
Institut für Architektur von Anwendungssystemen

Universität Stuttgart
Universitätsstraße 38

D–70569 Stuttgart

Diplomarbeit Nr. 3190

Metamodell und Plattform
für

Mustersprachen und Musterkataloge

Philipp Grimm

Studiengang: Informatik

Prüfer: Prof. Dr. Frank Leymann

Betreuer: Dipl.-Inf. Christoph Fehling
Dipl.-Inf. David Schumm

begonnen am: 25. Mai 2011

beendet am: 28. Oktober 2011

CR-Klassifikation: I.5.0, I.6.5, D.2.1, D.2.2

Inhaltsverzeichnis

1 Einleitung 1
1.1 Problemstellung und Zielsetzung . 2
1.2 Aufbau der Arbeit . 4

2 Grundlagen 7
2.1 Begriffserklärung von Mustern . 7

2.1.1 Muster nach Christopher Alexander . 7
2.1.2 Muster nach ’The Gang of Four’ . 9
2.1.3 Muster nach Frank Buschmann . 10
2.1.4 Muster nach Martin Fowler . 11
2.1.5 Muster nach Hohpe und Woolf . 12

2.2 Begriffserklärung von Modell und Metamodell . 13
2.3 Begriffserklärung von Metamustern . 14

2.3.1 Metamuster nach Meszaros und Doble . 14
2.4 Beziehungen in Mustersprachen . 16

2.4.1 Beziehungen in Mustersprachen nach van Welie und van der Veer 17
2.5 Webbasierte Musterkataloge und -sammlungen . 19

2.5.1 Interaction Design Pattern Library - Welie.com 19
2.5.2 Yahoo! Design Pattern Library . 19

2.6 UML-Diagramm . 20
2.6.1 Erweiterung von UML . 21

2.7 Grundlagen modellgetriebener Softwareentwicklung 21
2.7.1 Modellgetriebene Softwareentwicklung . 21
2.7.2 Modellgetriebene Architektur . 22

3 Metamodell für Mustersprachen 25
3.1 Einordnung der Grundlagen des Metamodells für Mustersprachen 25
3.2 Form und Aufbau des Metamodells für Mustersprachen 25
3.3 Aufgaben und Ziele des Metamodells für Mustersprachen 26
3.4 Übersicht der Modellhierarchie . 27
3.5 Aufbau und Bestandteile des Metamodells für Mustersprachen 28

3.5.1 Übersicht der Strukturen in dem Metamodell für Mustersprachen 29
3.5.2 Grundlagen der Strukturen des Metamodells für Mustersprachen 29
3.5.3 Modell der Musterstruktur des Metamodells für Mustersprachen 31
3.5.4 Modell der Mustersprachstruktur des Metamodells für Mustersprachen 34

I

3.6 Profil des Metamodells für Mustersprachen . 36
3.6.1 Beziehungsprofil des Metamodells für Mustersprachen 37
3.6.2 Musterstrukturprofil des Metamodells für Mustersprachen 38
3.6.3 Mustersprachprofil des Metamodells für Mustersprachen 40
3.6.3.1 Typen von Musterorganisationen im Mustersprachprofil 41
3.6.3.2 Zusatzfunktionalitäten für Mustersprachen im Mustersprachprofil 42

4 Plattform für Mustersprachen und Musterkataloge 45
4.1 Aufgaben und Ziele der Plattform für Mustersprachen und Musterkataloge 45
4.2 Abgrenzung zu bestehenden webbasierten Musterkatalogen 46
4.3 Plattformspezifikation für Mustersprachen und Musterkataloge 47

4.3.1 Erstellung und Verwaltung von Mustersprachen 48
4.3.2 Erstellung und Verwaltung von Musterkatalogen 53

4.4 Struktur der Plattform für Mustersprachen und Musterkataloge 63
4.4.1 Repository der Plattform für Mustersprachen und Musterkataloge 64
4.4.2 Anwendungslogik der Plattform für Mustersprachen und Musterkataloge 67
4.4.3 Webbasiertes Frontend der Plattform für Mustersprachen und Musterkataloge . . 69

4.5 Implementierung der Plattform für Mustersprachen und Musterkataloge 72

5 Zusammenfassung und Ausblick 74
5.1 Zusammenfassung . 74
5.2 Ausblick . 75

Quellenverzeichnis III

Abbildungsverzeichnis VII

Algorithmenverzeichnis VIII

Anhang IX
A UML-Diagramm: Metamodell für Mustersprachen . XI
B UML-Diagramm: Beispielmodell einer Mustersprache XV
C UML-Diagramm: Profilerweiterungen des Metamodellprofils für Mustersprachen XVII

II

1

Kapitel 1

Einleitung

Beim Suchen nach einer Lösung zur Behebung eines Problems wird oft auf bestehende Ansätze und
Ideen zurückgegriffen. Die Denkweise des Verknüpfens von Problemstellungen und Lösungsansätzen
tritt in vielen Bereichen auf, zum Beispiel in der Architektur [CAA77], in den Wirtschaftswissenschaften
[Etz64] und in der Software-Technik [BJ94]. Auch im Umgang mit sozialen Problemen wird häufig auf
diese Denkweise zurückgegriffen [New72]. Die Beschreibung von Problem-Lösungs-Paaren, die auf
wiederkehrende Probleme in bestimmten Kontexten ein Lösungsschema bieten, werden Muster genannt.
[BMR+98, S. 1]

Speziell bei der Entwicklung von großen Softwaresystemen ist es sinnvoll wiederkehrende
Problemstellungen, ganze Softwarearchitekturen und deren Komponenten mit Hilfe von Mustern zu
lösen und aufzubauen. In den letzten Jahren ist eine ganze Reihe von Mustern, Mustersprachen und
Musterkatalogen vor allem für die Softwareentwicklung entstanden, auf die bei der Softwareerstellung
zurückgegriffen werden sollte. Solch ein Musterkatalog stellt eine vernetzte Menge von Mustern dar.
Seine Aufbau wird durch eine Mustersprache definiert, die das Modell des Musterkataloges darstellt.
[LL10, S.429-444]

Die Vernetzung und Beziehungen der Muster in Mustersprachen wird immer wichtiger, da sie
einen große Informationsgehalt bieten. Durch die Beziehungen der Muster lassen sich zum Beispiel
ähnliche Lösungsansätze oder auch andere Lösungsansätze zu verwandten Problemen zuordnen. Eine
Mustersprache wie die von Christopher Alexander [CAA77] weist eine hierarchische Struktur auf, die
mit der Gliederung eines Buches vergleichbar ist. In der Mustersprache von Christopher Alexander
werden Ähnlichkeits-, Spezialisierung- und Einschlussbeziehungen verwendet, die die Vernetzung der
Mustersprache zusätzlich ausprägen. Die Vernetzung und die Beziehungen der Muster ermöglichen
und vereinfachen das Kombinieren der Muster. Muster werden oft in mehrere Teile unterteilt, die
wiederum von Muster beschrieben werden. Um einen Lösungsansatz zu finden, der vollständig mit
Muster beschrieben werden kann, ist es wichtig die Beziehungen und Verbindungen zwischen den
Mustern zu kennen. [PHBO10]

Durch mustersprachenübergreifende Vernetzungen und Beziehungen kann beispielsweise die Lösung
eines Problems in eine andere Richtung gelenkt werden oder die Betrachtung von anderen Lösungsideen
für das bestehende Probleme entdeckt werden. Dies kann das Finden von Lösungen in einer
fachfremden Mustersprache beinhalten. Zum Beispiel fanden Dorigo und Caro einen Ansatz zur Lösung
verschiedener diskreter Optimierungsprobleme [DC99], indem sie durch das Futtersuchverhalten von
Ameisenkolonien inspiriert wurden. Das Verhalten der Ameisen lieferte die Grundlage für ihre
Algorithmen. Sie entwickelten ein Framework, das auf ihrem Algorithmus basiert und mit dem
Lösungen von diskreten Optimierungsproblemen berechnet werden können. Mit dem Framework lassen
sich viele bekannte Probleme lösen, unter anderem die Berechnung des Travelling-Salesman-Problems

2 KAPITEL 1. EINLEITUNG

oder das Finden von kurzen Wegen in verbindungslosen Netzwerken unter der Berücksichtigung der
Netzauslastung.

1.1 Problemstellung und Zielsetzung

Das Ziel dieser Arbeit ist es, ein Metamodell für Mustersprachen zur Strukturierung und Verwaltung
zu entwickeln und eine Plattform für Mustersprachen und Musterkataloge zu planen und umzusetzen,
die die Verwendung des Metamodells für Mustersprachen ermöglicht. Im Folgenden werden die
Anforderungen an das Metamodell für Mustersprachen und an die Plattform für Mustersprachen und
Musterkataloge vorgestellt:

Einordung der Grundlagen des Metamodells für Mustersprachen Das Metamodell für
Mustersprachen stützt sich inhaltlich auf bekannte und häufig verwendete Mustersprachen, wie zum
Beispiel auf das Metamodell von Meszaros und Doble sowie auf zahlreiche Analysen und Kenntnisse
von Mustersprachen, die von Buschmann in Pattern Oriented Software Architecture Volume 5: On
Patterns and Pattern Languages [BHS07] detailliert beschrieben sind.

Basis der Mustersprachen Das Metamodell für Mustersprachen stellt ein Modell für Mustersprachen
dar und bietet für die Mustersprachen eine einheitliche Basis, die Beschreibungen der Struktur und
der Semantik von Mustersprachen enthält. Durch diese einheitliche Basis der Mustersprachen ist es
möglich, Vernetzungen zwischen Mustersprachen aufzubauen. Zusätzlich können die Strukturen und
die Bedeutungen der Mustersprachen analysiert und verglichen werden.

Variable Gestaltung der Mustersprachdefinitionen Je nach Inhalt der Muster, die durch eine
Mustersprache beschrieben werden, variieren die Definitionen der verschiedenen Mustersprachen.
Damit Autoren von Mustern eine geeignete Mustersprachdefinition für ihre Muster finden, erstellten
Meszaros und Doble ein Metamodell für Mustersprachen [MD96], das grundlegende Aufgaben für die
Erstellung einer Mustersprachendefinition erfüllt. Das Metamodell für Mustersprachen, das in dieser
Arbeit beschrieben wird, basiert auf den Ideen von Meszaros und Doble und ermöglicht darüber
hinaus das Erstellen von Metamodellerweiterungen. Diese Metamodellerweiterungen werden durch
Profilerweiterungen des Metamodells für Mustersprachen ermöglicht. Durch die Erweiterungen des
Metamodellprofils für Mustersprachen wird das Metamodell an spezielle Mustersprachen angepasst,
die bestimmten Mustersprachdefinitionen gerecht werden müssen.

Modellgetriebener Architekturansatz Das Metamodell für Mustersprachen aus dieser Arbeit
soll dem modellgetriebenen Architekturansatz gerecht werden und durch Profilerweiterungen des
Metamodells für Mustersprachen erweiterbar sein. Durch die Erstellung eines Metamodells für
Mustersprachen, das dem Konzept der modellgetriebenen Architektur zu Grunde liegt, soll die
Modellierung von Mustersprachen und Musterkatalogen ermöglicht werden. Aus diesem Grund wird
das Metamodell für Mustersprachen in dieser Arbeit in Form eines UML-Diagramms vorgestellt.

1.1. PROBLEMSTELLUNG UND ZIELSETZUNG 3

Objektorientierter Aufbau Die Struktur des Metamodells für Mustersprachen soll die
objektorientierte Betrachtung von Mustersprachen und Mustern erlauben. Die objektorientierte
Betrachtungsweise von Mustersprachen und Mustern soll außerdem die Generalisierung und
Spezialisierung der Muster und Mustersprachen ermöglichen.

Vernetzungsinformationen In Verbindung mit der objektorientierten Betrachtungsweise von
Mustersprachen sollen explizite Strukturen und Beziehungsarten zwischen Mustersprachen und Mustern
festgehalten werden, um die Vernetzungsinformationen zu erweitern und die Bedeutung der Beziehung
festzuhalten. Die Bedeutungen der Beziehungen sowie die Semantik der Struktur des Metamodells wird
in dem Profil des Metamodells für Mustersprachen festgehalten.

Verwendung des Metamodells für Mustersprachen Das Metamodell für Mustersprachen aus
dieser Arbeit soll die Basis für Mustersprachen und Musterkataloge bieten, die durch die
Modellierung mit Softwareprogrammen erstellt werden können. Eine Plattform für Mustersprachen und
Musterkataloge soll das Erstellen und Verwalten von Mustersprachen und Musterkatalogen bezüglich
der modellgetriebenen Softwareentwicklung ermöglichen. Anschließend sind die Anforderungen an die
Plattform für Mustersprachen und Musterkataloge aufgeführt.

Plattform für Mustersprachen und Musterkataloge Im Rahmen dieser Arbeit wurde eine Plattform
für Mustersprachen und Musterkataloge geplant und implementiert. Sie basiert auf dem Metamodell für
Mustersprachen und stellt ein Mustersystem dar, mit dessen Hilfe Mustersprachen erstellt und verwaltet
werden können. Aus den Mustersprachen, die in der Plattform für Mustersprachen und Musterkatalogen
hinterlegt sind, können Musterkataloge instanziiert und verwaltet werden.

Anforderungen an ein Mustersystem Bei der Planung der Plattform für Mustersprachen
und Musterkataloge sollen die folgenden Anforderungen von Buschmann an ein Mustersystem
berücksichtigt werden:

• Die Plattform für Mustersprachen und Musterkataloge ermöglicht das Verwalten einer großen
Anzahl von Mustern.

• Die Plattform für Mustersprachen und Musterkataloge bietet das Einpflegen von Mustern in die
jeweiligen Musterkataloge an, damit die Problematik der Musterkataloge detailliert beschrieben
und gelöst werden kann.

• Das Metamodell für Mustersprachen aus dieser Arbeit wird als Grundlage verwendet, um die
Muster der Mustersprachen auf eine einheitliche Art und Weise beschreiben zu können.

• Die einheitliche Beschreibungsgrundlage der Muster ermöglicht es, die Inhalte der Muster
übersichtlich zu präsentieren und die Muster untereinander zu vergleichen.

• Das Metamodell für Mustersprachen ermöglicht es, verschiedene Beziehungen zwischen
Musterkatalogen, Mustern und deren Inhalten in der Plattform für Mustersprachen und
Musterkatalogen zu erstellen.

4 KAPITEL 1. EINLEITUNG

• Damit die Muster in den Musterkatalogen geeignet angeordnet und schnell gefunden werden
können, stellt die Plattform für Mustersprachen und Musterkataloge eine Verwaltung der Muster
und eine Suche nach den Mustern zur Verfügung.

• Die Plattform für Mustersprachen und Musterkataloge kann mit der dynamischen Änderungen
der Inhalte von den Musterkatalogen und Mustern umgehen.

• Es sind Schnittstellen für Erweiterungen der Plattform vorgesehen, damit Lösungen für neue
Anforderung bereitgestellt werden können.

[BMR+98][S. 359-361]

Erweiterung der Mustersystemanforderungen Die Anforderungen von Buschmann an ein
Mustersystem wurden durch zusätzliche Anforderungen erweitert und verfeinert:

• Die Musterkataloge der Plattform für Mustersprachen und Musterkataloge bieten eine
komfortable und effiziente Nutzung für Autoren und Leser.

• Aufgrund der dynamischen Erstellung und Veränderung der Muster können verschiedene
Versionen der Musterkataloge und deren Muster gespeichert werden. Die Leser und Autoren
können durch das Festhalten der Inhaltsänderungen die inhaltlichen Entwicklungen der Lösungen
nachvollziehen.

• Die Plattform für Mustersprachen und Musterkataloge ermöglicht zusätzlich eine erweiterte
Suche, die nach Musterkatalogen, Mustern und Musterinhalten suchen kann. Sie stellt außerdem
die Zusammenhänge des Suchergebnisses dar.

• Leser und Autoren können die Musterkataloge der Plattform für Mustersprachen und
Musterkataloge durchstöbern und dabei ihren Vernetzungen folgen.

• Die Plattform für Mustersprachen und Musterkataloge stellt eine Basis für die Diskussion über
die Inhalte der Musterkatalge, Muster und deren Inhalte zur Verfügung.

• Um die Daten der Mustersprachen und Musterkataloge effizient verwalten zu können, besitzt die
Plattform für Mustersprachen und Musterkataloge ein Repository, das die Verwaltung der Daten
übernimmt.

1.2 Aufbau der Arbeit

Die Arbeit besteht aus der Erklärung der Grundlagen, der Beschreibung des Metamodells für
Mustersprachen und dessen Verwaltungssoftware, sowie der Plattform für Mustersprachen und
Musterkataloge. Im Anschluss folgt eine Zusammenfassung mit Ausblick des behandelten Themas. Im
Folgenden wird auf den Inhalt der einzelnen Bestandteile der Arbeit eingegangen.

Einleitung Die Einleitung dieser Arbeit führt den Leser in die Thematik ein und beschreibt diese in
wenigen Worten. Sie setzt sich außerdem mit der Aufgabenstellung und der Zielsetzung auseinander
und schildert den Aufbau dieser Arbeit.

1.2. AUFBAU DER ARBEIT 5

Grundlagen Die Grundlagen enthalten fachspezifische Informationen über Mustersprachen, die
für das Verständnis diese Arbeit nützlich sind. Es werden die wichtigsten Begriff erklärt, die
als Hintergrundwissen der Arbeit benötigt werden. Die vorgestellten Arbeiten, deren Inhalt mit
Mustersprachen zusammenhängt, stellt eine notwendige Grundlage für das Kapitel Metamodell für
Mustersprachen dar. Da anhand deren Inhalten das Metamodell für Mustersprachen begründet und
aufgebaut ist.

Metamodell für Mustersprachen Im Kapitel Metamodell für Mustersprachen wird das Metamodell
für Mustersprachen aufgebaut und beschrieben. Dieses wird anhand eines erstellten UML-Diagramms
erklärt.

Plattform für Mustersprachen und Musterkataloge Im dritten Kapitel wird die Plattform für
Mustersprachen und Musterkataloge vorgestellt. Es werden ihre Aufgaben und Anforderungen
beschrieben und eine Abgrenzung zu anderen Softwaremusterkatalogen vorgenommen. Im Anschluss
wird die Plattform spezifiziert und deren Struktur vorgestellt.

Zusammenfassung und Ausblick In der Zusammenfassung wird das erstellte Metamodell für
Mustersprachen und die Plattform für Mustersprachen und Musterkataloge reflektiert und einen
Ausblick auf Erweiterungen vorgestellt.

Anhang Im Anhang dieser Arbeit befinden sich die vollständigen UML-Diagrammen des
Metamodells für Mustersprachen, eine Beispielmustersprache und die Profilerweiterung des
Metamodells für Mustersprachen für die Anpassung an die Plattform. Zusätzlich ist ein
Literaturverzeichnis, ein Abbildungsverzeichnis und ein Verzeichnis der Algorithmen abgebildet.

7

Kapitel 2

Grundlagen

In diesem Kapitel werden die für diese Arbeit benötigten fachlichen Grundlagen und relevanten
Vorarbeiten vorgestellt und diskutiert.

Es werden Mustersprachen und deren Strukturen betrachtet, um einen Ausblick zu geben, was das zu
erstellende Metamodell der Mustersprachen in dieser Arbeit leisten soll. Hierzu wird die erste populäre
Mustersprache von Christopher Alexander [CAA77] vorgestellt. Anschließend werden Mustersprachen
betrachtet, die inhaltlich der Architektur und dem Design von Software zu zuordnen sind.

2.1 Begriffserklärung von Mustern

Die bekanntesten Definitionen von Mustern (engl. Pattern) haben alle die gleiche Kernaussage: ein
Muster beschreibt einen Lösungsansatz für ein wiederkehrendes Problem und dessen Kontext. Wichtig
dabei ist, dass der Lösungsansatz der Muster unendlich oft auf das beschriebene Problem anwendbar ist
ohne den Lösungsansatz ändern zu müssen. Je nach Fachrichtung und Mustersprache variiert jedoch das
Format der Muster. Im Folgenden werden bekannte Definitionen von verschieden Autoren vorgestellt,
um ein Verständnis der Muster und ihrer Sprachen zu bieten.

2.1.1 Muster nach Christopher Alexander

Der Architekt, Professor und Gesellschaftstheoretiker Christopher Alexander legte den Grundstein
für das Konzept der Muster und der Mustersprachen mit seinen Büchern: A Pattern Language
[CAA77] und A Timeless Way of Building [CAA77]. [HW04, S. xli] Die Bücher von Christopher
Alexander befassen sich erstmals mit der Beschreibung von Mustern, welche sich auf den Sachverhalt
der Architektur, das Bauwesen und der Planung beziehen. In seinem Buch A Pattern Language
beschreibt er eine Mustersprache. Diese Mustersprache besteht aus Mustern, die Städte, Gebäude
und Bauformen beschreiben. An Hand ihrer Information können konkrete Konstrukte abgeleitet und
entworfen werden. Christopher Alexander versteht unter einem Konstrukt ein architektonisches Werk,
das aus der Konkretisierung mehrere Musterlösungen von zusammenhängenden Mustern ableitbar ist.
Unter der Ableitung von Mustern versteht man das Anwenden der Musterlösungen durch eine Projektion
der Musterlösung auf die zu entwerfende Lösung. Das Buch A Timeless Way of Building behandelt die
fundamentale Natur der Tätigkeiten, um Städte und Gebäude zu errichten. Es beschreibt unter anderem
die Vorgehensweisen der Erstellung von Architekturen anhand einer Mustersprache. [CAA77, S. ix-x]

8 KAPITEL 2. GRUNDLAGEN

Musterdefinition

Each Pattern describes a problem which occurs over and over again in our environment, and
then descibes the core of the solution to that problem, in such a way that you can use this
solution a million times over, without ever doing it the same way twice. [CAA77, S. x]

Musteraufbau Christopher Alexander hat seine Muster in Textform festgehalten. Der Einfachheit
halber und der Verständlichkeit wegen haben alle Muster das gleiches Format. Der Inhalt wird mit einem
Bild eingeleitet, das ein architektonisches Beispiel des zu beschreibenden Musters darstellt. Davon
gefolgt wird ein Paragraph, der die Zusammenhänge des zu beschreibenden Musters festlegt und dieses
somit in einen Kontext einordnet. Anschließend folgen drei Karos, die als Symbole dargestellt werden,
damit der Beginn und die Abgrenzung zur der Problembeschreibung erkenntlich ist. Danach folgen zwei
hervorgehobene Sätze, die die Überschrift für die anschließenden Problemstellung darstellen und deren
Inhalt kurz erläutern. In der Problemstellung wird das Problem erläutert und in einen Kontext gestellt.
Dies wiederum wird von einer weiteren Überschrift, die sich auf den folgenden Lösungsansatz bezieht
erweitert. Der Lösungsansatz wird von einer Grafik gefolgt, die einen Überblick der Lösung schaffen
soll. Dieser Hauptteil des Musters wird erneut durch drei Karosymbole getrennt. Der folgende Paragraph
enthält die Verbindung zu anderen Muster und schließt das Format der Muster ab. [CAA77, S. x-xi]

Christopher Alexander hat aus den zwei folgenden Gründen ein Format für seine Muster gewählt:

• Das Format ermöglicht es Muster miteinander zu verknüpfen. Außerdem soll bei der Wahl eines
Konstruktes aus mehreren Mustern eine Vielzahl von Möglichkeiten bestehen um das gewünschte
Konstrukt zu gestalten.

• Zweitens soll das Format dem Leser die Problematik und den Lösungsansatz in einer Art
wiedergeben, damit dieser die Kernaussage für sich verwenden kann.

[CAA77, S. xi]

Jedes Muster von Christopher Alexander weist eine Beziehung zu einem anderen auf. Die
Mustersprache ist in eine hierarchische Baustruktur unterteilt, die zugleich eine Art Inhaltsangabe seines
Buches darstellt. Die Knoten des Baumes repräsentieren disjunkte Mengen von Mustern. Jede Menge
ist für einen Inhaltsbereich der Mustersprache vorgesehen. Die Wurzel des Baumes stellt die Menge
der Muster für Regionen dar, welche von Städten, Nachbarschaften, Gruppierungen von Gebäuden, ...
bis hin zu Tischen und Stühlen gefolgt werden. Diese Struktur birgt indirekt Inklusions-, Ähnlichkeits-
und Spezialisierungsbeziehungen in sich. [vv03] Christoph Alexander stellt sich seine Muster als eine
fundamentale ”Welt” vor, die seine Mustersprache repräsentiert. Keines der Muster steht alleine da und
ist Teil der ganzen ”Welt”. Er unterteilt die Ansicht seiner ”Welt” in drei Perspektiven:

• Muster, die kleinere enthalten.

• Muster, die gleich groß und in den gleichen Inhaltsbereich eingeordnet sind

• Muster, die klein sind und Teile von größeren Mustern bilden.

Man kann nicht einfach ein Muster isoliert betrachten und dieses in einer konkreten Lösung verwenden.
Die Lösung eines Problems steckt in der Vernetzung der Mustersprache. [CAA77, S. xiii]

2.1. BEGRIFFSERKLÄRUNG VON MUSTERN 9

Den Grad der invarianten Eingenschaft zwischen Problemstellung und Lösungsansatz wird in den
Mustern von Christopher Alexander explizit durch zwei, einen oder keinen Stern angegeben. Dieser
Grad versucht eine Abschätzung der Allgemeingültigkeit zwischen Lösungsansatz und Problemstellung
darzustellen. Eine totale Erfüllung der invarianten Eigenschaft würde bedeuten, dass der gegebene
Lösungsansatz eines Musters immer auf die Problemstellung anwendbar ist. Die invariante Eigenschaft
ist nicht erfüllt, wenn es alternative Lösungsvorschläge gibt die das Problem des Musters lösen könnten.
[CAA77, S. x-xvii]

Anwendung der Muster Christopher Alexander hat eine Mustersprache entwickelt, die von
sehr praktischer Natur ist. Die Sprache entstand durch das Festhalten von seinen Gebäude- und
Plangungserrungenschaften. Sie ist dafür gedacht, um seine eigene Stadt und Nachbarschaften zu
verbessern, um selber sein Haus oder ein Büro zu planen, bei öffentlichen Gebäuden mitzuwirken und
vieles mehr. Es ist vor allem eine Anleitung um dem eigentlichen Prozess der Konstruktion zu folgen.
Die Mustersprache ist nicht nur für Experten gedacht sondern explizit für jedermann. [CAA77, S. x]

Um eine konkrete Lösung eines Problems anhand der Mustersprachen zu finden, muss das konkrete
Problem auf eine allgemeine Problemstellung eines Musters zutreffen. Man kann nun den Lösungsansatz
des Musters ausarbeiten und als konkrete Lösung verwenden. Bei der Wahl des Musters ist zu
beachten, dass es alternative Lösungsansätze geben kann. Dies wird in der Mustersprache von
Christopher Alexander durch den invarianten Grad angegeben. Die meisten Muster sind Aggregation
oder Erweiterungen mehrerer untergeordneten Muster. Bei der Referenzierung von Mustern besteht oft
ein Wahlmöglichkeit des Musters, das aus einer Menge verschiedener in Frage kommender Muster
gewählt werden kann. Bei der Ausarbeitung einer Lösung müssen auch die untergeordneten Muster
gewählt und ausgearbeitet werden, bis schließlich die komplette Lösung vollständig ist. [CAA77, S.
xiii-xv]

2.1.2 Muster nach ’The Gang of Four’

’The Gang of Four’ besteht aus den Autoren Gamma, Helm, Johnson und Vlissides, welche die Väter
der Entwurfsmuster (engl. Design Patterns) sind.

Entwurfsmuster sind Muster deren Inhalt sich auf Softwarekomponenten bezieht. In der
Softwareentwicklung wird zwischen Architekturmuster, welche auf der Ebene der Systemarchitektur
inhaltlich angesiedelt werden, und den Entwurfsmustern unterschieden. Es werden auch für spezielle
Softwarekomponentenarten Mustersprachen erstellt, so wie zum Beispiel Martijn van Welie und
Gerrit C. van der Veer eine Mustersprache für Benutzerschnittstellen erstellt haben. [vv03]
Entwurfsmuster werden für die Lösungen gängiger Entwurfsprobleme auf der Ebene des Feinentwurfs
von Softwarekomponenten angewendet. Sie werden unabhängig von Programmiersprachen entwickelt
und vermitteln lediglich eine Lösungsidee. Die meisten Entwurfsmuster beziehen sich auf eine
objektorientierte Lösung, was keine freie Wahl der Programmiersprache einschränkt. Das Prinzip der
Wiederverwendung ist in dem objektorientierten Denken verankert und lässt sich gut kombinieren.
Um einen guten Softwareentwurf zu erstellen, ist die wiederholte Verwendung von Architektur- und
Entwurfsmuster essentiell. [LL10, S. 436-437]

’The Gang of Four’ beschreiben in ihrem Buch Design Patterns: Elements of Reusable
Object-Oriented Software [GHJV95] die Grundsätze der Entwurfsmuster und bieten dem Leser einen

10 KAPITEL 2. GRUNDLAGEN

Entwurfsmusterkatalog mit einer Fülle von Entwurfsmustern. Das Buch liefert zwei Kernbestandteile.
Zum einen zeigt es welche Rolle die Entwurfsmuster in der Architektur von komplexen Systemen
spielen und zum anderen bietet es ein Referenzwerk, welches eine Menge dieser ausgereiften
Entwurfsmuster darstellt. [GHJV95, S. xiii]

Musterdefinition ’The Gang of Four’ benötigte eine Definition für Entwurfsmuster, die es erlaubt
ihren Mustern mit objektorientierten Inhalten und Beziehungen darzustellen. Ihre Lösungen stellen sie
durch Objekte und Schnittstellen dar, anstatt von Wänden und Türen wie es Christopher Alexander
tat. Weil in Christopher Alexanders Muster die selbe objektorientierte Idee mit Wänden und Türen
verkörpert, wie ’The Gang of Four’ für ihre Muster benötigte, wurde die Definition von Christopher
Alexander als Grundlage ihrer Muster verwendet. [GHJV95, S. 2-3]

Musteraufbau Die Bestandteile der Muster von ’The Gang of Four’ bestehen aus einem
Musternamen, einer Problembeschreibung, einem Lösungsansatz und einem Kompromiss. Der
Mustername beschreibt das Problem, die Lösung oder den Kompromiss des Musters. Das Muster
wird auch durch seinen Namen referenziert. Das Problem beschreibt, wann die Lösung anwendbar
ist und stellt sich selbst in einen Kontext. In der Problembeschreibung werden zum Beispiel Klassen
oder Objektstrukturen erläutert, die einen nicht flexiblen Entwurf aufweisen. Manchmal wird eine
Liste von Bedingungen angegeben, die erfüllt werden muss bevor es Sinn macht die Musterlösung
zu verwenden. Die Lösung beschreibt einen Lösungsansatz bezüglich der angegeben Problemstellung.
Der Lösungsansatz enthält eine abstrakte Beschreibung der Entwurfsidee, die durch Beziehungen,
Verbindlichkeiten und Zusammenwirkungen dargestellt wird. Der Kompromissbereich beschreibt die
Vorteile und Nachteile der gefundenen allgemeinen Lösung im Gegensatz zur einer intuitiven oder
einfachen Lösung. Es werden oft Kapazitäten- und Geschwindigkeitsvergleiche getroffen. Es wird eine
über die Wahl der Programmiersprache, der Implementation und über die Einflüsse der Flexibilität,
Erweiterbarkeit und Portabilität eines Systems bezüglich der Musterlösung diskutiert. [GHJV95, S. 3]

Anwendung der Muster Die Anwendbarkeit der Muster von ’The Gang of Four’ lehnt sich stark
an der von Christopher Alexander an. Die Anwendung der Muster von ’The Gnag of Four’ bringt
immer eine softwaretechnische Implementierung hervor. Das besondere hier ist, dass nicht nur die
Muster sondern auch die Implementierung, die aus ihnen hervorgeht, wiederverwendbar sein soll. In
den Mustern sind Beispiele angegeben, die schon eine Stütze bieten sollen, um die Implementierung
leichte erstellen zu können. [GHJV95, S.3-4]

2.1.3 Muster nach Frank Buschmann

In diesem Abschnitt wird die Musterdefinition und der Musteraufbau von Frank Buschmann aus seinem
Buch Pattern-orientierte Software-Architektur: Ein Pattern-System [BMR+98] vorgestellt.

