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1 Einleitung

Graph-Gruppen sind von besonderem Interesse in der Informatik fiir die Untersuchung
von nebenldufigen Prozessen. Sie sind eine natiirliche Erweiterung von Spurmonoiden,
welche von Mazurkiewicz und Keller eingefithrt wurden [12], 9]. In der Mathematik sind
sie auch als rechtwinklige Artin-Gruppen bekannt [3]. Interessante Problemstellungen
sind unter anderem das Konjugiertheitsproblem, das Isomorphieproblem, das Wortpro-
blem und das Normalformenberechnungsproblem. Behandelt wird in dieser Arbeit das
Normalformenberechnungsproblem, welches schwieriger ist als das Wortproblem. Aller-
dings ist der Anwendungsbereich des Normalformenproblems gréfier. Eine Normalform
ist eine eindeutige Darstellung eines Elements der Gruppe. Unter dem Wortproblem
versteht man die Frage, ob ein Wort das neutrale Element der Gruppe darstellt. Das
Wortproblem ist fiir jede endlich erzeugte lineare Gruppe in logarithmischem Platz ent-
scheidbar [10]. Ob dies auch fiir die Berechnung von Normalformen gilt ist noch offen.
Ein Linearzeit Algorithmus zur Berechnung einer Normalform wird in [5] fiir Spurmo-
noide eingefiihrt. Eine weitere Klasse von Gruppen ist die Klasse der automatischen
Gruppen, welche mit gewissen Automaten ausgestattet sind. Fiir automatische Grup-
pen ist das Wortproblem in quadratischer Zeit entscheidbar [7]. Ist die Gruppe dariiber
hinaus shortLex automatisch, so liasst sich auch eine langenlexikographische Normalform
in quadratischer Zeit berechnen. Coxeter-Gruppen sind shortLex automatisch [4], und
damit insbesondere auch Graph-Gruppen, denn sie lassen sich in natiirlicher Weise in
rechtwinklige Coxeter-Gruppen einbetten (siehe Abschnitt .

Das Ziel dieser Arbeit ist ein Algorithmus, der in logarithmischem Platz eine langen-
lexikographische Normalform in Graph-Gruppen bzw. rechtwinkligen Coxeter-Gruppen
berechnet. Dazu wird zunéchst das Alphabet der Normalform in logarithmischem Platz
bestimmt. Eine Einbettung in die allgemeine lineare Gruppe liefert ein Kriterium fiir
das Alphabet der Normalform. Mit dem Kriterium kann dann eine Geodétische in recht-
winkligen Coxeter-Gruppen berechnet werden und daraus eine ldngenlexikographische
Normalform. Ob sich das Resultat zur Berechnung einer lingenlexikographischen Nor-
malform in logarithmischem Platz auf allgemeine Coxeter-Gruppen iibertragen lésst, ist
noch offen. In [I] wird ein Algorithmus zur Berechnung einer lingenlexikographischen
Normalform vorgestellt, der mit linear vielen arithmetischen Operationen auskommt.
Allerdings lasst sich die Berechnung nicht mit ganzen Zahlen durchfiihren, daher wird
untersucht, wie viele Bits zur Représentation notwendig sind. Dariiber hinaus wird ge-
zeigt, dass Coxeter-Gruppen préaperfekt sind, das heifit ein kiirzester Repréasentant kann
mit nur lingenerhaltenden und ldngenverkiirzenden Regeln berechnet werden. Auflerdem
wird ein elementarer Beweis angegeben, dass sogenannte rechtwinklige Coxeter-Gruppen
automatisch sind.

Der Aufbau dieser Arbeit wird im Folgenden beschrieben. Er gliedert sich in préiper-
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fekte Gruppen, automatische Gruppen und der Berechnung von Normalformen.

In Kapitel [2| werden die grundlegenden Definitionen eingefiihrt. Fiir die Berechnungen
in den Gruppen werden Ersetzungssysteme verwendet. Die untersuchten Gruppen in
dieser Arbeit sind Graph-Gruppen und Coxeter-Gruppen. Als Grundlage fiir die Graph-
Gruppe dient die freie Gruppe. Abschlieend werden in Kapitel |2| einige Eigenschaften
und Werkzeuge zu Berechnungen in logarithmischem Platz gezeigt.

In Kapitel [3| werden préperfekte Gruppen eingefiihrt und gezeigt, dass fiir Coxeter-
Gruppen ein praperfektes Ersetzungssystem existiert, mit dem sich Geodétische ableiten
lassen.

In Kapitel [4 werden automatische Gruppen vorgestellt und es wird ein elementarer
Beweis gegeben, dass rechtwinklige Coxeter-Gruppen shortLex automatisch sind.

Kapitel [5| widmet sich der Berechnung von Normalformen. Zunéchst wird gezeigt,
dass sich eine Normalform in der freien Gruppe in logarithmischem Platz berechnen
lasst. Dann wird ein Linearzeit Algorithmus zur Berechnung einer lingenlexikographi-
schen Normalform in Graph-Gruppen und rechtwinkligen Coxeter-Gruppen vorgestellt.
Anschlieend wird der Algorithmus zur Berechnung der ldngenlexikographischen Nor-
malform in logarithmischem Platz vorgestellt und dessen Korrektheit bewiesen. Der
letzte Abschnitt des Kapitels widmet sich allgemeinen Coxeter-Gruppen. Es wird zuerst
untersucht, wie viele Bits zur Repriisentation fiir den in [I] vorgestellten Algorithmus
notwendig sind. Dann wird gezeigt, wie sich das Alphabet der lingenlexikographischen
Normalform in allgemeinen Coxeter-Gruppen berechnen ldsst.

In Kapitel [6] wird das Ergebnis der Arbeit zusammengefasst und ein kurzer Ausblick
gegeben.
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Fiir die Berechnung von Normalformen eignen sich Ersetzungssysteme. In diesem Kapi-
tel werden die untersuchten Gruppen eingefiihrt und geeignete Ersetzungssysteme vor-
gestellt. Die Elemente der Gruppen werden als Worter iiber einem endlichen Alphabet 2
betrachtet. Das neutrale Element wird mit 1 bezeichnet. Im Abschnitt Ersetzungssyste-
me wird ein System eingefiihrt, das festlegt, welche Worter die gleiche Bedeutung haben.
Fiir die Berechnung von Normalformen wird stets die ldngenlexikographische Normal-
form, also ein minimaler Représentant eines Elements einer Gruppe, verwendet. Dafiir
ist insbesondere der Begriff der Lénge eines Reprisentanten von Bedeutung.

Definition 2.1: Sei w = aj...a, € ¥*. Dann bezeichnet |w| := n die Linge von w.

Der Vektorraum R* wird mit R¥ identifiziert, wobei k := ||. Die Menge {a | a € ¥ }
bildet eine Basis von R*. Mit LogSpace wird die Klasse der Funktionen beschrieben, die
sich auf einer Turingmaschine mit Platz O(logn) berechnen lassen, wobei n die Einga-
begrofe ist. Im Rahmen dieser Arbeit ist die Eingabegrofe die Linge |w| der Eingabe
w.

2.1 Ersetzungssysteme

Ein Ersetzungssystem ist eine Menge S von Ersetzungsregeln der Form [ — r. Kommt
die linke Seite [ in einem Wort w vor, so darf sie durch die rechte Seite r ersetzt werden.
Zwei Worter gelten als dquivalent, falls sie sich durch Anwendung von Regeln aus dem
reflexiven, symmetrischen und transitiven Abschluss von S ineinander {iberfithren lassen.

Definition 2.2: Sei S C ¥* x ¥* eine endliche Menge. Schreibe | — r fir (I,r) € S.
Seien w,w' € ¥*. S definiert durch

w=gw, fallsw=ulv,w =urvundl —r

ein Ersetzungssystem auf ¥*.

Mit =g wird der reflexive und transitive Abschluss von =g bezeichnet. Die Relation
<= g bezeichnet den reflexiven, transitiven und symmetrischen Abschluss. Der Index
S wird weg gelassen, wenn das verwendet Ersetzungssystem aus dem Kontext klar ist.
Damit lésst sich iiber den Quotienten eine neue Struktur definieren.

Definition 2.3: Der Quotient

58 = 0t = {[uls | we T}
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bezeichnet die Menge der Aquivalenzklassen [w]s von <= g.

Die Relationen aus S werden auch als definierende Relationen von ¥*/S bezeichnet. Fiir
manche Ersetzungssysteme spielt die Reihenfolge, in der Regeln angewendet werden,
eine Rolle. Ist dies nicht der Fall, so wird das Ersetzungssystem als konfluent bezeichnet.

Definition 2.4: FEin Ersetzungssystem S hezﬁt konfluent, falls fir w' <= w = w"

immer ein v mit Ableitungen W' == v <= w" existiert. Das ETsetzungssystem hezﬂt

stark konfluent, falls fiir w' <= w = w" immer ein v und Ableitungen w’ =L S

existieren.

Lemma 2.1: FEin stark konfluentes Ersetzungssystem ist konfluent.

Beweis. Mittels Induktion lédsst sich zeigen, dass fiir y EL 4 =2 4 ein v existiert

mit y =%y EX 4. Daraus folgt dann die Konfluenz. Fir n,m < 1 gilt die Be-

hauptung wegen der starken Konfluenz. Sei die Behauptung also fiir n,m > 1 gezeigt

<n+l  <m+l . . . .

