
Institut für Parallele und Verteilte Systeme
Universität Stuttgart
Universitätsstraße 38
D–70569 Stuttgart

Diplomarbeit Nr. 3194

Analyse der Echtzeitfähigkeit
und des Ressourcenverbrauchs

von OpenGL ES 2.0

Armin Cont

Studiengang: Softwaretechnik

Prüfer: Prof. Dr. rer. nat. Dr. h. c. Kurt Rothermel

Betreuer: Dipl.-Inf. Stephan Schnitzer

Externer Betreuer: Dipl.-Inf. Simon Gansel (Daimler AG)

begonnen am: 16. Juni 2011

beendet am: 16. Dezember 2011

CR-Klassifikation: I.3.4, I.3.6, C.4

Kurzfassung

OpenGL ES 2.0 (Open Graphics Library for Embedded Systems 2.0) ist eine Schnittstelle zur
Entwicklung von 2D- und 3D-Computergrafik-Anwendungen. Die Spezifikation von OpenGL
ES 2.0 definiert eine Reihe von Befehlen, mit denen Daten zum und vom OpenGL ES-System
übermittelt werden können, mit denen das Zeichnen von Grafiken angestoßen werden kann
(Rendering) und Einstellungen für das Rendering durchgeführt werden können. Üblicherweise
verwenden OpenGL ES-Systeme für das Rendering physische Grafikkarten (GPUs). Keines der
heute verfügbaren OpenGL ES-Systeme mit physischer GPU unterstützt aber die Priorisierung
von Anwendungen hinsichtlich der Ausführung von OpenGL ES-Befehlen oder Einschränkungen
von Anwendungen hinsichtlich der Nutzung von GPU-Ressourcen. Insbesondere bietet OpenGL
ES weder einen konfigurierbaren Scheduler noch die Möglichkeit, Echtzeitgarantien für die Aus-
führung von OpenGL ES-Befehlen zu erfüllen. Ziel dieser Arbeit ist es, zu untersuchen, inwieweit
dennoch sichergestellt werden kann, dass Befehle sicherheitskritischer Anwendungen rechtzeitig
ausgeführt werden können. Dazu werden relevante Befehle bestimmt, deren Laufzeitverhalten
und Ressourcenverbrauch analysiert wird. Außerdem werden spezielle Szenarien untersucht,
um festzustellen, inwiefern das Verhalten von OpenGL ES-Systemen die rechtzeitige Ausführung
kritischer Befehle verhindern kann. Schließlich werden Untersuchungsmethoden und Metriken
für die Prognose des Ressourcenverbrauchs von OpenGL ES-Befehlen und die Ermittlung der
dafür notwendigen systemspezifischen Kennzahlen entwickelt. Die Untersuchung werden auf
einigen realen OpenGL ES-Systeme durchgeführt. Dabei wird gezeigt, dass insbesondere das
Speicherbelegungsverhalten und die Nutzung der Renderpipeline mit Problemen verbunden sind,
die der Erfüllung von Echtzeitgarantien im Wege stehen und nicht auf der Ebene von OpenGL ES
gelöst werden können.

Abstract

OpenGL ES 2.0 (Open Graphics Library for Embedded Systems 2.0) is an interface for 2D and 3D
computer graphics application development. The specification of OpenGL ES 2.0 defines a set of
commands which allow to transfer data to and from an OpenGL ES system, to render graphics and
to change settings regarding the rendering process. Some OpenGL ES systems make use of a phy-
sical GPU in order to perform rendering. None of the OpenGL ES systems available today neither
support the prioritization of applications regarding the execution of OpenGL ES commands nor
the limitation of applications regarding their utilization of GPU resources. Particularly, OpenGL ES
offers neither a configurable scheduler nor the possibility to fulfill any sort of real-time guarantee
regarding the execution of OpenGL ES commands. The intention of this work is to explore to what
extend it is still possible to guarantee that commands of safety-critical applications can be exe-
cuted in time. Therefore, relevant commands are identified whose run time behavior and resource
consumption will be analyzed. Furthermore, special scenarios are analyzed in order to determi-
ne the impact of OpenGL ES system behavior finishing critical commands in time. Finally, exami-
nation methods and metrics are developed to predict the resource consumption of OpenGL ES
commands and to determine the required system specific characteristics. Then, some real-world
OpenGL ES systems are examined. In doing so it can be shown that their system behavior – especi-
ally regarding the utilization of GPU memory and the rendering pipeline – is fraught with problems
which make it impossible to fulfill real-time guarantees and which cannot be solved on the level of
OpenGL ES.

3

Inhaltsverzeichnis

1 Einleitung 11
1.1 Hintergrund dieser Arbeit . 11
1.2 Echtzeitgarantien . 12
1.3 Probleme heutiger OpenGL ES-Systeme . 13
1.4 Ansatz zur Lösung der genannten Probleme . 14
1.5 Zielsetzung dieser Arbeit . 14
1.6 Verwandte Arbeiten . 15

2 Grundlagen von OpenGL ES-Systemen 17
2.1 OpenGL und OpenGL ES . 17
2.2 Implementierungsvarianten von OpenGL ES-Systemen 17
2.3 Client-Server-Modell der Befehlsübermittlung . 18
2.4 Datenübergabe und -verwaltung . 19

2.4.1 Datenobjekte . 20
2.4.2 Eviction . 22
2.4.3 Speichergranularität, Effektivgröße und Speicherblockgröße 22

2.5 Programmobjekte . 23
2.6 Renderpipeline . 24

2.6.1 Überblick . 24
2.6.2 Pipelineschritte . 24
2.6.3 Gepuffertes und ungepuffertes Rendering . 26

2.7 Erweiterungen von OpenGL ES . 27

3 Methodisches Vorgehen 29
3.1 Speicherbelegung . 31

3.1.1 Motivation für die Untersuchung der Speicherbelegung 31
3.1.2 Untersuchungsmethoden zur Speicherbelegung 32
3.1.3 Relevante Befehle für die Speicherbelegung . 38

3.2 Datenübertragung . 40
3.2.1 Motivation für die Untersuchung der Datenübertragung 40
3.2.2 Untersuchungsmethoden zur Datenübertragung 41
3.2.3 Relevante Befehle für die Datenübertragung . 46

3.3 Pipelinenutzung . 49
3.3.1 Motivation für die Untersuchung der Pipelinenutzung 49
3.3.2 Untersuchungsmethoden zur Pipelinenutzung 50
3.3.3 Relevante Befehle für die Pipelinenutzung . 52

3.4 Kontextwechsel . 52
3.4.1 Motivation für die Untersuchung von Kontextwechseln 52

5

Inhaltsverzeichnis

3.4.2 Untersuchung der Kosten von Kontextwechseln 53

3.4.3 Relevante Befehle für die Untersuchung von Kontextwechseln 54

4 Untersuchungen 57
4.1 Technische Details der Untersuchungen . 57

4.1.1 Testsysteme . 57

4.1.2 Durchführung von Laufzeitmessungen . 57

4.1.3 Durchführung von Speicherplatzmessungen . 58

4.1.4 Umgang mit Fehlern des GL-Systems . 60

4.1.5 Interprozesskommunikation . 61

4.1.6 Minimalshader . 61

4.2 Speicherbelegung . 62

4.2.1 Ablage von Datenobjekten im GPU-Speicher . 62

4.2.2 Speicherbedarf von Datenobjekten . 64

4.2.3 Bestimmung der Speicherblockgröße . 67

4.2.4 Belegungsverhalten innerhalb von Speicherblöcken 69

4.2.5 Bestimmung der Speichergranularität . 75

4.2.6 Fazit Speicherbelegung . 80

4.3 Datenübertragung . 82

4.3.1 Bestimmung von Datenübertragungsrate und -laufzeit 82

4.3.2 Konkurrierende Datenübertragungen . 85

4.3.3 Nebenläufige Ausführung von Datenübertragung und Rendering 89

4.3.4 Datenübertragung ungepufferter Draw-Befehle 90

4.3.5 Fazit Datenübertragung . 94

4.4 Pipelinenutzung . 95

4.4.1 Ausführung konkurrierender Draw-Befehle . 95

4.4.2 Abbrechbarkeit von Draw-Befehlen . 98

4.4.3 Fazit Pipelinenutzung . 99

4.5 Kontextwechsel . 99

4.5.1 Vorgehen . 99

4.5.2 Ergebnisse . 101

4.5.3 Fazit Kontextwechsel . 102

5 Zusammenfassung und Ausblick 103
5.1 Wenig Probleme bei Kontextwechsel und Datenübertragung 103

5.2 Schwer beherrschbare Risiken bei der Pipelinenutzung 103

5.3 Risiken wegen mangelnder Speicherbelegungsinformation 104

5.4 Mögliche Lösungsansätze . 104

5.4.1 Nutzung der Treiber-Informationen zum Speicherlayout 104

5.4.2 Einschränkung von Shadern . 105

5.4.3 Trennung von Vertex- und Fragment-Processing 105

5.5 Fazit . 106

6

6 Anhang 107
6.1 Befehle von OpenGL ES 2.0 . 107

6.1.1 Erzeugung von Datenobjekten . 107
6.1.2 Freigabe von Datenobjekten . 107
6.1.3 Datenübertragungsbefehle . 108
6.1.4 Vertexdatenverwaltung . 108
6.1.5 Binding von Datenobjekten . 109
6.1.6 Naming von Datenobjekten . 109
6.1.7 Zusammensetzung von Framebuffern . 109
6.1.8 Draw-Befehle . 110
6.1.9 Clearing-Befehle . 110
6.1.10 Zustandsabfragen . 110
6.1.11 Programmverwaltung . 111
6.1.12 Befehle zur Änderung von Renderpipeline-Einstellungen 111
6.1.13 Sonstige OpenGL ES-Befehle . 113

6.2 Erweiterungen von OpenGL ES 2.0 . 114
6.2.1 EXT- und OES-Erweiterungen . 114
6.2.2 Erweiterungen der AMD Corporation . 116
6.2.3 Erweiterungen von Apple Incorporated . 116
6.2.4 Erweiterungen der NVIDIA Corporation . 117
6.2.5 Erweiterungen von Imagination Technologies Limited 118
6.2.6 Erweiterungen von Qualcomm Incorporated . 118
6.2.7 Erweiterungen des ANGLE-Projekts . 119
6.2.8 Erweiterungen von ARM Limited . 119
6.2.9 Erweiterungen von DMP Incorporated . 119
6.2.10 Erweiterungen der Vivante Corporation . 119

Literaturverzeichnis 121

Abbildungsverzeichnis

1.1 Innenraum der Fahrzeugstudie MB F800 (Quelle: benzs.blogspot.com) 11
3.1 Ablagemöglichkeiten von vier Datenobjekten mit 3

4 der Speicherblockgröße 35
4.1 Speicherbelegung bei Erzeugung eines Vertexbuffer-Objekts 66
4.2 Speicherbelegung bei Erzeugung von vier Vertexbuffer-Objekten 66
4.3 Anstieg der Speicherbelegung bei Erzeugung von Datenobjekten mit 32 kByte 68
4.4 Ablagemöglichkeiten von acht Datenobjekten mit 3

8 der Speicherblockgröße 70
4.5 Speicherbelegung durch Erzeugung von 65.536 Datenobjekten (Nvidia-System) 78
4.6 Speicherbelegung durch Erzeugung von 65.536 Datenobjekten (ATI-Systeme) 78
4.7 Speicherbelegung durch Erzeugung von 32 Datenobjekten (Nvidia-System) 79
4.8 Speicherbelegung durch Erzeugung von 32 Datenobjekten (ATI-Systeme) 79
4.9 Datenübertragungszeiten bei leerem GPU-Speicher . 84

7

4.10 Laufzeit von glBufferData für die Übertragung von 1kB Vertexbuffer-Daten, wenn
bereits andere Datenobjekte im GPU-Speicher vorhanden sind 85

4.11 Laufzeiten konkurrierender Datenübertragungsbefehle 88

4.12 Laufzeiten bei Datenübertragung und gleichzeitigem Draw 89

4.13 Laufzeiten ungepufferter Draw-Befehle („Nvidia Quadro 2000D“-System) 92

4.14 Laufzeiten ungepufferter Draw-Befehle („ATI FirePro V4800“-System) 93

4.15 Laufzeiten konkurrierender Draw-Befehle . 97

Tabellenverzeichnis

4.1 Daten der verwendeten Testsysteme . 57

4.2 Ablageorte von Datenobjekten in Abhängigkeit des Usage Hints 63

4.3 Mittlere Laufzeitunterschiede bei erzwungenen Kontextwechseln (in µs) 101

6.1 Befehle zur Erzeugung von Datenobjekten . 107

6.2 Befehle zur Freigabe von Datenobjekten . 107

6.3 Datenübertragungsbefehle . 108

6.4 Vertexdatenverwaltung . 108

6.5 Befehle zum Binding von Datenobjekten . 109

6.6 Naming von Datenobjekten . 109

6.7 Zusammensetzung von Framebuffern . 109

6.8 Draw-Befehle . 110

6.9 Clearing-Befehle . 110

6.10 Zustandsabfragen . 110

6.11 Befehle zur Programmverwaltung . 111

6.12 Befehle zur Änderung von Renderpipeline-Einstellungen 112

6.13 Sonstige OpenGL ES-Befehle . 113

6.14 EXT- und OES-Erweiterungen . 116

6.15 Erweiterungen der AMD Corporation . 116

6.16 Erweiterungen von Apple Incorporated . 116

6.17 Erweiterungen der NVIDIA Corporation . 117

6.18 Erweiterungen von Imagination Technologies Limited 118

6.19 Erweiterungen von Qualcomm Incorporated . 118

6.20 Erweiterungen des ANGLE-Projekts . 119

6.21 Erweiterungen von ARM Limited . 119

6.22 Erweiterungen von DMP Incorporated . 119

8

Verzeichnis der Algorithmen

6.23 Erweiterungen der Vivante Corporation . 119

Verzeichnis der Algorithmen

4.1 Messung der Laufzeit von glBufferData . 58
4.2 Minimaler Vertexshader . 61
4.3 Minimaler Fragmentshader . 62
4.4 Ablage von Datenobjekten in Haupt- oder GPU-Speicher 63
4.5 Untersuchung des Speicherbedarfs von Datenobjekten. 64
4.6 Messung des Anstiegs der GPU-Speicherbelastung . 68
4.7 Erzeugung von Datenobjekten mit 3

8 der Speicherblockgröße 70
4.8 Erzeugung von Datenobjekten unterschiedlicher Größe 71
4.9 Nichtsequentielles Auffüllen von Speicherblöcken . 73
4.10 Ablage von Datenobjekten in fragmentierten Speicherblöcken 74
4.11 Bestimmung der Speichergranularität. 76
4.12 Laufzeit von Datenübertragungsbefehlen . 82
4.13 Laufzeit konkurrierender Datenübertragungsbefehle (Masterprogramm) 86
4.14 Laufzeit konkurrierender Datenübertragungsbefehle (Slaveprogramm) 87
4.15 Datenübertragung ungepufferter Draw-Befehle . 91
4.16 Untersuchung konkurrierender Draw-Befehle (Masterprogramm). 95
4.17 Untersuchung konkurrierender Draw-Befehle (Slaveprogramm). 96
4.18 Bestimmung der Kosten von Kontextwechseln (Masterprogramm). 100
4.19 Bestimmung der Kosten von Kontextwechseln (Slaveprogramm). 101

9

1 Einleitung

1.1 Hintergrund dieser Arbeit

Früher wurden 3D-Computergrafik-Anwendungen vor allem für den Einsatz in Desktop-Systemen
entwickelt. Dies ändert sich dahingehend, dass solche Anwendungen zunehmend auch für einge-
bettete Systeme entwickelt werden, wie man sie beispielsweise in Mobiltelefonen, PDAs aber auch
in Automobilen findet. OpenGL ES fungiert dabei inzwischen als eine de-facto Standardschnittstel-
le für die Entwicklung von 3D-Computergrafik-Anwendungen für eingebettete Systeme (vgl. [Cole
2005], Seite 7).

Die Zunahme dieser Anwendungen bringt eine Reihe von neuen Anforderungen an solche Systeme
mit sich, insbesondere im Hinblick auf Ausführung von Anwendungen, die um die Ressourcen der
eingebetteten GPU kämpfen, und im Hinblick auf die Erfüllung von Echtzeitgarantien für sicher-
heitskritische Anwendungen. Dies wird nachfolgend an einem konkreten Beispiel aus der Automo-
bilbranche näher erläutert.

Abbildung 1.1: Innenraum der Fahrzeugstudie MB F800 (Quelle: benzs.blogspot.com)

11

1 Einleitung

Abbildung 1.1 zeigt den Innenraum des Mercedes-Benz F800. Bei diesem Fahrzeug handelt es sich
um eine sogenannte Fahrzeugstudie, d. h. dieses Fahrzeug wird nicht in die Serienproduktion ge-
hen – es lässt aber erahnen, in welche Richtung die künftige Entwicklung gehen könnte.

Hierbei sind insbesondere die beiden in der Abbildung erkennbaren Displays interessant. Große
Displays wie das rechte, im oberen Bereich der Mittelkonsole – die sogenannte Headunit – sind
aus neueren Serienfahrzeugen bekannt. Eine solche Headunit dient zum Beispiel der Darstellung
der grafischen Benutzeroberflächen von Autoradios, Navigationssoftware, etc.

Hinter dem Lenkrad befindet sich das sogenannte Kombiinstrument, auf dem beispielsweise die
aktuelle Geschwindigkeit, Drehzahl, etc. angezeigt werden. Die Besonderheit an diesem kom-
biinstrument ist, dass es ohne mechanische Teile auskommt. Instrumente wie Drehzahlmesser,
Geschwindigkeitsanzeige, etc. sind hier nur noch virtuell vorhanden – sie werden auf einem
Computer-Display gerendert.

In diesem Fahrzeug werden die auf der Headunit und dem Kombiinstrument angezeigten Grafiken
auf separaten GPUs erstellt. Prinzipiell könnten die Ausgaben für die Headunit und das Kombiin-
strument aber auch auf der selben GPU berechnet werden. Dies hätte Vorteile hinsichtlich Kosten,
Platz- und Stromverbrauch.

Dabei ist jedoch zu beachten, dass einige der Anzeigen auf dem Kombiinstrument sicherheitskri-
tisch sind, zum Beispiel die Geschwindigkeitsanzeige. Es darf nicht passieren, dass solche Anzei-
gen durch Anwendungen der Mittelkonsole behindert werden – wenn der Benutzer beispielsweise
die Navigationssoftware auf der Mittelkonsole startet, darf die Geschwindigkeitsanzeige auf dem
Kombiinstrument deshalb nicht „ruckeln“, oder „einfrieren“.

Wenn sich die Anwendungen der Mittelkonsole und des Kombiinstruments eine GPU teilen, müs-
sen die sicherheitskritischen Anwendungen gegenüber anderen Anwendungen priorisiert und
Echtzeitgarantien für die Ausführung der GPU-Befehle kritischer Anwendungen erfüllt werden
können. Im folgenden Abschnitt wird erläutert, was in dieser Arbeit darunter zu verstehen ist.

1.2 Echtzeitgarantien

Unter Echtzeitgarantie wird verstanden, dass sichergestellt ist, dass eine kritische Anwendung
durch andere Anwendungen, die die selbe GPU verwenden, nicht derart behindert wird, dass ihre
(sicherheitskritische) Anzeige nicht rechtzeitig aktualisiert werden kann. Was rechtzeitig bedeutet,
hängt dabei von der jeweiligen Anwendung ab.

Wenn nachfolgend von einer Echtzeitgarantie für eine kritische Anwendung gesprochen wird, wird
darunter verstanden, dass sichergestellt ist, dass höchstens ein Intervall von einer i-tel Sekunde
zwischen dem Zeitpunkt des Abschlusses des Renderings eines Bildes und dem Abschluss des Ren-
derings des darauf folgenden Bildes vergeht. Dies wird nachfolgend an einem konkreten Beispiel
erklärt:

Einige sicherheitskritische Anzeigen, wie beispielsweise die Geschwindigkeitsanzeige, müssen re-
gelmäßig aktualisiert werden. Dabei soll dem Fahrer der Eindruck einer kontinuierlichen Bewe-
gung vermittelt werden. Um dies zu erreichen, muss die Anzeige mehrmals pro Sekunde aktuali-
siert werden, indem ein neues Bild des Instruments gerendert wird.

12

1.3 Probleme heutiger OpenGL ES-Systeme

An dieser Stelle wird beispielhaft davon ausgegangen, dass hierfür ein Mindestwert von 30 Bildern
pro Sekunde nicht unterschritten werden darf. Eine naive Festlegung der Anzahl an gerenderten
Bildern pro Sekunde reicht dabei aber nicht aus, um eine praktikable Echtzeitgarantie für diese
Anwendung zu definieren. In diesem Beispiel könnte diese Bedingung auch dann erfüllt werden,
wenn die für die Geschwindigkeitsanzeige zuständige Anwendung 9

10 Sekunden blockiert würde
und in der letzten Zehntel Sekunde 30 Bilder rendern könnte. In dem Fall hätte der Fahrer jedoch
nicht den Eindruck einer kontinuierlichen Bewegung.

Um Bilder rendern zu können, müssen Anwendungen Befehle an die GPU übermitteln. Eine der
Schnittstellen, die Anwendungen dies ermöglicht, ist OpenGL ES. Die Betrachtung dieser Schnitt-
stelle (in der Version 2.0) steht im Mittelpunkt dieser Arbeit. Eine eingehende Beschreibung der
Grundlagen von OpenGL ES 2.0 erfolgt in Kapitel 2. Im nächsten Abschnitt werden einige der
grundsätzlichen Probleme dieser Schnittstelle erörtert, die der Erfüllung von Echtzeitgarantien im
Wege stehen.

Wenn nicht explizit anders angegeben, ist nachfolgend OpenGL ES in der Version 2.0 gemeint,
wenn von OpenGL ES ohne Angabe der Versionsnummer gesprochen wird.

1.3 Probleme heutiger OpenGL ES-Systeme

Keines der heute verfügbaren OpenGL ES-Systeme1 unterstützt eine Virtualisierung der für die Aus-
führung der OpenGL ES-Befehle verwendeten GPU. Insbesondere ist es nicht möglich,

• die Ausführung von Befehlen einer bestimmten Anwendung gegenüber anderen Anwendun-
gen zu priorisieren oder

• Einschränkungen hinsichtlich der Nutzung der Ressourcen der verwendeten GPU (zum Bei-
spiel GPU-Speicher) für einzelne Anwendungen festzulegen.

Dies hat zur Folge, dass „bösartige“ oder fehlerhafte Anwendungen einen Großteil der GPU-
Ressourcen für sich beanspruchen können. OpenGL ES definiert keinen Mechanismus, um in
einem solchen Umfeld für kritische Anwendungen sicherstellen zu können, dass deren Befehle
rechtzeitig (oder überhaupt) ausgeführt werden können.

Erschwerend kommt hinzu, dass die von einem OpenGL ES-System verwendete Hardware von der
Spezifikation von OpenGL ES als Blackbox behandelt wird. Das Verhalten der Hardware bei Aus-
führung eines bestimmten OpenGL ES-Befehls ist auf Grundlage seiner Spezifikation daher nicht
vorhersagbar. OpenGL ES definiert zum Beispiel eine Reihe von Datenobjekten, die vom OpenGL
ES-System verwaltet werden. Anwendungen haben die Möglichkeit über OpenGL ES-Befehle Da-
ten in solchen Datenobjekten zu speichern. Die Spezifikation schreibt aber weder vor, wo diese
Daten abgelegt werden (zum Beispiel im Hauptspeicher oder im GPU-Speicher), noch wie sie ab-
gelegt werden. Es wäre demnach spezifikationskonform, wenn durch die Übertragung von einem
Megabyte Daten in ein solches Datenobjekt fünf Megabyte des im GPU-Speicher verfügbaren Spei-
cherplatzes belegt würden.

1Ein OpenGL ES-System ist ein System, das eine Implementierung der OpenGL ES-Schnittstelle bereitstellt für Anwen-
dungen bereitstellt und ihnen ermöglicht, über diese Schnittstelle Bilder zu rendern. Eine genaue Beschreibung der
Komponenten eines OpenGL ES-Systems erfolgt in Kapitel 2.2.

13

1 Einleitung

Im nächsten Abschnitt wird ein Lösungsansatz beschrieben, durch den es trotz der hier genannten
Probleme ermöglicht werden soll, Echtzeitgarantien für kritische Anwendungen zu erfüllen, auch
wenn das verwendete OpenGL ES-System zur gleichen Zeit von anderen Anwendungen genutzt
wird.

1.4 Ansatz zur Lösung der genannten Probleme

Die Grundidee zur Lösung der oben beschriebenen Probleme basiert darauf, dass Anwendungen
ihre Befehle nicht direkt an das OpenGL ES-System übermitteln, sondern an eine Zwischenschicht,
die die gleiche Schnittstelle bereitstellt. Diese Zwischenschicht wertet die übermittelten Befehle
anhand der übergebenen Parameter und des aktuellen Kontextes aus und entscheidet dann dar-
über, ob die Befehle sofort oder erst zu einem späteren Zeitpunkt an das eigentliche OpenGL ES-
System weitergeleitet werden können, oder ob sie ganz abgelehnt werden müssen. Die Zwischen-
schicht verfolgt bei dieser Entscheidung das Ziel, sicherzustellen, dass die nächsten Befehle kri-
tischer Anwendungen rechtzeitig ausgeführt werden können. Damit die Zwischenschicht dieser
Aufgabe nachkommen kann, müssen jedoch die folgenden beiden Voraussetzungen erfüllt sein:

• Der Ressourcenverbrauch und die Laufzeit der übermittelten Befehle müssen insoweit vor-
hergesagt werden können, dass zumindest eine Obergrenze dafür garantiert werden kann.

• Das Verhalten des verwendeten OpenGL ES-Systems hinsichtlich der Ausführung der über-
mittelten Befehle muss bekannt sein.

Der erste Punkt allein reicht nicht aus. Dies soll an einem Beispiel erläutert werden: Angenom-
men es soll ein Befehl einer unkritischen Anwendung ausgeführt werden, dessen Laufzeit gerade
kurz genug ist, um den nächsten Befehl einer kritischen Anwendung rechtzeitig an das OpenGL ES-
System übermitteln zu können. Dann dürfte der Befehl der unkritischen Anwendung auf Grundla-
ge des ersten Punktes ausgeführt werden. Falls aber über das System-Verhalten bekannt ist, dass
der erste Befehl einer Anwendung stets um eine bestimmte Zeit verzögert wird, wenn er auf den
Befehl einer anderen Anwendung folgt, dann dürfte der Befehl der unkritischen Anwendung nicht
ausgeführt werden.2

Der Wunsch, diese beiden Voraussetzungen erfüllen zu können, ist der Ausgangspunkt für die vor-
liegende Arbeit. Im folgenden Abschnitt wird ihre Zielsetzung genauer erläutert.

1.5 Zielsetzung dieser Arbeit

Ziel dieser Arbeit ist es, anhand einiger realer OpenGL ES-Systeme zu untersuchen, inwieweit die
beiden im vorhergehenden Abschnitt genannten Voraussetzungen für die Implementierung einer
Zwischenschicht mit den genannten Aufgaben erfüllt werden können. Konkret setzt sich diese Ar-
beit die folgenden vier Ziele:

2Dies kommt in OpenGL ES-Systemen vor, weil die relevanten GPU-Einstellungen der aufrufenden Anwendung erneut
in die GPU übertragen werden müssen, da sich die Einstellungen der zuvor bedienten Anwendung davon unterschei-
den können. Ein solcher Vorgang wird auch als Kontextwechsel bezeichnet.

14

1.6 Verwandte Arbeiten

• Sämtliche relevanten Befehle von OpenGL ES sind zu bestimmen, deren Ausführung einen
negativen Einfluss auf die Erfüllung von Echtzeitgarantien für kritische Anwendungen haben
könnte. Ein solcher Einfluss ist nicht für alle von OpenGL ES definierten Befehle zu erwarten.
Es existiert beispielsweise ein Befehl, mit dem der Name des Herstellers des verwendeten
OpenGL ES-Systems abgefragt werden kann. Es ist nicht anzunehmen, dass durch diesen
Befehl die Ressourcen der GPU in irgendeiner Weise belastet werden.

• Für die relevanten OpenGL ES-Befehle ist eine Analyse ihres Laufzeitverhaltens und ihres
Ressourcenverbrauchs durchzuführen.

• Spezielle Szenarien sind zu untersuchen, um festzustellen, inwiefern das Verhalten von
OpenGL ES-Systemen die rechtzeitige Ausführung kritischer Befehle verhindern kann. Die
im letzten Abschnitt beschriebenen zusätzlichen Laufzeitkosten für die Ausführung von
Befehlen, die unmittelbar nach dem Befehl einer anderen Anwendung ausgeführt werden,
wären ein Beispiel für so ein solches Systemverhalten.

• Untersuchungsmethoden und Metriken sind zu entwickeln, auf deren Grundlage der Res-
sourcenverbrauch sowie die Laufzeit von OpenGL ES-Befehlen auf konkreten OpenGL ES-
Systemen prognostiziert und die dafür notwendigen systemspezifischen Kennzahlen ermit-
telt werden können. Die entwickelten Untersuchungsmethoden sind auf realen OpenGL ES-
Systemen durchzuführen.

Die in dieser Arbeit entwickelten Metriken finden sich in Kapitel 2. Die Untersuchungsmethoden
werden in Kapitel 3 beschrieben. Die Anwendung der Untersuchungsmethoden und Metriken auf
drei realen OpenGL ES-Systemen erfolgt schließlich in Kapitel 4. Im nächsten Abschnitt wird ein
Überblick über relevante, verwandte Arbeiten gegeben.

1.6 Verwandte Arbeiten

[Dwarakinath 2008] beschäftigt sich damit, wie sichergestellt werden kann, dass jede Anwendung,
die die GPU nutzt, einen gleichen Anteil an den Rechenzeit-Ressourcen der GPU erhält. Diese Ar-
beit setzt auf Ebene der GPU-Treiber an. Diese werden um einen Scheduler erweitert, der Befehle
verschiedener Anwendungen zwischenspeichert. Er teilt die verfügbare Rechenzeit in gleich große
Intervalle auf und weist jeder Anwendung in jedem Intervall einen zeitlichen Anteil an der GPU-
Nutzung zu. Falls eine Anwendung ihren Anteil in einem Intervall nicht ausschöpfen kann, erhöht
sich ihr Anteil im nächsten Intervall entsprechend (umgekehrt verringert er sich, wenn eine An-
wendung im vorhergehenden Intervall die GPU länger nutzt als erlaubt). Befehle einer Anwendung
werden nur an die GPU übergeben, wenn deren prognostizierte Laufzeit geringer ist als der ihr zu-
gewiesene Anteil.

Durch dieses Vorgehen soll es ermöglicht werden, dass alle Anwendungen im langen Mittel einen
gleichen Anteil an den Rechenzeit-Ressourcen der GPU erhalten. Eine Priorisierung einzelner An-
wendungen ist nicht vorgesehen und auch nicht die Erfüllung von Echtzeitgarantien für einzelne
Anwendungen.

[Bautin u. a. 2008] erweitert den Ansatz von [Dwarakinath 2008] dahingehend, dass Anwendungen,
die um die GPU konkurrieren, auch einen gleichen Anteil am GPU-Speicher erhalten.

15

1 Einleitung

[Kato u. a. 2011] verfolgt einen ähnlichen Ansatz wie [Dwarakinath 2008]. Auch hier werden die
GPU-Treiber um einen Scheduler erweitert, der zum Ziel hat, die verfügbare GPU-Rechenzeit auf
konkurrierende Anwendungen aufzuteilen; im Gegensatz zu [Dwarakinath 2008] ermöglicht dieser
Ansatz jedoch die Priorisierung einzelner Anwendungen gegenüber anderen Anwendungen.

Auch dieser Ansatz hat nicht die Erfüllung von Echtzeitgarantien zum Ziel. Auch bei höchster Prio-
risierung kann nicht ausgeschlossen werden, dass durch die Ausführung von Befehlen niedrig prio-
risierter Anwendungen die rechtzeitige Ausführung von Befehlen kritischer Anwendungen verhin-
dert wird.

[Grottel u. a. 2009] beschäftigt sich mit der Nutzung des GPU-Speichers durch OpenGL und mit der
Datenübertragung vom Hauptspeicher in die GPU und untersucht verschiedene Ansätze, um zu
visualisierende Datensätze, die sich häufig ändern, der GPU möglichst effizient zugänglich zu ma-
chen. Dabei wird der Einfluss der verschiedenen Ansätze auf das Laufzeitverhalten von OpenGL-
Datenübertragungsbefehlen und Zeichenbefehlen analysiert. Da dieses Verhalten auch im Rah-
men der vorliegenden Arbeit untersucht werden muss, sind die von [Grottel u. a. 2009] gewonnen
Erkenntnisse dazu für die kommenden Untersuchungen relevant.

Im nächsten Kapitel wird ein Überblick über die Schnittstelle OpenGL ES gegeben und es werden
die Grundlagen von OpenGL ES-Systemen erörtert, die zum Verständnis der nachfolgenden Kapi-
tel unverzichtbar sind.

16

2 Grundlagen von OpenGL ES-Systemen

2.1 OpenGL und OpenGL ES

Für GPUs existiert keine Standard-Hardwareschnittstelle wie beispielsweise die IDE- oder SCSI-
Schnittstelle für Laufwerke. Es wäre daher sehr schwierig, Computergrafik-Anwendungen zu
entwickeln, die eine große Anzahl verschiedener GPUs nutzen können, wenn sie die GPUs über
ihre Hardwareschnittstellen ansprechen müssten. Es ist daher unüblich für solche Anwendungen,
GPUs direkt über die Hardwareschnittstelle anzusprechen. Stattdessen wird eine High-Level-
Grafik-API verwendet, die die Details der jeweiligen Hardware verbirgt. OpenGL ist eine solche
API. Sie unterstützt alle großen Betriebssysteme und wird von den meisten GPU-Herstellern für
ihre Produkte implementiert (vgl. [Lagar-Cavilla u. a. 2007], Seiten 33–34).

OpenGL ES ist eine Variante von OpenGL, die speziell im Hinblick auf eingebettete GPUs entwickelt
wurde (wie sie zum Beispiel in Fahrzeugen, Mobiltelefonen, PDAs, etc. zum Einsatz kommen). Ei-
nes der vorrangigen Ziele der Hersteller solcher eingebetteten GPUs ist die Reduktion des Stromver-
brauchs. OpenGL ES ermöglicht es ihnen, eine gegenüber Standard-OpenGL erheblich reduzierte
API zu unterstützen, was wiederum die Anforderungen an die Hardware verringert und somit hilft,
Geräte zu entwickeln, die letztendlich weniger Strom verbrauchen (vgl. [Cole 2005], Seite 7).

OpenGL ES 2.0 ist an (Standard-) OpenGL 2.0 angelehnt. Nach [Munshi u. a. 2008] unterscheidet es
sich im Wesentlichen in den folgenden beiden Punkten von OpenGL 2.0:

• Jegliche Redundanz in OpenGL 2.0 wurde in OpenGL ES 2.0 entfernt. Wo es in OpenGL 2.0
mehr als eine Möglichkeit gibt, um die selbe Operation auszuführen, wurde für OpenGL ES
2.0 nur eine der Möglichkeiten übernommen.

• Um spezielle Einschränkungen von eingebetteten GPUs zu berücksichtigen, wurde neue
Funktionalität in OpenGL ES 2.0 eingeführt, beispielsweise die Möglichkeit, die Präzision
von Fließkommavariablen in Shadern zu spezifizieren (eine geringere Präzision ermög-
licht die Nutzung vereinfachter Fließkommaprozessoren, die wiederum einen geringeren
Stromverbrauch aufweisen können).

OpenGL ES 2.0 ist also keine echte Untermenge von OpenGL 2.0. Von Version 4.0 auf 4.1 wurde
OpenGL jedoch dahingehend erweitert, dass es die gesamte Funktionalität von OpenGL ES 2.0
enthält (ab OpenGL 4.1 ist OpenGL ES 2.0 also eine echte Untermenge von OpenGL).

2.2 Implementierungsvarianten von OpenGL ES-Systemen

Die Spezifikationen von OpenGL ES und Standard-OpenGL schreiben nicht vor, dass in einem kon-
kreten System, das OpenGL unterstützt, diese Unterstützung in eigener Hardware implementiert

17

2 Grundlagen von OpenGL ES-Systemen

sein muss (siehe [Segal u. a. 2010], Seite 2). Es gibt Systeme, die die gesamte Funktionalität von
OpenGL in Software realisieren, zum Beispiel Mesa 3D [Paul 2007].1

Die Nutzung von Softwareimplementierungen ist jedoch unüblich, da die Verwendung von
spezialisierter Hardware die Entwicklung leistungsfähigerer Grafik-Anwendungen ermöglicht.
Auf Software-Rendering wird im Notfall zurückgegriffen, wenn die verwendete Hardware eine
bestimmte Funktionalität nicht unterstützt [vgl. Lagar-Cavilla u. a. 2007, Seite 34].

Üblicherweise bestehen OpenGL ES-Systeme aus vier Komponenten:

• Eine Implementierung der OpenGL ES-API, die von Anwendungen angesprochen werden
kann.

• Einen separaten GPU-Speicher, in dem das OpenGL ES-System seine Daten ablegt. Dieser
GPU-Speicher ist im einfachsten Fall ein Bereich des Hauptspeichers, der vom OpenGL ES-
System genutzt werden kann. Es gibt aber auch Systeme, die über einen eigenen, physischen
Speicher verfügen. Moderne Desktop-Systeme verfügen typischerweise über mehrere Giga-
byte eines solchen Speichers mit einer internen Speicherbandbreite von über 64 Gbps [Satish
u. a. 2009].

• Eine physische GPU, die idealerweise alle Schritte der Renderpipeline2 in Hardware unter-
stützt. Während früher üblicherweise jeder Schritt der Renderpipeline durch eigene Hardwa-
re unterstützt wurde, geht seit einigen Jahren der Trend hin zur Verwendung sogenannter
Unified Processors – programmierbare Prozessoren, die verschiedene Aufgaben erfüllen kön-
nen und auf denen mehrere Schritte der Renderpipeline berechnet werden (siehe beispiels-
weise Nvidia 2006, Seiten 20–21).

• Ein Gerätetreiber, der als Schnittstelle zwischen der OpenGL ES-API, dem Betriebssystem
sowie der GPU und dem GPU-Speicher fungiert.

2.3 Client-Server-Modell der Befehlsübermittlung

Die Übermittlung von OpenGL ES-Befehlen folgt einem Client-Server-Modell. Wenn eine An-
wendung einen OpenGL ES-Befehl aufruft, wird der Befehl an eine Komponente des OpenGL
ES-Systems übermittelt, die als GL-Client bezeichnet wird. Für jede Anwendung, die OpenGL
ES nutzt, existiert eine Instanz dieser Komponente. Sie hat die Möglichkeit, an sie übermittelte
Befehle zwischenzuspeichern und erst zu einem späteren Zeitpunkt an den sogenannten GL-
Server weiterzuleiten. OpenGL ES-Befehle werden erst ausgeführt, nachdem sie an den GL-Server
übermittelt wurden.

Der GL-Server kann sich prinzipiell auf einem anderen Rechner befinden als der GL-Client. In ein-
gebetteten Systemen ist dies üblicherweise nicht der Fall (siehe [Munshi u. a. 2008], Seite 16). Den-
noch kann die Übermittlung von Befehlen durch den GL-Client verzögert werden. Dies ist abhän-
gig vom konkreten OpenGL ES-System. Sobald der GL-Client einen Befehl zwischengespeichert

1Mesa 3D ist seit Version 2.2 keine ausschließliche Softwareimplementierung mehr. Es kann optional auch Hardware-
beschleunigung nutzen, sofern entsprechende Treiber vorhanden sind.

2Die Renderpipeline von OpenGL ES besteht aus einer Abfolge von Datenverarbeitungsschritten, durch die die über-
gebenen Eingangsdaten sukzessive umgewandelt werden, bis am Ende ein Bild entsteht, das auf Computerbildschir-
men ausgegeben werden kann. Die Renderpipeline wird in Abschnitt 2.6 detailliert beschrieben.

18

2.4 Datenübergabe und -verwaltung

hat, kann die von der Anwendung aufgerufene Funktion bereits zurückspringen, d. h. es ist prinzipi-
ell möglich, dass ein Rücksprung erfolgt, bevor der entsprechende Befehl vom OpenGL ES-System
ausgeführt wurde.

Es macht daher wenig Sinn, die Laufzeit eines OpenGL ES-Befehls zu messen, indem die verstriche-
ne Zeit zwischen dem Aufruf des entsprechenden Befehls und dessen Rücksprung ermittelt wird.
OpenGL ES definiert jedoch zwei Befehle, die hier sehr nützlich sind, glFlush und glFinish:

• Der Aufruf von glFlush veranlasst den GL-Client, alle zwischengespeicherten Befehle an
den GL-Server weiterzuleiten.

• Der Aufruf von glFinish überprüft, ob alle Befehle, die von der aufrufenden Anwendung an
das OpenGL ES-System übermittelt wurden, vollständig ausgeführt wurden, und kehrt erst
zurück, sobald dies der Fall ist.

Mit Hilfe dieser beiden Befehle kann eine sinnvolle Metrik für die Bestimmung der Laufzeit von
OpenGL ES-Befehlen definiert werden: Die Laufzeit eines OpenGL ES-Befehls C ist die Zeit, die
zwischen dem Aufruf von C durch die Anwendung A und dem Rücksprung des nächsten Aufrufs
von glFinish durch A vergeht, wobei die folgenden Bedingungen von A erfüllt werden müssen:

• Vor Aufruf von C ruft A glFinish auf.

• Zwischen dem Rücksprung von glFinish und dem Aufruf von C ruft A keinen weiteren
OpenGL ES-Befehl auf.

• Unmittelbar nach dem Rücksprung von C ruft A glFlush auf.

• Unmittelbar nach dem Rücksprung von glFlush ruft A glFinish auf.

Wenn nachfolgend im Zusammenhang einer OpenGL ES-Anwendung von der „Übermittlung eines
OpenGL ES-Befehls an den GL-Server“ gesprochen wird, ist damit gemeint, dass dem Aufruf des
entsprechenden Befehls ein Aufruf von glFlush folgt.

2.4 Datenübergabe und -verwaltung

Bevor die Renderpipeline eines OpenGL ES-Systems ein Bild rendern kann, muss die OpenGL ES-
Anwendung dem System Daten übergeben, aus denen das Bild berechnet werden kann. OpenGL
ES unterscheidet fünf Arten solcher Daten:

• Vertexdatenarrays

• Indexdatenarrays

• Vertex-Attribute

• Texturen

• Uniforms

Eine Minimalvoraussetzung, um ein Bild rendern zu können, ist, dass dem OpenGL ES-System
von der aufrufenden Anwendung mindestens ein Vertexdatenarray übergeben wurde. Dieses Array
muss mindestens ein Element enthalten und die Größe der Elemente muss mindestens ein Byte

19

2 Grundlagen von OpenGL ES-Systemen

betragen. Elemente von Vertexdatenarrays dienen als Input für den Vertexshader-Schritt der Ren-
derpipeline. Im Zuge dieses Schrittes wird vom OpenGL ES-System für jedes Element im Vertexda-
tenarray eine Instanz eines speziellen Programms ausgeführt, das als Vertexshader bezeichnet wird.
Da Vertexshader bewusst so entworfen wurden, dass sie relativ geringe Datenmengen verarbeiten,
ist die maximale Größe der Elemente von Vertexdatenarrays auf 16 Byte begrenzt (siehe [Bailey
2011], Seite 67). Vertexshader werden in Abschnitt 2.5 näher erläutert.

Die Elemente eines Indexdatenarrays bestimmen beim Rendering, welche Elemente der zu verar-
beitenden Vertexdatenarrays berücksichtigt werden sollen und in welcher Reihenfolge sie berück-
sichtigt werden sollen. Die Übergabe eines Indexdatenarrays ist optional. Wenn keines übergeben
wird, werden alle Elemente von Vertexdatenarrays in der Reihenfolge berücksichtigt, in der sie im
Array liegen.

Die Übergabe von Vertex-Attributen, Texturen oder Uniforms ist ebenfalls optional. Vertex-
Attribute dienen ebenfalls als Input für Vertexshader. Für sie gelten die gleichen Einschränkungen
wie für Elemente eines Vertexdatenarrays. Sie werden in Abschnitt 2.6.2.1 näher erläutert. Texturen
dienen als Input für Fragmentshader3 und werden in Abschnitt 2.6.2.4 näher erläutert. Uniforms
dienen sowohl als Input für Vertex- als auch für Fragmentshader. Sie erfüllen die Rolle von kon-
stanten Variablen und stehen jeder ausgeführten Instanz dieser Programme zur Verfügung. Ihre
Größe ist auf 128 Byte begrenzt.

