
Visualisierungsinstitut der Universität Stuttgart
Universität Stuttgart

Universitätsstraße 38
D–70569 Stuttgart

Diplomarbeit Nr. 3199

Analyse der Oberflächenstruktur
von Proteinen

Christoph Schulz

Studiengang: Softwaretechnik

Prüfer: Prof. Dr. Thomas Ertl

Betreuer: Dipl.-Inf. Michael Krone

begonnen am: 8. Juni 2011

beendet am: 8. Dezember 2011

CR-Klassifikation: I.3.3, I.3.5, I.3.7, I.4.6, I.4.8, J.3





Inhaltsverzeichnis

1 Einleitung 7
1.1 Aufgabenstellung . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.2 Arbeitsthesen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.3 Zeitplan . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2 Grundlagen 11
2.1 Proteine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.1.1 Bedeutung . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.1.2 Abhängigkeiten . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.1.3 Strukturebenen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.2 Objekterkennung . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.3 Parallelrechner . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.3.1 Flynnsche Taxonomie . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.3.2 Speicherarchitektur . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.4 Graphics Processing Units . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.4.1 NVIDIA GeForce . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.4.2 NVIDIA CUDA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

Programmiermodell . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

Speicherarchitektur . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

Werkzeuge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3 Verwandte Arbeiten 21
3.1 Voronoibasierte Verfahren . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.2 Sonden- und gitterbasierte Verfahren . . . . . . . . . . . . . . . . . . . . . . . . 23

3.3 Verfahren auf Basis von Hüllendefinitionen . . . . . . . . . . . . . . . . . . . . . 24

4 Entwurf 25
4.1 Marching Cubes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

4.1.1 Marching Tetrahedrons . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

4.1.2 Vergleich . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

4.2 Segmentierung . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

4.2.1 Schwellwertverfahren . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

4.2.2 Kantenerkennung . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

4.2.3 Regions- und formbasierte Verfahren . . . . . . . . . . . . . . . . . . . . 29

4.2.4 Textur- und modellbasierte Verfahren . . . . . . . . . . . . . . . . . . . . 29

4.2.5 Abwägung . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

4.3 Korrelation über Zeit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3



4.4 MegaMol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

4.4.1 Softwarearchitektur . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

4.4.2 Protein Plug-in . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

4.4.3 Neue Komponenten . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

5 Implementierung 35
5.1 Überblick . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

5.2 Marching Tetrahedrons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

5.2.1 Verdichtung der Würfel . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

5.2.2 Klassifizierung der Tetraeder . . . . . . . . . . . . . . . . . . . . . . . . . 36

5.2.3 Berechnung der Dreiecke . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

5.3 Segmentierung der Komponenten . . . . . . . . . . . . . . . . . . . . . . . . . . 39

5.3.1 Tetraedernachbarschaft . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

5.4 Korrelation und Klassifikation von Ereignissen . . . . . . . . . . . . . . . . . . . 41

5.5 Visualisierung . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

5.6 Speicherverwaltung . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

6 Ergebnisse und Bewertung 43
6.1 Bezug zu den Arbeitsthesen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

6.2 Wirkungen von Optimierungen . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

6.3 Leistungsverhalten . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

6.4 Praktischer Nutzen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

7 Fazit 53

Literaturverzeichnis 55

4



Abbildungsverzeichnis

1.1 Gantt-Diagramm des Zeitplans . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.1 Proteinstrukturen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.2 Objekterkennung . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.3 Entwicklungsverlauf von GPU und CPU . . . . . . . . . . . . . . . . . . . . . . 15

2.4 Größenverhältnisse von GPU und CPU . . . . . . . . . . . . . . . . . . . . . . . 16

2.5 CUDA Grid . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.6 NVCC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.1 Proteintunnel als Voronoi-Diagramm . . . . . . . . . . . . . . . . . . . . . . . . 22

3.2 Gitter- und sondenbasierte Verfahren . . . . . . . . . . . . . . . . . . . . . . . . 22

3.3 Oberflächendefinitionen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.4 Proteintasche als Dreiecksnetz und konvexe Hülle . . . . . . . . . . . . . . . . . 24

4.1 Topologien für Marching Cubes . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

4.2 Unterteilungschemata für Marching Tetrahedrons . . . . . . . . . . . . . . . . . 26

4.3 Topologien für Marching Tetrahedron . . . . . . . . . . . . . . . . . . . . . . . . 27

4.4 Fehlerfall der Korrelationsheuristik . . . . . . . . . . . . . . . . . . . . . . . . . 31

4.5 Softwarearchitektur von MegaMol . . . . . . . . . . . . . . . . . . . . . . . . . . 31

4.6 Darstellungen von MegaMol Protein . . . . . . . . . . . . . . . . . . . . . . . . . 32

4.7 VolumeMeshRenderer als Klassendiagramm . . . . . . . . . . . . . . . . . . . . . 33

5.1 Tetraeder in einem Würfel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

5.2 Label-Äquivalenz-Methode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

5.3 Grenzfall Identität vs. Wert . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

5.4 Tetraederflächen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

6.1 Drahtgittermodell und Referenzbild . . . . . . . . . . . . . . . . . . . . . . . . . 44

6.2 Hilfsvisualisierungen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

6.3 Enwicklungsverlauf der Kernel Timings von MT . . . . . . . . . . . . . . . . . . 46

6.4 Kernel-Timings von MT und MC . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

6.5 Animation der Korrelation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

5



Tabellenverzeichnis

2.1 Technische Daten der GeForce . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.2 CUDA Speicherarten . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

5.1 Würfel Aktivität . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

5.2 Tetraeder in einem Würfel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

5.3 Tetraederkanten . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

5.4 Tetraederkonfigurationen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

5.5 Tetraedernachbarschaften . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

6.1 Kernel-Timings von MT und MC . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

6.2 Kernel-Timings des Lablings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

6.3 Kernel-Timings der Schwerpunktberechnung . . . . . . . . . . . . . . . . . . . . 49

6



1 Einleitung

Diese Diplomarbeit befasst sich mit dem Thema Analyse der Oberflächenstruktur von Proteinen
auf moderner Grafikhardware. Das Ziel der Diplomarbeit ist es die technische Machbar-
keit des interaktiven Umgangs mit zeitabhängigen Datensätzen aus Molekulardynamik-
Simulationen zu zeigen.

Das Wort „Protein“ ist aus dem griechischen proteis (deutsch: grundlegend) abgeleitet
und bezeichnet einen der Grundbausteine des Lebens. Proteine erfüllen viele verschiedene
Aufgaben, wie beispielsweise das Regeln, Steuern und Katalysieren von Reaktionen. Sie
dienen als Bausteine, Strukturelemente und Träger von Reaktionspartnern in unserem Körper.
Ohne Proteine gäbe es kein Leben, wie wir es kennen. Wir Menschen benötigen Modelle,
die auf unsere kognitiven Fähigkeiten zugeschnitten sind, um Proteine begreifen zu können.
Proteinoberflächen sind Modelle, die visuell betrachtet werden können, Aussagen über die
räumliche Ausdehnung ermöglichen und Rückschlüsse auf Vorgänge im Umfeld und im
Inneren eines Proteins zulassen.

1.1 Aufgabenstellung

Im Rahmen des laufenden Sonderforschungsbereichs 716 der Universität Stuttgart beschäf-
tigt sich der Teilbereich D4 mit der Visualisierung von Molekulardynamik-Simulationen,
insbesondere mit der Extraktion und Darstellung komplexer Eigenschaften von Protein-
Lösungsmittel-Systemen. In vorausgegangenen Arbeiten am Visualisierungsinstitut wurde
unter anderem ein Algorithmus zur Berechnung einer volumetrischen Repräsentation von
Molekülen entwickelt. Aus diesen Volumen können mittels Ray Casting (bzw. Ray Marching)
Isoflächen extrahiert und dargestellt werden. Diese Technik wurde in einer vorangegangen
Arbeit verwendet, um Hohlräume in Proteinen zu erkennen und mittels Segmentierung
des Volumens zu extrahieren [KFR+

11]. Basierend auf der volumetrischen Repräsentation
des Moleküls soll nun eine triangulierte Oberfläche erstellt und anschließend für folgende
Analyseschritte verwendet werden:

1. Das Finden zusammenhängender Komponenten, um die Außenhülle von Hohlräumen
unterscheiden zu können,

2. die Korrelation der Komponenten über mehrere Zeitschritte und

3. die Klassifizierung von Vorgängen wie Amalgamieren und Aufspalten.

Die Ergebnisse müssen in geeigneter Form grafisch dargestellt werden.
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1 Einleitung

1.2 Arbeitsthesen

Folgende Überlegungen wurden vor der Arbeit angestellt, um abzuschätzen, mit welchen
Ergebnissen gerechnet werden kann.

Interessante Oberflächenänderungen sind schwer zu entdecken Proteinoberflächen sind
sehr komplex und Oberflächenänderungen wenig intuitiv. Beim Betrachten des Proteins kann
leicht etwas Wichtiges verdeckt werden. Damit Oberflächenänderungen nicht unentdeckt
bleiben, muss der Betrachter auf interessante Bereiche aufmerksam gemacht werden.

Mit einem Dreiecksnetz arbeiten bringt Vorteile Algorithmen für Dreiecksnetze sind sehr
verbreitet und ausgereift. Außerdem könnte eine Oberflächenbeschreibung aus Dreiecken
weniger Speicher benötigen als eine Volumenbeschreibung.

GPU-Programmierung unterscheidet sich von CPU-Programmierung GPUs unterscheiden
sich in ihrer Architektur deutlich von CPUs (mehr Kerne, andere Speicherhierarchie). Bei
der Wahl der Algorithmen und Optimierungen muss daher die Hardware entsprechend
berücksichtigt werden.

1.3 Zeitplan

Für den Zeitraum der Diplomarbeit wurde ein Zeitplan aufgestellt. Eine Technologieeinarbei-
tungsphase entfällt, da im Rahmen der Themensuche bereits eine erste Auseinandersetzung
mit der Technologie stattfand. Der Zeitplan (siehe Abbildung 1.1) ist in folgende Phasen
unterteilt:

Recherche Zu Beginn sollen bisherige und thematisch verwandte Veröffentlichungen auf
diesem Gebiet gesucht und beurteilt sowie eine inhaltliche Struktur der Diplomarbeit erstellt
und mögliche Lösungswege skizziert werden.

Iteration 1 In einer ersten Iteration wird zunächst eine zusammenhangslose Oberfläche aus
Dreiecken mittels CUDA berechnet und ohne grafische Ausgabe in das Plug-in MegaMol
Protein (siehe Seite 31) integriert.

Iteration 2 In einer zweiten Iteration werden eine grafische Ausgabe implementiert und
Proteinanimationen unterstützt.

8



1.3 Zeitplan

2011

Juni Juli August September Oktober November

23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49

Recherche

Iteration 1

Iteration 2

Iteration 3

Iteration 4

Ausarbeitung

Abbildung 1.1: Gantt-Diagramm des Zeitplans.

Iteration 3 In einer dritten Iteration werden zusammenhängende Komponenten erkannt
und zeitlich korreliert.

Iteration 4 In einer vierten Iteration werden zu erkennende Vorgänge grafisch hervorgeho-
ben und Daten für diese Ausarbeitung gesammelt.

Ausarbeitung Abschließend wird diese Ausarbeitung erstellt. Ein bis zwei Wochen sind als
Puffer für eine abschließende Kontrolle und Korrekturen eingeplant.
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2 Grundlagen

In diesem Kapitel werden die Grundlagen zu dieser Arbeit behandelt. Hier werden die
später als bekannt vorausgesetzten Begriffe wie Protein, Objekterkennung, Parallelrechner
und die verwendeten Technologien beschrieben.

