Visualisierungsinstitut der Universitat Stuttgart
Universitat Stuttgart
Universitatsstral3e 38
D-70569 Stuttgart

Diplomarbeit Nr. 3199

Analyse der Oberflachenstruktur
von Proteinen

Christoph Schulz

Studiengang: Softwaretechnik
Prifer: Prof. Dr. Thomas Ertl
Betreuer: Dipl.-Inf. Michael Krone
begonnen am: 8.Juni 2011

beendet am: 8. Dezember 2011

CR-Klassifikation: 1.3.3, 1.3.5, 1.3.7, 1.4.6, 1.4.8, J.3

Inhaltsverzeichnis

1

Einleitung
1.1 Aufgabenstellung Lo
1.2 Arbeitsthesen
1.3 Zeitplan
Grundlagen
2.1 Proteine. e
211 Bedeutung Lo
2.1.2 Abhédngigkeiteno Lo
2.1.3 Strukturebenen
2.2 Objekterkennung L o
2.3 Parallelrechner
2.3.1 Flynnsche Taxonomie
2.3.2 Speicherarchitektur o Lo o
2.4 Graphics Processing Units
2.4.1 NVIDIA GeForce
242 NVIDIACUDA e
Programmiermodell
Speicherarchitektur o L oo
Werkzeuge L
Verwandte Arbeiten
3.1 Voronoibasierte Verfahren
3.2 Sonden- und gitterbasierte Verfahren
3.3 Verfahren auf Basis von Hiillendefinitionen
Entwurf
41 MarchingCubes
4.1.1 Marching Tetrahedrons
412 Vergleich.
4.2 Segmentierung e
4.2.1 Schwellwertverfahren
4.2.2 Kantenerkennung o L oL
4.2.3 Regions- und formbasierte Verfahren
4.2.4 Textur- und modellbasierte Verfahren
425 Abwigung
4.3 Korrelation tiber Zeit

11
11
11
11
12
12
13
14
15
15
16
17
17
18
19

21
21
23
24

25
25
26
26
27
28
28
29
29
29
30

4.4

MegaMol e

4.4.1 Softwarearchitektur o Lo o
4.4.2 ProteinPlug-in L o
4.4.3 Neue Komponenten

5 Implementierung

5.1
5.2

53

5-4
5-5
5.6

Uberblick o vttt
Marching Tetrahedrons 0 oL
5.2.1 Verdichtung der Wiirfel
5.2.2 Klassifizierung der Tetraeder
5.2.3 Berechnung der Dreiecke
Segmentierung der Komponenten
5.3.1 Tetraedernachbarschaft
Korrelation und Klassifikation von Ereignissen
Visualisierung
Speicherverwaltung L L

6 Ergebnisse und Bewertung

6.1
6.2
6.3
6.4

7 Fazit

Bezug zu den Arbeitsthesen oo o oL 0oL
Wirkungen von Optimierungen
Leistungsverhalten
Praktischer Nutzen

Literaturverzeichnis

Abbildungsverzeichnis

Gantt-Diagramm des Zeitplans L. 9
Proteinstrukturen L 12
Objekterkennung L 13
Entwicklungsverlauf von GPUund CPU 15
Grolenverhdltnisse von GPUund CPU 16
CUDA Grid 18
NVCC 19
Proteintunnel als Voronoi-Diagramm 22
Gitter- und sondenbasierte Verfahren 22
Oberflachendefinitionen 23
Proteintasche als Dreiecksnetz und konvexe Hiille 24
Topologien fiir Marching Cubes 25
Unterteilungschemata fiir Marching Tetrahedrons 26
Topologien fiir Marching Tetrahedron 27
Fehlerfall der Korrelationsheuristik 31
Softwarearchitektur von MegaMol 31
Darstellungen von MegaMol Protein 32
VolumeMeshRenderer als Klassendiagramm 33
Tetraeder in einem Wiirfel L L. 37
Label-Aquivalenz-Methode 39
Grenzfall Identitat vs. Wert L oo 40
Tetraederflachen 41
Drahtgittermodell und Referenzbild 44
Hilfsvisualisierungen 45
Enwicklungsverlauf der Kernel Timings von MT 46
Kernel-Timings von MTund MC 48
Animation der Korrelation o oo oo oo 51

Tabellenverzeichnis

2.1
2.2

5.1
5.2
53
5-4
5-5

6.1
6.2
6.3

Technische Daten der GeForce 17
CUDA Speicherarten 18
Wiirfel Aktivitat 36
Tetraeder in einem Wiirfel oo oL 37
Tetraederkanten L 38
Tetraederkonfigurationen, .. 38
Tetraedernachbarschaften 41
Kernel-Timings von MTund MC 48
Kernel-Timings des Lablings 49
Kernel-Timings der Schwerpunktberechnung 49

1 Einleitung

Diese Diplomarbeit befasst sich mit dem Thema Analyse der Oberflichenstruktur von Proteinen
auf moderner Grafikhardware. Das Ziel der Diplomarbeit ist es die technische Machbar-
keit des interaktiven Umgangs mit zeitabhdngigen Datensdtzen aus Molekulardynamik-
Simulationen zu zeigen.

Das Wort ,Protein” ist aus dem griechischen proteis (deutsch: grundlegend) abgeleitet
und bezeichnet einen der Grundbausteine des Lebens. Proteine erfiillen viele verschiedene
Aufgaben, wie beispielsweise das Regeln, Steuern und Katalysieren von Reaktionen. Sie
dienen als Bausteine, Strukturelemente und Trdger von Reaktionspartnern in unserem Korper.
Ohne Proteine gibe es kein Leben, wie wir es kennen. Wir Menschen benétigen Modelle,
die auf unsere kognitiven Fahigkeiten zugeschnitten sind, um Proteine begreifen zu kénnen.
Proteinoberflichen sind Modelle, die visuell betrachtet werden konnen, Aussagen tiber die
rdumliche Ausdehnung ermoglichen und Riickschliisse auf Vorgdnge im Umfeld und im
Inneren eines Proteins zulassen.

