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1 Einleitung

Anfang der sechziger Jahre fiihrte Biichi in [B62] Automaten fiir unendliche Worter ein, um Beweise bei
Entscheidungsproblemen in der monadischen Pridikatenlogik zweiter Stufe zu fiihren. Seitdem wurden
Automaten fiir unendliche Worter oft fiir verschiedene Beweise bei Entscheidungsproblemen verwendet.
Die Biichi Automaten kénnen Sprachen von unendlichen Wortern beschreiben. Sie sind heutzutage eines
der wichtigsten Hilfsmittel in der formalen Verifikation.

Praktische Bedeutung bekamen Biichi Automaten fiir die Entwicklung effizienter Algorithmen im Be-
reich der temporalen Logik. Dort wurden sie Bestandteil von Model Checking Verfahren [WO0O0]. Die
Komplementbildung ist hier von zentraler Bedeutung, denn die verwendeten logischen Formeln bein-
halten den Negationsoperator. Biichi Automaten sind im allgemeinen nichtdeterministisch und die Kom-
plementbildung ist daher mit exponentiellem Aufwand verbunden. Muller Automaten verwenden eine
andere Akzeptanzbedingung und kénnen deterministisch die w-reguldren Sprachen erkennen. Zudem ist
die Komplementbildung einfach und in linearer Zeit moglich. Allerdings kann die Grée von Muller
Automaten exponentiell grofler sein, als die eines Biichi Automaten der die gleiche Sprache erkennt.

Weitere Verfahren wurden entwickelt, wie z.B Rabin Automaten, Street Automaten oder Parity Automa-
ten, die wie Muller Automaten, eine einfache Komplementbildung erméglichen und den Nachteil haben,
dass die Automaten exponentiell grofler sein kdnnen, als die eines entsprechenden Biichi Automaten.

Eindeutige Biichi Automaten erkennen zwar auch die w-reguldren Sprachen, bieten jedoch keine we-
sentlichen Vorteile. Stark eindeutige Biichi Automaten, wie sie z.B in [CMO02] vorgestellt werden, haben
allerdigs vergleichbare Eigenschaften wie die vorher genannten. Welche der verschiedenen Automaten
besser geeignet ist hiangt von der konkreten Anwendung ab. So gibt es Probleme, die mit einem Muller
Automaten nur mit exponentiellem Aufwand, mit einem stark eindeutigen Biichi Automaten dagegen in
linearer Zeit zu 16sen sind, und Probleme die andersrum gelagert sind.

Carton und Michel beweisen in [CMO02], dass mit stark eindeutigen Biichi Automaten genau die ®-
reguldren Sprachen erkannt werden, und zeigen dabei, wie bei gegebener starken Erkennung ein Tran-
sitionsautomat konstruiert werden kann, und beweisen, dass aus diesem Transitionsautomat ein stark
eindeutiger Biichi Automat konstruiert werden kann. Die Grée des Transitionsautomat ist dabei maxi-
mal 722", wobei n die GroBe der Bildmenge des erkennenden Homomorphismus ist.

In dieser Arbeit wird ein dhnliches Verfahren vorgestellt, dass bei gegebener starken Erkennung einer
o-reguldren Sprache, direkt einen stark eindeutigen Biichi Automat konstruiert, der die Sprache erkennt.
Die GroBe des stark eindeutigen Biichi Automaten ist dann maximal n%2/Rl| wobei n die GroBe der
Bildmenge S des erkennenden Homomorphismus, und R die Menge der R-Klassen von S ist.

Weiterhin wird ein Biichi Automat vorgestellt, der zwar nicht eindeutig nach der entsprechenden Defi-
nition ist, jedoch dhnlich Eigenschaften wie ein stark eindeutiger Biichi Automat zeigt. Fiir diesen stark
k-eindeutige Biichi Automat kann auch mit linearem Aufwand das Komplement gebildet werden. Auch
die Schnittbildung und Vereinigung zweier Automaten ist wie beim stark eindeutigen Biichi Automa-
ten mit polynominellem Aufwand l6sbar. In dieser Arbeit wird ein Verfahren gezeigt, mit dem man bei
gegebener starken Erkennung einer m-regulédren Sprache, einen ,,stark k-eindeutige Biichi Automat” kon-
struieren kann, wobeit, die GroBe des stark eindeutigen Biichi Automaten nur polynominell groBer ist als
die GroBe der Bildmenge des erkennenden Homomorphismus.

AuBlerdem wird in dieser Arbeit fiir eine spezielle Sprachklasse die Konstruktion eines deterministischen,
stark eindeutigen Biichi Automaten gezeigt, und Konstruktionen fiir Schnittbildung und Vereinigung von
stark eindeutigen uns stark k-eindeutigen Biichi Automaten.



2 Grundlagen

2.1 m-reguléare Sprachen

Es sei
A: ein endliches Alphabet
Wort: eine endliche Konkatenation von Elementen aus A

®-Wort:  eine abzihlbar unendliche Konkatenation von Elementen aus A\ {1}
(Nur Wort, falls die unendliche Lange durch den Kontext gegeben ist)

AT die Menge der nichtleeren Worter
A% die Menge der Worter inklusive dem leeren Wort
A°: die Menge der @-Worter. L C A® ist eine @-Sprache

Die Menge der w-reguldiren Sprachen wird iiber folgende Regeln definiert:
SeiU CA* und Ly,L, C A®, dann gilt:

e U? ist o-regulir

o U-Ljisto-regulir(U-L;:={ul|lucU,lecL;}

o L;UL ist o-regulér

Satz 1 Eine Sprache ist genau dann m-reguliir, wenn sie eine Vereinigung von Mengen der Form XY®
ist, wobei X eine reguliire Teilmenge von A* und Y eine reguliire Teilmenge von A™ ist.

Beweis z.B. in [PP04] O

2.2 Ramsey Faktorisierung
Gegeben sei ein endliches Alphabet A, eine endliche Halbgruppe S und ein Homomorphismus / mit
h:AT =S

Sei w € A®, mit w = apajaz--- und a; € A. Eine Faktorisierung von w ist eine Sequenz von Wortern
u; € A", so dass w = ugu us - - - . Eine Ramsey-Faktorisierung ist eine Faktorisierung w = ugu us - - -, mit
h(u;) = e fiiri > 1 und e € E(S) (idempotentes Element).

Satz 2 Gegeben sei ein endliches Alphabet A, eine endliche Halbgruppe S und ein Homomorphismus h
von A" auf S. Dann existiert fiir jedes Wort w € A® eine Ramsey-Faktorisierung.

Beweis z.B. in [PP04] O

2.3 Linked Pairs

Gegeben sei ein endliches Alphabet A, eine endliche Halbgruppe S und ein Homomorphismus / mit
h:AT =S

Ein Tupel (s,e) heiBt Linked Pair, wenn e € E(S) und s - e = s gilt. Jede Ramsey-Faktorisierung (u;);>0,
eines Wortes w € A® induziert ein Linked Pair (s,e) tiber s = h(uo - u1) und e = h(u;). Ein Linked Pair,
das durch eine Ramsey-Faktorisierung eines Wortes induziert wird, heift assoziiert zu diesem Wort.

Lemma 3 Auf der Menge der Linked Pairs ist eine Linksoperation definiert: r-(s,e) := (rs,e), dabei ist
r € Sund (s,e) ein Linked Pair

e Die Linksoperation ist eindeutig
o SeiucAt, r=h(u), weA® und (s,e) ein Linked Pair, das zu w assoziiert ist. Dann gilt: (rs, e) ist
assoziiert Zu uw.



Beweis z.B. in [PP04] U

Ein Wort kann mehrere Ramsey-Faktorisierungen haben. Die dabei induzierten Linked Pairs nennt man
zueinander konjugiert. Zwei Linked Pairs (s,e) und (s',¢’), die zu einem gemeinsamen Wort assoziiert
sind, sind daher zueinander konjugiert, hier beschrieben mit (s, e) ~ (s, ¢’). Die Konjugationsklasse eines
Linked Pair (s,e) wird hier mit [s, e] beschrieben.

Lemma 4 Es gilt:

Die Konjugation von Linked Pairs ist eine Aquivalenzrelation.

o Seien (s,e) und (s',¢') zwei Linked Pairs. Dann gilt:
(3g,heSmite=gh, ¢ =hg, s=shunds' =sg) < (s,e)~(s,€)

e Die zuvor definierte Linksoperation kann auf die Menge der Konjugationsklassen erweitert werden,
r[s,e] := [rs,e|, und ist eindeutig.

Beweis z.B. in [PP04] (I

Ein Linked Pair kann mit mehreren Wortern assoziiert sein. Die Menge 4~ ! (s) - (h~!(e))® beinhaltet alle
Worter die mit dem Linked Pair (s, e) assoziiert sind.

2.4 Algebraische Erkennung

o-regulire Sprachen kénnen durch Homomorphismen 4 : At — S algebraisch erkannt werden, wobei A
ein endliches Alphabet und S eine endliche Halbgruppe ist. Man unterscheidet dabei zwischen schwacher
Erkennung und starker Erkennung.

2.4.1 Schwache Erkennung

Gegeben sei ein endliches Alphabet A, eine endliche Halbgruppe S, ein Homomorphismus 4 : AT — §
und daraus folgend die Menge der Linked Pairs S, = {(s,e) | s €S, e € E(S), se =s}.

Eine Sprache L C A® wird von h schwach erkannt, wenn es eine Menge P C S, gibt, fiir die gilt:

L= U h'(s) (h'(e))®

(s,e)eP

2.4.2 Starke Erkennung

Gegeben sei ein endliches Alphabet A, eine endliche Halbgruppe S, ein Homomorphismus 4 : AT — §
und daraus folgend die Menge der Linked Pairs S ,.