L > =2E 2. Dann existiert auf dem Pfad zu y ein ¢y und zu z ein 2/ mit
< . .. . . < <

y <=1 & p =% — 4. Nach Induktion existiert ein o/ mit TS =C

und y =

. . . . < <
Daraus lasst sich ebenfalls nach Induktion vy, und vy ableiten mit y S vy, &1 v’ und

<1 < .. . . <1 <1
v = wvg & 2. Wegen der starken Konfluenz existiert ein v mit vy, = v <= vg.

Insgesamt ist y gl A und die Behauptung ist gezeigt. O

Bemerkung 2.1: Die Voraussetzung eines stark konfluenten Ersetzungssystems in Lem-

ma[2.1 kann abgeschwacht werden durch: Es existiert ein k € N so, dass fiir y <=2 = 2

<k
ein v existiert mit y :> V= z.

Aufbauend auf dem Ersetzungssystem lisst sich die minimale Lénge eines Repréasentan-
ten und damit die lingenlexikographische Normalform einfiihren.

Definition 2.5: Die Linge eines kiirzesten Reprisentanten ist durch
[w| = min{|u | ve [w]s}
definiert. Es gilt stets |w|| < |w|.

Definition 2.6: Sei < eine totale Ordnung auf dem Alphabet . Dann induziert dies
eine langenlexikographische Ordnung iber ¥*, welche wieder mit < bezeichnet wird.

v < w, falls |v| < |w| und

v < w, falls |v| = |w| und ein i existiert so, dass vj = w; fir j < i und v; < w;
Definition 2.7:

1. Ein Wort w heifit geoddtisch, falls lw| = ||Jw]|.



2.2 Die freie Gruppe

2. Fin Wort w heifit shortLex, falls w = min { u € X*

uéw}.

Die lingenlexikographische Normalform von w wird mit nf{w) bezeichnet. Fin Wort w
ist in langenlexikographischer Normalform, falls es shortLex ist. Ein Wort v ist eine
Geoditische von w, falls v dquivalent zu w ist und |v| = ||w||.

2.2 Die freie Gruppe

Definition 2.8: Sei X eine disjunkte Kopie von ¥ , dann bezeichnet
F(X)=XuX)*/{eaa— l,aa -1 |aeX}

die freie Gruppe iiber 2. F(X) wird mit einer Involution @ ausgestattet so, dass a = a.

Bemerkung 2.2: Fiir die Involution gilt insbesondere ab = ba.

Die einfachste, nicht triviale freie Gruppe ist Z = F'({a}). Ein Isomorphismus zwischen
Z und F({a}) ist beispielsweise ¢(k) = a* und p(—k) =@ fiir k > 0.

Lemma 2.2: Das Ersetzungssystem {aa — 1 | a € ¥ } der freien Gruppe F(X) ist kon-
fluent.

Beweis. Die kritischen Fille fiir die Konfluenz sind Uberlappungen. Der einzige magliche
Fall fiir das Ersetzungssystem der freien Gruppe ist aaa (bzw. Gaa). Es kann aa —
1 oder @a — 1 angewendet werden. In beiden Féllen ist das Ergebnis der Ersetzung
jedoch a (bzw. @). Somit ist das Ersetzungssystem stark konfluent und nach Lemma
konfluent. O

2.3 Coxeter-Gruppen

Die in Kapitel [5| vorgestellten Methoden fiir die Berechnung von Normalformen verwen-
den Coxeter-Gruppen als Grundlage. Die Resultate fiir rechtwinklige Coxeter-Gruppen
konnen auf Graph-Gruppen iibertragen werden, da sich Graph-Gruppen in rechtwinkli-
ge Coxeter-Gruppen einbetten lassen (siehe . In diesem Abschnitt werden zunéchst
rechtwinklige Coxeter-Gruppen und einige ihrer Eigenschaften vorgestellt, da insbeson-
dere Theorem auf rechtwinkligen Coxeter-Gruppen basiert. Dann werden allgemeine
Coxeter-Gruppen vorgestellt. Eine ausfiihrliche Einfithrung zu Coxeter-Gruppen findet
sich in [11 2].

2.3.1 Rechtwinklige Coxeter-Gruppen

Definition 2.9: Sei ¥ ein endliches Alphabet und I C X x X eine irreflezive und sym-
metrische Relation, dann bezeichnet

C(B,1):=%"/{a®* > 1,(bc)>* > 1 | a€X, (bec)el}
die rechtwinklige Cozeter-Gruppe zu (3,1).
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Der Bezeichner der Relation I steht fiir Independent, da die zweite Bedingung (bc)? = 1
dquivalent zu bc = ¢b ist. Mit D := ¥ x X\ I werden die abhéngigen Erzeugenden be-
zeichnet. Fiir die Berechnungen in logarithmischem Platz ist die Einbettung der Gruppe
in die allgemeine lineare Gruppe GLg(C), k := ||, von zentraler Bedeutung. Hierbei ist
eine Einbettung ein injektiver Homomorphismus.

Definition 2.10: Seia € ¥ und w = a; ... ay,. Die Abbildung o4 : 7> — 7> ist durch

—a, fallsb=a

oa(b) =< b, falls (a,b) € T
b+ 2a, sonst
definiert. Damit ist die Abbildung o : w — oy, durch oy = 04, ...04, €in Homomor-

phismus von der rechtwinkligen Cozeter-Gruppe C (X, 1) in die allgemeine lineare Gruppe

GLL(Z).

Lemma 2.3: Die Abbildung o definiert eine Finbettung von der rechtwinkligen Coxeter-
Gruppe C(3,1) in die allgemeine lineare Gruppe GLi(Z), wobei k := |X|.

Beweis. Es ist zundchst zu zeigen, dass ¢ wohldefiniert ist. Das bedeutet fiir v = w in
C(X,I) muss o(u) = o(v) gelten. Hierfiir ist zu zeigen, dass die definierenden Relationen
der rechtwinkligen Coxeter Gruppe auch im Bild von ¢ gelten. Eine kurze Rechnung
zeigt, dass 04, = id fiir @ € ¥ und o2 = id fiir (b,c) € I. Die Injektivitit der
Abbildung wird im Beweis zu Lemma, gezeigt. O

Ein alternatives Ersetzungssystem fiir rechtwinklige Coxeter-Gruppen wird durch
Sk = {a2—>1,bc—>cb } a€ X, (bc) GI}
erzeugt. In Kapitel [3| wird gezeigt, dass dieses Ersetzungssystem ausreicht, um eine
Geoditische zu berechnen und um Geodétische ineinander zu transformieren.
2.3.2 Aligemeine Coxeter-Gruppen

Definition 2.11: Sei M = (m;;) € N¥** cine symmetrische Matriz und m;; = 1 <
i = j. Die definierenden Relationen der Cozeter-Gruppe zu M sind (z;x;)™ = 1.

C(E,M) = E*/{(iﬂzl’j)m” — 1 ‘ Ti, Tj € by }

Wegen m; ; = 1 ist :1:12 = (x;z;)! = 1. Rechtwinklige Coxeter-Gruppen sind offensichtlich
Coxeter-Gruppen der Matrix M = m;; mit m;; = 1 und m,; = 2, falls (z,2;) € I.
Wie bereits fiir rechtwinklige Coxeter-Gruppen lésst sich auch fiir allgemeine Coxeter-
Gruppen eine Einbettung in die allgemeine lineare Gruppe GL(RR) definieren.

Definition 2.12 (Lineare Einbettung): Sei ¥ = {1,..., 21} und o, : R — R® mit

0ay(5) = xj + 2005(%) -z falls m; ; # 0
’ rj+2-x; falls m; j =0
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Weiter sei w = ay ...an, € £*, dann wird durch o : C(, M) — GLk(R) : w — oy, mit
o(w) =0y =04y ...0q, (2.1)

ein Homomorphismus der Cozxeter-Gruppe in die allgemeine lineare Gruppe GLi(R)
definiert.

Lemma 2.4: Die Ordnung von ab in der Coxeter-Gruppe und oqp stimmt fiir a,b € %
tberein.

Beweis. siehe [I, Kapitel 4, Proposition 4.2.1]. O

Eine besondere Eigenschaft dieses Homomorphismus ist, dass sich Aussagen iiber die
minimale Linge eines Reprisentanten treffen lassen:

Definition 2.13: Seiv = A\,a € R*. Schreibe v < 0, falls A, < 0 fiir alle a € ¥ und
v >0, falls A\g > 0 fiir alle a € X.

Lemma 2.5: Seia € ¥ und w € ¥*. Fir die Linge einer Geoddtischen von wa in der
Cozeter-Gruppe gilt

1. |Jwa|| > ||w|| < ow(a) >0
2. |lwal| < ||w|| © ow(a) <0
Beweis. siehe [I, Kapitel 4, Proposition 4.2.5]. O

Lemma 2.6: Die Abbildung o ist eine Einbettung der Coxeter-Gruppe C(3, M) in die
allgemeine lineare Gruppe GLk(R).

