Institut fir Visualisierung und Interaktive Systeme

Universitat Stuttgart
Universitatsstra3e 38
D-70569 Stuttgart

Diplomarbeit Nr. 3220

Interaktive, verstandnisorientierte Optimierung

von semantisch-annotierten Visualisierungen

Hannes Pfannkuch

Studiengang: Softwaretechnik

Prifer: Prof. Thomas Ertl

Betreuer: Dipl. Phys. Michael Raschke
begonnen am: 21.Juli 2011

beendet am: 20. Januar 2012

CR-Klassifikation: H.1.2, H.5.2, 1.3.6

Zusammenfassung Die weltweit erzeugte Datenmenge wéachst rapide
an. Um diese Daten fir Menschen verstandlich aufzubereiten, sind Visua-
lisierungen ein bewéahrtes Mittel. Da Visualisierungen aber in der Regel
keine eindeutige Bedeutung haben, kann es leicht zu Missverstadndnissen
kommen. Ein Konzept, das die Wahrscheinlichkeit solcher Missverstandnis-
se senken soll, wird in der vorliegenden Diplomarbeit vorgestellt. Es zeigt,
wie Visualisierungen mit semantischen Metainformationen annotiert werden
kdnnen. Dadurch ist es fur Benutzer méglich, die Visualisierungen an ihre
persdnlichen Bedurfnisse anzupassen, indem sie entweder einzelne gra-
fische Elemente oder das komplette Visualisierungskonzept austauschen.
Um die Umsetzbarkeit dieses Konzepts zu zeigen, wurde ein Prototyp ent-
wickelt, in dem die wichtigsten Aspekte des Konzepts implementiert wur-
den. Zum Abschluss werden das Konzept, der Prototyp und die verwende-
ten Technologien evaluiert.

Abstract The worldwide created data volume is rapidly increasing. To pre-
pare these data for human users, visualizations are a proven way. Because
visualizations in general don’t have an explicit meaning, they easily can be
misunderstood. This diploma thesis shows a concept to lower the probability
of misunderstandings. It shows a technologie to annotate visualizations with
semantic meta information. Thereby, it becomes possible for users, to ad-
apt the visualizations to their individual needs by changing single graphical
elements or the complete visualization concept. To show the applicability
of this concept, a prototype was developed, which implements the central
aspects of the concept. At the end, the concept, the prototype and the used
technologies are evaluated.

Inhaltsverzeichnis

(1. _Einfuhrung| 5
1.1. Motivationl e e e 5
M2 Aufbaul. o 6

[2. Grundlagen | 7
[2.1. Ontologie | 7
2.2. SemanticWebl| 8
[2.3. Ontologiesprachen| 11

[2.3.1. Simple HTML Ontology Extension| 11
[2.3.2. Ontology Inference Layer/Language| 11
.............................. 12
[2.3.4. Resource Description Framework|. 12
[2.3.5. Resource Description Framework Schemal 14
2.3.6. Web Ontology Language| 16
2.4. Ontologieerstellung| 17
[2.5. Visualisierung| 20
[2.6. Human-Computer Interaction|. 21
[2.6.1. EntwicklungderHCI|. 22
2.6.2. Gulf of Execution und Gulf of Evaluation| 23
2.6.3. Mentale Modelle un r resultierende Probleme im Bereich

| der Visualisierung|o 23

2.7 Vektorgrafik]. 25
2.7.1. Vektorgrafiken allgemein| L. 25
2.7.2. Scalable Vector Graphics | oo 26

[2.8. Verwendete lechnologien|. 29

[3. Aufgabenstellung und Losungsansatz | 31
[3.1. Autgabenstellung| 31
[8.2. Losungsansatz|. 32

i K N 33
4.1. Einsatzszenarien| 33

[4.1.1. Einsatzszenario Bevolkerungsentwicklung| 33
[4.1.2. Einsatzszenario Automobilvisualisierung|. 34

[4.2. Visualisierungen interaktiv optimieren| 34
[4.2.1. Ontologien zur Annotation| 35
[4.2.2. Annotieren von Visualisierungen|. 37
[4.2.3. Von der Ontologie zur Visualisierung| 40
[4.2.4. Interaktionskonzept zur interaktiven Optimierung von Visualisie- |

FUNGEN | . . o . e e e e 40

5. Umsetzung des Konzepts | 43

[5.1. Erstellung der Ontologien| 43
[5.1.1. Domanen-Ontologie| 43

[0.1.2. Grafik-Ontologie| 44

[6.1.3. Licke zwischen Ontologie und geometrischer Anordnung]. 48

[0.2. Interaktionskonzept| 48
[5.2.1. Interaktionskonzept zum Erstellen einer Visualisierung| 49

[5.2.2. Interaktionskonzept zur interaktiven Optimierung einer Visualisie- |

| [T 51
[9.2.3. Allgemeine Funktionen| 52

b. P D 55
6.1, Architektur] 55
6.1.1. Modell 56

6.1.2. Viewl e 60

6.1.3. Controller 61

[6.2. Benutzeroberflache] 63
2.1. Ersteller-Tablo 64

6.2.2. Benutzer-1abl 67

[6.3. Sequenzdiagramme| 69
6.3.1. Einfugen eines Platzhalters| 69

6.3.2. Austauschen grafischer Elemente| 71

[6.4. Systemvoraussetzungen|. o 73
6.4.1. Ordnerstruktun 73

4.2. Grafische Elemente|] 73

b.4.3. Visualisierungshintergrunde|. 73

6.4.4. Ontologien| 74

|7. Evaluierung | 75
8. Zusammenfassung und Ausblick | 77
[A. Grafik-Ontologie] 79
[B. Doméanen-Ontologie| 80

1. Einfuhrung

Der Titel der vorliegenden Diplomarbeit - Interaktive, verstdndnisorientierte Optimierung
von semantisch-annotierten Visualisierungen - ist nicht unbedingt intuitiv verstandlich
und wird deshalb hier erlautert.

Zuerst wird auf die zweite Hélfte des Titels - semantisch-annotierte Visualisierungen -
eingegangen. Die Semantik ist einerseits die ,Bedeutung, Inhalt (eines Wortes, Satzes
oder Textes)” und andererseits ein “Teilgebiet der Linguistik, das sich mit den Bedeu-
tungen sprachlicher Zeichen und Zeichenfolgen befasst” [htic].

Eine Annotation ist ein ,Strukturelement, durch das bestimmte Daten [...] eingebunden
werden‘“[htta]. Annotieren ist der Vorgang, in dem die Daten eingebunden werden sol-
len. Die zweite Hélfte des Titels bezieht sich also auf Visualisierungen, in die Daten
eingebunden werden sollen, die den Visualisierungen eine bestimmte Bedeutung ge-
ben.

Die erste Halfte des Titels - Interaktive, verstandnisorientierte Optimierung - wird nun
erlautert. Die Visualisierungen sollen interaktiv und verstédndnisorientiert optimiert wer-
den kénnen. ,Interaktiv® ist die Anpassung deshalb, weil es zu einem Wechselspiel
zwischen Benutzer und Programm kommt: Der Benutzer wéahlt zum Beispiel einige Ele-
mente der Visualisierung aus, die ausgetauscht werden sollen und das Programm zeigt
ihm daraufhin eine angepasste Version der Visualisierung. ,Verstandnisorientiert® soll
verdeutlichen, dass ein Benutzer eine Visualisierung solange anpassen kann (durch
Austauschen einzelner Elemente oder des gesamten Visualisierungskonzeptes), bis er
sie richtig versteht.

1.1. Motivation

Die zunehmende Nutzung des Internets - unter anderem hervorgerufen durch den Ge-
brauch mobiler Gerate - flihrt zu einem standigen Anstieg des erzeugten Datenvolu-
mens. Wahrend im Jahre 2007 281 Exabyte (281 * 10'® Byte) an Daten entstanden
sind, waren es 2010 bereits mehr als ein Zettabyte (102! Byte). Das Datenvolumen
wird auch weiter rapide ansteigen (siehe Abbildung [f). Dies wird vor allem durch die
zunehmende Verbreitung von Smartphones in Schwellen- und Entwicklungslandern
verursacht. 90% dieser erzeugten Daten sind unstrukturiert, liegen also nicht in Da-
tenbanken, sondern verteilt auf unzahligen Servern, gespeichert in den unterschied-
lichsten Formaten. Mittlerweile wird ein grof3er Teil nicht mehr durch Menschen er-
zeugt, sondern automatisch durch technische Gerate und Algorithmen [JG11]. Diese
Faktoren (immer gréBeres Datenvolumen, unstrukturiert, automatisch erzeugt) machen
es zunehmend schwierig, die Daten sinnvoll zu analysieren und zu verwenden. Eine
grafische Aufbereitung in Form von Visualisierungen stellt eine Mdglichkeit dar, diese
unvorstellbaren Datenmengen besser analysieren zu kénnen. Bisher fehlt es noch an
Methoden, mit denen Daten automatisiert visualisiert werden kénnen. Haufig werden
Visualisierungen von Menschen mit technischer Ausbildung (Ingenieure, Informatiker)
erstellt, jedoch von Marketingexperten oder Managern verwendet. Oder sie werden von
Marketingexperten erstellt und sollen von Kunden verstanden werden. Durch das un-

8000

6000
4000
2000

N e

2005

Abbildung 1: Erzeugte Datenmengen in den Jahren 2005, 2010 und 2015 (Prognose)
in Exabyte [JG11].

terschiedliche Hintergrundwissen von Ersteller und Nutzer kann es leicht zu Missver-
standnissen kommen.

Im Zuge dieser Diplomarbeit wird ein Konzept vorgestellt, bei dem der Nutzer Visuali-
sierungen interaktiv an seine Bedurfnisse anpassen kann. Dieses Konzept soll ermdgli-
chen, dass Missverstandnisse zwischen Erstellern und Benutzern zukinftig vermieden
werden kénnen. Darliber hinaus kann dieses Konzept ein Schritt hin zur automatischen
Generierung von Visualisierungen sein.

1.2. Aufbau

In der vorliegenden Diplomarbeit werden in Kapitel [2]die zum Verstandnis notwendigen
Grundlagen Uber das Semantic Web und die Verwendung von Ontologien, Visualisie-
rungen, Human-Computer Interaction sowie den Einsatz von Vektorgrafiken gelegt.

In Kapitel 3| werden die Aufgabenstellung dieser Diplomarbeit erkldrt und der gewahite
Lésungsansatz, mit dem die Aufgabenstellung gelést werden soll, erlautert.
AnschlieBend wird in Kapitel[4]ein Konzept zur interaktiven, verstandnisorientierten Op-
timierung von Visualisierungen vorgestellt. Teil dieses Konzeptes ist die Annotation von
Visualisierungen mit semantischen Informationen, sowie ein Modell zum Austausch ein-
zelner grafischer Elemente oder des gesamten Visualisierungskonzeptes einer Visua-
lisierung. In Kapitel [5| wird ein Kernbereich des Konzeptes beschrieben, der spéter als
Prototyp umgesetzt werden soll. Dieser Prototyp wird in Kapitel [6] vorgestellt. Zuerst
wird die Software-Architektur und anschlieBend der eigentliche Prototyp beschrieben.
In Kapitel [7]wird das entworfene Konzept und dessen Umsetzung durch den Prototypen
evaluiert. Im abschlieBenden Kapitel [8|wird ein Fazit gezogen und ein Ausblick dariiber
gegeben, welche zukilnftigen Entwicklungen durch diese Diplomarbeit ermdglicht wer-
den.

2. Grundlagen

In diesem Kapitel wird die Erarbeitung der flr diese Diplomarbeit notwendigen Grund-
lagen beschrieben. In Abschnittwird erklart, was Ontologien sind und woflr diese
verwendet werden sollen. Abschnitt gibt einen Uberblick Giber das Semantic Web.
Abschnitt[2.3|beschreibt verschiedene Ontologiesprachen und Abschnitt gibt einen
Uberblick Giber das Erstellen von Ontologien. Der darauffolgende Abschni beschéf-
tigt sich mit Visualisierungen und beschreibt die Visualisierungspipeline. Abschnitt [2.6]
untersucht die Human-Computer Interaction (HCI). Es wird ein Uberblick (iber die Ent-
wicklung der HCI gegeben. AnschlieBend werden die von Norman gepragten Begriffe
Gulf of Execution und Gulf of Evaluation erlautert, sowie Normans Erkenntnisse Uber
mentale Modelle beschrieben. Abschnitt[2.7|gibt einen Uberblick tiber Vektorgrafik und
das SVG-Format. Im abschlieBenden Abschnitt [2.8] werden die im Verlauf der Diplom-
arbeit verwendeten Technologien aufgelistet.

2.1. Ontologie

Der Begriff Ontologie stammt aus dem Griechischen und lasst sich bis zu Aristoteles
zurtckfahren. In der Philosophie ist es eine Bezeichnung fir das Teilgebiet der Meta-
physik, das sich mit dem Sein beschéftigt. Der Duden bezeichnet es als die ,Lehre vom
Sein“ [httb]. Dabei werden Beziehungen zwischen verschiedenen ,Entitdten” diskutiert.
In der Informatik handelt es sich hierbei um ,an explicit specification of a conceptualiza-
tion“ , wie Gruber [Gru93] es definiert. In der Informatik wird, ebenso wie in der Philo-
sophie, durch die Ontologie Wissen Uber die reale Welt beschrieben. Eine Ontologie ist
immer auf eine bestimmte Doméne, also auf einen bestimmten Fachbereich oder einen
bestimmten Anwendungsfall, beschréankt. Es werden Beziehungen zwischen verschie-
denen Elementen dargestellt. Eine Ontologie ist, im Gegensatz zu einer Taxonomie,
nicht nur ein Baum, der hierarchische Beziehungen beschreibt, sondern ein Netz von
Verbindungen. Wenn im Folgenden von Ontologien die Rede ist, so handelt es sich im-
mer um Ontologien im Sinne der Informatik.

Ontologien sollten sowohl von Menschen als auch von Maschinen lesbar sein. Um
maschinenlesbar zu sein, missen sie formal und explizit definiert sein. Leider ist die
natUrliche Sprache, mit der Menschen kommunizieren, selten formal und sehr haufig
implizit. Bekannte formale Sprachen, die sowohl von Menschen als auch von Maschi-
nen verstanden werden, sind Programmiersprachen. Allerdings muss in der Ontologie
zusétzlich die Bedeutung der beschriebenen Ressourcen enthalten sein. Durch die ent-
haltene Bedeutung in der Ontologie kénnen logische Schlisse gezogen werden und
Widerspriiche erkannt werden. Eine Ontologie soll nicht nur ein flr ein bestimmtes Pro-
jekt entworfenes Datenmodell sein, sondern allgemeingultig.

Eine der bekanntesten Ontologien ist WordNe{'| Es handelt sich um eine lexikalische
Datenbank, die versucht Beziehungen zwischen Wértern und deren Bedeutung herzu-
stellen. Basis von WordNet ist eine Matrix, die jedem Begriff verschiedene Bedeutungen

"http://wordnet.princeton.edu/

http://wordnet.princeton.edu/

zuordnet. Dadurch kénnen zum Beispiel Synonyme gefunden werden [Stu09].

Ein weiteres bekanntes Beispiel fiir eine Ontologie ist das Unified Medical Language
System (UMLS)ﬂ UMLS wurde durch die United Stateds National Library of Medicine
entwickelt. Das Ziel von UMLS ist es, verschiedene Online-Datenbanken und medizi-
nische Bucher einander anzugleichen und in einer einheitlichen Datenbank zur Verf(-
gung zu stellen. Das dadurch entstehende Modell soll bei der Analyse medizinischer
Fachtexte helfen. UMLS besteht unter anderem aus dem UMLS-Metathesaurus und
dem UMLS-Semantic Network. Der UMLS-Metathesaurus dient der Zuordnung von
Begriffen aus verschiedenen Terminologien zu einheitlichen Konzepten. Das UMLS-
Semantic Network stellt ein Netz dar, das Relationen zwischen verschiedenen medizi-
nischen Konzepten abbildet. Die Begriffe des Metathesaurus sind den Konzepten des
Netzes zugeordnet [Stu09].

2.2. Semantic Web

Das heutige World Wide Web (Web) besteht aus einer riesigen Menge von elektro-
nischen Dokumenten. Diese Dokumente sind durch sogenannte Hyperlinks miteinan-
der verbunden. Das Auffinden von Dokumenten im Web ist fir menschliche Anwender
durch diese Hyperlinks oder durch Suchmaschinen mdéglich. Da Uiber die verschiedenen
Dokumente keinerlei semantische Informationen vorliegen, kénnen heutige Suchma-
schinen nur stichwortbasiert suchen und die Dokumente sind nicht maschinenlesbar.
Das Web hat eine sehr heterogene Struktur. Es werden verschiedene Kodierungstech-
niken und Dateiformate verwendet, es ist in verschiedenen natirlichen Sprachen ver-
fasst und die Struktur und der Aufbau der einzelnen Homepages sind sehr unterschied-
lich. Durch diese Heterogenitét ist es oft auch flir Menschen schwierig, die gesuchten
Informationen zu finden. Durch die fehlende Eindeutigkeit nattirlicher Sprachen ist die
Maschinenlesbarkeit zusatzlich erschwert. So wird die Suche nach dem Begriff ,,Bank*®
Ergebnisse fur Sitzgelegenheiten und fir Geldinstitute liefern [PH08al. Schwierig ist die
aktuelle, textbasierte Suche auch dann, wenn der Suchende nur eine ungefahre Vor-
stellung vom Ziel seiner Suche hat und sie mdglicherweise gar nicht in Worte fassen
kann [Mar06]. Ein weiteres Problem bei der Verarbeitung des Webs durch automatische
Prozesse ist, dass Homepages dahingehend optimiert sind, dass sie durch menschli-
che Benutzer interpretiert und verstanden werden kénnen. Es werden oft Bilder und
Links zu weiterfihrenden Informationen eingesetzt, die von Menschen interpretiert und
verstanden werden kdnnen, aber fir einen ,Software Agenten® nicht zu verstehen sind.
Ein ,Software Agent” ist ein Programm, das zu einem (teilweise) autonomen Verhalten
in der Lage ist [Hor07].

Ein Ansatz zur Lésung dieser Probleme wére es, mit Hilfe von kinstlicher Intelligenz
und maschineller Sprachverarbeitung Computer in die Lage zu versetzen, natirlich-
sprachige Texte zu verstehen. Dadurch waren Computerprogramme in der Lage, aus
dem Kontext heraus eine Unterscheidung zwischen der oben erwahnten Sitzgelegen-

2http://www.nlm.nih.gov/research/umls/

http://www.nlm.nih.gov/research/umls/

heit und dem Geldinstitut zu machen. Da das Verstandnis natirlicher Sprache jedoch
ein sehr komplexes Problem ist, misste noch sehr viel Forschung betrieben werden,
um diesen Ansatz umzusetzen. Um grafische Zusammenhange zu erkennen, misste
auch die maschinelle Bildverarbeitung noch deutlich verbessert werden.

(& Y
Web 1.0 :.j == Al
Producer = Consumer
& %
v ad
/P
Web 2.0 — ===
—= -~ ==
]
C/p C/P = Consumer/Producer
7N o
s ..,‘
The T e c/p
Semantic AN ——-M“H<:> ="
Web \—_e \ —
R Y
-

C/F

Abbildung 2: Im Web 1.0 gab es eine klare Trennung zwischen Produzent und Konsu-
ment (oben), seit dem Web 2.0 kann jeder Produzent und Konsument sein
(Mitte), im Semantic Web kénnen Programme Informationen aufbereiten
(unten) [wcwl].

Abbildunggibt einen Uberblick tiber die Entwicklung des Internets. Zu Beginn war das
Internet eine EinbahnstraB3e. Die Internetseiten wurden von wenigen Anbietern erstellt
und von vielen Konsumenten abgerufen. Durch die Weiterentwicklung verschiedener
Technologien kann mittlerweile jeder Konsument genauso auch zum Anbieter werden.
Diese sogenannten Web 2.0 Technologien haben sozialen Netzwerken, Blogs und Wi-
kis zum Durchbruch verholfen. Das Semantic Web soll nun zusétzlich Mdglichkeiten
schaffen, dass Computerprogramme dem Konsumenten die gewlinschten Informatio-
nen von verschiedenen Quellen zusammengefasst prasentieren. Ein Beispiel dafir ist
die semantische Suchmaschine Wolfram AIpheﬂ Diese Suchmaschine ist prinzipiell in
der Lage, Fragen in natirlicher Sprache zu beantworten. So erhalt man auf die Frage
.How old is Angela Merkel“ das Alter der deutschen Bundeskanzlerin auf den Tag ge-
nau. Die Sprachverarbeitung funktioniert allerdings nur in wenigen Fallen. So wird zum
Beispiel die Frage nach der KérpergrdRe von Angela Merkel nicht verstanden. Wolfram
Alpha erkennt aber, dass der Suchende sich fir Angela Merkel interessiert und liefert,
im Gegensatz zu Google oder Bing, keine Liste von Links, sondern ein kurzes Dossier.

Shttp://www.wolframalpha.com/

http://www.wolframalpha.com/

Die Verarbeitung der Anfragen dauert etwas langer als bei herkémmlichen Suchma-
schinen, allerdings spart sich der Suchende die Auswahl, auf welchen Link er klicken
muss und das Laden der verlinkten Seite.

Das Semantic Web ist eine Vision von Tim Berners-Lee, dem Erfinder des Webs. Die-
se Vision verfolgt, im Gegensatz zum oben beschriebenen Konzept, nicht den Ansatz,
dass Computer die bestehenden Homepages besser verstehen kénnen. Die Idee hinter
dem Semantic Web ist, dass die Daten mit semantischen Informationen angereichert
werden. Das folgende Zitat aus dem Jahre 2001 zeigt, dass das Semantic Web kein
Ersatz fir das Web sein soll, sondern eine Erweiterung.

»1he Semantic Web is not a separate Web, but an extension of the cur-
rent one, in which information is given well-defined meaning, better enabling
computers and people to work in cooperation.” [TBLO1]

In dieser Vision ist das Web nicht nur eine Menge von verlinkten Dokumenten, sondern
eine Informationsdatenbank, in der die Daten so gespeichert sind, dass sie durch Ma-
schinen ,verstanden“ oder zumindest sinnvoll verarbeitet werden kénnen. Dazu ist es
noétig, die Maschinenlesbarkeit in einer Weise zu verbessern, dass sie menschlichen
Benutzern das Arbeiten mit dem Web erleichtert. Die Idee ist, die bendtigten Infor-
mationen in einer Art und Weise zur Verfligung zu stellen, dass sie durch Maschinen
verarbeitet werden kénnen. Um diese Vision zu verwirklichen, sind als Erstes einheit-
liche und offene Standards notwendig. Das World Wide Web Consortium [w3c] (W3C)
hat es sich zur Aufgabe gemacht, diese Standards zu erarbeiten, zu definieren und zu
verdffentlichen. Die Standards RDF, RDFS und OWL (siehe Abschnitt[2.3) wurden be-
reits ausformuliert.

Eine wichtige Komponente zur Entwicklung des Semantic Web sind die oben einge-
fihrten Ontologien. Durch die in den Ontologien enthaltenen Bedeutungen kénnen lo-
gische Schliisse gezogen werden. Dadurch kénnen Informationen, die nicht explizit in
Dokumenten enthalten sind, erkannt werden. So kénnte zum Beispiel durch die beiden
Informationsschnipsel, dass in Deutschland der Euro die offizielle Wé&hrung ist, und
dass der Euro nur in L&ndern innerhalb von Europa offizielle Wahrung ist, geschlossen
werden, dass Deutschland in Europa liegt. Dieser Schluss ist méglich, ohne dass die
explizite Information ,Deutschland liegt in Europa® vorliegt.

Abbildung [3| zeigt die unterschiedlichen Ansatze von Web und Semantic Web. Um im
Web die Qualitat von Suchergebnissen zu verbessern, missen Verbesserungen auf
Seiten der anfragenden Server durchgefiihrt werden, zum Beispiel bessere maschinel-
le Sprachverarbeitung oder Verteilung der Anfragen auf mehrere Server. Beim Seman-
tic Web erfolgen die Verbesserungen auf Seite der vorhandenen Dokumente. Da die
Dokumente mit semantischen Metainformationen angereichert sind, ist keine maschi-
nelle Sprachverarbeitung natirlicher Sprache nétig. Dadurch sinkt der Aufwand einer
Suchanfrage.

10

QG QG ~
|

. “ ;
,Verstehen”, wenn tberhaupt, »Verstehen ohr_1€ maschlnfelle
nur mit maschineller Sprachverarbeitung moglich

Sprachverarbeitung moglich
+ Semantische
Metadaten

Abbildung 3: Im Web (links) liegt der Fokus fiir Verbesserungen auf Seite der anfragen-
den Server, im Semantic Web (rechts) auf Seite der Dokumente.

2.3. Ontologiesprachen

Es existieren viele verschiedene Spraghen, mit denen Ontologien beschrieben und ent-
worfen werden kénnen. Es folgt eine Ubersicht tiber vorhandene Ontologiesprachen.

2.3.1. Simple HTML Ontology Extension

Die Sprache Simple HTML Ontology Extension (SHOE) wurde an der University of Ma-
ryland 1996 entwickelt. SHOE ist eine Erweiterung von HTML und wurde entwickelt,
um Web-Dokumente leichter mit maschinenlesbaren semantischen Informationen an-
reichern zu kénnen. Diese Annotationen sollten verwendet werden, um Suchmechanis-
men im Web zu verbessern. Da die von SHOE verwendeten Tags nicht in der HTML-
Spezifikation vorkommen, hat das Einbetten von Informationen keinen Einfluss auf das
Aussehen der Web-Dokumente. SHOE spielt heutzutage keine Rolle mehr, die Entwick-
lung wurde eingestellt. Die neueste Version der Spezifikatiorf_f] ist aus dem Jahr 2000
[GPCFLO4].

2.3.2. Ontology Inference Layer/Language

Ontology Inference Layer oder auch Ontology Inference Language (OIL) wurde im Rah-
men des Schwerpunkis ,Technologien der Informationsgesellschaft* des Forschungs-
rahmenprogramms der Europaischen Union entwickelt und wurde im Jahr 2000 ver6f-
fentlicht. OIL wurde, ebenso wie SHOE, konzipiert um Web-Dokumente mit semanti-
schen Informationen anzureichern. OIL ging bereits ein Jahr nach der Veréffentlichung
in DAML + OIL auf und wurde nicht mehr eigensténdig weiterentwickelt.

