Institut fiir Parallele und Verteilte Systeme
Universitat Stuttgart
Universitatsstral3e 38
D-70569 Stuttgart

Diplomarbeit Nr. 3229

Datenspeicherung in der Cloud:
Clustering-Schicht fir CloudFS

Thorsten Frosch

Studiengang: Informatik

Priifer: Prof. Dr.rer. nat. Dr. h.c. Kurt Rothermel
Betreuer: Dipl.-Inf. Damian Philipp

begonnen am: 10. Oktober 2011

beendet am: 17. April 2012

CR-Klassifikation: D.4.3,E5

Abstract

CloudFsS ist ein Dateisystem, das die Speicherung von Daten bei Cloud-Diensten zur Daten-
speicherung ermoglicht, allerdings keinen zentralen Serverdienst und direkte Kommunikati-
on der beteiligten Clients voraussetzt. Es bietet anstelle eines zentralen Kontrollprozesses von
herkémmlichen Cluster-Dateisystemen einen verteilten Kontrollprozess zum gleichzeitigen
Zugriff von mehreren Gerdten auf einen Datenspeicherungsdienst, ohne jedoch auf direkte
Kommunikation zwischen den Clients zurtickzugreifen. CloudFS speichert dabei selbst keine
Daten, sondern bietet eine Abstraktionsschicht auf andere, zugrunde liegende Speicherpro-
tokolle. Diese bleiben fiir den Nutzer transparent und der Anwender greift auf die Daten
zu, als befdanden sie sich auf einer lokalen Festplatte. In dieser Arbeit wird der Entwurf
von CloudFS beschrieben und eine Prototyp-Implementierung fiir das Betriebssystem Unix
erstellt. Auflerdem wird die Implementierung auf ihre Leistungsfahigkeit untersucht und es
werden verschiedene Parameter evaluiert.

Inhaltsverzeichnis

. Einleitung

. Grundlagen
2.1. Dateisysteme. L Lo
2.1.1. Dateisysteme fiir lokale Speicher
2.1.2. Netzwerk-Dateisysteme
2.1.3. Cluster-Dateisysteme
2.1.4. Kryptografie in Dateisystemen

2.2. Verfahren fiir den synchronisierten Zugriff auf gemeinsame Ressourcen
2.3. FUSE

. Systemmodell und Anforderungen an CloudFS
3.1. Systemmodell
3.2. AnforderungenanCloudFS

. Entwurf

4.1. Gesamtarchitektur L
4.2. Entwurf der Cluster-Schicht
4.2.1. Journal
4.2.2. Sperrverfahren o oL
4.3. Details des Dateisystems
4.3.1. Verfiigbare Dateisystemoperationen in CloudFS

. Implementierung
5.1. Ubersicht
5.2. Datenstrukturen und globale Parameter
5.3. Protokollfunktionen L L o
5.3.1. Anlegen und Loschen von Journal-Eintrdgen
5.3.2. Weitere Journal-Funktionen
5.3.3. Ausschreiben von Journal-Eintrdgen und Rekonstruktion der aktuellen
Version oL
5.4. Schnittstelle von CloudFSzu FUSE,
5.4.1. Initialisierung und Beenden des Programms
5.4.2. Implementierung der Dateisystemoperationen
5.5. Metadatenverarbeitung Lo L Lo Lo L
55.1. Journal-Flag
5.6. Hilfsfunktionen

11
11
12
13
14
15
16
18

5.7. Konfigurationsdatei
5.8. Administrationstool L

6. Evaluation
6.1. Versuchsaufbau L oo
6.2. Untersuchung der Geschwindigkeit von Schreib- und Loschoperationen
6.3. Profiling der hdufigsten Dateioperationen
6.4. Zuriickschreiben / Nicht-Zuriickschreiben von Anderungen
6.5. Haufigkeit von Deadlocks
6.6. Fazit.

7. Zusammenfassung und Ausblick
A. Beispiel einer Konfigurationsdatei

Literaturverzeichnis

Abbildungsverzeichnis

2.1.
2.2,

3.1.

4.1.
4.2.
4.3.
4.4.
4.5.

5.1.
5.2.

6.1.
6.2.
6.3.
6.4.

6.5.

6.6.

Prinzip einer Inode-Struktur. o Lo L L oL 13
Funktionsweise von FUSE (nach Vorlage von: [FUS]) 18
Systemmodell 21
Gesamtarchitektur von CloudFS 26
Veranschaulichung des Two Army Problems 30
Veranschaulichung des Problems der indirekten Kommunikation 31
Beispielhafte Abldufe des Sperrverfahrens 35
Struktur des Dateisystems bei dateibasierten Speichern 40
Komponententibersicht. 00 L. 60
Verzeichnisstruktur eines Online-Speichers mit CloudFS 61
Versuchsaufbau der Evaluation 79
Ergebnisse der Testszenarios 82
Ausfiihrungsdauern der hdufigsten Dateioperationen und deren Komponenten 83

Programmabldufe zum Testen der Auswirkungen des Nicht-Zuriickschreibens
von Journal-Eintrdgen 0 o o oL 85
Ablauf 1 bei Nicht-Zuriickschreiben der Anderungen (ausfithrender Client in
Klammern) o e e 86
Ablauf 2 bei Nicht-Zuriickschreiben der Anderungen (ausfithrender Client in
Klammern) o e e 87

Tabellenverzeichnis

5.1.
5.2.

6.1.
6.2.

. Verfligbare Dateisystemoperationen in CloudFS 43
Globale Datentypen 63
Globale Parameter und Variablen 63
Untersuchte Szenarios der Geschwindigkeitstests 81
Ausfiihrungsdauern bei direktem Zuriickschreiben 85

Verzeichnis der Algorithmen

4.1. Ausschreiben von Journal-Eintrdgen 29
4.2. Einfacher Algorithmus zur Objektsperrung 33
4.3. Modifizierter Algorithmus zur Objektsperrung 34
4.4. Algorithmus zur Deadlock-Erkennung und -Auflésung 37
4.5. Dateierstellen 44
4.6. Datei Offnen 45
47. Dateilesen e 46
4.8. Dateischreiben 46
4.9. Datei synchronisieren. 0oL L 46
4.10. Datei schlieffen 47
4.11. Datei umbenennen / verschieben o L. 48
g4.12.Dateiloschen 49
4.13. Zeitstempel einer Dateisetzen 50
4.14. Dateibesitzer dndern L Lo Lo 51
4.15. Dateirechte andern 52
4.16. Dateigrofie dndern L Lo 52
4.17. Verzeichnis erstellen 53
4.18. Verzeichnis 1oschen o L oo 54
4.19. Verzeichnis umbenennen / verschieben 56
4.20. Attribute von Datei/Verzeichnis abfragen 57
5.1. Algorithmus zur Rekonstruktion der aktuellen Attributwerte 65
5.2. Algorithmus zur Zuriickschreiben von Journal-Eintrdgen 67
5.3. Implementierung von cloudfs_open 71
5.4. Implementierung des Administrationstools, 78

1. Einleitung

Cloud Computing ist ein Ansatz fiir das Bereitstellen von Infrastruktur wie Rechenleistung,
Speicher und Netze, sowie das Bereitstellen von Software wie Betriebssysteme und Anwen-
dungen tiber das Internet, der sich Mitte des vergangenen Jahrzehnts entwickelt hat. Es wird
ein Teil der Hard- und Software nicht mehr vom Nutzer selbst betrieben, sondern er nutzt
die Ressourcen eines Anbieters, der zumeist geografisch entfernt ist. Cloud Computing wird
aber auch von Firmen eingesetzt, die die Dienste tiber ein Intranet zur Verfiigung stellen.

Der Zugriff auf Speicherplatz in der Cloud kann tiber unterschiedliche Protokolle erfolgen.
Weit verbreitet sind das File Transfer Protocol (FTP), das Web-based Distributed Authoring
and Versioning-Protokoll (WebDAV) oder auch das internet Small Computer System Interface
(iSCSI). Dabei verwenden die Protokolle unterschiedliche Abstraktionsebenen: FTP oder
auch WebDAV operieren auf Dateien, wahrend zum Beispiel iSCSI blockorientiert ist, also
mit Fragmenten von Dateien arbeitet.

Anwender konnen nicht zuletzt durch die immer weiter voranschreitende Verbreitung des
mobilen Internets mit mehreren Endgerdten Anwendungen der Cloud ausfithren und auf
online gespeicherte Daten zugreifen. So konnen Zugriffe auf in der Cloud gespeicherte
Daten von Anwendungen erfolgen, die auf einem Heimcomputer, einem Laptop, einem
Mobiltelefon oder in der Cloud selbst ausgefiihrt werden. Um einen parallelen Zugriff auf
die Daten zu ermoglichen, ist eine Koordination der Gerdte notwendig. Es existieren bereits
Cluster-Dateisysteme, die einen zentralen Kontrollprozess besitzen, um den Zugriff auf die
Daten zu koordinieren. Allerdings besitzt ein Nutzer nicht zwingend die Moglichkeit, einen
solchen Kontrollprozess zentral auf einem Server auszufiihren. Protokolle wie NFS oder
WebDAV erfordern ebenfalls einen zentralen Server, auf dem der Dienst ausgefiihrt wird.
Es existieren auch Cluster-Dateisysteme, die die Zugriffssynchronisation verteilt realisieren.
Durch die Verwendung von Network Address Translation (NAT) kann jedoch eine direkte
Kommunikation der Clients unmoglich sein.

CloudFS ist ein neuartiger Ansatz, der die Speicherung von Daten bei Cloud-Diensten
zur Datenspeicherung ermdglicht, allerdings keinen zentralen Serverdienst und direkte
Kommunikation der beteiligten Clients voraussetzt. Es bietet anstelle eines zentralen Kon-
trollprozesses von herkommlichen Cluster-Dateisystemen einen verteilten Kontrollprozess
zum gleichzeitigen Zugriff von mehreren Geriten auf einen Datenspeicherungsdienst, ohne
jedoch auf direkte Kommunikation zwischen den Clients zuriickzugreifen. CloudFS spei-
chert dabei selbst keine Daten, sondern bietet eine Abstraktionsschicht auf andere, zugrunde
liegende Speicherprotokolle. Diese bleiben fiir den Nutzer transparent und der Anwender
greift auf die Daten zu, als befdnden sie sich auf einer lokalen Festplatte.

1. Einleitung

Die Architektur von CloudFS ist in Schichten eingeteilt. Die Koordination des Zugriffs
auf die Daten iibernimmt die Cluster-Schicht. Es sind noch weitere Schichten und Mo-
dule vorhanden, die die Funktionalitdt von CloudFS erweitern. So ist beispielsweise eine
Kryptografie-Schicht zum Verschliisseln der Daten ebenfalls Bestandteil von CloudFS. Sie
soll dem Nutzer ermdglichen, sensible Daten bei Datenspeicherdiensten abzulegen, obwohl
dem Anbieter nicht vertraut wird. Der Hauptbestandteil dieser Arbeit wird der Entwurf der
Cluster-Schicht sein.

Eine Prototyp-Implementierung von CloudFS wurde fiir das Betriebssystem Unix erstellt.
Dafiir wurde das Framework Filesystem in Userspace (FUSE) verwendet. Es ermoglicht
die Nutzung von Dateisystemtreibern im Userspace, wodurch der Anwender keine Root-
Rechte benotigt, um CloudFS zu verwenden. Aufierdem wird durch das Framework die
Implementierung vereinfacht, da kein eigenes Kernel-Modul erstellt werden muss.

Am Ende der Arbeit wird die Prototyp-Implementierung auf ihre Leistungsfahigkeit un-
tersucht. Dabei werden die Ausfiihrungsdauern einzelner Dateisystemoperationen unter
verschiedenen Bedingungen evaluiert.

Die Arbeit gliedert sich in mehrere Abschnitte: In Kapitel 2 werden die Grundlagen von
Dateisystemen erldutert sowie das Framework FUSE vorgestellt, das zur Implementierung
des Treiber-Prototyps verwendet wurde. AufSerdem werden verschiedene Verfahren zur
Synchronisation von Prozessen bei Lese-/Schreibkonflikten beschrieben, wie sie auch bei
Datenbankanwendungen verwendet werden und auch in CloudFS zum Einsatz kommen. Im
nichsten Kapitel wird das zugrunde liegende Systemmodell beschrieben, fiir das CloudFS
entwickelt wurde. In Kapitel 4 wird die Architektur von CloudFS vorgestellt. Hier wird
vorrangig auf den Entwurf und die verwendeten Protokolle und Algorithmen eingegan-
gen. In Kapitel 5 wird die Implementierung des Treiber-Prototyps vorgestellt. In Kapitel
6 wird anschliefsend die Evaluation des entwickelten Treibers beschrieben. Abschliefiend
erfolgt in Kapitel 7 eine Zusammenfassung der Arbeit und ein Ausblick auf mogliche
Weiterentwicklungen.

10

2. Grundlagen

In diesem Kapitel werden die Grundlagen von Dateisystemen erldutert. Dabei wird im
Speziellen auf die verschiedenen Dateisystemarten eingegangen. Aufierdem werden Syn-
chronisationsverfahren vorgestellt, die vor allem in Datenbankanwendungen zum Einsatz
kommen, wenn mehrere Prozesse auf eine gemeinsame Ressource lesend und schreibend zu-
greifen. Ebenfalls wird das FUSE-Framework vorgestellt, mit dem eigene Dateisystemtreiber
entwickelt werden koénnen.

2.1. Dateisysteme

Ein Dateisystem ist eine Form der Ablageorganisation von Daten auf einem Datentrdger. Es
stellt die Verbindungsschicht zwischen physikalischen Datentrdger und dem Betriebssystem
dar. Dabei wird von den auf dem Datentrdger physikalisch gespeicherten Daten auf Dateien,
einem Verbund von inhaltlich zusammenhadngenden Daten, abstrahiert. Das Dateisystem
bietet dem Betriebssystem verschiedene Methoden zur Dateimanipulation an, darunter zum
Beispiel Methoden zum Offnen und Schliefen, Lesen und Schreiben und zum Erzeugen
und Loschen von Dateien. Eine Datei besitzt je nach Dateisystem verschiedene Attribute, die
Informationen wie etwa Zugriffsrechte, Erstellungsdatum oder Art der Datei beinhalten. Der
Dateizugriff erfolgt {iber einen eindeutigen Bezeichner, der in den meisten Fillen aus einem
Verzeichnispfad und dem Dateinamen besteht.

Eine vom Nutzer ausgefiihrte Anwendung hat keine Kenntnis tiber die Beschaffenheit und
Struktur der verwendeten Dateisysteme. Um dies zu ermoglichen, kommt das Virtual File
System (VFS) zum Einsatz, einer Abstraktionsschicht tiber den Dateisystemen. Das VFS
stellt einen uniformen Zugriff auf die gespeicherten Daten zur Verfiigung, unabhédngig vom
verwendeten Dateisystem. Dazu muss die Anfrage einer Anwendung wie ein Lese- oder
Schreibzugriff in einen Aufruf umgesetzt werden, der der entsprechenden Funktion des
betreffenden Dateisystems entspricht.

Journaling-Dateisysteme schreiben Anderungen vor dem eigentlichen Schreiben in einen
reservierten Teil des Speichers, dem Journal. Dieses Konzept wird genutzt, um Inkonsis-
tenzen bei Auftreten von Fehlern wihrend des Schreibvorgangs zu vermeiden. Es wird
zwischen zwei Arten des Journaling unterschieden: Beim Full-Journaling werden Metadaten
und Dateiinhalte ins Journal geschrieben, beim Metadaten-Journaling nur die Metadaten.
Der Unterschied besteht bei der Wiederherstellung des Dateisystems nach einem Fehler:
Das Metadaten-Journaling garantiert lediglich die Konsistenz des Dateisystems, das Full-
Journaling zusétzlich auch die Konsistenz der Nutzerdaten.

11

2. Grundlagen

2.1.1. Dateisysteme fiir lokale Speicher

Auf physisch verfiigbaren Speichern wie direkt verbundenen Festplatten kommen typi-
scherweise blockbasierte Dateisysteme zum Einsatz. Diese teilen den Speicherplatz des
Speichergerits in einzelne Blocke fester Grofle auf, um eine effiziente Verwaltung des Spei-
chers zu ermoglichen. Die Blockgrofse betragt in den meisten Systemen 512 Bytes, wobei in
moderneren Systemen mehrere Blocke zu Clustern zusammengefasst werden. Aus Sicht des
Betriebssystems werden immer ganze Cluster geschrieben und gelesen. Eine Datei ist je nach
Grofle auf mehrere Cluster aufgeteilt. Die Verwaltung der zugehorigen Cluster unterscheidet
sich je nach verwendetem Dateisystem.

Ein Beispiel fiir ein einfaches blockbasiertes Dateisystem ist das File Allocation Table (FAT,
[Micb]), das von Microsoft entwickelt wurde und in vielen Windows-Versionen zum Einsatz
kam. Hauptbestandteil dieses Dateisystems sind zwei Tabellen, in denen die Dateien verwal-
tet werden. Die erste Tabelle, die FAT genannt wird und namensgebend fiir das Dateisystem
war, verwaltet die freien und belegten Cluster des Dateisystems. Fiir jeden Cluster des
Datenbereichs existiert ein Eintrag in dieser Tabelle. Dieser gibt an, ob der Cluster frei,
belegt oder defekt ist. Im Fall einer Belegung des Clusters gibt der Eintrag die Nummer des
nichsten Clusters der Datei an oder enthilt die Information, dass dies der letzte Cluster der
Datei ist. Das bedeutet, dass die belegten Cluster einer Datei eine einfach verkettete Liste
bilden. Wegen der Wichtigkeit der FAT fiir die Konsistenz des Dateisystems existieren oft
mehrere Kopien, um bei Fehlern eine Datenwiederherstellung zu ermoglichen.

Eine zweite Tabelle ist fiir die Verwaltung des Stammverzeichnisses und dessen Unter-
verzeichnisse zustdndig. Die erste Version von FAT legte pro Datei oder Unterverzeichnis
einen Eintrag an. Jeder Eintrag enthdlt Meta-Informationen wie Dateiname, Erstellungs- und
Anderungsdatum, Dateiattribute, Grofie und Start-Cluster. Bei einem Lesezugriff wird also
zuerst der zur Datei zugehorige Eintrag in der Stammverzeichnistabelle gesucht und dann
tiber die FAT auf die einzelnen Cluster der Datei zugegriffen.

Ein weiterer Vertreter der blockbasierten Dateisysteme ist das Third Extended Filesystem
(ext3, [ext]), das in Linux-Betriebssystemen oft zum Einsatz kommt. Ext3 fasst mehrere
Blocke, in die der Datentrédger eingeteilt ist, zu Blockgruppen zusammen. Ein Superblock
am Anfang des Speicherbereichs speichert wichtige Informationen iiber die Konfiguration
des Dateisystems. Aufgrund seiner Bedeutung existieren mehrere Kopien des Superblocks
in verschiedenen Blockgruppen. Ein fundamentales Konzept des Extended Filesystem sind
die Inodes. Jedes Objekt im Dateisystem, also alle Dateien und Verzeichnisse, sind durch
einen Inode reprasentiert. Ein Inode besitzt Informationen zu den Metadaten des Objekts
wie Zugriffsrechte, Grofle und Anzahl der benutzten Blocke. Aufierdem enthilt jeder Inode
Zeiger auf Blocke, in denen die Daten des Objekts gespeichert sind. Alle Daten einer Datei
werden soweit moglich in einer einzelnen Blockgruppe gespeichert, um Fragmentierung
zu vermeiden und die Zugriffsgeschwindigkeit zu erhohen. Es sind 12 Zeiger vorhanden,
die direkt auf die ersten 12 Datenblocke verweisen. Daneben gibt es noch einen Zeiger auf
einen Block mit direkten Blockadressen und einen Zeiger auf einen Block mit indirekten
Blockadressen, wobei diese indirekten Blockadressen wiederum auf Blocke mit direkten
Blockadressen verweisen. Bei einer Blockgrofse von 1 KB kdnnen somit Dateien maximal

12

2.1. Dateisysteme

Zweifach indirekte

Blocke
Direkte
Blockadressen

Direkte Blocke

Inode

Einfach indirekte
Blocke

Direkte
Blockadressey'l:l

—1 |

Infos

i

Direkte
Blockadressen

AN

Indirekte
Blockadressen

Indirekte
Blockadressen

Yith abfhonth dbh:

Abbildung 2.1.: Prinzip einer Inode-Struktur

eine Grofie von 16 GB haben. Eine Veranschaulichung des Zeigerkonzepts bei Inodes ist in
Abbildung 2.1 zu sehen. Das Journaling besitzt drei Stufen: bei gewéhlter Full-Option werden
sowohl Metadaten als auch Dateiinhalte ins Journal geschrieben. Dies ist zeitaufwendig,
allerdings erhoht es auch die Zuverldssigkeit. Die Ordered-Option schreibt nur die Metadaten
ins Journal, allerdings erst nachdem der Dateiinhalt in den Speicher geschrieben wurde.
Dadurch kénnen abgebrochene Schreibvorgéange bei neuen Dateien und Schreibvorgéange,
die eine bestehende Datei vergrofiern, nach einem Fehler erkannt und repariert werden. Die
letzte Moglichkeit, die Writeback-Option, schreibt ebenfalls nur die Metadaten ins Journal.
Allerdings wird hier nicht garantiert, dass dies erst nach dem Schreiben der Dateiinhalte
geschieht. Diese Moglichkeit bietet den geringsten Schutz, ist aber daftir die schnellste
verfiigbare Methode.

2.1.2. Netzwerk-Dateisysteme

Im Gegensatz zu den lokalen Dateisystemen, die direkten Zugriff auf einen physikalischen
Speicher besitzen, stellen Netzwerk-Dateisysteme den Zugriff auf Dateien eines entfernten
Servers iiber ein Netzwerk her. Der Client bindet also transparent fiir den Nutzer ein
entferntes Dateisystem ein und greift mit den gleichen Systemaufrufen wie bei einem lokalen
Dateisystem darauf zu, die vom VFS dann entsprechend umgesetzt und an das Netzwerk-
Dateisystem weitergeleitet werden. Wenn mehrere Clients parallel auf die Daten zugreifen

13

2. Grundlagen

wollen, tibernimmt der Server die Koordination des Zugriffs. Im Gegensatz zu blockbasierten
Dateisystemen ist die kleinste Einheit in den meisten Netzwerkdateisystemen eine Datei.

Ein bekanntes Beispiel fiir Netzwerkdateisysteme ist das Network File System (NFS,
[Now89]), das auf dem Remote-Procedure-Call-Modell (RPC) basiert. Bis zu NFS Versi-
on 3 lauft die Authentifizierung auf Client-Ebene tiber die IP-Adresse, was bedeutet, dass
den Clients die Aufgabe der Authentifizierung verschiedener Nutzer {ibertragen wurde. Erst
ab Version 4 ist es moglich, auch auf Serverseite verschiedene Nutzer des selben Clients zu
authentifizieren.

Das Web-based Distributed Authoring and Versioning Protocol (WebDAYV, [web]) ist ein
Standard, der die Zusammenarbeit von Nutzern erleichtern soll, die auf einen gemeinsamen
Datenbestand zugreifen. Mit WebDAYV, das auf dem HTTP-Protokoll basiert, kann der Nutzer
auf einen Online-Speicher zugreifen und Dateien verwalten. Es wird von den meisten mo-
dernen Betriebssysteme standardmaéfiig unterstiitzt und kann wie ein normales Dateisystem
eingebunden werden. WebDAYV ist fiir den parallelen Zugriff mehrerer Clients auf eine
Datei konzipiert worden. Vor einer Schreiboperation muss der Client eine Sperre fiir die
betreffende Datei anfordern. Nach erfolgreicher Riickmeldung ist diese Datei fiir den Client
fiir Schreibanderungen gesperrt und andere Clients konnen nicht darauf zugreifen. Nach
Beendigung des Vorgangs gibt der Client die Sperre wieder frei.

Ein weiterer Vertreter aus der Klasse der Netzwerkdateisysteme ist das Internet Small
Computer System Interface (iSCSI, [SMS"o04]). Es basiert auf SCSI [Tec], einem Standard fiir
die Verbindung von Peripheriegerdten mit einem Computer. iSCSI entkoppelt die direkte
Verbindung von Peripheriegerdt und Computer. Die SCSI-Daten werden stattdessen iiber ein
IP-Netzwerk mit Hilfe von TCP verschickt. Damit stellt iSCSI eine Ausnahme im Bereich der
Netzwerkdateisysteme dar, weil hier nicht auf der Abstraktionsebene von Dateien operiert
wird, sondern wie bei herkommlichen Dateisystemen fiir lokal verbundene Festplatten auf
Blocken.

Netzwerk-Dateisysteme konnen nicht anstelle von CloudFS fiir das geplante Einsatzszenario
genutzt werden. Systeme wie NFS [Now89] ermoglichen zwar mehreren Clients den paral-
lelen Zugriff tiber ein Netzwerk auf einen gemeinsam genutzten Speicherplatz, allerdings
muss dazu auf dem Server ein entsprechender Dienst ausgefiihrt werden. Im geplanten
Einsatzszenario fiir CloudFS ist es dem Nutzer nicht moglich serverseitig einen Dienst aus-
zufiihren, da ihm lediglich Online-Speicher mit einem Backend zum Datentransfer wie FTP
zur Verfiigung stehen. Aufierdem sind im Fall von NFS die Dateisperren nicht zuverldssig
implementiert worden, sodass Datenintegritit nicht gewidhrleistet werden kann. Dies soll
jedoch bei CloudFS erreicht werden.

2.1.3. Cluster-Dateisysteme
Ein Cluster-Dateisystem ist ein Dateisystem, bei dem mehrere Clients direkt und potenziell

konkurrierend auf einen gemeinsamen physischen Speicher zugreifen. Es werden mehrere
Clients zu einem Cluster zusammengeschlossen, die dann direkt und ohne Vermittlung eines

14

2.1. Dateisysteme

Servers auf den Speicher zugreifen. Der direkte Zugriff der Clients wird meist durch ein Sto-
rage Area Network (SAN) realisiert, das den Speicherplatz wie einen lokalen Datenspeicher
erscheinen ldsst. Die Anbindung eines SAN geschieht in der Regel tiber Fibre Channel oder
iSCSI. Beim parallelen Zugriff auf die selben Daten konnen Inkonsistenzen auftreten. Um
diese zu vermeiden, miissen Mafinahmen getroffen werden, um den Zugriff zu koordinieren.
Es existieren mehrere Ansitze: In der Regel iibernimmt ein Distributed Lock Manager (DLM)
die Koordination. Der DLM ist ein Modul, das auf jedem Client ausgefiihrt wird und sich
mit den Instanzen anderer Clients koordiniert und den Zugriff auf die Daten regelt. Alter-
nativ kann ein Metadaten-Server zum Einsatz kommen. Dieser speichert die zu den Daten
gehorende Metadaten und {ibernimmt in den meisten Féllen auch die Koordination der
Dateisperren, um Clients einen exklusiven Schreibzugriff zu ermdoglichen. Zu den Vertretern
der Cluster-Dateisysteme, die einen DLM nutzen, gehoren etwa das Global File System (GFS,
[gfs]) und Lustre [lus]. Auf die Dienste eines Metadaten-Servers greift dagegen zum Beispiel
CXFS [Sil] zurtick.

Cluster-Dateisysteme konnen wie Netzwerk-Dateisysteme auch nicht anstelle von CloudFS
genutzt werden. Dateisysteme mit Metdadaten-Server wie CXFS [Sil] scheiden aus, da eine
zentrale Kontrollinstanz erforderlich ist, um Inkonsistenzen durch den parallelen Zugriff
zu vermeiden. Dies ist bei einem reinen Online-Speicher ohne weitergehende Privilegien
fiir den Nutzer allerdings nicht zu realisieren. Cluster-Dateisysteme wie GFS [gfs] oder
Lustre [lus], die per DLM die Synchronisation der Zugriffe realisieren, sind wegen der
potenziellen Nutzung von NAT ebenfalls nicht geeignet fiir den Einsatz in der geplanten
Arbeitsumgebung.

2.1.4. Kryptografie in Dateisystemen

Es sind verschiedene Losungen verfiigbar, um die auf einem Datentriger gespeicherten
Daten zu verschliisseln und sie somit vor unberechtigtem Lese- und Schreibzugriff anderer
Nutzer zu schiitzen.

