
Institut für Softwaretechnologie

Abteilung Software Engineering

Universität Stuttgart
Universitätsstraße 38

D-70569 Stuttgart

Diplomarbeit Nr. 3224

Fehlererkennung in Spreadsheets

Sebastian Zitzelsberger

Studiengang: Softwaretechnik

Prüfer: Prof. Dr. rer. nat. Jochen Ludewig

Betreuer: Daniel Kulesz, M.Sc.

begonnen am: 25. Juli 2011

beendet am: 24. Januar 2012

CR-Klassifikation: H.4.1, D.2.4

Zusammenfassung

Spreadsheets sind auf Grund ihrer flexiblen Einsetzbarkeit aus der Unternehmenswelt kaum
mehr wegzudenken. Es gibt jedoch Belege dafür, dass in vielen von ihnen ernstzunehmende Feh-
ler enthalten sind, von denen einige bereits schwerwiegende Folgen für Unternehmen verursacht
haben. In der Praxis wird dieses Risiko jedoch kaum wahrgenommen und Spreadsheets werden
zumeist ungeprüft verwendet. Zwar existieren kommerzielle Werkzeuge, die Prüfungen von
Spreadsheets anbieten, jedoch sind diese mit konzeptionellen Einschränkungen versehen, die
deren Nutzen stark vermindern.

In dieser Arbeit wird das Konzept einer technischen Inspektions-Werkstatt für Spreadsheets
entwickelt, wodurch die technische Grundlage geschaffen werden soll, um Spreadsheets mit
statischen und dynamischen Mitteln auf Fehler zu prüfen. Die Umsetzung dieses Konzepts
erfolgt dabei durch das erweiterbare Java-Framework Spreadsheet Inspection Framework (SIF), mit
dem Prüfzentren für Spreadsheets realisiert werden können. In dieser Arbeit wird es durch die
Umsetzung der ersten Ausbaustufe von SIF ermöglicht, konfigurierbare, statische Prüfungen von
Spreadsheets nach individuellen Richtlinien durchzuführen. Es werden unter Verwendung von
SIF Prüfverfahren für die drei Vorschriften Konstanten in Formeln, Leserichtung und Formelkom-
plexiät realisiert, deren Anwendung mit Hilfe des prototypischen Prüfzentrums Example Testing
Center (ETC) demonstriert werden können.

Die anschließende Evaluation von ETC mit operativen Spreadsheets hat gezeigt, dass vergleich-
bare Ergebnisse zu denen der kommerziellen Prüfwerkzeuge Spreadsheet Professional und Rainbow
Analyst erzielt werden konnten. ETC unterliegt jedoch durch die Verwendung der Inspektions-
Werkstatt nicht den konzeptionellen Einschränkungen mit denen bestehende Prüfwerkzeuge
versehen sind.

3

Abstract

Because of their enormous flexibility, spreadheets play an essential role in business today. Howe-
ver, there is evidence that many spreadsheets contain serious errors, some of which have already
caused severe consequences for certain enterprises. Nevertheless, spreadsheet risks are hardly
perceived in practice and it is common to use untested spreadsheets. Commercial tools that offer
checks for spreadsheets do exist, but they are flawed with conceptual limitations, which strongly
reduce their merits.

This paper proposes the concept of an inspection-facility for spreadsheets, laying the technical
foundation to check spreadsheets for errors with statical and dynamic means. The implementation
of this concept is carried out through the extendable Java-framework Spreadsheet Inspection
Framework (SIF), which enables the creation of testing centers for spreadsheets. The realisation
of SIF ’s first stage in this work makes it possible to execute configurable static tests that check
spreadsheets for indiviudal policies. The checking of the three policy rules Constants In Formulas,
Reading Direction and Formula Complexity has benn implemented with the use of SIF and their
application can be demonstrated by using the prototypical Example Testing Center (ETC).

The subsequent evalution of ETC with operational spreadsheets has shown that similiar results
to those of the commercial tools Spreadsheet Professional and Rainbow Analyst could be achieved.
However, ETC is not afflicted with the conceptual limitations of existing tools, because it is based
on the inspection-facility.

4

Inhaltsverzeichnis

1 Einleitung 7
1.1 Motivation . 8
1.2 Ziel . 9
1.3 Übersicht . 10

2 Spreadsheet-Grundlagen 11
2.1 Elemente und Konzepte . 11
2.2 Spreadsheet-Systeme und Endbenutzer . 17
2.3 Risiken durch Qualitätsmängel . 21

3 Software-Qualität 23
3.1 Der Qualitäts-Begriff . 23
3.2 Taxonomie der Software-Qualitäten . 25
3.3 Qualitätskosten . 26
3.4 Software-Qualitätssicherung . 28
3.5 Software-Prüfung . 29

4 Spreadsheet-Qualität 35
4.1 Stand der Forschung . 35
4.2 Zusammenfassung . 38

5 Vorhandene Ansätze zur Erhöhung der Spreadsheet-Qualität 41
5.1 Spreadsheet-Engineering . 41
5.2 Spreadsheet Prüfung . 43
5.3 Schlussfolgerung . 46

6 Konzept 49
6.1 Technische Grundlage zur Spreadsheet-Prüfung 49
6.2 Metapher . 51
6.3 Verwendung . 55

7 Anforderungen 59
7.1 Funktionale Anforderungen . 59
7.2 Nichtfunktionale Anforderungen . 61

5

Inhaltsverzeichnis

8 Umsetzung 63
8.1 Vorgehen . 63
8.2 Design . 64
8.3 Implementierung . 71

9 Evaluation 73
9.1 Rahmenbedingungen . 73
9.2 Ergebnisse . 77
9.3 Analyse . 79

10 Fazit 81
10.1 Zusammenfassung . 81
10.2 Ausblick . 83
Anhang . 85

A Anhang 87
A.1 Inhalt und Aufbau des beigelegten Datenträgers 87
A.2 Evaluationsergebnisse . 87
A.3 Fehler-Taxonomien . 89

Literaturverzeichnis 91

6

Kapitel 1

Einleitung

Seit dem ersten Erscheinen von Tabellenkalkulationssoftware in den frühen 80er Jahren erfreut
sich diese Art von Software großer Beliebtheit. Populäre Tabellenkalkulationsanwednungen, wie
beispielsweise Lotus 1-2-31, Microsoft Excel2 oder verschiedene Calc-Derivate3 der Star Office
Familie, sind in der Unternehmenswelt allgegenwärtig und aus dem Arbeitsalltag kaum mehr
wegzudenken.

Mit Hilfe dieser Anwendungen lassen sich flexibel einsetzbare Softwareprogramme, sogenannte
Spreadsheets, erstellen, modifizieren und ausführen. Zu diesem Zweck können tabellarisch
angebrachten Zellen mit numerischen und alphanumerischen Daten gefüllt und in verschiedenen
Formaten angezeigt werden. Zusätzlich können Berechnungen und Verarbeitungen dieser Daten
über Formeln definiert werden, die mit Hilfe von bereitgestellten Operationen den Wert einer
Zelle aus den Werten anderer Zellen berechnen. Besonders wertvoll für Unternehmen sind
Spreadsheets, da deren Erstellung, Modifizierung und Erweiterung auch direkt durch deren
späteren Nutzer erfolgen kann, ohne dass dieser über nennenswerte Programmierkenntnisse
verfügen muss. Daher ist es nicht weiter verwunderlich, dass Tabellenkalkulationssoftware die
weitreichende und bereichsübergreifende Verbreitung erreicht haben, die sie heute besitzen.

Als Folge dieser Prävalenz entstehen jährlich mehrere Millionen Spreadsheets [Pan08c] in al-
len denkbaren Ausprägungen [PBLFJ08, Cro07, JH96]. So unterscheiden sich die entwickelten
Spreadsheets etwa in ihrer Größe, Komplexität und ihrem Erstellungsprozess, aber auch in
ihrem Einsatzzweck, ihrer Einsatzdauer und ihrer Bedeutung. Dabei entstehen verschiedenste
Variationen, angefangen von kleinen skizzenhaften Spreadsheets, die spontan innerhalb weniger
Minuten für kleine einmalige Berechnungen entstehen, bis zu großen, komplexen Systemen
von Spreadsheets, die mit sorgfältiger Planung entwickelt werden und über Jahre hinweg für
missions- oder sogar unternehmenskritische Aufgaben eingesetzt werden [Cro07]. Trotz die-
ser unterschiedlichen Ausprägungen scheinen jedoch fast alle eingesetzten Spreadsheets eine
Eigenschaft zu teilen – die hohe Wahrscheinlichkeit für darin enthaltene Fehler.

1http://www-01.ibm.com/software/lotus/products/123/
2http://office.microsoft.com/en-us/excel/
3Beispielsweise Open Office Calc: http://www.openoffice.org/

7

http://www-01.ibm.com/software/lotus/products/123/
http://office.microsoft.com/en-us/excel/
http://www.openoffice.org/

1 Einleitung

1.1 Motivation

Verschiedene Studien [Pan98, PBL09, CHM08, But00] haben in der Praxis eingesetzte oder in
Experimenten entstandene Spreadsheets auf Fehler untersucht und das übereinstimmende
Resultat dieser Studien ist, dass eine sehr hohe Anzahl aller Spreadsheets ernstzunehmende
Fehler enthält, die die Korrektheit der durchgeführten Berechnungen beeinflussen können. Eine
überwiegende Anzahl der Studien prognostiziert dabei eine Quote von fehlerhaften Spreadsheets
um die 90%.

Zwar müssen nicht alle Spreadsheet-Fehler bemerkbare Auswirkungen oder sogar kritische Kon-
sequenzen zur Folge haben, jedoch existieren zahlreiche Belege für Fälle, in denen verheerende
finanzielle oder reputationelle Verluste auf unbemerkte Fehler in Spreadsheets zurückzuführen
sind [Cro09, O’B]. In vielen dieser Horrorszenarien begünstigt das Fehlen von Kontrollmechanis-
men, die Entstehung und Nutzung solcher fehlerhaften Spreadsheets. Dieser Mangel, an von
Unternehmen vorgeschriebenen Qualitätssicherungsmaßnahmen für Spreadsheets, ist in der For-
schung bekannt und gut dokumentiert [PO08, PHJ96, CMW07, PBLFJ08]. Aber dennoch haben
die meisten Unternehmen dieses Wissen bisher ignoriert und der Aussicht auf ernstzunehmende
Spreadsheet-Fehler wenig Aufmerksamkeit geschenkt [Pan98].

Neben der fehlenden Kontrolle setzen auch die Spreadsheet-Nutzer selbst zu viel Vertrauen in
ihre Spreadsheets und tendieren zu einem übermäßigen Selbstvertrauen bezüglich ihrer Kor-
rektheit und Genauigkeit [Pan08a]. Infolgedessen werden die meisten Spreadsheets auch nicht
selbständig von ihren Erstellern auf Fehler überprüft und falls doch eine Prüfung stattfindet, ist
diese in ihrem Umfang meist sehr beschränkt und wird informell und unsystematisch durchge-
führt [PBLFJ08, CMW07]. Diese vorhandene Tendenz, Spreadsheets nicht oder nicht ausreichend
auf deren Qualität zu überprüfen, wird dahingehend noch verstärkt, dass die manuelle Prüfung
von Spreadsheets meist sehr mühsam und bei einer Prüfung durch eine Einzelperson häufig
wenig effektiv ist [PO08].

Angetrieben durch neue Gesetze wie den Sarbanes-Oxley Act4 oder Basel II5, haben sich einige
Dienstleister etabliert, die Audits von Spreadsheets und entsprechende Prüfwerkzeuge für
Spreadsheets anbieten. Die geringe Nutzung von bestehenden Werkzeuge in der Praxis [CMW07,
PBLFJ08] lässt jedoch darauf schließen, dass diese nicht in der Lage sind das Problem von Fehlern
in Spreadsheets zu lösen.

Verantwortlich dafür, dass die angebotenen Prüfwerkzeuge keine adäquate Unterstützung für
die Prüfung von Spreadsheets bieten können, sind dabei die erheblichen Einschränkungen, mit
denen diese Werkzeuge versehen sind. So sind die meisten Werkzeuge für die Verwendung im
Finanzsektor konzipiert und können daher meist nur eine begrenzte Anzahl an vordefinierten
und sehr spezialisierten Regeln überprüfen. Jedoch besteht bisher weder in der Praxis noch in

4http://www.soxlaw.com/index.htm
5http://www.bis.org/publ/bcbs107.htm

8

http://www.soxlaw.com/index.htm
http://www.bis.org/publ/bcbs107.htm

1.2 Ziel

der Wissenschaft eine Einigung darüber, welche Eigenschaften ein gutes Spreadsheet besitzen
muss und wie diese Eigenschaften erreicht werden können. Daher ist die Prüfung von einer
scheinbar zufällig ausgewählten Anzahl an Regeln nicht zielführend, um die Qualität von
Spreadsheets allgemein zu überprüfen. Es ist jedoch auch nicht möglich die überprüfbaren
Regeln zu erweitern, da die Prüfwerkzeuge meist auch auf die Benutzung mit einer einzigen
Spreadsheet-Software eingeschränkt sind und keine Möglichkeiten zur Konfiguration oder
Erweiterung vorsehen. Zusätzlich werden die meisten Werkzeuge als quell-geschlossene Software
kommerziell vertrieben und stellen keine wissenschaftlichen Ansprüche an die eingesetzten
Methoden. Als Folge daraus sind die meisten bestehenden Ansätze zur Prüfung von Spreadsheets
nicht dokumentiert und deren Nutzen wurde in den seltensten Fällen objektiv evaluiert [AP10,
NO10, PB08].

1.2 Ziel

Das Ziel dieser Arbeit ist daher die Konzeption und Entwicklung eines erweiterbaren plattform-
unabhängigen Java-Frameworks, das die technische Grundlage schaffen soll, um Prüfungen von
Spreadsheets durchzuführen. Dadurch soll ein systematisches, reproduzierbares Prüfverfahren
für Spreadsheets ermöglicht werden, das von Endbenutzern durchgeführt werden kann. Die
unterstützen Prüfungen beschränken sich dabei zunächst auf statische Prüfungen, aber die Er-
weiterung um dynamische Prüfungen und die Unterstützung von nichtmechanischen Prüfungen
soll möglich sein.

Die Aufgabe des Frameworks ist es zunächst die Spreadsheets auf die Einhaltung festlegbarer
Qualitätskriterien mit statischen Mitteln zu prüfen. Verstöße von Qualitätskriterien sollen da-
bei vollautomatisch entdeckt werden, um den Nutzer auf mögliche Mängel des untersuchten
Spreadsheet hinzuweisen und ihn so bei der Prüfung von Spreadsheets zu unterstützen. Zu
diesem Zweck soll es entdeckte Verstöße automatisch klassifizieren, bewerten, gruppieren und
dem Nutzer in geeigneter Form zur Verfügung stellen. Anders als bei bestehenden Prüfwerk-
zeugen sind die überprüfbaren Qualitätskriterien vom Benutzer frei zu einer Qualitätsrichtlinie
zusammenstellbar. Überprüfbare Qualitätskriterien werden mittels Vorschriften definiert, welche
individuell konfiguriert werden können. Außerdem soll es ermöglicht werden, mit Hilfe einer
Java-API neue Vorschriften auf einfache Weise hinzuzufügen. Zwar muss in der initialen Version
die Prüfung einer neuen Vorschrift von einem professionellen Programmierer implementiert wer-
den, jedoch wird es ermöglicht diesen Mechanismus in Zukunft mit einer benutzerfreundlicheren
Möglichkeit zu ersetzen.

Um die Brauchbarkeit des Frameworks zu demonstrieren, soll die Prüfung von drei möglichst
unterschiedlichen Vorschriften implementiert und ein prototypisches Prüfwerkzeug, das diese
Vorschriften verwendet, entwickelt werden. Die implementierten Prüfverfahren für die ausge-
wählten Vorschriften sollen dann mit der Hilfe von operationalen Spreadsheets aus Real- und
Laborumgebungen evaluiert werden, um die entstandene Lösung mit bestehenden Prüfwerkzeu-
gen vergleichen zu können.

9

1 Einleitung

1.3 Übersicht

Der Inhalt dieser Diplomarbeit wird in folgenden Kapiteln präsentiert.

Kapitel 2 - Spreadsheet-Grundlagen definiert zentrale Begriffe und Konzepte bezüglich Spread-
sheets, wie sie in dieser Arbeit verwendet werden. Zudem werden die Eigenschaften von
Spreadsheet-Systemen untersucht und die daraus resultierenden Folgen vorgestellt. Es
wird erläutert, dass Spreadsheets in der Praxis häufig qualitative Mängel besitzen und
dadurch ein Risiko für die Verwendung in der Unternehmenswelt darstellen können.

Kapitel 3 - Software-Qualität definiert zentrale Begriffe bezüglich der Qualität von Software.
Anschließend wird das vorhandene Wissen und die vorhandenen Maßnahmen im Software
Engineering vorgestellt, die es erlauben die Risiken, die durch Qualitätsmängel entstehen,
beherrschbar zu machen.

Kapitel 4 - Spreadsheet-Qualität stellt den Stand der Forschung bezüglich Spreadsheet-Qualität
vor.

Kapitel 5 - Vorhandene Ansätze zur Erhöhung der Spreadsheet-Qualität untersucht ob Prinzi-
pien aus dem Software-Engineering auf Spreadsheets übertragen werden können und
beleuchtet vorhandene Ansätze zur Erhöhung der Qualität von Spreadsheets. Speziell
werden dabei die vorhandenen Ansätze zur Prüfung von Spreadsheets untersucht.

Kapitel 6 - Konzept präsentiert im Detail die vorgeschlagene Lösung zur Prüfung von operatio-
nalen Spreadsheets.

Kapitel 7 - Anforderungen listet die funktionalen und nicht-funktionalen Anforderungen auf,
die an die in Kapitel 6 vorgeschlagene Lösung gestellt werden.

Kapitel 8 - Entwicklung beschreibt den gewählten Entwicklungsprozess, sowie Details aus Ent-
wurf und Implementierung.

Kapitel 9 - Evaluation setzt sich kritisch mit der fertiggestellten Umsetzung auseinander und
vergleicht diese mit bestehenden Spreadsheet-Prüfwerkzeugen.

Kapitel 10 - Fazit fasst die Ergebnisse dieser Arbeit zusammen und nennt die Vorteile und Ein-
schränkungen der entwickelten Lösung. Im Anschluss daran wird diskutiert, wie sich die
entstandene Lösung verbessern lässt und welche weiteren Prüfungsarten für Spreadsheets
unterstützt werden können.

10

Kapitel 2

Spreadsheet-Grundlagen

Um einen effektiven Ansatz zur Prüfung von Spreadsheets zu entwickeln, ist es wichtig zuerst
die Grundlagen von Spreadsheets zu kennen und zu verstehen. Aus diesem Grund werden
in den folgenden Abschnitten die grundlegenden Elemente und Konzepte von Spreadsheets
vorgestellt, um dann die Eigenschaften von Spreadsheets und die daraus resultierenden Folgen
beschreiben zu können.

2.1 Elemente und Konzepte

In der Einleitung wurden Spreadsheets als kleine Softwareprogramme präsentiert, mit deren
Hilfe Berechnungen getätigt und Daten verarbeitet werden können. Jedoch wurde der Begriff
Spreadsheet bisher nicht genau definiert und in Übereinstimmung mit dem Gebrauch in der Praxis
eher unpräzise verwendet.

Der Grund für diesen unpräzisen Gebrauch ist die ursprüngliche Herkunft des Begriffes Spreads-
heet. Denn als spread sheets wurden bereits in den 50er-Jahren Papierarbeitsblätter bezeichnet, die
für eine zweidimensionale Analyse von Bilanzdaten in Tabellenform genutzt wurden. Als Anfang
der 80er-Jahre das Prinzip einer tabellenförmigen Anordnung von Daten und Berechnungen
mittels Software umgesetzt wurde, übernahm man auch die Bezeichnung Spreadsheet. Anders
als bei den Papierarbeitsblättern ist jedoch für die Erstellung und Nutzung der elektronischen
Form von Spreadsheets ein System aus mehreren Komponenten notwendig. Daher wird der
Begriff Spreadsheet heutzutage zwar im Allgemeinen mit einer Art Software für die Dateneingabe
und -verarbeitung assoziiert, aber meist wird der Begriff als ungenauer Sammelbegriff für alle
beteiligten Komponenten verwendet.

Um Missverständnisse bei der Interpretation von Spreadsheet-Begriffen zu vermeiden, werden
daher die folgenden Definitionen von Spreadsheet-Elementen und -Konzepten in dieser Arbeit
verwendet. Einige dieser Definitionen sind an die in [ACM00] gegebenen Definitionen angelehnt,
die meisten wurden aber für die Verwendung in dieser Arbeit angepasst oder erweitert. In
Abbildung 2.1 wurde versucht einige der im Folgenden beschriebenen Elemente durch grafische
Markierungen zu veranschaulichen.

11

2 Spreadsheet-Grundlagen

2.1.1 Das Spreadsheet-Konzept und dessen Basis-Elemente

Spreadsheet Software Zelle
Spreadsheet Formel
Worksheet Funktion
Bereich

Abbildung 2.1: Veranschaulichung einiger Spreadsheet-Elemente anhand der Spreadsheet-
Software OpenOffice.org Calc

Spreadsheet (Konzept) bezeichnet das grundlegende Konzept einer zweidimensionalen Tabelle
von Zellen, die in einem geradlinigen Gitter von Reihen und Spalten unterschiedlicher
Höhe und Breite angebracht sind. Dieses Konzept wird bei Spreadsheet-Programmen
angewandt, die eine beliebige Anzahl solcher Tabellen in elektronischer Form, sogenannte
Worksheets, enthalten können.

Eine Zelle ist die atomare Einheit eines Spreadsheets. Die Zelle eines Worksheets, also der
elektronischen Version eines Spreadsheets, kann sich in einem von fünf verschiedenen
Zuständen befinden. Die Zelle kann (a) leer sein, (b) sie kann eine Beschriftung enthalten,
die den Inhalt anderer Zellen beschreibt, (c) einen konstanten Wert enthalten, der von
anderen Zellen weiterverarbeitet wird und einmalig beim Erstellen des Spreadsheets
Spreadsheet-Programms bereitgestellt wird, (d) einen Eingabewert enthalten, der vom
Benutzer des Spreadsheet-Programms bei dessen Ausführung bereitgestellt werden muss
(Eingabe-Zelle) oder (e) einen Ausgabewert enthalten, der von einer Formel anhand von
konstanten und eingegeben Werten berechnet wird (Ausgabe-Zelle).

Eine Zellformat gibt an, wie eine Zelle visuell dargestellt werden soll. Dabei können Eigen-
schaften, wie etwa das verwendete Schriftbild, die Darstellungsart des Inhalts oder die
Umrandung der Zelle, eingestellt werden.

12

2.1 Elemente und Konzepte

Ein Schreibschutz gibt an, ob der Inhalt einer Zelle oder eines ganzen Worksheets mittels eines
Passworts davor geschützt werden soll, überschrieben zu werden.

Eine Reihe / Zeile ist die Menge aller Zellen auf einer horizontalen Linie eines Spreadsheets.
Reihen werden dabei mit Ziffern, beginnend bei 0, durchnummeriert.

Eine Spalte ist die Menge aller Zellen auf einer vertikalen Linie eines Spreadsheets. Spalten
werden dabei mit Großbuchstaben, beginnend bei A, durchnummeriert.

Eine Zelladresse definiert über ein Koordinatenpaar aus Spalten- und Zeilennummer eindeutig
die Position einer Zelle innerhalb eines Spreadsheets. Zelladressen werden in dieser Arbeit
im Format A1 notiert, das heißt zuerst steht die Nummer der zugehörigen Spalte, gefolgt
von der Nummer der zugehörigen Reihe. Beispielsweise würde die Adresse A1 die Zelle in
der ersten Spalte, nummeriert mit dem Buchstaben A, und in der ersten Reihe, nummeriert
mit der Ziffer 1, eines Spreadsheet bezeichnen.

Ein Bereich ist die Menge aller Zellen innerhalb eines beliebig großen rechteckigen Ausschnitts
aus einem Worksheet. Ein Bereich kann dementsprechend aus (a) einer einzelnen Zelle,
(b) einer einzelnen Reihe, (c) einer einzelnen Spalte oder (d) einer Menge von Zellen eines
rechteckigen Ausschnitts, der sich über mindestens eine Reihe und eine Spalte erstreckt,
bestehen.

Eine Bereichsadresse definiert eindeutig die Position eines Bereiches innerhalb eines Spreadsheet
über die Zelladressen seiner Zellen in der linken oberen und in der rechten unteren Ecke.
Bereichsadressen werden in dieser Arbeit im Format A1:C4 notiert, das heißt zuerst steht
die Zelladresse der Zelle in der linken oberen Ecke, gefolgt von einem Doppelpunkt als
Trennzeichen zur Zelladresse der Zelle in der rechten unteren Ecke. Beispielsweise würde
die Adresse eines Bereichs, der von der Zelle in der ersten Spalte und Reihe (A1) bis zu der
Zelle in der dritten Spalte und vierten Reihe (C4) reicht, als A1:C4 notiert werden. Falls ein
Bereich nur aus einer einzigen Zelle besteht, kann die Adresse im selben Format angeben
werden, sie unterscheidet sich jedoch semantisch nicht von der entsprechenden Zelladresse.

Ein benamter Bereich ist ein Bereich, der vom Bearbeiter eines Spreadsheet-Programms mit
einem aussagekräftigen Namen versehen wurde. Dabei müssen Namen innerhalb eines
Spreadsheet-Programms eindeutig sein und dürfen nicht so benannt sein, dass der Name
mit einer Adresse verwechselt werden kann. Benamte Bereiche können dadurch neben
ihrer Bereichsadresse auch mit ihrem zugewiesenen Namen adressiert werden.

Eine Referenz ist der Verweis auf den Wert oder die Werte eines Bereiches. Referenzen können
dazu verwendet werden, Werte für Zellen oder Operanden für Formeln bereitzustellen,
indem sie als Zeiger auf die Werte anderer Zellen fungieren. Um den sprachlichen Gebrauch
von Referenzen zu vereinfachen, wird in dieser Arbeit der Ausdruck Wert weggelassen,
wenn von Referenzen gesprochen wird. Eine Zell- bzw. Bereichsreferenz wird also gleichbe-
deutend verwendet, wie die Referenz auf den oder die Werte einer Zelle oder eines Bereichs.
Referenzen können dabei entweder absolut oder relativ festgelegt werden.

13

2 Spreadsheet-Grundlagen

Eine absolute Referenz hat eine analoge Funktionsweise zu einer Postanschrift ohne den
Namen des Adressaten. So wie Post an diese Anschrift immer an den aktuellen
Bewohner unter dieser Adresse zugestellt wird, zeigt eine absolute Referenz immer
auf die Werte der Zellen, die sich aktuell an der angegeben Adresse befinden.

Eine relative Referenz hingegen zeigt immer auf den Wert der Zelle, die sich bei der Er-
stellung der relativen Referenz an der angegeben Adresse befand, auch wenn diese
seitdem ihre Position verändert hat.

Innerhalb von Formeln sind Referenzen nicht speziell gekennzeichnet, wenn sie jedoch ver-
wendet werden, um den Inhalt einer Zelle festzulegen, müssen sie durch ein vorangestelltes
Gleichheitszeichen (=) gekennzeichnet werden.

Die Angabe einer relativen Referenz geschieht über die Adresse des gewünschten Ziels,
also entweder über eine Bereichsadresse, eine Zelladresse oder den Namen eines benamten
Bereichs. Absolute Referenzen werden wie relative Referenzen angegeben, jedoch wird
absoluten Adresselementen ein Dollarzeichen ($) vorangestellt. Dabei ist es auch möglich
nur eine der beiden Zellen einer Bereichsadresse, oder auch nur die Zeile oder Spalte einer
Zelle absolut anzugeben. Beispielsweise wird innerhalb einer Formel die absolute Referenz
zu dem Bereich A1:B3 als A1:B3 angegeben, die relative Referenz hingegen wie die
Adresse selbst alsA1:B3.

Eine Formel ist eine Operation auf einem oder mehreren Operanden, die als Ergebnis den
Wert genau einer Zelle berechnet ohne dabei Seiteneffekte zu verursachen. Eine Formel
wird dabei als mathematischer Ausdruck angeben, der aus Operanden, Operatoren und
Funktionen besteht. Formeln, die mindestens einen Operator oder eine Funktion und
mindestens einen Operanden enthalten, werden in dieser Arbeit als berechnende Formeln
bezeichnet. Formeln, die lediglich den Wert einer anderen Zelle referenzieren, werden in
dieser Arbeit als referenzierende Formeln bezeichnet.

Operanden einer Formel sind entweder konstante Werte, Referenzen oder die Ergebnisse
anderer Formeln.

Operatoren in einer Formel sind Berechnungsvorschriften wie aus einem oder mehreren
Objekten ein neues Objekt gebildet werden kann. Dabei werden von einer Spreadsheet-
Software meist eine Reihe von Arithmetik-, Vergleichs-, Text- und Referenz-Operatoren
bereitgestellt. Beispiele sind das Pluszeichen (+) für die arithmetische Addition, das
Größerzeichen (>) für den Vergleich von Werten, das kaufmännische Und (&) für die
Verkettung von Texten oder die Tilde (~) für die Vereinigung von Referenzen.

Funktionen sind von einem Benutzer oder der jeweiligen Spreadsheet-Software vordefi-
nierte Operationen, für die nur noch die Operanden definiert werden müssen. Sie sind
dafür zuständig, beliebige Operationen, speziell diese, die nicht rein über Operatoren
ausgedrückt werden können, zu ermöglichen. Dabei dürfen sie jedoch ebenfalls nur

14

2.1 Elemente und Konzepte

genau ein Ergebnis liefern und keine Seiteneffekte produzieren. Verwendet wird ei-
ne Funkion, durch die Angabe des Namens, gefolgt von einer öffnenden Klammer,
einer durch Strichpunkt getrennten Liste von Operanden und einer abschließenden
Klammer angegeben. Daher muss jede Funktion einen eindeutigen Namen.

Formeln können ineinander verschachtelt werden, das heißt die Ergebnisse einer Formel
können als Operand der übergeordneten Formel verwendet werden. Jedoch müssen die
Formeln dabei korrekt geklammert werden und der äußersten Formel muss ein Gleich-
heitszeichen (=) vorangehen. Die Angabe der Formeln erfolgt dabei in Infixnotation.