Vertexdatenarrays liegen im Hauptspeicher und werden von der OpenGL ES-Anwendung verwal-
tet – vor Anstoßen des Renderings muss dem OpenGL ES-System durch die Anwendung ein Zeiger
auf das Array übergeben werden. Alle übrigen Daten werden vom OpenGL ES-System verwaltet, so-
bald sie ihm übergeben wurden. Nach erfolgter Übergabe kann die OpenGL ES-Anwendung diese
Daten freigeben. Optional besteht auch für Vertexdatenarrays die Möglichkeit, sie vom OpenGL ES-
System verwalten zu lassen, indem sie in ein spezielles Datenobjekt kopiert werden. Im nächsten
Abschnitt werden die verschiedenen Arten von Datenobjekten genauer erläutert.

2.4.1 Datenobjekte

Datenobjekte sind vom OpenGL ES-System verwaltete Ressourcen. OpenGL ES-Anwendungen
können Datenobjekte zwar erzeugen und freigeben sowie Daten in diese Datenobjekte übertragen
(mit Ausnahme von Renderbuffer-Objekten, siehe Abschnitt 2.4.1.3); das OpenGL ES-System
ist jedoch für die Reservierung und Freigabe des dafür nötigen Speicherplatzes zuständig und
bestimmt darüber, wo sich Datenobjekte befinden (zum Beispiel im Hauptspeicher oder im
GPU-Speicher). Nachdem sie Daten in Datenobjekte übertragen haben, erhalten OpenGL ES-
Anwendungen keinen direkten Zugriff mehr darauf. Sie können allerdings erneut Daten in ein
Datenobjekt übertragen, wodurch bereits dort befindliche überschrieben werden (außer bei
Renderbuffer-Objekten, siehe Abschnitt 2.4.1.3).

OpenGL ES kennt vier Arten von Datenobjekten: Vertexbuffer-Objekte, Texturobjekte, Renderbuffer-
Objekte und Framebuffer-Objekte. Diese Datenobjektarten werden in den nächsten Abschnitten
genauer beschrieben.

3Wie Vertexshader sind auch Fragmentshader spezielle Programme, die im Zuge der Datenverarbeitung durch die Ren-
derpipeline ausgeführt werden. Sie werden in Abschnitt 2.5 näher erläutert.

20

2.4 Datenübergabe und -verwaltung

2.4.1.1 Vertexbuffer-Objekte

In Vertexbuffer-Objekten können Vertex- oder Indexdatenarrays gespeichert werden. Außer einer
systemspezifischen Maximalgröße definiert OpenGL ES keine Einschränkungen hinsichtlich ihrer
Größe. Eine Besonderheit, die Vertexdaten-Objekte von anderen Datenobjekten unterscheidet, ist
die Möglichkeit, einen Usage Hint anzugeben. Der Usage Hint dient dazu, dem OpenGL ES-System
einen Hinweis zu geben, wie das entsprechende Datenobjekt von der Anwendung verwendet wer-
den wird (vgl. [Munshi und Leech 2010], Seiten 23–24). Es stehen drei Möglichkeiten zur Wahl:

• GL_STATIC_DRAW: Der Inhalt des Datenobjekts wird von der Anwendung einmal festgelegt
und häufig zum Rendern verwendet.

• GL_DYNAMIC_DRAW: Der Inhalt des Datenobjekts wird von der Anwendung häufig verändert
und häufig zum Rendern verwendet.

• GL_STREAM_DRAW: Der Inhalt des Datenobjekts wird von der Anwendung einmal festgelegt
und selten zum Rendern verwendet.

Die Spezifikation von OpenGL ES schreibt nicht vor, wie ein konkretes OpenGL ES-System auf die-
se Hinweise reagieren soll. Im Gegenzug ist es den OpenGL ES-Anwendungen freigestellt, sich an-
ders zu verhalten, als dies durch den angegeben Usage Hint zu erwarten wäre. Es ist beispielsweise
durchaus legal, ein Vertexbuffer-Objekt mit Angabe von GL_STATIC_DRAW zu erzeugen und es an-
schließend häufig zu verändern (siehe auch [Munshi u. a. 2008], Seite 118).

2.4.1.2 Texturobjekte

In Texturobjekten können Texturen gespeichert werden. Texturen dienen als optionaler Input für
Fragmentshader (vgl. Abschnitt 2.6.2.4). Die Datenelemente einer Textur – Texel genannt – sind
als zweidimensionales Array organisiert. Hinsichtlich der Zeilen und Spalten-Anzahl gilt die Ein-
schränkung, dass es sich dabei um eine Zweierpotenz handeln muss. Die Größe eines Texels ist auf
vier Byte begrenzt.

2.4.1.3 Renderbuffer-Objekte

Renderbuffer-Objekte unterscheiden sich von den anderen Datenobjekten darin, dass OpenGL ES-
Anwendungen keine Daten in sie übertragen können. In Renderbuffer-Objekten werden von der
Renderpipeline erzeugte Ergebnisdaten gespeichert.

2.4.1.4 Framebuffer-Objekte

Anders als bei den andern drei Datenobjektarten haben OpenGL ES-Anwendungen keinen Einfluss
auf die Größe von Framebuffer-Objekten. In ihnen können die IDs von bis zu drei anderen Daten-
objekten gespeichert werden, wobei nur IDs von Textur- und Renderbuffer-Objekten gespeichert
werden können. Framebuffer-Objekte fungieren als Zielpunkte für die Ausgabe der Renderpipeline
und leiten die Ergebnisdaten an die Datenobjekte weiter, deren IDs sie gespeichert haben.

21

2 Grundlagen von OpenGL ES-Systemen

Die drei Datenobjekte werden einem Framebuffer-Objekt jeweils in einer von drei Rollen zugewie-
sen: Als sogenannter Colorbuffer, Depthbuffer oder Stencilbuffer. Im Colorbuffer wird das geren-
derte Bild gespeichert. Im Depth- und im Stencilbuffer werden Werte gespeichert, die im Rahmen
des letzten Schrittes der Renderpipeline dazu genutzt werden können, zu entscheiden, ob und ggf.
wie einzelne Ergebniswerte mit den bereits vorhandenen Werten in den drei Datenobjekten des
Framebuffer-Objekts kombiniert werden (siehe Abschnitt 2.6.2.5).

2.4.2 Eviction

Wenn gewisse Daten zur Ausführung des Renderings im GPU-Speicher liegen müssen, kann die
Situation eintreten, dass ein Bild nicht gerendert werden kann, weil im GPU-Speicher nicht mehr
genug Platz vorhanden ist, um die dafür benötigten Daten dort unterzubringen. Um auch in einer
solchen Situation Rendering zu ermöglichen, verfügen gewisse OpenGL ES-Systeme über einen
sogenannten Eviction-Mechanismus. Unter dem Begriff Eviction versteht man das Auslagern von
Daten aus dem GPU-Speicher, um Platz für die Speicherung anderer Daten zu schaffen.

Eviction kann unter ungünstigen Umständen aber auch negative Auswirkungen haben. Die Ausla-
gerung eines Datenobjekts könnte zur Folge haben, dass sich ein nachfolgender Renderingvorgang
verlängert. Dies soll an einem Beispiel erläutert werden: Ausgangspunkt ist, dass ein Vertexbuffer-
Objekt erzeugt wird, das die Vertexdaten für einen Renderingvorgang speichern soll. Da im GPU-
Speicher nicht mehr genug Platz dafür ist, wird durch den Eviction-Mechanismus ein Texturobjekt
in den Hauptspeicher ausgelagert. Nun wird der Renderingvorgang gestartet. Wenn im Zuge die-
ses Vorgangs aber genau diese Textur im GPU-Speicher benötigt wird, muss sie erst wieder dorthin
zurückübertragen werden. Um dies zu ermöglichen, wird durch den Eviction-Mechanismus eine
andere Textur ausgelagert und anschließend die erste Textur in den GPU-Speicher übertragen.

Nun kann das Rendering fortgesetzt werden. Es ist aber nicht ausgeschlossen, dass im weiteren Ver-
lauf des Renderingvorgangs auch die zweite ausgelagerte Textur benötigt wird. Diese müsste dazu
auch wieder in den GPU-Speicher zurückübertragen werden, wofür erst ein drittes Datenobjekt
ausgelagert werden müsste, das möglicherweise später auch benötigt wird, . . . Durch die Auslage-
rung eines Datenobjekts kann es unter ungünstigen Umständen bei der späteren Ausführung eines
Renderingvorgangs zu einer Kaskade von Evictions kommen.

2.4.3 Speichergranularität, Effektivgröße und Speicherblockgröße

Wie in Kapitel 1.3 dargelegt, ist nicht gewährleistet, dass die Menge an GPU-Speicher, die von
einem Datenobjekt belegt wird, der Menge der in diesem Datenobjekt gespeicherten Daten ent-
spricht. Da Datenobjekte ein zentrales Konzept von OpenGL ES darstellen, ist es wichtig, deren
Speicherbedarf in einem konkreten OpenGL ES-System analysieren und vorhersagen zu können.
Dazu werden hier die Begriffe Datenobjektgröße und Speicherblock sowie die Speichermetriken
Speichergranularität, Effektivgröße und Speicherblockgröße genau definiert, die in den nachfolgen-
den Untersuchung von großem Nutzen sein werden:

• Die Datenobjektgröße bezeichnet die Menge der von einer OpenGL ES-Anwendung in einem
Datenobjekt gespeicherten Daten.

22

2.5 Programmobjekte

• Speichergranularität: Wenn der von Datenobjekten belegte GPU-Speicher stets einem ganz-
zahligen Vielfachen eines bestimmten Wertes entspricht, dann wird dieser Wert nachfolgend
als Speichergranularität bezeichnet, wenn zusätzlich für Datenobjekte die folgenden Bedin-
gungen erfüllt werden:

1. Falls die Datenobjektgröße genau einem ganzzahligen Vielfachen der Speichergranula-
rität entspricht, dann entspricht die von ihm belegte Menge an GPU-Speicher exakt der
Datenobjektgröße.

2. Falls die Größe eines Datenobjekts nicht einem ganzzahligen Vielfachen der Speicher-
granularität entspricht, dann belegt dieses Datenobjekt die Menge an GPU-Speicher,
die dem nächstgrößeren ganzzahligen Vielfachen der Speichergranularität entspricht.

3. Der zusätzlich von einem solchen Datenobjekt belegte Speicherplatz steht nicht mehr
für die Speicherung nachfolgender Datenobjekte zur Verfügung.

• Die Effektivgröße eines Datenobjekts entspricht exakt der Größe des Datenobjekts, falls seine
Größe einem ganzzahligen Vielfachen der Speichergranularität entspricht. Sonst entspricht
die Effektivgröße dem nächstgrößeren ganzzahligen Vielfachen der Speichergranularität.

• Speicherblock: Wenn die Menge an GPU-Speicher, die von einem Datenobjekt A belegt wird,
größer ist als dessen Effektivgröße X , dann wird nachfolgend davon gesprochen, dass A in ei-
nem Speicherblock der Größe Y abgelegt wird, wenn mindestens die folgenden Bedingungen
erfüllt werden:

1. Der durch die Erzeugung von A belegte GPU-Speicher entspricht exakt Y .

2. Falls ∃ n ∈N : nX ≤ Y ∧(n+1)X > Y , dann wird kein weiterer GPU-Speicher mehr durch
die Erzeugung der nächsten n−1 Datenobjekte belegt, wenn deren Effektivgröße jeweils
X entspricht.

3. Falls kein solches n existiert, dann wird für die Erzeugung des nächsten Datenobjekts
kein weiterer GPU-Speicher belegt, falls für dessen Effektivgröße Z gilt: Z ≤ Y −X

Hinsichtlich der in 2. und 3. erwähnten Datenobjekte wird nachfolgend davon gesprochen,
dass diese im selben Speicherblock abgelegt sind wie A.

• Y wird nachfolgend als Speicherblockgröße bezeichnet.

Der entscheidende Unterschied zwischen der Ablage von Datenobjekten in Speicherblöcken und
einer Speichergranularität, die größer ist als ein Byte, besteht also darin, dass der zusätzlich zur
Datenobjektgröße belegte GPU-Speicher bei Speicherblöcken für nachfolgender Datenobjekte zur
Verfügung steht.

2.5 Programmobjekte

Während des Renderings führt die Renderpipeline von OpenGL ES 2.0 zwei Arten von speziellen
Programmen aus, Vertexshader und Fragmentshader.4 Diese Programme müssen von den OpenGL
ES-Anwendungen bereitgestellt werden. Dies kann entweder in Form von Quellcode geschehen

4Die Erläuterung der genauen Rolle, die die beiden Shader-Arten in der Renderpipeline spielen, erfolgt in Abschnitt
2.6.2.1 für Vertexshader und in Abschnitt 2.6.2.4 für Fragmentshader.

23

2 Grundlagen von OpenGL ES-Systemen

(der in Form von Null-terminierten Zeichenketten übergeben wird) oder in vorkompilierter Form
als sogenannte Shader Binaries. Shader werden dabei in einem Dialekt der Sprache C geschrieben,
der als OpenGL ES Shading Language bezeichnet wird [Simpson und Kessenich 2009].

Falls die Shader in Form von Quellcode an das OpenGL ES-System übergeben werden, müssen
diese zuerst kompiliert werden, um Shader Binaries zu erzeugen. Die Spezifikation von OpenGL ES
schreibt zwingend vor, dass OpenGL ES-Systeme einen Compiler für Shader-Quellcode vorhalten
müssen.

Sobald ein Shader Binary von einem Vertexshader und eines von einem Fragmentshader vorliegt,
müssen diese zu einem sogenannten Programmobjekt verbunden (gelinkt) werden. Erst sobald ein
solches Programmobjekt erzeugt und in der Renderpipeline installiert wurde, kann die Datenver-
arbeitung durch die Renderpipeline angestoßen werden. Rendering ohne ein Programmobjekt ist
in OpenGL ES 2.0 nicht möglich.

2.6 Renderpipeline

2.6.1 Überblick

Durch die Renderpipeline werden die in Abschnitt 2.4 beschriebenen Inputdaten sukzessive in fünf
aufeinanderfolgenden Schritten in die Pixel des gerenderten Bildes umgewandelt. Die Ausgabe ei-
nes Schrittes fungiert dabei als Eingabe des nächsten Schrittes. In den nächsten fünf Abschnitten
werden die einzelnen Schritte der Renderpipeline von OpenGL ES 2.0 eingehender erläutert.

2.6.2 Pipelineschritte

2.6.2.1 Vertexshader

Der Input für den Vertexshader-Schritt besteht aus dem Vertexdatenarray, das dem OpenGL ES-
System zuvor für das Rendering übergeben worden ist. Dabei wird für jedes Element des Arrays
eine Instanz des installierten Vertexshaders ausgeführt. Jede Instanz erhält mindestens ein Verte-
xattribut als Input. Dies entspricht dem Element des Vertexdatenarrays, für das die entsprechende
Instanz ausgeführt wird.

Zusätzlich kann der Input der Vertexshader-Instanz noch weitere Vertexattribute umfassen, die
entweder Elementen anderer Vertexarrays entsprechen oder von der OpenGL ES-Anwendung di-
rekt als Vertexattribut übergeben wurden (siehe auch die Diskussion zu Beginn von Abschnitt 2.4).
Außerdem kann der Input noch eine Reihe von Uniform-Variablen umfassen.

Die minimale Ausgabe eines Vertexshaders ist ein Vertex. Ein Vertex ist eine Variable, die eine Po-
sition in 2D-Gerätekoordinaten repräsentiert. Zusätzlich kann ein Vertexshader aber über weite-
re Ausgabevariablen verfügen, die sogenannten Varyings, die zusätzlich zu den Vertices durch die
Renderpipeline bis zum Fragmentshader-Schritt weitergereicht werden.

Traditionell dienten Vertexshader dazu, Vertices, die in 3D-Weltkoordinaten der Anwendung vor-
lagen, in 2D-Gerätekoordinaten zu transformieren [Liu u. a. 2007]. In OpenGL ES 2.0 sind Vertex-
shader nicht mehr darauf beschränkt. Der Input, der ihnen übergeben wird, muss nicht zwingend

24

2.6 Renderpipeline

Vertices enthalten (auch wenn die Inputdaten aus historischen Gründen als „Vertexdaten“ bezeich-
net werden) und seine Ausgabe ist nicht auf Vertices beschränkt.

2.6.2.2 Primitiven-Erzeugung

In diesem Schritt werden aus Vertices sogenannte Primitiven erzeugt. Dies sind die grundlegenden
zweidimensionalen, geometrischen Figuren, die in den nächsten Schritten der Renderpipeline wei-
terverarbeitet werden. OpenGL ES kennt drei Arten von Primitiven: Punkte, Linien und Dreiecke.
Pro Rendervorgang wird nur eine Art von Primitiven erzeugt. Pro Vertex wird ein Punkt-Primitiv
erzeugt. Wenn Linien-Primitive erzeugt werden sollen, wird aus zwei Vertices eine Linie erzeugt,
wobei die Vertices die beiden Endpunkte der Linie definieren. Im Falle von Dreiecks-Primitiven
wird aus drei Vertices ein Dreieck erzeugt, wobei die Vertices die Eckpukte des erzeugten Dreiecks
definieren. Ein und derselbe Vertex kann dabei für die Erzeugung mehrerer Primitive verwendet
werden (wenn Indexdaten verwendet werden und der Index des entsprechenden Vertex mehrfach
im Indexdatenarray vorkommt).

2.6.2.3 Rasterisierung

Im Rasterisierungsschritt werden für jedes Primitiv diejenigen Pixel im zu rendernden Bild be-
stimmt, die vom jeweiligen Primitiv berührt werden. Für jedes dieser Pixel wird ein sogenanntes
Fragment erzeugt, das im nächsten Schritt der Renderpipeline weiterverarbeitet wird. Falls das
OpenGL ES-System Multisampling verwendet, wird jeder Pixel des zu rendernden Bildes in meh-
rere Subpixel unterteilt, die sogenannten Samples. In diesem Fall werden durch die Rasterisierung
nicht die Pixel bestimmt, die durch das verarbeitete Primitiv berührt werden, sondern die Samples
– es wird dann für jedes berührte Sample ein Fragment erzeugt. Im fertigen Bild werden die erzeug-
ten Fragmente wieder zu ganzen Pixeln kombiniert. Dieses Vorgehen verfolgt das Ziel, sogenannte
Aliasing-Artefakte zu reduzieren (siehe [Munshi u. a. 2008], Seite 234).

2.6.2.4 Fragmentshader

Im Fragmentshader-Schritt wird für jedes Fragment eine Instanz des installierten Fragmentshaders
ausgeführt. Aufgabe der ausgeführten Fragmentshader-Instanzen ist es, dem von ihnen verarbeite-
ten Fragment einen Farbwert zuzuweisen. Traditionell dienten Fragmentshader dazu, Fragmenten
einen Farbwert zuzuweisen, indem Texel aus Texturobjekten ausgelesen wurden [Liu u. a. 2007].
Auch in OpenGL ES 2.0 können Fragmentshader Texel auslesen, müssen es aber nicht.

Zur Berechnung des Farbwerts ihres Fragments können Fragmentshader-Instanzen auch anderen
Input nutzen. Neben der Position des Fragments im zu rendernden Bild stehen für den Input von
Fragmentshadern auch Uniforms und Varyings zur Verfügung. Varyings sind optionale Ausgabeva-
riablen von Vertexshadern, die durch die Renderpipeline an Fragmentshader weitergereicht wer-
den – dies geschieht aber nur im Fall von Punkt-Primitiven ohne Veränderung der in den Varyings
gespeicherten Werte. Falls ein Fragment aus Linien- oder Dreiecks-Primitiven erzeugt wurde, hän-
gen die Werte der ihm übergebenen Varyings von den Ausgaben von zwei bzw. drei Vertexshadern
ab und werden zwischen diesen Ausgaben interpoliert.

25

2 Grundlagen von OpenGL ES-Systemen

2.6.2.5 Fragmentverarbeitung

Ziel des letzten Schritts der Renderpipeline ist es, für jedes Fragment zu entscheiden, ob es ver-
worfen oder in das zu rendernde Bild integriert wird. Dazu wird das Fragment einer Reihe von
optionalen Tests unterzogen:

• Falls der Pixel, dem das Fragment zugeordnet ist, momentan verdeckt ist (zum Beispiel durch
das Fenster einer anderen Anwendung), wird das Fragment verworfen. Wenn nicht in den
sichtbaren Framebuffer gerendert wird, sondern in ein von der OpenGL ES-Anwendung er-
zeugtes Framebuffer-Objekt, entfällt dieser Test.

• Über dem zu rendernden Bild kann von der OpenGL ES-Anwendung ein sogenanntes
Scissor-Rechteck definiert sein. Wenn der Pixel, dem das Fragment zugeordnet ist, au-
ßerhalb dieses Rechtecks liegt, wird das Fragment verworfen. Fall kein Scissor-Rechteck
definiert ist, entfällt dieser Test.

• Im optionalen Stencil-Test wird anhand der Werte im Stencilbuffer entschieden, ob das Frag-
ment verworfen werden muss oder nicht.

• Ähnlich wie im Stencil-Test wird im ebenfalls optionalen Depthtest anhand der Werte im
Depthbuffer entschieden, ob das Fragment verworfen werden muss oder nicht.

Falls das Fragment nicht verworfen wurde, wird dessen Farbwert mit dem aktuellen Farbwert des
ihm zugewiesenen Pixels kombiniert. Die Art der Kombination wird dabei von der OpenGL ES-
Anwendung bestimmt (standardmäßig wird der im Pixel gespeicherte Farbwert ignoriert).

Optional wird der Farbwert des Fragments anschließend im Rahmen von Dithering nochmals
durch das OpenGL ES-System verändert, bevor der Farbwert endgültig in den aktuellen Frame-
buffer übertragen wird. Abhängig von den Einstellungen, die die OpenGL ES-Anwendung zuvor
gesetzt hat, wird dann das dem Fragment zugewiesene Pixel im Colorbuffer-, Stencilbuffer- oder
Depthbuffer-Datenobjekt überschrieben.

2.6.3 Gepuffertes und ungepuffertes Rendering

Die Attribute gepuffert und ungepuffert beziehen sich auf die Art, wie die von der Renderpipeline
verarbeiteten Vertex- bzw. Indexdaten gespeichert sind. Falls diese Daten in Vertexdaten-Objekten
gespeichert sind, spricht man von gepuffertem Rendering. Falls sie in Vertex- bzw. Indexdatenar-
rays außerhalb des OpenGL ES-Systems gespeichert sind, spricht man von ungepuffertem Rende-
ring. Der Vorteil von gepuffertem Rendering ist, dass die benötigten Vertex- bzw. Indexdaten nicht
im Zuge des Renderings in das OpenGL ES-System übertragen werden müssen, sondern sich be-
reits dort befinden. Dies kann unter Umständen das Rendering gegenüber dem ungepufferten Fall
beschleunigen.

26

2.7 Erweiterungen von OpenGL ES

2.7 Erweiterungen von OpenGL ES

Viele Hersteller von OpenGL ES-Systemen und auch das Khronos Konsortium5 selbst haben Erwei-
terungen zum OpenGL ES-Standard veröffentlicht. Solche Erweiterungen werden online dokumen-
tiert (siehe [Munshi und Leech 2010], Seite 170). Ein Überblick über die derzeit verfügbaren Erwei-
terungen findet sich auf der Internetseite der Khronos API Registry (siehe [The Khronos Group]).

Die Implementierung von OpenGL ES-Funktionalität, die nur im Rahmen solcher Erweiterungen
spezifiziert worden ist, ist optional, das heißt man kann nicht sicher davon ausgehen, dass die
Funktionalität einer Erweiterung von einem bestimmten OpenGL ES-System tatsächlich unter-
stützt wird. Bei zwei Arten von Erweiterungen ist die Wahrscheinlichkeit einer Unterstützung je-
doch hoch:

• EXT-Erweiterungen: Es handelt sich dabei um Erweiterungen, die von mehreren Herstellern
in ihren Produkten unterstützt werden.

• OES-Erweiterungen: Solche Erweiterungen sind häufig ehemalige EXT-Erweiterungen, die
vom Khronos Konsortium für eine künftige Übernahme in den Kernstandard von OpenGL ES
vorgesehen wurden. Auch bei solchen Erweiterungen kann mit einer breiten Unterstützung
in Produkten verschiedener Hersteller gerechnet werden. Sie erfüllen somit die gleiche Funk-
tion wie die ARB-Erweiterungen von Standard-OpenGL (vgl. [Segal u. a. 2010], Seite 453).

Eine Übersicht über die derzeit in der Khronos API Registry aufgeführten Erweiterungen für
OpenGL ES 2.0 findet sich im Anhang in Kapitel 6.2.

5Das Khronos Konsortium ist die Institution, die unter anderem für die Weiterentwicklung des OpenGL- und OpenGL
ES-Standards verantwortlich ist (vgl. [Trevett 2010]).

27

3 Methodisches Vorgehen

In diesem Kapitel wird erklärt, welche Problemfelder und Fragestellungen im Hinblick auf den in
Kapitel 1 beschriebenen Hintergrund dieser Arbeit untersucht werden. Außerdem werden die ge-
wählten Ansätze zur Beantwortung der Fragen beschrieben und die OpenGL ES-Befehle aufgelistet,
die für die jeweiligen Problemfelder relevant sind.

Wie in Kapitel 1.2 erläutert, hängt die Erfüllbarkeit von Echtzeitgarantien für OpenGL ES-Befehle
sowohl davon ab, dass deren Ausführung durch den GL-Server rechtzeitig beginnen kann, als auch
davon, dass deren Ausführung auch rechtzeitig abgeschlossen werden kann. Dies wiederum ist ab-
hängig von ihrer jeweiligen Laufzeit. Wenn sich die aufgrund irgendwelcher Faktoren verlängert,
besteht die Gefahr, dass trotz ihres rechtzeitigen Aufrufs eine gegebene Echtzeitgarantie nicht er-
füllt wird.

Aus Sicht von OpenGL ES 2.0 lassen sich drei Ressourcen unterscheiden, durch die die Ausführbar-
keit oder die Laufzeit von OpenGL ES-Befehlen negativ beeinflusst werden können: GPU-Speicher,
Bandbreite (für die Übertragung von Daten zwischen Hauptspeicher und GPU-Speicher) und die
in Kapitel 2 beschriebene Renderpipeline selbst.

Die Verhalten von OpenGL ES-Systemen bei der Belegung des GPU-Speichers ist im Hinblick auf
die Erfüllung von Echtzeitgarantien für die Ausführung von OpenGL ES-Befehlen insbesondere aus
den folgenden beiden Gründen relevant:

• Im Zuge der Ausführung von Draw-Befehlen werden durch die Renderpipeline (unter ande-
rem) zwei Arten von Daten verarbeitet: Vertexdaten und Texturen (vgl. Kapitel 2.4). Solche
Daten werden in Datenobjekten gespeichert, die im GPU-Speicher abgelegt werden.1 Wenn
im GPU-Speicher jedoch nicht mehr genügend Platz zur Ablage benötigter Daten vorhan-
den ist, kann dies die Ausführung von Draw-Befehlen kritischer Anwendungen verhindern.
Um gewährleisten zu können, dass ein solcher Fall nicht eintritt, muss verhindert werden
können, dass der Speicherplatz zu knapp wird. Dafür wiederum muss vorhergesagt werden
können, wie viel GPU-Speicher durch die Ausführung von OpenGL ES-Befehlen belegt wird,
um notfalls die Ausführung solcher Befehle zu verweigern.

• Falls eine OpenGL ES-System über einen Eviction-Mechanismus verfügt, dann kann sich
die Laufzeit eines Draw-Befehls verlängern, wenn es im Zuge seiner Ausführung zu einer
Eviction-Kaskade kommt (vgl. Kapitel 2.4.2). Da über OpenGL ES nicht gesteuert werden
kann, welche Datenobjekte von Eviction betroffen sind, lässt sich nicht vorhersagen, ob und
ggf. um welchen Betrag sich die Laufzeit eines Draw-Befehls dadurch verlängert. Um gewähr-
leisten zu können, dass ein solcher Fall nicht eintritt, muss ebenfalls verhindert werden, dass
der Speicherplatz im GPU-Speicher so knapp wird, dass das OpenGL ES-System auf den
Eviction-Mechanismus zurückgreifen muss. Dafür muss ebenfalls der Speicherbedarf von
OpenGL ES-Befehlen vorhergesagt werden können.

Die Beschreibung der Untersuchungsmethoden zum Verhalten von OpenGL ES-Systems hinsicht-
lich der Speicherbelegung erfolgt in Abschnitt 3.1.

1Die für das Rendering benötigten Vertexdaten können von OpenGL ES-Programmen auch im Hauptspeicher abgelegt
werden, vgl. Kapitel 2.6.3. Eine solche Möglichkeit besteht für Texturen jedoch nicht.

29

3 Methodisches Vorgehen

Das Verhalten des OpenGL ES-Systems hinsichtlich der Datenübertragung ist für den Fall relevant,
wenn sich für die Ausführung eines kritischen Draw-Befehls bestimmte Daten im GPU-Speicher
befinden müssen, die erst dorthin übertragen werden müssen (dies gilt sowohl für gepufferte als
auch für ungepufferte Draw-Befehle). Um sicherstellen zu können, dass die Daten rechtzeitig im
GPU-Speicher liegen, muss die Laufzeit des entsprechenden Datenübertragungsbefehls vorherge-
sagt werden können.

In dem Zusammenhang ist muss auch bekannt sein, wie sich das OpenGL ES-System hinsichtlich
konkurrierender Datenübertragungsbefehle verhält. Wenn beispielsweise nach Beginn einer kriti-
schen Datenübertragung eine Datenübertragungsbefehl einer unkritischen Anwendung übermit-
telt wird, muss dieser Befehl verzögert werden, wenn bekannt ist, dass das OpenGL ES-System kon-
kurrierende Datenübertragungsbefehle nicht sequentiell ausführt, sondern die verfügbare Band-
breite auf die beiden Befehle aufteilt. In dem Fall könnte sich die Laufzeit des kritischen Befehls
verlängern.

Es ist ebenfalls von Interesse, ob sich Datenübertragung und Rendering gegenseitig ausschließen.
Wenn dies nicht der Fall ist, könnte der Draw-Befehl einer unkritischen Anwendung möglicher-
weise noch ausgeführt werden, wenn zur gleichen Zeit die Übertragung von Daten durchgeführt
werden kann, die von einem nachfolgenden Draw-Befehl einer kritischen Anwendungen benötigt
werden. Wenn dies nicht möglich ist, muss die Ausführung des Draw-Befehls der unkritischen An-
wendung verzögert werden. Die Beschreibung der Untersuchungsmethoden zum Verhalten von
OpenGL ES-Systems hinsichtlich der Datenübertragung erfolgt in Abschnitt 3.2.

Die Laufzeit von Draw-Befehlen selbst ist für die Erfüllung von Echtzeitgarantien für das Rende-
ring von zentraler Bedeutung. Daneben muss aber auch bekannt sein, ob das OpenGL ES-System
konkurrierende Draw-Befehle nebenläufig ausführen kann oder nicht. Wenn es dazu in der Lage
ist, muss damit gerechnet werden, dass sich die Laufzeiten der nebenläufig ausgeführten Draw-
Befehle erhöhen.

Es muss allerdings damit gerechnet werden, dass sich aufgrund der Verwendung von Shadern nicht
allgemein vorhersagen lässt, wie lange die Ausführung eines Draw-Befehls dauern wird. Falls dies
der Fall ist, ist es wichtig zu wissen, ob laufende Draw-Befehle unkritischer Anwendungen notfalls
abgebrochen werden können, um die rechtzeitige Ausführung kritischer Draw-Befehle sicherstel-
len zu können. Die Beschreibung der Untersuchungsmethoden zum Verhalten von OpenGL ES-
Systems hinsichtlich der Nutzung der Renderpipeline erfolgt in Abschnitt 3.3.

Von manchen OpenGL ES-Systemen ist bekannt, dass sich die Laufzeit von OpenGL ES-Befehlen
aufgrund von Kontextwechseln erhöhen kann, wenn sie unmittelbar nach einem OpenGL ES-
Befehl einer anderen Anwendung ausgeführt werden. Zur Erfüllung von Echtzeitgarantien ist
es notwendig, diese zusätzlichen Laufzeitkosten zu kennen und zu berücksichtigen. Die Be-
schreibung der Untersuchungsmethoden zum Verhalten von OpenGL ES-Systems hinsichtlich
Kontextwechseln und zur Bestimmung ihrer Kosten erfolgt in Abschnitt 3.4.

Nach der Beschreibung der jeweiligen Untersuchungsmethoden eines Problemfelds werden dieje-
nigen OpenGL ES-Befehle aufgeführt, die für die Untersuchungen relevant sind. OpenGL ES 2.0
definiert insgesamt 142 Befehle. Es müssen dabei aber nicht alle Untersuchungen für jeden rele-
vante Befehl durchgeführt werden. Dies hat im Einzelfall unterschiedliche Gründe:

30

3.1 Speicherbelegung

• Es gibt eine Reihe von Befehlen, von denen angenommen werden kann, dass sie weder einen
Einfluss auf die Ressourcen der GPU haben, noch selbst durch den Zustand dieser Ressour-
cen beeinflusst werden. So definiert OpenGL ES zum Beispiel die Möglichkeit, den Namen
des Herstellers der verwendeten OpenGL ES-Implementierung abzufragen. Es erscheint sehr
unwahrscheinlich, dass das OpenGL ES-System dafür GPU-Speicher alloziert, Daten vom
Hauptspeicher in den GPU-Speicher überträgt oder etwas rendert.

• Viele Befehle weisen eine sehr ähnliche Funktionalität auf. So definiert OpenGL ES 2.0 bei-
spielsweise sechs Befehle, durch die Daten beliebiger Größe2 im Zuge eines einzigen Befehl-
saufrufs vom Hauptspeicher in die GPU übertragen werden können. Es ist anzunehmen, dass
sich ein OpenGL ES-System hinsichtlich der Datenübertragung dieser Befehle nicht unter-
schiedlich verhalten wird. Die Untersuchungen werden in dieser Arbeit bei solchen Gruppen
von Befehlen daher nur für einzelne Befehle tatsächlich durchgeführt.

• Eine Reihe von Befehlen kann schon aufgrund ihrer Definition nur einen sehr begrenzten
Einfluss auf die Ressourcen der GPU haben. Durch den Aufruf eines Vertreters der Gruppe
der glVertexAttrib-Befehle können zum Beispiel höchstens 16 Byte an die GPU übertra-
gen werden. Auf die Durchführung der Untersuchungen für solche Befehle wird im Rahmen
dieser Arbeit ebenfalls verzichtet.

Im folgenden Abschnitt wird erläutert, warum die Untersuchung der Speicherbelegung im Hinblick
auf den Hintergrund der Arbeit wichtig ist. Anschließend werden die genauen Fragestellungen für
diese Untersuchung sowie die Ansätze zu deren Beantwortung erörtert und die dafür relevanten
OpenGL ES-Befehle vorgestellt.

3.1 Speicherbelegung

3.1.1 Motivation für die Untersuchung der Speicherbelegung

Wie bereits zu Beginn von Kapitel 3 umrissen, muss genau bekannt sein, wann und wie das über
OpenGL ES verwendete System Daten im GPU-Speicher ablegt (und ggf. daraus entfernt), um Echt-
zeitgarantien für die Ausführung von Draw-Befehlen erfüllen zu können.

Die Spezifikation von OpenGL ES 2.0 definiert den Fehlercode GL_OUT_OF_MEMORY. Dieser Fehler-
code wird von glGetError zurückgeliefert, nachdem ein Befehl aufgrund mangelnden Speicher-
platzes nicht erfolgreich ausgeführt werden konnte (siehe [Munshi und Leech 2010], Seite 15). Da
aber OpenGL ES 2.0 gleichzeitig keine Vorschriften darüber macht, ob und unter welchen Umstän-
den Daten in einem eventuell vorhandenen GPU-Speicher abgelegt werden, ist nicht sicher, dass
dieser Fehlercode erzeugt wird, sobald im GPU-Speicher nicht mehr genug Platz vorhanden ist, um
weitere Daten darin abzulegen. Es steht OpenGL-Systemen frei, in diesem Fall Daten im Hauptspei-
cher abzulegen oder Daten aus dem GPU-Speicher auszulagern, um Platz zu schaffen (dieser Aus-
lagerungsvorgang wird in der Literatur auch als Eviction bezeichnet, siehe auch Kapitel 2.4.2).

2Die Spezifikation von OpenGL ES definiert selbst keine Obergrenze dafür, sie erlaubt aber, dass konkrete Implemen-
tierungen von OpenGL ES eine solche Obergrenze festlegen, zum Beispiel die maximale Größe von Texturobjekten
(siehe [Munshi und Leech 2010], Seite 152).

31

3 Methodisches Vorgehen

Von GPUs der Hersteller Nvidia und ATI ist bekannt, dass es tatsächlich zu Eviction kommen kann
(siehe [Stroyan 2009] für Nvidia und [Blackmer u. a. 2009] für ATI). Dadurch kann sich die Laufzeit
von OpenGL-Befehlen verlängern, die Datenobjekte im GPU-Speicher erzeugen, wenn im zuge ih-
rer Ausführung erst durch Auslagerung bereits vorhandener Datenobjekte Platz für die neu zu er-
zeugenden Datenobjekte geschaffen werden muss. Unter bestimmten Umständen kann sich auch
die Laufzeit von Draw-Befehlen verlängern, wenn dabei Datenobjekte verarbeitet werden müssen,
die zuvor ausgelagert wurden (vgl. dazu die Diskussion zur Eviction-Kaskade in Kapitel 2.4.2).

Derzeit existieren keine Erweiterungen für OpenGL ES, die die Möglichkeit bieten, das Eviction-
Verhalten zu beeinflussen (um beispielsweise zu steuern, welche Datenobjekte ausgelagert wer-
den oder um bestimmte, kritische Datenobjekte davon auszunehmen). Sowohl Nvidia als auch ATI
warnen ausdrücklich davor, OpenGL-Anwendungen zu entwickeln, die den GPU-Speicher in ho-
hem Maße mit Daten füllen und haben daher für ihre GPUs OpenGL-Erweiterungen veröffentlicht,
die es zumindest ermöglichen, den Füllstand des GPU-Speichers zur Laufzeit abzufragen, um eine
solche Situation zu vermeiden (siehe ebenfalls [Stroyan 2009] für Nvidia-GPUs und [Blackmer u. a.
2009] für ATI-GPUs).

Die einzige Möglichkeit, Eviction zu vermeiden, besteht also darin, zu verhindern, dass der
GPU-Speicher so stark belegt wird, dass benötigte Datenobjekte nicht mehr ohne Eviction erzeugt
werden können. Dazu muss aber vorhergesagt werden können, wie stark die Belegung des GPU-
Speichers durch die Ausführung eines OpenGL ES-Befehls ansteigen wird – und da dies durch
OpenGL ES nicht festgelegt ist, muss das Belegungsverhalten eines konkreten OpenGL-Systems ge-
sondert untersucht werden. Die dazu entwickelten Untersuchungsmethoden werden im nächsten
Abschnitt beschrieben.

3.1.2 Untersuchungsmethoden zur Speicherbelegung

3.1.2.1 Ablage von Datenobjekten im GPU-Speicher

Da OpenGL ES 2.0 nicht festlegt, ob und wie Daten in einem eventuell vorhandenen GPU-Speicher
abgelegt werden, bleibt dies den Herstellern von OpenGL ES-Systemen überlassen. Für die
nachfolgenden Untersuchungen muss aber bekannt sein, wie dieses Verhalten in einem konkre-
ten OpenGL ES-System implementiert wurde. Dabei muss insbesondere die Frage beantwortet
werden, ob überhaupt über OpenGL ES erzeugte Datenobjekte im GPU-Speicher abgelegt wer-
den. Falls dies prinzipiell möglich ist, muss geklärt werden, wie sichergestellt beziehungsweise
gesteuert werden kann, dass ein bestimmtes Datenobjekt tatsächlich im GPU-Speicher abgelegt
wird.

Für Vertexbuffer-Objekte können beispielsweise spezielle Parameter angegeben werden, Usage
Hints genannt, die dem OpenGL ES-System einen Hinweis geben, wie diese Objekte durch die
erzeugende Anwendung künftig genutzt werden (vgl. Kapitel 2.4.1). Es steht dem System frei,
diese Parameter zu ignorieren, es könnte sie aber auch dazu nutzen, darüber zu entscheiden, ob
Datenobjekte im GPU-Speicher oder im Hauptspeicher abgelegt werden.

Um zu überprüfen, inwieweit die einzelnen Parameter von Datenobjekten einen Einfluss darauf
haben, ob deren Ablage im GPU-Speicher oder im Hauptspeicher erfolgt, wird ein OpenGL ES-
Programm ausgeführt, das Datenobjekte verschiedener Größe mit allen Kombinationen der rele-

32

3.1 Speicherbelegung

vanten Parameter erzeugt und überprüft, wo sie abgelegt werden. Diese Untersuchung erfolgt in
Kapitel 4.2.1. Im nächsten Abschnitt wird die Untersuchung beschrieben, mit der festgestellt wird,
ob der Speicherbedarf von Datenobjekten im GPU-Speicher von der tatsächlichen Menge der in
ihnen gespeicherten Daten abweicht.

3.1.2.2 Speicherbedarf von Datenobjekten

Im Idealfall entspricht die Menge des von einem Datenobjekt belegten GPU-Speichers immer exakt
der in den Datenobjekten gespeicherten Datenmenge. Die tatsächliche Menge belegten Speicher-
platzes kann davon aber abweichen. Dies könnte der Fall sein,

• wenn zusätzlich zu den eigentlichen Nutzdaten der Datenobjekte auch bestimmte Metada-
ten3 im GPU-Speicher abgelegt werden oder

• wenn mehrere Datenobjekte zusammen in größeren Speicherblöcken abgelegt werden oder

• wenn der GPU-Speicher eine Speichergranularität aufweist, die größer ist als ein Byte (siehe
Kapitel 2.4.3 für eine Definintion von Speicherblock und Speichergranularität).

Um festzustellen, ob es zu Abweichungen zwischen belegtem GPU-Speicher und Größe der Daten-
objekte kommt, wird ein OpenGL ES-Programm ausgeführt, das wie folgt vorgeht: Im leeren GPU-
Speicher wird jeweils ein Datenobjekt angelegt und die Menge des dadurch belegten Speicherplat-
zes ermittelt. Dies wird für Datenobjekte unterschiedlicher Größe wiederholt, um festzustellen, für
welche Datenobjektgrößen die Menge des belegten GPU-Speichers von der Datenobjektgröße ab-
weicht.

Sofern es immer zu Abweichungen kommt, und die Größe dieser Abweichungen stets gleich groß
ist, deutet dies auf die zusätzliche Speicherung von Metadaten hin. Falls die Größe der Abweichun-
gen schwankt und für bestimmte Datenobjektgrößen gar keine Abweichung auftritt, deutet dies
darauf hin, dass Datenobjekte in Speicherblöcken abgelegt werden oder dass der GPU-Speicher
eine Granularität aufweist, die größer ist als ein Byte.

Um in diesem Fall unterscheiden zu können, um welchen Effekt es sich handelt, wird das im ers-
ten Punkt beschriebene Vorgehen wiederholt, wobei für jede betrachtete Datenobjektgröße nicht
nur ein einziges Datenobjekt im leeren GPU-Speicher angelegt wird sondern zusätzlich noch wei-
tere. Wenn sich dabei zeigt, dass der zusätzlich zur Datenobjektgröße des ersten angelegten Daten-
objekts belegte GPU-Speicher für die Ablage weiterer Datenobjekte genutzt wird, handelt es sich
offensichtlich um einen Speicherblockeffekt.

Die in diesem Abschnitt beschriebene Untersuchung des Speicherbedarfs von Datenobjekten im
GPU-Speicher erfolgt in Kapitel 4.2.2. Im nächsten Abschnitt wird die Untersuchung beschrieben,
mit der die Größe eines Speicherblocks ermittelt wird.

3.1.2.3 Bestimmung der Speicherblockgröße

Wenn ein Datenobjekt angelegt werden soll, das vom OpenGL ES-System in einem größeren
Speicherblock abgelegt werden wird, muss die Speicherblockgröße bekannt sein, um vorhersagen

3Metadaten sind Daten, die vom OpenGL ES-System zusätzlich zu den eigentlichen Nutzdaten der Datenobjekte ge-
speichert werden. Dies könnten beispielsweise Typ oder Größe eines Datenobjekts sein.

33

3 Methodisches Vorgehen

zu können, wie der freie GPU-Speicher durch die Erzeugung des Datenobjektes verringert wird.
Wenn die Speicherblockgröße bekannt ist, dann kann von folgenden Annahmen ausgegangen
werden:

• Falls ein neuer Speicherblock alloziert werden muss, dann wird sich der freie GPU-Speicher
genau um den Wert der Speicherblockgröße verringern.

