
Institut für Visualisierung und Interaktive Systeme
Universität Stuttgart

Universitätsstraße 38
D–70569 Stuttgart

Diplomarbeit Nr. 3220

Interaktive, verständnisorientierte Optimierung

von semantisch-annotierten Visualisierungen

Hannes Pfannkuch

Studiengang: Softwaretechnik

Prüfer: Prof. Thomas Ertl

Betreuer: Dipl. Phys. Michael Raschke

begonnen am: 21. Juli 2011

beendet am: 20. Januar 2012

CR-Klassifikation: H.1.2, H.5.2, I.3.6

Zusammenfassung Die weltweit erzeugte Datenmenge wächst rapide
an. Um diese Daten für Menschen verständlich aufzubereiten, sind Visua-
lisierungen ein bewährtes Mittel. Da Visualisierungen aber in der Regel
keine eindeutige Bedeutung haben, kann es leicht zu Missverständnissen
kommen. Ein Konzept, das die Wahrscheinlichkeit solcher Missverständnis-
se senken soll, wird in der vorliegenden Diplomarbeit vorgestellt. Es zeigt,
wie Visualisierungen mit semantischen Metainformationen annotiert werden
können. Dadurch ist es für Benutzer möglich, die Visualisierungen an ihre
persönlichen Bedürfnisse anzupassen, indem sie entweder einzelne gra-
fische Elemente oder das komplette Visualisierungskonzept austauschen.
Um die Umsetzbarkeit dieses Konzepts zu zeigen, wurde ein Prototyp ent-
wickelt, in dem die wichtigsten Aspekte des Konzepts implementiert wur-
den. Zum Abschluss werden das Konzept, der Prototyp und die verwende-
ten Technologien evaluiert.

Abstract The worldwide created data volume is rapidly increasing. To pre-
pare these data for human users, visualizations are a proven way. Because
visualizations in general don’t have an explicit meaning, they easily can be
misunderstood. This diploma thesis shows a concept to lower the probability
of misunderstandings. It shows a technologie to annotate visualizations with
semantic meta information. Thereby, it becomes possible for users, to ad-
apt the visualizations to their individual needs by changing single graphical
elements or the complete visualization concept. To show the applicability
of this concept, a prototype was developed, which implements the central
aspects of the concept. At the end, the concept, the prototype and the used
technologies are evaluated.

Inhaltsverzeichnis

1. Einführung 5
1.1. Motivation . 5
1.2. Aufbau . 6

2. Grundlagen 7
2.1. Ontologie . 7
2.2. Semantic Web . 8
2.3. Ontologiesprachen . 11

2.3.1. Simple HTML Ontology Extension 11
2.3.2. Ontology Inference Layer/Language 11
2.3.3. DAML + OIL . 12
2.3.4. Resource Description Framework 12
2.3.5. Resource Description Framework Schema 14
2.3.6. Web Ontology Language . 16

2.4. Ontologieerstellung . 17
2.5. Visualisierung . 20
2.6. Human-Computer Interaction . 21

2.6.1. Entwicklung der HCI . 22
2.6.2. Gulf of Execution und Gulf of Evaluation 23
2.6.3. Mentale Modelle und daraus resultierende Probleme im Bereich

der Visualisierung . 23
2.7. Vektorgrafik . 25

2.7.1. Vektorgrafiken allgemein . 25
2.7.2. Scalable Vector Graphics . 26

2.8. Verwendete Technologien . 29

3. Aufgabenstellung und Lösungsansatz 31
3.1. Aufgabenstellung . 31
3.2. Lösungsansatz . 32

4. Konzept 33
4.1. Einsatzszenarien . 33

4.1.1. Einsatzszenario Bevölkerungsentwicklung 33
4.1.2. Einsatzszenario Automobilvisualisierung 34

4.2. Visualisierungen interaktiv optimieren . 34
4.2.1. Ontologien zur Annotation . 35
4.2.2. Annotieren von Visualisierungen 37
4.2.3. Von der Ontologie zur Visualisierung 40
4.2.4. Interaktionskonzept zur interaktiven Optimierung von Visualisie-

rungen . 40

3

5. Umsetzung des Konzepts 43
5.1. Erstellung der Ontologien . 43

5.1.1. Domänen-Ontologie . 43
5.1.2. Grafik-Ontologie . 44
5.1.3. Lücke zwischen Ontologie und geometrischer Anordnung 48

5.2. Interaktionskonzept . 48
5.2.1. Interaktionskonzept zum Erstellen einer Visualisierung 49
5.2.2. Interaktionskonzept zur interaktiven Optimierung einer Visualisie-

rung . 51
5.2.3. Allgemeine Funktionen . 52

6. Prototyp 55
6.1. Architektur . 55

6.1.1. Model . 56
6.1.2. View . 60
6.1.3. Controller . 61

6.2. Benutzeroberfläche . 63
6.2.1. Ersteller-Tab . 64
6.2.2. Benutzer-Tab . 67

6.3. Sequenzdiagramme . 69
6.3.1. Einfügen eines Platzhalters . 69
6.3.2. Austauschen grafischer Elemente 71

6.4. Systemvoraussetzungen . 73
6.4.1. Ordnerstruktur . 73
6.4.2. Grafische Elemente . 73
6.4.3. Visualisierungshintergründe . 73
6.4.4. Ontologien . 74

7. Evaluierung 75

8. Zusammenfassung und Ausblick 77

A. Grafik-Ontologie 79

B. Domänen-Ontologie 80

4

1. Einführung

Der Titel der vorliegenden Diplomarbeit - Interaktive, verständnisorientierte Optimierung
von semantisch-annotierten Visualisierungen - ist nicht unbedingt intuitiv verständlich
und wird deshalb hier erläutert.
Zuerst wird auf die zweite Hälfte des Titels - semantisch-annotierte Visualisierungen -
eingegangen. Die Semantik ist einerseits die „Bedeutung, Inhalt (eines Wortes, Satzes
oder Textes)“ und andererseits ein “Teilgebiet der Linguistik, das sich mit den Bedeu-
tungen sprachlicher Zeichen und Zeichenfolgen befasst“ [httc].
Eine Annotation ist ein „Strukturelement, durch das bestimmte Daten [...] eingebunden
werden“[htta]. Annotieren ist der Vorgang, in dem die Daten eingebunden werden sol-
len. Die zweite Hälfte des Titels bezieht sich also auf Visualisierungen, in die Daten
eingebunden werden sollen, die den Visualisierungen eine bestimmte Bedeutung ge-
ben.
Die erste Hälfte des Titels - Interaktive, verständnisorientierte Optimierung - wird nun
erläutert. Die Visualisierungen sollen interaktiv und verständnisorientiert optimiert wer-
den können. „Interaktiv“ ist die Anpassung deshalb, weil es zu einem Wechselspiel
zwischen Benutzer und Programm kommt: Der Benutzer wählt zum Beispiel einige Ele-
mente der Visualisierung aus, die ausgetauscht werden sollen und das Programm zeigt
ihm daraufhin eine angepasste Version der Visualisierung. „Verständnisorientiert“ soll
verdeutlichen, dass ein Benutzer eine Visualisierung solange anpassen kann (durch
Austauschen einzelner Elemente oder des gesamten Visualisierungskonzeptes), bis er
sie richtig versteht.

1.1. Motivation

Die zunehmende Nutzung des Internets - unter anderem hervorgerufen durch den Ge-
brauch mobiler Geräte - führt zu einem ständigen Anstieg des erzeugten Datenvolu-
mens. Während im Jahre 2007 281 Exabyte (281 * 1018 Byte) an Daten entstanden
sind, waren es 2010 bereits mehr als ein Zettabyte (1021 Byte). Das Datenvolumen
wird auch weiter rapide ansteigen (siehe Abbildung 1). Dies wird vor allem durch die
zunehmende Verbreitung von Smartphones in Schwellen- und Entwicklungsländern
verursacht. 90% dieser erzeugten Daten sind unstrukturiert, liegen also nicht in Da-
tenbanken, sondern verteilt auf unzähligen Servern, gespeichert in den unterschied-
lichsten Formaten. Mittlerweile wird ein großer Teil nicht mehr durch Menschen er-
zeugt, sondern automatisch durch technische Geräte und Algorithmen [JG11]. Diese
Faktoren (immer größeres Datenvolumen, unstrukturiert, automatisch erzeugt) machen
es zunehmend schwierig, die Daten sinnvoll zu analysieren und zu verwenden. Eine
grafische Aufbereitung in Form von Visualisierungen stellt eine Möglichkeit dar, diese
unvorstellbaren Datenmengen besser analysieren zu können. Bisher fehlt es noch an
Methoden, mit denen Daten automatisiert visualisiert werden können. Häufig werden
Visualisierungen von Menschen mit technischer Ausbildung (Ingenieure, Informatiker)
erstellt, jedoch von Marketingexperten oder Managern verwendet. Oder sie werden von
Marketingexperten erstellt und sollen von Kunden verstanden werden. Durch das un-

5

©2011 IDC 3

F i g u r e 1

A Decade of Digital Universe Growth: Storage in Exabytes

Source: IDC's Digital Universe Study, sponsored by EMC, June 2011

This period of "space exploration" of the digital universe will not be without its challenges. But for the
"astronauts" involved — CIOs and their staff—– it represents a unique, perhaps once-in-a-career
opportunity to drive growth for their enterprises. They will need to lead the enterprise in the adoption
of new information-taming technologies, best practices for leveraging and extracting value from data,
and the creation of new roles and organizational design. Each step will require organizational change,
not just a few new computers or more software. The success of many enterprises in the coming years
will be determined by how successful CIOs are in driving the required enterprisewide adjustment to
the new realities of the digital universe (see Figure 2).

Abbildung 1: Erzeugte Datenmengen in den Jahren 2005, 2010 und 2015 (Prognose)
in Exabyte [JG11].

terschiedliche Hintergrundwissen von Ersteller und Nutzer kann es leicht zu Missver-
ständnissen kommen.
Im Zuge dieser Diplomarbeit wird ein Konzept vorgestellt, bei dem der Nutzer Visuali-
sierungen interaktiv an seine Bedürfnisse anpassen kann. Dieses Konzept soll ermögli-
chen, dass Missverständnisse zwischen Erstellern und Benutzern zukünftig vermieden
werden können. Darüber hinaus kann dieses Konzept ein Schritt hin zur automatischen
Generierung von Visualisierungen sein.

1.2. Aufbau

In der vorliegenden Diplomarbeit werden in Kapitel 2 die zum Verständnis notwendigen
Grundlagen über das Semantic Web und die Verwendung von Ontologien, Visualisie-
rungen, Human-Computer Interaction sowie den Einsatz von Vektorgrafiken gelegt.
In Kapitel 3 werden die Aufgabenstellung dieser Diplomarbeit erklärt und der gewählte
Lösungsansatz, mit dem die Aufgabenstellung gelöst werden soll, erläutert.
Anschließend wird in Kapitel 4 ein Konzept zur interaktiven, verständnisorientierten Op-
timierung von Visualisierungen vorgestellt. Teil dieses Konzeptes ist die Annotation von
Visualisierungen mit semantischen Informationen, sowie ein Modell zum Austausch ein-
zelner grafischer Elemente oder des gesamten Visualisierungskonzeptes einer Visua-
lisierung. In Kapitel 5 wird ein Kernbereich des Konzeptes beschrieben, der später als
Prototyp umgesetzt werden soll. Dieser Prototyp wird in Kapitel 6 vorgestellt. Zuerst
wird die Software-Architektur und anschließend der eigentliche Prototyp beschrieben.
In Kapitel 7 wird das entworfene Konzept und dessen Umsetzung durch den Prototypen
evaluiert. Im abschließenden Kapitel 8 wird ein Fazit gezogen und ein Ausblick darüber
gegeben, welche zukünftigen Entwicklungen durch diese Diplomarbeit ermöglicht wer-
den.

6

2. Grundlagen

In diesem Kapitel wird die Erarbeitung der für diese Diplomarbeit notwendigen Grund-
lagen beschrieben. In Abschnitt 2.1 wird erklärt, was Ontologien sind und wofür diese
verwendet werden sollen. Abschnitt 2.2 gibt einen Überblick über das Semantic Web.
Abschnitt 2.3 beschreibt verschiedene Ontologiesprachen und Abschnitt 2.4 gibt einen
Überblick über das Erstellen von Ontologien. Der darauffolgende Abschnitt 2.5 beschäf-
tigt sich mit Visualisierungen und beschreibt die Visualisierungspipeline. Abschnitt 2.6
untersucht die Human-Computer Interaction (HCI). Es wird ein Überblick über die Ent-
wicklung der HCI gegeben. Anschließend werden die von Norman geprägten Begriffe
Gulf of Execution und Gulf of Evaluation erläutert, sowie Normans Erkenntnisse über
mentale Modelle beschrieben. Abschnitt 2.7 gibt einen Überblick über Vektorgrafik und
das SVG-Format. Im abschließenden Abschnitt 2.8 werden die im Verlauf der Diplom-
arbeit verwendeten Technologien aufgelistet.

2.1. Ontologie

Der Begriff Ontologie stammt aus dem Griechischen und lässt sich bis zu Aristoteles
zurückführen. In der Philosophie ist es eine Bezeichnung für das Teilgebiet der Meta-
physik, das sich mit dem Sein beschäftigt. Der Duden bezeichnet es als die „Lehre vom
Sein“ [httb]. Dabei werden Beziehungen zwischen verschiedenen „Entitäten“ diskutiert.
In der Informatik handelt es sich hierbei um „an explicit specification of a conceptualiza-
tion“ , wie Gruber [Gru93] es definiert. In der Informatik wird, ebenso wie in der Philo-
sophie, durch die Ontologie Wissen über die reale Welt beschrieben. Eine Ontologie ist
immer auf eine bestimmte Domäne, also auf einen bestimmten Fachbereich oder einen
bestimmten Anwendungsfall, beschränkt. Es werden Beziehungen zwischen verschie-
denen Elementen dargestellt. Eine Ontologie ist, im Gegensatz zu einer Taxonomie,
nicht nur ein Baum, der hierarchische Beziehungen beschreibt, sondern ein Netz von
Verbindungen. Wenn im Folgenden von Ontologien die Rede ist, so handelt es sich im-
mer um Ontologien im Sinne der Informatik.
Ontologien sollten sowohl von Menschen als auch von Maschinen lesbar sein. Um
maschinenlesbar zu sein, müssen sie formal und explizit definiert sein. Leider ist die
natürliche Sprache, mit der Menschen kommunizieren, selten formal und sehr häufig
implizit. Bekannte formale Sprachen, die sowohl von Menschen als auch von Maschi-
nen verstanden werden, sind Programmiersprachen. Allerdings muss in der Ontologie
zusätzlich die Bedeutung der beschriebenen Ressourcen enthalten sein. Durch die ent-
haltene Bedeutung in der Ontologie können logische Schlüsse gezogen werden und
Widersprüche erkannt werden. Eine Ontologie soll nicht nur ein für ein bestimmtes Pro-
jekt entworfenes Datenmodell sein, sondern allgemeingültig.
Eine der bekanntesten Ontologien ist WordNet1. Es handelt sich um eine lexikalische
Datenbank, die versucht Beziehungen zwischen Wörtern und deren Bedeutung herzu-
stellen. Basis von WordNet ist eine Matrix, die jedem Begriff verschiedene Bedeutungen

1http://wordnet.princeton.edu/

7

http://wordnet.princeton.edu/

zuordnet. Dadurch können zum Beispiel Synonyme gefunden werden [Stu09].
Ein weiteres bekanntes Beispiel für eine Ontologie ist das Unified Medical Language
System (UMLS)2. UMLS wurde durch die United Stateds National Library of Medicine
entwickelt. Das Ziel von UMLS ist es, verschiedene Online-Datenbanken und medizi-
nische Bücher einander anzugleichen und in einer einheitlichen Datenbank zur Verfü-
gung zu stellen. Das dadurch entstehende Modell soll bei der Analyse medizinischer
Fachtexte helfen. UMLS besteht unter anderem aus dem UMLS-Metathesaurus und
dem UMLS-Semantic Network. Der UMLS-Metathesaurus dient der Zuordnung von
Begriffen aus verschiedenen Terminologien zu einheitlichen Konzepten. Das UMLS-
Semantic Network stellt ein Netz dar, das Relationen zwischen verschiedenen medizi-
nischen Konzepten abbildet. Die Begriffe des Metathesaurus sind den Konzepten des
Netzes zugeordnet [Stu09].

2.2. Semantic Web

Das heutige World Wide Web (Web) besteht aus einer riesigen Menge von elektro-
nischen Dokumenten. Diese Dokumente sind durch sogenannte Hyperlinks miteinan-
der verbunden. Das Auffinden von Dokumenten im Web ist für menschliche Anwender
durch diese Hyperlinks oder durch Suchmaschinen möglich. Da über die verschiedenen
Dokumente keinerlei semantische Informationen vorliegen, können heutige Suchma-
schinen nur stichwortbasiert suchen und die Dokumente sind nicht maschinenlesbar.
Das Web hat eine sehr heterogene Struktur. Es werden verschiedene Kodierungstech-
niken und Dateiformate verwendet, es ist in verschiedenen natürlichen Sprachen ver-
fasst und die Struktur und der Aufbau der einzelnen Homepages sind sehr unterschied-
lich. Durch diese Heterogenität ist es oft auch für Menschen schwierig, die gesuchten
Informationen zu finden. Durch die fehlende Eindeutigkeit natürlicher Sprachen ist die
Maschinenlesbarkeit zusätzlich erschwert. So wird die Suche nach dem Begriff „Bank“
Ergebnisse für Sitzgelegenheiten und für Geldinstitute liefern [PH08a]. Schwierig ist die
aktuelle, textbasierte Suche auch dann, wenn der Suchende nur eine ungefähre Vor-
stellung vom Ziel seiner Suche hat und sie möglicherweise gar nicht in Worte fassen
kann [Mar06]. Ein weiteres Problem bei der Verarbeitung des Webs durch automatische
Prozesse ist, dass Homepages dahingehend optimiert sind, dass sie durch menschli-
che Benutzer interpretiert und verstanden werden können. Es werden oft Bilder und
Links zu weiterführenden Informationen eingesetzt, die von Menschen interpretiert und
verstanden werden können, aber für einen „Software Agenten“ nicht zu verstehen sind.
Ein „Software Agent“ ist ein Programm, das zu einem (teilweise) autonomen Verhalten
in der Lage ist [Hor07].

Ein Ansatz zur Lösung dieser Probleme wäre es, mit Hilfe von künstlicher Intelligenz
und maschineller Sprachverarbeitung Computer in die Lage zu versetzen, natürlich-
sprachige Texte zu verstehen. Dadurch wären Computerprogramme in der Lage, aus
dem Kontext heraus eine Unterscheidung zwischen der oben erwähnten Sitzgelegen-

2http://www.nlm.nih.gov/research/umls/

8

http://www.nlm.nih.gov/research/umls/

heit und dem Geldinstitut zu machen. Da das Verständnis natürlicher Sprache jedoch
ein sehr komplexes Problem ist, müsste noch sehr viel Forschung betrieben werden,
um diesen Ansatz umzusetzen. Um grafische Zusammenhänge zu erkennen, müsste
auch die maschinelle Bildverarbeitung noch deutlich verbessert werden.

Abbildung 2: Im Web 1.0 gab es eine klare Trennung zwischen Produzent und Konsu-
ment (oben), seit dem Web 2.0 kann jeder Produzent und Konsument sein
(Mitte), im Semantic Web können Programme Informationen aufbereiten
(unten) [wcw].

Abbildung 2 gibt einen Überblick über die Entwicklung des Internets. Zu Beginn war das
Internet eine Einbahnstraße. Die Internetseiten wurden von wenigen Anbietern erstellt
und von vielen Konsumenten abgerufen. Durch die Weiterentwicklung verschiedener
Technologien kann mittlerweile jeder Konsument genauso auch zum Anbieter werden.
Diese sogenannten Web 2.0 Technologien haben sozialen Netzwerken, Blogs und Wi-
kis zum Durchbruch verholfen. Das Semantic Web soll nun zusätzlich Möglichkeiten
schaffen, dass Computerprogramme dem Konsumenten die gewünschten Informatio-
nen von verschiedenen Quellen zusammengefasst präsentieren. Ein Beispiel dafür ist
die semantische Suchmaschine Wolfram Alpha3. Diese Suchmaschine ist prinzipiell in
der Lage, Fragen in natürlicher Sprache zu beantworten. So erhält man auf die Frage
„How old is Angela Merkel“ das Alter der deutschen Bundeskanzlerin auf den Tag ge-
nau. Die Sprachverarbeitung funktioniert allerdings nur in wenigen Fällen. So wird zum
Beispiel die Frage nach der Körpergröße von Angela Merkel nicht verstanden. Wolfram
Alpha erkennt aber, dass der Suchende sich für Angela Merkel interessiert und liefert,
im Gegensatz zu Google oder Bing, keine Liste von Links, sondern ein kurzes Dossier.

3http://www.wolframalpha.com/

9

http://www.wolframalpha.com/

Die Verarbeitung der Anfragen dauert etwas länger als bei herkömmlichen Suchma-
schinen, allerdings spart sich der Suchende die Auswahl, auf welchen Link er klicken
muss und das Laden der verlinkten Seite.

Das Semantic Web ist eine Vision von Tim Berners-Lee, dem Erfinder des Webs. Die-
se Vision verfolgt, im Gegensatz zum oben beschriebenen Konzept, nicht den Ansatz,
dass Computer die bestehenden Homepages besser verstehen können. Die Idee hinter
dem Semantic Web ist, dass die Daten mit semantischen Informationen angereichert
werden. Das folgende Zitat aus dem Jahre 2001 zeigt, dass das Semantic Web kein
Ersatz für das Web sein soll, sondern eine Erweiterung.

„The Semantic Web is not a separate Web, but an extension of the cur-
rent one, in which information is given well-defined meaning, better enabling
computers and people to work in cooperation.“ [TBL01]

In dieser Vision ist das Web nicht nur eine Menge von verlinkten Dokumenten, sondern
eine Informationsdatenbank, in der die Daten so gespeichert sind, dass sie durch Ma-
schinen „verstanden“ oder zumindest sinnvoll verarbeitet werden können. Dazu ist es
nötig, die Maschinenlesbarkeit in einer Weise zu verbessern, dass sie menschlichen
Benutzern das Arbeiten mit dem Web erleichtert. Die Idee ist, die benötigten Infor-
mationen in einer Art und Weise zur Verfügung zu stellen, dass sie durch Maschinen
verarbeitet werden können. Um diese Vision zu verwirklichen, sind als Erstes einheit-
liche und offene Standards notwendig. Das World Wide Web Consortium [w3c] (W3C)
hat es sich zur Aufgabe gemacht, diese Standards zu erarbeiten, zu definieren und zu
veröffentlichen. Die Standards RDF, RDFS und OWL (siehe Abschnitt 2.3) wurden be-
reits ausformuliert.
Eine wichtige Komponente zur Entwicklung des Semantic Web sind die oben einge-
führten Ontologien. Durch die in den Ontologien enthaltenen Bedeutungen können lo-
gische Schlüsse gezogen werden. Dadurch können Informationen, die nicht explizit in
Dokumenten enthalten sind, erkannt werden. So könnte zum Beispiel durch die beiden
Informationsschnipsel, dass in Deutschland der Euro die offizielle Währung ist, und
dass der Euro nur in Ländern innerhalb von Europa offizielle Währung ist, geschlossen
werden, dass Deutschland in Europa liegt. Dieser Schluss ist möglich, ohne dass die
explizite Information „Deutschland liegt in Europa“ vorliegt.
Abbildung 3 zeigt die unterschiedlichen Ansätze von Web und Semantic Web. Um im
Web die Qualität von Suchergebnissen zu verbessern, müssen Verbesserungen auf
Seiten der anfragenden Server durchgeführt werden, zum Beispiel bessere maschinel-
le Sprachverarbeitung oder Verteilung der Anfragen auf mehrere Server. Beim Seman-
tic Web erfolgen die Verbesserungen auf Seite der vorhandenen Dokumente. Da die
Dokumente mit semantischen Metainformationen angereichert sind, ist keine maschi-
nelle Sprachverarbeitung natürlicher Sprache nötig. Dadurch sinkt der Aufwand einer
Suchanfrage.

10

Semantische
Metadaten+

„Verstehen“ ohne maschinelle
Sprachverarbeitung möglich

„Verstehen“, wenn überhaupt,
nur mit maschineller

Sprachverarbeitung möglich

Abbildung 3: Im Web (links) liegt der Fokus für Verbesserungen auf Seite der anfragen-
den Server, im Semantic Web (rechts) auf Seite der Dokumente.

2.3. Ontologiesprachen

Es existieren viele verschiedene Sprachen, mit denen Ontologien beschrieben und ent-
worfen werden können. Es folgt eine Übersicht über vorhandene Ontologiesprachen.

2.3.1. Simple HTML Ontology Extension

Die Sprache Simple HTML Ontology Extension (SHOE) wurde an der University of Ma-
ryland 1996 entwickelt. SHOE ist eine Erweiterung von HTML und wurde entwickelt,
um Web-Dokumente leichter mit maschinenlesbaren semantischen Informationen an-
reichern zu können. Diese Annotationen sollten verwendet werden, um Suchmechanis-
men im Web zu verbessern. Da die von SHOE verwendeten Tags nicht in der HTML-
Spezifikation vorkommen, hat das Einbetten von Informationen keinen Einfluss auf das
Aussehen der Web-Dokumente. SHOE spielt heutzutage keine Rolle mehr, die Entwick-
lung wurde eingestellt. Die neueste Version der Spezifikation4 ist aus dem Jahr 2000
[GPCFL04].