Beweis. Es ist zundchst zu zeigen, dass ¢ wohldefiniert ist. Das bedeutet fiir v = w in
C (X, M) muss o(u) = o(v) gelten. Hierfiir ist zu zeigen, dass die definierenden Relationen
der Coxeter Gruppe auch im Bild von o gelten. Nach Lemma sind diese erfiillt. Es
verbleibt zu zeigen, dass ¢ injektiv ist. Dies ist genau dann der Fall, wenn der Kern
ker (o) von o nur das neutrale Element enthélt. Sei dazu w # 1 in der Coxeter Gruppe.
w l&sst sich schreiben als w = wa fiir ein v € ¥* und a € X. Dann ist nach Lemma
ou(a) < 0. Fiir die Identitdt gilt aber id(a) = a > 0, also kann der Kern nur das neutrale
Element enthalten. O

Ein alternatives Ersetzungssystem lésst sich fiir allgemeine Coxeter-Gruppen analog zu
dem rechtwinkliger Coxeter-Gruppen angeben.

Definition 2.14: Betrachte das Wort (ab)! € ¥*, dann bezeichnet p(l,a,b) den Prifiz
der Linge 1 von (ab)l. Analog bezeichnet s(I,a,b) den Suffiz der Linge 1 von (ab)t.

Das alternative Ersetzungssystem wird fiir ¥ = {x1,..., 2%} durch
Sc = {x? — 1, s(xs, x5, m45) = s(xj, i, my ) ’ x;,Tj €2 }

erzeugt. Die Regeln s(x;, x5, m; ;) — s(x;,z;, m; ;) sind wegen M symmetrisch ebenfalls
symmetrisch.
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Lemma 2.7: Das Ersetzungssystem Sc ist konfluent.

Beweis. Die kritischen Paare sind Uberlappung so, dass zwei Regeln angewendet werden
kénnen. Das sind entweder Uberlappungen aaa mit der Regel a®> — 1 oder Uberlappun-
gen mit einer Regel

S((Ei, Zj, mm-) — s(a;j, Zi, mm-).

Im Fall aaa ist das Ergebnis jeweils a. Das Resultat der Anwendung einer Regel
s(xi, xj, mij) — s(xj, i,y )

lésst sich immer riickgéingig machen, da die Regel symmetrisch ist. Eine Ableitung auf ein
gemeinsames Element ist also in hdchstens zwei Schritten moglich. Nach Bemerkung
ist das Ersetzungssystem somit konfluent. O

2.4 Graph-Gruppen

Graph-Gruppen sind eine natiirliche Erweiterung von Spurmonoiden, welche von Mazur-
kiewicz und Keller eingefiithrt wurden [12, 9]. Dariiber hinaus spielen sie eine wichtige
Rolle fiir die Informatik bei der Untersuchung von Nebenlédufigkeiten.

Definition 2.15: Sei I C X x X eine irreflevive und symmetrische Relation. Dann
bezeichnet

MEI):=%"/{ab—ba | (a,b) €I}
das Spurmonoid (oder frei partiell kommutative Monoid) iber (X, 1) und
GX,I):=FX)/{ab—ba | (a,b) e}

die Graph-Gruppe (oder frei partiell kommutative Gruppe) tiber (X, 1). Die Elemente des
Spurmonoids werden auch als Spur bezeichnet.

I wird Unabhéngigkeitsrelation und D := 3 x ¥\ I wird Abhéngigkeitsrelation genannt.
Mit I(a) :={b | (a,b) € I } werden die von a € ¥ unabhéngigen Elemente bezeichnet.

Bemerkung 2.3: Die freie Gruppe F'(X) ist eine Graph-Gruppe, wobei die Unabhéingig-
keitsrelation I die leere Menge ist, also F(X) = G(3,0). Die Abhéngigkeitsrelation D
von F(X) ist also ¥ x X.

Eine Spur w € M (X, I) lasst sich eindeutig als Abhéngigkeitsgraph DG(w) darstellen.

Definition 2.16: Sei w = a;...a, € ¥*. Der Abhdngigkeitsgraph DG(w) ist ein ge-
richteter Graph mit Knotenmenge {1,...,n}. Von Knoten i zu Knoten j existiert genau
dann eine Kante, wenn i < j und (a;,a;) € D. Die Beschriftung von Knoten i ist a;
und wird mit (i) bezeichnet.

10



2.5 LogSpace Berechnungen

Der transitive Abschluss von DG(w) definiert eine partielle Ordnung, da der Graph azy-
klisch ist. Diese partielle Ordnung wird eindeutig durch ihr Hasse-Diagramm dargestellt.

Definition 2.17: Sei w = a1...a, € X*. Das Hasse-Diagramm ist ein gerichteter
Graph mit Knotenmenge {1,...,n}. Von Knoten i zu Knoten j existiert genau dann eine
Kante, wenn i < j und (a;,a;) € D, sowie kein k miti < k < j und (a;, ai), (ag,aj) € D
existiert .

2.4.1 Einbettung in Coxeter-Gruppen

Graph-Gruppen lassen sich leicht in rechtwinklige Coxeter-Gruppen einbetten, wenn
man bedenkt, dass ab = ba < (ab)? = 1. Ein wichtiger Bestandteil rechtwinkliger
Coxeter-Gruppen ist die Bedingung a? = 1, welche in Graph-Gruppen nicht erfiillt ist.
Dafiir werden fiir jedes Erzeugende a der Graph-Gruppe zwei Erzeugende d’,a” mit
a’?> = a"? = 1 in der rechtwinkligen Coxeter-Gruppe eingefiihrt. Mittels der Zuordnung
a — a'a” liasst sich eine Einbettung definieren. Das folgende Lemma formalisiert die
Beschreibung.

Lemma 2.8: Sei G(X3,1) eine Graph-Gruppe und X', %" disjunkte Kopien von X. Die

Abbildung ¢ definiert durch p(a) = a’a” und p(a) = a’a’ eine Einbettung in die recht-
winklige Cozeter-Gruppe C(X'UX I¢), wobei

T = { (@, 1), (V). (" ). (0", V") | (a,b) €T}

Beweis. Die Abbildung ¢ ist wohldefiniert, denn die definierenden Relationen sind im
Bild ¢(X) erfiillt. Fiir die Injektivitdt von ¢ wird eine Umkehrabbildung konstruiert.
Jedes Element aus dem Bild von ¢ lisst sich als Element von {d'a”,a"d’ | a € ¥ }*
schreiben. Daher lisst sich unmittelbar eine Umkehrabbildung 1) durch ¢ (a’a”) = a und
¥(a"a") =@ angeben. Also ist ¢ injektiv und somit eine Einbettung. O

2.5 LogSpace Berechnungen

Ein zentraler Bestandteil dieser Arbeit sind Berechnungen in logarithmischem Platz.
Dieser Abschnitt fithrt dafiir einige notwendige Lemmata ein.

Definition 2.18: Fiir das Produkt aller Primzahlen bis zu einer Zahl n setze

pin)= [ »

peP,p<n

Lemma 2.9: FEs gibt eine Konstante k € N so, dass fiir das Produkt tber alle Primzahlen
kleiner n gilt u(kn) > 2™.

Beweis. Nach Hardy und Wright [8, S. 341] gibt es eine Konstante A > 0 so, dass
log pu(z) > Ax fir alle z gilt. Falls A > 1, so kann k£ = 1 gewéhlt werden und die
Behauptung folgt. Sei also 0 < A < 1. Wihle k := [%], dann ist p(kn) > 2A(kn) —
2(Ak)n > on, OJ
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2 Grundlagen

Lemma 2.10: Sein € N und x < 2"™. Dann ist x = 0 genau dann, wenn x =0 mod p
fiir alle Primzahlen p < kn.

Beweis. Nach dem vorherigen Lemma gilt < w(kn). Sei x = 0 mod p fiir alle
Primzahlen p < kn. Dann folgt x = 0 aus dem Chinesischen Restsatz. Ist umgekehrt
x = 0, dann gilt unmittelbar x =0 mod p. ]

Lemma 2.11: Sei C(X,I) eine rechtwinklige Cozeter-Gruppe. Dann ist die Uberpriifung
der Koeffizienten von o (x), ob sie ungleich null sind in LogSpace méglich.

Beweis. Setze n := |w|. Die Koeffizienten von o,,(x) sind nach Konstruktion der Abbil-
dung durch 2" beschrénkt. Daher geniigt es nach Lemma [2.10 die Koeffizienten mod p
zu speichern. Da die Primzahlen p < kn nicht bekannt sind, werden die Koeffizienten
mod [ fiir [ < kn tiberpriift. O

Das folgende Lemma, ist ein erster Anhaltspunkt fiir die Berechnung einer Normalform
in LogSpace. Allerdings ist es noch nicht hinreichend.

Lemma 2.12: Das Wortproblem ist fiir endlich erzeugte lineare Gruppen iiber einem
Korper K der Charakteristik 0 in LogSpace losbar.

Beweis. siehe [10, Theorem 5]. O
Lemma 2.13: Das Wortproblem fiir Coxeter-Gruppen liegt in LogSpace.

Beweis. Die Behauptung folgt zusammen mit Lemma [2.12] aus der linearen Einbettung
o fiir Coxeter-Gruppen. O

Bemerkung 2.4: Aus den beiden vorherigen Lemma folgt insbesondere, dass das Wort-
problem fiir Graph-Gruppen (und somit auch das der freien Gruppe) in LogSpace liegt.

Das folgende Lemma ist ein wichtiges Resultat {iber die Hintereinanderausfithrung von
LogSpace-Transducern.

Lemma 2.14: Seien Ly, Ly zwei LogSpace-Transducer und L;(w) bezeichne die Ausgabe
von L; bei Eingabe w € ¥*, dann kann La(Lq1(w)) in logarithmischem Platz berechnet
werden.