Eine Formel, die alle Werte der Zeilen 1 bis 3 in Spalte A und alle Werte der Zeilen 2 bis 5
der Spalte D addiert, würde beispielsweise folgendermaßen notiert:
=SUMME(SUMME(A1:A3);SUMME(D2:D5))

Ein Worksheet oder auch Arbeitsblatt ist die elektronische Version eines Spreadsheets. Ein oder
mehrere Worksheets können in einem Spreadsheet-Programm enthalten sein, müssen
aber einen eindeutigen Namen besitzen. Innerhalb eines Spreadsheet-Programms kann
problemlos auf die Inhalte von unterschiedlichen Worksheets referenziert werden. Der
referenzierten Adresse wird dabei der Name des übergeordneten Worksheets sowie ein
Ausrufezeichen (!) vorangestellt. Beispielsweise würde eine Referenz eines Worksheets auf
die Zelle A1 eines anderen Worksheets, mit den Namen Daten, als =Daten!A1 angegeben
werden.

2.1.2 Der Verbund der Spreadsheet-Komponenten

Ein Spreadsheet(-Programm) ist die Spezifikation von Datenwerten (Zellinhalten), Datenfluss
(Referenzen), Datenverarbeitung (Formeln) und Darstellungsinformationen (Anordnung
der Zellen und Worksheets, Zellformate) in einer Spreadsheet-Sprache. Zusätzlich können
noch Meta-Informationen, wie etwa Bereichs- oder Worksheet-Namen, sowie allgemeine In-
formationen zum Spreadsheet-Programm spezifiziert werden. Ein Spreadsheet-Programm
ist dadurch die konkrete Umsetzung eines Spreadsheet-Modells und kann als Spreadsheet-
Datei vom jeweiligen Spreadsheet-System in verschiedenen Formaten gespeichert werden.

Um den sprachlichen Gebrauch dieses Konzeptes für den weiteren Verlauf zu vereinfa-
chen, wird außerhalb dieses Definitionskapitels der Begriff Spreadsheet als Synonym zum
Begriff Spreadsheet-Programm verwendet, sofern keine Gefahr für eine Mehrdeutigkeit
besteht. Zwar steht der Begriff Spreadsheet eigentlich für das grundlegende Konzept,
jedoch ist dieses im weiteren Verlauf von geringerer Bedeutung als das Konzept eines
Spreadsheet-Programms, und die elektronische Umsetzung dieses Konzept hat mit dem
Begriff Worksheet ohnehin eine eigene unmissverständliche Bezeichnung.

Eine Spreadsheet-Sprache ist eine Menge von abstrakten Sprachkonstrukten, um ein
Spreadsheet-Programm zu definieren. Es existieren verschiedene Spreadsheet-Sprachen,
die sich in ihren verfügbaren Konstrukten und syntaktischen Details unterscheiden

15

2 Spreadsheet-Grundlagen

können. Jedoch sind in allen Sprachen entsprechende Konstrukte vorhanden, um die oben
beschriebenen Elemente und Konzepte auszudrücken.

Ein Spreadsheet-Modell ist das zugrunde liegende Modell eines Spreadsheet-Programms, das
mittels abstrakten Spreadsheet-Konzepten ausgedrückt ist. Ein konkretes Spreadsheet-
Modell entspricht dabei einem vom Benutzer transformierten konzeptuellen Modell eines
Problems aus der realen Welt in Ausdrücke einer bestimmten Spreadsheet-Sprache. Die
Umsetzung eines Spreadsheet-Modells erfolgt als Spreadsheet-Programm, welches mittels
einer Spreadsheet-Software erstellt wird.

Beispiel: Ein Benutzer steht vor der Aufgabe, die Summe der Zahlen von 1 bis 10 zu be-
rechnen und verknüpft dies mit dem konzeptuellen Modell der kumulativen Addition der
Zahlen 1 bis 10. Ein entsprechendes Spreadsheet-Modell dazu besteht aus der Definition
von 10 Zellen mit den Zahlen 1 bis 10 als Inhalt. Außerdem muss eine weitere Zelle defi-
niert werden, die die Werte der anderen Zellen über eine Formel addiert. Die Umsetzung
dieses Spreadsheet-Modells kann dabei in verschiedenen Spreadsheet-Sprachen und durch
verschiedene Spreadsheet-Programme realisiert werden. Ein Spreadsheet-Programm ver-
wendet etwa die Summen-Funktion, ein anderes addiert die Inhalte der Zellen mittels des
Plus-Operators.

Eine Spreadsheet-Programminstanz ist ein Spreadsheet-Programm, bei dem alle Zellen, die
vom Benutzer mit Eingabewerten befüllt werden müssen, einen gültigen Wert besitzen.
Ein Spreadsheet-Programm kann dabei beliebig oft instantiiert werden, ohne dass das
zu Grunde liegende Spreadsheet-Modell verändert wird. Durch das Verändern eines Ein-
gabewertes wird die Spreadsheet-Programminstanz in einer andere Instanz des selben
Spreadsheet-Programms transformiert.

Eine Spreadsheet-Software ist eine integrierte Entwicklungsumgebung für Spreadsheet-
Programme. Mit Hilfe dieser Entwicklungsumgebung ist es möglich Spreadsheet-
Programme zu erstellen, zu modifizieren, anzuzeigen und auszuführen. Die Erstellung und
Bearbeitung erfolgt entweder per direkter Manipulation über eine graphische Oberfläche
oder durch Texteingabe. Eine Spreadsheet-Software interpretiert dabei eine oder mehrere
Spreadsheet-Sprachen und kann als Desktop-Anwendung oder Web-Anwendung realisiert
sein.

Ein Spreadsheet-System bezeichnet den Verbund der Komponenten, die zur elektronischen
Umsetzung des Spreadsheet-Konzepts notwendig sind. Dieser Verbund besteht aus einer
Spreadsheet-Software, einer oder mehreren Spreadsheet-Sprachen, die von dieser Software
interpretiert werden können, sowie den Spreadsheet-Programmen, die von der Spreadsheet-
Software erstellt, modifiziert und als Spreadsheet-Programminstanzen ausgeführt werden
können.

16

2.2 Spreadsheet-Systeme und Endbenutzer

2.2 Spreadsheet-Systeme und Endbenutzer

Im vorangegangen Abschnitt wurde ein Spreadsheet-System als der Verbund an Komponenten
definiert, der für die elektronische Umsetzung des Spreadsheet-Konzepts notwendig ist. Mit
Hilfe eines Spreadsheet-Systems wird es dessen Benutzern ermöglicht, ohne nennenswerte Pro-
grammierkenntnisse, neue Spreadsheets zu erstellen oder bestehende Spreadsheets zu erweitern
oder verändern.

Ein solches System, das eine Menge von Methoden, Techniken und Werkzeugen bereitstellt, die es
den Benutzern dieses Systems erlauben, auch als nicht-professionelle Software-Entwickler eigenständig
Software-Artefakte zu erstellen, zu modifizieren oder zu erweitern [LPKW06], wird als Endbenutzer-
Entwicklungssystem bezeichnet. Dabei wird der Begriff Endbenutzer typischerweise verwendet,
um die Benutzer von Software und die Entwickler von Software voneinander abzugrenzen. Es
wird also zwischen den Personen unterschieden, die Software nur bedienen, und denen, die
neue Software schaffen oder bestehende Software verändern. Diese Abgrenzung wird jedoch
durch die Endbenutzer-Entwicklung verwaschen, da es eben auch Endbenutzern ermöglicht
wird, Software zu erstellen und zu verändern.

Die Eröffnung der Software-Entwicklung für Endbenutzer ist jedoch ein entscheidendes Merkmal
von Spreadsheet-Systemen und prägend für deren Beschaffenheit und deren Einsatz in der Praxis.
Dabei scheint die Umsetzung der Endbenutzer-Entwicklung in Spreadsheet-Systemen besonders
gelungen zu sein, da sie sich zur beliebtesten Art dieser Systeme entwickelt haben. Nardi und
Miller [NM90b] haben daher die Eigenschaften von Spreadsheet-Systemen untersucht und führen
deren Erfolg auf zwei Haupteigenschaften zurück:

 Die Verfügbarkeit von Programmierkonzepten und -techniken auf einem hohen Abstrak-
tionsniveau, die den Aufgaben des Benutzers angemessen sind und sie vor den technischen
Einzelheiten der traditionellen Programmierung abschirmen.

 Die Verwendung einer tabellenförmigen Benutzeroberfläche, die als Modell für die Anwen-
dungen der Benutzer dient.

2.2.1 Vorzüge von Spreadsheet-Systemen

Durch die Kombination dieser Eigenschaften können mit Hilfe von Spreadsheet-Systemen die
beiden Basisprobleme des Benutzers gelöst werden: Die Berechnung und die Darstellung von
Informationen. Dadurch bieten Spreadsheet-Systeme eine Reihe von Vorzügen. Diese Vorzüge
können durch die tatsächliche Verwendung von Spreadsheet-Systemen in der Praxis bestätigt
werden [CS96, PBLFJ08, GMz05].

17

2 Spreadsheet-Grundlagen

Einfache Nutzbarkeit und Bedienung

Zuallererst benötigen Benutzer von Spreadsheet-Systemen wenig Übung, da sie bereits mit dem
Verständnis von zwei Grundkonzepten – Zellen als Variablen und Formeln als Beziehungen
zwischen diesen Variablen – in der Lage sind, grundlegende Programmieraufgaben zu lösen. Die
Interviews in [NM90b] haben zudem gezeigt, dass die meisten Benutzer weniger als zehn ver-
schiedene Funktionen benötigen, die alle Bezug zu ihrem jeweiligen Fachbereich besitzen. Zwar
können fortgeschrittene Konzepte, wie Makros oder die bedingten Formatierung von Zellen,
mitverantwortlich für eine schnellere Entwicklung oder eine höhere Qualität des Spreadsheets
sein, jedoch werden sie grundsätzlich für die Erstellung von Spreadsheets nicht benötigt. Als
Folge daraus werden fortgeschrittene Konzepte und das Wissen über zusätzliche Funktionen
meist nur langsam angeeignet. So haben Powell et al. [PBLFJ08] ein unregelmäßiges, selbst-
ständiges Erlernen von Spreadsheet-Systemen mittels Handbüchern, über Kollegen oder die
Benutzung anderer Spreadsheets als die gängigste Form der Weiterbildung für den Umgang mit
Spreadsheets dokumentiert.

Zusätzlich zu der geringen Einlernzeit, erlaubt die vertraute Tabellenanordnung in Spreadsheets
die einfache Strukturierung und Präsentation von deren Inhalten. Neben der Definition von
Spreadsheet-Konstrukten mittels der Eingabe von Text, stellt Spreadsheet-Software zu diesem
Zweck meist auch direkte Manipulationsmöglichkeiten bereit [HHN85]. So können Referenzen
beispielsweise per Maus angegeben werden und existierende Funktionen können aus einer Liste
ausgewählt und eingefügt werden, was weiter zur einfachen Nutzung von Spreadsheet-Systemen
beiträgt. Darüber hinaus bietet die automatische Neuauswertung von Formeln, bei Änderung
einer zugrunde liegender Zelle, dem Nutzer sofortige Rückmeldung während der Entwicklung.
Dadurch kann er den Effekt von durchgeführten Änderungen und den Fortschritt seiner Arbeit
sofort beurteilen [NM90b]. Diese einfache Verwendung von Spreadsheet-Systemen erlaubt es
deren Nutzern sich auf ihre Hauptaufgabe zu konzentrieren – das Lösen von fachspezifischen
Problemen.

Flexible Entwicklungs- und Einsatzmöglichkeiten

Durch die einfache Benutzung und die sofortige Rückmeldung von Spreadsheet-Systemen kön-
nen Spreadsheets mit einer viel höheren Geschwindigkeit erstellt, modifiziert oder erweitert
werden als traditionell entwickelte Software. Denn nicht nur der Inhalt der Eingabe-Variablen
eines Spreadsheets, sondern auch das zugrunde liegende Spreadsheet-Modell, kann beinahe
augenblicklich an veränderte Anforderungen angepasst werden. Eine zusätzliche Zeiterspar-
nis kommt dadurch zustande, dass Anforderungen, nicht wie bei der traditionellen Software-
Entwicklung, von Fachexperten an Entwickler übertragen werden müssen, sondern direkt durch
die Fachexperten umgesetzt werden können. Diese höhere Entwicklungsgeschwindigkeit ist vor
allem in der Unternehmenswelt von enormer strategischer Bedeutung, da sie ausschlaggebend
für den Erfolg eines Unternehmens sein kann [Gro07].

18

2.2 Spreadsheet-Systeme und Endbenutzer

Des Weiteren helfen Spreadsheet-Systeme ihren Benutzern dabei, die umzusetzenden Proble-
me zu erforschen und zu verstehen. Da die Modellierung und Strukturierung des Problems
einfach und schnell möglich ist, kann ein konzeptuelles Modell des Problems während der
Erstellung des entsprechenden Spreadsheets explorativ entstehen. Dies kann zum Beispiel eine
effektive Methode sein, um unklare Anforderungen während des Entwicklungsprozesses zu
klären [Gro07]. Zusätzlich eignen sich Spreadsheets-Systeme gut für die kooperative Erstellung,
Bearbeitung oder Erweiterung [NM90a] und können daher zur Vermittlung und Verteilung von
Wissen verwendet werden.

Eine weitere Eigenschaft von Spreadsheet-Systemen ist deren flexible Einsetzbarkeit, die durch
die unterschiedlichen Einsatzzwecke von Spreadsheets in der Praxis dokumentiert ist [GMz05].
So sind Spreadsheet-Systeme weder an einen bestimmten Aufgabentyp noch an einen bestimm-
ten Fachbereich gebunden und werden in Unternehmen jeder Fachrichtung, durch Nutzer in
verschiedensten Positionen, für eine Vielfalt von Aufgaben eingesetzt. Typischerweise werden
Spreadsheets etwa für die Datenverwaltung, Informationskommunikation, Problemmodellierung
und -analyse, sowie für die Prognose von Trends und die Unterstützung bei der Findung von
Entscheidungen verwendet [CMW07, PBLFJ08, Cro07].

2.2.2 Gefahren von Spreadsheet-Systemen

Spreadsheet-Systeme bieten jedoch nicht nur Vorzüge für die Verwendung im Unternehmen,
sondern sie bergen auch Gefahren. Diese Gefahren werden dabei teilweise durch die selben Eigen-
schaften der Spreadsheet-Systeme verursacht, die ihnen auch ihre Verzüge verleihen [NM90b].
Sie bestehen zumeist darin, dass Spreadsheets mit mangelhafter Qualität entstehen und ohne
Kontrolle verwendet werden.

Gefahren durch den Nutzer

Eine dieser Gefahren sind dabei die menschlichen Fehler, die bei der Erstellung oder Bearbeitung
von Spreadsheets begangen werden. So hat die Forschung auf dem Gebiet der menschlichen
Fehler ergeben, dass der Mensch durch Einschränkungen in dessen Wahrnehmung nicht in der
Lage ist, komplexe kognitive Aufgaben fehlerfrei durchzuführen [Pan08c]. Empirische Studien
(zitiert in [Pan98]) haben dabei gezeigt, dass die Quote von unkorrigierten Fehlern bei komplexe-
ren Aufgaben, wie etwa dem Programmieren von Software, auf bis zu fünf Prozent ansteigen
kann. Raymond Panko zeigt in [Pan08c] auf, dass in mehreren Studien ähnliche Prozentzahlen
an fehlerhaften Zellen in Spreadsheets gefunden wurden. Daher ist davon auszugehen, dass
bei der Erstellung und Bearbeitung aller nicht-trivialen Spreadsheets Fehler begangen werden
und dass sich diese ohne entsprechende Gegenmaßnahmen auf die Qualität der Spreadsheets
auswirken.

Eine weitere Gefahr steckt in dem übermäßigen Selbstvertrauen, das Benutzer in ihre erstellten
Spreadsheets setzen. So tendieren die Benutzer in den meisten Fällen dazu die Qualität ihrer

19

2 Spreadsheet-Grundlagen

eigenen Arbeit zu überschätzen [Pan08a], was dazu führt, dass keine oder nur sehr oberfläch-
liche Prüfungen nach Vollendung der Entwicklung durchgeführt werden [PBLFJ08, CMW07].
Dies wiederum bewirkt, dass die menschlichen Fehler, die bei der Erstellung von Spreadsheets
gemacht wurden, nicht entdeckt werden.

Dieser Effekt tritt besonders in Erscheinung, da der typische Nutzer von Spreadsheets keine
entsprechende Ausbildung für die Programmieraufgaben besitzt, die beim Erstellen und Bearbei-
ten von Spreadsheets nötig ist [PBLFJ08]. Dadurch, dass die Endbenutzer von den Details der
Programmierung abgeschirmt werden, sind sich diese oftmals gar nicht darüber bewusst, Pro-
grammieraufgaben auszuführen. Daher nehmen sich auch die damit verbundenen Risiken nicht
wahr. Foglich werden die meisten Spreadsheets ohne einen geordneten Prozess nach dem Prinzip
Code and Fix entwickelt, ohne die Anforderungen an das Spreadsheet vorher zu spezifizieren,
dessen Struktur zu planen oder das Ergebnis nach Vollendung zu überprüfen [PBLFJ08].

Gefahren durch das Spreadsheet-Konzept

Gefahren entstehen auch durch das Konzept der Spreadsheets selbst und durch die Einschrän-
kungen der bestehenden Spreadsheet-Software [Aya01]. Beispielsweise können Zellinhalte, die
entweder als Text oder als Zahl formatiert sind, nicht auf Anhieb voneinander unterschieden wer-
den. Die Formatierung kann jedoch für das Ergebnis einer Formel, die diese Inhalte verwendet,
eine große Rolle spielen. Außerdem wird es durch die zweidimensionale Anordnung der Zellen
erschwert, die Struktur des Spreadsheets zu erkennen und Referenzen nachzuvollziehen, da die
entsprechende Lokalität fehlt. Allgemein sind Spreadsheets nur schwierig in einer für Menschen
lesbaren Form zu gestalten, da keine sinnvollen Strukturvorgaben oder Aggregationsmöglich-
keiten gegeben werden. Es bleibt ganz dem Ersteller überlassen, wie er die Struktur seines
Spreadsheets gestaltet und ob er beispielsweise eine Trennung von Eingabe, Verarbeitung und
Ausgabe vorsieht. Und auch die Möglichkeiten zur internen Dokumentation von Spreadsheets
sind mit einfachen Zellkommentaren und Textzellen eher begrenzt. Erschwerend kommt hinzu,
dass eine Modularisierung von Logik, Präsentation und Datenhaltung im Spreadsheet Konzept
nicht vorgesehen ist und die Bearbeitung eines Spreadsheets nicht von der Benutzung abgetrennt
ist. So ist es leicht möglich, dass das Model eines Spreadsheets während der Benutzung eines
Spreadsheets ungewollt verändert wird, wenn dies nicht über Schreibschutz verhindert wird.

Zusammengefasst erlauben die Eigenschaften von Spreadsheets zwar eine hohe Flexibilität, aber
durch die Vereinfachung von Darstellung und Programmierung tragen sie auch zur Entstehung
von Fehlern bei.

Gefahren durch das Umfeld

Und auch das Umfeld, in dem Spreadsheets entstehen, begünstigt es, dass neue Fehler und Män-
gel in Spreadsheets entstehen oder bestehende nicht entdeckt werden. So fehlen etwa effektive
Qualitätsrichtlinien für die Steuerung der Entwicklung, Nutzung und Verwaltung von Spreads-
heets. Zwar herrscht kein Mangel an Vorschlägen für sogenannte Best Practices für Spreadsheets

20

2.3 Risiken durch Qualitätsmängel

[Raf08, O’B05, EuSa], die von erfahrenen Anwendern oder Forschern verfasste Vorschriften ent-
halten, um die Qualität von Spreadsheets zu verbessern. Diese sind jedoch oft widersprüchlich.
So besteht bereits bei grundlegenden Prinzipien zur Entwicklung von Spreadsheets Uneinigkeit.
Beispielsweise wird diskutiert, ob es für die Qualität von Spreadsheets förderlich ist, benamte
Bereiche zu verwenden [MMB09]. Als Folge daraus hat sich bis heute kein allgemein aner-
kannter, wissenschaftlicher Standard für Spreadsheet Best Practices etabliert und es ist auch
nicht gesichert, dass der Bedarf nach einem solchen Standard überhaupt erfüllt werden kann
[Col10, Dun10, Gro07]. Diese fehlende Gewissheit scheint jedoch die flächendeckende Einfüh-
rung von Qualitätsrichtlinien für Spreadsheets in Unternehmen stark zu behindern, da in einer
Reihe von Interviews das überwiegende Fehlen solcher Richtlinien in Unternehmen festgestellt
wurde [CMW07, PBLFJ08, PO08]. Und so tendieren die meisten Unternehmen dazu, wenige bis
gar keine formale Qualitätssicherungsmaßnahmen für Spreadsheets vorzuschreiben. Stattdessen
verlassen sie sich in hohem Maße auf die Kontrolle der Qualität und Gebrauchstauglichkeit
von Spreadsheets durch die jeweiligen Ersteller [MK05]. Da die Ersteller jedoch in den meisten
Fällen keine Ausbildung für die Programmieraufgaben besitzen, die sie beim Verwenden von
Spreadsheets-System bewältigen müssen [PBL09], und die Prüfung von Spreadsheets durch de-
ren Konzept erschwert wird, bleiben Spreadsheets meist ungeprüft. Ein Blick auf die Ergebnisse
durchgeführter Interviews und Studien [JH96, PBLFJ08] zeigt dabei, dass diese Gefahren in der
Praxis akut vorhanden sind.

2.3 Risiken durch Qualitätsmängel

Im vorherigen Abschnitt wurden unter anderem Gefahren, die bei der Verwendung von
Spreadsheet-Systemen entstehen, aufgezeigt. Diese Gefahren bestehen in der Entstehung und
Verwendung von Spreadsheets mit mangelhafter Qualität und werden durch die Eigenschaften
von Spreadsheet-Systemen und deren Umfeld begünstigt. Ein Blick auf die Praxis lässt erkennen,
dass die meisten Spreadsheets ohne eine ausreichende formale Prüfung verwendet werden und
die Wahrscheinlichkeit für ernstzunehmende Fehler in eingesetzten Spreadsheets sehr hoch ist
[Pan98, PBL09].

Die vorhandenen Qualitätsmängel in Spreadsheets müssen zwar nicht immer ernsthafte Konse-
quenzen zur Folge haben, jedoch entstehen durch sie Risiken, die in vielen Firmen weder vom
Management noch von den jeweiligen Nutzern wahrgenommen werden [PBL08b, Pan08c, MK05].
Dementsprechend werden diese Risiken auch nicht bekämpft. So werden viele wichtige Entschei-
dungen im Unternehmen durch Informationen aus Spreadsheets unterstützt, ohne jedoch die
Qualität der verwendeten Spreadsheets mit geeigneten Qualitätssicherungsmaßnahmen sicher-
zustellen [CMW07]. Dies ist besonders verwunderlich, da die folgenschweren Konsequenzen
von vielen falsch getroffenen Entscheidungen, die auf mangelhafte Spreadsheets zurückzuführen
sind, gut dokumentiert sind [O’B]. Zwar sind die Spreadsheets meist nicht die alleinig treibende
oder sogar ausschlaggebende Kraft für diese Entscheidungen [CMW07], jedoch stellt die Beein-

21

2 Spreadsheet-Grundlagen

flussung von kritischen Entscheidungen durch mangelhafte Spreadsheets ein ernsthaftes Risiko
für die Verwendung von Spreadsheet-Systemen im Unternehmen dar.

Das Risiko von ernsthaften Konsequenzen, die durch den Einsatz qualitativ schlechter Produkte
für wichtige Aufgaben im Unternehmen verursacht werden, ist jedoch nicht nur auf Spreads-
heets beschränkt. Auch bei traditioneller Software, also Software, die nicht von Endbenutzern
sondern von professionellen Softwareentwicklern erstellt wird, besteht dieses Risiko [LL07, S.
62]. So zeigen katastrophale Ereignisse, wie beispielsweise der Absturz der Ariane 5 Rakete1,
welche schwerwiegenden Folgen Fehler in Software verursachen können. Dieses Risiko scheint
jedoch bei Software, die nach den Prinzipien des Software Engineering [LL07] entwickelt wird,
beherrschbar zu sein, da adäquate Methoden bestehen, um eine angemessene Qualität von
Software sicherzustellen.

Bei Spreadsheets hingegen ist die mangelnde Qualität und die daraus resultierenden Risiken
das Hauptproblem bei deren Einsatz in der Unternehmenswelt. Es handelt sich bei Spreadsheets
jedoch ebenfalls um eine spezielle Art von Software. So kann eine Spreadsheet-Sprache als
Programmiersprache der vierten Generation zur raschen Entwicklung von fachspezifischen
Anwendungen gesehen werden. Und bei einer Spreadsheet-Software handelt es sich um eine
integrierte Entwicklungsumgebung [GO10], wie sie auch bei der Entwicklung traditioneller
Software eingesetzt wird. Um zu untersuchen, in wie weit sich die Methoden des Software
Engineerings auf Spreadsheets übertragen lassen, soll im nächsten Kapitel das vorhandene
Wissen über Software-Qualität aus dem Software Engineering genauer untersucht werden.

1http://www.ima.umn.edu/~arnold/disasters/ariane.html

22

http://www.ima.umn.edu/~arnold/disasters/ariane.html

Kapitel 3

Software-Qualität

Im vorherigen Kapitel wurden unter anderem die Vorzüge und Gefahren von Spreadsheet-
Systemen analysiert. Dabei wurde gezeigt, dass in der Praxis eingesetzte Spreadsheets häufig
Fehler enthalten und eine allgemeine Tendenz zu niedriger Qualität besitzen, wodurch sie ein
Risiko für den Einsatz im Unternehmen darstellen können. Dieses Risiko ist dabei im Vergleich
zu Software, die von professionellen Entwicklern nach den Prinzipien des Software Engineerings
entwickelt werden, ungemein höher. Da es sich bei Spreadsheets auch um Software im weiteren
Sinne handelt, sollen daher zunächst allgemeine Qualitätsbegriffe bezüglich Software definiert
werden, um dann das vorhandene Wissen im Software Engineering über die Qualität von
Software im Detail zu untersuchen.

3.1 Der Qualitäts-Begriff

Entgegen dem allgemeinen Sprachgebrauch impliziert die ursprüngliche Bedeutung von Qualität
keinerlei Wertung. Sie bezeichnet lediglich eine Eigenschaft eines Gegenstandes. Im Lauf der Zeit
wurde jedoch der Begriff Qualität mit guter Qualität gleichgesetzt. Unabhängig davon existieren
verschiedene Definitionen, die unterschiedliche Blickwinkel auf die Qualität zulassen.

3.1.1 Qualitäts-Ansätze

Garvin nennt in [Gar84] fünf unterschiedliche Ansätze für die Definition von Qualität und
plädiert für eine ganzheitliche Betrachtung aller Ansätze.

 Die transzendente Sicht entspricht in etwa der umgangssprachlichen Definition von Quali-
tät. So wird Qualität als eine subjektive Eigenschaft gesehen, die zwar wahrnehmbar ist
und durch Erfahrung erkannt wird, aber nicht präzise definiert werden kann.

 Die produkt-basierte Sicht hingegen, definiert Qualität als die objektiv eindeutig messbaren
inhärenten Eigenschaften eines Produktes. Qualität ist also eine messbare Größe, bei der
subjektive Kriterien nicht berücksichtigt werden.

23

3 Software-Qualität

 Bei der benutzer-basierten Sicht wird Qualität allein durch den Benutzer des Produktes
definiert und bewertet.

 Bei der hersteller-basierten Sicht bezeichnet Qualität das Ausmaß, in dem die spezifizierten
Anforderungen für ein Produkt erfüllt werden.

 Bei der wert-basierten Sicht werden auch die Kosten und der Preis berücksichtigt. Gute
Qualität entspricht also einem günstigen Preis-Leistungs-Verhältnis.

3.1.2 Definitionen

In dieser Arbeit soll die Qualitäts-Definition der DIN 55350 (1995) verwendet werden, die
unterschiedliche Blickwinkel nach Garvin zulässt.

Qualität ist die Gesamtheit von Eigenschaften und Merkmalen eines Produktes oder einer
Tätigkeit, die sich auf die Eignung zur Erfüllung gegebener Erfordernisse beziehen.

Ein Qualitätsmerkmal bezeichnet dabei ergänzend zu der DIN Definition eine einzelne Eigen-
schaft oder ein einzelnes Merkmal eines Produktes oder einer Tätigkeit.

Dabei beschränkt sich Qualität jedoch nicht nur auf die Qualitätsaspekte nach allgemeinem
Sprachgebrauch, sondern sie beinhaltet insbesondere auch alle Eigenschaften bezüglich der
Funktionalität [LL07, S.65]. Qualität bestimmt also nach der gegebenen Definition die Eignung
eines Produktes oder einer Tätigkeit gegebene Erfordernisse zu erfüllen. Dabei liegt, je nach
dem wie diese Erfordernisse bestimmt und in welcher Form sie festgelegt werden, eine der
unterschiedlichen Sichtweisen nach Garvin vor. So liegt beispielsweise eine benutzer-basierte
Sicht der Qualität vor, wenn sich die Erfordernisse aus den impliziten Erwartungen und Bedürf-
nissen einzelner Benutzer ableiten. Für die Verwendung in der Praxis ist diese subjektive Sicht
jedoch nicht praktikabel und stattdessen wird häufig eine hersteller-basierte Sicht von Qualität
verwendet. In diesem Zusammenhang sind auch die drei Begriffe Anforderung, Fehler und
Mangel, wie sie in der ISO-Norm 9000 (2005) definiert sind, eng mit der Definition von Qualität
verbunden.

Eine Anforderung ist ein Erfordernis oder eine Erwartung, das oder die festgelegt, üblicherweise
vorausgesetzt oder verpflichtend ist.

Ein Fehler ist die Nichterfüllung einer Anforderung.

Ein Mangel ist die Nichterfüllung einer Anforderung in Bezug auf einen beabsichtigten oder
festgelegten Gebrauch.

