
Institut für Formale Methoden der Informatik

Abteilung Theoretische Informatik

Universität Stuttgart
Universitätsstraße 38
D–70569 Stuttgart

Diplomarbeit Nr. 3238

Normalformenberechnung in
Graph-Gruppen und

Coxeter-Gruppen

JonathanKausch

Studiengang: Informatik

Prüfer: Prof. Dr. V. Diekert

Betreuer: Prof. Dr. V. Diekert

begonnen am: 23. August 2011

beendet am: 8. Dezember 2011

CR-Klassifikation: F.2.2, F.2.4, G.2.1

Inhaltsverzeichnis

1 Einleitung 3

2 Grundlagen 5
2.1 Ersetzungssysteme . 5
2.2 Die freie Gruppe . 7
2.3 Coxeter-Gruppen . 7

2.3.1 Rechtwinklige Coxeter-Gruppen . 7
2.3.2 Allgemeine Coxeter-Gruppen . 8

2.4 Graph-Gruppen . 10
2.4.1 Einbettung in Coxeter-Gruppen . 11

2.5 LogSpace Berechnungen . 11

3 Präperfekte Gruppen 13
3.1 Coxeter-Gruppen sind präperfekt . 13

4 Automatische Gruppen 15
4.1 Rechtwinklige Coxeter-Gruppen sind shortLex automatisch 15

5 Berechnung einer Normalform 19
5.1 In der freien Gruppe in logarithmischem Platz 19
5.2 In Graph-Gruppen und rechtwinkligen Coxeter-Gruppen 19

5.2.1 In Linearzeit . 19
5.2.2 In logarithmischem Platz . 22

5.3 In Coxeter-Gruppen . 26
5.3.1 Berechnungskomplexität . 27
5.3.2 Das Alphabet einer Geodätischen 28

6 Zusammenfassung und Ausblick 29

1

1 Einleitung

Graph-Gruppen sind von besonderem Interesse in der Informatik für die Untersuchung
von nebenläufigen Prozessen. Sie sind eine natürliche Erweiterung von Spurmonoiden,
welche von Mazurkiewicz und Keller eingeführt wurden [12, 9]. In der Mathematik sind
sie auch als rechtwinklige Artin-Gruppen bekannt [3]. Interessante Problemstellungen
sind unter anderem das Konjugiertheitsproblem, das Isomorphieproblem, das Wortpro-
blem und das Normalformenberechnungsproblem. Behandelt wird in dieser Arbeit das
Normalformenberechnungsproblem, welches schwieriger ist als das Wortproblem. Aller-
dings ist der Anwendungsbereich des Normalformenproblems größer. Eine Normalform
ist eine eindeutige Darstellung eines Elements der Gruppe. Unter dem Wortproblem
versteht man die Frage, ob ein Wort das neutrale Element der Gruppe darstellt. Das
Wortproblem ist für jede endlich erzeugte lineare Gruppe in logarithmischem Platz ent-
scheidbar [10]. Ob dies auch für die Berechnung von Normalformen gilt ist noch offen.
Ein Linearzeit Algorithmus zur Berechnung einer Normalform wird in [5] für Spurmo-
noide eingeführt. Eine weitere Klasse von Gruppen ist die Klasse der automatischen
Gruppen, welche mit gewissen Automaten ausgestattet sind. Für automatische Grup-
pen ist das Wortproblem in quadratischer Zeit entscheidbar [7]. Ist die Gruppe darüber
hinaus shortLex automatisch, so lässt sich auch eine längenlexikographische Normalform
in quadratischer Zeit berechnen. Coxeter-Gruppen sind shortLex automatisch [4], und
damit insbesondere auch Graph-Gruppen, denn sie lassen sich in natürlicher Weise in
rechtwinklige Coxeter-Gruppen einbetten (siehe Abschnitt 2.4).

Das Ziel dieser Arbeit ist ein Algorithmus, der in logarithmischem Platz eine längen-
lexikographische Normalform in Graph-Gruppen bzw. rechtwinkligen Coxeter-Gruppen
berechnet. Dazu wird zunächst das Alphabet der Normalform in logarithmischem Platz
bestimmt. Eine Einbettung in die allgemeine lineare Gruppe liefert ein Kriterium für
das Alphabet der Normalform. Mit dem Kriterium kann dann eine Geodätische in recht-
winkligen Coxeter-Gruppen berechnet werden und daraus eine längenlexikographische
Normalform. Ob sich das Resultat zur Berechnung einer längenlexikographischen Nor-
malform in logarithmischem Platz auf allgemeine Coxeter-Gruppen übertragen lässt, ist
noch offen. In [1] wird ein Algorithmus zur Berechnung einer längenlexikographischen
Normalform vorgestellt, der mit linear vielen arithmetischen Operationen auskommt.
Allerdings lässt sich die Berechnung nicht mit ganzen Zahlen durchführen, daher wird
untersucht, wie viele Bits zur Repräsentation notwendig sind. Darüber hinaus wird ge-
zeigt, dass Coxeter-Gruppen präperfekt sind, das heißt ein kürzester Repräsentant kann
mit nur längenerhaltenden und längenverkürzenden Regeln berechnet werden. Außerdem
wird ein elementarer Beweis angegeben, dass sogenannte rechtwinklige Coxeter-Gruppen
automatisch sind.

Der Aufbau dieser Arbeit wird im Folgenden beschrieben. Er gliedert sich in präper-

3

1 Einleitung

fekte Gruppen, automatische Gruppen und der Berechnung von Normalformen.
In Kapitel 2 werden die grundlegenden Definitionen eingeführt. Für die Berechnungen

in den Gruppen werden Ersetzungssysteme verwendet. Die untersuchten Gruppen in
dieser Arbeit sind Graph-Gruppen und Coxeter-Gruppen. Als Grundlage für die Graph-
Gruppe dient die freie Gruppe. Abschließend werden in Kapitel 2 einige Eigenschaften
und Werkzeuge zu Berechnungen in logarithmischem Platz gezeigt.

In Kapitel 3 werden präperfekte Gruppen eingeführt und gezeigt, dass für Coxeter-
Gruppen ein präperfektes Ersetzungssystem existiert, mit dem sich Geodätische ableiten
lassen.

In Kapitel 4 werden automatische Gruppen vorgestellt und es wird ein elementarer
Beweis gegeben, dass rechtwinklige Coxeter-Gruppen shortLex automatisch sind.

Kapitel 5 widmet sich der Berechnung von Normalformen. Zunächst wird gezeigt,
dass sich eine Normalform in der freien Gruppe in logarithmischem Platz berechnen
lässt. Dann wird ein Linearzeit Algorithmus zur Berechnung einer längenlexikographi-
schen Normalform in Graph-Gruppen und rechtwinkligen Coxeter-Gruppen vorgestellt.
Anschließend wird der Algorithmus zur Berechnung der längenlexikographischen Nor-
malform in logarithmischem Platz vorgestellt und dessen Korrektheit bewiesen. Der
letzte Abschnitt des Kapitels widmet sich allgemeinen Coxeter-Gruppen. Es wird zuerst
untersucht, wie viele Bits zur Repräsentation für den in [1] vorgestellten Algorithmus
notwendig sind. Dann wird gezeigt, wie sich das Alphabet der längenlexikographischen
Normalform in allgemeinen Coxeter-Gruppen berechnen lässt.

In Kapitel 6 wird das Ergebnis der Arbeit zusammengefasst und ein kurzer Ausblick
gegeben.

4

2 Grundlagen

Für die Berechnung von Normalformen eignen sich Ersetzungssysteme. In diesem Kapi-
tel werden die untersuchten Gruppen eingeführt und geeignete Ersetzungssysteme vor-
gestellt. Die Elemente der Gruppen werden als Wörter über einem endlichen Alphabet Σ
betrachtet. Das neutrale Element wird mit 1 bezeichnet. Im Abschnitt Ersetzungssyste-
me wird ein System eingeführt, das festlegt, welche Wörter die gleiche Bedeutung haben.
Für die Berechnung von Normalformen wird stets die längenlexikographische Normal-
form, also ein minimaler Repräsentant eines Elements einer Gruppe, verwendet. Dafür
ist insbesondere der Begriff der Länge eines Repräsentanten von Bedeutung.

Definition 2.1: Sei w = a1 . . . an ∈ Σ∗. Dann bezeichnet |w| := n die Länge von w.

Der Vektorraum RΣ wird mit Rk identifiziert, wobei k := |Σ|. Die Menge { a | a ∈ Σ }
bildet eine Basis von RΣ. Mit LogSpace wird die Klasse der Funktionen beschrieben, die
sich auf einer Turingmaschine mit Platz O(log n) berechnen lassen, wobei n die Einga-
begröße ist. Im Rahmen dieser Arbeit ist die Eingabegröße die Länge |w| der Eingabe
w.

2.1 Ersetzungssysteme

Ein Ersetzungssystem ist eine Menge S von Ersetzungsregeln der Form l → r. Kommt
die linke Seite l in einem Wort w vor, so darf sie durch die rechte Seite r ersetzt werden.
Zwei Wörter gelten als äquivalent, falls sie sich durch Anwendung von Regeln aus dem
reflexiven, symmetrischen und transitiven Abschluss von S ineinander überführen lassen.

Definition 2.2: Sei S ⊆ Σ∗ × Σ∗ eine endliche Menge. Schreibe l → r für (l, r) ∈ S.
Seien w,w′ ∈ Σ∗. S definiert durch

w =⇒S w
′, falls w = ulv, w′ = urv und l→ r

ein Ersetzungssystem auf Σ∗.

Mit
∗

=⇒S wird der reflexive und transitive Abschluss von =⇒S bezeichnet. Die Relation
∗⇐⇒S bezeichnet den reflexiven, transitiven und symmetrischen Abschluss. Der Index

S wird weg gelassen, wenn das verwendet Ersetzungssystem aus dem Kontext klar ist.
Damit lässt sich über den Quotienten eine neue Struktur definieren.

Definition 2.3: Der Quotient

Σ∗/S := Σ∗/
∗⇐⇒S= { [w]S | w ∈ Σ∗ }

5

2 Grundlagen

bezeichnet die Menge der Äquivalenzklassen [w]S von
∗⇐⇒S.

Die Relationen aus S werden auch als definierende Relationen von Σ∗/S bezeichnet. Für
manche Ersetzungssysteme spielt die Reihenfolge, in der Regeln angewendet werden,
eine Rolle. Ist dies nicht der Fall, so wird das Ersetzungssystem als konfluent bezeichnet.