Beweis. Das Ergebnis der Ausgabe von L muss nicht zwingend in logarithmischem
Platz gespeichert werden kénnen. Allerdings liest Lo in einem Schritt nur ein Zeichen
der Eingabe L;i(w). Daher wird, wenn Lo auf den i-ten Buchstaben von L;(w) zugreifen
mochte, die Ausgabe Lj(w) in logarithmischem Platz neu berechnet und nur das i-te
Zeichen gespeichert. Die Berechnung von L und Lo ist also weiterhin in logarithmischem
Platz moglich. O
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3 Praperfekte Gruppen

Ein priperfektes Ersetzungssystem ist ein konfluentes Ersetzungssystem, welches mit
lingenerhaltenden und langenreduzierenden Regeln auskommt. Ziel dieses Abschnitts
ist es zu zeigen, dass fiir Coxeter-Gruppen ein priperfektes Ersetzungssystem existiert.
Das besondere ist, dass sich Geodétische ausschliellich mit diesen l&dngenerhaltenden und
léingenverkiirzenden Regeln berechnen und ineinander transformieren lassen. Weiter las-
sen sich mit diesem Resultat einige Eigenschaften von Coxeter-Gruppen leicht beweisen.
Eine allgemeine Einfithrung in praperfekte Gruppen findet sich in [6].

Definition 3.1: Sei S ein konfluentes Ersetzungssystem. S heifst priperfekt, falls
1. l—reS, dann gilt |l| > |r| oder
2. l—re8 mitl|ll =|r|, dann ist auchr -1 € S.

Eine Gruppe ist praperfekt, falls fiir sie ein prdiperfektes Ersetzungssystem existiert.

3.1 Coxeter-Gruppen sind praperfekt

Als Ersetzungssystem wird das in Abschnitt eingefithrte Ersetzungssystem S¢ ver-
wendet. Die Konfluenz dieses Ersetzungssystems wurde bereits in Lemma gezeigt.

Definition 3.2: a ist mazimal in w € C(X, 1), falls w = ua in der Cozeter-Gruppe mit
[wll = [Jull + 1.

Lemma 3.1: Fin erzeugendes Element a € ¥ ist genau dann mazximal in w € ¥*, falls
ow(a) <0.

Beweis. Sei a maximal in w, dann lédsst sich nach Definition w schreiben als w = ua,
wobei ||ua| > |Ju||. Demnach ist nach Konstruktion von o,

ow(a) = oye(a) = oy(—a) = —oyu(a).

Wegen Lemma ist oy, (a) > 0, also folgt insgesamt oy, (a) < 0.

Umgekehrt sei 0y, (a) < 0, dann ist wegen Lemma [2.5| ||wal| > ||Jw||. Somit existiert ein
u = wa mit ||u|| = [|w| — 1. Mit w = waa = ua in der Coxeter-Gruppe ergibt sich die
Maximalitét von a in w. O

Definition 3.3: Der Suffiz der Linge | von (ab)! wird mit s(1,a,b) bezeichnet.

Satz 3.2: Cozeter-Gruppen sind prdperfekt:
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3 Préperfekte Gruppen

1. Seien w,w’ geoddtisch und w = w' in der Coxeter-Gruppe. Dann lassen sich w und
w’ durch Anwendung von Regeln aus S¢ ineinander tiberfiihren.

2. Seiw € ¥*, dann lisst sich w durch Anwenden von Regeln aus Sc in eine reduzierte
Form tberfihren.

Beweis. Beweis von (1| mit Induktion nach ||w]|: Fiir ||w| = 0 ist die Aussage klar. Sei
die Aussage giiltig fiir Worter der Linge hochstens |[w]]. Sei nun w = ua und w’ = u'b.
Ohne Einschrinkung sei a # b, sonst folgt die Aussage mit Induktion auf u,w’. a und
b sind maximale Elemente in w und nach Lemma somit 0y, (b) = 0yq(b) < 0. Nach
Konstruktion von o gilt damit o,(b) < 0, da wegen w reduziert o,(a) > 0 gilt. Wihle
[ > 1 maximal so, dass u = vs(l,a,b) in der Coxeter-Gruppe und |u| = |vs(l,a,b)|.
Mit Induktion ldsst sich u mit Regeln aus S¢ in vs(l,a,b) transformieren, das heifit
U :*>Sc vs(l,a,b). Sei also ohne Einschrénkung u = vs(l, a,b). Insgesamt ergibt sich

w =ua = vs(l,a,b)a =vs(l +1,b,a)

Wegen der Maximalitéit von [ ist nach Lemmaav(b) > 0 und o,(a) > 0. Da gy,(b) <0
muss nach Konstruktion von o also 4(11,4)(b) < 0 gelten. Daher muss, da u reduziert
ist, I + 1 = mqy gelten. Somit ldsst sich b durch die Regel s(I 4+ 1,a,b) — s(I 4+ 1,b,a)
aus S¢ nach hinten drehen. Mit Induktion auf u,u’ ergibt sich schliefSlich w :*>Sc w'.
Beweis von 2] mit Induktion nach |w|: Sei w = a;j...a, € ¥* und nicht reduziert.
Wiéhle ¢ maximal so, dass aj ...a;—; reduziert ist. Dann ist 04, 4, ,(a;) < 0. Nach dem
vorherigen Lemmaléisst sich ist also aj ... a;_1 schreiben als ua;. Die Transformation
kann wegen[I]mit Regeln aus S¢ erfolgen. SchlieBlich lisst sich a . . . a,, unter Anwendung
der Regel a;a; — 1 transformieren in w := ua;1q ... a,. Mit Induktion ldsst sich w mit
Regeln aus S¢ in eine Geodétische iiberfithren. O
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4 Automatische Gruppen

In diesem Abschnitt geht es um eine automatische Struktur fiir Gruppen. Das bedeutet,
dass durch einen Automaten, also in Linearzeit, entschieden werden kann, ob ein Wort
eine gewisse Form erfiillt (beispielsweise eine Normalform) und, ob ein Wort v aus w
durch Multiplikation mit a € ¥ entstanden ist. Fiir alle automatischen Gruppen ist das
Wortproblem in quadratischer Zeit entscheidbar [7].

Definition 4.1: FEine Gruppe G heif$t automatisch, falls sie mit einem Automat W und
Automaten W,, a € ¥ U {1}, ausgestattet ist, die folgende Eigenschaften erfiillen:

1. W akzeptiert mindestens einen Reprdsentanten von g € G.

2. Falls w,v von W akzeptiert werden, dann akzeptiert W, das Paar (w,v) genau
dann, falls w = va in der Gruppe G.

Akzeptiert W genau die lingenlexikographischen Normalformen von G, so wird G als
shortLex automatisch bezeichnet.

I bezeichnet wieder die unabhingigen Erzeugenden, also (a,b) € I = ab = ba. Fiir den
Beweis, dass rechtwinklige Coxeter-Gruppen ShortLex automatisch sind wird folgendes
Lemma benstigt:

Lemma 4.1 (Deletion Property): Sei C(3,1) eine rechtwinklige Coxeter-Gruppe und
w=aj...a, geoditisch mit |wal| < ||w|. Dann existiert 1 < i <mn so, dass

wa =ay...a;—10;41 ...0n

Beweis. Im Ersetzungsprozess 16scht sich a mit einem a;. a; ist wegen Lemma ma-
ximal in w. Aus Theorem folgt nun, dass a; durch Kommutieren an das Ende von
w gedreht werden kann. Angenommen es existiert ein j > ¢ mit a; ¢ I(a), dann muss
es ein ay geben, welches sich mit a; 16scht. Nach Voraussetzung ist w aber geodétisch,
also muss a; € I(a) fiir alle j > i gelten. Da a; € I(a) fiir alle j > i lésst sich a; 16schen
ohne die Reihenfolge der a; fiir j # ¢ zu veréndern. O

Bemerkung 4.1: Das Lemma gilt fiir beliebige Coxeter-Gruppen. Fiir einen allgemei-
neren Beweis siehe [I, Kapitel 1, Proposition 1.4.7].

4.1 Rechtwinklige Coxeter-Gruppen sind shortLex automatisch

Fiir rechtwinklige Coxeter-Gruppen lésst sich ein elementarer Beweis angeben, dass sie
shortLex automatisch sind. Die Kernidee ist die maximalen Elemente in der Zustands-
kodierung zu speichern. Damit ldsst sich sicherstellen, dass das zu verifizierende Wort
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4 Automatische Gruppen

geodéitisch ist. Damit lediglich die lingenlexikographische Normalform akzeptiert wird,
werden in den Zustdnden auch die maximalen Elemente der lexikographisch kleineren
Wérter gespeichert.

Die Sprache L = {nf(z) | x € ¥* } ist die Menge der ldngenlexikographischen Nor-
malformen von 3*. Im Folgenden wird ein Automat konstruiert, der die Sprache L
erkennt. P(X) ist zusammen mit dem Fehlerzustand F die Menge der Zustéinde. Der
Startzustand ist die leere Menge. Die Ubergangsfunktion &(a, S) ist definiert durch

(;((I,S)— f faHSCLGS()(Ie S__ F

Der Automat W = (P(X) U {F},X,0,0,F) akzeptiert ein Wort w € ¥* genau dann,
wenn w in lAngenlexikographischer Normalform ist. Fiir den Beweis wird die folgende
Folgerung bendétigt:

Lemma 4.2: Sei §(ay ...ax,0) # F. Dann ist x € 6(aq ...ax,0) genau dann, wenn ein
i (1 <i<k) existiert, so dass a;,...,a € I(z) und x < a;—1.

