Institut fiir Softwaretechnologie
Abteilung Software Engineering

Universitdt Stuttgart
Universitatsstrafie 38
D-70569 Stuttgart

Diplomarbeit Nr. 3224

Fehlererkennung in Spreadsheets

Sebastian Zitzelsberger

Studiengang: Softwaretechnik

Priifer: Prof. Dr. rer.nat. Jochen Ludewig
Betreuer: Daniel Kulesz, M.Sc.

begonnen am: 25. Juli 2011

beendet am: 24. Januar 2012

CR-Klassifikation: H.4.1,D.24

Zusammenfassung

Spreadsheets sind auf Grund ihrer flexiblen Einsetzbarkeit aus der Unternehmenswelt kaum
mehr wegzudenken. Es gibt jedoch Belege dafiir, dass in vielen von ihnen ernstzunehmende Feh-
ler enthalten sind, von denen einige bereits schwerwiegende Folgen fiir Unternehmen verursacht
haben. In der Praxis wird dieses Risiko jedoch kaum wahrgenommen und Spreadsheets werden
zumeist ungepriift verwendet. Zwar existieren kommerzielle Werkzeuge, die Priifungen von
Spreadsheets anbieten, jedoch sind diese mit konzeptionellen Einschrankungen versehen, die
deren Nutzen stark vermindern.

In dieser Arbeit wird das Konzept einer technischen Inspektions-Werkstatt fiir Spreadsheets
entwickelt, wodurch die technische Grundlage geschaffen werden soll, um Spreadsheets mit
statischen und dynamischen Mitteln auf Fehler zu priifen. Die Umsetzung dieses Konzepts
erfolgt dabei durch das erweiterbare Java-Framework Spreadsheet Inspection Framework (SIF), mit
dem Priifzentren fiir Spreadsheets realisiert werden konnen. In dieser Arbeit wird es durch die
Umsetzung der ersten Ausbaustufe von SIF ermoglicht, konfigurierbare, statische Priifungen von
Spreadsheets nach individuellen Richtlinien durchzufiihren. Es werden unter Verwendung von
SIF Priifverfahren fiir die drei Vorschriften Konstanten in Formeln, Leserichtung und Formelkom-
plexiit realisiert, deren Anwendung mit Hilfe des prototypischen Priifzentrums Example Testing
Center (ETC) demonstriert werden konnen.

Die anschliefsende Evaluation von ETC mit operativen Spreadsheets hat gezeigt, dass vergleich-
bare Ergebnisse zu denen der kommerziellen Priifwerkzeuge Spreadsheet Professional und Rainbow
Analyst erzielt werden konnten. ETC unterliegt jedoch durch die Verwendung der Inspektions-
Werkstatt nicht den konzeptionellen Einschrankungen mit denen bestehende Priifwerkzeuge
versehen sind.

Abstract

Because of their enormous flexibility, spreadheets play an essential role in business today. Howe-
ver, there is evidence that many spreadsheets contain serious errors, some of which have already
caused severe consequences for certain enterprises. Nevertheless, spreadsheet risks are hardly
perceived in practice and it is common to use untested spreadsheets. Commercial tools that offer
checks for spreadsheets do exist, but they are flawed with conceptual limitations, which strongly
reduce their merits.

This paper proposes the concept of an inspection-facility for spreadsheets, laying the technical
foundation to check spreadsheets for errors with statical and dynamic means. The implementation
of this concept is carried out through the extendable Java-framework Spreadsheet Inspection
Framework (SIF), which enables the creation of testing centers for spreadsheets. The realisation
of SIF’s first stage in this work makes it possible to execute configurable static tests that check
spreadsheets for indiviudal policies. The checking of the three policy rules Constants In Formulas,
Reading Direction and Formula Complexity has benn implemented with the use of SIF and their
application can be demonstrated by using the prototypical Example Testing Center (ETC).

The subsequent evalution of ETC with operational spreadsheets has shown that similiar results
to those of the commercial tools Spreadsheet Professional and Rainbow Analyst could be achieved.
However, ETC is not afflicted with the conceptual limitations of existing tools, because it is based
on the inspection-facility.

Inhaltsverzeichnis

1 Einleitung

1.1 Motivation o e e e e e e
1.2 Ziel . . o e e
1.3 Ubersicht . . . o o v o o e e

2 Spreadsheet-Grundlagen

21 Elementeund Konzepte
2.2 Spreadsheet-Systeme und Endbenutzer
2.3 Risiken durch Qualitatsmangel

3 Software-Qualitit

3.1 Der Qualitdts-Begriff oo
3.2 Taxonomie der Software-Qualitdten
3.3 Qualitdtskosten e
3.4 Software-Qualitdtssicherung Lo Lo Lo L
3.5 Software-Prifung o

4 Spreadsheet-Qualitat
41 StandderForschung
4.2 Zusammenfassung

5 Vorhandene Ansitze zur Erh6hung der Spreadsheet-Qualitit

51 Spreadsheet-Engineering L o oL

52 Spreadsheet Priiffung L

53 Schlussfolgerung
6 Konzept

6.1 Technische Grundlage zur Spreadsheet-Priifung

6.2 Metapher

6.3 Verwendung e
7 Anforderungen

7.1 Funktionale Anforderungen

7.2 Nichtfunktionale Anforderungen

11
11
17
21

23
23
25
26
28
29

35
35
38

Inhaltsverzeichnis

8 Umsetzung

81 Vorgehen
82 Design
8.3 Implementierung .

9 Evaluation

9.1 Rahmenbedingungen

9.2 Ergebnisse
93 Analyse.......

10 Fazit
10.1 Zusammenfassung

10.2 Ausblick

A Anhang

A.1 Inhalt und Aufbau des beigelegten Datentrdgers
A.2 Evaluationsergebnisse 0.

A.3 Fehler-Taxonomien

Literaturverzeichnis

63
63
64
71

73
73
77
79

81
81
83
85

87
87
87
89

91

Kapitel 1

Einleitung

Seit dem ersten Erscheinen von Tabellenkalkulationssoftware in den frithen 80er Jahren erfreut
sich diese Art von Software grofler Beliebtheit. Populdre Tabellenkalkulationsanwednungen, wie
beispielsweise Lotus 1-2-3!, Microsoft Excel” oder verschiedene Calc-Derivate® der Star Office
Familie, sind in der Unternehmenswelt allgegenwartig und aus dem Arbeitsalltag kaum mehr
wegzudenken.

Mit Hilfe dieser Anwendungen lassen sich flexibel einsetzbare Softwareprogramme, sogenannte
Spreadsheets, erstellen, modifizieren und ausfithren. Zu diesem Zweck konnen tabellarisch
angebrachten Zellen mit numerischen und alphanumerischen Daten gefiillt und in verschiedenen
Formaten angezeigt werden. Zusétzlich konnen Berechnungen und Verarbeitungen dieser Daten
tiber Formeln definiert werden, die mit Hilfe von bereitgestellten Operationen den Wert einer
Zelle aus den Werten anderer Zellen berechnen. Besonders wertvoll fiir Unternehmen sind
Spreadsheets, da deren Erstellung, Modifizierung und Erweiterung auch direkt durch deren
spateren Nutzer erfolgen kann, ohne dass dieser iiber nennenswerte Programmierkenntnisse
verfiigen muss. Daher ist es nicht weiter verwunderlich, dass Tabellenkalkulationssoftware die
weitreichende und bereichsiibergreifende Verbreitung erreicht haben, die sie heute besitzen.

Als Folge dieser Pravalenz entstehen jahrlich mehrere Millionen Spreadsheets [Pan08c] in al-
len denkbaren Auspragungen [PBLE]0S, Cro07, JH96]. So unterscheiden sich die entwickelten
Spreadsheets etwa in ihrer Grofie, Komplexitdt und ihrem Erstellungsprozess, aber auch in
ihrem Finsatzzweck, ihrer Einsatzdauer und ihrer Bedeutung. Dabei entstehen verschiedenste
Variationen, angefangen von kleinen skizzenhaften Spreadsheets, die spontan innerhalb weniger
Minuten fiir kleine einmalige Berechnungen entstehen, bis zu grofien, komplexen Systemen
von Spreadsheets, die mit sorgféltiger Planung entwickelt werden und {iiber Jahre hinweg fiir
missions- oder sogar unternehmenskritische Aufgaben eingesetzt werden [Cro07]. Trotz die-
ser unterschiedlichen Auspragungen scheinen jedoch fast alle eingesetzten Spreadsheets eine
Eigenschaft zu teilen — die hohe Wahrscheinlichkeit fiir darin enthaltene Fehler.

lhttp ://www-01.ibm.com/software/lotus/products/123/
thtp ://office.microsoft.com/en-us/excel/
3’Beispielsweise Open Office Calc: http://www.openoffice.org/

http://www-01.ibm.com/software/lotus/products/123/
http://office.microsoft.com/en-us/excel/
http://www.openoffice.org/

1 Einleitung

1.1 Motivation

Verschiedene Studien [Pan98, PBL09, CHHMO08, ButO0] haben in der Praxis eingesetzte oder in
Experimenten entstandene Spreadsheets auf Fehler untersucht und das tibereinstimmende
Resultat dieser Studien ist, dass eine sehr hohe Anzahl aller Spreadsheets ernstzunehmende
Fehler enthilt, die die Korrektheit der durchgefiihrten Berechnungen beeinflussen konnen. Eine
iiberwiegende Anzahl der Studien prognostiziert dabei eine Quote von fehlerhaften Spreadsheets
um die 90%.

Zwar miissen nicht alle Spreadsheet-Fehler bemerkbare Auswirkungen oder sogar kritische Kon-
sequenzen zur Folge haben, jedoch existieren zahlreiche Belege fiir Félle, in denen verheerende
finanzielle oder reputationelle Verluste auf unbemerkte Fehler in Spreadsheets zuriickzufiihren
sind [Cro09, O’B]. In vielen dieser Horrorszenarien begiinstigt das Fehlen von Kontrollmechanis-
men, die Entstehung und Nutzung solcher fehlerhaften Spreadsheets. Dieser Mangel, an von
Unternehmen vorgeschriebenen Qualitdtssicherungsmafsnahmen fiir Spreadsheets, ist in der For-
schung bekannt und gut dokumentiert [PO08, PH]96, CMW07, PBLEFJ08]. Aber dennoch haben
die meisten Unternehmen dieses Wissen bisher ignoriert und der Aussicht auf ernstzunehmende
Spreadsheet-Fehler wenig Aufmerksamkeit geschenkt [Pan98].

Neben der fehlenden Kontrolle setzen auch die Spreadsheet-Nutzer selbst zu viel Vertrauen in
ihre Spreadsheets und tendieren zu einem tibermafiigen Selbstvertrauen beziiglich ihrer Kor-
rektheit und Genauigkeit [Pan08a]. Infolgedessen werden die meisten Spreadsheets auch nicht
selbstandig von ihren Erstellern auf Fehler tiberpriift und falls doch eine Priifung stattfindet, ist
diese in ihrem Umfang meist sehr beschrankt und wird informell und unsystematisch durchge-
fihrt [PBLEJ08, CMWO07]. Diese vorhandene Tendenz, Spreadsheets nicht oder nicht ausreichend
auf deren Qualitédt zu tiberpriifen, wird dahingehend noch verstarkt, dass die manuelle Priifung
von Spreadsheets meist sehr mithsam und bei einer Priifung durch eine Einzelperson hiufig
wenig effektiv ist [PO08].

Angetrieben durch neue Gesetze wie den Sarbanes-Oxley Act* oder Basel II°, haben sich einige
Dienstleister etabliert, die Audits von Spreadsheets und entsprechende Priifwerkzeuge fiir
Spreadsheets anbieten. Die geringe Nutzung von bestehenden Werkzeuge in der Praxis [CMW07,
PBLFJ08] 1asst jedoch darauf schliefSen, dass diese nicht in der Lage sind das Problem von Fehlern
in Spreadsheets zu 16sen.

Verantwortlich dafiir, dass die angebotenen Priifwerkzeuge keine addquate Unterstiitzung fiir
die Priifung von Spreadsheets bieten konnen, sind dabei die erheblichen Einschrankungen, mit
denen diese Werkzeuge versehen sind. So sind die meisten Werkzeuge fiir die Verwendung im
Finanzsektor konzipiert und konnen daher meist nur eine begrenzte Anzahl an vordefinierten
und sehr spezialisierten Regeln tiberpriifen. Jedoch besteht bisher weder in der Praxis noch in

4http ://www.soxlaw.com/index.htm
5http ://www.bis.org/publ/bcbs107.htm

http://www.soxlaw.com/index.htm
http://www.bis.org/publ/bcbs107.htm

1.2 Ziel

der Wissenschaft eine Einigung dariiber, welche Eigenschaften ein gutes Spreadsheet besitzen
muss und wie diese Eigenschaften erreicht werden kénnen. Daher ist die Priifung von einer
scheinbar zufillig ausgewéhlten Anzahl an Regeln nicht zielfithrend, um die Qualitdt von
Spreadsheets allgemein zu tiberpriifen. Es ist jedoch auch nicht moglich die tiberpriifbaren
Regeln zu erweitern, da die Priifwerkzeuge meist auch auf die Benutzung mit einer einzigen
Spreadsheet-Software eingeschrdnkt sind und keine Moglichkeiten zur Konfiguration oder
Erweiterung vorsehen. Zusétzlich werden die meisten Werkzeuge als quell-geschlossene Software
kommerziell vertrieben und stellen keine wissenschaftlichen Anspriiche an die eingesetzten
Methoden. Als Folge daraus sind die meisten bestehenden Ansitze zur Priifung von Spreadsheets
nicht dokumentiert und deren Nutzen wurde in den seltensten Fallen objektiv evaluiert [AI’10,
NO10, PB08].

1.2 Ziel

Das Ziel dieser Arbeit ist daher die Konzeption und Entwicklung eines erweiterbaren plattform-
unabhédngigen Java-Frameworks, das die technische Grundlage schaffen soll, um Priifungen von
Spreadsheets durchzufiihren. Dadurch soll ein systematisches, reproduzierbares Priifverfahren
tiir Spreadsheets ermoglicht werden, das von Endbenutzern durchgefiihrt werden kann. Die
unterstiitzen Priifungen beschranken sich dabei zunéchst auf statische Priifungen, aber die Er-
weiterung um dynamische Priifungen und die Unterstiitzung von nichtmechanischen Priifungen
soll moglich sein.

Die Aufgabe des Frameworks ist es zundchst die Spreadsheets auf die Einhaltung festlegbarer
Qualitatskriterien mit statischen Mitteln zu priifen. Verstofse von Qualitdtskriterien sollen da-
bei vollautomatisch entdeckt werden, um den Nutzer auf mogliche Mdngel des untersuchten
Spreadsheet hinzuweisen und ihn so bei der Priifung von Spreadsheets zu unterstiitzen. Zu
diesem Zweck soll es entdeckte Verstofie automatisch klassifizieren, bewerten, gruppieren und
dem Nutzer in geeigneter Form zur Verfiigung stellen. Anders als bei bestehenden Priifwerk-
zeugen sind die tiberpriifbaren Qualitatskriterien vom Benutzer frei zu einer Qualitétsrichtlinie
zusammenstellbar. Uberprﬁfbare Qualititskriterien werden mittels Vorschriften definiert, welche
individuell konfiguriert werden kénnen. Aufierdem soll es ermoglicht werden, mit Hilfe einer
Java-API neue Vorschriften auf einfache Weise hinzuzufiigen. Zwar muss in der initialen Version
die Priifung einer neuen Vorschrift von einem professionellen Programmierer implementiert wer-
den, jedoch wird es ermdglicht diesen Mechanismus in Zukunft mit einer benutzerfreundlicheren
Moglichkeit zu ersetzen.

Um die Brauchbarkeit des Frameworks zu demonstrieren, soll die Priifung von drei moglichst
unterschiedlichen Vorschriften implementiert und ein prototypisches Priifwerkzeug, das diese
Vorschriften verwendet, entwickelt werden. Die implementierten Priifverfahren fiir die ausge-
wihlten Vorschriften sollen dann mit der Hilfe von operationalen Spreadsheets aus Real- und
Laborumgebungen evaluiert werden, um die entstandene Losung mit bestehenden Priifwerkzeu-
gen vergleichen zu konnen.

1 Einleitung

1.3 Ubersicht

Der Inhalt dieser Diplomarbeit wird in folgenden Kapiteln prasentiert.

Kapitel 2 - Spreadsheet-Grundlagen definiert zentrale Begriffe und Konzepte beziiglich Spread-
sheets, wie sie in dieser Arbeit verwendet werden. Zudem werden die Eigenschaften von
Spreadsheet-Systemen untersucht und die daraus resultierenden Folgen vorgestellt. Es
wird erldutert, dass Spreadsheets in der Praxis hdufig qualitative Méngel besitzen und
dadurch ein Risiko fiir die Verwendung in der Unternehmenswelt darstellen knnen.

Kapitel 3 - Software-Qualitit definiert zentrale Begriffe beziiglich der Qualitdt von Software.
AnschliefSend wird das vorhandene Wissen und die vorhandenen Mafsnahmen im Software
Engineering vorgestellt, die es erlauben die Risiken, die durch Qualitdtsmangel entstehen,
beherrschbar zu machen.

Kapitel 4 - Spreadsheet-Qualitit stellt den Stand der Forschung beziiglich Spreadsheet-Qualitat
VOr.

Kapitel 5 - Vorhandene Ansitze zur Erhohung der Spreadsheet-Qualitit untersucht ob Prinzi-
pien aus dem Software-Engineering auf Spreadsheets iibertragen werden konnen und
beleuchtet vorhandene Ansdtze zur Erhohung der Qualitdt von Spreadsheets. Speziell
werden dabei die vorhandenen Anséitze zur Priifung von Spreadsheets untersucht.

Kapitel 6 - Konzept présentiert im Detail die vorgeschlagene Losung zur Priifung von operatio-
nalen Spreadsheets.

Kapitel 7 - Anforderungen listet die funktionalen und nicht-funktionalen Anforderungen auf,
die an die in Kapitel 6 vorgeschlagene Losung gestellt werden.

Kapitel 8 - Entwicklung beschreibt den gewéhlten Entwicklungsprozess, sowie Details aus Ent-
wurf und Implementierung.

Kapitel 9 - Evaluation setzt sich kritisch mit der fertiggestellten Umsetzung auseinander und
vergleicht diese mit bestehenden Spreadsheet-Priifwerkzeugen.

Kapitel 10 - Fazit fasst die Ergebnisse dieser Arbeit zusammen und nennt die Vorteile und Ein-
schrankungen der entwickelten Losung. Im Anschluss daran wird diskutiert, wie sich die
entstandene Losung verbessern lasst und welche weiteren Priifungsarten fiir Spreadsheets
unterstiitzt werden konnen.

10

Kapitel 2

Spreadsheet-Grundlagen

Um einen effektiven Ansatz zur Priifung von Spreadsheets zu entwickeln, ist es wichtig zuerst
die Grundlagen von Spreadsheets zu kennen und zu verstehen. Aus diesem Grund werden
in den folgenden Abschnitten die grundlegenden Elemente und Konzepte von Spreadsheets
vorgestellt, um dann die Eigenschaften von Spreadsheets und die daraus resultierenden Folgen
beschreiben zu konnen.

2.1 Elemente und Konzepte

In der Einleitung wurden Spreadsheets als kleine Softwareprogramme prasentiert, mit deren
Hilfe Berechnungen getitigt und Daten verarbeitet werden konnen. Jedoch wurde der Begriff
Spreadsheet bisher nicht genau definiert und in Ubereinstimmung mit dem Gebrauch in der Praxis
eher unpréizise verwendet.

Der Grund fiir diesen unpréazisen Gebrauch ist die urspriingliche Herkunft des Begriffes Spreads-
heet. Denn als spread sheets wurden bereits in den 50er-Jahren Papierarbeitsblatter bezeichnet, die
fiir eine zweidimensionale Analyse von Bilanzdaten in Tabellenform genutzt wurden. Als Anfang
der 80er-Jahre das Prinzip einer tabellenférmigen Anordnung von Daten und Berechnungen
mittels Software umgesetzt wurde, iibernahm man auch die Bezeichnung Spreadsheet. Anders
als bei den Papierarbeitsbldttern ist jedoch fiir die Erstellung und Nutzung der elektronischen
Form von Spreadsheets ein System aus mehreren Komponenten notwendig. Daher wird der
Begriff Spreadsheet heutzutage zwar im Allgemeinen mit einer Art Software fiir die Dateneingabe
und -verarbeitung assoziiert, aber meist wird der Begriff als ungenauer Sammelbegriff fiir alle
beteiligten Komponenten verwendet.

Um Missverstandnisse bei der Interpretation von Spreadsheet-Begriffen zu vermeiden, werden
daher die folgenden Definitionen von Spreadsheet-Elementen und -Konzepten in dieser Arbeit
verwendet. Einige dieser Definitionen sind an die in [ACMO00] gegebenen Definitionen angelehnt,
die meisten wurden aber fiir die Verwendung in dieser Arbeit angepasst oder erweitert. In
Abbildung 2.1 wurde versucht einige der im Folgenden beschriebenen Elemente durch grafische
Markierungen zu veranschaulichen.

11

2 Spreadsheet-Grundlagen

2.1.1 Das Spreadsheet-Konzept und dessen Basis-Elemente

E proband6.ods IOEnOfﬁce.org Calcl Q@E
File Edit View Insert Format Tools Data Window Help x
- Bls (@ REER Y[K- BuN by HPBEEQ @, ~ 2
‘@ IDEfauIt ‘v Liberation Sans ‘v‘ 12 ‘v‘ ‘ B | I ‘ U ==== i % i(}? %n?n k ":‘E ‘*E Oo-& - é. = i.
o vV AE = A\@\ At
A [B C D [E | F |~]| [Defautt

1 |Kategorie Gewichtung GolfVI 2.0 TDI*Focus 1,6 TDCi»Fiat Bravo 1,6 JTD Emotion | | n::ggg .

2 Technik/lUmwelt 24 25 Result

3 |Karosserie/Kofferraum 2.5 2.5 2.9 = || | Result2

4 |Verarbeitung 1.0 2.0 27 29

5 |Sicht 1.0 25 28 29

6 |Ein-/Aussteig 1.0 3.0 27 2.5

7 _|Kofferraum-Volumen 1.0 25 23 24

8 |Kofferraum-Zuganglichkeit 1.0 25 1.9 3.5

9 |Kofferraum-Variabilitat 1.0 2.5 2.8 31

10 |Innenraum 2.6 2.6 2.8

11 (Bedienung

12 |Raumangebot vome Spreadsheet Software Zelle

13 |Raumangebot hinten

14 |Innenraum Varizbilitat Formel

15 _[Komfort Worksheet Funktion

16 |Federung

17 [Sitze Bereich

18 [Innengerdusch

12 |Heizung. Laftung “ =
(/47 v | Tabellel} Tabele2 [Tabelle3s / []< | I | E | All Styles ‘v,
Sheet 1/3 | Defait \ |sm | | Sum=2.0 06— @ |00%

Abbildung 2.1: Veranschaulichung einiger Spreadsheet-Elemente anhand der Spreadsheet-

Software OpenOffice.org Calc

Spreadsheet (Konzept) bezeichnet das grundlegende Konzept einer zweidimensionalen Tabelle

von Zellen, die in einem geradlinigen Gitter von Reihen und Spalten unterschiedlicher
Hohe und Breite angebracht sind. Dieses Konzept wird bei Spreadsheet-Programmen
angewandt, die eine beliebige Anzahl solcher Tabellen in elektronischer Form, sogenannte
Worksheets, enthalten konnen.

Eine Zelle ist die atomare Einheit eines Spreadsheets. Die Zelle eines Worksheets, also der

elektronischen Version eines Spreadsheets, kann sich in einem von fiinf verschiedenen
Zustanden befinden. Die Zelle kann (a) leer sein, (b) sie kann eine Beschriftung enthalten,
die den Inhalt anderer Zellen beschreibt, (c) einen konstanten Wert enthalten, der von
anderen Zellen weiterverarbeitet wird und einmalig beim Erstellen des Spreadsheets
Spreadsheet-Programms bereitgestellt wird, (d) einen Eingabewert enthalten, der vom
Benutzer des Spreadsheet-Programms bei dessen Ausfiihrung bereitgestellt werden muss
(Eingabe-Zelle) oder (e) einen Ausgabewert enthalten, der von einer Formel anhand von
konstanten und eingegeben Werten berechnet wird (Ausgabe-Zelle).

Eine Zellformat gibt an, wie eine Zelle visuell dargestellt werden soll. Dabei kénnen Eigen-

12

schaften, wie etwa das verwendete Schriftbild, die Darstellungsart des Inhalts oder die
Umrandung der Zelle, eingestellt werden.

2.1 Elemente und Konzepte

Ein Schreibschutz gibt an, ob der Inhalt einer Zelle oder eines ganzen Worksheets mittels eines
Passworts davor geschiitzt werden soll, tiberschrieben zu werden.

Eine Reihe | Zeile ist die Menge aller Zellen auf einer horizontalen Linie eines Spreadsheets.
Reihen werden dabei mit Ziffern, beginnend bei 0, durchnummeriert.

Eine Spalte ist die Menge aller Zellen auf einer vertikalen Linie eines Spreadsheets. Spalten
werden dabei mit Grofsbuchstaben, beginnend bei A, durchnummeriert.

Eine Zelladresse definiert {iber ein Koordinatenpaar aus Spalten- und Zeilennummer eindeutig
die Position einer Zelle innerhalb eines Spreadsheets. Zelladressen werden in dieser Arbeit
im Format A1 notiert, das heifit zuerst steht die Nummer der zugehorigen Spalte, gefolgt
von der Nummer der zugehorigen Reihe. Beispielsweise wiirde die Adresse A1 die Zelle in
der ersten Spalte, nummeriert mit dem Buchstaben A, und in der ersten Reihe, nummeriert
mit der Ziffer 1, eines Spreadsheet bezeichnen.

Ein Bereich ist die Menge aller Zellen innerhalb eines beliebig grofien rechteckigen Ausschnitts
aus einem Worksheet. Ein Bereich kann dementsprechend aus (a) einer einzelnen Zelle,
(b) einer einzelnen Reihe, (c) einer einzelnen Spalte oder (d) einer Menge von Zellen eines
rechteckigen Ausschnitts, der sich iiber mindestens eine Reihe und eine Spalte erstreckt,
bestehen.

Eine Bereichsadresse definiert eindeutig die Position eines Bereiches innerhalb eines Spreadsheet
iiber die Zelladressen seiner Zellen in der linken oberen und in der rechten unteren Ecke.
Bereichsadressen werden in dieser Arbeit im Format A1:C4 notiert, das heifst zuerst steht
die Zelladresse der Zelle in der linken oberen Ecke, gefolgt von einem Doppelpunkt als
Trennzeichen zur Zelladresse der Zelle in der rechten unteren Ecke. Beispielsweise wiirde
die Adresse eines Bereichs, der von der Zelle in der ersten Spalte und Reihe (A1) bis zu der
Zelle in der dritten Spalte und vierten Reihe (C4) reicht, als A1:C4 notiert werden. Falls ein
Bereich nur aus einer einzigen Zelle besteht, kann die Adresse im selben Format angeben
werden, sie unterscheidet sich jedoch semantisch nicht von der entsprechenden Zelladresse.

Ein benamter Bereich ist ein Bereich, der vom Bearbeiter eines Spreadsheet-Programms mit
einem aussagekriftigen Namen versehen wurde. Dabei miissen Namen innerhalb eines
Spreadsheet-Programms eindeutig sein und diirfen nicht so benannt sein, dass der Name
mit einer Adresse verwechselt werden kann. Benamte Bereiche kénnen dadurch neben
ihrer Bereichsadresse auch mit ihrem zugewiesenen Namen adressiert werden.

Eine Referenz ist der Verweis auf den Wert oder die Werte eines Bereiches. Referenzen kénnen
dazu verwendet werden, Werte fiir Zellen oder Operanden fiir Formeln bereitzustellen,
indem sie als Zeiger auf die Werte anderer Zellen fungieren. Um den sprachlichen Gebrauch
von Referenzen zu vereinfachen, wird in dieser Arbeit der Ausdruck Wert weggelassen,
wenn von Referenzen gesprochen wird. Eine Zell- bzw. Bereichsreferenz wird also gleichbe-
deutend verwendet, wie die Referenz auf den oder die Werte einer Zelle oder eines Bereichs.
Referenzen konnen dabei entweder absolut oder relativ festgelegt werden.

13

2 Spreadsheet-Grundlagen

Eine absolute Referenz hat eine analoge Funktionsweise zu einer Postanschrift ohne den
Namen des Adressaten. So wie Post an diese Anschrift immer an den aktuellen
Bewohner unter dieser Adresse zugestellt wird, zeigt eine absolute Referenz immer
auf die Werte der Zellen, die sich aktuell an der angegeben Adresse befinden.

Eine relative Referenz hingegen zeigt immer auf den Wert der Zelle, die sich bei der Er-
stellung der relativen Referenz an der angegeben Adresse befand, auch wenn diese
seitdem ihre Position verdndert hat.

Innerhalb von Formeln sind Referenzen nicht speziell gekennzeichnet, wenn sie jedoch ver-
wendet werden, um den Inhalt einer Zelle festzulegen, miissen sie durch ein vorangestelltes
Gleichheitszeichen (=) gekennzeichnet werden.

Die Angabe einer relativen Referenz geschieht tiber die Adresse des gewtiinschten Ziels,
also entweder tiber eine Bereichsadresse, eine Zelladresse oder den Namen eines benamten
Bereichs. Absolute Referenzen werden wie relative Referenzen angegeben, jedoch wird
absoluten Adresselementen ein Dollarzeichen ($) vorangestellt. Dabei ist es auch moglich
nur eine der beiden Zellen einer Bereichsadresse, oder auch nur die Zeile oder Spalte einer
Zelle absolut anzugeben. Beispielsweise wird innerhalb einer Formel die absolute Referenz
zu dem Bereich A1:B3 als A1:B3 angegeben, die relative Referenz hingegen wie die
Adpresse selbst alsA1:B3.

Eine Formel ist eine Operation auf einem oder mehreren Operanden, die als Ergebnis den

14

Wert genau einer Zelle berechnet ohne dabei Seiteneffekte zu verursachen. Eine Formel
wird dabei als mathematischer Ausdruck angeben, der aus Operanden, Operatoren und
Funktionen besteht. Formeln, die mindestens einen Operator oder eine Funktion und
mindestens einen Operanden enthalten, werden in dieser Arbeit als berechnende Formeln
bezeichnet. Formeln, die lediglich den Wert einer anderen Zelle referenzieren, werden in
dieser Arbeit als referenzierende Formeln bezeichnet.

Operanden einer Formel sind entweder konstante Werte, Referenzen oder die Ergebnisse
anderer Formeln.

Operatoren in einer Formel sind Berechnungsvorschriften wie aus einem oder mehreren
Objekten ein neues Objekt gebildet werden kann. Dabei werden von einer Spreadsheet-
Software meist eine Reihe von Arithmetik-, Vergleichs-, Text- und Referenz-Operatoren
bereitgestellt. Beispiele sind das Pluszeichen (+) fiir die arithmetische Addition, das
Groflerzeichen (>) fiir den Vergleich von Werten, das kaufméannische Und (&) fiir die
Verkettung von Texten oder die Tilde (~) fiir die Vereinigung von Referenzen.

