Institut fiir Parallele und Verteilte Systeme
Universitat Stuttgart
Universitatsstralle 38

D-70569 Stuttgart

Diplomarbeit Nr. 3194

Analyse der Echtzeitfahigkeit

und des Ressourcenverbrauchs
von OpenGL ES 2.0

Armin Cont
Studiengang: Softwaretechnik
Priifer: Prof. Dr. rer. nat. Dr. h. c. Kurt Rothermel
Betreuer: Dipl.-Inf. Stephan Schnitzer
Externer Betreuer: Dipl.-Inf. Simon Gansel (Daimler AG)
begonnen am: 16. Juni 2011
beendet am: 16. Dezember 2011

CR-Klassifikation: [.3.4,1.3.6, C.4

Kurzfassung

OpenGL ES 2.0 (Open Graphics Library for Embedded Systems 2.0) ist eine Schnittstelle zur
Entwicklung von 2D- und 3D-Computergrafik-Anwendungen. Die Spezifikation von OpenGL
ES 2.0 definiert eine Reihe von Befehlen, mit denen Daten zum und vom OpenGL ES-System
tibermittelt werden kénnen, mit denen das Zeichnen von Grafiken angestofen werden kann
(Rendering) und Einstellungen fiir das Rendering durchgefiihrt werden kénnen. Ublicherweise
verwenden OpenGL ES-Systeme fiir das Rendering physische Grafikkarten (GPUs). Keines der
heute verfiigbaren OpenGL ES-Systeme mit physischer GPU unterstiitzt aber die Priorisierung
von Anwendungen hinsichtlich der Ausfiihrung von OpenGL ES-Befehlen oder Einschrankungen
von Anwendungen hinsichtlich der Nutzung von GPU-Ressourcen. Insbesondere bietet OpenGL
ES weder einen konfigurierbaren Scheduler noch die Moglichkeit, Echtzeitgarantien fiir die Aus-
fiihrung von OpenGL ES-Befehlen zu erfiillen. Ziel dieser Arbeit ist es, zu untersuchen, inwieweit
dennoch sichergestellt werden kann, dass Befehle sicherheitskritischer Anwendungen rechtzeitig
ausgefithrt werden konnen. Dazu werden relevante Befehle bestimmt, deren Laufzeitverhalten
und Ressourcenverbrauch analysiert wird. Auerdem werden spezielle Szenarien untersucht,
um festzustellen, inwiefern das Verhalten von OpenGL ES-Systemen die rechtzeitige Ausfiihrung
kritischer Befehle verhindern kann. SchlieBlich werden Untersuchungsmethoden und Metriken
fiir die Prognose des Ressourcenverbrauchs von OpenGL ES-Befehlen und die Ermittlung der
dafiir notwendigen systemspezifischen Kennzahlen entwickelt. Die Untersuchung werden auf
einigen realen OpenGL ES-Systeme durchgefiihrt. Dabei wird gezeigt, dass insbesondere das
Speicherbelegungsverhalten und die Nutzung der Renderpipeline mit Problemen verbunden sind,
die der Erfiillung von Echtzeitgarantien im Wege stehen und nicht auf der Ebene von OpenGL ES
geldst werden kénnen.

Abstract

OpenGL ES 2.0 (Open Graphics Library for Embedded Systems 2.0) is an interface for 2D and 3D
computer graphics application development. The specification of OpenGL ES 2.0 defines a set of
commands which allow to transfer data to and from an OpenGL ES system, to render graphics and
to change settings regarding the rendering process. Some OpenGL ES systems make use of a phy-
sical GPU in order to perform rendering. None of the OpenGL ES systems available today neither
support the prioritization of applications regarding the execution of OpenGL ES commands nor
the limitation of applications regarding their utilization of GPU resources. Particularly, OpenGL ES
offers neither a configurable scheduler nor the possibility to fulfill any sort of real-time guarantee
regarding the execution of OpenGL ES commands. The intention of this work is to explore to what
extend it is still possible to guarantee that commands of safety-critical applications can be exe-
cuted in time. Therefore, relevant commands are identified whose run time behavior and resource
consumption will be analyzed. Furthermore, special scenarios are analyzed in order to determi-
ne the impact of OpenGL ES system behavior finishing critical commands in time. Finally, exami-
nation methods and metrics are developed to predict the resource consumption of OpenGL ES
commands and to determine the required system specific characteristics. Then, some real-world
OpenGL ES systems are examined. In doing so it can be shown that their system behavior — especi-
ally regarding the utilization of GPU memory and the rendering pipeline - is fraught with problems
which make it impossible to fulfill real-time guarantees and which cannot be solved on the level of
OpenGL ES.

Inhaltsverzeichnis

1 Einleitung

1.1
1.2
1.3
1.4
1.5
1.6

Hintergrund dieser Arbeit
Echtzeitgarantien
Probleme heutiger OpenGL ES-Systeme
Ansatz zur Losung der genannten Probleme
Zielsetzung dieser Arbeit
Verwandte Arbeiten.o oL

2 Grundlagen von OpenGL ES-Systemen

2.1
2.2
2.3
2.4

2.5
2.6

2.7

3.1

3.2

3.3

3.4

OpenGLund OpenGLES
Implementierungsvarianten von OpenGL ES-Systemen . . .
Client-Server-Modell der Befehlsiibermittlung
Dateniibergabe und -verwaltung
2.4.1 Datenobjekte
242 Bviction. 0 0.

2.4.3 Speichergranularitét, Effektivgroe und SpeicherblockgréBe

Programmobjekte L oo
Renderpipeline
2.6.1 Uberblick
2.6.2 Pipelineschritte
2.6.3 Gepuffertes und ungepuffertes Rendering
Erweiterungenvon OpenGLES

Methodisches Vorgehen

Speicherbelegung oL

3.1.1 Motivation fiir die Untersuchung der Speicherbelegung

3.1.2 Untersuchungsmethoden zur Speicherbelegung . . .
3.1.3 Relevante Befehle fiir die Speicherbelegung
Dateniibertragung

3.2.1 Motivation fiir die Untersuchung der Dateniibertragung

3.2.2 Untersuchungsmethoden zur Dateniibertragung . . .
3.2.3 Relevante Befehle fiir die Dateniibertragung
Pipelinenutzung.
3.3.1 Motivation fiir die Untersuchung der Pipelinenutzung
3.3.2 Untersuchungsmethoden zur Pipelinenutzung
3.3.3 Relevante Befehle fiir die Pipelinenutzung
Kontextwechsel,
3.4.1 Motivation fiir die Untersuchung von Kontextwechseln

11
11
12
13
14
14
15

17
17
17
18
19
20
22
22
23
24
24
24
26
27

29
31
31
32
38
40
40
41
46
49
49
50
52
52
52

Inhaltsverzeichnis

3.4.2 Untersuchung der Kosten von Kontextwechseln 53
3.4.3 Relevante Befehle fiir die Untersuchung von Kontextwechseln 54

4 Untersuchungen 57
4.1 Technische Details der Untersuchungen 57
4.1.1 TeStSySteme i e e 57

4.1.2 Durchfithrung von Laufzeitmessungen 57
4.1.3 Durchfiihrung von Speicherplatzmessungen 58
4.1.4 Umgang mit Fehlern des GL-Systems 60
4.1.5 Interprozesskommunikation 0 o o ... 61

4.1.6 Minimalshader 61

4.2 Speicherbelegung L 62
4.2.1 Ablage von Datenobjekten im GPU-Speicher. 62
4.2.2 Speicherbedarfvon Datenobjekten 64
4.2.3 Bestimmung der Speicherblockgrole 67
4.2.4 Belegungsverhalten innerhalb von Speicherblécken 69
4.2.5 Bestimmung der Speichergranularitdt. 75
4.2.6 FazitSpeicherbelegung 80

4.3 Dateniibertragung 82
4.3.1 Bestimmung von Dateniibertragungsrate und -laufzeit 82
4.3.2 Konkurrierende Dateniibertragungen 85
4.3.3 Nebenldufige Ausfiihrung von Datentibertragung und Rendering 89
4.3.4 Dateniibertragung ungepufferter Draw-Befehle 90
4.3.,5 FazitDateniibertragung i e 94

4.4 Pipelinenutzung. e e e e e 95
4.4.1 Ausfithrung konkurrierender Draw-Befehle 95
4.4.2 Abbrechbarkeit von Draw-Befehlen 98
4.4.3 FazitPipelinenutzung e 99

4.5 Kontextwechsel e e 99
45.1 Vorgehen e 99
4.5.2 Ergebnisse 101
453 FazitKontextwechsel 102

5 Zusammenfassung und Ausblick 103
5.1 Wenig Probleme bei Kontextwechsel und Dateniibertragung 103
5.2 Schwer beherrschbare Risiken bei der Pipelinenutzung 103
5.3 Risiken wegen mangelnder Speicherbelegungsinformation 104
5.4 Mogliche LOSUNGSANSAtZE o v v v vt e e e e e e e 104
5.4.1 Nutzung der Treiber-Informationen zum Speicherlayout 104
5.4.2 EinschrinkungvonShadern 105
5.4.3 Trennung von Vertex- und Fragment-Processing 105

5.5 Fazit o e 106

6 Anhang

6.1

6.2

Befehle von OpenGLES2.0
6.1.1 Erzeugungvon Datenobjekten
6.1.2 Freigabe von Datenobjekten
6.1.3 Dateniibertragungsbefehle
6.1.4 Vertexdatenverwaltung
6.1.5 Binding von Datenobjekten
6.1.6 Naming von Datenobjekten
6.1.7 Zusammensetzung von Framebuffern.
6.1.8 Draw-Befehle
6.1.9 Clearing-Befehle
6.1.10 Zustandsabfragen.
6.1.11 Programmverwaltung

6.1.12 Befehle zur Anderung von Renderpipeline-Einstellungen

6.1.13 Sonstige OpenGL ES-Befehle
Erweiterungen von OpenGLES2.0
6.2.1 EXT-und OES-Erweiterungen
6.2.2 Erweiterungen der AMD Corporation
6.2.3 Erweiterungen von Apple Incorporated
6.2.4 Erweiterungen der NVIDIA Corporation . . .

6.2.5 Erweiterungen von Imagination Technologies Limited

6.2.6 Erweiterungen von Qualcomm Incorporated

6.2.7 Erweiterungen des ANGLE-Projekts
6.2.8 Erweiterungen von ARM Limited.
6.2.9 Erweiterungen von DMP Incorporated
6.2.10 Erweiterungen der Vivante Corporation . . .

Literaturverzeichnis

Abbildungsverzeichnis

1.1
3.1
4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8
4.9

Innenraum der Fahrzeugstudie MB F800 (Quelle: benzs.blogspot.com)
Ablagemaoglichkeiten von vier Datenobjekten mit % der Speicherblockgrofle
Speicherbelegung bei Erzeugung eines Vertexbuffer-Objekts
Speicherbelegung bei Erzeugung von vier Vertexbuffer-Objekten
Anstieg der Speicherbelegung bei Erzeugung von Datenobjekten mit 32 kByte
Ablagemaoglichkeiten von acht Datenobjekten mit % der SpeicherblockgroRe
Speicherbelegung durch Erzeugung von 65.536 Datenobjekten (Nvidia-System)
Speicherbelegung durch Erzeugung von 65.536 Datenobjekten (ATI-Systeme)
Speicherbelegung durch Erzeugung von 32 Datenobjekten (Nvidia-System)
Speicherbelegung durch Erzeugung von 32 Datenobjekten (ATI-Systeme)

Dateniibertragungszeiten bei leerem GPU-Speicher

107
107
107
107
108
108
109
109
109
110
110
110
111
111
113
114
114
116
116
117
118
118
119
119
119
119

121

11
35
66
66
68
70
78
78
79
79
84

4.10 Laufzeit von glBufferData fiir die Ubertragung von 1kB Vertexbuffer-Daten, wenn

bereits andere Datenobjekte im GPU-Speicher vorhandensind 85
4.11 Laufzeiten konkurrierender Datentiibertragungsbefehle 88
4.12 Laufzeiten bei Dateniibertragung und gleichzeitigem Draw 89
4.13 Laufzeiten ungepufferter Draw-Befehle (,Nvidia Quadro 2000D“-System) 92
4.14 Laufzeiten ungepufferter Draw-Befehle (,ATI FirePro V4800“-System) 93
4.15 Laufzeiten konkurrierender Draw-Befehle 97

Tabellenverzeichnis

4.1 Daten der verwendeten Testsystemeo 57
4.2 Ablageorte von Datenobjekten in Abhédngigkeit des UsageHints 63
4.3 Mittlere Laufzeitunterschiede bei erzwungenen Kontextwechseln (inpus) 101
6.1 Befehle zur Erzeugung von Datenobjekten 107
6.2 Befehle zur Freigabe von Datenobjekten 107
6.3 Dateniibertragungsbefehle o . 108
6.4 Vertexdatenverwaltung. 108
6.5 Befehle zum Binding von Datenobjekten 109
6.6 Namingvon Datenobjekten L 109
6.7 Zusammensetzung von Framebuffern 109
6.8 Draw-Befehle 110
6.9 Clearing-Befehle e 110
6.10 Zustandsabfragen e e 110
6.11 Befehle zur Programmverwaltung 111
6.12 Befehle zur Anderung von Renderpipeline-Einstellungen 112
6.13 Sonstige OpenGLES-Befehle 113
6.14 EXT- und OES-Erweiterungen it ittt et e e e e 116
6.15 Erweiterungen der AMD Corporation, 116
6.16 Erweiterungen von Apple Incorporated o .. 116
6.17 Erweiterungen der NVIDIA Corporation 117
6.18 Erweiterungen von Imagination Technologies Limited 118
6.19 Erweiterungen von Qualcomm Incorporated 118
6.20 Erweiterungen des ANGLE-Projekts 119
6.21 Erweiterungenvon ARM Limited L o o 119
6.22 Erweiterungen von DMP Incorporated 119

Verzeichnis der Algorithmen

6.23 Erweiterungen der Vivante Corporation, 119

Verzeichnis der Algorithmen

4.1 Messung der Laufzeitvon glBufferData 58
4.2 Minimaler Vertexshader o 61
4.3 Minimaler Fragmentshader 62
4.4 Ablage von Datenobjekten in Haupt- oder GPU-Speicher 63
4.5 Untersuchung des Speicherbedarfs von Datenobjekten. 64
4.6 Messung des Anstiegs der GPU-Speicherbelastung 68
4.7 Erzeugung von Datenobjekten mit % der Speicherblockgrofle 70
4.8 Erzeugung von Datenobjekten unterschiedlicher GroBe 71
4.9 Nichtsequentielles Auffiillen von Speicherblocken 73
4.10 Ablage von Datenobjekten in fragmentierten Speicherblocken 74
4.11 Bestimmung der Speichergranularitdt. 76
4.12 Laufzeit von Dateniibertragungsbefehlen 82
4.13 Laufzeit konkurrierender Dateniibertragungsbefehle (Masterprogramm) 86
4.14 Laufzeit konkurrierender Dateniibertragungsbefehle (Slaveprogramm) 87
4.15 Dateniibertragung ungepufferter Draw-Befehle 91
4.16 Untersuchung konkurrierender Draw-Befehle (Masterprogramm). 95
4.17 Untersuchung konkurrierender Draw-Befehle (Slaveprogramm). 96
4.18 Bestimmung der Kosten von Kontextwechseln (Masterprogramm). 100
4.19 Bestimmung der Kosten von Kontextwechseln (Slaveprogramm). 101

1 Einleitung

1.1 Hintergrund dieser Arbeit

Frither wurden 3D-Computergrafik-Anwendungen vor allem fiir den Einsatz in Desktop-Systemen
entwickelt. Dies dndert sich dahingehend, dass solche Anwendungen zunehmend auch fiir einge-
bettete Systeme entwickelt werden, wie man sie beispielsweise in Mobiltelefonen, PDAs aber auch
in Automobilen findet. OpenGL ES fungiert dabei inzwischen als eine de-facto Standardschnittstel-
le fiir die Entwicklung von 3D-Computergrafik-Anwendungen fiir eingebettete Systeme (vgl. [Cole
2005], Seite 7).

Die Zunahme dieser Anwendungen bringt eine Reihe von neuen Anforderungen an solche Systeme
mit sich, insbesondere im Hinblick auf Ausfithrung von Anwendungen, die um die Ressourcen der
eingebetteten GPU kdmpfen, und im Hinblick auf die Erfiillung von Echtzeitgarantien fiir sicher-
heitskritische Anwendungen. Dies wird nachfolgend an einem konkreten Beispiel aus der Automo-
bilbranche néher erldutert.

Abbildung 1.1: Innenraum der Fahrzeugstudie MB F800 (Quelle: benzs.blogspot.com)

11

1 Einleitung

Abbildung 1.1 zeigt den Innenraum des Mercedes-Benz F800. Bei diesem Fahrzeug handelt es sich
um eine sogenannte Fahrzeugstudie, d. h. dieses Fahrzeug wird nicht in die Serienproduktion ge-
hen - es ldsst aber erahnen, in welche Richtung die kiinftige Entwicklung gehen kénnte.

Hierbei sind insbesondere die beiden in der Abbildung erkennbaren Displays interessant. Groe
Displays wie das rechte, im oberen Bereich der Mittelkonsole — die sogenannte Headunit — sind
aus neueren Serienfahrzeugen bekannt. Eine solche Headunit dient zum Beispiel der Darstellung
der grafischen Benutzeroberflaichen von Autoradios, Navigationssoftware, etc.

Hinter dem Lenkrad befindet sich das sogenannte Kombiinstrument, auf dem beispielsweise die
aktuelle Geschwindigkeit, Drehzahl, etc. angezeigt werden. Die Besonderheit an diesem kom-
biinstrument ist, dass es ohne mechanische Teile auskommt. Instrumente wie Drehzahlmesser,
Geschwindigkeitsanzeige, etc. sind hier nur noch virtuell vorhanden - sie werden auf einem
Computer-Display gerendert.

In diesem Fahrzeug werden die auf der Headunit und dem Kombiinstrument angezeigten Grafiken
auf separaten GPUs erstellt. Prinzipiell kénnten die Ausgaben fiir die Headunit und das Kombiin-
strument aber auch auf der selben GPU berechnet werden. Dies hitte Vorteile hinsichtlich Kosten,
Platz- und Stromverbrauch.

Dabei ist jedoch zu beachten, dass einige der Anzeigen auf dem Kombiinstrument sicherheitskri-
tisch sind, zum Beispiel die Geschwindigkeitsanzeige. Es darf nicht passieren, dass solche Anzei-
gen durch Anwendungen der Mittelkonsole behindert werden — wenn der Benutzer beispielsweise
die Navigationssoftware auf der Mittelkonsole startet, darf die Geschwindigkeitsanzeige auf dem
Kombiinstrument deshalb nicht ,ruckeln®, oder ,einfrieren®.

Wenn sich die Anwendungen der Mittelkonsole und des Kombiinstruments eine GPU teilen, miis-
sen die sicherheitskritischen Anwendungen gegeniiber anderen Anwendungen priorisiert und
Echtzeitgarantien fiir die Ausfithrung der GPU-Befehle kritischer Anwendungen erfiillt werden
konnen. Im folgenden Abschnitt wird erldutert, was in dieser Arbeit darunter zu verstehen ist.

1.2 Echtzeitgarantien

Unter Echtzeitgarantie wird verstanden, dass sichergestellt ist, dass eine kritische Anwendung
durch andere Anwendungen, die die selbe GPU verwenden, nicht derart behindert wird, dass ihre
(sicherheitskritische) Anzeige nicht rechtzeitig aktualisiert werden kann. Was rechtzeitig bedeutet,
héingt dabei von der jeweiligen Anwendung ab.

Wenn nachfolgend von einer Echtzeitgarantie fiir eine kritische Anwendung gesprochen wird, wird
darunter verstanden, dass sichergestellt ist, dass hochstens ein Intervall von einer i-tel Sekunde
zwischen dem Zeitpunkt des Abschlusses des Renderings eines Bildes und dem Abschluss des Ren-
derings des darauf folgenden Bildes vergeht. Dies wird nachfolgend an einem konkreten Beispiel
erklart:

Einige sicherheitskritische Anzeigen, wie beispielsweise die Geschwindigkeitsanzeige, miissen re-
gelmdRig aktualisiert werden. Dabei soll dem Fahrer der Eindruck einer kontinuierlichen Bewe-
gung vermittelt werden. Um dies zu erreichen, muss die Anzeige mehrmals pro Sekunde aktuali-
siert werden, indem ein neues Bild des Instruments gerendert wird.

12

1.3 Probleme heutiger OpenGL ES-Systeme

An dieser Stelle wird beispielhaft davon ausgegangen, dass hierfiir ein Mindestwert von 30 Bildern
pro Sekunde nicht unterschritten werden darf. Eine naive Festlegung der Anzahl an gerenderten
Bildern pro Sekunde reicht dabei aber nicht aus, um eine praktikable Echtzeitgarantie fiir diese
Anwendung zu definieren. In diesem Beispiel konnte diese Bedingung auch dann erfiillt werden,
wenn die fiir die Geschwindigkeitsanzeige zustindige Anwendung 19—0 Sekunden blockiert wiirde
und in der letzten Zehntel Sekunde 30 Bilder rendern kénnte. In dem Fall hétte der Fahrer jedoch
nicht den Eindruck einer kontinuierlichen Bewegung.

Um Bilder rendern zu kdonnen, miissen Anwendungen Befehle an die GPU iibermitteln. Eine der
Schnittstellen, die Anwendungen dies ermdglicht, ist OpenGL ES. Die Betrachtung dieser Schnitt-
stelle (in der Version 2.0) steht im Mittelpunkt dieser Arbeit. Eine eingehende Beschreibung der
Grundlagen von OpenGL ES 2.0 erfolgt in Kapitel 2. Im nichsten Abschnitt werden einige der
grundsitzlichen Probleme dieser Schnittstelle erortert, die der Erfiillung von Echtzeitgarantien im
Wege stehen.

Wenn nicht explizit anders angegeben, ist nachfolgend OpenGL ES in der Version 2.0 gemeint,
wenn von OpenGL ES ohne Angabe der Versionsnummer gesprochen wird.

1.3 Probleme heutiger OpenGL ES-Systeme

Keines der heute verfiigbaren OpenGL ES-Systeme! unterstiitzt eine Virtualisierung der fiir die Aus-
fiihrung der OpenGL ES-Befehle verwendeten GPU. Insbesondere ist es nicht mdglich,

* die Ausfithrung von Befehlen einer bestimmten Anwendung gegeniiber anderen Anwendun-
gen zu priorisieren oder

* Einschrdankungen hinsichtlich der Nutzung der Ressourcen der verwendeten GPU (zum Bei-
spiel GPU-Speicher) fiir einzelne Anwendungen festzulegen.

Dies hat zur Folge, dass ,bosartige“ oder fehlerhafte Anwendungen einen Grofiteil der GPU-
Ressourcen fiir sich beanspruchen kénnen. OpenGL ES definiert keinen Mechanismus, um in
einem solchen Umfeld fiir kritische Anwendungen sicherstellen zu kénnen, dass deren Befehle
rechtzeitig (oder iiberhaupt) ausgefiihrt werden kénnen.

Erschwerend kommt hinzu, dass die von einem OpenGL ES-System verwendete Hardware von der
Spezifikation von OpenGL ES als Blackbox behandelt wird. Das Verhalten der Hardware bei Aus-
fiihrung eines bestimmten OpenGL ES-Befehls ist auf Grundlage seiner Spezifikation daher nicht
vorhersagbar. OpenGL ES definiert zum Beispiel eine Reihe von Datenobjekten, die vom OpenGL
ES-System verwaltet werden. Anwendungen haben die Moglichkeit iiber OpenGL ES-Befehle Da-
ten in solchen Datenobjekten zu speichern. Die Spezifikation schreibt aber weder vor, wo diese
Daten abgelegt werden (zum Beispiel im Hauptspeicher oder im GPU-Speicher), noch wie sie ab-
gelegt werden. Es wire demnach spezifikationskonform, wenn durch die Ubertragung von einem
Megabyte Daten in ein solches Datenobjekt fiinf Megabyte des im GPU-Speicher verfiigbaren Spei-
cherplatzes belegt wiirden.

1Ein OpenGL ES-System ist ein System, das eine Implementierung der OpenGL ES-Schnittstelle bereitstellt fiir Anwen-
dungen bereitstellt und ihnen ermdéglicht, iber diese Schnittstelle Bilder zu rendern. Eine genaue Beschreibung der
Komponenten eines OpenGL ES-Systems erfolgt in Kapitel 2.2.

13

1 Einleitung

Im néchsten Abschnitt wird ein Losungsansatz beschrieben, durch den es trotz der hier genannten
Probleme erméglicht werden soll, Echtzeitgarantien fiir kritische Anwendungen zu erfiillen, auch
wenn das verwendete OpenGL ES-System zur gleichen Zeit von anderen Anwendungen genutzt
wird.

1.4 Ansatz zur Losung der genannten Probleme

Die Grundidee zur Losung der oben beschriebenen Probleme basiert darauf, dass Anwendungen
ihre Befehle nicht direkt an das OpenGL ES-System iibermitteln, sondern an eine Zwischenschicht,
die die gleiche Schnittstelle bereitstellt. Diese Zwischenschicht wertet die ibermittelten Befehle
anhand der iibergebenen Parameter und des aktuellen Kontextes aus und entscheidet dann dar-
tiber, ob die Befehle sofort oder erst zu einem spéteren Zeitpunkt an das eigentliche OpenGL ES-
System weitergeleitet werden konnen, oder ob sie ganz abgelehnt werden miissen. Die Zwischen-
schicht verfolgt bei dieser Entscheidung das Ziel, sicherzustellen, dass die ndachsten Befehle kri-
tischer Anwendungen rechtzeitig ausgefiihrt werden kénnen. Damit die Zwischenschicht dieser
Aufgabe nachkommen kann, miissen jedoch die folgenden beiden Voraussetzungen erfiillt sein:

¢ Der Ressourcenverbrauch und die Laufzeit der ibermittelten Befehle miissen insoweit vor-
hergesagt werden kdnnen, dass zumindest eine Obergrenze dafiir garantiert werden kann.

¢ Das Verhalten des verwendeten OpenGL ES-Systems hinsichtlich der Ausfiihrung der tiber-
mittelten Befehle muss bekannt sein.

Der erste Punkt allein reicht nicht aus. Dies soll an einem Beispiel erldutert werden: Angenom-
men es soll ein Befehl einer unkritischen Anwendung ausgefiihrt werden, dessen Laufzeit gerade
kurz genug ist, um den nichsten Befehl einer kritischen Anwendung rechtzeitig an das OpenGL ES-
System {ibermitteln zu konnen. Dann diirfte der Befehl der unkritischen Anwendung auf Grundla-
ge des ersten Punktes ausgefiihrt werden. Falls aber iiber das System-Verhalten bekannt ist, dass
der erste Befehl einer Anwendung stets um eine bestimmte Zeit verzogert wird, wenn er auf den
Befehl einer anderen Anwendung folgt, dann diirfte der Befehl der unkritischen Anwendung nicht
ausgefiihrt werden.?

Der Wunsch, diese beiden Voraussetzungen erfiillen zu konnen, ist der Ausgangspunkt fiir die vor-
liegende Arbeit. Im folgenden Abschnitt wird ihre Zielsetzung genauer erldutert.

1.5 Zielsetzung dieser Arbeit

Ziel dieser Arbeit ist es, anhand einiger realer OpenGL ES-Systeme zu untersuchen, inwieweit die
beiden im vorhergehenden Abschnitt genannten Voraussetzungen fiir die Implementierung einer
Zwischenschicht mit den genannten Aufgaben erfiillt werden kénnen. Konkret setzt sich diese Ar-
beit die folgenden vier Ziele:

2Dies kommt in OpenGL ES-Systemen vor, weil die relevanten GPU-Einstellungen der aufrufenden Anwendung erneut
in die GPU {iibertragen werden miissen, da sich die Einstellungen der zuvor bedienten Anwendung davon unterschei-
den konnen. Ein solcher Vorgang wird auch als Kontextwechsel bezeichnet.

14

1.6 Verwandte Arbeiten

¢ Samtliche relevanten Befehle von OpenGL ES sind zu bestimmen, deren Ausfiihrung einen
negativen Einfluss auf die Erfiillung von Echtzeitgarantien fiir kritische Anwendungen haben
konnte. Ein solcher Einfluss ist nicht fiir alle von OpenGL ES definierten Befehle zu erwarten.
Es existiert beispielsweise ein Befehl, mit dem der Name des Herstellers des verwendeten
OpenGL ES-Systems abgefragt werden kann. Es ist nicht anzunehmen, dass durch diesen
Befehl die Ressourcen der GPU in irgendeiner Weise belastet werden.

 Fiir die relevanten OpenGL ES-Befehle ist eine Analyse ihres Laufzeitverhaltens und ihres
Ressourcenverbrauchs durchzufiihren.

» Spezielle Szenarien sind zu untersuchen, um festzustellen, inwiefern das Verhalten von
OpenGL ES-Systemen die rechtzeitige Ausfithrung kritischer Befehle verhindern kann. Die
im letzten Abschnitt beschriebenen zusdtzlichen Laufzeitkosten fiir die Ausfithrung von
Befehlen, die unmittelbar nach dem Befehl einer anderen Anwendung ausgefiihrt werden,
wadren ein Beispiel fiir so ein solches Systemverhalten.

¢ Untersuchungsmethoden und Metriken sind zu entwickeln, auf deren Grundlage der Res-
sourcenverbrauch sowie die Laufzeit von OpenGL ES-Befehlen auf konkreten OpenGL ES-
Systemen prognostiziert und die dafiir notwendigen systemspezifischen Kennzahlen ermit-
telt werden kénnen. Die entwickelten Untersuchungsmethoden sind auf realen OpenGL ES-
Systemen durchzufiihren.

Die in dieser Arbeit entwickelten Metriken finden sich in Kapitel 2. Die Untersuchungsmethoden
werden in Kapitel 3 beschrieben. Die Anwendung der Untersuchungsmethoden und Metriken auf
drei realen OpenGL ES-Systemen erfolgt schlieflich in Kapitel 4. Im nidchsten Abschnitt wird ein
Uberblick iiber relevante, verwandte Arbeiten gegeben.

1.6 Verwandte Arbeiten

[Dwarakinath 2008] beschiftigt sich damit, wie sichergestellt werden kann, dass jede Anwendung,
die die GPU nutzt, einen gleichen Anteil an den Rechenzeit-Ressourcen der GPU erhilt. Diese Ar-
beit setzt auf Ebene der GPU-Treiber an. Diese werden um einen Scheduler erweitert, der Befehle
verschiedener Anwendungen zwischenspeichert. Er teilt die verfiigbare Rechenzeit in gleich grol3e
Intervalle auf und weist jeder Anwendung in jedem Intervall einen zeitlichen Anteil an der GPU-
Nutzung zu. Falls eine Anwendung ihren Anteil in einem Intervall nicht ausschdpfen kann, erhoht
sich ihr Anteil im néchsten Intervall entsprechend (umgekehrt verringert er sich, wenn eine An-
wendung im vorhergehenden Intervall die GPU ldnger nutzt als erlaubt). Befehle einer Anwendung
werden nur an die GPU iibergeben, wenn deren prognostizierte Laufzeit geringer ist als der ihr zu-
gewiesene Anteil.

Durch dieses Vorgehen soll es ermoglicht werden, dass alle Anwendungen im langen Mittel einen
gleichen Anteil an den Rechenzeit-Ressourcen der GPU erhalten. Eine Priorisierung einzelner An-
wendungen ist nicht vorgesehen und auch nicht die Erfiillung von Echtzeitgarantien fiir einzelne
Anwendungen.

[Bautin u. a. 2008] erweitert den Ansatz von [Dwarakinath 2008] dahingehend, dass Anwendungen,
die um die GPU konkurrieren, auch einen gleichen Anteil am GPU-Speicher erhalten.

15

1 Einleitung

[Kato u.a. 2011] verfolgt einen dhnlichen Ansatz wie [Dwarakinath 2008]. Auch hier werden die
GPU-Treiber um einen Scheduler erweitert, der zum Ziel hat, die verfiighare GPU-Rechenzeit auf
konkurrierende Anwendungen aufzuteilen; im Gegensatz zu [Dwarakinath 2008] ermoglicht dieser
Ansatz jedoch die Priorisierung einzelner Anwendungen gegeniiber anderen Anwendungen.

Auch dieser Ansatz hat nicht die Erfiillung von Echtzeitgarantien zum Ziel. Auch bei hochster Prio-
risierung kann nicht ausgeschlossen werden, dass durch die Ausfithrung von Befehlen niedrig prio-
risierter Anwendungen die rechtzeitige Ausfithrung von Befehlen kritischer Anwendungen verhin-
dert wird.

[Grottel u. a. 2009] beschiftigt sich mit der Nutzung des GPU-Speichers durch OpenGL und mit der
Dateniibertragung vom Hauptspeicher in die GPU und untersucht verschiedene Ansétze, um zu
visualisierende Datensétze, die sich hédufig &ndern, der GPU moglichst effizient zugénglich zu ma-
chen. Dabei wird der Einfluss der verschiedenen Ansétze auf das Laufzeitverhalten von OpenGL-
Dateniibertragungsbefehlen und Zeichenbefehlen analysiert. Da dieses Verhalten auch im Rah-
men der vorliegenden Arbeit untersucht werden muss, sind die von [Grottel u. a. 2009] gewonnen
Erkenntnisse dazu fiir die kommenden Untersuchungen relevant.

Im nichsten Kapitel wird ein Uberblick iiber die Schnittstelle OpenGL ES gegeben und es werden
die Grundlagen von OpenGL ES-Systemen erortert, die zum Verstdndnis der nachfolgenden Kapi-
tel unverzichtbar sind.

16

2 Grundlagen von OpenGL ES-Systemen

2.1 OpenGL und OpenGL ES

Fiir GPUs existiert keine Standard-Hardwareschnittstelle wie beispielsweise die IDE- oder SCSI-
Schnittstelle fiir Laufwerke. Es wire daher sehr schwierig, Computergrafik-Anwendungen zu
entwickeln, die eine grof3e Anzahl verschiedener GPUs nutzen kdonnen, wenn sie die GPUs {iiber
ihre Hardwareschnittstellen ansprechen miissten. Es ist daher uniiblich fiir solche Anwendungen,
GPUs direkt iiber die Hardwareschnittstelle anzusprechen. Stattdessen wird eine High-Level-
Grafik-API verwendet, die die Details der jeweiligen Hardware verbirgt. OpenGL ist eine solche
API. Sie unterstiitzt alle grollen Betriebssysteme und wird von den meisten GPU-Herstellern fiir
ihre Produkte implementiert (vgl. [Lagar-Cavilla u. a. 2007], Seiten 33-34).

OpenGLES ist eine Variante von OpenGL, die speziell im Hinblick auf eingebettete GPUs entwickelt
wurde (wie sie zum Beispiel in Fahrzeugen, Mobiltelefonen, PDAs, etc. zum Einsatz kommen). Ei-
nes der vorrangigen Ziele der Hersteller solcher eingebetteten GPUs ist die Reduktion des Stromver-
brauchs. OpenGL ES ermdoglicht es ihnen, eine gegeniiber Standard-OpenGL erheblich reduzierte
API zu unterstiitzen, was wiederum die Anforderungen an die Hardware verringert und somit hilft,
Gerite zu entwickeln, die letztendlich weniger Strom verbrauchen (vgl. [Cole 2005], Seite 7).

OpenGLES 2.0 ist an (Standard-) OpenGL 2.0 angelehnt. Nach [Munshi u. a. 2008] unterscheidet es
sich im Wesentlichen in den folgenden beiden Punkten von OpenGL 2.0:

¢ Jegliche Redundanz in OpenGL 2.0 wurde in OpenGL ES 2.0 entfernt. Wo es in OpenGL 2.0
mehr als eine Moglichkeit gibt, um die selbe Operation auszufiihren, wurde fiir OpenGL ES
2.0 nur eine der Moglichkeiten iibernommen.

* Um spezielle Einschrdnkungen von eingebetteten GPUs zu beriicksichtigen, wurde neue
Funktionalitdt in OpenGL ES 2.0 eingefiihrt, beispielsweise die Mdéglichkeit, die Prazision
von Fliefkommavariablen in Shadern zu spezifizieren (eine geringere Prizision ermog-
licht die Nutzung vereinfachter FlieBkommaprozessoren, die wiederum einen geringeren
Stromverbrauch aufweisen konnen).

OpenGL ES 2.0 ist also keine echte Untermenge von OpenGL 2.0. Von Version 4.0 auf 4.1 wurde
OpenGL jedoch dahingehend erweitert, dass es die gesamte Funktionalitdt von OpenGL ES 2.0
enthdlt (ab OpenGL 4.1 ist OpenGL ES 2.0 also eine echte Untermenge von OpenGL).

2.2 Implementierungsvarianten von OpenGL ES-Systemen

Die Spezifikationen von OpenGL ES und Standard-OpenGL schreiben nicht vor, dass in einem kon-
kreten System, das OpenGL unterstiitzt, diese Unterstiitzung in eigener Hardware implementiert

17

2 Grundlagen von OpenGL ES-Systemen

sein muss (siehe [Segal u.a. 2010], Seite 2). Es gibt Systeme, die die gesamte Funktionalitit von
OpenGL in Software realisieren, zum Beispiel Mesa 3D [Paul 2007] A

Die Nutzung von Softwareimplementierungen ist jedoch uniiblich, da die Verwendung von
spezialisierter Hardware die Entwicklung leistungsfdahigerer Grafik-Anwendungen ermdoglicht.
Auf Software-Rendering wird im Notfall zuriickgegriffen, wenn die verwendete Hardware eine
bestimmte Funktionalitédt nicht unterstiitzt [vgl. Lagar-Cavilla u. a. 2007, Seite 34].

Ublicherweise bestehen OpenGL ES-Systeme aus vier Komponenten:

¢ Eine Implementierung der OpenGL ES-API, die von Anwendungen angesprochen werden
kann.

* Einen separaten GPU-Speicher, in dem das OpenGL ES-System seine Daten ablegt. Dieser
GPU-Speicher ist im einfachsten Fall ein Bereich des Hauptspeichers, der vom OpenGL ES-
System genutzt werden kann. Es gibt aber auch Systeme, die {iber einen eigenen, physischen
Speicher verfiigen. Moderne Desktop-Systeme verfiigen typischerweise tiber mehrere Giga-
byte eines solchen Speichers mit einer internen Speicherbandbreite von tiber 64 Gbps [Satish
u. a. 2009].

* Eine physische GPU, die idealerweise alle Schritte der Renderpipeline? in Hardware unter-
stiitzt. Wahrend friiher iiblicherweise jeder Schritt der Renderpipeline durch eigene Hardwa-
re unterstiitzt wurde, geht seit einigen Jahren der Trend hin zur Verwendung sogenannter
Unified Processors — programmierbare Prozessoren, die verschiedene Aufgaben erfiillen kon-
nen und auf denen mehrere Schritte der Renderpipeline berechnet werden (siehe beispiels-
weise Nvidia 2006, Seiten 20-21).

* Ein Geritetreiber, der als Schnittstelle zwischen der OpenGL ES-API, dem Betriebssystem
sowie der GPU und dem GPU-Speicher fungiert.

2.3 Client-Server-Modell der Befehlsiibermittlung

Die Ubermittlung von OpenGL ES-Befehlen folgt einem Client-Server-Modell. Wenn eine An-
wendung einen OpenGL ES-Befehl aufruft, wird der Befehl an eine Komponente des OpenGL
ES-Systems iibermittelt, die als GL-Client bezeichnet wird. Fiir jede Anwendung, die OpenGL
ES nutzt, existiert eine Instanz dieser Komponente. Sie hat die Moglichkeit, an sie {ibermittelte
Befehle zwischenzuspeichern und erst zu einem spéteren Zeitpunkt an den sogenannten GL-
Server weiterzuleiten. OpenGL ES-Befehle werden erst ausgefiihrt, nachdem sie an den GL-Server
tibermittelt wurden.

Der GL-Server kann sich prinzipiell auf einem anderen Rechner befinden als der GL-Client. In ein-
gebetteten Systemen ist dies iiblicherweise nicht der Fall (siehe [Munshi u. a. 2008], Seite 16). Den-
noch kann die Ubermittlung von Befehlen durch den GL-Client verzégert werden. Dies ist abhén-
gig vom konkreten OpenGL ES-System. Sobald der GL-Client einen Befehl zwischengespeichert

IMesa 3D ist seit Version 2.2 keine ausschliefliche Softwareimplementierung mehr. Es kann optional auch Hardware-
beschleunigung nutzen, sofern entsprechende Treiber vorhanden sind.

2Die Renderpipeline von OpenGL ES besteht aus einer Abfolge von Datenverarbeitungsschritten, durch die die iiber-
gebenen Eingangsdaten sukzessive umgewandelt werden, bis am Ende ein Bild entsteht, das auf Computerbildschir-
men ausgegeben werden kann. Die Renderpipeline wird in Abschnitt 2.6 detailliert beschrieben.

18

2.4 Dateniibergabe und -verwaltung

hat, kann die von der Anwendung aufgerufene Funktion bereits zuriickspringen, d. h. es ist prinzipi-
ell moglich, dass ein Riicksprung erfolgt, bevor der entsprechende Befehl vom OpenGL ES-System
ausgefiihrt wurde.

Es macht daher wenig Sinn, die Laufzeit eines OpenGL ES-Befehls zu messen, indem die verstriche-
ne Zeit zwischen dem Aufruf des entsprechenden Befehls und dessen Riicksprung ermittelt wird.
OpenGL ES definiert jedoch zwei Befehle, die hier sehr niitzlich sind, glFlush und glFinish:

* Der Aufruf von glFlush veranlasst den GL-Client, alle zwischengespeicherten Befehle an
den GL-Server weiterzuleiten.

e Der Aufruf von glFinish {iberpriift, ob alle Befehle, die von der aufrufenden Anwendung an
das OpenGL ES-System iibermittelt wurden, vollstindig ausgefiihrt wurden, und kehrt erst
zuriick, sobald dies der Fall ist.

Mit Hilfe dieser beiden Befehle kann eine sinnvolle Metrik fiir die Bestimmung der Laufzeit von
OpenGL ES-Befehlen definiert werden: Die Laufzeit eines OpenGL ES-Befehls C ist die Zeit, die
zwischen dem Aufruf von C durch die Anwendung A und dem Riicksprung des néchsten Aufrufs
von glFinish durch A vergeht, wobei die folgenden Bedingungen von A erfiillt werden miissen:

e Vor Aufruf von C ruft A glFinish auf.

* Zwischen dem Riicksprung von glFinish und dem Aufruf von C ruft A keinen weiteren
OpenGL ES-Befehl auf.

¢ Unmittelbar nach dem Riicksprung von C ruft A glFlush auf.
¢ Unmittelbar nach dem Riicksprung von glFlush ruft A glFinish auf.

Wenn nachfolgend im Zusammenhang einer OpenGL ES-Anwendung von der ,Ubermittlung eines
OpenGL ES-Befehls an den GL-Server“ gesprochen wird, ist damit gemeint, dass dem Aufruf des
entsprechenden Befehls ein Aufruf von glFlush folgt.

2.4 Dateniibergabe und -verwaltung

Bevor die Renderpipeline eines OpenGL ES-Systems ein Bild rendern kann, muss die OpenGL ES-
Anwendung dem System Daten iibergeben, aus denen das Bild berechnet werden kann. OpenGL
ES unterscheidet fiinf Arten solcher Daten:

¢ Vertexdatenarrays
¢ Indexdatenarrays
¢ Vertex-Attribute
¢ Texturen

¢ Uniforms

Eine Minimalvoraussetzung, um ein Bild rendern zu kénnen, ist, dass dem OpenGL ES-System
von der aufrufenden Anwendung mindestens ein Vertexdatenarray iibergeben wurde. Dieses Array
muss mindestens ein Element enthalten und die Grol3e der Elemente muss mindestens ein Byte

19

2 Grundlagen von OpenGL ES-Systemen

betragen. Elemente von Vertexdatenarrays dienen als Input fiir den Vertexshader-Schritt der Ren-
derpipeline. Im Zuge dieses Schrittes wird vom OpenGL ES-System fiir jedes Element im Vertexda-
tenarray eine Instanz eines speziellen Programms ausgefiihrt, das als Vertexshader bezeichnet wird.
Da Vertexshader bewusst so entworfen wurden, dass sie relativ geringe Datenmengen verarbeiten,
ist die maximale Gr63e der Elemente von Vertexdatenarrays auf 16 Byte begrenzt (siehe [Bailey
2011], Seite 67). Vertexshader werden in Abschnitt 2.5 ndher erldutert.

Die Elemente eines Indexdatenarrays bestimmen beim Rendering, welche Elemente der zu verar-
beitenden Vertexdatenarrays beriicksichtigt werden sollen und in welcher Reihenfolge sie bertick-
sichtigt werden sollen. Die Ubergabe eines Indexdatenarrays ist optional. Wenn keines iibergeben
wird, werden alle Elemente von Vertexdatenarrays in der Reihenfolge beriicksichtigt, in der sie im
Array liegen.