• Falls das neue Datenobjekt hingegen in einem bereits allozierten Speicherblock abgelegt wer-
den kann, dann wird sich der freie GPU-Speicher nicht verringern.

Für die Untersuchung der Speicherblockgröße stehen die folgenden Fragen im Mittelpunkt:

• Wie groß ist ein Speicherblock, das heißt wieviel GPU-Speicher wird durch die Allozierung
eines Speicherblocks belegt?

• Gibt es nur eine einzige Speicherblockgröße? Falls nein: Wovon hängt die Speicherblockgrö-
ße ab? In Frage kommen die Größe des Datenobjekts, durch dessen Erzeugung ein Speicher-
block alloziert wird, oder die aktuelle Belegung des GPU-Speichers.

Um diese Fragen zu beantworten, wird ein OpenGL ES-Programm ausgeführt, das das folgende
Vorgehen verfolgt: Im zu Beginn noch leeren GPU-Speicher werden sukzessive Datenobjekte glei-
cher Größe angelegt, bis der GPU-Speicher gefüllt ist. Dabei wird nach jedem Anlegen eines Daten-
objekts die Menge des aktuell belegten GPU-Speichers ermittelt. Dieses Vorgehen wird für unter-
schiedliche Datenobjektgrößen wiederholt (wobei nur solche Datenobjektgrößen zu berücksichti-
gen sind, für die in der vorherigen Untersuchung festgestellt wurde, dass es zur Ablage in Speicher-
blöcken kommt). Es steht zu erwarten, dass dieses Vorgehen für jede berücksichtigte Datenobjekt-
größe zu einem der folgenden Ergebnisse führen wird:

• Die Menge des belegten Speichers steigt nicht nach jeder Objekterzeugung an, sondern im-
mer nur dann, wenn seit dem letzten Anstieg der Speicherbelegung eine bestimmte Menge
an weiteren Daten im GPU-Speicher angelegt worden ist.

• Es kommt bei jeder Objekterzeugung zu einem Anstieg der Speicherbelegung, wobei dieser
Anstieg mindestens der Datenobjektgröße entspricht.

Die Größe der gemessenen Anstiege entspricht dann der gesuchten Speicherblockgröße. Durch
dieses Vorgehen wird auch aufgedeckt, ob es nur eine einzige Speicherblockgröße gibt und falls
nicht, ob die jeweilige Speicherblockgröße von der Größe der erzeugten Datenobjekte oder von
der aktuellen Speicherbelegung abhängt.

Die in diesem Abschnitt beschriebene Untersuchung zur Bestimmung der Speicherblockgröße er-
folgt in Kapitel 4.2.3. Der nächste Abschnitt beschreibt die Untersuchung, auf welche Weise Daten-
objekte in Speicherblöcken abgelegt werden.

3.1.2.4 Belegungsverhalten innerhalb von Speicherblöcken

Um vorhersagen zu können, ob durch die Erzeugung eines Datenobjekts ein neuer Speicherblock
alloziert wird, muss bekannt sein, unter welchen Bedingungen Datenobjekte gegebenenfalls in be-
reits allozierten Speicherblöcken abgelegt werden. Dabei stehen die folgenden Fragen im Mittel-
punkt:

34

3.1 Speicherbelegung

• Aus der Definition eines Speicherblocks ergibt sich: Wenn ein bereits allozierter Speicher-
block theoretisch noch X Byte Platz für die Ablage weiterer Datenobjekte aufweist, dann wird
ein Datenobjekt, das kleiner ist als X , in diesem Speicherblock abgelegt (sofern dessen Grö-
ße mit der Größe der bereits im Speicherblock befindlichen Datenobjekte übereinstimmt).
Doch was geschieht, falls ein Datenobjekt größer ist als X ? Wird es dann teilweise im bereits
allozierten Speicherblock abgelegt oder wird es komplett in einem neuen Speicherblock ab-
gelegt?

• Werden nur Datenobjekte gleicher Größe im selben Speicherblock abgelegt?

• Werden Datenobjekte nur dann in bereits allozierten Speicherblöcken abgelegt, wenn sie un-
mittelbar aufeinander folgend erzeugt werden, das heißt wird ein Datenobjekt nur dann in
einem bereits allozierten Speicherblock abgelegt, wenn das unmittelbar zuvor erzeugte Da-
tenobjekt schon im entsprechenden Speicherblock abgelegt worden ist?

• Werden Datenobjekte in fragmentierten Speicherblöcken abgelegt?4

• Werden Datenobjekte verschiedener Prozesse in jeweils eigenen Speicherblöcken abgelegt?

Um diese Fragen zu klären, werden OpenGL ES-Programme ausgeführt, deren Vorgehen in den
folgenden vier Abschnitten im einzelnen beschrieben wird:

3.1.2.4.1 Aufteilung von Datenobjekten auf mehrere Speicherblöcke .

Um zu überprüfen, ob Datenobjekte, die nicht vollständig in den noch freien Platz eines bereits
allozierten Speicherblocks passen, auf mehrere Speicherblöcke aufgeteilt werden, oder ob in dem
Fall ein neuer Speicherblock alloziert wird, werden nacheinander mehrere Datenobjekte angelegt,
deren Größe genau drei Vierteln der Speicherblockgröße entspricht.

Objekt 2 Objekt 3 Objekt 4

Objekt 2Objekt 1 Objekt 3 Objekt 4

Objekt 1

Block1 Block2 Block3 Block4

Block1 Block2 Block3 Block4

Belegung 1:

Belegung 2:

Abbildung 3.1: Ablagemöglichkeiten von vier Datenobjekten mit 3
4 der Speicherblockgröße

Zeigt sich, dass nach der Erzeugung von vier Datenobjekten drei Speicherblöcke alloziert werden,
kann davon ausgegangen werden, dass Datenobjekte auf mehrere Speicherblöcke aufgeteilt wer-

4Unter Fragmentierung wird hier verstanden, dass es innerhalb eines Speicherblocks ungenutzten Speicher zwischen
benutzten Speicherbereichen gibt.

35

3 Methodisches Vorgehen

den (dies entspräche der Belegung 1 in Abbildung 3.1). Wenn stattdessen vier Speicherblöcke allo-
ziert werden, dann ist klar, dass ein neuer Speicherblock alloziert wird, wenn ein Datenobjekt nicht
mehr vollständig in einen bereits vorhandenen passt (dies entspräche der Belegung 2 in Abbildung
3.1).

3.1.2.4.2 Ablage von Datenobjekten unterschiedlicher Größe im selben Speicherblock .

Zur Überprüfung, ob Datenobjekte unterschiedlicher Größe im selben Speicherblock abgelegt wer-
den können, werden im leeren GPU-Speicher mehrere Datenobjekte unterschiedlicher Größe an-
gelegt, wobei deren Gesamtgröße der Speicherblockgröße entspricht. Steigt dabei die Speicherbe-
legung nur um den Wert der Speicherblockgröße an, kann davon ausgegangen werden, dass Da-
tenobjekte unterschiedlicher Größe im selben Speicherblock abgelegt werden können.

3.1.2.4.3 Nichtsequentielle Ablage von Datenobjekten in Speicherblöcken .

Um zu überprüfen, ob Datenobjekte auch dann im selben Speicherblock abgelegt werden kön-
nen, wenn sie nicht unmittelbar aufeinander folgend erzeugt werden, wird zunächst ein Speicher-
block teilweise gefüllt (zum Beispiel durch Erzeugung von zwei Datenobjekten mit jeweils 3

8 der
Speicherblockgröße, so dass der Speicherblock zu 3

4 gefüllt ist). Anschließend wird ein weiterer
Speicherblock komplett gefüllt (zum Beispiel durch Erzeugung von zwei Datenobjekten mit 1

2 der
Speicherblockgröße, so dass diese Datenobjekte nicht im ersten Speicherblock abgelegt werden).
Schließlich ein Datenobjekt angelegt, das theoretisch im ursprünglichen Speicherblock Platz fin-
den könnte (in diesem Beispiel also mit 1

4 der Speicherblockgröße). Kann dabei kein Anstieg der
Speicherbelegung festgestellt werden, kann davon ausgegangen werden, dass das betreffende Da-
tenobjekt tatsächlich im ursprünglichen Speicherblock abgelegt wurde.

Dieses Vorgehen wird wiederholt, wobei in jedem Schritt die Anzahl der teilweise gefüllten
Speicherblöcke erhöht wird und anschließend überprüft wird, ob alle teilweise gefüllten Speicher-
blöcke komplett aufgefüllt werden können. Dadurch kann ermittelt werden, ob eine nicht
aufeinander folgende Datenobjektablage nur im jeweils zuletzt teilweise gefüllten Speicherblock
(beziehungsweise in den N letzten teilweise gefüllten Speicherblöcken) erfolgt.

Voraussetzung für diese Untersuchung ist, dass Datenobjekte nur vollständig in einem Speicher-
block abgelegt werden und Datenobjekte unterschiedlicher Größe im selben Speicherblock abge-
legt werden können. Falls dies nicht möglich ist, kann diese Untersuchung nicht durchgeführt wer-
den.

3.1.2.4.4 Ablage von Datenobjekten in fragmentierten Speicherblöcken .

Um das Ablageverhalten im Falle fragmentierter Speicherblöcke zu überprüfen, wird zunächst ein
Speicherblock mit mehreren Datenobjekten komplett gefüllt. Anschließend wird jedes zweite Da-
tenobjekt wieder freigegeben, so dass innerhalb des Speicherblocks Belegungslücken entstehen.5

Schließlich werden neue Datenobjekte erzeugt, so dass theoretisch alle Belegungslücken damit ge-
füllt werden könnten. Kann dabei kein Anstieg der Speicherbelegung festgestellt werden, kann da-
von ausgegangen werden, dass die neu angelegten Datenobjekte tatsächlich innerhalb des frag-

5Die Annahme dahinter ist, dass im leeren GPU-Speicher aufeinander folgend erzeugte Datenobjekte im GPU-Speicher
tatsächlich lückenlos hintereinander abgelegt werden.

36

3.1 Speicherbelegung

mentierten Speicherblocks abgelegt worden sind. Dieses Vorgehen wird mehrmals wiederholt, wo-
bei in jedem Schritt die Größe der Datenobjekte halbiert wird, was dazu führt dass sich die Anzahl
der Lücken im Speicherblock verdoppelt.

Die in diesem hier beschriebenen Untersuchungen der Ablage von Datenobjekten in Speicherblö-
cken erfolgt in Kapitel 4.2.4. Im nächsten Abschnitt wird die Untersuchung beschrieben, mit der
die Speichergranularität bestimmt wird.

3.1.2.5 Bestimmung der Speichergranularität

Um die Menge des GPU-Speichers vorherzusagen, der durch die Erzeugung eines Datenobjekts
belegt werden wird, ist es notwendig den Wert der Speichergranularität zu bestimmen. Dazu wird
ein OpenGL ES-Programm ausgeführt, das folgendermaßen vorgeht:

Im leeren GPU-Speicher wird ein Datenobjekt angelegt und die Menge des dadurch belegten GPU-
Speichers ermittelt. Dies wird für Datenobjekte zunehmender Größe wiederholt. Ergibt sich dabei
ein Treppeneffekt in der Speicherbelegung, das heißt steigt die Menge des belegten GPU-Speichers
immer nur bei bestimmten Datenobjektgrößen an und handelt es sich bei diesen Datenobjekt-
größen immer um ein ganzzahliges Vielfaches des gleichen Wertes, dann entspricht dieser Wert
der Speichergranularität.

Es ist für diese Untersuchung unerheblich, ob pro Messschritt nur ein Datenobjekt oder mehrere
erzeugt werden. Dies kann hilfreich sein, wenn Datenobjekte einer bestimmten Größe von der Ab-
lage in Speicherblöcken betroffen sind. In dem Fall ist durch die Erzeugung eines einzelnen Daten-
objekts nicht erkennbar, wieviel des belegten GPU-Speichers vom erzeugten Datenobjekt genutzt
wird und wieviel für nachfolgende Datenobjekte noch genutzt werden könnte.

Mithin kann auch nicht festgestellt werden ob die Menge des vom Datenobjekt genutzten GPU-
Speichers von seiner Größe abweicht. Wenn aber eine große Anzahl solcher Datenobjekte angelegt
wird, dann kann aus der Anzahl der dadurch belegten Speicherblöcke darauf geschlossen werden.
Wird dies für verschiedene Datenobjektgrößen wiederholt, dann kann die Speichergranularität auf
die gleiche Weise bestimmt werden, wie bei der Anlage nur eines Datenobjekts pro Messschritt, das
nicht in einem Speicherblock abgelegt wird.

Dazu ein Beispiel: Die Speicherblockgröße in einem System betrage vier Megabyte und die Spei-
chergranularität 128 Byte. Würden dann pro Messschritt 216 Datenobjekte angelegt, so würden für
alle Datenobjektgrößen bis einschließlich 128 Byte genau zwei Speicherblöcke belegt (216∗128 Byte
= 8 MB). Ab einer Datenobjektgröße von 129 Byte bis einschließlich 256 Byte würden vier Speicher-
blöcke belegt, von 257–384 Byte sechs Speicherblöcke, . . . Die Menge der belegten Speicherblöcke
würde sich also immer nach Überschreiten einer Datenobjektgröße erhöhen, die einem ganzzahli-
gen Vielfachen von 128 Byte entspricht.

Die in diesem Abschnitt beschriebene Untersuchung zur Bestimmung der Speichergranularität er-
folgt in Kapitel 4.2.5. In den vergangenen Abschnitten wurden alle untersuchten Fragestellungen
hinsichtlich der Speicherbelegung und die Ansätze zu deren Beantwortung detailliert erörtert. Im
nächsten Abschnitt werden sämtliche OpenGL ES-Befehle aufgelistet, die einen Einfluss auf die
Belegung des GPU-Speichers haben können, und es wird dargelegt, für welche dieser Befehle die
Untersuchungen zur Speicherbelegung in Kapitel 4 durchgeführt werden.

37

3 Methodisches Vorgehen

3.1.3 Relevante Befehle für die Speicherbelegung

Für die Belegung des GPU-Speichers sind vier Gruppen von OpenGL ES-Befehlen relevant: Befehle
zur Erzeugung von Datenobjekten (siehe Abschnitt 3.1.3.1), Befehle zur Freigabe von Datenobjek-
ten (siehe Abschnitt 3.1.3.2), Befehle zur Erzeugung und Verwendung von Programmobjekten (sie-
he Abschnitt 3.1.3.3) und Draw-Befehle mit ungepufferten Vertexdaten (siehe 3.1.3.4). Ein umfas-
sender Überblick über alle von OpenGL ES 2.0 definierten Befehle mit einer kurzen Beschreibung
findet sich im Anhang in Kapitel 6.1.

3.1.3.1 Befehle zur Erzeugung von Datenobjekten

OpenGL ES 2.0 definiert die folgenden sieben Befehle, durch die Datenobjekte erzeugt werden kön-
nen (siehe Kapitel 2.4.1 für eine Beschreibung der verschiedenen Datenobjekte von OpenGL ES):

• glBufferData zur Erzeugung von Vertexbuffer-Objekten,

• glRenderbufferStorage zur Erzeugung von Renderbuffer-Objekten,

• glBindFramebuffer zur Erzeugung von Framebuffer-Objekten sowie

• glTexImage2D, glCompressedTexImage2D, glCopyTexImage2D und glGenerateMipmap
zur Erzeugung von Texturobjekten.

Diese sieben Befehle sind im Anhang in Kapitel 6.1.1 ausführlicher beschrieben. Von ihnen werden
im Rahmen dieser Arbeit nur für den Befehl glBufferData die Untersuchungen zur Speicherbele-
gung durchgeführt. Die Wahl fällt aus den folgenden Gründen speziell auf diesen Befehl:

• glBufferData ist unter allen Befehlen zur Erzeugung von Datenobjekten der einzige, für
den zusätzlich zur Größe des Datenobjekts auch Usage Hints angegeben werden können,
durch die das Verhalten des OpenGL ES-Systems hinsichtlich der Speicherbelegung beein-
flusst werden könnte. Eine solche Einflussmöglichkeit besteht für alle anderen Datenobjekte
nicht (vgl. Kapitel 2.4.1).

• Außerdem bestehen keine Einschränkungen hinsichtlich der Größe der durch glBufferData
erzeugten Vertexbuffer-Objekte (mit Ausnahme einer systemspezifischen Maximalgröße,
was aber für alle Datenobjekte gilt). Texturobjekte sind auf Größen beschränkt, die sich als
Produkt aus zwei Zweierpotenzen ausdrücken lassen (siehe [Munshi und Leech 2010], Seite
67); Framebuffer-Objekte haben stets die gleiche Größe.

• Da durch alle sieben Befehle essentiell der gleiche Vorgang im Hinblick auf den GPU-
Speicher durchgeführt wird – es wird eine bestimmte Menge GPU-Speicher belegt – ist
anzunehmen, dass sich das OpenGL ES-System hinsichtlich des GPU-Speichers jeweils
gleich verhalten wird.

3.1.3.2 Befehle zur Freigabe von Datenobjekten

Zur Freigabe von Datenobjekten definiert OpenGL ES 2.0 die folgenden vier Befehle:

• glDeleteBuffers zur Freigabe von Vertexbuffer-Objekten,

• glDeleteRenderbuffers zur Freigabe von Renderbuffer-Objekten,

38

3.1 Speicherbelegung

• glDeleteTextures zur Freigabe von Texturobjekten und

• glDeleteFramebuffers zur Freigabe von Framebuffer-Objekten.

Diese vier Befehle sind im Anhang in Kapitel 6.1.2 ausführlicher beschrieben. Sie haben insofern
einen erheblichen Einfluss auf die Speicherbelegung, als sich durch ihren Aufruf die Menge des
verfügbaren GPU-Speichers erhöhen kann. Da durch einen solchen Vorgang jedoch keine negative
Auswirkungen im Hinblick auf Echtzeitgarantien zu erwarten sind (der verfügbare Speicherplatz
verringert sich nicht) werden diese Befehle bei Bedarf verwendet aber nicht weitergehend unter-
sucht.

3.1.3.3 Relevante Befehle zu Programmobjekten

Von den im Anhang in Kapitel 6.1.11 näher beschriebenen Befehlen zu Programmobjekten, können
die folgenden beiden die Speicherbelegung beeinflussen:

• glLinkProgram, der aus einem Vertex- und einem Fragmentshader ein ausführbares Pro-
grammobjekt erzeugt, das für nachfolgende Renderoperationen genutzt werden kann, und

• glUseProgram, der ein erzeugtes Programmobjekt im aktuellen Kontext installiert, so dass
es tatsächlich für nachfolgende Renderoperationen genutzt wird.

Da Shaderprogramme innerhalb der GPU ausgeführt werden, erscheint es möglich, dass Pro-
grammobjekte innerhalb des GPU-Speichers abgelegt werden. Wenn dies der Fall ist, könnten
sie prinzipiell bereits nach Ausführung von glLinkProgram in den GPU-Speicher übertragen
werden. Sie könnten aber auch erst dann übertragen werden, wenn sie explizit durch Aufruf von
glUseProgram zur Verwendung ausgewählt werden.

Die beiden hier aufgeführten Befehle könnten also für die Untersuchungen zur Speicherbelegung
relevant sein, insbesondere da bereits GPUs existieren, bei denen die Größe von Programmobjek-
ten nicht begrenzt ist, zum Beispiel die bereits im Jahr 2006 auf den Markt gebrachte Nvidia GeFor-
ce 8800 (siehe [Nvidia 2006], Seite 40).

Typischerweise sind Programmobjekte jedoch sehr klein (siehe [Hill u. a. 2008], Seite 1), was für
Datenobjekte – mit Ausnahme von Framebuffer-Objekten – nicht gilt. Aus diesem Grund wurden
die Untersuchungen zur Speicherbelegung nicht für Programmobjekte durchgeführt, sondern für
Datenobjekte.

3.1.3.4 Draw-Befehle

Beide von OpenGL ES 2.0 definierten Draw-Befehle (glDrawArraysund glDrawElements) können
dazu genutzt werden, eine Renderoperation mit ungepufferten Vertex- bzw. Indexdaten anzusto-
ßen (siehe Kapitel 2.6.3 für eine Diskussion der Unterschiede von gepuffertem und ungepuffertem
Rendering und Kapitel 6.1.8 für eine ausführlichere Beschreibung der beiden Draw-Befehle).

Diese beiden Befehle sind tatsächlich nur im ungepufferten Fall für die Untersuchung der Speicher-
belegung relevant. In diesem Fall liegen die im Zuge ihrer Ausführung zu verarbeitenden Vertex-

39

3 Methodisches Vorgehen

und ggf. Indexdaten im Hauptspeicher und müssen erst in die GPU übertragen werden. Es ist da-
bei prinzipiell möglich, dass diese Daten teilweise oder sogar komplett im GPU-Speicher zwischen-
gespeichert werden müssen, bevor das eigentliche Rendering durchgeführt werden kann (frühere
Untersuchungsergebnisse deuten darauf hin, dass dies für manche GPUs tatsächlich nicht der Fall
ist, vgl. [Grottel u. a. 2009], Seite 71). Dadurch kann es zu Eviction kommen.

Da anzunehmen ist, dass die Übertragung ungepufferter Vertexdaten in den GPU-Speicher im
Prinzip der Übertragung von Vertexdaten durch glBufferData entspricht, wird der Einfluss un-
gepufferter Draw-Befehle im Zusammenhang mit der Untersuchung der Speicherbelegung nicht
gesondert untersucht. Diese Befehle werden aber im Zusammenhang mit der Untersuchung der
Datenübertragung in Kapitel 4.3.4 näher behandelt.

Dort wird überprüft, ob die Übertragung ungepufferter Vertexdaten zeitgleich zum Rendering
durchgeführt wird. Für GPUs, bei denen dies der Fall ist, kann davon ausgegangen werden, dass
ungepufferte Draw-Befehle tatsächlich keinen Einfluss auf die Speicherbelegung haben, während
im gegenteiligen Fall davon ausgegangen werden muss.

Im nun folgenden Abschnitt wird erläutert, warum die Untersuchung der Datenübertragung im
Hinblick auf den Hintergrund der Arbeit sehr wichtig ist. Anschließend werden die genauen Fra-
gestellungen für diese Untersuchung sowie die Ansätze zu deren Beantwortung erörtert und die
dafür relevanten OpenGL ES-Befehle vorgestellt.

3.2 Datenübertragung

3.2.1 Motivation für die Untersuchung der Datenübertragung

Wie zu Beginn von Kapitel 3 dargelegt, ist es im Hinblick auf die Erfüllung von Echtzeitgarantien
wichtig, die Laufzeit von Datenübertragungsbefehlen vorhersagen zu können. Um die Laufzeit von
Befehlen vorhersagen zu können, die Daten übertragen (vom Hauptspeicher in den GPU-Speicher,
in umgekehrter Richtung und innerhalb des GPU-Speichers), muss neben der zu übertragenden
Datenmenge und einem eventuell anfallenden Laufzeit-Overhead auch die Datenübertragungsra-
te des verwendeten Systems bekannt sein (das heißt welche Datenmenge pro Zeitintervall übertra-
gen wird).

Das allein reicht aber nicht aus, um die Laufzeit in allen Fällen zuverlässig vorhersagen zu können.
Dafür muss – insbesondere im Hinblick auf den Hintergrund der Arbeit – auch bekannt sein, wie
sich das verwendete System gegenüber konkurrierenden Datenübertragungsbefehlen verhält, (das
heißt gegenüber Datenübertragungsbefehlen, die von verschiedenen Anwendungen an den GL-
Server übermittelt werden und sich zeitlich überschneiden).

Außerdem muss bekannt sein, ob das verwendete System in der Lage ist, Datenübertragungen
durchzuführen, während gleichzeitig ein Draw-Befehl ausgeführt wird. Einen Sonderfall stellt hier-
bei die Datenübertragung im Rahmen der Ausführung eines ungepufferten Draw-Befehls dar, da
hier die Ausführung des Draw-Befehls von den zu übertragenden Daten direkt abhängt (siehe Kapi-
tel 2.6.3 für eine Diskussion der Unterschiede zwischen gepufferter und ungepufferter Ausführung
von Draw-Befehlen). Dies muss daher gesondert untersucht werden.

40

3.2 Datenübertragung

Im folgenden Abschnitt werden die genauen Fragestellungen näher erläutert, die im Zuge der Un-
tersuchung der Datenübertragung beantwortet werden müssen, und dabei auch die Ansätze zu
deren Beantwortung beschrieben. Anschließend werden die für diese Untersuchung relevanten
OpenGL ES-Befehle aufgelistet.

3.2.2 Untersuchungsmethoden zur Datenübertragung

3.2.2.1 Bestimmung von Datenübertragungsrate und -laufzeit

Hinsichtlich der Datenübertragungsrate sind die folgenden Fragestellungen zu beantworten:

• Ist die Laufzeit von Datenübertragungsbefehlen immer proportional zur übertragenen Da-
tenmenge, oder hängt sie auch von anderen Faktoren ab? Als Faktoren kommen die Menge
des aktuell belegten GPU-Speichers oder die Anzahl bereits im GPU-Speicher vorhandener
Datenobjekte in Frage.

• Wie groß ist der Laufzeit-Overhead für die Ausführung eines Datenübertragungsbefehls, der
unabhängig von der übertragenen Datenmenge zur Laufzeit hinzukommt? Ist dieser Over-
head konstant oder ändert er sich abhängig vom Belegungsgrad des GPU-Speichers oder ab-
hängig von der Anzahl bereits vorhandener Datenobjekte?

• Falls der Belegungsgrad des GPU-Speichers oder die Menge bereits vorhandener Datenobjek-
te einen Einfluss auf die Laufzeiten hat, hängt dieser Einfluss dann davon ab, ob die Belegung
des GPU-Speichers beziehungsweise die Erzeugung der Datenobjekte vom Kontext eines an-
deren Prozesses erfolgt ist?

Zur Beantwortung dieser Fragen wird ein OpenGL ES-Programm ausgeführt, das folgendes Vor-
gehen verfolgt: Zunächst wird das Verhalten von Datenübertragungsbefehlen6 bei leerem GPU-
Speicher untersucht. Dazu wird jeweils ein Datenobjekt angelegt, die Laufzeit für die Datenüber-
tragung gemessen und das Datenobjekt anschließend wieder entfernt. Dies wird mehrmals wie-
derholt, wobei die Größe des erzeugten Datenobjekts stets erhöht wird. Diese erste Untersuchung
liefert die Referenzwerte für die nachfolgenden Untersuchungen.

Anschließend wird die Frage geklärt, ob die Laufzeit der Datenübertragung vom aktuellen Bele-
gungsgrad des GPU-Speichers abhängt. Dazu wird der GPU-Speicher vorab zu einem bestimm-
ten Prozentsatz belegt und anschließend die gleichen Messungen wie in der ersten Untersuchung
durchgeführt. Dies wird mit steigenden Speicherbelegungsgraden wiederholt. Diese Untersuchung
wird in zwei Varianten durchgeführt: In der einen Variante wird der GPU-Speicher über den selben
Kontext belegt, mit dem danach auch die Laufzeitmessungen durchgeführt werden. In der ande-
ren Variante wird der Speicher über einen Kontext belegt, der von einem anderen Prozess erzeugt
wurde.

Die Frage, ob die Laufzeit von Datenübertragungsbefehlen von der Anzahl der bereits erzeugten
Datenobjekte beeinflusst wird, wird durch eine weitere Untersuchung geklärt. Dabei wird vorab
eine gewisse Menge sehr kleiner Datenobjekte erzeugt, so dass der Speicherbelegungsgrad immer
noch sehr niedrig ist. Dann werden die gleichen Messungen wie in der ersten Untersuchung durch-
geführt. Wie bei der zweiten Untersuchung werden auch hier zwei Varianten durchgeführt, wo-

6Siehe Abschnitt 3.2.3 für eine Auflistung der dafür relevanten Befehle.

41

3 Methodisches Vorgehen

bei in der einen die kleinen Datenobjekte über den selben Kontext erzeugt werden, mit dem auch
die Messungen durchgeführt werden, während in der anderen Variante die Datenobjekte über den
Kontext eines anderen Prozesses erzeugt werden.

Der Laufzeit-Overhead für die Ausführung von Datenübertragungsbefehlen wird durch die Mes-
sung der Laufzeiten für die Übertragung von sehr kleinen Datenmengen bestimmt. Die Annahme
dahinter ist folgende: Bei einer Datenübertragungsrate von mehreren Gigabyte pro Sekunde ist die
Übertragungszeit von wenigen Byte großen Datenmengen praktisch nicht mehr messbar (die Zeit
zur Übertragung von einem Kilobyte Daten würde bei einer Bandbreite von mehr als einem Giga-
byte pro Sekunde weniger als eine Mikrosekunde betragen). Wenn die gemessenen Laufzeiten für
immer kleinere Datenmengen aber nicht gegen Null gehen sondern gegen einen anderen Wert, so
entspricht dieser Wert dem zu bestimmenden Overhead.

Die in diesem Abschnitt beschriebenen Untersuchungen zur Laufzeit von Datenübertragungsbe-
fehlen erfolgen in Kapitel 4.3.1. Im nächsten Abschnitt wird die Untersuchung des Verhaltens des
OpenGL ES-Systems bei konkurrierenden Datenübertragungen beschrieben.

3.2.2.2 Konkurrierende Datenübertragungen

Grundsätzlich gibt es zwei Möglichkeiten, wie ein konkretes OpenGL ES-System Datenübertragun-
gen durchführt, die sich zeitlich überschneiden:

• Die verfügbare Bandbreite wird auf mehrere Datenübertragungsbefehle aufgeteilt, so dass
kein Datenübertragungsbefehl verzögert wird, bis ein anderer vollständig ausgeführt wurde.
Dadurch verlängert sich aus Sicht der Client-Programme die Laufzeit aller betroffenen Da-
tenübertragungsbefehle.

• Die Datenübertragungsbefehle werden sequentiell ausgeführt, das heißt, solange ein Daten-
übertragungsbefehl noch nicht vollständig ausgeführt worden ist, wird der Ausführungsbe-
ginn anderer Datenübertragungsbefehle verzögert. Dadurch verlängert sich aus Sicht der
Client-Programme nur deren Laufzeit.

Um die Laufzeit von Datenübertragungsbefehlen in einem konkreten System vorhersagen zu kön-
nen, muss also geklärt werden, welche dieser beiden Möglichkeiten durch das System umgesetzt
wird. Dazu werden zwei OpenGL ES-Programme ausgeführt, wobei die Ausführung des einen Pro-
gramms durch das andere Programm bestimmt wird. Zur Vereinfachung der Diskussion darüber,
wird daher das bestimmende Programm nachfolgend als Masterprogramm bezeichnet und das be-
stimmte als Slaveprogramm. Die beiden Programme gehen wie folgt vor:

Zuerst wird das Masterprogramm gestartet. Dieses misst – als Vorbereitung für die eigentliche Un-
tersuchung – die Laufzeiten des zu untersuchenden Datenübertragungsbefehls für unterschiedli-
che zu übertragende Datenmengen. Die für diese Untersuchung relevanten Datenübertragungsbe-
fehle werden in Kapitel 3.2.3 aufgeführt – durch das hier beschriebene Vorgehen wird jeweils nur
einer dieser Befehle untersucht. Dabei ist darauf zu achten, dass keine anderen Programme Da-
tenübertragungen durchführen, während das Masterprogramm diese Messungen vornimmt. Die
dabei ermittelten Laufzeiten dienen dann später als Referenz- und Vergleichswerte.

Nachdem das Masterprogramm seine Referenzmessung beendet hat, startet es das Slaveprogramm
und geht in einen Wartezustand über. Das Slaveprogramm führt nun die gleiche Referenzmes-

42

3.2 Datenübertragung

sung durch wie das Masterprogramm. Die von den beiden Programmen ermittelten Referenzwerte
müssen übereinstimmen, um sicherzustellen, dass das Slaveprogramm vom OpenGL ES-System
gleich behandelt wird wie das Masterprogramm. Das ist eine wesentliche Voraussetzung, um die
später von den beiden Programmen ermittelten Laufzeiten sinnvoll miteinander vergleichen zu
können.

Nach Durchführung der Referenzmessung signalisiert das Slaveprogramm dem Masterprogramm
die Bereitschaft, fortzufahren, woraufhin das Masterprogramm den Wartezustand verlässt. Nun
übermitteln die beiden Programme zeitgleich einen Datenübertragungsbefehl an den GL-Server
und messen die Laufzeit des übermittelten Befehls (beide Programme lassen dabei jeweils die glei-
che Menge an Daten übertragen). Diese Messungen werden für alle Datenmengen wiederholt, für
die zuvor auch eine Referenzmessung durchgeführt wurde.

Anschließend wird der gesamte Vorgang wiederholt, aber mit folgender Änderung des Ablaufs:
Die Übermittlung des Datenübertragungsbefehls durch das Masterprogramm wird gegenüber der
Übermittlung durch das Slaveprogramm verzögert, und zwar um die Hälfte der gemessenen Refe-
renzlaufzeit. Es ist anzunehmen, dass dadurch die Ausführung des Datenübertragungsbefehls des
Slaveprogramms bereits zur Hälfte abgeschlossen ist, sobald die Übermittlung des Datenübertra-
gungsbefehls des Masterprogramms erfolgt.

Schließlich werden die von den beiden Programmen gemessenen Laufzeiten miteinander vergli-
chen, um darauf schließen zu können, ob konkurrierende Datenübertragungsbefehle vom unter-
suchten OpenGL ES-System sequentiell ausgeführt werden oder nicht. Dabei wird von den beiden
folgenden Annahmen ausgegangen:

• Wenn die beiden Datenübertragungsbefehle sequentiell abgearbeitet werden, dann wird bei
deren gleichzeitiger Übermittlung entweder der Datenübertragungsbefehl des Master- oder
der des Slaveprogramms etwa doppelt so lange laufen wie bei der Referenzmessung, wäh-
rend die Laufzeit beim jeweils anderen Programm der Laufzeit bei der Referenzmessung
gleicht. Bei verzögertem Masterprogramm wird stets dessen Laufzeit eineinhalb mal so groß
sein wie bei der Referenzmessung.

• Wird hingegen die Bandbreite gleichmäßig auf die beiden übermittelten Datenübertragungs-
befehle aufgeteilt, so werden die Laufzeiten von Master- und Slaveprogramm etwa gleich
groß sein. Wenn die beiden Programme ihre Befehle gleichzeitig übermitteln, wird sich die
Laufzeit der Datenübertragungsbefehle gegenüber der Referenzmessung etwa verdoppeln.
Wird die Übermittlung des Befehls beim Masterprogramm um die Hälfte der Referenzzeit
verzögert, so wird die Laufzeit der Datenübertragungsbefehle etwa eineinhalb mal so groß
sein wie bei der Referenzmessung.

Die in diesem Abschnitt beschriebene Untersuchung zur Laufzeit von konkurrierenden Datenüber-
tragungsbefehlen erfolgt in Kapitel 4.3.2. Im nächsten Abschnitt wird beschrieben, wie untersucht
wird, ob eine Datenübertragung durchgeführt werden kann, während zur gleichen Zeit ein Draw-
Befehl ausgeführt wird.

43

3 Methodisches Vorgehen

3.2.2.3 Nebenläufige Ausführung von Datenübertragung und Rendering

Im Hinblick auf die Untersuchung zur nebenläufigen Ausführung von Datenübertragungs- und
Draw-Befehlen stehen die folgenden beiden Fragen im Mittelpunkt:

• Kann eine Datenübertragung durchgeführt werden, während gleichzeitig ein gepufferter
Draw-Befehl ausgeführt wird? Gepufferte Draw-Befehle sind hier von besonderem Interesse,
da sich die von ihnen verarbeiteten Daten bereits in Datenobjekten befinden. Dadurch ist für
die Ausführung von gepufferten Draw-Befehlen keine eigene Datenübertragung notwendig
(sofern sich die Datenobjekte im GPU-Speicher befinden, wovon hier ausgegangen wird).

• Wie behindern sich Datenübertragungen und gepufferte Draw-Befehle gegenseitig, wenn sie
nebenläufig ausgeführt werden können? Werden sie sequentiell abgearbeitet, oder werden
Datenübertragungen oder Draw-Befehle unterbrochen, sobald ein Befehl der jeweils ande-
ren Art an den GL-Server übermittelt wird?

Um diese Fragen zu beantworten, werden auch für diese Untersuchung zwei OpenGL ES-
Programme ausgeführt, die ähnlich vorgehen, wie die beiden im vorhergehenden Abschnitt
beschriebenen. Aber in dieser Untersuchung übermitteln nicht beide Programme Datenübertra-
gungsbefehle, sondern nur eines der beiden. Das andere übermittelt einen Draw-Befehl an den
GL-Server.

Der Ablauf bleibt ansonsten unverändert: Zunächst führt das Masterprogramm seine Referenzmes-
sung durch, startet anschließend das Slaveprogramm und geht in einen Wartezustand über, bis das
Slaveprogramm seine Referenzmessung durchgeführt hat. Anschließend messen die beiden Pro-
gramme die Laufzeiten des von ihnen übertragenen Befehls, wobei die Übertragung der beiden
Befehle in einem Fall gleichzeitig erfolgt, während im anderen Fall das Masterprogramm um die
halbe vom Slaveprogramm gemessene Referenzlaufzeit verzögert wird.

Falls die Laufzeiten der konkurrierenden Befehle mit den Referenzwerten übereinstimmen, so ist
das untersuchte System offensichtlich in der Lage, Datenübertragungen durchzuführen, während
gleichzeitig ein gepufferter Draw-Befehl ausgeführt wird. Falls nicht, wird durch die Messungen
mit verzögertem Masterprogramm sicher geklärt, ob es zu Unterbrechungen kommt.

Zur Ausführung des Draw-Befehls werden Minimalshader verwendet wie in [Munshi u. a. 2008] auf
Seite 22 beschrieben (Listing und ausführliche Diskussion von Minimalshadern erfolgen in Kapitel
4.1.6). Durch die Verwendung von Minimalshadern soll sichergestellt werden, dass im Zuge der
Ausführung des Draw-Befehls nicht unbeabsichtigt eine Funktion der Renderpipeline genutzt wird,
die die Interoperabilität von Draw und Datenübertragung verhindert, während die nebenläufige
Ausführung eines Draw- und eines Datenübertragungsbefehls prinzipiell möglich wäre.

Sofern die Untersuchung mit Minimalshadern zeigt, dass dies tatsächlich der Fall ist, kann geson-
dert untersucht werden, ob die nebenläufige Ausführung auch bei Verwendung komplexerer Sha-
der möglich ist. Wenn sie hingegen bereits mit Minimalshadern nicht möglich ist, erübrigt sich jede
weitergehende Untersuchung.

Die in diesem Abschnitt beschriebene Untersuchung zur nebenläufigen Ausführung von Daten-
übertragungs- und gepufferten Draw-Befehlen erfolgt in Kapitel 4.3.3. Im nächsten Abschnitt wird
die Untersuchung der Datenübertragung von ungepufferten Draw-Befehlen beschrieben.

44

3.2 Datenübertragung

3.2.2.4 Datenübertragung ungepufferter Draw-Befehle

Ungepufferte Draw-Befehle stellen insofern einen Sonderfall dar, dass sich zumindest ein Teil der
von ihnen verarbeiteten Daten zum Zeitpunkt ihrer Übermittlung an den GL-Server noch nicht im
GPU-Speicher befindet. Diese Daten müssen also im Zuge der Ausführung des Draw-Befehls an
die GPU übertragen werden.

Frühere Untersuchungen haben gezeigt, dass zumindest manche GPUs in diesem Fall die Da-
tenübertragung parallel zur Ausführung der Draw-Befehle durchführen können (vgl. [Grottel u. a.
2009], Seite 71). Diese Fähigkeit muss also für ein konkretes System explizit überprüft werden;
denn auch wenn die vorhergehende Untersuchung zeigt, dass eine nebenläufige Ausführung von
Datenübertragungs- und Draw-Befehlen nicht möglich ist, könnte dies im Falle von ungepufferten
Draw-Befehlen tatsächlich anders aussehen. Dazu ist folgende Frage zu beantworten:

• Entspricht die Laufzeit für einen ungepufferten Draw-Befehl der Summe der Laufzeiten für
die Datenübertragung und die Ausführung des Draw-Befehls im gepufferten Fall? Falls dies
so ist, muss davon ausgegangen werden, dass eine nebenläufige Ausführung von Datenüber-
tragung und Rendering auch im Fall der Ausführung von ungepufferten Draw-Befehlen nicht
möglich ist. Wenn die gemessenen Laufzeiten der ungepufferten Draw-Befehle die Summe
der beiden Laufzeiten für Datenübertragung und Rendering im gepufferten Fall deutlich un-
terschreiten, dann muss vom Gegenteil ausgegangen werden.

Zur Klärung dieser Frage wird ein OpenGL ES-Programm ausgeführt, das wie folgt vorgeht: Noch
vor der Ausführung des ungepufferten Draw-Befehls werden in einem ersten Schritt für dessen
Vertexdaten die folgenden Referenzwerte ermittelt:

• Die Laufzeit des Befehls zur Übertragung der Vertexdaten in den GPU-Speicher.

• Die Laufzeit des gepufferten Draw-Befehls für diese Vertexdaten (die sich in dem Fall bereits
vor Übermittlung des Draw-Befehls im GPU-Speicher befinden, wodurch keine Datenüber-
tragung notwendig ist).

• Die Dauer für die Kopie der Vertexdaten innerhalb des Hauptspeichers.

Der letzte Punkt hat folgenden Hintergrund: Laut Spezifikation von OpenGL ES 2.0 darf eine Ver-
änderung der vom Draw-Befehl verwendeten Daten, die nach dessen Rücksprung erfolgt, keine
Auswirkungen auf das Ergebnis des Draw-Befehls haben (siehe [Munshi und Leech 2010], Seite 5).
Der Rücksprung darf aber bereits erfolgen, bevor der Draw-Befehl auf der GPU vollständig abgear-
beitet worden ist.

Wenn ein Rücksprung erfolgt, bevor die Daten in die GPU übertragen worden sein können (fest-
stellbar durch Vergleich der bis zum Rücksprung verstrichenen Zeit mit der Referenzlaufzeit für
die Datenübertragung), dann liegt die Annahme nahe, dass das OpenGL ES-System vor dem Rück-
sprung des Draw-Befehls eine Kopie der Daten im Hauptspeicher anlegt.7

Nach den Referenzwerten wird die Laufzeit des ungepufferten Draw-Befehls ermittelt und diese
mit den Referenzwerten verglichen. Dabei wird von folgenden Annahmen ausgegangen:

7Theoretisch wäre auf den Testsystemen auch eine Kopie auf Festplatte möglich. Dies erscheint jedoch eher unwahr-
scheinlich, zumal eine Kopie im Hauptspeicher um Größenordnungen schneller durchgeführt werden kann.

45

3 Methodisches Vorgehen

• Wenn die Laufzeit des Draw-Befehls deutlich geringer ist als die Summe der Referenzwerte
für Datenübertragung und gepufferten Draw-Befehl, dann ist das untersuchte System offen-
kundig in der Lage, Daten in die GPU zu übertragen, während der ungepufferte Draw-Befehl
auf der GPU ausgeführt wird.

• Entspricht die Laufzeit des ungepufferten Draw-Befehls hingegen der Summe der Referenz-
werte (ggf. zuzüglich der Zeit für die Datenkopie im Hauptspeicher), dann kann davon aus-
gegangen werden, dass auch im ungepufferten Draw-Fall die eigentliche Abarbeitung des
Draw-Befehls in der GPU und die notwendigen Datenübertragungen nicht zur gleichen Zeit
stattfinden.

In den vergangenen Abschnitten wurden alle untersuchten Fragestellungen hinsichtlich der Da-
tenübertragung und die Ansätze zu deren Beantwortung detailliert erörtert. Im nächsten Abschnitt
werden sämtliche OpenGL ES-Befehle aufgelistet, die für die hier beschriebene Untersuchung rele-
vant sind, und es wird dargelegt, für welche dieser Befehle die Untersuchungen zur Datenübertra-
gung in Kapitel 4 durchgeführt werden.

3.2.3 Relevante Befehle für die Datenübertragung

Für die Untersuchung der Datenübertragung sind die folgenden X Gruppen von Befehlen rele-
vant: Befehle zur Erzeugung von Datenobjekten (siehe Abschnitt 3.2.3.1), Befehle zur teilweisen
Aktualisierung von Datenobjekten (siehe Abschnit 3.2.3.2), Draw-Befehle (siehe Abschnitt 3.2.3.3,
Befehle zur Programmverwaltung (siehe Abschnitt 3.2.3.4), Befehle zur Festlegung konstanten Sha-
derinputs (siehe Abschnitt 3.2.3.5) und alle sonstigen Datenübertragungsbefehle (siehe Abschnitt
3.2.3.6). Ein umfassender Überblick über alle von OpenGL ES 2.0 definierten Befehle mit einer kur-
zen Beschreibung findet sich im Anhang in Kapitel 6.1.