Eine Anforderung ist also ein festgelegtes Erfordernis von dem erwartet, in der Regel sogar
rechtlich verlangt wird, dass es erfüllt wird. Anforderungen können dabei in unterschiedlicher
Form vorliegen, etwa als offene oder latente, als harte oder weiche oder als funktionale oder
nichtfunktionale Anforderungen [LL07, S.366-369]. In der Praxis sind jedoch meist nur solche

24

3.2 Taxonomie der Software-Qualitäten

Anforderungen von Bedeutung, die in überprüfbarer Form in einem Spezifikationsdokument
definiert und vom Kunden abgenommen wurden. So ist ein Fehler, also die Nichterfüllung
einer spezifizierten Anforderung, auch nur dann feststellbar, wenn die Möglichkeit besteht diese
Erfüllung objektiv zu überprüfen. Entsprechend kann ein Fehler nur dann auch als Mangel
bezeichnet werden, wenn der beabsichtige Gebrauch des Produkts oder das Ziel der Tätigkeit
überprüfbar definiert ist.

Im allgemeinen Sprachgebrauch werden die Begriffe Fehler und Mangel jedoch kaum unter-
schieden. Sie werden stattdessen allgemein verwendet, um die Abweichung bestimmter Quali-
tätsmerkmale von den erwarteten Werten zu bezeichnen. In dieser Arbeit sollen jedoch die hier
definierte Bedeutung des Begriffes Fehler verwendet werden.

3.2 Taxonomie der Software-Qualitäten

Die Qualität von Software-Produkten setzt sich aus verschiedenen Qualitäten und Qualitätsmerk-
malen zusammen, die einander beeinflussen und oft auch miteinander in Konkurrenz stehen
(Siehe Abbildung 3.1 und Abbildung 3.2).

Abbildung 3.1: Bedeutung verschiedener Qualitätsaspekte über der Zeit nach [LL07, S.67]

So setzt sich die Produktqualität, also die Qualität eines Software-Produkts, aus der Wartungsqua-
lität und der Gebrauchsqualität zusammen. Der Benutzer ist in der Regel nur an der Gebrauchs-
qualität interessiert, während die Wartungsqualität für den Hersteller meist eine große Rolle
spielt, da er zumeist auch die Wartung der Software durchführt. Da eine gute Wartungsqualität
jedoch auch eine Voraussetzung dafür ist, dass die Gebrauchsqualität des Produktes während
der Wartung hoch bleibt, sollte auch der Benutzer diese Qualität beachten. Entsprechend sind
für Hersteller und Benutzer die benutzer-basierte Sicht als auch die hersteller-basierte Sicht der
Qualität von Bedeutung.

Die Produktqualität wiederum wird stark von der Qualität des Entwicklungsprozesses beein-
flusst, die sich aus der Prozess- und Projektqualität zusammensetzt. Auch hier zeigt sich das

25

3 Software-Qualität

Problem einer einseitigen Betrachtungsweise der Qualität. So scheint die Prozessqualität auf den
ersten Blick für den Nutzer bzw. Kunden uninteressant, jedoch ist er dem Hersteller bezüglich
der Lieferung der Software ausgeliefert und sollte daher Interesse an einer hohen Prozessqualität
besitzen.

Ludewig und Lichter sprechen wegen dieser komplexen Beziehung zwischen den Qualitäten
von einer Software-bezogenen Qualität und schließen mit diesem Begriff alles ein, was im weitesten
Sinne als Software-Qualität erscheint [LL07, S. 65-70]. Die einzelnen Qualitätsmerkmale dieser
unterschiedlichen Qualitäten können mit Hilfe von Taxonomien gegliedert werden, die für das
Verständnis von Qualität äußert nützlich sein können. In dieser Arbeit soll daher die Taxonomie
Software-bezogener Qualitäten nach Ludewig und Lichter (Abbildung 3.2) verwendet werden.

Abbildung 3.2: Der Quälitätenbaum nach Ludewig und Lichter [LL07, S.68]

3.3 Qualitätskosten

Das Streben nach Qualität ist tief im Software-Engineering verwurzelt. Dabei ist das Ziel jedoch
nicht die Optimierung einzelner Qualitätsmerkmale, sondern es muss aus wirtschaftlicher Be-
trachtung ein globales Optimum aller Qualitätsmerkmale, sowie der damit verbundenen Kosten
angestrebt werden.

26

3.3 Qualitätskosten

Zu Beachten ist dabei die Zusammensetzung der Kosten für Software. Denn die Kosten bestehen
nicht nur allein aus den Netto-Herstellungskosten, sondern beinhalten auch die Qualitäts- und
Wartungskosten (Siehe Abbildung 3.3). Ein Hauptbestandteil der Qualitätskosten sind dabei die
Kosten für die Qualitätssicherung, die sich aus den Fehlerverhütungskosten und den Prüf- und
Nachbesserungskosten zusammensetzen. Es handelt sich also um Kosten, die anfallen um eine
gewisse Qualität her- und sicherzustellen. Wenn die Kosten für die Qualitätssicherung minimiert
werden, können die Fehlerfolgekosten, also die Kosten die durch den Einsatz von Software
mangelhafter Qualität entstehen, die gesamten Herstellungskosten schnell um ein hundertfaches
übersteigen.

Abbildung 3.3: Kostendifferenzierung in Richtung Fehlerkosten [LL07, S.63]

Daher hat die Vermeidung und die frühzeitige Erkennung von Fehlern höchste Priorität. Zur
Entwicklung einer möglichst fehlerfreien Software, also einer nach Herstellersicht qualitativ
hochwertigen Software, müssen drei Voraussetzungen erfüllt sein [LL07, S.236].

 Der Entwicklungsprozess muss so gestaltet sein, dass die einheitliche Organisation und
Durchführung von Software-Projekten festgelegt ist. Dabei soll er jedoch die nötige Flexibi-
lität besitzen, um projektspezifische Anpassungen durchzuführen, wo diese notwendig
sind. Ein Prozess ist dann von Nutzen, wenn er von allen Beteiligten akzeptiert wird und
der Nutzen objektiv festgestellt werden kann.

 Die Techniken müssen so vorhanden sein, das die durchzuführenden Tätigkeiten mög-
lichst optimal durch die eingesetzten Sprachen, Technologien, Methoden und Werkzeuge
unterstützt werden.

 Die Mitarbeiter müssen über eine entsprechende Ausbildung verfügen, die sie dazu befä-
higt, den Entwicklungsprozess umzusetzen und die gewählten Techniken anzuwenden.

27

3 Software-Qualität

Um diese Voraussetzungen sicherzustellen, ohne die eine hohe Software-Qualität nicht erreicht
werden kann, existieren im Software Engineering eine Reihe von Maßnahmen, die unter dem
Begriff Qualitätssicherung zusammengefasst werden können.

3.4 Software-Qualitätssicherung

Software-Qualitätssicherung wird im IEEE-Standard 610.12 (1990) doppeldeutig definiert. So
bezeichnet der Begriff einerseits alle geplanten und systematischen Aktivitäten, die das Vertrauen
in die Konformität zu technischen Anforderungen sichern und andererseits eine Menge von
Aktivitäten, die entworfen wurden, um den Prozess, mit dem eine Produkt gefertigt oder entwickelt
wird, zu bewerten.

Die zweite Bedeutung wird heutzutage meist unter dem Begriff Prozessbewertung geführt und
ist für den weiteren Verlauf dieser Arbeit nicht von Bedeutung. Nach der ersten Bedeutung, die
für diese Arbeit verwendet werden soll, handelt es sich bei Software-Qualitätssicherung um
Maßnahmen, die die Entstehung qualitativ hochwertiger Software fördern oder zeigen, dass
eine Software eine hohe Qualität besitzt. [Sie] hat dabei unmittelbar zum Ziel, das Vertrauen in eine
Software zu erhöhen; mittelbar wirkt sie sich [...] auf das Qualitätsniveau aus, steigert also die Fähigkeit,
qualitativ hochwertige Produkte zu entwickeln [LL07, S.270].

Die Schwerpunkte der Software-Qualitätssicherung lassen sich dabei nach Ludewig und Lichter
in drei Gruppen unterteilen (Abbildung 3.4):

 Die organisatorischen Maßnahmen umfassen dabei alle Formen der systematischen Pla-
nung und Organisation von Entwicklung und Qualitätssicherung.

 Konstruktive Maßnahmen behandeln den Einsatz geeigneter Methoden, Technologien,
Sprachen und Werkzeuge, die der hohen Qualität und der Vermeidung von Fehlern dienen.
Aber auch der Einsatz geeigneter Prozessmodelle oder die Weiterbildung von Mitarbeitern
sind konstruktive Maßnahmen.

 Analytische Maßnahmen verfolgen das Ziel, mittels systematisch durchgeführter Prüfun-
gen Fehler in den Arbeitsergebnissen zu erkennen.

Keine dieser Maßnahmen ist dabei in der Lage allein die Qualität von Software sicherzustellen.
Stattdessen komplementieren sich die Maßnahmen und sind zusammen dafür zuständig, dass
die Voraussetzungen für Qualität geschaffen und gesichert werden. Zwar wird eine angemessene
Software-Qualität vor allem durch konstruktive Maßnahmen sichergestellt und die notwen-
digen Rahmenbedingungen werden durch organisatorische Maßnahmen geschaffen. Jedoch
sind auch die analytischen Maßnahmen ein wichtiger Bestandteil der Qualitätssicherung, da sie
Abweichungen von den Prinzipien der anderen Maßnahmen erkennen [FLS04, S.20-21].

Da in dieser Arbeit ein Prüfwerkzeug für Spreadsheets nach dem Vorbild der vorhanden Me-
thoden und Werkzeuge für die traditionelle Software-Entwicklung entstehen soll, werden die

28

3.5 Software-Prüfung

Abbildung 3.4: Gliederung der Software-Qualitätssicherung nach Ludewig und Lichter [LL07,
S.271]

verschiedenen Arten Software zu prüfen im nächsten Abschnitt kurz vorgestellt. Speziell soll
dabei auf die statischen Prüfungen von Software näher eingegangen werden.

3.5 Software-Prüfung

Software-Prüfungen haben den Zweck mittels einer systematischen Suche nach Fehlern, die Qua-
lität eines Prüflings festzustellen. Als Prüfling werden dabei Software-Produkte oder Software-
Bestandteile bezeichnet, die einer Prüfung unterzogen werden sollen. Prüfungen bieten dabei
folgenden Nutzen [FLS04, S.14]:

 Prüfungen liefern eine simple Definition der Qualitätskriterien und ergänzen damit die oft
unzureichende Spezifikation der Anforderungen.

 Prüfungen erhöhen die Qualität nicht direkt, aber sie zeigen die Qualität des Prüflings an
und bieten den Entwicklern Feedback.

 Prüfungen decken Prüflinge mit besonders guter und besonders schlechter Qualität auf.
Dadurch wird einerseits verhindert, dass Prüflinge mit schlechter Qualität verwendet
werden und andererseits können Prüflinge mit besonders guter Qualität als Vorbilder
verwendet werden.

 Die Erwartung einer Prüfung beeinflusst das Verhalten von Entwicklern positiv, da der
Anreiz besteht gute Prüfresultate zu erzielen, wodurch die Qualität direkt erhöht wird.

29

3 Software-Qualität

3.5.1 Prüfungsarten

Die verschiedenen Arten zur Prüfung von Software lassen sich, wie in Abbildung 3.4 dargestellt,
in nicht-mechanische und mechanische Prüfungen unterteilen.

 Als nicht-mechanische Prüfungen werden dabei Prüfungen bezeichnet, die vom Menschen
ohne einen Rechner durchgeführt werden. Zu den bekannten nicht-mechanischen Prüfun-
gen für Software zählen dabei die Durchsicht, das technische Review, der Walkthrough
und die Stellungnahme [LL07, S.281 ff.].

 Mechanische Prüfungen können weiter in statische und dynamische Prüfungen unterteilt
werden. Dynamische Prüfungen umfassen alle Arten des Software-Tests, wie etwa in
[FLS04] beschrieben. Bei statischen Prüfungen werden die Prüflinge mit Hilfe spezieller
Werkzeuge analysiert, ohne die Prüflinge dabei auszuführen.

Die verschiedenen Prüfungsarten sind dabei unterschiedlich geeignet, um bestimmte Fehlerarten
im Prüfling zu finden. So können Fehler in Dokumenten nur mit Hilfe von manuellen Prüfungen
entdeckt werden, zur Erkennung von Fehlern bezüglich nicht-funktionaler Anforderungen
können statische Prüfungen einen Beitrag leisten und die verschiedenen Arten des Tests eignen
sich am besten für die Prüfung von funktionalen Anforderungen. Für diese Arbeit sind jedoch
speziell die mechanischen statischen Prüfungen von Bedeutung und sollen daher im Folgenden
genauer untersucht werden.

3.5.2 Statische Software-Prüfung

Die statische Software-Prüfung ist eine Unterklasse der mechanischen Software-Prüfung. Prüfun-
gen dieser Art werden daher mit Hilfe von sogenannten statischen Analysewerkzeugen (engl.
static analysis tools) am Rechner durchgeführt. Die Aufgabe der statischen Analysewerkzeuge ist
es, Softwareartefakte ohne deren Ausführung auf die Einhaltung von Regeln und generelle Kon-
sistenz zu prüfen oder quantitative Merkmale über die Artefakte zu erfassen. Eine Prüfung gegen
Regeln liefert Aussagen darüber, ob gewisse Normen und Vorschriften eingehalten wurden. Eine
Konsistenzprüfung kann beispielsweise zeigen, ob alle definierten Elemente auch verwendet
werden und eine quantitative Untersuchung hilft dabei, objektive Metriken zu erfassen, auf Basis
derer eine Bewertung des Prüflings durchgeführt werden kann [FLS04, S.21].

Anwendung

Durch den Verzicht auf die Ausführung der Prüflinge bestehen kaum Einschränkungen für
Softwareartefakte, um von statischen Analysewerkzeugen geprüft werden zu können. So können
Softwareartefakte bereits frühzeitig in der Entwicklung geprüft und Informationen über deren
Qualität gewonnen werden. Gleichzeitig beschränken sich die überprüfbaren Vorschriften durch
den Verzicht auf die Ausführung jedoch hauptsächlich auf nicht-funktionale Qualitätsmerkmale.

30

3.5 Software-Prüfung

Es werden also hauptsächlich die Qualitätsmerkmale geprüft, die in Abbildung 3.2 unter der
Kategorie Wartbarkeit eingegliedert sind.

Die Prüfungen erfolgen außerdem meist rein syntaktisch und sind dadurch anfällig für falsch
positive Befunde. Und auch bei richtig positiven Befunden liegen nicht zwangsweise Fehler
im Sinne einer nicht erfüllten Anforderung vor. Es handelt sich vielmehr um Warnungen, dass
untersuchte Elemente auf bestimmte Art kritisch für die Qualität sein können. Generell greift die
gegebene Definition von Fehlern nach einer hersteller-basierten Sicht der Qualität nur bedingt
bei Befunden von statischen Analysewerkzeugen. So steht für Kunden die Funktionalität meist
im Vordergrund und daher werden nicht-funktionale Anforderungen meist nur ungenügend
oder gar nicht festgelegt [LL07, S.369]. Vorschriften, die von statischen Analysewerkzeugen
überprüft werden, sind daher überwiegend nicht als Anforderungen durch den Kunden definiert
worden und es handelt sich bei Befunden meist nicht um Fehler nach Herstellersicht. Daher
wird der Begriff Defekt verwendet, um von statischen Analysewerkzeugen entdeckte Befunde zu
bezeichnen.

Ein Defekt ist dabei nach IEEE 1044 (2009) eine zu behebende oder zu ersetzende Unvollkom-
menheit eines Prüflings, auf Grund derer der Prüfling die an ihn gestellten Ansprüche oder
spezifizierten Vorschriften nicht erfüllt.

Ein Defekt stellt also ein Defizit oder eine Schwäche eines Prüflings dar und muss nicht zwangs-
weise einen Fehler im Sinne einer nicht erfüllten Anforderung sein. Trotz dieser Einschränkungen
sind statische Analysewerkzeuge eine wichtige Qualitätssicherungsmaßnahme bei der Entwick-
lung von Software, da deren wiederholte Anwendung nur sehr geringe Kosten verursacht und
sich dabei trotzdem ausreichend Informationen über die Qualität des Prüflings gewinnen lassen.
Damit dies gewährleistet ist, müssen geeignete Werkzeuge ausgewählt und entsprechend dem
jeweiligen Nutzungskontext angepasst werden. Die Konfiguration des Werkzeugs ist dabei essen-
tiell, da sonst falsch-positiv Raten bis zu 96% auftreten können [WJKT05]. Jedoch können mit gut
konfigurierten statischen Analysewerkzeugen bis zu 80% aller Defekte in einem Softwareprodukt
gefunden werden [Wag06]. Zwar werden durch die statische Analyse hauptsächlich Defekte mit
relativ geringer Schwere entdeckt [WDA�08], jedoch weisen die gefundene Defekte häufig auf
die Anwesenheit solcher hin. Die Defekte zeigen so die Stellen auf, an denen mit hoher Wahr-
scheinlichkeit Fehler vorhanden sind oder in Zukunft entstehen könnten [WDA�08, ZWN�06].
Dabei kann auch der parallele Einsatz von verschiedenen Analysewerkzeugen lohnenswert sein,
da in der Studie von Rutar et al. [RAF04] gezeigt wurde, dass verschiedene Analysewerkzeuge
meist auch unterschiedliche Defekte entdecken.

31

3 Software-Qualität

Techniken

Statische Analysewerkzeuge können dabei eine oder mehrere der folgenden Techniken1 verwen-
den, die nach ihrer Fortschrittlichkeit sortiert sind.

 Bei einer Stil-Überprüfung (engl. Style-Checking) wird der Prüfling auf die Konformität mit
festgelegten Richtlinien untersucht, die die Lesbarkeit, Verständlichkeit und Wartbarkeit
verbessern sollen. So werden beispielsweise Namenskonventionen für Variablen oder die
Formatierung des Quelltextes in Programmierrichtlinien festgelegt und können mittels
einer Stil-Überprüfung geprüft werden.

 Bei einem syntaktischen Musterabgleich wird der Prüfling nach spezifischen Sprachkon-
strukte und -konstellationen durchsucht, die auf die Anwesenheit eines Defekts hinweisen
können. Die Sprachkonstrukte und -konstellationen werden dabei durch rein syntaktisch
definierte Muster angegeben – eine semantische Analyse findet nicht statt. Diese Muster
sind meist sprachspezifisch und werden als Softwarefehler-Muster (engl. Bug-Pattern),
Anti-Muster (engl. Anti-Pattern) oder schlechter Code-Geruch (engl. Code-Smell) ange-
geben. Die Übergänge zwischen diesen unterschiedlichen Musterarten ist dabei fließend,
jedoch wird generell folgendes unter den Begriffen verstanden:

– Ein Bug-Pattern ist eine mögliche Fehlanwendung von Konstrukten einer formalen
Sprache, die oft zu einem Fehlverhalten bei der Ausführung des Prüflings führen. Ein
typisches Bug-Pattern für die Programmiersprache Java ist beispielsweise der Ver-
gleich von Text-Objekten (Strings) mittels des Vergleichsoperators (==) , anstatt mittels
der equals()-Methode. Dabei kann die resultierende Semantik bei der Verwendung
des Vergleichsoperators, der Vergleich der beiden Objekt-Adressen, in manchen Fällen
gewünscht sein. Jedoch deutet die Anwesenheit dieses Patterns darauf hin, dass der
Programmierer die Inhalte der beiden Objekte vergleichen wollte und somit ein Defekt
vorliegt, der zu einem Fehlverhalten führen kann.

– Ein Anti-Pattern beschreibt eine zu vermeidende Struktur bei der Lösung eines be-
stimmten Problemtyps. Die Anti-Patterns bilden damit das Gegenstück zu den Design
Patterns, also den bewährten Lösungsschablonen für wiederkehrende Architektur-
probleme, wie sie durch das Buch der „Gang of Four“ [GHJV95] bekannt geworden
sind. Ein bekanntes Anti-Pattern ist dabei der Spaghetti-Code, also ein Quellcode der
komplexe und verworrene Quellstrukturen aufweist und viele Sprunganweisungen
enthält.

– Ein Code-Smell definiert Heuristiken zur Erkennung von unsauberen Abschnitten,
also solchen Abschnitten, die besser einer Umstrukturierung (engl. refactoring) unter-
zogen werden sollten. Der Begriff wurde dabei durch Kent Beck, dem Erfinder des

1Basierend auf einer noch unveröffentlichten Publikation von Prof. Dr. rer. nat. Stefan Wagner http://www.iste.
uni-stuttgart.de/se2/menschen/wagner.html

32

http://www.iste.uni-stuttgart.de/se2/menschen/wagner.html
http://www.iste.uni-stuttgart.de/se2/menschen/wagner.html

3.5 Software-Prüfung

Extreme Programming, geprägt und durch Martin Fowler verbreitet. Ein typischer
Code-Smell ist beispielsweise duplizierter Quelltext, also Quelltext der an verschiede-
nen Stellen in identischer Form vorliegt.

Zwar können komplexere Defekte mit einer Mustererkennung nicht erkannt werden, jedoch
zeigt die Erfahrung, dass in den meisten Anwendungen Defekte durch einen Musterab-
gleich aufgedeckt werden und daher ist dies die am häufigsten eingesetzte Methode zur
statischen Analyse.

 Bei einfachen Kontroll- und Datenflussanalysen werden Kontroll- und Datenstrukturen des
Quelltextes untersucht, um die zeitliche Abfolge von Anweisungen im Quelltext und den
Austausch von Daten zwischen Entitäten zu bestimmen. Der Kontrollfluss kann dabei als
Kontrollflussgraph ausgedrückt werden, aus dem auch der Datenfluss entnommen werden
kann. Der Kontrollflussgraph kann dann dazu verwendet werden um Informationen über
die Werte zu sammeln, die zu verschiedenen Zeitpunkten berechnet werden. So können
beispielsweise Abhängigkeiten zwischen Variablen eines Programms oder nicht erreichbare
Anweisungen eines Quelltexts entdeckt werden.

 Bei der abstrakten Interpretation wird der Kontroll- und Datenfluss abstrahiert, um durch
die semantische Analyse der verbliebenen Informationen Aussagen über das Verhalten von
Programmen treffen zu können. Es werden also semantische Informationen ausgeblendet,
um statisch die Eigenschaften des Programmes bei dessen dynamischer Ausführung be-
stimmen zu können. So kann durch abstrakte Interpretation der Ergebnistyp der einfachen
Java-Anweisung: 3.12 + 2 bestimmt werden. Dazu werden die konkreten Werte abstra-
hiert, durch ihren Typ ersetzt (double + int) und anschließend der Operator ausgewertet
(double + int = double).

Beispiele

In der Praxis ist eine große Auswahl an statischen Analysewerkzeugen vorhanden, die ihren
Nutzern beim Auffinden von Defekten durch unterschiedliche Techniken helfen. Eine kleine Aus-
wahl von Werkzeugen, die Techniken unterschiedlichen Reifegrads verwenden, sei im Folgenden
gegeben.

Check-Style2 ist ein statisches Analysewerkzeug zur Stilüberprüfung von Java-Quellcode. Da-
bei ist Check-Style vielseitig konfigurierbar und erlaubt die automatische Überprüfung
von individuellen Programmierrichtlinien. Zunächst als reines Werkzeug zur Stilüber-
prüfung konzipiert, verwendet Check-Style inzwischen auch fortgeschrittenere statische
Analysetechniken, um weitere Defekte in Java-Quellcode zu entdecken.

2http://checkstyle.sourceforge.net/

33

http://checkstyle.sourceforge.net/

3 Software-Qualität

Find-Bugs3 ist ein statisches Analysewerkzeug für Java, das mittels syntaktischem Musterab-
gleich, sowie einfachen Kontroll- und Datenflussanalysen Bug-Patterns entdeckt. Für die
Prüfung von Find-Bugs wird dabei der Bytecode der untersuchten Java-Klassen verwendet
und dieser wird mittels einer breiten Anzahl an relativ einfachen Techniken auf Defekte
untersucht. Find-Bugs bietet zu diesem Zweck eine Vielzahl an vordefinierten Bug-Patterns
für Java an, erlaubt es jedoch auch eigene Detektoren für Bug-Patterns zu definieren.

Coverty Static Analysis4 ist ein hochentwickeltes kommerzielles Werkzeug zur statischen Ana-
lyse von C, C++, C# und Java-Quelltexten, das von vielen großen Unternehmen eingesetzt
wird und auch für die Analyse vieler Open Source Projekte verwendet wurde 5. Es ver-
wendet dazu vor allem fortgeschrittene Techniken, wie die abstrakte Interpretation, um
beispielsweise Speicherlecks und Race-Conditions zu entdecken.

3http://findbugs.sourceforge.net/
4http://www.coverity.com/products/static-analysis.html
5http://scan.coverity.com/all-projects.html

34

http://findbugs.sourceforge.net/
http://www.coverity.com/products/static-analysis.html

Kapitel 4

Spreadsheet-Qualität

Im vorherigen Kapitel wurde gezeigt, dass ein umfangreiches Wissen über die Qualität von
Software vorhanden ist und dass der Stand der Forschung im Software Engineering es erlaubt,
mittels einer Vielzahl an konkreten Maßnahmen eine angemessene Qualität sicherzustellen.
Die Qualität von Spreadsheets in der Praxis hingegen ist häufig mangelhaft und die daraus
resultierenden Risiken stellen das Hauptproblem bei deren Einsatz in der Unternehmenswelt
dar. Daher soll in diesem Kapitel nun der Stand der Forschung bezüglich der Qualität von
Spreadsheets untersucht werden.

4.1 Stand der Forschung

Viele Forschungsarbeiten beschäftigen sich mit der Qualität von Spreadsheets, insbesondere mit
Spreadsheet-Fehlern und den Techniken mit denen Fehler vermieden, entdeckt und korrigiert
werden können. Jedoch ist generell relativ wenig über Spreadsheet-Fehler und den Techniken
zu deren Bekämpfung bekannt, wie Powell, Baker und Lawson in ihrem kritischen Review der
bestehenden Literatur über Spreadsheet-Fehler feststellen [PBL08b].

4.1.1 Klassifikation von Spreadsheet-Fehlern

Bereits die Definition von Fehlern bei Spreadsheets erweist sich als problematisch, da Spreads-
heets meist nicht in einem geregelten Prozess nach festgelegten Anforderungen, sondern ad hoc
und nach dem Prinzip Code and Fix entwickelt werden. Ohne eine Spezifikation der Anforderun-
gen kann die Korrektheit und die Qualität eines Spreadsheets jedoch nicht objektiv überprüft
werden. Da jeder Nutzer seine ganz eigenen Anforderungen an das Spreadsheet stellt, wird die
Anwesenheit von Fehlern oder Mängeln in Spreadsheets zu einer subjektiven Streitfrage. In der
Forschung wird versucht dieses Problem zu umgehen, indem Fehlerklassifikationen verwendet
werden, die eine allgemeine Menge von Anforderungen an Spreadsheets darstellen. Für die Er-
stellung einer Fehlerklassifikation wird eine Hierarchie von abstrakten Fehlerklassen identifiziert,
um konkrete Fehler entsprechend ihrer Eigenschaften eindeutig einer Klasse zuordnen zu können.
Dabei können verschiedene Eigenschaften zur Bildung von Fehlerklassen herangezogen werden,

35

4 Spreadsheet-Qualität

wodurch unterschiedliche hierarchische Strukturen, sogenannte Fehler-Taxonomien, entstehen.
Eine gute Fehler-Taxonomie zeichnet sich dabei durch drei Eigenschaften aus [PBL08b]:

 Als erstes sollte die Taxonomie angeben, für welchen Zweck sie erstellt wurde und in
welchem Kontext sie verwendet werden soll.

 Zweitens sollte für jede Fehlerklasse klar definiert sein, welche Eigenschaften ein Fehler
besitzen muss, um ihr zugeordnet werden zu können. Zu diesem Zweck sollten auch einige
Positiv- und Negativbeispiele angeben werden.

 Drittens sollte jede Taxonomie in ihrem spezifizierten Kontext erprobt sein, um sicherzustel-
len, dass Fehler von unterschiedlichen Personen den Fehlerklassen einheitlich zugeordnet
werden.

Da Fehler-Taxonomien für eine bestimmte Verwendung erstellt werden, gibt es keine allgemeine
optimale Taxonomie [GO08]. Stattdessen sind Fehler-Taxonomien für bestimmten Zwecke unter-
schiedlich geeignet. So können Fehler beispielsweise nach deren Ursache, Auswirkungen oder
Entstehungsphase klassifiziert werden. Entsprechend sind die daraus entstehenden Taxonomien
unterschiedlich nützlich, um beispielsweise Wissen zur Fehlervermeidung oder zur Einschätzung
der Risikos aus ihnen zu gewinnen. Folglich existiert eine Vielzahl von Taxonomien, von denen
die wichtigsten in [Pan08b, PBL09] zusammengefasst sind. Die bekannte Fehler-Taxonomie für
Spreadsheets von Panko und Halverson [Pan08b] kann dem Anhang (Abbildung A.4) entnom-
men werden. Trotz der relativ zahlreich vorhandenen Fehler-Taxonomien, besteht weiterhin ein
großer Verbesserungsbedarf, da bei vielen dieser Taxonomien der gedachte Einsatzzweck und
Kontext nicht angegeben ist und Belege fehlen, dass Fehler in diesen Taxonomien einheitlich
zugeordnet werden können.

