum Beispiel welches Subjekt die Anfrage ausfiihrt. Zur Beschreibung des Datentyps, der vom
Filter verarbeitet wird, greift die Implementierung auf das Meta-Daten-Modell der Operatoren
zuriick. Die direkte Ubernahme bietet sich deshalb an, da die Filter direkt an die Operatoren
die Datenausgidnge und Dateneingdnge angeheftet werden, deren Datentyp kompatible sein
muss. Fiir den Prototyp wird nur die Definition des Typs NexusSlotAttributeType aus dem
OperatorExtendedAttributeSchema beachtet, die direkt mit den Angaben zur jeweilig zugeord-
neten s1otID der Operatoren abgeglichen werden kann. Die Meta-Daten werden jeweils im Paket
des Filters, in einer Datei namens Descriptor.awml abgelegt.

Der Prototyp der Sicherheitsarchitektur implementiert zur Illustration des Konzeptes den Filter
ResultSetFilter. Dieser Filter erhilt tiber das Zugriffsrichtlinien Attribut rule ein ResultSet,
dass tiber die Kette von GenericObject, GenericAttributInstance und GenericAttributPart
definiert, welche Instanzen aus eingehenden ResultSets zu loschen sind. Wie in Abbildung
8.3 kann ein ResultSet als Baum dargestellt werden. Der Filter 16scht genau dann jeweils
die im ResultSet bestehenden Blétter aus den eingehenden ResultSets. Zum Beispiel falls
ein GenericObject keine Kindobjekte besitzt, dann werden alle eingehenden GenericObject
dieses Typs geloscht. Besitzt das GenericObject mehrere GenericAttributInstance Kinder, die
keine Kindobjekte besitzt, werden alle GenericAttributInstance vom gleichen Typ geloscht.
Mit dieser Konvention miissen keine zusatzlichen Attribute eingefiihrt werden, die explizit ein
Loschen von einzelnen Teilen definieren, sondern es werden immer die Blatter des Baumes der
AWML-Struktur aus eingehenden ResultSets geschnitten.

8.2.4 Propagierung von neuen Zugriffsrichtlinien

Werden neue Zugriffsrichtlinien am Policy Administration Point (PAP) erstellt und betreffen diese
sich in der Ausfithrung befindliche Operatoren, miissen diese iiber die Anderung benachrichtigt
werden. Hierzu muss der PAP in der Lage sein, die entsprechenden Operatoren zu erreichen, um
die Zugriffsrichtlinien zu tibermitteln. Handelt es sich um eine Zugriffsrichtlinie, die im Attribut

99

8 Implementierung

immediate mit falsch belegt ist, dann miissen nur Quellen benachrichtigt werden, die ihrerseits
die Zugriffsrichtlinie in die Datenstrome interpunktieren und so die Anderung der Operatoren
in der Anfrage bekannt werden. Ist das Attribut immediate mit wahr belegt, muss der PAP alle
Operatoren erreichen, denn die Zugriffsrichtlinie soll umgehend durchgesetzt werden und nicht
die Verbreitung tiber die Interpunktion abgewartet werden. Im vorliegenden prototypischen
NexusDS, lasst sich die im Konzept definierte Zuteilung der Zugriffsrichtlinien nicht direkt
umsetzten. Deswegen wurde fiir den Prototyp der Sicherheitsarchitektur ein Weg gewihlt, indem
der PAP dariiber informiert wird, an welche Stellen Zugriffsrichtlinien zu leiten sind.

Abbildung 8.4 zeigt, wie die Weiterleitung realisiert wird. Innerhalb eines StreamNodes befinden
sich die ProcessLines, die die Operatoren eines Anfragefragmentes ausfiihren. Jeder StreamNo-
de ist wiederum Mitglied in einer StreamNodeGroup, die sich zu Beginn der Ausfithrung an
dem zentralen PAP anmeldet. Kommt es zu einer Verdnderung von Zugriffsrichtlinien, indem
vorhandene angepasst, geloscht oder neue Zugriffsrichtlinien erstellt werden, leitet der PAP
die Zugriffsrichtlinien an alle registrierten StreamNodeGroups weiter. Die StreamNodes erhalten
nur die Zugriffsrichtlinien, fiir die sie als Rechenknoten eingetragen sind und leiten dann die
Zugriffsrichtlinien an die betroffenen, sich in der Ausfiihrung befindlichen Operatoren, weiter.
Gleiches Konzept kommt dann zum Einsatz, wenn eine Zugriffsrichtlinie das Attribut immediate
mit wahr belegt. Dann wird die Zugriffsrichtlinie an alle Operatoren der Anfragen weitergeleitet,
in denen sich eine Instanz des von der Zugriffsrichtlinie betroffenen in der Ausfithrung befindet.
Auf diese Weifle wird die Zugriffsrichtlinie sofort durchgesetzt und es entsteht keine Wartezeit
durch die Ubertragung als Interpunktion.

8.3 Planung von Anfragen

Wesentlicher Teil zur kontrollierten Ausfiihrung von Anfragen ist eine Anfrageplanung, die
nur die Anfrage zur Ausfithrung bringt, die durch Zugriffsrichtlinien gedeckt sind. Kern ist,
bevor eine Anfrage zur Ausfithrung gebracht wird zu priifen, ob alle Operatoren von dem
Absender der Anfrage ausgefiihrt werden diirfen und ob diese iiber ausreichend Leserechte
an den Datenelementen ihrer vorgeschalteten Operatoren verfiigen. In Abschnitt 7.4 wurde
der Ablauf bereits ausfiihrlich beschrieben. Zur Umsetzung geht die Implementierung der
Anfrageplanung nach dem in Abbildung 8.5 gezeigten Flussdiagramms durch die Menge der
Operatoren einer Anfrage. Der erste Schritt ist die Priifung der Ausfiihrungsrechte, Abschnitt
8.3.1, der zweite Schritt die Kontrolle der Leserechte, Abschnitt 8.3.2 und abschliefSend die
Einbringung von zusitzlichen Meta-Daten in die Anfrage, Abschnitt 8.3.2.

In der bestehenden prototypischen Implementierung von NexusDS ist der Core Query Service
(CQS) noch nicht vollstandig realisiert. Deshalb wird die prototypische Implementierung des
Secure Core Query Services (SCQS) auf den wesentlichen Teil, den Secure Query Planer (SQP)
reduziert. Die Implementierung realisiert die Klasse SecureQueryPlaner und ist so gestaltet, dass
sie in die zukiinftige Implementierung des SCQS direkt eingebunden werden kann.

100

8.3 Planung von Anfragen

8.3.1 Uberpriifung der Ausfiithrbarkeit von Operatoren

Zu Beginn der Uberpriifung erwartet SecureQueryPlaner {iber die Funktion
checkQuery(ResultSet:Query, String:Subject) sowohl die Anfrage, als auch die Identitat
des Subjektes, dass die Anfrage zur Ausfithrung bringen will. Die Ausfiihrbarkeit wird getestet,
indem fiir jede Instanz eines GenericAttributInstance vom Typ NexusBlockAttributeType
tiberpriift wird, ob mindestens eine Zugriffsrichtlinie dem Subjekt die Ausfithrung gestattet.
Hierzu o6ffnet der SQP eine SSL gesicherte Verbindung zum PDP und {iibertragt die Identitit
des Subjektes und ein ResultSet mit dem zu priifenden Operator. Als Identitét fiir Operatoren
wird die classURI oder eine NOL verwendet, die in der vorliegenden Implementierung von
NexusDS bereits zur eindeutigen Identifikation von Operatoren verwendet wird. Unter welchem
Hostnamen und Port der verantwortliche PDP zu erreichen ist, wurde dem Secure Query
Planer (SQP) zur Instanziierung mitgeteilt. Konnte ein Operator erfolgreich tiberpriift werden,
erhdlt der SQP ein ResultSet zuriick, dass mindestens eine Zugriffsrichtlinie enthélt. Jede
gefundene Zugriffsrichtlinie wird dann dem {iiberpriiften Operator zugeordnet. Die gleiche
Vorgehensweise gilt fiir Eintrdge des Typs NexusInputManagerAttributeType fiir Input-Manager
und NexusQueueAttributeType fiir Warteschlangen. Konnte der Schritt fiir jeden Eintrag der
Anfrage erfolgreich durchfiihrt werden, geht die Planung in den zweiten Schritt {iber, sonst
wird die Planung abgebrochen. Der Implementierte Algorithmus geht iterativ durch die Menge
der Operatoren, was zu einer Laufzeit von ©(n) fiihrt, wobei n als Anzahl der geschiitzten
Operatoren definiert ist. Fiir nicht geschiitzte Operatoren ist die Uberpriifung nicht notwendig.