1.1 Aufgabenstellung

Im Rahmen des laufenden Sonderforschungsbereichs 716 der Universitit Stuttgart beschaf-
tigt sich der Teilbereich D4 mit der Visualisierung von Molekulardynamik-Simulationen,
insbesondere mit der Extraktion und Darstellung komplexer Eigenschaften von Protein-
Losungsmittel-Systemen. In vorausgegangenen Arbeiten am Visualisierungsinstitut wurde
unter anderem ein Algorithmus zur Berechnung einer volumetrischen Reprédsentation von
Molekiilen entwickelt. Aus diesen Volumen konnen mittels Ray Casting (bzw. Ray Marching)
Isofldchen extrahiert und dargestellt werden. Diese Technik wurde in einer vorangegangen
Arbeit verwendet, um Hohlrdume in Proteinen zu erkennen und mittels Segmentierung
des Volumens zu extrahieren [KFR™ 11]. Basierend auf der volumetrischen Reprisentation
des Molekiils soll nun eine triangulierte Oberfldche erstellt und anschliefend fiir folgende
Analyseschritte verwendet werden:

1. Das Finden zusammenhédngender Komponenten, um die Aufienhiille von Hohlrdumen
unterscheiden zu konnen,

2. die Korrelation der Komponenten iiber mehrere Zeitschritte und
3. die Klassifizierung von Vorgdngen wie Amalgamieren und Aufspalten.

Die Ergebnisse miissen in geeigneter Form grafisch dargestellt werden.

1 Einleitung

1.2 Arbeitsthesen

Folgende Uberlegungen wurden vor der Arbeit angestellt, um abzuschitzen, mit welchen
Ergebnissen gerechnet werden kann.

Interessante Oberflichenanderungen sind schwer zu entdecken Proteinoberfldachen sind
sehr komplex und Oberflachendnderungen wenig intuitiv. Beim Betrachten des Proteins kann
leicht etwas Wichtiges verdeckt werden. Damit Oberflichendnderungen nicht unentdeckt
bleiben, muss der Betrachter auf interessante Bereiche aufmerksam gemacht werden.

Mit einem Dreiecksnetz arbeiten bringt Vorteile Algorithmen fiir Dreiecksnetze sind sehr
verbreitet und ausgereift. Auflerdem konnte eine Oberflachenbeschreibung aus Dreiecken
weniger Speicher benétigen als eine Volumenbeschreibung.

GPU-Programmierung unterscheidet sich von CPU-Programmierung GPUs unterscheiden
sich in ihrer Architektur deutlich von CPUs (mehr Kerne, andere Speicherhierarchie). Bei
der Wahl der Algorithmen und Optimierungen muss daher die Hardware entsprechend
berticksichtigt werden.

1.3 Zeitplan

Fiir den Zeitraum der Diplomarbeit wurde ein Zeitplan aufgestellt. Eine Technologieeinarbei-
tungsphase entféllt, da im Rahmen der Themensuche bereits eine erste Auseinandersetzung
mit der Technologie stattfand. Der Zeitplan (siehe Abbildung 1.1) ist in folgende Phasen
unterteilt:

Recherche Zu Beginn sollen bisherige und thematisch verwandte Veroffentlichungen auf
diesem Gebiet gesucht und beurteilt sowie eine inhaltliche Struktur der Diplomarbeit erstellt
und mogliche Losungswege skizziert werden.

lteration 1 In einer ersten Iteration wird zunédchst eine zusammenhangslose Oberfldche aus
Dreiecken mittels CUDA berechnet und ohne grafische Ausgabe in das Plug-in MegaMol
Protein (siehe Seite 31) integriert.

lteration 2 In einer zweiten Iteration werden eine grafische Ausgabe implementiert und
Proteinanimationen unterstiitzt.

1.3 Zeitplan

2011

Juni Juli August September Oktober November
23]24]25|26|27]28|29]30|31|32[33[34|35|36|37]38] 39| 40|41 |42] 43] 44|45 |46 47[48] 49

Recherche
Iteration 1
Iteration 2

Iteration 3

Iteration 4

Ausarbeitung

Abbildung 1.1: Gantt-Diagramm des Zeitplans.

lteration 3 In einer dritten Iteration werden zusammenhidngende Komponenten erkannt
und zeitlich korreliert.

lteration 4 In einer vierten Iteration werden zu erkennende Vorgange grafisch hervorgeho-
ben und Daten fiir diese Ausarbeitung gesammelt.

Ausarbeitung Abschlieffend wird diese Ausarbeitung erstellt. Ein bis zwei Wochen sind als
Puffer fiir eine abschliefSfende Kontrolle und Korrekturen eingeplant.

2 Grundlagen

In diesem Kapitel werden die Grundlagen zu dieser Arbeit behandelt. Hier werden die
spéter als bekannt vorausgesetzten Begriffe wie Protein, Objekterkennung, Parallelrechner
und die verwendeten Technologien beschrieben.

2.1 Proteine

Im deutschen Sprachraum sind Proteine bekannt als Eiweifse. Der in der Fachliteratur géngige
Oberbegriff ist Protein. Proteine sind kettenartige, aus Aminosduren aufgebaute Molekiile.
Das kleinste bekannte Protein heifst Chignolin [SHIo5] und besteht aus gerade einmal zehn
Aminosduren. Das grofite bekannte Protein heifst Titin [tit11]. Es befindet sich in unseren
Muskeln und besteht - je nach Isoform - aus tiber 30.000 Aminosauren. Proteine haben héufig
ein aktives Zentrum, das mit einem Substrat interagiert. Das Substrat wird dem aktiven
Zentrum durch Tunnel, Taschen und Einschliisse zugefiihrt.

2.1.1 Bedeutung

Proteine erfiillen unterschiedliche Funktionen: Manche Proteine dienen schlicht als Bau-
stoff oder sind Trager von Reaktionspartnern. Andere dienen als Bindungspartner, um die
Anwesenheit von Stoffen anzuzeigen oder als Katalysator fiir chemische Reaktionen. Das
Anzeigen von Stoffen wird in diversen Regelkreisen im Korper eingesetzt, um Vorgénge wie
den Transport von Stoffen in die Zelle zu hemmen oder zu férdern. In der Medizin wird
diese Anwendung zur Diagnose verwendet. Proteine, die chemische Reaktionen katalysieren,
nennt man Enzyme. Ohne Enzyme wéren viele Reaktionen bei Korpertemperatur nicht
moglich.

2.1.2 Abhéangigkeiten

Proteine sind stark zeit- und umgebungsabhingig. Es spielt eine grofse Rolle, ob ein Protein
angelagert oder gelost ist, welche Fremdatome es einlagert und in welcher Konfiguration es
sich bei einer bestimmten Umgebungstemperatur befindet. All diese Faktoren haben einen
Einfluss auf die Funktion eines Proteins. Ein bekannteres Beispiel ist die Bleivergiftung;:
Bei einer Bleivergiftung werden unter anderem die an der Blutbildung beteiligten Enzyme
durch die Anwesenheit von Bleiionen gehemmt, was bei entsprechender Dosis zu Blutarmut,
schlecht heilenden Wunden und zum Tod fiihrt.