*http://www.cs.umd.edu/projects/plus/SHOE/spec.html

11

http://www.cs.umd.edu/projects/plus/SHOE/spec.html

2.3.3. DAML + OIL

DAML + OIL wurde in einem gemeinsamen Projekt in den USA und der Europaischen
Union entwickelt. DAML steht fir DARPA Agent Markup Language, wobei DARPA wie-
derum fiir Defense Advanced Research Projects Agency (eine Behdrde des Verteidi-
gungsministeriums der USA) steht. Ziel war es, eine Sprache zu entwickeln, die es er-
mdglicht, Web-Ressourcen mit semantischen Informationen anzureichern. DAML + OIL
wurde in mehreren Schritten entwickelt und ist die Zusammenfihrung eines DARPA-
Projekts (DAML) und OIL. Die erste Version wurde im Oktober 2000 unter dem Na-
men DAML + ONT verdffentlicht. Im Dezember 2000 wurde bereits die zweite Version
herausgegeben. Im Zuge dessen erfolgte die Umbenennung in DAML + OIL. Die end-
gultige Version wurde im Méarz 2001 verdffentlicht und behob einige in den vorherigen
Versionen aufgetretenen Fehler. Die Syntax von DAML + OIL ist XML-basiert. Da DAML
+ OIL in OWL aufgegangen ist, und heute keine Rolle mehr spielt, wird an dieser Stelle
nicht weiter darauf eingegangen.

2.3.4. Resource Description Framework

Das Resource Description Framework (RDF) ist eine durch das W3C standardisierte
Sprache zur Beschreibung von Objekten und deren Beziehungen. Die beschriebenen
Objekte werden als Ressourcen bezeichnet. Jede dieser Ressourcen wird durch einen
eindeutigen Bezeichner (Uniform Resource Identifier, kurz URI) beschrieben. Wichtig
ist, dass die Ressourcen eindeutig identifiziert werden kénnen, damit Missverstandnis-
se verhindert werden. Beispielsweise kénnte es bei einer Ontologie, die wissenschaft-
liche Publikationen jeweils Autor und Verlag zuweist, zu Verwechslungen kommen. Die
Ressource ,Springer-Verlag” kénnte sowohl fir den Medienkonzern und Herausgeber
einer grof3en Boulervardzeitung als auch fur den wissenschaftlichen Verlag stehen.
Urspringlich wurde RDF zur Beschreibung von Metadaten im Web entwickelt. Es war
fur die Beschreibung von Informationen Uber Homepages, wie zum Beispiel Autor oder
Copyright gedacht. Spater wurde die Vision des Semantic Web erweitert. Als Ressour-
ce kann heute jede mit einer URI bezeichnete Entitdt gesehen werden, auch wenn
diese auBerhalb des Webs liegt. Nach dieser Erweiterung des Semantic Webs auf Be-
reiche auBerhalb des Webs wurde die Spezifikation von RDF noch einmal Gberarbeitet
und 2004 neu verdffentlicht [PH08a].

Ein RDF-Dokument beschreibt einen gerichteten Graphen, der in Pfeilrichtung gelesen
wird. Der Graph wird durch eine Menge von Tripeln beschrieben. Ein Tripel besteht aus
zwei Knoten und einer die beiden verbindenden Kante und entspricht einer bindren Re-
lation zwischen den beiden Knoten. Das Tripel ist dabei wie ein Satz aufgebaut und
besteht aus Subjekt, Pradikat und Objekt. Wie in Abbildung[4]zu sehen, werden Knoten
und Kanten jeweils mit einer URI beschriftet. Auch wenn die URIs nicht online aufge-
rufen werden kénnen (wie zum Beispiel in Abbildung [4), so werden sie in der Regel
trotzdem in der Struktur einer online abrufbaren Adresse angegeben. Der Grund daflir
ist, dass RDF einige aus XML stammende Mechanismen verwendet, mit denen URlIs
moglichst effizient gespeichert werden kénnen (siehe Listing [1).

12

http://example.org/
geschriebenVon
http.//example.org/Diplomarbeit - http://example.org/Student

http://example.org/Titel http://fexample.org/Name

Interaktive, verstandnisorientierte Optimierung
von semantisch-annotierten Visualisierungen

Hannes Pfannkuch

Abbildung 4: Zu sehen ist ein RDF-Graph, der aussagt, dass die Diplomarbeit (links
oben) mit dem Titel ’Interaktive...’ (links unten) von einem Studenten
(rechts oben) mit dem Namen 'Hannes Pfannkuch’ (rechts unten) ge-
schrieben wurde.

Die ellipsenférmigen Knoten sind Ressourcen, die Subjekt und Prédikat in verschiede-
nen Relationen sein kénnen. Wenn Datenwerte, zum Beispiel Text oder Zahlen, dar-
gestellt werden sollen, so werden sie als rechteckige Knoten dargestellt. Diese recht-
eckigen Knoten hei3en Literale und kénnen nur als Objekt und nicht als Subjekt in
Relationen verwendet werden. Literale kénnen mit einem Datentyp versehen werden.
Literale ohne Datentypen werden immer als Zeichenkette interpretiert.

Die Bedeutung eines RDF-Graphen ist fir Menschen leicht zu verstehen. So sagt
der Graph in Abbildung |4| aus, dass die Diplomarbeit mit dem Titel ,Interaktive, ver-
sténdnisorientierte Optimierung von semantisch-annotierten Visualisierungen® von ei-
nem Studenten mit dem Namen ,Hannes Pfannkuch” geschrieben wird. RDF-Graphen
kdnnen in verschiedenen Sprachen serialisiert werden. Am h&ufigsten wird die XML-
Serialisierung verwendet, da es in vielen Programmiersprachen Bibliotheken gibt, mit
denen XML verarbeitet werden kann.

1 <?xml version="1.0" encoding="UTF-8"?>
2 <rdf:RDF xmins:rdf="http ://www.w3.0rg/1999/02/22 — rdf —syntax—ns#"
xmins:ex ="http ://example.org/">
<rdf:Description rdf:about="http ://example.org/Diplomarbeit">
<ex:geschriebenVons>
<rdf:Description rdf:about="http ://example.org/Student">
</rdf :Description >
</ex:geschriebenVon>
</rdf:Description >
10 <rdf :RDF>

Listing 1: XML-Serialisierung des oberen, grau hinterlegten Teils des Graphen in Abbil-

dung 4}

Listing [1] zeigt die XML-Serialisierung des oberen, grau hinterlegten Teils des Graphen
aus Abbildung [4] In Zeile 1 ist eine optionale XML-Deklaration zu sehen, in der XML-
Version und Zeichenkodierung angegeben werden. AnschlieBend beginnt das Doku-

©oO~NOO O~ W

13

ment mit einem Knoten rdf :RDF, der in der Regel als Wurzel eines RDF-Dokuments
verwendet wird. Hier werden die beiden Namensradume rdf: und ex: und ihre jeweilige
Abkirzung definiert. Alle Elemente mit einer besonderen Bedeutung in RDF werden
also an dem Préfix rdf: zu erkennen sein, alle Elemente, die auf fiktive Begriffe un-
ter http://example.org verweisen am Prafix ex:. Ab Zeile 4 wird das einzige Tripel
beschrieben. Subjekt und Objekt werden durch Elemente vom Typ rdf:Description
beschrieben, wobei rdf : About jeweils den Bezeichner angibt. Das Pradikat des Tripels
wird als das Element ex:geschriebenVon angegeben.

Ein RDF-Graph, solange er klein genug ist, kann zwar von Menschen schnell verstan-
den werden, von Maschinen jedoch nicht. Die Bedeutung des Pradikats ,geschrieben-
Von* ist flr einen Menschen, der der deutschen Sprache méchtig ist, klar, auch wenn
es nicht in einer fir Computer versténdlichen Sprache formalisiert wurde. Aus diesem
Grund wurde eine Sprache bendtigt, mit der die nétigen Metainformationen definiert
werden kénnen. Diese Sprache wird im folgenden Abschnitt beschrieben.

2.3.5. Resource Description Framework Schema

Mit RDF ist es mdglich, Beziehungen zwischen verschiedenen Entitadten zu beschrei-
ben. Die verwendete Menge an Entitdten und Beziehungen bezeichnet man als Voka-
bular. Beim Erstellen des Vokabulars ist es flr denjenigen Menschen, der das Vokabular
erstellt, eindeutig, was es zu bedeuten hat. Bei unserem Beispiel in Abbildung 4] soll es
klar sein, dass ein Student ein Mensch ist, der an einer Universitat eingeschrieben ist
und dass eine Universitat eine Institution ist, die der Forschung und Lehre dient. Fir
andere Menschen kénnte ein Student aber genauso gut ein Mensch sein, der an ei-
ner Fachhochschule eingeschrieben ist. Schon fir Menschen ist die Bedeutung eines
RDF-Graphen also nicht unbedingt eindeutig. Fir einen Computer ist es unmdglich,
eine Bedeutung zu erkennen, da alle Bezeichner einfach nur Zeichenketten sind. Die
Bedeutung der Zeichenketten muss also in irgendeiner Form formal und explizit festge-
halten werden. Ohne diese Bedeutung kann kein Computerprogramm logische Schlls-
se ziehen.

—_ Mensch

| UnterklasseVon

Durch Transitivitat
automatisch Student
»UnkterklasseVon“

| UnterklasseVon

| v

Student Universitat
Stuttgart

Abbildung 5: Da die Unterklassendefinition in RDFS transitiv ist, ist die Klasse ’Student
Universitat Stuttgart’ automatisch Unterklasse von 'Mensch’.

Mit dem Resource Description Framework Schema (RDFS) kénnen die zum Verstand-
nis bendtigten Informationen beschrieben werden. Dadurch ist es méglich mit RDFS
Ontologien zu erstellen. Es kénnen sowohl Informationen Uber die Ressourcen als auch
dber die Beziehungen zwischen den Ressourcen gespeichert werden. RDFS unter-
sttzt die Definition von Klassen und Unterklassen. So kdnnte man die Klasse 'Mensch’
definieren und anschlieBBend die Unterklasse ’Student’. Damit ist klar, dass jeder Stu-
dent auch ein Mensch ist. Die Definition von Klassen und Unterklassen ist transitiv.
Wenn man also die Klasse 'Student Universitat Stuttgart’ als Unterklasse von 'Student’
definiert, dann ist jeder dieser Studenten an der Universitat Stuttgart automatisch auch
ein Mensch (siehe Abbildung[5). Die XML-Serialisierung des Graphen aus Abbildung (5
ist in Listing [2] zu sehen. Es beginnt in Zeile 1 mit dem rdf :RDF - Element, in dem die
drei Namensraume rdf:, rdfs und ex: definiert werden. In den folgenden Elementen
vom Typ rdfs:Class wird zuerst die Klasse 'Human’ und anschlie3end die Unterklas-
sen ’Student’ und ’'StudentAtUniversityOfStuttgart’ definiert. Fir jede Klasse wird zu-
satzlich ein rdfs:label fir die Sprache “de®, also Deutsch, definiert, das in Abbildung
Bl verwendet wird.

1 <rdf:RDF

2 xmlns:rdf="http ://www.w3.0rg/1999/02/22 — rdf —syntax—ns#"
3 xmins:rdfs="http ://www.w3.0rg/2000/01/rdf —schema#"

4 xmins:ex="http ://www.example.de/" >

5 <rdfs:Class rdf:about="&ex;Human">

6 <rdfs:label xml:lang="de">Mensch</rdfs :label>

7 </rdfs :Class>

8 <rdfs :Class rdf:about="&ex;Student">

9 <rdfs:label xml:lang="de">Student</rdfs :label>

10 <rdfs :subClassOf rdfs:resource="&ex:Human"/>

11 </rdfs :Class>

12 <rdfs:Class rdf:about="&ex; StudentAtUniversityOfStuttgart">

13 <rdfs:label xml:lang="de">Studen Universidt Stuttgart </rdfs:label>
14 <rdfs :subClassOf rdfs:resource="&ex:Human"/>

15 </rdfs :Class>
16 </rdf :RDF>

Listing 2: XML-Serialisierung von Abbildung

Eine Beziehungen zwischen Ressourcen wird in RDFS als Property bezeichnet. Fur
Properties lassen sich Definitions- und Wertebereich festlegen. Mit domain I&sst sich
der Definitionsbereich des Propertys, also die Klasse aller méglichen Subjekte festle-
gen, mit range der Wertebereich, also die Klasse aller mdglichen Objekte. In Abbildung
[6| wird somit festgelegt, dass das Property ‘geschriebenVon’ nur Diplomarbeiten als
Subjekt und nur Studenten als Objekt haben kann.

15

http://example.org/geschriebenVon

rdfs:domain
rdfs:type rdfs:range

http://example.org/Diplomarbeit

rdf:property http://example.org/Student

Abbildung 6: Zu sehen ist ein RDFS-Graph, der aussagt, dass es sich bei 'geschrie-
benVon’ um ein Property handelt, dessen Subjekte vom Typ ‘Diplomarbeit’
und dessen Objekte vom Typ *Student’ sein mussen.

2.3.6. Web Ontology Language

Die Modellierungsfahigkeit von RDFS unterliegt gewissen Einschréankungen. So ist es
beispielsweise nicht mdglich zu modellieren, dass etwas nicht gilt, oder dass bestimm-
te Klassen keine gemeinsamen Elemente enthalten dirfen. Aus diesem Grund ver-
offentlichte das W3C im Jahre 2004 die Spezifikation der Web Ontology Language
(OWL)[Con09]. OWL basiert auf der Pradikatenlogik erster Ordnung. Das Ziel von OWL
war es, eine Sprache zu schaffen, die méglichst ausdrucksstark, andererseits aber in
akzeptabler Zeit entscheidbar ist. OWL ist eine Erweiterung von RDF(S). Es gibt zu-
satzliche, vordefinierte Relationen mit einer festgelegten Bedeutung. Es existieren zwei
verschiedenen Syntaxen. Die eine wird als abstrakte OWL-Syntax bezeichnet und ist fur
Menschen relativ einfach zu lesen. Die andere basiert auf RDF und wird als OWL-RDF-
Syntax bezeichnet. Dokumente in letzterer Syntax sind immer guiltige RDF-Dokumente.
Um ein gutes Gleichgewicht zwischen Ausdrucksstarke und Entscheidbarkeit zu schaf-
fen gibt es drei verschiedene Versionen von OWL, OWL Full, OWL DL und OWL Lite.

OWL Full OWL Full erlaubt sémtliche OWL Sprachelemente. Ebenso sind alle Spra-
chelemente aus RDF(S) erlaubt. Es gibt im Prinzip nur eine Einschrénkung: es muss
sich um gultige RDF-Syntax handeln. Da RDF(S) zu viele Freiheiten bei der Model-
lierung lasst, ist OWL Full nicht entscheidbar. Es sind aber auch pradikatenlogische
Ausdriicke héherer Ordnung mdglich. Durch die Unentscheidbarkeit ist die logische
Schlussfolgerung durch Computerprogramme nicht mdglich. Aufgrund dessen wurden
die beiden anderen Versionen von OWL entwickelt. Abbildung [7| gibt einen Uberblick
Uber die verschiedenen Versionen.

16

_— OWLFull:
Samtliche Sprachelemente
aus RDF(S) und OWL,
dadurch unentscheidbar

~ OWLDL:
Entscheidbare
Untermenge von OWL Full

OWL Lite:
Stark eingeschrankte
Untermenge von OWL
DL

Abbildung 7: Die Sprachversion OWL Full enthalt alle Sprachelemente von RDF(S) und
OWL und ist unentscheidbar. OWL DL ist eine entscheidbare Untermenge
von OWL Full. OWL Lite ist eine stark eingeschrankte Untermenge von
OWL DL.

OWL DL OWL DL ist eine Untermenge von OWL Full. DL steht fur ,Description Logic".
In OWL DL sind einige Sprachkonstrukte aus OWL Full nicht erlaubt. OWL DL wurde
so konstruiert, dass es sich dabei um eine entscheidbare Untermenge von OWL Full
handelt. Es ist also mdglich durch einen immer terminierenden Algorithmus festzustel-
len, ob eine Aussage aus einer Ontologie gefolgert werden kann. Es gibt verschiedene
Inferenz-Tools fir OWL DL.

OWL Lite OWL Lite ist eine Untermenge von OWL DL. Es enthélt die wichtigsten
Sprachelemente. Durch weitgehende Einschrankungen im Vergleich zu OWL DL spielt
OWL Lite in der Praxis jedoch nur eine geringe Rolle [PHO8b].

2.4. Ontologieerstellung

Fir die Erstellung von Ontologien haben sich bisher noch keine standardisierten Vor-
gehensmodelle herausbilden kénnen. Klar zu sein scheinen aber gewisse Grundsatze.
So gibt es nie den einen richtigen Weg eine Ontologie zu erstellen. Es gibt immer Al-
ternativen. Das Ergebnis des Erstellungsprozesses hangt stark davon ab, fir welchen
Zweck die Ontologie entworfen werden sollte. Es spielt auch eine groBe Rolle, wer die

17

Ontologie entworfen hat. Ein anderer Mensch, der in der Regel ein anderes Hinter-
grundwissen hat, hatte eine Ontologie mdéglicherweise komplett anders, aber deshalb
nicht unbedingt schlechter entworfen. Das Erstellen einer Ontologie ist ein iterativer
Prozess. Der erste Entwurf ist nur selten auch endgultig. In den meisten Fallen missen
nachtragliche Anderungen vorgenommen werden, oft auch, weil sich die Anforderun-
gen wahrend des Erstellungsprozesses andern.

Unter Berlcksichtigung dieser Punkte sollte klar sein, dass das im Folgenden aufge-
zeigte Schema nur ein Leitfaden ist und kein unantastbarer Algorithmus, der Schritt
flr Schritt abgearbeitet werden muss. Abbildung [8|ist ein Workflowdiagramm, das das
Schema beschreibt. Die einzelnen Schritte werden im Folgenden erlautert.

/Anwendungsgeblet\ ‘/ BOer?tts::)egTs: \ /Relevante Begrlffe\ /Klassenhlerarch|e\ / Relationen \‘

fokussieren / \\ederverwenw \\ldentlfmeren/ \\ festlegen / \\ definieren /

Abbildung 8: Iterativer Workflow zur Erstellung von Ontologien, detaillierte Beschrei-
bung siehe folgender Text.

Anwendungsgebiet fokussieren

Als Erstes sollte das Anwendungsgebiet und der Umfang abgesteckt werden. Es sollte
auch festgelegt werden, in welchen Bereichen wie detailliert modelliert werden soll. Da-
durch wird die Ontologie zwar auf den konkreten Anwendungsfall zugeschnitten und ist
nicht ohne Weiteres flir andere Einsatzgebiete wiederzuverwenden. Trotzdem sollte es
zur Begrenzung des Aufwandes durchgefiihrt werden, da man sonst Gefahr |auft, sich
zu verzetteln. Ein oft verwendetes Beispiel ist die unter anderem von Stuckenschmidt
[Stu09] beschriebene Erstellung einer Wein-Ontologie. Diese Ontologie kann fir ei-
ne Restaurant-Software, die passende Weine zu verschiedenen Gerichten empfiehlt,
verwendet werden. Dazu mussen auch die entsprechenden Speisen in der Ontologie
vorkommen. Falls die Ontologie aber dafiir verwendet werden soll, einen Weinbauern
bei der Bewirtschaftung seiner Weinberge zu unterstitzen, dann sind die passenden
Speisen uninteressant. In diesem Fall sollten die passenden Anbaumethoden fir die je-
weiligen Weinsorten Teil der Ontologie werden. Zur Erlduterung der einzelnen Schritte
wird hier die Erstellung der Wein-Ontologie fir eine Restaurant-Software beschrieben.
Um Umfang und Bereich der Ontologie zu bestimmen, wird in der Literatur die Beant-
wortung sogenannter ,Competency Questions” empfohlen. Diese Competency Ques-
tions sollten so gestellt werden, dass sie sich (hoffentlich) mit der zu erstellenden On-
tologie beantworten lassen. Mit einer mdglichst vollstdndigen Liste sollte sich spater
Uberprifen lassen, ob die Ontologie die gewlinschten Informationen bereitstellt. In un-
serem Beispiel kdnnten die Fragen wie folgt aussehen:

18

Ist Trollinger ein Rot- oder ein WeiBwein?

Passt Rotwein zu Fisch?

Welches Essen passt zu Rosé?

Gibt es einen bestimmten Wein nur als Flaschenwein, oder auch im offenen Aus-
schank?

Dies ist nur ein kleiner Ausschnitt der benétigten Fragen. Um die Ontologie spater in
vollem Umfang zu testen, sind deutlich mehr Fragen nétig.

Bestehende Ontologien wiederverwenden

Nachdem klar ist, welchen Bereich die Ontologie abdecken soll, ist es sinnvoll nach be-
reits existierenden Ontologien zu suchen, die eventuell wiederverwendet werden kén-
nen. Da jedoch in der Regel keine komplette Ontologie wiederverwendet werden kann,
gilt es abzuwégen, ob es sich lohnt, eine vorhandene Ontologie zu erweitern. Oft ist die
Anpassung aufwendiger als eine komplette Neuentwicklung.

Relevante Begriffe identifizieren

Nach der Sammlung der Competency Questions werden nun die konkreten Begriffe
gesucht, die in der Ontologie verwendet werden sollen. Als Erstes wird eine Liste der
zu verwendenden Substantive erstellt. Fir die Wein-Ontologie kénnte ein Teil dieser
Liste wie folgt aussehen: Wein, Rotwein, WeiBwein, Lage, Jahrgang, Fleisch, Fisch,
Dessert...

Die Sammlung dieser Begriffe kann dabei durch Interviews mit Experten auf dem ent-
sprechenden Gebiet, durch die Analyse von Texten und Blichern des entsprechenden
Gebiets oder durch die Analyse einschlagiger Datenbanken erfolgen.

Klassenhierarchie definieren

Die gesammelten Begriffe werden nun zu einer Klassenhierarchie zusammengefasst.
Dabei muss untersucht werden, in welchem Verhaltnis die Klassen zueinanderstehen.
So ist zum Beispiel die Klasse WeiBwein eine Unterklasse der Klasse Wein und ei-
ne disjunkte Schwesterklasse der Klasse Rotwein. Empfehlenswert ist hierbei ein Top-
Down Vorgehen. Man beginnt mit der allgemeinsten Klasse und spezialisiert diese dann
immer weiter. Bei den Weinen ist vermutlich die Klasse Wein die allgemeinste Klasse,
die alle andern weinspezifischen Klassen enthalt.

Relationen definieren

AnschlieBend missen Eigenschaften definiert werden. So kdnnte man zum Beispiel
die Eigenschaften passtZu und hergestelltVon definieren. Die Eigenschaften kénnen
bestimmte Einschrankungen erhalten. Eine dieser Einschrankungen ist die Kardinali-
tat. So kénnte man hergestelltVon die Kardinalitat 1 zuweisen, da ein Wein immer ge-
nau von einem Weingut hergestellt wurde. Eine weitere mdgliche Einschrankung ist die

19

Definition von Domain (Definitionsbereich) und Range (Wertebereich). So kénnte man
Domain von hergestelltVon auf die Klasse Wein und Range auf die Klassen Weingut
und Genossenschaft beschranken.

Damit ist der erste Durchgang der Erstellung der Ontologie abgeschlossen. Da sich
die Anforderungen, auch bedingt durch den Erkenntnisgewinn wahrend der Erstellung,
andern kdnnen, missen in der Regel mehrere Durchgange gemacht werden. Erst dann
kommt man zu einer einsatzbereiten Ontologie.

Wie die erstellte Ontologie verwendet werden kann, wird nun an einem Beispiel erklart:
Aus den drei Relationen 'Merlot istEin Rotwein’, 'Rotwein passtZu dunklem Fleisch’ und
'Rostbraten istEin dunkles Fleisch’ kann gefolgert werden, dass Merlot zu Rostbraten
passt.

2.5. Visualisierung

Unter Visualisierung versteht man die Transformation von abstrakten Daten, zum Bei-
spiel Texte oder Messdaten, in eine grafische Reprasentation, die durch Menschen
wahrgenommen und verstanden werden kann [RF94]. Visualisierungen dienen der Ex-
ploration und dem Verstehen komplexer Sachverhalte. Oft werden Visualisierungen
auch zur Kommunikation mit anderen Menschen verwendet. Da die Menschheit immer
mehr Daten erzeugt und speichert (wie bereits zu Beginn beschrieben, war es allein im
Jahr 2010 mehr als ein Zettabyte), sind Visualisierungen ein wichtiges Werkzeug um
mit diesen riesigen Datenmengen umgehen zu kénnen. Visualisierungen werden in vie-
len Bereichen von Forschung, Lehre, Wirtschaft und Unterhaltungsindustrie eingesetzt.

Die sogenannte Visualisierungspipeline (Abbildung [9) représentiert einen Workflow,
der die Uberfiihrung von Daten in grafische Darstellungen in vier Schritten beschreibt
[RBH9Q]. In der folgenden Beschreibung sind die englischen Begriffen aus Abbildung|[9]
in Klammern angegeben. Der erste Schritt ist die Gewinnung der Daten (data acquisi-
tion), zum Beispiel aus Simulationsdaten, Datenbanken oder Messwerten. Die hieraus
gewonnenen Rohdaten (raw data) werden anschlieBend durch Filtern aufbereitet. Da-
bei werden aus den Rohdaten die bendtigten Daten ausgewahlt und in das bendtigte
Datenformat Uberflihrt. Im Prozess des Filterns (filtering) werden die Daten durch ver-
schiedene Verfahren, wie zum Beispiel Resampling, Interpolation oder Klassifizierung
bearbeitet. Die in diesem Abschnitt der Pipeline entstandenen Daten werden als Vi-
sualisierungsdaten (visualization data) bezeichnet. Diese Visualisierungsdaten werden
im nachsten Schritt, dem Mapping, auf renderbare Reprasentationen (renderable re-
presentations) abgebildet. Die Daten werden nun durch grafische Primitive (Punkte,
Linien, Flachen) sowie verschiedene Attribute (Farbe, Transparenz, Textur) reprasen-
tiert. Im abschlie3enden Schritt, dem Rendern (rendering), werden die Primitive zu Bil-
dern oder Videos zusammengefasst und durch Berechnen von verschiedenen Effekten
(Schatten, Ausleuchtung, Schattierungen) méglichst realistisch dargestellt.

