Institut fiir Parallele und
Verteilte Systeme
Abteilung Parallele Systeme

Universitat Stuttgart

UniversitatsstraBe 38
D-70569 Stuttgart

Diplomarbeit Nr. 3222

Eigenspannungsmessung an
Hochbelastbaren, Keramischen

Beschichtungen
Jinxu Wu
Studiengang: Informatik
Priifer: Prof. Dr. Sven Simon
Betreuer: Lars Rockstroh
begonnen am: 25. Juli, 2011
beendet am: 20. Februar, 2012

CR-Klassifikation: D.2.3, F.3.1, Hb5.2

Inhaltsverzeichnis

1. Einleitung

[2.3. DMS-Bruckenschaltungen| 0000000000000
[2.4. Eigenspannungsmessvertahren|. 0oL

3. Hardware
[3.1. Vishay Modell P3|. oo oo
3.2, Steuerkarte USBMotion3xITl

(4. Basistechnologien|
[4.1. Softwarekomponenten in Form von DLLs
{4.2. ActiveX-Steuerelemente (ActiveX Controls)|
[4.2.1. ActiveX-Steuerelement registrieren|o 0L

4.4, Visual CH4. o e
4.4.1. Verwalteter Klassentyp|
4.4.2. Verwalteter und nicht verwalteter Codel
|4.4.3. Indizierte Eigenschaften|
|4.4.4. Generische Auflistungsklasse List<T>|

0. Entwurt

[5.2.1. Bestimmen der Punkte aufgrund der Symmetrie|,

[6. Implementierung|
[6.1. Einrichten der Entwicklungsumgebungf
[6.2. Implementierte Klassen|,
6.3. Benutzerschmittstellel o o
[6.4. Testergebnissel.

12
12
14

16
16
17
18
18
19
20
22
22
23
24
25

27
27
28
29
30

Inhaltsverzeichnis

[7. Zusammenfassung| 38
[A. Eigenschaften und Methoden von VMMP3Control.dll| 39
[B. Funktionen von USBM3X32.DLL und Testprogramm| 42
B.1., USBMJ3X32 DLIL-Funktionen| 42
[B.2. Testprogramm| L 46
[C. Quellext vom Anwendungsprogramm Messdateneinlesen und Schrittmotor- |
[_steuern| 49
[C.1. USBMotiondx.hl. oo o 49
|C.2. USBMotiondx.cpp|« . o o o o o 50
C.3. Forml.hl 52
IC.4. VP3undUSBMotiondx.cpp| oo 63
[D.Literaturverzeichnis| 65

Abbildungsverzeichnis

[2.1. Charakteristische Bauform von FolieDMS1 7
[2.2. Wheatstonesche Briickenschaltungl 9
|3.1. Frontplatte von Vishay Modell P3| 13
13.2. Anschlussschemata fur Viertel-, Halb- und Vollbriickenschaltungl 13
[3.3. Schrittmotorstenerkarte USBMotion3XIIl. 14
[3.4. USBMotion3X IT Benutzerschnittstellel 15
4.1. ActiveX-Verweiseigenschaften| 19
4.2. VMMP3Control Library| 20
.1, Viertelkreisbahn|o 28
[5.2. Symmetrie der Kreisbahn| 000000 29
[6.1. Benutzerschnittstellel L o 36
[6.2. Messwerte nach Widerstandsanderungen| 36
16.3. Die Koordinaten der ausgewahlten Punkte aut der ersten Viertelkreisbahn |

mit r = 0,095 mm (19 Schritte) 37

1. Einleitung

1.1. Motivation und Aufgabenstellung

Die thermische und mechanische Belastbarkeit einer Vielzahl von Bauteilen wird heu-
te durch das Auftragen keramischer Schichten erheblich erhéht. Die Haltbarkeit einer
Beschichtung ist im Wesentlichen wieder abhéngig von den Eigenspannungen, die beim
Herstellungsprozess zwischen Schicht und Bauteil sowie in der Beschichtung entstehen.
Um den Eigenspannungszustand eines Bauteils zu beurteilen, sollen zuerst in ihm vor-
handene Eigenspannungen gemessen werden.

Zur Messung von Eigenspannungen wird haufig das inkrementelle Bohrlochverfahren ver-
wendet. Die durch das Bohren an der Oberfliche des Bauteils ausgelosten Dehnungen
werden mit Hilfe von Dehnnungsmessstreifen gemessen. Die Eigenspannungen, die vor
dem Bohren in der Umgebung des Loches vorhanden waren, kdnnen dann aus den gemes-
senen Dehnungen abgeleitet werden. Es existiert am Institut fir Fertigungstechnologie
keramischer Bauteile der Universitit Stuttgart ein solcher Aufbau zur Eigenspannungs-
messung mit dem Bohrlochverfahren.

Das Ziel dieser Diplomarbeit ist es, die elektrischen Komponenten des existierenden
Aufbaus auszutauschen und den mechanischen Teil dieses Aufbaus weiter zu verwenden.
Hierzu soll ein Anwendungsprogramm erstellt werden, welches die folgenden Aufgaben
erledigt:

e Erfassen von Dehnungen an der Oberfliche des Bauteils mit Hilfe von Dehnnungs-
messstreifen und dem USB-Messgerat Vishay Modell P3. Die Messwerte sollen vom
Messgeréit in den Computer eingelesen, in einer CSV-Datei gespeichert und in der
Benutzerschnittstelle angezeigt werden.

e Steuern drei Schrittmotoren fiir X-, Y- und Z-Achse tber die USB-Steuerkarte
Coptonix USBMotion3xII.

e Erzeugen einen Satz Befehle, die iiber die USB-Steuerkarte die Schrittmotoren fiir
X- und Y-Achse steuern, damit eine Kreisbahn mit dem vom Benutzer eingegebe-
nen Radius gefrést wird. Wird die Kreisbahn in inkrementellen Schritten vertieft,
so soll das Programm in der Lage sein, zu erkennen, ob nach jeder Vertiefung die
Messwerte von den eingesetzten Messkanélen stabil sind.

Das Anwendungsprogramm soll unter gingigen Windows Betriebssystemen wie Windows
7 oder Windows XP lauffihig sein und iiber eine Benutzerschnittstelle verfiigen, iiber
die der Benutzer den Fraser positionieren, den Radius der Kreisbahn eingeben und den
Messvorgang starten kann. Die aktuelle Position des Frasers und die Koordinaten der fiir
das Friasen der Kreisbahn ausgewéhlten Punkte sollen auch in der Benutzerschnittstelle
angezeigt werden.

1. Einleitung

1.2. Aufbau der Arbeit

Diese Arbeit gliedert sich in sieben Kapitel:

In Kapitel 2 wird zunichst ein Uberblick iiber die Entstehung von Eigenspannungen
in einem Bauteil gegeben. Bevor das Eigenspannugsmessverfahren Bohrlochverfahren
vorgestellt wird, werden die bei diesem Verfahren verwendeten Dehnungsmessstreifen
(DMS) und DMS-Briickenschaltungen vorgestellt.

In Kapitel 3 werden das bei der Durchfiihrung des Bohrlochverfahrens einzusetzende
USB-Messgerat Vishay Modell P3 und die ebenfalls dabei einzusetzende USB-Steuerkarte
USBMotion3xII vorgestellt.

In Kapitel 4 werden die dieser Arbeit zugrunde liegenden Softwaretechnologien vorge-
stellt. Es betrifft vor allem Dynamic Link Library (DLL), ActiveX-Steuerelement, .Net
Framework und C++4/CLI-Schnittstelle.

In Kapitel 5 wird zunédchst der Arbeitsablauf des zu erstellenden Anwendungsprogram-
mes bei einem Messvorgang beschrieben. Anschlielend werden fiir zwei wichtige Aufga-
ben, die bei einem Messvorgang erledigt werden miissen, geeignete Losungen erarbeitet.

In Kapitel 6 wird zunéchst die eingerichtete Entwicklungsumgebung beschrieben. An-
schlieend werden die implementierten Klassen und deren Methoden néher beschrieben.
Schlielich werden die Benutzerschnittstelle und die Testergebnisse des Anwendungspro-
grammes vorgestellt.

Eine Zusammenfassung der wichtigen Grundlagen und der geleisteten Arbeit sowie ein
Ausblick auf mogliche Verbesserungen werden in Kapitel 7 gegeben.

In Anhang A werden die vom ActiveX-Steuerelement VMMP3Control zur Verfiigung
gestellten Eigenschaften und Methoden vorgestellt. In Anhang B werden die Funktio-
nen der DLL USBM3x32 vorgestellt. Der Quelltext des Anwendungsprogrammes wird
in Anhang C aufgelistet.

2. Grundlagen der Eigenspannungsmessung

2.1. Eigenspannungen

Unter Eigenspannungen versteht man mechanische Spannungen in einem Bauteil bzw.
einem abeschlossenen System, auf das keine duflieren Krifte und Momente wirken und
das sich in einem rdumlich und zeitlich konstanten Temperaturfeld befindet. Die mit
den Eigenspannungen verbundenen inneren Kréfte und Momente sind im mechanischen
Gleichgewicht, das Bauteil bzw. das System weist einen sog. Eigenspannungszustand auf.

Eigenspannungen entstehen immer durch inhomogen verteilte elastische und elastisch-
plastische Verformungen des Bauteils. Bei der Herstellung sind z.B. Gieflen, Schwei-
Ben, Bearbeiten, Beschichten oder Warmebehandeln dafiir verantwortlich. Im Betrieb
sind z.B. Beanspruchungen und Temperaturfelder. Fiir die metall-keramischen Schicht-
verbundbauteile sind v.a. die unterschiedlichen elastschen Eigenschaften der einzelnen
Werkstoffschichten die Entstehungsursache von Eigenspannungen.

Figenspannungen werden nach ihrer Reichweite im Werkstoff in Eigenspannungen 1., 2.
und 3. Art eingeteilt [3]:

e Die Eigenspannungen 1. Art sind wirksam iiber grofiere Werkstoftbereiche bzw.
iiber mehrere Korner. Sie verursachen bei der Storung des mechanischen Gleichg-
wichts immer makroskopische Mafidnderungen.

e Die Eigenspannungen 2. Art sind wirksam tiber kleine Werkstoffbereiche (Korn-
bereiche, d.h. von Korn zu Korn). Sie konnen bei der Stérung des mechanischen
Gleichgwichts makroskopische Maflanderungen verursachen.

e Die Eigenspannungen 3. Art sind wirksam tiber kleinste Werkstoffbereiche (meh-
rere Atomabsténde). Sie verursachen bei der Storung des mechanischen Gleichg-
wichts keine makroskopischen Maflinderungen.

In einem Bauteil tiberlagern sich alle drei Eigenspannungsarten [I4]. Von technischer Be-
deutung sind in erster Linie die Eigenspannungen 1. Art, da sie immer makroskopische
Mafldanderungen verursachen, die die Lebensdauer, die Formstabilitdt und das Bruchver-
halten eines Bauteils maf3geblich bestimmen.

Die Uberlagerung der Eigenspannungen mit den Lastspannungen beeinflusst das Festig-
keitsverhalten der Bauteile sowohl im positiven als auch im negativen Sinne, je nachdem,
ob die beiden Spannungsarten in entgegengesetzter Richtung oder in gleicher Richtung
wirken.

In den nédchsten Abschnitten wird erklart, wie die Eigenspannungen beim Bohrloch-
verfahren mit Hilfe von Dehnungsmessstreifen und Wheatstonesche Briickenschaltungen
gemessen werden konnen.

2. Grundlagen der Eigenspannungsmessung

2.2. Dehnungsmessstreifen (DMS)

Dehnungsmessstreifen (englisch: strain gauge) sind Messinstrumente zur Dehnungsmes-
sung. Sie verdndern bei Dehnungen oder Stauchungen (negativen Dehnungen) ihren elek-
trischen Widerstand und werden zur experimentellen Bestimmung von Eigenspannungen
des Bauteils eingesetzt.

2.2.1. Aufbau und Formen
DMS sind meist aus Metall oder Halbleiter hergestellt, haben folgende Bauformen[4]:

e Draht-DMS: bestehen aus einem elektrisch isolierenden Tragermaterial und einem
sich darauf befindenden Messgitter bzw.einem flach gewickelten, diinnen, metalli-
schen Widerstandsdraht.

e Folien-DMS: bestehen aus einem elektrisch isolierenden Tragermaterial und einem
Messgitter bzw. einer metallischen Widerstandsfolie (siehe Abb. 2.1). Mittels der
Photo-Atztechnik kann die Form von Widerstandsfolie vielfiltig gestaltet werden.

e Halbleiter-DMS: bestehen aus einem Trigermaterial und einem Halbleiter-Messgitter
(Silizium). Thre Empfindlichkeit sind vielfach hoher als Metall-DMS. Thre Tempe-
raturstabilitdt sind aber schlechter.

a Trigerfolie
[Ty b Messgitter
¢ Anschliisse
[d wirksame Messgitterlinge

e —————

Abbildung 2.1.: Charakteristische Bauform von Folie-DMS

Wie in der Abb. 2.1 gezeigt, ist die Leiterbahn méanderférmig ausgefithrt. DMS kénnen
damit einen ausreichend hohen Widerstandswert erreichen. Die vielen parallelen Leiter-
stiicke verstdrken auch den Effekt der Widerstandsinderung durch Dehnung. An den
Enden des Messgitters sind 2 Anschlussdrihte befestigt.

Der Nennwiderstand eines DMS ist der Widerstand zwischen seinem beiden Anschliis-
sen im unbelasteten Fall. DMS werden mit verschiedenen Nennwiderstandswerten her-
gestellt. Typische Werte sind 120, 350, 700 und 1000 Ohm.

Werden auf einem Trager mehrere Messgitter in verschiedener Richtung nebeneinander
oder iibereinander angeordnet, so entsteht eine DMS-Rosette. Fiir mehrachsige Messun-
gen kommen die DMS-Rosetten zum Einsatz.

2. Grundlagen der Eigenspannungsmessung

2.2.2. Funktionsweise

Die Dehnungsmessung mit DMS beruht auf dem von Wheatstone und Thomson gefun-
denen Dehnungs-Widerstands-Effekt elektrischer Leiter. Der Widerstand eines unbelas-
teten metallischen Leiters kann man bestimmen durch:

l 4.

R=rg=ree

(2.1)
wobei p den spezifischen Widerstand des Leiers, [die Leiterlange und d den Durchmesser
des Leiters bezeichnet.

Die Widerstandséanderung des Leiters durch Zug, Druck, Biegung oder Torsion ist dar-

gestellt durch:

OR OR OR
AR=Z"Ap+ S8 AT+ S5 A 2.2
R 9 p+ 7l l+8d d (2.2)

Dividiert man diese Gleichung durch R, so erhélt man die relative Widerstandsénderung:

AR Ap Al 2-Ad
— =4 — - — 2.
R P + l d (2:3)
Die relative Widerstandsdanderung ist also von der Léngs- und der Querdehnung abhéan-
gig. Seien

Al Ad
€= — und €gq=—F7=—Jb-€ (2.4)
l d
Somit erhalt man:
A A

wobei k, der sogenannte k-Faktor, die Dehnungsempfindlichkeit darstellt:
A
k==L 41+2-p (2.6)
p-e

mit
€ : relative Langendnderung
€q : relative Querschnittsanderung
= materialspezifischer Zusammenhang zwischen € und ¢,

Der k-Faktor gibt also das Verhéltnis der relativen Widerstandsdnderung % zur Deh-
nung € an. Der Wert von k-Faktor wird experimentell ermittelt.

Der Widerstand von Metallischen DMS wird also durch ihre Lingen- und Querschnitts-
dnderung verdndert. Wird ein DMS gedehnt, so nimmt sein Widerstand zu. Wird er
gestaucht, so nimmt sein Widerstand ab.

DMS werden mit einem spezielen Klebstoff auf dem Messobjekt befestigt. Die Dehnungen
an der Oberflache des Messobjekts werden iiber den Klebstoff und das Trégermaterial
auf die Messgitter {ibertragen und fithren dazu, dass DMS ihren Widerstand verdndern.

2. Grundlagen der Eigenspannungsmessung

2.3. DMS-Briickenschaltungen

DMS werden iiblicherweise in Wheatstonesche Briickenschaltungen eingebaut, damit ihre
kleinen Widerstandsénderungen in die leicht zu messenden Spannungsinderungen um-
gewandelt werden. Man kann einen, zwei oder alle vier Zweige einer Briickenschaltung
mit DMS besetzen und bezeichnet diese Briickenschaltung dann auch als Viertel-, Halb-
oder Vollbriicke.

Die in Abb.2.2 dargestellte Briickenschaltung besteht aus vier Widerstdnden R1 bis

T Up:Speisespannung

: U:Ausgangs-

Ry R spannung

(Messsignal)
Uga
' ® O - O @
U B
Ry U R, |Uy

Abbildung 2.2.: Wheatstonesche Briickenschaltung

R4 und ist von der Gleichspannungsquelle Up gespeist. Fiir die beiden Spannungsteiler
R1, Ry und Rs3, R4 gilt:

R1 R4

Uy =Up- - d U=Up ———+
! B R1+R2 o 4 B R3+R4

2.7)

Die Differenz der Spannungen Uy und Uy ist die Messspannung U 4 bei der hochohmigen,
stromlosen Messung;:

Ry Ry >

— 2.8
Ri+Ry R3+Ry (28)

UA:Ul—U4:UB-(

Sind R1, Ro, R3 und R4y DMS mit gleichem Nennwiderstand R, dann gilt fiir R;, ¢ = 1..4,
bei Dehnungen:

AR;
Ri—R—I—ARZ‘_R-(l-F sz)_R-(l—FTi) (2.9)
wobei r; = Agi = ke, so erhélt man:
14+7r 1417y >
Uy=Ug- — 2.10
ATEB (2+r1+r2 2473474 (2.10)

2. Grundlagen der Eigenspannungsmessung

Da die relative Widerstandsédnderungen von metallischen DMS sehr klein sind, gilt die

Néaherug ﬁ ~ 1 — r;. Damit kann die Formel (3.10) vereinfacht werden zu:
U U
UA:TB-(T1—T2+7“3—T4):TB'k-(61—62+63—64) (2.11)

Die Formel (2.11) weist folgende Vorteile der DMS-Briickenschaltung bei der Dehnungs-
messung auf:

e Im unbelasteten Fall ist die Ausgangsspannung U, (Messsignal) gleich Null.

e Die temperaturbedingte Widerstandsdnderungen in der Briickenschaltung lassen
sich kompensieren.

e Die Ausgangsspannung U4 ist proportional zu den gemessenen Dehnungen an der
Oberflache des Messobjekts.

Bei der Viertelbriicke sind €5 = €3 = ¢4 = 0, bei der Halbbriicke sind €3 = ¢4 = 0. Bei
der Vollbriicke gilt U4 = Upg - k - ¢, falls €¢; und e3 durch Dehnung entstehen, es und €4
durch Stauchung und sie alle betragsgleich sind.