8.3.2 Uberpriifung vorgelagerter Operatoren

Der zweite Schritt tiberpriift, dass jeder Operator Leserechte an seinen vorgelagerten Opera-
toren besitzt. Dazu durchlduft die Implementierung ausgehend von den ersten Operatoren,
die geschiitzten Quellen nachgelagert sind, den Anfragegraph. Fiir jeden Operator wird der
entsprechende vorgelagerte Teilgraph abgetrennt und zur Auswertung an den PDP iibertragen.
Der PDP verfolgt dann rekursiv alle in den zu priifenden Operator eingehenden Kanten und
priift, ob fiir den adjazenten Operator eine Zugriffsrichtlinie gefunden werden kann. Von da
aus geht wiederum die Verfolgung der Kanten rekursiv weiter, fiir alle die Kanten, die von
der eingehenden Kante abhidngen, iiber die der Rekursionsschritt eingetroffen ist. Die Abhan-
gigkeit von Dateneingdngen und Datenausgédngen lassen sich entweder iiber die Meta-Daten
des Operators oder iiber eine eingesetzte Heuristik ermitteln, die in Abschnitt 7.3.1 erldutert
wurde. Sollte die Uberpriifung zu einem erfolgreichen Abschluss kommen, erhalt der SQP eine
Menge von Zugriffsrichtlinien, die den Lesezugriff fiir jeden vorgelagerten Operator enthalt.
Schlug die Priifung fehl, ist das ResultSet leer, wird die Planung mit einer Fehlermeldung
abgebrochen. Sei n wieder die Anzahl der geschiitzten Operatoren (Knoten) und m die Anzahl
der Verbindungen (Kanten). Dann benétigt die Priifung O(n * (n + m)) Schritte, wobei abhingig
von der Anzahl der Kanten entweder n oder m dominiert. Grundsétzlich ist es nicht moglich, den
Algorithmus durch eine geschickte Wiederverwendung von vorherigen Schritten asymptotisch zu
optimieren. Das liegt daran, dass fiir die Uberpriifung eines Operators die Ergebnismengen eines
vorhergehenden Schrittes zwar weiterverwendet werden konnen, aber dennoch jedes Mal eine

101

8 Implementierung

L Rickgabe der
N Zugriffsrichtlinien
g Operatoren \\\\

"/ Beginn der N\ ///' fur Zugriffstyp AN

(Tt) "execution" ™ JA
\\ P g/ stehen zur Priifung
aus
) Keine
7 P Zugriffsrichtlinie
PDP sucht / ~~
[[M ine gefunden
NEIN | erfillende ——p< Mindestens eine
Y ‘\\ Zugriffsrichtlinien | 8
/,/'// \\\\\
~" Operatoren \\\
fur %ugrlfﬁstyp \\ / Anfrage \
read A _ zuriickweisen ‘
stehen zur Priifung \\ /
NEIN el
Rickgabe der
Zugriffsrichtlinien
////
- .)] -
e nfrage mi /-
Meta-Daten zur kontrollierten > Aﬁ:ff(;;gr:n \‘
Verarbeitung anreichern \ /

Abbildung 8.5: Schema des Ablaufes der Uberpriifung einer Anfrage durch den Secure Query
Planer (SQP).

Suche nach Zugriffsrichtlinien fiir den zu tiberpriifenden Operator notwendig ist. Die weitere
Berechnung der Schnittmengen an Rechenknoten, was schon in Abschnitt 7.4.2 ausfiihrlich
erlautert wurde, ist NP-Vollstandig und lasst sich auf das Problem Bin-Packing reduzieren. Es
handelt sich dabei um eine sehr dhnliche Problemstellung wie die Berechnung einer optimalen
Verteilung von Operatoren auf verschiedene Rechenknoten, die sich auch als NP-Vollstandig
erweist. Deswegen ist dieser Schritt der Anfrageplanung sehr aufwendig und die Planung ent-
hélt einen Zwischenspeicher, der bei einem erneuten Aufruf mit gleichen Parametern auf ein
vorberechnetes Ergebnis zuriickgreift. Vor Riickgriff wird jedoch gepriift, ob sich Anderungen in
betroffenen Zugriffsrichtlinien, Rollen oder Rechenknoten Zuordnungen ergaben. Dadurch ldsst
sich die aufwendige Berechnung der Vorganger und einer Losung zur Rechenknotenverteilung
unter Umstdnden vermeiden.

8.3.3 Anpassung von Anfragen

Ist die Priifung fiir alle Operatoren erfolgreich abgeschlossen, wird die Anfrage mit zusétzlichen
Informationen versehen. Hierzu wurden die Schemas SNSetupExtendedAttributeSchema und
SNSetupExtendedClassSchema erweitert, sodass zusatzliche Informationen vermerkt werden
kéonnen. Zum einen ist das die Information, welche Filter, in welcher Reihenfolge, an welchen
Dateneingdngen und Datenausgédngen an Operatoren angebunden werden miissen. Zweites eine

102

8.4 Kontrollierte Ausflihrung von Operatoren

Auswahl an Rechenknoten, auf denen die Ausfithrung gestattet ist. Die Information wird dann
wiederum beim Start der Ausfithrung einer Anfrage ausgelesen, was im folgenden Abschnitt
erortert wird. Wie im Folgenden noch erdrtert wird, werden Filter im Fall von Operator-Boxen und
Senken in den vorgelagerten Warteschlangen angewendet. Deshalb miissen die Warteschlangen,
die an geschiitzte Operatoren angebracht werden, das Interface SecureQueue<E> implementieren.
Fiir den Prototyp werden nicht alle bereits existierenden Warteschlangen erweitert, sondern
beispielhaft die Warteschlange SecureCountBasedQueue<E> implementiert. Die Implementierung
der erweiterten Anfrageplanung ersetzt dann all Warteschlangen vom Typ CountBasedQueue<E>
mit der genannten, erweiterten Warteschlange. Sollen Operatoren geschiitzt werden, die andere
Warteschlangen fordern, miissen diese noch entsprechend erweitert werden.

8.4 Kontrollierte Ausfiihrung von Operatoren

Das Konzept der Sicherheitsarchitektur bettet die Operatoren in eine spezifische Einbettung ein,
die Secure-Source fiir Quellen, die Secure-Box fiir Operator-Boxen und die Secure-Sink fiir Senken.
Hauptaufgaben der Einbettungen sind der Einsatz von Filtern, um Datenstrome zu transformieren
und die Reaktion auf Zugriffsrichtlinien zur Ausfiihrungszeit. Im Architekturkapitel wurde
bereits angemerkt, dass die Einbettungen von logischer Natur sind und nicht direkt als physische
Komponenten vorgesehen sind. Fiir die Implementierung ist nach Moglichkeit ein Ansatz zu
wihlen, der die bestehende Implementierung von NexusDS so wenig wie moglich beeinflusst,
um die Funktionalitdt von NexusDS nicht unnétig zu beschranken.

Aus dieser Uberlegung lassen sich zwei Hauptansitze entwickeln. Der Erste fiigt neue Kom-
ponenten zu NexusDS hinzu, die die Operatoren umschliefen und Datenelemente mit Filter
vorverarbeiten oder im Fall von Quellen nachverarbeiten. Dies kidme einer verhadltnisméafiig direk-
ten Abbildung der Einbettungen gleich, die sich zum Beispiel durch den Einsatz von speziell fiir
die Sicherheitsarchitektur entwickelten Operatoren umsetzten lassen wiirde. Nachteilig wirkt
sich der entstehende Zusatzaufwand aus, der die Verwaltung von einer deutlich héheren Anzahl
an Operatoren nach sich zieht. Das ist zum Beispiel dann der Fall, wenn mehrere Filter zum
Einsatz kommen und jeder Filter als einzelner Operator ausgefiihrt wird. Daraus folgt der Ansatz,
eine stdrkere Integration anzustreben und die Einbettungen in die bestehenden Operatoren zu
integrieren. Dadurch wird zusétzlicher Verwaltungsaufwand vermieden und die notwendigen
Prozesse der Einbettungen direkt in den betroffenen Operatoren abgewickelt. Weshalb der Ansatz
der direkten Integration fiir die prototypische Implementierung gewdhlt wurde.