Buschmann führt in seinem Buch Pattern-orientierte Software-Architektur: Ein Pattern-System
den Begriff des Musters ein und diskutiert die Prinzipien einer Musterbeschreibung. Anschließend
präsentiert er drei Musterkataloge, die Muster zu den Themenbereichen Architektur und Entwurf
von Software. Der dritte Musterkatalog beinhaltet und verweist auf Idiome. Idiome stellen

2.1. BEGRIFFSERKLÄRUNG VON MUSTERN 11

programmiersprachen spezifische Muster dar und werden eine Abstraktionsebene unter den
Entwurfsmustern angesiedelt.

Buschmann beschreibt die Bedeutung und die Verwendung von Mustersystemen und deren
Organisation. Die Mustersysteme helfen Muster für die richtige Situation zu finden, Lücken zwischen
Muster zu schließen und Beziehungen zwischen Mustern zu bilden. Er diskutiert die Verwendung von
Musterkatalogen und Musterorganisationen in dem Gebiet der Software-Architektur und erklärt die
Unterstützung von der Verwendung von Mustern. [BMR+98][S. XVI-XVII, 14-16]

Musterdefinition Buschmann verwendet eine Musterdefinition um Problematiken und deren
Lösungen aus dem Bereich Software-Architektur und Software-Entwurf zu beschreiben. Die
Musterdefinition von Buschmann ist aus der Musterdefinition von Christopher Alexander und der
Musterdefinition von ’The Gang of Four’ abgeleitet und an seine drei Themen angepasst. Er unterteilt
seine Muster in die Kategorien Architekturmuster, Entwurfsmuster und Idiome. Die Muster aus den drei
Kategorien basieren alle auf der selben Musterdefinition. Die Verwendung der selben Musterdefinition
führt zu einem einheitlichen Musterformat und soll das Vergleichen von Mustern und das Auffinden von
alternativen Lösungen erleichtern. [BMR+98][S. 8-21]

Musteraufbau Im Folgenden werden die Bestandteile der Muster von Buschmann aufgelistet und
deren Verwendung erläutert. Die Muster bestehen aus einem Namen, alternativen Bezeichnungen, einem
Beispiel aus der Realität, einem Kontext, einem Problem, einer Lösung, einem dynamischen Aspekt,
einer Beschreibung für Implementierungsrichtlinien, einer Diskussion aller wichtigen Aspekte für die
Lösung des Beispiels, einer kurzen Beschreibung der Varianten und Spezialisierungen der Muster,
einem Anwendungsbeispiel existierender Software, einer Beschreibung der Vor- und Nachteile der
Verwendung und Verweise auf andere Muster oder auf ähnliche Probleme.

2.1.4 Muster nach Martin Fowler

Um das Erstellen von komplexen Unternehmensanwendungen (engl. Enterprise Application) zu
erleichtern, stellt Martin Fowler in seinem Buch [Fow02] eine Mustersprache für die Architektur von
Unternehmensanwendungen bereit. Er kann keine genaue Definition von der Unternehmensanwendung
liefern und gibt deshalb Indikatoren an, die dem Leser die Bedeutung und Gestalt von
Unternehmensanwendungen nahe legen sollen. Die Musterinhalte beziehen sich zum Beispiel auf
Probleme, die mit folgenden Aspekten in Verbindung stehen: persistente Daten, gleichzeitiger
Zugriff auf die selben Daten, eine Menge von Benutzerschnittstellen, Integrationen von anderen
Unternehmensanwendungen, konzeptionelle Unstimmigkeiten von IT-Strukturen und komplexe
Geschäftslogiken, Um ein tieferes Verständnis zu erlangen, ist der Leser eingeladen diese
Erläuterung von Martin Fowler nachzulesen. [Fow02, S. 1-4]

Musterdefinition Martin Fowler nimmt ebenfalls die Definition von Christohper Alexander als
Grundlage. Laut ihm sind seine Muster von Unternehmensanwendungen im Gegensatz zu den Mustern
von Christopher Alexander keiner ursprüngliche Idee, sondern sehr viel eher aus Betrachtungen von
Geschehnissen in bestimmten Bereichen entstanden.[Fow02, S. 9-11]

12 KAPITEL 2. GRUNDLAGEN

Musteraufbau Bei der Findung seines Musterformats hat sich Martin Fowler an den Büchern: A
Language Pattern [CAA77], Design Patterns [GHJV95] und Pattern-Oriented Software Architecture
[BMR+98] orientiert. Sein Musterformat setzt sich letztendlich aus dem Musternamen, der das Muster
identifizieren soll, einer ein bis zwei Sätzen großer Zweckbeschreibung mit dazugehöriger Skizze. Die
Skizze ist oft ein UML-Diagramm, dass einen Überblick des Musterinhaltes verschaffen soll. Nach der
Skizze folgt ein Absatz, der die Motivation des Musters enthält. Die Lösungsbeschreibung beinhaltet,
eine Diskussion über die Implementierungsprobleme und -variationen. Der Inhalt ist so gut wie möglich
unabhängig bezüglich einer Plattform gehalten. Optional sind plattformspezifische Lösungen angefügt.
Dies wird gefolgt von einem Abschnitt der beschreibt, wann die Musterlösung angewendet werden kann
und wann es Sinn macht diese anzuwenden. In einem weiteren optionalen Abschnitt werden hilfreiche
Referenzen zu weiteren Informationen über den Sachverhalt angeboten. Am Schluss des Musterformates
erläutert ein Beispiel in Java-Code die Lösung praktisch. Der Zweck des Beispielcodes ist es, die Idee
der Musterlösung verständlicher darzustellen. Nicht jeder Teil des Musterformates ist verpflichtend für
die Beschreibung der Muster. [Fow02, S. 11-13]

Anwendung der Muster Martin Fowler nimmt vorweg, dass die Anwendung seiner Muster meistens
auch eine Anpassung derer verlangt. Die Muster von Martin Fowler eignen sich nicht so gut für eine
Wiederverwendung. Sie sind aber für die Dokumentation von Software und dem Austausch mit anderen
von großer Bedeutung. Durch die Referenzierung der Muster anhand ihres Namens kann jeder die
Bedeutung und den Sinn des Musters verstehen oder nachschlagen. Abgesehen von der Anpassung
der Muster bezüglich des eigenen Kontextes verhält sich das Vorgehen genauso wie bei Christopher
Alexander. [Fow02, S. 9-11]

2.1.5 Muster nach Hohpe und Woolf

Hope und Woolf verfassten ein Werk [HW04], das eine Mustersprache bezüglich der Integration von
Unternehmensanwendungen liefert. Interessante Anwendungen werden nur selten als alleinstehende
Anwendung betrieben. Die meisten Anwendungen bieten und verwenden Schnittstellen zu
dritten Anwendungen. Zum Beispiel muss in einem Unternehmen eine Finanzanwendung mit
der dazugehörigen Lagenbestandshaltungsanwendung, Auftragsabwicklungsanwendung und einem
Webshop kooperieren. Um ein Gefühl zu bekommen, was die Muster von Hope und Woolf inhaltlich
thematisieren ist eine List fundamentaler Herausforderungen der Integrationslösungen aufgeführt: nicht
zuverlässige Netzwerke, langsame Netzwerke und unausweichlichen Veränderungen der Anwendungen.
Um ein tieferes Verständnis für die aufgeführten Herausforderungen der Integrationslösungen zu
bekommen, ist der Leser eingeladen, die Erklärungen von Hope und Woolf nachzulesen. [HW04, S.
xxix-xxx]

Musterdefinition Die Definition von Hope und Woolf stützt sich ebenso vollständig auf die von
Christopher Alexander. Hope und Woolf möchten die Eigenschaften der Wiederverwendung und
Lösungsfindung von Christopher Alexanders Muster und deren Vernetzung in ihren Mustern verwenden.
[HW04, S. xli]

2.2. BEGRIFFSERKLÄRUNG VON MODELL UND METAMODELL 13

Musteraufbau Hope und Woolf haben eine Musterform gewählt, die sich nah an der von
Christopher Alexander orientiert. Sie wollten eine prosaische Musterform ohne Überschriften
von Untergruppierungen für ihre Muster, um den Diskussionsfluss nicht zu unterbrechen. Durch
Abbildungen, unterstrichene oder fett gedruckte Texte sollen wichtige Informationen hervorgehoben
werden. Die Struktur der Muster besteht aus folgenden Bestandteilen: Mustername, einem eindeutig
zuordnungsbaren Symbol für die Musterrepräsentation, einer Beschreibung des Kontextes, einer
Problembeschreibung, einen Abschnitt, der die Schwierigkeiten der Problemlösung, Alternativlösungen
und Irrwegen anspricht, einer Lösung, eine lösungsbeschreibende Skizze, einen Abschnitt, der die
Anwendung der Lösung beschreibt, eine Beschreibung der Anwendung von in Verbindung stehender
Muster, einen Abschnitt, der auf die technischen Details eingeht und zum Abschluss ein Beispiel, das
die Lösung praktisch veranschaulichen soll. [HW04, S. xli-xlii]

Anwendung der Muster Die Anwendung der Muster von Hope und Woolf ist gleich zu der
von Christoper Alexander. Die Lösungen der Muster von Hope und Woolf bieten meistens nicht
die Lösung, die einem gleich in den Sinn kommt. Damit wollen sie sagen, dass die Lösungen
einmal generell gehalten sind. Die festgehaltenen Lösungen sind aber darüber hinaus schon über
Jahre hinweg erprobt und beinhalten keinerlei Konzeptfehler. Die Spezialisierungen von Mustern sind
natürlich dem Anwender überlassen, werden ihm aber nicht empfohlen, weil eine Architektur nicht
auf Performance optimiert werden soll. Die Musterlösungen sind wie die von Fowler [Fow02] für
objektorientierte Programmiersprache und beliebige Plattformen ausgelegt. Eine Musterlösung muss
also in den Kontext der eigenen Umgebung gestellt und bezüglich einer beliebigen Programmiersprache
implementiert werden. Hope und Woolf bieten eine Vielzahl von Beispielen die unterschiedliche Arten
von Implementationen vorstellen. [HW04, xxli-xxlii]

2.2 Begriffserklärung von Modell und Metamodell

Modell Modelle sind Abbildung von oder Vorbilder für etwas. Modelle, die Abbilder sind, werden
deskriptiv Modelle genannt. Modelle, die Vorbilder für etwas sind, werden präskriptive Modelle
genannt. Zu einem Modell kann ein Original oder Gegenstück vorhanden, geplant oder fiktiv sein.
Ein Modell enthält nicht alle Attribute seines Originals. Es stellt eine Verkürzung des Originals
und somit auch Raum für eine Abstraktion des Originals dar. Ein Modell kann ein pragmatisches
Merkmal besitzen, in dem es sein Original durch bestimmte Eigenschaften eindeutig zugeordnet.
Modelle können für viele Absichten eingesetzt werden. Bezogen auf das Einsatzgebiet von Software
können Modelle zum Beispiel für die Darstellung von formalen (mathematischen) Repräsentationen,
für Dokumentationszwecke oder für die Verkörperung von explorative Modelle eingesetzt werden.
Modelle im Software Engineering unterteilen sich in zwei grundlegende Arten: Software-Modell
und Vorgehens- und Prozessmodell. Die Software-Modelle verkörpern Modelle, die Softwaresysteme
oder deren Modelle Repräsentieren sollen. Die Vorgehens- und Prozessmodell beschreiben, wie
man bei der Erstellung von Software vorgehen soll. Software-Modelle werden üblicherweise
durch natürlichsprachliche Spzifikationen, Entity-Relationship-Diagramme, User-Case-Diagramme,
repräsentiert. [LL10, S. 3-28]

14 KAPITEL 2. GRUNDLAGEN

Metamodell Ein Metamodell ist die Beschreibung eines Modell. Durch die Beschreibung
eines Metamodells, entsteht eine formale Sprache von Modellen. Ein Metamodell steht eine
Abstraktionsebene über den Modellen, die es beschreibt. Durch die Verwendung eines Metamodells
können die daraus resultierenden Modelle, einheitlich und kompatibel gehalten werden. Es ist jedoch
schwierig die nötige Allgemeinheit und Erweiterbarkeit für die Modelle zu behalten. Metamodelle
werden hauptsächlich in der Mathematik, Hard- und Software entwicklung eingesetzt. [Gig91, S. 255],
[RJB99, S. S.105-106], [MO99, S. 305-319]

2.3 Begriffserklärung von Metamustern

Unter einem Metamuster (engl. Meta Pattern) versteht man ein Metamodell eines Musters. In dieser
Arbeit wird unter einem Metamuster eine allgemeine und abstrakte Definition von Muster verstanden.
Das Metamuster befindet sich eine Abstraktionsebene über dem Muster und stellt das Modell des
Musters dar.

Im weiteren Verlauf soll die Definition eines Metamusters und Vorschläge für Musterformate von
Meszaros und Doble [MD96] vorgestellt werden.

2.3.1 Metamuster nach Meszaros und Doble

Meszaros und Doble stellten in ihrer Arbeit [MD96] Metamuster für die Erstellung einer Mustersprache
vor. Die Ideen und Informationen für dieses Metamuster stammen aus den Erfahrungen der Teilnehmer
von der Konferenz ”Pattern Languages of Design” aus dem Jahre 1995. Nach dem Überarbeiten
einer großen Anzahl von Mustern und Mustersprachen, begannen die Teilnehmer eine Sammlung von
Musterschreibtechniken und -annährungen aufzustellen. Sie verfassten ihre Errungenschaften in einer
von ihnen entworfenen Mustersprache. Diese Mustersprache bietet Vorschläge und Regeln, um ein
Musterformat zu gestalten. Andere Autoren von Mustersprachen sollen das Metamuster verwenden,
um schneller und einfacher ein Format für ihre Muster und eine Musterstruktur zu finden.

Im Folgenden wird eine Übersicht der Mustersprachenstruktur der Metamuster vorgestellt.
Anschließend wird auf die einzelnen Bestandteile der Lösungsvorschläge für die Metamuster
eingegangen. Um einen tieferen Einblick zu erhalten, ist der Leser angehalten Muster in der Arbeit
[MD96] nachzulesen.

Übersicht der Metamuster In der Abbildung 2.1 ist eine Strukturübersicht der Mustersprache von
Meszaros und Doble zu sehen. Die Mustersprache beschreibt die Metamuster zur Erstellung einer
Mustersprache. Die Muster für die Beschreibung der Metamuster sind in fünf Bereiche unterteilt. Die
Bereiche sind in der Übersicht mit den Buchstaben von A bis E gekennzeichnet. Sie sind im Gegensatz
zu den Unterteilungen, die als Rechtecke in den Bereichen dargestellt sind, in Textform und nicht in
einer Musterform von Meszaros und Doble festgehalten worden. Diese Texte beschreiben den Kontext,
in dem die jeweilige Bereiche stehen.

Strukturbereiche in der Übersichtsabbildung 2.1:

• Bereich A (Context Setting Patterns) befasst sich mit dem Konzept der Muster (Beziehung
zwischen Problem-, Kontext- und Lösungsbeschreibung), dem Konzept der Mustersprache

2.3. BEGRIFFSERKLÄRUNG VON METAMUSTERN 15

Abbildung 2.1: Strukturübersicht der Metamuster-Mustersprache von Meszaros und Doble

(Sammlung von Mustern und deren Beziehungen) und der Wiederverwendung dieser Sprache
und deren Muster.

• Bereich B (Pattern Structure) beschreibt die Struktur und den Inhalt der Metamuster.

• Bereich C (Naming & Referencing) beinhaltet die Namensgebung der Muster und die
Referenzierung anhand des Namens der Muster und legt somit einen Grundstein für die
Beziehungen der Muster, die in Bereich E diskutiert werden.

• Bereich D (Making Pattern Understandable) liefert Techniken für das Gestaltung von leicht zu
lesenden und gut zu verstehenden Mustern.

• Bereich E (Language Structure) bezieht sich auf die Struktur und Inhalt der Mustersprache, die
durch die Metamuster gebildet werden.

Bereich A (Context Setting Patterns) Dieser Bereich beschäftigt sich mit der Problemstellung:
Wie man wiederkehrende Problem löst und wie man Lösungen beschreibt um sie verständlich und
verwendbar präsentieren kann.

Der Bereich A ist eine Überordnung der genannten Bereiche und schließt somit die anderen Bereiche
inhaltlich ein. Der Bereich A besteht aus zwei Teilen, der Beschreibung wie ein Muster aufgebaut
werden soll und der Beschreibung wie die Struktur der Sprache aus zu sehen hat. Der erste Teil wird
durch die Bereiche B, C und D abgedeckt und der zweite Teil durch den Bereich E.

Bereich B (Pattern Structure) Der Bereich B beschreibt die Struktur eines Musters, den
Zusammenhang zwischen Problemstellung und Lösungsansatz und deren Kontext. Oft reicht es nicht
nur zu beschreiben wieso und warum man die Lösung verwenden muss, sondern auch wie. Die Muster
in diesem Bereich befassen sich mit der Struktur der einzelnen individuellen Muster.

Es wird die Möglichkeit eingeräumt zusätzlich zu den Pflichtbestandteilen eines Musters auch
optionale Bestandteile, die aber in dem Musterformat vorgesehen sind, einzufügen. Dies hilft dem Autor
Muster mit zusätzlicher Information flexibel anzureichern. Damit der Leser mit einmaligen Lesen den

16 KAPITEL 2. GRUNDLAGEN

Inhalt des Musters verstanden hat, wird vorgeschlagen äußere Einflüsse festzuhalten. Dadurch soll der
Leser die Wahl der Lösung besser nachvollziehen können. Durch die übersichtliche Gestaltung und
Gliederung der Muster ist es für den Leser möglich, nur interessante Bereiche des Musters anzuschauen
und anschließend beurteilen zu können, ob das Muster für ihn von Relevanz ist, um gegebenenfalls den
Rest des Musters zu lesen. Dies kann vor allem sinnvoll sein, wenn der Leser zum Beispiel nach einer
Problemstellung oder Lösungsansatz sucht. [MD96]

Bereich C (Naming & Referencing) Nur wenige Muster sind isoliert und haben keine Beziehung
zu den anderen. Die meisten Problemen lassen sich mit mehreren kleinen Lösungen oder durch
die Spezialisierung einer generellen Lösungen bewältigen. Es kann auch mehrere Lösungen für ein
Problem geben. Diese Lösungen werden durch Muster dargestellt, die Alternative darstellen. In vielen
Fällen müssen mehrere Muster referenziert werden, um einen Problemstellung zu lösen. Damit Muster
auseinander gehalten werden können, wird die Namensgebung benötigt. Anhand der Namen können
Muster mittels Referenzen verknüpft werden. Durch die Verknüpfungen lassen sich Alternativen
vermerken und Problemstellungen darstellen, die durch mehrere Muster gelöst werden. Dieser Bereich
befasst sich mit der Namensgebung und Referenzierung mithilfe von Musternamen, deren Darstellung,
Bedeutung und einem internen Referenzkatalog.

Bereich D (Making Pattern Understandable) Je besser der Leser die Muster versteht, desto mehr
kann er mit ihnen anfangen und sein Problem auf sie projizieren. Deshalb ist es von großer Bedeutung,
die Muster verständlich darzustellen. Der Bereich D befasst sich mit der Wahl von klaren Zielgruppen,
verständlichen und eindeutigen Bezeichnungen, Diagrammen, Skizzen und Beispielen.

Bereich E (Language Structure) Dieser Bereich beschäftigt sich mit der Zusammenstellung
in Beziehung stehender Muster, um eine zusammenhängende Mustersprache zu schaffen. Damit
beispielsweise dem Leser eine Übersicht der Muster bieten zu können. Dies kann in Form einer
Zusammenfassung oder Gliederung der Muster bereitgestellt werden. Bei der Referenzierung von
Mustern ist es wichtig, dem Leser den Problem-Lösungs-Ansatz und -Zusammenhang nahe zu legen.
Damit dieser schnellstmöglich die gesuchte Problemstellung oder Lösung findet. Das Hervorheben von
gemeinsamen Problemstellungen, das Übermitteln von aussagekräftigen Referenzen, das Erklären von
fortlaufenden Beispielen und das Bereitstellen eines Glossars verbessert die Struktur der Sprache und
deren Vernetzungsgrad und fördert somit die Ausdruckskraft des Inhaltes.

2.4 Beziehungen in Mustersprachen

Damit man sich einen Eindruck von der Bedeutung in Mustersprachen verschaffen kann, werden im
Folgenden die Beziehungen zwischen Mustern vorgestellt. Sie werden bezüglich ihrer fundamentalen
Unterschiede unterteilt und deren Eigenschaften und Verwendungsmöglichkeiten erläutert.

2.4. BEZIEHUNGEN IN MUSTERSPRACHEN 17

2.4.1 Beziehungen in Mustersprachen nach van Welie und van der Veer

Martijn van Welie und Gerrit C. van der Veer analysierten unter anderem in ihrer Arbeit Pattern
Languages in Interaction Design: Structure and Organization [vv03] die Mustersprache von
Christopher Alexander bezüglich ihrer Struktur und Beziehungen. In diesem Abschnitt sollen die
Errungenschaften der Analyse von van Welie und van der Veer erläutert werden. Sie stellen vier
verschiedene Beziehungsarten vor und erkennen fundamentale Ähnlichkeiten zu Beziehungen aus der
Objektorientierung.

Hierarchische Gliederung bezüglich der Problemstellung in Mustern Wie auch in schon von
Christopher Alexander beschrieben weist seine Mustersprache eine hierarchische Vernetzung der Muster
auf. Diese hierarchische Vernetzung wird durch den Inhalt der Muster bestimmt. Die hierarchische
Struktur der Mustersprache ist mit der Gliederung von Texten in Büchern zu vergleichen. [CAA77,
S. x] [vv03] Die hierarchische Struktur der Mustersprache ist die Struktur der Unterteilung von großen
Problemen in mehrere kleine. Die großen Probleme sind in der hierarchischen Ordnung oben angesiedelt
und werden von ihren direkten Teilproblemen gefolgt. Wenn es erwünscht ist, kann man solch eine
Hierarchie auch an anderen Inhalten der Muster aufbauen. [vv03]

Christopher Alexander beginnt auf der Ebene der Städte mit seiner Gliederung. Die ist die oberste
Ebene. Sie wird gefolgt von Nachbarschaften, Gebäuden, ... bis hin zu Fenstern und Stühlen. Die
Idee von Alexander war es, dass durch eine Traversierung der Mustersprache eine konkrete Lösung
abgeleitet werden kann. Das Traversieren der Mustersprachen beginnt bei einem Muster, das die zu
lösende Problematik beschreibt, und geht bis in die tiefste Ebene zu den Mustern, die Teillösungen der
Problematik darstellen. [vv03]

Künstliche hierarchische Gliederung der Muster Die Beschreibung der hierarchischen
Gliederung wird durch die Vernetzung der Muster abgeleitet. Wenn die Gliederung groß wird, wird
sie auch unübersichtlich. Zusätzlich wird keine Aussage über den Zusammenhang der Muster in der
Gliederung gemacht. Um eine Überblick zu schaffen und die Problemstruktur der Muster und des
Kontextes der Mustersprache kenntlich zu machen, erstellen van Welie und van der Veer künstliche
Gruppen von Mustern. Diese Gruppen sind auch hierarchisch geordnet und bilden eine Gliederung
von den Mustern auf einer höheren Ebene. Im Gegensatz zu der vorgestellten Gliederung kann hier
eine Übersicht geschaffen werden. Sie kann die Grundidee des Musterspracheninhaltes strukturiert
darstellen. Außerdem bietet die künstliche Gliederung ein übersichtlicheres Zurechtfinden und Suchen
in der Mustersprache. [vv03]

Vorschläge für künstliche hierarchische Gliederungskategorien Wie schon erwähnt, kann eine
Mustersprache bezüglich der Problemstellungen der Muster und deren Kontext gegliedert sein. [vv03]

Muster können auch nach der Alternative gegliedert werden. Alexander hat für die Lösungen eines
Problems mit einer anderen Lösung einen Vermerkt vorgesehen. Muster, die Alternativen zu einem
anderen Muster liefern, könnte man Gruppieren und mit diesen Gruppen eine Gliederung aufbauen.
[vv03]

Generell kann eine Gliederung mithilfe von verschiedenen Arten von Beziehungen erstellt werden.

18 KAPITEL 2. GRUNDLAGEN

Van Welie und van der Veer arbeiten an Benutzeroberflächen und pflegen hierfür eine Mustersprache. Sie
haben zum Beispiel eine Gruppierung bezüglich Benutzeraufgaben und Benutzertypen erstellt. [vv03]

Beziehungstypen zwischen Mustern Wie schon in dem vorherigen Absatz angedeutet, sind die
Beziehungen in den Mustersprachen das Herzstück. Die Beziehungen bereichern ein einzelnes Muster
mit zusätzlichen Informationen. Diese zusätzliche Information macht den Zusammenhang der Muster
möglich, den man benötigt um die Mustersprache zu erstellen und zu verwenden. [vv03]

Im Folgenden werden die Beziehungen und die Verbindungen zwischen den Mustern, die deren
Zusammenhang schaffen näher betrachtet. Es lassen sich fundamentale Beziehungsunterschiede
erkennen, nach denen die Beziehungen in Arten aufgeteilt sind. Diese Arten kennt mach auch aus
der Objektorientierung. Die Analyse und Feststellungen von Welie und van der Veer aus ihrer Arbeit
Pattern Languages in Interaction Desing: Structure and Organization [vv03] wurde in der kürzlich
veröffentlichten Arbeit Building an interaction design pattern language: A case study [PHBO10] von
Paulwels, Hübscher Bargas-Availa und Opwis bestätigt. [vv03]

Aggregation Ein Muster kann ein großes Problem in mehrere kleine Probleme unterteilen, die
schon von anderen Mustern gelöst sind. Ein Muster kann somit ein großes Problem lösen, indem es
durch die Aggregation mehrerer kleiner Muster eine Lösung bereitstellt. Dieser Typ von Beziehung
wird Aggregationsbeziehung oder ”hat-ein”-Beziehung genannt. [vv03]

Die Aggregationsbeziehung wurde von Buschmann noch verfeinert. Buschmann unterteilte die
Aggregationsbeziehung von Mustern in seinem Buch Pattern-Oriented Software Architecture: On
Patterns and Pattern Languages in drei verschiedene Arten. Die erste Art ist die klassische Aggregation,
welche die Vervollständigung eines Musterinhaltes durch mehrere andere Musterinhalte darstellt. Die
zweite Art der Aggregationsbeziehung sind die Beziehungen, in denen die referenzierten Musterinhalte
nicht erforderlich sind aber zum Verständnis beitragen. Die dritte Art der Aggregationsbeziehung ist das
gegenseitige Ausschließen von alternativen Musterinhaltsgruppierungen. [BHS07, S.135-163]

Spezialisierung Muster können auch durch die Spezialisierung von anderen Mustern erstellt
werden. Das spezialisierte Muster beinhaltet die gleiche Grundidee wie das Muster mit der generellen
Lösung. Diese Art von Beziehung wird Spezialisierungsbeziehung oder ”ist-ein”-Beziehung genannt.
[vv03]

Assoziation Die dritte Beziehungsart, die van Welie und van der Veer vorstellen ist eine
Ähnlichkeitsbeziehung. Zwei Muster können in Beziehung stehen, wenn sie eine gleiche Eigenschaft
bezüglich des Inhaltes aufweisen. Hier werden Eigenschaften betrachtet, die eine unmittelbare
Verwandtschaft von Mustern bezüglich Aggregation und Spezialisierung ausschließen. Sinn
dieser Beziehung ist es Querverbindungen zu schlagen. Diese Ähnlichkeitsbeziehung wird auch
Assoziationsbeziehung oder ”ist-ähnlich-zu”-Beziehung genannt. [vv03]

2.5. WEBBASIERTE MUSTERKATALOGE UND -SAMMLUNGEN 19

2.5 Webbasierte Musterkataloge und -sammlungen

In diesem Abschnitt werden webbasierte Musterkataloge und -sammlungen vorgestellt. Webbasierte
Musterkataloge haben mehrere Vorteil gegenüber gebundenen Musterkatalogen. Es ist beispielsweise
einfacher nach Musterinhalten oder deren Ähnlichkeiten zu suchen. Muster können auch in
verschiedenen Ansichten und Gruppierungen darstellt werden, die den Lesern auf ihre Bedürfnisse
angepasste Übersichten bieten können. Ein webbasierender Musterkatalog kann durch die Verwendung
von Hyperlinks das Durchstöbern von Mustern in einer komfortablen Art anbieten, weil viele Muster
auf andere verweisen oder deren Inhalt mitverwenden.[vv03]

In der Recherche für diese Arbeit wurden einige webbasierte Musterkataloge gefunden, deren Inhalt
sich auf die Erstellung von graphischen Benzutzerschnittstellen und die Webprogrammierung beziehen.
Es gibt viel webbasierte Musterkataloge im Web zu finden, deren Inhalte fehlerhaft sind und deren
Qualität wegen schlechte Beiträgen leidet. Muster von einigen webbasierte Musterkataloge weisen keine
oder ungenügende Inhaltsstrukturen auf. Aus diesen Gründen werden die in Pauwels Arbeit Buildung an
interaction design pattern language: A case study [PHBO10] erwähnten webbasierten Musterkataloge:
Pattern library von van Welie [Van11] und Yahoo! Design Pattern Library [Yah11] beschrieben.

2.5.1 Interaction Design Pattern Library - Welie.com

Der webbasierte Musterkatalog von van Welie bietet eine Menge von Mustern, die bekannte
und erprobte Konzepte enthalten. Deren Inhalte befassen sich mit Interaktionen der graphischen
Oberflächenbedienung und deren Erstellung. Die Erstellung der Muster der Interaction Design Pattern
Library wird nur von van Welie vorgenommen. Er lädt jedoch dazu ein ihm Vorschläge für weitere
Muster zu schicken.

Van Welie biete seinen Lesern eine Übersicht, in der er alle Muster in eine zweistufigen Struktur
einordnet sind. Beim Durchstöbern der Muster wird einem immer die Kategorie angezeigt, in der sich
das abgebildete Muster befindet.

Die Musterstruktur besteht immer aus einer Problembeschreibung, einer Lösung, einem Kontext,
einer Beschreibung der Umsetzung und einer Beschreibung der Notwendigkeit und Beispiele. Zusätzlich
können Leser Diskussionsbeiträge an die Muster anfügen und über die Musterinhalte debattieren.

Die Muster von van Welie sind durch Hyperlinks, die sich in den Musterinhalten befinden und auf
andere Muster verweisen, miteinander vernetzt.

