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Universitätsstraße 38
D–70569 Stuttgart

Diplomarbeit Nr. 3182

Untersuchung von Eindeutigen
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Literatur 25

1



1 Einleitung

Anfang der sechziger Jahre führte Büchi in [B62] Automaten für unendliche Wörter ein, um Beweise bei
Entscheidungsproblemen in der monadischen Prädikatenlogik zweiter Stufe zu führen. Seitdem wurden
Automaten für unendliche Wörter oft für verschiedene Beweise bei Entscheidungsproblemen verwendet.
Die Büchi Automaten können Sprachen von unendlichen Wörtern beschreiben. Sie sind heutzutage eines
der wichtigsten Hilfsmittel in der formalen Verifikation.

Praktische Bedeutung bekamen Büchi Automaten für die Entwicklung effizienter Algorithmen im Be-
reich der temporalen Logik. Dort wurden sie Bestandteil von Model Checking Verfahren [W00]. Die
Komplementbildung ist hier von zentraler Bedeutung, denn die verwendeten logischen Formeln bein-
halten den Negationsoperator. Büchi Automaten sind im allgemeinen nichtdeterministisch und die Kom-
plementbildung ist daher mit exponentiellem Aufwand verbunden. Muller Automaten verwenden eine
andere Akzeptanzbedingung und können deterministisch die ω-regulären Sprachen erkennen. Zudem ist
die Komplementbildung einfach und in linearer Zeit möglich. Allerdings kann die Größe von Muller
Automaten exponentiell größer sein, als die eines Büchi Automaten der die gleiche Sprache erkennt.

Weitere Verfahren wurden entwickelt, wie z.B Rabin Automaten, Street Automaten oder Parity Automa-
ten, die wie Muller Automaten, eine einfache Komplementbildung ermöglichen und den Nachteil haben,
dass die Automaten exponentiell größer sein können, als die eines entsprechenden Büchi Automaten.

Eindeutige Büchi Automaten erkennen zwar auch die ω-regulären Sprachen, bieten jedoch keine we-
sentlichen Vorteile. Stark eindeutige Büchi Automaten, wie sie z.B in [CM02] vorgestellt werden, haben
allerdigs vergleichbare Eigenschaften wie die vorher genannten. Welche der verschiedenen Automaten
besser geeignet ist hängt von der konkreten Anwendung ab. So gibt es Probleme, die mit einem Muller
Automaten nur mit exponentiellem Aufwand, mit einem stark eindeutigen Büchi Automaten dagegen in
linearer Zeit zu lösen sind, und Probleme die andersrum gelagert sind.

Carton und Michel beweisen in [CM02], dass mit stark eindeutigen Büchi Automaten genau die ω-
regulären Sprachen erkannt werden, und zeigen dabei, wie bei gegebener starken Erkennung ein Tran-
sitionsautomat konstruiert werden kann, und beweisen, dass aus diesem Transitionsautomat ein stark
eindeutiger Büchi Automat konstruiert werden kann. Die Größe des Transitionsautomat ist dabei maxi-
mal n22n, wobei n die Größe der Bildmenge des erkennenden Homomorphismus ist.

In dieser Arbeit wird ein ähnliches Verfahren vorgestellt, dass bei gegebener starken Erkennung einer
ω-regulären Sprache, direkt einen stark eindeutigen Büchi Automat konstruiert, der die Sprache erkennt.
Die Größe des stark eindeutigen Büchi Automaten ist dann maximal n22|R|, wobei n die Größe der
Bildmenge S des erkennenden Homomorphismus, und R die Menge der R-Klassen von S ist.

Weiterhin wird ein Büchi Automat vorgestellt, der zwar nicht eindeutig nach der entsprechenden Defi-
nition ist, jedoch ähnlich Eigenschaften wie ein stark eindeutiger Büchi Automat zeigt. Für diesen stark
k-eindeutige Büchi Automat kann auch mit linearem Aufwand das Komplement gebildet werden. Auch
die Schnittbildung und Vereinigung zweier Automaten ist wie beim stark eindeutigen Büchi Automa-
ten mit polynominellem Aufwand lösbar. In dieser Arbeit wird ein Verfahren gezeigt, mit dem man bei
gegebener starken Erkennung einer ω-regulären Sprache, einen ”stark k-eindeutige Büchi Automat“ kon-
struieren kann, wobeit, die Größe des stark eindeutigen Büchi Automaten nur polynominell größer ist als
die Größe der Bildmenge des erkennenden Homomorphismus.

Außerdem wird in dieser Arbeit für eine spezielle Sprachklasse die Konstruktion eines deterministischen,
stark eindeutigen Büchi Automaten gezeigt, und Konstruktionen für Schnittbildung und Vereinigung von
stark eindeutigen uns stark k-eindeutigen Büchi Automaten.
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2 Grundlagen

2.1 ω-reguläre Sprachen

Es sei

A: ein endliches Alphabet
Wort: eine endliche Konkatenation von Elementen aus A
ω-Wort: eine abzählbar unendliche Konkatenation von Elementen aus A\{1}

(Nur Wort, falls die unendliche Länge durch den Kontext gegeben ist)
A+: die Menge der nichtleeren Wörter
A∗: die Menge der Wörter inklusive dem leeren Wort
Aω: die Menge der ω-Wörter. L⊆ Aω ist eine ω-Sprache

Die Menge der ω-regulären Sprachen wird über folgende Regeln definiert:

Sei U ⊆ A+ und L1,L2 ⊆ Aω, dann gilt:
• Uω ist ω-regulär
• U ·L1 ist ω-regulär (U ·L1 := {ul | u ∈U, l ∈ L1}
• L1∪L2 ist ω-regulär

Satz 1 Eine Sprache ist genau dann ω-regulär, wenn sie eine Vereinigung von Mengen der Form XY ω

ist, wobei X eine reguläre Teilmenge von A∗ und Y eine reguläre Teilmenge von A+ ist.

Beweis z.B. in [PP04] �

2.2 Ramsey Faktorisierung

Gegeben sei ein endliches Alphabet A, eine endliche Halbgruppe S und ein Homomorphismus h mit
h : A+→ S

Sei w ∈ Aω, mit w = a0a1a2 · · · und ai ∈ A. Eine Faktorisierung von w ist eine Sequenz von Wörtern
ui ∈ A+, so dass w = u0u1u2 · · · . Eine Ramsey-Faktorisierung ist eine Faktorisierung w = u0u1u2 · · · , mit
h(ui) = e für i≥ 1 und e ∈ E(S) (idempotentes Element).

Satz 2 Gegeben sei ein endliches Alphabet A, eine endliche Halbgruppe S und ein Homomorphismus h
von A+ auf S. Dann existiert für jedes Wort w ∈ Aω eine Ramsey-Faktorisierung.

Beweis z.B. in [PP04] �

2.3 Linked Pairs

Gegeben sei ein endliches Alphabet A, eine endliche Halbgruppe S und ein Homomorphismus h mit
h : A+→ S

Ein Tupel (s,e) heißt Linked Pair, wenn e ∈ E(S) und s · e = s gilt. Jede Ramsey-Faktorisierung (ui)i≥0,
eines Wortes w ∈ Aω induziert ein Linked Pair (s,e) über s = h(u0 ·u1) und e = h(u1). Ein Linked Pair,
das durch eine Ramsey-Faktorisierung eines Wortes induziert wird, heißt assoziiert zu diesem Wort.

Lemma 3 Auf der Menge der Linked Pairs ist eine Linksoperation definiert: r · (s,e) := (rs,e), dabei ist
r ∈ S und (s,e) ein Linked Pair

• Die Linksoperation ist eindeutig
• Sei u ∈ A+, r = h(u), w ∈ Aω und (s,e) ein Linked Pair, das zu w assoziiert ist. Dann gilt: (rs,e) ist
assoziiert zu uw.

3



Beweis z.B. in [PP04] �

Ein Wort kann mehrere Ramsey-Faktorisierungen haben. Die dabei induzierten Linked Pairs nennt man
zueinander konjugiert. Zwei Linked Pairs (s,e) und (s′,e′), die zu einem gemeinsamen Wort assoziiert
sind, sind daher zueinander konjugiert, hier beschrieben mit (s,e)∼ (s′,e′). Die Konjugationsklasse eines
Linked Pair (s,e) wird hier mit [s,e] beschrieben.

Lemma 4 Es gilt:

• Die Konjugation von Linked Pairs ist eine Äquivalenzrelation.
• Seien (s,e) und (s′,e′) zwei Linked Pairs. Dann gilt:

(∃g,h ∈ S mit e = gh, e′ = hg, s = s′h und s′ = sg) ⇔ (s,e)∼ (s′,e′)
• Die zuvor definierte Linksoperation kann auf die Menge der Konjugationsklassen erweitert werden,

r[s,e] := [rs,e], und ist eindeutig.

Beweis z.B. in [PP04] �

Ein Linked Pair kann mit mehreren Wörtern assoziiert sein. Die Menge h−1(s) · (h−1(e))ω beinhaltet alle
Wörter die mit dem Linked Pair (s,e) assoziiert sind.

2.4 Algebraische Erkennung

ω-reguläre Sprachen können durch Homomorphismen h : A+→ S algebraisch erkannt werden, wobei A
ein endliches Alphabet und S eine endliche Halbgruppe ist. Man unterscheidet dabei zwischen schwacher
Erkennung und starker Erkennung.

2.4.1 Schwache Erkennung

Gegeben sei ein endliches Alphabet A, eine endliche Halbgruppe S, ein Homomorphismus h : A+→ S
und daraus folgend die Menge der Linked Pairs Sp = {(s,e) | s ∈ S, e ∈ E(S), se = s}.

Eine Sprache L⊆ Aω wird von h schwach erkannt, wenn es eine Menge P⊆ Sp gibt, für die gilt:

L =
⋃

(s,e)∈P
h−1(s) · (h−1(e))ω

2.4.2 Starke Erkennung

Gegeben sei ein endliches Alphabet A, eine endliche Halbgruppe S, ein Homomorphismus h : A+→ S
und daraus folgend die Menge der Linked Pairs Sp.

Die Konjugationsrelation der Linked Pairs ist eine Äquivalenzrelation (siehe [PP04]). Es können also dis-
junkte Äquivalentklassen gebildet werden, und man erhält die Menge S̃p = Sp/∼ der Äquivalenzklassen.
Die Linked Pairs, die zu einem Wort w ∈ Aω assoziiert sind, liegen alle in einer einzigen Äquivalenz-
klasse. Dadurch ergibt sich kanonisch die Abbildung h̃ : Aω→ S̃p.