Definition 2.4: Ein Ersetzungssystem S heißt konfluent, falls für w′
∗⇐= w

∗
=⇒ w′′

immer ein v mit Ableitungen w′
∗

=⇒ v
∗⇐= w′′ existiert. Das Ersetzungssystem heißt

stark konfluent, falls für w′ ⇐= w =⇒ w′′ immer ein v und Ableitungen w′
≤1

=⇒ v
≤1⇐= w′′

existieren.

Lemma 2.1: Ein stark konfluentes Ersetzungssystem ist konfluent.

Beweis. Mittels Induktion lässt sich zeigen, dass für y
≤n⇐= x

≤m
=⇒ z ein v existiert

mit y
≤m
=⇒ v

≤n⇐= z. Daraus folgt dann die Konfluenz. Für n,m ≤ 1 gilt die Be-
hauptung wegen der starken Konfluenz. Sei die Behauptung also für n,m ≥ 1 gezeigt

und y
≤n+1⇐= x

≤m+1
=⇒ z. Dann existiert auf dem Pfad zu y ein y′ und zu z ein z′ mit

y ⇐= y′
≤n⇐= x

≤m
=⇒ z′ =⇒ z. Nach Induktion existiert ein v′ mit y′

≤m
=⇒ v′

≤n⇐= z′.

Daraus lässt sich ebenfalls nach Induktion vL und vR ableiten mit y
≤m
=⇒ vL

≤1⇐= v′ und

v′
≤1

=⇒ vR
≤n⇐= z. Wegen der starken Konfluenz existiert ein v mit vL

≤1
=⇒ v

≤1⇐= vR.

Insgesamt ist y
≤m+1
=⇒ v

≤n+1⇐= z und die Behauptung ist gezeigt.

Bemerkung 2.1: Die Voraussetzung eines stark konfluenten Ersetzungssystems in Lem-
ma 2.1 kann abgeschwächt werden durch: Es existiert ein k ∈ N so, dass für y ⇐= x =⇒ z

ein v existiert mit y
≤k

=⇒ v
≤k⇐= z.

Aufbauend auf dem Ersetzungssystem lässt sich die minimale Länge eines Repräsentan-
ten und damit die längenlexikographische Normalform einführen.

Definition 2.5: Die Länge eines kürzesten Repräsentanten ist durch

‖w‖ = min { |u| | u ∈ [w]S }

definiert. Es gilt stets ‖w‖ ≤ |w|.

Definition 2.6: Sei ≺ eine totale Ordnung auf dem Alphabet Σ. Dann induziert dies
eine längenlexikographische Ordnung über Σ∗, welche wieder mit ≺ bezeichnet wird.

v ≺ w, falls |v| < |w| und

v ≺ w, falls |v| = |w| und ein i existiert so, dass vj = wj für j < i und vi ≺ wi

Definition 2.7:

1. Ein Wort w heißt geodätisch, falls |w| = ‖w‖.

6

2.2 Die freie Gruppe

2. Ein Wort w heißt shortLex, falls w = min
{
u ∈ Σ∗

∣∣∣ u ∗⇐⇒ w
}

.

Die längenlexikographische Normalform von w wird mit nf(w) bezeichnet. Ein Wort w
ist in längenlexikographischer Normalform, falls es shortLex ist. Ein Wort v ist eine
Geodätische von w, falls v äquivalent zu w ist und |v| = ‖w‖.

2.2 Die freie Gruppe

Definition 2.8: Sei Σ eine disjunkte Kopie von Σ , dann bezeichnet

F (Σ) := (Σ ∪ Σ)∗/ { aa→ 1, aa→ 1 | a ∈ Σ }

die freie Gruppe über Σ. F (Σ) wird mit einer Involution a ausgestattet so, dass a = a.

Bemerkung 2.2: Für die Involution gilt insbesondere ab = ba.

Die einfachste, nicht triviale freie Gruppe ist Z ∼= F ({a}). Ein Isomorphismus zwischen
Z und F ({a}) ist beispielsweise ϕ(k) = ak und ϕ(−k) = ak für k ≥ 0.

Lemma 2.2: Das Ersetzungssystem { aa→ 1 | a ∈ Σ } der freien Gruppe F (Σ) ist kon-
fluent.

Beweis. Die kritischen Fälle für die Konfluenz sind Überlappungen. Der einzige mögliche
Fall für das Ersetzungssystem der freien Gruppe ist aaa (bzw. aaa). Es kann aa →
1 oder aa → 1 angewendet werden. In beiden Fällen ist das Ergebnis der Ersetzung
jedoch a (bzw. a). Somit ist das Ersetzungssystem stark konfluent und nach Lemma 2.1
konfluent.

2.3 Coxeter-Gruppen

Die in Kapitel 5 vorgestellten Methoden für die Berechnung von Normalformen verwen-
den Coxeter-Gruppen als Grundlage. Die Resultate für rechtwinklige Coxeter-Gruppen
können auf Graph-Gruppen übertragen werden, da sich Graph-Gruppen in rechtwinkli-
ge Coxeter-Gruppen einbetten lassen (siehe 2.4). In diesem Abschnitt werden zunächst
rechtwinklige Coxeter-Gruppen und einige ihrer Eigenschaften vorgestellt, da insbeson-
dere Theorem 5.5 auf rechtwinkligen Coxeter-Gruppen basiert. Dann werden allgemeine
Coxeter-Gruppen vorgestellt. Eine ausführliche Einführung zu Coxeter-Gruppen findet
sich in [1, 2].

2.3.1 Rechtwinklige Coxeter-Gruppen

Definition 2.9: Sei Σ ein endliches Alphabet und I ⊆ Σ× Σ eine irreflexive und sym-
metrische Relation, dann bezeichnet

C(Σ, I) := Σ∗/
{
a2 → 1, (bc)2 → 1

∣∣ a ∈ Σ, (b, c) ∈ I
}

die rechtwinklige Coxeter-Gruppe zu (Σ, I).

7

2 Grundlagen

Der Bezeichner der Relation I steht für Independent, da die zweite Bedingung (bc)2 = 1
äquivalent zu bc = cb ist. Mit D := Σ × Σ \ I werden die abhängigen Erzeugenden be-
zeichnet. Für die Berechnungen in logarithmischem Platz ist die Einbettung der Gruppe
in die allgemeine lineare Gruppe GLk(C), k := |Σ|, von zentraler Bedeutung. Hierbei ist
eine Einbettung ein injektiver Homomorphismus.

Definition 2.10: Sei a ∈ Σ und w = a1 . . . an. Die Abbildung σa : ZΣ → ZΣ ist durch

σa(b) :=


−a, falls b = a

b, falls (a, b) ∈ I
b+ 2a, sonst

definiert. Damit ist die Abbildung σ : w 7→ σw durch σw := σa1 . . . σan ein Homomor-
phismus von der rechtwinkligen Coxeter-Gruppe C(Σ, I) in die allgemeine lineare Gruppe
GLk(Z).

Lemma 2.3: Die Abbildung σ definiert eine Einbettung von der rechtwinkligen Coxeter-
Gruppe C(Σ, I) in die allgemeine lineare Gruppe GLk(Z), wobei k := |Σ|.

Beweis. Es ist zunächst zu zeigen, dass σ wohldefiniert ist. Das bedeutet für u = w in
C(Σ, I) muss σ(u) = σ(v) gelten. Hierfür ist zu zeigen, dass die definierenden Relationen
der rechtwinkligen Coxeter Gruppe auch im Bild von σ gelten. Eine kurze Rechnung
zeigt, dass σaa = id für a ∈ Σ und σ(bc)2 = id für (b, c) ∈ I. Die Injektivität der
Abbildung wird im Beweis zu Lemma 2.6 gezeigt.

Ein alternatives Ersetzungssystem für rechtwinklige Coxeter-Gruppen wird durch

SR :=
{
a2 → 1, bc→ cb

∣∣ a ∈ Σ, (b, c) ∈ I
}

erzeugt. In Kapitel 3 wird gezeigt, dass dieses Ersetzungssystem ausreicht, um eine
Geodätische zu berechnen und um Geodätische ineinander zu transformieren.

2.3.2 Allgemeine Coxeter-Gruppen

Definition 2.11: Sei M = (mi,j) ∈ Nk×k eine symmetrische Matrix und mi,j = 1 ⇔
i = j. Die definierenden Relationen der Coxeter-Gruppe zu M sind (xixj)

mi,j = 1.

C(Σ,M) := Σ∗/ { (xixj)
mi,j → 1 | xi, xj ∈ Σ }

Wegen mi,i = 1 ist x2
i = (xixi)

1 = 1. Rechtwinklige Coxeter-Gruppen sind offensichtlich
Coxeter-Gruppen der Matrix M = mi,j mit mi,i = 1 und mi,j = 2, falls (xi, xj) ∈ I.
Wie bereits für rechtwinklige Coxeter-Gruppen lässt sich auch für allgemeine Coxeter-
Gruppen eine Einbettung in die allgemeine lineare Gruppe GLk(R) definieren.

Definition 2.12 (Lineare Einbettung): Sei Σ = {x1, . . . , xk} und σa : RΣ → RΣ mit

σxi(xj) =

{
xj + 2 cos(π

mi,j
) · xi falls mi,j 6= 0

xj + 2 · xi falls mi,j = 0

8

2.3 Coxeter-Gruppen

Weiter sei w = a1 . . . an ∈ Σ∗, dann wird durch σ : C(Σ,M)→ GLk(R) : w 7→ σw mit

σ(w) = σw := σa1 . . . σan (2.1)

ein Homomorphismus der Coxeter-Gruppe in die allgemeine lineare Gruppe GLk(R)
definiert.

Lemma 2.4: Die Ordnung von ab in der Coxeter-Gruppe und σab stimmt für a, b ∈ Σ
überein.

Beweis. siehe [1, Kapitel 4, Proposition 4.2.1].

Eine besondere Eigenschaft dieses Homomorphismus ist, dass sich Aussagen über die
minimale Länge eines Repräsentanten treffen lassen:

Definition 2.13: Sei v =
∑
λaa ∈ RΣ. Schreibe v ≤ 0, falls λa ≤ 0 für alle a ∈ Σ und

v ≥ 0, falls λa ≥ 0 für alle a ∈ Σ.

Lemma 2.5: Sei a ∈ Σ und w ∈ Σ∗. Für die Länge einer Geodätischen von wa in der
Coxeter-Gruppe gilt

1. ‖wa‖ > ‖w‖ ⇔ σw(a) ≥ 0

2. ‖wa‖ < ‖w‖ ⇔ σw(a) ≤ 0

Beweis. siehe [1, Kapitel 4, Proposition 4.2.5].

