
Institut für Parallele und
Verteilte Systeme

Abteilung Parallele Systeme

Universität Stuttgart
Universitätsstraße 38
D-70569 Stuttgart

Diplomarbeit Nr. 3222

Eigenspannungsmessung an
Hochbelastbaren, Keramischen

Beschichtungen

Jinxu Wu

Studiengang: Informatik

Prüfer: Prof. Dr. Sven Simon

Betreuer: Lars Rockstroh

begonnen am: 25. Juli, 2011

beendet am: 20. Februar, 2012

CR-Klassifikation: D.2.3, F.3.1, H.5.2

Inhaltsverzeichnis

1. Einleitung 4
1.1. Motivation und Aufgabenstellung . 4
1.2. Aufbau der Arbeit . 5

2. Grundlagen der Eigenspannungsmessung 6
2.1. Eigenspannungen . 6
2.2. Dehnungsmessstreifen (DMS) . 7

2.2.1. Aufbau und Formen . 7
2.2.2. Funktionsweise . 8

2.3. DMS-Brückenschaltungen . 9
2.4. Eigenspannungsmessverfahren . 10

3. Hardware 12
3.1. Vishay Modell P3 . 12
3.2. Steuerkarte USBMotion3xII . 14

4. Basistechnologien 16
4.1. Softwarekomponenten in Form von DLLs 16
4.2. ActiveX-Steuerelemente (ActiveX Controls) 17

4.2.1. ActiveX-Steuerelement registrieren 18
4.2.2. Verweis auf ActiveX-Steuerelement einrichten 18
4.2.3. Eigenschaften abfragen und setzen 19

4.3. .NET Framework . 20
4.4. Visual C++ . 22

4.4.1. Verwalteter Klassentyp . 22
4.4.2. Verwalteter und nicht verwalteter Code 23
4.4.3. Indizierte Eigenschaften . 24
4.4.4. Generische Auflistungsklasse List<T> 25

5. Entwurf 27
5.1. Aufnehmen der Messwerte . 27
5.2. Bestimmen der Punkte auf der Kreisbahn 28

5.2.1. Bestimmen der Punkte aufgrund der Symmetrie 29
5.2.2. Berechnen der Koordinaten der Punkte 30

6. Implementierung 32
6.1. Einrichten der Entwicklungsumgebung . 32
6.2. Implementierte Klassen . 33
6.3. Benutzerschnittstelle . 35
6.4. Testergebnisse . 35

1

Inhaltsverzeichnis

7. Zusammenfassung 38

A. Eigenschaften und Methoden von VMMP3Control.dll 39

B. Funktionen von USBM3X32.DLL und Testprogramm 42
B.1. USBM3X32.DLL-Funktionen . 42
B.2. Testprogramm . 46

C. Quellext vom Anwendungsprogramm Messdateneinlesen und Schrittmotor-
steuern 49
C.1. USBMotion3x.h . 49
C.2. USBMotion3x.cpp . 50
C.3. Form1.h . 52
C.4. VP3undUSBMotion3x.cpp . 63

D. Literaturverzeichnis 65

2

Abbildungsverzeichnis

2.1. Charakteristische Bauform von Folie-DMS 7
2.2. Wheatstonesche Brückenschaltung . 9

3.1. Frontplatte von Vishay Modell P3 . 13
3.2. Anschlussschemata für Viertel-, Halb- und Vollbrückenschaltung 13
3.3. Schrittmotorsteuerkarte USBMotion3XII 14
3.4. USBMotion3X II Benutzerschnittstelle . 15

4.1. ActiveX-Verweiseigenschaften . 19
4.2. VMMP3Control Library . 20

5.1. Viertelkreisbahn . 28
5.2. Symmetrie der Kreisbahn . 29

6.1. Benutzerschnittstelle . 36
6.2. Messwerte nach Widerstandsänderungen 36
6.3. Die Koordinaten der ausgewählten Punkte auf der ersten Viertelkreisbahn

mit r = 0,095 mm (19 Schritte) . 37

3

1. Einleitung

1.1. Motivation und Aufgabenstellung
Die thermische und mechanische Belastbarkeit einer Vielzahl von Bauteilen wird heu-
te durch das Auftragen keramischer Schichten erheblich erhöht. Die Haltbarkeit einer
Beschichtung ist im Wesentlichen wieder abhängig von den Eigenspannungen, die beim
Herstellungsprozess zwischen Schicht und Bauteil sowie in der Beschichtung entstehen.
Um den Eigenspannungszustand eines Bauteils zu beurteilen, sollen zuerst in ihm vor-
handene Eigenspannungen gemessen werden.

Zur Messung von Eigenspannungen wird häufig das inkrementelle Bohrlochverfahren ver-
wendet. Die durch das Bohren an der Oberfläche des Bauteils ausgelösten Dehnungen
werden mit Hilfe von Dehnnungsmessstreifen gemessen. Die Eigenspannungen, die vor
dem Bohren in der Umgebung des Loches vorhanden waren, können dann aus den gemes-
senen Dehnungen abgeleitet werden. Es existiert am Institut für Fertigungstechnologie
keramischer Bauteile der Universität Stuttgart ein solcher Aufbau zur Eigenspannungs-
messung mit dem Bohrlochverfahren.

Das Ziel dieser Diplomarbeit ist es, die elektrischen Komponenten des existierenden
Aufbaus auszutauschen und den mechanischen Teil dieses Aufbaus weiter zu verwenden.
Hierzu soll ein Anwendungsprogramm erstellt werden, welches die folgenden Aufgaben
erledigt:

• Erfassen von Dehnungen an der Oberfläche des Bauteils mit Hilfe von Dehnnungs-
messstreifen und dem USB-Messgerät Vishay Modell P3. Die Messwerte sollen vom
Messgerät in den Computer eingelesen, in einer CSV-Datei gespeichert und in der
Benutzerschnittstelle angezeigt werden.

• Steuern drei Schrittmotoren für X-, Y- und Z-Achse über die USB-Steuerkarte
Coptonix USBMotion3xII.

• Erzeugen einen Satz Befehle, die über die USB-Steuerkarte die Schrittmotoren für
X- und Y-Achse steuern, damit eine Kreisbahn mit dem vom Benutzer eingegebe-
nen Radius gefräst wird. Wird die Kreisbahn in inkrementellen Schritten vertieft,
so soll das Programm in der Lage sein, zu erkennen, ob nach jeder Vertiefung die
Messwerte von den eingesetzten Messkanälen stabil sind.

Das Anwendungsprogramm soll unter gängigen Windows Betriebssystemen wie Windows
7 oder Windows XP lauffähig sein und über eine Benutzerschnittstelle verfügen, über
die der Benutzer den Fräser positionieren, den Radius der Kreisbahn eingeben und den
Messvorgang starten kann. Die aktuelle Position des Fräsers und die Koordinaten der für
das Fräsen der Kreisbahn ausgewählten Punkte sollen auch in der Benutzerschnittstelle
angezeigt werden.

4

1. Einleitung

1.2. Aufbau der Arbeit
Diese Arbeit gliedert sich in sieben Kapitel:

In Kapitel 2 wird zunächst ein Überblick über die Entstehung von Eigenspannungen
in einem Bauteil gegeben. Bevor das Eigenspannugsmessverfahren Bohrlochverfahren
vorgestellt wird, werden die bei diesem Verfahren verwendeten Dehnungsmessstreifen
(DMS) und DMS-Brückenschaltungen vorgestellt.

In Kapitel 3 werden das bei der Durchführung des Bohrlochverfahrens einzusetzende
USB-Messgerät Vishay Modell P3 und die ebenfalls dabei einzusetzende USB-Steuerkarte
USBMotion3xII vorgestellt.

In Kapitel 4 werden die dieser Arbeit zugrunde liegenden Softwaretechnologien vorge-
stellt. Es betrifft vor allem Dynamic Link Library (DLL), ActiveX-Steuerelement, .Net
Framework und C++/CLI-Schnittstelle.

In Kapitel 5 wird zunächst der Arbeitsablauf des zu erstellenden Anwendungsprogram-
mes bei einem Messvorgang beschrieben. Anschließend werden für zwei wichtige Aufga-
ben, die bei einem Messvorgang erledigt werden müssen, geeignete Lösungen erarbeitet.

In Kapitel 6 wird zunächst die eingerichtete Entwicklungsumgebung beschrieben. An-
schließend werden die implementierten Klassen und deren Methoden näher beschrieben.
Schließlich werden die Benutzerschnittstelle und die Testergebnisse des Anwendungspro-
grammes vorgestellt.

Eine Zusammenfassung der wichtigen Grundlagen und der geleisteten Arbeit sowie ein
Ausblick auf mögliche Verbesserungen werden in Kapitel 7 gegeben.

In Anhang A werden die vom ActiveX-Steuerelement VMMP3Control zur Verfügung
gestellten Eigenschaften und Methoden vorgestellt. In Anhang B werden die Funktio-
nen der DLL USBM3x32 vorgestellt. Der Quelltext des Anwendungsprogrammes wird
in Anhang C aufgelistet.

5

2. Grundlagen der Eigenspannungsmessung

2.1. Eigenspannungen
Unter Eigenspannungen versteht man mechanische Spannungen in einem Bauteil bzw.
einem abeschlossenen System, auf das keine äußeren Kräfte und Momente wirken und
das sich in einem räumlich und zeitlich konstanten Temperaturfeld befindet. Die mit
den Eigenspannungen verbundenen inneren Kräfte und Momente sind im mechanischen
Gleichgewicht, das Bauteil bzw. das System weist einen sog. Eigenspannungszustand auf.

Eigenspannungen entstehen immer durch inhomogen verteilte elastische und elastisch-
plastische Verformungen des Bauteils. Bei der Herstellung sind z.B. Gießen, Schwei-
ßen, Bearbeiten, Beschichten oder Wärmebehandeln dafür verantwortlich. Im Betrieb
sind z.B. Beanspruchungen und Temperaturfelder. Für die metall-keramischen Schicht-
verbundbauteile sind v.a. die unterschiedlichen elastschen Eigenschaften der einzelnen
Werkstoffschichten die Entstehungsursache von Eigenspannungen.

Eigenspannungen werden nach ihrer Reichweite im Werkstoff in Eigenspannungen 1., 2.
und 3. Art eingeteilt [3]:

• Die Eigenspannungen 1. Art sind wirksam über größere Werkstoffbereiche bzw.
über mehrere Körner. Sie verursachen bei der Störung des mechanischen Gleichg-
wichts immer makroskopische Maßänderungen.

• Die Eigenspannungen 2. Art sind wirksam über kleine Werkstoffbereiche (Korn-
bereiche, d.h. von Korn zu Korn). Sie können bei der Störung des mechanischen
Gleichgwichts makroskopische Maßänderungen verursachen.

• Die Eigenspannungen 3. Art sind wirksam über kleinste Werkstoffbereiche (meh-
rere Atomabstände). Sie verursachen bei der Störung des mechanischen Gleichg-
wichts keine makroskopischen Maßänderungen.

In einem Bauteil überlagern sich alle drei Eigenspannungsarten [14]. Von technischer Be-
deutung sind in erster Linie die Eigenspannungen 1. Art, da sie immer makroskopische
Maßänderungen verursachen, die die Lebensdauer, die Formstabilität und das Bruchver-
halten eines Bauteils maßgeblich bestimmen.

Die Überlagerung der Eigenspannungen mit den Lastspannungen beeinflusst das Festig-
keitsverhalten der Bauteile sowohl im positiven als auch im negativen Sinne, je nachdem,
ob die beiden Spannungsarten in entgegengesetzter Richtung oder in gleicher Richtung
wirken.

In den nächsten Abschnitten wird erklärt, wie die Eigenspannungen beim Bohrloch-
verfahren mit Hilfe von Dehnungsmessstreifen und Wheatstonesche Brückenschaltungen
gemessen werden können.

6

2. Grundlagen der Eigenspannungsmessung

2.2. Dehnungsmessstreifen (DMS)
Dehnungsmessstreifen (englisch: strain gauge) sind Messinstrumente zur Dehnungsmes-
sung. Sie verändern bei Dehnungen oder Stauchungen (negativen Dehnungen) ihren elek-
trischen Widerstand und werden zur experimentellen Bestimmung von Eigenspannungen
des Bauteils eingesetzt.

2.2.1. Aufbau und Formen
DMS sind meist aus Metall oder Halbleiter hergestellt, haben folgende Bauformen[4]:

• Draht-DMS: bestehen aus einem elektrisch isolierenden Trägermaterial und einem
sich darauf befindenden Messgitter bzw.einem flach gewickelten, dünnen, metalli-
schen Widerstandsdraht.

• Folien-DMS: bestehen aus einem elektrisch isolierenden Trägermaterial und einem
Messgitter bzw. einer metallischen Widerstandsfolie (siehe Abb. 2.1). Mittels der
Photo-Ätztechnik kann die Form von Widerstandsfolie vielfältig gestaltet werden.

• Halbleiter-DMS: bestehen aus einem Trägermaterial und einem Halbleiter-Messgitter
(Silizium). Ihre Empfindlichkeit sind vielfach höher als Metall-DMS. Ihre Tempe-
raturstabilität sind aber schlechter.

Abbildung 2.1.: Charakteristische Bauform von Folie-DMS

Wie in der Abb. 2.1 gezeigt, ist die Leiterbahn mäanderförmig ausgeführt. DMS können
damit einen ausreichend hohen Widerstandswert erreichen. Die vielen parallelen Leiter-
stücke verstärken auch den Effekt der Widerstandsänderung durch Dehnung. An den
Enden des Messgitters sind 2 Anschlussdrähte befestigt.

Der Nennwiderstand eines DMS ist der Widerstand zwischen seinem beiden Anschlüs-
sen im unbelasteten Fall. DMS werden mit verschiedenen Nennwiderstandswerten her-
gestellt. Typische Werte sind 120, 350, 700 und 1000 Ohm.

Werden auf einem Träger mehrere Messgitter in verschiedener Richtung nebeneinander
oder übereinander angeordnet, so entsteht eine DMS-Rosette. Für mehrachsige Messun-
gen kommen die DMS-Rosetten zum Einsatz.

7

2. Grundlagen der Eigenspannungsmessung

2.2.2. Funktionsweise
Die Dehnungsmessung mit DMS beruht auf dem von Wheatstone und Thomson gefun-
denen Dehnungs-Widerstands-Effekt elektrischer Leiter. Der Widerstand eines unbelas-
teten metallischen Leiters kann man bestimmen durch:

R = ρ
l

A
= ρ

4·l
π·d2 (2.1)

wobei ρ den spezifischen Widerstand des Leiers, l die Leiterlänge und d den Durchmesser
des Leiters bezeichnet.

Die Widerstandsänderung des Leiters durch Zug, Druck, Biegung oder Torsion ist dar-
gestellt durch:

∆R = ∂R

∂ρ
·∆ρ+ ∂R

∂l
·∆l + ∂R

∂d
·∆d (2.2)

Dividiert man diese Gleichung durch R, so erhält man die relative Widerstandsänderung:

∆R
R

= ∆ρ
ρ

+ ∆l
l
− 2 ·∆d

d
(2.3)

Die relative Widerstandsänderung ist also von der Längs- und der Querdehnung abhän-
gig. Seien

ε = ∆l
l

und εq = ∆d
d

= −µ · ε (2.4)

Somit erhält man:

∆R
R

= ∆ρ
ρ

+ ε+ 2 · µ · ε = k · ε (2.5)

wobei k, der sogenannte k-Faktor, die Dehnungsempfindlichkeit darstellt:

k = ∆ρ
ρ · ε

+ 1 + 2 · µ (2.6)

mit
ε : relative Längenänderung
εq : relative Querschnittsänderung
µ : materialspezifischer Zusammenhang zwischen ε und εq

Der k-Faktor gibt also das Verhältnis der relativen Widerstandsänderung ∆R
R zur Deh-

nung ε an. Der Wert von k-Faktor wird experimentell ermittelt.

Der Widerstand von Metallischen DMS wird also durch ihre Längen- und Querschnitts-
änderung verändert. Wird ein DMS gedehnt, so nimmt sein Widerstand zu. Wird er
gestaucht, so nimmt sein Widerstand ab.

DMS werden mit einem spezielen Klebstoff auf demMessobjekt befestigt. Die Dehnungen
an der Oberfläche des Messobjekts werden über den Klebstoff und das Trägermaterial
auf die Messgitter übertragen und führen dazu, dass DMS ihren Widerstand verändern.

8

2. Grundlagen der Eigenspannungsmessung

2.3. DMS-Brückenschaltungen
DMS werden üblicherweise in Wheatstonesche Brückenschaltungen eingebaut, damit ihre
kleinen Widerstandsänderungen in die leicht zu messenden Spannungsänderungen um-
gewandelt werden. Man kann einen, zwei oder alle vier Zweige einer Brückenschaltung
mit DMS besetzen und bezeichnet diese Brückenschaltung dann auch als Viertel-, Halb-
oder Vollbrücke.

Die in Abb.2.2 dargestellte Brückenschaltung besteht aus vier Widerständen R1 bis

Abbildung 2.2.: Wheatstonesche Brückenschaltung

R4 und ist von der Gleichspannungsquelle UB gespeist. Für die beiden Spannungsteiler
R1, R2 und R3, R4 gilt:

U1 = UB ·
R1

R1 +R2
und U4 = UB ·

R4
R3 +R4

(2.7)

Die Differenz der Spannungen U1 und U4 ist die Messspannung UA bei der hochohmigen,
stromlosen Messung:

UA = U1 − U4 = UB ·
(

R1
R1 +R2

− R4
R3 +R4

)
(2.8)

Sind R1, R2, R3 und R4 DMS mit gleichem Nennwiderstand R, dann gilt für Ri, i = 1..4,
bei Dehnungen:

Ri = R+ ∆Ri = R ·
(

1 + ∆Ri

R

)
= R · (1 + ri) (2.9)

wobei ri = ∆Ri
R = kε, so erhält man:

UA = UB ·
(1 + r1

2 + r1 + r2
− 1 + r4

2 + r3 + r4

)
(2.10)

9

2. Grundlagen der Eigenspannungsmessung

Da die relative Widerstandsänderungen von metallischen DMS sehr klein sind, gilt die
Näherug 1

1+ri
≈ 1− ri. Damit kann die Formel (3.10) vereinfacht werden zu:

UA = UB

4 · (r1 − r2 + r3 − r4) = UB

4 · k · (ε1 − ε2 + ε3 − ε4) (2.11)

Die Formel (2.11) weist folgende Vorteile der DMS-Brückenschaltung bei der Dehnungs-
messung auf:

• Im unbelasteten Fall ist die Ausgangsspannung UA (Messsignal) gleich Null.

• Die temperaturbedingte Widerstandsänderungen in der Brückenschaltung lassen
sich kompensieren.

• Die Ausgangsspannung UA ist proportional zu den gemessenen Dehnungen an der
Oberfläche des Messobjekts.