Funktionen sind von einem Benutzer oder der jeweiligen Spreadsheet-Software vordefi-
nierte Operationen, fiir die nur noch die Operanden definiert werden miissen. Sie sind
dafiir zustidndig, beliebige Operationen, speziell diese, die nicht rein {iber Operatoren
ausgedriickt werden kdnnen, zu ermdglichen. Dabei diirfen sie jedoch ebenfalls nur

2.1 Elemente und Konzepte

genau ein Ergebnis liefern und keine Seiteneffekte produzieren. Verwendet wird ei-
ne Funkion, durch die Angabe des Namens, gefolgt von einer 6ffnenden Klammer,
einer durch Strichpunkt getrennten Liste von Operanden und einer abschlieflenden
Klammer angegeben. Daher muss jede Funktion einen eindeutigen Namen.

Formeln kénnen ineinander verschachtelt werden, das heifst die Ergebnisse einer Formel
konnen als Operand der tibergeordneten Formel verwendet werden. Jedoch miissen die
Formeln dabei korrekt geklammert werden und der dufiersten Formel muss ein Gleich-
heitszeichen (=) vorangehen. Die Angabe der Formeln erfolgt dabei in Infixnotation.

Eine Formel, die alle Werte der Zeilen 1 bis 3 in Spalte A und alle Werte der Zeilen 2 bis 5
der Spalte D addiert, wiirde beispielsweise folgendermafien notiert:
=SUMME(SUMME(A1:A3),SUMME(D2:D5))

Ein Worksheet oder auch Arbeitsblatt ist die elektronische Version eines Spreadsheets. Ein oder
mehrere Worksheets konnen in einem Spreadsheet-Programm enthalten sein, miissen
aber einen eindeutigen Namen besitzen. Innerhalb eines Spreadsheet-Programms kann
problemlos auf die Inhalte von unterschiedlichen Worksheets referenziert werden. Der
referenzierten Adresse wird dabei der Name des tibergeordneten Worksheets sowie ein
Ausrufezeichen (/) vorangestellt. Beispielsweise wiirde eine Referenz eines Worksheets auf
die Zelle Al eines anderen Worksheets, mit den Namen Daten, als =Daten! Al angegeben
werden.

2.1.2 Der Verbund der Spreadsheet-Komponenten

Ein Spreadsheet(-Programm) ist die Spezifikation von Datenwerten (Zellinhalten), Datenfluss
(Referenzen), Datenverarbeitung (Formeln) und Darstellungsinformationen (Anordnung
der Zellen und Worksheets, Zellformate) in einer Spreadsheet-Sprache. Zusétzlich konnen
noch Meta-Informationen, wie etwa Bereichs- oder Worksheet-Namen, sowie allgemeine In-
formationen zum Spreadsheet-Programm spezifiziert werden. Ein Spreadsheet-Programm
ist dadurch die konkrete Umsetzung eines Spreadsheet-Modells und kann als Spreadsheet-
Datei vom jeweiligen Spreadsheet-System in verschiedenen Formaten gespeichert werden.

Um den sprachlichen Gebrauch dieses Konzeptes fiir den weiteren Verlauf zu vereinfa-
chen, wird aufSerhalb dieses Definitionskapitels der Begriff Spreadsheet als Synonym zum
Begriff Spreadsheet-Programm verwendet, sofern keine Gefahr fiir eine Mehrdeutigkeit
besteht. Zwar steht der Begriff Spreadsheet eigentlich fiir das grundlegende Konzept,
jedoch ist dieses im weiteren Verlauf von geringerer Bedeutung als das Konzept eines
Spreadsheet-Programms, und die elektronische Umsetzung dieses Konzept hat mit dem
Begriff Worksheet ohnehin eine eigene unmissverstdandliche Bezeichnung.

Eine Spreadsheet-Sprache ist eine Menge von abstrakten Sprachkonstrukten, um ein
Spreadsheet-Programm zu definieren. Es existieren verschiedene Spreadsheet-Sprachen,
die sich in ihren verfiigbaren Konstrukten und syntaktischen Details unterscheiden

15

2 Spreadsheet-Grundlagen

konnen. Jedoch sind in allen Sprachen entsprechende Konstrukte vorhanden, um die oben
beschriebenen Elemente und Konzepte auszudriicken.

Ein Spreadsheet-Modell ist das zugrunde liegende Modell eines Spreadsheet-Programms, das

mittels abstrakten Spreadsheet-Konzepten ausgedriickt ist. Ein konkretes Spreadsheet-
Modell entspricht dabei einem vom Benutzer transformierten konzeptuellen Modell eines
Problems aus der realen Welt in Ausdriicke einer bestimmten Spreadsheet-Sprache. Die
Umsetzung eines Spreadsheet-Modells erfolgt als Spreadsheet-Programm, welches mittels
einer Spreadsheet-Software erstellt wird.

Beispiel: Ein Benutzer steht vor der Aufgabe, die Summe der Zahlen von 1 bis 10 zu be-
rechnen und verkniipft dies mit dem konzeptuellen Modell der kumulativen Addition der
Zahlen 1 bis 10. Ein entsprechendes Spreadsheet-Modell dazu besteht aus der Definition
von 10 Zellen mit den Zahlen 1 bis 10 als Inhalt. AufSerdem muss eine weitere Zelle defi-
niert werden, die die Werte der anderen Zellen tiber eine Formel addiert. Die Umsetzung
dieses Spreadsheet-Modells kann dabei in verschiedenen Spreadsheet-Sprachen und durch
verschiedene Spreadsheet-Programme realisiert werden. Ein Spreadsheet-Programm ver-
wendet etwa die Summen-Funktion, ein anderes addiert die Inhalte der Zellen mittels des
Plus-Operators.

Eine Spreadsheet-Programminstanz ist ein Spreadsheet-Programm, bei dem alle Zellen, die

vom Benutzer mit Eingabewerten befiillt werden miissen, einen giiltigen Wert besitzen.
Ein Spreadsheet-Programm kann dabei beliebig oft instantiiert werden, ohne dass das
zu Grunde liegende Spreadsheet-Modell verandert wird. Durch das Verdndern eines Ein-
gabewertes wird die Spreadsheet-Programminstanz in einer andere Instanz des selben
Spreadsheet-Programms transformiert.

Eine Spreadsheet-Software ist eine integrierte Entwicklungsumgebung fiir Spreadsheet-

Programme. Mit Hilfe dieser Entwicklungsumgebung ist es moglich Spreadsheet-
Programme zu erstellen, zu modifizieren, anzuzeigen und auszufiihren. Die Erstellung und
Bearbeitung erfolgt entweder per direkter Manipulation tiber eine graphische Oberfldche
oder durch Texteingabe. Eine Spreadsheet-Software interpretiert dabei eine oder mehrere
Spreadsheet-Sprachen und kann als Desktop-Anwendung oder Web-Anwendung realisiert
sein.

Ein Spreadsheet-System bezeichnet den Verbund der Komponenten, die zur elektronischen

16

Umsetzung des Spreadsheet-Konzepts notwendig sind. Dieser Verbund besteht aus einer
Spreadsheet-Software, einer oder mehreren Spreadsheet-Sprachen, die von dieser Software
interpretiert werden konnen, sowie den Spreadsheet-Programmen, die von der Spreadsheet-
Software erstellt, modifiziert und als Spreadsheet-Programminstanzen ausgefiihrt werden
konnen.

2.2 Spreadsheet-Systeme und Endbenutzer

2.2 Spreadsheet-Systeme und Endbenutzer

Im vorangegangen Abschnitt wurde ein Spreadsheet-System als der Verbund an Komponenten
definiert, der fiir die elektronische Umsetzung des Spreadsheet-Konzepts notwendig ist. Mit
Hilfe eines Spreadsheet-Systems wird es dessen Benutzern ermoglicht, ohne nennenswerte Pro-
grammierkenntnisse, neue Spreadsheets zu erstellen oder bestehende Spreadsheets zu erweitern
oder verdandern.

Ein solches System, das eine Menge von Methoden, Techniken und Werkzeugen bereitstellt, die es
den Benutzern dieses Systems erlauben, auch als nicht-professionelle Software-Entwickler eigenstindig
Software-Artefakte zu erstellen, zu modifizieren oder zu erweitern [LPKWO06], wird als Endbenutzer-
Entwicklungssystem bezeichnet. Dabei wird der Begriff Endbenutzer typischerweise verwendet,
um die Benutzer von Software und die Entwickler von Software voneinander abzugrenzen. Es
wird also zwischen den Personen unterschieden, die Software nur bedienen, und denen, die
neue Software schaffen oder bestehende Software verdandern. Diese Abgrenzung wird jedoch
durch die Endbenutzer-Entwicklung verwaschen, da es eben auch Endbenutzern ermoglicht
wird, Software zu erstellen und zu verandern.

Die Eroffnung der Software-Entwicklung fiir Endbenutzer ist jedoch ein entscheidendes Merkmal
von Spreadsheet-Systemen und pragend fiir deren Beschaffenheit und deren Einsatz in der Praxis.
Dabei scheint die Umsetzung der Endbenutzer-Entwicklung in Spreadsheet-Systemen besonders
gelungen zu sein, da sie sich zur beliebtesten Art dieser Systeme entwickelt haben. Nardi und
Miller [NM90b] haben daher die Eigenschaften von Spreadsheet-Systemen untersucht und fithren
deren Erfolg auf zwei Haupteigenschaften zurtick:

» Die Verfiigbarkeit von Programmierkonzepten und -techniken auf einem hohen Abstrak-
tionsniveau, die den Aufgaben des Benutzers angemessen sind und sie vor den technischen
Einzelheiten der traditionellen Programmierung abschirmen.

» Die Verwendung einer tabellenformigen Benutzeroberfldche, die als Modell fiir die Anwen-
dungen der Benutzer dient.

2.2.1 Vorziige von Spreadsheet-Systemen

Durch die Kombination dieser Eigenschaften konnen mit Hilfe von Spreadsheet-Systemen die
beiden Basisprobleme des Benutzers gelost werden: Die Berechnung und die Darstellung von
Informationen. Dadurch bieten Spreadsheet-Systeme eine Reihe von Vorziigen. Diese Vorziige
konnen durch die tatsdchliche Verwendung von Spreadsheet-Systemen in der Praxis bestétigt
werden [CS96, PBLE]08, GMz05].

17

2 Spreadsheet-Grundlagen

Einfache Nutzbarkeit und Bedienung

Zuallererst benétigen Benutzer von Spreadsheet-Systemen wenig Ubung, da sie bereits mit dem
Verstdandnis von zwei Grundkonzepten — Zellen als Variablen und Formeln als Beziehungen
zwischen diesen Variablen — in der Lage sind, grundlegende Programmieraufgaben zu losen. Die
Interviews in [NM90b] haben zudem gezeigt, dass die meisten Benutzer weniger als zehn ver-
schiedene Funktionen benétigen, die alle Bezug zu ihrem jeweiligen Fachbereich besitzen. Zwar
konnen fortgeschrittene Konzepte, wie Makros oder die bedingten Formatierung von Zellen,
mitverantwortlich fiir eine schnellere Entwicklung oder eine hohere Qualitdt des Spreadsheets
sein, jedoch werden sie grundsatzlich fiir die Erstellung von Spreadsheets nicht benétigt. Als
Folge daraus werden fortgeschrittene Konzepte und das Wissen iiber zusatzliche Funktionen
meist nur langsam angeeignet. So haben Powell et al. [PBLFJ08] ein unregelmafliges, selbst-
standiges Erlernen von Spreadsheet-Systemen mittels Handbiichern, tiber Kollegen oder die
Benutzung anderer Spreadsheets als die gdngigste Form der Weiterbildung fiir den Umgang mit
Spreadsheets dokumentiert.

Zusitzlich zu der geringen Einlernzeit, erlaubt die vertraute Tabellenanordnung in Spreadsheets
die einfache Strukturierung und Pradsentation von deren Inhalten. Neben der Definition von
Spreadsheet-Konstrukten mittels der Eingabe von Text, stellt Spreadsheet-Software zu diesem
Zweck meist auch direkte Manipulationsmoglichkeiten bereit [[HHN85]. So kdnnen Referenzen
beispielsweise per Maus angegeben werden und existierende Funktionen kdnnen aus einer Liste
ausgewdhlt und eingefiigt werden, was weiter zur einfachen Nutzung von Spreadsheet-Systemen
beitragt. Dariiber hinaus bietet die automatische Neuauswertung von Formeln, bei Anderung
einer zugrunde liegender Zelle, dem Nutzer sofortige Riickmeldung wihrend der Entwicklung.
Dadurch kann er den Effekt von durchgefiihrten Anderungen und den Fortschritt seiner Arbeit
sofort beurteilen [NM90b]. Diese einfache Verwendung von Spreadsheet-Systemen erlaubt es
deren Nutzern sich auf ihre Hauptaufgabe zu konzentrieren — das Losen von fachspezifischen
Problemen.

Flexible Entwicklungs- und Einsatzmoglichkeiten

Durch die einfache Benutzung und die sofortige Riickmeldung von Spreadsheet-Systemen kon-
nen Spreadsheets mit einer viel htheren Geschwindigkeit erstellt, modifiziert oder erweitert
werden als traditionell entwickelte Software. Denn nicht nur der Inhalt der Eingabe-Variablen
eines Spreadsheets, sondern auch das zugrunde liegende Spreadsheet-Modell, kann beinahe
augenblicklich an verdnderte Anforderungen angepasst werden. Eine zusatzliche Zeiterspar-
nis kommt dadurch zustande, dass Anforderungen, nicht wie bei der traditionellen Software-
Entwicklung, von Fachexperten an Entwickler tibertragen werden miissen, sondern direkt durch
die Fachexperten umgesetzt werden konnen. Diese hohere Entwicklungsgeschwindigkeit ist vor
allem in der Unternehmenswelt von enormer strategischer Bedeutung, da sie ausschlaggebend
fiir den Erfolg eines Unternehmens sein kann [Gro07].

18

2.2 Spreadsheet-Systeme und Endbenutzer

Des Weiteren helfen Spreadsheet-Systeme ihren Benutzern dabei, die umzusetzenden Proble-
me zu erforschen und zu verstehen. Da die Modellierung und Strukturierung des Problems
einfach und schnell moglich ist, kann ein konzeptuelles Modell des Problems wéahrend der
Erstellung des entsprechenden Spreadsheets explorativ entstehen. Dies kann zum Beispiel eine
effektive Methode sein, um unklare Anforderungen wihrend des Entwicklungsprozesses zu
kldaren [Gro07]. Zusétzlich eignen sich Spreadsheets-Systeme gut fiir die kooperative Erstellung,
Bearbeitung oder Erweiterung [NM90a] und konnen daher zur Vermittlung und Verteilung von
Wissen verwendet werden.

Eine weitere Eigenschaft von Spreadsheet-Systemen ist deren flexible Einsetzbarkeit, die durch
die unterschiedlichen Einsatzzwecke von Spreadsheets in der Praxis dokumentiert ist [GMz05].
So sind Spreadsheet-Systeme weder an einen bestimmten Aufgabentyp noch an einen bestimm-
ten Fachbereich gebunden und werden in Unternehmen jeder Fachrichtung, durch Nutzer in
verschiedensten Positionen, fiir eine Vielfalt von Aufgaben eingesetzt. Typischerweise werden
Spreadsheets etwa fiir die Datenverwaltung, Informationskommunikation, Problemmodellierung
und -analyse, sowie fiir die Prognose von Trends und die Unterstiitzung bei der Findung von
Entscheidungen verwendet [CMW07, PBLEJ08, Cro07].

2.2.2 Gefahren von Spreadsheet-Systemen

Spreadsheet-Systeme bieten jedoch nicht nur Vorziige fiir die Verwendung im Unternehmen,
sondern sie bergen auch Gefahren. Diese Gefahren werden dabei teilweise durch die selben Eigen-
schaften der Spreadsheet-Systeme verursacht, die ihnen auch ihre Verziige verleihen [NM90b].
Sie bestehen zumeist darin, dass Spreadsheets mit mangelhafter Qualitdt entstehen und ohne
Kontrolle verwendet werden.

Gefahren durch den Nutzer

Eine dieser Gefahren sind dabei die menschlichen Fehler, die bei der Erstellung oder Bearbeitung
von Spreadsheets begangen werden. So hat die Forschung auf dem Gebiet der menschlichen
Fehler ergeben, dass der Mensch durch Einschrankungen in dessen Wahrnehmung nicht in der
Lage ist, komplexe kognitive Aufgaben fehlerfrei durchzufiihren [Pan08c]. Empirische Studien
(zitiert in [Pan98]) haben dabei gezeigt, dass die Quote von unkorrigierten Fehlern bei komplexe-
ren Aufgaben, wie etwa dem Programmieren von Software, auf bis zu fiinf Prozent ansteigen
kann. Raymond Panko zeigt in [Pan08c] auf, dass in mehreren Studien dhnliche Prozentzahlen
an fehlerhaften Zellen in Spreadsheets gefunden wurden. Daher ist davon auszugehen, dass
bei der Erstellung und Bearbeitung aller nicht-trivialen Spreadsheets Fehler begangen werden
und dass sich diese ohne entsprechende Gegenmafsnahmen auf die Qualitit der Spreadsheets
auswirken.

Eine weitere Gefahr steckt in dem tiberméfiigen Selbstvertrauen, das Benutzer in ihre erstellten
Spreadsheets setzen. So tendieren die Benutzer in den meisten Féllen dazu die Qualitét ihrer

19

2 Spreadsheet-Grundlagen

eigenen Arbeit zu liberschdtzen [Pan08a], was dazu fiihrt, dass keine oder nur sehr oberfldch-
liche Priifungen nach Vollendung der Entwicklung durchgefiihrt werden [PBLEF]08, CMWO07].
Dies wiederum bewirkt, dass die menschlichen Fehler, die bei der Erstellung von Spreadsheets
gemacht wurden, nicht entdeckt werden.

Dieser Effekt tritt besonders in Erscheinung, da der typische Nutzer von Spreadsheets keine
entsprechende Ausbildung fiir die Programmieraufgaben besitzt, die beim Erstellen und Bearbei-
ten von Spreadsheets notig ist [PBLEJ08]. Dadurch, dass die Endbenutzer von den Details der
Programmierung abgeschirmt werden, sind sich diese oftmals gar nicht dariiber bewusst, Pro-
grammieraufgaben auszufiihren. Daher nehmen sich auch die damit verbundenen Risiken nicht
wahr. Foglich werden die meisten Spreadsheets ohne einen geordneten Prozess nach dem Prinzip
Code and Fix entwickelt, ohne die Anforderungen an das Spreadsheet vorher zu spezifizieren,
dessen Struktur zu planen oder das Ergebnis nach Vollendung zu tiberpriifen [PBLEFJ08].

Gefahren durch das Spreadsheet-Konzept

Gefahren entstehen auch durch das Konzept der Spreadsheets selbst und durch die Einschran-
kungen der bestehenden Spreadsheet-Software [Aya01]. Beispielsweise konnen Zellinhalte, die
entweder als Text oder als Zahl formatiert sind, nicht auf Anhieb voneinander unterschieden wer-
den. Die Formatierung kann jedoch fiir das Ergebnis einer Formel, die diese Inhalte verwendet,
eine grofse Rolle spielen. Aufierdem wird es durch die zweidimensionale Anordnung der Zellen
erschwert, die Struktur des Spreadsheets zu erkennen und Referenzen nachzuvollziehen, da die
entsprechende Lokalitdt fehlt. Allgemein sind Spreadsheets nur schwierig in einer fiir Menschen
lesbaren Form zu gestalten, da keine sinnvollen Strukturvorgaben oder Aggregationsmoglich-
keiten gegeben werden. Es bleibt ganz dem Ersteller iiberlassen, wie er die Struktur seines
Spreadsheets gestaltet und ob er beispielsweise eine Trennung von Eingabe, Verarbeitung und
Ausgabe vorsieht. Und auch die Moglichkeiten zur internen Dokumentation von Spreadsheets
sind mit einfachen Zellkommentaren und Textzellen eher begrenzt. Erschwerend kommt hinzu,
dass eine Modularisierung von Logik, Prasentation und Datenhaltung im Spreadsheet Konzept
nicht vorgesehen ist und die Bearbeitung eines Spreadsheets nicht von der Benutzung abgetrennt
ist. So ist es leicht moglich, dass das Model eines Spreadsheets wéahrend der Benutzung eines
Spreadsheets ungewollt verdndert wird, wenn dies nicht {iber Schreibschutz verhindert wird.

Zusammengefasst erlauben die Eigenschaften von Spreadsheets zwar eine hohe Flexibilitat, aber
durch die Vereinfachung von Darstellung und Programmierung tragen sie auch zur Entstehung
von Fehlern bei.

Gefahren durch das Umfeld

Und auch das Umfeld, in dem Spreadsheets entstehen, begiinstigt es, dass neue Fehler und Man-
gel in Spreadsheets entstehen oder bestehende nicht entdeckt werden. So fehlen etwa effektive
Qualitétsrichtlinien fiir die Steuerung der Entwicklung, Nutzung und Verwaltung von Spreads-
heets. Zwar herrscht kein Mangel an Vorschlédgen fiir sogenannte Best Practices fiir Spreadsheets

20

2.3 Risiken durch Qualititsméngel

[Raf08, O’B05, EuSa], die von erfahrenen Anwendern oder Forschern verfasste Vorschriften ent-
halten, um die Qualitdt von Spreadsheets zu verbessern. Diese sind jedoch oft widerspriichlich.
So besteht bereits bei grundlegenden Prinzipien zur Entwicklung von Spreadsheets Uneinigkeit.
Beispielsweise wird diskutiert, ob es fiir die Qualitdt von Spreadsheets forderlich ist, benamte
Bereiche zu verwenden [MMB09]. Als Folge daraus hat sich bis heute kein allgemein aner-
kannter, wissenschaftlicher Standard fiir Spreadsheet Best Practices etabliert und es ist auch
nicht gesichert, dass der Bedarf nach einem solchen Standard iiberhaupt erfiillt werden kann
[Col10, Dun10, Gro07]. Diese fehlende Gewissheit scheint jedoch die flichendeckende Einfiih-
rung von Qualitatsrichtlinien fiir Spreadsheets in Unternehmen stark zu behindern, da in einer
Reihe von Interviews das tiberwiegende Fehlen solcher Richtlinien in Unternehmen festgestellt
wurde [CMWO07, PBLEJ08, POO08]. Und so tendieren die meisten Unternehmen dazu, wenige bis
gar keine formale Qualititssicherungsmafsnahmen fiir Spreadsheets vorzuschreiben. Stattdessen
verlassen sie sich in hohem Mafie auf die Kontrolle der Qualitdt und Gebrauchstauglichkeit
von Spreadsheets durch die jeweiligen Ersteller [MK05]. Da die Ersteller jedoch in den meisten
Fallen keine Ausbildung fiir die Programmieraufgaben besitzen, die sie beim Verwenden von
Spreadsheets-System bewiltigen miissen [’PBL09], und die Priifung von Spreadsheets durch de-
ren Konzept erschwert wird, bleiben Spreadsheets meist ungepriift. Ein Blick auf die Ergebnisse
durchgefiihrter Interviews und Studien [|H96, PBLF]08] zeigt dabei, dass diese Gefahren in der
Praxis akut vorhanden sind.

2.3 Risiken durch Qualitdtsmangel

Im vorherigen Abschnitt wurden unter anderem Gefahren, die bei der Verwendung von
Spreadsheet-Systemen entstehen, aufgezeigt. Diese Gefahren bestehen in der Entstehung und
Verwendung von Spreadsheets mit mangelhafter Qualitdt und werden durch die Eigenschaften
von Spreadsheet-Systemen und deren Umfeld begiinstigt. Ein Blick auf die Praxis ldsst erkennen,
dass die meisten Spreadsheets ohne eine ausreichende formale Priifung verwendet werden und
die Wahrscheinlichkeit fiir ernstzunehmende Fehler in eingesetzten Spreadsheets sehr hoch ist
[Pan98, PBLO9].

Die vorhandenen Qualitdtsméangel in Spreadsheets miissen zwar nicht immer ernsthafte Konse-
quenzen zur Folge haben, jedoch entstehen durch sie Risiken, die in vielen Firmen weder vom
Management noch von den jeweiligen Nutzern wahrgenommen werden [PBLO8b, Pan08c, MKO05].
Dementsprechend werden diese Risiken auch nicht bekdampft. So werden viele wichtige Entschei-
dungen im Unternehmen durch Informationen aus Spreadsheets untersttitzt, ohne jedoch die
Qualitdt der verwendeten Spreadsheets mit geeigneten Qualitdtssicherungsmafsnahmen sicher-
zustellen [CMWO07]. Dies ist besonders verwunderlich, da die folgenschweren Konsequenzen
von vielen falsch getroffenen Entscheidungen, die auf mangelhafte Spreadsheets zuriickzufiihren
sind, gut dokumentiert sind [O’B]. Zwar sind die Spreadsheets meist nicht die alleinig treibende
oder sogar ausschlaggebende Kraft fiir diese Entscheidungen [CMW07], jedoch stellt die Beein-

21

2 Spreadsheet-Grundlagen

flussung von kritischen Entscheidungen durch mangelhafte Spreadsheets ein ernsthaftes Risiko
fir die Verwendung von Spreadsheet-Systemen im Unternehmen dar.

Das Risiko von ernsthaften Konsequenzen, die durch den Einsatz qualitativ schlechter Produkte
fiir wichtige Aufgaben im Unternehmen verursacht werden, ist jedoch nicht nur auf Spreads-
heets beschrankt. Auch bei traditioneller Software, also Software, die nicht von Endbenutzern
sondern von professionellen Softwareentwicklern erstellt wird, besteht dieses Risiko [L1.07, S.
62]. So zeigen katastrophale Ereignisse, wie beispielsweise der Absturz der Ariane 5 Rakete!,
welche schwerwiegenden Folgen Fehler in Software verursachen konnen. Dieses Risiko scheint
jedoch bei Software, die nach den Prinzipien des Software Engineering [I.1.07] entwickelt wird,
beherrschbar zu sein, da addquate Methoden bestehen, um eine angemessene Qualitdt von
Software sicherzustellen.

Bei Spreadsheets hingegen ist die mangelnde Qualitdt und die daraus resultierenden Risiken
das Hauptproblem bei deren Einsatz in der Unternehmenswelt. Es handelt sich bei Spreadsheets
jedoch ebenfalls um eine spezielle Art von Software. So kann eine Spreadsheet-Sprache als
Programmiersprache der vierten Generation zur raschen Entwicklung von fachspezifischen
Anwendungen gesehen werden. Und bei einer Spreadsheet-Software handelt es sich um eine
integrierte Entwicklungsumgebung [CO10], wie sie auch bei der Entwicklung traditioneller
Software eingesetzt wird. Um zu untersuchen, in wie weit sich die Methoden des Software
Engineerings auf Spreadsheets tibertragen lassen, soll im nichsten Kapitel das vorhandene
Wissen {iiber Software-Qualitdt aus dem Software Engineering genauer untersucht werden.

1http ://www.ima.umn.edu/~arnold/disasters/ariane.html

22

http://www.ima.umn.edu/~arnold/disasters/ariane.html

Kapitel 3

Software-Qualitat

Im vorherigen Kapitel wurden unter anderem die Vorziige und Gefahren von Spreadsheet-
Systemen analysiert. Dabei wurde gezeigt, dass in der Praxis eingesetzte Spreadsheets haufig
Fehler enthalten und eine allgemeine Tendenz zu niedriger Qualitit besitzen, wodurch sie ein
Risiko fiir den Einsatz im Unternehmen darstellen konnen. Dieses Risiko ist dabei im Vergleich
zu Software, die von professionellen Entwicklern nach den Prinzipien des Software Engineerings
entwickelt werden, ungemein hoher. Da es sich bei Spreadsheets auch um Software im weiteren
Sinne handelt, sollen daher zunédchst allgemeine Qualitdtsbegriffe beziiglich Software definiert
werden, um dann das vorhandene Wissen im Software Engineering tiber die Qualitdt von
Software im Detail zu untersuchen.

3.1 Der Qualitits-Begriff

Entgegen dem allgemeinen Sprachgebrauch impliziert die urspriingliche Bedeutung von Qualitat
keinerlei Wertung. Sie bezeichnet lediglich eine Eigenschaft eines Gegenstandes. Im Lauf der Zeit
wurde jedoch der Begriff Qualitdt mit guter Qualitét gleichgesetzt. Unabhingig davon existieren
verschiedene Definitionen, die unterschiedliche Blickwinkel auf die Qualitit zulassen.

3.1.1 Qualitdts-Ansitze

Garvin nennt in [Gar84] fiinf unterschiedliche Ansitze fiir die Definition von Qualitit und
pladiert fiir eine ganzheitliche Betrachtung aller Ansatze.

» Die transzendente Sicht entspricht in etwa der umgangssprachlichen Definition von Quali-
tat. So wird Qualitédt als eine subjektive Eigenschaft gesehen, die zwar wahrnehmbar ist
und durch Erfahrung erkannt wird, aber nicht prazise definiert werden kann.

» Die produkt-basierte Sicht hingegen, definiert Qualitat als die objektiv eindeutig messbaren
inhdrenten Eigenschaften eines Produktes. Qualitét ist also eine messbare Grofse, bei der
subjektive Kriterien nicht beriicksichtigt werden.

23

3 Software-Qualitit

= Bei der benutzer-basierten Sicht wird Qualitit allein durch den Benutzer des Produktes
definiert und bewertet.

» Bei der hersteller-basierten Sicht bezeichnet Qualitdt das Ausmafs, in dem die spezifizierten
Anforderungen fiir ein Produkt erfiillt werden.

» Bei der wert-basierten Sicht werden auch die Kosten und der Preis berticksichtigt. Gute
Qualitat entspricht also einem giinstigen Preis-Leistungs-Verhiltnis.

3.1.2 Definitionen

In dieser Arbeit soll die Qualitats-Definition der DIN 55350 (1995) verwendet werden, die
unterschiedliche Blickwinkel nach Garvin zulédsst.

Qualitit ist die Gesamtheit von Eigenschaften und Merkmalen eines Produktes oder einer
Tatigkeit, die sich auf die Eignung zur Erfiillung gegebener Erfordernisse beziehen.

Ein Qualitdtsmerkmal bezeichnet dabei ergdnzend zu der DIN Definition eine einzelne Eigen-
schaft oder ein einzelnes Merkmal eines Produktes oder einer Tatigkeit.

Dabei beschrankt sich Qualitit jedoch nicht nur auf die Qualitdtsaspekte nach allgemeinem
Sprachgebrauch, sondern sie beinhaltet insbesondere auch alle Eigenschaften beziiglich der
Funktionalitat [[.L.07, S.65]. Qualitdt bestimmt also nach der gegebenen Definition die Eignung
eines Produktes oder einer Tatigkeit gegebene Erfordernisse zu erfiillen. Dabei liegt, je nach
dem wie diese Erfordernisse bestimmt und in welcher Form sie festgelegt werden, eine der
unterschiedlichen Sichtweisen nach Garvin vor. So liegt beispielsweise eine benutzer-basierte
Sicht der Qualitédt vor, wenn sich die Erfordernisse aus den impliziten Erwartungen und Bediirf-
nissen einzelner Benutzer ableiten. Fiir die Verwendung in der Praxis ist diese subjektive Sicht
jedoch nicht praktikabel und stattdessen wird hadufig eine hersteller-basierte Sicht von Qualitat
verwendet. In diesem Zusammenhang sind auch die drei Begriffe Anforderung, Fehler und
Mangel, wie sie in der ISO-Norm 9000 (2005) definiert sind, eng mit der Definition von Qualitéat
verbunden.