4.1.2 Auswirkungen von schlechter Spreadsheet-Qualität

Trotz ihrer Bedeutung sind die realwirtschaftlichen Auswirkungen, die von Spreadsheet-Fehlern
verursacht werden, ein größtenteils unerforschtes Gebiet. Denn um die Auswirkungen von
Spreadsheet-Fehlern in der realen Welt durchführen zu können, benötigt man eine lückenlose
Verfolgung und Dokumentation der verwendeten Spreadsheets, von ihrem Entstehen bis hin zum
Eintreten der Auswirkungen. Dies wäre zwar theoretisch umsetzbar, etwa über entsprechende
Versionsverwaltungssysteme, jedoch fehlt die Umsetzung und Unterstützung in der Praxis. Da
eine Untersuchung der Auswirkung in einer künstlichen Umgebung wenig Aussagekraft bietet,
ist das bisherige Wissen über die Auswirkungen von Spreadsheet-Fehlern beinahe ausschließlich
auf Interviews, Audits und Berichte beschränkt [CMW07, O’B, PB08]. Diese geben die Auswir-
kungen von Spreadsheet-Fehlern durch die prozentuale Abweichung der Ausgabewerte von
den Sollwerten an oder zählen die Anzahl der Fehlentscheidungen, die aufgrund der Fehler
getroffen wurden. Alternativ wird der finanzielle Schaden geschätzt beziehungsweise gemessen,
der durch den Fehler potentiell entstehen könnte ober bereits entstanden ist. Die Ergebnisse
dieser Arbeiten zeigen dabei, dass Spreadsheet-Fehler kritische Auswirkungen, mit möglichen

36

4.1 Stand der Forschung

Schäden bis zu 10.000.000$ [PB08], verursachen können. Gleichzeitig ziehen eine Vielzahl von
Fehlern jedoch gar keine direkten negativen Auswirkungen nach sich, da die Ergebnisse des
Spreadsheets durch sie nicht verändert werden. Erstaunlicherweise scheint kaum ein Zusam-
menhang zwischen der Qualität eines Spreadsheets und den möglichen Folgen, die ein Fehler
in diesem Spreadsheet verursachen könnte, zu bestehen. So fanden Powell et al. [PB08] bei der
Inspektion von Spreadsheets aus der Praxis qualitativ hochwertige Spreadsheets, die für unkriti-
sche Aufgaben verwendet wurden, aber auch Spreadsheets mit vielen schwerwiegenden Fehlern,
die Folgekosten in Millionenhöhe verursachen hätten können. Die Frage, welche Fehlerarten mit
hoher Wahrscheinlichkeit schwerwiegende Folgen verursachen, bleibt jedoch ungeklärt.

4.1.3 Häufigkeit von Spreadsheet-Fehlern

Eine weitere wichtige Frage bezüglich Spreadsheet-Fehlern ist, mit welcher Häufigkeit diese
in Spreadsheets vorhanden sind. Die Häufigkeit von Fehlern wird dabei meist durch eine Zell-
Fehlerquote [Pan98], also der Quote an Zellen in denen ein Fehler entdeckt wurde, ausgedrückt.
Diese Fehlerquote hängt jedoch von einer Vielzahl an Variablen ab, wie beispielsweise von der
verwendeten Fehlerdefinition, den verwendeten Spreadsheets oder der verwendeten Methode
um die Fehler in den Spreadsheets zu entdecken. Da für alle diese Variablen ein entsprechender
Standard fehlt, ist es wenig überraschend, dass die Ergebnisse der durchgeführten Studien stark
variieren und deren Ergebnisse schwer miteinander vergleichbar sind [PBL09, Pan08c, Iro08].
Daher hat Panko in [PHJ96] versucht durch den gewichten Durchschnitt der Ergebnisse von
sieben Studien Antwort darauf zu geben, wie hoch die durchschnittliche Zell-Fehlerquote in
Spreadsheets ist. Aber auch die von ihm errechnete durchschnittliche Quote von 5% erhebt keinen
Anspruch auf eine allgemeine Gültigkeit. Sie legt jedoch den Schluss nahe, dass Spreadsheets im
Vergleich mit anderen Software-Artefakten überproportional viele Fehler enthalten.

4.1.4 Erstellung von Spreadsheets und die Vermeidung von Fehlern

Um die hohen Fehlerquoten zu verringern, ist es wichtig zu verstehen, wie Spreadsheets in
der Praxis erstellt werden und wie dabei Fehler entstehen. Nur dann können zielgerichtet Tech-
nologien, Techniken und Prozesse entwickelt werden, die der Entstehung von Fehlern bei der
Entwicklung und Nutzung von Spreadsheets entgegen wirken. Bisher ist jedoch wenig gesi-
chertes Wissen vorhanden, wie Spreadsheets in der Praxis erstellt werden und wie dabei Fehler
entstehen. Dabei kommt erschwerend hinzu, dass durch das Spreadsheet-Konzept keine Struktur
vorgegeben wird und Spreadsheets daher selbst innerhalb von Unternehmen meist auf sehr
unterschiedliche Art und Weise entwickelt werden [PB08]. Das vorhandene Wissen stammt daher
zumeist aus Labor-Experimenten [BG87, ON87, Kru06], in denen Benutzer unter Beobachtung
Spreadsheets nach textuellen Aufgabenstellungen erstellen mussten. Die Autoren, der Veröf-
fentlichungen dieser Experimente, geben zwar Ratschläge dafür, wie Fehler in Spreadsheets
verringert werden können, jedoch fehlt es an konkreten Belegen, dass diese Ratschläge auch in
der Praxis zu geringeren Fehlerquoten führen. Außerdem ist ungeklärt, in wie weit ein Eingriff in
den Entstehungsprozess von Spreadsheets, eine Verringerung der Nützlichkeit von Spreadsheets
für den Endbenutzer zur Folge haben könnte.

37

4 Spreadsheet-Qualität

4.1.5 Erkennung von Spreadsheet-Fehlern

Ein komplementärer Ansatz zur Vermeidung von Fehlern bei der Erstellung von Spreadsheets
ist das Erkennen von Fehlern nach Abschluss der Entwicklung des Spreadsheets. Bestehende
Studien [GHJ�96, AP10, Pan99] untersuchen die Prüfung von Spreadsheets dabei entweder durch
Laborexperimente, bei denen Probanden eingebaute Fehler in Spreadsheets erkennen sollen, oder
durch die Untersuchung von Spreadsheets in der Praxis durch einen Experten. In der Mehrzahl
dieser Studien,werden dabei keine konkreten Verfahren angewendet und den Prüfern werden
keine Anweisungen vorgegeben, wie die Spreadsheets überprüft werden sollen. Und auch wenn
ein konkretes Verfahren zur Prüfung eingesetzt wird, wird dieses häufig nicht detailliert genug
beschrieben. Als Folge daraus ist es größtenteils unbekannt, wie es um die Effektivität und
Effizienz der Ansätze im Vergleich untereinander bestellt ist. Existierende Ansätze beanspruchen
zwar, Spreadsheet-Fehler effektiv erkennen zu können, jedoch fehlt es an Belegen, dass dies in
der Praxis tatsächlich der Fall ist.

4.2 Zusammenfassung

Die kritische Analyse des Forschungsstandes bezüglich der Qualität von Spreadsheets in [PBL09]
lässt daher die folgenden alarmierende Schlüsse ziehen:

 Es gibt keinen allgemein akzeptierten Standard, wie Fehler gezählt und klassifiziert werden.
Außerdem fehlt es an Taxonomien für konkrete Einsatzzwecke, deren Nützlichkeit objektiv
evaluiert wurde.

 Die wirtschaftlichen Auswirkungen, die von Spreadsheet-Fehlern verursacht werden, sind
größtenteils unbekannt. Gleichzeitig besteht jedoch Grund zur Annahme, dass bestimmte
Spreadsheet-Fehler Schäden in Millionenhöhe anrichten können.

 Bestehende Studien über die Häufigkeit von Fehlern in Spreadsheets können nicht vergli-
chen werden, da entsprechende Standards fehlen. Jedoch besteht Grund zur Annahme,
dass Spreadsheets im Vergleich zu anderen Software-Artefakten übermäßig viele Fehler
enthalten.

 Es ist wenig darüber bekannt, wie Spreadsheet-Fehler entstehen und wie diese verhindert
werden können. Viele Arbeiten, die größtenteils auf Beobachtungen von Laborexperimenten
basieren, schlagen zwar Lösungen vor, um die Entstehung von Fehler zu verringern, jedoch
fehlen häufig die Belege, dass die vorgeschlagenen Maßnahmen tatsächlich die Häufigkeit
von Fehlern in der Praxis reduzieren können.

 Ansätze, die beanspruchen effektiv Fehler in Spreadsheets erkennen zu können, sind nicht
detailliert genug beschrieben. Außerdem ist kaum etwas darüber bekannt, wie die verschie-
denen Ansätze im Vergleich bezüglich ihrer Effektivität und ihrer Effizienz abschneiden.

38

4.2 Zusammenfassung

Warum aber ist der Stand der Forschung von Spreadsheets und Software so unterschiedlich,wenn
es sich doch bei Spreadsheets auch um Software handelt? Können bestehende Ansätze aus
dem Software Engineering nicht auf Spreadsheets übertragen werden? Diese Fragen sollen
im folgenden Kapitel beleuchtet werden, in dem die vorhandenen Ansätze zur Erhöhung der
Spreadsheet-Qualität untersucht werden.

39

Kapitel 5

Vorhandene Ansätze zur Erhöhung der

Spreadsheet-Qualität

Die Analyse des Stands der Forschung bezüglich der Qualität von Spreadsheets hat gezeigt, dass
dieser weit von dem Stand im Software Engineering entfernt ist. Da es sich bei Spreadsheets
jedoch auch um Software handelt, liegt die Idee nahe, die Qualität von Spreadsheets dadurch
zu erhöhen, indem das bestehenden Wissen und die bestehenden Ansätze aus dem Software
Engineering auch für Spreadsheets verwendet werden.

5.1 Spreadsheet-Engineering

Thomas Grossman bezeichnet die angesprochene Übertragung von Prinzipien des Software En-
gineerings auf Spreadsheets in [Gro07] als Spreadsheet Engineering und verspricht sich davon die
Lösung vieler Probleme beim Einsatz von Spreadsheets. Er vermutet im Spreadsheet Engineering
großes Potential, um die Produktivität von Spreadsheet-Entwicklern zu erhöhen, die Häufigkeit
und Schwere von Spreadsheet-Fehlern zu verringern und die Wartbarkeit von Spreadsheets zu
verbessern.

In der Tat sind viele bestehende Ansätze für Spreadsheets auf Methoden des Software Engi-
neerings zurückzuführen und vieles von dem bestehenden Wissen scheint übertragbar. So ist
beispielsweise der Zusammenhang von niedriger Spreadsheet-Qualität und den möglichen ho-
hen Fehlerfolgekosten zumindest in der Forschung bekannt und man ist sich des resultierenden
Risikos bewusst. Entsprechend warnt die Spreadsheet-Forschung seit dem ersten Verwenden
von Spreadsheet-Systemen vor Gefahren durch endbenutzer-entwickelte Spreadsheets [Dav82].
Als Folge dieser Erkenntnis haben sich Forschungsgemeinschaften gebildet, wie etwa die Eu-
ropean Spreadsheet Risks Interest Group (EuSpRIG)[EuSb] oder das EUSES Consortium (End
Users Shaping Effective Software) 1, die versuchen die Risiken von Spreadsheets zu erforschen, die

1http://eusesconsortium.org

41

http://eusesconsortium.org

5 Vorhandene Ansätze zur Erhöhung der Spreadsheet-Qualität

Wahrnehmung dieser Risiken zu verbessern und entsprechende Maßnahmen zu deren Bekämp-
fung zu entwickeln. Dabei orientieren sich die Forschungsgemeinschaften häufig am Software
Engineering. So finden sich beispielsweise alle Voraussetzungen für die Qualität von Software
auch in den Forschungsbereichen der EuSpRIG wieder [Cha08].

 Das Forschungsgebiet Werkzeuge beschäftigt sich etwa mit Methoden und Werkzeugen
zum Erstellen von Spreadsheets [Raf08, Gro07, RCK08a].

 Mit dem Bereich Ausbildung soll das Bewusstsein von Endbenutzern erhöht, sowie die Lehre
und Forschung bezüglich Spreadsheets verbessert werden [Pan08c, RCK08b, ACM00].

 Unter dem Begriff Audit werden Methoden und Werkzeuge zur Prüfung von Spreadsheets
zusammengefasst [Cro07, CHM08, NO10].

 Der Bereich Management beschäftigt sich mit Standards und Kontrollmechanismen zum
Lenken der Spreadsheet-Entwicklung [But08, GO10].

Gleichzeitig existieren auch Ansätze in allen Bereichen der Qualitätssicherung von Spreadsheets,
angefangen von organisatorischen [But08, GO10], über konstruktive [Raf08, O’B10], bis hin zu
analytischen Maßnahmen [Aya01, ACM00, AM08, Pan07].

Trotz der Übertragung der Ansätze aus dem Software-Engineering scheinen diese jedoch ohne
ausschlaggebenden Erfolg zu bleiben. So hat sich seit den frühen Warnungen vor den Gefahren
von Spreadsheets kaum etwas an den Problemen verändert, obwohl sich die Technologien und
Techniken weiterentwickelt haben [CS96, PBLFJ08].

Der Grund dafür, dass die Ansätze aus dem Software-Engineering nicht richtig greifen, liegt
unserer Meinung nach vor allem an der Tatsache, dass die dazu notwendigen Voraussetzungen
bezüglich der Nutzer von Spreadsheets nicht erfüllt sind. So handelt es sich bei den Erstellern und
Bearbeitern von Spreadsheets meist nicht um professionelle Entwickler, sondern um Endbenutzer.
Diese sind in der Regel nicht für die Entwicklungsaufgaben ausgebildet, die sie bei der Erstellung,
Bearbeitung und Prüfung von Spreadsheets bewältigen müssen. So nehmen sie einerseits die
Risiken und Probleme nicht wahr und andererseits sind sie durch die fehlende Ausbildung
für die Entwicklung von Software auch meist nicht in der Lage, die vorhandenen Ansätze
und Werkzeuge einzusetzen. Gleichzeitig fehlt es in der Spreadsheet-Forschung an bewährten
Standards zur Reduzierung und Eindämmung von Spreadsheet-Fehlern. Entsprechend fehlt
es in den Unternehmen meist an Richtlinien, die solche Standards umsetzen, um dadurch die
Qualität von Spreadsheets zu verbessern. Und auch die bestehenden Werkzeuge und Methoden
entfalten ihre Wirkungen nur begrenzt, da sie in den seltensten Fällen das bestehende Wissen der
Endnutzer berücksichtigen.

Die Weiterbildung von Spreadsheet-Nutzern und die damit verbundene Erhöhung der Wahr-
nehmung der Spreadsheet-Risiken ist auf lange Sicht mit Sicherheit der richtige Weg, um das
Qualitätsproblem von Spreadsheets zu lösen. Folglich wurde dies auch als eines der Hauptziele
festgelegt, die sich die Forschungsgemeinschaft EuSpRIG gesetzt hat. Dennoch wird angesichts

42

5.2 Spreadsheet Prüfung

der millionenfachen Verwendung von Spreadsheets deutlich, dass eine schnell wirkende Maß-
nahme benötigt wird, um das Qualitätsproblem bei Spreadsheets in absehbarer Zeit zu lindern.
Konstruktive und organisatorische Maßnahmen benötigen jedoch naturgemäß eine lange Vorlauf-
zeit bis sie effektiv dazu beitragen können die Entstehung von Fehlern zu verringern. Außerdem
schränken diese Maßnahmen häufig die Flexibilität und die Freiheit bei der Verwendung von
Spreadsheet-Systemen ein, da etwa Entwicklungsprozesse vorgeschrieben werden und der
Entwicklungsaufwand durch zusätzliche Aktivitäten stark erhöht werden kann.

Aus diesen Gründen soll in dieser Arbeit ein Ansatz verfolgt werden, der sich an den analytischen
Qualitätssicherungsmaßnahmen des Software Engineerings orientiert, aber dabei die gegebenen
Voraussetzungen, wie etwa das Wissen von Endnutzern, berücksichtigt. Zu diesem Zweck sollen
nun die bestehenden Ansätze zur Prüfung von Spreadsheets genauer beleuchtet werden.

5.2 Spreadsheet Prüfung

Im Zuge der Anwendung von Prinzipien des Software Engineerings auf Spreadsheets, wurde in
Forschung und Praxis versucht die verschiedenen Prüfungsarten für Software auf Spreadsheets
zu übertragen. Die bestehenden Ansätze, Spreadsheets zu prüfen, sollen daher ebenfalls nach
der in Abbildung 3.4 dargestellten Gliederung der analytischen Qualitätssicherungsmaßnahmen
vorgestellt werden.

5.2.1 Nichtmechanische Spreadsheet-Prüfungen

Die einfachste nichtmechanische Prüf-Variante ist die meist informell und unsystematisch durch-
geführte Prüfung auf Plausibilität durch den Ersteller selbst oder durch einen Kollegen. Diese
Art der Prüfung wird im Software Engineering als Durchsicht beziehungsweise Stellungnahme
bezeichnet. Umfragen und Interviews [CS96, PBLFJ08] zeigen, dass Durchsichten und Stellungs-
nahmen die einzigen Prüfungen für Spreadsheets sind, die mit einer gewissen Verbreitung in
der Unternehmenswelt durchgeführt werden. Es ist jedoch wenig darüber bekannt, wie solche
Prüfungen in der Praxis ablaufen und ob sie sich dazu eignen, zumindest die schwerwiegendsten
Defekte und Fehler, in Spreadsheets zu erkennen. So wurden solche Prüfungen in der Praxis
noch nicht untersucht und vergleichsweise wenige Experimente [GHJ�96, Pan99] durchgeführt.
Bei diesen Studien konnten jedoch meist weniger als 50% der Fehler durch unstrukturierte
Prüfungen durch die Probanden entdeckt werden. Außerdem konnte nicht bestätigt werden,
dass dabei zumindest die schwerwiegendsten Fehler entdeckt wurden.

In [PBL08a] wird daher ein Protokoll vorgeschlagen, nach dem solche Prüfungen mit der Un-
terstützung von kommerziellen statischen Analysewerkzeugen in einer strukturierten Form
durchgeführt werden sollen. Dabei wird zwar ein Prozess vorgegeben, wie die Prüfung stattfin-
den soll, wie jedoch einzelne Fehler entdeckt werden sollen, ist nur sehr allgemein beschrieben.

43

5 Vorhandene Ansätze zur Erhöhung der Spreadsheet-Qualität

[Pan07] rät stattdessen zu formellen Inspektionen die sich an den Design and Code Inspections nach
Fagan orientieren. Die Organisation, der Ablauf, sowie die beteiligten Rollen werden dabei eins zu
eins von den Code Inspektionen übernommen [LL07, S. 282 ff.]. So soll der Prüfling, ähnlich wie
bei den Inspektionen von Quellcode, zeilenweise überprüft werden und die zu überprüfenden
Vorgaben müssen zuvor anhand von Richtlinien festgelegt worden sein. Außerdem sollten die zu
überprüfenden Komponenten eines Prüflings so gewählt werden, dass eine Prüfungssitzung die
Dauer von zwei Stunden nicht überschreitet. Wie bei den Inspektionen von Software wird dabei
eine Inspektion durch drei bis vier Gutachter angeraten, da bei Inspektionen durch Einzelperson
signifikant weniger Befunde entdeckt wurden [Pan99, GHJ�96]. Panko sieht bei dieser Art der
Spreadsheet-Prüfung den Vorteil, dass relativ geringe Anforderungen an die Gutachter gestellt
werden und sich die Code Inspektionen bei der Prüfung von Software-Artefakten bewährt haben.
Es gibt jedoch keine Belege dafür, dass solche Spreadsheet Inspektionen in der Praxis oder als
Experiment erfolgreich durchgeführt wurden, oder ob sie sich überhaupt für die Prüfung von
Spreadsheets eignen.

5.2.2 Mechanische Spreadsheet-Prüfungen

Will man dynamische Prüfmethoden auf Spreadsheets anwenden, ist man zunächst mit dem
Orakel-Problem konfrontiert [Pan07], das auch beim Test von traditioneller Software auftritt.
Denn beim Testen von Software-Programmen werden diese mit verschiedenen Eingaben aus-
geführt, um die Korrektheit der produzierten Ergebnisse zu überprüfen. Das Problem liegt
dabei darin, dass eine Instanz benötigt wird, die in der Lage ist die produzierten Ergebnisse
bezüglich ihrer Korrektheit beurteilen. Bei Spreadsheets ist im Allgemeinen nicht klar, wie ein
solches Test-Orakel realisiert werden kann, um die Ergebnisse richtig zu beurteilen. So gibt es bei
Spreadsheets keine offensichtlichen Kriterien dafür, dass ein Test fehlgeschlagen ist, wie das bei
traditionellen Softwareprogrammen bei einem Absturz des Programms der Fall ist. Auch ein
Vergleich von Ist-Ergebnissen mit Soll-Ergebnissen ist in den seltensten Fällen möglich, da die
Soll-Ergebnisse aufgrund der meist fehlenden Anforderungen nicht angegeben werden können.
Und auch wenn die Anforderungen erfasst wurden, besteht das Problem, dass die Berechnungen
des Spreadsheets meist zu komplex sind, um Soll-Ergebnisse mit vertretbarem Aufwand auf eine
andere Art zu bestimmen.

[Pry08] gibt dennoch einige Tipps, wie Unit-Tests mit Hilfe von Kontrollrechnungen im zu
überprüfenden Spreadsheet selbst durchgeführt werden können, falls die Möglichkeit besteht
die Korrektheit der Ergebnisse objektiv zu beurteilen. Zur Unterstützung wird dabei ein selbst
entwickeltes Prüfwerkzeug mit Namen Xlsior2 verwendet, welches jedoch inzwischen nicht mehr
zur Verfügung gestellt wird.

[ACM00] versucht das Problem eines fehlenden Test-Orakels, sowie der fehlenden Testkenntnisse
von Endbenutzern durch symbolisches Testen und Intervall-Tests zu lösen. So können durch

2http://www.louisepryor.com/xlsior/

44

http://www.louisepryor.com/xlsior/

5.2 Spreadsheet Prüfung

Intervall-Tests die Ergebnisse von Formeln mittels vom Anwender spezifizierter Grenzwerte
auf Plausibilität überprüft werden. Der Anwender wird somit zum Test-Orakel, jedoch wird die
Beurteilung der Ergebnisse durch die Angabe von korrekten Intervallen erleichtert.

Statische Prüfungen von Spreadsheets haben gegenüber den dynamische Prüfungen den Vorteil,
dass allgemeine Vorgaben für Spreadsheets definiert werden können und für deren Anwendung
weniger Kenntnisse benötigt werden. Statische Analysetechniken können dabei auf unterschiedli-
che Weise bei der Prüfung von Spreadsheets nützlich sein. Viele Ansätze verwenden die statische
Analyse dazu, um die Struktur von Spreadsheets zu analysieren und diese dann zu visualisieren.
Dadurch wird das Verständnis der Struktur eines Spreadsheets für dessen Benutzer erleich-
tert und er wird dadurch bei der Prüfung des Spreadsheets unterstützt. In anderen Ansätzen
wird die statische Analyse stärker automatisiert, indem über Muster-Vergleiche und abstrakte
Interpretation automatisch nach Defekten gesucht werden kann.

In [HPD11] wurde beispielsweise das Visualisierungswerkzeug Breviz entwickelt, das die Struk-
tur von Spreadsheets mittels Datenfluss Diagrammen darstellen kann. Dabei kann interaktiv
durch verschiedene Ansichten navigiert werden, um das Verständnis der Funktionalität eines
Spreadsheets zu erleichtern. Zudem wird angeregt, dass Breviz dazu verwendet werden kann,
um Anomalien in Spreadsheets zu entdecken. Die Autoren geben dazu eine Reihe von schlechten
Strukturen bei Spreadsheets an, die vermutlich auf die Anwesenheit von Fehlern hinweisen
könnten und mit Hilfe des visualisierten Datenflusses vom Anwender erkannt werden können.
Eine Evaluierung dieses Ansatzes wurde dabei noch nicht durchgeführt, jedoch wird dies als
Ziel für weitere Arbeiten ausgegeben.

Ein ähnlicher Ansatz wird in [CHM08] unternommen, bei dem Formelbereiche in einem Spreads-
heet in Äquivalenzklassen eingeteilt und dargestellt werden. In separaten Fenstern können dabei
Äquivalenzrelationen und Datenabhängigkeiten untersucht werden, um durch Unregelmäßigkei-
ten im dargestellten geometrischen Muster von ähnlichen Formeln bei der Suche nach Fehlern zu
helfen. In einer Evaluation des entwickelten Werkzeugs in einem industriellen Kontext wurden
Defekte in 3,03% aller Zellen entdeckt, jedoch konnten keine Fehler gefunden werden, die stark
abweichende Ergebnisse verursachten und dadurch schwerwiegende Konsequenzen für das
Unternehmen bewirken hätten können.

In [AE06] wird das vollautomatische Prüfwerkzeug UCheck vorgestellt, das versucht über die
vorhanden textuellen Beschriftungen und Überschriften in Spreadsheets Information über die
semantischen Einheiten einzelner Zellen zu gewinnen. Es wird also eine Art Typisierung der
Zellen anhand der Überschriften vorgenommen und die daraus gewonnen Informationen wer-
den verwendet, um Formeln mittels abstrakter Interpretation auf Plausibilität zu untersuchen.
Vorteilhaft ist dabei, dass für den Nutzer kein Aufwand entsteht, da die Prüfung vollautomatisch
erfolgt. Jedoch ist die Lösung auf zusätzliche Informationen durch Überschriften angewiesen
und kann nicht allgemein dazu verwendet werden um Spreadsheets zu prüfen.

Kommerziell vertriebene Prüfwerkzeuge für Spreadsheets verwenden zumeist eine Kombination
aus den verschiedenen Ansätzen, um die Prüfung von Spreadsheets zu unterstützen. Da diese

45

5 Vorhandene Ansätze zur Erhöhung der Spreadsheet-Qualität

Werkzeuge zumeist nicht dazu eingesetzt werden, um die Anzahl der Fehler zu reduzieren, son-
dern nur um die Risiken, die von dem Spreadsheet ausgehen einschätzen zu können, bezeichnet
man sie meist als Audit-Werkzeuge [AP10].

In [NO10] und [AP10] wird eine Auswahl solcher Audit-Werkzeuge untersucht. Nixon [NO10]
verwendet dazu Spreadsheets, bei denen mittels Error-Seeding Defekte eingebaut wurden,
Panko [AP10] hingegen untersucht in Experimenten entstandene Spreadsheets. Außerdem un-
terscheiden sich die beiden Studien dadurch, dass Nixon nur die automatischen Prüfungen
der Werkzeuge verwendet, Panko hingegen nur die Funkionen der Werkzeuge, die auffällige
Zellen markieren, um menschliche Prüfer bei der Suche nach Fehlern zu unterstützen. Auch die
Ergebnisse der beiden Studien weichen stark voneinander ab. Nixon kommt zu dem Schluss, dass
die statischen Prüfwerkzeuge bezüglich ihrer Effektivität mit nichtmechanischen Inspektionen
von Spreadsheets, die Zelle für Zelle durchgeführt werden, vergleichbar sind. Da sie jedoch bei
weitem geringere Kosten verursachen, sieht er sie als gute Alternative zu nichtmechanischen
Prüfungen an, um zumindest alle nicht-funktionalen Defekte in Spreadsheets zu erkennen. In der
Studie von Panko schneiden die Werkzeuge im Vergleich zu den nichtmechanischen Inspektionen
jedoch ungemein schlechter ab. Dies wird damit begründet, dass in den geprüften Spreadsheets
überwiegend funktionale Defekte enthalten waren, die nur schwer mittels statischer Analyse er-
kannt werden können. Panko zieht in [AP10] daher die plausible Schlussfolgerung, das statische
Analysewerkzeuge zwar als initiale Fehlererkennung geeignet sind, jedoch nicht ausreichen, um
allein alle Defekte in Spreadsheets zu erkennen.

5.3 Schlussfolgerung

In diesem Kapitel wurde untersucht, ob die bestehenden Ansätze aus dem Software Engineering
auf Spreadsheets übertragen werden können, um die Qualität von Spreadsheets zu verbessern.
Dabei wurde festgestellt, dass durch unterschiedliche Voraussetzungen für die Verwendung
der Ansätze häufig große Probleme bei deren Umsetzung bestehen. So ist bei den meisten
Nutzern von Spreadsheets die notwendige Wahrnehmung der Risiken nicht vorhanden und die
notwendigen Kenntnisse und Fähigkeiten fehlen, um die vorhandenen Ansätze anzuwenden.

Die bestehenden Ansätze reichen daher nicht aus, um eine angemessene Qualität von Spreads-
heets mit vertretbarem Aufwand sicherzustellen. Die Verbesserung der Spreadsheet-Qualität
durch organisatorische und konstruktive Maßnahmen verspricht dabei auf lange Sicht den größ-
ten Erfolg. Jedoch werden angesichts der vielfachen Verwendung von Spreadsheets, Maßnahmen
benötigt, die die Qualität von bestehenden Spreadsheets auf kurz bis mittelfristige Frist erhöhen
können. Dazu bieten sich analytische Maßnahmen an.

Nach der Untersuchung der vorhandenen Ansätze zur Spreadsheet-Prüfung wird deutlich, dass
viele Ansätze nur bedingt dazu geeignet sind, um Fehler in Spreadsheets durch Endbenutzer zu
erkennen. Rein nichtmechanische Prüfungen sind beispielsweise mit einem hohen Zeitaufwand
verbunden und werden durch die fehlende Lokalität von Spreadsheets erschwert. Angesichts

46

5.3 Schlussfolgerung

der geringen Wahrnehmung von Spreadsheet-Risiken scheint es unwahrscheinlich, dass solche
Maßnahmen in der Praxis durchzusetzen sind [AP10]. Bei Dynamischen Prüfungen hingegen,
ist das Fehlen eines geeigneten Test-Orakels, sowie die fehlende Ausbildung von Endbenutzern
zum Testen von Software eine große Hürde. Ansätze wie in [ACM00] haben jedoch das Poten-
tial, dieses Problem zu lösen. Statische Prüfungen haben den Vorteil, dass sie kaum Aufwand
verursachen und kaum Voraussetzungen an den Endbenutzer stellen. Zudem besitzen sie das
Potential, eine hohe Anzahl an Defekten In Spreadsheets zu entdecken und dadurch bei der
Erkennung von Fehlern nützlich zu sein. Dabei muss jedoch beachtet werden, dass nicht alle
Fehler in Spreadsheets durch statische Prüfungen erkannt werden können.

Als Schlussfolgerung dieser Erkenntnisse soll im folgenden Kapitel ein Konzept zur Prüfung
von Spreadsheet vorgestellt werden, das auf der statischen Analyse basiert, jedoch durch die
Integration von anderen Prüfungsarten vorsieht, um die bestehenden Einschränkungen der
statischen Prüfung zu kompensieren.

