Institut fiir Architektur von Anwendungssystemen

Universitét Stuttgart
Universitétsstralle 38
D-70569 Stuttgart

Diplomarbeit Nr. 3190

Metamodell und Plattform
fiir
Mustersprachen und Musterkataloge

Philipp Grimm
Studiengang: Informatik
Priifer: Prof. Dr. Frank Leymann
Betreuer: Dipl.-Inf. Christoph Fehling
Dipl.-Inf. David Schumm
begonnen am: 25. Mai 2011
beendet am: 28. Oktober 2011

CR-Klassifikation: 1.5.0,1.6.5,D.2.1,D.2.2

Inhaltsverzeichnis

1 Einleitung

1.1
1.2

Problemstellung und Zielsetzung oL L
Aufbauder Arbeit

2 Grundlagen

2.1

2.2
23

2.4

25

2.6

2.7

3.1
32
33
34
3.5

Begriffserkldrung von Mustern L oL
2.1.1 Muster nach Christopher Alexander
2.1.2 Muster nach "The Gangof Four”
2.1.3 Muster nach Frank Buschmann
2.1.4 MusternachMartin Fowler.
2.1.5 Muster nach Hohpeund Woolf
Begriffserklarung von Modell und Metamodell
Begriffserkldrung von Metamustern oL o Lo
2.3.1 Metamuster nach Meszarosund Doble
Beziehungen in Mustersprachen,
2.4.1 Beziehungen in Mustersprachen nach van Welie und van der Veer
Webbasierte Musterkataloge und -sammlungen
2.5.1 Interaction Design Pattern Library - Weliecom
2.5.2 Yahoo! Design Pattern Library
UML-Diagramm e e
2.6.1 Erweiterungvon UML
Grundlagen modellgetriebener Softwareentwicklung
2.7.1 Modellgetriebene Softwareentwicklung
2.7.2 Modellgetriebene Architekturo L

Metamodell fiir Mustersprachen

Einordnung der Grundlagen des Metamodells fiir Mustersprachen
Form und Aufbau des Metamodells fiir Mustersprachen
Aufgaben und Ziele des Metamodells fiir Mustersprachen
Ubersicht der Modellhierarchie
Aufbau und Bestandteile des Metamodells fiir Mustersprachen
3.5.1 Ubersicht der Strukturen in dem Metamodell fiir Mustersprachen
3.5.2 Grundlagen der Strukturen des Metamodells fiir Mustersprachen
3.5.3 Modell der Musterstruktur des Metamodells fiir Mustersprachen
3.5.4 Modell der Mustersprachstruktur des Metamodells fiir Mustersprachen

3.6 Profil des Metamodells fiir Mustersprachen
3.6.1 Beziehungsprofil des Metamodells fiir Mustersprachen
3.6.2 Musterstrukturprofil des Metamodells fiir Mustersprachen
3.6.3 Mustersprachprofil des Metamodells fiir Mustersprachen
3.6.3.1 Typen von Musterorganisationen im Mustersprachprofil
3.6.3.2 Zusatzfunktionalitéten fiir Mustersprachen im Mustersprachprofil

4 Plattform fiir Mustersprachen und Musterkataloge

4.1 Aufgaben und Ziele der Plattform fiir Mustersprachen und Musterkataloge
4.2 Abgrenzung zu bestehenden webbasierten Musterkatalogen
4.3 Plattformspezifikation fiir Mustersprachen und Musterkataloge
4.3.1 Erstellung und Verwaltung von Mustersprachen
4.3.2 Erstellung und Verwaltung von Musterkatalogen
4.4 Struktur der Plattform fiir Mustersprachen und Musterkataloge
4.4.1 Repository der Plattform fiir Mustersprachen und Musterkataloge

4.4.2 Anwendungslogik der Plattform fiir Mustersprachen und Musterkataloge

443 Webbasiertes Frontend der Plattform fiir Mustersprachen und Musterkataloge . .
4.5 Implementierung der Plattform fiir Mustersprachen und Musterkataloge

5 Zusammenfassung und Ausblick

5.1 Zusammenfassung e e
5.2 Ausblick L e

Quellenverzeichnis
Abbildungsverzeichnis
Algorithmenverzeichnis

Anhang

A UML-Diagramm: Metamodell fiir Mustersprachen
B UML-Diagramm: Beispielmodell einer Mustersprache
C UML-Diagramm: Profilerweiterungen des Metamodellprofils fiir Mustersprachen

II

. 63
. 64

45

. 45
. 46
.47
. 48

53

67
69
72

74

. 74
.75

111

vl

VIII

Kapitel 1

Einleitung

Beim Suchen nach einer Losung zur Behebung eines Problems wird oft auf bestehende Ansitze und
Ideen zuriickgegriffen. Die Denkweise des Verkniipfens von Problemstellungen und Losungsansétzen
tritt in vielen Bereichen auf, zum Beispiel in der Architektur [CAA77], in den Wirtschaftswissenschaften
[Etz64] und in der Software-Technik [BJ94]. Auch im Umgang mit sozialen Problemen wird hiufig auf
diese Denkweise zuriickgegriffen [New72]. Die Beschreibung von Problem-Losungs-Paaren, die auf
wiederkehrende Probleme in bestimmten Kontexten ein Losungsschema bieten, werden Muster genannt.
[BMR198, S. 1]

Speziell bei der Entwicklung von groBen Softwaresystemen ist es sinnvoll wiederkehrende
Problemstellungen, ganze Softwarearchitekturen und deren Komponenten mit Hilfe von Mustern zu
l6sen und aufzubauen. In den letzten Jahren ist eine ganze Reihe von Mustern, Mustersprachen und
Musterkatalogen vor allem fiir die Softwareentwicklung entstanden, auf die bei der Softwareerstellung
zurlickgegriffen werden sollte. Solch ein Musterkatalog stellt eine vernetzte Menge von Mustern dar.
Seine Aufbau wird durch eine Mustersprache definiert, die das Modell des Musterkataloges darstellt.
[LL10, S.429-444]

Die Vernetzung und Beziehungen der Muster in Mustersprachen wird immer wichtiger, da sie
einen grofle Informationsgehalt bieten. Durch die Beziehungen der Muster lassen sich zum Beispiel
dhnliche Losungsansitze oder auch andere Losungsansitze zu verwandten Problemen zuordnen. Eine
Mustersprache wie die von Christopher Alexander [CAA77] weist eine hierarchische Struktur auf, die
mit der Gliederung eines Buches vergleichbar ist. In der Mustersprache von Christopher Alexander
werden Ahnlichkeits-, Spezialisierung- und Einschlussbeziehungen verwendet, die die Vernetzung der
Mustersprache zusitzlich auspriagen. Die Vernetzung und die Beziehungen der Muster ermoglichen
und vereinfachen das Kombinieren der Muster. Muster werden oft in mehrere Teile unterteilt, die
wiederum von Muster beschrieben werden. Um einen Losungsansatz zu finden, der vollstindig mit
Muster beschrieben werden kann, ist es wichtig die Beziehungen und Verbindungen zwischen den
Mustern zu kennen. [PHBO10]

Durch musterspracheniibergreifende Vernetzungen und Beziehungen kann beispielsweise die Losung
eines Problems in eine andere Richtung gelenkt werden oder die Betrachtung von anderen Losungsideen
fiir das bestehende Probleme entdeckt werden. Dies kann das Finden von Ldosungen in einer
fachfremden Mustersprache beinhalten. Zum Beispiel fanden Dorigo und Caro einen Ansatz zur Losung
verschiedener diskreter Optimierungsprobleme [DC99], indem sie durch das Futtersuchverhalten von
Ameisenkolonien inspiriert wurden. Das Verhalten der Ameisen lieferte die Grundlage fiir ihre
Algorithmen. Sie entwickelten ein Framework, das auf ihrem Algorithmus basiert und mit dem
Losungen von diskreten Optimierungsproblemen berechnet werden konnen. Mit dem Framework lassen
sich viele bekannte Probleme 16sen, unter anderem die Berechnung des Travelling-Salesman-Problems

2 KAPITEL 1. EINLEITUNG

oder das Finden von kurzen Wegen in verbindungslosen Netzwerken unter der Beriicksichtigung der
Netzauslastung.

1.1 Problemstellung und Zielsetzung

Das Ziel dieser Arbeit ist es, ein Metamodell fiir Mustersprachen zur Strukturierung und Verwaltung
zu entwickeln und eine Plattform fiir Mustersprachen und Musterkataloge zu planen und umzusetzen,
die die Verwendung des Metamodells fiir Mustersprachen ermoglicht. Im Folgenden werden die
Anforderungen an das Metamodell fiir Mustersprachen und an die Plattform fiir Mustersprachen und
Musterkataloge vorgestellt:

Einordung der Grundlagen des Metamodells fiir Mustersprachen Das Metamodell fiir
Mustersprachen stiitzt sich inhaltlich auf bekannte und hiufig verwendete Mustersprachen, wie zum
Beispiel auf das Metamodell von Meszaros und Doble sowie auf zahlreiche Analysen und Kenntnisse
von Mustersprachen, die von Buschmann in Pattern Oriented Software Architecture Volume 5: On
Patterns and Pattern Languages [BHSO07] detailliert beschrieben sind.

Basis der Mustersprachen Das Metamodell fiir Mustersprachen stellt ein Modell fiir Mustersprachen
dar und bietet fiir die Mustersprachen eine einheitliche Basis, die Beschreibungen der Struktur und
der Semantik von Mustersprachen enthilt. Durch diese einheitliche Basis der Mustersprachen ist es
moglich, Vernetzungen zwischen Mustersprachen aufzubauen. Zusitzlich kénnen die Strukturen und
die Bedeutungen der Mustersprachen analysiert und verglichen werden.

Variable Gestaltung der Mustersprachdefinitionen Je nach Inhalt der Muster, die durch eine
Mustersprache beschrieben werden, variieren die Definitionen der verschiedenen Mustersprachen.
Damit Autoren von Mustern eine geeignete Mustersprachdefinition fiir ihre Muster finden, erstellten
Meszaros und Doble ein Metamodell fiir Mustersprachen [MD96], das grundlegende Aufgaben fiir die
Erstellung einer Mustersprachendefinition erfiillt. Das Metamodell fiir Mustersprachen, das in dieser
Arbeit beschrieben wird, basiert auf den Ideen von Meszaros und Doble und ermdoglicht dariiber
hinaus das Erstellen von Metamodellerweiterungen. Diese Metamodellerweiterungen werden durch
Profilerweiterungen des Metamodells fiir Mustersprachen ermoglicht. Durch die Erweiterungen des
Metamodellprofils fiir Mustersprachen wird das Metamodell an spezielle Mustersprachen angepasst,
die bestimmten Mustersprachdefinitionen gerecht werden miissen.

Modellgetriebener Architekturansatz Das Metamodell fiir Mustersprachen aus dieser Arbeit
soll dem modellgetriebenen Architekturansatz gerecht werden und durch Profilerweiterungen des
Metamodells fiir Mustersprachen erweiterbar sein. Durch die Erstellung eines Metamodells fiir
Mustersprachen, das dem Konzept der modellgetriebenen Architektur zu Grunde liegt, soll die
Modellierung von Mustersprachen und Musterkatalogen ermoglicht werden. Aus diesem Grund wird
das Metamodell fiir Mustersprachen in dieser Arbeit in Form eines UML-Diagramms vorgestellt.

1.1. PROBLEMSTELLUNG UND ZIELSETZUNG 3

Objektorientierter Aufbau Die Struktur des Metamodells fiir Mustersprachen soll die
objektorientierte Betrachtung von Mustersprachen und Mustern erlauben. Die objektorientierte
Betrachtungsweise von Mustersprachen und Mustern soll auBerdem die Generalisierung und
Spezialisierung der Muster und Mustersprachen ermoglichen.

Vernetzungsinformationen In Verbindung mit der objektorientierten Betrachtungsweise von
Mustersprachen sollen explizite Strukturen und Beziehungsarten zwischen Mustersprachen und Mustern
festgehalten werden, um die Vernetzungsinformationen zu erweitern und die Bedeutung der Beziehung
festzuhalten. Die Bedeutungen der Beziehungen sowie die Semantik der Struktur des Metamodells wird
in dem Profil des Metamodells fiir Mustersprachen festgehalten.

Verwendung des Metamodells fiir Mustersprachen Das Metamodell fiir Mustersprachen aus
dieser Arbeit soll die Basis fiir Mustersprachen und Musterkataloge bieten, die durch die
Modellierung mit Softwareprogrammen erstellt werden konnen. Eine Plattform fiir Mustersprachen und
Musterkataloge soll das Erstellen und Verwalten von Mustersprachen und Musterkatalogen beziiglich
der modellgetriebenen Softwareentwicklung ermdéglichen. AnschlieBend sind die Anforderungen an die
Plattform fiir Mustersprachen und Musterkataloge aufgefiihrt.

Plattform fiir Mustersprachen und Musterkataloge Im Rahmen dieser Arbeit wurde eine Plattform
fiir Mustersprachen und Musterkataloge geplant und implementiert. Sie basiert auf dem Metamodell fiir
Mustersprachen und stellt ein Mustersystem dar, mit dessen Hilfe Mustersprachen erstellt und verwaltet
werden konnen. Aus den Mustersprachen, die in der Plattform fiir Mustersprachen und Musterkatalogen
hinterlegt sind, konnen Musterkataloge instanziiert und verwaltet werden.

Anforderungen an ein Mustersystem Bei der Planung der Plattform fiir Mustersprachen
und Musterkataloge sollen die folgenden Anforderungen von Buschmann an ein Mustersystem
beriicksichtigt werden:

o Die Plattform fiir Mustersprachen und Musterkataloge ermoglicht das Verwalten einer grof3en
Anzahl von Mustern.

e Die Plattform fiir Mustersprachen und Musterkataloge bietet das Einpflegen von Mustern in die
jeweiligen Musterkataloge an, damit die Problematik der Musterkataloge detailliert beschrieben
und gelost werden kann.

o Das Metamodell fiir Mustersprachen aus dieser Arbeit wird als Grundlage verwendet, um die
Muster der Mustersprachen auf eine einheitliche Art und Weise beschreiben zu konnen.

e Die einheitliche Beschreibungsgrundlage der Muster ermoglicht es, die Inhalte der Muster
ibersichtlich zu présentieren und die Muster untereinander zu vergleichen.

e Das Metamodell fiir Mustersprachen ermoglicht es, verschiedene Beziehungen zwischen
Musterkatalogen, Mustern und deren Inhalten in der Plattform fiir Mustersprachen und
Musterkatalogen zu erstellen.

KAPITEL 1. EINLEITUNG

Damit die Muster in den Musterkatalogen geeignet angeordnet und schnell gefunden werden
konnen, stellt die Plattform fiir Mustersprachen und Musterkataloge eine Verwaltung der Muster
und eine Suche nach den Mustern zur Verfiigung.

Die Plattform fiir Mustersprachen und Musterkataloge kann mit der dynamischen Anderungen
der Inhalte von den Musterkatalogen und Mustern umgehen.

Es sind Schnittstellen fiir Erweiterungen der Plattform vorgesehen, damit Losungen fiir neue
Anforderung bereitgestellt werden kdnnen.

[BMR98][S. 359-361]

Erweiterung der Mustersystemanforderungen Die Anforderungen von Buschmann an ein
Mustersystem wurden durch zusitzliche Anforderungen erweitert und verfeinert:

1.2

Die Musterkataloge der Plattform fiir Mustersprachen und Musterkataloge bieten eine
komfortable und effiziente Nutzung fiir Autoren und Leser.

Aufgrund der dynamischen Erstellung und Verdnderung der Muster kdnnen verschiedene
Versionen der Musterkataloge und deren Muster gespeichert werden. Die Leser und Autoren
konnen durch das Festhalten der Inhaltsinderungen die inhaltlichen Entwicklungen der Losungen
nachvollziehen.

Die Plattform fiir Mustersprachen und Musterkataloge ermoglicht zusitzlich eine erweiterte
Suche, die nach Musterkatalogen, Mustern und Musterinhalten suchen kann. Sie stellt aulerdem
die Zusammenhinge des Suchergebnisses dar.

Leser und Autoren konnen die Musterkataloge der Plattform fiir Mustersprachen und
Musterkataloge durchstobern und dabei ihren Vernetzungen folgen.

Die Plattform fiir Mustersprachen und Musterkataloge stellt eine Basis fiir die Diskussion iiber
die Inhalte der Musterkatalge, Muster und deren Inhalte zur Verfiigung.

Um die Daten der Mustersprachen und Musterkataloge effizient verwalten zu kdnnen, besitzt die
Plattform fiir Mustersprachen und Musterkataloge ein Repository, das die Verwaltung der Daten
iibernimmt.

Aufbau der Arbeit

Die Arbeit besteht aus der Erkldrung der Grundlagen, der Beschreibung des Metamodells fiir
Mustersprachen und dessen Verwaltungssoftware, sowie der Plattform fiir Mustersprachen und
Musterkataloge. Im Anschluss folgt eine Zusammenfassung mit Ausblick des behandelten Themas. Im
Folgenden wird auf den Inhalt der einzelnen Bestandteile der Arbeit eingegangen.

Einleitung Die Einleitung dieser Arbeit fiihrt den Leser in die Thematik ein und beschreibt diese in
wenigen Worten. Sie setzt sich auBerdem mit der Aufgabenstellung und der Zielsetzung auseinander
und schildert den Aufbau dieser Arbeit.

1.2. AUFBAU DER ARBEIT 5

Grundlagen Die Grundlagen enthalten fachspezifische Informationen iiber Mustersprachen, die
fiir das Verstindnis diese Arbeit niitzlich sind. Es werden die wichtigsten Begriff erklart, die
als Hintergrundwissen der Arbeit bendtigt werden. Die vorgestellten Arbeiten, deren Inhalt mit
Mustersprachen zusammenhéngt, stellt eine notwendige Grundlage fiir das Kapitel Metamodell fiir
Mustersprachen dar. Da anhand deren Inhalten das Metamodell fiir Mustersprachen begriindet und
aufgebaut ist.

Metamodell fiir Mustersprachen Im Kapitel Metamodell fiir Mustersprachen wird das Metamodell
fiir Mustersprachen aufgebaut und beschrieben. Dieses wird anhand eines erstellten UML-Diagramms
erklért.

Plattform fiir Mustersprachen und Musterkataloge Im dritten Kapitel wird die Plattform fiir
Mustersprachen und Musterkataloge vorgestellt. Es werden ihre Aufgaben und Anforderungen
beschrieben und eine Abgrenzung zu anderen Softwaremusterkatalogen vorgenommen. Im Anschluss
wird die Plattform spezifiziert und deren Struktur vorgestellt.

Zusammenfassung und Ausblick In der Zusammenfassung wird das erstellte Metamodell fiir
Mustersprachen und die Plattform fiir Mustersprachen und Musterkataloge reflektiert und einen
Ausblick auf Erweiterungen vorgestellt.

Anhang Im Anhang dieser Arbeit befinden sich die vollstindigen UML-Diagrammen des
Metamodells fiir Mustersprachen, eine Beispielmustersprache und die Profilerweiterung des
Metamodells fiir Mustersprachen fiir die Anpassung an die Plattform. Zusitzlich ist ein
Literaturverzeichnis, ein Abbildungsverzeichnis und ein Verzeichnis der Algorithmen abgebildet.

Kapitel 2

Grundlagen

In diesem Kapitel werden die fiir diese Arbeit benétigten fachlichen Grundlagen und relevanten
Vorarbeiten vorgestellt und diskutiert.

Es werden Mustersprachen und deren Strukturen betrachtet, um einen Ausblick zu geben, was das zu
erstellende Metamodell der Mustersprachen in dieser Arbeit leisten soll. Hierzu wird die erste populére
Mustersprache von Christopher Alexander [CAA77] vorgestellt. Anschliefend werden Mustersprachen
betrachtet, die inhaltlich der Architektur und dem Design von Software zu zuordnen sind.

2.1 Begriffserklarung von Mustern

Die bekanntesten Definitionen von Mustern (engl. Pattern) haben alle die gleiche Kernaussage: ein
Muster beschreibt einen Losungsansatz fiir ein wiederkehrendes Problem und dessen Kontext. Wichtig
dabei ist, dass der Losungsansatz der Muster unendlich oft auf das beschriebene Problem anwendbar ist
ohne den Losungsansatz dndern zu miissen. Je nach Fachrichtung und Mustersprache variiert jedoch das
Format der Muster. Im Folgenden werden bekannte Definitionen von verschieden Autoren vorgestellt,
um ein Verstidndnis der Muster und ihrer Sprachen zu bieten.

2.1.1 Muster nach Christopher Alexander

Der Architekt, Professor und Gesellschaftstheoretiker Christopher Alexander legte den Grundstein
fiir das Konzept der Muster und der Mustersprachen mit seinen Biichern: A Pattern Language
[CAATT7] und A Timeless Way of Building [CAA77]. [HWO04, S. xli] Die Biicher von Christopher
Alexander befassen sich erstmals mit der Beschreibung von Mustern, welche sich auf den Sachverhalt
der Architektur, das Bauwesen und der Planung beziehen. In seinem Buch A Pattern Language
beschreibt er eine Mustersprache. Diese Mustersprache besteht aus Mustern, die Stddte, Gebédude
und Bauformen beschreiben. An Hand ihrer Information kdnnen konkrete Konstrukte abgeleitet und
entworfen werden. Christopher Alexander versteht unter einem Konstrukt ein architektonisches Werk,
das aus der Konkretisierung mehrere Musterlésungen von zusammenhiingenden Mustern ableitbar ist.
Unter der Ableitung von Mustern versteht man das Anwenden der Musterlésungen durch eine Projektion
der Musterlosung auf die zu entwerfende Losung. Das Buch A Timeless Way of Building behandelt die
fundamentale Natur der Tatigkeiten, um Stidte und Gebdude zu errichten. Es beschreibt unter anderem
die Vorgehensweisen der Erstellung von Architekturen anhand einer Mustersprache. [CAA77, S. ix-x]

8 KAPITEL 2. GRUNDLAGEN

Musterdefinition

Each Pattern describes a problem which occurs over and over again in our environment, and
then descibes the core of the solution to that problem, in such a way that you can use this
solution a million times over, without ever doing it the same way twice. [CAA77, S. x]

Musteraufbau Christopher Alexander hat seine Muster in Textform festgehalten. Der Einfachheit
halber und der Verstindlichkeit wegen haben alle Muster das gleiches Format. Der Inhalt wird mit einem
Bild eingeleitet, das ein architektonisches Beispiel des zu beschreibenden Musters darstellt. Davon
gefolgt wird ein Paragraph, der die Zusammenhinge des zu beschreibenden Musters festlegt und dieses
somit in einen Kontext einordnet. AnschlieBend folgen drei Karos, die als Symbole dargestellt werden,
damit der Beginn und die Abgrenzung zur der Problembeschreibung erkenntlich ist. Danach folgen zwei
hervorgehobene Sitze, die die Uberschrift fiir die anschlieBenden Problemstellung darstellen und deren
Inhalt kurz erldutern. In der Problemstellung wird das Problem erldutert und in einen Kontext gestellt.
Dies wiederum wird von einer weiteren Uberschrift, die sich auf den folgenden Losungsansatz bezieht
erweitert. Der Losungsansatz wird von einer Grafik gefolgt, die einen Uberblick der Losung schaffen
soll. Dieser Hauptteil des Musters wird erneut durch drei Karosymbole getrennt. Der folgende Paragraph
enthilt die Verbindung zu anderen Muster und schlie3t das Format der Muster ab. [CAA77, S. x-xi]

Christopher Alexander hat aus den zwei folgenden Griinden ein Format fiir seine Muster gewéhlt:

e Das Format ermoglicht es Muster miteinander zu verkniipfen. Aufferdem soll bei der Wahl eines
Konstruktes aus mehreren Mustern eine Vielzahl von Moglichkeiten bestehen um das gewiinschte
Konstrukt zu gestalten.

e Zweitens soll das Format dem Leser die Problematik und den Ldsungsansatz in einer Art
wiedergeben, damit dieser die Kernaussage fiir sich verwenden kann.

[CAATT, S. xi]

Jedes Muster von Christopher Alexander weist eine Beziehung zu einem anderen auf. Die
Mustersprache ist in eine hierarchische Baustruktur unterteilt, die zugleich eine Art Inhaltsangabe seines
Buches darstellt. Die Knoten des Baumes reprisentieren disjunkte Mengen von Mustern. Jede Menge
ist fiir einen Inhaltsbereich der Mustersprache vorgesehen. Die Wurzel des Baumes stellt die Menge
der Muster fiir Regionen dar, welche von Stiddten, Nachbarschaften, Gruppierungen von Gebauden, ...
bis hin zu Tischen und Stiihlen gefolgt werden. Diese Struktur birgt indirekt Inklusions-, Ahnlichkeits-
und Spezialisierungsbeziehungen in sich. [vv03] Christoph Alexander stellt sich seine Muster als eine
fundamentale ”Welt” vor, die seine Mustersprache représentiert. Keines der Muster steht alleine da und
ist Teil der ganzen "Welt”. Er unterteilt die Ansicht seiner ”"Welt” in drei Perspektiven:

e Muster, die kleinere enthalten.
e Muster, die gleich grof} und in den gleichen Inhaltsbereich eingeordnet sind

e Muster, die klein sind und Teile von gréeren Mustern bilden.

Man kann nicht einfach ein Muster isoliert betrachten und dieses in einer konkreten Losung verwenden.
Die Losung eines Problems steckt in der Vernetzung der Mustersprache. [CAA77, S. xiii]

2.1. BEGRIFFSERKLARUNG VON MUSTERN 9

Den Grad der invarianten Eingenschaft zwischen Problemstellung und Losungsansatz wird in den
Mustern von Christopher Alexander explizit durch zwei, einen oder keinen Stern angegeben. Dieser
Grad versucht eine Abschitzung der Allgemeingiiltigkeit zwischen Losungsansatz und Problemstellung
darzustellen. Fine totale Erfiillung der invarianten Eigenschaft wiirde bedeuten, dass der gegebene
Losungsansatz eines Musters immer auf die Problemstellung anwendbar ist. Die invariante Eigenschaft
ist nicht erfiillt, wenn es alternative Losungsvorschlédge gibt die das Problem des Musters 16sen konnten.
[CAATT, S. x-xvii]

Anwendung der Muster Christopher Alexander hat eine Mustersprache entwickelt, die von
sehr praktischer Natur ist. Die Sprache entstand durch das Festhalten von seinen Gebédude- und
Plangungserrungenschaften. Sie ist dafiir gedacht, um seine eigene Stadt und Nachbarschaften zu
verbessern, um selber sein Haus oder ein Biiro zu planen, bei 6ffentlichen Gebdauden mitzuwirken und
vieles mehr. Es ist vor allem eine Anleitung um dem eigentlichen Prozess der Konstruktion zu folgen.
Die Mustersprache ist nicht nur fiir Experten gedacht sondern explizit fiir jedermann. [CAA77, S. x]

Um eine konkrete Losung eines Problems anhand der Mustersprachen zu finden, muss das konkrete
Problem auf eine allgemeine Problemstellung eines Musters zutreffen. Man kann nun den Losungsansatz
des Musters ausarbeiten und als konkrete Losung verwenden. Bei der Wahl des Musters ist zu
beachten, dass es alternative Losungsansitze geben kann. Dies wird in der Mustersprache von
Christopher Alexander durch den invarianten Grad angegeben. Die meisten Muster sind Aggregation
oder Erweiterungen mehrerer untergeordneten Muster. Bei der Referenzierung von Mustern besteht oft
ein Wahlmoglichkeit des Musters, das aus einer Menge verschiedener in Frage kommender Muster
gewdhlt werden kann. Bei der Ausarbeitung einer Losung miissen auch die untergeordneten Muster
gewdhlt und ausgearbeitet werden, bis schlieBlich die komplette Losung vollstindig ist. [CAA77, S.
X111-XV]

2.1.2 Muster nach ’The Gang of Four’

"The Gang of Four’ besteht aus den Autoren Gamma, Helm, Johnson und Vlissides, welche die Viter
der Entwurfsmuster (engl. Design Patterns) sind.

Entwurfsmuster sind Muster deren Inhalt sich auf Softwarekomponenten bezieht. In der
Softwareentwicklung wird zwischen Architekturmuster, welche auf der Ebene der Systemarchitektur
inhaltlich angesiedelt werden, und den Entwurfsmustern unterschieden. Es werden auch fiir spezielle
Softwarekomponentenarten Mustersprachen erstellt, so wie zum Beispiel Martijn van Welie und
Gerrit C. van der Veer eine Mustersprache fiir Benutzerschnittstellen erstellt haben. [vv03]
Entwurfsmuster werden fiir die Losungen gingiger Entwurfsprobleme auf der Ebene des Feinentwurfs
von Softwarekomponenten angewendet. Sie werden unabhingig von Programmiersprachen entwickelt
und vermitteln lediglich eine Losungsidee. Die meisten Entwurfsmuster beziehen sich auf eine
objektorientierte Losung, was keine freie Wahl der Programmiersprache einschriankt. Das Prinzip der
Wiederverwendung ist in dem objektorientierten Denken verankert und lédsst sich gut kombinieren.
Um einen guten Softwareentwurf zu erstellen, ist die wiederholte Verwendung von Architektur- und
Entwurfsmuster essentiell. [LL10, S. 436-437]

"The Gang of Four’ beschreiben in ihrem Buch Design Patterns: Elements of Reusable
Object-Oriented Software [GHIV95] die Grundsitze der Entwurfsmuster und bieten dem Leser einen

10 KAPITEL 2. GRUNDLAGEN

Entwurfsmusterkatalog mit einer Fiille von Entwurfsmustern. Das Buch liefert zwei Kernbestandteile.
Zum einen zeigt es welche Rolle die Entwurfsmuster in der Architektur von komplexen Systemen
spielen und zum anderen bietet es ein Referenzwerk, welches eine Menge dieser ausgereiften
Entwurfsmuster darstellt. [GHIV95, S. xiii]

Musterdefinition ’The Gang of Four’ benétigte eine Definition fiir Entwurfsmuster, die es erlaubt
ihren Mustern mit objektorientierten Inhalten und Beziehungen darzustellen. Thre Losungen stellen sie
durch Objekte und Schnittstellen dar, anstatt von Winden und Tiiren wie es Christopher Alexander
tat. Weil in Christopher Alexanders Muster die selbe objektorientierte Idee mit Wénden und Tiiren
verkorpert, wie 'The Gang of Four’ fiir ihre Muster benotigte, wurde die Definition von Christopher
Alexander als Grundlage ihrer Muster verwendet. [GHIJV95, S. 2-3]

Musteraufbau Die Bestandteile der Muster von 'The Gang of Four’ bestehen aus einem
Musternamen, einer Problembeschreibung, einem Losungsansatz und einem Kompromiss. Der
Mustername beschreibt das Problem, die Losung oder den Kompromiss des Musters. Das Muster
wird auch durch seinen Namen referenziert. Das Problem beschreibt, wann die Losung anwendbar
ist und stellt sich selbst in einen Kontext. In der Problembeschreibung werden zum Beispiel Klassen
oder Objektstrukturen erldutert, die einen nicht flexiblen Entwurf aufweisen. Manchmal wird eine
Liste von Bedingungen angegeben, die erfiillt werden muss bevor es Sinn macht die Musterlosung
zu verwenden. Die Losung beschreibt einen Losungsansatz beziiglich der angegeben Problemstellung.
Der Losungsansatz enthilt eine abstrakte Beschreibung der Entwurfsidee, die durch Beziehungen,
Verbindlichkeiten und Zusammenwirkungen dargestellt wird. Der Kompromissbereich beschreibt die
Vorteile und Nachteile der gefundenen allgemeinen Losung im Gegensatz zur einer intuitiven oder
einfachen Losung. Es werden oft Kapazititen- und Geschwindigkeitsvergleiche getroffen. Es wird eine
iiber die Wahl der Programmiersprache, der Implementation und tiber die Einfliisse der Flexibilitit,
Erweiterbarkeit und Portabilitét eines Systems beziiglich der Musterlosung diskutiert. [GHJV9S, S. 3]

Anwendung der Muster Die Anwendbarkeit der Muster von 'The Gang of Four’ lehnt sich stark
an der von Christopher Alexander an. Die Anwendung der Muster von 'The Gnag of Four’ bringt
immer eine softwaretechnische Implementierung hervor. Das besondere hier ist, dass nicht nur die
Muster sondern auch die Implementierung, die aus ihnen hervorgeht, wiederverwendbar sein soll. In
den Mustern sind Beispiele angegeben, die schon eine Stiitze bieten sollen, um die Implementierung
leichte erstellen zu konnen. [GHIV95, S.3-4]

2.1.3 Muster nach Frank Buschmann

In diesem Abschnitt wird die Musterdefinition und der Musteraufbau von Frank Buschmann aus seinem
Buch Pattern-orientierte Software-Architektur: Ein Pattern-System [BMR 98] vorgestellt.

Buschmann fiihrt in seinem Buch Pattern-orientierte Software-Architektur: Ein Pattern-System
den Begriff des Musters ein und diskutiert die Prinzipien einer Musterbeschreibung. Anschliefend
prasentiert er drei Musterkataloge, die Muster zu den Themenbereichen Architektur und Entwurf
von Software. Der dritte Musterkatalog beinhaltet und verweist auf Idiome. Idiome stellen

2.1. BEGRIFFSERKLARUNG VON MUSTERN 11

programmiersprachen spezifische Muster dar und werden eine Abstraktionsebene unter den
Entwurfsmustern angesiedelt.

Buschmann beschreibt die Bedeutung und die Verwendung von Mustersystemen und deren
Organisation. Die Mustersysteme helfen Muster fiir die richtige Situation zu finden, Liicken zwischen
Muster zu schlieBen und Beziehungen zwischen Mustern zu bilden. Er diskutiert die Verwendung von
Musterkatalogen und Musterorganisationen in dem Gebiet der Software-Architektur und erklirt die
Unterstiitzung von der Verwendung von Mustern. [BMR198][S. XVI-XVII, 14-16]

Musterdefinition Buschmann verwendet eine Musterdefinition um Problematiken und deren
Losungen aus dem Bereich Software-Architektur und Software-Entwurf zu beschreiben. Die
Musterdefinition von Buschmann ist aus der Musterdefinition von Christopher Alexander und der
Musterdefinition von *"The Gang of Four’ abgeleitet und an seine drei Themen angepasst. Er unterteilt
seine Muster in die Kategorien Architekturmuster, Entwurfsmuster und Idiome. Die Muster aus den drei
Kategorien basieren alle auf der selben Musterdefinition. Die Verwendung der selben Musterdefinition
fiihrt zu einem einheitlichen Musterformat und soll das Vergleichen von Mustern und das Auffinden von
alternativen Losungen erleichtern. [BMRT98][S. 8-21]

Musteraufbau Im Folgenden werden die Bestandteile der Muster von Buschmann aufgelistet und
deren Verwendung erldutert. Die Muster bestehen aus einem Namen, alternativen Bezeichnungen, einem
Beispiel aus der Realitit, einem Kontext, einem Problem, einer Losung, einem dynamischen Aspekt,
einer Beschreibung fiir Implementierungsrichtlinien, einer Diskussion aller wichtigen Aspekte fiir die
Losung des Beispiels, einer kurzen Beschreibung der Varianten und Spezialisierungen der Muster,
einem Anwendungsbeispiel existierender Software, einer Beschreibung der Vor- und Nachteile der
Verwendung und Verweise auf andere Muster oder auf dhnliche Probleme.