Beweis. Folgt direkt aus der Definition von 4. O

Satz 4.3: Der Automat W = (P(X)U{F},%,6,0,P(X)) akzeptiert genau die Sprache
L={nflz) | zeX*}.

Beweis. Sei w = ay . ..ay, in langenlexikographischer Normalform. Es ist zu zeigen, dass
der Automat w akzeptiert. Angenommen der Automat akzeptiert w nicht, dann existiert
1<k<nso,dassd(ay...a,0)=:S# Fund d(ay...axs1,0) = F. Nach Konstruktion
ist ax11 € S, aber wegen w geddétisch nicht maximal in a; ...a; (Lemma . Nach
dem vorherigen Lemma existiert ein i so, dass a;, ..., a; € I(ags1). Insbesondere ist,
da w geodétisch, ax11 = a;—1. Dann aber ist

w=4at...a;—20k41Gi—1...Ak0k42...0p <AL ... A;—205—1 ... Afky] - .. 0y = W,

was einen Widerspruch zu w in ldngenlexikographischer Normalform darstellt. Also ak-
zeptiert der Automat w.

Fiir die Umkehrung sei w nicht in ldngenlexikographischer Normalform. Es ist zu
zeigen, dass der Automat w nicht akzeptiert. Sei dazu zunéchst w nicht geodétisch und
k minimal so, dass ||a; ...agag41]| < ||a1 ... ak||. Wegen Lemma 3.1{ist aj41 maximal in
aj ...ag. Also existiert ein ¢ mit a; = agy1. Nach Wahl von k ist a; ... a geoditisch,
daher folgt aus der Deletion Property a;...ax = @41 ...ara;. Somit ist a;41,...,ax €
I(a;) = I(ag+1). Dann aber ist nach Lemma agt1 € S := 6(ay...ag,0) und der
Automat akzeptiert w nicht.

Sei also nun w geodétisch, aber nicht in lingenlexikographischer Normalform. Wéahle
k minimal so, dass aj...a; nicht in ldngenlexikographischer Normalform ist. Dann
gibt es ein ¢ < k mit a; < ax und a;...ar = aga;...ax—1. Da w geoditisch ist, ist
aj, ... a1 € I(ay). Nach Konstruktion des Automaten ist daher a; € §(ay ...ax_1,0)
und der Automat akzeptiert w nicht. O
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4.1 Rechtwinklige Coxeter-Gruppen sind shortLex automatisch

Das néchste Ziel ist ein Automat W,, der ein Paar (w,v) genau dann akzeptiert, falls
wa = v in der rechtwinkligen Coxeter Gruppe. Die Idee fiir den Automaten ist, zu
iiberpriifen, ob v = nf(wa) in ¥*. Das folgende Lemma beschreibt die moglichen Félle
fiir die Normalform von wa:

Lemma 4.4: Sei w = ay...a, in ldngenlexikographischer Normalform, dann kénnen
fiir die Normalform von wa nur drei Fdlle eintreten:

ai...apa, falls wa shortLex (4.1a)
nflwa) = ¢ ai...akx_16af . ..an, falls wa geoddtisch (4.1b)
aj ... Qp_1ak4] - - - Ap, falls wa nicht geoddtisch (4.1¢)

Beweis. Der letzte Fall, wa nicht geodétisch, ergibt sich aus der Deletion Property
Beachte, dass in diesem Fall ag_1 # a # ar41. Der zweite Fall folgt analog und der erste
Fall folgt direkt aus der Definition von shortLex. O

Das Alphabet, auf dem der Automat W, arbeitet, ist 32 := (X U{$}) x (ZU{$})\ (8, $).
Worter (w,v) werden mit $ aufgefiillt, falls sie eine unterschiedliche Lénge haben. Die
Zustandsmenge ist der Fehlerzustand F und der Akzeptanzzustand A zusammen mit
P(Z)UP(E) x {G, N} x X. Der Startzustand ist wieder die leere Menge. Die Ubergangs-
funktion d,((s,t), X') wird im Folgenden definiert, wobei der neue Zustand d,((s, ), X)
mit X’ bezeichnet wird.

1. Falls ¥ CP(X) :

(i) X' = §(t, X) falls s =t
(ii) X' = A falls {s,t} = {$,a} und 6(a, S) # F
(iii) X' = (6(t, X), G, s) falls t = a und 6(t, X') # F
(iv) X' = (6(t, X), N, t) falls s = a und 6(t, X) # F
(v) X' =F falls s,t # a oder §(t, X) = F
2. Falls X = (5,G,u) e P(X) x {G,N} x ¥:
(i) X' = F, falls t # u, s € I(a) oder §(¢,S) = F
(it) X' = (§(t, X), G, s) falls t =u und s € ¥
(iii) X' = A falls (s, t) = ($,1)
3. Falls ¥ = (S,N,u) € P(X) x {G,N} x X
(i) X' = F, falls s # u, t & I(a) oder §(t,S) = F
(ii) X' = (6(t, X), N, t) falls s=uund t € &
(iii) X' = A falls (s,t) = (s,9)

4. Falls X = Aoder X = F:
(i) X' =F
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4 Automatische Gruppen

Der 2. Fall beschreibt die Ubergiinge, falls wa geoditisch, aber nicht lingenlexikogra-
phisch ist. Der 3. Fall beschreibt die Uberginge, falls wa nicht geoditisch ist. Fall 3 ist
symmetrisch zu Fall 2, denn falls wa = v in der rechtwinkligen Coxeter-Gruppe und wa
ist nicht geodétisch, dann ist va = waa = w in der rechtwinkligen Coxeter-Gruppe und
va ist geodétisch.

Satz 4.5: Der Automat W, = ({F, A} UP(Z) U (P(X) x {G,N} x £),%%,8,,0, A) ak-
zeptiert genau die Sprache

Ly :={(w,v) | w,v lexikographisch und wa = v in der Cozeter-Gruppe } .

Beweis. Zeige, dass (w,v) genau dann akzeptiert wird, wenn (w,v) € L,. Der Automat
akzeptiert nach Konstruktion nicht, falls v,w ¢ L. Sei also fiir den restlichen Beweis
w,v € L. Nach Konstruktion ist der Automat symmetrisch in der Eingabe (w,v). Sei
wW=581...8, und v =ty ...ty. Setze X; := d,((s1...8;,t1...t;),0) auf den Zustand, in
dem sich der Automat nach dem Lesen von (s;,t;) befindet. Wéhle j maximal so, dass
s; = t; fiir alle 4 < j. Dann gilt &;_; C P(X). Ist nun j = n oder j = k, so tritt Regel
(73i) von Fall 1 ein, welche Fall (a) der Normalform von wa oder va entspricht, und der
Automat akzeptiert genau dann, wenn (w,v) € L,. Ist weder s; = a, noch t; = a, so ist
keiner der Fille von nf(wa) moglich und wa = v kann nicht gelten. Durch (v) lehnt der
Automat die Eingabe ab. Ohne Einschrankung sei nun ¢; = a. Der Automat befindet sich
also nach dem Lesen von (sj,t;) in Fall 2. Angenommen der Automat akzeptiert nach
dem Lesen von (s, tx) die Eingabe nicht, dann gilt entweder ¢ # sip_1 oder s & I(a).
Fiir j < i < k gilt nach Konstruktion des Automaten

Sj...siflztjqu...ti
Sy Sk—1 EI(CL)

Falls s € I(a), so kann wegen Lemmanicht wa = v gelten. Sei also s;_1 # tr. Dann
aber kann die Normalform nf(wa) nicht mit v iibereinstimmen und somit ist wa = v
nicht moéglich.

Akzeptiert der Automat, so ldsst sich wa wegen s; € I(a) fiir i > j wie in Fall (b) von
nf(wa) schreiben. Also stimmt v mit nf(wa) iiberein und es gilt wa = v. O

Satz 4.6: Rechtwinklige Coxeter-Gruppen sind shortLex automatisch.

Beweis. Die beiden vorherigen Lemmata liefern die notwendigen Automaten W und
W, fiir a € X. Es fehlt noch der Automat W;. Dieser ergibt sich direkt, da W nur die
lingenlexikographische Normalform akzeptiert. Fiir den Automaten Wy seiw = a1 ... ap,
und v = by ... b,,. Der Automat W7 akzeptiert genau dann, wenn a; = b; fiir 1 <i <n,m
und n = m. O
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5 Berechnung einer Normalform

5.1 In der freien Gruppe in logarithmischem Platz

Die Berechnung einer Normalform in der freien Gruppe in logarithmischem Platz l4sst
sich fast unmittelbar auf das Wortproblem zuriickfithren. Das Wortproblem der freien
Gruppe liegt nach Bemerkung in LogSpace.

Satz 5.1: Sei F(X) die freie Gruppe dber ¥ und w € ¥*. Dann ldsst sich in logarith-
mischem Platz eine Normalform berechnen.

Beweis. Sei w = aj...a,. Der Algorithmus arbeitet in Phasen und startet in Phase
t = 1. In Phase 7 wird a; der Eingabe gelesen und ein maximales j mit a; = @; und
ai...a; = 1 berechnet. Der Test, ob a;...a; = 1 lisst sich wegen Bemerkung in
logarithmischem Platz durchfiihren. Existiert ein solches j, so wird in Phase j + 1 fort-
gefahren, ansonsten wird a; ausgegeben und in Phase ¢ + 1 fortgefahren. Sei w; der
Inhalt des Ausgabebandes zu Beginn von Phase i. Der Algorithmus erfiillt die folgenden
Invarianten.