Die Ubergabe von Vertex-Attributen, Texturen oder Uniforms ist ebenfalls optional. Vertex-
Attribute dienen ebenfalls als Input fiir Vertexshader. Fiir sie gelten die gleichen Einschriankungen
wie fiir Elemente eines Vertexdatenarrays. Sie werden in Abschnitt 2.6.2.1 ndher erldutert. Texturen
dienen als Input fiir Fragmentshader® und werden in Abschnitt 2.6.2.4 niher erldutert. Uniforms
dienen sowohl als Input fiir Vertex- als auch fiir Fragmentshader. Sie erfiillen die Rolle von kon-
stanten Variablen und stehen jeder ausgefiihrten Instanz dieser Programme zur Verfiigung. IThre
Grofle ist auf 128 Byte begrenzt.

Vertexdatenarrays liegen im Hauptspeicher und werden von der OpenGL ES-Anwendung verwal-
tet — vor AnstoBen des Renderings muss dem OpenGL ES-System durch die Anwendung ein Zeiger
auf das Array iibergeben werden. Alle {ibrigen Daten werden vom OpenGL ES-System verwaltet, so-
bald sie ihm iibergeben wurden. Nach erfolgter Ubergabe kann die OpenGL ES-Anwendung diese
Daten freigeben. Optional besteht auch fiir Vertexdatenarrays die Moglichkeit, sie vom OpenGL ES-
System verwalten zu lassen, indem sie in ein spezielles Datenobjekt kopiert werden. Im néchsten
Abschnitt werden die verschiedenen Arten von Datenobjekten genauer erldutert.

2.4.1 Datenobjekte

Datenobjekte sind vom OpenGL ES-System verwaltete Ressourcen. OpenGL ES-Anwendungen
konnen Datenobjekte zwar erzeugen und freigeben sowie Daten in diese Datenobjekte iibertragen
(mit Ausnahme von Renderbuffer-Objekten, siehe Abschnitt 2.4.1.3); das OpenGL ES-System
ist jedoch fiir die Reservierung und Freigabe des dafiir nétigen Speicherplatzes zustdndig und
bestimmt dariiber, wo sich Datenobjekte befinden (zum Beispiel im Hauptspeicher oder im
GPU-Speicher). Nachdem sie Daten in Datenobjekte {ibertragen haben, erhalten OpenGL ES-
Anwendungen keinen direkten Zugriff mehr darauf. Sie konnen allerdings erneut Daten in ein
Datenobjekt {ibertragen, wodurch bereits dort befindliche {iberschrieben werden (aufler bei
Renderbuffer-Objekten, siehe Abschnitt 2.4.1.3).

OpenGL ES kennt vier Arten von Datenobjekten: Vertexbuffer-Objekte, Texturobjekte, Renderbuffer-
Objekte und Framebuffer-Objekte. Diese Datenobjektarten werden in den ndchsten Abschnitten
genauer beschrieben.

3Wie Vertexshader sind auch Fragmentshader spezielle Programme, die im Zuge der Datenverarbeitung durch die Ren-
derpipeline ausgefiihrt werden. Sie werden in Abschnitt 2.5 niher erldutert.

20

2.4 Dateniibergabe und -verwaltung

2.4.1.1 Vertexbuffer-Objekte

In Vertexbuffer-Objekten konnen Vertex- oder Indexdatenarrays gespeichert werden. Auller einer
systemspezifischen MaximalgréBe definiert OpenGL ES keine Einschrankungen hinsichtlich ihrer
GroRe. Eine Besonderheit, die Vertexdaten-Objekte von anderen Datenobjekten unterscheidet, ist
die Moglichkeit, einen Usage Hint anzugeben. Der Usage Hint dient dazu, dem OpenGL ES-System
einen Hinweis zu geben, wie das entsprechende Datenobjekt von der Anwendung verwendet wer-
den wird (vgl. [Munshi und Leech 2010], Seiten 23-24). Es stehen drei Méglichkeiten zur Wahl:

e GL_STATIC_DRAW: Der Inhalt des Datenobjekts wird von der Anwendung einmal festgelegt
und hdufig zum Rendern verwendet.

e GL_DYNAMIC_DRAW: Der Inhalt des Datenobjekts wird von der Anwendung hiufig verdndert
und hiufig zum Rendern verwendet.

¢ GL_STREAM_DRAW: Der Inhalt des Datenobjekts wird von der Anwendung einmal festgelegt
und selten zum Rendern verwendet.

Die Spezifikation von OpenGL ES schreibt nicht vor, wie ein konkretes OpenGL ES-System auf die-
se Hinweise reagieren soll. Im Gegenzug ist es den OpenGL ES-Anwendungen freigestellt, sich an-
ders zu verhalten, als dies durch den angegeben Usage Hint zu erwarten wére. Es ist beispielsweise
durchaus legal, ein Vertexbuffer-Objekt mit Angabe von GL_STATIC_DRAW zu erzeugen und es an-
schlieBend héufig zu verdndern (siehe auch [Munshi u. a. 2008], Seite 118).

2.4.1.2 Texturobjekte

In Texturobjekten konnen Texturen gespeichert werden. Texturen dienen als optionaler Input fiir
Fragmentshader (vgl. Abschnitt 2.6.2.4). Die Datenelemente einer Textur — Texel genannt — sind
als zweidimensionales Array organisiert. Hinsichtlich der Zeilen und Spalten-Anzahl gilt die Ein-
schrinkung, dass es sich dabei um eine Zweierpotenz handeln muss. Die Grée eines Texels ist auf
vier Byte begrenzt.

2.4.1.3 Renderbuffer-Objekte

Renderbuffer-Objekte unterscheiden sich von den anderen Datenobjekten darin, dass OpenGL ES-
Anwendungen keine Daten in sie {ibertragen kénnen. In Renderbuffer-Objekten werden von der
Renderpipeline erzeugte Ergebnisdaten gespeichert.

2.4.1.4 Framebuffer-Objekte

Anders als bei den andern drei Datenobjektarten haben OpenGL ES-Anwendungen keinen Einfluss
auf die GroBe von Framebuffer-Objekten. In ihnen kdnnen die IDs von bis zu drei anderen Daten-
objekten gespeichert werden, wobei nur IDs von Textur- und Renderbuffer-Objekten gespeichert
werden konnen. Framebuffer-Objekte fungieren als Zielpunkte fiir die Ausgabe der Renderpipeline
und leiten die Ergebnisdaten an die Datenobjekte weiter, deren IDs sie gespeichert haben.

21

2 Grundlagen von OpenGL ES-Systemen

Die drei Datenobjekte werden einem Framebuffer-Objekt jeweils in einer von drei Rollen zugewie-
sen: Als sogenannter Colorbuffer, Depthbuffer oder Stencilbuffer. Im Colorbuffer wird das geren-
derte Bild gespeichert. Im Depth- und im Stencilbuffer werden Werte gespeichert, die im Rahmen
des letzten Schrittes der Renderpipeline dazu genutzt werden konnen, zu entscheiden, ob und ggf.
wie einzelne Ergebniswerte mit den bereits vorhandenen Werten in den drei Datenobjekten des
Framebuffer-Objekts kombiniert werden (siehe Abschnitt 2.6.2.5).

2.4.2 Eviction

Wenn gewisse Daten zur Ausfiihrung des Renderings im GPU-Speicher liegen miissen, kann die
Situation eintreten, dass ein Bild nicht gerendert werden kann, weil im GPU-Speicher nicht mehr
genug Platz vorhanden ist, um die dafiir benétigten Daten dort unterzubringen. Um auch in einer
solchen Situation Rendering zu ermdglichen, verfiigen gewisse OpenGL ES-Systeme iiber einen
sogenannten Eviction-Mechanismus. Unter dem Begriff Eviction versteht man das Auslagern von
Daten aus dem GPU-Speicher, um Platz fiir die Speicherung anderer Daten zu schaffen.

Eviction kann unter ungiinstigen Umstédnden aber auch negative Auswirkungen haben. Die Ausla-
gerung eines Datenobjekts konnte zur Folge haben, dass sich ein nachfolgender Renderingvorgang
verldngert. Dies soll an einem Beispiel erldutert werden: Ausgangspunkt ist, dass ein Vertexbuffer-
Objekt erzeugt wird, das die Vertexdaten fiir einen Renderingvorgang speichern soll. Da im GPU-
Speicher nicht mehr genug Platz dafiir ist, wird durch den Eviction-Mechanismus ein Texturobjekt
in den Hauptspeicher ausgelagert. Nun wird der Renderingvorgang gestartet. Wenn im Zuge die-
ses Vorgangs aber genau diese Textur im GPU-Speicher benotigt wird, muss sie erst wieder dorthin
zuriickiibertragen werden. Um dies zu erméglichen, wird durch den Eviction-Mechanismus eine
andere Textur ausgelagert und anschlieBend die erste Textur in den GPU-Speicher iibertragen.

Nun kann das Rendering fortgesetzt werden. Es ist aber nicht ausgeschlossen, dass im weiteren Ver-
lauf des Renderingvorgangs auch die zweite ausgelagerte Textur benotigt wird. Diese miisste dazu
auch wieder in den GPU-Speicher zuriickiibertragen werden, wofiir erst ein drittes Datenobjekt
ausgelagert werden miisste, das moglicherweise spiter auch bendotigt wird, ... Durch die Auslage-
rung eines Datenobjekts kann es unter ungiinstigen Umstdnden bei der spdteren Ausfiihrung eines
Renderingvorgangs zu einer Kaskade von Evictions kommen.

2.4.3 Speichergranularitat, EffektivgroBe und SpeicherblockgrolRe

Wie in Kapitel 1.3 dargelegt, ist nicht gewdhrleistet, dass die Menge an GPU-Speicher, die von
einem Datenobjekt belegt wird, der Menge der in diesem Datenobjekt gespeicherten Daten ent-
spricht. Da Datenobjekte ein zentrales Konzept von OpenGL ES darstellen, ist es wichtig, deren
Speicherbedarf in einem konkreten OpenGL ES-System analysieren und vorhersagen zu kénnen.
Dazu werden hier die Begriffe Datenobjektgrifse und Speicherblock sowie die Speichermetriken
Speichergranularitdt, Effektivgrdfse und Speicherblockgrifse genau definiert, die in den nachfolgen-
den Untersuchung von groBem Nutzen sein werden:

* Die Datenobjektgrofse bezeichnet die Menge der von einer OpenGL ES-Anwendung in einem
Datenobjekt gespeicherten Daten.

22

2.5 Programmobjekte

* Speichergranularitéit: Wenn der von Datenobjekten belegte GPU-Speicher stets einem ganz-
zahligen Vielfachen eines bestimmten Wertes entspricht, dann wird dieser Wert nachfolgend
als Speichergranularitdt bezeichnet, wenn zusétzlich fiir Datenobjekte die folgenden Bedin-
gungen erfiillt werden:

1. Falls die Datenobjektgrée genau einem ganzzahligen Vielfachen der Speichergranula-
ritdt entspricht, dann entspricht die von ihm belegte Menge an GPU-Speicher exakt der
Datenobjektgrolle.

2. Falls die Grof3e eines Datenobjekts nicht einem ganzzahligen Vielfachen der Speicher-
granularitdt entspricht, dann belegt dieses Datenobjekt die Menge an GPU-Speicher,
die dem nédchstgroBeren ganzzahligen Vielfachen der Speichergranularitét entspricht.

3. Der zusitzlich von einem solchen Datenobjekt belegte Speicherplatz steht nicht mehr
fiir die Speicherung nachfolgender Datenobjekte zur Verfiigung.

* Die Effektivgrifse eines Datenobjekts entspricht exakt der Grof3e des Datenobjekts, falls seine
Grol3e einem ganzzahligen Vielfachen der Speichergranularitit entspricht. Sonst entspricht
die Effektivgrofle dem nachstgrofleren ganzzahligen Vielfachen der Speichergranularitit.

¢ Speicherblock: Wenn die Menge an GPU-Speicher, die von einem Datenobjekt A belegt wird,
groRer ist als dessen Effektivgrofle X, dann wird nachfolgend davon gesprochen, dass A in ei-
nem Speicherblock der Grof3e Y abgelegt wird, wenn mindestens die folgenden Bedingungen
erfiillt werden:

1. Der durch die Erzeugung von A belegte GPU-Speicher entspricht exakt Y.

2. FallsineN:nX < YA(n+1)X > Y, dann wird kein weiterer GPU-Speicher mehr durch
die Erzeugung der ndchsten n—1 Datenobjekte belegt, wenn deren EffektivgroRe jeweils
X entspricht.

3. Falls kein solches 7 existiert, dann wird fiir die Erzeugung des nédchsten Datenobjekts
kein weiterer GPU-Speicher belegt, falls fiir dessen EffektivgroRe Z gilt: Z< Y - X

Hinsichtlich der in 2. und 3. erwdhnten Datenobjekte wird nachfolgend davon gesprochen,
dass diese im selben Speicherblock abgelegt sind wie A.

¢ Y wird nachfolgend als Speicherblockgrifse bezeichnet.

Der entscheidende Unterschied zwischen der Ablage von Datenobjekten in Speicherblécken und
einer Speichergranularitit, die groer ist als ein Byte, besteht also darin, dass der zusitzlich zur
Datenobjektgrofie belegte GPU-Speicher bei Speicherblécken fiir nachfolgender Datenobjekte zur
Verfiigung steht.

2.5 Programmobjekte

Wihrend des Renderings fiihrt die Renderpipeline von OpenGL ES 2.0 zwei Arten von speziellen
Programmen aus, Vertexshader und Fragmentshader.* Diese Programme miissen von den OpenGL
ES-Anwendungen bereitgestellt werden. Dies kann entweder in Form von Quellcode geschehen

4Die Erliuterung der genauen Rolle, die die beiden Shader-Arten in der Renderpipeline spielen, erfolgt in Abschnitt
2.6.2.1 fiir Vertexshader und in Abschnitt 2.6.2.4 fiir Fragmentshader.

23

2 Grundlagen von OpenGL ES-Systemen

(der in Form von Null-terminierten Zeichenketten {ibergeben wird) oder in vorkompilierter Form
als sogenannte Shader Binaries. Shader werden dabei in einem Dialekt der Sprache C geschrieben,
der als OpenGL ES Shading Language bezeichnet wird [Simpson und Kessenich 2009].

Falls die Shader in Form von Quellcode an das OpenGL ES-System {ibergeben werden, miissen
diese zuerst kompiliert werden, um Shader Binaries zu erzeugen. Die Spezifikation von OpenGL ES
schreibt zwingend vor, dass OpenGL ES-Systeme einen Compiler fiir Shader-Quellcode vorhalten
miissen.

Sobald ein Shader Binary von einem Vertexshader und eines von einem Fragmentshader vorliegt,
miissen diese zu einem sogenannten Programmobjekt verbunden (gelinkt) werden. Erst sobald ein
solches Programmobjekt erzeugt und in der Renderpipeline installiert wurde, kann die Datenver-
arbeitung durch die Renderpipeline angestofen werden. Rendering ohne ein Programmobjekt ist
in OpenGL ES 2.0 nicht méglich.

2.6 Renderpipeline

2.6.1 Uberblick

Durch die Renderpipeline werden die in Abschnitt 2.4 beschriebenen Inputdaten sukzessive in fiinf
aufeinanderfolgenden Schritten in die Pixel des gerenderten Bildes umgewandelt. Die Ausgabe ei-
nes Schrittes fungiert dabei als Eingabe des nichsten Schrittes. In den néchsten fiinf Abschnitten
werden die einzelnen Schritte der Renderpipeline von OpenGL ES 2.0 eingehender erldutert.

2.6.2 Pipelineschritte
2.6.2.1 Vertexshader

Der Input fiir den Vertexshader-Schritt besteht aus dem Vertexdatenarray, das dem OpenGL ES-
System zuvor fiir das Rendering iibergeben worden ist. Dabei wird fiir jedes Element des Arrays
eine Instanz des installierten Vertexshaders ausgefiihrt. Jede Instanz erhélt mindestens ein Verte-
xattribut als Input. Dies entspricht dem Element des Vertexdatenarrays, fiir das die entsprechende
Instanz ausgefiihrt wird.

Zusitzlich kann der Input der Vertexshader-Instanz noch weitere Vertexattribute umfassen, die
entweder Elementen anderer Vertexarrays entsprechen oder von der OpenGL ES-Anwendung di-
rekt als Vertexattribut tibergeben wurden (siehe auch die Diskussion zu Beginn von Abschnitt 2.4).
Auflerdem kann der Input noch eine Reihe von Uniform-Variablen umfassen.

Die minimale Ausgabe eines Vertexshaders ist ein Vertex. Ein Vertex ist eine Variable, die eine Po-
sition in 2D-Gerdtekoordinaten reprasentiert. Zusitzlich kann ein Vertexshader aber {iber weite-
re Ausgabevariablen verfiigen, die sogenannten Varyings, die zusétzlich zu den Vertices durch die
Renderpipeline bis zum Fragmentshader-Schritt weitergereicht werden.

Traditionell dienten Vertexshader dazu, Vertices, die in 3D-Weltkoordinaten der Anwendung vor-
lagen, in 2D-Gerédtekoordinaten zu transformieren [Liu u.a. 2007]. In OpenGL ES 2.0 sind Vertex-
shader nicht mehr darauf beschrénkt. Der Input, der ihnen iibergeben wird, muss nicht zwingend

24

2.6 Renderpipeline

Vertices enthalten (auch wenn die Inputdaten aus historischen Griinden als , Vertexdaten“ bezeich-
net werden) und seine Ausgabe ist nicht auf Vertices beschrankt.

2.6.2.2 Primitiven-Erzeugung

In diesem Schritt werden aus Vertices sogenannte Primitiven erzeugt. Dies sind die grundlegenden
zweidimensionalen, geometrischen Figuren, die in den nichsten Schritten der Renderpipeline wei-
terverarbeitet werden. OpenGL ES kennt drei Arten von Primitiven: Punkte, Linien und Dreiecke.
Pro Rendervorgang wird nur eine Art von Primitiven erzeugt. Pro Vertex wird ein Punkt-Primitiv
erzeugt. Wenn Linien-Primitive erzeugt werden sollen, wird aus zwei Vertices eine Linie erzeugt,
wobei die Vertices die beiden Endpunkte der Linie definieren. Im Falle von Dreiecks-Primitiven
wird aus drei Vertices ein Dreieck erzeugt, wobei die Vertices die Eckpukte des erzeugten Dreiecks
definieren. Ein und derselbe Vertex kann dabei fiir die Erzeugung mehrerer Primitive verwendet
werden (wenn Indexdaten verwendet werden und der Index des entsprechenden Vertex mehrfach
im Indexdatenarray vorkommt).

2.6.2.3 Rasterisierung

Im Rasterisierungsschritt werden fiir jedes Primitiv diejenigen Pixel im zu rendernden Bild be-
stimmt, die vom jeweiligen Primitiv beriihrt werden. Fiir jedes dieser Pixel wird ein sogenanntes
Fragment erzeugt, das im néchsten Schritt der Renderpipeline weiterverarbeitet wird. Falls das
OpenGL ES-System Multisampling verwendet, wird jeder Pixel des zu rendernden Bildes in meh-
rere Subpixel unterteilt, die sogenannten Samples. In diesem Fall werden durch die Rasterisierung
nicht die Pixel bestimmt, die durch das verarbeitete Primitiv beriihrt werden, sondern die Samples
—es wird dann fiir jedes beriihrte Sample ein Fragment erzeugt. Im fertigen Bild werden die erzeug-
ten Fragmente wieder zu ganzen Pixeln kombiniert. Dieses Vorgehen verfolgt das Ziel, sogenannte
Aliasing-Artefakte zu reduzieren (siehe [Munshi u. a. 2008], Seite 234).

2.6.2.4 Fragmentshader

Im Fragmentshader-Schritt wird fiir jedes Fragment eine Instanz des installierten Fragmentshaders
ausgefiihrt. Aufgabe der ausgefiihrten Fragmentshader-Instanzen ist es, dem von ihnen verarbeite-
ten Fragment einen Farbwert zuzuweisen. Traditionell dienten Fragmentshader dazu, Fragmenten
einen Farbwert zuzuweisen, indem Texel aus Texturobjekten ausgelesen wurden [Liu u.a. 2007].
Auch in OpenGL ES 2.0 konnen Fragmentshader Texel auslesen, miissen es aber nicht.

Zur Berechnung des Farbwerts ihres Fragments kénnen Fragmentshader-Instanzen auch anderen
Input nutzen. Neben der Position des Fragments im zu rendernden Bild stehen fiir den Input von
Fragmentshadern auch Uniforms und Varyings zur Verfiigung. Varyings sind optionale Ausgabeva-
riablen von Vertexshadern, die durch die Renderpipeline an Fragmentshader weitergereicht wer-
den — dies geschieht aber nur im Fall von Punkt-Primitiven ohne Verdnderung der in den Varyings
gespeicherten Werte. Falls ein Fragment aus Linien- oder Dreiecks-Primitiven erzeugt wurde, han-
gen die Werte der ihm iibergebenen Varyings von den Ausgaben von zwei bzw. drei Vertexshadern
ab und werden zwischen diesen Ausgaben interpoliert.

25

2 Grundlagen von OpenGL ES-Systemen

2.6.2.5 Fragmentverarbeitung

Ziel des letzten Schritts der Renderpipeline ist es, fiir jedes Fragment zu entscheiden, ob es ver-
worfen oder in das zu rendernde Bild integriert wird. Dazu wird das Fragment einer Reihe von
optionalen Tests unterzogen:

e Falls der Pixel, dem das Fragment zugeordnet ist, momentan verdeckt ist (zum Beispiel durch
das Fenster einer anderen Anwendung), wird das Fragment verworfen. Wenn nicht in den
sichtbaren Framebuffer gerendert wird, sondern in ein von der OpenGL ES-Anwendung er-
zeugtes Framebuffer-Objekt, entfallt dieser Test.

e Uber dem zu rendernden Bild kann von der OpenGL ES-Anwendung ein sogenanntes
Scissor-Rechteck definiert sein. Wenn der Pixel, dem das Fragment zugeordnet ist, au-
Berhalb dieses Rechtecks liegt, wird das Fragment verworfen. Fall kein Scissor-Rechteck
definiert ist, entféllt dieser Test.

¢ Im optionalen Stencil-Test wird anhand der Werte im Stencilbuffer entschieden, ob das Frag-
ment verworfen werden muss oder nicht.

* Ahnlich wie im Stencil-Test wird im ebenfalls optionalen Depthtest anhand der Werte im
Depthbuffer entschieden, ob das Fragment verworfen werden muss oder nicht.

Falls das Fragment nicht verworfen wurde, wird dessen Farbwert mit dem aktuellen Farbwert des
ihm zugewiesenen Pixels kombiniert. Die Art der Kombination wird dabei von der OpenGL ES-
Anwendung bestimmt (standardmaRig wird der im Pixel gespeicherte Farbwert ignoriert).

Optional wird der Farbwert des Fragments anschlieBend im Rahmen von Dithering nochmals
durch das OpenGL ES-System verdndert, bevor der Farbwert endgiiltig in den aktuellen Frame-
buffer {ibertragen wird. Abhéngig von den Einstellungen, die die OpenGL ES-Anwendung zuvor
gesetzt hat, wird dann das dem Fragment zugewiesene Pixel im Colorbuffer-, Stencilbuffer- oder
Depthbuffer-Datenobjekt {iberschrieben.

2.6.3 Gepuffertes und ungepuffertes Rendering

Die Attribute gepuffert und ungepuffert beziehen sich auf die Art, wie die von der Renderpipeline
verarbeiteten Vertex- bzw. Indexdaten gespeichert sind. Falls diese Daten in Vertexdaten-Objekten
gespeichert sind, spricht man von gepuffertem Rendering. Falls sie in Vertex- bzw. Indexdatenar-
rays aullerhalb des OpenGL ES-Systems gespeichert sind, spricht man von ungepuffertem Rende-
ring. Der Vorteil von gepuffertem Rendering ist, dass die benotigten Vertex- bzw. Indexdaten nicht
im Zuge des Renderings in das OpenGL ES-System iibertragen werden miissen, sondern sich be-
reits dort befinden. Dies kann unter Umstdnden das Rendering gegeniiber dem ungepufferten Fall
beschleunigen.

26

2.7 Erweiterungen von OpenGL ES

2.7 Erweiterungen von OpenGL ES

Viele Hersteller von OpenGL ES-Systemen und auch das Khronos Konsortium?® selbst haben Erwei-
terungen zum OpenGL ES-Standard veréffentlicht. Solche Erweiterungen werden online dokumen-
tiert (siehe [Munshi und Leech 2010], Seite 170). Ein Uberblick iiber die derzeit verfiigbaren Erwei-
terungen findet sich auf der Internetseite der Khronos API Registry (siehe [The Khronos Group]).

Die Implementierung von OpenGL ES-Funktionalitit, die nur im Rahmen solcher Erweiterungen
spezifiziert worden ist, ist optional, das heit man kann nicht sicher davon ausgehen, dass die
Funktionalitit einer Erweiterung von einem bestimmten OpenGL ES-System tatsdchlich unter-
stiitzt wird. Bei zwei Arten von Erweiterungen ist die Wahrscheinlichkeit einer Unterstiitzung je-
doch hoch:

¢ EXT-Erweiterungen: Es handelt sich dabei um Erweiterungen, die von mehreren Herstellern
in ihren Produkten unterstiitzt werden.

* OES-Erweiterungen: Solche Erweiterungen sind hiufig ehemalige EXT-Erweiterungen, die
vom Khronos Konsortium fiir eine kiinftige Ubernahme in den Kernstandard von OpenGL ES
vorgesehen wurden. Auch bei solchen Erweiterungen kann mit einer breiten Unterstiitzung
in Produkten verschiedener Hersteller gerechnet werden. Sie erfiillen somit die gleiche Funk-
tion wie die ARB-Erweiterungen von Standard-OpenGL (vgl. [Segal u. a. 2010], Seite 453).

Eine Ubersicht iiber die derzeit in der Khronos API Registry aufgefiihrten Erweiterungen fiir
OpenGL ES 2.0 findet sich im Anhang in Kapitel 6.2.

5Das Khronos Konsortium ist die Institution, die unter anderem fiir die Weiterentwicklung des OpenGL- und OpenGL
ES-Standards verantwortlich ist (vgl. [Trevett 2010]).

27

3 Methodisches Vorgehen

In diesem Kapitel wird erkldrt, welche Problemfelder und Fragestellungen im Hinblick auf den in
Kapitel 1 beschriebenen Hintergrund dieser Arbeit untersucht werden. Auerdem werden die ge-
wdhlten Ansédtze zur Beantwortung der Fragen beschrieben und die OpenGL ES-Befehle aufgelistet,
die fiir die jeweiligen Problemfelder relevant sind.

Wie in Kapitel 1.2 erldutert, hidngt die Erfiillbarkeit von Echtzeitgarantien fiir OpenGL ES-Befehle
sowohl davon ab, dass deren Ausfithrung durch den GL-Server rechtzeitig beginnen kann, als auch
davon, dass deren Ausfithrung auch rechtzeitig abgeschlossen werden kann. Dies wiederum ist ab-
héangig von ihrer jeweiligen Laufzeit. Wenn sich die aufgrund irgendwelcher Faktoren verldngert,
besteht die Gefahr, dass trotz ihres rechtzeitigen Aufrufs eine gegebene Echtzeitgarantie nicht er-
fullt wird.

Aus Sicht von OpenGL ES 2.0 lassen sich drei Ressourcen unterscheiden, durch die die Ausfiihrbar-
keit oder die Laufzeit von OpenGL ES-Befehlen negativ beeinflusst werden konnen: GPU-Speicher,
Bandbreite (fiir die Ubertragung von Daten zwischen Hauptspeicher und GPU-Speicher) und die
in Kapitel 2 beschriebene Renderpipeline selbst.

Die Verhalten von OpenGL ES-Systemen bei der Belegung des GPU-Speichers ist im Hinblick auf
die Erfiillung von Echtzeitgarantien fiir die Ausfiihrung von OpenGL ES-Befehlen insbesondere aus
den folgenden beiden Griinden relevant:

e Im Zuge der Ausfiihrung von Draw-Befehlen werden durch die Renderpipeline (unter ande-
rem) zwei Arten von Daten verarbeitet: Vertexdaten und Texturen (vgl. Kapitel 2.4). Solche
Daten werden in Datenobjekten gespeichert, die im GPU-Speicher abgelegt werden.! Wenn
im GPU-Speicher jedoch nicht mehr geniigend Platz zur Ablage bendtigter Daten vorhan-
den ist, kann dies die Ausfithrung von Draw-Befehlen kritischer Anwendungen verhindern.
Um gewdhrleisten zu kdnnen, dass ein solcher Fall nicht eintritt, muss verhindert werden
konnen, dass der Speicherplatz zu knapp wird. Dafiir wiederum muss vorhergesagt werden
konnen, wie viel GPU-Speicher durch die Ausfithrung von OpenGL ES-Befehlen belegt wird,
um notfalls die Ausfithrung solcher Befehle zu verweigern.

e Falls eine OpenGL ES-System {iiber einen Eviction-Mechanismus verfiigt, dann kann sich
die Laufzeit eines Draw-Befehls verldngern, wenn es im Zuge seiner Ausfiihrung zu einer
Eviction-Kaskade kommt (vgl. Kapitel 2.4.2). Da tiber OpenGL ES nicht gesteuert werden
kann, welche Datenobjekte von Eviction betroffen sind, 1dsst sich nicht vorhersagen, ob und
ggf. um welchen Betrag sich die Laufzeit eines Draw-Befehls dadurch verlangert. Um gewéhr-
leisten zu kdnnen, dass ein solcher Fall nicht eintritt, muss ebenfalls verhindert werden, dass
der Speicherplatz im GPU-Speicher so knapp wird, dass das OpenGL ES-System auf den
Eviction-Mechanismus zuriickgreifen muss. Dafiir muss ebenfalls der Speicherbedarf von
OpenGL ES-Befehlen vorhergesagt werden kdnnen.

Die Beschreibung der Untersuchungsmethoden zum Verhalten von OpenGL ES-Systems hinsicht-
lich der Speicherbelegung erfolgt in Abschnitt 3.1.

IDie fiir das Rendering benétigten Vertexdaten kénnen von OpenGL ES-Programmen auch im Hauptspeicher abgelegt
werden, vgl. Kapitel 2.6.3. Eine solche Moglichkeit besteht fiir Texturen jedoch nicht. 29

3 Methodisches Vorgehen

Das Verhalten des OpenGL ES-Systems hinsichtlich der Dateniibertragung ist fiir den Fall relevant,
wenn sich fiir die Ausfithrung eines kritischen Draw-Befehls bestimmte Daten im GPU-Speicher
befinden miissen, die erst dorthin iibertragen werden miissen (dies gilt sowohl fiir gepufferte als
auch fiir ungepufferte Draw-Befehle). Um sicherstellen zu kénnen, dass die Daten rechtzeitig im
GPU-Speicher liegen, muss die Laufzeit des entsprechenden Dateniibertragungsbefehls vorherge-
sagt werden kénnen.

In dem Zusammenhang ist muss auch bekannt sein, wie sich das OpenGL ES-System hinsichtlich
konkurrierender Dateniibertragungsbefehle verhélt. Wenn beispielsweise nach Beginn einer kriti-
schen Dateniibertragung eine Dateniibertragungsbefehl einer unkritischen Anwendung iibermit-
telt wird, muss dieser Befehl verzégert werden, wenn bekannt ist, dass das OpenGL ES-System kon-
kurrierende Dateniibertragungsbefehle nicht sequentiell ausfiihrt, sondern die verfiigbare Band-
breite auf die beiden Befehle aufteilt. In dem Fall kdnnte sich die Laufzeit des kritischen Befehls
verldngern.

Es ist ebenfalls von Interesse, ob sich Dateniibertragung und Rendering gegenseitig ausschlieRen.
Wenn dies nicht der Fall ist, konnte der Draw-Befehl einer unkritischen Anwendung moglicher-
weise noch ausgefiihrt werden, wenn zur gleichen Zeit die Ubertragung von Daten durchgefiihrt
werden kann, die von einem nachfolgenden Draw-Befehl einer kritischen Anwendungen benotigt
werden. Wenn dies nicht moglich ist, muss die Ausfithrung des Draw-Befehls der unkritischen An-
wendung verzogert werden. Die Beschreibung der Untersuchungsmethoden zum Verhalten von
OpenGL ES-Systems hinsichtlich der Dateniibertragung erfolgt in Abschnitt 3.2.

Die Laufzeit von Draw-Befehlen selbst ist fiir die Erfiillung von Echtzeitgarantien fiir das Rende-
ring von zentraler Bedeutung. Daneben muss aber auch bekannt sein, ob das OpenGL ES-System
konkurrierende Draw-Befehle nebenldufig ausfiihren kann oder nicht. Wenn es dazu in der Lage
ist, muss damit gerechnet werden, dass sich die Laufzeiten der nebenldufig ausgefiihrten Draw-
Befehle erhohen.

Es muss allerdings damit gerechnet werden, dass sich aufgrund der Verwendung von Shadern nicht
allgemein vorhersagen lasst, wie lange die Ausfiihrung eines Draw-Befehls dauern wird. Falls dies
der Fall ist, ist es wichtig zu wissen, ob laufende Draw-Befehle unkritischer Anwendungen notfalls
abgebrochen werden kénnen, um die rechtzeitige Ausfithrung kritischer Draw-Befehle sicherstel-
len zu kénnen. Die Beschreibung der Untersuchungsmethoden zum Verhalten von OpenGL ES-
Systems hinsichtlich der Nutzung der Renderpipeline erfolgt in Abschnitt 3.3.

Von manchen OpenGL ES-Systemen ist bekannt, dass sich die Laufzeit von OpenGL ES-Befehlen
aufgrund von Kontextwechseln erhéhen kann, wenn sie unmittelbar nach einem OpenGL ES-
Befehl einer anderen Anwendung ausgefiihrt werden. Zur Erfiillung von Echtzeitgarantien ist
es notwendig, diese zusédtzlichen Laufzeitkosten zu kennen und zu beriicksichtigen. Die Be-
schreibung der Untersuchungsmethoden zum Verhalten von OpenGL ES-Systems hinsichtlich
Kontextwechseln und zur Bestimmung ihrer Kosten erfolgt in Abschnitt 3.4.

Nach der Beschreibung der jeweiligen Untersuchungsmethoden eines Problemfelds werden dieje-
nigen OpenGL ES-Befehle aufgefiihrt, die fiir die Untersuchungen relevant sind. OpenGL ES 2.0
definiert insgesamt 142 Befehle. Es miissen dabei aber nicht alle Untersuchungen fiir jeden rele-
vante Befehl durchgefiihrt werden. Dies hat im Einzelfall unterschiedliche Griinde:

30

3.1 Speicherbelegung

* Esgibt eine Reihe von Befehlen, von denen angenommen werden kann, dass sie weder einen
Einfluss auf die Ressourcen der GPU haben, noch selbst durch den Zustand dieser Ressour-
cen beeinflusst werden. So definiert OpenGL ES zum Beispiel die M6glichkeit, den Namen
des Herstellers der verwendeten OpenGL ES-Implementierung abzufragen. Es erscheint sehr
unwahrscheinlich, dass das OpenGL ES-System dafiir GPU-Speicher alloziert, Daten vom
Hauptspeicher in den GPU-Speicher tibertrigt oder etwas rendert.

 Viele Befehle weisen eine sehr dhnliche Funktionalitdt auf. So definiert OpenGL ES 2.0 bei-
spielsweise sechs Befehle, durch die Daten beliebiger GroRe? im Zuge eines einzigen Befehl-
saufrufs vom Hauptspeicher in die GPU {ibertragen werden kdnnen. Es ist anzunehmen, dass
sich ein OpenGL ES-System hinsichtlich der Dateniibertragung dieser Befehle nicht unter-
schiedlich verhalten wird. Die Untersuchungen werden in dieser Arbeit bei solchen Gruppen
von Befehlen daher nur fiir einzelne Befehle tatsdchlich durchgefiihrt.

* Eine Reihe von Befehlen kann schon aufgrund ihrer Definition nur einen sehr begrenzten
Einfluss auf die Ressourcen der GPU haben. Durch den Aufruf eines Vertreters der Gruppe
der glVertexAttrib-Befehle konnen zum Beispiel hochstens 16 Byte an die GPU iibertra-
gen werden. Auf die Durchfithrung der Untersuchungen fiir solche Befehle wird im Rahmen
dieser Arbeit ebenfalls verzichtet.

Im folgenden Abschnitt wird erldutert, warum die Untersuchung der Speicherbelegung im Hinblick
auf den Hintergrund der Arbeit wichtig ist. AnschlieSend werden die genauen Fragestellungen fiir
diese Untersuchung sowie die Ansdtze zu deren Beantwortung erortert und die dafiir relevanten
OpenGL ES-Befehle vorgestellt.

3.1 Speicherbelegung

3.1.1 Motivation fiir die Untersuchung der Speicherbelegung

Wie bereits zu Beginn von Kapitel 3 umrissen, muss genau bekannt sein, wann und wie das iiber
OpenGL ES verwendete System Daten im GPU-Speicher ablegt (und ggf. daraus entfernt), um Echt-
zeitgarantien fiir die Ausfiihrung von Draw-Befehlen erfiillen zu kénnen.

Die Spezifikation von OpenGL ES 2.0 definiert den Fehlercode GL_0UT_OF _MEMORY. Dieser Fehler-
code wird von glGetError zuriickgeliefert, nachdem ein Befehl aufgrund mangelnden Speicher-
platzes nicht erfolgreich ausgefiihrt werden konnte (siehe [Munshi und Leech 2010], Seite 15). Da
aber OpenGL ES 2.0 gleichzeitig keine Vorschriften dariiber macht, ob und unter welchen Umstén-
den Daten in einem eventuell vorhandenen GPU-Speicher abgelegt werden, ist nicht sicher, dass
dieser Fehlercode erzeugt wird, sobald im GPU-Speicher nicht mehr genug Platz vorhanden ist, um
weitere Daten darin abzulegen. Es steht OpenGL-Systemen frei, in diesem Fall Daten im Hauptspei-
cher abzulegen oder Daten aus dem GPU-Speicher auszulagern, um Platz zu schaffen (dieser Aus-
lagerungsvorgang wird in der Literatur auch als Eviction bezeichnet, siehe auch Kapitel 2.4.2).

2Die Spezifikation von OpenGL ES definiert selbst keine Obergrenze dafiir, sie erlaubt aber, dass konkrete Implemen-
tierungen von OpenGL ES eine solche Obergrenze festlegen, zum Beispiel die maximale Grof3e von Texturobjekten
(siehe [Munshi und Leech 2010], Seite 152).

31

3 Methodisches Vorgehen

Von GPUs der Hersteller Nvidia und ATI ist bekannt, dass es tatsdchlich zu Eviction kommen kann
(siehe [Stroyan 2009] fiir Nvidia und [Blackmer u. a. 2009] fiir ATI). Dadurch kann sich die Laufzeit
von OpenGL-Befehlen verldngern, die Datenobjekte im GPU-Speicher erzeugen, wenn im zuge ih-
rer Ausfiihrung erst durch Auslagerung bereits vorhandener Datenobjekte Platz fiir die neu zu er-
zeugenden Datenobjekte geschaffen werden muss. Unter bestimmten Umstdnden kann sich auch
die Laufzeit von Draw-Befehlen verldngern, wenn dabei Datenobjekte verarbeitet werden miissen,
die zuvor ausgelagert wurden (vgl. dazu die Diskussion zur Eviction-Kaskade in Kapitel 2.4.2).

Derzeit existieren keine Erweiterungen fiir OpenGL ES, die die Mdoglichkeit bieten, das Eviction-
Verhalten zu beeinflussen (um beispielsweise zu steuern, welche Datenobjekte ausgelagert wer-
den oder um bestimmte, kritische Datenobjekte davon auszunehmen). Sowohl Nvidia als auch ATI
warnen ausdriicklich davor, OpenGL-Anwendungen zu entwickeln, die den GPU-Speicher in ho-
hem MaRe mit Daten fiillen und haben daher fiir ihre GPUs OpenGL-Erweiterungen verdffentlicht,
die es zumindest ermdglichen, den Fiillstand des GPU-Speichers zur Laufzeit abzufragen, um eine
solche Situation zu vermeiden (siehe ebenfalls [Stroyan 2009] fiir Nvidia-GPUs und [Blackmer u. a.
2009] fiir ATI-GPUs).

Die einzige Mdglichkeit, Eviction zu vermeiden, besteht also darin, zu verhindern, dass der
GPU-Speicher so stark belegt wird, dass bendtigte Datenobjekte nicht mehr ohne Eviction erzeugt
werden konnen. Dazu muss aber vorhergesagt werden kdonnen, wie stark die Belegung des GPU-
Speichers durch die Ausfiihrung eines OpenGL ES-Befehls ansteigen wird — und da dies durch
OpenGL ES nicht festgelegt ist, muss das Belegungsverhalten eines konkreten OpenGL-Systems ge-
sondert untersucht werden. Die dazu entwickelten Untersuchungsmethoden werden im néchsten
Abschnitt beschrieben.

3.1.2 Untersuchungsmethoden zur Speicherbelegung
3.1.2.1 Ablage von Datenobjekten im GPU-Speicher

Da OpenGL ES 2.0 nicht festlegt, ob und wie Daten in einem eventuell vorhandenen GPU-Speicher
abgelegt werden, bleibt dies den Herstellern von OpenGL ES-Systemen {iberlassen. Fiir die
nachfolgenden Untersuchungen muss aber bekannt sein, wie dieses Verhalten in einem konkre-
ten OpenGL ES-System implementiert wurde. Dabei muss insbesondere die Frage beantwortet
werden, ob iiberhaupt iiber OpenGL ES erzeugte Datenobjekte im GPU-Speicher abgelegt wer-
den. Falls dies prinzipiell moglich ist, muss gekldrt werden, wie sichergestellt beziehungsweise
gesteuert werden kann, dass ein bestimmtes Datenobjekt tatsdchlich im GPU-Speicher abgelegt
wird.

Fiir Vertexbuffer-Objekte kdnnen beispielsweise spezielle Parameter angegeben werden, Usage
Hints genannt, die dem OpenGL ES-System einen Hinweis geben, wie diese Objekte durch die
erzeugende Anwendung kiinftig genutzt werden (vgl. Kapitel 2.4.1). Es steht dem System frei,
diese Parameter zu ignorieren, es kénnte sie aber auch dazu nutzen, dariiber zu entscheiden, ob
Datenobjekte im GPU-Speicher oder im Hauptspeicher abgelegt werden.

Um zu tiberpriifen, inwieweit die einzelnen Parameter von Datenobjekten einen Einfluss darauf
haben, ob deren Ablage im GPU-Speicher oder im Hauptspeicher erfolgt, wird ein OpenGL ES-
Programm ausgefiihrt, das Datenobjekte verschiedener GréB8e mit allen Kombinationen der rele-

32

3.1 Speicherbelegung

vanten Parameter erzeugt und iiberpriift, wo sie abgelegt werden. Diese Untersuchung erfolgt in
Kapitel 4.2.1. Im néchsten Abschnitt wird die Untersuchung beschrieben, mit der festgestellt wird,
ob der Speicherbedarf von Datenobjekten im GPU-Speicher von der tatsdchlichen Menge der in
ihnen gespeicherten Daten abweicht.

3.1.2.2 Speicherbedarf von Datenobjekten

Im Idealfall entspricht die Menge des von einem Datenobjekt belegten GPU-Speichers immer exakt
der in den Datenobjekten gespeicherten Datenmenge. Die tatsdchliche Menge belegten Speicher-
platzes kann davon aber abweichen. Dies kénnte der Fall sein,

» wenn zusitzlich zu den eigentlichen Nutzdaten der Datenobjekte auch bestimmte Metada-
ten® im GPU-Speicher abgelegt werden oder

¢ wenn mehrere Datenobjekte zusammen in gréBeren Speicherblécken abgelegt werden oder

* wenn der GPU-Speicher eine Speichergranularitit aufweist, die grofer ist als ein Byte (siehe
Kapitel 2.4.3 fiir eine Definintion von Speicherblock und Speichergranularitét).

Um festzustellen, ob es zu Abweichungen zwischen belegtem GPU-Speicher und Gr68e der Daten-
objekte kommt, wird ein OpenGL ES-Programm ausgefiihrt, das wie folgt vorgeht: Im leeren GPU-
Speicher wird jeweils ein Datenobjekt angelegt und die Menge des dadurch belegten Speicherplat-
zes ermittelt. Dies wird fiir Datenobjekte unterschiedlicher Gro3e wiederholt, um festzustellen, fiir
welche Datenobjektgroen die Menge des belegten GPU-Speichers von der Datenobjektgrée ab-
weicht.

Sofern es immer zu Abweichungen kommt, und die GréRe dieser Abweichungen stets gleich grof3
ist, deutet dies auf die zusétzliche Speicherung von Metadaten hin. Falls die Gr63e der Abweichun-
gen schwankt und fiir bestimmte Datenobjektgroflen gar keine Abweichung auftritt, deutet dies
darauf hin, dass Datenobjekte in Speicherblocken abgelegt werden oder dass der GPU-Speicher
eine Granularitit aufweist, die groQer ist als ein Byte.

Um in diesem Fall unterscheiden zu kdnnen, um welchen Effekt es sich handelt, wird das im ers-
ten Punkt beschriebene Vorgehen wiederholt, wobei fiir jede betrachtete Datenobjektgrée nicht
nur ein einziges Datenobjekt im leeren GPU-Speicher angelegt wird sondern zuséitzlich noch wei-
tere. Wenn sich dabei zeigt, dass der zusdtzlich zur Datenobjektgrof3e des ersten angelegten Daten-
objekts belegte GPU-Speicher fiir die Ablage weiterer Datenobjekte genutzt wird, handelt es sich
offensichtlich um einen Speicherblockeffekt.