2.5.2 Yahoo! Design Pattern Library

Der webbasierte Musterkatalog von Yahoo! wurde am 13. Februar 2006 veröffentlicht. Yahoo! wollte
durch die Veröffentlichung ihrer Designmuster ihr Wissen und ihre Ansichten teilen und bittet zugleich
um sinnvolle Rückmeldungen und Beiträge. Sie sehen die Kommunikation und die Wissensverbreitung
durch die Veröffentlichung von Designmustern als wichtig und sinnvoll an. [Sco06]

Trotz so vieler vorhandener Musterkataloge entwickelte Yahoo! seinen eigenen Musterkatalog. Sie
wollen ihr Wissen, das in vielen kleinen Abteilungen der Firma verteilt war, in dem Musterkatalog
vereinen, um einheitliche Designs und Softwarelösungen für die ganze Firma bereit zu stellen. Durch

20 KAPITEL 2. GRUNDLAGEN

einheitliche Designs und Softwarelösungen sollen Standards definiert, werden mit denen Yahoo!
seine Produkte verbessert und erweitert. Um dies zu erreichen kreierte Yahoo! ein Repository, das
Designmuster für Benutzeroberflächen enthält und einen Prozess, der für das Erstellen von qualitativ
hochwertigen Muster verantwortlich ist. [LMW05]

Die Musterstruktur von Yahoo! enthält einen Titel, eine Problembeschreibung, eine Beschreibung des
Kontextes, eine Lösungsbeschreibung, Beispiele, die durch Abbildungen verdeutlicht werden und eine
Beschreibung von Grundsatzgedanken und Verwendbarkeit. Zusätzlich enthält ein Muster einen Blog,
in dem Beiträge und Diskussionen über das Muster stattfindet. [Yah11]

Jedes Muster, das in dem Musterkatalog von Yahoo! veröffentlicht wird, muss einen
Erstellungsprozess durchleben. Das Yahoo! ”Design Reasearch Team” prüft, überarbeitet und verfeinert
die Muster. Ein Muster muss drei Stadien durchlaufen: die Betaphase, Lösungserarbeitung und die
Einsatzphase. Zusätzlich können Muster bewertet werden, um die Qualität der Lösung und die
Flexibilität der Verwendung einzuschätzen. [Yah11]

Die Ideen und Anregungen der Muster für die Veröffentlichung des webbasierten Musterkataloges
von Yahoo! basiert auf den früheren Werken:

• A Pattern Language von Christopher Alexander [CAA77]

• Design Patterns: Elements of Reusable Object-Oriented Software von Erich Gamma, Richard
Helm, Ralph Johnson und John M. Vlissides [GHJV95]

• COMMON GROUND: A Pattern Language for Human-Computer Interface Design von Jenifer
Tidwell [Tid99]

• Interaction Design Pattern Library - Welie.com von von Martijn van Welie [Van11]

• User Interface Design Patterns von Sari A. Laakso [Laa03]

• Ajax Patterns von Michael Mahemoff [Mah08]

• The Elements of a Design Pattern von Jared M. Spool [Spo06]

[Sco06]

2.6 UML-Diagramm

Die vereinheitlichte Modellierungssprache (engl. Unified Modeling Language (UML)) ist eine
allgemeine und graphische Modellierungssprache. Sie wird verwendet um Teile von Softwaresystemen
zu spezifizieren, visualisieren, konstruieren und zu dokumentieren. Es werden mit UML statische
Strukturen und dynamische Verhaltensweisen von Softwaresystemen beschrieben. Die statische Struktur
definiert eine Art von Objekten und Beziehungen zwischen diesen. Sie sind für die Entwicklung des
Systems und für dessen Implementierung wichtig. Das dynamische Verhalten definiert eine Historie
von Objektinteraktionen und Kommunikationen zwischen Objekten. Diese Historie beschreibt das
Verhalten des Systems und durch welche Vorgänge dessen Ziele und Absichten erreicht werden.
Diese Systeme werden aus verschiedenen aber trotzdem ähnlichen Blickwinkeln modelliert, damit
das Verständnis für die verschiedenen Absichten vorhanden ist. UML sieht für die Umsetzung dieser

2.7. GRUNDLAGEN MODELLGETRIEBENER SOFTWAREENTWICKLUNG 21

verschiedenen Blickwinkel mehrere Arten von Diagrammen vor. In dieser Arbeit wird hauptsächlich das
Klassendiagramm verwendet, weil in erster Linie eine Datenstruktur und deren Beziehungen vorgestellt
wird. [RJB99, S.3-11]

Ein Klassendiagramm ist eine graphische Repräsentation einer statischen Abbildung, die eine Menge
von deklarativen Modellelementen zeigt. Modellelementen werden durch Klassen, Arten und deren
Inhalt und Beziehungen konkretisiert. Ein Klassendiagramm beinhaltet Elemente, die Verhaltensweisen
darstellen. Diese nennt man Operationen. Ihre Abläufe werden jedoch in anderen Diagrammen
beschrieben. Diese Abläufe können in dem Zustandsdiagramm oder Kommunikationsdiagramm
dargestellt werden. [RJB99, S. 190] Falls weitere und detailliertere Informationen benötigt werden, ist
der Leser angehalten in der UML-Spezifikation [Obj10] nach zu lesen.

Im Folgenden wird die Erweiterungsmöglichkeit von UML durch Profile erklärt. Diese spielen in dem
Metamodell für Mustersprachen eine große Rolle.

2.6.1 Erweiterung von UML

Seit der UML Version 2 können Profile zur Erweiterung von modellierten Metamodellen eingesetzt
werden. Durch die Mechanismen der Profile können die Metamodelle auf ihre verschiedenen Absichten
angepasst werden. Dies bietet die Möglichkeit UML-Metamodelle auf verschiedene Plattformen oder
Bereiche Maß zu schneidern. [Obj10, S. 685]

Die Erweiterungsmechnismen der Profile bestehen aus Einschränkungen (engl. Constraints),
Eigenschaftswerten (engl. tagged Values) und Stereotypen (Stereotypes). Eine Einschränkung ist eine
semantische Einschränkung. Diese können einfach durch Text oder durch formale Sprachen, wie
der Object Constraint Language (OCL) eingeschränkt werden. Eigenschaftswerte sind Paare von
Attributbezeichner und deren Werten. Diese können verwendet werden um beliebige Informationen
über deren Elemente fest zu halten. Sie vervollständigen die Attributdefinition in den Elementen, die
durch diese Attribute beschrieben werden. Einige Modellierer möchten die Modellierungssprache für
ihren speziellen Anwendungsbereich anpassen. Ein Stereotyp erweitert ein Modellelement und stellt
eine spezielle Art des Modellelementes dar. Der Informationsgehalt und die Form werden von dem
Modellelement übernommen und in dem Stereotyp erweitert. Dies führt automatisch dazu, dass die
Bedeutung und die Verwendung des Stereotyps unterschiedlich zu dem Modellelement ist. [RJB99, S.
101-104] Stereotypen stellen außerdem Standardelemente (engl. standard element) für die Instanz des
Modells dar. [Obj10, S. 169]

2.7 Grundlagen modellgetriebener Softwareentwicklung

2.7.1 Modellgetriebene Softwareentwicklung

Das Ziel der modellgetriebenen Softwareentwicklung (engl. Model-Driven Software Development)
ist es aus formalen Modellen und Modelltransformationen automatisch Code zu generieren. Modelle
werden nicht nur für die Dokumentation von Software, sondern als Quelle für automatische
Code-Generation großer Systemteile verwendet. Die modellgetriebene Softwareentwicklung soll
den Wert ihrer Modelle steigern und den Entwicklern zeitaufwändige und plattformspezifische
Programmierarbeiten ersparen. Dieses Bedürfnis entstand, weil aus UML-Diagrammen nur

22 KAPITEL 2. GRUNDLAGEN

Code-Rümpfe generiert werden können und infrastrukturabhängige Programme an verschiedene
Plattformen angepasst werden müssen, obwohl sehr starke Ähnlichkeiten untereinander bestehen. Die
modellgetriebene Softwareentwicklung wird in zwei Schritte unterteilt:

• Die Beschreibung von Modellen, die fachliche und funktionale Anforderungen an eine Software
stellen und die von der Zieltechnologie unabhängig sind.

• Die automatische Code-Generierung durch Transformation der beschriebenen Modelle.

Die Initiative ”Modell-Driven Architecture” der OMG [MM03] wurde die modellgetriebene
Softwareentwicklung bekannt. Die Idee aus formalen Spezifikationen Programmcode halbautomatisch,
aber korrektheitserhaltend generieren zu lassen oder der Traum des automatischen Programmierens sind
die Vorläufer der modellgetriebenen Softwareentwicklung. [LL10, S. 340-341]

2.7.2 Modellgetriebene Architektur

Modellgetriebene Architekturen (engl. Model-Driven Architekture) sind eine spezielle Ausprägung
von modellgetriebenen Softwareentwicklungen. Sie befassen sich mit der Modellierung von
Softwarearchitekturen und deren Transformationen in Code. Modellgetriebene Architekturen sind
Modelle die zusammengehörige Komponenten, Schnittstellen und Technologien als eine Plattform
repräsentieren. Eine modellgetriebe Architektur besteht aus vier verschiedenen Modellen:

• Das Computation-Independent Model legt fest, was eine Software leisten soll und beschreibt diese
auf fachlicher Ebene.

• Das Platform-Independent Model beschreibt die fachlichen Funktionalitäten von Programmen
oder Komponenten. Sie werden plattformunabhängig und in einer formalen Modellierungssprache
beschrieben.

• Das Platform-Model beinhaltet Eigenschaften und Informationen bezüglich einer Plattform.

• Das Platform-Specific Model wird durch eine Transformation von dem Platform-Model
und dem Platform-Independent Modell gewonnen. Das Platform-Specific Model ist eine
Realisierung des Platform-Independent Model bezüglich einer bestimmten Plattform, die durch
das Platform-Model beschrieben wird.

Aus dem Computation-Independent Model kann das Platform-Independent Model abgeleitet werden.
Durch die beschriebene Transformation kann ein Platform-Specific Model erstellt werden, das für
eine weitere Transformation relativ gesehen ein Platform-Independent Model darstellt. Diese kann
dann in ein noch spezielleres Platform-Specific Model transformiert werden. Es können beliebig
viele Verkettungen von Transformationen hintereinander geschaltet werden. Die Abhängigkeiten
der Platform-Models geben dabei die Reihenfolge der Transformationen an. Häufig werden die
Modelle mit UML beschrieben und mithilfe von Profilen an bestimmte Plattformen angepasst, damit
eine automatische Transformation möglich wird. Auch die Transformationen werden durch formale
Quell- und Zielmodelle beschrieben. Hierfür müssen deren Metamodelle bekannt sein, um die
Transformationen ausführen und aus dem Quellmodell ein Zielmodell erzeugen zu können. Weitere
zusätzliche Informationen, die zusätzlich zum Quellmodell für die Transformation benötigt werden,

2.7. GRUNDLAGEN MODELLGETRIEBENER SOFTWAREENTWICKLUNG 23

können Marks angegeben werden. Die resultierenden Modelle, speziell plattformspezifischer Code,
können außerdem noch von Hand verfeinert und angepasst werden. [LL10, S.340-343]

25

Kapitel 3

Metamodell für Mustersprachen

In diesem Kapitel wird das Metamodell für Mustersprachen beschrieben. Der erste Teil dieses Kapitels
stellt den Bezug zwischen den vorgestellten Grundlagen von Mustersprachen und dem Metamodell
für Mustersprachen her. Anschließend wird die Form und der Aufbau, sowie die Aufgaben und
Ziele des Metamodells für Mustersparchen vorgestellt. Eine Übersicht über die Modellebene soll
die Abhängigkeit und Verwendung der Modelle und Instanzen erläutern. Der Schwerpunkt dieses
Kapitels liegt auf der Beschreibung des Aufbaus und der Struktur des Metamodells für Mustersprachen.
Das Metamodell für Mustersprachen wird mit einem Profil erweitert, das eine Grundlage für die
Charakterisierung von Mustersprachen darstellt.

3.1 Einordnung der Grundlagen des Metamodells für Mustersprachen

Das Metamodell für Mustersprachen wurde anhand von Vergleichen und Analysen, der in Kapitel 2
Grundlagen beschriebenen wissenschaftlichen Arbeiten erstellt. In erster Linie basiert das Metamodell
der Mustersprachen auf der Musterdefinition von Christopher Alexander [CAA77, S. x] und verwendet
die Eigenschaften und Absichten seiner Musterstruktur und Mustersprachstruktur als Grundlage.
Meszaros und Doble erstellten bereits ein Metamodell für Mustersprachen [MD96] anhand bekannter
Mustersprachen, die alle auf der Definition von Christopher Alexander aufbauen. Aus dem Metamodell
von Meszaros und Doble sind viele Ideen und Anregungen in diese Arbeit eingeflossen. Einen
weiteren starken Einfluss, nahm das Werk Pattern-Oriented Software Architecture: On Patterns and
Pattern Languages [BHS07] von Buschmann, Henney und Schmidt, das viele Mustersprachen aus
unterschiedlichen Bereichen analysiert und deren Bedeutung darstellt.

3.2 Form und Aufbau des Metamodells für Mustersprachen

Meszaros und Doble beschrieben ihr Metamodell für Mustersprachen [MD96] durch Metamuster,
die wiederum als Mustersprache vorliegt und durch ihren Inhalt definiert sind. Diese Arbeit löst
sich von dieser rekursiven Darstellung des Metamodells und stellt diese Darstellung stattdessen in
Form eines UML-Diagramms dar. Das UML-Diagramm lässt sich bezüglich der modellgetriebenen
Softwareentwicklung anwenden und bietet somit Autoren die Möglichkeit, Mustersprachen und
deren Modelle anhand des Metamodells zu entwerfen. Die Modellabstraktionen für die Erstellung
von Mustersprachen werden im folgenden Abschnitt 3.4 Übersicht der Modellhierarchie in einer
Modellhierarchie erläutert.

Das Metamodell für Mustersprachen besitzt zusätzlich zu den Beschreibungen für Mustersprachen

26 KAPITEL 3. METAMODELL FÜR MUSTERSPRACHEN

ein Profil, in dem Elemente für die Mustersprachen vordefiniert werden können. Das Profil des
Metamodells für Mustersprachen wird im Anschluss der Metamodellbeschreibung vorgestellt. Während
der Vorstellung des Metamodells werden dessen einzelnen Bestandteile erklärt, deren Notwendigkeit
erläutert und deren Bezug zu bestehende Mustersprachen oder Mustersprachmodellen, die in dem
Kapitel 2 Grundlagen vorgestellt wurden, hergestellt. Das UML-Diagramm des Metamodells für
Mustersprachen befindet sich in Anhang A. In der Erklärungen des Metamodells für Mustersprachen
werden nur Ausschnitte des UML-Diagramms vorgestellt, wegen der Größe des UML-Diagramms und
des damit verbunden Darstellungsproblems. Die Bezeichner in dem Diagramm sind in Englisch und
werden in den Erklärungen in runden Klammern angegeben.

3.3 Aufgaben und Ziele des Metamodells für Mustersprachen

Dieser Abschnitt erläutert die Aufgaben des Metamodells für Mustersprachen, die im Rahmen dieser
Arbeit gestellt worden. Das Metamodell für Mustersprachen erfüllt die folgende Aspekte:

Viele Autoren passen die Struktur ihrer Mustersprachen an deren Inhalt und Problematik an. Daher
gibt es keine eindeutige Definition von Mustersprachen. Das Metamodell für Mustersprachen dieser
Arbeit bewältigt diese Problematik. Durch die Verwendung des Metamodells für Mustersprachen
können Anpassungen von Mustersprachen vorgenommen werden. Zusätzlich wird die Kompatibilität
der Mustersprachen untereinander gewährleisten. Die Anpassung der Mustersprachen an die Inhalte der
Muster erlaubt das Gestalten von verschiedenen Mustersprachdefinitionen. Es kann somit die Frage nach
der Definition von Mustersprachen offen gelassen werden.

Die Autoren der Mustersprachen können durch eine Musterspracherweiterung in Form einer
Profilerweiterung, die Teil des Metamodellprofils für Mustersprachen ist, die Mustersprachen erweitern.
Durch diese Profilerweiterung wird das Metamodell verfeinert und bezieht sich auf speziellere
Mustersprachen. Die Mustersprachen, die dem Metamodell zu Grunde liegen, bleiben wegen der
strukturellen Abgrenzung des Profils untereinander kompatibel. Das Profil beschreibt die Charakteristik
der Mustersprache, die die Struktur der Mustersprachen verfeinert. Diese Struktur wird von dem
Metamodell für Mustersprachen beschrieben. Die Erweiterung des Profils wird durch vordefiniert
Mustersprachelement erstellt, die eine Basis für Mustersprachen bietet.

Die Anpassung des Metamodells bezieht sich in diesem Punkt auf vordefinierte Bestandteile und
deren Strukturen, die zum Beispiel in der Struktur der Muster oder der Mustersprachen vorkommen.
Weil viele Mustersprachdefinitionen sich stark ähneln und auf der Musersprachdefinition von Alexander
[CAA77, S. x] basieren, wird in dieser Arbeit ein Profil für das Metamodell für Mustersprachen
vorgestellt. Mit diesem Profil sollen möglichst viele Mustersprachdefinitionen abgedeckt werden. Durch
das Profil wird das Metamodell für Mustersprachen vervollständigt. Zudem bietet es eine Basis für die
Erstellung von Mustersprachen.

Die Kompatibilität der Mustersprachen wird verwendet um Beziehungen darzustellen. Das
Metamodell für Mustersprachen unterstützt die mustersprachübergreifende Referenzierung von
Mustern, unabhängig von deren Art und Darstellung des Inhaltes. Dies erlaubt Referenzierungen
zwischen Mustersprachen und somit die Erweiterung der Vernetzungen von Mustern. Verwandte und
ähnliche Muster aus anderen Mustersprachen können somit referenziert werden, um deren Inhalte zu
erweitern und um eine Brücke zwischen ihnen zu bauen.

3.4. ÜBERSICHT DER MODELLHIERARCHIE 27

Die Beziehungen zwischen Mustern werden explizit in dem Metamodell für Mustersprachen in Form
von Typen vordefiniert. Dadurch wird die Vernetzung zwischen Mustern den Lesern und Autoren
explizit dargestellt. Dies verstärkt die Bedeutungen der Verbindungen zwischen Mustern und verleiht
auch den Inhalten der Muster mehr Aussagekraft. Durch die Typisierung von Beziehungen kann
beispielsweise die Generalisierung und Spezialisierung von Mustern und Mustersprachen unterstützt
werden. Die vordefinierten Beziehungstypen sind ein Bestandteil des Profils des Metamodells für
Mustersprachen und können von den Autoren erweitert werden.

Buschmann vergleicht die Beziehung zwischen Mustern und Mustersprachen mit der Beziehung, die
zwischen Klassen und Frameworks herrscht. [BHS07, 349-350] Das Metamodell für Mustersprachen
soll zusätzlich Aspekte einbringen, die Brücken zwischen Mustersprachen bauen. Ziel ist es, eine
Grundlage für eine Plattform zu schaffen, auf der mehrere Mustersprachen in Kooperation verwendet
werden können. Wenn man Buschmanns Vergleich weiterführt, würde dies bedeuten, dass mehrere
Frameworks in Kooperation verwendet werden könnten. Dies würde eine Art Betriebssystem als
grundlegende Plattform für kooperierende Frameworks darstellen.

3.4 Übersicht der Modellhierarchie

Dieser Abschnitt liefert eine Übersicht über die Modellhierarchie. Sie gliedert das Metamodell der
Mustersprachen, das Modell der Mustersprachen und die Musterkataloge in die Modellhierarchie ein.
Die Modellhierarchie beschreibt außerdem die Abhängigkeiten zwischen diesen Modellen und dem
Musterkatalog. In Abbildung 3.1 ist die Modellhierarchie mit ihren drei Ebenen zu sehen.

Abbildung 3.1: Modellhierarchie der Musterkataloge

Auf der obersten Ebene, der Metamodell Ebene (Model-Level 2) befindet sich das Metamodell der
Mustersprachen (Meta Model - Pattern Language). Das Metamodell für Mustersprachen beinhaltet
Modelle von der Mustersprachenstruktur, der Musterstruktur und der mustersprachenübergreifenden

28 KAPITEL 3. METAMODELL FÜR MUSTERSPRACHEN

Struktur. Das Metamodell für Mustersprachen beschreibt die Gemeinsamkeiten der Mustersprachen
und deren Zusammenhänge untereinander. Es definiert eine Menge von Mustersprachen. Durch die
Instantiierung des Metamodell erhält man ein Modell, das eine bestimmte Mustersprachen beschreibt.
Die Instanziierungen sind in der Abbildung durch die gestrichelten Beziehungen mit Pfeil und der
Aufschrift ”instance of ” dargestellt. Für die Erstellung des Mustersprachenmodells müssen die
Strukturen der Muster und der Mustersprache definiert werden.

Auf der zweiten Ebene (Model-Level 1) ist das Mustersprachenmodelle (Model - Pattern Language)
angesiedelt. Das Mustersprachenmodell beschreibt den Aufbau der Musterinhalte und definiert
die Beziehungsarten zwischen den Mustern. Durch das Erstellen eines Musterkataloges anhand
eines Mustersprachenmodells wird das Mustersprachenmodell instantiiert. Auf der untersten Ebene
(Model-Level 0) befinden sich die Instanzen des Mustersprachenmodells.

Die unterste Schicht der Modellhierarchie enthält keine Modelle sondern nur Instanzen des
darüber-”liegenden Modells. Diese aus den Mustersprachmodellen instantiierten Objekte sind die
Musterkataloge (Pattern Catalog). Ein Musterkatalog stellt eine vernetzte Menge von Mustern dar.
Diese bilden den Kontext des Musterkataloges durch ihre Inhalte. Ein Musterkatalog kann außerdem
weitere Funktionalitäten, wie ein Stichwortverzeichnis oder eine Inhaltsübersicht bereitstellen. Ein
Musterkatalog, in dieser Arbeit, ist vergleichbar mit den vorgestellten Mustersprachen in dem Kapitel 2
Grundlagen.

In diesem Abschnitt wird die strukturelle Abhängigkeit der vorgestellten Modelle und Instanzen
erläutert. Es wird eine Baumstruktur vorgestellt, die die Abhängigkeiten zwischen Modellen und
Instanzen verkörpert und eine ergänzende Erklärung zu der Abbildung 3.1 liefert. Das Metamodell
für Mustersprachen stellt die grundlegende Beschreibung für die Menge von Mustersprachen dar, die
Instanzen des Metamodells sind. Eine Mustersprache ist wiederum ein Modell für eine Menge von
Musterkataloge. Das Metamodell stellt die Wurzel der Instanzableitungen dar. In der zweiten Ebene der
Baumstruktur befindet sich die Menge der instaniierten Mustersprachen. Die dritte Ebene enthält die
instanziierten Musterkataloge. Die Ebenen der Baumstruktur entsprechen der vorgestellten Ebenen aus
der Abbildung 3.1. Es ist zu beachten, dass das Metamodell in Kombination mit einem Profils verwendet
wird, das die Charakteristik der Mustersprachen definiert. Die Betrachtung der Baumdarstellung und
Veranschaulichung der Instanzabhängigkeiten, bezieht sich auf das Metamodell für Mustersprachen mit
einem konkreten Profil.

3.5 Aufbau und Bestandteile des Metamodells für Mustersprachen

Das Metamodell für Mustersprachen beschreibt eine mustersprachenübergreifende Struktur für
Mustersprachen. Dies wird durch die Beschreibung der Mustersprachstruktur, der Musterstruktur und
deren Beziehungen beschrieben. Die mustersprachenübergreifende Struktur ist unabhängig von der
Charakterisierung der Mustersprachen, die von dem Profil beschrieben werden. Sie stellt die Grundlage
der Mustersprachen dar. Mithilfe dieser einheitlichen Struktur werden die Mustersprachen untereinander
kompatible gehalten. Sie ermöglicht das Vergleichen und das Erstellen von Beziehungen zwischen
gleichen Elementarten, die in der mustersprachenübergreifende Struktur für Mustersprachen definiert
sind.

Im Folgenden wird die Strukturbeschreibung des Metamodells für Mustersprachen erklärt. Zunächst
wird eine Übersicht über die Strukturen des Metamodell vorgestellt, um einen Einstieg in die Thematik

3.5. AUFBAU UND BESTANDTEILE DES METAMODELLS FÜR MUSTERSPRACHEN 29

zu erlangen. Anschließend werden die Grundlagen der Strukturen, aus denen sich das Metamodell
für Mustersprachen zusammensetzt erklärt. Im weiteren Verlauf werden diese Strukturen und ihre
Zusammenhänge detailliert erläutert.

3.5.1 Übersicht der Strukturen in dem Metamodell für Mustersprachen

Die Struktur für Mustersprachen, die durch das Metamodell für Mustersprachen beschrieben
wird, besteht aus einer Struktur für Muster und Mustersprachen, aus Beziehungsbeschreibungen
von Mustersprachen, Muster und deren Inhalten, sowie einer grundlegenden Definition von der
Strukturelemente.

In diesem Kapitel wird zunächst die Grundlagen der Struktur und die Definition der Strukturelemente
vorgestellt, die die Grundlage für die weiteren Strukturen der Muster und Mustersprachen liefern.
Anschließend wird die Musterstruktur und die Mustersprachenstruktur vorgestellt. Die Beschreibung
der Beziehungen in den Strukturen sind in den Strukturbeschreibungen enthalten.

Im Anhang A befindet sich die Abbildung des vollständigen UML-Diagramms des Metamodells
für Mustersprachen. Die Musterstruktur (Pattern Structure) und die Mustersprachstruktur (Pattern
Structure Language) sind zentral in dem UML-Diagramm angeordnet. Sie bilden die Struktur des
Metamodells für Mustersprachen und enthalten Beziehungen (Structure Element Relation). Die
Musterstruktur ist aus einer hierarchischen Anordnung von Inhaltselement (Content Element) für Muster
zusammengesetzt. Die Mustersprachstruktur besteht aus einer Musterstruktur und den Beziehungen
die zwischen den Musterinhalten (Content) herrscht. Außerdem enthält die Mustersprachstruktur
Organisationen von Mustern (Pattern Organisation), in denen die Muster organisiert sind und zusätzliche
Funktionalitäten (Pattern Language Feature), die die Inhalte der Muster und deren Beziehungen
erweitern können. Die vorgestellten Elemente bilden im Groben eine mustersprachenübergreifende
Struktur für Mustersprachen, die durch das Metamodell beschrieben wird.

3.5.2 Grundlagen der Strukturen des Metamodells für Mustersprachen

Im Folgenden werden die Elemente vorgestellt, die Bestandteile der Struktur des Metamodells für
Mustersprachen sind und die eine Grundlage für die Mustersprachstruktur und Musterstruktur liefern.
Die Elemente der Strukturgrundlagen sind Elemente, die Gemeinsamkeiten der konkreten Strukturen
darstellen und eine Beschreibungsgrundlage bieten. Durch die Verwendung der Strukturgrundlagen ist
die Struktur des Metamodells für Mustersprachen übersichtlich strukturiert und enthält keine redundante
Beschreibungen.

In Abbildung 3.2 ist ein Ausschnitt des Metamodells für Mustersprachen zu sehen. Dieser enthält
auf der linke Seite die Grundlagen der Struktur und auf der rechten Seite die konkreten Strukturen
des Metamodells für Mustersprachen. Die Mustersprachstruktur (Pattern Language Structure), die
Musterstruktur (Pattern Structure) und der Musterinhalt (Content Element) sind Elemente, die
die Strukturen des Metamodells für Mustersprachen darstellen. Sie stellen Spezialisierungen des
Strukturelements (Structure Elements). Diese ist ein abstraktes Element, das die Grundlage der
konkreten Strukturen darstellt. Ein Strukturelement besteht aus einem eindeutigen Bezeichner
(Identifier), der das Strukturelement identifizieren kann, ein Symbol (Icon), das das Strukturelement

30 KAPITEL 3. METAMODELL FÜR MUSTERSPRACHEN

Abbildung 3.2: Strukturen und Strukturelemente des Metamodells für Mustersprachen

repräsentieren soll und eine Metainformationsbeschreibung (Meta Information Descriptor), die
Informationen über den Inhalt der Strukturelement enthält.

Der Bezeichner und das Symbol der Strukturelemente sind durch Stereotypen definiert worden, weil
sie Standardelemente eines Strukturelements darstellen.

Die Metainformationsbeschreibung liefert weitere Auskünfte über den Inhalt der Strukturelemente.
Zusätzlich zu den drei Elementen kann genau ein Strukturelement beliebig viele Beziehungen zu
anderen Strukturelementen enthalten. Durch die Angaben der Kardinalitäten 1 und 0..* wird eine
azyklische und gerichtete Struktur definiert, damit ein Strukturelement mit mehrere Strukturelemente
in Beziehung stehen kann.

Die Strukturen, die mit dem Strukturelement erstellt werden, stellen alle eine hierarchische
Baumstruktur dar.

Die Beziehung von Strukturelementen (Structure Element Relation) wird in dem Metamodell
für Mustersprachen explizit als Metaklasse dargestellt. Diese Metaklasse ist in Anhang A dem
UML-Diagramm des Metamodells für Mustersprachen in der rechten oberen Ecke zu sehen. Eine
Mustersprache kann durch die Verfeinerung der Beziehungstypen aussagekräftigeren Bedeutungen für

3.5. AUFBAU UND BESTANDTEILE DES METAMODELLS FÜR MUSTERSPRACHEN 31

die Beziehungen darstellen. Vordefinierte Typen und Semantiken von Beziehungen sind Bestandteile
des Profils von dem Metamodell für Mustersprachen und werden im Anschluss der Strukturerklärung
vorgestellt.

Die Beziehungen der Strukturelemente werden durch Referenzen, die sich in den Inhaltselementen
befinden, dargestellt. Anhand der Bezeichner der Strukturelemente kann jedes Strukturelement
referenziert werden. Das Metamodell für Mustersprachen sieht diese Beschreibung vor, damit
Mustersprachen, Muster und Musterinhalte einheitlich und somit mustersprachenübergreifend
referenziert werden können. Der Aufbau und die Verwendung von Referenzen auf Strukturelemente
wird in der Beschreibung der Musterstruktur detailliert beschrieben.

Bevor auf die konkreten Strukturen eingegangen wird, werden zunächst die Beziehungen zwischen
den Strukturelement anhand der Abbildung 3.2 erläutert. Die drei Strukturelemente besitzen zusätzlich
untereinander Aggregationsbeziehungen. Ein Mustersprachstruktur enthält somit eine Musterstruktur,
die wiederum mehrere Inhaltselemente enthält. Die Rollen und Absichten der Aggregationsbeziehungen
zwischen den Strukturelemente werden in den folgenden Abschnitten der Musterstrukturbeschreibung
und der Mustersprachstrukturbeschreibung erklärt.

3.5.3 Modell der Musterstruktur des Metamodells für Mustersprachen

Die Struktur der Muster einer Mustersprache ist das zentrale Element der Mustersprachen. Aus diesem
Grund wird mit der Erklärung des Modells der Musterstruktur des Metamodells für Mustersprachen
begonnen. Das Modell der Musterstruktur des Metamodells beschreibt die Musterstrukturen der
Mustersprachen. Im folgenden wird der Aufbau der Musterstruktur und die dafür notwendigen
Elementen vorgestellt. Anschließend werden die Zusammenhänge der Musterstrukturen und der
Mustersprachstrukturen erläutert.

Die Musterstruktur ist eine hierarchische Ordnung der Inhaltselemente von Muster in einer
Mustersprache. In dem Metamodell für Mustersprachen wird eine Metaklasse definiert, die die Struktur
der Musterstruktur beschreibt. Diese Beschreibung schreibt jede Mustersprache, die dem Metamodell
für Mustersprachen zu Grunde liegt, die Struktur ihrer Mustersturktur vor. Die grundlegende Struktur
aller Musterstrukturen, die in den vorgestellten Mustersprachen in dem Kapitel 2 Grundlagen enthalten
sind, ist in diesem Modell für Musterstrukuren berücksichtigt. Eine einheitliche Strukturbeschreibung
dient nicht nur der Übersichtlichkeit der Muster, sie bietet auch eine Grundlage um Beziehungen und
Vergleiche zu erstellen.

Bevor das Modell der Musterstruktur erklärt wird und dieses in das Metamodell für Mustersprachen
eingeordnet wird, werden die dafür benötigten Elemente vorgestellt. Für die Erklärung der
Musterstruktur werden zunächst die Strukturelemente der Musterstruktur, die Musterinhalte und der
Referenzierungsmechanismus anhand der Abbildung 3.3 vorgestellt.

Modell des Inhaltselements von Mustern Eine Musterstruktur besteht aus mehreren
Inhaltselementen (Content Element), die die Strukturelemente der Musterstruktur darstellen. Abbildung
3.3 stellt einen Ausschnitt des Metamodells für Mustersprachen dar, in dem das Modell des
Inhaltselements zu sehen ist. Das Inhaltselement besteht aus einem Inhalt (Content) und einer
Inhaltselementreferenz (Structure Element Referenz). Außerdem erbt das Inhaltselement alle Elemente
und Beziehungen, die das Strukturelementes enthält.

32 KAPITEL 3. METAMODELL FÜR MUSTERSPRACHEN

Abbildung 3.3: Modell des Inahltselements

Modell des Inhaltes Die Metaklasse des Inhaltes sieht einen Inhalt vor, der sich im Inhaltselement
befindet und noch keine Aussagen über Art und Darstellung des Inhaltes macht. Die Konkretisierung
des Inhaltes ist ein Bestandteil der Musterspracherstellung. Die Autoren der Mustersprachen können
die Art des Inhaltes und dessen Darstellung frei gestalten. Es können mehrere Definitionen von der Art
eines Inhaltes und dessen Darstellung in einer Mustersprache existieren und verwendet werden. Eine
Problematik könnte zum Beispiel durch einen Text und eine Abbildung beschrieben werden. Somit
hätte man zweit Arten des Inhaltes: eine Textform und eine Graphik.

Modell der Strukturelementreferenz Die Strukturelementreferenz verkörpert die Beziehungen
zwischen den Strukturelementen. Durch die Verwendung einer Strukturelementreferenz kann eine
Beziehung zu einem Strukturelement dargestellt werden. Konkret heißt das, dass auf andere
Inhaltselemente, Muster oder Mustersprachen durch einen Referenz verwiesen werden kann. Die
Strukturelementreferenzen sind als Bestandteil der Strukturelemente in Abbildung 3.3 zu sehen.
Die Strukturelementreferenzen befinden sind in den Inhaltselementen (Content Element) der Muster
und können im Inhalt (Content) dargestellt werden. Diese Designentscheidung ist jedoch dem
Autor der Mustersprache überlassen. Eine Strukturelementreferenz besteht aus einem einheitlichen
Quellenanzeiger (Reference URI), einer graphischen Repräsentation (graphical Representation) und
aus einer Beziehungsbeschreibung (Relation Descriptor), die wiederum gemeinsame Eigenschaften
(Common Property) der Strukturelemente enthält.