47

Kapitel 6

Konzept

Basierend auf den Erkenntnissen aus den vorherigen Kapiteln wird in diesem Kapitel ein Konzept
entwickelt, mit dem Spreadsheets auf Fehler überprüft werden können. Dabei wird zunächst die
Grundidee vorgestellt, sowie erläutert, wie die Umsetzung dieser Idee erfolgen soll. Anschlie-
ßend wird das erarbeitete Konzept anhand einer Metapher genauer erläutert und zuletzt wird
beschrieben, wie die in dieser Arbeit realisierte Lösung verwendet werden kann.

6.1 Technische Grundlage zur Spreadsheet-Prüfung

In dieser Arbeit soll ein Konzept entwickelt und realisiert werden, um die bestehende problema-
tische Situation bei der Qualität von Spreadsheets auf kurz bis mittelfristige Sicht zu verbessern
[Kul11]. Die realisierte Lösung soll dabei als technische Grundlage verwendet werden können,
um systematische, rechnerunterstützte Prüfungen von Spreadsheets effektiv und kostengünstig
durchführen zu können. Dabei soll das vorhandene Wissen über Spreadsheet-Systeme und die
bestehenden Voraussetzungen für die Qualität von Spreadsheets berücksichtigt werden. So sollen
etwa die Vorzüge von Spreadsheet-Systemen erhalten bleiben und das vorhandene Wissen von
typischen Endbenutzern in das Konzept miteinbezogen werden.

Zu diesem Zweck soll das erweiterbare Java-Framework Spreadsheet Inspection Framework (SIF)
geschaffen werden, das die Durchführung von verschiedenen Prüfungsarten für Spreadsheets
ermöglicht. Mit Hilfe von SIF sollen Prüfwerkzeuge für Spreadsheets realisiert werden kön-
nen, die Endbenutzer nach einem konkretem Prüfverfahren bei der Prüfung von Spreadsheets
unterstützen. Dabei sollen die verschiedenen Arten der Softwareprüfung in einer verzahnten
Weise genutzt werden können, um das Erkennen einer möglichst hohen Anzahl an Defekten in
den geprüften Spreadsheets zu ermöglichen. Um den Zeitpunkt der Prüfung möglichst frei zu
gestalten, sollfür die Prüfung durch SIF nur eine korrekt gespeicherte Spreadsheet-Datei benötigt
werden. Die Realisierung von SIF soll dabei in mehreren Ausbaustufen geschehen, wovon die
erste in dieser Arbeit entstehen soll. Der Fokus dieser ersten Ausbaustufe liegt dabei auf der
Durchführung von statischen Prüfungen.

49

6 Konzept

Ja
va

A
n

w
e

n
d

u
n

g
e

n
Ja

va
V

ir
tu

a
l

M
a

ch
in

e
D

e
sk

to
p

B
e

tr
ie

b
ss

ys
te

m

Spreadsheet Inspection Framework

Example Testing
Center (ETC)

Dynamisches
Prüfwerkzeug1

Statisches
Prüfwerkzeug1

Kombiniertes
Prüfwerkzeug1

Spreadsheet
Dateien

Durchführung von
statischen Prüfungen

Durchführung von
dynamischen Prüfungen

Abbildung 6.1: SIF als technische Grundlage für die Prüfung von Spreadsheets

6.1.1 Statische Spreadsheet-Prüfung

Die Hauptaufgabe von SIF in der ersten Ausbaustufe ist es, die drei unterschiedlichen Aufgaben
der statischen Prüfung zu ermöglichen. So soll erstens die Einhaltung festlegbarer Regeln über-
prüft werden können, zweitens sollen Konsistenz-Prüfungen ermöglicht werden und drittens
soll die Möglichkeit geschaffen werden, quantitative Merkmale des Spreadsheets automatisch zu
erfassen. Dabei soll ein ähnlicher Ansatz wie bei dem in Unterabschnitt 3.5.2 vorgestellten Find-
bugs verwendet werden. So soll anstelle einer eingeschränkten Anzahl spezialisierter Techniken,
eine breite Anzahl an einfachen Techniken zum Einsatz kommen. In dieser Arbeit sollen dabei
die Prüfungen der drei Vorschriften Konstanten in Formeln, Leserichtung und Formelkomplexität, die
auch häufig in der bestehenden Literatur empfohlen werden, umgesetzt werden. Eine genaue
Definition der umgesetzten Vorschriften wird dabei in Kapitel 7 gegeben.

Wie auch bei Findbugs, ist ein wichtiger Punkt die Konfigurierbarkeit der überprüften Vorschrif-
ten, um die Prüfungen an die individuellen Anforderungen des jeweiligen Nutzungskontextes
anpassen zu können. Daher können Richtlinien aus bestehenden Vorschriften vom Benutzer frei
zusammengestellt und einzeln konfiguriert werden. Mit Hilfe einer Java-API soll es zudem mög-
lich sein, neue Vorschriften hinzuzufügen und deren Überprüfung zu realisieren. Zwar müssen in
der initialen Version die Prüfverfahren für neue Vorschriften von einem professionellen Program-
mierer implementiert werden, jedoch soll es ermöglicht werden, diesen Mechanismus in Zukunft
mit einer benutzerfreundlichen Möglichkeit zu ersetzen. Zur Demonstration der Fähigkeiten
von SIF soll zudem das prototypisches statische Analysewerkzeug Example Testing Center (ETC)
entstehen, das die implementierten Funktionen der ersten Ausbaustufe verwendet.

50

6.2 Metapher

6.1.2 Erhoffter Nutzen der ersten Ausbaustufe

Wir sind uns bewusst, dass es allein durch die statischen Prüfungen der ersten Ausbaustufe
nicht möglich sein wird, alle Fehler in Spreadsheets zu erkennen. So ist davon auszugehen, dass
die Prüfung von funktionalen Eigenschaften nur eingeschränkt mit der ersten Ausbaustufe von
SIF durchführbar sein wird. Jedoch hoffen wir, durch die erste Ausbaustufe einen Ansatzpunkt
zu schaffen, um die Suche nach Fehlern in Spreadsheets zu unterstützen. So soll der Nutzer auf
Verstöße von Vorschriften, Inkonsistenzen und quantitative Merkmale des geprüften Spread-
sheets aufmerksam gemacht werden. Durch diese Anhaltspunkte soll dem Nutzer dabei geholfen
werden, Fehler und qualitative Mängel im geprüften Spreadsheet zu entdecken und dessen
Qualität zu beurteilen.

In weiteren Ausbaustufen soll diese Suche nach Fehlern in Spreadsheets weiter unterstützt wer-
den. So könnte die manuelle Inspektion in Zukunft durch die Visualisierung des Spreadsheets
und der gefundenen Verstöße durch die Prüfanwendungen vereinfacht werden. Und mit der
Erweiterung des Frameworks, um die Unterstützung von dynamischen Prüfungen, soll die
bestehende Einschränkung der Prüfungen auf überwiegend nicht-funktionale Qualitätsmerk-
male behoben werden. Dabei können die Verstöße der statischen Prüfung genutzt werden, um
auffällige Zellen des Spreadsheets zu entdecken und diese effektiv auf Fehler zu überprüfen.

6.2 Metapher

Um das Verständnis des gewählten Ansatzes zu erleichtern, wurde eine Metapher für die
Veranschaulichung des Konzepts gewählt. Die Wahl fiel dabei auf das Bild einer technischen
Inspektions-Werkstatt, wie sie in technischen Prüfzentren, beispielsweise bei solchen für die Zu-
lassung von Kfz-Fahrzeugen, genutzt wird. In diesem Zusammenhang sind viele der Eigenschaf-
ten einer solchen Werkstatt und der mit ihr durchführbaren Prüfungen auch auf SIF übertragbar.
Einige Eigenschaften können bei diesem Bild jedoch nicht übertragen werden. Daher werden wir
zuerst die wesentlichen Merkmale einer Inspektions-Werkstatt am Beispiel einer Kfz-Inspektions-
Werkstatt nennen. Anschließend werden wir aufzuzeigen, welche Analogien und welche Unter-
schiede bestehen, wenn man diese Bild auf die Inspektion von Spreadsheets überträgt.

6.2.1 Technisches Kfz-Prüfzentrum

Die Zulassung von Fahrzeugen zum Straßenverkehr ist in den meisten Ländern gesetzlich gere-
gelt. So wird für neue Fahrzeugtypen eine Typ-Genehmigung benötigt und Kfz-Fahrzeuge, die
am Straßenverkehr teilnehmen sollen, müssen regelmäßigen Inspektionen unterzogen werden,
um sie auf ihre Vorschriftmäßigkeit zu überprüfen. Die Überprüfung der Fahrzeuge erfolgt dabei
durch staatlich anerkannte Prüfzentren in Inspektions-Werkstätten. Dabei ist die Inspektion ohne
die technischen Mittel, die in den Inspektions-Werkstätten bereitgestellt werden, nicht oder nur
sehr schwer durchzuführen. Die Inspektions-Werkstatt und die mit ihr durchgeführte Prüfung
zeichnen sich dabei wie folgt aus:

51

6 Konzept

Prüfung

Bei der Prüfung handelt es sich um eine zerlegungsfreie Sicht-, Funktions- und Wirkungsprüfung.
Das heißt, das Fahrzeug wird zur Prüfung nicht verändert und im Zusammenspiel von Mensch
und Maschine mit statischen und dynamischen Mitteln geprüft. Das Ziel der Prüfung ist es dabei,
die Konformität des Fahrzeugs mit gesetzlichen Vorschriften zu überprüfen. Dadurch soll die
Verkehrssicherheit erhöht, Unfälle vermieden und entstehende Schäden bei Unfällen verringert
werden. Geprüft werden dabei sowohl funktionale, wie nicht-funktionalen Anforderungen. Bei
der Prüfung selbst werden Verstöße gegen die Vorschriften jedoch nur erkannt und bewertet,
eine Korrektur von Mängeln erfolgt nicht, sondern ist vom Hersteller bzw. Halter des Fahrzeu-
ges durchzuführen. Bei Nichtbestehen der Prüfung wird dem Fahrzeugtyp bzw. Fahrzeug die
Teilnahme am Straßenverkehr verweigert, bis die angezeigten Mängel behoben sind.

Inspektions-Werkstatt

Die Inspektions-Werkstatt bietet die technischen Mittel, um die Prüfung des Fahrzeuges durch-
zuführen. Die Prüfung selbst wird zwar durch einen professionellen Prüfer durchgeführt, dieser
kann die Prüfung jedoch ohne die Prüfmittel, die die Inspektions-Werkstatt zur Verfügung stellt,
nicht angemessen durchführen. Als Prüfmittel stehen dem Prüfer dabei verschiedene Prüfstände
und Werkzeuge zur Verfügung. So gibt es beispielsweise eine Hebebühne, die dem Prüfer erlaubt
den Zustand und die einzelnen Teile des Fahrzeuges genauer zu betrachten, als auch spezielle
Werkzeuge, wie etwa einen Spannungsmesser, der die anliegende Spannung bei elektronischen
Komponenten überprüfen kann. Komplette Prüfstände, wie etwa ein Bremsprüfstand, können
dem Prüfer Abweichungen und Auffälligkeiten anzeigen, die auf die Anwesenheit eines Fehler
hinweisen könnten. Die Ursache für die Abweichung kann jedoch vom Prüfstand meist nicht
selbstständig identifiziert werden, sondern muss vom Prüfer durch manuelle Inspektion oder
mit Hilfe von weiteren Prüfungen eingegrenzt werden.

6.2.2 Technisches Spreadsheet-Prüfzentrum

Wie auch bei Kfz-Fahrzeugen, ist die Prüfung von Spreadsheets ohne technische Hilfsmittel
nicht oder nur sehr schwer durchzuführen. SIF soll daher die Funktionalität einer Inspektions-
Werkstatt bereitstellen und damit die technische Grundlage schaffen, um technische Prüfzentren
zur Inspektion von Spreadsheets realisieren zu können.

Prüfung

Die Prüfung von Spreadsheets soll nach ähnlichen Grundlagen ablaufen, wie bei Kfz-Fahrzeugen.
So soll das Spreadsheet ohne Veränderung durch Mensch und Maschine mit statischen und
dynamischen Mitteln geprüft werden. Ziel der Prüfung es auch hier, die Konformität mit Richtli-
nien zu überprüfen, um eine angemessene Qualität des Spreadsheets sicherstellen zu können.
Dadurch können die negativen Konsequenzen, die durch fehlerhafte Spreadsheets verursacht

52

6.2 Metapher

werden, vermieden oder zumindest reduziert werden. Im Gegensatz zur Kfz-Prüfung existieren
dabei jedoch keine gesetzlichen Vorgaben und auch keine allgemeingültigen Standards. Stattdes-
sen müssen die Richtlinien von den Nutzern der Spreadsheet-Inspektions-Werkstatt festgelegt
werden. Diese Richtlinien sollten so gewählt werden, dass durch deren Überprüfung Defekte, die
bei der Verwendung des Spreadsheets in der Unternehmenswelt Gefahren darstellen könnten,
kenntlich gemacht und mangelhafte Spreadsheets vor deren Benutzung aussortiert werden kön-
nen. Wie bei der Kfz-Prüfung auch, werden Verstöße gegen die Vorschriften jedoch nur erkannt
und bewertet. Die Korrektur ist vom Ersteller bzw. Nutzer des Spreadsheets durchzuführen.

Inspektions-Werkstatt

Die Inspektions-Werkstatt für Spreadsheets soll die technischen Mittel bereitstellen, um die Prü-
fung der Spreadsheets adäquat durchführen zu können. Anders als bei der Kfz-Inspektion wird
die Prüfung jedoch nicht zwangsweise von einem professionell ausgebildeten Prüfer durchge-
führt. Stattdessen soll es auch dem durchschnittlichen Endbenutzer ermöglicht werden Spreads-
heets zu prüfen. Zu diesem Zweck stellt SIF eine Reihe von Prüfmitteln bereit. So existieren
einerseits Werkzeuge, die das Spreadsheet auf dessen Beschaffenheit untersuchen und eine
Inventurliste von dessen Bestandteilen erstellen können, aber auch spezielle Werkzeuge, die
bestimmte Eigenschaften bei einzelnen Bestandteilen überprüfen können. Prüfstände, die die
einzelnen Vorschriften der vergebenen Richtlinie überprüfen, können automatisch abgefahren
werden und liefern dem Prüfer eine Liste mit den gefunden Abweichungen und Auffälligkeiten.
Der Prüfer kann dann mittels der gegeben Anhaltspunkte nach Fehlern und deren Ursachen im
Spreadsheet suchen oder weitere Prüfungen durchführen.

6.2.3 Bausteine der ersten Ausbaustufe der Spreadsheet-Inspektions-Werkstatt

Zur Umsetzung der ersten Ausbaustufe der Spreadsheet-Inspektions-Werkstatt werden die
folgenden Bausteine benötigt:

Vorschrift Eine Vorschrift definiert eine Vorgabe, die von einem Spreadsheet erfüllt werden
muss. Bei dieser Vorgabe kann es sich um die Einhaltung von Konsistenz, um die Erfüllung
einer quantitativen Eigenschaft oder um die Einhaltung einer generellen Regel handeln.
Sinnvolle Vorgaben für Spreadsheets können je nach deren Nutzungskontext variieren und
daher können Vorschriften an die überprüften Spreadsheets angepasst werden.

Richtlinie Eine Auswahl an Vorschriften kann dabei zu einer Richtlinie zusammengefasst wer-
den, die dann als Vorgabe für Spreadsheets in einem bestimmten Nutzungskontext verwen-
det werden kann. Es handelt sich bei einer Richtlinie also um einen Satz von Best Practises,
wie etwa in [O’B05, Raf08] beschrieben, jedoch ohne solche Vorschriften, die das Vorgehen
bei der Entwicklung von Spreadsheets festgelegen.

53

6 Konzept

Verstoß Die Überprüfung von Vorschriften erfolgt in der ersten Ausbaustufe von SIF mittels au-
tomatischer statischer Prüfungen. Wenn Abweichungen von den Vorgaben einer Vorschrift
erkannt werden, wird ein Verstoß gemeldet. Wie auch bei den statischen Prüfungen von
traditioneller Software (Unterabschnitt 3.5.2) handelt es sich bei einem Verstoß nicht immer
um einen echten Defekt.

Inspektionsauftrag Ein Inspektionsauftrag wird von einem Nutzer der Inspektions-Werkstatt
aufgegeben, um ein Spreadsheet auf die Vorgaben einer Richtlinie zu überprüfen. Der
Inspektionsauftrag wird dabei mit Hilfe von SIF erstellt, konfiguriert und durchgeführt.
Zur vollständigen Konfiguration eines Inspektionsauftrags gibt der Nutzer einen Namen,
sowie das zu prüfende Spreadsheet an, wählt eine der vorhandenen Richtlinien aus und
passt deren Vorgaben an den Prüfling an.

Spreadsheet-Elemente Ein Spreadsheet besteht im Wesentlichen aus den in Abschnitt 2.1 be-
schriebenen Elementen. Zwar können alle gängigen Spreadsheet-Sprachen diese grundle-
genden Elemente definieren, jedoch existieren Spezialisierungen und Generalisierungen
dieser Elemente, die nicht explizit mit den vorhanden Sprachkonstrukten ausgedrückt wer-
den können. So können beispielsweise Eingabe-Zellen, die vom Nutzer des Spreadsheets
mit Inhalten gefüllt werden müssen, nicht direkt als solche ausgezeichnet werden, sondern
müssen vom Ersteller über Formatierung, Anordnung oder ähnliches kenntlich gemacht
werden.

Als Basis-Elemente werden daher in in dieser Arbeit Elemente bezeichnet, für die Sprach-
konstrukte in allen gängigen Spreadsheet-Sprachen vorhanden sind.

Spezial-Elemente sind Spezialisierungen oder Generalisierungen von Basis-Elementen,
die individuell festgelegt werden können.

Um diese mangelnde Ausdrucksmöglichkeiten von bestehenden Spreadsheet-Sprachen zu
kompensieren, ist es durch eine Schnittstelle in SIF möglich beliebige Spezial-Elemente zu
definieren, diese automatisch zu erkennen und für die Prüfung zur Verfügung zu stellen.

Element-Scanner Die Erkennung von Spreadsheet-Elementen erfolgt dabei durch sogenannte
Element-Scanner. Diese werden vor der Prüfung auf das Spreadsheet angewendet und
erstellen eine Inventurliste von dessen Bestandteilen. Zusätzlich sollen die Element-Scanner
quantitative und strukturelle Merkmale des Spreadsheets erfassen können, um so die
Struktur und die Beschaffenheit des geprüften Spreadsheets aufzuzeigen.

Spreadsheet-Inventar Das Spreadsheet-Inventar ist die Auflistung aller Elemente eines Spreads-
heets, die durch Element-Scanner erkannt wurden. Es stellt damit eine Bestandsliste aller
Komponenten eines Spreadsheets dar.

Prüfstände sind die Prüfmittel, die die Einhaltung von Vorschriften für alle Bestandteile ei-
nes Spreadsheets überprüfen und bei Abweichungen eine Liste von Verstößen erstellen.
Prüfstände können dabei entweder modular aus bestehenden Prüfwerkzeugen zusammen-
gestellt werden oder als monolithischer Prüfstand entwickelt werden.

54

6.3 Verwendung

Prüfwerkzeuge Prüfwerkzeuge sind modulare Prüfmittel, die für ein Element einer Klasse von
Spreadsheet-Elementen überprüfen können, ob dieses Element eine bestimmte Eigenschaft
besitzt oder eine bestimmte Vorschrift einhält. So kann ein Prüfwerkzeug beispielsweise
eine Zelle mit numerischen Inhalt, darauf überprüfen, ob deren Inhalt in der richtigen
Genauigkeit dargestellt wird. Ein anderes Prüfwerkzeug wiederum kann prüfen, ob eine
Zelle mit Textinhalt ein bestimmtes Schriftbild erfüllt. Neue Prüfwerkzeuge, auch für
Spezial-Elemente, können entwickelt und als Prüfmittel bereitgestellt werden. Der Zweck
dieser Prüfwerkzeuge ist es dabei, generische Prüfstände aus einem oder mehreren dieser
Werkzeuge modular zusammenstellen zu können.

Prüffeld Ein Prüffeld ist der Ort an dem Prüfung eines Spreadsheets, die durch einen Inspekti-
onsauftrag definiert ist, durchgeführt wird. Zu diesem Zweck werden die notwendigen
Prüfstände im Prüffeld aufgebaut, mit den Vorgaben aus der gewählten Richtlinie des
Inspektionsauftrags konfiguriert und dann der Reihe nach ausgeführt.

6.3 Verwendung

Im folgenden Abschnitt soll beschrieben werden, wie die erste Ausbaustufe von SIF verwendet
werden kann, um Spreadsheets statisch zu prüfen und wie neue Vorschriften zur Überprüfung
angeboten werden können.

6.3.1 Ablauf einer Inspektion

Der Ablauf einer Inspektion mit SIF gestaltet sich wie in Abbildung 6.2 dargestellt. Dabei wird
bereits angedeutet, wie die die Prüfungen der weiteren Ausbaustufen in den Ablauf der stati-
schen Prüfung integriert werden können. Die Details des Ablaufs einer Inspektion in der ersten
Ausbaustufe sollen im Folgenden genauer beschrieben werden.

S
IF

 w
e

it
e

re
A

u
sb

a
u

st
u

fe
n

S
IF

E
rs

te
 A

u
sb

a
u

st
u

fe

Spreadsheet
invetarisieren

Inspektionsauftrag
konfigurieren

Inspektion
durchführen

Ergebnisse
analysieren

Inspektionsauftrag
erstellen

Bericht
erstellen

Spreadsheet-Inventar
visualisieren

Ergebnisse
visualisieren und

inspizieren

Dynamische
Prüfung

Abbildung 6.2: Ablauf einer Inspektion mit dem Spreadsheet Inspection Framework

55

6 Konzept

Inspektionsauftrag erstellen

In der Erstellungsphase wird eine neuer Inspektions-Auftrag angelegt. Dazu spezifiziert der
Nutzer welches Spreadsheet inspiziert werden soll, in dem er den Pfad zur entsprechenden
Spreadsheet-Datei angibt. Das Spreadsheet wird dann geladen und in ein internes Datenmodell
übertragen. Bei der Metapher entspricht dieser Vorgang, dem Vorfahren des Fahrzeugs in die
Werkstatt eines Prüfzentrums und dem Beantragen einer Inspektion

Spreadsheet inventarisieren

Im Anschluss an die Erstellung des Inspektionsauftrags wird das Spreadsheet auf dessen Struktur
und Beschaffenheit untersucht, wobei eine Inventurliste mit allen Bestandteilen des Spreadsheets
erstellt wird. Durch diesen Schritt werden, wie bei einem Fahrzeug auf einer Hebebühne, zu-
nächst die einzelnen Bestandteile des Spreadsheets betrachtet und es wird ein erster Eindruck
vom Prüfling gewonnen. Dieser soll dabei helfen, die richtigen Prüfungen für den Prüfling
auszuwählen. Zusätzlich können durch diesen Schritt bereits vorab untaugliche Prüflinge, wie
beispielsweise ein Spreadsheet ohne Zellinhalte, aussortiert werden.

Inspektionsauftrag konfigurieren

Nach der Inventarisierung des Spreadsheets muss der angelegte Inspektions-Auftrag konfiguriert
werden. Dazu muss der Nutzer eine der vom Prüfzentrum angebotenen Richtlinien auswäh-
len, nach deren Vorgaben das Spreadsheet geprüft werden soll. Die einzelnen Vorschriften der
gewählten Richtlinie können dann dem Prüfling entsprechend konfiguriert werden. So kön-
nen beispielsweise einzelne Teile des Spreadsheets von bestimmten Prüfungen ausgeschlossen
werden oder die Parameter der Prüfstände eingestellt werden. Die Konfiguration entspricht
der Anpassung der Kfz-Prüfung an den jeweiligen Fahrzeugtyp. So muss etwa für Fahrzeu-
ge neueren Baujahres ein Abgasuntersuchung nicht zwingend durchgeführt werden und für
landwirtschaftliche genutzte Fahrzeuge gelten anderen Vorgaben als für normale Pkws.

Inspektion durchführen

Zur Durchführung der Inspektion wird von SIF ein entsprechendes Prüffeld angelegt. In diesem
Prüffeld werden die Prüfstände aufgebaut, die für die Überprüfung der gewählten Richtlinie
benötigt werden, und mit den Einstellungen aus dem Inspektion-Auftrag konfiguriert. Anschlie-
ßend werden die zuvor erkannten Bestandteile der Reihe nach in den Prüfständen geprüft. Von
einem Prüfstand erkannte Verstöße werden entsprechend der Vorschrift klassifiziert, bewertet
und gruppiert ausgegeben. Die Listen mit den Verstößen der einzelnen Prüfstände werden dann
gesammelt und als Ergebnis der Inspektion ausgegeben.

56

6.3 Verwendung

Ergebnisse analysieren

Die resultierende Liste mit allen gefunden Verstößen kann dann vom Prüfer analysiert und
exportiert werden. Jeder Verstoß gibt dabei genaue Auskunft darüber, welches Spreadsheet-
Element den Verstoß verursacht hat, warum dieser Verstoß auftrat, welche Schwere dem Verstoß
zugewiesen wurde und wie man ihn beseitigen könnte. Im Zuge von weiteren Ausbaustufen
wäre es vorstellbar, dass die gefundenen Verstöße visualisiert werden können und so dem
Benutzer bei der Analyse unterstützen. Außerdem könnten Elemente mit vielen Verstößen im
Anschluss an die statische Prüfung mit dynamischen Prüfungen getestet werden, um diese auf
bisher unentdeckte Fehler zu überprüfen.

Bericht erstellen

Nach Abschluss der Analyse besteht die Möglichkeit die gefundenen Verstöße zu exportieren,
um diese mit Hilfe einer Spreadsheet-Software zu beheben.

6.3.2 Erweiterung der angebotenen Prüfungen

Ein weitere wichtige Funktionalität von SIF ist die Erweiterung der angebotenen statischen
Prüfungen. So können einerseits Richtlinien aus bestehenden Vorschriften zusammengestellt
werden, aber es wird auch die Möglichkeit angeboten, neue Vorschriften hinzufügen und diese
überprüfen zu lassen.

Erstellung von Richtlinien

Wie bereits in Abschnitt 2.2 erläutert, existieren keine allgemein anerkannten Best Practices für
Spreadsheets, da diese häufig vom Nutzungskontext des jeweiligen Spreadsheets abhängen. Die
Erstellung von neuen Richtlinien erlaubt daher, dass die Prüfungen einer Inspektion speziell an
den jeweiligen Nutzungskontext angepasst werden können. So kann eine neue Richtlinien frei
aus den angebotenen Vorschriften der Inspektions-Werkstatt zusammengestellt werden. Diese
Richtlinie kann dann vorkonfiguriert und gespeichert werden, so dass sie für die Verwendung
von Inspektionen mehrerer Spreadsheets aus dem selben Nutzungskontext ausgewählt werden
kann.

Hinzufügen von neuen Vorschriften

Um das Angebot an überprüfbaren Vorschriften zu erweitern, ist es außerdem möglich neue
Prüfstände zu entwickeln. Zu diesem Zweck existiert ein Schnittstelle, mit der neue Prüfstände
entwickelt und bei der Inspektions-Werkstatt registriert werden können. Basierend auf diesen
Prüfständen können dann neue Vorschriften angeboten und von SIF überprüft werden.

57

Kapitel 7

Anforderungen

Basierend auf dem in Kapitel 6 vorgestellten Konzept, ergeben sich dabei folgende funktionale
und nicht-funktionale Anforderungen, die an die erste Ausbaustufe des Spreadsheet Inspection
Framework gestellt werden.

7.1 Funktionale Anforderungen

Einlesen von Spreadsheets aus Spreadsheet-Dateien unterschiedlichen Formats

Um Spreadsheets zu beliebigen Stadien in deren Lebenszyklus prüfen zu können, muss SIF es
ermöglichen, gespeicherte Spreadsheets einzulesen. Für die erste Ausbaustufe ist dabei nur
die Unterstützung der Microsoft-Excel Dateiformate .xls und .xlsx geplant, aber es soll einfach
möglich sein, weitere Spreadsheet-Dateiformate zu unterstützen.

Erstellung und Konfiguration eines Inspektions-Auftrags

Zur Prüfung des eingelesenen Spreadsheets muss ein Inspektions-Auftrag angelegt werden
können, um die Prüfung, die für den Prüfling durchgeführt werden soll, zu definieren. Der
Umfang und die Konfiguration der Prüfung soll dabei dem geprüften Spreadsheet und dessen
Nutzungskontext angepasst werden können.

Inventarisierung: Untersuchung auf Beschaffenheit und Struktur

Um einen ersten Eindruck des zu prüfenden Spreadsheets zu gewinnen, muss es möglich sein
eine Inventurliste mit allen Bestandteilen des Spreadsheets zu erstellen. So sollen quantitative
Merkmale des Spreadsheets, wie etwa die Anzahl an Zellen mit numerischen Inhalten oder die
Anzahl an Formeln, erfasst werden können. Zudem soll auch die Struktur des Spreadsheets, wie
zum Beispiel die Abhängigkeiten zwischen den Zellen, erkannt werden können. Da auch Spezial-
Elemente erkannt werden sollen, die nicht über spezielle Sprachkonstrukte im Spreadsheet
ausgedrückt werden können, soll es möglich sein, diese über eine Schnittstelle zu definieren und
in Spreadsheets zu erkennen.

59

7 Anforderungen

Durchführung von Inspektions-Aufträgen

Zur Prüfung von Spreadsheets muss es möglich sein, dass die erstellten und konfigurierten
Inspektions-Aufträge automatisch durchgeführt werden. Dabei sollen die Einstellungen aus der
Konfiguration des Inspektionsauftrags und die gewonnen Informationen aus der Inventarisie-
rung verwendet werden, um das Spreadsheet auf die Einhaltung der Vorgaben der ausgewählten
Richtlinie zu überprüfen. Gefundene Verstöße sollen entsprechend der zugehörigen Vorschrift
klassifiziert, bewertet und gruppiert ausgeben werden.

Analyse der Ergebnisse einer Inspektion

Die Ergebnisse einer Inspektion sollen mit Hilfe von SIF analysiert werden können. Zu diesem
Zweck müssen die Verstöße angeben, welches Spreadsheet-Element aus welchen Gründen den
Verstoß verursacht hat, und wie der Verstoß zu klassifizieren und zu bewerten ist. Zum Abschluss
der Analyse soll die Möglichkeit bestehen, die Ergebnisse der Inspektion in einem geeigneten
Textformat zu exportieren.