Bitlocker [Mica] ist eine Festplattenverschliisselungsfunktion, die in verschiedenen Windows-
Versionen zum Einsatz kommt. Dabei werden immer komplette Partitionen verschliisselt,
die erst nach erfolgreicher Authentifizierung wieder entschliisselt werden kdnnen. Bitlocker
schiitzt die gespeicherten Daten inklusive Metadaten damit vor Lesezugriffen wahrend die
verschliisselte Partition nicht vom Betriebssystem genutzt wird. Als Verschliisselungsalgo-
rithmus wird der Advanced Encryption Standard (AES) mit einer Schliissellange von 128 Bit
oder 256 Bit verwendet. Es werden drei verschiedene Authentifizierungsmethoden angeboten:
Im Transparent Operation Mode wird mit Hilfe des Trusted Platform Module (TPM) im
Hintergrund und transparent fiir den Nutzer die Entschliisselung vorgenommen. Das TPM
ist ein Chip auf dem Mainboard eines Computers, der vertrauliche Schliissel speichern kann.
In diesem wird ein Schliissel gespeichert, mit dem die Partition entschliisselt werden kann.
Die Herausgabe des Schliissels an das Betriebssystem erfolgt nur, nachdem die Hardware des
Systems auf Anderungen {iberpriift und keine Anderungen festgestellt wurden. Die zweite
mogliche Authentifizierungsmethode ist die Eingabe einer PIN, mit der dann auf den gespei-
cherten AES-Schliissel zugegriffen werden kann. Die letzte Moglichkeit ist die Verwendung

15

2. Grundlagen

eines USB-Gerits, das beim Start des Systems mit dem Computer verbunden sein muss und
einen Schliissel enthilt, der wiederum den Zugriff auf den AES-Schliissel erlaubt. Bitlocker
ermoglicht auch die Kombination der verschiedenen Authentifizierungsmethoden.

Eine weitere Moglichkeit zur Datenverschliisselung bietet die Software Truecrypt [tru], die
fiir Windows, Linux und Mac OS X verfiigbar ist. Die Daten konnen auf unterschiedliche
Art und Weise verschliisselt werden: Es kann wahlweise eine ganze Festplatte, einzelne
Partitionen oder Container-Dateien, die ein eigenes von Truecrypt angelegtes Dateisystem
enthalten, verschliisselt werden. Die Daten werden dabei on-the-fly verschliisselt, wobei
als Verschliisselungsalgorithmus Serpent, AES oder Twofish verwendet werden. Wenn das
Geriét nicht eingebunden ist, wird es vom Betriebssystem als nicht initialisiert angezeigt. Erst
nach dem Einbinden werden die Partitionen und Daten fiir den Nutzer sichtbar. Wenn die
Verschliisselung durch eine Container-Datei erfolgt, wird in dieser ein eigenes Dateisystem
angelegt. Die erstellte Datei kann auch auf einer unverschliisselten Partition abgelegt werden.
Fiir den Lese- und Schreibzugriff miissen Container-Dateien eingebunden werden. Danach
kann darauf wie auf ein reguldres Dateisystem zugegriffen werden. Container-Dateien haben
keinen eigenen Datei-Header und konnen somit nicht als Truecrypt-Datei erkannt werden.
Zusitzlich kann die Datei auf einer verschliisselten Partition gespeichert und in dieser neben
anderen unwichtigen Daten quasi versteckt werden. Dadurch unterstiitzt Truecrypt das
Konzept der glaubhaften Abstreitbarkeit, also der Moglichkeit, bewusst Spuren zu Dateien
zu verwischen und deren Existenz glaubhaft abstreiten zu konnen.

Fiir Unix-Betriebssysteme steht weiterhin zum Verschliisseln von Daten das Dateisystem
EncFS [Gou] zur Verfiigung. Es werden dabei einzelne Dateien anstatt ganzer Partitionen
verschliisselt. Die Funktionsweise von EncFS basiert auf zwei Verzeichnissen, einem Quell-
verzeichnis und einem Arbeitsverzeichnis. Dateien, die der Nutzer im Arbeitsverzeichnis
ablegt, werden on-the-fly verschliisselt und im Quellverzeichnis abgelegt. Jede Datei im
Arbeitsverzeichnis entspricht also einer verschliisselten Datei im Quellverzeichnis, wobei der
Dateiname ebenfalls verschliisselt wird. Als Verschliisselungsalgorithmus wird AES oder
Blowfish verwendet. Die Dateien werden in einzelne, kleinere Dateien aufgespalten, die dann
separat verschliisselt werden. Die Grofse dieser Dateien betragt standardmafSig 512 Bytes. Die
Daten werden mit einem Volume Key verschliisselt, der wiederum mit einem Passwort gesi-
chert ist. Zum Einbinden des verschliisselten Verzeichnisses wird dieses Passwort benotigt;
andernfalls wird der Ordner als leer angezeigt. Dieses Verfahren schiitzt allerdings nicht vor
der Offenlegung von Metadaten wie Dateiberechtigungen oder der Zeit des letzten Zugriffs.
Aufierdem kann die Anzahl der Dateien jederzeit eingesehen werden.

2.2. Verfahren fur den synchronisierten Zugriff auf gemeinsame
Ressourcen

Wenn mehrere Prozesse auf eine gemeinsame Ressource zugreifen, muss der Zugriff koordi-
niert werden. Andernfalls kénnen durch tiberlappende Schreibvorginge Anderungsanoma-
lien auftreten und die Konsistenz der Daten wird gefdhrdet. Im Bereich der Datenbanken
sind Verfahren fiir synchronisierten Zugriff von grofier Bedeutung, da dort parallel viele

16

2.2. Verfahren fir den synchronisierten Zugriff auf gemeinsame Ressourcen

Transaktionen gleichzeitig lesend und schreibend auf die Datenbank zugreifen kénnen und
trotzdem die Konsistenz der Datenbank gewahrt werden muss.

Die Synchronisationsverfahren konnen in zwei Klassen eingeteilt werden, die optimistischen
und die pessimistischen Verfahren (siehe [HRo1]). Beim pessimistischen Ansatz wird die
Annahme getroffen, dass beim Start einer Transaktion mit hoher Wahrscheinlichkeit ein
Konflikt mit einer anderen Transaktion auftritt. Deshalb wird die Ressource zu Beginn
fir einen exklusiven Schreibzugriff gesperrt und damit Inkonsistenzen vermieden. Die
optimistischen Verfahren dagegen liegen der Annahme zu Grunde, dass in den meisten Fillen
kein Konflikt auftreten wird. Deshalb wird erst nach Beenden des Vorgangs auf eventuell
aufgetretene Konflikte gepriift und gegebenenfalls der Schreibvorgang zuriickgesetzt.

Das RX-Sperrverfahren ist ein Vertreter der pessimistischen Synchronisationsverfahren. Das
Prinzip dieses Verfahrens ist es, dass jede Transaktion vor einem Lese- oder Schreibzugriff ei-
ne entsprechende Sperre fiir das betreffende Objekt erwerben muss. Sofern noch keine Sperre
auf ein Objekt besteht, kann eine Transaktion sowohl eine Lese- als auch eine Schreibsperre
erwerben. Wenn schon eine Lesesperre auf einem Objekt besteht, kann nur eine weitere Lese-
sperre erworben werden, damit nicht die Daten schreibend verdndert werden, die gerade von
einer anderen Transaktion gelesen werden. Eine Schreibsperre kann nur erworben werden,
wenn noch keine andere Transaktion eine Sperre fiir das betreffende Objekt angefordert hat.
Es existieren noch diverse Erweiterungen fiir dieses Sperrverfahren mit zusétzlichen Sperren,
um Deadlocks zu vermeiden und den Schreibdurchsatz zu erhdhen.

Ein weiteres pessimistisches Synchronisationsverfahren ist das Multiversion Concurrency
Control, das konkurrierende Zugriffe ohne den Einsatz von Sperren ermoglicht und trotzdem
die Konsistenz der Datenbank nicht gefdhrdet. Dazu werden von jedem Objekt mehrere
Versionen angelegt, wobei nur eine davon die aktuellste ist und sich die Versionen durch einen
Zeitstempel oder eine fortlaufende Transaktionsnummer unterscheiden. Jede Transaktion
besitzt ebenfalls eine Transaktionsnummer oder einen Zeitstempel, mit dessen Hilfe sie
dann bei lesendem Zugriff die passende Version finden kann. Schreibender Zugriff einer
Transaktion blockiert bei diesem Verfahren andere Transaktionen nicht, da einfach eine
neuere Version des Objekts angelegt wird.

Zu den optimistischen Synchronisationsverfahren zahlt das Optimistic Concurrency Control-
Verfahren (OCC). Dies lasst alle Transaktionen ihre Lese- und Schreibvorgidnge ausfithren
und priift anschlieffend, ob ein Konflikt aufgetreten ist und ob die Transaktion zurtickgesetzt
werden muss. Das Verfahren ist in drei Phasen eingeteilt: In der ersten Phase, der Read-Phase,
wird die Transaktion ausgefiihrt, wobei Anderungen an einem Objekt auf einer privaten
Kopie verbleiben. In der nidchsten Phase, der Validierungsphase, wird tiiberpriift, ob die
Transaktion mit einer anderen parallel ausgefiihrten Transaktion in Konflikt geraten ist. In
der Write-Phase werden zum Schluss bei positivem Ergebnis der Validierungsphase die
Anderungen geschrieben oder bei aufgetretenem Konflikt die Transaktion zuriickgesetzt.
Fiir die Validierungsphase gibt es zwei verschiedene Ansatze fiir die Konflikterkennung:
Es konnen entweder parallele Transaktionen, die am Ende der untersuchenden Transaktion
schon abgeschlossen waren oder Transaktionen, die sich aktuell noch in der Read-Phase
befinden, untersucht werden.

17

2. Grundlagen

entwickeltes

~ aufrufendes : Dateisystem
Programm :
User Mode tooeoeeeos g)
Kernel Mode FUSE
NFS
VFS
Ext3

Abbildung 2.2.: Funktionsweise von FUSE (nach Vorlage von: [FUS])

2.3. FUSE

Das Filesystem in Userspace (FUSE, [FUS]) ist ein Kernel-Modul fiir Unix-Systeme. Es ermog-
licht nicht-privilegierten Nutzern eigene Dateisysteme zu entwickeln und einzubinden, ohne
den Kernel selbst verdndern zu miissen. Die Funktionsweise ist in Abbildung 2.2 zu sehen:
Im Gegensatz zu herkommlichen Dateisystemtreibern befindet sich der entwickelte Dateisys-
temtreiber im Userspace und nicht im Kernel-Mode. Ein an dieses Dateisystem gerichteter
Aufruf aus dem Userspace wird vom Virtual File System (VFS) an das FUSE-Kernel-Modul
weitergeleitet, das wiederum den Aufruf an den Dateisystemtreiber im Userspace umleitet.
Das Ergebnis des Aufrufs wird auf dem umgekehrten Weg zum aufrufenden Programm
zuriickgeschickt. Dadurch ist der Zugriff transparent fiir den Nutzer. Fiir die Realisie-
rung eines Dateisystems miissen verschiedene Funktionen implementiert werden, die das
Verhalten des Dateisystems definieren. Es muss festgelegt werden, was bei an das Dateisys-
tem gerichtete Anfragen wie zum Beispiel dem Offnen/Schlielen einer Datei oder einem
Lese-/Schreibzugriff geschehen soll. Fiir die Grundfunktionen eines Dateisystems wie das
Lesen eines Verzeichnisses und das Anzeigen von Dateiinhalten sind nur einige wenige
Funktionen zu implementieren. Ein vollstindiges Dateisystem kann dagegen bis zu 30 zu
implementierende Dateisystemoperation umfassen.

FUSE wird hauptsdchlich dafiir eingesetzt, virtuelle Dateisysteme zu entwickeln. Diese
speichern Daten im Gegensatz zu herkommlichen Dateisystemen nicht selbst, sondern bieten
eine Abstraktionsschicht fiir andere Dateisysteme oder Datenspeicher. Es sind bereits einige
Dateisystemtreiber auf der Basis von FUSE entstanden, wie etwa das GMail Filesystem over
FUSE [GMa], mit dem der Speicher eines Benutzerkontos von Google Mail als Dateisystem
eingebunden werden kann. Weitere Beispiele sind EncFS [Gou] (siehe Abschnitt 2.1.4), das

18

2.3. FUSE

einzelne Dateien ohne die Einrichtung einer eigenen verschliisselten Partition verschliis-
selt oder auch davfs2 [Bau], das das Einbinden von WebDAV-Ressourcen als reguldres
Dateisystem ermoglicht.

19

3. Systemmodell und Anforderungen an
CloudFS

CloudFsS soll die Datenspeicherung in Cloud-Diensten ermoglichen, auch wenn kein zentraler
Kontrollprozess zur Koordination der Zugriffe vorhanden und keine direkte Kommunika-
tionsmoglichkeit zwischen den Clients moglich ist. In diesem Kapitel wird das zugrunde
liegende Systemmodell vorgestellt. Aufferdem werden Anforderungen genannt, die an
CloudFS gestellt werden und die bei der Implementierung berticksichtigt werden sollen.

3.1. Systemmodell

Das Systemmodell, auf dessen Annahme CloudFS entwickelt wurde, ist in Abbildung 3.1
zu sehen. Es sind drei Arten von Clients fiir den Einsatz von CloudFS vorgesehen: sta-
tiondre Clients, mobile Clients und Serverdienste, die in der Cloud ausgefiihrt werden.

stationarer

Client .
I Serverdienst
L L

Server

NAT
;g Internet N
oS v

Stationare
Clients

|.$_¢.;;. , 79

s: fal ~j\/
S“;‘ stationarer
mobile ‘ Client
Endgerate

Abbildung 3.1.: Systemmodell

21

3. Systemmodell und Anforderungen an CloudFS

Stationire Clients besitzen einen schnellen Breitbandinternetzugang, der Ubertragungsge-
schwindigkeiten von bis zu 100 MBit/s erlaubt. AufSerdem weisen tiber diese Verbindung
verschickte Datenpakete nur sehr geringe Verzogerungen im Bereich von weniger als 50ms
auf. Zudem sind bei dieser Art von Internetzugang nur sehr seltene bis keine Verbindungs-
abbriiche zu erwarten. Die zweite Art von Clients stellen mobile Gerdte wie Smartphones
oder Notebooks mit mobiler Internetverbindung dar. Die Ubertragungsgeschwindigkeit bei
dieser Verbindungsart ist in der Regel deutlich niedriger als bei Breitbandzugadngen der
stationdren Clients. Aufgrund der Mobilfunktechnik ist aufSerdem mit hoheren Paketlaufzei-
ten zu rechnen, insbesondere bei schlechter Verbindungsqualitdt. Im Extremfall kann die
Datenverbindung auch abreifsen und der mobile Client ist erst nach einer gewissen Zeit
wieder in der Lage, iiber das Internet zu kommunizieren. Die dritte Client-Art, die CloudFS
nutzt, sind Serverdienste. So ist es denkbar, dass ein selbst in einer Cloud ausgefiihrter Dienst
auf per CloudFS bereitgestellte Daten zugreift. Die Internetverbindung solcher Serverdienste
besitzt in der Regel eine sehr hohe Ubertragungsgeschwindigkeit und weist nur geringe
Latenzzeiten auf. Verbindungsabbriiche sind ebenfalls nur sehr selten zu erwarten.

Es besteht die Moglichkeit, dass sich manche stationédre Clients in einem LAN befinden, in
dem Network Address Translation (NAT) zum Einsatz kommt. Dadurch wird ohne weitere
Konfiguration eine mogliche Ende-zu-Ende-Verbindung zu Clients verhindert, die sich nicht
im selben LAN befinden. Aus diesem Grund wird angenommen, dass Clients untereinander
keine direkte Kommunikationsmoglichkeit besitzen und nur indirekt {iber den gemeinsam
verwendeten Speicher kommunizieren kénnen.

Clients, die CloudFS nutzen, greifen parallel auf einen oder mehrere Speicher zu, die tiber
das Internet erreichbar sind. Dabei kommen unterschiedliche Protokolle zum Einsatz, mit
denen der Speicherzugriff realisiert wird. Online-Speicher, die den Zugriff per WebDAV
oder NFS realisieren, lassen den Nutzer auf dateibasierter Ebene auf seine Daten zugreifen.
Im Gegensatz dazu ist auch ein blockbasierter Zugriff auf die Daten moglich, wie es bei
lokalen Dateisystemen der Fall ist. Diese Zugriffsart wird zum Beispiel von iSCSI realisiert.
Aufierdem sind Server vorgesehen, die vom Nutzer selbst bereitgestellt werden. So kann der
Nutzer Daten, die auf seinem Heimcomputer gespeichert sind, tiber ein Netzwerkdateisystem
wie NFS online zur Verfiigung stellen. Damit besteht dann die Moglichkeit mit anderen
Clients auf diese Daten per CloudFS zuzugreifen.

Der geplante Haupteinsatzzweck von CloudFS ist der ubiquitdre Zugriff des Nutzers auf
seine gespeicherten Daten. Es soll vor allem moglich sein, auf private Dokumente und
Mediendaten wie Musik oder Filme von zu Hause und unterwegs zugreifen zu konnen.
Dementsprechend wird erwartet, dass der Grofiteil der Dateioperationen Lesevorgéange
sein werden und nur selten Daten geschrieben werden miissen. Aufgrund der potenziell
sensiblen Daten muss zudem eine Moglichkeit vorgesehen werden, die gespeicherten Dateien
zu verschliisseln, um dem Anbieter des Speicherplatzes und moglichen anderen Nutzern
die Daten vorenthalten zu kénnen. Dabei sind mehrere Sicherheitsstufen vorgesehen, die
zum Beispiel nur den Dateiinhalt oder auch die komplette Speicherstruktur mit Verzeichnis
und Dateinamen verschliisseln. Aufierdem kann bei Bedarf nicht genutzter Speicherplatz mit
Leerdaten beschrieben werden, um die Grofie der gespeicherten Daten zu verschleiern.

22

3.2. Anforderungen an CloudFS

3.2. Anforderungen an CloudFS

An das zu entwickelnde Dateisystem CloudFS werden verschiedene Anforderungen gestellt,
damit ein paralleler Zugriff der Clients auf einen gemeinsamen Speicher ermoglicht werden
kann. Es sind folgende Punkte zu beachten:

Koordination liber Online-Speicher Netzwerkdateisysteme synchronisieren den parallelen
Zugriff auf einen gemeinsam genutzten Speicher entweder tiber einen zentralen Kon-
trollprozess, der auf dem Server ausgefiihrt wird, oder durch direkte Kommunikation
der Clients, die das Dateisystem nutzen. Aufgrund des Systemmodells kann CloudFS
auf keine der beiden Moglichkeiten zurtickgreifen. Es darf kein zentraler Kontrollpro-
zess benotigt werden, um die Anforderungen an den Server zu reduzieren. Ebenso
ist keine direkte Kommunikation der Clients aufgrund des moglichen Einsatzes von
NAT verfiigbar. Die Clients konnen lediglich Daten auf den gemeinsam genutzten Spei-
cher schreiben und lesen. Aus diesen Griinden muss CloudFS die Koordination und
Synchronisation der Clients iiber den jeweils verwendeten Online-Speicher realisieren.

Konfliktbehandlung Wie in lokalen Dateisystemen auch kénnen verschiedene parallel aus-
gefiihrte Operationen auf dem Dateisystem zu Konflikten fiihren. So resultieren zum
Beispiel zwei parallele Schreiboperationen zweier Clients auf der gleichen Datei in
einem Konflikt. Es muss jedoch am Ende jeder Operation eine konsistente Version der
Datei stehen und dies ist bei gleichzeitigem Schreibzugriff der Clients nicht gewéahrleis-
tet. Deshalb miissen bei der Konzeption von CloudFS Mafsnahmen getroffen werden,
um Inkonsistenzen zu vermeiden, die aufgrund unvertrédglicher Dateisystemoperatio-
nen entstehen konnen.

Behandlung von Verbindungsabbriichen Bei Mobilfunkverbindungen kénnen sehr lange
Latenzzeiten oder sogar Verbindungsabbriiche beobachtet werden. Wenn die Verbin-
dung eines mobilen CloudFS-Clients wahrend eines Schreibzugriffs abbricht, kann
sich das Dateisystem moglicherweise in einem inkonsistenten Zustand befinden. Auch
bei stationdren Clients kann zum Beispiel durch einen Stromausfall die Verbindung
unterbrochen werden. Deshalb muss CloudFS in der Lage sein, mit unvollstindigen
Schreib- und Anderungsoperationen umgehen zu kénnen, indem es das Dateisystem
wieder in einen konsistenten Zustand iiberfiihrt.

Zugriffskontrolle CloudFS soll, wie viele andere Dateisysteme auch, die Moglichkeit bieten,
den Zugriff auf die gespeicherten Daten zu kontrollieren. Dazu ist eine Rechtever-
waltung notwendig, die fiir jede Datei angibt, welche Operationen ein Nutzer auf ihr
ausfiihren darf.

Die eben genannten Anforderungen an das Dateisystem wurden beim Design von CloudFS
berticksichtigt und durch verschiedene Mafinahmen umgesetzt. Die Umsetzung wird in den
beiden folgenden Kapiteln beschrieben.

23

4. Entwurf

In diesem Kapitel wird der Entwurf des Dateisystems CloudFS beschrieben. Es wird zunéachst
auf die Gesamtarchitektur des Systems eingegangen. Anschlieffend wird die Cluster-Schicht,
die den Hauptbestandteil dieser Arbeit darstellt, beschrieben. Ebenso wird auf das verwen-
dete Verfahren zum Sperren von Dateien und Verzeichnissen eingegangen. AbschliefSend
werden der detaillierte Aufbau des Systems und die verfiigbaren Dateisystemoperationen
vorgestellt. Dabei beschrankt sich diese Arbeit auf dateibasierte Online-Speicher.

4.1. Gesamtarchitektur

In Abbildung 4.1 ist die Architektur von CloudFS zu sehen. Die Architektur ist in mehrere
Schichten eingeteilt. Auf der obersten Ebene sind die implementierten Dateisystemtreiber,
die dem Nutzer die gespeicherten Daten der Online-Speicher zur Verfiigung stellen. Es
ist fiir jedes der drei gdngigsten Betriebssysteme Windows, Linux und Mac OS ein Treiber
vorgesehen. CloudFS soll auch auf Smartphones zum Einsatz kommen konnen, weshalb
auch Treiber fiir iPhone OS, Android und Symbian benottigt werden. AufSerdem befindet
sich hier die Konfigurationsschnittstelle. Diese stellt dem Nutzer eine grafische Oberfldche
zur Verfligung, tiber die simtliche Konfigurationsparameter von CloudFS eingestellt werden
konnen.

Unter den Dateisystemtreibern befindet sich die Management-Schicht. Sie besteht aus mehre-
ren Modulen, die das Dateisystem um verschiedene Funktionalitdten erweitern. Die einzelnen
Module sind:

Automatischer Cache Die Daten, auf die per CloudFS zugegriffen werden kann, befinden
sich auf einem Online-Speicher. Vor allem bei mobilen Clients kann es vorkommen, dass
keine Internetverbindung zur Verfiigung steht. Um trotzdem Zugriff auf zumindest
einen Teil der Daten zu haben, werden in einem vom Client selbststindig verwaltetem
Cache auf einer lokalen Festplatte ausgewdhlte Dateien zwischengespeichert. Auf
diesen Daten kann dann trotz fehlender Verbindung zum Online-Speicher gearbeitet
werden. Sobald wieder Internetkonnektivitat vorhanden ist, werden die Dateien mit
dem Server abgeglichen. Durch die Verwendung eines Caches kann aufierdem eine
Beschleunigung des Systems erreicht werden, da hiaufig genutzte Daten zwischenge-
speichert werden kénnen und nicht bei jedem Zugriff vom Server geladen werden
miissen.

25

4. Entwurf

FUSE (Linux,
Mac 0S)

Windows-
Treiber

iPhone/Android/
Symbian App

Konfigurations-
schnittstelle

\\

_—

Management-Schicht

Automatischer Cache Nutzer-gesteuerter Cache

Sicherheits- Replikations- Konfigurations-
manager manager manager
Overlay-Schicht

Cluster-Schicht

Kryptografie-Schicht

A

Dateibasierter
Speicher

Blockbasierter
Speicher

Abbildung 4.1.: Gesamtarchitektur von CloudFS

Nutzer-gesteuerter Cache Im Nutzer-gesteuerten Cache werden analog zum automatischen
Cache Dateien zwischengespeichert. Er garantiert die Verfiigbarkeit der betreffenden
Dateien und beschleunigt den Zugriff darauf. Im Gegensatz zum automatischen Cache,
der selbststandig vom System verwaltet wird, kann der Nutzer hier selbst Vorgaben
erstellen, welche Dateien lokal vorgehalten werden sollen.

Sicherheitsmanager Der Sicherheitsmanager hat die Aufgabe, die vom Nutzer vergebenen
Datei- und Verzeichnisrechte umzusetzen. Er muss also vor jedem Zugriff priifen, ob
der entsprechende Client ausreichend Befugnisse hat, um die gewiinschte Operati-
on durchzufiihren. Die Uberpriifung wird bedingt durch den fehlenden zentralen
Kontrollprozess auf den Clients ausgefiihrt.

Replikationsmanager Es besteht die Moglichkeit, die auf einem Online-Speicher abgeleg-
ten Daten auf verschiedene andere Online-Speicher zu replizieren. Dadurch kann
eine hohere Datensicherheit und Datenverfiigbarkeit erreicht werden. Der Replika-
tionsmanager ist dafiir zustandig, die vom Nutzer ausgewdhlte Replikation auf die
verschiedenen Online-Speicher abzubilden.

26

4.1. Gesamtarchitektur

Konfigurationsmanager CloudFS wurde fiir den parallelen Einsatz auf mehreren Clients
konzipiert. Fiir die einzelnen Clients ist die Kenntnis von bestimmten Konfigurati-
onsparametern notwendig, um ein bestehendes CloudFS-System nutzen zu kénnen.
Damit nicht bei jedem Client, der zum ersten Mal CloudFS nutzt, alle Parameter vom
Nutzer eingegeben werden miissen, werden diese in einem bestimmten Bereich im
Online-Speicher hinterlegt. Der Konfigurationsmanager ist dann dafiir zustdndig, diese
Parameter auszulesen, eine Erstkonfiguration des Clients vorzunehmen und eventuelle
Anderungen wieder zuriickzuschreiben.

Unter der Management-Schicht mit ihren einzelnen Modulen befindet sich die Overlay-
Schicht. Sie ist dafiir zustandig, dass mehrere Online-Speicher parallel von einem Client
genutzt werden konnen. Damit ist es moglich, entweder Unterverzeichnisse auf verschiede-
nen Online-Speicher zu speichern oder bestimmte Verzeichnisse auf andere Online-Speicher
zu replizieren.

Unterhalb der Overlay-Schicht befindet sich die Cluster-Schicht. Sie ist fiir die Koordination
des parallelen Zugriffs der verschiedenen Clients zustdndig. Die Bezeichnung der Cluster-
Schicht wurde in Anlehnung an Cluster-Dateisysteme gewdhlt, bei denen ebenfalls die
Hauptaufgabe die Koordination der parallelen Client-Zugriffe ist.

Die letzte Schicht tiber der tatsdchlichen Speicherung der Daten auf einem Online-Speicher
ist die Kryptografie-Schicht. Sie ist fiir die Verschliisselung der abgelegten Daten zustandig.
Es steht dem Nutzer frei, ob er eine Verschliisselung verwenden will oder ob die Datei-
en unverschliisselt gespeichert werden sollen. Der Nutzer kann dabei auf verschiedene
Sicherheitsstufen zuriickgreifen. Sensible Daten wie zum Beispiel Kreditkartendaten miissen
zwingend vor jeglichem fremden Zugriff geschiitzt werden, wihrend eine Audio-Datei nicht
unbedingt diese Sicherheitsstufe erfordert. Die Wahl der Sicherheitsstufe hat auch Auswir-
kungen auf die Overlay-Schicht. Wenn mehrere Online-Speicher verfiigbar sind, kénnen
sensible Dateien bevorzugt auf Servern gespeichert werden, denen am meisten vertraut
wird. Wenn keine Verschliisselung gewidhlt wurde, leitet die Kryptografie-Schicht alle Daten
unverandert an die jeweiligen Online-Speicher weiter. Bei aktiver Verschliisselung und zu-
grunde liegendem blockbasiertem Speicher werden die Datenblécke beim Transfer zwischen
Cluster-Schicht und Speicher je nach Richtung ver- beziehungsweise entschliisselt.

Die unterste Schicht der Architektur von CloudFS stellen die Online-Speicher dar. Diese
konnen entweder dateibasiert oder blockbasiert sein. Hier werden dann schliefslich alle von
CloudFS genutzten Daten gespeichert.

In dieser Arbeit liegt das Hauptaugenmerk auf der Cluster-Schicht, die fiir die Koordina-
tion des parallelen Zugriffs zustindig ist. Die anderen Komponenten sind zwar fiir die
Gesamtarchitektur vorgesehen, werden hier jedoch nicht oder nur teilweise vorgestellt und
implementiert.

27

4. Entwurf

4.2. Entwurf der Cluster-Schicht

Die Cluster-Schicht koordiniert den parallelen Zugriff der Clients auf die gespeicherten
Dateien. Aufierdem wird durch die Verwendung eines Journals sichergestellt, dass bei
Auftreten von Inkonsistenzen durch Verbindungsabbriiche stets eine konsistente Version des
Dateisystems rekonstruiert werden kann.

Dateien und Verzeichnisse, im Folgenden auch Objekte genannt, besitzen eine Sperre. Wenn
eine Anderung an einem Objekt durchgefiihrt werden soll, muss zuerst die zugehorige
Sperre erworben werden. Die Sperre sichert dem entsprechenden Client damit exklusiven
Zugriff auf die Datei oder das Verzeichnis. Das in CloudFS verwendete Sperrverfahren
wird in Abschnitt 4.2.2 beschrieben. Eine Leseoperation auf einem Objekt erfordert keine
Sperre und kann immer ausgefiihrt werden. Dadurch ist es moglich, dass schmutzige
Daten gelesen werden, wenn parallel ein anderer Client schreibend auf das Objekt zugreift.
Das Sperrverfahren kann unter bestimmten Umstdnden einen Deadlock einer Objektsperre
verursachen. In diesem Fall ist es nicht mehr moglich, dass sich ein Client den exklusiven
Zugriff auf dieses Objekt sichern kann. Somit kann auf dieses Objekt nur noch lesend
zugegriffen werden, bis der Deadlock beseitigt ist.

