
Institut für Parallele und Verteilte Systeme

Abteilung Anwendungssoftware

Universität Stuttgart
Universitätsstraße 38

D–70569 Stuttgart

Diplomarbeit Nr. 3235

Abstraktionsunterstützung für die
Definition des Datenmanagements

in Simulationsworkflows

Stavros Aristidou

Studiengang: Informatik

Prüfer: PD. Dr. rer. nat. Holger Schwarz

Betreuer: Dipl.-Inf. Peter Reimann

begonnen am: 18. August 20011

beendet am: 17. Februar 2012

CR-Klassifikation: D.2.11, H.2.5, H.4.1, I.6.7

Inhaltsverzeichnis

1 Einleitung 7
1.1 Motivation und Aufgabe dieser Arbeit . 7

1.2 Gliederung . 7

2 Grundlagen 9
2.1 Service Oriented Architecture . 9

2.1.1 Webservices . 10

2.1.2 Web Service Definition Language . 11

2.2 Workflowtechnologie . 11

2.2.1 WS-BPEL . 14

2.2.2 Wissenschaftliche Workflows und Simulationen 15

Simulationsworkflows . 16

Finite Element Methode . 17

2.2.3 Extract Transfer Load Workflows . 19

2.3 Wissenschaftliche Workflowmanagementsysteme und Simulationsrahmenwerke 20

3 Das SIMPL-Rahmenwerk 27
3.1 Architektur und Funktionsweise . 27

3.2 Modellierung des Datenmanagements in Simulationsworkflows 29

3.3 Metadaten zum Datenzugriff in heterogenen Umgebungen 32

3.4 Zugriff auf Datenressourcen mittels SIMPL . 33

4 Simulationsworkflows 35
4.1 Chemische Reaktion mit Hilfe der Verwendung eines Katalysators 35

4.2 Knochenmodellierung mit Pandas . 37

4.3 Pandas-Matlab-Kopplung . 38

4.4 Modellreduktion . 41

5 Datenmanagementpatterns 45
5.1 Datenmanagementpatterns und Pattern-Hierarchie 45

5.2 ETL Patterns/Operationen . 48

5.3 Data Transfer and Transformation Pattern . 52

5.3.1 Container-to-Container Pattern . 54

5.3.2 Data Split Pattern . 54

5.3.3 Data Merge Pattern . 57

5.4 Data Iteration Pattern . 58

3

6 Transformation der Datenmanagementpatterns auf ausführbare Workflow-
Fragmente 63
6.1 Abbildungsmechanismus und Pattern-Transformer 63

6.2 Beispiele zur Pattern-Transformation . 67

6.2.1 Beispiele anhand der Pandas Preprocessing-Phase 67

6.2.2 Beispiel anhand der Pandas Postprocessing-Phase 76

6.3 Definition der Kontrollstrategie . 82

6.3.1 Kontrollstrategie und Algorithmen zur Pattern-Transformation 83

6.3.2 Anwendungsbeispiele für die beiden Algorithmen 84

6.4 Definition der Kontrollstrategie anhand von konkreten Beispielen 85

6.5 Architektur des Abbildungsmechanismus . 86

7 Zusammenfassung und Ausblick 91

Literaturverzeichnis 93

4

Abbildungsverzeichnis

2.1 Das SOAP Dreieck 1 . 10

2.2 Die drei Workflow-Dimensionen [LR00] . 12

2.3 Die Architektur des WfMSs [LR00] . 13

2.4 Beispiel einer Simulation anhand eines Autounfalls [Mü10] 16

2.5 Beispiel eines FEM-Modells, das über den Einsatz der FEM-Methhode berech-
net wurde2 . 19

2.6 Architektur eines scientific workflow management systems[KSK+
11] 21

2.7 Die Modellierungsumgebung von Simtech [KSK+
11] 22

2.8 Die Kepler-Benutzeroberfläche [Mü10] . 23

3.1 Integration des SIMPL-Rahmenwerks in die Architektur eines SWfMSs [RRS+ny] 28

3.2 Das Join-Pattern und seine Transformation auf ausführbare Workflow-
Fragmente[RRS+ny] . 31

3.3 Klassifizierung der Metadaten zur Vereinheitlichung heterogener Datenzu-
griffsmechanismen [RRS+ny] . 33

3.4 Interaktion der Service Bus Komponenten[RRS+ny] 34

4.1 Simulationsworkflow einer chemischen-Reaktion mit Hilfe der Verwendung
eines Katalysators [Mü10] . 36

4.2 Der Pandas-Simulationsworkflow [RRS+ny] . 37

4.3 Beispielhafte Verteilung der Gauss-Punkte über die Gitter-Elemente 40

4.4 Der Prozess zur Modellreduktion [Rem11] . 41

5.1 Die Pattern-Hierarchie vgl.[RM11] . 46

5.2 Das Data Transfer and Transformation Pattern 53

5.3 Das Container-to-Container Pattern . 55

5.4 Das Data Split Pattern . 56

5.5 Das Data Merge Pattern . 57

5.6 Das Data Iteration Pattern . 59

6.1 Das Konzept zur Transformation der Patterns auf ausführbare Workflow-
Fragmente vgl.[RM11] . 64

6.2 Die Pattern-Transformation mittels des Pattern-Transformers [Rei11] 65

6.3 Workflow-Fragment zur Pandas-preprocessing-Phase 68

6.4 Parametrisierung der einzelnen Datenmanagementpatterns 72

6.5 Ersetzen der festgelegten Platzhalter durch Variablen. Dadurch wird die
TransferData-Aktivität ausführbar . 74

5

6.6 Workflow zur Pandas-postprocessing-Phase . 76

6.7 Parametrisierung der einzelnen Datenmanagementpatterns in der
Postprocessing-Phase . 78

6.8 Ersetzen der Platzhalter durch die entsprechende Variablen. Dadurch wird
die IssueCommand-Aktivität ausführbar . 79

6.9 Metadaten und Metadaten-Objekte im Resource Management zur Datenfor-
matkonvertierung . 80

6.10 Architektur des Abbildungsmechanismus . 87

Tabellenverzeichnis

5.1 Zuordnung der Simulationszeitschritten in Zeitintervallen 61

6.1 Angabe der Variablentypen der Parameterwerte der jeweiligen Pattern-Parameter 73

6

1 Einleitung

Seit langem wurden Workflows als ein Mittel zur Unterstützung der Geschäftsprozesse
in Unternehmen verwendet [LR00]. Seit kurzem werden Worklows auch im Bereich der
wissenschaftlichen Simulationen eingesetzt.[TDG07] Simulationsanwendungen beinhalten
viele komplizierte Berechnungen und Datenverwaltungsaufgaben. Der Zugriff, die Bereitstel-
lung und die Generierung großer Datenmengen in heterogenen und verteilten Umgebungen
stellen eine große Herausforderung für die Zukunft dar [Gil07] [EC08]. Aufgrund dieser
Problematiken wäre die Entwicklung einer konsolidierten und integrierten Datenmanage-
mentabstraktion für die Wissenschaftler besonders sinnvoll und hilfreich [RRS+ny]. Das
SIMPL-Rahmenwerk bietet eine solche generische und erweiterbare Datenmanagment-und
Datenbereitstellungsabstraktion für Simulationsworkflows an. Dieses Rahmenwerk ermög-
licht es, über eine Erweiterung der Workflow Sprache WS-BPEL in Datenmanagementak-
tivitäten, direkt von einem Workflow aus, auf externen Datenquellen direkt und nahtlos
zuzugreifen. Diese Arbeit befasst sich mit dem Aspekt der Definition des Datenmanagements
in Simulationsworkflows. Ziel ist es die Definition des Datenmanagements für bestimmte
Simulationsanwendungen zu vereinfachen.

1.1 Motivation und Aufgabe dieser Arbeit

Im Rahmen dieser Arbeit werden zusätzliche Datenmenagementpatterns, die den Wissen-
schaftler als Templates für ausführbare Workflow-Fragmente zur Verfügung stehen sollen
entwickelt. Dadurch wird die Definition des Datenmanagements für weitere Simulationsan-
wendungen vereinfacht. Aus konkreten Anwendungsszenarien sollen zunächst geeignete Da-
tenmanagementpatterns herausgearbeitet und identifiziert werden. Die identifizierten Daten-
mangementpattens sollen definiert und anschließend auf ausführbare Workflow-Fragmente,
etwa auf Datenmanagmentaktivitäten oder Service Aufrufe, transformiert werden. Für die-
se Transformationen, soll ein Rahmenwerk entstehen, welches auf Abbildungsregeln und
Metadaten über die während der Ausführung eines Simulationsworkflows involvierten
Datenquellen basiert.

1.2 Gliederung

Die Arbeit ist in folgender Weise gegliedert:

Kapitel 2-Grundlagen: In diesem Kapitel werden grundlegenden Begriffe, die für

7

1 Einleitung

das Verständnis dieser Arbeit benötigt werden, erläutert. Darüber hinaus werden ver-
schiedenen Simulationsworkflowmanagementsysteme und Simulationsrahmenwerke kurz
vorgestellt.

Kapitel 3-Das SIMPL Rahmenwerk: Stellt das Rahmenwerk SIMPL vor und erklärt
dessen Architektur und Funktionsweise.

Kapitel 4-Simulationsworkflows: Im Rahmen dieses Kapitels werden die verwende-
ten Anwendungsszenarien, aus denen die Datenmanagementpatterns identifiziert werden,
vorgestellt.

Kapitel 5-Datenmanagementpatterns: Die identifizierte Datenmanagementpattern
werden in diesem Kapitel formalisiert und erläutert.

Kapitel 6-Abbildung der Datenmanagementpatterns auf ausführbare Workflow-
Fragmente: Stellt den Ansatz für die Transformation der Datenmanagementpatterns auf
ausführbaren Workflow-Fragmente vor.

Kapitel 7-Zusammenfassung und Ausblick: Dieses Kapitel fasst diese Arbeit zusammen.

8

2 Grundlagen

In diesem Kapitel werden einige Begriffe erläutert, die zum Verständnis dieser Arbeit
benötigt werden. Als erstes wird über das Konzept der Dienste diskutiert und der Begriff
der Webservices als eine bekannte Realisierung dieses Konzepts erläutert. Danach werden
wir einen Blick auf die Welt der Workflowtechnologie werfen und die Workflow-Sprache
WS-BPEL kurz beschreiben. Weiterhin werden wir über die verschiedene Workflow-Arten
diskutieren und einige Simulationsworkflowmanagementsysteme und -Rahmenwerke kurz
vorstellen.

2.1 Service Oriented Architecture

Das Kapitel 2.1 baisert auf [SCF+
05]. Andere Quellen werden explizit angegeben. Die Service

Oriented Architecture (SOA) ist ein Softwarearchitekturmuster, die aus kleinen, selbständigen
und ausführbaren Programme besteht [SCF+

05]. Die Zusammensetzung dieser Programme,
die Services oder Dienste heißen, soll eine bestimmte Funktionalität realisieren. Hauptziel
ist es, existierende Software miteinander kommunizieren zu lassen, um die vom Benutzer
gewünschten Funktionalität zur Verfügung zu stellen. Heutzutage ist die Anwendung
der SOA Technologie, sowohl in dem wirtschaftlichen als auch in dem wissenschaftlichen
Bereich sehr bedeutend [TDG07]. Einfache Beispiele sind die Buchung einer Reise oder die
Durchführung eines bestimmten wissenschaftlichen Experiments. Im Folgenden werden die
wesentliche Merkmale der SOA Technologie aufgelistet:

• Lose Kopplung der Dienste

• Service\Dienstleistungs-Vertrag

• Abstraktion

• Wiederverwenderbarkeit der Dienste

• Zustandslosigkeit der Dienste

Im Rahmen der SOA gibt es drei Akteure: der Dienstanbieter, der Dienstnutzer und das Service-
Verzeichnis. Der Dienstanbieter bietet die Dienste an, indem er diese durch eine abstrakte Art
und Weise beschreibt und im Service-Verzeichnis veröffentlicht. Der Servicenutzer kann dort
nach einem angebotenen Dienst, die eine bestimmte Funktionalität realisiert suchen und
bekommt die für ihn passende Dienstbeschreibungen vom Service-Verzeichnis zurück. Der
Dienstnutzer kann die von dem Service-Verzeichnis gelieferten Servicebeschreibung nutzen.
Das Zusammenspiel der drei Akteuren ist auf Abbildung 2.1 dargestellt.

9

2 Grundlagen

Abbildung 2.1: Das SOAP Dreieck 1

2.1.1 Webservices

Zur Orchestrierung von Diensten werden Webservices eingesetzt. Unter einem Webservice
versteht man ëine Softwareanwendung, die mit einem URI eindeutig identifizierbar ist und eine
Schnittstelle hat, die als XML Artefakt definiert, beschrieben und gefunden werden kann. Diese
Softwareanwendung unterstützt die Interaktion mit anderen Webservices innerhalb eines Netzwerkes
unter der Verwendung XML-basierten Nachrichten durch den Austausch über Internet-basierte
Protokolle" 2. Einer Webservice definiert eine Menge von Operationen, die vom Benutzer
aufrufbar sind. Die Webservices können entweder synchron oder asynchron aufgerufen
werden. Bei einem synchronen Aufruf sendet der Klient seine Anfrage bzw. seine Nachricht
an den Empfänger und bekommt sofort eine Antwort bzw. eine Nachricht zurück. Bei
einem asynchronen Aufruf schickt der Klient seine Anfrage und wartet auf eine Antwort
des Empfängers. Zur Realisierung dieser Klient-Server basierte Kommunikation, sind zwei
Standards unverzichtbar. Das Simple Object Access Protokoll und die XML basierte Sprache
WSDL.

Zur Standardisierung des Austausches von Nachrichten wurde das Simple Objekt
Access Protokoll (SOAP) eingeführt [W3C07]. Über dieses XML-basiertes Protokoll
werden Nachrichten zwischen Webservices innerhalb eines Netzwerkes ausgetauscht. Eine
SOAP-Nachricht besteht aus einem Umschlag, der den Kopf und den Körper der Nachricht
enthält [Wag11]. Der Kopf kann zusätzliche Transportinformationen beinhalten wie z.B
Authorisierungs- und Verschlüsselungsinformationen. Im Körper werden die aufzurufende
Methode des Empfängers sowie deren Eingabeparameter spezifiziert. Nachdem die Methode
des Empfängers aufgerufen wurde wird das Ergebnis über eine SOAP-Nachricht an dem
Sender zurückgeschickt, wobei diesmal im Körper der SOAP-Nachrichten die Ergebnisse
gespeichert sind. Welche aufzurufende Methoden dem Sender zur Verfügung stehen, über

1http://bgoll.de/wp-content/uploads/2010/05/soa_dreieck.png
2http://www.w3.org/TR/2004/NOTE-wsa-reqs-20040211

10

2.2 Workflowtechnologie

welche tatsächliche Internet Adresse und über welches Transportprotokoll der Empfänger
zu erreichen ist wird durch die Web Service Definition Language (WSDL) definiert.

2.1.2 Web Service Definition Language

In [SCF+
05] wird die Web Service Definition Language (WSDL) als ein durchgesetztes und

akzeptiertes Standard für eine SOA verstanden. WSDL ist eine XML basierte Sprache, die die
Funktionalität eines Webservice spezifiziert, die Zugriffsmöglichkeiten auf einen Webservice
beschreibt und die Informationen über den Ort, auf den sich die Web Service befindet,
enthält. Eine WSDL-Datei besteht aus sieben Elementen:

Schema: Aufgrund der Tatsache, dass WSDL eine XML basierte Sprache ist werden
zum Austausch von Nachrichten XML-Elemente verwendet. Dieses Schema kann innerhalb
eines <types> Elements definiert werden. Es besteht auch die Möglichkeit, das Schema aus
externen XSD-Dateien in die WSDL Datei zu importieren.

Message: Der Inhalt einer Nachricht wird über <message> Elemente definiert. Hierbei
wird auf das zuvor spezifizierte Schema referenziert.

Port Typ: In einem <port type> werden die in einer Message definierten Operatio-
nen des Webservice, die aus einer Eingangs- und Ausgangsnachricht bestehen, beschrieben.

Binding: Über das <binding> wird das Transfer-Protokoll, auf dessen Basis die
Nachrichten ausgetauscht werden beschrieben.

Port: Ein <Port> spezifiziert die tatsächliche URL (Endpoint), der ausgetauschten
Nachrichten.

Service: Das <service> Element bündelt alle Ports. Damit können Operationen ei-
nes Services auf mehreren Endpunkten verstreut werden.

Die Orcherstrierung und Ausführung der Webservices wird von der Workflow-Technologie
unterstützt. Diese Thematik wird der Gegenstand des nächsten Kapitels sein.

2.2 Workflowtechnologie

In den letzten Jahren haben sich Workflow Produkte in der Industrie als wichtiger Bestandteil
der IT-Infrastruktur etabliert [LR00]. Durch die Verwendung von Workflows möchte man
bestimmte Arbeitsabläufe automatisieren. Ein Arbeitsablauf besteht aus einzelnen Schritten.
Diese einzelne Schritte werden als Aktivitäten bezeichnet. Ein Beispiel eines solchen
Arbeitsablaufs ist die Auftragsabwicklung in einem Unternehmen. Die rechnergestützte
Orchestrierung und Ausführung solcher Arbeitsabläufe wird in drei Dimensionen gespaltet:

11

2 Grundlagen

Wie: In dieser Dimension wird festgelegt, welche Aktivitäten und mit welcher logi-
schen Reihenfolge ausgeführt werden sollen.

Wer: In dieser Dimension wird bestimmt, welche Person oder welches Programm
aus der Organisation eines Unternehmens in der Lage ist, eine konkrete Aktivität
auszuführen. Zur Ermittlung des geeigneten Benutzers oder Programmes kann für jede
Aktivität eine Anfrage angegeben werden.

Womit: In dieser Dimension werden die Mittel aus der IT-Infrastruktur, die für die
Ausführung der Aktivitäten verantwortlich sind, beschrieben.

Auf Abbildung 2.2 werden die drei Workflow-Dimensionen als Würfel dargestellt.
In diesem dreidimensionalen Workflowraum wird die Ausführung eines Workflows als eine
Folge von Punkten interpretiert. Der Treffpunkt der drei Dimensionen stellt die Ausführung
einer einzelnen Aktivität von einer Person oder Programm über ein bestimmtes Mittel dar.

Abbildung 2.2: Die drei Workflow-Dimensionen [LR00]

Ein Workflow Management System (WfMS) beinhaltet Anwendungen, welche der Defi-
nition, der Verwaltung, der Ausführung und der Überwachung der Workflows dienen
[Coa95]. Die Architektur eines WfMS’s besteht hauptsächlich aus drei Komponenten [LR00].
Abbildung 2.3 zeigt die Architektur eines WfMS’s.

12

2.2 Workflowtechnologie

Abbildung 2.3: Die Architektur des WfMSs [LR00]

Die Build-Time-Komponente fasst diejenige Komponenten zusammen, die zur Erstellung
und Modellierung von Workflows verantwortlich sind. Weiterhin werden in der Build-Time
die Ressourcen verwaltet.

Die Run-Time-Komponente führt die Workflowinstanzen zur Laufzeit aus.

Datenbank: In der Datenbank werden alle Daten der Build- und Run Time abge-
speichert.

Metamodell: Diese Komponente wird in [LR00] zusätzlich erwähnt. Hier wird die
Struktur aller Ressourcen, die von einem WfMS unterstützt werden, definiert.

Es gibt verschiedenen Workflow-Sprachen, die die Struktur eines Workflows beschreiben.
Man unterscheidet zwischen den Kontrollflussorientierten und den Datenflussorientierten
Sprachen. Bei den Kontrollflussorientierten Sprachen liegt der Fokus auf die logische Reihen-
folge der Ausführung der einzelnen Aktivitäten. Bei den Datenflussorientierten Sprachen
steht die Datenversorgung der einzelnen Aktivitäten im Vordergrund. Im nächsten Teilka-
pitel werden wir uns mit der Worklflowsprache WS-BPEL, einer kontrollflussorientierten
Sprache beschäftigen.

13

2 Grundlagen

2.2.1 WS-BPEL

Die Workflowsprache Webservices- Business Process Execution Language (WS-BPEL)
wurde von unterschiedlichen Unternehmen einwickelt und von OASIS standardisiert.
Sie ist eine XML-basierte Sprache und gilt als Standard-Sprache zur Modellierung und
Orchestrierung von Workflows [OAS]. WS-BPEL ist eine Kontrollflussorientierte Sprache.
Zum Speichern von Daten verwendet sie Variablen und sie ist für die Orchestrierung von
Webservice-Aufrufen zuständig (siehe Kapiel 2.2.1).

Einer BPEL-Prozess wird wie folgt aufgebaut:

• Import: Hier werden die WSDL-Datei und das XML-Schema im Prozess miteinbezogen.

• Partner Links: Tragen zur Einbindung der Webservices und Operationen bei.

• Variablen: Die globale Variablen und deren XML-Typen müssen definiert werden. In
WS-BPEL wird zwischen drei verschiedenen XML-Typen unterschieden. Den WSDL-
Nachrichten, den XML-Schema-Elementen und schließlich den XML-Schema-Typen.

• Logik: Hier wird der Kontrollfluss beschrieben, der auf globalen Variablen und Partner
Links referenziert.

In BPEL werden die einzelne Sprachelemente als Aktivitäten bezeichnet. Im folgenden
werden die wichtigste Aktivitäten kurz beschrieben.

ASSIGN: Über Assign erfolgt die Variablenzuweisung. Über mehreren COPY-Anweisungen
können innerhalb einer Aktivität mehrmalige Variablenzuweisungen stattfinden. Die
Zuweisung <from> sagt aus, wessen Variable der Inhalt kopiert wird. Die Zuweisung <to>
sagt aus, wo dieser Inhalt kopiert werden soll.

IF: Realisiert die logische Reihenfolge der Ausführung der einzelnen Aktivitäten.
Dies erfolgt über die Evaluierung eines Booleschen Ausdrucks und den entsprechenden
Durchlauf des if-then-else Zweigs.

FOREACH: Realisiert eine Schleife. Hierbei wird der Start- und Endwert des Zäh-
lers über einen Ausdruck einer Query-Sprache ausgewertet. Bei jedem Durchlauf wird es
um eins hochgezählt bis der Endwert erreicht wird. Wird dieser Endwert erreicht dann wird
die Schleife abgebrochen.

WHILE: Arbeitet wie die klassische While-Schleife. Sie läuft so lange durch bis eine
konkrete Abbruchs-Bedienung erfüllt wird.

REPEAT UNTIL: Ähnelt sich der While Schleife. Es wird lediglich nach dem Durch-
lauf des Schleifenrumpfes evaluiert. Folglich läuft der Schleifenrumpf mindestens ein mal
durch.

ONALARM/Wait: Hierbei wird der Ablauf eines Workflows vorläufig unterbrochen.

14

2.2 Workflowtechnologie

Nach dem Eintritt eines gewissen Zeitspanes oder Ereignisses wird der Ablauf fortgesetzt.

INVOKE: Ist für den Aufruf einer Webservice (siehe Kapitel 2.1.1) zuständig. Die-
ser muss zuvor mit einem Partner Link eingebunden worden sein. Es werden die
aufzurufende Operation und der Inhalt der Nachricht, die aus der zuvor definierten globalen
Variable entnommen wird, festgelegt. Der Inhalt der Antwort-Nachricht und deren Ergebnis
wird auf eine Variable kopiert .

Die Business-Workflows, die wissenschaftliche Workflows und die ETL-Workflows stellen
die drei Workflow-Arten dar [Wag11]. Im nächsten Abschnitt werden wir kurz die
Business-Workflows beschrieben. Auf die andere Workflow-Arten wird es in den nächsten
Teilkapiteln näher eingegangen.

Business-Workflows werden zur Modellierung von bestimmten Arbeitsabläufen in
Unternehmen eingesetzt [LR00]. Der Versand von Waren nach Zahlungseingang ist ein
Beispiel eines solchen Workflows. Jede Workflow-Aktivität kann von verschiedenen Akteuren
ausgeführt werden, z.B durch einen Mitarbeiter oder automatisch von einem Programm.
Es wird danach über alle offene Rechnungen iteriert und die Firmenkonten nach einer
Zahlung überprüft. Falls die Anforderung an den Kunden beglichen wurde, wird die Ware
an den Kunden geliefert. Falls dies nicht der Fall ist dann wird überprüft, ob eine Mahnung
veranlasst wird. In diesem Fall geht es um Workflows, bei denen Entscheidungen und
Handlungen eine sehr große Rolle spielen. Daher müssen oft nur relevante Daten in der
WF-Runtime gehalten werden. Aufgrund dieser Tatsache muss eine große Datenmenge
nicht in der Runtime gehalten werden. Die Laufzeit solcher Workflows ist in der Regel kurz.
Daher ist deren parallele Ausführung besonders sinnvoll.

2.2.2 Wissenschaftliche Workflows und Simulationen

Wissenschaftliche-Workflows werden innerhalb der Natur- und Ingenieurwissenschaften einge-
setzt [TDG07]. Hierbei geht es um die rechnergestützte Durchführung von wissenschaftlichen
Experimenten oder Simulationen bzw. um das Datenmanagement in solchen rechnerge-
stützten Durchführungen [Wag11]. Es gibt oftmals keine standardisierte Software, die die
Durchführung von wissenschaftlichen Simulationen unterstützt. Daher werden diversen
Programme eingesetzt, die zur Berechnung und Analyse der Experiment- und Simulations-
daten zusammenarbeiten. Aufgrund dieser Tatsache müssen oftmals Daten auf ein anderes
Format transformiert und/oder von einer Ressource auf eine andere übertragen werden,
damit eine weitere Verarbeitung dieser Daten ermöglicht wird. Heutzutage ist es möglich
solche Prozesse mit Workflows zu modellieren und zu orchestrieren. Bei den wissenschaftli-
chen Workflows liegt der Schwerpunkt eher auf die Datenverarbeitung als auf das Treffen
von Entscheidungen. Die Ausführung solcher Workflows kann prinzipiell über zwei Wege
erfolgen. Es gibt wissenschaftliche Workflows, die die Simulationsdaten an den beteiligten
Programmen übergeben. Diese Programme verarbeiten und legen dieser Simulationsdaten in
externen Datenressourcen ab. Es gibt aber auch solche, die Simulationsdaten direkt auf den
Workflow-Kontext laden. Dadurch kommt es zu einem großen Datenaufkommen innerhalb

15

2 Grundlagen

der WF-Runtime. Aufgrund der Tatsache, dass bei den wissenschaftlichen Workflows der Fo-
kus auf den Datenaustausch zwischen Aktivitäten, Programmen und Datenressourcen liegt,
sind Datenflussorientierte Workflow-Sprachen passender als die Kontrollfluss-orientierte
Sprachen. Da aber WS-BPEL als Standard zur Modellierung und Orchestrierung von Work-
flows gilt und weil sich der Datenfluss in WS-BPEL einbetten lässt hat sich WS-BPEL für die
Ausführung von wissenschaftlichen Workflows durchgesetzt [ADR06] [A.S06] [CTE09]. Die
Ausführung von wissenschaftlichen Workflows findet seltener und mit einem umfangrei-
cheren Datenaufkommen als die Ausführung von Business-Workflows statt. Daher ist eine
parallele Ausführung solcher Workflows nur in speziellen Fällen sinnvoll.

Simulationsworkflows

Wie im vorigen Abschnitt erwähnt schließt die Ausführung von wissenschaftlichen Work-
flows Simulationen ein. Unter einer Rechnergestützte-Simulation versteht man eine beliebige
Rechner-implementierte Methode zur Analyse der Eigenschaften mathematischer Modellen
[P.H90]. Auf der Abbildung 2.4 ist eine Beispielsimulation dargestellt. Zur Vorbereitung
einer Simulation wird zuerst darauf geachtet, das zu simulierende Objekt in der realen Welt
darzustellen. Die Durchführung von Simulationen zielt darauf ab, das Verhalten des zu
simulierenden Modells unter Eingabe einer Menge von Parametern, z.B Umwelt-Variablen,
zu studieren und zu analysieren. Ausgehend von einem konkreten Startzustand des Mo-
dells wird die Simulation innerhalb eines bestimmten Zeitintervalls durchgeführt. Daraus
resultieren sich die Zwischenzustände-und der Endzustand des zu simulierenden Objekts.
Nachdem die Simulation des Objekts erfolgreich beendet wird, kann man den Zustand des
ursprünglichen Modells unter der Eingabe derselben Eingabeparameter prognostizieren,
z.B wenn das Auto bei einer Geschwindigkeit von 80 km/h gegen einen konkreten Objekt
zusammenprallt. Die Verwendung von Simulationen dient dazu, die Durchführung einer
bestimmten Anzahl von Experimenten zu minimieren oder sogar zu vermeiden.