2.3.2. Ontology Inference Layer/Language

Ontology Inference Layer oder auch Ontology Inference Language (OIL) wurde im Rah-
men des Schwerpunkts „Technologien der Informationsgesellschaft“ des Forschungs-
rahmenprogramms der Europäischen Union entwickelt und wurde im Jahr 2000 veröf-
fentlicht. OIL wurde, ebenso wie SHOE, konzipiert um Web-Dokumente mit semanti-
schen Informationen anzureichern. OIL ging bereits ein Jahr nach der Veröffentlichung
in DAML + OIL auf und wurde nicht mehr eigenständig weiterentwickelt.

4http://www.cs.umd.edu/projects/plus/SHOE/spec.html

11

http://www.cs.umd.edu/projects/plus/SHOE/spec.html

2.3.3. DAML + OIL

DAML + OIL wurde in einem gemeinsamen Projekt in den USA und der Europäischen
Union entwickelt. DAML steht für DARPA Agent Markup Language, wobei DARPA wie-
derum für Defense Advanced Research Projects Agency (eine Behörde des Verteidi-
gungsministeriums der USA) steht. Ziel war es, eine Sprache zu entwickeln, die es er-
möglicht, Web-Ressourcen mit semantischen Informationen anzureichern. DAML + OIL
wurde in mehreren Schritten entwickelt und ist die Zusammenführung eines DARPA-
Projekts (DAML) und OIL. Die erste Version wurde im Oktober 2000 unter dem Na-
men DAML + ONT veröffentlicht. Im Dezember 2000 wurde bereits die zweite Version
herausgegeben. Im Zuge dessen erfolgte die Umbenennung in DAML + OIL. Die end-
gültige Version wurde im März 2001 veröffentlicht und behob einige in den vorherigen
Versionen aufgetretenen Fehler. Die Syntax von DAML + OIL ist XML-basiert. Da DAML
+ OIL in OWL aufgegangen ist, und heute keine Rolle mehr spielt, wird an dieser Stelle
nicht weiter darauf eingegangen.

2.3.4. Resource Description Framework

Das Resource Description Framework (RDF) ist eine durch das W3C standardisierte
Sprache zur Beschreibung von Objekten und deren Beziehungen. Die beschriebenen
Objekte werden als Ressourcen bezeichnet. Jede dieser Ressourcen wird durch einen
eindeutigen Bezeichner (Uniform Resource Identifier, kurz URI) beschrieben. Wichtig
ist, dass die Ressourcen eindeutig identifiziert werden können, damit Missverständnis-
se verhindert werden. Beispielsweise könnte es bei einer Ontologie, die wissenschaft-
liche Publikationen jeweils Autor und Verlag zuweist, zu Verwechslungen kommen. Die
Ressource „Springer-Verlag“ könnte sowohl für den Medienkonzern und Herausgeber
einer großen Boulervardzeitung als auch für den wissenschaftlichen Verlag stehen.
Ursprünglich wurde RDF zur Beschreibung von Metadaten im Web entwickelt. Es war
für die Beschreibung von Informationen über Homepages, wie zum Beispiel Autor oder
Copyright gedacht. Später wurde die Vision des Semantic Web erweitert. Als Ressour-
ce kann heute jede mit einer URI bezeichnete Entität gesehen werden, auch wenn
diese außerhalb des Webs liegt. Nach dieser Erweiterung des Semantic Webs auf Be-
reiche außerhalb des Webs wurde die Spezifikation von RDF noch einmal überarbeitet
und 2004 neu veröffentlicht [PH08a].
Ein RDF-Dokument beschreibt einen gerichteten Graphen, der in Pfeilrichtung gelesen
wird. Der Graph wird durch eine Menge von Tripeln beschrieben. Ein Tripel besteht aus
zwei Knoten und einer die beiden verbindenden Kante und entspricht einer binären Re-
lation zwischen den beiden Knoten. Das Tripel ist dabei wie ein Satz aufgebaut und
besteht aus Subjekt, Prädikat und Objekt. Wie in Abbildung 4 zu sehen, werden Knoten
und Kanten jeweils mit einer URI beschriftet. Auch wenn die URIs nicht online aufge-
rufen werden können (wie zum Beispiel in Abbildung 4), so werden sie in der Regel
trotzdem in der Struktur einer online abrufbaren Adresse angegeben. Der Grund dafür
ist, dass RDF einige aus XML stammende Mechanismen verwendet, mit denen URIs
möglichst effizient gespeichert werden können (siehe Listing 1).

12

http.//example.org/Diplomarbeit http://example.org/Student

http://example.org/
geschriebenVon

Interaktive, verständnisorientierte Optimierung
von semantisch-annotierten Visualisierungen

http://example.org/Titel

Hannes Pfannkuch

http://example.org/Name

Abbildung 4: Zu sehen ist ein RDF-Graph, der aussagt, dass die Diplomarbeit (links
oben) mit dem Titel ’Interaktive...’ (links unten) von einem Studenten
(rechts oben) mit dem Namen ’Hannes Pfannkuch’ (rechts unten) ge-
schrieben wurde.

Die ellipsenförmigen Knoten sind Ressourcen, die Subjekt und Prädikat in verschiede-
nen Relationen sein können. Wenn Datenwerte, zum Beispiel Text oder Zahlen, dar-
gestellt werden sollen, so werden sie als rechteckige Knoten dargestellt. Diese recht-
eckigen Knoten heißen Literale und können nur als Objekt und nicht als Subjekt in
Relationen verwendet werden. Literale können mit einem Datentyp versehen werden.
Literale ohne Datentypen werden immer als Zeichenkette interpretiert.
Die Bedeutung eines RDF-Graphen ist für Menschen leicht zu verstehen. So sagt
der Graph in Abbildung 4 aus, dass die Diplomarbeit mit dem Titel „Interaktive, ver-
ständnisorientierte Optimierung von semantisch-annotierten Visualisierungen“ von ei-
nem Studenten mit dem Namen „Hannes Pfannkuch“ geschrieben wird. RDF-Graphen
können in verschiedenen Sprachen serialisiert werden. Am häufigsten wird die XML-
Serialisierung verwendet, da es in vielen Programmiersprachen Bibliotheken gibt, mit
denen XML verarbeitet werden kann.

1 <?xml vers ion ="1 .0 " encoding ="UTF−8"?>
2 < r d f :RDF xmlns : r d f =" h t t p : / / www.w3 . org /1999/02/22− rd f−syntax−ns #"
3 xmlns : ex =" h t t p : / / example . org / " >
4 < r d f : Desc r i p t i on r d f : about =" h t t p : / / example . org / D ip lomarbe i t ">
5 <ex : geschriebenVon >
6 < r d f : Desc r i p t i on r d f : about =" h t t p : / / example . org / Student ">
7 </ r d f : Descr ip t ion >
8 </ex : geschriebenVon >
9 </ r d f : Descr ip t ion >

10 < r d f :RDF>

Listing 1: XML-Serialisierung des oberen, grau hinterlegten Teils des Graphen in Abbil-
dung 4.

Listing 1 zeigt die XML-Serialisierung des oberen, grau hinterlegten Teils des Graphen
aus Abbildung 4. In Zeile 1 ist eine optionale XML-Deklaration zu sehen, in der XML-
Version und Zeichenkodierung angegeben werden. Anschließend beginnt das Doku-

13

ment mit einem Knoten rdf:RDF, der in der Regel als Wurzel eines RDF-Dokuments
verwendet wird. Hier werden die beiden Namensräume rdf: und ex: und ihre jeweilige
Abkürzung definiert. Alle Elemente mit einer besonderen Bedeutung in RDF werden
also an dem Präfix rdf: zu erkennen sein, alle Elemente, die auf fiktive Begriffe un-
ter http://example.org verweisen am Präfix ex:. Ab Zeile 4 wird das einzige Tripel
beschrieben. Subjekt und Objekt werden durch Elemente vom Typ rdf:Description

beschrieben, wobei rdf:About jeweils den Bezeichner angibt. Das Prädikat des Tripels
wird als das Element ex:geschriebenVon angegeben.
Ein RDF-Graph, solange er klein genug ist, kann zwar von Menschen schnell verstan-
den werden, von Maschinen jedoch nicht. Die Bedeutung des Prädikats „geschrieben-
Von“ ist für einen Menschen, der der deutschen Sprache mächtig ist, klar, auch wenn
es nicht in einer für Computer verständlichen Sprache formalisiert wurde. Aus diesem
Grund wurde eine Sprache benötigt, mit der die nötigen Metainformationen definiert
werden können. Diese Sprache wird im folgenden Abschnitt beschrieben.

2.3.5. Resource Description Framework Schema

Mit RDF ist es möglich, Beziehungen zwischen verschiedenen Entitäten zu beschrei-
ben. Die verwendete Menge an Entitäten und Beziehungen bezeichnet man als Voka-
bular. Beim Erstellen des Vokabulars ist es für denjenigen Menschen, der das Vokabular
erstellt, eindeutig, was es zu bedeuten hat. Bei unserem Beispiel in Abbildung 4 soll es
klar sein, dass ein Student ein Mensch ist, der an einer Universität eingeschrieben ist
und dass eine Universität eine Institution ist, die der Forschung und Lehre dient. Für
andere Menschen könnte ein Student aber genauso gut ein Mensch sein, der an ei-
ner Fachhochschule eingeschrieben ist. Schon für Menschen ist die Bedeutung eines
RDF-Graphen also nicht unbedingt eindeutig. Für einen Computer ist es unmöglich,
eine Bedeutung zu erkennen, da alle Bezeichner einfach nur Zeichenketten sind. Die
Bedeutung der Zeichenketten muss also in irgendeiner Form formal und explizit festge-
halten werden. Ohne diese Bedeutung kann kein Computerprogramm logische Schlüs-
se ziehen.

Mensch

Student

UnterklasseVon

Student Universität
Stuttgart

UnterklasseVon

Durch Transitivität
automatisch

„UnkterklasseVon“

Abbildung 5: Da die Unterklassendefinition in RDFS transitiv ist, ist die Klasse ’Student
Universität Stuttgart’ automatisch Unterklasse von ’Mensch’.

14

Mit dem Resource Description Framework Schema (RDFS) können die zum Verständ-
nis benötigten Informationen beschrieben werden. Dadurch ist es möglich mit RDFS
Ontologien zu erstellen. Es können sowohl Informationen über die Ressourcen als auch
über die Beziehungen zwischen den Ressourcen gespeichert werden. RDFS unter-
stützt die Definition von Klassen und Unterklassen. So könnte man die Klasse ’Mensch’
definieren und anschließend die Unterklasse ’Student’. Damit ist klar, dass jeder Stu-
dent auch ein Mensch ist. Die Definition von Klassen und Unterklassen ist transitiv.
Wenn man also die Klasse ’Student Universität Stuttgart’ als Unterklasse von ’Student’
definiert, dann ist jeder dieser Studenten an der Universität Stuttgart automatisch auch
ein Mensch (siehe Abbildung 5). Die XML-Serialisierung des Graphen aus Abbildung 5
ist in Listing 2 zu sehen. Es beginnt in Zeile 1 mit dem rdf:RDF - Element, in dem die
drei Namensräume rdf:, rdfs und ex: definiert werden. In den folgenden Elementen
vom Typ rdfs:Class wird zuerst die Klasse ’Human’ und anschließend die Unterklas-
sen ’Student’ und ’StudentAtUniversityOfStuttgart’ definiert. Für jede Klasse wird zu-
sätzlich ein rdfs:label für die Sprache “de“, also Deutsch, definiert, das in Abbildung
5 verwendet wird.

1 < r d f :RDF
2 xmlns : r d f =" h t t p : / / www.w3 . org /1999/02/22− rd f−syntax−ns #"
3 xmlns : r d f s =" h t t p : / / www.w3 . org /2000/01 / rd f−schema#"
4 xmlns : ex=" h t t p : / / www. example . de / " >
5 < r d f s : Class r d f : about="&ex ;Human">
6 < r d f s : l a b e l xml : lang ="de">Mensch</ r d f s : l abe l >
7 </ r d f s : Class >
8 < r d f s : Class r d f : about="&ex ; Student ">
9 < r d f s : l a b e l xml : lang ="de"> Student </ r d f s : l abe l >

10 < r d f s : subClassOf r d f s : resource ="&ex :Human" / >
11 </ r d f s : Class >
12 < r d f s : Class r d f : about="&ex ; S t u d e n t A t U n i v e r s i t y O f S t u t t g a r t ">
13 < r d f s : l a b e l xml : lang ="de">Studen Un ive rs i ä t S t u t t g a r t < / r d f s : l abe l >
14 < r d f s : subClassOf r d f s : resource ="&ex :Human" / >
15 </ r d f s : Class >
16 </ r d f :RDF>

Listing 2: XML-Serialisierung von Abbildung 5

Eine Beziehungen zwischen Ressourcen wird in RDFS als Property bezeichnet. Für
Properties lassen sich Definitions- und Wertebereich festlegen. Mit domain lässt sich
der Definitionsbereich des Propertys, also die Klasse aller möglichen Subjekte festle-
gen, mit range der Wertebereich, also die Klasse aller möglichen Objekte. In Abbildung
6 wird somit festgelegt, dass das Property ’geschriebenVon’ nur Diplomarbeiten als
Subjekt und nur Studenten als Objekt haben kann.

15

http://example.org/geschriebenVon

http://example.org/Student

http://example.org/Diplomarbeit

rdf:property

rdfs:range
rdfs:domain

rdfs:type

Abbildung 6: Zu sehen ist ein RDFS-Graph, der aussagt, dass es sich bei ’geschrie-
benVon’ um ein Property handelt, dessen Subjekte vom Typ ’Diplomarbeit’
und dessen Objekte vom Typ ’Student’ sein müssen.

2.3.6. Web Ontology Language

Die Modellierungsfähigkeit von RDFS unterliegt gewissen Einschränkungen. So ist es
beispielsweise nicht möglich zu modellieren, dass etwas nicht gilt, oder dass bestimm-
te Klassen keine gemeinsamen Elemente enthalten dürfen. Aus diesem Grund ver-
öffentlichte das W3C im Jahre 2004 die Spezifikation der Web Ontology Language
(OWL)[Con09]. OWL basiert auf der Prädikatenlogik erster Ordnung. Das Ziel von OWL
war es, eine Sprache zu schaffen, die möglichst ausdrucksstark, andererseits aber in
akzeptabler Zeit entscheidbar ist. OWL ist eine Erweiterung von RDF(S). Es gibt zu-
sätzliche, vordefinierte Relationen mit einer festgelegten Bedeutung. Es existieren zwei
verschiedenen Syntaxen. Die eine wird als abstrakte OWL-Syntax bezeichnet und ist für
Menschen relativ einfach zu lesen. Die andere basiert auf RDF und wird als OWL-RDF-
Syntax bezeichnet. Dokumente in letzterer Syntax sind immer gültige RDF-Dokumente.
Um ein gutes Gleichgewicht zwischen Ausdrucksstärke und Entscheidbarkeit zu schaf-
fen gibt es drei verschiedene Versionen von OWL, OWL Full, OWL DL und OWL Lite.

OWL Full OWL Full erlaubt sämtliche OWL Sprachelemente. Ebenso sind alle Spra-
chelemente aus RDF(S) erlaubt. Es gibt im Prinzip nur eine Einschränkung: es muss
sich um gültige RDF-Syntax handeln. Da RDF(S) zu viele Freiheiten bei der Model-
lierung lässt, ist OWL Full nicht entscheidbar. Es sind aber auch prädikatenlogische
Ausdrücke höherer Ordnung möglich. Durch die Unentscheidbarkeit ist die logische
Schlussfolgerung durch Computerprogramme nicht möglich. Aufgrund dessen wurden
die beiden anderen Versionen von OWL entwickelt. Abbildung 7 gibt einen Überblick
über die verschiedenen Versionen.

16

OWL Lite:
Stark eingeschränkte

Untermenge von OWL
DL

OWL DL:
Entscheidbare

Untermenge von OWL Full

OWL Full:
Sämtliche Sprachelemente

aus RDF(S) und OWL,
dadurch unentscheidbar

Abbildung 7: Die Sprachversion OWL Full enthält alle Sprachelemente von RDF(S) und
OWL und ist unentscheidbar. OWL DL ist eine entscheidbare Untermenge
von OWL Full. OWL Lite ist eine stark eingeschränkte Untermenge von
OWL DL.

OWL DL OWL DL ist eine Untermenge von OWL Full. DL steht für „Description Logic“.
In OWL DL sind einige Sprachkonstrukte aus OWL Full nicht erlaubt. OWL DL wurde
so konstruiert, dass es sich dabei um eine entscheidbare Untermenge von OWL Full
handelt. Es ist also möglich durch einen immer terminierenden Algorithmus festzustel-
len, ob eine Aussage aus einer Ontologie gefolgert werden kann. Es gibt verschiedene
Inferenz-Tools für OWL DL.

OWL Lite OWL Lite ist eine Untermenge von OWL DL. Es enthält die wichtigsten
Sprachelemente. Durch weitgehende Einschränkungen im Vergleich zu OWL DL spielt
OWL Lite in der Praxis jedoch nur eine geringe Rolle [PH08b].

2.4. Ontologieerstellung

Für die Erstellung von Ontologien haben sich bisher noch keine standardisierten Vor-
gehensmodelle herausbilden können. Klar zu sein scheinen aber gewisse Grundsätze.
So gibt es nie den einen richtigen Weg eine Ontologie zu erstellen. Es gibt immer Al-
ternativen. Das Ergebnis des Erstellungsprozesses hängt stark davon ab, für welchen
Zweck die Ontologie entworfen werden sollte. Es spielt auch eine große Rolle, wer die

17

Ontologie entworfen hat. Ein anderer Mensch, der in der Regel ein anderes Hinter-
grundwissen hat, hätte eine Ontologie möglicherweise komplett anders, aber deshalb
nicht unbedingt schlechter entworfen. Das Erstellen einer Ontologie ist ein iterativer
Prozess. Der erste Entwurf ist nur selten auch endgültig. In den meisten Fällen müssen
nachträgliche Änderungen vorgenommen werden, oft auch, weil sich die Anforderun-
gen während des Erstellungsprozesses ändern.
Unter Berücksichtigung dieser Punkte sollte klar sein, dass das im Folgenden aufge-
zeigte Schema nur ein Leitfaden ist und kein unantastbarer Algorithmus, der Schritt
für Schritt abgearbeitet werden muss. Abbildung 8 ist ein Workflowdiagramm, das das
Schema beschreibt. Die einzelnen Schritte werden im Folgenden erläutert.

Anwendungsgebiet
fokussieren

Bestehende
Ontologien

wiederverwenden

Relevante Begriffe
identifizieren

Klassenhierarchie
festlegen

Relationen
definieren

Abbildung 8: Iterativer Workflow zur Erstellung von Ontologien, detaillierte Beschrei-
bung siehe folgender Text.

Anwendungsgebiet fokussieren
Als Erstes sollte das Anwendungsgebiet und der Umfang abgesteckt werden. Es sollte
auch festgelegt werden, in welchen Bereichen wie detailliert modelliert werden soll. Da-
durch wird die Ontologie zwar auf den konkreten Anwendungsfall zugeschnitten und ist
nicht ohne Weiteres für andere Einsatzgebiete wiederzuverwenden. Trotzdem sollte es
zur Begrenzung des Aufwandes durchgeführt werden, da man sonst Gefahr läuft, sich
zu verzetteln. Ein oft verwendetes Beispiel ist die unter anderem von Stuckenschmidt
[Stu09] beschriebene Erstellung einer Wein-Ontologie. Diese Ontologie kann für ei-
ne Restaurant-Software, die passende Weine zu verschiedenen Gerichten empfiehlt,
verwendet werden. Dazu müssen auch die entsprechenden Speisen in der Ontologie
vorkommen. Falls die Ontologie aber dafür verwendet werden soll, einen Weinbauern
bei der Bewirtschaftung seiner Weinberge zu unterstützen, dann sind die passenden
Speisen uninteressant. In diesem Fall sollten die passenden Anbaumethoden für die je-
weiligen Weinsorten Teil der Ontologie werden. Zur Erläuterung der einzelnen Schritte
wird hier die Erstellung der Wein-Ontologie für eine Restaurant-Software beschrieben.
Um Umfang und Bereich der Ontologie zu bestimmen, wird in der Literatur die Beant-
wortung sogenannter „Competency Questions“ empfohlen. Diese Competency Ques-
tions sollten so gestellt werden, dass sie sich (hoffentlich) mit der zu erstellenden On-
tologie beantworten lassen. Mit einer möglichst vollständigen Liste sollte sich später
überprüfen lassen, ob die Ontologie die gewünschten Informationen bereitstellt. In un-
serem Beispiel könnten die Fragen wie folgt aussehen:

18

• Ist Trollinger ein Rot- oder ein Weißwein?

• Passt Rotwein zu Fisch?

• Welches Essen passt zu Rosé?

• Gibt es einen bestimmten Wein nur als Flaschenwein, oder auch im offenen Aus-
schank?

Dies ist nur ein kleiner Ausschnitt der benötigten Fragen. Um die Ontologie später in
vollem Umfang zu testen, sind deutlich mehr Fragen nötig.

Bestehende Ontologien wiederverwenden
Nachdem klar ist, welchen Bereich die Ontologie abdecken soll, ist es sinnvoll nach be-
reits existierenden Ontologien zu suchen, die eventuell wiederverwendet werden kön-
nen. Da jedoch in der Regel keine komplette Ontologie wiederverwendet werden kann,
gilt es abzuwägen, ob es sich lohnt, eine vorhandene Ontologie zu erweitern. Oft ist die
Anpassung aufwendiger als eine komplette Neuentwicklung.

Relevante Begriffe identifizieren
Nach der Sammlung der Competency Questions werden nun die konkreten Begriffe
gesucht, die in der Ontologie verwendet werden sollen. Als Erstes wird eine Liste der
zu verwendenden Substantive erstellt. Für die Wein-Ontologie könnte ein Teil dieser
Liste wie folgt aussehen: Wein, Rotwein, Weißwein, Lage, Jahrgang, Fleisch, Fisch,
Dessert...
Die Sammlung dieser Begriffe kann dabei durch Interviews mit Experten auf dem ent-
sprechenden Gebiet, durch die Analyse von Texten und Büchern des entsprechenden
Gebiets oder durch die Analyse einschlägiger Datenbanken erfolgen.

Klassenhierarchie definieren
Die gesammelten Begriffe werden nun zu einer Klassenhierarchie zusammengefasst.
Dabei muss untersucht werden, in welchem Verhältnis die Klassen zueinanderstehen.
So ist zum Beispiel die Klasse Weißwein eine Unterklasse der Klasse Wein und ei-
ne disjunkte Schwesterklasse der Klasse Rotwein. Empfehlenswert ist hierbei ein Top-
Down Vorgehen. Man beginnt mit der allgemeinsten Klasse und spezialisiert diese dann
immer weiter. Bei den Weinen ist vermutlich die Klasse Wein die allgemeinste Klasse,
die alle andern weinspezifischen Klassen enthält.

Relationen definieren
Anschließend müssen Eigenschaften definiert werden. So könnte man zum Beispiel
die Eigenschaften passtZu und hergestelltVon definieren. Die Eigenschaften können
bestimmte Einschränkungen erhalten. Eine dieser Einschränkungen ist die Kardinali-
tät. So könnte man hergestelltVon die Kardinalität 1 zuweisen, da ein Wein immer ge-
nau von einem Weingut hergestellt wurde. Eine weitere mögliche Einschränkung ist die

19

Definition von Domain (Definitionsbereich) und Range (Wertebereich). So könnte man
Domain von hergestelltVon auf die Klasse Wein und Range auf die Klassen Weingut
und Genossenschaft beschränken.

Damit ist der erste Durchgang der Erstellung der Ontologie abgeschlossen. Da sich
die Anforderungen, auch bedingt durch den Erkenntnisgewinn während der Erstellung,
ändern können, müssen in der Regel mehrere Durchgänge gemacht werden. Erst dann
kommt man zu einer einsatzbereiten Ontologie.
Wie die erstellte Ontologie verwendet werden kann, wird nun an einem Beispiel erklärt:
Aus den drei Relationen ’Merlot istEin Rotwein’, ’Rotwein passtZu dunklem Fleisch’ und
’Rostbraten istEin dunkles Fleisch’ kann gefolgert werden, dass Merlot zu Rostbraten
passt.

2.5. Visualisierung

Unter Visualisierung versteht man die Transformation von abstrakten Daten, zum Bei-
spiel Texte oder Messdaten, in eine grafische Repräsentation, die durch Menschen
wahrgenommen und verstanden werden kann [RF94]. Visualisierungen dienen der Ex-
ploration und dem Verstehen komplexer Sachverhalte. Oft werden Visualisierungen
auch zur Kommunikation mit anderen Menschen verwendet. Da die Menschheit immer
mehr Daten erzeugt und speichert (wie bereits zu Beginn beschrieben, war es allein im
Jahr 2010 mehr als ein Zettabyte), sind Visualisierungen ein wichtiges Werkzeug um
mit diesen riesigen Datenmengen umgehen zu können. Visualisierungen werden in vie-
len Bereichen von Forschung, Lehre, Wirtschaft und Unterhaltungsindustrie eingesetzt.