3.2.3.1 Befehle zur Erzeugung von Datenobjekten

Von den sieben von OpenGL ES 2.0 definierten Befehlen zur Erzeugung von Datenobjekten sind
nur die folgenden fünf für die Datenübertragung relevant (da durch die beiden anderen Befehlen
keine Daten übertragen werden können):

• glBufferData zur Erzeugung von Vertexbuffer-Objekten sowie

• glTexImage2D, glCompressedTexImage2D, glCopyTexImage2D und glGenerateMipmap
zur Erzeugung von Texturobjekten.

Ob es durch glGenerateMipmap tatsächlich zu einer Datenübertragung kommt, ist abhängig von
der konkreten Implementierung des OpenGL ES-Systems. Wenn die Ausgangstextur zur Erzeugung
der Mipmaps im GPU-Speicher liegt und die Berechnung der Mipmaps innerhalb der GPU statt-
findet ist keine Datenübertragung notwendig. Die anderen hier aufgeführten Befehle zur Erzeu-
gung von Datenobjekten sind deshalb relevant, weil ihnen auch ein Zeiger auf Daten im Haupt-
speicher übergeben werden kann, mit denen die betreffenden Datenobjekte gefüllt werden sollen.
Falls hierbei kein Nullpointer übergeben wird, führen diese Befehle tatsächlich eine Datenübertra-
gung durch. Außerdem dienen diese Befehle auch dazu, den kompletten Inhalt bereits bestehender
Datenobjekte zu überschreiben. Auch in diesem Fall wird eine Datenübertragung durchgeführt.

46

3.2 Datenübertragung

Von den hier aufgeführten fünf Befehlen werden im Rahmen dieser Arbeit nur für den Befehl
glBufferData die Untersuchungen zur Datenübertragung durchgeführt. Die Wahl fällt aus den
gleichen Gründen speziell auf diesen Befehl, die auch für seine Wahl im Rahmen der Untersuchung
der Speicherbelegung ausschlaggebend waren (siehe Abschnitt 3.1.3.1).

3.2.3.2 Befehle zur teilweisen Aktualisierung von Datenobjekten

OpenGL ES 2.0 definiert vier Befehle zur teilweisen Aktualisierung von Datenobjekten:

• glBufferSubData zur teilweisen Aktualisierung von Vertexbuffer-Objekten sowie

• glTexSubImage2D, glCompressedTexSubImage2D und glCopyTexSubImage2D zur teilwei-
sen Aktualisierung von Textur-Objekten.

Diese vier Befehle entsprechen im Prinzip den jeweiligen Befehlen ohne Sub im Namen, allerdings
mit dem Unterschied, dass durch sie keine neuen Datenobjekte erzeugt werden können, sondern
nur Daten in bereits bestehende Datenobjekte übertragen werden können. Dafür kann optional
nur ein Teil der Daten im jeweiligen Zielobjekt überschrieben werden (statt dem gesamten Inhalt).
Da mit glBufferData bereits ein Datenübertragungsbefehl für die Untersuchung ausgewählt wur-
de, der zur Übertragung beliebiger Datenmengen verwendet werden kann, wurde auf eine geson-
derte Untersuchung dieser vier Befehle verzichtet.

3.2.3.3 Draw-Befehle

Wie auch für die in Abschnitt 3.1.3.4 behandelte Untersuchung zur Speicherbelegung sind die bei-
den von OpenGL ES 2.0 definierten Draw-Befehle (glDrawArrays und glDrawElements) nur im
ungepufferten Fall für die Untersuchung der Datenübertragung relevant, da hierbei die für das Ren-
dering benötigten Vertex- bzw. Inputdaten noch nicht an das OpenGL ES-System übertragen wur-
den.

Aufgrund der Ergebnisse von [Grottel u. a. 2009] sind die ungepufferten Draw-Befehle im Hinblick
auf die Untersuchung zur Datenübertragung sogar von besonderem Interesse. Die hierzu in den
Abschnitten 3.2.2.3 und 3.2.2.4 beschriebenen Untersuchungen werden im Rahmen dieser Arbeit
für glDrawArrays durchgeführt. Der einzige Unterschied zu glDrawElements besteht darin, dass
für glDrawElements zusätzliche Indexdaten übergeben werden können, die dafür sorgen, dass
nicht die gesamte Menge der übergebenen Vertexdaten für das Rendering verwendet werden. Im
Gegensatz dazu werden bei glDrawArrays sämtliche übergebenen Vertexdaten verwendet (und
somit im ungepufferten Fall auch übertragen). Dies dürfte jedoch keine Auswirkung auf die Verar-
beitung der Vertexdaten durch die Renderpipeline haben.

3.2.3.4 Befehle zur Programmverwaltung

Von den Befehlen zur Programmverwaltung sind die selben beiden für die Untersuchung der Da-
tenübertragung relevant, die auch für die Untersuchung der Speicherbelegung relevant sind:

• glLinkProgram, durch den aus einem Vertex- und einem Fragmentshader ein ausführbares
Programmobjekt erzeugt wird und

47

3 Methodisches Vorgehen

• glUseProgram, durch den ein erzeugtes Programmobjekt im aktuellen Kontext installiert
wird.

Falls Programmobjekte im GPU-Speicher abgelegt werden, müssen sie dorthin übertragen werden.
Dies Übertragung kann im Zuge der Ausführung von glLinkProgram oder glUseProgram erfolgen.
Die (mögliche) Übertragung von Programmobjekten durch diese beiden Befehle wurde im Rahmen
dieser Arbeit jedoch nicht gesondert untersucht, und zwar aus den gleichen Gründen, aus denen
diese beiden Befehle auch nicht bei der Untersuchung der Speicherbelegung berücksichtigt wur-
den (siehe Abschnitt 3.1.3.3).

3.2.3.5 Befehle zur Festlegung konstanten Shaderinputs

OpenGL ES 2.0 definiert insgesamt 27 Befehle, mit denen konstante Werte für den Shaderinput
festgelegt werden können. Aus Sicht von Shaderprogrammen existieren aber nur zwei Typen von
konstantem Input, nämlich Vertexattribut- und Uniform-Variablen. 19 der 27 Befehle dienen dazu,
die Werte von Uniform-Variablen festzulegen, und die übrigen acht dienen dazu, die Werte von
Vertexattribut-Variablen festzulegen.

Die einzelnen Befehle, die jeweils für eine der beiden Arten von Variablen „zuständig“ sind, unter-
scheiden sich nicht in ihrer grundsätzlichen Funktion sondern nur hinsichtlich der Parameter, mit
denen die Werte der Variablen spezifiziert werden (so umfassen Vertexattribut-Variablen 16 Byte –
diese 16 Byte können beispielsweise in einer Befehlsvariante durch Übergabe von vier Integern à
vier Byte spezifiziert werden und in einer anderen Variante durch Übergabe eines Byte-Arrays mit
16 Elementen).

Da im Fall von Uniform-Variablen höchstens 128 Byte durch die Ausführung eines Befehls über-
tragen werden können und im Fall von Vertexattribut-Variablen sogar nur 16 Byte, wurden die Un-
tersuchungen zur Datenübertragung im Rahmen dieser Arbeit nicht für die Befehle zur Festlegung
des konstanten Shaderinputs durchgeführt (zumal bei den Untersuchungen mit dem Datenüber-
tragungsbefehl glBufferData auf den in den hierbei verwendeten Testsystemen hunderte Mega-
byte durch einen Aufruf übertragen werden können, siehe Kapitel 4).

3.2.3.6 Sonstige Datenübertragungbefehle

Der Befehl glReadPixels dient dazu, Daten aus dem aktuellen Framebuffer in den Hauptspeicher
zu kopieren. Daher ist dieser Befehl für die Untersuchung zur Datenübertragung relevant. Im Rah-
men dieser Arbeit wurde auf eine gesonderte Untersuchung dieses Befehls jedoch verzichtet.

Im nun folgenden Abschnitt wird erläutert, warum die Untersuchung der Pipelinenutzung im Hin-
blick auf den Hintergrund der Arbeit sehr wichtig ist. Anschließend werden die genauen Fragestel-
lungen für diese Untersuchung sowie die Ansätze zu deren Beantwortung erörtert und die dafür
relevanten OpenGL ES-Befehle vorgestellt.

48

3.3 Pipelinenutzung

3.3 Pipelinenutzung

3.3.1 Motivation für die Untersuchung der Pipelinenutzung

Wie bereits in Kapitel 2 dargelegt, wird die Datenverarbeitung durch die Renderpipeline in OpenGL
ES 2.0 durch Aufruf eines der beiden Draw-Befehle (glDrawArraysund glDrawElements) angesto-
ßen. Eine zwingende Voraussetzung zur Erfüllung von Echtzeitgarantien für kritische Anwendun-
gen ist die Möglichkeit, zumindest eine Obergrenze für die Laufzeit dieser Draw-Befehle angeben
zu können. Dies ist bei OpenGL ES 2.0 für beliebige Shader und beliebigen Input jedoch nicht mög-
lich, ohne die Draw-Befehle zuvor mit exakt den gleichen Inputdaten und sonstigen Einstellungen
ausgeführt zu haben. Dafür gibt es zwei Gründe:

• Im Zuge der Ausführung von Draw-Befehlen werden auf der GPU Shader-Programme
ausgeführt, und zwar jeweils mindestens eine Instanz eines Vertexshader- und eines
Fragmentshader-Programms (vgl. Kapitel 2.6). Allgemein lässt sich deren Laufzeit nicht
vorhersagen, ohne das Halteproblem für diese Programme zu lösen.

Zwar erlaubt die Spezifikation der Shading Language von OpenGL ES 2.0 (d. h. der C-Dialekt,
in dem Shader-Programme geschrieben werden) gewisse Einschränkungen hinsichtlich sol-
cher Programme. Dadurch kann die Vorhersage ihrer Laufzeit erleichtert werden, zum Bei-
spiel wenn Schleifen so eingeschränkt werden, dass die Anzahl der Schleifeniterationen zur
Kompilierzeit ermittelt werden kann und Endlosschleifen ausgeschlossen sind. Ob solche
Einschränkungen für ein konkretes System gelten, bleibt aber den Systemherstellern über-
lassen. Die Spezifikation der Shading Language erlaubt sogar explizit Endlosschleifen (siehe
[Simpson und Kessenich 2009], Seite 57). Tatsächlich existieren mittlerweile GPUs, die keine
Einschränkungen mehr hinsichtlich der Verwendung von Schleifen in Shaderprogrammen
definieren, zum Beispiel die ARM-GPUs Mali-55, Mali-200 und Mali-400 MP (siehe [ARM
2009], Seite 37). Auf solchen GPUs kann ein Shaderprogramm unbegrenzt lange laufen.

• Selbst wenn die Laufzeit von Shader-Programmen genau vorhergesagt werden kann, gibt es
ein weiteres Problem, das die Vorhersage der Laufzeit eines Draw-Befehls sehr erschwert:
Für die Vorhersage reicht es nicht aus, nur die Laufzeit der Shader-Programme zu kennen;
es muss auch bekannt sein, wieviele Instanzen der einzelnen Shader-Programme im Zuge
der Ausführung eines Draw-Befehls ausgeführt werden. Während die Anzahl der ausgeführ-
ten Vertexshader-Instanzen anhand der Menge der zu verarbeitenden Vertices genau vor-
hergesagt werden kann, gilt dies für die Anzahl der ausgeführten Fragmentshader-Instanzen
nicht.8 Diese Anzahl ist abhängig von den konkreten Werten der einzelnen Vertices und steht
erst fest, nachdem die Rasterisierung vollständig abgeschlossen wurde, also erst während der
Ausführung eines Draw-Befehls.

Es stellt sich also die Frage, inwieweit ein konkretes OpenGL ES-System ermöglicht, dass konkur-
rierende Anwendungen die Renderpipeline gleichzeitig nutzen können oder ob ein einzelner, lang-
laufender Draw-Befehl einer Anwendung die Renderpipeline komplett für alle anderen Anwendun-

8Die einzige Ausnahme davon ist, wenn im Zuge eines Draw-Befehls weder Linien noch Dreiecke sondern nur Punk-
te gerendert werden. Dann stimmt die Anzahl der ausgeführten Vertexshader-Instanzen mit der der ausgeführten
Fragmentshader-Instanzen überein. Der häufigste Anwendungsfall für Draw-Befehle in 3D-Anwendungen besteht
allerdings darin, Dreiecke zu rendern (siehe [Munshi u. a. 2008], Seite 128).

49

3 Methodisches Vorgehen

gen blockieren kann. Falls eine nebenläufige Ausführung mehrerer Draw-Befehle möglich ist, sind
Echtzeitgarantien für Draw-Befehle kritischer OpenGL ES-Anwendungen nicht zwingend ausge-
schlossen, auch wenn von einer anderen Anwendung lang laufende Draw-Befehle an das OpenGL
ES-System übermittelt werden:

Sofern eine Obergrenze für die Laufzeit von Draw-Befehlen kritischer Anwendungen bekannt ist9

und bei der nebenläufigen Ausführung von Draw-Befehlen die Ressourcen der Renderpipeline zu
gleichen Teilen auf die konkurrierenden Befehle aufgeteilt werden, kann von einer Verdopplung
dieser Obergrenze ausgegangen werden; die mangelnde Vorhersagbarkeit der Laufzeit von Draw-
Befehlen anderer Anwendungen stünde dann der Erfüllung von Echtzeitgarantien für kritische An-
wendungen nicht mehr prinzipiell im Wege.

Alternativ sind solche Garantien trotz mangelnder Vorhersagbarkeit der Laufzeit von Draw-
Befehlen möglich, wenn ein konkretes OpenGL ES-System die Unterbrechung oder zumindest
den Abbruch der Ausführung eines Draw-Befehls ermöglicht. Sofern der Abbruchvorgang auf
einem solchen System hinreichend schnell durchzuführen ist, kann ein Draw-Befehl, der eine
kritische Anwendung behindert, im Notfall abgebrochen werden, um die rechtzeitige Ausführung
der kritischen Befehle zu ermöglichen.

Im folgenden Abschnitt werden daher zwei Untersuchungen beschrieben, die die Fragen nach ne-
benläufiger Ausführbarkeit und Abbrechbarkeit von Draw-Befehlen für ein konkretes OpenGL ES-
System klären.

3.3.2 Untersuchungsmethoden zur Pipelinenutzung

3.3.2.1 Ausführung konkurrierender Draw-Befehle

Um zu klären, ob konkurrierende Draw-Befehle nebenläufig ausgeführt werden können, werden
zwei OpenGL ES-Programme ausgeführt, wobei die Ausführung des einen Programms durch das
andere Programm bestimmt wird. Zur Vereinfachung der Diskussion darüber, wird das bestimmen-
de Programm nachfolgend als Masterprogramm bezeichnet und das bestimmte als Slaveprogramm.
Die beiden Programme gehen wie folgt vor:

In einem ersten Schritt führt das Masterprogramm eine Reihe von Draw-Befehlen aus, wobei da-
durch jeweils eine unterschiedlich Anzahl an Dreiecken gerendert wird. Dabei wird die Laufzeit
der Draw-Befehle gemessen. Die Ergebnisse dieser Messung fungieren als Referenzwerte für die
nachfolgende Untersuchung. Für diese Untersuchung werden Minimalshader verwendet (wie in
Kapitel 4.1.6 beschrieben), und zwar aus den gleichen Gründen, die auch in den bisher beschrie-
benen Untersuchungen für die Wahl von Minimalshadern ausschlaggebend waren (vgl. Abschnitt
3.2.2.2).

Nach Durchführung der Referenzmessungen startet das Masterprogramm das Slaveprogramm und
geht in einen Wartezustand über. Das Slaveprogramm führt nun die gleichen Referenzmessungen
durch wie das Masterprogramm. Wie in der in Abschnitt 3.2.2.2 beschriebenen Untersuchung dient
dies dazu, sicherzustellen, dass die beiden Programme vom OpenGL ES-System gleich behandelt
werden.

9Diese Obergrenze kann vor dem Einsatz der betreffenden Programme im Automobil ermittelt werden.

50

3.3 Pipelinenutzung

Nach Abschluss der Referenzmessung signalisiert das Slaveprogramm dem Masterprogramm die
Bereitschaft, fortzufahren, woraufhin das Masterprogramm den Wartezustand verlässt und die ei-
gentliche Untersuchung anstößt. Dabei übermitteln beide Programme die gleichen Draw-Befehle,
die auch bei der Referenzmessung übermittelt wurden, wobei immer zuerst der Draw-Befehl des
Masterprogramms an den GL-Server übermittelt wird und unmittelbar darauf der des Slavepro-
gramms. Es muss dabei sichergestellt sein, dass der Draw-Befehl des Slaveprogramms übermittelt
wird, bevor der Befehl des Masterprogramms vollständig ausgeführt worden ist.

Falls die Laufzeiten der Draw-Befehle von Master- und Slaveprogramm übereinstimmen, muss da-
von ausgegangen werden, dass das bei der Untersuchung verwendete OpenGL ES-System in der
Lage ist, konkurrierende Draw-Befehle nebenläufig auszuführen. Falls hingegen die vom Slavepro-
gramm gemessenen Laufzeiten deutlich länger sind als die vom Masterprogramm gemessenen,
und letztere mit den Referenzlaufzeiten übereinstimmen, muss davon ausgegangen werden, dass
die Ausführung der Draw-Befehle des Slaveprogramms verzögert wurde, bis die Ausführung des
Draw-Befehls des Masterprogramms abgeschlossen war und eine nebenläufige Ausführung kon-
kurrierender Draw-Befehle nicht möglich ist.

Die hier beschriebene Untersuchung zur Ausführung konkurrierender Draw-Befehle wird in Ka-
pitel 4.4.1 durchgeführt. Im nächsten Abschnitt wird die Untersuchung zur Abbrechbarkeit von
Draw-Befehlen beschrieben.

3.3.2.2 Abbrechbarkeit von Draw-Befehlen

OpenGL ES 2.0 definiert keinen Befehl, um laufende Draw-Anweisungen abzubrechen. Dennoch
existieren GPUs, die dazu in der Lage sind, und zwar solche, die unter Windows-Betriebssystemen
ab Windows Vista eingesetzt werden können. Die GPUs müssen das sogenannte Windows Display
Driver Model (WDDM) unterstützen, damit sie unter diesen Betriebssystemen genutzt werden kön-
nen. Die Abbrechbarkeit von Befehlen, die die GPU über einen längeren Zeitraum blockieren,10 ist
eine der zwingenden, von WDDM gesetzten Anforderungen an solche GPUs [Microsoft 2006].

Es stellt sich die Frage, welche Folgen ein solcher Abbruch für OpenGL ES-Programme hat. Unter
den genannten Windows-Betriebssystemen sind diese Folgen von der jeweiligen GPU abhängig.
Sobald die Ausführung eines Befehls das erlaubte Zeitintervall überschreitet, wird der GPU-Treiber
durch das Betriebssystem aufgefordert, die Ausführung des laufenden Befehls abzubrechen und
einen anderen Befehl auszuführen (dieser Vorgang wird als preempt operation bezeichnet). Falls
dies gelingt, werden andere OpenGL ES-Anwendungen nicht negativ davon betroffen. Falls dies
fehlschlägt, wird ein Hardware-Reset der GPU durchgeführt und der GPU-Treiber durch das Be-
triebssystem neu gestartet – davon sind dann alle OpenGL ES-Programme betroffen, da deren Kon-
texte dadurch ungültig werden [MSDN 2009].

Für die Echtzeitfähigkeit kritischer OpenGL ES-Anwendungen ist es entscheidend, ob durch den
Abbruch eines laufenden Draw-Befehls die Kontexte aller OpenGL ES-Programme ungültig werden.
Das dadurch erneut notwendige Setup des Kontextes und aller benötigten Datenobjekte könnte
dazu führen, dass der nächste Draw-Befehl eines kritischen OpenGL ES-Programms nicht mehr
rechtzeitig ausgeführt werden kann.

10Dieser Zeitraum kann vom Benutzer oder von Anwendungen verändert werden.

51

3 Methodisches Vorgehen

Zur Untersuchung des Abbruchverhaltens werden zwei OpenGL ES-Programme ausgeführt, wobei
eines der beiden einen Draw-Befehl an den GL-Server übermittelt, der länger läuft als erlaubt, so
dass ein Abbruch provoziert wird. Anschließend wird überprüft, ob die andere Anwendung noch
in der Lage ist, über den bisherigen Kontext OpenGL ES-Befehle ausführen zu lassen.

Die hier beschriebene Untersuchung zur Ausführung konkurrierender Draw-Befehle wird in Kapi-
tel 4.4.2 durchgeführt. Im nächsten Abschnitt werden die OpenGL ES-Befehle aufgeführt, die für
die Untersuchung der Pipelinenutzung relevant sind.

3.3.3 Relevante Befehle für die Pipelinenutzung

Wie bereits in Abschnitt 3.3 dargelegt, sind die beiden von OpenGL ES 2.0 definierten Draw-
Befehele (glDrawArrays und glDrawElements) für die Untersuchung der Pipelinenutzung
relevant, da diese Befehle die Datenverarbeitung durch die Renderpipeline anstoßen. Für die
Untersuchungen in Kapitel 4.4.1 und 4.4.2 wird glDrawArrays verwendet. Der einzige Unter-
schied zu glDrawElements besteht in der Art, wie die von der Renderpipeline zu verarbeitenden
Vertexdaten spezifiziert werden (siehe Abschnitt 3.2.3.3), die Datenverarbeitung selbst bleibt
davon unberührt.

Neben den Draw-Befehlen sind auch die in Abschnitt 3.2.3 aufgeführten Datenübertragungsbefeh-
le relevant, da es Systeme geben kann, auf denen die Renderpipeline blockiert ist, solange eine
Datenübertragung stattfindet (vgl. [Dwarakinath 2008, Seite 17). Die Untersuchung, inwieweit sich
Draw- und Datenübertragungsbefehle gegenseitig behindern, wurde bereits in Abschnitt 3.2.2.3
beschrieben.

Im folgenden Abschnitt wird erläutert, warum die Berücksichtigung von Kontextwechseln im Hin-
blick auf den Hintergrund der Arbeit relevant ist. Danach werden die Untersuchungen beschrie-
ben, mit denen Kosten für Kontextwechsel ermittelt werden können, und erörtert, welche OpenGL
ES-Befehle für diese Untersuchungen relevant sind.

3.4 Kontextwechsel

3.4.1 Motivation für die Untersuchung von Kontextwechseln

Bevor der GL-Server einen OpenGL ES-Befehl ausführt, muss er sicherstellen, dass dieser Befehl
gegen den korrekten Kontext ausgeführt wird, das heißt, dass für die Ausführung dieses Befehls
sämtliche Einstellungen gelten, die von der übermittelnden Anwendung im aktuellen Kontext ge-
setzt wurden. Wenn zuvor ein Befehl einer anderen Anwendung ausgeführt worden ist, gelten zu-
nächst noch die Einstellungen ihres Kontextes. Da diese nicht zwingend genau den Einstellungen
der Anwendung entsprechen, die den neuen Befehl übermittelt, müssen in diesem Fall die Einstel-
lungen ihres Kontextes übernommen werden, bevor der Befehl tatsächlich ausgeführt wird. Diese
Übernahme von Einstellungen eines Kontextes wird als Kontextwechsel bezeichnet.

Ein solcher Kontextwechsel ist mit gewissen Kosten verbunden, das heißt aus Sicht einer OpenGL-
Anwendung verlängert sich die Laufzeit eines an den GL-Server übermittelten Befehls, wenn zur

52

3.4 Kontextwechsel

Ausführung dieses Befehls erst ein Kontextwechsel durchgeführt werden muss. [Dwarakinath 2008]
beziffert die Kosten für einen Kontextwechsel auf einem System mit ATI r200 GPU mit 3 µs. Das
Whitepaper zur Fermi-Architektur für Nvidia GPUs feiert die Reduktion der Kosten für einen Kon-
textwechsel gegenüber GPUs der vorhergehenden Generation um den Faktor 10 auf unter 25 µs
(siehe [Nvidia 2009], Seite 18). Offenbar unterscheiden sich also die Kosten für Kontextwechsel zwi-
schen GPUs verschiedener Hersteller sehr stark (Faktor 80 zwischen ATI r200 und Nvidia GPUs der
Vor-Fermi-Generation).

Da zur Erfüllung von Echtzeitgarantien eine Obergrenze für die Laufzeit von OpenGL ES-Befehlen
angegeben werden können muss, ist es sehr wichtig, die zusätzlichen Kosten durch einen Kon-
textwechsel zu kennen, denn dadurch erhöht sich diese Obergrenze. Im folgenden Abschnitt wird
daher eine Untersuchung beschrieben, mit der sich die Kosten für Kontextwechsel ermitteln las-
sen.

3.4.2 Untersuchung der Kosten von Kontextwechseln

Prinzipiell könnte es nach Ausführung jedes Befehls zu einem Kontextwechsel kommen, wenn an-
schließend ein Befehl gegen einen anderen Kontext ausgeführt wird. Bei manchen Befehlen wäre
es nicht verwunderlich, wenn das OpenGL ES-System auf einen Kontextwechsel verzichten würde,
zum Beispiel bei Ausführung eines Befehls, der weder den GPU-Speicher noch die Renderpipeli-
ne berührt, was beispielsweise auf den Get-Befehl zur Abfrage des Namens des GPU-Herstellers
zutrifft.11

Bei der Ausführung eines Draw-Befehls kann davon ausgegangen werden, dass ein Kontextwechsel
durchgeführt wird. Daher werden zur Ermittlung der Kosten eines Kontextwechsels zwei OpenGL
ES-Programme ausgeführt (im Folgenden wie in vorherigen Abschnitten als Master- und Slavepro-
gramm bezeichnet), die Draw-Befehle im gegenseitigen Wechsel ausführen (wobei das Slavepro-
gramm den ersten Draw-Befehl an den GL-Server übermittelt). Durch dieses Vorgehen wird auf
Seiten des Masterprogramms für jeden Draw-Befehl ein Kontextwechsel erzwungen. Das Master-
programm misst dabei die Laufzeit seiner Draw-Befehle. Die dabei auftretende Abweichung von
der Referenzmessung entspricht den Kosten eines Kontextwechsels.

Dieses Vorgehen allein reicht aber nicht aus, um in jedem Fall die Kosten eines Kontextwechsels
bei der Prognose der Laufzeit von OpenGL ES-Befehlen korrekt berücksichtigen zu können. Es
kann – zumindest bei gewissen OpenGL ES-Implementierungen – zu Situationen kommen, die
zu höheren Kosten für einen Kontextwechsel führen: Für den Linux-Treiber der ATI r200-GPU ist
bekannt, dass die Userspace-Komponente12 des Treibers eine vollständige Sicht auf das aktuelle
Layout des GPU-Speichers13 unterhält, die bei Bedarf aktualisiert wird (siehe [Dwarakinath 2008],
Seite 7). Es ist nicht auszuschließen, dass auch auf anderen Systemen für jedes einzelne OpenGL
ES-Programm eine solche Sicht unterhalten wird.

11Es kann natürlich konkrete OpenGL ES-Implementierungen geben, bei denen dies nicht der Fall ist; dies erscheint
jedoch höchst unwahrscheinlich.

12Der Treiber für eine r200-GPU besteht aus zwei Komponenten, die sogenannte Userspace- und die Kernelspace-
Komponente. Eine Instanz der Kernelspace-Komponente wird vom Kernel des Betriebssystems ausgeführt. Zusätz-
lich wird jeweils eine Instanz der Userspace-Komponente für jedes OpenGL ES-Programm erzeugt.

13Es handelt sich dabei um Informationen darüber, welche Abschnitte des GPU-Speichers gerade belegt oder frei sind.

53

3 Methodisches Vorgehen

Sofern dies bei einem konkreten System der Fall ist und die Aktualisierungen der Sichten nicht
ohnehin bei jedem Kontextwechsel erfolgen, muss damit gerechnet werden, dass sich einzelne
Kontextwechsel verteuern (dann, wenn eine solche Aktualisierung durchgeführt wird). Es ist nicht
auszuschließen, dass nur solche OpenGL ES-Befehle davon betroffen sind, für deren Ausführung
aktuelle Informationen zum Layout des GPU-Speichers benötigt werden – das sind alle Befehle, die
die GPU-Speicherbelegung verändern können.14.

Zur Überprüfung dieser Möglichkeit werden zwei OpenGL ES-Programme ausgeführt, die ganz
ähnlich vorgehen, wie die beiden oben beschriebenen. In diesem Fall übermittelt das Slavepro-
gramm jedoch keinen Draw-Befehl, sondern einen Befehl, der die GPU-Speicherbelegung ändert.
Das Masterprogramm wird in zwei Varianten ausgeführt: Die erste entspricht dem oben beschrie-
benen Masterprogramm. Dadurch wird festgestellt, ob durch die Änderung der Speicherbelegung
die Kosten des „regulären“ Kontextwechsels erhöht werden. Anschließend wird die zweite Varian-
te des Masterprogramms ausgeführt. Hierbei übermittelt das Masterprogramm statt eines Draw-
Befehls ebenfalls einen Befehl, der die GPU-Speicherbelegung ändert, um festzustellen ob die Kos-
ten für diesen Befehl erhöht sind.

Schließlich wird das Masterprogramm in der zweiten Variante zusammen mit dem ursprünglichen
Slaveprogramm ausgeführt, um ausschließen zu können, dass Kontextwechsel für Befehle, die die
GPU-Speicherbelegung ändern, generell erhöht sind – nach Ausführung aller in diesem Abschnitt
beschriebenen Untersuchungen sind also die Kosten für die folgenden vier Fälle bekannt:

• Ein Draw-Befehl des Masterprogramms folgt einem Draw-Befehl des Slaveprogramms.

• Ein Draw-Befehl des Masterprogramms folgt einem Befehl des Slaveprogramms, der die
GPU-Speicherbelegung ändert.

• Ein Befehl des Masterprogramms, der die GPU-Speicherbelegung ändert, folgt einem Draw-
Befehl des Slaveprogramms.

• Ein Befehl des Masterprogramms, der die GPU-Speicherbelegung ändert, folgt einem Befehl
des Slaveprogramms, der die GPU-Speicherbelegung ändert.

Dadurch wird geklärt, ob die Änderung der GPU-Speicherbelegung erhöhte Kosten verursacht und
falls ja, ob diese erhöhten Kosten erst dann zum Tragen kommen, sobald ein weiterer Befehl aus-
geführt wird, der die GPU-Speicherbelegung ändert.

3.4.3 Relevante Befehle für die Untersuchung von Kontextwechseln

Wie bereits zu Beginn von Abschnitt 3.4.2 dargelegt, kann es bei der Ausführung jedes OpenGL
ES-Befehls zu einem Kontextwechsel kommen, wenn zuvor der Befehl eines anderen Programms
ausgeführt wurde, zum Beispiel bei Draw-Befehlen. Für die hier beschriebene Untersuchung wird
glDrawArrays verwendet. Es ist davon auszugehen, dass der andere von OpenGL ES 2.0 definierte
Draw-Befehl (glDrawElements) gleiche Ergebnisse liefert (siehe Abschnitt 3.2.3.3).

Relevant für die Untersuchung der erhöhten Kosten von Kontextwechseln bei Änderung der
Speicherbelegung sind grundsätzlich alle Befehle, die auch für die Untersuchung der Speicherbele-

14Diese Befehle sind in Abschnitt 3.1.3 aufgeführt.

54

3.4 Kontextwechsel

gung relevant sind (siehe Abschnitt 3.1.3). Hier wird – wie in den vorhergehenden Untersuchungen
auch – glBufferData verwendet, um ein Datenobjekt zu erzeugen.

Die in diesem Abschnitt beschriebene Untersuchung wird in Kapitel 4.5 durchgeführt. Im nächs-
ten Kapitel sind die Durchführung aller Untersuchungen zu Speicherbelegung, Datenübertragung,
Pipelinenutzung und Kontextwechseln sowie deren Ergebnisse dokumentiert.

55

4 Untersuchungen

Die im vorherigen Kapitel beschriebenen Untersuchungen wurden auf drei verschiedenen Testsys-
temen durchgeführt. Die dabei ausgeführten OpenGL ES-Programme und die dadurch gewonne-
nen Ergebnisse sind in den Abschnitten 4.2 bis 4.5 dokumentiert.

In Abschnitt 4.1 werden zunächst die technischen Details der Untersuchungen beschrieben, die
nicht auf eine einzelne Untersuchung beschränkt sind. Dazu gehören die Beschreibungen der drei
Testsysteme, der Verfahren für Laufzeit- und Speicherplatzmessungen, der Umgang mit Fehlern
des GL-Systems, das Verfahren zur Interprozesskommunikation und die Beschreibung der für die
Untersuchungen verwendeten Shaderprogramme.

4.1 Technische Details der Untersuchungen

4.1.1 Testsysteme

Komponente „Nvidia Quadro 2000D“ „ATI FirePro V4800“ „ATI FirePro V5900“
Prozessor Intel Core i7 920 Intel Pentium E2140 Intel Core 2 Q8400
Rechenkerne 4 2 4
Hauptspeicher 6 GB DDR3 8 GB DDR2 4 GB DDR2
GPU Nvidia Quadro 2000D ATI FirePro V4800 ATI FirePro V5900
GPU-Speicher 1 GB 1 GB 2 GB
Treiberversion 275.65 6.14.10.10225 8.01.01.1134
PCI-Slot PCIe 2 x16 (max. 8 GB/s) PCIe x8 (max. 2 GB/s) PCIe 2 x8 (max. 4 GB/s)

Tabelle 4.1: Daten der verwendeten Testsysteme

Tabelle 4.1 zeigt die Daten der drei verwendeten Testsysteme im Überblick. Als Betriebssystem
kommt auf allen drei Systemen Microsoft Windows 7 Professional x64 mit installiertem Service
Pack 1 zum Einsatz, und zwar mit deaktivierter virtueller Speicherverwaltung und Verwendung von
Minimalgrafik für die grafische Benutzeroberfläche (d. h. deaktivierte Aero-Oberfläche und keine
visuellen Designs). Die Frequenz des Thread-Schedulers des Betriebssystems wird auf den höchst-
möglichen Wert eingestellt. Dadurch erreichen Funktionen zum Thread-Timing, wie zum Beispiel
der Sleep-Befehl, eine Genauigkeit von einer Millisekunde.

4.1.2 Durchführung von Laufzeitmessungen

Zur Durchführung von Laufzeitmessungen kommt die in Kapitel 2.3 beschriebene Laufzeitmetrik
für OpenGL ES-Befehle zum Einsatz, d. h. unmittelbar vor Abfrage des ersten Zeitstempels wird

57

4 Untersuchungen

glFinish aufgerufen, und dem Aufruf des zu messenden Befehls folgt unmittelbar ein Aufruf von
glFlush und glFinish, bevor der zweite Zeitstempel abgefragt wird. Die Laufzeit wird dann durch
die Bildung der Differenz der beiden Zeitstempel berechnet.

Für die Abfrage von Zeitstempeln wird auf den drei Testsystemen eine High-Performance-Clock
mit mikrosekunden-genauer Auflösung verwendet wie in [Walbourn 2005] beschrieben. Diese Uhr
liefert für alle Prozesse des Systems identische Zeitstempel, wenn sie innerhalb der selben Mikro-
sekunde abgefragt werden.

Zwischen der Abfrage der Zeitstempel und dem Aufruf des zu messenden Befehls kann es zu Ver-
zerrungen der Zeitmessung kommen, zum Beispiel wenn ein Prozesskontextwechsel durchgeführt
wird. Außerdem können die Laufzeiten des zu messenden Befehls selbst schwanken. Die Messung
einer einzelnen Ausführung des zu messenden Befehls reicht daher nicht aus. Deshalb wird ein
Befehl im Zuge der Laufzeitmessung viele Male ausgeführt. Die Laufzeitmessung eines Befehls be-
steht also aus vielen Einzelmessungen.

Algorithmus 4.1 zeigt beispielhaft die Messung der Laufzeit des Befehls glBufferData:

Algorithmus 4.1 Messung der Laufzeit von glBufferData

1 HPCClock c ; / / für Z u g r i f f auf Mikrosekunden−Uhr
2 glFinish () ; / / a l l e noch nicht abgearbeiteten OpenGL ES−Befehle vol l s tändig ausführen
3 for (unsigned int n = 0 ; n < i t e r a t i o n s ; n++)
4 {
5 c . s t a r t () ; / / e rs t e n Zeitstempel speichern
6 glBufferData () ; / / zu messender Befehl
7 glFlush () ; / / Befehl s o f o r t an GL−Server übermitteln
8 glFinish () ; / / Befehl vol l s tändig ausführen
9 r e s u l t s [n] = c . stop () ; / / Dif ferenz zwischen erstem und aktuellem Zeitstempel bilden

10 }

4.1.3 Durchführung von Speicherplatzmessungen

Die Spezifikation von OpenGL ES macht keine Vorschriften darüber, wie Daten in einem eventuell
vorhandenen GPU-Speicher abgelegt werden und wie ein solcher Speicher aufgeteilt sein muss. Es
findet sich nur eine einzige Erwähnung eines solchen Speichers und die einzige Angabe, die an der
Stelle dazu gemacht wird, ist der Hinweis, dass Vertexbuffer-Objekte eine Möglichkeit darstellen,
diesen Speicher zu nutzen (siehe [Munshi und Leech 2010], Seite 22).

Sowohl Nvidia als auch ATI haben für ihre Produkte jeweils eine Erweiterung von OpenGL veröf-
fentlicht, über die abgefragt werden kann, wie viel freier GPU-Speicher für solche Datenobjekte
zur Verfügung steht (vergleiche [Stroyan 2009] für die Erweiterung von Nvidia und [Blackmer u. a.
2009] für die Erweiterung von ATI). Diese Erweiterungen werden für die Untersuchungen dieser
Arbeit verwendet. Die Details, wie und welche Informationen zum GPU-Speicher zur Verfügung
gestellt werden, unterscheiden sich jedoch zwischen Nvidia und ATI.

58

4.1 Technische Details der Untersuchungen

4.1.3.1 Informationen der Nvidia-Erweiterung

Durch die Nvidia-Erweiterung werden OpenGL-Anwendungen folgende Informationen zum aktu-
ellen Zustand des GPU-Speichers zur Verfügung gestellt:

• Die Menge des insgesamt vorhandenen GPU-Speichers (in kB) – dies entspricht der Gesamt-
menge des auf der Hardware vorhandenen GPU-Speichers abzüglich der Allozierungen, die
die Hardware im Zuge ihrer Initialisierung selbst durchführt.

• Die Gesamtmenge des momentan für OpenGL-Anwendungen verfügbaren GPU-Speichers
(in kB).

• Die Anzahl an Datenobjekten, die seit der Initialisierung der GPU vom GPU-Speicher in den
Hauptspeicher ausgelagert wurden (der sogenannte eviction count). Es ist dabei nicht klar,
ob diese Datenobjekte vollständig oder nur teilweise ausgelagert wurden, oder ob sie immer
noch ausgelagert sind.

• Die Gesamtmenge an Daten, die seit Initialisierung der GPU in den Hauptspeicher ausgela-
gert wurden (in kB).

Die Nvidia-Erweiterung vermittelt keinerlei Informationen über eine Aufteilung des GPU-
Speichers (z. B. für verschiedene Arten von Datenobjekten). Insbesondere werden keine Informa-
tionen über die momentane Fragmentierung des GPU-Speichers zur Verfügung gestellt, die die
Nutzung des gesamten GPU-Speichers verhindern kann.

4.1.3.2 Informationen der ATI-Erweiterung

Die ATI-Erweiterung vermittelt dem Benutzer ein anderes Modell des GPU-Speichers. Sie unter-
scheidet drei verschiedene Arten von GPU-Speicher: Speicher für Vertexbuffer-Objekte, für Textu-
ren und für Renderbuffer-Objekte. Für jeden dieser drei Speicher können die folgenden Informa-
tionen zu ihrem aktuellen Zustand abgefragt werden:

• Die Gesamtmenge des freien, regulären Speichers, der für die entsprechende Art von Daten-
objekten zur Verfügung steht (in kB).

• Die Größe des größten derzeit verfügbaren, zusammenhängenden Speicherabschnitts (in
kB).

• Die Gesamtmenge des freien Hilfsspeichers (auxiliary memory) für die entsprechende Art
von Datenobjekten (in kB).

• Die Größe des größten derzeit verfügbaren, zusammenhängenden Speicherabschnitts im
Hilfsspeicher (in kB).

Bei manchen GPUs können diese drei Speicherarten auch zusammenfallen, d. h. das Anlegen eines
Datenobjekts belastet nicht nur den Speicher für diese Datenobjektart, sondern gleichzeitig auch
die Speicher der beiden anderen Datenobjektarten. Über die Natur des Hilfsspeichers werden in
der Spezifikation der Erweiterung keine Angaben gemacht, d. h. es ist nicht klar, ob es sich dabei
um Speicher handelt, der auf der Grafikkarte physisch vorhanden ist, oder ob es sich dabei um
Hauptspeicher handelt.

59

4 Untersuchungen

Es wurde daher untersucht, wie dies für die im Rahmen dieser Arbeit verwendeten ATI-Grafikkar-
ten implementiert wurde. Dabei konnte folgendes Verhalten beobachtet werden:

• Vor Beginn der Untersuchungen war im „ATI FirePro V4800“-System ein Gigabyte Hauptspei-
cher vorhanden. Zu diesem Zeitpunkt standen OpenGL-Anwendungen 500 MB Hilfsspeicher
zur Verfügung. Nach der Erweiterung des Hauptspeichers auf acht Gigabyte standen zwei
Gigabyte Hilfsspeicher zur Verfügung. Dies legt die Vermutung nahe, dass es sich bei dem
von der ATI-Erweiterung angezeigten Hilfsspeicher tatsächlich um Hauptspeicher handelt,
zumal sich an der Menge des auf der Grafikkarte verbauten GPU-Speichers nichts geändert
hatte.

• Der freie Speicherplatz des regulären Speichers für Vertexbuffer-, Textur- und Renderbuffer-
Objekte stimmt auf den beiden ATI-Systemen überein. Das bedeutet, wenn beispielsweise
ein Vertexbuffer-Objekt erzeugt wird, sinkt nicht nur die Menge des verfügbaren Speichers
für Vertexbuffer-Objekte, sondern gleichzeitig auch die Menge des verfügbaren Speichers für
Textur- und Renderbuffer-Objekte, und zwar stets um den gleichen Betrag. Auf gleiche Weise
stimmt auch der freie Speicherplatz in den drei Hilfsspeichern überein.

4.1.3.3 Definition leerer GPU-Speicher

Alle drei Testsysteme haben gemeinsam, dass OpenGL-Anwendungen nie über einen komplett lee-
ren GPU-Speicher verfügen können. Dies hat zwei Gründe:

• Noch bevor eine OpenGL-Anwendung gestartet werden kann, wird durch das System selbst
im Zuge seiner Initialisierung eine gewisse Menge an GPU-Speicher belegt.

• Im Zuge der Erzeugung eines GL-Kontextes werden eine Reihe sogenannter statischer Daten-
objekte im GPU-Speicher angelegt. Es handelt sich dabei um die Datenobjekte, die den ers-
ten Framebuffer des erzeugten Kontextes bilden. Die Erzeugung dieser Datenobjekte kann
nicht vermieden werden und sie können auch nicht zerstört werden, solange ihr Kontext
existiert.

Wenn nachfolgend von einem leeren GPU-Speicher gesprochen wird, dann ist ein Zustand ge-
meint, bei dem neben diesen unvermeidlichen Datenobjekten keine weiteren Datenobjekte im
GPU-Speicher vorhanden sind.

4.1.4 Umgang mit Fehlern des GL-Systems

OpenGL ES 2.0 definiert den Befehl glGetError, mit dem der aktuelle Fehlercode abgefragt wer-
den kann. Der aktuelle Fehlercode ist 0, wenn seit dem letzten Aufruf von glGetError im GL-
System kein Fehler aufgetreten ist. Falls es sich um den ersten Aufruf von glGetError handelt,
wird 0 zurückgeliefert, falls seit Erzeugung des Kontextes kein Fehler im GL-System aufgetreten
ist. In den nachfolgenden Untersuchungen wird der aktuelle Fehlercode immer am Ende der da-
für ausgeführten OpenGL ES-Programme abgefragt. Wenn er ungleich 0 ist, werden die von den
Programmen ermittelten Ergebnisse nicht berücksichtigt (und stattdessen das Programm erneut
ausgeführt).

60

4.1 Technische Details der Untersuchungen

4.1.5 Interprozesskommunikation

Für manche Untersuchungen ist die Ausführung von mehreren OpenGL ES-Programmen notwen-
dig, die sich gegenseitig abstimmen müssen. Diese Programme interagieren mit Hilfe von soge-
nannten Event-Objekten des Betriebssystems [MSDN 2011]. Solche Objekte befinden sich entwe-
der im Zustand signalled oder not signalled. Standardmäßig befinden sie sich im Zustand not si-
gnalled. Der Übergang in den Zustand signalled kann von Prozessen veranlasst werden.