4.2.1. Journal

Das Journal ist in verschiedene Abschnitte aufgeteilt. Jeder Client muss sich einen dieser
Abschnitte reservieren, bevor er das System nutzen kann. Auf dem betreffenden Abschnitt
besitzt er exklusiven Schreibzugriff.

Bevor eine Anderungsoperation auf den gespeicherten Daten ausgefiihrt wird, legt ein
Client in seinem Journal-Abschnitt einen Eintrag fiir die Operation an. Dieser enthdlt alle
benoétigten Informationen {iiber die auszufithrende Operation. Jeder Eintrag enthilt den
Namen der Operation, eine Versionsnummer und den Zeitpunkt der Anderung. Je nach
Art der Operation werden weitere Informationen gespeichert (siehe Abschnitt 4.4.1 tiber
die verfiigbaren Dateisystemoperationen). Wenn ein Eintrag erfolgreich erstellt wurde,
ist sichergestellt, dass die Operation im Fall eines Abbruchs wahrend der Ausfiithrung
wiederholt werden kann. Andernfalls wird der unvollstdndige Eintrag verworfen und die
Operation kann nicht ausgefiihrt werden. Somit kann immer eine konsistente Version des
Dateisystems rekonstruiert werden.

Um gespeicherte Journal-Eintrage chronologisch ordnen zu konnen, enthalten sie eine
Versionsnummer. Jede Datei und jedes Verzeichnis besitzt ebenfalls einen Versionszéhler,
der der Versionsnummer des zuletzt ausgefiihrten Journal-Eintrags entspricht. Somit kann
festgestellt werden, welche Eintrage bereits ausgefiihrt wurden und veraltet sind und welche
Eintrdge noch ausgeschrieben werden miissen. Beim Anlegen eines neuen Journal-Eintrags
muss diesem eine Versionsnummer zugewiesen werden. Dazu wird die aktuelle Version
der betreffenden Datei oder des Verzeichnisses im Datenbereich gelesen. Existieren keine
Journal-Eintrdge des Objekts, wird die gelesene Version inkrementiert und fiir den neuen
Eintrag verwendet. Sind jedoch alte Journal-Eintrdge vorhanden, werden diese zuséatzlich

28

4.2. Entwurf der Cluster-Schicht

Algorithmus 4.1 Ausschreiben von Journal-Eintragen

1: procedure WRITEBACK_JOURNAL_ENTRIES()
2 get all journal entries of all journal sections

3 writeback changes that were not yet executed
4 update version number

5 delete journal entries in own journal section
6: end procedure

aus dem Journal gelesen und ihrer Versionsnummer entsprechend aufsteigend geordnet.
Ist die hochste Version kleiner als die der Datei oder des Verzeichnisses, ist kein weiteres
Vorgehen notig. Andernfalls wird diese Version inkrementiert und fiir den neuen Eintrag
verwendet.

Das Ausschreiben von Journal-Eintrdgen geschieht in der Regel direkt nach dem Erstellen
des jeweiligen Eintrags. Allerdings ist gerade fiir mobile Clients die Moglichkeit vorgesehen,
die Eintrdge unausgeschrieben zu hinterlassen. Diese Aufgabe kann dann zu einem spiteren
Zeitpunkt von einem anderen Client iibernommen werden. Dieser wird dann vor dem
Ausfiihren einer weiteren Operation auf der betreffenden Datei oder dem Verzeichnis alte
Journal-Eintrdge in den Datenbereich ausschreiben.

Der Ausschreibevorgang ist in Algorithmus 4.1 beschrieben. Zuerst werden fiir die betref-
fende Datei oder fiir das betreffende Verzeichnis alle verfiigbaren Journal-Eintrage aus
allen Journal-Bereichen zusammengestellt. Anhand der Versionsnummer der Datei oder
des Verzeichnisses und der der einzelnen Eintrdge kann nun festgestellt werden, welche
Journal-Eintrdge bereits ausgefiihrt wurden und welche noch ausgeschrieben werden miissen.
Nach dem erfolgreichen Ausschreiben muss dann dementsprechend der Versionszéhler der
Datei oder des Verzeichnisses angepasst werden. Zum Schluss werden noch die bereits
ausgeschriebenen Journal-Eintrdge geltscht, die sich im Journal-Bereich des Clients befin-
den. Eintrdge, die sich in Journal-Bereichen anderer Clients befinden, konnen dort nicht
geldscht werden, da der ausschreibende Client nur schreibenden Zugriff auf seinen eigenen
Journal-Bereich besitzt. Alte Journal-Eintrdage konnen jedoch anhand ihrer Versionsnummer
gefiltert werden und werden beim ndchsten Ausschreiben des Clients, der den betreffenden
Journal-Bereich reserviert hat, geloscht.

4.2.2. Sperrverfahren

Das Sperren eines Objekts fiir den exklusiven Zugriff kann in CloudFS nicht wie in her-
kommlichen Netzwerk- oder Cluster-Dateisystemen gelost werden. Der Grund hierfiir ist
das Fehlen eines zentralen Kontrollprozesses und die ausschliefSliche Kommunikation der
Clients tiber die Online-Speicher. In diesem Abschnitt wird zuerst die Problematik von
Sperrverfahren ohne zentrale Koordination erldutert. Anschliefend wird das Sperrverfahren
vorgestellt, das in CloudFS zum Einsatz kommt.

29

4. Entwurf

Armee 2

Abbildung 4.2.: Veranschaulichung des Two Army Problems

Problematik von Sperrverfahren ohne zentrale Koordination

Unter den gegebenen Voraussetzungen des Systemmodells, dass die Nachrichteniibermitt-
lung unzuverldssig ist und ein zentraler Kontrollprozess fehlt, ist es nicht moglich, ein
sicheres Sperrverfahren zu entwickeln. Einen Beweis hierfiir veroffentlichten Akkoyunlu et al.
[AEH75] bereits 1975. Darin wird erklért, dass in einem verteilten System mit zwei Prozessen
und unzuverldssiger Kommunikation keine Einigung {iber eine Transaktion erzielt werden
kann, sofern kein dritter Prozess vorhanden ist, der den Gesamtstatus des Systems kennt.
Akkoyunlu et al. veranschaulichten die Problemstellung durch ein Beispielszenario, bei dem
Gangster eine Stadt iiberfallen wollen. Heute ist das Problem auch unter dem Namen , Two
Army Problem” bekannt. Es handelt dabei von einer Stadt, die umgeben ist von zwei Hiigeln,
auf denen jeweils eine Armee steht, wie in Abbildung 4.2 zu sehen ist. Diese Armeen wollen
die Stadt angreifen, konnen die Stadt jedoch nur dann besiegen, wenn beide zum gleichen
Zeitpunkt angreifen. Um ihre Angriffe zu koordinieren und einen Angriffszeitpunkt zu
vereinbaren, schicken sie Boten durch das Tal. Diese konnen allerdings auf ihrem Weg durch
die Stadt gefangen genommen werden.

Das Sperren eines Objekts in CloudFS lasst sich auf das Two Army Problem abbilden: Zwei
Clients, die den Zugriff auf ein Objekt koordinieren wollen, stellen die beiden Armeen dar.
Es muss ebenfalls wie beim Two Army Problem eine Einigung erzielt werden, im Fall von
CloudFS die Ubereinkunft, welcher der Clients exklusiv auf das Objekt zugreifen darf. Beim
Two Army Problem besteht die Moglichkeit, dass Boten auf ihrem Weg durch das Tal gefan-
gen genommen werden konnen. In CloudFS konnen ebenfalls Nachrichten verloren gehen:
Damit zwei Clients in CloudFS kommunizieren konnen, miissen sie an den jeweils anderen
Client adressierte Nachrichten auf dem Online-Speicher zwischenspeichern. Der Empfénger
kann die Nachricht anschlieffend vom Online-Speicher lesen. Dieses Vorgehen ist notwendig,
da eine direkte Kommunikation zwischen den Clients aufgrund des Systemmodells nicht
moglich ist. Wenn beide Clients den gleichen Bereich nutzen, um dort ihre Nachrichten
abzulegen, besteht die Moglichkeit, dass sie gegenseitig die Nachrichten iiberschreiben. Das
Resultat ist der Verlust der iiberschriebenen Nachricht. Selbst wenn dies ausgeschlossen
werden kann und beide Clients iiber einen eigenen Bereich verfiigen, konnen Datenpakete
auf ihrem Weg von und zum Server verloren gehen, was speziell bei Mobilfunkverbindungen
héufiger der Fall ist. Somit kann in CloudFS ebenfalls wie beim Two Army Problem eine
Nachricht auf dem Weg zwischen den beteiligten Parteien verloren gehen. Es fehlt beim Two

30

4.2. Entwurf der Cluster-Schicht

Army Problem ebenso wie in CloudFS ein zentraler Kontrollprozess. Somit ldsst sich das
Problem der Einigung iiber den exklusiven Zugriff auf ein Objekt in CloudFS direkt auf das
Two Army Problem abbilden.

Akkoyunlu et al. bewiesen, dass das Two Army Problem in endlicher Zeit nicht zu l6sen ist:
Das Protokoll zur Losung enthdlt mindestens eine Nachricht. Angenommen, es existiert eine
endliche Sequenz von Nachrichten zur sicheren Ubereinkunft, so muss es auch eine kiirzeste
Sequenz geben mit n > 1, wobei n die Anzahl der gesendeten Nachrichten ist. Da dies die
kiirzeste Sequenz ist, muss die letzte Nachricht wichtig sein fiir den Protokollablauf. Weil
diese Nachricht aber verloren gehen kann, muss der Empfianger sie bestitigen, weshalb die
Sequenz mindestens 7 + 1 Nachrichten benétigt. Dies ist ein Widerspruch zur Annahme und
somit ist bewiesen, dass man kein endliches Protokoll fiir dieses Problem finden kann.

Client 1 Server Client 2

t0 —0
Sperre|= 0

Sperre?

keine Sperre!

%

Sperre|= C1 setze Sperre

keine Sperre!

Sperre?

Sperre gesetzt 1=
von C1

Sperre|= C2

Sperre?

Sperre gesetzt

2T von C2

a

Abbildung 4.3.: Veranschaulichung des Problems der indirekten Kommunikation

Ein Beispielprotokoll (siehe Abbildung 4.3) verdeutlicht das Problem der fehlenden zentralen
Koordination bei Sperrverfahren. Beide Clients versuchen, die Sperre fiir den Abschnitt zu
setzen. Dies geschieht durch Schreiben der jeweiligen Client-ID, die jeden Client eindeutig

31

4. Entwurf

identifiziert. Zu Beginn bei Zeitpunkt t, ist die Sperre nicht vergeben (Sperre = 0). Beide
Clients fiihren dann folgende Schritte aus:

1. Priife, ob die Sperre schon gesetzt ist. Wenn ja, breche ab, sonst weiter mit Schritt 2.
2. Setze die Sperre durch Schreiben der eigenen Client-ID.

3. Lese Status der Sperre vom Server. Wenn die Sperre gesetzt ist und die Client-ID mit
der eigenen tibereinstimmt, betrachte Objekt als gesperrt und beginne Operation auf
Objekt.

Zum Zeitpunkt t, geht Client 1 davon aus, dass er die Sperre erhalten hat. Durch die hohe
Verzogerung bei der Ubermittlung der Nachrichten trifft allerdings Client 2 zum Zeitpunkt
t2 ebenfalls die Annahme, dass er erfolgreich die Sperre beantragt hat. Somit hat dieses
Sperrverfahren versagt, beide Clients konnten mit einem Schreibvorgang beginnen und
Inkonsistenzen des Dateisystems wiren die Folge.

Einfacher Sperralgorithmus

Es wurde bewiesen, dass ohne zentralen Koordinationsprozess keine Einigung iiber eine
Transaktion erzielt werden kann. Mit der Annahme einer maximalen Nachrichtenlaufzeit
tmax ist es allerdings auch im vorliegenden Fall moglich, ein sicheres Sperrverfahren zu
erreichen. Die Annahme einer maximalen Paketlaufzeit ist fiir das gegebene Systemmodell
zuldssig, da die meisten zugrunde liegenden Speicherprotokolle wie NFS (seit Version 4)
als Transportprotokoll TCP verwenden. Dieses spezifiziert die Maximum Segment Lifetime
(MSL), die angibt, wie lange ein Segment (Paket) im Netzwerk verbringen kann, bevor
es verworfen wird. Diese betrdgt in den meisten Féllen zwei Minuten. Somit kann die
maximale Paketlaufzeit fiir CloudFS durch die MSL angegeben werden. Falls UDP als
Transportprotokoll zum Einsatz kommt, muss das Speicherprotokoll dafiir Sorge tragen,
dass Pakete eine maximale Lebensdauer besitzen, nach deren Ablauf sie verworfen werden.

Ein einfaches Sperrprotokoll, das nicht auf einem zentralen Koordinationsprozess oder
direkter Kommunikation basiert und die Annahme einer maximalen Paketlaufzeit ausnutzt,
ist in Algorithmus 4.2 zu sehen. Um eine Sperre zu erhalten, liest ein Client zuerst den
aktuellen Status einer Objektsperre. Wird diese nicht bereits von einem anderen Client gehal-
ten, schreibt der betreffende Client seine eigene eindeutige ID in das Feld der Objektsperre.
Daraufhin wartet er 2 * tpay, bis er nochmals den Status der Objektsperre liest. Im Worst
Case tiberpriift ein zweiter Client kurz vor dem Setzen der Sperre des ersten Clients den
Status und wird annehmen, die Sperre sei noch nicht gesetzt. Anschlieffend wird er versu-
chen, selbst die Sperre setzen. Das Lesen und Setzen des zweiten Clients dauert maximal
2 * tmax. Aus diesem Grund muss ein Client diese Zeit warten, bis er nochmals den Status
der Sperre iiberpriift. Steht nach Ablauf dieser Zeitspanne immer noch seine eigene ID in
der Objektsperre, kann er sich sicher sein, dass kein anderer Client ebenfalls der Annahme
ist, dass er die Sperre erfolgreich beantragt hat.

32

4.2. Entwurf der Cluster-Schicht

Algorithmus 4.2 Einfacher Algorithmus zur Objektsperrung

: procedure GETLOCK()

read Lock from server

if (Lock # 0 AND Lock # own Client-1D) then
abort without success

end if

set Lock

wait for 2 * tyax

e PN D2V A R N-R

read Lock from server

if (Lock # own Client-1D) then
abort without success

else

14: return success

15: end if

16: end procedure

HooR R
NoRoQ

[y
*

Das eben vorgestellte Sperrverfahren eignet sich nur bedingt fiir den Einsatz in einem Datei-
system. Bei jedem Schreibvorgang oder dhnlichen Operationen, bei denen exklusiver Zugriff
auf ein Objekt verlangt wird, miisste der Client mindestens vier Minuten warten (wenn
eine maximale Paketlaufzeit von zwei Minuten angenommen wird), bis er die eigentliche
Dateioperation durchfiihren kann. Selbst fiir die Ubertragung einer Datei mit einer GroSe
von nur wenigen Bytes wiirde der Client diese Zeit benétigen. Aus diesem Grund wird im
normalen Betrieb von CloudFS zum Sperren von Dateien und Verzeichnissen ein anderes
Sperrverfahren verwendet und nur in Ausnahmeféllen auf das eben vorgestellte Verfahren
zuriickgegriffen.

Modifizierter Sperralgorithmus

Fiir das Sperrverfahren, mit dem Dateien, Verzeichnisse und Journal-Abschnitte fiir den
exklusiven Zugriff gesperrt werden kénnen, wird die Annahme einer maximalen Paketlauf-
zeit wieder fallen gelassen. Der Algorithmus 4.3 zeigt den Ablauf des Sperrverfahrens. Es
wird eine weitere Sperre eingefiihrt, sodass nun zwei Sperren pro Objekt existieren. Beide
Sperren miissen von einem Client gehalten werden, um erfolgreich die Objektsperre bean-
tragt zu haben. Ein Beispielablauf des Sperrprotokolls ist in Abbildung 4.4(a) zu sehen. Zu
Beginn versucht ein Client Sperre A zu setzen, indem er dort seine Client-ID eintrdagt. Wenn
Sperre A erfolgreich gesetzt wurde, versucht er auch Sperre B zu setzen, sofern dies nicht
bereits durch einen anderen Client geschehen ist. Am Ende wird {iberpriift, ob er immer
noch Sperre A hélt und auch Sperre B wird nochmals iiberpriift. Sollte ein Client bei der
Uberpriifung am Ende des Protokolls fiir beide Sperren eine erfolgreiche Riickmeldung
bekommen, so betrachtet er diese Objektsperre als erfolgreich reserviert und setzt ein Flag,

33

4. Entwurf

Algorithmus 4.3 Modifizierter Algorithmus zur Objektsperrung

1: procedure GETLOCKONOBJECT()

2 read Lock_A from server

3 if (Lock_A # 0 AND Lock_A # own Client-ID) then
4 call ClearPossibleDeadlock() and return

5: end if

6 set Lock_A

7
8

9

read Lock_A from server
if (Lock_A # own Client-1D) then

10: call ClearPossibleDeadlock() and return
11: end if

12:

13: read Lock_B from server

14: if (Lock_B # 0 AND Lock_B # own Client-ID) then
15: call ClearPossibleDeadlock() and return
16: end if

17: set Lock_B

18:

19: read Lock_A from server

20: if (Lock_A # own Client-1D) then

21 call ClearPossibleDeadlock() and return
22: end if

23: read Lock_B from server

24: if (Lock_B # own Client-ID) then

25 call ClearPossibleDeadlock() and return
26: end if

27:

28: set owner flag

29: end procedure

das ihn als Besitzer der Objektsperre ausweist. Ein eventuelles Andern der einzelnen Sper-
ren durch einen anderen Client hat darauf keine Auswirkung, da dieser spéter bei seiner
Uberpriifung feststellen wird, dass er nicht mehr beide Sperren hilt. Nach Beenden der
Operationen auf dem Objekt setzt der Client die Sperren wieder zuriick. Anschliefiend kann
ein anderer Client wieder versuchen, die Objektsperre zu erlangen.

Die Korrektheit des Reservierungsprotokolls kann durch Ausschlussverfahren bewiesen
werden: Zu Beginn sind beide Sperren nicht gesetzt. O.b.d.A. wird angenommen, dass
Client 1 zuerst Sperre A und Sperre B setzt und, wie in Abbildung 4.4(a) zu sehen, zum
Zeitpunkt t; nochmals Sperre A tiberpriift. Nun kann der zweite Client zu unterschiedlichen
Zeitpunkten ebenfalls beginnen und versuchen, die Sperre zu erlangen. Wenn der zweite
Client bis zum Zeitpunkt t; Sperre A setzt, bemerkt dies Client 1 spétestens bei der zweiten
Uberpriifung von Sperre A direkt nach t; und zieht sich zuriick. Wenn der zweite Client erst

34

4.2. Entwurf der Cluster-Schicht

Client 1 Server Client2 Client 1 Server Client 2
0 — (0 J—
Sperrel]A =0 Sperre|lA = 0
Sperre|B =0 Sperre|B = 0

Sperre A? Sperre A?

Sperre A? Sperre A?

Sperre A nicht Sperre A nicht

esetzt! 1
9 gesetzt! Sperre A nicht
gesetzt!
setze Sperre A w}
Sperre 3 A=cC1
Sperre ngzz B=0 setze Sperre
Sperre A? Sperre A?

Sperre A nicht

Sperre A gesetzt ¢ _| gesetzt! Sperre A gesetzt Sperre
von C1 von C1 Sperre|
Sperre B?

Sperre B nicht

gesetzt! 2 _| 1 4 Sperre A gesetzt
von C2
setze Sperre B Sperre B?
\ setze Sperre A Sperre B?
Sperre|lA = C1
Sperre|B = C1

Sperre B nicht

gesetzt!
Sperre B nicht
esetzt!
Sperre A? 9 setze Sperre B

Sperre A = C2
Sperre A gesetzt Sperre B = C2

haLis Sperre|A = C2 setze Sperre B
Sperre|B = C1

Sperre A = C2
Sperre B = C1

?
Sperre B? Sperre A?

t4
Sperre A gesetzt
Sperre B gesetzt von C2
von C1 Sperre A gesetzt t2 —
von C2
Sperre B?
Sperre B gesetzt
t3 von C1
(a) Ablauf 1 (b) Ablauf 2

Abbildung 4.4.: Beispielhafte Abldufe des Sperrverfahrens

35

4. Entwurf

nach dem Zeitpunkt t; Sperre A setzt, so hat Client 1 bereits Sperre B gesetzt, was der zweite
Client auch durch Uberpriifung bemerken wird und sich dementsprechend zuriickzieht.
Damit ist ausgeschlossen, dass zwei Clients gleichzeitig der Annahme sind, dass sie sich die
Objektsperre erfolgreich gesichert haben.

Aufgrund der unterschiedlichen Verbindungsarten, vor allem bei mobilen Clients, kann
es zu sehr unterschiedlichen Paketlaufzeiten kommen, sodass bei zwei gleichzeitig agie-
renden Clients eine fast beliebige Reihenfolge der am Server ankommenden Nachrichten
entstehen kann. Das Gleiche gilt fiir Pakete, die vom Server zu einem der Clients gesendet
werden. Es wird die Annahme getroffen, dass die Nachrichten in FIFO-Ordnung gesendet
und empfangen werden, also dass zwei Nachrichten entsprechend ihrem Versandzeitpunkt
auch in dieser Reihenfolge beim Empfanger ankommen. Die chronologisch geordnete Rei-
henfolge der Nachrichten ist notwendig, da andernfalls die Uberpriifungen der Zustinde
der einzelnen Sperren ausgehebelt werden konnten und das Protokoll nicht mehr fiir die
Konsistenz des Dateisystems garantieren konnte. Die Annahme setzt entweder voraus, dass
die zugrunde liegenden Speicherprotokolle TCP als Transportprotokoll verwenden, da dort
diese Funktionalitdt bereits implementiert ist, oder das Speicherprotokoll selbst muss die
FIFO-Ordnung gewéhrleisten.

Deadlock-Beseitigung

Das modifizierte Sperrverfahren sichert immer hochstens einem Client die Objektsperre zu.
Es kann allerdings der Fall eintreten, dass zwei Clients jeweils eine der beiden Einzelsperren
erwerben und sich anschlieffend zuriickziehen. Das Resultat ist ein Deadlock der Objekt-
sperre. Durch Verwendung der Annahme einer maximalen Nachrichtenlaufzeit kann dieser
wieder aufgelost werden.

Eine mogliche Nachrichtenreihenfolge, die einen Deadlock verursacht, ist in Abbildung 4.4(b)
zu sehen. Zu Beginn tiberpriifen beide Clients den Status von Sperre A, die nicht gesetzt ist.
Beide Clients versuchen Sperre A zu setzen und iiberpriifen anschliefiend, ob das Sperren
erfolgreich war. Durch die lange Ubertragungszeit der Nachricht von Client 2 zum Setzen
der Sperre A hat Client 1 bereits die Sperre schon gesetzt und erneut den Status der Sperre
gelesen. Dadurch tiberschreibt Client 2 Sperre A mit seiner Client-ID. Anschlieffend lesen
beide Clients den Status von Sperre B, die zu diesem Zeitpunkt noch nicht gesetzt ist. Dar-
aufhin versuchen beide, Sperre B zu setzen, wobei die Nachricht von Client 2 zum Setzen
der Sperre vor der von Client 1 am Server ankommt. Somit halt Client 2 fiir kurze Zeit
Sperre B, die allerdings kurz darauf von Client 1 {iberschrieben wird. Zum Schluss {iiber-
priifen beide Clients jeweils den Status von Sperre A und Sperre B. Beide Clients stellen
fest, dass sie nicht erfolgreich beide Sperren gesetzt haben und ziehen sich zuriick. Somit ist
ein Deadlock entstanden, der es keinem Client mehr ermoglicht, dieses Objekt fiir sich zu
sperren.

Sobald ein Client bei der Reservierung einer Objektsperre einen moglichen Deadlock er-
kennt, fiihrt er den Algorithmus 4.4 zur Deadlock-Erkennung und -Beseitigung aus. Dabei
wird dann untersucht, ob ein Deadlock einer Objektsperre vorliegt. Wenn dies der Fall

36

4.2. Entwurf der Cluster-Schicht

Algorithmus 4.4 Algorithmus zur Deadlock-Erkennung und -Auflosung

1
2
3
4
5:
6:
7
8
9

10:
11
12
13:
14:
15:
16:
17:
18:
19:
20:
21:
22:
23:
24:
25:
26:
27:
28:
29:
30:
31:
32!

procedure CLEARPOSSIBLEDEADLOCK()

read owner flag from server
if (owner flag is set) then
object is not deadlocked -> return
end if
read Lock_A from server
read Lock_B from server

if (Locks are not set OR Lock_A = Lock_B) then
object is not deadlocked -> return
end if

waiting time = (2 * tmax + max clock skew) - (time since modification of locks)

if (Client was involved in deadlock) then
wait for (waiting time + random backoff time)
else if (Client was NOT involved in deadlock) then
if (waiting time > o) then
leave deadlock unhandled and return
end if
end if

lock parent directory

if (parent directory cannot be locked) then
leave deadlock unhandled and return

end if

if (Locks were modified during waiting time) then
object is not deadlocked -> return

end if

clear deadlock by setting Lock_A, Lock_B and owner flag with own Client-ID

33: end procedure

37

4. Entwurf

ist, versucht der Client den Deadlock durch Setzen der beiden einzelnen Sperren und des
Besitzer-Flags aufzuheben. Ein Deadlock einer Objektsperre liegt genau dann vor, wenn das
Besitzer-Flag nicht gesetzt ist und die beiden einzelnen Sperren unterschiedliche eingetra-
gene Client-IDs besitzen. Allerdings muss ein Client den Status der Objektsperre zwei Mal
im Abstand von mindestens 2 * tnax tiberpriifen, um sicher den Zustand der Objektsperre
bestimmen zu konnen. Der Grund hierfiir sind Nachrichten, die sich aufgrund von hoher
Verbindungslatenzen noch im Transit befinden konnen und den Zustand der Sperre dndern
konnen. Nur wenn sich der Zustand der Sperre nach Ablauf dieser Zeit nicht geandert hat,
kann sicher von einem Deadlock ausgegangen werden. Es ist wichtig, dass ein Client nicht
talschlicherweise einen Deadlock annimmt und diesen zu beseitigen versucht, da er dabei
die reguldr erworbene Objektsperre eines zweiten Clients {iberschreiben kénnte und somit
die Gefahr von Inkonsistenzen entstiinde.

Der Algorithmus zur Erkennung und Beseitigung eines eventuellen Deadlocks wird aufgeru-
fen, wenn beim Uberpriifen des Status einer Einzelsperre festgestellt wird, dass ein anderer
Client diese Sperre bereits gesetzt hat. Zuerst wird iiberpriift, ob das Besitzer-Flag gesetzt
ist. Ist dies der Fall, kann kein Deadlock vorliegen, da die Objektsperre einen Besitzer aus-
weist. Anschlieflend wird der Zustand der beiden einzelnen Sperren gelesen und tiberpriift.
Ist eine der beiden nicht gesetzt oder sind beide der gleichen Client-ID zugeordnet, liegt
ebenfalls noch kein Deadlock vor und die Erkennung wird beendet. Andernfalls wird die
Zeit berechnet, die noch gewartet werden muss, bis der Zustand eines Deadlocks sicher be-
stimmt werden kann. Dazu werden die Zeitstempel der letzten Anderung der Einzelsperren
gelesen und die seit diesem Zeitpunkt verstrichene Zeit berechnet. Dabei wird der Stempel
der Sperre verwendet, die als letztes gedndert wurde. Die berechnete Zeit wird von der
mindestens benotigten Wartezeit, die 2 * tnax betrdgt, abgezogen. Da die Systemuhren der
Clients variieren konnen und dennoch sichergestellt sein muss, dass frithestens nach 2 * fax
ein Deadlock angenommen wird, muss zu der berechneten Wartezeit noch eine Konstante
addiert werden. Diese gibt die maximale Abweichung aller Systemuhren der das System
nutzenden Clients von der Systemuhr des Servers an. Diese Mafinahme ist notwendig, da
die Zeitspanne seit der letzten Anderung einer Sperre mit Hilfe des Zeitstempels berechnet
wird, der entsprechend der Systemzeit auf dem Server gesetzt wird. Bei einem Client mit
einer Systemubhr, die einen negativen Drift besitzt, konnte ohne die zusitzlich addierte Zeit
zu frith ein Deadlock angenommen werden. Der Wert der Konstante wird vom Nutzer
angegeben. Wenn dieser dafiir Sorge tragt, dass alle Uhren im System synchronisiert sind,
kann er einen sehr niedrigen Wert fiir die Konstante wahlen, was die Deadlock-Erkennung
und -Beseitigung beschleunigt.