Prüfung von drei ausgewählten Vorschriften

Um die Fähigkeiten der Inspektionswerkstatt zu demonstrieren, sollen die Prüfungen für die drei
ausgewählte Vorschriften Konstanten in Formeln, Leserichtung und Formelkomplexität umgesetzt
werden. Die drei Vorschriften sollen dabei wie folgt umgesetzt werden:

Konstanten in Formeln Die Vorschrift Konstanten in Formeln soll überprüfen, ob konstante Werte
in Formeln verwendet werden. Als konstante Werte werden dabei alle Operanden angese-
hen, bei denen es sich nicht um eine Referenz oder das Ergebnis einer Funktion handelt.
Dabei ist es nicht von Bedeutung, um welchen Typ von Konstante es sich dabei handelt,
wie beispielsweise eine numerische oder textuelle Konstante. Pro Formel, die mindestens
eine Konstante enthält, soll dabei ein Verstoß gemeldet werden. Verstöße von Formeln, die
das selbe Formelmuster enthalten, sollen zu einer Gruppe zusammengefasst werden.

Leserichtung Die Vorschrift Leserichtung soll prüfen, ob Referenzen nur auf solche Objekte ver-
weisen, die sich links und oberhalb der Zelle befinden, die die Referenz verwendet. Als
links von einer Zelle gelten dabei alle Zellen im selben Worksheet, die einen niedrigeren
Spaltenindex aufweisen und die Zellen aller Worksheets, die sich vor dem Worksheet der
entsprechenden Zelle befinden. Als oberhalb von einer Zelle gelten dabei alle Zellen im
selben Worksheet, die einen niedrigeren Reihenindex aufweisen. Pro Referenz, die die
Leserichtung nicht einhält, soll dabei ein Verstoß gemeldet werden. Verstöße der selben
Formel, sollen zu einer Gruppe zusammengefasst werden.

Formelkomplexität Die Vorschrift Formelkomplexität soll überprüfen, ob alle Formeln eines
Spreadsheets eine gewisse Komplexität, gemessen an deren Verschachtelungstiefe und
deren Anzahl an Operationen, also der Summe von Funktionen und Operatoren, nicht über-
schreitet. Eine Formel gilt in dieser Arbeit als komplex, wenn sie mehr als fünf Operationen

60

7.2 Nichtfunktionale Anforderungen

enthält oder eine Verschachtelungstiefe größer zwei aufweist. Diese Definition wurde dabei
jedoch willkürlich gewählt. Pro komplexer Formel soll dabei ein Verstoß gemeldet werden,
eine Gruppierung der Verstöße ist dabei nicht vorgesehen.

Umsetzung eines prototypischen Prüfwerkzeugs

Um die Prüfung der drei umzusetzenden Vorschriften einfach zu ermöglichen, soll ein pro-
totypisches Prüfwerkzeug entwickelt werden. Dieses Prüfwerkzeug soll es ermöglichen, dass
Spreadsheets über eine grafische Oberfläche mittels SIF auf die Einhaltung der drei Vorschriften
Konstanten in Formeln, Leserichtung und Formelkomplexität überprüft werden und die Ergebnisse
der Prüfungen exportiert werden können.

Erstellung neuer Richtlinien

Damit individuelle Richtlinien mit SIF überprüft werden können, soll es ermöglicht werden, dass
eigenen Richtlinien aus den angebotenen Vorschriften zusammengestellt werden. Außerdem soll
es ermöglicht werden, dass weitere Vorschriften realisiert und durch die Inspektions-Werkstatt
überprüft werden können.

7.2 Nichtfunktionale Anforderungen

Unabhängigkeit von verwendetem Betriebssystem und verwendetem Spreadsheet-System

Um die Nutzung von SIF einem möglichst breiten Personenkreis zu ermöglichen, soll sich
SIF nicht auf die Prüfung von Spreadsheets eines bestimmten Spreadsheet-Systems beschränken.
Daher soll SIF nicht als Erweiterung oder Plug-In einer bestehenden Spreadsheet-Software
entwickelt werden. Stattdessen soll SIF so konzipiert und entwickelt werden, dass es als plattform-
unabhängige, abgeschlossene Komponente verwendet werden kann, um Prüfwerkzeuge für
Spreadsheets zu realisieren.

Erweiterbarkeit um dynamischen Prüfungsmöglichkeiten

SIF soll in der ersten Ausbaustufe nur die technische Grundlage bieten, um statische Prüfungen
von Spreadsheets durchzuführen. Da statische Prüfungen jedoch durch ihre Beschaffenheit nicht
dazu geeignet sind, alle Fehlerarten zu erkennen, soll die Architektur von SIF es ermöglichen,
dass dynamische Prüfungen in das bestehende Framework integriert werden.

Erweiterbarkeit um graphische Darstellung von Spreadsheet und Verstößen

Zusätzlich zur Erweiterbarkeit um dynamische Prüfungen, ist auch die bessere Unterstützung
von manuellen Inspektion durch SIF vorgesehen. Daher soll die Visualisierung des Spreadsheets
und der gefundenen Verstöße in einer weiteren Ausbaustufe ermöglicht werden.

61

Kapitel 8

Umsetzung

Basierend auf dem in Kapitel 6 vorgestellten Konzept einer Spreadsheet-Inspektions-Werkstatt
wird in diesem Kapitel nun beschrieben, wie die in Kapitel 7 gestellten Anforderungen an
SIF umgesetzt worden sind.

8.1 Vorgehen

Aufgrund dessen, dass es sich bei der Entwicklung von SIF um ein Forschungsprojekt handelt,
habe ich mich für die Umsetzung von SIF für eine evolutionäre Vorgehensweise mit zwei Ent-
wicklungszyklen entschieden. Den Basis-Zyklus habe ich dabei mit zwei Dritteln der verfügbaren
Zeit veranschlagt und die verbleibende Zeit habe ich für einen Erweiterungszyklus eingeplant.
Innerhalb der Zyklen bin ich dabei nach dem Vorbild des Spiralmodells nach Boehm [LL07, S.177
ff.] vorgegangen, um die größten Risiken zuerst zu beseitigen.

Daher habe ich den Fokus für den ersten Zyklus auf das Übertragen von Spreadsheets in das
interne Datenmodell, sowie auf die Konzeption der Infrastruktur für die Fehlererkennung und
-verwaltung gelegt. Mit der Umsetzung der drei vorgesehenen Prüfverfahren habe ich dann
begonnen, sobald der Fortschritt bei der Entwicklung der Infrastruktur dies zuließ. Gleichzeitig
habe ich das prototypische Prüfzentrum, das die wichtigsten Funktionen von SIF über eine
rudimentäre graphische Oberfläche zugänglich macht, in Grundzügen implementiert, um die
Nutzung von SIF zu vereinfachen.

Der zweite Zyklus des Projekts sollte dann, je nach Fortschritt und den gewonnen Erkenntnissen
aus dem ersten Zyklus, dazu verwendet werden, um die Implementierung der Prüfverfahren
abzuschließen und dann das Framework und das prototypische Prüfzentrum zu verbessern und
zu erweitern. Da die Umsetzung der Prüfverfahren am Ende des Basis-Zyklus noch nicht so weit
vorangeschritten war, wie erhofft, habe ich beschlossen den gesamten Erweiterungszyklus für die
Umsetzung von SIF zu verwenden und das prototypische Prüfzentrum in seiner rudimentären
Fassung zu belassen.

63

8 Umsetzung

8.2 Design

SIF besteht aus den Komponenten FrontOffice , TechnicalDepartment , IOund Model . Durch
diese Aufteilung werden die Verwaltung der Inspektionsaufträge und der Inspektions-Werkstatt,
die Durchführung der Inspektionsaufträge, sowie der Zugriff auf Spreadsheets voneinander
getrennt.

IO

Example Testing Center

FrontOffice

TechnicalDepartment

Inspektions-Werkstatt nutzen

Inspektion durchführen

Model

Spreadsheet laden
SIF

Spreadsheet-Dateien

Spreadsheet-Bibliohteken
(Bsp. Apache-POI)

Abbildung 8.1: Architektur von SIF

Die einzelnen Komponenten haben dabei folgenden Aufgaben:

 Das FrontOffice ist der zentrale Zugriffspunkt, um Funktionen von SIF zu nutzen. Die
Komponente bietet zu diesem Zweck eine Schnittstelle an, um neue Inspektionen in Auf-
trag zu geben, deren Ablauf zu steuern und die angebotenen Prüfungen der Inspektions-
Werkstatt zu verwalten.

 Das Modelbietet Datenstrukturen an, um Spreadsheets zu repräsentieren, Richtlinien für
Spreadsheets zu definieren, Inspektions-Aufträge und deren Konfiguration zu erstellen
sowie die Ergebnisse von Inspektionen festzuhalten.

 Die IO ist dafür zuständig, dass Spreadsheets aus Spreadsheet-Dateien geladen und durch
Klassen aus dem Model repräsentiert werden können. Zum Einlesen der Spreadsheet-

64

8.2 Design

Dateien in unterschiedlichen Formaten werden dabei externe Bibliotheken, wie beispiels-
weise Apache POI-SS 1, verwendet.

 Die Durchführung der Inspektions-Aufträge, die über das FrontOffice erstellt und konfi-
guriert werden, erfolgt dann im TechnicalDepartment, das auch die dazu notwendigen
Prüfmittel verwaltet.

Die folgenden Abschnitte beschreiben die Funktionen von SIF und die jeweils beteiligten Kom-
ponenten. Auf eine detaillierte Beschreibung des Designs, die jede Klasse, jede Methode und
jedes Attribut umfasst, wurde bewusst verzichtet. Stattdessen wird der Schwerpunkt auf die
Zusammenhänge der einzelnen Komponenten und die getroffenen Entscheidungen gelegt.

8.2.1 Repräsentation von Spreadsheets

Um die Unabhängigkeit von SIF bezüglich des verwendeten Spreadsheet-Formats zu erreichen,
wird für die Repräsentation von Spreadsheets ein eigenes Datenmodell verwendet. Dieses Daten-
modell für Spreadsheets gliedert sich dabei in zwei Teile: ein Basis-Modell, repräsentiert durch
eine Instanz der Klasse Spreadsheet und ein erweitertes Modell – das Spreadsheet-Inventar,
repräsentiert durch eine Instanz der Klasse SpreadsheetInventory. Das Basis-Modell enthält
dabei alle Informationen, die direkt über Sprachkonstrukte von gängigen Spreadsheet-Sprachen
ausgedrückt werden können. Es stellt also die Repräsentation eines aus Basis-Elementen beste-
henden Spreadsheets dar. Das Spreadsheet-Inventar beinhaltet das Basis-Modell und erweitert
dies um Listen mit den Vorkommnissen aller Elemente in dem zu repräsentierenden Spreads-
heet. Das Spreadsheet-Inventar beschränkt sich dabei jedoch nicht nur auf Vorkommnisse von
Basis-Elementen, sondern kann auch die Erfassung aller Instanzen von benutzerdefinierten
Spezial-Elementen beinhalten.

Einlesen von Spreadsheets – Erstellung des Basis-Modells

Das Basis-Modell soll ein Spreadsheet und dessen Bestandteile so darstellen, wie dies in einer
Spreadsheet-Datei gespeichert ist. Die Repräsentation eines Spreadsheets erfolgt daher durch
eine Instanz der Klasse Spreadsheet und die Repräsentation von Basis-Elementen erfolgt als Un-
terklassen von BasicAbstractElement. Zur Erstellung des Basis-Modells muss das zu prüfende
Spreadsheet aus einer Spreadsheet-Datei eingelesen und in interne Datenstrukturen umgewan-
delt werden. Zu diesem Zweck bietet die zuständige IO -Komponente über die zentrale Klasse
DataFacade eine Schnittstelle an, die für eine gegebene Spreadsheet-Datei eine entsprechende
Instanz von Spreadsheet erstellt. Das Einlesen und Umwandeln der Informationen übernimmt
dabei die für das Format der gegebenen Spreadsheet-Datei zuständige ISpreadsheetIO. So
erfolgt beispielsweise das Einlesen und Umwandeln von Spreadsheet-Dateien in den Excel-
Formaten .xls oder .xlsx durch die POISpreadsheetIO_HSSF bzw. die POISpreadsheetIO_XSSF.

1http://poi.apache.org/spreadsheet/index.html

65

http://poi.apache.org/spreadsheet/index.html

8 Umsetzung

Diese verwenden zum Einlesen die externe Bibliothek Apache-POI-SS2 und wandeln die ein-
gelesenen Basis-Elemente in Datenstrukturen von SIF um. Die Unterstützung von weiteren
Spreadsheet-Dateiformaten ist durch diese Aufgabenverteilung leicht möglich, indem weitere
Implementierungen der ISpreadsheetIO realisiert werden.

AbstractElement

BasicAbstractElement CustomAbstractElement

Basis-Elemente

1 baseElement

Spreadsheet-Elemente

Spreadsheet

Worksheet SpreadsheetProperties

Cell

Row Column

1

1..*

1
1..*

1
1..*

1
1..*

1

1..*

1
1..*

OutputCell

InputCellCaluclationNode

«Interface»
IElement

«Interface»
IRangeElement

+getRange(): Range

«Interface»
ICellElement

+getCell(): CellSpezial-Elemente

CustomElementX

CustomElementY

FormulaBlock

AbstractElementList<? exentds IElement>

SpreadsheetInventory

1 0..*

0..*

Abbildung 8.2: Darstellung des Spreadsheet-Inventars sowie einiger Basis- und Spezial-
Elemente

Inventarisieren von Spreadsheets – Erstellung des erweiterten Modells

Wie in Abschnitt 6.2 beschrieben, sind die Ausdrückmöglichkeiten bestehender Spreadsheet-
Sprachen begrenzt und daher wird in dieser Arbeit zwischen Basis- und Spezial-Elementen
von Spreadsheets unterschieden. Das erweiterte Modell soll dazu dienen, zusätzlich zu den
Basis-Elementen, auch Spezial-Elemente von Spreadsheets zu erfassen und diese für die Prüfung
zur Verfügung zu stellen. Zu diesem Zweck können Spezial-Elemente als Unterklassen von
CustomAbstractElement definiert werden. Dazu müssen diese die Instanz eines entsprechenden
Basis-Elements angeben, auf dem sie basieren.

Durch die Implementierung von Unterklassen des Interfaces IElement können ähnliche Element-
Klassen, beispielsweise die beiden Spezialisierungen einer Zelle InputCell und OutputCell,
gruppiert werden. So kann die Funktionaliät von Cell auch bei den Klassen InputCell und
OutputCell genutzt werden, wenn diese das Interface ICellElement implementieren und auf
die Zelle des Basis-Modells verweisen, auf der sie basieren.

2http://poi.apache.org/spreadsheet/index.html

66

http://poi.apache.org/spreadsheet/index.html

8.2 Design

Die Erstellung des erweiterten Modells erfolgt während des Inventarisierung-Schrittes mit Hilfe
von ElementScannern. So muss für jede Elementklasse, deren Instanzen ins Spreadsheet-Inventar
aufgenommen werden sollen, ein Element-Scanner definiert und über den TechnicalManger
beim ScanningManager registriert werden. Ein ElementScanner erkennt unter Verwendung
des Basis-Modells und bereits gescannter Elemente alle Vorkommnisse dieser Elementklasse
und fügt diese gesammelt als AbstractElementList dem Spreadsheet-Inventar hinzu. Eine
AbstractElementList stellt eine abstrakten Container für eine bestimmte Elementklasse bereit,
der alle Instanzen dieser Klasse aufnehmen kann. SIF stellt mit der SimpleElementList eine einfa-
che Implementierung dieses Containers bereit, erlaubt jedoch auch spezifische Implementierung
dieses Containers für bestimmte Elementklassen.

Das Inventarisieren eines Spreadsheets erfolgt im TechnicalDepartmentdurch den
ScanningManager, welcher alle registrierten Element-Scanner ausführt. Da manche Scanner auf
den Ergebnissen anderer Scanner aufbauen, ist die Durchführungsreihenfolge entscheidend.
Daher können Element-Scanner einen Prioritätswert angeben, der die Ausführungsreihenfolge
beeinflusst. Für eine korrekte Konfiguration dieser Werte sind jedoch die Entwickler von neuen
Scannern verantwortlich, eine Überprüfung durch den ScanningManager erfolgt nicht.

Das SpreadsheetInventory enthält also nach der Inventarisierung eine Repräsentation des
Spreadsheets, wie es in der Spreadsheet-Datei gespeichert ist, und außerdem die Vorkommnisse
aller Spreadsheet-Elemente, die bei der Inventarisierung des Spreadsheets entdeckt wurden.

8.2.2 Inspektion von Spreadsheets mit SIF

Das FrontOffice ist die Schnittstelle um Funktionen von SIF zu nutzen. Die zentrale Zugriffs-
punkt für die Nutzer der Inspektions-Werkstatt ist dabei die Klasse FrontDesk, die zu diesem
Zweck die Enwurfmuster Singleton und Fassade implementiert [GHJV95]. Die Klasse FrontDesk
soll dabei als Rezeption für die Inspektions-Werkstatt dienen und die zentrale Anlaufstelle
für deren Anwender sein. So können über diese Schnittstelle neue Inspektionen in Auftrag
gegeben und konfiguriert werden. Und auch die Steuerung der Durchführung und die Abho-
lung der Ergebnisse erfolgt über den FrontDesk. Die Abwicklung der beantragten Vorgänge
geschieht dabei jedoch nicht direkt im FrontDesk, sondern wird an die beiden anderen Klassen
des FrontOfficedelegiert. So ist der InspectionManager für die Erstellung der Inspektions-
Aufträge zuständig und koordiniert deren Durchführung. Der Policymanager ist für die Koor-
dination der angebotenen Prüfungen mit den vorhandenen technischen Mittel zuständig und
übernimmt daher auch die Konfiguration von Inspektions-Aufträgen.

Erstellung und Konfiguration von Inspektionsaufträgen

Inspektionsaufträge werden durch die Klasse InspectionRequest repräsentiert. Zum Erstel-
len eines neuen Inspektionsauftrags muss der Benutzer dem FrontDesk die Spreadsheet-Datei
und einen Namen für die Inspektion übergeben. Der InspectionManager legt daraufhin den

67

8 Umsetzung

IO

FrontOffice

TechnicalDepartment

Model

SIF

FrontDesk

InspectionManagerPolicyManager

Inspektionsaufträge
verwalten

DataFacade

ISpreadsheetIO

Inspektionsaufträge
konfigurieren

TechnicalManager

ScanningManagerTestBayManager

Spreadsheet
 inventariesieren

Inspektionsauftrag
 durchführen

 Inspektionsaufträge
darstellen

Ergebnisse
dokumentieren

Spreadsheet-Inventar
darstellen

Spreadsheet
aus Datei laden

Spreadsheet
darstellen

Abbildung 8.3: Die Komponenten von SIF im Detail

initialen Inspektionsauftrag an, lässt über die IOdas Basis-Modell für das Spreadsheet erstellen
und macht dies als ersten Bestandteil des Spreadsheet-Inventars für den Inspektionsauftrag
verfügbar. Anschließend erhält der Aufrufer die Instanz des InspectionRequest und kann auf
das Basis-Modell zugreifen. Als nächstes erfolgt die Inventarisierung des Spreadsheets, wie oben
beschrieben, die ebenfalls über den FrontDesk gestartet und im TechnicalDepartmentvom
ScanningManager durchgeführt wird. Nach der Inventarisierung ist das gesamte Spreadsheet-
Inventar über den InspectionRequest abrufbar, und ist zur Analyse durch den Nutzer verfüg-
bar.

Zur Konfiguration eines Inspektionsauftrags kann der Benutzer über den FrontDesk die Richtlini-
en erfragen, die beim PolicyManager registriert wurden und damit von der Inspektionswerkstatt
aktuell angeboten werden. Eine Richtlinie wird dabei durch die Klasse Policy dargestellt und
die Vorschriften der Richtlinie über eine Liste von AbstractPolicyRules. Vorschriften, die über
einen monolithischen Prüfstand geprüft werden, werden dabei als MonotlithicPolicyRule
repräsentiert. Vorschriften, die mit Prüfständen geprüft werden, die aus bestehenden Prüf-
werkzeugen zusammengesetzt werden, werden als CompositePolicyRule dargestellt. Die
Parameter einer AbstractPolicyRule werden in dieser deklariert und über die Annotation
ConfigurableParameter kenntlich gemacht. Eine Konfiguration einer AbstractPolicyRule
wird bei deren Registrierung im PolicyManager erstellt und ist als PolicyRuleConfiguration
der AbstractPolicyRule abrufbar. Die PolicyRuleConfiguration erlaubt es die Werte für die

68

8.2 Design

Parameter der Vorschrift, repräsentiert als ParameterConfigurations, zu setzen. Nachdem eine
Policy ausgewählt und deren AbstractPolicyRules eventuell konfiguriert wurden, kann die
Policy für den Inspektionsauftrag,der nun zur Durchführung bereit ist, gesetzt werden,

Durchführung von Inspektionsaufträgen

Die Durchführung eines Inspektionsauftrags wird wie gewohnt über den FrontDesk gestartet.
Die Anfrage zur Durchführung wird über den InspectionManager und den TechnicalManager
an den TestBayManager weitergeleitet. Dieser ist nun dafür zuständig ein Prüffeld, dar-
gestellt durch die Klasse TestBay, aufzubauen, das der konfigurierten Policy aus dem
InspectionRequest entspricht. Der TestBayManager kennt die Zuordnung von Vorschriften zu
monolithischen Prüfständen und kann für Vorschriften, die nicht über monolithische Prüfstände
geprüft werden, den Prüfstand aus den vorhandenen Prüfwerkzeugen zusammensetzen. Für
jede Vorschrift wird der entsprechende Prüfstand mit den getätigten Einstellungen konfiguriert
und zum Prüffeld hinzugefügt. Die Klasse TestBay hält den Inspektionsauftrag und das
zugehörige Spreadsheet-Inventar, das für alle Prüfstände zugänglich ist. Sie ist außerdem
dafür zuständig die Prüfstände der Reihe nach abzufahren und die gefundenen Verstöße zu
sammeln.

Verstöße werden durch Implementierungen der Schnittstelle IViolation realisiert. Dabei existie-
ren die Spezialisierungen ISingleViolation und IGroupViolation um einzelne Verstöße und
Gruppen von Verstößen darstellen zu können. Jeder Verstoß enthält dabei die Vorschrift die ver-
letzt wurde, das verursachende Element, sowie eine Beschreibung des Verstoßes. Außerdem wird
jeder Verstoß entsprechend der geprüften Vorschrift klassifiziert und unter Berücksichtigung
der eingestellten Gewichtung hinsichtlich seiner Schwere bewertet. Eine Verstoß-Gruppe kann
dabei beliebig viele Einzelverstöße enthalten und ein Element angeben, das die verursachenden
Elemente seiner Mitglieder enthält.

Gesammelt werden die gefundenen Verstöße eines Prüfstands in einer ViolationList, die
auch die Erstellung von Verstoß-Gruppen übernimmt. So kann einer ViolationList ein
ViolationGroupor-Objekt übergeben werden, der erkennt welche Verstöße zu einer Gruppe
zusammengefasst werden müssen und diese Gruppe entsprechend erstellt. Prüfstände geben eine
solche ViolationList als Ergebnis aus, welche vom Prüffeld in der Container-Klasse Findings
gesammelt werden. Nachdem alle Prüfstände ihre Prüfungen durchgeführt haben, wird das
Findings-Objekt dem Inspektionsauftrag hinzugefügt. Der Nutzer der Inspektions-Werkstatt
kann nun alle gefundenen Verstöße als Ergebnisse des Inspektionsauftrag abrufen und diese
analysieren.

Inspektionsbericht erstellen

Zum Abschluss des Inspektionsauftrags kann für diesen ein Bericht erstellt werden, der die wich-
tigsten Information zu der Konfiguration des Auftrags zusammenfasst, sowie die Details zu allen
gefunden Verstößen enthält. Dazu muss über den FrontDesk der Pfad zu dem Ort angegeben
werden, an dem der Bericht erstellt werden soll. Daraufhin wird von der IO -Komponente eine
.hmtl-Datei unter dem Namen des Inspektionsauftrags erstellt, die den Bericht enthält.

69

8 Umsetzung

8.2.3 Verwaltung der Inspektionswerkstatt

Zur Erweiterung des Prüfungsangebotes können mit SIF neue Richtlinien aus bestehenden
Vorschriften zusammengestellt werden und über die Implementierung von neuen Prüfständen
neue Vorschriften angeboten werden. In diesem Abschnitt wird beschrieben, wie dies technisch
abläuft.

Erstellung neuer Richtlinien

Zur Erstellung von neuen Richtlinien muss eine neue Instanz der Klasse Policy erstellt wer-
den. Dabei muss für das Policy-Objekt ein Name, eine Beschreibung und der Name des
Autors gesetzt werden. Über den Frontdesk können dann alle registrierten Vorschriften als
AbstractPolicyRules abgerufen werden. Diese enthalten bereits eine initiale Konfiguration mit
den Werten, die der Ersteller dieser Vorschrift als Standard angegeben hat. Der Ersteller einer
neuen Richtlinie wählt eine beliebige Anzahl dieser Vorschriften aus, kann diese nach Bedarf
vorkonfigurieren, und fügt sie der neu erstellen Policy hinzu. Die neu erstellte Policy kann
dann über den FrontDesk beim PolicyManager registriert werden und ist nun für die Prüfung
von Spreadsheets verfügbar.

Erstellung neuer Vorschriften

Zusätzlich zur Erstellung neuer Richtlinien können auch neue Vorschriften erstellt und zur
Auswahl für Richtlinien verfügbar gemacht werden. Es wird dabei zwischen solchen Vor-
schriften unterschieden, die von monolithischen Prüfständen überprüft werden, und solchen,
die mit zusammengesetzten Prüfständen überprüft werden. Technisch wird das durch die
Klassen MonolithicPolicyRule und CompositePolicyRule gelöst, die beide von der Klasse
AbstractPolicyRule ableiten. Um das Prüfangebot der Inspektionswerkstatt um eine weitere
Prüfung zu erweitern, muss eine Spezialisierung dieser Klassen implementiert werden, sowie
geeignete Prüfmittel realisiert werden, die die Einhaltung der dadurch definierten Vorschrift
überprüfen.

MonolithicPolicyRules benötigten dabei als Prüfmittel einen monolithischen Prüfstand,
umgesetzt als Spezialisierung von MonolithicTestFacility, und zur Prüfung von
CompositePolicyRules werden ein oder mehrere Prüfwerkzeuge, umgesetzt als Spezia-
lisierungen von AbstractTestInstrument, benötigt.

Zur Erstellung einer neuen Vorschrift, unabhängig von deren Typ, sollte für die Spezialisierung
von AbstractPolicyRule ein Name, eine Beschreibung des Hintergrunds, eine Anleitung zur
möglichen Behebung von Verstößen gegen diese Vorschrift und der Name des Autors angegeben
werden. Außerdem ist es möglich der Vorschrift eine Kategorie zuzuweisen, der die entdeckten
Verstöße zugewiesen werden. Zusätzlich besteht die Möglichkeit einen Gewichtungsfaktor
anzugeben der für die Bewertung der Schwere von Verstößen verwendet wird.

70

8.3 Implementierung

8.3 Implementierung

In diesem Abschnitt soll beschrieben werden welche Funktionalität bisher umgesetzt wurde, und
was aus Zeitgründen noch nicht implementiert werden konnte.

8.3.1 Model

Das Basismodell wurde bisher nur so weit umgesetzt, wie dies für die Umsetzung der geplanten
Prüfung notwendig war. Daher sind noch nicht alle Basis-Elemente eines Spreadsheets als Daten-
strukturen modelliert, jedoch wurden bereits einige Spezial-Elemente, beispielsweise InputCell
und OutputCellmodelliert und über ElementScanner erkannt. Außerdem werden bisher nur
Spreadsheets in den Dateiformaten .xls und .xlsx unterstützt, da nur eine ISpreadsheetIO für
das Einlesen dieser Formate implementiert wurde.

8.3.2 Prüfungen

Für die erste Ausbaustufe wurden Prüfungen für die drei Vorschriften Konstanten in Formeln,
Leserichtung und Formelkomplexität implementiert. Dabei wurden alle Prüfungen mittels monoli-
thischer Prüfstände als Spezialisierungen von MonolithicTestFacility umgesetzt.

Konstanten in Formeln Zur Prüfung dieser Vorschrift werden alle Vorkommnisse des Basis-
Elements Formula, die über einen entsprechenden Scanner dem Spreadsheet-Inventar
hinzugefügt wurden, untersucht. Instanzen von Formula enthalten dabei für jeden Bestand-
teil der Formel ein eigenes Objekt der Schnittstelle ITokenElement. So werden konstante
Werte als ScalarConstant dargestellt und es kann für jede Formel überprüft werden, ob
es sich bei einem der enthalten ITokenElemente um eine Instanz von ScalarConstant
handelt. Da jedes ScalarConstant-Objekt, den Typ und den Wert der Konstante speichert,
ist es möglich bestimmte Werte oder Typen bei der Prüfung zu ignorieren. So kann über
den konfigurierbaren Parameter ignoredConstants in der zugehörigen Repräsentation
der Vorschrift, NoConstantsInFormulasPolicyRule, eine Liste von Werten gesetzt werden,
die bei der Prüfung durch die NoConstantsInFormulasTestFacilitiy ingoriert werden sollen.
Zudem kann über ignoredFunctions eine Liste mit den Namen der Funktionen angegeben
werden, in denen die Verwendung beliebiger Konstanten erlaubt sein soll.

Leserichtung Die Repräsentation dieser Vorschrift erfolgt dabei als ReadingDirectionPolicyRule,
deren Prüfung in der ReadingDirectionTestFacility durchgeführt wird. Die Prüfung
wird wiederum auf der Basis des Spreadsheet-Inventars durchgeführt. So werden alle
registrierten Referenzen, die als AbstractReference ins Inventar aufgenommen wurden,
der Reihe nach untersucht. Jede AbstractReference enthält dabei die referenzierende
Zelle und das referenzierte Element. Von beiden Elementen kann dann ihre Position
im Spreadsheet erfragt werden, um anschließend horizontal und vertikal verglichen

71

8 Umsetzung

zu werden. Dabei ist über zwei Parameter der ReadingDirectionPolicyRule separat
einstellbar, ob die Leserichtung von links nach rechts und von oben nach unten eingehalten
werden muss.