Die Konjugationsrelation der Linked Pairs ist eine Aquivalenzrelation (siehe [PP04]). Es konnen also dis-
junkte Aquivalentklassen gebildet werden, und man erhilt die Menge S » =38,/ ~der Aquivalenzklassen.
Die Linked Pairs, die zu einem Wort w € A® assoziiert sind, liegen alle in einer einzigen Aquivalenz-
klasse. Dadurch ergibt sich kanonisch die Abbildung /2 : A® — § -

Eine Sprache L C A® wird von 4 stark erkannt, wenn es eine Menge P C S » gibt, fiir die gilt: L = =1 (P)

2.5 Buchi Automat
2.5.1 Biichi Akzeptanzbedingung
Gegeben sei ein Automat 4 = (Q, A, A, I, F)



endliche Menge der Zustinde

endliches Alphabet

Ubergangsrelation, A C Q x A x Q, Menge der moglichen Transitionen
Menge der Anfangszusténde, I C QO

Menge der Endzustinde, F C Q

o~ R
1]

Ein Pfad yin 4 ist eine Sequenz aufeinanderfolgenden Transitionen:

ap a as
Y=4q—q1 —>492 - Ygn-1 —qn
a; €A, qi € Q, (gi-1, ai, qi) €A

Der Pfad v kennzeichnet das Wort w = aja, --- a,, w € A*. Die Zustinde g, g1 --- g, werden dabei der
Reihe nach erreicht.

Der Automat akzeptiert ein Wort w, wenn es fiir w einen Pfad in A4 gibt, so dass go € I und g, € F ist.
Die Menge der akzeptierten Worter bilden die Sprache, die der Automat A4 erkennt.

Unendliche Worter erzeugen unendliche Pfade, obige Akzeptanzbedingung kann dann nicht mehr ver-
wendet werden. Bei unendlichen Wortern wird daher die Biichi Akzeptanzbedingung verwendet. Ein
unendliches Wort w gilt dabei als akzeptiert, wenn es fiir w ein Pfad in 4 gibt, so dass go € [ und die An-
zahl von Zustidnden g; € F unendlich ist. Ein endlicher Automat mit Biichi Akzeptanzbedingung nennt
man Biichi Automat, einen Pfad mit unendlich vielen Zustdnden in F giiltig.

2.5.2 Definitionen

Nachfolgende Definitionen gelten fiir einen Biichi Automaten 4 = (Q, A, A, I, F). Ohne Einschrink-
ung der Allgemeinheit wird hier und in den folgenden Kapiteln davon ausgegangen, dass Biichi Au-
tomaten getrimmt sind. Das bedeutet hier, dass in einem Biichi Automaten jeder Zustand der Beginn
mindestens eines giiltigen Pfades ist (siche [PP04]).

e Deterministische Ubergangsrelation: Die Ubergangsrelation eines Automaten ist deterministisch,
wenn der Endzustand jeder Transition in A, eindeutig durch den Anfangszustand und den Eingabebuch-
staben bestimmt ist.

(¢;a,p), (g, a,p") €A = p=7p
e Co-deterministische Ubergangsrelation: Die Ubergangsrelation eines Automaten ist co-determinis-

tisch, wenn der Anfangszustand jeder Transition in A, eindeutig durch den Endzustand und den Einga-
bebuchstaben bestimmt ist.

(q,a,p), (d,a,p) e A = qg=¢

e Deterministischer Biichi Automat: Ein Biichi Automat heifit deterministisch, wenn seine Ubergangs-
relation deterministisch ist, und er nur einen Anfangszustand besitzt.

e Co-deterministischer Biichi Automat: Ein Biichi Automat heift co-deterministisch, wenn seine Uber-
gangsrelation co-deterministisch ist, und fiir jedes Wort hochstens ein giiltiger Lauf existiert.

e Nichtdeterministischer Biichi Automat: Ein Biichi Automat, der nicht als deterministisch oder co-
deterministisch gekennzeichnet ist, wird als ein nichtdeterministischer Biichi Automat betrachtet, es sei
denn, es geht aus dem Kontext etwas anderes hervor.

e Vollstindige Ubergangsrelation: Die Ubergangsrelation eines Automaten ist vollstindig, wenn fiir
jeden Zustand und jeden Buchstabe ein Nachfolgezustand bzw. eine entsprechende Transition in A exis-
tiert.

e Co-vollstindige Ubergangsrelation: Die Ubergangsrelation eines Automaten ist co-vollstindig, wenn
fiir jeden Zustand und jeden Buchstabe ein Vorgingerzustand bzw. eine entsprechende Transition in A
existiert.



e Vollstandiger Biichi Automat: Jedes ®-Wort hat mindestens einen Pfad in A4, der mit einem Zustand
aus I beginnt. Ein Biichi Automat mit vollstindiger Ubergangsrelation ist immer ein vollstindiger Biichi
Automat.

e Co-vollstindiger Biichi Automat: Jedes ®-Wort hat mindestens einen giiltigen Pfad in 4.

2.5.3 Muller Automat

Ein Muller Automat unterscheidet sich von einem Biichi Automaten durch ein anderes Akzeptanzverhal-
ten. Statt einer Menge Endzustinde wird eine Menge von Teilmengen der Zustandsmenge (Tabelle des
Automaten) definiert. Muller Automaten sind deterministisch. Gegeben ist dann:

A= (Qv Aa A, q0, {I)

Q = endliche Menge der Zustinde

A = endliches Alphabet

A = Ubergangsrelation, ACQOxXAXxXQ
qo = Anfangszustand, go € Q

T = Tabelle des Automaten, 7 C 2¢

Muller Automaten akzeptieren ein Wort w € A®, wenn es fiir w einen Pfad yin A gibt, der im Zustand
qo beginnt und fiir den inf(y) € 7 gilt. Die Menge inf(y) beinhaltet die Zustinde, die auf dem Pfad 7y
unendlich oft vorkommen.

Muller Automaten konnen auch als nichtdeterministische Automaten definiert werden. Diese werden
hier nicht behandelt.

2.5.4 Eigenschaften

Satz 5 Biichi Automaten sind abgeschlossen unter Vereinigung, Schnitt und Komplementbildung. Die
Abgeschlossenheit unter Komplementbildung gilt nicht fiir deterministische Biichi Automaten.

Beweis z.B. in [PP04] O

Die Grofie n eines Biichi Automaten, wird tiber n = max(|Q|, |A|) definiert. n; bzw. n; ist im Folgenden
die GroBe zweier Biichi Automaten. Zeitkomplexitit einiger Algorithmen fiir Biichi Automaten:

Vereinigung: O(n; +n,)
Schnitt: O(nyny)
Komplement: O(n°")
Leerheitsproblem: O(n)
Inklusionsproblem: O(n°")
Aquivalenzproblem: O(n°™)
(siehe z.B [PP04])

Nachteile von Biichi Automaten sind folglich, dass sie nichtdeterministisch sind, und dass die Komple-
xitit bei der Komplementbildung, und damit auch die des Inklusions- und Aquivalenzproblems, expo-
nentiell zur Automatengrofe ist.

Die von einem Muller Automaten erkennbaren ®-Sprachen, sind genau die von einem Biichi Auto-
maten erkennbaren Sprachen. Die Komplementbildung ist beim Muller Automat einfach. Der Auto-
mat 4' = (Q, A, A, qo, 22\ 7T) erkennt die zur Sprache des Automaten 4 komplementire Sprache.
Damit ist die Zeitkomplexitét fiir Komplementbildung linear, und fiir das Inklusionsproblem und das
Aquivalenzproblem polynominell. Allerdings muss fiir die GroBe n eines Muller Automaten n = max
(10l, |E|, min(|T|, |22\ T|)) verwendet werden. Ein Muller Automat ist damit im worst case expo-
nentiell groBer als der entsprechende Biichi Automat. (siehe z.B [PP04])




2.6 erkennbare w-Sprachen

Satz 6 Sei L C A eine ®-Sprache. Folgende Aussagen sind dann dquivalent:

Beweise fiir die folgenden Punkte siehe z.B. [PP04]
L ist eine erkennbare ®-Sprache

L ist eine m-regulédre Sprache

L wird schwach erkannt

L wird stark erkannt

L wird von einem Biichi Automaten erkannt

L wird von einem Muller Automaten erkannt

Fiir die folgenden Punkte siehe Kapitel 3.7

L wird von einem eindeutigen Biichi Automaten erkannt

L wird von einem stark eindeutigen Biichi Automaten erkannt
L wird von einem stark k-eindeutigen Biichi Automaten erkannt



3 Eindeutige Blichi-Automaten

3.1 Definition
A=(0, A, A, I, F) sei ein Biichi Automat, und L die Sprache, die 4 erkennt:

A heifit eindeutig, wenn fiir jedes unendliche Wort hochstens ein akzeptierender Pfad in A4 existiert. D.h.
Der Biichi Automat A heif3t eindeutig, wenn fiir jedes Wort aus L4, es genau einen akzeptierenden Pfad
gibt.

3.2 Stark eindeutige Bilichi-Automaten

Der Biichi Automat 4 = (Q, A, A, I, F) heifit stark eindeutig, wenn fiir jedes Wort w € A® genau ein
giiltiger Pfad existiert. Dann ist ein Wort genau dann in der Sprache L4, wenn dieser Pfad in einem
Zustand aus / beginnt.

Die Eigenschaft stark eindeutig kann auch tiber die Eigenschaften co-deterministisch und co-vollstindig
definiert werden. Die zwei folgenden Beispiele sollen diese Eigenschaften veranschaulichen.

Beispiel 1: Der Biichi Automat in Abbildung la ist zwar eindeutig, aber er ist weder deterministisch
noch co-deterministisch. Er ist nicht deterministisch, weil er zwei Anfangszustinde hat, und er ist nicht
co-deterministisch, weil fiir Wort (ab)® zwei giiltige Pfade im Automaten existieren. Der eine startet im
Zustand 2, der andere in Zustand 3.