Abbildung 2.4: Beispiel einer Simulation anhand eines Autounfalls [Mü10]

16

2.2 Workflowtechnologie

In [S.H05] wird erwähnt, wie Simulationen eingesetzt werden können:

1. ”Als eine Technik zur Ermittlung der Details eines Systems, das pragmatisch nicht als
ein Experiment durchgeführt werden kann (das System ist zu komplex oder das Objekt
ist nicht Verfügbar) Beispiel: Schwarzes Loch-Simulation in Astrophysik”.

2. ”Als ein heuristisches Werkzeug zur Entwicklung von Hypothesen, Modellen, und
Theorien durch die Extraktion von Wissen über ein System, das über die Durchführung
von mehreren Simulationsschritten gewonnen wird. Beispiel: Simulation der Dynamik
innerhalb physikalischer Partikeln um neue Theorien über ihre Festigkeit aufzubauen”.

3. ”Als einer Ersatz für ein Experiment zur Durchführung von Experimenten, bei denen
eine bestimmte Region von Parametern unzugänglich ist. Beispiel: Simulation einer
Steuererhöhung von 100%.”

4. ”Als Werkzeug für die Durchführung von Experimenten: Simulationen können als In-
spiration zur Durchführung eines Experiments dienen. Weiterhin können Simulationen
zur Analyse von Experimenten beitragen.”

5. ”Als pädagogisches Werkzeug zum didaktischen Zwecken.”

In [Mü10] werden Simulationsworkflows als eine Teilmenge der wissenschaftlichen
Workflows angesehen. Das ist aber nicht streng zu interpretieren, denn das Beispiel zur
Simulation eines Autounfalls hat auch einen wirtschaftlichen Hintergrund, obwohl es als
einer Simulationsworkflow betrachtet wird. Nachdem man das geklärt hat, kann man den
Begriff Simulationsworkflow definieren:

”Ein Simulationsworkflow ist ein wissenschaftlicher Workflow, der auf die Simulation eines
Modells basiert und dessen Verhalten unter der Eingabe einer bestimmten Eingabemenge kalkuliert.”
[Mü10]

In [BIS+06] wird der Begriff Simulationsworkflow im engeren Sinn wissenschaftlich
orientiert angesehen, weil seine Aktivitäten die Simulationsschritten eines Modells reprä-
sentieren. Aber vor der Durchführung der eigentlichen Simulationsschritten müssen oft
verschiedene Eingabedaten in der Simulation miteinbezogen werden. Aktivitäten, die zur
Vorbereitung der Simulation dienen, werden oft als einer Teil des gesamten Prozesses
modelliert. Weil diese Teile des gesamten Workflows implizite Simulationsschritten
repräsentieren, werden als Simulationsworkflows in weiteren Sinn betrachtet .

Finite Element Methode

Viele Simulationsmodelle basieren im Engineering und in der Physik auf Differentialglei-
chungen. Im Folgenden werden wir wir den Begriff Finite Element Method (FEM) kurz
erläutern. Die Beschreibung der FEM-Methode basiert auf [Dor11] und [ZTZ06].

Die Finite Element Methode (FEM) ist ein numerisches Verfahren, das zur Lösung

17

2 Grundlagen

von partiellen Differentialgleichungen eingesetzt wird. Sie wird zur Lösung unterschied-
licher Problemstellungen in vielen wissenschaftlichen Bereichen verwendet. Für die
verschiedene Problemstellungen können mehrere Ansätze, wie z.B der Ritz-oder der
Galerkin Ansatz, verwendet werden. Bei dem Galerkin-Ansatz wird das Problem in einer
endlichen Anzahl von Teilproblemen zerlegt. Diese endliche Teilproblemen, werden durch
ein numerisches Verfahren vernetzt, um das gesamte Problem anzunähern. Diese kleinere
endliche Teilprobleme heißen endliche Elemente und besitzen in der Regel eine einfache
geometrische Form. Abbildung 2.5 zeigt ein Beispiel eines zweidimensionalen FEM-Modells.
In diesem Beispiel hat man als geometrische Form der endlichen Elemente das Dreieck
ausgewählt. Die Knoten stellen die einzelnen Elemente dar. Die einzelne Elemente werden
nun über die Kanten unter der Anwendung eines numerischen Verfahrens miteinander
verbunden, sodass der sogenannte Gitter gebildet wird. Zum Festlegen der Reihenfolge der
Elementberechnung, werden die Elemente innerhalb dieses Gitters eindeutig beziffert.

Unter der Verwendung dieser endlichen Elemente und geeigneten numerischen Ver-
fahren kann man das Modell annähern, indem man die einzelne Elemente in endlichen
Zeitschritten t0 bis tn diskretisiert. Dazu werden an den Knotenpunkten Gleichungen
aufgestellt, die die gesamte Lösung näherungsweise beschreiben. Der Zustand bzw.der Wert
eines einzelnen Elements lässt sich zum Zeitpunkt ti über eine Matrix von Gleichungen
repräsentieren. Aus den Matrizen aller Elemente wird nun eine globale Matrixgleichung
aufgestellt, die den Zustand bzw. den Wert des gesamten Modells zum Zeitpunkt ti
beschreibt. Der Zustand jedes einzelnes Elements zum Zeitpunkt ti und damit der Zustand
des gesamten Problems zum Zeitpunkt ti+1 werden anschließend über ein iteratives
numerisches Verfahren berechnet. Dieses Verfahren wird wiederholt bis der Zeitschritt tn
erreicht wird . Die FEM-Methode wird im Bereich der Simulationen eingesetzt. In der
Pandas-Simulation (siehe Kapitel 4.2) wird diese Methode verwendet, um die Umformung
einer Knochenstruktur unter bestimmten Belastungen auf den Knochen zu simulieren.
Die FEM-Methode findet auch im Bereich der Multi-Simulationen ihre Anwendung. Im
Folgenden werden Beispiele von Multi-Simulationen aufgelistet:

• Multi-Domänen: Zur Durchführung der Simulation werden verschiedenen Fachberei-
che, z.B Biomechanik und Biologie, miteinbezogen.

• Multi-Skalen: Die Simulation wird auf unterschiedlichen Zeit- und/oder Raumskalen
durchgeführt.

• Multi-Physik: In der Simulation finden verschiedene physikalische Gesetze ihre An-
wendung

• Multi-Tool: Für die Simulation werden verschiedene Werkzeuge eingesetzt.

Die Pandas-Matlab Kopplung (siehe Kapitel 4.3) stellt ein Beispiel einer Multi-Simulation dar.
In diesem Fall werden verschiedenen Domäne einbezogen (Biomechanik und Biologie). Folg-
lich wird die Simulation auf unterschiedliche Zeit- und Raumskalen durchgeführt. Darüber
hinaus werden zwei unterschiedlichen Programme benutzt, also Pandas und Matlab.

3http://www.ite.uni-stuttgart.de/forschung/projekte/elfe/fem2d/fem2d.jpg

18

2.2 Workflowtechnologie

Abbildung 2.5: Beispiel eines FEM-Modells, das über den Einsatz der FEM-Methhode be-
rechnet wurde3

2.2.3 Extract Transfer Load Workflows

Extract Transfer Load-Workflows(ETL-WF’s) werden zur Modellierung, Orchestrierung
und Ausführung von ETL-Prozessen eingesetzt [VsRM08]. Ein ETL-Prozess besteht aus
mehreren ETL-Operationen. Diese ETL-Operationen lassen sich als Aktivitäten in dem
Kontext eines Workflows darstellen. Ein solches Konzept basiert, z.B. auf die Erweiterung
von WS-BPEL um Datenmanagement-Aktivitäten [RRS+ny]. Diese Aktivitäten erlauben den
direkten und nahtlosen Zugriff auf beliebige Datenressourcen. So ist es möglich, den Inhalt
einer Datei durch eine Anfrage an das Dateisystem in die Workflow-Maschine zu laden oder
den Inhalt einer Tabelle in einer relationalen Datenbank direkt abzufragen. Dieser Inhalt
kann entweder als Resultat (z.B Retrieve Befehle wie SELECT) oder als eine Bestätigung der
Ausführung von Definitions- oder Manipulationsanweisungen (z.B eine JOIN Anweisung)
an die WF-Maschine geliefert werden.

Das SIMPL (SimTech-Information Management, Processes and Languages) Rahmenwerk
wurde als Prototyp in Apache ODE für ETL-Operationen in Simulationsworkflows implemen-
tiert [RRS+ny]. Das SIMPL Rahmenwerk erlaubt die Ausführung von ETL-Operation, wie z.B
das Laden (Load/Retrieval), die Verknüpfung (JOIN), die Zusammenführung (MERGE) und
die Vereinigung (UNION), von Daten, auf relationale Datenbanken, verschiedene Dateitypen
(z.B Comma Separated Value (CSV)-Dateien) und andere heterogenen Datenressourcen
in Simulationsworkflows [Wag11]. Die Ausführung von ETL-Workflows setzt meistens
eine große Datenmenge voraus, deshalb ist das Datenaufkommen entsprechend groß.
Man hat aber die Möglichkeit durch verschiedenen Techniken diese Daten von der
Workflow-Maschine fernzuhalten. Die Parallelisierung von ETL-Workflows, zumindest bei

19

2 Grundlagen

der Ausführung von ETL-Operationen auf gleichen Datensätzen bringt keine Verbesserung
und ist daher sinnlos.

2.3 Wissenschaftliche Workflowmanagementsysteme und
Simulationsrahmenwerke

In diesem Teilkapitel werden wir einige wissenschaftliche Workflowmanagementysteme
(sWfMS) und Simulationsrahmenwerke (SR) vorstellen, die entweder im Rahmen dieser
Arbeit verwendet werden oder in der Welt der rechnergestützten Simulationen bedeutend
sind. Es wird zuerst die Architektur eines sWfMSs beschrieben. Danach werden wir einen
Einblick in die sWFMSe SimTech, Kepler und Trident geben. Zum Schluss werden wir
die SRe DUNE, ChemShell, Pandas und SIMPL kurz vorstellen. Dieses Kapitel basiert auf
[BIS+06]. Andere Quellen werden explizit eingegeben.

Im Folgenden wird die Architektur eines sWfMs erläutert. Diese Architektur wurde
in [KSK+

11] auf einer konzeptionellen Basis vorgeschlagen und ist auf Abbildung 2.6 zu
sehen. Die Graphical User Interface (GUI) stellt den ersten Bestandteil des sWfMS in dieser
Architektur dar. Sie besteht im wesentlichen aus vier Komponenten:

1. Service Catalog-Komponente: Stellt dem Nutzer eine Liste von vordefinierten Modellie-
rungsmuster zur Verfügung. Der Nutzer kann aus dieser Liste abstrakte Modellierungs-
muster auswählen, um seine Aktivitäten zu definieren.

2. Workflow Modeller-Komponente: Unterstützt den Wissenschaftler bei der Spezifikation
und der Modellierung seiner Workflows. Die Workflows können entweder graphisch
oder direkt in der Workflow-Sprache erstellt werden.

3. Monitor-Komponente: Erlaubt dem Benutzer die Ausführung seiner Workflows zu über-
wachen.

4. Result Display-Komponente: Dient der Visualisierung der Zwischen- und Endergebnissen
der Simulation.

Zur Realisierung des Deployments, der Ausführung, des Monitorings und anderer wichtigen
Funktionalitäten von Workflows kommuniziert die GUI über fünf Schnittellen mit der
Runtime-Umgebung. Die Runtime-Umgebung besteht aus folgenden Komponenten:

1. Die Execution Engine führt die Workflowinstanzen aus. Dazu instanziiert sie die defi-
nierte Workflow-Modelle aus der GUI, navigiert durch die Workflow-Graphen und ruft
die Webservices, die die Aktivitäten eines Workflows implementieren, auf. Darüber
hinaus werden verschiedene Ereignisse und Störungen von außen behandelt.

2. Der Service Bus kümmert sich hauptsächlich um den Aufruf von Diensten, die die
Aktivitäten der Workflows implementieren.

3. Die Resource Management-Komponente verwaltet Metadaten bzw. Informationen zu den
Ressourcen.

20

2.3 Wissenschaftliche Workflowmanagementsysteme und Simulationsrahmenwerke

SimTech Workflow Management System

GUI

Function
Catalog

sWF
Modeller

Monitor
Result
Display

SecurityDeployment

 Execution
Engine

Service Bus

Service
Discovery

Resource
Manage-

ment

Service Registry

Monitoring

Provenance

AuditingR
u

n
ti
m

e
 C

o
m

p
o

n
e

n
ts

Abbildung 2.6: Architektur eines scientific workflow management systems[KSK+
11]

4. Die Service Discovery-Komponente fragt nach Service Registries (z.B UDDI) nach, um
Diensten mittels bestimmter Informationen (z.B Schnittstellen und semantische Anno-
tationen) zu finden.

5. Die Deployment-Komponente macht die Workflow-Modellen aus der GUI der Runtime-
Umgebung bekannt, indem sie die Modelle in der Engine installiert und die Workflows
als Diensten veröffentlicht.

6. Die Security-Komponente kümmert sich um die lokale und ferne Sicherheitsrichtlinien,
d.h schützt vor unautorisierten GUI und sWfMS Zugriffe.

7. Die Auditing-Komponente ist für die Aufzeichnung von Ereignissen, die während der
Ausführung der Workflows ausgelöst werden, wie z.B die Ausführungszeit eines
Workflows, zuständig.

8. Die Monitoring-Komponente verwendet diese Ereignisse, um den Status der Ausführung
eines einzelnen Workflows abzufragen.

9. Die Provenance-Komponente zeichnet Ereignisse auf, die von der Auditing-Komponente
nicht aufgezeichnet werden können.

SIMTECH

SimTech ist ein sWfMS, dass unter Mitwirkung von Mitarbeitern des Instituts für
die Architektur von Anwendungssystemen(IAAS) der Universität Stuttgart im Rahmen
der DFG Cluster Of Excellence Simulation Technology als Prototyp entwickelt wurde.
Seine Funktionsweise basiert auf die im vorigen Abschnitt beschriebene Architektur
[KSK+

11]. SimTech wird im Bereich der Molekulardynamik, der modernen Mechanik, der

21

2 Grundlagen

numerischen Mathematik, der Datenverwaltung in Simulationsworkflows und der interakti-
ven Visualisierung eingesetzt. Als Workflow-Sprache wird WS-BPEL (siehe Kapitel.2.2.1)
eingesetzt und als Modellierungswerkzeug der Eclipse BPEL Designer verwendet. Auf
Abbildung 2.7 ist die Modellierungsumgebung von SimTech zu sehen. Zur Modellierung
von Workflows bietet”SimTech Modelling Perspective” den Workflow-Modeller und
den Dienst-Katalog an. Darüber hinaus bietet dem Benutzer die Möglichkeit an, den
Simulationsfortschritt über Monitoring-Komponente zu beobachten. ”SimTech analysis
perspective” erlaubt dem Benutzer, die Zwischen- und Endergebnisse der Simulation zu
analysieren. Die Runtime-Umgebung verwendet OpenSource Software für alle Komponenten.
Die Workflow-Maschine basiert auf die Apache Orchestration Director Engine(ODE) 4.
Zum Aufruf von Diensten wird Apache Axis2

5 verwendet. Die Dienste Registrierung
basiert auf jUDDI 6. Zur Unterstützung der Ressourcen-Verwaltung im Service Bus,
wurden eine Reihe von generischen Web Services entwickelt, um auf Datenquellen und
wissenschaftliche Anwendungen zugreifen zu können. Zum Aufruf von wissenschaftlichen
Anwendungen durch die WS-Schnittstellen, wird ein generischer Adapter eingesetzt. Zum
Auditing hat man eine integrierte Datenbankumgebung entwickelt. Zum Speichern der
Auditing-Informationen wird PostgreSQL7 verwendet.

Abbildung 2.7: Die Modellierungsumgebung von Simtech [KSK+
11]

4http://ode.apache.org/
5http://ode.apache.org/axis2/
6http://ode.apache.org/juddi/
7http://www.postgresql.de/

22

2.3 Wissenschaftliche Workflowmanagementsysteme und Simulationsrahmenwerke

KEPLER

Kepler8 ist ein sWfMS, das in verschiedenen wissenschaftlichen und Engineering-Bereiche
eingesetzt werden kann. Zur Modellierung der Workflows wird eine Java basierte grafische
Benutzeroberfläche verwendet. Auf Abbildung 2.8 ist diese grafische Benutzeroberfläche vom
Kepler zu sehen. Der Wissenschaftler hat die Möglichkeit seine Workflows in einem Graphen
basierte Struktur zu modellieren. Die Knoten in diesem Graphen repräsentieren Aktivitäten,
die den Datenverlauf oder die Datenmodellierung darstellen. Die Kanten entsprechen
dem Datenfluss zwischen den verschiedenen Aktivitäten. Die Kepler Bibliothek beinhaltet
eine große Sammlung von solchen Aktivitäten, die dem Benutzer durch ein semantisches
Suchsystem geliefert werden. Eine Aktivität kann von einem oder mehreren Rechner
ausgeführt werden. Zur Ausführung einer Aktivität wird auf spezifische Datenspeicher
dieser Rechner zugegriffen. Kepler erlaubt die direkte Ausführung der Workflows von
der graphischen Benutzeroberflächen aus. Die Kepler Scientific Workflow (KSW)-Datei
beinhaltet alle notwendige Informationen zur Ausführung eines Workflows auf ein beliebiges
Kepler-System.

Abbildung 2.8: Die Kepler-Benutzeroberfläche [Mü10]

TRIDENT

Microsoft Trident 9 ist ein sWfMS, das auf Microsoft Windows Workflow Foundation

8http://www.kepler-project.org/
9http://research.microsoft.com/en-us/collaboration/tools/trident.aspx

23

2 Grundlagen

10 und das XML Format XOML basiert. Microsoft Trident wurde als ein Workbench
für wissenschaftliche Workflows entwickelt [RJDN09]. Das Modellieren von Workflows
erfolgt über einen Kontrollfluss orientierten Ansatz. Das Modellieren auf eine Datenfluss
orientierten Basis wird über den Einsatz von Datencontainern unterstützt. Zur Modellierung
von Workflows wird dem Benutzer eine GUI (Trident Workflow Composer) zur Verfü-
gung gestellt sowie ein Monitorpool zur Überwachung der Ausführung der Workflows.
Neben den Kontrollfluss orientierten Sprachelementen, wie z.B if-then Auswertungen,
Schleifenstrukturen etc., bietet Microsoft Trident die Möglichkeit an, auf verschiedenen
Datenressourcen zuzugreifen, wie z.B auf Dateisystemen und Datenbanken. Es gibt Aktivitä-
ten, die die Erzeugung von Diagrammen sowie die Evaluierung von XPath-Ausdrucke auf
XML-Dokumente, erlauben. Mit Trident, ist die Einbindung von Web Diensten ebenfalls
möglich.

Zur Ausführung der Workflows gibt es zwei Möglichkeiten. Die erste Möglichkeit
besteht darin, den Workflow in einer einfachen Workflow-Anwendung zu kompilieren
und zu exportieren. Diese Workflow-Anwendung kann dann auf ein beliebiges System
ausgeführt werden. Die zweite Möglichkeit besteht darin, den Workflow über die Trident-
Laufzeit-Diensten auszuführen. Dazu kommt das Management Studio zur Administration,
zum Monitoring und zur Untersuchung der Workflow-Instanzen zum Einsatz.

DUNE

Das DUNE-Rahmenwerk (Distributed and Unified Numerics Enviroment)11 ist eine Software-
Bibliothek, die eine Anzahl von Modulen zur Lösung von partiellen Differentialgleichungen
anbietet. Zu diesem Zweck enthält das DUNE tollbox Implementierungen von Grid
basierten Techniken, wie endliche Elementen und endliche Volumen. Darüber hinaus gibt
es verschiedene Modulen zur Lösung linearer Gleichungen und iterativer Vektoren- und
Matrixberechnungen. In der Bibliothek gibt es verschiedene Parser und Programme zum
Lesen und Exportiren von Daten verschiedener Dateiformaten.

Der Kern von DUNE ist eine C++ Bibliothek, die als Quell-Code bereitgestellt wird.
Das Erzeugen einer neuen DUNE-Simulationsinstanz erfolgt in mehreren Schritten. Es wird
zunächst ein neues Modul mit einem Namen und einer Version erzeugt. Im zweiten Schritt
werden in der DUNE-Bibliothek zusätzliche Module (z.B ein Modul zur Lösung linearer
Gleichungen), die für die Ausführung der Simulation erforderlich sind, hinzugefügt. Wenn
keine Module zur Implementierung der abstrakten Schnittstellen von DUNE vorhanden
sind, dann müssen solche Module entwickelt werden. Weiterhin wird eine Routine zur
Beschreibung der Simulationsschritte implementiert. In einem weiteren Schritt werden die
Ergebnisdaten über die Definition und die Verwendung von Dateien exportiert. Schließlich
werden die erforderliche DUNE-Module, die eigene Module und die Hauptroutine mit

10http://msdn.microsoft.com/de-de/library/aa480214.aspx
11http://www.dune-project.org/

24

2.3 Wissenschaftliche Workflowmanagementsysteme und Simulationsrahmenwerke

dem GNU System 12 kompiliert. Nachdem diese Schritte durchgeführt wurden kann die
DUNE-Simulation ausgeführt werden.

CHEMSHELL

ChemShell 13 ist ein Simulationsrahmenwerk dass ausschließlich zur Durchführung
von Simulationen in der Chemie Industrie eingesetzt wird. Darunter zählen Simulationen
aus dem Bereich der Quanten-Mechanik (QM), der Molekulare-Mechanik (MM) sowie der
Hydro-Quanten- Mechanik/-Molekular-Dynamik (QM/MM).

ChemShell führt die Simulationen in Zusammenarbeit mit anderen externen Werkzeugen,
die zur Lösung von speziellen Problemen (z.B Energie-Auswertungen) implementiert
sind . ChenmShell sorgt für die Kommunikation dieser externen Werkzeugen, verwaltet
die Simulationsdateien und verfügt integrierten Routinen zur Dateitransformation,
Datenverarbeitung und Visualisierung. Darüber hinaus ist Chemshell in der Lage mit
einfachen Berechnungen und numerischen Problemen umzugehen.

Das ChemShell-Rahmenwerk basiert auf die Script Sprache TCL (Tool Command
Language)14 . Es stellt dem Wissenschaftler einen interaktiven Shell zur Verfügung, dem
er verschiedenen Befehle manuell eingeben kann. Diese Befehle werden anschließend
zur Durchführung der Simulation interpretiert und ausgeführt. Eine Anzahl von solchen
Befehlen werden von ChemShell bereitgestellt.

Es besteht die Möglichkeit die Simulation über die Verwendung eines Skriptes au-
tomatisch durchzuführen. Dieses Skript enthält vordefinierten Befehle, die einer nach dem
anderen ausgeführt werden. Dieses Skript wird dem ChemShell als Eingabe-Parameter
übergeben. Es startet, führt alle Befehle automatisch aus und schließt sich nach der
Ausführung des letzten Befehls.

ChemShell basiert auf Simulationen, die über Skripten oder Benutzerinteraktionen
durchgeführt werden. Deshalb muss die ChemShell-Umgebung nur einmal kompiliert
werden. Aufgrund der Tatsache, dass die Simulationsaufbereitung vom TCL-Compiler
durchgeführt wird ist die Kompilierung der Simulationsskripten nicht erforderlich. Wenn
aber neue Befehle oder externe Module hinzugefügt werden, dann muss die ChemShell-
Umgebung erneut kompiliert werden.

PANDAS

Pandas ist ein FEM-basiertes Rahmenwerk für Berechnungen bei porösen Medien
[Dor11]. Poröse Medien Probleme treten in verschieden Engineeringbereichen auf. 15. Im

12http://www.gnu.org/
13http://chemshell.org/
14http.//www.tcl.tl/
15http://www.mechbau.uni-stuttgart.de/pandas/index.php

25

2 Grundlagen

allgemeinen schließen porösen Medien Modelle das interaktive Verhalten eines verformten
Skeletts ein. Außerdem können Simulationen von thermischen sowie chemischen und
elektrochemischen Phänomenen im Pandas-Rahmenwerk eingeschlossen werden. Man
kann Pandas entweder auf einen Batch-Modus oder auf einen interaktiven Modus laufen
lassen. Pandas bietet die Möglichkeit an die Simulation online zu visualisieren. Ähnlich
wie beim DUNE werden zur Lösung von linearen Gleichungen und iterativer linearen
Gleichungssystemen- und Matrizenberechnungen verschiedene Algorithmen eingesetzt.

SIMPL

Das SimTech-Information Management, Processes and Languages (SIMPL) ist ein Rahmenwerk
zur generischen und erweiterbaren Datenmanagement-und Datenbereitstellungsabstraktion
für Simulationsworkflows. SIMPL bietet die Möglichkeit an, direkt von einem Workflow
aus, nahtlos auf beliebige Datenressourcen zuzugreifen [RRS+ny]. Ein wichtiger Bestandteil
dieses Rahmenwerks ist eine Erweiterung der Workflow Sprache BPEL, die es ermöglicht,
neue BPEL-Aktivitäten zur Datenverwaltung in Simulationsworkflows zu definieren. Auf
diese Art und Weise kann das Datenmanagement in Simulationsworkflows realisiert werden.
in Kapitel 3 werden wir ausführlich über das SIMPL-Rahmenwerk diskutieren.

26

3 Das SIMPL-Rahmenwerk

In vielen Simulationsanwendungen müssen oftmals große, heterogene Datenmengen
von einer Datenressourcen auf eine andere übertragen und transformiert werden. Das
SIMPL-Rahmenwerk stellt eine Abstraktion zur Unterstützung der Datenverwaltung und
-bereitstellung in solchen Simulationsanwendungen bereit. In diesem Kapitel werden zu-
nächst die Architektur und die Funktionsweise dieses Rahmenwerks vorgestellt. Danach
werden wir auf die Modellierung des Datenmanagements in Simulationsworkflows eingehen
und die wichtigste Datenmanagement Aktivitäten des SIMPL-Rahmenwerks beschreiben.
Zum Schluss werden wir einen Einblick in die Mechanismen, die das SIMPL-Rahmenwerk
verwendet, um auf Datenressourcen zuzugreifen, geben. Dieses Kapitel basiert hauptsächlich
auf [RRS+ny]. Andere Quellen werden explizit angegeben.

3.1 Architektur und Funktionsweise

SimTech-Information Management, Processes and Languages (SIMPL) ist ein generisches und
erweiterbares Rahmenwerk für das Datenmanagement und die Datenbereitstellung in
Simulationsworkflows. Auf der Modellierungsebene wird die Sprache WS-BPEL um zusätz-
liche Aktivitäten, die Datenmanagementoperationen gegen beliebigen Datenquellen direkt
und nahtlos ausführen, erweitert. Um auf diese Datenquellen zuzugreifen, stellt SIMPL
einheitlichen Zugriffsmechanismen und Metadaten bereit. Zur Modellierung der Workflows
werden weiterhin Datenmanagementpatterns bereitgestellt, z.B für ETL-Operationen,
die die Erstellung der Datenmanagementaktivitäten (DM-Aktivitäten) vereinfachen.
Diese bereitgestellte Datenmanagementpatterns sowie die Datamanagementaktivitäten,
die einheitliche Zugriffsmechanismen und die Metadaten erlauben die Definition des
Datenmanagements für mehrere Applikationen im Bereich der Naturwissenschaften und
der Ingenieurwissenschaften.

Abbildung 3.1 illustriert, wie das SIMPL-Rahmenwerk ein sWfMS (siehe Kapiel 2.3)
erweitert, um eine Abstraktion für das Datenmanagement und die Datenbereitstellung in
Simulationsworkflows zu ermöglichen. Zur besseren Übersicht werden alle Komponenten
der sWfMSs-Architektur, die für SIMPL nicht relevant sind, weggelassen.