11

2 Grundlagen

Abbildung 2.1: Sekundarstrukturelemente (links [KBE08]) a-Helix (rot) und p-Faltblatt (blau)
sowie die Tertidrstruktur (rechts [KFR*11]) eines Proteins.

2.1.3 Strukturebenen

Im Jahr 1952 wurde von Kaj Ulrik Linderstrom-Lang [LL52] eine Betrachtung von Proteinen
auf den folgenden vier Strukturebenen (vergleiche Abbildung 2.1) vorgeschlagen:

Primérstruktur Die Primérstruktur beschreibt die Sequenz der Aminosduren, aus der
ein Protein aufgebaut ist. Aus der Primérstruktur werden alle weiteren Strukturebenen
abgeleitet.

Sekundarstruktur Die Sekundarstruktur beschreibt in der Priméarstruktur auftretende Mus-
ter, wie a-Helix, B-Faltblatt und B-Schleifen.

Tertidrstruktur Die Tertidrsturktur beschreibt die rdumliche Anordnung, also auch die
Oberflache des Proteins.

Quartérstruktur Die Quartérstruktur beschreibt einen Proteinkomplex, also das Zusam-
menspiel mehrerer Proteine.

2.2 Objekterkennung

Objekterkennung ldsst sich als Pipeline untergliedern, wie in Abbildung 2.2 dargestellt.
Ziel der Objekterkennung ist es, aus (Bild-)Daten verwertbare Informationen in Form von
Aussagen zu gewinnen. In einem ersten Schritt werden die Daten vorverarbeitet, um Mess-
fehler oder Rauschen zu entfernen. Bekannte Beispiele fiir die Vorverarbeitung sind das

12

2.3 Parallelrechner

Vorverarbeitung }% Segmentierung —‘

\—>{ Merkmalsextraktion H Klassifizierung Aussage

Abbildung 2.2: Objekterkennungspipeline.

Entfernen defekter Pixel mit Hilfe eines Median-Filters oder das Stabilisieren von aus der
Bewegung heraus aufgenommenen Bildern. Anschliefsend werden die Daten mit Hilfe eines
Homogenitétskriteriums segmentiert, was die Menge der Daten reduziert und so nach-
folgende Arbeitsschritte vereinfacht. Ein typisches Beispiel fiir die Segmentierung ist das
Unterscheiden von Papier und Text bei der Texterkennung. Abschlieflend werden Merkmale
aus den Segmenten extrahiert und klassifiziert, sodass eine oder mehrere Aussagen getroffen
werden konnen. Bei der Texterkennung werden Merkmale wie beispielsweise Schriftgrofie
sowie Schriftart extrahiert und zu einem Text, meist mit Hilfe eines Worterbuches, klassifi-

ziert. In der Praxis ist die Grenze zwischen Merkmalsextraktion und Klassifizierung oftmals
flieffend.

2.3 Parallelrechner

Software wird traditionell fiir sequenziell arbeitende Computer geschrieben. Lange dachte
man, dass dies kein Problem sei, denn das von Gordon Moore formulierte und bisher giiltige
Mooresche Gesetz (1965/1975) sagt im Wesentlichen voraus, dass sich die Rechenleistung
eines Computers alle zwei Jahre verdoppelt. Wie durch Asanovic et al. [ABC*06] berichtet,
war bis kurz nach der Jahrtausendwende der Ursprung fiir eine Leistungsverdopplung
eine hohere Taktrate oder die Verkleinerung von Schaltkreisen. Es wurden zwei, durch
physikalische Randbedingungen bedingte Grenzen erreicht:

1. Taktverteilung: Man konnte einen Takt nicht mehr iiber den ganzen Chip verteilen,
was die Chiparchitektur erheblich verkomplizierte.

2. Energiedichte: Man konnte so viele Transistoren auf einem Chip platzieren, dass die
auf dem Chip verteilbare Energie nicht ausreichte, um diese zu schalten.

Um den Forderungen nach leistungsstiarkeren Rechnern nachzukommen, hatte die Chi-
pindustrie folgende Losungen in Aussicht gestellt: Parallelrechner und Niedrig-Energie-
Transistoren.

Parallele Programmierung war zu Beginn des Jahrtausends nicht neu, allerdings auch nicht
sonderlich verbreitet. Klassische Programmiersprachen wie C/C++ sind auf sequenzielle
Programmierung ausgelegt, weshalb auch parallelisierbare Probleme, begiinstigt durch die

13

2 Grundlagen

Programmiersprache, sequenziell formuliert wurden. Um von dem Paradigmenwechsel
der Chipindustrie zu profitieren, muss in der Folge sequenziell arbeitende Software zu
grofien Teilen neu geschrieben werden. Nach dem Amdahlschen Gesetz (Formel 2.1) ist
der zu erwartende Geschwindigkeitszuwachs S durch den sequenziellen Anteil (1 — P)
des Problems beschrinkt, wobei N dem Grad der Parallelitit (Anzahl der Prozessoren)
entspricht.

1

(2.1) S= m

Vereinfacht ausgedriickt ldsst sich ein Problem besonders gut parallel 16sen, wenn die Teil-
probleme moglichst unabhédngig voneinander sind. Compiler und Programmiersprachen
tiir parallel arbeitende Rechnerarchitekturen sind Gegenstand der Forschung. Nur wenige
,parallele Hochsprachen’, wie Erlang und Scala, haben es in die Industrie geschafft. Entspre-
chend benétigt der Programmierer mehr Wissen tiber die Problemstellung und Hardware,
was die Entwicklung teurer und hardwarespezifischer gestaltet. Im nachfolgenden Abschnitt
wird ein Uberblick iiber die Klassifikation paralleler Rechnerarchitekturen vermittelt.

2.3.1 Flynnsche Taxonomie

Die Flynnschen Taxonomie ist eine Unterteilung von Rechnerarchitekturen anhand der
Befehls- und Datenstrome, was im Hinblick auf Hochsprachen und Compiler-Heuristiken
interessant ist:

Single Instruction Single Data (SISD) bezeichnet eine klassische, sequenziell arbeitende
Rechnerarchitektur. Dabei wird mit einem Befehl ein Datenstrom verarbeitet.