Wenn ein Client beim Versuch, die Objektsperre zu setzen, eine der beiden einzelnen Sperren
gesetzt hat und somit zum eventuellen Deadlock beigetragen hat, wartet er anschliefSend
fir die berechnete Zeitspanne. Danach tiberpriift er die Sperren nochmals. Falls er dagegen
bereits den Fall vorfand, dass die einzelnen Sperren schon gesetzt waren, bricht er den
Algorithmus ab, sofern er fiir die sichere Deadlock-Erkennung warten miisste. Somit werden
Clients, die nicht an der Verursachung des potenziellen Deadlocks beteiligt waren, nicht
versuchen, diesen zu beheben, sofern er noch nicht dlter als die Mindestwartezeit ist. Dadurch
wird die Zahl der Clients, die sich bei der Deadlock-Behebung gegenseitig behindern kénnten,
nicht noch zusétzlich erhoht, sondern beschrankt sich auf die am Deadlock beteiligten

38

4.3. Details des Dateisystems

Clients. Falls wahrend der Wartezeit die Sperren verdndert wurden, wird die Deadlock-
Erkennung abgebrochen. Um zu bestimmen, welcher von moglicherweise mehreren Clients
den Deadlock beseitigen und die Sperre fiir sich reservieren darf, ist eine Koordination
der Clients notig. Dies geschieht durch das Sperren des Verzeichnisses, in dem sich das
Objekt befindet. Nur der Client, der einen Deadlock erkannt und das Elternverzeichnis
erfolgreich gesperrt hat, darf den Deadlock auch aufheben. Falls der Deadlock bei einem
Reservierungsvorgang aufgetreten ist, bei dem mehrere Clients parallel versucht haben
die Sperre zu beantragen, so werden diese Clients anschlieffend auch zur gleichen Zeit
versuchen, das Eltern-Verzeichnis zu sperren. Um die Beantragung der Verzeichnissperre
der einzelnen Clients zu desynchronisieren, wird zu der berechneten Wartezeit eine kurze,
zuféllige Zeitspanne addiert. Dadurch soll die Wahrscheinlichkeit eines weiteren Deadlocks
verringert werden. Es kann jedoch bereits ein Deadlock der Sperre des Elternverzeichnisses
bestehen oder trotz der Desynchronisation auftreten. In diesem Fall wird der Algorithmus
rekursiv fiir eine Verzeichnisebene hoher ausgefiihrt. Dieser Vorgang bricht spatestens beim
Wurzelverzeichnis ab, bei dem kein Elternverzeichnis mehr gesperrt werden kann, um den
Deadlock eines enthaltenen Verzeichnisses oder einer Datei aufzuheben. In diesem Fall
ist es notig, dass der einfache, aber langsamere Sperralgorithmus verwendet wird, der in
Algorithmus 4.2 beschrieben wurde. Hier ist zusdtzlich zu der Wartezeit zur Deadlock-
Erkennung eine Wartezeit notig, um das Resultat einer beantragten Sperre bestimmen zu
konnen, weshalb er nur bei Deadlocks des Wurzelverzeichnisses verwendet wird.

4.3. Details des Dateisystems

CloudFS kann sowohl auf blockbasierten als auch auf dateibasierten Online-Speichern aus-
gefiihrt werden. In dieser Arbeit werden ausschliefSlich dateibasierte Speicher betrachtet.
CloudFS wurde als Journaling-Dateisystem entworfen, damit bei Auftreten von Inkonsis-
tenzen stets eine konsistente Version des Dateisystems rekonstruiert werden kann. Eine
strukturelle Ubersicht des Systems auf einem dateibasiertem Speicher ist in Abbildung 4.5
zu sehen. Der gesamte Speicherplatz ist mit dem Journal-Bereich und dem Datenbereich in
zwei grofle Teile partitioniert, die jeweils durch einen eigenen Ordner reprasentiert werden.
Der Datenbereich beinhaltet eine normale Ordnerstruktur, in der der Nutzer Dateien und
Verzeichnisse ablegen kann. Der Journal-Bereich ist in eine festgelegte Anzahl von Abschnit-
ten unterteilt, wobei fiir jeden Abschnitt ein eigener Ordner existiert. Jeder Journal-Abschnitt
enthdlt Metadaten-Dateien und Ordner, die fiir die Verwaltung des jeweiligen Abschnitts
notwendig sind. Dazu gehoren:

Sperre A / Sperre B / Besitzer / Alternativsperre Diese vier Dateien sind fiir die Reservie-
rung eines Abschnitts durch einen Client notwendig. Die Funktionsweise und Nutzung
dieser Dateien fiir das Sperrverfahren werden in Abschnitt 4.2.2 beschrieben.

Anderungsliste Fiir jede Anderung, die ein Client im Datenbereich vornehmen will, muss
er zuerst in seinem Journal-Abschnitt einen Journal-Eintrag anlegen. In dieser Liste
werden alle angelegten Eintrdge gespeichert.

39

4. Entwurf

Anderungsordner In diesem Ordner werden Dateien zwischenspeichert, die im Datenbe-
reich neu angelegt werden sollen. Zum anderen werden hier auch Delta Update-Dateien
abgelegt, die Daten enthalten, die in bereits bestehende Dateien tibernommen werden
sollen.

Jeder Client muss vor der Nutzung des Dateisystems zuerst einen dieser Bereiche fiir sich
reservieren. Auf diesen Abschnitt kann dann exklusiv nur er schreibend zugreifen. Dort
werden alle Schreibanderungen, die er an Dateien und Verzeichnissen vornehmen mochte,
zwischengespeichert. AnschliefSend kann er die Eintrége direkt ausschreiben und in den
Datenbereich iibertragen oder dies wahlweise von einem anderen Client erledigen lassen.
Diese Funktionalitit ist speziell bei mobilen Clients von Vorteil, bei denen das Ausschrei-
ben aufgrund der Verbindungseigenschaften sehr lange dauern konnte. Die Nutzung eines
Journals ist fiir CloudFS unabdingbar, da speziell bei Mobilfunkverbindungen eine erhch-
te Wahrscheinlichkeit eines Verbindungsabbruchs besteht. Bei einem Schreibvorgang im

gesamter
Speicherbereich

Daten- Ak
Ordner |

'y
L o Daten-Ordner

> Daten-Datei

je Journal- & L5 Daten-Datei
Abschnitt [

Ly ¥ Metadaten-Ordner

_
Ly Anderungen
- > Sperre A
Neue Datei
> SperreA |5 Sperre B
Delta Update-Datei
L > SperreB |5 Besitzer
> ‘ Sperre A .
L > Besitzer | Journal-Flag
> ‘ Sperre B ;
L 5 Journal-Flag__y, Version
- Besitzer
> Version - Alternativsperre o
) . (nur Wurzelverzeichnis)
Ly ‘ Liste der Anderungen
L5 Objekt-ID
Ly ‘ Alternativsperre
je Daten-Datei Metadaten fur
im Ubergeordneten ubergeordneten
Daten-Ordner Daten-Ordner

Abbildung 4.5.: Struktur des Dateisystems bei dateibasierten Speichern

40

4.3. Details des Dateisystems

Datenbereich ohne Journal wiare die zu dndernde Datei bei Abbruch der Verbindung in
einem inkonsistenten Zustand, der nicht behoben werden kann. Ein Datenverlust wire die
mogliche Folge. Durch Nutzung der Journal-Funktion kann jedoch eine konsistente Version
der Daten rekonstruiert werden.

Der Datenbereich beinhaltet neben den vom Nutzer angelegten Daten in jedem Verzeichnis
einen fiir den Nutzer nicht sichtbaren Metadaten-Ordner. Darin werden fiir die Verwaltung
der Dateien und Ordner benotigte Metadaten gespeichert. Metadaten wie Grofie einer Datei
oder das Anderungsdatum, die der zugrunde liegende Online-Speicher bereits direkt in
einer Datei speichert und zur Verfiigung stellt, werden direkt von diesem tibernommen.
Jeder Metadaten-Ordner enthilt die Metadaten des Verzeichnisses, in dem er sich befindet,
und die der darin enthaltenen Dateien. Dazu gehoren:

Sperre A / Sperre B / Alternativsperre / Besitzer Diese Dateien sind fiir die Sperrung des je-
weiligen Ordners oder der jeweiligen Datei notwendig und werden vom Sperrverfahren
verwendet. Wenn das zugehorige Verzeichnis das Wurzelverzeichnis ist, befindet sich
im Metadaten-Ordner zusatzlich zu den normalen Sperr-Dateien die Alternativsperre,
mit deren Hilfe ein Deadlock des Wurzelverzeichnisses aufgehoben werden kann.

Version Diese Datei reprdsentiert einen Versionszahler der Datei oder des Verzeichnisses.
Nach jeder tibernommenen Anderung aus dem Journal in den Datenbereich wird der
Zidhler inkrementiert.

Journal-Flag Dieses Flag gibt an, ob sich in einem der Journal-Abschnitte Anderungen fiir
das Objekt befinden, die noch nicht in den Datenbereich iibernommen wurden.

Objekt-ID Jeder Datei wird eine eindeutige ID zugewiesen. Mit Hilfe dieser ID werden
Eintrdge im Journal den Dateien im Datenbereich zugeordnet.

Fiir jede Dateioperation auf einem CloudFS-Speicher miissen je nach Art der Operation
verschiedene Schritte wie etwa das Setzen einer Objektsperre oder das Anlegen eines
Journal-Eintrags ausgefiihrt werden. In Kapitel 4.3.1 werden die von CloudFS zur Verfiigung
gestellten Dateisystemfunktionen dargestellt. Der prinzipielle Ablauf ist bei den meisten Ope-
rationen der gleiche: Zuerst wird {iberpriift, ob fiir die betreffende Datei oder das betreffende
Verzeichnis Journal-Eintrége existieren, die noch nicht in den Datenbereich tibernommen
wurden. Wenn dies der Fall ist und der Client das Ausschreiben von Journal-Eintrdgen unter-
stiitzt, wird versucht die entsprechende Sperre zu setzen und die Datei oder das Verzeichnis
im Datenbereich auf den aktuellen Stand zu bringen. Anschlieffend wird, falls notwendig und
noch nicht beim Ausschreiben von Journal-Eintragen geschehen, die Objektsperre gesetzt.
Falls die Sperre nicht gesetzt werden konnte, wird die Operation mit einer Fehlermeldung
abgebrochen. Nach dem Setzen der Sperre kann die eigentliche Dateioperation erfolgen,
indem ein neuer Journal-Eintrag angelegt wird und eventuelle Anderungen der Datei auf den
Online-Speicher hochgeladen werden. Je nach Nutzereinstellung werden die Anderungen
sofort in den Datenbereich {ibertragen oder bleiben unausgeschrieben. Beim Ausschreiben
wird die Datei oder das Verzeichnis im Datenbereich entsprechend des Journal-Eintrags
verdndert, die Versionsnummer inkrementiert und anschlieffend der Journal-Eintrag geldscht.
Am Ende werden gesetzte Sperren wieder freigegeben und die Operation ist beendet.

41

4. Entwurf

Schreibanderungen einer Datei werden bis zum Schliefien der Datei lokal auf der Festplatte
des Clients in einem Cache-Verzeichnis gespeichert. Ebenso wird dieses Verzeichnis benutzt,
wenn fiir eine Datei unausgeschriebene Journal-Eintrége existieren und eine Leseoperation
auf ihr ausgefiihrt werden soll. In diesem Fall wird die aktuelle Version der Datei im Cache
rekonstruiert.

Jedem Client wird eine 128-Bit-ID zugewiesen, die ihn eindeutig im System identifiziert.
Mit deren Hilfe wird dann ein Journal-Abschnitt oder eine Datei- oder Verzeichnissperre
einem Client zugeordnet. Im Normalfall gibt ein Client vor Beendigung seiner Nutzung des
Dateisystems alle von ihm gehaltenen Datei- und Verzeichnissperren sowie den reservierten
Journalbereich wieder auf. Sollte der Fall eintreten, dass ein Client beispielsweise aufgrund
von Verbindungsproblemen das System ungeordnet verlésst, so bleiben auch gesetzte Sperren
im System erhalten und die betroffenen Dateien und Verzeichnisse sind nur noch fiir
Leseoperationen, aber nicht mehr fiir Anderungsoperationen verfiigbar. Grund dafiir ist die
fehlende Moglichkeit von auflenstehenden Clients zwischen reiner Inaktivitit und einem
Verbindungsabbruch zu unterscheiden. Nun besteht die Moglichkeit, dass der betroffene
Client nach einer gewissen Zeit zurtickkehrt und selbst die gesetzten Sperren wieder aufgibt.
Es wurde ebenfalls ein Administrationstool entwickelt, das alle Sperren eines bestimmten
Clients im System wieder freigibt. Die Nutzung des Tools ist fiir den Fall gedacht, dass ein
Client das System in absehbarer Zeit nicht mehr nutzen wird, aber trotzdem schreibender
Zugriff auf die gesperrten Dateien und Verzeichnisse moglich sein soll. Die Ausfiihrung
dieses Programms obliegt dem Administrator des Systems, da sichergestellt sein muss,
dass der betroffene Client zum Zeitpunkt der Ausfiihrung das Dateisystem nicht nutzt.
Andernfalls konnten Inkonsistenzen auftreten. Das Freigeben der Sperren des betreffenden
Clients kann nicht automatisch geschehen, weil ein anderer Client nicht entscheiden kann,
ob der Client, der die Sperren hilt, nur inaktiv ist oder das System verlassen hat. Zum
Ausfiihren des Administrationstools muss der Administrator den Client angeben, dessen
Sperren freigegeben werden sollen. Optional kann der Nutzer einem Client zur leichteren
Identifikation einen frei wahlbaren Bezeichner (zum Beispiel ,Heim-PC”) zuordnen, der
jedoch im System eindeutig sein muss. Der Administrator kann bei der Angabe eines Clients
auf diesen Namen zuriickgreifen und muss nicht die eher unhandliche 128-Bit-Client-ID
verwenden.

Die fiir jede Datei eindeutige Objekt-ID wird beim Erstellen der Datei generiert. Sie besteht
aus der Konkatenation der ID des erstellenden Clients und dem aktuellen Zeitstempel. Durch
die Verwendung der Client-ID ist ausgeschlossen, dass zwei verschiedene Clients die gleiche
Objekt-ID generieren. Der Zeitstempel sorgt fiir Eindeutigkeit der IDs aller erstellten Dateien
eines bestimmten Clients. Allerdings muss ausgeschlossen werden, dass Zeitstempel mehr-
fach verwendet werden, wenn mehrere Dateien kurz hintereinander erstellt werden. Dazu
wird der zuletzt genutzte Zeitstempel gespeichert. Wenn bei der Generierung der néchsten
Objekt-ID der selbe Zeitstempel verwendet werden miisste, wird dieser inkrementiert, damit
die Findeutigkeit gewahrt bleibt.

42

4.3. Details des Dateisystems

OPERATION | FUNKTION \
CREATE Erstellt eine neue Datei und offnet sie

OPEN Offnet eine existierende Datei
READ Liest aus einer gedffneter Datei
WRITE Schreibt in eine geoffnete Datei
FSYNC Synchronisiert eine geoffnete Datei

RELEASE Schliefst eine gedffnete Datei
RENAME Verschiebt eine Datei oder benennt sie um
UNLINK Loscht eine Datei
UTIMENS Setzt die Zeitstempel einer Datei
CHOWN Andert den Besitzer einer Datei
CHMOD Andert die Rechte einer Datei
TRUNCATE | Andert die Grofe einer Datei
MKDIR Erstellt ein neues Verzeichnis
OPENDIR Offnet ein existierendes Verzeichnis
READDIR Liest den Inhalt eines getffneten Verzeichnis
RELEASEDIR | Schliefst ein gedffnetes Verzeichnis
RMDIR Loscht ein Verzeichnis
RENAME Verschiebt ein Verzeichnis oder benennt es um
GETATTR Liest die Attribute einer Datei oder eines Verzeichnisses

Tabelle 4.1.: Verfiigbare Dateisystemoperationen in CloudFS

4.3.1. Verfugbare Dateisystemoperationen in CloudFS

In diesem Abschnitt werden die Operationen vorgestellt, die CloudFS zur Nutzung des
Dateisystems anbietet. Dazu gehoren insgesamt 19 Funktionen, mit denen Dateien und
Verzeichnisse gelesen und bearbeitet werden kénnen. Eine Ubersicht der verfiigbaren Datei-
systemoperationen ist in Tabelle 4.1 zu sehen.

CREATE - Datei erstellen

Beim Aufruf von CREATE zum Erstellen einer neuen Datei wird diese sofort und ohne
Umweg tiber einen Journal-Eintrag im Datenbereich erstellt. CREATE stellt somit eine Aus-
nahme dar, da die meisten anderen Funktionen die Anderungen zuerst im Journal ablegen.
Wie in Algorithmus 4.5 zu sehen ist, wird zuerst tiberpriift, ob die Datei schon vorhanden
ist. Wenn dies der Fall ist, wird CREATE abgebrochen und ein Fehler zuriickgegeben. Es
muss auch tiberpriift werden, ob die Datei eventuell durch einen Journal-Eintrag geloscht
worden ist, dieser aber noch nicht in den Datenbereich {ibernommen wurde. Sollte das
der Fall sein, kann die Datei trotzdem erstellt werden. Wenn fiir die alte, bereits geloschte
Datei noch unausgeschriebene Journal-Eintrdge einer Umbenennungsoperation existieren,
werden diese ausgeschrieben, sofern der Client das Ausschreiben von Journal-Eintragen
unterstiitzt. Journal-Eintrdge, die nur die zu erstellende Datei betreffen, werden ignoriert.
Um die Eintrdge auszuschreiben, muss die Sperre der Datei erworben werden.

43

4. Entwurf

Algorithmus 4.5 Datei erstellen

: procedure CREATE_FILE()

if (file already exists AND file is not deleted by journal entry) then
return ERROR

end if

if (file does not yet exist) then
try to lock parent directory
if (Lock not successfully set) then

return ERROR

end if
create empty file in content section
release directory lock

else if (journal flag is set AND writeback = TRUE) then
try to lock file
if (Lock successfully set) then

writeback journal entries

end if

end if

try to lock file

if (Lock not successfully set) then
return ERROR

end if

create journal entry

23: create working copy in cache

24: end procedure

e XN 2 AR N

N N N R H R B3 =2 B3 B oFE k1l
N B QY ®Y 22U A R NRQ

Wenn die Datei noch nicht existiert, muss zuerst die Sperre des Elternverzeichnisses erworben
werden. Damit wird ausgeschlossen, dass nicht zwei Clients zur gleichen Zeit in einem
Ordner eine Datei des gleichen Namens erstellen konnen. Anschlieffend wird dann eine
leere Datei mit dem gewiinschten Dateinamen samt Metadaten im zugehorigen Metadaten-
Ordner erstellt. Die Verzeichnissperre kann nun wieder freigegeben werden. Wenn die Datei
bereits besteht, muss sie lediglich als nicht mehr geloscht markiert werden. Dies geschieht
durch das Erstellen des Journal-Eintrag ,New_prepare”, der aufser den Standardwerten
eines Journal-Eintrags keine weiteren Informationen enthilt. Die neu erstellte Datei muss
anschliefend gesperrt werden, da der Aufruf von CREATE automatisch auch das Offnen
der Datei und das Vorbereiten eines eventuell folgenden Schreibvorgangs beinhaltet. Zum
Schluss wird im Cache-Verzeichnis des Clients eine weitere Datei erstellt, in die eventuelle
Anderungen geschrieben werden, bevor diese ins Journal {ibernommen werden.

OPEN - Datei 6ffnen

Um eine Datei bearbeiten oder lesen zu kdnnen, muss diese zuerst gedffnet werden. Der
Ablauf von OPEN ist in Algorithmus 4.6 zu sehen. Wenn die Datei nicht im Datenbereich

44

4.3. Details des Dateisystems

existiert, wird ein Fehler zuriickgegeben. Andernfalls werden, sofern vom Client unterstiitzt,
alte Journal-Eintrage ausgeschrieben. Wenn die Datei zum Schreiben gedffnet werden soll,
muss sie zuerst gesperrt werden. Ist dies nicht moglich, kann die Datei nicht geéffnet werden
und es wird ein Fehler zurtickgegeben. Anschlieflend wird im Cache-Verzeichnis eine Datei
erstellt, in der etwaige Anderungen gespeichert werden. Dabei kommen Delta Updates zum
Einsatz, das heif$t, es werden nur die gednderten Teile einer Datei gespeichert und nicht die
gesamte Datei. Dadurch wird die Anderungsdatei klein gehalten, was gerade Clients mit
einer langsameren Internetverbindung zugute kommt.

Algorithmus 4.6 Datei 6ffnen
1: procedure OPEN_FILE()
2 if (file not found OR file is deleted by journal entry) then
3 return ERROR
4 end if
5 if (journal flag is set AND writeback = TRUE) then
6:
7
8
9

try to lock file
if (Lock successfully set) then
writeback journal entries

end if
10: end if
11 if (write access is demanded) then
12: try to lock file
13: if (Lock not successfully set) then
14: return ERROR
15: end if
16 create local delta update file in cache
17: end if
18: if (read access is demanded AND journal entries are available) then
19: reconstruct local working copy in cache
20: end if

21: end procedure

Wenn die Datei nur gelesen werden soll, ist kein Sperren notwendig. Ein Lesevorgang greift
standardmafsig direkt auf die Datei im Datenbereich zu. Wenn allerdings noch unausgeschrie-
bene Journal-Eintrége existieren, muss die aktuelle Version der Datei im Cache-Verzeichnis
rekonstruiert werden. Jeder Lesezugriff findet dann auf der Cache-Datei statt.

READ - Datei lesen

Nachdem eine Datei getffnet wurde, kann sie gelesen werden. Dazu wird READ (siehe
Algorithmus 4.7) mit den benotigten Parametern wie Offset und Lange des Dateibereichs, der
gelesen werden soll, aufgerufen. Wenn die aktuelle Version im Cache rekonstruiert werden
musste, so wird der Lesevorgang dort ausgefiihrt. Andernfalls wird direkt von der Datei im
Datenbereich gelesen.

45

4. Entwurf

Algorithmus 4.7 Datei lesen
1: procedure READ_FILE()

2 if (Local working copy is present) then
3 read from working copy

4 else
5

6
7

read from content file
end if
end procedure

WRITE - Datei schreiben

Durch den Aufruf von WRITE (siehe Algorithmus 4.8) kénnen Anderungen in eine Datei
geschrieben werden. Diese werden zunéchst in einer lokalen Datei im Cache gespeichert,
bevor sie beim SchliefSen der Datei ins Journal tibertragen werden. Wenn eine Datei neu
erstellt wurde, wird die vollstdndige Datei im Cache zwischengespeichert. Beim Bearbeiten
einer bereits bestehenden Datei dagegen werden lediglich Delta Updates gespeichert.

Algorithmus 4.8 Datei schreiben
1. procedure WRITE_FILE()
2: write changes to local change file
3: end procedure

FSYNC - Datei synchronisieren

Manchmal kann es notwendig sein, Anderungen schon vor dem Schliefien einer Datei
ins Journal zu tibertragen. Dazu wird beim Aufruf von FSYNC (siehe Algorithmus 4.9)
zuerst gepriift, ob die Datei gedndert wurde. AnschlieSend wird die Anderungsdatei ins
Journal hochgeladen und ein , Write”-Journal-Eintrag wird erstellt. Dieser enthélt neben den
Standardwerten die GrofSe der Datei nach der Anderung.

Algorithmus 4.9 Datei synchronisieren

1: procedure Sync_FILE()

2 if (File was changed) then

3 upload new file / delta update file
4: create journal entry

5 end if

6: end procedure

46

4.3. Details des Dateisystems

RELEASE - Datei schlieBen

Nachdem die Bearbeitung einer Datei abgeschlossen ist, muss diese durch den Aufruf von
RELEASE (siehe Algorithmus 4.10) wieder geschlossen werden. Sofern Anderungen an der
Datei vorgenommen wurden, muss die Anderungsdatei ins Journal geladen werden. Bei
einer neuen Datei wird ein ,New”-Eintrag angelegt, bei einem Delta Update einer bereits
existierenden Datei ein , Write”-Eintrag. Beide enthalten zusitzlich zu den Standardwerten
eines Eintrags die Grofe der Datei nach der Anderung. Falls die Sperre der Datei gehalten
wird, muss sie wieder freigegeben werden. Zum Schluss werden noch die eventuell im Cache
angelegten Dateien, die zum Lesen und Schreiben notwendig waren, geldscht.

Algorithmus 4.10 Datei schlieflen
1: procedure CLOSE_FILE()

2: if (File was changed) then

3 upload new file / delta update file
4 create journal entry

5: end if
6

7

8

if (Write access was demanded) then
release file lock
end if
o: delete cache files
10: end procedure

RENAME - Datei umbenennen oder verschieben

Durch den Aufruf von RENAME (siehe Algorithmus 4.11) kann eine Datei sowohl umbenannt
als auch verschoben werden. Eine Umbenennung liegt vor, wenn sich sowohl Quell- als auch
Zieldatei im gleichen Verzeichnis befinden. Verweisen die angegebenen Pfade auf Dateien in
unterschiedlichen Verzeichnissen, wird eine Verschiebung durchgefiihrt. Wenn die Zieldatei
bereits existiert, wird diese ohne Nachfrage tiberschrieben.

Vor dem Ausfiihren der Operation muss zuerst gepriift werden, ob die umzubenennende
Datei existiert. Anschlieffend wird versucht, die Sperre fiir die Datei zu erlangen. Gelingt dies
nicht, wird der Vorgang abgebrochen und es wird ein Fehler zuriickgegeben. Nun werden
zuerst alte Journal-Eintrage der Datei ausgeschrieben, sofern der Client diese Funktion
unterstiitzt. Das weitere Vorgehen ist von der Zieldatei abhédngig: Existiert diese bereits, so
muss sie auch gesperrt werden. Kann entweder die Sperre von Quell- oder Zieldatei nicht
reserviert werden, bricht RENAME mit einer Fehlermeldung ab. Danach werden gegebe-
nenfalls alte Journal-Eintrage der Zieldatei ausgeschrieben, wenn der Client dies untersttitzt.
Existiert die Zieldatei noch nicht, muss dquivalent zum Erstellen einer Datei zuerst das
Elternverzeichnis gesperrt werden, damit die Zieldatei erstellt werden kann. Nachdem Quell-
und Zieldatei erfolgreich gesperrt worden sind, werden fiir beide Dateien Journal-Eintrage
erstellt. Fiir die Quelldatei wird ein , Deleted_by_Rename”-Eintrag angelegt. Dieser enthalt

47

4. Entwurf

Algorithmus 4.11 Datei umbenennen / verschieben

1
2
3
4
5:
6
7
8
9

10:
11:
12:
13:
14:
15:
16:
17:
18:
19:
20:
21:
22:
23:
24:
25:
26:
27:
28:
29:
30:
31:
32:
33:
34:

procedure RENAME_FILE()

if (file not found OR file is deleted by journal entry) then
return ERROR
end if
try to lock source file
if (Lock not successfully set) then
return ERROR
end if
if (journal flag of source file is set AND writeback = TRUE) then
writeback journal entries of source file
end if
if (target file already exists) then
try to lock target file
if (Lock not successfully set) then
return ERROR
end if
if (journal flag of target file is set AND writeback = TRUE) then
writeback journal entries of target file
end if
else
try to lock directory of target file
if (Lock not successfully set) then
return ERROR
end if
create empty target file
release directory lock
end if
create journal entry for source file
create journal entry for target file
if (writeback = TRUE) then
writeback made changes
end if
release file locks

end procedure

48

4.3. Details des Dateisystems

zusitzlich zu den Standardwerten den Pfad zur Zieldatei sowie die Versionsnummer des
zugehdrigen ,Rename”-Eintrags der Zieldatei. Fiir die Zieldatei wird ein , Rename”-Eintrag
angelegt. Dieser enthdlt analog zum , Deleted_by_Rename”-Eintrag neben den Standardwer-
ten den Pfad zur Quelldatei sowie die Versionsnummer des ,Deleted_by_Rename”-Eintrags
der Quelldatei. Die Quelldatei wird durch den Journal-Eintrag als geloscht markiert. Bei
dessen Ausfiihrung wird die Datei in eine fiir den Nutzer nicht sichtbare Datei umbenannt.
Dementsprechend wird bei der Ausfithrung des Journal-Eintrags der Zieldatei die erstellte
tempordre Datei in die Zieldatei umbenannt und der Umbenennungs- beziehungsweise
Verschiebevorgang ist abgeschlossen.

UNLINK - Datei l6schen

Durch die Ausfiihrung von UNLINK (siehe Algorithmus 4.12) wird die als Parameter
iibergebene Datei geloscht. Zum Loschen einer Datei muss die zugehorige Dateisperre
gehalten werden, ansonsten wird ein Fehler zurtickgegeben. Sofern der Client es unterstiitzt,
werden vor dem eigentlichen Loschvorgang noch nicht ausgeschriebene Journal-Eintrage in
den Datenbereich tibertragen. Anschlieffend wird ein neuer ,Deleted”-Eintrag erstellt, der
die Datei als geloscht markiert und neben den Standardwerten keine weiteren Informationen
enthélt. Beim Ausschreiben des Eintrags wird die Datei samt zugehoriger Metadaten-Dateien
geloscht.