Formelkomplexität Analog zu den anderen Vorschriften erfolgt die Repräsentation der
Vorschrift durch die Klasse FormulaComplexityPolicyRule und die Prüfung wird mit
FormulaComplexityTestFacility durchgeführt Über die Repräsentation der Vorschrift
kann dabei konfiguriert werden, wie viele Operationen eine Formel maximal enthalten
darf und wie hoch die maximale Schachtelungstiefe sein soll. Als Operation werden dabei
alle Funktionen und Operanden gezählt und die maximale Schachtelungstiefe, ergibt
sich aus der maximalen Anzahl an Funktionen, die einander kaskadierend aufrufen.
Geprüft wird dabei wiederum anhand der Liste von Formula-Objekten, wobei für jedes
Formula-Objekt, die Anzahl an Operationen gezählt wird und über eine Methode der
Klasse, die maximale Schachtelungstiefe berechnet wird. Die Werte werden dann mit
den Vorgaben der konfigurierten Vorschrift verglichen und bei Abweichungen wird ein
entsprechendes Verstoß-Objekt mit der Angabe des Formel Objekts und den gefundenen
Werten erstellt.

72

Kapitel 9

Evaluation

Im vorherigen Kapitel wurde die Umsetzung des Konzepts einer Inspektions-Werkstatt und die
Realisierung eines prototypischen Prüfzentrums für die Prüfung von Spreadsheets beschrieben.
In diesem Kapitel soll nun beschrieben werden, wie das mit SIF entwickelte prototypische
Prüfwerkzeug Example Testing Center (ETC) evaluiert wurde, um dessen Eignung für die Prüfung
von Vorschriften zu untersuchen. Dazu wurde ETC für die Überprüfung von Spreadsheets
bezüglich drei Vorschriften verwendet und anschließend wurden die Ergebnisse mit denen von
bestehenden kommerziellen statischen Analysewerkzeugen verglichen.

9.1 Rahmenbedingungen

Im diesem Abschnitt werden die Rahmenbedingungen beschrieben, innerhalb deren die Eva-
luation durchgeführt wurde. Dazu werden die Eigenschaften und Funktionen der untersuchten
Prüfwerkzeuge vorgestellt und miteinander verglichen. Anschließend werden die Spreadsheets
kurz vorgestellt, die für die Evaluation verwendet wurden. Zuletzt wird erläutert, wie die
Evaluation dabei im Detail ablief.

9.1.1 Prüfwerkzeuge

Die Zahl der kommerziellen Produkte, die versprechen das Qualitäts-Problem von Spreadsheets
zu lindern oder sogar zu beseitigen, nahm in den vergangenen Jahren stetig zu. Bei der Mehrheit
dieser Produkte handelt es sich dabei um Audit-Werkzeuge, die die Prüfung von Spreadsheets
unterstützen (Siehe Kapitel 5). Eine Auswahl an Prüfwerkzeugen, die wie die erste Ausbaustufe
von SIF statische Prüfungen von Spreadsheets anbieten, wurde im Rahmen dieser Evaluation mit
ETC verglichen.

73

9 Evaluation

Auswahl

Das Hauptkriterium für die Auswahl der untersuchten Prüfwerkzeuge war dabei deren Verfüg-
barkeit. Das heißt, es wurden nur solche Prüfwerkzeuge in Betracht gezogen für die zumindest
eine kostenlose Probeversion verfügbar war, die ohne Registrierung von der Seite des Herstellers
bezogen werden konnte. Außerdem wurde bei der Auswahl berücksichtigt, ob die Prüfwerk-
zeuge vergleichbare Vorschriften zur Überprüfung anbieten, wie sie in dieser Arbeit umgesetzt
wurden. Die Wahl der Prüfwerkzeuge fiel zum einen auf das Prüfwerkzeug Spreadsheet Professio-
nal1, welches auch in [PBL09] verwendet wird, und zum anderen auf das Prüfwerkzeuge Rainbow
Analyst2. Dabei wurden jeweils die verfügbaren Probeversionen3 verwendet, die einen vollen
Funktionsumfang bieten, aber nur eine eingeschränkte Nutzungsdauer erlauben.

Übersicht

Die Eigenschaften und Funktionen dieser Werkzeuge werden in Abbildung 9.1 präsentiert und
mit denen von ETC gegenübergestellt. Einträge, die mit einem Stern (*) versehen sind, deuten
dabei an, dass diese Funktion oder Eigenschaft von ETC zwar noch nicht oder nicht ausreichend
erfüllt ist, deren Implementierung jedoch mit Hilfe von SIF geplant oder bereits umsetzbar ist.

Rainbow Analyst Spreadsheet
Professional

ETC

Eigenschaften

* Visualisierungsunterstützung

* Dynamische Prüfungen
 Open Source
 Standalone
 Erweiterbar
 Unterstützt mehrere Datei-Formate

Funktionen

* Spreadsheet Zusammenfassung

5 25 3* Anzahl überprüfbarer Vorschriften
 Auswahl von Vorschriften
 Konfiguration von Vorschriften
 Gruppierung von Verstößen
 Gewichtung von Verstößen
 Detailansicht von Verstößen

 Report aller Verstöße

Abbildung 9.1: Eigenschaften und Funktionen der untersuchten Prüfwerkzeuge

1http://www.spreadsheetinnovations.com
2http://www.themodelanswer.com
3Das Werkezug Rainbow Analyst wurde in der Version 5.1 verwendet; das Werkzeug Spreadsheet Professional wird

vom Hersteller ohne die Angabe einer Versionsnummer angeboten.

74

http://www.spreadsheetinnovations.com
http://www.themodelanswer.com

9.1 Rahmenbedingungen

9.1.2 Spreadsheets

Zur Evaluation der untersuchten Werkzeuge wurde eine kleine Auswahl von zwölf unterschied-
lichen Spreadsheets aus Real- und Laborumgebungen verwendet. Wie auch bei der Auswahl der
untersuchten Werkzeuge, war die Verfügbarkeit der Spreadsheets hierbei ein Hauptkriterium.
Gleichzeitig wurde jedoch versucht, Spreadsheets aus möglichst unterschiedlichen Bereichen aus-
zuwählen, die in ihrer Größe und Komplexität dem Durchschnitt der in der Praxis verwendeten
Spreadsheets [IR05] entsprechen.

Die Dateien spreadsheet_sample_01 bis spreadsheet_sample_05 stammen aus einem Experiment,
das in der Abteilung Software Engineering am Institut für Softwaretechnologie der Universität
Stuttgart durchgeführt wurde. Dabei mussten die Probanden ausgehend von einer textuellen
Aufgabenstellung ein Spreadsheet erstellen, mit dem Pkws bezüglich unterschiedlich gewichtba-
rer Kriterien miteinander verglichen werden konnten. Bei spreadsheet_sample_06 handelt es sich
um ein frei im Internet verfügbares Spreadsheet zur Analyse von Residualeinkommen4, das auf
der Seite des CPA-Journals5 zum Herunterladen angeboten wird. Die Datei spreadsheet_sample_07
ist ein Spreadsheet aus der Praxis zum Vergleich von Reifengrößen, das der Abteilung Software
Engineering der Universität Stuttgart zur Verfügung gestellt wurde. Und bei den Spreadsheets
spreadsheet_sample_08 bis spreadsheet_sample_12 handelt es sich wiederum um frei im Internet
verfügbare Spreadsheets, die auch Teil des EUSES Spreadsheet Corpus [IR05] sind.

Dabei wurde für die untersuchten Spreadsheets die Anzahl der Worksheets, Zellen und Formeln
gemessen (Siehe Abbildung 9.2). Die verwendeten Spreadsheets sind außerdem auch auf dem
beigefügten Datenträger (siehe Abschnitt A.1) zu finden.

spreadsheet_sample_ 01 02 03 04 05 06 07 08 09 10 11 12 Ø Median Max Min

Worksheets 3 3 3 5 3 5 1 4 1 4 4 2 3.2 3 5 1

Zellen 397 497 214 741 220 315 170 323 705 884 352 247 422.1 337.5 884 170

Formeln 166 126 27 241 30 74 50 71 80 125 25 40 92.3 72.5 241 25

Abbildung 9.2: Allgemeine Statistiken zu den Spreadsheets der Evaluation

9.1.3 Überprüfte Vorschriften

Für die Evaluation wurden die drei Vorschriften mit den ausgewählten Werkzeugen überprüft,
die auch in dieser Arbeit als Prüfverfahren umgesetzt wurden (Siehe Absatz 7.1). Zusätzlich
wurde die Vorschrift Konstanten in Formeln ebenfalls mittels einer nichtmechanischen Inspektion
durch den Autor überprüft. Auf eine Überprüfung aller Spreadsheets auf die beiden anderen
Vorschriften wurde aus Aufwandsgründen verzichtet. Alle untersuchten Prüfwerkzeuge bieten

4http://www.nysscpa.org/cpajournal/2001/0700/features/f074601.htm
5www.cpajournal.com/download/rimodel.xls

75

http://www.nysscpa.org/cpajournal/2001/0700/features/f074601.htm
www.cpajournal.com/download/rimodel.xls

9 Evaluation

die ausgewählten Vorschriften an, jedoch in leichten Abwandlungen und ohne eine genaue
Definition der Prüfkriterien. So überprüfen die beiden Prüfwerkzeuge Spreadsheet Professional
und Rainbow Analyst Spreadsheets nur auf numerische Konstanten. Zudem meldet Rainbow
Analyst Zeilen- und Reihenunterschiede bei Referenzen getrennt. Bezüglich der dritten Vorschrift
Formelkomplexität gibt leider keines der beiden Werkzeuge an, welche Eigenschaften eine Formel
besitzen muss, um nicht als komplexe Formel durch einen Verstoß gemeldet zu werden.

9.1.4 Ablauf

Es wurde vor allem eine quantitative Analyse der gefundenen Verstöße durchgeführt, eine
detaillierte Untersuchung von einzelnen Verstößen fand dabei nicht statt. Zu diesem Zweck
wurden die ausgewählten Spreadsheets mit den untersuchten Werkzeugen geprüft. Der Ablauf
der Vorgänge soll in den folgenden Abschnitten kurz beschrieben werden.

Nichtmechanische Inspektion

Die Inspektion der Spreadsheets durch den Verfasser dieser Arbeit erfolgte am Rechner unter
Verwendung der Spreadsheet-Software OpenOffice.org Calc. Die Prüfung der Spreadsheets erfolgte
dabei nach der in Absatz 7.1 gegebenen Definition und wurde Zelle für Zelle durchgeführt. Da
die überprüfte Vorschrift auf Zellen mit Formeln basiert, wurden nur Zellen mit Formelinhalten
inspiziert. Daher wurde zur Unterstützung die Funktion Value Highlighting der Spreadsheet-
Software aktiviert, die Zellen mit Formeln grün und Zellen mit numerischen Werten blau einfärbt.
Die Zellen wurden dabei pro Reihe von links nach rechts auf Verstöße untersucht und die Befunde
pro Worksheet festgehalten.

Prüfung durch die statischen Analysewerkzeuge

Die Evaluation der untersuchten Werkzeuge verlief jeweils auf ähnliche Art und Weise. Jedoch
wurden für ETC zwei Evaluationsdurchgänge ausgeführt, da es als einziges der untersuchten
Werkzeuge eine Konfiguration der Vorschriften erlaubt. Die Durchgänge beliefen sich auf die
Aufgaben Konstanten in Formeln und Formelkomplexität.

Jedoch wurden für ETC zwei Evaluationsdurchgänge ausgeführt, da es als einziges der untersuch-
ten Werkzeuge eine Konfiguration der Vorschriften erlaubt. Die Durchgänge beliefen sich auf die
Aufgaben Konstanten in Formeln und Formelkomplexität. Ein Durchgang mit den Standardeinstel-
lung von ETC und ein weiterer mit benutzerdefinierten Einstellungen. Die benutzerdefinierten
Einstellungen wurden dabei durch den Autor wie folgt festgelegt: Für die Vorschrift Konstanten
in Formeln wurden Vorkommnisse der beiden numerischen Konstanten 0 und 1 ignoriert und
außerdem durften die Funktionen INDEX und INDIRECT beliebige Konstanten verwenden. Für
die Vorschrift Formelkomplexität wurden die Anzahl an erlaubten Operationen auf acht und die er-
laubte Verschachtelungstiefe auf drei angehoben. Die Vorschrift Leserichtung wurde unverändert
verwendet. Ein Durchgang gestaltete sich dabei für ein Werkzeug wie folgt:

76

9.2 Ergebnisse

Vorbereitung Zunächst wurde das Werkzeug für die Durchführung der Evaluation vorbereitet.
So wurden die beiden Werkzeuge Rainbow Analyst und Spreadsheet Professional zunächst
nach den Anweisungen der Hersteller als Plugins für die Spreadsheet-Software Microsoft
Office Excel 2003 installiert. ETC hingegen musste nicht installiert werden, da es sich um eine
alleinstehende Anwendung handelt, die auch ohen eine Installation ausgeführt werden
kann. Jedoch musste eine Richtlinie erstellt werden, die die drei untersuchten Vorschriften
enthält.

Konfiguration Im Anschluss an die Vorbereitung wurden alle untersuchten Spreadsheets der
Reihe nach jeweils mit einem Werkzeug überprüft. ETC wurde dazu gestartet und es wurde
ein neuer Inspektionsauftrag mit dem zu prüfenden Spreadsheet angelegt. Für die beiden
anderen Werkzeuge wurde dazu Microsoft Office Excel 2003 gestartet und das jeweilige
Spreadsheet geöffnet. Anschließend wurden die Prüfwerkzeuge für die Durchführung kon-
figuriert. Bei ETC wurde dazu die Inventarisierung durchgeführt und anschließend wurde
die vorhandene Richtlinie mit den drei Vorschriften ausgewählt. Im zweiten Durchgang für
ETC wurden zudem die benutzerdefinierte Einstellungen vorgenommen. Für die beiden
anderen Werkzeuge wurden über die zur Verfügung gestellten Symbolleisten die drei zu
überprüfenden Vorschriften ausgewählt, beziehungsweise andere verfügbare Vorschriften
abgewählt.

Durchführung und Analyse Anschließend wurde die Durchführung der Prüfung gestartet. Da-
bei wurde jeweils die Variante gewählt, die einen Bericht über die gefundenen Verstöße
liefert. Im Fall von ETC liegt dieser Bericht als .html-Datei vor. Die beiden anderen Werk-
zeuge, erzeugen ein weiteres Spreadsheet. Die Berichte zu den Prüfungen der Spreadsheets
wurden dabei gespeichert und anschließend durch den Verfasser dieser Arbeit analysiert.
Die dabei entstandenen Berichte sind auf dem beigefügten Datenträger gespeichert (Siehe
Abschnitt A.1). Bei der Analyse wurde dabei die Anzahl der einzelnen Verstöße als auch
die Anzahl der gefundenen Gruppierung notiert. Die quantitativen Ergebnisse für einzelne
Verstöße werden dabei im nächsten Abschnitt dargestellt; die Darstellung der Ergebnisse
für gefundene Gruppierung wurde in Abschnitt A.2 verlagert.

9.2 Ergebnisse

In den folgenden Abschnitten werden einige der Ergebnisse der Evaluation in Tabellenform
präsentiert. Für die Präsentation der Ergebnisse werden dabei folgende Abkürzung verwendet:

SP bezeichnet das Prüfwerkzeug Spreadsheet Professional.

RA bezeichnet das Prüfwerkzeug Rainbow Analyst.

ETC bezeichnet das Prüfwerkzeug Example Testing Center

ETC(C) bezeichnet das Prüfwerkzeug Example Testing Center bei dem die Vorschriften mit den
benutzerdefinierten Einstellungen konfiguriert wurden.

77

9 Evaluation

NMI bezeichnet die nichtmechanische Inspektion der Spreadsheets durch den Verfasser dieser
Arbeit.

Dabei zeigen die Tabellen die Anzahl der einzelnen Verstößen an, die bei den unterschiedli-
chen Prüfungen der einzelnen Vorschriften gefunden wurden. Außerdem wird der jeweilige
Durchschnitts-, Median-, Minimal- und Maximalwert über alle durchgeführten Prüfungen pro
Spreadsheet angegeben. Wurden bei Prüfungen eines Spreadsheets die gleiche Anzahl an Verstö-
ßen gefunden, wurden die Zellen der Tabelle mit der höchsten Anzahl an Übereinstimmungen
grün markiert.

Konstanten in Formeln SP RA ETC ETC(C) NMI Ø Median Max Min

spreadsheet_sample_01 67 0 67 0 67 40 67 67 0

spreadsheet_sample_02 126 126 126 126 126 126 126 126 126

spreadsheet_sample_03 27 0 27 0 27 16 27 27 0

spreadsheet_sample_04 0 0 0 0 0 0 0 0 0

spreadsheet_sample_05 30 30 30 0 30 24 30 30 0

spreadsheet_sample_06 18 6 18 6 18 13 18 18 6

spreadsheet_sample_07 20 20 20 20 20 20 20 20 20

spreadsheet_sample_08 33 0 34 34 34 27 34 34 0

spreadsheet_sample_09 5 2 5 5 5 4 5 5 2

spreadsheet_sample_10 4 0 2 0 0 1 0 4 0

spreadsheet_sample_11 9 0 9 9 9 7 9 9 0

spreadsheet_sample_12 16 5 16 15 15 13 15 16 5

Abbildung 9.3: Evaluationsergebnisse der Vorschrift Konstanten in Formeln

Leserichtung SP RA ETC Ø Median Max Min

spreadsheet_sample_01 27 27 117 57 27 117 27

spreadsheet_sample_02 27 27 45 33 27 45 27

spreadsheet_sample_03 27 27 135 63 27 135 27

spreadsheet_sample_04 219 119 396 245 219 396 119

spreadsheet_sample_05 30 3 120 51 30 120 3

spreadsheet_sample_06 6 46 12 21 12 46 6

spreadsheet_sample_07 5 30 5 13 5 30 5

spreadsheet_sample_08 37 34 55 42 37 55 34

spreadsheet_sample_09 0 6 0 2 0 6 0

spreadsheet_sample_10 7 16 7 10 7 16 7

spreadsheet_sample_11 0 4 0 1 0 4 0

spreadsheet_sample_12 9 17 22 16 17 22 9

Abbildung 9.4: Evaluationsergebnisse der Vorschrift Leserichtung

78

9.3 Analyse

Formelkomplexität SP RA ETC ETC(C) Ø Median Max Min

spreadsheet_sample_01 67 0 54 0 30 27 67 0

spreadsheet_sample_02 3 0 6 3 3 3 6 0

spreadsheet_sample_03 27 0 30 6 16 17 30 0

spreadsheet_sample_04 29 0 48 48 31 39 48 0

spreadsheet_sample_05 30 24 60 60 44 45 60 24

spreadsheet_sample_06 7 1 14 6 7 7 14 1

spreadsheet_sample_07 0 0 0 0 0 0 0 0

spreadsheet_sample_08 36 13 16 1 17 15 36 1

spreadsheet_sample_09 0 0 0 0 0 0 0 0

spreadsheet_sample_10 3 0 18 12 8 8 18 0

spreadsheet_sample_11 0 2 2 2 2 2 2 0

spreadsheet_sample_12 5 0 8 4 4 5 8 0

Abbildung 9.5: Evaluationsergebnisse der Vorschrift Formelkomplexität

9.3 Analyse

In diesem Abschnitt sollen nun die Ergebnisse der Evaluation analysiert werden. Dabei wird
auf einzelne interessante Ergebniswerte eingegangen und anschließend ein allgemeines Fazit
gezogen.

9.3.1 Auffällige Werte

Bei der Betrachtung der Ergebnisse stechen einige Werte besonders heraus, diese sollen nun nach
den einzelnen Vorschriften geordnet vorgestellt und kommentiert werden.

Formelkomplexiät Bei dieser Vorschrift ergaben sich sehr viele Übereinstimmungen zwischen
den Ergebnissen der einzelnen Prüfungen. So ist auch die Anzahl der gefundenen Verstö-
ße, die bei der nichtmechanischen Inspektion gefunden wurden, fast immer mit denen
der Prüfwerkzeuge identisch. Auffällig ist dabei außerdem die hohe Anzahl an Überein-
stimmungen zwischen der konfigurierten Prüfung von ETC und der Prüfung durch das
Werkzeug Rainbow Analyst. Das liegt mit hoher Wahrscheinlichkeit daran, dass das Prüf-
werkzeug Rainbow Analyst standardmäßig die Konstanten 0 und 1 ignoriert, ohne jedoch
darauf hinzuweisen. Dennoch existieren Unterschiede zwischen den Ergebnissen, da die
konfigurierte Prüfung von ETC außerdem noch Konstanten in den Formeln INDEX und
INDIRECT zulässt.

Leserichtung Die Prüfung durch ETC lieferte bei der Vorschrift Leserichtung grundsätzlich hö-
here Werte als die beiden anderen Werkzeuge. Dies ist wohl damit zu begründen, dass
die anderen Werkzeuge scheinbar Referenzen auf Worksheets, die vor dem Worksheet

79

9 Evaluation

der referenzierenden Zelle liegen, nicht als Verstoß melden. Weiterhin ist die Anzahl der
Verstöße, die durch Rainbow Analyst gefunden wurden, meist höher, als die von Spreads-
heet Professional. Eine Begründung dafür konnte nicht gefunden werden, da die Kriterien
entsprechenden Vorschriften zur Leserichtung Row differences und Column differences des
Werkzeugs Rainbow Analyst nicht definiert werden.

Formelkomplexität Bei der Analyse der Ergebnisse der Vorschrift Formelkomplexität fällt auf,
dass die einzelnen Definitionen dieser Vorschrift sich recht stark unterscheiden müssen, da
bei fast allen Spreadsheets ein Prüfwerkzeug keine oder nur eine sehr geringe Anzahl an
Verstößen meldete. Dennoch gibt es auch hier Spreadsheets bei denen die gleiche Anzahl
an Verstößen von unterschiedlichen Werkzeugen gemeldet wurde. Auffällig ist außerdem,
dass die Ergebnisse bei der konfigurierten Prüfung von ETC teilweise recht stark von
denen der unkonfigurierten Prüfung abweichen, obwohl die Einstellungen nur in geringem
Umfang verändert wurden. Dies zeigt, wie schnell hohe falsch positiv Raten entstehen
können, wenn die Vorschriften nicht optimal an den jeweiligen Nutzungskontext angepasst
sind, oder gar nicht angepasst werden können.

9.3.2 Zusammenfassung

Die Ergebnisse der Evaluation zeigen, dass die Prüfwerkzeuge in den meisten Fällen eine
vergleichbare Anzahl an Verstößen finden. Des Weiteren stimmt diese Anzahl auch häufig mit
der Anzahl der Verstöße überein, die in der nichtmechanischen Inspektion gefunden wurden.
Gleichzeitig zeigen die Ergebnisse jedoch auf, dass bei den schwieriger zu überprüfenden
Vorschriften Leserichtung und Formelkomplexität die Übereinstimmungen geringer ausfallen als
bei der einfachen Vorschrift Konstanten in Formeln. Dies bestätigt auch für Spreadsheets die
Erkenntnis aus Unterabschnitt 3.5.2, dass unterschiedliche statische Analysewerkzeugen häufig
unterschiedliche Verstöße melden.

Natürlich kann eine reine quantitative Analyse keinen Aufschluss darüber geben, ob bei den
gefundenen Verstößen, tatsächlich Abweichungen von den Vorgaben vorliegen. Jedoch lässt
die relativ hohe Übereinstimmung zwischen den Ergebnissen aller Prüfungen vermuten, dass
insgesamt eine geringe Anzahl an unzutreffenden Befunden bezüglich der oben definierten
Vorschriften vorliegt. Weiterhin wird gezeigt, dass eine unterschiedliche Konfiguration einer
Vorschrift, die Ergebnisse stark beeinflussen kann. Dadurch wird die Gefahr verdeutlicht, dass
bei nicht konfigurierbaren Werkzeugen hohe falsch positiv Raten auftreten können, wenn sich
die gewünschten Vorgaben von denen, die vom Werkzeug überprüft werden, unterscheiden. Es
kann durch diese Evaluation jedoch nicht geklärt werden, ob die gefundenen Verstöße dabei
helfen können, Fehler zu entdecken, die zu falschen Ergebnissen führen. Zu diesem Zweck
müssten weitere Auswertungen stattfinden, bei denen die Anforderungen an die untersuchten
Spreadsheets bekannt sind und die Auswirkungen gemeldete Verstöße im Detail untersucht
werden. Das Fazit dieser Evaluation ist jedoch, dass die Ergebnisse des prototypischen Werkzeugs
ETC mit denen von kommerziellen Prüfwerkzeugen vergleichbar scheinen und für die überprüfte
Vorschrift Konstanten in Formeln sogar die höchste Übereinstimmung mit der Anzahl der gefunden
Verstöße durch eine menschliche Prüfung bieten.

80

Kapitel 10

Fazit

In diesem Kapitel soll eine Zusammenfassung dieser Arbeit und speziell der entstandenen Lö-
sung, dem Spreadsheet Inspection Framework, gegeben werden. Dazu werden die konzeptionellen
Vorteile von SIF präsentiert, aber auch dessen bestehenden Einschränkungen aufgelistet. An-
schließend wird diskutiert, wie die Spreadsheet Inspektions-Werkstatt weiter verbessert werden
kann und welche Erweiterungsmöglichkeiten für sie bestehen.

10.1 Zusammenfassung

In dieser Arbeit wurde das Konzept einer Inspektions-Werkstatt für Spreadsheets erarbeitet,
das als technische Grundlage dienen soll, um systematische, werkzeug-unterstütze Prüfungen
von Spreadsheets durch Endbenutzer durchführen zu können. Dabei sollen die Vorteile von
verschiedenen Prüfungsarten genutzt werden, indem diese in einer verzahnten Art und Weise
angewendet werden. Gleichzeitig wurden die Fähigkeiten und das Wissen von Endbenutzern
für das Konzept berücksichtigt, in dem die angebotenen Prüfungen in einem hohen Maße
automatisch ablaufen und zu ihrer Durchführung kaum Prüfwissen notwendig ist.

Die Umsetzung der Inspektions-Werkstatt wurde dabei als plattformunabhängiges Java-
Framework mit dem Namen Spreadsheet Inspection Framework in mehreren Ausbaustufen geplant.
Mittels der Realisierung der ersten Ausbaustufe in dieser Arbeit wurde der Grundstein der
Inspektions-Werkstatt gelegt, indem es ermöglicht wird, Spreadsheets mittels statischer Prüfun-
gen auf festlegbare und konfigurierbare Vorschriften zu überprüfen. Ähnlich wie bei Findbugs
wurde eine breite Anzahl an recht einfachen Techniken für die statische Analyse verwendet
und es wurden die Erkenntnisse aus dem Einsatz von statischen Analysewerkzeugen in der
traditionellen Software-Entwicklung in die Konzeption miteinbezogen. So wurde großer Wert
darauf gelegt, dass die durchführbaren Prüfungen an den jeweiligen Nutzungskontext angepasst
werden können, indem eigene Richtlinien aus bestehenden Vorschriften zusammengestellt, die
Vorgaben von Vorschriften konfiguriert und neue Vorschriften hinzugefügt werden können.
In dieser Arbeit wurde dabei die Architektur von SIF entworfen, sowie die notwendige Basis
implementiert, um die Prüfungen für drei ausgewählte Vorschriften realisieren zu können.
Zudem wurde die prototypische Anwendung Example Testing Center entwickelt, die als erstes

81

10 Fazit

Prüfzentrum für Spreadsheets fungiert und einige Funktionen der Inspektions-Werkstatt über
eine rudimentäre grafische Oberfläche zugänglich macht. Bei der Evaluation von ETC mittels
einer kleinen Auswahl an Spreadsheets aus Real- und Laborumgebungen wurde gezeigt, dass
ETC in der Lage ist, vergleichbare Ergebnisse zu denen bestehender kommerzieller statischer
Analysewerkzeuge zu erzielen. Gleichzeitig bestehen durch die Verwendung von SIF , als Basis
für die durchgeführten Prüfungen die im folgenden Abschnitt beschriebenen konzeptionellen
Vorteile gegenüber bestehenden statischen Prüfwerkzeugen.

10.1.1 Konzeptionelle Vorteile

 Durch die Konzeption von SIF als Java-Framework, sowie die gewählte Architektur besteht
keine Bindung an ein bestimmtes Betriebssystem, eine bestimmte Spreadsheet-Software
oder ein bestimmtes Spreadsheet-Dateiformat. Als Folge daraus bestehen kaum Einschrän-
kungen für die Verwendung von SIF , so dass ein breites Spektrum an Einsatzmöglichkeiten
gegeben ist.

 Auch für die zu prüfenden Spreadsheets bestehen geringe Voraussetzungen, um einer
Prüfung mit SIF unterzogen zu werden, da nur eine korrekt gespeicherte Spreadsheet-Datei
benötigt wird. Außerdem erfordert eine statische Prüfung durch SIF nur einen geringen
Aufwand, da die Durchführung der statischen Prüfungen überwiegend automatisch erfolgt.

 Das Framework bietet ein hohes Maß an Konfigurierbarkeit, so dass die durchgeführten
Prüfungen an den jeweiligen Nutzungskontext angepasst werden können. So besteht die
Möglichkeit, dass in Unternehmen eigene Richtlinien für Spreadsheets erstellt werden
können, deren Überprüfung dann mittels der Inspektions-Werkstatt erfolgt. Dabei sind
die Vorschriften der erstellten Richtlinien jedoch nicht nur auf die bereits implementierten
Vorschriften beschränkt, da neue Vorschriften der Inspektionswerkstatt hinzugefügt und
deren Prüfung über eine Schnittstelle realisiert werden können. Außerdem besteht die
Möglichkeit, die einzelnen Vorschriften einer Richtlinie an das jeweils zu überprüfenden
Spreadsheet anzupassen.

 Diese mögliche Erweiterung des angebotenen Prüfungsumfangs ist unter anderem auch
dadurch möglich, da es sich bei dem Spreadsheet Inspection Framework um ein Open-Source-
Projekt handelt.