Lemma 2.6: Die Abbildung σ ist eine Einbettung der Coxeter-Gruppe C(Σ,M) in die
allgemeine lineare Gruppe GLk(R).

Beweis. Es ist zunächst zu zeigen, dass σ wohldefiniert ist. Das bedeutet für u = w in
C(Σ,M) muss σ(u) = σ(v) gelten. Hierfür ist zu zeigen, dass die definierenden Relationen
der Coxeter Gruppe auch im Bild von σ gelten. Nach Lemma 2.4 sind diese erfüllt. Es
verbleibt zu zeigen, dass σ injektiv ist. Dies ist genau dann der Fall, wenn der Kern
ker (σ) von σ nur das neutrale Element enthält. Sei dazu w 6= 1 in der Coxeter Gruppe.
w lässt sich schreiben als w = ua für ein u ∈ Σ∗ und a ∈ Σ. Dann ist nach Lemma 2.5
σu(a) ≤ 0. Für die Identität gilt aber id(a) = a > 0, also kann der Kern nur das neutrale
Element enthalten.

Ein alternatives Ersetzungssystem lässt sich für allgemeine Coxeter-Gruppen analog zu
dem rechtwinkliger Coxeter-Gruppen angeben.

Definition 2.14: Betrachte das Wort (ab)l ∈ Σ∗, dann bezeichnet p(l, a, b) den Präfix
der Länge l von (ab)l. Analog bezeichnet s(l, a, b) den Suffix der Länge l von (ab)l.

Das alternative Ersetzungssystem wird für Σ = {x1, . . . , xk} durch

SC :=
{
x2
i → 1, s(xi, xj ,mi,j)→ s(xj , xi,mi,j)

∣∣ xi, xj ∈ Σ
}

erzeugt. Die Regeln s(xi, xj ,mi,j)→ s(xj , xi,mi,j) sind wegen M symmetrisch ebenfalls
symmetrisch.

9

2 Grundlagen

Lemma 2.7: Das Ersetzungssystem SC ist konfluent.

Beweis. Die kritischen Paare sind Überlappung so, dass zwei Regeln angewendet werden
können. Das sind entweder Überlappungen aaa mit der Regel a2 → 1 oder Überlappun-
gen mit einer Regel

s(xi, xj ,mi,j)→ s(xj , xi,mi,j).

Im Fall aaa ist das Ergebnis jeweils a. Das Resultat der Anwendung einer Regel

s(xi, xj ,mi,j)→ s(xj , xi,mi,j)

lässt sich immer rückgängig machen, da die Regel symmetrisch ist. Eine Ableitung auf ein
gemeinsames Element ist also in höchstens zwei Schritten möglich. Nach Bemerkung 2.1
ist das Ersetzungssystem somit konfluent.

2.4 Graph-Gruppen

Graph-Gruppen sind eine natürliche Erweiterung von Spurmonoiden, welche von Mazur-
kiewicz und Keller eingeführt wurden [12, 9]. Darüber hinaus spielen sie eine wichtige
Rolle für die Informatik bei der Untersuchung von Nebenläufigkeiten.

Definition 2.15: Sei I ⊆ Σ × Σ eine irreflexive und symmetrische Relation. Dann
bezeichnet

M(Σ, I) := Σ∗/ { ab→ ba | (a, b) ∈ I }

das Spurmonoid (oder frei partiell kommutative Monoid) über (Σ, I) und

G(Σ, I) := F (Σ)/ { ab→ ba | (a, b) ∈ I }

die Graph-Gruppe (oder frei partiell kommutative Gruppe) über (Σ, I). Die Elemente des
Spurmonoids werden auch als Spur bezeichnet.

I wird Unabhängigkeitsrelation und D := Σ×Σ\I wird Abhängigkeitsrelation genannt.
Mit I(a) := { b | (a, b) ∈ I } werden die von a ∈ Σ unabhängigen Elemente bezeichnet.

Bemerkung 2.3: Die freie Gruppe F (Σ) ist eine Graph-Gruppe, wobei die Unabhängig-
keitsrelation I die leere Menge ist, also F (Σ) = G(Σ, ∅). Die Abhängigkeitsrelation D
von F (Σ) ist also Σ× Σ.

Eine Spur w ∈M(Σ, I) lässt sich eindeutig als Abhängigkeitsgraph DG(w) darstellen.

Definition 2.16: Sei w = a1 . . . an ∈ Σ∗. Der Abhängigkeitsgraph DG(w) ist ein ge-
richteter Graph mit Knotenmenge {1, . . . , n}. Von Knoten i zu Knoten j existiert genau
dann eine Kante, wenn i < j und (ai, aj) ∈ D. Die Beschriftung von Knoten i ist ai
und wird mit λ(i) bezeichnet.

10

2.5 LogSpace Berechnungen

Der transitive Abschluss von DG(w) definiert eine partielle Ordnung, da der Graph azy-
klisch ist. Diese partielle Ordnung wird eindeutig durch ihr Hasse-Diagramm dargestellt.

Definition 2.17: Sei w = a1 . . . an ∈ Σ∗. Das Hasse-Diagramm ist ein gerichteter
Graph mit Knotenmenge {1, . . . , n}. Von Knoten i zu Knoten j existiert genau dann eine
Kante, wenn i < j und (ai, aj) ∈ D, sowie kein k mit i < k < j und (ai, ak), (ak, aj) ∈ D
existiert .

2.4.1 Einbettung in Coxeter-Gruppen

Graph-Gruppen lassen sich leicht in rechtwinklige Coxeter-Gruppen einbetten, wenn
man bedenkt, dass ab = ba ⇔ (ab)2 = 1. Ein wichtiger Bestandteil rechtwinkliger
Coxeter-Gruppen ist die Bedingung a2 = 1, welche in Graph-Gruppen nicht erfüllt ist.
Dafür werden für jedes Erzeugende a der Graph-Gruppe zwei Erzeugende a′, a′′ mit
a′2 = a′′2 = 1 in der rechtwinkligen Coxeter-Gruppe eingeführt. Mittels der Zuordnung
a 7→ a′a′′ lässt sich eine Einbettung definieren. Das folgende Lemma formalisiert die
Beschreibung.

Lemma 2.8: Sei G(Σ, I) eine Graph-Gruppe und Σ′,Σ′′ disjunkte Kopien von Σ. Die
Abbildung ϕ definiert durch ϕ(a) = a′a′′ und ϕ(a) = a′′a′ eine Einbettung in die recht-
winklige Coxeter-Gruppe C(Σ′ ∪ Σ′′, IC), wobei

IC :=
{

(a′, b′), (a′, b′′), (a′′, b′), (a′′, b′′)
∣∣ (a, b) ∈ I

}
Beweis. Die Abbildung ϕ ist wohldefiniert, denn die definierenden Relationen sind im
Bild ϕ(Σ) erfüllt. Für die Injektivität von ϕ wird eine Umkehrabbildung konstruiert.
Jedes Element aus dem Bild von ϕ lässt sich als Element von { a′a′′, a′′a′ | a ∈ Σ }∗

schreiben. Daher lässt sich unmittelbar eine Umkehrabbildung ψ durch ψ(a′a′′) = a und
ψ(a′′a′) = a angeben. Also ist ϕ injektiv und somit eine Einbettung.

2.5 LogSpace Berechnungen

Ein zentraler Bestandteil dieser Arbeit sind Berechnungen in logarithmischem Platz.
Dieser Abschnitt führt dafür einige notwendige Lemmata ein.

Definition 2.18: Für das Produkt aller Primzahlen bis zu einer Zahl n setze

µ(n) :=
∏

p∈P,p≤n
p

Lemma 2.9: Es gibt eine Konstante k ∈ N so, dass für das Produkt über alle Primzahlen
kleiner n gilt µ(kn) > 2n.

Beweis. Nach Hardy und Wright [8, S. 341] gibt es eine Konstante A > 0 so, dass
logµ(x) > Ax für alle x gilt. Falls A ≥ 1, so kann k = 1 gewählt werden und die
Behauptung folgt. Sei also 0 < A < 1. Wähle k := d 1

Ae, dann ist µ(kn) > 2A(kn) =

2(Ak)n > 2n.

11

2 Grundlagen

Lemma 2.10: Sei n ∈ N und x ≤ 2n. Dann ist x = 0 genau dann, wenn x = 0 mod p
für alle Primzahlen p ≤ kn.

Beweis. Nach dem vorherigen Lemma 2.9 gilt x < µ(kn). Sei x = 0 mod p für alle
Primzahlen p ≤ kn. Dann folgt x = 0 aus dem Chinesischen Restsatz. Ist umgekehrt
x = 0, dann gilt unmittelbar x = 0 mod p.

Lemma 2.11: Sei C(Σ, I) eine rechtwinklige Coxeter-Gruppe. Dann ist die Überprüfung
der Koeffizienten von σw(x), ob sie ungleich null sind in LogSpace möglich.

Beweis. Setze n := |w|. Die Koeffizienten von σw(x) sind nach Konstruktion der Abbil-
dung durch 2n beschränkt. Daher genügt es nach Lemma 2.10 die Koeffizienten mod p
zu speichern. Da die Primzahlen p ≤ kn nicht bekannt sind, werden die Koeffizienten
mod l für l ≤ kn überprüft.

Das folgende Lemma ist ein erster Anhaltspunkt für die Berechnung einer Normalform
in LogSpace. Allerdings ist es noch nicht hinreichend.

Lemma 2.12: Das Wortproblem ist für endlich erzeugte lineare Gruppen über einem
Körper K der Charakteristik 0 in LogSpace lösbar.

Beweis. siehe [10, Theorem 5].

Lemma 2.13: Das Wortproblem für Coxeter-Gruppen liegt in LogSpace.

Beweis. Die Behauptung folgt zusammen mit Lemma 2.12 aus der linearen Einbettung
σ für Coxeter-Gruppen.

Bemerkung 2.4: Aus den beiden vorherigen Lemma folgt insbesondere, dass das Wort-
problem für Graph-Gruppen (und somit auch das der freien Gruppe) in LogSpace liegt.

Das folgende Lemma ist ein wichtiges Resultat über die Hintereinanderausführung von
LogSpace-Transducern.

Lemma 2.14: Seien L1, L2 zwei LogSpace-Transducer und Li(w) bezeichne die Ausgabe
von Li bei Eingabe w ∈ Σ∗, dann kann L2(L1(w)) in logarithmischem Platz berechnet
werden.