Der einheitlichen Quellenanzeiger wird für das Auffinden des verwiesenen Strukturelements benötigt.
Er ist nach dem Prinzip des Uniform Resource Locator (URL) von Tim Berners-Lee [Ber94] aufgebaut.
Der einheitliche Quellenanzeiger besteht aus einer Bezeichnerliste von Strukturelementbezeichnern.
Die Bezeichnerliste enthält den Bezeichner des referenzierten Strukturelements und alle Bezeichner

3.5. AUFBAU UND BESTANDTEILE DES METAMODELLS FÜR MUSTERSPRACHEN 33

der Strukturelemente, die in den Strukturebenen vor dem referenzierten Strukturelement erscheinen.
Die Bezeichnerliste ist absteigend sortiert und beginnt mit dem Strukturelement aus der
obersten Strukturebene. Ein einheitlicher Quellenanzeiger ist ein Standardelement, dass in jeder
Strukturelementreferen vorkommen muss. Aus diesem Grund wurde hierfür ein Stereotyp erstellt.

Die graphische Repräsentation der Strukturelementreferenz ist wie der Inhaltstyp Bestandteil
der Mustersprachen. Auch hier ist es dem Autor der Mustersprache frei gestellt eine beliebige
Darstellungsart der Strukturelementreferenz zu wählen.

Die Beziehungsbeschreibung soll Aufschluss über die Art und Bedeutung der Beziehung geben,
die durch die Strukturelementreferenz verkörpert wird. Es wird der Typ der Beziehung, die
Verwendung und die Eigenschaften, die sich die zwei in Beziehung stehenden Strukturelemente
teilen, vermerkt. Die Beziehungrelation der Strukturelementen wird in dem UML-Diagramm des
Metamodells für Mustersprachen in Anhang A durch Strukturelementbeziehung (Strukture Elemente
Relation) typisiert. Somit können verschieden Arten von Beziehungen zwischen Strukturelementen in
der Beziehungsbeschreibung verwendet werden. In der Beschreibung des Profils des Metamodells für
Mustersprachen werden Arten von Beziehungen vorgestellt, die sich zwischen den Strukturelementen
befinden können. Ebenso wie der einheitliche Quellenanzeiger ist die Beziehungsbeschreibung ein
Standardelement der Strukturelementreferenz, das in jeder Strukturelementreferenz enthalten sein muss.
Deshalb wird es auch durch ein Stereotyp definiert.

Abbildung 3.4: Modell der Musterstruktur

Die Abbildung 3.4 zeigt den Ausschnitt des Modells der Musterstruktur in dem Metamodell für
Mustersprachen. Das obligatorische Inhaltselement (Mandatory Content Element) und das optionale
Inhaltselement (Optional Content Element) sind Spezialisierungen des abstrakten Inhaltselements
(Content Element) und verkörpern dieses.

Das obligatorische Inhaltselement und das optionale Inhaltselement erbt außerdem die Elemente
und die Beziehung des abstrakten Inhaltselements. Das obligatorische Inhaltselement beschreibt
Musterinhalte, die in jedem Muster einer Mustersprache vorkommen müssen. Das optionale

34 KAPITEL 3. METAMODELL FÜR MUSTERSPRACHEN

Inhaltselement beschreibt Musterinhalte, die optional in einem Muster einer Mustersprache vorkommen
können. Der Autor muss anhand des Inhaltes entscheiden, ob es hilfreich ist die jeweiligen
optionalen Inhaltselemente der Musterstruktur zu verwenden. Durch das Vererben der Beziehung des
Inhaltselement können mit den obligatorischen und den optionalen Inhaltselementen eine hierarchische
Struktur aufgebaut werden. Es ist außerdem durch die vererbte Beziehung möglich und erwünscht, dass
obligatorische Inhaltselemente optionale enthalten und umgekehrt.

In einer Mustersprache soll es zum Beispiel Muster geben, deren Inhalt durch ein Beispiel erläutert
werden kann. Das Inhaltselement der Beispielbeschreibung stellt ein optinales Inhaltselement dar.
Wenn sich jedoch der Autor dazu entschließt dieses Inhaltselement zu verwenden, soll es durch eine
Überschrift, einer Beschreibung in textueller Form und eine Skizze beschrieben werden. Die drei
Elemente, die das Inhaltselement der Beispiele enthält wären dann obligatorische Inhaltselemente. Somit
kann man vorschreiben, was ein optionales Inhaltselement enthalten muss.

Meszaros und Doble stellten in ihrer Arbeit MetaPattern: A Pattern Language for Pattern Writing
[MD96] die Unterteilung von Musterinhalten in obligatorische und optionale Inhaltselemente vor. Zum
Beispiel besteht das Inhaltselement äußere Einflüsse aus einem Bezeichner und einer Aufzählung
der äußeren Einflüsse in Textform. Zusätzlich wird noch vorgegeben was genau äußere Einflüsse
inhaltlich repräsentieren. Wie an diesem Beispiel zu sehen ist, besteht keine Trennung zwischen der
Metamodellierung, der Profilerstellung und den semantischen Aussagen der Elemente. Hier wird der
Fokus auf die Struktur der äußeren Einflüsse gelegt. Abstrahiert man das Beispiel auf die Metaebene,
dann stellen die äußeren Einflüsse ein obligatorisches Inhaltselement dar, das wiederum weiteren
obligatorischen Inhaltselementen enthält.

3.5.4 Modell der Mustersprachstruktur des Metamodells für Mustersprachen

Eine Menge zusammenhängender Muster in einer Mustersprache stellen mehr als nur die Summe der
Muster dar. Durch die Vernetzung der Muster erhält man weitaus mehr Information als aus den einzelnen
Musterinhalten. Die Mustersprache stellt die Muster zusammen in einen Kontext. Durch verschiedene
Organisationen von Mustern und zusätzlichen Funktionalitäten, die die Musterinformationen aufwerten,
erlangt die Mustersprache ihren Mehrwert. [MD96]

Der Ausschnitt 3.5 des Metamodells für Mustersprachen zeigt das Modell der Mustersprachstruktur.
Die Mustersprachstruktur (Pattern Language Structure) besteht aus einer Musterstruktur
(Pattern Structure), mehreren Organisationen von Muster (Pattern Organisation) und mehreren
Zusatzfunktionalitäten (Pattern Language Feature).

Bevor auf die Beschreibung der Organisationen von Muster und der Zusatzfunktionalitäten
eingegangen wird, werden die Beziehungen zwischen Musterstruktur und Mustersprachstruktur erklärt.
Die Musterstruktur die Mustersprachenstruktur erben die Eigenschaften des Strukturelement und dessen
Unterelemente. Sie können somit auch Beziehungen auf Elemente des selben Typs besitzen. Diese
Beziehungseigentschaften von Musterstrukturen und Mustersprachstrukturen werden im Folgenden
eingeschränkt und deren Bedeutungen erklärt.

Die Mustersprachstruktur enthält eine Mustersturktur, die eine Erweiterung der Mustersprachstruktur
ist. Bei den Beziehungen zwischen Musterstrukturen sind jedoch Einschränkungen zu machen. Es
ist zum Beispiel nicht vorgesehen, dass eine Musterstruktur eine andere enthält. Die Beziehungen
zwischen Musterstrukturen werden erst auf der Ebene der Mustersprachmodelle konkretisiert. Denkbar

3.5. AUFBAU UND BESTANDTEILE DES METAMODELLS FÜR MUSTERSPRACHEN 35

Abbildung 3.5: Modell des Inhaltselements

wäre zum Beispiel, dass eine Musterstruktur spezialisiert wird. Beide Musterstrukturen befinden
sich zwar in unterschiedlichen Mustersprachen, haben aber eine Spezialisierungsbeziehung und
Ähnlichkeitsbeziehungen zueinander. Die Mustersprachen, die den Musterstrukturen zu Grunde liegen,
haben ebenfalls solche Beziehungen zu einander, da diese die jeweilige Musterstruktur enthalten. Die
Mustersprachen könnten je nach Gestaltung als Dialekte oder Mustersprachgenerationen angesehen
werden.

Buschmann schildert verschiedene Möglichkeiten wann eine Mustersprache einen Dialekt darstellen
kann. [BHS07, S. 215-217] Es könnte zum Beispiele eine Mustersprache geben, die allgemeine
Lösungen einer Problematik bietet. Möchte man diese Lösungen aufgreifen und für einen bestimmten
Kontext konkretisieren und anpassen, dann könnte eine weitere Mustersprachen erstellt werden, die
angepasste und spezialisierte Lösungen enthält. Um die Mustersprache mit den speziellen Lösungen
zu erstellen, kann die Musterstruktur von der Mustersprache mit den allgemeinen Lösungen erweitert
werden. Die spezialisierte Mustersprache stellt auf Grund der Ähnlichkeit der Musterstrukturen einen
Dialekt der Mustersprache mit den allgemeinen Lösungen dar.

Organisationen von Muster als Bestandteile der Mustersprachstruktur Die meisten Kollektionen
von Mustern sind relativ klein und überschaubar. Sie zielen meistens auf einen bestimmte Problematik
ab. Ziel ist es gute Darstellung von Musterkollektionen zu finden, die auch mustersprachübergreifend
sind. Das finden von Musterkollektionen ist ein grundlegender Bestandteil eines Musterkataloges und
sollte durch Repositories verwaltet werden. [BHS07, S. 209-210]

Die Musterkollektionen werden je nach Bedarf und Interesse gebildet. Es ist nicht die Aufgabe eines

36 KAPITEL 3. METAMODELL FÜR MUSTERSPRACHEN

Autor diese Kollektionen explizit zu bilden. Der Autor versieht seine Muster mit Referenzen, mit denen
er den Inhalt seiner Muster vervollständigt und auf andere Strukturelemente verweist. Implizit entsteht
die Vernetzung der Strukturelemente, in der sich die Musterkollektionen befinden. Der Musterkatalog
stellt den Lesern, die für ihre Interessen zugeschnittenen Musterkollektionen bereit. Dieser Ansatz
motiviert zu der Erstellung eines Musterkataloges, der durch Software implementiert wird. [BHS07,
S. 210-211]

Die Musterkollektionen sind in Musterorganisationen organisiert. Diese Organisationen bilden die
Musterkollektionen und fokusieren deren Struktur, die in der Vernetzung des Musterkataloges enthalten
ist. Dabei gibt es verschiedene Möglichkeiten nach denen die Organisationen der Muster aufgebaut
werden können. Die Selektion der Muster der Musterkollektionen wird durch den Themenbereich
der Musterorganisation bestimmt. [BHS07, S. 211] Das Metamodell für Mustersprachen sieht eine
Metaklasse für die Organisationen von Mustern vor, damit verschiedene Musterorganisationen realisiert
werden können. Auf die verschiedenen Möglichkeiten, wie Organisationen von Mustern aufgebaut
werden können, wird in der Beschreibung des Profils eingegangen.

Zusatzfunktionalitäten der Mustersprachstruktur Zusatzfunktionalitäten von Mustersprachen
verleihen der Mustersprache, ebenso wie die Organisationen von Muster einen Mehrwert.
Zusatzfunktionalitäten sind ebenfalls vernetze Mengen von Mustern wie die Musterkollektionen der
Organisationen von Mustern. Im Gegensatz zu den Musterorganisationen können Zusatzfunktionalitäten
für Mustersprachen die Beziehungen zwischen den Muster und deren Informationsgehalt erweitern.

Eine Zusatzfunktionalität könnte zum Beispiel ein Wörterindex sein. Dieser gibt an, in welchen
Muster sich ein bestimmtes Wort befindet. Dadurch wird die Beziehung zwischen den Mustern
dargestellt, die davor noch nicht explizit existierte. Zusätzlich könnten die Begrifflichkeiten im
Wörterindex erklärt werden. Dies wäre eine Erweiterung des Informationsgehaltes der Muster, die sich
in dieser Musterkollektion befinden.

Ein Autor, der solche eine Zusatzfunktionalität einer Mustersprache bereitstellen will, muss die
Musterinhalte kennen und diese Zusatzfunktionalität manuell erstellen. Da das Metamodell für
Mustersprachen für Musterkataloge verwendet werden soll, die durch Softwareprogramme realisiert
werden können, wird in dieser Arbeit zwischen Organisation von Mustern und Zusatzfunktionalitäten
von Mustersprachen unterschieden.

In der Beschreibung des Profils von dem Metamodell für Mustersprachen werden
Zusatzfunktionalitäten für Mustersprachen vordefiniert. Diese Zusatzfunktionalitäten stellen eine
einheitliche Basis für alle Mustersprachen dar, die aus dem Metamodell für Mustersprachen abgeleitet
sind.

3.6 Profil des Metamodells für Mustersprachen

Mit dem Profil des Metamodells für Mustersprachen wird die Charakteristik der Mustersprachen
dargestellt. Das Profil des Metamodells für Mustersprachen wird von seiner Struktur getrennt. Auf
Grund der Trennung von Struktur und Profil ist es möglich das Profils anzupassen und zu verändern.
Durch die Anpassung und Veränderung des Profils werden andere Charakteristik von Mustersprachen
beschrieben. Mit Hilfe von Profiländerungen kann das Metamodell für spezielle Mustersprachen

3.6. PROFIL DES METAMODELLS FÜR MUSTERSPRACHEN 37

angepasst werden, ohne die Struktur des Metamodells zu verändern. Mustersprachen, die aus dem
Metamodell für Mustersprachen instanziiert wurden, besitzen immer die gleiche Struktur und sind
trotz verschiedener Profile zu einander kompatible. Dies ermöglicht zum Beispiel das Erstellen von
mustersprachübergreifenden Verbindungen. Es wird davon ausgegangen, dass das Metamodell für
Mustersprachen immer in Verbindung mit einem Profil verwendet wird. Aus diesem Grund wird das
Profil als notwendiges Bestandteil des Metamodells betrachtet. Das Profil aus dieser Arbeit versucht
einen allgemeinen Standard für Mustersprachen festzulegen. Dies geschieht durch die Definition und
Beschreibung von Standardelementen und Einschränkungen, die die Bestandteile des Profils darstellten.
Die Zusammenstellung der Standardelemente und Einschränkungen wurde anhand der im Kapitel 2
Grundlagen vorgestellten Mustersprachen und den MetaPatterns von Meszaros und Doble [MD96]
ausgewählt.

Im Folgenden wird das Metamodell für Mustersprachen durch das Profil erweitert. Das Profil befindet
sich auf der rechten Seite in dem UML-Diagramm des Metamodells für Mustersprachen, das in der
Abbildung Metamodells für Mustersprachen von Anhang A zu sehen ist. Das Profil wird in drei
Bestandteile unterteilt, die sich auf die Strukturen in dem Metamodell für Mustersprachen beziehen.
Sie werden mit Hilfe von Ausschnitten des UML-Diagramms beschreiben. Die Bestandteile des Profils
werden in das Beziehungsprofil, Musterprofil und in das Mustersprachprofil des Metamodells für
Mustersprachen aufgeteilt und anhand dieser Aufteilung vorgestellt.

3.6.1 Beziehungsprofil des Metamodells für Mustersprachen

Das Beziehungsprofil beinhaltet vordefinierte Beziehungstypen. Diese Beziehungstypen konkretisieren
Beziehungen, die sich zwischen den Strukturelementen befinden und können als Instanzen in
den Mustersprachen verwendet werden. Die Beziehungstypen und deren Beschreibungen dienen
zum Beispiel der Erstellung von Organisation von Mustern und den Zusatzfunktionalitäten der
Mustersprachen. Sie bieten außerdem ein zusätzliches Verständnis und Informationen für die
Zusammenhänge der Muster. Die Leser der Mustersprachen erhalten durch die Typisierung und
Beschreibungen der Beziehungen zwischen Mustern einen größeren Informationsgehalt.

In den Mustersprachen können diese Beziehungstypen zusätzlich erweitert werden. Im Gegensatz
zu den Instanzen der vordefinierten Beziehungstypen des Beziehungsprofils sind die erweiterten
Beziehungen nicht in allen Mustersprachen bekannt. Beziehungstypen, die aus dem Beziehungsprofil
instanziert wurden, sind zu den Beziehungstypen anderer Mustersprachen kompatibel. Wenn die
Beziehungstypen den Profilvorgaben entsprechen, ist es einfacher, Analysen zwischen Mustersprachen
durch zu führen.

Abbildung 3.6: Beziehungsprofil

Die Abbildung 3.6 zeigt den Ausschnitt des Metamodells für Mustersprachen, auf dem die

38 KAPITEL 3. METAMODELL FÜR MUSTERSPRACHEN

Beziehungstypen des Profils zu sehen sind. Die Beziehungen der Strukturelemente (Structure Element
Relation) werden durch eine Metaklasse beschrieben. Das Profil beinhaltet eine hierarchische Struktur
von konkreten Beziehungstypen. Diese Beschreibungen von Beziehungstypen sind Spezialisierungen
der Metaklasse und Stereotypen der Beziehungstypen für Strukturelemente in Mustersprachen. Sie
erhalten zusätzlich durch die Beschreibung des Beziehungsprofils ihre Semantik.

Die Unterteilung von Beziehungstypen wurde bereits in dem Kapitel 2 Grundlagen unter der Rubrik
2.4.1 Beziehungen in Mustersprachen vorgestellt. Im folgenden werden die benötigten Erkenntnisse, die
für das Beziehungsprofil des Metamodells für Mustersprachen erforderlich sind, erneut aufgeführt.

Van Welie und van der Veer unterteilten die Beziehungen zwischen Muster in drei Beziehungstypen
[vv03]. Diese Beziehungstypen sind in die Typen Spezialisierung, Aggregation und Assoziation
unterteilt. In dem Metamodell für Mustersprachen werden diese Beziehungstypen und deren Semantik
übernommen. Die Verallgemeinerungen der Beziehungstypen werden als Spezialisierungen der
Metaklasse von Strukturelementsbeziehung dargestellt. Die Spezialisierungsbeziehung (Specialisation
SER), Aggregationsbeziehung (Aggreagation SER) und Assoziationsbeziehung (Association SER)
bilden somit die erste Strukturebene der Beziehungstypen in Mustersprachen.

Buschmann verfeinerte die Aggreagtionsbeziehung weiter in die Untertypen:
Vervollständigungsaggregationen (Completing Aggregation - SER), Erweiterungsaggregationen
(Combining Aggregation - SER) und in Aggregationen die sich gegenseitig ausschließen (Compteting
Aggregation - SER). Diese drei Verfeinerungen bilden die zweite Strukturebene der Beziehungstypen
in Mustersprachen. Deren Beschreibung ist in der Rubrik 2.4.1 Beziehungen in Mustersprachen
detaillierter vorgestellt. Das Beziehungsprofil beinhaltet die vollständige Struktur mit ihren beiden
Ebenen.

In dem Metamodell für Mustersprachen und seinem Profil werden keine Aussagen über das Erstellen
von qualitativ hochwertigen Inhalten gemacht. Der Einsatz und die Verwendung der Beziehungstypen
nimmt Einfluss auf die Qualität des Inhaltes, da diese einen Teil des Inhaltes repräsentieren. Deshalb
ist es den Autoren der Muster und Mustersprachen überlassen die richte Wahl der Verwendung
von den Beziehungstypen zu treffen. Die Beziehungstypen besitzen Semantiken, an denen die
Autoren herausfinden können in welchen Fällen der jeweilige Beziehungstyp verwendet werden
kann. Ein Beispiel des Einsatzes von Beziehungen wurde bereits in der allgemeinen Erklärung
der Zusammenhänge zwischen Muster und Mustersprachen in dem Abschnitt 3.5.4 Modell der
Mustersprachstruktur des Metamodells für Mustersprachen geschildert.

3.6.2 Musterstrukturprofil des Metamodells für Mustersprachen

Das Musterstrukturprofil beschreibt die allgemeine Charakteristik der Muster. Die Charakteristik der
Muster wird durch die Vorgabe der Musterstruktur und deren Einschränkungen gebildet. Im Gegensatz
zu dem Beziehungsprofil, bei dem die Verwendung der vorgegebenen Arten von Beziehungstypen
optional ist, werden für das Musterstrukturprofil Einschränkungen definiert, die eine Vorgabe der
Musterstruktur erzwingen. Im Folgenden werden anhand der vorgestellten Mustersprachen aus dem
Kapitel 2 Grundlagen die Inhaltsbestandteile der Musterstruktur ausgewählt und Vorschriften für deren
Verwendung formuliert.

Um das Musterstrukturprofil erstellen zu können, werden zunächst die Muster und
deren Charakteristik betrachtet. Muster sind Beschreibungen von Lösungen bezüglich ihrer

3.6. PROFIL DES METAMODELLS FÜR MUSTERSPRACHEN 39

Problemstellungen, die sich in einem bestimmten Kontext befindet. Dieser Satz ist jedoch nicht
die ganze Wahrheit, was ein Muster darstellt und enthält. Es stellt aber die Kernaussage dar, auf der
das Musterstrukturprofil aufgebaut werden soll. Wie schon in dem Kaptitel 2 Grundlagen angerissen,
gibt es noch weitere Anforderungen an Muster. Zum Beispiel sollen sie korrekte und anpassungsfähige
Lösungen bieten und eine konsistente Menge von Muster darstellen. [BHS07, S. 30] Meszaros und
Doble definierten in ihren MetaPatterns [MD96] eine Musterstuktur, die auch wie die Musterstuktur
des Metamodells für Mustersprachen aus obligatorischen und optionalen Inhaltselementen besteht. Sie
schreiben die Verwendung von bestimmten obligatorischen Inhaltselementen vor und empfehlen die
Verwendung von bestimmten optionalen Inhalteselementen. Diese Auswahl der Inhalteselemente von
Meszaros und Doble werden als Grundlage des hier vorgestellten Musterstrukturprofils verwendet.
Im Folgenden werden die Fakten der Musterstrukturen von Meszaros und Doble vorgestellt und als
Grundlage für das Musterstrukturprofil des Metamodells für Mustersprachen verwendet.

Meszaros und Doble beschreiben in dem ersten MetaPattern A.1 Pattern: Pattern, das sie in ihrer
Arbeit [MD96] vorstellen, dass ein Muster eine Problembeschreibung, eine Lösungsbeschreibung
und eine Beschreibung, wieso diese Lösung anwendbar ist, enthalten muss. Sie verweisen in diesem
Kontext auf die obligatorischen Inhaltselemente. Es wird allerdings nicht vorgeschrieben, dass alle drei
Inhaltselemente obligatorische Inhaltselemente sind.

In den folgenden Mustern wird oft auf die Beschreibung der Anwendbarkeit der Lösung
verzichtet. Aus diesem Grund enthält das Musterstrukturprofil des Metamodells für Mustersprachen
Spezialisierungen des obligatorischen Inhaltselement, die die Problem- und die Lösungsbeschreibung
der Muster darstellen. Die Beschreibung der Anwendbarkeit der Lösung wird als optionales
Inhaltselement in das Musterstrukturprofil aufgenommen.

In der Beschreibung der Musterstruktur von Meszaros und Doble werden deren obligatorische
Inhaltselemente durch den Kontext und des Problems erweitert. Es wird außerdem beschrieben, dass
die Anwendbarkeit der Lösung ein notwendiges Inhaltselement ist. Es ist jedoch keine obligatorisches
Inhaltselement, da dessen Existenz abhängig von dem Lösungsinhalt ist. Die Beschreibung der
Musterstruktur wird durch das Muster Visible Forces erweitert. Diese Erweiterung ist ein obligatorisches
Inhaltselement, das die äußeren Einflüsse der Problematik und der Lösungsfindung beschreibt.
Meta Informationen, die Informationen über die Muster enthalten werden in dieser Arbeit nicht
als eigenständige Inhaltselemente angesehen. Dies betrifft zum Beispiel den Musterbezeichner.
Die vorgestellten Inhaltselemente werden wie von Meszaros und Doble beschrieben in das
Musterstrukturprofil des Metamodells für Mustersprachen übernommen. Meszaros und Doble gehen
auch auf die Gestaltung von qualitativ hochwertigen Musterinhalten ein. Dies ist zwar nicht Bestandteil
des Metamodells für Mustersprachen, es wird aber die Idee der Inhaltserweiterung durch ein Beispiel
aufgenommen. Sehr viele Muster beinhalten Beispiel, die deren Lösungsansätze veranschaulichen
sollen. Diese Charakteristik soll durch die Erweiterung mit einem optimalen Inhaltselement, das ein
Beispiel der Lösung eines Musters darstellt, in das Musterstrukturprofil einbezogen werden.

Das Musterstrukturprofil des Metamodells für Mustersprachen ist in der Abbildung 3.7 zu sehen. In
diesem Absatz wird die Struktur des Musterstrukturprofil und dessen Eingliederung in das Metamodell
für Mustersprachen detailliert erklärt. Das Musterstrukturprofil besteht aus den Inhaltselementen
Metainformationsbeschreibung (Meta Information Descriptor), Problembeschreibung (Problem
Description), Lösungsbeschreibung (Solution Description), Kontextbeschreibung (Context Description)
und Beschreibung der äußeren Einflüsse (Visible Forces Description). Diese Inhaltselemente sind
Spezialisierungen des obligatorischen Inhaltselements und stellen damit feste Bestandteile von Mustern

40 KAPITEL 3. METAMODELL FÜR MUSTERSPRACHEN

Abbildung 3.7: Profil der Musterstruktur

dar. In dieser Aufzählung wurde die Metainformationsbeschreibung als obligatorisches Inhaltselement
hinzugenommen. Es soll die Informationen der Metainformationsbeschreibung der Musterstruktur als
Inhaltselement repräsentieren. In der Metainformationsbeschreibung können sich zusätzlich zu den
Metainformationen des Musters auch Anmerkungen zu verwandten Themen, Mustern oder zu anderen
Namen, die das Muster tragen könnte gemacht werden. Alle Metainformationen, die die Muster
betreffen soll in diesem Inhaltselement eingepflegt werden. Zusätzlich zu der Definition dieser fünf
obligatorischen Inhaltselemente wird die Einschränkung gemacht, dass sie in jedem Muster aller
Mustersprachen, die aus dem Metamodell für Mustersprachen abgeleitet worden sind, enthalten sein
müssen. Das Musterstrukturprofil wird durch die optionalen Inhaltsbestandteile Schlussfolgerungs-
und Beispielbeschreibungen erweitert. Zu beachten ist, dass die Schlussfolgerungsbeschreibung ein
optionales Inhaltselement der Lösungsbeschreibung ist, weil sie erklärt wieso die Lösung am
geeignetsten für das beschriebene Problem bezüglich des angegebenen Kontextes passt.

Es ist noch zu erwähnen, dass das Musterstrukturprofil nicht auf die Qualität des Inhalts der Muster
eingeht. Die Konsistenz, Allgemeinheit, Absichten und weitere Aspekte, die bezüglich der Qualität
des Inhalts der Muster abzielen, werden dem Autor der Muster überlassen. Meszaros und Doble
veröffentlichten unter anderem in ihrem Werk MetaPatterns: A Pattern Language for Pattern Writing
[MD96] Tipps und Ratschläge für Autoren von Mustersprachen. Diese bieten den Autoren eine Stütze
für das Erstellen von qualitativ hochwertig Musterinhalten. Den Autoren wird empfohlen sich an den
Ratschlägen zu orientieren und das Metamodell für Mustersprachen aus dieser Arbeit in Kombination
zu verwenden.

3.6.3 Mustersprachprofil des Metamodells für Mustersprachen

Die Musterorganisationen und Zusatzfunktionalitäten für Mustersprachen wurden in dem Abschnitt
3.5.4 Modell der Mustersprachstruktur des Metamodells für Mustersprachen vorgestellt. Das
Mustersprachprofil definiert verschiedene Standardelemente für Mustersprachen, die Spezialisierungen
von Musterorganisationen und Zusatzfunktionalitäten für Mustersprachen sind. Im Folgenden wird das

3.6. PROFIL DES METAMODELLS FÜR MUSTERSPRACHEN 41

Mustersprachprofil in zwei Teile unterteilt. Der eine beschreibt die Organisationen von Mustern und der
andere die Zusatzfunktionalitäten für Mustersprachen.

3.6.3.1 Typen von Musterorganisationen im Mustersprachprofil

Die hier vorgestellten Typen von Musterorganisationen beruhen auf den Analysen von Buschmann.
[BHS07, S. 209-246] Es werden die geläufigsten Musterorganisationen vorgestellt, die eine Grundlage
für die meisten Mustersprachen bieten können.

Die Autoren der Muster haben viele Möglichkeiten um Muster darzustellen und diese anhand ihres
Inhaltes in eine Vernetzung von Muster einzupflanzen. Leser verwenden Muster meistens, wegen ihrer
Anwendbarkeit. Durch diese können sie ein bestimmtes Vorhaben in seinem Kontext umsetzen. Um
Muster zu finden, benötigen sie Organisationen, die ihre Situation und Absichten darstellen können.
[BHS07, S. 225]

In den folgenden Abschnitten werden Organisationen vorgestellt, die auf allgemeine Muster
angewendet werden können und häufige von den Leser der Mustersprachen benötigt werden. Im
Allgemeinen ist es vorgesehen, dass die Organisationen in Kombination verwendet werden können,
um komplexere Organisationen darzustellen und mehr Ausdruck verleihen können.

Organisation von Musterebenen Viele Mustersprachen besitzen eine hierarchische Struktur, in der
die Muster bezüglich ihrer Aggregationsbeziehung in verschiedene Ebenen unterteilt sind. Die Muster
dieser Struktur stellen in den niedrigeren Ebenen Erweiterungen und Verfeinerungen der Muster aus den
höheren Ebenen der Struktur dar. Umso höher die Ebene, desto abstrakter oder allgemeiner ist der Inhalt
dessen Muster. [BHS07, S. 213-218]

Christpher Alexanders Mustersprache A Pattern Langauge: Towns Buildungs Construction [CAA77]
enthält eine hierarchische Struktur, die bei Muster für Städten anfängt und gefolgt wird von
Nachbarschaften, Gebäuden, Zimmer, ... bis hin zu Sitzgelegenheiten. An diesem Beispiel ist zu sehen,
dass die Hierarchische Organisation von Mustern Umsetzungsregeln in ihren Traversierungswegen
beinhaltet. [vv03]

Die Ebenen der Organisation von Musterebenen können auch durch die Art der Mustertypen
benannt werden, die in der jeweiligen Ebene zu finden sind. Eine hohe Ebene beinhaltet zum
Beispiel Muster, die architektonische Inhalte repräsentierten. Eine Stufe weiter unten könnten sich
Designmuster befinden, die die Architekturmuster erweitern und verfeinern. Die Designmuster könnten
wiederum von konkreteren bereichsabhängigen Mustern erweitert und verfeinert werden. Damit
die Hierarchische Organisation von Mustern, die Mustertypen eindeutig zuordnen kann, könnte
man zum Beispiel die Informationen des Mustertyps in dessen Metainformationen mitaufnehmen.
[BHS07, S. 213-218] Bezüglich des Metamodells für Mustersprachen aus dieser Arbeit, bietet
es sich an, in dem vorgestellten Szenario von Buschmann, drei verschiedene Mustersprachen
zu erstellen. Dies hat den Vorteil, dass die Inhaltselemente für die Musterstruktur bezüglich
der Kategorien der Ebenenen zusammengestellt werden können. Durch den Mechanismus der
mustersprachenübergreifenden Referenzierung können Beziehungen zwischen den Mustersprachen und
somit zwischen den Musterebenen erstellt werden. Anhand dieser Beziehungen kann die Organisation
von Musterebenen die Muster der drei Mustersprachen darstellen.

42 KAPITEL 3. METAMODELL FÜR MUSTERSPRACHEN

Organisation von Musterbereichen Unter Musterbereichen versteht man Themenbereiche, die
durch die Problem- und der Kontextbeschreibung der Muster angesprochen werden. Die Muster
werden in Organisationen von Musterbereichen bezüglich ihrer Themenbereiche in Kollektionen
unterteilt. Die Kollektionen können zum Beispiel nach folgenden Themenbereichen unterteilt werden:
Telekommunikation, Finanzwesen, Gesundheitswesen, Luftfahrtelektronik, Logistik, Lehre, In der
Organisation von Musterbereichen können auch Schnittmengen von Themenbereichen gebildet werden,
um Überschneidungen der Themenbereiche darzustellen. [BHS07, S. 218-219]

Organisation von Musterpartitionen Musterpartitionen stellen einen engeren Bereich als
Musterbereiche dar. Sie beziehen sich ursprünglich auf verschiedene Bereich der Architekturlösungen
von Muster. Die Musterbereiche stellen somit verschiedene Technologien und Konzepte dar. Sie
können beispielsweise folgendes darstellen: verschiedene Architekturebenen, Schichten, Komponenten,
Pakete oder Rollen. [BHS07, S. 218-221] Die Organisation von Musterpartitionen soll in dem
Metamodell für Mustersprachen für allgemeine Musterbereiche eingesetzt werden. Die Organisation
von Musterpartitionen könnte so zum Beispiel als Verfeinerung der Musterbereiche dienen.