Beispiel 2: Der Biichi Automat in Abbildung 1b erkennt die Sprache (A*b)®, also Worter, die unendlich
viele b beinhalten. Er ist co-vollstindig und co-deterministisch und damit mit nachfolgendem Lemma
stark eindeutig. Die Zustinde O und 1, die von keinem Anfangszustand erreicht werden konnen, werden
benotigt, damit auch Worter der Sprachen A*ba® und a®, jeweils einen giiltigen Pfad im Automaten

haben.
(@)
b b

o - . o0)-

a a b

(a) Bsp. 1 (b) Bsp.2

Abbildung 1: Findeutige Biichi Automaten

Lemma 7 Fiir Biichi Automaten A sind folgende Aussagen sind dquivalent:

e A ist stark eindeutig
e A4 ist co-vollstindig und co-deterministisch
e A ist co-vollstindig und alle giiltige Pfade eines ®-Wortes, haben denselben Anfangszustand

Beweis: Aus den Definitionen fiir co-vollstindig und co-deterministisch folgt direkt:

o Aist co-vollstandig und co-deterministisch = A4 ist stark eindeutig
o Aiststark eindeutig = A4 ist co-vollstindig und fiir jedes ®-Wort existiert hochstens ein akzep-
tierter Pfad



Da A getrimmt ist (sieche Kapitel 2.5.2), existiert fiir jeden Zustand g € Q ein giiltiger Pfad, mit q als
Anfangszustand. Wenn 4 stark eindeutig ist existiert dann fiir jeden Zustand g € Q ein Wort w € A® mit
genau einem Pfad in 4, der in diesem Zustand g beginnt. Dann hat das Wort aw fiir a € A auch genau
einen Pfad in 4, der in einem Vorgingerzustand von g beginnt. Daraus folgt, dass fiir jeden Zustand
und jeden Buchstabe aus A, der Vorgiingerzustand eindeutig ist, die Ubergangsrelation von 4 also co-
deterministisch ist. Damit gilt:

e A ist co-vollstandig und co-deterministisch < A ist stark eindeutig

Aus der Definition fiir co-deterministisch folgt direkt: In einem co-vollstidnigen und co-deterministischen
Biichi Automat hat jeder giiltige Pfad eines ®-Wortes genau einen Anfangszustand.

Es gilt aber auch: Ein co-vollstindiger Biichi Automat, bei dem jeder giiltige Pfad eines ®-Wortes ein
eindeutiger Anfangszustand hat, ist co-deterministisch. Denn gébe es ein Wort aja; --- mit zwei ver-
schiedenen Pfaden y = qo —= q1 —= qo--- und ¥ = qj) — ¢} -2+ ¢ ---, dann giibe es ein i € N
mit ¢; # ¢}, und damit zwei Anfangszustinde fiir das Wort a;;2a;41--- was ein Widerspruch zu den
eindeutigen Anfangszustiinden ist. Damit gilt:

e A ist co-vollstandig und co-deterministisch < 4 ist co-vollstindig und jeder giiltige Pfad
eines -Wortes hat einen eindeutigen Anfangszustand (Il

3.3 Stark k-eindeutige Biichi Automaten

Hier wird ein Biichi Automat vorgestellt, der zwar nach Definition in Kapitel 3.1 nicht eindeutig ist,
jedoch dhnliche Eigenschaften wie ein stark eindeutiger Biichi Automat hat. Insbesondere ermoglicht er
die Komplementbildung mit linearem Aufwand, ist co-vollstindig und die Ubergangsrelationen sind co-
deterministisch. Im Gegensatz zu stark eindeutigen Biichi Automaten l4sst er sich mit polynominellem
Aufwand aus einer gegebenen starken algebraischen Erkennung konstruieren.

Gegeben sei der Biichi Automat 4 = (Q, A, A, I, F), der die Sprache Lz C A® erkennt. 4 wird hier
stark k-eindeutig genannt, wenn

seine Ubergangsrelation A co-deterministisch ist,

o fiir jedes m-Wort mindestens ein und hochstens k giiltige Pfade in A existieren (damit ist 4 co-voll
stiandig),

e fiir ein Wort, das in L ist, alle diese Pfade in einem Zustand ¢ € I beginnen,
fiir ein Wort, das nicht in L ist, alle diese Pfade in einem Zustand g ¢ I beginnen, und

e alle diese Pfade disjunkt zueinander sind.

Die Pfade v; = q1 LI q1,1 2, g1z - und 2 =q2p LI q2,1 2, g2 --- werden hier als disjunkt
bezeichnet, wenn g ; # ¢ ; fiir alle i € N gilt.

Anmerkung: In [SH85] wird ein k-eindeutiger Biichi Automat als ein Biichi Automat definiert, in dem
jedes Wort aus A® hiochstens k akzeptierende Pfade hat. In [BL09] wird ein streng k-eindeutiger Biichi
Automat als ein k-eindeutiger Biichi Automat definiert, in dem jedes Wort aus A® hochstens k giiltige
Pfade hat.

3.4 Konstruktionen fiir eindeutige Blichi Automaten

In der Literatur zum Thema sind einige Konstruktionen von eindeutigen und stark eindeutigen Biichi
Automaten zu finden, z.B.:

e D. Kihler und T. Wilke geben in [KWO0S8] ein Verfahren an, mit dem aus einem Biichi Automaten, mit
n Zustinden, ein eindeutiger Biichi Automat mit maximal 4(3n)" Zustéinden konstruiert werden kann.



e A. Arnold zeigt in [A82], wie aus einem Muller Automat ein eindeutiger Biichi Automat konstruiert
werden kann. Die Grofle des eindeutigen Biichi Automaten ist polynominell zur Grofle des Muller Au-
tomaten, wobei die Grofle des eindeutigen Biichi Automaten und des Muller Automaten entsprechend
Kapitel 2.5.4 definiert ist.

Den entsprechenden eindeutigen Biichi Automat fiir das Komplement erhilt man mit gleichem Aufwand
(siehe Kapitel 2.5.4).

e Bei gegebener starken Erkennung einer w-regulidren Sprache L, kann ein stark eindeutiger Biichi
Automat konstruiert werden, der L erkennt. O. Carton, M. Michel zeigen in [CMO02], wie aus gegebener
starken Erkennung ein Transitionsautomat konstruiert werden kann, und beweisen, dass aus diesem Tran-
sitionsautomat ein stark eindeutiger Biichi Automat konstruiert werden kann. Die Gro8e des Transitions-
automat ist dabei maximal n%2", wobei n die GroBe der Bildmenge des erkennenden Homomorphismus
ist.

e In Kapitel 4.2 wird ein dhnliches Verfahren vorgestellt, dass bei gegebener starken Erkennung einer
o-reguldren Sprache, direkt einen stark eindeutigen Biichi Automat konstruiert, der L erkennt. Die Grofie
des stark eindeutigen Biichi Automaten ist dann maximal n?2/% |, wobei n die GroBe der Bildmenge S des
erkennenden Homomorphismus, und R die Menge der & -Klassen von S ist.

e In Kapitel 4.3 wird gezeigt, dass bei gegebener starken Erkennung einer m-reguliren Sprache L, ein
stark k-eindeutiger Biichi Automat konstruiert werden kann, der L erkennt. Die Grofle des Automaten ist
dabei maximal polynominell groBer als n, die GroBe der Bildmenge des erkennenden Homomorphismus.

e Fiir eine eingeschriankte Sprachklasse wird in Kapitel 4.4 die Konstruktion eines deterministischen,
stark eindeutigen Biichi Automaten gezeigt. Die GroBe des Automaten ist maximal n|R|, wobei n die
GroBe der Bildmenge S des erkennenden Homomorphismus, und R die Menge der & -Klassen von S ist.

3.5 Konstruktionen fiir Vereinigung, Schnitt und Komplement

Dass Eindeutige Biichi Automaten, stark eindeutige Biichi Automaten und stark k-eindeutige Biichi Au-
tomaten unter Vereinigung, Schnitt und Komplement abgeschlossen sind, ergibt sich bereits daraus, dass
alle genannten Automaten genau die reguldren Sprachen erkennen (siehe Kapitel 2.6).

Fiir Vereinigung und Schnitt zweier stark eindeutiger Biichi Automaten mit gemeinsamen Alphabet, und
fiir das Komplement eines stark eindeutigen Biichi Automaten, lassen sich einfach stark eindeutige Biichi
Automaten konstruieren. Das Gleiche gilt auch fiir stark k-eindeutige Biichi Automaten. Im Folgenden
werden diese Konstruktionen gezeigt.

3.5.1 Vereinigung und Schnitt

Gegeben sind die Biichi Automaten 4; = (Q1, A, Ay, I1, Fi) und 4 = (02, A, Ay, L, F»), die die
Sprachen Lg, und L, erkennen. Diese Automaten definieren den Automat 4 = (Q, A, A, I, F) folgen-
dermalfen:

0 = {(q1,92,¢8) |q1 €01, 2€ 02, €€ {0, 1}}
A= {aqg-q|qcQ acA} mit

a-q = (a-qi,a-q, €)

a-qq = pmit (pSq) e

0 wenn g, € Fy
g = 1 wenng, ¢ Fundg; € F>

€ sonst
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/- {(q1,92,€) | (g €h V g2€h),e€{0,1}} = AerkenntLg U Lg,
{(q1,92,¢) | (g1 €li N g€ D), ec{0,1}} = AerkenntLg N Lg,

F = {(q1,92,¢) | 2 € P2 N e=0}

e Sind bei der obigen Konstruktion die Biichi Automaten A4, und A, stark eindeutige Biichi Automaten,
dann ist A4 ein stark eindeutiger Biichi Automat und erkennt L4, U Lg, bzw. Lg, N Lg,.

Beweis: Nach Definition von A gilt fiir den Pfad eines Wortes w € A®: ¥ = go —= g1 — ¢» ---, mit
i = (q1,i, q2,i, &). Dabei sind 1 = q10 — q1,1 —> q1p -~ und Y2 = 20 — 2,1 — g2 -+ Pfade
von w in 4; bzw in 4. Da A4; und A4, stark eindeutige Biichi Automaten sind, ist fiir w, y; und y»
eindeutig gegeben.