2.1.4 Muster nach Martin Fowler

Um das Erstellen von komplexen Unternehmensanwendungen (engl. Enterprise Application) zu
erleichtern, stellt Martin Fowler in seinem Buch [Fow02] eine Mustersprache fiir die Architektur von
Unternehmensanwendungen bereit. Er kann keine genaue Definition von der Unternehmensanwendung
liefern und gibt deshalb Indikatoren an, die dem Leser die Bedeutung und Gestalt von
Unternehmensanwendungen nahe legen sollen. Die Musterinhalte beziehen sich zum Beispiel auf
Probleme, die mit folgenden Aspekten in Verbindung stehen: persistente Daten, gleichzeitiger
Zugriff auf die selben Daten, eine Menge von Benutzerschnittstellen, Integrationen von anderen
Unternehmensanwendungen, konzeptionelle Unstimmigkeiten von IT-Strukturen und komplexe
Geschiftslogiken, Um ein tieferes Verstindnis zu erlangen, ist der Leser eingeladen diese
Erlduterung von Martin Fowler nachzulesen. [Fow02, S. 1-4]

Musterdefinition Martin Fowler nimmt ebenfalls die Definition von Christohper Alexander als
Grundlage. Laut ihm sind seine Muster von Unternehmensanwendungen im Gegensatz zu den Mustern
von Christopher Alexander keiner urspriingliche Idee, sondern sehr viel eher aus Betrachtungen von
Geschehnissen in bestimmten Bereichen entstanden.[Fow02, S. 9-11]

12 KAPITEL 2. GRUNDLAGEN

Musteraufbau Bei der Findung seines Musterformats hat sich Martin Fowler an den Biichern: A
Language Pattern [CAATT], Design Patterns [GHIV95] und Pattern-Oriented Software Architecture
[BMR 98] orientiert. Sein Musterformat setzt sich letztendlich aus dem Musternamen, der das Muster
identifizieren soll, einer ein bis zwei Sétzen grofer Zweckbeschreibung mit dazugehoriger Skizze. Die
Skizze ist oft ein UML-Diagramm, dass einen Uberblick des Musterinhaltes verschaffen soll. Nach der
Skizze folgt ein Absatz, der die Motivation des Musters enthilt. Die Losungsbeschreibung beinhaltet,
eine Diskussion iiber die Implementierungsprobleme und -variationen. Der Inhalt ist so gut wie moglich
unabhéngig beziiglich einer Plattform gehalten. Optional sind plattformspezifische Losungen angefiigt.
Dies wird gefolgt von einem Abschnitt der beschreibt, wann die Musterlosung angewendet werden kann
und wann es Sinn macht diese anzuwenden. In einem weiteren optionalen Abschnitt werden hilfreiche
Referenzen zu weiteren Informationen liber den Sachverhalt angeboten. Am Schluss des Musterformates
erldutert ein Beispiel in Java-Code die Losung praktisch. Der Zweck des Beispielcodes ist es, die Idee
der Musterlosung verstindlicher darzustellen. Nicht jeder Teil des Musterformates ist verpflichtend fiir
die Beschreibung der Muster. [Fow02, S. 11-13]

Anwendung der Muster Martin Fowler nimmt vorweg, dass die Anwendung seiner Muster meistens
auch eine Anpassung derer verlangt. Die Muster von Martin Fowler eignen sich nicht so gut fiir eine
Wiederverwendung. Sie sind aber fiir die Dokumentation von Software und dem Austausch mit anderen
von groBer Bedeutung. Durch die Referenzierung der Muster anhand ihres Namens kann jeder die
Bedeutung und den Sinn des Musters verstehen oder nachschlagen. Abgesehen von der Anpassung
der Muster beziiglich des eigenen Kontextes verhilt sich das Vorgehen genauso wie bei Christopher
Alexander. [Fow02, S. 9-11]

2.1.5 Muster nach Hohpe und Woolf

Hope und Woolf verfassten ein Werk [HWO04], das eine Mustersprache beziiglich der Integration von
Unternehmensanwendungen liefert. Interessante Anwendungen werden nur selten als alleinstehende
Anwendung betrieben. Die meisten Anwendungen bieten und verwenden Schnittstellen zu
dritten Anwendungen. Zum Beispiel muss in einem Unternehmen eine Finanzanwendung mit
der dazugehorigen Lagenbestandshaltungsanwendung, Auftragsabwicklungsanwendung und einem
Webshop kooperieren. Um ein Gefiihl zu bekommen, was die Muster von Hope und Woolf inhaltlich
thematisieren ist eine List fundamentaler Herausforderungen der Integrationslosungen aufgefiihrt: nicht
zuverldssige Netzwerke, langsame Netzwerke und unausweichlichen Verdnderungen der Anwendungen.
Um ein tieferes Verstindnis fiir die aufgefiihrten Herausforderungen der Integrationslosungen zu
bekommen, ist der Leser eingeladen, die Erkldrungen von Hope und Woolf nachzulesen. [HWO04, S.
XXIX-XXX]

Musterdefinition Die Definition von Hope und Woolf stiitzt sich ebenso vollstindig auf die von
Christopher Alexander. Hope und Woolf mochten die Eigenschaften der Wiederverwendung und
Losungsfindung von Christopher Alexanders Muster und deren Vernetzung in ihren Mustern verwenden.
[HWO04, S. xli]

2.2. BEGRIFFSERKLARUNG VON MODELL UND METAMODELL 13

Musteraufbau Hope und Woolf haben eine Musterform gewihlt, die sich nah an der von
Christopher Alexander orientiert. Sie wollten eine prosaische Musterform ohne Uberschriften
von Untergruppierungen fiir ihre Muster, um den Diskussionsfluss nicht zu unterbrechen. Durch
Abbildungen, unterstrichene oder fett gedruckte Texte sollen wichtige Informationen hervorgehoben
werden. Die Struktur der Muster besteht aus folgenden Bestandteilen: Mustername, einem eindeutig
zuordnungsbaren Symbol fiir die Musterrepriasentation, einer Beschreibung des Kontextes, einer
Problembeschreibung, einen Abschnitt, der die Schwierigkeiten der Problemldsung, Alternativlésungen
und Irrwegen anspricht, einer Losung, eine 1osungsbeschreibende Skizze, einen Abschnitt, der die
Anwendung der Losung beschreibt, eine Beschreibung der Anwendung von in Verbindung stehender
Muster, einen Abschnitt, der auf die technischen Details eingeht und zum Abschluss ein Beispiel, das
die Losung praktisch veranschaulichen soll. [HWO04, S. xli-xlii]

Anwendung der Muster Die Anwendung der Muster von Hope und Woolf ist gleich zu der
von Christoper Alexander. Die Losungen der Muster von Hope und Woolf bieten meistens nicht
die Losung, die einem gleich in den Sinn kommt. Damit wollen sie sagen, dass die Ldsungen
einmal generell gehalten sind. Die festgehaltenen Ldsungen sind aber dariiber hinaus schon iiber
Jahre hinweg erprobt und beinhalten keinerlei Konzeptfehler. Die Spezialisierungen von Mustern sind
natiirlich dem Anwender iiberlassen, werden ihm aber nicht empfohlen, weil eine Architektur nicht
auf Performance optimiert werden soll. Die Musterlosungen sind wie die von Fowler [Fow02] fiir
objektorientierte Programmiersprache und beliebige Plattformen ausgelegt. Eine Musterlosung muss
also in den Kontext der eigenen Umgebung gestellt und beziiglich einer beliebigen Programmiersprache
implementiert werden. Hope und Woolf bieten eine Vielzahl von Beispielen die unterschiedliche Arten
von Implementationen vorstellen. [HWO04, xxli-xxlii]

2.2 Begriffserklarung von Modell und Metamodell

Modell Modelle sind Abbildung von oder Vorbilder fiir etwas. Modelle, die Abbilder sind, werden
deskriptiv Modelle genannt. Modelle, die Vorbilder fiir etwas sind, werden préskriptive Modelle
genannt. Zu einem Modell kann ein Original oder Gegenstiick vorhanden, geplant oder fiktiv sein.
Ein Modell enthélt nicht alle Attribute seines Originals. Es stellt eine Verkiirzung des Originals
und somit auch Raum fiir eine Abstraktion des Originals dar. Ein Modell kann ein pragmatisches
Merkmal besitzen, in dem es sein Original durch bestimmte Eigenschaften eindeutig zugeordnet.
Modelle konnen fiir viele Absichten eingesetzt werden. Bezogen auf das Einsatzgebiet von Software
konnen Modelle zum Beispiel fiir die Darstellung von formalen (mathematischen) Reprisentationen,
fiir Dokumentationszwecke oder fiir die Verkorperung von explorative Modelle eingesetzt werden.
Modelle im Software Engineering unterteilen sich in zwei grundlegende Arten: Software-Modell
und Vorgehens- und Prozessmodell. Die Software-Modelle verkdrpern Modelle, die Softwaresysteme
oder deren Modelle Reprisentieren sollen. Die Vorgehens- und Prozessmodell beschreiben, wie
man bei der Erstellung von Software vorgehen soll. Software-Modelle werden {iblicherweise
durch natiirlichsprachliche Spzifikationen, Entity-Relationship-Diagramme, User-Case-Diagramme,
reprasentiert. [LL10, S. 3-28]

14 KAPITEL 2. GRUNDLAGEN

Metamodell Ein Metamodell ist die Beschreibung eines Modell. Durch die Beschreibung
eines Metamodells, entsteht eine formale Sprache von Modellen. Ein Metamodell steht eine
Abstraktionsebene iiber den Modellen, die es beschreibt. Durch die Verwendung eines Metamodells
konnen die daraus resultierenden Modelle, einheitlich und kompatibel gehalten werden. Es ist jedoch
schwierig die notige Allgemeinheit und Erweiterbarkeit fiir die Modelle zu behalten. Metamodelle
werden hauptsichlich in der Mathematik, Hard- und Software entwicklung eingesetzt. [Gig91, S. 255],
[RIB99, S. S.105-106], [MO99, S. 305-319]

2.3 Begriffserklarung von Metamustern

Unter einem Metamuster (engl. Meta Pattern) versteht man ein Metamodell eines Musters. In dieser
Arbeit wird unter einem Metamuster eine allgemeine und abstrakte Definition von Muster verstanden.
Das Metamuster befindet sich eine Abstraktionsebene iiber dem Muster und stellt das Modell des
Musters dar.

Im weiteren Verlauf soll die Definition eines Metamusters und Vorschldge fiir Musterformate von
Meszaros und Doble [MD96] vorgestellt werden.

2.3.1 Metamuster nach Meszaros und Doble

Meszaros und Doble stellten in ihrer Arbeit [MD96] Metamuster fiir die Erstellung einer Mustersprache
vor. Die Ideen und Informationen fiir dieses Metamuster stammen aus den Erfahrungen der Teilnehmer
von der Konferenz “Pattern Languages of Design” aus dem Jahre 1995. Nach dem Uberarbeiten
einer gro3en Anzahl von Mustern und Mustersprachen, begannen die Teilnehmer eine Sammlung von
Musterschreibtechniken und -annihrungen aufzustellen. Sie verfassten ihre Errungenschaften in einer
von ihnen entworfenen Mustersprache. Diese Mustersprache bietet Vorschlige und Regeln, um ein
Musterformat zu gestalten. Andere Autoren von Mustersprachen sollen das Metamuster verwenden,
um schneller und einfacher ein Format fiir ihre Muster und eine Musterstruktur zu finden.

Im Folgenden wird eine Ubersicht der Mustersprachenstruktur der Metamuster vorgestellt.
AnschlieBend wird auf die einzelnen Bestandteile der Losungsvorschlige fiir die Metamuster
eingegangen. Um einen tieferen Einblick zu erhalten, ist der Leser angehalten Muster in der Arbeit
[MD96] nachzulesen.

Ubersicht der Metamuster In der Abbildung 2.1 ist eine Strukturiibersicht der Mustersprache von
Meszaros und Doble zu sehen. Die Mustersprache beschreibt die Metamuster zur Erstellung einer
Mustersprache. Die Muster fiir die Beschreibung der Metamuster sind in fiinf Bereiche unterteilt. Die
Bereiche sind in der Ubersicht mit den Buchstaben von A bis E gekennzeichnet. Sie sind im Gegensatz
zu den Unterteilungen, die als Rechtecke in den Bereichen dargestellt sind, in Textform und nicht in
einer Musterform von Meszaros und Doble festgehalten worden. Diese Texte beschreiben den Kontext,
in dem die jeweilige Bereiche stehen.

Strukturbereiche in der Ubersichtsabbildung 2.1:

e Bereich A (Context Setting Patterns) befasst sich mit dem Konzept der Muster (Beziehung
zwischen Problem-, Kontext- und Losungsbeschreibung), dem Konzept der Mustersprache

2.3. BEGRIFFSERKLARUNG VON METAMUSTERN 15

A .
Al Context Setting Patterns

| Pattern || | Pattern Language ||
|

Bl Pattern c| Naming & o Making E| Language
Structure Referencing Patterns Structure
Understandable

Abbildung 2.1: Strukturiibersicht der Metamuster-Mustersprache von Meszaros und Doble

(Sammlung von Mustern und deren Beziehungen) und der Wiederverwendung dieser Sprache
und deren Muster.

e Bereich B (Pattern Structure) beschreibt die Struktur und den Inhalt der Metamuster.

o Bereich C (Naming & Referencing) beinhaltet die Namensgebung der Muster und die
Referenzierung anhand des Namens der Muster und legt somit einen Grundstein fiir die
Beziehungen der Muster, die in Bereich E diskutiert werden.

e Bereich D (Making Pattern Understandable) liefert Techniken fiir das Gestaltung von leicht zu
lesenden und gut zu verstehenden Mustern.

e Bereich E (Language Structure) bezieht sich auf die Struktur und Inhalt der Mustersprache, die
durch die Metamuster gebildet werden.

Bereich A (Context Setting Patterns) Dieser Bereich beschiftigt sich mit der Problemstellung:
Wie man wiederkehrende Problem 16st und wie man Losungen beschreibt um sie verstidndlich und
verwendbar prisentieren kann.

Der Bereich A ist eine Uberordnung der genannten Bereiche und schlieft somit die anderen Bereiche
inhaltlich ein. Der Bereich A besteht aus zwei Teilen, der Beschreibung wie ein Muster aufgebaut
werden soll und der Beschreibung wie die Struktur der Sprache aus zu sehen hat. Der erste Teil wird
durch die Bereiche B, C und D abgedeckt und der zweite Teil durch den Bereich E.

Bereich B (Pattern Structure) Der Bereich B beschreibt die Struktur eines Musters, den
Zusammenhang zwischen Problemstellung und Losungsansatz und deren Kontext. Oft reicht es nicht
nur zu beschreiben wieso und warum man die Losung verwenden muss, sondern auch wie. Die Muster
in diesem Bereich befassen sich mit der Struktur der einzelnen individuellen Muster.

Es wird die Moglichkeit eingerdumt zusétzlich zu den Pflichtbestandteilen eines Musters auch
optionale Bestandteile, die aber in dem Musterformat vorgesehen sind, einzufiigen. Dies hilft dem Autor
Muster mit zusitzlicher Information flexibel anzureichern. Damit der Leser mit einmaligen Lesen den

16 KAPITEL 2. GRUNDLAGEN

Inhalt des Musters verstanden hat, wird vorgeschlagen dufere Einfliisse festzuhalten. Dadurch soll der
Leser die Wahl der Losung besser nachvollziehen konnen. Durch die iibersichtliche Gestaltung und
Gliederung der Muster ist es fiir den Leser moglich, nur interessante Bereiche des Musters anzuschauen
und anschlieend beurteilen zu konnen, ob das Muster fiir ihn von Relevanz ist, um gegebenenfalls den
Rest des Musters zu lesen. Dies kann vor allem sinnvoll sein, wenn der Leser zum Beispiel nach einer
Problemstellung oder Losungsansatz sucht. [MD96]

Bereich C (Naming & Referencing) Nur wenige Muster sind isoliert und haben keine Beziehung
zu den anderen. Die meisten Problemen lassen sich mit mehreren kleinen Losungen oder durch
die Spezialisierung einer generellen Losungen bewiéltigen. Es kann auch mehrere Losungen fiir ein
Problem geben. Diese Losungen werden durch Muster dargestellt, die Alternative darstellen. In vielen
Féllen miissen mehrere Muster referenziert werden, um einen Problemstellung zu 16sen. Damit Muster
auseinander gehalten werden konnen, wird die Namensgebung benotigt. Anhand der Namen kénnen
Muster mittels Referenzen verkniipft werden. Durch die Verkniipfungen lassen sich Alternativen
vermerken und Problemstellungen darstellen, die durch mehrere Muster gelost werden. Dieser Bereich
befasst sich mit der Namensgebung und Referenzierung mithilfe von Musternamen, deren Darstellung,
Bedeutung und einem internen Referenzkatalog.

Bereich D (Making Pattern Understandable) Je besser der Leser die Muster versteht, desto mehr
kann er mit ihnen anfangen und sein Problem auf sie projizieren. Deshalb ist es von grofer Bedeutung,
die Muster verstindlich darzustellen. Der Bereich D befasst sich mit der Wahl von klaren Zielgruppen,
verstandlichen und eindeutigen Bezeichnungen, Diagrammen, Skizzen und Beispielen.

Bereich E (Language Structure) Dieser Bereich beschiftigt sich mit der Zusammenstellung
in Beziehung stehender Muster, um eine zusammenhidngende Mustersprache zu schaffen. Damit
beispielsweise dem Leser eine Ubersicht der Muster bieten zu konnen. Dies kann in Form einer
Zusammenfassung oder Gliederung der Muster bereitgestellt werden. Bei der Referenzierung von
Mustern ist es wichtig, dem Leser den Problem-Losungs-Ansatz und -Zusammenhang nahe zu legen.
Damit dieser schnellstmoglich die gesuchte Problemstellung oder Losung findet. Das Hervorheben von
gemeinsamen Problemstellungen, das Ubermitteln von aussagekriftigen Referenzen, das Erkliren von
fortlaufenden Beispielen und das Bereitstellen eines Glossars verbessert die Struktur der Sprache und
deren Vernetzungsgrad und fordert somit die Ausdruckskraft des Inhaltes.

2.4 Beziehungen in Mustersprachen

Damit man sich einen Eindruck von der Bedeutung in Mustersprachen verschaffen kann, werden im
Folgenden die Beziehungen zwischen Mustern vorgestellt. Sie werden beziiglich ihrer fundamentalen
Unterschiede unterteilt und deren Eigenschaften und Verwendungsmoglichkeiten erldutert.

2.4. BEZIEHUNGEN IN MUSTERSPRACHEN 17

2.4.1 Beziehungen in Mustersprachen nach van Welie und van der Veer

Martijn van Welie und Gerrit C. van der Veer analysierten unter anderem in ihrer Arbeit Pattern
Languages in Interaction Design: Structure and Organization [vv03] die Mustersprache von
Christopher Alexander beziiglich ihrer Struktur und Beziehungen. In diesem Abschnitt sollen die
Errungenschaften der Analyse von van Welie und van der Veer erldutert werden. Sie stellen vier
verschiedene Beziehungsarten vor und erkennen fundamentale Ahnlichkeiten zu Beziehungen aus der
Objektorientierung.

Hierarchische Gliederung beziiglich der Problemstellung in Mustern Wie auch in schon von
Christopher Alexander beschrieben weist seine Mustersprache eine hierarchische Vernetzung der Muster
auf. Diese hierarchische Vernetzung wird durch den Inhalt der Muster bestimmt. Die hierarchische
Struktur der Mustersprache ist mit der Gliederung von Texten in Biichern zu vergleichen. [CAA77,
S. x] [vv03] Die hierarchische Struktur der Mustersprache ist die Struktur der Unterteilung von grof3en
Problemen in mehrere kleine. Die gro3en Probleme sind in der hierarchischen Ordnung oben angesiedelt
und werden von ihren direkten Teilproblemen gefolgt. Wenn es erwiinscht ist, kann man solch eine
Hierarchie auch an anderen Inhalten der Muster aufbauen. [vv03]

Christopher Alexander beginnt auf der Ebene der Stidte mit seiner Gliederung. Die ist die oberste
Ebene. Sie wird gefolgt von Nachbarschaften, Gebéduden, ... bis hin zu Fenstern und Stiihlen. Die
Idee von Alexander war es, dass durch eine Traversierung der Mustersprache eine konkrete Losung
abgeleitet werden kann. Das Traversieren der Mustersprachen beginnt bei einem Muster, das die zu
16sende Problematik beschreibt, und geht bis in die tiefste Ebene zu den Mustern, die Teillosungen der
Problematik darstellen. [vv03]

Kiinstliche hierarchische Gliederung der Muster Die Beschreibung der hierarchischen
Gliederung wird durch die Vernetzung der Muster abgeleitet. Wenn die Gliederung grof3 wird, wird
sie auch uniibersichtlich. Zusitzlich wird keine Aussage iiber den Zusammenhang der Muster in der
Gliederung gemacht. Um eine Uberblick zu schaffen und die Problemstruktur der Muster und des
Kontextes der Mustersprache kenntlich zu machen, erstellen van Welie und van der Veer kiinstliche
Gruppen von Mustern. Diese Gruppen sind auch hierarchisch geordnet und bilden eine Gliederung
von den Mustern auf einer hoheren Ebene. Im Gegensatz zu der vorgestellten Gliederung kann hier
eine Ubersicht geschaffen werden. Sie kann die Grundidee des Musterspracheninhaltes strukturiert
darstellen. AuBlerdem bietet die kiinstliche Gliederung ein iibersichtlicheres Zurechtfinden und Suchen
in der Mustersprache. [vv03]

Vorschlige fiir kiinstliche hierarchische Gliederungskategorien Wie schon erwihnt, kann eine
Mustersprache beziiglich der Problemstellungen der Muster und deren Kontext gegliedert sein. [vv03]

Muster konnen auch nach der Alternative gegliedert werden. Alexander hat fiir die Losungen eines
Problems mit einer anderen Losung einen Vermerkt vorgesehen. Muster, die Alternativen zu einem
anderen Muster liefern, konnte man Gruppieren und mit diesen Gruppen eine Gliederung aufbauen.
[vv03]

Generell kann eine Gliederung mithilfe von verschiedenen Arten von Beziehungen erstellt werden.

18 KAPITEL 2. GRUNDLAGEN

Van Welie und van der Veer arbeiten an Benutzeroberflachen und pflegen hierfiir eine Mustersprache. Sie
haben zum Beispiel eine Gruppierung beziiglich Benutzeraufgaben und Benutzertypen erstellt. [vv03]

Beziehungstypen zwischen Mustern Wie schon in dem vorherigen Absatz angedeutet, sind die
Beziehungen in den Mustersprachen das Herzstiick. Die Beziehungen bereichern ein einzelnes Muster
mit zusétzlichen Informationen. Diese zusitzliche Information macht den Zusammenhang der Muster
moglich, den man benétigt um die Mustersprache zu erstellen und zu verwenden. [vv03]

Im Folgenden werden die Beziehungen und die Verbindungen zwischen den Mustern, die deren
Zusammenhang schaffen ndher betrachtet. Es lassen sich fundamentale Beziehungsunterschiede
erkennen, nach denen die Beziehungen in Arten aufgeteilt sind. Diese Arten kennt mach auch aus
der Objektorientierung. Die Analyse und Feststellungen von Welie und van der Veer aus ihrer Arbeit
Pattern Languages in Interaction Desing: Structure and Organization [vv03] wurde in der kiirzlich
veroffentlichten Arbeit Building an interaction design pattern language: A case study [PHBO10] von
Paulwels, Hiibscher Bargas-Availa und Opwis bestitigt. [vv03]

Aggregation Ein Muster kann ein grofes Problem in mehrere kleine Probleme unterteilen, die
schon von anderen Mustern gelost sind. Ein Muster kann somit ein grofles Problem 16sen, indem es
durch die Aggregation mehrerer kleiner Muster eine Losung bereitstellt. Dieser Typ von Beziehung
wird Aggregationsbeziehung oder “hat-ein”-Beziehung genannt. [vv03]

Die Aggregationsbeziehung wurde von Buschmann noch verfeinert. Buschmann unterteilte die
Aggregationsbeziehung von Mustern in seinem Buch Pattern-Oriented Software Architecture: On
Fatterns and Pattern Languages in drei verschiedene Arten. Die erste Art ist die klassische Aggregation,
welche die Vervollstindigung eines Musterinhaltes durch mehrere andere Musterinhalte darstellt. Die
zweite Art der Aggregationsbeziehung sind die Beziehungen, in denen die referenzierten Musterinhalte
nicht erforderlich sind aber zum Verstdndnis beitragen. Die dritte Art der Aggregationsbeziehung ist das
gegenseitige Ausschliefen von alternativen Musterinhaltsgruppierungen. [BHS07, S.135-163]

Spezialisierung Muster konnen auch durch die Spezialisierung von anderen Mustern erstellt
werden. Das spezialisierte Muster beinhaltet die gleiche Grundidee wie das Muster mit der generellen
Losung. Diese Art von Beziehung wird Spezialisierungsbeziehung oder “ist-ein”-Beziehung genannt.
[vvO3]

Assoziation Die dritte Beziehungsart, die van Welie und van der Veer vorstellen ist eine
Ahnlichkeitsbeziehung. Zwei Muster konnen in Beziehung stehen, wenn sie eine gleiche Eigenschaft
beziiglich des Inhaltes aufweisen. Hier werden Eigenschaften betrachtet, die eine unmittelbare
Verwandtschaft von Mustern beziiglich Aggregation und Spezialisierung ausschlieBen. Sinn
dieser Beziehung ist es Querverbindungen zu schlagen. Diese Ahnlichkeitsbeziehung wird auch
Assoziationsbeziehung oder “ist-dhnlich-zu”-Beziehung genannt. [vv03]

2.5. WEBBASIERTE MUSTERKATALOGE UND -SAMMLUNGEN 19

2.5 Webbasierte Musterkataloge und -sammlungen

In diesem Abschnitt werden webbasierte Musterkataloge und -sammlungen vorgestellt. Webbasierte
Musterkataloge haben mehrere Vorteil gegeniiber gebundenen Musterkatalogen. Es ist beispielsweise
einfacher nach Musterinhalten oder deren Ahnlichkeiten zu suchen. Muster konnen auch in
verschiedenen Ansichten und Gruppierungen darstellt werden, die den Lesern auf ihre Bediirfnisse
angepasste Ubersichten bieten konnen. Ein webbasierender Musterkatalog kann durch die Verwendung
von Hyperlinks das Durchstobern von Mustern in einer komfortablen Art anbieten, weil viele Muster
auf andere verweisen oder deren Inhalt mitverwenden.[vv03]

In der Recherche fiir diese Arbeit wurden einige webbasierte Musterkataloge gefunden, deren Inhalt
sich auf die Erstellung von graphischen Benzutzerschnittstellen und die Webprogrammierung bezichen.
Es gibt viel webbasierte Musterkataloge im Web zu finden, deren Inhalte fehlerhaft sind und deren
Qualitit wegen schlechte Beitrigen leidet. Muster von einigen webbasierte Musterkataloge weisen keine
oder ungeniigende Inhaltsstrukturen auf. Aus diesen Griinden werden die in Pauwels Arbeit Buildung an
interaction design pattern language: A case study [PHBO10] erwéhnten webbasierten Musterkataloge:
Pattern library von van Welie [Van11] und Yahoo! Design Pattern Library [Yah11] beschrieben.

2.5.1 Interaction Design Pattern Library - Welie.com

Der webbasierte Musterkatalog von van Welie bietet eine Menge von Mustern, die bekannte
und erprobte Konzepte enthalten. Deren Inhalte befassen sich mit Interaktionen der graphischen
Oberflichenbedienung und deren Erstellung. Die Erstellung der Muster der Interaction Design Pattern
Library wird nur von van Welie vorgenommen. Er lddt jedoch dazu ein ihm Vorschlédge fiir weitere
Muster zu schicken.

Van Welie biete seinen Lesern eine Ubersicht, in der er alle Muster in eine zweistufigen Struktur
einordnet sind. Beim Durchstobern der Muster wird einem immer die Kategorie angezeigt, in der sich
das abgebildete Muster befindet.

Die Musterstruktur besteht immer aus einer Problembeschreibung, einer Losung, einem Kontext,
einer Beschreibung der Umsetzung und einer Beschreibung der Notwendigkeit und Beispiele. Zusétzlich
konnen Leser Diskussionsbeitridge an die Muster anfiigen und iiber die Musterinhalte debattieren.

Die Muster von van Welie sind durch Hyperlinks, die sich in den Musterinhalten befinden und auf
andere Muster verweisen, miteinander vernetzt.

2.5.2 Yahoo! Design Pattern Library

Der webbasierte Musterkatalog von Yahoo! wurde am 13. Februar 2006 verdffentlicht. Yahoo! wollte
durch die Veroffentlichung ihrer Designmuster ihr Wissen und ihre Ansichten teilen und bittet zugleich
um sinnvolle Riickmeldungen und Beitrdge. Sie sehen die Kommunikation und die Wissensverbreitung
durch die Veroftentlichung von Designmustern als wichtig und sinnvoll an. [Sco06]

Trotz so vieler vorhandener Musterkataloge entwickelte Yahoo! seinen eigenen Musterkatalog. Sie
wollen ihr Wissen, das in vielen kleinen Abteilungen der Firma verteilt war, in dem Musterkatalog
vereinen, um einheitliche Designs und Softwareldsungen fiir die ganze Firma bereit zu stellen. Durch

20 KAPITEL 2. GRUNDLAGEN

einheitliche Designs und Softwarelosungen sollen Standards definiert, werden mit denen Yahoo!
seine Produkte verbessert und erweitert. Um dies zu erreichen kreierte Yahoo! ein Repository, das
Designmuster fiir Benutzeroberflichen enthilt und einen Prozess, der fiir das Erstellen von qualitativ
hochwertigen Muster verantwortlich ist. [LMWO05]

Die Musterstruktur von Yahoo! enthilt einen Titel, eine Problembeschreibung, eine Beschreibung des
Kontextes, eine Losungsbeschreibung, Beispiele, die durch Abbildungen verdeutlicht werden und eine
Beschreibung von Grundsatzgedanken und Verwendbarkeit. Zusétzlich enthilt ein Muster einen Blog,
in dem Beitridge und Diskussionen iiber das Muster stattfindet. [Yah11]

Jedes Muster, das in dem Musterkatalog von Yahoo! verdffentlicht wird, muss einen
Erstellungsprozess durchleben. Das Yahoo! ”Design Reasearch Team” priift, liberarbeitet und verfeinert
die Muster. Ein Muster muss drei Stadien durchlaufen: die Betaphase, Losungserarbeitung und die
Einsatzphase. Zusitzlich konnen Muster bewertet werden, um die Qualitit der Losung und die
Flexibilitit der Verwendung einzuschitzen. [Yah11]

Die Ideen und Anregungen der Muster fiir die Veroffentlichung des webbasierten Musterkataloges
von Yahoo! basiert auf den fritheren Werken:

e A Pattern Language von Christopher Alexander [CAA77]

o Design Patterns: Elements of Reusable Object-Oriented Software von Erich Gamma, Richard
Helm, Ralph Johnson und John M. Vlissides [GHIV95]

o COMMON GROUND: A Pattern Language for Human-Computer Interface Design von Jenifer
Tidwell [Tid99]

o [nteraction Design Pattern Library - Welie.com von von Martijn van Welie [Van11]
o User Interface Design Patterns von Sari A. Laakso [Laa03]
e Ajax Patterns von Michael Mahemoff [Mah08]

o The Elements of a Design Pattern von Jared M. Spool [Spo06]
[Sco06]

2.6 UML-Diagramm

Die vereinheitlichte Modellierungssprache (engl. Unified Modeling Language (UML)) ist eine
allgemeine und graphische Modellierungssprache. Sie wird verwendet um Teile von Softwaresystemen
zu spezifizieren, visualisieren, konstruieren und zu dokumentieren. Es werden mit UML statische
Strukturen und dynamische Verhaltensweisen von Softwaresystemen beschrieben. Die statische Struktur
definiert eine Art von Objekten und Beziehungen zwischen diesen. Sie sind fiir die Entwicklung des
Systems und fiir dessen Implementierung wichtig. Das dynamische Verhalten definiert eine Historie
von Objektinteraktionen und Kommunikationen zwischen Objekten. Diese Historie beschreibt das
Verhalten des Systems und durch welche Vorginge dessen Ziele und Absichten erreicht werden.
Diese Systeme werden aus verschiedenen aber trotzdem #hnlichen Blickwinkeln modelliert, damit
das Verstindnis fiir die verschiedenen Absichten vorhanden ist. UML sieht fiir die Umsetzung dieser

2.7. GRUNDLAGEN MODELLGETRIEBENER SOFTWAREENTWICKLUNG 21

verschiedenen Blickwinkel mehrere Arten von Diagrammen vor. In dieser Arbeit wird hauptséichlich das
Klassendiagramm verwendet, weil in erster Linie eine Datenstruktur und deren Beziehungen vorgestellt
wird. [RJB99, S.3-11]

Ein Klassendiagramm ist eine graphische Reprisentation einer statischen Abbildung, die eine Menge
von deklarativen Modellelementen zeigt. Modellelementen werden durch Klassen, Arten und deren
Inhalt und Beziehungen konkretisiert. Ein Klassendiagramm beinhaltet Elemente, die Verhaltensweisen
darstellen. Diese nennt man Operationen. Thre Abldaufe werden jedoch in anderen Diagrammen
beschrieben. Diese Abldufe konnen in dem Zustandsdiagramm oder Kommunikationsdiagramm
dargestellt werden. [RIB99, S. 190] Falls weitere und detailliertere Informationen benétigt werden, ist
der Leser angehalten in der UML-Spezifikation [Obj10] nach zu lesen.