Eine Anforderung ist ein Erfordernis oder eine Erwartung, das oder die festgelegt, tiblicherweise
vorausgesetzt oder verpflichtend ist.

Ein Fehler ist die Nichterfiillung einer Anforderung.

Ein Mangel ist die Nichterfiillung einer Anforderung in Bezug auf einen beabsichtigten oder
festgelegten Gebrauch.

Eine Anforderung ist also ein festgelegtes Erfordernis von dem erwartet, in der Regel sogar
rechtlich verlangt wird, dass es erfiillt wird. Anforderungen konnen dabei in unterschiedlicher
Form vorliegen, etwa als offene oder latente, als harte oder weiche oder als funktionale oder
nichtfunktionale Anforderungen [L.1.07, S.366-369]. In der Praxis sind jedoch meist nur solche

24

3.2 Taxonomie der Software-Qualitidten

Anforderungen von Bedeutung, die in {iberpriifbarer Form in einem Spezifikationsdokument
definiert und vom Kunden abgenommen wurden. So ist ein Fehler, also die Nichterfiillung
einer spezifizierten Anforderung, auch nur dann feststellbar, wenn die Moglichkeit besteht diese
Erfiillung objektiv zu tiberpriifen. Entsprechend kann ein Fehler nur dann auch als Mangel
bezeichnet werden, wenn der beabsichtige Gebrauch des Produkts oder das Ziel der Tatigkeit
tiberpriifbar definiert ist.

Im allgemeinen Sprachgebrauch werden die Begriffe Fehler und Mangel jedoch kaum unter-
schieden. Sie werden stattdessen allgemein verwendet, um die Abweichung bestimmter Quali-
tatsmerkmale von den erwarteten Werten zu bezeichnen. In dieser Arbeit sollen jedoch die hier
definierte Bedeutung des Begriffes Fehler verwendet werden.

3.2 Taxonomie der Software-Qualititen

Die Qualitdt von Software-Produkten setzt sich aus verschiedenen Qualitdten und Qualitdtsmerk-
malen zusammen, die einander beeinflussen und oft auch miteinander in Konkurrenz stehen
(Siehe Abbildung 3.1 und Abbildung 3.2).

7
__________ R - Wartungsqualitat
- 5 7
:‘g
= eeeedeeees > -
5 g
=3 =
7 S > 8 > vV vV vV vV v v v
Q
N g
o X
[-WETRNS S > @ et &

g Gebrauchsqualitit
____________ R SRS

t

Projektbeginn Inbetriebnahme Stilllegung

Abbildung 3.1: Bedeutung verschiedener Qualitdtsaspekte iiber der Zeit nach [LL.07, S.67]

So setzt sich die Produktqualitit, also die Qualitdt eines Software-Produkts, aus der Wartungsqua-
litait und der Gebrauchsqualitdt zusammen. Der Benutzer ist in der Regel nur an der Gebrauchs-
qualitat interessiert, wahrend die Wartungsqualitat fiir den Hersteller meist eine grofie Rolle
spielt, da er zumeist auch die Wartung der Software durchfiihrt. Da eine gute Wartungsqualitét
jedoch auch eine Voraussetzung dafiir ist, dass die Gebrauchsqualitdt des Produktes wahrend
der Wartung hoch bleibt, sollte auch der Benutzer diese Qualitit beachten. Entsprechend sind
tir Hersteller und Benutzer die benutzer-basierte Sicht als auch die hersteller-basierte Sicht der
Qualitiat von Bedeutung.

Die Produktqualitdt wiederum wird stark von der Qualitdt des Entwicklungsprozesses beein-
flusst, die sich aus der Prozess- und Projektqualitit zusammensetzt. Auch hier zeigt sich das

25

3 Software-Qualitit

Problem einer einseitigen Betrachtungsweise der Qualitdt. So scheint die Prozessqualitdt auf den
ersten Blick fiir den Nutzer bzw. Kunden uninteressant, jedoch ist er dem Hersteller beziiglich
der Lieferung der Software ausgeliefert und sollte daher Interesse an einer hohen Prozessqualitét
besitzen.

Ludewig und Lichter sprechen wegen dieser komplexen Beziehung zwischen den Qualitdten
von einer Software-bezogenen Qualitdt und schliefSen mit diesem Begriff alles ein, was im weitesten
Sinne als Software-Qualitit erscheint [LLL0O7, S. 65-70]. Die einzelnen Qualitdtsmerkmale dieser
unterschiedlichen Qualitdten konnen mit Hilfe von Taxonomien gegliedert werden, die fiir das
Verstiandnis von Qualitdt dufsert niitzlich sein konnen. In dieser Arbeit soll daher die Taxonomie
Software-bezogener Qualitdten nach Ludewig und Lichter (Abbildung 3.2) verwendet werden.

Entwicklungseffizienz
Entwicklungs-
geschwindigkeit

— Projektleistung
Prozessqualitat

Termineinhalt
\ ' . _— ermlnem altung
Planungssicherheit Sy Aufwandseinhaltung
Prozesstransparenz
__— Bausteingewinn
innere Prozessqualitat_ " Know-how-Gewinn
q —

Projektklima

Software-bezogene
Qualitat o o
Spezifikationsvollstandigkeit

— — Lokalitat

Prifbarkeit Testbarkeit

Strukturiertheit

. R) Simplizitat
Wartbarkeit Anderbarkeit Knappheit
Lesbarkeit

Portabilitat — Gerateunabhéngigkeit
—

Produktqualitat Abgeschlossenheit

Korrektheit

/
Zuverlassigkeit — Ausfallsicherheit
/ T Genauigkeit

. e . ____—— Effizienz
Brauchbarkeit —————— Nitzlichkeit Sparsamkelt
N Leistungsvollstandigkeit

Handbuchvollstandigkeit

Bedienbarkeit Z__—— Konsistenz
—

\Versténdlichkeit

Einfachheit

Abbildung 3.2: Der Qualititenbaum nach Ludewig und Lichter [L.L.O7, 5.68]

3.3 Qualitatskosten

Das Streben nach Qualitét ist tief im Software-Engineering verwurzelt. Dabei ist das Ziel jedoch
nicht die Optimierung einzelner Qualitdtsmerkmale, sondern es muss aus wirtschaftlicher Be-
trachtung ein globales Optimum aller Qualitdtsmerkmale, sowie der damit verbundenen Kosten
angestrebt werden.

26

3.3 Qualitdtskosten

Zu Beachten ist dabei die Zusammensetzung der Kosten fiir Software. Denn die Kosten bestehen
nicht nur allein aus den Netto-Herstellungskosten, sondern beinhalten auch die Qualitédts- und
Wartungskosten (Siehe Abbildung 3.3). Ein Hauptbestandteil der Qualitdtskosten sind dabei die
Kosten fiir die Qualitadtssicherung, die sich aus den Fehlerverhiitungskosten und den Priif- und
Nachbesserungskosten zusammensetzen. Es handelt sich also um Kosten, die anfallen um eine
gewisse Qualitdt her- und sicherzustellen. Wenn die Kosten fiir die Qualitdtssicherung minimiert
werden, konnen die Fehlerfolgekosten, also die Kosten die durch den Einsatz von Software
mangelhafter Qualitit entstehen, die gesamten Herstellungskosten schnell um ein hundertfaches
tibersteigen.

Software-Kosten

Netto. /’\V\/artungSkosten

Herstellungskosten Qualititskosten (ohne Qualitatskosten)
Fehlerverhiitungs- Praf- und Minderung
kosten Nachbesserungskosten Fehlerkosten des Nutzens

-
—

Qualitatssicherung

Fehlersuchkosten Fehlerbehebungs- Fehlerfolgekosten

N kosten - (im Einsatz)

in und nach der Entwicklung

Abbildung 3.3: Kostendifferenzierung in Richtung Fehlerkosten [LL.07, S.63]

Daher hat die Vermeidung und die frithzeitige Erkennung von Fehlern hochste Prioritat. Zur
Entwicklung einer moglichst fehlerfreien Software, also einer nach Herstellersicht qualitativ
hochwertigen Software, miissen drei Voraussetzungen erfiillt sein [[.].07, 5.236].

» Der Entwicklungsprozess muss so gestaltet sein, dass die einheitliche Organisation und
Durchfithrung von Software-Projekten festgelegt ist. Dabei soll er jedoch die nétige Flexibi-
litat besitzen, um projektspezifische Anpassungen durchzufiihren, wo diese notwendig
sind. Ein Prozess ist dann von Nutzen, wenn er von allen Beteiligten akzeptiert wird und
der Nutzen objektiv festgestellt werden kann.

» Die Techniken miissen so vorhanden sein, das die durchzufiihrenden Tatigkeiten mog-
lichst optimal durch die eingesetzten Sprachen, Technologien, Methoden und Werkzeuge
unterstiitzt werden.

» Die Mitarbeiter miissen iiber eine entsprechende Ausbildung verfiigen, die sie dazu befa-
higt, den Entwicklungsprozess umzusetzen und die gewédhlten Techniken anzuwenden.

27

3 Software-Qualitit

Um diese Voraussetzungen sicherzustellen, ohne die eine hohe Software-Qualitét nicht erreicht
werden kann, existieren im Software Engineering eine Reihe von Mafsnahmen, die unter dem
Begriff Qualitatssicherung zusammengefasst werden konnen.

3.4 Software-Qualitdtssicherung

Software-Qualititssicherung wird im IEEE-Standard 610.12 (1990) doppeldeutig definiert. So
bezeichnet der Begriff einerseits alle geplanten und systematischen Aktivititen, die das Vertrauen
in die Konformitit zu technischen Anforderungen sichern und andererseits eine Menge von
Aktivititen, die entworfen wurden, um den Prozess, mit dem eine Produkt gefertigt oder entwickelt
wird, zu bewerten.

Die zweite Bedeutung wird heutzutage meist unter dem Begriff Prozessbewertung gefiihrt und
ist fiir den weiteren Verlauf dieser Arbeit nicht von Bedeutung. Nach der ersten Bedeutung, die
fiir diese Arbeit verwendet werden soll, handelt es sich bei Software-Qualitdtssicherung um
Mafinahmen, die die Entstehung qualitativ hochwertiger Software fordern oder zeigen, dass
eine Software eine hohe Qualitit besitzt. [Sie] hat dabei unmittelbar zum Ziel, das Vertrauen in eine
Software zu erhdhen; mittelbar wirkt sie sich [...] auf das Qualititsniveau aus, steigert also die Fithigkeit,
qualitativ hochwertige Produkte zu entwickeln [1.1.07, S.270].

Die Schwerpunkte der Software-Qualitdtssicherung lassen sich dabei nach Ludewig und Lichter
in drei Gruppen unterteilen (Abbildung 3.4):

» Die organisatorischen Mafsnahmen umfassen dabei alle Formen der systematischen Pla-
nung und Organisation von Entwicklung und Qualitdtssicherung.

» Konstruktive Mafinahmen behandeln den Einsatz geeigneter Methoden, Technologien,
Sprachen und Werkzeuge, die der hohen Qualitdt und der Vermeidung von Fehlern dienen.
Aber auch der Einsatz geeigneter Prozessmodelle oder die Weiterbildung von Mitarbeitern
sind konstruktive Mafinahmen.

» Analytische Mafinahmen verfolgen das Ziel, mittels systematisch durchgefiihrter Priifun-
gen Fehler in den Arbeitsergebnissen zu erkennen.

Keine dieser Mafinahmen ist dabei in der Lage allein die Qualitdt von Software sicherzustellen.
Stattdessen komplementieren sich die MaffSnahmen und sind zusammen dafiir zustiandig, dass
die Voraussetzungen fiir Qualitét geschaffen und gesichert werden. Zwar wird eine angemessene
Software-Qualitdt vor allem durch konstruktive Mafsnahmen sichergestellt und die notwen-
digen Rahmenbedingungen werden durch organisatorische Mafinahmen geschaffen. Jedoch
sind auch die analytischen Mafsnahmen ein wichtiger Bestandteil der Qualitdtssicherung, da sie
Abweichungen von den Prinzipien der anderen Mafinahmen erkennen [F1.504, 5.20-21].

Da in dieser Arbeit ein Priifwerkzeug fiir Spreadsheets nach dem Vorbild der vorhanden Me-
thoden und Werkzeuge fiir die traditionelle Software-Entwicklung entstehen soll, werden die

28

3.5 Software-Priifung

Software-Qualitatssicherung

D

organisatorisch analytisch konstruktiv

V' N
Software-Projekt- konstruktives
management Software Engineering
Software-Priifung
/ \
nichtmechanisch mechanisch
e N _
Prifung durch Menschen Prafung mit
(Inspektion, Review) dem Rechner
~ ~
analysieren ausfiihren
e ~
statische Prufung dynamische Prifung

<IN -

Prifung Konsistenz- quantitative

gegen Regeln prafung Untersuchung Lude
Abbildung 3.4: Gliederung der Software-Qualitdtssicherung nach Ludew1g und Lichter [LL07,
S.271]

verschiedenen Arten Software zu priifen im ndchsten Abschnitt kurz vorgestellt. Speziell soll
dabei auf die statischen Priifungen von Software ndher eingegangen werden.

3.5 Software-Priifung

Software-Priifungen haben den Zweck mittels einer systematischen Suche nach Fehlern, die Qua-
litat eines Priiflings festzustellen. Als Priifling werden dabei Software-Produkte oder Software-
Bestandteile bezeichnet, die einer Priifung unterzogen werden sollen. Priifungen bieten dabei
folgenden Nutzen [F.504, S.14]:

» Priifungen liefern eine simple Definition der Qualitatskriterien und ergédnzen damit die oft
unzureichende Spezifikation der Anforderungen.

» Priifungen erhchen die Qualitét nicht direkt, aber sie zeigen die Qualitit des Priiflings an
und bieten den Entwicklern Feedback.

» Priifungen decken Priiflinge mit besonders guter und besonders schlechter Qualitit auf.
Dadurch wird einerseits verhindert, dass Priiflinge mit schlechter Qualitidt verwendet
werden und andererseits konnen Priiflinge mit besonders guter Qualitdt als Vorbilder
verwendet werden.

» Die Erwartung einer Priifung beeinflusst das Verhalten von Entwicklern positiv, da der
Anreiz besteht gute Priifresultate zu erzielen, wodurch die Qualitdt direkt erhoht wird.

29

3 Software-Qualitit

3.5.1 Priifungsarten

Die verschiedenen Arten zur Priifung von Software lassen sich, wie in Abbildung 3.4 dargestellt,
in nicht-mechanische und mechanische Priifungen unterteilen.

» Als nicht-mechanische Priifungen werden dabei Priifungen bezeichnet, die vom Menschen
ohne einen Rechner durchgefiihrt werden. Zu den bekannten nicht-mechanischen Priifun-
gen fiir Software zdhlen dabei die Durchsicht, das technische Review, der Walkthrough
und die Stellungnahme [[L[.07, S.281 ff.].

» Mechanische Priifungen kénnen weiter in statische und dynamische Priifungen unterteilt
werden. Dynamische Priifungen umfassen alle Arten des Software-Tests, wie etwa in
[FLS04] beschrieben. Bei statischen Priifungen werden die Priiflinge mit Hilfe spezieller
Werkzeuge analysiert, ohne die Priiflinge dabei auszufiihren.

Die verschiedenen Priifungsarten sind dabei unterschiedlich geeignet, um bestimmte Fehlerarten
im Priifling zu finden. So konnen Fehler in Dokumenten nur mit Hilfe von manuellen Priifungen
entdeckt werden, zur Erkennung von Fehlern beziiglich nicht-funktionaler Anforderungen
konnen statische Priifungen einen Beitrag leisten und die verschiedenen Arten des Tests eignen
sich am besten fiir die Priifung von funktionalen Anforderungen. Fiir diese Arbeit sind jedoch
speziell die mechanischen statischen Priifungen von Bedeutung und sollen daher im Folgenden
genauer untersucht werden.

3.5.2 Statische Software-Priifung

Die statische Software-Priifung ist eine Unterklasse der mechanischen Software-Priifung. Priifun-
gen dieser Art werden daher mit Hilfe von sogenannten statischen Analysewerkzeugen (engl.
static analysis tools) am Rechner durchgefiihrt. Die Aufgabe der statischen Analysewerkzeuge ist
es, Softwareartefakte ohne deren Ausfiihrung auf die Einhaltung von Regeln und generelle Kon-
sistenz zu priifen oder quantitative Merkmale iiber die Artefakte zu erfassen. Eine Priifung gegen
Regeln liefert Aussagen dariiber, ob gewisse Normen und Vorschriften eingehalten wurden. Eine
Konsistenzpriifung kann beispielsweise zeigen, ob alle definierten Elemente auch verwendet
werden und eine quantitative Untersuchung hilft dabei, objektive Metriken zu erfassen, auf Basis
derer eine Bewertung des Priiflings durchgefiihrt werden kann [F1.504, 5.21].

Anwendung

Durch den Verzicht auf die Ausfithrung der Priiflinge bestehen kaum Einschrankungen fiir
Softwareartefakte, um von statischen Analysewerkzeugen gepriift werden zu konnen. So kénnen
Softwareartefakte bereits friithzeitig in der Entwicklung gepriift und Informationen iiber deren
Qualitdt gewonnen werden. Gleichzeitig beschranken sich die tiberpriifbaren Vorschriften durch
den Verzicht auf die Ausfithrung jedoch hauptséchlich auf nicht-funktionale Qualitdtsmerkmale.

30

3.5 Software-Priifung

Es werden also hauptsdchlich die Qualitditsmerkmale gepriift, die in Abbildung 3.2 unter der
Kategorie Wartbarkeit eingegliedert sind.

Die Priifungen erfolgen aufierdem meist rein syntaktisch und sind dadurch anfillig fiir falsch
positive Befunde. Und auch bei richtig positiven Befunden liegen nicht zwangsweise Fehler
im Sinne einer nicht erfiillten Anforderung vor. Es handelt sich vielmehr um Warnungen, dass
untersuchte Elemente auf bestimmte Art kritisch fiir die Qualitdt sein konnen. Generell greift die
gegebene Definition von Fehlern nach einer hersteller-basierten Sicht der Qualitdt nur bedingt
bei Befunden von statischen Analysewerkzeugen. So steht fiir Kunden die Funktionalitdt meist
im Vordergrund und daher werden nicht-funktionale Anforderungen meist nur ungentigend
oder gar nicht festgelegt [LL1.07, S.369]. Vorschriften, die von statischen Analysewerkzeugen
tiberpriift werden, sind daher tiberwiegend nicht als Anforderungen durch den Kunden definiert
worden und es handelt sich bei Befunden meist nicht um Fehler nach Herstellersicht. Daher
wird der Begriff Defekt verwendet, um von statischen Analysewerkzeugen entdeckte Befunde zu
bezeichnen.

Ein Defekt ist dabei nach IEEE 1044 (2009) eine zu behebende oder zu ersetzende Unvollkom-
menbheit eines Priiflings, auf Grund derer der Priifling die an ihn gestellten Anspriiche oder
spezifizierten Vorschriften nicht erfillt.

Ein Defekt stellt also ein Defizit oder eine Schwéche eines Priiflings dar und muss nicht zwangs-
weise einen Fehler im Sinne einer nicht erfiillten Anforderung sein. Trotz dieser Einschrankungen
sind statische Analysewerkzeuge eine wichtige Qualitdtssicherungsmafinahme bei der Entwick-
lung von Software, da deren wiederholte Anwendung nur sehr geringe Kosten verursacht und
sich dabei trotzdem ausreichend Informationen tiber die Qualitdt des Priiflings gewinnen lassen.
Damit dies gewdhrleistet ist, miissen geeignete Werkzeuge ausgewéahlt und entsprechend dem
jeweiligen Nutzungskontext angepasst werden. Die Konfiguration des Werkzeugs ist dabei essen-
tiell, da sonst falsch-positiv Raten bis zu 96% auftreten konnen [W]KT05]. Jedoch kénnen mit gut
konfigurierten statischen Analysewerkzeugen bis zu 80% aller Defekte in einem Softwareprodukt
gefunden werden [Wag06]. Zwar werden durch die statische Analyse hauptsachlich Defekte mit
relativ geringer Schwere entdeckt [WDA " 08], jedoch weisen die gefundene Defekte hdufig auf
die Anwesenheit solcher hin. Die Defekte zeigen so die Stellen auf, an denen mit hoher Wahr-
scheinlichkeit Fehler vorhanden sind oder in Zukunft entstehen konnten [WDA 08, ZWN " 06].
Dabei kann auch der parallele Einsatz von verschiedenen Analysewerkzeugen lohnenswert sein,
da in der Studie von Rutar et al. [RAF04] gezeigt wurde, dass verschiedene Analysewerkzeuge
meist auch unterschiedliche Defekte entdecken.

31

3 Software-Qualitit

Techniken

Statische Analysewerkzeuge kénnen dabei eine oder mehrere der folgenden Techniken! verwen-
den, die nach ihrer Fortschrittlichkeit sortiert sind.

= Bei einer Stil-Uberpriifung (engl. Style-Checking) wird der Priifling auf die Konformitit mit
festgelegten Richtlinien untersucht, die die Lesbarkeit, Verstandlichkeit und Wartbarkeit
verbessern sollen. So werden beispielsweise Namenskonventionen fiir Variablen oder die
Formatierung des Quelltextes in Programmierrichtlinien festgelegt und konnen mittels
einer Stil-Uberpriifung gepriift werden.

» Bei einem syntaktischen Musterabgleich wird der Priifling nach spezifischen Sprachkon-
strukte und -konstellationen durchsucht, die auf die Anwesenheit eines Defekts hinweisen
konnen. Die Sprachkonstrukte und -konstellationen werden dabei durch rein syntaktisch
definierte Muster angegeben — eine semantische Analyse findet nicht statt. Diese Muster
sind meist sprachspezifisch und werden als Softwarefehler-Muster (engl. Bug-Pattern),
Anti-Muster (engl. Anti-Pattern) oder schlechter Code-Geruch (engl. Code-Smell) ange-
geben. Die Uberginge zwischen diesen unterschiedlichen Musterarten ist dabei flieend,
jedoch wird generell folgendes unter den Begriffen verstanden:

— Ein Bug-Pattern ist eine mogliche Fehlanwendung von Konstrukten einer formalen
Sprache, die oft zu einem Fehlverhalten bei der Ausfithrung des Priiflings fiihren. Ein
typisches Bug-Pattern fiir die Programmiersprache Java ist beispielsweise der Ver-
gleich von Text-Objekten (Strings) mittels des Vergleichsoperators (==) , anstatt mittels
der equals () -Methode. Dabei kann die resultierende Semantik bei der Verwendung
des Vergleichsoperators, der Vergleich der beiden Objekt-Adressen, in manchen Féllen
gewlinscht sein. Jedoch deutet die Anwesenheit dieses Patterns darauf hin, dass der
Programmierer die Inhalte der beiden Objekte vergleichen wollte und somit ein Defekt
vorliegt, der zu einem Fehlverhalten fiihren kann.

— Ein Anti-Pattern beschreibt eine zu vermeidende Struktur bei der Losung eines be-
stimmten Problemtyps. Die Anti-Patterns bilden damit das Gegensttick zu den Design
Patterns, also den bewédhrten Losungsschablonen fiir wiederkehrende Architektur-
probleme, wie sie durch das Buch der ,,Gang of Four” [GH]V95] bekannt geworden
sind. Ein bekanntes Anti-Pattern ist dabei der Spaghetti-Code, also ein Quellcode der
komplexe und verworrene Quellstrukturen aufweist und viele Sprunganweisungen
enthalt.

— Ein Code-Smell definiert Heuristiken zur Erkennung von unsauberen Abschnitten,
also solchen Abschnitten, die besser einer Umstrukturierung (engl. refactoring) unter-
zogen werden sollten. Der Begriff wurde dabei durch Kent Beck, dem Erfinder des

!Basierend auf einer noch unveroffentlichten Publikation von Prof. Dr. rer. nat. Stefan Wagner http: //www.iste.
uni-stuttgart.de/se2/menschen/wagner.html

32

http://www.iste.uni-stuttgart.de/se2/menschen/wagner.html
http://www.iste.uni-stuttgart.de/se2/menschen/wagner.html

3.5 Software-Priifung

Extreme Programming, gepragt und durch Martin Fowler verbreitet. Ein typischer
Code-Smell ist beispielsweise duplizierter Quelltext, also Quelltext der an verschiede-
nen Stellen in identischer Form vorliegt.

Zwar konnen komplexere Defekte mit einer Mustererkennung nicht erkannt werden, jedoch
zeigt die Erfahrung, dass in den meisten Anwendungen Defekte durch einen Musterab-
gleich aufgedeckt werden und daher ist dies die am haufigsten eingesetzte Methode zur
statischen Analyse.

Bei einfachen Kontroll- und Datenflussanalysen werden Kontroll- und Datenstrukturen des
Quelltextes untersucht, um die zeitliche Abfolge von Anweisungen im Quelltext und den
Austausch von Daten zwischen Entitdten zu bestimmen. Der Kontrollfluss kann dabei als
Kontrollflussgraph ausgedriickt werden, aus dem auch der Datenfluss entnommen werden
kann. Der Kontrollflussgraph kann dann dazu verwendet werden um Informationen tiber
die Werte zu sammeln, die zu verschiedenen Zeitpunkten berechnet werden. So konnen
beispielsweise Abhédngigkeiten zwischen Variablen eines Programms oder nicht erreichbare
Anweisungen eines Quelltexts entdeckt werden.

Bei der abstrakten Interpretation wird der Kontroll- und Datenfluss abstrahiert, um durch
die semantische Analyse der verbliebenen Informationen Aussagen tiber das Verhalten von
Programmen treffen zu konnen. Es werden also semantische Informationen ausgeblendet,
um statisch die Eigenschaften des Programmes bei dessen dynamischer Ausfiihrung be-
stimmen zu konnen. So kann durch abstrakte Interpretation der Ergebnistyp der einfachen
Java-Anweisung: 3.12 + 2 bestimmt werden. Dazu werden die konkreten Werte abstra-
hiert, durch ihren Typ ersetzt (double + int) und anschlieffend der Operator ausgewertet
(double + int = double).

Beispiele

In der Praxis ist eine grofie Auswahl an statischen Analysewerkzeugen vorhanden, die ihren
Nutzern beim Auffinden von Defekten durch unterschiedliche Techniken helfen. Eine kleine Aus-
wahl von Werkzeugen, die Techniken unterschiedlichen Reifegrads verwenden, sei im Folgenden
gegeben.

Check-Style® ist ein statisches Analysewerkzeug zur Stiliiberpriifung von Java-Quellcode. Da-

bei ist Check-Style vielseitig konfigurierbar und erlaubt die automatische Uberpriifung
von individuellen Programmierrichtlinien. Zunéchst als reines Werkzeug zur Stiliiber-
priifung konzipiert, verwendet Check-Style inzwischen auch fortgeschrittenere statische
Analysetechniken, um weitere Defekte in Java-Quellcode zu entdecken.

thtp ://checkstyle.sourceforge.net/

33

http://checkstyle.sourceforge.net/

3 Software-Qualitit

Find-Bugs® ist ein statisches Analysewerkzeug fiir Java, das mittels syntaktischem Musterab-

gleich, sowie einfachen Kontroll- und Datenflussanalysen Bug-Patterns entdeckt. Fiir die
Priifung von Find-Bugs wird dabei der Bytecode der untersuchten Java-Klassen verwendet
und dieser wird mittels einer breiten Anzahl an relativ einfachen Techniken auf Defekte
untersucht. Find-Bugs bietet zu diesem Zweck eine Vielzahl an vordefinierten Bug-Patterns
fiir Java an, erlaubt es jedoch auch eigene Detektoren fiir Bug-Patterns zu definieren.

Coverty Static Analysis* ist ein hochentwickeltes kommerzielles Werkzeug zur statischen Ana-

lyse von C, C++, C# und Java-Quelltexten, das von vielen grofien Unternehmen eingesetzt
wird und auch fiir die Analyse vieler Open Source Projekte verwendet wurde °. Es ver-
wendet dazu vor allem fortgeschrittene Techniken, wie die abstrakte Interpretation, um
beispielsweise Speicherlecks und Race-Conditions zu entdecken.

3http ://findbugs.sourceforge.net/
4http ://www.coverity.com/products/static-analysis.html
5 http:/ /scan.coverity.com/all-projects.html

34

http://findbugs.sourceforge.net/
http://www.coverity.com/products/static-analysis.html

Kapitel 4

Spreadsheet-Qualitat

Im vorherigen Kapitel wurde gezeigt, dass ein umfangreiches Wissen iiber die Qualitidt von
Software vorhanden ist und dass der Stand der Forschung im Software Engineering es erlaubt,
mittels einer Vielzahl an konkreten Mafinahmen eine angemessene Qualitit sicherzustellen.
Die Qualitdt von Spreadsheets in der Praxis hingegen ist hdufig mangelhaft und die daraus
resultierenden Risiken stellen das Hauptproblem bei deren Einsatz in der Unternehmenswelt
dar. Daher soll in diesem Kapitel nun der Stand der Forschung beziiglich der Qualitdt von
Spreadsheets untersucht werden.

4.1 Stand der Forschung

Viele Forschungsarbeiten beschiftigen sich mit der Qualitdt von Spreadsheets, insbesondere mit
Spreadsheet-Fehlern und den Techniken mit denen Fehler vermieden, entdeckt und korrigiert
werden konnen. Jedoch ist generell relativ wenig tiber Spreadsheet-Fehler und den Techniken
zu deren Bekdmpfung bekannt, wie Powell, Baker und Lawson in ihrem kritischen Review der
bestehenden Literatur tiber Spreadsheet-Fehler feststellen [PBLOSb].

4.1.1 Klassifikation von Spreadsheet-Fehlern

Bereits die Definition von Fehlern bei Spreadsheets erweist sich als problematisch, da Spreads-
heets meist nicht in einem geregelten Prozess nach festgelegten Anforderungen, sondern ad hoc
und nach dem Prinzip Code and Fix entwickelt werden. Ohne eine Spezifikation der Anforderun-
gen kann die Korrektheit und die Qualitédt eines Spreadsheets jedoch nicht objektiv tiberpriift
werden. Da jeder Nutzer seine ganz eigenen Anforderungen an das Spreadsheet stellt, wird die
Anwesenheit von Fehlern oder Mangeln in Spreadsheets zu einer subjektiven Streitfrage. In der
Forschung wird versucht dieses Problem zu umgehen, indem Fehlerklassifikationen verwendet
werden, die eine allgemeine Menge von Anforderungen an Spreadsheets darstellen. Fiir die Er-
stellung einer Fehlerklassifikation wird eine Hierarchie von abstrakten Fehlerklassen identifiziert,
um konkrete Fehler entsprechend ihrer Eigenschaften eindeutig einer Klasse zuordnen zu konnen.
Dabei konnen verschiedene Eigenschaften zur Bildung von Fehlerklassen herangezogen werden,

35

4 Spreadsheet-Qualitat

wodurch unterschiedliche hierarchische Strukturen, sogenannte Fehler-Taxonomien, entstehen.
Eine gute Fehler-Taxonomie zeichnet sich dabei durch drei Eigenschaften aus [PBLOSb]:

» Als erstes sollte die Taxonomie angeben, fiir welchen Zweck sie erstellt wurde und in
welchem Kontext sie verwendet werden soll.