Bei der Viertelbrücke sind ε2 = ε3 = ε4 = 0, bei der Halbbrücke sind ε3 = ε4 = 0. Bei
der Vollbrücke gilt UA = UB · k · ε, falls ε1 und ε3 durch Dehnung entstehen, ε2 und ε4
durch Stauchung und sie alle betragsgleich sind.

Die Festwiderstände R3, R4 und bei der Viertelbrücke auch R2 sowie die Spannungs-
quelle UB sind schon im in dieser Arbeit verwendeten Dehnungsmessgerät Vishay P3
enthalten, so dass in der Praxis die am Messobjekt befindlichen DMS direkt an dieses
Messgerät angeschlossen werden können.

Nachdem die Ausgangsspannung UA auf eine ausreichende Höhe verstärkt und digitali-
siert wurde, kann sie in einen Rechner eingelesen und weiterverarbeitet werden.

Wie eine DMS-Viertelbrücke in der Praxis zum Einsaz kommt, ist in [12] vorgestellt.

2.4. Eigenspannungsmessverfahren
Zur Eigenspannungsmessung gibt es verschiedene Verfahren, die sich nach dem Zerstö-
rungsgrad des Bauteils durch das jeweilige Messverfahren in zerstörende, teilzerstörende
und zerstörungsfreie Verfahren einteilen lassen[3].

In der Industrie und der Forschung wird zur Messung von Eigenspannungen 1. Art häu-
fig das Bohrlochverfahren verwendet. Es ist ein teilzerstörendes Messverfahren, genormt
und relativ einfach durchzuführen. Im folgenden werden das Messprinzip und die Durch-
führung dieses Verfahren beschrieben.

Wird an einer Messstelle eines Bauteils durch das Bohren etwas eigenspannungsbehafte-
tes Material entfernt, wird dadurch das innere mechanische Gleichgewicht gestört, was
an der Oberfläche des Bauteils um das Bohrloch Dehnungen auslösen wird. Mit Hilfe der
gemessenen Dehnungen kann der zuvor an der Messstelle vorhandene Eigenspannungs-
zustand berechnet werden.

Erfolgt das Bohren inkrementell bzw. schrittweise, so können die Dehnungsänderungen
als Funktion der Bohrtiefe gebildet werden. Mit Hilfe dieser Funktion kann die Eigen-
spannungstiefenverteilung berechnet werden [7].

10

2. Grundlagen der Eigenspannungsmessung

Bei der Durchführung dieses Verfahrens geht man folgendermaßen vor: Zuerst wird eine
DMS-Rosette aus drei Messgitter an einer interessierenden Stelle eines zu untersuchenden
Bauteils installiert, die Messgitter werden an eine Dehnungsmessbrücke angeschlossen.
Dann wird eine kleine Bohrung an dieser Stelle, zentrisch zur DMS-Rosette, eingebracht.
Dazu wird ein rotierende Fräser eingesetzt, dessen Vorschub normalerweise durch den
Schrittmotor erfolgt. Die beim schrittweisen Einbringen der Bohrung im Bauteil ausge-
lösten Dehnungsänderungen werden mit der DMS-Rosette in drei Richtungen erfasst.

Eine ausführliche Beschreibung dieses Verfahrens ist in [3] und [13] gegeben.

In der Praxis, um Dehnungsänderungen auszulösen, kann übrigens in der Mitte der DMS-
Rosette eine Kreisbahn gefräst und diese schrittweise vertieft werden. Diesen Vorgang
zu steuern, ist eine Aufgabe des zu erstellenden Anwendungsprogrammes.

11

3. Hardware

In diesem Kapitel werden das Dehnungsmessgerät Vishay Modell P3 und die Schrittmo-
torsteuerkarte USBMotion3xII vorgestellt. Die beiden sollen bei der Durchführung des
Bohrlochverfahrens eingesetzt werden.

3.1. Vishay Modell P3
Das Modell P3 Strain Indicator and Recorder der Firma Vishay Micro-Measurements
1 ist ein tragbares, batteriegespeistes Prazisionsinstrument zur Messwertaufnahme auf
der DMS-Basis. Es besitzt u.a. folgende Eigenschaften [11]:

• Vier Eingangskanäle, an die Viertel-, Halb- und Vollbrückenschaltungen ange-
schlossen werden können.

• Eingebaute Ergänzungswiderstände für 60Ω- bis 2000Ω-Halbbrückenschaltungen
sowie 120Ω-, 350Ω- und 1000Ω-Viertelbrückenschaltungen.

• Ein Speicherkarteneinschub zur Aufnahme von Multimedia-Karte (MMC). Die er-
fassten Messwerte können auf der MMC mit einer Aufzeichnungsrate von 1/Se-
kunde bis 1/Stunde gespeichert werden.

• Eine USB Schnittstelle, über die die Messwerte von den vier Eingangskanälen so-
wie auf der MMC in den Computer eingelesen werden können.

• Nullabgleich und Kalibrierung automatisch oder manuell.

• Stromversorgung über Batterie, USB Schnittstelle oder AC-Adapter.

• Messbereich: ±31.000µm/m bei K-Faktor = 2, 000 mit ±1µm/m Auflösung
(Statt µm/m wird auf dem Bildschirm µe gezeigt)

Die Abbildung 3.1 zeigt die Frontplatte des Gerätes. Es verfügt noch über eine LCD-
Anzeige, eine Softkeytastatur und einen Analogausgang. Die vier Eingangskanäle sind
mit Klemmanschlüssen bestückt, die einen einfachen und schnellen Drahtanschluss er-
möglichen. Die Abbildung 3.2 zeigt die Anschlussschemata für Viertel-, Halb- und Voll-
brückenschaltung. Für Viertelbrückenschaltung ist beim Anschluss eine von drei Brücken-
ergänzungsklemmen (D120, D350 und D1K), welche den Nominalwiderständen des DMS
entsprechen, zu wählen.

Zum Lieferumfang des Gerätes gehört auch ein ActiveX-Steuerelement [10], welches in
unserem Anwendungsprogramm eingesetzt werden soll, um v.a. den Messwert des ge-
wählten Eingangskanals in Echtzeit in den Computer einzulesen.

1http://www.vishaypg.com/micro-measurements/instruments/p3-list/

12

3. Hardware

Abbildung 3.1.: Frontplatte von Vishay Modell P3

Abbildung 3.2.: Anschlussschemata für Viertel-, Halb- und Vollbrückenschaltung

13

3. Hardware

Abbildung 3.3.: Schrittmotorsteuerkarte USBMotion3XII

3.2. Steuerkarte USBMotion3xII
Der beim Bohrlochverfahren eingesetzte Fräser wird durch drei Schrittmotoren für die
X-, Y- und Z-Achse angetrieben. Die Steuerung der Schrittmotoren soll dabei über die
USB-Steuerkarte USB Motion 3XII von der Firma Coptonix 2 erfolgen. Diese Karte ver-
fügt über drei Schnittstellen zum Anschluss des Schrittmotors und eine I2C-Schnittstelle,
über die weitere elektronische Komponenten angeschlossen werden können (Abb. 3.3).
Der Hersteller hat für diese Karte eine DLL angeboten, die die Funktionen zur Verwal-
tung der angeschlossenen Komponenten und zur Steuerung der Schrittmotoren bereit-
stellt. Damit muss kein Low-Level Treiber mehr für die Steuerung der Schrittmotoren
entwickelt werden [2].

Die am häufigsten verwendeten Funktionen zur Schrittmotorsteuerung sind im folgen-
den kurz beschrieben. Eine Auflistung der verfügbaren Funktionen und die ausführliche
Beschreibung befinden sich im Anhang A.2.

SetXtarget legt die Schrittzahl fest, die der Schrittmotor 0, 1 oder 2 machen soll.

SetXYZtarget legt die Schrittzahlen fest, die die Schrittmotoren 0, 1 und/oder 2
machen sollen.

SetVmax legt die maximale Geschwindigkeit vom Schrittmotor 0, 1 oder 2 fest.

GetXtarget gibt die Zielposition eines Schrittmotors zurück.

SetVmax gibt die maximale Geschwindigkeit eines Schrittmotors zurück.

Beim Festlegen der Schrittzahlen spricht man auch von den Zielpositionen der Schrittmo-
toren. Schreibt die Funktion SetXtarget die Schrittzahl ins Zielposition-Register vom

2http://www.coptonix.com/index.html. Statt USB Motion 3XII ist USB Motion 3XIII im aktuellen
Angebot.

14

3. Hardware

Abbildung 3.4.: USBMotion3X II Benutzerschnittstelle

Schrittmotor für die X-Achse, so bewegt sich der Schrittmotor in der Ziel-Richtung so-
lange, bis die Differenz zwischen der Zielposition und der aktuellen Position gleich Null
ist. Der Fräser bewegt sich dabei in positiver x-Richtung, falls die Schrittzahl positiv ist,
sonst in negativer x-Richtung.

Zur Schrittmotorsteuerung hat der Hersteller auch eine Benutzerschnittstelle angeboten
(Abb.5.4), über die der Benutzer die Zielposition, die maximale Geschwindigkeit sowie
andere Parameter wie Betriebsart, Schrittauflösung, die maximale Beschleunigung usw.
festlegen kann. Für den Fall, dass die Zielpositionen mit Hilfe der DLL festgelegt wer-
den, können die aktuellen Positionen und Geschwindigkeiten von drei Schrittmotoren in
dieser Benutzerschnittstelle angezeigt werden. Das ist besonders hilfreich beim Test von
unserem Anwendungsprogramm.

15

4. Basistechnologien

In diesem Kapitel werden zuerst die dieser Arbeit zugrunde liegenden Softwaretechnolo-
gien vorgestellt. Das sind vor allem Dynamic Link Library (DLL), ActiveX-Steuerelement
und das .Net Framework. Anschließend werden einige Besonderheiten der C++/CLI-
Schnittstelle, die in dieser Arbeit verwendet werden, beschrieben.

4.1. Softwarekomponenten in Form von DLLs
Softwarekomponenten sind Softwarebauteile, welche in binärer Form vorliegen und ihre
Dienste ausschließlich über vordefinierte Schnittstellen nach außen zur Verfügung stel-
len. Sie können auch die Dienste von anderen Komponenten in Anspruch nehmen. Es
ergibt sich damit die Möglichkeit, neue Komponenten oder Anwendungen aus vorhan-
denen Komponenten zusammenzusetzen.

Die ActiveX-Technologie von Microsoft ist neben JavaBeans von JavaSoft auch eine weit-
verbreitete Technologie zur Erstellung von Softwarekomponenten. Die aufgrund dieser
Technologie erstellten Komponenten, ActiveX-Steuerelemente, werden im nächsten Ab-
schnitt näher betrachtet.

Softwarekomponenten können in Form von DLLs vorliegen. DLL ist die Abkürzung für
Dynamic Link Library, also eine Programmbibliothek, die erst zur Laufzeit in eine An-
wendung eingebunden wird. Unter Windows gibt es zwei Arten von DLLs 1:

• Einsprungs-DLLs, die Prozeduren und Funktionen enthalten. Die in dieser Arbeit
zur Schrittmotorsteuerung verwendete DLL (USBM3x32.dll) gehört zu dieser Art.

• ActiveX-DLLs, die Klassen enthalten, deren Dateiendung auch OCX sein kann. Die
in dieser Arbeit zur Messdatenbearbeitung verwendete DLL (VMMP3Control.dll)
gehört zu dieser Art.

Es gibt zwei unterschiedliche Arten, DLLs in eine Anwendung einzubinden[5]:

Implicit Run-Time Linking: Wenn es zu einer DLL eine Importbibliothek gibt und
eine Verknüpfung mit dieser Bibliothek hergestellt ist, so wird diese DLL zur Laufzeit
automatisch geladen. Die benötigten DLL-Funktionen werden jeweils mit der Funktion
__declspec(dllimport) importiert. Ein explizites Abfragen von Funktionseinsprung-
adresse ist nicht erforderlich.

Explicit Run-Time Linking: Erst zur Laufzeit werden die Windows-API-Funktionen
LoadLibrary und GetProcAddress aufgerufen, um das DLL-Handle und die einzelnen
Funktionspointer zu bekommen, über die dann die DLL-Funktionen aufgerufen werden
können. Die geladene DLL kann später mit dem Aufruf der Windows-API-Funktion
FreeLibrary wieder aus dem Arbeitsspeicher entfernt werden. Die Importbibliothek ist

1http://de.wikipedia.org/wiki/Programmbibliothek

16

4. Basistechnologien

in diesem Fall nicht nötig. Die DLL-Datei muss aber in einem der Anwendung zugäng-
lichen Ordner liegen.

Dlls auf die erste Art einzubinden, ist relativ einfach zu handhaben. Der Nachteil besteht
darin, dass beim Programmstart alle auf diese Art eingebundenen DLLs in den Speicher
automatisch geladen werden, auch wenn sie gegebenenfalls nicht benötigt werden. Der
Programmstart wird dadurch verlangsamt. Das Programm braucht auch mehr Speicher-
platz. Ist eine DLL oder Funktion nicht vorhanden, kann das Programm bereits den
Start verweigern.

Dlls auf die zweite Art einzubinden, ist flexibel und braucht weniger Speicherplatz, weil
DLLs nur bei Bedarf in den Arbeitsspeicher geladen werden. Der Programmierer muss
aber sich selbst um das Laden und das Entfernen der DLLs sowie das Abfragen der
Einsprungadressen kümmern. Da dafür Windows-API-Funktionen verwendet werden,
bekommt das Programm auch hilfreiche Rückmeldungen, wie ob eine DLL erfolgreich
geladen wurde, ob die DLL-Funktionen galaden werden konnte, so dass während der
Laufzeit das Programm auf nicht vorhandene DLLs reagieren kann.

Die in dieser Arbeit verwendete DLL USBM3x32.dll kann nur auf die zweite Art in eine
Anwendung eingebungden werden. Im Anhang B.2 befindet sich ein Beispielprogramm,
das den Umgang mit USBM3x32.dll demonstiert.

4.2. ActiveX-Steuerelemente (ActiveX Controls)
Ein Microsoft ActiveX-Steuerelement ist eine wiederverwendbare Softwarekomponente,
die man in eigenständige Anwendungen und Web-Seiten einbauen kann. Der Program-
mierer kann ActiveX-Steuerelemente gleichermaßen in verschiedenen Programmierum-
gebungen wie Visual Basic, Delphi oder C++ einsetzen, ganz unabhängig davon, in
welcher Programmiersprache sie geschrieben worden sind.

Die ActiveX-Technologie basiert auf der ebenfalls von Microsoft entwickelten COM-
Technologie (Component Object Model), welche zur Herstellung der standardisierten
Softwarekomponenten eingeführt wurde[1]. Ein ActiveX-Steuerelement muss mindestens
die von COM definierte Basisschnittstelle IUnknown implementieren. Die weiteren von
COM sowie vom Entwickler selbst definierten Schnittstellen müssen von IUnknown ab-
leitbar sein.

ActiveX-Steuerelemente können nicht eigenständig laufen. Sie brauchen einen so ge-
nannten ActiveX-Container. Dies kann eine Visual C++- oder Visual Basic-Anwendung
sein, wenn in ihr ActiveX-Steuerelemente eingesetzt werden. ActiveX-Steuerelemente
kommunizieren dann mit ihrem Container ausschließlich über die Schnittstellen. Ein
ActiveX-Steuerelement kann über folgende Elemente verfügen:

• Methoden, in denen sein Verhalten abgebildet sind. Der ActiveX-Container kann
diese Methoden aufrufen.

• Ereignisse, die den ActiveX-Container benachrichtigen, dass bestimmte Ereignisse
eingetreten sind.

• Eigenschaften, die den Zustand des Objekts beschreiben und sich durch den ActiveX-
Container modifizieren lassen.

17

4. Basistechnologien

Liegt ein ActiveX-Steuerelement in Form von DLL oder OCX vor, so kann es von der
Entwicklungsumgebung wie Visual C++ referenziert werden. Die von COM definier-
ten Schnittstellen ITypeLib und ITypeInfo werden benutzt, um dem Entwickler zur
Entwurfszeit die Typbibliothek, die die Informationen über Methoden, Eigenschaften
und Ereignisse des Steuerelementes bietet, zur Verfügung zu Stellen[5]. Dieses ActiveX-
Steuerelement kann dann in der Entwicklungsumgebung wie normale Steuerelemente
behandelt werden.

ActiveX-Steuerelemente gibt es übrigens nur für die Betriebssystemfamilie Windows.

4.2.1. ActiveX-Steuerelement registrieren
Nach der Definition von Microsoft 2 ist ein ActiveX-Steuerelement im wesentlichen ein
COM-Objekt, das die IUnknown Schnittstelle implementiert hat und sich selbst für Win-
dows registrieren kann. Die Registrierung für Windows kann auf zwei Wegen erfolgen.
Man soll zuerst versuchen, das Setup-Programm des Steuerelementes auszuführen. In
dieser Arbeit ist es die von der Firma Vishay Micro-Measurements angebotene Instal-
lationsroutine. Die Registrierung wird in der Regel bei der Installation der Software
vorgenommen. Man kann das Steuerelement auch über das Hilfsprogramm regsvr32.exe
manuell registrieren. Der Vorgang sieht so aus:

• Öffne die MS-DOS-Eingabeaufforderung.

• Wechsele in das Verzeichnis, wo sich das ActiveX-Steuerelement VMMP3Control.dll
befindet. Führe dann den Befehl regsvr32 aus:
C:\Program Files (x86)\Vishay Micro-Measurements\Model P3 Strain

Indicator and Recorder>regsvr32 VMMP3Control.dll

4.2.2. Verweis auf ActiveX-Steuerelement einrichten
Es muss noch ein Verweis auf dieses Steuerelement im Visual C++-Projekt eingerichtet
werden. Dafür müssen folgende Schritte unternommen werden:

• Rufe den Menübefehl Projekt/..Eigenschaften auf, klicke im aufspringenden Dia-
logfeld auf den Schalter Neuen Verweis hinzufügen auf der Seite Allgemeine Ei-
genschaften. Gebe dann im daraufhin erscheinende Dialogfeld Verweis hinzufügen
den Pfad des Speicherorts von ActiveX-Steuerelement VMMP3Control.dll ein und
klicke auf OK. Die Abbildung 4.1 zeigt die Eigenschaften des neuen eingerichteten
Verweises auf dieses Steuerelement.

Die in der VMMP3Control Library enthaltenen Eigenschaften und Methoden kann man
folgendermaßen auflisten:

• Rufe den Menübefehl Projekt/Vorhandenes Element hinzfügen auf, gebe dann im
Dialogfeld Vorhandenes Element hinzfügen den Pfad des Speicherorts von diesem
Steuerelement ein, markiere die Datei VMMP3Control.dll und klicke auf hinzufü-
gen. Ein neuer Knoten namens VMMP3Control.dll erscheint im Projektmappen-
Explorer. Klicke doppelt auf ihn. Die VMMP3Control Library mit den zugehörigen
Eigenschaften und Methoden wird dann in einem neuen Fenster namens Objekt-
katalog im Arbeitsbereich gezeigt (siehe Abbildung 4.2).