Algorithmus 4.12 Datei 16schen
1: procedure DELETE_FILE()
2 if (file not found OR file is deleted by journal entry) then
3 return ERROR
4 end if

5 try to lock file

6

7

8

9

if (Lock not successfully set) then

return ERROR

end if

if (journal flag is set AND writeback = TRUE) then
10: writeback journal entries
11: end if
12 create journal entry
13: if (writeback = TRUE) then
14: writeback made changes
15: end if
16: release file lock

17: end procedure

49

4. Entwurf

UTIMENS - Zeitstempel einer Datei setzen

Beim Aufruf von UTIMENS (siehe Algorithmus 4.13) zum Setzen der Zeitstempel einer
Datei werden der letzte Zugriffszeitpunkt und der Zeitpunkt der letzten Modifikation der
Datei auf einen vom Nutzer bestimmten Zeitpunkt gesetzt. Zuerst muss die zugehorige
Dateisperre gesetzt werden, andernfalls wird ein Fehler zuriickgegeben. Anschliefiend
werden nicht ausgeschriebene Journal-Eintrdge in den Datenbereich iibertragen, sofern
der Client dies unterstiitzt. Danach wird ein , Utimens”-Eintrag im Journal angelegt, der
neben den Standardwerten die zu setzenden Zeitstempel enthélt. Der Eintrag wird sofort
ausgeschrieben, wenn der Client das Zuriickschreiben untersttitzt.

Algorithmus 4.13 Zeitstempel einer Datei setzen

1: procedure SET_FILE_TIMESTAMP()

2 if (file not found OR file is deleted by journal entry) then
3 return ERROR
4 end if

5: try to lock file
6 if (Lock not successfully set) then
7

8

9

return ERROR

end if

if (journal flag is set AND writeback = TRUE) then
10: writeback journal entries
11: end if
12: create journal entry
13: if (writeback = TRUE) then
14: writeback made changes
15: end if
16: release file lock

17: end procedure

CHOWN - Dateibesitzer andern

Durch den Aufruf von CHOWN (siehe Algorithmus 4.14) kann der Nutzer den Besitzer
und die Gruppe einer Datei dndern. Dazu muss der Client die zugehorige Dateisperre
beantragen. Ist dies nicht erfolgreich, wird eine Fehlermeldung zuriickgegeben. Nun werden
noch nicht ausgeschriebene Journal-Eintrdge in den Datenbereich tibertragen, sofern der
Client dies unterstiitzt. Danach wird ein ,,Chown”-Eintrag im Journal angelegt. Dieser enthalt
neben den Standardwerten den neuen Besitzer und die Gruppe der Datei. Der Eintrag wird
anschlieffend sofort ausgeschrieben, wenn der Client das Zurtickschreiben unterstiitzt.

50

4.3. Details des Dateisystems

Algorithmus 4.14 Dateibesitzer &ndern

: procedure CHANGE_OWNER_OF_FILE()

if (file not found OR file is deleted by journal entry) then
return ERROR

end if

try to lock file

if (Lock not successfully set) then
return ERROR

end if

if (journal flag is set AND writeback = TRUE) then
writeback journal entries

end if

create journal entry

if (writeback = TRUE) then

14: writeback made changes

15: end if

16: release file lock

17: end procedure

e PN D2V A R N-R

HooRoR R
»R N = Q

CHMOD - Dateirechte andern

Mit dem Aufruf von CHMOD (siehe Algorithmus 4.15) kann der Nutzer einer Datei neue Zu-
griffsrechte zuweisen. Um die Operation durchfiihren zu kénnen, muss zuerst die Dateisperre
gesetzt werden. Ist dies nicht erfolgreich, bricht CHMOD ab und es wird eine Fehlermeldung
zuriickgegeben. Anschlieflend werden noch nicht ausgeschriebene Journal-Eintrdge in den
Datenbereich iibernommen, falls der Client das Ausschreiben von Eintrdgen unterstiitzt.
Nun wird ein neuer ,Chmod”-Eintrag im Journal angelegt, der zuséatzlich zu den Stan-
dardwerten die neuen Dateirechte beinhaltet. Der Journal-Eintrag wird anschliefflend sofort
ausgeschrieben, sofern der Client dies unterstiitzt.

TRUNCATE - DateigréBe andern

Mit Hilfe von TRUNCATE (siehe Algorithmus 4.16) kann die Grofie einer Datei verandert
werden. Typischerweise wird dies genutzt, um eine Datei zu verkleinern. Es ist auch moglich,
durch den Aufruf von TRUNCATE die Datei zu vergrofiern, jedoch wird dies in der Praxis
kaum eingesetzt. Um die Groflendnderung der Datei durchfiihren zu kénnen, muss zuerst
die zugehorige Dateisperre gesetzt werden. Gelingt dies nicht, bricht TRUNCATE ab und es
wird eine Fehlermeldung zuriickgegeben. Anschlieffend werden noch nicht ausgeschriebene
Journal-Eintrdge in den Datenbereich tibertragen, sofern der Client dies unterstiitzt. Danach
wird ein neuer , Truncate”-Eintrag angelegt. Er enthilt neben den Standardwerten die neue
Grofle der Datei. Er wird sofort ausgeschrieben, falls der Client das Ausschreiben von
Journal-Eintrdgen unterstiitzt.

51

4. Entwurf

Algorithmus 4.15 Dateirechte dndern

1
2
3
4
5:
6
7
8
9

10:
11
12:
13:
14:
15:
16:

procedure CHANGE_FILE_ MODE()

if (file not found OR file is deleted by journal entry) then
return ERROR

end if

try to lock file

if (Lock not successfully set) then
return ERROR

end if

if (journal flag is set AND writeback = TRUE) then
writeback journal entries

end if

create journal entry

if (writeback = TRUE) then
writeback made changes

end if

release file lock

17: end procedure

Algorithmus 4.16 Dateigrofie andern

1
2
3
4
5:
6
7
8
9

10:
11:
12
13:
14:
15:
16:
17:

procedure TRUNCATE_FILE()

if (file not found OR file is deleted by journal entry) then
return ERROR

end if

try to lock file

if (Lock not successfully set) then
return ERROR

end if

if (journal flag is set AND writeback = TRUE) then
writeback journal entries

end if

create journal entry

if (writeback = TRUE) then
writeback made changes

end if

release file lock

end procedure

52

4.3. Details des Dateisystems

MKDIR - Verzeichnis erstellen

Das Erstellen eines neuen Verzeichnisses durch MKDIR (siehe Algorithmus 4.17) wird, analog
zum Erstellen einer neuen Datei, ohne den Umweg tiber das Journal sofort ausgefiihrt. Damit
soll auch hier vermieden werden, dass zwei Clients zur gleichen Zeit das selbe Verzeichnis
erstellen.

Algorithmus 4.17 Verzeichnis erstellen

1: procedure CREATE_DIRECTORY()

2: if (directory already exists AND directory is not deleted by journal entry) then
3 return ERROR

4 end if

5 if (journal flag is set AND writeback = TRUE) then
6: try to lock directory

7: if (Lock successfully set) then

8: writeback journal entries

9: end if
10: end if
11: if (directory does not yet exist) then
12: try to lock parent directory
13: if (Lock not successfully set) then
14: return ERROR
15: end if
16: create empty directory in content section
17: release parent directory lock

18: else

19: increment version counter
20: end if

21: end procedure

Zuerst muss gepriift werden, ob das Verzeichnis bereits existiert. Sollte dies der Fall sein, so
werden die zugehorigen Journal-Eintrage tiberpriift, ob es zwischenzeitlich bereits geloscht
wurde, aber die Anderungen noch nicht in den Datenbereich iibernommen wurden. Nur
wenn das Verzeichnis noch nicht existiert oder bereits geloscht wurde kann es neu erstellt
werden. Andernfalls wird MKDIR abgebrochen und eine Fehlermeldung zuriickgegeben.
Sollten noch unausgeschriebene Journal-Eintrdge bestehen, die der Client ausschreiben
konnte, so wird versucht das Verzeichnis zu sperren und diese dann in den Datenbereich zu
iibertragen.

Wenn das Verzeichnis bereits besteht, wird anschliefSend lediglich der Versionszahler in-
krementiert. Das hat zur Folge, dass alle bisher bestehenden Journal-Eintrdge nun veraltet
sind und das Verzeichnis nicht mehr durch diese geloscht werden kann. Ist das Verzeichnis
dagegen noch nicht vorhanden, muss analog zum Erstellen einer Datei zuerst das zugehorige
Elternverzeichnis gesperrt werden, damit anschlieffend das neue Verzeichnis samt Metadaten
erstellt werden kann.

53

4. Entwurf

OPENDIR - Verzeichnis 6ffnen

Um den Inhalt eines Verzeichnisses zu lesen, muss es zuerst durch den Aufruf von OPENDIR
gedffnet werden. OPENDIR nimmt keine Anderungen an den Daten vor oder liest von diesen,
sondern ist lediglich zu Verwaltungszwecken vorhanden. Dennoch muss OPENDIR vor dem
Lesevorgang eines Verzeichnisses aufgerufen werden.

READDIR - Verzeichnis lesen

Mit Hilfe von READDIR werden die in dem betreffenden Verzeichnis enthaltenen Dateien
und Verzeichnisse gelesen. Sollten beim Lesevorgang Dateien oder Verzeichnisse angetroffen
werden, die durch unausgeschriebene Journal-Eintrége bereits geldscht sind, werden diese
Anderungen in den Datenbereich tibernommen, sofern der Client dies unterstiitzt.

RELEASEDIR - Verzeichnis schlieBen

Nachdem der Inhalt eines Verzeichnisses gelesen wurde, muss es durch RELEASEDIR wieder
geschlossen werden. Analog zum Offnen eines Verzeichnisses nimmt diese Funktion keine
Anderungen an den Daten vor, sondern ist nur zu Verwaltungszwecken vorhanden.

Algorithmus 4.18 Verzeichnis 16schen
1: procedure DELETE_DIRECTORY()
2 if (directory doesnt exist OR directory is deleted by journal entry) then
3 return ERROR
4 end if

5: try to lock subtree

6

7

8

9

if (Locks not successfully set) then
return ERROR
end if
: create journal entry for all contained directories and files

10: if (writeback = TRUE) then
11: writeback made changes
12 end if
13: end procedure

RMDIR - Verzeichnis l6schen

Das Loschen eines Verzeichnisses durch RMDIR (siehe Algorithmus 4.18) ist eine deutlich
aufwandigere Operation als das Loschen einer Datei, da fiir alle darin enthaltenen Dateien
und Unterverzeichnisse Journal-Eintrdge erstellt werden miissen. Bevor dies jedoch gesche-
hen kann, muss fiir jedes Objekt des Unterbaums die zugehorige Sperre gesetzt werden.

54

4.3. Details des Dateisystems

Erst wenn dies gelungen ist, werden fiir alle enthaltenen Dateien , Delete”-Eintrage und
analog fiir Verzeichnisse ,Delete_Dir”-Eintrdge im Journal erstellt. Andernfalls werden be-
reits gesetzte Sperren wieder freigegeben und die Operation wird mit einer Fehlermeldung
abgebrochen.

RENAMEDIR - Verzeichnis umbenennen/verschieben

Das Umbenennen oder Verschieben eines Verzeichnisses durch RENAMEDIR (siehe Algorith-
mus 4.19) ist dquivalent zu dem einer Datei. Das bedeutet, dass die Operation je nach Angabe
des Zielverzeichnisses ein Umbenennen oder Verschieben des Verzeichnisses darstellt.

Zuerst wird {iberpriift, ob das Verzeichnis vorhanden ist und ein Journal-Eintrag vorliegt,
der es bereits als geloscht markiert hat. Sollte dies der Fall sein, wird RENAMEDIR abge-
brochen und es wird eine Fehlermeldung zuriickgegeben. Anschlieflend wird die Sperre
fiir das umzubenennende Verzeichnis beantragt und eventuell vorhandene Journal-Eintrdge
ausgeschrieben, sofern der Client dies unterstiitzt. Nun muss fiir das Zielverzeichnis, sofern
es bereits existiert, ebenfalls die Sperre gesetzt werden. Wenn das Zielverzeichnis noch nicht
vorhanden ist, wird versucht, das zugehorige Elternverzeichnis zu sperren. Anschlieflend
wird das Zielverzeichnis erstellt und ebenfalls gesperrt. Sollte das Setzen einer der bendtigten
Sperren nicht erfolgreich sein, wird RENAMEDIR mit einer Fehlermeldung abgebrochen.
Nachdem dann erfolgreich Quell- und Zielverzeichnis gesperrt worden sind, wird versucht,
jedes Objekt der jeweiligen Unterbdume der beiden Verzeichnisse zu sperren. Wenn nicht
alle enthaltenen Dateien und Verzeichnisse erfolgreich gesperrt werden konnten, werden
schon gesetzte Sperren wieder freigegeben und RENAMEDIR wird mit einer Fehlermeldung
abgebrochen. Nachdem die jeweiligen Objekte der Unterbdume gesperrt worden sind, wer-
den im Anschluss Journal-Eintrage erstellt (fiir Eintrdge bei Dateien sieche RENAME). Bei
Verzeichnissen wird das Quellverzeichnis durch einen ,Delete_Dir”-Eintrag im Journal als
geloscht markiert. Hier ist im Gegensatz zum Verfahren bei Dateien keine Umbenennung in
ein unsichtbares, tempordres Verzeichnis notwendig, da das Verzeichnis selbst aufSer dem
Namen keine Informationen beinhaltet. Beim Zielverzeichnis muss lediglich dquivalent zum
Erstellen eines Verzeichnisses der Versionszihler erhoht werden, sofern es bereits existiert.
Andernfalls sind keine weiteren Mafinahmen notwendig.

55

4. Entwurf

Algorithmus 4.19 Verzeichnis umbenennen / verschieben

1: procedure RENAME_DIRECTORY()

2 if (directory not found OR directory is deleted by journal entry) then
3 return ERROR

4 end if

5: try to lock source directory

6 if (Lock not successfully set) then

7

8

9

return ERROR

end if

if (journal flag of source directory is set AND writeback = TRUE) then
10: writeback journal entries of source directory
11 end if
12: if (target directory already exists) then
13 try to lock target directory
14: if (Lock not successfully set) then
15: return ERROR
16: end if
17: increment version counter
18: else
19: try to lock parent directory of target directory
20: if (Lock not successfully set) then
21: return ERROR
22: end if
23: create empty target directory
24: release parent directory lock
25: try to lock target directory
26: if (Lock not successfully set) then
27: return ERROR
28: end if
29: end if
30: try to lock subtree of source directory
31: if (Locks not successfully set) then
32: return ERROR
33: end if

34: try to lock subtree of target directory
35: if (Locks not successfully set) then

36: return ERROR

37: end if

38: create journal entries for subtree of source + target directory
39: if (writeback = TRUE) then

40: writeback made changes

41: end if

42 release all locks

43: end procedure

56

4.3. Details des Dateisystems

GETATTR - Attribute von Objekten abfragen

Vor dem Ausfiihren einer Datei- oder Verzeichnisoperation werden in der Regel die zugeho-
rigen Attribute wie etwa die Dateigrofse durch GETATTR (siehe Algorithmus 4.20) abgefragt.
Aufserdem kann der Aufruf von GETATTR dazu benutzt werden um herauszufinden, ob die
Datei oder das Verzeichnis existiert.

Algorithmus 4.20 Attribute von Datei/ Verzeichnis abfragen

1: procedure GET_ATTRIBUTES()

2 if (file not found OR file is deleted by journal entry) then

3 return ERROR

4 end if

5: read attributes from file

6 if (journal entries available) then

7 reconstruct current attribute values from journal entries
8 end if

9: end procedure

Zuerst wird tiberpriift, ob die Datei oder das Verzeichnis existiert. Wenn dies nicht der
Fall ist, wird GETATTR mit einer Fehlermeldung abgebrochen. Andernfalls werden die
aktuellen Attribute des Objekts aus dem Datenbereich gelesen. Anschliefiend wird tiberpriift,
ob Journal-Eintrége fiir die Datei oder das Verzeichnis vorliegen. Sollten Eintrdge gefunden
werden, muss anhand dieser Eintrdge der aktuelle Wert der einzelnen Attribute rekonstruiert
werden, die dann als Ergebnis von GETATTR zuriickgegeben werden.

57

5. Implementierung

Fiir das zuvor entwickelte Dateisystem wurde ein Linux-Treiber implementiert. Dazu wurde
das Framework Filesystem in Userspace (FUSE) verwendet, das die Entwicklung und
Ausfithrung von Dateisystemen im Userspace ohne Root-Rechte ermoglicht. Im Folgenden
werden die Implementierung und verwendete Parameter beschrieben.

5.1. Ubersicht

Zur Implementierung des Dateisystems wurde FUSE verwendet, das auf der Program-
miersprache C basiert. Die Implementierung ist in mehrere Komponenten aufteilt. Eine
Ubersicht iiber diese Komponenten ist in Abbildung 5.1 zu sehen. Die zentrale Komponente
ist die Datei main. c. Sie enthélt die Schnittstelle von CloudFS zu FUSE. Daneben existieren
mehrere Komponenten, die Hilfsfunktionen implementieren. So enthélt die Komponente
cloudfs_protocol.h Funktionen, die direkt am Ablauf der Dateioperationen beteiligt sind.
Diese werden von den Funktionen, die die nach auflen sichtbaren Dateisystemoperationen
implementieren, aufgerufen und realisieren zum Beispiel das Erstellen von Journal-Eintragen
oder das Auschreiben dieser Eintrdge. Die Komponente cloudfs_metadata_handling.h
implementiert die Zugriffe auf die Metadaten von Dateien und Verzeichnissen. Aufser-
dem wird in dieser Komponente der Sperralgorithmus implementiert. Die Komponente
cloudfs_helper.h stellt Hilfsfunktionen zur Verfiigung, die oft verwendet werden, aller-
dings keinen direkten Bezug zum Ablauf einer Dateioperation haben. Es werden zum
Beispiel oft Umwandlungen von Dateipfaden benotigt, die dort realisiert werden. Bei Pro-
grammstart muss eine Konfigurationsdatei eingelesen werden, die wichtige Parameter fiir
den Ablauf der Dateioperationen enthélt. Die Komponente cloudfs_config_parser.h ent-
hélt eine Funktion, die diese Aufgabe realisiert. Die eingelesenen Parameter werden neben
einer Reihe weiterer globaler Variablen in der Komponente cloudfs_global_params.h den
anderen Komponenten zur Verfiigung gestellt. Schliefilich wird die externe Komponente
uthash.h [Han] verwendet, die den Datentyp einer Hashtabelle sowie den einer verketteten
Liste zur Verfiigung stellt, die in der Programmiersprache C nicht nativ zur Verfiigung
stehen.

Ein Beispiel einer Verzeichnisstruktur des Online-Speichers ist in Abbildung 5.2 zu sehen. Die
Struktur wurde bereits im Kapitel 4 in Abbildung 4.5 vorgestellt. Hier ist nun die Benennung
der einzelnen Dateien und Verzeichnisse zu sehen. Die einzelnen Journal-Abschnitte werden
fortlaufend nummeriert benannt. In der Datei Changelist eines jeden Abschnitts werden
die Journal-Eintrdge gespeichert. Anderungsdateien, die eine neue Datei beinhalten, wer-
den nach dem Format , #NF#<Versionsnummer>#Pfad_zur_Datei” benannt. Dabei werden

59

5. Implementierung

yyseuin

y'sweied jeqolb sipno|d

()aruain aum
()a1u byuo> asied

yasied byuod sipnojd

()pe13i2p 21U S|

()sengune 326
()sauyua jewnol 136

()aweuas 10y 11p jiew
(Juoima|ap oy 1ip ew
()sauua jewnol 23313p

()Anua jewnol a3e31d

()sa|u ayoed =233|9p
()saju abueys a13|3p
()1pT3usju0d B33 19p
()a1yjuajuod a3319p
()sabuey> peojdn
()11p mau peojdn
()21u" mau peojdn
()21uU33U0d pEOJUMOpP

([1nBaey 2eyd “26ae Jul)urew jul
()Aosysap sipno|d ploa

([Z]51 2adsawiny 1on13s ‘yied, Jeyd)suawinn sipnojd ul
(2215 1 4o ‘yied, J1eyd) a3edUNIY SIPNOJD Ul
(P16 37p16 ‘pIN 3 PIN ‘yiedy JBYD) UMOYD SIPNOID Ul
(apow 1 apow ‘yied, Jeyd) powyd Sipnojd Jul
(yedy Jeyd) Julunsipno|d jul
(034 1BUD ‘W01l JBYD) BWBUSI SIpNod Jul
(U4 OJUI 21U 3SNJ 30N ‘Yred, JByd) 3SE3|34 SIPNOJD Ul
(4« 03Ul 1Y @SN IPNIYS
‘ouhseieps) jul ‘yyed, Jeyd) duAsy sIpnojd Ul
(U4 OJUI 3L 3SNJ 1PNI1S “18SH0 Y JO
‘9ZIS § 9ZIS ‘INQy JBYd ‘Yied, Jeyd) 33Um SIpnojd Jul
(Us OJUI 2]U 3SNJ IDONIIS “18SU0 Y JO
‘9Z1S Y BZ1S ‘INQy JBYD ‘Yied, Jeyd) peas sipnojd jul
(Us OJUI 3]U a5NJ30N03S ‘Yyred, Jeyd) uado sipnojd Jul
(4« 03Ul BIW BSNY JONIYS
‘apowl } apow ‘yied, Jeyd) 318340 SIPNO|D Ul

(Us OJUI 3|U 3SNJ 310N1S ‘Yred, Jeyd) JIpasea|al sipnojd Jul
(U4 OJUI 1Y @SNY IDNIIS }9SHO T JO

“J3114 Y 4Ip 11U @SNy “INay PIOA ‘Uledy Jeyd) Jippeal sypnojd jul

(U4 OJUI 31U 3sNJ 12n13S ‘Yiedy Jeyd) Jipuado sipnojd ul

(yred, Jeyd) Jipuwid”sipno|d Jul

(apow 3 apow ‘yied, 1eyd) Jipdw sipnojd ul

(IN01BIS4 1815 10N13S ‘Ured, Jeyd) 133e3eb sipnod Jul

yuadjay sipnopd

Julew

y'1o0o0301d sgpnojd

()320|peap Jip J004 3|qissod Jea|d
()¥>0|peap uondas aiqissod Jea|d
()o0lpeap aj1gqssod Jead

()@anqns asea|al
()@angns 0|

(o1 ap2ayd
()01 J1ip aseaal
()1p 0]

(Mol a1 payd
()320] 21U aseajal
()a1ud0)

(Juonaas |euwinol aseajal
(Juondas jeuinol aniasal

(Juoisian a3epdn
(Juoisian 3ab
(Juoisianpayd

()bej41ewino(>dayd
()bel4jeuinol anowsal
()bej4jeuinofas

()aieiu1eb

ybuipuey ejepeiaw sipnojd

Abbildung 5.1.: Komponenteniibersicht

60

.1. Ubersicht

———
I
u q
[4
d0ojun uoBS | “
J3upio-uajeq Jaupio-uajeq
ua3jaupioabiaqn u@3jaupaoabiaqn wi
inj usjepelap 193e@-uajeq af sisbueyy | L
ale|4#<aweuieg> | < Bumo | <
[SIUYDIBZIBAIRZINM JNU) Hd0lUN 300y | < UoISIIA# <dWeulsle> | < g301 | <
uoisian | < Bejdjeuinof# <aweuseg> | < Vol | <
bejjjewnof | < 13UMO# <aweulleg> | < 19jeg-ajepdn e}j2@ 18180 INZ Peld# <IBWWNUSUOISIBA>#NA# |
Bumo | <« gopol#<sweumeq> | < 193eq anaN 191eQ INZ peid# <ISWWNUSUOISISA> #4N# |
aol | <« Vv OD01#<sweusieg> | < r sajuabueyd ..d <
wyieieppldsieg |
_ o Madwwnu
Vool | = d “9upJo T IUYdsqy oad
Jaupiopidsieg /7 I ‘uapyiuydsqy-jeusnof u
Jw jeuwinof
#elEpeBWH# d <

...

| -,
Jewinof 5
L <
- <
w0y
siayd1ads-auljuo

— uauapunqabuia
Tr Sap SIuYdI9ZIaA

61

Abbildung 5.2.: Verzeichnisstruktur eines Online-Speichers mit CloudFS

5. Implementierung

Schragstriche, die unter Linux als Trennzeichen zwischen Verzeichnissen eines Pfades ge-
nutzt werden, durch ein ,#” ersetzt, damit die Anderungsdatei einen erlaubten Dateinamen
besitzt. Da kein Escaping implementiert wurde, diirfen Namen von Dateien, die von CloudFS
genutzt werden sollen, kein ,#” enthalten. Andernfalls ist die Speicherung des Pfades nicht
moglich. Analog zu der Speicherung einer neuen Datei werden Delta Updates gespeichert.

Metadaten-Dateien, die einem Verzeichnis zugeordnet sind, liegen im zugehorigen
Metadaten-Verzeichnis. Die Dateien Lock_A und Lock_B stellen die beiden Einzelsperren dar,
die fiir den Sperralgorithmus benéttigt werden. In der Datei Owner wird der aktuelle Besitzer
einer Objektsperre gespeichert. Die Datei Version enthélt den Versionszahler eines Objekts
und in der Datei JournalFlag wird angegeben, ob unausgeschriebene Journal-Eintrage zum
zugehorigen Objekt vorliegen. Die eindeutige ID jeder Datei im Datenbereich wird in der
zugehorigen Metadaten-Datei FileID gespeichert. Im Metadaten-Ordner des Wurzelver-
zeichnisses ist zusitzlich die Datei Root_Unlock vorhanden, die zur Deadlock-Beseitigung
verwendet wird. Um Metadaten-Dateien Inhaltsdateien zuordnen zu konnen, wird jeweils der
Dateiname dem Namen einer Metadaten-Datei vorangestellt. Bei der Ansicht eines Ordners
wird das jeweilige Metadaten-Verzeichnis nicht mit angezeigt und bleibt versteckt.

5.2. Datenstrukturen und globale Parameter

In der Komponente cloudfs_global_params.h werden Parameter und globale Variablen
gespeichert. Die beim Start aus der Konfigurationsdatei ausgelesenen Werte werden ebenfalls
hier abgelegt. Die einzelnen gespeicherten Parameter und Variablen, die global zur Verfiigung
gestellt werden, sind in Tabelle 5.2 zu sehen. Zudem werden drei Datentypen definiert, die
fir die Verwaltung von geoffneten Dateien, von Delta Updates und fiir das Anlegen von
Journal-Eintragen notwendig sind. Die drei Datentypen sind in Tabelle 5.1 aufgelistet. Der
Typ entry_data_struct reprasentiert einen Journal-Eintrag, wobei nicht bei jeder Operation
alle enthaltenen Felder genutzt werden. Der Datentyp openedfile_struct reprdsentiert eine
geoffnete Datei und delta_update_struct wird genutzt, um einen Schreibvorgang in einer
Delta Update-Datei zu représentieren.

5.3. Protokollfunktionen

In der Komponente cloudfs_protocol.h werden Funktionen implementiert, die direkt am
Ablauf der Dateioperationen beteiligt sind. Sie werden von den Funktionen aufgerufen, die
das Verhalten der Dateisystemoperationen in CloudFS definieren. So konnen hier Dateien und
Verzeichnisse samt Metadaten im Datenbereich erstellt und geloscht werden, Journal-Eintrage
angelegt, ausgefiihrt und geldscht werden und das Journal nach Eintrdgen durchsucht
werden.