Die sogenannte Visualisierungspipeline (Abbildung 9) repräsentiert einen Workflow,
der die Überführung von Daten in grafische Darstellungen in vier Schritten beschreibt
[RBH90]. In der folgenden Beschreibung sind die englischen Begriffen aus Abbildung 9
in Klammern angegeben. Der erste Schritt ist die Gewinnung der Daten (data acquisi-
tion), zum Beispiel aus Simulationsdaten, Datenbanken oder Messwerten. Die hieraus
gewonnenen Rohdaten (raw data) werden anschließend durch Filtern aufbereitet. Da-
bei werden aus den Rohdaten die benötigten Daten ausgewählt und in das benötigte
Datenformat überführt. Im Prozess des Filterns (filtering) werden die Daten durch ver-
schiedene Verfahren, wie zum Beispiel Resampling, Interpolation oder Klassifizierung
bearbeitet. Die in diesem Abschnitt der Pipeline entstandenen Daten werden als Vi-
sualisierungsdaten (visualization data) bezeichnet. Diese Visualisierungsdaten werden
im nächsten Schritt, dem Mapping, auf renderbare Repräsentationen (renderable re-
presentations) abgebildet. Die Daten werden nun durch grafische Primitive (Punkte,
Linien, Flächen) sowie verschiedene Attribute (Farbe, Transparenz, Textur) repräsen-
tiert. Im abschließenden Schritt, dem Rendern (rendering), werden die Primitive zu Bil-
dern oder Videos zusammengefasst und durch Berechnen von verschiedenen Effekten
(Schatten, Ausleuchtung, Schattierungen) möglichst realistisch dargestellt.

20

Abbildung 9: Zu sehen ist die Visualisierungspipeline. Als erstes werden die Rohdaten
aus verschiedenen Quellen beschafft und durch Filtern zu den Visuali-
sierungsdaten transformiert. Die Visualisierungsdaten werden auf render-
bare Objekte abgebildet. Abschließend werden diese Objekte zu Bildern
oder Videos zusammengefasst [Ert11].

Das Thema dieser Diplomarbeit ist im Bereich des Mappings angesiedelt. Die zu visua-
lisierenden Daten werden ebenso wie die verfügbaren grafischen Elemente mit seman-
tischen Informationen annotiert. So können die Daten auf grafische Elemente abgebil-
det werden.

2.6. Human-Computer Interaction

Unter Human-Computer Interaction (HCI, deutsch: Mensch-Computer-Interaktion) ver-
steht man einen Teilbereich der Informatik, der sich mit der Interaktion zwischen Men-
schen und Computern befasst. Wobei unter Computern in diesem Fall nicht nur Per-
sonal Computer verstanden werden, sondern auch andere interaktive Geräte, wie bei-
spielsweise Fahrkartenautomaten oder Smartphones. Wichtige Forschungsbereiche
sind dabei die Gestaltung von Benutzeroberflächen, die Interaktion von Menschen mit
bestimmten Eingabegeräten und Techniken sowie kognitive und psychologische Mo-
delle im menschlichen Gehirn. Ziel der HCI ist es, die Interaktion zwischen Mensch und
Computer zu vereinfachen und dafür zu sorgen, dass der Mensch im Mittelpunkt steht
und nicht der Computer. Abschnitt 2.6.1 gibt einen Überblick über die Entwicklung der
HCI, Abschnitt 2.6.2 beschreibt den Gulf of Execution und den Gulf of Evaluation. Ab-
schnitt 2.6.3 beschreibt mentale Modelle und die daraus resultierenden Probleme im
Bereich der Visualisierung.

21

2.6.1. Entwicklung der HCI

In den Anfangszeiten der Computerentwicklung waren Computer riesige Maschinen,
die ganze Räume benötigten. Sie wurden in der Regel nur durch sehr wenige Men-
schen benutzt. Da die Benutzer meist Forscher oder Experten waren, spielte die HCI in
dieser Zeit noch keine große Rolle. Es war kein Problem, wenn die Bedienung aufwen-
dig und schwer zu erlernen war. Durch den Siegeszug der digitalen Technik und dem
Einzug der Computer in private Haushalte wurde die HCI immer wichtiger. Und spätes-
tens seit dem Boom mobiler Geräte wie Smartphones und Tablet-Computer sind elek-
tronische Geräte zu allgegenwärtigen Begleitern geworden. Da die Geräte nun durch
jeden verwendet werden können, ist es wichtig, dass die Bedienung intuitiv und leicht
zu erlernen ist. Da digitale Geräte zunehmen den Alltag vieler Menschen bestimmen,
müssen Bedienoberflächen auch ohne Erklärung verstanden werden können. So ist es
beispielsweise nicht möglich, erst das Handbuch eines Fahrkartenautomaten zu lesen,
bevor man sich eine Fahrkarte kauft.

5

Kapitel: 2. Mensch und Computer | Wahrnehmung | Gestalt

Vom Großrechner zum Internet:
Warum Usability heute so wichtig ist

Mit der Vernetzung der Rechner
und den immer leistungsfähigeren

d h i li h Sund erschwinglichen Systemen
tritt auch das Internet – vor allem
durch Web und E-Mail seinen
Siegeszug an.

Einsatz in allen Bereichen des
Lebens.

Vorlesung: Usability and Interaction

Dr. Thomas Schlegel, Institut für Visualisierung und interaktive Systeme (VIS)
9

Kapitel: 2. Mensch und Computer | Wahrnehmung | Gestalt

Erweiterung des Kommunikationskanals zwischen
Mensch und System

ka
tio

n
be

n multimediale
Ausgaben

simulative
VR-Welten
Multimedia in VR

B
an

db
re

ite
 d

er
 K

om
m

un
i

E
in

ga
be

n

A
us

ga
b

Textausgaben

getippte Kom-
mandosprache

Bildschirmmenüs
und -formulare

Kommandosprache,
Funktionstasten

Bitmap-Grafik,
grafische Inter-
aktionsobjekte

direkte Mani-
pulation
(pointing, dragging)

Ausgaben,
statische + dyna-
mische Medien

multimodale
Eingaben
(Kommandos +
Daten)

Multimedia in VR
Augmented Reality

Eingaben durch:
- Sprache
- Gestik
- Augenbewegung
- Biosignale
- Manipulation phys.
Objekte

Teletype-
Interfaces alphanumerische

Dialogsysteme grafische
Benutzungs- multimediale

Vorlesung: Usability and Interaction

Dr. Thomas Schlegel, Institut für Visualisierung und interaktive Systeme (VIS)
10

zeitliche Entwicklung

Benutzungs
schnittstellen
(GUI)

multimediale
Benutzungs-
schnittstellen multimodale

u. virtuelle B.Generationen von Benutzungsschnittstellen

Abbildung 10: Zu sehen ist die Entwicklung der Ein- und Ausgabetechniken von
Teletype-Interfaces über alphanumerische Dialogsysteme, grafische Be-
nutzungsschnittstellen, multimediale Benutzungsschnittstellen bis hin zu
multimodalen und virtuellen Benutzungsschnittstellen [Sch09].

Abbildung 10 zeigt, wie sich in den letzten 50 Jahren sowohl Eingabe- als auch Aus-
gabetechniken stark verändert haben: von der reinen Textausgabe und der Steuerung
durch getippte Kommandos, über grafische Interaktionsobjekte und Konzeptn der direk-
ten Manipulation, bis hin zu Virtual Reality und Steuerung durch Sprache, Gesten und
in naher Zukunft möglicherweise auch durch Gedankenströme.

22

2.6.2. Gulf of Execution und Gulf of Evaluation

Norman [Nor86] prägte die beiden Begriffe Gulf of Execution und Gulf of Evaluation.
Der Gulf of Execution beschreibt die Lücke zwischen dem Ziel des Benutzers und den
am Gerät tatsächlich auszuführenden Handlungen zur Erreichung dieses Ziels. Ein ein-
faches Beispiel ist der Vorgang des Geldabhebens an einem Geldautomaten. Das Ziel
ist eine bestimmte Summe Bargeld von einem Konto abzuheben. Die tatsächlich aus-
zuführenden Handlungen sind jedoch aufwendiger:

1. Einführen der Bankkarte in den Automaten

2. Auswahl der Funktion ’Geld abheben’

3. Eingabe der PIN

4. Auswahl des Betrags

5. Entnahme des Geldes

Um ein einfaches, klar definiertes Ziel zu erreichen, sind also eine ganze Reihe von
Handlungen und Interaktionen mit dem System notwendig. Gegenstand der HCI ist es
auch, die Lücke zwischen Ziel und auszuführenden Handlungen möglichst zu verklei-
nern.

Der Gulf of Evaluation beschreibt die Lücke zwischen der Ausgabe eines Geräts und
dem Verständnis des aktuellen Systemzustands. Es geht also um die Frage, ob das
System leicht erfassbare und interpretierbare Informationen über seinen Zustand lie-
fert. Um den Gulf of Evaluation zu überbrücken, muss der Benutzer folgende Schritte
durchführen:

1. Perzeption (Wahrnehmung) des Systemzustands.

2. Interpretation des wahrgenommenen Systemzustands.

3. Auswerten, ob das Interpretierte mit den ursprünglichen Zielen übereinstimmt.

Dabei sollten die Anstrengungen des Benutzers zur Durchführung dieser Schritte durch
gutes Design des Systems möglichst gering gehalten werden.
In dieser Diplomarbeit wird ein Versuch beschrieben, den Gulf of Evaluation im Be-
reich der Visualisierung zu verkleinern, indem der Benutzer Visualisierungen an seine
persönlichen Bedürfnisse anpassen kann.

2.6.3. Mentale Modelle und daraus resultierende Probleme im Bereich der
Visualisierung

Die Sicht eines Menschen auf seine Umgebung, sich selber, seine eigenen Fähigkeiten
und die an ihn gestellten Aufgaben unterscheidet sich stark von Mensch zu Mensch.

23

Um sich die Interaktion mit der Umwelt, mit Mitmenschen oder mit verschiedenen Tech-
nologien zu erleichtern, bauen sich Menschen im Unterbewusstsein mentale Modelle.
Norman hat bei seinen Experimenten folgende Beobachtungen über mentale Modelle
gemacht:

Mentale Modelle...

• ...sind nicht vollständig.

• ...hängen von den Fähigkeiten des Menschen ab.

• ...sind instabil und verändern sich im Lauf der Zeit, vor allem wenn bestimmte
Tätigkeiten länger nicht ausgeführt werden.

• ...haben keine festen Grenzen. Verschiedene Operationen und Geräte werden
vermischt.

• ...sind nicht wissenschaftlich. Menschen legen abergläubisches Verhalten an den
Tag, obwohl sie sich dessen bewusst sind.

• ...sind „geizig“. Menschen nehmen höheren physischen Aufwand als nötig in Kauf,
um den mentalen Aufwand gering zu halten.

Diese Beobachtungen stellen klar, dass die verschiedenen mentalen Modelle sich von-
einander unterscheiden. Dadurch lassen sich Verständnisprobleme beim Benutzen von
Software erklären. Der Nutzer hat ein anderes mentales Modell als der Ersteller und
versteht die Bedeutung, die transportiert werden soll, nicht. Nur in einer idealen Welt,
in der alle Menschen für eine bestimmte Sache immer das selbe mentale Modell hät-
ten, würden sich die beiden Modelle und die grafische Repräsentation der Bedeutung
gleichen [Nor83].
Im Bereich Visualisierung versucht der Ersteller eine Information grafisch an den Nut-
zer zu übermitteln. Wie in Abbildung 11 zu erkennen, hat der Ersteller die Idee eines

3 Das Verständnisproblem

Bereits Norman erkannte, dass Verständnisprobleme häufig auf unterschiedliche mentale
Modelle von Ersteller (Designer) und Nutzer (User) zurückgeführt werden können
[ND83]. Wenden wir seinen Ansatz auf Visualisierungen an (s. Abb. 1), so besteht das
Ziel des Erstellers darin, eine Information grafisch an den Nutzer zu übermitteln. Dies
erfolgt durch eine geeignete Wahl eines Design Models der Visualisierung. Beim
Betrachten der Visualisierung erzeugt der Nutzer ein User Model der Visualisierung
basierend auf seiner Interpretation der Darstellung und erhält dadurch ein Verständnis
des Inhalts.

Abbildung 1: Unterschiede in den mentalen Modellen von Ersteller und Nutzer sind häufig der
Grund für Verständnisprobleme bei der Betrachtung von Visualisierungen.

Im Idealfall stimmen die mentalen Modelle von Ersteller und Nutzer überein. Dies kann
zum Beispiel durch eine beim Erstellen der Visualisierung erfolgten Anpassung an die
Aufgabenstellung, Anforderungen und Fähigkeiten des Nutzers erreicht werden. Damit
wird das mentale Modell des Nutzers kompatibel mit dem mentalen Modell des
Erstellers. Stimmen die beiden mentalen Modelle jedoch nicht überein, kommt es zu
einem Verständnisproblem zwischen Ersteller und Nutzer. Tritt dieses auf, kann die
Visualisierung nur noch unzureichend oder falsch verstanden werden.

Im Folgenden stellen wir ein Interaktionsmodell vor, dass es Nutzern ermöglichen soll,
Visualisierungen interaktiv zu verändern und auf ihre individuellen Bedürfnisse hin zu
optimieren, um dadurch Verständnisprobleme auszuräumen.

4 Ein Interaktionsmodell zur Optimierung von Visualisierungen

Wir unterscheiden in unserem Interaktionsmodell zwischen der Annotation mit
Ressourcen aus Domänen-Ontologien und der Annotation mit Ressourcen aus Grafik-
Ontologien (vgl. Abb. 2).

Abbildung 11: Unterschiede in den mentalen Modellen von Ersteller und Nutzer sind
häufig der Grund für Verständnisprobleme bei der Betrachtung von Vi-
sualisierungen [MR11].

24

Inhaltes, den er vermitteln will. Dazu wählt der Ersteller ein Design Model und versucht
dieses durch die Visualisierung darzustellen. Der Nutzer erzeugt beim Betrachten der
Visualisierung sein eigenes User Model. Dieses Modell basiert auf seiner Interpreta-
tion der Visualisierung, wird aber auch beeinflusst durch das Hintergrundwissen und
die persönlichen Vorlieben des Nutzers. Durch dieses Modell erhält der Nutzer ein Ver-
ständnis des Inhalts. Im Idealfall würden die mentalen Modelle von Ersteller und Nutzer
übereinstimmen. Wie Normans Beobachtungen jedoch gezeigt haben, ist dies in der
Regel nicht der Fall. Das mentale Modell des Nutzers hängt nicht nur davon ab, wer
dieser Nutzer ist. Ebenso entscheiden ist der Zeitpunkt der Betrachtung und der zu die-
sem Zeitpunkt aktuelle Wissenszustand sowie die Erfahrung des Nutzers. Um trotzdem
das mentale Modell des Nutzers möglichst gut zu treffen, sollte die Visualisierung an die
Aufgabenstellung, die Anforderungen und die Fähigkeiten des Nutzers angepasst wer-
den können. Je schlechter die beiden mentalen Modelle übereinstimmen, desto eher
kommt es zu Verständnisproblemen. Im schlimmsten Fall kann der Nutzer die Visuali-
sierung nicht verwenden.
In der vorliegenden Diplomarbeit wird ein Interaktionskonzept beschrieben, das es dem
Nutzer ermöglicht, die Visualisierung interaktiv an seine Bedürfnisse anzupassen, um
dadurch Verständnisprobleme zu vermeiden [MR11].

2.7. Vektorgrafik

In diesem Abschnitt werden Vektorgrafiken eingeführt. In 2.7.1 werden Vektorgrafiken
allgemein und in 2.7.2 das Vektorgrafikformat Scalable Vector Graphics beschrieben.

2.7.1. Vektorgrafiken allgemein

Hinter Vektorgrafiken steht die Idee, nicht für jeden einzelnen Punkt der Grafik einen
Farb- und Helligkeitswert zu spezifizieren, sondern die Grafik durch grafische Primiti-
ve zu beschreiben. So wird zum Beispiel für eine Linie nur Start- und Endpunkt sowie
Linienstil, -breite und -farbe abgespeichert. Im Gegensatz dazu stehen Rastergrafiken,
bei denen jeder einzelne Punkt des Bildes beschrieben ist. Wie in Abbildung 12 gut zu
erkennen ist, haben Vektorgrafiken gegenüber Rastergrafiken den großen Vorteil der
beliebigen und verlustfreien Skalierbarkeit. Hinzu kommt, dass vor allem bei großen
Grafiken, die Vektorgrafiken häufig deutlich weniger Speicherplatz benötigen. Moderne
Vektorgrafikprogramme bieten auch Funktionen, um Transparenzeffekte und Farbver-
läufe abzuspeichern. Dadurch lassen sich deutlich bessere und realistischere Abbil-
dungen der realen Welt erstellen. Vektorgrafiken haben ihre Stärken bei Grafiken, die
einfach durch grafische Primitive dargestellt werden können. Fotos, die als Rastergrafik
aufgenommen werden, können nicht verlustfrei in Vektorgrafiken umgewandelt werden.
Vektorgrafiken sind bei der Erstellung von Diagrammen und Logos sehr beliebt. Die
meisten Vektorgrafikformate unterstützen auch, dass Rastergrafiken eingebunden wer-
den können. Die eingebundenen Rastergrafiken werden wie ein Rechteck behandelt.

25

Abbildung 12: Links eine Beliebig skalierbare Vektorgrafik, rechts eine Rastergrafik, die
durch das Zoomen stark verpixelt wirkt.

Der Rahmen der eingebundenen Rastergrafik wird mit der Vektorgrafik skaliert, die Ras-
tergrafik selber kann aber nicht verlustfrei skaliert werden.
Um Vektorgrafiken auf Bildschirmen darzustellen oder auszudrucken zu können, müs-
sen sie in eine Rastergrafik umgewandelt werden. Da dies zu einem Zeitpunkt passiert,
zu dem sowohl Skalierungsfaktor als auch die Auflösung des Zielgeräts bekannt sind,
kann die Vektorgrafik immer optimal dargestellt werden. Drucker haben in der Regel
einen eigenen Rastergrafikprozessor, der die Vektorgrafik umrechnet. Dadurch können
Vektorgrafiken in jeder beliebigen Größe ausgedruckt werden [httd].
Da bei Vektorgrafiken die einzelnen grafischen Primitive, aus denen die Grafik zusam-
mengesetzt ist, gespeichert werden, sind Vektorgrafikformate eine gute Wahl, wenn
einzelne Elemente ersetzt werden sollen.

2.7.2. Scalable Vector Graphics

Das W3C empfiehlt Scalable Vector Graphics (SVG) als Format zur Beschreibung von
Vektorgrafiken. Die Spezifikation 5 wurde erstmalig im Jahr 2001 veröffentlicht. SVG ba-
siert auf XML. Dadurch sind XML-Dokumente in einer Baumstruktur aus verschiedenen
Elementen aufgebaut. Das Dokument beginnt mit der XML-Deklaration. Der SVG-Teil
beginnt mit dem Tag <svg>. In diesem Start-Tag werden unter anderem Höhe und Brei-
te der Grafik angegeben. Das Dokument wird mit dem Tag </svg> beendet. Listing 3
zeigt den grundlegenden Aufbau eines SVG-Dokuments.

5http://www.w3.org/TR/2003/REC-SVG11-20030114/

26

http://www.w3.org/TR/2003/REC-SVG11-20030114/

<?xml vers ion ="1 .0 " encoding ="UTF−8" standalone ="no"?>
<!−− Created wi th Inkscape (h t t p : / / www. inkscape . org /) −−>

<svg
xmlns : cc =" h t t p : / / creativecommons . org / ns #"
xmlns : svg =" h t t p : / / www.w3 . org /2000/ svg "
xmlns =" h t t p : / / www.w3 . org /2000/ svg "
xmlns : x l i n k =" h t t p : / / www.w3 . org /1999/ x l i n k "
xmlns : inkscape =" h t t p : / / www. inkscape . org / namespaces / inkscape "
width ="210mm"
he igh t ="297mm"
i d =" svg2 "
vers ion ="1 .1 "
inkscape : vers ion ="0 .48 .2 r9819 ">

<!−− I n h a l t des Dokuments>
</svg>

Listing 3: Beispiel für eine mit Inkscape erzeugte, leere SVG-Datei

SVG unterstützt drei verschiedene Arten von grafischen Objekten:

Vektorgrafiken Diese Grafiken sind aus grafischen Primitiven zusammengesetzt.

Bilder Es können Bilder in den Formaten PNG und JPEG eingebunden werden.

Text Es kann Text in einer Schriftart, die dem Renderer zur Verfügung stehen muss,
eingebunden werden.

Im Folgenden werden die in SVG verfügbaren Elemente beschrieben:

Rechteck Das Element <rect /> definiert ein Rechteck. Es müssen die Koordinaten,
sowie Höhe und Breite angegeben werden. Optional kann ein Radius für abge-
rundete Ecken angegeben werden.

Kreis Das Element <circle /> definiert einen Kreis. Es müssen die Koordinaten für
den Mittelpunkt und der Radius angegeben werden.

Ellipse Das Element <ellipse /> definiert eine Ellipse. Es müssen die Koordinaten
für den Mittelpunkt und die beiden Halbachsenradien angegeben werden.

Linie Das Element <line /> definiert eine Linie. Es müssen die Koordinaten für Start-
und Endpunkt angegeben werden.

Polygonzug Das Element <polyline /> definiert einen Polygonzug. Der Polygonzug
wird durch die Koordinaten beliebig vieler Punkte angegeben, die durch Linien
verbunden werden.

Polygon Das Element <polygon /> definiert ein Polygon. Wie beim Polygonzug wird
das Polygon durch die Koordinaten beliebig vieler Punkte definiert, mit dem Un-
terschied, dass beim Polygon Start- und Endpunkt durch eine Linie verbunden
werden.

27

Pfad Das Element <path /> ist das mächtigste Element in SVG. Alles was durch die
bisher vorgestellten Elemente dargestellt werden kann, kann auch durch das
Pfad-Element dargestellt werden. Die anderen Elemente machen SVG-Dateien
besser für Menschen lesbar und sparen oft Speicherplatz. Ein Pfad wird durch
die Kommandos moveto und lineto definiert, wobei moveto einen Sprung an die
angegebenen Koordinaten definiert und lineto eine Linie vom letzten definier-
ten Punkt zu den angegebenen Koordinaten definiert. Zusätzlich gibt es noch das
Kommando closepath, das den aktuellen Pfad beendet und eine direkte Linie
zum Startpunkt des Pfades zeichnet.

Text Zum Einbinden und Strukturieren von Text stehen drei Elemente zur Verfügung:

• Das Element <text /> dient zum Einbinden von Text. Es können verschie-
dene Attribute angegeben werden, zum Beispiel die Position und die Länge
des Textes, Größe, Schriftart und Farbe.

• Mit dem Element <tspan /> können Bereiche innerhalb eines Textes ver-
ändert werden. So können beispielsweise einzelne Wörter in anderer Farbe
oder Größe dargestellt werden.

• Das Element <tref /> bietet die Möglichkeit auf definierte Texte zu refe-
renzieren. Dies ist vor allem dann sinnvoll, wenn der gleiche Text mehrfach
verwendet werden soll.

Image Das Element <image /> bietet die Möglichkeit Rastergrafiken in ein SVG-
Dokument einzubinden. Es müssen die Koordinaten, Länge und Breite des Bildes
und ein Verweis auf die externe Datei angegeben werden. Es ist nicht möglich,
auf Elemente innerhalb des SVG-Dokuments zu verweisen. Mit diesem Element
werden im Prototypen die grafischen Elemente in die Visualisierungen eingebun-
den.

Alle Elemente, sowie Gruppen von Elementen können durch affine Transformationen
verändert werden. Es stehen Parallelverschiebung, Skalierung, Rotation und Scherung
zur Verfügung. Diese Transformationen können entweder einzeln, unter Angabe der
benötigten Parameter, oder kombiniert in einer 3x3-Matrix definiert werden.

Probleme mit SVG-Editoren Bei durch Editoren erzeugten SVG-Dokumenten tritt oft
das Problem auf, dass die Dateien unnötig groß sind, da die SVG-Editoren in vielen
Fällen das Pfad-Element, anstatt der verschiedenen Grundformen verwenden. So ist
bei zwei vom Aussehen her identischen Kreisen, von denen einer mit dem SVG-Editor
Inkscape und der andere manuell mit einem Texteditor erstellt wurde, ein Unterschied
beim Speicherverbrauch von ca. Faktor 9 festzustellen.
Da SVG auf XML basiert, können eigene Elemente hinzugefügt werden. Diese Elemen-
te werden von gängigen SVG-Renderern ignoriert. Daher eignet sich SVG gut dafür, um
die Grafiken mit semantischen Annotationen anzureichern.

28

2.8. Verwendete Technologien

Die Ausarbeitung dieser Diplomarbeit wird mit LATEX erstellt. Zum Erstellen der Onto-
logie wird der Ontologie-Editor Protégé in der Version 3.4.7, entwickelt von der Stan-
ford University, verwendet. Der Prototyp wird in der Programmiersprache C# entwickelt.
Als Entwicklungsumgebung wird Visual Studio 2010 Ultimate eingesetzt. Damit werden
auch die Klassen- und Sequenzdiagramme erstellt.
Das im Prototyp benötigte Rendering der PNG-Dateien wird durch das Kommandozei-
lentool von Inkscape durchgeführt. Inkscape ist ein Open-Source-Vektorgrafikprogramm,
das auf www.inkscape.org heruntergeladen werden kann. Die in Kapitel 5 verwendeten
Mockups werden mit der Web Demo des Design-Tools Balsamiq6 erstellt.