Beweis. Das Ergebnis der Ausgabe von L1 muss nicht zwingend in logarithmischem
Platz gespeichert werden können. Allerdings liest L2 in einem Schritt nur ein Zeichen
der Eingabe L1(w). Daher wird, wenn L2 auf den i-ten Buchstaben von L1(w) zugreifen
möchte, die Ausgabe L1(w) in logarithmischem Platz neu berechnet und nur das i-te
Zeichen gespeichert. Die Berechnung von L1 und L2 ist also weiterhin in logarithmischem
Platz möglich.

12

3 Präperfekte Gruppen

Ein präperfektes Ersetzungssystem ist ein konfluentes Ersetzungssystem, welches mit
längenerhaltenden und längenreduzierenden Regeln auskommt. Ziel dieses Abschnitts
ist es zu zeigen, dass für Coxeter-Gruppen ein präperfektes Ersetzungssystem existiert.
Das besondere ist, dass sich Geodätische ausschließlich mit diesen längenerhaltenden und
längenverkürzenden Regeln berechnen und ineinander transformieren lassen. Weiter las-
sen sich mit diesem Resultat einige Eigenschaften von Coxeter-Gruppen leicht beweisen.
Eine allgemeine Einführung in präperfekte Gruppen findet sich in [6].

Definition 3.1: Sei S ein konfluentes Ersetzungssystem. S heißt präperfekt, falls

1. l→ r ∈ S, dann gilt |l| > |r| oder

2. l→ r ∈ S mit |l| = |r|, dann ist auch r → l ∈ S.

Eine Gruppe ist präperfekt, falls für sie ein präperfektes Ersetzungssystem existiert.

3.1 Coxeter-Gruppen sind präperfekt

Als Ersetzungssystem wird das in Abschnitt 2.3 eingeführte Ersetzungssystem SC ver-
wendet. Die Konfluenz dieses Ersetzungssystems wurde bereits in Lemma 2.7 gezeigt.

Definition 3.2: a ist maximal in w ∈ C(Σ, I), falls w = ua in der Coxeter-Gruppe mit
‖w‖ = ‖u‖+ 1.

Lemma 3.1: Ein erzeugendes Element a ∈ Σ ist genau dann maximal in w ∈ Σ∗, falls
σw(a) ≤ 0.

Beweis. Sei a maximal in w, dann lässt sich nach Definition w schreiben als w = ua,
wobei ‖ua‖ > ‖u‖. Demnach ist nach Konstruktion von σa

σw(a) = σua(a) = σu(−a) = −σu(a).

Wegen Lemma 2.5 ist σu(a) ≥ 0, also folgt insgesamt σw(a) ≤ 0.
Umgekehrt sei σw(a) ≤ 0, dann ist wegen Lemma 2.5 ‖wa‖ > ‖w‖. Somit existiert ein

u := wa mit ‖u‖ = ‖w‖ − 1. Mit w = waa = ua in der Coxeter-Gruppe ergibt sich die
Maximalität von a in w.

Definition 3.3: Der Suffix der Länge l von (ab)l wird mit s(l, a, b) bezeichnet.

Satz 3.2: Coxeter-Gruppen sind präperfekt:

13

3 Präperfekte Gruppen

1. Seien w,w′ geodätisch und w = w′ in der Coxeter-Gruppe. Dann lassen sich w und
w′ durch Anwendung von Regeln aus SC ineinander überführen.

2. Sei w ∈ Σ∗, dann lässt sich w durch Anwenden von Regeln aus SC in eine reduzierte
Form überführen.

Beweis. Beweis von 1 mit Induktion nach ‖w‖: Für ‖w‖ = 0 ist die Aussage klar. Sei
die Aussage gültig für Wörter der Länge höchstens ‖w‖. Sei nun w = ua und w′ = u′b.
Ohne Einschränkung sei a 6= b, sonst folgt die Aussage mit Induktion auf u, u′. a und
b sind maximale Elemente in w und nach Lemma 3.1 somit σw(b) = σua(b) ≤ 0. Nach
Konstruktion von σ gilt damit σu(b) ≤ 0, da wegen w reduziert σu(a) ≥ 0 gilt. Wähle
l ≥ 1 maximal so, dass u = vs(l, a, b) in der Coxeter-Gruppe und |u| = |vs(l, a, b)|.
Mit Induktion lässt sich u mit Regeln aus SC in vs(l, a, b) transformieren, das heißt

u
∗

=⇒SC
vs(l, a, b). Sei also ohne Einschränkung u = vs(l, a, b). Insgesamt ergibt sich

w = ua = vs(l, a, b)a = vs(l + 1, b, a)

Wegen der Maximalität von l ist nach Lemma 2.5 σv(b) ≥ 0 und σv(a) ≥ 0. Da σua(b) ≤ 0
muss nach Konstruktion von σ also σs(l+1,b,a)(b) ≤ 0 gelten. Daher muss, da u reduziert
ist, l + 1 = ma,b gelten. Somit lässt sich b durch die Regel s(l + 1, a, b) → s(l + 1, b, a)

aus SC nach hinten drehen. Mit Induktion auf u, u′ ergibt sich schließlich w
∗

=⇒SC
w′.

Beweis von 2 mit Induktion nach |w|: Sei w = a1 . . . an ∈ Σ∗ und nicht reduziert.
Wähle i maximal so, dass a1 . . . ai−1 reduziert ist. Dann ist σa1...ai−1(ai) ≤ 0. Nach dem
vorherigen Lemma 3.1 lässt sich ist also a1 . . . ai−1 schreiben als uai. Die Transformation
kann wegen 1 mit Regeln aus SC erfolgen. Schließlich lässt sich a1 . . . an unter Anwendung
der Regel aiai → 1 transformieren in w̃ := uai+1 . . . an. Mit Induktion lässt sich w̃ mit
Regeln aus SC in eine Geodätische überführen.

14

4 Automatische Gruppen

In diesem Abschnitt geht es um eine automatische Struktur für Gruppen. Das bedeutet,
dass durch einen Automaten, also in Linearzeit, entschieden werden kann, ob ein Wort
eine gewisse Form erfüllt (beispielsweise eine Normalform) und, ob ein Wort v aus w
durch Multiplikation mit a ∈ Σ entstanden ist. Für alle automatischen Gruppen ist das
Wortproblem in quadratischer Zeit entscheidbar [7].

Definition 4.1: Eine Gruppe G heißt automatisch, falls sie mit einem Automat W und
Automaten Wa, a ∈ Σ ∪ {1}, ausgestattet ist, die folgende Eigenschaften erfüllen:

1. W akzeptiert mindestens einen Repräsentanten von g ∈ G.

2. Falls w, v von W akzeptiert werden, dann akzeptiert Wa das Paar (w, v) genau
dann, falls w = va in der Gruppe G.

Akzeptiert W genau die längenlexikographischen Normalformen von G, so wird G als
shortLex automatisch bezeichnet.

I bezeichnet wieder die unabhängigen Erzeugenden, also (a, b) ∈ I ⇒ ab = ba. Für den
Beweis, dass rechtwinklige Coxeter-Gruppen ShortLex automatisch sind wird folgendes
Lemma benötigt:

Lemma 4.1 (Deletion Property): Sei C(Σ, I) eine rechtwinklige Coxeter-Gruppe und
w = a1 . . . an geodätisch mit ‖wa‖ < ‖w‖. Dann existiert 1 ≤ i ≤ n so, dass

wa = a1 . . . ai−1ai+1 . . . an

Beweis. Im Ersetzungsprozess löscht sich a mit einem ai. ai ist wegen Lemma 3.1 ma-
ximal in w. Aus Theorem 3.2 folgt nun, dass ai durch Kommutieren an das Ende von
w gedreht werden kann. Angenommen es existiert ein j > i mit aj 6∈ I(a), dann muss
es ein ak geben, welches sich mit aj löscht. Nach Voraussetzung ist w aber geodätisch,
also muss aj ∈ I(a) für alle j > i gelten. Da aj ∈ I(a) für alle j > i lässt sich ai löschen
ohne die Reihenfolge der aj für j 6= i zu verändern.

Bemerkung 4.1: Das Lemma gilt für beliebige Coxeter-Gruppen. Für einen allgemei-
neren Beweis siehe [1, Kapitel 1, Proposition 1.4.7].

4.1 Rechtwinklige Coxeter-Gruppen sind shortLex automatisch

Für rechtwinklige Coxeter-Gruppen lässt sich ein elementarer Beweis angeben, dass sie
shortLex automatisch sind. Die Kernidee ist die maximalen Elemente in der Zustands-
kodierung zu speichern. Damit lässt sich sicherstellen, dass das zu verifizierende Wort

15

4 Automatische Gruppen

geodätisch ist. Damit lediglich die längenlexikographische Normalform akzeptiert wird,
werden in den Zuständen auch die maximalen Elemente der lexikographisch kleineren
Wörter gespeichert.

Die Sprache L = { nf(x) | x ∈ Σ∗ } ist die Menge der längenlexikographischen Nor-
malformen von Σ∗. Im Folgenden wird ein Automat konstruiert, der die Sprache L
erkennt. P(Σ) ist zusammen mit dem Fehlerzustand F die Menge der Zustände. Der
Startzustand ist die leere Menge. Die Übergangsfunktion δ(a, S) ist definiert durch

δ(a, S) =

{
F , falls a ∈ S oder S = F
{x ∈ S | (x, a) ∈ I } ∪ {x | x � a } , sonst.

Der Automat W = (P(Σ) ∪ {F},Σ, δ, ∅,F) akzeptiert ein Wort w ∈ Σ∗ genau dann,
wenn w in längenlexikographischer Normalform ist. Für den Beweis wird die folgende
Folgerung benötigt:

Lemma 4.2: Sei δ(a1 . . . ak, ∅) 6= F . Dann ist x ∈ δ(a1 . . . ak, ∅) genau dann, wenn ein
i (1 ≤ i ≤ k) existiert, so dass ai, . . . , ak ∈ I(x) und x � ai−1.

Beweis. Folgt direkt aus der Definition von δ.

Satz 4.3: Der Automat W = (P(Σ) ∪ {F},Σ, δ, ∅,P(Σ)) akzeptiert genau die Sprache
L = {nf(x) | x ∈ Σ∗ }.