Prozesse können außerdem in einen Wartezustand übergehen, der von einem bestimmten Event-
Objekt abhängig ist. Sobald dieses Event-Objekt in den Zustand signalled übergeht, verlässt ein
solcher Prozess den Wartezustand, woraufhin das Event-Objekt automatisch in den Zustand not
signalled wechselt. Sofern sich das Objekt bereits im Zustand signalled befindet, wenn ein Prozess
in einen davon abhängigen Wartezustand übergeht, verlässt der Prozess den Wartezustand sofort
wieder und das Objekt wechselt in den Zustand not signalled.

Die Zeit, die vom Setzen des signalled-Zustands bis zur Fortsetzung eines darauf wartenden Pro-
zesses vergeht, bewegt sich auf den Testsystemen im ein- bis zweistelligen Mikrosekundenbereich.
Ausreißer sind aber nicht auszuschließen. Daher werden in den folgenden Untersuchungen die ak-
tuellen Zeitstempel von allen beteiligten Programmen protokolliert, wenn Event-Objekte zu deren
zeitlichen Synchronisation eingesetzt werden.

4.1.6 Minimalshader

Wie in Kapitel 2.6 beschrieben, werden im Zuge der Ausführung von Draw-Befehlen Vertex- und
Fragmentshader ausgeführt. Damit ein Draw-Befehl ausgeführt werden kann muss vom aufrufen-
den OpenGL ES-Programm ein Vertex- und ein Fragmentshader bereitgestellt werden. Ein Rende-
ring ohne Ausführung von Vertex- und Fragmentshadern ist in OpenGL ES 2.0 nicht möglich.

Algorithmus 4.2 Minimaler Vertexshader

1 attribute vec4 input ;
2 void main ()
3 {
4 gl_Position = input ; / / Input unverändert an Ausgabe weiterreichen
5 }

Zur Ausführung von Draw-Befehlen werden im Rahmen der folgenden Untersuchungen bei Be-
darf Minimalshader verwendet wie in [Munshi u. a. 2008] auf Seite 22 beschrieben. Algorithmus
4.2 zeigt den Code eines minimalen Vertexshaders. Zeile 1 spezifiziert den Input des Vertexshaders.
Es handelt sich dabei um eine Variable bestehend aus vier Fließkommawerten, die die Position des
Vertex beschreiben, für den der Vertexshader ausgeführt wird.

Diese Variable wird im Zuge der Ausführung eines Draw-Befehls auf den Wert eines Elements der
übergebenen Vertexdaten gesetzt (es wird jeweils eine Instanz des Vertexshaders für jedes Element
der übergebenen Vertexdaten ausgeführt).1 Dieser Wert wird in Zeile 4 unverändert an die built-in

1Siehe auch Kapitel 2.4.1 ab Seite 20 für die Rolle von Vertexdaten als Input für Vertexshader.

61

4 Untersuchungen

Variable gl_Position weitergereicht. Sie fungiert als minimale Ausgabe eines Vertexshaders (es
können zusätzliche Ausgabevariablen definiert werden). Ihr muss zwingend ein Wert zugewiesen
werden (siehe [Simpson und Kessenich 2009], Seite 59).

Algorithmus 4.3 Minimaler Fragmentshader

1 precision mediump f l o a t ;
2 void main ()
3 {
4 gl_FragColor = vec4 (1 . 0 , 0 . 0 , 0 . 0 , 1 . 0) ; / / Ausgabe auf Farbwert für " rot " setzen
5 }

Algorithmus 4.3 zeigt den Code eines minimalen Fragmentshaders. Zeile 1 definiert die gewünsch-
te Präzision für Fließkommaoperationen. Diese Angabe wird von der Spezifikation der Shading
Language zwingend vorgeschrieben (siehe [Simpson und Kessenich 2009], Seite 36). Ähnlich wie
auch bei Vertexshadern, fungiert hier eine built-in Variable als minimale Ausgabe und muss zwin-
gend auf einen Wert gesetzt werden. Dies geschieht in Zeile 4 (gl_FragColor bestimmt den RGBA-
Farbwert des vom Shader verarbeiteten Fragments, der hier auf „rot“ gesetzt wird – jeder andere
Farbwert wäre ebenfalls akzeptabel).

4.2 Speicherbelegung

4.2.1 Ablage von Datenobjekten im GPU-Speicher

4.2.1.1 Durchführung der Untersuchung

Um festzustellen, unter welchen Bedingungen neu erzeugte Datenobjekte im GPU-Speicher oder
im Hauptspeicher abgelegt werden, wird – wie in Kapitel 3.1.2.1 beschrieben – ein OpenGL ES-
Programm ausgeführt, das Datenobjekte verschiedener Größen erzeugt und dabei die Informatio-
nen zur aktuellen Speicherbelegung abfragt. Dabei wird glBufferData zur Erzeugung der Daten-
objekte verwendet (siehe Kapitel 3.1.3).

Algorithmus 4.4 zeigt das für diese Untersuchung ausgeführte OpenGL ES-Programm. Die Schleife
von Zeile 9 – 30 iteriert über die übergebenen Datenobjektgrößen. Die eigentliche Messung für eine
bestimmte Größe findet im Schleifenrumpf statt.

In Zeile 12 werden die aktuellen Informationen zum GPU-Speicher abgefragt. Anschließend wird
in den Zeilen 15–18 ein neues Datenobjekt erzeugt, bevor in Zeile 22 erneut die aktuellen Infor-
mationen zum GPU-Speicher abgefragt werden. Der Aufruf von glFinish in Zeile 19 stellt sicher,
dass das Datenobjekt erzeugt ist, bevor fortgefahren wird (vgl. Kapitel 2.3). In Zeile 28 wird das Da-
tenobjekt wieder freigegeben. Auch hier wird anschließen glFinish aufgerufen, um sicherzustel-
len, dass das Datenobjekt bereits entfernt wurde, bevor die nächste Schleifeniteration ausgeführt
wird.

Das in Algorithmus 4.4 gezeigte Programm wurde für unterschiedliche Datenobjektgrößen ausge-
führt. In einem ersten Lauf wurden Datenobjektgrößen von einem Kilobyte bis zehn Megabyte
untersucht, wobei in jedem Messschritt die Datenobjektgröße um ein Kilobyte erhöht wurde. In
einem zweiten Lauf wurde, beginnend bei zehn Megabyte, die Datenobjektgröße in jedem Schritt

62

4.2 Speicherbelegung

um ein Megabyte erhöht, bis die größtmögliche Datenobjektgröße erreicht war (512 MB beim „Nvi-
dia Quadro 2000D“-System und 256 MB bei den beiden ATI-Systemen). Die beiden Läufe wurden
für jeden möglichen Usage Hint durchgeführt (siehe Kapitel 2.4.1 zu Usage Hints). Im folgenden
Abschnitt werden die Ergebnisse dieser Läufe zusammengefasst.

Algorithmus 4.4 Ablage von Datenobjekten in Haupt- oder GPU-Speicher

1 void testDataObjectPlacement (
2 unsigned int minSize , / / minimale Datenobjektgröße
3 unsigned int maxSize , / / maximale Datenobjektgröße
4 unsigned int stepSize , / / Zunahme der Datenobjektgröße zwischen Messungen
5 GLenum usageHint , / / Usage Hint
6 GLbyte * data) / / zu übertragende Daten
7 {
8 / / Messreihe durchführen
9 for (unsigned int s i z e = minSize ; s i z e <= maxSize ; s i z e += stepSize)

10 {
11 / / Aktuel le Informationen zum GPU−Speicher abfragen
12 GPUMemoryInformation miBefore = getGPUMemInfo () ;
13

14 / / Datenobjekt e r s t e l l e n
15 GLuint id ;
16 glGenBuffers (1 , &id) ;
17 glBindBuffer (GL_ARRAY_BUFFER, id) ;
18 glBufferData (GL_ARRAY_BUFFER, size , data , usageHint) ;
19 glFinish () ;
20

21 / / Aktuel le Informationen zum GPU−Speicher abfragen
22 GPUMemoryInformation miAfter = getGPUMemInfo () ;
23

24 / / Ergebnisse für aktuel l e Datenobjektgröße speichern
25 writeToResults (size , miBefore , miAfter , glGetError ()) ;
26

27 / / Datenobjekt freigeben
28 glDeleteBuffers (1 , &id) ;
29 glFinish () ;
30 }
31 }

4.2.1.2 Ergebnisse

Usage Hint „Nvidia Quadro 2000D“ „ATI FirePro V4800“ „ATI FirePro V5900“
GL_STATIC_DRAW GPU-Speicher GPU-Speicher GPU-Speicher
GL_DYNAMIC_DRAW GPU-Speicher Hauptspeicher Hauptspeicher
GL_STREAM_DRAW GPU-Speicher Hauptspeicher Hauptspeicher

Tabelle 4.2: Ablageorte von Datenobjekten in Abhängigkeit des Usage Hints

Die Größe des erzeugten Datenobjekts hat auf keinem der drei Testsysteme einen Einfluss darauf,
ob das Datenobjekt im GPU-Speicher oder im Hauptspeicher abgelegt wird, im Gegensatz zum

63

4 Untersuchungen

übergebenen Usage Hint. Tabelle 4.2 zeigt dessen Einfluss auf den einzelnen Testsystemen im Über-
blick. Auf dem „Nvidia Quadro 2000D“-System werden Datenobjekte unabhängig vom gewählten
Usage Hint im GPU-Speicher abgelegt. Auf den beiden ATI-Systemen werden sie nur bei der Wahl
von GL_STATIC_DRAW im GPU-Speicher abgelegt. Ansonsten werden sie im Hilfsspeicher abgelegt
(das heißt im Hauptspeicher, vgl. Abschnitt 4.1.3). Im nächsten Abschnitt erfolgt die Untersuchung,
inwieweit der Speicherbedarf von Datenobjekten von ihrer Größe abweicht.

4.2.2 Speicherbedarf von Datenobjekten

4.2.2.1 Durchführung der Untersuchung

Algorithmus 4.5 Untersuchung des Speicherbedarfs von Datenobjekten.

1 void testMemoryConsumption (
2 unsigned int stepSize , / / Größenunterschied der Datenobjekte zwischen Messschritten
3 unsigned int maxSize , / / maximale Größe eines Datenobjekts
4 unsigned int numBuffers , / / Anzahl anzulegender Datenobjekte pro Messschri t t
5 GLbyte * data , / / zu übertragende Daten
6 GLenum bufUsageHint) / / buf fer usage hint
7 {
8 for (unsigned int s i z e = stepSize ; s i z e <= maxSize ; s i z e += stepSize)
9 {

10 / / f r e i e n Speicher vor Datenobjekterzeugung abfragen
11 GPUMemoryInformation miBefore = getGPUMemInfo () ;
12

13 / / Datenobjekte anlegen
14 GLuint bufferIDs [numBuffers] ;
15 glGenBuffers (numBuffers , bufferIDs) ;
16 for (unsigned int n = 0 ; n < numBuffers ; n++)
17 {
18 glBindBuffer (GL_ARRAY_BUFFER, bufferIDs [n]) ;
19 glBufferData (GL_ARRAY_BUFFER, size , data , bufUsageHint) ;
20 glFinish () ;
21 }
22

23 / / f r e i e n Speicher nach Datenobjekterzeugung abfragen
24 GPUMemoryInformation miAfter = getGPUMemInfo () ;
25

26 / / Datenobjekte freigeben
27 glBindBuffer (bufTarget , 0) ;
28 glDeleteBuffers (numBuffers , bufferIDs) ;
29 glFinish () ;
30

31 / / Daten das aktuellen M e s s s c h r i t t s speichern
32 writeToResults (size , miBefore , miAfter , glGetError ()) ;
33 }
34 }

Um festzustellen, ob der von Datenobjekten belegte GPU-Speicher von der Größe der Datenobjek-
te abweicht, wird – wie in Kapitel 3.1.2.2 beschrieben – zunächst jeweils ein einzelnes Datenobjekt

64

4.2 Speicherbelegung

einer bestimmten Größe im leeren GPU-Speicher angelegt und anschließend mehrere. Algorith-
mus 4.5 zeigt den Code des dazu ausgeführten OpenGL ES-Programms.

Die Schleife von Zeile 9–35 iteriert über die verschiedenen zu untersuchenden Datenobjektgrößen.
Die Messung für eine bestimmte Datenobjektgröße findet dann im Schleifenrumpf statt. In Zeile
12 wird der verfügbare Speicherplatz abgefragt, bevor ein Datenobjekt erzeugt wird. Die Erzeugung
der Datenobjekte erfolgt in den Zeilen 15–22.

Durch den Aufruf von glFinish wird sichergestellt, dass die Datenübertragung vollständig abge-
schlossen ist und dementsprechend der gesamte von den Datenobjekten benötigte Speicherplatz
belegt worden ist, bevor in Zeile 25 der nun verfügbare Speicherplatz abgefragt wird (der Daten-
übertragungsbefehl könnte bereits zurückspringen, bevor die Datenübertragung vollständig abge-
schlossen ist, vgl. Kapitel 2.3).

In den Zeilen 27–30 werden die zuvor erzeugten Datenobjekte wieder freigegeben um für die nach-
folgenden Messungen (mit der nächsten Datenobjektgröße) die ursprüngliche Speicherbelegungs-
situation wiederherzustellen, bevor schließlich in Zeile 34 die Ergebnisse für die aktuelle Datenob-
jektgröße gespeichert werden.

Das in Algorithmus 4.5 gezeigte Programm wurde in einem ersten Lauf für Datenobjektgrößen
von einem Kilobyte bis zu zehn Megabyte ausgeführt und anschließend der dabei erkannte Trend
stichprobenartig für die Größenbereiche zwischen 20–21 MB, 50–51 MB, 100–101 MB, 150–151 MB,
255–256 MB und 511–512 MB überprüft (der Abschnitt von 511–512 MB wurde dabei nur auf dem
„Nvidia Quadro 2000D“-System durchgeführt, da die maximale Datenobjektgröße auf den beiden
ATI-Systemen nur 256 MB beträgt).

Dabei wurden jeweils ein, zwei, drei und vier Datenobjekte in einem Messschritt erzeugt (wobei
die Messungen für die Erzeugung mehrerer Datenobjekte bei den letzten beiden Größenberei-
chen ausgelassen wurden, wenn die Gesamtgröße der erzeugten Datenobjekte den verfügbaren
GPU-Speicher überstieg – davon waren das „Nvidia Quadro 2000D“- und das „ATI FirePro V4800“-
System betroffen, da auf diesen Systemen nur ein Gigabyte GPU-Speicher vorhanden ist). Zwischen
den einzelnen Messschritten wurde die Größe der Datenobjekte jeweils um ein Kilobyte erhöht.

Zur Erzeugung der Datenobjekte wurde glBufferData verwendet, wobei die einzelnen Messun-
gen für jeden möglichen Usage Hint durchgeführt wurden (siehe Kapitel 3.1.3 zur Wahl dieses Be-
fehls). Die dabei ermittelten Ergebnisse werden im folgenden Abschnitt zusammengefasst.

4.2.2.2 Ergebnisse

Abbildung 4.1 zeigt die Ergebnisse für die Erzeugung eines einzelnen Datenobjekts pro Messschritt
und Datenobjektgrößen bis drei Megabyte. Auf der X-Achse sind die Datenobjektgrößen aufgetra-
gen und auf der Y-Achse die Speicherbelegung.

Auf den beiden ATI-Systemen entspricht die Menge des belegten GPU-Speichers exakt der Daten-
objektgröße. Beim „Nvidia Quadro 2000D“-System sind zwei Bereiche zu unterscheiden. Für Da-
tenobjekte kleiner als zwei Megabyte werden stets vier Megabyte GPU-Speicher belegt. Bei Daten-
objekten ab zwei Megabyte entspricht die Menge des belegten GPU-Speichers exakt der Datenob-
jektgröße, falls die Datenobjektgröße ein ganzzahliges Vielfaches von 128 kB ist.

65

4 Untersuchungen

Tabelle2

Seite 1

0 1 2 3 4
0

1

2

3

4

5
GPU-Speicherbelegung bei Erzeugung eines Objekts

Nvidia Quadro 2000D
ATI FirePro V4800 / V5900

Datenobjektgröße [MB]

S
pe

ic
he

rb
el

eg
un

g
[M

B
]

Abbildung 4.1: Speicherbelegung bei Erzeugung eines Vertexbuffer-Objekts

Tabelle3

Seite 1

0 1 2 3
0
1
2
3
4
5
6
7
8
9

10
11
12
13

GPU-Speicherbelegung bei Erzeugung von vier Objekten

Nvidia Quadro 2000D
ATI FirePro V4800 / V5900

Datenobjektgröße [MB]

S
pe

ic
he

rb
el

eg
un

g
[M

B
]

Abbildung 4.2: Speicherbelegung bei Erzeugung von vier Vertexbuffer-Objekten

66

4.2 Speicherbelegung

Betrachtet man die in Abbildung 4.2 gezeigten Ergebnisse für die Erzeugung von vier Datenobjek-
ten pro Messschritt, so deutet dies darauf hin, dass auf dem Nvidia-System Datenobjekte kleiner
zwei Megabyte in Speicherblöcken von vier Megabyte Größe abgelegt werden (die Speicherbele-
gung überschreitet vier Megabyte erst, wenn vier Datenobjekte größer als ein Megabyte erzeugt
werden).

Für Datenobjekte ab zwei Megabyte steigt die Speicherbelegung in Intervallen von einem halben
Megabyte, was vier mal 128 kB entspricht. Offensichtlich steht der zusätzlich belegte Speicherplatz
eines einzelnen Datenobjekts nicht für die Ablage von weiteren Datenobjekten zur Verfügung. Dies
deutet darauf hin, dass auf dem Nvidia-System für Datenobjekte ab zwei Megabyte Größe eine
Speichergranularität von 128 kB vorliegt (eine genauere Untersuchung der Speichergranularität
erfolgt in Abschnitt 4.2.5, zumal die Untersuchung auf dem Nvidia-System aufgrund der Ablage
von Datenobjekten in Speicherblöcken ein anderes Vorgehen erfordert).

Die Wahl verschiedener Usage Hints hat auf diese Ergebnisse keinen Einfluss (mit Ausnahme des
Ablageortes der Datenobjekte auf den ATI-Systemen, vgl. Abschnitt 4.2.1.2). Die in den beiden Ab-
bildungen nicht dargestellten Ergebnisse für die restlichen berücksichtigten Datenobjektgrößen
bestätigen den Trend – die Menge des belegten GPU-Speichers entspricht auf den beiden ATI-
Systemen exakt der jeweiligen Datenobjektgröße und beim „Nvidia Quadro 2000D“-System dann,
wenn die Datenobjektgröße einem ganzzahligen Vielfachen von 128 kB entspricht. Im nächsten
Abschnitt erfolgt die Untersuchung zur Bestimmung der Speicherblockgröße.

4.2.3 Bestimmung der Speicherblockgröße

4.2.3.1 Durchführung der Untersuchung

Zur Bestimmung der Speicherblockgröße werden – wie in Kapitel 3.1.2.3 beschrieben – sukzessive
Datenobjekte gleicher Größe im GPU-Speicher erzeugt, wobei nach jeder Erzeugung eines Daten-
objekts die aktuelle Speicherbelegung ermittelt wird. Dies wird anschließend für unterschiedliche
Datenobjektgrößen wiederholt. Das dazu ausgeführte OpenGL ES-Programm wird in Algorithmus
4.6 gezeigt.

Zunächst wir in Zeile 8 die aktuelle Speicherbelegung ermittelt und gespeichert. Anschließend wer-
den in der Schleife von Zeile 11–20 die eigentlichen Messungen durchgeführt. In Zeile 13 wird ein
Datenobjekt erzeugt, und zwar auf die gleiche Weise wie in den Zeilen 15–19 von Algorithmus 4.4.
In Zeile 16 wird anschließend die nun aktuelle Speicherbelegung gespeichert.

Dieses Programm wurde stichprobenartig für Datenobjektgrößen von 32 kB bis einem Megabyte
ausgeführt, wobei zwischen den Läufen die Datenobjektgröße jeweils verdoppelt wurde. In jedem
Lauf wurden so viele Datenobjekte angelegt, dass der GPU-Speicher komplett gefüllt wurde. Die-
ses Vorgehen wurde für alle Usage Hints wiederholt. Die dabei ermittelten Ergebnisse werden im
nächsten Abschnitt zusammengefasst.

67

4 Untersuchungen

Algorithmus 4.6 Messung des Anstiegs der GPU-Speicherbelastung

1 void te s t Bl o c k si z e (
2 unsigned int numBuffers , / / Anzahl der anzulegenden Datenobjekte
3 unsigned int bufSize , / / Größe der Datenobjekte
4 GLbyte * bufData , / / zu übertragende Daten
5 GLenum bufUsageHint) / / buf fer usage hint
6 {
7 / / Speicherbelegung abfragen und speichern
8 writeToResults (getGPUMemInfo ()) ;
9

10 / / Messungen durchführen
11 for (unsigned int k = 1 ; k < numBuffers ; k++)
12 {
13 (. . .) / / Datenobjekt erzeugen
14

15 / / Daten das aktuellen M e s s s c h r i t t s speichern
16 writeToResults (
17 k , / / Anzahl bislang angelegter Datenobjekte
18 k* bufSize , / / Menge der bislang übertragenen Daten
19 getGPUMemInfo () , / / Aktuel le Speicherbelegung
20 glGetError ()) ; / / Aktuel ler Fehlercode
21 }
22 }

Tabelle2

Seite 1

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0

10

20

30

40

50

60

70

Anstieg der GPU-Speicherbelegung

Nvidia Quadro 2000D
ATI FirePro V4800 / V5900

Anzahl Datenobjekte mit 32 kByte

S
pe

ic
he

rb
el

eg
un

g
[M

B
]

Abbildung 4.3: Anstieg der Speicherbelegung bei Erzeugung von Datenobjekten mit 32 kByte

68

4.2 Speicherbelegung

4.2.3.2 Ergebnisse

Abbildung 4.3 zeigt die Ergebnisse für die Erzeugung von Datenobjekten mit 32 kB. Auf dem „Nvi-
dia Quadro 2000D“-System steigt die Speicherbelegung in Sprüngen von jeweils vier Megabyte an,
sobald seit dem letzten Sprung insgesamt mehr als ein ganzzahliges Vielfaches von vier Megabyte
an Daten in den GPU-Speicher übertragen wurde. Die Abbildung 4.3 zeigt dabei nur einen Aus-
schnitt der Ergebnisse – das hier erkennbare Verhalten setzt sich aber so fort, bis der GPU-Speicher
komplett gefüllt ist.

Die Verwendung unterschiedlicher Usage Hints ändert nichts an den Ergebnissen (mit Ausnah-
me des Ablageortes der Datenobjekte auf den ATI-Systemen, vgl. Abschnitt 4.2.1.2). Die Wiederho-
lung des Programmlaufs mit anderen Datenobjektgrößen bringt qualitativ die gleichen Ergebnisse
– auch hier steigt die Speicherbelegung auf dem „Nvidia Quadro 2000D“-System in Sprüngen von
vier Megabyte an. Die Speicherblockgröße beträgt auf diesem System also stets vier Megabyte. Im
nächsten Abschnitt erfolgen die Untersuchungen zum Belegungsverhalten innerhalb von Speicher-
blöcken.

4.2.4 Belegungsverhalten innerhalb von Speicherblöcken

Zur Ermittlung des Belegungsverhaltens innerhalb von Speicherblöcken werden – wie in Kapitel
3.1.2.4 beschrieben – mehrere Untersuchungen durchgeführt, um die folgenden Fragen zu klä-
ren:

• Werden Datenobjekte auf mehrere Speicherblöcke aufgeteilt?

• Werden Datenobjekte unterschiedlicher Größe im selben Speicherblock abgelegt?

• Ist eine nichtsequentielle Ablage von Datenobjekten in Speicherblöcken möglich?

• Werden Datenobjekte in fragmentierten Speicherblöcken abgelegt?

• Werden Datenobjekte verschiedener Prozesse im selben Speicherblock abgelegt?

Die Durchführung dieser Untersuchungen wird in den nachfolgenden Abschnitten näher erläutert
und deren jeweilige Ergebnisse zusammengefasst.

4.2.4.1 Aufteilung von Datenobjekten auf mehrere Speicherblöcke

Anders als in Kapitel 3.1.2.4.1 beschrieben, werden hier nicht Datenobjekte mit 3
4 der Speicher-

blockgröße angelegt, sondern Datenobjekte mit 3
8 der Speicherblockgröße. Dies liegt daran, dass

auf dem „Nvidia Quadro 2000D“-System nur Datenobjekte von der Ablage in Speicherblöcken be-
troffen sind, die kleiner als die Hälfte der Speicherblockgröße sind. Abbildung 4.4 zeigt schematisch
die Ablagemöglichkeiten für acht Datenobjekte mit 3

8 der Speicherblockgröße.

Falls durch die Erzeugung von acht solchen Datenobjekten nur drei Speicherblöcke belegt werden,
werden Datenobjekte über mehrere Speicherblöcke verteilt (Belegung 1 in Abbildung 4.4). Wenn
stattdessen vier Speicherblöcke belegt werden, wird für die Erzeugung eines Datenobjekts ein neu-
er Speicherblock begonnen, wenn das Datenobjekt nicht mehr vollständig in einen bereits beste-
henden passt (Belegung 2 in Abbildung 4.4). Um festzustellen, welcher Fall auf dem „Nvidia Quadro
2000D“-System vorliegt, wird das in Algorithmus 4.7 gezeigte OpenGL ES-Programm ausgeführt.

69

4 Untersuchungen

Obj5 Obj6 Obj7 Obj8Obj3 Obj4Obj1 Obj2

Obj3 Obj6Obj1 Obj2 Obj4 Obj5 Obj7 Obj8

Block1 Block2 Block3 Block4

Block1 Block2 Block3 Block4

Belegung 1:

Belegung 2:

Abbildung 4.4: Ablagemöglichkeiten von acht Datenobjekten mit 3
8 der Speicherblockgröße

Algorithmus 4.7 Erzeugung von Datenobjekten mit 3
8 der Speicherblockgröße

1 void testThreeEighthBlocksizeObjects (
2 unsigned int blocksize , / / Speicherblockgröße
3 unsigned int i t e r a t i o n s , / / Anzahl der Messschri t te
4 GLbyte * bufData , / / zu übertragende Daten
5 GLenum bufUsageHint) / / buf fer usage hint
6 {
7 / / Speicherbelegung abfragen und speichern
8 writeToResults (getGPUMemInfo ()) ;
9

10 / / Messungen durchführen
11 for (unsigned int n = 0 ; n < i t e r a t i o n s ; n++)
12 {
13 / / Acht Datenobjekte mit 3/8 der Speicherblockgröße anlegen
14 for (unsigned int k = 0 ; k < 8 ; k++)
15 {
16 (. . .) / / Datenobjekt erzeugen
17 }
18

19 / / Ergebnis des M e s s s c h r i t t s speichern
20 writeToResults (getGPUMemInfo () , glGetError ()) ;
21 }
22 }

Zunächst wird in Zeile 8 die aktuelle Speicherbelegung ermittelt und gespeichert. Anschließend
werden in der Schleife von Zeile 11–21 die eigentlichen Messungen durchgeführt. Dazu werden in
der Schleife von Zeile 14–17 jeweils acht Datenobjekte erzeugt. Die Erzeugung erfolgt auf gleiche
Weise wie in den Zeilen 15–19 von Algorithmus 4.4, mit dem Unterschied, dass die Größe der Daten-
objekte hier 3

8 der Speicherblockgröße entspricht. In Zeile 20 wird anschließend die nun aktuelle
Speicherbelegung gespeichert. Dieses Programm wurde auf dem „Nvidia Quadro 2000D“-System

70

4.2 Speicherbelegung

mit so vielen Iterationen durchgeführt, dass der GPU-Speicher komplett mit Datenobjekten belegt
wurde (auf den beiden ATI-Systemen kommt es nicht zur Ablage von Datenobjekten in Speicher-
blöcken, daher wurde dieses Programm dort nicht ausgeführt).

Dies wurde für alle Usage Hints wiederholt. Dabei wurden in jedem Messschritt vier Speicherblö-
cke belegt. Das bedeutet, dass auf diesem System die zweite der in Abbildung 4.4 gezeigten Abla-
gemöglichkeiten zutrifft – Datenobjekte werden nicht auf mehrere Speicherblöcke verteilt.

4.2.4.2 Ablage von Datenobjekten unterschiedlicher Größe im selben Speicherblock

Um zu überprüfen, ob Datenobjekte unterschiedlicher Größe im selben Speicherblock abgelegt
werden können, wird das in Algorithmus 4.8 gezeigte OpenGL ES-Programm ausgeführt.

Algorithmus 4.8 Erzeugung von Datenobjekten unterschiedlicher Größe

1 void testVarObjectSizes (
2 unsigned int blocksize , / / Speicherblockgröße
3 unsigned int i t e r a t i o n s , / / Anzahl durchzuführender Messschri t te
4 GLenum usageHint , / / Usage Hint
5 GLbyte * data) / / zu übertragende Daten
6 {
7 / / Messreihe durchführen
8 for (unsigned int n = 0 ; n < i t e r a t i o n s ; n++)
9 {

10 / / aktuel le Informationen zum GPU−Speicher abfragen
11 GPUMemoryInformation miBefore = getGPUMemInfo () ;
12

13 / / Speicherblock f ü l l e n
14 unsigned int remainingSpace = blocksize ;
15 do
16 {
17 unsigned int s i z e = getRandomSize (remainingSpace) ;
18 remainingSpace −= s i z e ;
19 (. . .) / / Datenobjekt erzeugen
20 } while (remainingSize) ;
21

22 / / aktuel le Informationen zum GPU−Speicher abfragen
23 GPUMemoryInformation miAfter = getGPUMemInfo () ;
24

25 / / Ergebnisse des aktuellen M e s s s c h r i t t s speichern
26 writeToResults (miBefore , miAfter , glGetError ()) ;
27 }
28 }

Zunächst wird in Zeile 11 die aktuelle Speicherbelegung ermittelt. Anschließend werden in der
Schleife von Zeile 15–20 sukzessive Datenobjekte zufälliger Größe erzeugt, bis die Gesamtgröße
der erzeugten Datenobjekte genau der Speicherblockgröße entspricht. getRandomSize liefert da-
bei eine Datenobjektgröße zurück, die zwischen einem Kilobyte und 1,999 MB liegt, aber den über-
gebenen Wert (remainingSpace) nicht überschreitet, so dass das danach erzeugte Datenobjekt

71

4 Untersuchungen

im Speicherblock noch Platz finden kann (sofern Datenobjekte unterschiedlicher Größe im selben
Speicherblock abgelegt werden). Die Erzeugung des Datenobjekts erfolgt dabei auf die gleiche Wei-
se wie in den Zeilen 15–19 von Algorithmus 4.4. Anschließend wird in Zeile 23 die aktuelle Speicher-
belegung ermittelt, bevor die Ergebnisse des Messschritts in Zeile 26 gespeichert werden.

Dieses Programm wurde für alle Usage Hints ausgeführt. Dies hatte keinen Einfluss auf die Ergeb-
nisse – auf dem „Nvidia Quadro 2000D“-System werden Datenobjekte unterschiedlicher Größe im
selben Speicherblock abgelegt.

4.2.4.3 Nichtsequentielle Ablage von Datenobjekten in Speicherblöcken

Da Datenobjekte unterschiedlicher Größe auf dem „Nvidia Quadro 2000D“-System im selben
Speicherblock abgelegt werden können, kann untersucht werden, ob Datenobjekte auch dann im
selben Speicherblock abgelegt werden, wenn sie nicht unmittelbar aufeinander folgend erzeugt
werden. Dazu werden – wie in Kapitel 3.1.2.4.3 beschrieben – im leeren GPU-Speicher zunächst
mehrere Datenobjekte erzeugt, so dass ein Speicherblock teilweise gefüllt ist. Anschließend wird
durch Erzeugung weiterer Datenobjekte ein anderer Speicherblock komplett gefüllt und schließ-
lich ein Datenobjekt erzeugt, das theoretisch im ersten Speicherblock Platz finden könnte, um zu
überprüfen, ob es dort abgelegt wird. Anschließend wird dieses Vorgehen für größere Anzahlen
teilweise gefüllter Speicherblöcke wiederholt.

Da auf dem „Nvidia Quadro 2000D“-System nur Datenobjekte, die kleiner sind als die halbe
Speicherblockgröße, in Speicherblöcken abgelegt werden, muss diese Untersuchung mit ande-
ren Datenobjektgrößen durchgeführt werden als im Beispiel in Kapitel 3.1.2.4.3 beschrieben.
Um Speicherblöcke teilweise zu füllen, werden nicht zwei Datenobjekte mit 3

8 sondern fünf
Datenobjekte mit 3

16 der Speicherblockgröße erzeugt (der Speicherblock ist dann zu 15
16 gefüllt).

Anschließend wird ein Speicherblock durch Erzeugung von vier Datenobjekten mit 1
4 der Speicher-

blockgröße komplett gefüllt. Schließlich wird versucht, durch Erzeugung eines Datenobjekts mit
1

16 der Speicherblockgröße den ersten Speicherblock aufzufüllen.

Das dazu ausgeführte OpenGL ES-Programm wird in Algorithmus 4.9 gezeigt. Die Schleife von Zei-
le 7 bis 44 iteriert über die Anzahl von teilweise gefüllten Speicherblöcken, die in einem Messschritt
angelegt werden. In Zeile 11 werden dann für jede teilweise zu füllende Seite sechs IDs für Daten-
objekte erzeugt, plus vier für den am Ende komplett zu füllenden Speicherblock.

In der Schleife von Zeile 14 bis 17 werden dann die teilweise gefüllten Speicherblöcke angelegt,
indem für jeden Speicherblock fünf Datenobjekte angelegt werden. In der darauffolgenden Schleife
werden die vier Datenobjekte angelegt, um einen Speicherblock komplett zu füllen. Bevor dann in
der Schleife von Zeile 29 bis 33 versucht wird, jeden der teilweise gefüllten Speicherblöcke komplett
zu füllen, wird in Zeile 26 die aktuelle Speicherbelegung abgefragt.

Nach dem Auffüllversuch wird ebenfalls die Speicherbelegung abgefragt (Zeile 35). Anschließend
werden in den Zeilen 38–40 sämtliche erzeugten Datenobjekte wieder freigegeben, um für den
nächsten Messschritt die ursprüngliche Speicherbelegung wiederherzustellen. Die Erzeugung ein-
zelner Datenobjekte in den Zeilen 16, 22 und 31 erfolgt auf die gleiche Weise wie in den Zeilen
15–19 von Algorithmus 4.4.

72

4.2 Speicherbelegung

Algorithmus 4.9 Nichtsequentielles Auffüllen von Speicherblöcken

1 void testNonSequentialStorage (
2 unsigned int blocksize , / / Speicherblockgröße
3 unsigned int maxBlocks , / / maximale Anzahl t e i l w e i s e g e f ü l l t e r Speicherblöcke
4 GLbyte * data , / / zu übertragende Daten
5 GLenum bufUsageHint) / / buf fer usage hint
6 {
7 for (unsigned int n = 1 ; n <= maxNumPages; n++)
8 {
9 / / IDs für die benötigten Datenobjekte erzeugen

10 GLuint bufferIDs [6 *n+ 4] ;
11 glGenBuffers (6*n+4 , bufferIDs) ;
12

13 / / t e i l w e i s e g e f ü l l t e Speicherblöcke anglegen
14 for (unsigned int k = 0 ; k < 5*n ; k++)
15 {
16 (. . .) / / Datenobjekt mit 3/16 der Speicherblockgröße erzeugen
17 }
18

19 / / einen komplett g e f ü l l t e n Speicherblock anlegen
20 for (unsigned int l = 0 ; l < 4 ; l ++)
21 {
22 (. . .) / / Datenobjekt mit 1/4 der Speicherblockgröße erzeugen
23 }
24

25 / / Speicherbelegung vor Auffüllversuch abfragen
26 GPUMemoryInformation miBefore = getGPUMemInfo () ;
27

28 / / Versuch , t e i l w e i s e g e f ü l l t e Speicherblöcke aufzufüllen
29 for (unsigned int m = 0 ; m < n ; m++)
30 {
31 (. . .) / / Datenobjekt mit 1/16 der Speicherblockgröße erzeugen
32 }
33

34 / / Speicherbelegung nach Auffüllversuch abfragen
35 GPUMemoryInformation miAfter = getGPUMemInfo () ;
36

37 / / angelegte Datenobjekte freigeben
38 glBindBuffer (bufTarget , 0) ;
39 glDeleteBuffers (6*n+4 , bufferIDs) ;
40 glFinish () ;
41

42 / / Ergebnisse des M e s s s c h r i t t s speichern
43 writeToResults (miBefore , miAfter , glGetError ()) ;
44 }
45 }

Dieses Programm wurde für alle Usage Hints ausgeführt, wobei im letzten Messschritt so viele
Speicherblöcke angelegt wurden, dass der GPU-Speicher komplett gefüllt wurde. Dabei zeigte sich,
dass sich die Speicherbelegung auf dem „Nvidia Quadro 2000D“-System zwischen der Messung
vor und nach dem Auffüllversuch nicht ändert. Daraus lässt sich schließen, dass auf diesem System
Datenobjekte in Speicherblöcken abgelegt werden, auch wenn sie nicht unmittelbar aufeinander
folgend erzeugt werden. Usage Hints haben keinen Einfluss auf dieses Verhalten.

73

4 Untersuchungen

4.2.4.4 Ablage von Datenobjekten in fragmentierten Speicherblöcken

Algorithmus 4.10 Ablage von Datenobjekten in fragmentierten Speicherblöcken

1 void testFragmentedStorage (
2 unsigned int blocksize , / / Speicherblockgröße
3 unsigned int minObjectSize , / / minimale Größe der zu erzeugenden Datenobjekte
4 GLbyte * bufData , / / zu übertragende Daten
5 GLenum bufUsageHint) / / buf fer usage hint
6 {
7 for (unsigned int s i z e = blocksize / 8 ; s i z e >= minObjectSize ; s i z e /= 2)
8 {
9 / / IDs für die benötigten Datenobjekte erzeugen

10 unsigned int numObjects = blocksize / s i z e ;
11 GLuint bufferIDs [numObjects + numObjects / 2] ;
12 glGenBuffers (numObjects + numObjects/2 , bufferIDs) ;
13

14 / / einen Speicherblock mit Datenobjekten f ü l l e n
15 for (unsigned int k = 0 ; k < numObjects ; k++)
16 {
17 (. . .) / / Datenobjekt erzeugen
18 }
19

20 / / Belegungslücken erzeugen
21 glBindBuffer (bufTarget , 0) ;
22 for (unsigned int k = 0 ; k < numObjects ; k+=2)
23 {
24 glDeleteBuffers (1 , &bufferIDs [k]) ;
25 glFinish () ;
26 }
27

28 / / Speicherbelegung vor Füllversuch der Lücken abfragen
29 GPUMemoryInformation miBefore = getGPUMemInfo () ;
30

31 / / Versuch , Lücken zu f ü l l e n
32 for (unsigned int k = 0 ; k < numObjects / 2 ; k++)
33 {
34 (. . .) / / Datenobjekt erzeugen
35 }
36

37 / / Speicherbelegung nach Füllversuch ermitteln
38 GPUMemoryInformation miAfter = getGPUMemInfo () ;
39

40 (. . .) / / Erzeugte Datenobjekte freigeben
41

42 / / Daten des M e s s s c h r i t t s speichern
43 writeToResults (miBefore , miAfter , glGetError ()) ;
44 }
45 }

Um zu überprüfen, ob Datenobjekte in fragmentierten Speicherblöcken abgelegt werden, wird –
wie in Kapitel 3.1.2.4.4 beschrieben – ein Speicherblock zunächst komplett mit Datenobjekten ge-

74

4.2 Speicherbelegung

füllt und anschließend jedes zweite Datenobjekt wieder gelöscht, um den Speicherblock zu frag-
mentieren.2 Dazu wird das in Algorithmus 4.10 gezeigte OpenGL ES-Programm ausgeführt.

Die Schleife von Zeile 7 bis 44 iteriert über die zu untersuchende Datenobjektgröße (die in jedem
Messschritt halbiert wird, bis die minimale Datenobjektgröße erreicht ist). In den Zeilen 10–12 wer-
den die IDs für die zu erzeugenden Datenobjekte erzeugt. Es werden eineinhalb mal so viele IDs
benötigt wie Datenobjekte in einen Speicherblock passen würden (da die Hälfte der Datenobjekte
des Speicherblocks gelöscht und dann ein zweites Mal erzeugt werden).

Durch die Schleife von Zeile 15 bis 18 wird ein Speicherblock komplett mit Datenobjekten gefüllt,
bevor in den Zeilen 21–26 jedes zweite dieser Datenobjekte gelöscht wird, um den Speicherblock
zu fragmentieren. Anschließend wird in den Zeilen 32–35 versucht, diese Lücken aufzufüllen, wo-
bei unmittelbar davor und danach die aktuelle Speicherbelegung ermittelt wird. Schließlich wer-
den alle erzeugten Datenobjekte freigegeben, um für den nächsten Messschritt die ursprüngliche
Speicherbelegungssituation wiederherzustellen.

Dieses Programm wurde für alle Usage Hints ausgeführt, bis zu einer minimalen Datenobjektgröße
von einem Kilobyte (was 2000 Belegungslücken im Speicherblock entspricht). Dabei zeigte sich,
dass sich auf dem „Nvidia Quadro 2000D“-System für alle untersuchten Datenobjektgrößen und
alle Usage Hints die Speicherbelegung vor und nach dem Füllversuch nicht ändert. Daraus kann
geschlossen werden, dass Datenobjekte auf diesem System in fragmentierten Speicherblöcken ab-
gelegt werden.

Im nächsten Abschnitt erfolgt die Untersuchung zur Bestimmung der Speichergranularität. Da dies
nicht nur für das „Nvidia Quadro 2000D“-System relevant ist, wird diese Untersuchung für alle drei
Testsysteme durchgeführt.

4.2.5 Bestimmung der Speichergranularität

4.2.5.1 Durchführung der Untersuchung

Hinsichtlich der Bestimmung der Speichergranularität muss als zusätzliche Schwierigkeit beim
„Nvidia Quadro 2000D“-System beachtet werden, dass Datenobjekte, die kleiner als zwei Megabyte
sind, von der Ablage in Speicherblöcken betroffen sind, wodurch nicht ohne weiteres gemessen
werden kann, wieviel GPU-Speicher durch deren Erzeugung belegt wird. Wie in Kapitel 3.1.2.5 be-
schrieben, wird dieses Problem umgangen, indem eine sehr große Zahl an Datenobjekten erzeugt
wird, wodurch auf diesem System durch die Anzahl der belegten Speicherblöcke darauf geschlos-
sen werden kann, welche Speichergranularität vorliegt. Dazu wird das in Algorithmus 4.11 gezeigte
OpenGL ES-Programm ausgeführt.

2Unter der Fragmentierung eines Speicherblocks wird hier verstanden, dass es innerhalb des Speicherblocks ungenutz-
ten Speicher zwischen benutzten Speicherbereichen gibt. Dies kann auf dem „Nvidia Quadro 2000D“-System nicht
überprüft werden. Es wird von der Annahme ausgegangen, dass solche Belegungslücken entstehen, wenn jedes zwei-
te Datenobjekt des Speicherblocks gelöscht wird.

75

4 Untersuchungen

Algorithmus 4.11 Bestimmung der Speichergranularität.

1 void testForMemGranularity (
2 unsigned int baseSize , / / Mindestgröße eines Datenobjekts
3 unsigned int testRange , / / maximale zusätzl iche Datenobjektgröße
4 unsigned int stepSize , / / Größenunterschied zwischen zwei Messschritten
5 unsigned int numBuffers , / / Anzahl anzulegender Datenobjekte pro Messschri t t
6 GLbyte * bufData , / / zu übertragende Daten
7 GLenum bufUsageHint) / / buf fer usage hint
8 {
9 for (unsigned int s i z e = baseSize ; s i z e <= baseSize + testRange ; s i z e += stepSize)

10 {
11 (. . .) / / Datenobjekt−IDs erzeugen
12

13 / / aktuel le Speicherbelegung ermitteln
14 GPUMemoryInformation miBefore = getGPUMemInfo () ;
15

16 / / Datenobjekte erzeugen
17 for (unsigned int n = 0 ; n < numBuffers ; n++)
18 {
19 (. . .) / / Datenobjekt erzeugen
20 }
21

22 / / aktuel le Speicherbelegung ermitteln
23 GPUMemoryInformation miAfter = getGPUMemInfo () ;
24

25 / / Ergebnisse des M e s s s c h r i t t s speichern
26 writeToResults (miBefore , miAfter , glGetError ()) ;
27

28 (. . .) / / Datenobjekte freigeben
29 }
30 }

Die Schleife von Zeile 9 bis 29 iteriert über die zu untersuchenden Datenobjektgrößen. In Zeile
11 werden die IDs der zu erzeugenden Datenobjekte erzeugt (analog zu den Zeilen 10–11 von Al-
gorithmus 4.9). Die Schleife von Zeile 17 bis 20 erzeugt dann die Datenobjekte für den aktuellen
Messschritt. Die Speicherbelegung wird dabei unmittelbar vor und nach der Erzeugung der Daten-
objekte ermittelt. Nach der Speicherung der Ergebnisse des aktuellen Messschritts werden in Zeile
28 die erzeugten Datenobjekte wieder freigegeben, um für den nächsten Messschritt die ursprüng-
liche Speicherbelegungssituation wiederherzustellen.