62

5.3. Protokollfunktionen

second_path
second_version
journal_section

entry_data_struct .
seconds_atime

Datentyp Variable Funktion
version Versionsnummer des Eintrags
operation Name der Operation
path Pfad zur Objekt

Pfad zum zweiten Objekt bei RENAME
Versionsnummer des zweiten Objekts
Journal-Abschnitt, in dem der Eintrag steht
Zeit des letzten Zugriffs

seconds_mtime Modifikationszeit

size Grofle der Datei

mode Zugriffsrechte

uid User-ID bei CHOWN

gid Group-ID bei CHOWN

filehandle Filehandle der gebffneten Datei
path Pfad zur geoffneten Datei

changed Flag, ob die Datei verdndert wurde

openedfile_struct

delta_update

Flag, ob Delta Updates geschrieben werden

new_size Grofle der Datei nach Schreibdnderungen

delta_updates Liste von delta_update_structs

content_fh Filehandle fiir Leseoperationen

delta_fh Filehandle fiir Delta Updates

offset_in_DU_file | Offset innerhalb der Delta Update-Datei
delta_update_struct | offset Offset in Datendatei

size Lange der zu schreibenden Anderung

Tabelle 5.1.: Globale Datentypen

cloudfs_rootdir
cloudfs_cachedir
maximum_packet_lifetime
maximum_clock_skew
maximum_backoff_time
reserved_journal_section
writeback_to_content_section
number_of_journal_sections
my_ClientID
my_ClientName
last_filehandle_used
last_timestamp_used
journal_semaphore
openedfiles

Pfad, unter dem der Online-Speicher eingebunden ist

Pfad zum Cache-Verzeichnis

maximale Lebenszeit eines Pakets zwischen Server und Client
maximale Differenz aller Client-Systemuhren

zusdtzliche Wartezeit eines Clients bei Deadlock-Beseitigung
Nummer des reservierten Journal-Abschnitts des Clients
Flag, ob Journal-Eintrdge ausgeschrieben werden

Anzahl der Journal-Abschnitte auf dem Online-Speicher
eindeutige 128-Bit-ID des ausfiithrenden Clients

optionaler, eindeutiger, vom Nutzer wihlbarer Name des Clients
letztes vergebenes Filehandle fiir offene Dateien

letzter Zeitstempel, der fiir eine Objekt-ID genutzt wurde
Semaphore zur sequentiellen Ausfithrung der Operationen
Liste von openfile_structs, die offene Dateien enthalt

Tabelle 5.2.: Globale Parameter und Variablen

63

5. Implementierung

5.3.1. Anlegen und Léschen von Journal-Eintragen

Journal-Eintrage werden in einer Anderungsliste des jeweiligen Journal-Abschnitts gespei-
chert. Dafiir werden Eintrédge in der Anderungsliste in Blocken unterteilt abgelegt, wobei in
der ersten Zeile eines Blocks die eindeutige ID einer Datei oder eines Verzeichnisses steht,
gefolgt von je einer Zeile pro Journal-Eintrag. Vor dem Erstellen eines Eintrags wird von
der aktuellen Anderungsliste eine Sicherungskopie angelegt. Dadurch kann beim Auftreten
von Fehlern wihrend des Schreibens der neuen Anderungsliste im Bedarfsfall die alte Liste
wiederhergestellt werden. Aufierdem wird das Journal-Flag gesetzt, das auf einen unausge-
schriebenen Eintrag hinweist. Anschlieffend werden die Eintrdge der alten Liste in die neue
Liste kopiert, bis der Block der Datei oder des Verzeichnisses des neuen Eintrags erreicht
ist. Dort wird nun zu Beginn eines Blocks der neue Eintrag geschrieben und die restlichen
Eintrdge der Liste wieder kopiert. Ist noch kein Block fiir die betreffende Datei oder fiir
das betreffende Verzeichnis vorhanden, so wird er am Ende der Liste angelegt. Wenn das
Schreiben der neuen Anderungsliste erfolgreich war, wird die Sicherungskopie gelscht
und der Vorgang ist abgeschlossen. Andere Operationen iiberpriifen immer zuerst, ob eine
Sicherungskopie vorhanden ist und nutzen gegebenenfalls diese. Dadurch werden unvoll-
standig geschriebene Journal-Eintrdge ignoriert. Beim néchsten erfolgreichen Schreiben eines
Eintrags wird die Sicherungskopie wieder geldscht und der Zugriff auf die Anderungsliste
erfolgt wieder auf die normale Version.

Zum Loschen von Journal-Eintragen muss zuerst die Version der Datei oder des Verzeich-
nisses im Datenbereich gelesen werden. Anschliefend werden aus der Anderungsliste des
reservierten Journal-Abschnitts des Clients alle Eintragen geltscht, die eine <ere Version
als die gelesene Version des Objekts im Datenbereichs aufweisen. Dabei ist das Vorgehen
mit Anlegen einer Sicherungskopie, Kopieren nicht verdnderter Eintrdge und Schreiben
von Anderungen analog zum Erstellen eines Eintrags. Altere Eintrage in anderen Journal-
Abschnitten konnen nicht geléscht werden, da ein Client nur Zugriff auf die Anderungsliste
seines eigenen Abschnitts hat. Diese Eintrdge werden erst geloscht, wenn ein Client des
betreffenden Abschnitts eine Anderungsoperation auf der entsprechenden Datei oder dem
entsprechenden Verzeichnis ausfiihrt.

5.3.2. Weitere Journal-Funktionen

In der Komponente cloudfs_protocol.h sind weitere Funktionen enthalten, die den Zu-
griff auf das Journal und die darin enthaltenen Eintrdge ermoglichen. So gibt die Funktion
get_journal_entries eine Liste aller Journal-Eintrdge zuriick, die im Journal fiir eine
bestimmte Datei oder ein bestimmtes Verzeichnis vorhanden sind. Dazu werden die Ande-
rungslisten aller Abschnitte durchlaufen und die entsprechenden Eintrdge der Ergebnisliste
hinzugefiigt.

Attribute einer Datei werden, sofern keine unausgeschriebenen Journal-Eintrédge fiir sie
vorliegen, direkt aus der auf dem Online-Speicher liegenden Datei selbst gelesen. Sind
allerdings Eintrdge vorhanden, werden je nach Art der Operation die Werte verschiedener

64

5.3. Protokollfunktionen

Algorithmus 5.1 Algorithmus zur Rekonstruktion der aktuellen Attributwerte

1: procedure GET_ATTRIBUTES(int target_version, char *path)

2: read attributes from content file

3:

4 if (no journal entries exist) then

5 return

6: else

7 get list of journal entries in descending order

8: delete all entries from list with version > target_version

9: delete all entries from list with version < content_version
10: end if
11:
12: while (entry list # @ AND not all attributes are updated) do
13: if (first entry of list deletes file) then
14: return ERROR
15: end if
16:

17: update attributes that are changed by first entry if not yet done
18: delete first entry from list

19: end while

20: end procedure

Dateiattribute aktualisiert. So kann es zum Beispiel vorkommen, dass bei einem Schreibvor-
gang die Grofie einer Datei verdndert wird, die dann im entsprechenden Journal-Eintrag
vermerkt ist. Um bei der Abfrage der Dateiattribute die aktuellen Werte zu erhalten, muss
also das Journal nach Eintragen durchsucht werden, die eventuell den Wert eines Attributs
aktualisieren. Diese Aufgabe tibernimmt die Funktion get_attributes, die mit den Parame-
tern eines Dateipfades und der Zielversion, bis zu der die Attributwerte rekonstruiert werden
sollen, aufgerufen wird. Der Ablauf der Funktion ist in Algorithmus 5.1 zu sehen. Zu Beginn
werden die Attribute der Datei im Datenbereich gelesen. Wenn keine unausgeschriebenen
Journal-Eintrage existieren, werden die gelesenen Attribute zuriickgegeben. Andernfalls wird
eine Liste der zur Datei gehorenden Journal-Eintrdage angelegt und nach Versionsnummer
absteigend geordnet. Ist die als Funktionsparameter iibergebene Zielversion gleich Null,
werden alle Journal-Eintrage betrachtet. Andernfalls werden die Eintrdge der Liste, die eine
grofiere Version als die Zielversion besitzen, aus der Liste geloscht. Nun wird jeweils der
erste Eintrag der Liste gelesen und die bereits aus dem Datenbereich gelesenen Attribute,
die durch den Eintrag verdndert werden, aktualisiert. Da jeweils der neueste Journal-Eintrag
am Anfang der Liste steht, muss jedes Attribut nur ein Mal aktualisiert werden. Eintrdge, die
ein bereits aktualisiertes Attribut ebenfalls verandern, werden ignoriert, da diese Anderung
durch einen anderen Eintrag bereits iiberschrieben wurde. Der Vorgang bricht ab, wenn
alle Elemente der Liste durchlaufen wurden oder jedes Attribut aktualisiert wurde. Eine
Ausnahme stellen Eintrdge dar, die eine RENAME-Operation beinhalten. Um die aktuellen
Attribute dieser Version zu erhalten, muss die get_attributes-Funktion rekursiv fiir die

65

5. Implementierung

Quelldatei aufgerufen werden. Aus diesem Grund wird die Funktion auch mit der Angabe
einer Zielversion aufgerufen, da bei diesem Aufruf nur die Attribute bis zur Dateiversion
rekonstruiert werden miissen, die die Datei vor der Umbenennung widerspiegelt.

Eine weitere wichtige Funktion ist is_file_deleted. Sie wird aufgerufen, wenn eine Ope-
ration auf einer Datei ausgefiihrt werden soll, aber dafiir noch unausgeschriebene Journal-
Eintrdge bestehen. Mit Hilfe dieser Funktion kann dann {tiberpriift werden, ob einer dieser
Eintrdge die Datei 10scht, was eventuell die Ausfithrung der Dateioperation unmoglich
macht. Die Realisierung dieser Funktion dhnelt der von get_attributes: Es wird zuerst
eine Liste der Journal-Eintrdge erstellt und entsprechend der Versionsnummer absteigend
geordnet. Anschlieffend wird die Liste durchlaufen, bis entweder ein Eintrag gefunden wird,
der die Datei 16scht, oder das Ende erreicht wird. Wenn ein solcher Eintrag gefunden wurde,
gibt die Funktion die Meldung zurtick, dass die Datei geloscht wurde, andernfalls, dass sie
noch existiert.

5.3.3. Ausschreiben von Journal-Eintragen und Rekonstruktion der aktuellen
Version

Das Ausschreiben der Journal-Eintrige geschieht durch zwei Funktionen:
execute_journal_entry schreibt genau einen Eintrag aus und wird direkt im An-
schluss an das Erstellen des Journal-Eintrags aufgerufen, sofern der Client dies unterstiitzt.
Die Funktion writeback_journal_entries wird genutzt, um zum einen vor Beginn
einer Dateioperation bisher unausgeschriebene Journal-Eintrdge in den Datenbereich zu
iibertragen. Zum anderen wird sie verwendet, wenn ein Client das Ausschreiben von
Journal-Eintrdagen nicht unterstiitzt, jedoch unausgeschriebene Eintrdge fiir eine Datei
vorliegen. In diesem Fall muss die aktuelle Version rekonstruiert werden, beispielsweise um
eine Leseoperation durchzufiihren.

Der Ablauf der Funktion writeback_journal_entries ist in Algorithmus 5.2 zu sehen. Zu
Beginn wird eine Liste erstellt, die alle Journal-Eintrage der betreffenden Datei oder des
betreffenden Verzeichnisses enthélt. Anschlieflend werden alle Eintrage der Liste geloscht,
die entweder eine <ere Version als die der Datei oder des Verzeichnisses im Datenbereich
besitzen oder die eine hohere Version als die als Parameter tibergebene Zielversion aufweisen.
Da die writeback_journal_entries-Funktion sowohl fiir das Ausschreiben von Journal-
Eintrdgen als auch zur lokalen Rekonstruktion der aktuellen Dateiversion genutzt wird, wird
entsprechend des tibergebenen Filehandles entweder die Datei im Datenbereich aktualisiert
oder eine Kopie der Datei im lokalen Cache-Verzeichnis erstellt. Die Verwendung der
Filehandles wird in Abschnitt 5.4.2 beschrieben.

Nun wird die Liste sequentiell durchlaufen, wobei immer der erste Eintrag bearbeitet und
anschlieflend aus der Liste entfernt wird. Je nach Art der Operation sind zur Ausfiithrung
eines Eintrags unterschiedliche Mafinahmen notwendig. Beim Erstellen einer Datei wird
die erstellte Datei aus dem Journal in den Datenbereich kopiert. Bei einer Schreiboperation
dagegen werden die Delta Updates, die ebenfalls in einer Datei im Journal gespeichert

66

5.3. Protokollfunktionen

Algorithmus 5.2 Algorithmus zur Zuriickschreiben von Journal-Eintragen

1
2
3
4
5
6:
7
8
9

10:
11
12
13:
14:
15:
16:
17:
18:
19:
20:
21:
22:
23:
24:
25:
26:
27:
28:
29:
30:
31
32:
33:
34
35:
36:
37
38:
39:
40:
41:
42:

procedure WRITEBACK_JOURNAL_ENTRIES(int target_version, int filehandle, char *path)

get list of journal entries in ascending order
delete all entries from list with version > target_version
delete all entries from list with version < content_version

if (filehandle = o) then
target file = content file
else
download content file into cache directory

target file = cache file
end if

while (entry list # @) do

current_entry = first element of list

if (current_entry.operation = ,CREATE"”) then
copy change file to target file

else if (current_entry.operation = ,WRITE”) then
apply delta update to target file

else if (current_entry.operation = ,DELETE”) then
delete target file

else if (current_entry.operation = ,DELETE_DIR") then
delete directory

else if (current_entry.operation = ,TRUNCATE") then
apply changes to target file

else if (current_entry.operation = ,CHMOD") then
apply changes to target file

else if (current_entry.operation = ,CHOWN?") then
apply changes to target file

else if (current_entry.operation = ,UTIMENS”) then
apply changes to target file

else if (current_entry.operation = ,DELETED_BY_RENAME") then
rename target file to temporary file

else if (current_entry.operation = ,RENAME") then
writeback source file if not yet done
rename temporary file to target file

end if

delete current_entry from list
update content version if target file is content file

end while

delete journal entries if target file is content file

43: end procedure

67

5. Implementierung

vorliegen, auf die Datei im Datenbereich angewandt. Die Ausfithrung einer Loschoperati-
on hidngt davon ab, ob nach dem entsprechenden Journal-Eintrag noch weitere Eintrdge
vorliegen. Ist dies der Fall, wird der komplette Inhalt der Datei geloscht, aber die Datei
selbst bleibt bestehen. Sind keine weiteren Eintrdge vorhanden, wird die Datei geloscht. Falls
die Ausfithrung der Eintrdge im Datenbereich geschieht, werden ebenfalls die zugehorigen
Metadaten geloscht. Analog dazu ist das Vorgehen beim Loschen eines Verzeichnisses.

Die Ausfithrung der Operationen ,CHMOD”, ,CHOWN”, ,TRUNCATE” und , UTIMENS”
ist identisch. Es wird jeweils die im Journal stehende Anderung auf der Zieldatei angewandt.
Die Ausfiihrung einer Umbenennung dagegen ist zweigeteilt. Der Ablauf einer Umbenen-
nung ist in Abschnitt 5.4.2 beschrieben. Die Quelldatei einer Umbenennungsoperation wird
durch den entsprechenden Journal-Eintrag in eine temporédre Datei umbenannt. Diese befin-
det sich im gleichen Verzeichnis wie die Zieldatei und enthdlt in ihrem Namen die Namen
von Quell- und Zieldatei sowie die jeweilige Version der Umbenennungsoperation, was eine
Zuordnung dieser Datei zu der entsprechenden Operation ermoglicht. Bei der Ausfithrung
eines Umbenennungseintrags der Zieldatei wird zuerst die eben beschriebene temporére Da-
tei erstellt, indem die writeback_journal_entries-Funktion fiir die Quelldatei aufgerufen
wird, sofern die Datei nicht bereits besteht. Anschliefsend wird die tempordre Datei in die
Zieldatei umbenannt und die Operation ist abgeschlossen.

Nach der Ausfiihrung eines Eintrags wird jeweils die Version der Datei oder des Verzeich-
nisses im Datenbereich angepasst, sofern die Eintrdge in den Datenbereich ausgeschrieben
werden. Zudem werden in diesem Fall vor dem Beenden der Funktion auch die eben ausge-
schriebenen Journal-Eintrdge geloscht, wobei dies nur diejenigen Eintrage betrifft, die sich
im Journal-Abschnitt des ausfiihrenden Clients befinden. Die restlichen Eintrage werden
geloscht, sobald ein Client des betreffenden Journal-Abschnitts auf die Datei zugreift.

Der Ablauf von execute_journal_entry gleicht dem von writeback_journal_entries. Es
muss dabei lediglich keine Liste von Journal-Eintrdgen erstellt werden, da die Funktion
direkt mit einem Eintrag als Parameter aufgerufen wird. Aufierdem werden die gemachten
Anderungen immer direkt in den Datenbereich geschrieben.

5.4. Schnittstelle von CloudFS zu FUSE

Die zentrale Komponente des Systems ist main.c. Hier befindet sich die main-Funktion, die
bei Programmstart aufgerufen wird und die samtliche Initialisierungsaufgaben tibernimmt.
Daneben existiert fiir jede Datei- und Verzeichnisoperation, die CloudFS dem Nutzer zur
Verfiigung stellt, eine Funktion, die den Ablauf der jeweiligen Operation definiert. Dabei
wird dann zur Realisierung auf Funktionen anderer Komponenten zugegriffen.

FUSE ist darauf ausgelegt, dass mehrere Dateioperationen zur gleichen Zeit ausgefiihrt
werden konnen. Da in CloudFS alle Operationen eines Clients auf die selbe Anderungsliste
zugreifen und diese Datei lesen oder editieren miissen, wiirde bei gleichzeitiger Ausfiihrung
mehrerer Operationen ein Konflikt entstehen. Deshalb wird eine globale Semaphore einge-
fiihrt, die alle Operationen mit Zugriff auf die Anderungsliste vor Beginn ihrer eigentlichen

68

5.4. Schnittstelle von CloudFS zu FUSE

Ausfiihrung erlangen miissen. Dies stellt sicher, dass immer nur hochstens eine Operation
zur gleichen Zeit Zugriff auf die Anderungsliste hat, womit Konflikte vermieden werden. Das
bedeutet allerdings, dass die Parallelitdt verloren geht, was wiederum Leistungseinbufien
zur Folge hat. Nach Beenden einer Operation wird die Semaphore wieder freigegeben und
eine andere Operation kann ausgefiihrt werden.

5.4.1. Initialisierung und Beenden des Programms

Beim Programmstart wird zuerst die Konfigurationsdatei gelesen, die beim Aufruf als Para-
meter {ibergeben werden muss. Dazu wird die zugehorige Funktion parse_config_file der
Komponente cloudfs_config_parser.h aufgerufen. Diese liest die vorhandenen Parameter
ein und speichert sie in den global zur Verfiigung gestellten Variablen der Komponente
cloudfs_global_params.h. AnschlieBend wird durch Lesen der Ordneranzahl des Journal-
Verzeichnisses iiberpriift, wie viele Journal-Abschnitte zur Verfiigung stehen. Sofern in
der Konfigurationsdatei keine Client-ID angegeben ist, muss eine eindeutige 128-Bit-ID
generiert werden, die dann in der Konfigurationsdatei gespeichert wird. Da das Erstellen
von eindeutigen IDs nicht Hauptaugenmerk der Arbeit war, ist die Generierung vereinfacht.
Es werden vier zuféllige, vierstellige Zahlen generiert, in Zeichenketten umgewandelt und
anschlieflend konkateniert. Da sich die erwartete Anzahl an Clients im niedrigen zweistelli-
gen Bereich bewegt, ist die Wahrscheinlichkeit fiir zwei identische IDs bei einer 16-stelligen
Zahl ausreichend klein, um von einer quasi-eindeutigen ID sprechen zu kénnen. Nach der
eventuell notwendigen Generierung einer Client-ID ist die Initialisierung abgeschlossen und
der CloudFS-Client ist bereit, Operationen auszufiihren.

Beim Beenden des Programms wird die Funktion cloudfs_destroy aufgerufen. Diese gibt
alle gehaltenen Datei- und Verzeichnissperren auf. Zudem muss der reservierte Journal-
Abschnitt freigegeben werden. Danach kann das Programm erfolgreich beendet werden.

5.4.2. Implementierung der Dateisystemoperationen

Im folgenden Abschnitt werden die Funktionen vorgestellt, die die Dateisystemoperationen
von CloudFS implementieren. Der Entwurf der einzelnen Operationen wurde bereits in
Kapitel 4.3.1. beschrieben.

cloudfs_getattr

Die Funktion cloudfs_getattr liest Attribute von Dateien und Verzeichnissen und gibt
sie dem aufrufendem Programm zuriick. Der Ablauf der Operation ist identisch mit dem
der get_attributes-Funktion, die in Abschnitt 5.3.2 vorgestellt wurde. Der Grund fiir die
doppelte Implementierung einer Funktion zum Lesen von Attributen liegt zum einen an der
Verwendung der Semaphore, die vor Ausfithrungsbeginn einer Operation erlangt werden
muss. Bei einem unausgeschriebenen Journal-Eintrag einer Umbenennungsoperation muss
die Funktion cloudfs_getattr rekursiv fiir die Quelldatei aufgerufen werden. Diese konnte

69

5. Implementierung

allerdings nicht ausgefiihrt werden, da die Semaphore bereits durch die aufrufende Instanz
der Funktion belegt ist. Stattdessen wird die interne Funktion get_attributes aufgerufen,
die keine Semaphore zur Ausfithrung benotigt. Ein Konflikt mit der aufrufenden Instanz
kann nicht auftreten, da diese wiahrend der Ausfiihrung der internen Funktion blockiert,
bis diese beendet ist. Des Weiteren ist mit der internen Funktion eine klare Trennung
vollzogen zwischen Funktionen, die nach auflen sichtbar sind und von anderen Programmen
aufgerufen werden und internen Funktionen, die fiir die Ausfithrung einer Dateioperation
benotigt werden.

cloudfs_create

Die Funktion cloudfs_create erstellt eine neue Datei, wobei dies auch der Fall ist, wenn die
Datei zwar im Datenbereich noch existiert, aber durch einen Journal-Eintrag geldscht wird.
Zu Beginn werden unausgeschriebene Journal-Eintrdge in den Datenbereich iibertragen,
falls der Client das Ausschreiben von Journal-Eintragen unterstiitzt. Sollte dies der Fall sein,
so muss der neueste Fintrag entweder eine Loschoperation gewesen sein oder die Datei
wurde umbenannt und dadurch ebenfalls geloscht. Andernfalls wire ndmlich die Funktion
cloudfs_open aufgerufen worden, die eine bereits vorhandene Datei 6ffnet.

Falls die Datei noch nicht existiert, wird anschlieflend versucht, das Elternverzeichnis der zu
erstellenden Datei zu sperren. Gelingt das nicht, wird die Operation abgebrochen. Andern-
falls wird eine leere Datei samt Metadaten im Datenbereich erstellt. Existiert die Datei noch
im Datenbereich und ist nur durch noch nicht ausgeschriebene Journal-Eintrdge geldscht,
wird ein neuer Eintrag namens ,new_prepare” erstellt. Dieser Eintrag markiert die Datei als
nicht mehr geldscht.

Nachdem die Datei erstellt oder als nicht mehr geloscht markiert wurde, muss sie zuerst
gesperrt, anschlieffend gedffnet und fiir Lese- und Schreibvorgidnge vorbereitet werden.
Dazu wird der Datei ein Filehandle zugewiesen, mit dem sie von anderen Operationen
eindeutig identifiziert werden kann. Die Identifikation iiber den Dateinamen reicht nicht aus,
da eine Datei vom Nutzer mehrmals getffnet werden kann und trotzdem die Zuordnung
moglich sein muss. Nun wird eine lokale Datei im Cache-Verzeichnis des Clients angelegt
und geoffnet, in der Schreibvorgiange gespeichert werden. Diese Datei wird dabei entspre-
chend des zuvor zugewiesenen Filehandles benannt. Da es sich bei cloudfs_create um das
Erstellen einer neuen Datei handelt, wird im Cache die komplette Datei gespeichert und
nicht nur Delta Updates, wie es der Fall ist, wenn eine bereits existierende Datei getffnet
wird. Anschlieffend wird ein neues openedfiles_struct erstellt und der Liste der gedffneten
Dateien hinzugefiigt. Das Filehandle fiir Lese- und Schreibzugriffe des Elements verweist
dabei auf die erstellte Datei im Cache. Nun ist die Datei fiir Lese- und Schreibvorgéange
vorbereitet und die Funktion cloudfs_create ist abgeschlossen.

70

5.4. Schnittstelle von CloudFS zu FUSE

Algorithmus 5.3 Implementierung von cloudfs_open

1: procedure CLOUDFS_OPEN(int mode, char *path)

2: if (journal flag is set AND writeback is enabled) then
3 call writeback_journal_entries on content file
& end if

5:

6: get file handle

7: if (read access is demanded) then

8: if (journal flag is set) then

9: download content file to cache
10: call writeback_journal_entries on cache file
11: open cache file for read operations
12: else
13: open content file for read operations
14: end if

15: end if

16: if (write access is demanded) then

17: create delta update file in cache

18: open delta update file for write operations

19: end if

N
Q

21 add file to opened file list
22: end procedure

cloudfs_open

Der Ablauf der cloudfs_open-Funktion dhnelt dem von cloudfs_create und ist in Algorith-
mus 5.3 zu sehen. Auch hier werden zuerst alte Journal-Eintrage ausgeschrieben, sofern der
Client dies unterstiitzt. Das Anlegen einer neuen Datei fillt dagegen weg, da cloudfs_open
nur bei bereits existierenden Dateien aufgerufen wird.

Nach dem eventuellen Ausschreiben wird der zu 6ffnenden Datei ein Filehandle zugewiesen,
das in einem openedfile_struct in der Liste der geoffneten Dateien gespeichert wird. Das
weitere Vorgehen ist vom angeforderten Modus abhéngig: Wird ein Lesezugriff auf die Datei
angefordert und existieren keine unausgeschriebenen Journal-Eintrage, wird die Datei im
Datenbereich getffnet und Lesevorgédnge direkt darauf ausgefiihrt. Wenn dagegen noch
Eintrdge im Journal bestehen, muss die Datei zuerst aus dem Datenbereich heruntergeladen
werden, um anschlieffend die unausgeschriebenen Journal-Eintrage auf der Version im Cache
anzuwenden. Lesevorgdnge werden anschlieflend auf dieser Datei im Cache ausgefiihrt.
Wenn Schreibzugriff auf die Datei angefordert wird, wird im Cache-Verzeichnis eine Delta
Update-Datei erstellt, in der samtliche Schreibvorginge bis zum Ubertrag in das Journal
gespeichert werden.

71

5. Implementierung

cloudfs_write

Beim Aufruf von cloudfs_write wird das Filehandle {ibergeben, das der Datei beim Offnen
zugewiesen wurde. Anhand dessen kann in der Liste der gevdffneten Dateien das passende
Element wieder gefunden werden, in dem festgehalten ist, ob eine neue Datei oder ein
Delta Update geschrieben werden soll. Beim Schreibvorgang in eine neue Datei wird der
tibergebene Schreibpuffer an den spezifizierten Offset in die Datei geschrieben. Bei Delta
Updates wird in die zugehorige Datei im Cache-Verzeichnis ein Eintrag im Format #<Off-
set>#<Lange>#<Daten># geschrieben, wobei Offset fiir die Stelle in der Datei steht, Lange
die Anzahl an zu schreibenden Bytes angibt und Daten die eigentlich zu schreibenden
Daten darstellen. Alle diese Variablen werden beim Aufruf von cloudfs_write als Parameter
tibergeben. Zusitzlich zum Eintrag in der Delta Update-Datei wird im openedfile_struct
der Datei eine Liste mit Elementen vom Typ delta_update_struct angelegt. Jedes Element
stellt einen Schreibvorgang dar und beinhaltet den Offset innerhalb der Datei, die Anzahl der
geschriebenen Bytes und die Position innerhalb der Delta Update-Datei. Diese Informationen
sind notwendig, falls spdter ein Lesevorgang Daten aus dem Bereich des Delta Update lesen
will.

cloudfs_read

Beim Aufruf von cloudfs_read wird ebenso wie bei cloudfs_write das Filehandle tiberge-
ben, das der Datei beim Offnen zugewiesen wurde, das die Identifizierung der gedffneten
Datei ermoglicht. Wenn der Lesevorgang auf einer neu erstellten Datei erfolgt, wird von der
zugehorigen Cache-Datei gelesen, ebenso wenn eine Rekonstruktion der Datei im Cache
notwendig war. Andernfalls wird direkt von der Datei im Datenbereich gelesen.

Eine Ausnahme stellt die Situation dar, wenn bereits ein Delta Update dieser Datei im Cache
vorliegt und ein Teil dieser Daten wieder gelesen werden soll. Um dies zu iiberpriifen,
wird die Liste der Delta Updates durchlaufen und nach Uberschneidungen des zu lesenden
Bereichs mit den bereits geschriebenen Bereichen gesucht. Wenn eine Uberlappung gefunden
wurde, wird der betreffende Part aus der Delta Update-Datei gelesen. Sollen noch weitere
Daten gelesen werden als die, die von Delta Updates abgedeckt werden, wird der restliche
Teil entweder aus der rekonstruierten Datei im Cache oder aus der Datei im Datenbereich
gelesen.

cloudfs_fsync und cloudfs_release

Die Funktion cloudfs_fsync {ibertrigt Anderungen, die seit dem Offnen der Datei gemacht
wurden, ins Journal auf den Online-Speicher. Die Datei wird aber nicht geschlossen, was bei
cloudfs_release der Fall ist. Bei beiden Operationen wird, wenn eine neue Datei angelegt
wurde, die zugehorige Datei im Cache ins Journal tibertragen, ansonsten die Delta Update-
Datei. Anschlieflend wird entweder ein Journal-Eintrag fiir die neu erstellte Datei oder
fur einen normalen Schreibvorgang erstellt, der danach sofort ausgeschrieben wird, sofern

72

5.4. Schnittstelle von CloudFS zu FUSE

der Client das Ausschreiben von Journal-Eintrdgen unterstiitzt. Falls die Datei durch den
Aufruf von cloudfs_release geschlossen wird, jedoch keine Anderungen vorliegen, da die
Datei entweder nur zum Lesen getffnet war oder weil keine Schreibvorgidnge vorgenommen
wurden, wird die Datei direkt geschlossen.