Die SIMPL-Architektur besteht aus folgenden Komponenten:

1. Die SIMPL Core-Komponente ist der Kern des SIMPL-Rahmenwerks. Sie ist im Service
Bus des sWFMSs eingebettet und stellt für jede Art von Datenressourcen einheitlichen

27

3 Das SIMPL-Rahmenwerk

Scientific Workflow Management System

Service Bus

GUI

Function

Catalog

sWF

Modeler

Deployment

 Execution

Engine

Service/

Resource

Discovery

Resource Management

Metadata for

Unified Access

Mechanism

Metadata

Management

Metadata

Provisioning

Metadata

Integration

SIMPL Core

Data

Converter

Data

Source

Connector

Implementation

Data

Access

Operation

DM Pattern

Plug-in

DM

Pattern

DM Activity

Modeling Plug-in

DM

Activity

DM Activity

Execution Plug-in

DM Activity

Abbildung 3.1: Integration des SIMPL-Rahmenwerks in die Architektur eines SWfMSs
[RRS+ny]

und logischen Schnittstellen bereit. SIMpl-Core implementiert einheitlichen und logi-
schen Schnittstellen auch für spezifische Datenressourcen (Connectoren und Converter)
und agiert als ein Vermittler zwischen den Workflow-DM-Aktivitäten und den externen
Datenressourcen. Hierbei leitet sie DM-Befehle, Ergebnisdaten und Benachrichtigungen
über die erfolgreiche oder fehlgeschlagene Ausführung von DM-Befehlen weiter.

2. Die Resource Management-Komponente stellt Metadaten zur Beschreibung der Beziehun-
gen zwischen den einheitlichen und logischen Schnittstellen des SIMPL-Cores und
der konkreten Zugriffsmechanismen der Datenressourcen. Diese Metadaten werden in
einer Datenbank abgespeichert.

3. In der DM Activity Modelling Plug-in-Komponenente befinden sich die DM-Aktivitäten.
Diese DM-Aktivitäten können zur Modellierung des Datenmanagements in konkreten
Simulationsworkflows verwendet werden.

4. DM Activity Execution Plug-in-Komponente befindet sich in der Workflow Execution
Engine und führt die DM-Aktivitäten zur Laufzeit aus. Diese Aktivitäten können ent-
weder direkt in den Simulationsworkflows integriert oder Bestandteil eines separaten
ETL-Workflows (siehe Kapitel 2.2.3) sein.

5. Die DM Pattern Plug-in-Komponente der Funktions Catalogs-Komponente unterstützt
den Workflow-Modellierer bei der Erstellung der notwendigen DM-Aktivitäten, in-
dem sie abstrakte Datenmanagementpatterns für die Modellierung typischer DM-
Operationen in Simulationsworkflows bereitstellt.

28

3.2 Modellierung des Datenmanagements in Simulationsworkflows

3.2 Modellierung des Datenmanagements in Simulationsworkflows

Die Business Process Execution Language (BPEL) (siehe Teilkapitel 2.2.1) ist ein de-facto
Standard zur Definition und Ausführung von Geschäftsprozessen. In [ADR06] wird BPEL zur
Modellierung und Ausführung von wissenschaftlichen Workflows vorgeschlagen. Um den
direkten und nathtlosen Zugriff von einem Simulationworkflow aus auf externe Datenquellen
zu ermöglichen, erweitert SIMPL BPEL um weitere Aktivitätstypen. Die o.g Aktivitäte heißen
Datenmanagement(DM)- Aktivitäten. Die wichtigsten DM-Aktivitäten werden nachfolgend
aufgelistet:

• IssueCommand-Aktivität

• RetrieveData-Aktivität

• WriteDataBack-Aktivität

• TransferData Aktivität

Das grundlegende Prinzip jeder DM-Aktivität ist die Ausführung eines DM-Befehls,
z.B SQL-Ausdrücke oder Shell-Befehle, gegen eine bestimmte Datenressource. Unter
einer Datenressource versteht man ein System, das Daten speichern, verwalten und/oder
bereitstellen kann, z.B eine Datenbank oder ein Dateisystem. DM-Aktivitäten hat mindestens
eine BPEL-Variable als einen Eingabeparameter. Diese Variable referenziert auf die
Datenressource, gegen die der eingebettete DM-Befehl auszuführen ist. Wir nennen solche
BPEL Variablen Data Source Reference-Variablen.

Die Data Containe Referenz Variable referenzieren auf einen Datencontainer. Ein Da-
tencontainer (ist eine eindeutig identifizierbare Sammlung von Daten innerhalb einer
Datenressource. In einer Data Set-Variable werden die in dem Prozesskontext eines
Workflows geladenen Daten abgespeichert. Der Inhalt dieser Variablen wird von XML
Schema-Definitionen spezifiziert. Für Tabellen-orientierte Daten, wie z.B Daten aus einer
relationalen Datenbank oder aus einem CSV-basierten Datei, wird z.B eine XML RowSet
Struktur verwendet.

An dieser Stelle werden wir auf die im ersten Abschnitt erwähnten DM-Aktivitätstypen
eingehen. Die IssueCommand-Aktivität kann für Datenmanipulationen oder Datendefinitionen
verwendet werden. Neben der Data Source Reference-Variable hat sie einen DM-Befehl als
zusätzlichen Eingabeparameter. Dieser Befehl wird gegen die spezifizierte Datenressource
ausgeführt. Teilweise werden auch etwas andere Parameter für diese Aktivität festgelegt, wie
z.B DM-Befehl zur Ausführung eines Transformationsskriptes oder die Ziel-Datenressource
eines Datencontainers.

Die RetrieveData-Aktivität hat ebenfalls einen DM-Befehl als Eingabeparameter. Über
diesen Befehl werden Daten aus einer Datenressource extrahiert, z.B über einen SQL
SELECT-Ausdruck oder einen Pfad zu einer Datei. Die Ergebnisdaten werden anschließend
über die Workflow-Maschine in den Workflow-Kontext geladen. Ein zusätzlicher Eingabepa-
rameter definiert eine Data Set-Variable, in der die Ergebnisdaten gespeichert werden.

29

3 Das SIMPL-Rahmenwerk

Die WriteDataBack-Aktivität lädt Daten von dem Prozesskontext eines Workflows
auf eine Datenressource. Diese Aktivität hat zwei Eingabeparameter. Einen Bezeichner für
eine Data Set-Variable und einen für eine Data Container Reference-Variable. Sie speichert
die Datenmenge der Data Set-Variable im Dateicontainer, auf den die Data Container
Reference-Variable referenziert.

Die TransferData-Aktivität überträgt Daten von einem Datencontainern einer Datenressource
auf einem anderen Datencontainer einer anderen Datenressourcen. Sie nimmt als Parameter
zwei Data Container Reference-Variablen. Damit werden der Quell- und Ziel-Container bzw. die
Datenressourcen, in denen sich die beiden befinden, eindeutig identifiziert. Teilweise werden
etwas andere Parameter auch für diese Aktivität festgelegt, wie z.B die Ziel-Datenressource
eines Datencontainers.

Data Container Reference-Variablen können zusätzlich als Parameter in DM-Befehlen der
IssueCommand, der RetrieveData und der TransferData Aktivitäten, z.B in der FROM Klausel
von einem SQL SELECT Ausdruck, verwendet werden. Dasselbe gilt für andere BPEL-
Variablen, wie z.B String oder Integer Variablen, die für Vergleiche in Prädikaten benutzt
werden können. In Bezug auf die Data Container Reference-Variable wird der logische Name
des Datencontainers in dem Befehl eingetragen. Der SIMPL-Core sorgt für die Identifizie-
rung dieses Datencontainers durch eine Abfrage an die Ressource Management-Komponente.

Das SIMPL-Rahmenwerk stellt über die DM Pattern Plug-in-Komponente der Func-
tion Catalog-Komponente (siehe Kapitel 3.1) eine Reihe von Datenmanagementpatterns bereit.
Diese Datenmanagementpatterns decken wesentliche Datenbereitstellungsaufgaben für
Simulationsworkflows ab. Der Workflow-Modellierer kann ausgewählte DM-Patterns als
Hilfsmittel verwenden, um seine Datenmanagementoperationen auf einfachere Weise zu
definieren. Das Beispiel der Join-Operation (siehe Kapitel 5.2), wird auf der Abbildung
3.2 illustriert. Der Nutzer muss in diesem Fall einige Parameterwerte setzen, z.B zwei
Eingabe-Variablen, eine Ausgabe-Variable und eine Join-Bediengung, anstatt konkreten
Datenmanagementoperationen zu definieren, welche die Verknüpfung von Datenmengen
realisieren. Zur Identifikation und Unterscheidung von anderen Elmenten in einem
DM-Befehl werden die Variablen mit umgebenden Nummerneichen markiert.

Die Abbildung dieses Patterns auf ein ausführbares Workflow-Fragment basiert auf der
Anwendung von Regeln. Die zuvor spezifizierten Parameter der Patterns und Metadaten
über diese Parameter entscheiden, ob eine Regel auf das Pattern angewendet werden
kann oder nicht. Die Abbildung 3.2 zeigt die Transformationsregeln am Beispiel des
parametrisierten Join-Patterns. Wenn die zwei Eingabe-Variablen und die Ausgabe-Variable
des Join-Patterns auf Tabellen in derselben Datenbank verweisen, dann ist die Ausführung
einer Issue Command-Aktivität ausreichend. Dieser Fall wird auf der Abbildung 3.2(b))
dargestellt. Falls hingegen die Ausgabe-Variable das Ergebnis der Join-Operation direkt im
Workflow speichert, dann wird eine RetrieveData-Aktivität ausgeführt (siehe Abbildung 3.2
(c)). Wenn aber alle drei Variablen auf drei unterschiedlichen Datenressourcen referenzieren,
z.B eine Comma-Separated Value (CSV)-Datei und eine Datenbanktabelle als Quelle und

30

3.2 Modellierung des Datenmanagements in Simulationsworkflows

inputVariable1 = “input1“

inputVariable2 = “input2“

joinCondition = “natural join“

outputVariable = “output“

Join
DM-P

IssueCommand
DM-A

INSERT INTO #output#

(SELECT * FROM #input1#

NATURAL JOIN #input2#)

RetrieveData
DM-A

SELECT * FROM #input1#

NATURAL JOIN #input2#

à #output#

LOAD FILE #input1#

à #rowSet1#

Assign=

WriteDataBack
DM-A

SELECT * FROM #input2#

à #rowSet2#

#rowSet3# := (#rowSet1#

NATURAL JOIN #rowSet2#)

inputDataSet = “rowSet3“

targetContainer = “output“

RetrieveData1
DM-A

RetrieveData2
DM-A

(a) Original, parameterized data join pattern

(b) Transformation if all variables refer to

 database tables in the same SQL database

(c) Transformation for same case as in (b) except

 that output variable directly stores join result

(d) Transformation if all variables refer to data

 containers in different data sources

Abbildung 3.2: Das Join-Pattern und seine Transformation auf ausführbare Workflow-
Fragmente[RRS+ny]

eine Datenkbanktabelle als Ziel, dann werden in diesem Fall zwei RetrieveData-Aktivitäten
benötigt. Diese zwei RetrieveData-Aktivitäten laden die Daten aus den beiden CSV-Datein im
Prozesskontext des Workflows. Anschließend verknüpft eine BPEL Assign-Aktivität, die beide
Datenmengen und eine WriteDataBack-Aktivität speichert das Ergebnis der Join-Operation in
der Zieltabelle der Datenbank ab (siehe Abbildung 3.2 (d)).

Diese Transformation kann erst festgelegt werden, wenn die involvierte Datenres-
sourcen bereits bekannt sind. Im Falle einer statischen Einbindung der Datenressource kann
die Transformation in der Deployment-Phase des Workflows stattfinden. Falls aber die
Daten zur Laufzeit eingebunden werden sollen, dann wird jedes Pattern in ein einzelnes
Workflow-Fragment konvertiert. Anschließend wird die Workflow-Fragment-Technologie
eingesetzt, um diese Fragmente dynamisch in einem bereits ausgeführten Workflow zu
integrieren [EUF09] [Hum11].

Neben dem Join-Pattern gibt es weitere Datenmanagementpatterns, die auf ausführ-
baren Workflow-Fragmente über die Anwendung spezifischer Regeln transformiert werden
können. Darunter zählen u.a Patterns für die Datenübertragung von Datenressourcen auf
anderen Datenressourcen oder Patterns, die weitere ETL-Operationen beschreiben. Auf das
Thema Datenmanagmentpatterns und die Transformation der Patterns auf ausführbaren
Workflow-Fragmente werden wir in den Kapiteln 5 bzw. 6 näher eingehen.

31

3 Das SIMPL-Rahmenwerk

3.3 Metadaten zum Datenzugriff in heterogenen Umgebungen

Die Metadaten beschreiben die Datenabbildungen zwischen den vereinheitlichten Schnitt-
stellen des SIMPL Core und den unter Umständen heterogenen Zugriffsmechanismen auf
verschiedenen Datenressourcen. In der Resource Management-Komponente (siehe Abbildung
3.1) werden insgesamt vier Arten von Objekten registriert:

1. Data Sources

2. Data Containers

3. Data Source Connectors

4. Data Converters

Abbildung 3.3 zeigt die Klassifizierung der Metadaten sowie die Kardinalitäten der
Beziehungen zwischen den einzelnen Metadaten-Klassen. Ein Logical Source Name
wird genau eine konkrete Datenressource zugeordnet. Er agiert als Identifikator für
diese Datenressource innerhalb des SIMPL-Rahmenwerks. Er kann als ein logischer
Datenressource-Deskriptor innerhalb der Workflows verwendet werden. Ein logischer
Datenressorce-Deskriptor ist entweder ein logischer Name oder ein Dokument, das einige
funktionelle oder nicht funktionelle Anforderungen für den Zugriff auf eine Datenressource
beschreibt. Die Interface Description beinhaltet Informationen über die Schnittstellen der
Datenressourcen. Die Security Entity, z.B Benutzernamen und Password, ermöglichen den
authentifizierten Zugriff auf die Datenressource. Die Descriptin of Further Functional or not
Functional Properties beinhalten Eigenschaften der Datenressourcen, wie z.B die maximale
Antwortzeit. Diese Beschreibungen werden in einem Late Binding verwendet. Das Data
Container Objekt beschreibt die Datencontainer, die von den entsprechenden Datenressourcen
verwaltet werden. Diesen ist ein Logical Container Name zugewiesen, der als eine Referenz
für Datencontainer eingesetzt werden kann. Dieser Name wird auf einen konkreten
Local Container Identifier abgebildet. Dadurch werden die Datencontainer innerhalb der
Datenressourcen eindeutig identifiziert. Das Data Source Connector Objekt beschreibt ein Data
Source Connector, das die Operationen der SIMPL Core-Komponente, die gegen bestimmte
Datenressourcen ausführbar sind, implementiert. Die Connector Properties Descriprtions
beschreiben die notwendige Eigenschaften einer Datenressource, die ein Connector heben
muss, um eine Verbindung mit der Datenressource herstellen zu können. Die Source
Properties Descriprion beschreiben die notwendige Eigenschaften eines Connectors, die eine
Datenressource haben muss, um eine Verbindung mit dem Connector herstellen zu können.
Diese Beschreibungen werden aufeinander abgeglichen, um den geeigneten Connector für
eine gewisse Datenressource auszuwählen.

Über das Data Format for Connector wird ein konkretes Datenformat beschrieben.
Auf dieser Art und Weise wird das Eingabe- bzw. Ausgabeformat, das der Connector
unterstützt, dem Data Converter Objekt bekanntgegeben. Über das Data Format for Converter
wird das Eingabe- bzw. Ausgabeformat, das der Converter unterstützt, dem Data Source
Connector Objekt bekanntgegeben. Die Datenformate der beiden Objekten werden a
miteinander verglichen, so dass Objekte, die das gleiche Datenformat unterstützen, gepaart

32

3.4 Zugriff auf Datenressourcen mittels SIMPL

Data Source

Connector

Object

Data Converter

Object

Data Source

Object

0..N

1

0..M 0..N

1

1

1

1

1..M

0..N

11

0..1

1..N 1..N

1

1..N 1

Matching

0..1 1

M
a

tc
h

in
g

1

0..1

Logical Source

Name

Interface

Description

Security Entity

Source Properties

Description

Data Format for

Converter

Data Format for

Connector

Data Format for

Workflow

Connector Properties

Description

Description of Further Fct.

or Non-Fct. Properties

Data Container

Object

Logical Container

Name

Local Container

Identifer

1

1

1

1

1 0..N

Unique Identification

Abbildung 3.3: Klassifizierung der Metadaten zur Vereinheitlichung heterogener Datenzu-
griffsmechanismen [RRS+ny]

werden. Das Data Format for Workflows ist ebenfalls eine Datenformatbeschreibung, die das
Data Converter Objekt braucht . Hierbei wird bekanntgegeben, welches Datenformat der
Converter als Eingabe von einem Workflow erwartet und welches Datenformat der Converter
als Ausgabe an den Workflow zurückschickt. Für jedes mögliche Datenformat-Paar gibt es
maximal einen Converter.

3.4 Zugriff auf Datenressourcen mittels SIMPL

Um den Zugriff auf Datenressourcen über DM-Aktivitäten zu ermöglichen, muss der
SIMPL-Core an konkreten Informationen bezüglich des Data Source Deskriptors, wie z.B die
Beschreibung der Schnittstelle, den geeigneten Daten-Konnektor und den passenden Daten-
konverter, kommen. Zusätzlich müssen Datencontainer in diesen Datenressourcen eindeutig
identifiziert werden. Im Folgenden beschreiben wir wie die Service Bus-Komponenten
miteinander interagieren, um den Datenzugriff zu ermöglichen. Dies wird auf Abbildung
3.4 dargestellt. Der an den SIMPL-Core gesendete logische Datenressourcen-Deskriptor (1)
enthält spezifizierte Anforderungen für eine Datenressource (siehe Kapitel 3.2). Falls es
unmittelbar auf eine konkrete Datenressource über einen Logical Name (siehe Kapitel 3.2)
zugegriffen werden darf, dann überspringen wir die Schritte 2 bis 5.

Die spezifizierten Zugriffsanforderungen werden dann von der SIMPL Core-Komponente
zu der Service/Ressource Discovery-Komponente geschickt(2). Die Service Discovery-
Komponente schickt anschließend eine Anfrage an die Resource Management-Komponente.

33

3 Das SIMPL-Rahmenwerk

Service Bus

Service/

Resource

Discovery

1. Logical Data

Source Descriptor

Resource

Management

SIMPL Core

2. Requirements Specification

4. Logical Source Names

5. Chosen Source Name

6. Query with

Source Name

7. Information Necessary

for Data Source Access

8. Data Source

Access

3. Query for Qualif.

Data Sources

Abbildung 3.4: Interaktion der Service Bus Komponenten[RRS+ny]

Letztere findet die passende Datenressourcen, die Zugriffsanforderungen erfüllen (3 und 4).
Die Service Discovery-Komponent wählt basierend auf Kriterien in der Spezifikation der
Zugriffsanforderungen, wählt eine Datenressource aus und schickt den logischen Namen der
Datenressource zu der SIMPL Core-Komponente zurück(5). Die SIMPL Core-Komponente
fragt in der Resource Management-Komponente nach allen notwendigen Informationen,
die für den Zugriff auf die gewählte Datenressource notwendig sind, ab (6 und 7). Mit
Hilfe dieser Informationen kann nun die SIMPL Core-Komponente auf die Datenressource
zugreifen.

Im Rahmen dieses Kapitels wurde das SIMPL Rahmenwerk vorgestellt. Wie in die-
sem Kapitel beschrieben, stellt SIMPL u.a mit Hilfe von Datenmanagementpatterns eine
generische und erweiterbare Datenmanagement- und Datenbereitstellungsabstraktion für
Simulationsworkflows zur Verfügung. Es gibt aber auch eine Lücke, die noch geschlossen
werden muss. Es müssen zusätzliche Abstraktionsmechanismen, die auf Datenmanage-
mentpatterns basieren, entwickelt werden, um die Definition des Datenmanagements in
Simulationsworkflows zu vereinfachen. Diese neue Datenmanagementpatterns werden
anhand von konkreten Anwendungsszenarien, die im nächsten Kapitel vorgestellt werden,
im Kapitel 5 identifiziert und herausarbeitet. Diese neue Datenmanagementpatterns werden
anschließend im Kapitel 6 über die Festlegung geeigneter Abbildungsregeln auf ausführbare
BPEL-DM Aktivitäten oder Service-Aufrufe abgebildet.

34

4 Simulationsworkflows

Im Rahmen dieses Kapitels werden die Anwendungsfälle vorgestellt, aus denen die Da-
tenmanagementpatterns herausgearbeitet werden. Als erstes wird eine rechnergestützte
Simulation einer chemischen Reaktion mit dem ChemShell-Rahmenwerk (siehe Kapitel
2.3) beschrieben. Als zweites Anwendungsszenario wird eine Simulation der Strukturän-
derungen eines Knochens unter bestimmten Belastungen auf den Knochen mittels des
FEM-Simulationsrahmenwerks Pandas (siehe Kapitel 2.3) vorgestellt. Bei dem dritten An-
wendungsszenario handelt es sich um die gleiche Simulation auf eine Multi-Domain-,
Multi-Skelen- und Multi-Tool-Ebene (siehe Kapitel 2.2.2). Die Durchführung der Simulation
erfolgt über eine Kopplung der Simulationsprogramme Pandas und Matlab. Die Vorstellung
des Prozesses zur Reduktion eines komplexen mathematischen Modells, der von Simula-
tionen durchgeführt werden kann, schließt dieses Kapitel ab. Das Teilkapitel 4.1 basiert auf
[Mü10], das Teilkapitel 4.2 auf [RRS+ny] und [RSM], das Kapitel 4.3 auf [Dor11] und das
Teilkapitel zur Modellredektion auf [Rem11]. Andere Quellen werden explizit angegeben.

4.1 Chemische Reaktion mit Hilfe der Verwendung eines
Katalysators

Mit dem ChemShell-Rahmenwerk können hybride quantenmechanische/molekularmecha-
nische (QM/MM) Simulationen durchgeführt werden. Chemshell ist kein FEM-basiertes
Rahmenwerk. In diesem Fall wird die Schrödinger Gleichung eingesetzt. Die Lösung der
Schrödinger Gleichung ist typischerweise rechen-und datenintensiv und wird von anderen
externen Werkzeugen übernommen. Chemshell stellt die Molekülstruktur als Eingabe
für diese externen Werkzeuge bereit. Über einen iterativen Ansatz wird die Schrödinger
Gleichung anhand der gegebenen Molekülstruktur von diesen externen Werkzeuge gelöst.
Die Energie der Atome und die Kräfte zwischen denen lassen sich über die Ergebnisse der
Simulation ableiten. Für weitere Details für QM/MM Kalkulationen, sei der interessierte
Leser auf [P.S03] verwiesen.

Das folgende ChemShell Beispiel simuliert die Konversion des Glutamats in Methyl-Aspartat
unter Verwendung des Enzyms Glutamat-Mutase als Katalysator. Das Beispiel illustriert
eine typische hybride QM/MM Simulation. Aufgrund der Tatsache, dass die chemische
Details dieser Reaktion nicht einer Bestandteil dieser Arbeit sind, wird dieses Beispiel auf
eine vereinfachte Art und Weise präsentiert.

Auf der Abbildung 4.1 wird der Simulationsworkflow dargestellt. Die Simulation

35

4 Simulationsworkflows

startet mit dem Laden der benötigten Eingabedaten, wie z.b eine Protein-Datei, die aus
der Protein-Datenbank1 heruntergeladen werden kann. Zur Vorbereitung der Simula-

load input files
molecular
dynamic

calculation

automatically
select input for

QM/MM

visualization
select input for

QM/MM

prepare QM/MM
input

hybrid quantum
mechanics/molecular
mechanics simulation

visualization
validate

intermediate
results

visualization
verify final

results

next
intermediate

result

Colors

input outputinput

final results

intermediate
results

molecular
dynamic data

Abbildung 4.1: Simulationsworkflow einer chemischen-Reaktion mit Hilfe der Verwendung
eines Katalysators [Mü10]

tion wird eine klassische mulekur- dynamische Kalkulation durchgeführt. Die Ergebnisse
dieser Kalkulation werden in einer Datei abgespeichert. Diese Ergebnisse werden vom
Wissenschaftler selbst oder von einer Aktivität, die dazu ein Programm, Werkzeug oder
einen Service stößt, verwendet werden, um die Eingabedatendaten zur Durchführung der
Simulation zu selektieren. Der Wissenschaftler hat an dieser Stelle auch die Möglichkeit
über den interaktiven Modus auf die Simulationsvorbereitung einzugreifen. Er kann die
Simulation abbrechen oder mit der Selektion der Eingabedaten weitermachen. Um dem
Wissenschaftler dabei zu helfen, seine Entscheidung zu treffen, werden die Ergebnisse der
molekular-dynamischen Kalkulation visualisiert.

Um die Eingabedaten für die QM/MM-Simulation vorzubereiten, werden zusätzliche
Informationen auf Variablen, die vom Chem-Shell bereitgestellt werden, geladen. Die
Durchführung der QM/MM Simulation wird von verschiedenen externen Werkzeugen
übernommen, während ChemShell für die Bereitstellung der Variablen und die Speicherzu-
weisungen sorgt.

1http://www.rcsb.org/pdb/

36

4.2 Knochenmodellierung mit Pandas

Zur Durchführung der QM/MM-Simulation wird die Schrödinger-Gleichung gelöst.
Die Berechnungen, die zu diesem Zweck durchgeführt werden, sind typischerweise sehr
rechenintensiv. Daher kann die Simulation lange dauern. Weiterhin wächst die Anzahl
der temporären Daten mit der Simulationszeit. Deshalb werden Zwischenergebnisse
der Simulation sehr oft in verschiedenen Dateien abgespeichert. Diese Dateien müssen
serialisiert und syntaktisch analysiert werden. Dieser Vorgang ist jedoch sehr aufwändig,
weil diese Dateien sehr komplex und groß sind.

Ein Werkzeug visualisiert die Zwischenergebnisse, so dass der Wissenschaftler die-
se Zwischenergebnisse asynchron validieren kann. Wenn die Simulation beendet wird,
werden die Endergebnisdaten auf verschiedenen Dateien geschrieben. Sie beinhalten
alle Informationen, die zur Reproduktion der chemischen Reaktion notwendig sind. Der
Wissenschaftler kann die chemische Reaktion visualisieren, indem er diese Dateien in einem
geeigneten Visualisierungswerkzeug importiert. Dadurch kann der Wissenschaftler die
Endergebnisse verifizieren.

4.2 Knochenmodellierung mit Pandas

Im Folgenden wird das zweite Anwendungsszenario vorgestellt. Es geht um einen Simulati-
onsworkflow, der die Umformung einer Knochenstruktur unter bestimmten Belastungen
auf den Knochen beschreibt. Das Pandas- Rahmenwerk (siehe Kapitel 2.4) simuliert diese
Knochenstrukturänderungen auf der biomechanischen Ebene. Zu diesem Zweck wird die
FEM-Methode (siehe Kapitel 2.2.2) eingesetzt. Abbildung 4.2 sind die Aktivitäten und die
relevanten Eingabe- und Ausgabe-Daten des Simulationsworkflows zu sehen. Der Workflow
ist in drei Phasen eingeteilt: die preprocessing Phase, die Lösungsphase und die post-processing
Phase.