» Zweitens sollte fiir jede Fehlerklasse klar definiert sein, welche Eigenschaften ein Fehler
besitzen muss, um ihr zugeordnet werden zu konnen. Zu diesem Zweck sollten auch einige
Positiv- und Negativbeispiele angeben werden.

» Drittens sollte jede Taxonomie in ihrem spezifizierten Kontext erprobt sein, um sicherzustel-
len, dass Fehler von unterschiedlichen Personen den Fehlerklassen einheitlich zugeordnet
werden.

Da Fehler-Taxonomien fiir eine bestimmte Verwendung erstellt werden, gibt es keine allgemeine
optimale Taxonomie [GO08]. Stattdessen sind Fehler-Taxonomien fiir bestimmten Zwecke unter-
schiedlich geeignet. So konnen Fehler beispielsweise nach deren Ursache, Auswirkungen oder
Entstehungsphase klassifiziert werden. Entsprechend sind die daraus entstehenden Taxonomien
unterschiedlich niitzlich, um beispielsweise Wissen zur Fehlervermeidung oder zur Einschédtzung
der Risikos aus ihnen zu gewinnen. Folglich existiert eine Vielzahl von Taxonomien, von denen
die wichtigsten in [Pan08b, PBL09] zusammengefasst sind. Die bekannte Fehler-Taxonomie fiir
Spreadsheets von Panko und Halverson [Pan08b] kann dem Anhang (Abbildung A.4) entnom-
men werden. Trotz der relativ zahlreich vorhandenen Fehler-Taxonomien, besteht weiterhin ein
grofier Verbesserungsbedarf, da bei vielen dieser Taxonomien der gedachte Einsatzzweck und
Kontext nicht angegeben ist und Belege fehlen, dass Fehler in diesen Taxonomien einheitlich
zugeordnet werden konnen.

4.1.2 Auswirkungen von schlechter Spreadsheet-Qualitit

Trotz ihrer Bedeutung sind die realwirtschaftlichen Auswirkungen, die von Spreadsheet-Fehlern
verursacht werden, ein grofitenteils unerforschtes Gebiet. Denn um die Auswirkungen von
Spreadsheet-Fehlern in der realen Welt durchfiihren zu kénnen, ben6tigt man eine ltickenlose
Verfolgung und Dokumentation der verwendeten Spreadsheets, von ihrem Entstehen bis hin zum
Eintreten der Auswirkungen. Dies wire zwar theoretisch umsetzbar, etwa tiber entsprechende
Versionsverwaltungssysteme, jedoch fehlt die Umsetzung und Unterstiitzung in der Praxis. Da
eine Untersuchung der Auswirkung in einer kiinstlichen Umgebung wenig Aussagekraft bietet,
ist das bisherige Wissen {iber die Auswirkungen von Spreadsheet-Fehlern beinahe ausschliefslich
auf Interviews, Audits und Berichte beschrankt [CMW07, OB, PB08]. Diese geben die Auswir-
kungen von Spreadsheet-Fehlern durch die prozentuale Abweichung der Ausgabewerte von
den Sollwerten an oder zdhlen die Anzahl der Fehlentscheidungen, die aufgrund der Fehler
getroffen wurden. Alternativ wird der finanzielle Schaden geschitzt beziehungsweise gemessen,
der durch den Fehler potentiell entstehen konnte ober bereits entstanden ist. Die Ergebnisse
dieser Arbeiten zeigen dabei, dass Spreadsheet-Fehler kritische Auswirkungen, mit moglichen

36

4.1 Stand der Forschung

Schaden bis zu 10.000.000$ [PB08], verursachen kénnen. Gleichzeitig ziehen eine Vielzahl von
Fehlern jedoch gar keine direkten negativen Auswirkungen nach sich, da die Ergebnisse des
Spreadsheets durch sie nicht verdndert werden. Erstaunlicherweise scheint kaum ein Zusam-
menhang zwischen der Qualitédt eines Spreadsheets und den moglichen Folgen, die ein Fehler
in diesem Spreadsheet verursachen konnte, zu bestehen. So fanden Powell et al. [PBO8] bei der
Inspektion von Spreadsheets aus der Praxis qualitativ hochwertige Spreadsheets, die fiir unkriti-
sche Aufgaben verwendet wurden, aber auch Spreadsheets mit vielen schwerwiegenden Fehlern,
die Folgekosten in Millionenhohe verursachen hétten kénnen. Die Frage, welche Fehlerarten mit
hoher Wahrscheinlichkeit schwerwiegende Folgen verursachen, bleibt jedoch ungeklart.

4.1.3 Haufigkeit von Spreadsheet-Fehlern

Eine weitere wichtige Frage beziiglich Spreadsheet-Fehlern ist, mit welcher Haufigkeit diese
in Spreadsheets vorhanden sind. Die Haufigkeit von Fehlern wird dabei meist durch eine Zell-
Fehlerquote [Pan98], also der Quote an Zellen in denen ein Fehler entdeckt wurde, ausgedriickt.
Diese Fehlerquote hdngt jedoch von einer Vielzahl an Variablen ab, wie beispielsweise von der
verwendeten Fehlerdefinition, den verwendeten Spreadsheets oder der verwendeten Methode
um die Fehler in den Spreadsheets zu entdecken. Da fiir alle diese Variablen ein entsprechender
Standard fehlt, ist es wenig iiberraschend, dass die Ergebnisse der durchgefiihrten Studien stark
variieren und deren Ergebnisse schwer miteinander vergleichbar sind [PBL.09, Pan08c, Iro08].
Daher hat Panko in [PH]96] versucht durch den gewichten Durchschnitt der Ergebnisse von
sieben Studien Antwort darauf zu geben, wie hoch die durchschnittliche Zell-Fehlerquote in
Spreadsheets ist. Aber auch die von ihm errechnete durchschnittliche Quote von 5% erhebt keinen
Anspruch auf eine allgemeine Giiltigkeit. Sie legt jedoch den Schluss nahe, dass Spreadsheets im
Vergleich mit anderen Software-Artefakten {iberproportional viele Fehler enthalten.

4.1.4 Erstellung von Spreadsheets und die Vermeidung von Fehlern

Um die hohen Fehlerquoten zu verringern, ist es wichtig zu verstehen, wie Spreadsheets in
der Praxis erstellt werden und wie dabei Fehler entstehen. Nur dann konnen zielgerichtet Tech-
nologien, Techniken und Prozesse entwickelt werden, die der Entstehung von Fehlern bei der
Entwicklung und Nutzung von Spreadsheets entgegen wirken. Bisher ist jedoch wenig gesi-
chertes Wissen vorhanden, wie Spreadsheets in der Praxis erstellt werden und wie dabei Fehler
entstehen. Dabei kommt erschwerend hinzu, dass durch das Spreadsheet-Konzept keine Struktur
vorgegeben wird und Spreadsheets daher selbst innerhalb von Unternehmen meist auf sehr
unterschiedliche Art und Weise entwickelt werden [PB08]. Das vorhandene Wissen stammt daher
zumeist aus Labor-Experimenten [BG87, ON87, Kru06], in denen Benutzer unter Beobachtung
Spreadsheets nach textuellen Aufgabenstellungen erstellen mussten. Die Autoren, der Verof-
fentlichungen dieser Experimente, geben zwar Ratschldge dafiir, wie Fehler in Spreadsheets
verringert werden konnen, jedoch fehlt es an konkreten Belegen, dass diese Ratschldge auch in
der Praxis zu geringeren Fehlerquoten fithren. Aufierdem ist ungekldrt, in wie weit ein Eingriff in
den Entstehungsprozess von Spreadsheets, eine Verringerung der Niitzlichkeit von Spreadsheets
fur den Endbenutzer zur Folge haben konnte.

37

4 Spreadsheet-Qualitat

4.1.5 Erkennung von Spreadsheet-Fehlern

Ein komplementdrer Ansatz zur Vermeidung von Fehlern bei der Erstellung von Spreadsheets
ist das Erkennen von Fehlern nach Abschluss der Entwicklung des Spreadsheets. Bestehende
Studien [GH] 796, AP10, Pan99] untersuchen die Priifung von Spreadsheets dabei entweder durch
Laborexperimente, bei denen Probanden eingebaute Fehler in Spreadsheets erkennen sollen, oder
durch die Untersuchung von Spreadsheets in der Praxis durch einen Experten. In der Mehrzahl
dieser Studien,werden dabei keine konkreten Verfahren angewendet und den Priifern werden
keine Anweisungen vorgegeben, wie die Spreadsheets tiberpriift werden sollen. Und auch wenn
ein konkretes Verfahren zur Priifung eingesetzt wird, wird dieses haufig nicht detailliert genug
beschrieben. Als Folge daraus ist es grofitenteils unbekannt, wie es um die Effektivitdat und
Effizienz der Ansdtze im Vergleich untereinander bestellt ist. Existierende Ansitze beanspruchen
zwar, Spreadsheet-Fehler effektiv erkennen zu kénnen, jedoch fehlt es an Belegen, dass dies in
der Praxis tatsdchlich der Fall ist.

4.2 Zusammenfassung

Die kritische Analyse des Forschungsstandes beztiglich der Qualitdt von Spreadsheets in [PBI.09]
lasst daher die folgenden alarmierende Schliisse ziehen:

» Es gibt keinen allgemein akzeptierten Standard, wie Fehler gezahlt und klassifiziert werden.
Aufierdem fehlt es an Taxonomien fiir konkrete Einsatzzwecke, deren Niitzlichkeit objektiv
evaluiert wurde.

» Die wirtschaftlichen Auswirkungen, die von Spreadsheet-Fehlern verursacht werden, sind
grofstenteils unbekannt. Gleichzeitig besteht jedoch Grund zur Annahme, dass bestimmte
Spreadsheet-Fehler Schiaden in Millionenhohe anrichten kénnen.

» Bestehende Studien iiber die Haufigkeit von Fehlern in Spreadsheets konnen nicht vergli-
chen werden, da entsprechende Standards fehlen. Jedoch besteht Grund zur Annahme,
dass Spreadsheets im Vergleich zu anderen Software-Artefakten tiberméfiig viele Fehler
enthalten.

» Esist wenig dariiber bekannt, wie Spreadsheet-Fehler entstehen und wie diese verhindert
werden konnen. Viele Arbeiten, die grofitenteils auf Beobachtungen von Laborexperimenten
basieren, schlagen zwar Losungen vor, um die Entstehung von Fehler zu verringern, jedoch
fehlen haufig die Belege, dass die vorgeschlagenen Mafsnahmen tatsachlich die Haufigkeit
von Fehlern in der Praxis reduzieren konnen.

» Ansitze, die beanspruchen effektiv Fehler in Spreadsheets erkennen zu konnen, sind nicht
detailliert genug beschrieben. Aufierdem ist kaum etwas dariiber bekannt, wie die verschie-
denen Ansédtze im Vergleich beziiglich ihrer Effektivitat und ihrer Effizienz abschneiden.

38

4.2 Zusammenfassung

Warum aber ist der Stand der Forschung von Spreadsheets und Software so unterschiedlich,wenn
es sich doch bei Spreadsheets auch um Software handelt? Konnen bestehende Ansitze aus
dem Software Engineering nicht auf Spreadsheets iibertragen werden? Diese Fragen sollen
im folgenden Kapitel beleuchtet werden, in dem die vorhandenen Ansétze zur Erh6hung der
Spreadsheet-Qualitdt untersucht werden.

39

Kapitel 5

Vorhandene Ansatze zur Erh6hung der
Spreadsheet-Qualitat

Die Analyse des Stands der Forschung beziiglich der Qualitdt von Spreadsheets hat gezeigt, dass
dieser weit von dem Stand im Software Engineering entfernt ist. Da es sich bei Spreadsheets
jedoch auch um Software handelt, liegt die Idee nahe, die Qualitidt von Spreadsheets dadurch
zu erhohen, indem das bestehenden Wissen und die bestehenden Ansitze aus dem Software
Engineering auch fiir Spreadsheets verwendet werden.

5.1 Spreadsheet-Engineering

Thomas Grossman bezeichnet die angesprochene Ubertragung von Prinzipien des Software En-
gineerings auf Spreadsheets in [Gro07] als Spreadsheet Engineering und verspricht sich davon die
Losung vieler Probleme beim Einsatz von Spreadsheets. Er vermutet im Spreadsheet Engineering
grofies Potential, um die Produktivitdt von Spreadsheet-Entwicklern zu erhohen, die Haufigkeit
und Schwere von Spreadsheet-Fehlern zu verringern und die Wartbarkeit von Spreadsheets zu
verbessern.

In der Tat sind viele bestehende Ansitze fiir Spreadsheets auf Methoden des Software Engi-
neerings zuriickzufithren und vieles von dem bestehenden Wissen scheint iibertragbar. So ist
beispielsweise der Zusammenhang von niedriger Spreadsheet-Qualitdt und den moglichen ho-
hen Fehlerfolgekosten zumindest in der Forschung bekannt und man ist sich des resultierenden
Risikos bewusst. Entsprechend warnt die Spreadsheet-Forschung seit dem ersten Verwenden
von Spreadsheet-Systemen vor Gefahren durch endbenutzer-entwickelte Spreadsheets [Dav82].
Als Folge dieser Erkenntnis haben sich Forschungsgemeinschaften gebildet, wie etwa die Eu-
ropean Spreadsheet Risks Interest Group (EuSpRIG)[EuSb] oder das EUSES Consortium (End
Users Shaping Effective Software) !, die versuchen die Risiken von Spreadsheets zu erforschen, die

1http ://eusesconsortium.org

41

http://eusesconsortium.org

5 Vorhandene Ansétze zur Erh6hung der Spreadsheet-Qualitét

Wahrnehmung dieser Risiken zu verbessern und entsprechende Mafinahmen zu deren Bekamp-
fung zu entwickeln. Dabei orientieren sich die Forschungsgemeinschaften haufig am Software
Engineering. So finden sich beispielsweise alle Voraussetzungen fiir die Qualitdt von Software
auch in den Forschungsbereichen der EuSpRIG wieder [Cha08].

» Das Forschungsgebiet Werkzeuge beschiftigt sich etwa mit Methoden und Werkzeugen
zum Erstellen von Spreadsheets [Raf08, Gro07, RCK08a].

» Mit dem Bereich Ausbildung soll das Bewusstsein von Endbenutzern erhoht, sowie die Lehre
und Forschung beziiglich Spreadsheets verbessert werden [Pan08c, RCK08b, ACMOO].

» Unter dem Begriff Audit werden Methoden und Werkzeuge zur Priifung von Spreadsheets
zusammengefasst [Cro07, CHMO08, NO10].

» Der Bereich Management beschiftigt sich mit Standards und Kontrollmechanismen zum
Lenken der Spreadsheet-Entwicklung [But08, GO10].

Gleichzeitig existieren auch Ansétze in allen Bereichen der Qualitdtssicherung von Spreadsheets,
angefangen von organisatorischen [But08, GO10], {iber konstruktive [Raf08, O’B10], bis hin zu
analytischen Mafinahmen [Aya01, ACMO0, AMO8, Pan07].

Trotz der Ubertragung der Ansitze aus dem Software-Engineering scheinen diese jedoch ohne
ausschlaggebenden Erfolg zu bleiben. So hat sich seit den frithen Warnungen vor den Gefahren
von Spreadsheets kaum etwas an den Problemen verdndert, obwohl sich die Technologien und
Techniken weiterentwickelt haben [CS96, PBLE]J08].

Der Grund dafiir, dass die Ansitze aus dem Software-Engineering nicht richtig greifen, liegt
unserer Meinung nach vor allem an der Tatsache, dass die dazu notwendigen Voraussetzungen
beziiglich der Nutzer von Spreadsheets nicht erfiillt sind. So handelt es sich bei den Erstellern und
Bearbeitern von Spreadsheets meist nicht um professionelle Entwickler, sondern um Endbenutzer.
Diese sind in der Regel nicht fiir die Entwicklungsaufgaben ausgebildet, die sie bei der Erstellung,
Bearbeitung und Priifung von Spreadsheets bewiltigen miissen. So nehmen sie einerseits die
Risiken und Probleme nicht wahr und andererseits sind sie durch die fehlende Ausbildung
fir die Entwicklung von Software auch meist nicht in der Lage, die vorhandenen Ansatze
und Werkzeuge einzusetzen. Gleichzeitig fehlt es in der Spreadsheet-Forschung an bewidhrten
Standards zur Reduzierung und Einddammung von Spreadsheet-Fehlern. Entsprechend fehlt
es in den Unternehmen meist an Richtlinien, die solche Standards umsetzen, um dadurch die
Qualitdt von Spreadsheets zu verbessern. Und auch die bestehenden Werkzeuge und Methoden
entfalten ihre Wirkungen nur begrenzt, da sie in den seltensten Féllen das bestehende Wissen der
Endnutzer beriicksichtigen.

Die Weiterbildung von Spreadsheet-Nutzern und die damit verbundene Erh6hung der Wahr-
nehmung der Spreadsheet-Risiken ist auf lange Sicht mit Sicherheit der richtige Weg, um das
Qualitatsproblem von Spreadsheets zu 16sen. Folglich wurde dies auch als eines der Hauptziele
festgelegt, die sich die Forschungsgemeinschaft EuSpRIG gesetzt hat. Dennoch wird angesichts

42

5.2 Spreadsheet Priifung

der millionenfachen Verwendung von Spreadsheets deutlich, dass eine schnell wirkende Maf3-
nahme benotigt wird, um das Qualitdtsproblem bei Spreadsheets in absehbarer Zeit zu lindern.
Konstruktive und organisatorische Maffnahmen benétigen jedoch naturgemaf3 eine lange Vorlauf-
zeit bis sie effektiv dazu beitragen konnen die Entstehung von Fehlern zu verringern. Aufierdem
schranken diese Mafinahmen héufig die Flexibilitdt und die Freiheit bei der Verwendung von
Spreadsheet-Systemen ein, da etwa Entwicklungsprozesse vorgeschrieben werden und der
Entwicklungsaufwand durch zusatzliche Aktivitdten stark erhoht werden kann.

Aus diesen Griinden soll in dieser Arbeit ein Ansatz verfolgt werden, der sich an den analytischen
Qualitédtssicherungsmafinahmen des Software Engineerings orientiert, aber dabei die gegebenen
Voraussetzungen, wie etwa das Wissen von Endnutzern, berticksichtigt. Zu diesem Zweck sollen
nun die bestehenden Ansitze zur Priifung von Spreadsheets genauer beleuchtet werden.

5.2 Spreadsheet Priifung

Im Zuge der Anwendung von Prinzipien des Software Engineerings auf Spreadsheets, wurde in
Forschung und Praxis versucht die verschiedenen Priifungsarten fiir Software auf Spreadsheets
zu libertragen. Die bestehenden Ansitze, Spreadsheets zu priifen, sollen daher ebenfalls nach
der in Abbildung 3.4 dargestellten Gliederung der analytischen Qualitdtssicherungsmafsnahmen
vorgestellt werden.

5.2.1 Nichtmechanische Spreadsheet-Priifungen

Die einfachste nichtmechanische Priif-Variante ist die meist informell und unsystematisch durch-
gefiihrte Priifung auf Plausibilitdt durch den Ersteller selbst oder durch einen Kollegen. Diese
Art der Priifung wird im Software Engineering als Durchsicht beziehungsweise Stellungnahme
bezeichnet. Umfragen und Interviews [C596, PBLF]08] zeigen, dass Durchsichten und Stellungs-
nahmen die einzigen Priifungen fiir Spreadsheets sind, die mit einer gewissen Verbreitung in
der Unternehmenswelt durchgefiihrt werden. Es ist jedoch wenig dartiiber bekannt, wie solche
Priifungen in der Praxis ablaufen und ob sie sich dazu eignen, zumindest die schwerwiegendsten
Defekte und Fehler, in Spreadsheets zu erkennen. So wurden solche Priifungen in der Praxis
noch nicht untersucht und vergleichsweise wenige Experimente [GH] " 96, Pan99] durchgefiihrt.
Bei diesen Studien konnten jedoch meist weniger als 50% der Fehler durch unstrukturierte
Prifungen durch die Probanden entdeckt werden. Aufierdem konnte nicht bestétigt werden,
dass dabei zumindest die schwerwiegendsten Fehler entdeckt wurden.

In [PBLO8a] wird daher ein Protokoll vorgeschlagen, nach dem solche Priifungen mit der Un-
terstiitzung von kommerziellen statischen Analysewerkzeugen in einer strukturierten Form
durchgefiihrt werden sollen. Dabei wird zwar ein Prozess vorgegeben, wie die Priifung stattfin-
den soll, wie jedoch einzelne Fehler entdeckt werden sollen, ist nur sehr allgemein beschrieben.

43

5 Vorhandene Ansétze zur Erh6hung der Spreadsheet-Qualitét

[Pan07] rdt stattdessen zu formellen Inspektionen die sich an den Design and Code Inspections nach
Fagan orientieren. Die Organisation, der Ablauf, sowie die beteiligten Rollen werden dabei eins zu
eins von den Code Inspektionen tibernommen [[.[.07, S. 282 ff.]. So soll der Priifling, dhnlich wie
bei den Inspektionen von Quellcode, zeilenweise iiberpriift werden und die zu tiberpriifenden
Vorgaben miissen zuvor anhand von Richtlinien festgelegt worden sein. Aufierdem sollten die zu
iiberpriifenden Komponenten eines Priiflings so gewahlt werden, dass eine Priifungssitzung die
Dauer von zwei Stunden nicht iiberschreitet. Wie bei den Inspektionen von Software wird dabei
eine Inspektion durch drei bis vier Gutachter angeraten, da bei Inspektionen durch Einzelperson
signifikant weniger Befunde entdeckt wurden [Pan99, GHJ " 96]. Panko sieht bei dieser Art der
Spreadsheet-Priifung den Vorteil, dass relativ geringe Anforderungen an die Gutachter gestellt
werden und sich die Code Inspektionen bei der Priifung von Software-Artefakten bewahrt haben.
Es gibt jedoch keine Belege dafiir, dass solche Spreadsheet Inspektionen in der Praxis oder als
Experiment erfolgreich durchgefiihrt wurden, oder ob sie sich iiberhaupt fiir die Priifung von
Spreadsheets eignen.

5.2.2 Mechanische Spreadsheet-Priifungen

Will man dynamische Priifmethoden auf Spreadsheets anwenden, ist man zunéchst mit dem
Orakel-Problem konfrontiert [Pan(07], das auch beim Test von traditioneller Software auftritt.
Denn beim Testen von Software-Programmen werden diese mit verschiedenen Eingaben aus-
gefiihrt, um die Korrektheit der produzierten Ergebnisse zu {iberpriifen. Das Problem liegt
dabei darin, dass eine Instanz bendétigt wird, die in der Lage ist die produzierten Ergebnisse
beziiglich ihrer Korrektheit beurteilen. Bei Spreadsheets ist im Allgemeinen nicht klar, wie ein
solches Test-Orakel realisiert werden kann, um die Ergebnisse richtig zu beurteilen. So gibt es bei
Spreadsheets keine offensichtlichen Kriterien dafiir, dass ein Test fehlgeschlagen ist, wie das bei
traditionellen Softwareprogrammen bei einem Absturz des Programms der Fall ist. Auch ein
Vergleich von Ist-Ergebnissen mit Soll-Ergebnissen ist in den seltensten Fillen moglich, da die
Soll-Ergebnisse aufgrund der meist fehlenden Anforderungen nicht angegeben werden kénnen.
Und auch wenn die Anforderungen erfasst wurden, besteht das Problem, dass die Berechnungen
des Spreadsheets meist zu komplex sind, um Soll-Ergebnisse mit vertretbarem Aufwand auf eine
andere Art zu bestimmen.

[Pry08] gibt dennoch einige Tipps, wie Unit-Tests mit Hilfe von Kontrollrechnungen im zu
tiberpriifenden Spreadsheet selbst durchgefiihrt werden konnen, falls die Moglichkeit besteht
die Korrektheit der Ergebnisse objektiv zu beurteilen. Zur Unterstiitzung wird dabei ein selbst
entwickeltes Priifwerkzeug mit Namen Xlsior” verwendet, welches jedoch inzwischen nicht mehr
zur Verfiigung gestellt wird.

[ACMO00] versucht das Problem eines fehlenden Test-Orakels, sowie der fehlenden Testkenntnisse
von Endbenutzern durch symbolisches Testen und Intervall-Tests zu l6sen. So kénnen durch

2http ://www.louisepryor.com/xlsior/

44

http://www.louisepryor.com/xlsior/

5.2 Spreadsheet Priifung

Intervall-Tests die Ergebnisse von Formeln mittels vom Anwender spezifizierter Grenzwerte
auf Plausibilitat tiberpriift werden. Der Anwender wird somit zum Test-Orakel, jedoch wird die
Beurteilung der Ergebnisse durch die Angabe von korrekten Intervallen erleichtert.

Statische Priifungen von Spreadsheets haben gegeniiber den dynamische Priifungen den Vorteil,
dass allgemeine Vorgaben fiir Spreadsheets definiert werden konnen und fiir deren Anwendung
weniger Kenntnisse benotigt werden. Statische Analysetechniken kénnen dabei auf unterschiedli-
che Weise bei der Priifung von Spreadsheets niitzlich sein. Viele Anséitze verwenden die statische
Analyse dazu, um die Struktur von Spreadsheets zu analysieren und diese dann zu visualisieren.
Dadurch wird das Verstandnis der Struktur eines Spreadsheets fiir dessen Benutzer erleich-
tert und er wird dadurch bei der Priifung des Spreadsheets unterstiitzt. In anderen Ansétzen
wird die statische Analyse stiarker automatisiert, indem tiber Muster-Vergleiche und abstrakte
Interpretation automatisch nach Defekten gesucht werden kann.

In [HPD11] wurde beispielsweise das Visualisierungswerkzeug Breviz entwickelt, das die Struk-
tur von Spreadsheets mittels Datenfluss Diagrammen darstellen kann. Dabei kann interaktiv
durch verschiedene Ansichten navigiert werden, um das Verstandnis der Funktionalitit eines
Spreadsheets zu erleichtern. Zudem wird angeregt, dass Breviz dazu verwendet werden kann,
um Anomalien in Spreadsheets zu entdecken. Die Autoren geben dazu eine Reihe von schlechten
Strukturen bei Spreadsheets an, die vermutlich auf die Anwesenheit von Fehlern hinweisen
konnten und mit Hilfe des visualisierten Datenflusses vom Anwender erkannt werden konnen.
Eine Evaluierung dieses Ansatzes wurde dabei noch nicht durchgefiihrt, jedoch wird dies als
Ziel fiir weitere Arbeiten ausgegeben.

Ein dhnlicher Ansatz wird in [CHMO08] unternommen, bei dem Formelbereiche in einem Spreads-
heet in Aquivalenzklassen eingeteilt und dargestellt werden. In separaten Fenstern kénnen dabei
Aquivalenzrelationen und Datenabhingigkeiten untersucht werden, um durch UnregelmafBigkei-
ten im dargestellten geometrischen Muster von dhnlichen Formeln bei der Suche nach Fehlern zu
helfen. In einer Evaluation des entwickelten Werkzeugs in einem industriellen Kontext wurden
Defekte in 3,03% aller Zellen entdeckt, jedoch konnten keine Fehler gefunden werden, die stark
abweichende Ergebnisse verursachten und dadurch schwerwiegende Konsequenzen fiir das
Unternehmen bewirken hétten konnen.

In [AE06] wird das vollautomatische Priifwerkzeug UCheck vorgestellt, das versucht tiber die
vorhanden textuellen Beschriftungen und Uberschriften in Spreadsheets Information iiber die
semantischen Einheiten einzelner Zellen zu gewinnen. Es wird also eine Art Typisierung der
Zellen anhand der Uberschriften vorgenommen und die daraus gewonnen Informationen wer-
den verwendet, um Formeln mittels abstrakter Interpretation auf Plausibilitdt zu untersuchen.
Vorteilhaft ist dabei, dass fiir den Nutzer kein Aufwand entsteht, da die Priifung vollautomatisch
erfolgt. Jedoch ist die Losung auf zusitzliche Informationen durch Uberschriften angewiesen
und kann nicht allgemein dazu verwendet werden um Spreadsheets zu priifen.

Kommerziell vertriebene Priifwerkzeuge fiir Spreadsheets verwenden zumeist eine Kombination
aus den verschiedenen Ansitzen, um die Priifung von Spreadsheets zu unterstiitzen. Da diese

45

5 Vorhandene Ansétze zur Erh6hung der Spreadsheet-Qualitét

Werkzeuge zumeist nicht dazu eingesetzt werden, um die Anzahl der Fehler zu reduzieren, son-
dern nur um die Risiken, die von dem Spreadsheet ausgehen einschitzen zu konnen, bezeichnet
man sie meist als Audit-Werkzeuge [A10].

In [NO10] und [AP10] wird eine Auswahl solcher Audit-Werkzeuge untersucht. Nixon [NO10]
verwendet dazu Spreadsheets, bei denen mittels Error-Seeding Defekte eingebaut wurden,
Panko [AP10] hingegen untersucht in Experimenten entstandene Spreadsheets. Aufierdem un-
terscheiden sich die beiden Studien dadurch, dass Nixon nur die automatischen Priifungen
der Werkzeuge verwendet, Panko hingegen nur die Funkionen der Werkzeuge, die auffillige
Zellen markieren, um menschliche Priifer bei der Suche nach Fehlern zu unterstiitzen. Auch die
Ergebnisse der beiden Studien weichen stark voneinander ab. Nixon kommt zu dem Schluss, dass
die statischen Priifwerkzeuge beztiglich ihrer Effektivitdt mit nichtmechanischen Inspektionen
von Spreadsheets, die Zelle fiir Zelle durchgefiihrt werden, vergleichbar sind. Da sie jedoch bei
weitem geringere Kosten verursachen, sieht er sie als gute Alternative zu nichtmechanischen
Priifungen an, um zumindest alle nicht-funktionalen Defekte in Spreadsheets zu erkennen. In der
Studie von Panko schneiden die Werkzeuge im Vergleich zu den nichtmechanischen Inspektionen
jedoch ungemein schlechter ab. Dies wird damit begriindet, dass in den gepriiften Spreadsheets
tiberwiegend funktionale Defekte enthalten waren, die nur schwer mittels statischer Analyse er-
kannt werden konnen. Panko zieht in [AI’10] daher die plausible Schlussfolgerung, das statische
Analysewerkzeuge zwar als initiale Fehlererkennung geeignet sind, jedoch nicht ausreichen, um
allein alle Defekte in Spreadsheets zu erkennen.

5.3 Schlussfolgerung

In diesem Kapitel wurde untersucht, ob die bestehenden Ansitze aus dem Software Engineering
auf Spreadsheets tibertragen werden konnen, um die Qualitdt von Spreadsheets zu verbessern.
Dabei wurde festgestellt, dass durch unterschiedliche Voraussetzungen fiir die Verwendung
der Ansdtze hdufig grofse Probleme bei deren Umsetzung bestehen. So ist bei den meisten
Nutzern von Spreadsheets die notwendige Wahrnehmung der Risiken nicht vorhanden und die
notwendigen Kenntnisse und Fahigkeiten fehlen, um die vorhandenen Ansitze anzuwenden.