Die in diesem Abschnitt beschriebene Untersuchung des Speicherbedarfs von Datenobjekten im
GPU-Speicher erfolgt in Kapitel 4.2.2. Im nichsten Abschnitt wird die Untersuchung beschrieben,
mit der die GroBe eines Speicherblocks ermittelt wird.

3.1.2.3 Bestimmung der Speicherblockgrélle

Wenn ein Datenobjekt angelegt werden soll, das vom OpenGL ES-System in einem gréReren
Speicherblock abgelegt werden wird, muss die Speicherblockgréfe bekannt sein, um vorhersagen

3Metadaten sind Daten, die vom OpenGL ES-System zusitzlich zu den eigentlichen Nutzdaten der Datenobjekte ge-
speichert werden. Dies konnten beispielsweise Typ oder Grof3e eines Datenobjekts sein.

33

3 Methodisches Vorgehen

zu konnen, wie der freie GPU-Speicher durch die Erzeugung des Datenobjektes verringert wird.
Wenn die SpeicherblockgréBe bekannt ist, dann kann von folgenden Annahmen ausgegangen
werden:

e Falls ein neuer Speicherblock alloziert werden muss, dann wird sich der freie GPU-Speicher
genau um den Wert der Speicherblockgrole verringern.

* Falls das neue Datenobjekt hingegen in einem bereits allozierten Speicherblock abgelegt wer-
den kann, dann wird sich der freie GPU-Speicher nicht verringern.

Fiir die Untersuchung der Speicherblockgrofie stehen die folgenden Fragen im Mittelpunkt:

¢ Wie grof} ist ein Speicherblock, das heilst wieviel GPU-Speicher wird durch die Allozierung
eines Speicherblocks belegt?

* Gibt es nur eine einzige Speicherblockgréfe? Falls nein: Wovon héingt die Speicherblockgro-
Be ab? In Frage kommen die Gro3e des Datenobjekts, durch dessen Erzeugung ein Speicher-
block alloziert wird, oder die aktuelle Belegung des GPU-Speichers.

Um diese Fragen zu beantworten, wird ein OpenGL ES-Programm ausgefiihrt, das das folgende
Vorgehen verfolgt: Im zu Beginn noch leeren GPU-Speicher werden sukzessive Datenobjekte glei-
cher GroR3e angelegt, bis der GPU-Speicher gefiillt ist. Dabei wird nach jedem Anlegen eines Daten-
objekts die Menge des aktuell belegten GPU-Speichers ermittelt. Dieses Vorgehen wird fiir unter-
schiedliche Datenobjektgrollen wiederholt (wobei nur solche DatenobjektgréBen zu bertiicksichti-
gen sind, fiir die in der vorherigen Untersuchung festgestellt wurde, dass es zur Ablage in Speicher-
blécken kommt). Es steht zu erwarten, dass dieses Vorgehen fiir jede beriicksichtigte Datenobjekt-
grole zu einem der folgenden Ergebnisse fithren wird:

¢ Die Menge des belegten Speichers steigt nicht nach jeder Objekterzeugung an, sondern im-
mer nur dann, wenn seit dem letzten Anstieg der Speicherbelegung eine bestimmte Menge
an weiteren Daten im GPU-Speicher angelegt worden ist.

¢ Es kommt bei jeder Objekterzeugung zu einem Anstieg der Speicherbelegung, wobei dieser
Anstieg mindestens der Datenobjektgrée entspricht.

Die GroBe der gemessenen Anstiege entspricht dann der gesuchten Speicherblockgrofie. Durch
dieses Vorgehen wird auch aufgedeckt, ob es nur eine einzige SpeicherblockgréRe gibt und falls
nicht, ob die jeweilige Speicherblockgrdlle von der GréBe der erzeugten Datenobjekte oder von
der aktuellen Speicherbelegung abhingt.

Die in diesem Abschnitt beschriebene Untersuchung zur Bestimmung der Speicherblockgrolie er-
folgt in Kapitel 4.2.3. Der ndchste Abschnitt beschreibt die Untersuchung, auf welche Weise Daten-
objekte in Speicherblécken abgelegt werden.

3.1.2.4 Belegungsverhalten innerhalb von Speicherblécken

Um vorhersagen zu kdnnen, ob durch die Erzeugung eines Datenobjekts ein neuer Speicherblock
alloziert wird, muss bekannt sein, unter welchen Bedingungen Datenobjekte gegebenenfalls in be-
reits allozierten Speicherblocken abgelegt werden. Dabei stehen die folgenden Fragen im Mittel-
punkt:

34

3.1 Speicherbelegung

Aus der Definition eines Speicherblocks ergibt sich: Wenn ein bereits allozierter Speicher-
block theoretisch noch X Byte Platz fiir die Ablage weiterer Datenobjekte aufweist, dann wird
ein Datenobjekt, das kleiner ist als X, in diesem Speicherblock abgelegt (sofern dessen Gro-
Be mit der GroBe der bereits im Speicherblock befindlichen Datenobjekte tibereinstimmt).
Doch was geschieht, falls ein Datenobjekt groRer ist als X? Wird es dann teilweise im bereits
allozierten Speicherblock abgelegt oder wird es komplett in einem neuen Speicherblock ab-
gelegt?

Werden nur Datenobjekte gleicher Gro3e im selben Speicherblock abgelegt?

Werden Datenobjekte nur dann in bereits allozierten Speicherblécken abgelegt, wenn sie un-
mittelbar aufeinander folgend erzeugt werden, das heilt wird ein Datenobjekt nur dann in
einem bereits allozierten Speicherblock abgelegt, wenn das unmittelbar zuvor erzeugte Da-
tenobjekt schon im entsprechenden Speicherblock abgelegt worden ist?

Werden Datenobjekte in fragmentierten Speicherblécken abgelegt?*

Werden Datenobjekte verschiedener Prozesse in jeweils eigenen Speicherblécken abgelegt?

Um diese Fragen zu kldren, werden OpenGL ES-Programme ausgefiihrt, deren Vorgehen in den
folgenden vier Abschnitten im einzelnen beschrieben wird:

3.1.2.4.1 Aufteilung von Datenobjekten auf mehrere Speicherblocke

Um zu iiberpriifen, ob Datenobjekte, die nicht vollstdndig in den noch freien Platz eines bereits
allozierten Speicherblocks passen, auf mehrere Speicherbldcke aufgeteilt werden, oder ob in dem
Fall ein neuer Speicherblock alloziert wird, werden nacheinander mehrere Datenobjekte angelegt,
deren Grolle genau drei Vierteln der Speicherblockgrée entspricht.

Belegung 1:

Block1 Block2 Block3 Block4
Objekt | priekc | b

Belegung 2:

Block1 Block2 Block3 Block4

Abbildung 3.1: Ablagemdglichkeiten von vier Datenobjekten mit % der Speicherblockgrolie

Zeigt sich, dass nach der Erzeugung von vier Datenobjekten drei Speicherblécke alloziert werden,
kann davon ausgegangen werden, dass Datenobjekte auf mehrere Speicherblécke aufgeteilt wer-

4Unter Fragmentierung wird hier verstanden, dass es innerhalb eines Speicherblocks ungenutzten Speicher zwischen
benutzten Speicherbereichen gibt.

35

3 Methodisches Vorgehen

den (dies entspriache der Belegung 1 in Abbildung 3.1). Wenn stattdessen vier Speicherblécke allo-
ziert werden, dann ist klar, dass ein neuer Speicherblock alloziert wird, wenn ein Datenobjekt nicht
mehr vollstdndig in einen bereits vorhandenen passt (dies entsprache der Belegung 2 in Abbildung
3.1).

3.1.2.4.2 Ablage von Datenobjekten unterschiedlicher Gr6Re im selben Speicherblock

Zur Uberpriifung, ob Datenobjekte unterschiedlicher GroBe im selben Speicherblock abgelegt wer-
den kdonnen, werden im leeren GPU-Speicher mehrere Datenobjekte unterschiedlicher GréRe an-
gelegt, wobei deren Gesamtgro3e der Speicherblockgrof3e entspricht. Steigt dabei die Speicherbe-
legung nur um den Wert der Speicherblockgrée an, kann davon ausgegangen werden, dass Da-
tenobjekte unterschiedlicher Gré8e im selben Speicherblock abgelegt werden kdnnen.

3.1.2.4.3 Nichtsequentielle Ablage von Datenobjekten in Speicherblocken

Um zu tiberpriifen, ob Datenobjekte auch dann im selben Speicherblock abgelegt werden kon-
nen, wenn sie nicht unmittelbar aufeinander folgend erzeugt werden, wird zunéchst ein Speicher-
block teilweise gefiillt (zum Beispiel durch Erzeugung von zwei Datenobjekten mit jeweils % der
Speicherblockgrofie, so dass der Speicherblock zu % gefiillt ist). Anschliefend wird ein weiterer
Speicherblock komplett gefiillt (zum Beispiel durch Erzeugung von zwei Datenobjekten mit % der
Speicherblockgrofie, so dass diese Datenobjekte nicht im ersten Speicherblock abgelegt werden).
Schliefilich ein Datenobjekt angelegt, das theoretisch im urspriinglichen Speicherblock Platz fin-
den konnte (in diesem Beispiel also mit i der SpeicherblockgréBe). Kann dabei kein Anstieg der
Speicherbelegung festgestellt werden, kann davon ausgegangen werden, dass das betreffende Da-
tenobjekt tatsdchlich im urspriinglichen Speicherblock abgelegt wurde.

Dieses Vorgehen wird wiederholt, wobei in jedem Schritt die Anzahl der teilweise gefiillten
Speicherblécke erhoht wird und anschlieSend tiberpriift wird, ob alle teilweise gefiillten Speicher-
blécke komplett aufgefiillt werden kénnen. Dadurch kann ermittelt werden, ob eine nicht
aufeinander folgende Datenobjektablage nur im jeweils zuletzt teilweise gefiillten Speicherblock
(beziehungsweise in den N letzten teilweise gefiillten Speicherblécken) erfolgt.

Voraussetzung fiir diese Untersuchung ist, dass Datenobjekte nur vollstdndig in einem Speicher-
block abgelegt werden und Datenobjekte unterschiedlicher Grof3e im selben Speicherblock abge-
legt werden kénnen. Falls dies nicht moglich ist, kann diese Untersuchung nicht durchgefiihrt wer-
den.

3.1.2.4.4 Ablage von Datenobjekten in fragmentierten Speicherbldcken

Um das Ablageverhalten im Falle fragmentierter Speicherblécke zu tiberpriifen, wird zunichst ein
Speicherblock mit mehreren Datenobjekten komplett gefiillt. AnschlieSend wird jedes zweite Da-
tenobjekt wieder freigegeben, so dass innerhalb des Speicherblocks Belegungsliicken entstehen.’
Schliefllich werden neue Datenobjekte erzeugt, so dass theoretisch alle Belegungsliicken damit ge-
fiillt werden kdonnten. Kann dabei kein Anstieg der Speicherbelegung festgestellt werden, kann da-
von ausgegangen werden, dass die neu angelegten Datenobjekte tatsdchlich innerhalb des frag-

5Die Annahme dahinter ist, dass im leeren GPU-Speicher aufeinander folgend erzeugte Datenobjekte im GPU-Speicher
tatséchlich liickenlos hintereinander abgelegt werden.

36

3.1 Speicherbelegung

mentierten Speicherblocks abgelegt worden sind. Dieses Vorgehen wird mehrmals wiederholt, wo-
bei in jedem Schritt die GroRe der Datenobjekte halbiert wird, was dazu fiihrt dass sich die Anzahl
der Liicken im Speicherblock verdoppelt.

Die in diesem hier beschriebenen Untersuchungen der Ablage von Datenobjekten in Speicherbl6-
cken erfolgt in Kapitel 4.2.4. Im ndchsten Abschnitt wird die Untersuchung beschrieben, mit der
die Speichergranularitit bestimmt wird.

3.1.2.5 Bestimmung der Speichergranularitit

Um die Menge des GPU-Speichers vorherzusagen, der durch die Erzeugung eines Datenobjekts
belegt werden wird, ist es notwendig den Wert der Speichergranularitidt zu bestimmen. Dazu wird
ein OpenGL ES-Programm ausgefiihrt, das folgendermalien vorgeht:

Im leeren GPU-Speicher wird ein Datenobjekt angelegt und die Menge des dadurch belegten GPU-
Speichers ermittelt. Dies wird fiir Datenobjekte zunehmender Grof3e wiederholt. Ergibt sich dabei
ein Treppeneffekt in der Speicherbelegung, das heillt steigt die Menge des belegten GPU-Speichers
immer nur bei bestimmten Datenobjektgrofen an und handelt es sich bei diesen Datenobjekt-
grolen immer um ein ganzzahliges Vielfaches des gleichen Wertes, dann entspricht dieser Wert
der Speichergranularitit.

Es ist fiir diese Untersuchung unerheblich, ob pro Messschritt nur ein Datenobjekt oder mehrere
erzeugt werden. Dies kann hilfreich sein, wenn Datenobjekte einer bestimmten GroRe von der Ab-
lage in Speicherblécken betroffen sind. In dem Fall ist durch die Erzeugung eines einzelnen Daten-
objekts nicht erkennbar, wieviel des belegten GPU-Speichers vom erzeugten Datenobjekt genutzt
wird und wieviel fiir nachfolgende Datenobjekte noch genutzt werden konnte.

Mithin kann auch nicht festgestellt werden ob die Menge des vom Datenobjekt genutzten GPU-
Speichers von seiner Grof3e abweicht. Wenn aber eine groe Anzahl solcher Datenobjekte angelegt
wird, dann kann aus der Anzahl der dadurch belegten Speicherblécke darauf geschlossen werden.
Wird dies fiir verschiedene DatenobjektgrofSen wiederholt, dann kann die Speichergranularitédt auf
die gleiche Weise bestimmt werden, wie bei der Anlage nur eines Datenobjekts pro Messschritt, das
nicht in einem Speicherblock abgelegt wird.

Dazu ein Beispiel: Die SpeicherblockgréBe in einem System betrage vier Megabyte und die Spei-
chergranularitit 128 Byte. Wiirden dann pro Messschritt 2!6 Datenobjekte angelegt, so wiirden fiir
alle DatenobjektgroRen bis einschlieRlich 128 Byte genau zwei Speicherblocke belegt (216128 Byte
=8 MB). Ab einer Datenobjektgrof3e von 129 Byte bis einschlief§lich 256 Byte wiirden vier Speicher-
blécke belegt, von 257-384 Byte sechs Speicherblécke, ... Die Menge der belegten Speicherblocke
wiirde sich also immer nach Uberschreiten einer Datenobjektgroe erhéhen, die einem ganzzahli-
gen Vielfachen von 128 Byte entspricht.

Die in diesem Abschnitt beschriebene Untersuchung zur Bestimmung der Speichergranularitit er-
folgt in Kapitel 4.2.5. In den vergangenen Abschnitten wurden alle untersuchten Fragestellungen
hinsichtlich der Speicherbelegung und die Ansétze zu deren Beantwortung detailliert erértert. Im
néichsten Abschnitt werden sdmtliche OpenGL ES-Befehle aufgelistet, die einen Einfluss auf die
Belegung des GPU-Speichers haben kénnen, und es wird dargelegt, fiir welche dieser Befehle die
Untersuchungen zur Speicherbelegung in Kapitel 4 durchgefiihrt werden.

37

3 Methodisches Vorgehen

3.1.3 Relevante Befehle fiir die Speicherbelegung

Fiir die Belegung des GPU-Speichers sind vier Gruppen von OpenGL ES-Befehlen relevant: Befehle
zur Erzeugung von Datenobjekten (siehe Abschnitt 3.1.3.1), Befehle zur Freigabe von Datenobjek-
ten (siehe Abschnitt 3.1.3.2), Befehle zur Erzeugung und Verwendung von Programmobjekten (sie-
he Abschnitt 3.1.3.3) und Draw-Befehle mit ungepufferten Vertexdaten (siehe 3.1.3.4). Ein umfas-
sender Uberblick iiber alle von OpenGL ES 2.0 definierten Befehle mit einer kurzen Beschreibung
findet sich im Anhang in Kapitel 6.1.

3.1.3.1 Befehle zur Erzeugung von Datenobjekten

OpenGLES 2.0 definiert die folgenden sieben Befehle, durch die Datenobjekte erzeugt werden kén-
nen (siehe Kapitel 2.4.1 fiir eine Beschreibung der verschiedenen Datenobjekte von OpenGL ES):

¢ glBufferData zur Erzeugung von Vertexbuffer-Objekten,
¢ glRenderbufferStorage zur Erzeugung von Renderbuffer-Objekten,
¢ glBindFramebuffer zur Erzeugung von Framebuffer-Objekten sowie

* glTexImage2D, glCompressedTexImage2D, glCopyTexImage2D und glGenerateMipmap
zur Erzeugung von Texturobjekten.

Diese sieben Befehle sind im Anhang in Kapitel 6.1.1 ausfiihrlicher beschrieben. Von ihnen werden
im Rahmen dieser Arbeit nur fiir den Befehl glBufferData die Untersuchungen zur Speicherbele-
gung durchgefiihrt. Die Wahl fillt aus den folgenden Griinden speziell auf diesen Befehl:

* glBufferData ist unter allen Befehlen zur Erzeugung von Datenobjekten der einzige, fiir
den zusétzlich zur Grolle des Datenobjekts auch Usage Hints angegeben werden koénnen,
durch die das Verhalten des OpenGL ES-Systems hinsichtlich der Speicherbelegung beein-
flusst werden konnte. Eine solche Einflussmoglichkeit besteht fiir alle anderen Datenobjekte
nicht (vgl. Kapitel 2.4.1).

¢ Aullerdem bestehen keine Einschrankungen hinsichtlich der Grof3e der durch glBufferData
erzeugten Vertexbuffer-Objekte (mit Ausnahme einer systemspezifischen MaximalgroQe,
was aber fiir alle Datenobjekte gilt). Texturobjekte sind auf Groflen beschrinkt, die sich als
Produkt aus zwei Zweierpotenzen ausdriicken lassen (siehe [Munshi und Leech 2010], Seite
67); Framebuffer-Objekte haben stets die gleiche GréRe.

e Da durch alle sieben Befehle essentiell der gleiche Vorgang im Hinblick auf den GPU-
Speicher durchgefiihrt wird — es wird eine bestimmte Menge GPU-Speicher belegt — ist
anzunehmen, dass sich das OpenGL ES-System hinsichtlich des GPU-Speichers jeweils
gleich verhalten wird.

3.1.3.2 Befehle zur Freigabe von Datenobjekten

Zur Freigabe von Datenobjekten definiert OpenGL ES 2.0 die folgenden vier Befehle:
e glDeleteBuffers zur Freigabe von Vertexbuffer-Objekten,
¢ glDeleteRenderbuffers zur Freigabe von Renderbuffer-Objekten,

38

3.1 Speicherbelegung

* glDeleteTextures zur Freigabe von Texturobjekten und

¢ glDeleteFramebuffers zur Freigabe von Framebuffer-Objekten.

Diese vier Befehle sind im Anhang in Kapitel 6.1.2 ausfiihrlicher beschrieben. Sie haben insofern
einen erheblichen Einfluss auf die Speicherbelegung, als sich durch ihren Aufruf die Menge des
verfiigbaren GPU-Speichers erh6hen kann. Da durch einen solchen Vorgang jedoch keine negative
Auswirkungen im Hinblick auf Echtzeitgarantien zu erwarten sind (der verfiigbare Speicherplatz
verringert sich nicht) werden diese Befehle bei Bedarf verwendet aber nicht weitergehend unter-
sucht.

3.1.3.3 Relevante Befehle zu Programmobjekten

Von den im Anhang in Kapitel 6.1.11 ndher beschriebenen Befehlen zu Programmobjekten, kénnen
die folgenden beiden die Speicherbelegung beeinflussen:

e glLinkProgram, der aus einem Vertex- und einem Fragmentshader ein ausfiihrbares Pro-
grammobjekt erzeugt, das fiir nachfolgende Renderoperationen genutzt werden kann, und

* glUseProgram, der ein erzeugtes Programmobjekt im aktuellen Kontext installiert, so dass
es tatsdchlich fiir nachfolgende Renderoperationen genutzt wird.

Da Shaderprogramme innerhalb der GPU ausgefiihrt werden, erscheint es méglich, dass Pro-
grammobjekte innerhalb des GPU-Speichers abgelegt werden. Wenn dies der Fall ist, konnten
sie prinzipiell bereits nach Ausfiihrung von glLinkProgram in den GPU-Speicher iibertragen
werden. Sie konnten aber auch erst dann iibertragen werden, wenn sie explizit durch Aufruf von
glUseProgram zur Verwendung ausgewadhlt werden.

Die beiden hier aufgefiihrten Befehle konnten also fiir die Untersuchungen zur Speicherbelegung
relevant sein, insbesondere da bereits GPUs existieren, bei denen die Grol3e von Programmobjek-
ten nicht begrenzt ist, zum Beispiel die bereits im Jahr 2006 auf den Markt gebrachte Nvidia GeFor-
ce 8800 (siehe [Nvidia 2006], Seite 40).

Typischerweise sind Programmobjekte jedoch sehr klein (siehe [Hill u.a. 2008], Seite 1), was fiir
Datenobjekte — mit Ausnahme von Framebuffer-Objekten — nicht gilt. Aus diesem Grund wurden
die Untersuchungen zur Speicherbelegung nicht fiir Programmobjekte durchgefiihrt, sondern fiir
Datenobijekte.

3.1.3.4 Draw-Befehle

Beide von OpenGL ES 2.0 definierten Draw-Befehle (glDrawArrays und glDrawElements) kdnnen
dazu genutzt werden, eine Renderoperation mit ungepufferten Vertex- bzw. Indexdaten anzusto-
Ben (siehe Kapitel 2.6.3 fiir eine Diskussion der Unterschiede von gepuffertem und ungepuffertem
Rendering und Kapitel 6.1.8 fiir eine ausfiihrlichere Beschreibung der beiden Draw-Befehle).

Diese beiden Befehle sind tatsdachlich nur im ungepufferten Fall fiir die Untersuchung der Speicher-
belegung relevant. In diesem Fall liegen die im Zuge ihrer Ausfiihrung zu verarbeitenden Vertex-

39

3 Methodisches Vorgehen

und ggf. Indexdaten im Hauptspeicher und miissen erst in die GPU {ibertragen werden. Es ist da-
bei prinzipiell moglich, dass diese Daten teilweise oder sogar komplett im GPU-Speicher zwischen-
gespeichert werden miissen, bevor das eigentliche Rendering durchgefiihrt werden kann (friithere
Untersuchungsergebnisse deuten darauf hin, dass dies fiir manche GPUs tatsédchlich nicht der Fall
ist, vgl. [Grottel u. a. 2009], Seite 71). Dadurch kann es zu Eviction kommen.

Da anzunehmen ist, dass die Ubertragung ungepufferter Vertexdaten in den GPU-Speicher im
Prinzip der Ubertragung von Vertexdaten durch glBufferData entspricht, wird der Einfluss un-
gepufferter Draw-Befehle im Zusammenhang mit der Untersuchung der Speicherbelegung nicht
gesondert untersucht. Diese Befehle werden aber im Zusammenhang mit der Untersuchung der
Dateniibertragung in Kapitel 4.3.4 ndher behandelt.

Dort wird iiberpriift, ob die Ubertragung ungepufferter Vertexdaten zeitgleich zum Rendering
durchgefiihrt wird. Fiir GPUs, bei denen dies der Fall ist, kann davon ausgegangen werden, dass
ungepufferte Draw-Befehle tatsdchlich keinen Einfluss auf die Speicherbelegung haben, wéhrend
im gegenteiligen Fall davon ausgegangen werden muss.

Im nun folgenden Abschnitt wird erldutert, warum die Untersuchung der Dateniibertragung im
Hinblick auf den Hintergrund der Arbeit sehr wichtig ist. AnschlieBend werden die genauen Fra-
gestellungen fiir diese Untersuchung sowie die Ansdtze zu deren Beantwortung erortert und die
dafiir relevanten OpenGL ES-Befehle vorgestellt.

3.2 Dateniibertragung

3.2.1 Motivation fiir die Untersuchung der Dateniibertragung

Wie zu Beginn von Kapitel 3 dargelegt, ist es im Hinblick auf die Erfiillung von Echtzeitgarantien
wichtig, die Laufzeit von Dateniibertragungsbefehlen vorhersagen zu kénnen. Um die Laufzeit von
Befehlen vorhersagen zu konnen, die Daten {ibertragen (vom Hauptspeicher in den GPU-Speicher,
in umgekehrter Richtung und innerhalb des GPU-Speichers), muss neben der zu iibertragenden
Datenmenge und einem eventuell anfallenden Laufzeit-Overhead auch die Dateniibertragungsra-
te des verwendeten Systems bekannt sein (das hei8t welche Datenmenge pro Zeitintervall {ibertra-
gen wird).

Das allein reicht aber nicht aus, um die Laufzeit in allen Fillen zuverléssig vorhersagen zu kénnen.
Dafiir muss — insbesondere im Hinblick auf den Hintergrund der Arbeit — auch bekannt sein, wie
sich das verwendete System gegeniiber konkurrierenden Dateniibertragungsbefehlen verhélt, (das
heil3t gegeniiber Dateniibertragungsbefehlen, die von verschiedenen Anwendungen an den GL-
Server iibermittelt werden und sich zeitlich tiberschneiden).

Auflerdem muss bekannt sein, ob das verwendete System in der Lage ist, Dateniibertragungen
durchzufiihren, wihrend gleichzeitig ein Draw-Befehl ausgefiihrt wird. Einen Sonderfall stellt hier-
bei die Dateniibertragung im Rahmen der Ausfiihrung eines ungepufferten Draw-Befehls dar, da
hier die Ausfiihrung des Draw-Befehls von den zu libertragenden Daten direkt abhangt (siehe Kapi-
tel 2.6.3 fiir eine Diskussion der Unterschiede zwischen gepufferter und ungepufferter Ausfiihrung
von Draw-Befehlen). Dies muss daher gesondert untersucht werden.

40

3.2 Dateniibertragung

Im folgenden Abschnitt werden die genauen Fragestellungen ndher erldutert, die im Zuge der Un-
tersuchung der Dateniibertragung beantwortet werden miissen, und dabei auch die Ansdtze zu
deren Beantwortung beschrieben. AnschlieBend werden die fiir diese Untersuchung relevanten
OpenGL ES-Befehle aufgelistet.

3.2.2 Untersuchungsmethoden zur Dateniibertragung
3.2.2.1 Bestimmung von Dateniibertragungsrate und -laufzeit

Hinsichtlich der Dateniibertragungsrate sind die folgenden Fragestellungen zu beantworten:

¢ Ist die Laufzeit von Dateniibertragungsbefehlen immer proportional zur {ibertragenen Da-
tenmenge, oder hingt sie auch von anderen Faktoren ab? Als Faktoren kommen die Menge
des aktuell belegten GPU-Speichers oder die Anzahl bereits im GPU-Speicher vorhandener
Datenobijekte in Frage.

¢ Wie grof8 ist der Laufzeit-Overhead fiir die Ausfiihrung eines Dateniibertragungsbefehls, der
unabhingig von der iibertragenen Datenmenge zur Laufzeit hinzukommt? Ist dieser Over-
head konstant oder dndert er sich abhéngig vom Belegungsgrad des GPU-Speichers oder ab-
hingig von der Anzahl bereits vorhandener Datenobjekte?

¢ Falls der Belegungsgrad des GPU-Speichers oder die Menge bereits vorhandener Datenobjek-
te einen Einfluss auf die Laufzeiten hat, hdngt dieser Einfluss dann davon ab, ob die Belegung
des GPU-Speichers beziehungsweise die Erzeugung der Datenobjekte vom Kontext eines an-
deren Prozesses erfolgt ist?

Zur Beantwortung dieser Fragen wird ein OpenGL ES-Programm ausgefiihrt, das folgendes Vor-
gehen verfolgt: Zunichst wird das Verhalten von Dateniibertragungsbefehlen® bei leerem GPU-
Speicher untersucht. Dazu wird jeweils ein Datenobjekt angelegt, die Laufzeit fiir die Dateniiber-
tragung gemessen und das Datenobjekt anschliefend wieder entfernt. Dies wird mehrmals wie-
derholt, wobei die Grol3e des erzeugten Datenobjekts stets erhdht wird. Diese erste Untersuchung
liefert die Referenzwerte fiir die nachfolgenden Untersuchungen.

Anschlielend wird die Frage gekldrt, ob die Laufzeit der Dateniibertragung vom aktuellen Bele-
gungsgrad des GPU-Speichers abhéngt. Dazu wird der GPU-Speicher vorab zu einem bestimm-
ten Prozentsatz belegt und anschlieffend die gleichen Messungen wie in der ersten Untersuchung
durchgefiihrt. Dies wird mit steigenden Speicherbelegungsgraden wiederholt. Diese Untersuchung
wird in zwei Varianten durchgefiihrt: In der einen Variante wird der GPU-Speicher {iber den selben
Kontext belegt, mit dem danach auch die Laufzeitmessungen durchgefiihrt werden. In der ande-
ren Variante wird der Speicher iiber einen Kontext belegt, der von einem anderen Prozess erzeugt
wurde.

Die Frage, ob die Laufzeit von Dateniibertragungsbefehlen von der Anzahl der bereits erzeugten
Datenobjekte beeinflusst wird, wird durch eine weitere Untersuchung gekldrt. Dabei wird vorab
eine gewisse Menge sehr kleiner Datenobjekte erzeugt, so dass der Speicherbelegungsgrad immer
noch sehr niedrig ist. Dann werden die gleichen Messungen wie in der ersten Untersuchung durch-
gefiihrt. Wie bei der zweiten Untersuchung werden auch hier zwei Varianten durchgefiihrt, wo-

6Siehe Abschnitt 3.2.3 fiir eine Auflistung der dafiir relevanten Befehle.

41

3 Methodisches Vorgehen

bei in der einen die kleinen Datenobjekte iiber den selben Kontext erzeugt werden, mit dem auch
die Messungen durchgefiihrt werden, wihrend in der anderen Variante die Datenobjekte {iber den
Kontext eines anderen Prozesses erzeugt werden.

Der Laufzeit-Overhead fiir die Ausfiihrung von Dateniibertragungsbefehlen wird durch die Mes-
sung der Laufzeiten fiir die Ubertragung von sehr kleinen Datenmengen bestimmt. Die Annahme
dahinter ist folgende: Bei einer Dateniibertragungsrate von mehreren Gigabyte pro Sekunde ist die
Ubertragungszeit von wenigen Byte groRen Datenmengen praktisch nicht mehr messbar (die Zeit
zur Ubertragung von einem Kilobyte Daten wiirde bei einer Bandbreite von mehr als einem Giga-
byte pro Sekunde weniger als eine Mikrosekunde betragen). Wenn die gemessenen Laufzeiten fiir
immer kleinere Datenmengen aber nicht gegen Null gehen sondern gegen einen anderen Wert, so
entspricht dieser Wert dem zu bestimmenden Overhead.

Die in diesem Abschnitt beschriebenen Untersuchungen zur Laufzeit von Dateniibertragungsbe-
fehlen erfolgen in Kapitel 4.3.1. Im néchsten Abschnitt wird die Untersuchung des Verhaltens des
OpenGL ES-Systems bei konkurrierenden Dateniibertragungen beschrieben.

3.2.2.2 Konkurrierende Dateniibertragungen

Grundsitzlich gibt es zwei Méglichkeiten, wie ein konkretes OpenGL ES-System Datentibertragun-
gen durchfiihrt, die sich zeitlich {iberschneiden:

* Die verfiighare Bandbreite wird auf mehrere Datentibertragungsbefehle aufgeteilt, so dass
kein Dateniibertragungsbefehl verzégert wird, bis ein anderer vollstdndig ausgefiihrt wurde.
Dadurch verldngert sich aus Sicht der Client-Programme die Laufzeit aller betroffenen Da-
teniibertragungsbefehle.

* Die Dateniibertragungsbefehle werden sequentiell ausgefiihrt, das heil3t, solange ein Daten-
tibertragungsbefehl noch nicht vollstindig ausgefiihrt worden ist, wird der Ausfiihrungsbe-
ginn anderer Dateniibertragungsbefehle verzogert. Dadurch verldngert sich aus Sicht der
Client-Programme nur deren Laufzeit.

Um die Laufzeit von Dateniibertragungsbefehlen in einem konkreten System vorhersagen zu kon-
nen, muss also geklart werden, welche dieser beiden Moglichkeiten durch das System umgesetzt
wird. Dazu werden zwei OpenGL ES-Programme ausgefiihrt, wobei die Ausfithrung des einen Pro-
gramms durch das andere Programm bestimmt wird. Zur Vereinfachung der Diskussion dartiber,
wird daher das bestimmende Programm nachfolgend als Masterprogramm bezeichnet und das be-
stimmte als Slaveprogramm. Die beiden Programme gehen wie folgt vor:

Zuerst wird das Masterprogramm gestartet. Dieses misst — als Vorbereitung fiir die eigentliche Un-
tersuchung — die Laufzeiten des zu untersuchenden Dateniibertragungsbefehls fiir unterschiedli-
che zu iibertragende Datenmengen. Die fiir diese Untersuchung relevanten Dateniibertragungsbe-
fehle werden in Kapitel 3.2.3 aufgefiihrt — durch das hier beschriebene Vorgehen wird jeweils nur
einer dieser Befehle untersucht. Dabei ist darauf zu achten, dass keine anderen Programme Da-
tenilibertragungen durchfiihren, wihrend das Masterprogramm diese Messungen vornimmt. Die
dabei ermittelten Laufzeiten dienen dann spéter als Referenz- und Vergleichswerte.

Nachdem das Masterprogramm seine Referenzmessung beendet hat, startet es das Slaveprogramm
und geht in einen Wartezustand tiber. Das Slaveprogramm fiihrt nun die gleiche Referenzmes-

42

3.2 Dateniibertragung

sung durch wie das Masterprogramm. Die von den beiden Programmen ermittelten Referenzwerte
miissen iibereinstimmen, um sicherzustellen, dass das Slaveprogramm vom OpenGL ES-System
gleich behandelt wird wie das Masterprogramm. Das ist eine wesentliche Voraussetzung, um die
spédter von den beiden Programmen ermittelten Laufzeiten sinnvoll miteinander vergleichen zu
konnen.

Nach Durchfithrung der Referenzmessung signalisiert das Slaveprogramm dem Masterprogramm
die Bereitschaft, fortzufahren, woraufhin das Masterprogramm den Wartezustand verldsst. Nun
tibermitteln die beiden Programme zeitgleich einen Dateniibertragungsbefehl an den GL-Server
und messen die Laufzeit des tibermittelten Befehls (beide Programme lassen dabei jeweils die glei-
che Menge an Daten {ibertragen). Diese Messungen werden fiir alle Datenmengen wiederholt, fiir
die zuvor auch eine Referenzmessung durchgefiihrt wurde.

AnschlieBend wird der gesamte Vorgang wiederholt, aber mit folgender Anderung des Ablaufs:
Die Ubermittlung des Dateniibertragungsbefehls durch das Masterprogramm wird gegeniiber der
Ubermittlung durch das Slaveprogramm verzégert, und zwar um die Hilfte der gemessenen Refe-
renzlaufzeit. Es ist anzunehmen, dass dadurch die Ausfiihrung des Datentibertragungsbefehls des
Slaveprogramms bereits zur Hilfte abgeschlossen ist, sobald die Ubermittlung des Dateniibertra-
gungsbefehls des Masterprogramms erfolgt.

SchlieBlich werden die von den beiden Programmen gemessenen Laufzeiten miteinander vergli-
chen, um darauf schlieffen zu kénnen, ob konkurrierende Dateniibertragungsbefehle vom unter-
suchten OpenGL ES-System sequentiell ausgefiihrt werden oder nicht. Dabei wird von den beiden
folgenden Annahmen ausgegangen:

¢ Wenn die beiden Datentibertragungsbefehle sequentiell abgearbeitet werden, dann wird bei
deren gleichzeitiger Ubermittlung entweder der Dateniibertragungsbefehl des Master- oder
der des Slaveprogramms etwa doppelt so lange laufen wie bei der Referenzmessung, wéh-
rend die Laufzeit beim jeweils anderen Programm der Laufzeit bei der Referenzmessung
gleicht. Bei verzogertem Masterprogramm wird stets dessen Laufzeit eineinhalb mal so grof3
sein wie bei der Referenzmessung.

* Wird hingegen die Bandbreite gleichmiRig auf die beiden iibermittelten Dateniibertragungs-
befehle aufgeteilt, so werden die Laufzeiten von Master- und Slaveprogramm etwa gleich
grof sein. Wenn die beiden Programme ihre Befehle gleichzeitig {ibermitteln, wird sich die
Laufzeit der Dateniibertragungsbefehle gegentiber der Referenzmessung etwa verdoppeln.
Wird die Ubermittlung des Befehls beim Masterprogramm um die Hélfte der Referenzzeit
verzogert, so wird die Laufzeit der Dateniibertragungsbefehle etwa eineinhalb mal so grof3
sein wie bei der Referenzmessung.

Die in diesem Abschnitt beschriebene Untersuchung zur Laufzeit von konkurrierenden Dateniiber-
tragungsbefehlen erfolgt in Kapitel 4.3.2. Im néchsten Abschnitt wird beschrieben, wie untersucht
wird, ob eine Dateniibertragung durchgefiihrt werden kann, wihrend zur gleichen Zeit ein Draw-
Befehl ausgefiihrt wird.

43

3 Methodisches Vorgehen

3.2.2.3 Nebenladufige Ausfiihrung von Dateniibertragung und Rendering

Im Hinblick auf die Untersuchung zur nebenlédufigen Ausfithrung von Dateniibertragungs- und
Draw-Befehlen stehen die folgenden beiden Fragen im Mittelpunkt:

e Kann eine Dateniibertragung durchgefiihrt werden, wihrend gleichzeitig ein gepufferter
Draw-Befehl ausgefiihrt wird? Gepufferte Draw-Befehle sind hier von besonderem Interesse,
dasich die von ihnen verarbeiteten Daten bereits in Datenobjekten befinden. Dadurch ist fiir
die Ausfiihrung von gepufferten Draw-Befehlen keine eigene Dateniibertragung notwendig
(sofern sich die Datenobjekte im GPU-Speicher befinden, wovon hier ausgegangen wird).

¢ Wie behindern sich Dateniibertragungen und gepufferte Draw-Befehle gegenseitig, wenn sie
nebenldufig ausgefiihrt werden kénnen? Werden sie sequentiell abgearbeitet, oder werden
Datentiibertragungen oder Draw-Befehle unterbrochen, sobald ein Befehl der jeweils ande-
ren Art an den GL-Server {ibermittelt wird?

Um diese Fragen zu beantworten, werden auch fiir diese Untersuchung zwei OpenGL ES-
Programme ausgefiihrt, die dhnlich vorgehen, wie die beiden im vorhergehenden Abschnitt
beschriebenen. Aber in dieser Untersuchung {ibermitteln nicht beide Programme Dateniibertra-
gungsbefehle, sondern nur eines der beiden. Das andere {ibermittelt einen Draw-Befehl an den
GL-Server.

Der Ablauf bleibt ansonsten unverdndert: Zunéchst fithrt das Masterprogramm seine Referenzmes-
sung durch, startet anschlieend das Slaveprogramm und geht in einen Wartezustand iiber, bis das
Slaveprogramm seine Referenzmessung durchgefiihrt hat. AnschlieBend messen die beiden Pro-
gramme die Laufzeiten des von ihnen iibertragenen Befehls, wobei die Ubertragung der beiden
Befehle in einem Fall gleichzeitig erfolgt, widhrend im anderen Fall das Masterprogramm um die
halbe vom Slaveprogramm gemessene Referenzlaufzeit verzogert wird.

Falls die Laufzeiten der konkurrierenden Befehle mit den Referenzwerten tibereinstimmen, so ist
das untersuchte System offensichtlich in der Lage, Dateniibertragungen durchzufiihren, wéhrend
gleichzeitig ein gepufferter Draw-Befehl ausgefiihrt wird. Falls nicht, wird durch die Messungen
mit verzogertem Masterprogramm sicher gekldrt, ob es zu Unterbrechungen kommt.

Zur Ausfiihrung des Draw-Befehls werden Minimalshader verwendet wie in [Munshi u. a. 2008] auf
Seite 22 beschrieben (Listing und ausfiihrliche Diskussion von Minimalshadern erfolgen in Kapitel
4.1.6). Durch die Verwendung von Minimalshadern soll sichergestellt werden, dass im Zuge der
Ausfiihrung des Draw-Befehls nicht unbeabsichtigt eine Funktion der Renderpipeline genutzt wird,
die die Interoperabilitdt von Draw und Dateniibertragung verhindert, wihrend die nebenlédufige
Ausfiihrung eines Draw- und eines Dateniibertragungsbefehls prinzipiell moglich wére.

Sofern die Untersuchung mit Minimalshadern zeigt, dass dies tatsdchlich der Fall ist, kann geson-
dert untersucht werden, ob die nebenldufige Ausfiihrung auch bei Verwendung komplexerer Sha-
der moglich ist. Wenn sie hingegen bereits mit Minimalshadern nicht méglich ist, eriibrigt sich jede
weitergehende Untersuchung.

Die in diesem Abschnitt beschriebene Untersuchung zur nebenldufigen Ausfithrung von Daten-
tibertragungs- und gepufferten Draw-Befehlen erfolgt in Kapitel 4.3.3. Im ndchsten Abschnitt wird
die Untersuchung der Dateniibertragung von ungepufferten Draw-Befehlen beschrieben.

44

3.2 Dateniibertragung

3.2.2.4 Dateniibertragung ungepufferter Draw-Befehle

Ungepufferte Draw-Befehle stellen insofern einen Sonderfall dar, dass sich zumindest ein Teil der
von ihnen verarbeiteten Daten zum Zeitpunkt ihrer Ubermittlung an den GL-Server noch nicht im
GPU-Speicher befindet. Diese Daten miissen also im Zuge der Ausfithrung des Draw-Befehls an
die GPU {iibertragen werden.

Frithere Untersuchungen haben gezeigt, dass zumindest manche GPUs in diesem Fall die Da-
teniibertragung parallel zur Ausfithrung der Draw-Befehle durchfiihren kdnnen (vgl. [Grottel u. a.
2009], Seite 71). Diese Fahigkeit muss also fiir ein konkretes System explizit {iberpriift werden;
denn auch wenn die vorhergehende Untersuchung zeigt, dass eine nebenldufige Ausfithrung von
Dateniibertragungs- und Draw-Befehlen nicht méglich ist, konnte dies im Falle von ungepufferten
Draw-Befehlen tatsdchlich anders aussehen. Dazu ist folgende Frage zu beantworten:

* Entspricht die Laufzeit fiir einen ungepufferten Draw-Befehl der Summe der Laufzeiten fiir
die Dateniibertragung und die Ausfithrung des Draw-Befehls im gepufferten Fall? Falls dies
so ist, muss davon ausgegangen werden, dass eine nebenldufige Ausfithrung von Dateniiber-
tragung und Rendering auch im Fall der Ausfitihrung von ungepufferten Draw-Befehlen nicht
moglich ist. Wenn die gemessenen Laufzeiten der ungepufferten Draw-Befehle die Summe
der beiden Laufzeiten fiir Dateniibertragung und Rendering im gepufferten Fall deutlich un-
terschreiten, dann muss vom Gegenteil ausgegangen werden.

Zur Klarung dieser Frage wird ein OpenGL ES-Programm ausgefiihrt, das wie folgt vorgeht: Noch
vor der Ausfithrung des ungepufferten Draw-Befehls werden in einem ersten Schritt fiir dessen
Vertexdaten die folgenden Referenzwerte ermittelt:

* Die Laufzeit des Befehls zur Ubertragung der Vertexdaten in den GPU-Speicher.

¢ Die Laufzeit des gepufferten Draw-Befehls fiir diese Vertexdaten (die sich in dem Fall bereits
vor Ubermittlung des Draw-Befehls im GPU-Speicher befinden, wodurch keine Dateniiber-
tragung notwendig ist).

¢ Die Dauer fiir die Kopie der Vertexdaten innerhalb des Hauptspeichers.

Der letzte Punkt hat folgenden Hintergrund: Laut Spezifikation von OpenGL ES 2.0 darf eine Ver-
dnderung der vom Draw-Befehl verwendeten Daten, die nach dessen Riicksprung erfolgt, keine
Auswirkungen auf das Ergebnis des Draw-Befehls haben (siehe [Munshi und Leech 2010], Seite 5).
Der Riicksprung darf aber bereits erfolgen, bevor der Draw-Befehl auf der GPU vollstdndig abgear-
beitet worden ist.

Wenn ein Riicksprung erfolgt, bevor die Daten in die GPU {iibertragen worden sein kénnen (fest-
stellbar durch Vergleich der bis zum Riicksprung verstrichenen Zeit mit der Referenzlaufzeit fiir
die Dateniibertragung), dann liegt die Annahme nahe, dass das OpenGL ES-System vor dem Riick-
sprung des Draw-Befehls eine Kopie der Daten im Hauptspeicher anlegt.’

Nach den Referenzwerten wird die Laufzeit des ungepufferten Draw-Befehls ermittelt und diese
mit den Referenzwerten verglichen. Dabei wird von folgenden Annahmen ausgegangen:

“Theoretisch wire auf den Testsystemen auch eine Kopie auf Festplatte maglich. Dies erscheint jedoch eher unwahr-
scheinlich, zumal eine Kopie im Hauptspeicher um Grolenordnungen schneller durchgefiihrt werden kann.