Gilt fiir einen Zustand g; = (q1,i, q2.i, &), q1.i € F1, gilt nach Definition von A, €; = 0 fiir alle Vorginger-
zustinde g, k < j < i bis zum ersten Zustand gy = (91 q2.k, €) mit g2 x € F>. Der Zustand gy liegt
dann, nach Definition von A, in F.

Y1 enthélt unendlich viele Zustinde g;; € Fj, und Y, unendlich viele Zustinde ¢>; € F>. Damit existiert
fiir jedes Wort w € A® ein Pfad v mit unendlich vielen Zustéinden fiir die ¢;; € F; gilt und unendlich
viele Zustéinde fiir die g, ; € F> gilt. Damit gibt es auf y unendlich oft die Situation, dass ein Zustand mit
q2,j € F> vor einem Zustand g1 ; € F liegt. Damit liegen unendlich viele Zustinde von yin F.

Nach Definition von F gilt fiir jeden Zustand g; € F, €; = 0. Die Transitionen von A sind, nach Definition
von A, co-deterministisch. Damit gilt auf vy, dass fiir alle Zustéinde g; mit j < i, €; eindeutig ist. Da
unendlich viele Zustinde von Y in F liegen, sind die e-Werte aller Zusténde auf 7y eindeutig. Damit sind
dann alle Zustédnde von y eindeutig.

Damit ist 4 co-vollstindig und co-deterministisch, der Pfad eines Wortes w aus A® hat einen eindeutigen
Anfangszustand, und nach Definition von I erkennt A eindeutig die Sprache L4, U Lg, bzw. Lg, N Lg,[]

e Sind bei der obigen Konstruktion die Biichi Automaten A4; und A, stark k-eindeutige Biichi Auto-
maten, dann ist A4 ein stark k-eindeutiger Biichi Automat und erkennt Lg, U Lg, bzw. Lg, N Lg,.

Beweis: Nach Definition ist 4; und 4, co-vollstindig. Daher existiert fiir jedes Wort w € A® mindestens
ein Pfad y1 = q1 Bl qi,1 2, q12 --- in 4y und ein Pfad y» = g2 Bl q2,1 =, q>p --- in Ap. Nach
Definition von A existiert damit fiir w ein Pfad der Formy = gy — g1 — ¢» ---, mit g; = (91, 92, €)-
AuBerdem gilt nach Definition von A, dass fiir jeden Pfad y von w, y; und 7y, ein Pfad von w in 4; bzw.
Ay ist.

Gilt fiir einen Zustand g; = (q1.i, 92,i, &) q1,; € F1, gilt nach Definition von A, €; = 0 fiir alle Vorgidnger-
zustinde g, k < j < i bis zum ersten Zustand gx = (g1, g2k, &) mit g2 x € F>. Der Zustand gy liegt
dann, nach Definition von A, in F.

Y1 enthilt unendlich viele Zustéinde g1 ; € Fi, und > unendlich viele Zustinde g, ; € F>. Damit existiert
fiir jedes Wort w € A® einen Pfad y mit unendlich vielen Zustdnden fiir die ¢;; € F; gilt und unendlich
viele Zusténde fiir die g ; € F> gilt. Damit gibt es auf y unendlich oft die Situation, dass ein Zustand mit
q2,; € F> vor einem Zustand g1 ; € F liegt. Damit liegen unendlich viele Zustinde von yin F.

Nach Definition von 4; und 4, ist durch den Anfangswert von y; und ¥, die Zugehorigkeit von w in L g,
bzw. L 4, bestimmt. Damit werden Lg, U Lg, und Lg, N Lg, durch den Anfangszustand von y erkannt.

Zwei Pfade von w in 4 sind disjunkt, denn giibe es zwei Pfade Y und ¥, die nicht disjunkt sind, giibe es
einimit g ; = q’L ;und go; = q’27 ;- Das wiire aber ein Widerspruch dazu, dass 4, und 4, stark k-eindeutig
sind, und damit Pfade eines Wortes darauf disjunkt sind. U

Fiir die Anzahl der Zustéinde in 4 gilt: | Q| = 2-| Q1 |- | Q2 |.

Damit ergibt sich folgendes Lemma:
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Lemma 8 Fiir Vereinigung und Schnitt zweier stark eindeutiger Biichi Automaten A und A, mit ge-
meinsamen Alphabet, ldsst sich mit polynominellem Aufwand ein stark eindeutiger Biichi Automat kon-
struieren, der Lg, U Lg, bzw. Lg, N Lg, erkennt.

Fiir stark k-eindeutige Biichi Automaten gilt das analog. (I

Anmerkung: Sind A4; und A4, eindeutige Biichi Automaten, kann fiir L4, N L4, gleichfalls obige Kon-
struktion verwendet werden.

3.5.2 Komplement

e Gegeben ist der stark eindeutige Biichi Automat 4 = (Q, A, A, I, F), der die Sprache Lz C A®
erkennt. Dann erkennt der stark eindeutige Biichi Automat B = (Q, A, A, Q\ I, F) das Komplement
von Lg.

Beweis: Da 4 stark eindeutig ist, hat jedes Wort w € A® genau einen giiltigen Pfad y4 in 4. Die Zustinde
von Y4 sind nicht von der Menge der Anfangszustinde I abhédngig (Kapitel 3.2). Da ‘B bis auf die Menge
der Anfangszustinde I dem Automat A gleicht, hat w in B ebenfalls genau eine giiltigen Pfad yg, mit
Y3 = Yg. Damit gilt: w € Lg & Y4 beginnt in einem Zustand aus I, und w € Lg < Yz beginnt in
einem Zustand aus 7\ Q. Damit erkennt B genau das Komplement von L. Die Eigenschaften eines stark
eindeutigen Biichi Automaten ergeben sich direkt aus der Definition von B ]

e Gegeben ist der stark k-eindeutige Biichi Automat 4 = (Q, A, A, I, F), der die Sprache Lz C A®
erkennt. Dann erkennt der stark k-eindeutige Biichi Automat B = (Q, A, A, Q\ I, F) das Komplement
von Lg.

Beweis: Da 4 stark k-eindeutig ist, hat jedes Wort w € A® mindestens ein und hochstens k giiltige Pfade
in 4. Die Pfade bzw. die Zustdnde darauf sind nicht von der Menge der Anfangszustinde / abhingig.
Da /B bis auf die Menge der Anfangszustéinde / dem Automat A4 gleicht, hat w in B die gleichen Pfade
mit den gleichen Zustidnden wie in 4. Nach Definition von stark k-eindeutigen Biichi Automaten gilt:
w € Lg < alle Pfade von w beginnen in einem Zustand aus /, und w € Lg < 74 alle Pfade von w
beginnen in einem Zustand aus / \ Q. Damit erkennt B genau das Komplement von L 5. Die Eigenschaften
eines stark k-eindeutigen Biichi Automaten ergeben sich direkt aus der Definition von B (I

e Die Anzahl der Zustinde von ‘B ist bei allen Konstruktionen gleich der Anzahl der Zustinde von 4.

Damit ergibt sich folgendes Lemma:

Lemma 9 Fiir einen stark eindeutigen Biichi Automaten A, der L4 € A® erkennt, liisst sich mit linearem
Aufwand einen stark eindeutigen Biichi Automat konstruieren, der A® \ L erkennt.

Fiir stark k-eindeutige Biichi Automaten gilt das analog. O

3.6 Leerheits-, Inklusionsproblem, Aquivalenzproblem

e Leerheit: Da Biichi Automaten als getrimmt angenommen werden konnen, sind Biichi Automaten
und damit eindeutige Biichi Automaten, stark eindeutige Biichi Automaten und stark k-eindeutige Biichi
Automaten genau dann leer, wenn die Menge der Anfangszustinden / = 0 ist.

Wenn I = 0 kann es nach Definition von Biichi Automaten kein akzeptiertes Wort geben. Wenn 7 # 0 gibt
es in einem getrimmten Biichi Automat ein Zustand g € I und ein Pfad mit unendlich vielen Zustanden
in F, der in q beginnt, und damit ein akzeptiertes Wort. Somit ist ein Automat mit 7 @ nicht leer.  [J

e Inklusion: Gegeben sind die stark eindeutigen Automaten 4; = (Q;, Ay, Ay, I, F1) und 4, =
(Q2, A2, Mo, b, F»), die die Sprachen Lz, und Lg, erkennen. Es gilt L, C Lg, genau dann, wenn
L% NLg = 0ist. LY ist dabei das Komplement von Lg, .

12



Da bei stark eindeutigen Biichi Automaten das Komplement in linearer Zeit, Schnitt und das Leerheits-
problem bei Biichi Automaten in polynomineller Zeit gebildet werden kann (siehe Kapitel 3.5.2 und
2.5.4), ist das Inklusionsproblem in polynomineller Zeit 16sbar.

Fiir stark k-eindeutige Biichi Automaten gilt das Gleiche. U

° Aquivalenz: Gegeben sind die stark eindeutigen Automaten 4; = (Q1, A, Ay, I, Fi) und 4, =
(Q2, A2, A, I, F»), die die Sprachen Lg, und Lg, erkennen. Es gilt Ly, = Lg, genau dann, wenn
Lﬂl - L,qz und L/qz - Lﬂl.

Da bei stark eindeutigen Biichi Automaten das Inklusionproblem in polynomineller Zeit und mit poly-
nominellem Platzbedarf gelost werden kann, ist damit auch das Aquivalenzproblem in polynomineller
Zeit und mit polynominellem Platzbedarf l6sbar.

Fiir stark k-eindeutige Biichi Automaten gilt das Gleiche. U

Damit ergibt sich folgendes Lemma:

Lemma 10 Fiir Biichi Automaten ldsst sich das Leerheitproblem unmittelbar losen.