6http://www.balsamiq.com/

29

www.inkscape.org
http://www.balsamiq.com/

3. Aufgabenstellung und Lösungsansatz

Im folgenden Kapitel wird in Abschnitt 3.1 zunächst die Aufgabenstellung der vorliegen-
den Diplomarbeit beschrieben. In Abschnitt 3.2 wird anschließend der Lösungsansatz
erläutert, der zur Lösung der gestellten Aufgaben ausgewählt wurde.

3.1. Aufgabenstellung

Übergeordnetes Ziel der Diplomarbeit „Interaktive, verständnisorientierte Optimierung
von semantisch-annotierten Visualisierungen“ ist es, den Gulf of Evaluation im Bereich
von Visualisierungen zu verkleinern. Um dieses Ziel zu erreichen, soll ein Konzept ent-
worfen werden, mit dem Visualisierungen mit semantischen Metainformationen anno-
tiert werden können, um sie anschließend interaktiv optimieren zu können. Um dies
zu ermöglichen soll eine Grafik-Ontologie sowie ein Regelwerk zum Annotieren von
grafischen Elementen in einer Visualisierung entworfen werden. Bevor die Ontologie
entworfen wird, soll überprüft werden, ob im Semantic Web bereits Ressourcen, bezie-
hungsweise Ontologien vorhanden sind, die verwendet oder erweitert werden können.
Anschließend soll ein die grundlegenden Bereiche des Konzepts umfassender Kern-
bereich herausgearbeitet und ein Prototyp entwickelt werden, der diesen Kernbereich
implementiert. Durch den Prototypen sollen Benutzer die Möglichkeit erhalten, die grafi-
sche Repräsentation visualisierter Daten individuell anpassen zu können. Es soll eben-
so möglich sein, die einzelnen grafischen Elemente, als auch das gesamte Visualisie-
rungskonzept auszutauschen. Dadurch kann der Benutzer die Visualisierung an seine
persönlichen Bedürfnisse und Vorlieben anpassen und Verständnisprobleme verhin-
dern. Der Prototyp soll es dem Benutzer ermöglichen, die Anpassungen an seiner Vi-
sualisierung mittels einer grafischen Oberfläche durchzuführen. Zum Abschluss sollen
das Konzept und seine Umsetzbarkeit evaluiert werden.
Um die Aufgabenstellung zu lösen, wurden folgende Teilaufgaben identifiziert:

1. Recherche und Einarbeitung in die Themen Semantic Web und Ontologien (Ab-
schnitte 2.1, 2.2, 2.3 und 2.4).

2. Recherche und Einarbeitung in die Themen Visualisierung, Human-Computer In-
teraction und Vektorgrafik (Abschnitte 2.5, 2.6 und 2.7).

3. Untersuchen, ob geeignete Ontologien aus dem Semantic Web verwendet wer-
den können, gegebenenfalls Entwurf eigener Ontologien (Abschnitt 4.2).

4. Entwicklung eines Konzepts zur Optimierung von Visualisierungen (Kapitel 4).

5. Erarbeiten eines Kernbereichs des Konzepts, der im Prototypen umgesetzt wer-
den soll (Kapitel 5).

6. Implementieren des Prototyps (Kapitel 6).

7. Evaluierung des Konzepts und seiner Umsetzbarkeit (Kapitel 7).

31

3.2. Lösungsansatz

Um diese Diplomarbeit leichter verständlich zu machen, wird ein beispielhaftes Einsatz-
szenario aus dem Bereich Bevölkerungsentwicklung verwendet. Damit ein möglichst
breites Spektrum von Anwendungsdomänen und Visualisierungskonzepten abgedeckt
wird, soll zusätzlich ein Einsatzszenario aus der Automobilbranche entworfen werden.
Es sollen zwei verschiedene Ontologien, eine Grafik-Ontologie und eine Anwendungsfall-
spezifische Domänen-Ontologie, entwickelt werden. Der Ansatz, zwei Ontologien, eine
global einsetzbare Grafik-Ontologie und eine Anwendungsfall-spezifische Domänen-
Ontologie, zu erstellen, wurde gewählt, um mit möglichst hoher Arbeitseffizienz eine
möglichst flexible Lösung zu erhalten. So kann die Grafik-Ontologie für alle Anwen-
dungsfälle verwendet werden (Effizienz), während die Domänen-Ontologie auf den
konkreten Anwendungsfall zugeschnitten ist (Flexibilität). Die Ontologien sollen in RDF
erstellt werden, da dies die einzige Ontologiesprache ist, für die eine C#-Bibliothek
gefunden wurde. Beim Entwerfen der Ontologien soll das in 2.4 vorgestellte Schema
verwendet werden.
Im Anschluss daran soll ein Interaktionskonzept entwickelt werden, wie die erstellten
Ontologien verwendet werden können, um Visualisierungen mit semantischen Meta-
informationen zu annotieren. Diese Visualisierungen sollen interaktiv optimiert werden
können. Da es sich um verschiedene Anwendungsbereiche handelt - Erstellen und Op-
timieren - soll das Interaktionskonzept in zwei Teile unterteilt werden.
Die Architektur des Prototyps soll an das Model-View-Controller Paradigma angelehnt
werden. Der Prototyp soll in der Programmiersprache C# implementiert werden. Da in
SVG-Dateien weitere Elemente, die nicht Teil der SVG-Spezifikation sind, hinzugefügt
werden können, ohne dass diese das Aussehen der Grafik verändern, wurde entschie-
den, die Visualisierungen in SVG zu erzeugen. Da C# das Verändern von SVG-Dateien
nicht unterstützt, müssen die notwendigen Methoden selber implementiert werden. Bei
der Implementierung des Prototyps soll versucht werden, möglichst auf bereits vorhan-
dene Technologien und Bibliotheken zurückzugreifen, um den Zeitaufwand zu minimie-
ren. Daher soll nach Möglichkeit kein eigener Renderer für SVG-Dateien geschrieben
werden. Die dadurch bei der Implementierung eingesparte Zeit soll für die Erarbeitung
des theoretischen Konzepts verwendet werden.

32

4. Konzept

Häufig werden Visualisierungen von Menschen mit technischer Ausbildung (Ingenieu-
re, Informatiker) erstellt, aber von Menschen mit anderem Hintergrund (beispielswei-
se Marketingexperten oder Manager) verwendet. Oder sie werden durch Marketingex-
perten erstellt und sollen von Kunden verstanden werden. Durch das unterschiedliche
Hintergrundwissen von Ersteller und Nutzer kann es leicht zu Missverständnissen kom-
men. Um diese Missverständnisse möglichst zu vermeiden, wird im Folgenden ein Kon-
zept vorgestellt, bei dem der Benutzer einer Visualisierung diese so weit wie möglich
an seine eigenen Bedürfnisse und Vorlieben anpassen kann.
Im weiteren Verlauf der Diplomarbeit werden die Begriffe Visualisierung und Visualisie-
rungskonzept verwendet. Der Begriff ’Visualisierung’ wird als eine grafische Repräsen-
tation verstanden. Eine Visualisierung kann aus verschiedenen Visualisierungskonzep-
ten bestehen, zwischen denen gewechselt werden kann. Ein Visualisierungskonzept ist
beispielsweise eine Landkarte, eine Tree-Map oder ein Balkendiagramm.
Dabei wird bei der Erstellung der Visualisierung die Bedeutung festgelegt, die durch die
Visualisierung transportiert werden soll, damit diese Bedeutung stets erhalten bleibt.
Alles andere, was die Bedeutung nicht beeinträchtigt, soll durch den Benutzer aus-
tauschbar sein. Um das Konzept besser zu veranschaulichen, werden im folgenden Ab-
schnitt zwei Einsatzszenarien als Beispiele eingeführt. Eines davon stammt aus dem
Bereich Bevölkerungsentwicklung und das andere aus der Automobilbranche. Diese
beiden Beispiele werden dann im weiteren Verlauf dieser Diplomarbeit verwendet.

4.1. Einsatzszenarien

Für ein besseres Verständnis des erarbeiteten Konzeptes und des Prototyps werden im
Folgenden zwei Einsatzszenarien eingeführt. Durch sie soll zum Einen gezeigt werden,
in welchen verschiedenen Bereichen das zu entwerfende Konzept eingesetzt werden
kann. Zum Anderen soll ein möglichst breites Spektrum an Visualisierungen abgedeckt
werden. Aus diesem Grund wurden zwei Einsatzszenarien aus völlig verschiedenen
Anwendungsdomänen gewählt. Die beiden Szenarien werden in den folgenden beiden
Unterabschnitten erläutert.

4.1.1. Einsatzszenario Bevölkerungsentwicklung

Das erste Beispiel, das auch später im Prototyp zum Einsatz kommt, ist aus der Demo-
grafieforschung. Ziel ist es, die Bevölkerungsentwicklung in Deutschland zwischen 2007
und 2009 zu visualisieren. Dabei soll neben den absoluten Zahlen auch das Wachs-
tum, beziehungsweise der Rückgang der Bevölkerungszahlen veranschaulicht werden.
Die Entwicklung soll in verschiedenen Granularitäten (zum Beispiel auf kommunaler,
regionaler und Landesebene) veranschaulicht werden können. Es sollen verschiede-
ne Visualisierungskonzepte zur Verfügung stehen. Hierfür eignen sich beispielsweise
Landkarten, Balkendiagramme oder Tree-Maps.

33

In Abbildung 13 wird das Konzept für das Einsatzszenario Bevölkerungswachstum sche-
matisch dargestellt. Aufgrund der Bevölkerungszahlen wird eine Visualisierung erstellt,
die verschiedene Visualisierungskonzepte unterstützt. Der Benutzer kann zwischen den
Konzepten wechseln und jedes Konzept durch den Austausch einzelner grafischer Ele-
mente interaktiv optimieren.

Feature

P
ro

d
u

kt
P

ro
d

u
kt

P
ro

d
u

kt
P

ro
d

u
kt

P
ro

d
u

kt
P

ro
d

u
kt

P
ro

d
u

kt
P

ro
d

u
kt

P
ro

d
u

kt
P

ro
d

u
kt

Feature
Feature
Feature
Feature
Feature
Feature
Feature
Feature
Feature

Vergleich Feature für Feature

10%
10%

10%

10%

10%

10%

10%

10%
10%

10%

100 90 80 70 60

Y-
A

ch
se

X-Achse

Interaktion

Abbildung 13: Auf Basis der Daten (links) werden die Visualisierungen (in der Mitte)
erstellt. Der Benutzer (rechts) kann die Visualisierungen interaktiv an-
passen.

4.1.2. Einsatzszenario Automobilvisualisierung

Das zweite Beispiel stammt aus der Automobilbranche. Ziel ist es ein Auto zu visuali-
sieren. Die Visualisierung soll für verschiedene Aufgaben verwendet werden können.
Ein Visualisierungskonzept soll eine technische Zeichnung sein, ein anderes ein fo-
torealistisches Bild des Autos. Dieses Abbild kann von Kunden individuell angepasst
werden. Die Kunden sollen sowohl einzelne Elemente (Spiegel, Räder, Radio) als auch
ganze Ausstattungslinien oder -pakete austauschen können. Durch Wechseln des Vi-
sualisierungskonzeptes kann eine technische Zeichnung des individuell angepassten
Autos erstellt werden. Diese kann für die Produktion des Autos verwendet und an die
Werkstatt übermittelt werden, die später dieses Auto warten und reparieren soll.

4.2. Visualisierungen interaktiv optimieren

Um die steigende Menge an Daten, die ständig erzeugt wird, sinnvoll verarbeiten und
verstehen zu können, ist es in vielen Fällen nützlich, diese Daten in Form von Visualisie-
rungen grafisch darzustellen. Da grafische Darstellungen, genau wie natürlichsprachli-
che Texte, häufig keine eindeutige Bedeutung haben, werden sie von verschiedenen

34

Menschen unterschiedlich interpretiert (siehe 2.6.3). Um die Bedeutung einer grafi-
schen Darstellungen eindeutig zu definieren, können deren Elemente auf einer Me-
taebene semantisch annotiert werden. Durch diese Annotationen kann der Benutzer
interaktiv und verständnisorientiert Visualisierungen anpassen. Ein Konzept, das die
Annotationen und späteren Anpassungen ermöglicht, ist in Abbildung 14 schematisch
dargestellt und wird im Folgenden vorgestellt.

Ontologien zur
Annotation

Erstellung und
Annotierung von
Visualisierungen

Interaktive
Optimierung von
Visualisierungen

Abbildung 14: Workflow, der die Erstellung von optimierbaren Visualisierungen ermög-
licht. Zuerst werden die Ontologien benötigt (links), dann werden die Vi-
sualisierungen erstellt und annotiert (Mitte), die anschließend optimiert
werden können (rechts).

Abschnitt 4.2.1 beschreibt die Erstellung der zur Annotation benötigten Ontologien. In
4.2.2 wird beschrieben, wie die erstellten Ontologien bei der Erstellung von Visualisie-
rungen verwendet werden, um diese mit semantischen Metadaten anzureichern. Ab-
schnitt 4.2.4 schließt das Kapitel mit der Beschreibung eines Interaktionskonzepts zur
interaktiven Optimierung der erstellten Visualisierungen.

4.2.1. Ontologien zur Annotation

Bevor die Visualisierungen annotiert werden können, muss zuerst geklärt werden, aus
welchen Ontologien die semantischen Informationen kommen sollen. Um unnötigen
Aufwand beim Erstellen von Ontologien zu vermeiden, wird zuerst versucht, bereits
existierende Ontologien aus dem Semantic Web zu verwenden. Die Recherchen im
Semantic Web werden mit Hilfe einer Suchmaschine durchgeführt, die das Web nach
RDF-Dokumenten und HTML-Seiten mit eingebetteten Metadaten durchsucht7. Da auch
nach aufwendigen Recherchen keine brauchbaren Ontologien zur Annotation von Vi-
sualisierungen gefunden werden konnten, wurde der Entschluss gefasst, eigene Onto-
logien zu entwerfen. Es werden zwei verschiedene Ontologien, eine Grafik-Ontologie
und eine anwendungsfallspezifische Domänen-Ontologie, entwickelt, die beide in den
nächsten Abschnitten beschrieben werden. Der Ansatz, zwei Ontologien, eine global
einsetzbare Grafik-Ontologie und eine anwendungsfallspezifische Domänen-Ontologie,
zu erstellen, wurde gewählt, um mit möglichst hoher Arbeitseffizienz eine möglichst fle-
xible Lösung zu erhalten. So kann die Grafik-Ontologie für alle Anwendungsfälle ver-
wendet werden (Effizienz), während die Domänen-Ontologie auf den konkreten Anwen-
dungsfall zugeschnitten ist (Flexibilität).

7http://www.swoogle.umbc.edu/

35

http://www.swoogle.umbc.edu/

Grafik-Ontologie
Die Grafik-Ontologie wird verwendet, um verschiedene grafische Primitive und die dar-
aus aufgebauten Visualisierungskonzepte zu beschreiben. Die Ontologie enthält zu
diesem Zweck die Visualisierungskonzepte und Informationen zu atomaren grafischen
Bausteinen (im Folgenden als ’grafische Primitive’ bezeichnet), aus denen Visualisie-
rungen in den verschiedenen Konzepten bestehen können. Grafische Primitive sind
die kleinsten sinnvoll zusammengehörenden grafischen Bausteine einer Visualisierung.
Theoretisch könnten alle Elemente letztendlich bis auf Pixelebene zerlegt werden. Dies
ist aber aus zwei Gründen nicht sinnvoll. Da die Benutzer auch Menschen ohne techni-
sche Ausbildung sein können, würde die große Anzahl an Pixeln ein effizientes Arbeiten
unmöglich machen. Außerdem sollen nicht einzelne Pixel ausgetauscht werden, son-
dern Pixelmengen die zu logisch zusammengehörigen Objekten gehören. Aus diesem
Grund werden die Visualisierungen in geometrische Objekte wie zum Beispiel Kreise,
Rechtecke oder Linien zerlegt.

Visualisierung

Grafisches Primitiv

Primitvklasse 1

Konzept

Konzept 1

Konzept 2

Primitivklasse 2

Primitiv 1

Primitiv 2

Attribut 1
Primitiv 2

Attribut 2
Primitiv 2

Abbildung 15: Konzeptueller Entwurf einer Grafik-Ontologie. Es werden verschiedene
Konzepte definiert und verschiedene grafische Primitive in Klassen un-
terteilt. Die gestrichelten Pfeile veranschaulichen, aus welchen Primiti-
ven die Konzepte bestehen, die durchgezogenen Pfeile stehen für ’Ist-
Unterklasse-Von’. Die rechteckigen, optionalen Attribute können Primiti-
ve genauer spezifizieren.

Abbildung 15 zeigt, wie eine Grafik-Ontologie im Grundsatz aufgebaut sein soll. Es
werden darin verschiedene Visualisierungskonzepte definiert. Die verschiedenen gra-
fischen Primitive werden in verschiedene Klassen unterteilt. Jedem Konzept werden
dann die grafischen Primitive zugewiesen, aus denen es bestehen kann. In Abbildung
15 wird dies durch die gestrichelten Linien dargestellt. ’Konzept 1’ kann also aus Instan-

36

zen von ’Primitiv 1’ und ’Primitiv 2’ bestehen, ’Konzept 2’ dagegen nur aus Instanzen
von ’Primitiv 2’. Die durchgezogenen Pfeile stehen für ’Ist-Unterklasse-Von’. ’Konzept
1’ und ’Konzept 2’ sind also Unterklassen von ’Konzept’. Zusätzlich kann die Grafik-
Ontologie für jedes Primitiv Attribute enthalten, die zur Darstellung des Primitivs defi-
niert werden müssen. In Abbildung 15 benötigt nur ’Primitiv 2’ Attribute. Wie das im
Detail aussehen kann, ist in Abbildung 16 zu sehen und wird in Abschnitt 4.2.2 be-
schrieben.

Domänen-Ontologie
Die Domänen-Ontologie enthält domänenspezifische Informationen zur Annotation gra-
fischer Elemente und der dazugehörigen Daten. Ebenso enthält diese Ontologie, falls
notwendig, die zu visualisierenden Daten. Für das Einsatzszenario Bevölkerungsent-
wicklung werden die verwendeten Entitäten sowie die benötigten Bevölkerungszahlen
definiert. Eine Entität kann in diesem Fall beispielsweise ein Stadtteil, eine Stadt, ein
Landkreis oder ein Bundesland sein, je nach Granularität, die visualisiert werden soll.
Zusätzlich werden verschiedene Klassen definiert, mit denen grafische Elemente an-
notiert werden können. Beim Einsatzszenario Bevölkerungsentwicklung sind das ver-
schiedene Eigenschaften, die die Bevölkerungsentwicklung charakterisieren, zum Bei-
spiel ’Ansteigend’, ’Gleichbleibend’ oder ’Sinkend’.
Für das Einsatzszenario Automobilvisualisierung werden hier die verschiedenen Bau-
teile, aus den das Auto zusammengesetzt ist, beispielsweise ’Rad’, ’Spiegel’ oder ’Aus-
puff’ definiert. Damit können dann verschiedene grafische Elemente, die ein Rad re-
präsentieren, annotiert werden. Wenn der Ersteller der Visualisierung einen Platzhalter
für Rad-Elemente hinzufügt, kann der Benutzer diesen Platzhalter durch alle grafischen
Elemente ersetzen, die mit ’Rad’ annotiert sind.
Die Art der Visualisierungen in den beiden Einsatzszenarien unterscheidet sich. Wäh-
rend bei der Bevölkerungsentwicklung verschiedene Eigenschaften beschrieben sind,
sind es bei der Automobilvisualisierung konkrete Teile des Autos.
Darüber hinaus werden in der Domänen-Ontologie verschiedene Detailstufen festge-
legt. Mit diesen kann jedes Element einer Visualisierung annotiert werden. In Abschnitt
4.2.4 wird der Nutzen dieser Detailstufen erläutert.

4.2.2. Annotieren von Visualisierungen

Um Visualisierungen durch den Benutzer anpassbar zu machen, können sie mit In-
formationen aus den beiden Ontologien annotiert werden. Während die Annotationen
aus der Grafik-Ontologie dazu dienen, das Visualisierungskonzept austauschbar zu
machen, werden die Annotationen aus der Domänen-Ontologie zum Austauschen ein-
zelner grafischer Elemente benötigt.

Annotationen aus der Grafik-Ontologie
Beim Erstellen einer Visualisierung annotiert der Ersteller die Visualisierung mit Visua-
lisierungskonzepten aus der Grafik-Ontologie. Eine Annotation mit einem Visualisie-

37

rungskonzept bedeutet, dass diese Visualisierung in dem Visualisierungskonzept dar-
gestellt werden kann. Die Visualisierung eines Autos wird daher mit Visualisierungs-
konzepten wie ’Auto-Frontansicht’ oder ’Auto-Seitenansicht’ annotiert, die Visualisie-
rung von Bevölkerungsentwicklungen dagegen mit ’Balkendiagramm’, ’Landkarte’ oder
’Tree-Map’. Ein Visualisierungsprogramm weiß, wie die Visualisierungen aussehen kön-
nen, weil in der Ontologie für jedes Visualisierungskonzept gespeichert ist, aus welchen
Primitiven es zusammengesetzt ist.

Balkendiagram

X-Achse

enthält

Y-Achse

enthält

Rechtecke

enthält

Berührt

10mm

Breite

0mm

Abstand

50mm *
Maximalwert/Wert

Höhe

100 90 80 70 60
Daten

X-Achse

Y-
A

ch
se

Abbildung 16: Ein Balkendiagramm kann mit Hilfe von Informationen aus der Ontolo-
gie und den Daten erzeugt werden. Der Ausschnitt aus der Ontologie
(oberer Teil) definiert, dass ein Balkendiagramm aus X-Achse, Y-Achse
und Rechtecken besteht. Rechtecke berühren die X-Achse und haben
die Parameter Höhe, Breite und Abstand.

Abbildung 16 veranschaulicht am Beispiel eines Balkendiagramms, wie die Informa-
tionen aus der Ontologie eine Visualisierung definieren. Der obere Teil der Abbildung
ist ein Ausschnitt aus der Grafik-Ontologie. Es ist definiert, dass ein Balkendiagramm
aus einer X- und einer Y-Achse, sowie beliebig vielen Rechtecken besteht. Die Recht-
ecke berühren alle die X-Achse, haben einen Abstand untereinander von 0 mm und

38

eine Breite von 10 mm. Die Daten definieren die Höhe der Rechtecke. Die Höhe der
Rechtecke wird durch die Formel 50mm * M/W berechnet, wobei M der Maximalwert
der Daten und W der aktuelle Wert ist. Das Visualisierungsp rogramm kann mit den In-
formationen aus der Ontologie und den Daten das Balkendiagramm visualisieren. Der
untere Teil der Grafik stellt das Balkendiagramm dar, das durch die Kombination der
Daten und der Informationen aus der Grafik-Ontologie, entstanden ist.

Annotationen aus der Domänen-Ontologie
Einzelne grafische Elemente einer Visualisierung werden mit Klassen aus der Domänen-
Ontologie annotiert. So werden zum Beispiel alle Bilder von Rädern mit der Klasse
’Rad’ und alle grafischen Elemente, die eine steigende Bevölkerungszahl repräsentie-
ren (zum Beispiel ein Plus oder ein Pfeil nach oben) mit der Klasse ’Steigend’ anno-
tiert. Abbildung 17 verdeutlicht die Verwendung der Annotationen aus der Domänen-

Annotationen

Annotation 1

Annotation 2 Visualisierung

Platzhalter 1 Platzhalter 2

Element der
Visualisierung

Detailstufe 1

Detailstufe 2

Abbildung 17: Die zur Verfügung stehenden grafischen Elemente werden annotiert
(links). Der Visualisierung werden mit Annotation und Detailstufe anno-
tierte Platzhalter hinzugefügt oder vorhandene Elemente werden anno-
tiert (rechts).

Ontologie. Die viereckigen Elemente stehen für grafische Elemente, zum Beispiel Plus,
Pfeil, Rad oder Spiegel. Die Elemente werden mit Annotationen aus der Domänen-
Ontologie annotiert. Der grüne Kasten stellt eine Visualisierung dar. Die Visualisierung
kann mit Platzhaltern für grafische Elemente (in der Abbildung durch Parallelogramme
dargestellt) angereichert werden. Diese Platzhalter werden ebenfalls mit Annotationen
aus der Domänen-Ontologie annotiert. Anstatt selber Platzhalter einzufügen, können
auch vorhandene Elemente der Visualisierung annotiert werden (in der Grafik durch
ein Sechseck dargestellt). Die eingefügten Platzhalter und die annotierten Elemente
können darüber hinausgehend mit Detailstufen annotiert werden. Der Benutzer kann

39

dadurch die Visualisierung dahin gehend verändern, dass er nur Elemente mit bestimm-
ten Detailstufen anzeigen lassen möchte.
Wenn Daten visualisiert werden sollen, dann können auch diese Daten annotiert wer-
den. Jedes einzelne Datum eines Datensatzes wird annotiert. Bei dem Einsatzszenario
Bevölkerungsentwicklung wird jede Entität annotiert. Je nach dem ob sich die Bevölke-
rungszahlen positiv, negativ oder neutral entwickelt haben, werden unterschiedliche An-
notationen verwendet. Anschließend können der Visualisierung Platzhalter hinzugefügt
werden, die mit den Daten verknüpft sind. Die Daten können entweder manuell oder
automatisch annotiert werden. Beim Einsatzszenario Bevölkerungsentwicklung könn-
ten beispielsweise Schwellwerte definiert werden, anhand derer automatisch annotiert
werden kann. So wird jede Entität, deren Bevölkerungswachstum zwischen -0,5% und
+0,5% liegt, mit der Annotation ’Gleichbleibend’ annotiert. Bei automatisch generierten
Daten kann die Annotation schon beim Erzeugen der Daten vorgenommen werden.