1. w; =aj...a;—1 in der freien Gruppe.
2. w; ist reduziert.

Invariante [1| ist nach Konstruktion immer erfiillt, da nur die 1 geloscht wird. Angenom-
men w; ist nicht reduziert. Sei dazu w; = ay ... a,,, wobei n; = |w;|. Es gibt Positionen
1 <j<k<n mita;...a; = 1. a; wurde aber nur ausgegeben, falls es kein Teilwort
gibt, das der 1 entspricht. Da nur Teilworter, die der 1 entsprechen geléscht wurden,
muss es fiir a; auch vorher bereits ein passendes Teilwort gegeben haben. Also muss w;
reduziert sein. O

Der Algorithmus bildet die Basis fiir Theorem in dem ein Algorithmus préisentiert
wird, der eine Geodétische in einer rechtwinkligen Coxeter-Gruppe in logarithmischem
Platz berechnet. Allerdings ist es dann nicht mehr ausreichend zu testen, ob das Teilwort
der 1 entspricht.

5.2 In Graph-Gruppen und rechtwinkligen Coxeter-Gruppen

5.2.1 In Linearzeit

Die Berechnung einer lingenlexikographischen Normalform ist nach [5] fiir Spurmonoide
in Linearzeit moglich. Durch eine minimale Anpassung des Algorithmus lésst sich auch
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5 Berechnung einer Normalform

eine Normalform fiir rechtwinklige Coxeter-Gruppen in Linearzeit berechnen, da sich
in der ldngenlexikographischen Normalform zwei aufeinander folgende a 16schen. Wegen
Lemma [2.8] ist es schlieffilich auch moglich eine ldngenlexikographische Normalform in
Graph-Gruppen zu berechnen.

Definition 5.1: Sei F' C ¥ mit (a,b) € I fir alle a,b € F. Dann bezeichnet

F1=]]a

acF
einen elementaren Schritt.

Die Reihenfolge, in der die a € F multipliziert werden, spielt fiir das Produkt wegen
(a,b) € I fiir alle a,b € F keine Rolle. Fiir die Bestimmung der Normalform wihle eine
Cliquen Uberdeckung {¥; | 1 <i <k } von (3, D) so, dass

k k k
m M(S,I) =[] =5, == D=(ExD)\I=[J%ix%;
=1 =1 =1

und 7 eine Einbettung ist. Die Existenz einer passenden Cliquen Uberdeckung ergibt
sich aus dem Einbettungstheorem [5, Korollar 1.4.7]. Fiir a € ¥ bezeichne component(a)
die Index-Menge {i | a € ¥; }. Damit ldsst sich eine Zerlegung eines Repriisentanten
einer Spur in ein k-Tupel realisieren.

function pi(s : string) : tuple;
begin
var i : index;
var a : char;
var t : tuple := 1;
while s # 1 do
a := first(s); s := rest(s);
foreach i € component(a) do
t[i] := t[i]a;
end
end

return t;
end

Um die ldngenlexikographische Normalform zu berechnen, werden sukzessive die mini-
malen Elemente bestimmt. Das lexikographisch kleinste Element wird dann an die Nor-
malform angehéngt. Der folgende Algorithmus bestimmt die minimalen Elemente des
Tupels t. Da im spéteren Verlauf bereits einige minimale Elemente m bekannt sind, wer-
den diese aus Effizienzgriinden beriicksichtigt. Die Grundidee des Algorithmus ist, dass
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5.2 In Graph-Gruppen und rechtwinkligen Coxeter-Gruppen

ein Element a € ¥ minimal ist genau dann, wenn a = first([j]) fiir alle j € component(a).

function min(m : step, t : tuple) : step;
begin

var B : boolean;

var a : char;

/* die minimalen Elemente m sind bereits bekannt */
var F : step := m;
var i,j : index;
var I,J : index-set;
/* neue minimale Elemente miissen in I liegen */
I:={i | t[i] #1 and i ¢ component(a) for all a € m };
while I # () do
chooseic I; [ :=1\{i};
a := first(t[i]); J := component(a) \ {i};
while J # 0 and B do
choose j € J;
if j € I and a = first(t[j]) then
/* Komponente j erfiillt die Voraussetzung und muss

nicht weiter getestet werden */
I=1I\{j} J:=J\{jh
else
/* a kann nicht minimal sein */
B := false;
end
end
if B then
F:=FU{a};
else
B = true;
end
end
return F;
end

Die Bestimmung der minimalen Elemente lduft in konstanter Zeit, da die Zahl k der
Komponenten fest ist. Daher ergibt sich ein Linearzeit Algorithmus fiir die langenlexi-
kographische Normalform. Tritt a? in der lingenlexikographischen Normalform auf, so
wird es gekiirzt. Die Konfluenz des Ersetzungssystems liefert die Eindeutigkeit der Nor-
malform. Zur besseren Lesbarkeit wird a 16schen, durch a~! beschrieben, obwohl ¢! = a
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5 Berechnung einer Normalform

in Coxeter-Gruppen.

function lex-NF(t : tuple) : string;
begin

var a : char;

var s : string;

var F : step := min(¢);

while F # () do
/* wdhle aus den minimalen Elementen den lexikographisch
kleinsten Buchstaben */
a = lexfirst(F);
if a = last(s) then

/* a kann geldscht werden */
§ = sa_l;
else
s := sa;
end
t = ailt;
F := min(F \ {a},t);
end
return s;
end

5.2.2 In logarithmischem Platz

In diesem Abschnitt wird ein neuer Algorithmus vorgestellt, der bei Eingabe w € X*
die ldngenlexikographische Normalform von w in rechtwinkligen Coxeter-Gruppen und
Graph-Gruppen in logarithmischem Platz berechnet. Dies zeigt nach meinem Kennt-
nisstand erstmals, dass das Problem der Normalformenberechnung fiir rechtwinklige
Coxeter-Gruppen und Graph-Gruppen in LogSpace liegt.

Definition 5.2: Ein Wort w heifit a-reduziert, falls in keiner Ableitung die Regel a*> — 1
angewendet werden kann.

Das folgende Lemma charakterisiert die Eigenschaft a-reduziert und spielt eine wesent-

liche Rolle fiir die Berechnung einer Normalform in logarithmischem Platz. Mit «(v)
werden die in v vorkommenden Buchstaben bezeichnet.

Definition 5.3: Eine Spur u € M(X,1) ist ein Faktor der Spur v € M(X, 1), falls
v e M(S,DuM(S,1).

Definition 5.4: Eine Spur w ist eine Coxeter-Spur, falls w keinen Faktor a® enthiilt.

Lemma 5.2: FEine Spur w ist genau dann a-reduziert, falls w keinen Faktor ava mit
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5.2 In Graph-Gruppen und rechtwinkligen Coxeter-Gruppen
a(nf(v)) C I(a) enthilt.

Beweis. Enthélt w einen Faktor ava mit a(nf(v)) C I(a), dann ist w offensichtlich nicht
a-reduziert. Sei nun w nicht a-reduziert. Lisst sich die Regel a®> — 1 anwenden, so muss
w einen Faktor ava mit a(v) C I(a) enthalten und es ist nichts weiter zu zeigen. Lésst
sich die Regel nicht anwenden, ist entweder w bereits reduziert oder die Regel b? — 1
kann fiir ein b € ¥ angewendet werden. Der erste Fall, w reduziert, ist ein Widerspruch
zur Voraussetzung w nicht a-reduziert. Also kann die Regel b> — 1 angewendet werden
und w lésst sich schreiben als zbvby mit a(v) C I(b). Das Wort w' := zvy ist nicht
a-reduziert, also lidsst sich Induktion auf das Wort w’ = zvy anwenden. Sei av’a ein
Faktor von w’. Ist av’a ein Faktor von x,v oder ¥, so ist av’a ein Faktor von w und es
ist nichts weiter zu zeigen. Sei also av’a kein Faktor von z,v und y und

TVY = A1 ... AnyOng gl - - - Oy Ony gl - - - Gy
mit av’a = a;_1a;...ajaj11. Es gibt drei mogliche Fille fiir den Faktor in

w = xbvby = ay ... an,ban, 41 .. ap,ban, 11 ... an,.

1. i < ngund j > n,: b lisst sich kiirzen und mit der Voraussetzung fiir v’ ergibt sich

~

Aa;...an,ban,41...an,ban,+1...a;) =a(a;...a;) =a) C I(a).

2. i <ngund j < ny: Esist ngrq < j+1 < ny, sonst wire v’ ein Faktor von z. Also
ist wegen a € a(v) C I(b) auch a € I(b). Schlieflich ist

(@i...an,Qn,41-.-ajb)
(v'b) Ca()u{b} C I(a).

ala;...apbap,41...05) =a
a
3. i > ny und j > n,: Folgt analog wie im 2. Fall durch a € a(v).

O]

Lemma 5.3: Sei w eine Spur und wd = udv mit u,v € X*, (d,v) € I und d ist das
einzige mazximale Element von ud. Weiter sei oy, (d) = Y o5 \ob, dann ist

X # 0 < b e a(nflu)).