Fiir stark eindeutige Biichi Automaten und stark k-eindeutige Biichi Automaten ldsst sich das Inklusions-
problem mit polynominellem Aufwand ldsen.

e Explizite Losungen fiir das Inklusions- und Aquivalenzproblem sind in [BL09] gegeben.

3.7 Eigenschaften

Satz 11
o Eindeutige Biichi Automaten erkennen genau die reguldren Sprachen, und sind abgeschlossen unter
Vereinigung, Schnitt und Komplementbildung.

Fiir stark eindeutige Biichi Automaten und stark k-eindeutige Biichi Automaten gilt das Gleiche.
Weiterhin gilt:

e Fiir stark eindeutige Biichi Automaten und stark k-eindeutige Biichi Automaten ldsst sich der ent-
sprechende Komplement-Automat mit linearerm Aufwand konstruieren.

e Fiir stark eindeutige Biichi Automaten und stark k-eindeutige Biichi Automaten ldsst sich das Leer-
heits-, Inklusions- und Aquivalenzproblem mit polynominellem Aufwand losen

e Fiir zwei stark eindeutige Biichi Automaten und fiir zwei stark k-eindeutige Biichi Automaten mit
Jjeweils gleichem Alphabet lassen sich entsprechende Automaten fiir Schnitt und Vereinigung mit polyno-
minellem Aufwand konstruieren.

e stark k-eindeutige Biichi Automaten konnen bei gegebener starken Erkennung in polynomineller Zeit,
beziiglich der Grifse der Bildmenge des erkennenden Homomorphismus, konstruiert werden.

Beweis: Fiir jede m-reguldre Sprache gibt es einen Biichi Automat der die Sprache erkennt und ein
Homomophismus der die Sprache stark erkennt. Eindeutige Biichi Automaten, stark eindeutige Biichi
Automaten und stark k-eindeutige Biichi Automaten konnen daher fiir jede ®-regulédre Sprache konstru-
iert werden (siehe Kapitel 4.2 und 4.3). Die von eindeutige Biichi Automaten, stark eindeutige Biichi
Automaten und stark k-eindeutige Biichi Automaten erkannten Sprachen sind w-regulédre Sprachen, da
die genannten Automaten Biichi Automaten sind.

Die Abgeschlossenheit unter Vereinigung, Schnitt und Komplement folgt aus Satz 5.

Die weiteren Punkte entsprechen Lemma 8, 9 und 10 und der letzte Punkt ist Ergebnis der Kapitel 4.2
und 4.3 U
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Stark eindeutige Biichi Automaten und stark k-eindeutige Biichi Automaten sind mit Muller Automaten
vergleichbar. Die Grofie der Automaten sind maximal exponentiell groB3er als entsprechende Biichi Au-
tomaten, dafiir ist die Konstruktion des Komplement-Automaten mit linearem Aufwand moglich. Muller
Automaten haben allerdings den Vorteil, dass sie deterministisch sind.

Welcher Automat effizienter ist, ergibt sich erst aus der konkreten Anwendung. Das kann man gut an
folgenden zwei Beispielen sehen. Die Beweise dazu sind in [BL09] gegeben.

Beispiel 1: Gegeben ist die Sprache L, = A*aA" 'ab® mit A = {a,b}. Fiir diese Sprache existiert ein stark
eindeutiger Biichi Automat mit n+ 2 Zustinden. Dagegen hat jeder (deterministische) Muller Automat
mindestens 2" Zusténde

Beispiel 2: Gegeben ist das Alphabet A = {a,b} und die Sprache L, in der alle Worter aus A® enthalten
sind, die an n-ten Stelle den Buchstaben a haben. Fiir diese Sprache gibt es einen (deterministischen)
Muller Automat mit n+ 1 Zustinden. dagegen bendtigt ein stark eindeutiger Biichi Automat mindestens
2"~ Zustinde.
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4 Von starker Erkennung zu eindeutigen Biichi Automaten

In diesem Kapitel werden Konstruktionen fiir stark eindeutige Biichi Automaten und stark k-eindeutige
Biichi Automaten gezeigt. Es wird gezeigt, wie fiir eine beliebige erkennbare Sprache L C A®, fiir die
ein Homomorphismus / gegeben ist, der L stark erkennt, der entsprechender Biichi Automat konstruiert
werden kann.

Weiterhin wird die Konstruktion eines deterministischen, stark eindeutigen Biichi Automaten gegeben,
der eine Teilklasse der ®-regulidren Sprachen erkennt.

Fiir jede w-reguldre Sprache gibt es einen Homomophismus, der die Sprache stark erkennt. Die Kon-
struktionen in diesem Kapitel beweisen daher die Aussage in Satz 11, dass stark eindeutige Biichi Au-
tomaten, stark k-eindeutige Biichi Automaten und Automaten mit eindeutigen Anfangszustinden genau
die reguldren Sprachen erkennen.

Gegeben ist jeweils ein endliches Alphabet A, eine Sprache L C A®, eine endliche Halbgruppe S mit dem
Homomorphismus 2 : AT — S. L wird vom Homomorphismus £ stark erkannt, es gibt also die Menge S,
der Linked Pairs, die Menge S p» der Aquivalenzklassen der Linked Pairs und die Abbildung /: A® — § -
h erkennt L, d.h. es gibt eine Menge P C S, mit L=h""! (P).

Die Beweise zu den Konstruktionen bendtigen als Grundlagen die Green Relations im Zusammenhang
mit Linked Pairs und einer Konstruktion dhnlich der Rhodes Expansion in Halbgruppen. Diese Grundla-
gen werden in den folgenden Kapiteln, soweit sie benotigt werden, gegeben. Fiir weitere Informationen
zu den Green’s Relations siehe z.B. [PP04] und zu der Rhodes Expansion [B84]

4.1 Grundlagen
4.1.1 Green Relations

Fiir weiterfiihrende Informationen und fiir Beweise zu den Aussagen in diesem Kapitel siehe z.B. [PP0O4].

Gegeben ist im Folgenden eine Halbgruppe S. Diese wird um ein neutrales Element erweitert, so dass
man S erhilt. S! ist damit ein Monoid. AuBerdem sei s,s’,¢,¢' € S'. Auf S' werden drei Quasiordnungen
definiert:

<g: s<gs & sSt C ¢St & Jris=4s't

<;i s<;5 &< sS'CyS! &S Jris=ts

<gr os<ys & SlsSTCSYS! < Ftt is=tst

Damit ergeben sich die Aquivalenzrelationen:

svg s & (s<gs Ns'<gs) und R(s):={t|t~gs}

s~rs & (s<, S NS <ps) und L(s):={t|t~,s}

s~gst & (s<y58 NS <ys) und J(s):={t|t~ys}

AuBerdem die Striktordnungen:

s<gs & (s<gs5 N (s~g5))

s<rps & (s<p5 AN -(s~p5))

s<y8 & (s<y5 A (s~y5))

Weiterhin werden die Aquivalenzrelationen D und # definiert:

srogys & (s~g s Ns~ps) und H(s):={t |t~y s}
s~ps & FteSi(s~gt At~rs) und D(s):={t|t~ps}
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Lemma 12 Sei S eine Halbgruppe und s,s',t,t' € S'. Dann gilt:

J:(s~gt Ntrps) & T (st ANt ~g s).
e |S|eN = s~ps & s~y
s<gs = Viits<gts
s<p8 = Vtist < s't
o s<gt & VS eR(s)VI'€R(t): s’ <gt
s<gt & Vs €R(s)VI'€eR(t): s’ <gt
s<gt & Vs eLs)VieL(t): s <.t
s<gt & Vs eL(s)V' eL(r): s <.t O

Folgendes Lemma beschreibt die Struktur einer D Klasse. Dabei hilft die Vorstellung, dass die Elemente
der D Klasse in einer Tabelle (,,Egg Box™) geordnet sind. Alle Elemente einer Zeile sind die Elemente
einer K Klasse, jede Spalte enthilt die Elemente einer £ Klasse. Die Tabellenzellen selbst enthalten
dann die Elemente der entsprechenden # Klasse.

Lemma 13 Sei S eine Halbgruppe, D eine D Klasse von S' und s,s',s", p,q,x € S'. Dann gilt:

e Wennsunds’ in der gleichen R_Klasse sind, dann gibt es ein p und ein g mit s = s'p, s' = sq. Die
Abbildungen x — xp und x — xq sind dann bijektiv und erhalten die H Klassen.
o ss” ist Element der H Klasse R(s) NL(s") < Die H Klasse R(s") N L(s) enthdilt ein idempotentes

Element.
e FEine H Klasse ist genau dann eine Gruppe, wenn sie das Produkt zweier ihrer Elemente enthiilt.

o  Wenn D ein idempotentes Element enthdlt, dann gibt es in jeder R_und in jeder L Klasse von D
mindestens ein idempotentes Element. O

Weiterhin gilt in einer Halbgruppe S:

Lemma 14 Sei S eine Halbgruppe, s,t € S und m,n € S'. Dann gilt:

o s=msn = ms€EL(s)und sn € R(s)
o (s~yt Ns<gt) = s~gt
o (s~ygt ANs<gt) = s~pt O

4.1.2 Green Relations im Zusammenhang mit Linked Pairs

Lemma 15 Gegeben sei ein endliches Alphabet A, eine endliche Halbgruppe S und ein Homomorphis-
mus h von A" auf S. AuPerdem w € A®, w = apajay --- und w; = apa; - - a;. Die R-Klasse R(w) wird
folgendermayfien definiert:

Sei (s,e) ein Linked Pair assoziiert zu w, und iy, das Minimum von {i | h(w;) = s} (imin existiert, siehe
Kapitel 2.3). Dann ist R(w) := R(h(w;,,,)) = R(s), und es gilt

1) V) > imin:h(wj) € R(w)
2) (s,e)~(s,¢) = s €R(s)=R(w)

Beweis:

1) Angenommen, j > i, und h(w;) ¢ R(w). Dann existiert p = h(a;,,, - - -a;j) mit, sp = h(w;). AuBerdem
ein k > j mit w; = s (siche Kapitel 2.3), und damit ein ¢ = h(aj4;---ax) mit A(w;)q = s. Damit ist, im
Widerspruch zur Annahme, h(w;) € R(w).