20

| simulation data | |data bases| | sensor measurements
| L J

y
[data acquisition]

[filtering]

processes|
;

| visualization data |

processes

} flow

[mapiping]

| renderable representation |

[rendering]
]

|visualizations (images, videos)|

Abbildung 9: Zu sehen ist die Visualisierungspipeline. Als erstes werden die Rohdaten
aus verschiedenen Quellen beschafft und durch Filtern zu den Visuali-
sierungsdaten transformiert. Die Visualisierungsdaten werden auf render-
bare Objekte abgebildet. AbschlieBend werden diese Objekte zu Bildern
oder Videos zusammengefasst [Ert11].

Das Thema dieser Diplomarbeit ist im Bereich des Mappings angesiedelt. Die zu visua-
lisierenden Daten werden ebenso wie die verfligbaren grafischen Elemente mit seman-
tischen Informationen annotiert. So kénnen die Daten auf grafische Elemente abgebil-
det werden.

2.6. Human-Computer Interaction

Unter Human-Computer Interaction (HCI, deutsch: Mensch-Computer-Interaktion) ver-
steht man einen Teilbereich der Informatik, der sich mit der Interaktion zwischen Men-
schen und Computern befasst. Wobei unter Computern in diesem Fall nicht nur Per-
sonal Computer verstanden werden, sondern auch andere interaktive Geréte, wie bei-
spielsweise Fahrkartenautomaten oder Smartphones. Wichtige Forschungsbereiche
sind dabei die Gestaltung von Benutzeroberflachen, die Interaktion von Menschen mit
bestimmten Eingabegeraten und Techniken sowie kognitive und psychologische Mo-
delle im menschlichen Gehirn. Ziel der HCl ist es, die Interaktion zwischen Mensch und
Computer zu vereinfachen und daflir zu sorgen, dass der Mensch im Mittelpunkt steht
und nicht der Computer. Abschnitt [2.6.1] gibt einen Uberblick tiber die Entwicklung der
HCI, Abschnitt [2.6.2 beschreibt den Gulf of Execution und den Gulf of Evaluation. Ab-
schnitt beschreibt mentale Modelle und die daraus resultierenden Probleme im
Bereich der Visualisierung.

21

2.6.1. Entwicklung der HCI

In den Anfangszeiten der Computerentwicklung waren Computer riesige Maschinen,
die ganze Raume bendtigten. Sie wurden in der Regel nur durch sehr wenige Men-
schen benutzt. Da die Benutzer meist Forscher oder Experten waren, spielte die HCl in
dieser Zeit noch keine grof3e Rolle. Es war kein Problem, wenn die Bedienung aufwen-
dig und schwer zu erlernen war. Durch den Siegeszug der digitalen Technik und dem
Einzug der Computer in private Haushalte wurde die HCl immer wichtiger. Und spétes-
tens seit dem Boom mobiler Gerate wie Smartphones und Tablet-Computer sind elek-
tronische Gerate zu allgegenwartigen Begleitern geworden. Da die Gerate nun durch
jeden verwendet werden kénnen, ist es wichtig, dass die Bedienung intuitiv und leicht
zu erlernen ist. Da digitale Gerate zunehmen den Alltag vieler Menschen bestimmen,
mussen Bedienoberflachen auch ohne Erklarung verstanden werden kdnnen. So ist es
beispielsweise nicht mdglich, erst das Handbuch eines Fahrkartenautomaten zu lesen,
bevor man sich eine Fahrkarte kauft.

Erweiterung des Kommunikationskanals zwischen
Mensch und System

[}
1

s ! simulative
TS ! multimediale 1 VR-Welten
= . . I i iqi
e T S ot o SR B
EQ ! Bildschirmmends ! grafische Inter- , Statische + dyna- g y
E < | Textausgaben | und -formulare : aktionsobjekte ! mische Medien :

1
_ c - T - T
3 % getippte Kom- : Kommandosprache,: direkte Mani- : multlmodale Eingaben durch:
£2 mandosprache | Funktionstasten | pulation : (E}ér(\)gr;srt:;?]dos+ |- gzgattickhe
5 W ! (pointing, draggin Vo
§ ' ,(p inting, dragging) | Daten) | - Augenbewegung
& Teletype- ! Ioh isch ! ! ! - Biosignale

Interfaces &'Phanumerische grafische ! 1 - Manipulation phys.

1Dialogsysteme 1 ' .) ! Objekte

! | Benutzungs- | multimediale

! ' schnittstellen | Benutzungs- |

- (GUI) ' schnittstellen

multimodale

Generationen von Benutzungsschnittstellen u. virtuelle B.

zeitliche Entwicklung

Abbildung 10: Zu sehen ist die Entwicklung der Ein- und Ausgabetechniken von
Teletype-Interfaces Uber alphanumerische Dialogsysteme, grafische Be-
nutzungsschnittstellen, multimediale Benutzungsschnittstellen bis hin zu
multimodalen und virtuellen Benutzungsschnittstellen [Sch09].

Abbildung [10] zeigt, wie sich in den letzten 50 Jahren sowohl Eingabe- als auch Aus-
gabetechniken stark verandert haben: von der reinen Textausgabe und der Steuerung
durch getippte Kommandos, Uber grafische Interaktionsobjekte und Konzeptn der direk-
ten Manipulation, bis hin zu Virtual Reality und Steuerung durch Sprache, Gesten und
in naher Zukunft méglicherweise auch durch Gedankenstrome.

22

2.6.2. Gulf of Execution und Gulf of Evaluation

Norman [Nor86| pragte die beiden Begriffe Gulf of Execution und Gulf of Evaluation.
Der Gulf of Execution beschreibt die Liicke zwischen dem Ziel des Benutzers und den
am Gerét tatsachlich auszufihrenden Handlungen zur Erreichung dieses Ziels. Ein ein-
faches Beispiel ist der Vorgang des Geldabhebens an einem Geldautomaten. Das Ziel
ist eine bestimmte Summe Bargeld von einem Konto abzuheben. Die tatsachlich aus-
zufiihrenden Handlungen sind jedoch aufwendiger:

1. Einflihren der Bankkarte in den Automaten
2. Auswahl der Funktion ‘Geld abheben’

3. Eingabe der PIN

4. Auswahl des Betrags

5. Entnahme des Geldes

Um ein einfaches, klar definiertes Ziel zu erreichen, sind also eine ganze Reihe von
Handlungen und Interaktionen mit dem System notwendig. Gegenstand der HCl ist es
auch, die Lucke zwischen Ziel und auszufihrenden Handlungen méglichst zu verklei-
nern.

Der Gulf of Evaluation beschreibt die Licke zwischen der Ausgabe eines Gerats und
dem Verstandnis des aktuellen Systemzustands. Es geht also um die Frage, ob das
System leicht erfassbare und interpretierbare Informationen lber seinen Zustand lie-
fert. Um den Gulf of Evaluation zu Uberbriicken, muss der Benutzer folgende Schritte
durchfihren:

1. Perzeption (Wahrnehmung) des Systemzustands.
2. Interpretation des wahrgenommenen Systemzustands.
3. Auswerten, ob das Interpretierte mit den urspriinglichen Zielen Ubereinstimmt.

Dabei sollten die Anstrengungen des Benutzers zur Durchfiihrung dieser Schritte durch
gutes Design des Systems mdglichst gering gehalten werden.

In dieser Diplomarbeit wird ein Versuch beschrieben, den Gulf of Evaluation im Be-
reich der Visualisierung zu verkleinern, indem der Benutzer Visualisierungen an seine
personlichen Bedlrfnisse anpassen kann.

2.6.3. Mentale Modelle und daraus resultierende Probleme im Bereich der
Visualisierung

Die Sicht eines Menschen auf seine Umgebung, sich selber, seine eigenen Fahigkeiten
und die an ihn gestellten Aufgaben unterscheidet sich stark von Mensch zu Mensch.

23

Um sich die Interaktion mit der Umwelt, mit Mitmenschen oder mit verschiedenen Tech-
nologien zu erleichtern, bauen sich Menschen im Unterbewusstsein mentale Modelle.
Norman hat bei seinen Experimenten folgende Beobachtungen lber mentale Modelle
gemacht:

Mentale Modelle...
e ...sind nicht vollstandig.
e ...hangen von den Fahigkeiten des Menschen ab.

e ...sind instabil und verdndern sich im Lauf der Zeit, vor allem wenn bestimmte
Tétigkeiten langer nicht ausgefihrt werden.

...haben keine festen Grenzen. Verschiedene Operationen und Gerate werden
vermischt.

...sind nicht wissenschaftlich. Menschen legen aberglaubisches Verhalten an den
Tag, obwohl sie sich dessen bewusst sind.

...sind ,,geizig“. Menschen nehmen héheren physischen Aufwand als nétig in Kauf,
um den mentalen Aufwand gering zu halten.

Diese Beobachtungen stellen klar, dass die verschiedenen mentalen Modelle sich von-
einander unterscheiden. Dadurch lassen sich Verstandnisprobleme beim Benutzen von
Software erklaren. Der Nutzer hat ein anderes mentales Modell als der Ersteller und
versteht die Bedeutung, die transportiert werden soll, nicht. Nur in einer idealen Welt,
in der alle Menschen fiir eine bestimmte Sache immer das selbe mentale Modell hat-
ten, wirden sich die beiden Modelle und die grafische Repréasentation der Bedeutung
gleichen [Nor83].

Im Bereich Visualisierung versucht der Ersteller eine Information grafisch an den Nut-
zer zu Ubermitteln. Wie in Abbildung [T1] zu erkennen, hat der Ersteller die Idee eines

Design Model |:> Visualisierung |:> User's Model
Verstandene Idee
Idee des Inhalts des Inhalts

:

*
Abbildung 11: Unterschiede in den mentalen Modellen von Ersteller und Nutzer sind
haufig der Grund fir Verstandnisprobleme bei der Betrachtung von Vi-
sualisierungen [MR11].

24

Inhaltes, den er vermitteln will. Dazu wahlt der Ersteller ein Design Model und versucht
dieses durch die Visualisierung darzustellen. Der Nutzer erzeugt beim Betrachten der
Visualisierung sein eigenes User Model. Dieses Modell basiert auf seiner Interpreta-
tion der Visualisierung, wird aber auch beeinflusst durch das Hintergrundwissen und
die persdnlichen Vorlieben des Nutzers. Durch dieses Modell erhélt der Nutzer ein Ver-
standnis des Inhalts. Im Idealfall wirden die mentalen Modelle von Ersteller und Nutzer
Ubereinstimmen. Wie Normans Beobachtungen jedoch gezeigt haben, ist dies in der
Regel nicht der Fall. Das mentale Modell des Nutzers hangt nicht nur davon ab, wer
dieser Nutzer ist. Ebenso entscheiden ist der Zeitpunkt der Betrachtung und der zu die-
sem Zeitpunkt aktuelle Wissenszustand sowie die Erfahrung des Nutzers. Um trotzdem
das mentale Modell des Nutzers mdéglichst gut zu treffen, sollte die Visualisierung an die
Aufgabenstellung, die Anforderungen und die Fahigkeiten des Nutzers angepasst wer-
den kdnnen. Je schlechter die beiden mentalen Modelle Ubereinstimmen, desto eher
kommt es zu Verstandnisproblemen. Im schlimmsten Fall kann der Nutzer die Visuali-
sierung nicht verwenden.

In der vorliegenden Diplomarbeit wird ein Interaktionskonzept beschrieben, das es dem
Nutzer ermdglicht, die Visualisierung interaktiv an seine Bedurfnisse anzupassen, um
dadurch Verstandnisprobleme zu vermeiden [MR11].

2.7. Vektorgrafik

In diesem Abschnitt werden Vektorgrafiken eingefthrt. In werden Vektorgrafiken
allgemein und in das Vektorgrafikformat Scalable Vector Graphics beschrieben.

2.7.1. Vektorgrafiken allgemein

Hinter Vektorgrafiken steht die Idee, nicht flr jeden einzelnen Punkt der Grafik einen
Farb- und Helligkeitswert zu spezifizieren, sondern die Grafik durch grafische Primiti-
ve zu beschreiben. So wird zum Beispiel fur eine Linie nur Start- und Endpunkt sowie
Linienstil, -breite und -farbe abgespeichert. Im Gegensatz dazu stehen Rastergrafiken,
bei denen jeder einzelne Punkt des Bildes beschrieben ist. Wie in Abbildung [T2] gut zu
erkennen ist, haben Vektorgrafiken gegeniiber Rastergrafiken den gro3en Vorteil der
beliebigen und verlustfreien Skalierbarkeit. Hinzu kommt, dass vor allem bei groB3en
Grafiken, die Vektorgrafiken haufig deutlich weniger Speicherplatz benétigen. Moderne
Vektorgrafikprogramme bieten auch Funktionen, um Transparenzeffekte und Farbver-
laufe abzuspeichern. Dadurch lassen sich deutlich bessere und realistischere Abbil-
dungen der realen Welt erstellen. Vektorgrafiken haben ihre Starken bei Grafiken, die
einfach durch grafische Primitive dargestellt werden kdnnen. Fotos, die als Rastergrafik
aufgenommen werden, kdnnen nicht verlustfrei in Vektorgrafiken umgewandelt werden.
Vektorgrafiken sind bei der Erstellung von Diagrammen und Logos sehr beliebt. Die
meisten Vektorgrafikformate unterstiitzen auch, dass Rastergrafiken eingebunden wer-
den kdénnen. Die eingebundenen Rastergrafiken werden wie ein Rechteck behandelt.

25

Abbildung 12: Links eine Beliebig skalierbare Vektorgrafik, rechts eine Rastergrafik, die
durch das Zoomen stark verpixelt wirkt.

Der Rahmen der eingebundenen Rastergrafik wird mit der Vektorgrafik skaliert, die Ras-
tergrafik selber kann aber nicht verlustfrei skaliert werden.

Um Vektorgrafiken auf Bildschirmen darzustellen oder auszudrucken zu kénnen, mus-
sen sie in eine Rastergrafik umgewandelt werden. Da dies zu einem Zeitpunkt passiert,
zu dem sowohl Skalierungsfaktor als auch die Auflésung des Zielgerats bekannt sind,
kann die Vektorgrafik immer optimal dargestellt werden. Drucker haben in der Regel
einen eigenen Rastergrafikprozessor, der die Vektorgrafik umrechnet. Dadurch kénnen
Vektorgrafiken in jeder beliebigen Gré3e ausgedruckt werden [httd].

Da bei Vektorgrafiken die einzelnen grafischen Primitive, aus denen die Grafik zusam-
mengesetzt ist, gespeichert werden, sind Vektorgrafikformate eine gute Wahl, wenn
einzelne Elemente ersetzt werden sollen.

2.7.2. Scalable Vector Graphics

Das W3C empfiehlt Scalable Vector Graphics (SVG) als Format zur Beschreibung von
Vektorgrafiken. Die Spezifikation ﬁwurde erstmalig im Jahr 2001 verdéffentlicht. SVG ba-
siert auf XML. Dadurch sind XML-Dokumente in einer Baumstruktur aus verschiedenen
Elementen aufgebaut. Das Dokument beginnt mit der XML-Deklaration. Der SVG-Teil
beginnt mit dem Tag <svg>. In diesem Start-Tag werden unter anderem Héhe und Brei-
te der Grafik angegeben. Das Dokument wird mit dem Tag </svg> beendet. Listing [3]
zeigt den grundlegenden Aufbau eines SVG-Dokuments.

5http ://www.w3.org/TR/2003/REC-SVG11-20030114/

26

http://www.w3.org/TR/2003/REC-SVG11-20030114/

<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<l—— Created with Inkscape (http ://www.inkscape.org/) —>

<svg
xmins:cc="http ://creativecommons.org/ns#"
xmins:svg="http ://www.w3.0rg/2000/svg"
xmlns="http ://www.w3.0rg/2000/svg"
xmins: xlink="http ://www.w3.0rg/1999/ xlink"
xmins:inkscape="http ://www. inkscape . org/namespaces/inkscape"
width="210mm"
height="297mm"
id="svg2"
version="1.1"
inkscape :version="0.48.2 r9819">
<l——Inhalt des Dokuments>
</svg>

Listing 3: Beispiel fUr eine mit Inkscape erzeugte, leere SVG-Datei

SVG unterstitzt drei verschiedene Arten von grafischen Objekten:
Vektorgrafiken Diese Grafiken sind aus grafischen Primitiven zusammengesetzt.
Bilder Es kdnnen Bilder in den Formaten PNG und JPEG eingebunden werden.

Text Es kann Text in einer Schriftart, die dem Renderer zur Verfligung stehen muss,
eingebunden werden.

Im Folgenden werden die in SVG verfligbaren Elemente beschrieben:

Rechteck Das Element <rect /> definiert ein Rechteck. Es miissen die Koordinaten,
sowie Héhe und Breite angegeben werden. Optional kann ein Radius fir abge-
rundete Ecken angegeben werden.

Kreis Das Element <circle /> definiert einen Kreis. Es missen die Koordinaten flr
den Mittelpunkt und der Radius angegeben werden.

Ellipse Das Element <ellipse /> definiert eine Ellipse. Es missen die Koordinaten
fur den Mittelpunkt und die beiden Halbachsenradien angegeben werden.

Linie Das Element <1ine /> definiert eine Linie. Es miissen die Koordinaten flir Start-
und Endpunkt angegeben werden.

Polygonzug Das Element <polyline /> definiert einen Polygonzug. Der Polygonzug
wird durch die Koordinaten beliebig vieler Punkte angegeben, die durch Linien
verbunden werden.

Polygon Das Element <polygon /> definiert ein Polygon. Wie beim Polygonzug wird
das Polygon durch die Koordinaten beliebig vieler Punkte definiert, mit dem Un-
terschied, dass beim Polygon Start- und Endpunkt durch eine Linie verbunden
werden.

27

Pfad Das Element <path /> ist das méchtigste Element in SVG. Alles was durch die
bisher vorgestellten Elemente dargestellt werden kann, kann auch durch das
Pfad-Element dargestellt werden. Die anderen Elemente machen SVG-Dateien
besser fir Menschen lesbar und sparen oft Speicherplatz. Ein Pfad wird durch
die Kommandos moveto und lineto definiert, wobei moveto einen Sprung an die
angegebenen Koordinaten definiert und lineto eine Linie vom letzten definier-
ten Punkt zu den angegebenen Koordinaten definiert. Zusatzlich gibt es noch das
Kommando closepath, das den aktuellen Pfad beendet und eine direkte Linie
zum Startpunkt des Pfades zeichnet.

Text Zum Einbinden und Strukturieren von Text stehen drei Elemente zur Verflgung:

e Das Element <text /> dient zum Einbinden von Text. Es kbnnen verschie-
dene Attribute angegeben werden, zum Beispiel die Position und die Lange
des Textes, Groe, Schriftart und Farbe.

e Mit dem Element <tspan /> kénnen Bereiche innerhalb eines Textes ver-
andert werden. So kénnen beispielsweise einzelne Wérter in anderer Farbe
oder GroBe dargestellt werden.

e Das Element <tref /> bietet die Mdglichkeit auf definierte Texte zu refe-
renzieren. Dies ist vor allem dann sinnvoll, wenn der gleiche Text mehrfach
verwendet werden soll.

Image Das Element <image /> bietet die Mdglichkeit Rastergrafiken in ein SVG-
Dokument einzubinden. Es missen die Koordinaten, Lange und Breite des Bildes
und ein Verweis auf die externe Datei angegeben werden. Es ist nicht mdglich,
auf Elemente innerhalb des SVG-Dokuments zu verweisen. Mit diesem Element
werden im Prototypen die grafischen Elemente in die Visualisierungen eingebun-
den.

Alle Elemente, sowie Gruppen von Elementen kénnen durch affine Transformationen
verandert werden. Es stehen Parallelverschiebung, Skalierung, Rotation und Scherung
zur Verfugung. Diese Transformationen kénnen entweder einzeln, unter Angabe der
bendtigten Parameter, oder kombiniert in einer 3x3-Matrix definiert werden.

Probleme mit SVG-Editoren Bei durch Editoren erzeugten SVG-Dokumenten tritt oft
das Problem auf, dass die Dateien unnétig groB3 sind, da die SVG-Editoren in vielen
Fallen das Pfad-Element, anstatt der verschiedenen Grundformen verwenden. So ist
bei zwei vom Aussehen her identischen Kreisen, von denen einer mit dem SVG-Editor
Inkscape und der andere manuell mit einem Texteditor erstellt wurde, ein Unterschied
beim Speicherverbrauch von ca. Faktor 9 festzustellen.

Da SVG auf XML basiert, kdnnen eigene Elemente hinzugefliigt werden. Diese Elemen-
te werden von gangigen SVG-Renderern ignoriert. Daher eignet sich SVG gut dafiir, um
die Grafiken mit semantischen Annotationen anzureichern.

28

2.8. Verwendete Technologien

Die Ausarbeitung dieser Diplomarbeit wird mit IATEX erstellt. Zum Erstellen der Onto-
logie wird der Ontologie-Editor Protégé in der Version 3.4.7, entwickelt von der Stan-
ford University, verwendet. Der Prototyp wird in der Programmiersprache C# entwickelt.
Als Entwicklungsumgebung wird Visual Studio 2010 Ultimate eingesetzt. Damit werden
auch die Klassen- und Sequenzdiagramme erstellt.

Das im Prototyp bendtigte Rendering der PNG-Dateien wird durch das Kommandozei-
lentool von Inkscape durchgefiihrt. Inkscape ist ein Open-Source-Vektorgrafikprogramm,
das aufwww.inkscape.org heruntergeladen werden kann. Die in Kapitel[5|verwendeten
Mockups werden mit der Web Demo des Design-Tools Balsamicﬁ erstellt.

®http://www.balsamiq.com/

29

www.inkscape.org
http://www.balsamiq.com/

3. Aufgabenstellung und Losungsansatz

Im folgenden Kapitel wird in Abschnitt 3.1 zunachst die Aufgabenstellung der vorliegen-
den Diplomarbeit beschrieben. In Abschnitt 3.2 wird anschlie3end der Losungsansatz
erlautert, der zur L6sung der gestellten Aufgaben ausgewéahlt wurde.

3.1. Aufgabenstellung

Ubergeordnetes Ziel der Diplomarbeit ,Interaktive, verstandnisorientierte Optimierung
von semantisch-annotierten Visualisierungen® ist es, den Gulf of Evaluation im Bereich
von Visualisierungen zu verkleinern. Um dieses Ziel zu erreichen, soll ein Konzept ent-
worfen werden, mit dem Visualisierungen mit semantischen Metainformationen anno-
tiert werden kdnnen, um sie anschlie3end interaktiv optimieren zu konnen. Um dies
zu erm@glichen soll eine Grafik-Ontologie sowie ein Regelwerk zum Annotieren von
grafischen Elementen in einer Visualisierung entworfen werden. Bevor die Ontologie
entworfen wird, soll Gberpriift werden, ob im Semantic Web bereits Ressourcen, bezie-
hungsweise Ontologien vorhanden sind, die verwendet oder erweitert werden kénnen.
AnschlieBend soll ein die grundlegenden Bereiche des Konzepts umfassender Kern-
bereich herausgearbeitet und ein Prototyp entwickelt werden, der diesen Kernbereich
implementiert. Durch den Prototypen sollen Benutzer die Méglichkeit erhalten, die grafi-
sche Repréasentation visualisierter Daten individuell anpassen zu kénnen. Es soll eben-
so mdglich sein, die einzelnen grafischen Elemente, als auch das gesamte Visualisie-
rungskonzept auszutauschen. Dadurch kann der Benutzer die Visualisierung an seine
persdnlichen Bedurfnisse und Vorlieben anpassen und Verstandnisprobleme verhin-
dern. Der Prototyp soll es dem Benutzer ermdglichen, die Anpassungen an seiner Vi-
sualisierung mittels einer grafischen Oberflache durchzuflihren. Zum Abschluss sollen
das Konzept und seine Umsetzbarkeit evaluiert werden.

Um die Aufgabenstellung zu I6sen, wurden folgende Teilaufgaben identifiziert:

1. Recherche und Einarbeitung in die Themen Semantic Web und Ontologien (Ab-

schnitte 2.1] [2.2] [2.3|und [2.4).

2. Recherche und Einarbeitung in die Themen Visualisierung, Human-Computer In-
teraction und Vektorgrafik (Abschnitte und[2.7).

3. Untersuchen, ob geeignete Ontologien aus dem Semantic Web verwendet wer-
den kénnen, gegebenenfalls Entwurf eigener Ontologien (Abschnitt [4.2).

4. Entwicklung eines Konzepts zur Optimierung von Visualisierungen (Kapitel [4).

5. Erarbeiten eines Kernbereichs des Konzepts, der im Prototypen umgesetzt wer-
den soll (Kapitel [5).

6. Implementieren des Prototyps (Kapitel[6).

7. Evaluierung des Konzepts und seiner Umsetzbarkeit (Kapitel 7).

31

3.2. Lésungsansatz

Um diese Diplomarbeit leichter versténdlich zu machen, wird ein beispielhaftes Einsatz-
szenario aus dem Bereich Bevolkerungsentwicklung verwendet. Damit ein mdglichst
breites Spektrum von Anwendungsdomanen und Visualisierungskonzepten abgedeckt
wird, soll zusétzlich ein Einsatzszenario aus der Automobilbranche entworfen werden.
Es sollen zwei verschiedene Ontologien, eine Grafik-Ontologie und eine Anwendungsfall-
spezifische Domanen-Ontologie, entwickelt werden. Der Ansatz, zwei Ontologien, eine
global einsetzbare Grafik-Ontologie und eine Anwendungsfall-spezifische Doméanen-
Ontologie, zu erstellen, wurde gewahlt, um mit mdglichst hoher Arbeitseffizienz eine
moglichst flexible Lésung zu erhalten. So kann die Grafik-Ontologie fiir alle Anwen-
dungsfélle verwendet werden (Effizienz), wahrend die Doméanen-Ontologie auf den
konkreten Anwendungsfall zugeschnitten ist (Flexibilitat). Die Ontologien sollen in RDF
erstellt werden, da dies die einzige Ontologiesprache ist, fur die eine C#-Bibliothek
gefunden wurde. Beim Entwerfen der Ontologien soll das in [2.4] vorgestellte Schema
verwendet werden.