4.2.3. Von der Ontologie zur Visualisierung

Die Informationen aus der Grafik-Ontologie reichen nicht aus, um daraus eine konkrete
Visualisierung zu erstellen. Die Information, dass eine Tree-Map oder ein Balkendia-
gramm aus Rechtecken besteht, sagt nicht zwangsläufig etwas darüber aus, wie diese
Rechtecke angeordnet sein sollen. In Kombination mit den Informationen und Daten
aus der Domänen-Ontologie ließen sich die entsprechenden Visualisierungen theore-
tisch erzeugen. Es besteht zwar die Möglichkeit, diese Informationen über zusätzliche
Attribute zu liefern, der Aufwand, die Visualisierung zu erzeugen, ist trotzdem beträcht-
lich. Dies wird nun am Beispiel Tree-Map erläutert:
In Abbildung 18 ist ein Beispiel für eine Tree-Map zu sehen. Diese besteht aus lauter
Rechtecken, die in Abhängigkeit der jeweils zugehörigen Daten verschieden groß sind.
Höhe und Breite lassen sich also in Abhängigkeit der Daten berechnen. Die Anordnung
der Rechtecke, so dass die Tree-Map insgesamt auch die Form eines Rechtecks hat,
ist dagegen nicht trivial und müsste algorithmisch gelöst werden. Solche ontologieba-
sierte Algorithmen müssten für die verschiedenen Visualisierungskonzepte entwickelt
und implementiert werden. Der Aufwand, sowohl beim Erstellen der Ontologien, als
auch beim Entwickeln der Algorithmen wäre beträchtlich. In dieser Diplomarbeit wurde
zur Entwicklung des Prototyps deshalb ein vereinfachtes Konzept verwendet, bei dem
die Visualisierungen ein Hintergrundbild verwenden, das mit Platzhaltern angereichert
werden kann (siehe Abschnitt 5.1.3).

4.2.4. Interaktionskonzept zur interaktiven Optimierung von Visualisierungen

Die in Abschnitt 4.2.1 vorgestellten Ontologien sowie die in Abschnitt 4.2.2 vorgestell-
ten Konzepte zur Annotation von Visualisierungen sind die Grundlage des in diesem
Abschnitt beschriebenen Interaktionskonzepts zur interaktiven Optimierung von Visua-
lisierungen. Das Interaktionskonzept ist in zwei Bereiche unterteilt, auf der einen Seite

40

Abbildung 18: Zu sehen ist eine Tree-Map, die die Bevölkerung der deutschen Bundes-
länder darstellt. Je mehr Einwohner ein Bundesland hat, desto größer
das jeweilige Rechteck.

der Austausch einzelner grafischer Elemente und auf der anderen Seite der Austausch
des gesamten Visualisierungskonzepts.

Austausch grafischer Elemente
Wie in Abschnitt 4.2.2 beschrieben, kann eine Visualisierung beim Erstellen mit anno-
tierten Platzhaltern angereichert werden, oder es können Elemente der Visualisierung
annotiert werden. Platzhalter und annotierte Elemente sind aus Sicht des Benutzers
gleichwertig. Um Verwechslungen zwischen annotierten Elementen der Visualisierung
und grafischen Elementen, die diese ersetzen können, zu vermeiden, wird im Folgen-
den von Platzhaltern die Rede sein. Diese Platzhalter können durch alle grafischen
Elemente ersetzt werden, die mit der selben Annotation annotiert sind wie der Platzhal-
ter. Der Ersteller kann festlegen, welche grafischen Elemente er für welche Platzhalter
verwenden will. Wenn der Benutzer mit einzelnen grafischen Elementen unzufrieden ist,
kann er sie durch alle anderen Elemente, die mit der selben Klasse annotiert sind, aus-
tauschen. So könnte er beispielsweise ein Rad mit Stahlfelgen durch eines mit Alufel-
gen oder ein Plus durch einen Pfeil nach oben ersetzen.
Der Austausch kann entweder pro Platzhalter erfolgen oder pro Annotation. Falls er pro
Annotation erfolgt, wird das gewählte Element für alle Platzhalter mit dieser Annotation
verwendet. Auf diese Weise kann der Benutzer die Visualisierung an seinen persön-
lichen Bedarf anpassen, ohne dabei das Visualisierungskonzept zu wechseln. Auch
anfänglich unverständliche Darstellungen können damit zu einer verständlicheren Dar-
stellung umgebaut werden.

Austausch des Visualisierungskonzepts
Wie in Abschnitt 4.2.2 beschrieben, kann die Visualisierung mit verschiedenen Visuali-

41

sierungskonzepten aus der Grafik-Ontologie annotiert werden. Der Benutzer kann zwi-
schen diesen Visualisierungskonzepten, zum Beispiel zwischen Balkendiagramm und
Tree-Map, wechseln. Aufgrund der Informationen über das Visualisierungskonzept aus
der Grafik-Ontologie und den zu visualisierenden Daten können die verschiedenen Vi-
sualisierungskonzepte automatisch erstellt werden.

Anpassung der Detailstufe
Der Benutzer hat die Möglichkeit, sich die Visualisierung in verschiedenen Detailstufen
anzuschauen. So kann er sich beispielsweise zuerst einen Überblick über die gesamte
Visualisierung verschaffen und sich anschließend auf einen bestimmten Bereich kon-
zentrieren und diesen vergrößern. Beim Verschaffen des Überblicks kann es sinnvoll
sein, dass nicht alle Details angezeigt werden, da die Visualisierung sonst leicht un-
übersichtlich wird. Bei der Vergrößerung eines Bereichs sollten aber alle Details ange-
zeigt werden (siehe [Shn96]). Um dies zu ermöglichen, muss der Ersteller die Platzhal-
ter mit Detailstufen aus der Domänen-Ontologie annotieren.
Der Benutzer kann eine Detailstufe, die er gerne hätte, auswählen. Es werden dann nur
diese Elemente angezeigt, die mit einer Detailstufe annotiert sind, die geringer ist, als
die ausgewählte. Abbildung 19 veranschaulicht das Konzept anhand von zwei Land-

Abbildung 19: Zwei Kartenausschnitte der Region Stuttgart mit unterschiedlichem Maß-
stab. Auf dem linken ist der Detailgrad deutlich niedriger, daher sind viele
Städte nur rechts zu sehen [map].

kartenausschnitten. Der linke Ausschnitt hat einen deutlich kleineren Maßstab. Damit
die Karte trotzdem übersichtlich bleibt, wurden einige Informationen weggelassen. So
sind einige kleinere Städte, die im rechten Ausschnitt zu sehen sind, im linken nicht
vorhanden.

42

5. Umsetzung des Konzepts

Dieses Kapitel beschreibt die Bereiche des in Kapitel 4 vorgestellten Konzepts, die in
einem Prototypen umgesetzt werden sollen. Abschnitt 5.1 beschreibt, welche Ontolo-
gien entworfen werden, während Abschnitt 5.2 das im Prototyp implementierte Inter-
aktionskonzept zur interaktiven, verständnisorientierten Optimierung von semantisch
annotierten Visualisierungen erläutert. Der Prototyp kann für das Einsatzszenario Be-
völkerungsentwicklung (siehe 4.1.1) verwendet werden. Die Granularität wurde so fest-
gelegt, dass die Daten für Bundesländer vorliegen. Auf eine feinere Granularität (zum
Beispiel Landkreise oder Städte) wurde verzichtet, da eine feinere Granularität nicht
nötig ist, um zu zeigen, dass das Konzept grundsätzlich funktionieren kann.

5.1. Erstellung der Ontologien

Im Rahmen dieser Diplomarbeit sollen zwei Ontologien entworfen werden. Einerseits
eine sogenannte Domänen-Ontologie und andererseits eine Grafik-Ontologie. Durch
Annotation mit Ressourcen aus der Domänen-Ontologie soll die Bedeutung, die durch
die Visualisierung vermittelt werden soll, beschrieben werden. Die Bedeutung kann nur
der Ersteller der Visualisierung kennen. Deshalb muss er auch im Zuge der Erstel-
lung der Visualisierung die Annotationen vornehmen. Wie das Erstellen einer Ontolo-
gie in der Literatur beschrieben wird, kann in Kapitel 2.4 nachgelesen werden. Obwohl
das Erstellen einer Grafik-Ontologie nicht besonders viel mit der Erstellung einer Wein-
Ontologie zu tun hat, soll hier trotzdem versucht werden, dem vorgestellten Schema zu
folgen.
In den folgenden beiden Abschnitten werden die beiden Ontologien und ihre Erstellung
beschrieben.

5.1.1. Domänen-Ontologie

In der folgenden Aufzählung wird das Schema zur Erstellung von Ontologien für die
Domänen-Ontologie Schritt für Schritt umgesetzt.

Anwendungsgebiet fokussieren
Diese Ontologie soll verwendet werden, um zu visualisierende Daten und grafische
Elemente, die diese Daten repräsentieren, zu annotieren. Als Domäne für die Umset-
zung wurde die Bevölkerungsentwicklung zwischen 2007 und 2009 in den deutschen
Bundesländern gewählt.

Bestehende Ontologien wiederverwenden
Im Semantic Web konnte für dieses Einsatzgebiet keine bestehende Ontologie gefun-
den werden.

43

Relevante Begriffe identifizieren
Als relevante Begriffe wurden die 16 deutschen Bundesländer und ihre Bevölkerungs-
zahlen aus den Jahren 2007 und 2009 identifiziert. Darüber hinaus werden Annota-
tionen in der Ontologie definiert, die die Bevölkerungsentwicklung beschreiben, zum
Beispiel ’Steigend’, ’Gleichbleibend’ und ’Sinkend’.

Klassenhierarchie festlegen
Als Wurzelklasse wurde die Klasse ’Bevölkerungsdomäne’ definiert. Sie hat zwei Unter-
klassen. Die eine Unterklasse ist ’Bundesland’, die für jedes der 16 deutschen Bundes-
länder eine weitere Unterklasse hat. Die andere Unterklasse ist ’Bevölkerungsentwick-
lung’, die in fünf Unterklassen unterteilt ist, die die Entwicklung der Bevölkerungszahlen
beschreiben.

Relationen definieren
Jede Bundesland-Klasse hat Relationen zu zwei Literalen. Dies sind jeweils die Bevöl-
kerungszahlen aus den Jahren 2007 und 2009.

Abbildung 20 zeigt einen Ausschnitt der Ontologie. Der hellere, blaue Bereich der Onto-
logie repräsentiert die Daten zur Bevölkerungsentwicklung in den deutschen Bundes-
ländern. Zu jedem Bundesland gehören zwei Integer-Literale, die jeweils die Anzahl
der Bewohner in diesem Bundesland in den Jahren 2007 und 2009 angeben8. In der
Abbildung ist dies beispielhaft für die beiden Bundesländer Baden-Württemberg und
Bayern dargestellt. In der vollständigen Ontologie, die durch den Prototypen verwen-
det wird, sind diese Informationen für alle 16 deutschen Bundesländer enthalten (siehe
Abbildung 45).
Der dunklere, grüne Bereich stellt fünf verschiedene Tendenzen dar, die zeigen, wie
sich die Bevölkerung entwickelt haben kann. Mit diesen Tendenzen kann der Ersteller
einer Visualisierung jedes Bundesland annotieren. In Abhängigkeit von der Annotati-
on stehen dem Benutzer der Visualisierung dann verschiedene grafische Elemente zur
Verfügung, mit denen die Bevölkerungsentwicklung des Bundeslandes in der Visuali-
sierung dargestellt werden kann.

5.1.2. Grafik-Ontologie

In der folgenden Aufzählung wird das Schema zur Erstellung von Ontologien für die
Grafik-Ontologie Schritt für Schritt abgearbeitet.

Anwendungsgebiet fokussieren
Die Grafik-Ontologie soll verwendet werden, um Visualisierungskonzepte zu beschrei-
ben. Daher wurden im ersten Schritt verschiedene Visualisierungstechniken9 analy-

8https://de.wikipedia.org/wiki/Demografie_Deutschlands#Aktuelle_Entwicklung
9http://www.visualcomplexity.com

44

https://de.wikipedia.org/wiki/Demografie_Deutschlands#Aktuelle_Entwicklung
http://www.visualcomplexity.com

Bevölkerungsdomäne

Bundesland

Baden-
Württemberg

10749755 10744921

Bevölkerungsentwicklung
Stark Ansteigend

Ansteigend
Gleichbleibend

Sinkend

Stark Sinkend

Bayern

12520332 12510331

...

2009200720092007

Abbildung 20: Ausschnitt aus der Domänen-Ontologie über die Bevölkerungsentwick-
lung deutscher Bundesländer zwischen 2007 und 2009. Zu sehen sind:
fünf Tendenzen, die die Bevölkerungsentwicklung charakterisieren, zwei
Bundesländer und ihre Bevölkerungszahlen.

siert. Dabei wurden einerseits die verwendeten grafischen Primitive, aus denen Visuali-
sierungen bestehen, als auch die verwendeten Visualisierungskonzepte analysiert. Ab-
bildung 21 zeigt beispielhaft die Zerlegung eines Scatter-Plots in einzelne grafische
Primitive.

Y-Achse

X-Achse

Beschriftungen

Vierecke

Linien

Abbildung 21: Zerlegung eines Scatter-Plots in grafische Primitive

45

Bestehende Ontologien wiederverwenden
Auch für die Grafik-Ontologien wurden keine wiederverwendbaren Ontologien gefun-
den.

Relevante Begriffe identifizieren
Die grafischen Primitive wurden in vier verschiedene Klassen aufgeteilt. Die vier Klas-
sen sind im Folgenden mit Beispielen aufgelistet:

Koordinatensystem-Elemente: Achse

Text-Elemente: Beschriftung

Graphen-Elemente: Knoten, Kante

Geometrische Objekte: Linie, Dreieck, Viereck, Kreis, Punkt, Ellipse, Polygon

Abbildung 22: Beispiele verschiedener Visualisierungskonzepte: Landkarte (links
oben), Balkendiagramm (rechts oben), Tree-Map (links unten), Graph
(unten Mitte), Scatter-Plot (rechts unten)

Zusätzliche wurden fünf häufig verwendete Visualisierungskonzepte in die Ontologie
aufgenommen, für die in Abbildung 22 jeweils ein Beispiel zu sehen ist:

• Balkendiagramm

46

• Landkarte

• Tree-Map

• Graph

• Scatter-Plot

Klassenhierarchie festlegen
Als Wurzelklasse wurde die Klasse ’Visualisierung’ mit zwei Unterklassen definiert. Ei-
ne davon ist ’Konzept’, deren Unterklassen die verschiedenen Visualisierungskonzepte
sind. Die andere ist ’Grafisches Primitiv’, deren Unterklassen Klassen von grafischen
Primitiven sind, deren Unterklassen wiederum die verschiedenen grafischen Primitive
selbst sind.

Relationen definieren
Den Visualisierungskonzepten wurden die grafischen Primitive zugewiesen, aus denen
sie bestehen, beziehungsweise bestehen können. Tabelle 1 veranschaulicht diese Zu-
ordnung.

Visualisierungskonzept Grafische Primtive
Balkendiagramm Beschriftungen, Vierecke, X-Achse, Y-Achse
Landkarte Beschriftungen, Polygone
Tree-Map Beschriftungen, Vierecke
Graph Beschriftungen, Kanten, Knoten
Scatter-Plot Beschriftungen, Linien, Vierecke, X-Achse, Y-Achse

Tabelle 1: Zuordnung der Visualisierungskonzepte zu den enthaltenen grafischen Pri-
mitiven.

Primitive können durch zusätzliche Attribute genauer spezifiziert werden. In Abbildung
23 ist dies am Beispiel des Primitivs „Rechteck“ dargestellt. Es verfügt über die Attribute
„Höhe“, „Breite“ und „Position“. Diese Attribute können absolut oder relativ zu bestimm-
ten Datenwerten angegeben werden.

Bei der Implementierung des Prototyps wurde die verwendete Ontologie auf die in Ab-
bildung 23 gezeigten Visualisierungskonzepte und die dafür benötigten grafischen Pri-
mitive eingeschränkt. Der helle, blaue Bereich der Abbildung stellt die Primitive und ihre
Einteilung in verschiedene Klassen dar, der dunkle, grüne Bereich die verschiedenen
Konzepte. Ein gestrichelter Pfeil zwischen einem Konzept und einem Primitiv bedeutet,
dass dieses Konzept Instanzen dieses Primitivs enthalten kann. Die durchgezogenen
Pfeile stehen für die Relation ’Ist-Unterklasse-Von’. Die Klasse „Balkendiagramm“ ist
also eine Unterklasse von Konzept. Die gesamte Grafik-Ontologie ist im Anhang zu
finden (Abbildung 44).

47

Visualisierung

Grafisches Primitiv

Koordinatensystem

Konzept

Balkendiagramm Karte

Tree-Map

Geometrische Form

Achse
Rechteck

Polygon

Höhe

Breite

Position

Abbildung 23: Ausschnitt der verwendeten Grafik-Ontologie. Es werden drei Konzepte
definiert (unterer, grüner Bereich) und verschiedene grafische Primitive
in zwei Klassen unterteilt. Die gestrichelten Pfeile veranschaulichen, aus
welchen Primitiven die Konzepte bestehen, die durchgezogenen Pfeile
stehen für ’Ist-Unterklasse-Von’. Das Primitiv „Rechteck“ wird durch zu-
sätzliche Attribute beschrieben (ganz rechts).

5.1.3. Lücke zwischen Ontologie und geometrischer Anordnung

Wie in Abschnitt 4.2.3 beschrieben, wäre der Aufwand, um Visualisierungen nur auf
Basis von Ontologien zu erzeugen, beträchtlich. Da dieser Aufwand aber den Rahmen
einer Diplomarbeit sprengen würde und außerdem nicht Aufgabe dieser Diplomarbeit
ist, müssen diese Visualisierungen mit anderen Tools erstellt werden. Balkendiagram-
me können zum Beispiel mit Excel erzeugt werden, Tree-Maps mit der Programmier-
sprache R.10 Die erstellten Visualisierungen werden mit Informationen aus der Grafik-
Ontologie semantisch annotiert und vom Prototypen als Hintergrundbilder verwendet.
Diese Hintergrundbilder können dann mit Platzhaltern für verschiedene grafische Ele-
mente angereichert werden.

5.2. Interaktionskonzept

In den nächsten beiden Abschnitten wird das Interaktionskonzept erläutert, das dem in
Kapitel 6 beschriebenen Prototypen zugrunde liegt. Für die Verwendung des Prototyps
gibt es zwei Rollen, den Ersteller und den Benutzer. Aus diesem Grund besteht der
Prototyp aus einem Hauptfenster mit zwei Tabs. Der eine Tab dient dem Ersteller von
Visualisierungen, der andere dem Benutzer. Damit ist eine klare Trennung zwischen
Erstellen und Anpassen der Visualisierungen möglich. Abschnitt 5.2.1 zeigt, welche

10http://flowingdata.com/2010/02/11/an-easy-way-to-make-a-treemap/

48

http://flowingdata.com/2010/02/11/an-easy-way-to-make-a-treemap/

Möglichkeiten beim Erstellen einer Visualisierung bestehen, Abschnitt 5.2.2 erläutert,
wie eine erstellte Visualisierung an die individuellen Vorlieben und Bedürfnisse eines
Benutzers angepasst werden kann. Zusätzlich zeigt in beiden Abschnitten jeweils ein
Mockup die Benutzeroberfläche des Prototyps zur Ausführung der Interaktionen.

5.2.1. Interaktionskonzept zum Erstellen einer Visualisierung

Pro Konzept ein
Hintergrund

Visualisierungshintergrund +
Platzhalter, die zu

Bundesländern gehören

Annotierte
Bundesländer

Ersteller fügt Platzhalter ein

Daten über
Bundesländer aus
Domain-Ontologie

Fertige
Visualisierung

Festlegen, welche Konzepte sinnvoll sind

Verfügbare
Visualisierungskonzepte

Verfügbare
Annotationen aus
Domain-Ontologie

Änderung der Annotation eines
Bundeslandes: Visualisierung wird

angepasst

Annotieren der Bundesländer

Start

Abbildung 24: Workflow-Diagramm zur Erstellung einer Visualisierung. Der Ersteller
muss die Bundesländer annotieren, sinnvolle Visualisierungskonzepte
auswählen und diese anschließend mit Platzhaltern anreichern.

Abbildung 24 zeigt die Erstellung einer Visualisierung in einem Workflow-Diagramm.
Der Workflow beginnt mit dem Knoten ’Start’. Die Bedeutung der drei nächsten Knoten
wird im Folgenden erläutert:

Verfügbare Annotationen Die verfügbaren Annotationen stammen aus der Domänen-
Ontologie. Da beispielhaft die in Abschnitt 5.1.1 vorgestellte Domänen-Ontologie
verwendet wird, sind dies die Tendenzen der Bevölkerungsentwicklung ’Stark Sin-
kend’, ’Sinkend’, ’Gleichbleibend’, ’Ansteigend’ und ’Stark Ansteigend’.

Daten über Bundesländer Diese Daten sind ebenfalls in der Domänen-Ontologie ge-
speichert. Konkret sind dies die Bevölkerungszahlen für jedes Bundesland aus
den Jahren 2007 und 2009.

Verfügbare Konzepte Die verfügbaren Visualisierungskonzepte sind in der Grafik-
Ontologie definiert. Für jedes Konzept muss ein Hintergrundbild vorliegen. Im
Prototyp gibt es die Konzepte Landkarte, Tree-Map und Balkendiagramm. Für
das Visualisierungskonzept Landkarte ist das Hintergrundbild eine Landkarte von

49

Deutschland, für Tree-Map ist es eine Tree-Map, die in Abhängigkeit der Bevöl-
kerungsgröße der einzelnen Bundesländer erstellt wurde. Das Balkendiagramm
stellt für jedes Bundesland die Bevölkerungsgröße 2007 und 2009 dar. Diese Hin-
tergrundbilder sind mit den zugehörigen Informationen aus der Grafik-Ontologie
annotiert.

Um die Bundesländer mit den verfügbaren Annotationen annotieren zu können, soll es
im Prototyp eine Tabelle geben, in der der Name und die beiden Bevölkerungskennzah-
len für jedes Bundesland stehen (siehe Abbildung 26, Bereich 2). In einer zusätzlichen
Spalte soll der Ersteller für jedes Land die seiner Meinung nach passende Annotation
auswählen können. Zur Verfügung stehen sollen die Unterklassen der Klasse ’Bevölke-
rungsentwicklung’ aus der Grafik-Ontologie (siehe Abbildung 20). Als Darstellungsform
wurde eine Tabelle ausgewählt, da Daten in Datenbanken in aller Regel auch in Ta-
bellenform gespeichert sind. Außerdem ermöglicht eine Tabelle eine einfache visuelle
Zuordnung der Annotationen zu den Daten.
Aus den verfügbaren Visualisierungskonzepten soll der Ersteller auswählen können,
welche er für seinen aktuellen Anwendungsfall sinnvoll findet. Wenn er zum Beispiel
der Meinung ist, dass sich die Bevölkerungsentwicklung nicht mittels eines Balkendia-
gramms darstellen lässt, dann wählt er dieses Visualisierungskonzept nicht aus.
Nachdem die Bundesländer annotiert und die zu verwendenden Hintergrundbilder aus-
gewählt sind, kann eine Visualisierung erstellt werden, die Instanzen der verschiedenen
Visualisierungskonzepte enthält.

Verschiedene
Visualisierungskonzepte

Visualisierungskonzept
wird angezeigt

Visualisierungskonzept auswählen

Annotierte
Bundesländer stehen zur

Auswahl

Position auswählen

Platzhalter wird
eingefügt

Auswahl eines Bundeslandes

Erstellte
Visualisierung

Hintegrund +
Elemente

Auswahl eines angereicherten
Visualisierungskonzepts

Mit ausgewählter Annotation
annotierte Elemente werden

angezeigt

Auswahl einer Annotation

Alle Elemente der
Klasse werden
ausgetauscht

Auswahl eines verfügbaren Elements

Abbildung 25: Workflow-Diagramm zur Erstellung einer Visualisierung. Der Benutzer
wählt ein Visualisierungskonzept aus und kann in diesem grafische Ele-
mente austauschen.

Der Ablauf der Erstellung der Visualisierung ist im linken Teil des Workflow-Diagramms
in Abbildung 25 dargestellt und wird im Folgenden erklärt:

50

1. Es wird ein Visualisierungskonzept ausgewählt.

2. Der zu diesem Konzept gehörende Hintergrund wird angezeigt.

3. Durch einen Klick an eine Position auf dem angezeigten Hintergrund kann dort
ein Platzhalter für grafische Elemente hinzugefügt werden.