2.1 Proteine

Im deutschen Sprachraum sind Proteine bekannt als Eiweiße. Der in der Fachliteratur gängige
Oberbegriff ist Protein. Proteine sind kettenartige, aus Aminosäuren aufgebaute Moleküle.
Das kleinste bekannte Protein heißt Chignolin [SHI05] und besteht aus gerade einmal zehn
Aminosäuren. Das größte bekannte Protein heißt Titin [tit11]. Es befindet sich in unseren
Muskeln und besteht - je nach Isoform - aus über 30.000 Aminosäuren. Proteine haben häufig
ein aktives Zentrum, das mit einem Substrat interagiert. Das Substrat wird dem aktiven
Zentrum durch Tunnel, Taschen und Einschlüsse zugeführt.

2.1.1 Bedeutung

Proteine erfüllen unterschiedliche Funktionen: Manche Proteine dienen schlicht als Bau-
stoff oder sind Träger von Reaktionspartnern. Andere dienen als Bindungspartner, um die
Anwesenheit von Stoffen anzuzeigen oder als Katalysator für chemische Reaktionen. Das
Anzeigen von Stoffen wird in diversen Regelkreisen im Körper eingesetzt, um Vorgänge wie
den Transport von Stoffen in die Zelle zu hemmen oder zu fördern. In der Medizin wird
diese Anwendung zur Diagnose verwendet. Proteine, die chemische Reaktionen katalysieren,
nennt man Enzyme. Ohne Enzyme wären viele Reaktionen bei Körpertemperatur nicht
möglich.

2.1.2 Abhängigkeiten

Proteine sind stark zeit- und umgebungsabhängig. Es spielt eine große Rolle, ob ein Protein
angelagert oder gelöst ist, welche Fremdatome es einlagert und in welcher Konfiguration es
sich bei einer bestimmten Umgebungstemperatur befindet. All diese Faktoren haben einen
Einfluss auf die Funktion eines Proteins. Ein bekannteres Beispiel ist die Bleivergiftung:
Bei einer Bleivergiftung werden unter anderem die an der Blutbildung beteiligten Enzyme
durch die Anwesenheit von Bleiionen gehemmt, was bei entsprechender Dosis zu Blutarmut,
schlecht heilenden Wunden und zum Tod führt.
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2 Grundlagen

Abbildung 2.1: Sekundärstrukturelemente (links [KBE08]) α-Helix (rot) und β-Faltblatt (blau)
sowie die Tertiärstruktur (rechts [KFR+

11]) eines Proteins.

2.1.3 Strukturebenen

Im Jahr 1952 wurde von Kaj Ulrik Linderstrøm-Lang [LL52] eine Betrachtung von Proteinen
auf den folgenden vier Strukturebenen (vergleiche Abbildung 2.1) vorgeschlagen:

Primärstruktur Die Primärstruktur beschreibt die Sequenz der Aminosäuren, aus der
ein Protein aufgebaut ist. Aus der Primärstruktur werden alle weiteren Strukturebenen
abgeleitet.

Sekundärstruktur Die Sekundärstruktur beschreibt in der Primärstruktur auftretende Mus-
ter, wie α-Helix, β-Faltblatt und β-Schleifen.

Tertiärstruktur Die Tertiärsturktur beschreibt die räumliche Anordnung, also auch die
Oberfläche des Proteins.

Quartärstruktur Die Quartärstruktur beschreibt einen Proteinkomplex, also das Zusam-
menspiel mehrerer Proteine.

2.2 Objekterkennung

Objekterkennung lässt sich als Pipeline untergliedern, wie in Abbildung 2.2 dargestellt.
Ziel der Objekterkennung ist es, aus (Bild-)Daten verwertbare Informationen in Form von
Aussagen zu gewinnen. In einem ersten Schritt werden die Daten vorverarbeitet, um Mess-
fehler oder Rauschen zu entfernen. Bekannte Beispiele für die Vorverarbeitung sind das

12



2.3 Parallelrechner

Daten

Aussage

Vorverarbeitung Segmentierung

Merkmalsextraktion Klassifizierung

Abbildung 2.2: Objekterkennungspipeline.

Entfernen defekter Pixel mit Hilfe eines Median-Filters oder das Stabilisieren von aus der
Bewegung heraus aufgenommenen Bildern. Anschließend werden die Daten mit Hilfe eines
Homogenitätskriteriums segmentiert, was die Menge der Daten reduziert und so nach-
folgende Arbeitsschritte vereinfacht. Ein typisches Beispiel für die Segmentierung ist das
Unterscheiden von Papier und Text bei der Texterkennung. Abschließend werden Merkmale
aus den Segmenten extrahiert und klassifiziert, sodass eine oder mehrere Aussagen getroffen
werden können. Bei der Texterkennung werden Merkmale wie beispielsweise Schriftgröße
sowie Schriftart extrahiert und zu einem Text, meist mit Hilfe eines Wörterbuches, klassifi-
ziert. In der Praxis ist die Grenze zwischen Merkmalsextraktion und Klassifizierung oftmals
fließend.

2.3 Parallelrechner

Software wird traditionell für sequenziell arbeitende Computer geschrieben. Lange dachte
man, dass dies kein Problem sei, denn das von Gordon Moore formulierte und bisher gültige
Mooresche Gesetz (1965/1975) sagt im Wesentlichen voraus, dass sich die Rechenleistung
eines Computers alle zwei Jahre verdoppelt. Wie durch Asanovic et al. [ABC+

06] berichtet,
war bis kurz nach der Jahrtausendwende der Ursprung für eine Leistungsverdopplung
eine höhere Taktrate oder die Verkleinerung von Schaltkreisen. Es wurden zwei, durch
physikalische Randbedingungen bedingte Grenzen erreicht:

1. Taktverteilung: Man konnte einen Takt nicht mehr über den ganzen Chip verteilen,
was die Chiparchitektur erheblich verkomplizierte.

2. Energiedichte: Man konnte so viele Transistoren auf einem Chip platzieren, dass die
auf dem Chip verteilbare Energie nicht ausreichte, um diese zu schalten.

Um den Forderungen nach leistungsstärkeren Rechnern nachzukommen, hatte die Chi-
pindustrie folgende Lösungen in Aussicht gestellt: Parallelrechner und Niedrig-Energie-
Transistoren.

Parallele Programmierung war zu Beginn des Jahrtausends nicht neu, allerdings auch nicht
sonderlich verbreitet. Klassische Programmiersprachen wie C/C++ sind auf sequenzielle
Programmierung ausgelegt, weshalb auch parallelisierbare Probleme, begünstigt durch die

13



2 Grundlagen

Programmiersprache, sequenziell formuliert wurden. Um von dem Paradigmenwechsel
der Chipindustrie zu profitieren, muss in der Folge sequenziell arbeitende Software zu
großen Teilen neu geschrieben werden. Nach dem Amdahlschen Gesetz (Formel 2.1) ist
der zu erwartende Geschwindigkeitszuwachs S durch den sequenziellen Anteil (1− P)
des Problems beschränkt, wobei N dem Grad der Parallelität (Anzahl der Prozessoren)
entspricht.

(2.1) S =
1

(1− P) + P
N

Vereinfacht ausgedrückt lässt sich ein Problem besonders gut parallel lösen, wenn die Teil-
probleme möglichst unabhängig voneinander sind. Compiler und Programmiersprachen
für parallel arbeitende Rechnerarchitekturen sind Gegenstand der Forschung. Nur wenige
‚parallele Hochsprachen‘, wie Erlang und Scala, haben es in die Industrie geschafft. Entspre-
chend benötigt der Programmierer mehr Wissen über die Problemstellung und Hardware,
was die Entwicklung teurer und hardwarespezifischer gestaltet. Im nachfolgenden Abschnitt
wird ein Überblick über die Klassifikation paralleler Rechnerarchitekturen vermittelt.

2.3.1 Flynnsche Taxonomie

Die Flynnschen Taxonomie ist eine Unterteilung von Rechnerarchitekturen anhand der
Befehls- und Datenströme, was im Hinblick auf Hochsprachen und Compiler-Heuristiken
interessant ist:

Single Instruction Single Data (SISD) bezeichnet eine klassische, sequenziell arbeitende
Rechnerarchitektur. Dabei wird mit einem Befehl ein Datenstrom verarbeitet.

Single Instruction Multiple Data (SIMD) bezeichnet eine in der Praxis häufig vorkommende
parallele Rechnerarchitektur. Dabei werden mit einem Befehl mehrere Datenströme parallel
verarbeitet. Diese Art der Parallelität ist besonders leicht in Hardware zu implementieren,
da lediglich der datenverarbeitende Teil vervielfältigt werden muss.

Multiple Instruction Single Data (MISD) ist eine exotische, redundante Form der Parallelität.
Dabei wird mit mehreren Befehlen der gleiche Datenstrom verarbeitet.

Multiple Instruction Multiple Data (MIMD) ist eine häufig bei Supercomputern angewandte
Rechnerarchitektur. Dabei werden mit mehreren Befehlen mehrere unterschiedliche Daten-
ströme verarbeitet.
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2.4 Graphics Processing Units

Abbildung 2.3: Entwicklungsverlauf von GPU und CPU anhand der Rechenoperationen
und Speicherbandbreite [Nvi].

2.3.2 Speicherarchitektur

Die Flynnsche Taxonomie nimmt lediglich an, dass Datenströme zeitlich geordnet und zu-
gänglich sind. Deshalb kann anhand der Speicherarchitektur weiter unterschieden werden:

Shared Memory bezeichnet eine Verteilung des Speichers, bei der jede Recheneinheit
Zugriff auf den gesamten Speicher hat. Es existiert ein gemeinsamer Speicherbus. Man kann
anhand der Zugriffszeiten weiter unterscheiden in Uniform Memory Access (UMA) und
Non-Uniform Memory Access (NUMA).

Distributed Memory bezeichnet eine Verteilung des Speichers, bei der jede Recheneinheit
nur auf den lokalen Speicher Zugriff hat. Es existiert kein gemeinsamer Speicherbus.

2.4 Graphics Processing Units

Graphics Processing Units (GPUs) waren ursprünglich Spezialprozessoren für die Film- und
Computerspieleindustrie, die für das Rendering von Computergrafik entwickelt wurden.
Computergrafik wurde in ihren Anfängen auf speziellen Supercomputern berechnet. Nach
und nach wurden dann Grafikkarten entwickelt, die dieses Problem besser und günstiger
lösen konnten. Abbildung 2.3 zeigt, dass moderne GPUs erheblich leistungsfähiger sind
als entsprechende CPUs. Die Ursache hierfür liegt in den unterschiedlichen Entwurfszie-
len: CPUs unterstützen verschiedene Datentypen und sind auf sequenzielles Verarbeiten,
Branching sowie Random-Memory-Access optimiert. GPUs hingegen sind dediziert für
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2 Grundlagen

Abbildung 2.4: Größenverhältnisse der funktionalen Einheiten von GPU und CPU [Nvi].

Computergrafik entworfen, die zu großen Teilen parallel berechnet werden kann. Mit stei-
gender Chipgröße wächst die Fehlproduktion und damit der Preis; also ist bei gleichem
Preis die Anzahl an Transistoren pro Quadratzentimeter limitiert. Abbildung 2.4 zeigt die
deutlichen Unterschiede im Entwurf: Transistoren, die bei einer CPU für Cachelogik und
Kontrolllogik eingesetzt werden können, bei einer GPU für Arithmetisch-logische Einheiten
(ALU) verwendet werden.