2http://msdn.microsoft.com/en-us/library/aa751972(v=vs.85).aspx

18

4. Basistechnologien

Abbildung 4.1.: ActiveX-Verweiseigenschaften

Visual Studio erzeugt beim Einrichten des Verweises eine Interop-Assembly namens Inte-
rop.VMMP3Control.1.1 automatisch. Die Typmetadaten in Form eines Manifest werden
der in der Datei VMMP3Control.dll enthaltenen Typbibliothek entsprechend erstellt
und dieser Assembly hinzugefügt. Das bedeutet, dass dieses ActiveX-Steuerelement in
einer Visual C++-Anwendung wie übliche Steuerelemente benutzt werden kann3. Visual
Studio speichert diese Assembly im neu angelegten Ordner interop und eine Kopie im
Ordner Debug, wo sich auch die ausführbare Datei der Anwendung befindet.

Die Eigenschaften dieses Steuerelements können aber nicht dem Eigenschaftsfenster sei-
nes Containers hinzugefügt werden. Das bedeutet, dass sie im Programmcode abgefragt
oder gesetzt, aber nicht beim Programmentwurf voreingestellt werden können.

4.2.3. Eigenschaften abfragen und setzen
Das in dieser Arbeit verwendete ActiveX-Steuerelement VMMP3Control.dll verfügt über
keine Benutzeroberfläche und kann auch nicht über Ereignisse mit seinem Container
interagieren. Es verfügt über zahlreiche Eingenschaften und Methoden. Diese sind im
Anhang A aufgelistet.

In einer Visual C++-Anwendung können die Eigenschaften von VMMP3Control.dll fol-
gendermaßen abgefragt bzw. gesetzt werden:

3http://msdn.microsoft.com/de-de/library/xwzy44e4(v=VS.100).aspx

19

4. Basistechnologien

Abbildung 4.2.: VMMP3Control Library

Es soll zuerst eine Variable oder Membervariable einer Klasse, in der dieses Steuerele-
ment eingesetzt werden soll, definiert werden. Ein Objekt vom Typ VMMP3controller
wird erzeugt und dieser Variablen zugewiesen.

VMMP3Control::VMMP3Controller ^NewVP3 = gcnew VMMP3Controller();

Die Eigenschaften von VMMP3Control.dll können dann über die Membervariable NewVP3
angesprochen werden:

NewVP3->DeviceOpen = false;

if (NewVP3->DeviceOpen)
{

double kanal1 = Convert::ToDouble(NewVP3->CurrentReading[1]);
} else NewVP3->DeviceOpen = true;

Die Eigenschaft DeviceOpen muss auf true gesetzt werden, befor das Programm auf
andere Eingenschaften zugreift. Die Nur-Lesen-Eigenschaft CurrentReading[i] enthält
die aktuellen Messwerte vom Kanal i mit i = 1,2,3,4. Das Programm kann jede Zeit
diese Eigenschaft abfragen.

4.3. .NET Framework
Die in diesem Abschnitt verwendeten Materialien zum Tehma „.NET Framework“ sind
[5] und [9]. In beiden sind die hier benötigen Grunglagen beschrieben.

Das .NET-Framework ist eine Zielplattform für die Anwendungen, die mit den soge-
nannten .NET-Sprachen geschrieben wurden, und besteht aus zwei Hauptkomponenten:

20

4. Basistechnologien

der Common Language Runtime (CLR) und der .Net Framework-Klassenbibliothek.

Die CLR ist eine Laufzeitumgebung, die der Java Virtual Machine ähnlich, einen pro-
zessorunspezifischen Zwischencode, den sogenannten Intermediate Language Code (IL-
Code) ausführen kann. Wird ein in C++ oder anderen .NET-Sprachen geschriebenes
Programm für das .NET-Framework kompiliert, übersetzt der Compiler den Quelltext
in den IL-Code. Dieser IL-Code wird dann als verwalteter Code unter der Kontrolle der
CLR ausgeführt, d.h., die CLR lädt das Programm nach dem Programmstart, lässt den
IL-Code von ihrem Just-In-Time Compiler (JIT) bei Bedarf modulweise in einen pro-
zessorspezifischen Code übersetzen, wobei die Module in der Regel den Methoden einer
Anwendung entsprechen.

Die CLR übernimmt gleichzeitig noch die Aufgaben wie die Speicherverwaltung (Re-
servierung eines Speicherblocks für den von ihr verwalteten Heap, Garbage Collection
etc.), die Überwachung der Code-Ausführung und die Durchsetzung von Sicherheitsfea-
tures (z.B. Von wem oder von wo aus eine Assembly aufgerufen werden darf und wann
sie das Recht auf die Registry zuzugreifen bekommt).

Die .Net Framework-Klassenbibliothek, die von allen .NET-Sprachen benutzt werden
kann, umfasst mehrere Tausend Klassen. Diese sind in unterschiedliche Namespaces or-
ganisiert. Unter dem Root-Namespace System sind Sub-Namespaces, die Klassen für
bestimmte Funktionalitäten enthalen. z.B.:

System::IO Klassen für die Ein- und Ausgebe und den Zugriff auf Dateien
System::XML Klassen für die Arbeit mit XML-Daten
System::Data Klassen für den Zugriff auf Datenbank
System::Windows::Forms Klassen für GUI-Anwendungen

(Windows Forms-Anwendungen)

Das .Net Framework schreibt allen .NET-Sprachen nicht nur eine gemeinsame Ziel-
sprache (IL) vor, sondern auch ein einheitliches und verbindliches Typsystem, nämlich
das Common Type System (CTS), und ermöglicht damit die Sprachinteroperabilität
in .NET-Sprachen. Das CTS ist objektorientiert und unterstützt alle schon vorher all-
gemein anerkannten OOP-Konzepte wie Klassen, Schnittstellen, Einfachvererbung für
Klassen, Mehrfachvererbung für Schnittstellen, Polymorphie, virtuelle Methoden etc..
Darüber hinaus bietet das CTS noch neue Konzepte wie Eigenschaften (Properties), In-
dexer (eine besondere Form von Eigenschaften) und Delegates (typisierte Verweise auf
Methoden). Alle Typen des CTS sind von der Wurzelklasse System.Object abgeleitet.
Das gilt auch für Werttypen wie ganze Zahlen (System::Int32) oder logische Werte
(System::Boolean).

Das CTS ermöglicht also es den Programmierern, in einem Programm Klassenbibliothe-
ken, die in anderen .NET-Sprachen geschrieben sind, problemlos zu verwenden. Außer-
dem wird das .Net Framework von den meisten der bisherigen Windows-Betriebssysteme
und allen zukünftigen Windows-Betriebssystemen unterstützt. Das heißt, ein für das
.NET-Framework entwickeltes Programm kann auf jedem Computer, auf dem beispiels-
weise Windows 7, Windows XP oder ein zukünftiges Windows-Betriebssystem installiert
wird, ausgeführt werden.

Die mit Hilfe vom .NET-Framework erstellten softwarekomponenten (EXE- oder DLL-
Datei) sind zwar ebenfalls sprachunabhängig, liegen aber nicht mehr in Binärform, son-

21

4. Basistechnologien

dern in IL-Code vor. Eine oder mehrere Klassen werden zusammen mit den zugehörigen
Metadaten zu einem Modul (Komponente) zusammengefasst, und ein oder mehrere Mo-
dule können eine Assembly bilden. Assemblies enthalten neben den Modulen mit deren
Code und Metadaten auch eigene Metadaten in einem Manifest. Eine .NET-Komponente
ist also keine Assembly, sie wird vielmehr in einer Assembly ausgeliefert. Das Assembly-
Manifest enthält alle für die Verwendung der Assembly notwendigen Informationen. Das
NET-Sicherheitskonzept, die NET-Vesionsverwaltung und die NET-Sprachunabhäigkeit
basieren auf diesen Informationen.

4.4. Visual C++
Das Softwarepaket Visual C++ ist ein Produkt von Microsoft und steht für die Erstel-
lung von Anwendungen mit der Programmiersprache C++. Dieses Paket enthält u.a.
eine integrierte Entwicklungsumgebung, zahlreiche Bibliotheken sowie Build-Werkzeuge.
Die aktuelle Version von Visual C++ unterstützt die Syntaxerweiterungen C++/CLI,
die die Schnittstelle von ANSI C++ zum .NET Framework definieren. Visual C++-
Anwendungen können damit die Klassen und Typen aus der .NET-Bibliothek verwenden
und von den Diensten der CLR profitieren.

C++/CLI erfüllt den Standard Common Language Infrastructure (CLI). Das .Net Fra-
mework ist nämlich eine Implementierung dieses Standards. In diesem Abschnitt werden
einige Besonderheiten der C++/CLI-Schnittstelle, die für diese Arbeit nützlich sind,
vorgestellt.

4.4.1. Verwalteter Klassentyp
Nach der Definition der Schnittstelle wird ein verwalteter Klassentyp mit dem Schlüs-
selwort ref definiert:

public ref class ManUSBMotion3x
{
// ...
};

Damit die Objekte (dieser Klasse) auf dem von der CLR verwalteten Heap angelegt
werden, müssen noch zwei Bedingungen erfüllt sein:

• Die Typdefinitionen der jeweiligen Objekte müssen in die verwalteten Codes, d.h.
mit dem Compiler-Schalter /clr kompiliert werden.
• Die Objekte müssen mit gcnew erzeugt und den mit ^ definierten Trackinghandles
zugewiesen werden.

int main(array<System::String ^> ^args)
{

ManUSBMotion3x^ NewMotion3x = gcnew ManUSBMotion3x(); // ...
return 0;

}

Die CLR kann ein Objekt an einen neuen Speicherort innerhalb des verwalteten Heaps
verschieben, wenn es Vorteile bringt. Im Gegensatz zu den mit * definierten Zeigern

22

4. Basistechnologien

kann ein Trackinghandle das Verschieben des Objekts, auf das es verweist, mit verfolgen
und verweist damit stets auf dieses Objekt.

Das „gc“ in gcnew steht für Garbage Collection. Die Speicherverwaltung für die Objekte
auf dem verwalteten Heap wird von der CLR übernommen, so dass sich der Program-
mierer nicht mehr darum kümmern muss. Das Nichtaufräumen von Speicherressourcen
ist eine häufige Fehlerquelle in nicht verwalteten C++-Programmen.

4.4.2. Verwalteter und nicht verwalteter Code
In der .NET-Terminologie werden alle Programme, die für das .NET Framework geschrie-
ben sind und unter der Kontrolle der CLR ausgeführt werden, als verwaltet (managed)
und alle anderen, insbesondere ältere Programme, als nicht verwaltet (unmanaged) be-
zeichnet.

Man kann aus verwaltetem Code heraus nicht verwalteten, nativen Code aufrufen, sofern
dieser in C++ geschrieben wurde. Man kann auch innerhalb eines C++-Quelltextes fest-
legen, welche Funktionen bzw. Klassen in nativen und welche in verwalteten Code kom-
piliert werden sollen. Dazu werden die Präprozessor-Direktiven #pragma managed und
#pragma unmanaged verwendet. Die Einstellung, dass das Programm mit dem Compiler-
Schalter /clr kompiliert wird, erzeugt IL-Code, erlaubt auch die Kombination mit nicht
verwaltetem Code.

Das folgende Codestück zeigt, wie die DLL USBM3x32, die in dieser Arbeit zur Schritt-
motorsteuerung verwendet wird, mit Hilfe der beiden Präprozessor-Direktiven in einer
Windows Forms-Anwendung eingesetzt wird.

#pragma once
#include <windows.h>

// ...
#pragma unmanaged

// Definition des Types der DLL-Funktion, die verwendet werden soll
typedef unsigned char (__stdcall *LPGETXTARGET)(unsigned char,

unsigned char&, long&);

HINSTANCE husbm3x32Dll;
unsigned char ucstatus;
// DLL Datei laden
husbm3x32Dll=(HINSTANCE)LoadLibrary(L"USBM3x32.dll");

int SetXtarget(unsigned char motorIndex, long lXtarget)
{

LPSETXTARGET lpSetXtarget;
// Die Einsprungadresse abfragen
lpSetXtarget=(LPSETXTARGET)GetProcAddress(husbm3x32Dll, "SetXtarget");
return lpSetXtarget(motorIndex, lXtarget, ucstatus);

}

23

4. Basistechnologien

// ...
#pragma managed

public ref class Form1 : public System::Windows::Forms::Form
{
// ...
// Zielposition von Motor 0 setzen
private: System::Void textBox2_KeyPress(System::Object^ sender,

System::Windows::Forms::KeyPressEventArgs^ e)
{

if (e->KeyChar == (char)13) //Die Taste ENTER ist gepresst
{

if (SetXtarget(0, Convert::ToInt64(this->textBox2->Text)) == 5)
{

this->textBox1->AppendText("USB Gerät nicht verfügbar! \n");
} else this->textBox1->AppendText(GetXtarget(0) + "\n");

} // GetXtarget(i) gibt die akt. Position von Motor i zurück
}

};

Die Funktion SetXtarget und die Klasse Form1 können auf dieselbe Weise zusammen
arbeiten, wenn sie in separaten Dateien definiert werden.

4.4.3. Indizierte Eigenschaften
In verwalteten Klassen kann man die Get- und Set-Methoden durch die mit dem Schlüs-
selwort property deklarierten Eigenschaften ersetzen. Visual C++ verfügt über eine
besondere Form von Eigenschaften, nämlich indizierte Eigenschaften, die es erlauben,
über den Index auf die Felder einer Klasse zuzugreifen.

Indizierte Eigenschaften kann man mit dem Schlüsselwort default oder statt dessen
mit eigenen Eienschaftennamen definieren. Der Indextyp wird in eckigen Klammern an-
gegeben. Der indizierte Zugriff auf Felder erfolgt dann über die Objektnamen oder über
die Eienschaftennamen.

public ref class Messdaten
{

array<double> ^currentReading;

public:
Messdaten()
{

// ein verwaltetes Array mit 4 Elementen des Datentyps double
currentReading = gcnew array<double>(4);

}

property double CurrentReading[int]
{

double get (int i)
{

24

4. Basistechnologien

return currentReading[i];
}

void set (int i, double wert)
{

currentReading[i] = wert;
}

}
};

Die Eigenschaft CurrentReading[i] mit i =0,1,2,3 kann folgendermaßen angespro-
chen werden. Auf gleiche Weise werden die Messwerte vom Messgerät Vishay P3 in den
Computer eingelesen (siehe Abschnitt 4.2.3).

int main(array<System::String ^> ^args)
{

Messdaten ^daten = gcnew Messdaten();

daten->CurrentReading[0] = Convert::ToDouble(Console::ReadLine());
Console::WriteLine("CurrentReading: " + daten->CurrentReading[0]);
return 0;

}

4.4.4. Generische Auflistungsklasse List<T>
Zur Implementierung dynamischer Datenstrukturen stellt die .Net Framework-Bibliothek
im Namensraum System::Collections::Generic einen Satz von generischen Auflis-
tungsklassen bereit. Dazu gehört die Klasse List<T>. Der Datentyp-Platzhalter T in
spitzen Klammern bedeutet, dass diese Klasse typisiert ist. Bei der Deklaration und In-
stanzierung muss statt T ein konkreter Datentyp angegeben werden:

List<double> ^listMesswert = gcnew List<double>(5);

In runden Klammern ist die Anfangskapazität der Auflistung listMesswert angegeben.
Die Kapazität einer Auflistung wird automatisch erhöht, wenn die Anzahl der Elemen-
te die aktuelle Kapazität übersteigt. Das vereinfacht die Verwendung von Auflistungen,
kann aber ihre Leistung negativ beeinflussen, weil die Elemente in den neu zugewiesenen
Speicher kopiert werden müssen 4.

Das Hinzufügen und Entfernen von Elementen können durch Aufruf der Methoden
void Add(T item) und void RemoveAt(int Index) erfolgen:

listMesswert->Add(CurrentReading[0]);
listMesswert->RemoveAt(0);

Der double-Wert in CurrentReading[0] wird am Ende der Auflistung listMesswert
hinzugefügt. Das Element an der Position 0 dieser Auflistung wird entfernt und alle Ele-
mente dahinter werden nach vorne geschoben.

Die Anzahl der Elemente, die sich zurzeit in einer List-Auflistung befinden, kann über

4http://msdn.microsoft.com/de-de/library/akyhke97.aspx

25

4. Basistechnologien

die Eigenschaft Count ermittelt werden. Werden z.B. alle Elemente einer Auflistung
durch Aufruf der Methode Clear() entfernt, so gibt die Eigenschaft Count bei Abfrage
den Wert Null zurück.

Im gegensatz zu den Queue<T>-Auflistungen erlauben die List<T>-Auflistungen auch
den indizierten Zugriff auf ihre Elemente:

double durchschnitt = 0, summe = 0;
for (int i; i < listMesswert->Count; ++i)

summe += listMesswert[i];

durchschnitt = summe/listMesswert->Count;

26

5. Entwurf
Das zu erstellende Anwendungsprogramm soll zwei Hauptaufgaben erledigen, nämlich
die Schrittmotoren zu steuern und die Messwerte vom Messgerät einzulesen. Das Pro-
gramm soll wie folgt vorgehen:

1. Fragen nach dem Radius und der Tiefe der Kreisbahn.
2. Steuern der Schrittmotoren über die Steuerkarte, damit die Kreisbahn mit dem

vom Benutzer eingegebenen Radius und der ebenfalls vom Benutzer eingegebene
Tiefe gefräst wird.

3. Einlesen der Messwerte in bestimmten Zeitabständen vom Messgerät Vishay P3 in
den Computer. Warten bis sich die Messwerte von allen eingesetzten Messkanälen
kaum verändern und speichern für jeden Kanal einen aktuellen Messwert in einer
CSV-Datei. Beginnen dann wieder bei 1.

In den folgenden Abschnitten werden für zwei wichtige Aufgaben, die bei einem Mess-
vorgang erledigt werden müssen, geeignete Lösungen erarbeitet.

5.1. Aufnehmen der Messwerte
Um festzustellen, dass sich die Messwerte nach jeder Vertiefung der Kreisbahn nicht
mehr verändern, muss während des gesamten Messvorgangs für jeden Messkanal eine
bestimmte Anzahl der am neuesten eingelesenen Messwerte immer vorhanden sein.

Die Messwerte werden in bestimmten Zeitabständen gleichzeitig von drei Messkanälen
des Messgerätes eingelesen und entsprechend in drei Auflistungen gespeichert, die die
gleiche Kapazität haben. Erreicht die Anzahl der Messwerte in allen drei Auflisungen
die gegebene Kapazität, so wird vor dem Hinzufügen eines neuen Messwertes am En-
de einer der drei Auflistungen ein Messwert am Anang dieser Auflistung gelöscht. Nach
jedem Hinzufügen werden für jede Auflistung die in ihr befindlichen Messwerte miteinan-
der verglichen. Jedes Mal, wenn sich die Messwerte in allen drei Auflistungen nicht mehr
verändern, wird für jede Auflistung jeweils ein Messwert in einer CSV-Datei gespeichert
und auf dem Bildschirm gezeigt.