Die bestehenden Ansétze reichen daher nicht aus, um eine angemessene Qualitdt von Spreads-
heets mit vertretbarem Aufwand sicherzustellen. Die Verbesserung der Spreadsheet-Qualitit
durch organisatorische und konstruktive Mafinahmen verspricht dabei auf lange Sicht den grof3-
ten Erfolg. Jedoch werden angesichts der vielfachen Verwendung von Spreadsheets, Mafsnahmen
benétigt, die die Qualitdt von bestehenden Spreadsheets auf kurz bis mittelfristige Frist ethohen
konnen. Dazu bieten sich analytische Mafsnahmen an.

Nach der Untersuchung der vorhandenen Ansitze zur Spreadsheet-Priifung wird deutlich, dass
viele Ansétze nur bedingt dazu geeignet sind, um Fehler in Spreadsheets durch Endbenutzer zu
erkennen. Rein nichtmechanische Priifungen sind beispielsweise mit einem hohen Zeitaufwand
verbunden und werden durch die fehlende Lokalitdt von Spreadsheets erschwert. Angesichts

46

5.3 Schlusstolgerung

der geringen Wahrnehmung von Spreadsheet-Risiken scheint es unwahrscheinlich, dass solche
Mafinahmen in der Praxis durchzusetzen sind [AP10]. Bei Dynamischen Priifungen hingegen,
ist das Fehlen eines geeigneten Test-Orakels, sowie die fehlende Ausbildung von Endbenutzern
zum Testen von Software eine grofie Hiirde. Ansitze wie in [ACMO00] haben jedoch das Poten-
tial, dieses Problem zu l6sen. Statische Priifungen haben den Vorteil, dass sie kaum Aufwand
verursachen und kaum Voraussetzungen an den Endbenutzer stellen. Zudem besitzen sie das
Potential, eine hohe Anzahl an Defekten In Spreadsheets zu entdecken und dadurch bei der
Erkennung von Fehlern niitzlich zu sein. Dabei muss jedoch beachtet werden, dass nicht alle
Fehler in Spreadsheets durch statische Priifungen erkannt werden kénnen.

Als Schlussfolgerung dieser Erkenntnisse soll im folgenden Kapitel ein Konzept zur Priifung
von Spreadsheet vorgestellt werden, das auf der statischen Analyse basiert, jedoch durch die
Integration von anderen Priifungsarten vorsieht, um die bestehenden Einschrankungen der
statischen Priifung zu kompensieren.

47

Kapitel 6

Konzept

Basierend auf den Erkenntnissen aus den vorherigen Kapiteln wird in diesem Kapitel ein Konzept
entwickelt, mit dem Spreadsheets auf Fehler tiberpriift werden kdnnen. Dabei wird zunéchst die
Grundidee vorgestellt, sowie erldutert, wie die Umsetzung dieser Idee erfolgen soll. Anschlie-
lend wird das erarbeitete Konzept anhand einer Metapher genauer erldutert und zuletzt wird
beschrieben, wie die in dieser Arbeit realisierte Losung verwendet werden kann.

6.1 Technische Grundlage zur Spreadsheet-Priifung

In dieser Arbeit soll ein Konzept entwickelt und realisiert werden, um die bestehende problema-
tische Situation bei der Qualitdt von Spreadsheets auf kurz bis mittelfristige Sicht zu verbessern
[Kull1]. Die realisierte Losung soll dabei als technische Grundlage verwendet werden konnen,
um systematische, rechneruntersttitzte Priifungen von Spreadsheets effektiv und kostengtinstig
durchfiihren zu kénnen. Dabei soll das vorhandene Wissen tiber Spreadsheet-Systeme und die
bestehenden Voraussetzungen fiir die Qualitdt von Spreadsheets beriicksichtigt werden. So sollen
etwa die Vorziige von Spreadsheet-Systemen erhalten bleiben und das vorhandene Wissen von
typischen Endbenutzern in das Konzept miteinbezogen werden.

Zu diesem Zweck soll das erweiterbare Java-Framework Spreadsheet Inspection Framework (SIF)
geschaffen werden, das die Durchfiihrung von verschiedenen Priifungsarten fiir Spreadsheets
ermoglicht. Mit Hilfe von SIF sollen Priifwerkzeuge fiir Spreadsheets realisiert werden kon-
nen, die Endbenutzer nach einem konkretem Priifverfahren bei der Priifung von Spreadsheets
unterstiitzen. Dabei sollen die verschiedenen Arten der Softwarepriifung in einer verzahnten
Weise genutzt werden konnen, um das Erkennen einer moglichst hohen Anzahl an Defekten in
den gepriiften Spreadsheets zu ermoglichen. Um den Zeitpunkt der Priifung moglichst frei zu
gestalten, sollfiir die Priifung durch SIF nur eine korrekt gespeicherte Spreadsheet-Datei benétigt
werden. Die Realisierung von SIF soll dabei in mehreren Ausbaustufen geschehen, wovon die
erste in dieser Arbeit entstehen soll. Der Fokus dieser ersten Ausbaustufe liegt dabei auf der
Durchfiihrung von statischen Priifungen.

49

6 Konzept

Example Testing Statisches Kombiniertes Dynamisches
Center (ETC) Priufwerkzeugl Prifwerkzeugl Prifwerkzeugl

| | | |

lSpreadsheet Inspection Framework ‘

Java

Durchfiihrung von Durchfiihrung von
statischen Prifungen dynamischen Priifungen

A\ 4

/ Spreadsheet O
\\

Desktop Java
Betriebssystem Virtual Machine Anwendungen

Dateien

Abbildung 6.1: SIF als technische Grundlage fiir die Priifung von Spreadsheets

6.1.1 Statische Spreadsheet-Priifung

Die Hauptaufgabe von SIF in der ersten Ausbaustufe ist es, die drei unterschiedlichen Aufgaben
der statischen Priifung zu ermdglichen. So soll erstens die Einhaltung festlegbarer Regeln tiber-
priift werden konnen, zweitens sollen Konsistenz-Priifungen ermoéglicht werden und drittens
soll die Moglichkeit geschaffen werden, quantitative Merkmale des Spreadsheets automatisch zu
erfassen. Dabei soll ein dhnlicher Ansatz wie bei dem in Unterabschnitt 3.5.2 vorgestellten Find-
bugs verwendet werden. So soll anstelle einer eingeschrankten Anzahl spezialisierter Techniken,
eine breite Anzahl an einfachen Techniken zum Einsatz kommen. In dieser Arbeit sollen dabei
die Priifungen der drei Vorschriften Konstanten in Formeln, Leserichtung und Formelkomplexitiit, die
auch héufig in der bestehenden Literatur empfohlen werden, umgesetzt werden. Eine genaue
Definition der umgesetzten Vorschriften wird dabei in Kapitel 7 gegeben.

Wie auch bei Findbugs, ist ein wichtiger Punkt die Konfigurierbarkeit der iiberpriiften Vorschrif-
ten, um die Priifungen an die individuellen Anforderungen des jeweiligen Nutzungskontextes
anpassen zu konnen. Daher kénnen Richtlinien aus bestehenden Vorschriften vom Benutzer frei
zusammengestellt und einzeln konfiguriert werden. Mit Hilfe einer Java-API soll es zudem mog-
lich sein, neue Vorschriften hinzuzufiigen und deren Uberpriifung zu realisieren. Zwar miissen in
der initialen Version die Priifverfahren fiir neue Vorschriften von einem professionellen Program-
mierer implementiert werden, jedoch soll es ermdglicht werden, diesen Mechanismus in Zukunft
mit einer benutzerfreundlichen Moglichkeit zu ersetzen. Zur Demonstration der Fahigkeiten
von SIF soll zudem das prototypisches statische Analysewerkzeug Example Testing Center (ETC)
entstehen, das die implementierten Funktionen der ersten Ausbaustufe verwendet.

50

6.2 Metapher

6.1.2 Erhoffter Nutzen der ersten Ausbaustufe

Wir sind uns bewusst, dass es allein durch die statischen Priifungen der ersten Ausbaustufe
nicht moglich sein wird, alle Fehler in Spreadsheets zu erkennen. So ist davon auszugehen, dass
die Priifung von funktionalen Eigenschaften nur eingeschrénkt mit der ersten Ausbaustufe von
SIF durchfiihrbar sein wird. Jedoch hoffen wir, durch die erste Ausbaustufe einen Ansatzpunkt
zu schaffen, um die Suche nach Fehlern in Spreadsheets zu unterstiitzen. So soll der Nutzer auf
Verstofie von Vorschriften, Inkonsistenzen und quantitative Merkmale des gepriiften Spread-
sheets aufmerksam gemacht werden. Durch diese Anhaltspunkte soll dem Nutzer dabei geholfen
werden, Fehler und qualitative Mangel im gepritiften Spreadsheet zu entdecken und dessen
Qualitdt zu beurteilen.

In weiteren Ausbaustufen soll diese Suche nach Fehlern in Spreadsheets weiter unterstiitzt wer-
den. So konnte die manuelle Inspektion in Zukunft durch die Visualisierung des Spreadsheets
und der gefundenen Verstof3e durch die Priifanwendungen vereinfacht werden. Und mit der
Erweiterung des Frameworks, um die Unterstiitzung von dynamischen Priifungen, soll die
bestehende Einschrankung der Priifungen auf tiberwiegend nicht-funktionale Qualitatsmerk-
male behoben werden. Dabei konnen die Verstofie der statischen Priifung genutzt werden, um
auffillige Zellen des Spreadsheets zu entdecken und diese effektiv auf Fehler zu tiberpriifen.

6.2 Metapher

Um das Verstandnis des gewdhlten Ansatzes zu erleichtern, wurde eine Metapher fiir die
Veranschaulichung des Konzepts gewdhlt. Die Wahl fiel dabei auf das Bild einer technischen
Inspektions-Werkstatt, wie sie in technischen Priifzentren, beispielsweise bei solchen fiir die Zu-
lassung von Kfz-Fahrzeugen, genutzt wird. In diesem Zusammenhang sind viele der Eigenschaf-
ten einer solchen Werkstatt und der mit ihr durchfiihrbaren Priifungen auch auf SIF tibertragbar.
Einige Figenschaften konnen bei diesem Bild jedoch nicht tibertragen werden. Daher werden wir
zuerst die wesentlichen Merkmale einer Inspektions-Werkstatt am Beispiel einer Kfz-Inspektions-
Werkstatt nennen. Anschlieffend werden wir aufzuzeigen, welche Analogien und welche Unter-
schiede bestehen, wenn man diese Bild auf die Inspektion von Spreadsheets iibertragt.

6.2.1 Technisches Kfz-Priifzentrum

Die Zulassung von Fahrzeugen zum Strafsenverkehr ist in den meisten Landern gesetzlich gere-
gelt. So wird fiir neue Fahrzeugtypen eine Typ-Genehmigung benétigt und Kfz-Fahrzeuge, die
am Strafsenverkehr teilnehmen sollen, miissen regelméfiigen Inspektionen unterzogen werden,
um sie auf ihre Vorschriftmifigkeit zu iiberpriifen. Die Uberpriifung der Fahrzeuge erfolgt dabei
durch staatlich anerkannte Priifzentren in Inspektions-Werkstatten. Dabei ist die Inspektion ohne
die technischen Mittel, die in den Inspektions-Werkstitten bereitgestellt werden, nicht oder nur
sehr schwer durchzufiihren. Die Inspektions-Werkstatt und die mit ihr durchgefiihrte Priifung
zeichnen sich dabei wie folgt aus:

51

6 Konzept

Priifung

Bei der Priifung handelt es sich um eine zerlegungsfreie Sicht-, Funktions- und Wirkungspriifung.
Das heifit, das Fahrzeug wird zur Priifung nicht verdndert und im Zusammenspiel von Mensch
und Maschine mit statischen und dynamischen Mitteln gepriift. Das Ziel der Priifung ist es dabei,
die Konformitét des Fahrzeugs mit gesetzlichen Vorschriften zu tiberpriifen. Dadurch soll die
Verkehrssicherheit erhoht, Unféille vermieden und entstehende Schdden bei Unféllen verringert
werden. Gepriift werden dabei sowohl funktionale, wie nicht-funktionalen Anforderungen. Bei
der Priifung selbst werden Verstofse gegen die Vorschriften jedoch nur erkannt und bewertet,
eine Korrektur von Méangeln erfolgt nicht, sondern ist vom Hersteller bzw. Halter des Fahrzeu-
ges durchzufiihren. Bei Nichtbestehen der Priifung wird dem Fahrzeugtyp bzw. Fahrzeug die
Teilnahme am Strafienverkehr verweigert, bis die angezeigten Méngel behoben sind.

Inspektions-Werkstatt

Die Inspektions-Werkstatt bietet die technischen Mittel, um die Priifung des Fahrzeuges durch-
zufiihren. Die Priifung selbst wird zwar durch einen professionellen Priifer durchgefiihrt, dieser
kann die Priifung jedoch ohne die Priifmittel, die die Inspektions-Werkstatt zur Verfiigung stellt,
nicht angemessen durchfiihren. Als Priifmittel stehen dem Priifer dabei verschiedene Priifstande
und Werkzeuge zur Verfiigung. So gibt es beispielsweise eine Hebebiihne, die dem Priifer erlaubt
den Zustand und die einzelnen Teile des Fahrzeuges genauer zu betrachten, als auch spezielle
Werkzeuge, wie etwa einen Spannungsmesser, der die anliegende Spannung bei elektronischen
Komponenten iiberpriifen kann. Komplette Priifstinde, wie etwa ein Bremspriifstand, kénnen
dem Priifer Abweichungen und Auffilligkeiten anzeigen, die auf die Anwesenheit eines Fehler
hinweisen konnten. Die Ursache fiir die Abweichung kann jedoch vom Priifstand meist nicht
selbststandig identifiziert werden, sondern muss vom Priifer durch manuelle Inspektion oder
mit Hilfe von weiteren Priifungen eingegrenzt werden.

6.2.2 Technisches Spreadsheet-Priifzentrum

Wie auch bei Kfz-Fahrzeugen, ist die Priifung von Spreadsheets ohne technische Hilfsmittel
nicht oder nur sehr schwer durchzufiihren. SIF soll daher die Funktionalitét einer Inspektions-
Werkstatt bereitstellen und damit die technische Grundlage schaffen, um technische Priifzentren
zur Inspektion von Spreadsheets realisieren zu konnen.

Priifung

Die Priifung von Spreadsheets soll nach dhnlichen Grundlagen ablaufen, wie bei Kfz-Fahrzeugen.
So soll das Spreadsheet ohne Verdanderung durch Mensch und Maschine mit statischen und
dynamischen Mitteln gepriift werden. Ziel der Priifung es auch hier, die Konformitdt mit Richtli-
nien zu {iberpriifen, um eine angemessene Qualitdt des Spreadsheets sicherstellen zu konnen.
Dadurch konnen die negativen Konsequenzen, die durch fehlerhafte Spreadsheets verursacht

52

6.2 Metapher

werden, vermieden oder zumindest reduziert werden. Im Gegensatz zur Kfz-Priifung existieren
dabei jedoch keine gesetzlichen Vorgaben und auch keine allgemeingiiltigen Standards. Stattdes-
sen miissen die Richtlinien von den Nutzern der Spreadsheet-Inspektions-Werkstatt festgelegt
werden. Diese Richtlinien sollten so gewéhlt werden, dass durch deren Uberpriifung Defekte, die
bei der Verwendung des Spreadsheets in der Unternehmenswelt Gefahren darstellen konnten,
kenntlich gemacht und mangelhafte Spreadsheets vor deren Benutzung aussortiert werden kon-
nen. Wie bei der Kfz-Priifung auch, werden Verstofie gegen die Vorschriften jedoch nur erkannt
und bewertet. Die Korrektur ist vom Ersteller bzw. Nutzer des Spreadsheets durchzufiihren.

Inspektions-Werkstatt

Die Inspektions-Werkstatt fiir Spreadsheets soll die technischen Mittel bereitstellen, um die Prii-
fung der Spreadsheets addquat durchfiihren zu konnen. Anders als bei der Kfz-Inspektion wird
die Priifung jedoch nicht zwangsweise von einem professionell ausgebildeten Priifer durchge-
fiihrt. Stattdessen soll es auch dem durchschnittlichen Endbenutzer ermoglicht werden Spreads-
heets zu priifen. Zu diesem Zweck stellt SIF eine Reihe von Priifmitteln bereit. So existieren
einerseits Werkzeuge, die das Spreadsheet auf dessen Beschaffenheit untersuchen und eine
Inventurliste von dessen Bestandteilen erstellen konnen, aber auch spezielle Werkzeuge, die
bestimmte Eigenschaften bei einzelnen Bestandteilen tiberpriifen konnen. Priifstinde, die die
einzelnen Vorschriften der vergebenen Richtlinie {iberpriifen, konnen automatisch abgefahren
werden und liefern dem Priifer eine Liste mit den gefunden Abweichungen und Auffalligkeiten.
Der Priifer kann dann mittels der gegeben Anhaltspunkte nach Fehlern und deren Ursachen im
Spreadsheet suchen oder weitere Priifungen durchfiihren.

6.2.3 Bausteine der ersten Ausbaustufe der Spreadsheet-Inspektions-Werkstatt

Zur Umsetzung der ersten Ausbaustufe der Spreadsheet-Inspektions-Werkstatt werden die
folgenden Bausteine benétigt:

Vorschrift Eine Vorschrift definiert eine Vorgabe, die von einem Spreadsheet erfiillt werden
muss. Bei dieser Vorgabe kann es sich um die Einhaltung von Konsistenz, um die Erfiillung
einer quantitativen Eigenschaft oder um die Einhaltung einer generellen Regel handeln.
Sinnvolle Vorgaben fiir Spreadsheets konnen je nach deren Nutzungskontext variieren und
daher konnen Vorschriften an die tiberpriiften Spreadsheets angepasst werden.

Richtlinie Eine Auswahl an Vorschriften kann dabei zu einer Richtlinie zusammengefasst wer-
den, die dann als Vorgabe fiir Spreadsheets in einem bestimmten Nutzungskontext verwen-
det werden kann. Es handelt sich bei einer Richtlinie also um einen Satz von Best Practises,
wie etwa in [O’B05, Raf08] beschrieben, jedoch ohne solche Vorschriften, die das Vorgehen
bei der Entwicklung von Spreadsheets festgelegen.

53

6 Konzept

Verstofs Die Uberpriifung von Vorschriften erfolgt in der ersten Ausbaustufe von SIF mittels au-
tomatischer statischer Priifungen. Wenn Abweichungen von den Vorgaben einer Vorschrift
erkannt werden, wird ein Verstofs gemeldet. Wie auch bei den statischen Priifungen von
traditioneller Software (Unterabschnitt 3.5.2) handelt es sich bei einem Verstof$ nicht immer
um einen echten Defekt.

Inspektionsauftrag Ein Inspektionsauftrag wird von einem Nutzer der Inspektions-Werkstatt
aufgegeben, um ein Spreadsheet auf die Vorgaben einer Richtlinie zu tiberpriifen. Der
Inspektionsauftrag wird dabei mit Hilfe von SIF erstellt, konfiguriert und durchgefiihrt.
Zur vollstandigen Konfiguration eines Inspektionsauftrags gibt der Nutzer einen Namen,
sowie das zu priifende Spreadsheet an, wihlt eine der vorhandenen Richtlinien aus und
passt deren Vorgaben an den Priifling an.

Spreadsheet-Elemente Ein Spreadsheet besteht im Wesentlichen aus den in Abschnitt 2.1 be-
schriebenen Elementen. Zwar konnen alle gangigen Spreadsheet-Sprachen diese grundle-
genden Elemente definieren, jedoch existieren Spezialisierungen und Generalisierungen
dieser Elemente, die nicht explizit mit den vorhanden Sprachkonstrukten ausgedriickt wer-
den konnen. So konnen beispielsweise Eingabe-Zellen, die vom Nutzer des Spreadsheets
mit Inhalten gefiillt werden miissen, nicht direkt als solche ausgezeichnet werden, sondern
miissen vom Ersteller {iber Formatierung, Anordnung oder dhnliches kenntlich gemacht
werden.

Als Basis-Elemente werden daher in in dieser Arbeit Elemente bezeichnet, fiir die Sprach-
konstrukte in allen giangigen Spreadsheet-Sprachen vorhanden sind.

Spezial-Elemente sind Spezialisierungen oder Generalisierungen von Basis-Elementen,
die individuell festgelegt werden konnen.

Um diese mangelnde Ausdrucksmoglichkeiten von bestehenden Spreadsheet-Sprachen zu
kompensieren, ist es durch eine Schnittstelle in SIF moglich beliebige Spezial-Elemente zu
definieren, diese automatisch zu erkennen und fiir die Priifung zur Verfiigung zu stellen.

Element-Scanner Die Erkennung von Spreadsheet-Elementen erfolgt dabei durch sogenannte
Element-Scanner. Diese werden vor der Priifung auf das Spreadsheet angewendet und
erstellen eine Inventurliste von dessen Bestandteilen. Zusatzlich sollen die Element-Scanner
quantitative und strukturelle Merkmale des Spreadsheets erfassen kéonnen, um so die
Struktur und die Beschaffenheit des gepriiften Spreadsheets aufzuzeigen.

Spreadsheet-Inventar Das Spreadsheet-Inventar ist die Auflistung aller Elemente eines Spreads-
heets, die durch Element-Scanner erkannt wurden. Es stellt damit eine Bestandsliste aller
Komponenten eines Spreadsheets dar.

Priifstinde sind die Priifmittel, die die Einhaltung von Vorschriften fiir alle Bestandteile ei-
nes Spreadsheets tiberpriifen und bei Abweichungen eine Liste von Verstofien erstellen.
Priifstande konnen dabei entweder modular aus bestehenden Priifwerkzeugen zusammen-
gestellt werden oder als monolithischer Priifstand entwickelt werden.

54

6.3 Verwendung

Priifwerkzeuge Priiffwerkzeuge sind modulare Priifmittel, die fiir ein Element einer Klasse von
Spreadsheet-Elementen iiberpriifen konnen, ob dieses Element eine bestimmte Eigenschaft
besitzt oder eine bestimmte Vorschrift einhilt. So kann ein Priifwerkzeug beispielsweise
eine Zelle mit numerischen Inhalt, darauf {iberpriifen, ob deren Inhalt in der richtigen
Genauigkeit dargestellt wird. Ein anderes Priifwerkzeug wiederum kann priifen, ob eine
Zelle mit Textinhalt ein bestimmtes Schriftbild erfiillt. Neue Priifwerkzeuge, auch fiir
Spezial-Elemente, konnen entwickelt und als Priifmittel bereitgestellt werden. Der Zweck
dieser Priifwerkzeuge ist es dabei, generische Priifstinde aus einem oder mehreren dieser
Werkzeuge modular zusammenstellen zu konnen.

Priiffeld Ein Priiffeld ist der Ort an dem Priifung eines Spreadsheets, die durch einen Inspekti-
onsauftrag definiert ist, durchgefiihrt wird. Zu diesem Zweck werden die notwendigen
Priifstainde im Priiffeld aufgebaut, mit den Vorgaben aus der gewéhlten Richtlinie des
Inspektionsauftrags konfiguriert und dann der Reihe nach ausgefiihrt.

6.3 Verwendung

Im folgenden Abschnitt soll beschrieben werden, wie die erste Ausbaustufe von SIF verwendet
werden kann, um Spreadsheets statisch zu priifen und wie neue Vorschriften zur Uberpriifung
angeboten werden konnen.

6.3.1 Ablauf einer Inspektion

Der Ablauf einer Inspektion mit SIF gestaltet sich wie in Abbildung 6.2 dargestellt. Dabei wird
bereits angedeutet, wie die die Priifungen der weiteren Ausbaustufen in den Ablauf der stati-
schen Priifung integriert werden kénnen. Die Details des Ablaufs einer Inspektion in der ersten
Ausbaustufe sollen im Folgenden genauer beschrieben werden.

Spreadsheet-Inventar visualisieren und
visualisieren inspizieren
;3 A
Inspektionsauftrag Inspektion
konfigurieren durchfihren

Abbildung 6.2: Ablauf einer Inspektion mit dem Spreadsheet Inspection Framework

AR Dynamische

Prifung

SIF weitere
Ausbaustufen

X

Y

Y
Ergebnisse Bericht
analysieren erstellen

Spreadsheet
invetarisieren

Inspektionsauftrag
erstellen

SIF
Erste Ausbaustufe

55

6 Konzept

Inspektionsauftrag erstellen

In der Erstellungsphase wird eine neuer Inspektions-Auftrag angelegt. Dazu spezifiziert der
Nutzer welches Spreadsheet inspiziert werden soll, in dem er den Pfad zur entsprechenden
Spreadsheet-Datei angibt. Das Spreadsheet wird dann geladen und in ein internes Datenmodell
tibertragen. Bei der Metapher entspricht dieser Vorgang, dem Vorfahren des Fahrzeugs in die
Werkstatt eines Priifzentrums und dem Beantragen einer Inspektion

Spreadsheet inventarisieren

Im Anschluss an die Erstellung des Inspektionsauftrags wird das Spreadsheet auf dessen Struktur
und Beschaffenheit untersucht, wobei eine Inventurliste mit allen Bestandteilen des Spreadsheets
erstellt wird. Durch diesen Schritt werden, wie bei einem Fahrzeug auf einer Hebebiihne, zu-
ndchst die einzelnen Bestandteile des Spreadsheets betrachtet und es wird ein erster Eindruck
vom Priifling gewonnen. Dieser soll dabei helfen, die richtigen Priifungen fiir den Priifling
auszuwdahlen. Zusitzlich konnen durch diesen Schritt bereits vorab untaugliche Priiflinge, wie
beispielsweise ein Spreadsheet ohne Zellinhalte, aussortiert werden.

Inspektionsauftrag konfigurieren

Nach der Inventarisierung des Spreadsheets muss der angelegte Inspektions-Auftrag konfiguriert
werden. Dazu muss der Nutzer eine der vom Priifzentrum angebotenen Richtlinien auswih-
len, nach deren Vorgaben das Spreadsheet gepriift werden soll. Die einzelnen Vorschriften der
gewdhlten Richtlinie konnen dann dem Priifling entsprechend konfiguriert werden. So kon-
nen beispielsweise einzelne Teile des Spreadsheets von bestimmten Priifungen ausgeschlossen
werden oder die Parameter der Priifstinde eingestellt werden. Die Konfiguration entspricht
der Anpassung der Kfz-Priifung an den jeweiligen Fahrzeugtyp. So muss etwa fiir Fahrzeu-
ge neueren Baujahres ein Abgasuntersuchung nicht zwingend durchgefiihrt werden und fiir
landwirtschaftliche genutzte Fahrzeuge gelten anderen Vorgaben als fiir normale Pkws.

Inspektion durchfiihren

Zur Durchfithrung der Inspektion wird von SIF ein entsprechendes Priiffeld angelegt. In diesem
Priiffeld werden die Priifstinde aufgebaut, die fiir die Uberpriifung der gewihlten Richtlinie
benotigt werden, und mit den Einstellungen aus dem Inspektion-Auftrag konfiguriert. Anschlie-
end werden die zuvor erkannten Bestandteile der Reihe nach in den Priifstinden gepriift. Von
einem Priifstand erkannte Verstofse werden entsprechend der Vorschrift klassifiziert, bewertet
und gruppiert ausgegeben. Die Listen mit den Verstoflen der einzelnen Priifstinde werden dann
gesammelt und als Ergebnis der Inspektion ausgegeben.

56

6.3 Verwendung

Ergebnisse analysieren

Die resultierende Liste mit allen gefunden Verstéfien kann dann vom Priifer analysiert und
exportiert werden. Jeder Verstofs gibt dabei genaue Auskunft dariiber, welches Spreadsheet-
Element den Verstof verursacht hat, warum dieser Verstof3 auftrat, welche Schwere dem Verstof3
zugewiesen wurde und wie man ihn beseitigen konnte. Im Zuge von weiteren Ausbaustufen
wire es vorstellbar, dass die gefundenen Verstofie visualisiert werden konnen und so dem
Benutzer bei der Analyse unterstiitzen. Aufierdem konnten Elemente mit vielen Verstofien im
Anschluss an die statische Priifung mit dynamischen Priifungen getestet werden, um diese auf
bisher unentdeckte Fehler zu iiberpriifen.

Bericht erstellen

Nach Abschluss der Analyse besteht die Moglichkeit die gefundenen Verstofse zu exportieren,
um diese mit Hilfe einer Spreadsheet-Software zu beheben.

6.3.2 Erweiterung der angebotenen Priifungen

Ein weitere wichtige Funktionalitdt von SIFist die Erweiterung der angebotenen statischen
Priifungen. So konnen einerseits Richtlinien aus bestehenden Vorschriften zusammengestellt
werden, aber es wird auch die Moglichkeit angeboten, neue Vorschriften hinzuftigen und diese
tiberpriifen zu lassen.

Erstellung von Richtlinien

Wie bereits in Abschnitt 2.2 erldutert, existieren keine allgemein anerkannten Best Practices fiir
Spreadsheets, da diese haufig vom Nutzungskontext des jeweiligen Spreadsheets abhidngen. Die
Erstellung von neuen Richtlinien erlaubt daher, dass die Priifungen einer Inspektion speziell an
den jeweiligen Nutzungskontext angepasst werden konnen. So kann eine neue Richtlinien frei
aus den angebotenen Vorschriften der Inspektions-Werkstatt zusammengestellt werden. Diese
Richtlinie kann dann vorkonfiguriert und gespeichert werden, so dass sie fiir die Verwendung
von Inspektionen mehrerer Spreadsheets aus dem selben Nutzungskontext ausgewdhlt werden
kann.

Hinzufiigen von neuen Vorschriften

Um das Angebot an {iberpriifbaren Vorschriften zu erweitern, ist es aufSlerdem moglich neue
Priifstinde zu entwickeln. Zu diesem Zweck existiert ein Schnittstelle, mit der neue Priifstinde
entwickelt und bei der Inspektions-Werkstatt registriert werden konnen. Basierend auf diesen
Priifstinden kdnnen dann neue Vorschriften angeboten und von SIF iiberpriift werden.

57

Kapitel 7

Anforderungen

Basierend auf dem in Kapitel 6 vorgestellten Konzept, ergeben sich dabei folgende funktionale
und nicht-funktionale Anforderungen, die an die erste Ausbaustufe des Spreadsheet Inspection
Framework gestellt werden.

7.1 Funktionale Anforderungen

Einlesen von Spreadsheets aus Spreadsheet-Dateien unterschiedlichen Formats

Um Spreadsheets zu beliebigen Stadien in deren Lebenszyklus priifen zu konnen, muss SIF es
ermoglichen, gespeicherte Spreadsheets einzulesen. Fiir die erste Ausbaustufe ist dabei nur
die Unterstiitzung der Microsoft-Excel Dateiformate .xIs und .xIsx geplant, aber es soll einfach
moglich sein, weitere Spreadsheet-Dateiformate zu unterstiitzen.

Erstellung und Konfiguration eines Inspektions-Auftrags

Zur Priifung des eingelesenen Spreadsheets muss ein Inspektions-Auftrag angelegt werden
konnen, um die Priifung, die fiir den Priifling durchgefiihrt werden soll, zu definieren. Der
Umfang und die Konfiguration der Priifung soll dabei dem gepriiften Spreadsheet und dessen
Nutzungskontext angepasst werden kdnnen.