Im Folgenden wird die Erweiterungsmoglichkeit von UML durch Profile erklért. Diese spielen in dem
Metamodell fiir Mustersprachen eine grofie Rolle.

2.6.1 Erweiterung von UML

Seit der UML Version 2 konnen Profile zur Erweiterung von modellierten Metamodellen eingesetzt
werden. Durch die Mechanismen der Profile konnen die Metamodelle auf ihre verschiedenen Absichten
angepasst werden. Dies bietet die Moglichkeit UML-Metamodelle auf verschiedene Plattformen oder
Bereiche Mal zu schneidern. [Ob;j10, S. 685]

Die Erweiterungsmechnismen der Profile bestehen aus Einschriankungen (engl. Constraints),
Eigenschaftswerten (engl. tagged Values) und Stereotypen (Stereotypes). Eine Einschriankung ist eine
semantische Einschrinkung. Diese konnen einfach durch Text oder durch formale Sprachen, wie
der Object Constraint Language (OCL) eingeschrinkt werden. Eigenschaftswerte sind Paare von
Attributbezeichner und deren Werten. Diese konnen verwendet werden um beliebige Informationen
iiber deren Elemente fest zu halten. Sie vervollstindigen die Attributdefinition in den Elementen, die
durch diese Attribute beschrieben werden. Einige Modellierer moéchten die Modellierungssprache fiir
ihren speziellen Anwendungsbereich anpassen. Ein Stereotyp erweitert ein Modellelement und stellt
eine spezielle Art des Modellelementes dar. Der Informationsgehalt und die Form werden von dem
Modellelement libernommen und in dem Stereotyp erweitert. Dies fiihrt automatisch dazu, dass die
Bedeutung und die Verwendung des Stereotyps unterschiedlich zu dem Modellelement ist. [RIB99, S.
101-104] Stereotypen stellen auBlerdem Standardelemente (engl. standard element) fiir die Instanz des
Modells dar. [Obj10, S. 169]

2.7 Grundlagen modellgetriebener Softwareentwicklung

2.7.1 Modellgetriebene Softwareentwicklung

Das Ziel der modellgetriebenen Softwareentwicklung (engl. Model-Driven Software Development)
ist es aus formalen Modellen und Modelltransformationen automatisch Code zu generieren. Modelle
werden nicht nur fiir die Dokumentation von Software, sondern als Quelle fiir automatische
Code-Generation grofler Systemteile verwendet. Die modellgetriebene Softwareentwicklung soll
den Wert ihrer Modelle steigern und den Entwicklern zeitaufwindige und plattformspezifische
Programmierarbeiten ersparen. Dieses Bediirfnis entstand, weil aus UML-Diagrammen nur

22 KAPITEL 2. GRUNDLAGEN

Code-Riimpfe generiert werden konnen und infrastrukturabhidngige Programme an verschiedene
Plattformen angepasst werden miissen, obwohl sehr starke Ahnlichkeiten untereinander bestehen. Die
modellgetriebene Softwareentwicklung wird in zwei Schritte unterteilt:

e Die Beschreibung von Modellen, die fachliche und funktionale Anforderungen an eine Software
stellen und die von der Zieltechnologie unabhingig sind.

e Die automatische Code-Generierung durch Transformation der beschriebenen Modelle.

Die Initiative “Modell-Driven Architecture” der OMG [MMO3] wurde die modellgetriebene
Softwareentwicklung bekannt. Die Idee aus formalen Spezifikationen Programmcode halbautomatisch,
aber korrektheitserhaltend generieren zu lassen oder der Traum des automatischen Programmierens sind
die Vorldufer der modellgetriebenen Softwareentwicklung. [LL10, S. 340-341]

2.7.2 Modellgetriebene Architektur

Modellgetriebene Architekturen (engl. Model-Driven Architekture) sind eine spezielle Ausprigung
von modellgetriebenen Softwareentwicklungen. Sie befassen sich mit der Modellierung von
Softwarearchitekturen und deren Transformationen in Code. Modellgetriebene Architekturen sind
Modelle die zusammengehorige Komponenten, Schnittstellen und Technologien als eine Plattform
repréasentieren. Eine modellgetriebe Architektur besteht aus vier verschiedenen Modellen:

o Das Computation-Independent Model legt fest, was eine Software leisten soll und beschreibt diese
auf fachlicher Ebene.

e Das Platform-Independent Model beschreibt die fachlichen Funktionalititen von Programmen
oder Komponenten. Sie werden plattformunabhiingig und in einer formalen Modellierungssprache
beschrieben.

e Das Platform-Model beinhaltet Eigenschaften und Informationen beziiglich einer Plattform.

e Das Platform-Specific Model wird durch eine Transformation von dem Platform-Model
und dem Platform-Independent Modell gewonnen. Das Platform-Specific Model ist eine
Realisierung des Platform-Independent Model beziiglich einer bestimmten Plattform, die durch
das Platform-Model beschrieben wird.

Aus dem Computation-Independent Model kann das Platform-Independent Model abgeleitet werden.
Durch die beschriebene Transformation kann ein Platform-Specific Model erstellt werden, das fiir
eine weitere Transformation relativ gesehen ein Platform-Independent Model darstellt. Diese kann
dann in ein noch spezielleres Platform-Specific Model transformiert werden. Es konnen beliebig
viele Verkettungen von Transformationen hintereinander geschaltet werden. Die Abhingigkeiten
der Platform-Models geben dabei die Reihenfolge der Transformationen an. Héufig werden die
Modelle mit UML beschrieben und mithilfe von Profilen an bestimmte Plattformen angepasst, damit
eine automatische Transformation moglich wird. Auch die Transformationen werden durch formale
Quell- und Zielmodelle beschrieben. Hierfiir miissen deren Metamodelle bekannt sein, um die
Transformationen ausfiihren und aus dem Quellmodell ein Zielmodell erzeugen zu kénnen. Weitere
zusitzliche Informationen, die zusétzlich zum Quellmodell fiir die Transformation bendtigt werden,

2.7. GRUNDLAGEN MODELLGETRIEBENER SOFTWAREENTWICKLUNG 23

konnen Marks angegeben werden. Die resultierenden Modelle, speziell plattformspezifischer Code,
konnen auerdem noch von Hand verfeinert und angepasst werden. [LL10, S.340-343]

25

Kapitel 3

Metamodell fiir Mustersprachen

In diesem Kapitel wird das Metamodell fiir Mustersprachen beschrieben. Der erste Teil dieses Kapitels
stellt den Bezug zwischen den vorgestellten Grundlagen von Mustersprachen und dem Metamodell
fiir Mustersprachen her. Anschliefend wird die Form und der Aufbau, sowie die Aufgaben und
Ziele des Metamodells fiir Mustersparchen vorgestellt. Eine Ubersicht iiber die Modellebene soll
die Abhingigkeit und Verwendung der Modelle und Instanzen erldutern. Der Schwerpunkt dieses
Kapitels liegt auf der Beschreibung des Aufbaus und der Struktur des Metamodells fiir Mustersprachen.
Das Metamodell fiir Mustersprachen wird mit einem Profil erweitert, das eine Grundlage fiir die
Charakterisierung von Mustersprachen darstellt.

3.1 Einordnung der Grundlagen des Metamodells fiir Mustersprachen

Das Metamodell fiir Mustersprachen wurde anhand von Vergleichen und Analysen, der in Kapitel 2
Grundlagen beschriebenen wissenschaftlichen Arbeiten erstellt. In erster Linie basiert das Metamodell
der Mustersprachen auf der Musterdefinition von Christopher Alexander [CAA77, S. x] und verwendet
die Eigenschaften und Absichten seiner Musterstruktur und Mustersprachstruktur als Grundlage.
Meszaros und Doble erstellten bereits ein Metamodell fiir Mustersprachen [MD96] anhand bekannter
Mustersprachen, die alle auf der Definition von Christopher Alexander aufbauen. Aus dem Metamodell
von Meszaros und Doble sind viele Ideen und Anregungen in diese Arbeit eingeflossen. Einen
weiteren starken Einfluss, nahm das Werk Pattern-Oriented Software Architecture: On Patterns and
Pattern Languages [BHS07] von Buschmann, Henney und Schmidt, das viele Mustersprachen aus
unterschiedlichen Bereichen analysiert und deren Bedeutung darstellt.

3.2 Form und Aufbau des Metamodells fiir Mustersprachen

Meszaros und Doble beschrieben ihr Metamodell fiir Mustersprachen [MD96] durch Metamuster,
die wiederum als Mustersprache vorliegt und durch ihren Inhalt definiert sind. Diese Arbeit 16st
sich von dieser rekursiven Darstellung des Metamodells und stellt diese Darstellung stattdessen in
Form eines UML-Diagramms dar. Das UML-Diagramm ldsst sich beziiglich der modellgetriebenen
Softwareentwicklung anwenden und bietet somit Autoren die Mdoglichkeit, Mustersprachen und
deren Modelle anhand des Metamodells zu entwerfen. Die Modellabstraktionen fiir die Erstellung
von Mustersprachen werden im folgenden Abschnitt 3.4 Ubersicht der Modellhierarchie in einer
Modellhierarchie erldutert.

Das Metamodell fiir Mustersprachen besitzt zusitzlich zu den Beschreibungen fiir Mustersprachen

26 KAPITEL 3. METAMODELL FUR MUSTERSPRACHEN

ein Profil, in dem Elemente fiir die Mustersprachen vordefiniert werden konnen. Das Profil des
Metamodells fiir Mustersprachen wird im Anschluss der Metamodellbeschreibung vorgestellt. Wihrend
der Vorstellung des Metamodells werden dessen einzelnen Bestandteile erkldrt, deren Notwendigkeit
erldutert und deren Bezug zu bestehende Mustersprachen oder Mustersprachmodellen, die in dem
Kapitel 2 Grundlagen vorgestellt wurden, hergestellt. Das UML-Diagramm des Metamodells fiir
Mustersprachen befindet sich in Anhang A. In der Erklarungen des Metamodells fiir Mustersprachen
werden nur Ausschnitte des UML-Diagramms vorgestellt, wegen der Grofe des UML-Diagramms und
des damit verbunden Darstellungsproblems. Die Bezeichner in dem Diagramm sind in Englisch und
werden in den Erkldrungen in runden Klammern angegeben.

3.3 Aufgaben und Ziele des Metamodells fiir Mustersprachen

Dieser Abschnitt erldutert die Aufgaben des Metamodells fiir Mustersprachen, die im Rahmen dieser
Arbeit gestellt worden. Das Metamodell fiir Mustersprachen erfiillt die folgende Aspekte:

Viele Autoren passen die Struktur ihrer Mustersprachen an deren Inhalt und Problematik an. Daher
gibt es keine eindeutige Definition von Mustersprachen. Das Metamodell fiir Mustersprachen dieser
Arbeit bewiltigt diese Problematik. Durch die Verwendung des Metamodells fiir Mustersprachen
konnen Anpassungen von Mustersprachen vorgenommen werden. Zusitzlich wird die Kompatibilitit
der Mustersprachen untereinander gewihrleisten. Die Anpassung der Mustersprachen an die Inhalte der
Muster erlaubt das Gestalten von verschiedenen Mustersprachdefinitionen. Es kann somit die Frage nach
der Definition von Mustersprachen offen gelassen werden.

Die Autoren der Mustersprachen konnen durch eine Musterspracherweiterung in Form einer
Profilerweiterung, die Teil des Metamodellprofils fiir Mustersprachen ist, die Mustersprachen erweitern.
Durch diese Profilerweiterung wird das Metamodell verfeinert und bezieht sich auf speziellere
Mustersprachen. Die Mustersprachen, die dem Metamodell zu Grunde liegen, bleiben wegen der
strukturellen Abgrenzung des Profils untereinander kompatibel. Das Profil beschreibt die Charakteristik
der Mustersprache, die die Struktur der Mustersprachen verfeinert. Diese Struktur wird von dem
Metamodell fiir Mustersprachen beschrieben. Die Erweiterung des Profils wird durch vordefiniert
Mustersprachelement erstellt, die eine Basis fiir Mustersprachen bietet.

Die Anpassung des Metamodells bezieht sich in diesem Punkt auf vordefinierte Bestandteile und
deren Strukturen, die zum Beispiel in der Struktur der Muster oder der Mustersprachen vorkommen.
Weil viele Mustersprachdefinitionen sich stark dhneln und auf der Musersprachdefinition von Alexander
[CAATI, S. x] basieren, wird in dieser Arbeit ein Profil fiir das Metamodell fiir Mustersprachen
vorgestellt. Mit diesem Profil sollen méglichst viele Mustersprachdefinitionen abgedeckt werden. Durch
das Profil wird das Metamodell fiir Mustersprachen vervollstindigt. Zudem bietet es eine Basis fiir die
Erstellung von Mustersprachen.

Die Kompatibilitdit der Mustersprachen wird verwendet um Beziehungen darzustellen. Das
Metamodell fiir Mustersprachen unterstiitzt die mustersprachiibergreifende Referenzierung von
Mustern, unabhiingig von deren Art und Darstellung des Inhaltes. Dies erlaubt Referenzierungen
zwischen Mustersprachen und somit die Erweiterung der Vernetzungen von Mustern. Verwandte und
dhnliche Muster aus anderen Mustersprachen kdnnen somit referenziert werden, um deren Inhalte zu
erweitern und um eine Briicke zwischen ihnen zu bauen.

3.4. UBERSICHT DER MODELLHIERARCHIE 27

Die Beziehungen zwischen Mustern werden explizit in dem Metamodell fiir Mustersprachen in Form
von Typen vordefiniert. Dadurch wird die Vernetzung zwischen Mustern den Lesern und Autoren
explizit dargestellt. Dies verstéirkt die Bedeutungen der Verbindungen zwischen Mustern und verleiht
auch den Inhalten der Muster mehr Aussagekraft. Durch die Typisierung von Beziehungen kann
beispielsweise die Generalisierung und Spezialisierung von Mustern und Mustersprachen unterstiitzt
werden. Die vordefinierten Beziehungstypen sind ein Bestandteil des Profils des Metamodells fiir
Mustersprachen und kénnen von den Autoren erweitert werden.

Buschmann vergleicht die Beziehung zwischen Mustern und Mustersprachen mit der Beziehung, die
zwischen Klassen und Frameworks herrscht. [BHS07, 349-350] Das Metamodell fiir Mustersprachen
soll zusitzlich Aspekte einbringen, die Briicken zwischen Mustersprachen bauen. Ziel ist es, eine
Grundlage fiir eine Plattform zu schaffen, auf der mehrere Mustersprachen in Kooperation verwendet
werden konnen. Wenn man Buschmanns Vergleich weiterfiihrt, wiirde dies bedeuten, dass mehrere
Frameworks in Kooperation verwendet werden konnten. Dies wiirde eine Art Betriebssystem als
grundlegende Plattform fiir kooperierende Frameworks darstellen.

3.4 Ubersicht der Modellhierarchie

Dieser Abschnitt liefert eine Ubersicht iiber die Modellhierarchie. Sie gliedert das Metamodell der
Mustersprachen, das Modell der Mustersprachen und die Musterkataloge in die Modellhierarchie ein.
Die Modellhierarchie beschreibt aulerdem die Abhéngigkeiten zwischen diesen Modellen und dem
Musterkatalog. In Abbildung 3.1 ist die Modellhierarchie mit ihren drei Ebenen zu sehen.

T&:g:h‘e;deél? Meta Model - Pittern Language
|
|
=<=instafce of>>
|
1
Model-Level 1 Model - Pattern Language
(Model) x
|
|
<<instamce of>>
|
1
Model-Level 0 Pattern Catalog
(Instance)

Abbildung 3.1: Modellhierarchie der Musterkataloge

Auf der obersten Ebene, der Metamodell Ebene (Model-Level 2) befindet sich das Metamodell der
Mustersprachen (Meta Model - Pattern Language). Das Metamodell fiir Mustersprachen beinhaltet
Modelle von der Mustersprachenstruktur, der Musterstruktur und der musterspracheniibergreifenden

28 KAPITEL 3. METAMODELL FUR MUSTERSPRACHEN

Struktur. Das Metamodell fiir Mustersprachen beschreibt die Gemeinsamkeiten der Mustersprachen
und deren Zusammenhinge untereinander. Es definiert eine Menge von Mustersprachen. Durch die
Instantiierung des Metamodell erhilt man ein Modell, das eine bestimmte Mustersprachen beschreibt.
Die Instanziierungen sind in der Abbildung durch die gestrichelten Beziehungen mit Pfeil und der
Aufschrift “instance of ” dargestellt. Fiir die Erstellung des Mustersprachenmodells miissen die
Strukturen der Muster und der Mustersprache definiert werden.

Auf der zweiten Ebene (Model-Level 1) ist das Mustersprachenmodelle (Model - Pattern Language)
angesiedelt. Das Mustersprachenmodell beschreibt den Aufbau der Musterinhalte und definiert
die Beziehungsarten zwischen den Mustern. Durch das Erstellen eines Musterkataloges anhand
eines Mustersprachenmodells wird das Mustersprachenmodell instantiiert. Auf der untersten Ebene
(Model-Level 0) befinden sich die Instanzen des Mustersprachenmodells.

Die unterste Schicht der Modellhierarchie enthdlt keine Modelle sondern nur Instanzen des
dariiber-"liegenden Modells. Diese aus den Mustersprachmodellen instantiierten Objekte sind die
Musterkataloge (Pattern Catalog). Ein Musterkatalog stellt eine vernetzte Menge von Mustern dar.
Diese bilden den Kontext des Musterkataloges durch ihre Inhalte. Ein Musterkatalog kann au3erdem
weitere Funktionalititen, wie ein Stichwortverzeichnis oder eine Inhaltsiibersicht bereitstellen. Ein
Musterkatalog, in dieser Arbeit, ist vergleichbar mit den vorgestellten Mustersprachen in dem Kapitel 2
Grundlagen.

In diesem Abschnitt wird die strukturelle Abhéngigkeit der vorgestellten Modelle und Instanzen
erldutert. Es wird eine Baumstruktur vorgestellt, die die Abhdngigkeiten zwischen Modellen und
Instanzen verkorpert und eine ergénzende Erklirung zu der Abbildung 3.1 liefert. Das Metamodell
fiir Mustersprachen stellt die grundlegende Beschreibung fiir die Menge von Mustersprachen dar, die
Instanzen des Metamodells sind. Eine Mustersprache ist wiederum ein Modell fiir eine Menge von
Musterkataloge. Das Metamodell stellt die Wurzel der Instanzableitungen dar. In der zweiten Ebene der
Baumstruktur befindet sich die Menge der instaniierten Mustersprachen. Die dritte Ebene enthilt die
instanziierten Musterkataloge. Die Ebenen der Baumstruktur entsprechen der vorgestellten Ebenen aus
der Abbildung 3.1. Es ist zu beachten, dass das Metamodell in Kombination mit einem Profils verwendet
wird, das die Charakteristik der Mustersprachen definiert. Die Betrachtung der Baumdarstellung und
Veranschaulichung der Instanzabhéngigkeiten, bezieht sich auf das Metamodell fiir Mustersprachen mit
einem konkreten Profil.

3.5 Aufbau und Bestandteile des Metamodells fiir Mustersprachen

Das Metamodell fiir Mustersprachen beschreibt eine musterspracheniibergreifende Struktur fiir
Mustersprachen. Dies wird durch die Beschreibung der Mustersprachstruktur, der Musterstruktur und
deren Beziehungen beschrieben. Die musterspracheniibergreifende Struktur ist unabhidngig von der
Charakterisierung der Mustersprachen, die von dem Profil beschrieben werden. Sie stellt die Grundlage
der Mustersprachen dar. Mithilfe dieser einheitlichen Struktur werden die Mustersprachen untereinander
kompatible gehalten. Sie ermdglicht das Vergleichen und das Erstellen von Beziehungen zwischen
gleichen Elementarten, die in der musterspracheniibergreifende Struktur fiir Mustersprachen definiert
sind.

Im Folgenden wird die Strukturbeschreibung des Metamodells fiir Mustersprachen erklért. Zunichst
wird eine Ubersicht iiber die Strukturen des Metamodell vorgestellt, um einen Einstieg in die Thematik

3.5. AUFBAU UND BESTANDTEILE DES METAMODELLS FUR MUSTERSPRACHEN 29

zu erlangen. AnschlieBend werden die Grundlagen der Strukturen, aus denen sich das Metamodell
fiir Mustersprachen zusammensetzt erklirt. Im weiteren Verlauf werden diese Strukturen und ihre
Zusammenhidnge detailliert erldutert.

3.5.1 Ubersicht der Strukturen in dem Metamodell fiir Mustersprachen

Die Struktur fiir Mustersprachen, die durch das Metamodell fiir Mustersprachen beschrieben
wird, besteht aus einer Struktur fiir Muster und Mustersprachen, aus Beziehungsbeschreibungen
von Mustersprachen, Muster und deren Inhalten, sowie einer grundlegenden Definition von der
Strukturelemente.

In diesem Kapitel wird zunichst die Grundlagen der Struktur und die Definition der Strukturelemente
vorgestellt, die die Grundlage fiir die weiteren Strukturen der Muster und Mustersprachen liefern.
AnschlieBend wird die Musterstruktur und die Mustersprachenstruktur vorgestellt. Die Beschreibung
der Beziehungen in den Strukturen sind in den Strukturbeschreibungen enthalten.

Im Anhang A befindet sich die Abbildung des vollstindigen UML-Diagramms des Metamodells
fiir Mustersprachen. Die Musterstruktur (Pattern Structure) und die Mustersprachstruktur (Pattern
Structure Language) sind zentral in dem UML-Diagramm angeordnet. Sie bilden die Struktur des
Metamodells fiir Mustersprachen und enthalten Beziehungen (Structure Element Relation). Die
Musterstruktur ist aus einer hierarchischen Anordnung von Inhaltselement (Content Element) fiir Muster
zusammengesetzt. Die Mustersprachstruktur besteht aus einer Musterstruktur und den Beziehungen
die zwischen den Musterinhalten (Content) herrscht. Aulerdem enthélt die Mustersprachstruktur
Organisationen von Mustern (Pattern Organisation), in denen die Muster organisiert sind und zusétzliche
Funktionalititen (Pattern Language Feature), die die Inhalte der Muster und deren Beziehungen
erweitern konnen. Die vorgestellten Elemente bilden im Groben eine musterspracheniibergreifende
Struktur fiir Mustersprachen, die durch das Metamodell beschrieben wird.

3.5.2 Grundlagen der Strukturen des Metamodells fiir Mustersprachen

Im Folgenden werden die Elemente vorgestellt, die Bestandteile der Struktur des Metamodells fiir
Mustersprachen sind und die eine Grundlage fiir die Mustersprachstruktur und Musterstruktur liefern.
Die Elemente der Strukturgrundlagen sind Elemente, die Gemeinsamkeiten der konkreten Strukturen
darstellen und eine Beschreibungsgrundlage bieten. Durch die Verwendung der Strukturgrundlagen ist
die Struktur des Metamodells fiir Mustersprachen iibersichtlich strukturiert und enthilt keine redundante
Beschreibungen.

In Abbildung 3.2 ist ein Ausschnitt des Metamodells fiir Mustersprachen zu sehen. Dieser enthilt
auf der linke Seite die Grundlagen der Struktur und auf der rechten Seite die konkreten Strukturen
des Metamodells fiir Mustersprachen. Die Mustersprachstruktur (Pattern Language Structure), die
Musterstruktur (Pattern Structure) und der Musterinhalt (Content Element) sind Elemente, die
die Strukturen des Metamodells fiir Mustersprachen darstellen. Sie stellen Spezialisierungen des
Strukturelements (Structure Elements). Diese ist ein abstraktes Element, das die Grundlage der
konkreten Strukturen darstellt. Ein Strukturelement besteht aus einem eindeutigen Bezeichner
(Identifier), der das Strukturelement identifizieren kann, ein Symbol (Icon), das das Strukturelement

30 KAPITEL 3. METAMODELL FUR MUSTERSPRACHEN

| Pattern Language Structure I

f

1
1
1
1
1
1 <<metaclass>>
1
1
1
1

contains
E child
0..*
ET_" Structure Element Iq_

v V...

{ordered} <<stereotype>> <<stereptype>>
Identifier Icon

<<metaclass>>

Pattern Structure <
<<metaclass>>

Meta Information Descriptor 0

1..*

<<metaclass>>

Content Element 4—

f

Abbildung 3.2: Strukturen und Strukturelemente des Metamodells fiir Mustersprachen

reprasentieren soll und eine Metainformationsbeschreibung (Meta Information Descriptor), die
Informationen iiber den Inhalt der Strukturelement enthélt.

Der Bezeichner und das Symbol der Strukturelemente sind durch Stereotypen definiert worden, weil
sie Standardelemente eines Strukturelements darstellen.

Die Metainformationsbeschreibung liefert weitere Auskiinfte iiber den Inhalt der Strukturelemente.
Zusitzlich zu den drei Elementen kann genau ein Strukturelement beliebig viele Beziehungen zu
anderen Strukturelementen enthalten. Durch die Angaben der Kardinalititen 1 und 0..* wird eine
azyklische und gerichtete Struktur definiert, damit ein Strukturelement mit mehrere Strukturelemente
in Beziehung stehen kann.

Die Strukturen, die mit dem Strukturelement erstellt werden, stellen alle eine hierarchische
Baumstruktur dar.

Die Beziehung von Strukturelementen (Structure Element Relation) wird in dem Metamodell
fiir Mustersprachen explizit als Metaklasse dargestellt. Diese Metaklasse ist in Anhang A dem
UML-Diagramm des Metamodells fiir Mustersprachen in der rechten oberen Ecke zu sehen. Eine
Mustersprache kann durch die Verfeinerung der Beziehungstypen aussagekréftigeren Bedeutungen fiir

3.5. AUFBAU UND BESTANDTEILE DES METAMODELLS FUR MUSTERSPRACHEN 31

die Beziehungen darstellen. Vordefinierte Typen und Semantiken von Beziehungen sind Bestandteile
des Profils von dem Metamodell fiir Mustersprachen und werden im Anschluss der Strukturerklidrung
vorgestellt.

Die Beziehungen der Strukturelemente werden durch Referenzen, die sich in den Inhaltselementen
befinden, dargestellt. Anhand der Bezeichner der Strukturelemente kann jedes Strukturelement
referenziert werden. Das Metamodell fiir Mustersprachen sieht diese Beschreibung vor, damit
Mustersprachen, Muster und Musterinhalte einheitlich und somit musterspracheniibergreifend
referenziert werden konnen. Der Aufbau und die Verwendung von Referenzen auf Strukturelemente
wird in der Beschreibung der Musterstruktur detailliert beschrieben.

Bevor auf die konkreten Strukturen eingegangen wird, werden zunéchst die Beziehungen zwischen
den Strukturelement anhand der Abbildung 3.2 erldutert. Die drei Strukturelemente besitzen zusétzlich
untereinander Aggregationsbeziehungen. Ein Mustersprachstruktur enthilt somit eine Musterstruktur,
die wiederum mehrere Inhaltselemente enthilt. Die Rollen und Absichten der Aggregationsbeziehungen
zwischen den Strukturelemente werden in den folgenden Abschnitten der Musterstrukturbeschreibung
und der Mustersprachstrukturbeschreibung erklirt.

3.5.3 Modell der Musterstruktur des Metamodells fiir Mustersprachen

Die Struktur der Muster einer Mustersprache ist das zentrale Element der Mustersprachen. Aus diesem
Grund wird mit der Erkldrung des Modells der Musterstruktur des Metamodells fiir Mustersprachen
begonnen. Das Modell der Musterstruktur des Metamodells beschreibt die Musterstrukturen der
Mustersprachen. Im folgenden wird der Aufbau der Musterstruktur und die dafiir notwendigen
Elementen vorgestellt. AnschlieBend werden die Zusammenhidnge der Musterstrukturen und der
Mustersprachstrukturen erldutert.

Die Musterstruktur ist eine hierarchische Ordnung der Inhaltselemente von Muster in einer
Mustersprache. In dem Metamodell fiir Mustersprachen wird eine Metaklasse definiert, die die Struktur
der Musterstruktur beschreibt. Diese Beschreibung schreibt jede Mustersprache, die dem Metamodell
fiir Mustersprachen zu Grunde liegt, die Struktur ihrer Mustersturktur vor. Die grundlegende Struktur
aller Musterstrukturen, die in den vorgestellten Mustersprachen in dem Kapitel 2 Grundlagen enthalten
sind, ist in diesem Modell fiir Musterstrukuren beriicksichtigt. Eine einheitliche Strukturbeschreibung
dient nicht nur der Ubersichtlichkeit der Muster, sie bietet auch eine Grundlage um Beziehungen und
Vergleiche zu erstellen.

Bevor das Modell der Musterstruktur erklédrt wird und dieses in das Metamodell fiir Mustersprachen
eingeordnet wird, werden die dafiir bendtigten Elemente vorgestellt. Fiir die Erklirung der
Musterstruktur werden zunéchst die Strukturelemente der Musterstruktur, die Musterinhalte und der
Referenzierungsmechanismus anhand der Abbildung 3.3 vorgestellt.

Modell des Inhaltselements von Mustern Eine Musterstruktur besteht aus mehreren
Inhaltselementen (Content Element), die die Strukturelemente der Musterstruktur darstellen. Abbildung
3.3 stellt einen Ausschnitt des Metamodells fiir Mustersprachen dar, in dem das Modell des
Inhaltselements zu sehen ist. Das Inhaltselement besteht aus einem Inhalt (Content) und einer
Inhaltselementreferenz (Structure Element Referenz). Au3erdem erbt das Inhaltselement alle Elemente
und Beziehungen, die das Strukturelementes enthilt.

32 KAPITEL 3. METAMODELL FUR MUSTERSPRACHEN

1..%
<<metaclass>>

Content Element

f

Voo v

<<metaclass>> <<metaclass>>

Structure Element Reference Content

v v v

<<stereotype>> <<metaclass>> <<stereotype>>

—>] Reference URI Grafical Representation Relation Descriptor

+Relation Name: Structure Element Relation

+Usage Description: Text

.

<<stereotype>>
Common Property

Abbildung 3.3: Modell des Inahltselements

Modell des Inhaltes Die Metaklasse des Inhaltes sieht einen Inhalt vor, der sich im Inhaltselement
befindet und noch keine Aussagen iiber Art und Darstellung des Inhaltes macht. Die Konkretisierung
des Inhaltes ist ein Bestandteil der Musterspracherstellung. Die Autoren der Mustersprachen konnen
die Art des Inhaltes und dessen Darstellung frei gestalten. Es konnen mehrere Definitionen von der Art
eines Inhaltes und dessen Darstellung in einer Mustersprache existieren und verwendet werden. Eine
Problematik konnte zum Beispiel durch einen Text und eine Abbildung beschrieben werden. Somit
hitte man zweit Arten des Inhaltes: eine Textform und eine Graphik.

Modell der Strukturelementreferenz Die Strukturelementreferenz verkorpert die Beziehungen
zwischen den Strukturelementen. Durch die Verwendung einer Strukturelementreferenz kann eine
Beziehung zu einem Strukturelement dargestellt werden. Konkret heifit das, dass auf andere
Inhaltselemente, Muster oder Mustersprachen durch einen Referenz verwiesen werden kann. Die
Strukturelementreferenzen sind als Bestandteil der Strukturelemente in Abbildung 3.3 zu sehen.
Die Strukturelementreferenzen befinden sind in den Inhaltselementen (Content Element) der Muster
und konnen im Inhalt (Content) dargestellt werden. Diese Designentscheidung ist jedoch dem
Autor der Mustersprache iiberlassen. Eine Strukturelementreferenz besteht aus einem einheitlichen
Quellenanzeiger (Reference URI), einer graphischen Représentation (graphical Representation) und
aus einer Beziehungsbeschreibung (Relation Descriptor), die wiederum gemeinsame Eigenschaften
(Common Property) der Strukturelemente enthilt.

Der einheitlichen Quellenanzeiger wird fiir das Auffinden des verwiesenen Strukturelements benétigt.
Er ist nach dem Prinzip des Uniform Resource Locator (URL) von Tim Berners-Lee [Ber94] aufgebaut.
Der einheitliche Quellenanzeiger besteht aus einer Bezeichnerliste von Strukturelementbezeichnern.
Die Bezeichnerliste enthélt den Bezeichner des referenzierten Strukturelements und alle Bezeichner

3.5. AUFBAU UND BESTANDTEILE DES METAMODELLS FUR MUSTERSPRACHEN 33

der Strukturelemente, die in den Strukturebenen vor dem referenzierten Strukturelement erscheinen.
Die Bezeichnerliste ist absteigend sortiert und beginnt mit dem Strukturelement aus der
obersten Strukturebene. Ein einheitlicher Quellenanzeiger ist ein Standardelement, dass in jeder
Strukturelementreferen vorkommen muss. Aus diesem Grund wurde hierfiir ein Stereotyp erstellt.

Die graphische Reprisentation der Strukturelementreferenz ist wie der Inhaltstyp Bestandteil
der Mustersprachen. Auch hier ist es dem Autor der Mustersprache frei gestellt eine beliebige
Darstellungsart der Strukturelementreferenz zu wéhlen.

Die Beziehungsbeschreibung soll Aufschluss iiber die Art und Bedeutung der Beziehung geben,
die durch die Strukturelementreferenz verkorpert wird. Es wird der Typ der Beziehung, die
Verwendung und die Eigenschaften, die sich die zwei in Beziehung stehenden Strukturelemente
teilen, vermerkt. Die Beziehungrelation der Strukturelementen wird in dem UML-Diagramm des
Metamodells fiir Mustersprachen in Anhang A durch Strukturelementbeziehung (Strukture Elemente
Relation) typisiert. Somit kdnnen verschieden Arten von Beziehungen zwischen Strukturelementen in
der Beziehungsbeschreibung verwendet werden. In der Beschreibung des Profils des Metamodells fiir
Mustersprachen werden Arten von Beziehungen vorgestellt, die sich zwischen den Strukturelementen
befinden konnen. Ebenso wie der einheitliche Quellenanzeiger ist die Beziehungsbeschreibung ein
Standardelement der Strukturelementreferenz, das in jeder Strukturelementreferenz enthalten sein muss.
Deshalb wird es auch durch ein Stereotyp definiert.

|

<<metaclass>> is Order of

Pattern Structure

f

<<metaclass>>

Mandatory Content Element <l—

\VETs

<<metaclass>>

Content Element 4—

<<metaclass>>

Optional Content Element 4_

Abbildung 3.4: Modell der Musterstruktur

Die Abbildung 3.4 zeigt den Ausschnitt des Modells der Musterstruktur in dem Metamodell fiir
Mustersprachen. Das obligatorische Inhaltselement (Mandatory Content Element) und das optionale
Inhaltselement (Optional Content Element) sind Spezialisierungen des abstrakten Inhaltselements
(Content Element) und verkorpern dieses.