Die Festwiderstdnde Rs3, R4 und bei der Viertelbriicke auch Ry sowie die Spannungs-
quelle Up sind schon im in dieser Arbeit verwendeten Dehnungsmessgerdt Vishay P3
enthalten, so dass in der Praxis die am Messobjekt befindlichen DMS direkt an dieses
Messgerat angeschlossen werden konnen.

Nachdem die Ausgangsspannung U4 auf eine ausreichende Hohe verstarkt und digitali-
siert wurde, kann sie in einen Rechner eingelesen und weiterverarbeitet werden.

Wie eine DMS-Viertelbriicke in der Praxis zum Einsaz kommt, ist in [I2] vorgestellt.

2.4. Eigenspannungsmessverfahren

Zur Eigenspannungsmessung gibt es verschiedene Verfahren, die sich nach dem Zersto-
rungsgrad des Bauteils durch das jeweilige Messverfahren in zerstérende, teilzerstorende
und zerstorungsfreie Verfahren einteilen lassen[3].

In der Industrie und der Forschung wird zur Messung von Eigenspannungen 1. Art hau-
fig das Bohrlochverfahren verwendet. Es ist ein teilzerstorendes Messverfahren, genormt
und relativ einfach durchzufiihren. Im folgenden werden das Messprinzip und die Durch-
fiihrung dieses Verfahren beschrieben.

Wird an einer Messstelle eines Bauteils durch das Bohren etwas eigenspannungsbehafte-
tes Material entfernt, wird dadurch das innere mechanische Gleichgewicht gestort, was
an der Oberfliche des Bauteils um das Bohrloch Dehnungen auslésen wird. Mit Hilfe der
gemessenen Dehnungen kann der zuvor an der Messstelle vorhandene Eigenspannungs-
zustand berechnet werden.

Erfolgt das Bohren inkrementell bzw. schrittweise, so kénnen die Dehnungsdnderungen
als Funktion der Bohrtiefe gebildet werden. Mit Hilfe dieser Funktion kann die Eigen-
spannungstiefenverteilung berechnet werden [7].

10

2. Grundlagen der Eigenspannungsmessung

Bei der Durchfithrung dieses Verfahrens geht man folgendermaflen vor: Zuerst wird eine
DMS-Rosette aus drei Messgitter an einer interessierenden Stelle eines zu untersuchenden
Bauteils installiert, die Messgitter werden an eine Dehnungsmessbriicke angeschlossen.
Dann wird eine kleine Bohrung an dieser Stelle, zentrisch zur DMS-Rosette, eingebracht.
Dazu wird ein rotierende Friser eingesetzt, dessen Vorschub normalerweise durch den
Schrittmotor erfolgt. Die beim schrittweisen Einbringen der Bohrung im Bauteil ausge-
l6sten Dehnungsdnderungen werden mit der DMS-Rosette in drei Richtungen erfasst.

Eine ausfiihrliche Beschreibung dieses Verfahrens ist in [3] und [I3] gegeben.

In der Praxis, um Dehnungsénderungen auszulésen, kann iibrigens in der Mitte der DMS-
Rosette eine Kreisbahn gefrést und diese schrittweise vertieft werden. Diesen Vorgang
zu steuern, ist eine Aufgabe des zu erstellenden Anwendungsprogrammes.

11

3. Hardware

In diesem Kapitel werden das Dehnungsmessgerat Vishay Modell P3 und die Schrittmo-
torsteuerkarte USBMotion3xII vorgestellt. Die beiden sollen bei der Durchfithrung des
Bohrlochverfahrens eingesetzt werden.

3.1. Vishay Modell P3

Das Modell P3 Strain Indicator and Recorder der Firma Vishay Micro-Measurements
E] ist ein tragbares, batteriegespeistes Prazisionsinstrument zur Messwertaufnahme auf
der DMS-Basis. Es besitzt u.a. folgende Eigenschaften [I1]:

e Vier Eingangskanéle, an die Viertel-, Halb- und Vollbriickenschaltungen ange-
schlossen werden koénnen.

e Eingebaute Erginzungswiderstinde fiir 60€2- bis 2000€2-Halbbriickenschaltungen
sowie 120€2-, 350€2- und 100082-Viertelbriickenschaltungen.

e Ein Speicherkarteneinschub zur Aufnahme von Multimedia-Karte (MMC). Die er-
fassten Messwerte konnen auf der MMC mit einer Aufzeichnungsrate von 1/Se-
kunde bis 1/Stunde gespeichert werden.

e Eine USB Schnittstelle, iiber die die Messwerte von den vier Eingangskanélen so-
wie auf der MMC in den Computer eingelesen werden kénnen.

e Nullabgleich und Kalibrierung automatisch oder manuell.
e Stromversorgung iiber Batterie, USB Schnittstelle oder AC-Adapter.

e Messbereich: +31.000um/m bei K-Faktor = 2,000 mit +1um/m Auflosung
(Statt wm/m wird auf dem Bildschirm pe gezeigt)

Die Abbildung 3.1 zeigt die Frontplatte des Gerétes. Es verfiigt noch iiber eine LCD-
Anzeige, eine Softkeytastatur und einen Analogausgang. Die vier Eingangskanéle sind
mit Klemmanschliissen bestiickt, die einen einfachen und schnellen Drahtanschluss er-
moglichen. Die Abbildung 3.2 zeigt die Anschlussschemata fiir Viertel-, Halb- und Voll-
briickenschaltung. Fiir Viertelbriickenschaltung ist beim Anschluss eine von drei Briicken-
ergdnzungsklemmen (D199, D350 und D;), welche den Nominalwidersténden des DMS
entsprechen, zu wihlen.

Zum Lieferumfang des Gerétes gehort auch ein ActiveX-Steuerelement [10], welches in
unserem Anwendungsprogramm eingesetzt werden soll, um v.a. den Messwert des ge-
wahlten Eingangskanals in Echtzeit in den Computer einzulesen.

"http://www.vishaypg.com/micro-measurements/instruments/p3-list /

12

3. Hardware

Speicherkarten- Eingangs-
USB Interf
n erlace einschub Klemmverbindungsblocks

LCD - -11427 -09536

Ch3 ue Ch4 ue

12212 O/S+

REC OFF

P+S-D D DP-S M1k

120 360 1K

L |
Softkey - Tastatur Net_zadapter— Analogausgang
Eingang

Abbildung 3.1.: Frontplatte von Vishay Modell P3

P T T 71 1] T 117 1 T
P+ S-DDDP-S+7 17+~ P+S DDDP-S+r—a+ P+S DD D P-S+ /’1/—)7

120 350 1000 120 350 1000 120 350 1000

f D Z =
\/ .
Z D
AN N
DIV DM DMS Z = Zugdehnung _ Externe
Zug Druck D = Druckdehnung Kalibrierschaltung

Abbildung 3.2.: Anschlussschemata fiir Viertel-, Halb- und Vollbriickenschaltung

13

3. Hardware

L = 1Gleichspannung
(7 -34 VDC]

o 12C Interface

Motor 2 52

' —U5B Interface

Abbildung 3.3.: Schrittmotorsteuerkarte USBMotion3XII

3.2. Steuerkarte USBMotion3xl|

Der beim Bohrlochverfahren eingesetzte Friaser wird durch drei Schrittmotoren fiir die
X-, Y- und Z-Achse angetrieben. Die Steuerung der Schrittmotoren soll dabei iiber die
USB-Steuerkarte USB Motion 3XII von der Firma Coptonix /| erfolgen. Diese Karte ver-
fiigt iiber drei Schnittstellen zum Anschluss des Schrittmotors und eine 12C-Schnittstelle,
iiber die weitere elektronische Komponenten angeschlossen werden kénnen (Abb. 3.3).
Der Hersteller hat fiir diese Karte eine DLL angeboten, die die Funktionen zur Verwal-
tung der angeschlossenen Komponenten und zur Steuerung der Schrittmotoren bereit-
stellt. Damit muss kein Low-Level Treiber mehr fiir die Steuerung der Schrittmotoren
entwickelt werden [2].

Die am héufigsten verwendeten Funktionen zur Schrittmotorsteuerung sind im folgen-
den kurz beschrieben. Eine Auflistung der verfiigbaren Funktionen und die ausfiihrliche
Beschreibung befinden sich im Anhang A.2.

SetXtarget legt die Schrittzahl fest, die der Schrittmotor 0, 1 oder 2 machen soll.

SetXYZtarget legt die Schrittzahlen fest, die die Schrittmotoren 0, 1 und/oder 2
machen sollen.

SetVmax legt die maximale Geschwindigkeit vom Schrittmotor 0, 1 oder 2 fest.
GetXtarget gibt die Zielposition eines Schrittmotors zuriick.

SetVmax gibt die maximale Geschwindigkeit eines Schrittmotors zuriick.

Beim Festlegen der Schrittzahlen spricht man auch von den Zielpositionen der Schrittmo-
toren. Schreibt die Funktion SetXtarget die Schrittzahl ins Zielposition-Register vom

http://www.coptonix.com/index.html. Statt USB Motion 3XII ist USB Motion 3XIIT im aktuellen
Angebot.

14

3. Hardware

s = -
& UsBMotion3X

Select USE device: IUSE Mation 3% 16/2010/05/02 ;I Infa |

—Motar 1

—Targ.Pogition [absh T arg.Fogition [rell —Act. Pogition——— - Max. Speed— At Speed——
0 0 112 97 -6 M E

\ —Motor

—Targ.Pasition [abs)y T arg.Position [rell— —Act. Position———Max. Speed—Act. Speed—
| [0 429 97 -97 M E

—Motar 3

—Targ.Position [absh T arg.Position [rell —Act. Position——— - Max. Speed— 1 Act. Speed———
0 0 629 97 -97 M E

@ INT O CDGW) RS3 (O «EQS) RS2 (0 «EQE2 (00 RST (0 «EQE
Crswild (O SWRZ O SWL2 () SWR2 O 5wl (0 SwRT

a new device plugged in >=>USB Motion 3X16/2010/05/02< <

Abbildung 3.4.: USBMotion3X II Benutzerschnittstelle

Schrittmotor fiir die X-Achse, so bewegt sich der Schrittmotor in der Ziel-Richtung so-
lange, bis die Differenz zwischen der Zielposition und der aktuellen Position gleich Null
ist. Der Friser bewegt sich dabei in positiver x-Richtung, falls die Schrittzahl positiv ist,
sonst in negativer x-Richtung.

Zur Schrittmotorsteuerung hat der Hersteller auch eine Benutzerschnittstelle angeboten
(Abb.5.4), iiber die der Benutzer die Zielposition, die maximale Geschwindigkeit sowie
andere Parameter wie Betriebsart, Schrittauflosung, die maximale Beschleunigung usw.
festlegen kann. Fir den Fall, dass die Zielpositionen mit Hilfe der DLL festgelegt wer-
den, kénnen die aktuellen Positionen und Geschwindigkeiten von drei Schrittmotoren in
dieser Benutzerschnittstelle angezeigt werden. Das ist besonders hilfreich beim Test von
unserem Anwendungsprogramm.

15

4. Basistechnologien

In diesem Kapitel werden zuerst die dieser Arbeit zugrunde liegenden Softwaretechnolo-
gien vorgestellt. Das sind vor allem Dynamic Link Library (DLL), ActiveX-Steuerelement
und das .Net Framework. Anschliefend werden einige Besonderheiten der C++/CLI-
Schnittstelle, die in dieser Arbeit verwendet werden, beschrieben.

4.1. Softwarekomponenten in Form von DLLs

Softwarekomponenten sind Softwarebauteile, welche in bindrer Form vorliegen und ihre
Dienste ausschliefilich {iber vordefinierte Schnittstellen nach auflien zur Verfiigung stel-
len. Sie kénnen auch die Dienste von anderen Komponenten in Anspruch nehmen. Es
ergibt sich damit die Mdoglichkeit, neue Komponenten oder Anwendungen aus vorhan-
denen Komponenten zusammenzusetzen.

Die ActiveX-Technologie von Microsoft ist neben JavaBeans von JavaSoft auch eine weit-
verbreitete Technologie zur Erstellung von Softwarekomponenten. Die aufgrund dieser
Technologie erstellten Komponenten, ActiveX-Steuerelemente, werden im néchsten Ab-
schnitt nédher betrachtet.

Softwarekomponenten kénnen in Form von DLLs vorliegen. DLL ist die Abkiirzung fiir
Dynamic Link Library, also eine Programmbibliothek, die erst zur Laufzeit in eine An-
wendung eingebunden wird. Unter Windows gibt es zwei Arten von DLLs E]:

e Einsprungs-DLLs, die Prozeduren und Funktionen enthalten. Die in dieser Arbeit
zur Schrittmotorsteuerung verwendete DLL (USBM3x32.d1l) gehort zu dieser Art.

e ActiveX-DLLs, die Klassen enthalten, deren Dateiendung auch 0CX sein kann. Die
in dieser Arbeit zur Messdatenbearbeitung verwendete DLL (VMMP3Control.dll)
gehort zu dieser Art.

Es gibt zwei unterschiedliche Arten, DLLs in eine Anwendung einzubinden[5]:

Implicit Run-Time Linking: Wenn es zu einer DLL eine Importbibliothek gibt und
eine Verkniipfung mit dieser Bibliothek hergestellt ist, so wird diese DLL zur Laufzeit
automatisch geladen. Die bendtigten DLL-Funktionen werden jeweils mit der Funktion
__declspec(dllimport) importiert. Ein explizites Abfragen von Funktionseinsprung-
adresse ist nicht erforderlich.

Explicit Run-Time Linking: Erst zur Laufzeit werden die Windows-API-Funktionen
LoadLibrary und GetProcAddress aufgerufen, um das DLL-Handle und die einzelnen
Funktionspointer zu bekommen, iiber die dann die DLL-Funktionen aufgerufen werden
konnen. Die geladene DLL kann spédter mit dem Aufruf der Windows-API-Funktion
FreeLibrary wieder aus dem Arbeitsspeicher entfernt werden. Die Importbibliothek ist

"http://de.wikipedia.org/wiki/Programmbibliothek

16

4. Basistechnologien

in diesem Fall nicht nétig. Die DLL-Datei muss aber in einem der Anwendung zugang-
lichen Ordner liegen.

Dlls auf die erste Art einzubinden, ist relativ einfach zu handhaben. Der Nachteil besteht
darin, dass beim Programmstart alle auf diese Art eingebundenen DLLs in den Speicher
automatisch geladen werden, auch wenn sie gegebenenfalls nicht benotigt werden. Der
Programmstart wird dadurch verlangsamt. Das Programm braucht auch mehr Speicher-
platz. Ist eine DLL oder Funktion nicht vorhanden, kann das Programm bereits den
Start verweigern.

Dlls auf die zweite Art einzubinden, ist flexibel und braucht weniger Speicherplatz, weil
DLLs nur bei Bedarf in den Arbeitsspeicher geladen werden. Der Programmierer muss
aber sich selbst um das Laden und das Entfernen der DLLs sowie das Abfragen der
Einsprungadressen kiimmern. Da dafiir Windows-API-Funktionen verwendet werden,
bekommt das Programm auch hilfreiche Riickmeldungen, wie ob eine DLL erfolgreich
geladen wurde, ob die DLL-Funktionen galaden werden konnte, so dass wahrend der
Laufzeit das Programm auf nicht vorhandene DLLs reagieren kann.

Die in dieser Arbeit verwendete DLL USBM3x32.dll kann nur auf die zweite Art in eine
Anwendung eingebungden werden. Im Anhang B.2 befindet sich ein Beispielprogramm,
das den Umgang mit USBM3x32.dll demonstiert.

4.2. ActiveX-Steuerelemente (ActiveX Controls)

Ein Microsoft ActiveX-Steuerelement ist eine wiederverwendbare Softwarekomponente,
die man in eigenstdndige Anwendungen und Web-Seiten einbauen kann. Der Program-
mierer kann ActiveX-Steuerelemente gleichermafien in verschiedenen Programmierum-
gebungen wie Visual Basic, Delphi oder C++ einsetzen, ganz unabhéngig davon, in
welcher Programmiersprache sie geschrieben worden sind.

Die ActiveX-Technologie basiert auf der ebenfalls von Microsoft entwickelten COM-
Technologie (Component Object Model), welche zur Herstellung der standardisierten
Softwarekomponenten eingefiihrt wurde[I]. Ein ActiveX-Steuerelement muss mindestens
die von COM definierte Basisschnittstelle IUnknown implementieren. Die weiteren von
COM sowie vom Entwickler selbst definierten Schnittstellen miissen von IUnknown ab-
leitbar sein.

ActiveX-Steuerelemente kénnen nicht eigensténdig laufen. Sie brauchen einen so ge-
nannten ActiveX-Container. Dies kann eine Visual C++- oder Visual Basic-Anwendung
sein, wenn in ihr ActiveX-Steuerelemente eingesetzt werden. ActiveX-Steuerelemente
kommunizieren dann mit ihrem Container ausschliellich iiber die Schnittstellen. Ein
ActiveX-Steuerelement kann iiber folgende Elemente verfiigen:

e Methoden, in denen sein Verhalten abgebildet sind. Der ActiveX-Container kann
diese Methoden aufrufen.

e Ereignisse, die den ActiveX-Container benachrichtigen, dass bestimmte Ereignisse
eingetreten sind.

e Eigenschaften, die den Zustand des Objekts beschreiben und sich durch den ActiveX-
Container modifizieren lassen.

17

4. Basistechnologien

Liegt ein ActiveX-Steuerelement in Form von DLL oder OCX vor, so kann es von der
Entwicklungsumgebung wie Visual C++ referenziert werden. Die von COM definier-
ten Schnittstellen ITypeLib und ITypelnfo werden benutzt, um dem Entwickler zur
Entwurfszeit die Typbibliothek, die die Informationen iiber Methoden, Figenschaften
und Ereignisse des Steuerelementes bietet, zur Verfiigung zu Stellen[5]. Dieses ActiveX-
Steuerelement kann dann in der Entwicklungsumgebung wie normale Steuerelemente
behandelt werden.

ActiveX-Steuerelemente gibt es iibrigens nur fiir die Betriebssystemfamilie Windows.