Inventarisierung: Untersuchung auf Beschaffenheit und Struktur

Um einen ersten Eindruck des zu priifenden Spreadsheets zu gewinnen, muss es moglich sein
eine Inventurliste mit allen Bestandteilen des Spreadsheets zu erstellen. So sollen quantitative
Merkmale des Spreadsheets, wie etwa die Anzahl an Zellen mit numerischen Inhalten oder die
Anzahl an Formeln, erfasst werden konnen. Zudem soll auch die Struktur des Spreadsheets, wie
zum Beispiel die Abhdngigkeiten zwischen den Zellen, erkannt werden kénnen. Da auch Spezial-
Elemente erkannt werden sollen, die nicht iiber spezielle Sprachkonstrukte im Spreadsheet
ausgedriickt werden konnen, soll es moglich sein, diese tiber eine Schnittstelle zu definieren und
in Spreadsheets zu erkennen.

59

7 Anforderungen

Durchfithrung von Inspektions-Auftrigen

Zur Priifung von Spreadsheets muss es moglich sein, dass die erstellten und konfigurierten
Inspektions-Auftrage automatisch durchgefiihrt werden. Dabei sollen die Einstellungen aus der
Konfiguration des Inspektionsauftrags und die gewonnen Informationen aus der Inventarisie-
rung verwendet werden, um das Spreadsheet auf die Einhaltung der Vorgaben der ausgewihlten
Richtlinie zu tiberpriifen. Gefundene Verstofie sollen entsprechend der zugehorigen Vorschrift
Kklassifiziert, bewertet und gruppiert ausgeben werden.

Analyse der Ergebnisse einer Inspektion

Die Ergebnisse einer Inspektion sollen mit Hilfe von SIF analysiert werden konnen. Zu diesem
Zweck miissen die Verstofie angeben, welches Spreadsheet-Element aus welchen Griinden den
Verstof$ verursacht hat, und wie der Verstof$ zu klassifizieren und zu bewerten ist. Zum Abschluss
der Analyse soll die Moglichkeit bestehen, die Ergebnisse der Inspektion in einem geeigneten
Textformat zu exportieren.

Priifung von drei ausgewidhlten Vorschriften

Um die Fahigkeiten der Inspektionswerkstatt zu demonstrieren, sollen die Priifungen fiir die drei
ausgewahlte Vorschriften Konstanten in Formeln, Leserichtung und Formelkomplexitit umgesetzt
werden. Die drei Vorschriften sollen dabei wie folgt umgesetzt werden:

Konstanten in Formeln Die Vorschrift Konstanten in Formeln soll iiberpriifen, ob konstante Werte
in Formeln verwendet werden. Als konstante Werte werden dabei alle Operanden angese-
hen, bei denen es sich nicht um eine Referenz oder das Ergebnis einer Funktion handelt.
Dabei ist es nicht von Bedeutung, um welchen Typ von Konstante es sich dabei handelt,
wie beispielsweise eine numerische oder textuelle Konstante. Pro Formel, die mindestens
eine Konstante enthalt, soll dabei ein Verstofs gemeldet werden. Verstofie von Formeln, die
das selbe Formelmuster enthalten, sollen zu einer Gruppe zusammengefasst werden.

Leserichtung Die Vorschrift Leserichtung soll priifen, ob Referenzen nur auf solche Objekte ver-
weisen, die sich links und oberhalb der Zelle befinden, die die Referenz verwendet. Als
links von einer Zelle gelten dabei alle Zellen im selben Worksheet, die einen niedrigeren
Spaltenindex aufweisen und die Zellen aller Worksheets, die sich vor dem Worksheet der
entsprechenden Zelle befinden. Als oberhalb von einer Zelle gelten dabei alle Zellen im
selben Worksheet, die einen niedrigeren Reihenindex aufweisen. Pro Referenz, die die
Leserichtung nicht einhilt, soll dabei ein Verstofs gemeldet werden. Verstofse der selben
Formel, sollen zu einer Gruppe zusammengefasst werden.

Formelkomplexitit Die Vorschrift Formelkomplexitiit soll tiberpriifen, ob alle Formeln eines
Spreadsheets eine gewisse Komplexitdt, gemessen an deren Verschachtelungstiefe und
deren Anzahl an Operationen, also der Summe von Funktionen und Operatoren, nicht iiber-
schreitet. Eine Formel gilt in dieser Arbeit als komplex, wenn sie mehr als fiinf Operationen

60

7.2 Nichtfunktionale Anforderungen

enthélt oder eine Verschachtelungstiefe grofier zwei aufweist. Diese Definition wurde dabei
jedoch willkiirlich gewdhlt. Pro komplexer Formel soll dabei ein Verstofi gemeldet werden,
eine Gruppierung der Verstofie ist dabei nicht vorgesehen.

Umsetzung eines prototypischen Priifwerkzeugs

Um die Priifung der drei umzusetzenden Vorschriften einfach zu erméglichen, soll ein pro-
totypisches Priifwerkzeug entwickelt werden. Dieses Priifwerkzeug soll es ermoglichen, dass
Spreadsheets tiber eine grafische Oberfldche mittels SIF auf die Einhaltung der drei Vorschriften
Konstanten in Formeln, Leserichtung und Formelkomplexitit tiberpriift werden und die Ergebnisse
der Priifungen exportiert werden konnen.

Erstellung neuer Richtlinien

Damit individuelle Richtlinien mit SIF tiberpriift werden konnen, soll es ermoglicht werden, dass
eigenen Richtlinien aus den angebotenen Vorschriften zusammengestellt werden. AufSerdem soll
es ermoglicht werden, dass weitere Vorschriften realisiert und durch die Inspektions-Werkstatt
tiberpriift werden konnen.

7.2 Nichtfunktionale Anforderungen

Unabhingigkeit von verwendetem Betriebssystem und verwendetem Spreadsheet-System

Um die Nutzung von SIF einem moglichst breiten Personenkreis zu ermoglichen, soll sich
SIF nicht auf die Priifung von Spreadsheets eines bestimmten Spreadsheet-Systems beschranken.
Daher soll SIFnicht als Erweiterung oder Plug-In einer bestehenden Spreadsheet-Software
entwickelt werden. Stattdessen soll SIF so konzipiert und entwickelt werden, dass es als plattform-
unabhiéngige, abgeschlossene Komponente verwendet werden kann, um Priifwerkzeuge fiir
Spreadsheets zu realisieren.

Erweiterbarkeit um dynamischen Priifungsmoglichkeiten

SIF soll in der ersten Ausbaustufe nur die technische Grundlage bieten, um statische Priifungen
von Spreadsheets durchzufiihren. Da statische Priifungen jedoch durch ihre Beschaffenheit nicht
dazu geeignet sind, alle Fehlerarten zu erkennen, soll die Architektur von SIF es ermoglichen,
dass dynamische Priifungen in das bestehende Framework integriert werden.

Erweiterbarkeit um graphische Darstellung von Spreadsheet und Verstéfien

Zusatzlich zur Erweiterbarkeit um dynamische Priifungen, ist auch die bessere Unterstiitzung
von manuellen Inspektion durch SIF vorgesehen. Daher soll die Visualisierung des Spreadsheets
und der gefundenen Verstofe in einer weiteren Ausbaustufe ermoglicht werden.

61

Kapitel 8

Umsetzung

Basierend auf dem in Kapitel 6 vorgestellten Konzept einer Spreadsheet-Inspektions-Werkstatt
wird in diesem Kapitel nun beschrieben, wie die in Kapitel 7 gestellten Anforderungen an
SIF umgesetzt worden sind.

8.1 Vorgehen

Aufgrund dessen, dass es sich bei der Entwicklung von SIF um ein Forschungsprojekt handelt,
habe ich mich fiir die Umsetzung von SIF fiir eine evolutiondre Vorgehensweise mit zwei Ent-
wicklungszyklen entschieden. Den Basis-Zyklus habe ich dabei mit zwei Dritteln der verfiigbaren
Zeit veranschlagt und die verbleibende Zeit habe ich fiir einen Erweiterungszyklus eingeplant.
Innerhalb der Zyklen bin ich dabei nach dem Vorbild des Spiralmodells nach Boehm [L..07, S.177
ff.] vorgegangen, um die grofiten Risiken zuerst zu beseitigen.

Daher habe ich den Fokus fiir den ersten Zyklus auf das Ubertragen von Spreadsheets in das
interne Datenmodell, sowie auf die Konzeption der Infrastruktur fiir die Fehlererkennung und
-verwaltung gelegt. Mit der Umsetzung der drei vorgesehenen Priifverfahren habe ich dann
begonnen, sobald der Fortschritt bei der Entwicklung der Infrastruktur dies zulief. Gleichzeitig
habe ich das prototypische Priifzentrum, das die wichtigsten Funktionen von SIF tiber eine
rudimentdre graphische Oberfliche zugdnglich macht, in Grundziigen implementiert, um die
Nutzung von SIF zu vereinfachen.

Der zweite Zyklus des Projekts sollte dann, je nach Fortschritt und den gewonnen Erkenntnissen
aus dem ersten Zyklus, dazu verwendet werden, um die Implementierung der Priifverfahren
abzuschlieffen und dann das Framework und das prototypische Priifzentrum zu verbessern und
zu erweitern. Da die Umsetzung der Priifverfahren am Ende des Basis-Zyklus noch nicht so weit
vorangeschritten war, wie erhofft, habe ich beschlossen den gesamten Erweiterungszyklus fiir die
Umsetzung von SIF zu verwenden und das prototypische Priifzentrum in seiner rudimentéren
Fassung zu belassen.

63

8 Umsetzung

8.2 Design

SIF besteht aus den Komponenten FrontOffice, TechnicalDepartment, I0 und Model . Durch
diese Aufteilung werden die Verwaltung der Inspektionsauftrage und der Inspektions-Werkstatt,
die Durchfithrung der Inspektionsauftréage, sowie der Zugriff auf Spreadsheets voneinander
getrennt.

Example Testing Center E

Inspektions—vvierkstatt nutzen

Q

[
SIF Inspektion durchfiihren FrontOffice E Spreadsheet laden E

?

|
|
v
TechnicalDepartment E

- —> Model E <—

5

Spreadsheet-Bibliohteken
(Bsp. Apache-POl)
T

V
Spreadsheet-Dateien D

Abbildung 8.1: Architektur von SIF

Die einzelnen Komponenten haben dabei folgenden Aufgaben:

» Das FrontOfficeist der zentrale Zugriffspunkt, um Funktionen von SIF zu nutzen. Die
Komponente bietet zu diesem Zweck eine Schnittstelle an, um neue Inspektionen in Auf-
trag zu geben, deren Ablauf zu steuern und die angebotenen Priifungen der Inspektions-
Werkstatt zu verwalten.

» Das Model bietet Datenstrukturen an, um Spreadsheets zu reprasentieren, Richtlinien fiir
Spreadsheets zu definieren, Inspektions-Auftrage und deren Konfiguration zu erstellen
sowie die Ergebnisse von Inspektionen festzuhalten.

» Die I0ist dafiir zustandig, dass Spreadsheets aus Spreadsheet-Dateien geladen und durch
Klassen aus dem Model reprédsentiert werden konnen. Zum Einlesen der Spreadsheet-

64

8.2 Design

Dateien in unterschiedlichen Formaten werden dabei externe Bibliotheken, wie beispiels-
weise Apache POI-SS 1 verwendet.

» Die Durchfiithrung der Inspektions-Auftrage, die tiber das FrontOffice erstellt und konfi-
guriert werden, erfolgt dann im TechnicalDepartment, das auch die dazu notwendigen
Priifmittel verwaltet.

Die folgenden Abschnitte beschreiben die Funktionen von SIF und die jeweils beteiligten Kom-
ponenten. Auf eine detaillierte Beschreibung des Designs, die jede Klasse, jede Methode und
jedes Attribut umfasst, wurde bewusst verzichtet. Stattdessen wird der Schwerpunkt auf die
Zusammenhinge der einzelnen Komponenten und die getroffenen Entscheidungen gelegt.

8.2.1 Reprisentation von Spreadsheets

Um die Unabhéngigkeit von SIF beziiglich des verwendeten Spreadsheet-Formats zu erreichen,
wird fiir die Reprasentation von Spreadsheets ein eigenes Datenmodell verwendet. Dieses Daten-
modell fiir Spreadsheets gliedert sich dabei in zwei Teile: ein Basis-Modell, reprédsentiert durch
eine Instanz der Klasse Spreadsheet und ein erweitertes Modell — das Spreadsheet-Inventar,
reprasentiert durch eine Instanz der Klasse SpreadsheetInventory. Das Basis-Modell enthalt
dabei alle Informationen, die direkt tiber Sprachkonstrukte von gangigen Spreadsheet-Sprachen
ausgedriickt werden konnen. Es stellt also die Reprédsentation eines aus Basis-Elementen beste-
henden Spreadsheets dar. Das Spreadsheet-Inventar beinhaltet das Basis-Modell und erweitert
dies um Listen mit den Vorkommnissen aller Elemente in dem zu reprasentierenden Spreads-
heet. Das Spreadsheet-Inventar beschréankt sich dabei jedoch nicht nur auf Vorkommnisse von
Basis-Elementen, sondern kann auch die Erfassung aller Instanzen von benutzerdefinierten
Spezial-Elementen beinhalten.

Einlesen von Spreadsheets — Erstellung des Basis-Modells

Das Basis-Modell soll ein Spreadsheet und dessen Bestandteile so darstellen, wie dies in einer
Spreadsheet-Datei gespeichert ist. Die Reprédsentation eines Spreadsheets erfolgt daher durch
eine Instanz der Klasse Spreadsheet und die Reprasentation von Basis-Elementen erfolgt als Un-
terklassen von BasicAbstractElement. Zur Erstellung des Basis-Modells muss das zu priifende
Spreadsheet aus einer Spreadsheet-Datei eingelesen und in interne Datenstrukturen umgewan-
delt werden. Zu diesem Zweck bietet die zustdndige I0-Komponente iiber die zentrale Klasse
DataFacade eine Schnittstelle an, die fiir eine gegebene Spreadsheet-Datei eine entsprechende
Instanz von Spreadsheet erstellt. Das Einlesen und Umwandeln der Informationen tibernimmt
dabei die fiir das Format der gegebenen Spreadsheet-Datei zustindige ISpreadsheetIO. So
erfolgt beispielsweise das Einlesen und Umwandeln von Spreadsheet-Dateien in den Excel-
Formaten .xIs oder .xIsx durch die POISpreadsheetIO_HSSF bzw. die POISpreadsheetIO_XSSF.

1http ://poi.apache.org/spreadsheet/index.html

65

http://poi.apache.org/spreadsheet/index.html

8 Umsetzung

Diese verwenden zum Einlesen die externe Bibliothek Apache-POI-SS? und wandeln die ein-
gelesenen Basis-Elemente in Datenstrukturen von SIFum. Die Unterstiitzung von weiteren
Spreadsheet-Dateiformaten ist durch diese Aufgabenverteilung leicht moglich, indem weitere
Implementierungen der ISpreadsheetIO realisiert werden.

‘ Spreadsheetinventory ‘

) a‘ AbstractElementList<? exentds IElement>

Spreadsheet L[\l

Spreadsheet-Elemente L

«Interface»
IElement

AbstractElement <-——————— =

CustomAbstractElement

BasicAbstractElement
JA\

i

«Interface»
ICellElement

«Interface»
IRangeElement

Basis-Elemente N Spezial-Elemente N +getCell(): Cell +getRange(): Range

A T
i 1

e e ‘ CaluclationNode ‘ ‘ InputCell ‘7 41— i }
Worksheet SpreadsheetProperties !

‘ ‘ ‘ i P ‘ OutputCell |_ | __, —____ 1 }

I

1 71 |

il 1. CustomElementX |

Row ‘ Column ‘ !

CustomElementY }

T 1 |

1. il |

FormulaBlock | | _ _ _ _ _ _ _ _ _ _ _ o _____ J

Abbildung 8.2: Darstellung des Spreadsheet-Inventars sowie einiger Basis- und Spezial-
Elemente

Inventarisieren von Spreadsheets — Erstellung des erweiterten Modells

Wie in Abschnitt 6.2 beschrieben, sind die Ausdriickmoglichkeiten bestehender Spreadsheet-
Sprachen begrenzt und daher wird in dieser Arbeit zwischen Basis- und Spezial-Elementen
von Spreadsheets unterschieden. Das erweiterte Modell soll dazu dienen, zuséitzlich zu den
Basis-Elementen, auch Spezial-Elemente von Spreadsheets zu erfassen und diese fiir die Priifung
zur Verfligung zu stellen. Zu diesem Zweck konnen Spezial-Elemente als Unterklassen von
CustomAbstractElement definiert werden. Dazu miissen diese die Instanz eines entsprechenden
Basis-Elements angeben, auf dem sie basieren.

Durch die Implementierung von Unterklassen des Interfaces IElement konnen dhnliche Element-
Klassen, beispielsweise die beiden Spezialisierungen einer Zelle InputCell und OutputCell,
gruppiert werden. So kann die Funktionalidt von Cell auch bei den Klassen InputCell und
OutputCell genutzt werden, wenn diese das Interface ICel1Element implementieren und auf
die Zelle des Basis-Modells verweisen, auf der sie basieren.

2http ://poi.apache.org/spreadsheet/index.html

66

http://poi.apache.org/spreadsheet/index.html

8.2 Design

Die Erstellung des erweiterten Modells erfolgt wahrend des Inventarisierung-Schrittes mit Hilfe
von ElementScannern. So muss fiir jede Elementklasse, deren Instanzen ins Spreadsheet-Inventar
aufgenommen werden sollen, ein Element-Scanner definiert und tiber den TechnicalManger
beim ScanningManager registriert werden. Ein ElementScanner erkennt unter Verwendung
des Basis-Modells und bereits gescannter Elemente alle Vorkommnisse dieser Elementklasse
und fiigt diese gesammelt als AbstractElementList dem Spreadsheet-Inventar hinzu. Eine
AbstractElementList stellt eine abstrakten Container fiir eine bestimmte Elementklasse bereit,
der alle Instanzen dieser Klasse aufnehmen kann. SIF stellt mit der SimpleElementList eine einfa-
che Implementierung dieses Containers bereit, erlaubt jedoch auch spezifische Implementierung
dieses Containers fiir bestimmte Elementklassen.

Das Inventarisieren eines Spreadsheets erfolgt im TechnicalDepartmentdurch den
ScanningManager, welcher alle registrierten Element-Scanner ausfiihrt. Da manche Scanner auf
den Ergebnissen anderer Scanner aufbauen, ist die Durchfiihrungsreihenfolge entscheidend.
Daher kénnen Element-Scanner einen Prioritdtswert angeben, der die Ausfiihrungsreihenfolge
beeinflusst. Fiir eine korrekte Konfiguration dieser Werte sind jedoch die Entwickler von neuen
Scannern verantwortlich, eine Uberpriifung durch den ScanningManager erfolgt nicht.

Das SpreadsheetInventory enthdlt also nach der Inventarisierung eine Reprasentation des
Spreadsheets, wie es in der Spreadsheet-Datei gespeichert ist, und aufierdem die Vorkommnisse
aller Spreadsheet-Elemente, die bei der Inventarisierung des Spreadsheets entdeckt wurden.

8.2.2 Inspektion von Spreadsheets mit SIF

Das FrontOfficeist die Schnittstelle um Funktionen von SIF zu nutzen. Die zentrale Zugriffs-
punkt fiir die Nutzer der Inspektions-Werkstatt ist dabei die Klasse FrontDesk, die zu diesem
Zweck die Enwurfmuster Singleton und Fassade implementiert [GH]V95]. Die Klasse FrontDesk
soll dabei als Rezeption fiir die Inspektions-Werkstatt dienen und die zentrale Anlaufstelle
fiir deren Anwender sein. So konnen tiber diese Schnittstelle neue Inspektionen in Auftrag
gegeben und konfiguriert werden. Und auch die Steuerung der Durchfithrung und die Abho-
lung der Ergebnisse erfolgt iiber den FrontDesk. Die Abwicklung der beantragten Vorgange
geschieht dabei jedoch nicht direkt im FrontDesk, sondern wird an die beiden anderen Klassen
des FrontOffice delegiert. So ist der InspectionManager fiir die Erstellung der Inspektions-
Auftrage zustandig und koordiniert deren Durchfiihrung. Der Policymanager ist fiir die Koor-
dination der angebotenen Priifungen mit den vorhandenen technischen Mittel zustdandig und
tibernimmt daher auch die Konfiguration von Inspektions-Auftragen.

Erstellung und Konfiguration von Inspektionsauftrigen

Inspektionsauftrage werden durch die Klasse InspectionRequest reprasentiert. Zum Erstel-
len eines neuen Inspektionsauftrags muss der Benutzer dem FrontDesk die Spreadsheet-Datei
und einen Namen fiir die Inspektion tibergeben. Der InspectionManager legt daraufhin den

67

8 Umsetzung

SIF FrontOffice E E]

Inspektionsauftrage FrontDesk E] |_ _Inspektionsauftrage

konfiégigrgn 7 Ve?gélten r —>[
|
|
I
|
a1

PolicyManager E] InspectionManagerE ==

L

|
M
Inspektior‘\sauflréige
darstellen

|
| N
‘ @
I
TechnicalDy !
echnicalDepartmen TechnicalManager E E \J/
T T .
Inspektignsauftrag _ _ _ Ergebnisse _ _ | Model %
durchfiihren _Sprea _sh(_eet dokumentieren]
inventgyiesieren
_Spreadsheet-Inventa
darstellen a>
TestBayManager E ScanningManager E] 4\
|
! 10
| DataFacade E E]
|
| T
Sprea‘gsbeit _ Spreafisheet
darstellen aus Dagi laden
ISpreadsheetlO E

Abbildung 8.3: Die Komponenten von SIF im Detail

initialen Inspektionsauftrag an, lasst {iber die I0 das Basis-Modell fiir das Spreadsheet erstellen
und macht dies als ersten Bestandteil des Spreadsheet-Inventars fiir den Inspektionsauftrag
verfligbar. AnschliefSend erhélt der Aufrufer die Instanz des InspectionRequest und kann auf
das Basis-Modell zugreifen. Als néchstes erfolgt die Inventarisierung des Spreadsheets, wie oben
beschrieben, die ebenfalls tiber den FrontDesk gestartet und im TechnicalDepartment vom
ScanningManager durchgefiihrt wird. Nach der Inventarisierung ist das gesamte Spreadsheet-
Inventar {iber den InspectionRequest abrufbar, und ist zur Analyse durch den Nutzer verfiig-
bar.

Zur Konfiguration eines Inspektionsauftrags kann der Benutzer {iber den FrontDesk die Richtlini-
en erfragen, die beim PolicyManager registriert wurden und damit von der Inspektionswerkstatt
aktuell angeboten werden. Eine Richtlinie wird dabei durch die Klasse Policy dargestellt und
die Vorschriften der Richtlinie tiiber eine Liste von AbstractPolicyRules. Vorschriften, die tiber
einen monolithischen Priifstand gepriift werden, werden dabei als MonotlithicPolicyRule
reprasentiert. Vorschriften, die mit Priifstinden gepriift werden, die aus bestehenden Priif-
werkzeugen zusammengesetzt werden, werden als CompositePolicyRule dargestellt. Die
Parameter einer AbstractPolicyRule werden in dieser deklariert und tiber die Annotation
ConfigurableParameter kenntlich gemacht. Eine Konfiguration einer AbstractPolicyRule
wird bei deren Registrierung im PolicyManager erstellt und ist als PolicyRuleConfiguration
der AbstractPolicyRule abrufbar. Die PolicyRuleConfiguration erlaubt es die Werte fiir die

68

8.2 Design

Parameter der Vorschrift, représentiert als ParameterConfigurations, zu setzen. Nachdem eine
Policy ausgewdhlt und deren AbstractPolicyRules eventuell konfiguriert wurden, kann die
Policy fiir den Inspektionsauftrag,der nun zur Durchfiihrung bereit ist, gesetzt werden,

Durchfiihrung von Inspektionsauftrigen

Die Durchfiihrung eines Inspektionsauftrags wird wie gewohnt {iber den FrontDesk gestartet.
Die Anfrage zur Durchfithrung wird {iber den InspectionManager und den TechnicalManager
an den TestBayManager weitergeleitet. Dieser ist nun dafiir zustindig ein Priiffeld, dar-
gestellt durch die Klasse TestBay, aufzubauen, das der konfigurierten Policy aus dem
InspectionRequest entspricht. Der TestBayManager kennt die Zuordnung von Vorschriften zu
monolithischen Priifstinden und kann fiir Vorschriften, die nicht iiber monolithische Priifstinde
gepriift werden, den Priifstand aus den vorhandenen Priifwerkzeugen zusammensetzen. Fiir
jede Vorschrift wird der entsprechende Priifstand mit den getétigten Einstellungen konfiguriert
und zum Priiffeld hinzugefiigt. Die Klasse TestBay hélt den Inspektionsauftrag und das
zugehorige Spreadsheet-Inventar, das fiir alle Priifstinde zugénglich ist. Sie ist auflerdem
dafiir zustdndig die Priifstinde der Reihe nach abzufahren und die gefundenen Verstof3e zu
sammeln.

Verstofle werden durch Implementierungen der Schnittstelle IViolation realisiert. Dabei existie-
ren die Spezialisierungen ISingleViolation und IGroupViolation um einzelne Verstofie und
Gruppen von Verstofien darstellen zu konnen. Jeder Verstof3 enthdlt dabei die Vorschrift die ver-
letzt wurde, das verursachende Element, sowie eine Beschreibung des Verstofses. Aufierdem wird
jeder Verstofs entsprechend der gepriiften Vorschrift klassifiziert und unter Bertiicksichtigung
der eingestellten Gewichtung hinsichtlich seiner Schwere bewertet. Eine Verstofs-Gruppe kann
dabei beliebig viele Einzelverstofse enthalten und ein Element angeben, das die verursachenden
Elemente seiner Mitglieder enthalt.

Gesammelt werden die gefundenen Verstofse eines Priifstands in einer ViolationList, die
auch die Erstellung von Verstofs-Gruppen tibernimmt. So kann einer ViolationList ein
ViolationGroupor-Objekt tibergeben werden, der erkennt welche Verstofse zu einer Gruppe
zusammengefasst werden miissen und diese Gruppe entsprechend erstellt. Priifstinde geben eine
solche ViolationList als Ergebnis aus, welche vom Priiffeld in der Container-Klasse Findings
gesammelt werden. Nachdem alle Priifstinde ihre Priifungen durchgefiihrt haben, wird das
Findings-Objekt dem Inspektionsauftrag hinzugefiigt. Der Nutzer der Inspektions-Werkstatt
kann nun alle gefundenen Verstofie als Ergebnisse des Inspektionsauftrag abrufen und diese
analysieren.

Inspektionsbericht erstellen

Zum Abschluss des Inspektionsauftrags kann fiir diesen ein Bericht erstellt werden, der die wich-
tigsten Information zu der Konfiguration des Auftrags zusammenfasst, sowie die Details zu allen
gefunden Verstofien enthélt. Dazu muss iiber den FrontDesk der Pfad zu dem Ort angegeben
werden, an dem der Bericht erstellt werden soll. Daraufhin wird von der I0-Komponente eine
Jhmtl-Datei unter dem Namen des Inspektionsauftrags erstellt, die den Bericht enthalt.

69

8 Umsetzung

8.2.3 Verwaltung der Inspektionswerkstatt

Zur Erweiterung des Priifungsangebotes konnen mit SIF neue Richtlinien aus bestehenden
Vorschriften zusammengestellt werden und iiber die Implementierung von neuen Priifstinden
neue Vorschriften angeboten werden. In diesem Abschnitt wird beschrieben, wie dies technisch
ablauft.

Erstellung neuer Richtlinien

Zur Erstellung von neuen Richtlinien muss eine neue Instanz der Klasse Policy erstellt wer-
den. Dabei muss fiir das Policy-Objekt ein Name, eine Beschreibung und der Name des
Autors gesetzt werden. Uber den Frontdesk kénnen dann alle registrierten Vorschriften als
AbstractPolicyRules abgerufen werden. Diese enthalten bereits eine initiale Konfiguration mit
den Werten, die der Ersteller dieser Vorschrift als Standard angegeben hat. Der Ersteller einer
neuen Richtlinie wéhlt eine beliebige Anzahl dieser Vorschriften aus, kann diese nach Bedarf
vorkonfigurieren, und fiigt sie der neu erstellen Policy hinzu. Die neu erstellte Policy kann
dann iiber den FrontDesk beim PolicyManager registriert werden und ist nun fiir die Priifung
von Spreadsheets verfiigbar.

Erstellung neuer Vorschriften

Zusétzlich zur Erstellung neuer Richtlinien kdnnen auch neue Vorschriften erstellt und zur
Auswahl fiir Richtlinien verfiigbar gemacht werden. Es wird dabei zwischen solchen Vor-
schriften unterschieden, die von monolithischen Priifstinden tiberpriift werden, und solchen,
die mit zusammengesetzten Priifstinden tiberpriift werden. Technisch wird das durch die
Klassen MonolithicPolicyRule und CompositePolicyRule geldst, die beide von der Klasse
AbstractPolicyRule ableiten. Um das Priifangebot der Inspektionswerkstatt um eine weitere
Priifung zu erweitern, muss eine Spezialisierung dieser Klassen implementiert werden, sowie
geeignete Priifmittel realisiert werden, die die Finhaltung der dadurch definierten Vorschrift
tiberpriifen.

MonolithicPolicyRules benotigten dabei als Priifmittel einen monolithischen Priifstand,
umgesetzt als Spezialisierung von MonolithicTestFacility, und zur Priifung von
CompositePolicyRules werden ein oder mehrere Priifwerkzeuge, umgesetzt als Spezia-
lisierungen von AbstractTestInstrument, benotigt.

Zur Erstellung einer neuen Vorschrift, unabhdngig von deren Typ, sollte fiir die Spezialisierung
von AbstractPolicyRule ein Name, eine Beschreibung des Hintergrunds, eine Anleitung zur
moglichen Behebung von Verstofien gegen diese Vorschrift und der Name des Autors angegeben
werden. Auflerdem ist es moglich der Vorschrift eine Kategorie zuzuweisen, der die entdeckten
Verstofse zugewiesen werden. Zusétzlich besteht die Moglichkeit einen Gewichtungsfaktor
anzugeben der fiir die Bewertung der Schwere von Verstofien verwendet wird.

70

8.3 Implementierung

8.3 Implementierung

In diesem Abschnitt soll beschrieben werden welche Funktionalitdt bisher umgesetzt wurde, und
was aus Zeitgriinden noch nicht implementiert werden konnte.

8.3.1 Model

Das Basismodell wurde bisher nur so weit umgesetzt, wie dies fiir die Umsetzung der geplanten
Priiffung notwendig war. Daher sind noch nicht alle Basis-Elemente eines Spreadsheets als Daten-
strukturen modelliert, jedoch wurden bereits einige Spezial-Elemente, beispielsweise InputCell
und OutputCell modelliert und tiber ElementScanner erkannt. AufSerdem werden bisher nur
Spreadsheets in den Dateiformaten .xls und .xlsx unterstiitzt, da nur eine ISpreadsheetIO fiir
das Einlesen dieser Formate implementiert wurde.