2) Es existiert w;,,,, mit h(w;,,, ) = s und w;, . mit A(wj,. ) =" Es gilt (imin < jimin) V (Jmin < imin), und
damit nach 1) ', s € R(w). O
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Lemma 16 Gegeben sei ein endliches Alphabet A, eine endliche Halbgruppe S und ein Homomorphis-
mus h von A" auf S. Auflerdem w € A®, w = apayay - -+ und w; = aj1a;12a;43 - - -. Die D-Klasse D(w)
wird folgendermafien definiert:

Sei (s,e) ein Linked Pair von w, dann ist D(w) := D(e) und es existiert iy, das Minimum von {i |
h(ag---a;) = s} (imin existiert, siehe Kapitel 2.3). Es gilt dann

1) Vj>imn 35" (5, €) ist assoziiert zu w;
2) (s,e)~(5,¢) = € e€D(e)=D(w)
3)  Fiiri > imy gilt: (r,t) assoziiert zu w; = r~gp't

Beweis:

1) Es existieren m < j und n > j mit A(@p1---a;) h(ajzi---a,) = e (sieche Kapitel 3.2). Fiir 5" :=
h(ajyi---ap) gilt, (s',e) ist assoziiert zu w.

2) Aus (s,e) ~ (s',¢) folgt, dass ein Wort w € A®, w = apaya; - - - existiert, das sowohl zu (s, ¢) als auch
(s',¢') assoziiert ist (Kapitel 3.2). Sei h(ag - -aj,,, - --a;) = se = s, dann gilt fiir alle k mit A(ag---ax) =
s k>

Abbildung 2: Pfad in 4

Im,n: x:=h(agy1-am), xe = (g1 Q- an)
Ji: y:=h(ajy1---ar), yx=e, yxe =ee =e

' X =hlagsy---d)), h(ager-ap) =€, hagey---ay) = €'x' = xe

(siehe Abbildung 2)
Aus y-xe =ee = e (und x- e = xe) folgt xe ~, e
Aus xe - h(anq1 - -ap) = €' und 'x’ = xe folgt xe ~g ¢’

Aus xe ~p e und xe ~ ¢’ folgt schlieBlich e ~p ¢’

3) Fiiri > iy, gilt:
dx,y € AT 1wy, = xw;, wi = yw,, w,, und w, sind assoziiert zu (e, e)
Daraus folgt: w; ist assoziiert zu (h(y)e,e), h(y)e e = h(y)e, h(x) h(y)e = ee = e und damit h(y)e ~ e
SchlieBlich sind alle Linked Pairs (r,¢), die mit w; assoziiert sind, konjugiert zu (h(y)e, e). Deshalb gilt
reg h(y)eund r ~pt.

O

Lemma 17 Gegeben sei ein endliches Alphabet A, eine endliche Halbgruppe S und ein Homomorphis-
mus h von A" auf S. Fiir Linked Pairs von S gilt dann:

1) El(f,f):(f,f)N(S,E) <~ S ~pe
2) (ee) ~ (f.f) & er~g f

3 s,e) ~ (e unds ~p e ~p s ~pe & s ~p Sunds ~p e ~p s ~p e
) ) D D D R D D D

Beweis:
1)  Wenn (s,e) und (f, f) konjugiert sind, dann sind nach Lemma 15 und 16 s ~¢ f und e ~ f. Damit
ist s ~p e. Fiir die Riickrichtung gilt s ~4 e und weil (s,e) ein Linked Pair ist s = se. Daraus folgt nach
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Lemma 14 s ~/ e, und es gibt ein # € S! mit ts = e. Damit gilt stst = set = st und f := st ist idempotent.
Daraus folgt dann, dass (s,e) und (f, f) konjugiert sind.

2) 2)ist eine dierekte Folge von 1).

3) Sind (s,e) und (s’,¢’) konjugiert, dann gilt nach Lemma 15 s ~ . Fiir die Riickrichtung ist s ~g s’
gegeben. Wegen 1) ist (s,e) ((s',€')) konjugiert zu einem (f, f) ((f', f')). Dabei gilt s ~g f (s ~% ).
Wegen s ~¢ s ist f ~& f’ und wegen 2) sind dann (f, f) und (f’, /') konjugiert. Damit sind auch (s, e)
und (s, €’) konjugiert. O

4.1.3 R-Ketten

Gegeben sei ein endliches Alphabet A, eine endliche Halbgruppe S und ein Homomorphismus /~ von
A" auf S. Die Menge der damit gegebenen Linked Pairs wird hier mit Sp bezeichnet, die Menge der
R -Klassen mit R.

e Die Folge (R(s1),R(s2),R(s3),---) wird hier & -Kette genannt, wenn s; € Sund s; >g --- >4 s, gilt.
Eine K -Kette wird streng geordnet genannt, wenn s1 >g - -+ >g s, gilt. Die Menge der streng geordneten
R -Ketten wird hier mit S bezeichnet.

Da(s<gt < Vs €R(s) V' €R(t): s <gt')und (s<gt < Vs €R(s) V' €R(r): §' <g ') gilt
(Lemma 12), sind R -Ketten und streng geordnete & -Ketten wohldefiniert.

R ist endlich, weil S endlich ist. Damit ist die Linge aller streng geordneten Ketten endlich, und damit
auch S.

e Fiir die Abbildung h:A® — S gelte h:=K ok. Die Abbildungen k und k” werden folgendermaf3en
definiert:

Sei K die Menge der R -Kette und k : A® — K. Fiirein w € A®, mit w = apa;ay - - - wird k(w) iiber k(w) :=
(R(h(ao)), R(h(aoa1)), R(h(aoaraz)), ---) := (R(s1),R(s2),R(s3),---) definiert. Es gilt s; > si11, da
nach Konstruktion s;11 = s; h(a;) ist. k ist eindeutig, weil die Darstellung von w durch w = apa;jay - -
und der Homomorphismus h eindeutig, und die & -Klassen disjunkt sind.

Sei k' : K — . Fiir eine R-Kette (R(s1),R(s2),R(s3),---) wird k((R(s1)R(s2),R(s3),--)) := (R(s}),
R(sh),---,R(s;,)) konstruiert, indem jedes R(s;) mit i > 1 und s; ~¢ s;—; entfernt wird. Die Konstruktion
ist eindeutig, denn sind mehrere Elemente gleich, dann sind sie in der & -Kette nacheinander angeordnet
(R -Ketten sind monoton fallend), und unabhéngig von der Reihenfolge des Entfernens werden alle bis
auf das Erste entfernt. Fiir R(s}), i > 1 gilt nach Konstruktion s; <g si—1. kK'((R(s1),R(s2),R(s3),---)) ist
damit eine streng geordneten X -Kette und damit endlich.

Da(s<gt & Vs €R(s) V' €R(t): s’ <gt')und (s<gt & Vs €R(s) VI’ €R(r): s’ <g ') gilt
(Lemma 12), sind k und k’ wohldefiniert.

Da k und k' eindeutig sind, ist auch i = k’ o k eindeutig.

Lemma 18 Sei /i : A® — S wie zuvor definiert, w € A®, (s1,--- ,8,) = h(w), dann gilt fiir alle Linked
Puairs (s,e), die mit w assoziiert sind, s ~g s,

Beweis: Nach Lemma 15 existiert i;,, so dass h((ao---a;,,)) = s und fiir alle Prifixe (ag---a;), j >
imin, h((ao---a;j)) ~g s gilt. Damit ist R(s) die kleinste (bez. <g) K Klasse fiir alle Préfixe und damit
gleich R(sy). O

e Im Folgenden wird eine Linksoperation von At auf § definiert:

Fiir a € A ist a (R(s1),R(s2), - ,R(sn)) := K (R((h(a)), R(h(a)s1), R(h(a)s2), ---, R(h(a)sy))) :=
(R(s}),R(55),--- ,R(s!,)). Da <g linksstabil ist (Lemma 12), ist 5; <g si+1 < h(a)s; <g h(a)si1

18



und (R((h(a)), R(h(a)s1), R(h(a)sz), ---, R(h(a)s,))) eine R -Kette. Damit ist dann (R(s}),R(s5), -,
R(s!,)) eine streng geordnete R -Kette. Eindeutig ist die Operation, weil 4 und die Multiplikation der
Halbgruppe S eindeutig sind.

Da(s<gt < Vs €R(s) V' €R(t): s’ <gt')und (s<gt < Vs €R(s) V' €R(r): §' <g ') gilt
(Lemma 12), ist die Linksoperation wohldefiniert.

Fiir u € A", mit u = apay ...ay ist u (R(s1),R(s2),-- ,R(sn)) := /' (am(R(s1),R(s2),-- ,R(sp))), mit
u' =aopay ...am—. Iterativ kann damit u (R(s1),R(s2),---,R(s,)) := (R(s}),R(s), - ,R(s],)) berechnet
werden. Dass die Operation eindeutig ist, (R(s}),R(s5),---,R(s],)) eine streng geordnete R -Kette ist
und die Operation wohldefiniert ist, ergibt sich daraus, dass die einzelnen Schritte eindeutig sind, jeweils
zu streng geordneten & -Ketten fiihren und wohldefiniert sind.

e Die Operation a (s1,52,---,8,) mit a € A wird abschneidend genannt, wenn %(a)s,—1 ~g h(a)s,
ist, wenn also das letzte Element durch die Operation abgeschnitten wird.