Eine Sprache L⊆Aω wird von h stark erkannt, wenn es eine Menge P ⊆ S̃p gibt, für die gilt: L= h̃−1 (P)

2.5 Büchi Automat

2.5.1 Büchi Akzeptanzbedingung

Gegeben sei ein Automat A = (Q, A, ∆, I, F)
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Q = endliche Menge der Zustände
A = endliches Alphabet
∆ = Übergangsrelation, ∆⊆ Q×A×Q, Menge der möglichen Transitionen
I = Menge der Anfangszustände, I ⊆ Q
F = Menge der Endzustände, F ⊆ Q

Ein Pfad γ in A ist eine Sequenz aufeinanderfolgenden Transitionen:

γ = q0
a1−→ q1

a2−→ q2 · · · qn−1
a2−→ qn

ai ∈ A, qi ∈ Q, (qi−1, ai, qi) ∈ ∆

Der Pfad γ kennzeichnet das Wort w = a1a2 · · · an, w ∈ A∗. Die Zustände q0, q1 · · · qn werden dabei der
Reihe nach erreicht.

Der Automat akzeptiert ein Wort w, wenn es für w einen Pfad in A gibt, so dass q0 ∈ I und qn ∈ F ist.
Die Menge der akzeptierten Wörter bilden die Sprache, die der Automat A erkennt.

Unendliche Wörter erzeugen unendliche Pfade, obige Akzeptanzbedingung kann dann nicht mehr ver-
wendet werden. Bei unendlichen Wörtern wird daher die Büchi Akzeptanzbedingung verwendet. Ein
unendliches Wort w gilt dabei als akzeptiert, wenn es für w ein Pfad in A gibt, so dass q0 ∈ I und die An-
zahl von Zuständen qi ∈ F unendlich ist. Ein endlicher Automat mit Büchi Akzeptanzbedingung nennt
man Büchi Automat, einen Pfad mit unendlich vielen Zuständen in F gültig.

2.5.2 Definitionen

Nachfolgende Definitionen gelten für einen Büchi Automaten A = (Q, A, ∆, I, F). Ohne Einschränk-
ung der Allgemeinheit wird hier und in den folgenden Kapiteln davon ausgegangen, dass Büchi Au-
tomaten getrimmt sind. Das bedeutet hier, dass in einem Büchi Automaten jeder Zustand der Beginn
mindestens eines gültigen Pfades ist (siehe [PP04]).

• Deterministische Übergangsrelation: Die Übergangsrelation eines Automaten ist deterministisch,
wenn der Endzustand jeder Transition in ∆, eindeutig durch den Anfangszustand und den Eingabebuch-
staben bestimmt ist.
(q, a, p), (q, a, p′) ∈ ∆ ⇒ p = p′

• Co-deterministische Übergangsrelation: Die Übergangsrelation eines Automaten ist co-determinis-
tisch, wenn der Anfangszustand jeder Transition in ∆, eindeutig durch den Endzustand und den Einga-
bebuchstaben bestimmt ist.
(q, a, p), (q′, a, p) ∈ ∆ ⇒ q = q′

• Deterministischer Büchi Automat: Ein Büchi Automat heißt deterministisch, wenn seine Übergangs-
relation deterministisch ist, und er nur einen Anfangszustand besitzt.

• Co-deterministischer Büchi Automat: Ein Büchi Automat heißt co-deterministisch, wenn seine Über-
gangsrelation co-deterministisch ist, und für jedes Wort höchstens ein gültiger Lauf existiert.

• Nichtdeterministischer Büchi Automat: Ein Büchi Automat, der nicht als deterministisch oder co-
deterministisch gekennzeichnet ist, wird als ein nichtdeterministischer Büchi Automat betrachtet, es sei
denn, es geht aus dem Kontext etwas anderes hervor.

• Vollständige Übergangsrelation: Die Übergangsrelation eines Automaten ist vollständig, wenn für
jeden Zustand und jeden Buchstabe ein Nachfolgezustand bzw. eine entsprechende Transition in ∆ exis-
tiert.

• Co-vollständige Übergangsrelation: Die Übergangsrelation eines Automaten ist co-vollständig, wenn
für jeden Zustand und jeden Buchstabe ein Vorgängerzustand bzw. eine entsprechende Transition in ∆

existiert.
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• Vollständiger Büchi Automat: Jedes ω-Wort hat mindestens einen Pfad in A , der mit einem Zustand
aus I beginnt. Ein Büchi Automat mit vollständiger Übergangsrelation ist immer ein vollständiger Büchi
Automat.

• Co-vollständiger Büchi Automat: Jedes ω-Wort hat mindestens einen gültigen Pfad in A .

2.5.3 Muller Automat

Ein Muller Automat unterscheidet sich von einem Büchi Automaten durch ein anderes Akzeptanzverhal-
ten. Statt einer Menge Endzustände wird eine Menge von Teilmengen der Zustandsmenge (Tabelle des
Automaten) definiert. Muller Automaten sind deterministisch. Gegeben ist dann:

A = (Q, A, ∆, q0, T )

Q = endliche Menge der Zustände
A = endliches Alphabet
∆ = Übergangsrelation, ∆⊆ Q×A×Q
q0 = Anfangszustand, q0 ∈ Q
T = Tabelle des Automaten, T ⊆ 2Q

Muller Automaten akzeptieren ein Wort w ∈ Aω, wenn es für w einen Pfad γ in A gibt, der im Zustand
q0 beginnt und für den in f (γ) ∈ T gilt. Die Menge in f (γ) beinhaltet die Zustände, die auf dem Pfad γ

unendlich oft vorkommen.

Muller Automaten können auch als nichtdeterministische Automaten definiert werden. Diese werden
hier nicht behandelt.

2.5.4 Eigenschaften

Satz 5 Büchi Automaten sind abgeschlossen unter Vereinigung, Schnitt und Komplementbildung. Die
Abgeschlossenheit unter Komplementbildung gilt nicht für deterministische Büchi Automaten.

Beweis z.B. in [PP04] �

Die Größe n eines Büchi Automaten, wird über n = max(|Q| , |∆|) definiert. n1 bzw. n2 ist im Folgenden
die Größe zweier Büchi Automaten. Zeitkomplexität einiger Algorithmen für Büchi Automaten:

Vereinigung: O(n1 +n2)
Schnitt: O(n1n2)
Komplement: O(nO(n))
Leerheitsproblem: O(n)
Inklusionsproblem: O(nO(n))
Äquivalenzproblem: O(nO(n))
(siehe z.B [PP04])

Nachteile von Büchi Automaten sind folglich, dass sie nichtdeterministisch sind, und dass die Komple-
xität bei der Komplementbildung, und damit auch die des Inklusions- und Äquivalenzproblems, expo-
nentiell zur Automatengröße ist.

Die von einem Muller Automaten erkennbaren ω-Sprachen, sind genau die von einem Büchi Auto-
maten erkennbaren Sprachen. Die Komplementbildung ist beim Muller Automat einfach. Der Auto-
mat A ′ = (Q, A, ∆, q0, 2Q \ T ) erkennt die zur Sprache des Automaten A komplementäre Sprache.
Damit ist die Zeitkomplexität für Komplementbildung linear, und für das Inklusionsproblem und das
Äquivalenzproblem polynominell. Allerdings muss für die Größe n eines Muller Automaten n = max
(|Q| , |E| , min(|T | ,

∣∣2Q \T
∣∣)) verwendet werden. Ein Muller Automat ist damit im worst case expo-

nentiell größer als der entsprechende Büchi Automat. (siehe z.B [PP04])
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2.6 erkennbare ω-Sprachen

Satz 6 Sei L⊆ Aω eine ω-Sprache. Folgende Aussagen sind dann äquivalent:

Beweise für die folgenden Punkte siehe z.B. [PP04]
• L ist eine erkennbare ω-Sprache
• L ist eine ω-reguläre Sprache
• L wird schwach erkannt
• L wird stark erkannt
• L wird von einem Büchi Automaten erkannt
• L wird von einem Muller Automaten erkannt

Für die folgenden Punkte siehe Kapitel 3.7
• L wird von einem eindeutigen Büchi Automaten erkannt
• L wird von einem stark eindeutigen Büchi Automaten erkannt
• L wird von einem stark k-eindeutigen Büchi Automaten erkannt

7



3 Eindeutige Büchi-Automaten

3.1 Definition

A = (Q, A, ∆, I, F) sei ein Büchi Automat, und LA die Sprache, die A erkennt:

A heißt eindeutig, wenn für jedes unendliche Wort höchstens ein akzeptierender Pfad in A existiert. D.h.
Der Büchi Automat A heißt eindeutig, wenn für jedes Wort aus LA , es genau einen akzeptierenden Pfad
gibt.

3.2 Stark eindeutige Büchi-Automaten

Der Büchi Automat A = (Q, A, ∆, I, F) heißt stark eindeutig, wenn für jedes Wort w ∈ Aω genau ein
gültiger Pfad existiert. Dann ist ein Wort genau dann in der Sprache LA , wenn dieser Pfad in einem
Zustand aus I beginnt.

Die Eigenschaft stark eindeutig kann auch über die Eigenschaften co-deterministisch und co-vollständig
definiert werden. Die zwei folgenden Beispiele sollen diese Eigenschaften veranschaulichen.

Beispiel 1: Der Büchi Automat in Abbildung 1a ist zwar eindeutig, aber er ist weder deterministisch
noch co-deterministisch. Er ist nicht deterministisch, weil er zwei Anfangszustände hat, und er ist nicht
co-deterministisch, weil für Wort (ab)ω zwei gültige Pfade im Automaten existieren. Der eine startet im
Zustand 2, der andere in Zustand 3.

Beispiel 2: Der Büchi Automat in Abbildung 1b erkennt die Sprache (A∗b)ω, also Wörter, die unendlich
viele b beinhalten. Er ist co-vollständig und co-deterministisch und damit mit nachfolgendem Lemma
stark eindeutig. Die Zustände 0 und 1, die von keinem Anfangszustand erreicht werden können, werden
benötigt, damit auch Wörter der Sprachen A∗baω und aω, jeweils einen gültigen Pfad im Automaten
haben.