Die Verschliisselung der einzelnen Datenelemente wird fiir die Realisierung des Prototyps
vereinfacht. Innerhalb einer Ausfithrungsumgebung, der sogenannten ProcessLine, wird keine
Verschliisselung durchgefiihrt. Im bestehenden Prototyp von NexusDS wird je Anfragefragment
eine ProcessLine vorgesehen, weshalb der Austausch von Informationen zwischen verschiedenen
Fragmenten nicht ohne weiteres moglich ist. Zwar besteht durch gezielte Manipulation an
NexusDS wéhrend der Ausfithrung die Gefahr, dass Informationen abgegriffen werden, jedoch
ist die Abwehr nicht Thema der vorliegenden Diplomarbeit. Ferner wiirde eine Verschliisselung
innerhalb einer ProcessLine grofiere Anderungen an NexusDS erfordern, denn jedes Datenelement

103

8 Implementierung

wiirde verschliisselt nicht mehr seinem urspriinglichen Datentyp entsprechen. Wichtig ist die
Verschliisselung jedoch bei einem Datentransfer tiber ProcessLine hinweg. Das ist dann der Fall,
wenn Plattform-Senken und Plattform-Quellen Datenkanile tiber die Grenzen von einzelnen
ProcessLines 6ffnen. Weshalb in diesem Fall die Verschliisselung zum Einsatz kommt.

Der integrative Ansatz besteht aus drei wesentlichen Teilen. Erstens erfordert die Verwendung von
Interpunktionen eine Erweiterung, sodass Datenelemente von Zugriffsrichtlinien getrennt werden
konnen. Abschnitt 8.4.2 erortert die hierzu durchgefiihrten Erweiterungen der Implementierung
von NexusDS. Zweitens die Reaktion auf Zugriffsrichtlinien und die Wiedereinflechtung von
Zugriffsrichtlinien, was von Abschnitt 8.4.3 erldutert wird. Drittens in Abschnitt 8.4.4, die
Anwendung von Filtern, bevor Datenelemente eine Quelle verlassen, von Operatoren verarbeitet
oder von Senken an ihr Ziel weitergeleitet werden.

8.4.1 Anpassungen der ProcessLine

Im vorherigen Abschnitt wurde bereits besprochen, dass Anfragen um zusétzliche Attribute
erweitert werden, um die zuséatzlichen Informationen zu Filtern abzubilden. Die Instanziierung
der Filter wird parallel mit der Instanziierung der Operatoren beim Starten von Anfragen
durchgefiihrt. Hierzu wird die ProcessLine angepasst, die aus eingehenden Anfragen die
zusétzlichen Informationen beziiglich der Filter aus Anfragen extrahiert. Die extrahierten Daten
werden dann wahrend direkt and die betroffenen Operatoren weitergereicht, im Fall von Quellen
an die Quelle selbst und fiir Operator-Boxen und Senken wie bereits erldutert an die jeweilige
Warteschlange.

8.4.2 Transport von Zugriffsrichtlinien

Das bisherige Konzept Daten zwischen Quellen, Operator-Boxen und Senken auszutauschen,
basiert auf der Implementierung des Interface Receivern<T>. Uber die Klassen, die das Interface
implementieren, wird eine Koppelung zwischen den Operatoren innerhalb einer ProcessLine
hergestellt. Zur Ausfithrungszeit wird dann die implementierte Funktion receive (int: InputID,
T:Data) aufgerufen, die ein Datenelement an den mit der InputID gekoppelten Datenein-
gang eines Operators weiterreicht4. Der Datentyp des zu iibertragenden Datenelementes ist
dabei mit dem Typ T festgelegt, was eine Ubermittlung der Zugriffsrichtlinien, die vom Typ
ResultSet sind, tiber den gleichen Weg ausschliefst. Um dieses als Templates bezeichnete Kon-
zept zu erhalten, mit dem jeder Operator einen eigenen Datentyp definieren kann, werden die
Receiver so erweitert, dass parallel Zugriffsrichtlinien iibertragen werden kdnnen. Das fiihrt
zu der Einfithrung des SecureReceiver<T>, der das Interface Receivern<T> um die Funktion
receivePolicy(int:InputID, ResultSet:Policy) erweitert. Abbildung 8.6 zeigt die Erweite-
rung im oberen Teil a). Auf diesem Weg lassen sich Zugriffsrichtlinien parallel zu den Da-
tenelementen zu den angebundenen Operatoren transportieren, ohne das bereits bestehende

4Weitere Details dazu finden sich in der Masterarbeit von Daniel Garcia Sardina [35].

104

8.4 Kontrollierte Ausflihrung von Operatoren

<<interface>>

Receiver<T>

<<Interface>>

SecureReceiver<T>

+ receivePolicy(ResultSet:Policy) : boolean

/ﬁ v\
4 \,
4 \,
// \\
BoxReceiver<T> SinkReceiver<T>
a)
<<Interface>> <<Interface>>
PolicyForward PolicyReceive
+ sendPolicy(int:OutputID, ResultSet:Policy) : boolean + receivePolicy(int:InputlD, ResultSet:Policy) : boolean
<<interface>> <<interface>> <<interface>>
Source<T> Box Sink<T>

<<Interface>>

PolicyNotify

+ notifyPolicy(ResultSet:Policy) : boolean

b)

Abbildung 8.6: Erweiterung der Receiver Implementierung zum Transport von Zugriffsrichtlini-
en und zur Benachrichtigung von Operatoren iiber neue Zugriffsrichtlinien.

105

8 Implementierung

Konzept zu beeinflussen. Der Prototyp der Sicherheitsarchitektur implementiert die Erweiterung
fur BoxReceiver<T> und SinkReceiver<T>, sodass die vom NexusDS Prototyp implementierten
Standardoperatoren unterstiitzt werden. Fiir die Quelle ist das Interface nicht zu implementieren,
da diese nur direkt von der Anfrageplanung iiber neue Zugriffsrichtlinien informiert werden
kann und selbst nicht iiber Dateneingédnge verfiigt, iiber die die Quelle Zugriffsrichtlinien erhalten
konnte.

Um die von den Receivern realisierten Transport zu unterstiitzen, muss auch die Implementierung
der Operatoren angepasst werden, dazu sind die in Abbildung 8.6 im unteren Teil b) gezeigten
Interfaces PolicyForward und PolicyReceive vorgesehen. Erstes Interface um Zugriffsrichtlinien
an nachfolgende Operatoren weitergeben zu konnen und zweites Interface um Zugriffsrichtlinien
empfangen zu konnen. Eine Quelle leitet offenbar nur Zugriffsrichtlinien weiter, weshalb sie
nur das Interface PolicyForward implementieren muss. Eine Operator-Box, reprasentiert mit
dem Interface Box, jedoch beide Interfaces, da diese Zugriffsrichtlinien sowohl empfangt als
auch weiterleitet. Die Quelle empfangt lediglich Zugriffsrichtlinien und implementiert nur das
Interface PolicyReceive.

Wie bereits in der Einleitung fiir den Abschnitt erldutert, ist fiir die Kombination aus Plattform-
Senke und Plattform-Quelle eine verschliisselte Verbindung notwendig. Bisher wird im Prototyp
eine Verbindung zwischen Plattform-Senke und Plattform-Quelle {iber einen Socket hergestellt
und ein serialisiertes Datenelement im Klartext tibertragen. Fiir die Deserialisierung ist aufgrund
des bereits erwidhnten Template Konzeptes klar, um welchen Datentyp es sich handelt. Soll auf
gleichem Wege Zugriffsrichtlinien in der Form von ResultSets iibertragen werden, muss eine
Unterscheidung zur Deserialisierung eines verschliisselten Objektes getroffen werden, ob es sich
um eine Zugriffsrichtlinie oder um ein Datenelement handelt. Das Problem wird geldst, indem
eine serialisierbare Klasse zwei Byte Arrays beinhaltet, wobei Erstere fiir ein Datenelement und
die zweite fiir eine Zugriffsrichtlinie vorgesehen ist. Je nachdem, ob eine Zugriffsrichtlinie oder
ein Datenelement iibertragen wird, ist eine der Variablen leer. Dadurch kommt es nur zu einem
sehr geringen Uberhang und der Aufbau der Plattform-Senken und Plattform-Quellen kann weit-
gehend beibehalten werden. Denn je nachdem, welche Variable belegt ist, wird der urspriingliche
Mechanismus einer Plattform-Quelle aufgerufen oder die Zugriffsrichtlinie direkt deserialisiert
und an die Plattform-Quelle angebunden Operatoren weitergeleitet. Vor Ubertragung wird die
serialiserte Instanz verschliisselt, sodass die iibertragenen Datenelemente bei der Ubertragung
durch unbekannte Netze geschiitzt sind. Die Plattform-Quelle verfiigt von der Anfrageplanung
tiber den gleichen Schliissel wie zu zugehorige Plattform-Senke und kann die Daten wieder
entschliisseln.