4. Es wird ein Bundesland ausgewählt, für das der Platzhalter an der angeklickten
Position hinzugefügt werden soll.

5. Der Platzhalter wird in der Visualisierung durch ein grafisches Element repräsen-
tiert. Es wird ein beliebiges Element verwendet, das mit derselben Annotation
annotiert ist, wie der Platzhalter.

Durch beliebiges Wiederholen der Punkte 3. bis 5. kann der Visualisierungshintergrund
mit mehreren Platzhaltern angereichert werden. Durch Wiederholen des gesamten Ab-
laufs (1. - 5.) können die Instanzen der verschiedenen Konzepte erstellt werden.
Falls im Nachhinein die Annotation eines Bundeslandes verändert wird, dann werden
alle grafischen Elemente, die Platzhalter repräsentieren, die zu diesem Bundesland
gehören, in der erstellten Visualisierung ausgetauscht.
Abbildung 26 zeigt einen Mockup des Ersteller-Tabs. In Bereich 1 wird die Visuali-
sierung angezeigt. Wenn der Ersteller einen Platzhalter zur Visualisierung hinzufügen
möchte, muss er an die Stelle in der Visualisierung klicken, an der er den Platzhalter
einfügen will. Anschließend wählt er im sich öffnenden Dialog das Bundesland aus, für
das der Platzhalter eingefügt werden soll. In Bereich 2 werden die Bundesländer aus
der Domänen-Ontologie in Tabellen-Form angezeigt. Um ein Bundesland zu annotie-
ren, wählt der Ersteller in der DropDown-Box in der Spalte ’Annotation’ die gewünschte
Annotation aus. In Bereich 3 ist eine Gruppe von CheckBoxes zu sehen. Hier kann der
Ersteller auswählen, in welchen Visualisierungskonzepten die Daten visualisiert wer-
den sollen. Intern wird beim Anwählen einer CheckBox der Datensatz mit der Annota-
tion aus der Grafik-Ontologie annotiert. In Bereich 4 kann das Visualisierungskonzept
ausgewählt werden, das bearbeitet werden soll.

5.2.2. Interaktionskonzept zur interaktiven Optimierung einer Visualisierung

Der rechte Teil der Abbildung 25 stellt die interaktive Optimierung einer Visualisierung
in einem Workflow-Diagramm dar. Der Benutzer verwendet eine vom Ersteller bereit-
gestellte Visualisierung und passt diese an seine persönlichen Bedürfnisse an. Dazu
wählt er ein zur Verfügung stehendes Visualisierungskonzept aus, das ihm daraufhin
angezeigt wird. Das Konzept besteht aus dem entsprechenden Hintergrundbild und
den die eingefügten Platzhalter repräsentierenden grafischen Elementen. Nun können
Elemente ausgetauscht werden. Dazu wird eine Annotation ausgewählt. Durch die Ver-
wendung der Domänen-Ontologie des Einsatzszenarios Bevölkerungsentwicklung ste-
hen die fünf Tendenzen der Bevölkerungsentwicklung als Annotationen zur Verfügung.
Nach dieser Auswahl werden alle Elemente angezeigt, die mit dieser Annotation anno-
tiert wurden (siehe Abbildung 27, Bereich 2). Wenn der Benutzer ein anderes Element

51

Abbildung 26: Mockup der Ersteller-Tabs. In Bereich 1 wird die Visualisierung ange-
zeigt, in der Tabelle im Bereich 2 können die Bundesländer annotiert
werden, in Bereich 3 werden die sinnvollen Visualisierungskonzepte aus-
gewählt und in Bereich 4 wird das zu bearbeitende Visualisierungskon-
zept ausgewählt.

auswählt, dann werden alle zu dieser Annotation gehörenden Elemente in der Visuali-
sierung ausgetauscht.
Abbildung 27 zeigt einen Mockup des Benutzer-Tabs. In Bereich 1 wird die durch den
Ersteller zur Verfügung gestellte Visualisierung angezeigt. Falls der Benutzer die Visua-
lisierung anpasst, sei es durch den Austausch von grafischen Elementen oder durch
den Wechsel des Visualisierungskonzepts, wird die Visualisierung automatisch aktua-
lisiert. In Bereich 2 können grafische Elemente ausgetauscht werden. Dazu wird als
Erstes in der DropDown-Box eine Annotation und dann das gewünschte Element in
der Gruppe der RadioButtons ausgewählt. In Bereich 3 steht eine DropDown-Box zur
Verfügung, mittels derer das Visualisierungskonzept ausgetauscht werden kann.

5.2.3. Allgemeine Funktionen

Zusätzlich zu den bereits beschriebenen Funktionen können sowohl Ersteller als auch
Benutzer die aktuelle Visualisierung speichern und wieder laden.

52

Abbildung 27: Mockup der Benutzer-Tabs. In Bereich 1 wird die Visualisierung ange-
zeigt, in Bereich 2 können grafische Elemente ausgetauscht werden und
in Bereich 3 kann das Visualisierungskonzept ausgetauscht werden.

53

6. Prototyp

Dieses Kapitel beschreibt den im Verlauf dieser Diplomarbeit implementierten Proto-
typ. Dieser Prototyp soll die grundlegende Umsetzbarkeit des vorgestellten Konzepts
zeigen. Abschnitt 6.1 gibt eine Übersicht über die Software-Architektur des Prototyps,
während Abschnitt 6.2 die tatsächliche Umsetzung des Konzepts im Prototypen an-
hand der Benutzeroberfläche beschreibt. Zur Darstellung der Visualisierungen wurde
das Grafikformat SVG verwendet, da sich SVG gut eignet, um Grafiken mit semanti-
schen Informationen zu annotieren [YHC03]. Der Prototyp wurde in C# entwickelt. Dies
führte bei der Verwendung von SVG zu einigen Schwierigkeiten, da C# keine Unterstüt-
zung für SVG mitbringt. Aus diesem Grund musste die Manipulation der SVG-Dateien
selbst implementiert werden.
Zum Erstellen der Ontologien wurde RDF verwendet, da dies die einzige Ontologie-
sprache ist, für deren Verarbeitung eine Bibliothek gefunden werden konnte.

6.1. Architektur

Die für den Prototyp entwickelte Architektur orientiert sich an dem Model-View-Controller
Paradigma [KP88] (MVC). Somit besteht der Prototyp aus den drei Komponenten Mo-
del, View und Controller. Abbildung 28 illustriert die Aufteilung der verschiedenen Auf-
gaben, die durch die drei Komponenten implementiert werden.

View

•Hauptfenster der Anwendung

•Dialog zum Hinzufügen von
grafischen Elementen

Model

•Datenmodell

•Ontologien

Controller

•Festplatten I/O:

•Ontologien

•SVG

•CSV

Abbildung 28: Architekturüberblick, angelehnt an MVC Paradigma. Zu sehen sind die
drei Komponenten Model, View und Controller und die Aufgaben, die sie
erfüllen.

55

6.1.1. Model

Die Komponente Model hält die von der Anwendung benötigten Daten. Die Hauptklas-
se des Modells ist die Klasse VisModel. In dieser Klasse sind sämtliche zur Darstellung
benötigten Informationen gespeichert. Abbildung 29 gibt einen Überblick über die Klas-
senstruktur der Komponente. Sämtliche Model-Klassen sind im Namespace Interacti-
veOptimization.Model zu finden. Die Informationen sind in Objekten der im Folgenden
vorgestellten Klassen gespeichert.

IAnnotation
IAnnotation ist ein Interface, das eine Annotation repräsentiert. Es besteht aus den Ei-
genschaften Label und Uri, die aus einer der beiden Ontologien stammen. IAnnotation
wird von den Klassen VisConcept und SnippetClass implementiert, die in den beiden
folgenden Abschnitten beschrieben werden.

SvgSnippet
Beim Programmstart wird für jede SVG-Datei, die im Ordner „SvgSnippets“ liegt und
eine gültige Annotation enthält, ein SvgSnippet-Objekt angelegt. Die Annotation wird
in Annotation gespeichert. Zusätzlich werden der Name und der Pfad der Datei ge-
speichert. Alle eingelesenen SvgSnippets können vom Benutzer in der Visualisierung
verwendet werden, vorausgesetzt die SvgSnippets sind mit einer Annotation aus der
Domain-Ontologie annotiert.

SnippetClass
Eine SnippetClass ist eine Abbildung der in der Domänen-Ontologie vorhandenen An-
notationen. Bei der verwendeten Domänen-Ontologie aus dem Einsatzszenario Be-
völkerungsentwicklung sind das die Unterklassen von ’Bevölkerungsentwicklung’, also
’Stark Sinkend’, ’Sinkend’, ’Gleichbleibend’, ’Steigend’ und ’Stark Steigend’. Die An-
notationen werden beim Programmstart aus der Domänen-Ontologie ausgelesen und
jeweils in ein Objekt vom Typ SnippetClass gespeichert. SnippetClass erbt die bei-
den Eigenschaften Label und Uri vom Interface IAnnotation. Zusätzlich ist die Methode
ToString() überschrieben. Sie gibt Label zurück.

Dataset
Ein Objekt der Klasse Dataset dient dazu, einen Datensatz mit Informationen aus der
Domänen-Ontologie zu speichern. Bei der für den Prototyp gewählten Domänen-Onto-
logie sind das die Bundesländer und die Informationen über die Bevölkerungsentwick-
lung. Das Objekt enthält die Eigenschaften Dates, eine Liste mit Objekten der Klasse
Date und Annotations, eine Liste mit Objekten der Klasse VisConcept. Die Liste Anno-
tations dient dazu, den Datensatz mit semantischen Informationen anzureichern. Jedes
Element dieser Liste steht für ein Visualisierungskonzept, mit dem dieser Datensatz vi-
sualisiert werden kann.

56

VisModel
Class

Eigenschaften

ActiveSnippets : SerializableDictionary<string, SvgSnippet>

SnippetClasses : List<SnippetClass>

SvgSnippets : List<SvgSnippet>

VisConcepts : List<VisConcept>

Methoden

VisModel()

Dataset
Class

Eigenschaften

Annotations : List<VisConcept>

Dates : List<Date>

Methoden

Dataset()

Date
Class

Eigenschaften

Annotation : SnippetClass

AvailableAnnotations : List<string>

Key : string

Value1 : int

Value2 : int

Methoden

Date() (+ 1 Überladung)

ToString() : string

VisConcept
Class

Eigenschaften

Elements : List<UriNode>

fileName : string

Label : string

Uri : string

VisElements : List<VisElement>

Methoden

VisConcept()

SnippetClass
Class

Eigenschaften

Label : string

Uri : string

Methoden

SnippetClass() (+ 1 Überladung)

ToString() : string

SvgSnippet
Class

Eigenschaften

Annotation : string

Name : string

Path : string

Methoden

SvgSnippet() (+ 1 Überladung)
VisElement
Class

Eigenschaften

CorrespondingDate : Date

LineInFile : SerializableDictionary<string, int>

SnippetClass : SnippetClass

Xmax : int

Xmin : int

Ymax : int

Ymin : int

Methoden

VisElement()

IAnnotation
Interface

Eigenschaften

Label : string

Uri : string

IAnnotation

IAnnotation

ActiveConcept

Dataset

Generated by Foxit PDF Creator © Foxit Software
http://www.foxitsoftware.com For evaluation only.

Abbildung 29: Klassendiagramm der Komponente Model

Date
Diese Klasse repräsentiert einzelne Daten eines Datensatzes. In der Domäne ’Bevöl-
kerungsentwicklung’ sind das die Bundesländer. Ein Datum besteht aus Key vom Typ
string und Value1 und Value2 vom Typ int. In Key wird der Name des Bundeslandes
gespeichert, in Value1 und Value2 die Bevölkerungszahlen aus den Jahren 2007 und
2009. Darüber hinaus enthält das Datum eine Liste (AvailableAnnotations), die angibt,
mit welchen Informationen dieses Datum annotiert werden kann. Das Objekt Annotati-

57

on gibt an, mit welcher SnippetClass das Datum annotiert ist. Durch Elemente dieser
SnippetClass kann dieses Datum in der Visualisierung repräsentiert werden. In Date
wird die Methode ToString() überschrieben und gibt den Key des Datums zurück.
Abbildung 30 zeigt beispielhaft, wie ein Date-Objekt mit Informationen aus der Domänen-
Ontologie gefüllt wird. Der linke Bereich ist ein Ausschnitt aus der Domänen-Ontologie,
der rechte ist das Klassendiagramm der Klasse Date. Annotation wird gefüllt, wenn das
Date durch den Ersteller annotiert wird. Es wird mit einer Annotation gefüllt, die eine
Unterklasse von ’Bevölkerungsentwicklung’ ist. Die Liste AvailableAnnotations ist mit
den Labels aller zur Verfügung stehenden Annotationen gefüllt. Key ist das Label (also
der Bezeichner) des Bundeslandes, Value1 und Value2 sind die beiden Bevölkerungs-
zahlen.

Bevölkerungsdomain

Bundesland

Baden-
Württemberg

10749755

10744921

Bevölkerungsentwicklung

Stark Ansteigend

Ansteigend

Gleichbleibend

Sinkend

Stark Sinkend

2009

2007

Abbildung 30: Links ist ein Ausschnitt aus der Domänen-Ontologie, rechts die Zuord-
nung zur Klasse Date zu sehen.

VisConcept
Ein Objekt dieser Klasse steht für ein Visualisierungskonzept, das zur Visualisierung
verwendet werden kann. VisConcept erbt vom Interface IAnnotation die Eigenschaften
Label und Uri, da Dataset-Objekte mit VisConcepts annotiert werden können. Um das
Visualisierungskonzept anzeigen zu können, wird eine SVG-Datei benötigt. Diese SVG-
Datei dient als Hintergrund der Visualisierung. Die durch den Ersteller hinzugefügten
Platzhalter werden darin eingefügt. Die zum Konzept gehörende Datei wird durch die
Eigenschaft FileName angegeben. VisElements gibt an, welche VisElements dem Vi-
sualisierungskonzept hinzugefügt wurden. Elements definiert, welche grafischen Primi-
tive dieses Visualisierungskonzept enthalten kann. Die Informationen, die in Elements,
Label und Uri gespeichert sind, stammen aus der Grafik-Ontologie.

58

Abbildung 31 zeigt beispielhaft das Mapping von Grafik-Ontologie auf die Klasse Vis-
Concept. Die beiden gestrichelten Pfeile bedeuten, dass ein Balkendiagramm aus Ach-
sen und Rechtecken bestehen kann. Label und Uri stammen aus ’Balkendiagramm’,
die Liste Elements enthält Informationen darüber, aus welchen grafischen Primitiven
das VisConcept bestehen kann, beim Beispiel Balkendiagramm also aus Achsen und
Rechtecken.

Visualisierung

Grafische Primitive

Koordinatensystem

Konzept

Balkendiagramm

Geometrische Form

Achse

Rechteck

Abbildung 31: Links ist ein Ausschnitt der Grafik-Ontologie, rechts die Zuordnung zur
Klasse VisConcept zu sehen.

VisElement
Ein VisElement repräsentiert einen durch den Ersteller zur Visualisierung hinzugefüg-
ten Platzhalter. Aufgrund der nicht vorhandenen Unterstützung von SVG in C# ist es
notwendig zu wissen, in welcher Zeile der SVG-Datei das VisElement eingebunden ist,
damit der Platzhalter später verändert oder gelöscht werden kann. Diese Information
ist in LineInFile gespeichert. Jedes VisElement gehört zu einem Date-Objekt. Dieses
Objekt ist in CorrespondingDate gespeichert. SnippetClass definiert die SnippetClass,
durch deren Elemente der Platzhalter in der Visualisierung ersetzt werden kann. Snip-
petClass ist davon abhängig, mit welcher SnippetClass das zugehörige Date-Objekt
annotiert ist. Xmin, Xmax, Ymin und Ymax definieren die Fläche, die das VisElement
in der Visualisierung einnimmt.

VisModel
VisModel (siehe Abbildung 32) ist, wie bereits erwähnt, die zentrale Klasse des Models.
Ein Objekt dieser Klasse wird im Controller gehalten und enthält Objekte der bisher
vorgestellten Klassen. Im Folgenden werden die Eigenschaften der Klasse erläutert.
ActiveConcept ist das VisConcept, das gerade aktiv ist. Das ActiveConcept wird, falls
der Ersteller-Tab ausgewählt ist, angezeigt und kann mit grafischen Elementen ange-
reichert werden. Falls der Benutzer-Tab aktiv ist, wird das ActiveConcept ebenfalls an-
gezeigt. Wenn der Benutzer grafische Elemente austauscht, werden diese nur im Acti-
veConcept ausgetauscht.

59

ActiveSnippets ist ein Dictionary, das jeder SnippetClass ein SvgSnippet zuweist. Die-
ses SvgSnippet repräsentiert in den Visualisierungen alle VisElements, die mit der
SnippetClass verbunden sind.
Dataset ist ein Objekt vom Typ Dataset und speichert die 16 deutschen Bundesländer
und ihre Bevölkerungszahlen.
SnippetClasses ist eine Liste mit allen verfügbaren SnippetClasses, SvgSnippets ist ei-
ne Liste mit allen verfügbaren SvgSnippets und VisConcept ist eine Liste mit allen zur
Verfügung stehenden Visualisierungskonzepten.

VisModel

Class

Eigenschaften

ActiveConcept : VisConcept

ActiveSnippets : SerializableDictionary<string, SvgSnippet>

Dataset : Dataset

SnippetClasses : List<SnippetClass>

SvgSnippets : List<SvgSnippet>

VisConcepts : List<VisConcept>

Methoden

VisModel()

Generated by Foxit PDF Creator © Foxit Software
http://www.foxitsoftware.com For evaluation only.

Abbildung 32: Klassendiagramm der Klasse VisModel.

6.1.2. View

Die Komponente View besteht aus den beiden Klassen MainWindow und AddElement-
Form. Beide Klassen sind im Namespace InteractiveOptimization.UI zu finden.
MainWindow definiert das Hauptfenster der Anwendung. Die Anwendung soll sowohl
zum Erstellen von Visualisierungen als auch zum interaktiven Optimieren der erstellten
Visualisierungen verwendet werden können. Aus diesem Grund ist das Hauptfenster in
zwei Tabs aufgeteilt. Im Ersteller-Tab können Daten importiert und annotiert werden.
Diese Daten können mit grafischen Elementen in der Visualisierung dargestellt wer-
den. Im Benutzer-Tab können grafische Elemente und Visualisierungskonzepte aus-
getauscht werden. MainWindow stellt neben dem Design der Benutzeroberfläche alle
benötigten Event-Handler zur Verfügung.
AddElementForm definiert einen Dialog, mit dem der Ersteller die Visualisierung mit
Platzhaltern anreichern kann. Jedes Element gehört zu einem Date-Objekt aus dem
Model. Im Dialog wird das Date-Objekt (repräsentiert durch seinen Key) ausgewählt.
AddElementForm wird auch dafür verwendet, um hinzugefügte Elemente im Nachhin-
ein zu verändern oder zu löschen und stellt die hierfür benötigten Event-Handler zur
Verfügung.

60

6.1.3. Controller

Die Komponente Controller enthält die Klasse Controller im Namespace InteractiveOp-
timization.Controller sowie die Klassen CsvReader, RdfReader und SvgReaderWriter
im Namespace InteractiveOptimization.Controller.IO (siehe Abbildung 33).

Controller
Class

Felder

Eigenschaften

Instance : Controller

Model : VisModel

Methoden

Controller()

InitializeModel() : void

Load() : void

New() : void

Save() : void

RdfReader
Class

Methoden

ReadRdf() : Graph

SvgReaderWriter
Class

Methoden

AddElementToSvg() : void

ChangeElementInSvg() : void

ChangeElementsForSnippetClass() : void

ConceptsToModel() : void

ConvertSvg() : void

DeleteElementFromSvg() : void

SnippetsToModel() : void

UpdateSvgToShowInWebBrowser() : void

UpdateSvgWhenAnnotationChanges() : void

Generated by Foxit PDF Creator © Foxit Software
http://www.foxitsoftware.com For evaluation only.

Abbildung 33: Klassendiagramm der Komponente Controller mit den Klassen Control-
ler, SvgReaderWriter und RdfReader. Die Parameter der Methoden wur-
den in der Abbildung aus Platzgründen weggelassen.

Controller
Die Klasse Controller ist nach dem Entwurfsmuster Singleton [Gam09] implementiert.
Das bedeutet, dass es nur eine Instanz der Klasse geben kann. Dadurch ist gewährleis-
tet, dass es nur einen Controller und ein Model gibt und es beim Laden und Speichern
keine Konflikte gibt. Controller stellt die Methoden New(), Save() und Load() zur Verfü-
gung. New() erzeugt eine neue Version des Models. Um das Model mit Informationen
zu füllen, werden die beiden Ontologien eingelesen. Die im Ordner ’SVG’ vorhandenen
SVG-Dateien werden als Hintergrundbilder für mögliche Visualisierungen in den Ord-
ner ’GraphicSnippets’ kopiert, da das Einbinden externer Dateien in SVG-Dateien nur
funktioniert, wenn diese im selben Ordner gespeichert sind. Save() serialisiert das Mo-
del und speichert es in der Datei ’model.xml’ im Ordner ’Save’ und kopiert die erstellten
Visualisierungen in den Ordner ’Save’. Load() deserialisiert das Model aus ’model.xml’
und kopiert die gespeicherten Visualisierungen in den Ordner ’GraphicSnippets’.

61

RdfReader
Die Methode ReadRdf(String path) wird verwendet, um die beiden Ontologien einzu-
lesen. Da es in C# keine Unterstützung zum Arbeiten mit Ontologien gibt, wird die
externe Bibliothek DotNetRDF verwendet. DotNetRDF stellt Objekte und Methoden
zur Verfügung, mit denen RDF-Ontologien eingelesen und verarbeitet werden können.
ReadRdf() liest eine angegebene RDF-Datei ein und gibt die Ontologie in einem Graph-
Objekt zurück.

DotNetRDF
DotNetRDF11 ist eine in C# entwickelte Bibliothek zum Verarbeiten und Erstellen von
Ontologien in RDF. Sie steht unter der GNU General Public License12 (GPL). DotNetRDF
orientiert sich dabei an RDF. Die zentralen Klassen haben selbsterklärende Namen und
repräsentieren dabei die Konzepte von RDF wie Graphen (IGraph), Knoten (INode) und
Tripel (Triple). Es können die gängigsten RDF-Syntaxen eingelesen und geschrieben
werden. Außerdem stehen Methoden zur Verfügung, um Ontologien zu durchsuchen
und zu verändern.

SvgReaderWriter
SvgReaderWriter ist die wichtigste und größte Klasse von Controller.IO. Die vorhande-
nen Methoden werden im Folgenden beschrieben.

AddElementToSvg(Date date, int x, int y): In die SVG-Datei des derzeit aktiven Vi-
sualisierungskonzepts wird ein Platzhalter eingefügt. Da es in C# keine Unter-
stützung für SVG gibt, wird in der Datei nach dem Element </svg> gesucht. Der
Platzhalter wird vor </svg> per Image-Tag eingebunden. Jeder hinzuzufügende
Platzhalter gehört zu dem Date-Objekt, das als Parameter date übergeben wird.
Stellvertretend für den Platzhalter wird das grafische Element eingefügt, das als
ActiveSnippet der SnippetClass, mit der das Date-Objekt annotiert ist, gespei-
chert ist. Die Parameter x und y geben die Position an, an der der Platzhalter
eingefügt werden soll. Der Platzhalter nimmt eine Fläche von 50 x 50 Pixeln ein,
mit der angegebenen Position als Mittelpunkt.

ChangeElementInSvg(Date date, VisElement oldElement) Ein bereits in der Svg-
Datei des aktiven Visualisierungskozepts eingefügtes Element (oldElement) kann
mit dieser Methode einem anderen Date-Objekt (date) zugeordnet werden. Falls
das neue Date-Objekt mit einer anderen Annotation versehen wurde als das alte,
wird die entsprechende Zeile in der Datei verändert, damit nun wieder das richtige
Element angezeigt wird.

ChangeElementsForSnippetClass(SnippetClass selectedClass) Diese Methode wird
verwendet, wenn der Benutzer für eine bestimmte Element-Klasse (selectedClass)

11http://www.dotnetrdf.org
12https://www.gnu.org/licenses/gpl-3.0.html

62

http://www.dotnetrdf.org
https://www.gnu.org/licenses/gpl-3.0.html

die grafischen Elemente austauschen will. Für alle betroffenen Elemente wird in
der SVG-Datei die entsprechende Zeile dahin gehend geändert, dass das vom
Benutzer ausgewählte Element angezeigt wird.

ConceptsToModel() Es werden die ’leeren’ Vorlagen der Visualisierungskonzepte aus
dem Ordner ’SVG’ in den Ordner ’GraphicSnippets’ kopiert. Anschließend wer-
den die SVG-Dateien nach der Annotation, zu welchem Visualisierungskonzept
welche Datei gehört, durchsucht. Die entsprechenden Informationen werden im
Model abgespeichert.

ConvertSvg(string folderPath) Alle im Ordner mit dem Pfad folderPath liegenden
SVG-Dateien werden zu PNG-Dateien konvertiert. Dazu wird das Kommandozei-
len-Tool von Inkscape verwendet.

DeleteElementFromSvg(VisElement oldElement) Das Element oldElement wird aus
der SVG-Datei des aktiven Visualisierungskonzepts entfernt.