(a) Bsp. 1 (b) Bsp. 2

Abbildung 1: Eindeutige Büchi Automaten

Lemma 7 Für Büchi Automaten A sind folgende Aussagen sind äquivalent:

• A ist stark eindeutig
• A ist co-vollständig und co-deterministisch
• A ist co-vollständig und alle gültige Pfade eines ω-Wortes, haben denselben Anfangszustand

Beweis: Aus den Definitionen für co-vollständig und co-deterministisch folgt direkt:

◦ A ist co-vollständig und co-deterministisch ⇒ A ist stark eindeutig
◦ A ist stark eindeutig ⇒ A ist co-vollständig und für jedes ω-Wort existiert höchstens ein akzep-

tierter Pfad
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Da A getrimmt ist (siehe Kapitel 2.5.2), existiert für jeden Zustand q ∈ Q ein gültiger Pfad, mit q als
Anfangszustand. Wenn A stark eindeutig ist existiert dann für jeden Zustand q ∈ Q ein Wort w ∈ Aω mit
genau einem Pfad in A , der in diesem Zustand q beginnt. Dann hat das Wort aw für a ∈ A auch genau
einen Pfad in A , der in einem Vorgängerzustand von q beginnt. Daraus folgt, dass für jeden Zustand
und jeden Buchstabe aus A, der Vorgängerzustand eindeutig ist, die Übergangsrelation von A also co-
deterministisch ist. Damit gilt:

• A ist co-vollständig und co-deterministisch ⇔ A ist stark eindeutig

Aus der Definition für co-deterministisch folgt direkt: In einem co-vollstänigen und co-deterministischen
Büchi Automat hat jeder gültige Pfad eines ω-Wortes genau einen Anfangszustand.

Es gilt aber auch: Ein co-vollständiger Büchi Automat, bei dem jeder gültige Pfad eines ω-Wortes ein
eindeutiger Anfangszustand hat, ist co-deterministisch. Denn gäbe es ein Wort a1a2 · · · mit zwei ver-
schiedenen Pfaden γ = q0

a1−→ q1
a2−→ q2 · · · und γ′ = q′0

a1−→ q′1
a2−→ q′2 · · · , dann gäbe es ein i ∈ N

mit qi 6= q′i, und damit zwei Anfangszustände für das Wort ai+2ai+1 · · · was ein Widerspruch zu den
eindeutigen Anfangszuständen ist. Damit gilt:

• A ist co-vollständig und co-deterministisch ⇔ A ist co-vollständig und jeder gültige Pfad
eines ω-Wortes hat einen eindeutigen Anfangszustand �

3.3 Stark k-eindeutige Büchi Automaten

Hier wird ein Büchi Automat vorgestellt, der zwar nach Definition in Kapitel 3.1 nicht eindeutig ist,
jedoch ähnliche Eigenschaften wie ein stark eindeutiger Büchi Automat hat. Insbesondere ermöglicht er
die Komplementbildung mit linearem Aufwand, ist co-vollständig und die Übergangsrelationen sind co-
deterministisch. Im Gegensatz zu stark eindeutigen Büchi Automaten lässt er sich mit polynominellem
Aufwand aus einer gegebenen starken algebraischen Erkennung konstruieren.

Gegeben sei der Büchi Automat A = (Q, A, ∆, I, F), der die Sprache LA ⊆ Aω erkennt. A wird hier
stark k-eindeutig genannt, wenn

• seine Übergangsrelation ∆ co-deterministisch ist,
• für jedes ω-Wort mindestens ein und höchstens k gültige Pfade in A existieren (damit ist A co-voll

ständig),
• für ein Wort, das in LA ist, alle diese Pfade in einem Zustand q ∈ I beginnen,
• für ein Wort, das nicht in LA ist, alle diese Pfade in einem Zustand q /∈ I beginnen, und
• alle diese Pfade disjunkt zueinander sind.

Die Pfade γ1 = q1,0
a1−→ q1,1

a2−→ q1,2 · · · und γ2 = q2,0
a1−→ q2,1

a2−→ q2,2 · · · werden hier als disjunkt
bezeichnet, wenn q1,i 6= q2,i für alle i ∈ N gilt.

Anmerkung: In [SH85] wird ein k-eindeutiger Büchi Automat als ein Büchi Automat definiert, in dem
jedes Wort aus Aω höchstens k akzeptierende Pfade hat. In [BL09] wird ein streng k-eindeutiger Büchi
Automat als ein k-eindeutiger Büchi Automat definiert, in dem jedes Wort aus Aω höchstens k gültige
Pfade hat.

3.4 Konstruktionen für eindeutige Büchi Automaten

In der Literatur zum Thema sind einige Konstruktionen von eindeutigen und stark eindeutigen Büchi
Automaten zu finden, z.B.:

• D. Kähler und T. Wilke geben in [KW08] ein Verfahren an, mit dem aus einem Büchi Automaten, mit
n Zuständen, ein eindeutiger Büchi Automat mit maximal 4(3n)n Zuständen konstruiert werden kann.
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• A. Arnold zeigt in [A82], wie aus einem Muller Automat ein eindeutiger Büchi Automat konstruiert
werden kann. Die Größe des eindeutigen Büchi Automaten ist polynominell zur Größe des Muller Au-
tomaten, wobei die Größe des eindeutigen Büchi Automaten und des Muller Automaten entsprechend
Kapitel 2.5.4 definiert ist.

Den entsprechenden eindeutigen Büchi Automat für das Komplement erhält man mit gleichem Aufwand
(siehe Kapitel 2.5.4).

• Bei gegebener starken Erkennung einer ω-regulären Sprache L, kann ein stark eindeutiger Büchi
Automat konstruiert werden, der L erkennt. O. Carton, M. Michel zeigen in [CM02], wie aus gegebener
starken Erkennung ein Transitionsautomat konstruiert werden kann, und beweisen, dass aus diesem Tran-
sitionsautomat ein stark eindeutiger Büchi Automat konstruiert werden kann. Die Größe des Transitions-
automat ist dabei maximal n22n, wobei n die Größe der Bildmenge des erkennenden Homomorphismus
ist.

• In Kapitel 4.2 wird ein ähnliches Verfahren vorgestellt, dass bei gegebener starken Erkennung einer
ω-regulären Sprache, direkt einen stark eindeutigen Büchi Automat konstruiert, der L erkennt. Die Größe
des stark eindeutigen Büchi Automaten ist dann maximal n22|R|, wobei n die Größe der Bildmenge S des
erkennenden Homomorphismus, und R die Menge der R -Klassen von S ist.

• In Kapitel 4.3 wird gezeigt, dass bei gegebener starken Erkennung einer ω-regulären Sprache L, ein
stark k-eindeutiger Büchi Automat konstruiert werden kann, der L erkennt. Die Größe des Automaten ist
dabei maximal polynominell größer als n, die Größe der Bildmenge des erkennenden Homomorphismus.

• Für eine eingeschränkte Sprachklasse wird in Kapitel 4.4 die Konstruktion eines deterministischen,
stark eindeutigen Büchi Automaten gezeigt. Die Größe des Automaten ist maximal n |R|, wobei n die
Größe der Bildmenge S des erkennenden Homomorphismus, und R die Menge der R -Klassen von S ist.

3.5 Konstruktionen für Vereinigung, Schnitt und Komplement

Dass Eindeutige Büchi Automaten, stark eindeutige Büchi Automaten und stark k-eindeutige Büchi Au-
tomaten unter Vereinigung, Schnitt und Komplement abgeschlossen sind, ergibt sich bereits daraus, dass
alle genannten Automaten genau die regulären Sprachen erkennen (siehe Kapitel 2.6).

Für Vereinigung und Schnitt zweier stark eindeutiger Büchi Automaten mit gemeinsamen Alphabet, und
für das Komplement eines stark eindeutigen Büchi Automaten, lassen sich einfach stark eindeutige Büchi
Automaten konstruieren. Das Gleiche gilt auch für stark k-eindeutige Büchi Automaten. Im Folgenden
werden diese Konstruktionen gezeigt.

3.5.1 Vereinigung und Schnitt

Gegeben sind die Büchi Automaten A1 = (Q1, A, ∆1, I1, F1) und A2 = (Q2, A, ∆2, I2, F2), die die
Sprachen LA1 und LA2 erkennen. Diese Automaten definieren den Automat A = (Q, A, ∆, I, F) folgen-
dermaßen:

Q = {(q1, q2, ε) | q1 ∈ Q1, q2 ∈ Q2, ε ∈ {0, 1}}

∆ = {(a ·q a−→ q) | q ∈ Q, a ∈ A} mit

a ·q = (a ·q1, a ·q2, ε′)

a ·qi = p mit (p a→ qi) ∈ ∆i

ε′ =


0 wenn q1 ∈ F1

1 wenn q1 /∈ F1 und q2 ∈ F2

ε sonst
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I =

{
{(q1,q2,ε) | (q1 ∈ I1 ∨ q2 ∈ I2), ε ∈ {0,1}} ⇒ A erkennt LA1 ∪ LA2

{(q1,q2,ε) | (q1 ∈ I1 ∧ q2 ∈ I2), ε ∈ {0,1}} ⇒ A erkennt LA1 ∩ LA2

F = {(q1,q2,ε) | q2 ∈ F2 ∧ ε = 0}

• Sind bei der obigen Konstruktion die Büchi Automaten A1 und A2 stark eindeutige Büchi Automaten,
dann ist A ein stark eindeutiger Büchi Automat und erkennt LA1 ∪ LA2 bzw. LA1 ∩ LA2 .

Beweis: Nach Definition von ∆ gilt für den Pfad eines Wortes w ∈ Aω: γ = q0
a1−→ q1

a2−→ q2 · · · , mit
qi = (q1,i, q2,i, εi). Dabei sind γ1 = q1,0

a1−→ q1,1
a2−→ q1,2 · · · und γ2 = q2,0

a1−→ q2,1
a2−→ q2,2 · · · Pfade

von w in A1 bzw in A2. Da A1 und A2 stark eindeutige Büchi Automaten sind, ist für w, γ1 und γ2
eindeutig gegeben.

Gilt für einen Zustand qi = (q1,i, q2,i, εi), q1,i ∈ F1, gilt nach Definition von ∆, ε j = 0 für alle Vorgänger-
zustände q j, k ≤ j < i bis zum ersten Zustand qk = (q1,k, q2,k, εk) mit q2,k ∈ F2. Der Zustand qk liegt
dann, nach Definition von ∆, in F .

γ1 enthält unendlich viele Zustände q1,i ∈ F1, und γ2 unendlich viele Zustände q2,i ∈ F2. Damit existiert
für jedes Wort w ∈ Aω ein Pfad γ mit unendlich vielen Zuständen für die q1,i ∈ F1 gilt und unendlich
viele Zustände für die q2,i ∈ F2 gilt. Damit gibt es auf γ unendlich oft die Situation, dass ein Zustand mit
q2, j ∈ F2 vor einem Zustand q1,i ∈ F1 liegt. Damit liegen unendlich viele Zustände von γ in F .