Beweis. Sei w = a1 . . . an in längenlexikographischer Normalform. Es ist zu zeigen, dass
der Automat w akzeptiert. Angenommen der Automat akzeptiert w nicht, dann existiert
1 ≤ k ≤ n so, dass δ(a1 . . . ak, ∅) =: S 6= F und δ(a1 . . . ak+1, ∅) = F . Nach Konstruktion
ist ak+1 ∈ S, aber wegen w geödätisch nicht maximal in a1 . . . ak (Lemma 3.1). Nach
dem vorherigen Lemma 4.2 existiert ein i so, dass ai, . . . , ak ∈ I(ak+1). Insbesondere ist,
da w geodätisch, ak+1 � ai−1. Dann aber ist

w = a1 . . . ai−2ak+1ai−1 . . . akak+2 . . . an ≺ a1 . . . ai−2ai−1 . . . akak+1 . . . an = w,

was einen Widerspruch zu w in längenlexikographischer Normalform darstellt. Also ak-
zeptiert der Automat w.

Für die Umkehrung sei w nicht in längenlexikographischer Normalform. Es ist zu
zeigen, dass der Automat w nicht akzeptiert. Sei dazu zunächst w nicht geodätisch und
k minimal so, dass ‖a1 . . . akak+1‖ < ‖a1 . . . ak‖. Wegen Lemma 3.1 ist ak+1 maximal in
a1 . . . ak. Also existiert ein i mit ai = ak+1. Nach Wahl von k ist a1 . . . ak geodätisch,
daher folgt aus der Deletion Property ai . . . ak = ai+1 . . . akai. Somit ist ai+1, . . . , ak ∈
I(ai) = I(ak+1). Dann aber ist nach Lemma 4.2 ak+1 ∈ S := δ(a1 . . . ak, ∅) und der
Automat akzeptiert w nicht.

Sei also nun w geodätisch, aber nicht in längenlexikographischer Normalform. Wähle
k minimal so, dass a1 . . . ak nicht in längenlexikographischer Normalform ist. Dann
gibt es ein i < k mit ai ≺ ak und ai . . . ak = akai . . . ak−1. Da w geodätisch ist, ist
ai, . . . , ak−1 ∈ I(ak). Nach Konstruktion des Automaten ist daher ak ∈ δ(a1 . . . ak−1, ∅)
und der Automat akzeptiert w nicht.

16

4.1 Rechtwinklige Coxeter-Gruppen sind shortLex automatisch

Das nächste Ziel ist ein Automat Wa, der ein Paar (w, v) genau dann akzeptiert, falls
wa = v in der rechtwinkligen Coxeter Gruppe. Die Idee für den Automaten ist, zu
überprüfen, ob v = nf(wa) in Σ∗. Das folgende Lemma beschreibt die möglichen Fälle
für die Normalform von wa:

Lemma 4.4: Sei w = a1 . . . an in längenlexikographischer Normalform, dann können
für die Normalform von wa nur drei Fälle eintreten:

nf(wa) =


a1 . . . ana, falls wa shortLex (4.1a)

a1 . . . ak−1aak . . . an, falls wa geodätisch (4.1b)

a1 . . . ak−1ak+1 . . . an, falls wa nicht geodätisch (4.1c)

Beweis. Der letzte Fall, wa nicht geodätisch, ergibt sich aus der Deletion Property 4.1.
Beachte, dass in diesem Fall ak−1 6= a 6= ak+1. Der zweite Fall folgt analog und der erste
Fall folgt direkt aus der Definition von shortLex.

Das Alphabet, auf dem der Automat Wa arbeitet, ist Σ2 := (Σ∪{$})× (Σ∪{$})\ ($, $).
Wörter (w, v) werden mit $ aufgefüllt, falls sie eine unterschiedliche Länge haben. Die
Zustandsmenge ist der Fehlerzustand F und der Akzeptanzzustand A zusammen mit
P(Σ)∪P(Σ)×{G,N}×Σ. Der Startzustand ist wieder die leere Menge. Die Übergangs-
funktion δa((s, t),X) wird im Folgenden definiert, wobei der neue Zustand δa((s, t),X)
mit X ′ bezeichnet wird.

1. Falls X ⊆ P(Σ) :

(i) X ′ = δ(t,X) falls s = t

(ii) X ′ = A falls {s, t} = {$, a} und δ(a, S) 6= F
(iii) X ′ = (δ(t,X), G, s) falls t = a und δ(t,X) 6= F
(iv) X ′ = (δ(t,X), N, t) falls s = a und δ(t,X) 6= F
(v) X ′ = F falls s, t 6= a oder δ(t,X) = F

2. Falls X = (S,G, u) ∈ P(Σ)× {G,N} × Σ :

(i) X ′ = F , falls t 6= u, s 6∈ I(a) oder δ(t, S) = F
(ii) X ′ = (δ(t,X), G, s) falls t = u und s ∈ Σ

(iii) X ′ = A falls (s, t) = ($, t)

3. Falls X = (S,N, u) ∈ P(Σ)× {G,N} × Σ :

(i) X ′ = F , falls s 6= u, t 6∈ I(a) oder δ(t, S) = F
(ii) X ′ = (δ(t,X), N, t) falls s = u und t ∈ Σ

(iii) X ′ = A falls (s, t) = (s, $)

4. Falls X = A oder X = F :

(i) X ′ = F

17

4 Automatische Gruppen

Der 2. Fall beschreibt die Übergänge, falls wa geodätisch, aber nicht längenlexikogra-
phisch ist. Der 3. Fall beschreibt die Übergänge, falls wa nicht geodätisch ist. Fall 3 ist
symmetrisch zu Fall 2, denn falls wa = v in der rechtwinkligen Coxeter-Gruppe und wa
ist nicht geodätisch, dann ist va = waa = w in der rechtwinkligen Coxeter-Gruppe und
va ist geodätisch.

Satz 4.5: Der Automat Wa =
(
{F ,A} ∪ P(Σ) ∪ (P(Σ)× {G,N} × Σ),Σ2, δa, ∅,A

)
ak-

zeptiert genau die Sprache

La := { (w, v) | w, v lexikographisch und wa = v in der Coxeter-Gruppe } .

Beweis. Zeige, dass (w, v) genau dann akzeptiert wird, wenn (w, v) ∈ La. Der Automat
akzeptiert nach Konstruktion nicht, falls v, w /∈ L. Sei also für den restlichen Beweis
w, v ∈ L. Nach Konstruktion ist der Automat symmetrisch in der Eingabe (w, v). Sei
w = s1 . . . sn und v = t1 . . . tm. Setze Xi := δa((s1 . . . si, t1 . . . ti), ∅) auf den Zustand, in
dem sich der Automat nach dem Lesen von (si, ti) befindet. Wähle j maximal so, dass
si = ti für alle i < j. Dann gilt Xj−1 ⊆ P(Σ). Ist nun j = n oder j = k, so tritt Regel
(iii) von Fall 1 ein, welche Fall (a) der Normalform von wa oder va entspricht, und der
Automat akzeptiert genau dann, wenn (w, v) ∈ La. Ist weder sj = a, noch tj = a, so ist
keiner der Fälle von nf(wa) möglich und wa = v kann nicht gelten. Durch (v) lehnt der
Automat die Eingabe ab. Ohne Einschränkung sei nun tj = a. Der Automat befindet sich
also nach dem Lesen von (sj , tj) in Fall 2. Angenommen der Automat akzeptiert nach
dem Lesen von (sk, tk) die Eingabe nicht, dann gilt entweder tk 6= sk−1 oder sk 6∈ I(a).
Für j < i < k gilt nach Konstruktion des Automaten

sj . . . si−1 = tj+1 . . . ti

sj , . . . , sk−1 ∈ I(a)

Falls sk 6∈ I(a), so kann wegen Lemma 4.2 nicht wa = v gelten. Sei also sk−1 6= tk. Dann
aber kann die Normalform nf(wa) nicht mit v übereinstimmen und somit ist wa = v
nicht möglich.

Akzeptiert der Automat, so lässt sich wa wegen si ∈ I(a) für i > j wie in Fall (b) von
nf(wa) schreiben. Also stimmt v mit nf(wa) überein und es gilt wa = v.

Satz 4.6: Rechtwinklige Coxeter-Gruppen sind shortLex automatisch.

Beweis. Die beiden vorherigen Lemmata liefern die notwendigen Automaten W und
Wa für a ∈ Σ. Es fehlt noch der Automat W1. Dieser ergibt sich direkt, da W nur die
längenlexikographische Normalform akzeptiert. Für den Automaten W1 sei w = a1 . . . an
und v = b1 . . . bm. Der Automat W1 akzeptiert genau dann, wenn ai = bi für 1 ≤ i ≤ n,m
und n = m.

18

5 Berechnung einer Normalform

5.1 In der freien Gruppe in logarithmischem Platz

Die Berechnung einer Normalform in der freien Gruppe in logarithmischem Platz lässt
sich fast unmittelbar auf das Wortproblem zurückführen. Das Wortproblem der freien
Gruppe liegt nach Bemerkung 2.4 in LogSpace.

Satz 5.1: Sei F (Σ) die freie Gruppe über Σ und w ∈ Σ∗. Dann lässt sich in logarith-
mischem Platz eine Normalform berechnen.

Beweis. Sei w = a1 . . . an. Der Algorithmus arbeitet in Phasen und startet in Phase
i = 1. In Phase i wird ai der Eingabe gelesen und ein maximales j mit aj = ai und
ai . . . aj = 1 berechnet. Der Test, ob ai . . . aj = 1 lässt sich wegen Bemerkung 2.4 in
logarithmischem Platz durchführen. Existiert ein solches j, so wird in Phase j + 1 fort-
gefahren, ansonsten wird ai ausgegeben und in Phase i + 1 fortgefahren. Sei wi der
Inhalt des Ausgabebandes zu Beginn von Phase i. Der Algorithmus erfüllt die folgenden
Invarianten.

1. wi = a1 . . . ai−1 in der freien Gruppe.

2. wi ist reduziert.

Invariante 1 ist nach Konstruktion immer erfüllt, da nur die 1 gelöscht wird. Angenom-
men wi ist nicht reduziert. Sei dazu wi = ã1 . . . ãni , wobei ni = |wi|. Es gibt Positionen
1 ≤ j < k ≤ ni mit ãj . . . ãk = 1. ãj wurde aber nur ausgegeben, falls es kein Teilwort
gibt, das der 1 entspricht. Da nur Teilwörter, die der 1 entsprechen gelöscht wurden,
muss es für ãj auch vorher bereits ein passendes Teilwort gegeben haben. Also muss wi
reduziert sein.