Im Anschluss daran soll ein Interaktionskonzept entwickelt werden, wie die erstellten
Ontologien verwendet werden kdnnen, um Visualisierungen mit semantischen Meta-
informationen zu annotieren. Diese Visualisierungen sollen interaktiv optimiert werden
kénnen. Da es sich um verschiedene Anwendungsbereiche handelt - Erstellen und Op-
timieren - soll das Interaktionskonzept in zwei Teile unterteilt werden.

Die Architektur des Prototyps soll an das Model-View-Controller Paradigma angelehnt
werden. Der Prototyp soll in der Programmiersprache C# implementiert werden. Da in
SVG-Dateien weitere Elemente, die nicht Teil der SVG-Spezifikation sind, hinzugeflgt
werden kdnnen, ohne dass diese das Aussehen der Grafik verandern, wurde entschie-
den, die Visualisierungen in SVG zu erzeugen. Da C# das Verandern von SVG-Dateien
nicht unterstitzt, missen die notwendigen Methoden selber implementiert werden. Bei
der Implementierung des Prototyps soll versucht werden, méglichst auf bereits vorhan-
dene Technologien und Bibliotheken zuriickzugreifen, um den Zeitaufwand zu minimie-
ren. Daher soll nach Méglichkeit kein eigener Renderer fir SVG-Dateien geschrieben
werden. Die dadurch bei der Implementierung eingesparte Zeit soll fiir die Erarbeitung
des theoretischen Konzepts verwendet werden.

32

4. Konzept

Haufig werden Visualisierungen von Menschen mit technischer Ausbildung (Ingenieu-
re, Informatiker) erstellt, aber von Menschen mit anderem Hintergrund (beispielswei-
se Marketingexperten oder Manager) verwendet. Oder sie werden durch Marketingex-
perten erstellt und sollen von Kunden verstanden werden. Durch das unterschiedliche
Hintergrundwissen von Ersteller und Nutzer kann es leicht zu Missverstédndnissen kom-
men. Um diese Missverstandnisse moglichst zu vermeiden, wird im Folgenden ein Kon-
zept vorgestellt, bei dem der Benutzer einer Visualisierung diese so weit wie mdglich
an seine eigenen Bedurfnisse und Vorlieben anpassen kann.

Im weiteren Verlauf der Diplomarbeit werden die Begriffe Visualisierung und Visualisie-
rungskonzept verwendet. Der Begriff *Visualisierung’ wird als eine grafische Reprasen-
tation verstanden. Eine Visualisierung kann aus verschiedenen Visualisierungskonzep-
ten bestehen, zwischen denen gewechselt werden kann. Ein Visualisierungskonzept ist
beispielsweise eine Landkarte, eine Tree-Map oder ein Balkendiagramm.

Dabei wird bei der Erstellung der Visualisierung die Bedeutung festgelegt, die durch die
Visualisierung transportiert werden soll, damit diese Bedeutung stets erhalten bleibt.
Alles andere, was die Bedeutung nicht beeintrachtigt, soll durch den Benutzer aus-
tauschbar sein. Um das Konzept besser zu veranschaulichen, werden im folgenden Ab-
schnitt zwei Einsatzszenarien als Beispiele eingefuhrt. Eines davon stammt aus dem
Bereich Bevolkerungsentwicklung und das andere aus der Automobilbranche. Diese
beiden Beispiele werden dann im weiteren Verlauf dieser Diplomarbeit verwendet.

4.1. Einsatzszenarien

Fir ein besseres Verstandnis des erarbeiteten Konzeptes und des Prototyps werden im
Folgenden zwei Einsatzszenarien eingeflihrt. Durch sie soll zum Einen gezeigt werden,
in welchen verschiedenen Bereichen das zu entwerfende Konzept eingesetzt werden
kann. Zum Anderen soll ein mdglichst breites Spektrum an Visualisierungen abgedeckt
werden. Aus diesem Grund wurden zwei Einsatzszenarien aus véllig verschiedenen
Anwendungsdoméanen gewabhlt. Die beiden Szenarien werden in den folgenden beiden
Unterabschnitten erlautert.

4.1.1. Einsatzszenario Bevélkerungsentwicklung

Das erste Beispiel, das auch spater im Prototyp zum Einsatz kommt, ist aus der Demo-
grafieforschung. Ziel ist es, die Bevdlkerungsentwicklung in Deutschland zwischen 2007
und 2009 zu visualisieren. Dabei soll neben den absoluten Zahlen auch das Wachs-
tum, beziehungsweise der Riickgang der Bevélkerungszahlen veranschaulicht werden.
Die Entwicklung soll in verschiedenen Granularitdten (zum Beispiel auf kommunaler,
regionaler und Landesebene) veranschaulicht werden kénnen. Es sollen verschiede-
ne Visualisierungskonzepte zur Verfugung stehen. Hierflr eignen sich beispielsweise
Landkarten, Balkendiagramme oder Tree-Maps.

33

In Abbildung[13|wird das Konzept fiir das Einsatzszenario Bevolkerungswachstum sche-
matisch dargestellt. Aufgrund der Bevélkerungszahlen wird eine Visualisierung erstellt,
die verschiedene Visualisierungskonzepte unterstiitzt. Der Benutzer kann zwischen den
Konzepten wechseln und jedes Konzept durch den Austausch einzelner grafischer Ele-
mente interaktiv optimieren.

Interaktion) &

Abbildung 13: Auf Basis der Daten (links) werden die Visualisierungen (in der Mitte)
erstellt. Der Benutzer (rechts) kann die Visualisierungen interaktiv an-
passen.

4.1.2. Einsatzszenario Automobilvisualisierung

Das zweite Beispiel stammt aus der Automobilbranche. Ziel ist es ein Auto zu visuali-
sieren. Die Visualisierung soll fur verschiedene Aufgaben verwendet werden kdnnen.
Ein Visualisierungskonzept soll eine technische Zeichnung sein, ein anderes ein fo-
torealistisches Bild des Autos. Dieses Abbild kann von Kunden individuell angepasst
werden. Die Kunden sollen sowohl einzelne Elemente (Spiegel, Rader, Radio) als auch
ganze Ausstattungslinien oder -pakete austauschen kénnen. Durch Wechseln des Vi-
sualisierungskonzeptes kann eine technische Zeichnung des individuell angepassten
Autos erstellt werden. Diese kann fir die Produktion des Autos verwendet und an die
Werkstatt Ubermittelt werden, die spéter dieses Auto warten und reparieren soll.

4.2. Visualisierungen interaktiv optimieren

Um die steigende Menge an Daten, die standig erzeugt wird, sinnvoll verarbeiten und
verstehen zu kdnnen, ist es in vielen Fallen nitzlich, diese Daten in Form von Visualisie-
rungen grafisch darzustellen. Da grafische Darstellungen, genau wie natirlichsprachli-
che Texte, haufig keine eindeutige Bedeutung haben, werden sie von verschiedenen

34

Menschen unterschiedlich interpretiert (siehe [2.6.3). Um die Bedeutung einer grafi-
schen Darstellungen eindeutig zu definieren, kbnnen deren Elemente auf einer Me-
taebene semantisch annotiert werden. Durch diese Annotationen kann der Benutzer
interaktiv und verstandnisorientiert Visualisierungen anpassen. Ein Konzept, das die
Annotationen und spéteren Anpassungen ermdglicht, ist in Abbildung [14] schematisch
dargestellt und wird im Folgenden vorgestellt.

Ontologien zur
Annotation

Abbildung 14: Workflow, der die Erstellung von optimierbaren Visualisierungen ermég-
licht. Zuerst werden die Ontologien benétigt (links), dann werden die Vi-
sualisierungen erstellt und annotiert (Mitte), die anschlie3end optimiert
werden kénnen (rechts).

Interaktive
Optimierung von
Visualisierungen

Erstellung und
Annotierung von
Visualisierungen

Abschnitt [4.2.7] beschreibt die Erstellung der zur Annotation benétigten Ontologien. In
4.2.2| wird beschrieben, wie die erstellten Ontologien bei der Erstellung von Visualisie-
rungen verwendet werden, um diese mit semantischen Metadaten anzureichern. Ab-
schnitt [4.2.4] schlieBt das Kapitel mit der Beschreibung eines Interaktionskonzepts zur
interaktiven Optimierung der erstellten Visualisierungen.

4.2.1. Ontologien zur Annotation

Bevor die Visualisierungen annotiert werden kénnen, muss zuerst geklart werden, aus
welchen Ontologien die semantischen Informationen kommen sollen. Um unnétigen
Aufwand beim Erstellen von Ontologien zu vermeiden, wird zuerst versucht, bereits
existierende Ontologien aus dem Semantic Web zu verwenden. Die Recherchen im
Semantic Web werden mit Hilfe einer Suchmaschine durchgefiihrt, die das Web nach
RDF-Dokumenten und HTML-Seiten mit eingebetteten Metadaten durchsuch{’| Da auch
nach aufwendigen Recherchen keine brauchbaren Ontologien zur Annotation von Vi-
sualisierungen gefunden werden konnten, wurde der Entschluss gefasst, eigene Onto-
logien zu entwerfen. Es werden zwei verschiedene Ontologien, eine Grafik-Ontologie
und eine anwendungsfallspezifische Domanen-Ontologie, entwickelt, die beide in den
nachsten Abschnitten beschrieben werden. Der Ansatz, zwei Ontologien, eine global
einsetzbare Grafik-Ontologie und eine anwendungsfallspezifische Domanen-Ontologie,
zu erstellen, wurde gewahlt, um mit méglichst hoher Arbeitseffizienz eine mdglichst fle-
xible Lésung zu erhalten. So kann die Grafik-Ontologie fir alle Anwendungsfalle ver-
wendet werden (Effizienz), wahrend die Doméanen-Ontologie auf den konkreten Anwen-
dungsfall zugeschnitten ist (Flexibilitat).

"http://www.swoogle.umbc.edu/

35

http://www.swoogle.umbc.edu/

Grafik-Ontologie

Die Grafik-Ontologie wird verwendet, um verschiedene grafische Primitive und die dar-
aus aufgebauten Visualisierungskonzepte zu beschreiben. Die Ontologie enthalt zu
diesem Zweck die Visualisierungskonzepte und Informationen zu atomaren grafischen
Bausteinen (im Folgenden als ‘grafische Primitive’ bezeichnet), aus denen Visualisie-
rungen in den verschiedenen Konzepten bestehen kdnnen. Grafische Primitive sind
die kleinsten sinnvoll zusammengehérenden grafischen Bausteine einer Visualisierung.
Theoretisch kdnnten alle Elemente letztendlich bis auf Pixelebene zerlegt werden. Dies
ist aber aus zwei Griinden nicht sinnvoll. Da die Benutzer auch Menschen ohne techni-
sche Ausbildung sein kénnen, wirde die grof3e Anzahl an Pixeln ein effizientes Arbeiten
unmdoglich machen. AuBBerdem sollen nicht einzelne Pixel ausgetauscht werden, son-
dern Pixelmengen die zu logisch zusammengehérigen Objekten gehéren. Aus diesem
Grund werden die Visualisierungen in geometrische Objekte wie zum Beispiel Kreise,
Rechtecke oder Linien zerlegt.

<Primitivklasse 2>

Primitvklasse 1

Grafisches Primitiv

Primitiv 1
| visualisierung

Abbildung 15: Konzeptueller Entwurf einer Grafik-Ontologie. Es werden verschiedene
Konzepte definiert und verschiedene grafische Primitive in Klassen un-
terteilt. Die gestrichelten Pfeile veranschaulichen, aus welchen Primiti-
ven die Konzepte bestehen, die durchgezogenen Pfeile stehen fir ’Ist-
Unterklasse-Von'. Die rechteckigen, optionalen Attribute kbnnen Primiti-
ve genauer spezifizieren.

Abbildung [15] zeigt, wie eine Grafik-Ontologie im Grundsatz aufgebaut sein soll. Es
werden darin verschiedene Visualisierungskonzepte definiert. Die verschiedenen gra-
fischen Primitive werden in verschiedene Klassen unterteilt. Jedem Konzept werden
dann die grafischen Primitive zugewiesen, aus denen es bestehen kann. In Abbildung
[T5wird dies durch die gestrichelten Linien dargestellt. ’'Konzept 1’ kann also aus Instan-

36

zen von 'Primitiv 17 und 'Primitiv 2’ bestehen, ’Konzept 2" dagegen nur aus Instanzen
von 'Primitiv 2'. Die durchgezogenen Pfeile stehen fur ’Ist-Unterklasse-Von’. ’'Konzept
1’ und 'Konzept 2’ sind also Unterklassen von 'Konzept'. Zusatzlich kann die Grafik-
Ontologie fur jedes Primitiv Attribute enthalten, die zur Darstellung des Primitivs defi-
niert werden massen. In Abbildung bendtigt nur 'Primitiv 2’ Attribute. Wie das im
Detail aussehen kann, ist in Abbildung [16] zu sehen und wird in Abschnitt [4.2.2] be-
schrieben.

Domaéanen-Ontologie

Die Doméanen-Ontologie enthalt domanenspezifische Informationen zur Annotation gra-
fischer Elemente und der dazugehdrigen Daten. Ebenso enthélt diese Ontologie, falls
notwendig, die zu visualisierenden Daten. Fir das Einsatzszenario Bevdlkerungsent-
wicklung werden die verwendeten Entitaten sowie die benétigten Bevdlkerungszahlen
definiert. Eine Entitat kann in diesem Fall beispielsweise ein Stadtteil, eine Stadt, ein
Landkreis oder ein Bundesland sein, je nach Granularitat, die visualisiert werden soll.
Zusatzlich werden verschiedene Klassen definiert, mit denen grafische Elemente an-
notiert werden kdénnen. Beim Einsatzszenario Bevdlkerungsentwicklung sind das ver-
schiedene Eigenschaften, die die Bevolkerungsentwicklung charakterisieren, zum Bei-
spiel 'Ansteigend’, 'Gleichbleibend’ oder 'Sinkend’.

Fir das Einsatzszenario Automobilvisualisierung werden hier die verschiedenen Bau-
teile, aus den das Auto zusammengesetzt ist, beispielsweise 'Rad’, 'Spiegel’ oder 'Aus-
puff’ definiert. Damit kénnen dann verschiedene grafische Elemente, die ein Rad re-
prasentieren, annotiert werden. Wenn der Ersteller der Visualisierung einen Platzhalter
far Rad-Elemente hinzuflgt, kann der Benutzer diesen Platzhalter durch alle grafischen
Elemente ersetzen, die mit '/Rad’ annotiert sind.

Die Art der Visualisierungen in den beiden Einsatzszenarien unterscheidet sich. Wah-
rend bei der Bevodlkerungsentwicklung verschiedene Eigenschaften beschrieben sind,
sind es bei der Automobilvisualisierung konkrete Teile des Autos.

Dartber hinaus werden in der Doméanen-Ontologie verschiedene Detailstufen festge-
legt. Mit diesen kann jedes Element einer Visualisierung annotiert werden. In Abschnitt
[4.2.4lwird der Nutzen dieser Detailstufen erlautert.

4.2.2. Annotieren von Visualisierungen

Um Visualisierungen durch den Benutzer anpassbar zu machen, kénnen sie mit In-
formationen aus den beiden Ontologien annotiert werden. Wéahrend die Annotationen
aus der Grafik-Ontologie dazu dienen, das Visualisierungskonzept austauschbar zu
machen, werden die Annotationen aus der Doménen-Ontologie zum Austauschen ein-
zelner grafischer Elemente bendtigt.

Annotationen aus der Grafik-Ontologie
Beim Erstellen einer Visualisierung annotiert der Ersteller die Visualisierung mit Visua-
lisierungskonzepten aus der Grafik-Ontologie. Eine Annotation mit einem Visualisie-

37

rungskonzept bedeutet, dass diese Visualisierung in dem Visualisierungskonzept dar-
gestellt werden kann. Die Visualisierung eines Autos wird daher mit Visualisierungs-
konzepten wie ’Auto-Frontansicht’ oder ’Auto-Seitenansicht’ annotiert, die Visualisie-
rung von Bevdlkerungsentwicklungen dagegen mit ‘Balkendiagramm’, 'Landkarte’ oder
"Tree-Map’. Ein Visualisierungsprogramm weif3, wie die Visualisierungen aussehen kén-
nen, weil in der Ontologie fir jedes Visualisierungskonzept gespeichert ist, aus welchen

Primitiven es zusammengesetzt ist.
50mm *

Héhe
Breite ———Berlhrt

s I

— Rechtecke
X-Achse
enthalt enthalt

enthalt

A

Omm

Abstand

Balkendiagram

Y-Achse

60

X-Achse

v

Abbildung 16: Ein Balkendiagramm kann mit Hilfe von Informationen aus der Ontolo-
gie und den Daten erzeugt werden. Der Ausschnitt aus der Ontologie
(oberer Teil) definiert, dass ein Balkendiagramm aus X-Achse, Y-Achse
und Rechtecken besteht. Rechtecke berlhren die X-Achse und haben
die Parameter H6he, Breite und Abstand.

Abbildung [16] veranschaulicht am Beispiel eines Balkendiagramms, wie die Informa-
tionen aus der Ontologie eine Visualisierung definieren. Der obere Teil der Abbildung
ist ein Ausschnitt aus der Grafik-Ontologie. Es ist definiert, dass ein Balkendiagramm
aus einer X- und einer Y-Achse, sowie beliebig vielen Rechtecken besteht. Die Recht-
ecke berlhren alle die X-Achse, haben einen Abstand untereinander von 0 mm und

38

eine Breite von 10 mm. Die Daten definieren die Hohe der Rechtecke. Die Hohe der
Rechtecke wird durch die Formel 50mm * M/W berechnet, wobei M der Maximalwert
der Daten und W der aktuelle Wert ist. Das Visualisierungsp rogramm kann mit den In-
formationen aus der Ontologie und den Daten das Balkendiagramm visualisieren. Der
untere Teil der Grafik stellt das Balkendiagramm dar, das durch die Kombination der
Daten und der Informationen aus der Grafik-Ontologie, entstanden ist.

Annotationen aus der Domanen-Ontologie

Einzelne grafische Elemente einer Visualisierung werden mit Klassen aus der Domanen-
Ontologie annotiert. So werden zum Beispiel alle Bilder von Radern mit der Klasse
'Rad’ und alle grafischen Elemente, die eine steigende Bevoélkerungszahl reprasentie-
ren (zum Beispiel ein Plus oder ein Pfeil nach oben) mit der Klasse 'Steigend’ anno-
tiert. Abbildung [17] verdeutlicht die Verwendung der Annotationen aus der Doméanen-

')
»{ Detailstufe 2 /\
N BN N :
[Annotationen 1 { Detailstufe 1 —
o / o /
P»| Annotation 2)] Visualisierung
\ 4
\]’ Annotation 1) E— ¢ v
e ’ Platzhalter 1 Platzhalter 2
Y Y
Element der
] y . » Visualisierung

Abbildung 17: Die zur Verflgung stehenden grafischen Elemente werden annotiert
(links). Der Visualisierung werden mit Annotation und Detailstufe anno-
tierte Platzhalter hinzugefligt oder vorhandene Elemente werden anno-
tiert (rechts).

Ontologie. Die viereckigen Elemente stehen fir grafische Elemente, zum Beispiel Plus,
Pfeil, Rad oder Spiegel. Die Elemente werden mit Annotationen aus der Domanen-
Ontologie annotiert. Der griine Kasten stellt eine Visualisierung dar. Die Visualisierung
kann mit Platzhaltern fiir grafische Elemente (in der Abbildung durch Parallelogramme
dargestellt) angereichert werden. Diese Platzhalter werden ebenfalls mit Annotationen
aus der Doméanen-Ontologie annotiert. Anstatt selber Platzhalter einzufligen, kénnen
auch vorhandene Elemente der Visualisierung annotiert werden (in der Grafik durch
ein Sechseck dargestellt). Die eingefligten Platzhalter und die annotierten Elemente
kénnen dartber hinausgehend mit Detailstufen annotiert werden. Der Benutzer kann

39

dadurch die Visualisierung dahin gehend verandern, dass er nur Elemente mit bestimm-
ten Detailstufen anzeigen lassen mdchte.

Wenn Daten visualisiert werden sollen, dann kénnen auch diese Daten annotiert wer-
den. Jedes einzelne Datum eines Datensatzes wird annotiert. Bei dem Einsatzszenario
Bevdlkerungsentwicklung wird jede Entitat annotiert. Je nach dem ob sich die Bevdlke-
rungszahlen positiv, negativ oder neutral entwickelt haben, werden unterschiedliche An-
notationen verwendet. AnschlieBend kénnen der Visualisierung Platzhalter hinzugeflgt
werden, die mit den Daten verknlpft sind. Die Daten kénnen entweder manuell oder
automatisch annotiert werden. Beim Einsatzszenario Bevoélkerungsentwicklung kénn-
ten beispielsweise Schwellwerte definiert werden, anhand derer automatisch annotiert
werden kann. So wird jede Entitat, deren Bevélkerungswachstum zwischen -0,5% und
+0,5% liegt, mit der Annotation ‘Gleichbleibend’ annotiert. Bei automatisch generierten
Daten kann die Annotation schon beim Erzeugen der Daten vorgenommen werden.

4.2.3. Von der Ontologie zur Visualisierung

Die Informationen aus der Grafik-Ontologie reichen nicht aus, um daraus eine konkrete
Visualisierung zu erstellen. Die Information, dass eine Tree-Map oder ein Balkendia-
gramm aus Rechtecken besteht, sagt nicht zwangslaufig etwas dartber aus, wie diese
Rechtecke angeordnet sein sollen. In Kombination mit den Informationen und Daten
aus der Domanen-Ontologie lieBen sich die entsprechenden Visualisierungen theore-
tisch erzeugen. Es besteht zwar die Mdglichkeit, diese Informationen Gber zusatzliche
Attribute zu liefern, der Aufwand, die Visualisierung zu erzeugen, ist trotzdem betracht-
lich. Dies wird nun am Beispiel Tree-Map erldutert:

In Abbildung [18|ist ein Beispiel fur eine Tree-Map zu sehen. Diese besteht aus lauter
Rechtecken, die in Abh&ngigkeit der jeweils zugehdrigen Daten verschieden grof3 sind.
Héhe und Breite lassen sich also in Abhangigkeit der Daten berechnen. Die Anordnung
der Rechtecke, so dass die Tree-Map insgesamt auch die Form eines Rechtecks hat,
ist dagegen nicht trivial und misste algorithmisch gelést werden. Solche ontologieba-
sierte Algorithmen mussten flr die verschiedenen Visualisierungskonzepte entwickelt
und implementiert werden. Der Aufwand, sowohl beim Erstellen der Ontologien, als
auch beim Entwickeln der Algorithmen wére betrachtlich. In dieser Diplomarbeit wurde
zur Entwicklung des Prototyps deshalb ein vereinfachtes Konzept verwendet, bei dem
die Visualisierungen ein Hintergrundbild verwenden, das mit Platzhaltern angereichert
werden kann (siehe Abschnitt[5.1.3).

4.2.4. Interaktionskonzept zur interaktiven Optimierung von Visualisierungen

Die in Abschnitt [4.2.1] vorgestellten Ontologien sowie die in Abschnitt [4.2.2) vorgestell-
ten Konzepte zur Annotation von Visualisierungen sind die Grundlage des in diesem
Abschnitt beschriebenen Interaktionskonzepts zur interaktiven Optimierung von Visua-
lisierungen. Das Interaktionskonzept ist in zwei Bereiche unterteilt, auf der einen Seite

40

Sachsen-Anhalt

Rheinland-Pfalz

Nordrhein-Westfalen

Abbildung 18: Zu sehen ist eine Tree-Map, die die Bevdlkerung der deutschen Bundes-
lander darstellt. Je mehr Einwohner ein Bundesland hat, desto gréRer
das jeweilige Rechteck.

der Austausch einzelner grafischer Elemente und auf der anderen Seite der Austausch
des gesamten Visualisierungskonzepts.

Austausch grafischer Elemente

Wie in Abschnitt [4.2.2 beschrieben, kann eine Visualisierung beim Erstellen mit anno-
tierten Platzhaltern angereichert werden, oder es kénnen Elemente der Visualisierung
annotiert werden. Platzhalter und annotierte Elemente sind aus Sicht des Benutzers
gleichwertig. Um Verwechslungen zwischen annotierten Elementen der Visualisierung
und grafischen Elementen, die diese ersetzen kénnen, zu vermeiden, wird im Folgen-
den von Platzhaltern die Rede sein. Diese Platzhalter kbnnen durch alle grafischen
Elemente ersetzt werden, die mit der selben Annotation annotiert sind wie der Platzhal-
ter. Der Ersteller kann festlegen, welche grafischen Elemente er fir welche Platzhalter
verwenden will. Wenn der Benutzer mit einzelnen grafischen Elementen unzufrieden ist,
kann er sie durch alle anderen Elemente, die mit der selben Klasse annotiert sind, aus-
tauschen. So kénnte er beispielsweise ein Rad mit Stahlfelgen durch eines mit Alufel-
gen oder ein Plus durch einen Pfeil nach oben ersetzen.

Der Austausch kann entweder pro Platzhalter erfolgen oder pro Annotation. Falls er pro
Annotation erfolgt, wird das gewahlte Element fir alle Platzhalter mit dieser Annotation
verwendet. Auf diese Weise kann der Benutzer die Visualisierung an seinen persén-
lichen Bedarf anpassen, ohne dabei das Visualisierungskonzept zu wechseln. Auch
anfénglich unversténdliche Darstellungen kénnen damit zu einer verstandlicheren Dar-
stellung umgebaut werden.

Austausch des Visualisierungskonzepts
Wie in Abschnitt[4.2.2 beschrieben, kann die Visualisierung mit verschiedenen Visuali-

41

sierungskonzepten aus der Grafik-Ontologie annotiert werden. Der Benutzer kann zwi-
schen diesen Visualisierungskonzepten, zum Beispiel zwischen Balkendiagramm und
Tree-Map, wechseln. Aufgrund der Informationen Uber das Visualisierungskonzept aus
der Grafik-Ontologie und den zu visualisierenden Daten kénnen die verschiedenen Vi-
sualisierungskonzepte automatisch erstellt werden.