Nach Definition von F gilt für jeden Zustand qi ∈ F, εi = 0. Die Transitionen von A sind, nach Definition
von ∆, co-deterministisch. Damit gilt auf γ, dass für alle Zustände q j mit j ≤ i, ε j eindeutig ist. Da
unendlich viele Zustände von γ in F liegen, sind die ε-Werte aller Zustände auf γ eindeutig. Damit sind
dann alle Zustände von γ eindeutig.

Damit ist A co-vollständig und co-deterministisch, der Pfad eines Wortes w aus Aω hat einen eindeutigen
Anfangszustand, und nach Definition von I erkennt A eindeutig die Sprache LA1 ∪ LA2 bzw. LA1 ∩ LA2�

• Sind bei der obigen Konstruktion die Büchi Automaten A1 und A2 stark k-eindeutige Büchi Auto-
maten, dann ist A ein stark k-eindeutiger Büchi Automat und erkennt LA1 ∪ LA2 bzw. LA1 ∩ LA2 .

Beweis: Nach Definition ist A1 und A2 co-vollständig. Daher existiert für jedes Wort w ∈ Aω mindestens
ein Pfad γ1 = q1,0

a1−→ q1,1
a2−→ q1,2 · · · in A1 und ein Pfad γ2 = q2,0

a1−→ q2,1
a2−→ q2,2 · · · in A2. Nach

Definition von ∆ existiert damit für w ein Pfad der Form γ = q0
a1−→ q1

a2−→ q2 · · · , mit qi =(q1,i, q2,i, εi).
Außerdem gilt nach Definition von ∆, dass für jeden Pfad γ von w, γ1 und γ2 ein Pfad von w in A1 bzw.
A2 ist.

Gilt für einen Zustand qi = (q1,i, q2,i, εi) q1,i ∈ F1, gilt nach Definition von ∆, ε j = 0 für alle Vorgänger-
zustände q j, k ≤ j < i bis zum ersten Zustand qk = (q1,k, q2,k, εk) mit q2,k ∈ F2. Der Zustand qk liegt
dann, nach Definition von ∆, in F .

γ1 enthält unendlich viele Zustände q1,i ∈ F1, und γ2 unendlich viele Zustände q2,i ∈ F2. Damit existiert
für jedes Wort w ∈ Aω einen Pfad γ mit unendlich vielen Zuständen für die q1,i ∈ F1 gilt und unendlich
viele Zustände für die q2,i ∈ F2 gilt. Damit gibt es auf γ unendlich oft die Situation, dass ein Zustand mit
q2, j ∈ F2 vor einem Zustand q1,i ∈ F1 liegt. Damit liegen unendlich viele Zustände von γ in F .

Nach Definition von A1 und A2 ist durch den Anfangswert von γ1 und γ2 die Zugehörigkeit von w in LA1

bzw. LA2 bestimmt. Damit werden LA1 ∪ LA2 und LA1 ∩ LA2 durch den Anfangszustand von γ erkannt.

Zwei Pfade von w in A sind disjunkt, denn gäbe es zwei Pfade γ und γ′, die nicht disjunkt sind, gäbe es
ein i mit q1,i = q′1,i und q2,i = q′2,i. Das wäre aber ein Widerspruch dazu, dass A1 und A2 stark k-eindeutig
sind, und damit Pfade eines Wortes darauf disjunkt sind. �

Für die Anzahl der Zustände in A gilt: | Q | = 2 · | Q1 | · | Q2 |.

Damit ergibt sich folgendes Lemma:

11



Lemma 8 Für Vereinigung und Schnitt zweier stark eindeutiger Büchi Automaten A1 und A2, mit ge-
meinsamen Alphabet, lässt sich mit polynominellem Aufwand ein stark eindeutiger Büchi Automat kon-
struieren, der LA1 ∪ LA2 bzw. LA1 ∩ LA2 erkennt.

Für stark k-eindeutige Büchi Automaten gilt das analog. �

Anmerkung: Sind A1 und A2 eindeutige Büchi Automaten, kann für LA1 ∩ LA1 gleichfalls obige Kon-
struktion verwendet werden.

3.5.2 Komplement

• Gegeben ist der stark eindeutige Büchi Automat A = (Q, A, ∆, I, F), der die Sprache LA ⊆ Aω

erkennt. Dann erkennt der stark eindeutige Büchi Automat B = (Q, A, ∆, Q \ I, F) das Komplement
von LA .

Beweis: Da A stark eindeutig ist, hat jedes Wort w∈ Aω genau einen gültigen Pfad γA in A . Die Zustände
von γA sind nicht von der Menge der Anfangszustände I abhängig (Kapitel 3.2). Da B bis auf die Menge
der Anfangszustände I dem Automat A gleicht, hat w in B ebenfalls genau eine gültigen Pfad γB , mit
γB = γA . Damit gilt: w ∈ LA ⇔ γA beginnt in einem Zustand aus I, und w ∈ LB ⇔ γB beginnt in
einem Zustand aus I \Q. Damit erkennt B genau das Komplement von LA . Die Eigenschaften eines stark
eindeutigen Büchi Automaten ergeben sich direkt aus der Definition von B �

• Gegeben ist der stark k-eindeutige Büchi Automat A = (Q, A, ∆, I, F), der die Sprache LA ⊆ Aω

erkennt. Dann erkennt der stark k-eindeutige Büchi Automat B = (Q, A, ∆, Q\ I, F) das Komplement
von LA .

Beweis: Da A stark k-eindeutig ist, hat jedes Wort w ∈ Aω mindestens ein und höchstens k gültige Pfade
in A . Die Pfade bzw. die Zustände darauf sind nicht von der Menge der Anfangszustände I abhängig.
Da B bis auf die Menge der Anfangszustände I dem Automat A gleicht, hat w in B die gleichen Pfade
mit den gleichen Zuständen wie in A . Nach Definition von stark k-eindeutigen Büchi Automaten gilt:
w ∈ LA ⇔ alle Pfade von w beginnen in einem Zustand aus I, und w ∈ LB ⇔ γB alle Pfade von w
beginnen in einem Zustand aus I\Q. Damit erkennt B genau das Komplement von LA . Die Eigenschaften
eines stark k-eindeutigen Büchi Automaten ergeben sich direkt aus der Definition von B �

• Die Anzahl der Zustände von B ist bei allen Konstruktionen gleich der Anzahl der Zustände von A .

Damit ergibt sich folgendes Lemma:

Lemma 9 Für einen stark eindeutigen Büchi Automaten A , der LA ∈ Aω erkennt, lässt sich mit linearem
Aufwand einen stark eindeutigen Büchi Automat konstruieren, der Aω \LA erkennt.

Für stark k-eindeutige Büchi Automaten gilt das analog. �

3.6 Leerheits-, Inklusionsproblem, Äquivalenzproblem

• Leerheit: Da Büchi Automaten als getrimmt angenommen werden können, sind Büchi Automaten
und damit eindeutige Büchi Automaten, stark eindeutige Büchi Automaten und stark k-eindeutige Büchi
Automaten genau dann leer, wenn die Menge der Anfangszuständen I = /0 ist.

Wenn I = /0 kann es nach Definition von Büchi Automaten kein akzeptiertes Wort geben. Wenn I 6= /0 gibt
es in einem getrimmten Büchi Automat ein Zustand q ∈ I und ein Pfad mit unendlich vielen Zustanden
in F , der in q beginnt, und damit ein akzeptiertes Wort. Somit ist ein Automat mit I 6= /0 nicht leer. �

• Inklusion: Gegeben sind die stark eindeutigen Automaten A1 = (Q1, A1, ∆1, I1, F1) und A2 =
(Q2, A2, ∆2, I2, F2), die die Sprachen LA1 und LA2 erkennen. Es gilt LA1 ⊆ LA2 genau dann, wenn
Lc

A2
∩LA1 = /0 ist. Lc

A2
ist dabei das Komplement von LA2 .
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Da bei stark eindeutigen Büchi Automaten das Komplement in linearer Zeit, Schnitt und das Leerheits-
problem bei Büchi Automaten in polynomineller Zeit gebildet werden kann (siehe Kapitel 3.5.2 und
2.5.4), ist das Inklusionsproblem in polynomineller Zeit lösbar.

Für stark k-eindeutige Büchi Automaten gilt das Gleiche. �

• Äquivalenz: Gegeben sind die stark eindeutigen Automaten A1 = (Q1, A1, ∆1, I1, F1) und A2 =
(Q2, A2, ∆2, I2, F2), die die Sprachen LA1 und LA2 erkennen. Es gilt LA1 = LA2 genau dann, wenn
LA1 ⊆ LA2 und LA2 ⊆ LA1 .
Da bei stark eindeutigen Büchi Automaten das Inklusionproblem in polynomineller Zeit und mit poly-
nominellem Platzbedarf gelöst werden kann, ist damit auch das Äquivalenzproblem in polynomineller
Zeit und mit polynominellem Platzbedarf lösbar.

Für stark k-eindeutige Büchi Automaten gilt das Gleiche. �

Damit ergibt sich folgendes Lemma:

Lemma 10 Für Büchi Automaten lässt sich das Leerheitproblem unmittelbar lösen.

Für stark eindeutige Büchi Automaten und stark k-eindeutige Büchi Automaten lässt sich das Inklusions-
problem mit polynominellem Aufwand lösen.

• Explizite Lösungen für das Inklusions- und Äquivalenzproblem sind in [BL09] gegeben.

3.7 Eigenschaften

Satz 11
• Eindeutige Büchi Automaten erkennen genau die regulären Sprachen, und sind abgeschlossen unter
Vereinigung, Schnitt und Komplementbildung.

Für stark eindeutige Büchi Automaten und stark k-eindeutige Büchi Automaten gilt das Gleiche.

Weiterhin gilt:

• Für stark eindeutige Büchi Automaten und stark k-eindeutige Büchi Automaten lässt sich der ent-
sprechende Komplement-Automat mit linearerm Aufwand konstruieren.
• Für stark eindeutige Büchi Automaten und stark k-eindeutige Büchi Automaten lässt sich das Leer-
heits-, Inklusions- und Äquivalenzproblem mit polynominellem Aufwand lösen
• Für zwei stark eindeutige Büchi Automaten und für zwei stark k-eindeutige Büchi Automaten mit
jeweils gleichem Alphabet lassen sich entsprechende Automaten für Schnitt und Vereinigung mit polyno-
minellem Aufwand konstruieren.
• stark k-eindeutige Büchi Automaten können bei gegebener starken Erkennung in polynomineller Zeit,
bezüglich der Größe der Bildmenge des erkennenden Homomorphismus, konstruiert werden.