4.2.1. ActiveX-Steuerelement registrieren

Nach der Definition von Microsoft [ist ein ActiveX-Steuerelement im wesentlichen ein
COM-Objekt, das die IUnknown Schnittstelle implementiert hat und sich selbst fiir Win-
dows registrieren kann. Die Registrierung fiir Windows kann auf zwei Wegen erfolgen.
Man soll zuerst versuchen, das Setup-Programm des Steuerelementes auszufithren. In
dieser Arbeit ist es die von der Firma Vishay Micro-Measurements angebotene Instal-
lationsroutine. Die Registrierung wird in der Regel bei der Installation der Software
vorgenommen. Man kann das Steuerelement auch iiber das Hilfsprogramm regsvr32.exe
manuell registrieren. Der Vorgang sieht so aus:

e Offne die MS-DOS-Eingabeaufforderung.

e Wechsele in das Verzeichnis, wo sich das ActiveX-Steuerelement VMMP3Control.dll
befindet. Fithre dann den Befehl regsvr32 aus:
C:\Program Files (x86)\Vishay Micro-Measurements\Model P3 Strain
Indicator and Recorder>regsvr32 VMMP3Control.dll

4.2.2. Verweis auf ActiveX-Steuerelement einrichten

Es muss noch ein Verweis auf dieses Steuerelement im Visual C++-Projekt eingerichtet
werden. Dafiir miissen folgende Schritte unternommen werden:

e Rufe den Meniibefehl Projekt/..Figenschaften auf, klicke im aufspringenden Dia-
logfeld auf den Schalter Neuen Verweis hinzufiigen auf der Seite Allgemeine Fi-
genschaften. Gebe dann im daraufhin erscheinende Dialogfeld Verweis hinzufiigen
den Pfad des Speicherorts von ActiveX-Steuerelement VMMP3Control.dll ein und
klicke auf OK. Die Abbildung 4.1 zeigt die Eigenschaften des neuen eingerichteten
Verweises auf dieses Steuerelement.

Die in der VMMP3Control Library enthaltenen Eigenschaften und Methoden kann man
folgendermafien auflisten:

e Rufe den Meniibefehl Projekt/Vorhandenes Element hinzfigen auf, gebe dann im
Dialogfeld Vorhandenes Element hinzfiigen den Pfad des Speicherorts von diesem
Steuerelement ein, markiere die Datei VMMP3Control.dll und klicke auf hinzufi-
gen. Ein neuer Knoten namens VMMP3Control.dll erscheint im Projektmappen-
Explorer. Klicke doppelt auf ihn. Die VMMP3Control Library mit den zugehorigen
Eigenschaften und Methoden wird dann in einem neuen Fenster namens Objekt-
katalog im Arbeitsbereich gezeigt (siehe Abbildung 4.2).

2http://msdn.microsoft.com/en-us/library /aa751972(v=vs.85).aspx

18

4. Basistechnologien

W Konfiguration: | Nicht zutr, Plattform: | Nicht zutr, Kenfigurations-Manager... II

a Allgemeine Eigenschaften Zielframework: .NETFramework, Version=v4.0
Framework und Verweise Verweise:

4 Konfigurationseigenschaften Name 4 ActiveX-Verweiseigenschaften =
Allgemein x % 55A61C5-BA54-4726-8ACE-438A7[
s B Interop.VMMP3Control.1.1 GUID des Steuerelements {CE5A61C5-BA5S4-4726-8 ACE-438AT

99 = Typhibliothekname VMMP3Control
VC++-Verzeichnisse * System o

b CfCes -3 Systern.Data Version des Steuerelements 11

3 Link -3 System.Drawing Vollsténdiger Pfad des Steuerele C:\Program Files (x86)\Vishay Micro

[» Linker : : "

N Manifestioal -3 Systern. Windows.Forms Wrappertool Managed Wrapper Generator Tool

> Ressourcen +3 System.Xml 4 Buildeigenschaft |

» XML-Dokument-Generato Verweisassemblyausgabe True T

[> Informationen durchsuche 4 Buildeigenschaften

» Buildereignisse Lokale Kopie True

» Benutzerdefinierter Buildsc Lokale Satellitenassemblys kopi True

1> Verwaltete Ressourcen 4 Verweiseigenschaften
Assemblyname Interop.VMMP3Control.1.1, Version:
Beschreibung B
Bezeichnung Interop.VMMP3Control1.1
Identitat {CB5AG1C5-BAS4-4726-BACE-438A7
Kultur
MName Interop.VYMMP3Control1.1 -

ActiveX-Verweiseigenschaften
N T — ' MNeuen Verweis hinzufigen...] ’ Verweis entfernen
[0K] ’ Abbrechen Ubernehmen
LS

Abbildung 4.1.: ActiveX-Verweiseigenschaften

Visual Studio erzeugt beim Einrichten des Verweises eine Interop-Assembly namens Inte-
rop.VMMP3Control.1.1 automatisch. Die Typmetadaten in Form eines Manifest werden
der in der Datei VMMP3Control.dll enthaltenen Typbibliothek entsprechend erstellt
und dieser Assembly hinzugefiigt. Das bedeutet, dass dieses ActiveX-Steuerelement in
einer Visual C++-Anwendung wie iibliche Steuerelemente benutzt werden kandﬂ Visual
Studio speichert diese Assembly im neu angelegten Ordner interop und eine Kopie im
Ordner Debug, wo sich auch die ausfiihrbare Datei der Anwendung befindet.

Die Eigenschaften dieses Steuerelements kdnnen aber nicht dem Eigenschaftsfenster sei-
nes Containers hinzugefiigt werden. Das bedeutet, dass sie im Programmcode abgefragt
oder gesetzt, aber nicht beim Programmentwurf voreingestellt werden kénnen.

4.2.3. Eigenschaften abfragen und setzen

Das in dieser Arbeit verwendete ActiveX-Steuerelement VMMP3Control.dll verfiigt iiber
keine Benutzeroberfliche und kann auch nicht iiber Ereignisse mit seinem Container
interagieren. Es verfiigt {iber zahlreiche Eingenschaften und Methoden. Diese sind im
Anhang A aufgelistet.

In einer Visual C++-Anwendung kénnen die Eigenschaften von VMMP3Control.dll fol-
gendermaflen abgefragt bzw. gesetzt werden:

3http://msdn.microsoft.com/de-de/library /xwzy44ed(v=VS.100).aspx

19

4. Basistechnologien

] VP3b - Microsoft Visual Co+ 2010 Express

Datei Bearbeiten Ansicht Projekt Erstellen Debuggen Extras Fenster Hilfe

Projektmappen-Explorer v X Objekthatalog > iy Forml.h [Entwurf] VishayP3.cpp VishayP3.h /_-:r
Durchsuchen: | Alle Komponenten '| ‘ - e | Y | EE g
; I?rojek‘tmappe "WP3b" (1 Projekt) ‘<Suchen> E—
PREARY T - _ ~
[z Externe Abhéngigkeiten » «2 UlAutomationTypes [3.0.0.0] B “ ResetFactoryDefaults n:]
4 |5 Headerdateien » « UlAutomationTypes [4.0.0.0] % SaveSetup tran
> [=] Forml.h > «3 vjscor ‘W SetTime Z
(| |n] resourceh -3 VISharpCodeProvider ‘¥ StartFirmwarellpgrade g
|h] stdafxh -3 vjsjbe % WriteFirmwareData i

h 4 |F Quelldateien « vislib 2 ActiveDevice

<3 vjslibow = ADReading
-3 vjssupuilib 5 AttachedDeviceCount
-3 visvwaux ' AttachedDevices
«3 vjswfc = BacklightMode
-3 VISWfcBrowserStublLib f? BalanceMode
<3 vjswlcow ﬁ‘ BalanceValue
-3 vjswfchtml 5 BridgeType
{5 vMMPIControl #f ChannelActive

4 {} VMMP3Control ﬁ: Channellabel

“% VMMP3Controller <) CurrentReading]|
33 VP3b f De_\nceOpen
“¥ Globale Funktionen und Variablen Property CurrentReading(ByVal Channel As Long) As Variant

> £} VP3b Schreibgeschitzt
>« WindowsBase [3.0.0.0] = Member von VMMP3Control. VMMP3Controller
Returns the current reading for the selected channel

¢ Assemblylnfo.cpp
] stdafx.cpp
] VP3b.cpp
4 |F Ressourcendateien

| app.ico
2 app.re

|| ReadMebet

%] USEM2:32.dIl

(%) VMMP3Control.dll

AV T VT T T T T F T

4 [

c\j Projektmap... E Klassenansi.. | L d

ﬂ Fehlerliste B Aufgabenliste B Ausgabe

Abbildung 4.2.: VMMP3Control Library

Es soll zuerst eine Variable oder Membervariable einer Klasse, in der dieses Steuerele-
ment eingesetzt werden soll, definiert werden. Ein Objekt vom Typ VMMP3controller
wird erzeugt und dieser Variablen zugewiesen.

VMMP3Control: :VMMP3Controller ~“NewVP3 = gcnew VMMP3Controller();

Die Eigenschaften von VMMP3Control.dll konnen dann iiber die Membervariable NewVP3
angesprochen werden:

NewVP3->DeviceOpen = false;

if (NewVP3->DeviceOpen)

{
double kanall = Convert::ToDouble(NewVP3->CurrentReading[1]);
} else NewVP3->DevicelOpen = true;

Die Eigenschaft DeviceOpen muss auf true gesetzt werden, befor das Programm auf
andere Eingenschaften zugreift. Die Nur-Lesen-Eigenschaft CurrentReading[i] enthélt
die aktuellen Messwerte vom Kanal i mit i = 1,2,3,4. Das Programm kann jede Zeit
diese Eigenschaft abfragen.

4.3. .NET Framework

Die in diesem Abschnitt verwendeten Materialien zum Tehma ,,.NET Framework* sind
[5] und [9]. In beiden sind die hier benotigen Grunglagen beschrieben.

Das .NET-Framework ist eine Zielplattform fiir die Anwendungen, die mit den soge-
nannten .NET-Sprachen geschrieben wurden, und besteht aus zwei Hauptkomponenten:

20

4. Basistechnologien

der Common Language Runtime (CLR) und der .Net Framework-Klassenbibliothek.

Die CLR ist eine Laufzeitumgebung, die der Java Virtual Machine dhnlich, einen pro-
zessorunspezifischen Zwischencode, den sogenannten Intermediate Language Code (IL-
Code) ausfithren kann. Wird ein in C++ oder anderen .NET-Sprachen geschriebenes
Programm fiir das .NET-Framework kompiliert, tibersetzt der Compiler den Quelltext
in den IL-Code. Dieser IL-Code wird dann als verwalteter Code unter der Kontrolle der
CLR ausgefiihrt, d.h., die CLR lddt das Programm nach dem Programmstart, lasst den
IL-Code von ihrem Just-In-Time Compiler (JIT) bei Bedarf modulweise in einen pro-
zessorspezifischen Code iibersetzen, wobei die Module in der Regel den Methoden einer
Anwendung entsprechen.

Die CLR tbernimmt gleichzeitig noch die Aufgaben wie die Speicherverwaltung (Re-
servierung eines Speicherblocks fiir den von ihr verwalteten Heap, Garbage Collection
etc.), die Uberwachung der Code-Ausfithrung und die Durchsetzung von Sicherheitsfea-
tures (z.B. Von wem oder von wo aus eine Assembly aufgerufen werden darf und wann
sie das Recht auf die Registry zuzugreifen bekommt).

Die .Net Framework-Klassenbibliothek, die von allen .NET-Sprachen benutzt werden
kann, umfasst mehrere Tausend Klassen. Diese sind in unterschiedliche Namespaces or-
ganisiert. Unter dem Root-Namespace System sind Sub-Namespaces, die Klassen fiir
bestimmte Funktionalitdten enthalen. z.B.:

System: : I0 Klassen fiir die Ein- und Ausgebe und den Zugriff auf Dateien
System: : XML Klassen fiir die Arbeit mit XML-Daten
System: :Data Klassen fiir den Zugriff auf Datenbank
System: :Windows: :Forms Klassen fiir GUI-Anwendungen
(Windows Forms-Anwendungen)

Das .Net Framework schreibt allen .NET-Sprachen nicht nur eine gemeinsame Ziel-
sprache (IL) vor, sondern auch ein einheitliches und verbindliches Typsystem, ndmlich
das Common Type System (CTS), und ermoglicht damit die Sprachinteroperabilitit
in .NET-Sprachen. Das CTS ist objektorientiert und unterstiitzt alle schon vorher all-
gemein anerkannten OOP-Konzepte wie Klassen, Schnittstellen, Einfachvererbung fiir
Klassen, Mehrfachvererbung fiir Schnittstellen, Polymorphie, virtuelle Methoden etc..
Dariiber hinaus bietet das CTS noch neue Konzepte wie Eigenschaften (Properties), In-
dexer (eine besondere Form von Eigenschaften) und Delegates (typisierte Verweise auf
Methoden). Alle Typen des CTS sind von der Wurzelklasse System.0Object abgeleitet.
Das gilt auch fiir Werttypen wie ganze Zahlen (System::Int32) oder logische Werte
(System: :Boolean).

Das CTS ermoglicht also es den Programmierern, in einem Programm Klassenbibliothe-
ken, die in anderen .NET-Sprachen geschrieben sind, problemlos zu verwenden. Aufler-
dem wird das .Net Framework von den meisten der bisherigen Windows-Betriebssysteme
und allen zukinftigen Windows-Betriebssystemen unterstiitzt. Das heiflt, ein fir das
.NET-Framework entwickeltes Programm kann auf jedem Computer, auf dem beispiels-
weise Windows 7, Windows XP oder ein zukiinftiges Windows-Betriebssystem installiert
wird, ausgefithrt werden.

Die mit Hilfe vom .NET-Framework erstellten softwarekomponenten (EXE- oder DLL-
Datei) sind zwar ebenfalls sprachunabhéngig, liegen aber nicht mehr in Binédrform, son-

21

4. Basistechnologien

dern in IL-Code vor. Eine oder mehrere Klassen werden zusammen mit den zugehdrigen
Metadaten zu einem Modul (Komponente) zusammengefasst, und ein oder mehrere Mo-
dule konnen eine Assembly bilden. Assemblies enthalten neben den Modulen mit deren
Code und Metadaten auch eigene Metadaten in einem Manifest. Eine .NET-Komponente
ist also keine Assembly, sie wird vielmehr in einer Assembly ausgeliefert. Das Assembly-
Manifest enthélt alle fiir die Verwendung der Assembly notwendigen Informationen. Das
NET-Sicherheitskonzept, die NET-Vesionsverwaltung und die NET-Sprachunabhéigkeit
basieren auf diesen Informationen.

4.4. Visual C4+

Das Softwarepaket Visual C++ ist ein Produkt von Microsoft und steht fiir die Erstel-
lung von Anwendungen mit der Programmiersprache C++. Dieses Paket enthéilt u.a.
eine integrierte Entwicklungsumgebung, zahlreiche Bibliotheken sowie Build-Werkzeuge.
Die aktuelle Version von Visual C++ unterstiitzt die Syntaxerweiterungen C++/CLI,
die die Schnittstelle von ANSI C++4 zum .NET Framework definieren. Visual C++-
Anwendungen kénnen damit die Klassen und Typen aus der .NET-Bibliothek verwenden
und von den Diensten der CLR profitieren.

C++/CLI erfullt den Standard Common Language Infrastructure (CLI). Das .Net Fra-
mework ist ndmlich eine Implementierung dieses Standards. In diesem Abschnitt werden
einige Besonderheiten der C++/CLI-Schnittstelle, die fiir diese Arbeit niitzlich sind,
vorgestellt.

4.4.1. Verwalteter Klassentyp

Nach der Definition der Schnittstelle wird ein verwalteter Klassentyp mit dem Schliis-
selwort ref definiert:

public ref class ManUSBMotion3x
{

/...

}

Damit die Objekte (dieser Klasse) auf dem von der CLR verwalteten Heap angelegt
werden, miissen noch zwei Bedingungen erfiillt sein:

e Die Typdefinitionen der jeweiligen Objekte miissen in die verwalteten Codes, d.h.
mit dem Compiler-Schalter /clr kompiliert werden.

e Die Objekte miissen mit gcnew erzeugt und den mit ~ definierten Trackinghandles
zugewiesen werden.

int main(array<System::String ~> “args)

{
ManUSBMotion3x~ NewMotion3x = gcnew ManUSBMotion3x(); // ...
return O;

}

Die CLR kann ein Objekt an einen neuen Speicherort innerhalb des verwalteten Heaps
verschieben, wenn es Vorteile bringt. Im Gegensatz zu den mit * definierten Zeigern

22

4. Basistechnologien

kann ein Trackinghandle das Verschieben des Objekts, auf das es verweist, mit verfolgen
und verweist damit stets auf dieses Objekt.

Das ,,gc* in gcnew steht fiir Garbage Collection. Die Speicherverwaltung fiir die Objekte
auf dem verwalteten Heap wird von der CLR iibernommen, so dass sich der Program-
mierer nicht mehr darum kiimmern muss. Das Nichtaufrdumen von Speicherressourcen
ist eine haufige Fehlerquelle in nicht verwalteten C+-+-Programmen.

4.4.2. Verwalteter und nicht verwalteter Code

In der .NET-Terminologie werden alle Programme, die fiir das .NET Framework geschrie-
ben sind und unter der Kontrolle der CLR ausgefiihrt werden, als verwaltet (managed)
und alle anderen, insbesondere altere Programme, als nicht verwaltet (unmanaged) be-
zeichnet.

Man kann aus verwaltetem Code heraus nicht verwalteten, nativen Code aufrufen, sofern
dieser in C++ geschrieben wurde. Man kann auch innerhalb eines C++-Quelltextes fest-
legen, welche Funktionen bzw. Klassen in nativen und welche in verwalteten Code kom-
piliert werden sollen. Dazu werden die Praprozessor-Direktiven #pragma managed und
#pragma unmanaged verwendet. Die Einstellung, dass das Programm mit dem Compiler-
Schalter /clr kompiliert wird, erzeugt IL-Code, erlaubt auch die Kombination mit nicht
verwaltetem Code.

Das folgende Codestiick zeigt, wie die DLL USBM3x32, die in dieser Arbeit zur Schritt-
motorsteuerung verwendet wird, mit Hilfe der beiden Praprozessor-Direktiven in einer
Windows Forms-Anwendung eingesetzt wird.

#pragma once
#include <windows.h>

/] ...
#pragma unmanaged
// Definition des Types der DLL-Funktion, die verwendet werden soll
typedef unsigned char (__stdcall *LPGETXTARGET) (unsigned char,
unsigned char&, long&);

HINSTANCE husbm3x32D11;

unsigned char ucstatus;

// DLL Datei laden
husbm3x32D11=(HINSTANCE) LoadLibrary (L"USBM3x32.4d11");

int SetXtarget(unsigned char motorIndex, long lXtarget)

{
LPSETXTARGET lpSetXtarget;
// Die Einsprungadresse abfragen
1lpSetXtarget=(LPSETXTARGET)GetProcAddress (husbm3x32D11, "SetXtarget");
return lpSetXtarget(motorIndex, lXtarget, ucstatus);

23

4. Basistechnologien

/...
#pragma managed
public ref class Forml : public System::Windows::Forms::Form
{
/...
// Zielposition von Motor O setzen
private: System::Void textBox2_KeyPress(System::0bject™ sender,
System: :Windows: :Forms: :KeyPressEventArgs™ e)
{
if (e->KeyChar == (char)13) //Die Taste ENTER ist gepresst
{
if (SetXtarget(0, Convert::ToInt64(this->textBox2->Text)) == 5)
{
this->textBox1->AppendText ("USB Gerdt nicht verfiigbar! \n");
} else this->textBox1->AppendText (GetXtarget(0) + "\n");
} // GetXtarget(i) gibt die akt. Position von Motor i zuriick
3
+;

Die Funktion SetXtarget und die Klasse Form1 kénnen auf dieselbe Weise zusammen
arbeiten, wenn sie in separaten Dateien definiert werden.