Create FEM
Parameters

Bone

information

Body data FEM

parameters
Initial/Boundary

conditions

Simulation

commands

FEM

Grid

Matrix

Ax=b

(intermediate)

Results

Adjust Initial/
Boundary
Conditions

Visualize Results

Pictures

Create
Simulation
Commands

Solve Matrix
Equations

Define Simulation
Body

Preprocessing Phase Solving Phase Postprocessing Phase

Abbildung 4.2: Der Pandas-Simulationsworkflow [RRS+ny]

In der preprocessing Phase startet er über die Aktivität Define Simulation Body mit dem
Laden grundlegender Eingabe-Daten bezüglich des zu simulierenden Knochens aus
verschieden Dateien. Beispiele solcher Informationen sind die geometrische Struktur des
Knochens und die materielle Parameter des zu simulierenden Knochens. All diese Daten
müssen in ein Format konvertiert werden, das während der Lösungsphase von Pandas

37

4 Simulationsworkflows

benötigt wird. Anschließend werden diese Daten in Dateien in der Pandas Umgebung zur
Weiterverarbeitung abgespeichert. Die zweite Aktivität Create FEM Parameter extrahiert
FEM-Parameter, z.B. Interpolationsfuktionen, aus einer unstrukturierten Datei, in der
alle verfügbaren Parameter zusammengefasst werden. Danach stellt der Workflow die
Anfangs-Bediengungen zur Konfiguration der Knochenstruktur der Simulation ein.
Weiterhin werden die Randbediengungen definiert, z.B der zeitabhängiger Druck von außen
auf den Knochen, der zur menschlichen Bewegung passend ist. Die relevante Eingabe-Daten
dieser Aktivität werden aus verschiedenen Comma Seperated Value (CSV)-Dateien geladen.
Die Wissenschaftler müssen nun Teilmengen dieser Daten selektieren und sie des benötigten
Datenformats gemäß anpassen. Die letzte preprocessing Aktivität schreibt in einer Datei eine
Menge von Simulationsbefehlen. Zum Beispiel wählt sie einen Matrixlöser aus und definiert
die Diskretisierung der kontinuierlichen Simulationszeit in n Zeitschritte t0 bis tn.

In der Lösungsphase kommt Pandas in seine Simulationsschleife. Hierbei werden
die Eingabe-Daten aus der preprocessing Phase verwendet. Damit werden die Matrix-
Gleichungen der Simulation erzeugt. Zu jedem Zeitschritt ti wird ein FEM-Gitter erzeugt
oder angepasst, so dass die Basis zur Aufstellung der Matrix-Gleichungen Ai· xi= bi gebildet
wird. Zur Generierung der Zwischen- und Endergebnisse werden diese Gleichungen
anschließend gelöst. Ein FEM-Gitter beinhaltet eine große Anzahl von Gitterelementen.
Diese Gitterelementen sowie die Matrizen Ai, die Vektoren xi und bi und die Zwischen-
und Endergebnisse, die aus dem Vektor xi abgeleitet werden, werden typischerweise im
Hauptspeicher der Pandas-Software abgespeichert. Für einige Zeitschritte können diese
Daten zur weiteren Behandlung in der post-processing Phase auch in einer Datenbank oder
in Dateien gespeichert werden. Die Lösungs-Phase wird nach dem Zeitschritt tn beendet.
Abschließend speichert der Workflow die auf den Endvektor xn basierenden Endergebnisse
in einer CSV-Datei.

Zur Visualisierung aller zuvor gespeicherten Zwischen- und Endergebnisse sowie
anderer relevanten Daten transformiert die Aktivität Visualize Results in der Postprocessing
Phase all diese Daten in ein für Visualisierungswerkzeuge geeignetes Format. Zum Beispiel
verknüpft sie für jeden relevanten Zeitschritt der Lösungs-Phase die FEM Gitterdaten und
die Simulationsergebnisse, um Bilder zu kreieren, die diese Informationen kombinieren und
überlagert darstellen. Damit hat der Wissenschaftler die Möglichkeit alle für ihn relevante
Informationen graphisch zu analysieren.

4.3 Pandas-Matlab-Kopplung

Bei dem Anwendungsfall Pandas-Matlab-Kopplung geht es um eine Simulation, die auf
einer Multi-Tool und Multi-Skalen Ebene stattfindet. Pandas berechnet die biomechanische
Belastungen, die zur Änderungen der Struktur des Knochens führen, auf einer größeren
Raumskala, während Matlab eine Berechnung der systembiologischen Komponenten der
Kalziumbildung des Knochens auf zellularer Ebene und damit auf einer kleineren Raum-
skala durchführt. Weiterhin wird bei Matlab auf einer feineren Zeitskala gerechnet. Zur

38

4.3 Pandas-Matlab-Kopplung

Koordination und zum Datenaustausch zwischen den beiden Simulationsprogrammen und
ihren Workflows wird ein Data-Manager-Workflow eingesetzt. Da die Implementierung der
Pandas-Matlab Kopplung im Laufe dieser Arbeit noch überarbeitet wird, wird nicht auf die
Implementierungsdetails eingegangen, sondern es folgt eine konzeptionelle Beschreibung
dieses Anwendungsszenarios. Auf Abbildung 4.3 wird das Zusammenspiel zwischen den
drei beteiligten Workflows dargestellt.

Der Workflow Pandas-Bone berechnet die Pandas-Simulation, wie im Kapitel 4.2 beschrieben
wird. Der Workflow Matlab-Bone führt die Matlab Simulation aus. Der Workflow Daten-
Manager agiert zwischen dem Pandas-Bone-und dem Matlab-Bone und ist dafür zuständig,
den Workflow Matlab-Bone über den Workflow Pandas-Bone anzutriggern. Darüber hinaus,
verwaltet er den Datenaustausch zwischen den beiden Simulationswerkzeugen. Im Rahmen
dieser Arbeit ist es besonders interessant, wie der Datenaustausch zwischen den drei
Workflows stattfindet.

Nachdem die Preprocessing-Phase des Pandas-Bone beendet wurde (siehe Unterkapitel 4.2)
wird der Workflow Data-Manager über die Aktivität Start Data-Manager gestartet. Damit man
eine Matlab-Simulation ausführen kann, muss zuerst eine neue Simulationsinstanz erzeugt
und vorbereitet werden. Da aber die Simulation in diesem Fall von mehreren Simulations-
instanzen, die auf unterschiedlichen Matlab-Rechner liegen, gemeinsam ausgeführt wird,
wird über die Aktivität Prepare Matlab Instanzes eine Schleife zur Vorbereitung der neuen
Simulationsinstanzen gestartet. Beim ersten Durchlauf wird die erste Simulationsinstanz für
Matlab erzeugt. Hierbei wird der Simulation eine neue ID vergeben und das dazugehörige
Arbeitsverzeichnis erstellt. Anschließend wird der Siurce-Code in der neuen Simulations-
instanz kopiert und entpackt. Diese Simulationsdateien enthalten die M-Datei (diese Datei
beinhaltet Matlab-Befehle) und weitere für die Simulation relevante Daten, wie z.B Initialisie-
rungsdaten. Diese Schleife wird so lange durchlaufen, bis alle Simulationsinstanzen erzeugt
und vorbereitet wurden. Als nächstes kommt der Workflow Pandas-Bone in seine Lösungs-
phase (siehe Unterkapitel 4.2) und berechnet eine bestimmte Anzahl an Simulationsschritten.
Anschließend werden die Simulationsdaten in einer Datenbank abgespeichert. Dazu zählen
die Gitter-Elemente und die darin enthaltenen Gauss-Punkte, die für die Ausführung der
Matlab-Simulation relevant sind. Die Gauss-Punkte sind über die Gitter-Elemente verteilt.
Abbildung 4.4 zeigt ein Beispiel, wie die Verteilung der Gauss-Punkte auf die einzelnen
Gitter-Elemente eines zweidimensionalen Gitters aussehen kann.

Über die Aktivität Prepare Matlab Bone des Workflows Data-Manager werden die Matlab
Berechnungen vorbereitetet. Bevor die Matlab Berechnung beginnt, findet eine Aufteilung
des Simulationsraums und daher auch der Daten zwischen den einzelnen Matlab-Rechner
statt. In der Aktivität Prepare Matlab Bone des Data-Manager Workflows werden aus der zuvor
in der Datenbank abgespeicherten Berechnungsdaten, die Anzahl der Gitter-Elemente und
der Gauss-Punkte je Element festgelegt. Die Gauss-Punkte (und implizit die Gitter-Elemente)
werden nun auf die einzelnen Matlab-Rechner verteilt und berechnet. Auf diese Art und

39

4 Simulationsworkflows

Abbildung 4.3: Beispielhafte Verteilung der Gauss-Punkte über die Gitter-Elemente

Weise findet eine Parallelisierung der Berechnungen der Gauss-Punkte statt.

Damit der Workflow Matlab-Bone die Simulationsberechnungen starten kann, müs-
sen die Eingabe-Daten für die Matlab-Berechnungen für jede Matlab-Instanz vorbereitet
werden. Hierbei werden zuerst über die Aktivität Create Matlab Input-Data-File die Eingabe-
dateien erzeugt. Anschließend kopiert sie die aus der Pandas-Umgebung bereitgestellten
Daten in eine CSV Datei. Über die Aktivität Copy Input-Data-File to Matlabnode werden
diese Daten auf die jeweilige Matlab-Rechner kopiert. In dieser CSV-Datei der jeweiligen
Matlab-Rechner stellt eine Zeile einen Gauss-Punkt und die Spalten dessen Variablenwerten
dar. Das bedeutet, dass ein Gitter-Element, welches mehrere Gauss-Punkte enthält, sich über
mehreren Zeilen der CSV-Datei erstreckt. Darüber hinaus werden zusätzliche Daten aus
einer anderen Datei in einer zweiten CSV-Datei kopiert. Als nächstes wird über die Aktivität
Start Simulation die Matlab-Simulation gestartet und auf die einzelnen Matlab-Ergebnisse
gewartet. Über die Aktivität Copy Output-Data-File from Matalab Node werden die Ergebnisse
jeder Matlab-Instanz auf zwei Ausgabedateien auf den Workflow-Rechner kopiert. Von
einer davon (Beschreibung der Gauss-Punkte) wird der Inhalt dieser Datei mit dem der
anderen Dateien der anderen Matlab-Instanzen gemerget und dann über die Aktivitäten
Insert Output-Data-File into DB und receive all Matlab-Bone in die Pandas-Datenbank geladen.

40

4.4 Modellreduktion

Anschließend wird überprüft, indem man in Pandas-Bone zurückkehrt, ob die Simulation
beendet werden soll oder nicht. Falls das n-te Simulationsschritt erreicht wurde oder die
Ergebnisse der Simulation zufriedenstellend sind, wird die Simulation beendet.

Wenn die Simulation beendet wurde, wird der Data-Manager über den Aufruf der
stop-Operation beendet. Nach dem Beenden des Data-Managers wird die Simulation
abgeschlossen, indem Pandas-Bone in die Post Processing-Phase (sehe Unterkapitel 4.2)
übergeht. Wenn die Simulation nicht beendet wurde dann wird weiter gerechnet.

4.4 Modellreduktion

Das letzte Anwendungsszenario, das im Rahmen dieser Arbeit untersucht wird, ist einer
Prozess zur Reduktion eines mathematischen Modells, der von Simulationen durchgeführt
werden kann. Dabei handelt es sich um die Reduktion eines Finite-Element-Modells eines
elastischen Mehrkörpersystems. Eine Reduktion des mathematischen Modells bei elastischen
Mehrkörpersysteme ist notwendig, da das mathematische Model aus unendlich abzählbaren
gewöhnlichen Differentialgleichungen besteht. Der Prozess wird in drei Teilen aufgeteilt.
Zuerst werden die Daten des zu reduzierenden Modells bereitgestellt, danach findet die
Durchführung der Modellreduktion statt und zum Schluss werden die Ergebnisdaten ausge-
wertet, visualisiert und anschließend zur Weiterverarbeitung exportiert. Abbildung 4.5 zeigt
den Ablauf der Modellreduktion.

M
at

la
b

B
en

u
tz

er

FE-Daten
importieren

Reduktions-
methode
wählen

Fehlernorm
berechnen

Fehler
ausreichend gering?

Frequenzgang
plottenJa

Konfiguration
anpassen

Frequenzgang
und Fehler
bewerten

Qualität ausreichend?

Daten
exportieren

Reduktionsmethode passend?

Nein

Modelldaten von
FE-Programm

Nein

Ja

Reduktions-Konfiguration

Nein

Frequenzgang und
Fehlerkennzahlen

Export
konfigurierenJa

Export-
konfiguration

Modellimport
konfigurieren

Import-
Konfiguration

Import-
Benachrichtigung

Reduktion
konfigurieren

Modellreduktion

Abschluss-
Benachrichtigung

reduziertes
Simulations-

modell

R
ed

u
kt

io
n
 /

A
u
sw

er
tu

n
g

Im
p
or

t
/

E
xp

or
t

Ausgangsmodell
in Matlab

reduziertes
Modell in Matlab

Abbildung 4.4: Der Prozess zur Modellreduktion [Rem11]

41

4 Simulationsworkflows

Der Simulationsablauf findet auf zwei Ebenen statt. Auf der Benutzer-Ebene wird die
Simulation gestartet und gesteuert, während auf der Matlab-Ebene der Daten-Import und
-Export sowie die Durchführung der Modellreduktion realisiert wird.

Damit mit der Simulation der Reduktion begonnen werden kann, müssen zuerst
die notwendigen Daten des zu reduzierenden Modells in Matlab importiert werden. Bevor
dies geschieht, müssen einige Parameter vom Benutzer konfiguriert werden. Dazu zählen
die Parametrierung der Freiheitsgrade der Systemeingängen- und -ausgängen, die Definition
der Dämpfung und der Starrkörperfreiheitsgrade und die Festlegung der Skalierung und
der Ursprungsverschiebung. Zusätzlich muss eine Datenquelle ausgewählt werden, aus
der die FE-Modelldaten gelesen werden. Diese Daten werden in den Matlab-Workspace
importiert. Anschließend speichert die Aktivität FE-Daten Importieren all diese Daten, die
den Input zur Durchführung der Simulation bilden, in einer Datei ab.

Nachdem die notwendigen Daten importiert wurden und der Benutzer die Reduktionsme-
thode ausgewählt und konfiguriert hat, kann mit der eigentlichen Durchführungsphase
begonnen werden. Diese wird in einem iterativen Prozess eingebunden, der so lange
durchläuft, bis die Ergebnisse des Reduktionsprozesses zufriedenstellend sind. Zur
Durchführung des Reduktionsprozesses wird z.B die Methode der modalen Reduktion
verwendet. Bei jedem Prozess-Schritt, müssen zuerst die Eigenvektoren, die den Unterraum
v, auf den das zu reduzierende Modell projiziert wird, aufspannen, berechnet werden. Diese
Eigenvektoren werden auch Eigenmoden genannt. Einige dieser Eigenvektoren werden
nun ausgewählt, um die Projektionsmatrix aufzustellen und zu generieren. Abschließend
lassen sich die Eigenfrequenzen des reduzierten Modells aus den Eigenvektoren berechnen.
Für einige ausgewählte Prozess-Schritte werden die Ergebnisse der Modellreduktion in
einer Datei abgespeichert. Anschließend werden die Daten aus dem Matlab-Workspace
exportiert über die Aktivität Daten exportieren auf eine externen Datei kopiert.bzw in andere
Datenformate transformiert werden.

Nachdem die Reduktion des Modells durchgeführt wurde, wird die Qualität der
Ergebnisse über die Verwendung von Metriken automatisch überprüft. Sind die Ergebnisse
nicht zufriedenstellend, dann wird der Prozess-Schritt, nachdem die ursprüngliche
Konfiguration angepasst wurde, wiederholt. Diese Schleife wird solange durchlaufen, bis
die Qualität der Ergebnisse ausreichend ist. Ist dies der Fall, dann übergeht man an die
nächste Aktivität. Über die Visualisierung des Frequenzgangs und der Fehlerschätzung,
kann auch der Benutzer an der Evaluierung der Qualität der Ergebnisse beteiligt sein. Ist der
Benutzer mit der Qualität der Ergebnisse nicht zufrieden, dann wird der Simulationsschritt,
unter Verwendung derselben oder einer anderen Methode der Modellreduktion, wiederholt.
Ist die Qualität der Ergebnisse zufriedenstellend, dann werden diese zur Weiterverarbeitung
in einer externen Datei abgespeichert.

Im Rahmen dieses Kapitels wurden die Anwendungsszenarien, aus denen Daten-
managementpatterns identifiziert und herausgearbeitet werden, vorgestellt. Während der
Ausführung der Simulationen werden verschiedene großen Datenmengen, sowie heterogene
Datenquellen und Datenformate involviert, wie z.B Datenbanken und CSV-Dateien.

42

4.4 Modellreduktion

Aufgrund dieser Tatsache würde eine manuelle Durchführung der Datenmanagemen-
toperationen mit großer Wahrscheinlichkeit eine hohe Fehlerquote verursachen. Das
SIMPL-Rahmenwerk (siehe Kapitel 3), bietet eine Lösung für dieses Problem an. Es ist aber
schwer die Datenmangementoperationen für solche Simulationsanwendungen zu definieren.
Eine generische und konsolidierte Datenmanagementabstraktion über die Entwicklung
zusätzlicher Datenmanagementpatterns würde dieses Problem beseitigen.

43

5 Datenmanagementpatterns

In diesem Kapitel werden die im Rahmen dieser Arbeit entwickelten und verwendeten
Datenmanagementpatterns (DMPs) vorgestellt. Zunächst wird im Kapitel 5.1 kurz auf die
Pattern-Hierarchie eingegangen. Weiterhin werden wir grundlegenden Begriffe, die zum
Verständnis dieses Kapitels benötigt werden, erklären und definieren. Im Kapitel 5.2 wird
die erste Art von DMPs vorgestellt. Hierbei geht es um die Formalisierung und Beschreibung
der ETL-Patterns/Operationen. Im Kapitel 5.2 wird es auf die zweite Art eingegangen. Das
Data Transfer und Transformation Pattern und seine Container to Container Pattern, Data
Split Pattern und Data Merge Pattern werden ebenfalls formalisiert und erläutert. Eine
Formalisierung und Beschreibung des Data Iteration Patterns, der letzten Art der DMPs,
schließt dieses Kapitel ab.

5.1 Datenmanagementpatterns und Pattern-Hierarchie

Unter einem DMP versteht man ein Entwurfsmuster für den Zugriff auf Datenressourcen
und die Verarbeitung von Daten, die von diesen Datenressourcen verwaltet werden
[BHH+

10]. Im Rahmen dieser Arbeit werden solche DMPs auf einer abstrakten Ebene
entwickelt, um die Definition des Datenmanagements in Simulationsworkflows zu
vereinfachen und zu unterstützen. Für diese DMPs werden Datenmangagementoperationen
definiert, die den Transfer, die Transformation und das Speichern von Datenmengen
zwischen den Datenressourcen, die während der Ausführung eines bestimmten Simula-
tionsworkflows involviert werden, ermöglichen. Zur Beschreibung und Klassifizierung
der DMPs wurde eine Fünf Schichten-Hierarchie aufgebaut [RM11]. In diesem Dokument
wird im Rahmen der Entwicklung von DMPs die Herleitung dieser Hierarchie erläutert.
Auf der Abbildung 5.1 werden nicht alle Schichten angezeigt. Die Pattern-Hierarchie wird
im Kapitel 6.1 vervollständigt. In der obersten Schicht der Pattern-Hierarchie befinden
sich die Anwendungs-Orientierte Patterns. In dieser Schicht geht es um Patterns, die aus
konkreten Simulationsanwendungen/Anwendungsszenarien identifiziert und extrahiert
werden können. In der zweituntersten Schicht befinden sich die ETL-Patterns/Operationen,
die typische DM-Operationen in Workflows darstellen [RRS+ny]. Über die ETL Patterns/-
Operationen wird auf verschiedenen Datenressourcen zugegriffen, um das Extrahieren, die
Übertragung, die Transformation und das Speichern von Datenmengen zu ermöglichen. Die
ETL-Patterns sind für relationale Datenbankanwendungen bereits formalisiert und bekannt.
Wir werden sie aber mit dem im Rahmen dieser Arbeit verwendeten Konzept entsprechend
anpassen. In dieser Hierarchie gibt es weitere Schichten mit DMPs. Diese sind aber noch
nicht formalisiert und werden daher als ”unbekannte Patterns” betrachtet. In diesem Kapitel

45

5 Datenmanagementpatterns

Abbildung 5.1: Die Pattern-Hierarchie vgl.[RM11]

werden wir diese Patterns formalisieren und erläutern. Auf der untersten Schicht befinden
sich die Workflow-Fragmente, etwa BPEL-DM-Aktivitäten oder Service-Aufrufe, auf die
die Datenmanagementpatterns abgebildet werden sollen. Wie das geschieht und welcher
Mechanismus dabei verwendet wird, werden wir im Kapitel 6 erklären.

Bevor wir mit der Formalisierung und Erlaüterung der aus den Anwendungsszena-
rien identifizierten Patterns fortfahren, werden wir zunächst einige Begriffe, die für das
Verständnis dieses Kapitels benötigt werden, erklären und definieren.

Unter einer Datenressource versteht man ein System, das Daten speichern, verwalten
und/oder bereitstellen kann, z.B eine Datenbank oder ein Dateisystem vgl.[RRS+ny]. Im
Folgenden definieren wir abstrakt die Menge der Datenressourcen, die für unsere Patterns
relevant sind:

R = {r1, ..., rm} mit i ∈ {1, ..., m} m ≥ 1.

Eine Datenquelle ist eine Datenressource, die Daten bereitstellt, die der Nutzer bzw.
der Klient extrahieren kann. Die Menge der Datenquellen bildet eine Teilmenge der Menge

46

5.1 Datenmanagementpatterns und Pattern-Hierarchie

der Datenressourcen. Im Folgenden definieren wir die Menge der Datenquellen:

Q = {q1, ..., qs}⊆ R mit j ∈ {1, ..., s}, s ≥ 1 und s ≤ m.

Eine Datensenke ist eine Datenressource, in der Daten abgespeichert werden können.
Die Menge der Datensenken bildet die zweite Teilmenge der Datenressourcen. Die
mathematische Definition der Menge aller Datensenken sieht wie folgt aus:

P = {p1, ..., pr} ⊆ R mit k ∈ {1, ..., r}, r ≥ 1 und r ≤ m.

Eine Datenressource kann sowohl eine Datenquelle als auch eine Datensenke sein.
Das bedeutet, dass die Schnittmenge der Mengen Q und P nicht unbedingt leer sein muss.
Jede Datenressource (und damit auch jede Datenquelle und -senke) verwaltet eine Menge
von Datencontainern. Ein Datencontainer (siehe Kapitel 3.2) ist eine eindeutig identifizierbare
Sammlung von Daten innerhalb einer Datenressource. Im Rahmen dieser Arbeit unter-
scheiden wir zwischen persistenten und temporären Datencontainern. Einer persistente
Datencontainer steht dauerhaft zu Verfügung. Zum Beispiel kann ein persistenter Datencontai-
ner eine Tabelle einer Datenbank oder eine Datei in einem Dateisystem sein. Einer temporäre
Datencontainer steht nur für einen bestimmten Zeitraum oder einen Gültigkeitsbereich zur
Verfügung. Zum Beispiel kann ein temporärer Datencontainer eine BPEL Variable in einem
Variablepool einer Workflow-Maschine oder eine JAVA Variable in einem Java Heap Size sein.
Es folgt eine mathematische Definition der Menge aller Datencontainer aller Datenressourcen:

C = {c1, ..., ct} mit l ∈ {1, ..., t} und t ≥ 1 und t ≥ m.

An dieser Stelle möchten wir den Zusammengang zwischen den zuvor definierten
Begriffen erläutern. Wir definieren ∀ cl ∈ C die Abbildung:

Cont : R→ P(C) mit P(C) := {U | U ⊆ C} und ∅ /∈ P(C).

Diese Abbildung ordnet jeder Datenressource ri ∈ R (und automatisch auch jeder
Datenquelle qj ∈ Q und jeder Datensenke pk ∈ P), Elemente der Potenzmenge von C zu,
wobei Cont(ri) jder Datenressource ri die Datenconrainer zuordnet, die diese Datenressource
verwaltet.

Die Datencontainer aus C speichern Datenmengen. Unter einer Datenmenge S ver-
steht man eine Teilmenge des kartesischen Produkts von bestimmten Wertebereichen. Diese
Wertebereiche können dabei einfache Wertebereiche (z.B Integer) oder eine komplexe
Datenstruktur sein (z.B ganze Datenmengen oder Graphen). Das kartesische Produkt wird
aus dem Kreuzprodukt dieser Wertebereichen gebildet. Eine Datenmenge S ist damit wie
folgt definiert:

S ⊆ D1 × D2×...×Dn. [Cod70]

Die Wertebereichen D1 bis Dn, aus denen das kartesische Produkt gebildet wird,

47

5 Datenmanagementpatterns

können den Attributen A1, ..., An von Datencontainern ∈ C zugewiesen sein. Hierbei
unterscheidet man beispielhaft zwei Fälle. Entweder beschreiben alle Attribute die
Attributmenge eines einzelnen Datencontainers ∈ C oder ein einzelnes Attribut beschreibt
die ganze Attributmenge eines einzelnen Datencontainers ∈ C. Im ersten Fall wird also das
kartesische Produkt innerhalb eines Datencontainers ∈ C und im zweiten Fall zwischen
mehreren Datencontainern ∈ C gebildet. In der Regel ist eine solche Datenmenge S in einem
oder mehreren Datencontainern ∈ C gespeichert. Es kann aber vorkommen dass mehrere
Datenmengen S in einem Datencontainern ∈ C gespeichert sind.

Im Rahmen dieser Arbeit werden wir bei Beispielen ausschließlich mengenorientier-
ten Datenstrukturen behandeln. Bei anderen Datenstrukturen wie objektorientierten-,
baumartigen- oder hierarchischen Strukturen gehen wir nicht tiefer hinein. Das letztere gilt
auch für alle im Rahmen dieser Arbeit vorgestellten Patterns. Für den mengenorientierten Fall
definieren wir eine Datenmenge S wie folgt:

S={s1, s2 ,..., sw} mit a ∈ 1,...,w und w ≥ 1.

Die Datenmenge S stellt im Beispiel der mengenorientierten Strukturen eine Menge
von Tupeln dar. Die Tupel Datenelementen s1 bis sw sind jeweils ein Element aus dem
kartesischen Produkt D1 bis Dn.

5.2 ETL Patterns/Operationen

Nachfolgend definieren wir folgende ETL Patterns/Operationen:

• Selektion

• Projektion

• Datenformatkonvertierung

• Laden

• Vereinigung

• Verbund

• Aggregation

• Einfache Anreicherung

• Komplexe Anreicherung

Wenn eine Reihe von solchen ETL Patterns/Operationen durchgeführt wird, dann spricht
man von einem ETL-Prozess. Die ETL Patterns/Operationen werden auf der Ebene der im
Kapitel 5.1 definierten Datenmenge S beschrieben. Es wird also nachfolgend erläutert, was
passiert, wenn einer der aufgelisteten ETL-Patterns/Operationen auf die Datenmenge S
angewendet wird.

48

5.2 ETL Patterns/Operationen

Selektion

Über die Anwendung der Selektion auf eine Datenmenge S wird eine Teilmenge
T ⊆ S selektiert.

Für den Fall, dass wir beispielhaft mengenorientierte Daten betrachten, sieht die
Datenmenge S wie folgt aus:

S = {s1, ..., sw} mit a ∈ {1 ,..., w} und w ≥ 1 mit einzelnen identifizierbaren Ele-
menten sa.

Die Menge T ⊆ S ergibt sich wie folgt:

T={su1 ,..., sup} mit v ∈ {1, ..., p}, p ≥ 1 und p < w, wobei jedes suv ∈ T einem der
sa ∈ S entsprechen muss.

Über die Selektion erfolgt eine tupelweise Selektion von Daten aus der Datenmenge S.
Die selektierten Tupel ∈ S stellen dann die Ergebnismenge T dar. Die hier beschriebenen
Datenmengen S wird bei der Definition der übrigen ETL Patterns/Operationen verwendet.
Der Leser ist dann auf diesen Abschnitt verwiesen.

Ein Anwendungsbeispiel dieses Patterns findet man bei der Pandas-Simulation (sie-
he Kapitel 4.2). Die Selektion der Daten der geometrischen Struktur des zu simulierenden
Knochens aus einer CSV-Datei, die diese Daten enthält stellt dieses Anwendungsbeispiel dar.

Projektion

Gegeben sei einer Datencontainer cl ∈ C, der eine Datenmenge Sl verwaltet. Über
die Anwendung der Projektion werden zunächst Attribute aus der ursprünglichen
Attributmenge eines Datencontainers cl ∈ C ausgewählt. Daraus wird die Menge Tl gebildet.
Die Elemente der Menge Tl entsprechen den Werten der projizierten Attribute.

Für den Fall, dass wir beispielhaft mengenorientierte Daten betrachten, sieht die
Projektion wie folgt aus.