Beweis: Für jede ω-reguläre Sprache gibt es einen Büchi Automat der die Sprache erkennt und ein
Homomophismus der die Sprache stark erkennt. Eindeutige Büchi Automaten, stark eindeutige Büchi
Automaten und stark k-eindeutige Büchi Automaten können daher für jede ω-reguläre Sprache konstru-
iert werden (siehe Kapitel 4.2 und 4.3). Die von eindeutige Büchi Automaten, stark eindeutige Büchi
Automaten und stark k-eindeutige Büchi Automaten erkannten Sprachen sind ω-reguläre Sprachen, da
die genannten Automaten Büchi Automaten sind.

Die Abgeschlossenheit unter Vereinigung, Schnitt und Komplement folgt aus Satz 5.

Die weiteren Punkte entsprechen Lemma 8, 9 und 10 und der letzte Punkt ist Ergebnis der Kapitel 4.2
und 4.3 �
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Stark eindeutige Büchi Automaten und stark k-eindeutige Büchi Automaten sind mit Muller Automaten
vergleichbar. Die Größe der Automaten sind maximal exponentiell größer als entsprechende Büchi Au-
tomaten, dafür ist die Konstruktion des Komplement-Automaten mit linearem Aufwand möglich. Muller
Automaten haben allerdings den Vorteil, dass sie deterministisch sind.
Welcher Automat effizienter ist, ergibt sich erst aus der konkreten Anwendung. Das kann man gut an
folgenden zwei Beispielen sehen. Die Beweise dazu sind in [BL09] gegeben.

Beispiel 1: Gegeben ist die Sprache Ln =A∗aAn−1abω mit A= {a,b}. Für diese Sprache existiert ein stark
eindeutiger Büchi Automat mit n+ 2 Zuständen. Dagegen hat jeder (deterministische) Muller Automat
mindestens 2n Zustände

Beispiel 2: Gegeben ist das Alphabet A = {a,b} und die Sprache Ln in der alle Wörter aus Aω enthalten
sind, die an n-ten Stelle den Buchstaben a haben. Für diese Sprache gibt es einen (deterministischen)
Muller Automat mit n+1 Zuständen. dagegen benötigt ein stark eindeutiger Büchi Automat mindestens
2n−1 Zustände.
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4 Von starker Erkennung zu eindeutigen Büchi Automaten

In diesem Kapitel werden Konstruktionen für stark eindeutige Büchi Automaten und stark k-eindeutige
Büchi Automaten gezeigt. Es wird gezeigt, wie für eine beliebige erkennbare Sprache L ⊆ Aω, für die
ein Homomorphismus h gegeben ist, der L stark erkennt, der entsprechender Büchi Automat konstruiert
werden kann.

Weiterhin wird die Konstruktion eines deterministischen, stark eindeutigen Büchi Automaten gegeben,
der eine Teilklasse der ω-regulären Sprachen erkennt.

Für jede ω-reguläre Sprache gibt es einen Homomophismus, der die Sprache stark erkennt. Die Kon-
struktionen in diesem Kapitel beweisen daher die Aussage in Satz 11, dass stark eindeutige Büchi Au-
tomaten, stark k-eindeutige Büchi Automaten und Automaten mit eindeutigen Anfangszuständen genau
die regulären Sprachen erkennen.

Gegeben ist jeweils ein endliches Alphabet A, eine Sprache L⊆ Aω, eine endliche Halbgruppe S mit dem
Homomorphismus h : A+→ S. L wird vom Homomorphismus h stark erkannt, es gibt also die Menge Sp

der Linked Pairs, die Menge S̃p der Äquivalenzklassen der Linked Pairs und die Abbildung h̃ : Aω→ S̃p.
h̃ erkennt L, d.h. es gibt eine Menge P ⊆ S̃p mit L = h̃−1 (P).

Die Beweise zu den Konstruktionen benötigen als Grundlagen die Green Relations im Zusammenhang
mit Linked Pairs und einer Konstruktion ähnlich der Rhodes Expansion in Halbgruppen. Diese Grundla-
gen werden in den folgenden Kapiteln, soweit sie benötigt werden, gegeben. Für weitere Informationen
zu den Green’s Relations siehe z.B. [PP04] und zu der Rhodes Expansion [B84]

4.1 Grundlagen

4.1.1 Green Relations

Für weiterführende Informationen und für Beweise zu den Aussagen in diesem Kapitel siehe z.B. [PP04].

Gegeben ist im Folgenden eine Halbgruppe S. Diese wird um ein neutrales Element erweitert, so dass
man S1 erhält. S1 ist damit ein Monoid. Außerdem sei s,s′, t, t ′ ∈ S1. Auf S1 werden drei Quasiordnungen
definiert:

≤R : s≤R s′ ⇔ sS1 ⊆ s′S1 ⇔ ∃t : s = s′t
≤L : s≤L s′ ⇔ sS1 ⊆ s′S1 ⇔ ∃t : s = ts′

≤J : s≤J s′ ⇔ S1sS1 ⊆ S1s′S1 ⇔ ∃t, t ′ : s = ts′t ′

Damit ergeben sich die Äquivalenzrelationen:

s∼R s′ ⇔ (s≤R s′ ∧ s′ ≤R s) und R(s) := {t | t ∼R s}
s∼L s′ ⇔ (s≤L s′ ∧ s′ ≤L s) und L(s) := {t | t ∼L s}
s∼J s′ ⇔ (s≤J s′ ∧ s′ ≤J s) und J(s) := {t | t ∼J s}
Außerdem die Striktordnungen:

s <R s′ ⇔ (s≤R s′ ∧ ¬(s∼R s′))
s <L s′ ⇔ (s≤L s′ ∧ ¬(s∼L s′))
s <J s′ ⇔ (s≤J s′ ∧ ¬(s∼J s′))

Weiterhin werden die Äquivalenzrelationen D und H definiert:

s∼H s′ ⇔ (s∼R s′ ∧ s∼L s′) und H(s) := {t | t ∼H s}
s∼D s′ ⇔ ∃t ∈ S1 : (s∼R t ∧ t ∼L s′) und D(s) := {t | t ∼D s}
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Lemma 12 Sei S eine Halbgruppe und s,s′, t, t ′ ∈ S1. Dann gilt:

• ∃t : (s∼R t ∧ t ∼L s′) ⇔ ∃t ′ : (s∼L t ′ ∧ t ′ ∼R s′).
• |S| ∈ N ⇒ s∼D s′ ⇔ s∼J s′.
• s≤R s′ ⇒ ∀t : ts≤R ts′

s≤L s′ ⇒ ∀t : st ≤L s′t
• s≤R t ⇔ ∀s′ ∈ R(s) ∀t ′ ∈ R(t) : s′ ≤R t ′

s <R t ⇔ ∀s′ ∈ R(s) ∀t ′ ∈ R(t) : s′ <R t ′

s≤L t ⇔ ∀s′ ∈ L(s) ∀t ′ ∈ L(t) : s′ ≤L t ′

s <L t ⇔ ∀s′ ∈ L(s) ∀t ′ ∈ L(t) : s′ <L t ′ �

Folgendes Lemma beschreibt die Struktur einer D Klasse. Dabei hilft die Vorstellung, dass die Elemente
der D Klasse in einer Tabelle (”Egg Box“) geordnet sind. Alle Elemente einer Zeile sind die Elemente
einer R Klasse, jede Spalte enthält die Elemente einer L Klasse. Die Tabellenzellen selbst enthalten
dann die Elemente der entsprechenden H Klasse.

Lemma 13 Sei S eine Halbgruppe, D eine D Klasse von S1 und s,s′,s′′, p,q,x ∈ S1. Dann gilt:

• Wenn s und s’ in der gleichen R Klasse sind, dann gibt es ein p und ein q mit s = s′p, s′ = sq. Die
Abbildungen x 7→ xp und x 7→ xq sind dann bijektiv und erhalten die H Klassen.

• ss′′ ist Element der H Klasse R(s)∩L(s′′) ⇔ Die H Klasse R(s′′)∩L(s) enthält ein idempotentes
Element.

• Eine H Klasse ist genau dann eine Gruppe, wenn sie das Produkt zweier ihrer Elemente enthält.
• Wenn D ein idempotentes Element enthält, dann gibt es in jeder R und in jeder L Klasse von D

mindestens ein idempotentes Element. �

Weiterhin gilt in einer Halbgruppe S:

Lemma 14 Sei S eine Halbgruppe, s, t ∈ S und m,n ∈ S1. Dann gilt:

• s = msn ⇒ ms ∈ L(s) und sn ∈ R(s)
• (s∼J t ∧ s≤R t) ⇒ s∼R t
• (s∼J t ∧ s≤L t) ⇒ s∼L t �

4.1.2 Green Relations im Zusammenhang mit Linked Pairs

Lemma 15 Gegeben sei ein endliches Alphabet A, eine endliche Halbgruppe S und ein Homomorphis-
mus h von A+ auf S. Außerdem w ∈ Aω, w = a0a1a2 · · · und wi = a0a1 · · ·ai. Die R -Klasse R(w) wird
folgendermaßen definiert:

Sei (s,e) ein Linked Pair assoziiert zu w, und imin das Minimum von {i | h(wi) = s} (imin existiert, siehe
Kapitel 2.3). Dann ist R(w) := R(h(wimin)) = R(s), und es gilt

1) ∀ j ≥ imin : h(w j) ∈ R(w)
2) (s,e)∼ (s′,e′) ⇒ s′ ∈ R(s) = R(w)

Beweis:
1) Angenommen, j > imin und h(w j) /∈R(w). Dann existiert p= h(aimin · · ·a j) mit, sp= h(w j). Außerdem
ein k > j mit wk = s (siehe Kapitel 2.3), und damit ein q = h(a j+1 · · ·ak) mit h(w j)q = s. Damit ist, im
Widerspruch zur Annahme, h(w j) ∈ R(w).