Single Instruction Multiple Data (SIMD) bezeichnet eine in der Praxis hdufig vorkommende
parallele Rechnerarchitektur. Dabei werden mit einem Befehl mehrere Datenstrome parallel
verarbeitet. Diese Art der Parallelitdt ist besonders leicht in Hardware zu implementieren,
da lediglich der datenverarbeitende Teil vervielféltigt werden muss.

Multiple Instruction Single Data (MISD) ist eine exotische, redundante Form der Parallelitit.
Dabei wird mit mehreren Befehlen der gleiche Datenstrom verarbeitet.

Multiple Instruction Multiple Data (MIMD) ist eine hdufig bei Supercomputern angewandte
Rechnerarchitektur. Dabei werden mit mehreren Befehlen mehrere unterschiedliche Daten-
strome verarbeitet.

14

2.4 Graphics Processing Units

Theoretical
GFLOP/s

1750 Theoretical GB/s
200
NVIDIA GPU Single Predision
1500 ——NVIDIA GPU Double Precision 180
=g |rtel CPU Single Precx?u:n cpuU
Intel CPU Double Precision 160
1250 GPU
140
1000 120
100
750
Tesla 2050 80
500 60
40 Westmere
250 Westmere Bloomfield
Woodcrest
wood(rBtTeslaCW&O 20 ’ Prescoit ~
e > Harpertown
0 Pe"ﬁ_y@ﬁ v v v Harpertown 0 -worthwoed T T T T T !
Sep-01 ‘03 Jun-04 Oct-05 Mar-07 Jul-08 Dec-09 2003 2004 2005 2006 2007 2008 2009 2010

Abbildung 2.3: Entwicklungsverlauf von GPU und CPU anhand der Rechenoperationen
und Speicherbandbreite [Nvi].

2.3.2 Speicherarchitektur

Die Flynnsche Taxonomie nimmt lediglich an, dass Datenstrome zeitlich geordnet und zu-
ganglich sind. Deshalb kann anhand der Speicherarchitektur weiter unterschieden werden:

Shared Memory bezeichnet eine Verteilung des Speichers, bei der jede Recheneinheit
Zugriff auf den gesamten Speicher hat. Es existiert ein gemeinsamer Speicherbus. Man kann
anhand der Zugriffszeiten weiter unterscheiden in Uniform Memory Access (UMA) und
Non-Uniform Memory Access (NUMA).

Distributed Memory bezeichnet eine Verteilung des Speichers, bei der jede Recheneinheit
nur auf den lokalen Speicher Zugriff hat. Es existiert kein gemeinsamer Speicherbus.

2.4 Graphics Processing Units

Graphics Processing Units (GPUs) waren urspriinglich Spezialprozessoren fiir die Film- und
Computerspieleindustrie, die fiir das Rendering von Computergrafik entwickelt wurden.
Computergrafik wurde in ihren Anfangen auf speziellen Supercomputern berechnet. Nach
und nach wurden dann Grafikkarten entwickelt, die dieses Problem besser und giinstiger
16sen konnten. Abbildung 2.3 zeigt, dass moderne GPUs erheblich leistungsfahiger sind
als entsprechende CPUs. Die Ursache hierfiir liegt in den unterschiedlichen Entwurfszie-
len: CPUs untersttitzen verschiedene Datentypen und sind auf sequenzielles Verarbeiten,
Branching sowie Random-Memory-Access optimiert. GPUs hingegen sind dediziert fiir

15

2 Grundlagen

Control -
‘ALU H ALU ‘ B

CPU GPU

Abbildung 2.4: Grofienverhdltnisse der funktionalen Einheiten von GPU und CPU [Nvi].

Computergrafik entworfen, die zu grofien Teilen parallel berechnet werden kann. Mit stei-
gender Chipgrofie wichst die Fehlproduktion und damit der Preis; also ist bei gleichem
Preis die Anzahl an Transistoren pro Quadratzentimeter limitiert. Abbildung 2.4 zeigt die
deutlichen Unterschiede im Entwurf: Transistoren, die bei einer CPU fiir Cachelogik und
Kontrolllogik eingesetzt werden konnen, bei einer GPU fiir Arithmetisch-logische Einheiten
(ALU) verwendet werden.

Die ersten Grafikkarten hatten eine sogenannte ,Fixed Function Pipeline’, bei der man nur
einige Parameter fiir den Rendering-Vorgang festlegen konnte. Im Wettlauf um bessere Gra-
fikeffekte, besonders in Computerspielen, beseitigten die Grafikkartenhersteller immer mehr
Restriktionen was die Programmierbarkeit von GPUs betrifft. Durch die neu gewonnenen
Freiheiten entstand letztlich ein neuer Markt, das sogenannte General Purpose Computation
on Graphics Processing Units (GPGPU). Unter GPGPU versteht man das Losen von nicht mit
der Computergrafik verwandten Problemen mit Hilfe einer GPU. GPUs treten damit direkt
in Konkurrenz zu klassischen Supercomputern. Allerdings sind GPUs deutlich giinstiger
(Massenprodukt) und verbrauchen erheblich weniger Energie (integrierter Schaltkreis) als
ein Supercomputer. Das macht GPUs zu einem interessanten Werkzeug fiir Wissenschaft
und Industrie.

2.4.1 NVIDIA GeForce

GeForce ist ein Markenname des Grafikkartenherstellers NVIDIA. Als Hardwareplattform
wurde fiir diese Diplomarbeit die GeForce-400-Serie bzw. die GeForce-500-Serie vereinbart.
Beide Serien basieren auf NVIDIAs Fermi-Architektur. Im Gegensatz zu dlteren Serien unter-
stiitzt die Fermi-Architektur CUDA Compute Capability 2.0, die mehr atomare Operationen
und Synchronisationsmechanismen bietet [Nvi].

In Tabelle 2.1 sind technische Merkmale der verwendeten GeForce-Karten aufgelistet. Bei
der Fermi-Architektur werden mehrere skalare Streamprozessoren, namens CUDA Cores,
zu Clustern, namens Streaming Multiprocessors, gruppiert.