SnippetsToModel(string snippetFolderPath) Diese Methode durchsucht einen an-
gegebenen Ordner nach grafischen Elementen. Diese müssen als SVG-Dateien
vorliegen und mit einer gültigen Annotation aus der Domänen-Ontologie versehen
sein. Pfad und Annotation werden in Model.SvgSnippets gespeichert.

UpdateSvgToShowInWebBrowser() Da das PictureBox-Steuerelement keine SVG-
Dateien anzeigen kann, werden die SVG-Dateien zu PNG-Dateien konvertiert.
Diese Konvertierung funktioniert bei SVG-Dateien, in die andere SVG-Dateien
eingebunden sind, nicht. Deshalb werden die grafischen Elemente als PNG ein-
gebunden. Im Benutzer-Tab kommt ein WebBrowser-Steuerelement zum Einsatz,
das SVG-Dateien anzeigen kann. Um die Vorteile von SVG nutzen zu können,
ersetzt diese Methode alle PNG-Dateiendungen in der SVG-Datei durch SVG-
Dateiendungen, so dass die SVG-Elemente eingebunden werden können.

UpdateSvgWhenAnnotationChanges(Date date) Wenn die Annotation eines Date-
Objektes geändert wird, dann werden alle SVG-Dateien, in denen Elemente vor-
kommen, die zu diesem Date-Objekt gehören, angepasst, so dass Elemente der
richtigen Klasse verwendet werden.

6.2. Benutzeroberfläche

Die Benutzeroberfläche besteht neben einem Menü und einer Toolbar aus zwei Tabs
(siehe Abbildung 34 und 38), einen für das Erstellen der Visualisierungen und einen
um diese Visualisierungen interaktiv optimieren zu können. Die beiden Tabs werden in
den folgenden Abschnitten beschrieben. Die Benutzeroberfläche wurde mit Hilfe von
Windows.Forms erstellt und setzt die View-Komponente der MVC-Architektur um.

63

6.2.1. Ersteller-Tab

Der Ersteller-Tab (siehe Abbildung 34) ist in zwei Bereiche, in der Abbildung durch die
roten Kästen zu erkennen, unterteilt. Der linke Bereich (Bereich 1) ist eine PictureBox,
in der eine Vorschau der Visualisierung angezeigt wird und in der Platzhalter hinzuge-
fügt und entfernt werden können. Im rechten Bereich (Bereich 2), der wiederum in zwei
Bereiche unterteilt ist, können die Annotationen der Daten und des Datensatzes bear-
beitet werden. Die Annotationen der Daten können in einer Tabelle (siehe Abbildung 36)
geändert werden. Diese Tabelle enthält pro Zeile eine DropDown-Box, in der eine der
verfügbaren Annotationen ausgewählt werden kann. Um den Datensatz zu annotieren,
wählt man die CheckBoxes aus, die für die zu verwendenden Visualisierungskonzepte
stehen. Alle in diesem Tab ausgeführten Aktionen werden in der Rolle des Erstellers
ausgeführt.

Abbildung 34: Zu sehen ist das Hauptfenster mit aktivem Ersteller-Tab. In diesem Bei-
spiel ist eine Tree-Map zur Bearbeitung (1) und die Tabelle zum Annotie-
ren der Bundesländer (2) zu sehen.

creatorPictureBox
Die creatorPictureBox dient als Vorschau der zu erstellenden Visualisierung. Gleichzei-
tig kann die Visualisierung darin bearbeitet werden. Die PictureBox in Windows.Forms
kann keine SVG-Dateien anzeigen. Das einzige Windows.Forms-Steuerelement, das
SVG-Dateien anzeigen kann, ist das WebBrowser-Steuerelement. Dieses kann hier

64

Abbildung 35: Zu sehen ist die creatorPictureBox. Aktuell ist das rot umrandete Ele-
ment ausgewählt. Daher ist ein AddElementForm-Dialog geöffnet, in
dem Baden-Württemberg ausgewählt ist.

nicht verwendet werden, da es einige Events nicht unterstützt. So ist es zum Beispiel bei
einem Klick auf das Steuerelement nicht möglich, die Maus-Position zu erhalten. Dies
ist aber elementar wichtig, damit der Ersteller die Positionen auswählen kann, an denen
er Platzhalter hinzufügen möchte und um diese Platzhalter später wieder auswählen zu
können. Aus diesem Grund wurde eine PictureBox verwendet. Um die Visualisierung
darin anzeigen zu können, wird sie mit dem Kommandozeilen-Tool von Inkscape in eine
PNG-Datei umgewandelt.
Durch einen Klick auf eine Position innerhalb der creatorPictureBox kann ein Platzhalter
an dieser Position hinzugefügt werden. Platzhalter können für alle in Model.Dataset.Dates
gespeicherten Date-Objekte, die annotiert wurden, hinzugefügt werden. Abbildung 35
zeigt eine Tree-Map-Visualisierung, die gerade bearbeitet wird. Den Hintergrund der
Visualisierung (die eigentliche Tree-Map) stellt das Programm zur Verfügung, während
die blauen Pfeil-Elemente durch den Ersteller hinzugefügt wurden. Aktuell hat der Er-
steller auf den Pfeil im Feld Baden-Württemberg geklickt. Das Programm hebt den aus-
gewählten Platzhalter mit einem roten Rahmen hervor. Es öffnet sich ein Dialog vom
Typ AddElementForm, in dem der Platzhalter entweder bearbeitet oder gelöscht werden
kann. In der ComboBox wird der Key des zu diesem Element gehörenden Date-Objekts
angezeigt. Auf diesem Weg kann der Ersteller herausfinden, welcher Platzhalter zu wel-
chem Date-Objekt gehört. Welches konkrete grafische Element den Platzhalter reprä-
sentiert, kann der Ersteller nicht direkt beeinflussen. Es wird ein beispielhaftes Element
der SnippetClass angezeigt, mit der das zugehörige Date-Objekt annotiert ist. Welches
Element dieser SnippetClass angezeigt werden soll, kann der Benutzer bestimmen.

65

Datentabelle

Abbildung 36: Datentabelle. Alle Bundesländer, außer Brandenburg und Bremen wur-
den bereits annotiert. 1.Spalte: Namen der Bundesländer, 2. Spalte: Be-
völkerungszahl 2007, 3. Spalte: Bevölkerungszahl 2009, 4.Spalte: Bun-
desländer können annotiert werden.

Abbildung 36 zeigt die Datentabelle. In der Tabelle sind die 16 deutschen Bundes-
länder und ihre Bevölkerungszahlen aus den Jahren 2007 und 2009 zu sehen. Au-
ßer Brandenburg und Bremen wurden alle Bundesländer annotiert. Die Spalten ’Bun-
desland’, ’2007’ und ’2009’ stammen aus der Domänen-Ontologie und zeigen die Be-
völkerungsentwicklung der deutschen Bundesländer von 2007 bis 2009. In der Spal-
te ’Annotation’ kann jede Zeile mit einer Annotation angereichert werden. Die in den
ComboBoxen in der Spalte ’Annotation’ auswählbaren Annotationen stammen aus der
Domänen-Ontologie. Die zur Verfügung stehenden Annotationen stammen ebenfalls
aus der Domänen-Ontologie. Der Visualisierung können nur für annotierte Zeilen Platz-
halter hinzugefügt werden. Wenn der Ersteller eine Annotation in einer Zeile, für die es
Platzhalter in der Visualisierung gibt, ändert, wird die Visualisierung angepasst. Das An-
passen wird in der zugehörigen SVG-Datei sofort vorgenommen. Dazu wird die Metho-
de UpdateSvgWhenAnnotationChanges() aufgerufen. Da das Rendern der PNG-Datei
für die creatorPictureBox einige Sekunden dauert, wird es erst bei einem Klick auf den
Button ’Visualisierung neu laden’ in der Toolbar durchgeführt.

Konzept-Panel Der letzte zu beschreibende Bereich des Ersteller-Tabs ist das Pa-
nel (Abbildung 37) rechts unten. Im linken Teil des Panels kann der Ersteller ange-
ben, für welche Visualisierungskonzepte sich der aktuelle Datensatz eignet, in dem

66

er die entsprechenden CheckBoxes aktiviert. Intern wird der Datensatz jeweils mit
der Annotation aus der Grafik-Ontologie für das vom Ersteller ausgewählte Visuali-
sierungskonzept annotiert. In der Abbildung wurde der Datensatz also mit den beiden
Annotationen http://www.vis.uni-stuttgart.de/SemanticOptimization#Tree-Map

und http://www.vis.uni-stuttgart.de/SemanticOptimization#Karte annotiert.
Im rechten Teil des Panels kann der Ersteller auswählen, welches Visualisierungskon-
zept in der PictureBox zur Bearbeitung angezeigt werden soll.
Damit der Prototyp mit verschiedenen Domänen-Ontologien verwendet werden kann,
werden sowohl die CheckBoxes im linken, als auch die RadioButtons im rechten Teil des
Panels beim Start der Anwendung dynamisch erzeugt. Es werden stets die Labels der
in der aktuellen Grafik-Ontologie vorkommenden Visualisierungskonzepte angezeigt.
In Abbildung 37 enthält die Grafik-Ontologie drei Visualisierungskonzepte: Tree-Map,
Balkendiagramm und Karte.

Abbildung 37: Im linken Bereich wurden Tree-Map und Karte als verwendbare Konzepte
ausgewählt, im rechten ist Tree-Map ausgewählt, dadurch wird in der
creatorPictureBox eine Tree-Map angezeigt.

6.2.2. Benutzer-Tab

Der Benutzer-Tab (Abbildung 38) ist, ähnlich wie der Ersteller-Tab, zweigeteilt. In der
Abbildung ist dies durch die beiden roten Kästen verdeutlicht. Im linken Bereich (Be-
reich 1) befindet sich ein WebBrowser-Steuerelement, in dem die Visualisierung ange-
zeigt wird. Im rechten Bereich (Bereich 2) kann der Benutzer einzelne grafische Ele-
mente sowie das gesamte Visualisierungskonzept austauschen.
Da die grafischen Elemente nicht einzeln, sonder klassenweise ausgetauscht werden,
ist es auf Benutzerseite nicht notwendig, die Mausposition in der Visualisierung zu be-
stimmen. Daher kann zur Anzeige ein WebBrowser-Steuerelement verwendet werden.
In diesem können SVG-Dateien angezeigt werden. Das hat zwei Vorteile gegenüber
der Anzeige als PNG in einer PictureBox:

1. Die Visualisierung muss nicht nach PNG konvertiert werden, was für einen erheb-
lichen Geschwindigkeitsvorteil bei der Aktualisierung sorgt.

2. Die grafischen Elemente können als SVG eingebunden werden, wodurch sie deut-
lich besser dargestellt werden können.

67

Abbildung 38: Zu sehen ist das Hauptfenster mit aktivem Benutzer-Tab. Tree-Map ist
als Visualisierungskonzept ausgewählt (1), grafische Elemente für An-
notation ’Ansteigend’ können geändert werden (2).

Austausch grafischer Elemente
Abbildung 39 zeigt den Bereich des Benutzer-Tabs, in dem die grafischen Elemente
ausgetauscht werden können. In der ComboBox kann der Benutzer die Element-Klasse
auswählen, deren Elemente er austauschen will. Im Feld darunter kann er anschließend
das passende Element auswählen. In Abbildung 39 hat der Benutzer entschieden, dass
Elemente der Klasse ’Ansteigend’ durch ein Plus dargestellt werden sollen. Die Aus-
wahl an Element-Klassen stammt aus der Domänen-Ontologie. Es sind dieselben Klas-
sen, mit denen der Ersteller die Bundesländer annotieren kann. Um alle verfügbaren

Abbildung 39: Bereich zum Austausch von grafischen Elementen. Aktuell wurde für die
Klasse ’Ansteigend’ ein Plus ausgewählt.

68

Elemente anzeigen zu können, wird bei Programmstart der Ordner ’GraphicSnippets’
nach SVG-Dateien durchsucht, die mit den existierenden Element-Klassen annotiert
wurden. Das Durchsuchen erfolgt durch den Controller, der dann die entsprechenden
Objekte im Model anlegt. Die View-Komponente holt sich die benötigten Informationen
aus dem Model und zeigt die verfügbaren Elemente an.

Auswahl des Visualisierungskonzepts
Mit der ComboBox in Abbildung 40 kann das Visualisierungskonzept ausgewählt wer-
den. Es stehen die Visualisierungskonzepte zur Verfügung, mit denen der Ersteller den
Datensatz annotiert hat.

Abbildung 40: Bereich zum Austausch des Visualisierungskonzepts

6.3. Sequenzdiagramme

In den beiden folgenden Abschnitten werden zwei grundlegende Funktionen des Pro-
gramms anhand von Sequenzdiagrammen erläutert. Die Nummerierung der Aufzählun-
gen entspricht den mit roten Zahlen markierten Bereichen in den Diagrammen.

6.3.1. Einfügen eines Platzhalters

Das Sequenzdiagramm in Abbildung 41 zeigt den internen Ablauf des Programms beim
Hinzufügen eines Platzhalters zu einer Visualisierung durch den Ersteller.

1. Der Ablauf wird durch einen Klick des Erstellers in die PictureBox gestartet. Es
wird der MouseDown-Event-Handler für die creatorPictureBox in MainForm
aufgerufen. Dort wird als erstes überprüft, ob in der PictureBox im Moment
eine Visualisierung angezeigt wird. Anschließend wird die Methode
MarkIfExists() in der Klasse MainForm aufgerufen. In dieser Methode wird über
Model.ActiveConcepts.VisElements die Liste der zum aktiven Visualisierungskon-
zept gehörenden Platzhalter geholt. Für jeden Platzhalter ist die Position in der
Visualisierung gespeichert. So kann nun überprüft werden, ob der Ersteller auf
einen bereits hinzugefügten Platzhalter geklickt hat oder nicht. Falls er auf einen
existierenden Platzhalter geklickt hätte, würde der Platzhalter in der PictureBox
mit einem roten Rahmen versehen. Dadurch soll verdeutlicht werden, auf welchen
Platzhalter geklickt wurde. In dem im Sequenzdiagramm abgebildeten Ablauf hat
der Ersteller auf eine Position in der Visualisierung geklickt, an der noch kein
Platzhalter hinzugefügt worden ist. Aus diesem Grund wird in MarkIfExists()

nur die Überprüfung, ob auf ein grafisches Element geklickt wurde, durchgeführt.

69

Abbildung 41: Das Einfügen eines Platzhalters erfolgt in drei Schritten: Überprüfen, ob
ein vorhandener Platzhalter angeklickt wurde (1), Platzhalter in SVG-
Datei einbinden (2), PNG neu zeichnen (3).

70

Anschließend wird ein Dialog vom Typ AddElementForm erzeugt und dem Erstel-
ler angezeigt. In diesem muss der Ersteller ein Date-Objekt in einer ComboBox
auswählen (die Date-Objekte werden durch ihren Key repräsentiert) und auf den
Button OK klicken.

2. Als nächstes wird durch das AddElementForm-Objekt das SvgReaderWriter-
Objekt svg erzeugt. Da ein neuer Platzhalter hinzugefügt werden soll, wird
svg.AddElementToSvg() aufgerufen. Als Parameter wird das ausgewählte Date-
Objekt sowie die Position des Mauszeigers beim Klick auf die PictureBox überge-
ben. In AddElementToSvg() wird dann die SnippetClass in Model.SnippetClasses
gesucht, mit der das Date-Objekt annotiert ist. Anschließend wird die zum derzeit
aktiven Visualisierungskonzept gehörende SVG-Datei bearbeitet. Das grafische
Element wird per Image-Tag in der Zeile vor dem schließenden </svg> einge-
fügt. Listing 4 zeigt beispielhaft den SVG-Code, mit dem ein grafisches Element
zur Visualisierung hinzugefügt wird. Zusätzlich wird ein neues VisElement-Objekt
erzeugt, das zu Model.ActiveConcept.VisElements hinzugefügt wird. In diesem
Objekt werden folgende Informationen gespeichert: Die Koordinaten der Fläche,
die der Platzhalter in der Visualisierung belegt, das zugehörige Date-Objekt, die
zugehörige SnippetClass und die Nummer der Zeile in der SVG-Datei, in der
der Platzhalter hinzugefügt wurde. Anschließend wird das AddElementForm ge-
schlossen.

3. Als letzter Schritt wird in MainForm die Methode DrawPng() aufgerufen. Darin wird
die SVG-Datei als PNG gerendert und in der creatorPictureBox angezeigt.

<image x ="581" y ="288" width ="50px " he igh t ="50px "
x l i n k : h re f ="2downarrow . png">
< t i t l e >Stark_Ansteigend / t i t l e >
</ image>

Listing 4: Image-Tag zum Einbinden eines grafischen Elements

6.3.2. Austauschen grafischer Elemente

Abbildung 42 zeigt den Programmablauf beim Austauschen grafischer Elemente zum
Anpassen der Visualisierung durch den Benutzer an seine persönlichen Vorlieben und
Bedürfnisse. Der Benutzer hat bereits eine SnippetClass ausgewählt und will nun alle
Elemente dieser Klasse durch ein anderes Element ersetzen.

1. Zu diesem Zweck wählt er einen RadioButton neben dem gewünschten grafi-
schen Element aus. Dadurch wird der zugehörige Event-Handler aufgerufen. Das
Dictionary ActiveSnippets ordnet jeder SnippetClass ein SvgSnippet zu. Dieses
wird dann verwendet um alle grafischen Elemente dieser SnippetClass in der Vi-
sualisierung zu repräsentieren. Im Event-Handler des RadioButtons wird dieses
Dictionary aktualisiert, indem der SnippetClass das ausgewählte SvgSnippet zu-
geordnet wird.

71

Abbildung 42: Der Austauschen grafischer Elemente erfolgt in drei Schritten: Dictiona-
ry ActiveSnippets im Model aktualisieren (1), SVG-Datei anpassen (2),
WebBrowser aktualisieren (3).

2. Als nächstes wird das SvgReaderWriter-Objekt svg erzeugt und die Methode
svg.ChangeElementsForSnippetClass() aufgerufen. Als Parameter wird die Snip-
petClass übergeben. Es wird aus dem Model die Liste mit allen Platzhaltern
geholt. Für jeden dieser Platzhalter wird überprüft, ob der Platzhalter zur über-
gebenen SnippetClass gehört. Diese Überprüfung erfolgt anhand der aus der
Domänen-Ontologie stammenden Uri der SnippetClass. Bei erfolgreicher Über-
prüfung wird die SVG-Datei der im Moment aktiven Visualisierung geändert. Das
Image-Tag, mit dem das Element hinzugefügt wurde, bleibt grundsätzlich erhal-
ten, nur der Dateiname wird ausgetauscht. Da jedes VisElement in der Eigen-
schaft LineInFile die Zeilennummer, an der es in der SVG-Datei eingefügt wur-
de, gespeichert hat, kann die entsprechende Zeile leicht gefunden werden.

72

3. Abschließend wird das WebBrowser-Steuerelement, in dem die Visualisierung
angezeigt wird, aktualisiert.

6.4. Systemvoraussetzungen

Dieser Abschnitt erläutert, was benötigt wird, um den Prototypen verwenden zu kön-
nen und in welcher Ordnerstruktur die Komponenten vorliegen müssen. Es werden
die grafischen Elemente, die Visualisierungshintergründe und die Ontologien benötigt.
Die folgenden Unterabschnitte erläutern die Komponenten im Detail. Alle Komponenten
werden mit dem Prototypen ausgeliefert, können jedoch auch ersetzt werden.

6.4.1. Ordnerstruktur

Im Programmordner müssen die Ordner ’bin’, ’GraphicSnippets’, ’Ontologies’, ’Save’
und ’SVG’ vorhanden sein. Der Ordner ’bin’ enthält einen Ordner namens ’Release’, in
dem die ausführbare Exe-Datei und die benötigten DLLs liegen. Der Ordner ’Save’ wird
benötigt, um erstellte Visualisierungen speichern zu können. Der Inhalt der weiteren
Ordner wird in den folgenden Abschnitten beschrieben.

6.4.2. Grafische Elemente

Die grafischen Elemente, die dem Benutzer bei der Anpassung der Visualisierungen
zur Verfügung stehen sollen, müssen beim Programmstart im Ordner ’GraphicSnip-
pets’ vorliegen. Sie müssen im SVG-Format gespeichert sein und mit einer gültigen
Annotation aus der Domänen-Ontologie annotiert sein. Listing 5 zeigt die Annotation
eines grafischen Elements mit der Tendenz ’Sinkend’. Das bedeutet, dass dieses gra-
fische Element verwendet werden kann, um Bundesländer zu repräsentieren, deren
Bevölkerungswachstum sinkend ist.

<semantics >
h t t p : / / www. v i s . uni−s t u t t g a r t . de / GermanStates \# Sinkend

</ semantics >

Listing 5: Annotation eines grafischen Elements mit der Tendenz ’Sinkend’

Die Annotation wird innerhalb eines <semantics>-Tags angegeben. Da dieser Tag nicht
Teil der SVG-Spezifikation ist, wird er durch SVG-Renderer einfach ignoriert. Wenn zu-
sätzliche Elemente verwendet werden sollen, müssen sie im Programm mit der Funkti-
on ’Grafische Elemente konvertieren’ zu PNG-Dateien konvertiert werden, da die Ele-
mente für die Anzeige in der Ersteller-PictureBox als PNG benötigt werden.

6.4.3. Visualisierungshintergründe

Die zu verwendenden Visualisierungshintergründe müssen als SVG-Dateien im Ordner
’SVG’ liegen. Falls ein Hintergrund nur als Rastergrafik vorliegt, kann er einfach in eine
leere SVG-Datei eingebunden werden. Die Hintergründe müssen mit einer Unterklasse

73

der Klasse ’Type’ aus der Grafik-Ontologie annotiert sein. Diese Annotation dient dem
Prototypen zur Zuordnung von Hintergrundbild und VisConcept.

6.4.4. Ontologien

Sowohl die Grafik- als auch die Domänen-Ontologie müssen als RDF-Datei vorliegen.
Die beiliegenden Ontologien wurden mit Protégé 3.4.7 erstellt. Falls die Ontologien mit
anderen Editoren oder anderen Versionen erstellt wurden, muss die Kompatibilität über-
prüft werden. Listing 6 zeigt einen beispielhaften Ausschnitt der Domänen-Ontologie.
Es sind die drei Tendenzen ’Ansteigend’, ’Gleichbleibend’ und ’Sinkend’ sowie die bei-
den Bundesländer Hamburg und Hessen enthalten. Die Ontologien müssen im Ordner
’Ontologies’ gespeichert sein.

< r d f :RDF xmlns : r d f ="& r d f ; "
xmlns : GermanStates="&GermanStates ; "
xmlns : r d f s ="& r d f s ; " >

<GermanStates : Bevö lkerungsentw ick lung r d f : about="&GermanStates ; Ansteigend "
GermanStates : Label =" Ansteigend "
r d f s : l a b e l =" Ansteigend " / >

<GermanStates : Bevö lkerungsentw ick lung r d f : about="&GermanStates ; Gle ichb le ibend "
GermanStates : Label =" Gle ichb le ibend "
r d f s : l a b e l =" Gle ichb le ibend " / >

<GermanStates : Bevökerungsentwick lung r d f : about="&GermanStates ; Sinkend "
GermanStates : Label =" Sinkend "
r d f s : l a b e l =" Sinkend " / >

<GermanStates : State r d f : about="&GermanStates ; domain_Class10 "
GermanStates : Einwohner_2007="1770629"
GermanStates : Einwohner_2009="1774224"
GermanStates : Label ="Hamburg "
r d f s : l a b e l ="Hamburg" / >

<GermanStates : State r d f : about="&GermanStates ; domain_Class11 "
GermanStates : Einwohner_2007="6072555"
GermanStates : Einwohner_2009="6016951"
GermanStates : Label ="Hessen "
r d f s : l a b e l ="Hessen " / >

</ r d f :RDF>

Listing 6: Ausschnitt aus der Domänen-Ontologie. Zu sehen sind die Elemente für
die Bundesländer Hamburg und Hessen, sowie die Tendezen ’Ansteigend’,
’Gleichbleibend’ und ’Sinkend’

74

7. Evaluierung

Das übergeordnete Ziel dieser Diplomarbeit war es, den Gulf of Evaluation im Bereich
von Visualisierungen zu verkleinern. In diesem Kapitel wird evaluiert, ob die gewählten
Lösungsansätze geeignet waren, um dieses Ziel zu erreichen.
Es wurde ein Konzept entworfen, mit dem Visualisierungen mit semantischen Metain-
formationen annotiert werden können, damit sie anschließend durch einen Benutzer
interaktiv optimiert werden können. Nach der Konzeptionsphase wurde ein Prototyp
implementiert, der zeigt, dass sich das Konzept auch praktisch umsetzen lässt. Dabei
kam es zu folgenden Schwierigkeiten:

• Mit Hilfe der Grafik-Ontologie kann beschrieben werden, aus welchen grafischen
Primitiven Visualisierungskonzepte bestehen können. Allerdings ist es nicht oh-
ne Weiteres möglich, aus diesen Informationen eine Visualisierung zu erstellen,
da die Informationen über die geometrische Anordnung der grafischen Primitive
fehlen. Daher benötigt das Visualisierungsprogramm für jedes Visualisierungs-
konzept ein Hintergrundbild.