4.4.3. Indizierte Eigenschaften

In verwalteten Klassen kann man die Get- und Set-Methoden durch die mit dem Schliis-
selwort property deklarierten Eigenschaften ersetzen. Visual C+4++ verfiigt iiber eine
besondere Form von Eigenschaften, ndmlich indizierte Eigenschaften, die es erlauben,
iiber den Index auf die Felder einer Klasse zuzugreifen.

Indizierte Eigenschaften kann man mit dem Schliisselwort default oder statt dessen
mit eigenen Eienschaftennamen definieren. Der Indextyp wird in eckigen Klammern an-
gegeben. Der indizierte Zugriff auf Felder erfolgt dann {iber die Objektnamen oder iiber
die Eienschaftennamen.

public ref class Messdaten
{

array<double> “currentReading;

public:
Messdaten()
{

// ein verwaltetes Array mit 4 Elementen des Datentyps double
currentReading = gcnew array<double>(4);

}

property double CurrentReading[int]

{
double get (int i)
{

24

4. Basistechnologien

return currentReading[i];

}
void set (int i, double wert)
{
currentReading[i] = wert;
}

}
};

Die Eigenschaft CurrentReading[i] mit i =0,1,2,3 kann folgendermaflen angespro-
chen werden. Auf gleiche Weise werden die Messwerte vom Messgerdt Vishay P3 in den
Computer eingelesen (siehe Abschnitt 4.2.3).

int main(array<System::String ~> “args)

{
Messdaten “daten = gcnew Messdaten();
daten->CurrentReading[0] = Convert::ToDouble(Console::ReadLine());
Console: :WriteLine("CurrentReading: " + daten->CurrentReading[0]);
return O;

X

4.4.4. Generische Auflistungsklasse List<T>

Zur Implementierung dynamischer Datenstrukturen stellt die .Net Framework-Bibliothek
im Namensraum System::Collections: :Generic einen Satz von generischen Auflis-
tungsklassen bereit. Dazu gehort die Klasse List<T>. Der Datentyp-Platzhalter T in
spitzen Klammern bedeutet, dass diese Klasse typisiert ist. Bei der Deklaration und In-
stanzierung muss statt T ein konkreter Datentyp angegeben werden:

List<double> ~“listMesswert = gcnew List<double>(5);

In runden Klammern ist die Anfangskapazitéit der Auflistung 1istMesswert angegeben.
Die Kapazitat einer Auflistung wird automatisch erhéht, wenn die Anzahl der Elemen-
te die aktuelle Kapazitit ibersteigt. Das vereinfacht die Verwendung von Auflistungen,
kann aber ihre Leistung negativ beeinflussen, weil die Elemente in den neu zugewiesenen
Speicher kopiert werden miissen ﬂ

Das Hinzufiigen und Entfernen von Elementen koénnen durch Aufruf der Methoden
void Add(T item) und void RemoveAt(int Index) erfolgen:

listMesswert->Add(CurrentReading[0]);
listMesswert->RemoveAt (0);

Der double-Wert in CurrentReading[0] wird am Ende der Auflistung listMesswert
hinzugefiigt. Das Element an der Position 0 dieser Auflistung wird entfernt und alle Ele-
mente dahinter werden nach vorne geschoben.

Die Anzahl der Elemente, die sich zurzeit in einer List-Auflistung befinden, kann iiber

“http://msdn.microsoft.com/de-de/library /akyhke97.aspx

25

4. Basistechnologien

die Eigenschaft Count ermittelt werden. Werden z.B. alle Elemente einer Auflistung
durch Aufruf der Methode Clear () entfernt, so gibt die Eigenschaft Count bei Abfrage
den Wert Null zuriick.

Im gegensatz zu den Queue<T>-Auflistungen erlauben die List<T>-Auflistungen auch
den indizierten Zugriff auf ihre Elemente:

double durchschnitt = 0, summe = 0;
for (int i; i < listMesswert->Count; ++i)
summe += listMesswert[i];

durchschnitt = summe/listMesswert->Count;

26

5. Entwurf

Das zu erstellende Anwendungsprogramm soll zwei Hauptaufgaben erledigen, ndmlich
die Schrittmotoren zu steuern und die Messwerte vom Messgerét einzulesen. Das Pro-
gramm soll wie folgt vorgehen:

1. Fragen nach dem Radius und der Tiefe der Kreisbahn.

2. Steuern der Schrittmotoren iiber die Steuerkarte, damit die Kreisbahn mit dem
vom Benutzer eingegebenen Radius und der ebenfalls vom Benutzer eingegebene
Tiefe gefrast wird.

3. Einlesen der Messwerte in bestimmten Zeitabstdnden vom Messgerédt Vishay P3 in
den Computer. Warten bis sich die Messwerte von allen eingesetzten Messkanélen
kaum verdndern und speichern fiir jeden Kanal einen aktuellen Messwert in einer
CSV-Datei. Beginnen dann wieder bei 1.

In den folgenden Abschnitten werden fiir zwei wichtige Aufgaben, die bei einem Mess-
vorgang erledigt werden miissen, geeignete Losungen erarbeitet.

5.1. Aufnehmen der Messwerte

Um festzustellen, dass sich die Messwerte nach jeder Vertiefung der Kreisbahn nicht
mehr verdndern, muss wahrend des gesamten Messvorgangs fiir jeden Messkanal eine
bestimmte Anzahl der am neuesten eingelesenen Messwerte immer vorhanden sein.

Die Messwerte werden in bestimmten Zeitabstdnden gleichzeitig von drei Messkanélen
des Messgerites eingelesen und entsprechend in drei Auflistungen gespeichert, die die
gleiche Kapazitdat haben. Erreicht die Anzahl der Messwerte in allen drei Auflisungen
die gegebene Kapagzitéit, so wird vor dem Hinzufiigen eines neuen Messwertes am En-
de einer der drei Auflistungen ein Messwert am Anang dieser Auflistung geléscht. Nach
jedem Hinzufiigen werden fiir jede Auflistung die in ihr befindlichen Messwerte miteinan-
der verglichen. Jedes Mal, wenn sich die Messwerte in allen drei Auflistungen nicht mehr
verdndern, wird fiir jede Auflistung jeweils ein Messwert in einer CSV-Datei gespeichert
und auf dem Bildschirm gezeigt.

Auf diese Weise werden die stabilen Messwerte fiir jede Vertiefung der Kreisbahn auf-
genommen. Die Messwerte, die sich in einer CSV-Datei befinden, kénnen von anderen
Anwendungsprogrammen wie Microsoft Excel komfortabel verwendet werden.

Fiir diese Aufgabe soll die List<double>-Auflistung eingesetzt werden, mit deren Hilfe
die Messwerte bequem und effizient hinzugefiigt, geléscht und miteinander verglichen
werden kénnen. Die Queue<double>-Auflistung, d.h. die FIFO-Auflistung ist nicht ge-
eignet, da sie keinen indizierten Zugriff auf ihre Elemente erlaubt.

Das Einlesen und Vergleichen der Messwerte sollen nach dem Start der Messung re-
gelméBig stattfinden. Dies kann auf zwei Wegen erfolgen. Der eine besteht darin, ein

27

5. Entwurf

0 4] 12 16 19

Abbildung 5.1.: Viertelkreisbahn

timer-Steuerelement in der Anwendung einzusetzen, das sein Tick-Ereignis in bestimm-
ten Zeitabstdnden auslost. Die Tick-Ereignisbehandlungsmethode sorgt dann dafiir, fiir
jeden Messkanal jeweils einen Messwert in den Computer einzulesen und mit den ande-
ren Messwerten zu vergleichen. Es kann auch ein Thread-Objekt erzeugt werden, das im
Hintergrund diese Aufgabe erledigt.

5.2. Bestimmen der Punkte auf der Kreisbahn

Ein Punkt (z,y) auf der Kreisbahn kann iiber die Sinus- und Cosinus-Funktion wie folgt
bestimmt werden:
(x,y) = (r-cos(),r - sin(a)) (5.1)

wobei sich der Mittelpunkt der Kreisbahn am Koordinatenursprung (0, 0) befindet und
r der Radius der Kreisbahn ist. Der Winkel « ist derjenige, der von der x-Achse und der
Verbindungsstrecke zwischen dem Ursprung und dem Punkt (x,y) eingeschlossen wird.

Der Radius 7 soll hier in Schrittzahl des Schrittmotors umgerechnet werden, indem der
vom Benutzer eingegebene Betrag des Radius (in mm) durch die Schrittauflésung (in
mm/Schritt) des Schrittmotors dividiert wird. Der Fréser, der die gegebene Kreisbahn
abfahren soll, wird von den Schrittmotoren fiir die X- und Y-Achse angetrieben und
kann sich daher nur in der X-, Y-Richtung oder der Diagonalrichtung bewegen. Wie in
der Abbildung 5.1 gezeigt, bewegt sich der Fraser tatsédchlich entlang der blauen Linie.

28

5. Entwurf

Die Anzahl N von den Schritten, die entweder einer der beiden Schrittmotoren oder die
beiden gleichzeitig fahren miissen, damit die komplette Kreisbahn gefriast wird, kann
dann mit Hilfe der Formel (5.1) und der Symmetrieeigenschaft der Kreisbahn wie folgt
abgeschéatzt werden:

N =4-(r-cos(a) +r-sin(a)) =8 -r-cos(r/4) <6-r (5.2)

Werden die berechneten Koordinaten der einzelnen Punkte, die der Fraser nacheinan-
der anfahren soll, in einer List-Auflistung gespeichert, so muss die Kapazitdt dieser
Auflistung nicht grofler als die Zahl N sein.

5.2.1. Bestimmen der Punkte aufgrund der Symmetrie

Die Kreisbahn ist eine achsensymmetrische Figur. Jede Gerade durch ihren Mittelpunkt
ist eine Symmetrieachse. Wird ein Punkt (z,y) fiir das Friasen der Kreisbahn bestimmt,
so lasst sich z.B aufgrund der X-Achsensymmetrie feststellen, dass auch der Punkt
(x, —y) daftr nétig sein kann.

Die Spiegelung eines Punktes an der X-, Y-Achse und den beiden Diagonalen kann von

[—1‘-.5’:' (I.y)
.

®(1,7)

® (y,—x)

Abbildung 5.2.: Symmetrie der Kreisbahn

einem Programm quasi ohne Rechenaufwand erledigt werden. Um die Rechenzeit beim
Erzeugen der Kreisbahn-Daten zu reduzieren, wird die Symmetrieeigenschaft der Kreis-
bahn von unserem Programm wie folgt genutzt:

e Das Programm berechnet zuerst nur die Koordinaten derjenigen Punkte, die fiir
das Frisen einer Achtelkreisbahn bendtigt sind, also z.B. wie in der Abbildung 5.2
gezeigt, die Punkte im Bereich zwischen 12:00 und 13:30 Uhr.

29

5. Entwurf

e Dann leitet das Programm fiir das Frésen einer weiteren Achtelkreisbahn die Koor-
dinaten der Punkte ab, indem es die fiir das Frésen der vorherigen Achtelkreisbahn
bestimmten Punkte an der X-, Y-Achse oder den beiden Diagonalen spiegelt. Dies
wiederholt solange, bis die Punkte fiir das Frésen der lezten Achtelkreisbahn be-
stimmt werden.

Wird also ein Punkt (x,y) fiir das Frasen der Kreisbahn bestimmt, so werden auch die
Punkte (y,z), (y, —z), (z,—y), (=2, —y), (=y, —2), (=y,) und (—z,y) fir das Friisen
der Kreisbahn bestimmt.

5.2.2. Berechnen der Koordinaten der Punkte

Zur Berechnung der Punkte auf der Kreisbahn kann der Bresenham Algorithmus[6][g]
zum FEinsatz kommen. Dieser Algorithmus wird vor allem in der Computergrafik hdufig
verwendet, weil er ohne Multiplikation, ohne Auswertung der Wurzel und der Sinus-,
Cosinus-Ausdriicke auskommt, und somit bei Bildern mit sehr vielen Kreisen die Re-
chenzeit erheblich einspart.

Nach diesem Algorithmus soll das Programm den Friser {iber zwei Schrittmotoren wie
folgt steuern: Der Fraser wird am Anfang an den Punkt (0, 7) positioniert und dann nach
unten rechts bis zum Winkel von 45° fortgesetzt. Also, wenn sich der Fréiser in diesem
Achtel der Kreisbahn am Punkt (x,y) befindet, dann muss der néchste Punkt, den er in
einem Schritt erreichen soll, entweder (z + 1,y) oder (z + 1,y — 1) sein. Das Programm
trifft die Entscheidung, indem es iiberpriift, welcher der beiden Punkte ndher am Kreis
(die schwarze Linie in Abb. 5.1) liegt.

Sei fiir einen Punkt (z,y) die Funktion F(x,y) = 2 + y? — r2 gegeben, dann gilt:

F(z,y) =0, falls (z,y) auf dem Kreis
F(z,y) <0, falls (z,y) innerhalb des Kreises
F(z,y) >0, falls (z,y) aulerhalb des Kreises

Das Programm berechnet d = F(x + 1,y — 1/2), also den F-Wert des Punktes M (wie
griine Punkte in Abb. 5.1), der in der Mitte zwischen den beiden Punkten (z +1,y) und
(z+ 1,y — 1) liegt. Die Entscheidung wird wie folgt getroffen:

Fall 1: d < 0 = M ist innerhalb des Kreises = Punkt (z + 1,y) ist ndher am Kreis
= Aus (z,y) wird (z +1,y)

Fall 2: d > 0 = M ist auflerhalb des Kreises = Punkt (z + 1,y — 1) ist ndher am Kreis
= Aus (z,y) wird (z+ 1,y — 1)

Da das Frasen am Punkt (0,r) beginnt, wird d initialisiert mit

1 1 5
Sei .)
dalt:F(x+1,y_§):($+1)2+(y_§)2_7«2

30

5. Entwurf

gegeben. Wenn dg;; < 0 ist, dann wird der Punkt (z + 1,y) ausgewédhlt. Der neue Wert
von d ergibt sich als
1 1
dneu:F($+27y_§) :(:L‘+2)2+(y—§)2—7“2
=dgt + 22+ 3 =du + Ag

Wenn dgj; > 0 ist, dann wird der Punkt (z + 1,y — 1) ausgewéhlt. Der neue Wert von d
ergibt sich als

3 3
dneu:F($+27y_§):(x+2)2+(y_§)2_r2

:dalt+2x_zy+5:dalt+Azy

wobei zu beachten ist, dass die Inkremente A, und A, stindig anwachsen. Es handelt
sich bei d = F(z + 1,y — 1/2) um eine quadratische Gleichung, ihre ersten Ableitungen
sind deswegen nicht konstant. Die beiden werden also in jedem Schritt um 2 erhoht, falls
der Punkt (z + 1,y) als der néchste ausgewdhlt wird. Sonst werden A, um 2 und A,
um 4 erhoht. AuBlerdem sollen A, und A;, jeweils mit x = 0 und y = r initialisiert
werden, d.h., zum Beginn des Fréisens sind A, =3 und A,y = —2r + 5.

Da d mit dem Wert 5/4 — r initialisiert und dann nur ganzzahlig inkrementiert wird,

muss d in der Menge {...,—3,1 2} liegen. Es muss also gelten:

470404
3 1 1
<-= — <1 - =
d<0&ed< 4@(1 1S < d 4<0

Es kann daher d auch mit (5/4 —r) — 1/4 = 1 — r initialisiert werden. Im Programm
wird d dann nur ganzzahlige Werte annehmen.

Nachdem die Punkte auf der ersten Achtelkreisbahn berechnet wurden, konnen die an-
deren Punkte auf der Kreisbahn durch die Spiegelungen, wie im letzten Abschnitt be-
schrieben, abgeleitet werden.

31

6. Implementierung

Vor der Implementierung miissen zwei Entscheidungen getroffen werden. Das betrifft zu-
néchst das Betriebssystem. Weil das Anwendungsprogramm zwei DLLs verwenden muss,
so soll es unter Windows implementiert werden. Damit das Anwendungsprogramm auch
unabhéngig von der Betriebssystemversion eingesetzt werden kann, soll es fiir das .NET-
Framework geschrieben werden. Eine weitere Entscheidung betrifft die Programmierspra-
che. Wenn es sich bei diesem Anwendungsprogramm schon um eine .NET Framework
basierende Anwendung handelt, kann es im Prinzip in beliebigen .NET-Sprachen imple-
mentiert werden, z.B. in C++/CLI, C# oder VB.NET. Hier wird C++/CLI ausgewdhlt,
nur weil der Herseller der DLL USBM3x32 fiir die Verwendung dieser DLL brauchbaren
C++-Quellcode angeboten hat.

6.1. Einrichten der Entwicklungsumgebung

Als Entwicklungsplattform wurde Windows 7 verwendet. Zum Erstellen und Test des
Anwendungsprogrammes wurde das Softwarepaket Microsoft Visual C++ 2010 Express
installiert. Beim Testen und bei der Fehlersuche war der integrierte Debugger zum Ein-
satz gekommen.

Das Anwendungsprogramm wird in Visual C4++ 2010 Express in Form eines Projek-
tes verwaltet. Die Projektvorlage Windows Forms-Anwendung wurde beim Anlegen des
Projektes ausgewéahlt, damit das Anwendungsprogramm innerhalb des .NET Frame-
works ausgefithrt wird. Fiir diese Projektvorlage ist aber per Voreinstellung dem Visu-
al C++-Compiler der Compiler-Schalter /clr:pure iibergeben. Da dieses Programm so-
wohl verwalteten als auch nicht verwalteten Code enthélt, wurde der Compiler-Schalter
/clr wieder ausgewéhlt (tiber Projekt/Eigenschaften/Konfigurationseigenschaften/Allge-
mein/Common Language Runtime-Unterstitzung).

Das ActiveX-Steuerelement VMMP3Control.dll wurde fiir Windows registriert und ein
Verweis auf dieses im angelegten C++-Projekt eingerichtet (siehe Abschnitt 4.2.1 und
4.2.2). Die DLL USBM3x32 musste nicht registriert werden, musste aber in das selbe
Verzeichnis wie die ausfiihrbare Datei des Programmes kopiert werden. Die von ihr zur
Verfiigung gestellten Funktionen wurden im Programmcode deklariert und mit Hilfe der
Windows-API-Funktionen aufgerufen.

Das Messgerat Vishay P3 und die Schrittmotorsteuerkarte USBMotion3XII wurden iiber
USB Kabel mit dem Computer verbunden und vom ihm erkannt. Die Schrittmotorsteu-
erkarte wurde noch von einer Gleichspannungsquelle (7 — 34 VDC) gespeist.