8.3.2 Priifungen

Fiir die erste Ausbaustufe wurden Priifungen fiir die drei Vorschriften Konstanten in Formeln,
Leserichtung und Formelkomplexitit implementiert. Dabei wurden alle Priifungen mittels monoli-
thischer Priifstande als Spezialisierungen von MonolithicTestFacility umgesetzt.

Konstanten in Formeln Zur Priifung dieser Vorschrift werden alle Vorkommnisse des Basis-
Elements Formula, die iiber einen entsprechenden Scanner dem Spreadsheet-Inventar
hinzugefiigt wurden, untersucht. Instanzen von Formula enthalten dabei fiir jeden Bestand-
teil der Formel ein eigenes Objekt der Schnittstelle ITokenElement. So werden konstante
Werte als ScalarConstant dargestellt und es kann fiir jede Formel tiberpriift werden, ob
es sich bei einem der enthalten ITokenElemente um eine Instanz von ScalarConstant
handelt. Da jedes ScalarConstant-Objekt, den Typ und den Wert der Konstante speichert,
ist es moglich bestimmte Werte oder Typen bei der Priifung zu ignorieren. So kann tiber
den konfigurierbaren Parameter ignoredConstants in der zugehdrigen Représentation
der Vorschrift, NoConstantsInFormulasPolicyRule, eine Liste von Werten gesetzt werden,
die bei der Priifung durch die NoConstantsInFormulasTestFacilitiy ingoriert werden sollen.
Zudem kann iiber ignoredFunctions eine Liste mit den Namen der Funktionen angegeben
werden, in denen die Verwendung beliebiger Konstanten erlaubt sein soll.

Leserichtung Die Reprasentation dieser Vorschrift erfolgt dabei als ReadingDirectionPolicyRule,
deren Priifung in der ReadingDirectionTestFacility durchgefiihrt wird. Die Priifung
wird wiederum auf der Basis des Spreadsheet-Inventars durchgefiihrt. So werden alle
registrierten Referenzen, die als AbstractReference ins Inventar aufgenommen wurden,
der Reihe nach untersucht. Jede AbstractReference enthilt dabei die referenzierende
Zelle und das referenzierte Element. Von beiden Elementen kann dann ihre Position
im Spreadsheet erfragt werden, um anschlieffend horizontal und vertikal verglichen

71

8 Umsetzung

zu werden. Dabei ist {iber zwei Parameter der ReadingDirectionPolicyRule separat
einstellbar, ob die Leserichtung von links nach rechts und von oben nach unten eingehalten
werden muss.

Formelkomplexitit Analog zu den anderen Vorschriften erfolgt die Reprasentation der

72

Vorschrift durch die Klasse FormulaComplexityPolicyRule und die Priiffung wird mit
FormulaComplexityTestFacility durchgefiihrt Uber die Reprasentation der Vorschrift
kann dabei konfiguriert werden, wie viele Operationen eine Formel maximal enthalten
darf und wie hoch die maximale Schachtelungstiefe sein soll. Als Operation werden dabei
alle Funktionen und Operanden gezihlt und die maximale Schachtelungstiefe, ergibt
sich aus der maximalen Anzahl an Funktionen, die einander kaskadierend aufrufen.
Gepriift wird dabei wiederum anhand der Liste von Formula-Objekten, wobei fiir jedes
Formula-Objekt, die Anzahl an Operationen gezédhlt wird und iiber eine Methode der
Klasse, die maximale Schachtelungstiefe berechnet wird. Die Werte werden dann mit
den Vorgaben der konfigurierten Vorschrift verglichen und bei Abweichungen wird ein
entsprechendes Verstof3-Objekt mit der Angabe des Formel Objekts und den gefundenen
Werten erstellt.

Kapitel 9

Evaluation

Im vorherigen Kapitel wurde die Umsetzung des Konzepts einer Inspektions-Werkstatt und die
Realisierung eines prototypischen Priifzentrums fiir die Priifung von Spreadsheets beschrieben.
In diesem Kapitel soll nun beschrieben werden, wie das mit SIF entwickelte prototypische
Priifwerkzeug Example Testing Center (ETC) evaluiert wurde, um dessen Eignung fiir die Priifung
von Vorschriften zu untersuchen. Dazu wurde ETC fiir die Uberpriifung von Spreadsheets
beziiglich drei Vorschriften verwendet und anschliefiend wurden die Ergebnisse mit denen von
bestehenden kommerziellen statischen Analysewerkzeugen verglichen.

9.1 Rahmenbedingungen

Im diesem Abschnitt werden die Rahmenbedingungen beschrieben, innerhalb deren die Eva-
luation durchgefiihrt wurde. Dazu werden die Eigenschaften und Funktionen der untersuchten
Priifwerkzeuge vorgestellt und miteinander verglichen. Anschlieffend werden die Spreadsheets
kurz vorgestellt, die fiir die Evaluation verwendet wurden. Zuletzt wird erldutert, wie die
Evaluation dabei im Detail ablief.

9.1.1 Priifwerkzeuge

Die Zahl der kommerziellen Produkte, die versprechen das Qualitdts-Problem von Spreadsheets
zu lindern oder sogar zu beseitigen, nahm in den vergangenen Jahren stetig zu. Bei der Mehrheit
dieser Produkte handelt es sich dabei um Audit-Werkzeuge, die die Priifung von Spreadsheets
unterstiitzen (Siehe Kapitel 5). Eine Auswahl an Priifwerkzeugen, die wie die erste Ausbaustufe
von SIF statische Priifungen von Spreadsheets anbieten, wurde im Rahmen dieser Evaluation mit
ETC verglichen.

73

9 Evaluation

Auswahl

Das Hauptkriterium fiir die Auswahl der untersuchten Priifwerkzeuge war dabei deren Verfiig-
barkeit. Das heifit, es wurden nur solche Priifwerkzeuge in Betracht gezogen fiir die zumindest
eine kostenlose Probeversion verfiigbar war, die ohne Registrierung von der Seite des Herstellers
bezogen werden konnte. Aufierdem wurde bei der Auswahl berticksichtigt, ob die Priifwerk-
zeuge vergleichbare Vorschriften zur Uberpriifung anbieten, wie sie in dieser Arbeit umgesetzt
wurden. Die Wahl der Priifwerkzeuge fiel zum einen auf das Priifwerkzeug Spreadsheet Professio-
nal', welches auch in [PBL.09] verwendet wird, und zum anderen auf das Priifwerkzeuge Rainbow

3

Analyst®. Dabei wurden jeweils die verfiigbaren Probeversionen® verwendet, die einen vollen

Funktionsumfang bieten, aber nur eine eingeschrankte Nutzungsdauer erlauben.

Ubersicht

Die Eigenschaften und Funktionen dieser Werkzeuge werden in Abbildung 9.1 prasentiert und
mit denen von ETC gegentibergestellt. Eintrage, die mit einem Stern (*) versehen sind, deuten
dabei an, dass diese Funktion oder Eigenschaft von ETC zwar noch nicht oder nicht ausreichend
erfiillt ist, deren Implementierung jedoch mit Hilfe von SIF geplant oder bereits umsetzbar ist.

Rainbow Analyst Spreadsheet ETC
Professional

Eigenschaften

/ "4 X* Visualisierungsunterstiitzung

v 4 X X* Dynamische Priifungen

X X / Open Source

X X / Standalone

X X / Erweiterbar

X X / Unterstiitzt mehrere Datei-Formate
Funktionen

/ 7 XK* Spreadsheet Zusammenfassung

5 25 3* Anzahl Giberpriifbarer Vorschriften

/ '4 / Auswahl von Vorschriften

X X / Konfiguration von Vorschriften

v 4 v ’ Gruppierung von VerstdBen

X X 7/ Gewichtung von VerstoBen

X X / Detailansicht von VerstBen

"4 7 v 4 Report aller VerstoBe

Abbildung 9.1: Eigenschaften und Funktionen der untersuchten Priifwerkzeuge

1http ://www.spreadsheetinnovations.com

2http ://www.themodelanswer.com

*Das Werkezug Rainbow Analyst wurde in der Version 5.1 verwendet; das Werkzeug Spreadsheet Professional wird
vom Hersteller ohne die Angabe einer Versionsnummer angeboten.

74

http://www.spreadsheetinnovations.com
http://www.themodelanswer.com

9.1 Rahmenbedingungen

9.1.2 Spreadsheets

Zur Evaluation der untersuchten Werkzeuge wurde eine kleine Auswahl von zwolf unterschied-
lichen Spreadsheets aus Real- und Laborumgebungen verwendet. Wie auch bei der Auswahl der
untersuchten Werkzeuge, war die Verfiigbarkeit der Spreadsheets hierbei ein Hauptkriterium.
Gleichzeitig wurde jedoch versucht, Spreadsheets aus moglichst unterschiedlichen Bereichen aus-
zuwdhlen, die in ihrer Grofie und Komplexitdt dem Durchschnitt der in der Praxis verwendeten
Spreadsheets [IR05] entsprechen.

Die Dateien spreadsheet_sample_01 bis spreadsheet_sample_05 stammen aus einem Experiment,
das in der Abteilung Software Engineering am Institut fiir Softwaretechnologie der Universitét
Stuttgart durchgefiihrt wurde. Dabei mussten die Probanden ausgehend von einer textuellen
Aufgabenstellung ein Spreadsheet erstellen, mit dem Pkws beziiglich unterschiedlich gewichtba-
rer Kriterien miteinander verglichen werden konnten. Bei spreadsheet_sample_06 handelt es sich
um ein frei im Internet verfiigbares Spreadsheet zur Analyse von Residualeinkommen?, das auf
der Seite des CPA-Journals® zum Herunterladen angeboten wird. Die Datei spreadsheet_sample_07
ist ein Spreadsheet aus der Praxis zum Vergleich von Reifengrofien, das der Abteilung Software
Engineering der Universitit Stuttgart zur Verfiigung gestellt wurde. Und bei den Spreadsheets
spreadsheet_sample_08 bis spreadsheet_sample_12 handelt es sich wiederum um frei im Internet
verfligbare Spreadsheets, die auch Teil des EUSES Spreadsheet Corpus [IR05] sind.

Dabei wurde fiir die untersuchten Spreadsheets die Anzahl der Worksheets, Zellen und Formeln
gemessen (Siehe Abbildung 9.2). Die verwendeten Spreadsheets sind aufierdem auch auf dem
beigefiigten Datentréger (sieche Abschnitt A.1) zu finden.

spreadsheet_sample_ | 01 02 03 04 05 06 07 08 09 10 11 12| @ Median Max Min

Worksheets 3 3 3 5 3 5 1 4 1 4 4 2 3.2 3 5 1
Zellen 397 497 214 741 220 315 170 323 705 884 352 247|422.1 337.5 884 170
Formeln 166 126 27 241 30 74 50 71 80 125 25 40 | 92.3 725 241 25

Abbildung 9.2: Allgemeine Statistiken zu den Spreadsheets der Evaluation

9.1.3 Uberpriifte Vorschriften

Fiir die Evaluation wurden die drei Vorschriften mit den ausgewahlten Werkzeugen tiberpriift,
die auch in dieser Arbeit als Priifverfahren umgesetzt wurden (Siehe Absatz 7.1). Zusitzlich
wurde die Vorschrift Konstanten in Formeln ebenfalls mittels einer nichtmechanischen Inspektion
durch den Autor tiberpriift. Auf eine Uberpriifung aller Spreadsheets auf die beiden anderen
Vorschriften wurde aus Aufwandsgriinden verzichtet. Alle untersuchten Priifwerkzeuge bieten

4http://www.nysscpa.org/cpaj0urna1/2®®1/®7®®/features/f®746®l.htm
5www.cpajournal.com/download/rimodel.xls

75

http://www.nysscpa.org/cpajournal/2001/0700/features/f074601.htm
www.cpajournal.com/download/rimodel.xls

9 Evaluation

die ausgewdhlten Vorschriften an, jedoch in leichten Abwandlungen und ohne eine genaue
Definition der Priifkriterien. So tiberpriifen die beiden Priifwerkzeuge Spreadsheet Professional
und Rainbow Analyst Spreadsheets nur auf numerische Konstanten. Zudem meldet Rainbow
Analyst Zeilen- und Reihenunterschiede bei Referenzen getrennt. Beztiglich der dritten Vorschrift
Formelkomplexitit gibt leider keines der beiden Werkzeuge an, welche Eigenschaften eine Formel
besitzen muss, um nicht als komplexe Formel durch einen Verstofs gemeldet zu werden.

9.1.4 Ablauf

Es wurde vor allem eine quantitative Analyse der gefundenen Verstofle durchgefiihrt, eine
detaillierte Untersuchung von einzelnen Verstofien fand dabei nicht statt. Zu diesem Zweck
wurden die ausgewihlten Spreadsheets mit den untersuchten Werkzeugen gepriift. Der Ablauf
der Vorgéange soll in den folgenden Abschnitten kurz beschrieben werden.

Nichtmechanische Inspektion

Die Inspektion der Spreadsheets durch den Verfasser dieser Arbeit erfolgte am Rechner unter
Verwendung der Spreadsheet-Software OpenOffice.org Calc. Die Priifung der Spreadsheets erfolgte
dabei nach der in Absatz 7.1 gegebenen Definition und wurde Zelle fiir Zelle durchgefiihrt. Da
die tiberpriifte Vorschrift auf Zellen mit Formeln basiert, wurden nur Zellen mit Formelinhalten
inspiziert. Daher wurde zur Unterstiitzung die Funktion Value Highlighting der Spreadsheet-
Software aktiviert, die Zellen mit Formeln griin und Zellen mit numerischen Werten blau einfarbt.
Die Zellen wurden dabei pro Reihe von links nach rechts auf Verstofie untersucht und die Befunde
pro Worksheet festgehalten.

Priifung durch die statischen Analysewerkzeuge

Die Evaluation der untersuchten Werkzeuge verlief jeweils auf dhnliche Art und Weise. Jedoch
wurden fiir ETC zwei Evaluationsdurchgiange ausgefiihrt, da es als einziges der untersuchten
Werkzeuge eine Konfiguration der Vorschriften erlaubt. Die Durchgénge beliefen sich auf die
Aufgaben Konstanten in Formeln und Formelkomplexitiit.

Jedoch wurden fiir ETC zwei Evaluationsdurchgange ausgefiihrt, da es als einziges der untersuch-
ten Werkzeuge eine Konfiguration der Vorschriften erlaubt. Die Durchgénge beliefen sich auf die
Aufgaben Konstanten in Formeln und Formelkomplexitit. Ein Durchgang mit den Standardeinstel-
lung von ETC und ein weiterer mit benutzerdefinierten Einstellungen. Die benutzerdefinierten
Einstellungen wurden dabei durch den Autor wie folgt festgelegt: Fiir die Vorschrift Konstanten
in Formeln wurden Vorkommnisse der beiden numerischen Konstanten 0 und 1 ignoriert und
auflerdem durften die Funktionen INDEX und INDIRECT beliebige Konstanten verwenden. Fiir
die Vorschrift Formelkomplexitit wurden die Anzahl an erlaubten Operationen auf acht und die er-
laubte Verschachtelungstiefe auf drei angehoben. Die Vorschrift Leserichtung wurde unverandert
verwendet. Ein Durchgang gestaltete sich dabei fiir ein Werkzeug wie folgt:

76

9.2 Ergebnisse

Vorbereitung Zunichst wurde das Werkzeug fiir die Durchfiihrung der Evaluation vorbereitet.
So wurden die beiden Werkzeuge Rainbow Analyst und Spreadsheet Professional zunéchst
nach den Anweisungen der Hersteller als Plugins fiir die Spreadsheet-Software Microsoft
Office Excel 2003 installiert. ETC hingegen musste nicht installiert werden, da es sich um eine
alleinstehende Anwendung handelt, die auch ohen eine Installation ausgefiihrt werden
kann. Jedoch musste eine Richtlinie erstellt werden, die die drei untersuchten Vorschriften
enthalt.

Konfiguration Im Anschluss an die Vorbereitung wurden alle untersuchten Spreadsheets der
Reihe nach jeweils mit einem Werkzeug tiberpriift. ETC wurde dazu gestartet und es wurde
ein neuer Inspektionsauftrag mit dem zu priifenden Spreadsheet angelegt. Fiir die beiden
anderen Werkzeuge wurde dazu Microsoft Office Excel 2003 gestartet und das jeweilige
Spreadsheet gedffnet. Anschlieffend wurden die Priifwerkzeuge fiir die Durchfiihrung kon-
figuriert. Bei ETC wurde dazu die Inventarisierung durchgefiihrt und anschlieffend wurde
die vorhandene Richtlinie mit den drei Vorschriften ausgewihlt. Im zweiten Durchgang fiir
ETCwurden zudem die benutzerdefinierte Einstellungen vorgenommen. Fiir die beiden
anderen Werkzeuge wurden iiber die zur Verfiigung gestellten Symbolleisten die drei zu
iiberpriifenden Vorschriften ausgewahlt, beziehungsweise andere verfiigbare Vorschriften
abgewdhlt.

Durchfiihrung und Analyse Anschlieffend wurde die Durchfiihrung der Priifung gestartet. Da-
bei wurde jeweils die Variante gewéhlt, die einen Bericht iiber die gefundenen Verstofse
liefert. Im Fall von ETC liegt dieser Bericht als .html-Datei vor. Die beiden anderen Werk-
zeuge, erzeugen ein weiteres Spreadsheet. Die Berichte zu den Priifungen der Spreadsheets
wurden dabei gespeichert und anschliefSend durch den Verfasser dieser Arbeit analysiert.
Die dabei entstandenen Berichte sind auf dem beigefiigten Datentrager gespeichert (Siehe
Abschnitt A.1). Bei der Analyse wurde dabei die Anzahl der einzelnen Verstofie als auch
die Anzahl der gefundenen Gruppierung notiert. Die quantitativen Ergebnisse fiir einzelne
Verstofse werden dabei im ndchsten Abschnitt dargestellt; die Darstellung der Ergebnisse
fiir gefundene Gruppierung wurde in Abschnitt A.2 verlagert.

9.2 Ergebnisse

In den folgenden Abschnitten werden einige der Ergebnisse der Evaluation in Tabellenform
prasentiert. Fiir die Prasentation der Ergebnisse werden dabei folgende Abkiirzung verwendet:

SP bezeichnet das Priifwerkzeug Spreadsheet Professional.
RA bezeichnet das Priifwerkzeug Rainbow Analyst.
ETC bezeichnet das Priifwerkzeug Example Testing Center

ETC(C) bezeichnet das Priifwerkzeug Example Testing Center bei dem die Vorschriften mit den
benutzerdefinierten Einstellungen konfiguriert wurden.

77

9 Evaluation

NMI bezeichnet die nichtmechanische Inspektion der Spreadsheets durch den Verfasser dieser
Arbeit.

Dabei zeigen die Tabellen die Anzahl der einzelnen Verstoflen an, die bei den unterschiedli-
chen Priifungen der einzelnen Vorschriften gefunden wurden. Aufierdem wird der jeweilige
Durchschnitts-, Median-, Minimal- und Maximalwert tiber alle durchgefiihrten Priifungen pro
Spreadsheet angegeben. Wurden bei Priifungen eines Spreadsheets die gleiche Anzahl an Versto-
Ben gefunden, wurden die Zellen der Tabelle mit der htchsten Anzahl an Ubereinstimmungen
griin markiert.

Konstanten in Formeln‘ SP RA ETC ETC(C) NMI ‘ @ Median Max Min

spreadsheet_sample_01 67 67 0
spreadsheet_sample_02 126 126 126
spreadsheet_sample_03 27 27 0
spreadsheet_sample_04 0 0 0
spreadsheet_sample_05 30 30 0
spreadsheet_sample_06 18 18 6
spreadsheet_sample_07 20 20 20
spreadsheet_sample_08 34 34 0
spreadsheet_sample_09 5 5 2
spreadsheet_sample_10 0 4 0
spreadsheet_sample_11 9 0
spreadsheet_sample_12 15 16 5

Abbildung 9.3: Evaluationsergebnisse der Vorschrift Konstanten in Formeln

Leserichtung | SP RA ETC || @ Median Max Min

spreadsheet_sample_01 117 57 27 117 27

45 33 27 45 27
135 63 27 135 27
396 245 219 396 119
120 51 30 120 3

spreadsheet_sample_02
spreadsheet_sample_03
spreadsheet_sample_04
spreadsheet_sample_05

spreadsheet_sample_06 12 21 12 46

spreadsheet_sample_07 13 5 30

spreadsheet_sample_08 55 42 37 55 34
spreadsheet_sample_09 2 0 6 0
spreadsheet_sample_10 10 7 16 7
spreadsheet_sample_11 1 0 4 0
spreadsheet_sample_12 22 16 17 22 9

Abbildung 9.4: Evaluationsergebnisse der Vorschrift Leserichtung

78

9.3 Analyse

Formelkomplexitit | SP

spreadsheet_sample_01
spreadsheet_sample_02
spreadsheet_sample_03
spreadsheet_sample_04
spreadsheet_sample_05
spreadsheet_sample_06
spreadsheet_sample_07
spreadsheet_sample_08
spreadsheet_sample_09
spreadsheet_sample_10
spreadsheet_sample_11
spreadsheet_sample_12

Abbildung 9.5: Evaluationsergebnisse der Vorschrift Formelkomplexitit

9.3 Analyse

RA

ETC ETC(C)] @ Median Max Min
54 27 67 0
6 3 6 0
17 30 0
39 48 0
45 60 24
7 14 1
0 0 0
15 36 1
0 0 0
8 18 0
2 2 0
5 0

In diesem Abschnitt sollen nun die Ergebnisse der Evaluation analysiert werden. Dabei wird
auf einzelne interessante Ergebniswerte eingegangen und anschliefSend ein allgemeines Fazit

gezogen.

9.3.1 Auffillige Werte

Bei der Betrachtung der Ergebnisse stechen einige Werte besonders heraus, diese sollen nun nach
den einzelnen Vorschriften geordnet vorgestellt und kommentiert werden.

Formelkomplexiiit Bei dieser Vorschrift ergaben sich sehr viele Ubereinstimmungen zwischen
den Ergebnissen der einzelnen Priifungen. So ist auch die Anzahl der gefundenen Versto-
f3e, die bei der nichtmechanischen Inspektion gefunden wurden, fast immer mit denen
der Priifwerkzeuge identisch. Auffillig ist dabei auerdem die hohe Anzahl an Uberein-
stimmungen zwischen der konfigurierten Priifung von ETC und der Priifung durch das
Werkzeug Rainbow Analyst. Das liegt mit hoher Wahrscheinlichkeit daran, dass das Priif-
werkzeug Rainbow Analyst standardmiflig die Konstanten 0 und 1 ignoriert, ohne jedoch
darauf hinzuweisen. Dennoch existieren Unterschiede zwischen den Ergebnissen, da die
konfigurierte Priifung von ETC aufierdem noch Konstanten in den Formeln INDEX und

INDIRECT zulésst.

Leserichtung Die Priifung durch ETC lieferte bei der Vorschrift Leserichtung grundsatzlich ho-
here Werte als die beiden anderen Werkzeuge. Dies ist wohl damit zu begriinden, dass
die anderen Werkzeuge scheinbar Referenzen auf Worksheets, die vor dem Worksheet

79

9 Evaluation

der referenzierenden Zelle liegen, nicht als Verstofs melden. Weiterhin ist die Anzahl der
Verstofie, die durch Rainbow Analyst gefunden wurden, meist hoher, als die von Spreads-
heet Professional. Eine Begriindung dafiir konnte nicht gefunden werden, da die Kriterien
entsprechenden Vorschriften zur Leserichtung Row differences und Column differences des
Werkzeugs Rainbow Analyst nicht definiert werden.

Formelkomplexitit Bei der Analyse der Ergebnisse der Vorschrift Formelkomplexitit fallt auf,
dass die einzelnen Definitionen dieser Vorschrift sich recht stark unterscheiden miissen, da
bei fast allen Spreadsheets ein Priifwerkzeug keine oder nur eine sehr geringe Anzahl an
Verstofsen meldete. Dennoch gibt es auch hier Spreadsheets bei denen die gleiche Anzahl
an Verstofien von unterschiedlichen Werkzeugen gemeldet wurde. Aufféllig ist aufSerdem,
dass die Ergebnisse bei der konfigurierten Priifung von ETC teilweise recht stark von
denen der unkonfigurierten Priifung abweichen, obwohl die Einstellungen nur in geringem
Umfang verdndert wurden. Dies zeigt, wie schnell hohe falsch positiv Raten entstehen
konnen, wenn die Vorschriften nicht optimal an den jeweiligen Nutzungskontext angepasst
sind, oder gar nicht angepasst werden konnen.

9.3.2 Zusammenfassung

Die Ergebnisse der Evaluation zeigen, dass die Priifwerkzeuge in den meisten Fillen eine
vergleichbare Anzahl an Verstof3en finden. Des Weiteren stimmt diese Anzahl auch hdufig mit
der Anzahl der Verstofse iiberein, die in der nichtmechanischen Inspektion gefunden wurden.
Gleichzeitig zeigen die Ergebnisse jedoch auf, dass bei den schwieriger zu {iberpriifenden
Vorschriften Leserichtung und Formelkomplexitiit die Ubereinstimmungen geringer ausfallen als
bei der einfachen Vorschrift Konstanten in Formeln. Dies bestdtigt auch fiir Spreadsheets die
Erkenntnis aus Unterabschnitt 3.5.2, dass unterschiedliche statische Analysewerkzeugen haufig
unterschiedliche Verstofse melden.

Natiirlich kann eine reine quantitative Analyse keinen Aufschluss dariiber geben, ob bei den
gefundenen Verstofsen, tatsdchlich Abweichungen von den Vorgaben vorliegen. Jedoch lasst
die relativ hohe Ubereinstimmung zwischen den Ergebnissen aller Priifungen vermuten, dass
insgesamt eine geringe Anzahl an unzutreffenden Befunden beziiglich der oben definierten
Vorschriften vorliegt. Weiterhin wird gezeigt, dass eine unterschiedliche Konfiguration einer
Vorschrift, die Ergebnisse stark beeinflussen kann. Dadurch wird die Gefahr verdeutlicht, dass
bei nicht konfigurierbaren Werkzeugen hohe falsch positiv Raten auftreten konnen, wenn sich
die gewtinschten Vorgaben von denen, die vom Werkzeug tiberpriift werden, unterscheiden. Es
kann durch diese Evaluation jedoch nicht geklart werden, ob die gefundenen Verstofie dabei
helfen konnen, Fehler zu entdecken, die zu falschen Ergebnissen fiihren. Zu diesem Zweck
miissten weitere Auswertungen stattfinden, bei denen die Anforderungen an die untersuchten
Spreadsheets bekannt sind und die Auswirkungen gemeldete Verstof3e im Detail untersucht
werden. Das Fazit dieser Evaluation ist jedoch, dass die Ergebnisse des prototypischen Werkzeugs
ETC mit denen von kommerziellen Priifwerkzeugen vergleichbar scheinen und fiir die iiberpriifte
Vorschrift Konstanten in Formeln sogar die hochste Ubereinstimmung mit der Anzahl der gefunden
Verstofle durch eine menschliche Priifung bieten.

80

Kapitel 10

Fazit

In diesem Kapitel soll eine Zusammenfassung dieser Arbeit und speziell der entstandenen Lo-
sung, dem Spreadsheet Inspection Framework, gegeben werden. Dazu werden die konzeptionellen
Vorteile von SIF préasentiert, aber auch dessen bestehenden Einschrankungen aufgelistet. An-
schlieflend wird diskutiert, wie die Spreadsheet Inspektions-Werkstatt weiter verbessert werden
kann und welche Erweiterungsmdoglichkeiten fiir sie bestehen.

10.1 Zusammenfassung

In dieser Arbeit wurde das Konzept einer Inspektions-Werkstatt fiir Spreadsheets erarbeitet,
das als technische Grundlage dienen soll, um systematische, werkzeug-unterstiitze Priifungen
von Spreadsheets durch Endbenutzer durchfithren zu konnen. Dabei sollen die Vorteile von
verschiedenen Priifungsarten genutzt werden, indem diese in einer verzahnten Art und Weise
angewendet werden. Gleichzeitig wurden die Fahigkeiten und das Wissen von Endbenutzern
fir das Konzept berticksichtigt, in dem die angebotenen Priifungen in einem hohen Mafse
automatisch ablaufen und zu ihrer Durchfithrung kaum Priifwissen notwendig ist.

Die Umsetzung der Inspektions-Werkstatt wurde dabei als plattformunabhédngiges Java-
Framework mit dem Namen Spreadsheet Inspection Framework in mehreren Ausbaustufen geplant.
Mittels der Realisierung der ersten Ausbaustufe in dieser Arbeit wurde der Grundstein der
Inspektions-Werkstatt gelegt, indem es ermoglicht wird, Spreadsheets mittels statischer Priifun-
gen auf festlegbare und konfigurierbare Vorschriften zu {iberpriifen. Ahnlich wie bei Findbugs
wurde eine breite Anzahl an recht einfachen Techniken fiir die statische Analyse verwendet
und es wurden die Erkenntnisse aus dem Einsatz von statischen Analysewerkzeugen in der
traditionellen Software-Entwicklung in die Konzeption miteinbezogen. So wurde grofier Wert
darauf gelegt, dass die durchfiihrbaren Priifungen an den jeweiligen Nutzungskontext angepasst
werden kénnen, indem eigene Richtlinien aus bestehenden Vorschriften zusammengestellt, die
Vorgaben von Vorschriften konfiguriert und neue Vorschriften hinzugefiigt werden kénnen.
In dieser Arbeit wurde dabei die Architektur von SIF entworfen, sowie die notwendige Basis
implementiert, um die Priifungen fiir drei ausgewdhlte Vorschriften realisieren zu kénnen.
Zudem wurde die prototypische Anwendung Example Testing Center entwickelt, die als erstes

81

10 Fazit

Priifzentrum fiir Spreadsheets fungiert und einige Funktionen der Inspektions-Werkstatt tiber

eine rudimentére grafische Oberflache zuganglich macht. Bei der Evaluation von ETC mittels

einer kleinen Auswahl an Spreadsheets aus Real- und Laborumgebungen wurde gezeigt, dass

ETCin der Lage ist, vergleichbare Ergebnisse zu denen bestehender kommerzieller statischer

Analysewerkzeuge zu erzielen. Gleichzeitig bestehen durch die Verwendung von SIF, als Basis

tir die durchgefiihrten Priifungen die im folgenden Abschnitt beschriebenen konzeptionellen

Vorteile gegeniiber bestehenden statischen Priifwerkzeugen.

10.1.1 Konzeptionelle Vorteile

82

» Durch die Konzeption von SIF als Java-Framework, sowie die gewéahlte Architektur besteht

keine Bindung an ein bestimmtes Betriebssystem, eine bestimmte Spreadsheet-Software
oder ein bestimmtes Spreadsheet-Dateiformat. Als Folge daraus bestehen kaum Einschran-
kungen fiir die Verwendung von SIF, so dass ein breites Spektrum an Einsatzmoglichkeiten
gegeben ist.

Auch fiir die zu priifenden Spreadsheets bestehen geringe Voraussetzungen, um einer
Priifung mit SIF unterzogen zu werden, da nur eine korrekt gespeicherte Spreadsheet-Datei
benotigt wird. Aufserdem erfordert eine statische Priifung durch SIF nur einen geringen
Aufwand, da die Durchfiihrung der statischen Priifungen {iberwiegend automatisch erfolgt.