Lemma 19 Fiir h, die zuvor definierte Linksoperation, u € A*, u = aga, - - am, w € A®unds; € S gilt:

1) 1 (R(51),R(52), - ,R(s)) =
K (R(h(ag)), -+, R(h(ap---am)), R(h(ap ---am)s1), -+ ,R(h(ag - am)sy)) :=
(R(S&),R(S,Z), Tt 7R(s;/1’))

2) u(h(w)) = h(uw)

3) Ist h(w) = (R(s1),--- ,R(s,)) und sind bei der Berechnung von u(h(w)) mindestens n Einzeloperatio-
nen abschneidend, dann gilt u(h(w)) = h(u)

Beweis:

1) Fiir R(s}) und R(s}) erhilt man direkt die Werte der definierten Linksoperation. Bei allen anderen
Elemente, die bei der definierten Konstruktion entfernt werden, macht es keinen Unterschied, ob sie bei
den Einzelschritten entsprechend der Definition entfernt werden, oder erst nach dem letzten Schritt. Denn
da ~¢ linksstabil ist (Lemma 12), bleiben zwei benachbarte Elemente, die & dquivalent sind, auch nach
linksseitigem Aufmultiplizieren eines Wertes K dquivalent (bs; ~ bs; 1 — abs; ~ abs; ).

2) Seiw = bobib,--- und h(w) = (R(s1),R(s2),--- ,R(s,)). Dann gilt:

h(uw) = K (R(h(ao)), -+, R(h(ao---an)), R(h(ao---ambo)), R(h(ao---amb1)), ---)

Weil ~4 linksstabil ist, werden alle Elemente mit xw; ~% xw;_ entfernt und man erhilt

h(uw) = k' (R(h(ap)), -+ R(h(ap---am)), R(h(ao---ams1)), R(h(ap---ams2)), --+) R(h(ao- - amsy))
Nach 1) gilt schlieBlich

h(uw) = u(h(w))

3) Nach 1) gilt

u(h(w)) = K (R(h(ao)), -+, R(h(ao---an)), R(h(ao ---an)s1), - ,R(h(ao--- am)sn))

sind bei der Berechnung von u(i(w)) mindestens n Einzeloperationen abschneidend, dann werden min-

destens die letzten n Elemente entfernt und man erhéilt
u(h(w)) = k' (R(h(ag)), ---, R(h(ag---an))) = h(u) O

4.2 Stark eindeutiger Blichi Automat

Satz 20 Gegeben sei ein endliches Alphabet A, eine endliche Halbgruppe S und ein Homomorphismus h
von A" auf S, der die w-reguliire Sprache L stark erkennt. Daraus folgt die Menge der Linked Pairs Sp,
die Menge der Konjugationsklassen Sp, die Abbildung h: — Sp mit P C Sp, L=h""! (P), und die Menge
der R -Ketten S.

Zur Notation: Fiir a € A wird fiir a und h(a) immer nur a geschrieben. [s, e] steht fiir eine Konjugations-
klasse, wobei das Linked Pair (s,e) ein Reprisentant der Klasse ist.
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Der folgend definierte Biichi Automat A= (Q, A, A, I, F) ist stark eindeutig und erkennt die Sprache L
Q = {(s.e], (R(s1),-++,R(sn)), 2) | [5,¢] € Sp, (R(s1),.,R(4)) €8, s ~g su, 2 € {0,1}}

A = {(as, as, 0) 5 (5, §, 0) | a§ ist nicht abschneidend}
U {(a$, a8, 0) 5 (5, 8, 1) | as ist nicht abschneidend}
U {(as, as, 1) 5 (5, §, 0) | as ist abschneidend}
U {(a$, a§, 1) % (5, 8, 1) | as ist abschneidend}

A C QOxAxQ

I = {(5,8z2) | §eP} C

F = {582 |z=1,5§=[s,eJmits~pe} C QO

Beweis: Nach Lemma 7 geniigt es zu zeigen, dass A co-vollstindig ist, und jeder giiltige Pfad eines
o-Wortes den selben Anfangszustand hat.

e Co-Vollstindigigkeit

Sei w ein beliebiges Wort aus A®, w =ajaz -+, w; = @i 16512+, Y= qo 4 q1 Rt Q-
Setzt man nun g; := ([s,e|, (R(s1), -+ ,R(sy)), z) mit

1 wenna;, 1fl(w,-+1) abschneidend ist
Z:=
0 sonst

dann gilt nach Lemma 18 s ~4 s, fiir alle g;. AuBerdem ist z mit der Ubergangsrelation vertriglich.
Nachfolgendes Lemma zeigt, dass y unendlich viele Zustidnde in F hat. Damit ist fiir jedes Wort w € A®
ein Pfad in A4, mit unendlich vielen Zustidnden in F, gegeben. Deshalb ist 4 co-vollstindig.

Lemma 21 Sei ein Automat wie oben definiert. Sei weiterhin fiir ein beliebiges Wort w € A®, der Pfad y
auf diesem Automat wie zuvor beschrieben konstruiert, dann hat dieser Pfad vy unendlich viele Zustdinde
inF.

Beweis: Sei w assoziiert mit (s,e). Dann gilt: 3 i, j € N: j < i, w; und w; sind assoziiert mit (e, e)

qi = (8,$,z) mit § = (R(s1),--- ,R(s,)). Die Transitionen von A4 sind nach Definition co-deterministisch
und man erhilt eindeutig ¢; = (§,§,2) mit § = a1 ---a; (R(s1), - ,R(spw—1),R(sp) =k'((R(ajs1), -,
R(esp—1),R(es,)) (Lemma 19). Aus s, = e folgt es, = e und es ist es,—| <g es,. Da §' eine R -Kette ist
gilt auch ,es, <g es, 1. So sind die letzten beiden KX Klassen gleich und zwischen ¢; und ¢; liegt
mindestens eine abschneidende Transition und damit ein Zustand mit z = 1. Da es unendlich viele Paare
i, j gibt, gibt es auf y unendlich viele Zustdnde mit z = 1.

Nach Lemma 16 existiert ein iy, so dass fiir alle i > i, gilt: (s, ) ist assoziiert mit w; = s ~p e
Damit hat Pfad 'y unendlich viele Zusténde in F. U
e Eindeutige Anfangszustinde

Sei w ein beliebiges Wort aus A®, w assoziiert zum Linked Pair (¢, f), w =ajaz---, wi = aj11ai42 - , Y=
903 g1 3 ¢y ein giiltiger Pfad, und i, sei das Minimum von {i | h(ag---a;) = s}.

Betrachtet man auf Pfad v einen Zustand ¢; € F mit i > iy, und g; = ([s,e], (R(s1),---,R(spn)), 2),
dann gilt: 3x,y € AT Imn e N: m <n, x = (aps1---a;), y = (air1-+-an), h(xy) = f, wy und w, sind
assoziiert zu (f, f) (siche Abbildung 3). Dann gelten folgende Beziehungen:
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I min m i n

Abbildung 3: Eindeutiger Biichi Automat (Bsp. 1)

w; ist assoziiert zu (h(y) f, f) damit gilt R(s,) = R(h(y)f) = h(y)f ~op sn

h(x) k) f=f = hO)f ~c f = h()f ~o f
Nach Bedingungen in F = s ~p e
Nach Bedingung in Q gilt s ~% s, = 5 ~p S,
h(y)f ~g spunds, ~g s = h(y)f ~g s

Esgiltalsos ~p e ~p f ~p h(y)funds ~g h(y)f.Nach Lemma 17 folgt dann (s,e) ~ (h(y)f,f) €

h(w;)

Mit u = aja; - - - a; gilt fiir den Anfangszustand go = ([so, o], $0,20), nach Definition der Ubergangsrela—

tion A und mit Lemma 4, [so, eo] = h(u)][s;,e;] = h(u)h(w;) = h(w). Damit ist [so, eo] eindeutig gegeben.
Auch $y = (R(s1),---,R(s,)) (und §) ist eindeutig, denn wihlt man p > 1, g, = (5,,5,,2,), §p =
(R(s}), - ,R(s),)), erhilt man nach Definition der Transitionen in A, (R(s1),--- ,R(s»)) = (a1---ap)$p.
Wiihlt man p groB genug, hat (a; - - -a,)$, mehr als n’ abschneidende Operationen, und es gilt nach Lem-
ma 19 (a;---ap)$, = h((a1---a,)) = h(w). p existiert, da y unendlich viele Zustinde in F und damit
unendlich viele abschneidende Transitionen hat.

Weil auch §; eindeutig ist, ist nach Definition von A auch zp eindeutig
Damit ist der Anfangszustand g fiir w eindeutig gegeben. U

e Ein Zustand hat die Form ([s,e|, (R(s1),---,R(s,)), z). sistaus S, e ein idempotentes Element, Die
R -Kette hat maximal |R| verschiedene stark monoton fallende Elemente, damit betrigt die maximale
Anzahl von R -Ketten 28l und z ist aus der Menge {0,1}. 4 hat damit maximal || - |[E(S)| - 2/F .2
Zustinde.

4.3 Stark k-eindeutiger Biichi Automat

Gegeben sei ein endliches Alphabet A, eine endliche Halbgruppe S und ein Homomorphismus 4 von A™
auf S, der die w-regulire Sprache L stark erkennt. Daraus folgt die Menge der Linked Pairs Sp, die Menge
der Konjugationsklassen Sp und die Abbildung /: — Spmit P C Sp, L=h""! (P).

Zur Notation: Fiir a € A wird fiir @ und h(a) immer nur a geschrieben. [s, ¢] steht fiir eine Konjugations-
klasse, wobei das Linked Pair (s,e¢) ein Repriasentant der Klasse ist.

Gegeben sei weiterhin die Menge K := {(R(r),R(t)) | t <g r}, und folgende Linksoperation von A*
auf K:

(1) (R(ar),R(at)) wenn at <g ar
(2) (R(a),R(ar)) sonst (abschneidend benannt)
Firu € A, u=apa; -~ a, gilt u(R(r),R(t)) := (apai - --an—1) (an(R(r),R(t)))

Fira € Aista(R(r),R(1)) := {

Die Linksoperation ist wohldefiniert, denn es gilt: Vx € R(r)Va € A : R(ax) = R(ar)
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Die Linksoperation hat folgende Eigenschaft: wird im Laufe der Berechnung von apa; - - -a,(R(r),R(t))
bei einer Einzeloperation die Bedingung fiir Abschneiden erfiillt, es gilt also ar ~¢ at, dann bleibt diese
Bedingung fiir die folgenden Operation erhalten, wenn statt Operation (2) Operation (1) durchgefiihrt
wird. Da ~¢ linksstabil ist (Lemma 12) kann dies erst durch die abschneidende Operation (2) geéndert
werden.