32

6. Implementierung

6.2. Implementierte Klassen

Im Laufe des Implementierungsprozesses ergaben sich folgende Klassen:

e Die Formularklasse Form1, die von der Basisklasse Form abgeleitet wurde. Das Ge-
riist dieser Klasse wurde beim Anlegen des Projektes automatisch erzeugt. Diese
Klasse besitzt folgende Methoden:

void InitializeComponent(void) ist vom Windows Forms-Designer verwaltet.
In dieser Methode werden alle Komponenten der Benutzerschnittstelle deklariert
und mit den gewiinschten Werten initialisiert. Dariiber hinaus werden auch Events
registriert.

void dateienAnlegen() legt zur Speicherung der Messwerte und Koordinaten der
fiir das Friasen der Kreisbahn ausgewahlten Punkte zwei Dateien MessDaten.csv
und KreisbahnDaten.txt an.

void messvorgang() speichert jeweils einen Messwert fiir die eingesetzten Mess-
kanéle in der Datei MessDaten.csv, wenn sich alle Messwerte von diesen Kanélen
nicht mehr verdandern.

System: :Void buttonl_Click wird aufgerufen, wenn der Benutzer den Button
Starten in der Benutzerschnittstelle anklickt. Diese Methode stellt die Verbindung
zum Messgerat Vishay P3 her.

System: :Void button2_Click wird aufgerufen, wenn der Benutzer den Button
Beenden in der Benutzerschnittstelle anklickt. Diese Methode 16scht die hergestell-
te Verbindung zum Messgerdt Vishay P3.

System: :Void button3_Click wird aufgerufen, wenn der Benutzer den Button
Homing in der Benutzerschnittstelle anklickt. Diese Methode positioniert den Fra-
ser an den Punkt (0,0,0).

System: :Void timerl_Tick wird aufgerufen, sofern das im Programm eingesetz-
te timer-Steuerelement sein Tick-Ereignis auslost. In dieser Methode wird den
Zustand des Hintergrundthreads threadKreisbahn abgefragt und die Methode
messvorgang aufgerufen.

SchrittmotorSteuerkarteInit () wird vom Konstruktor der Klasse Form1 aufge-
rufen. Diese ruft wieder die Methoden managed_SchrittmotorDLLInit und managed
_SetVmax von der Klasse ManUSBMotion3x auf, damit die Schrittmotorsteuer-
karte initialisiert und die maximale Geschwindigkeit von drei Motoren auf einen
gegebenen Wert gesetzt wird.

System: :Void textBox2_KeyPress,

System: :Void textBox3_KeyPress oder

System: :Void textBox4_KeyPress wird aufgerufen, wenn der Benutzer einen Wert
(in mm) im Eingabefeld fiir X-, Y- oder Z-Koordinate eingibt und dann die ENTER-
Taste driickt. Die aufgerufene Methode nimmt den Wert entgegen, rechnet ihn in

Schrittzahl des Schrittmotors um und ruft dann die Methode managed_SetXtarget

von der Klasse ManUSBMotion3x auf, damit die eingegebene Zielposition ange-

fahren wird.

33

6. Implementierung

System: :Void textBox6_KeyPress wird aufgerufen, wenn der Benutzer einen Wert
(in mm) im Eingabefeld fiir den Radius der Kreisbahn eingibt und dann die
ENTER-Taste driickt. Sie nimmt den Wert entgegen, rechnet ihn in Schrittzahl des
Schrittmotors um und startet ein Hintergrundthread namens threadKreisbahn.

void achtelKreisbahn berechnet die Koordinaten der ausgewédhlten Punkte fiir
die erste Achtelkriesbahn nach dem Bresenham Algorithmus.

void datenSchickenSpeichernl ldsst den Schrittmotor fiir die X-Achse x Schrit-
te oder den Schrittmotor fiir die Y-Achse y Schritte oder die beiden gleichzeitig
die angegebenen Schritte machen, indem sie die Methode managed_SetXYZtarget
von der Klasse ManUSBMotion3x aufruft. Ist der Aufruf erfolgreich, so wird die
Koordinaten des zu erreichenden Punktes in der Datei KreisbahnDaten.txt ge-
speichert.

void datenSchickenSpeichern entscheidet nach der aktuellen und der nédchsten
Position des Frésers, welche Schrittmotoren in Bewegung gesetzt werden sollen,
ruft dann die Methode datenSchickenSpeichernl auf.

void kreisbahnFrasen() wird vom Hintergrundthreads threadKreisbahn aufge-
rufen. Diese ruft zuerst die Methode achtelKreisbahn auf, leitet dann die anderen
Punkte auf der Kreisbahn durch die Spiegelungen ab. Anschlieflend ruft diese die
Methode datenSchickenSpeichern einmal pro Sekunde auf, bei jedem Aufruf
werden als Argumente die aktuelle Position und die ndchste Position des Frésers
iibergeben.

Die Klasse USBMotion3x fasst die Methoden zur Steuerung des Schrittmotors zu-
sammen:

int SchrittmotorDLLInit() wird zur Initialisierung der DLL aufgerufen. Diese
ruft die DLL-Funktionen USBMCCreate und USBMCinit auf.

int SchrittmotorDLLEntladen() wird zum Entladen der DLL aufgerufen. Die-
se ruft wieder die DLL-Funktion USBMCDestroy und die Windows-API-Funktion
FreelLibrary auf.

int SetXtarget wird zum Festlegen der Zielposition des Schrittmotors fiir die X-,
Y- oder Z-Achse aufgerufen. Diese ruft die DLL-Funktion SetXtarget auf.

int SetXYZtarget wird fiir den Fall, dass die Zielpositionen von mehreren Schritt-
motoren gleichzeitig festgelegt werden sollen, aufgerufen. Diese Methode ruft die
DLL-Funktion SetXYZtarget auf.

long GetXtarget wird zum Abfragen der Zielposition des Schrittmotors aufgeru-
fen. Diese ruft die DLL-Funktion GetXtarget auf.

int SetVmax wird zum Festlegen der maximalen Geschwindigkeit des Schrittmo-
tors aufgerufen. Diese ruft die DLL-Funktion SetVmax auf.

Die verwaltete Klasse ManUSBMotion3x ist die Wrapper-Klasse der nicht verwalte-
ten Klasse USBMotion3x, hat daher die gleiche 6ffentliche Funktionalitdt wie die
Klasse USBMotion3x. In der Klasse wird ein Zeiger namens UnUSBMotion3x vom
Typ der Klasse USBMotion3x mit * deklariert. Im Konstruktor ManUSBMotion3x ()
wird ein Objekt der Klasse USBMotion3x mit new erzuegt und diesem Zeiger zu-

34

6. Implementierung

gewiesen. Im Destruktor ~ManUSBMotion3x() wird das nicht verwaltete Objekt
geloscht. Diese Klasse besitzt folgende methoden:

int managed_SchrittmotorDLLInit ()

int managed_SchrittmotorDLLEntladen ()

int managed_SetXtarget

int managed_SetXYZtarget

long managed_GetXtarget

int managed_SetVmax
Diese Methoden tun nichts anderes, als die entsprechende Methode der klasse
USBMotion3x iiber den Zeiger UnUSBMotion3x aufzurufen. Ein Objekt dieser Klasse
wird in der verwalteten Klasse Form1 erzeugt und dem Trackinghandle NewMotion3x
zugewiesen. Die DLL-Funktionen kénnen dann iiber dieses Trackinghandle in der
Klasse Form1 aufgerufen werden.

6.3. Benutzerschnittstelle

Die Abbildung 6.1 zeigt die Benutzerschnittstelle des in dieser Arbeit erstellten Anwen-
dungsprogrammes. Die Benutzerschnittstelle setzt sich aus einem Ausgabefenster, drei
Buttons und vier Eingabefeldern zusammen.

Im Ausgabefenster werden folgende Informationen angezeigt:

e die Benutzereingaben fiir die Zielpositionen von drei Schrittmotoren, den Radius
der Kreisbahn

e die aktuellen Positionen von drei Schrittmotoren, die Koordinaten der ausgewéhl-
ten Punkte auf der ersten Achtelkreisbahn sowie die erfassten Messwerte

e die Meldungen wie , Die Kreisbahndaten wurden erfolgreich an die Steuerkarte ge-
schickt!* oder “Die Zielposition fiir Motor X konnte nicht ins Register geschrieben
werden!“

Die Benutzer kann den Messvorgang starten, beenden oder den Friser an den Punkt
(0,0,0) positionieren, indem er den Button Starten, Beenden oder Homing klickt. Der
in einem Eingabefeld eingegebene Wert muss vom Benutzer mit der Enter-Taste bestétigt
werden. Der eingegebene Wert fiir den Radius der Kreisbahn soll nicht grofier als 1, 0mm
sein.

6.4. Testergebnisse

Beim Test wurden an drei Messkanéle des Messgerédtes normale Widersténde angeschlos-
sen. Die Widerstandsdnderungen von DMS wurden durch die Warmung dieser Wider-
stdnde simuliert. Die Abbildung 6.2 zeigt bei einem Test in der Datei MessDaten.CSV
gespeicherte Messwerte. Dabei passierten die Widerstandsdnderungen zuerst beim Mess-
kanal3, dann beim Messkanal2 und schliefflich beim Messkanall. Die durch eine Linie
gekennzeichneten Werte wurden gespeichert, weil das Programm davon ausging, dass die
Messwerte von allen drei eingesetzten Messkanélen wieder stabil geworden waren.

Die Koordinaten der Punkte, die zum Frisen einer Kreisbahn mit dem vom Benutzer

35

6. Implementierung

n Messdatenei?lln

5. Kanall: -12228; Kanal2: -9504; Kanal3: -12275; Kanal4: 0 A

Messdaten Einlesen 6. Kanall: -12229; Kanal2: -9500; Kanal3: -12275; Kanal4: 0
7. Kanall: -12298; Kanal2: -9476; Kanal3: -12271; Kanal4: 0
— 8. Kanall:-12294; Kanal2: -9476; Kanal3:-12271; Kanal4: 0 i
E:!. KanaI"1: -12291; Kanal2: -947¢; _Kanal3: -12270; Kanal4: 0
Eingabe fur Motor Z: 2 mm, 400 Schritte
Die Position von Motor Z: 400
S e Eingabe far Radius: 0,095 mm, 19 Schritte
(XY) = (0,19),
(X.Y) = (4.19),
N (XY) = (5,18), 18,68 =
ok (XY) = (7.18),
= (XY) = (8,17), 18,79
(XY) = (9.17).
o (X.Y) = (10,16), 18,87
I (XY) = (11,15), 18,60
I Radius der Kreisbahn {mm): (XrY) = (12r15)r il
(XY) = (13,14), 19,10 i
| Die Kreisbahndaten wurden erfolgreich an die Steuerkarte geschickt!

Abbildung 6.1.: Benutzerschnittstelle

o — —
_'| MessDaten - Editor

Datei Bearbeiten Format Ansicht 7

| Nr.;Kanall; Kanal2; Kanal3; Kanald; -
1;-12226;-9469;-12266;0
2;-12226;-9472;-12303;0
3;-12226;-9471; -T7798; 0
4,-12227;-9508;-12274,0
5;-12228;-9504;-12275;0
G;-12229;-9500;-12275;0
73 -12298;-9476;-12271;0
8;-12294;-9476;-12271;0
9;-12291;-9476;-12270;0
10;-12261;-9468;-12273;0

Abbildung 6.2.: Messwerte nach Widerstandsdnderungen

36

6. Implementierung

R Edit[- E=REE

Datei Bearbeiten Format Ansicht 7

pie (X,Y) der Kreisbahn:

0,19 ok! K|
4,19 ok! -
5,18 ok!

7,18 ok!

8,17 ok!

9,17 ok!

10,16 ok!

11,15 ok!
12,15 ok!
13,14 ok!
14,13 ok!
15,12 ok!
15,11 ok!
16,10 ok!
17,9 ok!

7,8 ok!
18,7 ok!
18,5 ok!
19,4 ok!
19,0 ok!

Abbildung 6.3.: Die Koordinaten der ausgewédhlten Punkte auf der ersten Viertelkreis-
bahn mit r = 0,095 mm (19 Schritte)

eingegebenen Radius ausgewéhlt wurden, und die Riickmeldungen, ob die Koordinaten
dieser Punkte erfolgreich an die Schrittmotorsteuerkarte geschickt wurden, sind in der
Datei KreisbahnDaten. txt gespeichert. Die Abbildung 6.3 zeigt einen Teil dieser Datei,
welche die Koordinaten der zum Frasen einer Kreisbahn mit r = 0,095mm ausgewéhl-
ten Punkte und die Riickmeldungen enthélt. Fiir diesen Test wurde die Schrittauflésung
des Schrittmotors auf 0,005mm/Schritt eingestellt, so dass der Radius umgerechnet 19
Schritte betragt. Die gefraste Kreisbahn soll genau wie die blaue Linie in der Abbildung
5.1 aussehen.

37

7. Zusammenfassung

Es wurden zunéchst die dieser Arbeit zu Grunde liegenden Kenntnisse vorgestellt. Dies
sind Eigenspannungen und deren Messverfahren Bohrlochverfahren, Dynamic Link Li-
brary (DLL), ActiveX-Steuerelement, .Net Framework sowie C++/CLI-Schnittstelle.
Das Messgeriat Vishay Modell P3 und die USB-Steuerkarte USBMotion3xII wurden in
Kapitel 3 vorgestellt.

In Kapitel 5 (Entwurf) wurden zunéchst ein Konzept entwickelt, das erkennen kann, ob
nach jeder Vertiefung der Kreisbahn die Messwerte von den eingesetzten Messkanélen
stabil sind. Anschliefend wurde der Bresenham Algorithmus, der fiir die Bestimmung
der Punkte auf der Kreisbahn zum Einsatz kam, vorgestellt.

Die implementierten Klassen und deren Methoden wurden in Kapitel 6 (Implementie-
rung) beschrieben. Im Gegensatz zum ActiveX-Steuerelement VMMP3Control kénnen
die Funktionen von der DLL USBM3x32 in einer verwalteten Klasse nicht direkt aufge-
rufen werden. Daher wurde auch eine Wrapper-Klasse fiir diese DLL implementiert. Die
Benutzerschnittstelle und die Testergebnisse des Anwendungsprogrammes wurden auch
in diesem Kapitel vorgestellt.

Die Testergebnisse haben gezeigt, dass das Programm die Messwerte schon fiir wieder
stabil hielt, wihrend sie sich noch langsam &nderten. Das Problem kann dadurch gelost
werden, dass die Anzahl der Messwerte, die miteinander verglichen werden sollen, erhéht
wird.

Es ist erforderlich, dass die maximale Geschwindigkeit und die maximale Beschleunigung
von Schrittmotoren auch vom Benutzer selbst festgelegt werden kénnen. Dadurch ist der
Benutzer in der Lage, den Frasprozess zu beschleunigen.

38

A. Eigenschaften und Methoden von
VMMP3Control.dli

Im Folgenden werden die vom ActiveX-Steuerelement VMMP3Control.dll zur Verfiigung
gestellten Eigenschaften und Methoden beschrieben, wobei das Schliisselwort ByVar fest-
legt, dass beim Aufruf dem Parameter der Wert eines Arguments tibergeben wird. Eine
variable vom Typ Variant kann numerische Daten, Zeichenfolgen, Datumsdaten sowie
die speziellen Werte Empty und Null annehmen. Der Parameter Channel kann die Inte-
gerzahlen 1, 2, 3 und 4 annehmen.

1. Property ADReading(ByVal Channel As Long) As Long
Schreibgeschiitzt
enthilt die aktuellen A/D-Daten des gewahlten Kanals

2. Property BalanceMode(ByVal Channel As Long) As Long
enthdlt eine der folgenden Integerzahlen:
0—Briickenabgleichfunktion fir den gewédhlten Kanal ist abgeschaltet
1—Briickenabgleich des gewédhlten Kanals wird vom Messgerat ausgefiihrt
2—Brickenabgleich des gewédhlten Kanals wird vom Benutzer manuell ausgefiihrt

3. Property BalanceValue(ByVal Channel As Long) As Long
enthdlt die Anzahl der A/D—Wandlung. Bem Briickenabgleich des gewédhlten Kanals
fiihrt das Messgerdt soviel Messungen durch und nimmt davon den Mittelwert

4. Property BridgeType(ByVal Channel As Long) As Long
enthdlt den Messbriicketyp (eine Integerzahl zwischen 0—10)des gewdahlten Kanals
0 — Viertelbriicke
1 — Halbbriicke, DMS in benachbarten Briickenzweigen
— Halbbriicke, DMS in gegeniiber liegenden Briickenzweigen
— Halbbriicke, DMS in benachbarten Briickenzweigen, shear configuration
— Halbbriicke, 1 DMS in Hauptrichtung und 1 DMS in Richtung Poisson—Dehnung
— Vollbriicke , 4 aktive DMS
Vollbricke , 4 aktive DMS, shear configuration
— Vollbriicke , 2 Poisson-DMS in gegeniiber liegenden Briickenzweigen
— Vollbriicke, 2 Poisson-DMS in benachbarten Briickenzweigen
— Undefinierte Vollbricke
0 — Undefinierte Halb— oder Viertelbriicke

= © 00O U W N
I

5. Property ChannelActive(ByVal Channel As Long) As Boolean
enthdlt den Status des gewdhlten Kanals,
kann abgefragt und auf true oder false gesetzt werden.

6. Property ChannelLabel(ByVal Channel As Long) As String
enthilt den Namen des gewédhlten Kanals

7. Property CurrentReading(ByVal Channel As Long) As Variant

Schreibgeschiitzt
enthédlt den aktuellen Messwert des gewédhlten Kanals

39

A. Eigenschaften und Methoden von VMMP3Control.dlIl

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

Property DeviceOpen As Boolean
enthédlt den Zustand des angeschlossenen Gerédts, muss vor dem Zugriff auf
andere Eigenschften auf true gesetzt werden

Property EngUnits(ByVal Channel As Long) As String
enthdlt die Engineering—Einheiten des gewédhlten Kanals, Max. 4 Zeichen

Property FullScaleInEngUnits (ByVal Channel As Long) As Variant
enthdlt den full—scale Wert des gewéahlten Kanals, in Engineering—Einheiten

roperty FullScalelnmVPerV (ByVal Channel As Long) As Variant
enthédlt den full—scale Wert in mV/V des gewidhlten Kanals

Property GageFactor (ByVal Channel As Long) As Variant
enthédlt den k—Faktor des gewdhlten Kanals

Property MediaCardOpen As Boolean
enthdlt den Wert true, dann ist die Multimedia—Karte gedffnet

Property PoissonsRatio As Variant
enthalt den Poissons—Ratio Wert

Property RecordingActive As Boolean
enthdlt den Wert true, dann ist die Aufnahme aktiviert , sonst deaktiviert

Property Recordinglnterval (ByVal Channel As Long) As Long
enthdlt das Aufnahme—Intervall des gewédhlten Kanals, in Sekunden

Property RecordingMode As Long

enthdlt eine der folgenden Integerzahlen:

0 — die Messdaten nicht auf der Multimedia—Karte speichern

1 — die Messdaten manuell auf der Multimedia—Karte speichern

2 — die Messdaten automatisch auf der Multimedia—Karte speichern

Property ScansRecorded As Long
Schreibgeschiitzt
enthdlt die Anzahl der aufgenommenen Scans

Property SerialNo As String
Schreibgeschiitzt ,
enthalt die Seriennummer des Messgerats P3, im ASCII-Format.