Auf diese Weise werden die stabilen Messwerte für jede Vertiefung der Kreisbahn auf-
genommen. Die Messwerte, die sich in einer CSV-Datei befinden, können von anderen
Anwendungsprogrammen wie Microsoft Excel komfortabel verwendet werden.

Für diese Aufgabe soll die List<double>-Auflistung eingesetzt werden, mit deren Hilfe
die Messwerte bequem und effizient hinzugefügt, gelöscht und miteinander verglichen
werden können. Die Queue<double>-Auflistung, d.h. die FIFO-Auflistung ist nicht ge-
eignet, da sie keinen indizierten Zugriff auf ihre Elemente erlaubt.

Das Einlesen und Vergleichen der Messwerte sollen nach dem Start der Messung re-
gelmäßig stattfinden. Dies kann auf zwei Wegen erfolgen. Der eine besteht darin, ein

27

5. Entwurf

Abbildung 5.1.: Viertelkreisbahn

timer-Steuerelement in der Anwendung einzusetzen, das sein Tick-Ereignis in bestimm-
ten Zeitabständen auslöst. Die Tick-Ereignisbehandlungsmethode sorgt dann dafür, für
jeden Messkanal jeweils einen Messwert in den Computer einzulesen und mit den ande-
ren Messwerten zu vergleichen. Es kann auch ein Thread-Objekt erzeugt werden, das im
Hintergrund diese Aufgabe erledigt.

5.2. Bestimmen der Punkte auf der Kreisbahn
Ein Punkt (x, y) auf der Kreisbahn kann über die Sinus- und Cosinus-Funktion wie folgt
bestimmt werden:

(x, y) = (r · cos(α), r · sin(α)) (5.1)

wobei sich der Mittelpunkt der Kreisbahn am Koordinatenursprung (0, 0) befindet und
r der Radius der Kreisbahn ist. Der Winkel α ist derjenige, der von der x-Achse und der
Verbindungsstrecke zwischen dem Ursprung und dem Punkt (x, y) eingeschlossen wird.

Der Radius r soll hier in Schrittzahl des Schrittmotors umgerechnet werden, indem der
vom Benutzer eingegebene Betrag des Radius (in mm) durch die Schrittauflösung (in
mm/Schritt) des Schrittmotors dividiert wird. Der Fräser, der die gegebene Kreisbahn
abfahren soll, wird von den Schrittmotoren für die X- und Y-Achse angetrieben und
kann sich daher nur in der X-, Y-Richtung oder der Diagonalrichtung bewegen. Wie in
der Abbildung 5.1 gezeigt, bewegt sich der Fräser tatsächlich entlang der blauen Linie.

28

5. Entwurf

Die Anzahl N von den Schritten, die entweder einer der beiden Schrittmotoren oder die
beiden gleichzeitig fahren müssen, damit die komplette Kreisbahn gefräst wird, kann
dann mit Hilfe der Formel (5.1) und der Symmetrieeigenschaft der Kreisbahn wie folgt
abgeschätzt werden:

N = 4 · (r · cos(α) + r · sin(α)) = 8 · r · cos(π/4) ≤ 6 · r (5.2)

Werden die berechneten Koordinaten der einzelnen Punkte, die der Fräser nacheinan-
der anfahren soll, in einer List-Auflistung gespeichert, so muss die Kapazität dieser
Auflistung nicht größer als die Zahl N sein.

5.2.1. Bestimmen der Punkte aufgrund der Symmetrie
Die Kreisbahn ist eine achsensymmetrische Figur. Jede Gerade durch ihren Mittelpunkt
ist eine Symmetrieachse. Wird ein Punkt (x, y) für das Fräsen der Kreisbahn bestimmt,
so lässt sich z.B aufgrund der X-Achsensymmetrie feststellen, dass auch der Punkt
(x,−y) dafür nötig sein kann.

Die Spiegelung eines Punktes an der X-, Y-Achse und den beiden Diagonalen kann von

Abbildung 5.2.: Symmetrie der Kreisbahn

einem Programm quasi ohne Rechenaufwand erledigt werden. Um die Rechenzeit beim
Erzeugen der Kreisbahn-Daten zu reduzieren, wird die Symmetrieeigenschaft der Kreis-
bahn von unserem Programm wie folgt genutzt:

• Das Programm berechnet zuerst nur die Koordinaten derjenigen Punkte, die für
das Fräsen einer Achtelkreisbahn benötigt sind, also z.B. wie in der Abbildung 5.2
gezeigt, die Punkte im Bereich zwischen 12:00 und 13:30 Uhr.

29

5. Entwurf

• Dann leitet das Programm für das Fräsen einer weiteren Achtelkreisbahn die Koor-
dinaten der Punkte ab, indem es die für das Fräsen der vorherigen Achtelkreisbahn
bestimmten Punkte an der X-, Y-Achse oder den beiden Diagonalen spiegelt. Dies
wiederholt solange, bis die Punkte für das Fräsen der lezten Achtelkreisbahn be-
stimmt werden.

Wird also ein Punkt (x, y) für das Fräsen der Kreisbahn bestimmt, so werden auch die
Punkte (y, x), (y,−x), (x,−y), (−x,−y), (−y,−x), (−y, x) und (−x, y) für das Fräsen
der Kreisbahn bestimmt.

5.2.2. Berechnen der Koordinaten der Punkte
Zur Berechnung der Punkte auf der Kreisbahn kann der Bresenham Algorithmus[6][8]
zum Einsatz kommen. Dieser Algorithmus wird vor allem in der Computergrafik häufig
verwendet, weil er ohne Multiplikation, ohne Auswertung der Wurzel und der Sinus-,
Cosinus-Ausdrücke auskommt, und somit bei Bildern mit sehr vielen Kreisen die Re-
chenzeit erheblich einspart.

Nach diesem Algorithmus soll das Programm den Fräser über zwei Schrittmotoren wie
folgt steuern: Der Fräser wird am Anfang an den Punkt (0, r) positioniert und dann nach
unten rechts bis zum Winkel von 45◦ fortgesetzt. Also, wenn sich der Fräser in diesem
Achtel der Kreisbahn am Punkt (x, y) befindet, dann muss der nächste Punkt, den er in
einem Schritt erreichen soll, entweder (x+ 1, y) oder (x+ 1, y − 1) sein. Das Programm
trifft die Entscheidung, indem es überprüft, welcher der beiden Punkte näher am Kreis
(die schwarze Linie in Abb. 5.1) liegt.

Sei für einen Punkt (x, y) die Funktion F (x, y) = x2 + y2 − r2 gegeben, dann gilt:

F (x, y) = 0, falls (x, y) auf dem Kreis
F (x, y) < 0, falls (x, y) innerhalb des Kreises
F (x, y) > 0, falls (x, y) außerhalb des Kreises

Das Programm berechnet d = F (x + 1, y − 1/2), also den F-Wert des Punktes M (wie
grüne Punkte in Abb. 5.1), der in der Mitte zwischen den beiden Punkten (x+ 1, y) und
(x+ 1, y − 1) liegt. Die Entscheidung wird wie folgt getroffen:

Fall 1: d < 0⇒ M ist innerhalb des Kreises⇒ Punkt (x+ 1, y) ist näher am Kreis
⇒ Aus (x, y) wird (x+ 1, y)

Fall 2: d ≥ 0⇒ M ist außerhalb des Kreises⇒ Punkt (x+ 1, y − 1) ist näher am Kreis
⇒ Aus (x, y) wird (x+ 1, y − 1)

Da das Fräsen am Punkt (0, r) beginnt, wird d initialisiert mit

d = F (0 + 1, r − 1
2) = 1 + (r2 − r + 1

4)− r2 = 5
4 − r

Sei
dalt = F (x+ 1, y − 1

2) = (x+ 1)2 + (y − 1
2)2 − r2

30

5. Entwurf

gegeben. Wenn dalt < 0 ist, dann wird der Punkt (x+ 1, y) ausgewählt. Der neue Wert
von d ergibt sich als

dneu = F (x+ 2, y − 1
2) = (x+ 2)2 + (y − 1

2)2 − r2

= dalt + 2x+ 3 = dalt + ∆x

Wenn dalt ≥ 0 ist, dann wird der Punkt (x+ 1, y − 1) ausgewählt. Der neue Wert von d
ergibt sich als

dneu = F (x+ 2, y − 3
2) = (x+ 2)2 + (y − 3

2)2 − r2

= dalt + 2x− 2y + 5 = dalt + ∆xy

wobei zu beachten ist, dass die Inkremente ∆x und ∆xy ständig anwachsen. Es handelt
sich bei d = F (x+ 1, y − 1/2) um eine quadratische Gleichung, ihre ersten Ableitungen
sind deswegen nicht konstant. Die beiden werden also in jedem Schritt um 2 erhöht, falls
der Punkt (x + 1, y) als der nächste ausgewählt wird. Sonst werden ∆x um 2 und ∆xy

um 4 erhöht. Außerdem sollen ∆x und ∆xy jeweils mit x = 0 und y = r initialisiert
werden, d.h., zum Beginn des Fräsens sind ∆x = 3 und ∆xy = −2r + 5.

Da d mit dem Wert 5/4 − r initialisiert und dann nur ganzzahlig inkrementiert wird,
muss d in der Menge {...,−3

4 ,
1
4 ,

5
4 , ...} liegen. Es muss also gelten:

d < 0⇔ d ≤ −3
4 ⇔ d− 1

4 ≤ −1⇔ d− 1
4 < 0

Es kann daher d auch mit (5/4 − r) − 1/4 = 1 − r initialisiert werden. Im Programm
wird d dann nur ganzzahlige Werte annehmen.

Nachdem die Punkte auf der ersten Achtelkreisbahn berechnet wurden, können die an-
deren Punkte auf der Kreisbahn durch die Spiegelungen, wie im letzten Abschnitt be-
schrieben, abgeleitet werden.

31

6. Implementierung

Vor der Implementierung müssen zwei Entscheidungen getroffen werden. Das betrifft zu-
nächst das Betriebssystem. Weil das Anwendungsprogramm zwei DLLs verwenden muss,
so soll es unter Windows implementiert werden. Damit das Anwendungsprogramm auch
unabhängig von der Betriebssystemversion eingesetzt werden kann, soll es für das .NET-
Framework geschrieben werden. Eine weitere Entscheidung betrifft die Programmierspra-
che. Wenn es sich bei diesem Anwendungsprogramm schon um eine .NET Framework
basierende Anwendung handelt, kann es im Prinzip in beliebigen .NET-Sprachen imple-
mentiert werden, z.B. in C++/CLI, C# oder VB.NET. Hier wird C++/CLI ausgewählt,
nur weil der Herseller der DLL USBM3x32 für die Verwendung dieser DLL brauchbaren
C++-Quellcode angeboten hat.

6.1. Einrichten der Entwicklungsumgebung
Als Entwicklungsplattform wurde Windows 7 verwendet. Zum Erstellen und Test des
Anwendungsprogrammes wurde das Softwarepaket Microsoft Visual C++ 2010 Express
installiert. Beim Testen und bei der Fehlersuche war der integrierte Debugger zum Ein-
satz gekommen.

Das Anwendungsprogramm wird in Visual C++ 2010 Express in Form eines Projek-
tes verwaltet. Die Projektvorlage Windows Forms-Anwendung wurde beim Anlegen des
Projektes ausgewählt, damit das Anwendungsprogramm innerhalb des .NET Frame-
works ausgeführt wird. Für diese Projektvorlage ist aber per Voreinstellung dem Visu-
al C++-Compiler der Compiler-Schalter /clr:pure übergeben. Da dieses Programm so-
wohl verwalteten als auch nicht verwalteten Code enthält, wurde der Compiler-Schalter
/clr wieder ausgewählt (über Projekt/Eigenschaften/Konfigurationseigenschaften/Allge-
mein/Common Language Runtime-Unterstützung).

Das ActiveX-Steuerelement VMMP3Control.dll wurde für Windows registriert und ein
Verweis auf dieses im angelegten C++-Projekt eingerichtet (siehe Abschnitt 4.2.1 und
4.2.2). Die DLL USBM3x32 musste nicht registriert werden, musste aber in das selbe
Verzeichnis wie die ausführbare Datei des Programmes kopiert werden. Die von ihr zur
Verfügung gestellten Funktionen wurden im Programmcode deklariert und mit Hilfe der
Windows-API-Funktionen aufgerufen.

Das Messgerät Vishay P3 und die Schrittmotorsteuerkarte USBMotion3XII wurden über
USB Kabel mit dem Computer verbunden und vom ihm erkannt. Die Schrittmotorsteu-
erkarte wurde noch von einer Gleichspannungsquelle (7 – 34 VDC) gespeist.

32

6. Implementierung

6.2. Implementierte Klassen
Im Laufe des Implementierungsprozesses ergaben sich folgende Klassen:

• Die Formularklasse Form1, die von der Basisklasse Form abgeleitet wurde. Das Ge-
rüst dieser Klasse wurde beim Anlegen des Projektes automatisch erzeugt. Diese
Klasse besitzt folgende Methoden:

void InitializeComponent(void) ist vom Windows Forms-Designer verwaltet.
In dieser Methode werden alle Komponenten der Benutzerschnittstelle deklariert
und mit den gewünschten Werten initialisiert. Darüber hinaus werden auch Events
registriert.

void dateienAnlegen() legt zur Speicherung der Messwerte und Koordinaten der
für das Fräsen der Kreisbahn ausgewählten Punkte zwei Dateien MessDaten.csv
und KreisbahnDaten.txt an.

void messvorgang() speichert jeweils einen Messwert für die eingesetzten Mess-
kanäle in der Datei MessDaten.csv, wenn sich alle Messwerte von diesen Kanälen
nicht mehr verändern.

System::Void button1_Click wird aufgerufen, wenn der Benutzer den Button
Starten in der Benutzerschnittstelle anklickt. Diese Methode stellt die Verbindung
zum Messgerät Vishay P3 her.

System::Void button2_Click wird aufgerufen, wenn der Benutzer den Button
Beenden in der Benutzerschnittstelle anklickt. Diese Methode löscht die hergestell-
te Verbindung zum Messgerät Vishay P3.

System::Void button3_Click wird aufgerufen, wenn der Benutzer den Button
Homing in der Benutzerschnittstelle anklickt. Diese Methode positioniert den Frä-
ser an den Punkt (0, 0, 0).

System::Void timer1_Tick wird aufgerufen, sofern das im Programm eingesetz-
te timer-Steuerelement sein Tick-Ereignis auslöst. In dieser Methode wird den
Zustand des Hintergrundthreads threadKreisbahn abgefragt und die Methode
messvorgang aufgerufen.

SchrittmotorSteuerkarteInit() wird vom Konstruktor der Klasse Form1 aufge-
rufen. Diese ruft wieder die Methoden managed_SchrittmotorDLLInit und managed
_SetVmax von der Klasse ManUSBMotion3x auf, damit die Schrittmotorsteuer-
karte initialisiert und die maximale Geschwindigkeit von drei Motoren auf einen
gegebenen Wert gesetzt wird.

System::Void textBox2_KeyPress,
System::Void textBox3_KeyPress oder
System::Void textBox4_KeyPress wird aufgerufen, wenn der Benutzer einenWert
(inmm) im Eingabefeld für X-, Y- oder Z-Koordinate eingibt und dann die ENTER-
Taste drückt. Die aufgerufene Methode nimmt den Wert entgegen, rechnet ihn in
Schrittzahl des Schrittmotors um und ruft dann die Methode managed_SetXtarget
von der Klasse ManUSBMotion3x auf, damit die eingegebene Zielposition ange-
fahren wird.

33

6. Implementierung

System::Void textBox6_KeyPress wird aufgerufen, wenn der Benutzer einenWert
(in mm) im Eingabefeld für den Radius der Kreisbahn eingibt und dann die
ENTER-Taste drückt. Sie nimmt den Wert entgegen, rechnet ihn in Schrittzahl des
Schrittmotors um und startet ein Hintergrundthread namens threadKreisbahn.

void achtelKreisbahn berechnet die Koordinaten der ausgewählten Punkte für
die erste Achtelkriesbahn nach dem Bresenham Algorithmus.

void datenSchickenSpeichern1 lässt den Schrittmotor für die X-Achse x Schrit-
te oder den Schrittmotor für die Y-Achse y Schritte oder die beiden gleichzeitig
die angegebenen Schritte machen, indem sie die Methode managed_SetXYZtarget
von der Klasse ManUSBMotion3x aufruft. Ist der Aufruf erfolgreich, so wird die
Koordinaten des zu erreichenden Punktes in der Datei KreisbahnDaten.txt ge-
speichert.

void datenSchickenSpeichern entscheidet nach der aktuellen und der nächsten
Position des Fräsers, welche Schrittmotoren in Bewegung gesetzt werden sollen,
ruft dann die Methode datenSchickenSpeichern1 auf.

void kreisbahnFräsen() wird vom Hintergrundthreads threadKreisbahn aufge-
rufen. Diese ruft zuerst die Methode achtelKreisbahn auf, leitet dann die anderen
Punkte auf der Kreisbahn durch die Spiegelungen ab. Anschließend ruft diese die
Methode datenSchickenSpeichern einmal pro Sekunde auf, bei jedem Aufruf
werden als Argumente die aktuelle Position und die nächste Position des Fräsers
übergeben.

• Die Klasse USBMotion3x fasst die Methoden zur Steuerung des Schrittmotors zu-
sammen:

int SchrittmotorDLLInit() wird zur Initialisierung der DLL aufgerufen. Diese
ruft die DLL-Funktionen USBMCCreate und USBMCinit auf.

int SchrittmotorDLLEntladen() wird zum Entladen der DLL aufgerufen. Die-
se ruft wieder die DLL-Funktion USBMCDestroy und die Windows-API-Funktion
FreeLibrary auf.

int SetXtarget wird zum Festlegen der Zielposition des Schrittmotors für die X-,
Y- oder Z-Achse aufgerufen. Diese ruft die DLL-Funktion SetXtarget auf.

int SetXYZtarget wird für den Fall, dass die Zielpositionen von mehreren Schritt-
motoren gleichzeitig festgelegt werden sollen, aufgerufen. Diese Methode ruft die
DLL-Funktion SetXYZtarget auf.

long GetXtarget wird zum Abfragen der Zielposition des Schrittmotors aufgeru-
fen. Diese ruft die DLL-Funktion GetXtarget auf.

int SetVmax wird zum Festlegen der maximalen Geschwindigkeit des Schrittmo-
tors aufgerufen. Diese ruft die DLL-Funktion SetVmax auf.