Die ersten Grafikkarten hatten eine sogenannte ‚Fixed Function Pipeline‘, bei der man nur
einige Parameter für den Rendering-Vorgang festlegen konnte. Im Wettlauf um bessere Gra-
fikeffekte, besonders in Computerspielen, beseitigten die Grafikkartenhersteller immer mehr
Restriktionen was die Programmierbarkeit von GPUs betrifft. Durch die neu gewonnenen
Freiheiten entstand letztlich ein neuer Markt, das sogenannte General Purpose Computation
on Graphics Processing Units (GPGPU). Unter GPGPU versteht man das Lösen von nicht mit
der Computergrafik verwandten Problemen mit Hilfe einer GPU. GPUs treten damit direkt
in Konkurrenz zu klassischen Supercomputern. Allerdings sind GPUs deutlich günstiger
(Massenprodukt) und verbrauchen erheblich weniger Energie (integrierter Schaltkreis) als
ein Supercomputer. Das macht GPUs zu einem interessanten Werkzeug für Wissenschaft
und Industrie.

2.4.1 NVIDIA GeForce

GeForce ist ein Markenname des Grafikkartenherstellers NVIDIA. Als Hardwareplattform
wurde für diese Diplomarbeit die GeForce-400-Serie bzw. die GeForce-500-Serie vereinbart.
Beide Serien basieren auf NVIDIAs Fermi-Architektur. Im Gegensatz zu älteren Serien unter-
stützt die Fermi-Architektur CUDA Compute Capability 2.0, die mehr atomare Operationen
und Synchronisationsmechanismen bietet [Nvi].

In Tabelle 2.1 sind technische Merkmale der verwendeten GeForce-Karten aufgelistet. Bei
der Fermi-Architektur werden mehrere skalare Streamprozessoren, namens CUDA Cores,
zu Clustern, namens Streaming Multiprocessors, gruppiert.
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2.4 Graphics Processing Units

GeForce 480 GTX GeForce 580 GTX
CUDA Compute Capability 2.0 2.0

Streaming Multiprocessor 15 16

CUDA Cores 480 512

Grafiktakt 700 MHz 772 MHz
Prozessortakt 1401 MHz 1544 MHz

Speicher 1536 MB 1536 MB
Speichertyp GDDR5 GDDR5

Speichertakt 1848 MHz 2004 MHz
Speicherbandbreite 177,4 GB/s 192,4 GB/s

Speicherschnittstelle 384 Bit 384 Bit

Tabelle 2.1: Technische Daten der GeForce 480 und GeForce 580 [Cor]

2.4.2 NVIDIA CUDA

Bei NVIDIAs CUDA handelt es sich um eine Technik zur Programmierung von GPUs und
ist ein Akronym für Compute Unified Device Architecture. CUDA ist, im Gegensatz zu den
für Grafikanwendungen entworfenen Shadersprachen GLSL und HLSL, eine auf C/C++
aufbauende Programmiersprache. Viele Informationen in diesem Abschnitt wurden aus dem
NVIDIA CUDA C Programming Guide [Nvi] entnommen.

Programmiermodell

Das CUDA Programmiermodell kann als Erweiterung von SIMD gesehen werden und
wird auch als Single Program Multiple Data (SPMD) bezeichnet. Dabei werden mit einem
Programm namens CUDA Kernel mehrere Datenströme verarbeitet. SPMD unterstützt,
im Gegensatz zu SIMD, komplexe Berechnungen und Kontrollfluss. Ein Kernel enthält
Befehle, die im Kontext eines CUDA Threads ausgeführt werden. Threads werden zu Blocks
zusammengefasst und Blocks zu einem Grid (siehe Abbildung 2.5).

Diese Hierarchie ist für die Abbildung des Programms auf die Hardware wichtig. Jeder
Thread wird parallel von einem CUDA Core verarbeitet, der in einem Streaming Multi-
processor mit anderen Streamprozessoren gebündelt ist. CUDA Cores teilen sich einen
schnellen Speicher. Ein Block ist unabhängig von anderen Blocks. Die Ausführungsreihen-
folge der Threads innerhalb eines Blocks kann nicht kontrolliert werden. Blocks werden
nach Block-ID in aufsteigender Reihenfolge verarbeitet. Zugriffe mehrerer Threads auf
gleiche Speicherbereiche können mittels atomarer Operationen und Threadsynchronisation
koordiniert werden.
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2 Grundlagen

Grid

Block (1, 1)

Thread (0, 0) Thread (1, 0) Thread (2, 0) Thread (3, 0)

Thread (0, 1) Thread (1, 1) Thread (2, 1) Thread (3, 1)

Thread (0, 2) Thread (1, 2) Thread (2, 2) Thread (3, 2)

Block (2, 1)Block (1, 1)Block (0, 1)

Block (2, 0)Block (1, 0)Block (0, 0)

Abbildung 2.5: Hierarchie eines CUDA Grids [Nvi].

Speicher Sichtbarkeit Lebenszeit
Register Thread Kernel

Shared Memory Block Kernel
Constant Memory Grid Anwendung

Local Memory Thread Kernel
Global Memory Grid Anwendung

Tabelle 2.2: Speicherarten sortiert in aufsteigender Reihenfolge nach Zugriffszeit

Speicherarchitektur

Die CUDA Speicherarchitektur unterscheidet zwischen verschiedenen Speicherarten mit
unterschiedlichen Zugriffszeiten (siehe Tabelle 2.2) und ist entsprechend als Cache Coherent
NUMA (ccNUMA) einzuordnen. Register und Shared Memory sind on-chip und damit die
schnelleren Speicherarten. Local, Constant und Global Memory sind off-chip und deshalb
erheblich langsamer.

Die Bezeichnung Local Memory ist hier irreführend, da es sich nicht um schnellen lokalen
Speicher handelt, sondern um langsamen globalen Speicher mit anderer Sichtbarkeit und Le-
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2.4 Graphics Processing Units

C/C++ CUDA
Kernel

NVCC

PTX Code

CPU Code C/C++ Compiler

PTX Compiler GPU
Machine Code

CPU
Machine Code

Abbildung 2.6: Übersetzung von C/C++-CUDA-Code mittels NVCC in Maschinen-Code.

benszeit. Local Memory wird verwendet, wenn der Register-Allocator des CUDA-Compilers
nicht alle Variablen eines Kernels auf die verfügbaren Register abbilden kann. Dieser Fla-
schenhals kann durch Analyse des Assembler-Codes lokalisiert und beispielsweise durch
Einsatz von Shared Memory beseitigt werden.

Aufgrund der geringen Anzahl an Speicherbänken im Verhältnis zu CUDA Cores sollte ein
Thread, der Global Memory verwendet, mit möglichst wenigen Speicherbänken gleichzeitig
interagieren. Ungünstige Nutzung des Global Memory führt zu sequenzieller Ausführung
der Threads und dem Verlust der Cache Kohärenz.

Implizites Caching ist bei der Fermi-Architektur generisch implementiert, was bei älteren
Architekturen nur für Lesezugriffe auf Texturen implementiert war. Explizites Caching kann
mittels Shared Memory implementiert werden.

Werkzeuge

Der CUDA-Code wird, wie in Abbildung 2.6, mittels eines Compiler-Drivers namens NVI-
DIA C Compiler (NVCC) kompiliert. Dieser übersetzt zunächst den CUDA-Kernel in Parallel
Thread Execution Assembler (PTX-Assembler) und normalen C/C++-Code. Anschließend
startet NVCC einen PTX-Compiler, der GPU-spezifischen Maschinen-Code erzeugt und
einen C/C++-Compiler, der CPU-spezifischen Maschinen-Code erzeugt. Beides wird an-
schließend zu einer ausführbaren Datei verlinkt. Der GPU-spezifische Maschinen-Code
wird beim Ausführen der Anwendung durch den Grafikkartentreiber auf die Grafikkarte
hochgeladen.

Das Werkzeug NVIDIA Parallel Nsight dient dem Debugging und Profiling von CUDA-Code
auf der Grafikkarte. Für den Debugging-Modus werden zwei GPUs benötigt. Gleichzeitiges
Debugging von CPU- und GPU-Code ist nicht möglich. Beide Einschränkungen schmälern
den Anwenderkreis und den praktischen Nutzen. Der Profiling-Modus hat diese Einschrän-
kungen nicht und liefert detaillierte Informationen über Auslastung und Laufzeiten. Bei der
Suche nach einem Flaschenhals wird der Suchaufwand durch dieses Werkzeug merklich
reduziert.
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3 Verwandte Arbeiten

In diesem Kapitel wird ein Überblick über themenverwandte Arbeiten, Verfahren und
Werkzeuge gegeben. Für viele der im Folgenden vorgestellten Werkzeuge steht allerdings
eine statische Betrachtung des ‚aktiven Teils‘ eines Proteins im Vordergrund.

Obwohl viele der hier vorgestellten Verfahren als interaktiv angepriesen werden, sind sie
größtenteils im Kontext statischer Daten beschrieben. In wie weit die Verfahren im Einzelnen
für zeitabhängige Daten geeignet sind, soll im Rahmen dieser Arbeit, nicht geprüft werden.

3.1 Voronoibasierte Verfahren

Die erste Gruppe von Verfahren nutzt Voronoi-Diagramme als Grundlage für die Suche
nach intra-molekularen Pfaden. Voronoi-Diagramme geben eine durch Punkte definierte
Partitionierung des Raumes an. Eine Partition wird auch Voronoi-Region genannt. Eine
Voronoi-Region entspricht dem Schnitt der durch Formel 3.1 beschriebenen Ebenen zwischen
den Punkten p ∈ C und q ∈ C \ {p}, wobei p das Zentrum einer Voronoi-Region ist.

(3.1) d(p, q) = {x ∈ RN : |p− x| < |q− x|}

Durch eine Erweiterung der Definition können Kugeln, wie durch die Van-der-Waals-Kräfte
der Atome bestimmt, anstelle von Punkten verwendet werden. Das Voronoi-Diagramm
wird als Graph für die Suche nach Pfaden innerhalb des Proteins interpretiert (vergleiche
Abbildung 3.1). Bei einfachen Ansätzen, wie in Caver [BEB+

11] und Mole [PKKO07] realisiert,
wird ein Startpunkt für die Suche nach dem kürzesten Weg vom Inneren des Proteins zur
Oberfläche durch den Benutzer festgelegt. In komfortableren Ansätzen, wie in Voronoi-Based
Extraction and Visualization of Molecular Paths [LBH11] beschrieben, werden alle von außen
zugänglichen Pfade in Betracht gezogen, sodass der Benutzer das Ergebnis durch Selektion
und Filterung lediglich verfeinern muss.

21



3 Verwandte Arbeiten

Abbildung 3.1: Voronoi-Diagramm als Graph aus den Van-der-Waals-Kräften der Ato-
me (links [PKKO07]) und die Visualisierung eines Tunnel-Pfades (rechts
[LBH11]).

ASPs

Abbildung 3.2: Auf Gitter (links [WPS07]) und auf Sonden (rechts [HS06]) basierende
Verfahren. ASP steht für Active Site Point.
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3.2 Sonden- und gitterbasierte Verfahren

Probe 

VdW Surface 
(Atoms) 

Probe paths 

Solvent Accessible Surface 

Solvent Excluded Surface 

Abbildung 3.3: Schematische Darstellung der Oberflächendefinition [KGE11].

