Institut fir Architektur von Anwendungssystemen M

Universitat Stuttgart
Universitatsstralle 38
D — 70569 Stuttgart

Diplomarbeit Nr. 3251

Framework
for Application Topology Discovery to
enable Migration of Business Processes
to the Cloud

Jakob Krein

Studiengang: Informatik

Prifer: Prof. Dr. Frank Leymann
Betreuer: Dipl.-Inf. Tobias Binz
begonnen am: 27.10.2011

beendet am: 27.04.2012

CR-Klassifikation: C.24,D.2.11,H4.1,H5.2

Abstract 3

Abstract

Today, enterprises often use large and complex software systems to support their
Business Processes. These software systems usually run over years and decades and
have gone through various changes and modifications in order to be able to cope with
changing business requirements. Successful software applications usually grow and
evolve over time, and so does their architecture. The amount of modifications can
reach dimensions where the resulting architecture of the software system has little in
common with the originally designed one.

Knowing the overall architecture of the system is crucial for its management, especially
when it comes to the migration of parts of the application or the application as a whole
to another IT infrastructure, such as a Cloud infrastructure. Before an application can
be migrated, its architecture has to be obtained in its current state, commonly known as
the process of Software Architecture Reconstruction (SAR). This is usually achieved by
running different internal programs on the program code to gather as much information
as possible on the various applications and subsequently visualizing the results.

In contrast to internal discovery, external discovery analyzes which network accessible
sources provide information for a detailed picture of an application topology, e.g. a web
server is not identified by looking at its source code (or code running on the virtual ma-
chine) but by issuing HTTP requests to query the server for information. This diploma
thesis focuses on external application topology discovery in service-oriented applica-
tions that are defined in WS-BPEL and orchestrate multiple lower level Web services.
The goal is to research and evaluate ways for external discovery of application topolo-
gies and the development of a prototypical, plugin-based framework that manages the
topology information in a global model, to facilitate the migration of the application or
parts of it to a cloud.

Table of Contents 4

Table of Contents

Y o 1= = T S 3
TabDIE Of CONTENES .. ettt e e e e e e e e et e e e e eeeeeenne 4
TaDIE Of FIQUIES ot e e e e e e e e e e et e e e e e e e eannne 6
TS A0 1= o] = 7
TADIE OF LISTINGS ...ttt 8
List Of ADDIeVIiatioNS......ociiiiiiiiiiiii 9
1 TN (o Xo [To3 4o o P 10
1.1 Motivating EXamPlecooeiiiiiii e 10
1.2 Problem Statement..... ..o 11
R © 11 1 11 = PR 12
2 Related Work and Fundamentalseoiiiiiiiiiieiiiiiiie e e e 13
2.1 Software Architecture Reconstruction (SAR)ccooiieiiiiiiiiiiiiiie e, 13
2.2 Network-Dased DISCOVEIY.........uuuuuuuiiiiiiiiiiiiiiiiiiiiiiieieieiseeeeaesenreeeereeeeeesneennenaenne 16
2.3 Searching TECHNIQUES........cii i e e 18
2.4 Service-Oriented ArchiteCture (SOA)cocc e e 19
2.5 ClOUD COMPULING . .ttttttttttittittiiaeteteesteeseeeeeeeeeeeesebsee e bbb sssesseeeseseesnennes 20
3 (0 Y o3 =T 01 53 22
0 01,0 22
3.2 Functional Requirements ANAIYSIS.uuuuuuumimmiiiiiiiiiiiiiiiiiiiinniiiieieeeeeneeeeeeee 23
0 70 T - 1 = 1Y o o = RPN 27
N T =0 1] T 28
B0 PIUGINS e e e e e e aaaaaaane 34
4 ArchiteCture and DESIQNuuuuuuueeeeeieeeieieeeeeeeeeaeneeeeeneerneeeeneenaeeeeenenrnrennnrnnrnnne 44
4.2 DESIGN DECISIONS. ...ttt 49
4.3 ResuUlting ArChitECIUIEccoiiiiiiee e e eeeeaanes 54
5 Prototypical Implementation ATDFrameworkccccoevviiiiiiiiiiiiiiieeeeeeeeeees 57
5.1 Project Setup and MOUEIING.........uuuuuuuiuiiiiiiiiiiiiiiiiiiiiiieiieeeeeeeeeseeee e 57
5.2 Framework Implementation ... 65
TR T 1 T[] L 79
6 Summary and OULIOOKui i e e 84