Beweis. Wenn a ¢ a(nf(u)), dann ist A, = 0 nach Konstruktion der Abbildung o,,.
Fiir die Umkehrung sei @ die Normalform von u und @ = au’. Fiir a € ¥ bezeichne
iy die minimale Position von a in u’. Nach Konstruktion von o ist o/(d) = oy (d) =
Y cex Acc. Es gilt die stirkere Behauptung: Falls i, > 4 und (a,b) € D, dann gilt
Aa > Ap > 0. Beweis der Behauptung mit Induktion. Fiir |u| = 1 ist die Behauptung
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5 Berechnung einer Normalform

nach Voraussetzung erfiillt, denn d ist das einzige maximale Element von ud. Betrachte
nun

ou(d) = oz(a) = 0w (d)

(%)

= Z Acoq(C)

ceY

= ) Mld+20)+ D Aec—Aaa

a#deD(a) cel(a)

= Z Agd + Z AcCc+ Z 20— | a

a#deD(a) cel(a) a#deD(a)

=: Z,ucc

ceX

Es hat sich nur der Koeffizient fiir a verindert, also gilt die Behauptung fiir ¢ # a nach
Induktion. Falls a ¢ a(v), so ist ptta = >, 2qe p(a) 2Aad > Ap = pp > 0 fiir (a,b) € D und
b € a(v). Sei also a € a(u’). Dann ist wegen der Induktionsvoraussetzung Ay > A, fiir
alle d mit iq < i,. Da v’ reduziert ist, existiert mindestens ein solches d. Also ist pg > 0.
Wegen N\, > A, fiir iq > i und (a,b) € D ist p, > Za?ﬁdeD(a) Agd > Ap = pp > 0. a

Bemerkung 5.1: Der Beweis von Lemma zeigt zusétzlich, dass A\, > 0, falls b €

a(nf(u)).

Lemma 5.4: Sei C(X,I) eine rechtwinklige Coxeter-Gruppe und w € ¥*. Dann ldsst
sich in logarithmischem Platz das Alphabet a(nf(w)) der Normalform von w berechnen.

Beweis. Sei x ein neuer Buchstabe, der noch nicht in ¥ vorkommt. Es wird nur die neue
Regel 22 = 1 eingefiihrt. Dann ist insbesondere (a,z) ¢ I fiir alle a € ¥. Betrachte
ow(r) = Y pes Awb. Nach dem vorherigen Lemma ist \p # 0 genau dann, wenn
b € a(nf(w)). Dies lisst sich nach Lemma[2.11]in logarithmischem Platz iiberpriifen. [

Satz 5.5: Sei C(X, 1) eine rechtwinklige Cozxeter-Gruppe und w € X*. Dann lisst sich
in logarithmischem Platz eine Cozeter-Spur fiir w berechnen.

Beweis. Wir konstruieren einen Algorithmus, der bei Eingabe w € ¥* ein Wort u € X*
berechnet, das fiir ein festes a € 3 die folgenden Eigenschaften erfiillt.

1. uw = w in der Coxeter-Gruppe C(%,I).
2. wu ist a-reduziert.

3. w ist b-reduziert, falls w b-reduziert ist.
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5.2 In Graph-Gruppen und rechtwinkligen Coxeter-Gruppen

Zusammen mit Lemma|2.14] ergibt sich eine LogSpace Maschine, die bei Eingabe w € ¥*
ein Wort u € X* berechnet, welches geodétisch ist.

Sei also w = aj...a, und a € X fest gewihlt. Der Algorithmus arbeitet in Phasen.
In Phase i wird a; gelesen. Ist a; # a, so gebe a; aus und fahre mit Phase i + 1 fort. Ist
a; = a so berechne ein j > ¢ mit a; = a und a(nf(a;y1...aj-1)) € I(a) Dies ist nach
Lemma in logarithmischem Platz moglich. Falls kein solches j > i existiert gebe a
aus und fahre mit Phase ¢ 41 fort. Existiert dieses j gebe a; .. .a; aus, aber iiberspringe
dabei alle a. Fahre danach mit Phase j + 1 fort.

Zum Beweis der Korrektheit bezeichne w;_1 den Inhalt des Ausgabebands zu Beginn
von Phase j und dem Ende von Phase i. Die Ausgabe w;_; erfiillt die folgende Invariante

1. wj_1 ist a-reduziert.
2. wj—1 =ai...aj—1 in der Coxeter-Gruppe C(%, I).
3. wj_1 ist b-reduziert, falls aq ...a;_1 b-reduziert ist.

Beweis der Invariante iiber Induktion. Fiir j = 1 ist w;_1 = wo = 1, also ist die Invariante
erfiillt. Wurde in Phase ¢ ein a ausgegeben, so ist w;_1 = w;—1a. Angenommen w;_1
ist nicht a-reduziert und sei wj—1 = ay...a,;. Dann existiert nach Lemma ein k,
wobei 1 < k < ny, mit a; = a und a(nf(dgy1...an,—1)) € I(a). ax wurde in Phase iy
ausgegeben. Nach Induktion gilt w;,—1 = a;...a;,—1 und daher a;, ...a; = ay...ay,.
Somit ist

a(nf(a;, ... a;)) = a(nf(ay . ..an;)) € I(a).

Dann aber hétte der Algorithmus in Phase i; alle a zwischen i und j geloscht und direkt
mit Phase j + 1 fort gefahren. Also muss w;j_1 a-reduziert sein. Wurde in Phase i kein a
ausgegeben, so folgt aus Lemma und w;_1 a-reduziert direkt, dass w;_1 a-reduziert
ist. Damit ist [1] gezeigt. [2| folgt nach der Konstruktion von w;_; direkt aus Lemma
Fiir 3] sei a1 ...a;j—1 b-reduziert und in Phase 7 wurde ein b ausgegeben. Angenommen
wj_1 ist nicht b-reduziert, dann gibt es nach Lemma ein Ky, wobei 1 < ky < nj,
mit a, = b und a(nf(ag,41...an;—1)) € I1(b). Durch den Algorithmus wurden nur
a geloscht. Da aq...a;—1 b-reduziert ist muss also (a,b) € I gelten. Seien kg,1, mit
1< ks <ky <ly <nj,und ay, = a;, = a die Positionen, fiir die sich a reduzieren lésst.
Da ay...aj—1 b-reduziert ist und (a,b) € I, ist b € a(nf(ak,+1...a;,4+1)). Dann aber
hétte der Algorithmus die beiden a nicht geloscht. Wurde in Phase i kein b ausgegeben,
so folgt w;_1 ist b-reduziert direkt aus w;_q ist b-reduziert und |3|ist gezeigt. O

Lemma 5.6: Sei w eine Coxeter-Spur. Dann ldsst sich in logarithmischem Platz ein
Hasse-Diagramm fiir w berechnen.

Beweis. Sei w = aj...ay,. Zunichst wird (aq,...,a,) als Beschriftung fiir die Knoten
(1,...,n) des Graphen ausgegeben. Dann arbeitet der Algorithmus alle Knoten-Paare
(7,7) ab. Ein Knoten-Paar (i, j) wird als Kante ausgegeben, falls

1. i < j mit (a;,a;) € D und
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5 Berechnung einer Normalform

2. (a;,ay) ED:>(ak,aj)¢Dﬁiri<k<j

Die Berechnung der Kanten liegt in LogSpace, da dafiir nur die Zahler ¢, j und k gespei-
chert werden miissen. O

Lemma 5.7: Sei H = (V, E) ein Hasse-Diagramm zur Coxeter-Spur w und A : V +— X
die dazugehorige Beschriftung, dann ldsst sich in logarithmischem Platz die ldngenlexi-
kographische Normalform von w in der rechtwinkligen Coxeter-Gruppe berechnen.

Beweis. Es werden sukzessive die minimalen Elemente ausgegeben. Dazu wird in loga-
rithmischem Platz fiir jeden Buchstaben a € ¥ ein Zéhler z, gespeichert. Alle Zihler z,
werden mit O initialisiert. Ein Buchstabe a ist minimal, falls ein Knoten i existiert, der
mit A\(i) = a beschriftet ist und keine eingehenden Kanten hat. Setze also zy; := 1 fiir
jeden Knoten ¢, der keine eingehenden Kanten hat. Die Belegung der z, ist eindeutig,
da fiir ¢ # j mit A(4) = A(j) = a wegen (a,a) € D die Kante (i, j) im Hasse-Diagramm
existiert. Fiir die Ausgabe der Normalform wird folgendes solange wiederholt, bis fiir
jeden Knoten seine Beschriftung ausgegeben wurde.

Gebe den minimalen Buchstaben a mit z, # O aus und setze z)(,,) = j fiir
jede Kante (A(z4),7), sowie z, := O.

Das Weitersetzen der Zahler entspricht dem Loschen des Knotens aus dem Hasse-Dia-
gramm. Da im Hasse-Diagramm eine Kante (7, j) nur dann existiert, falls es kein k mit
i <k<jund (i,k),(k,j) € E gibt ist die Belegung der z, im Verlauf eindeutig. Nach
Konstruktion ist das ausgegebene Wort die ldngenlexikographische Normalform. 0

Satz 5.8: Sei G eine rechtwinklige Cozeter-Gruppe oder eine Graph-Gruppe. Dann lisst
sich bei Eingabe w € ¥* in logarithmischem Platz die lingenlexikographische Normalform
von w berechnen.