3.2 Sonden- und gitterbasierte Verfahren

Die zweite Gruppe von Verfahren nutzt Sonden oder Gitter für die Suche nach intra-
molekulare Taschen. Ein zentrales Problem dieser Verfahren ist die Oberflächendefinition.
Abbildung 3.3 zeigt die in diesem Kontext gängigen Oberflächendefinitionen Solvent Ex-
cluded Surface (SES) und Solvent Accessible Surface (SAS). Beispielsweise berechnet das
Werkzeug McVol [TU10] die Oberfläche mit Hilfe eines Monte Carlo Verfahrens. In Me-
gaMol [KFR+

11] wird dieses Problem durch eine approximierte, SES-ähnliche Oberfläche,
die sehr zügig durch Splatting berechnet werden kann, gelöst. Abbildung 3.2 zeigt den
Unterschied zwischen einem auf Gitter und einem auf Sonden basierenden Verfahren:

Gitterbasierte Verfahren füllen Taschen anhand eines festen Gitters, um die Ausdehnung
einer Tasche zu bestimmen. Dieser Ansatz hat den Nachteil, dass dünne, diagonal verlau-
fende Tunnel und Taschen bei niedriger Auflösung schlecht abgebildet werden. Bei hoher
Auflösung steigt die Rechenzeit. Diese Verfahren sind in LIGSITE [HS06] und PocketPi-
cker [WPS07] implementiert.

Sondenbasierte Verfahren lagern in einem ersten Schritt kugelförmige Sonden in atom-
ähnlicher Größe an die Proteinoberfläche an. Sonden, die sich nicht in einer Tasche befinden,
werden wieder entfernt. Anschließend werden an die übrigen Sonden weitere Sonden an-
gelagert, bis die jeweiligen Taschen voll sind. Diese Verfahren sind in PASS [BS00] und
Hollow [HG08] implementiert.
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3 Verwandte Arbeiten

Abbildung 3.4: Proteintasche als Dreiecksnetz (links [LWE98]) und Einfärbung nach Tiefe
anhand der konvexen Hülle (rechts [CS06]).

3.3 Verfahren auf Basis von Hüllendefinitionen

Die dritte Gruppe von Verfahren nutzt Hüllendefinitionen als Grundlage (siehe Abbil-
dung 3.4). In CAST [LWE98] wird auf Basis von Alpha-Shapes mittels Delaunay-Triangulation
ein Dreiecksnetz gebildet. Ein Alpha-Shape ist eine durch Kugeln definierte Hülle. Jede
Kugel eines Alpha-Shapes hat den Radius α und darf Punkte (hier: Atome) lediglich be-
rühren, aber nicht enthalten. Bei der Delaunay-Triangulation werden Punkte zu Dreiecken
verbunden, wenn eine Kugel platziert werden kann, in der keine anderen Punkte liegen,
sodass ein direkter Bezug zu Voronoi-Diagrammen besteht: Jeder Schnittpunkt zwischen
Voronoi-Regionen entspricht dem Zentrum einer Kugel. In Travel Depth, a New Shape Descrip-
tor for Macromolecules: Application to Ligand Binding [CS06] wird die konvexe Hülle verwendet,
um eine Metrik für die Tiefe zu definieren. Das Interessante an dieser Metrik ist, dass das
aktive Zentrum meist tief im Inneren eines Proteins liegt. Entsprechend liegt die Tiefe Null
auf der konvexen Hülle. Die Berechnung der konvexen Hülle ist allerdings aufwendig.
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4 Entwurf

In diesem Kapitel werden mögliche Lösungswege in Form von Entwurfsüberlegungen
skizziert und über den Einsatz von Marching Cubes, Marching Tetrahedrons, Segmentierung
und Korrelation reflektiert. Eine Beschreibung der realisierten Lösung befindet sich in
Kapitel 5.

4.1 Marching Cubes

Marching Cubes ist ein von Lorensen und Cline [LC87] entwickeltes Verfahren zur Berech-
nung von polygonalen Isoflächen aus Volumendaten. Dazu wird in einem ersten Schritt ein
Volumen in ein gleichmäßiges Gitter unterteilt. Ein Gitterelement wird, wie bei Marching
Cubes üblich, Würfel genannt und besteht aus acht Eckpunkten. Jeder Eckpunkt eines Wür-
fels wird anhand eines Schwellwerts als innenliegend oder außenliegend klassifiziert. Aus
der Konfiguration des Würfels kann auf den Schnitt mit der Isofläche geschlossen werden.
Jeder der acht Eckpunkte hat zwei mögliche Zustände, sodass es 28 = 256 mögliche Konfi-
gurationen gibt, die durch Ausnutzung von Symmetrien auf 15 Fälle (siehe Abbildung 4.1)
vereinfacht werden können. Bereits kurz nach der Veröffentlichung des Algorithmus fiel auf,
dass die Fälle 3, 4, 6, 7, 10, 12 und 13 unterschiedlich interpretiert werden können. Unter-
schiedliche Interpretation führt zu Mehrdeutigkeiten, was sich in Löchern im Polygonnetz
äußert, wenn keine entsprechende Sonderfallbehandlung, wie durch Newman und Yi [NY06]
in ihrer Zusammenstellung beschrieben, erfolgt.

0 1 2 3 4 5 6 7

8 9 10 11 12 13 14

Abbildung 4.1: Grundlegende Topologien für Marching Cubes [NY06].
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(a) Minimal (5) (b) Freudenthal (6) (c) Face-Divided (12a) (d) Face-Divided (12b)

(e) BCC (12 average) (f) Face-Centred (24) (g) Edge-Centred (48)

Abbildung 4.2: Unterteilungschemata für Marching Tetrahedrons [CMS06].

4.1.1 Marching Tetrahedrons

Für Marching Cubes wurde ein Patent erteilt, weshalb der Algorithmus lange nicht genutzt
werden konnte, ohne Gebühren zu entrichten. Das Patent lief im Jahr 2005 aus. Deshalb
wurde mit Marching Tetrahedrons eine Alternative entwickelt, die Tetraeder anstelle von
Würfeln verwendet. Um ein kubisches Gitter in Tetraeder zu unterteilen, sind verschiedene
Schemata denkbar (siehe Abbildung 4.2). Die Arbeit von Carr, Moller und Snoeyink [CMS06]
zeigt, dass die entstehenden Artefakte, je nach Schema, sehr unterschiedlich ausfallen können.
Die durch die Approximation entstehenden Artefakte, besonders bei geringer Auflösung,
spielen für diese Arbeit keine Rolle, denn die Gitterauflösung kann maximal gewählt werden:
Ein Gitterpunkt wird einem Voxel entsprechen.

Die am häufigsten verwendete Unterteilung für Marching Thedrahedrons ist das sechs
Tetraeder-Schema in Abbildung 4.2 (b). Jeder der vier Eckpunkte eines Tetraeders hat zwei
mögliche Zustände, sodass es 24 = 16 mögliche Konfigurationen gibt, die bei geschickter
Implementierung, wie durch Kipfer und Westermann [KW05] beschrieben, auf drei Fälle
(siehe Abbildung 4.3) vereinfacht werden können.

4.1.2 Vergleich

Für Marching Cubes spricht, dass eine fertige Implementierung in CUDA vorhanden ist.
Marching Cubes benötigt 12 Schnittberechnungen (eine für jede Würfelkante) und erzeugt
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4.2 Segmentierung
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Abbildung 4.3: Grundlegende Topologien für Marching Tetrahedrons [KW05].

höchstens 4 Dreiecke pro Würfel. Gegen Marching Cubes spricht, dass Mehrdeutigkeiten ge-
sondert behandelt werden müssen und Lookup-Tabellen für 256 Konfigurationen relativ groß
ausfallen. Für Marching Thedrahedrons spricht, dass keine Mehrdeutigkeiten existieren, die
Lookup-Tabellen für 16 Konfigurationen relativ klein ausfallen und der Algorithmus deshalb
einfacher zu modifizieren ist. Marching Thedrahedrons benötigt 19 Schnittberechnungen -
nicht jede der 6 Kanten eines Tetraeders ist relevant - und erzeugt höchstens 2 Dreiecke pro
Tetraeder oder 12 Dreiecke pro Würfel. Gegen Marching Tetrahedrons spricht, dass keine
fertige Implementierung in CUDA vorhanden ist. Obwohl mehr Dreiecke berechnet werden,
ist das nicht unbedingt als Nachteil zu werten, denn jeder Tetraeder kann parallel berechnet
werden.

Die Wahl fiel letztlich auf Marching Thedrahedrons, weil das Ermitteln der Nachbarschaft
zwischen Tetraedern leichter zu implementieren und die Approximation genauer ist. Außer-
dem konnten Teile der fertigen Marching Cubes Implementierung für Marching Tetrahedrons
wiederverwendet werden. Eine Beschreibung der Implementierung befindet sich in Kapitel 5

auf Seite 35.

4.2 Segmentierung

Die Segmentierung eines allgemeinen Dreiecksnetzes ist ein Problem aus der Graphentheorie.
Bei Marching Thedrahedrons bilden sechs Tetraeder einen Würfel, die zusammen wiederum
ein Gitter bilden, sodass eine Ähnlichkeit zu Voxeldaten besteht. Verfahren zur Bildsegmen-
tierung arbeiten klassischerweise auf Pixelebene, können aber meist auf Voxel übertragen
werden. Ein Exkurs in die Bildsegmentierung lohnt, weil GPGPU in der Bildverarbeitung
weiter verbreitet ist als in der klassischen Graphentheorie. Außerdem werden möglicher-
weise übertragbare, zusätzliche Eigenschaften, wie Farbe oder Gradient verwendet, um das
Ergebnis zu verbessern.

Große Teile des folgenden Abschnitts stammen aus Erfahrungen im Rahmen eines Studi-
enprojekts und aus einem Abriss von O. Wirjadi [Wir07]. Für jede Verfahrensart folgt eine
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4 Entwurf

kurze Beschreibung mit Informationen über die Beschaffenheit der berechneten Segmente,
Eignung für dynamische Daten, veränderbare Parameter und die Parallelisierbarkeit.

4.2.1 Schwellwertverfahren

Bei Schwellwertverfahren wird anhand eines Schwellwerts s entschieden, ob ein Pixel p zu
einem der Segmente s0 oder s1 gehört:

(4.1) S(p) =

{
0 falls p < s

1 falls p ≥ s

Pro Schwellwertverfahren sind leicht zu implementieren und parallel berechenbar.

Contra Proteine haben mit großer Wahrscheinlichkeit mehr als zwei Segmente. Schwell-
wertverfahren sind sehr anfällig gegenüber dynamischen Effekten, wie zeitabhängige Ände-
rungen oder Rauschen, und das Ergebnis hängt von der Qualität des Schwellwerts ab.

4.2.2 Kantenerkennung

Bei der Kantenerkennung werden Flächen anhand von Kantenoperatoren, wie dem Sobel-
Operator oder Laplace-Operator, getrennt. Ein Kantenoperator unterscheidet zwischen
{sKante, sNichtKante} und wird häufig als Filter-Matrix dargestellt, deren Anwendung einer
diskreten Faltung entspricht.

Pro Falls es bereits eine geeignete Filter-Matrix gibt, sind sie ebenfalls leicht zu implemen-
tieren und parallel berechenbar. Ein Operator, der auf der Oberflächenkrümmung basiert,
könnte verwendet werden, um Taschen oder Tunneleingänge zu erkennen.