Table of Contents 5

Appendix A Framework Manual............coooouuiiiiiiie e 86
A-1 Framework INStallationcoooeiiiiiii oo 86
A-2 Plugin INStallationccooiiiiiiiii e 87
A-3 Plugin DEVEIOPMENT ... 87
A-4 INILALE DISCOVEIY .ouitiiiii it e e e e e et e e e e e e e eaaraaas 91
] =T =] o =TT 92

(D ICTod =T =1 Ao] o F PR 95

Table of Figures 6

Table of Figures

Figure 1 — Motivating EXamPIecooviiiiiiiiiiieeeeeeeee e 11
Figure 2 — Software Architecture Reconstruction Life-time flow [3].......ccccooeevviiiiiinnnnnn. 13
Figure 3 — Modeling URL as an 0ObjJECL............ovviiiiiiiei e 26
Figure 4 — Modeling URL as an attributecccoooeeiiiiiiiiici e 26
Figure 5 — Data MOUEI........ooviiiiiiiiiiiiieeeeee e 27
Figure 6 — Data model 8S DIagramcouviiiiiiiiiiiiiiiiiiiiieeieeeeeeee et 28
Figure 7 — Priority List for Tomcat Web SErvercccciiiiiii e, 31
Figure 8 — Refined scheduling algorithmcccooii i, 33
Figure 9 — Relationship between BPEL process and Web Serviceccoevvvvinnnnnnnn. 35
Figure 10 — Tomcat Web CONSOIEcoovviiiiiiiiiiiiiiiiiiieeeeeeeeeeeeeeee e 40
Figure 11 — Monitoring Apache Tomcat with JCONSOIe...........cccevvvviiiiiiiiiiiiiiiiiiiiiiiee, 41
Figure 12 — ActiveMQ WED CONSOIEccoiiiiiiiiiiii et 43
Figure 13 — Use Case Overview and ROIEScoeiiieiiiiiiiiiicen e 44
Figure 14 — Components of Eclipse RCP (Adapted from [31]).........ccvieeiiiiiiiiiiiininnnnnn. 51
Figure 15 — GMF OVEIVIEW [36] ...cevviiiiiiiiiiiiiiiieiiieeeeeeeee ettt 53
Figure 16 — Resulting architecture of the ATDFrameworkccccccovvvviiiiiiiiiiiiinennnnn. 54
Figure 17 — GMF DashbOard............ccooiiiiiiiiiiiice et 57
Figure 18 — Domain model (atdframework.eCOre)...........covvieeeiiieeiiiieiiccee e, 58
Figure 19 — Project structure after EMF code generationccccccvveeeeieeeeecevvvinnnnnn. 59
Figure 20 — Graphical model definition (atdframework.gmfgraph)..........cccccccvvvirinnnnnn. 60
Figure 21 — Graphical tooling definition (atdframework.gmftool)ccccccvvvvvvviiinnnnn. 61
Figure 22 — Graphical mapping definition (atdframework.gmfmap).............ccccceevvvnnnnn. 61
Figure 23 — Project structure of GMF editOr.........ccoooeiiiiiiiiiiiiiie e, 62
Figure 24 — Branding Logo of ATDFrameworkccuuuiiiiiiiiiiiiiiiiiiiiiiiiiiiieeeeeeeeeee 64
Figure 25 — Update Manager of ATDFramework ... 64
Figure 26 — Installed PIUQINS VIEWccoiviiiiiiiiiiiiiiiiiiiiieieeeeeeeeeeeeeeeeeeeeeee e 71
Figure 27 — Priority Map VIEWouuuiiii et e e e e e ee e 73
FIQUre 28 — PrOPEITIES VIEW.......oeeeiiiiii e ettt s e e e e e ettt s e e e e e e e e eeaeaaaaas 77
Figure 29 — Type-specific properties 1eft Side ... 78
Figure 30 — Type-specific properties right Side ... 78
Figure 31 — Screenshot of the final application ... 85
Figure 32 — Product eXPOrt WIZard...........ccoiieiiiiiiiiieeeee et n e e e e e e eeeraaa s 86