πA1 ,A2 , ...,Ak (Sl) = { p | ∃ t ∈ Sl : p =< t[A1], t[A2], ..., t[Ak] >} [Cod70]

Über die Projektion werden also Spalten (Attribute) A1, A2, ..., Ak aus der Attribut-
menge A1, A2, ..., An eines Datencontainers cl ∈ C ausgewählt. Als Ergebnis ergibt sich das
Element p ∈ Sl . Das Element p entspricht einem Tupel t ∈ Sl , wobei jedes Tupel dem Wert
eines Attributes aus A1, A2, ..., Ak entspricht.

Einen Anwendungsfall der Projektion findet man bei dem Anwendungszenario der
Pandas-Matlab Kopplung (siehe Kapitel 4.2). Variablen der Gauss-Punkte (die Variablen

49

5 Datenmanagementpatterns

entsprechen Spalten des Datencontainers, in dem die Gauss-Punkte gespeichert sind), die für
die Durchführung der Simulation auf der Matlab-Ebene als Eingabedaten nicht relevant sind,
werden über eine Projektion gefiltert, so dass nur die relevanten Variablen der Gauss-Punkte
übrig bleiben.

Datenformatkonvertierung

Die Datenformatkonvertierung transformiert eine Datenmenge S aus einem bestimmten
Datenformat auf eine Datenmenge T eines anderen Datenformats. Zu diesem Zweck wird
eine Konvertierungsoperation verwendet.

Ein Anwendungsbeispiel dieses Patterns ist die Konvertierung der Geometrie-Daten
in einem Datenformat, das für die Lösungsphase des Pandas-Workflows (siehe Kapitel 4.2)
benötigt wird.

Laden

Dieses Pattern verwenden wir, um eine Datenmenge S in einem oder mehreren
Zielcontainer ∈ C abzuspeichern.

Das Laden der Endergebnisse der Pandas-Simulation von der Pandas-Umgebung
auf eine CSV-Datei (siehe Kapitel 4.2) stellt einen Anwendungsfall dieses Patterns dar.

Vereinigung (Union)

Über die Vereinigung werden mehreren Datenmengen S in eine Menge T vereinigt.
Eine mathematische Definition der Vereinigung sieht wie folgt aus:

T = S1 ∪ S2 ∪ ...∪ Sn

Für den mengenorientierten Fall definieren wir die Vereinigung wie folgt:

T = S1 ∪ S2 ∪ ...∪ Sn={t | t ∈ S1 ∨t ∈ S2 ∨ ... ∨t ∈ Sn}. [Cod70]

Die Datenmengen S1 bis Sn stellen hier mehrere Mengen von Tupeln dar. Die neue
Menge, die sich aus der Vereinigung der Tupeln t aus diesen Mengen ergibt, ist dann die
Ergebnismenge T. Zu beachten ist, dass die Vereinigung nur anwendbar ist, wenn die
Datenmengen vereinigungsverträglich sind. Das bedeutet, dass sie die gleiche Anzahl von
Attributen haben müssen und die Datentypen der Attribute gleich oder vergleichbar sein
müssen [Cod70].

Ein Anwendungsbeispiel dieses Patterns findet man in dem Szenario der Pandas-
Matlab Kopplung (siehe Kapitel 4.3). Die Ergebnisdaten jeder Matlab-Instanz werden jeweils
in einer Ausgabedatei gespeichert. Diese einzelnen Ausgabedateien werden anschließend in
einer Ergebnismenge vereinigt und in einer einzigen Ausgabedatei abgespeichert.

50

5.2 ETL Patterns/Operationen

Erweitertes kartesische Produkt

Nachfolgend wird das erweiterte kartesische Produkt auch für den mengenorienter-
ten Fall definiert:

S1 × S2:= {t | ∃ x ∈ S1, y ∈ S2 : (t = x | y)} mit x | y =< x1, ..., xr, y1, ..., ys >
[Cod70]

Über die Anwendung des erweiterten kartesischen Produkt werden die Paare (x,y)
mit x ∈ S1 und y ∈ S2 verknüpft, wobei xi bzw. yj z.B der Wert des Tupels x bzw.des
Tupels y im i-ten bzw. j-ten Attribut ist. Betrachtet man das Beispiel der mengenorientierten
Strukturen sind die Elemente x und y Tupel ∈ S1 bzw ∈ S2.

Verbund (Join)

Der Verbund wendet zuerst das erweiterte kartesische Produkt auf eine Datenmen-
ge S an. Anschließend wird aus der Ergebnismenge eine Teilmenge T selektiert.

Im Falle des Beispiels der mengenorientierten Strukturen werden zuerst alle Tupel
der Datenmenge S über das erweiterte kartesische Produkt miteinander verknüpft.
Anschließend wird auf die Menge, die sich aus der Verknüpfung dieser Tupel ergibt, die
Selektionsoperation angewendet. Die selektierten Tupel, nämlich die Teilmenge T, ist das
Ergebnis der Verbund-Operation.

Dieses Pattern kommt beispielhaft bei der Postprossecing Phase der Pandas-Simulation zum
Einsatz (siehe Kapitel 4.2). Hierbei werden die FEM Gitterdaten und die Simulationsergeb-
nisse, die in zwei unterschiedlichen CSV-Dateien gespeichert sind, für jeden relevanten
Zeitschritt der Lösungs-Phase verknüpft, um Bilder zu kreieren, die diese Informationen
kombinieren und überlagert darstellen.

Aggregation

Gegeben sei ein Datencontainer cl ∈ C, der eine Datenmenge Sl verwaltet. Die Ag-
gregation wählt zunächst ein Attribut aus der ursprünglichen Attributmenge des
Datencontainers cl ∈ C aus. Auf die Elemente der Teilmenge Tl ∈ Sl , die als Wert das
projizierte Attribute besitzen, wird eine Aggregationsoperation angewendet. Anschließend
werden alle Attributwerte, die die gleiche Eigenschaft erweisen, in einem einzigen Wert
zusammengefasst.

Wenn man beispielhaft mengenorientierte Datenstrukturen betrachtet, wird über die
Anwendung der Aggregation ein Attribut eines Datencontainers cl ∈ C selektiert. Auf die
Tupel, die den Werten des selektierten Attributes entsprechen, wird eine Aggregationsopera-
tion angewendet. Anschließend werden alle Tupel , die den gleichen Attributwert erweisen,
in einem einzigen Wert zusammengefasst und nach einem anderen Attribut gruppiert.

51

5 Datenmanagementpatterns

Beispiele von Aggregationsoperationen sind: 1

• COUNT: Gibt die Anzahl der Werte in einer Spalte an.

• SUM: Summe der Werte in einer Spalte

• AVG: Mittelwerte einer Spalte

• Max: Größter Wert der Spalte

• MIN: Kleinster Wert der Spalte

Die Festlegung der Anzahl der Gauss-Punkte pro Gitter-Element (siehe Kapitel 4.3) stellt
ein Anwendungsfall dieser Operation dar. Bevor die Gauss-Punkte auf die einzelnen
Matlab-Instanzen verteilt werden, muss zuerst festgestellt werden, wie viele Gauss-Punkte
ein Gitter-Element besitzt. Das erfolgt über die Anwendung der Aggregation und der
Operation COUNT. Anschließend werden die Gauss-Punkte nach deren Gitter-Elementen
gruppiert.

Einfache Anreicherung

Bei der einfachen Anreicherung geht es um einen Neudatengewinn innerhalb eines
Datencontainers. Diese Operation beschreiben wir anhand eines mengenorientierten
Beispiels. Es werden zuerst Attribute von der Attributmenge eines Datencontainers cl ∈ C,
in dem die Datenmenge Sl gespeichert ist, ausgewählt. Anschließend wird auf Tupel ∈ Sl ,
eine Operation, wie z.B Multiplikation oder Addition, angewendet. Die aus der Anwendung
dieser Operation gewonnenen Daten werden in der Datenmenge Sl integriert und in einem
neuen Attribut abspeichert.

Komplexe Anreicherung

Bei der komplexen Anreicherung geht es, wie bei der einfachen Anreicherung, um
einen Neudatengewinn. Die komplexe Anreicherung findet aber zwischen mehreren
Datencontainern statt und außerdem können hier zusätzlich ETL-Operationen wie Join,
Union, Merge etc. zum Einsatz kommen.

5.3 Data Transfer and Transformation Pattern

Das Data Transfer and Transformation Pattern (DTTP) bildet die zweite Art der im Rahmen
dieser Arbeit vorgestellten Datamanagementpatterns. Sowohl dieses Pattern als auch

1http://wikis.gm.fh-koeln.de/wiki_db/Datenbanken/Gruppenfunktionen

52

5.3 Data Transfer and Transformation Pattern

seine Unterklassen, die in den nächsten Kapiteln vorgestellt werden, werden wir auf der
Ebene der Datencontainer (siehe Kapitel 5.1) beschreiben. Wir werden also erläutern, wie
Daten zwischen einzelnen Datencontainern ∈ C übertragen und transformiert werden,
wenn die im Rahmen dieses Kapitels vorgestellten Patterns gegen diese Datencontainer
durchgeführt werden. Auf der Abbildung 5.2 wird das DTTP dargestellt: Um das DTTP

Abbildung 5.2: Das Data Transfer and Transformation Pattern

anhand der Definitionen aus dem Kapitel 5.1 zu beschreiben definieren wir folgende Mengen:

Q′={q′1 ,..., q′s′} ⊆ Q mit j′ ∈ {1, ..., s′}, s′ ≥ 1 und s′ ≤ s als eine Teilmenge von
Q

P′={p′1 ,..., p′r′} ⊆ P mit k′ ∈ {1, ..., r′}, r′ ≥ 1 und r′ ≤ r als eine Teilmenge von
P

Beim DTTP betrachten wir zunächst die Datenquellen q′1 bis q′s′ und die Datensen-
ken p′1 bis p′r′ . Dann betrachten wir in jeder entsprechenden Datenquelle bzw. Datensenke
jeweils eine Teilmenge ihrer Datencontainer. Für die erste betrachtete Datenquelle q′1
ist es z.B eine Teilmenge aus der Menge ihre Datencontainer {A11 ... A1y1

} und für die
letzte Datenquelle q′s′ eine Teilmenge aus der Datencontainermenge {As′1

... As′ys
}. Für die

53

5 Datenmanagementpatterns

Datensenken ist es z.B eine Teilmenge aus der Datencontainermenge {B11 ... B1m1
} der

ersten Datensenke p′1 und eine Teilmenge aus der Datencontainermenge {Bm1 ... Br′mr
}

der letzten betrachteten Datensenke p′r′ . Beim DTTP übertragen und transformieren wir
Daten von einem oder mehreren Datencontainern einer oder mehrerer Datenquellen auf einen oder
mehreren Datencontainer einer oder mehrerer Datensenken. Anschließend werden diese Daten
in den Containern der Datensenken {p′1 bis p′s′} abgespeichert. Dies geschieht mittels eines
ETL-Prozesses, der wiederum aus einem Ablauf von ETL-Operationen besteht. Es werden
die ETL-Operationen Selektion, Projektion, Datenkonvertierung, Laden, Aggregation, Join, Union,
Merge, Einfache Anreicherung und Komplexe Anreicherung (siehe Kapitel 5.2) eingesetzt.

Hier ist es zu beachten, dass die Schnittmenge von Q′ und P′ nicht leer sein muss.
Es kann also vorkommen, dass es Datenressourcen gibt, die sowohl als Datenquellen als
auch als Datensenken auftreten können (z.B eine Datenbank). Im konkreten Fall des DTTP’s
heißt das, dass man z.B auch Daten aus einer Datenressource extrahieren und wieder in
dieser Datenressource speichern kann.

5.3.1 Container-to-Container Pattern

Das Container-to-Container Pattern (C2CP) stellt die erste Unterklasse des DTTPs dar.
Abbildung 5.3 zeigt das C2CP. Bei dem C2CP betrachten wir zunächst die Datenquelle
q′1 und einen in dieser Datenquelle verwalteten Datencontainer A11 . Danach betrachten
wir die Datensenke p′1 und einen Datencontainer B11 in dieser Datensenke. Beim C2CP
übertragen und transformieren wir Daten von einem Datencontainern einer Datenquelle auf
einen Datencontainer einer Datensenke. Anschließend werden die Daten im Datencontainer der
Datensenke p′1 abgespeichert [RSM]. Dies erfolgt mittels eines ETL-Prozesses, der wiederum aus
einem Ablauf von ETL-Operationen besteht. Hierbei verwenden wir Operationen, die nur
eine Eingabemenge bekommen (unäre Operationen). Das sind die ETL Patterns/Operationen
Selektion, Projektion, Datenformatkonvertierung , Laden, Aggregation und einfache Anreicherung
(siehe Kapitel 5.2).

Die Selektion der Geometrie-Daten aus der CSV-Datei, die Konvertierung dieser in
einem für die Durchführung der Pandas-Simulation (siehe Kapitel 4.2.) geeignetes Datenfor-
mat und das Laden der konvertierten Daten in einer anderen Datei in der Pandas-Umgebung
stellt ein Anwendungsbeispiel dieses Patterns und damit auch des DTTPs dar.

5.3.2 Data Split Pattern

Das Data Split Pattern (DSP) bildet die zweite Unterklasse des DTTPs . Auf Abbildung 5.4
wird das DSP dargestellt.

Bei dem DSP betrachten wir zunächst die Datenquelle q′1 und einen darin verwalte-
ten Datencontainer A11 . In diesem Datencontainer ist die Datenmenge S11 gespeichert.
Danach betrachten wir eine Teilmenge der Datencontainermenge der Datensenken {p′1...p′r′}.

54

5.3 Data Transfer and Transformation Pattern

Abbildung 5.3: Das Container-to-Container Pattern

Beim DSP wird zunächst die Datenmenge S11 in u (typischerweise disjunkte) Teilmengen
Tl ⊆ S, mit l ∈ {1, .., u} und u > 1 aufgespaltet (selektiert). Anschließend übertragen,
transformieren und verteilen wir die Teilmengen Tl auf auf mehrere Datencontainer einer
oder mehrerer Datensenken [RSM], wobei jede Teilemenge Tl in genau einem Datencontainer
gespeichert wird. Dies geschieht mittels eines ETL-Prozesses, der wiederum aus einem
Ablauf von ETL-Operationen besteht. Hierbei kommen die ETL Patterns/Operationen
Selektion, Projektion, Datenkonvertierung, Laden und einfache Anreicherung (siehe Kapitel 5.2)
zum Einsatz.

Dieses Pattern findet seine Anwendung, wenn man nach Anwendung des DSPs
komplexe Berechnungen durchführen muss. Ein Beispiel solcher komplexen Berechnungen
stellt die parallele Verarbeitung der Teilmengen Tl ⊆ S11 dar, indem man diese auf mehreren
Datensenken verteilt. Die Verteilung der einzelnen Datenmengen Tl auf die Datencontainer
der Datensenken hängt vom Parallelisierungsgrad ab. Will man eine vollständige Paralleli-
sierung anstreben, dann verwendet man bei jeder beteiligten Datensenken genau einen
Datencontainer, so dass jede Teilmenge Tl auf einer anderen Datensenken gespeichert wird
und es gilt k′ = u. Das bedeutet, dass die Anzahl der zu verteilenden Teilmengen Tl gleich
der Anzahl der Datensenken ist, auf deren Datencontainern die Teilmengen Tl verteilt

55

5 Datenmanagementpatterns

Abbildung 5.4: Das Data Split Pattern

werden. Wird eine teilweise Parallelisierung angestrebt dann verendet man bei zwei oder
mehreren Datensenken mehrere Datencontainer, um die Teilmengen Tl abzuspeichern und
es gilt 1<k’<u. Das bedeutet, dass die Anzahl der Datensenken, auf deren Datencontainern
die Teilmengen Tl verteilt werden, kleiner der Anzahl der zu verteilenden Teilmengen Tl ist.
Wird keine Parallelisierung angestrebt dann werden alle Teilmengen Tl auf Datencontainer
genau einer Datensenke abgespeichert und es gilt k’=1. Im allgemeinen Fall gilt k′ ≤ u.

Bei temporären Datencontainern (siehe Kapitel 5.1) muss zuerst die Datenmenge S
über die Durchführung eines Data Merge Pattern aus mehreren Datencontainern gebildet
und anschließend in einem temporären Datencontainer gespeichert werden, bevor man das
DSP anwenden kann.

Einen Anwendungsfall dieses Patterns und damit auch des DTTPs stellt die Durch-
führung von Simulationen auf einer multiskalaren Ebene dar. Bei dem Anwendungsszenario
Pandas-Matlab Kopplung (siehe Kapitel 4.3) entspricht die Datenmenge S dem Simulati-
onsraum auf der Pandas-Ebene. Die Elemente der Datenmenge S sind Gitter-Elemente, die
auf der Ebene der Pandas-Simulation berechnet wurden. Die Menge der Gitter-Elementen
wird nun in mehreren Teilmengen aufgespaltet, wobei eine einzelne Teilmenge (ein

56

5.3 Data Transfer and Transformation Pattern

Gitter-Element) eine bestimmte Anzahl von Gauss-Punkten enthält. Anschließend werden
die einzelne Teilmengen aus der Pandas-Umgebung auf die Eingabedateien der einzelnen
Matlab-Instanzen übertragen, transformiert und in diesen abgespeichert. Nachdem die
Eingabedaten zur Verfügung gestellt wurden, können die einzelnen Teilmengen von den
einzelnen Matlab-Instanzen parallel berechnet werden.

5.3.3 Data Merge Pattern

Das Data Merge Pattern (DMP) ist das Gegenstück des DSPs und bildet die letzuete Unter-
klasse des DTTPs. Auf Abbildung 5.5 wird das DMP dargestellt .

Abbildung 5.5: Das Data Merge Pattern

Bei dem DMP betrachten wir zunächst die Datenquellen {q′1...q′s′} und jeweils eine Teilmenge
der in diesen Datenquellen verwalteten Datencontainern. In diesen Datencontainern sind
Teilmengen Tl ⊆ S mit l ∈ {1, .., u} und u > 1 gespeichert. Danach betrachten wir die
Datensenke p′1 und den Datencontainer B11 in dieser Datenquelle. Beim DMP werden
zunächst die Teilmengen Tl , die in einem oder mehreren Datencontainer mehrerer Datenquellen
gespeichert sind, in eine Datenmenge S gemerget. Diese Datenmenge S wird dann auf den
Datencontainer B11 der Datensenke p′1 übertragen, transformiert und anschließend in diesem

57

5 Datenmanagementpatterns

abgespeichert [RSM]. Dies geschieht mittels eines ETL-Prozesses, der wiederum aus einem
Ablauf von ETL-Operationen besteht. Hierbei kommen die ETL Patterns/Operationen
Selektion, Projektion, Datenkonvertierung, Laden, Join, Union, Merge, Aggregation, einfache
Anreicherung und komplexe Anreicherung (siehe Kapitel 5.2) zum Einsatz.

Wie oben erwähnt bildet das DMP das Gegenstück des DSPs. Hier werden die Er-
gebnisse der parallelisierten Berechnungen aus den Datencontainern der beteiligten
Datensenken extrahiert und anschließend in einer Datenmenge S zusammengepackt.
Das Extrahieren der einzelnen Ergebnisdaten aus den einzelnen Datencontainern der
Datenquellen hängt vom Parallelisierungsgrad ab. Wurde bei der Verteilung der Teilmengen
Tl auf die Datencontainer eine vollständige Parallelisierung angestrebt, dann wird jeweils
eine Datenmenge Tl aus einem Datencontainern extrahiert und es gilt j′ = u. Das
bedeutet, dass die Anzahl der zu extrahierenden Teilmengen Tl gleich der Anzahl der
Datenquellen ist, auf deren Datencontainern die Teilmengen Tl gespeichert sind. Wurde
eine teilweise Parallelisierung angestrebt, dann werden mehrere Teilmengen Tl aus mehreren
Datencontainern zweier oder mehrerer Datenquellen extrahiert. In diesem Fall gilt es
1<j’<u . Das bedeutet, dass die Anzahl der Datenquellen, auf deren Datencontainern die
Teilmengen Tl gespeichert sind, kleiner der Anzahl der zu extrahierenden Teilmengen Tl ist.
Wurde keine Parallelisierung angestrebt, dann werden alle Teilmengenangen Tl aus Daten-
containern genau einer Datenquelle extrahiert und es gilt j’=1. Im allgemeinen Fall gilt j′ ≤ u.

Bei temporären Datencontainern (siehe Kapitel 5.1) muss zuerst die Teilmengen Tl
über die Durchführung eines Data Splitt Pattern auf einem oder mehreren temporären
Datencontainer der beteiligten Datensenken verteilt und abgespeichert werden, bevor man
das DMP anwenden kann.

Ein Anwendungsbeispiel dieses Patterns findet man bei dem Anwendungsszenario
der Pandas-Matlab Kopplung (siehe Kapitel 4.3). Die Teilmengen Tl entsprechen den
verteilten Gauss-Punkten auf den einzelnen Matlab-Instanzen, wobei eine einzelne Teilmenge
Tl eine bestimmte Anzahl von Gauss-Punkten enthält. Die auf jeder Matlab-Instanz verteilten
Gauss-Punkte werden nun von den einzelnen Matlab-Instanzen berechnet. Die Ergebnisse
werden anschließend in jeder Matlab-Instanz auf zwei Ausgabedateien kopiert. Von einer
davon (Beschreibung der Gauss-Punkte) wird dann der Inhalt dieser Datei mit denen der
anderen Dateien der anderen Matlab-Instanzen gemerget. Die sich daraus ergebene Daten-
menge (Datenmenge S), entspricht dem Ergebnis bestimmter Matlab-Simulationszeitschritte.
Das Ergebnis wird nun in eine Ausgabedatei kopiert und von dort aus in eine Tabelle in der
Datenbank geladen.

5.4 Data Iteration Pattern

Das Data Iteration Pattern (DIP) bildet die zweite Art der im Rahmen dieser Arbeit vorgestell-
ten Patterns. Auf Abbildung 5.6 wird das DIP dargestellt:

58

5.4 Data Iteration Pattern

Abbildung 5.6: Das Data Iteration Pattern

Gegeben sei eine Datenmenge S = {s1, ..., sw} mit w identifizierbaren Datenelementen s1 bis
sw. Wie im Kapitel 5.1 beschrieben ist diese Datenmenge die Teilmenge eines kartesischen
Produkts von bestimmten Wertebereichen. Die einzelnen Elemente s1...sw stellen Tupel
∈ S dar. Die Wertebereiche können dabei einfache Wertebereiche (wie Integer) oder auch
komplexe Datenstrukturen beschreiben. Bei komplexen Datenstrukturen gehen wir aber
nicht tiefer in die Datenstrukturen hinein, da dies für das DIP nicht relevant ist.

Für jede Iteration i ∈ {1, .., n} iteriert das DIP über diese Datenmenge S und nimmt über
eine Selektions- bzw. Projektionsoperation (siehe Kapitel 5.2) eine Teilmenge Ti ⊆ S=
{s′i1 , s′i2 , ..., s′ipi

} . Es gilt pi ≤ w, das heißt, dass bei jedem Iterationsschritt i die Anzahl der
selektierten Elementen in Ti kleiner-gleich der Anzahl der Elementen in S ist. Anschließend
wird eine Operation opi auf Ti ausgeführt, wobei die Operation opi aus mehreren Teilope-
ration opi1, opi2, ..., opim zusammengesetzt wird. Nach der Ausführung dieser Operation
unterscheidet man zwei Fälle. Beim ersten Fall verändert die Operation opi die Teilmenge
Ti nicht. Hierbei kommt als Ergebnis z.B ein skalarer Wert (z.B ein Integer) raus und der
Schleifenzähler wird nachfolgend um 1 erhöht, so dass die nächste Iteration startet. Beim
zweiten Fall wird die Teilmenge Ti durch die Anwendung der Operation opi verändert. Die
Menge T′i , die sich daraus ergibt, muss dann in S integriert werden. Darüber hinaus muss

59

5 Datenmanagementpatterns

der Schleifenzähler um 1 erhöht werden.

Es ist zu beachten, dass bei Veränderung der Teilmenge Ti über die Anwendung
der Operation opi und der Integration dieser in die Datenmenge S, die Datenmenge Si+1
auch verändert wird. Dies muss man bei der Selektion der Teilmenge Ti+1 berücksichtigen,
falls Ti ∩ Ti+1 6= ∅.

Beim DIP betrachten wir Iterationen nur auf der Workflow-Ebene. Schleifen, die
von Simulationsprogramen zur Durchführung irgendwelcher Berechnungen verwendet
werden, werden als teil der Operation betrachtet. Diese Schleifen werden unter Umständen
in einer übergeordneten Workflow-Schleife mehrmals iteriert. weiterhin gibt es mehrere
Varianten, um die Anzahl der n Iterationen festzulegen. Manchmal wird die Zahl n in der
Modellierungszeit festgelegt, indem der Modellierer einfach die Anzahl der Iterationen
bestimmt. Manchmal wird sie erst zur Laufzeit festgelegt, indem man z.B ein regulärer
Ausdruck, z.B ein XPath-Ausdruck angibt, der zum Startzeitpunkt der Schleife die Zahl n
berechnet. Manchmal steht die Zahl n aber erst am Ende der Schleife fest. Das ist z.B. der
Fall, wenn man eine Abbruchbedienung in einer While-Schleife oder RepeatUntil-Schleife
festlegt, z.B wenn die Datenqualität eine bestimmten Schwelle erreicht/überschritten hat.

Ein Anwendungsbeispiel dieses Patterns stellt die Lösungsphase der Pandas-Simulation
(siehe Kapitel 4.2) dar, wenn Pandas in seine Simulationsschleife gerät. Zur Vereinfachung
der Beschreibung des Anwendungsfalls, wird nur auf die Berechnung der FEM-Gitter und
der Ergebnisse während des Durchlaufs eines Workflow-Iterationsschrittes i eingegangen.
Weitere Berechnungen, die Pandas durchführt, wie z.B die Berechnung der Matrizen oder der
Vektoren, werden nicht berücksichtigt. Für andere Beispiele müssen unter Umständen auch
andere Daten berücksichtigt werden. Dafür muss die Beschreibung des DIPs entsprechend
angepasst werden. Die Datenmenge S besteht aus folgenden Mengen:

1. Zeitintervalle= {Z1, Z2 ,..., Zn}

2. FEM-Gitter= {Gitter0, Gitter1 ... Gitterp1 ... Gitterp2 ... Gitterpn }

3. Ergebnisse= {E0, E1 ... Ep1 ... Ep2 ,..., Epn }

Der Workflow iteriert über die Menge der Zeitintervalle und extrahiert in jeder Iteration
ein Zeitintervall. Die Menge FEM-Gitter entspricht der berechneten Gitter. Eine Iteration
i entspricht der Ausführung eines Zeitintervalls. Innerhalb eines Zeitintervalls werden
mehreren Simulationszeitschritte durchgeführt, wobei in jedem Zeitschritt ein Gitter und
ein Simulationsergebnis berechnet wird. In der Tabelle 5.1 werden die Zeitintervalle den
Simulationszeitschritten zugeordnet. Nach einem bestimmten Iterationsschritt i sieht die
Datenmenge S wie foglt aus:

Si = {Zeitintervalle, Gitteri, Ergebnissei} mit i ∈ {1...n}.