Das Framework bietet ein hohes Maf§ an Konfigurierbarkeit, so dass die durchgefiihrten
Priifungen an den jeweiligen Nutzungskontext angepasst werden konnen. So besteht die
Moglichkeit, dass in Unternehmen eigene Richtlinien fiir Spreadsheets erstellt werden
konnen, deren Uberpriifung dann mittels der Inspektions-Werkstatt erfolgt. Dabei sind
die Vorschriften der erstellten Richtlinien jedoch nicht nur auf die bereits implementierten
Vorschriften beschrankt, da neue Vorschriften der Inspektionswerkstatt hinzugefiigt und
deren Priifung tiber eine Schnittstelle realisiert werden kénnen. Auflerdem besteht die
Moglichkeit, die einzelnen Vorschriften einer Richtlinie an das jeweils zu iiberpriifenden
Spreadsheet anzupassen.

Diese mogliche Erweiterung des angebotenen Priifungsumfangs ist unter anderem auch
dadurch moglich, da es sich bei dem Spreadsheet Inspection Framework um ein Open-Source-
Projekt handelt.

SIF ist nicht nur fiir die Entdeckung von Fehlern mit statischen Fehlern konzipiert, sondern
bietet Erweiterungsmoglichkeiten fiir dynamische Priifungen und die Unterstiitzung von
nichtmechanischen Priifungen an. So kann beispielsweise durch die Visualisierung des
Spreadsheets und der gefundenen Verstofie, sowie durch ein geeignetes Testverfahren die
Fehlerentdeckung in Spreadsheets weiter verbessert werden.

10.2 Ausblick

10.1.2 Einschrankungen

Neben den bestehenden Vorteilen unterliegt die erste Ausbaustufe von SIF und das prototypi-
sche ETCjedoch auch einigen Einschrankungen, die durch den bisherigen Fortschritt bei der
Umsetzung des Konzept bedingt sind.

Bisher wurde nur eine geringe Anzahl an Vorschriften und den zugehorigen Priifungen
realisiert.

Es werden bislang nur die Excel-Dateiformate .xls und .xIsx zur Priifung unterstiitzt und
die Reprasentation von Spreadsheets und dessen Basiselementen ist noch unvollstandig.

Die Klassifikation von Fehlern bedarf einer Verbesserung. Es wurde zwar eine technische
Losung konzipiert, um die Verstofie von Vorschriften in einer Fehlertaxonomie einzuordnen,
jedoch wurde bisher noch kein Klassifikationsschema implementiert. Der Grund dafiir ist
das Fehlen einer entsprechenden Taxonomie, die sich zur Klassifikation von Befunden eines
statischen Analysewerkzeugs eignet. Zwar wurde eine mogliche eigene Taxonomie fiir
Verstof3e aufgestellt (Siehe Abbildung A.5), diese ist jedoch noch vollkommen unerprobt
und daher fiir diesen Zweck ungeeignet.

Verbesserungsbedarf besteht aufserdem bei der Erhebung von geeigneten Metriken, die bei
der Beurteilung der Qualitdt des gepriiften Spreadsheets behilflich sein kénnten. So werden
zwar die Grunddaten fiir solche Metriken in Form des Spreadsheet-Inventars bereits erfasst,
sinnvolle Metriken, wie etwa die Rate aller Zellen fiir die ein Verstof$ gemeldet wurde,
werden jedoch noch nicht erfasst.

Ein weiterer Kritikpunkt ist sicherlich die geringe empirische Basis auf der die Evalua-
tion von ETC durchgefiihrt wurde. Zwar zeigen die Ergebnisse der Evaluation, dass die
gefundene Anzahl der Verstofse mit denen kommerzieller Priifwerkzeuge vergleichbar ist,
jedoch wurden die VerstofSe nicht beziiglich ihrer Eignung untersucht, funktionale Fehler
aufzudecken. So ist eine weitere Evaluation notwendig, um die Effektivitat und Effizienz
von SIF und den damit realisierbaren Priifzentren zu belegen.

Das prototypisch umgesetzte Priifzentrum ETC ist bislang noch ungeeignet, um von End-
benutzern verwendet zu werden. So fehlt es an einer geeigneten Oberfliche, die alle
Funktionen von SIF fiir den Benutzer verfiigbar macht, genauso wie an einer geeigneten
Fehlerbehandlung. Auflerdem entfaltet das Priifzentrum seine vollen Nutzen erst, wenn
die gefundenen Verstof3e entsprechend visualisiert werden.

10.2 Ausblick

In dieser Arbeit ist die erste Ausbaustufe des Spreadsheet Inspection Framework sowie des pro-
totypischen Priifwerkzeugs Example Testing Center entstanden. Aufgrund der begrenzten Zeit

83

10 Fazit

wurden nur einige Aspekte des Gesamtkonzepts einer Spreadsheet-Inspektions-Werkstatt fiir
die erste Ausbaustufe umgesetzt. So handelt es sich bei SIFund ETC jeweils um einen Prototyp
und nicht um fertige Produkte. Daher besteht noch eine Menge von Punkten, deren Umsetzung
oder Erweiterung zur Verbesserung der mit SIF und ETC durchfiihrbaren Priifungen beitragen
konnten.

10.2.1 Erweiterung und Verbesserung der bestehenden Funktionalidt

Um das Potential einer Inspektions-Werkstatt fiir Spreadsheets zu zeigen, wurden in dieser Arbeit
die Priifverfahren fiir drei Vorschriften implementiert. Dabei wurde auch bei der Implementie-
rung des Models von SIF so vorgegangen, dass zuerst nur die Spreadsheet-Elemente modelliert
und umgesetzt wurden, die fiir die Realisierung dieser Priifverfahren notwendig waren. Eine
Erweiterung des Modells, der angebotenen Priifungen und der unterstiitzen Dateiformate wére
daher mit Sicherheit lohnenswert, um das mogliche Einsatzgebiet von SIF zu erweitern. Gleich-
zeitig besteht auch ein Verbesserungspotential bei den Priifverfahren fiir bestehende Vorschriften.
So konnen etwa weitere Konfigurationsmoglichkeiten fiir die Vorschriften angeboten und die
Gruppierung von Verstdfien verbessert werden.

10.2.2 Erweiterung um zusitzliche Priifungsarten

Die erste Ausbaustufen der Inspektions-Werkstatt bietet bisher nur statische Mittel zur Priifung
von Spreadsheets an und die Ergebnisse von Priifungen konnen bisher nur in Form von textuellen
Beschreibungen in einem Html-Bericht ausgegeben werden. Dies ist jedoch nicht ausreichend,
um Spreadsheets auf alle verschiedenen Qualitdtsmerkmale zu priifen, da die statische Priifung
durch ihr Konzept nicht in der Lage ist bestimmte Anforderungen zu iiberpriifen. Um dies zu
Verbessern wire die Erweiterung um weitere Priifungsarten sinnvoll.

Nicht-mechanische Priifungen

Die nicht-mechanischen Priifungen stellen bei traditioneller Software einen wichtigen Bestandteil
der Qualitédtssicherung dar, da sie verhéltnisméafiig leicht umzusetzen sind und mit ihnen Fehler
gefunden werden, die mit anderen Priifungsarten nicht entdeckt werden konnen. Spreadsheets
hingegen sind ohne Hilfsmittel nur recht schwer vom Menschen zu inspizieren, da es durch
die Referenzen zwischen den Zellen und der zweidimensionale Anordnung von Zellen an der
notigen Lokalitit fehlt. Die Visualisierung der Struktur von Spreadsheets sowie von gefundenen
Verstofien aus der statischen Analyse, konnte jedoch eine entscheidende Unterstiitzung fiir die
Inspektion von Spreadsheets durch den Menschen leisten. So konnte eine Visualisierung in
SIF integriert werden, die es den Benutzern erlaubt, Zellen, die in der statischen Analyse viele
Verstof3e verursacht haben genauer auf Fehler zu inspizieren.

84

10.2 Ausblick

Dynamische Priifungen

Eine weitere Verbesserung der Priifung durch SIF wire durch die Integration von dynamischen
Prifungen moglich. Diese konnten etwa in Form von Intervall-Tests, wie in [Aya01] beschrieben,
in SIF integriert werden und speziell dazu verwendet werden, um auffillige Zellen und Formeln
aus den Ergebnissen der anderen Priifungsarten auf ihre Korrektheit zu tiberpriifen.

85

Anhang A

Anhang

A.1 Inhalt und Aufbau des beigelegten Datentragers

Der beiliegende Datentrédger ist wie folgt aufgebaut:
Ausarbeitung Der Ordner ausarbeitung enthélt dieses Dokument im PDF-Format.

Implementierung Der Ordner Implementierung enthdlt den Quell-Code des Spreadsheet Inspection
Framework und des Example Testing Center .

Evaluation Der Ordner evaluation enthidlt die Ordner spreadsheets und ergebnisse. Im Ordner
spreadsheets sind dabei die verwendeten Spreadsheets der Evaluation enthalten und im
Ordner ergebnisse befinden sich die Berichte der einzelnen Priifwerkzeuge, die bei der
Evaluation generiert wurden.

A.2 Evaluationsergebnisse

Im Folgenden werden die Ergebnisse der gefundenen Verstofs-Gruppen aus der Evaluation
aufgelistet:

Konstanten in Formeln| SP RA ETC ETC(C) NMI | @ Median Max Min

spreadsheet_sample_01 16 26 29 0
spreadsheet_sample_02 27 17 48 3
spreadsheet_sample_03 5 8 9 0
spreadsheet_sample_04 0 0 0 0
spreadsheet_sample_05 8 9 10 0
spreadsheet_sample_06 3 3 6 1
spreadsheet_sample_07 4 4 2
spreadsheet_sample_08 12 15 20 0
spreadsheet_sample_09 4 5 5 2
spreadsheet_sample_10 1 0 2 0
spreadsheet_sample_11 7 9 9 0
spreadsheet_sample_12 9 7 16 3

Abbildung A.1: Evaluationsergebnisse der Vorschrift Konstanten in Formeln (Gruppiert)

87

A Anhang

Leserichtung SP RA ETC | @ Median Max Min
spreadsheet_sample_01 26 27 27 24
spreadsheet_sample_02 26 27 27 24
spreadsheet_sample_03 19 21 27 8
spreadsheet_sample_04 123 119 198 53
spreadsheet_sample_05 13 9 27 3
spreadsheet_sample_06 18 6 46 1
spreadsheet_sample_07 12 5 30 1
spreadsheet_sample_08 28 27 34 22
spreadsheet_sample_09 0 6 0
spreadsheet_sample_10 7 16 3
spreadsheet_sample_11 0 4 0
spreadsheet_sample_12 11 9 17 7

Abbildung A.2: Evaluationsergebnisse der Vorschrift Leserichtung (Gruppiert)

Formelkomplexitit || SP RA ETC ETC(C)| @ Median Max Min

spreadsheet_sample_01 13 27 0
spreadsheet_sample_02 3 3 0
spreadsheet_sample_03 6 27 0
spreadsheet_sample_04 24 26 0
spreadsheet_sample_05 20 30 8
spreadsheet_sample_06 1
spreadsheet_sample_07 0 0 0
spreadsheet_sample_08 12 17 1
spreadsheet_sample_09 0 0 0
spreadsheet_sample_10 7 12 0
spreadsheet_sample_11 2 2 0
spreadsheet_sample_12 4 5 0

Abbildung A.3: Evaluationsergebnisse der Vorschrift Formelkomplexitit (Gruppiert)

88

A.3 Fehler-Taxonomien

A.3 Fehler-Taxonomien

Qualitative Errors
(hardcoding,
poor design, etc.)

Quantitative errors make
a final value incorrect.

An mission error exist if a
requirement is not included
in the spreadsheet.

All Errors

Quantitative Errors

_ ™~

Mechanical Logic Omission
Errors Errors Errors
Eureka versus Domain versus
Cassandra Errors Pure Logic Errors

Abbildung A.4: Die bekannte Fehler-Taxonomie fiir Spreadsheets nach Panko und Halverson

[Pan08b]

Layout

Violation

Model

Visibility
Appearance

Sytling

Orientation

Structure Placement

Modularity

Reference

Formula

Cell format

Meta-Data

Operands

Protection

Comments

Overlap
Hiding
Shape

Color

Horizontal

erticat Proximity
Grouping Ereeng

Alignment

Location

Nesting

Function

Constants

Format

Labeling

Abbildung A.5: Die prototypische Taxonomie fiir Verstof3e, die in dieser Arbeit konzipiert wurde

89

Literaturverzeichnis

[ACMO0]

[AE06]
[AMO08]
[AP10]

[Aya01]

[BG87]

[But00]

[But08]

[Cha08]

[CHMOS]

[CMWO07]

[Col10]

Y. Ayalew, M. Clermont, R. T. Mittermeir. Detecting Errors in Spreadsheets. In In
Proceedings of EuSpRIG 2000 Symposium: Spreadsheet Risks, Audit and Development
Methods, pp. 51-62. 2000.

R. Abraham, M. Erwig. UCheck: A Spreadsheet Type Checker for End Users*, 2006.
Y. Ayalew, R. Mittermeir. Spreadsheet Debugging. CoRR, abs/0801.4280, 2008.

S. Aurigemma, R. R. Panko. The Detection of Human Spreadsheet Errors by Humans
versus Inspection (Auditing) Software. CoRR, abs/1009.2785, 2010.

Y. Ayalew. Spreadsheet Testing Using Interval Analysis. Ph.D. thesis, Universitat
Klagenfurt, 2001.

P. S. Brown, J. D. Gould. An experimental study of people creating spreadsheets.
ACM Trans. Inf. Syst., 5:258-272,1987. doi:http://doi.acm.org/10.1145/27641.28058.
URL http://doi.acm.org/10.1145/27641.28058.

R.J. Butler. Is This Spreadsheet a Tax Evader? How H.M. Customs and Excise Test
Spreadsheet Applications. In Proceedings of the 33rd Hawaii International Conference on
System Sciences-Volume 4 - Volume 4, HICSS "00, pp. 4007-. IEEE Computer Society,
Washington, DC, USA, 2000. URL http://dl.acm.org/citation.cfm?id=795711.
799150.

R.]J. Butler. Applying the CobiT Control Framework to Spreadsheet Developments.
CoRR, abs/0801.0609, 2008.

D. Chadwick. EuSpRIG TEAM work:Tools, Education, Audit, Management. CoRR,
abs/0806.0172, 2008.

M. Clermont, C. Hanin, R. T. Mittermeir. A Spreadsheet Auditing Tool Evaluated in
an Industrial Context. CoRR, abs/0805.1741, 2008.

J. P. Caulkins, E. L. Morrison, T. Weidemann. Spreadsheet Errors and Decision
Making: Evidence from Field Interviews. JOEUC, 19(3):1-23, 2007.

D. Colver. Spreadsheet good practice: is there any such thing? CoRR, abs/1001.3967,
2010.

91

http://doi.acm.org/10.1145/27641.28058
http://dl.acm.org/citation.cfm?id=795711.799150
http://dl.acm.org/citation.cfm?id=795711.799150

Literaturverzeichnis

[Cro07]

[Cro09]
[CS96]

[Dav82]

[Dun10]

[EuSa]

[EuSb]

[FLS04]

[Gar84]

[GHJ96]

[GHJV95]

[GMz05]

[GOO08]

[GO10]

[Gro07]

92

G. J. Croll. The Importance and Criticality of Spreadsheets in the City of London.
CoRR, abs/0709.4063, 2007.

G.J. Croll. Spreadsheets and the Financial Collapse. CoRR, abs/0908.4420, 2009.

Y. E. Chan, V. C. Storey. The use of spreadsheets in organizations: Determinants and
consequences. Information & Management, 31(3):119 — 134, 1996. doi:DOI:10.1016/
S0378-7206(96)00008-0. URL http://www.sciencedirect.com/science/article/
pii/S0378720696000080.

G. B. Davis. Caution: User-Developed Systems Can be Hazardous to Your Orga-
nization. In Hawaii International Conference on System Sciences. Honolulu, Hawaii.,
1982.

A. Dunn. Spreadsheets - the Good, the Bad and the Downright Ugly. CoRR,
abs/1009.5705, 2010.

EuSpRIG. Best Practice. World Wide Web. URL http://www.eusprig.org/
best-practice.htm.

EuSpRIG. Website of the European Spreadsheet Risks Interest Group. World Wide
Web. URL http://www.eusprig.org/index.htm.

K. Frithauf, J. Ludewig, H. Sandmayr. Software-Priifung - eine Anleitung zum Test und
zur Inspektion (5. Aufl.). vdf, 2004.

D. Garvin. What does product quality really mean? Sloan Management Review,
26:25-45,1984. URL http://doku.iab.de/externe/2006/k060210f02.pdf.

D. F. Galletta, K. S. Hartzel, S. E. Johnson, J. L. Joseph, S. Rustagi. Spreadsheet
presentation and error detection: an experimental study. . Manage. Inf. Syst., 13:45-
63,1996. URL http://dl.acm.org/citation.cfm?id=1189548.1189552.

E. Gamma, R. Helm, R. Johnson, J. Vlissides. Design Patterns. Addison-Wesley, Bo-
ston, MA, 1995. URL http://www.amazon.co.uk/exec/obidos/ASIN/0201633612/
citeulike-21.

T. A. Grossman, V. Mehrotra, Ozgiir Ozliik. Spreadsheet Information Systems are
essential to business. Working Paper, 2005.

T. A. Grossman, O. Ozluk. Research Strategy and Scoping Survey on Spreadsheet
Practices. CoRR, abs/0807.3184, 2008.

T. A. Grossman, O. Ozluk. Spreadsheets Grow Up: Three Spreadsheet Engineering
Methodologies for Large Financial Planning Models. CoRR, abs/1008.4174, 2010.

T. A. Grossman. Spreadsheet Engineering: A Research Framework. CoRR,
abs/0711.0538, 2007.

http://www.sciencedirect.com/science/article/pii/S0378720696000080
http://www.sciencedirect.com/science/article/pii/S0378720696000080
http://www.eusprig.org/best-practice.htm
http://www.eusprig.org/best-practice.htm
http://www.eusprig.org/index.htm
http://doku.iab.de/externe/2006/k060210f02.pdf
http://dl.acm.org/citation.cfm?id=1189548.1189552
http://www.amazon.co.uk/exec/obidos/ASIN/0201633612/citeulike-21
http://www.amazon.co.uk/exec/obidos/ASIN/0201633612/citeulike-21

Literaturverzeichnis

[HHNS5]

[HPD11]

[IRO5]

[Iro08]

[JHY6]

[Kru06]

[Kull1]

[LLO7]

[LPKWO06]

[MKO5]

[MMBO09]

[NM90a]

E. L. Hutchins, J. D. Hollan, D. A. Norman. Direct manipulation interfaces. Hum.-
Comput. Interact., 1:311-338, 1985. doi:http://dx.doi.org/10.1207/s15327051hci0104_
2. URL http://dx.doi.org/10.1207/s15327051hci®104_2.

F. Hermans, M. Pinzger, A. van Deursen. Breviz: Visualizing Spreadsheets using
Dataflow Diagrams. CoRR, abs/1111.6895, 2011.

M. F. Ii, G. Rothermel. The EUSES Spreadsheet Corpus: A Shared Resource for
Supporting Experimentation with Spreadsheet Dependability Mechanisms. In In 1st
Workshop on End-User Software Engineering, pp. 47-51. 2005.

R.]J. Irons. The Wall and The Ball: A Study of Domain Referent Spreadsheet Errors.
CoRR, abs/0804.0943, 2008.

M. Jean, J. Hall. A Risk and Control-Oriented Study of the Practices of Spreadsheet
Application Developers. In In Proceedings of the 29th Hawaii International Conference
on System Sciences, pp. 364-373. 1996.

S. E. Kruck. Testing spreadsheet accuracy theory. Inf. Softw. Technol., 48:204-213,
2006. doi:http://dx.doi.org/10.1016/j.infsof.2005.04.005. URL http://dx.doi.org/
10.1016/j.infsof.2005.04.005.

D. Kulesz. From Good Practices to Effective Policies for Preventing Errors in Spreads-
heets. 2011.

J. Ludewig, H. Lichter. Software Engineering - Grundlagen, Menschen, Prozesse, Techniken.
dpunkt.verlag, 2007.

H. Lieberman, F. Paterno, M. Klann, V. Wulf. End-User Development: An Emer-
ging Paradigm. In H. Lieberman, F. Paterno, V. Wulf, editors, End User Develop-
ment, volume 9 of Human-Computer Interaction Series, chapter 1, pp. 1-8. Sprin-
ger Netherlands, Dordrecht, 2006. doi:10.1007/1-4020-5386-X_1. URL http:
//dx.doi.org/10.1007/1-4020-5386-X_1.

T. J. McGill, J. E. Klobas. The role of spreadsheet knowledge in user-developed
application success. Decis. Support Syst., 39:355-369, 2005. doi:10.1016/j.dss.2004.01.
002. URL http://dl.acm.org/citation.cfm?id=1196235.1196242.

R. McKeever, K. McDaid, B. Bishop. An Exploratory Analysis of the Impact of Named
Ranges on the Debugging Performance of Novice Users. CoRR, abs/0908.0935, 2009.

B. A. Nardj, J. R. Miller. An ethnographic study of distributed problem solving in
spreadsheet development. In Proceedings of the 1990 ACM conference on Computer-
supported cooperative work, CSCW "90, pp. 197-208. ACM, New York, NY, USA, 1990.
doi:http://doi.acm.org/10.1145/99332.99355. URL http://doi.acm.org/10.1145/
99332.99355.

93

http://dx.doi.org/10.1207/s15327051hci0104_2
http://dx.doi.org/10.1016/j.infsof.2005.04.005
http://dx.doi.org/10.1016/j.infsof.2005.04.005
http://dx.doi.org/10.1007/1-4020-5386-X_1
http://dx.doi.org/10.1007/1-4020-5386-X_1
http://dl.acm.org/citation.cfm?id=1196235.1196242
http://doi.acm.org/10.1145/99332.99355
http://doi.acm.org/10.1145/99332.99355

Literaturverzeichnis

[NM90b]

[NO10]
[O'B]

[O'BO5]

[O’B10]

[ON87]

[Pan98]

[Pan99]

[Pan07]

[Pan08a]

[Pan08b]

[Pan08c¢]

[PBOS]

[PBLO8a]

[PBLO8b]

[PBLO9]

94

B. A. Nardj, J. R. Miller. The spreadsheet interface: A basis for end user program-
ming. In Proceedings of the IFIP TC13 Third Interational Conference on Human-Computer
Interaction, INTERACT "90, pp. 977-983. North-Holland Publishing Co., Amsterdam,
The Netherlands, The Netherlands, 1990. URL http://portal.acm.org/citation.
cfm?id=647402.725609.

D. Nixon, M. O'Hara. Spreadsheet Auditing Software. CoRR, abs/1001.4293, 2010.

P. O’Beirne. European Spreadsheet Risks Interest Group: Horror Stories. World Wide
Web. URL http://www.eusprig.org/horror-stories.htm.

P. O’Beirne. Spreadsheet Check and Control. Systems Publishing Corporation, 2005.
P. O’Beirne. Spreadsheet Refactoring. CoRR, abs/1009.1412, 2010.

J.R. Olson, E. Nilsen. Analysis of the cognition involved in spreadsheet software inter-
action. Hum.-Comput. Interact., 3(4):309-349, 1987. do0i:10.1207/s15327051hci0304_1.
URL http://dx.doi.org/10.1207/s15327051hci®304_1.

R. R. Panko. What we know about spreadsheet errors. J. End User Comput., 10:15-21,
1998. URL http://portal.acm.org/citation.cfm?id=287893.287899.

R. R. Panko. Applying code inspection to spreadsheet testing. J. Manage. Inf. Syst.,
16:159-176, 1999. URL http://dl.acm.org/citation.cfm?id=1189438.1189448.

R. R. Panko. Recommended Practices for Spreadsheet Testing. CoRR, abs/0712.0109,
2007.

R. R. Panko. Reducing Overconfidence in Spreadsheet Development. CoRR,
abs/0804.0941, 2008.

R. R. Panko. Revisiting the Panko-Halverson Taxonomy of Spreadsheet Errors. CoRR,
abs/0809.3613, 2008.

R. R. Panko. Spreadsheet Errors: What We Know. What We Think We Can Do. CoRR,
abs/0802.3457, 2008.

S. G. Powell, B. L. 0002, K. R. Baker. Impact of Errors in Operational Spreadsheets.
CoRR, abs/0801.0715, 2008.

S. G. Powell, K. R. Baker, B. Lawson. An auditing protocol for spreadsheet models.
Inf. Manage., 45:312-320, 2008. d0i:10.1016/j.im.2008.03.004. URL http://dl.acm.
org/citation.cfm?id=1379454.1379496.

S. G. Powell, K. R. Baker, B. Lawson. A critical review of the literature on spreadsheet
errors. Decis. Support Syst., 46:128-138, 2008. doi:http://dx.doi.org/10.1016/j.dss.
2008.06.001. URL http://dx.doi.org/10.1016/j.dss.2008.06.001.

S. G. Powell, K. R. Baker, B. Lawson. Errors in operational spreadsheets. Organizatio-
nal and End User Computing, 21(3):24-36, 2009.

http://portal.acm.org/citation.cfm?id=647402.725609
http://portal.acm.org/citation.cfm?id=647402.725609
http://www.eusprig.org/horror-stories.htm
http://dx.doi.org/10.1207/s15327051hci0304_1
http://portal.acm.org/citation.cfm?id=287893.287899
http://dl.acm.org/citation.cfm?id=1189438.1189448
http://dl.acm.org/citation.cfm?id=1379454.1379496
http://dl.acm.org/citation.cfm?id=1379454.1379496
http://dx.doi.org/10.1016/j.dss.2008.06.001

Literaturverzeichnis

[PBLFJ08]

[PHJ96]

[PO0S]

[Pry08]
[RAF04]

[Raf08]
[RCKO08a]

[RCKO08b]

[Wag06]

[WDA*08]

[WJKTO5]

S. G. Powell, K. R. Baker, B. Lawson, L. Foster-Johnson. Comparison of Characteristics
and Practices amongst Spreadsheet Users with Different Levels of Experience. CoRR,
abs/0803.0168, 2008.

R. R. Panko, R. P. Halverson Jr. Spreadsheets on Trial: A Survey of Research on
Spreadsheet Risks. In Proceedings of the 29th Hawaii International Conference on System
Sciences Volume 2: Decision Support and Knowledge-Based Systems, HICSS "96, pp. 326—.
IEEE Computer Society, Washington, DC, USA, 1996. URL http://portal.acm.
org/citation.cfm?id=795699.798442.

R. R. Panko, N. Ordway. Sarbanes-Oxley: What About all the Spreadsheets? CoRR,
abs/0804.0797, 2008.

L. Pryor. When, why and how to test spreadsheets. CoRR, abs/0807.3187, 2008.

N. Rutar, C. B. Almazan, J. S. Foster. A Comparison of Bug Finding Tools for Java. In
Proceedings of the 15th International Symposium on Software Reliability Engineering, pp.
245-256. IEEE Computer Society, Washington, DC, USA, 2004. doi:10.1109 /ISSRE.
2004.1. URL http://dl.acm.org/citation.cfm?id=1032654.1033833.

J. E. Raffensperger. New Guidelines For Spreadsheets. CoRR, abs/0807.3186, 2008.

K. Rajalingham, D. Chadwick, B. Knight. An Evaluation of a Structured Spreadsheet
Development Methodology. CoRR, abs/0801.1516, 2008.

K. Rajalingham, D. R. Chadwick, B. Knight. Classification of Spreadsheet Errors.
CoRR, abs/0805.4224,2008. URL http://arxiv.org/abs/0805.4224.

S. Wagner. A literature survey of the quality economics of defect-detection techniques.
In Proceedings of the 2006 ACM/IEEE international symposium on Empirical software
engineering, ISESE "06, pp. 194-203. ACM, New York, NY, USA, 2006. doi:http://doi.
acm.org/10.1145/1159733.1159763. URL http://doi.acm.org/10.1145/1159733.
1159763.

S. Wagner, E. Deissenboeck, M. Aichner,]. Wimmer, M. Schwalb. An Evaluation of
Two Bug Pattern Tools for Java. In Proceedings of the 2008 International Conference
on Software Testing, Verification, and Validation, pp. 248-257. IEEE Computer Society,
Washington, DC, USA, 2008. doi:10.1109/ICST.2008.63. URL http://dl.acm.org/
citation.cfm?id=1381305.1382088.

S. Wagner, J. Jiirjens, C. Koller, P. Trischberger. Comparing Bug Finding Tools
with Reviews and Tests. In IN PROC. 17TH INTERNATIONAL CONFERENCE ON
TESTING OF COMMUNICATING SYSTEMS (TESTCOM’05), VOLUME 3502 OF
LNCS, pp. 40-55. Springer, 2005.

95

http://portal.acm.org/citation.cfm?id=795699.798442
http://portal.acm.org/citation.cfm?id=795699.798442
http://dl.acm.org/citation.cfm?id=1032654.1033833
http://arxiv.org/abs/0805.4224
http://doi.acm.org/10.1145/1159733.1159763
http://doi.acm.org/10.1145/1159733.1159763
http://dl.acm.org/citation.cfm?id=1381305.1382088
http://dl.acm.org/citation.cfm?id=1381305.1382088

Literaturverzeichnis

[ZWN106] J. Zheng, L. Williams, N. Nagappan, W. Snipes, J. P. Hudepohl, M. A. Vouk. On
the Value of Static Analysis for Fault Detection in Software. IEEE Trans. Softw. Eng.,
32:240-253, 2006. doi:10.1109/TSE.2006.38. URL http://dl.acm.org/citation.
cfm?id=1435724.1437767.

96

http://dl.acm.org/citation.cfm?id=1435724.1437767
http://dl.acm.org/citation.cfm?id=1435724.1437767

Erklarung

Hiermit versichere ich, diese Arbeit selbstandig
verfasst und nur die angegebenen Quellen
benutzt zu haben.

(Sebastian Zitzelsberger)

	Einleitung
	Motivation
	Ziel
	Übersicht

	Spreadsheet-Grundlagen
	Elemente und Konzepte
	Spreadsheet-Systeme und Endbenutzer
	Risiken durch Qualitätsmängel

	Software-Qualität
	Der Qualitäts-Begriff
	Taxonomie der Software-Qualitäten
	Qualitätskosten
	Software-Qualitätssicherung
	Software-Prüfung

	Spreadsheet-Qualität
	Stand der Forschung
	Zusammenfassung

	Vorhandene Ansätze zur Erhöhung der Spreadsheet-Qualität
	Spreadsheet-Engineering
	Spreadsheet Prüfung
	Schlussfolgerung

	Konzept
	Technische Grundlage zur Spreadsheet-Prüfung
	Metapher
	Verwendung

	Anforderungen
	Funktionale Anforderungen
	Nichtfunktionale Anforderungen

	Umsetzung
	Vorgehen
	Design
	Implementierung

	Evaluation
	Rahmenbedingungen
	Ergebnisse
	Analyse

	Fazit
	Zusammenfassung
	Ausblick
	Anhang

	Anhang
	Inhalt und Aufbau des beigelegten Datenträgers
	Evaluationsergebnisse
	Fehler-Taxonomien

	Literaturverzeichnis