45

3 Methodisches Vorgehen

¢ Wenn die Laufzeit des Draw-Befehls deutlich geringer ist als die Summe der Referenzwerte
fiir Dateniibertragung und gepufferten Draw-Befehl, dann ist das untersuchte System offen-
kundig in der Lage, Daten in die GPU zu iibertragen, wihrend der ungepufferte Draw-Befehl
auf der GPU ausgefiihrt wird.

¢ Entspricht die Laufzeit des ungepufferten Draw-Befehls hingegen der Summe der Referenz-
werte (ggf. zuziiglich der Zeit fiir die Datenkopie im Hauptspeicher), dann kann davon aus-
gegangen werden, dass auch im ungepufferten Draw-Fall die eigentliche Abarbeitung des
Draw-Befehls in der GPU und die notwendigen Dateniibertragungen nicht zur gleichen Zeit
stattfinden.

In den vergangenen Abschnitten wurden alle untersuchten Fragestellungen hinsichtlich der Da-
teniibertragung und die Ansitze zu deren Beantwortung detailliert eroértert. Im nidchsten Abschnitt
werden sdmtliche OpenGL ES-Befehle aufgelistet, die fiir die hier beschriebene Untersuchung rele-
vant sind, und es wird dargelegt, fiir welche dieser Befehle die Untersuchungen zur Dateniibertra-
gung in Kapitel 4 durchgefiihrt werden.

3.2.3 Relevante Befehle fiir die Dateniibertragung

Fiir die Untersuchung der Dateniibertragung sind die folgenden X Gruppen von Befehlen rele-
vant: Befehle zur Erzeugung von Datenobjekten (siehe Abschnitt 3.2.3.1), Befehle zur teilweisen
Aktualisierung von Datenobjekten (siehe Abschnit 3.2.3.2), Draw-Befehle (siehe Abschnitt 3.2.3.3,
Befehle zur Programmverwaltung (siehe Abschnitt 3.2.3.4), Befehle zur Festlegung konstanten Sha-
derinputs (siehe Abschnitt 3.2.3.5) und alle sonstigen Dateniibertragungsbefehle (siehe Abschnitt
3.2.3.6). Ein umfassender Uberblick iiber alle von OpenGL ES 2.0 definierten Befehle mit einer kur-
zen Beschreibung findet sich im Anhang in Kapitel 6.1.

3.2.3.1 Befehle zur Erzeugung von Datenobjekten

Von den sieben von OpenGL ES 2.0 definierten Befehlen zur Erzeugung von Datenobjekten sind
nur die folgenden fiinf fiir die Dateniibertragung relevant (da durch die beiden anderen Befehlen
keine Daten iibertragen werden kénnen):

* glBufferData zur Erzeugung von Vertexbuffer-Objekten sowie

* glTexImage2D, glCompressedTexImage2D, glCopyTexImage2D und glGenerateMipmap
zur Erzeugung von Texturobjekten.

Ob es durch glGenerateMipmap tatsdchlich zu einer Dateniibertragung kommt, ist abhéngig von
der konkreten Implementierung des OpenGL ES-Systems. Wenn die Ausgangstextur zur Erzeugung
der Mipmaps im GPU-Speicher liegt und die Berechnung der Mipmaps innerhalb der GPU statt-
findet ist keine Dateniibertragung notwendig. Die anderen hier aufgefiihrten Befehle zur Erzeu-
gung von Datenobjekten sind deshalb relevant, weil ihnen auch ein Zeiger auf Daten im Haupt-
speicher iibergeben werden kann, mit denen die betreffenden Datenobjekte gefiillt werden sollen.
Falls hierbei kein Nullpointer iibergeben wird, fithren diese Befehle tatsédchlich eine Datentiibertra-
gung durch. Aullerdem dienen diese Befehle auch dazu, den kompletten Inhalt bereits bestehender
Datenobjekte zu iiberschreiben. Auch in diesem Fall wird eine Dateniibertragung durchgefiihrt.

46

3.2 Dateniibertragung

Von den hier aufgefiihrten fiinf Befehlen werden im Rahmen dieser Arbeit nur fiir den Befehl
glBufferData die Untersuchungen zur Dateniibertragung durchgefiihrt. Die Wahl fillt aus den
gleichen Griinden speziell auf diesen Befehl, die auch fiir seine Wahl im Rahmen der Untersuchung
der Speicherbelegung ausschlaggebend waren (siehe Abschnitt 3.1.3.1).

3.2.3.2 Befehle zur teilweisen Aktualisierung von Datenobjekten

OpenGL ES 2.0 definiert vier Befehle zur teilweisen Aktualisierung von Datenobjekten:
¢ glBufferSubData zur teilweisen Aktualisierung von Vertexbuffer-Objekten sowie

¢ glTexSubImage2D, glCompressedTexSubImage2D und glCopyTexSubImage2D zur teilwei-
sen Aktualisierung von Textur-Objekten.

Diese vier Befehle entsprechen im Prinzip den jeweiligen Befehlen ohne Subim Namen, allerdings
mit dem Unterschied, dass durch sie keine neuen Datenobjekte erzeugt werden kénnen, sondern
nur Daten in bereits bestehende Datenobjekte {ibertragen werden kénnen. Dafiir kann optional
nur ein Teil der Daten im jeweiligen Zielobjekt iiberschrieben werden (statt dem gesamten Inhalt).
Da mit glBufferData bereits ein Dateniibertragungsbefehl fiir die Untersuchung ausgewahlt wur-
de, der zur Ubertragung beliebiger Datenmengen verwendet werden kann, wurde auf eine geson-
derte Untersuchung dieser vier Befehle verzichtet.

3.2.3.3 Draw-Befehle

Wie auch fiir die in Abschnitt 3.1.3.4 behandelte Untersuchung zur Speicherbelegung sind die bei-
den von OpenGL ES 2.0 definierten Draw-Befehle (glDrawArrays und glDrawElements) nur im
ungepufferten Fall fiir die Untersuchung der Dateniibertragung relevant, da hierbei die fiir das Ren-
dering benétigten Vertex- bzw. Inputdaten noch nicht an das OpenGL ES-System {ibertragen wur-
den.

Aufgrund der Ergebnisse von [Grottel u. a. 2009] sind die ungepufferten Draw-Befehle im Hinblick
auf die Untersuchung zur Dateniibertragung sogar von besonderem Interesse. Die hierzu in den
Abschnitten 3.2.2.3 und 3.2.2.4 beschriebenen Untersuchungen werden im Rahmen dieser Arbeit
fiir glDrawArrays durchgefiihrt. Der einzige Unterschied zu glDrawElements besteht darin, dass
fiir glDrawElements zusdtzliche Indexdaten iibergeben werden kénnen, die dafiir sorgen, dass
nicht die gesamte Menge der libergebenen Vertexdaten fiir das Rendering verwendet werden. Im
Gegensatz dazu werden bei glDrawArrays sdmtliche libergebenen Vertexdaten verwendet (und
somit im ungepufferten Fall auch tibertragen). Dies diirfte jedoch keine Auswirkung auf die Verar-
beitung der Vertexdaten durch die Renderpipeline haben.

3.2.3.4 Befehle zur Programmverwaltung

Von den Befehlen zur Programmverwaltung sind die selben beiden fiir die Untersuchung der Da-
tenilibertragung relevant, die auch fiir die Untersuchung der Speicherbelegung relevant sind:

e glLinkProgram, durch den aus einem Vertex- und einem Fragmentshader ein ausfiihrbares
Programmobjekt erzeugt wird und

47

3 Methodisches Vorgehen

* glUseProgram, durch den ein erzeugtes Programmobjekt im aktuellen Kontext installiert
wird.

Falls Programmobjekte im GPU-Speicher abgelegt werden, miissen sie dorthin iibertragen werden.
Dies Ubertragung kann im Zuge der Ausfiihrung von glLinkProgram oder glUseProgram erfolgen.
Die (mogliche) Ubertragung von Programmobjekten durch diese beiden Befehle wurde im Rahmen
dieser Arbeit jedoch nicht gesondert untersucht, und zwar aus den gleichen Griinden, aus denen
diese beiden Befehle auch nicht bei der Untersuchung der Speicherbelegung beriicksichtigt wur-
den (siehe Abschnitt 3.1.3.3).

3.2.3.5 Befehle zur Festlegung konstanten Shaderinputs

OpenGL ES 2.0 definiert insgesamt 27 Befehle, mit denen konstante Werte fiir den Shaderinput
festgelegt werden konnen. Aus Sicht von Shaderprogrammen existieren aber nur zwei Typen von
konstantem Input, ndmlich Vertexattribut- und Uniform-Variablen. 19 der 27 Befehle dienen dazu,
die Werte von Uniform-Variablen festzulegen, und die iibrigen acht dienen dazu, die Werte von
Vertexattribut-Variablen festzulegen.

Die einzelnen Befehle, die jeweils fiir eine der beiden Arten von Variablen ,zustdndig“ sind, unter-
scheiden sich nicht in ihrer grundséatzlichen Funktion sondern nur hinsichtlich der Parameter, mit
denen die Werte der Variablen spezifiziert werden (so umfassen Vertexattribut-Variablen 16 Byte —
diese 16 Byte konnen beispielsweise in einer Befehlsvariante durch Ubergabe von vier Integern a
vier Byte spezifiziert werden und in einer anderen Variante durch Ubergabe eines Byte-Arrays mit
16 Elementen).

Da im Fall von Uniform-Variablen héchstens 128 Byte durch die Ausfiihrung eines Befehls {iber-
tragen werden kdnnen und im Fall von Vertexattribut-Variablen sogar nur 16 Byte, wurden die Un-
tersuchungen zur Dateniibertragung im Rahmen dieser Arbeit nicht fiir die Befehle zur Festlegung
des konstanten Shaderinputs durchgefiihrt (zumal bei den Untersuchungen mit dem Dateniiber-
tragungsbefehl glBufferData auf den in den hierbei verwendeten Testsystemen hunderte Mega-
byte durch einen Aufruf iibertragen werden konnen, siehe Kapitel 4).

3.2.3.6 Sonstige Dateniibertragungbefehle

Der Befehl glReadPixels dient dazu, Daten aus dem aktuellen Framebuffer in den Hauptspeicher
zu kopieren. Daher ist dieser Befehl fiir die Untersuchung zur Dateniibertragung relevant. Im Rah-
men dieser Arbeit wurde auf eine gesonderte Untersuchung dieses Befehls jedoch verzichtet.

Im nun folgenden Abschnitt wird erldutert, warum die Untersuchung der Pipelinenutzung im Hin-
blick auf den Hintergrund der Arbeit sehr wichtig ist. Anschlief}end werden die genauen Fragestel-
lungen fiir diese Untersuchung sowie die Ansédtze zu deren Beantwortung erortert und die dafiir
relevanten OpenGL ES-Befehle vorgestellt.

48

3.3 Pipelinenutzung

3.3 Pipelinenutzung

3.3.1 Motivation fiir die Untersuchung der Pipelinenutzung

Wie bereits in Kapitel 2 dargelegt, wird die Datenverarbeitung durch die Renderpipeline in OpenGL
ES 2.0 durch Aufruf eines der beiden Draw-Befehle (glDrawArrays und glDrawElements) angesto-
Ben. Eine zwingende Voraussetzung zur Erfiillung von Echtzeitgarantien fiir kritische Anwendun-
gen ist die Moglichkeit, zumindest eine Obergrenze fiir die Laufzeit dieser Draw-Befehle angeben
zu konnen. Dies ist bei OpenGL ES 2.0 fiir beliebige Shader und beliebigen Input jedoch nicht mog-
lich, ohne die Draw-Befehle zuvor mit exakt den gleichen Inputdaten und sonstigen Einstellungen
ausgefiihrt zu haben. Dafiir gibt es zwei Griinde:

* Im Zuge der Ausfiihrung von Draw-Befehlen werden auf der GPU Shader-Programme
ausgefiihrt, und zwar jeweils mindestens eine Instanz eines Vertexshader- und eines
Fragmentshader-Programms (vgl. Kapitel 2.6). Allgemein ldsst sich deren Laufzeit nicht
vorhersagen, ohne das Halteproblem fiir diese Programme zu l6sen.

Zwar erlaubt die Spezifikation der Shading Language von OpenGL ES 2.0 (d. h. der C-Dialekt,
in dem Shader-Programme geschrieben werden) gewisse Einschrankungen hinsichtlich sol-
cher Programme. Dadurch kann die Vorhersage ihrer Laufzeit erleichtert werden, zum Bei-
spiel wenn Schleifen so eingeschrdankt werden, dass die Anzahl der Schleifeniterationen zur
Kompilierzeit ermittelt werden kann und Endlosschleifen ausgeschlossen sind. Ob solche
Einschriankungen fiir ein konkretes System gelten, bleibt aber den Systemherstellern iiber-
lassen. Die Spezifikation der Shading Language erlaubt sogar explizit Endlosschleifen (siehe
[Simpson und Kessenich 2009], Seite 57). Tatsdchlich existieren mittlerweile GPUs, die keine
Einschrankungen mehr hinsichtlich der Verwendung von Schleifen in Shaderprogrammen
definieren, zum Beispiel die ARM-GPUs Mali-55, Mali-200 und Mali-400 MP (siehe [ARM
2009], Seite 37). Auf solchen GPUs kann ein Shaderprogramm unbegrenzt lange laufen.

 Selbst wenn die Laufzeit von Shader-Programmen genau vorhergesagt werden kann, gibt es
ein weiteres Problem, das die Vorhersage der Laufzeit eines Draw-Befehls sehr erschwert:
Fiir die Vorhersage reicht es nicht aus, nur die Laufzeit der Shader-Programme zu kennen;
es muss auch bekannt sein, wieviele Instanzen der einzelnen Shader-Programme im Zuge
der Ausfiihrung eines Draw-Befehls ausgefiihrt werden. Wihrend die Anzahl der ausgefiihr-
ten Vertexshader-Instanzen anhand der Menge der zu verarbeitenden Vertices genau vor-
hergesagt werden kann, gilt dies fiir die Anzahl der ausgefiihrten Fragmentshader-Instanzen
nicht.? Diese Anzahl ist abhingig von den konkreten Werten der einzelnen Vertices und steht
erst fest, nachdem die Rasterisierung vollstindig abgeschlossen wurde, also erst wihrend der
Ausfiihrung eines Draw-Befehls.

Es stellt sich also die Frage, inwieweit ein konkretes OpenGL ES-System ermoglicht, dass konkur-
rierende Anwendungen die Renderpipeline gleichzeitig nutzen kénnen oder ob ein einzelner, lang-
laufender Draw-Befehl einer Anwendung die Renderpipeline komplett fiir alle anderen Anwendun-

8Die einzige Ausnahme davon ist, wenn im Zuge eines Draw-Befehls weder Linien noch Dreiecke sondern nur Punk-
te gerendert werden. Dann stimmt die Anzahl der ausgefiihrten Vertexshader-Instanzen mit der der ausgefiihrten
Fragmentshader-Instanzen iiberein. Der hdufigste Anwendungsfall fiir Draw-Befehle in 3D-Anwendungen besteht
allerdings darin, Dreiecke zu rendern (siehe [Munshi u. a. 2008], Seite 128).

49

3 Methodisches Vorgehen

gen blockieren kann. Falls eine nebenldufige Ausfithrung mehrerer Draw-Befehle méglich ist, sind
Echtzeitgarantien fiir Draw-Befehle kritischer OpenGL ES-Anwendungen nicht zwingend ausge-
schlossen, auch wenn von einer anderen Anwendung lang laufende Draw-Befehle an das OpenGL
ES-System iibermittelt werden:

Sofern eine Obergrenze fiir die Laufzeit von Draw-Befehlen kritischer Anwendungen bekannt ist’
und bei der nebenldufigen Ausfiihrung von Draw-Befehlen die Ressourcen der Renderpipeline zu
gleichen Teilen auf die konkurrierenden Befehle aufgeteilt werden, kann von einer Verdopplung
dieser Obergrenze ausgegangen werden; die mangelnde Vorhersagbarkeit der Laufzeit von Draw-
Befehlen anderer Anwendungen stiinde dann der Erfiillung von Echtzeitgarantien fiir kritische An-
wendungen nicht mehr prinzipiell im Wege.

Alternativ sind solche Garantien trotz mangelnder Vorhersagbarkeit der Laufzeit von Draw-
Befehlen moglich, wenn ein konkretes OpenGL ES-System die Unterbrechung oder zumindest
den Abbruch der Ausfithrung eines Draw-Befehls ermoglicht. Sofern der Abbruchvorgang auf
einem solchen System hinreichend schnell durchzufiihren ist, kann ein Draw-Befehl, der eine
kritische Anwendung behindert, im Notfall abgebrochen werden, um die rechtzeitige Ausfithrung
der kritischen Befehle zu ermdglichen.

Im folgenden Abschnitt werden daher zwei Untersuchungen beschrieben, die die Fragen nach ne-
benldufiger Ausfiihrbarkeit und Abbrechbarkeit von Draw-Befehlen fiir ein konkretes OpenGL ES-
System kldren.

3.3.2 Untersuchungsmethoden zur Pipelinenutzung
3.3.2.1 Ausfiihrung konkurrierender Draw-Befehle

Um zu kldren, ob konkurrierende Draw-Befehle nebenldufig ausgefiihrt werden konnen, werden
zwei OpenGL ES-Programme ausgefiihrt, wobei die Ausfithrung des einen Programms durch das
andere Programm bestimmt wird. Zur Vereinfachung der Diskussion dariiber, wird das bestimmen-
de Programm nachfolgend als Masterprogrammbezeichnet und das bestimmte als Slaveprogramm.
Die beiden Programme gehen wie folgt vor:

In einem ersten Schritt fithrt das Masterprogramm eine Reihe von Draw-Befehlen aus, wobei da-
durch jeweils eine unterschiedlich Anzahl an Dreiecken gerendert wird. Dabei wird die Laufzeit
der Draw-Befehle gemessen. Die Ergebnisse dieser Messung fungieren als Referenzwerte fiir die
nachfolgende Untersuchung. Fiir diese Untersuchung werden Minimalshader verwendet (wie in
Kapitel 4.1.6 beschrieben), und zwar aus den gleichen Griinden, die auch in den bisher beschrie-
benen Untersuchungen fiir die Wahl von Minimalshadern ausschlaggebend waren (vgl. Abschnitt
3.2.2.2).

Nach Durchfiihrung der Referenzmessungen startet das Masterprogramm das Slaveprogramm und
geht in einen Wartezustand iiber. Das Slaveprogramm fiihrt nun die gleichen Referenzmessungen
durch wie das Masterprogramm. Wie in der in Abschnitt 3.2.2.2 beschriebenen Untersuchung dient
dies dazu, sicherzustellen, dass die beiden Programme vom OpenGL ES-System gleich behandelt
werden.

9Diese Obergrenze kann vor dem Einsatz der betreffenden Programme im Automobil ermittelt werden.

50

3.3 Pipelinenutzung

Nach Abschluss der Referenzmessung signalisiert das Slaveprogramm dem Masterprogramm die
Bereitschaft, fortzufahren, woraufhin das Masterprogramm den Wartezustand verldsst und die ei-
gentliche Untersuchung anst68t. Dabei iibermitteln beide Programme die gleichen Draw-Befehle,
die auch bei der Referenzmessung iibermittelt wurden, wobei immer zuerst der Draw-Befehl des
Masterprogramms an den GL-Server iibermittelt wird und unmittelbar darauf der des Slavepro-
gramms. Es muss dabei sichergestellt sein, dass der Draw-Befehl des Slaveprogramms {ibermittelt
wird, bevor der Befehl des Masterprogramms vollstdndig ausgefiihrt worden ist.

Falls die Laufzeiten der Draw-Befehle von Master- und Slaveprogramm {ibereinstimmen, muss da-
von ausgegangen werden, dass das bei der Untersuchung verwendete OpenGL ES-System in der
Lage ist, konkurrierende Draw-Befehle nebenldufig auszufiihren. Falls hingegen die vom Slavepro-
gramm gemessenen Laufzeiten deutlich ldnger sind als die vom Masterprogramm gemessenen,
und letztere mit den Referenzlaufzeiten iibereinstimmen, muss davon ausgegangen werden, dass
die Ausfiihrung der Draw-Befehle des Slaveprogramms verzogert wurde, bis die Ausfithrung des
Draw-Befehls des Masterprogramms abgeschlossen war und eine nebenldufige Ausfithrung kon-
kurrierender Draw-Befehle nicht moglich ist.

Die hier beschriebene Untersuchung zur Ausfiihrung konkurrierender Draw-Befehle wird in Ka-
pitel 4.4.1 durchgefiihrt. Im ndchsten Abschnitt wird die Untersuchung zur Abbrechbarkeit von
Draw-Befehlen beschrieben.

3.3.2.2 Abbrechbarkeit von Draw-Befehlen

OpenGL ES 2.0 definiert keinen Befehl, um laufende Draw-Anweisungen abzubrechen. Dennoch
existieren GPUs, die dazu in der Lage sind, und zwar solche, die unter Windows-Betriebssystemen
ab Windows Vista eingesetzt werden konnen. Die GPUs miissen das sogenannte Windows Display
Driver Model (WDDM) unterstiitzen, damit sie unter diesen Betriebssystemen genutzt werden kon-
nen. Die Abbrechbarkeit von Befehlen, die die GPU {iiber einen ldngeren Zeitraum blockieren,? ist
eine der zwingenden, von WDDM gesetzten Anforderungen an solche GPUs [Microsoft 2006].

Es stellt sich die Frage, welche Folgen ein solcher Abbruch fiir OpenGL ES-Programme hat. Unter
den genannten Windows-Betriebssystemen sind diese Folgen von der jeweiligen GPU abhéngig.
Sobald die Ausfiihrung eines Befehls das erlaubte Zeitintervall tiberschreitet, wird der GPU-Treiber
durch das Betriebssystem aufgefordert, die Ausfithrung des laufenden Befehls abzubrechen und
einen anderen Befehl auszufiihren (dieser Vorgang wird als preempt operation bezeichnet). Falls
dies gelingt, werden andere OpenGL ES-Anwendungen nicht negativ davon betroffen. Falls dies
fehlschldgt, wird ein Hardware-Reset der GPU durchgefiihrt und der GPU-Treiber durch das Be-
triebssystem neu gestartet — davon sind dann alle OpenGL ES-Programme betroffen, da deren Kon-
texte dadurch ungiiltig werden [MSDN 2009].

Fiir die Echtzeitfahigkeit kritischer OpenGL ES-Anwendungen ist es entscheidend, ob durch den
Abbruch eines laufenden Draw-Befehls die Kontexte aller OpenGL ES-Programme ungiiltig werden.
Das dadurch erneut notwendige Setup des Kontextes und aller benétigten Datenobjekte konnte
dazu fiihren, dass der nidchste Draw-Befehl eines kritischen OpenGL ES-Programms nicht mehr
rechtzeitig ausgefiihrt werden kann.

10pjeser Zeitraum kann vom Benutzer oder von Anwendungen verindert werden.

51

3 Methodisches Vorgehen

Zur Untersuchung des Abbruchverhaltens werden zwei OpenGL ES-Programme ausgefiihrt, wobei
eines der beiden einen Draw-Befehl an den GL-Server iibermittelt, der langer 1duft als erlaubt, so
dass ein Abbruch provoziert wird. AnschlieBend wird iiberpriift, ob die andere Anwendung noch
in der Lage ist, tiber den bisherigen Kontext OpenGL ES-Befehle ausfiihren zu lassen.

Die hier beschriebene Untersuchung zur Ausfithrung konkurrierender Draw-Befehle wird in Kapi-
tel 4.4.2 durchgefiihrt. Im nédchsten Abschnitt werden die OpenGL ES-Befehle aufgefiihrt, die fiir
die Untersuchung der Pipelinenutzung relevant sind.

3.3.3 Relevante Befehle fiir die Pipelinenutzung

Wie bereits in Abschnitt 3.3 dargelegt, sind die beiden von OpenGL ES 2.0 definierten Draw-
Befehele (glDrawArrays und glDrawElements) fiir die Untersuchung der Pipelinenutzung
relevant, da diese Befehle die Datenverarbeitung durch die Renderpipeline anstof3en. Fiir die
Untersuchungen in Kapitel 4.4.1 und 4.4.2 wird glDrawArrays verwendet. Der einzige Unter-
schied zu glDrawElements besteht in der Art, wie die von der Renderpipeline zu verarbeitenden
Vertexdaten spezifiziert werden (siehe Abschnitt 3.2.3.3), die Datenverarbeitung selbst bleibt
davon unberiihrt.

Neben den Draw-Befehlen sind auch die in Abschnitt 3.2.3 aufgefiihrten Dateniibertragungsbefeh-
le relevant, da es Systeme geben kann, auf denen die Renderpipeline blockiert ist, solange eine
Dateniibertragung stattfindet (vgl. [Dwarakinath 2008, Seite 17). Die Untersuchung, inwieweit sich
Draw- und Dateniibertragungsbefehle gegenseitig behindern, wurde bereits in Abschnitt 3.2.2.3
beschrieben.

Im folgenden Abschnitt wird erldutert, warum die Beriicksichtigung von Kontextwechseln im Hin-
blick auf den Hintergrund der Arbeit relevant ist. Danach werden die Untersuchungen beschrie-
ben, mit denen Kosten fiir Kontextwechsel ermittelt werden kénnen, und erértert, welche OpenGL
ES-Befehle fiir diese Untersuchungen relevant sind.

3.4 Kontextwechsel

3.4.1 Motivation fiir die Untersuchung von Kontextwechseln

Bevor der GL-Server einen OpenGL ES-Befehl ausfiihrt, muss er sicherstellen, dass dieser Befehl
gegen den korrekten Kontext ausgefiihrt wird, das heil3t, dass fiir die Ausfiihrung dieses Befehls
sdmtliche Einstellungen gelten, die von der {ibermittelnden Anwendung im aktuellen Kontext ge-
setzt wurden. Wenn zuvor ein Befehl einer anderen Anwendung ausgefiihrt worden ist, gelten zu-
néchst noch die Einstellungen ihres Kontextes. Da diese nicht zwingend genau den Einstellungen
der Anwendung entsprechen, die den neuen Befehl {ibermittelt, miissen in diesem Fall die Einstel-
lungen ihres Kontextes iibernommen werden, bevor der Befehl tatsdchlich ausgefiihrt wird. Diese
Ubernahme von Einstellungen eines Kontextes wird als Kontextwechsel bezeichnet.

Ein solcher Kontextwechsel ist mit gewissen Kosten verbunden, das heif3t aus Sicht einer OpenGL-
Anwendung verlidngert sich die Laufzeit eines an den GL-Server {ibermittelten Befehls, wenn zur

52

3.4 Kontextwechsel

Ausfiihrung dieses Befehls erst ein Kontextwechsel durchgefiihrt werden muss. [Dwarakinath 2008]
beziffert die Kosten fiir einen Kontextwechsel auf einem System mit ATI 1200 GPU mit 3 ps. Das
Whitepaper zur Fermi-Architektur fiir Nvidia GPUs feiert die Reduktion der Kosten fiir einen Kon-
textwechsel gegeniiber GPUs der vorhergehenden Generation um den Faktor 10 auf unter 25 us
(siehe [Nvidia 2009], Seite 18). Offenbar unterscheiden sich also die Kosten fiir Kontextwechsel zwi-
schen GPUs verschiedener Hersteller sehr stark (Faktor 80 zwischen ATI r200 und Nvidia GPUs der
Vor-Fermi-Generation).

Da zur Erfiillung von Echtzeitgarantien eine Obergrenze fiir die Laufzeit von OpenGL ES-Befehlen
angegeben werden kdnnen muss, ist es sehr wichtig, die zusétzlichen Kosten durch einen Kon-
textwechsel zu kennen, denn dadurch erh6ht sich diese Obergrenze. Im folgenden Abschnitt wird
daher eine Untersuchung beschrieben, mit der sich die Kosten fiir Kontextwechsel ermitteln las-
sen.

3.4.2 Untersuchung der Kosten von Kontextwechseln

Prinzipiell kénnte es nach Ausfiihrung jedes Befehls zu einem Kontextwechsel kommen, wenn an-
schliefend ein Befehl gegen einen anderen Kontext ausgefiihrt wird. Bei manchen Befehlen wére
es nicht verwunderlich, wenn das OpenGL ES-System auf einen Kontextwechsel verzichten wiirde,
zum Beispiel bei Ausfiihrung eines Befehls, der weder den GPU-Speicher noch die Renderpipeli-
ne beriihrt, was beispielsweise auf den Get-Befehl zur Abfrage des Namens des GPU-Herstellers
zutrifft. 1!

Bei der Ausfiihrung eines Draw-Befehls kann davon ausgegangen werden, dass ein Kontextwechsel
durchgefiihrt wird. Daher werden zur Ermittlung der Kosten eines Kontextwechsels zwei OpenGL
ES-Programme ausgefiihrt (im Folgenden wie in vorherigen Abschnitten als Master- und Slavepro-
gramm bezeichnet), die Draw-Befehle im gegenseitigen Wechsel ausfithren (wobei das Slavepro-
gramm den ersten Draw-Befehl an den GL-Server iibermittelt). Durch dieses Vorgehen wird auf
Seiten des Masterprogramms fiir jeden Draw-Befehl ein Kontextwechsel erzwungen. Das Master-
programm misst dabei die Laufzeit seiner Draw-Befehle. Die dabei auftretende Abweichung von
der Referenzmessung entspricht den Kosten eines Kontextwechsels.

Dieses Vorgehen allein reicht aber nicht aus, um in jedem Fall die Kosten eines Kontextwechsels
bei der Prognose der Laufzeit von OpenGL ES-Befehlen korrekt berticksichtigen zu kénnen. Es
kann - zumindest bei gewissen OpenGL ES-Implementierungen — zu Situationen kommen, die
zu hoheren Kosten fiir einen Kontextwechsel fiihren: Fiir den Linux-Treiber der ATT r200-GPU ist
bekannt, dass die Userspace-Komponente!? des Treibers eine vollstandige Sicht auf das aktuelle
Layout des GPU-Speichers'® unterhilt, die bei Bedarf aktualisiert wird (siehe [Dwarakinath 2008],
Seite 7). Es ist nicht auszuschlieBen, dass auch auf anderen Systemen fiir jedes einzelne OpenGL
ES-Programm eine solche Sicht unterhalten wird.

HEs kann natiirlich konkrete OpenGL ES-Implementierungen geben, bei denen dies nicht der Fall ist; dies erscheint
jedoch hochst unwahrscheinlich.

12Der Treiber fiir eine r200-GPU besteht aus zwei Komponenten, die sogenannte Userspace- und die Kernelspace-
Komponente. Eine Instanz der Kernelspace-Komponente wird vom Kernel des Betriebssystems ausgefiihrt. Zusatz-
lich wird jeweils eine Instanz der Userspace-Komponente fiir jedes OpenGL ES-Programm erzeugt.

13Es handelt sich dabei um Informationen dariiber, welche Abschnitte des GPU-Speichers gerade belegt oder frei sind.

53

3 Methodisches Vorgehen

Sofern dies bei einem konkreten System der Fall ist und die Aktualisierungen der Sichten nicht
ohnehin bei jedem Kontextwechsel erfolgen, muss damit gerechnet werden, dass sich einzelne
Kontextwechsel verteuern (dann, wenn eine solche Aktualisierung durchgefiihrt wird). Es ist nicht
auszuschlief3en, dass nur solche OpenGL ES-Befehle davon betroffen sind, fiir deren Ausfithrung
aktuelle Informationen zum Layout des GPU-Speichers benotigt werden — das sind alle Befehle, die
die GPU-Speicherbelegung verandern kénnen. !4,

Zur Uberpriifung dieser Moglichkeit werden zwei OpenGL ES-Programme ausgefiihrt, die ganz
dhnlich vorgehen, wie die beiden oben beschriebenen. In diesem Fall {ibermittelt das Slavepro-
gramm jedoch keinen Draw-Befehl, sondern einen Befehl, der die GPU-Speicherbelegung dndert.
Das Masterprogramm wird in zwei Varianten ausgefiihrt: Die erste entspricht dem oben beschrie-
benen Masterprogramm. Dadurch wird festgestellt, ob durch die Anderung der Speicherbelegung
die Kosten des ,reguldren” Kontextwechsels erh6ht werden. Anschliefend wird die zweite Varian-
te des Masterprogramms ausgefiihrt. Hierbei iibermittelt das Masterprogramm statt eines Draw-
Befehls ebenfalls einen Befehl, der die GPU-Speicherbelegung dndert, um festzustellen ob die Kos-
ten fiir diesen Befehl erhoht sind.

SchlieBlich wird das Masterprogramm in der zweiten Variante zusammen mit dem urspriinglichen
Slaveprogramm ausgefiihrt, um ausschliefen zu kénnen, dass Kontextwechsel fiir Befehle, die die
GPU-Speicherbelegung @ndern, generell erhoht sind — nach Ausfithrung aller in diesem Abschnitt
beschriebenen Untersuchungen sind also die Kosten fiir die folgenden vier Fille bekannt:

* Ein Draw-Befehl des Masterprogramms folgt einem Draw-Befehl des Slaveprogrammes.

e Ein Draw-Befehl des Masterprogramms folgt einem Befehl des Slaveprogramms, der die
GPU-Speicherbelegung dndert.

¢ Ein Befehl des Masterprogramms, der die GPU-Speicherbelegung dndert, folgt einem Draw-
Befehl des Slaveprogrammes.

» Ein Befehl des Masterprogramms, der die GPU-Speicherbelegung dndert, folgt einem Befehl
des Slaveprogramms, der die GPU-Speicherbelegung dndert.

Dadurch wird geklért, ob die Anderung der GPU-Speicherbelegung erhhte Kosten verursacht und
falls ja, ob diese erh6hten Kosten erst dann zum Tragen kommen, sobald ein weiterer Befehl aus-
gefiihrt wird, der die GPU-Speicherbelegung dndert.

3.4.3 Relevante Befehle fiir die Untersuchung von Kontextwechseln

Wie bereits zu Beginn von Abschnitt 3.4.2 dargelegt, kann es bei der Ausfithrung jedes OpenGL
ES-Befehls zu einem Kontextwechsel kommen, wenn zuvor der Befehl eines anderen Programms
ausgefiihrt wurde, zum Beispiel bei Draw-Befehlen. Fiir die hier beschriebene Untersuchung wird
glDrawArrays verwendet. Es ist davon auszugehen, dass der andere von OpenGL ES 2.0 definierte
Draw-Befehl (glDrawElements) gleiche Ergebnisse liefert (siehe Abschnitt 3.2.3.3).

Relevant fiir die Untersuchung der erhéhten Kosten von Kontextwechseln bei Anderung der
Speicherbelegung sind grundsétzlich alle Befehle, die auch fiir die Untersuchung der Speicherbele-

14Djese Befehle sind in Abschnitt 3.1.3 aufgefiihrt.

54

3.4 Kontextwechsel

gung relevant sind (siehe Abschnitt 3.1.3). Hier wird — wie in den vorhergehenden Untersuchungen
auch — glBufferData verwendet, um ein Datenobjekt zu erzeugen.

Die in diesem Abschnitt beschriebene Untersuchung wird in Kapitel 4.5 durchgefiihrt. Im néchs-
ten Kapitel sind die Durchfiihrung aller Untersuchungen zu Speicherbelegung, Dateniibertragung,
Pipelinenutzung und Kontextwechseln sowie deren Ergebnisse dokumentiert.

55

4 Untersuchungen

Die im vorherigen Kapitel beschriebenen Untersuchungen wurden auf drei verschiedenen Testsys-
temen durchgefiihrt. Die dabei ausgefiihrten OpenGL ES-Programme und die dadurch gewonne-
nen Ergebnisse sind in den Abschnitten 4.2 bis 4.5 dokumentiert.

In Abschnitt 4.1 werden zunéchst die technischen Details der Untersuchungen beschrieben, die
nicht auf eine einzelne Untersuchung beschréankt sind. Dazu gehoren die Beschreibungen der drei
Testsysteme, der Verfahren fiir Laufzeit- und Speicherplatzmessungen, der Umgang mit Fehlern
des GL-Systems, das Verfahren zur Interprozesskommunikation und die Beschreibung der fiir die
Untersuchungen verwendeten Shaderprogramme.

4.1 Technische Details der Untersuchungen

4.1.1 Testsysteme

Komponente |,Nvidia Quadro 2000D“ | ,ATI FirePro V4800“ |, ATI FirePro V5900
Prozessor Intel Core i7 920 Intel Pentium E2140 Intel Core 2 Q8400
Rechenkerne 4 2 4

Hauptspeicher | 6 GB DDR3 8 GB DDR2 4 GB DDR2

GPU Nvidia Quadro 2000D ATI FirePro V4800 ATT FirePro V5900
GPU-Speicher | 1 GB 1GB 2GB

Treiberversion | 275.65 6.14.10.10225 8.01.01.1134

PCI-Slot PCle 2 x16 (max. 8 GB/s) | PCle x8 (max. 2 GB/s) | PCle 2 x8 (max. 4 GB/s)

Tabelle 4.1: Daten der verwendeten Testsysteme

Tabelle 4.1 zeigt die Daten der drei verwendeten Testsysteme im Uberblick. Als Betriebssystem
kommt auf allen drei Systemen Microsoft Windows 7 Professional x64 mit installiertem Service
Pack 1 zum Einsatz, und zwar mit deaktivierter virtueller Speicherverwaltung und Verwendung von
Minimalgrafik fiir die grafische Benutzeroberflache (d. h. deaktivierte Aero-Oberfliche und keine
visuellen Designs). Die Frequenz des Thread-Schedulers des Betriebssystems wird auf den héchst-
moglichen Wert eingestellt. Dadurch erreichen Funktionen zum Thread-Timing, wie zum Beispiel
der Sleep-Befehl, eine Genauigkeit von einer Millisekunde.

4.1.2 Durchfiihrung von Laufzeitmessungen

Zur Durchfithrung von Laufzeitmessungen kommt die in Kapitel 2.3 beschriebene Laufzeitmetrik
fiir OpenGL ES-Befehle zum Einsatz, d. h. unmittelbar vor Abfrage des ersten Zeitstempels wird

57

4 Untersuchungen

glFinish aufgerufen, und dem Aufruf des zu messenden Befehls folgt unmittelbar ein Aufruf von
glFlush und glFinish, bevor der zweite Zeitstempel abgefragt wird. Die Laufzeit wird dann durch
die Bildung der Differenz der beiden Zeitstempel berechnet.

Fiir die Abfrage von Zeitstempeln wird auf den drei Testsystemen eine High-Performance-Clock
mit mikrosekunden-genauer Auflosung verwendet wie in [Walbourn 2005] beschrieben. Diese Uhr
liefert fiir alle Prozesse des Systems identische Zeitstempel, wenn sie innerhalb der selben Mikro-
sekunde abgefragt werden.

Zwischen der Abfrage der Zeitstempel und dem Aufruf des zu messenden Befehls kann es zu Ver-
zerrungen der Zeitmessung kommen, zum Beispiel wenn ein Prozesskontextwechsel durchgefiihrt
wird. Aullerdem kénnen die Laufzeiten des zu messenden Befehls selbst schwanken. Die Messung
einer einzelnen Ausfiihrung des zu messenden Befehls reicht daher nicht aus. Deshalb wird ein
Befehl im Zuge der Laufzeitmessung viele Male ausgefiihrt. Die Laufzeitmessung eines Befehls be-
steht also aus vielen Einzelmessungen.

Algorithmus 4.1 zeigt beispielhaft die Messung der Laufzeit des Befehls glBufferData:

Algorithmus 4.1 Messung der Laufzeit von glBufferData

HPCClock c; // fiir Zugriff auf Mikrosekunden—Uhr

1

2 glFinish (); // alle noch nicht abgearbeiteten OpenGL ES-Befehle vollstindig ausfiihren

3 for (unsigned int n = 0; n < iterations; n++)

4 {

5 c.start (); /1 ersten Zeitstempel speichern

6 glBufferData (); /! zu messender Befehl

7 glFlush (); // Befehl sofort an GL-Server iibermitteln

8 glFinish (); // Befehl vollstindig ausfiihren

9 results[n] = c.stop(); // Differenz zwischen erstem und aktuellem Zeitstempel bilden

10 }

4.1.3 Durchfiihrung von Speicherplatzmessungen

Die Spezifikation von OpenGL ES macht keine Vorschriften dariiber, wie Daten in einem eventuell
vorhandenen GPU-Speicher abgelegt werden und wie ein solcher Speicher aufgeteilt sein muss. Es
findet sich nur eine einzige Erwdhnung eines solchen Speichers und die einzige Angabe, die an der
Stelle dazu gemacht wird, ist der Hinweis, dass Vertexbuffer-Objekte eine Moglichkeit darstellen,
diesen Speicher zu nutzen (siehe [Munshi und Leech 2010], Seite 22).

Sowohl Nvidia als auch ATT haben fiir ihre Produkte jeweils eine Erweiterung von OpenGL verdsf-
fentlicht, tiber die abgefragt werden kann, wie viel freier GPU-Speicher fiir solche Datenobjekte
zur Verfiigung steht (vergleiche [Stroyan 2009] fiir die Erweiterung von Nvidia und [Blackmer u. a.
2009] fiir die Erweiterung von ATI). Diese Erweiterungen werden fiir die Untersuchungen dieser
Arbeit verwendet. Die Details, wie und welche Informationen zum GPU-Speicher zur Verfiigung
gestellt werden, unterscheiden sich jedoch zwischen Nvidia und ATI.

58

4.1 Technische Details der Untersuchungen

4.1.3.1 Informationen der Nvidia-Erweiterung

Durch die Nvidia-Erweiterung werden OpenGL-Anwendungen folgende Informationen zum aktu-
ellen Zustand des GPU-Speichers zur Verfiigung gestellt:

* Die Menge des insgesamt vorhandenen GPU-Speichers (in kB) — dies entspricht der Gesamt-
menge des auf der Hardware vorhandenen GPU-Speichers abziiglich der Allozierungen, die
die Hardware im Zuge ihrer Initialisierung selbst durchfiihrt.

* Die Gesamtmenge des momentan fiir OpenGL-Anwendungen verfiigbaren GPU-Speichers
(in kB).

¢ Die Anzahl an Datenobjekten, die seit der Initialisierung der GPU vom GPU-Speicher in den
Hauptspeicher ausgelagert wurden (der sogenannte eviction count). Es ist dabei nicht klar,
ob diese Datenobjekte vollstindig oder nur teilweise ausgelagert wurden, oder ob sie immer
noch ausgelagert sind.

* Die Gesamtmenge an Daten, die seit Initialisierung der GPU in den Hauptspeicher ausgela-
gert wurden (in kB).

Die Nvidia-Erweiterung vermittelt keinerlei Informationen {iiber eine Aufteilung des GPU-
Speichers (z. B. fiir verschiedene Arten von Datenobjekten). Insbesondere werden keine Informa-
tionen iiber die momentane Fragmentierung des GPU-Speichers zur Verfiigung gestellt, die die
Nutzung des gesamten GPU-Speichers verhindern kann.

4.1.3.2 Informationen der ATI-Erweiterung

Die ATI-Erweiterung vermittelt dem Benutzer ein anderes Modell des GPU-Speichers. Sie unter-
scheidet drei verschiedene Arten von GPU-Speicher: Speicher fiir Vertexbuffer-Objekte, fiir Textu-
ren und fiir Renderbuffer-Objekte. Fiir jeden dieser drei Speicher kdnnen die folgenden Informa-
tionen zu ihrem aktuellen Zustand abgefragt werden:

* Die Gesamtmenge des freien, reguldren Speichers, der fiir die entsprechende Art von Daten-
objekten zur Verfligung steht (in kB).

* Die GroRe des groten derzeit verfiigbaren, zusammenhidngenden Speicherabschnitts (in
kB).

* Die Gesamtmenge des freien Hilfsspeichers (auxiliary memory) fiir die entsprechende Art
von Datenobjekten (in kB).

* Die GroBe des groten derzeit verfiigbaren, zusammenhédngenden Speicherabschnitts im
Hilfsspeicher (in kB).

Bei manchen GPUs kénnen diese drei Speicherarten auch zusammenfallen, d. h. das Anlegen eines
Datenobjekts belastet nicht nur den Speicher fiir diese Datenobjektart, sondern gleichzeitig auch
die Speicher der beiden anderen Datenobjektarten. Uber die Natur des Hilfsspeichers werden in
der Spezifikation der Erweiterung keine Angaben gemacht, d. h. es ist nicht klar, ob es sich dabei
um Speicher handelt, der auf der Grafikkarte physisch vorhanden ist, oder ob es sich dabei um
Hauptspeicher handelt.

59

4 Untersuchungen

Es wurde daher untersucht, wie dies fiir die im Rahmen dieser Arbeit verwendeten ATI-Grafikkar-
ten implementiert wurde. Dabei konnte folgendes Verhalten beobachtet werden:

* Vor Beginn der Untersuchungen war im ,,ATI FirePro V4800“-System ein Gigabyte Hauptspei-
cher vorhanden. Zu diesem Zeitpunkt standen OpenGL-Anwendungen 500 MB Hilfsspeicher
zur Verfiigung. Nach der Erweiterung des Hauptspeichers auf acht Gigabyte standen zwei
Gigabyte Hilfsspeicher zur Verfiigung. Dies legt die Vermutung nahe, dass es sich bei dem
von der ATI-Erweiterung angezeigten Hilfsspeicher tatsdchlich um Hauptspeicher handelt,
zumal sich an der Menge des auf der Grafikkarte verbauten GPU-Speichers nichts gedndert
hatte.