Der Zeitschritt 0 im ersten Zeitintervall entspricht der Initialisierung der Simulati-
on. Zu diesem Zeitpunkt sieht die Menge S wie folgt aus:

60

5.4 Data Iteration Pattern

Zeitintervalle Simulationszeitschritte

1 0...[p1]

2 (p1...p2]

... ...
i-1 (pi−2...pi−1]

i (pi−1...pi]

... ...
n-1 (pn−2...pn−1]

n (pn−1...pn]

Tabelle 5.1: Zuordnung der Simulationszeitschritten in Zeitintervallen

S0 = {Zeitintervalle1, Gitter0, Ergebnis0}

Das Gitter0 wird in diesem Fall mit dem Wert 0 belegt. Daher ist das Ergebnis0
ebenfalls 0. Zu jedem Zeitschritt j ∈ {0...pm} wird ein Gitter erzeugt oder angepasst, so dass
die Basis zur Aufstellung der Matrix-Gleichung Aj· xj= bj gebildet wird. Zur Generierung
des Endergebnisses wird die Gleichung anschließend gelöst. Für die Berechnung der
Gitter innerhalb eines Zeitintervalls i ∈ {1...n} stellt die Menge Si−1 die Menge Si vor dem
Zeitintervall i dar. In dieser Menge sind alle bis dahin berechneten Gitter und Ergebnisse
enthalten. Die Menge Si−1 sieht wie folgt aus:

Si−1 = {{Zeitintervalle}, {Gitter0, Gitter1 ,..., Gitterpi−1}, {Ergebnis0, Ergebnis1 ,..., Ergebnispi−1}}

Die Menge Si entspricht der Menge nach dem i-ten Zeitintervall, deren Zeitschritte
berechnet werden sollen. Wir betrachten die Berechnungen aller einzelnen Zeitschritte
innerhalb des Zeitinetrvalls i als Black-Box und wir zeigen wie die Menge Si nach der
Berechnung aller Zeitschritten aussieht. Man muss zunächst die Teilmenge Ti bilden, indem
man eine Projektion und eine Selektion zusammen auf die Datenmenge Si−1 anwendet.
Damit hat man die Teilmenge Ti = {{Zeitschritti}, {Gitter0, Gitter1 ,..., Gitterpi−1} , ∅}
gebildet. Auf diese Menge wird nun die Operation opi angewendet. Nach der Berechnung
aller Zeitschritten innerhalb des Intervalles i sieht die Menge Ti−1 wie folgt aus:

T′i ={{Zeitintervallei}, {Gitter0, Gitter1 ,..., Gitterpi−1 ,..., Gitterpi }, {Ergebnis0, Ergebnis1
,..., Ergebnissepi−1 ,..., Ergebnissepi }}

In diesem Fall verändert sich die Teilmenge Ti. Aus der Anwendung der opi auf
die ursprüngliche Teilmenge Ti={{Zeitschritti},{Gitterpi} hat sich die neue Menge T′i
ergeben. Also die Elemente Gitterpi Ergebnis0, Ergebnis1 ,..., Ergebnissepi−1 ,..., Ergebnissepi ,
ist das neue Element, das der ursprünglichen Menge Ti über die Anwendung der Operation
opi hinzugefügt wurden. Anschließend wird die neue Datenmenge T′i in der Datenmengen

61

5 Datenmanagementpatterns

Si integriert. Diese sieht wie folgt aus:

Si ={{Zeitintervallei}, {Gitter0, Gitter1 ,..., Gitterpi−1 ,..., Gitterpi }, {Ergebnis0, Ergebnis1
,..., Ergebnissepi−1 ,..., Ergebnissepi }}

Die Menge S wurde also um alle berechneten Gitter und Ergebnisse erweitert. Es
wird bei den nächsten Iterationen der gleiche Prozess wiederholt, bis der letzte Iterati-
onschritt n-1 durchgeführt wurde und alle Simulationszeitschritte 0 bis pn berechnet wurden.

Im Rahmen dieses Kapitels haben wir die aus den Anwendungsszenarien identifi-
zierten Datenmanagementpatterns formalisiert und erläutert. Diese Datenmanagement
Patterns müssen auf ausführbare Workflow-Fragmente abgebildet werden. Diese Thematik
wird der Gegenstand des nächsten Kapitels sein.

62

6 Transformation der
Datenmanagementpatterns auf ausführbare
Workflow-Fragmente

Im folgenden Kapitel wird auf die Transformation der DM-Patterns auf ausführbare
Workflow-Fragmente eingegangen. Im Teilkapitel 6.1 werden wir zunächst den in dieser
Arbeit verwendeten Mechanismus für die Abbildung der DM-Patterns anhand einer fünf
Schichten-Architektur und des Pattern-Transformers erläutern [RM11] [Rei11]. Im Teilkapitel
6.2 werden Beispiele mittels der Anwendungsszenarien aus Kapitel 4 und der im Kapitel 5

definierten DM-Patterns vorgestellt. Im Teilkapitel 6.3 werden wir die definierte Kontroll-
strategie zur Abbildung der Patterns auf die Workflow-Fragmente erklären. Zum Schluss
werden wir über die Architektur des Abbildungsmechanismus diskutieren.

6.1 Abbildungsmechanismus und Pattern-Transformer

Im Kapitel 5.1 haben wir eine vorläufige Architektur zur Pattern-Hierarchie vorgestellt und
über die bis dahin bekannten Schichten diskutiert. Nachdem wir die neuen DMPs im Kapitel
5 formalisiert und erläutert haben, können wir jetzt diese Hierarchie vervollständigen,
indem wir die neue DMPs in der Patternhierachie hinzunehmen (siehe Abildung 6.1). Auf
der dritten Schicht befinden sich die Basis Datamanagementpatterns (BDPs), nämlich das DTTP
und seine Unterklassen sowie das DIP. Die BDPs entsprechen der minimalen Menge von
DMPs, die für Simulationsworkflows relevant sind, und bilden die Grundlage zur Definition
anderer Mengen. Auf der zweitobersten Schicht befinden sich die Zusammengesetzten
Datenmanagmentpatterns (ZDPs). Diese Abstraktionsebene haben wir geschaffen, um die
Zusammenfassung mehrerer BDPs in einem anderen abstrakteren DMP zu ermöglichen.
Auf diese Art und Weise können beispielsweise fünf hintereinander auszuführende C2CPs
in nur einem Schritt auf ein ausführbares Workflow-Fragment abgebildet werden. Weiterhin
erleichtert dies das Leben des Modellierers, da er nicht wiederholt eine Reihe von Datenma-
nagementoperationen gegen bestimmten Datenressourcen modellieren muss und da er die
abstrakteren ZDPs i.d.R auch auf abstraktere Weise und damit einfacher modellieren kann.
Wie es sich aus der Abbildung 6.1 erkennen lässt, gibt es mehrere Möglichkeiten, um einen
bestimmtes Datenmanagementpattern auf ein ausführbares Workflow-Fragment abzubilden.
Diese mehrstufige Abbildung der DMPs basiert auf Anwendung von Regeln [Rei11]. Hierbei
gibt es zwei Typen von Transformationsregeln. Bei dem Regeltyp-1 wird ein Pattern direkt auf
ein ausführbares Workflow-Fragmente transformiert. Diese Transformation wird entweder
über DM-Aktivitäten im SIMPL-Rahmenwerk (siehe Kapitel 3.2) oder Service-Aufrufe

63

6 Transformation der Datenmanagementpatterns auf ausführbare Workflow-Fragmente

Abbildung 6.1: Das Konzept zur Transformation der Patterns auf ausführbare Workflow-
Fragmente vgl.[RM11]

realisiert. Das bedeutet, dass die Workflow-Fragmente entweder existieren oder sie müssen
zuerst über die Unterstützung von Metadaten generiert werden. So kann beispielsweise von
der Schicht der ETL-Patterns/Operationen aus eine direkte Transformation möglich sein, denn
es geht hier um feingranulare Patterns, für die bereits Workflow-Fragmente existieren oder
generiert werden können.

Bei dem Regeltyp-2 wird ein Pattern auf ein Workflow-Fragment mit anderen, meist
feingranulare Patterns abgebildet. In diesem Fall muss man die Patterns u.U über ein
iteratives Verfahren verfeinern, um sie in eine solche Form umzuwandeln, so dass eine
direkte Transformation über einen Regeltyp-1-Ansatz realisierbar ist. Diese Transformation
kann entweder zwischen mehreren Schichten und/oder innerhalb einer einzelnen Schicht
stattfinden. Man kann beispielsweise von der Schicht der BDPs aus ein C2CP in ein
oder mehrere ETL Patterns iterativ verfeinern. Auf dieser Art und Weise kann einen
Regeltyp-1-Ansatz von Schicht der ETL-Patterns/Operationen aus realisierbar sein.

Bis jetzt haben wir das Konzept der Pattern-Transformation abstrakt beschrieben.
Jetzt wollen wir auf diese Thematik detaillierter eingehen und erklären, welcher Mechanis-

64

6.1 Abbildungsmechanismus und Pattern-Transformer

mus angewendet wird, um die Abbildung der Patterns mittels eines Pattern-Transformers zu
realisieren. Diese Beschreibung basiert auf [Rei11].

Abbildung 6.2: Die Pattern-Transformation mittels des Pattern-Transformers [Rei11]

Auf Abbildung 6.2 ist der Pattern-Transformer und die Transformer Engine-Komponente zu
sehen. Links befindet sich das zu transformierende Workflow mit Patterns. Mit der Farbe blau
ist eine ausführbare Workflow-Aktivität gekennzeichnet (z.B eine BPEL-Receive-Aktivität)
und mit grün ein parametrisiertes, nicht ausführbares DMP (z.B ein C2CP). Dieser Workflow
soll nun mit Hilfe der Transformer Engine auf einen ausführbaren Workflow (rechts auf
dem Bild) transformiert werden. Hierbei traversiert man durch diesen Workflow-Graphen
und versucht für jedes Pattern eine passende Transformationsregel zu finden. Jede
Transformationsregel besitzt einen Condition Part und einen Action Part. Im Condition Part
werden die Bedingungen beschrieben, unter denen eine gewisse Transformationsregel
auf ein DMP angewendet werden darf. Diese Bedingungen hängen zum einen mit den
Parameterwerten des zu transformierenden Patterns und zum anderen mit den Metadaten,
die die beteiligten Datenressourcen und Workflow-Fragmente beschreiben, zusammen.
Über die Parameter werden z.B. die Datenressourcen und die Datencontainer festgelegt,
auf die zur Ausführung einer bestimmten Datenmanagmentoperation zugegriffen werden
soll, wobei das Pattern selbst diese Datenmangementoperation definiert. Die Metadaten
beschreiben z.B funktionelle oder nicht-funktionelle Eigenschaften der Datenressourcen.

Im Action Part einer Regel wird festgelegt, wie dieses DMP auf ein ausführbares
Workflow-Fragment abgebildet wird, wenn die Regel auf das DMP angewendet wird.
Wie bereits in diesem Kapitel erwähnt werden zur Transformation der DMPs zwei
Typen von Regeln festgelegt: Der Regeltyp-1 und der Regel-Typ-2. Zur Beschreibung
und Funktionsweise der Anwendung der Regeln ist der Leser auf die Erläuterung der
Pattern-Hierarchie am Anfang dieses Kapitels verwiesen.

Über die Kontrollstrategie wird gesteuert, in welcher Reihenfolge die Transformati-

65

6 Transformation der Datenmanagementpatterns auf ausführbare Workflow-Fragmente

onsregeln auf Anwendbarkeit überprüft werden. Zuallererst muss die Menge der Regeln,
die auf ein gewisses DMP überhaupt anwendbar sind, festgestellt werden. Man könnte
beispielsweise andere Regeln für die Transformation eines ETL-Patterns als bei der
Transformation eines C2CPs anwenden. Im ersten Fall wird z.B eine Transformationsregel
vom Typ1 festgelegt. Im zweiten Fall kann aber die Anwendung einer Regel von Typ-2
notwendig sein. Darüber hinaus muss man die Reihenfolge der Anwendung der prinzipiell
anwendbaren Regel auf dieses DMP bestimmen. Im Kapitel 6.3 werden wir auf diese
Thematik detaillierter eingehen.

Unter Berücksichtigung der Pattern-Hierarchie kann man zur Realisierung dieses
Konzepts zwei verschiedene Ansätze verfolgen. Man kann die Hierarchie entweder von
unten nach oben oder von oben nach unten durchlaufen. Bei einem Bottom-Up-Ansatz
versucht man, ausgehend von der Schicht der Workflow-Fragmente, die DMPs auf den
einzelnen Schichten und deren Beziehungen, sowohl innerhalb einer Schicht als auch
zwischen den einzelnen Schichten, möglichst abstrakt zu beschreiben. Dabei geht es um
eine Abstraktionsunterstützung für den Modellierer, damit man ihm möglichst viel Arbeit
abnimmt. Bei dieser Abstraktionsunterstützung verliert man Informationen über die
involvierten DM-Operationen. Das könnte aber zur Folge haben, dass man bei dem
Top-Down Ansatz nicht mehr genügend Informationen über die einzelnen Schichten und
deren Beziehungen hat, um die DMPs auf die ausführbaren Workflow-Fragmente abzubilden.

Bei einem Top-Down Ansatz geht man von der ersten Schicht der DMPs aus. Dabei
geht es um die Transformation der DMPs auf die ausführbaren Workflow-Fragmente.
Anhand der Informationen auf der jeweils höheren Ebene müssen die geeigneten
DM-Operationen für die nächste Ebene definiert werden, um die Patterns auf die Workflow-
Fragmente abzubilden. Das kann aber zur Folge haben, dass die Abstraktionsunterstützung
für den Modellierer eingeschränkt wird. Außerdem muss man möglicherweise die auf einer
höheren Schicht fehlenden Informationen beim Top-Down-Ansatz ergänzen.

Um den obigen Sachverhalt zu verdeutlichen, werden wir ein Beispiel anhand der
Ebene der ETL-Patterns angeben. Bei einem Top-Down Ansatz versucht man die Daten-
managementoperation möglichst detailliert zu beschreiben, um die ETL-Patterns auf die
Workflow-Fragmente transformieren zu können. Wenn man aber einem Bottom-Up Ansatz
verfolgt, dann versucht man die ETL-Patterns möglichst abstrakt zu beschreiben, damit
der Modellierer nicht viele Details über die Datenmanagementoperationen definieren
muss. Deshalb gibt es einen Zielkonflikt zwischen der Abstraktionsunterstützung für den
Modellierer und der Möglichkeit alles ausführbar zu halten. In diesem Zusammenhang
stellen sich folgende Fragen:

1. Wenn man dem Bottom-Up Ansatz verfolgt, welche Informationen auf den unteren
Ebenen kann man weg lassen, um die Modellierung der Patterns auf einer höheren
Ebenen möglichst abstrakt zu halten?

2. Wenn man dem Top-Down Ansatz verfolgt, wie kommt man bei den unteren Ebenen
an die nötigen Informationen, die auf einer höheren Ebene noch fehlen?

66

6.2 Beispiele zur Pattern-Transformation

In diesem Zusammenhang müssen voneinander abhängige Fragen beantwortet werden:

1. Wie sieht die Parametrisierung von bestimmten DMPs aus? Welche Parameter müssen
vom Nutzer unbedingt festgelegt werden?

2. Wie siehen die Transformationsregeln, also der Condition und Action Part, aus? Wie
wird die Kontrollstrategie definiert?

3. Wie sieht eine Architektur aus, die den Abbildungsmechanismus umsetzt? Welche
Metadaten können bei der Parameterfestlegung und bei der Pattern-Transformation
helfen?

Im nächsten Kapitel werden wir auf diese Fragen anhand von konkreten Beispielen einge-
hen.

6.2 Beispiele zur Pattern-Transformation

An dieser Stelle wollen wir anhand von Beispielen aus der Pandas pre- und postproseccing
Phase zeigen, wie eine solche Pattern-Transformation, wie sie im Kapitel 6.1 beschrieben,
aussieht.

6.2.1 Beispiele anhand der Pandas Preprocessing-Phase

Funktionsweise und Identifikation der Patterns

Bei diesem Beispiel verwenden wir den Bottom-Up Ansatz. Wir schauen erstmal
die existierende Workflows an und wir identifizieren dabei die relevanten Workflow-
Fragmente für die DMPs. Danach erarbeiten wir die Parametrisierung und Transformation
der identifizierten DMPs.

In der preprocessing-Phase startet der Workflow mit dem Laden grundlegender Eingabe-Daten
bezüglich des zu simulierenden Knochens aus verschieden Dateien (siehe Kapitel 4.2). Diese
Dateien sind [rai]:

1. Die Shape-Datei, in der verschiedene mathematische Voraussetzungen für die Ausfüh-
rung der FEM-basierten Simulation definiert sind.

2. Die Geometry-Datei für die Beschreibung der geometrischen Struktur des Knochens.

3. Die ivars-Datei, die verschiedene interne Informationen für die Visualisierung enthält.

4. Die material Parameters-Datei, in der die Parameter bezüglich des Materials des zu
simulierenden Knochens gegeben sind.

5. Die Command-Datei, die eine Menge von Simulationsbefehlen enthält, die Nodes-Datei,
in der die Koordinaten der Elemente im Gitter spezifiziert sind.

67

6 Transformation der Datenmanagementpatterns auf ausführbare Workflow-Fragmente

6. Die Element-Datei für die Spezifikation der Topologie der Elemente im Gitter.

7. Die Nodes-Datei, in der die Koordinaten der Elemente im Gitter spezifiziert sind.

Diese Dateien (Quell-Dateien) werden vom Arbeitsverzeichnis des Workflow-Rechners in
das Arbeitsverzeichnis des Pandas-Rechners kopiert. In diesem Fall kann man eine Schleife
definieren, die über eine Liste von Dateipfaden durchläuft. Jedes Dateipfad in dieser Liste
entspricht dem Pfad zu einer Quell-Datei im Arbeitsverzeichnis des Workflow-Rechners. Für
jeden Iterationsschritt wird ein Dateipfad aus der Liste ausgewählt. Anschließend werden die
jeweiligen ausgewählte Dateien in den Arbeitsverzeichnis des Pandas-Rechners kopiert. Die
Referenz auf das Arbeitsverzeichnis bleibt in jedem Iterationsschritt gleich. Die Schleife wird
beendet, wenn man über alle Dateipfade der Liste durchgelaufen ist. Dieser Datentransfer
kann man anhand der im Rahmen dieser Arbeit definierten Datenmanagementpatterns
beschreiben. Abbildung 6.3 zeigt ein Workflow-Fragment, das die Pandas Preprocessing-
Phase beschreibt. Dieses Workflow-Fragment stellt das Transformationsziel dar.

Abbildung 6.3: Workflow-Fragment zur Pandas-preprocessing-Phase

68

6.2 Beispiele zur Pattern-Transformation

Über die ReceiveInput-Aktivität wird die SOAP-Nachricht (siehe Kapitel 2.1) empfangen
. In der Assign-Aktivität prepare_prepareInfrastructure werden die Eingabedaten für den
nachfolgenden Web-Service-Aufruf (siehe Kapitel 2.1.1) festgelegt. Über die Invoke-Aktivität
prepare_Infrastructure wird ein Webservice (siehe Kapitel 2.1.1) aufgerufen, der die Smulati-
onsID generiert und das Pandas-Arbeitsverzeichnis im Pandas-Rechner erzeugt [Dor11].
Dieser Web Service sendet diese Ergebnisse zurück an den Workflow. Die SimulationsId
und der Pfad zum Arbeitsverzeichnis werden anschließend von der Message-Variable
der prepare_Infrastructure-Aktivität auf die Variablen SSimIDünd "workingDirectory" in
den Assign-Aktivitäten CopySimID und prepareWorkingDirectory kopiert. Anschließend
wird die SimulationsID über eine XPath-Konkatenation 1 am Ende des Pfades zum
Arbeitsverzeichnis hinzugefügt. Das Ergebnis der Konkatenation wird in der Variablen
"workingDirectory"gespeichert. In der Assign-Aktivität Init_File_List wird die zuvor im
BPEL-Dokument definierte Liste der Dateipfaden initialisiert. Die folgende Beschreibung der
Liste wurde aus der Implementierung eines anderen Simulationsworkflows entnommen. Die
Postprocessing-Phase läuft aber genau so wie bei der Pandas-Simulation ab.

<bpel:element="ns2:fileReferenceList"></bpel:variable>

<directory>C:\Users\hoosea\testdaten\</directory>

<fileName>2d_wanne.command</fileName>

</fileReference>

<fileReference

<directory>C:\Users\hoosea\testdaten\</directory>

<fileName>2d_wanne.element</fileName>

</fileReference>

<fileReference>

<directory>C:\Users\hoosea\testdaten\</directory>

<fileName>2d_wanne.geometry</fileName>

</fileReference>

<fileReference>

<directory>C:\Users\hoosea\testdaten\</directory>

<fileName>2d_wanne.ivars</fileName>

</fileReference>

<fileReference>

<directory>C:\Users\hoosea\testdaten\</directory>

<fileName>2d_wanne.nodes</fileName>

</fileReference>

<fileReference>

<directory>C:\Users\hoosea\testdaten\</directory>

<fileName>2d_wanne.shape</fileName>

</fileReference>

<fileReference>

<directory>C:\Users\hoosea\testdaten\</directory>

<fileName>2d_wanne.material parameters</fileName>

</fileReference>

Der Liste wird der Variablentyp fileReferenceList zugewiesen. Innerhalb der Liste werden
alle Dateipfade abgelegt. Ein solches Dateipfad besteht aus dem (<directory>) und den

1http://www.w3.org/TR/xpath20/

69

6 Transformation der Datenmanagementpatterns auf ausführbare Workflow-Fragmente

Namen der jeweiligen Datei (<filename>). Die foreach Aktivität (siehe Kapitel 2.2) realisiert
die Durchführung der Iteration. Im folgenden wird die forEach-Schleife anhand eines
Ausschnittes aus dem Source-Code beschrieben.

<forEach counterName="Counter" name="ForEach">

<startCounterValue>

<![CDATA[1]]>

<\startcounterValue>

<finalCounterValue ![CDATA[round(count($List/fileReference))]]> <\finalcounterValue>

<scope>

<sequence>

<assign name=\textit{"Get_Path"}>

<copy><from variable="Counter"></from>

<to variable=\textit{"ListNumber"}></to>

<\copy>

<copy>

<from>

<concat($List/fileReference[number($ListNumber)]/directory/text(),

$List/fileReference[number($ListNumber)]/fileName/text())>

</from>

<to variable="Input_Data_Path"></bpel:to>

</copy>

</assign>

<TransferData Activity name="Transfer_Input_Data" dsStatement="#Input_Data_Path#"

dsKind="Windows Local" dsType="Filesystem" dsIdentifier=?"DataSourceLocal"

dsLanguage="Shell" targetDsType="Filesystem" targetDsKind="SSH Server"

targetDsIdentifier="DataSourceRemote" targetDsLanguage="Shell" targetDsContainer=

"#workingDirectory#"></simpl:transferDataActivity>

</sequence>

</scope>

<\forEach>

Die forEach-Schleife soll von eins (Startwert) bis zur Anzahl der Dateipfade in der Liste
(Endwert) iterieren. Hierbei wird in der BPEL-Variablen "Counter" der Index i des jeweils
aktuellen Iterationsschrittes gespeichert. Der Startwert <startCounterValue> und der
Endwert <finalCounterValue> werden über einen XPath-Ausdruck ausgewertet. Das Ergebnis
dieser Auswertungen ist jeweils eine Integer Zahl. Diese Integer-Werte bleiben über den
gesamten Schleifen-Durchlauf konstant. Für jeden Iterationsschritt i wird der Inhalt der
Variable Counter um eins erhöht. Wenn der Wert von <finalCounterValue> erreicht wird,
wird die Iteration beendet [OAS]. Ab <Scope> beginnt der Schleifenrumpf. Innerhalb der
Scope-Aktivität werden alle Aktivitäten sequentiell nacheinander ausgeführt. Dies wird
über die Aktivität Sequence realisiert [OAS]. Für jeden Iterationsschritt i wird ein Element
(Dateipfad) aus der Liste selektiert. Dies erfolgt über die Assign-Aktivität Get_Path. Hierbei
wird der i-te Iterationsschritt bzw. die Nummer des besuchten Pfades in der Liste von
der Variablen counter auf die Variable List Number kopiert. Hierbei wird eine Datentyp-
konvertierung von Int auf Integer, oder umgekehrt vorgenommen. Darüber hinaus wird
über die XPath-konkatenation List/fileReference[number(ListNumber)]/directory/text(),
List/fileReference[number(ListNumber)]/fileName/text()) der ganze Dateipfad aus der
Liste ausgelesen und auf die Variable Input_Data_Path kopiert. Damit ist der selektierte
Dateipfad bekannt. Die Ziel-Datei im Arbeitsverzeichnis des Pandas-Rechners ist auch

70

6.2 Beispiele zur Pattern-Transformation

bekannt. Sie kann nämlich aus der Variable "#workingDirectory#"der Assign-Aktivität
prepareWorkingDirectory (siehe oben) ausgelesen werden. Damit kann die BPEL-DM-Aktivität
TransferData die Daten von der jeweiligen Quell-Datei im Eingabedatenverzeichnis in
den Pandas-Arbeitsverzeichnis kopieren. Dieser Datentransfer erfolgt über die Angabe
der Variablen Input_Data_Path und "#workingDirectory#"vom Nutzer. Weiterhin muss
er die Datenressource, in der sich die Quell-Datei befindet, ebenfalls festlegen. Das
geschieht über die Angabe der Variable "DataResourceLocal", also diese Datenressource
ist der lokale Rechner (Workflow-Rechner). Anschließend muss er die Datenressource, in
der sich die Ziel Datei befindet festlegen. Das geschieht über die Angabe der Variable
"DataResourceRemote", also diese Datenressource ist der entfernte Pandas-Rechner. Der Typ
der Datenressource (Filesystem), der Untertyp (Windows Local) und die Sprache (Shell),
die das entsprechende Commando zum jeweiligen Kopieren der Daten ausführt, werden
ebenfalls festgelegt. Diese Informationen werden allerdings nicht vom Nutzer angegeben,
sondern sie werden automatisch über das Ressource Management (siehe Kapitel 3.1) gela-
den. Die forEach Schleife wird beendet, wenn alle Dateipfade aus der Liste selektiert wurden.

Nachdem wir das Workflow-Fragment zur preprocessing-Phase erläutert haben wer-
den wir die DMPs aus diesem Workflow-Fragment identifizieren. Die Iteration über die
Liste von Dateipfaden und die Selektion des jeweiligen Dateipfades aus der Liste können
über das DIP (siehe Kapitel 5.4) beschrieben werden. Die Liste der Dateipfade entspricht der
Menge S. Man iteriert über diese Liste mittels der forEach-Schleife. Das über die Aktivität
Get_Path selektierte Dateipfad aus der Liste entspricht der Menge Ti. Die TransferData
Aktivität entspricht dem C2CP (siehe Kapitel 5.3). Dieses DMP entspricht der Anwendung
der Operation opi. Hierbei wird die jeweilige Quell-Datei aus der Liste im Workflow-Rechner
in den Arbeitsverzeichniss im Pandas-Rechner kopiert. In diesem Fall betrachten wir das
C2CP im DIP als ein Black-Box, wobei die Schleife zur Durchführung des Datentransfers in
der übergeordneten forEach-Schleife sieben mal iteriert wird, d.h. so oft wie die Anzahl der
Dateipfade in der Liste.

Parametrisierungsprozess

Als nächstes werden wir den Parametrisierungsprozess der identifizierten Patterns
beschreiben. Bevor wir aber das tun möchten wir darauf hinweisen, dass wir für sämtliche
Referenzen auf Dateien, ab sofort die im Kapitel 3.2 genannten Data Container Reference
Variables (DCVs) verwenden. Der Grund ist, dass die aktuelle Implementierung des
Pandas-Workflows (und von SIMPL) in Kürze auf diese Arten von Variablen geändert wird.
Zur Identifikation der referenzierten Datencontainer im Workflow unterscheiden wir zwei
Fälle:

1. Der Datencontainer ist im Resource Management registriert: In diesem Fall wird der
Datencontainer in Worklow über einen Logical Container Name (siehe Kapitel 3.3), der
auf den Datecontainer referenziert, im Resource Management eindeutig identifiziert.
Jeder Datencontainer wird genau eine Datenquelle zugeordnet.

2. Der Datencontainer wird im Pattern direkt über den Local Container Identifier (siehe
Kapitel 3.3) angegeben : Dann muss in der entsprechenden Data Container Reference

71

6 Transformation der Datenmanagementpatterns auf ausführbare Workflow-Fragmente

Variable zusätzlich noch die Datenquelle mit angegeben werden. Das ist der Fall im
hier betrachten Beispiel bzw. das wird so angenommen.

Nachdem wir dies geklärt haben, werden wir mit dem Paramtrisieurungsprozess der DMPs
fortfahren. Als erstes zeigen wir, welche Parameter für die einzelne DMPs festgelegt werden.
Abbildung 6.4 illustriert dies.

Abbildung 6.4: Parametrisierung der einzelnen Datenmanagementpatterns

Die Parameter sind erstmal allgemein beschrieben. Für das DIP wird der Parameter S
festgelegt. Dieser Parameter entspricht in diesem Beispiel der Liste der Dateipfade. Der
Parameter T entspricht der selektierten Quelle aus der Liste. Um den Datentransfer zwischen
der Quell-Datei und der Ziel-Datei durchzuführen, muss das C2CP die Quelle und das Ziel
kennen. Die Quell-Datei wird vom Parameter T ausgelesen und wird auf den Parameter
Source kopiert. Die Ziel-Datei wird von der Variable "workingDirectory"der Assign-Aktivität
prepareWorkingDirectory (siehe oben) ausgelesen und auf den Parameter Target kopiert.
Für BPEL-Aktivitäten im Kontrolfluss des Workflow-Fragments müssen keine Parameter
angegeben werden, da sie ausführbare Aktivitäten sind und keine DMPs.