• Die verwaltete Klasse ManUSBMotion3x ist die Wrapper-Klasse der nicht verwalte-
ten Klasse USBMotion3x, hat daher die gleiche öffentliche Funktionalität wie die
Klasse USBMotion3x. In der Klasse wird ein Zeiger namens UnUSBMotion3x vom
Typ der Klasse USBMotion3x mit * deklariert. Im Konstruktor ManUSBMotion3x()
wird ein Objekt der Klasse USBMotion3x mit new erzuegt und diesem Zeiger zu-

34

6. Implementierung

gewiesen. Im Destruktor ~ManUSBMotion3x() wird das nicht verwaltete Objekt
gelöscht. Diese Klasse besitzt folgende methoden:

int managed_SchrittmotorDLLInit()
int managed_SchrittmotorDLLEntladen()
int managed_SetXtarget
int managed_SetXYZtarget
long managed_GetXtarget
int managed_SetVmax

Diese Methoden tun nichts anderes, als die entsprechende Methode der klasse
USBMotion3x über den Zeiger UnUSBMotion3x aufzurufen. Ein Objekt dieser Klasse
wird in der verwalteten Klasse Form1 erzeugt und dem Trackinghandle NewMotion3x
zugewiesen. Die DLL-Funktionen können dann über dieses Trackinghandle in der
Klasse Form1 aufgerufen werden.

6.3. Benutzerschnittstelle
Die Abbildung 6.1 zeigt die Benutzerschnittstelle des in dieser Arbeit erstellten Anwen-
dungsprogrammes. Die Benutzerschnittstelle setzt sich aus einem Ausgabefenster, drei
Buttons und vier Eingabefeldern zusammen.

Im Ausgabefenster werden folgende Informationen angezeigt:

• die Benutzereingaben für die Zielpositionen von drei Schrittmotoren, den Radius
der Kreisbahn

• die aktuellen Positionen von drei Schrittmotoren, die Koordinaten der ausgewähl-
ten Punkte auf der ersten Achtelkreisbahn sowie die erfassten Messwerte

• die Meldungen wie „Die Kreisbahndaten wurden erfolgreich an die Steuerkarte ge-
schickt!“ oder “Die Zielposition für Motor X konnte nicht ins Register geschrieben
werden!“

Die Benutzer kann den Messvorgang starten, beenden oder den Fräser an den Punkt
(0, 0, 0) positionieren, indem er den Button Starten, Beenden oder Homing klickt. Der
in einem Eingabefeld eingegebene Wert muss vom Benutzer mit der Enter-Taste bestätigt
werden. Der eingegebene Wert für den Radius der Kreisbahn soll nicht größer als 1, 0mm
sein.

6.4. Testergebnisse
Beim Test wurden an drei Messkanäle des Messgerätes normale Widerstände angeschlos-
sen. Die Widerstandsänderungen von DMS wurden durch die Wärmung dieser Wider-
stände simuliert. Die Abbildung 6.2 zeigt bei einem Test in der Datei MessDaten.CSV
gespeicherte Messwerte. Dabei passierten die Widerstandsänderungen zuerst beim Mess-
kanal3, dann beim Messkanal2 und schließlich beim Messkanal1. Die durch eine Linie
gekennzeichneten Werte wurden gespeichert, weil das Programm davon ausging, dass die
Messwerte von allen drei eingesetzten Messkanälen wieder stabil geworden waren.

Die Koordinaten der Punkte, die zum Fräsen einer Kreisbahn mit dem vom Benutzer

35

6. Implementierung

Abbildung 6.1.: Benutzerschnittstelle

Abbildung 6.2.: Messwerte nach Widerstandsänderungen

36

6. Implementierung

Abbildung 6.3.: Die Koordinaten der ausgewählten Punkte auf der ersten Viertelkreis-
bahn mit r = 0,095 mm (19 Schritte)

eingegebenen Radius ausgewählt wurden, und die Rückmeldungen, ob die Koordinaten
dieser Punkte erfolgreich an die Schrittmotorsteuerkarte geschickt wurden, sind in der
Datei KreisbahnDaten.txt gespeichert. Die Abbildung 6.3 zeigt einen Teil dieser Datei,
welche die Koordinaten der zum Fräsen einer Kreisbahn mit r = 0, 095mm ausgewähl-
ten Punkte und die Rückmeldungen enthält. Für diesen Test wurde die Schrittauflösung
des Schrittmotors auf 0, 005mm/Schritt eingestellt, so dass der Radius umgerechnet 19
Schritte beträgt. Die gefräste Kreisbahn soll genau wie die blaue Linie in der Abbildung
5.1 aussehen.

37

7. Zusammenfassung

Es wurden zunächst die dieser Arbeit zu Grunde liegenden Kenntnisse vorgestellt. Dies
sind Eigenspannungen und deren Messverfahren Bohrlochverfahren, Dynamic Link Li-
brary (DLL), ActiveX-Steuerelement, .Net Framework sowie C++/CLI-Schnittstelle.
Das Messgerät Vishay Modell P3 und die USB-Steuerkarte USBMotion3xII wurden in
Kapitel 3 vorgestellt.

In Kapitel 5 (Entwurf) wurden zunächst ein Konzept entwickelt, das erkennen kann, ob
nach jeder Vertiefung der Kreisbahn die Messwerte von den eingesetzten Messkanälen
stabil sind. Anschließend wurde der Bresenham Algorithmus, der für die Bestimmung
der Punkte auf der Kreisbahn zum Einsatz kam, vorgestellt.

Die implementierten Klassen und deren Methoden wurden in Kapitel 6 (Implementie-
rung) beschrieben. Im Gegensatz zum ActiveX-Steuerelement VMMP3Control können
die Funktionen von der DLL USBM3x32 in einer verwalteten Klasse nicht direkt aufge-
rufen werden. Daher wurde auch eine Wrapper-Klasse für diese DLL implementiert. Die
Benutzerschnittstelle und die Testergebnisse des Anwendungsprogrammes wurden auch
in diesem Kapitel vorgestellt.

Die Testergebnisse haben gezeigt, dass das Programm die Messwerte schon für wieder
stabil hielt, während sie sich noch langsam änderten. Das Problem kann dadurch gelöst
werden, dass die Anzahl der Messwerte, die miteinander verglichen werden sollen, erhöht
wird.

Es ist erforderlich, dass die maximale Geschwindigkeit und die maximale Beschleunigung
von Schrittmotoren auch vom Benutzer selbst festgelegt werden können. Dadurch ist der
Benutzer in der Lage, den Fräsprozess zu beschleunigen.

38

A. Eigenschaften und Methoden von
VMMP3Control.dll

Im Folgenden werden die vom ActiveX-Steuerelement VMMP3Control.dll zur Verfügung
gestellten Eigenschaften und Methoden beschrieben, wobei das Schlüsselwort ByVar fest-
legt, dass beim Aufruf dem Parameter der Wert eines Arguments übergeben wird. Eine
variable vom Typ Variant kann numerische Daten, Zeichenfolgen, Datumsdaten sowie
die speziellen Werte Empty und Null annehmen. Der Parameter Channel kann die Inte-
gerzahlen 1, 2, 3 und 4 annehmen.

1 . Property ADReading (ByVal Channel As Long) As Long
Schre ibgeschützt ,
en thä l t d i e a k t u e l l e n A/D−Daten des gewählten Kanals

2 . Property BalanceMode (ByVal Channel As Long) As Long
enthä l t e in e der fo lgenden I n t e g e r z a h l e n :
0−Brückenabg le i ch funkt ion f ü r den gewählten Kanal i s t a b g e s c h a l t e t
1−Brückenabgle ich des gewählten Kanals wird vom Messgerät ausge führ t
2−Brückenabgle ich des gewählten Kanals wird vom Benutzer manuell ausge führ t

3 . Property BalanceValue (ByVal Channel As Long) As Long
enthä l t d i e Anzahl der A/D−Wandlung . Bem Brückenabgle ich des gewählten Kanals
führ t das Messgerät s o v i e l Messungen durch und nimmt davon den Mitte lwert

4 . Property BridgeType (ByVal Channel As Long) As Long
enthä l t den Messbrücketyp (e ine I n t e g e r z a h l zwischen 0−10) des gewählten Kanals
0 − Vie r t e lb rücke
1 − Halbbrücke , DMS in benachbarten Brückenzweigen
2 − Halbbrücke , DMS in gegenüber l i e g enden Brückenzweigen
3 − Halbbrücke , DMS in benachbarten Brückenzweigen , shear c o n f i g u r a t i o n
4 − Halbbrücke , 1 DMS in Hauptrichtung und 1 DMS in Richtung Poisson−Dehnung
5 − Vollbrücke , 4 ak t i ve DMS
6 − Vollbrücke , 4 ak t i ve DMS, shear c o n f i g u r a t i o n
7 − Vollbrücke , 2 Poisson−DMS in gegenüber l i e g enden Brückenzweigen
8 − Vollbrücke , 2 Poisson−DMS in benachbarten Brückenzweigen
9 − U n d e f i n i e r t e Vol lbrücke
10 − U n d e f i n i e r t e Halb− oder V i e r t e l b rücke

5 . Property ChannelActive (ByVal Channel As Long) As Boolean
en thä l t den Status des gewählten Kanals ,
kann abge f rag t und auf t rue oder f a l s e g e s e t z t werden .

6 . Property ChannelLabel (ByVal Channel As Long) As St r ing
en thä l t den Namen des gewählten Kanals

7 . Property CurrentReading (ByVal Channel As Long) As Variant
Schre ibge s chütz t
en thä l t den a k t u e l l e n Messwert des gewählten Kanals

39

A. Eigenschaften und Methoden von VMMP3Control.dll

8 . Property DeviceOpen As Boolean
en thä l t den Zustand des angesch lo s senen Geräts , muss vor dem Z u g r i f f auf
andere E igensch f t en auf t rue g e s e t z t werden

9 . Property EngUnits (ByVal Channel As Long) As St r ing
en thä l t d i e Engineer ing−Einhe i ten des gewählten Kanals , Max . 4 Zeichen

10 . Property Ful lSca le InEngUnits (ByVal Channel As Long) As Variant
en thä l t den f u l l −s c a l e Wert des gewählten Kanals , in Engineer ing−Einhe i ten

11 . roper ty FullScaleInmVPerV (ByVal Channel As Long) As Variant
en thä l t den f u l l −s c a l e Wert in mV/V des gewählten Kanals

12 . Property GageFactor (ByVal Channel As Long) As Variant
en thä l t den k−Faktor des gewählten Kanals

13 . Property MediaCardOpen As Boolean
en thä l t den Wert true , dann i s t d i e Multimedia−Karte g e ö f f n e t

14 . Property Poi s sonsRat io As Variant
en thä l t den Poissons−Ratio Wert

15 . Property RecordingActive As Boolean
en thä l t den Wert true , dann i s t d i e Aufnahme a k t i v i e r t , sons t d e a k t i v i e r t

16 . Property Record ing Inte rva l (ByVal Channel As Long) As Long
enthä l t das Aufnahme−I n t e r v a l l des gewählten Kanals , in Sekunden

17 . Property RecordingMode As Long
enthä l t e in e der fo lgenden I n t e g e r z a h l e n :
0 − d i e Messdaten n i cht auf der Multimedia−Karte spe i che rn
1 − d i e Messdaten manuell auf der Multimedia−Karte spe i che rn
2 − d i e Messdaten automatisch auf der Multimedia−Karte spe i che rn

18 . Property ScansRecorded As Long
Schre ibgeschützt ,
en thä l t d i e Anzahl der aufgenommenen Scans

19 . Property Ser ia lNo As St r ing
Schre ibgeschützt ,
en thä l t d i e Seriennummer des Messgeräts P3 , im ASCII−Format .

20 . Property ShuntCalEnabled As Boolean
en thä l t den Wert true , dann i s t d i e Shunt−Kal ib r i e rung a k t i v i e r t ,
sons t d e a k t i v i e r t

21 . Property ShuntCalValue (ByVal Channel As Long) As Long
enthä l t d i e Messungsanzahl f ü r d i e Shunt−Kal ib r i e rung des gewählten Kanals

22 . Property VersionNumber As Variant
Schre ibgeschützt ,
en thä l t d i e Versionsnummer der Firmware

23 . Function CloseMMCDataFile () As Boolean
s c h l i e ß t e in e zuvor g e ö f f n e t e Datei auf der Multimedia−Karte .

24 . Function EraseMMC() As Boolean

40

A. Eigenschaften und Methoden von VMMP3Control.dll

l ö s c h t d i e Dateien auf der Multimedia−Karte

25 . Sub GetTime (year As Integer , month As Integer , day As Integer ,
hour As Integer , minute As Integer , second As I n t e g e r)

g ib t Datum und Uhrze i t aus der Echtze i tuhr vom Messgerät P3 zurück

26 . Function OpenMMCDataFile (ByVal Value As St r ing) As Boolean
ö f f n e t d i e ausgewählte Datei auf der Multimedia−Karte

27 . Function RecordOneScan () As Boolean
z e i c h n e t e inen Scan der v i e r Kanäle auf der Multimedia−Karte auf ,
g i b t t rue zurück , f a l l s e s e r f o l g r e i c h i s t

28 . Sub ResetFactoryDefau l t s (ByVal SaveToFlash As Boolean)
s e t z t das Messgerät P3 auf d i e Werkse ins te l lungen zurück und s p e i c h e r t d i e s e
E in s t e l l ungen auf dem inte rnen Flash−Speicher , f a l l s SaveToFlash true i s t

29 . Sub SaveSetup ()
Spe i che r t das a k t u e l l e P3−Setup auf dem inte rnen Flash−Spe i cher

30 . Sub SetTime (ByVal year As Integer , ByVal month As Integer ,
ByVal day As Integer , ByVal hour As Integer ,
ByVal minute As Integer , ByVal second As I n t e g e r)

l e g t das Datum und d i e Uhrze i t f ü r das Messgerät P3 f e s t

31 . Function StartFirmwareUpgrade () As Boolean
s t a r t e t den Firmware−Upgrade−Prozess

41

B. Funktionen von USBM3X32.DLL und
Testprogramm

B.1. USBM3X32.DLL-Funktionen
Die für diese Arbeit relevante Funktionen sind im folgenden aufgelistet. Die Auflistung
aller von der USBMotion3XII-Karte zur Verfügung gestellten Funktionen und aller mög-
lichen Rückgabewerte dieser Funktionen befindet sich in [2].

1. DWORD USBMCCreate(HWND hWnd, unsigned char EventsWait, PCHAR IDString);

hWnd: das Handle der aufrufenden Anwendung.

EventsWait: 0 oder 1

EventsWait=0: Für Lesen/Schreiben-Funktionen soll die Anwendung auf die Daten
aus USB-Karte warten

EventsWait=1: Windows Messages sollen in der Anwendung zum Einsatz kommen

IDString: die vom Benutzer definierte Windows message ID

Aufrufkonvention: stdcall

Beschreibung: Der Rückgabewert ist null, falls der Aufruf dieser Funktion fehlschlägt.
Sonst ist der Rückgabewert eine Message-ID im Bereich von 0xC000 bis 0xFFFF.
Beim Start der Anwendung muss diese Funktion aufgerufen werden, damit die Ob-
jekte und Klassen in der DLL erstellt werden.

2. unsigned char USBMCDestroy();

Aufrufkonvention: stdcall

Beschreibung: Beim Beenden der Anwendung muss diese Funktion aufgerufen werden,
damit die Ressourcen wieder freigegeben werden.

3. unsigned char USBMCinit(unsigned long& PData, unsigned long& PIICData,
unsigned long& PIICSCN);

PData: ein zeiger, der auf die Daten zeigt, die vom Schrittmotor-Controller gelesen
wurden.

PIICData: ein zeiger, der auf die Daten zeigt, die von den I2C-Geräten gelesen wurden.

42

B. Funktionen von USBM3X32.DLL und Testprogramm

PIICSCN: ein zeiger, der auf ein Array zeigt, das die Informationen über alle verfügbaren
I2C-Geräte auf dem Bus enthält.

Aufrufkonvention: stdcall

Beschreibung: Nachdem die Funktion USBMCCreate erfolgreich ausgeführt wurde, muss
diese Funktion aufgerufen werden. Der Rückgabewert ist ungleich Null, falls der
Aufruf dieser Funktion fehlschlägt.

4. unsigned char SetXtarget(unsigned char Motor, long xtarg,
unsigned char& Status);

Motor: die Nummer des Schrittmotors (0, 1 oder 2)

xtarg: die Zielposition des Schrittmotors

Status: gibt den Status aller Schrittmotoren zurück.

Aufrufkonvention: stdcall

Beschreibung: Diese Funktion schreibt den Wert von xtarg ins Zielregister. Die Ziel-
position ist angegeben in Einheiten von Vollschritten bzw. Mikroschritten. Die
Einheit ist abhängig von der Einstellung der Mikroschrittauflösung. Diese Funk-
tion kann jede Zeit aufgerufen werden, auch während die Zielposition angefahren
wird.

5. unsigned char SetXYZtarget(unsigned char Motor, long xtarg, long ytarg,
long ztarg, unsigned char& Status);

Motor: eine Nummer zwischen 0 bis 7

xtarg, ytarg, ztarg: die Zielpositionen der Schrittmotoren 0, 1, 2

Status: gibt den Status aller Schrittmotoren zurück.

Aufrufkonvention: stdcall

Der Wert von Motor wird bestimmt durch die Umrechnung eine 3-Bit-Binärzahl in
eine Dezimalzahl:
Bit0 = 1/0 -> Die neue Zielposition des Schrittmotors 0 wird angenommen/nicht
angenommen.
Bit1 = 1/0 -> Die neue Zielposition des Schrittmotors 1 wird angenommen/nicht
angenommen.
Bit2 = 1/0 -> Die neue Zielposition des Schrittmotors 2 wird angenommen/nicht
angenommen.

6. unsigned char SetVmax(unsigned char Motor, unsigned short Vmax,
unsigned char& Status);

43

B. Funktionen von USBM3X32.DLL und Testprogramm

Motor: die Nummer des Schrittmotors (0, 1 oder 2)

Vmax: die maximale Geschwindigkeit (Schritte/Sekunde)

Status: gibt den Status aller Schrittmotoren zurück.

Aufrufkonvention: stdcall

Beschreibung: Diese Funktion legt die maximale Motorgeschwindigkeit fest. Der abso-
lute Wert der Geschwindigkeit wird diese Grenze nicht überschreiten, außer wenn
der Wert von Vmax während der Bewegung auf einen Wert unterhalb der aktuellen
Geschwindigkeit gesetzt wird.

7. unsigned char SetAmax(unsigned char Motor, unsigned short Vmax,
unsigned char& Status);

Motor: die Nummer des Schrittmotors (0, 1 oder 2)

Amax: die maximale Beschleunigung (Schritte/Sekunde/Sekunde)

Status: gibt den Status aller Schrittmotoren zurück.

Aufrufkonvention: stdcall

Beschreibung: Diese Funktion legt die maximale Beschleunigung des Schrittmotors
fest. Amax während der Bewegung des Schrittmotors auf Null zu setzen, wird dazu
führen, dass der Schrittmotor nicht gestoppt wird, da seine Geschwindigkeit nicht
mehr verändert werden kann.

8. unsigned char GetXtarget(unsigned char Motor, unsigned char& Status,
long& xtarg);

Beschreibung: Diese Funktion gibt die Zielposition des Schrittmotors zurück.

9. unsigned char GetVmax(unsigned char Motor, unsigned char& Status,
unsigned short& Vmax);

Beschreibung: Diese Funktion gibt die maximale Geschwindigkeit des Schrittmotors
zurück.