Der Algorithmus bildet die Basis für Theorem 5.5, in dem ein Algorithmus präsentiert
wird, der eine Geodätische in einer rechtwinkligen Coxeter-Gruppe in logarithmischem
Platz berechnet. Allerdings ist es dann nicht mehr ausreichend zu testen, ob das Teilwort
der 1 entspricht.

5.2 In Graph-Gruppen und rechtwinkligen Coxeter-Gruppen

5.2.1 In Linearzeit

Die Berechnung einer längenlexikographischen Normalform ist nach [5] für Spurmonoide
in Linearzeit möglich. Durch eine minimale Anpassung des Algorithmus lässt sich auch

19

5 Berechnung einer Normalform

eine Normalform für rechtwinklige Coxeter-Gruppen in Linearzeit berechnen, da sich
in der längenlexikographischen Normalform zwei aufeinander folgende a löschen. Wegen
Lemma 2.8 ist es schließlich auch möglich eine längenlexikographische Normalform in
Graph-Gruppen zu berechnen.

Definition 5.1: Sei F ⊆ Σ mit (a, b) ∈ I für alle a, b ∈ F . Dann bezeichnet

[F] =
∏
a∈F

a

einen elementaren Schritt.

Die Reihenfolge, in der die a ∈ F multipliziert werden, spielt für das Produkt wegen
(a, b) ∈ I für alle a, b ∈ F keine Rolle. Für die Bestimmung der Normalform wähle eine
Cliquen Überdeckung {Σi | 1 ≤ i ≤ k } von (Σ, D) so, dass

π : M(Σ, I) ↪→
k∏
i=1

Σ∗i , Σ =
k⋃
i=1

Σi, D = (Σ× Σ) \ I =
k⋃
i=1

Σi × Σi

und π eine Einbettung ist. Die Existenz einer passenden Cliquen Überdeckung ergibt
sich aus dem Einbettungstheorem [5, Korollar 1.4.7]. Für a ∈ Σ bezeichne component(a)
die Index-Menge { i | a ∈ Σi }. Damit lässt sich eine Zerlegung eines Repräsentanten
einer Spur in ein k-Tupel realisieren.

function pi(s : string) : tuple;
begin

var i : index;
var a : char;
var t : tuple := 1;

while s 6= 1 do
a := first(s); s := rest(s);
foreach i ∈ component(a) do

t[i] := t[i]a;
end

end

return t;

end

Um die längenlexikographische Normalform zu berechnen, werden sukzessive die mini-
malen Elemente bestimmt. Das lexikographisch kleinste Element wird dann an die Nor-
malform angehängt. Der folgende Algorithmus bestimmt die minimalen Elemente des
Tupels t. Da im späteren Verlauf bereits einige minimale Elemente m bekannt sind, wer-
den diese aus Effizienzgründen berücksichtigt. Die Grundidee des Algorithmus ist, dass

20

5.2 In Graph-Gruppen und rechtwinkligen Coxeter-Gruppen

ein Element a ∈ Σ minimal ist genau dann, wenn a = first([j]) für alle j ∈ component(a).

function min(m : step, t : tuple) : step;
begin

var B : boolean;
var a : char;

/* die minimalen Elemente m sind bereits bekannt */

var F : step := m;

var i,j : index;
var I,J : index-set;

/* neue minimale Elemente müssen in I liegen */

I := { i | t[i] 6= 1 and i /∈ component(a) for all a ∈ m };
while I 6= ∅ do

choose i ∈ I; I := I \ {i};
a := first(t[i]); J := component(a) \ {i};
while J 6= ∅ and B do

choose j ∈ J ;
if j ∈ I and a = first(t[j]) then

/* Komponente j erfüllt die Voraussetzung und muss

nicht weiter getestet werden */

I := I \ {j}; J := J \ {j};
else

/* a kann nicht minimal sein */

B := false;

end

end

if B then
F := F ∪ {a};

else
B := true;

end

end

return F;

end

Die Bestimmung der minimalen Elemente läuft in konstanter Zeit, da die Zahl k der
Komponenten fest ist. Daher ergibt sich ein Linearzeit Algorithmus für die längenlexi-
kographische Normalform. Tritt a2 in der längenlexikographischen Normalform auf, so
wird es gekürzt. Die Konfluenz des Ersetzungssystems liefert die Eindeutigkeit der Nor-
malform. Zur besseren Lesbarkeit wird a löschen, durch a−1 beschrieben, obwohl a−1 = a

21

5 Berechnung einer Normalform

in Coxeter-Gruppen.

function lex-NF(t : tuple) : string;
begin

var a : char;
var s : string;
var F : step := min(t);

while F 6= ∅ do
/* wähle aus den minimalen Elementen den lexikographisch

kleinsten Buchstaben */

a := lexfirst(F);
if a = last(s) then

/* a kann gelöscht werden */

s := sa−1;

else
s := sa;

end
t := a−1t;
F := min(F \ {a}, t);

end

return s;

end

5.2.2 In logarithmischem Platz

In diesem Abschnitt wird ein neuer Algorithmus vorgestellt, der bei Eingabe w ∈ Σ∗

die längenlexikographische Normalform von w in rechtwinkligen Coxeter-Gruppen und
Graph-Gruppen in logarithmischem Platz berechnet. Dies zeigt nach meinem Kennt-
nisstand erstmals, dass das Problem der Normalformenberechnung für rechtwinklige
Coxeter-Gruppen und Graph-Gruppen in LogSpace liegt.

Definition 5.2: Ein Wort w heißt a-reduziert, falls in keiner Ableitung die Regel a2 → 1
angewendet werden kann.

Das folgende Lemma charakterisiert die Eigenschaft a-reduziert und spielt eine wesent-
liche Rolle für die Berechnung einer Normalform in logarithmischem Platz. Mit α(v)
werden die in v vorkommenden Buchstaben bezeichnet.

Definition 5.3: Eine Spur u ∈ M(Σ, I) ist ein Faktor der Spur v ∈ M(Σ, I), falls
v ∈M(Σ, I)uM(Σ, I).

Definition 5.4: Eine Spur w ist eine Coxeter-Spur, falls w keinen Faktor a2 enthält.

Lemma 5.2: Eine Spur w ist genau dann a-reduziert, falls w keinen Faktor ava mit

22

5.2 In Graph-Gruppen und rechtwinkligen Coxeter-Gruppen

α(nf(v)) ⊆ I(a) enthält.

Beweis. Enthält w einen Faktor ava mit α(nf(v)) ⊆ I(a), dann ist w offensichtlich nicht
a-reduziert. Sei nun w nicht a-reduziert. Lässt sich die Regel a2 → 1 anwenden, so muss
w einen Faktor ava mit α(v) ⊆ I(a) enthalten und es ist nichts weiter zu zeigen. Lässt
sich die Regel nicht anwenden, ist entweder w bereits reduziert oder die Regel b2 → 1
kann für ein b ∈ Σ angewendet werden. Der erste Fall, w reduziert, ist ein Widerspruch
zur Voraussetzung w nicht a-reduziert. Also kann die Regel b2 → 1 angewendet werden
und w lässt sich schreiben als xbvby mit α(v) ⊆ I(b). Das Wort w′ := xvy ist nicht
a-reduziert, also lässt sich Induktion auf das Wort w′ = xvy anwenden. Sei av′a ein
Faktor von w′. Ist av′a ein Faktor von x, v oder y, so ist av′a ein Faktor von w und es
ist nichts weiter zu zeigen. Sei also av′a kein Faktor von x, v und y und

xvy = a1 . . . anxanx+1 . . . anvanv+1 . . . any

mit av′a = ai−1ai . . . ajaj+1. Es gibt drei mögliche Fälle für den Faktor in

w = xbvby = a1 . . . anxbanx+1 . . . anvbanv+1 . . . any .

1. i ≤ nx und j ≥ nv: b lässt sich kürzen und mit der Voraussetzung für v′ ergibt sich

α̂(ai . . . anxbanx+1 . . . anvbanv+1 . . . aj) = α̂(ai . . . aj) = α̂(v′) ⊆ I(a).

2. i ≤ nx und j < nv: Es ist nx+1 ≤ j + 1 ≤ nv, sonst wäre v′ ein Faktor von x. Also
ist wegen a ∈ α(v) ⊆ I(b) auch a ∈ I(b). Schließlich ist

α̂(ai . . . anxbanx+1 . . . aj) = α̂(ai . . . anxanx+1 . . . ajb)

= α̂(v′b) ⊆ α̂(v′) ∪ {b} ⊆ I(a).

3. i > nx und j > nv: Folgt analog wie im 2. Fall durch a ∈ α(v).

Lemma 5.3: Sei w eine Spur und wd = udv mit u, v ∈ Σ∗, (d, v) ∈ I und d ist das
einzige maximale Element von ud. Weiter sei σw(d) =

∑
b∈Σ λbb, dann ist

λb 6= 0⇔ b ∈ α(nf(u)).

Beweis. Wenn a /∈ α(nf(u)), dann ist λa = 0 nach Konstruktion der Abbildung σu.
Für die Umkehrung sei û die Normalform von u und û = au′. Für a ∈ Σ bezeichne
ia die minimale Position von a in u′. Nach Konstruktion von σ ist σu′(d) = σw(d) =∑

c∈Σ λcc. Es gilt die stärkere Behauptung: Falls ia > ib und (a, b) ∈ D, dann gilt
λa > λb > 0. Beweis der Behauptung mit Induktion. Für |u| = 1 ist die Behauptung

23

5 Berechnung einer Normalform

nach Voraussetzung erfüllt, denn d ist das einzige maximale Element von ud. Betrachte
nun

σu(d) = σû(a) = σau′(d)

= σa

(∑
c∈Σ

λcc

)
=
∑
c∈Σ

λcσa(c)

=
∑

a6=d∈D(a)

λd(d+ 2a) +
∑
c∈I(a)

λcc− λaa

=
∑

a6=d∈D(a)

λdd+
∑
c∈I(a)

λcc+

 ∑
a6=d∈D(a)

2λd − λa

 a

=:
∑
c∈Σ

µcc

Es hat sich nur der Koeffizient für a verändert, also gilt die Behauptung für c 6= a nach
Induktion. Falls a /∈ α(v), so ist µa =

∑
a6=d∈D(a) 2λdd > λb = µb > 0 für (a, b) ∈ D und

b ∈ α(v). Sei also a ∈ α(u′). Dann ist wegen der Induktionsvoraussetzung λd > λa für
alle d mit id < ia. Da u′ reduziert ist, existiert mindestens ein solches d. Also ist µa > 0.
Wegen λb > λa für ia > ib und (a, b) ∈ D ist µa >

∑
a6=d∈D(a) λdd > λb = µb > 0.