Contra Proteine haben mit großer Wahrscheinlichkeit mehr als zwei Segmente, sodass
Kantenerkennung lediglich ergänzend eingesetzt werden könnte. Kantenoperatoren sind
ebenfalls anfällig für dynamische Effekte. Das Herleiten einer eigenen Filter-Matrix oder
Erfinden eines Kantenoperators ist mathematisch anspruchsvoll.
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4.2.3 Regions- und formbasierte Verfahren

Bei regionsbasierten Verfahren wird anhand eines Prädikats entschieden, ob zwei Pixel
dem gleichen Segment angehören. Ein solches Prädikat kann durch Region-Growing oder
Region-Merging angewendet werden. Region-Growing bezeichnet einen Prozess, bei dem ein
Startpixel, auch ‚Seed‘ genannt, ausgewählt und diese Region anhand ihrer anliegenden Pixel
vergrößert wird, bis keine Veränderung mehr zu beobachten ist. Region-Merging funktioniert
ohne Seed und vereinigt so lange Pixel zu Regionen, bis keine Veränderungen mehr zu
beobachten sind. Formbasierte Verfahren unterscheiden sich von regionsbasierten Verfahren
durch die Berücksichtigung der Ränder und benötigen immer einen Seed. Bekannte Vertreter
dieser Verfahren sind Level-Set und Deformable Surfaces. Dieser Weg wurde mit A new
marching cubes algorithm for interactive level set with application to MR image segmentation [FB10]
bereits von Anderen beschritten

Pro Regions- und formbasierte Verfahren sind bis zu einem gewissen Grad parallel imple-
mentierbar. Die Anwendung eines Prädikats ist sehr allgemeingültig, also erweiterbar und
veränderbar. Die Anfälligkeit für dynamische Effekte hängt stark vom verwendeten Prädikat
ab.

Contra Seeds entsprechen einer Benutzereingabe, was einer Arbeitsthese widerspricht. Das
Auflösen von Segmentreferenzen beim Zusammenführen großer Segmente ist kein triviales
Problem.

4.2.4 Textur- und modellbasierte Verfahren

Texturbasierte Verfahren suchen nach Mustern, meist Oberflächenstrukturen. Modellbasierte
Verfahren ordnen ein Pixel einem Segment anhand von Wissen über die Daten zu („Gras ist
grün, Straße ist schwarz, Fahrbahnmarkierungen sind weiß“).

Pro Die Einbringung von Wissen kann das Problem vereinfachen.

Contra Ein textur- oder modellbasierter Ansatz macht in diesem Kontext keinen Sinn, da
lediglich bekannt ist, dass das Volumen Kugeln enthält.

4.2.5 Abwägung

Aufgrund der parallelen Verarbeitungsstrategie und beeinflusst von der Veröffentlichung
Analysis of a step-based watershed algorithm using CUDA [VKALF10] erschienen regionsbasierte
Verfahren geeignet. Es wird kein Startwert oder besonderes Wissen über die Daten benö-
tigt; außerdem ist das Prädikat erweiterbar. Das Prädikat wird zunächst so definiert, dass
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4 Entwurf

zusammenhängende Voxel ein Segment bilden. Als Erweiterung des Prädikats kommen
beispielsweise Gradient, Krümmung und Voronoi-Region in Frage.

4.3 Korrelation über Zeit

In der Aufgabenstellung wird eine Korrelation der Dreiecksnetze über Zeit, also deren
Bewegungen, gefordert. Die Ähnlichkeit zweier Funktionen x und m lässt sich wie in
Formel 4.2 mit m∗ als komplex-konjugiertes m definieren.

(4.2) x ◦m =
∫ ∞

−∞
x(t)m∗(t + τ)dt

Die Position eines Dreiecks kann als integrierte Geschwindigkeitsfunktion betrachtet wer-
den. Mittels Korrelation kann für jedes Dreieck eine Aussage über die Ähnlichkeit zum
vorherigen Zeitschritt getroffen werden. Die Korrelation x ◦m lässt sich mit Hilfe der Fourier-
Transformation (FT) wie in Formel 4.3 berechnen.

FT(x ◦m) = FT(x)FT∗(m)

x ◦m = FT−1 (FT(x)FT∗(m))
(4.3)

Die Fourier-Transformation bildet vom Ortsraum in den Frequenzraum ab. Die Ähnlichkeit
kann durch filtern nach Extrema und Rücktransformation in den Ortsraum visualisiert
werden.

Auch die schnelle Fourier-Transformation (FFT) kostet viel Rechenzeit, weshalb für diese
Arbeit folgende Vereinfachung gemacht wird: Wenn man für jedes unabhängige Segment
einen Schwerpunkt si aus den Eckpunkten eines Dreiecksnetzes vj wie in Formel 4.4 bildet,
bleiben wenige Werte übrig, die korreliert werden müssen.

(4.4) si =
Ni

∑
j=1

vj

Ni

Der zeitliche Vorgänger eines Segments wäre demnach mit großer Wahrscheinlichkeit das
Segment aus dem letzten Zeitschritt, dessen Schwerpunkt am nächsten liegt. Diese Heuristik
verliert ihre Eindeutigkeit dann, wenn zwei Komponenten zwischen einzelnen Zeitschritten
‚Sprünge‘ in nächster Nähe machen, was Abbildung 4.4 verdeutlicht. Man kann allerdings
davon ausgehen, dass dieser Fall in der Praxis nicht vorkommt: Animationsschritte sind in
MegaMol zeitlich dicht gestaffelt und folgen einem physikalischen Gleichgewichtsmodell
einer Molekulardynamik-Simulation. Ereignisse wie Amalgamieren und Aufspalten können
anhand des zeitlichen Verlaufs klassifiziert werden.

Ein praktischer Vergleich zwischen einem Ansatz auf Basis der Fourier-Transformation und
auf Basis von Schwerpunkten oder eine Kombination war aus zeitlichen Gründen nicht
möglich.

30



4.4 MegaMol

Δs1

Δs2

A0

B0

A1

B1

Abbildung 4.4: Fehlerfall der Korrelationsheuristik über Schwerpunkte: mit ∆s1 < ∆s2 wird
B0 fälschlicherweise A1 zugeordnet.

Core

Plug-in

Plug-in

Plug-in

Plug-in

Front End

Abbildung 4.5: MegaMol Softwarearchitektur [Gro10].

4.4 MegaMol

Das MegaMol Framework wurde an der Universität Stuttgart im Rahmen des Sonderfor-
schungsbereichs SFB 716 von Sebastian Grottel [Gro10] entwickelt und dient als gemeinsame
Software-Plattform für die Visualisierungsprojekte des Sonderforschungsbereiches. MegaMol
ist auf Partikeldaten und -rendering ausgelegt und kann mit Hilfe von einfachen XML-
und Parameterdateien konfiguriert werden: In den XML-Dateien wird ein Scene Graph aus
‚Module-Knoten‘ und ‚Call-Kanten‘ definiert, der mit Hilfe einer Textdatei, die Schlüssel-
Wert-Paare enthält, parametrisiert wird.

4.4.1 Softwarearchitektur

Die Softwarearchitektur des MegaMol Frameworks ist ein typisches Drei-Ebenen-Modell
(siehe Abbildung 4.5):

Core Die Core-Komponente ist eine dynamische Bibliothek, die von allen anderen Kom-
ponenten verwendet wird. Core implementiert die Basisklassen Module, Call und einige
Hilfsklassen unter anderem für den Umgang mit Konfigurationsdateien. Ein Module ent-
spricht idealerweise einem Zweck, wie dem Laden einer Datei, durchführen einer Berechnung
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4 Entwurf

Abbildung 4.6: Ball&Stick-Darstellung (links [KBE08]) der Atome, Cartoon-Darstellung
(mittig [KBE08]) von α-Helix und β-Faltblatt und Volumen-Darstellungen
eines Solvent Excluded Surfaces (rechts [KFR+

11]).

oder Darstellung eines Ergebnisses, sodass komplexes Verhalten durch Konfiguration her-
gestellt werden kann. Es wird sowohl das Push- als auch das Pull-Mantra im Umgang mit
Arbeitsdaten unterstützt. Ein Module ist Eigentümer der Daten. Ein Call entspricht einem
Aufruf einer Module-Instanz.

Frontend MegaMol kann in andere Anwendungen eingebettet werden, weshalb Frontend-
Komponenten getrennt zu betrachten sind. Im Fall von MegaMol Console ist das Frontend
eine eigenständige Konsolenanwendung, die eine Konfiguration lädt und anzeigt.

Plug-ins Plug-ins sind dynamische Bibliotheken mit der Dateiendung *.mmplg. Plug-ins
erweitern die Funktionalität von MegaMol zur Laufzeit um neue Modules und Calls.

4.4.2 Protein Plug-in

Das Protein Plug-in erweitert MegaMol um rund 50 Klassen, die von Module oder Call erben,
für die Interaktion mit Proteindaten. Zu den vorhandenen Modulen gehören unter ande-
rem ein PDBLoader, der *.pdb und *.xtc Dateien laden kann. PDB-Dateien enthalten eine
ASCII-Beschreibung des Proteins. XTC-Dateien ergänzen PDB-Dateien um binär kodierte Tra-
jektorien im GROMACS-Format. GROMACS ist eine Software für die Simulation von Mole-
kulardynamik. Der Zugriff auf PDB- und XTX-Daten erfolgt mittels MolecularDataCall. Ein
Großteil der übrigen Klassen implementieren Atom-, Cartoon- oder Volumen-Darstellungen
(siehe Abbildung 4.6).
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4.4 MegaMol

megamol::protein

megamol::core

VolumeMeshRenderer MolecularDataCall

view

AbstractGetData3DCall

VolumeSliceCall

Render3DModule

ProteinVolumeRenderer

Call

<<depends>>

<<use>>

<<use>>

Abbildung 4.7: VolumeMeshRenderer als Klassendiagramm.

4.4.3 Neue Komponenten

Die Komponenten sind so entworfen, dass möglichst wenige Änderungen an bestehenden
Klassen gemacht werden müssen, um das Merging in den Hauptentwicklungszweig von
MegaMol Protein zu erleichtern.

Es wird an die drei Klassen VolumeSliceCall, ProteinVolumeRenderer und
MolecularDataCall angeknüpft (siehe Abbildung 4.7). Das Splatting aller Atome ei-
nes Proteins in eine Volumen-Textur ist bereits in ProteinVolumeRenderer implementiert
und ist über einen VolumeSliceCall zugänglich. MolecularDataCall wird für die Ani-
mationsdaten benötigt. Der VolumeMeshRenderer enthält die Routinen zur Berechnung
des Dreieckesnetzes mittels Marching Thedrahedrons, Segmentierung, Korrelation und
eine einfache grafische Ausgabe. Die Klasse ist so angelegt, dass die einzelnen Routinen
möglichst unabhängig voneinander sind, um ein Refactoring zwecks Wiederverwendung zu
erleichtern.

33





5 Implementierung

In diesem Kapitel wird die Implementierung erläutert. Die Beschreibung der Algorithmen
und Datenstrukturen ist weitgehend von der Programmiersprache abstrahiert. Dieses Kapitel
hat nicht den Anspruch einer Bauanleitung. Gängige Technologie-Idiome, wie das Bilden
eines Index aus CUDA Thread- und Block-ID für den kohärenten Cache-Zugriff, werden
nicht näher erläutert, weshalb Erfahrung mit C++ und CUDA empfohlen wird.