 SIF ist nicht nur für die Entdeckung von Fehlern mit statischen Fehlern konzipiert, sondern
bietet Erweiterungsmöglichkeiten für dynamische Prüfungen und die Unterstützung von
nichtmechanischen Prüfungen an. So kann beispielsweise durch die Visualisierung des
Spreadsheets und der gefundenen Verstöße, sowie durch ein geeignetes Testverfahren die
Fehlerentdeckung in Spreadsheets weiter verbessert werden.

82

10.2 Ausblick

10.1.2 Einschränkungen

Neben den bestehenden Vorteilen unterliegt die erste Ausbaustufe von SIF und das prototypi-
sche ETC jedoch auch einigen Einschränkungen, die durch den bisherigen Fortschritt bei der
Umsetzung des Konzept bedingt sind.

 Bisher wurde nur eine geringe Anzahl an Vorschriften und den zugehörigen Prüfungen
realisiert.

 Es werden bislang nur die Excel-Dateiformate .xls und .xlsx zur Prüfung unterstützt und
die Repräsentation von Spreadsheets und dessen Basiselementen ist noch unvollständig.

 Die Klassifikation von Fehlern bedarf einer Verbesserung. Es wurde zwar eine technische
Lösung konzipiert, um die Verstöße von Vorschriften in einer Fehlertaxonomie einzuordnen,
jedoch wurde bisher noch kein Klassifikationsschema implementiert. Der Grund dafür ist
das Fehlen einer entsprechenden Taxonomie, die sich zur Klassifikation von Befunden eines
statischen Analysewerkzeugs eignet. Zwar wurde eine mögliche eigene Taxonomie für
Verstöße aufgestellt (Siehe Abbildung A.5), diese ist jedoch noch vollkommen unerprobt
und daher für diesen Zweck ungeeignet.

 Verbesserungsbedarf besteht außerdem bei der Erhebung von geeigneten Metriken, die bei
der Beurteilung der Qualität des geprüften Spreadsheets behilflich sein könnten. So werden
zwar die Grunddaten für solche Metriken in Form des Spreadsheet-Inventars bereits erfasst,
sinnvolle Metriken, wie etwa die Rate aller Zellen für die ein Verstoß gemeldet wurde,
werden jedoch noch nicht erfasst.

 Ein weiterer Kritikpunkt ist sicherlich die geringe empirische Basis auf der die Evalua-
tion von ETC durchgeführt wurde. Zwar zeigen die Ergebnisse der Evaluation, dass die
gefundene Anzahl der Verstöße mit denen kommerzieller Prüfwerkzeuge vergleichbar ist,
jedoch wurden die Verstöße nicht bezüglich ihrer Eignung untersucht, funktionale Fehler
aufzudecken. So ist eine weitere Evaluation notwendig, um die Effektivität und Effizienz
von SIF und den damit realisierbaren Prüfzentren zu belegen.

 Das prototypisch umgesetzte Prüfzentrum ETC ist bislang noch ungeeignet, um von End-
benutzern verwendet zu werden. So fehlt es an einer geeigneten Oberfläche, die alle
Funktionen von SIF für den Benutzer verfügbar macht, genauso wie an einer geeigneten
Fehlerbehandlung. Außerdem entfaltet das Prüfzentrum seine vollen Nutzen erst, wenn
die gefundenen Verstöße entsprechend visualisiert werden.

10.2 Ausblick

In dieser Arbeit ist die erste Ausbaustufe des Spreadsheet Inspection Framework sowie des pro-
totypischen Prüfwerkzeugs Example Testing Center entstanden. Aufgrund der begrenzten Zeit

83

10 Fazit

wurden nur einige Aspekte des Gesamtkonzepts einer Spreadsheet-Inspektions-Werkstatt für
die erste Ausbaustufe umgesetzt. So handelt es sich bei SIF und ETC jeweils um einen Prototyp
und nicht um fertige Produkte. Daher besteht noch eine Menge von Punkten, deren Umsetzung
oder Erweiterung zur Verbesserung der mit SIF und ETC durchführbaren Prüfungen beitragen
könnten.

10.2.1 Erweiterung und Verbesserung der bestehenden Funktionaliät

Um das Potential einer Inspektions-Werkstatt für Spreadsheets zu zeigen, wurden in dieser Arbeit
die Prüfverfahren für drei Vorschriften implementiert. Dabei wurde auch bei der Implementie-
rung des Models von SIF so vorgegangen, dass zuerst nur die Spreadsheet-Elemente modelliert
und umgesetzt wurden, die für die Realisierung dieser Prüfverfahren notwendig waren. Eine
Erweiterung des Modells, der angebotenen Prüfungen und der unterstützen Dateiformate wäre
daher mit Sicherheit lohnenswert, um das mögliche Einsatzgebiet von SIF zu erweitern. Gleich-
zeitig besteht auch ein Verbesserungspotential bei den Prüfverfahren für bestehende Vorschriften.
So können etwa weitere Konfigurationsmöglichkeiten für die Vorschriften angeboten und die
Gruppierung von Verstößen verbessert werden.

10.2.2 Erweiterung um zusätzliche Prüfungsarten

Die erste Ausbaustufen der Inspektions-Werkstatt bietet bisher nur statische Mittel zur Prüfung
von Spreadsheets an und die Ergebnisse von Prüfungen können bisher nur in Form von textuellen
Beschreibungen in einem Html-Bericht ausgegeben werden. Dies ist jedoch nicht ausreichend,
um Spreadsheets auf alle verschiedenen Qualitätsmerkmale zu prüfen, da die statische Prüfung
durch ihr Konzept nicht in der Lage ist bestimmte Anforderungen zu überprüfen. Um dies zu
Verbessern wäre die Erweiterung um weitere Prüfungsarten sinnvoll.

Nicht-mechanische Prüfungen

Die nicht-mechanischen Prüfungen stellen bei traditioneller Software einen wichtigen Bestandteil
der Qualitätssicherung dar, da sie verhältnismäßig leicht umzusetzen sind und mit ihnen Fehler
gefunden werden, die mit anderen Prüfungsarten nicht entdeckt werden können. Spreadsheets
hingegen sind ohne Hilfsmittel nur recht schwer vom Menschen zu inspizieren, da es durch
die Referenzen zwischen den Zellen und der zweidimensionale Anordnung von Zellen an der
nötigen Lokalität fehlt. Die Visualisierung der Struktur von Spreadsheets sowie von gefundenen
Verstößen aus der statischen Analyse, könnte jedoch eine entscheidende Unterstützung für die
Inspektion von Spreadsheets durch den Menschen leisten. So könnte eine Visualisierung in
SIF integriert werden, die es den Benutzern erlaubt, Zellen, die in der statischen Analyse viele
Verstöße verursacht haben genauer auf Fehler zu inspizieren.

84

10.2 Ausblick

Dynamische Prüfungen

Eine weitere Verbesserung der Prüfung durch SIF wäre durch die Integration von dynamischen
Prüfungen möglich. Diese könnten etwa in Form von Intervall-Tests, wie in [Aya01] beschrieben,
in SIF integriert werden und speziell dazu verwendet werden, um auffällige Zellen und Formeln
aus den Ergebnissen der anderen Prüfungsarten auf ihre Korrektheit zu überprüfen.

85

Anhang A

Anhang

A.1 Inhalt und Aufbau des beigelegten Datenträgers

Der beiliegende Datenträger ist wie folgt aufgebaut:

Ausarbeitung Der Ordner ausarbeitung enthält dieses Dokument im PDF-Format.

Implementierung Der Ordner Implementierung enthält den Quell-Code des Spreadsheet Inspection
Framework und des Example Testing Center .

Evaluation Der Ordner evaluation enthält die Ordner spreadsheets und ergebnisse. Im Ordner
spreadsheets sind dabei die verwendeten Spreadsheets der Evaluation enthalten und im
Ordner ergebnisse befinden sich die Berichte der einzelnen Prüfwerkzeuge, die bei der
Evaluation generiert wurden.

A.2 Evaluationsergebnisse

Im Folgenden werden die Ergebnisse der gefundenen Verstoß-Gruppen aus der Evaluation
aufgelistet:

Konstanten in Formeln SP RA ETC ETC(C) NMI Ø Median Max Min

spreadsheet_sample_01 26 0 26 0 29 16 26 29 0

spreadsheet_sample_02 3 17 48 48 17 27 17 48 3

spreadsheet_sample_03 8 0 9 0 9 5 8 9 0

spreadsheet_sample_04 0 0 0 0 0 0 0 0 0

spreadsheet_sample_05 9 10 9 0 10 8 9 10 0

spreadsheet_sample_06 3 6 3 1 3 3 3 6 1

spreadsheet_sample_07 2 4 4 4 4 4 4 4 2

spreadsheet_sample_08 15 0 20 20 7 12 15 20 0

spreadsheet_sample_09 5 2 5 5 5 4 5 5 2

spreadsheet_sample_10 2 0 1 0 0 1 0 2 0

spreadsheet_sample_11 6 0 9 9 9 7 9 9 0

spreadsheet_sample_12 7 5 16 15 3 9 7 16 3

Abbildung A.1: Evaluationsergebnisse der Vorschrift Konstanten in Formeln (Gruppiert)

87

A Anhang

Leserichtung SP RA ETC Ø Median Max Min

spreadsheet_sample_01 24 27 27 26 27 27 24

spreadsheet_sample_02 24 27 27 26 27 27 24

spreadsheet_sample_03 8 21 27 19 21 27 8

spreadsheet_sample_04 53 119 198 123 119 198 53

spreadsheet_sample_05 9 3 27 13 9 27 3

spreadsheet_sample_06 1 46 6 18 6 46 1

spreadsheet_sample_07 1 30 5 12 5 30 1

spreadsheet_sample_08 22 34 27 28 27 34 22

spreadsheet_sample_09 0 6 0 2 0 6 0

spreadsheet_sample_10 3 16 7 9 7 16 3

spreadsheet_sample_11 0 4 0 1 0 4 0

spreadsheet_sample_12 7 17 9 11 9 17 7

Abbildung A.2: Evaluationsergebnisse der Vorschrift Leserichtung (Gruppiert)

Formelkomplexität SP RA ETC ETC(C) Ø Median Max Min

spreadsheet_sample_01 26 0 27 0 13 13 27 0

spreadsheet_sample_02 3 0 3 3 2 3 3 0

spreadsheet_sample_03 8 0 27 3 10 6 27 0

spreadsheet_sample_04 26 0 24 24 19 24 26 0

spreadsheet_sample_05 9 8 30 30 19 20 30 8

spreadsheet_sample_06 1 1 7 6 4 4 7 1

spreadsheet_sample_07 0 0 0 0 0 0 0 0

spreadsheet_sample_08 17 8 15 1 10 12 17 1

spreadsheet_sample_09 0 0 0 0 0 0 0 0

spreadsheet_sample_10 2 0 12 12 7 7 12 0

spreadsheet_sample_11 0 2 2 2 2 2 2 0

spreadsheet_sample_12 5 0 5 3 3 4 5 0

Abbildung A.3: Evaluationsergebnisse der Vorschrift Formelkomplexität (Gruppiert)

88

A.3 Fehler-Taxonomien

A.3 Fehler-Taxonomien

Abbildung A.4: Die bekannte Fehler-Taxonomie für Spreadsheets nach Panko und Halverson
[Pan08b]

Layout

Appearance

Orientation

Reference

Structure

Formula

Visibility

Grouping

Modularity

Model

Nesting

Length

Constants

Violation

Documentation

Syntax

Cell format
Category

Protection

Proximity

Spacing

Horizontal

Vertical

Format

Type

Operands

Value

Function

Complexity

Location

Type

Implementation

Placement
Alignment

Overlap

Sytling
Shape

Color

Hiding

Internal Data

Meta-Data

NamingLabeling

Usage

Comments

Values

Abbildung A.5: Die prototypische Taxonomie für Verstöße, die in dieser Arbeit konzipiert wurde

89

Literaturverzeichnis

[ACM00] Y. Ayalew, M. Clermont, R. T. Mittermeir. Detecting Errors in Spreadsheets. In In
Proceedings of EuSpRIG 2000 Symposium: Spreadsheet Risks, Audit and Development
Methods, pp. 51–62. 2000.

[AE06] R. Abraham, M. Erwig. UCheck: A Spreadsheet Type Checker for End Users*, 2006.

[AM08] Y. Ayalew, R. Mittermeir. Spreadsheet Debugging. CoRR, abs/0801.4280, 2008.

[AP10] S. Aurigemma, R. R. Panko. The Detection of Human Spreadsheet Errors by Humans
versus Inspection (Auditing) Software. CoRR, abs/1009.2785, 2010.

[Aya01] Y. Ayalew. Spreadsheet Testing Using Interval Analysis. Ph.D. thesis, Universität
Klagenfurt, 2001.

[BG87] P. S. Brown, J. D. Gould. An experimental study of people creating spreadsheets.
ACM Trans. Inf. Syst., 5:258–272, 1987. doi:http://doi.acm.org/10.1145/27641.28058.
URL http://doi.acm.org/10.1145/27641.28058.

[But00] R. J. Butler. Is This Spreadsheet a Tax Evader? How H.M. Customs and Excise Test
Spreadsheet Applications. In Proceedings of the 33rd Hawaii International Conference on
System Sciences-Volume 4 - Volume 4, HICSS ’00, pp. 4007–. IEEE Computer Society,
Washington, DC, USA, 2000. URL http://dl.acm.org/citation.cfm?id=795711.
799150.

[But08] R. J. Butler. Applying the CobiT Control Framework to Spreadsheet Developments.
CoRR, abs/0801.0609, 2008.

[Cha08] D. Chadwick. EuSpRIG TEAM work:Tools, Education, Audit, Management. CoRR,
abs/0806.0172, 2008.

[CHM08] M. Clermont, C. Hanin, R. T. Mittermeir. A Spreadsheet Auditing Tool Evaluated in
an Industrial Context. CoRR, abs/0805.1741, 2008.

[CMW07] J. P. Caulkins, E. L. Morrison, T. Weidemann. Spreadsheet Errors and Decision
Making: Evidence from Field Interviews. JOEUC, 19(3):1–23, 2007.

[Col10] D. Colver. Spreadsheet good practice: is there any such thing? CoRR, abs/1001.3967,
2010.

91

http://doi.acm.org/10.1145/27641.28058
http://dl.acm.org/citation.cfm?id=795711.799150
http://dl.acm.org/citation.cfm?id=795711.799150

Literaturverzeichnis

[Cro07] G. J. Croll. The Importance and Criticality of Spreadsheets in the City of London.
CoRR, abs/0709.4063, 2007.

[Cro09] G. J. Croll. Spreadsheets and the Financial Collapse. CoRR, abs/0908.4420, 2009.

[CS96] Y. E. Chan, V. C. Storey. The use of spreadsheets in organizations: Determinants and
consequences. Information & Management, 31(3):119 – 134, 1996. doi:DOI:10.1016/
S0378-7206(96)00008-0. URL http://www.sciencedirect.com/science/article/
pii/S0378720696000080.

[Dav82] G. B. Davis. Caution: User-Developed Systems Can be Hazardous to Your Orga-
nization. In Hawaii International Conference on System Sciences. Honolulu, Hawaii.,
1982.

[Dun10] A. Dunn. Spreadsheets - the Good, the Bad and the Downright Ugly. CoRR,
abs/1009.5705, 2010.

[EuSa] EuSpRIG. Best Practice. World Wide Web. URL http://www.eusprig.org/
best-practice.htm.

[EuSb] EuSpRIG. Website of the European Spreadsheet Risks Interest Group. World Wide
Web. URL http://www.eusprig.org/index.htm.

[FLS04] K. Frühauf, J. Ludewig, H. Sandmayr. Software-Prüfung - eine Anleitung zum Test und
zur Inspektion (5. Aufl.). vdf, 2004.

[Gar84] D. Garvin. What does product quality really mean? Sloan Management Review,
26:25–45, 1984. URL http://doku.iab.de/externe/2006/k060210f02.pdf.

[GHJ�96] D. F. Galletta, K. S. Hartzel, S. E. Johnson, J. L. Joseph, S. Rustagi. Spreadsheet
presentation and error detection: an experimental study. J. Manage. Inf. Syst., 13:45–
63, 1996. URL http://dl.acm.org/citation.cfm?id=1189548.1189552.

[GHJV95] E. Gamma, R. Helm, R. Johnson, J. Vlissides. Design Patterns. Addison-Wesley, Bo-
ston, MA, 1995. URL http://www.amazon.co.uk/exec/obidos/ASIN/0201633612/
citeulike-21.

[GMz05] T. A. Grossman, V. Mehrotra, Özgür Özlük. Spreadsheet Information Systems are
essential to business. Working Paper, 2005.

[GO08] T. A. Grossman, O. Ozluk. Research Strategy and Scoping Survey on Spreadsheet
Practices. CoRR, abs/0807.3184, 2008.

[GO10] T. A. Grossman, O. Ozluk. Spreadsheets Grow Up: Three Spreadsheet Engineering
Methodologies for Large Financial Planning Models. CoRR, abs/1008.4174, 2010.

[Gro07] T. A. Grossman. Spreadsheet Engineering: A Research Framework. CoRR,
abs/0711.0538, 2007.

92

http://www.sciencedirect.com/science/article/pii/S0378720696000080
http://www.sciencedirect.com/science/article/pii/S0378720696000080
http://www.eusprig.org/best-practice.htm
http://www.eusprig.org/best-practice.htm
http://www.eusprig.org/index.htm
http://doku.iab.de/externe/2006/k060210f02.pdf
http://dl.acm.org/citation.cfm?id=1189548.1189552
http://www.amazon.co.uk/exec/obidos/ASIN/0201633612/citeulike-21
http://www.amazon.co.uk/exec/obidos/ASIN/0201633612/citeulike-21

Literaturverzeichnis

[HHN85] E. L. Hutchins, J. D. Hollan, D. A. Norman. Direct manipulation interfaces. Hum.-
Comput. Interact., 1:311–338, 1985. doi:http://dx.doi.org/10.1207/s15327051hci0104_
2. URL http://dx.doi.org/10.1207/s15327051hci0104_2.

[HPD11] F. Hermans, M. Pinzger, A. van Deursen. Breviz: Visualizing Spreadsheets using
Dataflow Diagrams. CoRR, abs/1111.6895, 2011.

[IR05] M. F. Ii, G. Rothermel. The EUSES Spreadsheet Corpus: A Shared Resource for
Supporting Experimentation with Spreadsheet Dependability Mechanisms. In In 1st
Workshop on End-User Software Engineering, pp. 47–51. 2005.

[Iro08] R. J. Irons. The Wall and The Ball: A Study of Domain Referent Spreadsheet Errors.
CoRR, abs/0804.0943, 2008.

[JH96] M. Jean, J. Hall. A Risk and Control-Oriented Study of the Practices of Spreadsheet
Application Developers. In In Proceedings of the 29th Hawaii International Conference
on System Sciences, pp. 364–373. 1996.

[Kru06] S. E. Kruck. Testing spreadsheet accuracy theory. Inf. Softw. Technol., 48:204–213,
2006. doi:http://dx.doi.org/10.1016/j.infsof.2005.04.005. URL http://dx.doi.org/
10.1016/j.infsof.2005.04.005.

[Kul11] D. Kulesz. From Good Practices to Effective Policies for Preventing Errors in Spreads-
heets. 2011.

[LL07] J. Ludewig, H. Lichter. Software Engineering - Grundlagen, Menschen, Prozesse, Techniken.
dpunkt.verlag, 2007.

[LPKW06] H. Lieberman, F. Paternò, M. Klann, V. Wulf. End-User Development: An Emer-
ging Paradigm. In H. Lieberman, F. Paternò, V. Wulf, editors, End User Develop-
ment, volume 9 of Human-Computer Interaction Series, chapter 1, pp. 1–8. Sprin-
ger Netherlands, Dordrecht, 2006. doi:10.1007/1-4020-5386-X_1. URL http:
//dx.doi.org/10.1007/1-4020-5386-X_1.

[MK05] T. J. McGill, J. E. Klobas. The role of spreadsheet knowledge in user-developed
application success. Decis. Support Syst., 39:355–369, 2005. doi:10.1016/j.dss.2004.01.
002. URL http://dl.acm.org/citation.cfm?id=1196235.1196242.

[MMB09] R. McKeever, K. McDaid, B. Bishop. An Exploratory Analysis of the Impact of Named
Ranges on the Debugging Performance of Novice Users. CoRR, abs/0908.0935, 2009.

[NM90a] B. A. Nardi, J. R. Miller. An ethnographic study of distributed problem solving in
spreadsheet development. In Proceedings of the 1990 ACM conference on Computer-
supported cooperative work, CSCW ’90, pp. 197–208. ACM, New York, NY, USA, 1990.
doi:http://doi.acm.org/10.1145/99332.99355. URL http://doi.acm.org/10.1145/
99332.99355.

93

http://dx.doi.org/10.1207/s15327051hci0104_2
http://dx.doi.org/10.1016/j.infsof.2005.04.005
http://dx.doi.org/10.1016/j.infsof.2005.04.005
http://dx.doi.org/10.1007/1-4020-5386-X_1
http://dx.doi.org/10.1007/1-4020-5386-X_1
http://dl.acm.org/citation.cfm?id=1196235.1196242
http://doi.acm.org/10.1145/99332.99355
http://doi.acm.org/10.1145/99332.99355

Literaturverzeichnis

[NM90b] B. A. Nardi, J. R. Miller. The spreadsheet interface: A basis for end user program-
ming. In Proceedings of the IFIP TC13 Third Interational Conference on Human-Computer
Interaction, INTERACT ’90, pp. 977–983. North-Holland Publishing Co., Amsterdam,
The Netherlands, The Netherlands, 1990. URL http://portal.acm.org/citation.
cfm?id=647402.725609.

[NO10] D. Nixon, M. O’Hara. Spreadsheet Auditing Software. CoRR, abs/1001.4293, 2010.

[O’B] P. O’Beirne. European Spreadsheet Risks Interest Group: Horror Stories. World Wide
Web. URL http://www.eusprig.org/horror-stories.htm.

[O’B05] P. O’Beirne. Spreadsheet Check and Control. Systems Publishing Corporation, 2005.

[O’B10] P. O’Beirne. Spreadsheet Refactoring. CoRR, abs/1009.1412, 2010.

[ON87] J. R. Olson, E. Nilsen. Analysis of the cognition involved in spreadsheet software inter-
action. Hum.-Comput. Interact., 3(4):309–349, 1987. doi:10.1207/s15327051hci0304_1.
URL http://dx.doi.org/10.1207/s15327051hci0304_1.

[Pan98] R. R. Panko. What we know about spreadsheet errors. J. End User Comput., 10:15–21,
1998. URL http://portal.acm.org/citation.cfm?id=287893.287899.

[Pan99] R. R. Panko. Applying code inspection to spreadsheet testing. J. Manage. Inf. Syst.,
16:159–176, 1999. URL http://dl.acm.org/citation.cfm?id=1189438.1189448.

[Pan07] R. R. Panko. Recommended Practices for Spreadsheet Testing. CoRR, abs/0712.0109,
2007.

[Pan08a] R. R. Panko. Reducing Overconfidence in Spreadsheet Development. CoRR,
abs/0804.0941, 2008.

[Pan08b] R. R. Panko. Revisiting the Panko-Halverson Taxonomy of Spreadsheet Errors. CoRR,
abs/0809.3613, 2008.

[Pan08c] R. R. Panko. Spreadsheet Errors: What We Know. What We Think We Can Do. CoRR,
abs/0802.3457, 2008.

[PB08] S. G. Powell, B. L. 0002, K. R. Baker. Impact of Errors in Operational Spreadsheets.
CoRR, abs/0801.0715, 2008.

[PBL08a] S. G. Powell, K. R. Baker, B. Lawson. An auditing protocol for spreadsheet models.
Inf. Manage., 45:312–320, 2008. doi:10.1016/j.im.2008.03.004. URL http://dl.acm.
org/citation.cfm?id=1379454.1379496.

[PBL08b] S. G. Powell, K. R. Baker, B. Lawson. A critical review of the literature on spreadsheet
errors. Decis. Support Syst., 46:128–138, 2008. doi:http://dx.doi.org/10.1016/j.dss.
2008.06.001. URL http://dx.doi.org/10.1016/j.dss.2008.06.001.

[PBL09] S. G. Powell, K. R. Baker, B. Lawson. Errors in operational spreadsheets. Organizatio-
nal and End User Computing, 21(3):24–36, 2009.

94

http://portal.acm.org/citation.cfm?id=647402.725609
http://portal.acm.org/citation.cfm?id=647402.725609
http://www.eusprig.org/horror-stories.htm
http://dx.doi.org/10.1207/s15327051hci0304_1
http://portal.acm.org/citation.cfm?id=287893.287899
http://dl.acm.org/citation.cfm?id=1189438.1189448
http://dl.acm.org/citation.cfm?id=1379454.1379496
http://dl.acm.org/citation.cfm?id=1379454.1379496
http://dx.doi.org/10.1016/j.dss.2008.06.001

Literaturverzeichnis

[PBLFJ08] S. G. Powell, K. R. Baker, B. Lawson, L. Foster-Johnson. Comparison of Characteristics
and Practices amongst Spreadsheet Users with Different Levels of Experience. CoRR,
abs/0803.0168, 2008.

[PHJ96] R. R. Panko, R. P. Halverson Jr. Spreadsheets on Trial: A Survey of Research on
Spreadsheet Risks. In Proceedings of the 29th Hawaii International Conference on System
Sciences Volume 2: Decision Support and Knowledge-Based Systems, HICSS ’96, pp. 326–.
IEEE Computer Society, Washington, DC, USA, 1996. URL http://portal.acm.
org/citation.cfm?id=795699.798442.

[PO08] R. R. Panko, N. Ordway. Sarbanes-Oxley: What About all the Spreadsheets? CoRR,
abs/0804.0797, 2008.

[Pry08] L. Pryor. When, why and how to test spreadsheets. CoRR, abs/0807.3187, 2008.

[RAF04] N. Rutar, C. B. Almazan, J. S. Foster. A Comparison of Bug Finding Tools for Java. In
Proceedings of the 15th International Symposium on Software Reliability Engineering, pp.
245–256. IEEE Computer Society, Washington, DC, USA, 2004. doi:10.1109/ISSRE.
2004.1. URL http://dl.acm.org/citation.cfm?id=1032654.1033833.

[Raf08] J. F. Raffensperger. New Guidelines For Spreadsheets. CoRR, abs/0807.3186, 2008.

[RCK08a] K. Rajalingham, D. Chadwick, B. Knight. An Evaluation of a Structured Spreadsheet
Development Methodology. CoRR, abs/0801.1516, 2008.

[RCK08b] K. Rajalingham, D. R. Chadwick, B. Knight. Classification of Spreadsheet Errors.
CoRR, abs/0805.4224, 2008. URL http://arxiv.org/abs/0805.4224.

[Wag06] S. Wagner. A literature survey of the quality economics of defect-detection techniques.
In Proceedings of the 2006 ACM/IEEE international symposium on Empirical software
engineering, ISESE ’06, pp. 194–203. ACM, New York, NY, USA, 2006. doi:http://doi.
acm.org/10.1145/1159733.1159763. URL http://doi.acm.org/10.1145/1159733.
1159763.

[WDA�08] S. Wagner, F. Deissenboeck, M. Aichner, J. Wimmer, M. Schwalb. An Evaluation of
Two Bug Pattern Tools for Java. In Proceedings of the 2008 International Conference
on Software Testing, Verification, and Validation, pp. 248–257. IEEE Computer Society,
Washington, DC, USA, 2008. doi:10.1109/ICST.2008.63. URL http://dl.acm.org/
citation.cfm?id=1381305.1382088.

[WJKT05] S. Wagner, J. Jürjens, C. Koller, P. Trischberger. Comparing Bug Finding Tools
with Reviews and Tests. In IN PROC. 17TH INTERNATIONAL CONFERENCE ON
TESTING OF COMMUNICATING SYSTEMS (TESTCOM’05), VOLUME 3502 OF
LNCS, pp. 40–55. Springer, 2005.

95

http://portal.acm.org/citation.cfm?id=795699.798442
http://portal.acm.org/citation.cfm?id=795699.798442
http://dl.acm.org/citation.cfm?id=1032654.1033833
http://arxiv.org/abs/0805.4224
http://doi.acm.org/10.1145/1159733.1159763
http://doi.acm.org/10.1145/1159733.1159763
http://dl.acm.org/citation.cfm?id=1381305.1382088
http://dl.acm.org/citation.cfm?id=1381305.1382088

Literaturverzeichnis

[ZWN�06] J. Zheng, L. Williams, N. Nagappan, W. Snipes, J. P. Hudepohl, M. A. Vouk. On
the Value of Static Analysis for Fault Detection in Software. IEEE Trans. Softw. Eng.,
32:240–253, 2006. doi:10.1109/TSE.2006.38. URL http://dl.acm.org/citation.
cfm?id=1435724.1437767.

96

http://dl.acm.org/citation.cfm?id=1435724.1437767
http://dl.acm.org/citation.cfm?id=1435724.1437767

Erklärung

Hiermit versichere ich, diese Arbeit selbständig
verfasst und nur die angegebenen Quellen
benutzt zu haben.

(Sebastian Zitzelsberger)

	Einleitung
	Motivation
	Ziel
	Übersicht

	Spreadsheet-Grundlagen
	Elemente und Konzepte
	Spreadsheet-Systeme und Endbenutzer
	Risiken durch Qualitätsmängel

	Software-Qualität
	Der Qualitäts-Begriff
	Taxonomie der Software-Qualitäten
	Qualitätskosten
	Software-Qualitätssicherung
	Software-Prüfung

	Spreadsheet-Qualität
	Stand der Forschung
	Zusammenfassung

	Vorhandene Ansätze zur Erhöhung der Spreadsheet-Qualität
	Spreadsheet-Engineering
	Spreadsheet Prüfung
	Schlussfolgerung

	Konzept
	Technische Grundlage zur Spreadsheet-Prüfung
	Metapher
	Verwendung

	Anforderungen
	Funktionale Anforderungen
	Nichtfunktionale Anforderungen

	Umsetzung
	Vorgehen
	Design
	Implementierung

	Evaluation
	Rahmenbedingungen
	Ergebnisse
	Analyse

	Fazit
	Zusammenfassung
	Ausblick
	Anhang

	Anhang
	Inhalt und Aufbau des beigelegten Datenträgers
	Evaluationsergebnisse
	Fehler-Taxonomien

	Literaturverzeichnis