8.4.3 Auswertung und Wiederinterpunktion von Zugriffsrichtlinien

Neben dem Empfang von Zugriffsrichtlinien {iber Dateneingénge werden Zugriffsrichtlinien zur
Ausfithrungszeit auch direkt an Operatoren tibermittelt. Das ist dann notwendig, wenn eine neue
Zugriffsrichtlinie erstellt wird und ein in der Ausfithrung befindlicher Operator betroffen ist.
Fiir diesen Zweck implementiert jeder Operator das Interface PolicyNotify, das die Funktion
notifyPolicy(ResultSet:Policy) definiert. Der Aufruf der Funktion bewirkt, dass der Operator

106

8.4 Kontrollierte Ausflihrung von Operatoren

eine Uberpriifung beziiglich des Attributes use der gelieferten Zugriffsrichtlinien vornimmt,
um zu uberpriifen, ob der Operator betroffen ist. Die jeweilige Vorgehensweise wurde schon
ausfiihrlich in den Erlduterungen der Einbettungen, in Abschnitt 7.5 bis Abschnitt 7.7 beleuchtet.
Im Prototypen der Sicherheitsarchitektur wird die Auswertung wie beschrieben durchfiihrt und
im Fall, dass die Anfrage abgebrochen werden muss eine NoPolicyException ausgelost, die zum
Abbruch der Anfrage fiihrt. Neben der Auswertung wird bei einem Aufruf der Funktion auch die
Wiederinterpunktion fiir Quellen und Operator-Boxen behandelt. Im Fall von Quellen folgt eine
unmittelbare Interpunktierung der Zugriffsrichtlinie. Bei einer Senke wird eine Zugriffsrichtlinie
nicht weitergeleitet, die Senke wertet die Zugriffsrichtlinie lediglich aus. Fiir Operator-Boxen
miissen wie bei der Wiederinterpunktion noch weitere Bedingungen beachtet werden, die im
Folgenden beschrieben werden.

Treffen Interpunktionen iiber Datenstrome an einer Operator-Box ein, die im NexusDS Prototyp
mit der Klasse QueuedBox implementiert wird, ist einer Wiederinterpunktion der Zugriffsricht-
linien notwendig. Um die Interpunktion nur an den Datenausgédngen zu Interpunktieren, die
von dem Dateneingang abhidngig sind iiber den die Zugriffsrichtlinie einging, wird das Meta-
Daten Schema der Operatoren erweitert. Die Schemas OperatorExtendedAttributeSchema und
OperatorExtendedClassSchema erhalten zusitzliche Attribute, die eine genaue Zuordnung von
jedem Dateneingang auf die Datenausgidnge ermoglicht. Bei der Initialisierung der QueuedBox
werden die Meta-Daten gelesen, die definieren, in welche Datenausgidnge eintreffende Zu-
griffsrichtlinien wiederinterpunktiert werden. Falls keine Angaben vorhanden waren, ruft die
QueuedBox die sendPolicy(int:0OutputID, ResultSet:Policy) fiir alle Datenausgange auf.

Der Zeitpunkt des Aufrufs ist abhdngig von Meta-Daten, die dem Operator zugeordnet werden
konnen. Abschnitt 7.3.2 erlduterte die Details zur Bestimmung des Zeitpunktes der Wiederinter-
punktion. Dazu notwendig sind Zihler, die sowohl an Dateneingédngen und Datenausgangen
angebracht werden. Anhand der Zahlerdifferenz kann bestimmt werden, wie viele Datenelemente
sich in der Verarbeitung, beziehungsweise in den Warteschlangen befinden. Die Meta-Daten
definieren, an welchen Dateneingdngen, wie viele Datenelemente eintreffen miissen, dass ei-
ne bestimmte Anzahl von Datenelementen an einem definierten Datenausgang ausgegeben
werden. Triff eine Zugriffsrichtlinie ein, werden die Werte der Zihler festgehalten. Fiir jeden
Datenausgang, an dem die Zugriffsrichtlinie interpunktiert werden soll, wird berechnet, wie
viele Datenelemente sich in der Verarbeitung befinden. Das ergibt sich aus der Differenz der
Zahler der abhédngigen Dateneingdnge und des Datenausganges und der Proportion, die die
Mata-Daten des Operators definieren. Die Implementierung wartet dann die berechnete Anzahl
an Datenelementen fiir den Datenausgang ab und interpunktiert die Zugriffsrichtlinie tiber
sendPolicy(int:0utputID, ResultSet:Policy) genau dann, wenn alle noch in der Verarbei-
tung gewesenen Elemente ausgegeben wurden. Sollten keine Meta-Daten vorhanden sein, die die
Zahlung ermoglichen, werden die Zugriffsrichtlinien nach der in Abschnitt 7.3.2 besprochenen
Heuristik sofort interpunktiert.

107

8 Implementierung

8.4.4 Ausfiihrung von Filter

Filter werden auf zwei unterschiedlichen Wegen angewendet, entweder in Warteschlangen oder
direkt im Operator. Handelt es sich um eine Operator-Box oder Senke, ist jedem Dateneingang
eine Warteschlange zugeordnet. Die Warteschlangen laden zur Initialisierung die in der Anfrage
definierten Filter und binden sie so ein, dass wenn ein Datenelement in die Warteschlange
gegeben wird, die Transformationen der Filter angewendet werden und anschliefsend das Da-
tenelement in der Warteschlange abgelegt wird. Im Fall von Quellen sind keine Warteschlangen
an die Datenausgidnge angebunden, deshalb miissen die Filter direkt in der Quelle, vor der
Auslieferung des Datenelementes, angewendet. Die Anwendung findet im Fall der Quelle di-
rekt in der Funktion send(E:Data, int:OutputID) statt, bevor das Element an die Empfanger
weitergereicht wird. Der Weg ist weniger vorteilhaft, da die Implementierung der Quelle di-
rekt abgedndert werden muss, um die Filter auszufiihren. Dagegen fiihrt die Anwendung in
Warteschlangen zu einer getrennten Ausfithrung der Filter je Dateneingang, was keine zusitz-
lichen Fallunterscheidungen notwendig macht, welche Filter fiir welchen Dateneingang oder
Datenausgang angewendet werden miissen. Zudem ldsst sich die Implementierung so fiir alle
Operatoren wiederverwenden, indem die entsprechende Warteschlange angebracht wird. Der
Prototyp der Sicherheitsarchitektur implementiert dazu beispielhaft die SecureCountBasedQueue,
die die vorhandene CountBasedQueue um die Funktionen zur Filterausfithrung erweitert.

108

Kapitel 9

Zusammenfassung und Ausblick

Das Kapitel fasst im ersten Abschnitt 9.1 zusammen wie die Sicherheitsarchitektur jedes der
zu Anfang der Diplomarbeit definierten Schutzziele erfiillt. Es wird damit gezeigt, dass die
Sicherheitsarchitektur den gewiinschten kontrollierten Zugriff fiir NexusDS beziiglich des aufge-
spannten Rahmens an Anforderungen abdeckt.

Der begrenzte Umfang der Diplomarbeit erforderte die Einschrankung verschiedener Zugriffskon-
trollen. Abschnitt 9.2 gibt einen Ausblick auf mogliche Erweiterungen der Sicherheitsarchitektur,
die von der Diplomarbeit nicht mehr berticksichtigt werden konnten.

9.1 Abdeckung der Schutzziele

Der vorliegende Abschnitt fasst die Fahigkeiten des Sicherheitskonzeptes anhand der Schutzziele
zusammen. Tabelle 9.1 gibt eine Ubersicht, in welchem Umfang die Schutzziele je Sicherheitszone
fiir das individuelle Operatoren-Modell durchgesetzt werden. Es ist zu beachten, dass die im
Folgenden vorgestellten Fahigkeitn in der Sicherheitszone-Mittel und Sicherheitszone-Hoch gelten.
Sicherheitszone-Null ist ohne Zugriffskontrolle und entspricht NexusDS vor der Einbringung einer
Sicherheitsarchitektur. Die Zone wird in der Zusammenfassung nicht explizit betrachtet.

Authentizitat: Wird sichergestellt, indem Subjekte mit einer eindeutigen Identitdt registriert
werden miissen. Bevor die Identitét eines Subjektes anerkannt wird, wird dessen behauptete
Identitat tiberpriift. Subjekte, die der Priifung nicht standhalten, werden von der Teilnahme
am gesicherten Teil von NexusDS ausgeschlossen. Zur Bestdtigung der Authentizitdt von
Operatoren konnen in Zugriffsrichtlinien digitale Signaturen gefordert werden. Die Ablage
von durch den Priifer verschliisselten Signaturen im Secure Operator Repository (SOR)
stellt sicher, dass eine eindeutige Beziehung hergestellt wird. Der private Schliissel zur
Verschliisselung der digitalen Signaturen steht nur dem Priifer zur Verfiigung, damit ist
das Einbringen von gefédlschten Signaturen nicht moglich. Solange der Priifer den Schliissel
geheim halt.