Anpassung der Detailstufe

Der Benutzer hat die Mdglichkeit, sich die Visualisierung in verschiedenen Detailstufen
anzuschauen. So kann er sich beispielsweise zuerst einen Uberblick iiber die gesamte
Visualisierung verschaffen und sich anschlieBend auf einen bestimmten Bereich kon-
zentrieren und diesen vergréBern. Beim Verschaffen des Uberblicks kann es sinnvoll
sein, dass nicht alle Details angezeigt werden, da die Visualisierung sonst leicht un-
Ubersichtlich wird. Bei der Vergréerung eines Bereichs sollten aber alle Details ange-
zeigt werden (siehe [Shn96]). Um dies zu ermdglichen, muss der Ersteller die Platzhal-
ter mit Detailstufen aus der Doméanen-Ontologie annotieren.

Der Benutzer kann eine Detailstufe, die er gerne hatte, auswahlen. Es werden dann nur
diese Elemente angezeigt, die mit einer Detailstufe annotiert sind, die geringer ist, als
die ausgewahlte. Abbildung veranschaulicht das Konzept anhand von zwei Land-

Mahlacker 27

Vaihingen _. . . o A o
) an der Enz BIetnghelm—Blssmgfn 4 ar’;a}m;:k;r 4
Oberria : Tamm reiberg =]
Mihlacker Eietig heim—Bissinmen Backnang bronm 1o e, am Meckar
- Markgroningen
aihingen Ludwigsburg
be " ' Maglingen
an der Enz Ludwigsburg bl O agling
10 Winnenden Komwestheim Herrl:!aeck
n am Neckar
E52] sl | Welssach (R
itzingen
| & | Ditzinge Fellbach = Ditzingen, ~ Kemtak-Minchingen Wailir
Leonberg Schor Fellbach
¥, Rutesheim {E41 | 295 Weinsta
Stuttgart Ess Ingen Leonberg 3 E
[E41 | am Neckar usen Gerlingen i
295
‘ Sindelfingen_ OFdem et 4 S
: g Stadt L2 Rotwildpark Esslinger
i Béblingen Filderstadt Magstat bei Stutigart am MNecks
Ostfildern | 10
Gartringen 4 hE e s Lest)
Miidingen “Kirchh P SR gindeffingen
Herrenberg 3 unter” chingen Leinfelden-Echterdingen Denkendord
Boblingen Filderstadt “";';_i":
Ammerbuch r Enningen M Steinenbronn
Metzingen A58
— [~ TR Gartringen Holzgeringen Waldenbuch
Mulringen Albdert Alchtal Nirtir
Detenhausen Sefhudor

Abbildung 19: Zwei Kartenausschnitte der Region Stuttgart mit unterschiedlichem Maf3-
stab. Auf dem linken ist der Detailgrad deutlich niedriger, daher sind viele
Stadte nur rechts zu sehen [map].

kartenausschnitten. Der linke Ausschnitt hat einen deutlich kleineren Maf3stab. Damit
die Karte trotzdem Ubersichtlich bleibt, wurden einige Informationen weggelassen. So
sind einige kleinere Stadte, die im rechten Ausschnitt zu sehen sind, im linken nicht
vorhanden.

42

5. Umsetzung des Konzepts

Dieses Kapitel beschreibt die Bereiche des in Kapitel [4] vorgestellten Konzepts, die in
einem Prototypen umgesetzt werden sollen. Abschnitt beschreibt, welche Ontolo-
gien entworfen werden, wahrend Abschnitt das im Prototyp implementierte Inter-
aktionskonzept zur interaktiven, verstandnisorientierten Optimierung von semantisch
annotierten Visualisierungen erldutert. Der Prototyp kann fir das Einsatzszenario Be-
volkerungsentwicklung (siehe [4.1.1) verwendet werden. Die Granularitat wurde so fest-
gelegt, dass die Daten fir Bundeslander vorliegen. Auf eine feinere Granularitat (zum
Beispiel Landkreise oder Stadte) wurde verzichtet, da eine feinere Granularitat nicht
noétig ist, um zu zeigen, dass das Konzept grundsatzlich funktionieren kann.

5.1. Erstellung der Ontologien

Im Rahmen dieser Diplomarbeit sollen zwei Ontologien entworfen werden. Einerseits
eine sogenannte Domanen-Ontologie und andererseits eine Grafik-Ontologie. Durch
Annotation mit Ressourcen aus der Domé&nen-Ontologie soll die Bedeutung, die durch
die Visualisierung vermittelt werden soll, beschrieben werden. Die Bedeutung kann nur
der Ersteller der Visualisierung kennen. Deshalb muss er auch im Zuge der Erstel-
lung der Visualisierung die Annotationen vornehmen. Wie das Erstellen einer Ontolo-
gie in der Literatur beschrieben wird, kann in Kapitel nachgelesen werden. Obwohl
das Erstellen einer Grafik-Ontologie nicht besonders viel mit der Erstellung einer Wein-
Ontologie zu tun hat, soll hier trotzdem versucht werden, dem vorgestellten Schema zu
folgen.

In den folgenden beiden Abschnitten werden die beiden Ontologien und ihre Erstellung
beschrieben.

5.1.1. Domanen-Ontologie

In der folgenden Aufzahlung wird das Schema zur Erstellung von Ontologien fiir die
Domanen-Ontologie Schritt fir Schritt umgesetzt.

Anwendungsgebiet fokussieren

Diese Ontologie soll verwendet werden, um zu visualisierende Daten und grafische
Elemente, die diese Daten représentieren, zu annotieren. Als Doméne flr die Umset-
zung wurde die Bevdlkerungsentwicklung zwischen 2007 und 2009 in den deutschen
Bundeslandern gewahlt.

Bestehende Ontologien wiederverwenden
Im Semantic Web konnte fiir dieses Einsatzgebiet keine bestehende Ontologie gefun-
den werden.

43

Relevante Begriffe identifizieren

Als relevante Begriffe wurden die 16 deutschen Bundesléander und ihre Bevdlkerungs-
zahlen aus den Jahren 2007 und 2009 identifiziert. Darliber hinaus werden Annota-
tionen in der Ontologie definiert, die die Bevdlkerungsentwicklung beschreiben, zum
Beispiel 'Steigend’, 'Gleichbleibend’ und 'Sinkend’.

Klassenhierarchie festlegen

Als Wurzelklasse wurde die Klasse 'Bevdlkerungsdoméne’ definiert. Sie hat zwei Unter-
klassen. Die eine Unterklasse ist '‘Bundesland’, die fir jedes der 16 deutschen Bundes-
lander eine weitere Unterklasse hat. Die andere Unterklasse ist ‘Bevdlkerungsentwick-
lung’, die in fiinf Unterklassen unterteilt ist, die die Entwicklung der Bevélkerungszahlen
beschreiben.

Relationen definieren
Jede Bundesland-Klasse hat Relationen zu zwei Literalen. Dies sind jeweils die Bevol-
kerungszahlen aus den Jahren 2007 und 2009.

Abbildung[20| zeigt einen Ausschnitt der Ontologie. Der hellere, blaue Bereich der Onto-
logie reprasentiert die Daten zur Bevdlkerungsentwicklung in den deutschen Bundes-
landern. Zu jedem Bundesland gehoéren zwei Integer-Literale, die jeweils die Anzahl
der Bewohner in diesem Bundesland in den Jahren 2007 und 2009 angeberf} In der
Abbildung ist dies beispielhaft fir die beiden Bundeslander Baden-Wurttemberg und
Bayern dargestellt. In der vollstandigen Ontologie, die durch den Prototypen verwen-
det wird, sind diese Informationen fir alle 16 deutschen Bundeslénder enthalten (siehe
Abbildung 45).

Der dunklere, griine Bereich stellt flinf verschiedene Tendenzen dar, die zeigen, wie
sich die Bevodlkerung entwickelt haben kann. Mit diesen Tendenzen kann der Ersteller
einer Visualisierung jedes Bundesland annotieren. In Abhangigkeit von der Annotati-
on stehen dem Benutzer der Visualisierung dann verschiedene grafische Elemente zur
Verfigung, mit denen die Bevélkerungsentwicklung des Bundeslandes in der Visuali-
sierung dargestellt werden kann.

5.1.2. Grafik-Ontologie
In der folgenden Aufzahlung wird das Schema zur Erstellung von Ontologien fiir die

Grafik-Ontologie Schritt fiir Schritt abgearbeitet.

Anwendungsgebiet fokussieren
Die Grafik-Ontologie soll verwendet werden, um Visualisierungskonzepte zu beschrei-
ben. Daher wurden im ersten Schritt verschiedene Visualisierungstechnikerﬂ analy-

Shttps://de.wikipedia.org/wiki/Demografie_Deutschlands#Aktuelle_Entwicklung
%http://www.visualcomplexity.com

44

https://de.wikipedia.org/wiki/Demografie_Deutschlands#Aktuelle_Entwicklung
http://www.visualcomplexity.com

10749755 10744921 12520332 12510331

- 'S -
2007_ 2009 2007 2009

Baden-
Wiirttemberg

Bundesland -

Bevolkerungsdomane

Abbildung 20: Ausschnitt aus der Domanen-Ontologie Uber die Bevoélkerungsentwick-
lung deutscher Bundeslander zwischen 2007 und 2009. Zu sehen sind:
finf Tendenzen, die die Bevolkerungsentwicklung charakterisieren, zwei
Bundeslander und ihre Bevolkerungszahlen.

siert. Dabei wurden einerseits die verwendeten grafischen Primitive, aus denen Visuali-
sierungen bestehen, als auch die verwendeten Visualisierungskonzepte analysiert. Ab-
bildung zeigt beispielhaft die Zerlegung eines Scatter-Plots in einzelne grafische
Primitive.

Linien

Y-Achse

Beschriftungen

X-Achse

Abbildung 21: Zerlegung eines Scatter-Plots in grafische Primitive

45

Bestehende Ontologien wiederverwenden
Auch fir die Grafik-Ontologien wurden keine wiederverwendbaren Ontologien gefun-
den.

Relevante Begriffe identifizieren
Die grafischen Primitive wurden in vier verschiedene Klassen aufgeteilt. Die vier Klas-
sen sind im Folgenden mit Beispielen aufgelistet:

Koordinatensystem-Elemente: Achse
Text-Elemente: Beschriftung
Graphen-Elemente: Knoten, Kante

Geometrische Objekte: Linie, Dreieck, Viereck, Kreis, Punkt, Ellipse, Polygon

S @
& o

B
S

N
R &
&0 & S

8000000
6000000 |
4000000 1 " — .
| I l '
s Y
S 3
€ & &
& S
¢ &
e

@ Meritxell Duran

@ Luci Gutierrez
® Garbatage

@ eendar

. Tustracio

marlena agency @ Mariscal

Planeta Duda

@ Mendadientes

@'t Rato
Trestriges

Abbildung 22: Beispiele verschiedener Visualisierungskonzepte: Landkarte (links
oben), Balkendiagramm (rechts oben), Tree-Map (links unten), Graph
(unten Mitte), Scatter-Plot (rechts unten)

Zusatzliche wurden funf haufig verwendete Visualisierungskonzepte in die Ontologie
aufgenommen, fiir die in Abbildung [22]jeweils ein Beispiel zu sehen ist:

e Balkendiagramm

46

Landkarte

Tree-Map

Graph

Scatter-Plot

Klassenhierarchie festlegen

Als Wurzelklasse wurde die Klasse 'Visualisierung’ mit zwei Unterklassen definiert. Ei-
ne davon ist 'Konzept’, deren Unterklassen die verschiedenen Visualisierungskonzepte
sind. Die andere ist ‘Grafisches Primitiv’, deren Unterklassen Klassen von grafischen
Primitiven sind, deren Unterklassen wiederum die verschiedenen grafischen Primitive
selbst sind.

Relationen definieren

Den Visualisierungskonzepten wurden die grafischen Primitive zugewiesen, aus denen
sie bestehen, beziehungsweise bestehen kénnen. Tabelle [T] veranschaulicht diese Zu-
ordnung.

Visualisierungskonzept | Grafische Primtive

Balkendiagramm Beschriftungen, Vierecke, X-Achse, Y-Achse
Landkarte Beschriftungen, Polygone

Tree-Map Beschriftungen, Vierecke

Graph Beschriftungen, Kanten, Knoten

Scatter-Plot Beschriftungen, Linien, Vierecke, X-Achse, Y-Achse

Tabelle 1: Zuordnung der Visualisierungskonzepte zu den enthaltenen grafischen Pri-
mitiven.

Primitive kbnnen durch zusétzliche Attribute genauer spezifiziert werden. In Abbildung
ist dies am Beispiel des Primitivs ,Rechteck” dargestellt. Es verfligt Gber die Attribute
-Hohe", Breite* und ,Position“. Diese Attribute kénnen absolut oder relativ zu bestimm-
ten Datenwerten angegeben werden.

Bei der Implementierung des Prototyps wurde die verwendete Ontologie auf die in Ab-
bildung [23] gezeigten Visualisierungskonzepte und die dafiir benétigten grafischen Pri-
mitive eingeschrankt. Der helle, blaue Bereich der Abbildung stellt die Primitive und ihre
Einteilung in verschiedene Klassen dar, der dunkle, griine Bereich die verschiedenen
Konzepte. Ein gestrichelter Pfeil zwischen einem Konzept und einem Primitiv bedeutet,
dass dieses Konzept Instanzen dieses Primitivs enthalten kann. Die durchgezogenen
Pfeile stehen fir die Relation ’Ist-Unterklasse-Von’. Die Klasse ,Balkendiagramm® ist
also eine Unterklasse von Konzept. Die gesamte Grafik-Ontologie ist im Anhang zu
finden (Abbildung [44).

47

Geometrische Form *

Breite

Rechteck < Hohe
\

Position

| Visualisierung

\
%
!
!
[

/
s

Abbildung 23: Ausschnitt der verwendeten Grafik-Ontologie. Es werden drei Konzepte
definiert (unterer, grtiner Bereich) und verschiedene grafische Primitive
in zwei Klassen unterteilt. Die gestrichelten Pfeile veranschaulichen, aus
welchen Primitiven die Konzepte bestehen, die durchgezogenen Pfeile
stehen fir ’Ist-Unterklasse-Von’. Das Primitiv ,Rechteck” wird durch zu-
satzliche Attribute beschrieben (ganz rechts).

5.1.3. Lucke zwischen Ontologie und geometrischer Anordnung

Wie in Abschnitt beschrieben, ware der Aufwand, um Visualisierungen nur auf
Basis von Ontologien zu erzeugen, betrachtlich. Da dieser Aufwand aber den Rahmen
einer Diplomarbeit sprengen wirde und auBBerdem nicht Aufgabe dieser Diplomarbeit
ist, missen diese Visualisierungen mit anderen Tools erstellt werden. Balkendiagram-
me kdnnen zum Beispiel mit Excel erzeugt werden, Tree-Maps mit der Programmier-
sprache Rm Die erstellten Visualisierungen werden mit Informationen aus der Grafik-
Ontologie semantisch annotiert und vom Prototypen als Hintergrundbilder verwendet.
Diese Hintergrundbilder kbnnen dann mit Platzhaltern fur verschiedene grafische Ele-
mente angereichert werden.

5.2. Interaktionskonzept

In den nachsten beiden Abschnitten wird das Interaktionskonzept erlautert, das dem in
Kapitel [6| beschriebenen Prototypen zugrunde liegt. Fir die Verwendung des Prototyps
gibt es zwei Rollen, den Ersteller und den Benutzer. Aus diesem Grund besteht der
Prototyp aus einem Hauptfenster mit zwei Tabs. Der eine Tab dient dem Ersteller von
Visualisierungen, der andere dem Benutzer. Damit ist eine klare Trennung zwischen
Erstellen und Anpassen der Visualisierungen méglich. Abschnitt [5.2.1] zeigt, welche

"Ohttp: //flowingdata.com/2010/02/11/an-easy-way-to-make-a-treemap/

48

http://flowingdata.com/2010/02/11/an-easy-way-to-make-a-treemap/

Méglichkeiten beim Erstellen einer Visualisierung bestehen, Abschnitt [5.2.2] erlautert,
wie eine erstellte Visualisierung an die individuellen Vorlieben und Bedirfnisse eines
Benutzers angepasst werden kann. Zusatzlich zeigt in beiden Abschnitten jeweils ein
Mockup die Benutzeroberflache des Prototyps zur Ausfiihrung der Interaktionen.

5.2.1. Interaktionskonzept zum Erstellen einer Visualisierung

Festlegen, welche Konzepte sinnvoll sind

Annotieren der Bundesldnder

Ersteller fugt Platzhalter ein

Anderung der Annotation eines
Bundeslandes: Visualisierung wird
angepasst

Abbildung 24: Workflow-Diagramm zur Erstellung einer Visualisierung. Der Ersteller
muss die Bundeslander annotieren, sinnvolle Visualisierungskonzepte
auswdhlen und diese anschlieBBend mit Platzhaltern anreichern.

Abbildung zeigt die Erstellung einer Visualisierung in einem Workflow-Diagramm.
Der Workflow beginnt mit dem Knoten 'Start’. Die Bedeutung der drei ndchsten Knoten
wird im Folgenden erldutert:

Verfligbare Annotationen Die verfligbaren Annotationen stammen aus der Doméanen-
Ontologie. Da beispielhaft die in Abschnitt[5.1.1] vorgestellte Doménen-Ontologie
verwendet wird, sind dies die Tendenzen der Bevdlkerungsentwicklung *Stark Sin-
kend’, 'Sinkend’, ‘Gleichbleibend’, ’Ansteigend’ und ’'Stark Ansteigend’.

Daten tiber Bundeslander Diese Daten sind ebenfalls in der Doménen-Ontologie ge-
speichert. Konkret sind dies die Bevdlkerungszahlen fir jedes Bundesland aus
den Jahren 2007 und 2009.

Verfiigbare Konzepte Die verflgbaren Visualisierungskonzepte sind in der Grafik-
Ontologie definiert. Fir jedes Konzept muss ein Hintergrundbild vorliegen. Im
Prototyp gibt es die Konzepte Landkarte, Tree-Map und Balkendiagramm. Fr
das Visualisierungskonzept Landkarte ist das Hintergrundbild eine Landkarte von

49

Deutschland, fur Tree-Map ist es eine Tree-Map, die in Abh&ngigkeit der Bevodl-
kerungsgréBe der einzelnen Bundeslander erstellt wurde. Das Balkendiagramm
stellt fir jedes Bundesland die BevdlkerungsgréBe 2007 und 2009 dar. Diese Hin-
tergrundbilder sind mit den zugehdrigen Informationen aus der Grafik-Ontologie
annotiert.

Um die Bundeslander mit den verflgbaren Annotationen annotieren zu kénnen, soll es
im Prototyp eine Tabelle geben, in der der Name und die beiden Bevdlkerungskennzah-
len firr jedes Bundesland stehen (siehe Abbildung [26] Bereich 2). In einer zusétzlichen
Spalte soll der Ersteller fir jedes Land die seiner Meinung nach passende Annotation
auswahlen kénnen. Zur Verfligung stehen sollen die Unterklassen der Klasse 'Bevélke-
rungsentwicklung’ aus der Grafik-Ontologie (siehe Abbildung[20). Als Darstellungsform
wurde eine Tabelle ausgewahlt, da Daten in Datenbanken in aller Regel auch in Ta-
bellenform gespeichert sind. AuBerdem ermdglicht eine Tabelle eine einfache visuelle
Zuordnung der Annotationen zu den Daten.

Aus den verfligbaren Visualisierungskonzepten soll der Ersteller auswahlen kénnen,
welche er fir seinen aktuellen Anwendungsfall sinnvoll findet. Wenn er zum Beispiel
der Meinung ist, dass sich die Bevdlkerungsentwicklung nicht mittels eines Balkendia-
gramms darstellen 1&sst, dann wahlt er dieses Visualisierungskonzept nicht aus.
Nachdem die Bundeslander annotiert und die zu verwendenden Hintergrundbilder aus-
gewahlt sind, kann eine Visualisierung erstellt werden, die Instanzen der verschiedenen
Visualisierungskonzepte enthalt.

Visualisierungskonzept auswihlen Auswahl eines angereicherten
V|sua||5|erungskonzepts

Position auswahlen

Auswahl einer Annotation

Auswahl eines Bundeslandes

Auswahl eines verfigbaren Elements

Abbildung 25: Workflow-Diagramm zur Erstellung einer Visualisierung. Der Benutzer
wahlt ein Visualisierungskonzept aus und kann in diesem grafische Ele-
mente austauschen.

Der Ablauf der Erstellung der Visualisierung ist im linken Teil des Workflow-Diagramms
in Abbildung [25| dargestellt und wird im Folgenden erklart:

50

1. Es wird ein Visualisierungskonzept ausgewahlt.
2. Der zu diesem Konzept gehdrende Hintergrund wird angezeigt.

3. Durch einen Klick an eine Position auf dem angezeigten Hintergrund kann dort
ein Platzhalter fur grafische Elemente hinzugefligt werden.

4. Es wird ein Bundesland ausgewahlt, fir das der Platzhalter an der angeklickten
Position hinzugefligt werden soll.

5. Der Platzhalter wird in der Visualisierung durch ein grafisches Element reprasen-
tiert. Es wird ein beliebiges Element verwendet, das mit derselben Annotation
annotiert ist, wie der Platzhalter.

Durch beliebiges Wiederholen der Punkte 3. bis 5. kann der Visualisierungshintergrund
mit mehreren Platzhaltern angereichert werden. Durch Wiederholen des gesamten Ab-
laufs (1. - 5.) kdnnen die Instanzen der verschiedenen Konzepte erstellt werden.

Falls im Nachhinein die Annotation eines Bundeslandes verandert wird, dann werden
alle grafischen Elemente, die Platzhalter repréasentieren, die zu diesem Bundesland
gehdren, in der erstellten Visualisierung ausgetauscht.

Abbildung [26] zeigt einen Mockup des Ersteller-Tabs. In Bereich 1 wird die Visuali-
sierung angezeigt. Wenn der Ersteller einen Platzhalter zur Visualisierung hinzuflgen
mochte, muss er an die Stelle in der Visualisierung klicken, an der er den Platzhalter
einfigen will. AnschlieBend wahlt er im sich 6ffnenden Dialog das Bundesland aus, fur
das der Platzhalter eingefligt werden soll. In Bereich 2 werden die Bundeslander aus
der Domanen-Ontologie in Tabellen-Form angezeigt. Um ein Bundesland zu annotie-
ren, wahlt der Ersteller in der DropDown-Box in der Spalte ’Annotation’ die gewiinschte
Annotation aus. In Bereich 3 ist eine Gruppe von CheckBoxes zu sehen. Hier kann der
Ersteller auswahlen, in welchen Visualisierungskonzepten die Daten visualisiert wer-
den sollen. Intern wird beim Anwéhlen einer CheckBox der Datensatz mit der Annota-
tion aus der Grafik-Ontologie annotiert. In Bereich 4 kann das Visualisierungskonzept
ausgewahlt werden, das bearbeitet werden soll.

5.2.2. Interaktionskonzept zur interaktiven Optimierung einer Visualisierung

Der rechte Teil der Abbildung [25| stellt die interaktive Optimierung einer Visualisierung
in einem Workflow-Diagramm dar. Der Benutzer verwendet eine vom Ersteller bereit-
gestellte Visualisierung und passt diese an seine persénlichen Bedirfnisse an. Dazu
wahlt er ein zur Verfugung stehendes Visualisierungskonzept aus, das ihm daraufhin
angezeigt wird. Das Konzept besteht aus dem entsprechenden Hintergrundbild und
den die eingeflgten Platzhalter reprasentierenden grafischen Elementen. Nun kénnen
Elemente ausgetauscht werden. Dazu wird eine Annotation ausgew&ahlt. Durch die Ver-
wendung der Doméanen-Ontologie des Einsatzszenarios Bevlkerungsentwicklung ste-
hen die finf Tendenzen der Bevdlkerungsentwicklung als Annotationen zur Verfigung.
Nach dieser Auswahl werden alle Elemente angezeigt, die mit dieser Annotation anno-
tiert wurden (siehe Abbildung [27] Bereich 2). Wenn der Benutzer ein anderes Element

51

Ersteler Y| Benutzer

Brandenburg

Bremen

Erlaubte Konzepte

O Tree-Map

|~ Balkendiagramm

Bundeland 2007 2009
Baden-Wirttemberg| 10749755 | 10744921 Sinkend

Bayern 12520332 (12510331
Berlin 3416255 3442675
2535737 | 2511525
663082 | 661716

Steigend

Aktuelles Konzept
® Tree-Map
O Bakendiagramm

Annotation

M Karte O Karte

Abbildung 26: Mockup der Ersteller-Tabs. In Bereich 1 wird die Visualisierung ange-
zeigt, in der Tabelle im Bereich 2 kénnen die Bundeslander annotiert
werden, in Bereich 3 werden die sinnvollen Visualisierungskonzepte aus-
gewahlt und in Bereich 4 wird das zu bearbeitende Visualisierungskon-
zept ausgewahlt.

auswahlt, dann werden alle zu dieser Annotation gehérenden Elemente in der Visuali-
sierung ausgetauscht.

Abbildung [27] zeigt einen Mockup des Benutzer-Tabs. In Bereich 1 wird die durch den
Ersteller zur Verflgung gestellte Visualisierung angezeigt. Falls der Benutzer die Visua-
lisierung anpasst, sei es durch den Austausch von grafischen Elementen oder durch
den Wechsel des Visualisierungskonzepts, wird die Visualisierung automatisch aktua-
lisiert. In Bereich 2 kénnen grafische Elemente ausgetauscht werden. Dazu wird als
Erstes in der DropDown-Box eine Annotation und dann das gewunschte Element in
der Gruppe der RadioButtons ausgewéhlt. In Bereich 3 steht eine DropDown-Box zur
Verflgung, mittels derer das Visualisierungskonzept ausgetauscht werden kann.

5.2.3. Allgemeine Funktionen

Zusatzlich zu den bereits beschriebenen Funktionen kénnen sowohl Ersteller als auch
Benutzer die aktuelle Visualisierung speichern und wieder laden.