Organisation von Musterabsichten Eine weitere häufige Organisation, die in Mustersprachen
verwendet wird, ist die Organisation von Musterabsichten. Muster werden dabei bezüglich ihres Inhaltes
in Kollektionen unterteilt. Solche Kollektionen haben zum Beispiel eine gleiche architektonische
Charakteristik oder verfolgen ein gleiches Ziel. Oft beinhalten Mustersprachen Muster, die solch eine
Struktur darstellen. Zum Beispiel stellt das Muster der Beschreibung einer Stadt von Christopher
Alexander eine Kollektion von weiteren Mustern dar. Diese Kollektion bildet eine Struktur,
die als Teil einer Organisation von Musterabsichten angesehen werden kann. [CAA77, S. 3-7]
Organisation von Musterabsichten sind sinnvoll für das Auffinden von Musterproblembeschreibungen
oder deren Lösungsbeschreibungen, da die Muster nach den Absichten ihrer Problemstellung oder
Lösungsbeschreibung organisiert sind. [BHS07, S. 221-224]

Profil der Musterorganisationen Die Abbildung 3.8 zeigt das Profil der Mustersprachorganisationen.
Es ist die Metaklasse der Musterorganisationen (Pattern Organisation) und seine Spezialisierungen
zu sehen. Die Spezialisierungen sind die vorgestellten Musterorganisationen des Profils der
Musterorganisationen: Organisation von Musterebenen (Pattern Organisation by Level), Organisation
von Musterbereichen (Pattern Organisation by Domain), Organisation von Musterpartitionen (Pattern
Organisation by Partition) und Organisation von Musterabsichten (Pattern Organisation by Intent).

3.6.3.2 Zusatzfunktionalitäten für Mustersprachen im Mustersprachprofil

Die Ideen und Anregungen der Auswahl von Zusatzfunktionalitäten für das Mustersprachprofil
stammen aus der Beschreibung der Mustersprachstruktur von Meszaros und Doble. Sie sollen durch
die Erweiterung der Mustersprachstruktur die nicht triviale Vernetzung der Muster übersichtlicher
darstellen. Sie erstellen zusätzliche Strukturen, die Musterinhalte erweitern und auf die entsprechenden
Muster verweisen. Umsetzung solcher konkreten Mechanismen werden hier als Zusatzfunktionalitäten
vorgestellt. [MD96]

3.6. PROFIL DES METAMODELLS FÜR MUSTERSPRACHEN 43

Abbildung 3.8: Arten von Musterorganisationen im Mustersprachprofil

Zusammenfassung der Musterinhalte Die Zusammenfassung der Musterinhalte spiegelt die
Themenbereich der Mustersprache wieder. Sie soll einen Überblick über die wichtigsten Muster
der Mustersprache liefern, deren Probleme und Lösungen schildern und ihre Zusammenhänge und
Anwendbarkeit erläutern. Es können auch die Absichten der Mustersprache als Ganzes und deren
Ausblicke auf die Erweiterung von Mustern und Sammlungen von Lösungen festgehalten werden.
[MD96]

Problem-/Lösungstabelle der Muster Die Zusatzfunktionalitäten Problem-/Lösungstabelle der
Muster erweitert eine Mustersprache durch eine Tabelle, die Probleme und Lösungen ausgewählter
Muster in verkürzter Form gegenüberstellt. Diese Tabelle stellt auch ein Zusammenfassung der Muster
dar. Im Gegensatz zu der Zusammenfassung der Musterinhalte werden die Inhalte der Muster getrennt
dargestellt. Es stellt somit keine Beschreibung der Mustersprache dar sondern eine detaillierte Übersicht
über die Probleme und Lösungen der Muster. Die Tabelle bietet den Lesern der Mustersprache ein
Nachschlagewerk der wichtigsten Muster einer Mustersprache. [MD96]

Musterübergreifende Beispiele Ein musterübergreifendes Beispiel ist eine Darstellung eines
Beispiels, das über mehrere Muster fortgeführt wird. Muster, die ein Teil eines fortlaufenden Beispiels
enthalten, bilden eine Musterkollektion bezüglich dieses Beispiels. Oft stellen diese Musterkollektionen
auch Mustersequenzen dar. [MD96] Eine Mustersequenzen ist die Anordnung von Mustern, in der ihre
Lösungen angewendet werden. In den meisten Fällen werden mehre Muster benötigt, um ein Problem zu
lösen. Die Mustersequenzen ist in diesen Fällen die Reihenfolge der anzuwendenden Muster. [BHS07,
S. 192-193]

Wörterverzeichnis der Musterinhalte Um Fachbegriffe zu erklären, soll ein Wörterverzeichnis die
Musterpsprachen erweitern können. In einem Wörterverzeichnis werden die Fachbegriffe alphabetisch
geordnet, erklärt und auf die Muster verwiesen, in denen dieser Begriff enthalten sind. Implizit
wird durch die Erklärung der Fachbegriffe und die Referenzierung auf die entsprechenden Muster
Verbindungen zwischen Muster hergestellt. Diese Verbindungen sind anhand der Fachbegriffe
entstanden und erlangen sogar durch die Erklärung der Fachbegriffe eine Repräsentation ihrer
Bedeutung. [MD96]

44 KAPITEL 3. METAMODELL FÜR MUSTERSPRACHEN

Abbildung 3.9: Profil der Mustersprachorganisationen

Inhaltsverzeichnis für Mustersprachen Musterorganisationen können die Muster abhängig von
deren Inhalten und Vernetzungen darstellen. Große Mustersprachen oder mehrere Mustersprachen,
die von einer Musterorganisation dargestellt werden, können sehr unübersichtlich werden. Das
Inhaltsverzeichnis für Mustersprachen ist eine hierarchische Struktur, die manuell angelegte Kategorien
enthält. Autoren sortieren ihre Muster entsprechend ihrer Inhalte und Abhängigkeiten in die jeweilige
Kategorie des Inhaltsverzeichnisses ein. Somit wird eine übersichtliche Struktur geschaffen, die den
Inhalt der Mustersprache wiedergibt und die Muster in einem groben Raster organisiert. [MD96]

Profil der Zusatzfunktionalitäten für Mustersprachen In der Abbildung 3.9 ist die
Metaklasse der Zusatzfunktionalitäten und die vordefinierten Arten von Zusatzfunktionalitäten
des Mustersprachprofils zu sehen. Die vorgestellten Zusatzfunktionalitäten Zusammenfassung der
Musterinhalte (Pattern Language Summary), Problem-/Lösungstablle der Muster (Problem/Solution
Summary), musterübergreifende Beispiele (Running Example), Wörterverzeichnis der Musterinhalte
(Glossary) und das Wörterverzeichnis der Musterinhalte (Index) sind Spezialisierungen der Metaklasse
für Zusatzfunktionalitäten von Mustersprachen. In diesem Ausschnitt sind die Beziehungen der
Zusatzfunktionalitäten zu den einzelnen Bestandteilen der Inhaltselementen von Mustern zu erkennen.
In der Abbildung Metamodells für Mustersprachen in Anhang A ist die Darstellung der Beziehungen
zwischen den Zusatzfunktionalitäten und den Inhaltselementen der Muster auf der rechten Seite zu
sehen. Durch diese Beziehungen werden inhaltliche Abhängigkeiten dargestellt. Je nach Gestaltung der
Zusatzfunktionalitäten für Mustersprachen können die Beziehungen erweitert werden.

45

Kapitel 4

Plattform für Mustersprachen und
Musterkataloge

In diesem Kapitel wird eine Plattform für Mustersprachen und Musterkataloge vorgestellt. Zunächst
werden deren Aufgaben und Ziele erläutert. Anschließend werden die bestehende Musterkataloge
vorgestellt und die Abgrenzung der Plattform für Mustersprachen und Musterkataloge erklärt. Der
Hauptteil dieses Kapitels ist die Spezifikation und der Aufbau der Plattform für Mustersprachen
und Musterkataloge. Die Spezifikation dient zur Beschreibung der Plattform und der Definition ihrer
Anforderungen.

Im Rahmen dieser Diplomarbeit wurde eine Software erstellt, die die Spezifikation der Plattform
für Mustersprachen und Musterkataloge erfüllt. Ein weiterer Bestandteil der Softwareplanung ist die
Beschreibung der Struktur der Plattform für Mustersprachen und Musterkataloge, die anschießend
nach der Spezifikation vorgestellt wird. Die Struktur der Plattform erfüllt die Anforderungen
der Spezifikation und stellt das Bindeglied zwischen Spezifikation und Implementierung dar. Die
Implementierungsbeschreibung enthält die Umsetzung und die Verwendung der Spezifikation und der
Struktur von der Plattform für Mustersprachen und Musterkatalogen. Die Inbetriebnahme der Plattform
für Mustersprachen und Musterkataloge beschreibt die Installation der Plattform. [LL10, S. 353-356,
399-400]

4.1 Aufgaben und Ziele der Plattform für Mustersprachen und
Musterkataloge

In diesem Abschnitt werden die Aufgaben und Ziele der Plattform für Mustersprachen und
Musterkataloge vorgestellt. Sie werden als Anforderungen an die Plattform formuliert. Die
Anforderungen werden in verschiedene Bereiche unterteilt, um sie übersichtlich darzustellen. Es
werden die Bereiche Anforderungen der Modellabhängigkeiten des Metamodells für Mustersprachen,
Anforderungen der Autoren, Anforderungen der Leser von Muster und technische Anforderungen
vorgestellt. Die Inhalte der Anforderungsbereiche sollen außerdem eine Vorschau für die benötigten
Bestandteile der Plattform liefern. [LL10, S. 353-355, 366-374]

Anforderungen der Modellabhängigkeiten des Metamodells für Mustersprachen Die Plattform
für Mustersprachen und Musterkataloge soll für die Autoren von Mustersprachen eine webbasierte
Verwaltungssoftware für die Erstellung und Verwaltung von Mustersprachen und deren Musterkataloge
darstellen. Die Mustersprachen der Plattform sind Instanzen des vorgestellten Metamodells für

46 KAPITEL 4. PLATTFORM FÜR MUSTERSPRACHEN UND MUSTERKATALOGE

Mustersprachen. Autoren sollen mit Hilfe der Plattform Mustersprachen in diese einpflegen können.
Diese Mustersprachen dienen als Modell der Musterkataloge, die die Autoren ebenfalls in die Plattform
einpflegen und erweitern können.

Anforderungen der Autoren Die Plattform soll zusätzlich eine Verwaltung von verschiedene
Musterversionen unterstützen, damit den Autoren eine komfortable Mustererstellung geboten wird.
Die Autoren und Leser der Muster sollen zudem Diskussionen über die Inhalte der Muster führen
können. Für diesen Zweck soll die Plattform ein Forum für Diskussionsbeiträge über die Musterinhalte
bereitstellen.

Anforderungen der Leser von Muster Für die Leser der Muster sollen verschiedene
Musterorganisationen und Zusatzfunktionalitäten der Mustersprachen zur Verfügung stehen. Die
Musterorganisationen und Zusatzfunktionalitäten sollen für mustersprachenübergreifende Suchen
und Verwaltungen von Muster verwendet werden. Die Musterorganisationen sollen ein dynamisch
erzeugtes Suchergebnis liefern, das aus mehreren ausgewählten Kriterien zusammengestellt wird und
zusammenhängende Muster aus verschiedenen Musterkatalogen darstellt. Für diese Musterkollektionen
sollen Darstellungen bereitgestellt werden, die die Vernetzung der Muster anschaulich darstellen.

Technische Anforderungen Damit die Daten der Plattform für Mustersprachen und Musterkataloge
effizient verwaltet werden, soll ein Repository die Datenaufbereitung und -verwaltung für die Plattform
übernehmen. Die Plattform soll für Erweiterungen konzipiert sein und sie soll die Integration von
weiteren Bestandteilen ermöglichen.

4.2 Abgrenzung zu bestehenden webbasierten Musterkatalogen

In diesem Abschnitt werden die in dem Kapitel 2 Grundlagen vorgestellten webbasierten
Musterkataloge mit der Plattform für Mustersprachen und Musterkataloge verglichen und deren
Unterschiede präsentiert.

Die vorgestellten webbasierten Musterkataloge basieren alle auf einer Musterstruktur. Außerdem
bezieht sich der Inhalt der Muster nur auf einen Themenbereich. Die hier vorgestellte Plattform
für Mustersprachen und Musterkataloge bietet im Gegensatz zu den vorgestellten webbasierten
Musterkatalogen die Erstellung mehrerer Mustersprachen für verschiedene Themenbereiche an. Je
nach Themenbereich können die Mustersprachen unterschiedliche Musterstrukturen enthalten, die der
Autor der Mustersprache selbst definieren kann. Außerdem ist es möglich Verknüpfungen zwischen den
Mustersprachen herzustellen.

Die vorgestellten webbasierten Musterkataloge werden nur durch ausgewählten Autoren und
Experten der jeweiligen Themenbereiche gepflegt und sind für Dritte lesbar. Es gibt noch
weitere Musterkataloge, wie zum Beispiel das Patternry [LVH11], das sich thematisch mit
Benutzeroberflächenmuster befasst. Es basiert auf der Masterarbeit [Lam07] von Janne Lammi,
die über dynamisch erzeugte Konzepte und Techniken und über die Erstellung und den Aufbau
eines webbasierten Musterkatalog berichtet. In der Arbeit von Janne Lammi wird detailliert auf die
Benutzerschnittstelle des Musterkataloges und den Prozess der Mustererstellung eingegangen.

4.3. PLATTFORMSPEZIFIKATION FÜR MUSTERSPRACHEN UND MUSTERKATALOGE 47

In dem Musterkatalog Patternry [LVH11] kann jeder eigene Muster erstellen und diese für andere
Leser und Autoren zur Verfügung stellen. Autoren der Plattform für Mustersprachen und Musterkataloge
sollten Experten bezüglich der Themengebiete ihrer Muster sein und qualifizierte Beiträge bezüglich
der Mustersprachen erbringen. Die Muster der Plattform sind allen Autoren zugänglich. Es ist dem
Betreiber der Plattform für Mustersprachen und Musterkataloge überlassen, ob die Muster auch für
Dritte zugänglich sind. Im Gegensatz zu Patternry können keine Muster erstellt werden, die für andere
Autoren nicht zugänglich sind. Muster, die sich in der Plattform befinden, sollen für alle Autoren
öffentlich sein und von diesen in anderen Mustern referenziert werden können.

Die vorgestellten Musterkataloge besitzen fast alle Kategorien, in denen die Muster unterteilt sind.
Diese Unterteilungen bestehen oft aus zwei Hierarchieebenen. Zusätzlich werden oft Suchfunktionen
nach Musternamen oder deren Textinhalten angeboten. Oft wird auch ein Index mit den Musternamen
zur Verfügung gestellt. Die Plattform für Mustersprachen und Musterkataloge enthält erweiterte
Suchmechanismen und Darstellungen, die die Vernetzung der Muster darstellen. Die Verwendung
von Musterorganisationen und Zusatzfunktionalitäten der Mustersprachen wurde in dem Abschnitt
4.1 Aufgaben und Ziele der Plattform für Mustersprachen und Musterkataloge bereits vorgestellt.
Eine detaillierte Spezifikation des Aufbaus der Musterorganisationen und Zusatzfünktionalitäten
der Mustersprachen wird in dem Kapitel 4.3 Spezifikation der Plattform für Mustersprachen und
Musterkataloge beschrieben.

Einige webbasierte Musterkataloge bieten die Möglichkeit über Muster Diskussionen zu führen.
Die Plattform für Mustersprachen und Musterkataloge stellt auch die Möglichkeit, Diskussionen über
Muster zu führen, zur Verfügung.

4.3 Plattformspezifikation für Mustersprachen und Musterkataloge

In diesem Bereich der Arbeit wird eine Spezifikation durch die Verfeinerung der Anforderungen
erstellt. Diese Anforderungen stellt die Aufgaben und die Ziele der Plattform für Mustersprachen
und Musterkataloge dar. Die Spezifikation enthält Funktionalitäten, die die Funktionsweise,
die Verwendungen und die Handhabung der Plattform beschreiben. Sie enthält die allgemeine
Anforderungen, die Absichten, die Funktionalitäten und die Handhabung mit der Plattform für
Mustersprachen und Musterkatalogen. Für die Bewältigung der Anforderungen an die Plattform wird
das Metamodell für Mustersprachen als grundlegendes Datenmodell verwendet. Die Spezifikation
erweitert das Profil des Metamodells für Mustersprachen. Damit kann das Metamodell für
Mustersprachen in Kombination mit einer Verwaltungssoftware verwendet werden. Die Spezifikation
bietet zusätzlich die Grundlage für den Entwurf und die Struktur der Plattform für Mustersprachen und
Musterkataloge. [LL10, S. 353-356, 399-400]

Im Folgenden wird zunächst die Erstellung und die Verwaltung von Mustersprachen in der Plattform
für Mustersprachen und Musterkataloge sowie die dafür notwendige Anpassung des Metamodells
für Mustersprachen beschrieben. Anhand einer gepflegten Mustersprache können Musterkataloge
instanziiert werden. Im Anschluss wird die Erstellung und die Verwaltung von Musterkatalogen in der
Plattform für Mustersprachen und Musterkatalogen vorgestellt. Zusätzlich zu den weiteren Anpassungen
des Metamodells für Mustersprachen, wird der Suchmechanismus der Plattform vorgestellt.

48 KAPITEL 4. PLATTFORM FÜR MUSTERSPRACHEN UND MUSTERKATALOGE

4.3.1 Erstellung und Verwaltung von Mustersprachen

Die Plattform für Mustersprachen und Musterkataloge ermöglicht es, dass Mustersprachen angelegt
werden können. Die Mustersprachen basieren alle auf dem Metamodell für Mustersprachen. Durch
das Anlegen einer Mustersprache wird eine Instanz des Metamodells für Mustersprachen gebildet.
Die Musterkataloge sind wiederum Instanzen der Mustersprachen. Die Musterkataloge liegen den
Beschreibungen der entsprechenden Mustersprachen zu Grunde. Die Informationen über den Aufbau
eines Musterkataloges befindet sich in der entsprechenden Mustersprache. Diese Beschreibungen für
den Aufbau der Musterkataloge, in Form von Mustersprachen, sind in der Plattform für Mustersprachen
und Musterkataloge hinterlegt. Bei der Erstellung von Mustersprachen müssen nicht alle Elemente des
Metamodells für Mustersprachen instanziert werden. Im Folgenden wird das Profil des Metamodells für
Mustersprachen durch vordefinierte Elemente, die bei der Erstellung einer Mustersprache verwendet
werden, erweitert. Zunächst wird die Erstellungsphase einer Mustersprache in der Plattform für
Mustersprachen und Musterkataloge vorgestellt.

Erstellung von Mustersprachen Bei der Erstellung einer Mustersprache liegt der Schwerpunkt
auf der Definition der Musterstruktur. Die Musterstruktur wird durch Inhaltselemente definiert. Die
Inhaltselemente enthalten wiederum Inhaltsarten, die die konkreten Inhalte der Muster enthalten. Die
Arten der Inhalte werden von der Plattform für Mustersprachen und Musterkataloge vordefiniert. Es
können nur die Arten von Inhalten verwendet werden, die die Plattform für Mustersprachen vorsieht.
Für die Erstellung einer Mustersprache müssen auch die obligatorischen und optionalen Inhaltselemente,
die durch das Metamodell für Mustersprachen vorgesehen sind, angegeben werden. Mit ihnen wird
die Musterstruktur der Mustersprache vervollständigt. Die Arten der Inhaltselemente sind in dem
Profil des Metamodells der Mustersprachen in der Plattform hinterlegt. Die Plattform enthält ebenso
ein vorgefertigtes Konstrukt für Referenzen auf Strukturelementen. Diese können in Kombination
mit den entsprechenden Beziehungstypen verwendet werden. Diese Beziehungstypen zwischen
Strukturelementen sind ebenfalls in der Plattform für Mustersprachen und Musterkataloge vordefiniert.
Um die Erstellung einer Mustersprache fertigzustellen, muss noch deren Mustersprachstruktur definiert
werden. Sie enthält Musterorganisationen und Zusatzfunktionalitäten. Die Musterorganisationen
sind Strukturen, die in der Plattform für Mustersprachen und Musterkataloge erstellt werden
können. Das Profil des Metamodells für Mustersprachen bietet die optionale Verwendung von den
bereits vorgestellten Musterorganisationen. Zusätzlich können weitere Musterorganisationen in die
Plattform eingepflegt und verwendet werden. Die Zugehörigkeit und Einordnung der Muster in
Musterorganisationen wird im folgenden Abschnitt 4.3.2 Erstellung und Verwaltung der Musterkataloge
geklärt. Die Zusatzfunktionalitäten einer Mustersprache sind ebenfalls durch das Profil des Metamodells
für Mustersprachen vorgegeben. Sie stellen spezielle Funktionalitäten dar, die optional verwendet
werden können. Das Erstellen von weiteren Zusatzfunktionalitäten wird von der Plattform für
Mustersprachen und Musterkataloge nicht unterstützt, weil die Zusatzfunktionalitäten sehr spezielle
und unterschiedliche Konstrukte darstellen. Nach dem Anlegen eines Musterkataloges kann dessen
Mustersprachen nicht mehr geändert oder gelöscht werden, da die Mustersprachen Beschreibungen
und Vorschriften der Musterkataloge darstellen und Veränderungen der Mustersprachen Inkonsistenzen
hervorbringen könnten. Es wird lediglich die Erweiterung der Musterorganisationen zur Verfügung
gestellt.

4.3. PLATTFORMSPEZIFIKATION FÜR MUSTERSPRACHEN UND MUSTERKATALOGE 49

Beispiel einer Mustersprache In Anhang B ist eine Abbildung zu sehen, die ein Beispiel
einer Mustersprache darstellt. Dieses Beispiel soll helfen, die Erstellung einer Mustersprache mit
vordefinierten und neu erstellten Elementen zu erklären. In der Abbildung sind vordefinierte
Elemente der Plattform für Mustersprachen und Musterkataloge und auch neue Elemente enthalten.
Beispielsweise sind die Inhaltselemente (Content Pattern Element) der Musterstruktur für diese
Beispielmustersprache verfeinert worden. Ein neu erstelltes Inhaltselement ist zum Beispiel das
Diskussionselement (Discussion). Es ist von dem Typ der optionalen Inhaltselemente (optional Pattern
Content Element). Das Diskussionselement enthält einen neuen Inhaltstyp (Discussion Representation),
der den Inhalt und die Darstellung der Diskussionen definiert. Das Diskussionselement wird weiter
verfeinert, in dem es wiederum Beitragselemente (Contribution) enthält, die von dem Typ der optionalen
Inhaltselemente abgeleitet sind und die den bereits vordefinierten textbasierenden Inhaltstyp (Text
Content) enthalten. Es wurden auch konkrete Inhaltselemente aus dem Profil des Metamodells für
Mustersprachen übernommen, wie zum Beispiel das Beispielelement.

Erweiterung des Metamodellprofils für Mustersprachen In diesem Abschnitt wird das Profil des
Metamodells für Mustersprachen an die Plattform für Mustersprachen und Musterkataloge angepasst.
Das Profil des Metamodells für Mustersprachen wird durch vordefinierte Elemente erweitert. Diese
Erweiterungen, die sich auf die Erstellung der Mustersprachen in der Plattform für Mustersprachen und
Musterkatalogen beziehen, werden im Folgenden vorgestellt und sind in der Abbildung im Anhang C
dargestellt. Die Abbildung enthält das angepasste Profil für Mustersprachen der Plattform, das mit der
folgenden Erklärung vervollständigt wird. Die Bezeichner der Profilerweiterungen aus der Abbildung
sind englisch dargestellt und werden in den folgenden Profilerweiterungen in Klammern hinter den
deutschen Begriffen aufgeführt.

Zunächst werden die Arten der Inhaltselemente, deren Inhaltsarten und ihre Abhängigkeiten
vorgestellt. Danach werden die Beziehungsarten und Referenzierungen von Strukturelementen
präsentiert. Anschließend werden die Arten von Musterorganisationen und Zusatzfunktionalitäten
erklärt.

Inhaltselement (Content Element) Die Inhaltselemente von Muster werden aus dem Profil
des Metamodells für Mustersprachen übernommen und erweitert. Damit sie als Datenstruktur für
die Plattform für Mustersprachen und Musterkatalogen verwendet werden können. Die bereits
bestehenden Inhaltselement Metainformation (Meta Information Description), Problembeschreibung
(Problem Description), Beschreibung der äußere Einflüsse (Visible Forces Description),
Kontextbeschreibung (Context Description), Lösungbeschreibung (Solution Description), deren
Schussfolgerungsbeschreibung (Conclusion Description) sowie das Beispiel (Example Description)
der Musterstruktur wurden aus dem Profil des Metamodells für Mustersprachen übernommen. Im
Folgenden werden die erweiterten Inhaltselemente erläutert.

Diskussion (Discussion) Das Diskussionselement wird in der Plattform für Mustersprachen
verwendet. Damit können Diskussionen über die jeweiligen Musterinhalte geführt werden.

Dikussionsbeiträge (Contribution to the Discussion) Die Diskussionbeiträge sind
unterelemente des Diskussionselementes. Sie enthalten die Beiträge der Autoren.

50 KAPITEL 4. PLATTFORM FÜR MUSTERSPRACHEN UND MUSTERKATALOGE

Anhang (List of Attachments) In das Anhangselement können Dateien angefügt werden. Diese
Informationen helfen die Muster zu vervollständigen.

Anhangsdatei (Attachment Element) Eine Anhangsdatei repräsentiert eine Datei, die sich in
dem Anhang des Musters befindet.

Arten von Inhalten (Content) In dem Inhaltselement der Muster wird ein Teil des Musterinhaltes
beschrieben. Die Arten der Inhalte werden benötigt, um zu unterscheiden was für einen Inhalt es sich
handelt und wie dieser beispielsweise verwendet oder repräsentiert wird. Im Folgenden werden die
Inhaltselement der Plattform für Mustersprachen und Musterkataloge vorgestellt:

Metainformationsinhalt (Meta Data Content) Die Inhaltsart Metainformationsinhalt enthält
Informationen, die den Inhalt eines Musters beschreiben. Durch die Definition dieser Art ist es
möglich die Metainformationen zu verändern und dem Benutzer zu präsentieren. Diese Inhaltsart
wird dem Inhaltselement der Metainformation zugeordnet.

SimpleHTML (Textual Content) Die Inhaltsart SimpleHTML enthält hauptsächlich Text,
der graphisch in den Musterkatalogen repräsentieren wird. Dieser Text wird durch einfache
HTML-Tags formatiert. Die Formatierung mit HTML bietet sich sehr gut an, da die Textinhalte
in einem Webbrowser angezeigt werden. In dem Text können zusätzliche Verknüpfungen auf
anderen Mustern enthalten sein. Auch Hyperlinks können zur Beschreibung verwendet werden. Es
können ebenso Bilder in den Text eingebettet werden, um den Text verständlicher zu gestalten. Die
Inhaltsart SimpleHTML wird den Inhaltselementen Problembeschreibung, Lösungsbeschreibung,
Schlussfolgerung, Kontextbeschreibung, Beschreibung der äußeren Einflüsse und dem Beispiel
zu geordnet.

Diskussion (Discussion Content) Die Inhaltsart Diskussion stellt eine Liste von
Diskussionsbeiträgen bereit und wird hauptsächlich für die Repräsentation und deren
Diskussionsbeitrag in der Plattform benötigt. Die Diskussionsinhaltsart wird dem Inhaltselement
Diskussion zugeordnet.

Diskussionsbeitrag (Contribution Content) Die Inhaltsart Diskussionsbeitrag ist eine
Spezialisierung der Inhaltsart SimpleHTML. Es wird zwischen den beiden Arten unterschieden,
damit eine andere Darstellungsart für die Diskussionsbeitrag gewählt werden kann. Die Inhaltsart
Diskussionsbeitrag wird dem Inhaltselement Dikussionsbeiträge zugeordnet.

Anhänge (Attachment List) Die Inhaltsart Anhänge bietet die Möglichkeit beliebige Dateien an
ein Muster anzufügen. Somit können zum Beispiel Bilder, Konfigurationsdateiten, Beispielcode
und viele weitere Informationen an ein Muster angefügt werden. Die Anhänge stellen
zusätzlich Musterinformationen dar, die nicht notwendigerweise in dem Musterkatalog graphisch
Repräsentation werden müssen. Diese Inhaltsart wird dem Inhaltselement Anhang zugeordnet.

Anhangsdatei (Attachment File) Die Inhaltsart Anhangsdatei repräsentiert eine angefügte Datei,
die sich in dem Anhang befindet. Sie wird dem Inhaltselement Anhangsdatei zugeordnet.

4.3. PLATTFORMSPEZIFIKATION FÜR MUSTERSPRACHEN UND MUSTERKATALOGE 51

Arten von Beziehungen zwischen Mustersprachen, Muster und Musterinhalten (Structure
Elemente Relation) Um Referenzierungen zu erstellen, wird die Beschreibung der Beziehung zu
den referenzierten Elementen benötigt. Die Plattform für Mustersprachen und Musterkataloge sieht
dafür die in den folgenden aufgelisteten Arten von Beziehungen zwischen Mustersprachen, Muster und
Musterinhalten vor. Die Beziehungsarten wurden aus dem Metamodell für Mustersprachen übernommen
und werden im Folgenden für die Plattform für Mustersprachen und Musterkataloge verfeinert.

Spezialisierungsbeziehung (Specialisation SER) Es können Spezialisierungen von
Mustersprachen, Muster und Musterinhalten erstellt werden. Die Spezialisierungen von
diesen Elementen besitzen eine Spezialisierungsbeziehung zu ihren Generalisierungen.

Vervollständigende Aggregationsbeziehung (Completing Aggregation - SER) Die Beziehung
einer vervollständigenden Aggregationsbeziehung besteht zwischen zwei Elementen, wenn das
eine Element den Inhalt des anderen durch Einschluss seines Inhalts erweitert.

Alternative Aggregationsbeziehung (Competing Aggregation - SER) Die alternative
Aggregationsbeziehung besteht auch zwischen zwei Elementen, wenn das eine Element den
Inhalt des anderen durch Einschluss seines Inhaltes erweitert. Zusätzlich stellt der Einschluss
des Inhaltes eine Alternative zu einem anderen Einschluss eines Inhaltes dar.

Erweiternde Aggregationsbeziehung (Combining Aggregation - SER) Die erweiternde
Aggregationsbeziehung wird auch verwendet, um den Inhalt eines Elementes mit
dem eines anderen zu erweitern. Im Gegensatz zu der vervollständigenden und der
alternativen Aggregationsbeziehung stellen die Inhalte der Elemente mit der erweiternden
Aggregationsbeziehung optionale Zusatzinformationen dar.

Assoziationsbeziehung (Assoziation SER) Eine Assoziationsbeziehung wird verwendet, wenn
eine Beziehung vorliegt, die nicht durch die bereits vordefinierten Beziehungen abgedeckt ist. Die
Assoziationsbeziehung stellt eine universale Beziehung dar.

Referenzen von Mustersprachen, Muster und Musterinhalte Die Plattform für Mustersprachen
und Musterkataloge bietet einen Mechanismus an, um Mustersprachen, Muster und Musterinhalte
zu referenzieren. Dabei wird das Modell der Strukturelementreferenz aus dem Metamodell für
Mustersprachen verwendet. Eine Referenz der Plattform für Mustersprachen und Musterkataloge
wird durch einen Hyperlink verkörpert. Die Referenz enthält zusätzlich zu dem Namen (Identifier)
und der Adresse (Reference URI) des Hyperlinks eine Beschreibung der Beziehung, die zwischen
dem referenzierten Element und dem Element, das die Referenz enthält besteht. Optional kann
die Referenz auch mit dem Symbol (Icon) des Elements dargestellt werden. Die Beschreibung der
Beziehungen verwendet die vordefinierte Art von Beziehungen zwischen Mustersprachen, Muster und
Musterinhalten, um deren Semantik auszudrücken. Zusätzlich können Gemeinsamkeiten von Elementen
aufgezählt werden, die durch ihre Beziehung dargestellt werden sollen. Die Gemeinsamkeiten können
beschreiben aus welchen Gründen die Beziehung zwischen den Strukturelementen von dem Autor
gewählt wurde und welchen Schwerpunkt sie darstellt.