* Der freie Speicherplatz des reguldren Speichers fiir Vertexbuffer-, Textur- und Renderbuffer-
Objekte stimmt auf den beiden ATI-Systemen iiberein. Das bedeutet, wenn beispielsweise
ein Vertexbuffer-Objekt erzeugt wird, sinkt nicht nur die Menge des verfiigbaren Speichers
fiir Vertexbuffer-Objekte, sondern gleichzeitig auch die Menge des verfiigbaren Speichers fiir
Textur- und Renderbuffer-Objekte, und zwar stets um den gleichen Betrag. Auf gleiche Weise
stimmt auch der freie Speicherplatz in den drei Hilfsspeichern iiberein.

4.1.3.3 Definition leerer GPU-Speicher

Alle drei Testsysteme haben gemeinsam, dass OpenGL-Anwendungen nie {iber einen komplett lee-
ren GPU-Speicher verfiigen konnen. Dies hat zwei Griinde:

* Noch bevor eine OpenGL-Anwendung gestartet werden kann, wird durch das System selbst
im Zuge seiner Initialisierung eine gewisse Menge an GPU-Speicher belegt.

¢ Im Zuge der Erzeugung eines GL-Kontextes werden eine Reihe sogenannter statischer Daten-
objekte im GPU-Speicher angelegt. Es handelt sich dabei um die Datenobjekte, die den ers-
ten Framebuffer des erzeugten Kontextes bilden. Die Erzeugung dieser Datenobjekte kann
nicht vermieden werden und sie kénnen auch nicht zerstért werden, solange ihr Kontext
existiert.

Wenn nachfolgend von einem leeren GPU-Speicher gesprochen wird, dann ist ein Zustand ge-
meint, bei dem neben diesen unvermeidlichen Datenobjekten keine weiteren Datenobjekte im
GPU-Speicher vorhanden sind.

4.1.4 Umgang mit Fehlern des GL-Systems

OpenGL ES 2.0 definiert den Befehl glGetError, mit dem der aktuelle Fehlercode abgefragt wer-
den kann. Der aktuelle Fehlercode ist 0, wenn seit dem letzten Aufruf von glGetError im GL-
System kein Fehler aufgetreten ist. Falls es sich um den ersten Aufruf von glGetError handelt,
wird 0 zuriickgeliefert, falls seit Erzeugung des Kontextes kein Fehler im GL-System aufgetreten
ist. In den nachfolgenden Untersuchungen wird der aktuelle Fehlercode immer am Ende der da-
fiir ausgefiihrten OpenGL ES-Programme abgefragt. Wenn er ungleich 0 ist, werden die von den
Programmen ermittelten Ergebnisse nicht beriicksichtigt (und stattdessen das Programm erneut
ausgefiihrt).

60

4.1 Technische Details der Untersuchungen

4.1.5 Interprozesskommunikation

Fiir manche Untersuchungen ist die Ausfithrung von mehreren OpenGL ES-Programmen notwen-
dig, die sich gegenseitig abstimmen miissen. Diese Programme interagieren mit Hilfe von soge-
nannten Event-Objekten des Betriebssystems [MSDN 2011]. Solche Objekte befinden sich entwe-
der im Zustand signalled oder not signalled. Standardm#RBig befinden sie sich im Zustand not si-
gnalled. Der Ubergang in den Zustand signalled kann von Prozessen veranlasst werden.

Prozesse konnen aullerdem in einen Wartezustand iibergehen, der von einem bestimmten Event-
Objekt abhéngig ist. Sobald dieses Event-Objekt in den Zustand signalled tibergeht, verlésst ein
solcher Prozess den Wartezustand, worauthin das Event-Objekt automatisch in den Zustand not
signalled wechselt. Sofern sich das Objekt bereits im Zustand signalled befindet, wenn ein Prozess
in einen davon abhdngigen Wartezustand iibergeht, verldsst der Prozess den Wartezustand sofort
wieder und das Objekt wechselt in den Zustand not signalled.

Die Zeit, die vom Setzen des signalled-Zustands bis zur Fortsetzung eines darauf wartenden Pro-
zesses vergeht, bewegt sich auf den Testsystemen im ein- bis zweistelligen Mikrosekundenbereich.
Ausreiler sind aber nicht auszuschlieSen. Daher werden in den folgenden Untersuchungen die ak-
tuellen Zeitstempel von allen beteiligten Programmen protokolliert, wenn Event-Objekte zu deren
zeitlichen Synchronisation eingesetzt werden.

4.1.6 Minimalshader

Wie in Kapitel 2.6 beschrieben, werden im Zuge der Ausfiihrung von Draw-Befehlen Vertex- und
Fragmentshader ausgefiihrt. Damit ein Draw-Befehl ausgefiihrt werden kann muss vom aufrufen-
den OpenGL ES-Programm ein Vertex- und ein Fragmentshader bereitgestellt werden. Ein Rende-
ring ohne Ausfithrung von Vertex- und Fragmentshadern ist in OpenGL ES 2.0 nicht moglich.

Algorithmus 4.2 Minimaler Vertexshader

1 attribute vec4 input;

2 void main ()

3 {

4 gl_Position = input; // Input unverdndert an Ausgabe weiterreichen

5 }

Zur Ausfithrung von Draw-Befehlen werden im Rahmen der folgenden Untersuchungen bei Be-
darf Minimalshader verwendet wie in [Munshi u.a. 2008] auf Seite 22 beschrieben. Algorithmus
4.2 zeigt den Code eines minimalen Vertexshaders. Zeile 1 spezifiziert den Input des Vertexshaders.
Es handelt sich dabei um eine Variable bestehend aus vier FlielSkommawerten, die die Position des
Vertex beschreiben, fiir den der Vertexshader ausgefiihrt wird.

Diese Variable wird im Zuge der Ausfiihrung eines Draw-Befehls auf den Wert eines Elements der
tibergebenen Vertexdaten gesetzt (es wird jeweils eine Instanz des Vertexshaders fiir jedes Element
der {ibergebenen Vertexdaten ausgefiihrt).! Dieser Wert wird in Zeile 4 unverandert an die built-in

ISiehe auch Kapitel 2.4.1 ab Seite 20 fiir die Rolle von Vertexdaten als Input fiir Vertexshader.

61

4 Untersuchungen

Variable gl _Position weitergereicht. Sie fungiert als minimale Ausgabe eines Vertexshaders (es
konnen zusétzliche Ausgabevariablen definiert werden). Ihr muss zwingend ein Wert zugewiesen
werden (siehe [Simpson und Kessenich 2009], Seite 59).

Algorithmus 4.3 Minimaler Fragmentshader

1 precision mediump float;

2 void main ()

3 {

4 gl FragColor = vec4(1.0, 0.0, 0.0, 1.0); // Ausgabe auf Farbwert fiir "rot" setzen
5}

Algorithmus 4.3 zeigt den Code eines minimalen Fragmentshaders. Zeile 1 definiert die gewiinsch-
te Prézision fiir FlieBkommaoperationen. Diese Angabe wird von der Spezifikation der Shading
Language zwingend vorgeschrieben (siehe [Simpson und Kessenich 2009], Seite 36). Ahnlich wie
auch bei Vertexshadern, fungiert hier eine built-in Variable als minimale Ausgabe und muss zwin-
gend auf einen Wert gesetzt werden. Dies geschieht in Zeile 4 (g1_FragColor bestimmt den RGBA-
Farbwert des vom Shader verarbeiteten Fragments, der hier auf ,rot“ gesetzt wird — jeder andere
Farbwert wire ebenfalls akzeptabel).

4.2 Speicherbelegung

4.2.1 Ablage von Datenobjekten im GPU-Speicher
4.2.1.1 Durchfiihrung der Untersuchung

Um festzustellen, unter welchen Bedingungen neu erzeugte Datenobjekte im GPU-Speicher oder
im Hauptspeicher abgelegt werden, wird — wie in Kapitel 3.1.2.1 beschrieben - ein OpenGL ES-
Programm ausgefiihrt, das Datenobjekte verschiedener GréRen erzeugt und dabei die Informatio-
nen zur aktuellen Speicherbelegung abfragt. Dabei wird glBufferData zur Erzeugung der Daten-
objekte verwendet (siehe Kapitel 3.1.3).

Algorithmus 4.4 zeigt das fiir diese Untersuchung ausgefiihrte OpenGL ES-Programm. Die Schleife
von Zeile 9 - 30 iteriert tiber die iibergebenen DatenobjektgréBen. Die eigentliche Messung fiir eine
bestimmte GrofSe findet im Schleifenrumpf statt.

In Zeile 12 werden die aktuellen Informationen zum GPU-Speicher abgefragt. Anschliefend wird
in den Zeilen 15-18 ein neues Datenobjekt erzeugt, bevor in Zeile 22 erneut die aktuellen Infor-
mationen zum GPU-Speicher abgefragt werden. Der Aufruf von glFinish in Zeile 19 stellt sicher,
dass das Datenobjekt erzeugt ist, bevor fortgefahren wird (vgl. Kapitel 2.3). In Zeile 28 wird das Da-
tenobjekt wieder freigegeben. Auch hier wird anschliefen glFinish aufgerufen, um sicherzustel-
len, dass das Datenobjekt bereits entfernt wurde, bevor die ndchste Schleifeniteration ausgefiihrt
wird.

Das in Algorithmus 4.4 gezeigte Programm wurde fiir unterschiedliche Datenobjektgrolen ausge-
fithrt. In einem ersten Lauf wurden Datenobjektgr6Ben von einem Kilobyte bis zehn Megabyte
untersucht, wobei in jedem Messschritt die Datenobjektgrofle um ein Kilobyte erh6ht wurde. In
einem zweiten Lauf wurde, beginnend bei zehn Megabyte, die Datenobjektgrofie in jedem Schritt

62

4.2 Speicherbelegung

um ein Megabyte erhoht, bis die grolStmogliche Datenobjektgroe erreicht war (512 MB beim ,,Nvi-
dia Quadro 2000D“-System und 256 MB bei den beiden ATI-Systemen). Die beiden Laufe wurden
fiir jeden moglichen Usage Hint durchgefiihrt (siehe Kapitel 2.4.1 zu Usage Hints). Im folgenden
Abschnitt werden die Ergebnisse dieser Laufe zusammengefasst.

Algorithmus 4.4 Ablage von Datenobjekten in Haupt- oder GPU-Speicher

1
2
3
4
5
6
7 {
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31 }

void testDataObjectPlacement(

unsigned int minSize, /! minimale Datenobjektgréfse

unsigned int maxSize, /! maximale Datenobjektgrofse

unsigned int stepSize, /! Zunahme der Datenobjektgrifse zwischen Messungen
GLenum usageHint, /1 Usage Hint

GLbyte =data) /! zu iibertragende Daten

/! Messreihe durchfiihren
for (unsigned int size = minSize; size <= maxSize; size += stepSize)

{

/1 Aktuelle Informationen zum GPU-Speicher abfragen
GPUMemoryInformation miBefore = getGPUMemlInfo () ;

/! Datenobjekt erstellen

GLuint id;

glGenBuffers (1, &id);

glBindBuffer (GL_ARRAY_BUFFER, id);

glBufferData (GL_ARRAY BUFFER, size, data, usageHint);
glFinish ();

/! Aktuelle Informationen zum GPU-Speicher abfragen
GPUMemoryInformation miAfter = getGPUMemlInfo ();

/! Ergebnisse fiir aktuelle Datenobjektgrofie speichern
writeToResults (size, miBefore, miAfter, glGetError());

/! Datenobjekt freigeben
glDeleteBuffers (1, &id);
glFinish ();

4.2.1.2 Ergebnisse

Usage Hint »Nvidia Quadro 2000D“ | ,,ATI FirePro V4800“ | ,,ATI FirePro V5900
GL_STATIC_DRAW GPU-Speicher GPU-Speicher GPU-Speicher
GL_DYNAMIC_DRAW GPU-Speicher Hauptspeicher Hauptspeicher
GL_STREAM_DRAW GPU-Speicher Hauptspeicher Hauptspeicher

Tabelle 4.2: Ablageorte von Datenobjekten in Abh#ngigkeit des Usage Hints

Die GroRe des erzeugten Datenobjekts hat auf keinem der drei Testsysteme einen Einfluss darauf,
ob das Datenobjekt im GPU-Speicher oder im Hauptspeicher abgelegt wird, im Gegensatz zum

63

4 Untersuchungen

iibergebenen Usage Hint. Tabelle 4.2 zeigt dessen Einfluss auf den einzelnen Testsystemen im Uber-
blick. Auf dem ,Nvidia Quadro 2000D“-System werden Datenobjekte unabhingig vom gewhlten
Usage Hint im GPU-Speicher abgelegt. Auf den beiden ATI-Systemen werden sie nur bei der Wahl
von GL_STATIC_DRAW im GPU-Speicher abgelegt. Ansonsten werden sie im Hilfsspeicher abgelegt
(das heilst im Hauptspeicher, vgl. Abschnitt 4.1.3). Im ndchsten Abschnitt erfolgt die Untersuchung,
inwieweit der Speicherbedarf von Datenobjekten von ihrer Gro3e abweicht.

4.2.2 Speicherbedarf von Datenobjekten

4.2.2.1 Durchfithrung der Untersuchung

Algorithmus 4.5 Untersuchung des Speicherbedarfs von Datenobjekten.

1 void testMemoryConsumption (

2 unsigned int stepSize, /! Gréfsenunterschied der Datenobjekte zwischen Messschritten
3 unsigned int maxSize, /! maximale Grifse eines Datenobjekts

4 unsigned int numBuffers, // Anzahl anzulegender Datenobjekte pro Messschritt
5 GLbyte =data, /! zu iibertragende Daten

6 GLenum bufUsageHint) /! buffer usage hint

7 {

8 for (unsigned int size = stepSize; size <= maxSize; size += stepSize)
9 {

10 /! freien Speicher vor Datenobjekterzeugung abfragen

11 GPUMemoryInformation miBefore = getGPUMemlInfo () ;

12

13 /! Datenobjekte anlegen

14 GLuint bufferIDs [numBuffers];

15 glGenBuffers (numBuffers, bufferIDs);

16 for (unsigned int n = 0; n < numBuffers; n++)

17 {

18 glBindBuffer (GL_ARRAY BUFFER, bufferIDs[n]);

19 glBufferData (GL_ARRAY BUFFER, size, data, bufUsageHint);
20 glFinish ();

21 }

22

23 /1 freien Speicher nach Datenobjekterzeugung abfragen

24 GPUMemorylnformation miAfter = getGPUMemlInfo ();

25

26 /! Datenobjekte freigeben

27 glBindBuffer (bufTarget, 0);

28 glDeleteBuffers (numBuffers, bufferIDs);

29 glFinish ();

30

31 /! Daten das aktuellen Messschritts speichern

32 writeToResults (size, miBefore, miAfter, glGetError());

33 }

34 }

Um festzustellen, ob der von Datenobjekten belegte GPU-Speicher von der GroRe der Datenobjek-
te abweicht, wird — wie in Kapitel 3.1.2.2 beschrieben — zunéchst jeweils ein einzelnes Datenobjekt

64

4.2 Speicherbelegung

einer bestimmten GréBe im leeren GPU-Speicher angelegt und anschliellend mehrere. Algorith-
mus 4.5 zeigt den Code des dazu ausgefiihrten OpenGL ES-Programms.

Die Schleife von Zeile 9-35 iteriert iiber die verschiedenen zu untersuchenden Datenobjektgrofen.
Die Messung fiir eine bestimmte DatenobjektgréBe findet dann im Schleifenrumpf statt. In Zeile
12 wird der verfiigbare Speicherplatz abgefragt, bevor ein Datenobjekt erzeugt wird. Die Erzeugung
der Datenobjekte erfolgt in den Zeilen 15-22.

Durch den Aufruf von glFinish wird sichergestellt, dass die Dateniibertragung vollstdndig abge-
schlossen ist und dementsprechend der gesamte von den Datenobjekten bendotigte Speicherplatz
belegt worden ist, bevor in Zeile 25 der nun verfiigbare Speicherplatz abgefragt wird (der Daten-
tibertragungsbefehl konnte bereits zurlickspringen, bevor die Dateniibertragung vollstdndig abge-
schlossen ist, vgl. Kapitel 2.3).

In den Zeilen 27-30 werden die zuvor erzeugten Datenobjekte wieder freigegeben um fiir die nach-
folgenden Messungen (mit der ndchsten Datenobjektgrof3e) die urspriingliche Speicherbelegungs-
situation wiederherzustellen, bevor schlieBlich in Zeile 34 die Ergebnisse fiir die aktuelle Datenob-
jektgroRe gespeichert werden.

Das in Algorithmus 4.5 gezeigte Programm wurde in einem ersten Lauf fiir Datenobjektgro3en
von einem Kilobyte bis zu zehn Megabyte ausgefiihrt und anschlieBend der dabei erkannte Trend
stichprobenartig fiir die Gro8enbereiche zwischen 20-21 MB, 50-51 MB, 100-101 MB, 150-151 MB,
255-256 MB und 511-512 MB iiberpriift (der Abschnitt von 511-512 MB wurde dabei nur auf dem
»Nvidia Quadro 2000D“-System durchgefiihrt, da die maximale Datenobjektgrof3e auf den beiden
ATI-Systemen nur 256 MB betragt).

Dabei wurden jeweils ein, zwei, drei und vier Datenobjekte in einem Messschritt erzeugt (wobei
die Messungen fiir die Erzeugung mehrerer Datenobjekte bei den letzten beiden Gréfenberei-
chen ausgelassen wurden, wenn die GesamtgréBe der erzeugten Datenobjekte den verfiigbaren
GPU-Speicher iiberstieg — davon waren das ,Nvidia Quadro 2000D“- und das ,ATI FirePro V4800“-
System betroffen, da auf diesen Systemen nur ein Gigabyte GPU-Speicher vorhanden ist). Zwischen
den einzelnen Messschritten wurde die Grol3e der Datenobjekte jeweils um ein Kilobyte erhoht.

Zur Erzeugung der Datenobjekte wurde glBufferData verwendet, wobei die einzelnen Messun-
gen fiir jeden moglichen Usage Hint durchgefiihrt wurden (siehe Kapitel 3.1.3 zur Wahl dieses Be-
fehls). Die dabei ermittelten Ergebnisse werden im folgenden Abschnitt zusammengefasst.

4.2.2.2 Ergebnisse

Abbildung 4.1 zeigt die Ergebnisse fiir die Erzeugung eines einzelnen Datenobjekts pro Messschritt
und DatenobjektgroBen bis drei Megabyte. Auf der X-Achse sind die Datenobjektgréfen aufgetra-
gen und auf der Y-Achse die Speicherbelegung.

Auf den beiden ATI-Systemen entspricht die Menge des belegten GPU-Speichers exakt der Daten-
objektgroBe. Beim ,Nvidia Quadro 2000D“-System sind zwei Bereiche zu unterscheiden. Fiir Da-
tenobjekte kleiner als zwei Megabyte werden stets vier Megabyte GPU-Speicher belegt. Bei Daten-
objekten ab zwei Megabyte entspricht die Menge des belegten GPU-Speichers exakt der Datenob-
jektgroRe, falls die Datenobjektgrof3e ein ganzzahliges Vielfaches von 128 kB ist.

65

4 Untersuchungen

66

Speicherbelegung [MB]

Speicherbelegung [MB]

5
4
3
2
1 ——— Nvidia Quadro 2000D
= ATI FirePro V4800 / V5900
0
0 1 2 3
DatenobjektgroRe [MB]
Abbildung 4.1: Speicherbelegung bei Erzeugung eines Vertexbuffer-Objekts
13
12
11
10
9
8
7
6
5
4
3 —— Nvidia Quadro 2000D
2 = ATI FirePro V4800 / V5900
1
0

DatenobjektgroRe [MB]

Abbildung 4.2: Speicherbelegung bei Erzeugung von vier Vertexbuffer-Objekten

4.2 Speicherbelegung

Betrachtet man die in Abbildung 4.2 gezeigten Ergebnisse fiir die Erzeugung von vier Datenobjek-
ten pro Messschritt, so deutet dies darauf hin, dass auf dem Nvidia-System Datenobjekte kleiner
zwei Megabyte in Speicherblécken von vier Megabyte Grol3e abgelegt werden (die Speicherbele-
gung iliberschreitet vier Megabyte erst, wenn vier Datenobjekte groler als ein Megabyte erzeugt
werden).

Fiir Datenobjekte ab zwei Megabyte steigt die Speicherbelegung in Intervallen von einem halben
Megabyte, was vier mal 128 kB entspricht. Offensichtlich steht der zusétzlich belegte Speicherplatz
eines einzelnen Datenobjekts nicht fiir die Ablage von weiteren Datenobjekten zur Verfligung. Dies
deutet darauf hin, dass auf dem Nvidia-System fiir Datenobjekte ab zwei Megabyte Grée eine
Speichergranularitdt von 128 kB vorliegt (eine genauere Untersuchung der Speichergranularitit
erfolgt in Abschnitt 4.2.5, zumal die Untersuchung auf dem Nvidia-System aufgrund der Ablage
von Datenobjekten in Speicherblécken ein anderes Vorgehen erfordert).

Die Wahl verschiedener Usage Hints hat auf diese Ergebnisse keinen Einfluss (mit Ausnahme des
Ablageortes der Datenobjekte auf den ATI-Systemen, vgl. Abschnitt 4.2.1.2). Die in den beiden Ab-
bildungen nicht dargestellten Ergebnisse fiir die restlichen bertiicksichtigten Datenobjektgroen
bestitigen den Trend — die Menge des belegten GPU-Speichers entspricht auf den beiden ATI-
Systemen exakt der jeweiligen Datenobjektgrée und beim ,Nvidia Quadro 2000D“-System dann,
wenn die DatenobjektgroRe einem ganzzahligen Vielfachen von 128 kB entspricht. Im ndchsten
Abschnitt erfolgt die Untersuchung zur Bestimmung der Speicherblockgrolle.

4.2.3 Bestimmung der SpeicherblockgroRe

4.2.3.1 Durchfiihrung der Untersuchung

Zur Bestimmung der SpeicherblockgréRe werden — wie in Kapitel 3.1.2.3 beschrieben - sukzessive
Datenobjekte gleicher Grof3e im GPU-Speicher erzeugt, wobei nach jeder Erzeugung eines Daten-
objekts die aktuelle Speicherbelegung ermittelt wird. Dies wird anschlieBend fiir unterschiedliche
DatenobjektgréBen wiederholt. Das dazu ausgefiihrte OpenGL ES-Programm wird in Algorithmus
4.6 gezeigt.

Zunichst wir in Zeile 8 die aktuelle Speicherbelegung ermittelt und gespeichert. Anschliefend wer-
den in der Schleife von Zeile 11-20 die eigentlichen Messungen durchgefiihrt. In Zeile 13 wird ein
Datenobjekt erzeugt, und zwar auf die gleiche Weise wie in den Zeilen 15-19 von Algorithmus 4.4.
In Zeile 16 wird anschlief$end die nun aktuelle Speicherbelegung gespeichert.

Dieses Programm wurde stichprobenartig fiir Datenobjektgrofien von 32 kB bis einem Megabyte
ausgefiihrt, wobei zwischen den Laufen die Datenobjektgréle jeweils verdoppelt wurde. In jedem
Lauf wurden so viele Datenobjekte angelegt, dass der GPU-Speicher komplett gefiillt wurde. Die-
ses Vorgehen wurde fiir alle Usage Hints wiederholt. Die dabei ermittelten Ergebnisse werden im
nédchsten Abschnitt zusammengefasst.

67

4 Untersuchungen

Algorithmus 4.6 Messung des Anstiegs der GPU-Speicherbelastung

1 void testBlocksize (
2 unsigned int numBuffers, // Anzahl der anzulegenden Datenobjekte
3 unsigned int bufSize, /! Gréfse der Datenobjekte
4 GLbyte :bufData, /! zu iibertragende Daten
5 GLenum bufUsageHint) /! buffer usage hint
6 {
7 // Speicherbelegung abfragen und speichern
8 writeToResults (getGPUMemlInfo ()) ;
9
10 // Messungen durchfiihren
11 for (unsigned int k = 1; k < numBuffers; k++)
12 {
13 (...) // Datenobjekt erzeugen
14
15 /! Daten das aktuellen Messschritts speichern
16 writeToResults (
17 k, /! Anzahl bislang angelegter Datenobjekte
18 k+bufSize, /! Menge der bislang iibertragenen Daten
19 getGPUMemlnfo (), // Aktuelle Speicherbelegung
20 glGetError ()); /! Aktueller Fehlercode
21 }
2 }
70

= Nvidia Quadro 2000D
- ATI FirePro V4800 / V5900

60

Speicherbelegung [MB]

0 200 400 600 800 1000 1200 1400 1600 1800 2000

Anzahl Datenobjekte mit 32 kByte

Abbildung 4.3: Anstieg der Speicherbelegung bei Erzeugung von Datenobjekten mit 32 kByte

68

4.2 Speicherbelegung

4.2.3.2 Ergebnisse

Abbildung 4.3 zeigt die Ergebnisse fiir die Erzeugung von Datenobjekten mit 32 kB. Auf dem , Nvi-
dia Quadro 2000D“-System steigt die Speicherbelegung in Spriingen von jeweils vier Megabyte an,
sobald seit dem letzten Sprung insgesamt mehr als ein ganzzahliges Vielfaches von vier Megabyte
an Daten in den GPU-Speicher iibertragen wurde. Die Abbildung 4.3 zeigt dabei nur einen Aus-
schnitt der Ergebnisse — das hier erkennbare Verhalten setzt sich aber so fort, bis der GPU-Speicher
komplett gefiillt ist.

Die Verwendung unterschiedlicher Usage Hints dndert nichts an den Ergebnissen (mit Ausnah-
me des Ablageortes der Datenobjekte auf den ATI-Systemen, vgl. Abschnitt 4.2.1.2). Die Wiederho-
lung des Programmlaufs mit anderen DatenobjektgroRen bringt qualitativ die gleichen Ergebnisse
—auch hier steigt die Speicherbelegung auf dem ,Nvidia Quadro 2000D“-System in Spriingen von
vier Megabyte an. Die SpeicherblockgréBe betrigt auf diesem System also stets vier Megabyte. Im
néichsten Abschnitt erfolgen die Untersuchungen zum Belegungsverhalten innerhalb von Speicher-
blécken.

4.2.4 Belegungsverhalten innerhalb von Speicherblécken

Zur Ermittlung des Belegungsverhaltens innerhalb von Speicherblocken werden — wie in Kapitel
3.1.2.4 beschrieben — mehrere Untersuchungen durchgefiihrt, um die folgenden Fragen zu kla-
ren:

* Werden Datenobjekte auf mehrere Speicherblécke aufgeteilt?

¢ Werden Datenobjekte unterschiedlicher Grée im selben Speicherblock abgelegt?
* Ist eine nichtsequentielle Ablage von Datenobjekten in Speicherblécken méglich?
* Werden Datenobjekte in fragmentierten Speicherblocken abgelegt?

¢ Werden Datenobjekte verschiedener Prozesse im selben Speicherblock abgelegt?

Die Durchfithrung dieser Untersuchungen wird in den nachfolgenden Abschnitten niher erldutert
und deren jeweilige Ergebnisse zusammengefasst.

4.2.4.1 Aufteilung von Datenobjekten auf mehrere Speicherblocke

Anders als in Kapitel 3.1.2.4.1 beschrieben, werden hier nicht Datenobjekte mit % der Speicher-
blockgrofle angelegt, sondern Datenobjekte mit % der SpeicherblockgréBe. Dies liegt daran, dass
auf dem , Nvidia Quadro 2000D“-System nur Datenobjekte von der Ablage in Speicherblécken be-
troffen sind, die kleiner als die Hélfte der Speicherblockgrée sind. Abbildung 4.4 zeigt schematisch
die Ablagemoglichkeiten fiir acht Datenobjekte mit % der Speicherblockgrofe.

Falls durch die Erzeugung von acht solchen Datenobjekten nur drei Speicherblécke belegt werden,
werden Datenobjekte {iber mehrere Speicherblocke verteilt (Belegung 1 in Abbildung 4.4). Wenn
stattdessen vier Speicherblocke belegt werden, wird fiir die Erzeugung eines Datenobjekts ein neu-
er Speicherblock begonnen, wenn das Datenobjekt nicht mehr vollstindig in einen bereits beste-
henden passt (Belegung 2 in Abbildung 4.4). Um festzustellen, welcher Fall auf dem ,Nvidia Quadro
2000D*“-System vorliegt, wird das in Algorithmus 4.7 gezeigte OpenGL ES-Programm ausgefiihrt.

69

4 Untersuchungen

Belegung 1:

Block1 Block2 Block3 Block4

- N m |m

Belegung 2:

Block1 Block2 Block3 Block4

ours |l oo

Abbildung 4.4: Ablagemoglichkeiten von acht Datenobjekten mit % der Speicherblockgrolie

Algorithmus 4.7 Erzeugung von Datenobjekten mit % der Speicherblockgrolie

{

1
2
3
4
5
6
7
8
9

void testThreeEighthBlocksizeObjects (

unsigned int blocksize, // Speicherblockgrifse
unsigned int iterations, // Anzahl der Messschritte
GLbyte :bufData, /! zu iibertragende Daten
GLenum bufUsageHint) /! buffer usage hint

/1 Speicherbelegung abfragen und speichern
writeToResults (getGPUMemlInfo ()) ;

/! Messungen durchfiihren
for (unsigned int n = 0; n < iterations; n++)
{
/! Acht Datenobjekte mit 3/8 der SpeicherblockgrofSe anlegen
for (unsigned int k = 0; k < 8; k++)
{
(...) // Datenobjekt erzeugen
}

/! Ergebnis des Messschritts speichern
writeToResults (getGPUMemlInfo (), glGetError ());

Zunichst wird in Zeile 8 die aktuelle Speicherbelegung ermittelt und gespeichert. AnschlieBend
werden in der Schleife von Zeile 11-21 die eigentlichen Messungen durchgefiihrt. Dazu werden in
der Schleife von Zeile 14-17 jeweils acht Datenobjekte erzeugt. Die Erzeugung erfolgt auf gleiche
Weise wie in den Zeilen 15-19 von Algorithmus 4.4, mit dem Unterschied, dass die Grof3e der Daten-
objekte hier % der SpeicherblockgréBe entspricht. In Zeile 20 wird anschlieBend die nun aktuelle
Speicherbelegung gespeichert. Dieses Programm wurde auf dem ,Nvidia Quadro 2000D*“-System

70

4.2 Speicherbelegung

mit so vielen Iterationen durchgefiihrt, dass der GPU-Speicher komplett mit Datenobjekten belegt
wurde (auf den beiden ATI-Systemen kommt es nicht zur Ablage von Datenobjekten in Speicher-
blécken, daher wurde dieses Programm dort nicht ausgefiihrt).

Dies wurde fiir alle Usage Hints wiederholt. Dabei wurden in jedem Messschritt vier Speicherblo-
cke belegt. Das bedeutet, dass auf diesem System die zweite der in Abbildung 4.4 gezeigten Abla-
gemoglichkeiten zutrifft — Datenobjekte werden nicht auf mehrere Speicherblécke verteilt.

4.2.4.2 Ablage von Datenobjekten unterschiedlicher GroRe im selben Speicherblock

Um zu iiberpriifen, ob Datenobjekte unterschiedlicher GréRe im selben Speicherblock abgelegt
werden kdonnen, wird das in Algorithmus 4.8 gezeigte OpenGL ES-Programm ausgefiihrt.

Algorithmus 4.8 Erzeugung von Datenobjekten unterschiedlicher Grée

void testVarObjectSizes (

1

2 unsigned int blocksize, // Speicherblockgrifse

3 unsigned int iterations, // Anzahl durchzufiihrender Messschritte
4 GLenum usageHint, // Usage Hint

5 GLbyte =data) /! zu iibertragende Daten

6 {

7 /! Messreihe durchfiihren

8 for (unsigned int n = 0; n < iterations; n++)

9 {

10 /!l aktuelle Informationen zum GPU-Speicher abfragen
11 GPUMemoryInformation miBefore = getGPUMemlInfo () ;

12

13 // Speicherblock fiillen

14 unsigned int remainingSpace = blocksize;

15 do

16 {

17 unsigned int size = getRandomSize (remainingSpace);
18 remainingSpace —= size;

19 (...) // Datenobjekt erzeugen

20 }while (remainingSize);

21

22 /! aktuelle Informationen zum GPU-Speicher abfragen
23 GPUMemoryInformation miAfter = getGPUMemlInfo ();

24

25 /! Ergebnisse des aktuellen Messschritts speichern
26 writeToResults (miBefore, miAfter, glGetError ());

27 }
28 }

Zundchst wird in Zeile 11 die aktuelle Speicherbelegung ermittelt. Anschlielend werden in der
Schleife von Zeile 15-20 sukzessive Datenobjekte zufélliger Grof3e erzeugt, bis die Gesamtgré3e
der erzeugten Datenobjekte genau der Speicherblockgrofie entspricht. getRandomSize liefert da-
bei eine DatenobjektgréBe zurtick, die zwischen einem Kilobyte und 1,999 MB liegt, aber den {iber-
gebenen Wert (remainingSpace) nicht iiberschreitet, so dass das danach erzeugte Datenobjekt

71

4 Untersuchungen

im Speicherblock noch Platz finden kann (sofern Datenobjekte unterschiedlicher Gr63e im selben
Speicherblock abgelegt werden). Die Erzeugung des Datenobjekts erfolgt dabei auf die gleiche Wei-
se wie in den Zeilen 15-19 von Algorithmus 4.4. Anschlieend wird in Zeile 23 die aktuelle Speicher-
belegung ermittelt, bevor die Ergebnisse des Messschritts in Zeile 26 gespeichert werden.

Dieses Programm wurde fiir alle Usage Hints ausgefiihrt. Dies hatte keinen Einfluss auf die Ergeb-
nisse — auf dem ,Nvidia Quadro 2000D“-System werden Datenobjekte unterschiedlicher Gréfe im
selben Speicherblock abgelegt.

4.2.4.3 Nichtsequentielle Ablage von Datenobjekten in Speicherblécken

Da Datenobjekte unterschiedlicher Grolle auf dem ,Nvidia Quadro 2000D“-System im selben
Speicherblock abgelegt werden kénnen, kann untersucht werden, ob Datenobjekte auch dann im
selben Speicherblock abgelegt werden, wenn sie nicht unmittelbar aufeinander folgend erzeugt
werden. Dazu werden - wie in Kapitel 3.1.2.4.3 beschrieben — im leeren GPU-Speicher zunéchst
mehrere Datenobjekte erzeugt, so dass ein Speicherblock teilweise gefiillt ist. Anschliefend wird
durch Erzeugung weiterer Datenobjekte ein anderer Speicherblock komplett gefiillt und schlieB-
lich ein Datenobjekt erzeugt, das theoretisch im ersten Speicherblock Platz finden kénnte, um zu
tiberpriifen, ob es dort abgelegt wird. AnschlieBend wird dieses Vorgehen fiir grollere Anzahlen
teilweise gefiillter Speicherblécke wiederholt.

Da auf dem ,Nvidia Quadro 2000D“-System nur Datenobjekte, die kleiner sind als die halbe
Speicherblockgrofie, in Speicherblocken abgelegt werden, muss diese Untersuchung mit ande-
ren DatenobjektgroBen durchgefiihrt werden als im Beispiel in Kapitel 3.1.2.4.3 beschrieben.
Um Speicherblocke teilweise zu fiillen, werden nicht zwei Datenobjekte mit % sondern finf
Datenobjekte mit % der Speicherblockgrof3e erzeugt (der Speicherblock ist dann zu % gefiillt).
Anschlielend wird ein Speicherblock durch Erzeugung von vier Datenobjekten mit i der Speicher-
blockgréRe komplett gefiillt. Schlieflich wird versucht, durch Erzeugung eines Datenobjekts mit
% der SpeicherblockgréRe den ersten Speicherblock aufzufiillen.

Das dazu ausgefiihrte OpenGL ES-Programm wird in Algorithmus 4.9 gezeigt. Die Schleife von Zei-
le 7 bis 44 iteriert iiber die Anzahl von teilweise gefiillten Speicherbldcken, die in einem Messschritt
angelegt werden. In Zeile 11 werden dann fiir jede teilweise zu fiillende Seite sechs IDs fiir Daten-
objekte erzeugt, plus vier fiir den am Ende komplett zu fiillenden Speicherblock.

In der Schleife von Zeile 14 bis 17 werden dann die teilweise gefiillten Speicherblocke angelegt,
indem fiir jeden Speicherblock fiinf Datenobjekte angelegt werden. In der darauffolgenden Schleife
werden die vier Datenobjekte angelegt, um einen Speicherblock komplett zu fiillen. Bevor dann in
der Schleife von Zeile 29 bis 33 versucht wird, jeden der teilweise gefiillten Speicherblocke komplett
zu fiillen, wird in Zeile 26 die aktuelle Speicherbelegung abgefragt.

Nach dem Auffiillversuch wird ebenfalls die Speicherbelegung abgefragt (Zeile 35). Anschliefend
werden in den Zeilen 38-40 sdmtliche erzeugten Datenobjekte wieder freigegeben, um fiir den
nédchsten Messschritt die urspriingliche Speicherbelegung wiederherzustellen. Die Erzeugung ein-
zelner Datenobjekte in den Zeilen 16, 22 und 31 erfolgt auf die gleiche Weise wie in den Zeilen
15-19 von Algorithmus 4.4.

72

4.2 Speicherbelegung

Algorithmus 4.9 Nichtsequentielles Auffiillen von Speicherblécken

{

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
37
38
39
40
41
42
43
44

void testNonSequentialStorage (

unsigned int blocksize, // Speicherblockgrofie

unsigned int maxBlocks, // maximale Anzahl teilweise gefiillter Speicherbldcke
GLbyte =data, /! zu iibertragende Daten

GLenum bufUsageHint) /!l buffer usage hint

for (unsigned int n = 1; n <= maxNumPages; n++)

{
// IDs fiir die bendtigten Datenobjekte erzeugen
GLuint bufferIDs [6*n+4];
glGenBuffers (6¥n+4, bufferIDs);

/] teilweise gefiillte Speicherblécke anglegen
for (unsigned int k = 0; k < 5*n; k++)
{
(...) // Datenobjekt mit 3/16 der SpeicherblockgréfSe erzeugen
}

// einen komplett gefiillten Speicherblock anlegen
for (unsigned int | = 0; 1 < 4; 1+4)
{
(...) // Datenobjekt mit 1/4 der SpeicherblockgrofSe erzeugen
}

/! Speicherbelegung vor Auffiillversuch abfragen
GPUMemoryInformation miBefore = getGPUMemlInfo () ;

/1 Versuch, teilweise gefiillte Speicherblocke aufzufiillen
for (unsigned int m = 0; m < n; m++)
{
(...) // Datenobjekt mit 1/16 der Speicherblockgriofse erzeugen
}

/! Speicherbelegung nach Auffiillversuch abfragen
GPUMemoryInformation miAfter = getGPUMemlInfo ();

// angelegte Datenobjekte freigeben
glBindBuffer (bufTarget, 0);
glDeleteBuffers (6+n+4, bufferIDs);
glFinish ();

/! Ergebnisse des Messschritts speichern
writeToResults (miBefore, miAfter, glGetError ());

Dieses Programm wurde fiir alle Usage Hints ausgefiihrt, wobei im letzten Messschritt so viele
Speicherblocke angelegt wurden, dass der GPU-Speicher komplett gefiillt wurde. Dabei zeigte sich,
dass sich die Speicherbelegung auf dem ,Nvidia Quadro 2000D“-System zwischen der Messung
vor und nach dem Auffiillversuch nicht dndert. Daraus l4sst sich schliel3en, dass auf diesem System
Datenobjekte in Speicherblécken abgelegt werden, auch wenn sie nicht unmittelbar aufeinander
folgend erzeugt werden. Usage Hints haben keinen Einfluss auf dieses Verhalten.

73

4 Untersuchungen

4.2.4.4 Ablage von Datenobjekten in fragmentierten Speicherbldocken

Algorithmus 4.10 Ablage von Datenobjekten in fragmentierten Speicherblécken

{

1
2
3
4
5
6
7
8
9

25

void testFragmentedStorage (

unsigned int blocksize, /! Speicherblockgrifse

unsigned int minObjectSize, /! minimale Grofse der zu erzeugenden Datenobjekte
GLbyte :bufData, /! zu iibertragende Daten

GLenum bufUsageHint) /! buffer usage hint

for (unsigned int size = blocksize/8; size >= minObjectSize; size /= 2)

{

// IDs fiir die bendtigten Datenobjekte erzeugen
unsigned int numObjects = blocksize / size;

GLuint bufferIDs [numObjects + numObjects/2];
glGenBuffers (numObjects + numObjects/2, bufferIDs);

// einen Speicherblock mit Datenobjekten fiillen
for (unsigned int k = 0; k < numObjects; k++)
{
(...) // Datenobjekt erzeugen
}

// Belegungsliicken erzeugen
glBindBuffer (bufTarget, 0);
for (unsigned int k = 0; k < numObjects; k+=2)
{
glDeleteBuffers (1, &bufferIDs[k]);
glFinish ();
}

// Speicherbelegung vor Fiillversuch der Liicken abfragen
GPUMemoryInformation miBefore = getGPUMemlInfo () ;

/! Versuch, Liicken zu fiillen
for (unsigned int k = 0; k < numObjects/2; k++)

{
(...) // Datenobjekt erzeugen

}

/! Speicherbelegung nach Fiillversuch ermitteln
GPUMemoryInformation miAfter = getGPUMemlInfo ();

(...) // Erzeugte Datenobjekte freigeben

/! Daten des Messschritts speichern
writeToResults (miBefore, miAfter, glGetError());

Um zu iiberpriifen, ob Datenobjekte in fragmentierten Speicherblécken abgelegt werden, wird —
wie in Kapitel 3.1.2.4.4 beschrieben — ein Speicherblock zundchst komplett mit Datenobjekten ge-

74

4.2 Speicherbelegung

fiillt und anschlieBend jedes zweite Datenobjekt wieder geloscht, um den Speicherblock zu frag-
mentieren.? Dazu wird das in Algorithmus 4.10 gezeigte OpenGL ES-Programm ausgefiihrt.

Die Schleife von Zeile 7 bis 44 iteriert iiber die zu untersuchende Datenobjektgrofie (die in jedem
Messschritt halbiert wird, bis die minimale Datenobjektgrée erreicht ist). In den Zeilen 10-12 wer-
den die IDs fiir die zu erzeugenden Datenobjekte erzeugt. Es werden eineinhalb mal so viele IDs
benotigt wie Datenobjekte in einen Speicherblock passen wiirden (da die Hélfte der Datenobjekte
des Speicherblocks geloscht und dann ein zweites Mal erzeugt werden).

Durch die Schleife von Zeile 15 bis 18 wird ein Speicherblock komplett mit Datenobjekten gefiillt,
bevor in den Zeilen 21-26 jedes zweite dieser Datenobjekte geloscht wird, um den Speicherblock
zu fragmentieren. Anschliefend wird in den Zeilen 32-35 versucht, diese Liicken aufzufiillen, wo-
bei unmittelbar davor und danach die aktuelle Speicherbelegung ermittelt wird. SchlieBlich wer-
den alle erzeugten Datenobjekte freigegeben, um fiir den nidchsten Messschritt die urspriingliche
Speicherbelegungssituation wiederherzustellen.

Dieses Programm wurde fiir alle Usage Hints ausgefiihrt, bis zu einer minimalen DatenobjektgroRe
von einem Kilobyte (was 2000 Belegungsliicken im Speicherblock entspricht). Dabei zeigte sich,
dass sich auf dem ,Nvidia Quadro 2000D“-System fiir alle untersuchten Datenobjektgré8en und
alle Usage Hints die Speicherbelegung vor und nach dem Fiillversuch nicht dndert. Daraus kann
geschlossen werden, dass Datenobjekte auf diesem System in fragmentierten Speicherblocken ab-
gelegt werden.

Im néchsten Abschnitt erfolgt die Untersuchung zur Bestimmung der Speichergranularitédt. Da dies
nicht nur fiir das ,Nvidia Quadro 2000D“-System relevant ist, wird diese Untersuchung fiir alle drei
Testsysteme durchgefiihrt.

4.2.5 Bestimmung der Speichergranularitit
4.2.5.1 Durchfiihrung der Untersuchung

Hinsichtlich der Bestimmung der Speichergranularitdt muss als zusitzliche Schwierigkeit beim
»Nvidia Quadro 2000D“-System beachtet werden, dass Datenobjekte, die kleiner als zwei Megabyte
sind, von der Ablage in Speicherblécken betroffen sind, wodurch nicht ohne weiteres gemessen
werden kann, wieviel GPU-Speicher durch deren Erzeugung belegt wird. Wie in Kapitel 3.1.2.5 be-
schrieben, wird dieses Problem umgangen, indem eine sehr grolle Zahl an Datenobjekten erzeugt
wird, wodurch auf diesem System durch die Anzahl der belegten Speicherblécke darauf geschlos-
sen werden kann, welche Speichergranularitit vorliegt. Dazu wird das in Algorithmus 4.11 gezeigte
OpenGL ES-Programm ausgefiihrt.