Das obligatorische Inhaltselement und das optionale Inhaltselement erbt aulerdem die Elemente
und die Beziehung des abstrakten Inhaltselements. Das obligatorische Inhaltselement beschreibt
Musterinhalte, die in jedem Muster einer Mustersprache vorkommen miissen. Das optionale

34 KAPITEL 3. METAMODELL FUR MUSTERSPRACHEN

Inhaltselement beschreibt Musterinhalte, die optional in einem Muster einer Mustersprache vorkommen
konnen. Der Autor muss anhand des Inhaltes entscheiden, ob es hilfreich ist die jeweiligen
optionalen Inhaltselemente der Musterstruktur zu verwenden. Durch das Vererben der Beziehung des
Inhaltselement kénnen mit den obligatorischen und den optionalen Inhaltselementen eine hierarchische
Struktur aufgebaut werden. Es ist aulerdem durch die vererbte Beziehung moglich und erwiinscht, dass
obligatorische Inhaltselemente optionale enthalten und umgekehrt.

In einer Mustersprache soll es zum Beispiel Muster geben, deren Inhalt durch ein Beispiel erldutert
werden kann. Das Inhaltselement der Beispielbeschreibung stellt ein optinales Inhaltselement dar.
Wenn sich jedoch der Autor dazu entschliefit dieses Inhaltselement zu verwenden, soll es durch eine
Uberschrift, einer Beschreibung in textueller Form und eine Skizze beschrieben werden. Die drei
Elemente, die das Inhaltselement der Beispiele enthilt wiren dann obligatorische Inhaltselemente. Somit
kann man vorschreiben, was ein optionales Inhaltselement enthalten muss.

Meszaros und Doble stellten in ihrer Arbeit MetaPattern: A Pattern Language for Pattern Writing
[MD96] die Unterteilung von Musterinhalten in obligatorische und optionale Inhaltselemente vor. Zum
Beispiel besteht das Inhaltselement duflere Einfliisse aus einem Bezeichner und einer Aufzidhlung
der duBeren Einfliisse in Textform. Zusitzlich wird noch vorgegeben was genau duBlere Einfliisse
inhaltlich représentieren. Wie an diesem Beispiel zu sehen ist, besteht keine Trennung zwischen der
Metamodellierung, der Profilerstellung und den semantischen Aussagen der Elemente. Hier wird der
Fokus auf die Struktur der dufleren Einfliisse gelegt. Abstrahiert man das Beispiel auf die Metaebene,
dann stellen die duBeren Einfllisse ein obligatorisches Inhaltselement dar, das wiederum weiteren
obligatorischen Inhaltselementen enthélt.

3.5.4 Modell der Mustersprachstruktur des Metamodells fiir Mustersprachen

Eine Menge zusammenhingender Muster in einer Mustersprache stellen mehr als nur die Summe der
Muster dar. Durch die Vernetzung der Muster erhilt man weitaus mehr Information als aus den einzelnen
Musterinhalten. Die Mustersprache stellt die Muster zusammen in einen Kontext. Durch verschiedene
Organisationen von Mustern und zusétzlichen Funktionalitéiten, die die Musterinformationen aufwerten,
erlangt die Mustersprache ihren Mehrwert. [MD96]

Der Ausschnitt 3.5 des Metamodells fiir Mustersprachen zeigt das Modell der Mustersprachstruktur.
Die Mustersprachstruktur (Pattern Language Structure) besteht aus einer Musterstruktur
(Pattern Structure), mehreren Organisationen von Muster (Pattern Organisation) und mehreren
Zusatzfunktionalitidten (Pattern Language Feature).

Bevor auf die Beschreibung der Organisationen von Muster und der Zusatzfunktionalititen
eingegangen wird, werden die Beziehungen zwischen Musterstruktur und Mustersprachstruktur erklart.
Die Musterstruktur die Mustersprachenstruktur erben die Eigenschaften des Strukturelement und dessen
Unterelemente. Sie kénnen somit auch Beziehungen auf Elemente des selben Typs besitzen. Diese
Beziehungseigentschaften von Musterstrukturen und Mustersprachstrukturen werden im Folgenden
eingeschrinkt und deren Bedeutungen erklrt.

Die Mustersprachstruktur enthilt eine Mustersturktur, die eine Erweiterung der Mustersprachstruktur
ist. Bei den Beziehungen zwischen Musterstrukturen sind jedoch Einschrinkungen zu machen. Es
ist zum Beispiel nicht vorgesehen, dass eine Musterstruktur eine andere enthilt. Die Beziehungen
zwischen Musterstrukturen werden erst auf der Ebene der Mustersprachmodelle konkretisiert. Denkbar

3.5. AUFBAU UND BESTANDTEILE DES METAMODELLS FUR MUSTERSPRACHEN 35

0..* <<metaclass>>

Pattern Language Feature 4_

<<metaclass>>

Pattern Language Structure >

'

0..* <<metaclass>>

Pattern Organisation 4—

<<metaclass>>
Pattern Structure

!

Abbildung 3.5: Modell des Inhaltselements

wire zum Beispiel, dass eine Musterstruktur spezialisiert wird. Beide Musterstrukturen befinden
sich zwar in unterschiedlichen Mustersprachen, haben aber eine Spezialisierungsbeziehung und
Ahnlichkeitsbeziehungen zueinander. Die Mustersprachen, die den Musterstrukturen zu Grunde liegen,
haben ebenfalls solche Beziehungen zu einander, da diese die jeweilige Musterstruktur enthalten. Die
Mustersprachen konnten je nach Gestaltung als Dialekte oder Mustersprachgenerationen angesehen
werden.

Buschmann schildert verschiedene Méglichkeiten wann eine Mustersprache einen Dialekt darstellen
kann. [BHSO7, S. 215-217] Es konnte zum Beispiele eine Mustersprache geben, die allgemeine
Losungen einer Problematik bietet. Mochte man diese Losungen aufgreifen und fiir einen bestimmten
Kontext konkretisieren und anpassen, dann konnte eine weitere Mustersprachen erstellt werden, die
angepasste und spezialisierte Losungen enthélt. Um die Mustersprache mit den speziellen Losungen
zu erstellen, kann die Musterstruktur von der Mustersprache mit den allgemeinen Losungen erweitert
werden. Die spezialisierte Mustersprache stellt auf Grund der Ahnlichkeit der Musterstrukturen einen
Dialekt der Mustersprache mit den allgemeinen Losungen dar.

Organisationen von Muster als Bestandteile der Mustersprachstruktur Die meisten Kollektionen
von Mustern sind relativ klein und iiberschaubar. Sie zielen meistens auf einen bestimmte Problematik
ab. Ziel ist es gute Darstellung von Musterkollektionen zu finden, die auch mustersprachiibergreifend
sind. Das finden von Musterkollektionen ist ein grundlegender Bestandteil eines Musterkataloges und
sollte durch Repositories verwaltet werden. [BHS07, S. 209-210]

Die Musterkollektionen werden je nach Bedarf und Interesse gebildet. Es ist nicht die Aufgabe eines

36 KAPITEL 3. METAMODELL FUR MUSTERSPRACHEN

Autor diese Kollektionen explizit zu bilden. Der Autor versieht seine Muster mit Referenzen, mit denen
er den Inhalt seiner Muster vervollstdndigt und auf andere Strukturelemente verweist. Implizit entsteht
die Vernetzung der Strukturelemente, in der sich die Musterkollektionen befinden. Der Musterkatalog
stellt den Lesern, die fiir ihre Interessen zugeschnittenen Musterkollektionen bereit. Dieser Ansatz
motiviert zu der Erstellung eines Musterkataloges, der durch Software implementiert wird. [BHS07,
S.210-211]

Die Musterkollektionen sind in Musterorganisationen organisiert. Diese Organisationen bilden die
Musterkollektionen und fokusieren deren Struktur, die in der Vernetzung des Musterkataloges enthalten
ist. Dabei gibt es verschiedene Moglichkeiten nach denen die Organisationen der Muster aufgebaut
werden konnen. Die Selektion der Muster der Musterkollektionen wird durch den Themenbereich
der Musterorganisation bestimmt. [BHS07, S. 211] Das Metamodell fiir Mustersprachen sieht eine
Metaklasse fiir die Organisationen von Mustern vor, damit verschiedene Musterorganisationen realisiert
werden konnen. Auf die verschiedenen Moglichkeiten, wie Organisationen von Mustern aufgebaut
werden konnen, wird in der Beschreibung des Profils eingegangen.

Zusatzfunktionalitiiten der Mustersprachstruktur Zusatzfunktionalititen von Mustersprachen
verleihen der Mustersprache, ebenso wie die Organisationen von Muster einen Mehrwert.
Zusatzfunktionalitdten sind ebenfalls vernetze Mengen von Mustern wie die Musterkollektionen der
Organisationen von Mustern. Im Gegensatz zu den Musterorganisationen kénnen Zusatzfunktionalitdten
fiir Mustersprachen die Beziehungen zwischen den Muster und deren Informationsgehalt erweitern.

Eine Zusatzfunktionalitit konnte zum Beispiel ein Worterindex sein. Dieser gibt an, in welchen
Muster sich ein bestimmtes Wort befindet. Dadurch wird die Beziehung zwischen den Mustern
dargestellt, die davor noch nicht explizit existierte. Zusitzlich konnten die Begrifflichkeiten im
Worterindex erkléart werden. Dies wire eine Erweiterung des Informationsgehaltes der Muster, die sich
in dieser Musterkollektion befinden.

Ein Autor, der solche eine Zusatzfunktionalitit einer Mustersprache bereitstellen will, muss die
Musterinhalte kennen und diese Zusatzfunktionalitit manuell erstellen. Da das Metamodell fiir
Mustersprachen fiir Musterkataloge verwendet werden soll, die durch Softwareprogramme realisiert
werden konnen, wird in dieser Arbeit zwischen Organisation von Mustern und Zusatzfunktionalititen
von Mustersprachen unterschieden.

In der Beschreibung des Profils von dem Metamodell fiir Mustersprachen werden
Zusatzfunktionalititen fiir Mustersprachen vordefiniert. Diese Zusatzfunktionalititen stellen eine
einheitliche Basis fiir alle Mustersprachen dar, die aus dem Metamodell fiir Mustersprachen abgeleitet
sind.

3.6 Profil des Metamodells fiir Mustersprachen

Mit dem Profil des Metamodells fiir Mustersprachen wird die Charakteristik der Mustersprachen
dargestellt. Das Profil des Metamodells fiir Mustersprachen wird von seiner Struktur getrennt. Auf
Grund der Trennung von Struktur und Profil ist es moglich das Profils anzupassen und zu verdndern.
Durch die Anpassung und Verdnderung des Profils werden andere Charakteristik von Mustersprachen
beschrieben. Mit Hilfe von Profilinderungen kann das Metamodell fiir spezielle Mustersprachen

3.6. PROFIL DES METAMODELLS FUR MUSTERSPRACHEN 37

angepasst werden, ohne die Struktur des Metamodells zu verdndern. Mustersprachen, die aus dem
Metamodell fiir Mustersprachen instanziiert wurden, besitzen immer die gleiche Struktur und sind
trotz verschiedener Profile zu einander kompatible. Dies ermdglicht zum Beispiel das Erstellen von
mustersprachiibergreifenden Verbindungen. Es wird davon ausgegangen, dass das Metamodell fiir
Mustersprachen immer in Verbindung mit einem Profil verwendet wird. Aus diesem Grund wird das
Profil als notwendiges Bestandteil des Metamodells betrachtet. Das Profil aus dieser Arbeit versucht
einen allgemeinen Standard fiir Mustersprachen festzulegen. Dies geschieht durch die Definition und
Beschreibung von Standardelementen und Einschrinkungen, die die Bestandteile des Profils darstellten.
Die Zusammenstellung der Standardelemente und Einschrinkungen wurde anhand der im Kapitel 2
Grundlagen vorgestellten Mustersprachen und den MetaPatterns von Meszaros und Doble [MD96]
ausgewihlt.

Im Folgenden wird das Metamodell fiir Mustersprachen durch das Profil erweitert. Das Profil befindet
sich auf der rechten Seite in dem UML-Diagramm des Metamodells fiir Mustersprachen, das in der
Abbildung Metamodells fiir Mustersprachen von Anhang A zu sehen ist. Das Profil wird in drei
Bestandteile unterteilt, die sich auf die Strukturen in dem Metamodell fiir Mustersprachen beziehen.
Sie werden mit Hilfe von Ausschnitten des UML-Diagramms beschreiben. Die Bestandteile des Profils
werden in das Beziehungsprofil, Musterprofil und in das Mustersprachprofil des Metamodells fiir
Mustersprachen aufgeteilt und anhand dieser Aufteilung vorgestellt.

3.6.1 Beziehungsprofil des Metamodells fiir Mustersprachen

Das Beziehungsprofil beinhaltet vordefinierte Beziehungstypen. Diese Beziehungstypen konkretisieren
Beziehungen, die sich zwischen den Strukturelementen befinden und konnen als Instanzen in
den Mustersprachen verwendet werden. Die Beziehungstypen und deren Beschreibungen dienen
zum Beispiel der Erstellung von Organisation von Mustern und den Zusatzfunktionalititen der
Mustersprachen. Sie bieten auBlerdem ein zusitzliches Verstdndnis und Informationen fiir die
Zusammenhinge der Muster. Die Leser der Mustersprachen erhalten durch die Typisierung und
Beschreibungen der Beziehungen zwischen Mustern einen groferen Informationsgehalt.

In den Mustersprachen konnen diese Beziehungstypen zusitzlich erweitert werden. Im Gegensatz
zu den Instanzen der vordefinierten Beziehungstypen des Beziehungsprofils sind die erweiterten
Beziehungen nicht in allen Mustersprachen bekannt. Beziehungstypen, die aus dem Beziehungsprofil
instanziert wurden, sind zu den Beziehungstypen anderer Mustersprachen kompatibel. Wenn die
Beziehungstypen den Profilvorgaben entsprechen, ist es einfacher, Analysen zwischen Mustersprachen
durch zu fiihren.

<<stereotype>> <<stereotype>>

Specialisation SER Combining Aggregation - SER
<<metaclass>> <<stereotype>> <<stereotype>>

- Structure Element Relation Aggregation - SER Completing Aggregation - SER
<<stereotype>> <<stereotype>>

Assoziation SER Completing Aggregation - SER

Abbildung 3.6: Beziehungsprofil

Die Abbildung 3.6 zeigt den Ausschnitt des Metamodells fiir Mustersprachen, auf dem die

38 KAPITEL 3. METAMODELL FUR MUSTERSPRACHEN

Beziehungstypen des Profils zu sehen sind. Die Beziehungen der Strukturelemente (Structure Element
Relation) werden durch eine Metaklasse beschrieben. Das Profil beinhaltet eine hierarchische Struktur
von konkreten Beziehungstypen. Diese Beschreibungen von Beziehungstypen sind Spezialisierungen
der Metaklasse und Stereotypen der Beziehungstypen fiir Strukturelemente in Mustersprachen. Sie
erhalten zusitzlich durch die Beschreibung des Beziehungsprofils ihre Semantik.

Die Unterteilung von Beziehungstypen wurde bereits in dem Kapitel 2 Grundlagen unter der Rubrik
2.4.1 Beziehungen in Mustersprachen vorgestellt. Im folgenden werden die benotigten Erkenntnisse, die
fiir das Beziehungsprofil des Metamodells fiir Mustersprachen erforderlich sind, erneut aufgefiihrt.

Van Welie und van der Veer unterteilten die Beziehungen zwischen Muster in drei Beziehungstypen
[vv03]. Diese Beziehungstypen sind in die Typen Spezialisierung, Aggregation und Assoziation
unterteilt. In dem Metamodell fiir Mustersprachen werden diese Beziehungstypen und deren Semantik
tibernommen. Die Verallgemeinerungen der Beziehungstypen werden als Spezialisierungen der
Metaklasse von Strukturelementsbeziehung dargestellt. Die Spezialisierungsbeziehung (Specialisation
SER), Aggregationsbeziehung (Aggreagation SER) und Assoziationsbeziehung (Association SER)
bilden somit die erste Strukturebene der Beziehungstypen in Mustersprachen.

Buschmann verfeinerte die = Aggreagtionsbeziehung weiter in die Untertypen:
Vervollstandigungsaggregationen (Completing Aggregation - SER), Erweiterungsaggregationen
(Combining Aggregation - SER) und in Aggregationen die sich gegenseitig ausschliefen (Compteting
Aggregation - SER). Diese drei Verfeinerungen bilden die zweite Strukturebene der Beziehungstypen
in Mustersprachen. Deren Beschreibung ist in der Rubrik 2.4.1 Beziehungen in Mustersprachen
detaillierter vorgestellt. Das Beziehungsprofil beinhaltet die vollstindige Struktur mit ihren beiden
Ebenen.

In dem Metamodell fiir Mustersprachen und seinem Profil werden keine Aussagen iiber das Erstellen
von qualitativ hochwertigen Inhalten gemacht. Der Einsatz und die Verwendung der Beziehungstypen
nimmt Einfluss auf die Qualitéit des Inhaltes, da diese einen Teil des Inhaltes repridsentieren. Deshalb
ist es den Autoren der Muster und Mustersprachen iiberlassen die richte Wahl der Verwendung
von den Beziehungstypen zu treffen. Die Beziehungstypen besitzen Semantiken, an denen die
Autoren herausfinden konnen in welchen Féllen der jeweilige Beziehungstyp verwendet werden
kann. Ein Beispiel des Einsatzes von Beziehungen wurde bereits in der allgemeinen Erklidrung
der Zusammenhidnge zwischen Muster und Mustersprachen in dem Abschnitt 3.5.4 Modell der
Mustersprachstruktur des Metamodells fiir Mustersprachen geschildert.

3.6.2 Musterstrukturprofil des Metamodells fiir Mustersprachen

Das Musterstrukturprofil beschreibt die allgemeine Charakteristik der Muster. Die Charakteristik der
Muster wird durch die Vorgabe der Musterstruktur und deren Einschrinkungen gebildet. Im Gegensatz
zu dem Beziehungsprofil, bei dem die Verwendung der vorgegebenen Arten von Beziehungstypen
optional ist, werden fiir das Musterstrukturprofil Einschrinkungen definiert, die eine Vorgabe der
Musterstruktur erzwingen. Im Folgenden werden anhand der vorgestellten Mustersprachen aus dem
Kapitel 2 Grundlagen die Inhaltsbestandteile der Musterstruktur ausgewéhlt und Vorschriften fiir deren
Verwendung formuliert.

Um das Musterstrukturprofil erstellen zu konnen, werden zundchst die Muster und
deren Charakteristik betrachtet. Muster sind Beschreibungen von Losungen beziiglich ihrer

3.6. PROFIL DES METAMODELLS FUR MUSTERSPRACHEN 39

Problemstellungen, die sich in einem bestimmten Kontext befindet. Dieser Satz ist jedoch nicht
die ganze Wahrheit, was ein Muster darstellt und enthilt. Es stellt aber die Kernaussage dar, auf der
das Musterstrukturprofil aufgebaut werden soll. Wie schon in dem Kaptitel 2 Grundlagen angerissen,
gibt es noch weitere Anforderungen an Muster. Zum Beispiel sollen sie korrekte und anpassungsfihige
Losungen bieten und eine konsistente Menge von Muster darstellen. [BHS07, S. 30] Meszaros und
Doble definierten in ihren MetaPatterns [MD96] eine Musterstuktur, die auch wie die Musterstuktur
des Metamodells fiir Mustersprachen aus obligatorischen und optionalen Inhaltselementen besteht. Sie
schreiben die Verwendung von bestimmten obligatorischen Inhaltselementen vor und empfehlen die
Verwendung von bestimmten optionalen Inhalteselementen. Diese Auswahl der Inhalteselemente von
Meszaros und Doble werden als Grundlage des hier vorgestellten Musterstrukturprofils verwendet.
Im Folgenden werden die Fakten der Musterstrukturen von Meszaros und Doble vorgestellt und als
Grundlage fiir das Musterstrukturprofil des Metamodells fiir Mustersprachen verwendet.

Meszaros und Doble beschreiben in dem ersten MetaPattern A./ Pattern: Pattern, das sie in ihrer
Arbeit [MD96] vorstellen, dass ein Muster eine Problembeschreibung, eine Losungsbeschreibung
und eine Beschreibung, wieso diese Losung anwendbar ist, enthalten muss. Sie verweisen in diesem
Kontext auf die obligatorischen Inhaltselemente. Es wird allerdings nicht vorgeschrieben, dass alle drei
Inhaltselemente obligatorische Inhaltselemente sind.

In den folgenden Mustern wird oft auf die Beschreibung der Anwendbarkeit der Losung
verzichtet. Aus diesem Grund enthilt das Musterstrukturprofil des Metamodells fiir Mustersprachen
Spezialisierungen des obligatorischen Inhaltselement, die die Problem- und die Losungsbeschreibung
der Muster darstellen. Die Beschreibung der Anwendbarkeit der Losung wird als optionales
Inhaltselement in das Musterstrukturprofil aufgenommen.

In der Beschreibung der Musterstruktur von Meszaros und Doble werden deren obligatorische
Inhaltselemente durch den Kontext und des Problems erweitert. Es wird auerdem beschrieben, dass
die Anwendbarkeit der Losung ein notwendiges Inhaltselement ist. Es ist jedoch keine obligatorisches
Inhaltselement, da dessen Existenz abhédngig von dem Losungsinhalt ist. Die Beschreibung der
Musterstruktur wird durch das Muster Visible Forces erweitert. Diese Erweiterung ist ein obligatorisches
Inhaltselement, das die #@uBleren Einfliisse der Problematik und der Losungsfindung beschreibt.
Meta Informationen, die Informationen iiber die Muster enthalten werden in dieser Arbeit nicht
als eigenstindige Inhaltselemente angesehen. Dies betrifft zum Beispiel den Musterbezeichner.
Die vorgestellten Inhaltselemente werden wie von Meszaros und Doble beschrieben in das
Musterstrukturprofil des Metamodells fiir Mustersprachen tibernommen. Meszaros und Doble gehen
auch auf die Gestaltung von qualitativ hochwertigen Musterinhalten ein. Dies ist zwar nicht Bestandteil
des Metamodells fiir Mustersprachen, es wird aber die Idee der Inhaltserweiterung durch ein Beispiel
aufgenommen. Sehr viele Muster beinhalten Beispiel, die deren Losungsansitze veranschaulichen
sollen. Diese Charakteristik soll durch die Erweiterung mit einem optimalen Inhaltselement, das ein
Beispiel der Losung eines Musters darstellt, in das Musterstrukturprofil einbezogen werden.

Das Musterstrukturprofil des Metamodells fiir Mustersprachen ist in der Abbildung 3.7 zu sehen. In
diesem Absatz wird die Struktur des Musterstrukturprofil und dessen Eingliederung in das Metamodell
fiir Mustersprachen detailliert erkldart. Das Musterstrukturprofil besteht aus den Inhaltselementen
Metainformationsbeschreibung (Meta Information Descriptor), Problembeschreibung (Problem
Description), Losungsbeschreibung (Solution Description), Kontextbeschreibung (Context Description)
und Beschreibung der duBleren Einfliisse (Visible Forces Description). Diese Inhaltselemente sind
Spezialisierungen des obligatorischen Inhaltselements und stellen damit feste Bestandteile von Mustern

40 KAPITEL 3. METAMODELL FUR MUSTERSPRACHEN

<<stereotype>>
Meta Information Description

<<stereotype>>

Problem Description

<<metaclass>> <<stereotype>>

Mandatory Content Element < Solution Description ®

<<stereotype>>

Context Description

<<stereotype>>
Visible Forces Description

<<stereotype>>

Conclusion Description
<<metaclass>>
B Optional Content Element
<<stereotype>>

Example Description

Abbildung 3.7: Profil der Musterstruktur

dar. In dieser Aufzdhlung wurde die Metainformationsbeschreibung als obligatorisches Inhaltselement
hinzugenommen. Es soll die Informationen der Metainformationsbeschreibung der Musterstruktur als
Inhaltselement reprisentieren. In der Metainformationsbeschreibung kénnen sich zusitzlich zu den
Metainformationen des Musters auch Anmerkungen zu verwandten Themen, Mustern oder zu anderen
Namen, die das Muster tragen konnte gemacht werden. Alle Metainformationen, die die Muster
betreffen soll in diesem Inhaltselement eingepflegt werden. Zusitzlich zu der Definition dieser fiinf
obligatorischen Inhaltselemente wird die Einschrinkung gemacht, dass sie in jedem Muster aller
Mustersprachen, die aus dem Metamodell fiir Mustersprachen abgeleitet worden sind, enthalten sein
miissen. Das Musterstrukturprofil wird durch die optionalen Inhaltsbestandteile Schlussfolgerungs-
und Beispielbeschreibungen erweitert. Zu beachten ist, dass die Schlussfolgerungsbeschreibung ein
optionales Inhaltselement der Losungsbeschreibung ist, weil sie erkliart wieso die Losung am
geeignetsten fiir das beschriebene Problem beziiglich des angegebenen Kontextes passt.

Es ist noch zu erwihnen, dass das Musterstrukturprofil nicht auf die Qualitéit des Inhalts der Muster
eingeht. Die Konsistenz, Allgemeinheit, Absichten und weitere Aspekte, die beziiglich der Qualitit
des Inhalts der Muster abzielen, werden dem Autor der Muster iiberlassen. Meszaros und Doble
veroffentlichten unter anderem in ihrem Werk MetaPatterns: A Pattern Language for Pattern Writing
[MD96] Tipps und Ratschlédge fiir Autoren von Mustersprachen. Diese bieten den Autoren eine Stiitze
fiir das Erstellen von qualitativ hochwertig Musterinhalten. Den Autoren wird empfohlen sich an den
Ratschldgen zu orientieren und das Metamodell fiir Mustersprachen aus dieser Arbeit in Kombination
zu verwenden.

3.6.3 Mustersprachprofil des Metamodells fiir Mustersprachen

Die Musterorganisationen und Zusatzfunktionalititen fiir Mustersprachen wurden in dem Abschnitt
3.5.4 Modell der Mustersprachstruktur des Metamodells fiir Mustersprachen vorgestellt. Das
Mustersprachprofil definiert verschiedene Standardelemente fiir Mustersprachen, die Spezialisierungen
von Musterorganisationen und Zusatzfunktionalititen fiir Mustersprachen sind. Im Folgenden wird das

3.6. PROFIL DES METAMODELLS FUR MUSTERSPRACHEN 41

Mustersprachprofil in zwei Teile unterteilt. Der eine beschreibt die Organisationen von Mustern und der
andere die Zusatzfunktionalititen fiir Mustersprachen.

3.6.3.1 Typen von Musterorganisationen im Mustersprachprofil

Die hier vorgestellten Typen von Musterorganisationen beruhen auf den Analysen von Buschmann.
[BHSO07, S. 209-246] Es werden die geldufigsten Musterorganisationen vorgestellt, die eine Grundlage
fiir die meisten Mustersprachen bieten kénnen.

Die Autoren der Muster haben viele Moglichkeiten um Muster darzustellen und diese anhand ihres
Inhaltes in eine Vernetzung von Muster einzupflanzen. Leser verwenden Muster meistens, wegen ihrer
Anwendbarkeit. Durch diese konnen sie ein bestimmtes Vorhaben in seinem Kontext umsetzen. Um
Muster zu finden, benétigen sie Organisationen, die ihre Situation und Absichten darstellen konnen.
[BHS07, S. 225]

In den folgenden Abschnitten werden Organisationen vorgestellt, die auf allgemeine Muster
angewendet werden konnen und hdufige von den Leser der Mustersprachen benétigt werden. Im
Allgemeinen ist es vorgesehen, dass die Organisationen in Kombination verwendet werden konnen,
um komplexere Organisationen darzustellen und mehr Ausdruck verleihen konnen.

Organisation von Musterebenen Viele Mustersprachen besitzen eine hierarchische Struktur, in der
die Muster beziiglich ihrer Aggregationsbeziehung in verschiedene Ebenen unterteilt sind. Die Muster
dieser Struktur stellen in den niedrigeren Ebenen Erweiterungen und Verfeinerungen der Muster aus den
hoheren Ebenen der Struktur dar. Umso hoher die Ebene, desto abstrakter oder allgemeiner ist der Inhalt
dessen Muster. [BHSO07, S. 213-218]

Christpher Alexanders Mustersprache A Pattern Langauge: Towns Buildungs Construction [CAAT7]
enthilt eine hierarchische Struktur, die bei Muster fiir Stddten anfiingt und gefolgt wird von
Nachbarschaften, Gebauden, Zimmer, ... bis hin zu Sitzgelegenheiten. An diesem Beispiel ist zu sehen,
dass die Hierarchische Organisation von Mustern Umsetzungsregeln in ihren Traversierungswegen
beinhaltet. [vv03]

Die Ebenen der Organisation von Musterebenen konnen auch durch die Art der Mustertypen
benannt werden, die in der jeweiligen Ebene zu finden sind. Eine hohe Ebene beinhaltet zum
Beispiel Muster, die architektonische Inhalte repridsentierten. Eine Stufe weiter unten konnten sich
Designmuster befinden, die die Architekturmuster erweitern und verfeinern. Die Designmuster kdnnten
wiederum von konkreteren bereichsabhingigen Mustern erweitert und verfeinert werden. Damit
die Hierarchische Organisation von Mustern, die Mustertypen eindeutig zuordnen kann, konnte
man zum Beispiel die Informationen des Mustertyps in dessen Metainformationen mitaufnehmen.
[BHSO7, S. 213-218] Beziiglich des Metamodells fiir Mustersprachen aus dieser Arbeit, bietet
es sich an, in dem vorgestellten Szenario von Buschmann, drei verschiedene Mustersprachen
zu erstellen. Dies hat den Vorteil, dass die Inhaltselemente fiir die Musterstruktur beziiglich
der Kategorien der Ebenenen zusammengestellt werden konnen. Durch den Mechanismus der
musterspracheniibergreifenden Referenzierung konnen Beziehungen zwischen den Mustersprachen und
somit zwischen den Musterebenen erstellt werden. Anhand dieser Beziehungen kann die Organisation
von Musterebenen die Muster der drei Mustersprachen darstellen.

42 KAPITEL 3. METAMODELL FUR MUSTERSPRACHEN

Organisation von Musterbereichen Unter Musterbereichen versteht man Themenbereiche, die
durch die Problem- und der Kontextbeschreibung der Muster angesprochen werden. Die Muster
werden in Organisationen von Musterbereichen beziiglich ihrer Themenbereiche in Kollektionen
unterteilt. Die Kollektionen kdnnen zum Beispiel nach folgenden Themenbereichen unterteilt werden:
Telekommunikation, Finanzwesen, Gesundheitswesen, Luftfahrtelektronik, Logistik, Lehre, In der
Organisation von Musterbereichen konnen auch Schnittmengen von Themenbereichen gebildet werden,
um Uberschneidungen der Themenbereiche darzustellen. [BHSO07, S. 218-219]

Organisation von Musterpartitionen Musterpartitionen stellen einen engeren Bereich als
Musterbereiche dar. Sie beziehen sich urspriinglich auf verschiedene Bereich der Architekturlosungen
von Muster. Die Musterbereiche stellen somit verschiedene Technologien und Konzepte dar. Sie
konnen beispielsweise folgendes darstellen: verschiedene Architekturebenen, Schichten, Komponenten,
Pakete oder Rollen. [BHS07, S. 218-221] Die Organisation von Musterpartitionen soll in dem
Metamodell fiir Mustersprachen fiir allgemeine Musterbereiche eingesetzt werden. Die Organisation
von Musterpartitionen konnte so zum Beispiel als Verfeinerung der Musterbereiche dienen.

Organisation von Musterabsichten Eine weitere hédufige Organisation, die in Mustersprachen
verwendet wird, ist die Organisation von Musterabsichten. Muster werden dabei beziiglich ihres Inhaltes
in Kollektionen unterteilt. Solche Kollektionen haben zum Beispiel eine gleiche architektonische
Charakteristik oder verfolgen ein gleiches Ziel. Oft beinhalten Mustersprachen Muster, die solch eine
Struktur darstellen. Zum Beispiel stellt das Muster der Beschreibung einer Stadt von Christopher
Alexander eine Kollektion von weiteren Mustern dar. Diese Kollektion bildet eine Struktur,
die als Teil einer Organisation von Musterabsichten angesehen werden kann. [CAA77, S. 3-7]
Organisation von Musterabsichten sind sinnvoll fiir das Auffinden von Musterproblembeschreibungen
oder deren Losungsbeschreibungen, da die Muster nach den Absichten ihrer Problemstellung oder
Losungsbeschreibung organisiert sind. [BHSO07, S. 221-224]

Profil der Musterorganisationen Die Abbildung 3.8 zeigt das Profil der Mustersprachorganisationen.
Es ist die Metaklasse der Musterorganisationen (Pattern Organisation) und seine Spezialisierungen
zu sehen. Die Spezialisierungen sind die vorgestellten Musterorganisationen des Profils der
Musterorganisationen: Organisation von Musterebenen (Pattern Organisation by Level), Organisation
von Musterbereichen (Pattern Organisation by Domain), Organisation von Musterpartitionen (Pattern
Organisation by Partition) und Organisation von Musterabsichten (Pattern Organisation by Intent).