52

Ersteller \| Benutzery,

Austausch von grafischen Elementen

[Srvena 7]

@ Pteil nach unten

O Minus

O negativElementd

O negativElement4
O negativElement5

1

2

Erlaubte Konzepte

[Tree-Map [v]

Abbildung 27: Mockup der Benutzer-Tabs. In Bereich 1 wird die Visualisierung ange-

zeigt, in Bereich 2 kdnnen grafische Elemente ausgetauscht werden und
in Bereich 3 kann das Visualisierungskonzept ausgetauscht werden.

53

6. Prototyp

Dieses Kapitel beschreibt den im Verlauf dieser Diplomarbeit implementierten Proto-
typ. Dieser Prototyp soll die grundlegende Umsetzbarkeit des vorgestellten Konzepts
zeigen. Abschnitt gibt eine Ubersicht liber die Software-Architektur des Prototyps,
wéhrend Abschnitt [6.2] die tatsachliche Umsetzung des Konzepts im Prototypen an-
hand der Benutzeroberflache beschreibt. Zur Darstellung der Visualisierungen wurde
das Grafikformat SVG verwendet, da sich SVG gut eignet, um Grafiken mit semanti-
schen Informationen zu annotieren [YHCO3]. Der Prototyp wurde in C# entwickelt. Dies
fihrte bei der Verwendung von SVG zu einigen Schwierigkeiten, da C# keine Unterstit-
zung for SVG mitbringt. Aus diesem Grund musste die Manipulation der SVG-Dateien
selbst implementiert werden.

Zum Erstellen der Ontologien wurde RDF verwendet, da dies die einzige Ontologie-
sprache ist, fir deren Verarbeitung eine Bibliothek gefunden werden konnte.

6.1. Architektur

Die fiir den Prototyp entwickelte Architektur orientiert sich an dem Model-View-Controller
Paradigma [KP88] (MVC). Somit besteht der Prototyp aus den drei Komponenten Mo-
del, View und Controller. Abbildung illustriert die Aufteilung der verschiedenen Auf-
gaben, die durch die drei Komponenten implementiert werden.

-
View
e Hauptfenster der Anwendung

¢ Dialog zum Hinzufuigen von
grafischen Elementen

- - - N
Controller Model
e Festplatten I/O: eDatenmodell
*Ontologien *Ontologien

*SVG
*CSV

Abbildung 28: Architekturliberblick, angelehnt an MVC Paradigma. Zu sehen sind die
drei Komponenten Model, View und Controller und die Aufgaben, die sie
erflllen.

55

6.1.1. Model

Die Komponente Model halt die von der Anwendung bendtigten Daten. Die Hauptklas-
se des Modells ist die Klasse VisModel. In dieser Klasse sind samtliche zur Darstellung
bendtigten Informationen gespeichert. Abbildung gibt einen Uberblick Uiber die Klas-
senstruktur der Komponente. Sdmtliche Model-Klassen sind im Namespace Interacti-
veOptimization.Model zu finden. Die Informationen sind in Objekten der im Folgenden
vorgestellten Klassen gespeichert.

IAnnotation

IAnnotation ist ein Interface, das eine Annotation reprasentiert. Es besteht aus den Ei-
genschaften Label und Uri, die aus einer der beiden Ontologien stammen. IAnnotation
wird von den Klassen VisConcept und SnippetClass implementiert, die in den beiden
folgenden Abschnitten beschrieben werden.

SvgSnippet

Beim Programmestart wird fir jede SVG-Datei, die im Ordner ,SvgSnippets” liegt und
eine giltige Annotation enthalt, ein SvgSnippet-Objekt angelegt. Die Annotation wird
in Annotation gespeichert. Zusatzlich werden der Name und der Pfad der Datei ge-
speichert. Alle eingelesenen SvgSnippets kdbnnen vom Benutzer in der Visualisierung
verwendet werden, vorausgesetzt die SvgSnippets sind mit einer Annotation aus der
Domain-Ontologie annotiert.

SnippetClass

Eine SnippetClass ist eine Abbildung der in der Doméanen-Ontologie vorhandenen An-
notationen. Bei der verwendeten Domanen-Ontologie aus dem Einsatzszenario Be-
volkerungsentwicklung sind das die Unterklassen von 'Bevélkerungsentwicklung’, also
‘Stark Sinkend’, 'Sinkend’, 'Gleichbleibend’, ’Steigend’ und ’Stark Steigend’. Die An-
notationen werden beim Programmstart aus der Doméanen-Ontologie ausgelesen und
jeweils in ein Objekt vom Typ SnippetClass gespeichert. SnippetClass erbt die bei-
den Eigenschaften Label und Uri vom Interface IAnnotation. Zuséatzlich ist die Methode
ToString() Uberschrieben. Sie gibt Label zuriick.

Dataset

Ein Objekt der Klasse Dataset dient dazu, einen Datensatz mit Informationen aus der
Domanen-Ontologie zu speichern. Bei der fir den Prototyp gewahlten Domé&nen-Onto-
logie sind das die Bundeslédnder und die Informationen tber die Bevdlkerungsentwick-
lung. Das Objekt enthélt die Eigenschaften Dates, eine Liste mit Objekten der Klasse
Date und Annotations, eine Liste mit Objekten der Klasse VisConcept. Die Liste Anno-
tations dient dazu, den Datensatz mit semantischen Informationen anzureichern. Jedes
Element dieser Liste steht fur ein Visualisierungskonzept, mit dem dieser Datensatz vi-
sualisiert werden kann.

56

? IAnnotation

@ @) (vi ®)
VisConcept = VisModel =]
Class Class
1= Eigenschaften = Eigenschaften

¥ Elements : List<UriNode> ﬁ) ActiveConcept by ActiveSnippets : SerializableDictionary<string, SvgSnippet>
= fileName : string 7 SnippetClasses : List<SnippetClass>
e Label : string =, SvgSnippets : List<SvgSnippet>
iy Uri : string o VisConcepts : List<VisConcept>
% VisElements : List<VisElement> = Methoden
= Methoden % VisModel()
% VisConcept() ~ J
ﬁi Dataset
i . a1) @ (2
IAnnotation Dataset 3 Date 3
Interface Class Class
= Eigenschaften = Eigenschaften =l Eigenschaften
5 Label : string i Annotations : List<VisConcept> iy Annotation : SnippetClass
' Uri : string 2 Dates : List<Date> e AvailableAnnotations : List<string>
= Methoden § Key : string
2 valuel:int
@ R) ¥ Dataset()
SvgSnippet A = value2 :int
Class .
=l Methoden
= Eigenschaften % Date() (+ 1 Uberladung)
X . W ToString() : strin
= Annotation : string L 90 9
= Name : string
iy Path : string
= Methoden P —
X N VisElement ES
% SvgSnippet() (+ 1 Uberladung) Class
v
IAnnotation =
(P ~ =l Eigenschaften
SnippetClass 2l =y CorrespondingDate : Date
k=S = LinelnFile : SerializableDictionary<string, int>
= SnippetClass : SnippetClass
= Eigenschaften % Ymax : int
= Label : string = Xmin:int
R Uri : string = Ymax:int
= Methoden %= Ymin:int
% SnippetClass() (+ 1 Uberladung) = Methoden
% ToString() : string % VisElement()
N\ J

Abbildung 29: Klassendiagramm der Komponente Model

Date

Diese Klasse reprasentiert einzelne Daten eines Datensatzes. In der Doméane ’'Bevél-
kerungsentwicklung’ sind das die Bundesléander. Ein Datum besteht aus Key vom Typ
string und Value1 und Value2 vom Typ int. In Key wird der Name des Bundeslandes
gespeichert, in Valuet und Value2 die Bevilkerungszahlen aus den Jahren 2007 und
2009. Dartber hinaus enthélt das Datum eine Liste (AvailableAnnotations), die angibt,

mit welchen Informationen dieses Datum annotiert werden kann. Das Objekt Annotati-

57

on gibt an, mit welcher SnippetClass das Datum annotiert ist. Durch Elemente dieser
SnippetClass kann dieses Datum in der Visualisierung reprasentiert werden. In Date
wird die Methode ToString() Uberschrieben und gibt den Key des Datums zurlck.
Abbildung([30|zeigt beispielhaft, wie ein Date-Objekt mit Informationen aus der Doménen-
Ontologie gefullt wird. Der linke Bereich ist ein Ausschnitt aus der Domanen-Ontologie,
der rechte ist das Klassendiagramm der Klasse Date. Annotation wird gefillt, wenn das
Date durch den Ersteller annotiert wird. Es wird mit einer Annotation gefullt, die eine
Unterklasse von 'Bevélkerungsentwicklung’ ist. Die Liste AvailableAnnotations ist mit
den Labels aller zur Verflgung stehenden Annotationen geflllt. Key ist das Label (also
der Bezeichner) des Bundeslandes, Value1 und Value2 sind die beiden Bevdlkerungs-
zahlen.

»)

| Date
Class

=] Eigenschaften
—— > Annotation : SnippetClass
tf AvailableAnnotations : List<string>
2 Key: string
2 Valuel : int
f Value2 : int

= fiethoden
@ Datel) (+ 1 Uberladung)
W ToString() : string

Bevélkerungsdomain |

Bundesland

Baden-
Wiirttemberg

10744921

Abbildung 30: Links ist ein Ausschnitt aus der Doméanen-Ontologie, rechts die Zuord-
nung zur Klasse Date zu sehen.

VisConcept

Ein Objekt dieser Klasse steht fiir ein Visualisierungskonzept, das zur Visualisierung
verwendet werden kann. VisConcept erbt vom Interface IAnnotation die Eigenschaften
Label und Uri, da Dataset-Objekte mit VisConcepts annotiert werden kénnen. Um das
Visualisierungskonzept anzeigen zu kénnen, wird eine SVG-Datei benétigt. Diese SVG-
Datei dient als Hintergrund der Visualisierung. Die durch den Ersteller hinzugefligten
Platzhalter werden darin eingefligt. Die zum Konzept gehérende Datei wird durch die
Eigenschaft FileName angegeben. VisElements gibt an, welche VisElements dem Vi-
sualisierungskonzept hinzugefigt wurden. Elements definiert, welche grafischen Primi-
tive dieses Visualisierungskonzept enthalten kann. Die Informationen, die in Elements,
Label und Uri gespeichert sind, stammen aus der Grafik-Ontologie.

58

Abbildung [31]| zeigt beispielhaft das Mapping von Grafik-Ontologie auf die Klasse Vis-
Concept. Die beiden gestrichelten Pfeile bedeuten, dass ein Balkendiagramm aus Ach-
sen und Rechtecken bestehen kann. Label und Uri stammen aus ’Balkendiagramm’,
die Liste Elements enthalt Informationen dariiber, aus welchen grafischen Primitiven
das VisConcept bestehen kann, beim Beispiel Balkendiagramm also aus Achsen und
Rechtecken.

Geometrische Form

Q IAnnotation

| VisConcept S
Class

Rechteck

Koordinatensystem
= Eigenschaften

7 Elements : List<UriNode>

- : = FileName:: string
Grafische Primitive ﬁa Label : string
f > =F Uri:string
%F VisElements : List<VisElements

$ - Methoden
| Visualisierung
\ W VisConcept()

Abbildung 31: Links ist ein Ausschnitt der Grafik-Ontologie, rechts die Zuordnung zur
Klasse VisConcept zu sehen.

VisElement

Ein VisElement reprasentiert einen durch den Ersteller zur Visualisierung hinzugefiig-
ten Platzhalter. Aufgrund der nicht vorhandenen Unterstiitzung von SVG in C# ist es
notwendig zu wissen, in welcher Zeile der SVG-Datei das VisElement eingebunden ist,
damit der Platzhalter spater verandert oder gel6scht werden kann. Diese Information
ist in LinelnFile gespeichert. Jedes VisElement gehért zu einem Date-Objekt. Dieses
Objekt ist in CorrespondingDate gespeichert. SnippetClass definiert die SnippetClass,
durch deren Elemente der Platzhalter in der Visualisierung ersetzt werden kann. Snip-
petClass ist davon abhangig, mit welcher SnippetClass das zugehérige Date-Objekt
annotiert ist. Xmin, Xmax, Ymin und Ymax definieren die Flache, die das VisElement
in der Visualisierung einnimmt.

VisModel

VisModel (siehe Abbildung ist, wie bereits erwahnt, die zentrale Klasse des Models.
Ein Objekt dieser Klasse wird im Controller gehalten und enthélt Objekte der bisher
vorgestellten Klassen. Im Folgenden werden die Eigenschaften der Klasse erlautert.
ActiveConcept ist das VisConcept, das gerade aktiv ist. Das ActiveConcept wird, falls
der Ersteller-Tab ausgewahlt ist, angezeigt und kann mit grafischen Elementen ange-
reichert werden. Falls der Benutzer-Tab aktiv ist, wird das ActiveConcept ebenfalls an-
gezeigt. Wenn der Benutzer grafische Elemente austauscht, werden diese nur im Acti-
veConcept ausgetauscht.

59

ActiveSnippets ist ein Dictionary, das jeder SnippetClass ein SvgSnippet zuweist. Die-
ses SvgSnippet reprasentiert in den Visualisierungen alle VisElements, die mit der
SnippetClass verbunden sind.

Dataset ist ein Objekt vom Typ Dataset und speichert die 16 deutschen Bundeslander
und ihre Bevodlkerungszahlen.

SnippetClasses ist eine Liste mit allen verfligbaren SnippetClasses, SvgSnippets ist ei-
ne Liste mit allen verfligbaren SvgSnippets und VisConcept ist eine Liste mit allen zur
Verflgung stehenden Visualisierungskonzepten.

¥

P
VisModel
Class

= Eigenschaften

= ActiveConcept : VisConcept
ey ActiveSnippets : SerializableDictionary<string, SvgSnippet>
% Dataset : Dataset
= SnippetClasses : List<SnippetClass>
e SvgSnippets : List<SvgSnippet>
iy VisConcepts : List<VisConcept>
= Methoden

% VisModel()
& J

Abbildung 32: Klassendiagramm der Klasse VisModel.

6.1.2. View

Die Komponente View besteht aus den beiden Klassen MainWindow und AddElement-
Form. Beide Klassen sind im Namespace InteractiveOptimization.Ul zu finden.
MainWindow definiert das Hauptfenster der Anwendung. Die Anwendung soll sowohl
zum Erstellen von Visualisierungen als auch zum interaktiven Optimieren der erstellten
Visualisierungen verwendet werden kénnen. Aus diesem Grund ist das Hauptfenster in
zwei Tabs aufgeteilt. Im Ersteller-Tab kdnnen Daten importiert und annotiert werden.
Diese Daten kénnen mit grafischen Elementen in der Visualisierung dargestellt wer-
den. Im Benutzer-Tab kénnen grafische Elemente und Visualisierungskonzepte aus-
getauscht werden. MainWindow stellt neben dem Design der Benutzeroberflache alle
bendbtigten Event-Handler zur Verfigung.

AddElementForm definiert einen Dialog, mit dem der Ersteller die Visualisierung mit
Platzhaltern anreichern kann. Jedes Element gehdért zu einem Date-Objekt aus dem
Model. Im Dialog wird das Date-Objekt (reprasentiert durch seinen Key) ausgewabhlt.
AddElementForm wird auch dafir verwendet, um hinzugefigte Elemente im Nachhin-
ein zu verandern oder zu l6schen und stellt die hierflr bendétigten Event-Handler zur
Verflgung.

60

6.1.3. Controller

Die Komponente Controller enthélt die Klasse Controller im Namespace InteractiveOp-
timization.Controller sowie die Klassen CsvReader, RdfReader und SvgReaderWriter
im Namespace InteractiveOptimization.Controller.IO (siehe Abbildung[33).

e R - ™
Controller b3 SvgReaderWriter £
Class Class
* Felder =/ Methoden
=l Eigenschaften * AddElementToSvg() : void

% |nstance : Controller A ChangeEIementInSvg()l:v0|d -
% Model : VisModel % ChangeElementsForSnippetClass() : void
. ' ConceptsToModel() : void
= Methoden .
W ConvertSvg() : void
e C(.)r.1tr'oller() . * DeleteElementFromSvg() : void
G In|t|a||zeM9deI():V0|d @ SnippetsToModel() : void
¥ Load(): Vo_'d W UpdateSvgToShowInWebBrowser() : void
¥ New(): void ¥ UpdateSvgWhenAnnotationChanges() : void
W Save() : void - /
J
RdfReader £
Class
= Methoden

“ ReadRdf() : Graph

Abbildung 33: Klassendiagramm der Komponente Controller mit den Klassen Control-
ler, SvgReaderWriter und RdfReader. Die Parameter der Methoden wur-
den in der Abbildung aus Platzgriinden weggelassen.

Controller

Die Klasse Controller ist nach dem Entwurfsmuster Singleton [GamQ9] implementiert.
Das bedeutet, dass es nur eine Instanz der Klasse geben kann. Dadurch ist gewahrleis-
tet, dass es nur einen Controller und ein Model gibt und es beim Laden und Speichern
keine Konflikte gibt. Controller stellt die Methoden New (), Save () und Load() zur Verfl-
gung. New () erzeugt eine neue Version des Models. Um das Model mit Informationen
zu fillen, werden die beiden Ontologien eingelesen. Die im Ordner 'SVG’ vorhandenen
SVG-Dateien werden als Hintergrundbilder fir mégliche Visualisierungen in den Ord-
ner 'GraphicSnippets’ kopiert, da das Einbinden externer Dateien in SVG-Dateien nur
funktioniert, wenn diese im selben Ordner gespeichert sind. Save () serialisiert das Mo-
del und speichert es in der Datei ‘'model.xmI’ im Ordner 'Save’ und kopiert die erstellten
Visualisierungen in den Ordner 'Save’. Load () deserialisiert das Model aus 'model.xml’
und kopiert die gespeicherten Visualisierungen in den Ordner 'GraphicSnippets’.

61

RdfReader

Die Methode ReadRdf (String path) wird verwendet, um die beiden Ontologien einzu-
lesen. Da es in C# keine Unterstitzung zum Arbeiten mit Ontologien gibt, wird die
externe Bibliothek DotNetRDF verwendet. DotNetRDF stellt Objekte und Methoden
zur Verflgung, mit denen RDF-Ontologien eingelesen und verarbeitet werden kénnen.
ReadRdf () liest eine angegebene RDF-Datei ein und gibt die Ontologie in einem Graph-
Objekt zuriick.

DotNetRDF

DotNetRDHA T ist eine in C# entwickelte Bibliothek zum Verarbeiten und Erstellen von
Ontologien in RDF. Sie steht unter der GNU General Public Licensef'f](GPL). DotNetRDF
orientiert sich dabei an RDF. Die zentralen Klassen haben selbsterklarende Namen und
reprasentieren dabei die Konzepte von RDF wie Graphen (IGraph), Knoten (INode) und
Tripel (Triple). Es kénnen die gangigsten RDF-Syntaxen eingelesen und geschrieben
werden. AuBBerdem stehen Methoden zur Verfigung, um Ontologien zu durchsuchen
und zu verandern.

SvgReaderWriter
SvgReaderWriter ist die wichtigste und gréite Klasse von Controller.lO. Die vorhande-
nen Methoden werden im Folgenden beschrieben.

AddElementToSvg(Date date, int x, int y): In die SVG-Datei des derzeit aktiven Vi-
sualisierungskonzepts wird ein Platzhalter eingefigt. Da es in C# keine Unter-
stltzung fir SVG gibt, wird in der Datei nach dem Element </svg> gesucht. Der
Platzhalter wird vor </svg> per Image-Tag eingebunden. Jeder hinzuzufiigende
Platzhalter gehért zu dem Date-Objekt, das als Parameter date Ubergeben wird.
Stellvertretend fUr den Platzhalter wird das grafische Element eingeflgt, das als
ActiveSnippet der SnippetClass, mit der das Date-Objekt annotiert ist, gespei-
chert ist. Die Parameter x und y geben die Position an, an der der Platzhalter
eingefligt werden soll. Der Platzhalter nimmt eine Flache von 50 x 50 Pixeln ein,
mit der angegebenen Position als Mittelpunkt.

ChangeElementinSvg(Date date, VisElement oldElement) Ein bereits in der Svg-
Datei des aktiven Visualisierungskozepts eingefligtes Element (01dElement) kann
mit dieser Methode einem anderen Date-Objekt (date) zugeordnet werden. Falls
das neue Date-Objekt mit einer anderen Annotation versehen wurde als das alte,
wird die entsprechende Zeile in der Datei verandert, damit nun wieder das richtige
Element angezeigt wird.

ChangeElementsForSnippetClass(SnippetClass selectedClass) Diese Methode wird
verwendet, wenn der Benutzer flr eine bestimmte Element-Klasse (selectedClass)

"http://www.dotnetrdf .org
Zhttps://www.gnu.org/licenses/gpl-3.0.html

62

http://www.dotnetrdf.org
https://www.gnu.org/licenses/gpl-3.0.html

die grafischen Elemente austauschen will. Fir alle betroffenen Elemente wird in
der SVG-Datei die entsprechende Zeile dahin gehend geandert, dass das vom
Benutzer ausgewahlte Element angezeigt wird.

ConceptsToModel() Es werden die ’leeren’ Vorlagen der Visualisierungskonzepte aus
dem Ordner 'SVG’ in den Ordner 'GraphicSnippets’ kopiert. AnschlieBend wer-
den die SVG-Dateien nach der Annotation, zu welchem Visualisierungskonzept
welche Datei gehért, durchsucht. Die entsprechenden Informationen werden im
Model abgespeichert.

ConvertSvg(string folderPath) Alle im Ordner mit dem Pfad folderPath liegenden
SVG-Dateien werden zu PNG-Dateien konvertiert. Dazu wird das Kommandozei-
len-Tool von Inkscape verwendet.

DeleteElementFromSvg(VisElement oldElement) Das Element o1dElement wird aus
der SVG-Datei des aktiven Visualisierungskonzepts entfernt.

SnippetsToModel(string snippetFolderPath) Diese Methode durchsucht einen an-
gegebenen Ordner nach grafischen Elementen. Diese missen als SVG-Dateien
vorliegen und mit einer gultigen Annotation aus der Doménen-Ontologie versehen
sein. Pfad und Annotation werden in Model.SvgSnippets gespeichert.

UpdateSvgToShowIinWebBrowser() Da das PictureBox-Steuerelement keine SVG-
Dateien anzeigen kann, werden die SVG-Dateien zu PNG-Dateien konvertiert.
Diese Konvertierung funktioniert bei SVG-Dateien, in die andere SVG-Dateien
eingebunden sind, nicht. Deshalb werden die grafischen Elemente als PNG ein-
gebunden. Im Benutzer-Tab kommt ein WebBrowser-Steuerelement zum Einsatz,
das SVG-Dateien anzeigen kann. Um die Vorteile von SVG nutzen zu kénnen,
ersetzt diese Methode alle PNG-Dateiendungen in der SVG-Datei durch SVG-
Dateiendungen, so dass die SVG-Elemente eingebunden werden kénnen.

UpdateSvgWhenAnnotationChanges(Date date) Wenn die Annotation eines Date-
Objektes geandert wird, dann werden alle SVG-Dateien, in denen Elemente vor-
kommen, die zu diesem Date-Objekt gehdren, angepasst, so dass Elemente der
richtigen Klasse verwendet werden.

6.2. Benutzeroberflache

Die Benutzeroberflache besteht neben einem Menl und einer Toolbar aus zwei Tabs
(siehe Abbildung [34] und [38), einen fiir das Erstellen der Visualisierungen und einen
um diese Visualisierungen interaktiv optimieren zu kénnen. Die beiden Tabs werden in
den folgenden Abschnitten beschrieben. Die Benutzeroberflache wurde mit Hilfe von
Windows.Forms erstellt und setzt die View-Komponente der MVC-Architektur um.

63

6.2.1. Ersteller-Tab

Der Ersteller-Tab (siehe Abbildung[34) ist in zwei Bereiche, in der Abbildung durch die
roten K&sten zu erkennen, unterteilt. Der linke Bereich (Bereich 1) ist eine PictureBox,
in der eine Vorschau der Visualisierung angezeigt wird und in der Platzhalter hinzuge-
figt und entfernt werden kénnen. Im rechten Bereich (Bereich 2), der wiederum in zwei
Bereiche unterteilt ist, kdnnen die Annotationen der Daten und des Datensatzes bear-
beitet werden. Die Annotationen der Daten kénnen in einer Tabelle (siehe Abbildung[36)
geandert werden. Diese Tabelle enthélt pro Zeile eine DropDown-Box, in der eine der
verfligbaren Annotationen ausgewahlt werden kann. Um den Datensatz zu annotieren,
wahlt man die CheckBoxes aus, die fir die zu verwendenden Visualisierungskonzepte
stehen. Alle in diesem Tab ausgefuhrten Aktionen werden in der Rolle des Erstellers
ausgeflhrt.

e R=N"]

Ersteller | Benuizer

Nordhein Westidlen | 17966621 | 17872263 |Sinkend
Rheinland-Ffalz 4045643 4012675 Sikend
Rheinland-Pfalz Sachsen-Anhalt 2412472 4168732 Stark Sinkend
1 SchleswigHolstein | 2837373 2832027 Gleichblebend
Bayem 12520332 [12510331 [Gleichblebend
Berin 3416255 3442675 Ansieigend

o Bundesiand 2007 2009 Annotation
. » 1770628 1774224 Ansicigend
DTINgED Hessen 5072555 5016951 Sinkend
Mecklenbung-Voma. .| 1679682 1651216 |Stark Sinkend
Niedersachsen 7971684 7928815 |Sirkend
burg-Vorp
Sachsen-Anhalt
- Saatand 1036558 1022585 | Stark Sinkend
Sachsen 4220200 5168732 |Stark Sinkend
Thirngen 2209219 2249882 |Sterk Sinkend
Baden‘Witerberg | 10749755 | 10744321 |Gleichbleibend
Brandenburg 2535737 | 2511525
Bremen 563082 861716

£l K K K1 KN K1 K K1 El El EE KN Kl KA R

Nordrhein-Westfalen

Niedersachsen

Erlaubte Konzepte: Aktuelles Konzept
Tree-Msp © TreeMap

2] Balkendiagramm © Bakendiagramm

Karte Karte

Abbildung 34: Zu sehen ist das Hauptfenster mit aktivem Ersteller-Tab. In diesem Bei-
spiel ist eine Tree-Map zur Bearbeitung (1) und die Tabelle zum Annotie-
ren der Bundeslander (2) zu sehen.

creatorPictureBox

Die creatorPictureBox dient als Vorschau der zu erstellenden Visualisierung. Gleichzei-
tig kann die Visualisierung darin bearbeitet werden. Die PictureBox in Windows.Forms
kann keine SVG-Dateien anzeigen. Das einzige Windows.Forms-Steuerelement, das
SVG-Dateien anzeigen kann, ist das WebBrowser-Steuerelement. Dieses kann hier

64

b \Vorp
Sachsen-Anhalt =

«

Rheinland-Pfalz

s Element bearbeiten i

Bite ein Daium auswahien
[Baden-Wiittemberg -

[ok | [Abbrechen | [Loschen |

Nordrhein-Westfalen

Niedersachsen

Abbildung 35: Zu sehen ist die creatorPictureBox. Aktuell ist das rot umrandete Ele-
ment ausgewahlt. Daher ist ein AddElementForm-Dialog gedffnet, in
dem Baden-Wiirttemberg ausgewahlt ist.

nicht verwendet werden, da es einige Events nicht unterstiitzt. So ist es zum Beispiel bei
einem Klick auf das Steuerelement nicht méglich, die Maus-Position zu erhalten. Dies
ist aber elementar wichtig, damit der Ersteller die Positionen auswahlen kann, an denen
er Platzhalter hinzufiigen mdchte und um diese Platzhalter spéter wieder auswahlen zu
kénnen. Aus diesem Grund wurde eine PictureBox verwendet. Um die Visualisierung
darin anzeigen zu kénnen, wird sie mit dem Kommandozeilen-Tool von Inkscape in eine
PNG-Datei umgewandelt.