10. unsigned char GetAmax(unsigned char Motor, unsigned char& Status,
unsigned short& Amax);

Beschreibung: Diese Funktion gibt die maximale Beschleunigung des Schrittmotors
zurück.

44

B. Funktionen von USBM3X32.DLL und Testprogramm

11. unsigned char SetMode(unsigned char Motor, unsigned char rMode,
unsigned char& Status);

Motor: die Nummer des Schrittmotors (0, 1 oder 2)

rMode: die Nummer der Betriebsarten RAMPMODE (0x00), SOFTMODE (0x01),
VELOCITYMODE (0x02) und HOLDMODE (0x03)

Status: gibt den Status aller Schrittmotoren zurück.

Aufrufkonvention: stdcall

Beschreibung: Die Betriebsart RAMPMODE ist für Positionierungsaufgaben vorgese-
hen. Der Schrittmotorcontroller wird aufgrund der aktuellen Zielposition ein tra-
pezförmiges Geschwindigkeitsprofil berechnen und dann den Schrittmotor dement-
sprechend steuern.
Die Betriebsart SOFTMODE ist der RAMPMODE ähnlich, außer dass die Ziel-
position mit exponentiell reduzierter Geschwindigkeit angefahren wird.
Die Betriebsart VELOCITYMODE ist für die Anwendungen geeignet, bei denen
Schrittmotoren mit konstanter Geschwindigkeit laufen müssen. Die Positionierung
muss dabei nicht speziell betrachtet werden.
In der Betriebsart HOLDMODE wird die Zielgeschwindigkeit direkt vom Benut-
zer festgelegt. Der Schrittmotorcontroller ignoriert die Geschwindigkeits- und Be-
schleunigungsbegrenzung, um diese zu erreichen.

12. unsigned char SetMicroSteps(unsigned char Motor, unsigned char mStep,
unsigned char& Status);

Motor: die Nummer des Schrittmotors (0, 1 oder 2)

mStep: eine Nummer zwischen 0 und 6

Status: gibt den Status aller Schrittmotoren zurück.

Aufrufkonvention: stdcall

Beschreibung: Mit Hilfe dieser Funktion wird die Schrittauflösung des Schrittmotors
festgelegt. Hat z.B. ein Schrittmotor n Vollschritte pro Umdrehung und eine Spin-
delsteigung von 1 mm, so wird die Schrittauflösung durch 1

n·2mStep berechnet. Die
Schrittauflösung ist 1

n mm/Vollschritt, falls mStep die Nummer 0 ist. Die Schrit-
tauflösung ist 1

64·n mm/Mikroschritt, falls mStep die Nummer 6 ist.

13. unsigned char GetMode(unsigned char Motor, unsigned char& rMode,
unsigned char& Status);

rMode: gibt die eingestellte Betriebsart zurück.

45

B. Funktionen von USBM3X32.DLL und Testprogramm

14. unsigned char GetMicroSteps(unsigned char Motor, unsigned char& mStep,
unsigned char& Status);

mStep: gibt die eingestellte Mikroschrittauflösung zurück.

Die Rückgabewerte dieser Funktionen sind u.a. folgende:

SUCCESS (0x00): Eine Lesen/Schreiben-Funktion wurde erfolgreich ausgeführt. Eine
Funktion gibt diesen Wert zurück, falls der Parameter EventsWait von der Funk-
tion USBMCCreate beim Aufruf auf 0 gesetzt wurde.

TX_SUCCESS (0x01): Eine Lesen/Schreiben-Funktion wurde erfolgreich an ein USB-
Gerät geschickt. Eine Funktion gibt diesen Wert zurück, falls der EventsWait von
der Funktion USBMCCreate beim Aufruf auf 1 gesetzt wurde.

DEVICE_BUSY (0x03): Das USB-Gerät ist noch nicht mit der vorher aufgerufenen
Funktion fertig.

DEV_NOT_ASSIGNED (0x05): Eine Funktion gibt diesen Wert zurück, falls keine USB-
Geräte verfügbar sind oder kein USB-Gerät ausgewählt wurde.

B.2. Testprogramm
Das folgende Testprogramm soll zeigen, wie man diese DLL in einer Visual C++ Console-
Anwendung einsetzen kann. Bei dieser DLL handelt sich um eineWin32 API-Anwendung.

#inc lude " s tda fx . h "
#inc lude <windows . h>

us ing namespace System ;

// D e f i n i t i o n des Types der DLL−Funktionen , d i e verwendet werden s o l l e n
typede f DWORD (__stdcal l ∗LPUSBMCCREATE) (HWND, unsigned char , S t r ing ^) ;
typede f unsigned char (__stdcal l ∗LPUSBMCDESTROY) () ;
typede f unsigned char (__stdcal l ∗LPUSBMCINIT) (unsigned long &, unsigned long &,

unsigned long &);
typede f unsigned char (__stdcal l ∗LPSETXTARGET) (unsigned char ,

long , unsigned char &);
typede f unsigned char (__stdcal l ∗LPGETXTARGET) (unsigned char ,

unsigned char &, long &);
typede f unsigned char (__stdcal l ∗LPSETVMAX) (unsigned char , unsigned short ,

unsigned char &);

i n t main (array<System : : S t r ing ^ > ^ args)
{

HINSTANCE husbm3x32Dll ;
LPUSBMCCREATE lpUSBMCCreate ;
LPUSBMCDESTROY lpUSBMCDestroy ;
LPUSBMCINIT lpUSBMCInit ;
LPSETXTARGET lpSetXtarget ;

46

B. Funktionen von USBM3X32.DLL und Testprogramm

LPGETXTARGET lpGetXtarget ;
LPSETVMAX lpSetVmax ;

S t r ing ^ sz IDStr ing = "MCControl_MyApp_MsgID " ;
unsigned i n t uiPrivateMsg ;
unsigned long PData ;
unsigned long PIICData ;
unsigned long PIICScan ;

// DLL Datei wird ge laden
husbm3x32Dll = (HINSTANCE) LoadLibrary (L"USBM3x32 . d l l ") ;
i f (husbm3x32Dll) Console : : WriteLine (L"DLL wurde e r f o l g r e i c h ge laden ") ;

// Die Einsprungadressen werden abge f rag t
lpUSBMCCreate =(LPUSBMCCREATE) GetProcAddress (husbm3x32Dll , "USBMCCreate ") ;
lpUSBMCDestroy =(LPUSBMCDESTROY) GetProcAddress (husbm3x32Dll , " USBMCDestroy ") ;
lpUSBMCInit = (LPUSBMCINIT) GetProcAddress (husbm3x32Dll , "USBMCinit ") ;
lpSetXtarget = (LPSETXTARGET) GetProcAddress (husbm3x32Dll , " SetXtarget ") ;
lpGetXtarget = (LPGETXTARGET) GetProcAddress (husbm3x32Dll , " GetXtarget ") ;
lpSetVmax = (LPSETVMAX) GetProcAddress (husbm3x32Dll , " SetVmax ") ;

// Es s o l l g eprü f t werden , ob j e w e i l i g e Einsprungadresse n i cht Nul l i s t , z .B.
// i f (lpUSBMCCreate) Console : : WriteLine (" lpUSBMCCreate−Einsprungadresse ok ") ;

// Die Objekte und Klassen in der DLL werden e r s t e l l t und i n i t i a l i s i e r t
// Der Rückgabewert i s t nu l l , f a l l s der USBMCCreate−Aufruf f e h l s c h l ä g t
// Der Rückgabewert i s t nu l l , f a l l s der USBMCInit−Aufruf e r f o l g r e i c h i s t
uiPrivateMsg = lpUSBMCCreate (0 , 0 , s z IDStr ing) ;
i f (uiPrivateMsg > 0)
{

i f (lpUSBMCInit (PData , PIICData , PIICScan) == 0)
{

Console : : WriteLine (L"DLL wurde e r f o l g r e i c h i n i t i a l i s i e r t ! ") ;
} e l s e Console : : WriteLine (L"DLL kann n i c t i n i t i a l i s i e r t werden ! ") ;

} e l s e Console : : WriteLine (L"DLL kann n i c t i n i t i a l i s i e r t werden ! ") ;

long lXtarge t ;
unsigned shor t usVmax ;
unsigned char uc s ta tus ;
unsigned char ucfeedback ;

Console : : Write (L" Die Z i e l p o s i t i o n von Motor 0 e ingeben : ") ;
lXtarge t = Convert : : ToInt64 (Console : : ReadLine ()) ;
ucfeedback = lpSetXtarget (0 , lXtarget , uc s ta tus) ;

// ucfeedback = 0 , f a l l s der SetXtarget−Aufruf f ü r Motor 0 e r f o l g r e i c h i s t
switch (ucfeedback)
{

case 0 : Console : : WriteLine (L"SUCCESS ") ;
break ;

case 1 : Console : : WriteLine (L"TRANSMISSION SUCCESSFULL ") ;
break ;

case 3 : Console : : WriteLine (" Device i s Busy ") ;
break ;

case 5 : Console : : WriteLine ("ERROR: USB Device not a s s i gned ") ;
break ;

d e f a u l t : Console : : WriteLine (L " ? ? ") ;
}

47

B. Funktionen von USBM3X32.DLL und Testprogramm

ucfeedback = lpGetXtarget (0 , ucstatus , lXtarge t) ;
i f (ucfeedback == 0)
{

Console : : WriteLine (" Die Z i e l P o s i t i o n von Motor 0 : " + lXtarge t) ;
} e l s e Console : : WriteLine (" GetXtarget−f eedback : " + ucfeedback) ;

Console : : Write (L" Die max . Geschwindigke i t von Motor 0 e ingeben : ") ;
usVmax = Convert : : ToInt32 (Console : : ReadLine ()) ;
ucfeedback = lpSetVmax (0 ,usVmax , uc s ta tus) ;
Console : : WriteLine (" SetVmax−f eedback : " + ucfeedback) ;

// Die Ressourcen werden wieder f r e i g e g e b e n
lpUSBMCDestroy () ;
// Die DLL−Datei wieder ent laden
FreeLibrary ((HMODULE) husbm3x32Dll) ;

Console : : ReadLine () ;
r e turn 0 ;

}

48

C. Quellext vom Anwendungsprogramm
Messdateneinlesen und
Schrittmotorsteuern

C.1. USBMotion3x.h

#pragma once
#inc lude <windows . h>

#pragma unmanaged
// D e f i n i t i o n des Types der DLL−Funktion , d i e verwendet werden s o l l
typede f DWORD (__stdcal l ∗LPUSBMCCREATE) (HWND, unsigned char , char ∗) ;
typede f unsigned char (__stdcal l ∗LPUSBMCDESTROY) () ;
typede f unsigned char (__stdcal l ∗LPUSBMCINIT) (unsigned long &, unsigned long &,

unsigned long &);
typede f unsigned char (__stdcal l ∗LPDEVICECOUNT) () ;
typede f unsigned char (__stdcal l ∗LPSETXTARGET) (unsigned char , long ,

unsigned char &);
typede f unsigned char (__stdcal l ∗LPGETXTARGET) (unsigned char ,

unsigned char &, long &);
typede f unsigned char (__stdcal l ∗LPSETVMAX) (unsigned char , unsigned short ,

unsigned char &);
typede f unsigned char (__stdcal l ∗LPSETXYZTARGET) (unsigned char , long , long ,

long , unsigned char &);

// Die Klasse USBMotion3x f a s s t d i e Methoden zur Steuerung
// des Schr i t tmotor s zusammen
c l a s s USBMotion3x
{

HINSTANCE husbm3x32Dll ;
LPUSBMCCREATE lpUSBMCCreate ;
LPUSBMCINIT lpUSBMCInit ;
LPUSBMCDESTROY lpUSBMCDestroy ;
LPSETXTARGET lpSetXtarget ;
LPSETVMAX lpSetVmax ;
LPSETXYZTARGET lpSetXYZtarget ;
LPGETXTARGET lpGetXtarget ;

unsigned char uc s ta tus ;
unsigned char ucfeedback ;
unsigned i n t uiPrivateMsg ;
unsigned long PData ;
unsigned long PIICData ;
unsigned long PIICScan ;

pub l i c :
USBMotion3x (void) ;
~USBMotion3x (void) ;

49

C. Quellext vom Anwendungsprogramm Messdateneinlesen und Schrittmotorsteuern

i n t SchrittmotorDLLInit () ;
i n t SchrittmotorDLLEntladen () ;
i n t SetXtarget (unsigned char motorIndex , long lXtarge t) ;
i n t SetXYZtarget (unsigned char motorIndex , long lXtarget , long lYtarget ,

long l Z t a r g e t) ;
long GetXtarget (unsigned char motorIndex) ;
i n t SetVmax(unsigned char motorIndex , unsigned shor t usVmax) ;

} ;

#pragma managed
// Die Klasse ManUSBMotion3x i s t d i e Wrapper−Klasse der n i cht
// verwa l te ten Klasse USBMotion3x
pub l i c r e f c l a s s ManUSBMotion3x
{

USBMotion3x∗ UnUSBMotion3x ;

pub l i c :
ManUSBMotion3x(void) ;

p ro tec ted :
~ManUSBMotion3x(void) ;

pub l i c :
i n t managed_SchrittmotorDLLInit () ;
i n t managed_SchrittmotorDLLEntladen () ;
i n t managed_SetXtarget (unsigned char motorIndex , long lXtarge t) ;
i n t managed_SetXYZtarget (unsigned char motorIndex , long lXtarget ,

long lYtarget , long l Z t a r g e t) ;
long managed_GetXtarget (unsigned char motorIndex) ;
i n t managed_SetVmax(unsigned char motorIndex , unsigned shor t usVmax) ;

} ;

C.2. USBMotion3x.cpp

#inc lude " StdAfx . h "
#inc lude " USBMotion3x . h "

USBMotion3x : : USBMotion3x (void)
{
}

USBMotion3x : : ~ USBMotion3x (void)
{
}

i n t USBMotion3x : : Schr ittmotorDLLInit ()
{

// DLL Datei laden
husbm3x32Dll = (HINSTANCE) LoadLibrary (L"USBM3x32 . d l l ") ;
// Die Einsprungadresse abfragen
lpUSBMCCreate =(LPUSBMCCREATE) GetProcAddress (husbm3x32Dll , "USBMCCreate ") ;
lpUSBMCInit =(LPUSBMCINIT) GetProcAddress (husbm3x32Dll , "USBMCinit ") ;
lpUSBMCDestroy =(LPUSBMCDESTROY) GetProcAddress (husbm3x32Dll , "USBMCDestroy ") ;
lpSetXtarget =(LPSETXTARGET) GetProcAddress (husbm3x32Dll , " SetXtarget ") ;
lpSetVmax =(LPSETVMAX) GetProcAddress (husbm3x32Dll , " SetVmax ") ;
lpSetXYZtarget =(LPSETXYZTARGET) GetProcAddress (husbm3x32Dll , " SetXYZtarget ") ;
lpGetXtarget =(LPGETXTARGET) GetProcAddress (husbm3x32Dll , " GetXtarget ") ;

50

C. Quellext vom Anwendungsprogramm Messdateneinlesen und Schrittmotorsteuern

uiPrivateMsg = lpUSBMCCreate (0 , 0 , " MCControl_MyApp_MsgID ") ;
i f (uiPrivateMsg > 0)
{

i f (lpUSBMCInit (PData , PIICData , PIICScan) == 0)
{

return 300 ; // "DLL−I n i t e r f o l g r e i c h ! " ;
} e l s e re turn 200 ; // " can not i n i t i a l i z e DLL−I n i t ?" ;

} e l s e re turn 100 ; // " can not i n i t i a l i z e DLL−Curn r e a t e " ;
}

i n t USBMotion3x : : SchrittmotorDLLEntladen ()
{

lpUSBMCDestroy () ;
// Die DLL−Datei wieder ent laden
FreeLibrary ((HMODULE) husbm3x32Dll) ;
r e turn 400 ;

}

i n t USBMotion3x : : SetXtarget (unsigned char motorIndex , long lXtarge t)
{

//(ucfeedback) 0 : SUCCESS; 1 : TRANSMISSION SUCCESSFULL;
// 3 : Device i s Busy ; 5 : USB Device not a s s i gned !
re turn ucfeedback = lpSetXtarget (motorIndex , lXtarget , uc s ta tus) ;

}

i n t USBMotion3x : : SetXYZtarget (unsigned char motorIndex , long lXtarget ,
long lYtarget , long l Z t a r g e t)

{
re turn ucfeedback = lpSetXYZtarget (motorIndex , lXtarget , lYtarget ,

lZ ta rge t , uc s ta tus) ;
}

long USBMotion3x : : GetXtarget (unsigned char motorIndex)
{

long lXtarge t ;

ucfeedback = lpGetXtarget (motorIndex , ucstatus , lXtarge t) ;
i f (ucfeedback == 0)
{

return lXtarge t ;
} e l s e re turn LONG_MAX;

}

i n t USBMotion3x : : SetVmax(unsigned char motorIndex , unsigned shor t usVmax)
{

return ucfeedback = lpSetVmax (motorIndex , usVmax , uc s ta tus) ;
}

ManUSBMotion3x : : ManUSBMotion3x(void)
{

UnUSBMotion3x = new USBMotion3x () ;
}

ManUSBMotion3x : : ~ ManUSBMotion3x(void)
{

d e l e t e UnUSBMotion3x ;

51

C. Quellext vom Anwendungsprogramm Messdateneinlesen und Schrittmotorsteuern

UnUSBMotion3x = NULL;
}

i n t ManUSBMotion3x : : managed_SchrittmotorDLLInit ()
{

re turn UnUSBMotion3x−>SchrittmotorDLLInit () ;
}

i n t ManUSBMotion3x : : managed_SchrittmotorDLLEntladen ()
{

re turn UnUSBMotion3x−>SchrittmotorDLLEntladen () ;
}

i n t ManUSBMotion3x : : managed_SetXtarget (unsigned char motorIndex , long lXtarge t)
{

re turn UnUSBMotion3x−>SetXtarget (motorIndex , lXtarge t) ;
}

i n t ManUSBMotion3x : : managed_SetXYZtarget (unsigned char motorIndex , long lXtarget ,
long lYtarget , long l Z t a r g e t)

{
re turn UnUSBMotion3x−>SetXYZtarget (motorIndex , lXtarget , lYtarget , l Z t a r g e t) ;

}

long ManUSBMotion3x : : managed_GetXtarget (unsigned char motorIndex)
{

re turn UnUSBMotion3x−>GetXtarget (motorIndex) ;
}

i n t ManUSBMotion3x : : managed_SetVmax(unsigned char motorIndex ,
unsigned shor t usVmax)

{
return UnUSBMotion3x−>SetVmax(motorIndex , usVmax) ;

}

C.3. Form1.h

#pragma once
#inc lude " USBMotion3x . h "

namespace VP3undUSBMotion3x {

us ing namespace System ;
us ing namespace System : : ComponentModel ;
us ing namespace System : : C o l l e c t i o n s ;
us ing namespace System : : Windows : : Forms ;
us ing namespace System : : Data ;
us ing namespace System : : Drawing ;
us ing namespace System : : IO ;
us ing namespace System : : C o l l e c t i o n s : : Generic ;
us ing namespace System : : Threading ;