Property ShuntCalEnabled As Boolean
enthalt den Wert true, dann ist die Shunt—Kalibrierung aktiviert ,
sonst deaktiviert

Property ShuntCalValue(ByVal Channel As Long) As Long
enthdlt die Messungsanzahl fiir die Shunt—Kalibrierung des gewédhlten Kanals

Property VersionNumber As Variant
Schreibgeschiitzt

enthalt die Versionsnummer der Firmware

Function CloseMMCDataFile() As Boolean
schliefit eine zuvor gedéffnete Datei auf der Multimedia—Karte.

Function EraseMMC() As Boolean

40

A. Eigenschaften und Methoden von VMMP3Control.dlIl

25.

26.

27.

28.

29.

30.

31.

16scht die Dateien auf der Multimedia—Karte

Sub GetTime(year As Integer , month As Integer, day As Integer,
hour As Integer , minute As Integer , second As Integer)
gibt Datum und Uhrzeit aus der Echtzeituhr vom Messgerdt P3 zuriick

Function OpenMMCDataFile(ByVal Value As String) As Boolean
6ffnet die ausgewdhlte Datei auf der Multimedia—Karte

Function RecordOneScan() As Boolean
zeichnet einen Scan der vier Kanédle auf der Multimedia—Karte auf,
gibt true zurilick, falls es erfolgreich ist

Sub ResetFactoryDefaults (ByVal SaveToFlash As Boolean)
setzt das Messgerdt P3 auf die Werkseinstellungen zuriick und speichert diese
Einstellungen auf dem internen Flash—Speicher, falls SaveToFlash true ist

Sub SaveSetup ()
Speichert das aktuelle P3—Setup auf dem internen Flash—Speicher

Sub SetTime(ByVal year As Integer , ByVal month As Integer,
ByVal day As Integer, ByVal hour As Integer,
ByVal minute As Integer , ByVal second As Integer)

legt das Datum und die Uhrzeit fiir das Messgerdt P3 fest

Function StartFirmwareUpgrade () As Boolean
startet den Firmware—Upgrade—Prozess

41

B. Funktionen von USBM3X32.DLL und
Testprogramm

B.1. USBM3X32.DLL-Funktionen

Die fiir diese Arbeit relevante Funktionen sind im folgenden aufgelistet. Die Auflistung
aller von der USBMotion3XII-Karte zur Verfiigung gestellten Funktionen und aller még-
lichen Riickgabewerte dieser Funktionen befindet sich in [2].

1. DWORD USBMCCreate (HWND hWnd, unsigned char EventsWait, PCHAR IDString);
hWnd: das Handle der aufrufenden Anwendung.
EventsWait: O oder 1

EventsWait=0: Fiir Lesen/Schreiben-Funktionen soll die Anwendung auf die Daten
aus USB-Karte warten

EventsWait=1: Windows Messages sollen in der Anwendung zum Einsatz kommen
IDString: die vom Benutzer definierte Windows message ID
Aufrufkonvention: stdcall

Beschreibung: Der Riickgabewert ist null, falls der Aufruf dieser Funktion fehlschlagt.
Sonst ist der Riickgabewert eine Message-1D im Bereich von 0xC000 bis OxFFFF.
Beim Start der Anwendung muss diese Funktion aufgerufen werden, damit die Ob-
jekte und Klassen in der DLL erstellt werden.

2. unsigned char USBMCDestroy();
Aufrufkonvention: stdcall

Beschreibung: Beim Beenden der Anwendung muss diese Funktion aufgerufen werden,
damit die Ressourcen wieder freigegeben werden.

3. unsigned char USBMCinit(unsigned long& PData, unsigned long& PIICData,
unsigned long& PIICSCN);

PData: ein zeiger, der auf die Daten zeigt, die vom Schrittmotor-Controller gelesen
wurden.

PIICData: ein zeiger, der auf die Daten zeigt, die von den I12C-Geréten gelesen wurden.

42

B. Funktionen von USBM3X32.DLL und Testprogramm

PIICSCN: ein zeiger, der auf ein Array zeigt, das die Informationen iiber alle verfiigharen
12C-Gerite auf dem Bus enthélt.

Aufrufkonvention: stdcall

Beschreibung: Nachdem die Funktion USBMCCreate erfolgreich ausgefithrt wurde, muss
diese Funktion aufgerufen werden. Der Riickgabewert ist ungleich Null, falls der
Aufruf dieser Funktion fehlschldgt.

4. unsigned char SetXtarget(unsigned char Motor, long xtarg,
unsigned char& Status);

Motor: die Nummer des Schrittmotors (0, 1 oder 2)
xtarg: die Zielposition des Schrittmotors

Status: gibt den Status aller Schrittmotoren zurtick.
Aufrufkonvention: stdcall

Beschreibung: Diese Funktion schreibt den Wert von xtarg ins Zielregister. Die Ziel-
position ist angegeben in Einheiten von Vollschritten bzw. Mikroschritten. Die
Einheit ist abhingig von der Einstellung der Mikroschrittauflosung. Diese Funk-
tion kann jede Zeit aufgerufen werden, auch wahrend die Zielposition angefahren
wird.

5. unsigned char SetXYZtarget(unsigned char Motor, long xtarg, long ytarg,
long ztarg, unsigned char& Status);

Motor: eine Nummer zwischen 0 bis 7

xtarg, ytarg, ztarg: die Zielpositionen der Schrittmotoren 0, 1, 2
Status: gibt den Status aller Schrittmotoren zurtick.
Aufrufkonvention: stdcall

Der Wert von Motor wird bestimmt durch die Umrechnung eine 3-Bit-Binérzahl in
eine Dezimalzahl:
Bit0 = 1/0 -> Die neue Zielposition des Schrittmotors 0 wird angenommen /nicht
angenomimen.
Bitl = 1/0 -> Die neue Zielposition des Schrittmotors 1 wird angenommen /nicht
angenomien.
Bit2 = 1/0 -> Die neue Zielposition des Schrittmotors 2 wird angenommen /nicht
angenomien.

6. unsigned char SetVmax(unsigned char Motor, unsigned short Vmax,
unsigned char& Status);

43

B. Funktionen von USBM3X32.DLL und Testprogramm

Motor: die Nummer des Schrittmotors (0, 1 oder 2)
Vmax: die maximale Geschwindigkeit (Schritte/Sekunde)
Status: gibt den Status aller Schrittmotoren zurtick.
Aufrufkonvention: stdcall

Beschreibung: Diese Funktion legt die maximale Motorgeschwindigkeit fest. Der abso-
lute Wert der Geschwindigkeit wird diese Grenze nicht iiberschreiten, aufler wenn
der Wert von Vmax wahrend der Bewegung auf einen Wert unterhalb der aktuellen
Geschwindigkeit gesetzt wird.

7. unsigned char SetAmax(unsigned char Motor, unsigned short Vmax,
unsigned char& Status);

Motor: die Nummer des Schrittmotors (0, 1 oder 2)

Amax: die maximale Beschleunigung (Schritte/Sekunde/Sekunde)
Status: gibt den Status aller Schrittmotoren zurtick.
Aufrufkonvention: stdcall

Beschreibung: Diese Funktion legt die maximale Beschleunigung des Schrittmotors
fest. Amax wihrend der Bewegung des Schrittmotors auf Null zu setzen, wird dazu
fiihren, dass der Schrittmotor nicht gestoppt wird, da seine Geschwindigkeit nicht
mehr verdndert werden kann.

8. unsigned char GetXtarget(unsigned char Motor, unsigned char& Status,
long& xtarg);

Beschreibung: Diese Funktion gibt die Zielposition des Schrittmotors zuriick.

9. unsigned char GetVmax(unsigned char Motor, unsigned char& Status,
unsigned short& Vmax);

Beschreibung: Diese Funktion gibt die maximale Geschwindigkeit des Schrittmotors
zuriick.

10. unsigned char GetAmax(unsigned char Motor, unsigned char& Status,
unsigned short& Amax);

Beschreibung: Diese Funktion gibt die maximale Beschleunigung des Schrittmotors
zuriick.

44

B. Funktionen von USBM3X32.DLL und Testprogramm

11. unsigned char SetMode(unsigned char Motor, unsigned char rMode,
unsigned char& Status);

Motor: die Nummer des Schrittmotors (0, 1 oder 2)

rMode: die Nummer der Betriebsarten RAMPMODE (0x00), SOFTMODE (0x01),
VELOCITYMODE (0x02) und HOLDMODE (0x03)

Status: gibt den Status aller Schrittmotoren zurtick.
Aufrufkonvention: stdcall

Beschreibung: Die Betriebsart RAMPMODE ist fiir Positionierungsaufgaben vorgese-
hen. Der Schrittmotorcontroller wird aufgrund der aktuellen Zielposition ein tra-
pezformiges Geschwindigkeitsprofil berechnen und dann den Schrittmotor dement-
sprechend steuern.

Die Betriebsart SOFTMODE ist der RAMPMODE &hnlich, aufler dass die Ziel-
position mit exponentiell reduzierter Geschwindigkeit angefahren wird.

Die Betriebsart VELOCITYMODE ist fiir die Anwendungen geeignet, bei denen
Schrittmotoren mit konstanter Geschwindigkeit laufen miissen. Die Positionierung
muss dabei nicht speziell betrachtet werden.

In der Betriebsart HOLDMODE wird die Zielgeschwindigkeit direkt vom Benut-
zer festgelegt. Der Schrittmotorcontroller ignoriert die Geschwindigkeits- und Be-
schleunigungsbegrenzung, um diese zu erreichen.

12. unsigned char SetMicroSteps(unsigned char Motor, unsigned char mStep,
unsigned char& Status);

Motor: die Nummer des Schrittmotors (0, 1 oder 2)
mStep: eine Nummer zwischen 0 und 6

Status: gibt den Status aller Schrittmotoren zurtick.
Aufrufkonvention: stdcall

Beschreibung: Mit Hilfe dieser Funktion wird die Schrittauflésung des Schrittmotors
festgelegt. Hat z.B. ein Schrittmotor n Vollschritte pro Umdrehung und eine Spin-
delsteigung von 1 mm, so wird die Schrittauflésung durch W berechnet. Die
Schrittauflésung ist % mm/Vollschritt, falls mStep die Nummer 0 ist. Die Schrit-
tauflésung ist 64%” mm/Mikroschritt, falls mStep die Nummer 6 ist.

13. unsigned char GetMode(unsigned char Motor, unsigned char& rMode,
unsigned char& Status);

rMode: gibt die eingestellte Betriebsart zuriick.

45

B. Funktionen von USBM3X32.DLL und Testprogramm

14. unsigned char GetMicroSteps(unsigned char Motor, unsigned char& mStep,
unsigned char& Status);

mStep: gibt die eingestellte Mikroschrittauflésung zuriick.

Die Riickgabewerte dieser Funktionen sind u.a. folgende:

SUCCESS (0x00): Eine Lesen/Schreiben-Funktion wurde erfolgreich ausgefithrt. Eine
Funktion gibt diesen Wert zuriick, falls der Parameter EventsWait von der Funk-
tion USBMCCreate beim Aufruf auf 0 gesetzt wurde.

TX_SUCCESS (0x01): Eine Lesen/Schreiben-Funktion wurde erfolgreich an ein USB-
Gerat geschickt. Eine Funktion gibt diesen Wert zuriick, falls der EventsWait von
der Funktion USBMCCreate beim Aufruf auf 1 gesetzt wurde.

DEVICE_BUSY (0x03): Das USB-Gerét ist noch nicht mit der vorher aufgerufenen
Funktion fertig.

DEV_NOT_ASSIGNED (0x05): Eine Funktion gibt diesen Wert zurtick, falls keine USB-
Geriéte verfliigbar sind oder kein USB-Gerét ausgewahlt wurde.

B.2. Testprogramm

Das folgende Testprogramm soll zeigen, wie man diese DLL in einer Visual C++ Console-
Anwendung einsetzen kann. Bei dieser DLL handelt sich um eine Win32 API-Anwendung.

#include "stdafx.h"
#include <windows.h>

using namespace System;

// Definition des Types der DLL-Funktionen, die verwendet werden sollen
typedef DWORD (_ _ stdcall «LPUSBMCCREATE) (HWND, unsigned char, String™);
typedef unsigned char (__ stdcall «LPUSBMCDESTROY) ();
typedef unsigned char (__ stdcall *LPUSBMCINIT)(unsigned longé&, unsigned long,
unsigned longé&);
typedef unsigned char (___ stdcall «LPSETXTARGET) (unsigned char,
long , unsigned char&);
typedef unsigned char (__ stdcall «LPGETXTARGET) (unsigned char,
unsigned char&, long&);
typedef unsigned char (__ stdcall «LPSETVMAX) (unsigned char, unsigned short,
unsigned char&);

int main(array<System:: String~ > Targs)

{
HINSTANCE husbm3x32DI11;
LPUSBMCCREATE IpUSBMCCreate;
LPUSBMCDESTROY IpUSBMCDestroy ;
LPUSBMCINIT IpUSBMClnit ;
LPSETXTARGET IpSetXtarget ;

46

B. Funktionen von USBM3X32.DLL und Testprogramm

LPGETXTARGET IpGetXtarget ;
LPSETVMAX IpSetVmax;

String “szIDString = "MCControl_MyApp_MsgID";
unsigned int uiPrivateMsg;

unsigned long PData;

unsigned long PIICData;

unsigned long PIICScan;

// DLL Datei wird geladen
husbm3x32DI1l = (HINSTANCE) LoadLibrary (L"USBM3x32. d11");
if (husbm3x32DIl) Console:: WriteLine (L"'DLL wurde erfolgreich geladen');

// Die Einsprungadressen werden abgefragt
IpUSBMCCreate =(LPUSBMCCREATE) GetProcAddress(husbm3x32DI1l, "USBMCCreate");

IpUSBMCDestroy =(LPUSBMCDESTROY) GetProcAddress (husbm3x32DI1," USBMCDestroy ") ;

IpUSBMCInit = (LPUSBMCINIT) GetProcAddress (husbm3x32D1l, "USBMCinit");
IpSetXtarget = (LPSETXTARGET) GetProcAddress(husbm3x32DI1l, "SetXtarget");
IpGetXtarget = (LPGEIXTARGET) GetProcAddress(husbm3x32D1l, "GetXtarget");
IpSetVmax = (LPSETVMAX) GetProcAddress (husbm3x32DI1l, "SetVmax");

// Es soll geprift werden, ob jeweilige Einsprungadresse nicht Null ist, z.B.
// if (IpUSBMCCreate) Console:: WriteLine ("lpUSBMCCreate—Einsprungadresse ok");

// Die Objekte und Klassen in der DLL werden erstellt und initialisiert
// Der Riickgabewert ist null, falls der USBMCCreate—Aufruf fehlschlégt
// Der Riickgabewert ist null, falls der USBMCInit—Aufruf erfolgreich ist
uiPrivateMsg = IpUSBMCCreate(0,0,szIDString);

if (uiPrivateMsg > 0)

if (IpUSBMCInit(PData,PIICData ,PIICScan) = 0)
{
Console :: WriteLine (L"DLL wurde erfolgreich initialisiert!");
} else Console:: WriteLine (L"DLL kann nict initialisiert werden!");
} else Console:: WriteLine (L"DLL kann nict initialisiert werden!");

long 1Xtarget;

unsigned short usVmax;
unsigned char ucstatus;
unsigned char ucfeedback;

Console :: Write (L"Die Zielposition von Motor 0 eingeben: ");
1Xtarget = Convert:: ToInt64 (Console :: ReadLine ());
ucfeedback = IpSetXtarget (0,lXtarget ,ucstatus);

// ucfeedback = 0, falls der SetXtarget—Aufruf fiir Motor 0 erfolgreich ist
switch (ucfeedback)

{
case 0: Console:: WriteLine (L"SUCCESS");
break;
case 1: Console:: WriteLine (L"TRANSMISSION SUCCESSFULL");
break ;
case 3: Console:: WriteLine (" Device is Busy");
break;
case 5: Console:: WriteLine ("ERROR: USB Device not assigned");
break ;
default: Console:: WriteLine(L"?7?");
}

47

B. Funktionen von USBM3X32.DLL und Testprogramm

ucfeedback = lpGetXtarget (0, ucstatus ,1Xtarget);
if (ucfeedback = 0)

{
Console :: WriteLine ("Die ZielPosition von Motor 0: " + 1Xtarget);
telse Console:: WriteLine (" GetXtarget—feedback: " + ucfeedback);

Console :: Write (L"Die max. Geschwindigkeit von Motor 0 eingeben: ");
usVmax = Convert :: ToInt32(Console :: ReadLine ());

ucfeedback = IpSetVmax(0,usVmax, ucstatus);

Console :: WriteLine ("SetVmax—feedback: " 4+ ucfeedback);

// Die Ressourcen werden wieder freigegeben
IpUSBMCDestroy () ;

// Die DLL-Datei wieder entladen
FreeLibrary ((HMODULE) husbm3x32DIl);

Console :: ReadLine ();
return 0;

48

C. Quellext vom Anwendungsprogramm
Messdateneinlesen und
Schrittmotorsteuern

C.1. USBMotion3x.h

#pragma once
#include <windows.h>

#pragma unmanaged

// Definition des Types der DLL-Funktion,
__stdcall «LPUSBMCCREATE)
~_stdcall
__stdcall

typedef DWORD (
typedef
typedef

unsigned
unsigned

char (
char (

die verwendet werden soll

(HWND, unsigned char, charx);
*LPUSBMCDESTROY) ();

xLPUSBMCINIT) (unsigned longé&, unsigned longé&,

typedef
typedef

typedef
typedef

typedef

unsigned
unsigned

unsigned
unsigned

unsigned

char
char

char

char

char

(—
(—

(—
(—

(

unsigned longé&);

// Die Klasse USBMotion3x fasst die Methoden zur Steuerung
// des Schrittmotors zusammen
class USBMotion3x

{
HINSTANCE husbm3x32DI11;
LPUSBMCCREATE IpUSBMCCreate;
LPUSBMCINIT IpUSBMClnit ;
LPUSBMCDESTROY IpUSBMCDestroy ;
LPSETXTARGET IpSetXtarget ;
LPSETVMAX lpSetVmax;
LPSETXYZTARGET IpSetXYZtarget ;
LPGETXTARGET IpGetXtarget ;
unsigned char ucstatus;
unsigned char ucfeedback;
unsigned int uiPrivateMsg;
unsigned long PData;
unsigned long PIICData;
unsigned long PIICScan;

public:

USBMotion3x (void)

~USBMotion3x (voi

)

49

_stdcall *LPDEVICECOUNT) ();
_stdcall *LPSETXTARGET) (unsigned char, long,
unsigned char&);
_stdcall *LPGETXTARGET) (unsigned char,
unsigned char&, long&);
_stdcall *LPSETVMAX) (unsigned char, unsigned short,
unsigned char&);
__stdcall «LPSETXYZTARGET) (unsigned char, long, long,
long, unsigned char&);