3.6.3.2 Zusatzfunktionalititen fiir Mustersprachen im Mustersprachprofil

Die Ideen und Anregungen der Auswahl von Zusatzfunktionalititen fiir das Mustersprachprofil
stammen aus der Beschreibung der Mustersprachstruktur von Meszaros und Doble. Sie sollen durch
die Erweiterung der Mustersprachstruktur die nicht triviale Vernetzung der Muster {ibersichtlicher
darstellen. Sie erstellen zusitzliche Strukturen, die Musterinhalte erweitern und auf die entsprechenden
Muster verweisen. Umsetzung solcher konkreten Mechanismen werden hier als Zusatzfunktionalititen
vorgestellt. [MD96]

3.6. PROFIL DES METAMODELLS FUR MUSTERSPRACHEN 43

<<stereotype>>
Pattern Organisation by Level

<<stereotype>>

Pattern Organisation by Domain

0..*% <<metaclass>>

ﬁ Pattern Organisation 4_

<<stereotype>>

Pattern Organisation by Partition

<<stereotype>>

Pattern Organisation by Intent

Abbildung 3.8: Arten von Musterorganisationen im Mustersprachprofil

Zusammenfassung der Musterinhalte Die Zusammenfassung der Musterinhalte spiegelt die
Themenbereich der Mustersprache wieder. Sie soll einen Uberblick iiber die wichtigsten Muster
der Mustersprache liefern, deren Probleme und Losungen schildern und ihre Zusammenhéinge und
Anwendbarkeit erlautern. Es konnen auch die Absichten der Mustersprache als Ganzes und deren
Ausblicke auf die Erweiterung von Mustern und Sammlungen von Losungen festgehalten werden.
[MDY6]

Problem-/Losungstabelle der Muster Die Zusatzfunktionalititen Problem-/Losungstabelle der
Muster erweitert eine Mustersprache durch eine Tabelle, die Probleme und Losungen ausgewihlter
Muster in verkiirzter Form gegeniiberstellt. Diese Tabelle stellt auch ein Zusammenfassung der Muster
dar. Im Gegensatz zu der Zusammenfassung der Musterinhalte werden die Inhalte der Muster getrennt
dargestellt. Es stellt somit keine Beschreibung der Mustersprache dar sondern eine detaillierte Ubersicht
iiber die Probleme und Losungen der Muster. Die Tabelle bietet den Lesern der Mustersprache ein
Nachschlagewerk der wichtigsten Muster einer Mustersprache. [MD96]

Musteriibergreifende Beispiele Ein musteriibergreifendes Beispiel ist eine Darstellung eines
Beispiels, das iiber mehrere Muster fortgefiihrt wird. Muster, die ein Teil eines fortlaufenden Beispiels
enthalten, bilden eine Musterkollektion beziiglich dieses Beispiels. Oft stellen diese Musterkollektionen
auch Mustersequenzen dar. [MD96] Eine Mustersequenzen ist die Anordnung von Mustern, in der ihre
Losungen angewendet werden. In den meisten Fillen werden mehre Muster bendtigt, um ein Problem zu
16sen. Die Mustersequenzen ist in diesen Fillen die Reihenfolge der anzuwendenden Muster. [BHS07,
S. 192-193]

Worterverzeichnis der Musterinhalte Um Fachbegriffe zu erkldren, soll ein Worterverzeichnis die
Musterpsprachen erweitern konnen. In einem Worterverzeichnis werden die Fachbegriffe alphabetisch
geordnet, erkldrt und auf die Muster verwiesen, in denen dieser Begriff enthalten sind. Implizit
wird durch die Erkldrung der Fachbegriffe und die Referenzierung auf die entsprechenden Muster
Verbindungen zwischen Muster hergestellt. Diese Verbindungen sind anhand der Fachbegriffe
entstanden und erlangen sogar durch die Erkldrung der Fachbegriffe eine Reprisentation ihrer
Bedeutung. [MD96]

44 KAPITEL 3. METAMODELL FUR MUSTERSPRACHEN

<<stereotype>>
Pattern Language Summary

<<stereotype>>

Problem/Solution Summary

0..% <<metaclass>> <<stereotype>>

% Pattern Language Feature Running Examples

<<stereotype>>

Glossary

<<stereotype>>

Index

Abbildung 3.9: Profil der Mustersprachorganisationen

Inhaltsverzeichnis fiir Mustersprachen Musterorganisationen konnen die Muster abhingig von
deren Inhalten und Vernetzungen darstellen. GrofSe Mustersprachen oder mehrere Mustersprachen,
die von einer Musterorganisation dargestellt werden, konnen sehr uniibersichtlich werden. Das
Inhaltsverzeichnis fiir Mustersprachen ist eine hierarchische Struktur, die manuell angelegte Kategorien
enthilt. Autoren sortieren ihre Muster entsprechend ihrer Inhalte und Abhiéngigkeiten in die jeweilige
Kategorie des Inhaltsverzeichnisses ein. Somit wird eine iibersichtliche Struktur geschaffen, die den
Inhalt der Mustersprache wiedergibt und die Muster in einem groben Raster organisiert. [MD96]

Profil der Zusatzfunktionalititen fiir Mustersprachen In der Abbildung 3.9 ist die
Metaklasse der Zusatzfunktionalititen und die vordefinierten Arten von Zusatzfunktionalititen
des Mustersprachprofils zu sehen. Die vorgestellten Zusatzfunktionalititen Zusammenfassung der
Musterinhalte (Pattern Language Summary), Problem-/Losungstablle der Muster (Problem/Solution
Summary), musteriibergreifende Beispiele (Running Example), Worterverzeichnis der Musterinhalte
(Glossary) und das Worterverzeichnis der Musterinhalte (Index) sind Spezialisierungen der Metaklasse
fiir Zusatzfunktionalititen von Mustersprachen. In diesem Ausschnitt sind die Beziehungen der
Zusatzfunktionalititen zu den einzelnen Bestandteilen der Inhaltselementen von Mustern zu erkennen.
In der Abbildung Metamodells fiir Mustersprachen in Anhang A ist die Darstellung der Beziehungen
zwischen den Zusatzfunktionalititen und den Inhaltselementen der Muster auf der rechten Seite zu
sehen. Durch diese Beziehungen werden inhaltliche Abhéngigkeiten dargestellt. Je nach Gestaltung der
Zusatzfunktionalitéten fiir Mustersprachen konnen die Beziehungen erweitert werden.

45

Kapitel 4

Plattform fiir Mustersprachen und
Musterkataloge

In diesem Kapitel wird eine Plattform fiir Mustersprachen und Musterkataloge vorgestellt. Zunéchst
werden deren Aufgaben und Ziele erldutert. Anschliefend werden die bestehende Musterkataloge
vorgestellt und die Abgrenzung der Plattform fiir Mustersprachen und Musterkataloge erklirt. Der
Hauptteil dieses Kapitels ist die Spezifikation und der Aufbau der Plattform fiir Mustersprachen
und Musterkataloge. Die Spezifikation dient zur Beschreibung der Plattform und der Definition ihrer
Anforderungen.

Im Rahmen dieser Diplomarbeit wurde eine Software erstellt, die die Spezifikation der Plattform
fiir Mustersprachen und Musterkataloge erfiillt. Ein weiterer Bestandteil der Softwareplanung ist die
Beschreibung der Struktur der Plattform fiir Mustersprachen und Musterkataloge, die anschieBend
nach der Spezifikation vorgestellt wird. Die Struktur der Plattform erfiillt die Anforderungen
der Spezifikation und stellt das Bindeglied zwischen Spezifikation und Implementierung dar. Die
Implementierungsbeschreibung enthilt die Umsetzung und die Verwendung der Spezifikation und der
Struktur von der Plattform fiir Mustersprachen und Musterkatalogen. Die Inbetriebnahme der Plattform
fiir Mustersprachen und Musterkataloge beschreibt die Installation der Plattform. [LL10, S. 353-356,
399-400]

4.1 Aufgaben und Ziele der Plattform fiir Mustersprachen und
Musterkataloge

In diesem Abschnitt werden die Aufgaben und Ziele der Plattform fiir Mustersprachen und
Musterkataloge vorgestellt. Sie werden als Anforderungen an die Plattform formuliert. Die
Anforderungen werden in verschiedene Bereiche unterteilt, um sie iibersichtlich darzustellen. Es
werden die Bereiche Anforderungen der Modellabhéngigkeiten des Metamodells fiir Mustersprachen,
Anforderungen der Autoren, Anforderungen der Leser von Muster und technische Anforderungen
vorgestellt. Die Inhalte der Anforderungsbereiche sollen auBerdem eine Vorschau fiir die benotigten
Bestandteile der Plattform liefern. [LL10, S. 353-355, 366-374]

Anforderungen der Modellabhéingigkeiten des Metamodells fiir Mustersprachen Die Plattform
fiir Mustersprachen und Musterkataloge soll fiir die Autoren von Mustersprachen eine webbasierte
Verwaltungssoftware fiir die Erstellung und Verwaltung von Mustersprachen und deren Musterkataloge
darstellen. Die Mustersprachen der Plattform sind Instanzen des vorgestellten Metamodells fiir

46 KAPITEL 4. PLATTFORM FUR MUSTERSPRACHEN UND MUSTERKATALOGE

Mustersprachen. Autoren sollen mit Hilfe der Plattform Mustersprachen in diese einpflegen kénnen.
Diese Mustersprachen dienen als Modell der Musterkataloge, die die Autoren ebenfalls in die Plattform
einpflegen und erweitern kdnnen.

Anforderungen der Autoren Die Plattform soll zusitzlich eine Verwaltung von verschiedene
Musterversionen unterstiitzen, damit den Autoren eine komfortable Mustererstellung geboten wird.
Die Autoren und Leser der Muster sollen zudem Diskussionen iiber die Inhalte der Muster fiihren
konnen. Fiir diesen Zweck soll die Plattform ein Forum fiir Diskussionsbeitrige iiber die Musterinhalte
bereitstellen.

Anforderungen der Leser von Muster Fiir die Leser der Muster sollen verschiedene
Musterorganisationen und Zusatzfunktionalititen der Mustersprachen zur Verfiigung stehen. Die
Musterorganisationen und Zusatzfunktionalititen sollen fiir musterspracheniibergreifende Suchen
und Verwaltungen von Muster verwendet werden. Die Musterorganisationen sollen ein dynamisch
erzeugtes Suchergebnis liefern, das aus mehreren ausgewihlten Kriterien zusammengestellt wird und
zusammenhéngende Muster aus verschiedenen Musterkatalogen darstellt. Fiir diese Musterkollektionen
sollen Darstellungen bereitgestellt werden, die die Vernetzung der Muster anschaulich darstellen.

Technische Anforderungen Damit die Daten der Plattform fiir Mustersprachen und Musterkataloge
effizient verwaltet werden, soll ein Repository die Datenaufbereitung und -verwaltung fiir die Plattform
tibernehmen. Die Plattform soll fiir Erweiterungen konzipiert sein und sie soll die Integration von
weiteren Bestandteilen ermdglichen.

4.2 Abgrenzung zu bestehenden webbasierten Musterkatalogen

In diesem Abschnitt werden die in dem Kapitel 2 Grundlagen vorgestellten webbasierten
Musterkataloge mit der Plattform fiir Mustersprachen und Musterkataloge verglichen und deren
Unterschiede préisentiert.

Die vorgestellten webbasierten Musterkataloge basieren alle auf einer Musterstruktur. AuBBerdem
bezieht sich der Inhalt der Muster nur auf einen Themenbereich. Die hier vorgestellte Plattform
fiir Mustersprachen und Musterkataloge bietet im Gegensatz zu den vorgestellten webbasierten
Musterkatalogen die Erstellung mehrerer Mustersprachen fiir verschiedene Themenbereiche an. Je
nach Themenbereich konnen die Mustersprachen unterschiedliche Musterstrukturen enthalten, die der
Autor der Mustersprache selbst definieren kann. Auflerdem ist es mdglich Verkniipfungen zwischen den
Mustersprachen herzustellen.

Die vorgestellten webbasierten Musterkataloge werden nur durch ausgewihlten Autoren und
Experten der jeweiligen Themenbereiche gepflegt und sind fiir Dritte lesbar. Es gibt noch
weitere Musterkataloge, wie zum Beispiel das Patternry [LVHI11], das sich thematisch mit
Benutzeroberflichenmuster befasst. Es basiert auf der Masterarbeit [LamO7] von Janne Lammi,
die tiber dynamisch erzeugte Konzepte und Techniken und iiber die Erstellung und den Aufbau
eines webbasierten Musterkatalog berichtet. In der Arbeit von Janne Lammi wird detailliert auf die
Benutzerschnittstelle des Musterkataloges und den Prozess der Mustererstellung eingegangen.

4.3. PLATTFORMSPEZIFIKATION FUR MUSTERSPRACHEN UND MUSTERKATALOGE 47

In dem Musterkatalog Patternry [LVHI11] kann jeder eigene Muster erstellen und diese fiir andere
Leser und Autoren zur Verfiigung stellen. Autoren der Plattform fiir Mustersprachen und Musterkataloge
sollten Experten beziiglich der Themengebiete ihrer Muster sein und qualifizierte Beitrdge beziiglich
der Mustersprachen erbringen. Die Muster der Plattform sind allen Autoren zuginglich. Es ist dem
Betreiber der Plattform fiir Mustersprachen und Musterkataloge iiberlassen, ob die Muster auch fiir
Dritte zugéanglich sind. Im Gegensatz zu Patternry konnen keine Muster erstellt werden, die fiir andere
Autoren nicht zugiinglich sind. Muster, die sich in der Plattform befinden, sollen fiir alle Autoren
offentlich sein und von diesen in anderen Mustern referenziert werden konnen.

Die vorgestellten Musterkataloge besitzen fast alle Kategorien, in denen die Muster unterteilt sind.
Diese Unterteilungen bestehen oft aus zwei Hierarchieebenen. Zusétzlich werden oft Suchfunktionen
nach Musternamen oder deren Textinhalten angeboten. Oft wird auch ein Index mit den Musternamen
zur Verfiigung gestellt. Die Plattform fiir Mustersprachen und Musterkataloge enthilt erweiterte
Suchmechanismen und Darstellungen, die die Vernetzung der Muster darstellen. Die Verwendung
von Musterorganisationen und Zusatzfunktionalititen der Mustersprachen wurde in dem Abschnitt
4.1 Aufgaben und Ziele der Plattform fiir Mustersprachen und Musterkataloge bereits vorgestellt.
Eine detaillierte Spezifikation des Aufbaus der Musterorganisationen und Zusatzfiinktionalitdten
der Mustersprachen wird in dem Kapitel 4.3 Spezifikation der Plattform fiir Mustersprachen und
Musterkataloge beschrieben.

Einige webbasierte Musterkataloge bieten die Moglichkeit iber Muster Diskussionen zu fiihren.
Die Plattform fiir Mustersprachen und Musterkataloge stellt auch die Moglichkeit, Diskussionen iiber
Muster zu fiihren, zur Verfiigung.

4.3 Plattformspezifikation fiir Mustersprachen und Musterkataloge

In diesem Bereich der Arbeit wird eine Spezifikation durch die Verfeinerung der Anforderungen
erstellt. Diese Anforderungen stellt die Aufgaben und die Ziele der Plattform fiir Mustersprachen
und Musterkataloge dar. Die Spezifikation enthélt Funktionalititen, die die Funktionsweise,
die Verwendungen und die Handhabung der Plattform beschreiben. Sie enthilt die allgemeine
Anforderungen, die Absichten, die Funktionalititen und die Handhabung mit der Plattform fiir
Mustersprachen und Musterkatalogen. Fiir die Bewiltigung der Anforderungen an die Plattform wird
das Metamodell fiir Mustersprachen als grundlegendes Datenmodell verwendet. Die Spezifikation
erweitert das Profil des Metamodells fiir Mustersprachen. Damit kann das Metamodell fiir
Mustersprachen in Kombination mit einer Verwaltungssoftware verwendet werden. Die Spezifikation
bietet zusitzlich die Grundlage fiir den Entwurf und die Struktur der Plattform fiir Mustersprachen und
Musterkataloge. [LL10, S. 353-356, 399-400]

Im Folgenden wird zunéchst die Erstellung und die Verwaltung von Mustersprachen in der Plattform
fiir Mustersprachen und Musterkataloge sowie die dafiir notwendige Anpassung des Metamodells
fiir Mustersprachen beschrieben. Anhand einer gepflegten Mustersprache kénnen Musterkataloge
instanziiert werden. Im Anschluss wird die Erstellung und die Verwaltung von Musterkatalogen in der
Plattform fiir Mustersprachen und Musterkatalogen vorgestellt. Zusitzlich zu den weiteren Anpassungen
des Metamodells fiir Mustersprachen, wird der Suchmechanismus der Plattform vorgestellt.

48 KAPITEL 4. PLATTFORM FUR MUSTERSPRACHEN UND MUSTERKATALOGE

4.3.1 Erstellung und Verwaltung von Mustersprachen

Die Plattform fiir Mustersprachen und Musterkataloge ermoglicht es, dass Mustersprachen angelegt
werden konnen. Die Mustersprachen basieren alle auf dem Metamodell fiir Mustersprachen. Durch
das Anlegen einer Mustersprache wird eine Instanz des Metamodells fiir Mustersprachen gebildet.
Die Musterkataloge sind wiederum Instanzen der Mustersprachen. Die Musterkataloge liegen den
Beschreibungen der entsprechenden Mustersprachen zu Grunde. Die Informationen iiber den Aufbau
eines Musterkataloges befindet sich in der entsprechenden Mustersprache. Diese Beschreibungen fiir
den Aufbau der Musterkataloge, in Form von Mustersprachen, sind in der Plattform fiir Mustersprachen
und Musterkataloge hinterlegt. Bei der Erstellung von Mustersprachen miissen nicht alle Elemente des
Metamodells fiir Mustersprachen instanziert werden. Im Folgenden wird das Profil des Metamodells fiir
Mustersprachen durch vordefinierte Elemente, die bei der Erstellung einer Mustersprache verwendet
werden, erweitert. Zunéchst wird die Erstellungsphase einer Mustersprache in der Plattform fiir
Mustersprachen und Musterkataloge vorgestellt.

Erstellung von Mustersprachen Bei der Erstellung einer Mustersprache liegt der Schwerpunkt
auf der Definition der Musterstruktur. Die Musterstruktur wird durch Inhaltselemente definiert. Die
Inhaltselemente enthalten wiederum Inhaltsarten, die die konkreten Inhalte der Muster enthalten. Die
Arten der Inhalte werden von der Plattform fiir Mustersprachen und Musterkataloge vordefiniert. Es
konnen nur die Arten von Inhalten verwendet werden, die die Plattform fiir Mustersprachen vorsieht.
Fiir die Erstellung einer Mustersprache miissen auch die obligatorischen und optionalen Inhaltselemente,
die durch das Metamodell fiir Mustersprachen vorgesehen sind, angegeben werden. Mit ihnen wird
die Musterstruktur der Mustersprache vervollstindigt. Die Arten der Inhaltselemente sind in dem
Profil des Metamodells der Mustersprachen in der Plattform hinterlegt. Die Plattform enthélt ebenso
ein vorgefertigtes Konstrukt fiir Referenzen auf Strukturelementen. Diese konnen in Kombination
mit den entsprechenden Beziehungstypen verwendet werden. Diese Beziehungstypen zwischen
Strukturelementen sind ebenfalls in der Plattform fiir Mustersprachen und Musterkataloge vordefiniert.
Um die Erstellung einer Mustersprache fertigzustellen, muss noch deren Mustersprachstruktur definiert
werden. Sie enthdlt Musterorganisationen und Zusatzfunktionalititen. Die Musterorganisationen
sind Strukturen, die in der Plattform fiir Mustersprachen und Musterkataloge erstellt werden
konnen. Das Profil des Metamodells fiir Mustersprachen bietet die optionale Verwendung von den
bereits vorgestellten Musterorganisationen. Zusétzlich konnen weitere Musterorganisationen in die
Plattform eingepflegt und verwendet werden. Die Zugehorigkeit und Einordnung der Muster in
Musterorganisationen wird im folgenden Abschnitt 4.3.2 Erstellung und Verwaltung der Musterkataloge
geklirt. Die Zusatzfunktionalitdten einer Mustersprache sind ebenfalls durch das Profil des Metamodells
fiir Mustersprachen vorgegeben. Sie stellen spezielle Funktionalititen dar, die optional verwendet
werden konnen. Das FErstellen von weiteren Zusatzfunktionalititen wird von der Plattform fiir
Mustersprachen und Musterkataloge nicht unterstiitzt, weil die Zusatzfunktionalititen sehr spezielle
und unterschiedliche Konstrukte darstellen. Nach dem Anlegen eines Musterkataloges kann dessen
Mustersprachen nicht mehr geéindert oder geloscht werden, da die Mustersprachen Beschreibungen
und Vorschriften der Musterkataloge darstellen und Verdnderungen der Mustersprachen Inkonsistenzen
hervorbringen konnten. Es wird lediglich die Erweiterung der Musterorganisationen zur Verfiigung
gestellt.

4.3. PLATTFORMSPEZIFIKATION FUR MUSTERSPRACHEN UND MUSTERKATALOGE =~ 49

Beispiel einer Mustersprache In Anhang B ist eine Abbildung zu sehen, die ein Beispiel
einer Mustersprache darstellt. Dieses Beispiel soll helfen, die Erstellung einer Mustersprache mit
vordefinierten und neu erstellten Elementen zu erkldren. In der Abbildung sind vordefinierte
Elemente der Plattform fiir Mustersprachen und Musterkataloge und auch neue Elemente enthalten.
Beispielsweise sind die Inhaltselemente (Content Pattern Element) der Musterstruktur fiir diese
Beispielmustersprache verfeinert worden. Ein neu erstelltes Inhaltselement ist zum Beispiel das
Diskussionselement (Discussion). Es ist von dem Typ der optionalen Inhaltselemente (optional Pattern
Content Element). Das Diskussionselement enthilt einen neuen Inhaltstyp (Discussion Representation),
der den Inhalt und die Darstellung der Diskussionen definiert. Das Diskussionselement wird weiter
verfeinert, in dem es wiederum Beitragselemente (Contribution) enthélt, die von dem Typ der optionalen
Inhaltselemente abgeleitet sind und die den bereits vordefinierten textbasierenden Inhaltstyp (Text
Content) enthalten. Es wurden auch konkrete Inhaltselemente aus dem Profil des Metamodells fiir
Mustersprachen iibernommen, wie zum Beispiel das Beispielelement.

Erweiterung des Metamodellprofils fiir Mustersprachen In diesem Abschnitt wird das Profil des
Metamodells fiir Mustersprachen an die Plattform fiir Mustersprachen und Musterkataloge angepasst.
Das Profil des Metamodells fiir Mustersprachen wird durch vordefinierte Elemente erweitert. Diese
Erweiterungen, die sich auf die Erstellung der Mustersprachen in der Plattform fiir Mustersprachen und
Musterkatalogen beziehen, werden im Folgenden vorgestellt und sind in der Abbildung im Anhang C
dargestellt. Die Abbildung enthilt das angepasste Profil fiir Mustersprachen der Plattform, das mit der
folgenden Erkldrung vervollstandigt wird. Die Bezeichner der Profilerweiterungen aus der Abbildung
sind englisch dargestellt und werden in den folgenden Profilerweiterungen in Klammern hinter den
deutschen Begriffen aufgefiihrt.

Zundchst werden die Arten der Inhaltselemente, deren Inhaltsarten und ihre Abhingigkeiten
vorgestellt. Danach werden die Beziehungsarten und Referenzierungen von Strukturelementen
prasentiert. AnschlieBend werden die Arten von Musterorganisationen und Zusatzfunktionalititen
erklart.

Inhaltselement (Content Element) Die Inhaltselemente von Muster werden aus dem Profil
des Metamodells fiir Mustersprachen iibernommen und erweitert. Damit sie als Datenstruktur fiir
die Plattform fiir Mustersprachen und Musterkatalogen verwendet werden konnen. Die bereits
bestehenden Inhaltselement Metainformation (Meta Information Description), Problembeschreibung
(Problem Description), Beschreibung der &duBlere FEinfliisse (Visible Forces Description),
Kontextbeschreibung (Context Description), Losungbeschreibung (Solution Description), deren
Schussfolgerungsbeschreibung (Conclusion Description) sowie das Beispiel (Example Description)
der Musterstruktur wurden aus dem Profil des Metamodells fiir Mustersprachen iibernommen. Im
Folgenden werden die erweiterten Inhaltselemente erliutert.

Diskussion (Discussion) Das Diskussionselement wird in der Plattform fiir Mustersprachen
verwendet. Damit konnen Diskussionen tiber die jeweiligen Musterinhalte gefiihrt werden.

Dikussionsbeitriage (Contribution to the Discussion) Die Diskussionbeitrige sind
unterelemente des Diskussionselementes. Sie enthalten die Beitrdge der Autoren.

50

KAPITEL 4. PLATTFORM FUR MUSTERSPRACHEN UND MUSTERKATALOGE

Anhang (List of Attachments) In das Anhangselement konnen Dateien angefiigt werden. Diese
Informationen helfen die Muster zu vervollstindigen.

Anhangsdatei (Attachment Element) Eine Anhangsdatei reprisentiert eine Datei, die sich in
dem Anhang des Musters befindet.

Arten von Inhalten (Content) In dem Inhaltselement der Muster wird ein Teil des Musterinhaltes
beschrieben. Die Arten der Inhalte werden benétigt, um zu unterscheiden was fiir einen Inhalt es sich
handelt und wie dieser beispielsweise verwendet oder reprisentiert wird. Im Folgenden werden die
Inhaltselement der Plattform fiir Mustersprachen und Musterkataloge vorgestellt:

Metainformationsinhalt (Meta Data Content) Die Inhaltsart Metainformationsinhalt enthilt
Informationen, die den Inhalt eines Musters beschreiben. Durch die Definition dieser Art ist es
moglich die Metainformationen zu verdndern und dem Benutzer zu prasentieren. Diese Inhaltsart
wird dem Inhaltselement der Metainformation zugeordnet.

SimpleHTML (Textual Content) Die Inhaltsart SimpleHTML enthélt hauptsidchlich Text,
der graphisch in den Musterkatalogen repridsentieren wird. Dieser Text wird durch einfache
HTML-Tags formatiert. Die Formatierung mit HTML bietet sich sehr gut an, da die Textinhalte
in einem Webbrowser angezeigt werden. In dem Text konnen zusitzliche Verkniipfungen auf
anderen Mustern enthalten sein. Auch Hyperlinks konnen zur Beschreibung verwendet werden. Es
konnen ebenso Bilder in den Text eingebettet werden, um den Text verstiindlicher zu gestalten. Die
Inhaltsart SimpleHTML wird den Inhaltselementen Problembeschreibung, Lésungsbeschreibung,
Schlussfolgerung, Kontextbeschreibung, Beschreibung der dufleren Einfliisse und dem Beispiel
zu geordnet.

Diskussion (Discussion Content) Die Inhaltsart Diskussion stellt eine Liste von
Diskussionsbeitrigen bereit und wird hauptsidchlich fiir die Reprédsentation und deren
Diskussionsbeitrag in der Plattform benétigt. Die Diskussionsinhaltsart wird dem Inhaltselement
Diskussion zugeordnet.

Diskussionsbeitrag (Contribution Content) Die Inhaltsart Diskussionsbeitrag ist eine
Spezialisierung der Inhaltsart SimpleHTML. Es wird zwischen den beiden Arten unterschieden,
damit eine andere Darstellungsart fiir die Diskussionsbeitrag gewihlt werden kann. Die Inhaltsart
Diskussionsbeitrag wird dem Inhaltselement Dikussionsbeitrige zugeordnet.

Anhiénge (Attachment List) Die Inhaltsart Anhinge bietet die Moglichkeit beliebige Dateien an
ein Muster anzufiigen. Somit konnen zum Beispiel Bilder, Konfigurationsdateiten, Beispielcode
und viele weitere Informationen an ein Muster angefiigt werden. Die Anhiinge stellen
zusitzlich Musterinformationen dar, die nicht notwendigerweise in dem Musterkatalog graphisch
Reprisentation werden miissen. Diese Inhaltsart wird dem Inhaltselement Anhang zugeordnet.

Anhangsdatei (Attachment File) Die Inhaltsart Anhangsdatei repréisentiert eine angefiigte Datei,
die sich in dem Anhang befindet. Sie wird dem Inhaltselement Anhangsdatei zugeordnet.

4.3. PLATTFORMSPEZIFIKATION FUR MUSTERSPRACHEN UND MUSTERKATALOGE 51

Arten von Beziehungen zwischen Mustersprachen, Muster und Musterinhalten (Structure
Elemente Relation) Um Referenzierungen zu erstellen, wird die Beschreibung der Beziehung zu
den referenzierten Elementen benétigt. Die Plattform fiir Mustersprachen und Musterkataloge sieht
dafiir die in den folgenden aufgelisteten Arten von Beziehungen zwischen Mustersprachen, Muster und
Musterinhalten vor. Die Beziehungsarten wurden aus dem Metamodell fiir Mustersprachen iibernommen
und werden im Folgenden fiir die Plattform fiir Mustersprachen und Musterkataloge verfeinert.

Spezialisierungsbeziehung (Specialisation SER) Es konnen Spezialisierungen von
Mustersprachen, Muster und Musterinhalten erstellt werden. Die Spezialisierungen von
diesen Elementen besitzen eine Spezialisierungsbeziehung zu ihren Generalisierungen.

Vervollstindigende Aggregationsbeziehung (Completing Aggregation - SER) Die Beziehung
einer vervollstindigenden Aggregationsbeziehung besteht zwischen zwei Elementen, wenn das
eine Element den Inhalt des anderen durch Einschluss seines Inhalts erweitert.

Alternative Aggregationsbeziehung (Competing Aggregation - SER) Die alternative
Aggregationsbeziehung besteht auch zwischen zwei Elementen, wenn das eine Element den
Inhalt des anderen durch Einschluss seines Inhaltes erweitert. Zusitzlich stellt der Einschluss
des Inhaltes eine Alternative zu einem anderen Einschluss eines Inhaltes dar.

Erweiternde Aggregationsbeziechung (Combining Aggregation - SER) Die erweiternde
Aggregationsbeziehung wird auch verwendet, um den Inhalt eines Elementes mit
dem eines anderen zu erweitern. Im Gegensatz zu der vervollstindigenden und der
alternativen Aggregationsbeziehung stellen die Inhalte der Elemente mit der erweiternden
Aggregationsbeziehung optionale Zusatzinformationen dar.

Assoziationsbeziehung (Assoziation SER) Eine Assoziationsbeziehung wird verwendet, wenn
eine Beziehung vorliegt, die nicht durch die bereits vordefinierten Beziehungen abgedeckt ist. Die
Assoziationsbeziehung stellt eine universale Beziehung dar.

Referenzen von Mustersprachen, Muster und Musterinhalte Die Plattform fiir Mustersprachen
und Musterkataloge bietet einen Mechanismus an, um Mustersprachen, Muster und Musterinhalte
zu referenzieren. Dabei wird das Modell der Strukturelementreferenz aus dem Metamodell fiir
Mustersprachen verwendet. Eine Referenz der Plattform fiir Mustersprachen und Musterkataloge
wird durch einen Hyperlink verkorpert. Die Referenz enthélt zusitzlich zu dem Namen (Identifier)
und der Adresse (Reference URI) des Hyperlinks eine Beschreibung der Beziehung, die zwischen
dem referenzierten Element und dem Element, das die Referenz enthilt besteht. Optional kann
die Referenz auch mit dem Symbol (Icon) des Elements dargestellt werden. Die Beschreibung der
Beziehungen verwendet die vordefinierte Art von Beziehungen zwischen Mustersprachen, Muster und
Musterinhalten, um deren Semantik auszudriicken. Zusitzlich konnen Gemeinsamkeiten von Elementen
aufgezihlt werden, die durch ihre Beziehung dargestellt werden sollen. Die Gemeinsamkeiten konnen
beschreiben aus welchen Griinden die Beziehung zwischen den Strukturelementen von dem Autor
gewdhlt wurde und welchen Schwerpunkt sie darstellt.

Arten von Musterorganisationen (Pattern Organisation) Die Plattform fiir Mustersprachen und
Musterkataloge bietet die Moglichkeit die Muster der Musterkataloge in Musterorganisationen

52 KAPITEL 4. PLATTFORM FUR MUSTERSPRACHEN UND MUSTERKATALOGE

einzuordnen. Durch diese Einteilung wird die Vernetzung der Muster verstirkt. Die
Musterorganisationen stellen Hierarchien dar, die durch Kategorien aufgebaut sind. Die urspriingliche
Idee des Metamodells fiir Mustersprachen ist es die Musterorganisationen anhand der Inhalte von
Mustern aufzubauen. Der Einfachheit halber werden die Musterorganiation nicht automatisch von
der Plattform fiir Mustersprachen und Musterkataloge erstellt und deren Muster eingepflegt. Autoren
konnen bei der Erstellung von Mustersprachen vorhandene Musterorganisationen auswéhlen oder neue
erstellen. Den Autoren wird die Erstellung der Struktur von Musterorganisationen und das Einpflegen
der Muster iiberlassen. Durch das hinzufiigen von Informationen in die Metainformationen der Muster,
konnen die Muster den Musterorganisationen zugeordnet werden. Im Folgenden werden vordefinierte
Arten von Musterorganisationen vorgestellt. Diese Musterorganisationen basieren alle auf dem
Metamodell fiir Musterspachen. Sie wurden in dem Abschnitt 3.6.3.1 Typen von Musterorganisationen
im Mustersprachprofil vorgestellt und werden fiir den Einsatz in der Plattform fiir Mustersprachen und
Musterkataloge verfeinert. Zusitzlich ist es moglich weitere Musterorganisation in der Plattform fiir
Mustersprachen und Musterkatalogen zu erstellen und deren Struktur zu definierten.

Organisation von Musterebenen (Pattern Organisation by Level) Die Organisation
von Musterebenen ist eine mustersprachiibergreifende Menge von vernetzten Mustern. Die
Vernetzungen der Muster werden durch deren Referenzen dargestellt. Die von den Autoren bei
der Erstellung der Muster angelegt werden.

Organisation von Musterbereichen (Pattern Organisation by Domain) Die Organisation
von Musterbereichen stellt eine mustersprachiibergreifende Hierarchie von Bereichen jeglicher
Art dar. Es konnen sich mehrere Muster aus unterschiedlichen Mustersprachen in den selben
Bereichen befinden. Zudem konnen auch Muster mehreren Bereichen zugeordnet werden.
Damit die Organisation von Musterbereichen aufgebaut werden kann, miissen die Autoren eine
Hierarchie von Musterbereichen festlegen. Die Metainformationen (Meta Information) der Muster
werden erweitert, damit man ihnen die Musterbereiche (Domain) zuordnen kann. Aus den
angehefteten Musterbereichsinformationen, kann die Organisation von Musterebenen aufgebaut
werden.

Organisation von Musterpartitionen (Pattern Organisation by Partition) Die Organisation
von Musterpartitionen ist eine mustersprachabhéngige hierarchische Unterteilung in Partitionen.
Die Partitionen stellen Themenbereiche dar, die sich gegenseitig ausschlieBen. Somit kann zum
Beispiel eine Mustersprache beziiglich ihres Losungsansatzes unterteilt werden. Genau so wie bei
der Organisation von Musterbereichen werden die Musterpartitionen (Partition) vordefiniert und
in den Metainformationen (Meta Information) der Muster angegeben, zu welcher Partition das
Muster gehort.

Organisation von Musterabsichten (Pattern Organisation by Intent) Die Organisation von
Musterabsichten ist eine mustersprachiibergreifende hierarchische Einteilung der Muster in
deren Absichten. Genauso wie bei der Organisation von Musterbereichen und der Organisation
von Musterpartitionen kann die Organisation von Musterabsichten durch vordefinieren der
Musterabsichten (Intent) und der Angabe der Musterabsichten in den Metainformationen (Meta
Information) der Muster, aufgebaut werden.