// Zusammenfassung f ü r Form1
pub l i c r e f c l a s s Form1 : pub l i c System : : Windows : : Forms : : Form
{

VMMP3Control : : VMMP3Controller ^NewVP3;

52

C. Quellext vom Anwendungsprogramm Messdateneinlesen und Schrittmotorsteuern

i n t aktAnzahl ;
StreamWriter ^ date i1 , ^ date i 2 ;
array<List <double> >̂ ^aVierKanal ;
bool bWiederMalUnverändern ;

ManUSBMotion3x ^NewMotion3x ;
array<int > ^xyzLengthAlt ;
array<List <int > >̂ ^aKreisbahnDaten ;
ThreadStart ^ tsKre isbahn ;
Thread ^threadKreisbahn ;

pub l i c :
Form1(void)
{

In i t i a l i z eComponent () ;
date ienAnlegen () ;

th i s −>NewVP3 = gcnew VMMP3Control : : VMMP3Controller () ;
th i s −>aktAnzahl = 0 ;
th i s −>aVierKanal = gcnew array<List <double >^>(4);
bWiederMalUnverändern = f a l s e ;

NewMotion3x = gcnew ManUSBMotion3x () ;
th i s −>xyzLengthAlt = gcnew array<int >(4){0 ,0 ,0 ,0} ;
th i s −>aKreisbahnDaten = gcnew array<List <int >^>(2){gcnew List <int >() ,

gcnew List <int >()};
th i s −>tsKre isbahn = gcnew ThreadStart (th i s , &Form1 : : kre i sbahnFräsen) ;
S c h r i t t m o t o r S t e u e r k a r t e I n i t () ;

}

protec ted :
// Verwendete Ressourcen b e r e i n i g e n .
~Form1 ()
{

i f (components)
{

d e l e t e components ;
}
NewMotion3x−>managed_SchrittmotorDLLEntladen () ;

}

protec ted :
p r i v a t e : System : : Windows : : Forms : : Button^ button1 ;
p r i v a t e : System : : Windows : : Forms : : Button^ button2 ;
p r i v a t e : System : : Windows : : Forms : : Button^ button3 ;

p r i v a t e : System : : Windows : : Forms : : Label^ l a b e l 1 ;
p r i v a t e : System : : Windows : : Forms : : Label^ l a b e l 2 ;
p r i v a t e : System : : Windows : : Forms : : Label^ l a b e l 3 ;
p r i v a t e : System : : Windows : : Forms : : Label^ l a b e l 4 ;
p r i v a t e : System : : Windows : : Forms : : Label^ l a b e l 5 ;
p r i v a t e : System : : Windows : : Forms : : Label^ l a b e l 7 ;

p r i v a t e : System : : Windows : : Forms : : TextBox^ textBox1 ;
p r i v a t e : System : : Windows : : Forms : : TextBox^ textBox2 ;
p r i v a t e : System : : Windows : : Forms : : TextBox^ textBox3 ;
p r i v a t e : System : : Windows : : Forms : : TextBox^ textBox4 ;
p r i v a t e : System : : Windows : : Forms : : TextBox^ textBox6 ;

53

C. Quellext vom Anwendungsprogramm Messdateneinlesen und Schrittmotorsteuern

p r i v a t e : System : : ComponentModel : : IConta iner ^ components ;
p r i v a t e : System : : Windows : : Forms : : Timer^ t imer1 ;

#pragma reg i on Windows Form Des igner generated code

// E r f o r d e r l i c h e Methode f ü r d i e Des ignerunter s tützung .
// Der I n h a l t der Methode dar f n i cht mit dem Code−Editor geändert werden .

void In i t i a l i z eComponent (void)
{

th i s −>components = (gcnew System : : ComponentModel : : Container ()) ;
th i s −>button1 = (gcnew System : : Windows : : Forms : : Button ()) ;
th i s −>button2 = (gcnew System : : Windows : : Forms : : Button ()) ;
th i s −>button3 = (gcnew System : : Windows : : Forms : : Button ()) ;
th i s −>textBox1 = (gcnew System : : Windows : : Forms : : TextBox ()) ;
th i s −>l a b e l 1 = (gcnew System : : Windows : : Forms : : Label ()) ;
th i s −>textBox2 = (gcnew System : : Windows : : Forms : : TextBox ()) ;
th i s −>l a b e l 2 = (gcnew System : : Windows : : Forms : : Label ()) ;
th i s −>l a b e l 3 = (gcnew System : : Windows : : Forms : : Label ()) ;
th i s −>textBox3 = (gcnew System : : Windows : : Forms : : TextBox ()) ;
th i s −>l a b e l 4 = (gcnew System : : Windows : : Forms : : Label ()) ;
th i s −>l a b e l 5 = (gcnew System : : Windows : : Forms : : Label ()) ;
th i s −>textBox4 = (gcnew System : : Windows : : Forms : : TextBox ()) ;
th i s −>textBox6 = (gcnew System : : Windows : : Forms : : TextBox ()) ;
th i s −>l a b e l 7 = (gcnew System : : Windows : : Forms : : Label ()) ;
th i s −>timer1 = (gcnew System : : Windows : : Forms : : Timer (th i s −>components)) ;
th i s −>SuspendLayout () ;

// button1

th i s −>button1−>Locat ion = System : : Drawing : : Point (44 , 5 7) ;
th i s −>button1−>Name = L" button1 " ;
th i s −>button1−>Siz e = System : : Drawing : : S i z e (75 , 2 3) ;
th i s −>button1−>TabIndex = 0 ;
th i s −>button1−>Text = L" Starten " ;
th i s −>button1−>UseVisualStyleBackColor = true ;
th i s −>button1−>Cl ick += gcnew System : : EventHandler (th i s ,

&Form1 : : button1_Click) ;

// button2

th i s −>button2−>Locat ion = System : : Drawing : : Point (44 , 9 6) ;
th i s −>button2−>Name = L" button2 " ;
th i s −>button2−>Siz e = System : : Drawing : : S i z e (75 , 2 3) ;
th i s −>button2−>TabIndex = 1 ;
th i s −>button2−>Text = L" Beenden " ;
th i s −>button2−>UseVisualStyleBackColor = true ;
th i s −>button2−>Cl ick += gcnew System : : EventHandler (th i s ,

&Form1 : : button2_Click) ;

// button3

th i s −>button3−>Locat ion = System : : Drawing : : Point (44 , 1 9 3) ;
th i s −>button3−>Name = L" button3 " ;
th i s −>button3−>Siz e = System : : Drawing : : S i z e (75 , 2 3) ;
th i s −>button3−>TabIndex = 2 ;
th i s −>button3−>Text = L" Homing " ;

54

C. Quellext vom Anwendungsprogramm Messdateneinlesen und Schrittmotorsteuern

th i s −>button3−>UseVisualStyleBackColor = true ;
th i s −>button3−>Cl ick += gcnew System : : EventHandler (th i s ,

&Form1 : : button3_Click) ;

// textBox1

th i s −>textBox1−>Anchor = System : : Windows : : Forms : : AnchorStyles : : None ;
th i s −>textBox1−>BackColor = System : : Drawing : : SystemColors : : ButtonHighl ight ;
th i s −>textBox1−>Font = (gcnew System : : Drawing : : Font (L" Microso f t YaHei " , 12 ,

System : : Drawing : : FontStyle : : Regular ,
System : : Drawing : : GraphicsUnit : : Point ,
s t a t i c_cas t <System : : Byte >(0))) ;

th i s −>textBox1−>Locat ion = System : : Drawing : : Point (201 , 0) ;
th i s −>textBox1−>M u l t i l i n e = true ;
th i s −>textBox1−>Name = L" textBox1 " ;
th i s −>textBox1−>ReadOnly = true ;
th i s −>textBox1−>S c r o l l B a r s = System : : Windows : : Forms : : S c r o l l B a r s : : V e r t i c a l ;
th i s −>textBox1−>Siz e = System : : Drawing : : S i z e (685 , 4 1 7) ;
th i s −>textBox1−>TabIndex = 3 ;

// l a b e l 1

th i s −>labe l1 −>AutoSize = true ;
th i s −>labe l1 −>Locat ion = System : : Drawing : : Point (24 , 2 3 3) ;
th i s −>labe l1 −>Name = L" l a b e l 1 " ;
th i s −>labe l1 −>Siz e = System : : Drawing : : S i z e (42 , 1 3) ;
th i s −>labe l1 −>TabIndex = 7 ;
th i s −>labe l1 −>Text = L"X (mm) : " ;

// textBox2

th i s −>textBox2−>Locat ion = System : : Drawing : : Point (27 , 2 4 9) ;
th i s −>textBox2−>M u l t i l i n e = true ;
th i s −>textBox2−>Name = L" textBox2 " ;
th i s −>textBox2−>Siz e = System : : Drawing : : S i z e (100 , 2 1) ;
th i s −>textBox2−>TabIndex = 8 ;
th i s −>textBox2−>KeyPress +=

gcnew System : : Windows : : Forms : : KeyPressEventHandler
(th i s , &Form1 : : textBox2_KeyPress) ;

// l a b e l 2

th i s −>labe l2 −>AutoSize = true ;
th i s −>labe l2 −>Font = (gcnew System : : Drawing : : Font (L" Microso f t Sans S e r i f " ,

9 , System : : Drawing : : FontStyle : : Regular ,
System : : Drawing : : GraphicsUnit : : Point ,
s t a t i c_cas t <System : : Byte >(0))) ;

th i s −>labe l2 −>Locat ion = System : : Drawing : : Point (23 , 2 9) ;
th i s −>labe l2 −>Name = L" l a b e l 2 " ;
th i s −>labe l2 −>Siz e = System : : Drawing : : S i z e (119 , 1 5) ;
th i s −>labe l2 −>TabIndex = 9 ;
th i s −>labe l2 −>Text = L" Messdaten E in l e s en " ;

// l a b e l 3

th i s −>labe l3 −>AutoSize = true ;
th i s −>labe l3 −>Font = (gcnew System : : Drawing : : Font (L" Microso f t Sans S e r i f " ,

9 , System : : Drawing : : FontStyle : : Regular ,

55

C. Quellext vom Anwendungsprogramm Messdateneinlesen und Schrittmotorsteuern

System : : Drawing : : GraphicsUnit : : Point ,
s t a t i c_cas t <System : : Byte >(0))) ;

th i s −>labe l3 −>Locat ion = System : : Drawing : : Point (24 , 1 6 1) ;
th i s −>labe l3 −>Name = L" l a b e l 3 " ;
th i s −>labe l3 −>Siz e = System : : Drawing : : S i z e (128 , 1 5) ;
th i s −>labe l3 −>TabIndex = 10 ;
th i s −>labe l3 −>Text = L" Schr i t tmotor s teuerung " ;

// textBox3

th i s −>textBox3−>Locat ion = System : : Drawing : : Point (27 , 2 8 9) ;
th i s −>textBox3−>M u l t i l i n e = true ;
th i s −>textBox3−>Name = L" textBox3 " ;
th i s −>textBox3−>Siz e = System : : Drawing : : S i z e (100 , 2 1) ;
th i s −>textBox3−>TabIndex = 11 ;
th i s −>textBox3−>KeyPress +=

gcnew System : : Windows : : Forms : : KeyPressEventHandler
(th i s , &Form1 : : textBox3_KeyPress) ;

// l a b e l 4

th i s −>labe l4 −>AutoSize = true ;
th i s −>labe l4 −>Locat ion = System : : Drawing : : Point (23 , 2 7 3) ;
th i s −>labe l4 −>Name = L" l a b e l 4 " ;
th i s −>labe l4 −>Siz e = System : : Drawing : : S i z e (42 , 1 3) ;
th i s −>labe l4 −>TabIndex = 14 ;
th i s −>labe l4 −>Text = L"Y (mm) : " ;

// l a b e l 5

th i s −>labe l5 −>AutoSize = true ;
th i s −>labe l5 −>Locat ion = System : : Drawing : : Point (24 , 3 1 3) ;
th i s −>labe l5 −>Name = L" l a b e l 5 " ;
th i s −>labe l5 −>Siz e = System : : Drawing : : S i z e (42 , 1 3) ;
th i s −>labe l5 −>TabIndex = 15 ;
th i s −>labe l5 −>Text = L"Z (mm) : " ;

// textBox4

th i s −>textBox4−>Locat ion = System : : Drawing : : Point (27 , 3 2 9) ;
th i s −>textBox4−>M u l t i l i n e = true ;
th i s −>textBox4−>Name = L" textBox4 " ;
th i s −>textBox4−>Siz e = System : : Drawing : : S i z e (100 , 2 1) ;
th i s −>textBox4−>TabIndex = 17 ;
th i s −>textBox4−>KeyPress +=

gcnew System : : Windows : : Forms : : KeyPressEventHandler
(th i s , &Form1 : : textBox4_KeyPress) ;

// textBox6

th i s −>textBox6−>Locat ion = System : : Drawing : : Point (27 , 3 6 9) ;
th i s −>textBox6−>M u l t i l i n e = true ;
th i s −>textBox6−>Name = L" textBox6 " ;
th i s −>textBox6−>Siz e = System : : Drawing : : S i z e (100 , 2 1) ;
th i s −>textBox6−>TabIndex = 18 ;
th i s −>textBox6−>KeyPress +=

gcnew System : : Windows : : Forms : : KeyPressEventHandler
(th i s , &Form1 : : textBox6_KeyPress) ;

56

C. Quellext vom Anwendungsprogramm Messdateneinlesen und Schrittmotorsteuern

// l a b e l 7

th i s −>labe l7 −>AutoSize = true ;
th i s −>labe l7 −>Locat ion = System : : Drawing : : Point (24 , 3 5 3) ;
th i s −>labe l7 −>Name = L" l a b e l 7 " ;
th i s −>labe l7 −>Siz e = System : : Drawing : : S i z e (136 , 1 3) ;
th i s −>labe l7 −>TabIndex = 19 ;
th i s −>labe l7 −>Text = L" Radius der Kreisbahn (mm) : " ;

// t imer1

th i s −>timer1−>Enabled = true ;
th i s −>timer1−>I n t e r v a l = 1000 ;
th i s −>timer1−>Tick += gcnew System : : EventHandler (th i s ,

&Form1 : : timer1_Tick) ;

// Form1

th i s −>AutoScaleDimensions = System : : Drawing : : SizeF (6 , 1 3) ;
th i s −>AutoScaleMode = System : : Windows : : Forms : : AutoScaleMode : : Font ;
th i s −>C l i e n t S i z e = System : : Drawing : : S i z e (884 , 4 1 7) ;
th i s −>Controls−>Add(th i s −>l a b e l 7) ;
th i s −>Controls−>Add(th i s −>textBox6) ;
th i s −>Controls−>Add(th i s −>textBox4) ;
th i s −>Controls−>Add(th i s −>l a b e l 5) ;
th i s −>Controls−>Add(th i s −>l a b e l 4) ;
th i s −>Controls−>Add(th i s −>textBox3) ;
th i s −>Controls−>Add(th i s −>l a b e l 3) ;
th i s −>Controls−>Add(th i s −>l a b e l 2) ;
th i s −>Controls−>Add(th i s −>textBox2) ;
th i s −>Controls−>Add(th i s −>l a b e l 1) ;
th i s −>Controls−>Add(th i s −>textBox1) ;
th i s −>Controls−>Add(th i s −>button3) ;
th i s −>Controls−>Add(th i s −>button2) ;
th i s −>Controls−>Add(th i s −>button1) ;
th i s −>Name = L"Form1 " ;
th i s −>Text = L" Messdatene in l e sen und Schr i t tmotor s t eue rn " ;
th i s −>ResumeLayout (f a l s e) ;
th i s −>PerformLayout () ;

}
#pragma endreg ion

// zwei Dateien zur Speicherung der Messwerte und der Koordinaten der
// Punkte auf der Kreisbahn anlegen
p r i v a t e : void date ienAnlegen ()
{

th i s −>date i 1 = gcnew StreamWriter (" MessDaten . csv ") ;
th i s −>date i1 −>WriteLine (" Nr . ; Kanal1 ; Kanal2 ; Kanal3 ; Kanal4 ; ") ;
th i s −>date i1 −>Close () ;
th i s −>date i 2 = gcnew StreamWriter (" KreisbahnDaten . txt ") ;
th i s −>date i2 −>WriteLine (" Die (X,Y) der Kreisbahn : ") ;
th i s −>date i2 −>Close () ;

}

// Messwerte von a l l e n Kanälen e i n l e s e n und mit e x i s t i e r t e n v e r g l e i c h e n .
// j e w e i l s e inen Messwert von jedem Kanal in der Datei MessDaten . csv
// spe ichern , wenn s i c h a l l e vorhandenen Messwerte n i cht mehr ändern

57

C. Quellext vom Anwendungsprogramm Messdateneinlesen und Schrittmotorsteuern

p r i v a t e : void messvorgang ()
{

double d D i f f e r e n z = 2 . 0 ;
bool bStatusUnverändern = true ;
f o r (i n t j =0; j <3; j++)
{

aVierKanal [j]−>RemoveAt (0) ;
aVierKanal [j]−>Add(Convert : : ToDouble (th i s −>NewVP3−>CurrentReading [j + 1])) ;
bStatusUnverändern = bStatusUnverändern

&& (Math : : Abs (aVierKanal [j] [0] − aVierKanal [j] [1]) <= d D i f f e r e n z)
&& (Math : : Abs (aVierKanal [j] [0] − aVierKanal [j] [2]) <= d D i f f e r e n z)
&& (Math : : Abs (aVierKanal [j] [1] − aVierKanal [j] [2]) <= d D i f f e r e n z) ;

}
i f (bStatusUnverändern)
{

i f (th i s −>bWiederMalUnverändern == f a l s e)
{

th i s −>aktAnzahl ++;
th i s −>bWiederMalUnverändern = true ;
th i s −>textBox1−>AppendText (" " + aktAnzahl + " . " +

" Kanal1 : " + aVierKanal [0] [0] +
" ; Kanal2 : " + aVierKanal [1] [0] +
" ; Kanal3 : " + aVierKanal [2] [0] +
" ; Kanal4 : " + aVierKanal [3] [0] + "\n ") ;

// t rue : Daten an d i e Datei anfügen
th i s −>date i 1 = gcnew StreamWriter (" MessDaten . csv " , t rue) ;
th i s −>date i1 −>WriteLine (aktAnzahl + " ; " +

aVierKanal [0] [0] + " ; " + aVierKanal [1] [0] + " ; "
+ aVierKanal [2] [0] + " ; " + aVierKanal [3] [0]) ;

th i s −>date i1 −>Close () ;
}

} e l s e th i s −>bWiederMalUnverändern = f a l s e ;
}

// d i e Verbindung zum Messgerät Vishay P3 h e r s t e l l e n
p r i v a t e : System : : Void button1_Click (System : : Object^ sender ,