Dieses Programm wurde auf allen drei Testsystemen für Datenobjektgrößen von einem Byte bis
vier Kilobyte durchgeführt, wobei in jedem Messschritt die Datenobjektgröße um ein Byte erhöht
wurde. Anschließend wurde auf den beiden ATI-Systemen der Trend stichprobenartig für Daten-
objektgrößen von 8 MB bis 8 MB + 4 kB, 50 MB bis 50 MB + 4 kB, 150 MB bis 150 MB + 4 kB und 250
MB + 4 kB wiederholt, wobei auch hier die Datenobjektgröße zwischen zwei Messschritten um ein
Byte erhöht wurde.

Da die in Abschnitt 4.2.2 ermittelten Ergebnisse darauf hinweisen, dass auf dem „Nvidia Quadro
2000D“-System für Datenobjekte ab zwei Megabyte eine Speichergranularität von 128 kB vorliegt,
wurde hier der Messbereich auf vier Megabyte ausgedehnt und die Datenobjektgröße zwischen
zwei Messschritten um ein Kilobyte erhöht.

76

4.2 Speicherbelegung

Für dieses System wurde der Trend stichprobenartig für Datenobjektgrößen von 8–12 MB, 50–54
MB, 150–154 MB, 250–254 MB und 500–504 MB überprüft. Dies wurde für alle Usage Hints wieder-
holt. Im folgenden Abschnitt werden die dabei ermittelten Ergebnisse zusammengefasst.

4.2.5.2 Ergebnisse

Abbildung 4.5 zeigt die Ergebnisse für die Erzeugung von 65.536 Datenobjekten pro Messschritt
auf dem „Nvidia Quadro 2000D“-System. Auf der X-Achse sind die Datenobjektgrößen aufgetragen
und auf der Y-Achse die Speicherbelegung bzw. die übertragene Datenmenge (dies gilt auch für
die Achsen der darauf folgenden drei Abbildungen). Diese Abbildung zeigt einen Ausschnitt der
Ergebnisse der Untersuchung für Datenobjektgrößen von einem Byte bis acht Kilobyte.

Die Menge des durch die Erzeugung der Datenobjekte belegten GPU-Speichers stimmt nur dann
mit der Gesamtmenge der übertragenen Daten überein, wenn die Datenobjektgrößen einem Viel-
fachen von 512 Byte entsprechen. Bei Datenobjektgrößen von 1025 bis 1536 Byte ist eine Anomalie
zu erkennen. In diesem Bereich wäre eine Speicherbelegung von 96 MB zu erwarten (65536 * 1536
Byte = 96 MB). Tatsächlich werden aber 100 MB belegt, was einem zusätzlichen Speicherblock ent-
spricht.

Dies geschieht, weil Datenobjekte auf dem „Nvidia Quadro 2000D“-System nicht in teilweise be-
legten Speicherblöcken abgelegt werden, wenn sie nicht vollständig hineinpassen (vgl. Abschnitt
4.2.4.1). Da die Speicherblockgröße auf diesem System kein ganzzahliges Vielfaches von 1536 Byte
ist, bleibt ein Teil jedes Speicherblocks unbelegt, und zwar jeweils 1024 Byte (4 MB mod 1536 Byte
= 1024). Nachdem 96 MB gefüllt sind, werden noch 16 weitere Datenobjekte erzeugt. Dadurch
kommt es zur Reservierung eines weiteren Speicherblocks.

Abbildung 4.6 zeigt die Ergebnisse für die Erzeugung von 65.536 Datenobjekten pro Messschritt
auf den beiden ATI-Systemen. Diese Abbildung zeigt einen Ausschnitt der Ergebnisse der Unter-
suchung für Datenobjektgrößen von einem Byte bis acht Kilobyte. Auf den ATI-Systemen stimmt
die Speicherbelegung mit der Gesamtmenge der übertragenen Daten überein, wenn die Daten-
objektgrößen einem ganzzahligen Vielfachen von 256 Byte entsprechen; Datenobjektgrößen, die
kein Vielfaches von 256 Byte sind, führen zu einer Speicherbelegung, die der von Datenobjekten
des jeweils nächsthöheren Vielfachen von 256 Byte entspricht.

Abbildung 4.7 zeigt die Ergebnisse für die Erzeugung von 32 Datenobjekten mit einer Größe
von acht bis neun Megabyte auf dem „Nvidia Quadro 2000D“-System. In diesem Größenbereich
stimmt die Menge des belegten GPU-Speichers mit der Gesamtmenge der übertragenen Daten
überein, wenn die Datenobjektgrößen einem ganzzahligen Vielfachen von 128 kB entsprechen.
Datenobjektgrößen, die kein solches Vielfaches sind, führen zu einer Speicherbelegung, die
der von Datenobjekten des jeweils nächstgrößeren Vielfachen von 128 kB entsprechen. Dieser
Trend bestätigt sich auch für die übrigen untersuchten Größenbereiche. Auf dem „Nvidia Quadro
2000D“-System gibt es also offenbar zwei verschiedene Speichergranularitäten: 512 Byte für
Datenobjekte kleiner zwei MB und 128 kB für alle anderen.

Abbildung 4.8 zeigt die Ergebnisse für die Erzeugung von 32 Datenobjekten mit einer Größe von
8 MB bis 8 MB + 2 kB auf den beiden ATI-Systemen. Auch in diesem Größenbereich stimmt die
Menge des belegten GPU-Speichers mit der Gesamtmenge der übertragenen Daten überein, wenn
die Datenobjektgrößen einem ganzzahligen Vielfachen von 256 Byte entsprechen.

77

4 Untersuchungen

XXX

Tabelle2

Seite 1

0 256 512 768 1024 1280 1536 1792 2048
0

16

32

48

64

80

96

112

128

144

Speicherbelegung durch Erzeugung von 64k Objekte (Nvidia Quadro)

Speicherbelegung (Nvidia Quadro 2000D)

übertragene Datenmenge

Datenobjektgröße [Byte]

M
eg

ab
yt

e

Abbildung 4.5: Speicherbelegung durch Erzeugung von 65.536 Datenobjekten (Nvidia-System)

XXX

Tabelle2

Seite 1

0 256 512 768 1024 1280 1536 1792 2048
0

16

32

48

64

80

96

112

128

144

Speicherbelegung durch Erzeugung von 64k Objekte (ATI FirePro)

Speicherbelegung (ATI FirePro V4800 / V5900)
übertragene Datenmenge

Datenobjektgröße [Byte]

M
eg

ab
yt

e

Abbildung 4.6: Speicherbelegung durch Erzeugung von 65.536 Datenobjekten (ATI-Systeme)

78

4.2 Speicherbelegung

XXX

Tabelle3

Seite 1

8 8 1/8 8 1/4 8 3/8 8 1/2 8 5/8 8 3/4 8 7/8 9
256

260

264

268

272

276

280

284

288

292

Speicherbelegung durch Erzeugung von 32 großen Objekten (Nvidia Quadro)

Speicherbelegung (Nvidia Quadro 2000D)
übertragene Datenmenge

Datenobjektgröße [MB]

M
eg

ab
yt

e

Abbildung 4.7: Speicherbelegung durch Erzeugung von 32 Datenobjekten (Nvidia-System)

XXX

Tabelle2

Seite 1

8MB + 0 Byte
8MB + 256 Byte

8MB + 512 Byte
8MB + 768 Byte

8MB + 1024 Byte
8MB + 1280 Byte

8MB + 1536 Byte
8MB + 1792 Byte

8MB + 2048 Byte
262.144

262.152

262.160

262.168

262.176

262.184

262.192

262.200

262.208

262.216

GPU-Speicherbelegung durch Erzeugung von 32 großen Objekten (ATI FirePro)

Speicherbelegung (ATI FirePro V4800 / V5900)
übertragene Datenmenge

Datenobjektgröße

M
eg

ab
yt

e

Abbildung 4.8: Speicherbelegung durch Erzeugung von 32 Datenobjekten (ATI-Systeme)

79

4 Untersuchungen

Datenobjektgrößen, die kein solches Vielfaches sind, führen zu einer Speicherbelegung, die der
von Datenobjekten des jeweils nächstgrößeren Vielfachen von 256 Byte entsprechen. Dieser Trend
bestätigt sich auch für die übrigen untersuchten Größenbereiche. Auf den beiden ATI-Systemen
gibt es also offenbar nur eine Speichergranularität von 256 Byte, unabhängig von der Datenobjekt-
größe.

In keiner der Untersuchungen hatte der Usage Hint einen Einfluss auf die Speichergranularität
(auch wenn auf den ATI-Systemen Datenobjekte bei entsprechenden Usage Hints im Hilfsspeicher
abgelegt werden, vgl. Abschnitt 4.2.1.2). Im nächsten Abschnitt werden die Ergebnisse der Unter-
suchungen zur Speicherbelegung zusammengefasst.

4.2.6 Fazit Speicherbelegung

Wie zu Beginn von Kapitel 3.1 dargelegt wurde, kann das Auftreten von Eviction dazu führen, dass
sich die Laufzeit von OpenGL ES-Befehlen erhöht. Das kann wiederum die Erfüllung von Echtzeit-
garantien signifikant beeinträchtigen, da über OpenGL ES nicht gesteuert werden kann, welche
Datenobjekte von Eviction betroffen sind – dadurch kann es auch bei der Ausführung eines Draw-
Befehls einer kritischen Anwendung zu einer Eviction-Kaskade kommen, die die Laufzeit dieses
Befehls derart verlängern könnte, dass keine ausreichend kleine Obergrenze für dessen Laufzeit
mehr garantiert werden kann. Wenn aus diesem Grund das Auftreten von Eviction vermieden wer-
den soll, muss vorhergesagt werden können, wie viel GPU-Speicher durch die Ausführung eines
bestimmten OpenGL ES-Befehls belegt wird.

Die Ergebnisse der Untersuchungen zur Speicherbelegung zeigen aber, dass auf den Testsystemen
nur für wenige Datenobjektgrößen die Menge des belegten GPU-Speichers exakt mit der Größe
des erzeugten Datenobjekts übereinstimmt. Dies ist auf die Speichergranularität zurückzuführen,
die auf allen drei Systemen größer ist als ein Byte. Auf dem „Nvidia Quadro 2000D“-System kommt
erschwerend hinzu, dass manche Datenobjekte in Speicherblöcken abgelegt werden, was ebenfalls
dafür sorgt, dass für solche Datenobjekte die Menge des belegten GPU-Speichers von ihrer Größe
abweicht.

Sofern dieses spezielle Verhalten berücksichtigt wird und die Kennzahlen zu Speichergranularität
und Speicherblockgröße bekannt sind, kann zumindest eine Obergrenze für den Speicherbedarf ei-
nes Datenobjekts angegeben werden: Sofern es sich um ein Datenobjekt handelt, das in Speicher-
blöcken abgelegt wird, entspricht diese Obergrenze der Speicherblockgröße. Falls es sich um ein
anderes Datenobjekt handelt entspricht die Obergrenze der Effektivgröße dieses Datenobjekts (in
diesem Fall entspricht die Obergrenze auch der Untergrenze für die Speicherbelegung).

Um eine genauere Obergrenze für Datenobjekten angeben zu können, die in Speicherblöcken ab-
gelegt werden, ist es notwendig den Inhalt der einzelnen Speicherblöcke zu verfolgen. Sobald meh-
rere Speicherblöcke im GPU-Speicher reserviert wurden, die nicht vollständig mit Datenobjekten
gefüllt sind, ist es mit Bordmitteln von OpenGL ES aber nicht möglich, vorherzusagen, in welchem
Speicherblock ein neu erzeugtes Datenobjekt abgelegt wird (sofern es in mehreren Platz finden
würde). In einer solchen Situation ist für nachfolgend erzeugte Datenobjekte nicht mehr in jedem
Fall vorhersagbar, ob ein neuer Speicherblock reserviert werden wird oder nicht (d. h. es gilt wieder
die Obergrenze der Speicherblockgröße).

80

4.2 Speicherbelegung

Hinsichtlich der Echtzeitfähigkeit von OpenGL ES 2.0 führt aber die fehlende Möglichkeit, nach-
zuverfolgen, wo genau im GPU-Speicher Datenobjekte abgelegt werden, zu einem weitaus grö-
ßeren Problem. [Stroyan 2009] erklärt, dass die Fragmentierung des GPU-Speichers, dazu führen
kann, dass Datenobjekte unter Umständen nicht im GPU-Speicher abgelegt werden können, ob-
wohl deren Größe kleiner ist als die Gesamtmenge an freiem GPU-Speicher. In diesem Fall kann es
also durch die Erzeugung eines Datenobjekts zu Eviction kommen, selbst wenn der GPU-Speicher
noch nicht vollständig belegt ist. Ohne die Möglichkeit, festzustellen, welche Bereiche des GPU-
Speichers belegt sind, kann dies nicht sicher vorhergesehen werden.

Dieses Problem kann auf den ATI-Systemen umgangen werden, da hier die Größe des größten zu-
sammenhängenden Speicherbereichs abgefragt werden kann [Blackmer u. a. 2009]. Sofern auf ei-
nem solchen System ein Datenobjekt erzeugt werden soll, dessen Effektivgröße kleiner ist als dieser
Speicherbereich, kann davon ausgegangen werden, dass das betreffende Datenobjekt erzeugt wer-
den kann, ohne dass es zu Eviction kommt. Auf den beiden ATI-Systemen kann also sichergestellt
werden, dass die Echtzeitfähigkeit von OpenGL ES durch die Speicherbelegung nicht eingeschränkt
wird.3

Auf Systemen, die nicht über einen Eviction-Mechanismus verfügen, kann es geschehen, dass
Draw-Befehle kritischer Anwendungen nicht mehr ausgeführt werden können. Dies ist dann der
Fall, wenn für diese Befehle bestimmte Daten im GPU-Speicher liegen müssen, dort aber nicht
mehr ausreichend Platz dafür ist. Um dies zu verhindern, muss sichergestellt werden, dass für
die Zwecke der kritischen Anwendungen immer genug freier Speicherplatz im GPU-Speicher
vorhanden ist, d. h. dass andere Anwendungen nicht zu viele Daten im GPU-Speicher ablegen.

Dazu muss aber auch auf solchen Systemen vorhergesagt werden können, wie viel Speicherplatz
durch die Erzeugung von Datenobjekten belegt wird. Sofern die dafür notwendigen Informationen
nicht anderweitig in Erfahrung gebracht werden können (zum Beispiel von den Herstellern dieser
Systeme), müssen diese Informationen durch die in Kapitel 3.1 beschriebenen Untersuchungen
ermittelt werden. Eine notwendige Voraussetzung dafür ist aber, dass zumindest der zu einem be-
stimmten Zeitpunkt vorhandene, freie Speicherplatz des GPU-Speichers abgefragt werden kann.
OpenGL ES 2.0 selbst bietet dafür aber keinen Mechanismus. Sofern keine Erweiterung dafür ver-
fügbar ist (wie zum Beispiel bei den in Abschnitt 4.1.1 beschriebenen Systemen) ist dies auf der
Ebene von OpenGL ES nicht möglich. Ein möglicher Lösungsansatz dafür, außerhalb von OpenGL
ES, wird im Ausblick in Kapitel 5 skizziert. In den nächsten Abschnitten erfolgen die Untersuchun-
gen zur Datenübertragung.

3Die Annahme dahinter ist, dass sich der größte zusammenhängende Speicherblock bei der Erzeugung eines Daten-
objekts höchstens um dessen Effektivgröße verringert, zumal auf den beiden ATI-Systemen kein anderes Verhalten
beobachtet werden konnte.

81

4 Untersuchungen

4.3 Datenübertragung

4.3.1 Bestimmung von Datenübertragungsrate und -laufzeit

4.3.1.1 Durchführung der Untersuchung

Algorithmus 4.12 Laufzeit von Datenübertragungsbefehlen

1 void testDataTransferTimes (
2 unsigned int minSize , / / minimale Datenobjektgröße
3 unsigned int maxSize , / / maximale Datenobjektgröße
4 unsigned int stepSize , / / Zunahme der Datenobjektgröße zwischen Messungen
5 unsigned int i t e r a t i o n s , / / Anzahl der Einzelmessungen pro Datenobjektgröße
6 GLbyte * data) / / zu übertragende Daten
7 {
8 / / Messreihe durchführen
9 long long r e s u l t s [i t e r a t i o n s] ;

10 for (unsigned int s i z e = minSize ; s i z e <= maxSize ; s i z e += stepSize)
11 {
12 / / Datenobjekt e r s t e l l e n
13 GLuint id ;
14 glGenBuffers (1 , &id) ;
15 glBindBuffer (GL_ARRAY_BUFFER, id) ;
16 glBufferData (GL_ARRAY_BUFFER, size , data , GL_STATIC_DRAW) ;
17 glFinish () ;
18

19 / / Messung durchführen
20 HPCClock c ;
21 for (unsigned int n = 0 ; n < i t e r a t i o n s ; n++)
22 {
23 c . s t a r t () ;
24 glBufferData (GL_ARRAY_BUFFER, size , data , GL_STATIC_DRAW) ;
25 glFlush () ;
26 glFinish () ;
27 r e s u l t s [n] = c . stop () ;
28 }
29

30 / / Ergebnisse für aktuel le Datenobjektgröße speichern
31 writeToResults (size , r es u l ts , glGetError ()) ;
32

33 / / Datenobjekt freigeben
34 glDeleteBuffers (1 , &id) ;
35 glFinish () ;
36 }
37 }

Um die Laufzeit von Datenübertragungsbefehlen zu bestimmen werden – wie in Kapitel 3.2.2 be-
schreiben – zunächst im leeren GPU-Speicher einzelne Datenobjekte zunehmender Größe mit
glBufferData4 erzeugt und die dessen Laufzeit gemessen. Dieses Vorgehen wird anschließend
wiederholt, wobei der anfängliche Speicherbelegungsgrad und die Anzahl bereits vorhandener Da-
tenobjekte erhöht wird.

4Siehe Kapitel 3.2.3.1 zur Wahl dieses Befehls.

82

4.3 Datenübertragung

Algorithmus 4.12 zeigt das dafür ausgeführt OpenGL ES-Programm. Die Schleife von Zeile 10 bis
Zeile 35 enthält dabei den Code der Laufzeitmessung für eine Datenobjektgröße. In den Zeilen 13
bis 16 wird ein neues Datenobjekt angelegt. Der Parameter GL_STATIC_DRAW stellt für die verwen-
deten Testsysteme sicher, dass das Datenobjekt tatsächlich im GPU-Speicher angelegt wird (vgl.
Kapitel 4.2.1).

Die eigentliche Laufzeitmessung wird in den Zeilen 23 bis 27 durchgeführt. Durch die Befehle
glFlush und glFinish wird sichergestellt, dass der Datenübertragungsbefehl sofort an den GL-
Server übertragen wird und die Datenübertragung vollständig abgeschlossen ist, bevor die Lauf-
zeitmessung beendet wird (vgl. Kapitel 2.3).

Das zuvor angelegte Datenobjekt wird in Zeile 34 wieder freigegeben, um für die nachfolgenden
Messungen (mit der nächstgrößeren zu übertragenden Datenmenge) die ursprüngliche Speicher-
belegungssituation wiederherzustellen.

Diese Programm wurde für Datenobjektgrößen von einem Megabyte bis zur größten, auf dem je-
weiligen System unterstützten Datenobjektgröße durchgeführt (512 MB auf dem „Nvidia Quadro
2000D“-System und 256 MB auf den beiden anderen Systemen). Zwischen den Messschritten wur-
de die Datenobjektgröße um jeweils ein Megabyte erhöht. Dies wurde mehrmals wiederholt, wobei
der Speicherbelegungsgrad dabei jeweils um zehn Prozent bis zu einem Maximum von 90 Prozent
erhöht wurde. Die Messung wurde stets dann abgebrochen, wenn es aufgrund der Datenobjekt-
größe zur Auslagerung von Datenobjekten in den Hauptspeicher kam (durch den sogenannten
Eviction-Mechanismus, siehe auch Kapitel 3.1). Anschließend wurde die ursprüngliche Simulati-
on ebenfalls mehrmals wiederholt, wobei die Anzahl der vorab vorhandenen Datenobjekte dabei
jeweils um 10.000 bis zu einem Maximum von einer halben Million Datenobjekten erhöht wur-
de.

4.3.1.2 Ergebnisse

Abbildung 4.9 zeigt die Ergebnisse, die durch die Ausführung der Simulation bei leerem GPU-
Speicher auf den drei Testsystemen ermittelt wurden.5 Auf der X-Achse sind die verschiedenen
Datenobjektgrößen aufgetragen und auf der Y-Achse die Laufzeit des Datenübertragungsbe-
fehls.

Die dargestellten Messpunkte zeigen jeweils die mittlere Laufzeit des Datenübertragungsbefehls
für die jeweilige Datenobjektgröße. Das Diagramm zeigt zur besseren Lesbarkeit nur einen Teil
der ermittelten Messpunkte. Die ebenfalls dargestellten Trendlinien bleiben davon unberührt. Die
Fehlerbalken über den einzelnen Messpunkten zeigen die durchschnittliche Abweichung der ein-
zelnen Messwerte vom hier gezeigten Mittelwert.

Auf allen drei untersuchten Systemen steigt die Laufzeit von glBufferData proportional zur
übertragenen Datenmenge. Die Varianzen der gemessenen Laufzeiten steigen bei allen drei
Systemen mit zunehmender Datenobjektgröße an, überschreiten bei den beiden ATI-Systemen
aber nie 15%. Anders beim Nvidia-System: Die Varianz für das größte Datenobjekt erreicht hier bei
512 MB großen Datenobjekten fast 46%.

Die Durchführung der Simulation bei unterschiedlich hohem Speicherbelegungsgrad lieferte glei-
che Ergebnisse, ebenso die Simulation bei unterschiedlicher Anzahl bereits vorhandener Daten-

5Es ist dabei zu beachten, dass Anwendungen auf den Testsystemen über OpenGL ES nie auf einen vollständig leeren
GPU-Speicher zugreifen können (siehe Kapitel 4.1.3.3).

83

4 Untersuchungen

objekte. Ob der Speicherbelegungsgrad oder die Anzahl vorhandener Datenobjekte dabei über den
selben OpenGL-Kontext oder den Kontext eines anderen Prozesses erhöht wurde, hatte keinen Ein-
fluss auf die Ergebnisse.

Bei der Laufzeitmessung für immer kleinere Datenobjekte zeigt sich, dass die Laufzeit des Daten-
übertragungsbefehls auf keinem der Testsysteme gegen Null geht. Die gemessenen Laufzeiten sin-
ken auf dem „Nvidia Quadro 2000D“-System nie unter 49 µs, auf dem „ATI FirePro V5900“-System
nie unter 51 µs und auf dem „ATI FirePro V4800“-System nie unter 56 µs. Für die Ausführung der
Datenübertragung fällt also bei allen drei Systemen ein gewisser Overhead an, unabhängig davon,
wie gering die zu übertragenden Datenmengen sind.

Auch für kleine Datenobjekte wurden die Simulationen zur Überprüfung des Einflusses der aktu-
ellen Speicherbelegung und der Anzahl der bereits vorhandenen Datenobjekte durchgeführt. Ab-
bildung 4.10 zeigt die Laufzeit von glBufferData für die Übertragung von 1kB Vertexdaten bei
unterschiedlicher Anzahl von Datenobjekten im GPU-Speicher. Auf der X-Achse ist die Anzahl der
Datenobjekte aufgetragen und auf der Y-Achse Laufzeiten des Datenübertragungsbefehls.

Hierbei zeigte sich, dass die zuvor ermittelten Minimallaufzeiten unabhängig von der aktuellen
Speicherbelegung auftreten. Auf den beiden ATI-Systemen hat auch die Anzahl der bereits vor-
handenen Datenobjekte keinen erkennbaren Einfluss darauf. Beim Nvidia-System steigt hingegen
die minimale Laufzeit sprunghaft auf 61 µs an, sobald mindestens 150.000 Datenobjekte im GPU-
Speicher vorhanden sind. Auch hier hat es keinen Einfluss auf die Ergebnisse, ob der Speicherbele-
gungsgrad oder die Anzahl vorhandener Datenobjekte über den selben OpenGL-Kontext oder den
Kontext eines anderen Prozesses erhöht wird. Im nächsten Abschnitt erfolgt die Untersuchung des
Verhaltens hinsichtlich der Ausführung von konkurrierenden Datenübertragungsbefehlen.

Tabelle5

Seite 1

0 64 128 192 256 320 384 448 512
0

50

100

150

200

250

300

350

400

450

500

Datenübertragungszeiten bei leerem GPU-Speicher

Messung Nvidia Quadro 2000D
Messung ATI FirePro V5900
Messung ATI FirePro V4800
Trend Nvidia Quadro 2000D
Trend ATI FirePro V5900
Trend ATI FirePro V4800

Datenobjektgröße [MB]

La
uf

ze
it

[m
s]

Abbildung 4.9: Datenübertragungszeiten bei leerem GPU-Speicher

84

4.3 Datenübertragung

Tabelle3

Seite 1

0 50 100 150 200 250 300 350 400 450 500
20

30

40

50

60

70

Datenübertragungslaufzeit von 1kb großen Objekten, w enn bereits viele Datenobjekte vorhanden sind

ATI FirePro V5900

ATI FirePro V4800

Nvidia Quadro 2000D

Anzahl bereits vorhandener Datenobjekte [in Tausend]

La
uf

ze
it

[µ
s]

Abbildung 4.10: Laufzeit von glBufferData für die Übertragung von 1kB Vertexbuffer-Daten,
wenn bereits andere Datenobjekte im GPU-Speicher vorhanden sind

4.3.2 Konkurrierende Datenübertragungen

4.3.2.1 Durchführung der Untersuchung

Um das Verhalten des GL-Servers bei konkurrierenden Datenübertragungsbefehlen zu ermitteln,
werden – wie in Kapitel 3.2.2.2 beschrieben – zwei OpenGL ES-Programme ausgeführt, die als
Master- und als Slaveprogramm bezeichnet werden. Diese Programme übermitteln gleichzeitig
einen Datenübertragungsbefehl an den GL-Server und messen dessen Laufzeit. Anschließend wird
dieser Vorgang wiederholt, wobei die Übermittlung des Datenübertragungsbefehl beim Masterpro-
gramm solange verzögert wird, bis die Ausführung des vom Slaveprogramm übermittelten Befehls
zur Hälfte abgeschlossen ist.

Algorithmus 4.13 zeigt den Code des Masterprogramms. Das Datenobjekt für die Datenübertra-
gung wird in Zeile 7 auf die gleiche Weise angelegt wie in Algorithmus 4.12, so dass für alle Test-
systeme sichergestellt ist, dass das Datenobjekt tatsächlich im GPU-Speicher erzeugt wird. In den
Zeilen 10–19 erfolgt die Referenzmessung der Laufzeit des Datenübertragungsbefehls und in den
Zeilen 22–23 wird das Slaveprogramm gestartet und darauf gewartet, dass es Bereitschaft signali-
siert.

Die eigentliche Messung bei konkurrierender Datenübertragung erfolgt in den Zeilen 27–37. Dabei
wird in Zeile 29 der Beginn der Datenübertragung signalisiert (woraufhin das Slaveprogramm sei-
nen Datenübertragungsbefehl an den GL-Server übermittelt) und in Zeile 30 die Ausführung des
Masterprogramms bei Bedarf für die Hälfte der durchschnittlichen Referenzlaufzeit angehalten.

85

4 Untersuchungen

Algorithmus 4.13 Laufzeit konkurrierender Datenübertragungsbefehle (Masterprogramm)

1 void testCompetingDataTransferMaster (
2 unsigned int size , / / zu übertragende Datenmenge
3 unsigned int i t e r a t i o n s , / / Anzahl der Einzelmessungen pro Datenobjektgröße
4 GLbyte * data , / / zu übertragende Daten
5 bool delayMaster) / / Übermittlung des Datenübertragungsbefehls verzögern ?
6 {
7 (. . .) / / Datenobjekt e r s t e l l e n
8

9 / / Referenzmessung durchführen
10 HPCClock c ;
11 long long r e f r e s u l t s [i t e r a t i o n s] ;
12 for (unsigned int n = 0 ; n < i t e r a t i o n s ; n++)
13 {
14 c . s t a r t () ;
15 glBufferData (GL_ARRAY_BUFFER, size , data , GL_STATIC_DRAW) ;
16 glFlush () ;
17 glFinish () ;
18 r e f r e s u l t s [n] = c . stop () ;
19 }
20

21 / / Slaveprogramm s t a r t e n und warten , b i s es B e r e i t s c h a f t s i g n a l i s i e r t
22 spawnSlave () ;
23 waitForSlaveEvent () ;
24

25 / / Messung mit konkurrierender Datenübertragung durchführen
26 long long r e s u l t s [i t e r a t i o n s] , timestamps [i t e r a t i o n s] ;
27 for (unsigned int n = 0 ; n < i t e r a t i o n s ; n++)
28 {
29 signalMasterEvent () ;
30 i f (delayMaster) Sleep (average (r e f r e s u l t s) / 2) ;
31 timestamps [n] = c . s t a r t () ;
32 glBufferData (GL_ARRAY_BUFFER, size , data , GL_STATIC_DRAW) ;
33 glFlush () ;
34 glFinish () ;
35 r e s u l t s [n] = c . stop () ;
36 waitForSlaveEvent () ;
37 }
38

39 / / Messergebnisse speichern und Datenobjekt freigeben
40 writeToResults (size , r e f r e s u l t s , r es u l ts , glGetError ()) ;
41 glDeleteBuffers (1 , &bufferID) ;
42 }

In Zeile 31, unmittelbar vor Übermittlung des Datenübertragungsbefehls an den GL-Server, wird
der aktuelle Zeitstempel gespeichert (um später durch den Vergleich mit den Zeitstempeln des Sla-
veprogramms sicherstellen zu können, dass die Zeitpunkte der Übermittlung der beiden Befehle
an den GL-Server zeitlich nicht zu stark auseinander lagen, vgl. Abschnitt 4.1.5). Nach Ausführung
der Datenübertragung wartet das Masterprogramm in Zeile 36 darauf, dass das Slaveprogramm
den Abschluss seiner Datenübertragung signalisiert.

86

4.3 Datenübertragung

Algorithmus 4.14 Laufzeit konkurrierender Datenübertragungsbefehle (Slaveprogramm)

1 void testCompetingDataTransferSlave (
2 unsigned int size , / / zu übertragende Datenmenge
3 unsigned int i t e r a t i o n s , / / Anzahl der Einzelmessungen
4 GLbyte * data) / / zu übertragende Daten
5 {
6 (. . .) / / Datenobjekt e r s t e l l e n
7

8 (. . .) / / Referenzmessung durchführen
9

10 / / B e r e i t s c h a f t s i g n a l i s i e r e n
11 setSlaveEvent () ;
12

13 / / Messung mit konkurrierender Datenübertragung durchführen
14 long long r e s u l t s [i t e r a t i o n s] , timestamps [i t e r a t i o n s] ;
15 for (unsigned int n = 0 ; n < i t e r a t i o n s ; n++)
16 {
17 waitForMasterEvent () ;
18 timestamps [n] = c . s t a r t () ;
19 glBufferData (GL_ARRAY_BUFFER, size , data , GL_STATIC_DRAW) ;
20 glFlush () ;
21 glFinish () ;
22 r e s u l t s [n] = c . stop () ;
23 signalSlaveEvent () ;
24 }
25

26 (. . .) / / Messergebnisse speichern und Datenobjekt freigeben
27 }

Der in Algorithmus 4.14 in Auszügen gezeigte Code des Slaveprogramms entspricht weitestgehend
dem Code des Masterprogramms. Die Erstellung des Datenobjekts (Zeile 6) und die Referenzmes-
sung (Zeile 8) erfolgen genauso wie im Masterprogramm (eine Referenzmessung wird auch beim
Slaveprogramm durchgeführt, um sicherzustellen, dass sich die Laufzeiten der Datenübertragung
zwischen den beiden Programmen im nicht-konkurrierenden Fall nicht unterscheiden – wäre dies
nicht der Fall, dann wäre ein Vergleich der Laufzeiten im konkurrierenden Fall nicht sinnvoll). Die
Speicherung der Messergebnisse und Freigabe des Datenobjekts in Zeile 26 entsprechen ebenfalls
denen des Masterprogramms.

Die Bereitschaft des Slaveprogramms wird in Zeile 11 signalisiert. Auf dieses Signal wird in Zeile 23
des Masterprogramms gewartet. In gleicher Weise korrespondieren die Zeilen 17 und 23 des Slave-
programms mit den Zeilen 29 und 36 des Masterprogramms. Durch diese Signale synchronisieren
sich die beiden Programme so, dass ihre Datenübertragungsbefehle entweder gleichzeitig an den
GL-Server übermittelt werden oder das Masterprogramm seinen übermittelt, wenn die Datenüber-
tragung des Slaveprogramms zur Hälfte abgeschlossen ist.

4.3.2.2 Ergebnisse

Abbildung 4.11 zeigt die Ergebnisse der Untersuchung auf dem „Nvidia Quadro 2000D“-System für
die Übertragung von 200MB Vertexbuffer-Daten. Auf der Y-Achse ist die Laufzeit des Datenüber-

87

4 Untersuchungen

tragungsbefehls aufgetragen. Die linke Balkengruppe zeigt die Ergebnisse für die Simulation ohne
Verzögerung des Masterprogramms, die rechte Balkengruppe die Ergebnisse, wenn die Übermitt-
lung des Datenübertragungsbefehls an den GL-Server durch das Masterprogramm um die Hälfte
der Referenzlaufzeit verzögert wird (in diesem Fall um 42 ms).

Der linke Balken innerhalb einer Gruppe zeigt das Mittel der gemessenen Referenzlaufzeiten. Die-
ses wird durch die in den Algorithmen 4.13 und 4.14 beschriebene Simulation sowohl vom Master-
als auch vom Slaveprogramm ermittelt – die mittleren Laufzeiten stimmen dabei in allen Simulati-
onsläufen stets überein (die Abweichung zwischen der mittleren Laufzeit beim Master- und beim
Slaveprogramm liegt hierbei jeweils unter 2%), weshalb die Referenzzeit in dieser Abbildung nur
einmal aufgeführt wird. Der mittlere Balken zeigt das Mittel der vom Masterprogramm gemesse-
nen Laufzeiten und der rechte Balken das des Slaveprogramms. Die Fehlerbalken zeigen die durch-
schnittliche Abweichung der einzelnen Messwerte vom hier gezeigten Mittelwert.

Es zeigt sich, dass die Laufzeiten im Master- und Slaveprogramm übereinstimmen, und zwar in bei-
den Szenarien (mit und ohne Verzögerung im Masterprogramm). Das bedeutet, dass Datenüber-
tragungsbefehle, die von verschiedenen Prozessen an den GL-Server übermittelt werden, nicht se-
quentiell abgearbeitet werden. Sobald dem GL-Server mehr als ein Datenübertragungsbefehl zur
Abarbeitung vorliegt, wird die verfügbare Bandbreite auf die Ausführung aller Befehle verteilt (wo-
durch sich die Laufzeiten dieser Befehle entsprechend erhöhen).

Tabelle3

Seite 1

Gleichzeitiger Übertragungsbeginn Verzögerter Master
0

20

40

60

80

100

120

140

160

180

Laufzeiten konkurrierender Datenübertragungsbefehle (Nvidia Quadro 2000D)

Referenzmessung
Laufzeit Master
Laufzeit Slave

La
uf

ze
it

[m
s]

Abbildung 4.11: Laufzeiten konkurrierender Datenübertragungsbefehle

Die Simulation wurde für unterschiedliche zu übertragende Datenmengen wiederholt und auch
auf den beiden ATI-Systemen durchgeführt. Auch dort zeigte sich, dass konkurrierende Datenüber-
tragungsbefehle vom OpenGL ES-System nicht sequentiell abgearbeitet werden, sondern dass die
verfügbare Bandbreite stattdessen auf die einzelnen Befehle aufgeteilt wird.

88

4.3 Datenübertragung

Bei diesen Simulationen ist allerdings zu beachten, dass die zu übertragenden Datenmengen nicht
zu klein gewählt werden dürfen. Spätestens wenn die zu übertragende Datenmenge so klein ist,
dass die Laufzeit des Datenübertragungsbefehls auf den Testsystemen den Bereich um eine Mil-
lisekunde erreicht, kann es aufgrund von ungünstigen Prozesskontextwechseln oder der Unge-
nauigkeit des Sleep-Befehls dazu kommen, dass der Datenübertragungsbefehl eines Programms
erst übermittelt wird, nachdem der Befehl des anderen Programms bereits vollständig abgearbei-
tet worden ist (vgl. Abschnitt 4.1.1 zur Frequenz des Thread-Schedulers und der Genauigkeit des
Sleep-Befehls). Es handelt sich dann nicht mehr um konkurrierende Befehle und das hier gewählte
Vorgehen macht keinen Sinn mehr.

4.3.3 Nebenläufige Ausführung von Datenübertragung und Rendering

Tabelle3

Seite 1

32k 64k 128k
0

200

400

600

800

1000

1200

1400

Laufzeiten konkurrierender Draw- und Datenübertragunsbefehle

Referenzmessung Datenübertragung
Referenzmessung Draw
Laufzeit Draw
Laufzeit Datenübertragung
Summe der Referenzw erte

Anzahl gerendeter Dreiecke

La
uf

ze
it

[m
s]

Abbildung 4.12: Laufzeiten bei Datenübertragung und gleichzeitigem Draw

Auch zur Untersuchung der nebenläufigen Ausführung von Datenübertragungs- und Draw-
Befehlen werden – wie in Kapitel 3.2.2.3 beschrieben – zwei OpenGL ES-Programme ausgeführt,
die als Master- und Slaveprogramm bezeichnet werden. Der Aufbau dieser Programme entspricht
dem im letzten Abschnitt erläuterten (siehe die Algorithmen 4.13 und 4.14).

Lediglich das Masterprogramm unterscheidet sich insofern, dass für diese Untersuchung für die
Referenz- und die konkurrierende Laufzeitmessung in den Zeilen 15 und 32 kein Datenübertra-
gungsbefehl sondern ein Draw-Befehl an den GL-Server übermittelt wird.

89

4 Untersuchungen

Abbildung 4.12 zeigt die Laufzeiten der sich zeitlich überschneidenden Draw- und Datenübertra-
gungsbefehle auf dem „Nvidia Quadro 2000D“-System. Auf der X-Achse ist die Anzahl der im Zuge
des Draw-Befehls gerenderten Dreiecke aufgetragen und auf der Y-Achse die Laufzeit in Millisekun-
den. Die Balken zeigen jeweils das Mittel der gemessenen Laufzeiten und die darüber dargestellten
Fehlerbalken die durchschnittliche Abweichung der Messwerte vom gezeigten Mittelwert.

Für diese Simulation wurde die vom Slaveprogramm übertragene Datenmenge nicht variiert. Es
wurde stets die größtmögliche Datenmenge übertragen (für Vertexbuffer-Objekte sind dies 512 MB
beim Nvidia-System und 256 MB bei den beiden ATI-Systemen). Variiert wurde die Menge der zu
rendernden Dreiecke beim Masterprogramm. Die Simulation wurde pro Anzahl Dreiecke jeweils
in zwei Varianten durchgeführt. In der einen erfolgte die Übermittlung des Draw- und des Daten-
übertragungsbefehls zeitgleich, in der anderen wurde die Übermittlung des Draw-Befehls um 150
ms verzögert (d. h. zum Zeitpunkt der Übermittlung des Draw-Befehls war die Datenübertragung
bereits weit fortgeschritten, aber noch nicht abgeschlossen). Das Ergebnis war aber immer das glei-
che:

Die Laufzeit des Draw-Befehls entspricht immer der Referenzlaufzeit und die Laufzeit des Daten-
übertragungsbefehls entspricht immer in etwa der Summe der Referenzlaufzeiten von Draw- und
Datenübertragungsbefehl. Dass dies auch bei deutlicher Verzögerung der Übermittlung des Draw-
Befehls der Fall ist, deutet darauf hin, dass der GL-Server die Ausführung des Datenübertragungs-
befehls unterbricht, sobald ihm ein Draw-Befehl übermittelt wird, und sie fortsetzt, sobald der
Draw-Befehl vollständig ausgeführt worden ist.

Die beiden ATI-Systeme zeigen bei Ausführung dieser Simulation das gleiche Verhalten. Auch hier
werden Datenübertragungsbefehle durch konkurrierende Draw-Befehle unterbrochen, während
die Ausführung von Draw-Befehlen durch Datenübertragungsbefehle anderer Prozesse nicht mess-
bar beeinflusst wird.

4.3.4 Datenübertragung ungepufferter Draw-Befehle

4.3.4.1 Durchführung der Untersuchung

Um zu überprüfen, ob bei der Ausführung eines ungepufferten Draw-Befehls die benötigten Ver-
texdaten in die GPU übertragen werden können, während gleichzeitig das Rendering durchgeführt
wird, wird – wie in Kapitel 3.2.2.4 beschrieben – die Laufzeit des ungepufferten Draw-Befehls mit
der Datenübertragungszeit für diese Vertexdaten und mit der Laufzeit des gepufferten Renderings
verglichen. Dazu wird das in Algorithmus 4.15 gezeigte Programm ausgeführt.

Der Code für das Anlegen des Vertexbuffer-Objekts im GPU-Speicher und die Messung der
Referenzlaufzeit für die Datenübertragung vom Hauptspeicher in dieses Datenobjekt entspricht
dem von Algorithmus 4.13. In den Zeilen 9–11 wird festgelegt, dass dieses Vertexbuffer-Objekt für
nachfolgende Draw-Befehle genutzt werden soll (d. h. nachfolgende Draw-Befehle sind gepufferte
Draw-Befehle, für die keine eigene Datenübertragung notwendig ist).

Die Messung der Referenzlaufzeit des Draw-Befehls ohne Datenübertragung erfolgt dann in den
Zeilen 14–21. Die Ermittlung der Referenzlaufzeit für die Kopie der Vertexdaten im Hauptspeicher
erfolgt in den Zeilen 24–30.6

6Die Größe des Vertexdatenarrays in Bytes entspricht dem Produkt aus der Anzahl der Vertices und der Größe eines
Vertex in Bytes. In diesem Fall wird ein Vertex durch zwei GLfloat-Variablen repräsentiert (für die X- und Y-Koordinate
des entsprechenden Vertex).

90

4.3 Datenübertragung

Algorithmus 4.15 Datenübertragung ungepufferter Draw-Befehle

1 void testDataTransferInUnbufferedDraw (
2 unsigned int i t e r a t i o n s , / / Anzahl der Einzelmessungen
3 unsigned int numVertices , / / Anzahl der zu rendernden V e r t i c e s
4 GLbyte * data) / / Vertexdaten
5 {
6 (. . .) / / Erzeugung Datenobjekt + Referenzmessung Datenübertragungszeit
7

8 / / Angelegtes Datenobjekt a l s Input für Draw−Befehle f e s t l e g e n
9 glVertexAttr ibPointer (0 , 2 , GL_FLOAT, GL_FALSE , 0 , 0) ;

10 glEnableVertexAttribArray (0) ;
11 glFinish () ;
12

13 / / Referenzmessung Draw−Laufzeit
14 for (unsigned int n = 0 ; n < i t e r a t i o n s ; n++)
15 {
16 c . s t a r t () ;
17 glDrawArrays (GL_POINTS, 0 , numVertices) ;
18 glFlush () ;
19 glFinish () ;
20 refResultsDraw [n] = c . stop () ;
21 }
22

23 / / Referenzmessung Laufzeit Datenkopie im Hauptspeicher
24 GLfloat tmp[numVertices * s i z e o f (2* GLfloat)] ;
25 for (unsigned int n = 0 ; n < i t e r a t i o n s ; n++)
26 {
27 c . s t a r t () ;
28 memcpy(tmp, data , numVertices * s i z e o f (2* GLfloat)) ;
29 refResultsMemCopy [n] = c . stop () ;
30 }
31

32 / / Die im Hauptspeicher liegenden Vertexdaten a l s Draw−Input f e s t l e g e n
33 glVertexAttr ibPointer (0 , 2 , GL_FLOAT, GL_FALSE , 0 , data) ;
34 glEnableVertexAttribArray (0) ;
35 glFinish () ;
36

37 / / Ungepufferte Draw−Laufzeiten messen
38 for (unsigned int n = 0 ; n < i t e r a t i o n s ; n++)
39 {
40 c . s t a r t () ;
41 glDrawArrays (GL_POINTS, 0 , ud−>numberOfPoints) ;
42 returnTimes [n] = c . getTime () ;
43 glFlush () ;
44 glFinish () ;
45 r e s u l t s [n] = c . stop () ;
46 }
47

48 / / Ergebnisse speichern
49 writeToResults (numVertices , refResultsDataTransfer , refResultsDraw , refResultsMemCopy ,
50 returnTimes , r e su l ts , glGetError ()) ;
51 }

Die Zeilen 33–35 legen fest, dass nachfolgende Draw-Befehle das Vertexdatenarray im Hauptspei-
cher als Input nutzen sollen (d. h. nachfolgende Draw-Befehle werden ungepuffert ausgeführt).