16

2.4 Graphics Processing Units

GeForce 480 GTX | GeForce 580 GTX

CUDA Compute Capability 2.0 2.0
Streaming Multiprocessor 15 16
CUDA Cores 480 512

Grafiktakt 700 MHz 772 MHz

Prozessortakt 1401 MHz 1544 MHz

Speicher 1536 MB 1536 MB

Speichertyp GDDR5 GDDR5

Speichertakt 1848 MHz 2004 MHz
Speicherbandbreite 177,4 GB/s 192,4 GB/s
Speicherschnittstelle 384 Bit 384 Bit

Tabelle 2.1: Technische Daten der GeForce 480 und GeForce 580 [Cor]

2.4.2 NVIDIA CUDA

Bei NVIDIAs CUDA handelt es sich um eine Technik zur Programmierung von GPUs und
ist ein Akronym fiir Compute Unified Device Architecture. CUDA ist, im Gegensatz zu den
fir Grafikanwendungen entworfenen Shadersprachen GLSL und HLSL, eine auf C/C++
aufbauende Programmiersprache. Viele Informationen in diesem Abschnitt wurden aus dem
NVIDIA CUDA C Programming Guide [Nvi] entnommen.

Programmiermodell

Das CUDA Programmiermodell kann als Erweiterung von SIMD gesehen werden und
wird auch als Single Program Multiple Data (SPMD) bezeichnet. Dabei werden mit einem
Programm namens CUDA Kernel mehrere Datenstrome verarbeitet. SPMD unterstiitzt,
im Gegensatz zu SIMD, komplexe Berechnungen und Kontrollfluss. Ein Kernel enthélt
Befehle, die im Kontext eines CUDA Threads ausgefiihrt werden. Threads werden zu Blocks
zusammengefasst und Blocks zu einem Grid (siehe Abbildung 2.5).

Diese Hierarchie ist fiir die Abbildung des Programms auf die Hardware wichtig. Jeder
Thread wird parallel von einem CUDA Core verarbeitet, der in einem Streaming Multi-
processor mit anderen Streamprozessoren gebiindelt ist. CUDA Cores teilen sich einen
schnellen Speicher. Ein Block ist unabhéngig von anderen Blocks. Die Ausfiihrungsreihen-
folge der Threads innerhalb eines Blocks kann nicht kontrolliert werden. Blocks werden
nach Block-ID in aufsteigender Reihenfolge verarbeitet. Zugriffe mehrerer Threads auf
gleiche Speicherbereiche kénnen mittels atomarer Operationen und Threadsynchronisation
koordiniert werden.

17

2 Grundlagen

Grid
Block (0, 0) | Block (1,0) @ Block (2, 0)
Block (0, 1)" Block (1, 1) -Block (2, 1)
Block (1, 1)

Abbildung 2.5: Hierarchie eines CUDA Grids [Nvi].

Tabelle 2.2: Speicherarten sortiert in aufsteigender Reihenfolge nach Zugriffszeit

Speicherarchitektur

Die CUDA Speicherarchitektur unterscheidet zwischen verschiedenen Speicherarten mit
unterschiedlichen Zugriffszeiten (siehe Tabelle 2.2) und ist entsprechend als Cache Coherent
NUMA (ccNUMA) einzuordnen. Register und Shared Memory sind on-chip und damit die
schnelleren Speicherarten. Local, Constant und Global Memory sind off-chip und deshalb
erheblich langsamer.

Die Bezeichnung Local Memory ist hier irrefithrend, da es sich nicht um schnellen lokalen
Speicher handelt, sondern um langsamen globalen Speicher mit anderer Sichtbarkeit und Le-

18

Speicher | Sichtbarkeit | Lebenszeit
Register | Thread Kernel
Shared Memory | Block Kernel
Constant Memory | Grid Anwendung
Local Memory | Thread Kernel
Global Memory | Grid Anwendung

2.4 Graphics Processing Units

CPU
Machine Code

C/C++ CUDA

Kernel > NVCC —>» CPUCode —» C/C++ Compiler —»

v

PTX Code —» PTX Compiler —3» GPU

Machine Code

Abbildung 2.6: Ubersetzung von C/C++-CUDA-Code mittels NVCC in Maschinen-Code.

benszeit. Local Memory wird verwendet, wenn der Register-Allocator des CUDA-Compilers
nicht alle Variablen eines Kernels auf die verfiigbaren Register abbilden kann. Dieser Fla-
schenhals kann durch Analyse des Assembler-Codes lokalisiert und beispielsweise durch
Einsatz von Shared Memory beseitigt werden.

Aufgrund der geringen Anzahl an Speicherbdanken im Verhiltnis zu CUDA Cores sollte ein
Thread, der Global Memory verwendet, mit moglichst wenigen Speicherbanken gleichzeitig
interagieren. Ungiinstige Nutzung des Global Memory fiihrt zu sequenzieller Ausfithrung
der Threads und dem Verlust der Cache Kohirenz.

Implizites Caching ist bei der Fermi-Architektur generisch implementiert, was bei dlteren
Architekturen nur fiir Lesezugriffe auf Texturen implementiert war. Explizites Caching kann
mittels Shared Memory implementiert werden.

Werkzeuge

Der CUDA-Code wird, wie in Abbildung 2.6, mittels eines Compiler-Drivers namens NVI-
DIA C Compiler (NVCC) kompiliert. Dieser tibersetzt zundchst den CUDA-Kernel in Parallel
Thread Execution Assembler (PTX-Assembler) und normalen C/C++-Code. AnschliefSend
startet NVCC einen PTX-Compiler, der GPU-spezifischen Maschinen-Code erzeugt und
einen C/C++-Compiler, der CPU-spezifischen Maschinen-Code erzeugt. Beides wird an-
schliefsend zu einer ausfiihrbaren Datei verlinkt. Der GPU-spezifische Maschinen-Code
wird beim Ausfiihren der Anwendung durch den Grafikkartentreiber auf die Grafikkarte
hochgeladen.

Das Werkzeug NVIDIA Parallel Nsight dient dem Debugging und Profiling von CUDA-Code
auf der Grafikkarte. Fiir den Debugging-Modus werden zwei GPUs benétigt. Gleichzeitiges
Debugging von CPU- und GPU-Code ist nicht moglich. Beide Einschrankungen schmaélern
den Anwenderkreis und den praktischen Nutzen. Der Profiling-Modus hat diese Einschran-
kungen nicht und liefert detaillierte Informationen iiber Auslastung und Laufzeiten. Bei der
Suche nach einem Flaschenhals wird der Suchaufwand durch dieses Werkzeug merklich
reduziert.

19

3 Verwandte Arbeiten

In diesem Kapitel wird ein Uberblick iiber themenverwandte Arbeiten, Verfahren und
Werkzeuge gegeben. Fiir viele der im Folgenden vorgestellten Werkzeuge steht allerdings
eine statische Betrachtung des ,aktiven Teils’ eines Proteins im Vordergrund.