5.1 Überblick

Es kann davon ausgegangen werden, dass die Proteindaten bereits als Volumentextur
verfügbar sind. Das Ergebnis wird im Anschluss grafisch aufbereitet. Es folgt zunächst
eine stark vereinfachte Auflistung der einzelnen Arbeitsschritte, um einen Überblick zu
vermitteln:

1. Marching Tetrahedrons

a) ‚Aktive‘ zu ‚Arbeits‘-Würfeln verdichten

i. Würfel als aktiv oder inaktiv klassifizieren

ii. Abbildung von Arbeits-Würfeln auf aktive Würfel erzeugen

b) Tetraeder in einem aktiven Würfel klassifizieren

c) Zusammenhangslose Dreiecke erzeugen

2. Komponenten segmentieren

a) Alle Tetraeder aufsteigend nummerieren

b) Lokales Minimum (Tetraeder-Nummer) in der direkten Nachbarschaft jedes Tetra-
eders finden

c) Referenzpfade komprimieren

d) Segmentnummer zuweisen

3. Komponenten über Zeit korrelieren

a) Schwerpunkt einer Komponente berechnen

b) Bezug zu vorherigem Zeitschritt herstellen

c) Ereignisse klassifizieren
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5 Implementierung

Index 0 1 2 3 4 5

Würfel-Aktivität 0 0 1 1 0 1

Würfel-Versatz 0 0 0 1 2 2

Arbeits-Würfel 2 3 5

Tabelle 5.1: Beispiel für das Erzeugen einer Abbildung von ‚Arbeits‘-Würfeln auf ‚aktive‘
Würfel

5.2 Marching Tetrahedrons

Die im Rahmen dieser Arbeit erstellte Implementierung von Marching Tetrahedrons basiert
auf der Marching Cubes Implementierung, die dem CUDA Toolkit von NVIDIA beiliegt,
einem Artikel über Marching Cubes sowie Marching Tetrahedrons von Paul Bourke [Bou94]
und der Präsentation Large-Scale Isosurfacing on a Distrubuted GPU Cluster [BJN10]. Die Kennt-
nis der drei grundlegenden Topologien für Marching Tetrahedrons (siehe Abbildung 4.3,
Seite 27) wird im Folgenden vorausgesetzt. Die acht Eckpunkte eines Würfels, der wiederum
sechs Tetraeder enthält, entsprechen acht aneinander liegenden Voxeln, sodass die Auflösung
maximal ist.

5.2.1 Verdichtung der Würfel

Zunächst wird nach ‚Aktivität‘ von Würfeln verdichtet. Ein Würfel wird als inaktiv betrachtet,
wenn alle Eckpunkte des Würfels innen- oder außenliegend sind. Die Verdichtung reduziert
die Datenmenge für nachfolgende Arbeitsschritte um 90-95% und sorgt gleichzeitig für eine
gleichmäßigere Auslastung der Hardware, da praktisch jeder CUDA Thread anschließend
Dreiecke generiert. Dazu werden in einem ersten Schritt alle Würfel parallel nach Aktivität
klassifiziert. Anschließend wird der Versatz für eine Abbildung von ‚Arbeits-Würfel-Index‘
auf ‚Aktiver-Würfel-Index‘ durch eine Präfix-Summe aus der Thrust-Bibliothek [HB10]
berechnet und die eigentliche Abbildung erzeugt. Tabelle 5.1 verdeutlicht die einzelnen
Schritte an einem Beispiel. Die Auswirkungen auf das Leistungsverhalten durch diese
Optimierung sind in Kapitel 6 dokumentiert.

5.2.2 Klassifizierung der Tetraeder

Die verbleibenden 5-10% der aktiven Würfel werden in sechs Tetraeder wie in Abbildung 5.1
anhand der Tabelle 5.2 aufgeteilt. Die Konfiguration k(i) des i-ten Tetraeders in einem
Würfel wird wie in Formel 5.1 anhand des Schwellwertes t berechnet und, wie für Marching
Tetrahedrons üblich, als Bitfeld dargestellt.
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P1

P2

P3

P4

P5

P6

P7

P8

T1

T2

T3

T4

T5

T6

Abbildung 5.1: Aufteilung eines Würfels (links) in sechs Tetraeder (rechts)

T1
i T2

i T3
i T4

i
T1 P1 P6 P2 P7

T2 P1 P2 P3 P7

T3 P1 P3 P4 P7

T4 P1 P4 P8 P7

T5 P1 P8 P5 P7

T6 P1 P5 P6 P7

Tabelle 5.2: Aufteilung eines Würfels in sechs Tetraeder

c(i, j) =

{
0 falls f (~T j+1

i ) ≤ t

1 falls f (~T j+1
i ) > t

k(i) =
3

∑
j=0

c(i, j)2j

(5.1)

Anhand der 16 möglichen Konfigurationen kann klassifiziert werden, ob ein Tetraeder null,
drei oder sechs Eckpunkte erzeugt (vergleiche Tabelle 5.4). Der Versatz der Eckpunkte inner-
halb des Dreiecksnetzes wird ebenfalls mit einer Präfix-Summe anhand der Klassifikation
berechnet.

5.2.3 Berechnung der Dreiecke

Der für die Zieladresse nötige Versatz eines Dreiecks wurde im vorhergehenden Schritt
berechnet, sodass für jeden Tetraeder unabhängig null bis zwei Dreiecke erzeugt werden
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E1 E2 E3 E4 E5 E6

Eckpunkt A der Tetraederkante T1
i T2

i T3
i T1

i T2
i T3

i
Eckpunkt B der Tetraederkante T2

i T3
i T1

i T4
i T4

i T4
i

Tabelle 5.3: Abbildung von Tetraederkanten auf Eckpunkte

Konfiguration Kantenmaske |Eckpunkte| Tetraederkanten
00002 00 00002 0

00012 00 11012 3 E1 E4 E3

00102 01 00112 3 E1 E2 E5

00112 01 11102 6 E2 E5 E3 E3 E5 E4

01002 10 01102 3 E2 E3 E6

01012 10 10112 6 E1 E4 E6 E1 E6 E2

01102 01 00112 6 E1 E3 E6 E1 E6 E5

01112 11 10002 3 E6 E5 E4

10002 11 10002 3 E4 E5 E6

10012 01 00112 6 E5 E6 E1 E6 E3 E1

10102 10 10112 6 E2 E6 E1 E6 E4 E1

10112 10 01102 3 E6 E3 E2

11002 01 11102 6 E4 E5 E3 E3 E5 E2

11012 01 00112 3 E5 E2 E1

11102 00 11012 3 E3 E4 E1

11112 00 00002 0

Tabelle 5.4: Für jede Tetraederkonfiguration: Kantenmaske, Anzahl der erzeugten Dreiecke
und benötigte Kanten

können. Eine Kante eines Tetraeders trägt genau dann zu einem Dreieck bei, wenn einer der
Eckpunkte einer Kante innen- und der andere außenliegend ist. Anhand der Konfiguration
kann mit Hilfe einer Kantenmaske aus Tabelle 5.4 geprüft werden, ob eine Kante einen
Eckpunkt erzeugt. Für jede zu betrachtende Kante wird anhand von Tabelle 5.3 zwischen
zwei Eckpunkten des Tetraeders a und b anhand des Schwellwertes t, wie in Formel 5.2,
linear interpoliert.

δ =
t− f (~a)

f (~b)− f (~a)

~v =~a + δ(~b−~a)
(5.2)
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5.3 Segmentierung der Komponenten

Abbildung 5.2: Eine Iteration der Label-Äquivalenz-Methode. Von links nach rechts: die
anfängliche Beschriftung und Äquivalenzliste, die Liste nach der Scan-
Phase, die Liste nach der Analyse-Phase und das Ergebnis der ersten Iterati-
on [HLP10].

5.3 Segmentierung der Komponenten

Es stellte sich schnell heraus, dass ein naiver Ansatz, wie das Vergleichen aller Tetraeder
gegeneinander, ungeeignet war, um zusammenhängende Komponenten zu finden, wenn
man den Anspruch hat, mehr als 15-25 Bilder pro Sekunde zu berechnen: das Herunterladen
einiger Megabyte von der Grafikkarte in den Hauptspeicher, dortiges Verarbeiten mit der
CPU, um das Ergebnis wieder auf die Grafikkarte zu laden, benötigt über 100ms, was
weniger als 10 Bildern pro Sekunde entspricht.

Die im Folgenden beschriebene Segmentierung basiert auf der Arbeit Parallel Graph Compo-
nent Labelling with GPUs and CUDA [HLP10] von Harwick et al.. Der Verständlichkeit halber
wird der Algorithmus zunächst als Pixelbild anhand von Abbildung 5.2 beschrieben. Der
Algorithmus ist iterativ und zerfällt in eine Scan-, Analysis- sowie Labeling-Phase. Alle
Listen werden vorab mit einer aufsteigenden, eindeutigen Nummer initialisiert. In der Scan-
Phase werden für alle Pixel die direkten Nachbarpixel auf Ähnlichkeit untersucht und das
Minimum in eine Referenzliste geschrieben. In der Analysis-Phase werden die Referenzen
komprimiert. Eine Referenz gilt als komprimiert, wenn sie auf eine Selbstreferenz zeigt oder
eine Selbstreferenz ist. In der Labeling-Phase werden die Referenzen aufgelöst. Diese drei
Schritte werden wiederholt, bis keine Änderungen mehr in der Scan-Phase festgestellt wer-
den. Das Interessante an diesem Algorithmus ist, dass er für jedes Pixel parallel laufen kann
und praktisch keine Synchronisation innerhalb der Phasen benötigt, wenn man von einem
atomaren Minimum beim Schreiben in die Äquivalenzliste in der Scan-Phase absieht.

5.3.1 Tetraedernachbarschaft

Ein Pixel eines Bildes hat 8 direkte Nachbarn. Bei Marching Thedrahedrons gibt es für jeden
Würfeleckpunkt 7 Nachbarwürfel, die jeweils 6 Tetraedern enthalten, die wiederum jeweils
4 Eckpunkte haben, sodass bis zu 168 Eckpunkte auf Gleichheit geprüft werden müssten.
Aufgrund der Art der Implementierung ist die Identität jedes Eckpunkts eines jeden Dreiecks
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Abbildung 5.3: Grenzfall Identität vs. Wert: Die schraffierte Fläche entspricht der Oberflä-
che, weiß gefüllte Punkte liegen außerhalb, schwarz gefüllte Punkte liegen
innerhalb des Volumens und der Wert des markierten Punktes entspricht
dem Schwellwert

bekannt, sodass anhand der Voxelkoordiante eines Tetraeders in O(1) auf einen Eckpunkt
zugegriffen werden kann.

Die Anzahl der Lesezugriffe lässt sich deutlich reduzieren, indem lediglich die Kante eines
Tetraeders untersucht wird. Wie bereits erwähnt, generiert eine Kante genau dann einen
Eckpunkt, wenn einer der Kanteneckpunkte innenliegend und der andere außenliegend ist,
sodass eine Nachbarschaft mit zwei Zugriffen behandelt werden kann:

1. Aktivität des Tetraeders prüfen

2. Auslesen des Bezeichners im Rahmen der Scan-Phase (Minimumsuche)

Anhand der in Abbildung 5.4 abgebildeten Nummerierung der Tetraederflächen und mit
Tabelle 5.5 kann der zu prüfende Tetraeder bestimmt werden. Wichtig ist festzuhalten, dass
es sich bei diesem Nachbarschaftskriterium nicht um eine Prüfung auf Gleichheit, sondern
auf Identität handelt. Das Volumen könnte so gewählt werden, dass Tetraederflächen keine
Nachbarn sind, obwohl es optisch und wertmäßig danach aussieht, wie in Abbildung 5.3
beispielhaft konstruiert. Dieser Fall tritt aufgrund der linearen Interpolation ein, wenn der
Wert eines Voxels dem Schwellwert entspricht, sodass der Zähler zu Null ausgewertet wird
(vergleiche Formel 5.2). Der Interpolator δ funktioniert hier als Gewicht.
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Abbildung 5.4: Nummerierung der Tetraederflächen TiFj

Ti Tk für TiF1 Tk für TiF2 Tk für TiF3 Tk für TiF4

T1 T3

(
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(
0 0 0
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(
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)T

T2 T6

(
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(
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)T
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(
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)T
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(
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)T

T3 T5

(
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)T
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(
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(
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(
0 1 0
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T4 T2

(
−1 0 0

)T
T3

(
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(
0 0 0
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(
0 1 0
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(
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(
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(
0 0 1
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(
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(
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)T
T1

(
0 0 0

)T
T2

(
0 0 1

)T

Tabelle 5.5: Abbildung von Ursprungstetraederfläche TiFj nach Nachbartetraeder Tk mit
Würfelgitterversatz

5.4 Korrelation und Klassifikation von Ereignissen

Die Schwerpunkte aller zusammenhängenden Komponenten werden mittels des Map-
Reduce Entwurfsmusters berechnet. Dazu werden die Bezeichner der Tetraeder aus der
vorhergehenden Segmentierung auf die Eckpunkte der Dreiecke verteilt (Mapping-Phase).
Anschließend wird nach Komponenten sortiert, gezählt, summiert und der Quotient gebildet
(Reduce-Phase).