2Unter der Fragmentierung eines Speicherblocks wird hier verstanden, dass es innerhalb des Speicherblocks ungenutz-
ten Speicher zwischen benutzten Speicherbereichen gibt. Dies kann auf dem ,Nvidia Quadro 2000D“-System nicht
tberpriift werden. Es wird von der Annahme ausgegangen, dass solche Belegungsliicken entstehen, wenn jedes zwei-
te Datenobjekt des Speicherblocks geléscht wird.

75

4 Untersuchungen

Algorithmus 4.11 Bestimmung der Speichergranularitét.

1 void testForMemGranularity (

2 unsigned int baseSize, // Mindestgrifse eines Datenobjekts

3 unsigned int testRange, // maximale zusdtzliche Datenobjektgrofse

4 unsigned int stepSize, /! Gréflenunterschied zwischen zwei Messschritten
5 unsigned int numBuffers, // Anzahl anzulegender Datenobjekte pro Messschritt
6 GLbyte =bufData, /! zu iibertragende Daten

7 GLenum bufUsageHint) /! buffer usage hint

8 {

9 for (unsigned int size = baseSize; size <= baseSize + testRange; size += stepSize)
10 {

11 (...) // Datenobjekt—IDs erzeugen

12

13 // aktuelle Speicherbelegung ermitteln

14 GPUMemoryInformation miBefore = getGPUMemlInfo () ;

15

16 /! Datenobjekte erzeugen

17 for (unsigned int n = 0; n < numBuffers; n++)

18 {

19 (...) // Datenobjekt erzeugen

20 }

21

22 // aktuelle Speicherbelegung ermitteln

23 GPUMemoryInformation miAfter = getGPUMemlInfo ();

24

25 // Ergebnisse des Messschritts speichern

26 writeToResults (miBefore, miAfter, glGetError ());

27

28 (...) // Datenobjekte freigeben

29 }

Die Schleife von Zeile 9 bis 29 iteriert iiber die zu untersuchenden DatenobjektgréBen. In Zeile
11 werden die IDs der zu erzeugenden Datenobjekte erzeugt (analog zu den Zeilen 10-11 von Al-
gorithmus 4.9). Die Schleife von Zeile 17 bis 20 erzeugt dann die Datenobjekte fiir den aktuellen
Messschritt. Die Speicherbelegung wird dabei unmittelbar vor und nach der Erzeugung der Daten-
objekte ermittelt. Nach der Speicherung der Ergebnisse des aktuellen Messschritts werden in Zeile
28 die erzeugten Datenobjekte wieder freigegeben, um fiir den ndchsten Messschritt die urspriing-
liche Speicherbelegungssituation wiederherzustellen.

Dieses Programm wurde auf allen drei Testsystemen fiir Datenobjektgroen von einem Byte bis
vier Kilobyte durchgefiihrt, wobei in jedem Messschritt die Datenobjektgr68e um ein Byte erhdht
wurde. Anschliefend wurde auf den beiden ATI-Systemen der Trend stichprobenartig fiir Daten-
objektgrofBen von 8 MB bis 8 MB + 4 kB, 50 MB bis 50 MB + 4 kB, 150 MB bis 150 MB + 4 kB und 250
MB + 4 kB wiederholt, wobei auch hier die Datenobjektgrée zwischen zwei Messschritten um ein
Byte erhoht wurde.

Da die in Abschnitt 4.2.2 ermittelten Ergebnisse darauf hinweisen, dass auf dem , Nvidia Quadro
2000D“-System fiir Datenobjekte ab zwei Megabyte eine Speichergranularitdt von 128 kB vorliegt,
wurde hier der Messbereich auf vier Megabyte ausgedehnt und die DatenobjektgréRe zwischen
zwei Messschritten um ein Kilobyte erhoht.

76

4.2 Speicherbelegung

Fiir dieses System wurde der Trend stichprobenartig fiir Datenobjektgr6Ben von 8-12 MB, 50-54
MB, 150-154 MB, 250-254 MB und 500-504 MB tiberpriift. Dies wurde fiir alle Usage Hints wieder-
holt. Im folgenden Abschnitt werden die dabei ermittelten Ergebnisse zusammengefasst.

4.2.5.2 Ergebnisse

Abbildung 4.5 zeigt die Ergebnisse fiir die Erzeugung von 65.536 Datenobjekten pro Messschritt
auf dem ,Nvidia Quadro 2000D“-System. Auf der X-Achse sind die Datenobjektgroflen aufgetragen
und auf der Y-Achse die Speicherbelegung bzw. die {ibertragene Datenmenge (dies gilt auch fiir
die Achsen der darauf folgenden drei Abbildungen). Diese Abbildung zeigt einen Ausschnitt der
Ergebnisse der Untersuchung fiir Datenobjektgrof3en von einem Byte bis acht Kilobyte.

Die Menge des durch die Erzeugung der Datenobjekte belegten GPU-Speichers stimmt nur dann
mit der Gesamtmenge der {ibertragenen Daten tiberein, wenn die Datenobjektgr6Ben einem Viel-
fachen von 512 Byte entsprechen. Bei Datenobjektgroen von 1025 bis 1536 Byte ist eine Anomalie
zu erkennen. In diesem Bereich wére eine Speicherbelegung von 96 MB zu erwarten (65536 * 1536
Byte = 96 MB). Tatsidchlich werden aber 100 MB belegt, was einem zusitzlichen Speicherblock ent-
spricht.

Dies geschieht, weil Datenobjekte auf dem ,Nvidia Quadro 2000D“-System nicht in teilweise be-
legten Speicherblécken abgelegt werden, wenn sie nicht vollstindig hineinpassen (vgl. Abschnitt
4.2.4.1). Da die Speicherblockgro3e auf diesem System kein ganzzahliges Vielfaches von 1536 Byte
ist, bleibt ein Teil jedes Speicherblocks unbelegt, und zwar jeweils 1024 Byte (4 MB mod 1536 Byte
= 1024). Nachdem 96 MB gefiillt sind, werden noch 16 weitere Datenobjekte erzeugt. Dadurch
kommt es zur Reservierung eines weiteren Speicherblocks.

Abbildung 4.6 zeigt die Ergebnisse fiir die Erzeugung von 65.536 Datenobjekten pro Messschritt
auf den beiden ATI-Systemen. Diese Abbildung zeigt einen Ausschnitt der Ergebnisse der Unter-
suchung fiir Datenobjektgr6Ben von einem Byte bis acht Kilobyte. Auf den ATI-Systemen stimmt
die Speicherbelegung mit der Gesamtmenge der iibertragenen Daten iiberein, wenn die Daten-
objektgroBen einem ganzzahligen Vielfachen von 256 Byte entsprechen; DatenobjektgréRen, die
kein Vielfaches von 256 Byte sind, fithren zu einer Speicherbelegung, die der von Datenobjekten
des jeweils ndchsthoheren Vielfachen von 256 Byte entspricht.

Abbildung 4.7 zeigt die Ergebnisse fiir die Erzeugung von 32 Datenobjekten mit einer Grole
von acht bis neun Megabyte auf dem ,Nvidia Quadro 2000D“-System. In diesem Grolenbereich
stimmt die Menge des belegten GPU-Speichers mit der Gesamtmenge der iibertragenen Daten
tiberein, wenn die Datenobjektgrofen einem ganzzahligen Vielfachen von 128 kB entsprechen.
DatenobjektgroBen, die kein solches Vielfaches sind, fithren zu einer Speicherbelegung, die
der von Datenobjekten des jeweils ndchstgréBeren Vielfachen von 128 kB entsprechen. Dieser
Trend bestétigt sich auch fiir die {ibrigen untersuchten Gréenbereiche. Auf dem ,Nvidia Quadro
2000D“-System gibt es also offenbar zwei verschiedene Speichergranularitdten: 512 Byte fiir
Datenobjekte kleiner zwei MB und 128 kB fiir alle anderen.

Abbildung 4.8 zeigt die Ergebnisse fiir die Erzeugung von 32 Datenobjekten mit einer Grof3e von
8 MB bis 8 MB + 2 kB auf den beiden ATI-Systemen. Auch in diesem GréBenbereich stimmt die
Menge des belegten GPU-Speichers mit der Gesamtmenge der iibertragenen Daten iiberein, wenn
die Datenobjektgrofen einem ganzzahligen Vielfachen von 256 Byte entsprechen.

77

4 Untersuchungen

144

Speicherbelegung (Nvidia Quadro 2000D)
Ubertragene Datenmenge

128

112

96

80

Megabyte

48

32

16

0 256 512 768 1024 1280 1536 1792 2048

DatenobjektgroRe [Byte]

Abbildung 4.5: Speicherbelegung durch Erzeugung von 65.536 Datenobjekten (Nvidia-System)

144

Speicherbelegung (ATI FirePro V4800 / V5900)

12
8 Uibertragene Datenmenge

112

96

80

64

Megabyte

48

32

167
0

0 256 512 768 1024 1280 1536 1792 2048

Datenobiektgrofie [Bytel

Abbildung 4.6: Speicherbelegung durch Erzeugung von 65.536 Datenobjekten (ATI-Systeme)

78

4.2 Speicherbelegung

292

Speicherbelegung (Nvidia Quadro 2000D)
Ubertragene Datenmenge

288

284

280

276

272

Megabyte

268

264

260 7
256

8 81/8 81/4 8 3/8 81/2 8 5/8 8 3/4 87/8 9

Datenobjektgrofie [MB]

Abbildung 4.7: Speicherbelegung durch Erzeugung von 32 Datenobjekten (Nvidia-System)

262.216

Speicherbelegung (ATI FirePro V4800 / V5900)
Ubertragene Datenmenge

262.208

262.200

262.192

262.184

262.176

Megabyte

262.168

262.160

262.152 7
262.144
8MB + 0 Byte 8MB + 512 Byte 8MB + 1024 Byte 8MB + 1536 Byte 8MB + 2048 Byte
8MB + 256 Byte 8MB + 768 Byte 8MB + 1280 Byte 8MB + 1792 Byte

Datenobjektgrofie

Abbildung 4.8: Speicherbelegung durch Erzeugung von 32 Datenobjekten (ATI-Systeme)

79

4 Untersuchungen

DatenobjektgroBen, die kein solches Vielfaches sind, fithren zu einer Speicherbelegung, die der
von Datenobjekten des jeweils nidchstgréBeren Vielfachen von 256 Byte entsprechen. Dieser Trend
bestitigt sich auch fiir die {ibrigen untersuchten Grolenbereiche. Auf den beiden ATI-Systemen
gibt es also offenbar nur eine Speichergranularitit von 256 Byte, unabhédngig von der Datenobjekt-
groBe.

In keiner der Untersuchungen hatte der Usage Hint einen Einfluss auf die Speichergranularitit
(auch wenn auf den ATI-Systemen Datenobjekte bei entsprechenden Usage Hints im Hilfsspeicher
abgelegt werden, vgl. Abschnitt 4.2.1.2). Im nichsten Abschnitt werden die Ergebnisse der Unter-
suchungen zur Speicherbelegung zusammengefasst.

4.2.6 Fazit Speicherbelegung

Wie zu Beginn von Kapitel 3.1 dargelegt wurde, kann das Auftreten von Eviction dazu fiihren, dass
sich die Laufzeit von OpenGL ES-Befehlen erh6ht. Das kann wiederum die Erfiillung von Echtzeit-
garantien signifikant beeintrdchtigen, da tiber OpenGL ES nicht gesteuert werden kann, welche
Datenobjekte von Eviction betroffen sind — dadurch kann es auch bei der Ausfithrung eines Draw-
Befehls einer kritischen Anwendung zu einer Eviction-Kaskade kommen, die die Laufzeit dieses
Befehls derart verldngern konnte, dass keine ausreichend kleine Obergrenze fiir dessen Laufzeit
mehr garantiert werden kann. Wenn aus diesem Grund das Auftreten von Eviction vermieden wer-
den soll, muss vorhergesagt werden kénnen, wie viel GPU-Speicher durch die Ausfithrung eines
bestimmten OpenGL ES-Befehls belegt wird.

Die Ergebnisse der Untersuchungen zur Speicherbelegung zeigen aber, dass auf den Testsystemen
nur fiir wenige DatenobjektgréBen die Menge des belegten GPU-Speichers exakt mit der GroRe
des erzeugten Datenobjekts iibereinstimmt. Dies ist auf die Speichergranularitét zuriickzufiihren,
die auf allen drei Systemen grof3er ist als ein Byte. Auf dem ,,Nvidia Quadro 2000D“-System kommt
erschwerend hinzu, dass manche Datenobjekte in Speicherblocken abgelegt werden, was ebenfalls
dafiir sorgt, dass fiir solche Datenobjekte die Menge des belegten GPU-Speichers von ihrer Grof3e
abweicht.

Sofern dieses spezielle Verhalten beriicksichtigt wird und die Kennzahlen zu Speichergranularitit
und Speicherblockgrofie bekannt sind, kann zumindest eine Obergrenze fiir den Speicherbedarf ei-
nes Datenobjekts angegeben werden: Sofern es sich um ein Datenobjekt handelt, das in Speicher-
blocken abgelegt wird, entspricht diese Obergrenze der Speicherblockgréfie. Falls es sich um ein
anderes Datenobjekt handelt entspricht die Obergrenze der Effektivgro3e dieses Datenobjekts (in
diesem Fall entspricht die Obergrenze auch der Untergrenze fiir die Speicherbelegung).

Um eine genauere Obergrenze fiir Datenobjekten angeben zu kdnnen, die in Speicherblécken ab-
gelegt werden, ist es notwendig den Inhalt der einzelnen Speicherblécke zu verfolgen. Sobald meh-
rere Speicherblocke im GPU-Speicher reserviert wurden, die nicht vollstdndig mit Datenobjekten
gefiillt sind, ist es mit Bordmitteln von OpenGL ES aber nicht moglich, vorherzusagen, in welchem
Speicherblock ein neu erzeugtes Datenobjekt abgelegt wird (sofern es in mehreren Platz finden
wiirde). In einer solchen Situation ist fiir nachfolgend erzeugte Datenobjekte nicht mehr in jedem
Fall vorhersagbar, ob ein neuer Speicherblock reserviert werden wird oder nicht (d. h. es gilt wieder
die Obergrenze der SpeicherblockgroRe).

80

4.2 Speicherbelegung

Hinsichtlich der Echtzeitfdahigkeit von OpenGL ES 2.0 fiihrt aber die fehlende Mdoglichkeit, nach-
zuverfolgen, wo genau im GPU-Speicher Datenobjekte abgelegt werden, zu einem weitaus gro-
Reren Problem. [Stroyan 2009] erkldrt, dass die Fragmentierung des GPU-Speichers, dazu fiihren
kann, dass Datenobjekte unter Umstdnden nicht im GPU-Speicher abgelegt werden kdnnen, ob-
wohl deren GroRe kleiner ist als die Gesamtmenge an freiem GPU-Speicher. In diesem Fall kann es
also durch die Erzeugung eines Datenobjekts zu Eviction kommen, selbst wenn der GPU-Speicher
noch nicht vollstindig belegt ist. Ohne die Moglichkeit, festzustellen, welche Bereiche des GPU-
Speichers belegt sind, kann dies nicht sicher vorhergesehen werden.

Dieses Problem kann auf den ATI-Systemen umgangen werden, da hier die GréBe des grof3ten zu-
sammenhidngenden Speicherbereichs abgefragt werden kann [Blackmer u. a. 2009]. Sofern auf ei-
nem solchen System ein Datenobjekt erzeugt werden soll, dessen EffektivgréRe kleiner ist als dieser
Speicherbereich, kann davon ausgegangen werden, dass das betreffende Datenobjekt erzeugt wer-
den kann, ohne dass es zu Eviction kommt. Auf den beiden ATI-Systemen kann also sichergestellt
werden, dass die Echtzeitfdhigkeit von OpenGL ES durch die Speicherbelegung nicht eingeschrankt
wird.3

Auf Systemen, die nicht {iber einen Eviction-Mechanismus verfiigen, kann es geschehen, dass
Draw-Befehle kritischer Anwendungen nicht mehr ausgefiihrt werden kdnnen. Dies ist dann der
Fall, wenn fiir diese Befehle bestimmte Daten im GPU-Speicher liegen miissen, dort aber nicht
mehr ausreichend Platz dafiir ist. Um dies zu verhindern, muss sichergestellt werden, dass fiir
die Zwecke der kritischen Anwendungen immer genug freier Speicherplatz im GPU-Speicher
vorhanden ist, d. h. dass andere Anwendungen nicht zu viele Daten im GPU-Speicher ablegen.

Dazu muss aber auch auf solchen Systemen vorhergesagt werden konnen, wie viel Speicherplatz
durch die Erzeugung von Datenobjekten belegt wird. Sofern die dafiir notwendigen Informationen
nicht anderweitig in Erfahrung gebracht werden kénnen (zum Beispiel von den Herstellern dieser
Systeme), miissen diese Informationen durch die in Kapitel 3.1 beschriebenen Untersuchungen
ermittelt werden. Eine notwendige Voraussetzung dafiir ist aber, dass zumindest der zu einem be-
stimmten Zeitpunkt vorhandene, freie Speicherplatz des GPU-Speichers abgefragt werden kann.
OpenGL ES 2.0 selbst bietet dafiir aber keinen Mechanismus. Sofern keine Erweiterung dafiir ver-
fiigbar ist (wie zum Beispiel bei den in Abschnitt 4.1.1 beschriebenen Systemen) ist dies auf der
Ebene von OpenGL ES nicht méglich. Ein méglicher Losungsansatz dafiir, auf3erhalb von OpenGL
ES, wird im Ausblick in Kapitel 5 skizziert. In den ndchsten Abschnitten erfolgen die Untersuchun-
gen zur Dateniibertragung.

3Die Annahme dahinter ist, dass sich der gréRte zusammenhingende Speicherblock bei der Erzeugung eines Daten-
objekts hochstens um dessen EffektivgroBe verringert, zumal auf den beiden ATI-Systemen kein anderes Verhalten
beobachtet werden konnte.

81

4 Untersuchungen

4.3 Dateniibertragung

4.3.1 Bestimmung von Dateniibertragungsrate und -laufzeit

4.3.1.1 Durchfiihrung der Untersuchung

Algorithmus 4.12 Laufzeit von Dateniibertragungsbefehlen

{

1
2
3
4
5
6
7
8
9

void testDataTransferTimes (

unsigned int minSize, /! minimale Datenobjektgriofse

unsigned int maxSize, /! maximale Datenobjektgrifse

unsigned int stepSize, /! Zunahme der Datenobjektgrifse zwischen Messungen
unsigned int iterations, // Anzahl der Einzelmessungen pro Datenobjektgrifse
GLbyte =data) /! zu iibertragende Daten

/! Messreihe durchfiihren
long long results[iterations];
for (unsigned int size = minSize; size <= maxSize; size += stepSize)

{

/! Datenobjekt erstellen

GLuint id;

glGenBuffers (1, &id);

glBindBuffer (GL_ARRAY BUFFER, id);

glBufferData (GL_ARRAY BUFFER, size, data, GL_STATIC DRAW);
glFinish ();

/! Messung durchfiihren
HPCClock c;
for (unsigned int n = 0; n < iterations; n++)

{

c.start ();

glBufferData (GL_ARRAY BUFFER, size, data, GL_STATIC DRAW);
glFlush ();

glFinish ();

results[n] = c.stop ();

}

/! Ergebnisse fiir aktuelle DatenobjektgrofSe speichern
writeToResults (size, results, glGetError());

/! Datenobjekt freigeben
glDeleteBuffers (1, &id);
glFinish ();

Um die Laufzeit von Dateniibertragungsbefehlen zu bestimmen werden — wie in Kapitel 3.2.2 be-
schreiben — zunédchst im leeren GPU-Speicher einzelne Datenobjekte zunehmender Grof3e mit
glBufferData* erzeugt und die dessen Laufzeit gemessen. Dieses Vorgehen wird anschlieRend
wiederholt, wobei der anfangliche Speicherbelegungsgrad und die Anzahl bereits vorhandener Da-
tenobjekte erhoht wird.

4Siehe Kapitel 3.2.3.1 zur Wahl dieses Befehls.

82

4.3 Dateniibertragung

Algorithmus 4.12 zeigt das dafiir ausgefiihrt OpenGL ES-Programm. Die Schleife von Zeile 10 bis
Zeile 35 enthilt dabei den Code der Laufzeitmessung fiir eine Datenobjektgrélle. In den Zeilen 13
bis 16 wird ein neues Datenobjekt angelegt. Der Parameter GL_STATIC_DRAW stellt fiir die verwen-
deten Testsysteme sicher, dass das Datenobjekt tatsdachlich im GPU-Speicher angelegt wird (vgl.
Kapitel 4.2.1).

Die eigentliche Laufzeitmessung wird in den Zeilen 23 bis 27 durchgefiihrt. Durch die Befehle
glFlush und glFinish wird sichergestellt, dass der Dateniibertragungsbefehl sofort an den GL-
Server {ibertragen wird und die Dateniibertragung vollstindig abgeschlossen ist, bevor die Lauf-
zeitmessung beendet wird (vgl. Kapitel 2.3).

Das zuvor angelegte Datenobjekt wird in Zeile 34 wieder freigegeben, um fiir die nachfolgenden
Messungen (mit der ndchstgrolleren zu iibertragenden Datenmenge) die urspriingliche Speicher-
belegungssituation wiederherzustellen.

Diese Programm wurde fiir Datenobjektgr68en von einem Megabyte bis zur gr6Bten, auf dem je-
weiligen System unterstiitzten Datenobjektgrofle durchgefiihrt (512 MB auf dem ,Nvidia Quadro
2000D“-System und 256 MB auf den beiden anderen Systemen). Zwischen den Messschritten wur-
de die Datenobjektgré3e um jeweils ein Megabyte erhoht. Dies wurde mehrmals wiederholt, wobei
der Speicherbelegungsgrad dabei jeweils um zehn Prozent bis zu einem Maximum von 90 Prozent
erhoht wurde. Die Messung wurde stets dann abgebrochen, wenn es aufgrund der Datenobjekt-
grofe zur Auslagerung von Datenobjekten in den Hauptspeicher kam (durch den sogenannten
Eviction-Mechanismus, siehe auch Kapitel 3.1). AnschlieRend wurde die urspriingliche Simulati-
on ebenfalls mehrmals wiederholt, wobei die Anzahl der vorab vorhandenen Datenobjekte dabei
jeweils um 10.000 bis zu einem Maximum von einer halben Million Datenobjekten erh6ht wur-
de.

4.3.1.2 Ergebnisse

Abbildung 4.9 zeigt die Ergebnisse, die durch die Ausfithrung der Simulation bei leerem GPU-
Speicher auf den drei Testsystemen ermittelt wurden.> Auf der X-Achse sind die verschiedenen
Datenobjektgroflen aufgetragen und auf der Y-Achse die Laufzeit des Dateniibertragungsbe-
fehls.

Die dargestellten Messpunkte zeigen jeweils die mittlere Laufzeit des Dateniibertragungsbefehls
fiir die jeweilige DatenobjektgroBe. Das Diagramm zeigt zur besseren Lesbarkeit nur einen Teil
der ermittelten Messpunkte. Die ebenfalls dargestellten Trendlinien bleiben davon unberiihrt. Die
Fehlerbalken iiber den einzelnen Messpunkten zeigen die durchschnittliche Abweichung der ein-
zelnen Messwerte vom hier gezeigten Mittelwert.

Auf allen drei untersuchten Systemen steigt die Laufzeit von glBufferData proportional zur
tibertragenen Datenmenge. Die Varianzen der gemessenen Laufzeiten steigen bei allen drei
Systemen mit zunehmender Datenobjektgrofie an, iiberschreiten bei den beiden ATI-Systemen
aber nie 15%. Anders beim Nvidia-System: Die Varianz fiir das gro3te Datenobjekt erreicht hier bei
512 MB grollen Datenobjekten fast 46%.

Die Durchfiihrung der Simulation bei unterschiedlich hohem Speicherbelegungsgrad lieferte glei-
che Ergebnisse, ebenso die Simulation bei unterschiedlicher Anzahl bereits vorhandener Daten-

5Es ist dabei zu beachten, dass Anwendungen auf den Testsystemen iiber OpenGL ES nie auf einen vollstindig leeren
GPU-Speicher zugreifen kénnen (siehe Kapitel 4.1.3.3).

83

4 Untersuchungen

objekte. Ob der Speicherbelegungsgrad oder die Anzahl vorhandener Datenobjekte dabei tiber den
selben OpenGL-Kontext oder den Kontext eines anderen Prozesses erhoht wurde, hatte keinen Ein-
fluss auf die Ergebnisse.

Bei der Laufzeitmessung fiir immer kleinere Datenobjekte zeigt sich, dass die Laufzeit des Daten-
tibertragungsbefehls auf keinem der Testsysteme gegen Null geht. Die gemessenen Laufzeiten sin-
ken auf dem ,Nvidia Quadro 2000D*“-System nie unter 49 ps, auf dem , ATI FirePro V5900“-System
nie unter 51 ps und auf dem ,, ATI FirePro V4800“-System nie unter 56 ps. Fiir die Ausfiihrung der
Dateniibertragung féllt also bei allen drei Systemen ein gewisser Overhead an, unabhingig davon,
wie gering die zu libertragenden Datenmengen sind.

Auch fiir kleine Datenobjekte wurden die Simulationen zur Uberpriifung des Einflusses der aktu-
ellen Speicherbelegung und der Anzahl der bereits vorhandenen Datenobjekte durchgefiihrt. Ab-
bildung 4.10 zeigt die Laufzeit von glBufferData fiir die Ubertragung von 1kB Vertexdaten bei
unterschiedlicher Anzahl von Datenobjekten im GPU-Speicher. Auf der X-Achse ist die Anzahl der
Datenobjekte aufgetragen und auf der Y-Achse Laufzeiten des Dateniibertragungsbefehls.

Hierbei zeigte sich, dass die zuvor ermittelten Minimallaufzeiten unabhéngig von der aktuellen
Speicherbelegung auftreten. Auf den beiden ATI-Systemen hat auch die Anzahl der bereits vor-
handenen Datenobjekte keinen erkennbaren Einfluss darauf. Beim Nvidia-System steigt hingegen
die minimale Laufzeit sprunghaft auf 61 ps an, sobald mindestens 150.000 Datenobjekte im GPU-
Speicher vorhanden sind. Auch hier hat es keinen Einfluss auf die Ergebnisse, ob der Speicherbele-
gungsgrad oder die Anzahl vorhandener Datenobjekte iiber den selben OpenGL-Kontext oder den
Kontext eines anderen Prozesses erhoht wird. Im niachsten Abschnitt erfolgt die Untersuchung des
Verhaltens hinsichtlich der Ausfiihrung von konkurrierenden Dateniibertragungsbefehlen.

500
B Messung Nvidia Quadro 2000D

450 Messung ATI FirePro /5900
400 ¥ Messung ATl FirePro V4800
Trend Nvidia Quadro 2000D

350 Trend ATI FirePro V5900
Trend ATI FirePro V4800

300
250
200
150
100

50

Laufzeit [ms]

0 64 128 192 256 320 384 448 512

DatenobjekigroRRe [MB]

Abbildung 4.9: Dateniibertragungszeiten bei leerem GPU-Speicher

84

4.3 Dateniibertragung

70

g 50 A~ ~

E

> 40 ATI FirePro V5900

- —— ATIFirePro V4800
30 ~—— Nvidia Quadro 2000D
20

0 50 100 150 200 250 300 350 400 450 500

Anzahl bereits vorhandener Datenobjekte [in Tausend]

Abbildung 4.10: Laufzeit von glBufferData fiir die Ubertragung von 1kB Vertexbuffer-Daten,
wenn bereits andere Datenobjekte im GPU-Speicher vorhanden sind

4.3.2 Konkurrierende Dateniibertragungen
4.3.2.1 Durchfiihrung der Untersuchung

Um das Verhalten des GL-Servers bei konkurrierenden Dateniibertragungsbefehlen zu ermitteln,
werden — wie in Kapitel 3.2.2.2 beschrieben - zwei OpenGL ES-Programme ausgefiihrt, die als
Master- und als Slaveprogramm bezeichnet werden. Diese Programme iibermitteln gleichzeitig
einen Dateniibertragungsbefehl an den GL-Server und messen dessen Laufzeit. Anschlief$end wird
dieser Vorgang wiederholt, wobei die Ubermittlung des Dateniibertragungsbefehl beim Masterpro-
gramm solange verzogert wird, bis die Ausfithrung des vom Slaveprogramm iibermittelten Befehls
zur Halfte abgeschlossen ist.

Algorithmus 4.13 zeigt den Code des Masterprogramms. Das Datenobjekt fiir die Dateniibertra-
gung wird in Zeile 7 auf die gleiche Weise angelegt wie in Algorithmus 4.12, so dass fiir alle Test-
systeme sichergestellt ist, dass das Datenobjekt tatsidchlich im GPU-Speicher erzeugt wird. In den
Zeilen 10-19 erfolgt die Referenzmessung der Laufzeit des Dateniibertragungsbefehls und in den
Zeilen 22-23 wird das Slaveprogramm gestartet und darauf gewartet, dass es Bereitschaft signali-
siert.

Die eigentliche Messung bei konkurrierender Dateniibertragung erfolgt in den Zeilen 27-37. Dabei
wird in Zeile 29 der Beginn der Dateniibertragung signalisiert (woraufhin das Slaveprogramm sei-
nen Dateniibertragungsbefehl an den GL-Server tibermittelt) und in Zeile 30 die Ausfiihrung des
Masterprogramms bei Bedarf fiir die Hilfte der durchschnittlichen Referenzlaufzeit angehalten.

85

4 Untersuchungen

Algorithmus 4.13 Laufzeit konkurrierender Dateniibertragungsbefehle (Masterprogramm)

—~

© ® N g R W N =

25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41

void testCompetingDataTransferMaster (

unsigned int size, /! zu iibertragende Datenmenge

unsigned int iterations, // Anzahl der Einzelmessungen pro Datenobjektgrofse
GLbyte +data, /! zu iibertragende Daten

bool delayMaster) /! Ubermirtlung des Dateniibertragungsbefehls verzigern?

(...) // Datenobjekt erstellen

/! Referenzmessung durchfiihren

HPCClock c;

long long refresults[iterations];

for (unsigned int n = 0; n < iterations; n++)

{

c.start ();

glBufferData (GL_ARRAY BUFFER, size, data, GL_STATIC DRAW);
glFlush ();

glFinish ();

refresults[n] = c.stop ();

}

/! Slaveprogramm starten und warten, bis es Bereitschaft signalisiert
spawnSlave () ;
waitForSlaveEvent ();

// Messung mit konkurrierender Dateniibertragung durchfiihren
long long results[iterations], timestamps[iterations];
for (unsigned int n = 0; n < iterations; n++)
{
signalMasterEvent () ;
if (delayMaster) Sleep (average(refresults)/2);
timestamps [n] = c.start();
glBufferData (GL_ARRAY BUFFER, size, data, GL_STATIC DRAW);
glFlush ();
glFinish ();
results[n] = c.stop ();
waitForSlaveEvent ();

}

/! Messergebnisse speichern und Datenobjekt freigeben
writeToResults (size, refresults, results, glGetError ());
glDeleteBuffers (1, &bufferID);

In Zeile 31, unmittelbar vor Ubermittlung des Dateniibertragungsbefehls an den GL-Server, wird
der aktuelle Zeitstempel gespeichert (um spéter durch den Vergleich mit den Zeitstempeln des Sla-
veprogramms sicherstellen zu kénnen, dass die Zeitpunkte der Ubermittlung der beiden Befehle
an den GL-Server zeitlich nicht zu stark auseinander lagen, vgl. Abschnitt 4.1.5). Nach Ausfiihrung
der Dateniibertragung wartet das Masterprogramm in Zeile 36 darauf, dass das Slaveprogramm

den Abschluss seiner Dateniibertragung signalisiert.

86

4.3 Dateniibertragung

Algorithmus 4.14 Laufzeit konkurrierender Dateniibertragungsbefehle (Slaveprogramm)

void testCompetingDataTransferSlave (

unsigned int size, /! zu iibertragende Datenmenge
unsigned int iterations, // Anzahl der Einzelmessungen
GLbyte +:data) /! zu iibertragende Daten

(...) // Datenobjekt erstellen

(...) // Referenzmessung durchfiihren

© N g R W N =
—~—

—
5]

// Bereitschaft signalisieren
setSlaveEvent ();

— = =
w N =

// Messung mit konkurrierender Dateniibertragung durchfiihren
long long results[iterations], timestamps[iterations];
for (unsigned int n = 0; n < iterations; n++)

{

= = =
o o o~

waitForMasterEvent () ;

timestamps[n] = c.start();

glBufferData (GL_ARRAY BUFFER, size, data, GL_STATIC DRAW);
glFlush ();

glFinish ();

results[n] = c.stop ();

signalSlaveEvent ();

NN NN NN e =
S G R XN = S © ©® N
— hnad

..) // Messergebnisse speichern und Datenobjekt freigeben

™
N
——

Der in Algorithmus 4.14 in Ausziigen gezeigte Code des Slaveprogramms entspricht weitestgehend
dem Code des Masterprogramms. Die Erstellung des Datenobjekts (Zeile 6) und die Referenzmes-
sung (Zeile 8) erfolgen genauso wie im Masterprogramm (eine Referenzmessung wird auch beim
Slaveprogramm durchgefiihrt, um sicherzustellen, dass sich die Laufzeiten der Dateniibertragung
zwischen den beiden Programmen im nicht-konkurrierenden Fall nicht unterscheiden — wére dies
nicht der Fall, dann wire ein Vergleich der Laufzeiten im konkurrierenden Fall nicht sinnvoll). Die
Speicherung der Messergebnisse und Freigabe des Datenobjekts in Zeile 26 entsprechen ebenfalls
denen des Masterprogramms.

Die Bereitschaft des Slaveprogramms wird in Zeile 11 signalisiert. Auf dieses Signal wird in Zeile 23
des Masterprogramms gewartet. In gleicher Weise korrespondieren die Zeilen 17 und 23 des Slave-
programms mit den Zeilen 29 und 36 des Masterprogramms. Durch diese Signale synchronisieren
sich die beiden Programme so, dass ihre Datentiibertragungsbefehle entweder gleichzeitig an den
GL-Server iibermittelt werden oder das Masterprogramm seinen iibermittelt, wenn die Dateniiber-
tragung des Slaveprogramms zur Hélfte abgeschlossen ist.

4.3.2.2 Ergebnisse

Abbildung 4.11 zeigt die Ergebnisse der Untersuchung auf dem , Nvidia Quadro 2000D“-System fiir
die Ubertragung von 200MB Vertexbuffer-Daten. Auf der Y-Achse ist die Laufzeit des Dateniiber-

87

4 Untersuchungen

tragungsbefehls aufgetragen. Die linke Balkengruppe zeigt die Ergebnisse fiir die Simulation ohne
Verzogerung des Masterprogramms, die rechte Balkengruppe die Ergebnisse, wenn die Ubermitt-
lung des Datentibertragungsbefehls an den GL-Server durch das Masterprogramm um die Hélfte
der Referenzlaufzeit verzogert wird (in diesem Fall um 42 ms).

Der linke Balken innerhalb einer Gruppe zeigt das Mittel der gemessenen Referenzlaufzeiten. Die-
ses wird durch die in den Algorithmen 4.13 und 4.14 beschriebene Simulation sowohl vom Master-
als auch vom Slaveprogramm ermittelt — die mittleren Laufzeiten stimmen dabei in allen Simulati-
onsldufen stets iiberein (die Abweichung zwischen der mittleren Laufzeit beim Master- und beim
Slaveprogramm liegt hierbei jeweils unter 2%), weshalb die Referenzzeit in dieser Abbildung nur
einmal aufgefiihrt wird. Der mittlere Balken zeigt das Mittel der vom Masterprogramm gemesse-
nen Laufzeiten und der rechte Balken das des Slaveprogramms. Die Fehlerbalken zeigen die durch-
schnittliche Abweichung der einzelnen Messwerte vom hier gezeigten Mittelwert.

Es zeigt sich, dass die Laufzeiten im Master- und Slaveprogramm iibereinstimmen, und zwar in bei-
den Szenarien (mit und ohne Verzégerung im Masterprogramm). Das bedeutet, dass Dateniiber-
tragungsbefehle, die von verschiedenen Prozessen an den GL-Server {ibermittelt werden, nicht se-
quentiell abgearbeitet werden. Sobald dem GL-Server mehr als ein Datentibertragungsbefehl zur
Abarbeitung vorliegt, wird die verfiigbare Bandbreite auf die Ausfithrung aller Befehle verteilt (wo-
durch sich die Laufzeiten dieser Befehle entsprechend erhéhen).

180

B Referenzmessung
160 W Laufzeit Master
W Laufzeit Slave

140
120
100

80

Laufzeit [ms]

60
40
20

0
Gleichzeitiger Ubertragungsbeginn Verzogerter Master

Abbildung 4.11: Laufzeiten konkurrierender Datentiibertragungsbefehle

Die Simulation wurde fiir unterschiedliche zu iibertragende Datenmengen wiederholt und auch
auf den beiden ATI-Systemen durchgefiihrt. Auch dort zeigte sich, dass konkurrierende Dateniiber-
tragungsbefehle vom OpenGL ES-System nicht sequentiell abgearbeitet werden, sondern dass die
verfiigbare Bandbreite stattdessen auf die einzelnen Befehle aufgeteilt wird.

88

4.3 Dateniibertragung

Bei diesen Simulationen ist allerdings zu beachten, dass die zu tibertragenden Datenmengen nicht
zu klein gewdhlt werden diirfen. Spitestens wenn die zu iibertragende Datenmenge so klein ist,
dass die Laufzeit des Dateniibertragungsbefehls auf den Testsystemen den Bereich um eine Mil-
lisekunde erreicht, kann es aufgrund von ungiinstigen Prozesskontextwechseln oder der Unge-
nauigkeit des Sleep-Befehls dazu kommen, dass der Dateniibertragungsbefehl eines Programms
erst tibermittelt wird, nachdem der Befehl des anderen Programms bereits vollstindig abgearbei-
tet worden ist (vgl. Abschnitt 4.1.1 zur Frequenz des Thread-Schedulers und der Genauigkeit des
Sleep-Befehls). Es handelt sich dann nicht mehr um konkurrierende Befehle und das hier gewihlte
Vorgehen macht keinen Sinn mehr.

4.3.3 Nebenliufige Ausfiihrung von Dateniibertragung und Rendering

1400
B Referenzmessung Datenuibertragung
1200 m Referenzmessung Draw
B Laufzeit Draw
1000 © Laufzeit Datenliibertragung
B Summe der Referenzw erte
‘w800
E,
& 600
®©
—
400
200
0

32k 64k 128k

Anzahl gerendeter Dreiecke

Abbildung 4.12: Laufzeiten bei Dateniibertragung und gleichzeitigem Draw

Auch zur Untersuchung der nebenldufigen Ausfiihrung von Dateniibertragungs- und Draw-
Befehlen werden — wie in Kapitel 3.2.2.3 beschrieben — zwei OpenGL ES-Programme ausgefiihrt,
die als Master- und Slaveprogramm bezeichnet werden. Der Aufbau dieser Programme entspricht
dem im letzten Abschnitt erlduterten (siehe die Algorithmen 4.13 und 4.14).

Lediglich das Masterprogramm unterscheidet sich insofern, dass fiir diese Untersuchung fiir die
Referenz- und die konkurrierende Laufzeitmessung in den Zeilen 15 und 32 kein Dateniibertra-
gungsbefehl sondern ein Draw-Befehl an den GL-Server tibermittelt wird.

89

4 Untersuchungen

Abbildung 4.12 zeigt die Laufzeiten der sich zeitlich iiberschneidenden Draw- und Dateniibertra-
gungsbefehle auf dem ,Nvidia Quadro 2000D“-System. Auf der X-Achse ist die Anzahl der im Zuge
des Draw-Befehls gerenderten Dreiecke aufgetragen und auf der Y-Achse die Laufzeit in Millisekun-
den. Die Balken zeigen jeweils das Mittel der gemessenen Laufzeiten und die dariiber dargestellten
Fehlerbalken die durchschnittliche Abweichung der Messwerte vom gezeigten Mittelwert.

Fiir diese Simulation wurde die vom Slaveprogramm iibertragene Datenmenge nicht variiert. Es
wurde stets die grolStmogliche Datenmenge iibertragen (fiir Vertexbuffer-Objekte sind dies 512 MB
beim Nvidia-System und 256 MB bei den beiden ATI-Systemen). Variiert wurde die Menge der zu
rendernden Dreiecke beim Masterprogramm. Die Simulation wurde pro Anzahl Dreiecke jeweils
in zwei Varianten durchgefiihrt. In der einen erfolgte die Ubermittlung des Draw- und des Daten-
iibertragungsbefehls zeitgleich, in der anderen wurde die Ubermittlung des Draw-Befehls um 150
ms verzogert (d. h. zum Zeitpunkt der Ubermittlung des Draw-Befehls war die Dateniibertragung
bereits weit fortgeschritten, aber noch nicht abgeschlossen). Das Ergebnis war aber immer das glei-
che:

Die Laufzeit des Draw-Befehls entspricht immer der Referenzlaufzeit und die Laufzeit des Daten-
tibertragungsbefehls entspricht immer in etwa der Summe der Referenzlaufzeiten von Draw- und
Dateniibertragungsbefehl. Dass dies auch bei deutlicher Verzogerung der Ubermittlung des Draw-
Befehls der Fall ist, deutet darauf hin, dass der GL-Server die Ausfiihrung des Dateniibertragungs-
befehls unterbricht, sobald ihm ein Draw-Befehl {ibermittelt wird, und sie fortsetzt, sobald der
Draw-Befehl vollstindig ausgefiihrt worden ist.

Die beiden ATI-Systeme zeigen bei Ausfithrung dieser Simulation das gleiche Verhalten. Auch hier
werden Dateniibertragungsbefehle durch konkurrierende Draw-Befehle unterbrochen, wiahrend
die Ausfiihrung von Draw-Befehlen durch Datentibertragungsbefehle anderer Prozesse nicht mess-
bar beeinflusst wird.

4.3.4 Dateniibertragung ungepufferter Draw-Befehle
4.3.4.1 Durchfiihrung der Untersuchung

Um zu iberpriifen, ob bei der Ausfiithrung eines ungepufferten Draw-Befehls die benotigten Ver-
texdaten in die GPU iibertragen werden kdnnen, wiahrend gleichzeitig das Rendering durchgefiihrt
wird, wird — wie in Kapitel 3.2.2.4 beschrieben — die Laufzeit des ungepufferten Draw-Befehls mit
der Dateniibertragungszeit fiir diese Vertexdaten und mit der Laufzeit des gepufferten Renderings
verglichen. Dazu wird das in Algorithmus 4.15 gezeigte Programm ausgefiihrt.

Der Code fiir das Anlegen des Vertexbuffer-Objekts im GPU-Speicher und die Messung der
Referenzlaufzeit fiir die Dateniibertragung vom Hauptspeicher in dieses Datenobjekt entspricht
dem von Algorithmus 4.13. In den Zeilen 9-11 wird festgelegt, dass dieses Vertexbuffer-Objekt fiir
nachfolgende Draw-Befehle genutzt werden soll (d. h. nachfolgende Draw-Befehle sind gepufferte
Draw-Befehle, fiir die keine eigene Dateniibertragung notwendig ist).

Die Messung der Referenzlaufzeit des Draw-Befehls ohne Dateniibertragung erfolgt dann in den
Zeilen 14-21. Die Ermittlung der Referenzlaufzeit fiir die Kopie der Vertexdaten im Hauptspeicher
erfolgt in den Zeilen 24-30.°

5Die GroRe des Vertexdatenarrays in Bytes entspricht dem Produkt aus der Anzahl der Vertices und der GroRe eines
Vertex in Bytes. In diesem Fall wird ein Vertex durch zwei GLfloat-Variablen reprasentiert (fiir die X- und Y-Koordinate
des entsprechenden Vertex).

90

4.3 Dateniibertragung

Algorithmus 4.15 Dateniibertragung ungepufferter Draw-Befehle

void testDataTransferInUnbufferedDraw (

unsigned int iterations, // Anzahl der Einzelmessungen
unsigned int numVertices, // Anzahl der zu rendernden Vertices
GLbyte =data) // Vertexdaten

(...) // Erzeugung Datenobjekt + Referenzmessung Dateniibertragungszeit

/! Angelegtes Datenobjekt als Input fiir Draw-Befehle festlegen

1
2
3
4
5 {
6
7
8
9 glVertexAttribPointer (0, 2, GL_FLOAT, GL_FALSE, 0, 0);

10 glEnableVertexAttribArray (0);

11 glFinish ();

12

13 /! Referenzmessung Draw-Laufzeit

14 for (unsigned int n = 0; n < iterations; n++)

15 {

16 c.start ();

17 glDrawArrays (GL_POINTS, 0, numVertices);

18 glFlush ();

19 glFinish ();

20 refResultsDraw [n] = c.stop ();

21 }

22

23 /! Referenzmessung Laufzeit Datenkopie im Hauptspeicher
24 GLfloat tmp[numVertices+sizeof (2+GLfloat)];

25 for (unsigned int n = 0; n < iterations; n++)

26 {

27 c.start ();

28 memcpy(tmp, data, numVerticesxsizeof (2 GLfloat));
29 refResultsMemCopy[n] = c.stop ();

30 }

31

32 /! Die im Hauptspeicher liegenden Vertexdaten als Draw-Input festlegen
33 glVertexAttribPointer (0, 2, GL_FLOAT, GL_FALSE, 0, data);
34 glEnableVertexAttribArray (0);

35 glFinish ();

36

37 /! Ungepufferte Draw-Laufzeiten messen

38 for (unsigned int n = 0; n < iterations; n++)

39 {

40 c.start ();

41 glDrawArrays (GL_POINTS, 0, ud—>numberOfPoints);

42 returnTimes [n] = c.getTime ();

43 glFlush ();

44 glFinish ();

45 results[n] = c.stop ();

46 }

47

48 /! Ergebnisse speichern

49 writeToResults (numVertices, refResultsDataTransfer, refResultsDraw, refResultsMemCopy,
50 returnTimes, results, glGetError());

51 }

Die Zeilen 33-35 legen fest, dass nachfolgende Draw-Befehle das Vertexdatenarray im Hauptspei-
cher als Input nutzen sollen (d. h. nachfolgende Draw-Befehle werden ungepuffert ausgefiihrt).