Obwohl viele der hier vorgestellten Verfahren als interaktiv angepriesen werden, sind sie
grofitenteils im Kontext statischer Daten beschrieben. In wie weit die Verfahren im Einzelnen
tiir zeitabhdngige Daten geeignet sind, soll im Rahmen dieser Arbeit, nicht gepriift werden.

3.1 Voronoibasierte Verfahren

Die erste Gruppe von Verfahren nutzt Voronoi-Diagramme als Grundlage fiir die Suche
nach intra-molekularen Pfaden. Voronoi-Diagramme geben eine durch Punkte definierte
Partitionierung des Raumes an. Eine Partition wird auch Voronoi-Region genannt. Eine
Voronoi-Region entspricht dem Schnitt der durch Formel 3.1 beschriebenen Ebenen zwischen
den Punkten p € Cund g € C\ {p}, wobei p das Zentrum einer Voronoi-Region ist.

(3-1) d(p.q) ={x e RV : |p—x| < |g— x|}

Durch eine Erweiterung der Definition konnen Kugeln, wie durch die Van-der-Waals-Krafte
der Atome bestimmt, anstelle von Punkten verwendet werden. Das Voronoi-Diagramm
wird als Graph fiir die Suche nach Pfaden innerhalb des Proteins interpretiert (vergleiche
Abbildung 3.1). Bei einfachen Ansitzen, wie in Caver [BEB™ 11] und Mole [PKKQOo7] realisiert,
wird ein Startpunkt fiir die Suche nach dem kiirzesten Weg vom Inneren des Proteins zur
Oberfldache durch den Benutzer festgelegt. In komfortableren Ansétzen, wie in Voronoi-Based
Extraction and Visualization of Molecular Paths [LBH11] beschrieben, werden alle von aufien
zuganglichen Pfade in Betracht gezogen, sodass der Benutzer das Ergebnis durch Selektion
und Filterung lediglich verfeinern muss.

21

3 Verwandte Arbeiten

Abbildung 3.1: Voronoi-Diagramm als Graph aus den Van-der-Waals-Kréften der Ato-
me (links [PKKOo7]) und die Visualisierung eines Tunnel-Pfades (rechts
[LBH11]).

Abbildung 3.2: Auf Gitter (links [WPSo7]) und auf Sonden (rechts [HSo6]) basierende
Verfahren. ASP steht fiir Active Site Point.

22

3.2 Sonden- und gitterbasierte Verfahren

VdW Surface Solvent Accessible Surface

Solvent Excluded Surface

Abbildung 3.3: Schematische Darstellung der Oberflichendefinition [KGE11].

3.2 Sonden- und gitterbasierte Verfahren

Die zweite Gruppe von Verfahren nutzt Sonden oder Gitter fiir die Suche nach intra-
molekulare Taschen. Ein zentrales Problem dieser Verfahren ist die Oberflachendefinition.
Abbildung 3.3 zeigt die in diesem Kontext giangigen Oberflichendefinitionen Solvent Ex-
cluded Surface (SES) und Solvent Accessible Surface (SAS). Beispielsweise berechnet das
Werkzeug McVol [TU10] die Oberfliche mit Hilfe eines Monte Carlo Verfahrens. In Me-
gaMol [KFR" 11] wird dieses Problem durch eine approximierte, SES-dhnliche Oberfliche,
die sehr ziigig durch Splatting berechnet werden kann, geltst. Abbildung 3.2 zeigt den
Unterschied zwischen einem auf Gitter und einem auf Sonden basierenden Verfahren:

Gitterbasierte Verfahren fiillen Taschen anhand eines festen Gitters, um die Ausdehnung
einer Tasche zu bestimmen. Dieser Ansatz hat den Nachteil, dass diinne, diagonal verlau-
fende Tunnel und Taschen bei niedriger Auflosung schlecht abgebildet werden. Bei hoher
Auflosung steigt die Rechenzeit. Diese Verfahren sind in LIGSITE [HSo6] und PocketPi-
cker [WPSoy] implementiert.

Sondenbasierte Verfahren lagern in einem ersten Schritt kugelférmige Sonden in atom-
dhnlicher Grofse an die Proteinoberfliche an. Sonden, die sich nicht in einer Tasche befinden,
werden wieder entfernt. Anschliefiend werden an die tibrigen Sonden weitere Sonden an-
gelagert, bis die jeweiligen Taschen voll sind. Diese Verfahren sind in PASS [BSoo] und
Hollow [HGo8] implementiert.

23

3 Verwandte Arbeiten

Abbildung 3.4: Proteintasche als Dreiecksnetz (links [LWEg8]) und Einfarbung nach Tiefe
anhand der konvexen Hiille (rechts [CSo6]).

3.3 Verfahren auf Basis von Hullendefinitionen

Die dritte Gruppe von Verfahren nutzt Hiillendefinitionen als Grundlage (siehe Abbil-
dung 3.4). In CAST [LWEg8] wird auf Basis von Alpha-Shapes mittels Delaunay-Triangulation
ein Dreiecksnetz gebildet. Ein Alpha-Shape ist eine durch Kugeln definierte Hiille. Jede
Kugel eines Alpha-Shapes hat den Radius « und darf Punkte (hier: Atome) lediglich be-
rithren, aber nicht enthalten. Bei der Delaunay-Triangulation werden Punkte zu Dreiecken
verbunden, wenn eine Kugel platziert werden kann, in der keine anderen Punkte liegen,
sodass ein direkter Bezug zu Voronoi-Diagrammen besteht: Jeder Schnittpunkt zwischen
Voronoi-Regionen entspricht dem Zentrum einer Kugel. In Travel Depth, a New Shape Descrip-
tor for Macromolecules: Application to Ligand Binding [CSo6] wird die konvexe Hiille verwendet,
um eine Metrik fiir die Tiefe zu definieren. Das Interessante an dieser Metrik ist, dass das
aktive Zentrum meist tief im Inneren eines Proteins liegt. Entsprechend liegt die Tiefe Null
auf der konvexen Hiille. Die Berechnung der konvexen Hiille ist allerdings aufwendig.

24

4 Entwurf

In diesem Kapitel werden mogliche Losungswege in Form von Entwurfsiiberlegungen
skizziert und iiber den Einsatz von Marching Cubes, Marching Tetrahedrons, Segmentierung
und Korrelation reflektiert. Eine Beschreibung der realisierten Losung befindet sich in
Kapitel 5.