Bemerkung 5.1: Der Beweis von Lemma 5.3 zeigt zusätzlich, dass λb > 0, falls b ∈
α(nf(u)).

Lemma 5.4: Sei C(Σ, I) eine rechtwinklige Coxeter-Gruppe und w ∈ Σ∗. Dann lässt
sich in logarithmischem Platz das Alphabet α(nf(w)) der Normalform von w berechnen.

Beweis. Sei x ein neuer Buchstabe, der noch nicht in Σ vorkommt. Es wird nur die neue
Regel x2 = 1 eingeführt. Dann ist insbesondere (a, x) /∈ I für alle a ∈ Σ. Betrachte
σw(x) =

∑
b∈Σ λbb. Nach dem vorherigen Lemma 5.3 ist λb 6= 0 genau dann, wenn

b ∈ α(nf(w)). Dies lässt sich nach Lemma 2.11 in logarithmischem Platz überprüfen.

Satz 5.5: Sei C(Σ, I) eine rechtwinklige Coxeter-Gruppe und w ∈ Σ∗. Dann lässt sich
in logarithmischem Platz eine Coxeter-Spur für w berechnen.

Beweis. Wir konstruieren einen Algorithmus, der bei Eingabe w ∈ Σ∗ ein Wort u ∈ Σ∗

berechnet, das für ein festes a ∈ Σ die folgenden Eigenschaften erfüllt.

1. u = w in der Coxeter-Gruppe C(Σ, I).

2. u ist a-reduziert.

3. u ist b-reduziert, falls w b-reduziert ist.

24

5.2 In Graph-Gruppen und rechtwinkligen Coxeter-Gruppen

Zusammen mit Lemma 2.14 ergibt sich eine LogSpace Maschine, die bei Eingabe w ∈ Σ∗

ein Wort u ∈ Σ∗ berechnet, welches geodätisch ist.
Sei also w = a1 . . . an und a ∈ Σ fest gewählt. Der Algorithmus arbeitet in Phasen.

In Phase i wird ai gelesen. Ist ai 6= a, so gebe ai aus und fahre mit Phase i+ 1 fort. Ist
ai = a so berechne ein j > i mit aj = a und α(nf(ai+1 . . . aj−1)) ⊆ I(a) Dies ist nach
Lemma 5.4 in logarithmischem Platz möglich. Falls kein solches j > i existiert gebe a
aus und fahre mit Phase i+ 1 fort. Existiert dieses j gebe ai . . . aj aus, aber überspringe
dabei alle a. Fahre danach mit Phase j + 1 fort.

Zum Beweis der Korrektheit bezeichne wj−1 den Inhalt des Ausgabebands zu Beginn
von Phase j und dem Ende von Phase i. Die Ausgabe wj−1 erfüllt die folgende Invariante

1. wj−1 ist a-reduziert.

2. wj−1 = a1 . . . aj−1 in der Coxeter-Gruppe C(Σ, I).

3. wj−1 ist b-reduziert, falls a1 . . . aj−1 b-reduziert ist.

Beweis der Invariante über Induktion. Für j = 1 ist wj−1 = w0 = 1, also ist die Invariante
erfüllt. Wurde in Phase i ein a ausgegeben, so ist wj−1 = wi−1a. Angenommen wj−1

ist nicht a-reduziert und sei wj−1 = ã1 . . . ãnj . Dann existiert nach Lemma 5.2 ein k,
wobei 1 ≤ k < nj , mit ãk = a und α(nf(ãk+1 . . . ãnj−1)) ⊆ I(a). ak wurde in Phase ik
ausgegeben. Nach Induktion gilt wik−1 = a1 . . . aik−1 und daher aik . . . aj = ãk . . . ãnj .
Somit ist

α(nf(aik . . . aj)) = α(nf(ãk . . . ãnj)) ⊆ I(a).

Dann aber hätte der Algorithmus in Phase ik alle a zwischen ik und j gelöscht und direkt
mit Phase j+ 1 fort gefahren. Also muss wj−1 a-reduziert sein. Wurde in Phase i kein a
ausgegeben, so folgt aus Lemma 5.2 und wi−1 a-reduziert direkt, dass wj−1 a-reduziert
ist. Damit ist 1 gezeigt. 2 folgt nach der Konstruktion von wj−1 direkt aus Lemma 5.2.
Für 3 sei a1 . . . aj−1 b-reduziert und in Phase i wurde ein b ausgegeben. Angenommen
wj−1 ist nicht b-reduziert, dann gibt es nach Lemma 5.2 ein kb, wobei 1 ≤ kb < nj ,
mit ãkb = b und α(nf(ãkb+1 . . . ãnj−1)) ⊆ I(b). Durch den Algorithmus wurden nur
a gelöscht. Da a1 . . . aj−1 b-reduziert ist muss also (a, b) ∈ I gelten. Seien ka, la mit
1 ≤ ka < kb < la < nj , und aka = ala = a die Positionen, für die sich a reduzieren lässt.
Da a1 . . . aj−1 b-reduziert ist und (a, b) ∈ I, ist b ∈ α(nf(aka+1 . . . ala+1)). Dann aber
hätte der Algorithmus die beiden a nicht gelöscht. Wurde in Phase i kein b ausgegeben,
so folgt wj−1 ist b-reduziert direkt aus wi−1 ist b-reduziert und 3 ist gezeigt.

Lemma 5.6: Sei w eine Coxeter-Spur. Dann lässt sich in logarithmischem Platz ein
Hasse-Diagramm für w berechnen.

Beweis. Sei w = a1 . . . an. Zunächst wird (a1, . . . , an) als Beschriftung für die Knoten
(1, . . . , n) des Graphen ausgegeben. Dann arbeitet der Algorithmus alle Knoten-Paare
(i, j) ab. Ein Knoten-Paar (i, j) wird als Kante ausgegeben, falls

1. i < j mit (ai, aj) ∈ D und

25

5 Berechnung einer Normalform

2. (ai, ak) ∈ D ⇒ (ak, aj) /∈ D für i < k < j

Die Berechnung der Kanten liegt in LogSpace, da dafür nur die Zähler i, j und k gespei-
chert werden müssen.

Lemma 5.7: Sei H = (V,E) ein Hasse-Diagramm zur Coxeter-Spur w und λ : V 7→ Σ
die dazugehörige Beschriftung, dann lässt sich in logarithmischem Platz die längenlexi-
kographische Normalform von w in der rechtwinkligen Coxeter-Gruppe berechnen.

Beweis. Es werden sukzessive die minimalen Elemente ausgegeben. Dazu wird in loga-
rithmischem Platz für jeden Buchstaben a ∈ Σ ein Zähler za gespeichert. Alle Zähler za
werden mit � initialisiert. Ein Buchstabe a ist minimal, falls ein Knoten i existiert, der
mit λ(i) = a beschriftet ist und keine eingehenden Kanten hat. Setze also zλ(i) := i für
jeden Knoten i, der keine eingehenden Kanten hat. Die Belegung der za ist eindeutig,
da für i 6= j mit λ(i) = λ(j) = a wegen (a, a) ∈ D die Kante (i, j) im Hasse-Diagramm
existiert. Für die Ausgabe der Normalform wird folgendes solange wiederholt, bis für
jeden Knoten seine Beschriftung ausgegeben wurde.

Gebe den minimalen Buchstaben a mit za 6= � aus und setze zλ(za) := j für
jede Kante (λ(za), j), sowie za := �.

Das Weitersetzen der Zähler entspricht dem Löschen des Knotens aus dem Hasse-Dia-
gramm. Da im Hasse-Diagramm eine Kante (i, j) nur dann existiert, falls es kein k mit
i < k < j und (i, k), (k, j) ∈ E gibt ist die Belegung der za im Verlauf eindeutig. Nach
Konstruktion ist das ausgegebene Wort die längenlexikographische Normalform.

Satz 5.8: Sei G eine rechtwinklige Coxeter-Gruppe oder eine Graph-Gruppe. Dann lässt
sich bei Eingabe w ∈ Σ∗ in logarithmischem Platz die längenlexikographische Normalform
von w berechnen.

Beweis. Falls G eine Graph-Gruppe ist, so lässt sie sich nach Lemma 2.8 in eine recht-
winklige Coxeter-Gruppe einbetten. Es genügt also rechtwinklige Coxeter-Gruppen zu
betrachten. Das Theorem folgt mit Lemma 2.14 direkt aus Theorem 5.5 und den beiden
Lemmata 5.6 und 5.7.

5.3 In Coxeter-Gruppen

Björner und Brenti stellen in [1] einen Algorithmus zur Berechnung einer Normalform
für beliebige Coxeter-Gruppen vor. Dieser Algorithmus kommt mit linear vielen mathe-
matischen Operationen aus. In diesem Abschnitt wird der Algorithmus zunächst vorge-
stellt und die zu berechnenden Koeffizienten genauer untersucht. Danach wird eine obere
Schranke für die Speicherkomplexität der reellwertigen Koeffizienten bestimmt.

Für dieses Kapitel sei a∗ : RΣ → R mit a∗(b) = δa,b. Die Menge { a∗ | a ∈ Σ } bildet
eine Basis des Dual Raums von RΣ. Wir identifizieren den Dual Raum

(
RΣ
)∗

mit RΣ.

26

5.3 In Coxeter-Gruppen

Definition 5.5 (Duale Einbettung): Mit σ∗ :
(
RΣ
)∗ → (

RΣ
)∗

wird die duale Einbettung
bezeichnet, wobei σ∗(w) := σ∗a1 . . . σ

∗
an mit w = a1 . . . an. Die b∗-Koordinate von σ∗a(p)

ist definiert als

(σ∗a(p))b :=

{
pb + 2 cos

(
π

ma,b

)
pa, falls ma,b 6= 0

pb + 2pa, falls ma,b = 0

Bemerkung 5.2: Das Wachstum der Faktoren vor cos
(

π
ma,b

)
in den Koeffizienten von

σ∗a1...an(p) ist durch 2n beschränkt.

Zur Berechnung der Normalform wähle p :=
∑

a∈Σ a
∗ = (1, 1, . . . , 1) und ŵ0 := 1.

Berechne nun p′0 := σ∗w−1(p). Wiederhole Folgendes, bis p′i = p.

Wähle a ∈ Σ minimal mit (p′i)a∗ < 0. Setze ŵi := ŵi−1 · a und aktualisiere
p′i := σ∗a(p

′
i−1). Fahre mit Runde i+ 1 fort.