91

4 Untersuchungen

Die Laufzeitmessung für den ungepufferten Draw-Befehl findet dann in den Zeilen 38–46 statt. Da-
bei werden die Rücksprungzeiten des Draw-Befehls gesondert vermerkt (Zeile 42). Die Ergebnisse
der Referenzmessungen, der Laufzeitmessung des ungepufferten Draw-Befehls und dessen Rück-
sprungzeiten werden schließlich in den Zeilen 49–50 gespeichert.

Auch in dieser Simulation werden im Zuge der Ausführung der Draw-Befehle die beiden Minimal-
shader verwendet, die in Abschnitt 4.1.6 beschrieben werden.

4.3.4.2 Ergebnisse

Die Abbildungen 4.13 und 4.14 zeigen die Ergebnisse der Simulation auf dem „Nvidia Quadro
2000D“- und dem „ATI FirePro V4800“-System. Auf den X-Achsen ist die Anzahl der gerenderten
Vertices aufgetragen und auf den Y-Achsen die Laufzeit in Millisekunden. Die Balken zeigen jeweils
das Mittel der gemessenen Laufzeiten und die darüber dargestellten Fehlerbalken die durchschnitt-
liche Abweichung der Messwerte vom gezeigten Mittelwert.

Tabelle3

Seite 1

1 Mio 2 Mio 4 Mio
0

5

10

15

20

25

30

35

40

45

Datenübertragung ungepufferter Draw-Befehle (Nvidia Quadro 2000D)

Referenzmessung Laufzeit Datenkopie im Hauptspeicher

Referenzmessung Datenübertragungszeit

Referenzmessung Draw -Laufzeit

Laufzeit des ungepufferten Draw -Befehls

Summe der Referenzw erte

Anzahl gerendeter Vertices

La
uf

ze
it

[m
s]

Abbildung 4.13: Laufzeiten ungepufferter Draw-Befehle („Nvidia Quadro 2000D“-System)

Auf diesem System sind die ermittelten Laufzeiten des ungepufferten Draw-Befehls deutlich größer
als die Summe der Referenzwerte für die Datenübertragung und die Laufzeit des gepufferten Draw-
Befehls. Da gleichzeitig die Rücksprungzeiten des ungepufferten Draw-Befehls unter der Referenz-
laufzeit für die Datenübertragung liegen, muss davon ausgegangen werden, dass das OpenGL ES-
System eine Kopie der Vertexdaten im Hauptspeicher anlegt (sonst wäre ein so früher Rücksprung

92

4.3 Datenübertragung

nicht möglich). Tatsächlich liegen die Rücksprungzeiten auch über der Referenzlaufzeit für die Da-
tenkopie im Hauptspeicher.

Dass die Laufzeiten des ungepufferten Draw-Befehls dennoch kleiner sind als die Summe aller drei
Referenzwerte, könnte vom OpenGL ES-System zum Beispiel dadurch erreicht werden, dass die
Kopie im Hauptspeicher in einzelnen Tranchen durchgeführt wird. Nach dem Kopieren der ersten
Tranche könnte deren Übertragung in die GPU erfolgen, während bereits die nächste Tranche im
Hauptspeicher kopiert wird. Ob tatsächlich auf diese Weise eine Datenkopie im Hauptspeicher
angelegt wird, konnte auf dem Testsystem jedoch nicht abschließend geklärt werden.

Da die Laufzeiten des ungepufferten Draw-Befehls größer sind als die Summe der Referenzlauf-
zeiten von Datenübertragung und gepufferten Draw, ist das „Nvidia Quadro 2000D“-System offen-
sichtlich auch im Falle eines ungepufferten Draw-Befehls nicht in der Lage, Datenübertragung und
Rendering nebenläufig durchzuführen.

Anders sehen die in Abbildung 4.14 gezeigten Ergebnisse für das „ATI FirePro V4800“-System aus:
Hier entsprechen die Laufzeiten des ungepufferten Draw-Befehls der ermittelten Referenzlaufzeit
für die Datenübertragung (wobei die mittlere Laufzeit des Draw-Befehls unwesentlich größer ist
als die der Datenübertragung allein).

Tabelle3

Seite 1

1 Mio 2 Mio 4 Mio
0

10

20

30

40

50

60

70

80

90

100

Datenübertragung ungepufferter Draw-Befehle (ATI FirePro V4800)

Referenzmessung Laufzeit Datenkopie im Hauptspeicher

Referenzmessung Datenübertragungszeit

Referenzmessung Draw -Laufzeit

Laufzeit des ungepufferten Draw -Befehls

Summe der Referenzw erte

Anzahl gerendeter Vertices

La
uf

ze
it

[m
s]

Abbildung 4.14: Laufzeiten ungepufferter Draw-Befehle („ATI FirePro V4800“-System)

Offensichtlich ist dieses System im Gegensatz zum „Nvidia Quadro 2000D“-System in der Lage, bei
der Ausführung von ungepufferten Draw-Befehlen Datenübertragung und Rendering nebenläufig
durchzuführen. Die Ausführung der Simulation auf dem „ATI FirePro V5900“-System erbrachte das
gleiche Ergebnis: Auch dieses System ist offensichtlich dazu in der Lage.

93

4 Untersuchungen

4.3.5 Fazit Datenübertragung

Wie zu Beginn von Kapitel 3.2 dargelegt, ist es im Hinblick auf die Erfüllung von Echtzeitgaranti-
en für die Befehle kritischer Anwendungen notwendig, zumindest eine Obergrenze für die Lauf-
zeit von Datenübertragungsbefehlen garantieren zu können und zu wissen, inwieweit sich kon-
kurrierende Datenübertragungen sowie Rendering und Datenübertragung gegenseitig beeinträch-
tigen.

Auf den drei untersuchten Testsystemen kann die Laufzeit von Datenübertragungsbefehlen vorher-
gesagt werden wenngleich die Ergebnisse der Laufzeitmessungen eine gewisse Varianz aufweisen.
Je kleiner die übertragenen Datenmengen sind, umso kleiner sind diese Varianzen. Auf den beiden
ATI-Systemen liegen sie sogar für die größten Datenobjekte im Mittel unter 15%.

Allerdings muss ein Scheduler mit dem Ziel, Echtzeitgarantien für Befehle kritischer Anwendun-
gen zu erfüllen, den Einfluss von Draw-Befehlen und konkurrierenden Datenübertragungen be-
rücksichtigen. Datenübertragungsbefehle werden auf den drei Testsystemen nicht sequentiell ab-
gearbeitet. Stattdessen werden sie nebenläufig ausgeführt, wobei die verfügbare Bandbreite auf
die konkurrierenden Datenübertragungsbefehle aufgeteilt wird. Sofern die Ausführbarkeit eines
Draw-Befehls einer kritischen Anwendung davon abhängt, dass zuvor bestimmte Daten in den
GPU-Speicher übertragen werden, können konkurrierende Datenübertragungsbefehle anderer An-
wendungen dafür sorgen, dass sich die Laufzeit des Datenübertragungsbefehls der kritischen An-
wendung derart verlängert, dass der davon abhängige Draw-Befehl nicht mehr rechtzeitig ausge-
führt werden kann.

Um die Laufzeit von kritischen Datenübertragungen nicht zu beeinflussen, muss der Scheduler ggf.
die Übermittlung von Datenübertragungsbefehlen anderer Anwendungen an den GL-Server ver-
zögern, bis die kritische Datenübertragung abgeschlossen ist. Gleiches gilt für Draw-Befehle ande-
rer Anwendungen, durch deren Ausführung laufende Datenübertragungen unterbrochen werden.
Umgekehrt haben Datenübertragungen anderer Anwendungen auf den drei Testsystemen keinen
messbaren Einfluss auf die Laufzeit von Draw-Befehlen. Es ist aber zu beachten, dass Datenübertra-
gungen, die durch die Ausführung eines Draw-Befehls unterbrochen wurden, fortgesetzt werden,
sobald der Draw-Befehl ausgeführt ist.

Die Laufzeit von ungepufferten Draw-Befehlen – die wie Datenübertragungsbefehle wirken – kann
vorhergesagt werden. Zusätzlich zur Datenübertragungszeit der dabei verwendeten Vertexdaten
hängt sie jedoch von weiteren Faktoren ab, nämlich

• davon, ob bei der Ausführung eines ungepufferten Draw-Befehls die Datenübertragung und
das Rendering nebenläufig ausgeführt werden (wie bei den beiden ATI-Systemen) oder nicht
(wie beim Nvidia-System), und

• von der Laufzeit des gepufferten Renderings (siehe Kapitel 2.6.3).

Falls eine nebenläufige Durchführung von Datenübertragung und Rendering erfolgt, dann gleicht
die Laufzeit dem Maximum aus der Laufzeit des gepufferten Renderings und der Datenübertra-
gung. Falls Datenübertragung und Rendering nicht nebenläufig durchgeführt werden, dann gleicht
sie der Laufzeitensumme von gepuffertem Rendering und Datenübertragung. Während die Daten-
übertragungszeit vorhergesagt werden kann, stellt jedoch die Laufzeit des gepufferten Renderings
ein Problem dar – siehe die Untersuchungen zu diesem Thema in den nächsten Abschnitten.

94

4.4 Pipelinenutzung

4.4 Pipelinenutzung

4.4.1 Ausführung konkurrierender Draw-Befehle

4.4.1.1 Durchführung der Untersuchung

Um zu klären, ob konkurrierende Draw-Befehle nebenläufig ausgeführt werden können, werden –
wie in Kapitel 3.3.2.1 beschrieben – zwei OpenGL ES-Programme ausgeführt, die als Master- und
Slaveprogramm bezeichnet werden. Beide Programme übermitteln gleiche Draw-Befehle an den
GL-Server, wobei immer zuerst der Befehl des Masterprogramms und unmittelbar darauf der des
Slaveprogramms übermittelt wird. Dies wird für unterschiedliche Anzahlen zu rendernder Dreie-
cke wiederholt.

Algorithmus 4.16 Untersuchung konkurrierender Draw-Befehle (Masterprogramm).

1 void testCompetingDrawMaster (
2 unsigned int numTriangles , / / Anzahl zu rendernder Dreiecke
3 unsigned int i t e r a t i o n s) / / Anzahl I terat ionen für die Laufzeitmessung
4 {
5 / / Referenzmessung
6 HPCClock c ;
7 long long r e s u l t s [i t e r a t i o n s] ;
8 for (unsigned int n = 0 ; n < i t e r a t i o n s ; n++)
9 {

10 c . s t a r t () ;
11 glDrawArrays (GL_POINTS, 0 , numTriangles * 3) ;
12 glFlush () ;
13 glFinish () ;
14 writeToResults (c . stop () , glGetError ()) ;
15 }
16

17 / / Slaveprogramm s t a r t e n und warten , b i s es b e r e i t i s t
18 spawnSlave () ;
19 WaitForSlaveEvent () ;
20

21 / / Messung mit konkurrierenden Draw−Befehlen durchführen
22 for (unsigned int n = 0 ; n < i t e r a t i o n s ; n++)
23 {
24 long long timestamp_start = c . s t a r t () ;
25 glDrawArrays (GL_TRIANGLES, 0 , numTriangles * 3) ;
26 glFlush () ;
27 SetMasterEvent () ;
28 glFinish () ;
29 long long timestamp_stop = c . stop () ;
30 writeToResults (timestamp_start , timestamp_stop , glGetError ()) ;
31 WaitForSlaveEvent () ;
32 }
33 }

Algorithmus 4.16 zeigt den Code des Masterprogramms. In den Zeilen 6–15 wird die Referenz-
messung der Laufzeit des Draw-Befehls durchgeführt. Anschließend wird in Zeile 18 das Slavepro-

95

4 Untersuchungen

gramm gestartet und in Zeile 19 darauf gewartet, dass das Slaveprogramm die Bereitschaft signa-
lisiert, fortzufahren. Die Messung für konkurrierenden Draw-Befehle erfolgt dann in den Zeilen
22–32.

Dabei werden in Zeile 24 der Zeitstempel unmittelbar vor Übermittlung des Draw-Befehls gespei-
chert, um bei der anschließenden Auswertung der Ergebnisse sicherstellen zu können, dass die
Übermittlung der Draw-Befehle von Master- und Slaveprogramm zeitlich nicht so lange ausein-
anderlag, dass es sich nicht mehr um konkurrierende Draw-Befehle handelt (die Speicherung des
korrespondierenden Zeitstempels des Slaveprogramms ist in Algorithmus 4.17 in Zeile 13 zu se-
hen).

Das Signal für das Slaveprogramm, seinen Draw-Befehl an den GL-Server zu übermitteln wird in
Zeile 27 gesetzt, unmittelbar nach Ausführung von glFlush. Dieser Befehl stellt sicher, dass der
Draw-Befehl des Masterprogramms vor dem des Slaveprogramms an den GL-Server übermittelt
wird und auch vor diesem ausgeführt wird (vgl. Kapitel 2.3). In Zeile 31 wird darauf gewartet, dass
das Slaveprogramm den Abschluss eines Draw-Befehls signalisiert, bevor die nächste Iteration der
Laufzeitmessung begonnen wird.

Algorithmus 4.17 Untersuchung konkurrierender Draw-Befehle (Slaveprogramm).

1 void testCompetingDrawSlave (
2 unsigned int numTriangles , / / Anzahl zu rendernder Dreiecke
3 unsigned int i t e r a t i o n s) / / Anzahl I terat ionen für die Laufzeitmessung
4 {
5 (. . .) / / Referenzmessung
6

7 SetSlaveEvent () ; / / B e r e i t s c h a f t s i g n a l i s i e r e n
8

9 / / Messung mit konkurrierenden Draw−Befehlen durchführen
10 for (unsigned int n = 0 ; n < i t e r a t i o n s ; n++)
11 {
12 WaitForMasterEvent () ;
13 long long timestamp_start = c . s t a r t () ;
14 glDrawArrays (GL_TRIANGLES, 0 , numTriangles * 3) ;
15 glFlush () ;
16 glFinish () ;
17 long long timestamp_stop = c . stop () ;
18 writeToResults (timestamp_start , timestamp_stop , glGetError ()) ;
19 SetSlaveEvent () ;
20 }
21 }

Algorithmus 4.17 zeigt den Code des Slaveprogramms. In Zeile 5 wird zunächst die gleiche Referenz-
messung durchgeführt wie im Masterprogramm. Dies dient dazu, sicherstellen zu können, dass das
Slaveprogramm vom OpenGL ES-System nicht anders behandelt wird als das Masterprogramm
(vgl. Kapitel 3.3.2.1). Nach Abschluss der Referenzmessung wird in Zeile 7 die Bereitschaft signa-
lisiert, fortzufahren. Die Messung mit konkurrierenden Draw-Befehlen erfolgt dann in den Zeilen
10–20. In Zeile 12 wartet das Slaveprogramm darauf, dass vom Masterprogramm signalisiert wird,
dass der Draw-Befehl an den GL-Server übermittelt werden kann. Unmittelbar davor wird auch
hier der aktuelle Zeitstempel gespeichert, um später sicherstellen zu können, dass tatsächlich die

96

4.4 Pipelinenutzung

Laufzeiten konkurrierender Draw-Befehle gemessen wurden (vgl. die Diskussion zu Zeile 24 des
Masterprogramms). Nach Abschluss des Draw-Befehls wird in Zeile 19 die Bereitschaft signalisiert,
die nächste Iteration der Laufzeitmessung durchzuführen.

Diese Programme wurden für unterschiedliche Mengen an zu rendernden Dreiecken durchgeführt.
Dabei wurden die in Abschnitt 4.1.6 beschriebenen Minimalshader verwendet. In einem ersten
Lauf wurden 128 Dreiecke gerendert, was auf allen drei Testsystemen trotz Minimalshader lange ge-
nug dauert, damit der Draw-Befehl des Slaveprogramms rechtzeitig an den GL-Server übermittelt
werden kann (um sicherzustellen, dass die beiden Draw-Befehle tatsächlich um die Renderpipeli-
ne konkurrieren). In jedem weiteren Lauf wurde die Anzahl der zu rendernden Dreiecke verdoppelt
bis zu einem Maximum von 262.144 Dreiecken (was selbst auf dem schnellsten System etwa 2,1 Se-
kunden dauert).

Die Simulationen wurden anschließend in einer zweiten Variante durchgeführt, bei der das Slave-
programm nicht in einem eigenen Prozess, sondern in einem Thread des Masterprogramms aus-
geführt wurde. Dies diente dem Zweck, auszuschließen, dass eine nebenläufige Ausführung von
Draw-Befehlen nur deshalb nicht festgestellt werden kann, weil die konkurrierenden Draw-Befehle
von unterschiedlichen Prozessen übermittelt wurden. Im folgenden Abschnitt werden die Ergeb-
nisse der Simulationen zusammengefasst.

4.4.1.2 Ergebnisse

Tabelle3

Seite 1

128 256 512
0

1

2

3

4

5

6

7

8

9

Laufzeiten konkurrierender Draw-Befehle

Referenzmessung
Masterprogramm
Slaveprogramm

Anzahl gerendeter Dreiecke

La
uf

ze
it

[m
s]

Abbildung 4.15: Laufzeiten konkurrierender Draw-Befehle

Abbildung 4.15 zeigt die auf dem „Nvidia Quadro 2000D“-System ermittelten Ergebnisse für das
Rendering von 128 bis 512 Dreiecken. Auf der X-Achse ist die Anzahl der gerenderten Dreiecke

97

4 Untersuchungen

aufgetragen und auf der Y-Achse die Laufzeiten der Draw-Befehle. Die einzelnen Balken zeigen
jeweils das Mittel der gemessenen Laufzeiten. Die darüber eingezeichneten Fehlerbalken zeigen
die durchschnittliche Abweichung der Messwerte vom dargestellten Mittelwert. Dabei kann festge-
stellt werden, dass diese Abweichungen abnehmen, je mehr Dreiecke gerendert werden (bei 128
Dreiecken liegen sie noch bei etwa 5%, bei 262.144 Dreiecken unter 1%).

Die Simulationen zeigen auf allen drei Testsystemen in beiden Varianten (Slaveprogramm als eige-
ner Prozess oder als Thread des Masterprogramms) das gleiche Ergebnis: Die Laufzeit der Draw-
Befehle des Slaveprogramms ist etwa doppelt so groß wie die des Masterprogramms. Die Laufzeit
der Draw-Befehle des Masterprogramms entspricht etwa der Laufzeit der Referenzmessung.7

Die Ausführung des zuerst übermittelten Draw-Befehls des Masterprogramms wird offenbar nicht
durch den Draw-Befehl des Slaveprogramms unterbrochen; die Ausführung der Draw-Befehle des
Slaveprogramms werden offensichtlich verzögert, bis die vorhergehenden Draw-Befehle des Mas-
terprogramms vollständig abgearbeitet sind. Eine nebenläufige Ausführung der Draw-Befehle fin-
det auf den drei Testsystemen nicht statt. Im nächsten Abschnitt wird die Abbrechbarkeit von Draw-
Befehlen untersucht.

4.4.2 Abbrechbarkeit von Draw-Befehlen

Zur Untersuchung der Abbrechbarkeit von Draw-Befehlen werden – wie in Kapitel 3.3.2.2 beschrie-
ben – zwei OpenGL ES-Programme ausgeführt. Das erste der beiden Programme erzeugt einen
OpenGL ES-Kontext, legt ein Datenobjekt an, rendert ein Bild und wartet anschließend auf eine
Benutzereingabe, um ein weiteres Bild zu rendern. Sobald das erste Programm auf die Eingabe
wartet, wird das zweite Programm gestartet. Dieses übermittelt einen langlaufenden Draw-Befehl
an den GL-Server (acht Millionen Dreiecke als Inputdaten – das Rendering würde auf allen drei
Testsystemen länger als eine Minute dauern). Dadurch greift der in [MSDN 2009] beschriebene
TDR-Mechanismus.

Das führt dazu, dass das OpenGL ES-Programm beendet wird, das den langlaufenden Draw-Befehl
übermittelt. Anschließend wird auf dem andern OpenGL ES-Programm die Benutzereingabe
durchgeführt, woraufhin das Programm versucht, ein weiteres Bild zu rendern. Dies schlägt auf
allen drei Testsystemen fehl – der OpenGL ES-Kontext ist nicht mehr gültig und das angelegte
Datenobjekt auch nach einer Kontext-Neuerzeugung nicht mehr verfügbar. Auf den Testsystemen
wird also im Zuge des TDR-Mechanismus ein Hardware-Reset der GPU durchgeführt. Da dies
nur der Fall ist, wenn zuvor ein Abbruch des laufenden Draw-Befehls im Zuge der in Kapitel
3.3.2.2 beschriebenen preempt operation fehlschlägt, muss davon ausgegangen werden, dass die
untersuchten Systeme nicht in der Lage sind, einen laufenden Draw-Befehl ohne Hardware-Reset
abzubrechen.

7Die in Abbildung 4.15 erkennbare Abweichung der Laufzeit des Draw-Befehls beim Masterprogramm vom Referenz-
wert entspricht den Kosten für einen Kontextwechsel auf dem Nvidia-System (vgl. Abschnitt 4.5). Ein solcher Kontext-
wechsel wird notwendig, weil das Master- und das Slaveprogramm im Wechsel Befehle an den GL-Server übermitteln.

98

4.5 Kontextwechsel

4.4.3 Fazit Pipelinenutzung

Um Echtzeitgarantien für kritische Anwendungen erfüllen zu können, ist es notwendig, zumindest
eine Obergrenze für die Laufzeit von Draw-Befehlen angeben zu können. Wie zu Beginn von Kapi-
tel 3.3 dargelegt, ist es aber nicht möglich, die Laufzeit eines Draw-Befehls vorherzusagen, wenn
der betreffende Befehl nicht bereits mindestens einmal mit gleichen Daten und Einstellungen aus-
geführt worden ist.

Daher wird in Abschnitt 4.4.1 untersucht, ob konkurrierende Draw-Befehle nebenläufig ausgeführt
werden können, um – bei bekannter Laufzeit von kritischen Draw-Befehlen – eine Obergrenze für
deren Laufzeit angeben zu können, auch wenn ein potentiell langlaufender Befehl einer anderen
Anwendung in der Renderpipeline ausgeführt wird. Auf den drei hier untersuchten Systemen konn-
te jedoch keine nebenläufige Ausführung von Draw-Befehlen festgestellt werden. Ein langlaufen-
der Draw-Befehl einer anderen Anwendung könnte daher die Renderpipeline so lange blockieren,
dass eine rechtzeitige Ausführung des nächsten Draw-Befehls einer kritischen Anwendung nicht
mehr möglich ist.

Die in Abschnitt 4.4.2 durchgeführte Untersuchung zeigte außerdem, dass der Abbruch eines lau-
fenden Draw-Befehls nicht möglich ist, ohne dass ein Hardware-Reset der GPU durchgeführt wird.
Damit kritische Anwendungen nach einem solchen Reset weiterarbeiten können, müssen sie erst
einen neuen OpenGL ES-Kontext erzeugen und alle benötigten Datenobjekte neu anlegen. Selbst
wenn dies nicht zu lange dauern würde, um den nächsten Draw-Befehl der kritischen Anwendung
rechtzeitig ausführen zu können, stellt ein solcher Abbruchvorgang auf den betrachteten Systemen
höchstwahrscheinlich keine Möglichkeit dar, um zufriedenstellende Frameraten für kritische An-
wendungen gewährleisten zu können – zumal allen diesen Systemen beobachtet werden konnte,
dass der Hardware-Reset selbst mehrere Sekunden in Anspruch nimmt.

Aufgrund der streng sequentiellen Abarbeitung von Draw-Befehlen sowie der mangelnden Vorher-
sagbarkeit ihrer Laufzeit und ihrer mangelnden Abbrechbarkeit ist auf den drei untersuchten Sys-
temen auf der Ebene von OpenGL ES keine Erfüllung von Echtzeitgarantien hinsichtlich der Pipeli-
nenutzung möglich. Im Ausblick in Kapitel 5 wird ein möglicher Lösungsansatz für dieses Problem
außerhalb von OpenGL ES skizziert.

4.5 Kontextwechsel

4.5.1 Vorgehen

Um die Kosten eines Kontextwechsels zu bestimmen, werden – wie in Kapitel 3.4.2 beschrieben –
zwei OpenGL ES-Programme ausgeführt, die als Master- und Slaveprogramm bezeichnet werden.
Diese beiden Programme übermitteln entweder einen Draw-Befehl an den GL-Server oder erzeu-
gen ein neues Datenobjekt, wobei immer zuerst das Slaveprogramm seine Aktion durchführt und
das Masterprogramm seine, sobald die Aktion des Slaveprogramms vollständig abgeschlossen wor-
den ist. Dadurch wird auf Seiten des Masterprogramms ein Kontextwechsel erzwungen. Durch Ver-
gleich der beim Masterprogramm gemessenen Laufzeiten mit zuvor ermittelten Referenzwerten
können die Kosten eines Kontextwechsels ermittelt werden.

99

4 Untersuchungen

Algorithmus 4.18 zeigt das Masterprogramm. In den Zeilen 8–21 wird die Referenzmessung ohne
Kontextwechsel durchgeführt. Falls dabei in Zeile 16 ein Datenobjekt erzeugt wird, wird es in Zeile
20 wieder freigegeben. In Zeile 24 wird das Slaveprogramm gestartet und anschließend in Zeile 25
darauf gewartet, dass es die Bereitschaft signalisiert, fortzufahren.

Die Laufzeitmessung mit erzwungenen Kontextwechseln wird in der Schleife von Zeile 28 bis 33
durchgeführt. Dabei wird dem Slaveprogramm in Zeile 30 signalisiert, seine Aktion durchzuführen
und anschließend in Zeile 31 darauf gewartet, dass das Slaveprogramm den Abschluss der Aktion
signalisiert. Anschließend wird die Zeit für die Ausführung der Aktion des Masterprogramms ge-
messen und das Messergebnis gespeichert. Dies erfolgt auf die gleiche Weise wie bei der Referenz-
messung (in den Zeilen 8–21).

Algorithmus 4.18 Bestimmung der Kosten von Kontextwechseln (Masterprogramm).

1 void ctxSwitchMaster (
2 unsigned int numVertices , / / Anzahl V e r t i c e s
3 unsigned int i t e r a t i o n s , / / Anzahl der Einzelmessungen
4 GLbyte * data , / / zu rendernde / übertragende Daten
5 bool drawCommand) / / Übermittlung eines Draw−Befehls ?
6 {
7 / / Referenzmessung
8 HPCClock c ;
9 long long r e s u l t s [i t e r a t i o n s] ;

10 for (unsigned int n = 0 ; n < i t e r a t i o n s ; n++)
11 {
12 c . s t a r t () ;
13 i f (drawCommand)
14 glDrawArrays (GL_POINTS, 0 , numVertices) ;
15 else
16 (. . .) / / Datenobjekt erzeugen
17 glFlush () ;
18 glFinish () ;
19 writeToResults (c . stop () , glGetError ()) ;
20 (. . .) / / Datenobjekt freigeben , f a l l s zuvor erzeugt
21 }
22

23 / / Slaveprogramm s t a r t e n und warten , b i s es b e r e i t i s t
24 spawnSlave () ;
25 WaitForSlaveEvent () ;
26

27 / / Messung mit erzwungenen Kontextwechseln durchführen
28 for (unsigned int n = 0 ; n < i t e r a t i o n s ; n++)
29 {
30 SetMasterEvent () ;
31 WaitForSlaveEvent () ;
32 (. . .) / / analog Referenzmessung
33 }
34 }

Algorithmus 4.19 zeigt das Slaveprogramm. In Zeile 6 wird die Bereitschaft signalisiert, fortzufah-
ren. Die Durchführung der jeweiligen Aktion des Slaveprogramms erfolgt in der Schleife von Zeile

100

4.5 Kontextwechsel

9 bis 19. Dazu wird in Zeile 11 auf das Signal des Masterprogramms gewartet. Nach erfolgter Aus-
führung des übermittelten Befehls wird dies in Zeile 18 dem Masterprogramm signalisiert. Falls in
Zeile 15 ein Datenobjekt erzeugt wird, wird es in Zeile 17 wieder freigegeben.

Algorithmus 4.19 Bestimmung der Kosten von Kontextwechseln (Slaveprogramm).

1 void ctxSwitchSlave (
2 unsigned int numVertices , / / Anzahl V e r t i c e s
3 GLbyte * data , / / zu rendernde / übertragende Daten
4 bool drawCommand) / / Übermittlung eines Draw−Befehls ?
5 {
6 SetSlaveEvent () ; / / B e r e i t s c h a f t s i g n a l i s i e r e n
7

8 / / Befehle nach Aufforderung durch Masterprogramm übermitteln
9 for (unsigned int n = 0 ; n < i t e r a t i o n s ; n++)

10 {
11 WaitForMasterEvent () ;
12 i f (drawCommand)
13 glDrawArrays (GL_POINTS, 0 , numVertices) ;
14 else
15 (. . .) / / Datenobjekt erzeugen
16 glFinish () ;
17 (. . .) / / Datenobjekt freigeben , f a l l s zuvor erzeugt
18 SetSlaveEvent () ;
19 }
20 }

4.5.2 Ergebnisse

Aktion von
Master

Aktion von
Slave

„Nvidia Quadro
2000D“

„ATI FirePro
V4800“

„ATI FirePro
V5900“

Draw-Befehl Draw-Befehl 61 14 5
Draw-Befehl Neues DO8 " " "

Neues DO Draw-Befehl " " "
Neues DO Neues DO 234 184 126

Tabelle 4.3: Mittlere Laufzeitunterschiede bei erzwungenen Kontextwechseln (in µs)

Tabelle 4.3 zeigt die ermittelten Kosten für Kontextwechsel auf den drei Testsystemen. Nach Erzeu-
gung eines neuen Datenobjekts erhöhen sich die Kosten für einen Kontextwechsel. Diese erhöhten
Kosten treten auf allen drei Testsystemen auf, wenn vom Masterprogramm anschließend ein neues
Datenobjekt erzeugt wird.

8DO steht für Datenobjekt.

101

4 Untersuchungen

4.5.3 Fazit Kontextwechsel

Von den vier betrachteten Problemfeldern stellen die Kosten von Kontextwechseln die geringste
Schwierigkeit hinsichtlich der Erfüllung von Echtzeitgarantien dar. Sie müssen bei der Angabe von
Obergrenzen für die Laufzeit von OpenGL ES-Befehlen berücksichtigt werden, auch wenn ihr Ein-
flusspotential auf den betrachteten Testsystemen sehr gering ist (im Mikrosekundenbereich) – auf
anderen als den untersuchten Systemen kann der Einfluss von Kontextwechseln deutlich schwerer
wiegen (vgl. Abschnitt 3.4). Erfreulicherweise lassen sich diese Kosten mit Bordmitteln von OpenGL
ES ermitteln. Durch die Kosten von Kontextwechseln wird die Erfüllung von Echtzeitgarantien also
nicht signifikant beeinträchtigt.

102

5 Zusammenfassung und Ausblick

In diesem Kapitel werden die wichtigsten Ergebnisse wiedergegeben und die Probleme hinsicht-
lich der Erfüllung von Echtzeitgarantien für kritische OpenGL ES-Anwendungen, die auf Ebene
von OpenGL ES nicht gelöst werden können, zusammengefasst. Anschließend werden mögliche
Lösungsansätze für diese Probleme skizziert.

5.1 Wenig Probleme bei Kontextwechsel und Datenübertragung

Von den betrachteten Problembereichen bringen der Kontextwechsel und die Datenübertragung
die geringsten Schwierigkeiten mit sich, wenn es darum geht, Echtzeitgarantien für die Ausfüh-
rung kritischer OpenGL ES-Programme zu gewährleisten. Sowohl für Kontextwechsel als auch für
die Datenübertragung lassen sich auf der Ebene von OpenGL ES Kennzahlen zum Verhalten der
verwendeten Systeme ermitteln, mit deren Hilfe sich die Einflüsse dieser beiden Problemberei-
che beherrschen lassen. Lediglich die Datenübertragung im Rahmen ungepufferter Draw-Befehle
bringt zusätzlich die gleichen Schwierigkeiten mit sich wie die Pipelinenutzung, da ein ungepuffer-
ter Draw-Befehl nicht nur Daten in das OpenGL ES-System überträgt, sondern auch die Datenver-
arbeitung durch die Renderpipeline anstößt.

5.2 Schwer beherrschbare Risiken bei der Pipelinenutzung

Das größte Problem hinsichtlich der Pipelinenutzung stellt die mangelnde Vorhersagbarkeit der
Laufzeit von Draw-Befehlen dar, insbesondere auf solchen Systemen, bei denen – wie bei den
drei untersuchten Testsystemen – Draw-Befehle weder nebenläufig ausgeführt noch ohne einen
Hardware-Reset abgebrochen werden können. Dieses Problem hat zwei Ursachen:

• Wenn keine Einschränkungen hinsichtlich der ausgeführten Shader definiert werden, kann
deren Laufzeit nicht allgemein vorhergesagt werden, ohne das Halteproblem für diese Pro-
gramme zu lösen – sogar Endlosschleifen sind bei solchen Shadern möglich (siehe [Simpson
und Kessenich 2009], Seite 57).

• Die Anzahl der ausgeführten Instanzen von Fragmentshadern lässt sich vor der Ausführung
eines Draw-Befehls nicht vorhersagen, wenn der entsprechende Draw-Befehl nicht schon
einmal mit gleichem Input und gleichen Einstellungen ausgeführt worden ist – diese Anzahl
wird erst während dessen Ausführung festgelegt (nach Abschluss der Rasterisierung, siehe
Kapitel 2.6).

Dies führt letztendlich zu der Situation, dass prinzipiell die Ausführung jedes Draw-Befehls die
Renderpipeline so lange blockieren könnte, dass die rechtzeitige Ausführung des nächsten Draw-
Befehls einer kritischen Anwendung verhindert wird.

103

5 Zusammenfassung und Ausblick

5.3 Risiken wegen mangelnder Speicherbelegungsinformation

Um garantieren zu können, dass aufgrund der Speicherbelegung die rechtzeitige Ausführung eines
Draw-Befehls einer kritischen Anwendung nicht verhindert wird, müssen mindestens die folgen-
den beiden Bedingungen erfüllt sein:

• Es kann eine Obergrenze für die Menge an GPU-Speicher garantiert werden, die durch die
Erzeugung eines Datenobjekts belegt wird (ggf. durch Berücksichtigung der Größe des Da-
tenobjekts und der Kennzahlen zu Speichergranularität und Speicherblockgröße).

• Es stehen ausreichend Informationen hinsichtlich des aktuellen Layouts des GPU-Speichers
zur Verfügung, so dass jederzeit bestimmt werden kann, wieviel GPU-Speicher durch ein ein-
zelnes Datenobjekt noch belegt werden kann.

Die erste Bedingung kann mit Hilfe der in Kapitel 3.1 beschriebenen Untersuchungen erfüllt wer-
den, wenn es zumindest im Rahmen der Untersuchungen möglich ist, die Menge des aktuell ver-
fügbaren GPU-Speichers abzufragen. Letztendlich ist es aber unerheblich, wie die Informationen
zur Erfüllung dieser Bedingung ermittelt werden. Die zweite Bedingung stellt aber eine Fähigkeit
dar, über die ein OpenGL ES-System zur Laufzeit verfügen muss. Dies ist zum Beispiel bei dem in
dieser Arbeit untersuchten „Nvidia Quadro 2000D“-System nicht der Fall (siehe Kapitel 4.2.6).

Es ist sehr wahrscheinlich, dass auch auf anderen Systemen diese Bedingungen nicht erfüllt wer-
den können, zumal OpenGL ES 2.0 es weder ermöglicht, den aktuellen freien Speicherplatz noch
das aktuelle Layout des GPU-Speichers abzufragen. Sofern durch ein System keine Erweiterung
unterstützt wird, durch die die benötigten Informationen zur Speicherbelegung abgefragt werden
können, kann auf Ebene von OpenGL ES 2.0 auf solchen Systemen nicht garantiert werden, dass
die rechtzeitige Ausführung kritischer Draw-Befehle durch die Speicherbelegung nicht verhindert
wird.

5.4 Mögliche Lösungsansätze

Wie in den vorhergehenden Abschnitten erläutert, stehen der Gewährleistung von Garantien für
die rechtzeitige Ausführung von Draw-Befehlen noch die folgenden drei Probleme im Wege:

• Die mangelnde Abrufbarkeit von Information zur aktuellen Speicherbelegung.

• Die mangelnde Vorhersagbarkeit der Anzahl der bei der Abarbeitung eines Draw-Befehls aus-
geführten Shader-Instanzen.

• Die mangelnde Garantierbarkeit einer Obergrenze für die Laufzeit von Shader-Instanzen.

In den nächsten Abschnitten werden mögliche Lösungsansätze für diese drei Probleme skizziert.

5.4.1 Nutzung der Treiber-Informationen zum Speicherlayout

[Dwarakinath 2008] berichtet über die ATI r200-GPU, dass auf Ebene ihres GPU-Treibers unter Li-
nux die Informationen zum aktuellen Layout des GPU-Speichers zur Verfügung stehen, d. h. auf
dieser Ebene ist bekannt, welche Speicherbereiche innerhalb des GPU-Speichers belegt sind und

104

5.4 Mögliche Lösungsansätze

welche für die Speicherung weiterer Daten zur Verfügung stehen. Die Virtualisierungsansätze von
[Dwarakinath 2008] und [Kato u. a. 2011] setzen auf Ebene der GPU-Treiber an. Eine Möglichkeit
zur Erfüllung der in Abschnitt 5.3 genannten Bedingungen könnte darin bestehen, ebenfalls auf
dieser Ebene anzusetzen und die Informationen zum Layout des GPU-Speichers zu nutzen. Wenn
bekannt ist, welche Speicherbereiche belegt und welche frei sind, kann davon abgeleitet werden,
wieviel Speicherplatz in der GPU insgesamt zur Verfügung steht und wieviel durch ein einzelnes
Datenobjekt noch belegt werden kann.

5.4.2 Einschränkung von Shadern

Eine Obergrenze für die Laufzeit von Shader-Instanzen könnte zum Beispiel dadurch garantiert
werden, dass Beschränkungen hinsichtlich des Kontrollflusses von Shadern eingeführt werden, wie
sie in [Simpson und Kessenich 2009] auf den Seiten 108–109 vorgeschlagen werden. Durch die-
se Einschränkungen könnten Endlosschleifen ausgeschlossen werden und die genaue Anzahl an
Schleifeniterationen könnte durch Auswertung des Shader-Quellcodes sicher bestimmt werden.

Somit könnte anhand des Quellcodes eines Shaders die maximale Anzahl an Anweisungen berech-
net werden, die durch ihn ausgeführt werden. Nach Bestimmung der maximalen Laufzeitkosten für
die verschiedenen Anweisungsarten könnte eine Obergrenze für die Laufzeit eines beliebigen Sha-
ders auf Grundlage seines Quellcodes berechnet werden. Die Verwendung vorkompilierter Shader
muss bei diesem Ansatz ausgeschlossen werden.

5.4.3 Trennung von Vertex- und Fragment-Processing

Dem folgenden Ansatz zur Bestimmung der Anzahl ausgeführter Shader-Instanzen liegt die Annah-
me zu Grunde, dass eine Obergrenze für die Laufzeit von Shader-Instanzen bestimmt werden kann
(zum Beispiel wie im vorherigen Abschnitt beschrieben).

Die Anzahl der im Zuge eines Draw-Befehls ausgeführten Instanzen von Vertexshadern kann an-
hand der übergebenen Vertexdaten vorhergesagt werden (es wird pro definiertem Vertex genau
eine Instanz eines Vertexshaders ausgeführt). Die genaue Anzahl der auszuführenden Instanzen
von Fragmentshadern steht erst nach Abschluss der Rasterisierung fest (siehe Kapitel 2.6).

Es kann aber eine – reichlich unpraktische – Obergrenze für die Anzahl der ausgeführten Instanzen
von Fragmentshadern garantiert werden: Es werden pro gerendertem Primitiv (Dreieck, Linie oder
Punkt, siehe Kapitel 2.6.2.2) höchstens so viele Fragmentshader-Instanzen ausgeführt, wie es Pixel
im Framebuffer gibt.1 Diese Obergrenze ist unrealistisch hoch – sie wird nur erreicht, wenn jedes
gerenderte Primitiv, den kompletten sichtbaren Bereich überdeckt, also jeden Pixel im Framebuf-
fer.

Der Ansatz zur Bestimmung der Anzahl ausgeführter Fragmentshader-Instanzen basiert nun dar-
auf, dass in einem ersten Schritt das Fragmentshader-Programm der aufrufenden Anwendung
durch einen Minimalshader ersetzt wird, für den die Laufzeit bekannt ist. Mit diesem minimalen

1Falls das verwendete System Multisampling unterstützt, muss dieser Wert noch mit der Anzahl an Samples pro Pixel
multipliziert werden (siehe Kapitel 2.6.2.3).

105

5 Zusammenfassung und Ausblick

Fragmentshader und dem ursprünglichen Vertexshader wird der Draw-Befehl nun ausgeführt. Für
die Laufzeit dieses Draw-Befehls kann eine Obergrenze garantiert werden, da

• eine Obergrenze für die Laufzeiten der beiden Shaderarten bestimmt werden kann und

• die Anzahl der ausgeführten Vertexshader-Instanzen bekannt ist und

• eine Obergrenze für die Anzahl der ausgeführten Fragmentshader-Instanzen bekannt ist.

Anschließend wird der minimale Fragmentshader durch eine modifizierte Variante ersetzt, die ei-
ne geringfügig längere (und ebenfalls vorab bekannte) Laufzeit hat. Damit wird der Draw-Befehl
erneut ausgeführt. Eine Obergrenze für die Laufzeit dieses zweiten Draw-Befehls kann auf die glei-
che Weise garantiert werden wie beim ersten Draw-Befehl.

Da die Laufzeiten der beiden Fragmentshader vorab bekannt sind, kann durch einen Vergleich der
Laufzeiten der beiden Draw-Befehle auf die Anzahl der ausgeführten Fragmentshader-Instanzen
geschlossen werden. Mit dieser zusätzlichen Information kann nun eine sinnvollere Obergrenze
für die Laufzeit des Draw-Befehls mit dem ursprünglichen Fragmentshader berechnet werden.

5.5 Fazit

In dieser Arbeit wurden diejenigen der 142 von OpenGL ES 2.0 definierten Befehle bestimmt, de-
ren Ausführung einen negativen Einfluss auf die Erfüllung von Echtzeitgarantien für kritische An-
wendungen haben könnte, und anschließend deren Laufzeitverhalten und Ressourcenverbrauch
analysiert. Dazu wurden Metriken und Untersuchungsmethoden entwickelt, auf deren Grundlage
der Ressourcenverbrauch sowie die Laufzeit von OpenGL ES-Befehlen prognostiziert und die dafür
notwendigen systemspezifischen Kennzahlen ermittelt werden können.

Diese Untersuchungen wurden auf drei realen OpenGL ES-Systemen durchgeführt, wobei sich
zeigte, dass insbesondere das Speicherbelegungsverhalten und die Nutzung der Renderpipeline
mit Problemen verbunden sind, die der Erfüllung von Echtzeitgarantien im Wege stehen und nicht
auf der Ebene von OpenGL ES gelöst werden können. Für diese Probleme wurden schließlich in
diesem Kapitel mögliche Lösungsansätze skizziert.

Es kann an dieser Stelle jedoch keine Aussage dazu gemacht werden, inwieweit die hier skizzierten
Lösungsansätze tatsächlich praktikabel sind. Dies zu ergründen, bleibt künftigen Arbeiten vorbe-
halten. Sofern sich dabei herausstellen sollte, dass sie praktikabel sind, oder sofern andere Lösun-
gen für die zu Beginn von Abschnitt 5.4 aufgeführten Probleme gefunden werden können, dann ist
davon auszugehen, dass eine Zwischenschicht, wie sie in Kapitel 1.4 beschrieben wurde, tatsäch-
lich Echtzeitgarantien hinsichtlich der Ausführung von OpenGL ES-Befehlen für sicherheitskriti-
sche Anwendungen erfüllen kann.