C. Quellext vom Anwendungsprogramm Messdateneinlesen und Schrittmotorsteuern

int SchrittmotorDLLInit ();
int SchrittmotorDLLEntladen ();
int SetXtarget (unsigned char motorIndex, long 1Xtarget);
int SetXYZtarget(unsigned char motorIndex, long 1Xtarget, long lYtarget,
long lZtarget);
long GetXtarget(unsigned char motorIndex);
int SetVmax(unsigned char motorIndex, unsigned short usVmax);
s

#pragma managed

// Die Klasse ManUSBMotion3x ist die Wrapper—Klasse der nicht
// verwalteten Klasse USBMotion3x

public ref class ManUSBMotion3x

{
USBMotion3x*x UnUSBMotion3x;

public:
ManUSBMotion3x (void);
protected :
~ManUSBMotion3x (void);
public:
int managed_ SchrittmotorDLLInit ();
int managed SchrittmotorDLLEntladen ();
int managed_ SetXtarget (unsigned char motorIndex, long 1Xtarget);
int managed_SetXYZtarget (unsigned char motorIndex, long 1Xtarget ,
long 1Ytarget, long lZtarget);
long managed GetXtarget(unsigned char motorIndex);
int managed_SetVmax(unsigned char motorIndex, unsigned short usVmax);

b
C.2. USBMotion3x.cpp

#include "StdAfx.h"
#include "USBMotion3x.h"

USBMotion3x : : USBMotion3x (void)

{
}

USBMotion3x :: ~USBMotion3x (void)

{
}

int USBMotion3x:: SchrittmotorDLLInit ()

{
// DLL Datei laden
husbm3x32D1l = (HINSTANCE) LoadLibrary (L"USBM3x32. d11");
// Die Einsprungadresse abfragen
IpUSBMCCreate =(LPUSBMCCREATE) GetProcAddress(husbm3x32DI1l, "USBMCCreate");
IpUSBMClInit =(LPUSBMCINIT) GetProcAddress (husbm3x32D1l, "USBMCinit");
IpUSBMCDestroy =(LPUSBMCDESTROY) GetProcAddress(husbm3x32DIl, "USBMCDestroy");
IpSetXtarget =(LPSETXTARGET) GetProcAddress(husbm3x32DI1l, "SetXtarget");
IpSetVmax =(LPSETVMAX) GetProcAddress (husbm3x32DIl, "SetVmax");
IpSetXYZtarget =(LPSETXYZTARGET) GetProcAddress (husbm3x32DI1l, "SetXYZtarget");
IpGetXtarget =(LPGETXTARGET)GetProcAddress (husbm3x32DIl, "GetXtarget");

20

C. Quellext vom Anwendungsprogramm Messdateneinlesen und Schrittmotorsteuern

uiPrivateMsg = IpUSBMCCreate (0,0 ,"MCControl_ MyApp_ MsgID");
if (uiPrivateMsg > 0)

if (1pUSBMCInit(PData,PIICData,PIICScan) = 0)
{
return 300; // "DLL-Init erfolgreich!" ;
} else return 200; // "can not initialize DLL-Init?"
} else return 100; // "can not initialize DLL—Curn reate";
}
int USBMotion3x :: SchrittmotorDLLEntladen ()
{
IpUSBMCDestroy () ;
// Die DLL-Datei wieder entladen
FreeLibrary ((HMODULE) husbm3x32DI1);
return 400;
}

int USBMotion3x:: SetXtarget (unsigned char motorIndex, long 1Xtarget)

{
//(ucfeedback) 0: SUCCESS; 1: TRANSMISSION SUCCESSFULL;

// 3: Device is Busy; 5: USB Device not assigned!
return ucfeedback = lpSetXtarget (motorIndex, 1Xtarget, ucstatus);

}

int USBMotion3x:: SetXYZtarget (unsigned char motorIndex, long 1Xtarget ,
long 1Ytarget, long lZtarget)
{

return ucfeedback = lpSetXYZtarget (motorIndex, 1Xtarget, lYtarget,
1Ztarget , ucstatus);

}

long USBMotion3x:: GetXtarget (unsigned char motorIndex)
long 1Xtarget;

ucfeedback = lpGetXtarget (motorIndex ,ucstatus ,1Xtarget);
if (ucfeedback = 0)
{
return IXtarget;
} else return LONG MAX;

}
int USBMotion3x :: SetVmax(unsigned char motorIndex, unsigned short usVmax)
{
return ucfeedback = IpSetVmax(motorIndex, usVmax, ucstatus);
}

ManUSBMotion3x : : ManUSBMotion3x (void)

UnUSBMotion3x = new USBMotion3x ();
}

ManUSBMotion3x : : ~ ManUSBMotion3x (void)

delete UnUSBMotion3x;

o1

C. Quellext vom Anwendungsprogramm Messdateneinlesen und Schrittmotorsteuern

UnUSBMotion3x = NULL;
}

int ManUSBMotion3x:: managed__ SchrittmotorDLLInit ()

{
}

int ManUSBMotion3x :: managed SchrittmotorDLLEntladen ()

{
}

int ManUSBMotion3x:: managed_SetXtarget (unsigned char motorIndex, long 1Xtarget)

{
}

int ManUSBMotion3x :: managed_SetXYZtarget (unsigned char motorIndex, long 1Xtarget,
long 1Ytarget , long lZtarget)
{

}

long ManUSBMotion3x :: managed__GetXtarget (unsigned char motorIndex)

{
}

int ManUSBMotion3x : : managed_ SetVmax (unsigned char motorIndex,
unsigned short usVmax)
{

}
C.3. Forml.h

return UnUSBMotion3x—>SchrittmotorDLLInit ();

return UnUSBMotion3x—>SchrittmotorDLLEntladen ();

return UnUSBMotion3x—>SetXtarget (motorIndex, 1Xtarget);

return UnUSBMotion3x—>SetXYZtarget (motorIndex, 1Xtarget, lYtarget, lZtarget);

return UnUSBMotion3x—>GetXtarget (motorIndex);

return UnUSBMotion3x—>SetVmax (motorIndex , usVmax);

#pragma once
#include "USBMotion3x.h"

namespace VP3undUSBMotion3x {

using namespace System;

using namespace System :: ComponentModel;

using namespace System:: Collections;

using namespace System :: Windows:: Forms;

using namespace System ::Data;

using namespace System ::Drawing;

using namespace System ::10;

using namespace System:: Collections :: Generic;
using namespace System :: Threading;

// Zusammenfassung fiir Forml
public ref class Forml : public System:: Windows:: Forms:: Form

{
VMMP3Control : : VMMP3Controller "NewVP3;

92

C. Quellext vom Anwendungsprogramm Messdateneinlesen und Schrittmotorsteuern

int aktAnzahl;

StreamWriter “dateil , “datei2;
array<List<double>"> TaVierKanal;
bool bWiederMalUnverdndern;

ManUSBMotion3x ~NewMotion3x;
array<int> “xyzLengthAlt;
array<List<int >"> TaKreisbahnDaten;
ThreadStart ~tsKreisbahn;

Thread “threadKreisbahn;

public:
Forml(void)
{
InitializeComponent ();
dateienAnlegen ();

this —>NewVP3 = gcnew VMMP3Control: : VMMP3Controller () ;
this—>aktAnzahl = 0;

this—>aVierKanal = gcnew array<List<double>">(4);
bWiederMalUnverdndern = false;

NewMotion3x = gcnew ManUSBMotion3x () ;

this—>xyzLengthAlt = gcnew array<int >(4){0,0,0,0};

this—>aKreisbahnDaten = gcnew array<List<int >">(2){gcnew List<int >(),
genew List<int >()};

this—>tsKreisbahn = gcnew ThreadStart (this , &Forml:: kreisbahnFrésen);

SchrittmotorSteuerkarteInit ();

}

protected:
// Verwendete Ressourcen bereinigen.
~Form1 ()
{
if (components)
{

delete components;

}

NewMotion3x—>managed SchrittmotorDLLEntladen ();

}

protected :

private: System::Windows:: Forms:: Button™ buttonl;
private: System:: Windows:: Forms:: Button™ button2;
private: System:: Windows:: Forms:: Button™ button3;

private: System:: Windows:: Forms:: Label”™ labell;
private: System:: Windows:: Forms:: Label”™ label2;
private: System:: Windows:: Forms:: Label”™ label3;
private: System :: Windows:: Forms:: Label™ label4;
private: System:: Windows:: Forms:: Label”™ label5;
private: System:: Windows:: Forms:: Label™ label7;

private: System :: Windows:: Forms:: TextBox~ textBoxl;
private: System :: Windows:: Forms:: TextBox~ textBox2;
private: System :: Windows:: Forms:: TextBox~ textBox3;
private: System :: Windows:: Forms:: TextBox~ textBox4;
private: System :: Windows:: Forms:: TextBox~ textBox6;

93

C. Quellext vom Anwendungsprogramm Messdateneinlesen und Schrittmotorsteuern

private: System :: ComponentModel:: IContainer”™ components;
private: System:: Windows:: Forms:: Timer™ timerl;

#pragma region Windows Form Designer generated code

// Erforderliche Methode fir die Designerunterstitzung.

// Der Inhalt der Methode darf nicht mit dem Code—Editor gedndert werden.
void InitializeComponent (void)
{
this—>components = (gcnew System :: ComponentModel:: Container ());
this—>buttonl = (gcnew System :: Windows:: Forms:: Button ());
this—>button2 = (gcnew System :: Windows:: Forms:: Button ());
this—>button3 = (gcnew System :: Windows:: Forms:: Button ());
this—>textBoxl = (gcnew System :: Windows:: Forms:: TextBox ());
this—>labell = (gcnew System :: Windows:: Forms:: Label ());
this—>textBox2 = (gcnew System :: Windows:: Forms:: TextBox ());
this—>label2 = (gcnew System :: Windows:: Forms:: Label ());
this—>label3 = (gcnew System :: Windows:: Forms:: Label ());
this—>textBox3 = (gcnew System :: Windows:: Forms:: TextBox ());
this—>label4 = (gcnew System :: Windows:: Forms:: Label ());
this—>label5 = (gcnew System :: Windows:: Forms:: Label ());
this—>textBox4 = (gcnew System :: Windows:: Forms:: TextBox ());
this—>textBox6 = (gcnew System :: Windows:: Forms:: TextBox ());
this—>label7 = (gcnew System :: Windows:: Forms:: Label ());
this—>timerl = (gcnew System :: Windows:: Forms:: Timer (this —>components));

this —>SuspendLayout ();
// buttonl

this—>buttonl—>Location = System :: Drawing:: Point (44, 57);
this —>buttonl—>Name = L"buttonl";

this—>buttonl—>Size = System :: Drawing:: Size (75, 23);
this—>buttonl—>Tablndex = 0;

this—>buttonl—>Text = L"Starten";
this—>buttonl—>UseVisualStyleBackColor = true;
this—>buttonl—>Click += gcnew System:: EventHandler (this ,

&Forml :: buttonl Click);

// button2

this—>button2—>Location = System ::Drawing:: Point (44, 96);
this—>button2—>Name = L"button2";

this—>button2—>Size = System:: Drawing:: Size (75, 23);

this —>button2—>Tablndex = 1;

this—>button2—>Text = L"Beenden";

this —>button2—>UseVisualStyleBackColor = true;
this—>button2—>Click += gcnew System:: EventHandler (this ,

&Forml :: button2 Click);

// button3

this —>buttond—>Location = System ::Drawing:: Point (44, 193);
this—>button3—>Name = L"button3";

this—>button3—>Size = System:: Drawing:: Size (75, 23);

this —>button3—>Tablndex = 2;

this —>button3—>Text = L"Homing";

54

C. Quellext vom Anwendungsprogramm Messdateneinlesen und Schrittmotorsteuern

this —>button3—>UseVisualStyleBackColor = true;
this—>button3—>Click += gcnew System:: EventHandler (this ,
&Forml :: button3 Click);

// textBox1

this —>textBoxl—>Anchor = System :: Windows:: Forms:: AnchorStyles :: None;
this—>textBox1—>BackColor = System :: Drawing:: SystemColors:: ButtonHighlight ;
this —>textBox1—>Font = (gcnew System:: Drawing:: Font(L" Microsoft YaHei", 12,
System :: Drawing :: FontStyle :: Regular ,
System :: Drawing :: GraphicsUnit :: Point ,
static_ cast <System:: Byte >(0)));
this —>textBoxl—>Location = System ::Drawing:: Point (201, 0);
this—>textBoxl—>Multiline = true;
this—>textBoxl—>Name = L"textBox1l";
this —>textBox1—>ReadOnly = true;
this—>textBoxl—>ScrollBars = System :: Windows:: Forms:: ScrollBars :: Vertical;
this—>textBox1—>Size = System::Drawing:: Size (685, 417);
this—>textBoxl—>Tablndex = 3;

// labell

this—>labell —>AutoSize = true;

this—>labell —>Location = System:: Drawing:: Point (24, 233);
this—>labell —>Name = L"labell ";

this—>labell =>Size = System:: Drawing:: Size (42, 13);
this—>labell —>Tablndex = 7;

this—>labell >Text = L"X (mm):";

// textBox2

this—>textBox2—>Location = System:: Drawing:: Point (27, 249);
this—>textBox2—>Multiline = true;
this—>textBox2—>Name = L"textBox2";
this—>textBox2—>Size = System:: Drawing:: Size (100, 21);
this—>textBox2—>Tablndex = 8§;
this —>textBox2—>KeyPress +=
gcnew System :: Windows:: Forms:: KeyPressEventHandler
(this , &Forml::textBox2_KeyPress);

// label2

this—>label2 —>AutoSize = true;

this—>label2 —>Font = (gcnew System :: Drawing:: Font(L"Microsoft Sans Serif",
9, System::Drawing:: FontStyle :: Regular ,
System :: Drawing :: GraphicsUnit :: Point ,
static__cast <System :: Byte > (0)));

this—>label2 —>Location = System:: Drawing:: Point (23, 29);

this—>label2 —>Name = L"label2";

this—>label2—>Size = System:: Drawing:: Size (119, 15);

this—>label2 —>Tablndex = 9;

this—>label2 —>Text = L"Messdaten Einlesen";

// label3
this—>label3—>AutoSize = true;

this—>label3 —>Font = (gcnew System ::Drawing:: Font(L"Microsoft Sans Serif',
9, System:: Drawing:: FontStyle :: Regular

95

C. Quellext vom Anwendungsprogramm Messdateneinlesen und Schrittmotorsteuern

System :: Drawing :: GraphicsUnit :: Point ,
static__cast <System :: Byte>(0)));
this—>label3 —>Location = System:: Drawing:: Point (24, 161);
this—>label3 —>Name = L"label3";
this—>label3 —>Size = System:: Drawing:: Size (128, 15);
this—>label3 —>Tablndex = 10;
this—>label3 —>Text = L"Schrittmotorsteuerung";

// textBox3

this—>textBox3—>Location = System :: Drawing:: Point (27, 289);

this—>textBox3—>Multiline = true;

this —>textBox3—>Name = L"textBox3";

this—>textBox3—>Size = System:: Drawing:: Size (100, 21);

this —>textBox3—>Tablndex = 11;

this—>textBox3—>KeyPress 4=
gcnew System :: Windows:: Forms:: KeyPressEventHandler
(this , &Forml::textBox3_ KeyPress);

// label4d

this—>labeld —>AutoSize = true;

this—>label4d —>Location = System :: Drawing:: Point (23, 273);
this—>label4 —>Name = L"labeld ";

this—>label4d —>Size = System:: Drawing:: Size (42, 13);
this—>labeld —>Tablndex = 14;

this—>label4 —>Text = L"Y (mm):";

// labelb

this—>label5 —>AutoSize = true;

this—>label5 —>Location = System :: Drawing:: Point (24, 313);
this—>label5 —>Name = L"label5 ";

this—>label5 —>Size = System::Drawing:: Size (42, 13);
this—>label5 —>Tablndex = 15;

this—>label5 —>Text = L"Z (mm):";

// textBox4

this—>textBox4—>Location = System::Drawing:: Point (27, 329);
this—>textBox4—>Multiline = true;
this —>textBox4—>Name = L"textBox4";
this—>textBox4—>Size = System:: Drawing:: Size (100, 21);
this—>textBox4—>Tablndex = 17;
this—>textBox4—>KeyPress 4+=
gcnew System :: Windows:: Forms:: KeyPressEventHandler
(this , &Forml::textBox4_KeyPress);

// textBox6

this —>textBox6—>Location = System ::Drawing:: Point (27, 369);
this—>textBox6—>Multiline = true;
this—>textBox6—>Name = L"textBox6";
this —>textBox6—>Size = System::Drawing:: Size (100, 21);
this—>textBox6—>Tablndex = 18;
this —>textBox6—>KeyPress +=
genew System :: Windows :: Forms :: KeyPressEventHandler
(this, &Forml::textBox6_KeyPress);

o6

C. Quellext vom Anwendungsprogramm Messdateneinlesen und Schrittmotorsteuern

// labelT7

this—>label7—>AutoSize = true;

this—>label7—>Location = System :: Drawing:: Point (24, 353);
this—>label7 —>Name = L"label7";

this—>label7—>Size = System::Drawing:: Size (136, 13);
this—>label7—>Tablndex = 19;

this—>label7—>Text = L"Radius der Kreisbahn (mm):";

// timerl

this—>timerl—>Enabled = true;
this—>timerl—>Interval = 1000;
this —>timerl1—>Tick += gcnew System :: EventHandler (this ,
&Forml :: timerl_Tick);

// Forml

this—>AutoScaleDimensions = System :: Drawing:: SizeF (6, 13);
this—>AutoScaleMode = System :: Windows :: Forms :: AutoScaleMode :: Font;
this—>ClientSize = System ::Drawing:: Size (884, 417);
this—>Controls—>Add(this—>label7);

this—>Controls—>Add(this —>textBox6);

this—>Controls—>Add(this —>textBox4);
this—>Controls—>Add(this—>label5);
this—>Controls—Add(this—>label4);

this—>Controls—>Add(this —>textBox3);
this—>Controls—>Add(this—>label3);
this—>Controls—>Add(this—>label2);

this—>Controls—Add(this —>textBox2);
this—>Controls—>Add(this—>labell);

this—>Controls—>Add(this —>textBox1);

this—>Controls—>Add(this —>button3);

this—>Controls—>Add(this —>button2);
this—>Controls—>Add(this—>buttonl)
this—>Name = L"Forml";

this—>Text = L"Messdateneinlesen und Schrittmotorsteuern”";
this —>ResumeLayout (false);

this—>PerformLayout ();

}

#pragma endregion

// zwei Dateien zur Speicherung der Messwerte und der Koordinaten der

// Punkte auf der Kreisbahn anlegen

private: void dateienAnlegen ()