Arten von Musterorganisationen (Pattern Organisation) Die Plattform für Mustersprachen und
Musterkataloge bietet die Möglichkeit die Muster der Musterkataloge in Musterorganisationen

52 KAPITEL 4. PLATTFORM FÜR MUSTERSPRACHEN UND MUSTERKATALOGE

einzuordnen. Durch diese Einteilung wird die Vernetzung der Muster verstärkt. Die
Musterorganisationen stellen Hierarchien dar, die durch Kategorien aufgebaut sind. Die ursprüngliche
Idee des Metamodells für Mustersprachen ist es die Musterorganisationen anhand der Inhalte von
Mustern aufzubauen. Der Einfachheit halber werden die Musterorganiation nicht automatisch von
der Plattform für Mustersprachen und Musterkataloge erstellt und deren Muster eingepflegt. Autoren
können bei der Erstellung von Mustersprachen vorhandene Musterorganisationen auswählen oder neue
erstellen. Den Autoren wird die Erstellung der Struktur von Musterorganisationen und das Einpflegen
der Muster überlassen. Durch das hinzufügen von Informationen in die Metainformationen der Muster,
können die Muster den Musterorganisationen zugeordnet werden. Im Folgenden werden vordefinierte
Arten von Musterorganisationen vorgestellt. Diese Musterorganisationen basieren alle auf dem
Metamodell für Musterspachen. Sie wurden in dem Abschnitt 3.6.3.1 Typen von Musterorganisationen
im Mustersprachprofil vorgestellt und werden für den Einsatz in der Plattform für Mustersprachen und
Musterkataloge verfeinert. Zusätzlich ist es möglich weitere Musterorganisation in der Plattform für
Mustersprachen und Musterkatalogen zu erstellen und deren Struktur zu definierten.

Organisation von Musterebenen (Pattern Organisation by Level) Die Organisation
von Musterebenen ist eine mustersprachübergreifende Menge von vernetzten Mustern. Die
Vernetzungen der Muster werden durch deren Referenzen dargestellt. Die von den Autoren bei
der Erstellung der Muster angelegt werden.

Organisation von Musterbereichen (Pattern Organisation by Domain) Die Organisation
von Musterbereichen stellt eine mustersprachübergreifende Hierarchie von Bereichen jeglicher
Art dar. Es können sich mehrere Muster aus unterschiedlichen Mustersprachen in den selben
Bereichen befinden. Zudem können auch Muster mehreren Bereichen zugeordnet werden.
Damit die Organisation von Musterbereichen aufgebaut werden kann, müssen die Autoren eine
Hierarchie von Musterbereichen festlegen. Die Metainformationen (Meta Information) der Muster
werden erweitert, damit man ihnen die Musterbereiche (Domain) zuordnen kann. Aus den
angehefteten Musterbereichsinformationen, kann die Organisation von Musterebenen aufgebaut
werden.

Organisation von Musterpartitionen (Pattern Organisation by Partition) Die Organisation
von Musterpartitionen ist eine mustersprachabhängige hierarchische Unterteilung in Partitionen.
Die Partitionen stellen Themenbereiche dar, die sich gegenseitig ausschließen. Somit kann zum
Beispiel eine Mustersprache bezüglich ihres Lösungsansatzes unterteilt werden. Genau so wie bei
der Organisation von Musterbereichen werden die Musterpartitionen (Partition) vordefiniert und
in den Metainformationen (Meta Information) der Muster angegeben, zu welcher Partition das
Muster gehört.

Organisation von Musterabsichten (Pattern Organisation by Intent) Die Organisation von
Musterabsichten ist eine mustersprachübergreifende hierarchische Einteilung der Muster in
deren Absichten. Genauso wie bei der Organisation von Musterbereichen und der Organisation
von Musterpartitionen kann die Organisation von Musterabsichten durch vordefinieren der
Musterabsichten (Intent) und der Angabe der Musterabsichten in den Metainformationen (Meta
Information) der Muster, aufgebaut werden.

4.3. PLATTFORMSPEZIFIKATION FÜR MUSTERSPRACHEN UND MUSTERKATALOGE 53

Arten von Zusatzfunktionalitäten von Mustersprachen (Pattern Language Feature) Die
Arten von Zusatzfunktionalitäten von Mustersprachen, die von der Plattform von Mustersprachen
und Musterkatalogen unterstützt werden, basieren alle auf dem Metamodell für Mustersprachen.
Die Zusatzfunktionalitäten von Mustersprachen wurden in 3.6.3.2 Zusatzfunktionalitäten für
Mustersprachen im Mustersprachprofil beschrieben und werden im Folgenden für die Verwendung
innerhalb der Plattform für Mustersprachen und Musterkataloge angepasst. Jede Mustersprache enthält
die Zusatzfunktionalitäten. Sie können bei der Erstellung der Musterkataloge optional angelegt werden.

Zusammenfassung der Musterinhalte (Pattern Language Summary) Die Zusammenfassung
der Musterinhalte stellt einen Text dar, der den Kern des Musterspracheninhaltes beschreibt. Für
jede Mustersprache wird eine eigene Zusammenfassung der Musterinhalte erstellt.

Problem-/Lösungstabelle der Muster (Problem/Solution Summary) Die
Problem-/Lösungstabelle der Muster ist eine Tabelle, die Kurzfassungen der Musterprobleme
und -lösungen übersichtlich darstellt. Die Plattform für Mustersprachen und Musterkataloge
ermöglicht es, die Tabellen aller Mustersprachen zusammenzufassen, damit die Autoren und
Leser in der Zusammenfassung die Problem-/Lösungspaare suchen können.

Musterübergreifende Beispiele (Running Examples) In dieser Zusatzfunktionalität
musterübergreifender Beispiele werden fortlaufende oder ähnliche Beispiele in Beschreibungen
zusammengestellt, um den Mustersprachen weitere Zusammenhänge und Vernetzungen bezüglich
der demonstrativen Umsetzung ihrer Muster zu verleihen.

Wörterverzeichnis der Musterinhalte (Glossary) In dem Wörterverzeichnis der Musterinhalte
werden Fachbegriffe der Musterinhalte erklärt und auf die Muster verwiesen, in denen diese
Fachbegriffe vorkommen.

Inhaltsverzeichnis für Mustersprachen (Index) Eine Mustersprache kann eine von Autoren
angelegte Gliederung enthalten. Bei der Erstellung der Muster werden die Muster in diese
Gliederung eingefügt.

4.3.2 Erstellung und Verwaltung von Musterkatalogen

Mustersprachen, die in der Plattform für Mustersprachen und Musterkataloge erstellten worden sind,
stellen Typen von Musterkatalogen dar. Die Plattform ermöglicht es, dass Musterkataloge anhand
bereits definierten Mustersprachen angelegt und verwaltet werden können. Die Musterkataloge sind
Instanzen der Mustersprachen, die in der Plattform hinterlegt sind. Sie werden erzeugt, in dem
sie von einer Mustersprache abgeleitet werden. Der neu erzeugte Musterkatalog der Mustersprache
erhält deren Eigenschaften und einen Namen. Durch das Anlegen von Muster wird der Inhalt
der Musterkataloge erstellt. Die Muster des Musterkataloges müssen nach der Musterstruktur der
Mustersprache aufgebaut sein, aus der der Musterkatalog abgeleitet wurde. Zusätzlich dazu können
die Zusatzfunktionalitäten und die Musterorgnisationen der Mustersprache angelegt und verwendet
werden. Die Verwaltung der Musterkataloge beinhaltet unter anderem das Verwenden und das stetige
Pflegen und Erweitern der Zusatzfunktionalitäten und Musterorganisationen. Muster können auch nach
der Erstellung eines Musterkataloges eingepflegt werden. Ebenso können bestehende Musterinhalte
geändert werden, in dem eine neue Version des Musters angelegt wird. Für diesen Zweck wird ein

54 KAPITEL 4. PLATTFORM FÜR MUSTERSPRACHEN UND MUSTERKATALOGE

Mechanismus für die Verwaltung der verschiedenen Musterversionen vorgestellt. Die Verwendung der
Musterkataloge beinhaltet zusätzlich das Stöbern in den Musterkatalogen. Dies wird durch das Verfolgen
der hinterlegten Referenzen auf Musterkataloge, Muster und deren Inhalten möglich. Außerdem wird ein
Suchmechanismus vorgestellt, der es ermöglicht nach bestimmten Inhalten der Musterkataloge, Muster
und deren Inhalten zu suchen. Damit den Autoren und Lesern der Muster eine Diskussionsplattform
geboten werden kann, ermöglicht die Plattform für Mustersprachen und Musterkatalogen das Führen
von Diskussionen über die Inhalte der Muster. Im Folgenden wird auf die Erstellung und Verwaltung von
Mustern eingegangen. Anschließend werden die Möglichkeiten der Verwendung der Muster und deren
Hilfsmittel, die die Plattform für Mustersprachen und Musterkataloge zur Verfügung stellt, spezifiziert.

Erstellung der Muster Um ein Muster für eine Mustersprache zu erstellen, wählt der Autor einen
Namen für das Muster. Dieses identifiziert das Muster in dem Musterkatalog eindeutig. Optional kann
ein Muster ein Symbol enthalten, das es graphisch repräsentiert. Es können noch weitere Angaben der
Metainformation über das Muster gemacht werden. Dies sind beispielsweise Autoren der Musterinhalte,
Suchwörter oder Informationen für die Musterorganisationen, in denen der Musterinhalt einzuordnen
ist. Das Hauptaugenmerk bei der Erstellung von Mustern liegt auf der Erstellung und Formulierung
des Musterinhaltes. Dazu müssen die Inhaltselemente der zu Grunde liegenden Musterstruktur
instanziiert werden. Der Autor entscheidet, welche optionalen Inhaltselemente für die Beschreibung des
Musterinhaltes benötigt werden. In den Inhaltselementen sollten Referenzen auf andere Mustersprachen,
Muster oder Musterinhaltselemente eingefügt werden, falls diese für die Erklärung des Sachverhaltes
beitragen.

Veränderung und Erweiterung der Musterinhalte Die Plattform für Mustersprachen und
Musterkataloge ermöglicht ihren Autoren die Veränderung von Mustern. Die Musterinhalte eines
Musters können verändert oder erweitert werden. Durch eine Veränderung oder Erweiterung der
Musterinhalte wird eine neue Version des Musters erstellt. Die Autoren können dadurch auf alte
Versionen der Muster zurückgreifen und die Entstehungs- und Verbesserungsprozesse der Musterinhalte
einsehen. Außerdem wird es ermöglicht Muster zu löschen. Damit die Plattform für Mustersprachen
und Musterkataloge dies ermöglichen kann, ist eine Erweiterung von den Metainformation von
Mustersprachen, Muster und deren Inhaltselementen, die dem Metamodells für Mustersprachen zu
Grunde liegen, erforderlich. Die Anpassung und die Erstellung der Metainformationsmodelle wird
im Folgenden detailliert vorgestellt. Bei der Erstellung der Modelle für die Metainformationen der
Mustersprachen, Muster und deren Inhaltselementen wird bereist auf Bestandteile, die für die Suche
benötigte werden, vorweg gegriffen.

Erweiterung der Metainformationen von Mustersprachen, Mustern und deren
Inhaltselementen Damit die Anforderungen der Spezifikation der Plattform für Mustersprachen
und Musterkataloge erfüllt wird, werden zunächst Modelle der Metainformationsbeschreibung
für Mustersprachen, Muster und Musterinhalte erstellt. Durch die Definition der Modelle für die
Metainformationsbeschreibungen wird es möglich, dass Musterorganisationen aufgebaut, die Suche
von Mustern erweitert und die verschiedenen Musterkatalogen, Mustern und Musterversionen verwaltet
werden können.

Die Abbildung 4.1 zeigt die Metainformationsbeschreibung für Mustersprachen (Pattern Language
Meta Information Descriptor). Sie ist eine Instanz der Metaklasse für die Metainformationsbeschreibung

4.3. PLATTFORMSPEZIFIKATION FÜR MUSTERSPRACHEN UND MUSTERKATALOGE 55

des Metamodells für Mustersprachen und wird einheitlich in den Mustersprachen der Plattform
für Mustersprachen und Musterkataloge verwendet. Die Metainformationsbeschreibung enthält ein
Erstellungs- (Created Date) und Änderungsdatum (Changed Date), eine Liste von Autoren (Author)
und eine Liste von Schlüsselwörtern (Keyword). Die Daten der Mustersprachen sollen den Lesern
und Autoren chronologische Informationen bezüglich der Erstellung und Änderung der Musterkataloge
liefern. In der Metainformationsbeschreibung der Mustersprachen werden alle Autoren festgehalten,
die an der Erstellung der Musterkataloge beteiligt sind. Die Liste der Schlüsselwörter ist eine
Zusammenstellung von Stichpunkten, die den Inhalt der Mustersprache stichpunktartig wiedergeben
soll. Die Werte der Metainformationen von Mustersprachen werden aus den Metainformationen ihrer
Muster abgeleitet.

Abbildung 4.1: Metainformationsbeschreibung für Mustersprachen

Die Metainformationsbeschreibung für Muster (Pattern Meta Information Descriptor) ist in der
Abbildung 4.2 dargestellt. Sie ist genauso wie die Metainformationsbeschreibung für Mustersprachen
eine Instanz der Metaklasse für Metainformationsbeschreibung des Metamodells für Mustersprachen
und wird einheitlich in den Muster der Plattform für Mustersprachen und Musterkataloge verwendet.
Die Metainformationsbeschreibung besteht aus einer Liste von Autoren (Author), einer Liste
von Schlüsselwörtern (Keyword), einer Liste von Musterbereichen (Domain), einer Liste von
Musterpartitionen (Partition), einer Liste von Musterabsichten (Intent) und einer Versionsbeschreibung.
Im Gegensatz zu der Metainformationsbeschreibung für Mustersprachen wird hier auf das Erstellungs-
und Änderungsdatum verzichtet, da diese in der Versionsbeschreibung enthalten sind. Die Liste
der Autoren enthält die Autoren des Musters und dessen Inhalte. Die Liste der Schlüsselwörter
stellt eine stichpunktartige Inhaltsangabe des Musters dar. Die Liste der Musterbereiche beschreibt
stichpunktartig die Zuordnung des Musterinhaltes in Themenbereiche. Die Liste von Musterabsichten
stellt stichpunktartig die Absichten des Musterinhaltes dar. Die Versionsbeschreibung ist für die
Verwaltung der unterschiedlichen Versionen der Muster verantwortlich. Im weiteren Verlauf wird
genauer auf das Modell der Versionsbeschreibung eingegangen.

Für die Inhaltselemente der Muster wird das selbe Metainformationsbeschreibungsmodell
verwendet, wie für die Muster. Die Mustermetainformationen von Mustern stellen die Menge der
Mustermetainformationen ihrer Inhaltselemente dar.

In Abbildung 4.3 ist das Modell der Versionsbeschreibung (Version Descriptor) für Muster und deren
Inhaltselemente zu sehen. Die Versionsbeschreibungen der Muster, die aus dem selben Anfangsmuster
entstanden sind, werden in ein Gruppe (Version Collection) unterteilt. In den Gruppen werden alle
verschieden Versionen eines Musters vermerkt. Eine Versionsbeschreibung enthält den Autor (Author),

56 KAPITEL 4. PLATTFORM FÜR MUSTERSPRACHEN UND MUSTERKATALOGE

Abbildung 4.2: Modell der Metainformationsbeschreibung für Muster

der die neue Version des Musters angelegt hat. Es wird das Erstelldatum (Created Date) der ersten
Musterversion und das Datum der aktuellen Version des Musters (Changed Date) vermerkt. Jede Version
enthält eine Versionsnummer (Version Number), die bei der Erstellung einer neuen Musterversion
hochgezählt wird. Wird eine ältere Musterversion verändert, dann wird die daraus erzeugte neue
Musterversion die aktuellste und erhält die höchste Versionsnummer. Muster können nicht gelöscht
werden, weil auf diese verwiesen wird. Aus diesem Grund kann ein Muster als gelöscht markiert werden.
Es ist ein Element vorgesehen, das diese Information enthält (Removal). Damit die Leser und Autoren
wissen, wieso das Muster oder ein Musterinhalt entfernt wurde, kann dafür eine Begründung (Reason)
hinterlegt werden. Ein Muster kann aus mehreren Gründen entfernt werden. Das Problem eines Musters
kann durch die Erweiterung des Musterkataloges gelöst werden. Ebenso kann ein neues Muster eine
bessere alternative bieten, die ein altes Muster in jeder Hinsicht überflüssig macht. Die Entwicklung
eines neuen Paradigmas, einer neuen Programmiersprache, eines neuen Programmierstiles oder einer
Verlagerung der Art der Systeme, die entwickelt werden, kann dazu führen, dass Muster entfernt werden.
[BMR+98][S. 376-377]

Suchen nach Mustersprachen, Mustern und Musterinhalten Die Plattform für Mustersprachen
und Musterkatalogen sieht einen Suchautomatismus vor, damit die Leser und Autoren nach Inhalten der
Musterkatalogen, Muster oder Musterinhalten suchen können. Das Ergebnis der Suche kann spezielle
Musterlösungen oder bestimmte Vernetzungen von Mustern darstellen.

Die Plattform bietet für die Suche mehrere Filter an. Ein Filter stellt eine Menge von
Strukturelementen aus einer Eingabemenge von Strukturelementen zusammen, die dem Kriterium des
Filters genügen. Die Eingabemengen und die Kriterien der Filter können den Filtern übergeben werden.
Damit möglichst detaillierte Selektionen erstellt werden können, können die Filter in einer Suchanfrage
kombiniert angewendet werden.

Jede Musterorganisation und jede Zusatzfunktionalität einer Mustersprache muss einen Filter für
die Suche bereitstellen, damit deren Strukturen nach Mustern durchsucht werden können. Zusätzlich

4.3. PLATTFORMSPEZIFIKATION FÜR MUSTERSPRACHEN UND MUSTERKATALOGE 57

Abbildung 4.3: Modell der Versionsbeschreibung

können die Inhaltsarten Filter für die Suche von Inhaltsbestandteile bereitstellen. Darüberhinaus bietet
die Plattform für Mustersprachen und Musterkataloge Filter an, die nach folgenden Kriterien die
Musterkataloge, Muster und deren Inhaltselemente selektieren können: Erstellungs-, Änderungsdaten,
Autoren oder Schlüsselwörter.

Im Folgenden wird die Form der Suchanfragen definiert, die Anordnung der Filter bezüglich der
Suchanfragen erklärt, die Abarbeitung der Filter vorgestellt und das Verfahren an einem Beispiel erklärt.

Um ein Suchergebnis der Suchfunktion zu erhalten, muss eine Suchanfrage erstellt und deren
Filterprozess aufgebaut werden, bevor die Suchanfrage durchlaufen werden kann. Da sich die Inhalte
der Musterkataloge ständig ändern und die Suchanfragen unterschiedlich und neu formuliert werden
können, wird die Struktur der Suchanfrage und die Menge der benötigten Daten für jede Suche erneut
aufgebaut. Zunächst wird das Modell der Suchanfrage vorgestellt, damit der Filterabarbeitungsprozess
erstellt werden kann.

Grammatik der Suchanfragensprache:

G = (V, Σ, P, QP)

V = { QP }
Σ = { filter, SE\ , ∩, ∪, (,) }
P = {

1. QP→ SE\QP
2. QP→ QP ∪ QP
3. QP→ QP ∩ QP
4. QP→ (QP)
5. QP→ filter

}

58 KAPITEL 4. PLATTFORM FÜR MUSTERSPRACHEN UND MUSTERKATALOGE

Alle gültigen Suchanfragen für den Suchdienst der Anwendungslogik sind Elemente der
kontextfreien Sprache L(G). Die Suchanfragensprache L(G) wird durch die angegebenen Grammatik
G gebildet. In der Definition der Grammatik werden Filter und Mengenoperatoren verwendet, um
Suchanfragen zu formulieren. Das Terminalsymbol SE\ stellt das Komplement einer Menge von allen
Strukturelementen dar. Die anderen Terminalsymbole werden für beliebige Filter, Klammern und die
Mengenoperatoren Vereinigung und Schnittbildung eingesetzt. Ein Filter enthält eine Funktion, die
durch Hinzunahme eines Filterkriteriums eine Menge von Strukturelemente filtert und eine gefilterte
Menge von Strukturelementen zurück liefert. Die Filter repräsentieren in der Suchanfrage Mengen
von Strukturelementen. Es ist zum Beispiel die Suchanfrage filter1 ∩ (filter2 ∪ filter3) in der
Suchanfragensprache L(G) enthalten. Der filter1 könnte beispielsweise alle Muster auswählen, die
ein bestimmter Autor erstellt hat. Damit die Filter eine Menge liefern, werden diese auf die Menge
SE, aller zu durchsuchenden Strukturelemente, angewendet. Die Beispielsuchanfrage kann somit in
die folgende Gleichung umgeformt werden: SE1 ∩ (SE2 ∪ SE3). Die Menge SEi wird durch die
Selektion der jeweiligen Filter filteri gebildet. Durch die Berechnung der erstellten Gleichung erhält
man das Suchergebnis. Im folgenden Verlauf wird der Aufbau der Filter, der Suchanfragenstruktur und
deren Traversierung erklärt. Anhand dessen wird die Einsparung von Rechenoperationen vorgestellt, die
durch die Verwendung von vorselektierten Eingabemengen der Filter gewonnen wird. [Sch01, S. 11-26,
51-79], [Goo97, S. 77-78, 94-140]

In Abbildung 4.4 ist das Modell eines Filters in Form einer UML-Klasse abgebildet. Das
Modell ist durch eine abstrakte Klasse (Filter) dargestellt, die eine Funktion (filterStructureElements)
enthält, um eine Mengen von Strukturelementen (Set<StructureElements>) anhand vordefinierter
Filterkriterien (Criterion) zu filtern. Eine Suchanfrage ist ein Element der Suchanfragensprache,
es wird durch eine Suchanfragestruktur dargestellt. Die Suchanfragestruktur wird der Suche als
Eingabe über geben. Anhand der Suchanfragestruktur kann die Suche das Suchergebnis berechnen.
Die Suchanfragestruktur stellt eine Objektstruktur dar, das die Suchanfrage durch ein Datenmodell
repräsentiert. Die Suchanfragestruktur verknüpft Filter durch Mengenoperatoren. Die Struktur wird
durch einen Baum dargestellt, dessen Konten die Mengenoperatoren Vereinigung und Schnittbildung
enthalten. Zusätzlich wird noch die Komplementbildung von der Menge aller Strukturelementen
verwendet. Die Komplementbildung stellt eine unäre Mengenoperation dar.

In der Abbildung 4.4 sind die Klassen der Suchanfragestruktur zu sehen. Die
Suchanfragestruktur ist ein binärer Baum, bis auf die Ausnahme des Komplementbildungsknotens
(SetOperatorComplementation). Der Baum besteht aus Knoten (TreeNode), die ein oder zwei
weitere Konten enthalten können. Die Filter (Filter) werden als Blätter in dem Baum verwendet.
Sie enthalten keine weiteren Konten. Die Knoten werden durch die drei Mengenoperatoren
Vereinigung (SetOperatorUnion), Schnittbildung (SetOperatorIntersection) und Komplementbildung
(SetOperatorComplementation) darstellt. Diese Suchanfragestruktur repräsentiert außerdem den
Syntaxbaum der Suchanfrage.

Die logische Abarbeitung der Baumstruktur der Suchanfrage beginnt an den Blättern bzw. Filtern.
Die Filter selektieren die Ausgangsmenge von Sturkturelementen und reichen sie weiter an deren
Vorgängerknoten. Die Knoten empfangen die gefilterten Mengen und führen ihren Mengenoperatoren
auf diese aus. Sie geben die daraus resultierende Menge ebenfalls weiter an deren Vorgängerknoten. Die
Wurzel der Suchanfragestruktur enthält schließlich das Ergebnis der Suche.

Im Folgenden wird der Ablauf der Traversierung der Suchanfragestruktur anhand eines Algorithmus
erläutert. Der Algorithmus ist in Pseudocode festgehalten und in Abbildung 4.1 zu sehen.

4.3. PLATTFORMSPEZIFIKATION FÜR MUSTERSPRACHEN UND MUSTERKATALOGE 59

Abbildung 4.4: Modell der Suchanfragestruktur des Suchdienstes der Anwendungslogik

Es sind zwei Funktionen für die Traversierung der Suchanfragestruktur enthalten, die Funktion
processSearchRequest und die Funktion processNode. Die Funktion processSearchRequest startet
initial die Abarbeitung der Suchanfrage und legt die Ausgangsmenge der zu durchsuchenden
Strukturelementen fest. Die Funktion processNode definiert die Traversierung der Suchanfragestruktur
rekursiv. Sie berechnet jeweils das Ergebnis des Knoten, der als Parameter übergeben wurde. Bevor
der Parameterknoten berechnet werden kann, werden durch rekursive auf Rufe der selben Funktion
mit den Kinderknoten die Unterbäume berechnet. In der Traversierung der Baumstruktur werden
zunächst die benötigten Ausgangsmengen an die Mengenoperatoren/Knoten und Filtern/Blätter verteilt.
Um Rechenschritte einzusparen, werden die Schnittoperationen nicht durchgeführt. Stattdessen werden
Teilergebnisse als Ausgangsmengen verwendet. Dies ist möglich, weil die Hintereinanderausführung
der Filter die Mengenoperation Schnittbildung ersetzen kann. Es muss trotzdem die Reihenfolge der
Operatoren eingehalten werden. Die Komplementbildungsoperatoren und die Vereinigungsoperatoren
müssen vor den Schnittbildungsoperatoren ausgeführt werden, damit statt der Durchführung
von Schnittbildungsoperatoren die Teilergebnisse der Komplementbildungsoperatoren und der
Vereinigungsoperatoren verwendet werden können. Die zu filternden Mengen werden verkleinert,
durch die Ersetzung der Ausgangsmengen durch Zwischenergebnisse. Dadurch werden zusätzliche
Rechenoperationen gespart.

60 KAPITEL 4. PLATTFORM FÜR MUSTERSPRACHEN UND MUSTERKATALOGE

1

2 / / computes t h e r e s u l t o f t h e s e a r c h r e q u e s t
3 / /
4 procedure p r o c e s s S e a r c h R e q u e s t
5 (TreeNode rootNode ,
6 Set<StructureElement> wholeSe t)
7 re turn Set<StructureElement>
8

9 begin
10 processNode (roo tNode) ;
11 re turn roo tNode . r e s u l t ;
12 end p r o c e s s S e a r c h R e q u e s t
13

14

15 / / T r a v e r s e s t h e t r e e and computes t h e i n t e r m e d i a t e r e s u l t o f each node .
16 / / The t r a v e r s a t i o n i s a d e e p t h f r i s t s e a r c h . The i n t e r m e d i a t e r e s u l t s
17 / / w i l l be computed by i t s t r a v e r s a t i o n o r d e r .
18 / /
19 procedure processNode
20 (TreeNode node)
21 re turn Set<StructureElement>
22

23 begin
24 i f node isTypeOf SetOperatorComplementation then
25

26 SetOperatorComplementation compOp = (SetOperatorComplementation) node ;
27

28 compOp . s u b t r e e 1 . s o u r c e = compOp . s o u r c e ;
29 compOp . s u b t r e e 1 . r e s u l t = processNode (compOp . s u b t r e e 1) ;
30

31 compOp . r e s u l t = compOp . e x e c u t e O p e r a t i o n (compOp . s u b t r e e 1 . r e s u l t) ;
32 re turn compOp . r e s u l t ;
33

34 e l s e i f node isTypeOf SetOperatorIntersection then
35

36 i f node . s u b t r e e 1 isTypeOf SetOperatorUnion then
37

38 node . s u b t r e e 1 . s o u r c e = node . s o u r c e ;
39 node . s u b t r e e 1 . r e s u l t = processNode (node . s u b t r e e 1) ;
40

41 node . s u b t r e e 2 . s o u r c e = node . s u b t r e e 1 . r e s u l t ;
42 node . s u b t r e e 2 . r e s u l t = processNode (node . s u b t r e e 2) ;
43

44 / / t h e r e s u l t o f s u b t r e e 2 i s t h e r e s u l t o f t h e node
45 node . r e s u l t = node . s u b t r e e 2 . r e s u l t ;
46

47 e l s e / / i f node . s u b t r e e 1 i sTypeOf S e t O p e r a t o r I n t e r s e c t i o n t h e n
48

49 node . s u b t r e e 2 . s o u r c e = node . s o u r c e ;
50 node . s u b t r e e 2 . r e s u l t = processNode (node . s u b t r e e 2) ;
51

52 node . s u b t r e e 1 . s o u r c e = node . s u b t r e e 2 . r e s u l t ;
53 node . s u b t r e e 1 . r e s u l t = processNode (node . s u b t r e e 1) ;
54

55 / / t h e r e s u l t o f s u b t r e e 1 i s t h e r e s u l t o f t h e node

4.3. PLATTFORMSPEZIFIKATION FÜR MUSTERSPRACHEN UND MUSTERKATALOGE 61

56 node . r e s u l t = node . s u b t r e e 1 . r e s u l t ;
57

58 end i f
59

60 re turn node . r e s u l t ;
61

62 e l s e i f node . s u b t r e e 1 i n s t a n c e o f SetOperatorUnion then
63

64 SetOperatorUnion unionOp = (SetOperatorUnion) node ;
65

66 unionOp . s u b t r e e 1 . s o u r c e = unionOp . s o u r c e ;
67 unionOp . s u b t r e e 1 . r e s u l t = processNode (unionOp . s u b t r e e 1) ;
68

69 unionOp . s u b t r e e 2 . s o u r c e = unionOp . s o u r c e ;
70 unionOp . s u b t r e e 2 . r e s u l t = processNode (unionOp . s u b t r e e 2) ;
71

72 unionOp . r e s u l t = unionOp . e x e c u t e O p e r a t i o n (
73 unionOp . s u b t r e e 1 ,
74 unionOp . s u b t r e e 2) ;
75

76 re turn compOp . r e s u l t ;
77

78 e l s e / / i f node i n s t a n c e o f F i l t e r t h e n
79

80 Filter f i l t e r = (Filter) node ;
81 node . r e s u l t = f i l t e r . f i l t e r S t r u c t u r e E l e m e n t s (
82 f i l t e r . sou rce ,
83 f i l t e r . s e l e c t e d C r i t e r i o n) ;
84 re turn node . r e s u l t ;
85

86 end i f
87

88

89 end processNode

Listing 4.1: Algorithmus für die Traversierung der Suchanfragenstruktur

Beispiel für die Traversierung einer Suchanfragestruktur Der Algorithmus für die
Traversierung der Suachanfragenstruktur wird anhand eines Beispiels erläutert. Zunächst wird eine
Suchanfrage formuliert und deren Strukturbaum aufgestellt. Anschließend wird die Traversierung
anhand des Pseudocodes erklärt.

Dabei sollen Muster gefunden werden, in denen nicht das Wort Pattern und nicht das Wort
Language vorkommt. Die Filter filtera und filterb finden jeweils Muster mit den beiden Worten.
Zusätzlich sollen diese Muster gefunden werden, die von den Autoren Meyer und Müller oder von
Fischer erstellt worden sind. Die Filter filterc, filterd und filtere finden jeweils die Muster mit
den entsprechenden Autoren. Die Suchanfrage wird durch folgenden logische Formel dargestellt:
(SE\filtera ∩ SE\filterb) ∩ ((filterc ∩ filterd) ∪ filtere).

In Abbildung 4.5 ist die Suchanfragestruktur der Beispielsuchanfrage zu sehen. Die
Suchanfragestruktur in der Abbildung stellt einen Syntaxbaum der logischen Formel dar. Die Knoten
innerhalb des Baumes stellen die logischen Operatoren der Formel dar. Die Blätter werden durch
die einzelnen Filter repräsentiert. Die Bezeichnung ”Comp.” in den Knoten soll die Komposition der

62 KAPITEL 4. PLATTFORM FÜR MUSTERSPRACHEN UND MUSTERKATALOGE

Abbildung 4.5: Beispiel einer Suchanfragestruktur

darunter hängenden Blätter darstellen. In den übrigen Knoten sind die Mengenoperatoren Vereinigung
und Schnittbildung mit den gleichen Symbolen wie in der Formel abgebildet.