4.1 Marching Cubes

Marching Cubes ist ein von Lorensen und Cline [LC87] entwickeltes Verfahren zur Berech-
nung von polygonalen Isofldchen aus Volumendaten. Dazu wird in einem ersten Schritt ein
Volumen in ein gleichmafiiges Gitter unterteilt. Ein Gitterelement wird, wie bei Marching
Cubes {iblich, Wiirfel genannt und besteht aus acht Eckpunkten. Jeder Eckpunkt eines Wiir-
fels wird anhand eines Schwellwerts als innenliegend oder aufienliegend klassifiziert. Aus
der Konfiguration des Wiirfels kann auf den Schnitt mit der Isofliche geschlossen werden.
Jeder der acht Eckpunkte hat zwei mogliche Zustinde, sodass es 28 = 256 mogliche Konfi-
gurationen gibt, die durch Ausnutzung von Symmetrien auf 15 Fille (siehe Abbildung 4.1)
vereinfacht werden konnen. Bereits kurz nach der Veroffentlichung des Algorithmus fiel auf,
dass die Félle 3, 4, 6, 7, 10, 12 und 13 unterschiedlich interpretiert werden konnen. Unter-
schiedliche Interpretation fiithrt zu Mehrdeutigkeiten, was sich in Lochern im Polygonnetz
duflert, wenn keine entsprechende Sonderfallbehandlung, wie durch Newman und Yi [NY06]
in ihrer Zusammenstellung beschrieben, erfolgt.

RS B
\

Abbildung 4.1: Grundlegende Topologien fiir Marching Cubes [NYo06].

25

4 Entwurf

ANTRN

b) Freudenthal (6) c) Face-Divided (12a) d) Face-Divided (12b)

(a) Minimal (5 l

(e) BCC (12 average) f) Face-Centred (24) (g) Edge-Centred (48)

Abbildung 4.2: Unterteilungschemata fiir Marching Tetrahedrons [CMSo6].

4.1.1 Marching Tetrahedrons

Fiir Marching Cubes wurde ein Patent erteilt, weshalb der Algorithmus lange nicht genutzt
werden konnte, ohne Gebiihren zu entrichten. Das Patent lief im Jahr 2005 aus. Deshalb
wurde mit Marching Tetrahedrons eine Alternative entwickelt, die Tetraeder anstelle von
Wiirfeln verwendet. Um ein kubisches Gitter in Tetraeder zu unterteilen, sind verschiedene
Schemata denkbar (siehe Abbildung 4.2). Die Arbeit von Carr, Moller und Snoeyink [CMSo6]
zeigt, dass die entstehenden Artefakte, je nach Schema, sehr unterschiedlich ausfallen kénnen.
Die durch die Approximation entstehenden Artefakte, besonders bei geringer Auflosung,
spielen fiir diese Arbeit keine Rolle, denn die Gitterauflosung kann maximal gewidhlt werden:
Ein Gitterpunkt wird einem Voxel entsprechen.

Die am hédufigsten verwendete Unterteilung fiir Marching Thedrahedrons ist das sechs
Tetraeder-Schema in Abbildung 4.2 (b). Jeder der vier Eckpunkte eines Tetraeders hat zwei
mogliche Zustinde, sodass es 2* = 16 mogliche Konfigurationen gibt, die bei geschickter
Implementierung, wie durch Kipfer und Westermann [KWos5] beschrieben, auf drei Falle
(siehe Abbildung 4.3) vereinfacht werden koénnen.

4.1.2 Vergleich

Fiir Marching Cubes spricht, dass eine fertige Implementierung in CUDA vorhanden ist.
Marching Cubes benétigt 12 Schnittberechnungen (eine fiir jede Wiirfelkante) und erzeugt

26

4.2 Segmentierung

/N

three intersections four intersections three intersections

Abbildung 4.3: Grundlegende Topologien fiir Marching Tetrahedrons [KWos5].

hochstens 4 Dreiecke pro Wiirfel. Gegen Marching Cubes spricht, dass Mehrdeutigkeiten ge-
sondert behandelt werden miissen und Lookup-Tabellen fiir 256 Konfigurationen relativ grofs
ausfallen. Fiir Marching Thedrahedrons spricht, dass keine Mehrdeutigkeiten existieren, die
Lookup-Tabellen fiir 16 Konfigurationen relativ klein ausfallen und der Algorithmus deshalb
einfacher zu modifizieren ist. Marching Thedrahedrons benétigt 19 Schnittberechnungen -
nicht jede der 6 Kanten eines Tetraeders ist relevant - und erzeugt hochstens 2 Dreiecke pro
Tetraeder oder 12 Dreiecke pro Wiirfel. Gegen Marching Tetrahedrons spricht, dass keine
fertige Implementierung in CUDA vorhanden ist. Obwohl mehr Dreiecke berechnet werden,
ist das nicht unbedingt als Nachteil zu werten, denn jeder Tetraeder kann parallel berechnet
werden.

Die Wahl fiel letztlich auf Marching Thedrahedrons, weil das Ermitteln der Nachbarschaft
zwischen Tetraedern leichter zu implementieren und die Approximation genauer ist. Aufer-
dem konnten Teile der fertigen Marching Cubes Implementierung fiir Marching Tetrahedrons
wiederverwendet werden. Eine Beschreibung der Implementierung befindet sich in Kapitel 5
auf Seite 35.

4.2 Segmentierung

Die Segmentierung eines allgemeinen Dreiecksnetzes ist ein Problem aus der Graphentheorie.
Bei Marching Thedrahedrons bilden sechs Tetraeder einen Wiirfel, die zusammen wiederum
ein Gitter bilden, sodass eine Ahnlichkeit zu Voxeldaten besteht. Verfahren zur Bildsegmen-
tierung arbeiten klassischerweise auf Pixelebene, konnen aber meist auf Voxel iibertragen
werden. Ein Exkurs in die Bildsegmentierung lohnt, weil GPGPU in der Bildverarbeitung
weiter verbreitet ist als in der klassischen Graphentheorie. AufSerdem werden moglicher-
weise libertragbare, zusétzliche Eigenschaften, wie Farbe oder Gradient verwendet, um das
Ergebnis zu verbessern.