{
this—>dateil = gcnew StreamWriter ("MessDaten.csv");
this—>dateil —>WriteLine (" Nr.; Kanall ; Kanal2;Kanal3;Kanal4;");
this—>dateil —>Close ();
this—>datei2 = gcnew StreamWriter (" KreisbahnDaten.txt");
this—>datei2—>WriteLine ("Die (X,Y) der Kreisbahn:");
this—>datei2 —>Close ();

}

NN N N N N N N N S S

’

// Messwerte von allen Kanédlen einlesen und mit existierten vergleichen.
// jeweils einen Messwert von jedem Kanal in der Datei MessDaten.csv
// speichern, wenn sich alle vorhandenen Messwerte nicht mehr dndern

o7

C. Quellext vom Anwendungsprogramm Messdateneinlesen und Schrittmotorsteuern

private: void messvorgang ()

{
double dDifferenz = 2.0;
bool bStatusUnverandern = true;
for (int j=0; j<3; j++)
{

aVierKanal [j|—>RemoveAt (0);

aVierKanal[j]—>Add(Convert :: ToDouble (this —>NewVP3—>CurrentReading[j+1]));

bStatusUnverdndern = bStatusUnverdndern
&& (Math:: Abs(aVierKanal[j][0] — aVierKanal[j][1]) <= dDifferenz)
&& (Math:: Abs(aVierKanal[j][0] — aVierKanal[j][2]) <= dDifferenz)
&& (Math:: Abs(aVierKanal[j][1] — aVierKanal[j][2]) <= dDifferenz);

if (bStatusUnverdndern)

if (this—>bWiederMalUnverandern = false)

this—>aktAnzahl ++;

this—>bWiederMalUnverdndern = true;

this—>textBoxl—>AppendText (" " 4+ aktAnzahl + ". " +

" Kanall: " + aVierKanal [0][0] +

" Kanal2: " + aVierKanal |
[
[

1]1[0] +
" Kanal3: " 4+ aVierKanal [2][0] +
3][0] +

" Kanal4: " + aVierKanal "\n");
// true: Daten an die Datei anfiigen
this—>dateil = gcnew StreamWriter ("MessDaten.csv', true);
this—>dateil—>WriteLine (aktAnzahl + ";" +
aVierKanal [0][0] + ";" + aVierKanal[1][0] +
+ aVierKanal [2][0] + ";" 4 aVierKanal [3][0]);
this—>dateil —>Close ();
}
} else this—>bWiederMalUnverdndern = false;

}

// die Verbindung zum Messgerdt Vishay P3 herstellen

private: System:: Void buttonl Click(System:: Object™ sender,
System :: EventArgs™ e)

{

this —>NewVP3—>DeviceOpen = true;
for (int i=0; i<4; i++)
{

aVierKanal[i] = gcnew List<double >(3);

aVierKanal [i]—>Add (0.0); aVierKanal[i]->Add(0.0); aVierKanal[i]->Add(0.0);

}
}

// die Verbindung zum Messgerdt Vishay P3 léschen

private: System::Void button2_ Click (System:: Object”™ sender,
System :: EventArgs™ e)

{

this —>NewVP3—>DeviceOpen = false;
for (int i=0; i<4; i++)
{

aVierKanal [i]—>Clear ();

}
this —>textBox1l—>AppendText(L" Alle MessDaten wurden in der Datei
MessDaten.csv gespeichert! \n');

o8

C. Quellext vom Anwendungsprogramm Messdateneinlesen und Schrittmotorsteuern

this—>buttonl—>Focus ();

}

// den Zustand des Hintergrundthreads threadKreisbahn abfragen und

// die Methode messvorgang einmal aufrufen

private: System::Void timerl_Tick(System:: Object™ sender,
System :: EventArgs™ e)

{

if ((aVierKanal[3] != nullptr) && (aVierKanal[3]—>Count = 3))
messvorgang ();

if (threadKreisbahn != nullptr)
if (threadKreisbahn—>ThreadState.ToString() = "Stopped")

threadKreisbahn = nullptr;
this—>textBox1l—>AppendText (" Die Kreisbahndaten wurden erfolgreich
an die Steuerkarte geschickt! \n");
}

}
}

// Schrittmotorsteuerkarte initialisieren
private: void SchrittmotorSteuerkartelnit ()

{

if (NewMotion3x—>managed_ SchrittmotorDLLInit () = 300)

this—>textBox1—>AppendText (" SchrittmotorSteuerkarte wurde
erfolgreich initialisiert! \n");
} else this—>textBoxl—>AppendText (" SchrittmotorSteuerkarte kann nicht
initialisiert werden! \n");

NewMotion3x—>managed_ SetVmax (0, 100);
NewMotion3x—>managed SetVmax (1, 100);
NewMotion3x—>managed_ SetVmax (2, 100);

}

// den Fréaser an den Punkt (0, 0, 0) positionieren

private: System:: Void button3_ Click (System:: Object™ sender,
System :: EventArgs™ e) // Homing

{

if (NewMotion3x—>managed SetXYZtarget(7, 0, 0, 0) != 0)
{
this —>textBox1—>AppendText (" USB Device not assigned!\n");

} else this—>textBoxl—>AppendText (" Motor X, Y und Z wurden
zuriickgesetzt! \n");

}
// motorIndex = 0: Motor X, 1: Motor Y, 2: Motor Z,
// 3: Durchmesser der Kreisbahn

// Eingaben von vier Eingabefeldern entgegennehmen und in
// Double—Werte konvertieren
private: long xyzDatenEinlesen(String™ eingabe, int motorIndex)
{
System :: Char motor = motorIndex + 88;
int length = xyzLengthAlt[motorIndex];
String”™ ein = " " + eingabe;
xyzLengthAlt [motorIndex] = ein—>Length;

99

C. Quellext vom Anwendungsprogramm Messdateneinlesen und Schrittmotorsteuern

long 1Schritt = (Convert:: ToDouble(ein—>Substring (length + 1)))/0.005;
if (motorIndex <= 2)

{
this —>textBoxl—>AppendText ("' Eingabe fiir Motor " 4+ motor. ToString () + ":
+ ein—>Substring (length + 1) +
"mm, " 4+ 1Schritt + " Schritte \n");
}
else
{
this —>textBoxl—>AppendText(" Eingabe fiir Radius: " +
ein—>Substring (length + 1) + " mm, "
+ 1Schritt + " Schritte \n");
}
return 1Schritt;

}

// X—Koordinate an die Steuerkarte schicken
private: System:: Void textBox2_KeyPress(System:: Object™ sender,
System :: Windows : : Forms : : KeyPressEventArgs™ e)

{
if (e—>KeyChar = (char)13) //the ENTER key is pressed
if (NewMotion3x—>managed_SetXtarget (0,
xyzDatenEinlesen (this —>textBox2—>Text, 0)) != 0)
this —>textBoxl—>AppendText ("USB Device not assigned! \n');
else
{
long ziel = NewMotion3x—>managed GetXtarget (0);
if (ziel = LONG MAX) this—>textBoxl—>AppendText("?! \n \n");
else
{
this—>textBox1—>AppendText (" Die ZielPosition von Motor X: " +
ziel + "\n");
}
}
}
}

// Y—Koordinate an die Steuerkarte schicken
private: System:: Void textBox3_KeyPress(System:: Object™ sender,
System :: Windows : : Forms : : KeyPressEventArgs™)

{
if (e—>KeyChar =— (char)13) //the ENTER key is pressed
{
if (NewMotion3x—>managed_ SetXtarget (1,
xyzDatenEinlesen (this —>textBox3—>Text, 1)) != 0)
this —>textBox1—>AppendText ("USB Device not assigned! \n");
else
{
long ziel = NewMotion3x—>managed_GetXtarget (1);
if (ziel = LONG MAX) this—>textBoxl—>AppendText("?! \n \n");
else
{
this —>textBox1l—>AppendText (" Die ZielPosition von Motor Y: " +
ziel + " \n");
}
}
}

60

C. Quellext vom Anwendungsprogramm Messdateneinlesen und Schrittmotorsteuern

}

// Z—Koordinate an die Steuerkarte schicken
private: System:: Void textBox4_KeyPress(System:: Object™ sender,

System :: Windows : : Forms : : KeyPressEventArgs™)
{

if (e>KeyChar = (char)13) //the ENTER key is pressed
{
if (NewMotion3x—>managed SetXtarget (2,
xyzDatenEinlesen (this —>textBox4—>Text, 2)) != 0)
this—>textBox1—>AppendText ("USB Device not assigned! \n");
else
{
long ziel = NewMotion3x—>managed_GetXtarget (2);
if (ziel = LONG MAX) this—>textBoxl—>AppendText("?! \n \n");
else
{
this —>textBox1—>AppendText (" Die ZielPosition von Motor Z: " +
ziel + " \n");
}
}
}
}

// Eingabefeld fir den Radius der Kreisbahn
// das Hintergrundthread threadKreisbahn starten
private: System:: Void textBox6_KeyPress(System:: Object”™ sender
System :: Windows : : Forms :: KeyPressEventArgs™ e)
{

if (e—>KeyChar = (char)13) //the ENTER key is pressed
{

if (textBox4—>CanFocus) textBox4—>Focus ();

achtelKreisbahn (xyzDatenEinlesen (this—>textBox6—>Text, 3));

if (threadKreisbahn != nullptr)

threadKreisbahn—>Abort ();
threadKreisbahn = nullptr;

}

threadKreisbahn = gcnew Thread (tsKreisbahn);
threadKreisbahn—>IsBackground = true;
threadKreisbahn—>Start ();

// wird vom Hintergrundthreads threadKreisbahn aufgerufen.

// Diese ruft zuerst die Methode achtelKreisbahn auf,

// leitet die anderen Punkte auf der Kreisbahn durch die

// Spiegelungen ab, ruft dann die Methode datenSchickenSpeichern

// immer wieder auf, bis die Koordinaten aller Punkte geschickt werden.
private: void kreisbahnFrésen ()

{
try
{
int anz = aKreisbahnDaten[0]—>Count;
array<long> “xDaten = gcnew array<long>(8«anz);

array<long> “yDaten = gcnew array<long>(8+anz);

61

C. Quellext vom Anwendungsprogramm Messdateneinlesen und Schrittmotorsteuern

for (int i=0; i<anz; i++)

{

xDaten[i] = aKreisbahnDaten [0][1];

yDaten[i] = aKreisbahnDaten [1][i];

xDaten [i+anz | = aKreisbahnDaten [1][anz—1—i];
xDaten[i+2«anz]| = aKreisbahnDaten [1][1];

xDaten [i+3*anz] = aKreisbahnDaten [0][anz—1—i];
xDaten [i+4xanz] = —aKreisbahnDaten [0][i];
xDaten [i+5*anz| = —aKreisbahnDaten [1][anz—1—1i |;
xDaten [i+6xanz] = —aKreisbahnDaten [1][1i];
xDaten [i+7+anz] = —aKreisbahnDaten [0][anz—1-i];
yDaten [i+anz]| = aKreisbahnDaten [0][anz—1—1i |;
yDaten [i+2+anz] = —aKreisbahnDaten [0][1];
yDaten[i+3+anz] = —aKreisbahnDaten [1][anz—1—1i];
yDaten [i+4xanz| = —aKreisbahnDaten [1][1];
yDaten [i+5+anz] = —aKreisbahnDaten [0][anz—1—1i |;
yDaten[i+6+anz] = aKreisbahnDaten [0][1];
yDaten[i+7xanz]| = aKreisbahnDaten [1][anz—1—1i];

}

this—>datei2 = gcnew StreamWriter (" KreisbahnDaten.txt", true);

this—>datenSchickenSpeichern (0, xDaten[0], 0, yDaten[0]);
Sleep (2000); // warte 2 Sekunden

for (int i=1; i<8anz; i++)

{
if ((i !'= 2xanz)&&(i != 4xanz)&&(i != 6xanz))

datenSchickenSpeichern (xDaten[i —1], xDaten[i],
yDaten[i —1], yDaten[i]);
}
}

catch (ThreadAbortException™)

{

}

finally

{
this—>datei2 —>Close ();
aKreisbahnDaten[0] —> Clear ();
aKreisbahnDaten[l]—> Clear ();

}

}

// entscheidet nach der aktuellen und der nachsten Position des Frésers,
// welche Schrittmotoren in Bewegung gesetzt werden sollen
private: void datenSchickenSpeichern(long x1, long x2, long yl, long y2)

{
if (y2 = yl)
{

¥
else if (x2 = x1)

{
this—>datenSchickenSpeichernl (2, x2, y2);
} else this—>datenSchickenSpeichernl (3, x2, y2);

this—>datenSchickenSpeichernl (1, x2, y2);

62

C. Quellext vom Anwendungsprogramm Messdateneinlesen und Schrittmotorsteuern

}

// Zielposition fir X und/oder Y an die Steuerkarte schicken
private: void datenSchickenSpeichernl (unsigned char motorIndex,
long x, long y)

{
Sleep (1000); // warte 1 Sekunde
if (NewMotion3x—>managed_ SetXYZtarget (motorIndex, x, y, 0) = 0)
{
this—>datei2 —>WriteLine(x +"," + y + " ok!");
} else this—>datei2—>WriteLine(x +"," + y + " nicht erfolgreich!");
}

// die Koordinaten der ausgewdhlten Punkte fiir die erste Achtelkriesbahn
// berechnen (Bresenham Algorithmus)
private: void achtelKreisbahn (long radius)

{
long x = 0, r = radius, y = radius;
long dx,dxy,d;
d=l-r; dx=3; dxy=—2%r+5;
aKreisbahnDaten[0] —>Add(x);
aKreisbahnDaten[l]—>Add(y);
this —>textBox1—>AppendText (" (X,Y) = (" 4+ x +"," +y + "), \n");
while (x < y)
{
if ((d>=0) & ((x+1) < (y-1)))
if ((x—aKreisbahnDaten [0][(aKreisbahnDaten[0]—>Count)—1])>=1)
{
aKreisbahnDaten[0] —>Add(x);
aKreisbahnDaten[l]—>Add(y);
this—>textBox1—>AppendText (" (X,Y) = (" +x +"," +y + "),
n + n \n");
}
aKreisbahnDaten[0] —>Add(x+1);
aKreisbahnDaten[l]—>Add(——y);
this—>textBoxl—>AppendText (" (X,Y) = (" + (x+1) +",' y+ "), "+
(Math:: Sqrt (((x+1)*(x+1) + yy))). ToString ("N2*) + ' \n");
d=d+dxy; dx=dx+2; dxy=dxy-+4; x++;
}
else
{
d=d4dx; dx=dx+2; dxy=dxy+2; x++;
}
}
}
b

}
C.4. VP3undUSBMotion3x.cpp

// VP3undUSBMotion3x.cpp: Hauptprojektdatei.
// compile with: /clr

63

C. Quellext vom Anwendungsprogramm Messdateneinlesen und Schrittmotorsteuern

#include "stdafx.h"
#include "Forml.h"

using namespace VP3undUSBMotion3x;

[STAThreadAttribute |
int main(array<System:: String ~> Targs)
{

// Aktivieren visueller Effekte von Windows XP,

// bevor Steuerelemente erstellt werden

Application :: EnableVisualStyles ();

Application :: SetCompatibleTextRenderingDefault (false);

// Hauptfenster erstellen und ausfithren

Application ::Run(gcnew Forml ());
return 0;

64

D.

Literaturverzeichnis

Frank Budszuhn. Visual C++ / Windows-Programmierung mit den MFC. Addison-
Wesley verlag, 2004.

Coptonix GmbH. Manual usb motion 3x ii, 2008.

Folker Haase. Figenspannungsermittlung an dinnwandigen Bauteilen und Schicht-
verbunden. Shaker Verlag, 1998.

Karl Hoffmannl. Eine einfiihrung in die technik des messens mit dehnungsmess-
streifen, 1987.

Peter Ingerfeld. Konzeption einer architektur fiir optimierungssoftware zur integra-
tion in betriebliche anwendungssysteme, 2008.

Leif Kobbelt and Dominik Sibbing. 32. algorithmus der woche / kreise zeichnen mit
turbo, 2006.

Martin Kornmeier. Analyse von Abschreck- und Verformungseigenspannungen mit-
tels Bohrloch- und Rontgenverfahren. Gesamthochschul-Bibliothek Kassel Verlag, 1
edition, November 1999.

S. Kromker. Computergraphik i, ws 2009/10, 2009.

Dirk Louis. Visual C++ 2010 / Das umfassende Handbuch fiir Programmierer.
Addison-Wesley verlag, 2010.

Vishay Micro-Measurements. Model p3 strain indicator and recorder / activex
control developer’s guide, 2004.

Vishay Micro-Measurements. Model p3 strain indicator and recorder / instruction
manual, 2007.

Vishay Micro-Measurements. Die 3-leiterschaltung fiir dms-viertelbriicken, 2010.

Vishay Micro-Measurements. Die messung von eigenspannungen mit dem dms-
bohrlochverfahren, 2010.

Jochen Wagner. Ermittlung mechanischer Festigkeitseigenschaften und thermischer
Eigenspannungen an ultraschall-geschweifiten Keramik/Metall- Verbunden. Univer-
sitdt Kaiserslautern Lehrstuhl fiir Werkstoffkunde, 1997.

65

Erklarung

Hiermit versichere ich, diese Arbeit selbstindig
verfasst und nur die angegebenen Quellen
benutzt zu haben.

(Jinxu Wu)

66

	Einleitung
	Motivation und Aufgabenstellung
	Aufbau der Arbeit

	Grundlagen der Eigenspannungsmessung
	Eigenspannungen
	Dehnungsmessstreifen (DMS)
	Aufbau und Formen
	Funktionsweise

	DMS-Brückenschaltungen
	Eigenspannungsmessverfahren

	Hardware
	Vishay Modell P3
	Steuerkarte USBMotion3xII

	Basistechnologien
	Softwarekomponenten in Form von DLLs
	ActiveX-Steuerelemente (ActiveX Controls)
	ActiveX-Steuerelement registrieren
	Verweis auf ActiveX-Steuerelement einrichten
	Eigenschaften abfragen und setzen

	.NET Framework
	Visual C++
	Verwalteter Klassentyp
	Verwalteter und nicht verwalteter Code
	Indizierte Eigenschaften
	Generische Auflistungsklasse List<T>

	Entwurf
	Aufnehmen der Messwerte
	Bestimmen der Punkte auf der Kreisbahn
	Bestimmen der Punkte aufgrund der Symmetrie
	Berechnen der Koordinaten der Punkte

	Implementierung
	Einrichten der Entwicklungsumgebung
	Implementierte Klassen
	Benutzerschnittstelle
	Testergebnisse

	Zusammenfassung
	Eigenschaften und Methoden von VMMP3Control.dll
	Funktionen von USBM3X32.DLL und Testprogramm
	USBM3X32.DLL-Funktionen
	Testprogramm

	Quellext vom Anwendungsprogramm Messdateneinlesen und Schrittmotorsteuern
	USBMotion3x.h
	USBMotion3x.cpp
	Form1.h
	VP3undUSBMotion3x.cpp

	Literaturverzeichnis