109

9 Zusammenfassung und Ausblick

Datenintegritédt: Ein Operator ist geschiitzt, wenn dieser nur im zentralen Secure Operator

Repository (SOR) verfiigbar gemacht wird. Danach kann der Operator nur von authen-
tifizierten und berechtigten Subjekten geldscht oder ersetzt werden. Gleiches gilt fiir die
Vergabe von Zugriffsrichtlinien, es ist nur den Subjekten moglich, die explizit dafiir be-
rechtigt wurden. Die Bearbeitung von Rollen im Role Administration Point (RAP) ist
in gleicherweise geschiitzt. Fiir die Erstellung und Verdnderung von Zugriffsrichtlinien,
werden die gegebenen Berechtigungen zur Vergabe an die referenzierten Operatoren und
Rechenknoten gleichfalls tiberpriift. Somit ist die Datenintegritdt der Zugriffsdefinitionen
in der Sicherheitsarchitektur gewihrleistet.

Die Datenstrome, die zur Ausfithrungszeit zwischen geschiitzten Operatoren tibertragen
werden, sind mit einem einmaligen und geheimen Schliissel je Anfrage codiert. Der Schliis-
sel ist nur der kontrollierten Anfrageplanung Secure Core Query Service (SCQS) und den
Einbettungen in der Anfrage bekannt. Deshalb ist es nicht moglich, dass unberechtigte
Subjekte die Datenintegritdt der Datenstrome beeinflussen.

Informationsvertraulichkeit: Mit der kontrollierten Anfrageplanung Secure Core Query Service

110

(SCQS) ist sichergestellt, dass nur die Operatoren zur Ausfithrung kommen, fiir die Zu-
griffsrichtlinien explizit dem Subjekt, das eine Anfrage ausfiihren mochte, die Ausfiihrung
gestatten. Die urspriingliche Anfrageplanung von NexusDS hat keinen Zugriff auf das Se-
cure Operator Repository (SOR), in dem die geschiitzten Operatoren vorgehalten werden.
Der SCQS tragt ebenfalls Sorge, dass Operatoren nur die Datenelemente von vorgelagerten
Operatoren verarbeiten, fiir die Zugriffsrichtlinien den Zugriff decken. Das Vergeben von
Zugriffsrichtlinien am Policy Administration Point (PAP) ist nur den Subjekten moglich,
die iiber die Erlaubnis verfiigen, in Zugriffsrichtlinien auf die Operatoren zu referenzieren.
Die Mengen von Subjekten, die fiir die Zuweisung von Zugriffsrichtlinien vorgesehen sind,
konnen ebenfalls nur unter der Kontrolle der Sicherheitsarchitektur verdndert werden.

Analog zur Datenintegritit ist der Lesezugriff gegeniiber nicht autorisierten Subjekten
durch die Verschliisselung der Datenstrome gesichert. Tritt eine Verdnderung der Zugriffs-
richtlinien zur Ausfiihrungszeit ein, sorgt die Interpunktion mit Zugriffsrichtlinien an
den Einbettungen zu einer direkten Umsetzung der Bedingungen. Damit wird zu jeder
Zeit sichergestellt, dass aktuelle Verdnderungen beziiglich der Informationsvertraulich-
keit umgesetzt werden. Den Missbrauch von Datenelementen, auf die Operatoren und
Senken Zugriff erhalten, zum Beispiel durch Weiterleitung an unberechtigte Dritte, kann
in Sicherheitszone-Mittel nicht ausgeschlossen werden. Zur vollstindigen Kontrolle der
ausgefiihrten Operatoren und Senken muss die in Sicherheitszone-Hoch mogliche Zertifizie-
rung angewendet werden. Sonst kann die Informationsvertraulichkeit nur eingeschrankt
gewdhrleistet werden.

Der Informationsaustausch zwischen Services und Subjekten ist reglementiert. Services
benotigen digitale Zertifikate, die vom zentralen Certificate Authority Point (CAP) verge-
ben und validiert werden. Damit kénnen Services und Subjekte tiberpriifen, ob ein Service
authentisch ist und die Informationsvertraulichkeit wahrt. Umgekehrt stellen Services
sicher, dass Subjekte korrekt tiber den Identity Administration Point (IAP) authentifiziert
sind.

9.2 Ausblick

Sicherheitsstufe Authentizitat Datenintegritit Informationsvertraulichkeit
Hoch Ja Ja Ja
Mittel Ja Ja Teilweise
Null Nein Nein Nein
Sicherheitsstufe Verfiigbarkeit Verbindlichkeit Anonymisierung
Hoch Ja Ja Ja
Mittel Ja Teilweise Ja
Null Nein Nein Nein

Tabelle 9.1: Tabelle tiber die Erfiilllung der Schutzziele in den Sicherheitszonen, der Eintrag
teilweise steht fiir eine nur partielle Erfiillung.

Verfligbarkeit: Zugriffsrichtlinien kénnen das Ausfiihren von Quellen, Operatoren und Senken
auf eine nur begrenzte Auswahl von Rechenknoten erlauben. Fiir die erweiterte Anfragepla-
nung konnen Einschrankungen vorgesehen werden, dass nur geschiitzte Anfragefragmente
auf die ausgewdhlten Rechenknoten ausgebracht werden. Dann konnen nur noch die
Anfragen auf den ausgewdhlten Rechenknoten ausgefiihrt werden, die alle relevanten Zu-
griffsrichtlinien erfiillen. Somit kdnnen unberechtigte Subjekte auf den Rechenknoten keine
Anfragen zur Ausfiihrung bringen, die deren Leistungsfahigkeit unberechtigt beeintrachtigt.

Verbindlichkeit: Das Sicherheitskonzept sieht Protokolle vor, die Verdnderungen an den Daten-
haltungen der Sicherheitsarchitektur, wie zum Beispiel fiir Zugriffsrichtlinien, festhalten.
Ebenfalls wird festgehalten, welche Anfragen welche Datenstrome verarbeiten. Protokolliert
werden Zeiten, beteiligte Subjekte und Objekte. Anhand der Protokolle, dass manipulati-
onssicher vorgehalten wird, kann eine verbindliche Zuordnung von Zugriffen in NexusDS
vorgenommen werden.

Anonymisierung: Die Secure-Source kann Filter auf die Datenelemente der eingebetteten Quelle
anwenden. Filter konnen frei implementiert werden und so eine feingranulare Anony-
misierung der Informationen vornehmen. Besondere Fahigkeit der feingranularen An-
onymisierung ist die Moglichkeit neben verschliisselten Datenstromen, unverschliisselte
Datenstrome mit verschleierter Information in das ungeschiitzte NexusDS zuriickzufiihren.
Der unverschliisselte Datenstrom kann dann in Sicherheitszone-Null frei verwendet werden.
Ein offentlicher Datenstrom wird nur dann zugelassen, wenn die Zugriffsrichtlinien diesen
explizit definieren.

9.2 Ausblick

Die Verwaltung des Rollenmodells und die Zugriffskontrolle welche Subjekte Zugriffsrichtlinien
fiir Operatoren und Rechenknoten vergeben diirfen ist vereinfacht realisiert worden. Mogliche

111

9 Zusammenfassung und Ausblick

Erweiterungen konnten die Vergabe gezielter Steuern, um den Verwaltungsaufwand zu redu-
zieren. Filter und Evaluatoren sind beztiglich der Zugriffskontrolle vollstindig ausgeschlossen
worden. Eine Berticksichtigung erfordert eine Verfeinerung der kontrollierten Anfrageplanung,
sodass auch diesbeziiglich eine Zugriffskontrolle eingefordert wird. Zu beachten ist, dass eine
Zugriffskontrolle, ob Subjekte in Zugriffsrichtlinien definierte Evaluatoren und Filter einsetzen
diirfen, die Auswertung erheblich aufwendiger ausfallen ldsst. Das impliziert eine effizientere
Auswertung der Zugriffsrichtlinien gegeniiber dem vorgestellten Modell der kontrollierten An-
frageplanung. Die Authentifizierung zwischen Services findet bisher nur tiber die Priifung von
digitalen Zertifikaten auf deren Giiltigkeit statt. Eine Einfithrung einer feineren Zugriffskontrolle
wiirde die Anbindung externer Werkzeuge erleichtern. So ist es bisher nur moglich, einem
Werkzeug den vollen Zugriff auf die Sicherheitsarchitektur zu gewdhren. Eine Verfeinerung
zur gezielten Steuerung des Zugriffes wiirde zu einer Erthchung der Sicherheit fithren, da das
Werkzeug nicht mehr potentiell auf den gesamten Datenbestand zugreifen konnte, sondern nur
noch auf ausgewdhlte Teile. Daraus folgt gleichzeitig ein breites Spektrum an Werkzeugen, da je
nach Zuverlassigkeit des Werkzeugs die Menge der verfiigbaren Daten beschrankt werden konnte.
Gleiches gilt fiir Evaluatoren und Filter, die ebenfalls nur tiber digitale Zertifikate angebunden
werden konne.