2) Es existiert wimin mit h(wimin) = s und w jmin mit h(w jmin) = s′. Es gilt (imin ≤ jmin)∨ ( jmin ≤ imin), und
damit nach 1) s′,s ∈ R(w). �
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Lemma 16 Gegeben sei ein endliches Alphabet A, eine endliche Halbgruppe S und ein Homomorphis-
mus h von A+ auf S. Außerdem w ∈ Aω, w = a0a1a2 · · · und wi = ai+1ai+2ai+3 · · · . Die D-Klasse D(w)
wird folgendermaßen definiert:

Sei (s,e) ein Linked Pair von w, dann ist D(w) := D(e) und es existiert imin das Minimum von {i |
h(a0 · · ·ai) = s} (imin existiert, siehe Kapitel 2.3). Es gilt dann

1) ∀ j ≥ imin ∃s′ : (s′,e) ist assoziiert zu w j

2) (s,e)∼ (s′,e′) ⇒ e′ ∈ D(e) = D(w)
3) Für i≥ imin gilt: (r, t) assoziiert zu wi ⇒ r ∼D t

Beweis:
1) Es existieren m ≤ j und n ≥ j mit h(am+1 · · ·a j) h(a j+1 · · ·an) = e (siehe Kapitel 3.2). Für s′ :=
h(a j+1 · · ·an) gilt, (s′,e) ist assoziiert zu w j.

2) Aus (s,e)∼ (s′,e′) folgt, dass ein Wort w∈ Aω, w= a0a1a2 · · · existiert, das sowohl zu (s,e) als auch
(s′,e′) assoziiert ist (Kapitel 3.2). Sei h(a0 · · ·aimin · · ·a j) = se = s, dann gilt für alle k mit h(a0 · · ·ak) =
s′, k > j:

Abbildung 2: Pfad in A

∃m,n : x := h(ak+1 · · ·am), xe = (ak+1 · · ·am · · ·an)
∃i : y := h(ai+1 · · ·ak), yx = e, yxe = ee = e
∃k′ : x′ := h(ak′+1 · · ·a′n), h(ak+1 · · ·ak′) = e′, h(ak+1 · · ·an′) = e′x′ = xe

(siehe Abbildung 2)
Aus y · xe = ee = e (und x · e = xe) folgt xe∼L e
Aus xe ·h(an+1 · · ·ak′) = e′ und e′x′ = xe folgt xe∼R e′

Aus xe∼L e und xe∼R e′ folgt schließlich e∼D e′

3) Für i≥ imin gilt:
∃x,y ∈ A+ : wm = xwi, wi = ywn, wm und wn sind assoziiert zu (e,e)
Daraus folgt: wi ist assoziiert zu (h(y)e,e), h(y)e e = h(y)e, h(x) h(y)e = ee = e und damit h(y)e∼L e
Schließlich sind alle Linked Pairs (r, t), die mit wi assoziiert sind, konjugiert zu (h(y)e,e). Deshalb gilt
r ∼R h(y)e und r ∼D t.

�

Lemma 17 Gegeben sei ein endliches Alphabet A, eine endliche Halbgruppe S und ein Homomorphis-
mus h von A+ auf S. Für Linked Pairs von S gilt dann:

1) ∃ ( f , f ) : ( f , f ) ∼ (s,e) ⇔ s ∼D e
2) (e,e) ∼ ( f , f ) ⇔ e ∼R f
3) (s,e) ∼ (s′,e′) und s ∼D e ∼D s′ ∼D e′ ⇔ s ∼R s′ und s ∼D e ∼D s′ ∼D e′

Beweis:
1) Wenn (s,e) und ( f , f ) konjugiert sind, dann sind nach Lemma 15 und 16 s∼R f und e∼D f . Damit
ist s∼D e. Für die Rückrichtung gilt s∼D e und weil (s,e) ein Linked Pair ist s = se. Daraus folgt nach
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Lemma 14 s∼L e, und es gibt ein t ∈ S1 mit ts = e. Damit gilt stst = set = st und f := st ist idempotent.
Daraus folgt dann, dass (s,e) und ( f , f ) konjugiert sind.

2) 2) ist eine dierekte Folge von 1).

3) Sind (s,e) und (s′,e′) konjugiert, dann gilt nach Lemma 15 s∼R s′. Für die Rückrichtung ist s∼R s′

gegeben. Wegen 1) ist (s,e) ((s′,e′)) konjugiert zu einem ( f , f ) (( f ′, f ′)). Dabei gilt s ∼R f (s′ ∼R f ′).
Wegen s∼R s′ ist f ∼R f ′ und wegen 2) sind dann ( f , f ) und ( f ′, f ′) konjugiert. Damit sind auch (s,e)
und (s′,e′) konjugiert. �

4.1.3 R -Ketten

Gegeben sei ein endliches Alphabet A, eine endliche Halbgruppe S und ein Homomorphismus h von
A+ auf S. Die Menge der damit gegebenen Linked Pairs wird hier mit SP bezeichnet, die Menge der
R -Klassen mit R.

• Die Folge (R(s1),R(s2),R(s3), · · ·) wird hier R -Kette genannt, wenn si ∈ S und s1 ≥R · · · ≥R sn gilt.
Eine R -Kette wird streng geordnet genannt, wenn s1 >R · · ·>R sn gilt. Die Menge der streng geordneten
R -Ketten wird hier mit Ŝ bezeichnet.

Da (s ≤R t ⇔ ∀s′ ∈ R(s) ∀t ′ ∈ R(t) : s′ ≤R t ′) und (s <R t ⇔ ∀s′ ∈ R(s) ∀t ′ ∈ R(t) : s′ <R t ′) gilt
(Lemma 12), sind R -Ketten und streng geordnete R -Ketten wohldefiniert.

R ist endlich, weil S endlich ist. Damit ist die Länge aller streng geordneten Ketten endlich, und damit
auch Ŝ.

• Für die Abbildung ĥ : Aω→ Ŝ gelte ĥ := k′ ◦ k. Die Abbildungen k und k’ werden folgendermaßen
definiert:

Sei K die Menge der R -Kette und k : Aω→K. Für ein w∈Aω, mit w= a0a1a2 · · · wird k(w) über k(w) :=
(R(h(a0)), R(h(a0a1)), R(h(a0a1a2)), · · ·) := (R(s1),R(s2),R(s3), · · ·) definiert. Es gilt si ≥R si+1, da
nach Konstruktion si+1 = si h(ai) ist. k ist eindeutig, weil die Darstellung von w durch w = a0a1a2 · · ·
und der Homomorphismus h eindeutig, und die R -Klassen disjunkt sind.

Sei k′ : K → Ŝ. Für eine R -Kette (R(s1),R(s2),R(s3), · · ·) wird k((R(s1)R(s2),R(s3), · · ·)) := (R(s′1),
R(s′2), · · · ,R(s′n)) konstruiert, indem jedes R(si) mit i > 1 und si ∼R si−1 entfernt wird. Die Konstruktion
ist eindeutig, denn sind mehrere Elemente gleich, dann sind sie in der R -Kette nacheinander angeordnet
(R -Ketten sind monoton fallend), und unabhängig von der Reihenfolge des Entfernens werden alle bis
auf das Erste entfernt. Für R(s′i), i > 1 gilt nach Konstruktion si <R si−1. k′((R(s1),R(s2),R(s3), · · ·)) ist
damit eine streng geordneten R -Kette und damit endlich.

Da (s ≤R t ⇔ ∀s′ ∈ R(s) ∀t ′ ∈ R(t) : s′ ≤R t ′) und (s <R t ⇔ ∀s′ ∈ R(s) ∀t ′ ∈ R(t) : s′ <R t ′) gilt
(Lemma 12), sind k und k’ wohldefiniert.

Da k und k′ eindeutig sind, ist auch ĥ = k′ ◦ k eindeutig.

Lemma 18 Sei ĥ : Aω → Ŝ wie zuvor definiert, w ∈ Aω, (s1, · · · ,sn) = h̃(w), dann gilt für alle Linked
Pairs (s,e), die mit w assoziiert sind, s∼R sn

Beweis: Nach Lemma 15 existiert imin, so dass h((a0 · · ·aimin)) = s und für alle Präfixe (a0 · · ·a j), j ≥
imin, h((a0 · · ·a j)) ∼R s gilt. Damit ist R(s) die kleinste (bez. ≤R ) R Klasse für alle Präfixe und damit
gleich R(sn). �

• Im Folgenden wird eine Linksoperation von A+ auf Ŝ definiert:

Für a ∈ A ist a (R(s1),R(s2), · · · ,R(sn)) := k′ (R((h(a)), R(h(a)s1), R(h(a)s2), · · · , R(h(a)sn))) :=
(R(s′1),R(s

′
2), · · · ,R(s′n′)). Da ≤R linksstabil ist (Lemma 12), ist si ≤R si+1 ⇔ h(a)si ≤R h(a)si+1
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und (R((h(a)), R(h(a)s1), R(h(a)s2), · · · , R(h(a)sn))) eine R -Kette. Damit ist dann (R(s′1),R(s
′
2), · · · ,

R(s′n′)) eine streng geordnete R -Kette. Eindeutig ist die Operation, weil h und die Multiplikation der
Halbgruppe S eindeutig sind.

Da (s ≤R t ⇔ ∀s′ ∈ R(s) ∀t ′ ∈ R(t) : s′ ≤R t ′) und (s <R t ⇔ ∀s′ ∈ R(s) ∀t ′ ∈ R(t) : s′ <R t ′) gilt
(Lemma 12), ist die Linksoperation wohldefiniert.

Für u ∈ A+, mit u = a0a1 . . .am ist u (R(s1),R(s2), · · · ,R(sn)) := u′ (am(R(s1),R(s2), · · · ,R(sn))), mit
u′ = a0a1 . . .am−1. Iterativ kann damit u (R(s1),R(s2), · · · ,R(sn)) := (R(s′1),R(s

′
2), · · · ,R(s′n′)) berechnet

werden. Dass die Operation eindeutig ist, (R(s′1),R(s
′
2), · · · ,R(s′n′)) eine streng geordnete R -Kette ist

und die Operation wohldefiniert ist, ergibt sich daraus, dass die einzelnen Schritte eindeutig sind, jeweils
zu streng geordneten R -Ketten führen und wohldefiniert sind.

• Die Operation a (s1,s2, · · · ,sn) mit a ∈ A wird abschneidend genannt, wenn h(a)sn−1 ∼R h(a)sn

ist, wenn also das letzte Element durch die Operation abgeschnitten wird.