106

6 Anhang

6.1 Befehle von OpenGL ES 2.0

6.1.1 Erzeugung von Datenobjekten

OpenGL ES-Befehl Kurzbeschreibung .
glBufferData Dieser Befehl erzeugt ein neues Vertexbuffer-Objekt. Er reserviert

den dafür notwendigen Speicherplatz (entsprechend der in den
Parametern übergebenen Objektgröße) und füllt das neue Objekt
optional mit Daten aus dem Hauptspeicher.

glRenderbufferStorage Dieser Befehl erzeugt ein neues Renderbuffer-Objekt und reser-
viert den dafür notwendigen Speicherplatz (entsprechend der in
den Parametern übergebenen Objektgröße).

glTexImage2D Dieser Befehl erzeugt ein neues Texturobjekt. Er reserviert den da-
für notwendigen Speicherplatz (entsprechend der in den Parame-
tern übergebenen Texturgröße) und füllt das neue Objekt optio-
nal mit Daten aus dem Hauptspeicher.

glCompressedTexImage2D Analog glTexImage2D für komprimierte Texturen.
glCopyTexImage2D Erzeugt ein neues Texturobjekt und füllt es mit Daten aus einem

anderen Datenobjekt.
glGenerateMipmap Erzeugt eine vollständige Mipmap-Chain für eine gegebene Tex-

tur. Dadurch werden bis zu log2(max{w, h}) neue Texturobjekte
erzeugt, wobei w und h die Breite und Höhe der Ausgangstextur
in Texel1 sind.

glBindFramebuffer Siehe Abschnitt 6.1.5.

Tabelle 6.1: Befehle zur Erzeugung von Datenobjekten

6.1.2 Freigabe von Datenobjekten

OpenGL ES-Befehl Kurzbeschreibung .
glDeleteBuffers Gibt Vertexbuffer-Objekte frei. .
glDeleteRenderbuffers Gibt Renderbuffer-Objekte frei.
glDeleteTextures Gibt Texturobjekte frei.
glDeleteFramebuffers Gibt Framebuffer-Objekte frei.

Tabelle 6.2: Befehle zur Freigabe von Datenobjekten

1Der Begriff Texel bezeichnet einen einzelnen Datenwert einer Textur.

107

6 Anhang

6.1.3 Datenübertragungsbefehle

OpenGL ES-Befehl Kurzbeschreibung .
glBufferData Siehe 6.1.1.
glBufferSubData Überträgt Vertexdaten vom Hauptspeicher in ein

Vertexbuffer-Objekt.
glTexImage2D Siehe 6.1.1.
glTexSubImage2D Kopiert Texturdaten vom Hauptspeicher in ein Texturobjekt.
glCompressedTexImage2D Siehe 6.1.1.
glCompressedTexSubImage2D Analog glTexSubImage2D für komprimierte Texturdaten.
glCopyTexImage2D Siehe 6.1.1.
glCopyTexSubImage2D Analog glCopyTexImage2D mit dem Unterschied, dass nur

ein Teil der Zieltextur mit neuen Daten überschrieben wird.
glReadPixels Kopiert einen rechteckigen Bereich des aktuellen Colorbuf-

fers (ein Teil des aktuellen Framebuffers) in den Hauptspei-
cher.

glUniform* Insgesamt 19 Funktionen, die sich nur hinsichtlich der Pa-
rameterübergabe unterscheiden. Sie dienen dem Setzen des
Wertes von konstanten Shadervariablen, die entweder Vertex-
oder Fragmentshadern zur Verfügung stehen.

glVertexAttrib* Insgesamt acht Funktionen, die sich nur hinsichtlich der
Parameterübergabe unterscheiden. Ähnlich den Uniform-
Befehlen dienen sie dem Setzen von konstanten Shadervaria-
blen, allerdings nur für Vertexshader.

Tabelle 6.3: Datenübertragungsbefehle

6.1.4 Vertexdatenverwaltung

OpenGL ES-Befehl Kurzbeschreibung .
glVertexAttribPointer Weist dem aktuellen OpenGL ES-Kontext ein Array mit Ver-

texdaten zu.
glEnableVertexAttribArray Setzt fest, dass ein zugewiesenes Array von Vertexdaten als

Input für die Vertexshader genutzt werden soll (statt kon-
stantem Input).

glDisableVertexAttribArray Setzt fest, dass konstanter Input für Vertexshader verwendet
werden soll (statt einem zuvor zugewiesenen Array von Ver-
texdaten).

Tabelle 6.4: Vertexdatenverwaltung

108

6.1 Befehle von OpenGL ES 2.0

6.1.5 Binding von Datenobjekten

OpenGL ES-Befehl Kurzbeschreibung .
glBindBuffer Erklärt ein Vertexbuffer-Objekt zum aktuellen Vertexbuffer-Objekt,

das von allen nachfolgenden Vertexbuffer-Befehlen genutzt wird, oder
hebt diese Erklärung auf.

glBindRenderbuffer Erklärt ein Renderbuffer-Objekt zum aktuellen Renderbuffer-Objekt,
das von allen nachfolgenden Renderbuffer-Befehlen genutzt wird,
oder hebt diese Erklärung auf.

glBindTexture Erklärt ein Texturobjekt zum aktuellen Texturobjekt (für die zuvor mit
glActiveTexture festgelegte Textureinheit), das von allen nachfol-
genden Texturbefehlen genutzt wird, oder hebt diese Erklärung auf.

glActiveTexture Setzt die Textureinheit fest, auf die sich nachfolgende Aufrufe von
glBindTexture beziehen.

glBindFramebuffer Erklärt ein Framebuffer-Objekt zum aktuellen Framebuffer, der von
allen nachfolgenden Framebuffer-Befehlen genutzt wird, oder hebt
diese Erklärung auf. Sofern ein noch nicht existierendes Framebuffer-
Objekt gebunden wird, wird an dieser Stelle ein neues erzeugt.

Tabelle 6.5: Befehle zum Binding von Datenobjekten

6.1.6 Naming von Datenobjekten

OpenGL ES-Befehl Kurzbeschreibung .
glGenBuffers Liefert ungenutzte Namen (IDs) für Vertexbuffer-Objekte. .
glGenRenderbuffers Liefert ungenutzte Namen (IDs) für Renderbuffer-Objekte.
glGenTextures Liefert ungenutzte Namen (IDs) für Texturobjekte.
glGenFramebuffers Liefert ungenutzte Namen (IDs) für Framebuffer-Objekte.

Tabelle 6.6: Naming von Datenobjekten

6.1.7 Zusammensetzung von Framebuffern

OpenGL ES-Befehl Kurzbeschreibung .
glFramebufferRenderbuffer Verbindet ein Renderbuffer-Objekt mit dem aktuellen

Framebuffer-Objekt oder hebt diese Verbindung auf.
glFramebufferTexture2D Verbindet ein Texturobjekt mit dem aktuellen Framebuffer-

Objekt oder hebt diese Verbindung auf.

Tabelle 6.7: Zusammensetzung von Framebuffern

109

6 Anhang

6.1.8 Draw-Befehle

OpenGL ES-Befehl Kurzbeschreibung .
glDrawArrays Dieser Befehl überträgt die zuvor durch glVertexAttribPointer zuge-

wiesenen Vertexdaten an das GL-System (falls diese nicht zuvor gepuffert2

wurden) und stößt deren Verarbeitung durch die Renderpipeline an.
glDrawElements Analog glDrawArrays mit dem Unterschied, dass zusätzlich zu den Ver-

texdaten auch Indexdaten an das GL-System übertragen werden (falls die-
se nicht zuvor gepuffert2 wurden).

Tabelle 6.8: Draw-Befehle

6.1.9 Clearing-Befehle

OpenGL ES-Befehl Kurzbeschreibung .
glClear Setzt alle Pixel im aktuellen Color-, Depth- und/oder Stencilbuffer auf den

jeweiligen Clearwert.
glClearColor Setzt den Clearwert für Colorbuffer fest.
glClearDepthf Setzt den Clearwert für Depthbuffer fest.
glClearStencil Setzt den Clearwert für Stencilbuffer fest.

Tabelle 6.9: Clearing-Befehle

6.1.10 Zustandsabfragen

OpenGL ES-Befehl Kurzbeschreibung .
glCheckFramebufferStatus Dient dazu, abzufragen, ob das aktuelle Framebuffer-Objekt

als Ziel für Renderoperationen oder Quelle für glReadPixels
dienen kann oder nicht (d. h. ob alle notwendigen Datenobjek-
te zugewiesen wurden und diese zusammenpassen).

glGet* Insgesamt 26 Funktionen, die sich nur hinsichtlich der zu über-
gebenden Parameter unterscheiden. Mit ihnen können aktuel-
le Zustände oder sonstige Werte abgefragt werden.

glIs* Insgesamt sechs Varianten (für die verschiedenen Arten von
Daten- und Programmobjekten), mit denen für einen gegebe-
nen Objektnamen die Art des Objekts abgefragt werden kann.

Tabelle 6.10: Zustandsabfragen

2Siehe auch Kapitel 2.6.3 für eine Diskussion der Unterschiede von gepuffertem und ungepuffertem Rendering.

110

6.1 Befehle von OpenGL ES 2.0

6.1.11 Programmverwaltung

OpenGL ES-Befehl Kurzbeschreibung .
glCreateShader Legt ein leeres Shaderobjekt an.
glDeleteShader Gibt ein Shaderobjekt frei.
glShaderSource Weist einem Shaderobjekt Sourcecode zu.
glCompileShader Kompiliert den zugewiesenen Sourcecode eines Shaderobjekts.
glCreateProgram Legt ein leeres Programmobjekt an.
glLinkProgram Erzeugt aus einem Vertex- und einem Fragmentshader ein aus-

führbares Programmobjekt, das für nachfolgende Renderopera-
tionen genutzt werden kann.

glUseProgram Installiert ein Programmobjekt im aktuellen Kontext, sofern es
zuvor erfolgreich durch glLinkProgram erzeugt worden ist. Die-
ses Programmobjekt wird dann für nachfolgende Renderopera-
tionen verwendet.

glDeleteProgram Gibt ein Programmobjekt frei.
glAttachShader Weist einem Programmobjekt ein Shaderobjekt zu.
glDetachShader Hebt die Zuweisung eines Shaderobjekts zu einem Programm-

objekt auf.
glReleaseShaderCompiler Gibt dem GL-Server den Hinweis, dass er eventuell genutzte Res-

sourcen für den Shadercompiler freigeben kann.
glShaderBinary Lädt vorkompilierten Shadercode in ein Shaderobjekt.

Tabelle 6.11: Befehle zur Programmverwaltung

6.1.12 Befehle zur Änderung von Renderpipeline-Einstellungen

OpenGL ES-Befehl Kurzbeschreibung .
glTexParameter* Insgesamt vier Funktionen, die sich nur hinsichtlich der zu überge-

benden Parameter unterscheiden. Sie dienen dazu, die Filter- und
Wrappingeinstellungen für Texturen festzulegen.

glDepthMask Setzt fest, ob der aktuelle Depthbuffer schreibgeschützt ist oder
nicht.

glStencilFunc Spezifiziert die Bedingung, anhand derer im Stenciltest überprüft
wird, ob ein Pixel im Framebuffer durch ein Fragment tatsächlich
verändern wird oder nicht.

glStencilFuncSeparate Wie glStencilFunc mit dem Unterschied, dass die spezifizierte
Bedingung nur für Fragmente mit bestimmter Orientierung gültig
ist.

glStencilOp Legt die Operation fest, die im Stencilbuffer abhängig vom Aus-
gang des Stenciltests durchgeführt wird.

glStencilOpSeparate Wie glStencilOp mit dem Unterschied, dass die festgelegte Ope-
ration nur für Fragmente mit bestimmter Orientierung durchge-
führt wird.

111

6 Anhang

glDepthFunc Ändert die Vergleichsoperation (größer, kleiner, ungleich etc.)
für den Depthtest.

glBlendFunc Ändert die Faktoren, mit denen Quell- und Zielfarbwert bei ak-
tiviertem Blending multipliziert werden, bevor aus den beiden
Produkten der resultierende Farbwert im Framebuffer berech-
net wird.

glBlendFuncSeparate Wie glBlendFunc mit dem Unterschied, dass jeweils unter-
schiedliche Faktoren für die RGB-Komponenten und die Alpha-
Komponente angegeben werden können.

glBlendColor Setzt die Werte des konstanten Blendingwerts, der bei
glBlendFunc und glBlendFuncSeparate optional verwen-
det werden kann.

glBlendEquation Legt den Operator fest, mit dem die beim Blending berechneten
Quell- und Zielfaktoren verknüpft werden, um den resultieren-
den Farbwert im Framebuffer zu berechnen.

glBlendEquationSeparate Wie glBlendEquation mit dem Unterschied, dass unterschied-
liche Operatoren für die RGB-Komponenten und die Alpha-
Komponente gewählt werden können.

glSampleCoverage Legt den Wert fest, der verwendet wird, um eine zusätzliche Bit-
maske zu erzeugen, die mit der im Multisampling erzeuten ver-
undet wird, um das Antialiasing zu beeinflussen.

glLineWidth Setzt die Liniendicke fest.
glFrontFace Legt fest, ob Dreiecksnormalen im oder gegen den Uhrzeiger-

sinn bestimmt werden.
glPolygonOffset Legt die Werte für den automatischen Tiefenversatz von Polygo-

nen fest (z.B. um koplanare Polygone ohne Z-Fighting-Artefakte
zu rendern).

glViewport Ändert die Viewporteinstellungen.
glDepthRangef Ändert die Einstellungen zur Umrechnung von Z-Werten in Ge-

rätekoordinaten zu Z-Werten in Fensterkoordinaten.
glColorMask Setzt fest, welche Komponenten (RGBA) im aktuellen Colorbuf-

fer überschrieben werden dürfen und welche nicht.
glStencilMask Setzt fest, welche Bits eines Pixels im aktuellen Stencilbuffer

schreibgeschützt sind und welche nicht.
glStencilMaskSparate Analog glStencilMask mit dem Unterschied, dass verschiede-

ne Bitmasken für Primitives angegeben werden können, abhän-
gig von ihrer Orientierung.

glCullFace Legt die Orientierung von Dreiecken fest, die im Zuge von Cul-
ling eliminiert werden sollen.

glScissor Spezifiziert einen rechteckigen Bereich im aktuellen Framebuf-
fer an dem unabhängig von den anderen Clippingoperation ge-
clippt wird (der Bereich außerhalb des Rechtecks ist schreibge-
schützt).

Tabelle 6.12: Befehle zur Änderung von Renderpipeline-Einstellungen

112

6.1 Befehle von OpenGL ES 2.0

6.1.13 Sonstige OpenGL ES-Befehle

OpenGL ES-Befehl Kurzbeschreibung .
glFlush Übermittelt alle vom aufrufenden Programm bisher aufgerufenen

OpenGL ES-Befehle an den GL-Server, die noch nicht übermittelt
wurden.

glFinish Diese Funktion kehrt zurück, sobald alle bisher aufgerufenen
OpenGL ES-Befehle vom GL-Server vollständig abgearbeitet wor-
den sind.

glValidateProgram Führt eine Reihe von Tests aus, um festzustellen, ob das aktuelle Pro-
grammobjekt mit dem aktuellen Zustand des Renderkontexts erfolg-
reich für Renderoperationen ausgeführt werden kann und liefert
(implementierungsabhängig) zusätzliche Informationen über vor-
handene Performanceprobleme, etc. – Nur für Debugging-Zwecke
während der Entwicklung gedacht (siehe [Munshi u. a. 2008], Seite
66).

glClear Setzt alle Pixel im aktuellen Color-, Depth- und/oder Stencilbuffer
auf den von glClearColor festgesetzten, aktuellen Clearwert.

glHint Erlaubt es, der Implementierung Hinweise zu geben, ob bei der Er-
zeugung einer Mipmap-Chain höhere Qualität oder höhere Perfor-
mance angestrebt werden soll. Ob dieser Hinweis überhaupt einen
Einfluss hat, ist allerdings implementierungsabhängig.

glPixelStorei Bestimmt das Byte-Alignment von Pixelreihen in Texturen, die vom
Hauptspeicher ein- oder in den Hauptspeicher ausgelesen werden.
Dieser Wert beeinflusst nicht die Menge der übertragenen Daten
und wie diese im GPU-Speicher abgelegt werden (siehe [Munshi u. a.
2008], Seite 187).

glBindAttribLocation Den möglichen Inputvariablen von Vertexshadern sind Nummern
zugewiesen (von 0 bis MAX_ATTRIBS), der sogenannte position in-
dex. Durch glBindAttribLocation wird ein solcher Index einem
symbolischen Variablennamen zugeordnet, der im Quellcode von
Vertexshadern verwendet werden kann.

Tabelle 6.13: Sonstige OpenGL ES-Befehle

113

6 Anhang

6.2 Erweiterungen von OpenGL ES 2.0

6.2.1 EXT- und OES-Erweiterungen

Erweiterung Kurzbeschreibung .
OES_byte_coordinates Ermöglicht die Angabe von Vertex- und Texturkoor-

dinaten als Bytewerte.
OES_compressed_ETC1_RGB8_texture Unterstützung von Texturen, die im ETC-Format

komprimiert sind.
OES_compressed_paletted_texture Unterstützung von palettierten Texturen.
OES_fixed_point Unterstützung für Eingabedaten in Festkommafor-

maten (gedacht für Plattformen mit unzureichender
Fließkommaunterstützung).

OES_read_format Erlaubt die Abfrage, welche zusätzlichen (implemen-
tierungsspezifischen) Formate zur Verfügung stehen,
um mit glReadPixels Daten aus dem aktuellen Fra-
mebuffer in den Hauptspeicher zu kopieren.

OES_EGL_image Ermöglicht die Erzeugung von Texturen und Ren-
derbuffer, die sich ihren Speicher mit EGLImage-
Objekten teilen.

OES_depth24 Ermöglicht die Nutzung von 24bit-tiefen Depthbuf-
fer-Komponenten in Renderbuffer-Objekten.

OES_depth32 Ermöglicht die Nutzung von 32bit-tiefen Depthbuf-
fer-Komponenten in Renderbuffer-Objekten.

OES_element_index_uint Erlaubt die Übergabe von Indexdaten an glDraw-
Elements im GL_UNSIGNED_INT-Datenformat.

OES_mapbuffer Ermöglicht, den Inhalt von Vertexbuffer-Objekten in
den Hauptspeicher zu mappen (und dort zu modifi-
zieren).

OES_rgb8_rgba8 Ermöglicht 8bit-RGB und -RGBA als zusätzliches
Speicherformat für Renderbuffer-Objekte.

OES_stencil1 Ermöglicht 1bit-Stencilkomponenten für Renderbuf-
fer-Objekte.

OES_stencil4 Ermöglicht 4bit-Stencilkomponenten für Renderbuf-
fer-Objekte.

OES_stencil8 Ermöglicht 8bit-Stencilkomponenten für Renderbuf-
fer-Objekte.

OES_texture_3D Unterstützung von 3D-Texturen.
OES_texture_half_float_linear Liefert erweiterte Modi für Texturfilterung.
OES_texture_float_linear Liefert erweiterte Modi für Texturfilterung.
OES_texture_half_float Unterstützung für Texturformate mit 16bit-Fließ-

kommakomponenten.

114

6.2 Erweiterungen von OpenGL ES 2.0

OES_texture_float Unterstützung für Texturformate mit 32bit-Fließkom-
makomponenten.

OES_texture_npot Unterstützung für erweiterte Wrappingmodi für Tex-
turen, deren Ausdehnung keine Potenz von zwei ist.

OES_vertex_half_float Erlaubt die Nutzung von 16bit-Fließkommazahlen als
Vertexattributdaten.

EXT_texture_filter_anisotropic Ermöglicht anisotropische Texturfilterung.
EXT_texture_type_2_10_10_10_REV Unterstützung für das 2-10-10-10-Texturformat (zwei

Bits für Alpha, jeweils zehn für R, G und B).
OES_depth_texture Unterstützung für Texturen, die Tiefenpufferdaten

speichern (sogenannte depth textures).
OES_packed_depth_stencil Unterstützung für kombinierte Depth- und

Stencilbuffer-Objekte (mit 24 Bits/Pixel für Tiefenin-
formation und 8 Bits/Pixel für Stencilinformation).

OES_standard_derivatives Unterstützung für die (built-in) Ableitungsfunktio-
nen in Fragmentshadern, die standardmäßig in der
OpenGL ES 2.0 Shading Language nicht zur Verfügung
stehen.

OES_vertex_type_10_10_10_2 Unterstützung des 10-10-10-2-Datenformats für Ver-
texattributdaten (drei Komponenten zu je zehn Bits
und eine zu zwei Bits).

OES_get_program_binary Ermöglicht das Ein- und Auslesen kompilierter Sha-
derprogramme.

EXT_texture_compression_dxt1 Unterstützung von Texturen, die im DXT1-Format
komprimiert sind.

EXT_texture_format_BGRA8888 Unterstützung für das BGRA8888-Texturformat.
EXT_discard_framebuffer Ermöglicht, den Inhalt des aktuellen Framebuffers für

ungültig zu erklären (eröffnet manchen Implementie-
rungen zusätzliche Optimierungensmöglichkeiten).

EXT_blend_minmax Ermöglicht die Nutzung weiterer blend equations (zu-
sätzlich zu den von glBlendEquation bereits akzep-
tierten).

EXT_read_format_bgra Zusätzliche Formate für glReadPixels.
EXT_multi_draw_arrays Erlaubt die Übergabe mehrerer Geometriedatenar-

rays beim Aufruf einer Draw-Funktion.
OES_vertex_array_object Unterstützung für Vertexarray-Objekte zur serversei-

tigen Speicherung von Vertexarray-Zuständen (d. h.
zusammengehörige Mengen von konstanten Vertex-
attributen bzw. Zeiger auf Vertexattributdaten), um
schnell zwischen verschiedenen Zuständen wechseln
zu können.

EXT_shader_texture_lod Liefert zusätzliche Funktionen für Fragmentshader,
durch die der Detailgrad beim Texturzugriff explizit
bestimmt werden kann.

115

6 Anhang

EXT_frag_depth Erlaubt das Setzen des Tiefenwerts eines Fragments aus einem
Fragmentshader-Programm heraus.

OES_EGL_image_external Erlaubt die Nutzung von EGlImages als Ziel für Texturoperatio-
nen.

EXT_unpack_subimage Zusätzliche Parameter für glPixelStorei, die das Befüllen einer
serverseitigen Textur mit einem rechteckigen Bereich aus einer
clientseitigen Textur erleichtern können.

Tabelle 6.14: EXT- und OES-Erweiterungen

6.2.2 Erweiterungen der AMD Corporation

Erweiterung Kurzbeschreibung .
AMD_compressed_3DC_texture Unterstützung für Texturen, deren Texel nur aus einer oder

zwei Komponenten bestehen, zum Beispiel für normal oder
luminance maps.

AMD_compressed_ATC_texture Unterstützung für Texturen, die nach dem ATC-Verfahren
komprimiert wurden.

AMD_program_binary_Z400 Unterstützung für Shaderbinaries, die für AMDs Z400-
Produktfamilie kompiliert wurden.

AMD_performance_monitor Ermöglicht die Abfrage spezieller Hardwarecounter, die auf
manchen AMD-GPUs verfügbar sind.

Tabelle 6.15: Erweiterungen der AMD Corporation

6.2.3 Erweiterungen von Apple Incorporated

Erweiterung Kurzbeschreibung .
APPLE_texture_2D_limited_npot Unterstützung für erweiterte Wrappingmodi für

Texturen, deren Ausdehnung keine Potenz von
zwei ist (eingeschränkter als die OES-Erweiterung
OES_texture_npot).

APPLE_rgb_422 Liefert ein zusätzliches Texturformat.
APPLE_framebuffer_multisample Liefert Renderbufferobjekte, die Multisampling unter-

stützen.
APPLE_texture_format_BGRA8888 Erlaubt das Laden von Texturen im BGRA-Format.
APPLE_texture_max_level Erlaubt den maximalen Miplevel für einzelne Texturen

explizit festzulegen.

Tabelle 6.16: Erweiterungen von Apple Incorporated

116

6.2 Erweiterungen von OpenGL ES 2.0

6.2.4 Erweiterungen der NVIDIA Corporation

Erweiterung Kurzbeschreibung .
NV_fence Ermöglicht die Nutzung sogenannter Fence-

Befehle, die die Synchronisation zwischen CPU
und GPU erleichtern. Durch Fences werden
partielle glFinish-Anweisungen möglich (d. h.
das Clientprogramm wird nur bis zur Ausfüh-
rung einer bestimmten Fence-Funktion blockiert
und nicht zwingend solange, bis alle an den GL-
Server übermittelten Befehle ausgeführt wurden).
Außerdem kann der Ausführungszustand von
Fence-Befehlen abgefragt werden, um Hinweise
darauf zu erhalten, wie viele der aufgerufenen
Befehle bereits vom GL-Server ausgeführt worden
sind.

NV_coverage_sample Liefert einen zusätzlichen Algorithmus für das An-
tialiasing.

NV_depth_nonlinear Unterstützung für nicht-linearen Tiefenpuffer.
NV_draw_buffers Ermöglicht Fragmentshadern, mehr als einen Er-

gebnisfarbwert zurückzuliefern.
NV_fbo_color_attachments Erlaubt, mehr als einen Colorbuffer mit einem Fra-

mebufferobjekt zu verbinden.
NV_read_buffer Ermöglicht, verschiedene Colorbuffer als Quel-

le für glReadPixels, glCopyTexImage2D und
glCopyTexSubImage2D zu nutzen, statt nur den
des aktuellen Framebuffers (Ausnahme: Der
Frontcolorbuffer des aktuellen Framebuffers
kann nicht als Quelle gewählt werden, wenn ein
Backcolorbuffer vorhanden ist).

NV_read_buffer_front Wie NV_read_buffer, nur dass zusätzlich auch
der Frontcolorbuffer des aktuellen Framebuffers
als Quelle genutzt werden kann.

NV_read_depth Ermöglicht es, mit glReadPixels Daten aus dem
Depthbuffer auszulesen.

NV_read_stencil Ermöglicht es, mit glReadPixels Daten aus dem
Stencilbuffer auszulesen.

NV_read_depth_stencil Ermöglicht es, mit glReadPixels Daten aus ei-
nem kombinierten Depth-Stencilbuffer auszule-
sen.

NV_texture_compression_s3tc_update Erlaubt das Kopieren von Daten aus einer unkom-
primierten in eine komprimierte Textur.

NV_texture_npot_2D_mipmap Liefert Mipmapping-Funktionalität für Texturen
deren Ausdehnung keine Potenz von zwei ist.

Tabelle 6.17: Erweiterungen der NVIDIA Corporation

117

6 Anhang

6.2.5 Erweiterungen von Imagination Technologies Limited

Erweiterung Kurzbeschreibung .
IMG_read_format Liefert weitere Formate für glReadPixels.
IMG_texture_compression_pvrtc Unterstützung für das PowerVR-Texturkompres-

sionsformat.
IMG_program_binary Unterstützung für Programmbinaries im SGX_-

PROGRAM_BINARY_IMG-Format.
IMG_shader_binary Unterstützung für vorkompilierte Shaderbinaries

im SGX_BINARY_IMG-Format.
IMG_multisampled_render_to_texture Ermöglicht Multisampling beim Rendern in eine

Textur, ohne dass anschließend ein automatisches
Downsampling durchgeführt wird.

Tabelle 6.18: Erweiterungen von Imagination Technologies Limited

6.2.6 Erweiterungen von Qualcomm Incorporated

Erweiterung Kurzbeschreibung .
QCOM_driver_control Liefert spezielle Funktion zur Treiberkontrolle,

gedacht für Debugging und Profiling während
der Anwendungsentwicklung.

QCOM_performance_monitor_global_mode Erlaubt das Auslesen von globalen Hardware-
countern. Globale Counter reagieren auf Ak-
tionen aller Programme, die die GPU nut-
zen (nicht nur desjenigen Programms, das die
Counter nutzt).

QCOM_writeonly_rendering Ermöglicht einen sogenannten write-only
Rendermodus, der für manche Anwendungen
einen Performancegewinn mit sich bringen
kann.

QCOM_extended_get Liefert Funktionen, mit denen zusätzliche Infor-
mationen über den GL-Zustand abgefragt wer-
den können. Gedacht für Debuggung.

QCOM_extended_get2 Liefert noch weitere Abfragefunktionen für das
Debugging.

QCOM_tiled_rendering Ermöglicht dem Clientprogramm, gezielt ein-
zelne Teile des Framebuffers zum Rendern in
schnellem Speicher unterzubringen.

QCOM_alpha_test Führt den Alphatest von OpenGL ES 1.X für
OpenGL ES 2.0 wieder ein.

Tabelle 6.19: Erweiterungen von Qualcomm Incorporated

118

6.2 Erweiterungen von OpenGL ES 2.0

6.2.7 Erweiterungen des ANGLE-Projekts

Erweiterung Kurzbeschreibung .
ANGLE_framebuffer_blit Erlaubt das Kopieren von Daten zwischen verschiede-

nen Framebuffern.
ANGLE_framebuffer_multisample Liefert Renderbufferobjekte, die Multisampling unter-

stützen.

Tabelle 6.20: Erweiterungen des ANGLE-Projekts

6.2.8 Erweiterungen von ARM Limited

Erweiterung Kurzbeschreibung .
ARM_mali_shader_binary Ermöglicht das Laden von Shaderbinaries, die mit dem Mali ESSL

shader compiler erzeugt wurden.
ARM_rgba8 Ermöglicht die Erzeugung von Renderbufferobjekten, die Daten

im RGB8-Format speichern.

Tabelle 6.21: Erweiterungen von ARM Limited

6.2.9 Erweiterungen von DMP Incorporated

Erweiterung Kurzbeschreibung .
DMP_shader_binary Erlaubt das Laden von Shaderbinaries, die für Chips der Digital Media

Professionals Incorporated vorkompiliert wurden.

Tabelle 6.22: Erweiterungen von DMP Incorporated

6.2.10 Erweiterungen der Vivante Corporation

Erweiterung Kurzbeschreibung .
VIV_shader_binary Erlaubt das Laden von Shaderbinaries, die für Chips der Vivante Corpo-

ration vorkompiliert wurden.

Tabelle 6.23: Erweiterungen der Vivante Corporation

119

Literaturverzeichnis

[ARM 2009] ARM: Mali GPU OpenGL ES Application Development Guide. 2009.
– URL http://infocenter.arm.com/help/topic/com.arm.doc.dui0363d/DUI0363D_
opengl_es_app_dev_guide.pdf. – Zugriffsdatum: 05.10.2011

[Bailey 2011] BAILEY, Mike: Using GPU Shaders for Visualization, Part 2. In: Computer Graphics
and Applications, IEEE 31 (2011), März-April, Nr. 2, S. 67 –73. – ISSN 0272-1716

[Bautin u. a. 2008] BAUTIN, Mikhail ; DWARAKINATH, Ashok ; CHIUEH, Tzi-cker: Graphic engine
resource management. In: Proceedings of SPIE, 2008

[Blackmer u. a. 2009] BLACKMER, Roy ; STEFANIZZI, Bruno ; WOLF, Andreas ; HART, Evan:
GL_ATI_meminfo OpenGL Extension Specification, Revision 0.2. 2009. – URL http://www.
opengl.org/registry/specs/ATI/meminfo.txt. – Zugriffsdatum: 06.07.2011

[Cole 2005] COLE, Phil: OpenGL ES SC – open standard embedded graphics API for safety critical
applications. In: The 24th Digital Avionics Systems Conference, 2005. DASC 2005. Bd. 2, Oktober-
November 2005, S. 8 pp. Vol. 2

[Dwarakinath 2008] DWARAKINATH, Ashok: A Fair-Share Scheduler for the Graphics Processing
Unit, Stony Brook University, Diplomarbeit, 2008

[Grottel u. a. 2009] GROTTEL, Sebastian ; REINA, Guido ; ERTL, Thomas: Optimized data transfer
for time-dependent, GPU-based glyphs. In: IEEE Pacific Visualization Symposium, 2009. Paci-
ficVis ’09., April 2009, S. 65 –72

[Hill u. a. 2008] HILL, Steve ; ROBART, Mathieu ; TANGUY, Emmanuel: Implementing OpenGL ES
1.1 over OpenGL ES 2.0. In: International Conference on Consumer Electronics, 2008. ICCE 2008.
Digest of Technical Papers., Januar 2008, S. 1 –2

[Kato u. a. 2011] KATO, Shinpei ; LAKSHMANAN, Karthik ; RAJKUMAR, Ragunathan R. ; ISHIKAWA,
Yutaka: TimeGraph: GPU scheduling for real-time multi-tasking environments. In: 2011 USENIX
Annual Technical Conference (USENIX ATC’11), 2011

[Lagar-Cavilla u. a. 2007] LAGAR-CAVILLA, H. A. ; TOLIA, Niraj ; SATYANARAYANAN, Mahadev ;
DE LARA, Eyal: VMM-Independent Graphics Acceleration. In: Proceedings of the 3rd Interna-
tional Conference on Virtual Execution Environments ACM (Veranst.), 2007, S. 33–43

[Liu u. a. 2007] LIU, Weiguo ; MÜLLER-WITTIG, Wolfgang ; SCHMIDT, Bertil: Performance Pre-
dictions for General-Purpose Computation on GPUs. In: International Conference on Parallel
Processing, 2007. ICPP 2007., September 2007, S. 50. – ISSN 0190-3918

[The Khronos Group] THE KHRONOS GROUP: Khronos OpenGL ES API Registry. – URL http:
//www.khronos.org/registry/gles/. – Zugriffsdatum: 18.07.2011

121

http://infocenter.arm.com/help/topic/com.arm.doc.dui0363d/DUI0363D_opengl_es_app_dev_guide.pdf
http://infocenter.arm.com/help/topic/com.arm.doc.dui0363d/DUI0363D_opengl_es_app_dev_guide.pdf
http://www.opengl.org/registry/specs/ATI/meminfo.txt
http://www.opengl.org/registry/specs/ATI/meminfo.txt
http://www.khronos.org/registry/gles/
http://www.khronos.org/registry/gles/

Literaturverzeichnis

[Microsoft 2006] MICROSOFT: Windows Vista Display Driver Model. 2006. – URL http://msdn.
microsoft.com/en-us/library/aa480220.aspx. – Zugriffsdatum: 08.11.2011

[MSDN 2009] MSDN: Timeout Detection and Recovery of GPUs through WDDM. 2009. – URL
http://msdn.microsoft.com/en-us/windows/hardware/gg487368.aspx. – Zugriffsdatum:
24.10.2011

[MSDN 2011] MSDN: Event Objects. 2011. – URL http://msdn.microsoft.com/en-us/
library/windows/desktop/ms682655%28v=vs.85%29.aspx. – Zugriffsdatum: 09.11.2011

[Munshi u. a. 2008] MUNSHI, Aaftab ; GINSBURG, Dan ; SHREINER, Dave: OpenGL(R) ES 2.0 Pro-
gramming Guide. 1. Addison-Wesley Professional, 2008. – ISBN 0321502795, 9780321502797

[Munshi und Leech 2010] MUNSHI, Aaftab ; LEECH, Jon: OpenGL(R) ES Common Profile Specifi-
cation, Version 2.0.25 (Full Specification). 2010. – URL http://www.khronos.org/registry/
gles/specs/2.0/es_full_spec_2.0.25.pdf. – Zugriffsdatum: 01.07.2011

[Nvidia 2006] NVIDIA: NVIDIA GeForce 8800 GPU Architecture Overview. 2006. – URL
http://www.nvidia.de/content/PDF/Geforce_8800/GeForce_8800_GPU_Architecture_
Technical_Brief.pdf. – Zugriffsdatum: 03.10.2011

[Nvidia 2009] NVIDIA: NVIDIA’s Next Generation CUDA Compute Architecture: Fermi.
2009. – URL http://www.nvidia.com/content/PDF/fermi_white_papers/NVIDIA_Fermi_
Compute_Architecture_Whitepaper.pdf. – Zugriffsdatum: 11.10.2011

[Paul 2007] PAUL, Brian: The Mesa 3D Graphics Library. 2007. – URL http://www.mesa3d.org/.
– Zugriffsdatum: 01.10.2011

[Satish u. a. 2009] SATISH, Nadathur ; SUNDARAM, Narayanan ; KEUTZER, Kurt: Optimizing the
use of GPU memory in applications with large data sets. In: International Conference on High
Performance Computing (HiPC), 2009, Dezember 2009, S. 408 –418

[Segal u. a. 2010] SEGAL, Mark ; AKELEY, Kurt ; FRAZIER, Chris ; LEECH, Jon ; BROWN, Pat: The
OpenGL(R) Graphics System: A Specification, Version 4.1 (Core Profile). 2010. – URL http://www.
opengl.org/registry/doc/glspec41.core.20100725.pdf. – Zugriffsdatum: 01.07.2011

[Simpson und Kessenich 2009] SIMPSON, Robert J. ; KESSENICH, John: The OpenGL(R) ES Shading
Language, Version 1.00, Revision 17. 2009. – URL http://www.khronos.org/registry/gles/
specs/2.0/GLSL_ES_Specification_1.0.17.pdf. – Zugriffsdatum: 05.07.2011

[Stroyan 2009] STROYAN, Howard: GL_NVX_gpu_memory_info OpenGL Extension Specificati-
on, Revision 1.3. 2009. – URL http://developer.download.nvidia.com/opengl/specs/GL_
NVX_gpu_memory_info.txt. – Zugriffsdatum: 06.07.2011

[Trevett 2010] TREVETT, Neil: Khronos Group Overview. 2010. – URL http://www.webcitation.
org/5znTVOLcr. – Zugriffsdatum: 29.06.2011

[Walbourn 2005] WALBOURN, Chuck: Game Timing and Multicore Processors. 2005.
– URL http://msdn.microsoft.com/en-us/library/windows/desktop/ee417693%28v=vs.
85%29.aspx. – Zugriffsdatum: 09.11.2011

122

http://msdn.microsoft.com/en-us/library/aa480220.aspx
http://msdn.microsoft.com/en-us/library/aa480220.aspx
http://msdn.microsoft.com/en-us/windows/hardware/gg487368.aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/ms682655%28v=vs.85%29.aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/ms682655%28v=vs.85%29.aspx
http://www.khronos.org/registry/gles/specs/2.0/es_full_spec_2.0.25.pdf
http://www.khronos.org/registry/gles/specs/2.0/es_full_spec_2.0.25.pdf
http://www.nvidia.de/content/PDF/Geforce_8800/GeForce_8800_GPU_Architecture_Technical_Brief.pdf
http://www.nvidia.de/content/PDF/Geforce_8800/GeForce_8800_GPU_Architecture_Technical_Brief.pdf
http://www.nvidia.com/content/PDF/fermi_white_papers/NVIDIA_Fermi_Compute_Architecture_Whitepaper.pdf
http://www.nvidia.com/content/PDF/fermi_white_papers/NVIDIA_Fermi_Compute_Architecture_Whitepaper.pdf
http://www.mesa3d.org/
http://www.opengl.org/registry/doc/glspec41.core.20100725.pdf
http://www.opengl.org/registry/doc/glspec41.core.20100725.pdf
http://www.khronos.org/registry/gles/specs/2.0/GLSL_ES_Specification_1.0.17.pdf
http://www.khronos.org/registry/gles/specs/2.0/GLSL_ES_Specification_1.0.17.pdf
http://developer.download.nvidia.com/opengl/specs/GL_NVX_gpu_memory_info.txt
http://developer.download.nvidia.com/opengl/specs/GL_NVX_gpu_memory_info.txt
http://www.webcitation.org/5znTVOLcr
http://www.webcitation.org/5znTVOLcr
http://msdn.microsoft.com/en-us/library/windows/desktop/ee417693%28v=vs.85%29.aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/ee417693%28v=vs.85%29.aspx

Literaturverzeichnis

Alle hier aufgeführten URLs wurden letztmalig am 15. Dezember 2011 überprüft. Das bei den ein-
zelnen Literatureinträgen jeweils vermerkte Zugriffsdatum bezieht sich auf den Tag des ersten Zu-
griffs. Bei veränderlichen Internetseiten beziehen sich sämtliche Zitate auf die Version des Tages,
an dem der Erstzugriff stattfand.

123

.

Erklärung

Hiermit versichere ich, dass ich diese Arbeit selbständig ver-
fasst und nur die angegebenen Hilfsmittel verwendet habe.

Stuttgart, den 16. Dezember 2011,

Armin Cont

	Einleitung
	Hintergrund dieser Arbeit
	Echtzeitgarantien
	Probleme heutiger OpenGL ES-Systeme
	Ansatz zur Lösung der genannten Probleme
	Zielsetzung dieser Arbeit
	Verwandte Arbeiten

	Grundlagen von OpenGL ES-Systemen
	OpenGL und OpenGL ES
	Implementierungsvarianten von OpenGL ES-Systemen
	Client-Server-Modell der Befehlsübermittlung
	Datenübergabe und -verwaltung
	Datenobjekte
	Eviction
	Speichergranularität, Effektivgröße und Speicherblockgröße

	Programmobjekte
	Renderpipeline
	Überblick
	Pipelineschritte
	Gepuffertes und ungepuffertes Rendering

	Erweiterungen von OpenGL ES

	Methodisches Vorgehen
	Speicherbelegung
	Motivation für die Untersuchung der Speicherbelegung
	Untersuchungsmethoden zur Speicherbelegung
	Relevante Befehle für die Speicherbelegung

	Datenübertragung
	Motivation für die Untersuchung der Datenübertragung
	Untersuchungsmethoden zur Datenübertragung
	Relevante Befehle für die Datenübertragung

	Pipelinenutzung
	Motivation für die Untersuchung der Pipelinenutzung
	Untersuchungsmethoden zur Pipelinenutzung
	Relevante Befehle für die Pipelinenutzung

	Kontextwechsel
	Motivation für die Untersuchung von Kontextwechseln
	Untersuchung der Kosten von Kontextwechseln
	Relevante Befehle für die Untersuchung von Kontextwechseln

	Untersuchungen
	Technische Details der Untersuchungen
	Testsysteme
	Durchführung von Laufzeitmessungen
	Durchführung von Speicherplatzmessungen
	Umgang mit Fehlern des GL-Systems
	Interprozesskommunikation
	Minimalshader

	Speicherbelegung
	Ablage von Datenobjekten im GPU-Speicher
	Speicherbedarf von Datenobjekten
	Bestimmung der Speicherblockgröße
	Belegungsverhalten innerhalb von Speicherblöcken
	Bestimmung der Speichergranularität
	Fazit Speicherbelegung

	Datenübertragung
	Bestimmung von Datenübertragungsrate und -laufzeit
	Konkurrierende Datenübertragungen
	Nebenläufige Ausführung von Datenübertragung und Rendering
	Datenübertragung ungepufferter Draw-Befehle
	Fazit Datenübertragung

	Pipelinenutzung
	Ausführung konkurrierender Draw-Befehle
	Abbrechbarkeit von Draw-Befehlen
	Fazit Pipelinenutzung

	Kontextwechsel
	Vorgehen
	Ergebnisse
	Fazit Kontextwechsel

	Zusammenfassung und Ausblick
	Wenig Probleme bei Kontextwechsel und Datenübertragung
	Schwer beherrschbare Risiken bei der Pipelinenutzung
	Risiken wegen mangelnder Speicherbelegungsinformation
	Mögliche Lösungsansätze
	Nutzung der Treiber-Informationen zum Speicherlayout
	Einschränkung von Shadern
	Trennung von Vertex- und Fragment-Processing

	Fazit

	Anhang
	Befehle von OpenGL ES 2.0
	Erzeugung von Datenobjekten
	Freigabe von Datenobjekten
	Datenübertragungsbefehle
	Vertexdatenverwaltung
	Binding von Datenobjekten
	Naming von Datenobjekten
	Zusammensetzung von Framebuffern
	Draw-Befehle
	Clearing-Befehle
	Zustandsabfragen
	Programmverwaltung
	Befehle zur Änderung von Renderpipeline-Einstellungen
	Sonstige OpenGL ES-Befehle

	Erweiterungen von OpenGL ES 2.0
	EXT- und OES-Erweiterungen
	Erweiterungen der AMD Corporation
	Erweiterungen von Apple Incorporated
	Erweiterungen der NVIDIA Corporation
	Erweiterungen von Imagination Technologies Limited
	Erweiterungen von Qualcomm Incorporated
	Erweiterungen des ANGLE-Projekts
	Erweiterungen von ARM Limited
	Erweiterungen von DMP Incorporated
	Erweiterungen der Vivante Corporation

	Literaturverzeichnis