Eine zukiinftige Erweiterung, die die Flexibilitdt der Sicherheitsarchitektur mafsgeblich erhohen
wiirde, ist die dynamische Umgestaltung von Anfragen zur Ausfithrungszeit. Jedoch ist bisher
die Plattform NexusDS nicht in der Lage, Anfragen zur Laufzeit unterbrechungsfrei zu verandern.
Ist dies in Zukunft moglich, konnten zur Laufzeit im Fall von veranderten Zugriffsrichtlinien
Filter dynamisch aus den Datenstromen entfernt und eingefiigt werden. Gleiches gilt fiir Zu-
griffsrichtlinien, die die Ausfiihrung von Operatoren auf Rechenknoten betreffen oder deren
Zertifizierung. Auch hierbei konnte eine dynamische Umplanung zur Laufzeit die Moglichkeit
erdffnen, Anfrage unterbrechungsfrei an verdnderte Zugriffsrichtlinien anzupassen.

Eine Abfolge von Filtern, die sich aus den fiir einen Operator relevanten Zugriffsrichtlinien
ergibt, orientiert sich nur an einer einfachen Rangfolge. Zukiinftige Erweiterungen kénnten
eine Beschreibung der Semantik der jeweiligen Filtertransformation vorsehen und eine durch
Werkzeuge und algorithmisch gestiitzte Optimierung von Filterketten vorsehen. Damit wiir-
de die Spezifikation von Zugriffsrichtlinien beztiglich der notwendigen Filter erleichtert und
gegebenenfalls Optimierungen moglich, sodass nicht notwendige Filteroperationen eingespart
werden.

Die Sicherheitsarchitektur beriicksichtigt nicht, wie die Verarbeitung von Datenelementen nach
den Senken einer Anfrage weitergeht. Zwar wird eine Verschliisselung innerhalb der Anfragen,
uber Plattform-Senken zu Plattform-Quellen aufrechterhalten, es besteht aber keine Kontrolle
tiber den Zugriff, nachdem die Datenelemente einer Senke zugestellt wurden. Hierzu kénnten
zukiinftige Arbeiten zum Beispiel Markierungen definieren, die nachfolgende Anfragen dariiber
in Kenntnis setzen, von welchen Quellen ein Datenelement abstammt und von welchen Operatio-
nen und Filtern Transformationen durchgefiihrt wurden. Einen Einstieg findet der Interessierte
Leser in [37].

112

Literaturverzeichnis

[1]

[2]

(3]

(4]

(5]

6]

[7]

ABaDI, Daniel J. ; CARNEY, Don ; CETINTEMEL, Ugur ; CHERNIACK, Mitch ; CoNvEy, Christian
; LEE, Sangdon ; STONEBRAKER, Michael ; TATBUL, Nesime ; ZDONIK, Stan: Aurora: a new
model and architecture for data stream management. In: The VLDB Journal 12 (2003), August,
S. 120-139. — ISSN 1066-8888 (Zitiert auf den Seiten 9, 25, 32 und 35)

ANDERSON, Ross J.: Security Engineering: A Guide to Building Dependable Distributed Systems.
2. Wiley Publishing, 2008. — ISBN 9780470068526 (Zitiert auf den Seiten 14, 15 und 16)

ARAsSU, A. ; BaBcock, B. ; BaBu, S. ; CIESLEWICZ, |. ; DATAR, M. ; ITo, K. ; MOoTWANT, R. ;
SrivasTava, U. ; WIDOM,].: Stream: The stanford data stream management systems. In: a
book on data stream management edited by Garofalakis, Gehrke, and Rastogi (2004) (Zitiert auf
Seite 32)

AYEwWAH, N. ; HOVEMEYER, D. ; MORGENTHALER,].D. ; PENIX, J. ; PucH, W.: Using Static
Analysis to Find Bugs. In: Software, IEEE 25 (2008), Nr. 5, S. 22 —29. http://dx.doi.org/10.
1109/M5.2008.130. — DOI 10.1109/MS.2008.130. — ISSN 0740-7459 (Zitiert auf Seite 18)

BAUER, Martin ; DURR, Frank ; GEIGER, Jan ; GROsSMANN, Matthias ; HONLE, Nicola ;
Joswig, Jean ; NickrLAs, Daniela ; ScHWARz, Thomas: Information Management and Ex-
change in the Nexus Platform / Universitat Stuttgart : Sonderforschungsbereich SFB 627
(Nexus: Umgebungsmodelle fiir mobile kontextbezogene Systeme), Germany. Version: Juli
2004. http://www2.informatik.uni-stuttgart.de/cgi-bin/NCSTRL/NCSTRL _view.pl?id=
TR-2004-04&engl=0. Universitdt Stuttgart, Institut fiir Parallele und Verteilte Systeme, Ver-
teilte Systeme; Universitat Stuttgart, Institut fiir Parallele und Verteilte Systeme, Anwender-
software, Juli 2004 (2004/04). — Technischer Bericht Informatik. — 58 S. (Zitiert auf den
Seiten 9 und 24)

BEDNER, Mark ; ACKERMANN, Tobias: Schutzziele der IT-Sicherheit. In: Datenschutz und
Datensicherheit (DuD) 33 (2010), Mai, Nr. 5, S. 323-328 (Zitiert auf Seite 15)

BrRANDEIS UNIVERSITY, Brown U. ; MIT: Borealis - Distributed Stream Processing Engine.
http://www.cs.brown.edu/research/borealis/public/ (Zitiert auf den Seiten 25 und 32)

113

http://dx.doi.org/10.1109/MS.2008.130
http://dx.doi.org/10.1109/MS.2008.130
http://www2.informatik.uni-stuttgart.de/cgi-bin/NCSTRL/NCSTRL_view.pl?id=TR-2004-04&engl=0
http://www2.informatik.uni-stuttgart.de/cgi-bin/NCSTRL/NCSTRL_view.pl?id=TR-2004-04&engl=0
http://www.cs.brown.edu/research/borealis/public/

Literaturverzeichnis

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

114

BUNDESAMT FUR SICHERHEIT IN DER INFORMATIONSTECHNIK: BSI-Standard 100-2 IT-
Grundschutz-Vorgehensweise. Bd. 2.0. Bundesamt fiir Sicherheit in der Informations-
technik, 2008 https://www.bsi.bund.de/SharedDocs/Downloads/DE/BSI/Publikationen/
ITGrundschutzstandards/standard_1002.pdf (Zitiert auf den Seiten 18 und 21)

BUNDESAMT FUR SICHERHEIT IN DER INFORMATIONSTECHNIK: IT-Grundschutz-Kataloge. Bd. 11.
Bundesamt fiir Sicherheit in der Informationstechnik, 2009 http://www.bsi.bund.de/
grundschutz (Zitiert auf Seite 16)

Cao, Jianneng ; CARMINATI, B. ; FERRAR], E. ; TaN, Kian-Lee: ACStream: Enforcing Access
Control over Data Streams. In: Data Engineering, 2009. ICDE "09. IEEE 25th International
Conference on, 2009. — ISSN 1084-4627, S. 1495 —1498 (Zitiert auf den Seiten 35 und 37)

CARMINATI, Barbara ; FERRARI, Elena ; TaN, Kian: Specifying Access Control Policies on
Data Streams. In: KoTaciri, Ramamohanarao (Hrsg.) ; KrisaNa, P. (Hrsg.) ; MOHANIA,
Mukesh (Hrsg.) ; NANTAJEEWARAWAT, Ekawit (Hrsg.): Advances in Databases: Concepts, Systems
and Applications Bd. 4443. Springer Berlin / Heidelberg, 2007, S. 410—421 (Zitiert auf den
Seiten 10, 35 und 39)