Beweis. Falls G eine Graph-Gruppe ist, so lisst sie sich nach Lemma [2.8|in eine recht-
winklige Coxeter-Gruppe einbetten. Es geniigt also rechtwinklige Coxeter-Gruppen zu
betrachten. Das Theorem folgt mit Lemma [2.14] direkt aus Theorem [5.5] und den beiden
Lemmata [5.6] und 5.7 O

5.3 In Coxeter-Gruppen

Bjorner und Brenti stellen in [I] einen Algorithmus zur Berechnung einer Normalform
fiir beliebige Coxeter-Gruppen vor. Dieser Algorithmus kommt mit linear vielen mathe-
matischen Operationen aus. In diesem Abschnitt wird der Algorithmus zunéchst vorge-
stellt und die zu berechnenden Koeflizienten genauer untersucht. Danach wird eine obere
Schranke fiir die Speicherkomplexitéit der reellwertigen Koeffizienten bestimmt.

Fiir dieses Kapitel sei a* : R¥ — R mit a*(b) = J,;. Die Menge {a* | a € ¥ } bildet
eine Basis des Dual Raums von R*. Wir identifizieren den Dual Raum (RE)* mit R>.
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5.3 In Coxeter-Gruppen

Definition 5.5 (Duale Einbettung): Mit o™ : (]RZ)* — (RE)* wird die duale Einbettung
bezeichnet, wobei o*(w) = o ...0, mit w = ay...a,. Die b*-Koordinate von o (p)
ist definiert als

Py + 2 cos ( )pa, falls mgp # 0
Db + 2Pas falls Mab = 0

(0a(P))y = {

Bemerkung 5.2: Das Wachstum der Faktoren vor cos (ﬁ) in den Koeffizienten von
ol (p) ist durch 2™ beschrinkt.

ai...an
Zur Berechnung der Normalform wihle p := > .va* = (1,1,...,1) und wy := 1.
Berechne nun pf := o _, (p). Wiederhole Folgendes, bis p; = p.

Wihle a € ¥ minimal mit (p})e« < 0. Setze @; := W;—1 - @ und aktualisiere
p; = op(p;_,). Fahre mit Runde i + 1 fort.

Das berechnete w := w; ist die Normalform nf(w) von w. Zur Korrektheit und Termina-
tion der Berechnung siehe [I, Kapitel 4.3]

5.3.1 Berechnungskomplexitat

Fiir den Algorithmus muss in jeder Runde entschieden werden, welche Eintrige des Vek-
tors p} negativ sind. Betrachte fiir die Analyse der Komplexitét N-te Einheitswurzeln,
wobei N :=kgV{2m,; | a,b€ X }. Fiir diesen Abschnitt sei N > 3, da ansonsten
die Berechnung von p) in Z mdéglich ist. Es gibt N verschiedene N-te Einheitswurzeln
e2mij/N 1 < 7 < N. Der Kosinus lésst sich durch Einheitswurzeln ausdriicken, wobei ¢
die imaginére Einheit bezeichnet.

T eﬂ'i/ma’b . e—m/ma,b
COS =

M. b 2

Wegen der Wahl von N als kgV, lisst sich jeder der Cosinuse als N-te Einheitswurzel
ausdriicken. Das Produkt zweier N-ter Einheitswurzeln ist wieder eine N-te Einheits-
wurzel, also hat ein Eintrag des Vektors p; die Form

n
Aj
Z kj 27”]/]\7, wobei [A\;| < 2" und 0 < k; < n. (5.1)
2
j=1
Da fiir den Algorithmus nur entschieden werden muss, ob Gleichung negativ ist kann
durch Durchmultiplizieren mit 2" der Bruch eliminiert werden. Die dadurch entstande-

nen Faktoren werden wieder mit )\, bezeichnet.
Lemma 5.9: Sei |\;| < 2", dann gilt fir die Linearform der N-ten Einheitswurzeln

N

TL e 1 -
(n+d)d Z e?mi/N Srd)d’ wobei d = log(N).
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5 Berechnung einer Normalform

Beweis. Die erste Ungleichung folgt sofort aus [e2™7/N| < 1. Fiir die zweite siehe [T,
Theorem 3. O

Die Eintriige des Vektors p, sind reellwertig, daher geniigt es wegen ' = cos((p)+i sin(¢p)
die Summe

n
> " \jcos(2mij/N), wobei — 27" < \; < 2% (5.2)
i=1
auszuwerten. Wegen Lemma [5.9) muss der Cosinus auf einen Fehler kleiner 2~ (2n+d)(d+1)
approximiert werden. Fiir die Darstellung der Summe sind also insgesamt hdchstens
(2n 4 d)(d + 1) € O(n) Bits notwendig. In der Praxis bedeutet diese Genauigkeit, dass

obiger Algorithmus bestenfalls eine quadratische Laufzeit hat.

5.3.2 Das Alphabet einer Geodatischen

Das Alphabet einer Geodétischen und somit insbesondere das der langenlexikographi-
schen Normalform l&sst sich in logarithmischem Platz berechnen. Dies lies sich elementar
fiir rechtwinklige Coxeter-Gruppen zeigen. Fiir allgemeine Coxeter Gruppen sei = ¢ ¥
ein neuer Buchstabe mit der einzigen neuen Relation 22 = 1. Damit ist insbesondere die
Ordnung von ax unendlich und es gilt stets ||wz| > |Jw]| fir w € 3.

Lemma 5.10: Sei w € C(X, M) und 0(x) = T + Y _yc5; \pb. Dann ist A, # 0 genau
dann, wenn b im Alphabet einer Geoddtischen vorkommdt.

Beweis. Sei w ohne Einschrankung geodétisch. Kommt b € 3 nicht im Alphabet der
Geodétischen vor, so ist A, = 0 nach Konstruktion von o,. Die Umkehrung folgt mit
Induktion. Ist |w| = 1, dann folgt die Behauptung sofort aus der Konstruktion der
Einbettung. Sei also w = ua, dann ist ||ual| > ||lu|| und

ow(x) = oya(x) = oy (z + 2a) = oy () + 204(a).
Nach Induktion ist Ay # 0 fiir a # b € ¥. Nach Lemma ist oy(a) > 0, ebenso ist

ou(z) > 0. Kommt @ in u vor, so ist A > 0 durch o,(x). Sei also a nicht im Alphabet
von u, dann ist oy(a) = a + 3, 4 .cx ftec und daher A, > 2. O

Bemerkung 5.3: Die Einbettung ¢ ist unabhéngig vom gewihlten Reprisentanten.
Das Alphabet verschiedener Geoditischer zu w € ¥* stimmt also iiberein. Allerdings
muss die Haufigkeit der Buchstaben verschiedener Geodétischer nicht iibereinstimmen.

Lemma 5.11: Das Alphabet a(nf(w)) der lingenlexikographischen Normalform von w
lasst sich in logarithmischem Platz berechnen.

Beweis. Nach Lemma muss iiberpriift werden, ob o, (x) # 0. In [10] wird gezeigt,
wie sich die Berechnung der Koeffizienten von o, (z) in einer endlich erzeugten linearen
Gruppe iiber Z[X] ausfiihren lassen. Fiir die Uberpriifung, ob die Koeffizienten ungleich

null sind, geniigt es daher dies mod m fiir m < n* fiir ein festes k € N zu iiberpriifen.
O
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6 Zusammenfassung und Ausblick

Coxeter-Gruppen besitzen nach Kapitel [3] ein praperfektes Ersetzungssystem. Das be-
deutet, dass sich Geodétische immer mit lingenerhaltenden und lingenverkiirzenden
Regeln ableiten lassen. Auflerdem sind Coxeter-Gruppen shortLex automatisch. In Ka-
pitel 4] wurde ein elementarer Beweis, dass rechtwinklige Coxeter-Gruppen shortLex
automatisch sind, angegeben.

Das wesentliche Ergebnis dieser Arbeit ist ein Algorithmus, der in Graph-Gruppen und
rechtwinkligen Coxeter-Gruppen die ldngenlexikographische Normalform in logarithmi-
schem Platz berechnet. Die Korrektheit des Algorithmus wurde in Kapitel [5| bewiesen.
Fiir den Algorithmus wurde ein Kriterium eingefiihrt, mit dem sich das Alphabet der
Normalform aus der Einbettung in die allgemeine lineare Gruppe ablesen ldsst. Die Be-
rechnung des Alphabets iiber diese Einbettung ist in logarithmischem Platz maoglich.
Weiter wurde ein Algorithmus vorgestellt, um in Coxeter-Gruppen die léangenlexikogra-
phische Normalform mit linear vielen arithmetischen Operationen zu bestimmen. Diese
Operationen lassen sich allerdings nicht ausschliefllich mit ganzen Zahlen berechnen,
daher wurde untersucht, wie viele Bits zur Reprisentation der Koeffizienten notwendig
sind. Es stellte sich heraus, dass O(n) Bits geniigen. AbschlieBend wurde gezeigt, wie sich
das Alphabet der ldngenlexikographischen Normalform in allgemeinen Coxeter-Gruppen
berechnen lésst.

Fiir allgemeine Coxeter-Gruppen ist es offen, ob sich die Normalform in logarithmi-
schem Platz berechnen lasst. Auch ist nicht bekannt, ob die Berechnung einer Normal-
form in automatischen bzw. shortLex automatischen Gruppen in logarithmischem Platz
moglich ist. Hier besteht weiterer Untersuchungsbedarf.
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