Da die Datei bei cloudfs_fsync nach dem Ubertragen der Anderungen weiter gedffnet
bleibt, miissen auch weiterhin Schreibzugriffe moglich sein. Wurde bisher in eine neue Datei
geschrieben, so wird nun auf Delta Updates umgestellt. Dazu muss eine entsprechende
Datei im Cache angelegt werden und das Filehandle im openedfile_struct in der Liste
der geoffneten Dateien angepasst werden. Wenn bisher schon Delta Updates geschrieben
wurden, wird lediglich der Inhalt der bisherigen Delta Update-Datei geloscht.

cloudfs_rename

Bei der Umbenennung einer Datei wird die selbe Funktion aufgerufen wie bei der Umbe-
nennung eines Verzeichnisses. Deshalb realisiert cloudfs_rename sowohl die Umbenennung
von Dateien als auch von Verzeichnissen. Da anhand der iibergebenen Quell- und Zielpfa-
de nicht unterschieden werden kann, ob es sich um Dateien oder Verzeichnisse handelt,
werden zu Beginn der Operation per Konsolenbefehl stat die Attribute abgefragt, welche
dann eine Unterscheidung ermoglichen. Die Funktion cloudfs_rename tiberschreibt ohne
Nachfrage den eventuell schon vorhandenen Zielpfad. Eine Riickfrage an den Nutzer muss
vom aufrufenden Programm realisiert werden.

Vor der Ausfiihrung der Umbenennung werden alte unausgeschriebene Journal-Eintrdge in
den Datenbereich tibernommen, sofern der Client das Ausschreiben von Eintrdgen unter-
stiitzt. Wenn eine Datei umbenannt werden soll und die Zieldatei noch nicht existiert, so
sind die gleichen Schritte wie beim Anlegen einer Datei notwendig: Sperren des Elternver-
zeichnisses und anschlieffendes Erstellen der Datei samt Metadaten. Nachdem beide Dateien
existieren, miissen beide zur Durchfiihrung der Umbenennung gesperrt werden. Nun wer-
den fiir beide Dateien Journal-Eintrége erstellt. Wichtig hierbei ist, dass das Schreiben atomar
geschieht, also entweder beide Eintrage geschrieben werden oder keiner der beiden. Denn
falls die Operation durch einen Verlust der Verbindung zum Server abgebrochen wird und
nur einer der beiden Eintrdge geschrieben wurde, konnten von anderen Clients weitere
Umbenennungsoperationen auf den Dateien ausgefiihrt werden. Dies hitte zur Folge, dass
entweder die Quelldatei fiir die Umbenennung nicht mehr zur Verfiigung steht oder dass die
Quelldatei zwar durch die Umbenennung in eine temporére Datei geloscht wird, aber nicht
weiter zur Zieldatei hin iiberfiihrt wird. Um beide Eintrdge atomar in die Anderungsliste
zu schreiben, werden der Funktion create_journal_entry beide Eintrdge im selben Aufruf
iibergeben. Durch das Anlegen einer Sicherungskopie der Anderungsliste ist gewdhrleistet,
dass entweder beide Eintrage in die neue Liste geschrieben werden oder bei einem Fehler
wiéhrend des Schreibens der Eintrdge weiterhin mit der Sicherungskopie eine konsistente
Version der Liste existiert. Diese werden wie bei allen anderen Operationen auch nach dem
Anlegen der Eintrdge sofort ausgeschrieben, sofern der Client dies unterstiitzt.

73

5. Implementierung

Das Umbenennen von Verzeichnissen erfolgt dhnlich zu dem von Dateien. Nachdem das
Quellverzeichnis erfolgreich gesperrt wurde, muss gegebenenfalls das Zielverzeichnis erstellt
werden, sofern es noch nicht existiert. Hier ist das Vorgehen identisch wie bei cloudfs_mkdir,
der Funktion zum Erstellen eines Verzeichnisses. Anschlieffend muss sowohl der komplette
Unterbaum des Quellverzeichnisses als auch der des Zielverzeichnisses gesperrt werden.
Sollte auch nur fiir eine Datei oder ein Verzeichnis keine Sperre erlangt werden koénnen,
werden die bereits reservierten Sperren wieder freigegeben und die Operation wird ab-
gebrochen. Nachdem nun beide Unterbdume gesperrt sind, miissen fiir alle enthaltenen
Dateien und Verzeichnisse Journal-Eintrdge angelegt werden. Dies geschieht durch den
Aufruf der Funktion mark_dir_for_rename. Dort werden per Tiefensuche alle Dateien und
Verzeichnisse abgearbeitet und fiir Unterverzeichnisse die Funktion rekursiv aufgerufen.
Auch hier ist wieder zu beachten, dass die Eintrdge von Quelle und Ziel atomar geschrie-
ben werden, um Inkonsistenzen zu vermeiden. Nachdem alle Eintrdge angelegt wurden,
werden sie, sofern vom Client unterstiitzt, sofort in den Datenbereich tibernommen. Hier-
fir kommt die Funktion writeback_subtree zum Einsatz, die jeweils fiir das Quell- und
Zielverzeichnis aufgerufen wird und die Eintrdge des jeweiligen Unterbaums ausschreibt.
Auch hier erfolgt die Abarbeitung per Tiefensuche und rekursivem Aufruf der Funktion bei
Unterverzeichnissen.

cloudfs_unlink, cloudfs_chown, cloudfs chmod, cloudfs truncate und cloudfs utimens

Die Abliufe der Funktionen cloudfs_unlink, cloudfs_chown, cloudfs_chmod,
cloudfs_truncate und cloudfs_utimens sind nahezu identisch: Nachdem die Datei
zu Beginn gesperrt werden muss, wird entsprechend der Operation ein Journal-Eintrag
angelegt. Anschlieflend wird dieser Eintrag sofort ausgeschrieben, sofern der Client dies
unterstiitzt. Danach kann die Dateisperre wieder freigegeben werden und die Operation ist
beendet.

cloudfs_opendir und cloudfs_releasedir

Die einzige Aufgabe von cloudfs_opendir besteht darin, dhnlich zum Offnen von Dateien,
ein Filehandle des entsprechenden Verzeichnisses zu erstellen, indem das Verzeichnis ge-
offnet wird. Dieses wird dann von cloudfs_readdir zum Lesen des Verzeichnisses genutzt.
Dementsprechend ist die einzige Aufgabe von cloudfs_releasedir, das Verzeichnis wieder
zu schliefSen.

cloudfs_readdir

Die Funktion cloudfs_readdir liefert alle im spezifiziertem Verzeichnis enthaltenen Dateien
und Verzeichnisse zuriick. Allerdings werden diejenigen, die mit einem ,#” beginnen,
ausgeblendet, was zum Beispiel auf die jeweiligen Metadaten-Verzeichnisse zutrifft. Bei der
Abarbeitung der enthaltenen Dateien und Verzeichnisse wird zudem tiberpriift, ob sie durch

74

5.5. Metadatenverarbeitung

einen noch nicht ausgeschriebenen Journal-Eintrag bereits geloscht sind. Sollte dies der
Fall sein, werden die Eintrdge der betreffenden Datei oder des betreffenden Verzeichnisses
in den Datenbereich tibernommen. Der Grund fiir das Ausschreiben von Losch-Eintragen
beim Auflisten eines Verzeichnisses ist, dass das aufrufende Programm standardmaflig
vor Beginn einer Dateisystemoperation die Attribute der entsprechenden Datei oder des
entsprechenden Verzeichnisses liest. Durch den unausgeschriebenen Losch-Eintrag wird
dann zuriickgemeldet, dass die Datei oder das Verzeichnis nicht mehr existiert, was einen
Abbruch der Operation zur Folge hat. Somit wiirden Losch-Operationen, die nicht sofort
ausgeschrieben werden, nie in den Datenbereich iibernommen. Aus diesem Grund erfolgt
die Ausfithrung der Losch-Eintrége beim Auflisten des Verzeichnis-Inhalts.

cloudfs_mkdir

Das Anlegen eines neuen Verzeichnisses durch die Funktion cloudfs_mkdir erfolgt analog
zum Erstellen einer neuen Datei: Nachdem das Elternverzeichnis gesperrt wurde, wird das
Verzeichnis samt Metadaten-Verzeichnis erstellt. Wenn das Verzeichnis durch einen Journal-
Eintrag, der noch nicht in den Datenbereich {ibernommen ist, bereits geloscht wurde, muss
es nicht neu erstellt werden. In diesem Fall wird lediglich die Version des Verzeichnisses
inkrementiert. Dadurch veraltet der unausgeschriebene Losch-Eintrag und das Verzeichnis
existiert wieder.

cloudfs_rmdir

Damit das Loschen eines Verzeichnisses durch cloudfs_rmdir erfolgen kann, muss wie
beim Umbenennen eines Verzeichnisses der komplette Unterbaum mit den enthaltenen
Dateien und Unterverzeichnissen gesperrt werden. Sollten nicht alle dafiir benotigten Sperren
erlangt werden konnen, werden bis dahin gesetzte Sperren wieder freigegeben und die
Operation wird abgebrochen. Anschlieffend muss fiir jede Datei und jedes Verzeichnis des
Unterbaums ein Journal-Eintrag angelegt werden. Dies geschieht durch den Aufruf der
Funktion mark_dir_for_deletion, die per Tiefensuche den Unterbaum durchlduft und die
Eintrdge anlegt. Sofern der Client dies unterstiitzt, werden die Eintrdge nach dem Anlegen
sofort ausgeschrieben, was wie beim Umbenennen eines Verzeichnisses durch die Funktion
writeback_subtree geschieht.

5.5. Metadatenverarbeitung

Die Komponente cloudfs_metadata_handling.h regelt den Zugriff auf die Metadaten von
Dateien und Verzeichnissen. So werden hier die Datei- und Verzeichnissperren gesetzt
und wieder freigegeben und gegebenenfalls die Deadlock-Behandlung durchgefiihrt. Die
Algorithmen hierfiir wurden bereits in Kapitel 4 beschrieben. Auflerdem kénnen die Datei-

75

5. Implementierung

oder Verzeichnisversion und das Journal-Flag mit Funktionen dieser Komponente gelesen
und aktualisiert werden.

Die Reservierung und die Freigabe eines Journal-Abschnitts ist ebenfalls hier implementiert.
Der zugehorige Sperralgorithmus wurde ebenfalls schon in Kapitel 4 beschrieben. Die
Auswahl, welcher Abschnitt reserviert werden soll, wird zufillig getroffen. Zu Beginn
enthélt die Liste der moglichen Abschnitte alle im Online-Speicher vorhandenen Abschnitte.
AnschliefSlend wird versucht, einen daraus zufallig ausgewéahlten Abschnitt zu reservieren.
Ist der Vorgang erfolgreich, wird die Funktion beendet. Andernfalls wird der betreffende
Abschnitt aus der Liste entfernt und ein anderer, zufillig ausgewéhlter Abschnitt wird
ausgewdhlt. Dieser Vorgang wiederholt sich, bis die Liste leer ist. Anschlieflend wird sie
wieder mit allen Abschnitten aufgefiillt und der Reservierungsversuch beginnt von vorne.
Nach dem dritten Erreichen einer leeren Liste wird der Vorgang abgebrochen, was das
Beenden des Client-Prozesses zur Folge hat. In diesem Fall konnte kein Journal-Abschnitt
reserviert werden und der Client ist nicht in der Lage das System zu nutzen.

5.5.1. Journal-Flag

Das Journal-Flag gibt an, ob unausgeschriebene Eintrédge fiir eine Datei oder ein Verzeichnis
im Journal existieren. Dadurch muss vor einer Operation nur dieses Flag gelesen werden,
um die Aktualitdt der Version im Datenbereich zu priifen und nicht das gesamte Journal
durchsucht werden. Allerdings muss dann das Flag immer zuverldssig angeben, ob Eintrage
existieren oder nicht.

Wenn keine Eintrdge im Journal vorliegen, besitzt das Flag den Wert o, andernfalls den
Wert 1. Vor dem Anlegen eines neuen Eintrags wird das Flag allerdings zwischenzeitlich auf
den Wert 2 gesetzt. Dieser Zustand zeigt an, dass eventuell Eintrdge vorliegen. Wenn man
das Flag erst nach dem Anlegen eines Eintrags setzen wiirde, so bestiinde die Moglichkeit,
dass zwischen Anlegen des Eintrags und Setzen des Flags die Verbindung zum Server
abbricht und das Flag nicht gesetzt werden kann. Dann wére zwar ein neuer Journal-
Eintrag vorhanden, allerdings wiirde das Flag noch anzeigen, dass keine unausgeschriebenen
Eintrdge existieren. Somit wiirde ein Client nicht die korrekte Version der Datei oder
des Verzeichnisses erkennen konnen. Durch das Setzen des Flags vor dem Anlegen eines
Journal-Eintrags auf den Wert 2 wird dieses Problem umgangen. Wird beim néachsten
Lesevorgang des Flags der Wert 2 gelesen, so wird das Journal auf Eintrdge mit einer
hoheren Versionsnummer als der Datei oder des Verzeichnisses im Datenbereich durchsucht.
Existiert ein solcher Eintrag, erhilt das Flag den Wert 1. Ansonsten wird ihm der Wert o
zugewiesen.

5.6. Hilfsfunktionen

Die Komponente cloudfs_helper.h stellt Hilfsfunktionen zur Verfiigung, die von Funk-
tionen anderer Komponenten aufgerufen werden und nicht direkt am Ablauf der Da-

76

5.7. Konfigurationsdatei

teioperationen beteiligt sind. Am h&ufigsten werden Funktionen zur Pfadumwandlung
genutzt. Alle Pfade, die an die Funktionen der nach aufien sichtbaren Dateisystemoperatio-
nen iibergeben werden, beziehen sich auf das Verzeichnis, in dem CloudFS eingebunden
ist. Dieses Verzeichnis stellt das Wurzelverzeichnis von CloudFS dar. So wiirde beispiels-
weise die Datei ,Beispiel.txt” im Verzeichnis ,,/home/Nutzer/CloudFSMount/” mit dem
Pfad , /home/Nutzer/CloudFSMount/Beispiel.txt” tibergeben werden. Da sich die Datei
aber in Wirklichkeit im Datenbereich auf dem Online-Speicher befindet, der etwa im Ver-
zeichnis ,/home/Nutzer/OnlineSpeicher/” gemountet ist, muss jeder Pfad so {iibersetzt
werden, dass er auf die Datei im Onlinespeicher verweist, was dann schlussendlich zum Pfad
,/home/Nutzer/OnlineSpeicher/Content/Beispiel.txt” fiihrt. Dazu werden die Pfadan-
gaben aus der Konfigurationsdatei genutzt. Es existieren neben der Funktion zur Pfadum-
wandlung noch weitere Funktionen, die einen iibergebenen Pfad manipulieren oder Pfade
zu Metadaten-Verzeichnissen und Journal-Abschnitten zuriickgeben.

In der Komponente cloudfs_helper.h sind weiterhin Hilfsfunktionen zur Stringverarbei-
tung implementiert. AufSerdem stellt sie eine Funktion zur Verfiigung, die eine beliebige
Datei unter Angabe der Quell- und Zieldatei kopiert, die zum Beispiel zum Upload von
Anderungen auf den Online-Speicher genutzt wird.

Die eindeutige ID jeder Datei wird ebenfalls in dieser Komponente generiert. Dazu wird die
Client-ID mit der aktuellen Systemzeit des Clients konkateniert. Die Systemzeit wird durch
die vergangenen Sekunden seit dem 1.1.1970 reprasentiert. Damit ist ausgeschlossen, dass
zwei verschiedene Clients die gleiche ID generieren. Allerdings muss noch sichergestellt
werden, dass diese ebenfalls eindeutig sind, falls in einer Sekunde mehrere IDs generiert
werden miissen. Hierfiir wird der zuletzt genutzte Zeitstempel in der globalen Variable
last_timestamp_used gespeichert. Entspricht die aktuelle Systemzeit bei der Generierung
einer neuen ID der des Zeitstempels der letzten ID, wird bei der neuen ID eine Sekunde
addiert, wodurch die Eindeutigkeit wieder gegeben ist.

5.7. Konfigurationsdatei

In der Konfigurationsdatei kann der Nutzer verschiedene Parameter einstellen, die fiir den
Betrieb des CloudFS-Clients notwendig sind. Im Einzelnen sind das:

rootdir Verzeichnis, in dem der Online-Speicher gemountet ist
cachedir Verzeichnis, das als Cache benutzt werden kann

writeback_to_content_section gibt an, ob Anderungen direkt in den Datenbereich iiber-
nommen werden sollen (Wert = 1) oder nicht (Wert = o)

maximum_packet_lifetime maximale Lebenszeit eines Pakets auf dem Weg zwischen dem
Client und dem Server; Angabe in Sekunden

maximum_clock_skew maximale Differenz der Systemuhren aller das Dateisystem nutzen-
den Clients; Angabe in Sekunden

77

5. Implementierung

maximum_backoff_time maximale Zeitspanne, die ein Client zusitzlich wartet, bis er eine
Sperre nochmals auf einen Deadlock tiberpriift; Angabe in Sekunden

client_id 16-stellige ID des ausfiithrenden Clients

client_name beliebiger vom Nutzer wihlbarer Name, um den Client leichter identifizieren
zu koénnen

Die Datei ist so aufgebaut, dass auf eine Zeile mit dem Namen eines Parameters in eckigen
Klammern eine Zeile mit dem zugehorigen Parameterwert folgt. Leere Zeilen oder Zeilen,
die mit einem ,#”“ beginnen, werden ignoriert. Im Anhang ist eine Beispielkonfiguration zu
finden, die Standardwerte enthélt und auch fiir die Evaluation genutzt wurde.

Algorithmus 5.4 Implementierung des Administrationstools

procedure ADMINTOOL()
search for journal section that is reserved by given client

free journal section

traverse content section and search for files and directories locked by given client
if such a file or directory is found, free it

1:
2!
3
4
5:
6
7
8: end procedure

5.8. Administrationstool

Das Administrationstool ist ein separates Programm, das zum Einsatz kommt, wenn ein
Client ungeregelt das System verlassen und gehaltene Sperren noch nicht wieder freigegeben
hat. In diesem Fall konnen aufgrund des Sperralgorithmus und des zugrunde liegenden
Systemmodells die Sperren nicht von den anderen Clients freigegeben oder tiberschrieben
werden. Das Administrationstool gibt die Sperren des Clients, der das System ungeregelt
verlassen hat, wieder frei.

Der Ablauf des Programms ist in Algorithmus 5.4 zu sehen. Beim Aufruf des Tools muss
die Client-ID oder der vom Nutzer gewidhlte Name des betreffenden Clients tibergeben
werden. Anschlieffend wird anhand dieser Information nach dem Journal-Abschnitt gesucht,
den der Client reserviert hatte. Nachdem der entsprechende Abschnitt gefunden wurde,
wird dieser freigegeben und es werden Dateien und Verzeichnisse gesucht, die noch den
betreffenden Client als Besitzer der Sperre ausweisen. Dabei wird der komplette Datenbereich
per Tiefensuche abgearbeitet. Falls ein Objekt gefunden wird, das noch vom betreffenden
Client gesperrt ist, wird es freigegeben.

78

6. Evaluation

CloudFS wurde in Hinblick auf verschiedene Leistungsparameter untersucht. In diesem
Kapitel wird zuerst der Versuchsaufbau beschrieben, mit dem danach verschiedene Ge-
schwindigkeitstests durchgefiihrt werden. Anschliefend werden die Auswirkungen des
Nicht-Ausschreibens von Journal-Eintragen untersucht und es wird auf die Haufigkeit von
Deadlocks des Sperrverfahrens eingegangen.

6.1. Versuchsaufbau

In Abbildung 6.1 ist der Versuchsaufbau zu sehen, mit dem die verschiedenen Tests durch-
gefiihrt wurden. Zum einen kam ein Client-PC mit Ubuntu-Betriebssystem zum Einsatz
(Client-PC 1), der iiber eine Internetverbindung mit 2 MBit/s Ubertragungskapazitit im
Downlink und 256 KBit/s im Uplink verfiigt. Zwei weitere Computer befanden sich im LAN
der Universitdt Stuttgart. Einer dieser PCs wurde als Server verwendet, der den Clients
per NFS Zugriff auf einen freigegebenen Ordner ermoglichte, wobei NFS v4 basierend auf
TCP zum Einsatz kam. Der zweite Computer im Universitdtsnetz wurde ebenfalls als Client
genutzt (Client-PC 2). Diese beiden PCs waren untereinander per Gigabit-LAN verbunden
und die Internetverbindung hatte eine Ubertragungskapazitit von mindestens 1 GBit/s.
Um eine Kommunikation zwischen den beiden Universitdatscomputern und Client-PC 1

Universitatsnetz

(NFS) OpenVPN
Server
{g) ' +1 GBit/s .
& 1 GBit/s >=1 GBit/s Client-PC 1
Router
<« 256 KBit/s ;g
4.}' 2 MBit/s o~

Client-PC 2

1),

D

1 GBit/s

Abbildung 6.1.: Versuchsaufbau der Evaluation

79

6. Evaluation

zu ermoglichen, war eine VPN-Verbindung notwendig, die Client-PC 1 Zugang zum Uni-
versititsnetz ermoglichte. Auf den Clients war schliefllich jeweils die NFS-Freigabe des
Servers eingebunden. Als Mount-Optionen von NFS wurden ,rw” und ,sync” verwendet,
um Lese- und Schreibzugriff sowie synchrones Schreiben zu aktivieren. Auf den Client-
PCs wurden dann je nach Evaluationsszenario ein oder mehrere CloudFS-Prozesse ausge-
fihrt. Die Round Trip Time (RTT) von Client-PC 1 zum Server betrug etwa 6o ms, die von
Client-PC 2 etwa o,1ms. Die durchgefiihrten Tests wurden drei Mal wiederholt. Die in
diesem Kapitel angegebenen Messzeiten spiegeln das arithmetische Mittel der erzielten
Zeiten der einzelnen Testldufe wider.

6.2. Untersuchung der Geschwindigkeit von Schreib- und
Léschoperationen

Durch den Overhead fiir das fiir viele Dateisystemoperationen notwendige Sperren von
Dateien und Verzeichnissen und das Journaling ist eine Verlangsamung der Ausfiihrungs-
dauer der einzelnen Operationen in CloudFS gegeniiber der direkten Speicherung der
Daten auf einem Online-Speicher zu erwarten. Deshalb wurden Tests durchgefiihrt, die die
Ausfiihrungsdauern verschiedener Dateisystemoperationen untersuchen.

Es wurden verschiedene Testszenarios erstellt, die in Tabelle 6.1 zu sehen sind. Dabei wird
jeweils die Geschwindigkeit beim Erstellen und Loschen von Dateien in CloudFS untersucht.
In den ersten beiden Szenarios werden 50 leere Dateien erstellt beziehungsweise geldscht.
Die Operationen arbeiten also nur auf Metadaten und nicht auf Nutzdaten. In Szenario
3 bis 6 werden dagegen Dateien mit insgesamt 50 KByte Nutzdaten erstellt und geloscht.
Dabei verteilen sich diese Daten in den Szenarien 3 und 4 auf 50 Dateien mit jeweils 1 KByte
Grofie, wogegen Szenario 5 und 6 auf jeweils einer Datei mit 50 KByte Grofie arbeiten. Das
Erstellen und Loschen der Dateien wird von einem kleinen Programm ausgefiihrt, das in
der Programmiersprache C implementiert ist. Dort werden die Dateien durch Aufruf der
Funktionen fopen und fclose erstellt beziehungsweise geschlossen. Nutzdaten werden mit
der Funktion fputs in die Dateien geschrieben. Das Loschen erfolgt per Aufruf der Funktion
remove. Diese Funktionen resultieren in den Aufrufen der CloudFS-Dateisystemoperationen
CREATE, WRITE, RELEASE und UNLINK.

Szenario 7 und 8 untersuchen dagegen ein Anwendungsszenario: Im Dateimanager
Nautilus [nau] werden 50 Dateien a 1 KByte erstellt und anschlieffend in den Papierkorb
verschoben. Dieser fiihrt beim Erstellen einer Datei nach dem Erstellen zusatzlich jeweils
noch die Befehle CHMOD und UTIMENS aus, die in den Aufrufen der gleichnamigen Dateisys-
temoperationen in CloudFS resultieren. Beim Verschieben einer Datei in den Papierkorb
miissen verschiedene Ordner und Dateien angelegt und kopiert werden, wodurch eine
aufwandigere Operation entsteht, als wenn die Dateien direkt geloscht wiirden.

Die 8 Szenarien wurden zuerst auf Client-PC 1 und anschliefiend auf Client-PC 2 ausgefiihrt,
womit der Einfluss der Verbindung zum Server ebenfalls untersucht werden konnte. Als
Referenz zu den Testldufen mit CloudFS wurden die Szenarien jeweils auch noch direkt

8o

6.2. Untersuchung der Geschwindigkeit von Schreib- und Léschoperationen

SZENARIO | BESCHREIBUNG

1 50 Dateien (o Byte pro Datei) per C-Programm erstellen
50 Dateien (o Byte pro Datei) per C-Programm loschen
50 Dateien (1 kByte pro Datei) per C-Programm erstellen
50 Dateien (1 KByte pro Datei) per C-Programm l3schen
1 Datei (50 KByte pro Datei) per C-Programm erstellen
1 Datei (50 KByte pro Datei) per C-Programm loschen
50 Dateien (1 KByte pro Datei) per Dateimanager erstellen
50 Dateien (1 KByte pro Datei) per Dateimanager 16schen

O3 |NU B~ WIN

Tabelle 6.1.: Untersuchte Szenarios der Geschwindigkeitstests

auf NFS ausgefiihrt, um den Overhead von CloudFS ermitteln zu kéonnen. Somit wurde
jedes Szenario vier Mal durchgefiihrt, wobei die Verbindung und das genutzte Dateisystem
variierten.

Die Ergebnisse der einzelnen Szenarien sind in Abbildung 6.2 dargestellt. Zum einen ist
zu sehen, dass die Operationen auf CloudFS signifikant von der Anbindung des Clients
abhdngen. So kann man beobachten, dass Operationen iiber die LAN-Verbindung etwa 100
bis 200 Mal schneller ablaufen als die {iber die vergleichsweise langsame Internetverbindung.
So benotigt Client-PC 1 zum Beispiel 330 Sekunden fiir Szenario 1, wogegen die Opera-
tionen auf Client-PC 2 bereits nach 2,5 Sekunden beendet sind. Auf CloudFS ausgefiihrte
Szenarien weisen gegeniiber NFS etwa um den Faktor 50 langsamere Ausfithrungszeiten
auf. Das schlechtere Abschneiden von CloudFS war hier zu erwarten, da jede Dateiopera-
tion in jedem Fall auf NFS ausgefiihrt werden muss und bei CloudFS noch der Overhead,
wie beispielsweise fiir das Sperren der Dateien oder das Anlegen von Journal-Eintrdgen,
hinzukommt.

Das Erstellen einer einzelnen, 50 KByte groflen Datei in Szenario 5 ist im Vergleich zu
Szenario 3, bei dem 50 Dateien mit insgesamt ebenfalls 50 KByte erstellt wurden, deutlich
weniger zeitintensiv. Dies ist bei beiden Verbindungstypen und Dateisystemen zu beobachten
und ist durch den Overhead, der durch das Erstellen der einzelnen Dateien samt Metadaten
entsteht, zu erkldren. In Szenario 6, in dem die erstellte Datei wieder geldscht wird, ist das
analoge Verhalten zu beobachten. Die erzielten Zeiten fiir das Erstellen von 50 Dateien mit
einer Grofie von 1 KByte in Szenario 3 weisen eine etwa 50% ldngere Ausfithrungszeit auf
als die in Szenario 1, in dem 50 leere Dateien erstellt wurden. Die zusitzlich benotigte Zeit
resultiert aus dem Upload der Nutzdaten. Bei den Szenarien 2 und 4, in denen die Dateien
wieder geloscht werden, ist dagegen kein Unterschied zu beobachten, da hier die Grofie der
Dateien keine Rolle spielt.

In Szenario 7 werden 50 Dateien mit jeweils 1 KByte Grofie per Dateimanager erstellt.
Hier ist etwa eine Verdopplung der Ausfiihrungszeiten bei beiden Verbindungstypen und
Dateisystemen im Gegensatz zu Szenario 3 zu sehen. Dies kann mit der Ausfithrung der
Befehle CHMOD und UTIMENS, die der Dateimanager im Anschluss an das Erstellen der Dateien
ausfiihrt, erklart werden. In Szenario 8, in dem das Verschieben von 50 Dateien in den
Papierkorb untersucht wird, ist im Vergleich zu Szenario 4, in dem die Dateien direkt

81

6. Evaluation

10000

100
HCloudFS (Internet)
B NFS (Internet)
CloudFS (LAN)
ENFS (LAN)
’ I] I I I | L |
1 2 3 4 5 6 7 8

Szenario

Zeit (s)

=
= o

=}

Abbildung 6.2.: Ergebnisse der Testszenarios

geloscht werden, bei CloudFS eine Verlingerung der Ausfiihrungszeit um den Faktor 10 zu
beobachten. Die direkte Ausfiihrung auf NFS weist etwa eine um den Faktor 3 verldngerte
Ausfithrungszeit auf.