Durch einen Klick auf eine Position innerhalb der creatorPictureBox kann ein Platzhalter
an dieser Position hinzugeflgt werden. Platzhalter kdnnen far alle in Model.Dataset.Dates
gespeicherten Date-Objekte, die annotiert wurden, hinzugefligt werden. Abbildung
zeigt eine Tree-Map-Visualisierung, die gerade bearbeitet wird. Den Hintergrund der
Visualisierung (die eigentliche Tree-Map) stellt das Programm zur Verfigung, wahrend
die blauen Pfeil-Elemente durch den Ersteller hinzugeflgt wurden. Aktuell hat der Er-
steller auf den Pfeil im Feld Baden-Wirttemberg geklickt. Das Programm hebt den aus-
gewahlten Platzhalter mit einem roten Rahmen hervor. Es 6ffnet sich ein Dialog vom
Typ AddElementForm, in dem der Platzhalter entweder bearbeitet oder geléscht werden
kann. In der ComboBox wird der Key des zu diesem Element gehérenden Date-Objekts
angezeigt. Auf diesem Weg kann der Ersteller herausfinden, welcher Platzhalter zu wel-
chem Date-Objekt gehdrt. Welches konkrete grafische Element den Platzhalter repra-
sentiert, kann der Ersteller nicht direkt beeinflussen. Es wird ein beispielhaftes Element
der SnippetClass angezeigt, mit der das zugehérige Date-Objekt annotiert ist. Welches
Element dieser SnippetClass angezeigt werden soll, kann der Benutzer bestimmen.

65

Datentabelle

Bundesland 2007 2009 Annotation
Hamburg 1770629 1774224 |f\|‘|steigend -
Hessen 6072555 6016551 |Sinkend -
Mecklenbung-Viorpo... | 1679682 1651216 |Stark Sinkend |«
Niedersachsen 7971634 7928815 |Sinkend hd
Nordrhein-Westfalen 17966621 17872263 |Sinkend -
Rheinland-Ffalz 4045643 4012675 |Sinkend A
Saarland 1036598 1022585 |Stark Sinkend |
Sachsen 4220200 5168732 |5tark Sinkend |~
Sachsen-Anhalt 2412472 4168732 |Stark Sinkend |
Schleswig-Holstein 2837373 2832027 |Gleichbleibend hd
Thiringen 2285215 2243882 |Stark Sinkend |
Baden-Wirttemberg 10745755 10744521 |Gleichbleibend A
Bayem 12520332 12510341 |Gleichbleibend hd
Bedin 3416255 3442675 |Ansteigend A
Brandenburg 2535737 2511525 | A

b 663082 861716 | -

Abbildung 36: Datentabelle. Alle Bundeslander, auf3er Brandenburg und Bremen wur-
den bereits annotiert. 1.Spalte: Namen der Bundeslander, 2. Spalte: Be-
vOlkerungszahl 2007, 3. Spalte: Bevolkerungszahl 2009, 4.Spalte: Bun-
deslander kénnen annotiert werden.

Abbildung [36] zeigt die Datentabelle. In der Tabelle sind die 16 deutschen Bundes-
lander und ihre Bevdlkerungszahlen aus den Jahren 2007 und 2009 zu sehen. Au-
Ber Brandenburg und Bremen wurden alle Bundeslander annotiert. Die Spalten 'Bun-
desland’, '2007’ und '2009’ stammen aus der Domanen-Ontologie und zeigen die Be-
vblkerungsentwicklung der deutschen Bundeslédnder von 2007 bis 2009. In der Spal-
te "’Annotation’ kann jede Zeile mit einer Annotation angereichert werden. Die in den
ComboBoxen in der Spalte 'Annotation’ auswahlbaren Annotationen stammen aus der
Domanen-Ontologie. Die zur Verfligung stehenden Annotationen stammen ebenfalls
aus der Doméanen-Ontologie. Der Visualisierung kébnnen nur fir annotierte Zeilen Platz-
halter hinzugefligt werden. Wenn der Ersteller eine Annotation in einer Zeile, fir die es
Platzhalter in der Visualisierung gibt, &ndert, wird die Visualisierung angepasst. Das An-
passen wird in der zugehdrigen SVG-Datei sofort vorgenommen. Dazu wird die Metho-
de UpdateSvgWhenAnnotationChanges() aufgerufen. Da das Rendern der PNG-Datei
fOr die creatorPictureBox einige Sekunden dauert, wird es erst bei einem Klick auf den
Button 'Visualisierung neu laden’ in der Toolbar durchgefihrt.

Konzept-Panel Der letzte zu beschreibende Bereich des Ersteller-Tabs ist das Pa-
nel (Abbildung rechts unten. Im linken Teil des Panels kann der Ersteller ange-
ben, fir welche Visualisierungskonzepte sich der aktuelle Datensatz eignet, in dem

66

er die entsprechenden CheckBoxes aktiviert. Intern wird der Datensatz jeweils mit
der Annotation aus der Grafik-Ontologie flr das vom Ersteller ausgewéhlte Visuali-
sierungskonzept annotiert. In der Abbildung wurde der Datensatz also mit den beiden
Annotationen http://www.vis.uni-stuttgart.de/SemanticOptimization#Tree-Map
und http://wuw.vis.uni-stuttgart.de/SemanticOptimization#Karte annotiert.

Im rechten Teil des Panels kann der Ersteller auswahlen, welches Visualisierungskon-
zept in der PictureBox zur Bearbeitung angezeigt werden soll.

Damit der Prototyp mit verschiedenen Domé&nen-Ontologien verwendet werden kann,
werden sowohl die CheckBoxes im linken, als auch die RadioButtons im rechten Teil des
Panels beim Start der Anwendung dynamisch erzeugt. Es werden stets die Labels der
in der aktuellen Grafik-Ontologie vorkommenden Visualisierungskonzepte angezeigt.
In Abbildung enthalt die Grafik-Ontologie drei Visualisierungskonzepte: Tree-Map,
Balkendiagramm und Karte.

Erlaubte Konzepte: Aktuelles Konzept:
V| Tree-Map @ Tree-Map
Balkendiagramm Balkendiagramm
V| Karte Karte

Abbildung 37: Im linken Bereich wurden Tree-Map und Karte als verwendbare Konzepte
ausgewahlt, im rechten ist Tree-Map ausgewahlt, dadurch wird in der
creatorPictureBox eine Tree-Map angezeigt.

6.2.2. Benutzer-Tab

Der Benutzer-Tab (Abbildung ist, ahnlich wie der Ersteller-Tab, zweigeteilt. In der
Abbildung ist dies durch die beiden roten K&sten verdeutlicht. Im linken Bereich (Be-
reich 1) befindet sich ein WebBrowser-Steuerelement, in dem die Visualisierung ange-
zeigt wird. Im rechten Bereich (Bereich 2) kann der Benutzer einzelne grafische Ele-
mente sowie das gesamte Visualisierungskonzept austauschen.

Da die grafischen Elemente nicht einzeln, sonder klassenweise ausgetauscht werden,
ist es auf Benutzerseite nicht notwendig, die Mausposition in der Visualisierung zu be-
stimmen. Daher kann zur Anzeige ein WebBrowser-Steuerelement verwendet werden.
In diesem kénnen SVG-Dateien angezeigt werden. Das hat zwei Vorteile gegeniber
der Anzeige als PNG in einer PictureBox:

1. Die Visualisierung muss nicht nach PNG konvertiert werden, was fiir einen erheb-
lichen Geschwindigkeitsvorteil bei der Aktualisierung sorgt.

2. Die grafischen Elemente kénnen als SVG eingebunden werden, wodurch sie deut-
lich besser dargestellt werden kénnen.

67

+ Austausch von grafischen Elementen

Tharngen
& o » ©

Sachsen-Anhalt .
Rheinland-Pfalz
NV
Sachsen
Nordrhein-Westfalen
Niedersachsen
Konzeptwechsel

Abbildung 38: Zu sehen ist das Hauptfenster mit aktivem Benutzer-Tab. Tree-Map ist
als Visualisierungskonzept ausgewahlt (1), grafische Elemente fur An-
notation 'Ansteigend’ kénnen geandert werden (2).

Austausch grafischer Elemente

Abbildung [39] zeigt den Bereich des Benutzer-Tabs, in dem die grafischen Elemente
ausgetauscht werden kdnnen. In der ComboBox kann der Benutzer die Element-Klasse
auswahlen, deren Elemente er austauschen will. Im Feld darunter kann er anschlieBend
das passende Element auswahlen. In Abbildung [39hat der Benutzer entschieden, dass
Elemente der Klasse 'Ansteigend’ durch ein Plus dargestellt werden sollen. Die Aus-
wahl an Element-Klassen stammt aus der Domanen-Ontologie. Es sind dieselben Klas-
sen, mit denen der Ersteller die Bundeslander annotieren kann. Um alle verfligbaren

Austausch von grafischen Elementen

& o » @
L

Abbildung 39: Bereich zum Austausch von grafischen Elementen. Aktuell wurde fir die
Klasse 'Ansteigend’ ein Plus ausgewahlt.

68

Elemente anzeigen zu kdnnen, wird bei Programmstart der Ordner *GraphicSnippets’
nach SVG-Dateien durchsucht, die mit den existierenden Element-Klassen annotiert
wurden. Das Durchsuchen erfolgt durch den Controller, der dann die entsprechenden
Objekte im Model anlegt. Die View-Komponente holt sich die benétigten Informationen
aus dem Model und zeigt die verfigbaren Elemente an.

Auswahl des Visualisierungskonzepts

Mit der ComboBox in Abbildung |40| kann das Visualisierungskonzept ausgewahit wer-
den. Es stehen die Visualisierungskonzepte zur Verfligung, mit denen der Ersteller den
Datensatz annotiert hat.

Konzeptwechsel

Tree-Map
Balkendiagramm
Karte

Abbildung 40: Bereich zum Austausch des Visualisierungskonzepts

6.3. Sequenzdiagramme

In den beiden folgenden Abschnitten werden zwei grundlegende Funktionen des Pro-
gramms anhand von Sequenzdiagrammen erlautert. Die Nummerierung der Aufzahlun-
gen entspricht den mit roten Zahlen markierten Bereichen in den Diagrammen.

6.3.1. Einfliigen eines Platzhalters

Das Sequenzdiagramm in Abbildung [41]zeigt den internen Ablauf des Programms beim
Hinzuflgen eines Platzhalters zu einer Visualisierung durch den Ersteller.

1. Der Ablauf wird durch einen Klick des Erstellers in die PictureBox gestartet. Es
wird der MouseDown-Event-Handler flir die creatorPictureBox in MainForm
aufgerufen. Dort wird als erstes Uberprift, ob in der PictureBox im Moment
eine Visualisierung angezeigt wird. AnschlieBend wird die Methode
MarkIfExists() in der Klasse MainForm aufgerufen. In dieser Methode wird Uber
Model.ActiveConcepts.VisElements die Liste der zum aktiven Visualisierungskon-
zept gehdrenden Platzhalter geholt. Fir jeden Platzhalter ist die Position in der
Visualisierung gespeichert. So kann nun Uberprift werden, ob der Ersteller auf
einen bereits hinzugefligten Platzhalter geklickt hat oder nicht. Falls er auf einen
existierenden Platzhalter geklickt hatte, wirde der Platzhalter in der PictureBox
mit einem roten Rahmen versehen. Dadurch soll verdeutlicht werden, auf welchen
Platzhalter geklickt wurde. In dem im Sequenzdiagramm abgebildeten Ablauf hat
der Ersteller auf eine Position in der Visualisierung geklickt, an der noch kein
Platzhalter hinzugefiigt worden ist. Aus diesem Grund wird in MarkIfExists()
nur die Uberpriifung, ob auf ein grafisches Element geklickt wurde, durchgefiihrt.

69

3 i
X X X X X X X X X

‘ MainForm AddElementForm Controller SvgReaderWriter | Model | ‘ VisConcept H Date ‘ SvgFiles ” VisElement ‘
I I T
MarkIfBdsts() | | |
| | |
| | |
i I 1 I I
Model | | |
> | | |
| ActiveConcept I I
| > | |
: VisElements : :
| |
| |
| <<return VisHe |
| R |
<<return VisElements>» : :
< <return VisElements > ! I I
= A —— | | |
| | |
| | |
+ t |
| | |
<<creates»]I : :
<ecreatess | : :
| |
| 2 |
<<returnz > | |
------------------ | |
AddElementTosSvg(seletedDate) | | |
» | | |
! Annotation !
| > |
| |
| |
<<return> | |
—————————————————— O e |
| ChangeFiles |
| »> |
»
| |
| |
<<returnz> | |
***************** 4---——F---—--- |
| <<creaters |
___________________ T R
|
|
<<return> |
""""""""" | i At It |
ActiveConcept | |
8 | |
VisElementsAdd() | |
|
|
|
<<returnz> |
_______ |
<<returnz |
________ |
<<return>> |
""""""""" T |
<<returnz=z |
———————— - |
DrawiPng() |
|
|
|
|
|
|
|

Abbildung 41: Das Einfligen eines Platzhalters erfolgt in drei Schritten: Uberpriifen, ob
ein vorhandener Platzhalter angeklickt wurde (1), Platzhalter in SVG-
Datei einbinden (2), PNG neu zeichnen (3).

70

AnschlieBend wird ein Dialog vom Typ AddElementForm erzeugt und dem Erstel-
ler angezeigt. In diesem muss der Ersteller ein Date-Objekt in einer ComboBox
auswahlen (die Date-Objekte werden durch ihren Key reprasentiert) und auf den
Button OK klicken.

2. Als nachstes wird durch das AddElementForm-Objekt das SvgReaderWriter-
Objekt svg erzeugt. Da ein neuer Platzhalter hinzugefliigt werden soll, wird
svg.AddElementToSvg() aufgerufen. Als Parameter wird das ausgewahlte Date-
Objekt sowie die Position des Mauszeigers beim Klick auf die PictureBox Uberge-
ben. In AddElementToSvg() wird dann die SnippetClass in Model.SnippetClasses
gesucht, mit der das Date-Objekt annotiert ist. AnschlieBend wird die zum derzeit
aktiven Visualisierungskonzept gehérende SVG-Datei bearbeitet. Das grafische
Element wird per Image-Tag in der Zeile vor dem schlieBenden </svg> einge-
fugt. Listing [4] zeigt beispielhaft den SVG-Code, mit dem ein grafisches Element
zur Visualisierung hinzugeflgt wird. Zusétzlich wird ein neues VisElement-Objekt
erzeugt, das zu Model.ActiveConcept.VisElements hinzugefligt wird. In diesem
Objekt werden folgende Informationen gespeichert: Die Koordinaten der Flache,
die der Platzhalter in der Visualisierung belegt, das zugehdrige Date-Objekt, die
zugehorige SnippetClass und die Nummer der Zeile in der SVG-Datei, in der
der Platzhalter hinzugefugt wurde. AnschlieBend wird das AddElementForm ge-
schlossen.

3. Als letzter Schritt wird in MainForm die Methode DrawPng () aufgerufen. Darin wird
die SVG-Datei als PNG gerendert und in der creatorPictureBox angezeigt.

<image x="581" y="288" width="50px" height="50px"
xlink : href="2downarrow.png">

<title >Stark_Ansteigend/ title >

</image>

Listing 4: Image-Tag zum Einbinden eines grafischen Elements

6.3.2. Austauschen grafischer Elemente

Abbildung [42| zeigt den Programmablauf beim Austauschen grafischer Elemente zum
Anpassen der Visualisierung durch den Benutzer an seine persénlichen Vorlieben und
Bedirfnisse. Der Benutzer hat bereits eine SnippetClass ausgewahlt und will nun alle
Elemente dieser Klasse durch ein anderes Element ersetzen.

1. Zu diesem Zweck wahlt er einen RadioButton neben dem gewlinschten grafi-
schen Element aus. Dadurch wird der zugehdérige Event-Handler aufgerufen. Das
Dictionary ActiveSnippets ordnet jeder SnippetClass ein SvgSnippet zu. Dieses
wird dann verwendet um alle grafischen Elemente dieser SnippetClass in der Vi-
sualisierung zu reprasentieren. Im Event-Handler des RadioButtons wird dieses
Dictionary aktualisiert, indem der SnippetClass das ausgewéahlte SvgSnippet zu-
geordnet wird.

71

MainForm Controller Model VisConcept SvgReaderWriter SvgFiles

Maodel
ActiveSnippets[ClickedSnippet.Annotation] = ClideedSnippet
>
<<returnzz
<<return== 1
<<createx>
<<returnzz
ChangeElementForsnippetClass(SeededsnippetCass)
>
Maodel 2
4
-
VisConcepts
>
VisElements
<<returnzz
{ _______
<<returnzz
<\ __________________________
<<returnzz
ChangeFiles
<<returnzz
<<returnzz
‘WebBrowserRefresh()

Abbildung 42: Der Austauschen grafischer Elemente erfolgt in drei Schritten: Dictiona-
ry ActiveSnippets im Model aktualisieren (1), SVG-Datei anpassen (2),
WebBrowser aktualisieren (3).

2. Als nachstes wird das SvgReaderWriter-Objekt svg erzeugt und die Methode
svg.ChangeElementsForSnippetClass() aufgerufen. Als Parameter wird die Snip-
petClass Ubergeben. Es wird aus dem Model die Liste mit allen Platzhaltern
geholt. FUr jeden dieser Platzhalter wird Uberprift, ob der Platzhalter zur Uber-
gebenen SnippetClass gehdrt. Diese Uberpriifung erfolgt anhand der aus der
Domanen-Ontologie stammenden Uri der SnippetClass. Bei erfolgreicher Uber-
priufung wird die SVG-Datei der im Moment aktiven Visualisierung geéndert. Das
Image-Tag, mit dem das Element hinzugefligt wurde, bleibt grundsatzlich erhal-
ten, nur der Dateiname wird ausgetauscht. Da jedes VisElement in der Eigen-
schaft LineInFile die Zeilennummer, an der es in der SVG-Datei eingefligt wur-
de, gespeichert hat, kann die entsprechende Zeile leicht gefunden werden.

72

3. AbschlieBend wird das WebBrowser-Steuerelement, in dem die Visualisierung
angezeigt wird, aktualisiert.

6.4. Systemvoraussetzungen

Dieser Abschnitt erlautert, was benétigt wird, um den Prototypen verwenden zu kon-
nen und in welcher Ordnerstruktur die Komponenten vorliegen missen. Es werden
die grafischen Elemente, die Visualisierungshintergriinde und die Ontologien benétigt.
Die folgenden Unterabschnitte erldutern die Komponenten im Detail. Alle Komponenten
werden mit dem Prototypen ausgeliefert, kbnnen jedoch auch ersetzt werden.

6.4.1. Ordnerstruktur

Im Programmordner missen die Ordner ’bin’, ’GraphicSnippets’, ’Ontologies’, 'Save’
und 'SVG’ vorhanden sein. Der Ordner ’bin’ enthalt einen Ordner namens 'Release’, in
dem die ausfuhrbare Exe-Datei und die benétigten DLLs liegen. Der Ordner *Save’ wird
bendtigt, um erstellte Visualisierungen speichern zu kénnen. Der Inhalt der weiteren
Ordner wird in den folgenden Abschnitten beschrieben.

6.4.2. Grafische Elemente

Die grafischen Elemente, die dem Benutzer bei der Anpassung der Visualisierungen
zur Verfigung stehen sollen, missen beim Programmstart im Ordner 'GraphicSnip-
pets’ vorliegen. Sie missen im SVG-Format gespeichert sein und mit einer gultigen
Annotation aus der Domanen-Ontologie annotiert sein. Listing [5| zeigt die Annotation
eines grafischen Elements mit der Tendenz ’Sinkend’. Das bedeutet, dass dieses gra-
fische Element verwendet werden kann, um Bundesléander zu reprasentieren, deren
Bevdlkerungswachstum sinkend ist.

<semantics>
http ://www. vis .uni—stuttgart.de/GermanStates\# Sinkend
</semantics >

Listing 5: Annotation eines grafischen Elements mit der Tendenz ’Sinkend’

Die Annotation wird innerhalb eines <semantics>-Tags angegeben. Da dieser Tag nicht
Teil der SVG-Spezifikation ist, wird er durch SVG-Renderer einfach ignoriert. Wenn zu-
satzliche Elemente verwendet werden sollen, missen sie im Programm mit der Funkii-
on 'Grafische Elemente konvertieren’ zu PNG-Dateien konvertiert werden, da die Ele-
mente fir die Anzeige in der Ersteller-PictureBox als PNG bendtigt werden.

6.4.3. Visualisierungshintergriinde

Die zu verwendenden Visualisierungshintergriinde missen als SVG-Dateien im Ordner
'SVG’ liegen. Falls ein Hintergrund nur als Rastergrafik vorliegt, kann er einfach in eine
leere SVG-Datei eingebunden werden. Die Hintergriinde miissen mit einer Unterklasse

73

der Klasse "Type’ aus der Grafik-Ontologie annotiert sein. Diese Annotation dient dem
Prototypen zur Zuordnung von Hintergrundbild und VisConcept.

6.4.4. Ontologien

Sowohl die Grafik- als auch die Doménen-Ontologie missen als RDF-Datei vorliegen.
Die beiliegenden Ontologien wurden mit Protégé 3.4.7 erstellt. Falls die Ontologien mit
anderen Editoren oder anderen Versionen erstellt wurden, muss die Kompatibilitat tber-
prift werden. Listing [6] zeigt einen beispielhaften Ausschnitt der Doménen-Ontologie.
Es sind die drei Tendenzen ’Ansteigend’, Gleichbleibend’ und 'Sinkend’ sowie die bei-
den Bundeslander Hamburg und Hessen enthalten. Die Ontologien miissen im Ordner
‘Ontologies’ gespeichert sein.

<rdf :RDF xmins:rdf="&rdf ;"
xmlns : GermanStates="& GermanStates ;"
xmins:rdfs="&rdfs ;">

<GermanStates :BevOlkerungsentwicklung rdf:about="&GermanStates; Ansteigend”
GermanStates:Label="Ansteigend"
rdfs:label="Ansteigend"/>

<GermanStates :Bevdlkerungsentwicklung rdf:about="&GermanStates; Gleichbleibend"
GermanStates:Label="Gleichbleibend"
rdfs:label="Gleichbleibend"/>

<GermanStates :Bevokerungsentwicklung rdf:about="&GermanStates; Sinkend"
GermanStates:Label="Sinkend"
rdfs:label="Sinkend"/>

<GermanStates: State rdf:about="& GermanStates;domain_Class10"
GermanStates : Einwohner_2007="1770629"
GermanStates : Einwohner_2009="1774224"
GermanStates: Label="Hamburg"
rdfs :label="Hamburg"/>

<GermanStates: State rdf:about="&GermanStates;domain_Class11"
GermanStates : Einwohner_2007="6072555"
GermanStates : Einwohner_2009="6016951"
GermanStates:Label="Hessen"
rdfs:label="Hessen"/>

</rdf :RDF>

Listing 6: Ausschnitt aus der Doméanen-Ontologie. Zu sehen sind die Elemente flr
die Bundeslander Hamburg und Hessen, sowie die Tendezen ’Ansteigend’,
‘Gleichbleibend’ und 'Sinkend’

74

7. Evaluierung

Das Ubergeordnete Ziel dieser Diplomarbeit war es, den Gulf of Evaluation im Bereich
von Visualisierungen zu verkleinern. In diesem Kapitel wird evaluiert, ob die gewéhlten
Lésungsansatze geeignet waren, um dieses Ziel zu erreichen.

Es wurde ein Konzept entworfen, mit dem Visualisierungen mit semantischen Metain-
formationen annotiert werden kénnen, damit sie anschlieBend durch einen Benutzer
interaktiv optimiert werden kénnen. Nach der Konzeptionsphase wurde ein Prototyp
implementiert, der zeigt, dass sich das Konzept auch praktisch umsetzen lasst. Dabei
kam es zu folgenden Schwierigkeiten:

o Mit Hilfe der Grafik-Ontologie kann beschrieben werden, aus welchen grafischen
Primitiven Visualisierungskonzepte bestehen kdnnen. Allerdings ist es nicht oh-
ne Weiteres mdglich, aus diesen Informationen eine Visualisierung zu erstellen,
da die Informationen Uber die geometrische Anordnung der grafischen Primitive
fehlen. Daher benétigt das Visualisierungsprogramm flir jedes Visualisierungs-
konzept ein Hintergrundbild.

e Schwierigkeiten machte auch die nicht vorhandene Unterstitzung der Program-
miersprache C# fir Ontologiesprachen. Da nur fiir RDF eine Bibliothek zur Verar-
beitung von Ontologien gefunden werden konnte, mussten die Ontologien in RDF
erstellt werden. RDF ist, im Gegensatz zu OWL, nur fir die Modellierung einfacher
Sachverhalte verwendbar. Fir die Ontologien, die fir diese Diplomarbeit bendtigt
wurden, reichen die Modellierungsmdglichkeiten von RDF jedoch aus.