• Schwierigkeiten machte auch die nicht vorhandene Unterstützung der Program-
miersprache C# für Ontologiesprachen. Da nur für RDF eine Bibliothek zur Verar-
beitung von Ontologien gefunden werden konnte, mussten die Ontologien in RDF
erstellt werden. RDF ist, im Gegensatz zu OWL, nur für die Modellierung einfacher
Sachverhalte verwendbar. Für die Ontologien, die für diese Diplomarbeit benötigt
wurden, reichen die Modellierungsmöglichkeiten von RDF jedoch aus.

Die Entscheidung, SVG zur Erstellung und Darstellung der Visualisierungen zu verwen-
den muss ambivalent betrachtet werden:
SVG hat sich sehr gut geeignet, um Visualisierungen und auch einzelne Elemente da-
von mit semantischen Metainformationen anzureichern.
Da C# keine Unterstützung zur Bearbeitung von SVG-Dateien bietet, mussten die dafür
benötigten Methoden selbst geschrieben werden.
Die Entscheidung, keinen eigenen SVG-Renderer zu schreiben, sparte viel Zeit bei der
Implementierung, die für die Erarbeitung des theoretischen Konzepts verwendet wer-
den konnte. Das WebBrowser-Steuerelement ist in C# die einzige Möglichkeit, SVG-
Dateien anzuzeigen. Da sich darin aber die Mausposition nicht bestimmen lässt, konnte
es zum Erstellen und Annotieren der Visualisierungen nicht verwendet werden. Aus die-
sem Grund müssen die SVG-Dateien in PNG-Dateien konvertiert werden, um sie dann
in einem PictureBox-Steuerelement anzuzeigen. Das führt zu einem erheblichen Perfor-
manceverlust. Außerdem können die Vorteile von SVG-Dateien nicht genutzt werden.
Da bei der Optimierung der Visualisierung die Mausposition nicht benötigt wird, kann
auf Benutzerseite das WebBrowser-Steuerelement verwendet werden.

Als vorteilhaft hat sich die Verwendung des in Abschnitt 2.4 vorgestellten Schemas
herausgestellt. Ohne dieses Schema wäre vor allem der Einstieg in die Ontologieer-
stellung schwierig geworden.

75

Insgesamt konnte in der vorliegenden Diplomarbeit ein Konzept zur interaktiven, ver-
ständnisorientierten Optimierung von semantisch-annotierten Visualisierungen entwor-
fen und dessen Umsetzbarkeit mittels eines Prototypen gezeigt werden. Abbildung 43
zeigt eine erweiterte Version der Abbildung 11. Der hinzugefügte, grüne Pfeil ist das
Ergebnis des in dieser Diplomarbeit erarbeiteten Konzepts. Der Nutzer kann dadurch
die Visualisierung so lange anpassen, bis er sie richtig verstanden hat. Durch die in-
teraktive Optimierbarkeit können einmal erzeugte Visualisierungen durch verschiedene
Menschen gut verstanden werden. Das Ziel, den Gulf of Evaluation im Bereich Visuali-
sierung zu verringern konnte also erreicht werden.

Abbildung 43: Der Grafik aus dem Abschnitt 2.6.3 konnte der grüne Pfeil hinzugefügt
werden. Der Nutzer kann nun die Visualisierung so lange anpassen, bis
er sie richtig verstanden hat.

76

8. Zusammenfassung und Ausblick

Übergeordnetes Ziel der Diplomarbeit „Interaktive, verständnisorientierte Optimierung
von semantisch-annotierten Visualisierungen“ ist es, den Gulf of Evaluation im Bereich
von Visualisierungen zu verkleinern. Um dieses Ziel zu erreichen, sollte ein Konzept
entworfen werden, mit dem Visualisierungen mit semantischen Metainformationen an-
notiert werden können, um sie interaktiv optimieren zu können. Zusätzlich sollte die
grundsätzliche Umsetzbarkeit des Konzeptes durch Implementierung eines Prototypen
gezeigt werden.
Um die Visualisierungen annotieren zu können, wurden zwei Ontologien entworfen. Ei-
ne der beiden, die Grafik-Ontologie, beschreibt verschiedene Visualisierungskonzepte
und die atomaren Bausteine, aus denen die Visualisierungskonzepte bestehen kön-
nen. Die andere, die Domänen-Ontologie, dient dazu, den Inhalt von Visualisierungen
mit semantischen Metainformationen zu annotieren und muss für den jeweiligen An-
wendungsfall erstellt werden. Es wurde beispielhaft eine Domänen-Ontologie für das
Einsatzszenario Bevölkerungsentwicklung erstellt. Anschließend wurde ein Interakti-
onskonzept entworfen, mit dem Visualisierungen annotiert und anschließend interaktiv
optimiert werden können.

Sowohl das in dieser Diplomarbeit vorgestellte Konzept als auch der Prototyp könn-
ten in Zukunft noch deutlich erweitert werden. In diesem Abschnitt werden einige der
möglichen Erweiterungen beschrieben.
Die Wunschvorstellung wäre eine Software, die automatisch Visualisierungen in ver-
schiedenen Visualisierungskonzepten erstellt. Dies müsste auf Basis einer um beliebi-
ge Visualisierungskonzepte erweiterten Grafik-Ontologie und einer Domänen-Ontologie
für eine beliebige Anwendungsdomäne geschehen. Auf diesen Grundlagen könnten
Daten visualisiert werden. Damit das erreicht werden kann, müssten die Ontologien
deutlich erweitert werden. Vor allem müsste das Problem gelöst werden, wie aus den
Informationen der Ontologien die genaue geometrische Anordnung der Elemente einer
Visualisierung abgeleitet werden kann. Zusätzlich müssten Richtlinien definiert werden,
die festlegen, welche Informationen erweiterte Ontologien enthalten müssen, damit die
Software daraus automatisch Visualisierungen erzeugen kann. In diesen Visualisierun-
gen könnten dann alle Elemente annotiert und ausgetauscht werden, nicht nur durch
den Ersteller hinzugefügte Platzhalter.

Eine mögliche Erweiterung für den Prototypen wäre es, zu ermöglichen, dass Platzhal-
ter mit Detailstufen annotiert werden können. Wie das konzeptionell umgesetzt werden
kann ist in Abschnitt 4.2.4 beschrieben. Die Implementierung der Detailstufen wurde
aus Zeitgründen nicht durchgeführt.

Eine weitere Möglichkeit zur Erweiterung des Prototypen wäre es, dass grafische Ele-
mente nicht nur klassenweise, sondern auch einzeln durch den Benutzer, ausgetauscht
werden können. Dann könnte man eine Visualisierung beispielsweise dahingehend ver-
ändern, dass die steigende Bevölkerungszahl eines Bundeslandes durch einen Pfeil

77

dargestellt wird und die eines anderen Bundeslandes durch ein Plus. Allerdings sollte
vorher untersucht werden, ob dies das Verständnis des Benutzers erleichtert, oder ob
es zu zusätzlicher Verwirrung führt.

Eine Möglichkeit, das Konzept zu erweitern wäre, dass grafische Elemente in verschie-
denen Farben verwendet werden können. Dazu müsste die Grafik-Ontologie um die
gewünschten Farben erweitert werden. Dann könnten eingefügte Platzhalter mit einer
Farbe annotiert werden. Elemente, die diesen Platzhalter ersetzen können, müssten
dieselbe Farbe haben.

Für den Fall, dass sich das Sematic Web durchsetzen wird, dürften sich in Zukunft
deutlich mehr Daten und Informationen finden lassen, die bereits mit semantischen
Metainformationen annotiert sind. Wenn diese Informationen genutzt werden könnten,
müsste nicht für jeden Anwendungsfall eine eigene Domänen-Ontologie entworfen wer-
den. Da sich das Semantic Web jedoch auch über zehn Jahre nach der Veröffentlichung
durch Tim Berners-Lee noch nicht durchgesetzt hat, bleibt abzuwarten, ob der große
Durchbruch noch gelingen wird.
Viele der heutzutage erstellten Daten werden automatisch generiert. Daher wäre es
möglich, die Daten bei der Erstellung automatisch zu annotieren. Dies wäre eine wei-
tere Möglichkeit, um im großen Stil annotierte Daten zu erhalten.

Interessant wäre außerdem zu überprüfen, ob sich das vorgestellte Konzept auch für
Benutzeroberflächen eignen würde. Damit könnte vielleicht ein entscheidender Schritt
in Richtung automatisch generierbarer Benutzeroberflächen getan werden.

78

A. Grafik-Ontologie

Abbildung 44: Die gesamte Grafik-Ontologie. Die durchgezogenen, violetten Pfeile ste-
hen für ’Ist-Unterklasse-Von’, die gestrichelten, orangen Pfeile für ’has-
Element’. Sie ordnen den Visualisierungskonzepten die grafischen Pri-
mitive zu, aus denen sie bestehen.

79

B. Domänen-Ontologie

Abbildung 45: Die Domänen-Ontologie. Die violetten Pfeile stehen für ’Ist-Unterklasse-
Von’, die blauen Pfeile für ’Ist-Instanz-Von’. Zu jedem Bundesland gehö-
ren noch die Bevölkerungszahlen aus den Jahren 2007 und 2009, die
aber aus Gründen der Übersichtlichkeit weggelassen wurden.

80

Abbildungsverzeichnis

1. Erzeugte Datenmengen in den Jahren 2005, 2010 und 2015 (Prognose)
in Exabyte [JG11]. 6

2. Im Web 1.0 gab es eine klare Trennung zwischen Produzent und Kon-
sument (oben), seit dem Web 2.0 kann jeder Produzent und Konsument
sein (Mitte), im Semantic Web können Programme Informationen aufbe-
reiten (unten) [wcw]. 9

3. Im Web (links) liegt der Fokus für Verbesserungen auf Seite der anfra-
genden Server, im Semantic Web (rechts) auf Seite der Dokumente. . . . 11

4. Zu sehen ist ein RDF-Graph, der aussagt, dass die Diplomarbeit (links
oben) mit dem Titel ’Interaktive...’ (links unten) von einem Studenten
(rechts oben) mit dem Namen ’Hannes Pfannkuch’ (rechts unten) ge-
schrieben wurde. 13

5. Da die Unterklassendefinition in RDFS transitiv ist, ist die Klasse ’Student
Universität Stuttgart’ automatisch Unterklasse von ’Mensch’. 14

6. Zu sehen ist ein RDFS-Graph, der aussagt, dass es sich bei ’geschrie-
benVon’ um ein Property handelt, dessen Subjekte vom Typ ’Diplomar-
beit’ und dessen Objekte vom Typ ’Student’ sein müssen. 16

7. Die Sprachversion OWL Full enthält alle Sprachelemente von RDF(S)
und OWL und ist unentscheidbar. OWL DL ist eine entscheidbare Unter-
menge von OWL Full. OWL Lite ist eine stark eingeschränkte Untermen-
ge von OWL DL. 17

8. Iterativer Workflow zur Erstellung von Ontologien, detaillierte Beschrei-
bung siehe folgender Text. 18

9. Zu sehen ist die Visualisierungspipeline. Als erstes werden die Rohda-
ten aus verschiedenen Quellen beschafft und durch Filtern zu den Vi-
sualisierungsdaten transformiert. Die Visualisierungsdaten werden auf
renderbare Objekte abgebildet. Abschließend werden diese Objekte zu
Bildern oder Videos zusammengefasst [Ert11]. 21

10. Zu sehen ist die Entwicklung der Ein- und Ausgabetechniken von Teletype-
Interfaces über alphanumerische Dialogsysteme, grafische Benutzungs-
schnittstellen, multimediale Benutzungsschnittstellen bis hin zu multimo-
dalen und virtuellen Benutzungsschnittstellen [Sch09]. 22

11. Unterschiede in den mentalen Modellen von Ersteller und Nutzer sind
häufig der Grund für Verständnisprobleme bei der Betrachtung von Vi-
sualisierungen [MR11]. 24

12. Links eine Beliebig skalierbare Vektorgrafik, rechts eine Rastergrafik, die
durch das Zoomen stark verpixelt wirkt. 26

13. Auf Basis der Daten (links) werden die Visualisierungen (in der Mitte) er-
stellt. Der Benutzer (rechts) kann die Visualisierungen interaktiv anpassen. 34

81

14. Workflow, der die Erstellung von optimierbaren Visualisierungen ermög-
licht. Zuerst werden die Ontologien benötigt (links), dann werden die Vi-
sualisierungen erstellt und annotiert (Mitte), die anschließend optimiert
werden können (rechts). 35

15. Konzeptueller Entwurf einer Grafik-Ontologie. Es werden verschiedene
Konzepte definiert und verschiedene grafische Primitive in Klassen un-
terteilt. Die gestrichelten Pfeile veranschaulichen, aus welchen Primiti-
ven die Konzepte bestehen, die durchgezogenen Pfeile stehen für ’Ist-
Unterklasse-Von’. Die rechteckigen, optionalen Attribute können Primiti-
ve genauer spezifizieren. 36

16. Ein Balkendiagramm kann mit Hilfe von Informationen aus der Ontolo-
gie und den Daten erzeugt werden. Der Ausschnitt aus der Ontologie
(oberer Teil) definiert, dass ein Balkendiagramm aus X-Achse, Y-Achse
und Rechtecken besteht. Rechtecke berühren die X-Achse und haben
die Parameter Höhe, Breite und Abstand. 38

17. Die zur Verfügung stehenden grafischen Elemente werden annotiert (links).
Der Visualisierung werden mit Annotation und Detailstufe annotierte Platz-
halter hinzugefügt oder vorhandene Elemente werden annotiert (rechts).
. 39

18. Zu sehen ist eine Tree-Map, die die Bevölkerung der deutschen Bundes-
länder darstellt. Je mehr Einwohner ein Bundesland hat, desto größer
das jeweilige Rechteck. 41

19. Zwei Kartenausschnitte der Region Stuttgart mit unterschiedlichem Maß-
stab. Auf dem linken ist der Detailgrad deutlich niedriger, daher sind viele
Städte nur rechts zu sehen [map]. 42

20. Ausschnitt aus der Domänen-Ontologie über die Bevölkerungsentwick-
lung deutscher Bundesländer zwischen 2007 und 2009. Zu sehen sind:
fünf Tendenzen, die die Bevölkerungsentwicklung charakterisieren, zwei
Bundesländer und ihre Bevölkerungszahlen. 45

21. Zerlegung eines Scatter-Plots in grafische Primitive 45
22. Beispiele verschiedener Visualisierungskonzepte: Landkarte (links oben),

Balkendiagramm (rechts oben), Tree-Map (links unten), Graph (unten
Mitte), Scatter-Plot (rechts unten) . 46

23. Ausschnitt der verwendeten Grafik-Ontologie. Es werden drei Konzepte
definiert (unterer, grüner Bereich) und verschiedene grafische Primitive
in zwei Klassen unterteilt. Die gestrichelten Pfeile veranschaulichen, aus
welchen Primitiven die Konzepte bestehen, die durchgezogenen Pfeile
stehen für ’Ist-Unterklasse-Von’. Das Primitiv „Rechteck“ wird durch zu-
sätzliche Attribute beschrieben (ganz rechts). 48

24. Workflow-Diagramm zur Erstellung einer Visualisierung. Der Ersteller muss
die Bundesländer annotieren, sinnvolle Visualisierungskonzepte auswäh-
len und diese anschließend mit Platzhaltern anreichern. 49

82

25. Workflow-Diagramm zur Erstellung einer Visualisierung. Der Benutzer
wählt ein Visualisierungskonzept aus und kann in diesem grafische Ele-
mente austauschen. 50

26. Mockup der Ersteller-Tabs. In Bereich 1 wird die Visualisierung ange-
zeigt, in der Tabelle im Bereich 2 können die Bundesländer annotiert wer-
den, in Bereich 3 werden die sinnvollen Visualisierungskonzepte ausge-
wählt und in Bereich 4 wird das zu bearbeitende Visualisierungskonzept
ausgewählt. 52

27. Mockup der Benutzer-Tabs. In Bereich 1 wird die Visualisierung ange-
zeigt, in Bereich 2 können grafische Elemente ausgetauscht werden und
in Bereich 3 kann das Visualisierungskonzept ausgetauscht werden. . . . 53

28. Architekturüberblick, angelehnt an MVC Paradigma. Zu sehen sind die
drei Komponenten Model, View und Controller und die Aufgaben, die sie
erfüllen. 55

29. Klassendiagramm der Komponente Model 57
30. Links ist ein Ausschnitt aus der Domänen-Ontologie, rechts die Zuord-

nung zur Klasse Date zu sehen. 58
31. Links ist ein Ausschnitt der Grafik-Ontologie, rechts die Zuordnung zur

Klasse VisConcept zu sehen. 59
32. Klassendiagramm der Klasse VisModel. 60
33. Klassendiagramm der Komponente Controller mit den Klassen Control-

ler, SvgReaderWriter und RdfReader. Die Parameter der Methoden wur-
den in der Abbildung aus Platzgründen weggelassen. 61

34. Zu sehen ist das Hauptfenster mit aktivem Ersteller-Tab. In diesem Bei-
spiel ist eine Tree-Map zur Bearbeitung (1) und die Tabelle zum Annotie-
ren der Bundesländer (2) zu sehen. 64

35. Zu sehen ist die creatorPictureBox. Aktuell ist das rot umrandete Element
ausgewählt. Daher ist ein AddElementForm-Dialog geöffnet, in dem Baden-
Württemberg ausgewählt ist. 65

36. Datentabelle. Alle Bundesländer, außer Brandenburg und Bremen wur-
den bereits annotiert. 1.Spalte: Namen der Bundesländer, 2. Spalte: Be-
völkerungszahl 2007, 3. Spalte: Bevölkerungszahl 2009, 4.Spalte: Bun-
desländer können annotiert werden. 66

37. Im linken Bereich wurden Tree-Map und Karte als verwendbare Konzepte
ausgewählt, im rechten ist Tree-Map ausgewählt, dadurch wird in der
creatorPictureBox eine Tree-Map angezeigt. 67

38. Zu sehen ist das Hauptfenster mit aktivem Benutzer-Tab. Tree-Map ist
als Visualisierungskonzept ausgewählt (1), grafische Elemente für Anno-
tation ’Ansteigend’ können geändert werden (2). 68

39. Bereich zum Austausch von grafischen Elementen. Aktuell wurde für die
Klasse ’Ansteigend’ ein Plus ausgewählt. 68

40. Bereich zum Austausch des Visualisierungskonzepts 69

83

41. Das Einfügen eines Platzhalters erfolgt in drei Schritten: Überprüfen, ob
ein vorhandener Platzhalter angeklickt wurde (1), Platzhalter in SVG-
Datei einbinden (2), PNG neu zeichnen (3). 70

42. Der Austauschen grafischer Elemente erfolgt in drei Schritten: Dictiona-
ry ActiveSnippets im Model aktualisieren (1), SVG-Datei anpassen (2),
WebBrowser aktualisieren (3). 72

43. Der Grafik aus dem Abschnitt 2.6.3 konnte der grüne Pfeil hinzugefügt
werden. Der Nutzer kann nun die Visualisierung so lange anpassen, bis
er sie richtig verstanden hat. 76

44. Die gesamte Grafik-Ontologie. Die durchgezogenen, violetten Pfeile ste-
hen für ’Ist-Unterklasse-Von’, die gestrichelten, orangen Pfeile für ’has-
Element’. Sie ordnen den Visualisierungskonzepten die grafischen Pri-
mitive zu, aus denen sie bestehen. 79

45. Die Domänen-Ontologie. Die violetten Pfeile stehen für ’Ist-Unterklasse-
Von’, die blauen Pfeile für ’Ist-Instanz-Von’. Zu jedem Bundesland gehö-
ren noch die Bevölkerungszahlen aus den Jahren 2007 und 2009, die
aber aus Gründen der Übersichtlichkeit weggelassen wurden. 80

84

Literatur

[Con09] World Wide Web Consortium. Owl 2 web ontology language.
http://www.w3.org/TR/owl2-overview/, 2009.

[Ert11] Thomas Ertl. Visualization. 2011.

[Gam09] E. Gamma. Design Patterns: Elements of Reusable Object-Oriented Soft-
ware. Addison-Wesley professional computing series. Addison-Wesley,
2009.

[GPCFL04] Asuncion Gomez-Perez, Oscar Corcho, and Mariano Fernandez-Lopez.
Ontological Engineering : with examples from the areas of Knowledge Ma-
nagement, e-Commerce and the Semantic Web. Springer, July 2004.

[Gru93] Thomas R. Gruber. A translation approach to portable ontology specifica-
tions. Knowl. Acquis., 5:199–220, June 1993.

[Hor07] Ian Horrocks. Semantic web: the story so far. In Proceedings of the 2007
international cross-disciplinary conference on Web accessibility (W4A),
W4A ’07, pages 120–125, New York, NY, USA, 2007. ACM.

[htta] http://www.duden.de/rechtschreibung/Annotation.

[httb] http://www.duden.de/rechtschreibung/Ontologie.

[httc] http://www.duden.de/rechtschreibung/Semantik.

[httd] http://www.webopedia.com/TERM/V/vector_graphics.html.

[JG11] David Reinsel John Gantz. Extracting value from chaos.
http://www.emc.com/digital_universe 2011.

[KP88] Glenn E. Krasner and Stephen T. Pope. A cookbook for using the model-
view controller user interface paradigm in smalltalk-80. Journal of Object-
Oriented Programming, 1(3):26 – 49, August 1988.

[map] maps.google.com.

[Mar06] Gary Marchionini. Exploratory search: from finding to understanding. Com-
mun. ACM, 49:41–46, April 2006.

[MR11] Thomas Ertl Michael Raschke, Philipp Heim. Interaktive verständnisorien-
tierte optimierung von semantisch-annotierten visualisierungen. 2011.

[Nor83] Donald Norman. Some observations on mental models. pages 7–14, 1983.

[Nor86] Donald Norman. User Centered System Design. Lawrence Erlbaum As-
sociates, 1986.

85

[PH08a] Sebastian Rudolph York Sure Pascal Hitzler, Markus Krötzsch. Semantic
web - grundlagen. pages 1–10, 2008.

[PH08b] Sebastian Rudolph York Sure Pascal Hitzler, Markus Krötzsch. Semantic
web - grundlagen. pages 125 – 155, 2008.

[RBH90] D.A.McNabb R. B. Haber. Visualization idioms: A conceptual model for
scientific visualization systems. Visualization in Scientific Computing, pa-
ges 74–93, 1990.

[RF94] W. Ribarsky and J.D. Foley. Next-generation data visualization tools. pages
102–127, 1994.

[Sch09] Thomas Schlegel. Usability and interaction. 2009.

[Shn96] Ben Shneiderman. The eyes have it: A task by data type taxonomy for
information visualizations. Visual Languages, IEEE Symposium on, 0:336,
1996.

[Stu09] Heiner Stuckenschmidt. Erstellen von ontologien. In Ontologien: Konzep-
te, Technologien und Anwendungen, Informatik im Fokus. Springer Berlin
Heidelberg, 2009.

[TBL01] Ora Lassila Tim Berners-Lee, James Hendler. The semantic web: a new
form of web content that is meaningful to computers will unleash a revolu-
tion of new possibilities. Scientific American, 2001.

[w3c] http://www.w3c.org.

[wcw] www.rockingteam.com/wp-content/uploads/2009/05/semantic web.gif.

[YHC03] Tyng-Ruey Chuang Yi-Hong Chang. Embedding domain semantics in svg,
2003.

Alle Online-Quellen wurden zuletzt am 18.01.2011 geprüft.

86

Erklärung

Hiermit versichere ich, diese Arbeit selbständig
verfasst und nur die angegebenen Quellen
benutzt zu haben.

(Hannes Pfannkuch)

87

	Einführung
	Motivation
	Aufbau

	Grundlagen
	Ontologie
	Semantic Web
	Ontologiesprachen
	Simple HTML Ontology Extension
	Ontology Inference Layer/Language
	DAML + OIL
	Resource Description Framework
	Resource Description Framework Schema
	Web Ontology Language

	Ontologieerstellung
	Visualisierung
	Human-Computer Interaction
	Entwicklung der HCI
	Gulf of Execution und Gulf of Evaluation
	Mentale Modelle und daraus resultierende Probleme im Bereich der Visualisierung

	Vektorgrafik
	Vektorgrafiken allgemein
	Scalable Vector Graphics

	Verwendete Technologien

	Aufgabenstellung und Lösungsansatz
	Aufgabenstellung
	Lösungsansatz

	Konzept
	Einsatzszenarien
	Einsatzszenario Bevölkerungsentwicklung
	Einsatzszenario Automobilvisualisierung

	Visualisierungen interaktiv optimieren
	Ontologien zur Annotation
	Annotieren von Visualisierungen
	Von der Ontologie zur Visualisierung
	Interaktionskonzept zur interaktiven Optimierung von Visualisierungen

	Umsetzung des Konzepts
	Erstellung der Ontologien
	Domänen-Ontologie
	Grafik-Ontologie
	Lücke zwischen Ontologie und geometrischer Anordnung

	Interaktionskonzept
	Interaktionskonzept zum Erstellen einer Visualisierung
	Interaktionskonzept zur interaktiven Optimierung einer Visualisierung
	Allgemeine Funktionen

	Prototyp
	Architektur
	Model
	View
	Controller

	Benutzeroberfläche
	Ersteller-Tab
	Benutzer-Tab

	Sequenzdiagramme
	Einfügen eines Platzhalters
	Austauschen grafischer Elemente

	Systemvoraussetzungen
	Ordnerstruktur
	Grafische Elemente
	Visualisierungshintergründe
	Ontologien

	Evaluierung
	Zusammenfassung und Ausblick
	Grafik-Ontologie
	Domänen-Ontologie