Im nächsten Schritt müssen die Datentypen/Variabletypen der Parameterwerte der
einzelnen Patern-Parameter bestimmt werden. Die Tabelle 6.1 illustriert dies. Der Wert des

72

6.2 Beispiele zur Pattern-Transformation

Parameter Parameterwerte

Parameter S List of Data Container References
Parameter T Data Container Reference

Source Data Container Reference
Target ?Data Container Reference

Tabelle 6.1: Angabe der Variablentypen der Parameterwerte der jeweiligen Pattern-Parameter

Parameters S ist eine Liste von DCRs. Diese referenzieren auf die jeweilige Quelle-Datei in
der Liste von DateipfadenPattern-. Für den Parameter T wird der Wert Container Reference
Variable angegeben. Diese Variable referenziert auf die jeweilige Quell-Datei, die aus der Liste
von Dateipfaden selektiert wird. Der Wert des Parameters Source ist eine Container Reference
Variable. Sie referenziert auf die Quelle-Datei, deren Daten auf die Ziel-Datei, von der die
Daten kopiert werden sollen. Der Wert des Parameters Target ist ebenfalls eine Container
Reference Variable. Diese Variable referenziert auf die Ziel-Datei im Arbeitsverzeichnis des
Pandas-Rechners, auf die die Daten kopiert werden.

Im Workflow-Fragment werden Platzhalter für die einzelne Parameterwerte definiert. Da
im Workflow-Fragment solche Platzhalter stehen , ist das Workflow-Fragment noch nicht
ausgeführt. Damit das Workflow-Fragment ausführbar gemacht werden kann, muss dieses
Workflow Fragment zunächst identifiziert werden. Hierbei wird dem Workflow-Fragment
ein eindeutiger Name vergeben. Weiterhin müssen die Platzhalter durch die entsprechende
Variablen im Workflow-Fragment ersetzt werden.

Der Platzhalter Referenz List wird durch die Variable, die der Modellierer des Pat-
terns beim Parameter S angegeben hat ersetzt, z.b "List". Der Platzhalter Container Reference
wird von der Variablen die der Modellierer des Patterns beim Parameter T angegeben
hat ersetzt, z.B. Input_Data_Path. Abbildung 6.5 zeigt wie die Platzhalter Für die Quelle
(?sourceStatement), das Ziel(?targetStatement) und die jeweilige Datenressourcen (?Data-
source und ?Datasink) durch die entsprechende Variablen ersetzt werden. Das Kopieren
von Daten von der Quell-Datei auf die Ziel-Datei kann über eine TransferData-Aktivität
ausgeführt werden. Zuerst muss er angegeben werden, von welcher Datei in welchem
Rechner sollen die Daten kopiert werden. Für den Platzhalter ?sourceStatement muss also
die Variable Input_Data_Path (Quell-Datei) und für den Platzhalter (?Datasource) die Variable
DataSourceLocal (Workflow-Rechner) angegeben werden. Weiterhirn muss angegeben werden,
auf welche Datei in welchem Rechnern sollen die Daten kopiert werden. Für die Platzhalter
?targetSource und ?Datasink sollen also die Variablen "workingDirectory"(Ziel-Datei) und
DataSourceRemote (Panda-Rechner) angegeben werden. Damit wird die DataTransfer-
Aktivität ausführbar. Aufgrund der Tatsache, dass die Datenformate der Dateien identisch
sind kann sie somit die Daten aus der jeweiligen Quell-Datei aus der Liste auf die jeweilige
Ziel-Datei kopieren.

73

6 Transformation der Datenmanagementpatterns auf ausführbare Workflow-Fragmente

Abbildung 6.5: Ersetzen der festgelegten Platzhalter durch Variablen. Dadurch wird die
TransferData-Aktivität ausführbar

Zum Schluss wollen wir zeigen wie die Datenquellen und die Datenformate der je-
weiligen Datencontainer, also im Beispiel der jeweiligen Dateien, identifiziert werden.
Dies kann man anhand der im Pattern angegebenen Datencontainer Referenz Variablen
herausbekommen. Hierbei unterscheiden wir zwei Fälle:

1. Der Datencontainer ist im Resource Management registriert: In diesem Fall wird
der Datencontainer in Workflow über einen Logical Container Name (siehe Kapitel
3.3), der auf den Datecontainer referenziert eindeutig identifiziert. Dann wird das
Datenformat der von der Datenconatainer Referenz Variable referenzierten Datei
eindeutig identifiziert, da ihr Datenformat auch im Resource Management registriert
ist. Jedem Datencontainern wird im Resource Management genau eine Datenquelle
zugeordnet. Dann wird die entsprechende Datenquelle auch identifiziert.

2. Der Datencontainer wird im Pattern direkt über den Local Container Identifier (siehe
Kapitel 3.3) angegeben: Dann muss in der entsprechenden Data Container Reference
Variable zusätzlich noch die Datenquelle mit angegeben werden. Da die Datencon-
tainer Referenz Variable bereits einen lokalen Bezeichner enthält, muss wohl auch in

74

6.2 Beispiele zur Pattern-Transformation

dieser Variable das Datenformat (das auch im Resource Management registiert ist) mit
angegeben werden. .

Definition des Condition- und Action Part

Damit wir das parametrisierte DIP ausführbar machen, müssen wir es auf ein aus-
führbare Workflow Fragment abbilden. Dies geschieht über eine Tranformationsregel vom
Typ 1 (siehe Kapitel 6.1). In diesem Fall wird die Operation im DIP, also das C2CP, als
Black Box betrachtet, da die Abbildungsregel unabhängig von der Operation sein sollte. In
einem solchen Fall muss allerdings rekursiv überprüft werden, ob sich in der Black-Box
immer noch DMPs befinden. Im Folgenden wird der Condition- und Action Part dieser
Transformationsregeln definiert.

Condition Part:

• Condition 1: Der Wert des Parameters S ist vom Typ Reference List.

• Condition 2: Der Wert des Parameters T ist eine Container Reference Variable.

Diese Voraussetzungen müssen erfüllt sein, damit das DIP auf ein ausführbares Workflow-
Fragment transformiert werden kann. Im nächsten Schritt müssen wir den Action Part
definieren. Hierbei wird das richtige Workflow-Fragment identifiziert und die Platzhalter
durch die entsprechende Variablen ersetzt. Action Part:

• Action 1: Identifiziere das Workflow-Fragment preprocesing.

• Action 2: Der Platzhalter Referenz List wird durch die Variable, die der Modellierer
des Patterns beim Parameter S angegeben hat ersetzt. Im Beispiel heißt diese Variable
List.

• Action 3: Der Platzhalter Container Reference wird von der Variablen die der Modellie-
rer des Patterns beim Parameter T angegeben hat ersetzt. Im Beisiel heißt diese Variable
Input_Data_Path.

In einem zweiten Schritt müssen wir den Condition- und Action Part für das C2CP definieren.
Condition Part:

• Condition 1: Der Wert des Parameters Source ist eine Container Referenz Variable.

• Condition 2: Der Wert des Parameters Target ist eine Container Referenz Variable.

• Condition 3: Die Datenformate der von den beiden Container Referenz Variablen
referenzierten Dateien sind identisch.

Action Part:

• Action 1: Identifiziere das Workflow-Fragment Pandas.

• Action 2: Der Platzhalter ?sourceStatement wird von der Variablen Input_Data_Path
ersetzt.

• Action 3: Der Platzhalter ?Datasource wird vom Platzhaltern DataSourceLocal ersetzt.

75

6 Transformation der Datenmanagementpatterns auf ausführbare Workflow-Fragmente

• Action 4: Der Platzhalter ?targetStatement wird von der Variablen workingDirectory
ersetzt.

• Action 5: Der Platzhalter ?Datasink wird von der Variablen DataSourceRemote ersetzt.

6.2.2 Beispiel anhand der Pandas Postprocessing-Phase

Das zweite Beispiel, das wir vorstellen, wird aus der postprocessing-Phase der Pandas-
Simulation entnommen. Dabei geht es um die Visualisierung der Endergebnisse der
Simulation. Die Visualisierung wird von einem externen Werkzeug durchgeführt.

Funktionsweise und Identifizierung der Patterns

Auf der Abbildung 6.6 wird der Workflow zur Pandas Postprocessing-Phase dargestellt.
Über die Aktivität Save End State wird das Endergebnis der Simulation auf einer Datei im

Save Endstate

Pandas Post-Processing Phase

Save Endstate

Result Provisioning for

Visualization Tool

Visualize Results

(Visualization Workflow)

Stop Simulation

Abbildung 6.6: Workflow zur Pandas-postprocessing-Phase

Simulationsverzeichnis des Pandas-Rechners kopiert. Über die Aktivität Result Provisioning
for Visualization Tool werden die Ergebnisdaten an das externe Visualisierungswerkzeug

76

6.2 Beispiele zur Pattern-Transformation

auf dem Workflow-Rechner übergeben. Hierbei werden die Ergebnisdaten von einer
Datei (tecplot_final.dat) im Arbeitsverzeichnis des Pandas-Rechners auf eine andere Da-
tei(visualizationInput.vtk) auf den Workflow-Rechner kopiert. Wie sich aus den Endungen
der Namen der beiden Dateien erkennen lässt, besitzen sie unterschiedliche Datenformate. Über
die Aktivität Visualize Results (Visualization Workflow) wird die Visualisierung ausgeführt.
Diese Aktivität entspricht einem anderen Workflow, der den Visualisierungsprozess Schritt
für Schritt beschreibt [Jin09]. Die Aktivität stop Simulation beendet die Pandas-Simulation.

Im Rahmen dieses Beispiels werden wir beschreiben, wie der Datentransfer zur
Übergabe der Ergebnisdaten zur Visualisierung der Simulation verläuft. Wie oben erwähnt
findet dieser Datentransfer zwischen zwei Dateien mit unterschiedliche Datenformaten statt.
Dies kann über ein C2CP beschrieben werden. Aufgrund der Tatsache, dass die Quell-und
Ziel-Datei unterschiedlichen Datenformate besitzen, kann eine TransferData-Akrivität
den Datentransfer alleine noch nicht ausführen (siehe Kapitel 6.2.1). Dafür muss vor der
Datenübertragung eine Datenformatkonvertierung vorgenommen werden. Dazu braucht man
ein Python-Transformatiosskript, das tecp2vtk.py heißt. Über dieses Transformationsskript wird
das Datenformat der Datei tecplot_final.dat im Simulationsverzeichnis des Pandas-Rechners
auf das für die Visualisierung benötigte Datenformat(.vtk) konvertiert. Anschließend wird
eine Datei im Simulationsverzeichnis erzeugt, die das Format der Visualisierungs-Datei
besitzt. Diese Datei heißt feld.vtk. Anschließend wird diese Datei in den Arbeitsverzeichnis
des Workflow-Rechners kopiert. Diesen letzeten Transferschritt kann man wie im Kapitel
6.2.1 über ein C2CP beschreiben, da die dabei beteiligten Datenformate nach der Ausführung
des Transformationsskripts wieder identisch sind. Die Datenfomatkonvertierung kann über
ein Datenformatkonvertierungspattern (DKP) (siehe Kapitel 5.2) dargestellt werden.

Parametrisierungsprozess

Nachdem wir die relevanten Patterns identifiziert haben, werden wir mit dem Para-
metrisierungsprozess fortfahren. Wie in Kapitel 6.2.1 werden wir mit der Zuordnung
der Parameter für die entsprechende Patterns beginnen. Abbildung 6.7 illustriert dies.
Für das C2CP mit den unterschiedlichen Datenformaten werden die Parameter Source
(tecplot_final.dat) und Target (visualizationInput.vtk) festgelegt. Aufgrund der Tatsache, dass
die Datenformate der beiden Dateien unterschiedlich sind, kann eine TransferData-Aktivität
den Datentransfer nicht ausführen. Damit der Datentransfer dennoch ermöglicht wird
muss das C2CP über eine Anwendung einer Transformationsregel vom Typ auf andere
DMPs transformiert werden. Darauf werden wir weiter unten eingehen. Zuerst wird das
C2CP auf ein DKP, das das Datenformat .tec der Quell-Datei auf das für die Visualisierung
benötigte Datenformat .vtk der Ziel-Datei konvertiert, danach auf ein C2CP, das den
Datentransfer zwischen der Quell-Datei (feld.vtk) und der Ziel-Datei (visualizeInput.vtk)
beschreibt. Für das DKP werden zwei Parameter festgelegt. Die Cintainer Reference
Variable der Eingabe-Datei (tecplot_final.dat) wird vom C2CP mit den unterschiedlichen
Datenformaten ausgelesen und auf den Parameter Source kopiert. Der Parameter Target1
entspricht der vom DKP erzeugten Datei feld.vtk (Ausgabe-Datei). Die entsprechende
Container Reference Variable wird vom C2CP mit den identischen Datenformaten ausgelesen
und auf den Parameter Source1 kopiert. Die Container Reference Variable der Ziel-Datei

77

6 Transformation der Datenmanagementpatterns auf ausführbare Workflow-Fragmente

Abbildung 6.7: Parametrisierung der einzelnen Datenmanagementpatterns in der
Postprocessing-Phase

(visualizeInput.vtk) wird vom C2CP mit den unterschiedlichen Datenformaten ausgelesen
und auf den Parameter Target kopiert.

Da die Festlegung von Platzhaltern und das Ersetzen der Platzhalter durch die ent-
sprechende Variablen für das C2CP mit den identischen Datenformaten bereits im Kapitel
6.2.1 gezeigt wurde, werden wir nicht nochmal darauf eingehen. An dieser Stelle werden wir
das Festlegen der Platzhalter für die Parameter des DKPs und das Ersetzen dieser Platzhal-
tern durch die entsprechende Variablen beschreiben. Das DKP wird auf eine IssueCommand
Aktivität (siehe Kapitel 3.2) abgebildet. Abbildung 6.8 illustriert dies. Als erstes muss
der Rechner, auf den der DM-Befehl zum Aufruf des Transformationsskripts ausgeführt
wird, angegeben werden. Der Platzhalter ?Datasource entspricht also der Datenressource,
in dem sich das Transformationskript und seine Eingabe-und Ausgabedateien befinden.
Wie diese Datenressource anhand der im Pattern angegebenen Datencontainer Referenz
Variablen identifiziert wird, haben wir schon im Kapitel 6.2.1 besprochen. Weiterhin muss
der Platzhalter für das DM-Command zum Aufruf dieses Transformationsskriptes angegeben
werden. Der Platzhalter DM-Command enthält drei weitere Platzhalter. Als erstes muss

78

6.2 Beispiele zur Pattern-Transformation

Abbildung 6.8: Ersetzen der Platzhalter durch die entsprechende Variablen. Dadurch wird
die IssueCommand-Aktivität ausführbar

der Befehl zum Aufruf des Transformationsskriptes angegeben werden. Das geschieht
über den Platzhalter ?Python. Weiterhin müssen die Argumente zum Aufruf des Python-
Skriptes festgelegt werden. Das erste Argument ist die Eingabe-Datei (tecplot_final.dat)
und das zweite Argument die Ausgabe-Datei (feld.vtk). Der Platzhalter (?sourceState-
ment) entspricht der Eingabe-Datei und der Platzhalter (?targetStatement) der Ausgabe-Datei.

Die Datenformatkonvertierung kann über eine IssueCommand-Akrivität (siehe Kapitel
3.2) ausgeführt werden. Damit aber die Aktivität ausführbar wird, muss der Nutzer
die entsprechende Variablen an der Stelle der entsprechenden Platzhalter angeben.
Der Platzhalter ?Datasource wird durch die Variable DataSourceRemote ersetzt, also das
Python-Skript wird im Pandas-Rechner aufgerufen. Weiterhin muss der Nutzer das
entsprechende DM-Command festlegen. Der Platzhalter ?python wird durch den String
python tecp2vtk.py ersetzt, also den konkreten Namen des Python-Skriptes. Weiterhin müssen
die Eingabe- und die Ausgabe-Datei als Argumente für den Skript-Aufruf angegeben
werden. Der Platzhalter ?statementSource wird durch die Variable InputDataFormat und der
Platzhalter ?targetStatement durch die Variable OutpatDataFormat ersetzt.

79

6 Transformation der Datenmanagementpatterns auf ausführbare Workflow-Fragmente

Zum Schluss werden wir erklären, wie das Python-Skript als passender Dienst zur
Durchführung der oben beschriebenen Datenformatkonvertierung identifiziert wird. Dafür
werden die notwendige Metadaten im Ressource Management (siehe Kapitel 3.3) benötigt.
Abbildung 6.9 zeigt die drei Objekte, die zur Identifikation des Python-Skriptes beteiligt sind.
Zuerst müssen die beteiligte Datencontainer (Dateien) identifiziert werden. Wie im Kapitel

Abbildung 6.9: Metadaten und Metadaten-Objekte im Resource Management zur Datenfor-
matkonvertierung

6.2.1 erläutert, unterscheiden wir zwei Fälle. Wenn die beiden Datencontainer im Data
Container-Objekt des Resource Managements registriert sind, dann werden diese über einen
Logical Container Name, der auf sie referenziert, eindeutig identifiziert. Wenn sie aber nicht
registriert sind dann stehen die lokalen Bezeichner in den Datenconatiner Referenz Variablen.
An dieser Stelle erweitern wir das Resource Management um ein weiteres Objekt. Im External
Data Formats-Objekt sind alle externen Datenformate registriert. Anhand des Datenformats
der identifizierten Quell-Datei (.tec) und des Datenformats der identifizierten Ziel-Datei
(.vtk), wird der passende Dienst gesucht, der das Datenformatkonvertierung ausführen kann.
Die Metadaten über Data Transformation Services sind im Datatransformationservices-Objekt
registriert [Pie11]. Diesem Objekt werden folgende Attribute zugeordnet:

1. id: In diesem Attribut wird Data Transformation Service eine id vergeben.

80

6.2 Beispiele zur Pattern-Transformation

2. Name: In diesem Attribut wird der Name des Transformation Service (tecTovtk) gespei-
chert.

3. Source_Dataformat: Referenziert aus das Datenformat eines Eingabe-Datebcontainers.
Im Beispiel ist es das Datenformat (tec).

4. Target_Dataformat: Referenziert auf das das Datenformat des Ausgabe-Datencontainers.
Im Beispiel ist es das Datenformat (vtk).

5. Skript-Aufruf: Beschreibt wie der Datenaufruf aussieht.

Nachdem der passende Service identifiziert wurde, wird er aus dem Resource Managemnet
geladen und über die IssueCommand-Aktivität per SSH-Verbindung mit dem Pandas-
Rechner aufgerufen.

Definition des Condition- und Action Part

An dieser Stelle werden wir beschreiben, wie die Abbildung der DM-Patterns auf
ausführbare Workflow-Fragmente aussieht. Weiterhin werden wir die Condition- und
Action-Part der entsprechenden Transormationsregeln erläutern. In diesem Beispiel wird
das C2CP mit den unterschiedlichen Datenformaten rekursiv verfeinert, um es in einer
solchen Form zu bringen, so dass eine direkte Transformation über einen Regeltyp-1-Ansatz
realisierbar ist. Es wird also eine Regel vom Typ2 auf dieses Pattern angewendet (siehe
Kapitel 6.1). Da es beim Datenkonvertierungspattern um ein feingranulares Pattern geht
und weil eine IssueCommand-Aktivität (siehe Kapitel 3.2) das Transformationsskript starten
kann, wird auf dieses Pattern eine Regel vom Typ 1 angewendet (siehe Kapitel 6.1). Das
C2CP kann nach der Datenformatkonvertierung über eine Regel vom Typ 1 transformiert
werden, da die Quell-und Ziel-Datei keine unterschiedlichen Datenformate mehr besitzen
und weil eine TransferData-Aktivität den Datentransfer durchführen kann. Zum Schluss
müssen wir den Condition und Action Part für die drei DMPs definieren. Für das C2CP mit
den unterschiedlichen Datenformaten sieht die Definition des Condition- und Action Parts
wie folgt aus:

Condition Part:

• Condition 1: Der Platzhalter des Parameters Source ist eine Container Referenz Variable.

• Condition 2: Der Platzhalter des Parameters Target ist eine Container Referenz Variable.

• Condition 3: Die Datenformate der beiden Datencontainern sind verschieden.

Action Part

• Action 1: Das Workflow-Fragment Transform wird richtig identifiziert.

• Action 2: Der Platzhalter ?statementSource wird von der Variablen InputDataFormat
ersetzt.

• Action 3: Der Platzhalter ?Datasource wird vom Platzhaltern DataSourceRemote ersetzt.

81

6 Transformation der Datenmanagementpatterns auf ausführbare Workflow-Fragmente

Im nächsten Schritt werden wir den Condition und Action Part für das Datenkonvertie-
rungspattern definieren.

Condition Part:

• Condition 1: Der Platzhalter des Parameters Source ist eine Container Referenz Variable.

• Condition 2: Der Platzhalter des Parameters Target1 ist eine Container Referenz Varia-
ble.

• Condition 3: Die beide Datencontainer, die Datenformate und die zugehörigen Data
Transformation Services sind im Resource Management registriert.

Action Part:

• Action 1: Das Workflow-Fragment Convert wird richtig identifiziert.

• Action 2: Der Platzhalter ?Datasource wird durch die Variable DataSource Remote
ersetzt.

• Action 3: Der Platzhalter ?Python wird durch den String python tecp2vtk.py ersetzt.

• Action 4: Der Patzhalter ?statementSource wird durch die Variable InputDataFormat
ersetzt.

• Action 5: der Platzhalter ?statementTarget wird durch die Variable OutputDataFormat
ersetzt.

Zum Schluss werden wir den Condition-und Action Part für das C2CP mit den identischen
Datenformaten definieren. Im nächsten Kapitel werden wir anhand der Definition der Kon-
trollstrategie und zwei Algorithmen zeigen, wie die im diesen Kapitel definierte Condition-
und Action Parts der Transformationsregeln umgesetzt werden und wie die Transformation
eines DMPs auf ein ausführbares Workflow-Fragment aussieht.

6.3 Definition der Kontrollstrategie

Im Rahmen dieses Kapitels werden wir zunächst die Definition der allgemeinen Konrollstra-
tegie erläutern. Anschließend werden wir zwei Algorithmen vorstellen, die Die Definition
der Kontrollstrategie und das Konzept der Pattern-Transformation umsetzen. Zum Schluss
werden wir anhand der im Kapitel 6.2 vorgestellten Beispielen (DIP, C2CP, DKP) zeigen wie
die Definition der Kontrollstrategie für diese DMPs aussieht.

82

6.3 Definition der Kontrollstrategie

6.3.1 Kontrollstrategie und Algorithmen zur Pattern-Transformation

Um die Transformation der Datenmanagementpatterns auf ausführbare Workflow-Fragmente
zu realisieren, wird die Kontrollstrategie definiert.[Rei11] Wie im Kapitel 6.1 erwähnt
bekommt der Pattern-Transformer einen Workflow mit Patterns und BPEL-Aktivitäten als
Eingabe. Dieser Workflow kann als einen Graph dargestellt werden. Man traversiert durch
diesen Graphen, um jedes besuchte Pattern durch ein ausführbares Workflow-Fragment
zu ersetzen. Ein Beispiel eines solchen Graphen ist der Graph auf der Abbildung 6.3. Er
repräsentiert die Zieltransformation. Die ganze forEach-Schleife entspricht dem DIP und die
Aktivität Transfer_Input_Files dem C2CP. Da die BPEL-Aktivitäten ausführbar sind und keine
DMPs, werden sie während der Traversierung ignoriert.

Über die Definition der Kontrollstrategie werden die passenden Regel für das jewei-
lige Eingabe-Pattern geliefert und die Reihenfolge der Überprüfung auf Anwendbarkeit der
Regeln gesteuert. Anschließend wird es mit der Überprüfung der Regel auf Anwendbarkeit
begonnen (Condition Part). Wenn der Condition Part erfüllt ist, dann wird die Regel
auf das Pattern angewendet (Action Part). Die folgende Algorithmen illustrieren dieses
Vorgehen. Die Algorithmen sind an [VSS+ia] angelehnt und an das Verfahren der
Pattern-Transformation entsprechend angepasst.

Algorithmus: 6.1 Traversierung durch den Workflow-Graphen vgl.[VSS+ia]
Procedure TraverseWG(wg)

while wg is not fully traversed do
dmp← getNextDMP(wg)
if dmp 6= null
TransformDMP(dmp)
end if

end while

Algorithmus: 6.2 Pattern-Transformation vgl.[VSS+ia]
Procedure TransformDMP(dmp)

cs← getControlstrategy(dmp)
while cs is not finished do

r ← getNextRule(cs)
if r isApplicable(dmp,r) then
w f ←applyrule(dmp,r)

if r.Type=2 ∨ dmp.Type=DIP then
traverseWG(wf)

end if
replace(dmp,wf)
return

end if
end while

Escalation(”There is no applicable rule”)

83

6 Transformation der Datenmanagementpatterns auf ausführbare Workflow-Fragmente

Die Prozedur TraverseWorkflow-Graph nimmt als Eingabeparameter den zu transformierenden
Workflow-Graphen wg und traversiert durch diesen Graphen über die Funktion getNextDMP.
Für jeden Iterationschritt nimmt diese Funktion das nächste zu transformierende DMP aus
dem Workflow-Graphen und liefert dieses, sofern es existiert, als Eingabeparameter an die
TransformDMP-Prozedur. Diese Prozedur übernimmt die Transformation eines DMPs auf
ein ausführbares Workflow-Fragment. Die Funktion getControllStrategy liefert die passende
Kontrollstrategie cs für das eingegebene DMP. Die Funktion getNextRule liefert jeweils
die nächste Regel r auf Basis der gefundenen Kontrollstrategie. Die Funktion isApplicable
überprüft, ob die Regel r auf das DMP anwendbar ist, sie evaluiert also den Condition
Part der Regel. Wenn die Regel r nicht anwendbar ist, dann wird es an die while-Schleife
zurückgekehrt und mit der Überprüfung der nächsten Regel fortgesetzt. Wenn die Regel
r anwendbar ist, dann wird sie über die Funktion applyrule auf das DMP angewendet,
hier wird also er Action Part evaluiert. Als Ergebnis liefert sie das Workflow-Fragment wf.
Was danach passiert, hängt davon ab, ob es sich bei der Regel r um einen Regeltyp 1 oder
einen Regeltyp 2 handelt oder ob das Patern dmp ein DIP ist. Bei einem Regeltyp 2 haben
wir in dem Workflow-Fragment wf erneut DMPs drin, d.h. wf ist noch nicht ausführbar.
Wir führen daher rekursiv die Prozedur TraverseWG auf dieses Workflow-Fragment aus.
Dadurch wird es dann rekursiv in ein ausführbares Workflow-Fragment transformiert, unter
Umständen in mehreren Rekursionsschritten. Bei einem DIP, in dem die Operation opi als
Black-Box betrachtet wird (siehe Kapitel 6.2), wird die oben beschriebene Rekursion ebenfalls
ausgeführt, da man nicht sicher sein kann, ob in dieser Black-Box auch Patterns enthalten
sind oder nicht. Bei einem Regeltyp 1 bzw. nach der Rekursion bei einem Regeltyp2 oder
einem DIP wird das DMP über die Funktion replace durch das Workflow-Fragment ersetzt.
Anschließend wird die while-Schleife über die Funktion return unterbrochen. Damit wird
auch die Prozedur TransformDMP beendet. Dadurch kommen wir wieder an die Prozedur
TraverseWG, in der das nächste Pattern gefunden wird, wenn es noch eins gibt. Das gesamte
Programm wird beendet, wenn alle DMPs im Workflow Graphen ein mal besucht und
auf Anwendbarkeit überprüft wurden. Das Ergebnis des Programms ist der ausführbare
Workflow-Graph.

Wenn alle Regeln r in der Kontrollstrategie cs auf das DMP nicht anwendbar sind,
dann führen wir eine Eskalation ein, da wir keine Regel für das DMP gefunden haben. In
einem solchen Fall können folgende Maßnahmen ergriffen werden:

• Der Nutzer kann ein Workflow-Fragment über die Verwendung eines Werkzeugs
automatisch generieren.