Die Entscheidung, SVG zur Erstellung und Darstellung der Visualisierungen zu verwen-
den muss ambivalent betrachtet werden:

SVG hat sich sehr gut geeignet, um Visualisierungen und auch einzelne Elemente da-
von mit semantischen Metainformationen anzureichern.

Da C# keine Unterstltzung zur Bearbeitung von SVG-Dateien bietet, mussten die daflr
bendtigten Methoden selbst geschrieben werden.

Die Entscheidung, keinen eigenen SVG-Renderer zu schreiben, sparte viel Zeit bei der
Implementierung, die fir die Erarbeitung des theoretischen Konzepts verwendet wer-
den konnte. Das WebBrowser-Steuerelement ist in C# die einzige Mdglichkeit, SVG-
Dateien anzuzeigen. Da sich darin aber die Mausposition nicht bestimmen Iasst, konnte
es zum Erstellen und Annotieren der Visualisierungen nicht verwendet werden. Aus die-
sem Grund missen die SVG-Dateien in PNG-Dateien konvertiert werden, um sie dann
in einem PictureBox-Steuerelement anzuzeigen. Das flhrt zu einem erheblichen Perfor-
manceverlust. AuBerdem kdénnen die Vorteile von SVG-Dateien nicht genutzt werden.
Da bei der Optimierung der Visualisierung die Mausposition nicht benétigt wird, kann
auf Benutzerseite das WebBrowser-Steuerelement verwendet werden.

Als vorteilhaft hat sich die Verwendung des in Abschnitt vorgestellten Schemas

herausgestellt. Ohne dieses Schema ware vor allem der Einstieg in die Ontologieer-
stellung schwierig geworden.

75

Insgesamt konnte in der vorliegenden Diplomarbeit ein Konzept zur interaktiven, ver-
standnisorientierten Optimierung von semantisch-annotierten Visualisierungen entwor-
fen und dessen Umsetzbarkeit mittels eines Prototypen gezeigt werden. Abbildung
zeigt eine erweiterte Version der Abbildung [T1] Der hinzugeflgte, griine Pfeil ist das
Ergebnis des in dieser Diplomarbeit erarbeiteten Konzepts. Der Nutzer kann dadurch
die Visualisierung so lange anpassen, bis er sie richtig verstanden hat. Durch die in-
teraktive Optimierbarkeit kbnnen einmal erzeugte Visualisierungen durch verschiedene
Menschen gut verstanden werden. Das Ziel, den Gulf of Evaluation im Bereich Visuali-
sierung zu verringern konnte also erreicht werden.

Design Model |:> Visualisierung |:> User‘s Model

i Vs

Verstandene Idee
Idee des Inhalts des Inhalts

) U

[Ersteller Nutzer

Abbildung 43: Der Grafik aus dem Abschnitt konnte der griine Pfeil hinzugefligt
werden. Der Nutzer kann nun die Visualisierung so lange anpassen, bis
er sie richtig verstanden hat.

76

8. Zusammenfassung und Ausblick

Ubergeordnetes Ziel der Diplomarbeit ,Interaktive, verstiandnisorientierte Optimierung
von semantisch-annotierten Visualisierungen* ist es, den Gulf of Evaluation im Bereich
von Visualisierungen zu verkleinern. Um dieses Ziel zu erreichen, sollte ein Konzept
entworfen werden, mit dem Visualisierungen mit semantischen Metainformationen an-
notiert werden kdénnen, um sie interaktiv optimieren zu kénnen. Zuséatzlich sollte die
grundséatzliche Umsetzbarkeit des Konzeptes durch Implementierung eines Prototypen
gezeigt werden.

Um die Visualisierungen annotieren zu kénnen, wurden zwei Ontologien entworfen. Ei-
ne der beiden, die Grafik-Ontologie, beschreibt verschiedene Visualisierungskonzepte
und die atomaren Bausteine, aus denen die Visualisierungskonzepte bestehen kdn-
nen. Die andere, die Doméanen-Ontologie, dient dazu, den Inhalt von Visualisierungen
mit semantischen Metainformationen zu annotieren und muss fir den jeweiligen An-
wendungsfall erstellt werden. Es wurde beispielhaft eine Domanen-Ontologie fiir das
Einsatzszenario Bevdlkerungsentwicklung erstellt. AnschlieBend wurde ein Interakti-
onskonzept entworfen, mit dem Visualisierungen annotiert und anschlie3end interaktiv
optimiert werden kdnnen.

Sowohl das in dieser Diplomarbeit vorgestellte Konzept als auch der Prototyp kénn-
ten in Zukunft noch deutlich erweitert werden. In diesem Abschnitt werden einige der
moglichen Erweiterungen beschrieben.

Die Wunschvorstellung wére eine Software, die automatisch Visualisierungen in ver-
schiedenen Visualisierungskonzepten erstellt. Dies misste auf Basis einer um beliebi-
ge Visualisierungskonzepte erweiterten Grafik-Ontologie und einer Domanen-Ontologie
flr eine beliebige Anwendungsdomane geschehen. Auf diesen Grundlagen kdnnten
Daten visualisiert werden. Damit das erreicht werden kann, missten die Ontologien
deutlich erweitert werden. Vor allem muisste das Problem gelést werden, wie aus den
Informationen der Ontologien die genaue geometrische Anordnung der Elemente einer
Visualisierung abgeleitet werden kann. Zusatzlich mussten Richtlinien definiert werden,
die festlegen, welche Informationen erweiterte Ontologien enthalten missen, damit die
Software daraus automatisch Visualisierungen erzeugen kann. In diesen Visualisierun-
gen kénnten dann alle Elemente annotiert und ausgetauscht werden, nicht nur durch
den Ersteller hinzugefligte Platzhalter.

Eine mdgliche Erweiterung flir den Prototypen wére es, zu ermdglichen, dass Platzhal-
ter mit Detailstufen annotiert werden kdnnen. Wie das konzeptionell umgesetzt werden
kann ist in Abschnitt beschrieben. Die Implementierung der Detailstufen wurde
aus Zeitgrinden nicht durchgefuhrt.

Eine weitere Mdglichkeit zur Erweiterung des Prototypen wére es, dass grafische Ele-
mente nicht nur klassenweise, sondern auch einzeln durch den Benutzer, ausgetauscht
werden kénnen. Dann kdnnte man eine Visualisierung beispielsweise dahingehend ver-
andern, dass die steigende Bevdlkerungszahl eines Bundeslandes durch einen Pfeil

77

dargestellt wird und die eines anderen Bundeslandes durch ein Plus. Allerdings sollte
vorher untersucht werden, ob dies das Verstindnis des Benutzers erleichtert, oder ob
es zu zusatzlicher Verwirrung fihrt.

Eine M&glichkeit, das Konzept zu erweitern ware, dass grafische Elemente in verschie-
denen Farben verwendet werden kénnen. Dazu misste die Grafik-Ontologie um die
gewunschten Farben erweitert werden. Dann kénnten eingefligte Platzhalter mit einer
Farbe annotiert werden. Elemente, die diesen Platzhalter ersetzen kénnen, missten
dieselbe Farbe haben.

Fir den Fall, dass sich das Sematic Web durchsetzen wird, dirften sich in Zukunft
deutlich mehr Daten und Informationen finden lassen, die bereits mit semantischen
Metainformationen annotiert sind. Wenn diese Informationen genutzt werden kénnten,
misste nicht fir jeden Anwendungsfall eine eigene Domanen-Ontologie entworfen wer-
den. Da sich das Semantic Web jedoch auch Uber zehn Jahre nach der Veréffentlichung
durch Tim Berners-Lee noch nicht durchgesetzt hat, bleibt abzuwarten, ob der grof3e
Durchbruch noch gelingen wird.

Viele der heutzutage erstellten Daten werden automatisch generiert. Daher wére es
moglich, die Daten bei der Erstellung automatisch zu annotieren. Dies wére eine wei-
tere Mdglichkeit, um im groBen Stil annotierte Daten zu erhalten.

Interessant wéare auBerdem zu Uberprifen, ob sich das vorgestellte Konzept auch fir

Benutzeroberflachen eignen wirde. Damit kdnnte vielleicht ein entscheidender Schritt
in Richtung automatisch generierbarer Benutzeroberflachen getan werden.

78

A. Grafik-Ontologie

Graph

—

£

Circle

A
GraphElement

Geometrical Shap

CoordinateSyste

Triangle

Element

Abbildung 44: Die gesamte Grafik-Ontologie. Die durchgezogenen, violetten Pfeile ste-
hen fur ’Ist-Unterklasse-Von’, die gestrichelten, orangen Pfeile flr 'has-

Element’. Sie ordnen den Visualisierungskonzepten die grafischen Pri-
mitive zu, aus denen sie bestehen.

79

B. Domanen-Ontologie

Abbildung 45: Die Doméanen-Ontologie. Die violetten Pfeile stehen fur ’Ist-Unterklasse-
Von’, die blauen Pfeile fir ’Ist-Instanz-Von’. Zu jedem Bundesland geho-
ren noch die Bevdlkerungszahlen aus den Jahren 2007 und 2009, die
aber aus Griinden der Ubersichtlichkeit weggelassen wurden.

80

Abbildungsverzeichnis

(1. Erzeugte Datenmengen in den Jahren 2005, 2010 und 2015 (Prognose) |

| in Exabyte |g§1 L 6

2. Im Web 1.0 gab es eine klare Trennung zwischen Produzent und Kon-
| sument (oben), seit dem Web 2.0 kann jeder Produzent und Konsument

| sein (Mitte), im Semantic Web kbnnen Programme Informationen aufbe- |
| reiften (unten) [wewl. | 9
[3. Im Web (links) liegt der Fokus fur Verbesserungen auf Seite der anfra- |

| genden Server, Im Semantic Web (rechts) auf Seite der Dokumente.| . . . 11
; u sehenist ein -Graph, der aussagt, dass die Diplomarbeit (links |

| oben) mit dem Titel 'Interaktive...” (links unten) von einem Studenten |
| (rechts oben) mit dem Namen 'Hannes Pfannkuch’ (rechts unten) ge- |

| schriecbenwurde.] 13
5. Dadie Unterklassendefinition in RDFS transitiv ist, ist die Klasse "Student |

| Universitat Stuttgart” automatisch Unterklasse von 'Mensch’,| 14
6. u sehen ist ein -Graph, der aussagt, dass es sich bei ‘geschrie-

| benVon’ um ein Property handelt, dessen Subjekie vom Typ 'Diplomar- |

| beit’ und dessen Objekte vom Typ 'Student’ sein mussen.|. 16

[7. Die Sprachversion OWL Full enthalt alle Sprachelemente von RDF(S) |
L und OWL und ist unentscheidbar. OWL DL ist eine entscheidbare Unter- |
| menge von OWL Full. OWL Lite ist eine stark eingeschrankte Untermen- |

| gevon OWLDL.|., 17
[8. Tterativer Workflow zur Erstellung von Ontologien, detaillierte Beschrei- |
| bung siehe tolgender Text.| 18

9. Zu sehen ist die Visualisierungspipeline. Als erstes werden die Rohda- |
ten aus verschiedenen Quellen beschatit und durch Filtern zu den Vi- |
sualisierungsdaten transformiert. Die Visualisierungsdaten werden auf |
renderbare Objekte abgebildet. Abschlie3end werden diese Objekte zu |
Bildern oder Videos zusammengefasst [Ert11].|. 21

[10. Zusehen st die Entwicklung der Ein- und Ausgabetechniken von leletype- |

| Interfaces uber alphanumerische Dialogsysteme, grafische Benutzungs- |

| schnittstellen, multimediale Benutzungsschnittstellen bis hin zu multimo- |

| dalen und virtuellen Benutzungsschnittstellen [Sch09].| 22
11. nterschi In_ den mentalen M llen von Ersteller und Nutzer sin

| hautig der Grund tur Verstandnisprobleme bel der Betrachtung von Vi- |

| sualisierungen [MRIAT.] 24
[12. Links eine Beliebig skalierbare Vektorgrafik, rechts eine Rastergratfik, die |

| durch das Zoomen stark verpixeltwirkt.] 26

[13. Auf Basis der Daten (links) werden die Visualisierungen (in der Mitte) er- |
| stellt. Der Benutzer (rechts) kann die Visualisierungen interaktiv anpassen.| 34

81

[14. Workflow, der die Erstellung von optimierbaren Visualisierungen ermog-

licht. Zuerst werden die Ontologien benotigt (links), dann werden die Vi-

sualisierungen erstellt und annotiert (Mitte), die anschlie3end optimiert

werden konnen (rechts).|o oL

[15. Konzeptueller Entwurf einer Grafik-Ontologie. Es werden verschiedene

Konzepte definiert und verschiedene grafische Primitive in Klassen un-

terteilt. Die gestrichelten Pfeile veranschaulichen, aus welchen Primiti-

ven die Konzepte bestehen, die durchgezogenen Pfeile stehen fur ‘Ist-

Unterklasse-Von'. Die rechteckigen, optionalen Attribute konnen Primiti-

| ve genauer spezifizieren.| L.

[6.” Ein Balkendiagramm kann mit Hilfe von Informationen aus der Ontolo-

| gie und den Daten erzeugt werden. Der Ausschnitt aus der Ontologie

| (oberer Tell) definiert, dass ein Balkendiagramm aus X-Achse, Y-Achse

[und Rechtecken besteht. Bechiecke berthren die X-Achse und haben |

| die Parameter Hohe, Breite und Abstand.|

38

[17. Die zur Verfugung stehenden grafischen Elemente werden annotiert (links).

Der Visualisierung werden mit Annotation und Detailstufe annotierte Platz-
halter hinzugefligt oder vorhandene Elemente werden annotiert (rechts).

I 39
[18. Zu sehen ist eine Iree-Map, die die Bevolkerung der deutschen Bundes- |
| lander darstellt. Je mehr Einwohner ein Bundesland hat, desto grof3er |
| das jewellige Rechteck. | L oL Lo 41
[19. Zwei Kartenausschnitte der Region Stuttgart mit unterschiedlichem Mal3- |
| stab. Auf dem linken ist der Detailgrad deutlich niedriger, daher sind viele |
| Stadte nur rechts zu sehen[map].| 42
[20. Ausschnitt aus der Domanen-Ontologie uber die Bevolkerungsentwick- |
| lung deutscher Bundeslander zwischen 2007/ und 2009. Zu sehen sind: |
| funf Tendenzen, die die Bevolkerungsentwicklung charakterisieren, zwel |
| Bundeslander und inre Bevolkerungszahlen.| 45
[21. Zerlegung eines Scatter-Plots in grafische Primitive] 45
[22. Beispiele verschiedener Visualisierungskonzepte: Landkarte (links oben), |
Balkendiagramm (rechts oben), Iree-Map (links unten), Graph (unten |
Mitte), Scatter-Plot (rechtsunten)] 46
[23. Ausschnitt der verwendeten Grafik-Ontologie. Es werden drei Konzepte |
| definiert (unterer, gruner Bereich) und verschiedene grafische Primitive |
| in zwel Klassen untertellt. Die gestrichelten Pfeile veranschaulichen, aus |
welchen Primitiven die Konzepte bestehen, die durchgezogenen Pfeile
stehen fur ’lst-Unterklasse-Von'. Das Primitiv ,Rechteck™ wird durch zu-
| satzliche Attribute beschrieben (ganzrechts).|. 48
[24. Workflow-Diagramm zur Erstellung einer Visualisierung. Der Ersteller muss |
die Bundeslander annotieren, smnvolle VlsuaI|S|erungskonzepte auswah- |
49

82

[25. Workflow-Diagramm zur Erstellung einer Visualisierung. Der Benutzer |
| wahlt ein Visualisierungskonzept aus und kann in diesem grafische Ele- |
[mente austauschen. 50
[26. Mockup der Ersteller-Tabs. In Bereich 1 wird die Visualisierung ange-

zeigt, In der Tabelle im Bereich 2 konnen die Bundeslander annotiert wer-

den, In Bereich 3 werden die sinnvollen Visualisierungskonzepte ausge-

wahlt und in Bereich 4 wird das zu bearbeitende Visualisierungskonzept

ausgewahlt. 52
[27. Mockup der Benutzer-labs. In Bereich 1 wird die Visualisierung ange- |
| zeigt, in Bereich 2 konnen grafische Elemente ausgetauscht werden und |
| in Bereich 3 kann das Visualisierungskonzept ausgetauscht werden.|. . . 53

[28. Architekturuberblick, angelehnt an MVC Paradigma. Zu sehen sind die |
| drei Komponenten Model, View und Controller und die Autgaben, die sie |

[erfillen. e 55
[29. Klassendiagramm der Komponente Moael| 57
[30. Links ist ein Ausschnitt aus der Domanen-Ontologie, rechts die Zuord- |

| nung zur Klasse Date zusehen.| 58
[31. Links ist ein Ausschnitt der Grafik-Ontologie, rechts die Zuordnung zur |

| Klasse VisConceptzusehen.| 59
[32. Klassendiagramm der Klasse VisMoqgel.| 60
[33. Klassendiagramm der Komponente Controller mit den Klassen Control-

er, SvgReaderWriter un eader. Die Parameter der Methoden wur-
| den in der Abbildung aus Platzgrunden weggelassen.| 61

[34. Zu sehen ist das Hauptfenster mit aktivem Ersteller-Tab. In diesem Bel- |
| spiel ist eine Tree-Map zur Bearbeitung (1) und die Tabelle zum Annotie- |

| ren der Bundeslander (2) zusehen,| 64
Z hen ist die cr rPictureBox. Aktuell | rot umran Elemen

| ausgewahlt. Daher ist ein AddElementForm-Dialog geéfinet, in dem Baden- |

| Wurttemberg ausgewahltist| 0oL, 65

36. Datentabelle. Alle Bundeslander, aul3er Brandenburg und Bremen wur-

en bereits annotiert. 1.Spalte: Namen der Bundeslander, 2. Spalte: Be-

| volkerungszahl 2007, 3. Spalte: Bevolkerungszahl 2009, 4.Spalte: Bun- |
lander konnen annotiert werden.] 66

[37. Imlinken Bereich wurden lree-Map und Karte als verwendbare Konzepte |

| ausgewahlt, im rechten ist Iree-Map ausgewahlt, dadurch wird in der |
| creatorPictureBox eine Iree-Map angezeigt.| 67
[38. Zu sehen ist das Hauptfenster mit aktivem Benutzer-Tab. Tree-Map Ist |

| als Visualisierungskonzept ausgewahlt (1), grafische Elemente fur Anno- |

| tation "Ansteigend” konnen geandertwerden (2).| 68
[39.” Bereich zum Austausch von grafischen Elementen. Akiuell wurde fur die |
| Klasse 'Ansteigend’ ein Plus ausgewahlt.| 68
[40. Bereich zum Austausch des Visualisierungskonzepts| 69

83

l41. Das Einfligen eines Platzhalters erfolgt in drei Schritten: Uberpriifen, ob |

ein vorhandener Platzhalter angeklickt wurde (1), Platzhalter in SVG- |

Datei einbinden (2), PNG neu zeichnen (3).| 70
{42. Der Austauschen gratfischer Elemente erfolgt in drei Schritten: Dictiona-

ry ActiveSnippets im Model aktualisieren (1), -Datel anpassen (2),

WebBrowser aktualisieren (3).] oo L. 72

{43. Der Grafik aus dem Abschnitt [2.6.3] konnte der grune Pfeil hinzugefugt |

werden. Der Nutzer kann nun die Visualisierung so lange anpassen, bis |

ersierichtig verstandenhat.| 76

{44. Die gesamte Grafik-Ontologie. Die durchgezogenen, violetten Pleile ste-

en fur ’Ist-Unterklasse-Von’, die gestrichelten, orangen Pfeile flr "has-

Element’. Sie ordnen den Visualisierungskonzepten die grafischen Pri- |

mitive zu, aus denen sie bestehen.| 79

{45. Die Domanen-Ontologie. Die violetten Pfeile stehen fur 'Ist-Unterklasse- |

Von', die blauen Pieile fur 'Ist-Instanz-Von'. Zu jedem Bundesland geho- |

ren noch die Bevolkerungszahlen aus den Jahren 2007 und 2009, die |

aber aus Griinden der Ubersichtlichkeit weggelassen wurden. | 80

84

Literatur

[Con09] World Wide Web Consortium. Owl 2 web ontology language.
http://www.w3.org/TR/owl2-overview/, 2009.

[Ert11] Thomas Ertl. Visualization. 2011.

[Gam09] E. Gamma. Design Patterns: Elements of Reusable Object-Oriented Soft-
ware. Addison-Wesley professional computing series. Addison-Wesley,
2009.

[GPCFLO4] Asuncion Gomez-Perez, Oscar Corcho, and Mariano Fernandez-Lopez.
Ontological Engineering : with examples from the areas of Knowledge Ma-
nagement, e-Commerce and the Semantic Web. Springer, July 2004.

[Gru93] Thomas R. Gruber. A translation approach to portable ontology specifica-
tions. Knowl. Acquis., 5:199-220, June 1993.

[Hor07] lan Horrocks. Semantic web: the story so far. In Proceedings of the 2007
international cross-disciplinary conference on Web accessibility (W4A),
WA4A 07, pages 120—125, New York, NY, USA, 2007. ACM.

[hita] http://www.duden.de/rechtschreibung/Annotation.

[hitb] http://www.duden.de/rechtschreibung/Ontologie.

[httc] http://www.duden.de/rechtschreibung/Semantik.

[hitd] http://www.webopedia.com/TERM/V/vector_graphics.html.

[JG11] David Reinsel John Gantz. Extracting value from chaos.

http://www.emc.com/digital_universe 2011.

[KP88] Glenn E. Krasner and Stephen T. Pope. A cookbook for using the model-
view controller user interface paradigm in smalltalk-80. Journal of Object-
Oriented Programming, 1(3):26 — 49, August 1988.

[map] maps.google.com.

[Mar06] Gary Marchionini. Exploratory search: from finding to understanding. Com-
mun. ACM, 49:41-46, April 2006.

[MR11] Thomas Ertl Michael Raschke, Philipp Heim. Interaktive verstandnisorien-
tierte optimierung von semantisch-annotierten visualisierungen. 2011.

[Nor83] Donald Norman. Some observations on mental models. pages 7—14, 1983.

[Nor86] Donald Norman. User Centered System Design. Lawrence Erlbaum As-
sociates, 1986.

85

[PHO83a]

[PHO8Db]

[RBHO0]

[RF94]

[Sch0g]
[Shno6]

[Stu09]

[TBLO1]

[w3c]
[wew]

[YHCO3]

Sebastian Rudolph York Sure Pascal Hitzler, Markus Krétzsch. Semantic
web - grundlagen. pages 1-10, 2008.

Sebastian Rudolph York Sure Pascal Hitzler, Markus Krétzsch. Semantic
web - grundlagen. pages 125 — 155, 2008.

D.A.McNabb R. B. Haber. Visualization idioms: A conceptual model for
scientific visualization systems. Visualization in Scientific Computing, pa-
ges 74-93, 1990.

W. Ribarsky and J.D. Foley. Next-generation data visualization tools. pages
102-127, 1994.

Thomas Schlegel. Usability and interaction. 2009.

Ben Shneiderman. The eyes have it: A task by data type taxonomy for
information visualizations. Visual Languages, IEEE Symposium on, 0:336,
1996.

Heiner Stuckenschmidt. Erstellen von ontologien. In Ontologien: Konzep-
te, Technologien und Anwendungen, Informatik im Fokus. Springer Berlin
Heidelberg, 2009.

Ora Lassila Tim Berners-Lee, James Hendler. The semantic web: a new
form of web content that is meaningful to computers will unleash a revolu-
tion of new possibilities. Scientific American, 2001.

http://www.w3c.org.
www.rockingteam.com/wp-content/uploads/2009/05/semantic web.gif.

Tyng-Ruey Chuang Yi-Hong Chang. Embedding domain semantics in svg,
2003.

Alle Online-Quellen wurden zuletzt am 18.01.2011 geprift.

86

Erklarung

Hiermit versichere ich, diese Arbeit selbstandig
verfasst und nur die angegebenen Quellen
benutzt zu haben.

(Hannes Pfannkuch)

87

	Einführung
	Motivation
	Aufbau

	Grundlagen
	Ontologie
	Semantic Web
	Ontologiesprachen
	Simple HTML Ontology Extension
	Ontology Inference Layer/Language
	DAML + OIL
	Resource Description Framework
	Resource Description Framework Schema
	Web Ontology Language

	Ontologieerstellung
	Visualisierung
	Human-Computer Interaction
	Entwicklung der HCI
	Gulf of Execution und Gulf of Evaluation
	Mentale Modelle und daraus resultierende Probleme im Bereich der Visualisierung

	Vektorgrafik
	Vektorgrafiken allgemein
	Scalable Vector Graphics

	Verwendete Technologien

	Aufgabenstellung und Lösungsansatz
	Aufgabenstellung
	Lösungsansatz

	Konzept
	Einsatzszenarien
	Einsatzszenario Bevölkerungsentwicklung
	Einsatzszenario Automobilvisualisierung

	Visualisierungen interaktiv optimieren
	Ontologien zur Annotation
	Annotieren von Visualisierungen
	Von der Ontologie zur Visualisierung
	Interaktionskonzept zur interaktiven Optimierung von Visualisierungen

	Umsetzung des Konzepts
	Erstellung der Ontologien
	Domänen-Ontologie
	Grafik-Ontologie
	Lücke zwischen Ontologie und geometrischer Anordnung

	Interaktionskonzept
	Interaktionskonzept zum Erstellen einer Visualisierung
	Interaktionskonzept zur interaktiven Optimierung einer Visualisierung
	Allgemeine Funktionen

	Prototyp
	Architektur
	Model
	View
	Controller

	Benutzeroberfläche
	Ersteller-Tab
	Benutzer-Tab

	Sequenzdiagramme
	Einfügen eines Platzhalters
	Austauschen grafischer Elemente

	Systemvoraussetzungen
	Ordnerstruktur
	Grafische Elemente
	Visualisierungshintergründe
	Ontologien

	Evaluierung
	Zusammenfassung und Ausblick
	Grafik-Ontologie
	Domänen-Ontologie