91

4 Untersuchungen

Die Laufzeitmessung fiir den ungepufferten Draw-Befehl findet dann in den Zeilen 38-46 statt. Da-
bei werden die Riicksprungzeiten des Draw-Befehls gesondert vermerkt (Zeile 42). Die Ergebnisse
der Referenzmessungen, der Laufzeitmessung des ungepufferten Draw-Befehls und dessen Riick-
sprungzeiten werden schlieflich in den Zeilen 49-50 gespeichert.

Auch in dieser Simulation werden im Zuge der Ausfithrung der Draw-Befehle die beiden Minimal-
shader verwendet, die in Abschnitt 4.1.6 beschrieben werden.

4.3.4.2 Ergebnisse

Die Abbildungen 4.13 und 4.14 zeigen die Ergebnisse der Simulation auf dem ,Nvidia Quadro
2000D“- und dem ,ATI FirePro V4800“-System. Auf den X-Achsen ist die Anzahl der gerenderten
Vertices aufgetragen und auf den Y-Achsen die Laufzeit in Millisekunden. Die Balken zeigen jeweils
das Mittel der gemessenen Laufzeiten und die dariiber dargestellten Fehlerbalken die durchschnitt-
liche Abweichung der Messwerte vom gezeigten Mittelwert.

45
40 B Referenzmessung Laufzeit Datenkopie im Hauptspeicher
B Referenzmessung Datenuibertragungszeit
35 B Referenzmessung Draw -Laufzeit
Laufzeit des ungepufferten Draw -Befehls
30 B Summe der Referenzw erte
»
E 25
g 2
3 I
4
15
10 I
5 d I ‘
0

1 Mio 2 Mio 4 Mio

Anzahl gerendeter Vertices

Abbildung 4.13: Laufzeiten ungepufferter Draw-Befehle (,Nvidia Quadro 2000D“-System)

Auf diesem System sind die ermittelten Laufzeiten des ungepufferten Draw-Befehls deutlich gréRer
als die Summe der Referenzwerte fiir die Dateniibertragung und die Laufzeit des gepufferten Draw-
Befehls. Da gleichzeitig die Riicksprungzeiten des ungepufferten Draw-Befehls unter der Referenz-
laufzeit fiir die Datentibertragung liegen, muss davon ausgegangen werden, dass das OpenGL ES-
System eine Kopie der Vertexdaten im Hauptspeicher anlegt (sonst wire ein so frither Riicksprung

92

4.3 Dateniibertragung

nicht moglich). Tatsichlich liegen die Riicksprungzeiten auch iiber der Referenzlaufzeit fiir die Da-
tenkopie im Hauptspeicher.

Dass die Laufzeiten des ungepufferten Draw-Befehls dennoch kleiner sind als die Summe aller drei
Referenzwerte, konnte vom OpenGL ES-System zum Beispiel dadurch erreicht werden, dass die
Kopie im Hauptspeicher in einzelnen Tranchen durchgefiihrt wird. Nach dem Kopieren der ersten
Tranche kénnte deren Ubertragung in die GPU erfolgen, wihrend bereits die nichste Tranche im
Hauptspeicher kopiert wird. Ob tatsidchlich auf diese Weise eine Datenkopie im Hauptspeicher
angelegt wird, konnte auf dem Testsystem jedoch nicht abschlieRend gekldrt werden.

Da die Laufzeiten des ungepufferten Draw-Befehls groler sind als die Summe der Referenzlauf-
zeiten von Datentibertragung und gepufferten Draw, ist das ,,Nvidia Quadro 2000D“-System offen-
sichtlich auch im Falle eines ungepufferten Draw-Befehls nicht in der Lage, Dateniibertragung und
Rendering nebenlédufig durchzufiihren.

Anders sehen die in Abbildung 4.14 gezeigten Ergebnisse fiir das ,ATI FirePro V4800“-System aus:
Hier entsprechen die Laufzeiten des ungepufferten Draw-Befehls der ermittelten Referenzlaufzeit
fiir die Dateniibertragung (wobei die mittlere Laufzeit des Draw-Befehls unwesentlich groQer ist
als die der Dateniibertragung allein).

100
90 B Referenzmessung Laufzeit Datenkopie im Hauptspeicher
B Referenzmessung Dateniibertragungszeit
80 B Referenzmessung Draw -Laufzeit
70 Laufzeit des ungepufferten Draw -Befehls
B Summe der Referenzw erte
— 60
(2]
£ 1
= 50
o
N
s 40
—
30 _
20 -
10 .
0

1 Mio 2 Mio 4 Mio

Anzahl gerendeter Vertices

Abbildung 4.14: Laufzeiten ungepufferter Draw-Befehle (,ATI FirePro V4800“-System)

Offensichtlich ist dieses System im Gegensatz zum , Nvidia Quadro 2000D“-System in der Lage, bei
der Ausfiihrung von ungepufferten Draw-Befehlen Dateniibertragung und Rendering nebenldufig
durchzufiihren. Die Ausfithrung der Simulation auf dem , ATI FirePro V5900“-System erbrachte das
gleiche Ergebnis: Auch dieses System ist offensichtlich dazu in der Lage.

93

4 Untersuchungen

4.3.5 Fazit Dateniibertragung

Wie zu Beginn von Kapitel 3.2 dargelegt, ist es im Hinblick auf die Erfiillung von Echtzeitgaranti-
en fiir die Befehle kritischer Anwendungen notwendig, zumindest eine Obergrenze fiir die Lauf-
zeit von Dateniibertragungsbefehlen garantieren zu kdnnen und zu wissen, inwieweit sich kon-
kurrierende Dateniibertragungen sowie Rendering und Dateniibertragung gegenseitig beeintriach-
tigen.

Auf den drei untersuchten Testsystemen kann die Laufzeit von Datentiibertragungsbefehlen vorher-
gesagt werden wenngleich die Ergebnisse der Laufzeitmessungen eine gewisse Varianz aufweisen.
Je kleiner die iibertragenen Datenmengen sind, umso kleiner sind diese Varianzen. Auf den beiden
ATI-Systemen liegen sie sogar fiir die groSten Datenobjekte im Mittel unter 15%.

Allerdings muss ein Scheduler mit dem Ziel, Echtzeitgarantien fiir Befehle kritischer Anwendun-
gen zu erfiillen, den Einfluss von Draw-Befehlen und konkurrierenden Dateniibertragungen be-
riicksichtigen. Dateniibertragungsbefehle werden auf den drei Testsystemen nicht sequentiell ab-
gearbeitet. Stattdessen werden sie nebenldufig ausgefiihrt, wobei die verfiigbare Bandbreite auf
die konkurrierenden Dateniibertragungsbefehle aufgeteilt wird. Sofern die Ausfiihrbarkeit eines
Draw-Befehls einer kritischen Anwendung davon abhéngt, dass zuvor bestimmte Daten in den
GPU-Speicher tibertragen werden, kénnen konkurrierende Dateniibertragungsbefehle anderer An-
wendungen dafiir sorgen, dass sich die Laufzeit des Dateniibertragungsbefehls der kritischen An-
wendung derart verldngert, dass der davon abhéngige Draw-Befehl nicht mehr rechtzeitig ausge-
fiihrt werden kann.

Um die Laufzeit von kritischen Dateniibertragungen nicht zu beeinflussen, muss der Scheduler ggf.
die Ubermittlung von Dateniibertragungsbefehlen anderer Anwendungen an den GL-Server ver-
zogern, bis die kritische Dateniibertragung abgeschlossen ist. Gleiches gilt fiir Draw-Befehle ande-
rer Anwendungen, durch deren Ausfithrung laufende Dateniibertragungen unterbrochen werden.
Umgekehrt haben Dateniibertragungen anderer Anwendungen auf den drei Testsystemen keinen
messbaren Einfluss auf die Laufzeit von Draw-Befehlen. Es ist aber zu beachten, dass Dateniibertra-
gungen, die durch die Ausfiihrung eines Draw-Befehls unterbrochen wurden, fortgesetzt werden,
sobald der Draw-Befehl ausgefiihrt ist.

Die Laufzeit von ungepufferten Draw-Befehlen — die wie Datentiibertragungsbefehle wirken — kann
vorhergesagt werden. Zusitzlich zur Dateniibertragungszeit der dabei verwendeten Vertexdaten
héngt sie jedoch von weiteren Faktoren ab, ndmlich

* davon, ob bei der Ausfiihrung eines ungepufferten Draw-Befehls die Dateniibertragung und
das Rendering nebenldufig ausgefiihrt werden (wie bei den beiden ATI-Systemen) oder nicht
(wie beim Nvidia-System), und

¢ von der Laufzeit des gepufferten Renderings (siehe Kapitel 2.6.3).

Falls eine nebenldufige Durchfiihrung von Dateniibertragung und Rendering erfolgt, dann gleicht
die Laufzeit dem Maximum aus der Laufzeit des gepufferten Renderings und der Dateniibertra-
gung. Falls Dateniibertragung und Rendering nicht nebenldufig durchgefiihrt werden, dann gleicht
sie der Laufzeitensumme von gepuffertem Rendering und Dateniibertragung. Wahrend die Daten-
tibertragungszeit vorhergesagt werden kann, stellt jedoch die Laufzeit des gepufferten Renderings
ein Problem dar - siehe die Untersuchungen zu diesem Thema in den néchsten Abschnitten.

94

4.4 Pipelinenutzung

4.4 Pipelinenutzung

4.4.1 Ausfiihrung konkurrierender Draw-Befehle
4.4.1.1 Durchfiihrung der Untersuchung

Um zu kldren, ob konkurrierende Draw-Befehle nebenldufig ausgefiihrt werden kénnen, werden —
wie in Kapitel 3.3.2.1 beschrieben — zwei OpenGL ES-Programme ausgefiihrt, die als Master- und
Slaveprogramm bezeichnet werden. Beide Programme iibermitteln gleiche Draw-Befehle an den
GL-Server, wobei immer zuerst der Befehl des Masterprogramms und unmittelbar darauf der des
Slaveprogramms iibermittelt wird. Dies wird fiir unterschiedliche Anzahlen zu rendernder Dreie-
cke wiederholt.

Algorithmus 4.16 Untersuchung konkurrierender Draw-Befehle (Masterprogramm).

1 void testCompetingDrawMaster (

2 unsigned int numTriangles, // Anzahl zu rendernder Dreiecke
3 unsigned int iterations) // Anzahl Iterationen fiir die Laufzeitmessung
4 {

5 /! Referenzmessung

6 HPCClock c;

7 long long results[iterations];

8 for (unsigned int n = 0; n < iterations; n++)

9 {

10 c.start ();

11 glDrawArrays (GL_POINTS, 0, numTriangles * 3);

12 glFlush ();

13 glFinish ();

14 writeToResults (c.stop (), glGetError());

15 }

16

17 /! Slaveprogramm starten und warten, bis es bereit ist
18 spawnSlave ();

19 WaitForSlaveEvent ();

20

21 /! Messung mit konkurrierenden Draw-Befehlen durchfiihren
22 for (unsigned int n = 0; n < iterations; n++)

23 {

24 long long timestamp_start = c.start();

25 glDrawArrays (GL_TRIANGLES, 0, numTriangles * 3);

26 glFlush ();

27 SetMasterEvent () ;

28 glFinish ();

29 long long timestamp_stop = c.stop ();

30 writeToResults (timestamp_start, timestamp_stop, glGetError());
31 WaitForSlaveEvent () ;

32 }

33 }

Algorithmus 4.16 zeigt den Code des Masterprogramms. In den Zeilen 6-15 wird die Referenz-
messung der Laufzeit des Draw-Befehls durchgefiihrt. AnschlieRend wird in Zeile 18 das Slavepro-

95

4 Untersuchungen

gramm gestartet und in Zeile 19 darauf gewartet, dass das Slaveprogramm die Bereitschaft signa-
lisiert, fortzufahren. Die Messung fiir konkurrierenden Draw-Befehle erfolgt dann in den Zeilen
22-32.

Dabei werden in Zeile 24 der Zeitstempel unmittelbar vor Ubermittlung des Draw-Befehls gespei-
chert, um bei der anschlielenden Auswertung der Ergebnisse sicherstellen zu konnen, dass die
Ubermittlung der Draw-Befehle von Master- und Slaveprogramm zeitlich nicht so lange ausein-
anderlag, dass es sich nicht mehr um konkurrierende Draw-Befehle handelt (die Speicherung des
korrespondierenden Zeitstempels des Slaveprogramms ist in Algorithmus 4.17 in Zeile 13 zu se-
hen).

Das Signal fiir das Slaveprogramm, seinen Draw-Befehl an den GL-Server zu {ibermitteln wird in
Zeile 27 gesetzt, unmittelbar nach Ausfithrung von glFlush. Dieser Befehl stellt sicher, dass der
Draw-Befehl des Masterprogramms vor dem des Slaveprogramms an den GL-Server tibermittelt
wird und auch vor diesem ausgefiihrt wird (vgl. Kapitel 2.3). In Zeile 31 wird darauf gewartet, dass
das Slaveprogramm den Abschluss eines Draw-Befehls signalisiert, bevor die nichste Iteration der
Laufzeitmessung begonnen wird.

Algorithmus 4.17 Untersuchung konkurrierender Draw-Befehle (Slaveprogramm).

void testCompetingDrawSlave (

1

2 unsigned int numTriangles, // Anzahl zu rendernder Dreiecke

3 unsigned int iterations) // Anzahl Iterationen fiir die Laufzeitmessung
4 |

5 (...) [// Referenzmessung

6

7 SetSlaveEvent (); // Bereitschaft signalisieren

8

9 /! Messung mit konkurrierenden Draw-Befehlen durchfiihren

10 for (unsigned int n = 0; n < iterations; n++)

11 {

12 WaitForMasterEvent () ;

13 long long timestamp_start = c.start();

14 glDrawArrays (GL_TRIANGLES, 0, numTriangles * 3);

15 glFlush ();

16 glFinish ();

17 long long timestamp_stop = c.stop ();

18 writeToResults (timestamp_start, timestamp_stop, glGetError ());
19 SetSlaveEvent ();

Algorithmus 4.17 zeigt den Code des Slaveprogrammes. In Zeile 5 wird zunéchst die gleiche Referenz-
messung durchgefiihrt wie im Masterprogramm. Dies dient dazu, sicherstellen zu kénnen, dass das
Slaveprogramm vom OpenGL ES-System nicht anders behandelt wird als das Masterprogramm
(vgl. Kapitel 3.3.2.1). Nach Abschluss der Referenzmessung wird in Zeile 7 die Bereitschaft signa-
lisiert, fortzufahren. Die Messung mit konkurrierenden Draw-Befehlen erfolgt dann in den Zeilen
10-20. In Zeile 12 wartet das Slaveprogramm darauf, dass vom Masterprogramm signalisiert wird,
dass der Draw-Befehl an den GL-Server tibermittelt werden kann. Unmittelbar davor wird auch
hier der aktuelle Zeitstempel gespeichert, um spéter sicherstellen zu konnen, dass tatsdchlich die

96

4.4 Pipelinenutzung

Laufzeiten konkurrierender Draw-Befehle gemessen wurden (vgl. die Diskussion zu Zeile 24 des
Masterprogramms). Nach Abschluss des Draw-Befehls wird in Zeile 19 die Bereitschaft signalisiert,
die néchste Iteration der Laufzeitmessung durchzufiihren.

Diese Programme wurden fiir unterschiedliche Mengen an zu rendernden Dreiecken durchgefiihrt.
Dabei wurden die in Abschnitt 4.1.6 beschriebenen Minimalshader verwendet. In einem ersten
Laufwurden 128 Dreiecke gerendert, was auf allen drei Testsystemen trotz Minimalshader lange ge-
nug dauert, damit der Draw-Befehl des Slaveprogramms rechtzeitig an den GL-Server {ibermittelt
werden kann (um sicherzustellen, dass die beiden Draw-Befehle tatsdchlich um die Renderpipeli-
ne konkurrieren). In jedem weiteren Lauf wurde die Anzahl der zu rendernden Dreiecke verdoppelt
bis zu einem Maximum von 262.144 Dreiecken (was selbst auf dem schnellsten System etwa 2,1 Se-
kunden dauert).

Die Simulationen wurden anschlief$end in einer zweiten Variante durchgefiihrt, bei der das Slave-
programm nicht in einem eigenen Prozess, sondern in einem Thread des Masterprogramms aus-
gefithrt wurde. Dies diente dem Zweck, auszuschlieBen, dass eine nebenlidufige Ausfithrung von
Draw-Befehlen nur deshalb nicht festgestellt werden kann, weil die konkurrierenden Draw-Befehle
von unterschiedlichen Prozessen itibermittelt wurden. Im folgenden Abschnitt werden die Ergeb-
nisse der Simulationen zusammengefasst.

4.4.1.2 Ergebnisse

9
8 M Referenzmessung
M Masterprogramm
7 B Slaveprogramm
6
g 5
g 4
8
-4 3
2
1
0

128 256 512

Anzahl gerendeter Dreiecke

Abbildung 4.15: Laufzeiten konkurrierender Draw-Befehle

Abbildung 4.15 zeigt die auf dem ,Nvidia Quadro 2000D“-System ermittelten Ergebnisse fiir das
Rendering von 128 bis 512 Dreiecken. Auf der X-Achse ist die Anzahl der gerenderten Dreiecke

97

4 Untersuchungen

aufgetragen und auf der Y-Achse die Laufzeiten der Draw-Befehle. Die einzelnen Balken zeigen
jeweils das Mittel der gemessenen Laufzeiten. Die dariiber eingezeichneten Fehlerbalken zeigen
die durchschnittliche Abweichung der Messwerte vom dargestellten Mittelwert. Dabei kann festge-
stellt werden, dass diese Abweichungen abnehmen, je mehr Dreiecke gerendert werden (bei 128
Dreiecken liegen sie noch bei etwa 5%, bei 262.144 Dreiecken unter 1%).

Die Simulationen zeigen auf allen drei Testsystemen in beiden Varianten (Slaveprogramm als eige-
ner Prozess oder als Thread des Masterprogramms) das gleiche Ergebnis: Die Laufzeit der Draw-
Befehle des Slaveprogramms ist etwa doppelt so grol wie die des Masterprogramms. Die Laufzeit
der Draw-Befehle des Masterprogramms entspricht etwa der Laufzeit der Referenzmessung.’

Die Ausfiihrung des zuerst iibermittelten Draw-Befehls des Masterprogramms wird offenbar nicht
durch den Draw-Befehl des Slaveprogramms unterbrochen; die Ausfithrung der Draw-Befehle des
Slaveprogramms werden offensichtlich verzogert, bis die vorhergehenden Draw-Befehle des Mas-
terprogramms vollstdndig abgearbeitet sind. Eine nebenldufige Ausfiihrung der Draw-Befehle fin-
det auf den drei Testsystemen nicht statt. Im nachsten Abschnitt wird die Abbrechbarkeit von Draw-
Befehlen untersucht.

4.4.2 Abbrechbarkeit von Draw-Befehlen

Zur Untersuchung der Abbrechbarkeit von Draw-Befehlen werden — wie in Kapitel 3.3.2.2 beschrie-
ben - zwei OpenGL ES-Programme ausgefiihrt. Das erste der beiden Programme erzeugt einen
OpenGL ES-Kontext, legt ein Datenobjekt an, rendert ein Bild und wartet anschlieBend auf eine
Benutzereingabe, um ein weiteres Bild zu rendern. Sobald das erste Programm auf die Eingabe
wartet, wird das zweite Programm gestartet. Dieses tibermittelt einen langlaufenden Draw-Befehl
an den GL-Server (acht Millionen Dreiecke als Inputdaten — das Rendering wiirde auf allen drei
Testsystemen lidnger als eine Minute dauern). Dadurch greift der in [MSDN 2009] beschriebene
TDR-Mechanismus.

Das fiihrt dazu, dass das OpenGL ES-Programm beendet wird, das den langlaufenden Draw-Befehl
tibermittelt. Anschliefend wird auf dem andern OpenGL ES-Programm die Benutzereingabe
durchgefiihrt, woraufhin das Programm versucht, ein weiteres Bild zu rendern. Dies schldgt auf
allen drei Testsystemen fehl — der OpenGL ES-Kontext ist nicht mehr giiltig und das angelegte
Datenobjekt auch nach einer Kontext-Neuerzeugung nicht mehr verfiigbar. Auf den Testsystemen
wird also im Zuge des TDR-Mechanismus ein Hardware-Reset der GPU durchgefiihrt. Da dies
nur der Fall ist, wenn zuvor ein Abbruch des laufenden Draw-Befehls im Zuge der in Kapitel
3.3.2.2 beschriebenen preempt operation fehlschligt, muss davon ausgegangen werden, dass die
untersuchten Systeme nicht in der Lage sind, einen laufenden Draw-Befehl ohne Hardware-Reset
abzubrechen.

"Die in Abbildung 4.15 erkennbare Abweichung der Laufzeit des Draw-Befehls beim Masterprogramm vom Referenz-
wert entspricht den Kosten fiir einen Kontextwechsel auf dem Nvidia-System (vgl. Abschnitt 4.5). Ein solcher Kontext-
wechsel wird notwendig, weil das Master- und das Slaveprogramm im Wechsel Befehle an den GL-Server {ibermitteln.

98

4.5 Kontextwechsel

4.4.3 Fazit Pipelinenutzung

Um Echtzeitgarantien fiir kritische Anwendungen erfiillen zu konnen, ist es notwendig, zumindest
eine Obergrenze fiir die Laufzeit von Draw-Befehlen angeben zu kénnen. Wie zu Beginn von Kapi-
tel 3.3 dargelegt, ist es aber nicht moglich, die Laufzeit eines Draw-Befehls vorherzusagen, wenn
der betreffende Befehl nicht bereits mindestens einmal mit gleichen Daten und Einstellungen aus-
gefiihrt worden ist.

Daher wird in Abschnitt 4.4.1 untersucht, ob konkurrierende Draw-Befehle nebenldufig ausgefiihrt
werden kénnen, um - bei bekannter Laufzeit von kritischen Draw-Befehlen - eine Obergrenze fiir
deren Laufzeit angeben zu kénnen, auch wenn ein potentiell langlaufender Befehl einer anderen
Anwendung in der Renderpipeline ausgefiihrt wird. Auf den drei hier untersuchten Systemen konn-
te jedoch keine nebenldufige Ausfiihrung von Draw-Befehlen festgestellt werden. Ein langlaufen-
der Draw-Befehl einer anderen Anwendung kénnte daher die Renderpipeline so lange blockieren,
dass eine rechtzeitige Ausfithrung des ndchsten Draw-Befehls einer kritischen Anwendung nicht
mehr moglich ist.

Die in Abschnitt 4.4.2 durchgefiihrte Untersuchung zeigte aullerdem, dass der Abbruch eines lau-
fenden Draw-Befehls nicht méglich ist, ohne dass ein Hardware-Reset der GPU durchgefiihrt wird.
Damit kritische Anwendungen nach einem solchen Reset weiterarbeiten kénnen, miissen sie erst
einen neuen OpenGL ES-Kontext erzeugen und alle benétigten Datenobjekte neu anlegen. Selbst
wenn dies nicht zu lange dauern wiirde, um den néchsten Draw-Befehl der kritischen Anwendung
rechtzeitig ausfiihren zu kénnen, stellt ein solcher Abbruchvorgang auf den betrachteten Systemen
héchstwahrscheinlich keine Méglichkeit dar, um zufriedenstellende Frameraten fiir kritische An-
wendungen gewdhrleisten zu kdnnen — zumal allen diesen Systemen beobachtet werden konnte,
dass der Hardware-Reset selbst mehrere Sekunden in Anspruch nimmt.

Aufgrund der streng sequentiellen Abarbeitung von Draw-Befehlen sowie der mangelnden Vorher-
sagbarkeit ihrer Laufzeit und ihrer mangelnden Abbrechbarkeit ist auf den drei untersuchten Sys-
temen auf der Ebene von OpenGL ES keine Erfiillung von Echtzeitgarantien hinsichtlich der Pipeli-
nenutzung moglich. Im Ausblick in Kapitel 5 wird ein méglicher Losungsansatz fiir dieses Problem
aullerhalb von OpenGL ES skizziert.

4.5 Kontextwechsel

4.5.1 Vorgehen

Um die Kosten eines Kontextwechsels zu bestimmen, werden — wie in Kapitel 3.4.2 beschrieben —
zwei OpenGL ES-Programme ausgefiihrt, die als Master- und Slaveprogramm bezeichnet werden.
Diese beiden Programme iibermitteln entweder einen Draw-Befehl an den GL-Server oder erzeu-
gen ein neues Datenobjekt, wobei immer zuerst das Slaveprogramm seine Aktion durchfiihrt und
das Masterprogramm seine, sobald die Aktion des Slaveprogramms vollstindig abgeschlossen wor-
den ist. Dadurch wird auf Seiten des Masterprogramms ein Kontextwechsel erzwungen. Durch Ver-
gleich der beim Masterprogramm gemessenen Laufzeiten mit zuvor ermittelten Referenzwerten
konnen die Kosten eines Kontextwechsels ermittelt werden.

99

4 Untersuchungen

Algorithmus 4.18 zeigt das Masterprogramm. In den Zeilen 8-21 wird die Referenzmessung ohne
Kontextwechsel durchgefiihrt. Falls dabei in Zeile 16 ein Datenobjekt erzeugt wird, wird es in Zeile
20 wieder freigegeben. In Zeile 24 wird das Slaveprogramm gestartet und anschlielend in Zeile 25
darauf gewartet, dass es die Bereitschaft signalisiert, fortzufahren.

Die Laufzeitmessung mit erzwungenen Kontextwechseln wird in der Schleife von Zeile 28 bis 33
durchgefiihrt. Dabei wird dem Slaveprogramm in Zeile 30 signalisiert, seine Aktion durchzufiihren
und anschlief{end in Zeile 31 darauf gewartet, dass das Slaveprogramm den Abschluss der Aktion
signalisiert. AnschlieBend wird die Zeit fiir die Ausfithrung der Aktion des Masterprogramms ge-
messen und das Messergebnis gespeichert. Dies erfolgt auf die gleiche Weise wie bei der Referenz-
messung (in den Zeilen 8-21).

Algorithmus 4.18 Bestimmung der Kosten von Kontextwechseln (Masterprogramm).

1 void ctxSwitchMaster (

2 unsigned int numVertices, // Anzahl Vertices

3 unsigned int iterations, /! Anzahl der Einzelmessungen
4 GLbyte =data, /! zu rendernde / iibertragende Daten
5 bool drawCommand) // Ubermirtlung eines Draw-Befehls?
6 {

7 /! Referenzmessung

8 HPCClock c;

9 long long results[iterations];

10 for (unsigned int n = 0; n < iterations; n++)

11 {

12 c.start ();

13 if (drawCommand)

14 glDrawArrays (GL_POINTS, 0, numVertices);

15 else

16 (...) // Datenobjekt erzeugen

17 glFlush ();

18 glFinish ();

19 writeToResults (c.stop (), glGetError());

20 (...) // Datenobjekt freigeben, falls zuvor erzeugt
21 }

22

23 /! Slaveprogramm starten und warten, bis es bereit ist
24 spawnSlave () ;

25 WaitForSlaveEvent ();

26

27 /! Messung mit erzwungenen Kontextwechseln durchfiihren
28 for (unsigned int n = 0; n < iterations; n++)

29 {

30 SetMasterEvent ();

31 WaitForSlaveEvent () ;

32 (...) // analog Referenzmessung

33 }

Algorithmus 4.19 zeigt das Slaveprogramm. In Zeile 6 wird die Bereitschaft signalisiert, fortzufah-
ren. Die Durchfiihrung der jeweiligen Aktion des Slaveprogramms erfolgt in der Schleife von Zeile

100

4.5 Kontextwechsel

9 bis 19. Dazu wird in Zeile 11 auf das Signal des Masterprogramms gewartet. Nach erfolgter Aus-
fiihrung des tibermittelten Befehls wird dies in Zeile 18 dem Masterprogramm signalisiert. Falls in
Zeile 15 ein Datenobjekt erzeugt wird, wird es in Zeile 17 wieder freigegeben.

Algorithmus 4.19 Bestimmung der Kosten von Kontextwechseln (Slaveprogramm).

void ctxSwitchSlave (
unsigned int numVertices,
GLbyte =data,

bool drawCommand)

/! Anzahl Vertices
/! zu rendernde |/ iibertragende Daten
/! Ubermirtlung eines Draw-Befehls?

SetSlaveEvent (); // Bereitschaft signalisieren
/! Befehle nach Aufforderung durch Masterprogramm iibermitteln

for (unsigned int n = 0; n < iterations; n++)
10 {

1
2
3
4
5
6
7
8
9

11 WaitForMasterEvent () ;

12 if (drawCommand)

13 glDrawArrays (GL_POINTS, 0, numVertices);

14 else

15 (...) // Datenobjekt erzeugen

16 glFinish ();

17 (...) // Datenobjekt freigeben, falls zuvor erzeugt
18 SetSlaveEvent ();

19 }
20 }

4.5.2 Ergebnisse

Aktion von Aktion von »,Nvidia Quadro ,,ATI FirePro ,ATI FirePro
Master Slave 2000D* V4800 V5900¢
Draw-Befehl Draw-Befehl 61 14 5
Draw-Befehl Neues DO? " " "
Neues DO Draw-Befehl " " "
Neues DO Neues DO 234 184 126

Tabelle 4.3: Mittlere Laufzeitunterschiede bei erzwungenen Kontextwechseln (in ps)

Tabelle 4.3 zeigt die ermittelten Kosten fiir Kontextwechsel auf den drei Testsystemen. Nach Erzeu-
gung eines neuen Datenobjekts erhéhen sich die Kosten fiir einen Kontextwechsel. Diese erhthten
Kosten treten auf allen drei Testsystemen auf, wenn vom Masterprogramm anschliefend ein neues
Datenobjekt erzeugt wird.

8DO steht fiir Datenobjekt.

101

4 Untersuchungen

4.5.3 Fazit Kontextwechsel

Von den vier betrachteten Problemfeldern stellen die Kosten von Kontextwechseln die geringste
Schwierigkeit hinsichtlich der Erfiillung von Echtzeitgarantien dar. Sie miissen bei der Angabe von
Obergrenzen fiir die Laufzeit von OpenGL ES-Befehlen bertiicksichtigt werden, auch wenn ihr Ein-
flusspotential auf den betrachteten Testsystemen sehr gering ist (im Mikrosekundenbereich) — auf
anderen als den untersuchten Systemen kann der Einfluss von Kontextwechseln deutlich schwerer
wiegen (vgl. Abschnitt 3.4). Erfreulicherweise lassen sich diese Kosten mit Bordmitteln von OpenGL
ES ermitteln. Durch die Kosten von Kontextwechseln wird die Erfiillung von Echtzeitgarantien also
nicht signifikant beeintrédchtigt.

102

5 Zusammenfassung und Ausblick

In diesem Kapitel werden die wichtigsten Ergebnisse wiedergegeben und die Probleme hinsicht-
lich der Erfiillung von Echtzeitgarantien fiir kritische OpenGL ES-Anwendungen, die auf Ebene
von OpenGL ES nicht gelost werden kénnen, zusammengefasst. Anschlieend werden mégliche
Losungsansitze fiir diese Probleme skizziert.

5.1 Wenig Probleme bei Kontextwechsel und Dateniibertragung

Von den betrachteten Problembereichen bringen der Kontextwechsel und die Dateniibertragung
die geringsten Schwierigkeiten mit sich, wenn es darum geht, Echtzeitgarantien fiir die Ausfiih-
rung kritischer OpenGL ES-Programme zu gewihrleisten. Sowohl fiir Kontextwechsel als auch fiir
die Dateniibertragung lassen sich auf der Ebene von OpenGL ES Kennzahlen zum Verhalten der
verwendeten Systeme ermitteln, mit deren Hilfe sich die Einfliisse dieser beiden Problemberei-
che beherrschen lassen. Lediglich die Dateniibertragung im Rahmen ungepufferter Draw-Befehle
bringt zusétzlich die gleichen Schwierigkeiten mit sich wie die Pipelinenutzung, da ein ungepuffer-
ter Draw-Befehl nicht nur Daten in das OpenGL ES-System tiibertrigt, sondern auch die Datenver-
arbeitung durch die Renderpipeline anst6Rt.

5.2 Schwer beherrschbare Risiken bei der Pipelinenutzung

Das grolte Problem hinsichtlich der Pipelinenutzung stellt die mangelnde Vorhersagbarkeit der
Laufzeit von Draw-Befehlen dar, insbesondere auf solchen Systemen, bei denen — wie bei den
drei untersuchten Testsystemen — Draw-Befehle weder nebenlédufig ausgefiihrt noch ohne einen
Hardware-Reset abgebrochen werden kénnen. Dieses Problem hat zwei Ursachen:

¢ Wenn keine Einschriankungen hinsichtlich der ausgefiihrten Shader definiert werden, kann
deren Laufzeit nicht allgemein vorhergesagt werden, ohne das Halteproblem fiir diese Pro-
gramme zu l6sen — sogar Endlosschleifen sind bei solchen Shadern méglich (siehe [Simpson
und Kessenich 2009], Seite 57).

¢ Die Anzahl der ausgefiihrten Instanzen von Fragmentshadern ldsst sich vor der Ausfiihrung
eines Draw-Befehls nicht vorhersagen, wenn der entsprechende Draw-Befehl nicht schon
einmal mit gleichem Input und gleichen Einstellungen ausgefiihrt worden ist — diese Anzahl
wird erst wihrend dessen Ausfithrung festgelegt (nach Abschluss der Rasterisierung, siehe
Kapitel 2.6).

Dies fiihrt letztendlich zu der Situation, dass prinzipiell die Ausfiihrung jedes Draw-Befehls die
Renderpipeline so lange blockieren kdonnte, dass die rechtzeitige Ausfithrung des néchsten Draw-
Befehls einer kritischen Anwendung verhindert wird.

103

5 Zusammenfassung und Ausblick

5.3 Risiken wegen mangelnder Speicherbelegungsinformation

Um garantieren zu kénnen, dass aufgrund der Speicherbelegung die rechtzeitige Ausfiihrung eines
Draw-Befehls einer kritischen Anwendung nicht verhindert wird, miissen mindestens die folgen-
den beiden Bedingungen erfiillt sein:

¢ Es kann eine Obergrenze fiir die Menge an GPU-Speicher garantiert werden, die durch die
Erzeugung eines Datenobjekts belegt wird (ggf. durch Bertiicksichtigung der Grof3e des Da-
tenobjekts und der Kennzahlen zu Speichergranularitdt und Speicherblockgrée).

* Es stehen ausreichend Informationen hinsichtlich des aktuellen Layouts des GPU-Speichers
zur Verfligung, so dass jederzeit bestimmt werden kann, wieviel GPU-Speicher durch ein ein-
zelnes Datenobjekt noch belegt werden kann.

Die erste Bedingung kann mit Hilfe der in Kapitel 3.1 beschriebenen Untersuchungen erfiillt wer-
den, wenn es zumindest im Rahmen der Untersuchungen maoglich ist, die Menge des aktuell ver-
fiigbaren GPU-Speichers abzufragen. Letztendlich ist es aber unerheblich, wie die Informationen
zur Erfiillung dieser Bedingung ermittelt werden. Die zweite Bedingung stellt aber eine Féahigkeit
dar, {iber die ein OpenGL ES-System zur Laufzeit verfiigen muss. Dies ist zum Beispiel bei dem in
dieser Arbeit untersuchten ,Nvidia Quadro 2000D“-System nicht der Fall (siehe Kapitel 4.2.6).

Es ist sehr wahrscheinlich, dass auch auf anderen Systemen diese Bedingungen nicht erfiillt wer-
den kénnen, zumal OpenGL ES 2.0 es weder ermdglicht, den aktuellen freien Speicherplatz noch
das aktuelle Layout des GPU-Speichers abzufragen. Sofern durch ein System keine Erweiterung
unterstiitzt wird, durch die die benétigten Informationen zur Speicherbelegung abgefragt werden
konnen, kann auf Ebene von OpenGL ES 2.0 auf solchen Systemen nicht garantiert werden, dass
die rechtzeitige Ausfithrung kritischer Draw-Befehle durch die Speicherbelegung nicht verhindert
wird.

5.4 Mogliche Losungsansdtze

Wie in den vorhergehenden Abschnitten erldutert, stehen der Gewihrleistung von Garantien fiir
die rechtzeitige Ausfiihrung von Draw-Befehlen noch die folgenden drei Probleme im Wege:

¢ Die mangelnde Abrufbarkeit von Information zur aktuellen Speicherbelegung.

¢ Die mangelnde Vorhersagbarkeit der Anzahl der bei der Abarbeitung eines Draw-Befehls aus-
gefithrten Shader-Instanzen.

* Die mangelnde Garantierbarkeit einer Obergrenze fiir die Laufzeit von Shader-Instanzen.

In den ndchsten Abschnitten werden mogliche Losungsansitze fiir diese drei Probleme skizziert.

5.4.1 Nutzung der Treiber-Informationen zum Speicherlayout

[Dwarakinath 2008] berichtet {iber die ATI r200-GPU, dass auf Ebene ihres GPU-Treibers unter Li-
nux die Informationen zum aktuellen Layout des GPU-Speichers zur Verfiigung stehen, d. h. auf
dieser Ebene ist bekannt, welche Speicherbereiche innerhalb des GPU-Speichers belegt sind und

104

5.4 Mogliche Losungsansitze

welche fiir die Speicherung weiterer Daten zur Verfiigung stehen. Die Virtualisierungsansitze von
[Dwarakinath 2008] und [Kato u. a. 2011] setzen auf Ebene der GPU-Treiber an. Eine Moglichkeit
zur Erfiillung der in Abschnitt 5.3 genannten Bedingungen kénnte darin bestehen, ebenfalls auf
dieser Ebene anzusetzen und die Informationen zum Layout des GPU-Speichers zu nutzen. Wenn
bekannt ist, welche Speicherbereiche belegt und welche frei sind, kann davon abgeleitet werden,
wieviel Speicherplatz in der GPU insgesamt zur Verfiigung steht und wieviel durch ein einzelnes
Datenobjekt noch belegt werden kann.

5.4.2 Einschriankung von Shadern

Eine Obergrenze fiir die Laufzeit von Shader-Instanzen kdonnte zum Beispiel dadurch garantiert
werden, dass Beschrankungen hinsichtlich des Kontrollflusses von Shadern eingefiihrt werden, wie
sie in [Simpson und Kessenich 2009] auf den Seiten 108-109 vorgeschlagen werden. Durch die-
se Einschrankungen konnten Endlosschleifen ausgeschlossen werden und die genaue Anzahl an
Schleifeniterationen kdnnte durch Auswertung des Shader-Quellcodes sicher bestimmt werden.

Somit konnte anhand des Quellcodes eines Shaders die maximale Anzahl an Anweisungen berech-
net werden, die durch ihn ausgefiihrt werden. Nach Bestimmung der maximalen Laufzeitkosten fiir
die verschiedenen Anweisungsarten konnte eine Obergrenze fiir die Laufzeit eines beliebigen Sha-
ders auf Grundlage seines Quellcodes berechnet werden. Die Verwendung vorkompilierter Shader
muss bei diesem Ansatz ausgeschlossen werden.

5.4.3 Trennung von Vertex- und Fragment-Processing

Dem folgenden Ansatz zur Bestimmung der Anzahl ausgefiihrter Shader-Instanzen liegt die Annah-
me zu Grunde, dass eine Obergrenze fiir die Laufzeit von Shader-Instanzen bestimmt werden kann
(zum Beispiel wie im vorherigen Abschnitt beschrieben).

Die Anzahl der im Zuge eines Draw-Befehls ausgefiihrten Instanzen von Vertexshadern kann an-
hand der tibergebenen Vertexdaten vorhergesagt werden (es wird pro definiertem Vertex genau
eine Instanz eines Vertexshaders ausgefiihrt). Die genaue Anzahl der auszufithrenden Instanzen
von Fragmentshadern steht erst nach Abschluss der Rasterisierung fest (siehe Kapitel 2.6).

Es kann aber eine - reichlich unpraktische — Obergrenze fiir die Anzahl der ausgefiihrten Instanzen
von Fragmentshadern garantiert werden: Es werden pro gerendertem Primitiv (Dreieck, Linie oder
Punkt, siehe Kapitel 2.6.2.2) hochstens so viele Fragmentshader-Instanzen ausgefiihrt, wie es Pixel
im Framebuffer gibt.! Diese Obergrenze ist unrealistisch hoch — sie wird nur erreicht, wenn jedes
gerenderte Primitiv, den kompletten sichtbaren Bereich tiberdeckt, also jeden Pixel im Framebuf-
fer.

Der Ansatz zur Bestimmung der Anzahl ausgefiihrter Fragmentshader-Instanzen basiert nun dar-
auf, dass in einem ersten Schritt das Fragmentshader-Programm der aufrufenden Anwendung
durch einen Minimalshader ersetzt wird, fiir den die Laufzeit bekannt ist. Mit diesem minimalen

IFalls das verwendete System Multisampling unterstiitzt, muss dieser Wert noch mit der Anzahl an Samples pro Pixel
multipliziert werden (siehe Kapitel 2.6.2.3).

105

5 Zusammenfassung und Ausblick

Fragmentshader und dem urspriinglichen Vertexshader wird der Draw-Befehl nun ausgefiihrt. Fiir
die Laufzeit dieses Draw-Befehls kann eine Obergrenze garantiert werden, da

» eine Obergrenze fiir die Laufzeiten der beiden Shaderarten bestimmt werden kann und
¢ die Anzahl der ausgefiihrten Vertexshader-Instanzen bekannt ist und
* eine Obergrenze fiir die Anzahl der ausgefiihrten Fragmentshader-Instanzen bekannt ist.

Anschlielend wird der minimale Fragmentshader durch eine modifizierte Variante ersetzt, die ei-
ne geringfiigig langere (und ebenfalls vorab bekannte) Laufzeit hat. Damit wird der Draw-Befehl
erneut ausgefiihrt. Eine Obergrenze fiir die Laufzeit dieses zweiten Draw-Befehls kann auf die glei-
che Weise garantiert werden wie beim ersten Draw-Befehl.

Da die Laufzeiten der beiden Fragmentshader vorab bekannt sind, kann durch einen Vergleich der
Laufzeiten der beiden Draw-Befehle auf die Anzahl der ausgefiihrten Fragmentshader-Instanzen
geschlossen werden. Mit dieser zusitzlichen Information kann nun eine sinnvollere Obergrenze
fiir die Laufzeit des Draw-Befehls mit dem urspriinglichen Fragmentshader berechnet werden.

5.5 Fazit

In dieser Arbeit wurden diejenigen der 142 von OpenGL ES 2.0 definierten Befehle bestimmt, de-
ren Ausfithrung einen negativen Einfluss auf die Erfiillung von Echtzeitgarantien fiir kritische An-
wendungen haben kénnte, und anschlieBend deren Laufzeitverhalten und Ressourcenverbrauch
analysiert. Dazu wurden Metriken und Untersuchungsmethoden entwickelt, auf deren Grundlage
der Ressourcenverbrauch sowie die Laufzeit von OpenGL ES-Befehlen prognostiziert und die dafiir
notwendigen systemspezifischen Kennzahlen ermittelt werden kénnen.

Diese Untersuchungen wurden auf drei realen OpenGL ES-Systemen durchgefiihrt, wobei sich
zeigte, dass insbesondere das Speicherbelegungsverhalten und die Nutzung der Renderpipeline
mit Problemen verbunden sind, die der Erfiillung von Echtzeitgarantien im Wege stehen und nicht
auf der Ebene von OpenGL ES gel6st werden kénnen. Fiir diese Probleme wurden schlielich in
diesem Kapitel moégliche Losungsansitze skizziert.

Es kann an dieser Stelle jedoch keine Aussage dazu gemacht werden, inwieweit die hier skizzierten
Losungsansitze tatsdchlich praktikabel sind. Dies zu ergriinden, bleibt kiinftigen Arbeiten vorbe-
halten. Sofern sich dabei herausstellen sollte, dass sie praktikabel sind, oder sofern andere Losun-
gen fiir die zu Beginn von Abschnitt 5.4 aufgefiihrten Probleme gefunden werden kénnen, dann ist
davon auszugehen, dass eine Zwischenschicht, wie sie in Kapitel 1.4 beschrieben wurde, tatsdch-
lich Echtzeitgarantien hinsichtlich der Ausfithrung von OpenGL ES-Befehlen fiir sicherheitskriti-
sche Anwendungen erfiillen kann.