Vor der Klassifikation wird zunächst für jeden Schwerpunkt eine nach Distanz sortierte Liste
aller Schwerpunkt-Kandidaten aus dem vorherigen Zeitschritt erstellt. Durch Betrachten der
Anzahl an Kandidaten k und Anzahl der Schwerpunkte s, die dem selben Kandidaten am
nächsten liegen, können zeitliche Ereignisse wie folgt klassifiziert werden:
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• k = 0: neue Komponente.

• k = 1 & s = 1: gleiche Komponente.

• k = 1 & s > 1: Aufspaltung in s Komponenten.

• k > 1: Amalgamierung zu einer Komponente.

5.5 Visualisierung

Die Visualisierung ist lediglich ein Sekundärziel der Aufgabenstellung und daher entspre-
chend einfach gehalten. Die für die Beleuchtung relevanten Vertex-Normalen entsprechen
dem Gradient ∇ f des Volumens und werden anhand der zentralen Differenz berechnet
(siehe Formel 5.3). Zusammenhängende Komponenten erhalten eine über die Zeit möglichst
gleichbleibende Farbe durch eine Zuordnungstabelle. Der Blick in das Innere des Proteins
wird mittels Blending hergestellt.

(5.3) ~n = ∇ f =

 f (x− 1, y, z)− f (x + 1, y, z)
f (x, y− 1, z)− f (x, y + 1, z)
f (x, y, z− 1)− f (x, y, z + 1)



5.6 Speicherverwaltung

Das Reservieren des Grafikspeichers benötigt bis zu einigen Millisekunden, was verhältnismä-
ßig viel Zeit ist, im Vergleich zu den Laufzeiten einzelner CUDA Kernels. Eine Abschätzung
des Speicherbedarfs durch den oberen Grenzwert ist nicht sinnvoll, denn für ein Volumen aus
1283 Voxeln bei 6 Tetraedern pro Würfel, die jeweils bis zu 2 Dreiecke erzeugen, mit jeweils 3

Eckpunkten (float4), würden 1, 2GB Grafikspeicher benötigt. Im Verlauf der Berechnungen
werden einige Kopien benötigt und lediglich 5-10% der Voxel sind aktiv. Deshalb wurde
eine adaptive Speicherverwaltungsstrategie implementiert, die so wenig und so selten wie
möglich Speicher reserviert: Jeweils nach bekannt werden der Anzahl an aktiven Würfeln,
Dreiecken und Schwerpunkten wird doppelt so viel Speicher wie benötigt reserviert. Der
Speicher wird nur dann frei gegeben und erneut reserviert, wenn die bereits reservierte
Menge nicht ausreicht. Je nach Datensatz werden mit dieser Strategie lediglich 200MB bis
300MB Grafikspeicher für die gesamte Anwendung benötigt.
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6 Ergebnisse und Bewertung

In diesem Kapitel werden die Ergebnisse in Form von Erkenntnissen und Benchmarks
diskutiert. Dabei wird ausführlich auf Teilergebnisse der realisierten Lösung eingegangen
und falls möglich mit anderen Lösungen verglichen.

Alle Benchmarks wurden auf einem Intel Core i7 950 mit einer GeForce 580 GTX auf Windows
7 Professional 64-Bit durchgeführt. Alle Programme wurden mit Visual Studio 2010 Ultimate
SP1, dem CUDA Toolkit 4.0.17 kompiliert. Vor der Durchführung der Benchmarks wurde
darauf geachtet, dass das System bereits warm gelaufen war und nicht unter Last stand. Der
verwendete Datensatz und die Volumengröße sind jeweils angegeben.

6.1 Bezug zu den Arbeitsthesen

Das im Rahmen dieser Arbeit realisierte Verfahren erkennt zeitliche Ereignisse auf Pro-
teinoberflächen ohne Benutzereingabe unter der Voraussetzung, dass das vorgeschaltete
Volumen-Splatting korrekt ist. Trägt der Benutzer unpassende Splatting-Parameter ein, ist die
Oberflächendefinition möglicherweise verfälscht und somit irreführend. Die von der Arbeit
mit Dreiecksnetzen erhofften Vorteile können nur teilweise bestätigt werden. Einerseits
wurde durch die Identität der Tetraederkanten eine Optimierung ermöglicht. Andererseits
benötigt das Dreiecksnetz bei maximaler Auflösung nahezu die gleiche Menge an Speicher
wie das ursprüngliche Volumen. Abbildung 6.1 zeigt das Dreiecksnetz und das Referenzbild
im Vergleich. Für Entwickler gibt es einige Hilfsdarstellungen (siehe Abbildung 6.2). Die
Arbeit mit der GPU Technologie gestaltete sich erwartungsgemäß deutlich anders als die
Arbeit mit CPU Technologien. Besonders zeitraubend war die Fehlersuche, wenn die CUDA
Laufzeitumgebung lediglich „Unknown Error“ mitteilte oder der Computer unerwartet
einen Neustart auslöste.

6.2 Wirkungen von Optimierungen

Eine Überraschung ist die Optimierbarkeit von CUDA Kernels. Im Folgenden wird die
Auswirkung von Optimierungen bezogen auf Marching Tetrahedrons beschrieben (siehe Ab-
bildung 6.3). Der Entwicklungsverlauf ist anhand von Subversion-Revisionen, die sequenziell
und aufsteigend im Verlauf der Zeit nummeriert werden, datiert:
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6 Ergebnisse und Bewertung

Abbildung 6.1: Drahtgittermodell (oben) und mittels Ray-Tracing erzeugtes Referenzbild
(unten).
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6.2 Wirkungen von Optimierungen

Abbildung 6.2: Hilfsvisualisierungen der Vertex-Normalen als ‚Büschel‘ auf der Oberfläche
(oben) und alle Schwerpunkte der jeweiligen Komponenten als eingefärbte
Kreise mit rotem Rand (unten).
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Abbildung 6.3: Durchschnittliche Laufzeiten (µs) der CUDA Kernels über den Entwicklungs-
zeitraum in Revisionen: links Debug-Builds, rechts Release-Builds. -pre und
-post stehen für ‚vor‘ und ‚nach‘ der Optimierung innerhalb einer Revision.

r355 → r356 Die hier erzielte Halbierung der Laufzeit wurde durch die in Kapitel 5

beschriebene Verdichtung erzielt.

r356 → r360 Als Basis diente ursprünglich eine Marching Cubes Implementierung, bei
der sechs Tetraeder in einem Würfel von einem CUDA Thread berechnet werden - obwohl
die Tetraeder in einem Würfel unabhängig voneinander sind. Deshalb wurde zunächst die
Schleife parallelisiert, ohne das Speicherlayout zu verändern

r360→ r361 In diesem Arbeitsschritt wurde das Speicherlayout auf Tetraeder angepasst,
sodass pro Tetraeder statt 8 Zugriffen auf die Würfeleckpunkte lediglich 4 Zugriffe auf die
Tetraedereckpunkte benötigt wurden. Dieser und der vorhergehende Arbeitsschritt führten
wieder zu einer Halbierung der Laufzeit.

r360→ r363-pre Die geplanten algorithmischen Optimierungen waren an diesem Punkt
ausgeschöpft. Eine Umstellung von Debug- auf Release-Modus brachte weitere 15% Lauf-
zeit.

r363-pre→ r365-post Sehr gute Erfahrungen konnten bei der Umstellung von Local auf
Shared Memory gemacht werden - insbesondere bei der Umstellung von Lookup-Tabellen.
Die erneute Halbierung der Laufzeit wurde erzielt, indem der PTX-Assembler-Code auf
ld.local und st.local durchsucht wurde und der entsprechende Code durch __shared__
ergänzt wurde. In der Praxis ist das etwas komplizierter aufgrund des veränderten Gültig-
keitsbereichs und der Synchronisation mehrerer Threads.
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6.3 Leistungsverhalten

r363-post→ r365-pre Der hier entstandene Laufzeitverlust resultierte aus einer Fehlerkor-
rektur: Bei der Berechnung der Normalen wurde nicht richtig interpoliert.

r365-post→ r384 Die letzte Halbierung der Laufzeit ist zum Teil durch Optimierung der
Konfiguration zu erklären, die allerdings weniger beisteuerte als erwartet, da die Größe
des CUDA Grids bereits alle Multiprozessoren auslastete. Der größere Teil entstand durch
Optimierungen auf Instruktionsebene, wie sie in Chapter 5. Performance Guidelines [Nvi]
beschrieben sind: Entfernen von Branching, Unrolling von Schleifen, Vermeiden von Di-
vision und Modulo, Vermeiden von unnötigen Konvertierungen (int↔ float, singed↔
unsigned).

Möglicherweise ist eine weitere Halbierung erreichbar, durch Umstellen auf linearen Spei-
cher oder Teilen gemeinsamer Punkte der Tetraeder. Diese Optimierungen wurden aus
Zeitgründen nicht implementiert, da das Zeitfenster von 2, 6ms für Interaktivität mehr als
ausreichend ist.

6.3 Leistungsverhalten

Im Vordergrund der Aufgabenstellung stand die Machbarkeit, weniger die besonders elegan-
te Lösung eines bekannten Problems. Ein direkter Gesamtvergleich ist deshalb nicht möglich,
weshalb Teillösungen, falls möglich, verglichen werden. Zunächst wird ein Vergleich zwi-
schen der Marching Tetrahedrons Implementierung dieser Arbeit und der Marching Cubes
Implementierung von NVIDIA gemacht. Ein Vergleich der Ergebnisse der Segmentierung
mit veröffentlichten Ergebnissen von Harwick et al. [HLP10], ist nicht sinnvoll wegen des
veränderten Prädikats und der veränderten Hardwareplattform. Für die darauf folgenden
Schritte gibt es keine Vergleichsgrundlage, sodass lediglich Laufzeiten angegeben werden
können.