System : : EventArgs^ e)
{

th i s −>NewVP3−>DeviceOpen = true ;
f o r (i n t i =0; i <4; i++)
{

aVierKanal [i] = gcnew List <double >(3) ;
aVierKanal [i]−>Add (0 . 0) ; aVierKanal [i]−>Add (0 . 0) ; aVierKanal [i]−>Add (0 . 0) ;

}
}

// d i e Verbindung zum Messgerät Vishay P3 lö schen
p r i v a t e : System : : Void button2_Click (System : : Object^ sender ,

System : : EventArgs^ e)
{

th i s −>NewVP3−>DeviceOpen = f a l s e ;
f o r (i n t i =0; i <4; i++)
{

aVierKanal [i]−>Clear () ;
}
th i s −>textBox1−>AppendText (L" Al l e MessDaten wurden in der Datei

MessDaten . csv g e s p e i c h e r t ! \n ") ;

58

C. Quellext vom Anwendungsprogramm Messdateneinlesen und Schrittmotorsteuern

th i s −>button1−>Focus () ;
}

// den Zustand des Hintergrundthreads threadKreisbahn abfragen und
// d i e Methode messvorgang einmal au f ru f en
p r i v a t e : System : : Void timer1_Tick (System : : Object^ sender ,

System : : EventArgs^ e)
{

i f ((aVierKanal [3] != n u l l p t r) && (aVierKanal [3]−>Count == 3))
messvorgang () ;

i f (threadKreisbahn != n u l l p t r)
{

i f (threadKreisbahn−>ThreadState . ToString () == " Stopped ")
{

threadKreisbahn = n u l l p t r ;
th i s −>textBox1−>AppendText (" Die Kreisbahndaten wurden e r f o l g r e i c h

an d i e Steue rkar t e g e s c h i c k t ! \n ") ;
}

}
}

// S c h r i t t m o t o r s t e u e r k a r t e i n i t i a l i s i e r e n
p r i v a t e : void S c h r i t t m o t o r S t e u e r k a r t e I n i t ()
{

i f (NewMotion3x−>managed_SchrittmotorDLLInit () == 300)
{

th i s −>textBox1−>AppendText (" Schr i t tmotorSteue rkar t e wurde
e r f o l g r e i c h i n i t i a l i s i e r t ! \n ") ;

} e l s e th i s −>textBox1−>AppendText (" Schr i t tmotorSteue rkar t e kann n i cht
i n i t i a l i s i e r t werden ! \n ") ;

NewMotion3x−>managed_SetVmax (0 , 1 0 0) ;
NewMotion3x−>managed_SetVmax (1 , 1 0 0) ;
NewMotion3x−>managed_SetVmax (2 , 1 0 0) ;

}

// den Fräser an den Punkt (0 , 0 , 0) p o s i t i o n i e r e n
p r i v a t e : System : : Void button3_Click (System : : Object^ sender ,

System : : EventArgs^ e) // Homing
{

i f (NewMotion3x−>managed_SetXYZtarget (7 , 0 , 0 , 0) != 0)
{

th i s −>textBox1−>AppendText (" USB Device not a s s i gned ! \ n ") ;
} e l s e th i s −>textBox1−>AppendText (" Motor X, Y und Z wurden

zurückge s e t z t ! \n ") ;
}

// motorIndex = 0 : Motor X, 1 : Motor Y, 2 : Motor Z ,
// 3 : Durchmesser der Kreisbahn
// Eingaben von v i e r E ingabe f e lde rn entgegennehmen und in
// Double−Werte konve r t i e r en
p r i v a t e : long xyzDatenEinlesen (S t r ing ^ eingabe , i n t motorIndex)
{

System : : Char motor = motorIndex + 88 ;
i n t l ength = xyzLengthAlt [motorIndex] ;
S t r ing ^ e in = " " + eingabe ;
xyzLengthAlt [motorIndex] = ein−>Length ;

59

C. Quellext vom Anwendungsprogramm Messdateneinlesen und Schrittmotorsteuern

long l S c h r i t t = (Convert : : ToDouble (ein−>Substr ing (l ength + 1))) / 0 . 0 0 5 ;
i f (motorIndex <= 2)
{

th i s −>textBox1−>AppendText (" Eingabe f ü r Motor " + motor . ToString () + " : "
+ ein−>Substr ing (l ength + 1) +
" mm, " + l S c h r i t t + " S c h r i t t e \n ") ;

}
e l s e
{

th i s −>textBox1−>AppendText (" Eingabe f ü r Radius : " +
ein−>Substr ing (l ength + 1) + " mm, "
+ l S c h r i t t + " S c h r i t t e \n ") ;

}
re turn l S c h r i t t ;

}

// X−Koordinate an d i e Steue rkar t e sch i cken
p r i v a t e : System : : Void textBox2_KeyPress (System : : Object^ sender ,

System : : Windows : : Forms : : KeyPressEventArgs^ e)
{

i f (e−>KeyChar == (char)13) // the ENTER key i s pre s sed
{

i f (NewMotion3x−>managed_SetXtarget (0 ,
xyzDatenEinlesen (th i s −>textBox2−>Text , 0)) != 0)

th i s −>textBox1−>AppendText ("USB Device not a s s i gned ! \n ") ;
e l s e
{

long z i e l = NewMotion3x−>managed_GetXtarget (0) ;
i f (z i e l == LONG_MAX) th i s −>textBox1−>AppendText (" ? ! \n \n ") ;
e l s e
{

th i s −>textBox1−>AppendText (" Die Z i e l P o s i t i o n von Motor X: " +
z i e l + "\n ") ;

}
}

}
}

// Y−Koordinate an d i e Steue rkar t e sch i cken
p r i v a t e : System : : Void textBox3_KeyPress (System : : Object^ sender ,

System : : Windows : : Forms : : KeyPressEventArgs^ e)
{

i f (e−>KeyChar == (char)13) // the ENTER key i s pre s sed
{

i f (NewMotion3x−>managed_SetXtarget (1 ,
xyzDatenEinlesen (th i s −>textBox3−>Text , 1)) != 0)

th i s −>textBox1−>AppendText ("USB Device not a s s i gned ! \n ") ;
e l s e
{

long z i e l = NewMotion3x−>managed_GetXtarget (1) ;
i f (z i e l == LONG_MAX) th i s −>textBox1−>AppendText (" ? ! \n \n ") ;
e l s e
{

th i s −>textBox1−>AppendText (" Die Z i e l P o s i t i o n von Motor Y: " +
z i e l + " \n ") ;

}
}

}

60

C. Quellext vom Anwendungsprogramm Messdateneinlesen und Schrittmotorsteuern

}

// Z−Koordinate an d i e Steue rkar t e sch i cken
p r i v a t e : System : : Void textBox4_KeyPress (System : : Object^ sender ,

System : : Windows : : Forms : : KeyPressEventArgs^ e)
{

i f (e−>KeyChar == (char)13) // the ENTER key i s pre s sed
{

i f (NewMotion3x−>managed_SetXtarget (2 ,
xyzDatenEinlesen (th i s −>textBox4−>Text , 2)) != 0)

th i s −>textBox1−>AppendText ("USB Device not a s s i gned ! \n ") ;
e l s e
{

long z i e l = NewMotion3x−>managed_GetXtarget (2) ;
i f (z i e l == LONG_MAX) th i s −>textBox1−>AppendText (" ? ! \n \n ") ;
e l s e
{

th i s −>textBox1−>AppendText (" Die Z i e l P o s i t i o n von Motor Z : " +
z i e l + " \n ") ;

}
}

}
}

// Eingabe fe ld f ü r den Radius der Kreisbahn
// das Hintergrundthread threadKreisbahn s t a r t e n
p r i v a t e : System : : Void textBox6_KeyPress (System : : Object^ sender ,

System : : Windows : : Forms : : KeyPressEventArgs^ e)
{

i f (e−>KeyChar == (char)13) // the ENTER key i s pre s sed
{

i f (textBox4−>CanFocus) textBox4−>Focus () ;
achte lKre i sbahn (xyzDatenEinlesen (th i s −>textBox6−>Text , 3)) ;

i f (threadKreisbahn != n u l l p t r)
{

threadKreisbahn−>Abort () ;
threadKreisbahn = n u l l p t r ;

}

threadKreisbahn = gcnew Thread (tsKre isbahn) ;
threadKreisbahn−>IsBackground = true ;
threadKreisbahn−>Star t () ;

}
}

// wird vom Hintergrundthreads threadKreisbahn au fge ru f en .
// Diese r u f t z u e r s t d i e Methode achte lKre i sbahn auf ,
// l e i t e t d i e anderen Punkte auf der Kreisbahn durch d i e
// Spiege lungen ab , r u f t dann d i e Methode datenSchickenSpe ichern
// immer wieder auf , b i s d i e Koordinaten a l l e r Punkte g e s c h i c k t werden .
p r i v a t e : void kre i sbahnFräsen ()
{

t ry
{

i n t anz = aKreisbahnDaten [0]−>Count ;
array<long> ^xDaten = gcnew array<long >(8∗anz) ;
array<long> ^yDaten = gcnew array<long >(8∗anz) ;

61

C. Quellext vom Anwendungsprogramm Messdateneinlesen und Schrittmotorsteuern

f o r (i n t i =0; i<anz ; i++)
{

xDaten [i] = aKreisbahnDaten [0] [i] ;
yDaten [i] = aKreisbahnDaten [1] [i] ;
xDaten [i+anz] = aKreisbahnDaten [1] [anz−1− i] ;
xDaten [i +2∗anz] = aKreisbahnDaten [1] [i] ;
xDaten [i +3∗anz] = aKreisbahnDaten [0] [anz−1− i] ;
xDaten [i +4∗anz] = −aKreisbahnDaten [0] [i] ;
xDaten [i +5∗anz] = −aKreisbahnDaten [1] [anz−1− i] ;
xDaten [i +6∗anz] = −aKreisbahnDaten [1] [i] ;
xDaten [i +7∗anz] = −aKreisbahnDaten [0] [anz−1− i] ;
yDaten [i+anz] = aKreisbahnDaten [0] [anz−1− i] ;
yDaten [i +2∗anz] = −aKreisbahnDaten [0] [i] ;
yDaten [i +3∗anz] = −aKreisbahnDaten [1] [anz−1− i] ;
yDaten [i +4∗anz] = −aKreisbahnDaten [1] [i] ;
yDaten [i +5∗anz] = −aKreisbahnDaten [0] [anz−1− i] ;
yDaten [i +6∗anz] = aKreisbahnDaten [0] [i] ;
yDaten [i +7∗anz] = aKreisbahnDaten [1] [anz−1− i] ;

}

th i s −>date i 2 = gcnew StreamWriter (" KreisbahnDaten . txt " , t rue) ;

th i s −>datenSchickenSpe ichern (0 , xDaten [0] , 0 , yDaten [0]) ;
S leep (2 0 0 0) ; // warte 2 Sekunden

f o r (i n t i =1; i <8∗anz ; i++)
{

i f ((i != 2∗ anz)&&(i != 4∗ anz)&&(i != 6∗ anz))
{

datenSchickenSpe ichern (xDaten [i −1] , xDaten [i] ,
yDaten [i −1] , yDaten [i]) ;

}
}

}
catch (ThreadAbortException ^)
{
}
f i n a l l y
{

th i s −>date i2 −>Close () ;
aKreisbahnDaten [0]−> Clear () ;
aKreisbahnDaten [1]−> Clear () ;

}
}

// e n t s c h e i d e t nach der a k t u e l l e n und der nächsten Pos i t i on des Fräsers ,
// welche Schr i t tmotoren in Bewegung g e s e t z t werden s o l l e n
p r i v a t e : void datenSchickenSpe ichern (long x1 , long x2 , long y1 , long y2)
{

i f (y2 == y1)
{

th i s −>datenSchickenSpe ichern1 (1 , x2 , y2) ;
}
e l s e i f (x2 == x1)
{

th i s −>datenSchickenSpe ichern1 (2 , x2 , y2) ;
} e l s e th i s −>datenSchickenSpe ichern1 (3 , x2 , y2) ;

62

C. Quellext vom Anwendungsprogramm Messdateneinlesen und Schrittmotorsteuern

}

// Z i e l p o s i t i o n f ü r X und/ oder Y an d i e Steue rkar t e sch i cken
p r i v a t e : void datenSchickenSpe ichern1 (unsigned char motorIndex ,

long x , long y)
{

S leep (1 0 0 0) ; // warte 1 Sekunde
i f (NewMotion3x−>managed_SetXYZtarget (motorIndex , x , y , 0) == 0)
{

th i s −>date i2 −>WriteLine (x +" ," + y + " ok ! ") ;
} e l s e th i s −>date i2 −>WriteLine (x +" ," + y + " n i cht e r f o l g r e i c h ! ") ;

}

// d i e Koordinaten der ausgewählten Punkte f ü r d i e e r s t e Achte lkr i e sbahn
// berechnen (Bresenham Algorithmus)
p r i v a t e : void achte lKre i sbahn (long rad iu s)
{

long x = 0 , r = radius , y = rad iu s ;
long dx , dxy , d ;

d=1−r ; dx=3; dxy=−2∗r +5;

aKreisbahnDaten [0]−>Add(x) ;
aKreisbahnDaten [1]−>Add(y) ;
th i s −>textBox1−>AppendText (" (X,Y) = (" + x +" ," + y + ") , \n ") ;

whi l e (x < y)
{

i f ((d >= 0) && ((x+1) < (y −1)))
{

i f ((x−aKreisbahnDaten [0] [(aKreisbahnDaten [0]−>Count)−1])>=1)
{

aKreisbahnDaten [0]−>Add(x) ;
aKreisbahnDaten [1]−>Add(y) ;
th i s −>textBox1−>AppendText (" (X,Y) = (" + x +" ," + y + ") ,

" + " \n ") ;
}

aKreisbahnDaten [0]−>Add(x+1);
aKreisbahnDaten [1]−>Add(−−y) ;
th i s −>textBox1−>AppendText (" (X,Y) = (" + (x+1) +" ," + y + ") , " +

(Math : : Sqrt (((x+1)∗(x+1) + y∗y))) . ToString ("N2") + " \n ") ;
d=d+dxy ; dx=dx+2; dxy=dxy+4; x++;

}
e l s e
{

d=d+dx ; dx=dx+2; dxy=dxy+2; x++;
}

}
}

} ;
}

C.4. VP3undUSBMotion3x.cpp

// VP3undUSBMotion3x . cpp : Hauptpro jektdate i .
// compi le with : / c l r

63

C. Quellext vom Anwendungsprogramm Messdateneinlesen und Schrittmotorsteuern

#inc lude " s tda fx . h "
#inc lude "Form1 . h "

us ing namespace VP3undUSBMotion3x ;

[STAThreadAttribute]
i n t main (array<System : : S t r ing ^> ^ args)
{

// Akt iv i e r en v i s u e l l e r E f f e k t e von Windows XP,
// bevor Steuere lemente e r s t e l l t werden
Appl i ca t ion : : Enab l eVi sua lSty l e s () ;
App l i ca t ion : : SetCompatibleTextRenderingDefault (f a l s e) ;

// Haupt fenster e r s t e l l e n und ausführen
Appl i ca t ion : : Run(gcnew Form1 ()) ;
r e turn 0 ;

}

64

D. Literaturverzeichnis

[1] Frank Budszuhn. Visual C++ / Windows-Programmierung mit den MFC. Addison-
Wesley verlag, 2004.

[2] Coptonix GmbH. Manual usb motion 3x ii, 2008.

[3] Folker Haase. Eigenspannungsermittlung an dünnwandigen Bauteilen und Schicht-
verbunden. Shaker Verlag, 1998.

[4] Karl Hoffmannl. Eine einführung in die technik des messens mit dehnungsmess-
streifen, 1987.

[5] Peter Ingerfeld. Konzeption einer architektur für optimierungssoftware zur integra-
tion in betriebliche anwendungssysteme, 2008.

[6] Leif Kobbelt and Dominik Sibbing. 32. algorithmus der woche / kreise zeichnen mit
turbo, 2006.

[7] Martin Kornmeier. Analyse von Abschreck- und Verformungseigenspannungen mit-
tels Bohrloch- und Röntgenverfahren. Gesamthochschul-Bibliothek Kassel Verlag, 1
edition, November 1999.

[8] S. Krömker. Computergraphik i, ws 2009/10, 2009.

[9] Dirk Louis. Visual C++ 2010 / Das umfassende Handbuch für Programmierer.
Addison-Wesley verlag, 2010.

[10] Vishay Micro-Measurements. Model p3 strain indicator and recorder / activex
control developer’s guide, 2004.

[11] Vishay Micro-Measurements. Model p3 strain indicator and recorder / instruction
manual, 2007.

[12] Vishay Micro-Measurements. Die 3-leiterschaltung für dms-viertelbrücken, 2010.

[13] Vishay Micro-Measurements. Die messung von eigenspannungen mit dem dms-
bohrlochverfahren, 2010.

[14] Jochen Wagner. Ermittlung mechanischer Festigkeitseigenschaften und thermischer
Eigenspannungen an ultraschall-geschweißten Keramik/Metall-Verbunden. Univer-
sität Kaiserslautern Lehrstuhl für Werkstoffkunde, 1997.

65

Erklärung

Hiermit versichere ich, diese Arbeit selbständig
verfasst und nur die angegebenen Quellen
benutzt zu haben.

(Jinxu Wu)

66

	Einleitung
	Motivation und Aufgabenstellung
	Aufbau der Arbeit

	Grundlagen der Eigenspannungsmessung
	Eigenspannungen
	Dehnungsmessstreifen (DMS)
	Aufbau und Formen
	Funktionsweise

	DMS-Brückenschaltungen
	Eigenspannungsmessverfahren

	Hardware
	Vishay Modell P3
	Steuerkarte USBMotion3xII

	Basistechnologien
	Softwarekomponenten in Form von DLLs
	ActiveX-Steuerelemente (ActiveX Controls)
	ActiveX-Steuerelement registrieren
	Verweis auf ActiveX-Steuerelement einrichten
	Eigenschaften abfragen und setzen

	.NET Framework
	Visual C++
	Verwalteter Klassentyp
	Verwalteter und nicht verwalteter Code
	Indizierte Eigenschaften
	Generische Auflistungsklasse List<T>

	Entwurf
	Aufnehmen der Messwerte
	Bestimmen der Punkte auf der Kreisbahn
	Bestimmen der Punkte aufgrund der Symmetrie
	Berechnen der Koordinaten der Punkte

	Implementierung
	Einrichten der Entwicklungsumgebung
	Implementierte Klassen
	Benutzerschnittstelle
	Testergebnisse

	Zusammenfassung
	Eigenschaften und Methoden von VMMP3Control.dll
	Funktionen von USBM3X32.DLL und Testprogramm
	USBM3X32.DLL-Funktionen
	Testprogramm

	Quellext vom Anwendungsprogramm Messdateneinlesen und Schrittmotorsteuern
	USBMotion3x.h
	USBMotion3x.cpp
	Form1.h
	VP3undUSBMotion3x.cpp

	Literaturverzeichnis