Um zu einem k-eindeutigen Biichi Automat zu gelangen wird die Menge K und die darauf definier-
te Linksoperation modifiziert. Dabei wird nach Erreichen der Bedingung ar ~¢ at, die abschneidende
Operation (2) solange hinausgezogert, bis eine weitere Bedingung erfiillt ist:

Gegeben ist die Menge K’ := {(R(r),R(t),f) | t <g r, f € E(S) (idempotente Elemente)}, und folgende
Linksoperation von A™ auf K:

1 R R(at t < d
Fiira € Aista(R(r),R(t), f) := (1) (R(ar),R(at),f) wenn a g{a.ro erar# f
(2) (R(a),R(ar),f) sonst (abschneidend benannt)
Firu € A", u=apa; ---a, gilt u(R(r),R(t)) := (apa1 - - an—1) (an(R(r),R(1)))
Damit ergibt sich dann folgender k-eindeutige Biichi Automat 4y, der die Sprache L erkennt.

9, {([s.¢], (R(r),R(1).f), 2) | [s.e] €S, (R(r),R(t),f) €K', z€{0,1}, R(s) =R(1)}
A = {(as, ak, 0) 5 (5, k, 0) | ak ist nicht abschneidend}

U {(a$, ak, 0) 5 (8, k, 1) | ak ist nicht abschneidend}
U {(a$, ak, 1) % (5, k, 0) | ak ist abschneidend}

U {(as, ak, 1) = (5, k, 1) | ak ist abschneidend}

C QOxAxQ

{(f, k, z) ‘ fEP} Cc Q
= {([Sve]’ (R(I‘),R(l‘),f), Z) ‘ z=1, (S,B)N(f,f)} 0

e Nach Definition der Ubergangsrelation A ist der Automat co-deterministisch.

-~ >

e Co-Vollstindigigkeit

Sei w ein beliebiges Wort aus A®, w assoziiert zu (¢, f), w =ajaz -+, wi = ai1ai42-++, Y= qo L9038
q>---. Da w assoziiert mit (s,e) ist, gibt es auf y unendlich viele Zustdnde ¢; mit w; ist assoziiert mit

(e,e).
Setzt man nun g; = ([s,e], (R(r),R(t), f), z;) mit

[s,e] := h(w;)
(R(t) :==R(s)

(R(r) := R(e) wenn w; assoziiert mit (e,e) und h(ag---a;) =s
sonst entsprechend der Ubergangsrelation A

1 wenn a;(R(r),R(t), f) abschneidend ist
Zio1 =
. 0 sonst

Da es unendlich viele Zustinde g; gibt, fiir die w; assoziiert mit (e,e) und h(ag - --a;) = s gilt, ist R(r) fiir
alle Zustidnde definiert. Die so definierten Werte von R(r) sind mit der Linksoperation auf K’ vertréglich,
da zwischen solchen Zustinden, immer ein Wortfragment u mit h(u) = e liegt.

Weiterhin gilt s ~% ¢ nach Definition.

Da jeder Zustand g;, mit w; assoziiert mit (e,e) und h(ag - - -a;) = s, nach Definition in F liegt, enthélt der
Pfad vy unendlich viele Zustéinde in F.

Damit ist fiir jedes Wort w € A® ein Pfad in 4, mit unendlich vielen Zustinden in F, gegeben. Deshalb
ist 4 co-vollstéindig.
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e Esbleibt zu zeigen, dass am Startzustand ([s,e], (R(r),R(t), f), z), h(w) = [s, €] gilt, dass die Anzahl
der giiltigen Pfade eines Wortes beschrankt und die giiltigen Pfade zueinander disjunkt sind:

Nach Definition von K’ hat ein Element dieser Menge die Form (R(r),R(¢), f). Fiir ein Pfad auf 4, bleibt
f konstant. Zwischen zwei abschneidenden Operationen, also zwischen zwei Zustédnden in F', muss nach
Definition der Linksoperation fiir das dazwischenliegende Wortfragment (a; - - - a;), h((a;---a;)) = f gel-
ten. Hat nun ein Pfad unendlich viele Zusténde in F', so markieren die Zustdnde in F' eine Faktorisierung
des zugehorigen Wortes w, und an den Zustéinden die in F liegen gilt, w; ist assoziiert mit (f, f). Ist (s,e)
an diesen Stellen konjungiert zu (f, f) ist [s,e] = h(w;) auf dem ganzen Pfad (Lemma 4), insbesondere
am Startzustand.

Fiir jedes Linked Pair,das mit w assoziiert ist, kann ein Pfad entsprechend dem Beweis zur Co-Vollstin-
digkeit konstruiert werden. Weitere giiltige Pfade kann es wegen obiger Beobachtung nicht geben. So
existiert fiir jedes Linked Pair in /(w) genau ein giiltiger Pfad in 4. Da die GroBe der Konjugationsklas-
sen beschrénkt sind, ist auch die Anzahl der giiltigen Pfade eines Wortes beschrinkt.

Die Ubergangsrelation A ist nach Definition co-deterministisch. Daraus folgt, dass wenn die Zustinde
gi und g zweier Pfade gleich sind, auch alle Zustidnde ¢; und q;- mit j < i gleich sind. Insbesondere
miissten dann die Anfangszustinde gleich sein. Daraus folgt aber, dass das Element (R(r),R(¢), f) im
Anfangszustand beider Pfade gleich ist. Da R(r) und f des Anfangszustandes den Verlauf eines Pfades
festlegen, sind dann beide Pfade identisch.

Somit erfiillt 4 alle Bedingungen fiir einen k-eindeutigen Biichi Automaten.

e Ein Zustand hat die Form ([s,¢], (R(r),R(2), f), z). sistaus S, e ein idempotentes Elemente, R(r) ist
ein Element aus R, R(f) muss bei der Berechnung der Anzahl von Zustidnden nicht beriicksicht werden,
da R(s) = R(r) gefordert ist, f ist ein idempotentes Element und z ist aus der Menge {0, 1}. 4, hat daher
maximal |S|- |E(S)|?- |R| -2 Zustinde.

4.4 Stark eindeutiger Biichi Automat mit deterministischer Ubergangsrelation

Gegeben sei ein endliches Alphabet A, eine endliche Halbgruppe S und ein Homomorphismus 7 von
A" auf S, der die w-regulire Sprache L stark erkennt. S! ist die um ein neutrales Element erweiterte
Halbgruppe S. Daraus folgt die Menge der Linked Pairs Sp, die Menge der Konjugationsklassen Sp und
die Abbildung /1: A® — Spmit P C Sp, L=h"'(P).

Zur Notation: Fiir a € A wird fiir @ und h(a) immer nur a geschrieben. [s, ¢] steht fiir eine Konjugations-
klasse, wobei das Linked Pair (s,¢) ein Reprisentant der Klasse ist.

Fiir Sprachen L, mit L= J [R(s;)], [R(si)] = {w | V(s,e) assoziiert mit w : s € R(s;) }, konnen stark

1<i<n

eindeutige Biichi Automaten mit deterministischer Ubergangsrelation konstruiert werden. Hier wird die
Klasse der so definierten Sprachen Lg genannt. Fiir Sprachen L € Ly gilt [s,e] € P=VYf € E(S) : [s, f] €
P. Damit kann die Abbildung /g : A® — R mit R ist die Menge der R -Klassen, P’ C R, L = hy'(P')
gebildet werden.

Der folgend definierte Biichi Automat 4; = (Q, A, A, I, F) ist stark eindeutig, hat eine deterministische
Ubergangsrelation und erkennt die Sprachen L € Lg.

Q = {(R(s),1) | teS'}

A = {(R(s),1) = (R(s),ra)} C QxAxQ
I = {(R(s),1) | R(s) e P’} € Q

F = {(R(s),u) | ucR(s)} € Q

Beweis: Sei w ein beliebiges Wort aus A®, w assoziiert zu (s,e), w =ajay--- und w; = ay - - - a;.
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Es gilt:

e Die Ubergangsrelation A ist nach Definition vollstindig und deterministisch.

e  Fiir jedes Element in R gibt es genau ein Element in /.

e Nach Lemma 15 gilt fiir w: Es existiert ein i, € N, so dass fiir alle j > iyin, wj € R(s)

Damit hat jedes Wort einen Pfad in 4, der im Zustand (R(s), 1) € I beginnt und unendlich viele Zustinde
in F hat. Wegen der deterministischen Ubergangsrelation ist dieser Pfad eindeutig. Fiir alle anderen
Startzustidnde hat der resultierende Pfad entweder keine Zustéinde in F (Startzustand (R(z),1) mit ¢ <g s)
oder nur endlich viele Zustinde in F (Startzustand (R(),1) mit s <g 7). O

e Daein Zustand aus einer R -Klasse und einem Element aus S besteht, hat 4 maximal |S| - |R|
Zusténde.

Fiir die oben definierte Sprache Lg sind folgende Definitionen dquivalent:

o [ — 1<L,-J<,1[R(Si)]’ [R(s;)] = {w | V(s,e) assoziiert mit w:s € R(s;)}

e Esexistiert ein deterministischer Biichi Automat, der L erkennt, und es existiert ein deterministischer
Biichi Automat, der A®\ L erkennt

e  Es existiert ein deterministischer Automat 4 = (Q,A,A,qo,7) mit T C2%und L= {w | Qy €
T, Qyist die Menge aller Zustinde eines Pfades}

Beweis z.B. in [PP04] O
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