Die Geschwindigkeitstests zeigen, dass die Ausfiihrungszeiten der Dateioperationen auf
CloudFS deutlich ldnger sind als die auf NFS. Besonders deutlich wird der Unterschied,
wenn eine komplexe Operation wie das Verschieben von Dateien in den Papierkorb in
einem Dateimanager ausgefiihrt wird. Aufierdem ist zu sehen, dass die Clientanbindung
ebenfalls deutlichen Einfluss auf die Ausfithrungsdauer hat: Operationen des Clients mit
LAN-Verbindung zum Server sind 100 bis 200 Mal schneller als die des Clients mit Internet-
verbindung.

6.3. Profiling der haufigsten Dateioperationen

Neben der Messung der Ausfithrungsdauern von dem Erstellen und Loschen von Dateien
wurde fiir die haufigsten Dateioperationen OPEN, READ/WRITE, RELEASE, RENAME
und DELETE ein Profiling, also das Untersuchen auf ihre Ausfiihrungsdauern und deren
Aufteilung auf ihre einzelnen Komponenten, durchgefiihrt. Eine Dateioperation gliedert
sich in das Erwerben von bendétigten Sperren, das Anlegen und Ausschreiben von Journal-
Eintrdgen und den Upload von Anderungen, wobei nicht jede Operation alle der genannten
Schritte ausfiihrt. Die Operationen wurden auf beiden Client-PCs ausgefiihrt. Die gemesse-
nen Ausfiihrungszeiten fiir Client-PC 2, der iiber eine LAN-Verbindung zum Server verfiigt,
betragen allerdings alle hochstens 0,2 Sekunden. Aus diesem Grund werden in der weiteren

82

6.3. Profiling der haufigsten Dateioperationen

12

10

ESonstiges
®m Anderungen schreiben
g 5 Upload
ﬁ W Journal-Eintrag erstellen
ESperen

OPEN READ WRITE RELEASE RENAME DELETE

Abbildung 6.3.: Ausfithrungsdauern der hédufigsten Dateioperationen und deren Kompo-
nenten

Betrachtung und Analyse nur die Ergebnisse von Client-PC 1, der per Internet mit dem
Server verbunden ist, beriicksichtigt.

Die Ergebnisse der Messungen sind in Abbildung 6.3 zu sehen. Das Offnen einer Datei dauert
etwa 1,3 Sekunden, wobei der Hauptteil auf das Sperren der Datei entfillt. Die Dauer eines
WRITE-Aufrufs wurde beim Schreiben von 1 KByte gemessen, wobei die Ausfithrungszeit
weniger als 0,1 Sekunden betrégt. Dies ist dadurch zu erkldren, dass das Schreiben in CloudFS
auf einer lokalen Datei geschieht, die erst beim Schliefien der Datei auf den Server tibertragen
wird. Fiir die Messung eines READ-Aufrufes wurde ebenfalls 1 KByte einer Datei gelesen.
Die Ausfiihrungsdauer betrdgt auch hier weniger als 0,1 Sekunden. Allerdings sind hier bei
grofieren zu lesenden Datenmengen ldngere Zeitspannen zu beobachten. Zum Vergleich
wurde eine Datei von 1 MByte gelesen, wobei fiir die Ausfithrung von READ 55 Sekunden
benotigt werden. Das Schliefsen der Datei, in die 1 KByte an Daten geschrieben wurde, dauert
etwa 4,3 Sekunden. Dabei entfallen 0,7 Sekunden auf das Erstellen des zugehorigen Journal-
Eintrags und o,5 Sekunden auf den Upload der gemachten Anderungen. Auch hier wurde
zum Vergleich eine Datei mit 1 MByte geschrieben, was die bendtigte Zeit fiir den Upload
auf 58 Sekunden verldngert. Der Hauptanteil der Ausfithrungsdauer von RELEASE nimmt
allerdings das direkte Ubernehmen der Anderung aus dem Journal in den Datenbereich ein,
das mit etwa 2,2 Sekunden zu Buche schligt.

Das Verschieben einer Datei nimmt mit 10,5 Sekunden die langste Zeit in Anspruch. Ein
Grund hierfiir ist, dass neben der Sperre der Quelldatei, die bei den meisten Operationen

6. Evaluation

erlangt werden muss, die Sperre der Zieldatei und die des zugehorigen Elternverzeichnis-
ses gehalten werden muss, um die Operation durchfiihren zu kénnen. Da auch hier pro
Sperre zirka 1 Sekunde benétigt wird, summiert sich der Anteil der Zeit zur Erlangung der
Sperren auf 3 Sekunden. Auch die Zeit zum Erstellen der Journal-Eintrdge verdoppelt sich
im Gegensatz zum Schliefien einer Datei, da dies hier fiir zwei Dateien geschehen muss.
Im vorliegenden Fall wurde die Datei in einen anderen Ordner verschoben, wobei keine
existierende Datei tiberschrieben wurde, sodass eine neue Datei samt Metadaten angelegt
werden musste. Hierfiir wurde etwa 1 Sekunde benotigt. Das Ausschreiben der Anderungen
verdoppelt sich fast im Gegensatz zum SchliefSen einer Datei auf 4 Sekunden, da auch hier
die Journal-Eintrédge zweier Dateien ausgeschrieben werden mussten.

Das Loschen einer Datei dauert zirka 4 Sekunden. Die einzelnen Bestandteile des Loschvor-
gangs weisen die gleiche Ausfithrungsdauern auf, die schon bei den anderen Operationen
beobachtet werden konnten. So wird fiir das Sperren der Datei 1 Sekunde benétigt, das
Erstellen des Journal-Eintrags dauert 0,7 Sekunden und auch hier nimmt das Ausschreiben
der Anderung in den Datenbereich den Hauptteil mit etwa 2 Sekunden ein.

Die Untersuchung der Ausfiihrungsdauern hat gezeigt, dass die RENAME-Operation mehr
als doppelt so viel Zeit in Anspruch nimmt als die anderen getesteten Operationen. Aufier-
dem ist zu beobachten, dass die einzelnen Komponenten in allen Dateioperationen stets die
gleiche Ausfithrungsdauer besitzen. So benétigt das Erwerben einer Sperre etwa 1 Sekun-
de, das Anlegen eines Journal-Eintrags 0,7 Sekunden und das Ausschreiben des Eintrags
etwa 2 Sekunden. Lediglich bei dem Upload von Anderungen und der Operation READ
konnten keine konstanten Zeiten festgestellt werden, da diese direkt von der Grofie der zu
iibertragenden Datei abhdngen.

6.4. Zuriickschreiben / Nicht-Zuriickschreiben von Anderungen

In einer weiteren Testreihe wurden die Auswirkungen auf die Ausfithrungsdauer verschie-
dener Dateioperationen untersucht, falls ein Client gemachte Anderungen aus dem Journal
nicht direkt in den Datenbereich ausschreibt, sondern sie dort beldsst. Diese Funktion ist
vor allem fiir mobile Clients gedacht, die dadurch weniger Daten tiber ihre verhaltnisméafig
langsame Internetverbindung tibertragen miissen. Fiir die Evaluation fiihrte ein Client ein
Programm aus, das ununterbrochen die gleiche Operationsreihenfolge durchfiihrte. Dabei
wurden zwei verschiedene Abldufe getestet, die in Abbildung 6.4 zu sehen sind. Beide
Abldufe Schreiben und Lesen die gleiche Datei zu Beginn und fragen anschliefiend die Datei-
attribute ab. Bei Ablauf 1 wird die Datei danach zudem in eine temporéire Datei umbenannt,
was in der ndchsten Operation durch eine weitere Umbenennung riickgangig gemacht wird.
Beide Abldufe wurden sowohl auf Client-PC 1 als auch auf Client-PC 2 ausgefiihrt, um somit
auch den Einfluss der Verbindung zum Server untersuchen zu kénnen.

Die gemessenen Ausfithrungsdauern bei sofortigem Zuriickschreiben sind in Tabelle 6.2
zu sehen. Es ist zu beobachten, dass die Ausfiihrungszeiten der einzelnen Operationen
konstant sind. Dies war zu erwarten, da bei jedem Durchlauf der gleiche Zustand der Datei
angetroffen wird und keine alten, unausgeschriebenen Journal-Eintrdge vorliegen. Zudem

84

6.4. Zurlckschreiben / Nicht-Zuriickschreiben von Anderungen

A A
Schreiben der ersten 10 Byte Schreiben der ersten 10 Byte

Y Y

Lesen der gesamten Datei Lesen der gesamten Datei
Y Y

Attribute der Datei lesen Attribute der Datei lesen
Y

Datei in temporare Datei umbenennen
A
Temporare Datei in Quelldatei umbenennen

(a) Ablauf 1 (b) Ablauf 2

Abbildung 6.4.: Programmabldufe zum Testen der Auswirkungen des Nicht-
Zuriickschreibens von Journal-Eintrdagen

Client-PC 1 Client-PC 2
ABLAUF 1 | ABLAUF 2 || ABLAUF 1 | ABLAUF 2
Schreiben 56s 56s <0,18 <0,18
Lesen 0,58 0,58 <0,18 <0,18s
Attribute lesen 0,28 0,28 <0,18 <0,18
Umbenennen 1 10,5 S - <0,18 -
Umbenennen 2 10,5 S - <0,18 -

Tabelle 6.2.: Ausfithrungsdauern bei direktem Zurtickschreiben

ist wie schon bei den Geschwindigkeitstests zu sehen, dass die Ausfiihrungsdauern im LAN
nur einen Bruchteil der Ausfithrungsdauern tiber das Internet benotigen.

Nachdem die Referenzwerte bei sofortigem Ausschreiben der Anderungen gemessen wur-
den, wurden die Abldufe nochmals ohne Ausschreiben der Journal-Eintrdge wiederholt. Das
Ergebnis der Messung des ersten Ablaufs ist in Abbildung 6.5 zu sehen, das des zweiten
Ablaufs in Abbildung 6.6. Die Ausfiihrungsdauern der Operationen Schreiben, Lesen und
Attribute lesen sind nun nicht mehr konstant, da jeweils zuerst die aktuelle Version der
Datei rekonstruiert werden muss, bevor die eigentliche Operation ausgefiihrt werden kann.
Bei Ablauf 1 ist ein exponentieller Anstieg der Ausfithrungsdauer zu beobachten, wogegen
bei Ablauf 2 der Anstieg in etwa linear verlduft. Die Ursache der leichten Schwankungen
der Ausfithrungszeiten bei Ablauf 2 ist unbekannt und wurde in dieser Evaluation nicht
weiter untersucht. Die Ausfiihrungsdauern steigen ohne Umbenennungsoperationen pro-

6. Evaluation

10000

1000

—&— (1) Schreiben
—&—(1) Lesen

(1) Attribute lesen
—&— (1) Umbenennen 1
——(1) Umbenennen 2
---#---(2) Schreiben
---49----(2) Lesen

(2) Attribute lesen
---4A----(2) Umbenennen 1
---%----(2) Umbenennen 2

100

Zeit (s)

10

Durchlauf

Abbildung 6.5.: Ablauf 1 bei Nicht-Zuriickschreiben der Anderungen (ausfithrender Client
in Klammern)

portional zu der Anzahl der Journal-Eintrdge, die fiir die betreffende Datei vorliegen. Im
Vergleich zu den gemessenen Ausfiithrungszeiten bei sofortigem Zuriickschreiben fillt auf,
dass die Umbenennungsoperationen schneller ablaufen. Der Grund dafiir ist das fehlende
Ausschreiben, wodurch etwa 4 Sekunden gespart werden konnen. Die Ausfiihrungszei-
ten von den Operationen Lesen, Schreiben und Attribute lesen steigen dagegen deutlich
bei Nicht-Zuriickschreiben der Journal-Eintrage. Lediglich bei der ersten Ausfiihrung des
Schreibens ist eine kiirzere Laufzeit zu beobachten, da hier noch keine unausgeschriebenen
Eintrdge vorliegen und auch die Zeit fiir das Zurtickschreiben wegfallt.

Man sieht, dass die Rekonstruktion der Datei einen wesentlich hoheren Aufwand erfordert,
wenn unausgeschriebene Umbenennungsoperationen vorliegen. Der Grund hierfiir ist, dass
bei einem neuen Durchlauf immer alle fritheren Dateiversionen rekonstruiert werden miissen,
da die Rekonstruktion immer bei der dltesten, nicht ausgeschriebenen Version beginnt. Der
gewdhlte Ablauf ist ein Extrembeispiel, da die selben Dateien immer wieder ineinander
umbenannt werden, wodurch die einzelnen Dateiversionen mehrfach rekonstruiert werden
miissen, um die aktuelle Version zu erhalten. Allerdings ist gut zu erkennen, dass mehrere
unausgeschriebene Journal-Eintrdge einer Umbenennung oder Verschiebung einer Datei den
Rekonstruktionsaufwand erheblich erhéhen.

Das Verhalten der Ausfiihrungsdauern ist bei beiden Clients das selbe, wobei die Zeiten auf
Client 1, der tiber die langsamere Internetverbindung verfiigt, etwa um den Faktor 100 bis 200
grofer sind. Bei Ablauf 2 sind die gemessenen Zeiten fiir Client-PC 2 stets unter 0,1 Sekunden,
auch bei einem weiteren Test, der 50 Durchldufe umfasste. Generell ldsst sich sagen, dass
ohne Umbenennungsoperationen die Ausfiithrungsdauern der Operationen proportional

86

6.5. Haufigkeit von Deadlocks

—&— (1) Schreiben
—&— (1) Lesen
4 (1) Attribute lesen
---4----(2) Schreiben
---#----(2) Lesen
(2) Attribute lesen

Zeit (s)

[R L e O O R ¥ St ¥ St ¥ e ¥ e ¥ R ¥ s ¥ Rt ¥ S ¥ S ¥ St ¥ St ¥ et ¥ |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

Durchlauf

Abbildung 6.6.: Ablauf 2 bei Nicht-Zuriickschreiben der Anderungen (ausfithrender Client
in Klammern)

zu den unausgeschriebenen Journal-Eintrdgen steigen. Nur bei der Rekonstruktion von
Umbenennungen sind deutlich ldngere Ausfiithrungsdauern zu beobachten.

6.5. Haufigkeit von Deadlocks

Neben der Geschwindigkeit von Dateioperationen auf CloudFS wurde die Héaufigkeit eines
Deadlocks, der beim gleichzeitig ausgefiihrten Versuch eine Datei oder ein Verzeichnis zu
sperren auftreten kann, untersucht. Dazu wurden zwei CloudFS-Prozesse auf Client-PC 1,
was zwei aktiven CloudFS-Clients auf diesem PC entspricht, und ein Prozess auf Client-PC 2
ausgefiihrt. Somit nutzten drei Clients parallel das gleiche Dateisystem. Anschlieffend wurde
auf allen Clients ein Programm ausgefiihrt, das die selbe Datei 6ffnet, 10 Bytes in die Datei
schreibt und danach schliefst. Diesen Vorgang wiederholte das Programm ununterbrochen.
Es wurde dann beobachtet, wie oft es zum Deadlock der betroffenen Datei kam. Selbst
nach einer Stunde Laufzeit war kein Deadlock zu beobachten. Es trat oft der Fall ein, dass
die Sperre von einem Client gehalten wurde und somit die beiden anderen die Datei nicht
erfolgreich 6ffnen konnten. Auch starteten die Clients immer wieder die Prozedur zur
Deadlock-Erkennung, jedoch war das Ergebnis immer negativ und es lag kein Deadlock
VOr.

Die Verbindungen der Clients zum Server waren stabil und wiesen kaum Schwankungen
in den Paketlaufzeiten auf. Es besteht die Moglichkeit, dass eventuell Deadlocks auftreten

6. Evaluation

konnten, wenn die Paketlaufzeiten grofieren Schwankungen unterliegen und somit die
Reihenfolge der eintreffenden Nachrichten der einzelnen Clients am Server untereinander
verandert wird. Dieser Fall wédre zum Beispiel bei mobilen Clients denkbar, die iiber eine
eher instabile Internetverbindung mit schwankender Verbindungsqualitit verfiigen. Diese
Konstellation wurde jedoch im Rahmen dieser Evaluation nicht untersucht.

6.6. Fazit

Die Evaluation hat gezeigt, dass CloudFS im Gegensatz zu NFS liangere Ausfithrungszeiten
der einzelnen Dateisystemoperationen aufweist. Dies war zu erwarten, da CloudFS auf
NFS aufsetzt und zusétzliche Funktionen wie das Sperrverfahren oder ein Journaling im-
plementiert. Aufiferdem war zu beobachten, dass die Ausfiithrungsdauern sehr stark von
der Client-Anbindung zum Server abhdngen. Die gemessenen Zeiten des Clients mit In-
ternetzugang waren etwa 100 bis 200 Mal langsamer als die des Clients, der iiber eine
LAN-Verbindung verfiigt. Ebenfalls grofle Auswirkungen hat das Nicht-Zurtickschreiben
von Journal-Eintragen. Die Steigerung der Ausfiihrungszeiten ist proportional zu der An-
zahl an Journal-Eintrdgen, sofern nur Schreibeintrdge vorliegen. Umbenennungen dagegen
konnen wie im getesteten Fall sogar zu exponentiellem Wachstum der Zeiten fiihren. Die Un-
tersuchung auf die Haufigkeit von Deadlocks ergab, dass selbst drei Clients ununterbrochen
versuchen konnen eine Datei zu sperren, ohne dass ein Deadlock auftritt.

88

7. Zusammenfassung und Ausblick

In dieser Arbeit wurde das Dateisystem CloudFS entwickelt. Im Gegensatz zu Cluster-
und Netzwerk-Dateisystemen setzt CloudFS nicht einen zentralen Kontrollprozess oder
direkte Kommunikation zwischen den Clients voraus. Die Koordination der Zugriffe auf
die gespeicherten Daten erfolgt ausschliefilich iiber indirekte Kommunikation tiber die
verwendeten Online-Speicher. Der Nutzer kann somit parallel mit mehreren Gerdten auf bei
Cloud-Diensten zur Datenspeicherung abgelegte Daten zugreifen, auch wenn kein zentraler
Kontrollprozess auf einem Server ausgefiihrt werden kann.

Zu Beginn wurden die Grundlagen von Dateisystemen beschrieben. Dabei wurden Datei-
systeme fiir lokale Speicher, Netzwerk- und Cluster-Dateisysteme betrachtet. Das FUSE-
Framework wurde ebenfalls vorgestellt, auf dessen Basis die Implementierung eines Linux-
Teibers von CloudFS realisiert wurde.

Nachdem das Systemmodell beschrieben wurde, auf dem CloudFS basiert, wurde der
Entwurf des Dateisystems vorgestellt. Hier wurde im Speziellen der Entwurf der Cluster-
Schicht dargestellt, die fiir die Synchronisation der Zugriffe auf die gespeicherten Daten
sowie die Behandlung von Inkonsistenzen bei Verbindungsabbriichen zustandig ist. Ebenfalls
wurde das verwendete Sperrverfahren sowie die Verwendung eines Journals beschrieben. Es
wurde auf Details des Dateisystems eingegangen, wobei ausschlieflich dateibasierte Speicher
betrachtet wurden.

Mit Hilfe des FUSE-Frameworks wurde anschliefiend fiir das entworfene Dateisystem ein
Linux-Treiber implementiert. Es wurden die verwendeten Komponenten beschrieben sowie
auf Details und Probleme bei der Implementierung eingegangen. Im Speziellen wurden
die Implementierungen der von CloudFS zur Verfiigung gestellten Dateisystemoperationen
beschrieben.

Um verschiedene Leistungsparameter von CloudFS zu untersuchen, wurde eine Evaluation
durchgefiihrt. Dabei wurde die Ausfiihrungsgeschwindigkeit verschiedener Dateisystem-
operationen untersucht und ein Profiling der am héaufigsten verwendeten Operationen
erstellt. Dabei zeigte sich, dass zum einen CloudFS gegeniiber den zugrunde liegenden
Online-Speichern deutlich lingere Ausfithrungszeiten aufweist. AufSerdem war der Einfluss
der verwendeten Verbindung des Clients zum Server signifikant. Des Weiteren wurden
die Auswirkungen von unausgeschriebenen Journal-Eintrdgen untersucht. Es stellte sich
heraus, dass abgesehen von RENAME-Operationen die Ausfiihrungszeiten proportional zu
der Anzahl der Journal-Eintrage steigen. Die Haufigkeit von Deadlocks wurde ebenfalls
untersucht. Im verwendeten Versuchsaufbau waren keine Deadlocks zu beobachten, wenn
drei Clients ununterbrochen die selbe Datei zu sperren versuchten.

7. Zusammenfassung und Ausblick

Das entwickelte Dateisystem kann durch verschiedene Mafinahmen erweitert und opti-
miert werden. Der vorgestellte Entwurf von CloudFS beschriankte sich auf dateibasierte
Online-Speicher sowie im Speziellen auf den Entwurf der Cluster-Schicht. Um blockbasierte
Speicher nutzen zu kénnen, miisste der Entwurf fiir dateibasierte Speicher angepasst werden.
Auflerdem sind in der vorgestellten Gesamtarchitektur weitere Komponenten vorhanden,
die in dieser Arbeit nicht berticksichtigt wurden. Um die Funktionalitdt des entwickelten
Treibers von CloudFS zu erweitern, miissten diese Komponenten ebenfalls implementiert
werden.

Dateisystemoperationen miissen vor ihrer eigentlichen Ausfiihrung eine Semaphore reservie-
ren. Damit wird die parallele Ausfiihrung der Operationen verhindert, um Inkonsistenzen
beim Zugriff auf die gemeinsam genutzte Anderungsliste zu vermeiden. Eine mogliche
Losung wére, die Nutzung der Semaphore auf das Lesen und Schreiben von Eintrédgen
der Anderungsliste zu begrenzen. Somit kénnten andere Arbeitsschritte der Operationen
dennoch parallel ausgefiihrt werden, was gerade im Fall des evaluierten Szenarios bei
Verwendung eines Dateimanagers deutliche Leistungssteigerungen nach sich zieht. Eine
weitere Moglichkeit wére, das Schreiben der Eintrdge in einen Thread auszulagern, um volle
Parallelitdat der Operationen zu erreichen.

Aus der Evaluation lassen sich Optimierungsmoglichkeiten des entwickelten Systems ab-
leiten. Das Profiling der hdufigsten Operationen hat gezeigt, dass fiir das Setzen einer
Objektsperre etwa 1 Sekunde benétigt wird. Wenn mehrere Sperren zur Ausfithrung der
Operation benotigt werden, werden diese sequentiell gesetzt. Eine mogliche Optimierung
widre, das Setzen von mehreren Sperren zu parallelisieren. Zum Beispiel beim Verschieben
eines Ordners mit vielen enthaltenen Dateien und Verzeichnissen, bei dem fiir jedes Ob-
jekt im Unterbaum des Ordners eine Sperre benottigt wird, wiirde diese Verdnderung die
Ausfiihrungszeit deutlich verkiirzen.

Zwischengespeicherte Anderungsdateien eines Schreibvorgangs im Journal enthalten im
Dateinamen den Pfad zur betreffenden Datei im Datenbereich. Die ,,/“-Zeichen im Dateipfad
wurden dabei durch ,#” ersetzt, um einen giiltigen Dateinamen zu erhalten. Es wurde
allerdings kein Escaping implementiert, sodass Dateien, die von CloudFS gelesen werden
sollen, kein ,#” enthalten diirfen. Die Implementierung von Escaping wiirde diesen Umstand
beseitigen.

Das CloudFS zugrunde liegende System sieht ausschliefilich indirekte Kommunikation der
Clients iiber den Online-Speicher vor. Wenn in einem gegebenem Fall in jedem LAN mit NAT
ein Client existiert, der durch Konfiguration direkt mit anderen Clients aufierhalb des LAN
kommunizieren kann, ist eine Optimierung des Sperrverfahrens moglich. Dann ist es nicht
mehr notig, die Koordination der Zugriffe {iber den Online-Speicher abzuwickeln. Die Clients
mit direkter Kommunikationsmoglichkeit konnten ein Peer-to-Peer-Netzwerk aufbauen und
ein verteiltes Verfahren zum Setzen von Objektsperren verwenden. Die anderen Clients
im LAN konnten zum Sperren von Objekten ihre Anfragen tiber den Client mit direkter
Kommunikationsmoglichkeit weiterleiten und somit alle Clients des Systems erreichen.
Mit dieser Erweiterung sind schnellere Ausfiihrungszeiten der Dateisystemoperationen zu
erwarten.

90

Eine andere Moglichkeit, das Sperren von Dateien und Verzeichnissen zu optimieren, bieten
die zugrunde liegenden Speicher. Wenn ein Speicherprotokoll zum FEinsatz kommt, das selbst
ein sicheres Sperrverfahren zur Verfiigung stellt, kann auf das entwickelte Verfahren von
CloudFS verzichtet werden. Dadurch wiirde der Overhead des Sperrverfahrens von CloudFS
wegfallen und die Dateisystemoperationen wiirden beschleunigt.

91

A. Beispiel einer Konfigurationsdatei

#Root directory where online storage is mounted and all data is stored
[rootdir]
/home/testuser/OnlineStorage

#local directory that is used for cached and temporary data
[cachedir]
/home/testuser/Cache

[N S O

#instantly write journal data to content section after creating journal entry
10 #0 means deferred writeback, 1 means instant writeback

1 [writeback_to_content_section]

12 1

o

14 #Maximum packet life time of a packet from / to the server

15 #WARNING: Setting this value too low can cause file inconsistencies!
16 #Usually maximum packet lifetime is 2 mins (TCP)

17 [maximum_packet_lifetime]

18 120

19

20 #Maximum clock skew of all client system clocks

21 [maximum_clock_skew]

22 20

23

24 #After a deadlock occured, delay each client for a different amount of time before
25 #trying to clear the deadlock, so that the chance of a new deadlock is minimized
26 [maximum_backoff_time]

27 10

28

20 #ID of client that is using this config file

30 [client_id]

31 6804515347366062

32

33 #User—given name for this client

3¢ [client_name]

35 Home Client

36

37 #endofconfig

Literaturverzeichnis

[AEH75]

[Bau]

[ext]

[FUS]

[gfs]

[GMa]

[Gou]

[Han]

[HRo1]

[Lus]
[Mica]

[Micb]

[nau]

[Now89]

[Sil]

E. A. Akkoyunlu, K. Ekanadham, R. V. Huber. Some constraints and tradeoffs in
the design of network communications. 9(5):67-74, 1975. (Zitiert auf Seite 30)

W. Baumann. davfs2 Filesystem. http://savannah.nongnu.org/projects/
davfs2/. (Zitiert auf Seite 19)

Ext3 Filesystem. www.kernel.org/doc/Documentation/filesystems/ext3.txt.
(Zitiert auf Seite 12)

Filesystem in Userspace FUSE. http://fuse.sourceforge.net. (Zitiert auf den
Seiten 7 und 18)

Global File System GFS. http://sources.redhat.com/cluster/gfs/. (Zitiert auf
Seite 15)

GMail Filesystem over FUSE. http://sr71.net/projects/gmailfs/. (Zitiert auf
Seite 18)

V. Gough. EncFS Encrypted Filesystem. www.arg0.net/encfs. (Zitiert auf den
Seiten 16 und 18)

T. D. Hanson. ut hash, a hash table for C. http://uthash.sourceforge.net/.
(Zitiert auf Seite 59)

T. Hérder, E. Rahm. Datenbanksysteme: Konzepte und Techniken der Implementierung,
2. Auflage. Springer, 2001. (Zitiert auf Seite 17)

Lustre Filesystem. www.lustre.org. (Zitiert auf Seite 15)

Microsoft Corp. BitLocker Drive Encryption. http://windows.microsoft.com/
en-US/windows7/products/features/bitlocker. (Zitiert auf Seite 15)

Microsoft Corp. File Allocation Table (FAT) Filesystem. www.microsoft.com/
whdc/system/platform/firmware/fatgen.mspx. (Zitiert auf Seite 12)

Nautilus File Manager. http://live.gnome.org/Nautilus. (Zitiert auf Seite 80o)

B. Nowicki. NFS: Network File System Protocol specification. RFC 1094 (In-
formational), 1989. URL http://wuw.ietf.org/rfc/rfc1094.txt. (Zitiert auf
Seite 14)

Silicon Graphics International Corp. CXFS Filesystem. http://www.sgi.com/
products/storage/software/cxfs.html. (Zitiert auf Seite 15)

95

Literaturverzeichnis

[SMS*o4] J. Satran, K. Meth, C. Sapuntzakis, M. Chadalapaka, E. Zeidner. Internet Small
Computer Systems Interface (iSCSI). RFC 3720 (Proposed Standard), 2004. URL
http://www.ietf.org/rfc/rfc3720.txt. Updated by RFCs 3980, 4850, 5048.
(Zitiert auf Seite 14)

[Tec] Technical Committee T10. Small Computer Systems Interface (SCSI). www.t10.org.
(Zitiert auf Seite 14)

[tru] TrueCrypt File Encryption. www.truecrypt.org. (Zitiert auf Seite 16)

[web] Web-based Distributed Authoring and Versioning WebDAV. www.webdav.org/
specs/. (Zitiert auf Seite 14)

Alle URLs wurden zuletzt am 13.04.2012 gepriift.

Erkldrung

Hiermit versichere ich, diese Arbeit selbstdndig
verfasst und nur die angegebenen Quellen
benutzt zu haben.

(Thorsten Frosch)