In Tabelle 6.1 und Abbildung 6.4 können, wie erwartet, deutliche Unterschiede zwischen
Marching Cubes und Marching Tetrahedrons festgestellt werden. Eigentlich müsste der
ClassifyCubes-Kernel von Marching Tetrahedrons geringfügig schneller sein als der von
Marching Cubes, denn die Verdichtung benötigt einen Texturzugriff weniger und ist in
PTX Assembler auch kürzer. Eine mögliche Erklärung liefert der folgenden Unterschied:
Die Marching Cubes Implementierung verwendet tex1Dfetch(), wohingegen die Marching
Tetrahedrons Implementierung tex3D() verwendet. Ersteres dient dem Zugriff auf linearen
und Letzteres dem Zugriff auf normalen Texturspeicher. Der Unterschied ist bezüglich des
Leistungsverhaltens nur dürftig dokumentiert. Für Marching Cubes wird das Volumen von
der Festplatte in linearen Speicher geladen. Für Marching Tetrahedrons wird das Volumen
mittels Splatting als OpenGL-Volumen-Textur erzeugt. Eine Funktion tex3Dfetch() gibt
es nicht, weswegen der Speicher kopiert werden müsste, um tex1Dfetch() verwenden zu
können, was ebenfalls Zeit kostet. Eine andere mögliche Erklärung wäre das Texturformat,
da es sich bei der OpenGL-Textur um eine Half-Float-Textur handelt, die bei jedem Zugriff
konvertiert werden muss. scan_invervals() und exclusive_update() aus Thrust sowie
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Abbildung 6.4: Vergleich zwischen Marching Tetrahedrons und Marching Cubes für ein
1283 Volumen (Datensatz 2veo03)

Zeit für Marching
Kernel Tetrahedrons (µs) Cubes (µs) Verhältnis (%)

ClassifyCubes 683,728 386,793 176,77

scan_intervals (1) 96,274 159,508 60,36

scan_intervals (2) 6,616 6,447 102,62

exclusive_update 75,215 129,163 58,23

CompactCubes 89,706 116,976 76,69

ClassifyTetrahedrons 75,575

GenerateTriangles 1659,41 226,65 732,15

Summe 2686,524 1025,537 254,59

Tabelle 6.1: Vergleich zwischen Marching Tetrahedrons und Marching Cubes für ein 1283

Volumen (Datensatz 2veo03)

CompactCubes() weisen erwartungsgemäß ähnliche oder, aufgrund einer besseren Konfi-
guration, bessere Laufzeiten auf. GenerateTriangles() benötigt erwartungsgemäß mehr
Zeit: Zum einen werden bei Marching Tetrahedrons mehr Dreiecke generiert, zum anderen
approximiert die Marching Cubes Implementierung die Vertex-Normalen lediglich. Diese
Approximation spart 6 Texturzugriffe pro Eckpunkt und resultiert in einer unsauberen
Beleuchtung. Werden bei Marching Tetrahedrons nur Konstanten geschrieben und die Be-
rechnung der Normalen deaktiviert, sinkt die durchschnittliche Laufzeit um 640, 48µs, was
das Verhältnis auf 449, 55% verbessert.

Für die Messwerte des iterativen Tetraeder-Lablings in Tabelle 6.2 und der Schwerpunkt-
berechnung Tabelle 6.3 ist wegen der fehlenden Vergleichsbasis kein Vergleich mög-
lich. Die Schwerpunktberechnung nimmt unerwartet viel Zeit in Anspruch. Die Ur-
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6.3 Leistungsverhalten

Kernel Iteration Zeit (µs)
Reset 14,463

Scan 1 183,421

Analysis 1 99,166

Labeling 1 28,287

Scan 2 185,469

Analysis 2 39,935

Labeling 2 30,848

Scan 3 180,38

Analysis 3 28,351

Labeling 3 28,416

Scan 4 179,868

Analysis 4 28,319

Labeling 4 28,448

Scan 5 179,996

Summe 1235,367

Tabelle 6.2: Kernel-Timings des iterativen Tetraeder-Labelings für ein 1283 Volumen (Daten-
satz 2veo03)

Zeit mit
Kernel Thrust 1.4 (µs) Thrust 1.5 (µs)

CentroidMap 80,479 82,367

Sort & Reduce 4096,699 2732,432

CentroidFinalize 6,431 6,112

ColorizeByCentroid 114,686 115,87

Summe 4298,295 2936,781

Tabelle 6.3: Kernel-Timings der Schwerpunktberechnung für ein 1283 Volumen (Datensatz
2veo03)

sache hierfür ist in thrust::sort_by_key() und thrust::reduce_by_key() zu suchen.
thrust::reduce_by_key() setzt sortierte Schlüssel voraus. thrust::sort_by_key() ist ein
sehr komplexer Kernel, was besonders an der zum Kompilieren benötigten Zeit (> 2
Minuten) spürbar ist. thrust::reduce_by_key() ist in Thrust 1.4 nicht direkt in CUDA im-
plementiert. Dieser Makel wurde für Thrust 1.5 am 08.09.2011 (Revision e8762d3fd466, Issue
347) beseitigt. Version 1.5 wurde kurz vor Abgabe dieser Arbeit am 29.11.2011 veröffentlicht
und halbiert die Laufzeit.
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6 Ergebnisse und Bewertung

6.4 Praktischer Nutzen

Obwohl das Rendering nicht auf Leistung optimiert wurde, kann die in Abbildung 6.5 ge-
zeigte Bilderserie mit 17-19 Bildern pro Sekunde animiert und mit 53-55 Bildern pro Sekunde
statisch angezeigt werden. Ohne Volumen-Splatting und Rendering würden mit Thrust 1.5
insgesamt 6, 86ms benötigt, was 145 Bildern pro Sekunde entspräche. In Werkzeugen wie
GROMACS oder CAVER ist das Rendering ebenfalls interaktiv, allerdings benötigen sie für
die Verarbeitung vor dem Rendering einige Sekunden. Der Fortschritt in der Handhabung
von animierten Simulationsdaten ist entsprechend spürbar und offensichtlich.

Der momentane praktische Nutzen von MegaMol Protein für die Grundlagenforschung konn-
te im Rahmen eines Gespräches mit einem Anwender - vom Institut für Technische Biochemie
der Universität Stuttgart - grob abgeschätzt werden. Im Folgenden sind Gesprächspunkte
stichpunktartig beschrieben:

• MegaMol wird zur Interpretation von Simulationsergebnissen benutzt.

• Ein unbekannter Anteil der Proteine verschließt sich bei einer Interaktion mit dem
Substrat. Für diese Proteine können zeitlich korrelierte Komponenten direkt dem ‚Weg
des Substrats‘ entsprechen.

• Ein ebenfalls unbekannter Anteil der Proteine etabliert Tunnels zum aktiven Zentrum,
die sich nie von der Oberfläche entkoppeln. Für die Beurteilung sind Größe, Radius
und Auftrittsdauer relevant, was eine sinnvolle Erweiterung wäre.

• Es gibt Tunnel, wodurch ein Substrat das aktive Zentrum erreicht, obwohl der Tunnel
eigentlich zu schmal ist. ‚Tunnel-Flexibilität‘ wäre eine interessante Erweiterung.

• Es ist bisher sehr schwierig, die Interaktion von Substrat und Protein zu beurteilen
ohne beide gleichzeitig zu sehen. Ein sinnvoller Ansatz wäre das Filtern des Substrats
nach Semantik oder Interaktion.

• Das Bobachten von langen oder schnellen Animationen erfordert eine hohe Auf-
merksamkeit, weil Größenänderungen von Tunnels, Helices oder Faltblättern nicht
hervorgehoben werden.

• Die Benutzbarkeit von MegaMol würde verbessert werden, falls die aufwändige Konfi-
guration über Textdateien entfällt.

MegaMol ist nach aktuellen Stand in der Praxis einsetzbar.
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6.4 Praktischer Nutzen

Abbildung 6.5: Von links nach rechts und oben nach unten: Einzelbilder einer Animation
des Datensatzes 2veo03, bei einer Volumenauflösung von 1283 Voxeln, mit
Blending aktiviert und nach Komponenten über Zeit korreliert eingefärbt.
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7 Fazit

Im Rahmen dieser Arbeit wurde gezeigt, dass der interaktive Umgang mit Proteinoberflächen-
strukturen aus zeitabhängigen Molekulardynamik-Simulationsdatensätzen auf moderner
Grafikhardware möglich ist. Von Beginn der Arbeit an, erschien ein Ansatz über ein Drei-
ecksnetz vielversprechend. Allerdings war unklar, welche Algorithmen zum Ziel führen
und ob das Leistungsverhalten zufriedenstellend sein würde, denn vorhandene Werkzeuge
benötigten für solche Berechnungen mehrere Sekunden. Die Arbeit wurde in vier Iterationen
unterteilt.

In der ersten Iteration wurden verschiedene Möglichkeiten untersucht, um ein Dreiecks-
netz aus Volumendaten zu generieren. Nachdem sich herausstellte, dass der Marching-
Tetrahedrons-Algorithmus geeignet und leicht zu erweitern ist, fand eine erste Auseinander-
setzung mit CUDA und dem MegaMol-Framework statt. Die anfänglich fehlende, praktische
Erfahrung mit CUDA und dem damit einhergehenden Remote-Debugging verlangsamte
die Entwicklung die ersten Wochen merklich. Später konnte gut mit den entsprechenden
Werkzeugen gearbeitet werden.

In der zweiten Iteration wurden eine einfache grafische Ausgabe und Unterstützung für
animierte Datensätze implementiert. Die Laufzeit war anfangs nicht akzeptabel, weshalb
einige Optimierungen eingepflegt wurden, deren Wirkung genauer in Kapitel 6 beschrieben
ist.

In der dritten Iteration fand auf der Suche nach einem Verfahren zur Segmentierung der
Dreiecke ein Exkurs in die Objekterkennung statt. Nachdem ein passendes Verfahren gefun-
den war, dauerte die Implementierung nicht lange. Ein Versuch zur zeitlichen Korrelation
der Komponenten über Schwerpunkte mittels CPU schlug, aufgrund zu hoher Laufzeit, fehl.
Der Versuch zeigte allerdings, dass die nachfolgende Klassifizierung zeitlicher Ereignisse
wie gedacht funktionierte.

In der vierten und letzten Iteration wurde eine verbesserte Lösung für die zeitliche Korrelati-
on implementiert. Außerdem wurde Zeit für Feinarbeit aufgewendet: Es wurde mit Blending
und Beleuchtung experimentiert. Außerdem wurde die Visualisierung der Komponenten
und Schwerpunkte verbessert.

Im Verlauf der Arbeit wuchs das Verständnis für das Problem und die CUDA-Technologie.
Am Ende konnten alle Berechnungen in unter 7ms durchgeführt werden. Das persönliche
Ziel, dass im Rahmen der Diplomarbeit ein Werkzeug (weiter-)entwickelt wird, mit dem
andere Menschen arbeiten können, ist erfüllt: Es gibt einen praktischen Nutzen und es wurde
ein Grundstein für weitere Arbeiten gelegt.
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7 Fazit

Ausblick

Die Interaktive Analyse von Molekulardynamik-Simulationen ist noch in einem frühen Ent-
wicklungsstadium. In der Grundlagenforschung werden Molekulardynamik-Simulationen
entwickelt, um ein besseres Verständnis von Proteinen zu entwickeln. Diese Art des kon-
struktivistischen Forschens und Lernens profitiert in hohem Maße von Interaktivität. Eine
Weiterentwicklung der Oberflächenvisualisierung von MegaMol Protein erscheint deshalb
sinnvoll. Im Folgenden sind einige entsprechende Erweiterungsmöglichkeiten aufgelistet:

• Erkennung von an die Außenhülle gekoppelten Taschen und Tunnel als eigene Kom-
ponenten.

• Entwicklung einer Visualisierung für Oberflächenflexibilität.

• Ausmessen von Tunnel und Taschen.

• Berechnung des Schwellwerts (Fehlerquelle) für Marching-Tetrahedrons.

• Visualisierung von Änderungen, um die Aufmerksamkeit des Benutzers zu lenken.

Die Simulationssoftware GROMACS bietet nur begrenzte Unterstützung für GPGPU, sodass
für die eigentliche Simulation noch ein klassischer Supercomputer benötigt wird. Das
interaktive ‚Zusammenstecken und Analysieren‘ von Molekulardynamik-Simulationen wird
auf absehbare Zeit deswegen voraussichtlich nicht machbar sein. Eine Kooperation mit den
GROMACS-Entwicklern könnte diesem Ziel dienlich sein.
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