CARMINATI, Barbara ; FERRARI, Elena ; TaN, Kian L.: Enforcing access control over data
streams. In: Proceedings of the 12th ACM symposium on Access control models and technologies.
New York, NY, USA : ACM, 2007 (SACMAT ’o07). — ISBN 978-1-59593—745-2, 21—30 (Zitiert
auf den Seiten 35 und 36)

CrrriaNi, Nazario ; E1sseLE, Mike ; BRoDT, Andreas ; GROSSMANN, Matthias ; MITSCHANG,
Bernhard: NexusDS: a flexible and extensible middleware for distributed stream processing.
In: Proceedings of the 2009 International Database Engineering; Applications Symposium. New
York, NY, USA : ACM, 2009 (IDEAS ’"09). — ISBN 978-1-60558—402—7, 152-161 (Zitiert auf
den Seiten 9 und 26)

CrrriaNT, Nazario ; N1ckLAS, Daniela ; GRossMANN, Matthias ; HONLE, Nicola ; LUBBE, Carlos
; MITSCHANG, Bernhard: Verteilte Datenstromverarbeitung von Sensordaten. In: Datenbank-
Spektrum 9 (2009), Februar, Nr. 28, 37-43. http://www2.informatik.uni-stuttgart.de/
cgi-bin/NCSTRL/NCSTRL_view.pl?id=ART-2009-08&engl= (Zitiert auf Seite 9)

DEPARTMENT OF DEFENCE STANDARD: Trusted Computer System Evaluation Criteria, DoD
5200.28-STD. http://csrc.nist.gov/publications/history/dod85.pdf. Version: August
1982 (Zitiert auf den Seiten 18, 19 und 20)

Eckerrt, Claudia: IT-Sicherheit. Bd. 6. Auflage. Miinchen [u.a.] : Oldenbourg, 2009. — ISBN
978-3-486-58999—3 (Zitiert auf den Seiten 14, 15, 16, 41, 56, 60, 85 und 89)

ENGLBRECHT, Michael: Entwicklung sicherer Software. Heidelberg [u.a.] : Spektrum Akad. Verl,
2004. — ISBN 3-8274-1432—6 (Zitiert auf den Seiten 14 und 91)

ESCHWEILER, Jorg ; PsiLLE, Daniel E. A.: Security@Work: Pragmatische Konzeption und Im-
plementierung von IT-Sicherheit mit Losungsbeispielen auf Open-Source-Basis (X.systems.press).
Secaucus, NJ, USA : Springer-Verlag New York, Inc., 2006. — ISBN 3540220283 (Zitiert auf
Seite 15)

https://www.bsi.bund.de/SharedDocs/Downloads/DE/BSI/Publikationen/ITGrundschutzstandards/standard_1002.pdf
https://www.bsi.bund.de/SharedDocs/Downloads/DE/BSI/Publikationen/ITGrundschutzstandards/standard_1002.pdf
http://www.bsi.bund.de/grundschutz
http://www.bsi.bund.de/grundschutz
http://www2.informatik.uni-stuttgart.de/cgi-bin/NCSTRL/NCSTRL_view.pl?id=ART-2009-08&engl=
http://www2.informatik.uni-stuttgart.de/cgi-bin/NCSTRL/NCSTRL_view.pl?id=ART-2009-08&engl=
http://csrc.nist.gov/publications/history/dod85.pdf

Literaturverzeichnis

[19] EUROPAISCHEN KOMMISSION: Information Technology Security Evaluation Criteria.
https://www.bsi.bund.de/cae/servlet/contentblob/471346/publicationFile/30220/
itsec-en_pdf.pdf. Version: 1991 (Zitiert auf Seite 18)

[20] FErrATOLO, David ; KunN, Richard: Role-Based Access Control. In: In 15th NIST-NCSC
National Computer Security Conference, 1992, S. 554563 (Zitiert auf den Seiten 20, 85 und 86)

[21] INTEL: Intel Parallel Studio 2011. http://software.intel.com/sites/products/
collateral/studio/Intel_Parallel_Studio_Brief_081610_HighRes.pdf (Zitiert auf Sei-
te 18)

[22] KEMPER, Alfons ; EICKLER, André: Datenbanksysteme - Eine Einfiihrung, 6. Auflage. Oldenbourg,
2006. — ISBN 3-486-57690—9 (Zitiert auf den Seiten 33, 34 und 83)

[23] LINDNER, Wolfgang ; MEIER, Jorg: Securing the Borealis Data Stream Engine. In: IDEAS
"06: Proceedings of the 1oth International Database Engineering and Applications Symposium.
Washington, DC, USA : IEEE Computer Society, 2006. — ISBN 0-7695-2577-6, S. 137-147
(Zitiert auf den Seiten 10 und 34)

[24] LiNDNER, Wolfgang ; MEIER, Jorg: Towards a secure data stream management system. In: in
TEAA 2005, 2005, S. 114-128 (Zitiert auf den Seiten 34 und 39)

[25] Luckg, Dominik ; CONSTANTINESCU, Carmen ; WESTKAMPER, Engelbert: Smart Factory -
A Step towards the Next Generation of Manufacturing. Version:2008. http://dx.doi.
org/10.1007/978-1-84800-267-8_23. In: MrTsuisar, Mamoru (Hrsg.) ; UEpa, Kanji (Hrsg.)
; Kimura, Fumihiko (Hrsg.): Manufacturing Systems and Technologies for the New Frontier.
Springer London, 2008. — ISBN 978-1-84800—267-8, 115-118 (Zitiert auf Seite 44)

[26] LubEwiG, Jochen ; LicHTER, Horst: Software Engineering. 1. Aufl. Heidelberg
: dpunkt, 2007 http://gso.gbv.de/DB=2.1/CMD?ACT=SRCHA&SRT=YOP&IKT=1016&TRM=ppn+
381003574&sourceid=fbw_bibsonomy. — ISBN 978-3-89864—268—2 (Zitiert auf Seite 20)

[27] MAHLMANN, Peter ; SCHINDELHAUER, Christian: Peer-to-Peer-Netzwerke. Springer Berlin, 2007
(Zitiert auf Seite 26)

[28] MicrosoFT: Access Control Lists. http://msdn.microsoft.com/en-us/library/aa374872(v=
VS.85) .aspx (Zitiert auf Seite 19)

[29] MIcrosoFT: Security Development Lifecycle. http://www.microsoft.com/security/sdl.
Version: November 2010 (Zitiert auf Seite 18)

[30] Nazario CipriaNi, Carlos L.: Ausnutzung von Restriktionen zur Verbesserung des Deployment-
Vorgangs des Verteilten Datenstromverarbeitungssystems NexusDS. 2007 (Zitiert auf Seite 9)

[31] NenME, Rimma V. ; LiMm, Hyo-Sang ; BERTINO, Elisa ; RUNDENSTEINER, Elke A.: StreamShield:
a stream-centric approach towards security and privacy in data stream environments. In:
SIGMOD ‘09: Proceedings of the 35th SIGMOD international conference on Management of data.
New York, NY, USA : ACM, 2009. — ISBN 978-1-60558-551—2, S. 1027-1030 (Zitiert auf
Seite 10)

115

https://www.bsi.bund.de/cae/servlet/contentblob/471346/publicationFile/30220/itsec-en_pdf.pdf
https://www.bsi.bund.de/cae/servlet/contentblob/471346/publicationFile/30220/itsec-en_pdf.pdf
http://software.intel.com/sites/products/collateral/studio/Intel_Parallel_Studio_Brief_081610_HighRes.pdf
http://software.intel.com/sites/products/collateral/studio/Intel_Parallel_Studio_Brief_081610_HighRes.pdf
http://dx.doi.org/10.1007/978-1-84800-267-8_23
http://dx.doi.org/10.1007/978-1-84800-267-8_23
http://gso.gbv.de/DB=2.1/CMD?ACT=SRCHA&SRT=YOP&IKT=1016&TRM=ppn+381003574&sourceid=fbw_bibsonomy
http://gso.gbv.de/DB=2.1/CMD?ACT=SRCHA&SRT=YOP&IKT=1016&TRM=ppn+381003574&sourceid=fbw_bibsonomy
http://msdn.microsoft.com/en-us/library/aa374872(v=VS.85).aspx
http://msdn.microsoft.com/en-us/library/aa374872(v=VS.85).aspx
http://www.microsoft.com/security/sdl

Literaturverzeichnis

[32] NEnME, R.V. ; LM, Hyo-Sang ; BErTino, E.: FENCE: Continuous access control enforce-
ment in dynamic data stream environments. In: Data Engineering (ICDE), 2010 IEEE 26th
International Conference on, 2010, S. 940 —943 (Zitiert auf den Seiten 37, 38 und 39)