• Der Nutzer kann sein eigenes Workflow-Fragment definieren.

• Man kann dem Nutzer Vorschläge für mögliche Workflow- Fragmente geben.

6.3.2 Anwendungsbeispiele für die beiden Algorithmen

Zum Schluss möchten wir anhand der DMPs aus den Kapiteln 6.2.1 und 6.2.2 Anwendungs-
beispiele für die beiden Algorithmen angeben. Hierbei werden wir davon ausgehen, dass die

84

6.4 Definition der Kontrollstrategie anhand von konkreten Beispielen

DMPs im Workflow-Graphen besucht wurden und dass die entsprechende Kontrollstrategie
definiert wurde (siehe Kapitel 6.4).

Der Condition Part ist für das DIP erfüllt (siehe Kapitel 6.2.1). Es wird anschlie-
ßend die Regel auf das DIP angewendet und das entsprechende Workflow-Fragment
geliefert. Da die erste if-Bedienung erfüllt ist und weil die Operation (C2CP) im DIP
als Blackbox betrachtet wird (siehe Kapitel 6.2.1), wird die Rekursion ausgeführt, da
man nicht sicher sein kann, ob in dieser Black-Box Patterns vorhanden sind oder nicht.
Dadurch kommen wir wieder an die Prozedur TraverseWG, in der das C2CP gefunden
wird. Wenn der im Kapitel 6.2.1 definierte Condition Part für das C2CP erfüllt ist, dann
wird die Regel auf das C2CP angewendet und das entsprechende Workflow-Fragment
geliefert. Die zweite if-Bedienung ist aber in diesem Fall nicht erfüllt, da es in diesem Fall
um eine Transformationsregel vom Typ 1 handelt (siehe Kapitel 6.2.1). Damit wird das
C2CP durch das entsprechende Workflow-Fragment ersetzt. Dadurch kommen wir über
die Funktion return wieder an die Prozedur TraverseWG. Danach kommt man über die
Rekursion wieder an die Prozedur TansformDMP, in der das DIP durch das zuvor erzeugte
Workflow-Fragment ersetzt wird. Nach diesem Schritt kommen wir an die Prozedur
TraverseWG. Da der Baum gänzlich traversiert wurde wird das Programm beendet und das
ganze Workflow-Fragment als Ergebnis ausgegeben.

Wenn der Condition Part für das C2CP mit den unterschiedlichen Datenformaten
erfüllt ist, wird die Regel auf das C2CP angewendet und das entsprechende Workflow-
Fragment geliefert. Da es sich im diesen Fall um eine Transformation vom Regeltyp-2
handelt, ist die if Bedienung erfüllt. Dadurch kommen wir über die Rekursion wieder an die
Prozedur TraverseWG, wo das DKP gefunden wird. Der Condition Part ist für dieses Pattern
ebenfalls erfüllt (siehe Kapitel 6.2.2). Anschließend wird die Regel auf das DKP angewendet
und das entsprechende Workflow-Fragment geliefert. Da es sich in diesem Fall um einen
Regeltyp 1 handelt, ist die zweite if-Bedienung nicht erfüllt. Damit wird das DKP durch das
entsprechende Workflow-Fragment ersetzt. Dadurch kommen wir über die return Funktion
wieder an die Prozedur TraverseWG, wo das C2CP gefunden wird. Der weitere Verlauf
wurde im Beispiel zuvor erläutert. Daher werden wir nicht noch mal darauf eingehen. In
diesem Fall wird die aus dem Kapitel 6.2 beschriebene Transformationsregel vom Typ 1 als
erste genommen und überprüft, da diese schneller auf ein ausführbares Workflow-Fragment
abgebildet werden könnte und weil es keiner andere Regeltyp 1 für das C2CP existiert, also
es kann nur bei einem Datentransfer über das Kopieren von Daten von einer Datei auf eine
andere Datei einen Regeltyp 1 für das C2CP geben.

6.4 Definition der Kontrollstrategie anhand von konkreten
Beispielen

An dieser Stelle möchten wir zeigen, wie die Definition der einzelnen Kontrollstrategie
für das DIP, das C2CP und das DKP aus dem Kapitel 6.2. aussehen. Für jeden Pattern-
Typ gibt es genau eine Kontrollstrategie, die jeweils von der Operation getControlStrategy

85

6 Transformation der Datenmanagementpatterns auf ausführbare Workflow-Fragmente

(siehe Kapitel6.3.2) geladen wird. Für das DIP wird automatisch die aus dem Kapitel 6.2
beschriebene Transformationsregel vom Typ 1 als erste genommen und überprüft, da es
keine andere Regel für das DIP existiert. Weiterhin muss die Kontrollstrategie für das C2CP
definiert werden. Im Fall des C2CPs gibt es zwei Regel . Einen Regeltyp1 aus dem ersten
Beispiel und einen Regeltyp2 aus dem zweiten Beispiel. Um DMPs möglichst früh auf
ausführbare Workflow-Fragmente abzubilden, könnte es sinnvoll sein, die Typ 1-Regeln vor
der Typ 2-Regeln auf Anwendbarkeit zu überprüfen [Rei11]. Daher wird die Regel aus dem
ersten Beispiel als erste überprüft. Für das DKP wird automatisch die Regel vom Regeltyp 1

genommen da sie die einzige ist.

6.5 Architektur des Abbildungsmechanismus

Zur Umsetzung des im Rahmen dieser Arbeit vorgestellten Konzepts zur Pattern-
Transformation haben wir eine Architektur erarbeitet. Auf Abbildung 6.10 ist diese Ar-
chitektur zu sehen. Die Architektur besteht aus sieben Komponenten:

1. Workflow Graph Traverser: Traversiert durch den Workflow-Graphen und liefert das
jeweils nächste DMP im Workflow-Graphen zur Pattern Transformer Engine. Die
Traversierung durch den Workflow-graphen und die Lieferung des Patterns kann ent-
weder zur Modellierungszeit- (Modeling Tool) oder zur Laufzeit stattfinden (Workflow-
Engine) [Hum11].

2. Ruleset and Control Strategies: In dieser Komponente werden die Regelmenge und die
Kontrollstrategie verwaltet.

3. Pattern-Transformer Engine: Diese Komponente stellt die zentrale Komponente für die
Transformation der Patterns in ausführbare Workflow Fragmente dar und steuert
diese Transformation. Sie besteht aus zwei weiteren Komponenten. Die Control Strategy
Engine iteriert über die Kontrollstrategie eines bestimmten Patterns bzw. liest die jeweils
nächste Regel aus. DieRule Engine enthält zwei weitere Komponenten. Die Condition
Evaluation Engine überprüft die Transformationsregeln auf Anwendbarkeit. Die Action
Part Evaluation Engine wendet die Transformationsregeln auf die DMPs an und. Im
Anschluss an die Regelanwendung leitet die Pattern Transformer Engine das Workflow-
Fragment an den Workflow Graph Traverser (nur bei Rekursion, also Regeltyp2 oder
DIP)oder an die Fragment Composition-Komponente weiter.

4. SIMPL Ressource Management: In dieser Komponente werden die Objekte und die
zugehörigen Metadaten verwaltet. Diese Matadaten werden zur Überprüfung der
Transformationsegeln auf Anwendbarkeit miteinbezogen.

5. Workflow Fragment Management: Die ausführbare Vorlagen für Workflow-Fragmente
werden in dieser Komponenten verwaltet und bereitgestellt. Die Workflow Fragmente
befinden sich in der WF-Library.

86

6.5 Architektur des Abbildungsmechanismus

Abbildung 6.10: Architektur des Abbildungsmechanismus

6. WF Management API: Diese Komponente stellt die Schnittelle zur WF-Library mit den
anderen Komponenten dar, insbesondere mit der Pattern Transformer Engine, die nach
Workflow Fragmenten bzw. deren Metadaten anfragen kann.

7. Workflow Fragment Replacer: Diese Komponente führt das Ersetzen der Patterns durch
die Workflow-Fragmente durch.

Die einzelnen Komponenten der Architektur setzen die Baumtraversierung, die Überprüfung
der Transformationsregeln auf Anwendbarkeit und die Pattern-Transformation anhand der
im Kapitel 6.3 vorgestellten Algorithmen um. Weiterhin wird die Zusammensetzung der
DMPs implementiert. Der Algorithmus Traverse-WG wird von der Komponentne Workflow
Graph Traverser implementiert. Das Traversieren des Workflow-Graphen kann entweder zur
Modellierungszeit oder zur Laufzeit erfolgen [Hum11]. Im ersten Fall wird der Algorithmus
TraverseWG (siehe Kapitel 6.3) in der GUI, z.B.Eclipse BPEL Designer, implementiert.
Zunächst werden die Workflows mit den DMPs vom Modellerer erstellt. Anschließend
wird der Algorithmus TraverseWG auf den jeweiligen Workflow-Graphen angewendet.

87

6 Transformation der Datenmanagementpatterns auf ausführbare Workflow-Fragmente

Hierbei wird das jeweils nächste besuchte DMP dem Pattern-Tramsformer geliefert. Im
zweiten Fall wird der Algorithmus in der Execution-Engine, z.B.Apache-ODE, implementiert.
Hierzu werden zunächst die in der Modellierungszeit erstellten Workflow-Graphen in der
Execution-Engine deployt. Anschließend wird durch den Workflow-Graphen navigiert.
Wenn der Navigator das jeweilige nächste DMP im Workflow-Graphen besucht, dann liefert
er es dem Pattern-Transformer.

Im nächsten Schritt fragt die Pattern Transformer Engine in der Ruleset and Con-
trol Strategies-Komponente nach der passenden Kontrollstrategie, in der die Regelmenge
und ihre Reihenfolge der Überprüfung auf Anwendbarkeit enthalten bzw. beschrieben
ist. Die Komponente Ruleset and Controllstrategies implementiert dabei die Funktion
getControlstrategy(dmp) (siehe Kapitel 6.4) des Algorithmus TransformDMP. Hierbei wird
die Regelmenge ausgegeben, die Kontrollstrategie geladen und das Ergebnis der Pattern
Transformer Engine geliefert.

Die Control Strategy Engine in der Pattern Transformer Engine implementiert die
Funktion getNextRule(cs). Sie iteriert über die gelieferte Kontrollstrategie, liest die jeweils
nächste Regel aus und leitet sie an die Rule Engine weiter. Die Condition Part Evaluation
Engine der Rule Engine implementiert die Funktion isApplicable(dmp,r). Hierbei wird die
gelieferte Regel anhand der im Condition Part festgelegten Voraussetzungen (siehe Kapiteln
6.1 und 6.2) auf Anwendbarkeit überprüft. Zu diesem Zweck fragt der Pattern-Transformer
im SIMPL Resource Management und ggf. auch in der Komponente Workflow Fragment
Management, falls man Metadaten zu den Fragmenten braucht, nach relevanten Metadaten,
z.B. Metadaten über Datencontainer, Datenressourcen, externe Datenformate und Data
Transformation Services (siehe Kapitel 6.2), ab.

Im nächsten Schritt findet die Evaluierung des Action Part statt. Zunächst vergibt
die Action Part Evaluation Engine jedem einzelnen Workflow-Fragment eine ID. Danach
fragt die Action Part Evaluation Engine in der Workflow Management API nach dem
passenden Workflow Fragment ab. Die Workflow Management API leitet diese Anfrage an
die WF-Library der Workflow Fragment Management Komponente weiter. In der WF-Library
werden die ausführbare Vorlagen für Workflow-Fragmente gespeichert [SKK+

11]. Gegen
diese Library können verschiedene Queries ausgeführt werden, wie z.B das Auslesen,
das Suchen, die Bereitstellung und das Extrahieren von Fragmenten. Dadurch können sie
wiederverwendet und in anderen Prozessen integriert werden. Nachdem die passende
Vorlage in der WF-Library gefunden wurde, wird die Transformationsregel auf das
entsprechende Fragment angewendet. Die Action Part Evaluation Engine implementiert
dabei die Funktion applyrule(dmp,r). Falls in diesem Fragment erneut Patterns enthalten sind,
dann wird es an die Workflow Graph Traverser Komponente weitergeleitet.

Bei einem Regeltyp 1 bzw. nach der Rekursion bei einem Regeltyp2 oder einem
DIP wird das DMP durch das Workflow-Fragment ersetzt. Hierbei implementiert die
Komponente Workflow Fragment Replacer die Funktion replace(dmp,wf. Das Ersetzen der
Patterns durch die ausführbare Workflow-Fragmente kann entweder zur Modellierungs-
oder zur Laufzeit erfolgen vgl.[Hum11]. Im ersten Fall wird die Funktion replace(dmp,wf)

88

6.5 Architektur des Abbildungsmechanismus

in der GUI implementiert. Im zweiten Fall werden die Patterns durch die ausführbare
Workflow-Fragmente in der Workflow-Engine ersetzt.

Die im Kapitel 6.3 beschriebene Eskalation, wenn für ein bestimmtes Pattern keine
Regel gefunden wurde, wird in dieser Architektur nicht berücksichtigt.

89

7 Zusammenfassung und Ausblick

Im Rahmen dieser Diplomarbeit wurde eine Abstraktionsunterstützung für die vereinfachte
Definition des Datenmanagements in Simulationsworkflows entwickelt und vorgestellt.
Diese Abstraktionsunterstützung basiert auf Datenmanagementpatterns, die innerhalb
von Workflow-Modelle verwendet und modelliert werden können. Anhand von konkreten
Anwendungsszenarien haben wir solche Datenmanagementpatterns herausgearbeitet und
identifiziert. Die ETL-Patterns/Operationen, das Data Transfer and Transformation Pattern
und seine Unterklassen, nämlich das Container to Container Pattern, das Data Split Pattern
und das Data Merge Pattern, und schließlich das Data Iteration Pattern wurden formalisiert
und erläutert. Zur Klassifizierung und Beschreibung dieser Datenmanagementpatterns
wurde eine Hierarchie, die aus fünf verschiedenen Schichten besteht, vorgestellt.

Um die definierten Datenmanagementpatterns ausführbar zu machen, wurde ein
Konzept erarbeitet. Dieses Konzept basiert auf der Anwendung von Transformationsregeln.
Jede Transformationsregel setzt sich aus einem Condition und einem Action Part zusammen.
Im Condition Part werden die Bedingungen beschrieben, unter denen eine gewisse Trans-
formationsregel auf ein DMP angewendet werden darf. Diese Bedingungen hängen zum
einen mit den Parameterwerten des zu transformierenden Patterns und zum anderen mit
den Metadaten, die die beteiligten Datenressourcen und Workflow-Fragmente beschreiben,
zusammen. Im Action Part einer Regel wird festgelegt, wie dieses DMP auf ein ausführbares
Workflow-Fragment abgebildet wird, wenn die Regel auf das DMP angewendet wird.
Hierbei gibt es zwei Typen von Transformationsplänen. Der Regeltyp 1 und der Regeltyp
2. Über die Definition der Kontrollstrategie werden die passenden Regel für das jeweilige
Eingabe-Pattern geliefert und die Reihenfolge der Überprüfung auf Anwendbarkeit der
Regeln gesteuert. Zur Umsetzung unseres Konzepts haben wir eine Architektur erarbeitet
und vorgestellt.

Eine solche Datenmangementabstraktion erlaubt die Vereinfachnung der Definition
des Datenmnagements von Simulationsanwendungen mit einem großen Datenaufkommen
in verteilten und heterogenen Umgebungen [RRS+ny]. Darüber hinaus unterstützt sie die
Wissenschaftler bei der Definition des Datenmanagements für ihre Simulationsanwendungen,
indem sie ihnen die parametrisierte, ausführbare Vorlagen für Workflow-Fragmente zur Ver-
fügung stellt. Dadurch müssen sich die Wissenschaftler mit komplexen Datenmanagement-
und Datenbereitstellungsaufgaben nicht befassen.

91

7 Zusammenfassung und Ausblick

Ausblick

Diese Diplomarbeit kann als Basis für die Anfertigung weiterer Arbeiten verwendet werden.
Folgende Punkte können z.B bearbeitet werden:

• Man kann zusätzliche Datenmanagementpatterns für weitere Simulationsanwendungen
definieren. Zur Abbildung der Paterns auf ausführbare Workflow-Fragmente kann das
im Rahmen dieser Arbeit vorgestelltes Konzept verwendet und ggf.erweitert werden.

• Der Fall des Auftritts von Komplikationen bei der Transformation der Datenmana-
gementpatterns wurde in dieser Diplomarbeit sehr grob behandelt. Man kann die
einzelnen Fälle näher untersuchen und eventuelle Lösungsvorschläge für diese einzel-
ne Fälle geben.

• Die Architektur des Abbildungsmechanismus kann detailliert werden. Einzelne Teile
der Architektur des Abbildungsmechanismus können implementiert werden.

92

Literaturverzeichnis

[ADR06] A.Akram, D.Meridith, R.Allan. Evaluation of BPEL to Scientific Workflows. In:
Proc. of the sixth International Symposium of Cluster Computing and the Grid,
2006. Vol.1, pp.269-274. (Zitiert auf den Seiten 16 und 29)

[A.S06] A.Slominski. Adapting BPEL to Scientific Workflows. In I.Taylor and E.Deelman and
D.B.Gannon Workflows for e-Science, 2006. (Zitiert auf Seite 16)

[BHH+
10] D. Brüderle, W. Hüttig, M. Hahn, M. Schneidt, R. Rehn, F. Zoabi, X. T. (Ed.).

Begriffslexikon des Studienprojekts SIMPL, Universität Stuttgart, 2010. (Zitiert auf
Seite 45)

[BIS+06] B.Ludäscher, I.Altindas, S.Bowers, J.Cummings, T.Critchlow. Scientific Proces Auto-
mation and Workflow Management. Chapman and Hall/CRC Computational Science,
1 edition, 2006. (Zitiert auf den Seiten 17 und 20)

[Coa95] W. M. Coalition. The Workflow Reference Modell, 1995.
Http://www.wfmc.org/standards/docs/tc003v11.pdf. (Zitiert auf Seite 12)

[Cod70] E. Codd. A Relational Model for Data for Large Shared Data Banks. Comm.ACM 13:6,
1970. (Zitiert auf den Seiten 47, 49, 50 und 51)

[CTE09] C.Herath, T.Gunarathne, E.Chinthaka. Experience with Adapting a WS-BPEL
Runtime for e-Science. In Proc. of the fifth Grid Computing Enviroment Workshop,
New York, USA, 2009. (Zitiert auf Seite 16)

[Dor11] R. Dormien. Service-Bus-Erweiterung um Pandas-basierte Simulationen in Workflows
zu nutzen. Master’s thesis, Universität Stuttgart, 2011. (Zitiert auf den Seiten 17, 25,
35 und 69)

[EC08] E.Deelman, C.Chervenak. Data Management Challenges of Data-Intensive Scien-
tific Workflows. In: Proc. of the International Symposium of Cluster Computing
and the Grid, Washington DC, 2008. (Zitiert auf Seite 7)

[EUF09] H. Eberle, T. Unger, F.Leymann. Process Fragments. On the move to Meaningful
Internet Systems. Springer, 2009. (Zitiert auf Seite 31)

[Gil07] Gil.Y. Examining the Challenges of Scientific Workflows. In: IEEE Computer, 2007.
Vol.40. (Zitiert auf Seite 7)

[Hum11] A. Hummel. Ausführung von Workflow-Fragmenten in BPEL. Master’s thesis, Uni-
versität Stuttgart, 2011. (Zitiert auf den Seiten 31, 86, 87 und 88)

93

Literaturverzeichnis

[Jin09] Z. Jing. Workflow getriebene Visualisierung. Master’s thesis, Universität Stuttgart,
2009. (Zitiert auf Seite 77)

[KSK+
11] K.Gorlach, M. Sonntag, D. Karastoyanova, F.Leymann, M. Reiter. Conventional

Workflow Technology for Scientific Simulation. Springer Verlag, 2011. (Zitiert auf den
Seiten 5, 20, 21 und 22)

[LR00] F. Leymann, Dieter Roller. Produktion Workflow-Concepts and Techniques. Prentice
Hall PTR, Upper Saddle River, New Jersey, USA, 2000. (Zitiert auf den Seiten 5, 7,
11, 12, 13 und 15)

[Mü10] C. Marian Müller. Develpoment of an integrated Database Architekture for a Run-
time Enviroment for Simulation Workflows. Master’s thesis, Universität Stuttgart,
2010. Http:// elib.uni.stuttgart.de/opus/volltexte/2010/5232/pdf/DIP_2984.pdf.
(Zitiert auf den Seiten 5, 16, 17, 23, 35 und 36)

[OAS] OASIS. Web Services Business Process Execution Language Version 2.0, Oasis
Standard. Http:// www/docs.osis-open.org/wsbpel/2.0/OS/wsbpel-v2.0-OS.pdf.
(Zitiert auf den Seiten 14 und 70)

[P.H90] P.Humphreys. Computer Simulations. In: Proc. of the Biennial Meeting of the
Philsophy of Science Association, 1990. Vol.2, pp. 497-506. (Zitiert auf Seite 16)

[Pie11] H. A. Pietranek. Erweiterung von SIMPL und BPEL-DM zur Unterstützung weiterer
Datenquellen. Master’s thesis, Universität Stuttgart, 2011. (Zitiert auf Seite 80)

[P.S03] M. P.Sherwood. A general purpose implementation of QM/MM approach and its
application to problems in catalysis. JOURNAL OF MOLECULAR STRUCTURE-
THEOCHEM, 2003. (Zitiert auf Seite 35)

[rai] Pandas-COUPLED FEM SOLVER, Manual of the Demo Version. http://www.get-
Pandas.com. (Zitiert auf Seite 67)

[Rei11] P. Reimann. SimTech Milestone Report: Data Provisioning for Scientific Workflows.
Insitut für Parallele und Verteilte Systeme, Universität Stuttgart, April, 2011. (Zitiert
auf den Seiten 5, 63, 65, 83 und 86)

[Rem11] S. Remppis. Ausführung einer Modellreduktion für Simulationen auf Basis der Workflow-
Technologie. Master’s thesis, Universität Stuttgart, 2011. (Zitiert auf den Seiten 5, 35

und 41)

[RJDN09] R.Barga, J.Jackson, D.Guo, N.Gautam. The Trident Scientific Workflow Bench. In:
Proc. of the IEEE Fourth Inter.Conf. on eScience, 2009. Pp. 317-318. (Zitiert auf
Seite 24)

[RM11] P. Reimann, B. Mitschang. Data Provisioning for Scientific Workflows. Poster-
Präsentation auf dem vierten SimTech Status Seminar, Bad Boll, Deutschland, 2011.
(Zitiert auf den Seiten 5, 45, 46, 63 und 64)

94

Literaturverzeichnis

[RRS+ny] P. Reimann, M. Reiter, H. Schwarz, D. Karastoyanova, F. Leymann. SIMPL-A Fra-
mework for Accesing External Data in Simulation Workflows. 14.Fachtagung des
GI-Fachbereichs ”Datenbanken und Informationssystemen” ,(DBIS), Proceedings,
März, 2004, Kaiserslautern, Germany. (Zitiert auf den Seiten 5, 7, 19, 26, 27, 28, 31,
33, 34, 35, 37, 45, 46 und 91)

[RSM] P. Reimann, H. Schwarz, B. Mitschang. Data Provisioning Techniques for Simulati-
on Workflows. Unvferöffentlichter Bericht des Instituts für Parallele und Verteilte
Systeme, Universität Stuttgart. (Zitiert auf den Seiten 35, 54, 55 und 58)

[SCF+
05] S.Weerawarana, F. Curbera, F.Leymann, T.Storey, D. Ferguson. Web Services Plat-

form Architekture: SOAP, WSDL, WS-Policy, WS-Addressing and more. Prentice Hall
PTR, Upper Saddle River, New Jersey, USA, 2005. (Zitiert auf den Seiten 9 und 11)

[S.H05] S.Hartmann. The world as a Process: Simulations in the Natural and Social Sciences,
2005. Http://phil-sci-archive.pitt.edu/archive/00002412/01/Simulations.pdf. (Zi-
tiert auf Seite 17)

[SKK+
11] D. Schumm, D. Karastoyanova, O. Kopp, F. Leymann, M. Sonntag, S. Strauch. Pro-

cess Fragments Libraries for Easier and Faster Development of Process-based App-
lications. http://www.iaas.uni-stuttgart.de/institut/mitarbeiter/schumm/ART-
2011-022011. (Zitiert auf Seite 88)

[TDG07] I. Taylor, E. Deelman, D. Gannon. Workflows for e-Science-Scientific Workflows for
Grids. Springer,London,UK, 2007. (Zitiert auf den Seiten 7, 9 und 15)

[VsRM08] M. Vrohvnik, H. schwarz, S. Radeschutz, B. Mitschang. An Overview of SQL
Support in Workflow Produkts. In: Proc. of the IEEE 24th Int. Conf. on Data
Engineering ICDE, 2008. (Zitiert auf Seite 19)

[VSS+ia] M. Vrhovnik, H. Schwarz, O. Suhre, B. Mitschang, V. Markl, A. Meier, T. Kraft. An
Approach to Optimize Data Processing in Business Processes. In: Proc. of the 33rd
International Conference on Very Large Data Bases (VLDB)„ Septemeber, 2007,
Vienna, Austria. (Zitiert auf Seite 83)

[W3C07] W3C. SOAP Version 1.2, 2007. Http:// www.w3.org/TR/soap/. (Zitiert auf
Seite 10)

[Wag11] F. Wagner. Nutzung einer integrierten Datenbank zur effizienten Ausführung von
Workflows. Master’s thesis, Universität Stuttgart, 2011. (Zitiert auf den Seiten 10,
15 und 19)

[ZTZ06] O. Zienkiewicz, R. Taylor, J. Zhu. The Finite Element Method-It’s Basis and Fundamen-
tals. Butterworth-Heinemann, 6 edition, 2006. (Zitiert auf Seite 17)

Alle URLs wurden zuletzt am 16.02.2012 geprüft.

95

Erklärung

Hiermit versichere ich, diese Arbeit selbständig
verfasst und nur die angegebenen Quellen
benutzt zu haben.

(Stavros Aristidou)

	1 Einleitung
	1.1 Motivation und Aufgabe dieser Arbeit
	1.2 Gliederung

	2 Grundlagen
	2.1 Service Oriented Architecture
	2.1.1 Webservices
	2.1.2 Web Service Definition Language

	2.2 Workflowtechnologie
	2.2.1 WS-BPEL
	2.2.2 Wissenschaftliche Workflows und Simulationen
	Simulationsworkflows
	Finite Element Methode

	2.2.3 Extract Transfer Load Workflows

	2.3 Wissenschaftliche Workflowmanagementsysteme und Simulationsrahmenwerke

	3 Das SIMPL-Rahmenwerk
	3.1 Architektur und Funktionsweise
	3.2 Modellierung des Datenmanagements in Simulationsworkflows
	3.3 Metadaten zum Datenzugriff in heterogenen Umgebungen
	3.4 Zugriff auf Datenressourcen mittels SIMPL

	4 Simulationsworkflows
	4.1 Chemische Reaktion mit Hilfe der Verwendung eines Katalysators
	4.2 Knochenmodellierung mit Pandas
	4.3 Pandas-Matlab-Kopplung
	4.4 Modellreduktion

	5 Datenmanagementpatterns
	5.1 Datenmanagementpatterns und Pattern-Hierarchie
	5.2 ETL Patterns/Operationen
	5.3 Data Transfer and Transformation Pattern
	5.3.1 Container-to-Container Pattern
	5.3.2 Data Split Pattern
	5.3.3 Data Merge Pattern

	5.4 Data Iteration Pattern

	6 Transformation der Datenmanagementpatterns auf ausführbare Workflow-Fragmente
	6.1 Abbildungsmechanismus und Pattern-Transformer
	6.2 Beispiele zur Pattern-Transformation
	6.2.1 Beispiele anhand der Pandas Preprocessing-Phase
	6.2.2 Beispiel anhand der Pandas Postprocessing-Phase

	6.3 Definition der Kontrollstrategie
	6.3.1 Kontrollstrategie und Algorithmen zur Pattern-Transformation
	6.3.2 Anwendungsbeispiele für die beiden Algorithmen

	6.4 Definition der Kontrollstrategie anhand von konkreten Beispielen
	6.5 Architektur des Abbildungsmechanismus

	7 Zusammenfassung und Ausblick
	Literaturverzeichnis