Grofie Teile des folgenden Abschnitts stammen aus Erfahrungen im Rahmen eines Studi-
enprojekts und aus einem Abriss von O. Wirjadi [Wiro7]. Fiir jede Verfahrensart folgt eine

27

4 Entwurf

kurze Beschreibung mit Informationen tiber die Beschaffenheit der berechneten Segmente,
Eignung fiir dynamische Daten, verdnderbare Parameter und die Parallelisierbarkeit.

4.2.1 Schwellwertverfahren

Bei Schwellwertverfahren wird anhand eines Schwellwerts s entschieden, ob ein Pixel p zu
einem der Segmente sy oder s; gehort:

0 fallsp<s
1 S(p) =
(1) ») {1 falls p > s

Pro Schwellwertverfahren sind leicht zu implementieren und parallel berechenbar.

Contra Proteine haben mit grofier Wahrscheinlichkeit mehr als zwei Segmente. Schwell-
wertverfahren sind sehr anfillig gegeniiber dynamischen Effekten, wie zeitabhingige Ande-
rungen oder Rauschen, und das Ergebnis hiangt von der Qualitidt des Schwellwerts ab.

4.2.2 Kantenerkennung

Bei der Kantenerkennung werden Flachen anhand von Kantenoperatoren, wie dem Sobel-
Operator oder Laplace-Operator, getrennt. Ein Kantenoperator unterscheidet zwischen
{SKante, SNichtkante ; und wird héufig als Filter-Matrix dargestellt, deren Anwendung einer
diskreten Faltung entspricht.

Pro Falls es bereits eine geeignete Filter-Matrix gibt, sind sie ebenfalls leicht zu implemen-
tieren und parallel berechenbar. Ein Operator, der auf der Oberflachenkriimmung basiert,
konnte verwendet werden, um Taschen oder Tunneleingénge zu erkennen.

Contra Proteine haben mit grofSer Wahrscheinlichkeit mehr als zwei Segmente, sodass
Kantenerkennung lediglich ergdnzend eingesetzt werden konnte. Kantenoperatoren sind
ebenfalls anféllig fiir dynamische Effekte. Das Herleiten einer eigenen Filter-Matrix oder
Erfinden eines Kantenoperators ist mathematisch anspruchsvoll.

28

4.2 Segmentierung

4.2.3 Regions- und formbasierte Verfahren

Bei regionsbasierten Verfahren wird anhand eines Pradikats entschieden, ob zwei Pixel
dem gleichen Segment angehoren. Ein solches Pradikat kann durch Region-Growing oder
Region-Merging angewendet werden. Region-Growing bezeichnet einen Prozess, bei dem ein
Startpixel, auch ,Seed’ genannt, ausgewdhlt und diese Region anhand ihrer anliegenden Pixel
vergrofiert wird, bis keine Veranderung mehr zu beobachten ist. Region-Merging funktioniert
ohne Seed und vereinigt so lange Pixel zu Regionen, bis keine Verdnderungen mehr zu
beobachten sind. Formbasierte Verfahren unterscheiden sich von regionsbasierten Verfahren
durch die Beriicksichtigung der Rander und benétigen immer einen Seed. Bekannte Vertreter
dieser Verfahren sind Level-Set und Deformable Surfaces. Dieser Weg wurde mit A new
marching cubes algorithm for interactive level set with application to MR image segmentation [FB10]
bereits von Anderen beschritten

Pro Regions- und formbasierte Verfahren sind bis zu einem gewissen Grad parallel imple-
mentierbar. Die Anwendung eines Pradikats ist sehr allgemeingiiltig, also erweiterbar und
verdnderbar. Die Anfélligkeit fiir dynamische Effekte hdangt stark vom verwendeten Pradikat
ab.

Contra Seeds entsprechen einer Benutzereingabe, was einer Arbeitsthese widerspricht. Das
Auflosen von Segmentreferenzen beim Zusammenfiihren grofier Segmente ist kein triviales
Problem.

4.2.4 Textur- und modellbasierte Verfahren
Texturbasierte Verfahren suchen nach Mustern, meist Oberflichenstrukturen. Modellbasierte

Verfahren ordnen ein Pixel einem Segment anhand von Wissen tiber die Daten zu (,,Gras ist
griin, Straf8e ist schwarz, Fahrbahnmarkierungen sind weifs”).

Pro Die Einbringung von Wissen kann das Problem vereinfachen.

Contra Ein textur- oder modellbasierter Ansatz macht in diesem Kontext keinen Sinn, da
lediglich bekannt ist, dass das Volumen Kugeln enthalt.

4.2.5 Abwagung

Aufgrund der parallelen Verarbeitungsstrategie und beeinflusst von der Veroffentlichung
Analysis of a step-based watershed algorithm using CUDA [VKALF10] erschienen regionsbasierte
Verfahren geeignet. Es wird kein Startwert oder besonderes Wissen tiber die Daten beno-
tigt; aufSerdem ist das Pradikat erweiterbar. Das Pradikat wird zundchst so definiert, dass

29

4 Entwurf

zusammenhdngende Voxel ein Segment bilden. Als Erweiterung des Pradikats kommen
beispielsweise Gradient, Kriimmung und Voronoi-Region in Frage.

4.3 Korrelation Giber Zeit

In der Aufgabenstellung wird eine Korrelation der Dreiecksnetze iiber Zeit, also deren
Bewegungen, gefordert. Die Ahnlichkeit zweier Funktionen x und m lasst sich wie in
Formel 4.2 mit m* als komplex-konjugiertes m definieren.

(4-2) xom :/ x(t)ym* (t + T)dt

Die Position eines Dreiecks kann als integrierte Geschwindigkeitsfunktion betrachtet wer-
den. Mittels Korrelation kann fiir jedes Dreieck eine Aussage iiber die Ahnlichkeit zum
vorherigen Zeitschritt getroffen werden. Die Korrelation x o m ldsst sich mit Hilfe der Fourier-
Transformation (FT) wie in Formel 4.3 berechnen.

FT(x o m) = FT(x)FT*(m)

“3) x0m = FT~! (FT(x)ET* (m))

Die Fourier-Transformation bildet vom Ortsraum in den Frequenzraum ab. Die Ahnlichkeit
kann durch filtern nach Extrema und Riicktransformation in den Ortsraum visualisiert
werden.

Auch die schnelle Fourier-Transformation (FFT) kostet viel Rechenzeit, weshalb fiir diese
Arbeit folgende Vereinfachung gemacht wird: Wenn man fiir jedes unabhidngige Segment
einen Schwerpunkt s; aus den Eckpunkten eines Dreiecksnetz<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>