4.3. PLATTFORMSPEZIFIKATION FUR MUSTERSPRACHEN UND MUSTERKATALOGE 53

Arten von Zusatzfunktionalititen von Mustersprachen (Pattern Language Feature) Die
Arten von Zusatzfunktionalititen von Mustersprachen, die von der Plattform von Mustersprachen
und Musterkatalogen unterstiitzt werden, basieren alle auf dem Metamodell fiir Mustersprachen.
Die Zusatzfunktionalititen von Mustersprachen wurden in 3.6.3.2 Zusatzfunktionalititen fiir
Mustersprachen im Mustersprachprofil beschrieben und werden im Folgenden fiir die Verwendung
innerhalb der Plattform fiir Mustersprachen und Musterkataloge angepasst. Jede Mustersprache enthilt
die Zusatzfunktionalitdten. Sie konnen bei der Erstellung der Musterkataloge optional angelegt werden.

Zusammenfassung der Musterinhalte (Pattern Language Summary) Die Zusammenfassung
der Musterinhalte stellt einen Text dar, der den Kern des Musterspracheninhaltes beschreibt. Fiir
jede Mustersprache wird eine eigene Zusammenfassung der Musterinhalte erstellt.

Problem-/Losungstabelle der Muster (Problem/Solution Summary) Die
Problem-/Losungstabelle der Muster ist eine Tabelle, die Kurzfassungen der Musterprobleme
und -l6sungen iibersichtlich darstellt. Die Plattform fiir Mustersprachen und Musterkataloge
ermoglicht es, die Tabellen aller Mustersprachen zusammenzufassen, damit die Autoren und
Leser in der Zusammenfassung die Problem-/Losungspaare suchen konnen.

Musteriibergreifende Beispiele (Running Examples) In dieser Zusatzfunktionalitit
musteriibergreifender Beispiele werden fortlaufende oder dhnliche Beispiele in Beschreibungen
zusammengestellt, um den Mustersprachen weitere Zusammenhinge und Vernetzungen beziiglich
der demonstrativen Umsetzung ihrer Muster zu verleihen.

Worterverzeichnis der Musterinhalte (Glossary) In dem Worterverzeichnis der Musterinhalte
werden Fachbegriffe der Musterinhalte erklidrt und auf die Muster verwiesen, in denen diese
Fachbegriffe vorkommen.

Inhaltsverzeichnis fiir Mustersprachen (Index) Eine Mustersprache kann eine von Autoren
angelegte Gliederung enthalten. Bei der Erstellung der Muster werden die Muster in diese
Gliederung eingefiigt.

4.3.2 Erstellung und Verwaltung von Musterkatalogen

Mustersprachen, die in der Plattform fiir Mustersprachen und Musterkataloge erstellten worden sind,
stellen Typen von Musterkatalogen dar. Die Plattform ermdglicht es, dass Musterkataloge anhand
bereits definierten Mustersprachen angelegt und verwaltet werden konnen. Die Musterkataloge sind
Instanzen der Mustersprachen, die in der Plattform hinterlegt sind. Sie werden erzeugt, in dem
sie von einer Mustersprache abgeleitet werden. Der neu erzeugte Musterkatalog der Mustersprache
erhdlt deren Eigenschaften und einen Namen. Durch das Anlegen von Muster wird der Inhalt
der Musterkataloge erstellt. Die Muster des Musterkataloges miissen nach der Musterstruktur der
Mustersprache aufgebaut sein, aus der der Musterkatalog abgeleitet wurde. Zusitzlich dazu kénnen
die Zusatzfunktionalititen und die Musterorgnisationen der Mustersprache angelegt und verwendet
werden. Die Verwaltung der Musterkataloge beinhaltet unter anderem das Verwenden und das stetige
Pflegen und Erweitern der Zusatzfunktionalitdten und Musterorganisationen. Muster konnen auch nach
der Erstellung eines Musterkataloges eingepflegt werden. Ebenso konnen bestehende Musterinhalte
gedndert werden, in dem eine neue Version des Musters angelegt wird. Fiir diesen Zweck wird ein

54 KAPITEL 4. PLATTFORM FUR MUSTERSPRACHEN UND MUSTERKATALOGE

Mechanismus fiir die Verwaltung der verschiedenen Musterversionen vorgestellt. Die Verwendung der
Musterkataloge beinhaltet zusétzlich das Stobern in den Musterkatalogen. Dies wird durch das Verfolgen
der hinterlegten Referenzen auf Musterkataloge, Muster und deren Inhalten moglich. Aulerdem wird ein
Suchmechanismus vorgestellt, der es ermdglicht nach bestimmten Inhalten der Musterkataloge, Muster
und deren Inhalten zu suchen. Damit den Autoren und Lesern der Muster eine Diskussionsplattform
geboten werden kann, ermoglicht die Plattform fiir Mustersprachen und Musterkatalogen das Fiihren
von Diskussionen iiber die Inhalte der Muster. Im Folgenden wird auf die Erstellung und Verwaltung von
Mustern eingegangen. AnschlieBend werden die Moglichkeiten der Verwendung der Muster und deren
Hilfsmittel, die die Plattform fiir Mustersprachen und Musterkataloge zur Verfiigung stellt, spezifiziert.

Erstellung der Muster Um ein Muster fiir eine Mustersprache zu erstellen, wihlt der Autor einen
Namen fiir das Muster. Dieses identifiziert das Muster in dem Musterkatalog eindeutig. Optional kann
ein Muster ein Symbol enthalten, das es graphisch reprisentiert. Es kdnnen noch weitere Angaben der
Metainformation liber das Muster gemacht werden. Dies sind beispielsweise Autoren der Musterinhalte,
Suchworter oder Informationen fiir die Musterorganisationen, in denen der Musterinhalt einzuordnen
ist. Das Hauptaugenmerk bei der Erstellung von Mustern liegt auf der Erstellung und Formulierung
des Musterinhaltes. Dazu miissen die Inhaltselemente der zu Grunde liegenden Musterstruktur
instanziiert werden. Der Autor entscheidet, welche optionalen Inhaltselemente fiir die Beschreibung des
Musterinhaltes benotigt werden. In den Inhaltselementen sollten Referenzen auf andere Mustersprachen,
Muster oder Musterinhaltselemente eingefiigt werden, falls diese fiir die Erkldarung des Sachverhaltes
beitragen.

Verinderung und Erweiterung der Musterinhalte Die Plattform fiir Mustersprachen und
Musterkataloge ermoglicht ihren Autoren die Veridnderung von Mustern. Die Musterinhalte eines
Musters konnen verdndert oder erweitert werden. Durch eine Verdnderung oder Erweiterung der
Musterinhalte wird eine neue Version des Musters erstellt. Die Autoren konnen dadurch auf alte
Versionen der Muster zuriickgreifen und die Entstehungs- und Verbesserungsprozesse der Musterinhalte
einsehen. Auflerdem wird es ermdglicht Muster zu I6schen. Damit die Plattform fiir Mustersprachen
und Musterkataloge dies ermoglichen kann, ist eine Erweiterung von den Metainformation von
Mustersprachen, Muster und deren Inhaltselementen, die dem Metamodells fiir Mustersprachen zu
Grunde liegen, erforderlich. Die Anpassung und die Erstellung der Metainformationsmodelle wird
im Folgenden detailliert vorgestellt. Bei der Erstellung der Modelle fiir die Metainformationen der
Mustersprachen, Muster und deren Inhaltselementen wird bereist auf Bestandteile, die fiir die Suche
benotigte werden, vorweg gegriffen.

Erweiterung der Metainformationen von Mustersprachen, Mustern und deren
Inhaltselementen Damit die Anforderungen der Spezifikation der Plattform fiir Mustersprachen
und Musterkataloge erfiillt wird, werden zundchst Modelle der Metainformationsbeschreibung
fiir Mustersprachen, Muster und Musterinhalte erstellt. Durch die Definition der Modelle fiir die
Metainformationsbeschreibungen wird es moglich, dass Musterorganisationen aufgebaut, die Suche
von Mustern erweitert und die verschiedenen Musterkatalogen, Mustern und Musterversionen verwaltet
werden konnen.

Die Abbildung 4.1 zeigt die Metainformationsbeschreibung fiir Mustersprachen (Pattern Language
Meta Information Descriptor). Sie ist eine Instanz der Metaklasse fiir die Metainformationsbeschreibung

4.3. PLATTFORMSPEZIFIKATION FUR MUSTERSPRACHEN UND MUSTERKATALOGE 55

des Metamodells fiir Mustersprachen und wird einheitlich in den Mustersprachen der Plattform
fiir Mustersprachen und Musterkataloge verwendet. Die Metainformationsbeschreibung enthilt ein
Erstellungs- (Created Date) und Anderungsdatum (Changed Date), eine Liste von Autoren (Author)
und eine Liste von Schliisselwortern (Keyword). Die Daten der Mustersprachen sollen den Lesern
und Autoren chronologische Informationen beziiglich der Erstellung und Anderung der Musterkataloge
liefern. In der Metainformationsbeschreibung der Mustersprachen werden alle Autoren festgehalten,
die an der Erstellung der Musterkataloge beteiligt sind. Die Liste der Schliisselworter ist eine
Zusammenstellung von Stichpunkten, die den Inhalt der Mustersprache stichpunktartig wiedergeben
soll. Die Werte der Metainformationen von Mustersprachen werden aus den Metainformationen ihrer
Muster abgeleitet.

<<Meta Information Descriptor>>
Pattern Language Meta Information Descriptor

'

Created Date
%l Changed Datel

Abbildung 4.1: Metainformationsbeschreibung fiir Mustersprachen

Die Metainformationsbeschreibung fiir Muster (Pattern Meta Information Descriptor) ist in der
Abbildung 4.2 dargestellt. Sie ist genauso wie die Metainformationsbeschreibung fiir Mustersprachen
eine Instanz der Metaklasse fiir Metainformationsbeschreibung des Metamodells fiir Mustersprachen
und wird einheitlich in den Muster der Plattform fiir Mustersprachen und Musterkataloge verwendet.
Die Metainformationsbeschreibung besteht aus einer Liste von Autoren (Author), einer Liste
von Schliisselwortern (Keyword), einer Liste von Musterbereichen (Domain), einer Liste von
Musterpartitionen (Partition), einer Liste von Musterabsichten (Intent) und einer Versionsbeschreibung.
Im Gegensatz zu der Metainformationsbeschreibung fiir Mustersprachen wird hier auf das Erstellungs-
und Anderungsdatum verzichtet, da diese in der Versionsbeschreibung enthalten sind. Die Liste
der Autoren enthilt die Autoren des Musters und dessen Inhalte. Die Liste der Schliisselworter
stellt eine stichpunktartige Inhaltsangabe des Musters dar. Die Liste der Musterbereiche beschreibt
stichpunktartig die Zuordnung des Musterinhaltes in Themenbereiche. Die Liste von Musterabsichten
stellt stichpunktartig die Absichten des Musterinhaltes dar. Die Versionsbeschreibung ist fiir die
Verwaltung der unterschiedlichen Versionen der Muster verantwortlich. Im weiteren Verlauf wird
genauer auf das Modell der Versionsbeschreibung eingegangen.

Fiir die Inhaltselemente der Muster wird das selbe Metainformationsbeschreibungsmodell
verwendet, wie fiir die Muster. Die Mustermetainformationen von Mustern stellen die Menge der
Mustermetainformationen ihrer Inhaltselemente dar.

In Abbildung 4.3 ist das Modell der Versionsbeschreibung (Version Descriptor) fiir Muster und deren
Inhaltselemente zu sehen. Die Versionsbeschreibungen der Muster, die aus dem selben Anfangsmuster
entstanden sind, werden in ein Gruppe (Version Collection) unterteilt. In den Gruppen werden alle
verschieden Versionen eines Musters vermerkt. Eine Versionsbeschreibung enthélt den Autor (Author),

56 KAPITEL 4. PLATTFORM FUR MUSTERSPRACHEN UND MUSTERKATALOGE

<<Meta Information Descriptor==
Pattern Meta Information Descriptor

[

L "SI Author

9..7 Keyword

8"l partition

0..*

[=]
*

Intent

)

Version Descriptor

Abbildung 4.2: Modell der Metainformationsbeschreibung fiir Muster

der die neue Version des Musters angelegt hat. Es wird das Erstelldatum (Created Date) der ersten
Musterversion und das Datum der aktuellen Version des Musters (Changed Date) vermerkt. Jede Version
enthilt eine Versionsnummer (Version Number), die bei der Erstellung einer neuen Musterversion
hochgezihlt wird. Wird eine dltere Musterversion verdndert, dann wird die daraus erzeugte neue
Musterversion die aktuellste und erhélt die hochste Versionsnummer. Muster konnen nicht geldscht
werden, weil auf diese verwiesen wird. Aus diesem Grund kann ein Muster als gelscht markiert werden.
Es ist ein Element vorgesehen, das diese Information enthilt (Removal). Damit die Leser und Autoren
wissen, wieso das Muster oder ein Musterinhalt entfernt wurde, kann dafiir eine Begriindung (Reason)
hinterlegt werden. Ein Muster kann aus mehreren Griinden entfernt werden. Das Problem eines Musters
kann durch die Erweiterung des Musterkataloges gelost werden. Ebenso kann ein neues Muster eine
bessere alternative bieten, die ein altes Muster in jeder Hinsicht iiberfliissig macht. Die Entwicklung
eines neuen Paradigmas, einer neuen Programmiersprache, eines neuen Programmierstiles oder einer
Verlagerung der Art der Systeme, die entwickelt werden, kann dazu fiihren, dass Muster entfernt werden.
[BMR98][S. 376-377]

Suchen nach Mustersprachen, Mustern und Musterinhalten Die Plattform fiir Mustersprachen
und Musterkatalogen sieht einen Suchautomatismus vor, damit die Leser und Autoren nach Inhalten der
Musterkatalogen, Muster oder Musterinhalten suchen kénnen. Das Ergebnis der Suche kann spezielle
Musterlosungen oder bestimmte Vernetzungen von Mustern darstellen.

Die Plattform bietet fiir die Suche mehrere Filter an. Ein Filter stellt eine Menge von
Strukturelementen aus einer Eingabemenge von Strukturelementen zusammen, die dem Kriterium des
Filters geniigen. Die Eingabemengen und die Kriterien der Filter konnen den Filtern {ibergeben werden.
Damit moglichst detaillierte Selektionen erstellt werden konnen, konnen die Filter in einer Suchanfrage
kombiniert angewendet werden.

Jede Musterorganisation und jede Zusatzfunktionalitit einer Mustersprache muss einen Filter fiir
die Suche bereitstellen, damit deren Strukturen nach Mustern durchsucht werden konnen. Zusitzlich

4.3. PLATTFORMSPEZIFIKATION FUR MUSTERSPRACHEN UND MUSTERKATALOGE 57

Version Collection |

1..* —|Created Datel
Version Descriptor{.——' Changed Datel

—|Ver5ion Number‘

Removal

Reason

Abbildung 4.3: Modell der Versionsbeschreibung

konnen die Inhaltsarten Filter fiir die Suche von Inhaltsbestandteile bereitstellen. Dariiberhinaus bietet
die Plattform fiir Mustersprachen und Musterkataloge Filter an, die nach folgenden Kriterien die
Musterkataloge, Muster und deren Inhaltselemente selektieren konnen: Erstellungs-, Anderungsdaten,
Autoren oder Schliisselworter.

Im Folgenden wird die Form der Suchanfragen definiert, die Anordnung der Filter beziiglich der
Suchanfragen erklirt, die Abarbeitung der Filter vorgestellt und das Verfahren an einem Beispiel erklart.

Um ein Suchergebnis der Suchfunktion zu erhalten, muss eine Suchanfrage erstellt und deren
Filterprozess aufgebaut werden, bevor die Suchanfrage durchlaufen werden kann. Da sich die Inhalte
der Musterkataloge stindig dndern und die Suchanfragen unterschiedlich und neu formuliert werden
konnen, wird die Struktur der Suchanfrage und die Menge der benétigten Daten fiir jede Suche erneut
aufgebaut. Zunichst wird das Modell der Suchanfrage vorgestellt, damit der Filterabarbeitungsprozess
erstellt werden kann.

Grammatik der Suchanfragensprache:

G=(V,%,PQP)
V={QP}
¥ = { filter, SE\ , N, U, (,) }
P={

1. QP — SE\QP

2. Qp - QPUQP
3. Qp - QPN QP
4. QP - (QP)
5. QP — filter

58 KAPITEL 4. PLATTFORM FUR MUSTERSPRACHEN UND MUSTERKATALOGE

Alle giiltigen Suchanfragen fiir den Suchdienst der Anwendungslogik sind Elemente der
kontextfreien Sprache L(G). Die Suchanfragensprache L(G) wird durch die angegebenen Grammatik
G gebildet. In der Definition der Grammatik werden Filter und Mengenoperatoren verwendet, um
Suchanfragen zu formulieren. Das Terminalsymbol SE\ stellt das Komplement einer Menge von allen
Strukturelementen dar. Die anderen Terminalsymbole werden fiir beliebige Filter, Klammern und die
Mengenoperatoren Vereinigung und Schnittbildung eingesetzt. Ein Filter enthilt eine Funktion, die
durch Hinzunahme eines Filterkriteriums eine Menge von Strukturelemente filtert und eine gefilterte
Menge von Strukturelementen zuriick liefert. Die Filter repridsentieren in der Suchanfrage Mengen
von Strukturelementen. Es ist zum Beispiel die Suchanfrage filtery N (filtery U filters) in der
Suchanfragensprache L(G) enthalten. Der filter; konnte beispielsweise alle Muster auswihlen, die
ein bestimmter Autor erstellt hat. Damit die Filter eine Menge liefern, werden diese auf die Menge
SE, aller zu durchsuchenden Strukturelemente, angewendet. Die Beispielsuchanfrage kann somit in
die folgende Gleichung umgeformt werden: SE; N (SEq U SE3). Die Menge SE; wird durch die
Selektion der jeweiligen Filter filter; gebildet. Durch die Berechnung der erstellten Gleichung erhilt
man das Suchergebnis. Im folgenden Verlauf wird der Aufbau der Filter, der Suchanfragenstruktur und
deren Traversierung erklirt. Anhand dessen wird die Einsparung von Rechenoperationen vorgestellt, die
durch die Verwendung von vorselektierten Eingabemengen der Filter gewonnen wird. [Sch01, S. 11-26,
51-79], [Goo97, S. 77-78, 94-140]

In Abbildung 4.4 ist das Modell eines Filters in Form einer UML-Klasse abgebildet. Das
Modell ist durch eine abstrakte Klasse (Filter) dargestellt, die eine Funktion (filterStructureElements)
enthilt, um eine Mengen von Strukturelementen (Set<StructureElements>) anhand vordefinierter
Filterkriterien (Criterion) zu filtern. Eine Suchanfrage ist ein Element der Suchanfragensprache,
es wird durch eine Suchanfragestruktur dargestellt. Die Suchanfragestruktur wird der Suche als
Eingabe iiber geben. Anhand der Suchanfragestruktur kann die Suche das Suchergebnis berechnen.
Die Suchanfragestruktur stellt eine Objektstruktur dar, das die Suchanfrage durch ein Datenmodell
reprasentiert. Die Suchanfragestruktur verkniipft Filter durch Mengenoperatoren. Die Struktur wird
durch einen Baum dargestellt, dessen Konten die Mengenoperatoren Vereinigung und Schnittbildung
enthalten. Zusitzlich wird noch die Komplementbildung von der Menge aller Strukturelementen
verwendet. Die Komplementbildung stellt eine uniare Mengenoperation dar.

In der Abbildung 4.4 sind die Klassen der Suchanfragestruktur zu sehen. Die
Suchanfragestruktur ist ein binidrer Baum, bis auf die Ausnahme des Komplementbildungsknotens
(SetOperatorComplementation). Der Baum besteht aus Knoten (TreeNode), die ein oder zwei
weitere Konten enthalten konnen. Die Filter (Filter) werden als Blitter in dem Baum verwendet.
Sie enthalten keine weiteren Konten. Die Knoten werden durch die drei Mengenoperatoren
Vereinigung (SetOperatorUnion), Schnittbildung (SetOperatorIntersection) und Komplementbildung
(SetOperatorComplementation) darstellt. Diese Suchanfragestruktur reprisentiert auferdem den
Syntaxbaum der Suchanfrage.

Die logische Abarbeitung der Baumstruktur der Suchanfrage beginnt an den Blittern bzw. Filtern.
Die Filter selektieren die Ausgangsmenge von Sturkturelementen und reichen sie weiter an deren
Vorgingerknoten. Die Knoten empfangen die gefilterten Mengen und fiihren ihren Mengenoperatoren
auf diese aus. Sie geben die daraus resultierende Menge ebenfalls weiter an deren Vorgéngerknoten. Die
Wurzel der Suchanfragestruktur enthilt schlieBlich das Ergebnis der Suche.

Im Folgenden wird der Ablauf der Traversierung der Suchanfragestruktur anhand eines Algorithmus
erldutert. Der Algorithmus ist in Pseudocode festgehalten und in Abbildung 4.1 zu sehen.

4.3. PLATTFORMSPEZIFIKATION FUR MUSTERSPRACHEN UND MUSTERKATALOGE =~ 59

Filter

+selectedCriterion: Criterion

+filterStructureElements(elements:Set<StructureElement>,
criterion:Criterion): Set=StructureElement>
+getCriterion(): Set<Criterion> const

v

TreeNode

+subtreel: TreeNode
+subtree2: TreeNode
+50urce: Set=StructureElementsy
+Result: Set=StructureElements

i

SetOperator

+executeSetOperation(setl:Set<StructureElement>,
set2:S5et<StructureElement=>): Set<StructureElement>

SetOperatorUnion

+executeSetOperation(setl:Set<StructureElement>,
set2:S5et<StructureElement>): Set<StructureElement>

SetOperatorintersection

+executeSetOperation(setl:Set<StructureElement=>,
set2:Set<StructureElement>): Set<StructureElement>

7

SetOperatorComplementation

+executeSetOperation(setl:Set<StructureElement>): Set<StructureElement=>

Abbildung 4.4: Modell der Suchanfragestruktur des Suchdienstes der Anwendungslogik

Es sind zwei Funktionen fiir die Traversierung der Suchanfragestruktur enthalten, die Funktion
processSearchRequest und die Funktion processNode. Die Funktion processSearchRequest startet
initial die Abarbeitung der Suchanfrage und legt die Ausgangsmenge der zu durchsuchenden
Strukturelementen fest. Die Funktion processNode definiert die Traversierung der Suchanfragestruktur
rekursiv. Sie berechnet jeweils das Ergebnis des Knoten, der als Parameter iibergeben wurde. Bevor
der Parameterknoten berechnet werden kann, werden durch rekursive auf Rufe der selben Funktion
mit den Kinderknoten die Unterbdume berechnet. In der Traversierung der Baumstruktur werden
zunéchst die bendtigten Ausgangsmengen an die Mengenoperatoren/Knoten und Filtern/Blatter verteilt.
Um Rechenschritte einzusparen, werden die Schnittoperationen nicht durchgefiihrt. Stattdessen werden
Teilergebnisse als Ausgangsmengen verwendet. Dies ist moglich, weil die Hintereinanderausfiihrung
der Filter die Mengenoperation Schnittbildung ersetzen kann. Es muss trotzdem die Reihenfolge der
Operatoren eingehalten werden. Die Komplementbildungsoperatoren und die Vereinigungsoperatoren
miissen vor den Schnittbildungsoperatoren ausgefiihrt werden, damit statt der Durchfiithrung
von Schnittbildungsoperatoren die Teilergebnisse der Komplementbildungsoperatoren und der
Vereinigungsoperatoren verwendet werden kénnen. Die zu filternden Mengen werden verkleinert,
durch die Ersetzung der Ausgangsmengen durch Zwischenergebnisse. Dadurch werden zusitzliche
Rechenoperationen gespart.

© ® N L R W N —

60 KAPITEL 4. PLATTFORM FUR MUSTERSPRACHEN UND MUSTERKATALOGE

/!l computes the result of the search request
/1l
procedure processSearchRequest
(TreeNode rootNode,
Set<StructureElement> wholeSet)
return Set<StructureElement>
begin

processNode (rootNode);
return rootNode.result;
end processSearchRequest

/l Traverses the tree and computes the intermediate result of each node.
// The traversation is a deepth frist search. The intermediate results
// will be computed by its traversation order.
/1
procedure processNode

(TreeNode node)

return Set<StructureElement>

begin
if node isTypeOf SetOperatorComplementation then

SetOperatorComplementation compOp = (SetOperatorComplementation) node;

compOp. subtreel . source = compOp.source;
compOp. subtreel .result = processNode(compOp.subtreel);

compOp.result = compOp.executeOperation(compOp.subtreel .result);
return compOp.result;

else if node isTypeOf SetOperatorIntersection then
if node.subtreel isTypeOf SetOperatorUnion then

node . subtreel . source = node.source;
node . subtreel .result = processNode(node.subtreel);

node.subtreel . result;
processNode (node.subtree2);

node . subtree2 . source
node . subtree2 . result

// the result of subtree2 is the result of the node
node.result = node.subtree2.result;

else //if node.subtreel isTypeOf SetOperatorlntersection then

node . subtree2 .source = node.source;
node . subtree2 . result processNode (node.subtree2);

node . subtreel .source = node.subtree2.result;
node . subtreel . result = processNode(node.subtreel);

//the result of subtreel is the result of the node

56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85

87
88

4.3. PLATTFORMSPEZIFIKATION FUR MUSTERSPRACHEN UND MUSTERKATALOGE 61

node.result = node.subtreel .result;
end if
return node.result;

else if node.subtreel instanceof SetOperatorUnion then

SetOperatorUnion unionOp = (SetOperatorUnion) node;
unionOp . subtreel .source = unionOp.source;

unionOp . subtreel . result = processNode(unionOp.subtreel);
unionOp . subtree2 .source = unionOp.source;

unionOp . subtree2 . result = processNode(unionOp.subtree2);
unionOp.result = unionOp.executeOperation (

unionOp . subtreel ,
unionOp . subtree2);

return compOp.result;
else //if node instanceof Filter then
Filter filter = (Filter) node;
node.result = filter.filterStructureElements (
filter .source,
filter .selectedCriterion);

return node.result;

end if

end processNode

Listing 4.1: Algorithmus fiir die Traversierung der Suchanfragenstruktur

Beispiel fiir die Traversierung einer Suchanfragestruktur Der Algorithmus fiir die
Traversierung der Suachanfragenstruktur wird anhand eines Beispiels erldutert. Zunichst wird eine
Suchanfrage formuliert und deren Strukturbaum aufgestellt. AnschlieBend wird die Traversierung
anhand des Pseudocodes erklirt.

Dabei sollen Muster gefunden werden, in denen nicht das Wort Pattern und nicht das Wort
Language vorkommt. Die Filter filter, und filter; finden jeweils Muster mit den beiden Worten.
Zusitzlich sollen diese Muster gefunden werden, die von den Autoren Meyer und Miiller oder von
Fischer erstellt worden sind. Die Filter filter., filtery und filter, finden jeweils die Muster mit
den entsprechenden Autoren. Die Suchanfrage wird durch folgenden logische Formel dargestellt:
(SE\ filter, N SE\ filtery) N ((filter. N filtery) U filtere).

In Abbildung 4.5 ist die Suchanfragestruktur der Beispielsuchanfrage zu sehen. Die
Suchanfragestruktur in der Abbildung stellt einen Syntaxbaum der logischen Formel dar. Die Knoten
innerhalb des Baumes stellen die logischen Operatoren der Formel dar. Die Blitter werden durch
die einzelnen Filter représentiert. Die Bezeichnung “Comp.” in den Knoten soll die Komposition der

62 KAPITEL 4. PLATTFORM FUR MUSTERSPRACHEN UND MUSTERKATALOGE

Abbildung 4.5: Beispiel einer Suchanfragestruktur

darunter hingenden Blitter darstellen. In den iibrigen Knoten sind die Mengenoperatoren Vereinigung
und Schnittbildung mit den gleichen Symbolen wie in der Formel abgebildet.

Downwards Transition \
Upwards Transition »

Abbildung 4.6: Beispielsuchanfragestruktur mit Traversierungsschritten

Die Abbildung 4.6 stellt den Syntaxbaum der Beispielabfrage erneut dar. Er enthilt Pfeile, die
die einzelnen Traversierungsschritte darstellen. Die Reihenfolge der Traversierungschritte entsprechen
denen aus dem Algorithmus des Pseudocodes. Die roten Pfeile stellen die Abwirtstraversierung in
der Baumstruktur dar. Sie enthalten eine Nummer, die Aufschluss iiber die Reihenfolge der einzelnen
Traversierungsschritte gibt. Die blauen Pfeile stellen den Riickweg des Traversierungsschrittes dar.
In einem Abwirtsschritt wird eine Menge von Strukturelementen von oben nach unten gereicht,
die als Ausgangsmenge fiir die Ergebnisberechnung der einzelnen Teilbiume verwendet wird. In
den Riickwirtsschritten wird das Ergebnis der gefilterten und verkniipften Mengen nach oben

4.4. STRUKTUR DER PLATTFORM FUR MUSTERSPRACHEN UND MUSTERKATALOGE 63

propagiert. Diese Teilergebnisse sind wiederum Ausgangsmengen fiir die weitere Berechnung anderer
Geschwisterknoten oder des dariiber liegenden Vaterknoten. Der Algorithmus beginnt mit dem Aufruf
der processSearchRequest Funktion an dem hierarchisch als hochsten angeordneten Operator. In
der Abbildung ist dies der oberste Vereinigungsoperator, der den Index 1 trdgt. Dieser Knoten
stellt die Wurzel des Syntaxbaumes dar. Er enthilt zu Beginn die Menge der zu durchsuchenden
Strukturelemente. Am Schluss der Berechnung enthdlt der Knoten schliellich das Ergebnis der
Suchanfrage. Bei der Abarbeitung der Unterbdume wird immer der Knoten als erstes berechnet,
der keinen Vereinigungsoperator als Wurzel enthilt, damit den Vereinigungsoperatoren vorselektierte
Mengen iibergeben werden konnen. Somit werden viele Vergleiche in den Berechnungen der Filter
gespart und die Berechnungen der Vereinigungsoperatoren entfallen, durch das Weiterreichen bereits
vorselektierter Mengen.

Diskussionen iiber Musterinhalte Die Plattform fiir Mustersprachen und Musterkataloge bieten
den Autoren und Lesern von Musterkatalogen eine Plattform beziiglich der fachlichen Losungen, die
die Muster der Musterkataloge enthalten. Zusétzlich sollen Diskussionen in diesen Fachbereichen
ermoglicht werden. Die Plattform fiir Mustersprachen und Musterkataloge unterstiitzt das Anfiigen
von Kommentaren und Bemerkungen an Muster, damit deren Inhalte diskutiert werden konnen. Die
Inhaltselemente der Muster werden um ein Diskussionselement und ein Beitragselement erweitert.
Die Beitragselemente stellen einen Bestandteil der Diskussion dar und sind dem Diskussionselement
untergeordnet. Die beiden Elemente stellen eine zusatzliche Erweiterung des Metamodellprofils fiir
Mustersprachen dar. Sie sind in der Abbildung im Anhang C zu sehen. Durch diese Erweiterung
konnen Autoren und Leser fachliche Beitrdge zu den Muster liefern und beispielsweise Erfahrungen,
Erweiterungsvorschldge oder Fehler melden, damit das betroffene Muster verbessert und iiberarbeitet
werden kann.

4.4 Struktur der Plattform fiir Mustersprachen und Musterkataloge

In diesem Abschnitt wird die gewiinschte Struktur und der Entwurf der Plattform fiir Mustersprachen
und Musterkataloge vorgestellt. Damit kann die zuvor beschrieben Spezifizierungen umgesetzt werden.
[LL10, S. 399-400] Der Schwerpunkt dieses Abschnittes liegt auf der Erkldrung der Struktur und der
Architektur der Plattform und speziell auf der Funktionsweise der Suche nach Musterkatalogen, Mustern
und deren Inhaltselemente. Im Folgenden wird die Architektur der Plattform fiir Mustersprachen und
Musterkataloge beschrieben.

Die Plattform fiir Mustersprachen und Musterkataloge ist nach dem Prinzip der
Drei-Schichten-Architektur organisiert. Sie ist in eine Prisentationsschicht, in eine Anwendungsschicht
und in eine Datenhaltungsschicht unterteilt, um die Anforderungen der Plattform fiir Mustersprachen
und Musterkataloge in Aufgabenbereiche zu unterteilen. Die Aufgabenbereiche stellen in sich
abgeschlossen Bereiche dar. Die Unterteilung strukturiert die Software und reduziert deren Grad an
Komplexitit. Sie ist eine Grundlage fiir dynamische, skalierbare und interaktive Softwarelosungen.
Solch eine Softwarelosung kann einfach abgeidndert werden, um neuen Bediirfnissen gerecht zu
werden. Ein weiterer Grund der Unterteilung der Software in unterschiedliche Schichten, ist der Ort,
an dem die Software ausgefiihrt wird. Damit dies mdglich ist, miissen die Schichten Schnittstellen
anbieten und iiber Protokolle kommunizieren. Die Prisentationsschicht wird auf dem Computer des

64 KAPITEL 4. PLATTFORM FUR MUSTERSPRACHEN UND MUSTERKATALOGE

Benutzers ausgefiihrt und realisiert die Benutzeroberfldche, damit der Benutzer die Software bedienen
kann. Die anderen beiden Schichten werden serverseitig ausgefiihrt. In der Anwendungsschicht sind
fachliche Komponenten und die Anwendungslogik der Software enthalten. Die Anwendungsschicht
ist unabhiingig von der Présentationsschicht und stellt diese Dienste zur Verfiigung. Die fachlichen
Komponenten und die Anwendungslogik konnen durch die Verwendung der Dienste beansprucht
werden. Die Anwendungsschicht greift wiederum auf Dienste der Datenhaltungsschicht zu, damit
diese Daten manipuliert oder gelesen werden konnen. Diese Datenhaltungsschicht sorgt dafiir,
dass die manipulierten Daten dauerhaft gespeichert werden. Aufgrund der Aufteilung konnen die
Softwarekomponenten, die durch die Anwendungsschicht und die Datenhaltungsschicht verkorpert
werden, repliziert werden. Dies erhoht deren Ausfallssicherheit und Verfiigbarkeit. AuBerdem kann eine
groBBere Bandbreite von Benutzern bedient werden, die die Softwarekomponenten der beiden Schichten
als Dienste in Anspruch nehmen. [Thol1], [BCHP03, S. 11-13], [Fow02, S. 17-24], [LL10, S. 431-432]

Zwischen den logischen und physikalischen Schichten der Plattform fiir Mustersprachen und
Musterkataloge wird kein Unterschied gemacht. Durch die Planung der Plattform wurde dafiir gesorgt,
dass die Aufgabenbereiche der logischen und physikalischen Schichten deckungsgleich sind. Im
Allgemeinen wird in dieser Arbeit von den logischen Schichten der Plattform gesprochen. [Fre(09]

In Abbildung 4.7 ist die Unterteilung der Plattform fiir Mustersprachen und Musterkataloge
zu sehen. Die Plattform ist in das vorgestellte Drei-Schichten-System unterteilt. Eine webbasierte
Benutzeroberfliche (Web User Interface) stellt die Pridsentationsschicht der Plattform dar. Eine
Anwendungslogik (Domain Logic) bietet Dienste an, die die spezifizierten Aufgaben der
Plattform fiir Mustersprachen und Musterkataloge bewiltigt. Die Anwendungslogik reprisentiert die
Anwendungsschicht in dieser Drei-Schichten-Architektur. Die Datenhaltungsschicht wird durch ein
Repository umgesetzt. Das Repository (Repository) verwaltet die Daten der Mustersprachen und der
Musterkataloge. Die drei Bestandteile der Plattform sind beziiglich ihrer Abhéngigkeiten zu einander
dargestellt. Der Applikationsserver ist abhingig von den Daten, die das Repository bereitstellt und die
webbasierte Benutzeroberflache ist wiederum abhingig von den Diensten, die der Applikationsserver
bereitstellt.