Das berechnete ŵ := ŵi ist die Normalform nf(w) von w. Zur Korrektheit und Termina-
tion der Berechnung siehe [1, Kapitel 4.3]

5.3.1 Berechnungskomplexität

Für den Algorithmus muss in jeder Runde entschieden werden, welche Einträge des Vek-
tors p′i negativ sind. Betrachte für die Analyse der Komplexität N -te Einheitswurzeln,
wobei N := kgV { 2ma,b | a, b ∈ Σ }. Für diesen Abschnitt sei N ≥ 3, da ansonsten
die Berechnung von p′i in Z möglich ist. Es gibt N verschiedene N -te Einheitswurzeln
e2πij/N , 1 ≤ j ≤ N . Der Kosinus lässt sich durch Einheitswurzeln ausdrücken, wobei i
die imaginäre Einheit bezeichnet.

cos

(
π

ma,b

)
=
eπi/ma,b − e−πi/ma,b

2

Wegen der Wahl von N als kgV, lässt sich jeder der Cosinuse als N -te Einheitswurzel
ausdrücken. Das Produkt zweier N -ter Einheitswurzeln ist wieder eine N -te Einheits-
wurzel, also hat ein Eintrag des Vektors p′i die Form

n∑
j=1

λj

2kj
e2πij/N , wobei |λj | ≤ 2n und 0 ≤ kj ≤ n. (5.1)

Da für den Algorithmus nur entschieden werden muss, ob Gleichung 5.1 negativ ist kann
durch Durchmultiplizieren mit 2n der Bruch eliminiert werden. Die dadurch entstande-
nen Faktoren werden wieder mit λa bezeichnet.

Lemma 5.9: Sei |λj | ≤ 2n, dann gilt für die Linearform der N -ten Einheitswurzeln

2(n+d)d >

∣∣∣∣∣∣
N∑
j=1

λje
2πij/N

∣∣∣∣∣∣ > 1

2(n+d)d
, wobei d = log(N).

27

5 Berechnung einer Normalform

Beweis. Die erste Ungleichung folgt sofort aus |e2πij/N | ≤ 1. Für die zweite siehe [11,
Theorem 3].

Die Einträge des Vektors p′i sind reellwertig, daher genügt es wegen eiϕ = cos(ϕ)+i sin(ϕ)
die Summe

n∑
i=1

λj cos(2πij/N), wobei − 22n ≤ λj ≤ 22n (5.2)

auszuwerten. Wegen Lemma 5.9 muss der Cosinus auf einen Fehler kleiner 2−(2n+d)(d+1)

approximiert werden. Für die Darstellung der Summe sind also insgesamt höchstens
(2n + d)(d + 1) ∈ O(n) Bits notwendig. In der Praxis bedeutet diese Genauigkeit, dass
obiger Algorithmus bestenfalls eine quadratische Laufzeit hat.

5.3.2 Das Alphabet einer Geodätischen

Das Alphabet einer Geodätischen und somit insbesondere das der längenlexikographi-
schen Normalform lässt sich in logarithmischem Platz berechnen. Dies lies sich elementar
für rechtwinklige Coxeter-Gruppen zeigen. Für allgemeine Coxeter Gruppen sei x /∈ Σ
ein neuer Buchstabe mit der einzigen neuen Relation x2 = 1. Damit ist insbesondere die
Ordnung von ax unendlich und es gilt stets ‖wx‖ > ‖w‖ für w ∈ Σ.

Lemma 5.10: Sei w ∈ C(Σ,M) und σw(x) = x +
∑

b∈Σ λbb. Dann ist λb 6= 0 genau
dann, wenn b im Alphabet einer Geodätischen vorkommt.

Beweis. Sei w ohne Einschränkung geodätisch. Kommt b ∈ Σ nicht im Alphabet der
Geodätischen vor, so ist λb = 0 nach Konstruktion von σw. Die Umkehrung folgt mit
Induktion. Ist |w| = 1, dann folgt die Behauptung sofort aus der Konstruktion der
Einbettung. Sei also w = ua, dann ist ‖ua‖ > ‖u‖ und

σw(x) = σua(x) = σu(x+ 2a) = σu(x) + 2σu(a).

Nach Induktion ist λb 6= 0 für a 6= b ∈ Σ. Nach Lemma 2.5 ist σu(a) ≥ 0, ebenso ist
σu(x) ≥ 0. Kommt a in u vor, so ist λa > 0 durch σu(x). Sei also a nicht im Alphabet
von u, dann ist σu(a) = a+

∑
a6=c∈Σ µcc und daher λa ≥ 2.

Bemerkung 5.3: Die Einbettung σ ist unabhängig vom gewählten Repräsentanten.
Das Alphabet verschiedener Geodätischer zu w ∈ Σ∗ stimmt also überein. Allerdings
muss die Häufigkeit der Buchstaben verschiedener Geodätischer nicht übereinstimmen.

Lemma 5.11: Das Alphabet α(nf(w)) der längenlexikographischen Normalform von w
lässt sich in logarithmischem Platz berechnen.

Beweis. Nach Lemma 5.10 muss überprüft werden, ob σw(x) 6= 0. In [10] wird gezeigt,
wie sich die Berechnung der Koeffizienten von σw(x) in einer endlich erzeugten linearen
Gruppe über Z[X] ausführen lassen. Für die Überprüfung, ob die Koeffizienten ungleich
null sind, genügt es daher dies mod m für m ≤ nk für ein festes k ∈ N zu überprüfen.

28

6 Zusammenfassung und Ausblick

Coxeter-Gruppen besitzen nach Kapitel 3 ein präperfektes Ersetzungssystem. Das be-
deutet, dass sich Geodätische immer mit längenerhaltenden und längenverkürzenden
Regeln ableiten lassen. Außerdem sind Coxeter-Gruppen shortLex automatisch. In Ka-
pitel 4 wurde ein elementarer Beweis, dass rechtwinklige Coxeter-Gruppen shortLex
automatisch sind, angegeben.

Das wesentliche Ergebnis dieser Arbeit ist ein Algorithmus, der in Graph-Gruppen und
rechtwinkligen Coxeter-Gruppen die längenlexikographische Normalform in logarithmi-
schem Platz berechnet. Die Korrektheit des Algorithmus wurde in Kapitel 5 bewiesen.
Für den Algorithmus wurde ein Kriterium eingeführt, mit dem sich das Alphabet der
Normalform aus der Einbettung in die allgemeine lineare Gruppe ablesen lässt. Die Be-
rechnung des Alphabets über diese Einbettung ist in logarithmischem Platz möglich.
Weiter wurde ein Algorithmus vorgestellt, um in Coxeter-Gruppen die längenlexikogra-
phische Normalform mit linear vielen arithmetischen Operationen zu bestimmen. Diese
Operationen lassen sich allerdings nicht ausschließlich mit ganzen Zahlen berechnen,
daher wurde untersucht, wie viele Bits zur Repräsentation der Koeffizienten notwendig
sind. Es stellte sich heraus, dass O(n) Bits genügen. Abschließend wurde gezeigt, wie sich
das Alphabet der längenlexikographischen Normalform in allgemeinen Coxeter-Gruppen
berechnen lässt.

Für allgemeine Coxeter-Gruppen ist es offen, ob sich die Normalform in logarithmi-
schem Platz berechnen lässt. Auch ist nicht bekannt, ob die Berechnung einer Normal-
form in automatischen bzw. shortLex automatischen Gruppen in logarithmischem Platz
möglich ist. Hier besteht weiterer Untersuchungsbedarf.

29

Literaturverzeichnis

[1] Anders Björner and Francesco Brenti. Combinatorics of Coxeter Groups. Springer,
2005.

[2] Nicolas Bourbaki. Lie groups and Lie algebras. Chapters 4–6. Elements of Ma-
thematics (Berlin). Springer-Verlag, Berlin, 2002. Translated from the 1968 French
original by Andrew Pressley.

[3] E. Brieskorn and K. Saito. Artin-Gruppen und Coxeter-Gruppen. Invent. Math.,
17:245–271, 1972.

[4] Brigitte Brink and Robert B. Howlett. A finiteness property and an automatic
structure for Coxeter groups. Math. Ann., 296:179–190, 1993.

[5] Volker Diekert. Combinatorics on Traces. Number 454. 1990.

[6] Volker Diekert, Andrew J. Duncan, and Alexei G. Myasnikov. Geodesic rewriting
systems and pregroups. In O. Bogopolski, I. Bumagin, O. Kharlampovich, and
E. Ventura, editors, Combinatorial and Geometric Group Theory, Trends in Mathe-
matics, pages 55–91. Birkhäuser, 2010.

[7] David B. A. Epstein, James W. Cannon, Derek F. Holt, Silvio V. F. Levy, Michael S.
Paterson, and William P. Thurston. Word Processing in Groups. Jones and Bartlett,
Boston, 1992.

[8] G. H. Hardy and E. M. Wright. Introduction to the Theory of Numbers. Oxford
University Press, 1975.

[9] Robert M. Keller. Parallel program schemata and maximal parallelism I. Funda-
mental results. Journal of the ACM, 20(3):514–537, 1973.

[10] R. J. Lipton and Y. Zalcstein. Word problems solvable in logspace. Journal of the
ACM, 24(3):522–526, 1977.

[11] B. Litow. On sums of roots of unity. Automata, Languages and Programming, 37,
2010.

[12] Antoni Mazurkiewicz. Trace theory. In W. Brauer et al., editors, Petri Nets, Ap-
plications and Relationship to other Models of Concurrency, number 255, pages
279–324, 1987.

31

Erklärung

Hiermit versichere ich, diese Arbeit selbständig
verfasst und nur die angegebenen Quellen
benutzt zu haben.

(Jonathan Kausch)

	Einleitung
	Grundlagen
	Ersetzungssysteme
	Die freie Gruppe
	Coxeter-Gruppen
	Rechtwinklige Coxeter-Gruppen
	Allgemeine Coxeter-Gruppen

	Graph-Gruppen
	Einbettung in Coxeter-Gruppen

	LogSpace Berechnungen

	Präperfekte Gruppen
	Coxeter-Gruppen sind präperfekt

	Automatische Gruppen
	Rechtwinklige Coxeter-Gruppen sind shortLex automatisch

	Berechnung einer Normalform
	In der freien Gruppe in logarithmischem Platz
	In Graph-Gruppen und rechtwinkligen Coxeter-Gruppen
	In Linearzeit
	In logarithmischem Platz

	In Coxeter-Gruppen
	Berechnungskomplexität
	Das Alphabet einer Geodätischen

	Zusammenfassung und Ausblick