106

6 Anhang

6.1 Befehle von OpenGL ES 2.0

6.1.1 Erzeugung von Datenobjekten

OpenGL ES-Befehl

Kurzbeschreibung

glBufferData

Dieser Befehl erzeugt ein neues Vertexbuffer-Objekt. Er reserviert
den dafiir notwendigen Speicherplatz (entsprechend der in den
Parametern tibergebenen ObjektgréBe) und fiillt das neue Objekt
optional mit Daten aus dem Hauptspeicher.

glRenderbufferStorage

Dieser Befehl erzeugt ein neues Renderbuffer-Objekt und reser-
viert den dafiir notwendigen Speicherplatz (entsprechend der in
den Parametern iibergebenen Objektgrofie).

glTexImage2D

Dieser Befehl erzeugt ein neues Texturobjekt. Er reserviert den da-
fiir notwendigen Speicherplatz (entsprechend der in den Parame-
tern ibergebenen Texturgrof3e) und fiillt das neue Objekt optio-
nal mit Daten aus dem Hauptspeicher.

glCompressedTexImage2D

Analog glTexImage2D fiir komprimierte Texturen.

glCopyTexImage2D

Erzeugt ein neues Texturobjekt und fiillt es mit Daten aus einem
anderen Datenobijekt.

glGenerateMipmap

Erzeugt eine vollstindige Mipmap-Chain fiir eine gegebene Tex-
tur. Dadurch werden bis zu log, (max{w, h}) neue Texturobjekte
erzeugt, wobei w und h die Breite und Hohe der Ausgangstextur
in Texel! sind.

glBindFramebuffer

Siehe Abschnitt 6.1.5.

Tabelle 6.1: Befehle zur Erzeugung von Datenobjekten

6.1.2 Freigabe von Datenobjekten

OpenGL ES-Befehl Kurzbeschreibung
glDeleteBuffers Gibt Vertexbuffer-Objekte frei.
glDeleteRenderbuffers | Gibt Renderbuffer-Objekte frei.
glDeleteTextures Gibt Texturobjekte frei.
glDeleteFramebuffers | Gibt Framebuffer-Objekte frei.

Tabelle 6.2: Befehle zur Freigabe von Datenobjekten

IDer Begriff Texel bezeichnet einen einzelnen Datenwert einer Textur.

107

6 Anhang

6.1.3 Dateniibertragungsbefehle

OpenGL ES-Befehl Kurzbeschreibung

glBufferData Siehe 6.1.1.

glBufferSubData Ubertrdgt Vertexdaten vom Hauptspeicher in ein
Vertexbuffer-Objekt.

glTexImage2D Siehe 6.1.1.

glTexSubImage2D Kopiert Texturdaten vom Hauptspeicher in ein Texturobjekt.

glCompressedTexImage2D

Siehe 6.1.1.

glCompressedTexSubImage2D

Analog glTexSubImage?2D fiir komprimierte Texturdaten.

glCopyTexImage2D Siehe 6.1.1.

glCopyTexSubImage2D Analog glCopyTexImage2D mit dem Unterschied, dass nur
ein Teil der Zieltextur mit neuen Daten iiberschrieben wird.

glReadPixels Kopiert einen rechteckigen Bereich des aktuellen Colorbuf-
fers (ein Teil des aktuellen Framebuffers) in den Hauptspei-
cher.

glUniformx Insgesamt 19 Funktionen, die sich nur hinsichtlich der Pa-
rameteriibergabe unterscheiden. Sie dienen dem Setzen des
Wertes von konstanten Shadervariablen, die entweder Vertex-
oder Fragmentshadern zur Verfiigung stehen.

glVertexAttrib* Insgesamt acht Funktionen, die sich nur hinsichtlich der

Parameteriibergabe unterscheiden. Ahnlich den Uniform-
Befehlen dienen sie dem Setzen von konstanten Shadervaria-
blen, allerdings nur fiir Vertexshader.

Tabelle 6.3: Dateniibertragungsbefehle

6.1.4 Vertexdatenverwaltung

OpenGL ES-Befehl

Kurzbeschreibung

glVertexAttribPointer

Weist dem aktuellen OpenGL ES-Kontext ein Array mit Ver-
texdaten zu.

glEnableVertexAttribArray

Setzt fest, dass ein zugewiesenes Array von Vertexdaten als
Input fiir die Vertexshader genutzt werden soll (statt kon-
stantem Input).

glDisableVertexAttribArray

Setzt fest, dass konstanter Input fiir Vertexshader verwendet
werden soll (statt einem zuvor zugewiesenen Array von Ver-
texdaten).

Tabelle 6.4: Vertexdatenverwaltung

108

6.1 Befehle von OpenGL ES 2.0

6.1.5 Binding von Datenobjekten

OpenGL ES-Befehl Kurzbeschreibung

glBindBuffer Erklart ein Vertexbuffer-Objekt zum aktuellen Vertexbuffer-Objekt,
das von allen nachfolgenden Vertexbuffer-Befehlen genutzt wird, oder
hebt diese Erkldarung auf.

glBindRenderbuffer | Erklart ein Renderbuffer-Objekt zum aktuellen Renderbuffer-Objekt,
das von allen nachfolgenden Renderbuffer-Befehlen genutzt wird,
oder hebt diese Erkldrung auf.

glBindTexture Erklart ein Texturobjekt zum aktuellen Texturobjekt (fiir die zuvor mit
glActiveTexture festgelegte Textureinheit), das von allen nachfol-
genden Texturbefehlen genutzt wird, oder hebt diese Erklarung auf.
glActiveTexture Setzt die Textureinheit fest, auf die sich nachfolgende Aufrufe von
glBindTexture beziehen.

glBindFramebuffer | Erkldrt ein Framebuffer-Objekt zum aktuellen Framebuffer, der von
allen nachfolgenden Framebuffer-Befehlen genutzt wird, oder hebt
diese Erklarung auf. Sofern ein noch nicht existierendes Framebuffer-
Objekt gebunden wird, wird an dieser Stelle ein neues erzeugt.

Tabelle 6.5: Befehle zum Binding von Datenobjekten

6.1.6 Naming von Datenobjekten

OpenGL ES-Befehl Kurzbeschreibung
glGenBuffers Liefert ungenutzte Namen (IDs) fiir Vertexbuffer-Objekte.
glGenRenderbuffers | Liefert ungenutzte Namen (IDs) fiir Renderbuffer-Objekte.
glGenTextures Liefert ungenutzte Namen (IDs) fiir Texturobjekte.
glGenFramebuffers | Liefert ungenutzte Namen (IDs) fiir Framebuffer-Objekte.

Tabelle 6.6: Naming von Datenobjekten

6.1.7 Zusammensetzung von Framebuffern

OpenGL ES-Befehl Kurzbeschreibung
glFramebufferRenderbuffer | Verbindet ein Renderbuffer-Objekt mit dem aktuellen
Framebuffer-Objekt oder hebt diese Verbindung auf.
glFramebufferTexture2D Verbindet ein Texturobjekt mit dem aktuellen Framebuffer-
Objekt oder hebt diese Verbindung auf.

Tabelle 6.7: Zusammensetzung von Framebuffern

109

6 Anhang

6.1.8 Draw-Befehle

OpenGL ES-Befehl

Kurzbeschreibung

glDrawArrays Dieser Befehl tibertrdgt die zuvor durch glVertexAttribPointer zuge-
wiesenen Vertexdaten an das GL-System (falls diese nicht zuvor gepuffert?
wurden) und st6Bt deren Verarbeitung durch die Renderpipeline an.

glDrawElements | Analog glDrawArrays mit dem Unterschied, dass zusétzlich zu den Ver-

texdaten auch Indexdaten an das GL-System tibertragen werden (falls die-
se nicht zuvor gepuffert?> wurden).

Tabelle 6.8: Draw-Befehle

6.1.9 Clearing-Befehle

OpenGL ES-Befehl

Kurzbeschreibung

glClear Setzt alle Pixel im aktuellen Color-, Depth- und/oder Stencilbuffer auf den
jeweiligen Clearwert.

glClearColor Setzt den Clearwert fiir Colorbuffer fest.

glClearDepthf Setzt den Clearwert fiir Depthbuffer fest.

glClearStencil Setzt den Clearwert fiir Stencilbuffer fest.

Tabelle 6.9: Clearing-Befehle

6.1.10 Zustandsabfragen

OpenGL ES-Befehl

Kurzbeschreibung

glCheckFramebufferStatus | Dient dazu, abzufragen, ob das aktuelle Framebuffer-Objekt

als Ziel fiir Renderoperationen oder Quelle fiir glReadPixels
dienen kann oder nicht (d. h. ob alle notwendigen Datenobjek-
te zugewiesen wurden und diese zusammenpassen).

glGet* Insgesamt 26 Funktionen, die sich nur hinsichtlich der zu iiber-
gebenden Parameter unterscheiden. Mit ihnen kénnen aktuel-
le Zustdnde oder sonstige Werte abgefragt werden.

glIsx Insgesamt sechs Varianten (fiir die verschiedenen Arten von

Daten- und Programmobjekten), mit denen fiir einen gegebe-
nen Objektnamen die Art des Objekts abgefragt werden kann.

Tabelle 6.10: Zustandsabfragen

2Siehe auch Kapitel 2.6.3 fiir eine Diskussion der Unterschiede von gepuffertem und ungepuffertem Rendering.

110

6.1 Befehle von OpenGL ES 2.0

6.1.11 Programmverwaltung

OpenGL ES-Befehl Kurzbeschreibung

glCreateShader Legt ein leeres Shaderobjekt an.

glDeleteShader Gibt ein Shaderobjekt frei.

glShaderSource Weist einem Shaderobjekt Sourcecode zu.

glCompileShader Kompiliert den zugewiesenen Sourcecode eines Shaderobjekts.

glCreateProgram Legt ein leeres Programmobjekt an.

glLinkProgram Erzeugt aus einem Vertex- und einem Fragmentshader ein aus-
fiihrbares Programmobjekt, das fiir nachfolgende Renderopera-
tionen genutzt werden kann.

glUseProgram Installiert ein Programmobjekt im aktuellen Kontext, sofern es
zuvor erfolgreich durch glLinkProgram erzeugt worden ist. Die-
ses Programmobjekt wird dann fiir nachfolgende Renderopera-
tionen verwendet.

glDeleteProgram Gibt ein Programmobjekt frei.

glAttachShader Weist einem Programmobjekt ein Shaderobjekt zu.

glDetachShader Hebt die Zuweisung eines Shaderobjekts zu einem Programm-
objekt auf.

glReleaseShaderCompiler | Gibtdem GL-Server den Hinweis, dass er eventuell genutzte Res-
sourcen fiir den Shadercompiler freigeben kann.

glShaderBinary Ladt vorkompilierten Shadercode in ein Shaderobjekt.

Tabelle 6.11: Befehle zur Programmverwaltung

6.1.12 Befehle zur Anderung von Renderpipeline-Einstellungen

OpenGL ES-Befehl

Kurzbeschreibung

glTexParameterx Insgesamt vier Funktionen, die sich nur hinsichtlich der zu {iberge-
benden Parameter unterscheiden. Sie dienen dazu, die Filter- und
Wrappingeinstellungen fiir Texturen festzulegen.

glDepthMask Setzt fest, ob der aktuelle Depthbuffer schreibgeschiitzt ist oder
nicht.

glStencilFunc Spezifiziert die Bedingung, anhand derer im Stenciltest tiberpriift

wird, ob ein Pixel im Framebuffer durch ein Fragment tatsdchlich
verdndern wird oder nicht.

glStencilFuncSeparate

Wie glStencilFunc mit dem Unterschied, dass die spezifizierte
Bedingung nur fiir Fragmente mit bestimmter Orientierung giiltig
ist.

glStencilOp Legt die Operation fest, die im Stencilbuffer abhidngig vom Aus-
gang des Stenciltests durchgefiihrt wird.
glStencilOpSeparate Wie glStencilOp mit dem Unterschied, dass die festgelegte Ope-

ration nur fiir Fragmente mit bestimmter Orientierung durchge-
fithrt wird.

111

6 Anhang

glDepthFunc

Andert die Vergleichsoperation (groBer, kleiner, ungleich etc.)
fiir den Depthtest.

glBlendFunc

Andert die Faktoren, mit denen Quell- und Zielfarbwert bei ak-
tiviertem Blending multipliziert werden, bevor aus den beiden
Produkten der resultierende Farbwert im Framebuffer berech-
net wird.

glBlendFuncSeparate

Wie glBlendFunc mit dem Unterschied, dass jeweils unter-
schiedliche Faktoren fiir die RGB-Komponenten und die Alpha-
Komponente angegeben werden kénnen.

glBlendColor

Setzt die Werte des konstanten Blendingwerts, der bei
glBlendFunc und glBlendFuncSeparate optional verwen-
det werden kann.

glBlendEquation

Legt den Operator fest, mit dem die beim Blending berechneten
Quell- und Zielfaktoren verkniipft werden, um den resultieren-
den Farbwert im Framebuffer zu berechnen.

glBlendEquationSeparate

Wie glBlendEquation mit dem Unterschied, dass unterschied-
liche Operatoren fiir die RGB-Komponenten und die Alpha-
Komponente gewdhlt werden kénnen.

glSampleCoverage Legt den Wert fest, der verwendet wird, um eine zusitzliche Bit-
maske zu erzeugen, die mit der im Multisampling erzeuten ver-
undet wird, um das Antialiasing zu beeinflussen.

glLineWidth Setzt die Liniendicke fest.

glFrontFace Legt fest, ob Dreiecksnormalen im oder gegen den Uhrzeiger-
sinn bestimmt werden.

glPolygonOffset Legt die Werte fiir den automatischen Tiefenversatz von Polygo-
nen fest (z.B. um koplanare Polygone ohne Z-Fighting-Artefakte
zu rendern).

glViewport Andert die Viewporteinstellungen.

glDepthRangef Andert die Einstellungen zur Umrechnung von Z-Werten in Ge-
ratekoordinaten zu Z-Werten in Fensterkoordinaten.

glColorMask Setzt fest, welche Komponenten (RGBA) im aktuellen Colorbuf-
fer tiberschrieben werden diirfen und welche nicht.

glStencilMask Setzt fest, welche Bits eines Pixels im aktuellen Stencilbuffer
schreibgeschiitzt sind und welche nicht.

glStencilMaskSparate Analog glStencilMask mit dem Unterschied, dass verschiede-
ne Bitmasken fiir Primitives angegeben werden kénnen, abhin-
gig von ihrer Orientierung.

glCullFace Legt die Orientierung von Dreiecken fest, die im Zuge von Cul-
ling eliminiert werden sollen.

glScissor Spezifiziert einen rechteckigen Bereich im aktuellen Framebuf-

fer an dem unabhingig von den anderen Clippingoperation ge-
clippt wird (der Bereich aullerhalb des Rechtecks ist schreibge-
schiitzt).

Tabelle 6.12: Befehle zur Anderung von Renderpipeline-Einstellungen

112

6.1 Befehle von OpenGL ES 2.0

6.1.13 Sonstige OpenGL ES-Befehle

OpenGL ES-Befehl

Kurzbeschreibung

glFlush

Ubermittelt alle vom aufrufenden Programm bisher aufgerufenen
OpenGL ES-Befehle an den GL-Server, die noch nicht tibermittelt
wurden.

glFinish

Diese Funktion kehrt zuriick, sobald alle bisher aufgerufenen
OpenGL ES-Befehle vom GL-Server vollstdndig abgearbeitet wor-
den sind.

glValidateProgram

Fiihrt eine Reihe von Tests aus, um festzustellen, ob das aktuelle Pro-
grammobjekt mit dem aktuellen Zustand des Renderkontexts erfolg-
reich fiir Renderoperationen ausgefiihrt werden kann und liefert
(implementierungsabhingig) zusétzliche Informationen {iiber vor-
handene Performanceprobleme, etc. — Nur fiir Debugging-Zwecke
wihrend der Entwicklung gedacht (siehe [Munshi u. a. 2008], Seite
66).

glClear

Setzt alle Pixel im aktuellen Color-, Depth- und/oder Stencilbuffer
auf den von glClearColor festgesetzten, aktuellen Clearwert.

glHint

Erlaubt es, der Implementierung Hinweise zu geben, ob bei der Er-
zeugung einer Mipmap-Chain héhere Qualitdt oder hohere Perfor-
mance angestrebt werden soll. Ob dieser Hinweis tiberhaupt einen
Einfluss hat, ist allerdings implementierungsabhéngig.

glPixelStorei

Bestimmt das Byte-Alignment von Pixelreihen in Texturen, die vom
Hauptspeicher ein- oder in den Hauptspeicher ausgelesen werden.
Dieser Wert beeinflusst nicht die Menge der iibertragenen Daten
und wie diese im GPU-Speicher abgelegt werden (siehe [Munshi u. a.
2008], Seite 187).

glBindAttribLocation

Den méglichen Inputvariablen von Vertexshadern sind Nummern
zugewiesen (von 0 bis MAX_ATTRIBS), der sogenannte position in-
dex. Durch glBindAttribLocation wird ein solcher Index einem
symbolischen Variablennamen zugeordnet, der im Quellcode von
Vertexshadern verwendet werden kann.

Tabelle 6.13: Sonstige OpenGL ES-Befehle

113

6 Anhang

6.2 Erweiterungen von OpenGL ES 2.0

6.2.1 EXT- und OES-Erweiterungen

Erweiterung Kurzbeschreibung

OES_byte_coordinates Ermoglicht die Angabe von Vertex- und Texturkoor-
dinaten als Bytewerte.

OES_compressed_ETC1_RGB8_texture | Unterstiitzung von Texturen, die im ETC-Format
komprimiert sind.

OES_compressed_paletted_texture | Unterstiitzung von palettierten Texturen.

OES_fixed_point Unterstiitzung fiir Eingabedaten in Festkommafor-
maten (gedacht fiir Plattformen mit unzureichender
FlieBkommaunterstiitzung).

OES_read_format Erlaubt die Abfrage, welche zusatzlichen (implemen-
tierungsspezifischen) Formate zur Verfiigung stehen,
um mit glReadPixels Daten aus dem aktuellen Fra-
mebuffer in den Hauptspeicher zu kopieren.

OES_EGL_image Ermoglicht die Erzeugung von Texturen und Ren-
derbuffer, die sich ihren Speicher mit EGLImage-
Objekten teilen.

0ES_depth24 Ermoglicht die Nutzung von 24bit-tiefen Depthbuf-
fer-Komponenten in Renderbuffer-Objekten.

0ES_depth32 Ermoglicht die Nutzung von 32bit-tiefen Depthbuf-
fer-Komponenten in Renderbuffer-Objekten.

OES_element_index_uint Erlaubt die Ubergabe von Indexdaten an glDraw-
Elements im GL_UNSIGNED_INT-Datenformat.

OES_mapbuffer Ermoglicht, den Inhalt von Vertexbuffer-Objekten in
den Hauptspeicher zu mappen (und dort zu modifi-
zieren).

OES_rgb8_rgbal8 Ermoglicht 8bit-RGB und -RGBA als zusitzliches
Speicherformat fiir Renderbuffer-Objekte.

OES_stencill Ermdéglicht 1bit-Stencilkomponenten fiir Renderbuf-
fer-Objekte.

OES_stencil4d Ermdéglicht 4bit-Stencilkomponenten fiir Renderbuf-
fer-Objekte.

OES_stencil8 Ermdéglicht 8bit-Stencilkomponenten fiir Renderbuf-
fer-Objekte.

OES_texture_3D Unterstiitzung von 3D-Texturen.

OES_texture_half_float_linear Liefert erweiterte Modi fiir Texturfilterung.

OES_texture_float_linear Liefert erweiterte Modi fiir Texturfilterung.

OES_texture_half_float Unterstiitzung fiir Texturformate mit 16bit-FlieR-
kommakomponenten.

114

6.2 Erweiterungen von OpenGL ES 2.0

OES_texture_float

Unterstiitzung fiir Texturformate mit 32bit-FlieBkom-
makomponenten.

OES_texture_npot

Unterstiitzung fiir erweiterte Wrappingmodi fiir Tex-
turen, deren Ausdehnung keine Potenz von zwei ist.

OES_vertex_half_float

Erlaubt die Nutzung von 16bit-FlieRkommazahlen als
Vertexattributdaten.

EXT_texture_filter_anisotropic

Erméglicht anisotropische Texturfilterung.

EXT_texture_type_2_10_10_10_REV

Unterstiitzung fiir das 2-10-10-10-Texturformat (zwei
Bits fiir Alpha, jeweils zehn fiir R, G und B).

OES_depth_texture

Unterstiitzung fiir Texturen, die Tiefenpufferdaten
speichern (sogenannte depth textures).

OES_packed_depth_stencil

Unterstiitzung fiir kombinierte Depth- und
Stencilbuffer-Objekte (mit 24 Bits/Pixel fiir Tiefenin-
formation und 8 Bits/Pixel fiir Stencilinformation).

OES_standard_derivatives

Unterstiitzung fiir die (built-in) Ableitungsfunktio-
nen in Fragmentshadern, die standardmi@ig in der
OpenGLES 2.0 Shading Language nicht zur Verfiigung
stehen.

OES_vertex_type_10_10_10_2

Unterstiitzung des 10-10-10-2-Datenformats fiir Ver-
texattributdaten (drei Komponenten zu je zehn Bits
und eine zu zwei Bits).

OES_get_program_binary

Erméglicht das Ein- und Auslesen kompilierter Sha-
derprogramme.

EXT_texture_compression_dxtl

Unterstiitzung von Texturen, die im DXT1-Format
komprimiert sind.

EXT_texture_format_BGRAB888

Unterstiitzung fiir das BGRA8888-Texturformat.

EXT_discard_framebuffer

Ermoglicht, den Inhalt des aktuellen Framebuffers fiir
ungiiltig zu erkldren (er6ffnet manchen Implementie-
rungen zusitzliche Optimierungensmoglichkeiten).

EXT_blend_minmax

Ermoglicht die Nutzung weiterer blend equations (zu-
sdtzlich zu den von glBlendEquation bereits akzep-
tierten).

EXT_read_format_bgra

Zusitzliche Formate fiir glReadPixels.

EXT_multi_draw_arrays

Erlaubt die Ubergabe mehrerer Geometriedatenar-
rays beim Aufruf einer Draw-Funktion.

OES_vertex_array_object

Unterstiitzung fiir Vertexarray-Objekte zur serversei-
tigen Speicherung von Vertexarray-Zustinden (d. h.
zusammengehorige Mengen von konstanten Vertex-
attributen bzw. Zeiger auf Vertexattributdaten), um
schnell zwischen verschiedenen Zustinden wechseln
zu konnen.

EXT_shader_texture_lod

Liefert zusétzliche Funktionen fiir Fragmentshader,
durch die der Detailgrad beim Texturzugriff explizit
bestimmt werden kann.

115

6 Anhang

EXT_frag_depth Erlaubt das Setzen des Tiefenwerts eines Fragments aus einem
Fragmentshader-Programm heraus.

nen.

OES_EGL_image_external | Erlaubt die Nutzung von EGlImages als Ziel fiir Texturoperatio-

EXT_unpack_subimage Zusétzliche Parameter fiir glPixelStorei, die das Befiillen einer
serverseitigen Textur mit einem rechteckigen Bereich aus einer
clientseitigen Textur erleichtern kdnnen.

Tabelle 6.14: EXT- und OES-Erweiterungen

6.2.2 Erweiterungen der AMD Corporation

Erweiterung

Kurzbeschreibung

AMD_compressed_3DC_texture

Unterstiitzung fiir Texturen, deren Texel nur aus einer oder
zwei Komponenten bestehen, zum Beispiel fiir normal oder
luminance maps.

AMD_compressed_ATC_texture

Unterstiitzung fiir Texturen, die nach dem ATC-Verfahren
komprimiert wurden.

AMD_program_binary_Z400

Unterstiitzung fiir Shaderbinaries, die fiir AMDs Z400-
Produktfamilie kompiliert wurden.

AMD_performance_monitor

Ermdéglicht die Abfrage spezieller Hardwarecounter, die auf
manchen AMD-GPUs verfiigbar sind.

Tabelle 6.15:

Erweiterungen der AMD Corporation

6.2.3 Erweiterungen von Apple Incorporated

Erweiterung

Kurzbeschreibung

APPLE_texture_2D_limited_npot | Unterstiitzung fiir erweiterte Wrappingmodi fiir

Texturen, deren Ausdehnung keine Potenz von
zwei ist (eingeschrinkter als die OES-Erweiterung
OES_texture_npot).

APPLE_rgb_422

Liefert ein zusitzliches Texturformat.

APPLE_framebuffer_multisample | Liefert Renderbufferobjekte, die Multisampling unter-

stiitzen.

APPLE_texture_format_BGRA8888 | Erlaubt das Laden von Texturen im BGRA-Format.

APPLE_texture_max_level

Erlaubt den maximalen Miplevel fiir einzelne Texturen
explizit festzulegen.

Tabelle 6.16: Erweiterungen von Apple Incorporated

116

6.2 Erweiterungen von OpenGL ES 2.0

6.2.4 Erweiterungen der NVIDIA Corporation

Erweiterung

Kurzbeschreibung

NV_fence

Ermoglicht die Nutzung sogenannter Fence-
Befehle, die die Synchronisation zwischen CPU
und GPU erleichtern. Durch Fences werden
partielle glFinish-Anweisungen moglich (d. h.
das Clientprogramm wird nur bis zur Ausfiih-
rung einer bestimmten Fence-Funktion blockiert
und nicht zwingend solange, bis alle an den GL-
Server tibermittelten Befehle ausgefiihrt wurden).
AuBerdem kann der Ausfiihrungszustand von
Fence-Befehlen abgefragt werden, um Hinweise
darauf zu erhalten, wie viele der aufgerufenen
Befehle bereits vom GL-Server ausgefiihrt worden
sind.

NV_coverage_sample

Liefert einen zusétzlichen Algorithmus fiir das An-
tialiasing.

NV_depth_nonlinear

Unterstiitzung fiir nicht-linearen Tiefenpuffer.

NV_draw_buffers

Erméglicht Fragmentshadern, mehr als einen Er-
gebnisfarbwert zuriickzuliefern.

NV_fbo_color_attachments

Erlaubt, mehr als einen Colorbuffer mit einem Fra-
mebufferobjekt zu verbinden.

NV_read_buffer

Ermoglicht, verschiedene Colorbuffer als Quel-
le fiir glReadPixels, glCopyTexImage2D und
glCopyTexSubImage2D zu nutzen, statt nur den
des aktuellen Framebuffers (Ausnahme: Der
Frontcolorbuffer des aktuellen Framebuffers
kann nicht als Quelle gewdhlt werden, wenn ein
Backcolorbuffer vorhanden ist).

NV_read_buffer_front

Wie NV_read_buffer, nur dass zusétzlich auch
der Frontcolorbuffer des aktuellen Framebuffers
als Quelle genutzt werden kann.

NV_read_depth

Ermoglicht es, mit glReadPixels Daten aus dem
Depthbuffer auszulesen.

NV_read_stencil

Ermoglicht es, mit glReadPixels Daten aus dem
Stencilbuffer auszulesen.

NV_read_depth_stencil

Ermoglicht es, mit glReadPixels Daten aus ei-
nem kombinierten Depth-Stencilbuffer auszule-
sen.

NV_texture_compression_s3tc_update

Erlaubt das Kopieren von Daten aus einer unkom-
primierten in eine komprimierte Textur.

NV_texture_npot_2D_mipmap

Liefert Mipmapping-Funktionalitédt fiir Texturen
deren Ausdehnung keine Potenz von zwei ist.

Tabelle 6.17: Erweiterungen der NVIDIA Corporation

117

6 Anhang

6.2.5 Erweiterungen von Imagination Technologies Limited

Erweiterung

Kurzbeschreibung

IMG_read_format

Liefert weitere Formate fiir glReadPixels.

IMG_texture_compression_pvrtc

Unterstiitzung fiir das PowerVR-Texturkompres-
sionsformat.

IMG_program_binary

Unterstiitzung fiir Programmbinaries im SGX_-
PROGRAM_BINARY_IMG-Format.

IMG_shader_binary

Unterstiitzung fiir vorkompilierte Shaderbinaries
im SGX_BINARY_IMG-Format.

IMG_multisampled_render_to_texture

Ermdéglicht Multisampling beim Rendern in eine
Textur, ohne dass anschlieBend ein automatisches
Downsampling durchgefiihrt wird.

Tabelle 6.18: Erweiterungen von Imagination Technologies Limited

6.2.6 Erweiterungen von Qualcomm Incorporated

Erweiterung

Kurzbeschreibung

QCOM_driver_control

Liefert spezielle Funktion zur Treiberkontrolle,
gedacht fiir Debugging und Profiling wihrend
der Anwendungsentwicklung.

QCOM_performance_monitor_global_mode

Erlaubt das Auslesen von globalen Hardware-
countern. Globale Counter reagieren auf Ak-
tionen aller Programme, die die GPU nut-
zen (nicht nur desjenigen Programms, das die
Counter nutzt).

QCOM_writeonly_rendering

Ermoéglicht einen sogenannten write-only
Rendermodus, der fiir manche Anwendungen
einen Performancegewinn mit sich bringen
kann.

QCOM_extended_get

Liefert Funktionen, mit denen zusétzliche Infor-
mationen iiber den GL-Zustand abgefragt wer-
den kénnen. Gedacht fiir Debuggung.

QCOM_extended_get2

Liefert noch weitere Abfragefunktionen fiir das
Debugging.

QCOM_tiled_rendering

Ermoéglicht dem Clientprogramm, gezielt ein-
zelne Teile des Framebuffers zum Rendern in
schnellem Speicher unterzubringen.

QCOM_alpha_test

Fiihrt den Alphatest von OpenGL ES 1.X fiir
OpenGL ES 2.0 wieder ein.

Tabelle 6.19: Erweiterungen von Qualcomm Incorporated

118

6.2 Erweiterungen von OpenGL ES 2.0

6.2.7 Erweiterungen des ANGLE-Projekts

Erweiterung

Kurzbeschreibung

ANGLE_framebuffer_blit

Erlaubt das Kopieren von Daten zwischen verschiede-
nen Framebuffern.

ANGLE_framebuffer_multisample | Liefert Renderbufferobjekte, die Multisampling unter-

stiitzen.

Tabelle 6.20: Erweiterungen des ANGLE-Projekts

6.2.8 Erweiterungen von ARM Limited

Erweiterung

Kurzbeschreibung

ARM_mali_shader_binary

Ermoglicht das Laden von Shaderbinaries, die mit dem Mali ESSL
shader compiler erzeugt wurden.

ARM_rgba8

Ermoglicht die Erzeugung von Renderbufferobjekten, die Daten
im RGB8-Format speichern.

Tabelle 6.21: Erweiterungen von ARM Limited

6.2.9 Erweiterungen von DMP Incorporated

Erweiterung

Kurzbeschreibung

DMP_shader_binary | Erlaubt das Laden von Shaderbinaries, die fiir Chips der Digital Media

Professionals Incorporated vorkompiliert wurden.

Tabelle 6.22: Erweiterungen von DMP Incorporated

6.2.10 Erweiterungen der Vivante Corporation

Erweiterung

Kurzbeschreibung

VIV_shader_binary | Erlaubt das Laden von Shaderbinaries, die fiir Chips der Vivante Corpo-

ration vorkompiliert wurden.

Tabelle 6.23: Erweiterungen der Vivante Corporation

119

Literaturverzeichnis

[ARM 2009] ARM: Mali GPU OpenGL ES Application Development Guide. 2009.
- URL http://infocenter.arm.com/help/topic/com.arm.doc.dui0363d/DUI0363D_
opengl_es_app_dev_guide.pdf. — Zugriffsdatum: 05.10.2011

[Bailey 2011] BAILEY, Mike: Using GPU Shaders for Visualization, Part 2. In: Computer Graphics
and Applications, IEEE 31 (2011), Marz-April, Nr. 2, S. 67 —73. — ISSN 0272-1716

[Bautin u.a. 2008] BAUTIN, Mikhail ; DWARAKINATH, Ashok ; CHIUEH, Tzi-cker: Graphic engine
resource management. In: Proceedings of SPIE, 2008

[Blackmer u.a. 2009] BLACKMER, Roy ; STEFANIZZI, Bruno ; WOLF, Andreas ; HART, Evan:
GL_ATI_meminfo OpenGL Extension Specification, Revision 0.2. 2009. — URL http://www.
opengl.org/registry/specs/ATI/meminfo.txt. - Zugriffsdatum: 06.07.2011

[Cole 2005] COLE, Phil: OpenGL ES SC - open standard embedded graphics API for safety critical
applications. In: The 24th Digital Avionics Systems Conference, 2005. DASC 2005. Bd. 2, Oktober-
November 2005, S. 8 pp. Vol. 2

[Dwarakinath 2008] DWARAKINATH, Ashok: A Fair-Share Scheduler for the Graphics Processing
Unit, Stony Brook University, Diplomarbeit, 2008

[Grottel u.a. 2009] GROTTEL, Sebastian ; REINA, Guido ; ERTL, Thomas: Optimized data transfer
for time-dependent, GPU-based glyphs. In: IEEE Pacific Visualization Symposium, 2009. Paci-
ficVis '09., April 2009, S. 65 -72

[Hill u.a. 2008] HILL, Steve ; ROBART, Mathieu ; TANGUY, Emmanuel: Implementing OpenGL ES
1.1 over OpenGL ES 2.0. In: International Conference on Consumer Electronics, 2008. ICCE 2008.
Digest of Technical Papers., Januar 2008, S. 1 -2

[Kato u.a. 2011] KaATO, Shinpei ; LAKSHMANAN, Karthik ; RAJKUMAR, Ragunathan R. ; ISHIKAWA,
Yutaka: TimeGraph: GPU scheduling for real-time multi-tasking environments. In: 2011 USENIX
Annual Technical Conference (USENIX ATC’11), 2011

[Lagar-Cavilla u.a. 2007] LAGAR-CAVILLA, H. A. ; TOLIA, Niraj ; SATYANARAYANAN, Mahadev ;
DE LARA, Eyal: VMM-Independent Graphics Acceleration. In: Proceedings of the 3rd Interna-
tional Conference on Virtual Execution Environments ACM (Veranst.), 2007, S. 33-43

[Liu u.a. 2007] Liu, Weiguo ; MULLER-WITTIG, Wolfgang ; SCHMIDT, Bertil: Performance Pre-
dictions for General-Purpose Computation on GPUs. In: International Conference on Parallel
Processing, 2007. ICPP 2007., September 2007, S. 50. — ISSN 0190-3918

[The Khronos Group] THE KHRONOS GROUP: Khronos OpenGL ES API Registry. — URL http:
//www.khronos.org/registry/gles/. - Zugriffsdatum: 18.07.2011

121

http://infocenter.arm.com/help/topic/com.arm.doc.dui0363d/DUI0363D_opengl_es_app_dev_guide.pdf
http://infocenter.arm.com/help/topic/com.arm.doc.dui0363d/DUI0363D_opengl_es_app_dev_guide.pdf
http://www.opengl.org/registry/specs/ATI/meminfo.txt
http://www.opengl.org/registry/specs/ATI/meminfo.txt
http://www.khronos.org/registry/gles/
http://www.khronos.org/registry/gles/

Literaturverzeichnis

[Microsoft 2006] MICROSOFT: Windows Vista Display Driver Model. 2006. — URL http://msdn.
microsoft.com/en-us/library/aa480220.aspx. — Zugriffsdatum: 08.11.2011

[MSDN 2009] MSDN: Timeout Detection and Recovery of GPUs through WDDM. 2009. - URL
http://msdn.microsoft.com/en-us/windows/hardware/gg487368.aspx. — Zugriffsdatum:
24.10.2011

[MSDN 2011] MSDN: Event Objects. 2011. — URL http://msdn.microsoft.com/en-us/
library/windows/desktop/ms682655%28v=vs.85%29.aspx. — Zugriffsdatum: 09.11.2011

[Munshi u.a. 2008] MUNSHI, Aaftab ; GINSBURG, Dan ; SHREINER, Dave: OpenGL(R) ES 2.0 Pro-
gramming Guide. 1. Addison-Wesley Professional, 2008. — ISBN 0321502795, 9780321502797

[Munshi und Leech 2010] MUNSHI, Aaftab ; LEECH, Jon: OpenGL(R) ES Common Profile Specifi-
cation, Version 2.0.25 (Full Specification). 2010. — URL http://www.khronos.org/registry/
gles/specs/2.0/es_full_spec_2.0.25.pdf. — Zugriffsdatum: 01.07.2011

[Nvidia 2006] NviIDIA: NVIDIA GeForce 8800 GPU Architecture Overview. 2006. — URL
http://www.nvidia.de/content/PDF/Geforce_8800/GeForce_8800_GPU_Architecture_
Technical_Brief.pdf.- Zugriffsdatum: 03.10.2011

[Nvidia 2009] NVIDIA: NVIDIAs Next Generation CUDA Compute Architecture: Fermi.
2009. - URL http://www.nvidia.com/content/PDF/fermi_white_papers/NVIDIA_Fermi_
Compute_Architecture_Whitepaper.pdf. - Zugriffsdatum: 11.10.2011

[Paul 2007] PAUL, Brian: The Mesa 3D Graphics Library. 2007. - URLhttp://www.mesa3d.org/.
— Zugriffsdatum: 01.10.2011

[Satish u.a. 2009] SATISH, Nadathur ; SUNDARAM, Narayanan ; KEUTZER, Kurt: Optimizing the
use of GPU memory in applications with large data sets. In: International Conference on High
Performance Computing (HiPC), 2009, Dezember 2009, S. 408 -418

[Segal u.a. 2010] SEGAL, Mark ; AKELEY, Kurt ; FRAZIER, Chris ; LEECH, Jon ; BROWN, Pat: The
OpenGL(R) Graphics System: A Specification, Version 4.1 (Core Profile). 2010. - URLhttp://www.
opengl.org/registry/doc/glspec4l.core.20100725.pdf. — Zugriffsdatum: 01.07.2011

[Simpson und Kessenich 2009] SiMPSON, Robert]. ; KESSENICH, John: The OpenGL(R) ES Shading
Language, Version 1.00, Revision 17. 2009. — URL http://www.khronos.org/registry/gles/
specs/2.0/GLSL_ES_Specification_1.0.17.pdf. - Zugriffsdatum: 05.07.2011

[Stroyan 2009] STROYAN, Howard: GL _NVX gpu_memory_info OpenGL Extension Specificati-
on, Revision 1.3. 2009. — URL http://developer.download.nvidia.com/opengl/specs/GL_
NVX_gpu_memory_info.txt. - Zugriffsdatum: 06.07.2011

[Trevett 20101 TREVETT, Neil: Khronos Group Overview. 2010.— URLhttp://www.webcitation.
org/5znTVOLcr. — Zugriffsdatum: 29.06.2011

[Walbourn 2005] WALBOURN, Chuck: Game Timing and Multicore Processors. 2005.
-~ URLhttp://msdn.microsoft.com/en-us/library/windows/desktop/ee417693%28v=vs.
85%29 . aspx. — Zugriffsdatum: 09.11.2011

122

http://msdn.microsoft.com/en-us/library/aa480220.aspx
http://msdn.microsoft.com/en-us/library/aa480220.aspx
http://msdn.microsoft.com/en-us/windows/hardware/gg487368.aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/ms682655%28v=vs.85%29.aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/ms682655%28v=vs.85%29.aspx
http://www.khronos.org/registry/gles/specs/2.0/es_full_spec_2.0.25.pdf
http://www.khronos.org/registry/gles/specs/2.0/es_full_spec_2.0.25.pdf
http://www.nvidia.de/content/PDF/Geforce_8800/GeForce_8800_GPU_Architecture_Technical_Brief.pdf
http://www.nvidia.de/content/PDF/Geforce_8800/GeForce_8800_GPU_Architecture_Technical_Brief.pdf
http://www.nvidia.com/content/PDF/fermi_white_papers/NVIDIA_Fermi_Compute_Architecture_Whitepaper.pdf
http://www.nvidia.com/content/PDF/fermi_white_papers/NVIDIA_Fermi_Compute_Architecture_Whitepaper.pdf
http://www.mesa3d.org/
http://www.opengl.org/registry/doc/glspec41.core.20100725.pdf
http://www.opengl.org/registry/doc/glspec41.core.20100725.pdf
http://www.khronos.org/registry/gles/specs/2.0/GLSL_ES_Specification_1.0.17.pdf
http://www.khronos.org/registry/gles/specs/2.0/GLSL_ES_Specification_1.0.17.pdf
http://developer.download.nvidia.com/opengl/specs/GL_NVX_gpu_memory_info.txt
http://developer.download.nvidia.com/opengl/specs/GL_NVX_gpu_memory_info.txt
http://www.webcitation.org/5znTVOLcr
http://www.webcitation.org/5znTVOLcr
http://msdn.microsoft.com/en-us/library/windows/desktop/ee417693%28v=vs.85%29.aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/ee417693%28v=vs.85%29.aspx

Literaturverzeichnis

Alle hier aufgefithrten URLs wurden letztmalig am 15. Dezember 2011 tiberpriift. Das bei den ein-
zelnen Literatureintrdgen jeweils vermerkte Zugriffsdatum bezieht sich auf den Tag des ersten Zu-

griffs. Bei verdanderlichen Internetseiten beziehen sich sdmtliche Zitate auf die Version des Tages,
an dem der Erstzugriff stattfand.

123

Erkldrung

Hiermit versichere ich, dass ich diese Arbeit selbstdndig ver-
fasst und nur die angegebenen Hilfsmittel verwendet habe.

Stuttgart, den 16. Dezember 2011,

Armin Cont

	Einleitung
	Hintergrund dieser Arbeit
	Echtzeitgarantien
	Probleme heutiger OpenGL ES-Systeme
	Ansatz zur Lösung der genannten Probleme
	Zielsetzung dieser Arbeit
	Verwandte Arbeiten

	Grundlagen von OpenGL ES-Systemen
	OpenGL und OpenGL ES
	Implementierungsvarianten von OpenGL ES-Systemen
	Client-Server-Modell der Befehlsübermittlung
	Datenübergabe und -verwaltung
	Datenobjekte
	Eviction
	Speichergranularität, Effektivgröße und Speicherblockgröße

	Programmobjekte
	Renderpipeline
	Überblick
	Pipelineschritte
	Gepuffertes und ungepuffertes Rendering

	Erweiterungen von OpenGL ES

	Methodisches Vorgehen
	Speicherbelegung
	Motivation für die Untersuchung der Speicherbelegung
	Untersuchungsmethoden zur Speicherbelegung
	Relevante Befehle für die Speicherbelegung

	Datenübertragung
	Motivation für die Untersuchung der Datenübertragung
	Untersuchungsmethoden zur Datenübertragung
	Relevante Befehle für die Datenübertragung

	Pipelinenutzung
	Motivation für die Untersuchung der Pipelinenutzung
	Untersuchungsmethoden zur Pipelinenutzung
	Relevante Befehle für die Pipelinenutzung

	Kontextwechsel
	Motivation für die Untersuchung von Kontextwechseln
	Untersuchung der Kosten von Kontextwechseln
	Relevante Befehle für die Untersuchung von Kontextwechseln

	Untersuchungen
	Technische Details der Untersuchungen
	Testsysteme
	Durchführung von Laufzeitmessungen
	Durchführung von Speicherplatzmessungen
	Umgang mit Fehlern des GL-Systems
	Interprozesskommunikation
	Minimalshader

	Speicherbelegung
	Ablage von Datenobjekten im GPU-Speicher
	Speicherbedarf von Datenobjekten
	Bestimmung der Speicherblockgröße
	Belegungsverhalten innerhalb von Speicherblöcken
	Bestimmung der Speichergranularität
	Fazit Speicherbelegung

	Datenübertragung
	Bestimmung von Datenübertragungsrate und -laufzeit
	Konkurrierende Datenübertragungen
	Nebenläufige Ausführung von Datenübertragung und Rendering
	Datenübertragung ungepufferter Draw-Befehle
	Fazit Datenübertragung

	Pipelinenutzung
	Ausführung konkurrierender Draw-Befehle
	Abbrechbarkeit von Draw-Befehlen
	Fazit Pipelinenutzung

	Kontextwechsel
	Vorgehen
	Ergebnisse
	Fazit Kontextwechsel

	Zusammenfassung und Ausblick
	Wenig Probleme bei Kontextwechsel und Datenübertragung
	Schwer beherrschbare Risiken bei der Pipelinenutzung
	Risiken wegen mangelnder Speicherbelegungsinformation
	Mögliche Lösungsansätze
	Nutzung der Treiber-Informationen zum Speicherlayout
	Einschränkung von Shadern
	Trennung von Vertex- und Fragment-Processing

	Fazit

	Anhang
	Befehle von OpenGL ES 2.0
	Erzeugung von Datenobjekten
	Freigabe von Datenobjekten
	Datenübertragungsbefehle
	Vertexdatenverwaltung
	Binding von Datenobjekten
	Naming von Datenobjekten
	Zusammensetzung von Framebuffern
	Draw-Befehle
	Clearing-Befehle
	Zustandsabfragen
	Programmverwaltung
	Befehle zur Änderung von Renderpipeline-Einstellungen
	Sonstige OpenGL ES-Befehle

	Erweiterungen von OpenGL ES 2.0
	EXT- und OES-Erweiterungen
	Erweiterungen der AMD Corporation
	Erweiterungen von Apple Incorporated
	Erweiterungen der NVIDIA Corporation
	Erweiterungen von Imagination Technologies Limited
	Erweiterungen von Qualcomm Incorporated
	Erweiterungen des ANGLE-Projekts
	Erweiterungen von ARM Limited
	Erweiterungen von DMP Incorporated
	Erweiterungen der Vivante Corporation

	Literaturverzeichnis