Die Bestandteile der Plattform fiir Mustsersprachen und Musterkataloge, deren Schnittstellen und
deren Kommunikationen werden in den folgenden Abschnitten detaillierter vorgestellt.

4.4.1 Repository der Plattform fiir Mustersprachen und Musterkataloge

Das Repository der Plattform fiir Mustersprachen und Musterkataloge verkorpert die
Datenhaltungsschicht und enthilt eine Datenzuordnung fiir eine Datenstruktur, die fiir die Verwendung
von dariiber liegenden Schichten konzipiert ist. Software, die sich in der dariiber liegenden Schicht
befindet, kann Objekte in das Repository speichern, diese auf dem Repository lesen und 16schen.
In groBeren Systemen mit mehren Softwarekomponenten, welche auf das Repository zugreifen
und die vordefinierten Objektstrukturen und vorgefertigten Datenabfragen verwenden, wird viel
Quellcode gespart. AuBlerdem liefert die Schnittstelle des Repositorys reine objektorientierte
Datensitze und gewihrt eine konsistente Sicht der Datenquellen, aus denen das Repository die
Datensétze zusammenstellt. Das Repository verhilt sich wie eine Objektsammlung, die sich in dem
Speicher befindet. Durch das Ansprechen dieser Schnittstellenoperationen, werden die entsprechenden
Funktionalititen des Repositorys im Inneren aufgerufen. Sie sind dafiir verantwortlich, dass die Daten

4.4. STRUKTUR DER PLATTFORM FUR MUSTERSPRACHEN UND MUSTERKATALOGE 65

Web User Interface

Abbildung 4.7: Architekturiibersicht der Plattform fiir Mustersprachen und Musterkataloge

in der richtigen Datenstruktur und dem richtigen Format vorliegen, gespeichert, geloscht oder gelesen
werden konnen. [Fow02, S. 133-142, 322-327]

In Abbildung 4.8 ist die Architektur des Repositorys zu sehen. Sie enthdlt eine
Web-Service-Schnittstelle (Web Service Interface), damit Softwarekomponenten aus hoheren Sichten
auf die Daten des Repositorys zugreifen konnen. Damit die gewiinschten Daten geliefert werden koénnen,
miissen diese zuerst zusammengestellt und in eine Objektstruktur transformiert werden. Diese Aufgabe
iibernimmt die Komponente Datenmapper (Data Mapper), die unter der Web-Service-Schnittstelle
zu sehen ist. Diese Komponente greift direkt auf das Datenbankmanagementsystem (Database
Management System) und auf das Anlageverzeichnis (Attachment Storage - File System) zu, welches
sich auf dem Dateisystem, das sich auf der gleichen Maschine wie das Repositorys befindet, zu. Im
Folgenden wird auf die einzelnen Komponenten des Repositorys genauer eingegangen.

Web-Service-Schnittstelle des Repositorys Die Web Service Description Language (WSDL)
[CCMSO01] wurde als Industriestandard entwickelt, um Schnittstellen fiir Dienste zu beschreiben. Die
Dienstbeschreibung definiert Metadaten, die vollstindig die Charakteristik der Dienste beschreibt,
die in Netzen eingesetzt werden. Diese Metadaten sind die Grundlage, um lose Kopplung zwischen
den Dienstverwendern und den Dientanbietern herzustellen. Mit WSDL werden Informationen zur
Verfligung gestellt, die bendtigt werden, um Dienste verfiigbar zu machen und um diese Diensten
ansprechen zu konnen. [WCL ™05, S. 40]

Das Repository der Plattform fiir Mustersprachen und Musterkataloge bietet eine
Web-Service-Schnittstelle an, damit eine Softwarekomponente auf dessen Daten zugreifen und
diese verwenden kann. Diese Schnittstelle stellt die Funktionalititen des Repositorys als Dienste nach

66 KAPITEL 4. PLATTFORM FUR MUSTERSPRACHEN UND MUSTERKATALOGE

Abbildung 4.8: Arichitektur des Repository fiir Plattform fiir Mustersprachen und Musterkataloge

aulen zur Verfiigung. Das vorgestellte Prinzip der Schnittstelle basiert auf dem Gateway Muster.
[Fow02, S. 133-142, 466-472]

Datenmappter des Repositorys Ein Datenmappter ist eine Softwarekomponte, die die Briicke
zwischen der Anwendungslogik und den Daten darstellt. Viele Bestandteile der Objektorientierung,
wie beispielsweise Kollektionen und Vererbung, sind nicht in relationalen Datenbanken hinterlegt.
Wenn ein Objektmodell erstellt wird, das viel Anwendungslogik besitzt, ist es sinnvoll objektorientierte
Konzepte und Mechanismen zu verwenden, damit die Daten der Anwendungslogik besser organisiert
werden konnen und damit deren Verhalten besser ausgedriickt und verwendet werden kann. Um
dies zu bewiltigen muss das relationale Datenbankschema in eine Objektstruktur transformiert
werden. Die Aufgabe des Datenmappers ist es, die Strukturen der Daten zu trennen und zwischen
diesen Transformationen durchzufiihren. Er isoliert somit das relationale Datenbankschema von der
Anwendungslogik und stellt eine Objektstruktur zur Verfiigung, die auf einer hoheren Abstraktionsebene
angesiedelt ist. [Fow02, S. 165-179]

Der Datenmapper des Repositorys fiir Mustersprachen und Musterkataloge iibernimmt eine weitere
Aufgabe im Gegensatz zu der allgemein vorgestellten Beschreibung des Datenmappers. Da das
Repository der Plattform fiir Mustersprachen und Musterkataloge zwei Datenquellen enthilt, muss
er die Daten beider Quellen zur Verfiigung stellen und transformieren. Je nach Operation kann
dies bedeuten, dass Selektionen von den Daten gebildet werden miissen. Diese werden wiederum
in Objektstrukturen transformiert und anschliefend an die Web-Service-Schnittstelle weitergeleitet.
Der Datenmapper muss aber auch Daten der Web-Service-Schnittstelle entgegennehmen, diese
transformieren und sie auf die beiden Datenquellen aufteilen. Er bezieht und speichert Daten aus
einem Datenbankmanagementsystem und einem Anlageverzeichnis. Alle Daten, die nicht in Form
einer Datei vorliegen, werden in die Datenbank des Datenbankmanagementsystem geschrieben. Die
Dateien werden in das Anlageverzeichnis geschrieben und deren Metainformationen in der Datenbank

4.4. STRUKTUR DER PLATTFORM FUR MUSTERSPRACHEN UND MUSTERKATALOGE 67

festgehalten. In den folgenden Abschnitten wird dabei ndher auf das Datenbankmanagementsystem und
das Anlageverzeichnis eingegangen.

Datenbankmanagementsystem des Repositorys Das Datenbankmanagementsystem des
Repositorys ist ein relationales Datenbankmanagementsystem, das eine Datenbank enthilt. In
dieser Datenbank werden die Daten und Informationen der Mustersprachen und Musterkataloge
hinterlegt. Um einen konsistenten und sicheren Datenaustausch zu gewihrleisten, werden die Daten
iiber Transaktionen ausgetauscht. Damit alle Daten und Informationen der Plattform fiir Mustersprachen
und Musterkataloge gespeichert werden konnen, wird das angepasste Metamodell fiir Mustersprachen
als Grundlage fiir ein relationales Datenbankschema verwendet. [SEQ7, S. 1-3]

Anlageverzeichnis des Repository Das Anlageverzeichnis des Repositorys der Plattform fiir
Mustersprachen und Musterkataloge ist fiir die Speicherungen von Dateien, die Anhinge der
Muster darstellen, verantwortlich. Es stellt eine einfache Ablage auf dem Dateisystem dar. Das
Anlagenverzeichnis lauft auf dem selben Computersystem wie auch das Repository. Die Musteranhénge,
die in Dateien des Anlageverzeichnis liegen, konnen von dem Datenmapper gelesen und gespeichert
werden.

4.4.2 Anwendungslogik der Plattform fiir Mustersprachen und Musterkataloge

Die Anwendungslogik besteht aus Softwarekomponenten, die die Daten der Datenhaltungsschicht
manipulieren, transformieren und in Daten fiir die Préisentationsschicht konvertieren. Diese
Softwarekomponenten stellen den Kern der Anwendungsschicht dar und enthalten die Logik der
Anwendungsprozesse. Die Funktionalitidten der Anwendungslogik werden als Dienste bereitgestellt und
konnen von der Priasentationsschicht verwendet werden. [McL02, S. 21-22], [Tar09, S. 116]

In Abbildung 4.9 ist die Anwendungslogik (Domain Logic) der Plattform fiir Mustersprachen und
Musterkataloge zu sehen. Sie enthélt eine Schnittstelle (Service Interface) und eine Sammlung von
Funktionalititen (Service Pool). Die Funktionalititen konnen iiber die Schnittstellen angesprochen
werden. Die Sammlung von Funktionalititen enthélt zwei Funktionalitéten, einen Dienst, um Daten der
Plattform fiir Mustersprachen und Musterkataloge zu manipulieren (Data Manipulation Service) und
einen Dienst, um nach Musterkatalogen, Mustern oder deren Inhaltselementen zu suchen (Data Search
Service). Im weiteren Verlauf werden die Bestandteile der Anwendungsschicht niher erldutert.

Schnittstelle der Anwendungslogik Die Schnittstelle der Anwendungslogik definiert das
Kommunikationsprotokoll und die Operationen, damit die Funktionen der Anwendungsschicht
als Dienste verwendet werden konnen. Speziell die Priasentationsschicht soll auf die Funktionalititen
der Anwendungsschicht zugreifen kénnen.

Anwendungsdienste Die Dienste der Anwendungsschicht der Plattform fiir Mustersprachen und
Musterkataloge sind in der Sammlung von Funktionalititen enthalten. Sie werden von der
Prisentationsschicht in Anspruch genommen und bereiten die Daten des Reposiotrys auf oder kénnen
diese durchsuchen und anschlieBend das Suchergebnis bekannt geben. Die Dienste konnen gegenseitige

68 KAPITEL 4. PLATTFORM FUR MUSTERSPRACHEN UND MUSTERKATALOGE

Abbildung 4.9: Architektur der Anwendungslogik der Plattform fiir Mustersprachen und Musterkataloge

Abhingigkeiten darstellen. Beispielsweise kann der Suchdienst die Datenmanipulationsdienst
verwenden, um Daten zu laden. In den folgenden beiden Abschnitten wird auf diese zwei
Dienste der Anwendungsschicht eingegangen. Der Schwerpunkt liegt dabei auf dem Entwurf des
Suchmechanismuses.

Datenmanipulationsdienst Der Datenmanipulationsdienst ermoglicht es, iiber den Aufruf von
Operation, Daten der Plattform zu lesen und zu schreiben. Je nach Anwendungszweck kdnnen von
der Prasentationsschicht Daten angefordert werden. Der Datenmanipulationsdienst 1ddt die Daten
aus dem Repository und gibt sie weiter an die Présentationsschicht. Die Daten konnen nach
Bedarf zusammengestellt und aufbereitet werden, bevor sie an die Présentstionsschicht iibergeben
werden. AuBerdem bietet der Datenmanipulationsdienst die Speicherung und Anderung von Daten
an. In der Anwendungslogik konnen zum Beispiel eine Korrektheits- und Konsistenzpriifung
oder Konvertierungen der geinderten oder zu speichernden Daten durchgefiihrt werden. Die
gednderten oder zu speichernden Daten werden anschlieBend an der Repository weiter gereicht. Der
Datenmanipulationsdienst stellt einen weiteren Datenmapper dar, der sich zwischen der universalen
Schnittstelle des Repository und der Schnittstelle der Anwendungsschicht befindet. Auf die Einzelheiten
der Schnittstellen wird nicht weiter eingegangen.

Suchdienst In der Funktionssammlung ist ein Suchdienst enthalten, der nach Musterkatalogen, Muster
und Musterinhalten suchen kann. Dieser stellt einen groBen Teil der Anwendungslogik dar und ist
ebenfalls als Dienst tiber die Schnittstelle der Anwendungslogik fiir die Priasentationsschicht zugénglich.
Der Suchdienst enthilt das in der Spezifikation vorgestellte Prinzip der Suche nach Musterkatalogen,
Mustern und deren Inhalten. Um nach Musterkatalogen, Mustern und Musterinhalten zu suchen, wird
zunéchst eine Suchanfrage bendtigt. Diese enthélt Einschrinkungen in Form von Filtern, nach denen die
Daten der Musterkatalogen, Mustern und deren Inhalten selektiert werden. Anschliefend werden Daten
aus dem Repository geladen, die beziiglich der Suchanfrage durchsucht werden sollen. Die geladenen
Daten werden aufbereitet und mittels mehreren Filtern selektiert, um somit das Ergebnis der Suche zu
erhalten. Das Suchergebnis kann durch die Présentationsschicht abgerufen und den Lesern und Autoren
reprisentiert werden.

4.4. STRUKTUR DER PLATTFORM FUR MUSTERSPRACHEN UND MUSTERKATALOGE 69

4.4.3 Webbasiertes Frontend der Plattform fiir Mustersprachen und Musterkataloge

Die Prasentationsschicht der Plattform fiir Mustersprachen und Musterkataloge wird durch eine
Rich Internet Application verkorpert. Diese bietet dem Benutzer eine einfache und universale Art
und Weise auf sie zu zugreifen und eine &dhnlich interaktive Bedienung und Darstellung wie eine
Desktopanwendung. AuBlerdem ist sie unabhingig von Betriebssystemen und kompatibel zu allen
modernen und gingigen Webbrowsern, die eine spezielle und abgeschottete Laufzeitumgebung
darstellen und dadurch die Systemsicherheit erhdhen. Vorteile einer Rich Internet Application sind
beispielsweise, dass sie nicht auf dem Computer des Benutzers installiert werden miissen, dass Updates
automatisch mit dem Laden der Anwendungen verfiigbar sind und dass URLSs fiir die Referenzierung
bestimmter Inhalte verwendet werden kann. [Sim07], [Fow02, S. 55-61], [SBBOS, S. 1-19]

Das webbasiertes Frontend der Plattform fiir Mustersprachen und Musterkataloge in Form
einer Rich Internet Application stellt eine Bedienanwendung fiir die Verwaltung und Verwendung
der Mustersprachen und Musterkataloge der Plattform dar. Sie kann iiber die Schnittstelle der
Anwendungslogik mit dieser kommunizieren und somit deren Dienste in Anspruch nehmen. Im weiteren
Verlauf wird die Architektur der Bedienanwendung erliutert.

Herkdmmliche Webseiten werden serverseitig aufgebaut und clientseitig représentiert. Im Gegensatz
zu herkémmlichen Webseiten sind clientseitige Reprisentationen von Rich Internet Applications
interaktiv. Das hei3t der Webseitenaufbau wird clientseitig gedndert und eventuell auch clientseitig
erstellt. Viele Rich Internet Applications bestehen aus einer Kombination dieser beiden Konzepte. Oft
wird das Grundgeriist der Webseite in der Anwendungsschicht aufgebaut und in der Préasentationsschicht
dynamisch erginzt und veridndert. Um die Kombination dieser beiden Konzepte umzusetzen, werden
serverseitige und clientseitige Skripte bendtigt, die in den jeweiligen Bereichen ausgefiihrt werden.

In der Bedienanwendung der Plattform fiir Mustersprachen und Musterkatalogen wird der
Aufbau der Webseite und deren interaktive Verdnderung ausschlieflich clientseitig durchgefiihrt. Die
Architektur der Bedienanwendung trennt strikt die Anwendungsschicht von der Prisentationsschicht.
Die Anwendungsschicht {ibernimmt somit nur Aufgaben, die sich auf fachliche Inhalte beziehen und
unabhiingig von der Prisentationsschicht sind. Da die Anwendungsschicht und Prédsentationsschicht klar
voneinander getrennt sind, konnte die Bedienanwendung zum Beispiel leicht durch eine andere ersetzt
werden.

Die Bedienanwendung wird auBerdem komplett clientseitig aufgebaut und verdndert. Dadurch
miissen ausschlieBlich fiir die Clientseite Quellcode entwickelt werden. Es besteht nicht die
Notwendigkeit Serverskripte auszufiihren, die clientseitigen Skriptcode erstellen, um einen server-
und clientseitigen Webseitenaufbau zu ermoglichen. Die Entscheidung nur Code fiir die clientseitige
Skriptengine zu liefern, soll die Struktur der Bedienanwendung iibersichtlich halten. AuBlerdem soll es
die Entwicklung vereinfachen, in dem man nur fiir eine Skriptengine Quellcode entwickelt. Zusétzlich
nimmt die Bedienanwendung nicht die iibliche Rolle einer Webseite ein. Es muss zum Beispiel nicht mit
Suchmaschinen nach Inhalten gesucht werden, da die Suche nach Inhalten von einer programmeigenen
Suche abgewickelt werden kann. Um Inhalte mit Suchmaschinen zu finden, miisste man diese statisch
zur Verfiigung stellen. Statische Webseiteninhalte miissen allerdings serverseitig aufgebaut werden. Da
dies nicht benotigt wird und die Bedienanwendung eher einer Desktopanwendung dhnelt, bietet es sich
an diese komplett clientseitig zu gestalten. [dwo], [BCFCO06]

Die Bedienanwendung der Plattform fiir Mustersprachen und Musterkataloge benétig viele
Ansichten, die deren Inhalte darstellen. Um dies verwalten zu konnen wird das Model-View-Presenter

70 KAPITEL 4. PLATTFORM FUR MUSTERSPRACHEN UND MUSTERKATALOGE

(MVP) Muster angewendet. Die Umsetzung des MVP Musters soll auf der einen Seite einen
Mechanismus darstellen, mit dem die Ansichten (View) verwaltet werden konnen. Auf der anderen
Seite bietet das MVP Muster weitere technische Vorteile fiir die beschriebene Verwendung und Art der
Bedienanwendung. Sie teilt die Logik der Oberfliche von der Ansicht, was zu einer klaren Struktur der
Oberfliche fiihrt. Auf Grund der eventbasierten Benutzeroberflichenumgebung des Browser bietet es
sich an, die Steuerung der Ansichten durch ein extra Element abzuwickeln. Dieses Steuerelement wird
in dem MVP Muster Presenter genannt. Es {ibernimmt die vollstindige Steuerung der Ansichten. Wenn
sich der zu Grunde liegende Datensatz dndert, dann wird der Presenter benachrichtigt, der wiederum
die Ansicht aktualisiert. Falls eine Interaktion mit der Ansicht statt findet, dann werden die geéinderten
Daten und empfangenen Browserevents dem Presenter weitergeleitet. Dieser reagiert anschlieBend auf
diese Verdnderungen. Er kann die Ansicht wieder dem entsprechend anpassen oder der Datensatz
aktualisieren. In Abbildung 4.10 ist das MVP Muster und das beschriebene Szenario zu sehen. [Fow06],
[BMOO], [Pot96]

Model

I

A
Model ! Model Updates
Changes " and Queries

Presenter

A
Update I User
View v : Events

View

Abbildung 4.10: Model-View-Presenter Muster

Die Presenter des MVP Musters werden durch Ereignisse benachrichtigt, wenn eine Interaktion ihrer
Ansichten stattfindet. Auch die Verwaltung mehrerer Presenter-Ansicht-Paare wird ebenfalls iiber eine
Ereignisarchitektur gesteuert. Diese ereignisgesteuerte Benachrichtung liegt der ereignisgesteuerten
Architektur zu Grunde. Sie wird durch ein Architekturmuster dargestellt, das die Kommunikation
zwischen mehreren Komponenten durch das Versenden von Ereignissen beschreibt. Dabei steht speziell
die Erstellung, die Erkennung und die Verarbeitung von Ereignissen im Vordergrund. Ereignisse
werden meist bei Zustandsidnderungen an Interessierte verschickt, die auf die empfangenen Ereignisse
individuell reagieren.

Die Grundidee der ereignisgesteuerten Architektur basiert auf dem Publish-Subscribe-Konzept.
[Jos08, S. 165-168] Dieses Konzept wurde in der Bedienanwendung durch das Mediator Muster
umgesetzt, damit mehrere Presenter einfach verwaltet werden konnen. Das Mediator Muster stellt
das Konzept fiir das Medium der Kommunikation in der Bedienanwendung der Plattform fiir
Mustersprachen und Musterkataloge dar. Das Konzept des Mediator ist sehr verwandt mit dem
Publish-Subscribe-Konzept, das auch Observer Muster [GHIV95, S. 293-304] genannt wird. In dem
Konzept des Mediators gibt es ein Mediatorobjekt, dem beliebige Objekte Ereignisse libergeben konnen.
Die Ereignisse werden anschlieend von dem Mediatorobjekt an dessen Interessenten verteilt. In der

4.4. STRUKTUR DER PLATTFORM FUR MUSTERSPRACHEN UND MUSTERKATALOGE 171

Architektur der Bedienanwendung wird das Mediatorelement zur Verwaltung der Presenter Event-Bus
genannt. Der Event-Bus der Bedienanwendung kann eine komplexe Kommunikation durch einen
lose gekoppelten Nachrichtenaustausch einfach bewiltigen. AuBlerdem konnen mehrere Presenter auf
eine einfache Art und Weise erreicht werden. [GHJV9S5, S. 273-282] Damit die Presenter gesteuert
und kontrolliert werden konnen, verfiigt die Bedienanwendung iiber eine Anwendungssteuerung.
Die Anwendungssteuerung enthélt die Logik der Benutzeroberfliche. Sie entscheidet, wann welche
Benutzeroberfliche zu sehen ist und wie diese gestaltet ist. Zusitzlich kann die Anwendungssteuerung
das Ausfithren von benutzeroberflichenabhingigen Befehlen veranlassen. Oft wird solch eine
Anwendungssteuerung durch das Application Controller Muster realisiert. Das Application Controller
Muster wird allerdings in Verbingung mit dem Model-View-Controller Muster verwendet. Der
vorgestellte Verwendungszweck ist zwar der selbe, aber durch die Verwendung des MCP Musters muss
das Application Controller Muster leicht angepasst werden. In der klassischen Anwendungssteuerung
des Application Controller Musters werden beispielsweise die Interaktionen der Benutzer durch
Anfragen entgegengenommen. [Fow02, S. 379-386], [ACMO3, S. 205-208] Dieser Ablauf wird in der
Architektur der Bedienanwendung in den Presenter der Ansichten erledigt. Da die Presenter nicht fiir
ansichtsiibergreifende Aufgaben zustdndig sind, iibernimmt in diesem Fall die Anwendungssteuerung
der Bedienanwendung die Abarbeitung dieser Aufgaben. Die Anwendungssteuerung erstellt oder ersetzt
unter anderem die bendtigten Presenter und deren Ansicht und verbindet diese mit dem Event-Bus.
[Ram10]

Wob Liser Inisriace 98

Abbildung 4.11: Architektur der Bedienanwendung der Plattform fiir Mustersprachen und
Musterkataloge

In Abbildung 4.11 ist die Architektur der Bedienanwendung der Plattform fiir Mustersprachen und

72 KAPITEL 4. PLATTFORM FUR MUSTERSPRACHEN UND MUSTERKATALOGE

Musterkataloge zu sehen. Sie enthilt Ansichen (View) und Presenter (Presenter), die die beschriebenen
Elemente des erwihnten MVP-Musters darstellen. Die Reprisentation des Datensatzes, der auch
einen Element des MVP-Musters darstellt, ist nicht explizit in der Abbildung aufgefiihrt. Teile des
Datensatzes werden in der Anwendungssteuerung verwaltet. Es ist auBerdem der Event Bus, der
das Kommunikationsmedium zwischen Presenter und Anwendungssteuerung (Application Controller)
darstellt, zu sehen. Die Aufgaben der Anwendungssteuerung wird in der Abbildung in ihre Aufgaben
unterteilt, die von Managern ausgefiihrt werden. Die Manager kiimmern sich um die Einstellungen
der Anwendung (Settings Manager), deren Status (Status Manager), die Webbrowsernavigation
(History Manager), die Zwischenspeicherung von Teilen des Datensatzes (Cache Manager) und die
Angichten- beziehungsweise Presenterlogiken (Presenter Manager). Die Anwendungssteuerung und
die Presenter konnen auf Funktionen (Service Stubs) zuriickgreifen, die es erleichtern Dienste der
Anwendungsschicht aufzurufen. Durch die Verwendung der Hilfsfunktionen und das Verwenden der
entfernten Dienste, konnen fiir die Darstellung benotigte Datensitze geladen werden. Diese Datensitze
konnen, falls dies erforderlich ist, in der Anwendungssteuerung zwischengespeichert werden. Die
Hilfsfunktionen basieren auf dem Service Stub Muster [Fow02, S. 504-507]. Es erleichtert und
vereinfacht das Aufrufen und Ausfiihren von entfernten Diensten.

Die Presenter und Ansichten der Bedienanwendung sind in unterschiedliche hierarchische Gruppen
eingeordnet. Dies soll helfen eine Ubersicht zu schaffen und eine Navigation fiir den Benutzer
zu erstellen. Auflerdem sollen Muster durch eine URL referenziert werden kdnnen. Damit die
entsprechenden Ansichten und deren Inhalte angezeigt werden konnen, werden die Presenter und
ihre Ansichten strukturiert. Die Bedienanwendung besteht aus fiinf Gruppen: Presenter und Ansichten
fiir anwendungsspezifische Benutzeroberflichen, fiir die Verwaltung von Mustersprachen, fiir die
Betrachtung von Mustersprachen, fiir die Verwaltung von Musterkatalogen und fiir die Betrachtung von
Musterkatalogen. Die Gruppen sind beziiglich ihrer Aufgabenbereiche erstellt. Die Gruppe der Presenter
und Ansichten fiir anwendungsspezifische Benutzeroberflichen enthélt Presenter und Ansichten,
die fiir die Verwendung der Bedienanwendung notwendig sind oder dem Benutzer zusétzliche
Funktionalitdten zur Verfiigung stellt. Die Presenter und Ansichten pridsentieren unter anderem die
Anwendungsnavigation, die Werkzeugleiste oder die Statusanzeige. Die anderen Gruppen enthalten
Presenter und Ansichten, die beziiglich der Verwaltung und Betrachtung der Mustersprachinhalte
oder Musterkataloginhalte benétigt werden. Durch sie konnen die Inhalte der Mustersprachen und
Musterkataloge dargestellt und verwaltet werden.

4.5 Implementierung der Plattform fiir Mustersprachen und
Musterkataloge

Die Implementierungsbeschreibung enthélt die Umsetzung der Struktur der Plattform fiir
Mustersprachen und Musterkataloge. Dabei wird die Verwendung verschiedener Frameworks und der
Einsatz benétigter Software geschildert.

Die Software ist in der Entwicklungsumgebung Eclipse [Ecll1] entwickelt worden. Jede
Softwarekomponente, die eine Schicht der Plattformstruktur darstellt, ist in der Programmiersprache
Java [Orall] geschrieben.

Weitere Einzelheiten der Umsetzung von der Plattformstruktur sind im folgenden Verlauf aufgelistet.

4.5. IMPLEMENTIERUNG DER PLATTFORM FUR MUSTERSPRACHEN UND MUSTERKATALOGET3

Umsetzung des Repositorys Das Repository besteht aus einer in Java [Orall] geschriebenen
Programmlogik und wird serverseitig ausgefiihrt. Es enthélt eine Web-Service-Schnittstelle mit der
das Repository angesprochen werden kann und einen Datenmapper, der Objektstrukturen zuordnet
und konvertiert. Die Web-Service-Schnittstelle ist in Verbindung mit Axis [Axill] entwickelt. Das
Repository lief wihrend der Entwicklungs- und Testphase auf einem Apache Tomcat Server 7
[Apall]. Die Daten der Mustersprachen und Musterkataloge werden von dem Repository in einen
Datenbankserver gespeichert und aus diesem gelesen. Der Datenbankserver wird durch einen MySQL
Server [MyS11] verkorpert. Die Datenbankstruktur ist mit dem Softwarewerkzeug phpMyAdmin
[Php11] erstellt worden. Zusitzlich zu der Datenbank wurde eine Anlageverzeichnis erstellt, damit
Dateien abgelegt werden konnen. Es stellt einen einfachen Ordner des Systems dar, in dem der
Datenmapper die Anlagen speichert. Metainformation iiber die abgelegten Anlagen werden in der
Datenbank festgehalten und konnen dadurch Mustern zugeordnet werden.

Umsetzung des Anwengunsservers Die Software der Anwendungsschicht ist ebenfalls in Java
[Orall] geschrieben und enthilt zwei Dienste. Ein Dienst ist fiir das Aufbereiten, Laden und
Speichern von Daten verantwortlich. Der andere Dienst wickelt die Suche nach Musterkataloginhalten
ab. Die Dienste konnen die Web-Service-Schnittstelle des Repositorys ansprechen und anschlieend
ihre Berechnungen durchfiihren. Das Ergebnis der Berechnungen wird der Prdsentationsschicht
weitergereicht. Die Software der Anwendungsschicht ist wihrend der Entwicklungs- und Testphase auf
einem Jetty-Webserver Version 1.6 [Jet11] ausgefiihrt worden.

Umsetzung des webbasierten Frontends Das webbaisierte Frontend der Plattform fiir
Mustersprachen und Musterkataloge wurde mit dem Framework Google Web Toolkit (GWT)
[Goo11] realisiert. Das Framework GWT wurde gewihlt um die Anforderungen und der Spezifikation
der Plattform fiir Mustersprachen und Musterkataloge gerecht werden. Mit GWT lésst sich aulerdem
die gewihlte Struktur der Bedienanwendung der Plattform fiir Mustersprachen und Musterkatalogen
umsetzen, ohne eine Browserplugin verwenden zu miissen. Die Bedienanwendung ist ebenfalls in Java
geschrieben und ist anschlieend in einen Mix aus JavaScript, Html und CSS {ibersetzt worden. Dieses
aus JavaScript, Html und Css bestehende Codekonstrukt stellt die Bedienanwendung der Plattform
dar. Uber die Java-Servlet-Technologie [Gow10] kann die Schnittstelle der Anwendungsschicht
ansprechen werden. Somit konnen fiir die Darstellung und die Verwaltung von Mustersprachen und
Musterkatalogen Daten anfordern oder manipulieren werden. [Dwy08, S. 5-14], [CCO8, S. 30-31]

74 KAPITEL 5. ZUSAMMENFASSUNG UND AUSBLICK

Kapitel 5

Zusammenfassung und Ausblick

5.1 Zusammenfassung

In diesem Abschnitt werden die in dieser Arbeit gefundenen Errungenschaften und konfrontierten
Probleme in Kiirze zusammengefasst:

Grundlagen des Metamodells fiir Mustersprachen Zu Beginn dieser Arbeit wurden bekannte
Mustersprachen und deren Strukturen vorgestellt, die Modelle fiir Musterkataloge darstellen. Die
Musterkataloge enthalten jeweils eine Menge von Mustern, die Losungsvorschlége fiir Probleme eines
bestimmten Kontextes zur Verfiigung stellen.

Metamodell fiir Mustersprachen Die vorgestellten Mustersprachen enthalten Strukturen und
Charakteristiken anhand derer ein Metamodell fiir Mustersprachen erstellt wurde. Das Metamodell fiir
Mustersprachen besteht aus einer Struktur, die den Aufbau von Mustersprachen beschreibt und die
deren Kompatibilitit untereinander gewihrleistet. Die Struktur des Metamodells fiir Mustersprachen
wird durch ein Profil erweitert, das die grundlegende Charakteristik der Mustersprachen vorgibt.
Das Profil des Metamodells fiir Mustersprachen ist ebenso wie die Struktur des Metamodells fiir
Mustersprachen ein Bestandteil des Metamodells. Das Profil formt die grundlegende Charakteristik
der Mustersprachen. Es verfeinert die Struktur der Mustersprachen und ordnet deren Bestandteilen
Bedeutungen zu. Das Metamodell fiir Mustersprachen ist ein musterspracheniibergreifendes Modell, das
eine Menge von Mustersprachen beschreibt. Mustersprachen, die dem Metamodell fiir Mustersprachen
zu Grunde liegen, werden durch die gemeinsame Struktur kompatibel gehalten. Die Kompatibilitét der
Mustersprachen beinhaltet die Mdglichkeit in und zwischen Mustersprachen und deren Musterkatalogen
Beziehungen aufzubauen. Dariiber hinaus konnen in dem Metamodellprofil fiir Mustersprachen
die Bedeutungen der Beziehungen und Strukturelementen der Mustersprachen festgehalten werden.
Durch die Definition und durch Erweiterungen des Metamodellprofils fiir Mustersprachen konnen
musterspracheniibergreifende Suchen, Vergleiche und Analysen von den Inhalten der Musterkataloge
in und zwischen Musterkatalogen durchgefiihrt werden. Zusitzlich wird die Gestaltung der Definition
einer Mustersprachen durch die Erweiterungsméglichkeit des Metamodellprofils fiir Mustersprachen
variable gehalten. Damit aus dem Metamodell fiir Mustersprachen einfach Musterkataloge abgeleitet
werden konnen, wurde das Metamodell fiir Mustersprachen als UML-Diagramm festgehalten und
entsprechende dem modellgetriebenen Architekturansatz entworfen. Es stellt somit auch eine Grundlage
fiir eine Datenstruktur dar, die eine maschinelle Handhabung und Verwaltung von Mustersprachen und
Musterkatalogen ermoglicht.