Lemma 19 Für ĥ, die zuvor definierte Linksoperation, u ∈ A+, u = a0a1 · · ·am, w ∈ Aωundsi ∈ S gilt:

1) u (R(s1),R(s2), · · · ,R(sn)) =
k′ (R(h(a0)), · · · , R(h(a0 · · ·am)), R(h(a0 · · ·am)s1), · · · ,R(h(a0 · · ·am)sn)) :=
(R(s′1),R(s

′
2), · · · ,R(s′n′))

2) u(ĥ(w)) = ĥ(uw)

3) Ist ĥ(w) = (R(s1), · · · ,R(sn)) und sind bei der Berechnung von u(ĥ(w)) mindestens n Einzeloperatio-
nen abschneidend, dann gilt u(ĥ(w)) = ĥ(u)

Beweis:
1) Für R(s′1) und R(s′2) erhält man direkt die Werte der definierten Linksoperation. Bei allen anderen
Elemente, die bei der definierten Konstruktion entfernt werden, macht es keinen Unterschied, ob sie bei
den Einzelschritten entsprechend der Definition entfernt werden, oder erst nach dem letzten Schritt. Denn
da∼R linksstabil ist (Lemma 12), bleiben zwei benachbarte Elemente, die R äquivalent sind, auch nach
linksseitigem Aufmultiplizieren eines Wertes R äquivalent (bsi ∼R bsi+1 → absi ∼R absi+1).

2) Sei w = b0b1b2 · · · und ĥ(w) = (R(s1),R(s2), · · · ,R(sn)). Dann gilt:
ĥ(uw) = k′ (R(h(a0)), · · · , R(h(a0 · · ·am)), R(h(a0 · · ·amb0)), R(h(a0 · · ·amb1)), · · ·)
Weil ∼R linksstabil ist, werden alle Elemente mit xwi ∼R xwi−1 entfernt und man erhält
ĥ(uw) = k′ (R(h(a0)), · · · R(h(a0 · · ·am)), R(h(a0 · · ·ams1)), R(h(a0 · · ·ams2)), · · ·) R(h(a0 · · ·amsn))
Nach 1) gilt schließlich
ĥ(uw) = u(ĥ(w))

3) Nach 1) gilt
u(ĥ(w)) = k′ (R(h(a0)), · · · , R(h(a0 · · ·am)), R(h(a0 · · ·am)s1), · · · ,R(h(a0 · · ·am)sn))
sind bei der Berechnung von u(ĥ(w)) mindestens n Einzeloperationen abschneidend, dann werden min-
destens die letzten n Elemente entfernt und man erhält
u(ĥ(w)) = k′ (R(h(a0)), · · · , R(h(a0 · · ·am))) = ĥ(u) �

4.2 Stark eindeutiger Büchi Automat

Satz 20 Gegeben sei ein endliches Alphabet A, eine endliche Halbgruppe S und ein Homomorphismus h
von A+ auf S, der die ω-reguläre Sprache L stark erkennt. Daraus folgt die Menge der Linked Pairs SP,
die Menge der Konjugationsklassen S̃P, die Abbildung h̃ :→ S̃P mit P⊆ S̃P, L = h̃−1(P), und die Menge
der R -Ketten Ŝ.

Zur Notation: Für a ∈ A wird für a und h(a) immer nur a geschrieben. [s,e] steht für eine Konjugations-
klasse, wobei das Linked Pair (s,e) ein Repräsentant der Klasse ist.
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Der folgend definierte Büchi Automat A = (Q, A, ∆, I, F) ist stark eindeutig und erkennt die Sprache L

Q := {([s,e], (R(s1), · · · ,R(sn)), z) | [s,e] ∈ S̃P, (R(s1), ...,R(sn)) ∈ Ŝ, s∼R sn, z ∈ {0,1}}
∆ := {(as̃, aŝ, 0) a→ (s̃, ŝ, 0) | aŝ ist nicht abschneidend}
∪ {(as̃, aŝ, 0) a→ (s̃, ŝ, 1) | aŝ ist nicht abschneidend}
∪ {(as̃, aŝ, 1) a→ (s̃, ŝ, 0) | aŝ ist abschneidend}
∪ {(as̃, aŝ, 1) a→ (s̃, ŝ, 1) | aŝ ist abschneidend}

∆ ⊆ Q x A x Q
I := {(s̃, ŝ, z) | s̃ ∈ P} ⊆ Q
F := {(s̃, ŝ, z) | z = 1, s̃ = [s,e] mit s∼D e} ⊆ Q

Beweis: Nach Lemma 7 genügt es zu zeigen, dass A co-vollständig ist, und jeder gültige Pfad eines
ω-Wortes den selben Anfangszustand hat.

• Co-Vollständigigkeit

Sei w ein beliebiges Wort aus Aω, w = a1a2 · · · , wi = ai+1ai+2 · · · , γ = q0
a1→ q1

a2→ q2 · · · .
Setzt man nun qi := ([s,e], (R(s1), · · · ,R(sn)), z) mit

[s,e] := h̃(wi)

(R(s1), · · · ,R(sn) := ĥ(wi)

z :=

{
1 wenn ai+1ĥ(wi+1) abschneidend ist
0 sonst

dann gilt nach Lemma 18 s ∼R sn für alle qi. Außerdem ist z mit der Übergangsrelation verträglich.
Nachfolgendes Lemma zeigt, dass γ unendlich viele Zustände in F hat. Damit ist für jedes Wort w ∈ Aω

ein Pfad in A , mit unendlich vielen Zuständen in F , gegeben. Deshalb ist A co-vollständig.

Lemma 21 Sei ein Automat wie oben definiert. Sei weiterhin für ein beliebiges Wort w ∈ Aω, der Pfad γ

auf diesem Automat wie zuvor beschrieben konstruiert, dann hat dieser Pfad γ unendlich viele Zustände
in F.

Beweis: Sei w assoziiert mit (s,e). Dann gilt: ∃∞ i, j ∈ N : j < i, wi und w j sind assoziiert mit (e,e)

qi = (s̃, ŝ,z) mit ŝ = (R(s1), · · · ,R(sn)). Die Transitionen von A sind nach Definition co-deterministisch
und man erhält eindeutig q j = (s̃′, ŝ′,z′) mit ŝ′= a j+1 · · ·ai (R(s1), · · · ,R(sn′−1),R(sn′) = k′((R(a j+1), · · · ,
R(esn−1),R(esn)) (Lemma 19). Aus sn = e folgt esn = e und es ist esn−1 ≤R esn. Da ŝ′ eine R -Kette ist
gilt auch ,esn ≤R esn−1. So sind die letzten beiden R Klassen gleich und zwischen q j und qi liegt
mindestens eine abschneidende Transition und damit ein Zustand mit z = 1. Da es unendlich viele Paare
i, j gibt, gibt es auf γ unendlich viele Zustände mit z = 1.

Nach Lemma 16 existiert ein imin, so dass für alle i > imin gilt: (s,e) ist assoziiert mit wi⇒ s∼D e

Damit hat Pfad γ unendlich viele Zustände in F . �

• Eindeutige Anfangszustände

Sei w ein beliebiges Wort aus Aω, w assoziiert zum Linked Pair (t, f ), w = a1a2 · · · , wi = ai+1ai+2 · · · ,γ =
q0

a1→ q1
a2→ q2 · · · ein gültiger Pfad, und imin sei das Minimum von {i | h(a0 · · ·ai) = s}.

Betrachtet man auf Pfad γ einen Zustand qi ∈ F mit i > imin und qi = ([s,e], (R(s1), · · · ,R(sn)), z),
dann gilt: ∃x,y ∈ A+ ∃m,n ∈ N : m < n, x = (am+1 · · ·ai), y = (ai+1 · · ·an), h(xy) = f , wm und wn sind
assoziiert zu ( f , f ) (siehe Abbildung 3). Dann gelten folgende Beziehungen:
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Abbildung 3: Eindeutiger Büchi Automat (Bsp. 1)

wi ist assoziiert zu (h(y) f , f ) damit gilt R(sn) = R(h(y) f ) ⇒ h(y) f ∼D sn

h(x) h(y) f = f ⇒ h(y) f ∼L f ⇒ h(y) f ∼D f
Nach Bedingungen in F ⇒ s ∼D e
Nach Bedingung in Q gilt s ∼R sn ⇒ s ∼D sn

h(y) f ∼R sn und sn ∼R s ⇒ h(y) f ∼R s

Es gilt also s ∼D e ∼D f ∼D h(y) f und s ∼R h(y) f . Nach Lemma 17 folgt dann (s,e) ∼ (h(y) f , f ) ∈
h̃(wi)

Mit u = a1a2 · · ·ai gilt für den Anfangszustand q0 = ([s0,e0], ŝ0,z0), nach Definition der Übergangsrela-
tion ∆ und mit Lemma 4, [s0,e0] = h(u)[si,ei] = h(u)h̃(wi) = h̃(w). Damit ist [s0,e0] eindeutig gegeben.

Auch ŝ0 = (R(s1), · · · ,R(sn)) (und ŝ1) ist eindeutig, denn wählt man p > 1, qp = (s̃p, ŝp,zp), ŝp =
(R(s′1), · · · ,R(s′n′)), erhält man nach Definition der Transitionen in ∆, (R(s1), · · · ,R(sn)) = (a1 · · ·ap)ŝp.
Wählt man p groß genug, hat (a1 · · ·ap)ŝp mehr als n′ abschneidende Operationen, und es gilt nach Lem-
ma 19 (a1 · · ·ap)ŝp = ĥ((a1 · · ·ap)) = ĥ(w). p existiert, da γ unendlich viele Zustände in F und damit
unendlich viele abschneidende Transitionen hat.

Weil auch ŝ1 eindeutig ist, ist nach Definition von ∆ auch z0 eindeutig

Damit ist der Anfangszustand q0 für w eindeutig gegeben. �

• Ein Zustand hat die Form ([s,e], (R(s1), · · · ,R(sn)), z). s ist aus S , e ein idempotentes Element, Die
R -Kette hat maximal |R| verschiedene stark monoton fallende Elemente, damit beträgt die maximale
Anzahl von R -Ketten 2|R| und z ist aus der Menge {0,1}. A hat damit maximal |S| · |E(S)| · 2|R| · 2
Zustände.

4.3 Stark k-eindeutiger Büchi Automat

Gegeben sei ein endliches Alphabet A, eine endliche Halbgruppe S und ein Homomorphismus h von A+

auf S, der die ω-reguläre Sprache L stark erkennt. Daraus folgt die Menge der Linked Pairs SP, die Menge
der Konjugationsklassen S̃P und die Abbildung h̃ :→ S̃P mit P⊆ S̃P, L = h̃−1(P).

Zur Notation: Für a ∈ A wird für a und h(a) immer nur a geschrieben. [s,e] steht für eine Konjugations-
klasse, wobei das Linked Pair (s,e) ein Repräsentant der Klasse ist.