[33] NEHME, R.V. ; RUNDENSTEINER, E.A. ; BERTINO, E.: A Security Punctuation Framework for
Enforcing Access Control on Streaming Data. In: Data Engineering, 2008. ICDE 2008. IEEE
24th International Conference on, 2008, S. 406 —415 (Zitiert auf den Seiten 37, 38 und 39)

[34] SALTZER,].H. ; SCHROEDER, M.D.: The protection of information in computer systems. In:
Proceedings of the IEEE 63 (1975), Nr. 9, S. 1278 — 1308. http://dx.doi.org/10.1109/PROC.
1975.9939. — DOI 10.1109/PROC.1975.9939. — ISSN 0018—9219 (Zitiert auf den Seiten 16
und 18)

[35] SARDINA, Daniel G.: Framework for Distributed Data Processing, Universitdt Stuttgart, Diplom-
arbeit, 2008 (Zitiert auf Seite 104)

[36] ScuErRBAUM, Andreas: PostgreSQL - Datenbankpraxis fiir Anwender, Administratoren und
Entwickler. Open Source Press, 2009. — 518 S. (Zitiert auf Seite 34)

[37] StMMBAN, Yogesh L. ; PLALE, Beth ; GANNON, Dennis: A survey of data provenance in
e-science. In: SIGMOD Rec. 34 (2005), September, S. 31-36. — ISSN 0163-5808 (Zitiert auf
Seite 112)

[38] STEGMAIER, Bernhard ; KunTscHKE, Richard ; KEMPER, Alfons: StreamGlobe: Adaptive query
processing and optimization in streaming P2P environments. In: In Proc. of the Intl. Workshop
on Data Management for Sensor Networks, 2004, S. 88-97 (Zitiert auf Seite 32)

[39] STREAMBASE SysTEMS, INC.: StreamBase Event Processing Platform. http://www.streambase.
com (Zitiert auf Seite 35)

[40] TomTom: TomTom Hintergrund - HDTraffic Manifest. http://www.tomtom.com/landing_
pages/trafficmanifesto/index-project.php?Lid=3. Version: Oktober 2010 (Zitiert auf
Seite 24)

[41] UNIVERSTITAT STUTTGART: Nexus Projekt Webseite. http://www.nexus.uni-stuttgart.de
(Zitiert auf Seite 9)

[42] UNIVERSTITAT STUTTGART: XML-Schema Definitionen der Nexus Plattform. http://wuw.nexus.
uni-stuttgart.de/de/forschung/dokumente/ (Zitiert auf Seite 25)

[43] W3C: Extensible Markup Language. http://www.w3.org/XML/ (Zitiert auf Seite 25)

Alle URLs wurden zuletzt am 28.04.2011 gepriift.

116

http://dx.doi.org/10.1109/PROC.1975.9939
http://dx.doi.org/10.1109/PROC.1975.9939
http://www.streambase.com
http://www.streambase.com
http://www.tomtom.com/landing_pages/trafficmanifesto/index-project.php?Lid=3
http://www.tomtom.com/landing_pages/trafficmanifesto/index-project.php?Lid=3
http://www.nexus.uni-stuttgart.de
http://www.nexus.uni-stuttgart.de/de/forschung/dokumente/
http://www.nexus.uni-stuttgart.de/de/forschung/dokumente/
http://www.w3.org/XML/

Erklirung

Hiermit versichere ich, diese Arbeit selbstindig
verfasst und nur die angegebenen Quellen
benutzt zu haben.

(Oliver Dorler)

	1 Einleitung
	1.1 Motivation
	1.2 Gliederung

	2 Sicherheit
	2.1 Grundlagen der Sicherheit
	2.1.1 Begriffe der Sicherheit

	2.2 Security Engineering
	2.2.1 Methodiken
	2.2.2 Implementierung und Werkzeuge
	2.2.3 Prozesse

	2.3 Modelle zur Zugriffskontrolle
	2.3.1 Discretionary Access Control (DAC)
	2.3.2 Mandatory Access Control (MAC)
	2.3.3 Role Based Access Control (RBAC)

	2.4 Vorgehensmodell für NexusDS

	3 Nexus und NexusDS
	3.1 Einführung in Nexus
	3.1.1 Nexus Architektur
	3.1.2 Das Augmented World Model

	3.2 NexusDS
	3.2.1 Architektur
	3.2.2 Service-Modell
	3.2.3 Operator-Modell

	3.3 Strukturanalyse von NexusDS
	3.3.1 Das NexusDS Ausführungsmodell
	3.3.2 Rollen in NexusDS

	3.4 Verwandte Arbeiten zu NexusDS

	4 Verwandte Sicherheitskonzepte
	4.1 Zugriffskontrolle in DBMS
	4.2 Secure Borealis
	4.3 ACStream
	4.4 FENCE
	4.5 Zusammenfassung und Anwendbarkeit in NexusDS

	5 Anforderungen
	5.1 Anforderungen aus Anwendungsszenarien
	5.1.1 Börsenkurse von SuperQuotes
	5.1.2 Orts-bezogener Dienst Squebber
	5.1.3 Fehlerszenario in intelligenten Fabriken

	5.2 Anforderungen aus NexusDS
	5.2.1 Basisrollen von NexusDS
	5.2.2 Eigenschaften von NexusDS

	5.3 Zusammenfassung der Anforderungen

	6 Grundlagen des Sicherheitskonzeptes
	6.1 Basisstruktur des Sicherheitskonzeptes
	6.1.1 Übersicht der Maßnahmen für das Sicherheitskonzept

	6.2 Kontrollierte Datenstromverarbeitung in drei Sicherheitszonen
	6.2.1 Sicherheitszone-Null
	6.2.2 Sicherheitszone-Mittel
	6.2.3 Sicherheitszone-Hoch

	7 Architektur des Sicherheitskonzeptes
	7.1 Kommunikation in der Sicherheitsarchitektur
	7.2 Definition und Auswertung von Zugriffsrichtlinien
	7.2.1 Administration und Verteilung von Zugriffsrichtlinien
	7.2.2 Abbilden von Zugriffsbedingungen
	7.2.3 Definition von Zugriffsrichtlinien im Meta-Daten-Modell
	7.2.4 Optionale Auswertungen von Zugriffsrichtlinien mit Evaluatoren
	7.2.5 Transformation von Datenströmen mit Filter

	7.3 Abhängigkeit von Datenströmen und Wiedereinflechtung von Zugriffsrichtlinien
	7.3.1 Zuordnung von Dateneingänge auf Datenausgänge
	7.3.2 Zeitpunkt der Einflechtung

	7.4 Kontrollierte Planung von Anfragen
	7.4.1 Secure Query Interface (SQI)
	7.4.2 Secure Query Planer (SQP)
	7.4.3 Secure Query Optimizer (SQO)
	7.4.4 Secure Query Fragmenter (SQF)
	7.4.5 Secure Execution Manager (SEM)

	7.5 Secure-Source, Architektur und Ausführungsmodell
	7.6 Secure-Box, Architektur und Ausführungsmodell
	7.7 Secure-Sink, Architektur und Ausführungsmodell
	7.8 Services der Sicherheitsarchitektur
	7.8.1 Identity Administration Point (IAP)
	7.8.2 Role Administration Point (RAP)
	7.8.3 Policy Administration Point (PAP)
	7.8.4 Secure Operator Repository (SOR)
	7.8.5 Certificate Authority Point (CAP)
	7.8.6 Policy Decision Point (PDP)

	8 Implementierung
	8.1 Implementierung der Services
	8.1.1 AWML Datenhaltung für Services
	8.1.2 Kommunikation mit den Services

	8.2 Zugriffsrichtlinien
	8.2.1 Abbildung der Zugriffsrichtlinien
	8.2.2 Implementierung von Evaluatoren
	8.2.3 Implementierung von Filter
	8.2.4 Propagierung von neuen Zugriffsrichtlinien

	8.3 Planung von Anfragen
	8.3.1 Überprüfung der Ausführbarkeit von Operatoren
	8.3.2 Überprüfung vorgelagerter Operatoren
	8.3.3 Anpassung von Anfragen

	8.4 Kontrollierte Ausführung von Operatoren
	8.4.1 Anpassungen der ProcessLine
	8.4.2 Transport von Zugriffsrichtlinien
	8.4.3 Auswertung und Wiederinterpunktion von Zugriffsrichtlinien
	8.4.4 Ausführung von Filter

	9 Zusammenfassung und Ausblick
	9.1 Abdeckung der Schutzziele
	9.2 Ausblick

	Literaturverzeichnis