5.2. AUSBLICK 75

Plattform fiir Mustersprachen und Musterkataloge Damit das Metamodell fiir Mustersprachen
maschinell verwendet werden kann, wurde in dieser Arbeit eine Plattform fiir Mustersprachen und
Musterkataloge spezifiziert, entworfen und implementiert. Die Plattform fiir Mustersprachen und
Musterkataloge ermdglicht die Erstellung und Verwaltung von Mustersprachen und Musterkatalogen.
Sie verwendet das Metamodell fiir Mustersprachen als Grundlage fiir die Datenstruktur der
Mustersprachen und Musterkataloge. Das vorgestellte Metamodell fiir Mustersprachen wurde
durch zusitzliche Profilerweiterungen angepasst, damit es den Anforderungen der Plattform fiir
Mustersprachen und Musterkataloge gerecht wird. Die Erweiterung von dem Profil des Metamodells
fiir Mustersprachen bietet unter anderem die Moglichkeit Diskussionen iiber Musterinhalte zu fiihren
oder Verdnderungen der Musterinhalte als neue Musterversionen abzuspeichern. Diese Erweiterung
ermoglicht es ebenso Inhalte der Muster durch das Anhiingen von Dateien zu erweitern.

Aufbau der Plattform fiir Musterkataloge Die Plattform fiir Mustersprachen und Musterkataloge
ist in eine Drei-Schichten-Architektur aufgeteilt. Ein Repository, das die Daten der Mustersprachen und
Musterkataloge verwaltet, iibernimmt die Aufgabe der Datenhaltungsschicht. In der Anwendungsschicht
der Drei-Schichten-Architektur werden zwei Dienste zur Verfiigung gestellt. Ein Dienst ermoglicht
das Laden und Speichern von Daten aus dem Repository sowie die Zusammenstellung, die
Aufbereitung und die Konsistenzpriifung der Daten von Mustersprachen und Musterkatalogen. Der
zweite Dienst ermoglicht das Suchen nach Musterkatalogen, Mustern, oder deren Musterinhalten.
Eine webbasierte Bedienanwendung der Plattform fiir Mustersprachen und Musterkataloge, die
eine Rich Internet Application darstellt, repridsentiert die Pridsentationsschicht der Plattform. Mit
Hilfe der Bedienanwendung der Plattform fiir Mustersprachen und Musterkataloge lassen sich die
Mustersprachen und Musterkataloge anlegen, pflegen, verwalten und durchstdbern.

5.2 Ausblick

Im Folgenden wird iiber eine mogliche Fortfithrung und den Ausblick dieser Arbeit berichtet:

Evaluation des Metamodells fiir Mustersprachen Das Metamodell fiir Mustersprachen wird in
dieser Arbeit nicht auf die Qualitit seiner Verwendbarkeit getestet. Bevor man mit der Entwicklung des
Metamodells fiir Mustersprachen fortféhrt, ist es notwendig, die Anforderungen des Metamodells fiir
Mustersprachen zu iiberpriifen. Damit konnen Fehler und Erweiterungsbediirfnisse aufgedeckt werden.
Die Analyse der Verwendbarkeitsqualitdt und der Erfiillung der Anforderungen des Metamodells fiir
Mustersprachen kann durch die Verwendung der Plattform fiir Mustersprachen und Musterkataloge
durchgefiihrt werden. In diesem Zuge kann auch die Plattform fiir Mustersprachen und Musterkataloge
beziiglich der Erfiillung ihrer Anforderungen und der Qualitit ihrer Bedienbarkeit iiberpriift werden.

Weiterentwicklung des Metamodells fiir Mustersprachen Das Profil des Metamodells fiir
Musterpsrachen enthélt und beschreibt die Arten der Strukturelemente im Metamodell. Durch
diese Arten und deren Beschreibungen enthalten die Elemente der Struktur im Metamodell fiir
Mustersprachen Bedeutungen, die wiederum Metainformation in Mustern und Musterkatalogen
darstellen. Die Metainformationen wie zum Beispiel die Art des Inhaltes von Mustern oder der
Beziehungstyp zwischen Mustern sind in dem Profil des Metamodells fiir Mustersprachen festgelegt.

76 KAPITEL 5. ZUSAMMENFASSUNG UND AUSBLICK

In dieser Arbeit werden diese Metainformationen verwendet, um den Lesern und Autoren Aufschluss
iiber die Mustersprachen und Muster zu geben. Die Plattform fiir Mustersprachen und Musterkataloge
verwendet die Metainformationen der Muster, um sie zu verwalten und nach ihnen zu suchen. Die
Metainformation von Mustersprachen, Mustern und deren Musterkataloge konnen fiir viele weitere
Hilfsfunktionen, Dienste oder Anwendungen verwendet werden. Diese konnen Berechnungen ausfiihren
und Ergebnisse liefern, die auf den Beschreibungen der Inhalte von Mustersprachen, Mustern und deren
Musterkataloge aufbauen.

Automatische Generierung von Musterlosungen Eine Erweiterungsmoglichkeit des
Metamodells fiir Mustersprachen ist die automatische Generierung von Musterlosungen. Die
automatische Generierung von Musterlosungen verwendet die Inhalte und die Metainformationen der
Muster und Musterkataloge, um spezielle Losungen zu generieren, die in den Mustern beschrieben
sind. Die generierten Musterlosungen konnen beliebige Datensidtze und Befehle darstellen. Sie kdnnen
beispielsweise als Konfigurationen, Operationen oder als eigenstindige Programme verwendet werden.
Die Umsetzung der automatischen Generierung von Musterlosungen benotigt unter anderem die
Musterinhalte um Losungen zu erstellen. Die Mustersprachen und Musterkataloge, die aus dem
Metamodell fiir Mustersprachen aus dieser Arbeit abgeleitet wurden, enthalten Muster, deren Inhalte
nicht formal festgehalten sind. Eine Herausforderung wird in der maschinellen Interpretation der
Musterinhalte liegen, um die Semantik der Inhalte zu verstehen und darauf basierend Ldsungen
berechnen zu kénnen.

QUELLENVERZEICHNIS III

Quellenverzeichnis

[ACMO3] ALUR, Deepak; CRUPI, John ; MALKS, Dan: Core J2EE Patterns: Best Practices and Design
Strategies. Prentice Hall Professional, 2003

[Apall] APACHE TOMCAT PROJECT: Apache Tomcat. http://tomcat.apache.org/.
Version: August 2011

[Axill] AX1S: WebServices - Axis. http://axis.apache.org/axis/. Version: August 2011

[BCFC06] B0zzON, Alessandro; COMAI, Sara; FRATERNALI, Piero ; CARUGHI, Giovanni T.:
Conceptual modeling and code generation for rich internet applications. In: Proceedings of

the 6th international conference on Web engineering. Palo Alto, California, USA : ACM,
2006 (ICWE ’06), S. S. 353-360

[BCHP03] BROWN, Kyle; CRAIG, Gary; HESTER, Greg ; PITT, David: Enterprise Java programming
with IBM WebSphere. Addison-Wesley Professional, 2003

[Ber94] BERNERS-LEE, T.: Universal Resource Identifiers in WWW: A Unifying Syntax for the
Expression of Names and Addresses of Objects on the Network as used in the World-Wide
Web. http://tools.ietf.org/html/rfcl1630. Version:Juni 1994

[BHSO7] BUSCHMANN, Frank; HENNEY, Kevlin ; SCHMIDT, Douglas C.: Pattern Oriented Software
Architecture Volume 5: On Patterns and Pattern Languages. Bd. 5. 1. Wiley, 2007

[BJ94] BECK, Kent; JOHNSON, Ralph E.: Patterns Generate Architectures. In: Proceedings of the 8th
European Conference on Object-Oriented Programming, Springer-Verlag, 1994, S. 139-149

[BMOO] BOWER, Andy; MCGLASHAN, Blair: Twisting the Triad - The evolution of the
Dolphin Smaltalk MVP application framework. www.object—-arts.com/downloads/
papers/TwistingTheTriad.PDF. Version: 2000

[BMR 98] BUSCHMANN, Frank; MEUNIER, Regine; ROHNERT, Hans; SOMMERLAD, Peter ; STAL,
Michael: Pattern-orientierte Software-Architektur: Ein Pattern-System. Addison-Wesley, 1998

[CAA77] CHRISTOPHER ALEXANDER, Murray Silverstein Max Jacobson Ingrid Fiksdahl-King
Sara I. Sara Ishikawa; ANGEL, Shlomo: A PATTERN LANGUAGE: TOWNS BUILDINGS
CONSTRUCTION. Oxford University Press, 1977

[CC08] COOPER, Robert; COLLINS, Charles: GWT in Practice. Manning Publications, 2008

http://tomcat.apache.org/
http://axis.apache.org/axis/
http://tools.ietf.org/html/rfc1630
www.object-arts.com/downloads/papers/TwistingTheTriad.PDF
www.object-arts.com/downloads/papers/TwistingTheTriad.PDF

v QUELLENVERZEICHNIS

[CCMSO01] CHRISTENSEN, Erik; CURBERA, Francisco; MEREDITH, Greg ; SANJIVA, Weerawarana:
Web Services Description Language (WSDL). http://www.w3.0rg/TR/wsdl.
Version: Mirz 2001

[DC99] DORIGO, Marco; CARO, Gianni D.: Ant Colony Optimization: A New Meta-Heuristic. In:
Evolutionary Computation, 1999. CEC 99. Proceedings of the 1999 Congress on (1999)

[dwo] A Concept of a Web Application Blending Thin and Fat Client Architectures. In:
Dependability of Computer Systems, International Conference on. Los Alamitos, CA, USA :
IEEE Computer Society

[Dwy08] DWYER, Jeff: Pro Web 2.0 Application Development with GWT. 1. Apress, 2008

[Ecl11] ECLIPSE FOUNDATION, INC.: Eclipse - The Eclipse Foundation Open Source Community
Website. http://www.eclipse.org/. Version: August 2011

[Etz64] ETZIONI, Amitai: Modern Organizations. 1. Prentice Hall, 1964

[Fow02] FOWLER, Martin: Patterns of Enterprise Application Architecture. Addison-Wesley Longman,
Amsterdam, 2002

[Fow06] FOWLER, Martin: GUI Architectures. http://www.martinfowler.com/eaaDev/
uiArchs.html. Version: Juli 2006

[Fre09] FREIBERGER, Jorg: Was fiir ein Tier. In: database pro (2009), Juni, S. S. 76-81

[GHIV95] GAMMA, Erich; HELM, Richard; JOHNSON, Ralph ; VLISSIDES, John: Design Patterns.
Addison-Wesley, 1995

[Gig91] GIGCH, John P. V.: System design modeling and metamodeling. Springer, 1991

[Goo97] Goos, Gerhard: Vorlesungen Uber Informatik: Band 3: Berechenbarkeit, Formale Sprachen,
Spezifikationen. Springer, 1997

[Gool1] GOOGLE WEB TOOLKIT: Google Web Toolkit - Google Code. http://code.google.
com/webtoolkit/. Version: August 2011

[Gow10] GOWDAR, Girish: Java Servlet Technology. http://www.oracle.com/
technetwork/java/javaee/servlet/index.html. Version: September 2010

[HWO04] HOHPE, Gregor; WOOLF, Bobby: Enterprise integration patterns: Designing, building, and
deploying messaging solutions. Addison-Wesley, 2004

[Jetl1] JETTY WEBSERVER: jetty - Jetty WebServer. http://jetty.codehaus.org/
jetty/. Version: August 2011

[JosO8] JoSUTTIS, Nicolai: SOA in der Praxis: System-Design fiir verteilte Geschdiftsprozesse. 1.
Dpunkt Verlag, 2008

[Laa03] LAAKSO, Sari A.: User Interface Design Patterns. http://www.cs.helsinki.fi/u/
salaakso/patterns/. Version: September 2003

http://www.w3.org/TR/wsdl
http://www.eclipse.org/
http://www.martinfowler.com/eaaDev/uiArchs.html
http://www.martinfowler.com/eaaDev/uiArchs.html
http://code.google.com/webtoolkit/
http://code.google.com/webtoolkit/
http://www.oracle.com/technetwork/java/javaee/servlet/index.html
http://www.oracle.com/technetwork/java/javaee/servlet/index.html
http://jetty.codehaus.org/jetty/
http://jetty.codehaus.org/jetty/
http://www.cs.helsinki.fi/u/salaakso/patterns/
http://www.cs.helsinki.fi/u/salaakso/patterns/

QUELLENVERZEICHNIS v

[LamO7] LAMMI, Janne: Developing a Ul Design Pattern Library - A Case Study at
eCraft, HELSINKI UNIVERSITY OF TECHNOLOGY, Department of Computer
Science and Engineering und Laboratory of Software Business and Engineering,
Mastersthesis, September 2007. http://www.scribd.com/doc/29180579/
Developing-a-UI-Design-Pattern-Library-A-Case-Study—-at—-eCraft/
—Master—-s-Thesis

[LL10] LUDEWIG, Jochen; LICHTER, Horst: Software Engineering: Grundlagen, Menschen,
Prozesse, Techniken. 2. iiberarb. u. akt. Aufl. dpunkt Verlag, 2010

[LMWO05] LEACOCK, Matt; MALONE, Erin ; WHEELER, Chanel: Implementing a Pattern Library
in the Real World: A Yahoo! Case Study. http://www.leacock.com/patterns/
leacock_malone_wheeler.pdf. Version: Februar 2005

[LVH11] LAMMI, Janne; VARJOKALLIO, Matti ; HOCKSELL, Johannes: UI Design Pattern Library |
Patternry. http://patternry.com/patterns/. Version: 2011

[Mah08] MAHEMOFF, Michael: Ajax Patterns. http://ajaxpatterns.org/wiki/index.
php?title=Main_Page. Version: August 2008

[McL02] MCLAUGHLIN, Brett: Building Java Enterprise Applications: Architecture. O’Reilly Media,
Inc., 2002

[MD96] MESZAROS, Gerard; DOBLE, Jim: MetaPatterns: A Pattern Language for Pattern Writing. In:
In 3rd Pattern Languages of Programming conference, 1996, S. S. 4-6

[MMO3] MILLER, J.; MUKERIJI, J.: MDA Guide Version 1.0.1 / Object Management Group (OMG).
2003 (omg/03-06-01). — Forschungsbericht

[MO99] MARTIN, James; ODELL, James J.: Objektorientierte Modellierung mit UML. Das
Fundament. Prentice Hall, 1999

[MyS11] MYSQL: MySQL :: Die populdrste Open-Source-Datenbank der Welt. http://www.
mysqgl.de/. Version: August 2011

[New72] NEWELL, Allen: Human Problem Solving. 4. Auflage. Longman Higher Education, 1972

[Obj10] OBIJECT MANAGEMENT GROUP: UML 2.3 Superstructure. http://www.omg.org/
spec/UML/2.3/Superstructure/PDF. Version: Mai 2010

[Orall] ORACLE: Oracle Technology Network for Java Developers. http://www.oracle.com/
technetwork/java/index.html. Version: August 2011

[PHBO10] PAUWELS, Stefan L.; HUBSCHER, Christian; BARGAS-AVILA, Javier A. ; OPWIS, Klaus:
Building an interaction design pattern language: A case study. In: Computers in Human
Behavior 26 (2010), Mai, S. S. 452-463. — ACM ID: 1750044

[Phpl1] PHPMYADMIN DEVEL TEAM: phpMyAdmin. http://www.phpmyadmin.net/home_
page/. Version: August 2011

http://www.scribd.com/doc/29180579/Developing-a-UI-Design-Pattern-Library-A-Case-Study-at-eCraft/-Master-s-Thesis
http://www.scribd.com/doc/29180579/Developing-a-UI-Design-Pattern-Library-A-Case-Study-at-eCraft/-Master-s-Thesis
http://www.scribd.com/doc/29180579/Developing-a-UI-Design-Pattern-Library-A-Case-Study-at-eCraft/-Master-s-Thesis
http://www.leacock.com/patterns/leacock_malone_wheeler.pdf
http://www.leacock.com/patterns/leacock_malone_wheeler.pdf
http://patternry.com/patterns/
http://ajaxpatterns.org/wiki/index.php?title=Main_Page
http://ajaxpatterns.org/wiki/index.php?title=Main_Page
http://www.mysql.de/
http://www.mysql.de/
http://www.omg.org/spec/UML/2.3/Superstructure/PDF
http://www.omg.org/spec/UML/2.3/Superstructure/PDF
http://www.oracle.com/technetwork/java/index.html
http://www.oracle.com/technetwork/java/index.html
http://www.phpmyadmin.net/home_page/
http://www.phpmyadmin.net/home_page/

VI QUELLENVERZEICHNIS

[Pot96] POTEL, Mike: MVP: Model-View-Presenter The Taligent Programming Model for C and Java.
Taligent Inc., 1996

[Ram10] RAMSDALE, Chris: Large scale application development and MYVP. http:
//code.google.com/webtoolkit/articles/mvp-architecture.html.
Version: Mirz 2010

[RIB99] RUMBAUGH, James; JACOBSON, Ivar ; BOOCH, Grady: The Unified Modeling Language
Reference Manual. Addison Wesley Professional, 1999

[SBBO8] SMEETS, Bram; BONESS, Uri ; BANKRAS, Roald: Beginning Google Web Toolkit: From
Novice to Professional. Apress, 2008

[SchO1] SCHONING, Uwe: Theoretische Informatik - kurzgefasst. Spektrum Akademischer Verlag
GmbH, 2001

[Sco06] ScortT, Bill: Yahoo! Design Pattern Library Released. http://www.yuiblog.com/
blog/2006/02/13/yahoo_patterns_released/. Version: Februar 2006

[SEO7] SUMATHI, S.; ESAKKIRAJAN, S.: Fundamentals of Relational Database Management
Systems. Springer, 2007

[Sim07] SIMMONS, Andrea: Rich Internet Applications 101: A Primer for Marketing Agencies &
Multimedia Developers, Integration New Media, 2007

[Spo06] SpooL, Jared M.: The Elements of a Design Pattern. http://www.ule.com/
articles/elements_of_a_design_pattern/. Version: Januar 2006

[Tar09] TARKOMA, Sasu: Mobile middleware: architecture, patterns and practice. John Wiley and
Sons, 2009

[Tholl] THOMAS, Erl: SOA Patterns - Service Data Replication. http://www.soapatterns.
org/service_data_replication.php. Version:Juli 2011

[Tid99] TIDWELL, Jenifer: Common Ground: A Pattern Language for Human-Computer Interface
Design. http://www.mit.edu/~jtidwell/interaction_patterns.html.
Version: 1999

[Vanl1] VAN WELIE, Martijn: Interaction Design Pattern Library - Welie.com. http://welie.
com/patterns/. Version: 2011

[vv03] VAN WELIE, Martijn; VAN DER VEER, Gerrit C.: Pattern Language in Interation Design:
Structure and Organization. In: Proceedings of Interact (2003), September, S. S. 527-534

[WCLT05] WEERAWARANA, Sanjiva; CURBERA, Francisco; LEYMANN, Frank; STOREY, Tony ;
FERGUSON, Donald F.: Web services platform architecture: SOAP, WSDL, WS-Policy,
WS-Addressing, WS-BPEL, WS-Reliable Messaging, and more. Prentice Hall PTR, 2005

[Yah11l] YAHOO! INC. (2006): Yahoo! Design Pattern Library. Version: August 2011. http:
//developer.yahoo.com/ypatterns/

http://code.google.com/webtoolkit/articles/mvp-architecture.html
http://code.google.com/webtoolkit/articles/mvp-architecture.html
http://www.yuiblog.com/blog/2006/02/13/yahoo_patterns_released/
http://www.yuiblog.com/blog/2006/02/13/yahoo_patterns_released/
http://www.uie.com/articles/elements_of_a_design_pattern/
http://www.uie.com/articles/elements_of_a_design_pattern/
http://www.soapatterns.org/service_data_replication.php
http://www.soapatterns.org/service_data_replication.php
http://www.mit.edu/~jtidwell/interaction_patterns.html
http://welie.com/patterns/
http://welie.com/patterns/
http://developer.yahoo.com/ypatterns/
http://developer.yahoo.com/ypatterns/

ABBILDUNGSVERZEICHNIS VII

Abbildungsverzeichnis

2.1

3.1
32
33
34
3.5
3.6
3.7
3.8
39

4.1
4.2
43
4.4
4.5
4.6
4.7
4.8
4.9
4.10
4.11

Strukturiibersicht der Metamuster-Mustersprache von Meszaros und Doble 15
Modellhierarchie der Musterkataloge 27
Strukturen und Strukturelemente des Metamodells fiir Mustersprachen 30
Modell des Inahltselements 32
Modell der Musterstruktur Lo 33
Modell des Inhaltselements 35
Beziehungsprofil 37
Profil der Musterstruktur L. 40
Arten von Musterorganisationen im Mustersprachprofil 43
Profil der Mustersprachorganisationen 44
Metainformationsbeschreibung fiir Mustersprachen 55
Modell der Metainformationsbeschreibung fiir Muster 56
Modell der Versionsbeschreibung, 57
Modell der Suchanfragestruktur des Suchdienstes der Anwendungslogik 59
Beispiel einer Suchanfragestrukturo oL Lo 62
Beispielsuchanfragestruktur mit Traversierungsschritten 62
Architekturiibersicht der Plattform fiir Mustersprachen und Musterkataloge 65
Arichitektur des Repository fiir Plattform fiir Mustersprachen und Musterkataloge 66

Architektur der Anwendungslogik der Plattform fiir Mustersprachen und Musterkataloge 68
Model-View-Presenter Muster Lo 70

Architektur der Bedienanwendung der Plattform fiir Mustersprachen und Musterkataloge 71

Metamodell fiir Mustersprachen o XII
Beispiel einer Mustersprache L o X1V

VIII

C

ABBILDUNGSVERZEICHNIS

Profilerweiterungen des Metamodellprofils fiir Mustersprachen XVI

ALGORITHMENVERZEICHNIS

Algorithmenverzeichnis

4.1 Algorithmus fiir die Traversierung der Suchanfragenstruktur

IX

X ALGORITHMENVERZEICHNIS

Anhang

Anhangsverzeichnis

Anhang A: Metamodell
Anhang B: Beispiel eine Mustersprache

Anhang C: Profilerweiterungen des Metamodellprofils fiir Mustersprachen

ALGORITHMENVERZEICHNIS

XII

9|4oldd #

!
"ainyonans

Kuiadoid uowwod

<<adA30a1935>>

%31 ruomadtissaq
01312y Jusus13 21n3dnu3s :awen uoTierayH]

103dL0saQ UoReRY
<<adhyoasaisos

uopejussaiday |espein

N 22uaJas9y
<<sse1e30u>> <<adA1091335>>

e

[

i]

(]

[3usjuop

uonduasag ajdwexy
<<adhyoaiays>>

uondunsag uolsnppuod
<cad30019355>
uopdiosaq se>40d SaISIA

<<adh1021315>>

uondinsaq R0
<<adhyoaizys>>

| w3 Jus3uo) jeuondo

<<sse12e19u>>

uopdiaseq uopnios |

JusWa|3 Jus3u0) Alojepueny

<<3dA109135>>

uondpnsaq welqold
<<adAyo0aia3s>>

uond>saq uopeULIOU] B39

<<adA1091315>>

ua3u] Aq uopesiuebio uisned
<<adhioasaas>>

uonied Aq uopesjuebio uiened

<<adf1091315>>

ujewog Aq uopesjuebio uiened
<<adhjoaiais>>

19A57 Aq uopesuebio uisned

<<adA1091315>>

xapuj
<<adA1091335>>]

Aiessol
<<adA1031335>>]

<<sse1reau>>

uopesiuebiQ uIaled
<<sse1oerou>>

[Bujuuny |

| |

V_E.;mum abenbue uianed

<<sse1re1u>>

Aiewwns uoinjos/walqoid
<<adf103.915>>

Kiewwns sbenbueq uisned
<<adA30a1235>>

_Em - uoizeba1bby Hunajdwor

u3s uonepossy
<<adAy0019355>

|<<sseroeaous>,

<<sse1relaum>

23ua1a)ey awWal3 @.:t.:um_

[—

NETEE]

<<sse1d

2annas usened
<<sse1oejaum>

A

Jus3u0>
e20u>>

24N12NAS uIsned

sdlseg a1njonJils

103dL0S2Q UoREULIOU] B3O
<esseromiaun>

uod| 1aynuap|
<<adA1daiais>>,

<<adA1091335>>)

2anpnns sbenbue] uisned
esseroezeuns

2J4n1onJ1s abenbue uiaiied

<<adf300.1355> |
u3s - uonebalbby bupsduiod u3s - uonebaibby| || ~[uopesyuewsigenponnys| _ o]
<<adAy0a1a35>> <<adh1094935>> <<sSE1IRIAW>>
u3s - uopebaiBbby bujulquiod u3s uopesiepads
<<adhaoa1a15>> <<eif0asa3s>>

saqt.259p)

suone|ay

Metamodell fiir Mustersprachen

Anhang A

ALGORITHMENVERZEICHNIS

X1V

Juajuo0) JUsWIYdRRY '

JU23U0) JUBWIYIERY UlIlled |

y3s - uopebaibby bupadwo)
<<y3s - uotiebaibby buriadwodr=>

YIS - uopnehaubby Hujuiquo)

<<y3s - uoTiebaibby BuruTquod>>

Y¥3s - uonebaibby Hujyajdwo)
<<y3s - uoriebaibby Hurizidwod>>

Y3S - uoilebaubby

<<y3s - U0TIe62166y>>

UaWa|3 JUa3U0) uIalled |euonido K]

¥3is

l<<u3s uoTiesTieTads>s)

yas u

USWa|3 JU23U0) uIalied Alojepuei K]

<<u3s uoTieTzossy>|

L[

uopeRY JUSWI|I 3INPNIIS
<<UDT1E13Y 1USWA13 BIN1ONIIS>>

JuaWa|3 udaiied JuUsaU0D

Juawypeny

SjuswydENRY Jo IS

uojnguu0)
o

ajdwexz
J<<uoT1dTi2580 31dwex3>>|

uojsn|pUod
<<uet3dra2s590 UoTSNI2U0D>

Xa1U0)

[<<uoT3dTi2520 3x23U0D>>|

$32404 3GISIA
<uoT3dTad5aQ $32104 ALATSTA>

Y

v

25Ua4949Y JUsWaI3 u..=uu=._uw_ _u:uu:ou _m=uxu._._

¢

uopjejuasalday |esyels <<Tun 2ouBIBLBN>>

v

oT1e18Y 1UsWa1Z Bun1dnilg

3xa1 :uoT3dTi3520 2besn+
3ueN uoTIE1aY+

14N 9dusIsysy uisned

103didsag uopesy
<<101dT10580 UOTIE1EY>>

T passsidxs ue

T THwor T

uod|
<<adhydaiaysss

dayusp|

<<adf30319) 55>

Ayadoid uowwo)d

<<A142d04d UOWWOI>>

uopnjos
[<<uoT1dT13580 UOTIN10S>>]

wa|goid
l<<uoT1dT38590 wa1q0Id>>

xapuj
<<xapu>>

Kiesso|n

<<Aiess50192>

sajdwex3 Bujuuny
<<sa1duex3 BuTuunys>

M3AISAQ
<A 1BWWNS UOTIN10S/Wa1G01d>>}

Alewwns
<Aieuuns sbenbuet uieaieds>|

uopes|ueBio Juau|
le<uoTiesTueblg u1a1tey Juajuls

uopesjuebiQ uoniHed
<uoTiesTuebip uisiled UOT1TIiEd>

uonies|uebio ulewoq
le<uoTyesTURBIQ uIa11E4 uTEWOQS

uopzesiuebiQ |9Aa
<uoTiesTuebip uislied 183>

ANPNIIS Wislled

21

> uopeuLIou] B39

[<<i01d140500 uoTiEWIOLUT Ei.vv_

1oquAs

<<u03T>>

swen
<<JBTITIUBPI>>

B

imam:a:m._ uianed - m.nmeu_

1

Mustersprache

Beispiel einer

Anhang B

ALGORITHMENVERZEICHNIS

XVI

uopesyuebig uisned
<esserdejous>

WUBWIF JUsWydRNY
<<adA1089157>

SIUIWIYDERY 40 ISIT
<<3d£1021315>>

juajuj] Aq uonesjuebip uialied

<<adf}0819)5>>

uoyssnd!

3y o3 u

nguuod
<<2dA309.9357>

|A uoRIMed Aq uopesiueblQ ulaned

<<adAjoaiais>>

uoissnasig

Aq uopesjuesio uialzed
<<adf1081315>>

<<3dA103131 55>,

>saq ajdwex3

12A27 Aq uoiesjuebiQ uiazed
<<3d£1021915>>

<<adk1031935>>

uopdpasag uojsnpuod

xapuj
<<ad1001015>>

Kiesso|n
<<adf109131 55>

<<adA1031215>>
uopdudsaq 82404 3GISIA
<<adA1081915>>

uopdudsag 1xajuod
<<adf}081915>>

jusjuo) Jeuonndo

<<sse1oeIaw>>

ainjeay 1ulened

<<sse1oeiau>>

<

Arewwns uojinjos/walqod
<<adA1089157>

2seQ uof
<<adA1081915>>

H 13 3ua3u0) A
<<sse1de1aw>>

3S3@ Walqoid
<<adA10819155>

A 1 us23zed

<<ad£1031315>>

2s2Q UoljeuLIou] B3R
<<adf1031315>>

<<adA0a1035>>

_:ww - uopyebaibby Bupaidwo)

u3s uolepossy
<<adf1001915>>

<<adf108.181 55>

_.zum - uopyebaibBy Bupyadwod

W3S - uonebaibby

<<adA1081915>>

o]

:o_um_wzu:uEu_uu‘_suuF_um
<<sse1dEI8U>>

<<adf3091315>>

_zwm - uopebalbby Bujuiqwod

u3s uopesijeads
<<adh10s1315>>

3u33U0) JusWIYIEY!
<<2dA309.9355>
juaju0)

<<sse1oe1au>>,

Juaju0) [EeNn3x3)
<<3dA103131 55>

uojjejuasaiday [eryeln

<<sse1deraus>

q posseldxs ues

[“Twol
uod| 13ynuap|
<<adA1deislss>| |<<ad10a13)5w>,

JaquinN uolSI3A

ajeq pabuey)

<<8df1081815>>

ajeq pajeas)
<<adhjosiais>>
ajeq pabueys
<<adA1081815>>
Joyny
<<8dA108191 55>

a3eq pajead

<<adf1081315>>

101d112SaQg uoisian
<<adhjoaiais>>

jona

<<adf102.1315>>|

1399]10D UOISISA
<<adky001915>>

uaquy
<<adf1001915>>]

plomAay
<<adf1081915>>]

uopHed

<<sdf108.1315>>|

Joyny

<<adf1081315>>|

ujewoq
<<adA1031225>>]

101dLIDS3Q uoplewioju] e1a abenbue uialjed

<<103d1.2520 UOTARUJOIUL E3BH>>

103d110S8Q uoiIeWIOU] BISN UI31led
<<101dT4255(UOTIEWIOLUT EIBK>>

piomAay
<<8d/1081915>>]

1oy3ny

<<adf309.315>>|

uopjeuLioju] B33
<<ssE10R1aUE>

Profilerweiterungen des Metamodellprofils fiir Mustersprachen

Anhang C

Erkliarung

Hiermit versichere ich, diese Arbeit
selbstindig verfasst und nur die
angegebenen Quellen benutzt zu haben.

(Philipp Grimm)

	Einleitung
	Problemstellung und Zielsetzung
	Aufbau der Arbeit

	Grundlagen
	Begriffserklärung von Mustern
	Muster nach Christopher Alexander
	Muster nach 'The Gang of Four'
	Muster nach Frank Buschmann
	Muster nach Martin Fowler
	Muster nach Hohpe und Woolf

	Begriffserklärung von Modell und Metamodell
	Begriffserklärung von Metamustern
	Metamuster nach Meszaros und Doble

	Beziehungen in Mustersprachen
	Beziehungen in Mustersprachen nach van Welie und van der Veer

	Webbasierte Musterkataloge und -sammlungen
	Interaction Design Pattern Library - Welie.com
	Yahoo! Design Pattern Library

	UML-Diagramm
	Erweiterung von UML

	Grundlagen modellgetriebener Softwareentwicklung
	Modellgetriebene Softwareentwicklung
	Modellgetriebene Architektur

	Metamodell für Mustersprachen
	Einordnung der Grundlagen des Metamodells für Mustersprachen
	Form und Aufbau des Metamodells für Mustersprachen
	Aufgaben und Ziele des Metamodells für Mustersprachen
	Übersicht der Modellhierarchie
	Aufbau und Bestandteile des Metamodells für Mustersprachen
	Übersicht der Strukturen in dem Metamodell für Mustersprachen
	Grundlagen der Strukturen des Metamodells für Mustersprachen
	Modell der Musterstruktur des Metamodells für Mustersprachen
	Modell der Mustersprachstruktur des Metamodells für Mustersprachen

	Profil des Metamodells für Mustersprachen
	Beziehungsprofil des Metamodells für Mustersprachen
	Musterstrukturprofil des Metamodells für Mustersprachen
	Mustersprachprofil des Metamodells für Mustersprachen
	Typen von Musterorganisationen im Mustersprachprofil
	Zusatzfunktionalitäten für Mustersprachen im Mustersprachprofil

	Plattform für Mustersprachen und Musterkataloge
	Aufgaben und Ziele der Plattform für Mustersprachen und Musterkataloge
	Abgrenzung zu bestehenden webbasierten Musterkatalogen
	Plattformspezifikation für Mustersprachen und Musterkataloge
	Erstellung und Verwaltung von Mustersprachen
	Erstellung und Verwaltung von Musterkatalogen

	Struktur der Plattform für Mustersprachen und Musterkataloge
	Repository der Plattform für Mustersprachen und Musterkataloge
	Anwendungslogik der Plattform für Mustersprachen und Musterkataloge
	Webbasiertes Frontend der Plattform für Mustersprachen und Musterkataloge

	Implementierung der Plattform für Mustersprachen und Musterkataloge

	Zusammenfassung und Ausblick
	Zusammenfassung
	Ausblick

	Quellenverzeichnis
	Abbildungsverzeichnis
	Algorithmenverzeichnis
	Anhang
	UML-Diagramm: Metamodell für Mustersprachen
	UML-Diagramm: Beispielmodell einer Mustersprache
	UML-Diagramm: Profilerweiterungen des Metamodellprofils für Mustersprachen