Abbildung 4.6: Beispielsuchanfragestruktur mit Traversierungsschritten

Die Abbildung 4.6 stellt den Syntaxbaum der Beispielabfrage erneut dar. Er enthält Pfeile, die
die einzelnen Traversierungsschritte darstellen. Die Reihenfolge der Traversierungschritte entsprechen
denen aus dem Algorithmus des Pseudocodes. Die roten Pfeile stellen die Abwärtstraversierung in
der Baumstruktur dar. Sie enthalten eine Nummer, die Aufschluss über die Reihenfolge der einzelnen
Traversierungsschritte gibt. Die blauen Pfeile stellen den Rückweg des Traversierungsschrittes dar.
In einem Abwärtsschritt wird eine Menge von Strukturelementen von oben nach unten gereicht,
die als Ausgangsmenge für die Ergebnisberechnung der einzelnen Teilbäume verwendet wird. In
den Rückwärtsschritten wird das Ergebnis der gefilterten und verknüpften Mengen nach oben

4.4. STRUKTUR DER PLATTFORM FÜR MUSTERSPRACHEN UND MUSTERKATALOGE 63

propagiert. Diese Teilergebnisse sind wiederum Ausgangsmengen für die weitere Berechnung anderer
Geschwisterknoten oder des darüber liegenden Vaterknoten. Der Algorithmus beginnt mit dem Aufruf
der processSearchRequest Funktion an dem hierarchisch als höchsten angeordneten Operator. In
der Abbildung ist dies der oberste Vereinigungsoperator, der den Index 1 trägt. Dieser Knoten
stellt die Wurzel des Syntaxbaumes dar. Er enthält zu Beginn die Menge der zu durchsuchenden
Strukturelemente. Am Schluss der Berechnung enthält der Knoten schließlich das Ergebnis der
Suchanfrage. Bei der Abarbeitung der Unterbäume wird immer der Knoten als erstes berechnet,
der keinen Vereinigungsoperator als Wurzel enthält, damit den Vereinigungsoperatoren vorselektierte
Mengen übergeben werden können. Somit werden viele Vergleiche in den Berechnungen der Filter
gespart und die Berechnungen der Vereinigungsoperatoren entfallen, durch das Weiterreichen bereits
vorselektierter Mengen.

Diskussionen über Musterinhalte Die Plattform für Mustersprachen und Musterkataloge bieten
den Autoren und Lesern von Musterkatalogen eine Plattform bezüglich der fachlichen Lösungen, die
die Muster der Musterkataloge enthalten. Zusätzlich sollen Diskussionen in diesen Fachbereichen
ermöglicht werden. Die Plattform für Mustersprachen und Musterkataloge unterstützt das Anfügen
von Kommentaren und Bemerkungen an Muster, damit deren Inhalte diskutiert werden können. Die
Inhaltselemente der Muster werden um ein Diskussionselement und ein Beitragselement erweitert.
Die Beitragselemente stellen einen Bestandteil der Diskussion dar und sind dem Diskussionselement
untergeordnet. Die beiden Elemente stellen eine zusätzliche Erweiterung des Metamodellprofils für
Mustersprachen dar. Sie sind in der Abbildung im Anhang C zu sehen. Durch diese Erweiterung
können Autoren und Leser fachliche Beiträge zu den Muster liefern und beispielsweise Erfahrungen,
Erweiterungsvorschläge oder Fehler melden, damit das betroffene Muster verbessert und überarbeitet
werden kann.

4.4 Struktur der Plattform für Mustersprachen und Musterkataloge

In diesem Abschnitt wird die gewünschte Struktur und der Entwurf der Plattform für Mustersprachen
und Musterkataloge vorgestellt. Damit kann die zuvor beschrieben Spezifizierungen umgesetzt werden.
[LL10, S. 399-400] Der Schwerpunkt dieses Abschnittes liegt auf der Erklärung der Struktur und der
Architektur der Plattform und speziell auf der Funktionsweise der Suche nach Musterkatalogen, Mustern
und deren Inhaltselemente. Im Folgenden wird die Architektur der Plattform für Mustersprachen und
Musterkataloge beschrieben.

Die Plattform für Mustersprachen und Musterkataloge ist nach dem Prinzip der
Drei-Schichten-Architektur organisiert. Sie ist in eine Präsentationsschicht, in eine Anwendungsschicht
und in eine Datenhaltungsschicht unterteilt, um die Anforderungen der Plattform für Mustersprachen
und Musterkataloge in Aufgabenbereiche zu unterteilen. Die Aufgabenbereiche stellen in sich
abgeschlossen Bereiche dar. Die Unterteilung strukturiert die Software und reduziert deren Grad an
Komplexität. Sie ist eine Grundlage für dynamische, skalierbare und interaktive Softwarelösungen.
Solch eine Softwarelösung kann einfach abgeändert werden, um neuen Bedürfnissen gerecht zu
werden. Ein weiterer Grund der Unterteilung der Software in unterschiedliche Schichten, ist der Ort,
an dem die Software ausgeführt wird. Damit dies möglich ist, müssen die Schichten Schnittstellen
anbieten und über Protokolle kommunizieren. Die Präsentationsschicht wird auf dem Computer des

64 KAPITEL 4. PLATTFORM FÜR MUSTERSPRACHEN UND MUSTERKATALOGE

Benutzers ausgeführt und realisiert die Benutzeroberfläche, damit der Benutzer die Software bedienen
kann. Die anderen beiden Schichten werden serverseitig ausgeführt. In der Anwendungsschicht sind
fachliche Komponenten und die Anwendungslogik der Software enthalten. Die Anwendungsschicht
ist unabhängig von der Präsentationsschicht und stellt diese Dienste zur Verfügung. Die fachlichen
Komponenten und die Anwendungslogik können durch die Verwendung der Dienste beansprucht
werden. Die Anwendungsschicht greift wiederum auf Dienste der Datenhaltungsschicht zu, damit
diese Daten manipuliert oder gelesen werden können. Diese Datenhaltungsschicht sorgt dafür,
dass die manipulierten Daten dauerhaft gespeichert werden. Aufgrund der Aufteilung können die
Softwarekomponenten, die durch die Anwendungsschicht und die Datenhaltungsschicht verkörpert
werden, repliziert werden. Dies erhöht deren Ausfallssicherheit und Verfügbarkeit. Außerdem kann eine
größere Bandbreite von Benutzern bedient werden, die die Softwarekomponenten der beiden Schichten
als Dienste in Anspruch nehmen. [Tho11], [BCHP03, S. 11-13], [Fow02, S. 17-24], [LL10, S. 431-432]

Zwischen den logischen und physikalischen Schichten der Plattform für Mustersprachen und
Musterkataloge wird kein Unterschied gemacht. Durch die Planung der Plattform wurde dafür gesorgt,
dass die Aufgabenbereiche der logischen und physikalischen Schichten deckungsgleich sind. Im
Allgemeinen wird in dieser Arbeit von den logischen Schichten der Plattform gesprochen. [Fre09]

In Abbildung 4.7 ist die Unterteilung der Plattform für Mustersprachen und Musterkataloge
zu sehen. Die Plattform ist in das vorgestellte Drei-Schichten-System unterteilt. Eine webbasierte
Benutzeroberfläche (Web User Interface) stellt die Präsentationsschicht der Plattform dar. Eine
Anwendungslogik (Domain Logic) bietet Dienste an, die die spezifizierten Aufgaben der
Plattform für Mustersprachen und Musterkataloge bewältigt. Die Anwendungslogik repräsentiert die
Anwendungsschicht in dieser Drei-Schichten-Architektur. Die Datenhaltungsschicht wird durch ein
Repository umgesetzt. Das Repository (Repository) verwaltet die Daten der Mustersprachen und der
Musterkataloge. Die drei Bestandteile der Plattform sind bezüglich ihrer Abhängigkeiten zu einander
dargestellt. Der Applikationsserver ist abhängig von den Daten, die das Repository bereitstellt und die
webbasierte Benutzeroberfläche ist wiederum abhängig von den Diensten, die der Applikationsserver
bereitstellt.

Die Bestandteile der Plattform für Mustsersprachen und Musterkataloge, deren Schnittstellen und
deren Kommunikationen werden in den folgenden Abschnitten detaillierter vorgestellt.

4.4.1 Repository der Plattform für Mustersprachen und Musterkataloge

Das Repository der Plattform für Mustersprachen und Musterkataloge verkörpert die
Datenhaltungsschicht und enthält eine Datenzuordnung für eine Datenstruktur, die für die Verwendung
von darüber liegenden Schichten konzipiert ist. Software, die sich in der darüber liegenden Schicht
befindet, kann Objekte in das Repository speichern, diese auf dem Repository lesen und löschen.
In größeren Systemen mit mehren Softwarekomponenten, welche auf das Repository zugreifen
und die vordefinierten Objektstrukturen und vorgefertigten Datenabfragen verwenden, wird viel
Quellcode gespart. Außerdem liefert die Schnittstelle des Repositorys reine objektorientierte
Datensätze und gewährt eine konsistente Sicht der Datenquellen, aus denen das Repository die
Datensätze zusammenstellt. Das Repository verhält sich wie eine Objektsammlung, die sich in dem
Speicher befindet. Durch das Ansprechen dieser Schnittstellenoperationen, werden die entsprechenden
Funktionalitäten des Repositorys im Inneren aufgerufen. Sie sind dafür verantwortlich, dass die Daten

4.4. STRUKTUR DER PLATTFORM FÜR MUSTERSPRACHEN UND MUSTERKATALOGE 65

Abbildung 4.7: Architekturübersicht der Plattform für Mustersprachen und Musterkataloge

in der richtigen Datenstruktur und dem richtigen Format vorliegen, gespeichert, gelöscht oder gelesen
werden können. [Fow02, S. 133-142, 322-327]

In Abbildung 4.8 ist die Architektur des Repositorys zu sehen. Sie enthält eine
Web-Service-Schnittstelle (Web Service Interface), damit Softwarekomponenten aus höheren Sichten
auf die Daten des Repositorys zugreifen können. Damit die gewünschten Daten geliefert werden können,
müssen diese zuerst zusammengestellt und in eine Objektstruktur transformiert werden. Diese Aufgabe
übernimmt die Komponente Datenmapper (Data Mapper), die unter der Web-Service-Schnittstelle
zu sehen ist. Diese Komponente greift direkt auf das Datenbankmanagementsystem (Database
Management System) und auf das Anlageverzeichnis (Attachment Storage - File System) zu, welches
sich auf dem Dateisystem, das sich auf der gleichen Maschine wie das Repositorys befindet, zu. Im
Folgenden wird auf die einzelnen Komponenten des Repositorys genauer eingegangen.

Web-Service-Schnittstelle des Repositorys Die Web Service Description Language (WSDL)
[CCMS01] wurde als Industriestandard entwickelt, um Schnittstellen für Dienste zu beschreiben. Die
Dienstbeschreibung definiert Metadaten, die vollständig die Charakteristik der Dienste beschreibt,
die in Netzen eingesetzt werden. Diese Metadaten sind die Grundlage, um lose Kopplung zwischen
den Dienstverwendern und den Dientanbietern herzustellen. Mit WSDL werden Informationen zur
Verfügung gestellt, die benötigt werden, um Dienste verfügbar zu machen und um diese Diensten
ansprechen zu können. [WCL+05, S. 40]

Das Repository der Plattform für Mustersprachen und Musterkataloge bietet eine
Web-Service-Schnittstelle an, damit eine Softwarekomponente auf dessen Daten zugreifen und
diese verwenden kann. Diese Schnittstelle stellt die Funktionalitäten des Repositorys als Dienste nach

66 KAPITEL 4. PLATTFORM FÜR MUSTERSPRACHEN UND MUSTERKATALOGE

Abbildung 4.8: Arichitektur des Repository für Plattform für Mustersprachen und Musterkataloge

außen zur Verfügung. Das vorgestellte Prinzip der Schnittstelle basiert auf dem Gateway Muster.
[Fow02, S. 133-142, 466-472]

Datenmappter des Repositorys Ein Datenmappter ist eine Softwarekomponte, die die Brücke
zwischen der Anwendungslogik und den Daten darstellt. Viele Bestandteile der Objektorientierung,
wie beispielsweise Kollektionen und Vererbung, sind nicht in relationalen Datenbanken hinterlegt.
Wenn ein Objektmodell erstellt wird, das viel Anwendungslogik besitzt, ist es sinnvoll objektorientierte
Konzepte und Mechanismen zu verwenden, damit die Daten der Anwendungslogik besser organisiert
werden können und damit deren Verhalten besser ausgedrückt und verwendet werden kann. Um
dies zu bewältigen muss das relationale Datenbankschema in eine Objektstruktur transformiert
werden. Die Aufgabe des Datenmappers ist es, die Strukturen der Daten zu trennen und zwischen
diesen Transformationen durchzuführen. Er isoliert somit das relationale Datenbankschema von der
Anwendungslogik und stellt eine Objektstruktur zur Verfügung, die auf einer höheren Abstraktionsebene
angesiedelt ist. [Fow02, S. 165-179]

Der Datenmapper des Repositorys für Mustersprachen und Musterkataloge übernimmt eine weitere
Aufgabe im Gegensatz zu der allgemein vorgestellten Beschreibung des Datenmappers. Da das
Repository der Plattform für Mustersprachen und Musterkataloge zwei Datenquellen enthält, muss
er die Daten beider Quellen zur Verfügung stellen und transformieren. Je nach Operation kann
dies bedeuten, dass Selektionen von den Daten gebildet werden müssen. Diese werden wiederum
in Objektstrukturen transformiert und anschließend an die Web-Service-Schnittstelle weitergeleitet.
Der Datenmapper muss aber auch Daten der Web-Service-Schnittstelle entgegennehmen, diese
transformieren und sie auf die beiden Datenquellen aufteilen. Er bezieht und speichert Daten aus
einem Datenbankmanagementsystem und einem Anlageverzeichnis. Alle Daten, die nicht in Form
einer Datei vorliegen, werden in die Datenbank des Datenbankmanagementsystem geschrieben. Die
Dateien werden in das Anlageverzeichnis geschrieben und deren Metainformationen in der Datenbank

4.4. STRUKTUR DER PLATTFORM FÜR MUSTERSPRACHEN UND MUSTERKATALOGE 67

festgehalten. In den folgenden Abschnitten wird dabei näher auf das Datenbankmanagementsystem und
das Anlageverzeichnis eingegangen.

Datenbankmanagementsystem des Repositorys Das Datenbankmanagementsystem des
Repositorys ist ein relationales Datenbankmanagementsystem, das eine Datenbank enthält. In
dieser Datenbank werden die Daten und Informationen der Mustersprachen und Musterkataloge
hinterlegt. Um einen konsistenten und sicheren Datenaustausch zu gewährleisten, werden die Daten
über Transaktionen ausgetauscht. Damit alle Daten und Informationen der Plattform für Mustersprachen
und Musterkataloge gespeichert werden können, wird das angepasste Metamodell für Mustersprachen
als Grundlage für ein relationales Datenbankschema verwendet. [SE07, S. 1-3]

Anlageverzeichnis des Repository Das Anlageverzeichnis des Repositorys der Plattform für
Mustersprachen und Musterkataloge ist für die Speicherungen von Dateien, die Anhänge der
Muster darstellen, verantwortlich. Es stellt eine einfache Ablage auf dem Dateisystem dar. Das
Anlagenverzeichnis läuft auf dem selben Computersystem wie auch das Repository. Die Musteranhänge,
die in Dateien des Anlageverzeichnis liegen, können von dem Datenmapper gelesen und gespeichert
werden.

4.4.2 Anwendungslogik der Plattform für Mustersprachen und Musterkataloge

Die Anwendungslogik besteht aus Softwarekomponenten, die die Daten der Datenhaltungsschicht
manipulieren, transformieren und in Daten für die Präsentationsschicht konvertieren. Diese
Softwarekomponenten stellen den Kern der Anwendungsschicht dar und enthalten die Logik der
Anwendungsprozesse. Die Funktionalitäten der Anwendungslogik werden als Dienste bereitgestellt und
können von der Präsentationsschicht verwendet werden. [McL02, S. 21-22], [Tar09, S. 116]

In Abbildung 4.9 ist die Anwendungslogik (Domain Logic) der Plattform für Mustersprachen und
Musterkataloge zu sehen. Sie enthält eine Schnittstelle (Service Interface) und eine Sammlung von
Funktionalitäten (Service Pool). Die Funktionalitäten können über die Schnittstellen angesprochen
werden. Die Sammlung von Funktionalitäten enthält zwei Funktionalitäten, einen Dienst, um Daten der
Plattform für Mustersprachen und Musterkataloge zu manipulieren (Data Manipulation Service) und
einen Dienst, um nach Musterkatalogen, Mustern oder deren Inhaltselementen zu suchen (Data Search
Service). Im weiteren Verlauf werden die Bestandteile der Anwendungsschicht näher erläutert.

Schnittstelle der Anwendungslogik Die Schnittstelle der Anwendungslogik definiert das
Kommunikationsprotokoll und die Operationen, damit die Funktionen der Anwendungsschicht
als Dienste verwendet werden können. Speziell die Präsentationsschicht soll auf die Funktionalitäten
der Anwendungsschicht zugreifen können.

Anwendungsdienste Die Dienste der Anwendungsschicht der Plattform für Mustersprachen und
Musterkataloge sind in der Sammlung von Funktionalitäten enthalten. Sie werden von der
Präsentationsschicht in Anspruch genommen und bereiten die Daten des Reposiotrys auf oder können
diese durchsuchen und anschließend das Suchergebnis bekannt geben. Die Dienste können gegenseitige

68 KAPITEL 4. PLATTFORM FÜR MUSTERSPRACHEN UND MUSTERKATALOGE

Abbildung 4.9: Architektur der Anwendungslogik der Plattform für Mustersprachen und Musterkataloge

Abhängigkeiten darstellen. Beispielsweise kann der Suchdienst die Datenmanipulationsdienst
verwenden, um Daten zu laden. In den folgenden beiden Abschnitten wird auf diese zwei
Dienste der Anwendungsschicht eingegangen. Der Schwerpunkt liegt dabei auf dem Entwurf des
Suchmechanismuses.

Datenmanipulationsdienst Der Datenmanipulationsdienst ermöglicht es, über den Aufruf von
Operation, Daten der Plattform zu lesen und zu schreiben. Je nach Anwendungszweck können von
der Präsentationsschicht Daten angefordert werden. Der Datenmanipulationsdienst lädt die Daten
aus dem Repository und gibt sie weiter an die Präsentationsschicht. Die Daten können nach
Bedarf zusammengestellt und aufbereitet werden, bevor sie an die Präsentstionsschicht übergeben
werden. Außerdem bietet der Datenmanipulationsdienst die Speicherung und Änderung von Daten
an. In der Anwendungslogik können zum Beispiel eine Korrektheits- und Konsistenzprüfung
oder Konvertierungen der geänderten oder zu speichernden Daten durchgeführt werden. Die
geänderten oder zu speichernden Daten werden anschließend an der Repository weiter gereicht. Der
Datenmanipulationsdienst stellt einen weiteren Datenmapper dar, der sich zwischen der universalen
Schnittstelle des Repository und der Schnittstelle der Anwendungsschicht befindet. Auf die Einzelheiten
der Schnittstellen wird nicht weiter eingegangen.

Suchdienst In der Funktionssammlung ist ein Suchdienst enthalten, der nach Musterkatalogen, Muster
und Musterinhalten suchen kann. Dieser stellt einen großen Teil der Anwendungslogik dar und ist
ebenfalls als Dienst über die Schnittstelle der Anwendungslogik für die Präsentationsschicht zugänglich.
Der Suchdienst enthält das in der Spezifikation vorgestellte Prinzip der Suche nach Musterkatalogen,
Mustern und deren Inhalten. Um nach Musterkatalogen, Mustern und Musterinhalten zu suchen, wird
zunächst eine Suchanfrage benötigt. Diese enthält Einschränkungen in Form von Filtern, nach denen die
Daten der Musterkatalogen, Mustern und deren Inhalten selektiert werden. Anschließend werden Daten
aus dem Repository geladen, die bezüglich der Suchanfrage durchsucht werden sollen. Die geladenen
Daten werden aufbereitet und mittels mehreren Filtern selektiert, um somit das Ergebnis der Suche zu
erhalten. Das Suchergebnis kann durch die Präsentationsschicht abgerufen und den Lesern und Autoren
repräsentiert werden.

4.4. STRUKTUR DER PLATTFORM FÜR MUSTERSPRACHEN UND MUSTERKATALOGE 69

4.4.3 Webbasiertes Frontend der Plattform für Mustersprachen und Musterkataloge

Die Präsentationsschicht der Plattform für Mustersprachen und Musterkataloge wird durch eine
Rich Internet Application verkörpert. Diese bietet dem Benutzer eine einfache und universale Art
und Weise auf sie zu zugreifen und eine ähnlich interaktive Bedienung und Darstellung wie eine
Desktopanwendung. Außerdem ist sie unabhängig von Betriebssystemen und kompatibel zu allen
modernen und gängigen Webbrowsern, die eine spezielle und abgeschottete Laufzeitumgebung
darstellen und dadurch die Systemsicherheit erhöhen. Vorteile einer Rich Internet Application sind
beispielsweise, dass sie nicht auf dem Computer des Benutzers installiert werden müssen, dass Updates
automatisch mit dem Laden der Anwendungen verfügbar sind und dass URLs für die Referenzierung
bestimmter Inhalte verwendet werden kann. [Sim07], [Fow02, S. 55-61], [SBB08, S. 1-19]

Das webbasiertes Frontend der Plattform für Mustersprachen und Musterkataloge in Form
einer Rich Internet Application stellt eine Bedienanwendung für die Verwaltung und Verwendung
der Mustersprachen und Musterkataloge der Plattform dar. Sie kann über die Schnittstelle der
Anwendungslogik mit dieser kommunizieren und somit deren Dienste in Anspruch nehmen. Im weiteren
Verlauf wird die Architektur der Bedienanwendung erläutert.

Herkömmliche Webseiten werden serverseitig aufgebaut und clientseitig repräsentiert. Im Gegensatz
zu herkömmlichen Webseiten sind clientseitige Repräsentationen von Rich Internet Applications
interaktiv. Das heißt der Webseitenaufbau wird clientseitig geändert und eventuell auch clientseitig
erstellt. Viele Rich Internet Applications bestehen aus einer Kombination dieser beiden Konzepte. Oft
wird das Grundgerüst der Webseite in der Anwendungsschicht aufgebaut und in der Präsentationsschicht
dynamisch ergänzt und verändert. Um die Kombination dieser beiden Konzepte umzusetzen, werden
serverseitige und clientseitige Skripte benötigt, die in den jeweiligen Bereichen ausgeführt werden.

In der Bedienanwendung der Plattform für Mustersprachen und Musterkatalogen wird der
Aufbau der Webseite und deren interaktive Veränderung ausschließlich clientseitig durchgeführt. Die
Architektur der Bedienanwendung trennt strikt die Anwendungsschicht von der Präsentationsschicht.
Die Anwendungsschicht übernimmt somit nur Aufgaben, die sich auf fachliche Inhalte beziehen und
unabhängig von der Präsentationsschicht sind. Da die Anwendungsschicht und Präsentationsschicht klar
voneinander getrennt sind, könnte die Bedienanwendung zum Beispiel leicht durch eine andere ersetzt
werden.

Die Bedienanwendung wird außerdem komplett clientseitig aufgebaut und verändert. Dadurch
müssen ausschließlich für die Clientseite Quellcode entwickelt werden. Es besteht nicht die
Notwendigkeit Serverskripte auszuführen, die clientseitigen Skriptcode erstellen, um einen server-
und clientseitigen Webseitenaufbau zu ermöglichen. Die Entscheidung nur Code für die clientseitige
Skriptengine zu liefern, soll die Struktur der Bedienanwendung übersichtlich halten. Außerdem soll es
die Entwicklung vereinfachen, in dem man nur für eine Skriptengine Quellcode entwickelt. Zusätzlich
nimmt die Bedienanwendung nicht die übliche Rolle einer Webseite ein. Es muss zum Beispiel nicht mit
Suchmaschinen nach Inhalten gesucht werden, da die Suche nach Inhalten von einer programmeigenen
Suche abgewickelt werden kann. Um Inhalte mit Suchmaschinen zu finden, müsste man diese statisch
zur Verfügung stellen. Statische Webseiteninhalte müssen allerdings serverseitig aufgebaut werden. Da
dies nicht benötigt wird und die Bedienanwendung eher einer Desktopanwendung ähnelt, bietet es sich
an diese komplett clientseitig zu gestalten. [dwo], [BCFC06]

Die Bedienanwendung der Plattform für Mustersprachen und Musterkataloge benötig viele
Ansichten, die deren Inhalte darstellen. Um dies verwalten zu können wird das Model-View-Presenter

70 KAPITEL 4. PLATTFORM FÜR MUSTERSPRACHEN UND MUSTERKATALOGE

(MVP) Muster angewendet. Die Umsetzung des MVP Musters soll auf der einen Seite einen
Mechanismus darstellen, mit dem die Ansichten (View) verwaltet werden können. Auf der anderen
Seite bietet das MVP Muster weitere technische Vorteile für die beschriebene Verwendung und Art der
Bedienanwendung. Sie teilt die Logik der Oberfläche von der Ansicht, was zu einer klaren Struktur der
Oberfläche führt. Auf Grund der eventbasierten Benutzeroberflächenumgebung des Browser bietet es
sich an, die Steuerung der Ansichten durch ein extra Element abzuwickeln. Dieses Steuerelement wird
in dem MVP Muster Presenter genannt. Es übernimmt die vollständige Steuerung der Ansichten. Wenn
sich der zu Grunde liegende Datensatz ändert, dann wird der Presenter benachrichtigt, der wiederum
die Ansicht aktualisiert. Falls eine Interaktion mit der Ansicht statt findet, dann werden die geänderten
Daten und empfangenen Browserevents dem Presenter weitergeleitet. Dieser reagiert anschließend auf
diese Veränderungen. Er kann die Ansicht wieder dem entsprechend anpassen oder der Datensatz
aktualisieren. In Abbildung 4.10 ist das MVP Muster und das beschriebene Szenario zu sehen. [Fow06],
[BM00], [Pot96]

Abbildung 4.10: Model-View-Presenter Muster

Die Presenter des MVP Musters werden durch Ereignisse benachrichtigt, wenn eine Interaktion ihrer
Ansichten stattfindet. Auch die Verwaltung mehrerer Presenter-Ansicht-Paare wird ebenfalls über eine
Ereignisarchitektur gesteuert. Diese ereignisgesteuerte Benachrichtung liegt der ereignisgesteuerten
Architektur zu Grunde. Sie wird durch ein Architekturmuster dargestellt, das die Kommunikation
zwischen mehreren Komponenten durch das Versenden von Ereignissen beschreibt. Dabei steht speziell
die Erstellung, die Erkennung und die Verarbeitung von Ereignissen im Vordergrund. Ereignisse
werden meist bei Zustandsänderungen an Interessierte verschickt, die auf die empfangenen Ereignisse
individuell reagieren.

Die Grundidee der ereignisgesteuerten Architektur basiert auf dem Publish-Subscribe-Konzept.
[Jos08, S. 165-168] Dieses Konzept wurde in der Bedienanwendung durch das Mediator Muster
umgesetzt, damit mehrere Presenter einfach verwaltet werden können. Das Mediator Muster stellt
das Konzept für das Medium der Kommunikation in der Bedienanwendung der Plattform für
Mustersprachen und Musterkataloge dar. Das Konzept des Mediator ist sehr verwandt mit dem
Publish-Subscribe-Konzept, das auch Observer Muster [GHJV95, S. 293-304] genannt wird. In dem
Konzept des Mediators gibt es ein Mediatorobjekt, dem beliebige Objekte Ereignisse übergeben können.
Die Ereignisse werden anschließend von dem Mediatorobjekt an dessen Interessenten verteilt. In der

4.4. STRUKTUR DER PLATTFORM FÜR MUSTERSPRACHEN UND MUSTERKATALOGE 71

Architektur der Bedienanwendung wird das Mediatorelement zur Verwaltung der Presenter Event-Bus
genannt. Der Event-Bus der Bedienanwendung kann eine komplexe Kommunikation durch einen
lose gekoppelten Nachrichtenaustausch einfach bewältigen. Außerdem können mehrere Presenter auf
eine einfache Art und Weise erreicht werden. [GHJV95, S. 273-282] Damit die Presenter gesteuert
und kontrolliert werden können, verfügt die Bedienanwendung über eine Anwendungssteuerung.
Die Anwendungssteuerung enthält die Logik der Benutzeroberfläche. Sie entscheidet, wann welche
Benutzeroberfläche zu sehen ist und wie diese gestaltet ist. Zusätzlich kann die Anwendungssteuerung
das Ausführen von benutzeroberflächenabhängigen Befehlen veranlassen. Oft wird solch eine
Anwendungssteuerung durch das Application Controller Muster realisiert. Das Application Controller
Muster wird allerdings in Verbingung mit dem Model-View-Controller Muster verwendet. Der
vorgestellte Verwendungszweck ist zwar der selbe, aber durch die Verwendung des MCP Musters muss
das Application Controller Muster leicht angepasst werden. In der klassischen Anwendungssteuerung
des Application Controller Musters werden beispielsweise die Interaktionen der Benutzer durch
Anfragen entgegengenommen. [Fow02, S. 379-386], [ACM03, S. 205-208] Dieser Ablauf wird in der
Architektur der Bedienanwendung in den Presenter der Ansichten erledigt. Da die Presenter nicht für
ansichtsübergreifende Aufgaben zuständig sind, übernimmt in diesem Fall die Anwendungssteuerung
der Bedienanwendung die Abarbeitung dieser Aufgaben. Die Anwendungssteuerung erstellt oder ersetzt
unter anderem die benötigten Presenter und deren Ansicht und verbindet diese mit dem Event-Bus.
[Ram10]

Abbildung 4.11: Architektur der Bedienanwendung der Plattform für Mustersprachen und
Musterkataloge

In Abbildung 4.11 ist die Architektur der Bedienanwendung der Plattform für Mustersprachen und

72 KAPITEL 4. PLATTFORM FÜR MUSTERSPRACHEN UND MUSTERKATALOGE

Musterkataloge zu sehen. Sie enthält Ansichen (View) und Presenter (Presenter), die die beschriebenen
Elemente des erwähnten MVP-Musters darstellen. Die Repräsentation des Datensatzes, der auch
einen Element des MVP-Musters darstellt, ist nicht explizit in der Abbildung aufgeführt. Teile des
Datensatzes werden in der Anwendungssteuerung verwaltet. Es ist außerdem der Event Bus, der
das Kommunikationsmedium zwischen Presenter und Anwendungssteuerung (Application Controller)
darstellt, zu sehen. Die Aufgaben der Anwendungssteuerung wird in der Abbildung in ihre Aufgaben
unterteilt, die von Managern ausgeführt werden. Die Manager kümmern sich um die Einstellungen
der Anwendung (Settings Manager), deren Status (Status Manager), die Webbrowsernavigation
(History Manager), die Zwischenspeicherung von Teilen des Datensatzes (Cache Manager) und die
Ansichten- beziehungsweise Presenterlogiken (Presenter Manager). Die Anwendungssteuerung und
die Presenter können auf Funktionen (Service Stubs) zurückgreifen, die es erleichtern Dienste der
Anwendungsschicht aufzurufen. Durch die Verwendung der Hilfsfunktionen und das Verwenden der
entfernten Dienste, können für die Darstellung benötigte Datensätze geladen werden. Diese Datensätze
können, falls dies erforderlich ist, in der Anwendungssteuerung zwischengespeichert werden. Die
Hilfsfunktionen basieren auf dem Service Stub Muster [Fow02, S. 504-507]. Es erleichtert und
vereinfacht das Aufrufen und Ausführen von entfernten Diensten.

Die Presenter und Ansichten der Bedienanwendung sind in unterschiedliche hierarchische Gruppen
eingeordnet. Dies soll helfen eine Übersicht zu schaffen und eine Navigation für den Benutzer
zu erstellen. Außerdem sollen Muster durch eine URL referenziert werden können. Damit die
entsprechenden Ansichten und deren Inhalte angezeigt werden können, werden die Presenter und
ihre Ansichten strukturiert. Die Bedienanwendung besteht aus fünf Gruppen: Presenter und Ansichten
für anwendungsspezifische Benutzeroberflächen, für die Verwaltung von Mustersprachen, für die
Betrachtung von Mustersprachen, für die Verwaltung von Musterkatalogen und für die Betrachtung von
Musterkatalogen. Die Gruppen sind bezüglich ihrer Aufgabenbereiche erstellt. Die Gruppe der Presenter
und Ansichten für anwendungsspezifische Benutzeroberflächen enthält Presenter und Ansichten,
die für die Verwendung der Bedienanwendung notwendig sind oder dem Benutzer zusätzliche
Funktionalitäten zur Verfügung stellt. Die Presenter und Ansichten präsentieren unter anderem die
Anwendungsnavigation, die Werkzeugleiste oder die Statusanzeige. Die anderen Gruppen enthalten
Presenter und Ansichten, die bezüglich der Verwaltung und Betrachtung der Mustersprachinhalte
oder Musterkataloginhalte benötigt werden. Durch sie können die Inhalte der Mustersprachen und
Musterkataloge dargestellt und verwaltet werden.