Gegeben sei weiterhin die Menge K := {(R(r),R(t)) | t ≤R r}, und folgende Linksoperation von A+

auf K:

Für a ∈ A ist a(R(r),R(t)) :=

{
(1) (R(ar),R(at)) wenn at <R ar
(2) (R(a),R(ar)) sonst (abschneidend benannt)

Für u ∈ A+, u = a0a1 · · ·an gilt u(R(r),R(t)) := (a0a1 · · ·an−1) (an(R(r),R(t)))

Die Linksoperation ist wohldefiniert, denn es gilt: ∀x ∈ R(r)∀a ∈ A : R(ax) = R(ar)
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Die Linksoperation hat folgende Eigenschaft: wird im Laufe der Berechnung von a0a1 · · ·an(R(r),R(t))
bei einer Einzeloperation die Bedingung für Abschneiden erfüllt, es gilt also ar ∼R at, dann bleibt diese
Bedingung für die folgenden Operation erhalten, wenn statt Operation (2) Operation (1) durchgeführt
wird. Da ∼R linksstabil ist (Lemma 12) kann dies erst durch die abschneidende Operation (2) geändert
werden.

Um zu einem k-eindeutigen Büchi Automat zu gelangen wird die Menge K und die darauf definier-
te Linksoperation modifiziert. Dabei wird nach Erreichen der Bedingung ar ∼R at, die abschneidende
Operation (2) solange hinausgezögert, bis eine weitere Bedingung erfüllt ist:

Gegeben ist die Menge K′ := {(R(r),R(t), f ) | t ≤R r, f ∈E(S) (idempotente Elemente)}, und folgende
Linksoperation von A+ auf K:

Für a ∈ A ist a(R(r),R(t), f ) :=

{
(1) (R(ar),R(at), f ) wenn at <R ar oder ar 6= f
(2) (R(a),R(ar), f ) sonst (abschneidend benannt)

Für u ∈ A+, u = a0a1 · · ·an gilt u(R(r),R(t)) := (a0a1 · · ·an−1) (an(R(r),R(t)))

Damit ergibt sich dann folgender k-eindeutige Büchi Automat Ak, der die Sprache L erkennt.

Q := {([s,e], (R(r),R(t), f ), z) | [s,e] ∈ S̃, (R(r),R(t), f ) ∈ K′, z ∈ {0,1}, R(s) = R(t)}
∆ := {(as̃, ak, 0) a→ (s̃, k, 0) | ak ist nicht abschneidend}
∪ {(as̃, ak, 0) a→ (s̃, k, 1) | ak ist nicht abschneidend}
∪ {(as̃, ak, 1) a→ (s̃, k, 0) | ak ist abschneidend}
∪ {(as̃, ak, 1) a→ (s̃, k, 1) | ak ist abschneidend}

∆ ⊆ Q x A x Q
I := {(s̃, k, z) | s̃ ∈ P} ⊆ Q
F := {([s,e], (R(r),R(t), f ), z) | z = 1, (s,e)∼ ( f , f )} ⊆ Q

• Nach Definition der Übergangsrelation ∆ ist der Automat co-deterministisch.

• Co-Vollständigigkeit

Sei w ein beliebiges Wort aus Aω, w assoziiert zu (t, f ), w = a1a2 · · · , wi = ai+1ai+2 · · · , γ = q0
a1→ q1

a2→
q2 · · · . Da w assoziiert mit (s,e) ist, gibt es auf γ unendlich viele Zustände qi mit wi ist assoziiert mit
(e,e).
Setzt man nun qi := ([s,e], (R(r),R(t), f ), zi) mit

[s,e] := h̃(wi)

(R(t) := R(s)

(R(r) := R(e) wenn wi assoziiert mit (e,e) und h(a0 · · ·ai) = s
sonst entsprechend der Übergangsrelation ∆

zi−1 :=

{
1 wenn ai(R(r),R(t), f ) abschneidend ist
0 sonst

Da es unendlich viele Zustände qi gibt, für die wi assoziiert mit (e,e) und h(a0 · · ·ai) = s gilt, ist R(r) für
alle Zustände definiert. Die so definierten Werte von R(r) sind mit der Linksoperation auf K′ verträglich,
da zwischen solchen Zuständen, immer ein Wortfragment u mit h(u) = e liegt.

Weiterhin gilt s∼R t nach Definition.

Da jeder Zustand qi, mit wi assoziiert mit (e,e) und h(a0 · · ·ai) = s, nach Definition in F liegt, enthält der
Pfad γ unendlich viele Zustände in F .

Damit ist für jedes Wort w ∈ Aω ein Pfad in Ak, mit unendlich vielen Zuständen in F , gegeben. Deshalb
ist A co-vollständig.
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• Es bleibt zu zeigen, dass am Startzustand ([s,e], (R(r),R(t), f ), z), h̃(w) = [s,e] gilt, dass die Anzahl
der gültigen Pfade eines Wortes beschränkt und die gültigen Pfade zueinander disjunkt sind:

Nach Definition von K′ hat ein Element dieser Menge die Form (R(r),R(t), f ). Für ein Pfad auf Ak bleibt
f konstant. Zwischen zwei abschneidenden Operationen, also zwischen zwei Zuständen in F , muss nach
Definition der Linksoperation für das dazwischenliegende Wortfragment (ai · · ·a j), h((ai · · ·a j)) = f gel-
ten. Hat nun ein Pfad unendlich viele Zustände in F , so markieren die Zustände in F eine Faktorisierung
des zugehörigen Wortes w, und an den Zuständen die in F liegen gilt, wi ist assoziiert mit ( f , f ). Ist (s,e)
an diesen Stellen konjungiert zu ( f , f ) ist [s,e] = h̃(wi) auf dem ganzen Pfad (Lemma 4), insbesondere
am Startzustand.

Für jedes Linked Pair,das mit w assoziiert ist, kann ein Pfad entsprechend dem Beweis zur Co-Vollstän-
digkeit konstruiert werden. Weitere gültige Pfade kann es wegen obiger Beobachtung nicht geben. So
existiert für jedes Linked Pair in h̃(w) genau ein gültiger Pfad in Ak. Da die Größe der Konjugationsklas-
sen beschränkt sind, ist auch die Anzahl der gültigen Pfade eines Wortes beschränkt.

Die Übergangsrelation ∆ ist nach Definition co-deterministisch. Daraus folgt, dass wenn die Zustände
qi und q′i zweier Pfade gleich sind, auch alle Zustände q j und q′j mit j < i gleich sind. Insbesondere
müssten dann die Anfangszustände gleich sein. Daraus folgt aber, dass das Element (R(r),R(t), f ) im
Anfangszustand beider Pfade gleich ist. Da R(r) und f des Anfangszustandes den Verlauf eines Pfades
festlegen, sind dann beide Pfade identisch.

Somit erfüllt Ak alle Bedingungen für einen k-eindeutigen Büchi Automaten.

• Ein Zustand hat die Form ([s,e], (R(r),R(t), f ), z). s ist aus S , e ein idempotentes Elemente, R(r) ist
ein Element aus R, R(t) muss bei der Berechnung der Anzahl von Zuständen nicht berücksicht werden,
da R(s) = R(t) gefordert ist, f ist ein idempotentes Element und z ist aus der Menge {0,1}. Ak hat daher
maximal |S| · |E(S)|2 · |R| ·2 Zustände.

4.4 Stark eindeutiger Büchi Automat mit deterministischer Übergangsrelation

Gegeben sei ein endliches Alphabet A, eine endliche Halbgruppe S und ein Homomorphismus h von
A+ auf S, der die ω-reguläre Sprache L stark erkennt. S1 ist die um ein neutrales Element erweiterte
Halbgruppe S. Daraus folgt die Menge der Linked Pairs SP, die Menge der Konjugationsklassen S̃P und
die Abbildung h̃ : Aω → S̃P mit P⊆ S̃P, L = h̃−1(P).

Zur Notation: Für a ∈ A wird für a und h(a) immer nur a geschrieben. [s,e] steht für eine Konjugations-
klasse, wobei das Linked Pair (s,e) ein Repräsentant der Klasse ist.

Für Sprachen L, mit L =
⋃

1≤i≤n
[R(si)], [R(si)] = {w | ∀(s,e) assoziiert mit w : s ∈ R(si)}, können stark

eindeutige Büchi Automaten mit deterministischer Übergangsrelation konstruiert werden. Hier wird die
Klasse der so definierten Sprachen LR genannt. Für Sprachen L ∈ LR gilt [s,e] ∈ P⇒∀ f ∈ E(S) : [s, f ] ∈
P. Damit kann die Abbildung hR : Aω → R mit R ist die Menge der R -Klassen, P′ ⊆ R, L = h−1

R (P′)
gebildet werden.

Der folgend definierte Büchi Automat Ad = (Q, A, ∆, I, F) ist stark eindeutig, hat eine deterministische
Übergangsrelation und erkennt die Sprachen L ∈ LR.

Q := {(R(s), t) | t ∈ S1}
∆ := {(R(s), t) a→ (R(s), ta)} ⊆ Q x A x Q
I := {(R(s),1) | R(s) ∈ P′} ⊆ Q
F := {(R(s),u) | u ∈ R(s)} ⊆ Q

Beweis: Sei w ein beliebiges Wort aus Aω, w assoziiert zu (s,e), w = a1a2 · · · und wi = a1 · · ·ai.
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Es gilt:
• Die Übergangsrelation ∆ ist nach Definition vollständig und deterministisch.
• Für jedes Element in R gibt es genau ein Element in I.
• Nach Lemma 15 gilt für w: Es existiert ein imin ∈ N, so dass für alle j > imin, w j ∈ R(s)

Damit hat jedes Wort einen Pfad in Ad der im Zustand (R(s),1)∈ I beginnt und unendlich viele Zustände
in F hat. Wegen der deterministischen Übergangsrelation ist dieser Pfad eindeutig. Für alle anderen
Startzustände hat der resultierende Pfad entweder keine Zustände in F (Startzustand (R(t),1) mit t <R s)
oder nur endlich viele Zustände in F (Startzustand (R(t),1) mit s <R t). �

• Da ein Zustand aus einer R -Klasse und einem Element aus S besteht, hat A maximal |S| · |R|
Zustände.

Für die oben definierte Sprache LR sind folgende Definitionen äquivalent:

• L =
⋃

1≤i≤n
[R(si)], [R(si)] = {w | ∀(s,e) assoziiert mit w : s ∈ R(si)}

• Es existiert ein deterministischer Büchi Automat, der L erkennt, und es existiert ein deterministischer
Büchi Automat, der Aω \L erkennt

• Es existiert ein deterministischer Automat A = (Q,A,∆,q0,T ) mit T ⊆ 2Q und L = {w | Qγ ∈
T , Qγ ist die Menge aller Zustände eines Pfades}

Beweis z.B. in [PP04] �
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