4.5 Implementierung der Plattform für Mustersprachen und
Musterkataloge

Die Implementierungsbeschreibung enthält die Umsetzung der Struktur der Plattform für
Mustersprachen und Musterkataloge. Dabei wird die Verwendung verschiedener Frameworks und der
Einsatz benötigter Software geschildert.

Die Software ist in der Entwicklungsumgebung Eclipse [Ecl11] entwickelt worden. Jede
Softwarekomponente, die eine Schicht der Plattformstruktur darstellt, ist in der Programmiersprache
Java [Ora11] geschrieben.

Weitere Einzelheiten der Umsetzung von der Plattformstruktur sind im folgenden Verlauf aufgelistet.

4.5. IMPLEMENTIERUNG DER PLATTFORM FÜR MUSTERSPRACHEN UND MUSTERKATALOGE73

Umsetzung des Repositorys Das Repository besteht aus einer in Java [Ora11] geschriebenen
Programmlogik und wird serverseitig ausgeführt. Es enthält eine Web-Service-Schnittstelle mit der
das Repository angesprochen werden kann und einen Datenmapper, der Objektstrukturen zuordnet
und konvertiert. Die Web-Service-Schnittstelle ist in Verbindung mit Axis [Axi11] entwickelt. Das
Repository lief während der Entwicklungs- und Testphase auf einem Apache Tomcat Server 7
[Apa11]. Die Daten der Mustersprachen und Musterkataloge werden von dem Repository in einen
Datenbankserver gespeichert und aus diesem gelesen. Der Datenbankserver wird durch einen MySQL
Server [MyS11] verkörpert. Die Datenbankstruktur ist mit dem Softwarewerkzeug phpMyAdmin
[Php11] erstellt worden. Zusätzlich zu der Datenbank wurde eine Anlageverzeichnis erstellt, damit
Dateien abgelegt werden können. Es stellt einen einfachen Ordner des Systems dar, in dem der
Datenmapper die Anlagen speichert. Metainformation über die abgelegten Anlagen werden in der
Datenbank festgehalten und können dadurch Mustern zugeordnet werden.

Umsetzung des Anwengunsservers Die Software der Anwendungsschicht ist ebenfalls in Java
[Ora11] geschrieben und enthält zwei Dienste. Ein Dienst ist für das Aufbereiten, Laden und
Speichern von Daten verantwortlich. Der andere Dienst wickelt die Suche nach Musterkataloginhalten
ab. Die Dienste können die Web-Service-Schnittstelle des Repositorys ansprechen und anschließend
ihre Berechnungen durchführen. Das Ergebnis der Berechnungen wird der Präsentationsschicht
weitergereicht. Die Software der Anwendungsschicht ist während der Entwicklungs- und Testphase auf
einem Jetty-Webserver Version 1.6 [Jet11] ausgeführt worden.

Umsetzung des webbasierten Frontends Das webbaisierte Frontend der Plattform für
Mustersprachen und Musterkataloge wurde mit dem Framework Google Web Toolkit (GWT)
[Goo11] realisiert. Das Framework GWT wurde gewählt um die Anforderungen und der Spezifikation
der Plattform für Mustersprachen und Musterkataloge gerecht werden. Mit GWT lässt sich außerdem
die gewählte Struktur der Bedienanwendung der Plattform für Mustersprachen und Musterkatalogen
umsetzen, ohne eine Browserplugin verwenden zu müssen. Die Bedienanwendung ist ebenfalls in Java
geschrieben und ist anschließend in einen Mix aus JavaScript, Html und CSS übersetzt worden. Dieses
aus JavaScript, Html und Css bestehende Codekonstrukt stellt die Bedienanwendung der Plattform
dar. Über die Java-Servlet-Technologie [Gow10] kann die Schnittstelle der Anwendungsschicht
ansprechen werden. Somit können für die Darstellung und die Verwaltung von Mustersprachen und
Musterkatalogen Daten anfordern oder manipulieren werden. [Dwy08, S. 5-14], [CC08, S. 30-31]

74 KAPITEL 5. ZUSAMMENFASSUNG UND AUSBLICK

Kapitel 5

Zusammenfassung und Ausblick

5.1 Zusammenfassung

In diesem Abschnitt werden die in dieser Arbeit gefundenen Errungenschaften und konfrontierten
Probleme in Kürze zusammengefasst:

Grundlagen des Metamodells für Mustersprachen Zu Beginn dieser Arbeit wurden bekannte
Mustersprachen und deren Strukturen vorgestellt, die Modelle für Musterkataloge darstellen. Die
Musterkataloge enthalten jeweils eine Menge von Mustern, die Lösungsvorschläge für Probleme eines
bestimmten Kontextes zur Verfügung stellen.

Metamodell für Mustersprachen Die vorgestellten Mustersprachen enthalten Strukturen und
Charakteristiken anhand derer ein Metamodell für Mustersprachen erstellt wurde. Das Metamodell für
Mustersprachen besteht aus einer Struktur, die den Aufbau von Mustersprachen beschreibt und die
deren Kompatibilität untereinander gewährleistet. Die Struktur des Metamodells für Mustersprachen
wird durch ein Profil erweitert, das die grundlegende Charakteristik der Mustersprachen vorgibt.
Das Profil des Metamodells für Mustersprachen ist ebenso wie die Struktur des Metamodells für
Mustersprachen ein Bestandteil des Metamodells. Das Profil formt die grundlegende Charakteristik
der Mustersprachen. Es verfeinert die Struktur der Mustersprachen und ordnet deren Bestandteilen
Bedeutungen zu. Das Metamodell für Mustersprachen ist ein mustersprachenübergreifendes Modell, das
eine Menge von Mustersprachen beschreibt. Mustersprachen, die dem Metamodell für Mustersprachen
zu Grunde liegen, werden durch die gemeinsame Struktur kompatibel gehalten. Die Kompatibilität der
Mustersprachen beinhaltet die Möglichkeit in und zwischen Mustersprachen und deren Musterkatalogen
Beziehungen aufzubauen. Darüber hinaus können in dem Metamodellprofil für Mustersprachen
die Bedeutungen der Beziehungen und Strukturelementen der Mustersprachen festgehalten werden.
Durch die Definition und durch Erweiterungen des Metamodellprofils für Mustersprachen können
mustersprachenübergreifende Suchen, Vergleiche und Analysen von den Inhalten der Musterkataloge
in und zwischen Musterkatalogen durchgeführt werden. Zusätzlich wird die Gestaltung der Definition
einer Mustersprachen durch die Erweiterungsmöglichkeit des Metamodellprofils für Mustersprachen
variable gehalten. Damit aus dem Metamodell für Mustersprachen einfach Musterkataloge abgeleitet
werden können, wurde das Metamodell für Mustersprachen als UML-Diagramm festgehalten und
entsprechende dem modellgetriebenen Architekturansatz entworfen. Es stellt somit auch eine Grundlage
für eine Datenstruktur dar, die eine maschinelle Handhabung und Verwaltung von Mustersprachen und
Musterkatalogen ermöglicht.

5.2. AUSBLICK 75

Plattform für Mustersprachen und Musterkataloge Damit das Metamodell für Mustersprachen
maschinell verwendet werden kann, wurde in dieser Arbeit eine Plattform für Mustersprachen und
Musterkataloge spezifiziert, entworfen und implementiert. Die Plattform für Mustersprachen und
Musterkataloge ermöglicht die Erstellung und Verwaltung von Mustersprachen und Musterkatalogen.
Sie verwendet das Metamodell für Mustersprachen als Grundlage für die Datenstruktur der
Mustersprachen und Musterkataloge. Das vorgestellte Metamodell für Mustersprachen wurde
durch zusätzliche Profilerweiterungen angepasst, damit es den Anforderungen der Plattform für
Mustersprachen und Musterkataloge gerecht wird. Die Erweiterung von dem Profil des Metamodells
für Mustersprachen bietet unter anderem die Möglichkeit Diskussionen über Musterinhalte zu führen
oder Veränderungen der Musterinhalte als neue Musterversionen abzuspeichern. Diese Erweiterung
ermöglicht es ebenso Inhalte der Muster durch das Anhängen von Dateien zu erweitern.

Aufbau der Plattform für Musterkataloge Die Plattform für Mustersprachen und Musterkataloge
ist in eine Drei-Schichten-Architektur aufgeteilt. Ein Repository, das die Daten der Mustersprachen und
Musterkataloge verwaltet, übernimmt die Aufgabe der Datenhaltungsschicht. In der Anwendungsschicht
der Drei-Schichten-Architektur werden zwei Dienste zur Verfügung gestellt. Ein Dienst ermöglicht
das Laden und Speichern von Daten aus dem Repository sowie die Zusammenstellung, die
Aufbereitung und die Konsistenzprüfung der Daten von Mustersprachen und Musterkatalogen. Der
zweite Dienst ermöglicht das Suchen nach Musterkatalogen, Mustern, oder deren Musterinhalten.
Eine webbasierte Bedienanwendung der Plattform für Mustersprachen und Musterkataloge, die
eine Rich Internet Application darstellt, repräsentiert die Präsentationsschicht der Plattform. Mit
Hilfe der Bedienanwendung der Plattform für Mustersprachen und Musterkataloge lassen sich die
Mustersprachen und Musterkataloge anlegen, pflegen, verwalten und durchstöbern.

5.2 Ausblick

Im Folgenden wird über eine mögliche Fortführung und den Ausblick dieser Arbeit berichtet:

Evaluation des Metamodells für Mustersprachen Das Metamodell für Mustersprachen wird in
dieser Arbeit nicht auf die Qualität seiner Verwendbarkeit getestet. Bevor man mit der Entwicklung des
Metamodells für Mustersprachen fortfährt, ist es notwendig, die Anforderungen des Metamodells für
Mustersprachen zu überprüfen. Damit können Fehler und Erweiterungsbedürfnisse aufgedeckt werden.
Die Analyse der Verwendbarkeitsqualität und der Erfüllung der Anforderungen des Metamodells für
Mustersprachen kann durch die Verwendung der Plattform für Mustersprachen und Musterkataloge
durchgeführt werden. In diesem Zuge kann auch die Plattform für Mustersprachen und Musterkataloge
bezüglich der Erfüllung ihrer Anforderungen und der Qualität ihrer Bedienbarkeit überprüft werden.

Weiterentwicklung des Metamodells für Mustersprachen Das Profil des Metamodells für
Musterpsrachen enthält und beschreibt die Arten der Strukturelemente im Metamodell. Durch
diese Arten und deren Beschreibungen enthalten die Elemente der Struktur im Metamodell für
Mustersprachen Bedeutungen, die wiederum Metainformation in Mustern und Musterkatalogen
darstellen. Die Metainformationen wie zum Beispiel die Art des Inhaltes von Mustern oder der
Beziehungstyp zwischen Mustern sind in dem Profil des Metamodells für Mustersprachen festgelegt.

76 KAPITEL 5. ZUSAMMENFASSUNG UND AUSBLICK

In dieser Arbeit werden diese Metainformationen verwendet, um den Lesern und Autoren Aufschluss
über die Mustersprachen und Muster zu geben. Die Plattform für Mustersprachen und Musterkataloge
verwendet die Metainformationen der Muster, um sie zu verwalten und nach ihnen zu suchen. Die
Metainformation von Mustersprachen, Mustern und deren Musterkataloge können für viele weitere
Hilfsfunktionen, Dienste oder Anwendungen verwendet werden. Diese können Berechnungen ausführen
und Ergebnisse liefern, die auf den Beschreibungen der Inhalte von Mustersprachen, Mustern und deren
Musterkataloge aufbauen.

Automatische Generierung von Musterlösungen Eine Erweiterungsmöglichkeit des
Metamodells für Mustersprachen ist die automatische Generierung von Musterlösungen. Die
automatische Generierung von Musterlösungen verwendet die Inhalte und die Metainformationen der
Muster und Musterkataloge, um spezielle Lösungen zu generieren, die in den Mustern beschrieben
sind. Die generierten Musterlösungen können beliebige Datensätze und Befehle darstellen. Sie können
beispielsweise als Konfigurationen, Operationen oder als eigenständige Programme verwendet werden.
Die Umsetzung der automatischen Generierung von Musterlösungen benötigt unter anderem die
Musterinhalte um Lösungen zu erstellen. Die Mustersprachen und Musterkataloge, die aus dem
Metamodell für Mustersprachen aus dieser Arbeit abgeleitet wurden, enthalten Muster, deren Inhalte
nicht formal festgehalten sind. Eine Herausforderung wird in der maschinellen Interpretation der
Musterinhalte liegen, um die Semantik der Inhalte zu verstehen und darauf basierend Lösungen
berechnen zu können.

QUELLENVERZEICHNIS III

Quellenverzeichnis

[ACM03] ALUR, Deepak; CRUPI, John ; MALKS, Dan: Core J2EE Patterns: Best Practices and Design
Strategies. Prentice Hall Professional, 2003

[Apa11] APACHE TOMCAT PROJECT: Apache Tomcat. http://tomcat.apache.org/.
Version: August 2011

[Axi11] AXIS: WebServices - Axis. http://axis.apache.org/axis/. Version: August 2011

[BCFC06] BOZZON, Alessandro; COMAI, Sara; FRATERNALI, Piero ; CARUGHI, Giovanni T.:
Conceptual modeling and code generation for rich internet applications. In: Proceedings of
the 6th international conference on Web engineering. Palo Alto, California, USA : ACM,
2006 (ICWE ’06), S. S. 353–360

[BCHP03] BROWN, Kyle; CRAIG, Gary; HESTER, Greg ; PITT, David: Enterprise Java programming
with IBM WebSphere. Addison-Wesley Professional, 2003

[Ber94] BERNERS-LEE, T.: Universal Resource Identifiers in WWW: A Unifying Syntax for the
Expression of Names and Addresses of Objects on the Network as used in the World-Wide
Web. http://tools.ietf.org/html/rfc1630. Version: Juni 1994

[BHS07] BUSCHMANN, Frank; HENNEY, Kevlin ; SCHMIDT, Douglas C.: Pattern Oriented Software
Architecture Volume 5: On Patterns and Pattern Languages. Bd. 5. 1. Wiley, 2007

[BJ94] BECK, Kent; JOHNSON, Ralph E.: Patterns Generate Architectures. In: Proceedings of the 8th
European Conference on Object-Oriented Programming, Springer-Verlag, 1994, S. 139–149

[BM00] BOWER, Andy; MCGLASHAN, Blair: Twisting the Triad - The evolution of the
Dolphin Smaltalk MVP application framework. www.object-arts.com/downloads/
papers/TwistingTheTriad.PDF. Version: 2000

[BMR+98] BUSCHMANN, Frank; MEUNIER, Regine; ROHNERT, Hans; SOMMERLAD, Peter ; STAL,
Michael: Pattern-orientierte Software-Architektur: Ein Pattern-System. Addison-Wesley, 1998

[CAA77] CHRISTOPHER ALEXANDER, Murray Silverstein Max Jacobson Ingrid Fiksdahl-King
Sara I. Sara Ishikawa; ANGEL, Shlomo: A PATTERN LANGUAGE: TOWNS BUILDINGS
CONSTRUCTION. Oxford University Press, 1977

[CC08] COOPER, Robert; COLLINS, Charles: GWT in Practice. Manning Publications, 2008

http://tomcat.apache.org/
http://axis.apache.org/axis/
http://tools.ietf.org/html/rfc1630
www.object-arts.com/downloads/papers/TwistingTheTriad.PDF
www.object-arts.com/downloads/papers/TwistingTheTriad.PDF

IV QUELLENVERZEICHNIS

[CCMS01] CHRISTENSEN, Erik; CURBERA, Francisco; MEREDITH, Greg ; SANJIVA, Weerawarana:
Web Services Description Language (WSDL). http://www.w3.org/TR/wsdl.
Version: März 2001

[DC99] DORIGO, Marco; CARO, Gianni D.: Ant Colony Optimization: A New Meta-Heuristic. In:
Evolutionary Computation, 1999. CEC 99. Proceedings of the 1999 Congress on (1999)

[dwo] A Concept of a Web Application Blending Thin and Fat Client Architectures. In:
Dependability of Computer Systems, International Conference on. Los Alamitos, CA, USA :
IEEE Computer Society

[Dwy08] DWYER, Jeff: Pro Web 2.0 Application Development with GWT. 1. Apress, 2008

[Ecl11] ECLIPSE FOUNDATION, INC.: Eclipse - The Eclipse Foundation Open Source Community
Website. http://www.eclipse.org/. Version: August 2011

[Etz64] ETZIONI, Amitai: Modern Organizations. 1. Prentice Hall, 1964

[Fow02] FOWLER, Martin: Patterns of Enterprise Application Architecture. Addison-Wesley Longman,
Amsterdam, 2002

[Fow06] FOWLER, Martin: GUI Architectures. http://www.martinfowler.com/eaaDev/
uiArchs.html. Version: Juli 2006

[Fre09] FREIBERGER, Jörg: Was für ein Tier. In: database pro (2009), Juni, S. S. 76–81

[GHJV95] GAMMA, Erich; HELM, Richard; JOHNSON, Ralph ; VLISSIDES, John: Design Patterns.
Addison-Wesley, 1995

[Gig91] GIGCH, John P. V.: System design modeling and metamodeling. Springer, 1991

[Goo97] GOOS, Gerhard: Vorlesungen Uber Informatik: Band 3: Berechenbarkeit, Formale Sprachen,
Spezifikationen. Springer, 1997

[Goo11] GOOGLE WEB TOOLKIT: Google Web Toolkit - Google Code. http://code.google.
com/webtoolkit/. Version: August 2011

[Gow10] GOWDAR, Girish: Java Servlet Technology. http://www.oracle.com/
technetwork/java/javaee/servlet/index.html. Version: September 2010

[HW04] HOHPE, Gregor; WOOLF, Bobby: Enterprise integration patterns: Designing, building, and
deploying messaging solutions. Addison-Wesley, 2004

[Jet11] JETTY WEBSERVER: jetty - Jetty WebServer. http://jetty.codehaus.org/
jetty/. Version: August 2011

[Jos08] JOSUTTIS, Nicolai: SOA in der Praxis: System-Design für verteilte Geschäftsprozesse. 1.
Dpunkt Verlag, 2008

[Laa03] LAAKSO, Sari A.: User Interface Design Patterns. http://www.cs.helsinki.fi/u/
salaakso/patterns/. Version: September 2003

http://www.w3.org/TR/wsdl
http://www.eclipse.org/
http://www.martinfowler.com/eaaDev/uiArchs.html
http://www.martinfowler.com/eaaDev/uiArchs.html
http://code.google.com/webtoolkit/
http://code.google.com/webtoolkit/
http://www.oracle.com/technetwork/java/javaee/servlet/index.html
http://www.oracle.com/technetwork/java/javaee/servlet/index.html
http://jetty.codehaus.org/jetty/
http://jetty.codehaus.org/jetty/
http://www.cs.helsinki.fi/u/salaakso/patterns/
http://www.cs.helsinki.fi/u/salaakso/patterns/

QUELLENVERZEICHNIS V

[Lam07] LAMMI, Janne: Developing a UI Design Pattern Library - A Case Study at
eCraft, HELSINKI UNIVERSITY OF TECHNOLOGY, Department of Computer
Science and Engineering und Laboratory of Software Business and Engineering,
Mastersthesis, September 2007. http://www.scribd.com/doc/29180579/
Developing-a-UI-Design-Pattern-Library-A-Case-Study-at-eCraft/
-Master-s-Thesis

[LL10] LUDEWIG, Jochen; LICHTER, Horst: Software Engineering: Grundlagen, Menschen,
Prozesse, Techniken. 2. überarb. u. akt. Aufl. dpunkt Verlag, 2010

[LMW05] LEACOCK, Matt; MALONE, Erin ; WHEELER, Chanel: Implementing a Pattern Library
in the Real World: A Yahoo! Case Study. http://www.leacock.com/patterns/
leacock_malone_wheeler.pdf. Version: Februar 2005

[LVH11] LAMMI, Janne; VARJOKALLIO, Matti ; HOCKSELL, Johannes: UI Design Pattern Library |
Patternry. http://patternry.com/patterns/. Version: 2011

[Mah08] MAHEMOFF, Michael: Ajax Patterns. http://ajaxpatterns.org/wiki/index.
php?title=Main_Page. Version: August 2008

[McL02] MCLAUGHLIN, Brett: Building Java Enterprise Applications: Architecture. O’Reilly Media,
Inc., 2002

[MD96] MESZAROS, Gerard; DOBLE, Jim: MetaPatterns: A Pattern Language for Pattern Writing. In:
In 3rd Pattern Languages of Programming conference, 1996, S. S. 4–6

[MM03] MILLER, J.; MUKERJI, J.: MDA Guide Version 1.0.1 / Object Management Group (OMG).
2003 (omg/03-06-01). – Forschungsbericht

[MO99] MARTIN, James; ODELL, James J.: Objektorientierte Modellierung mit UML. Das
Fundament. Prentice Hall, 1999

[MyS11] MYSQL: MySQL :: Die populärste Open-Source-Datenbank der Welt. http://www.
mysql.de/. Version: August 2011

[New72] NEWELL, Allen: Human Problem Solving. 4. Auflage. Longman Higher Education, 1972

[Obj10] OBJECT MANAGEMENT GROUP: UML 2.3 Superstructure. http://www.omg.org/
spec/UML/2.3/Superstructure/PDF. Version: Mai 2010

[Ora11] ORACLE: Oracle Technology Network for Java Developers. http://www.oracle.com/
technetwork/java/index.html. Version: August 2011

[PHBO10] PAUWELS, Stefan L.; HÜBSCHER, Christian; BARGAS-AVILA, Javier A. ; OPWIS, Klaus:
Building an interaction design pattern language: A case study. In: Computers in Human
Behavior 26 (2010), Mai, S. S. 452–463. – ACM ID: 1750044

[Php11] PHPMYADMIN DEVEL TEAM: phpMyAdmin. http://www.phpmyadmin.net/home_
page/. Version: August 2011

http://www.scribd.com/doc/29180579/Developing-a-UI-Design-Pattern-Library-A-Case-Study-at-eCraft/-Master-s-Thesis
http://www.scribd.com/doc/29180579/Developing-a-UI-Design-Pattern-Library-A-Case-Study-at-eCraft/-Master-s-Thesis
http://www.scribd.com/doc/29180579/Developing-a-UI-Design-Pattern-Library-A-Case-Study-at-eCraft/-Master-s-Thesis
http://www.leacock.com/patterns/leacock_malone_wheeler.pdf
http://www.leacock.com/patterns/leacock_malone_wheeler.pdf
http://patternry.com/patterns/
http://ajaxpatterns.org/wiki/index.php?title=Main_Page
http://ajaxpatterns.org/wiki/index.php?title=Main_Page
http://www.mysql.de/
http://www.mysql.de/
http://www.omg.org/spec/UML/2.3/Superstructure/PDF
http://www.omg.org/spec/UML/2.3/Superstructure/PDF
http://www.oracle.com/technetwork/java/index.html
http://www.oracle.com/technetwork/java/index.html
http://www.phpmyadmin.net/home_page/
http://www.phpmyadmin.net/home_page/

VI QUELLENVERZEICHNIS

[Pot96] POTEL, Mike: MVP: Model-View-Presenter The Taligent Programming Model for C and Java.
Taligent Inc., 1996

[Ram10] RAMSDALE, Chris: Large scale application development and MVP. http:
//code.google.com/webtoolkit/articles/mvp-architecture.html.
Version: März 2010

[RJB99] RUMBAUGH, James; JACOBSON, Ivar ; BOOCH, Grady: The Unified Modeling Language
Reference Manual. Addison Wesley Professional, 1999

[SBB08] SMEETS, Bram; BONESS, Uri ; BANKRAS, Roald: Beginning Google Web Toolkit: From
Novice to Professional. Apress, 2008

[Sch01] SCHÖNING, Uwe: Theoretische Informatik - kurzgefasst. Spektrum Akademischer Verlag
GmbH, 2001

[Sco06] SCOTT, Bill: Yahoo! Design Pattern Library Released. http://www.yuiblog.com/
blog/2006/02/13/yahoo_patterns_released/. Version: Februar 2006

[SE07] SUMATHI, S.; ESAKKIRAJAN, S.: Fundamentals of Relational Database Management
Systems. Springer, 2007

[Sim07] SIMMONS, Andrea: Rich Internet Applications 101: A Primer for Marketing Agencies &
Multimedia Developers, Integration New Media, 2007

[Spo06] SPOOL, Jared M.: The Elements of a Design Pattern. http://www.uie.com/
articles/elements_of_a_design_pattern/. Version: Januar 2006

[Tar09] TARKOMA, Sasu: Mobile middleware: architecture, patterns and practice. John Wiley and
Sons, 2009

[Tho11] THOMAS, Erl: SOA Patterns - Service Data Replication. http://www.soapatterns.
org/service_data_replication.php. Version: Juli 2011

[Tid99] TIDWELL, Jenifer: Common Ground: A Pattern Language for Human-Computer Interface
Design. http://www.mit.edu/˜jtidwell/interaction_patterns.html.
Version: 1999

[Van11] VAN WELIE, Martijn: Interaction Design Pattern Library - Welie.com. http://welie.
com/patterns/. Version: 2011

[vv03] VAN WELIE, Martijn; VAN DER VEER, Gerrit C.: Pattern Language in Interation Design:
Structure and Organization. In: Proceedings of Interact (2003), September, S. S. 527–534

[WCL+05] WEERAWARANA, Sanjiva; CURBERA, Francisco; LEYMANN, Frank; STOREY, Tony ;
FERGUSON, Donald F.: Web services platform architecture: SOAP, WSDL, WS-Policy,
WS-Addressing, WS-BPEL, WS-Reliable Messaging, and more. Prentice Hall PTR, 2005

[Yah11] YAHOO! INC. (2006): Yahoo! Design Pattern Library. Version: August 2011. http:
//developer.yahoo.com/ypatterns/

http://code.google.com/webtoolkit/articles/mvp-architecture.html
http://code.google.com/webtoolkit/articles/mvp-architecture.html
http://www.yuiblog.com/blog/2006/02/13/yahoo_patterns_released/
http://www.yuiblog.com/blog/2006/02/13/yahoo_patterns_released/
http://www.uie.com/articles/elements_of_a_design_pattern/
http://www.uie.com/articles/elements_of_a_design_pattern/
http://www.soapatterns.org/service_data_replication.php
http://www.soapatterns.org/service_data_replication.php
http://www.mit.edu/~jtidwell/interaction_patterns.html
http://welie.com/patterns/
http://welie.com/patterns/
http://developer.yahoo.com/ypatterns/
http://developer.yahoo.com/ypatterns/

ABBILDUNGSVERZEICHNIS VII

Abbildungsverzeichnis

2.1 Strukturübersicht der Metamuster-Mustersprache von Meszaros und Doble 15

3.1 Modellhierarchie der Musterkataloge . 27

3.2 Strukturen und Strukturelemente des Metamodells für Mustersprachen 30

3.3 Modell des Inahltselements . 32

3.4 Modell der Musterstruktur . 33

3.5 Modell des Inhaltselements . 35

3.6 Beziehungsprofil . 37

3.7 Profil der Musterstruktur . 40

3.8 Arten von Musterorganisationen im Mustersprachprofil 43

3.9 Profil der Mustersprachorganisationen . 44

4.1 Metainformationsbeschreibung für Mustersprachen . 55

4.2 Modell der Metainformationsbeschreibung für Muster 56

4.3 Modell der Versionsbeschreibung . 57

4.4 Modell der Suchanfragestruktur des Suchdienstes der Anwendungslogik 59

4.5 Beispiel einer Suchanfragestruktur . 62

4.6 Beispielsuchanfragestruktur mit Traversierungsschritten 62

4.7 Architekturübersicht der Plattform für Mustersprachen und Musterkataloge 65

4.8 Arichitektur des Repository für Plattform für Mustersprachen und Musterkataloge 66

4.9 Architektur der Anwendungslogik der Plattform für Mustersprachen und Musterkataloge 68

4.10 Model-View-Presenter Muster . 70

4.11 Architektur der Bedienanwendung der Plattform für Mustersprachen und Musterkataloge 71

A Metamodell für Mustersprachen . XII

B Beispiel einer Mustersprache . XIV

VIII ABBILDUNGSVERZEICHNIS

C Profilerweiterungen des Metamodellprofils für Mustersprachen XVI

ALGORITHMENVERZEICHNIS IX

Algorithmenverzeichnis

4.1 Algorithmus für die Traversierung der Suchanfragenstruktur 60

X ALGORITHMENVERZEICHNIS

Anhang

Anhangsverzeichnis

Anhang A: Metamodell

Anhang B: Beispiel eine Mustersprache

Anhang C: Profilerweiterungen des Metamodellprofils für Mustersprachen

XII ALGORITHMENVERZEICHNIS

Anhang A: Metamodell für Mustersprachen

XIV ALGORITHMENVERZEICHNIS

Anhang B: Beispiel einer Mustersprache

XVI ALGORITHMENVERZEICHNIS

Anhang C: Profilerweiterungen des Metamodellprofils für Mustersprachen

Erklärung

Hiermit versichere ich, diese Arbeit
selbständig verfasst und nur die
angegebenen Quellen benutzt zu haben.

(Philipp Grimm)

	Einleitung
	Problemstellung und Zielsetzung
	Aufbau der Arbeit

	Grundlagen
	Begriffserklärung von Mustern
	Muster nach Christopher Alexander
	Muster nach 'The Gang of Four'
	Muster nach Frank Buschmann
	Muster nach Martin Fowler
	Muster nach Hohpe und Woolf

	Begriffserklärung von Modell und Metamodell
	Begriffserklärung von Metamustern
	Metamuster nach Meszaros und Doble

	Beziehungen in Mustersprachen
	Beziehungen in Mustersprachen nach van Welie und van der Veer

	Webbasierte Musterkataloge und -sammlungen
	Interaction Design Pattern Library - Welie.com
	Yahoo! Design Pattern Library

	UML-Diagramm
	Erweiterung von UML

	Grundlagen modellgetriebener Softwareentwicklung
	Modellgetriebene Softwareentwicklung
	Modellgetriebene Architektur

	Metamodell für Mustersprachen
	Einordnung der Grundlagen des Metamodells für Mustersprachen
	Form und Aufbau des Metamodells für Mustersprachen
	Aufgaben und Ziele des Metamodells für Mustersprachen
	Übersicht der Modellhierarchie
	Aufbau und Bestandteile des Metamodells für Mustersprachen
	Übersicht der Strukturen in dem Metamodell für Mustersprachen
	Grundlagen der Strukturen des Metamodells für Mustersprachen
	Modell der Musterstruktur des Metamodells für Mustersprachen
	Modell der Mustersprachstruktur des Metamodells für Mustersprachen

	Profil des Metamodells für Mustersprachen
	Beziehungsprofil des Metamodells für Mustersprachen
	Musterstrukturprofil des Metamodells für Mustersprachen
	Mustersprachprofil des Metamodells für Mustersprachen
	Typen von Musterorganisationen im Mustersprachprofil
	Zusatzfunktionalitäten für Mustersprachen im Mustersprachprofil

	Plattform für Mustersprachen und Musterkataloge
	Aufgaben und Ziele der Plattform für Mustersprachen und Musterkataloge
	Abgrenzung zu bestehenden webbasierten Musterkatalogen
	Plattformspezifikation für Mustersprachen und Musterkataloge
	Erstellung und Verwaltung von Mustersprachen
	Erstellung und Verwaltung von Musterkatalogen

	Struktur der Plattform für Mustersprachen und Musterkataloge
	Repository der Plattform für Mustersprachen und Musterkataloge
	Anwendungslogik der Plattform für Mustersprachen und Musterkataloge
	Webbasiertes Frontend der Plattform für Mustersprachen und Musterkataloge

	Implementierung der Plattform für Mustersprachen und Musterkataloge

	Zusammenfassung und Ausblick
	Zusammenfassung
	Ausblick

	Quellenverzeichnis
	Abbildungsverzeichnis
	Algorithmenverzeichnis
	Anhang
	UML-Diagramm: Metamodell für Mustersprachen
	UML-Diagramm: Beispielmodell einer Mustersprache
	UML-Diagramm: Profilerweiterungen des Metamodellprofils für Mustersprachen