Figure 33 — Discovery of the Hello World Example..........cccccoeeieiiiiiiiiiiii e, 91

List of Tables 7

List of Tables

Table 1 — Relationships between ODJECTSuuuuiiiiiiiiiiiieees 25
Table 2 — Use Case: Create NEW PrOjJECE........cccovviiiiiii i 45
Table 3 — Use Case: Load ProjeCt..........uuiiii i e e e aaaees 45
Table 4 — Use Case: SAVE PrOJECL..........uuiii i e e e e e aaanes 46
Table 5 — Use Case: Edit Project in Frameworkcccoooemimiiiiiiiniiiiiiiiiiiiiiiienns 46
Table 6 — Use Case: Edit Project with Text EAItorccociiiiiiiiiiiiiiiiiiiiiiiiiines 47
Table 7 — Use Case: Start DISCOVEIYuiii i ee e e e e et eeaeeaanees 48
Table 8 — Use Case: Develop New PIUgINooouiiiiiiiiiiiiee e 48
Table 9 — Use Case: Install NEW PIUGINcoieiiiiiieiee e 48
Table 10 — Use Case: Uninstall NeW PIUGINuuuiiiiiiiiiiiiiiiiiiiiiiiiiiinnienes 49
Table 11 — Adjustments in atdframework.gmfgen.............ccccceiiiiiiiiiiiiis 62
Table 12 — IATDFPIlugin interface methods.............cccooeiiiiiiiiii e, 67
Table 13 — Settings for the installed plUgINS VIEWc..ccooiiiiiiiiiiiii e, 72
Table 14 — Properties of the Others menu itemMccc.oooiiiiiiiiiiii e, 72
Table 15 — Properties of the Installed Plugins menu itemccccccveviiiiiiiiiiiiiiiinnnns 73
Table 16 — Properties of the Installed Plugins Show View parameter...............ccccuvee. 73
Table 17 — Settings for the Priority Map VIEW...........uceiiiiiiiiiiiiiin et 74
Table 18 — RUN COMIMANGuuuiiiiiiiiiiiiiiiiiiiiieii bbb aassasssssebsnsnnnsnnnnnnnes 75
Table 19 — RUNSLEP COMMANG.........ooiiiiiie e e e e e eeeeeaanees 75
Table 20 — Properties of BPEL PIUQIN..........uuuuuiiiiiiiiiiiiiiiiiiiiiiieeeiieeee 80
Table 21 — Properties of WSDL PIUGIN.uuuuuiiiiiiiiiiiiiiiiiiiiiiiieeieeenees 81
Table 22 — Properties of Web Service plugin...........cccoeiiiiiiiiiiiiiie e 81
Table 23 — Properties of web server pluginccoooeeiiiiiiiiiic e 82
Table 24 — Properties of Tomcat IMX PIUGINuuuuumimiiiiiiiiiiiiiiiiiiiiieenenees 82

Table 25 — Properties of ActiveMQ JMX PIUGINuuuuiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiieiieeees 83

Table of Listings 8

Table of Listings

Listing 1 — Scheduling algorithm in pseudo code..............covvviiiiiiiiiiiiiiiiiiiiieeee 31
Listing 2 — Refined scheduling algorithm ..., 34
Listing 3 — Import statement in @ BPEL fileccooiiiiiiiii e, 35
Listing 4 — SOAP over HTTP binding example ..o, 36
Listing 5 — SOAP over JMS binding eXample ... 38
Listing 6 — ReQUESE NCAETcovviiiiiiiiiiiiiieeeeeeee e 38
Listing 7 — RESPONSE NEAUETcuiiiie i 39
Listing 8 — Response from Apache 1.3.23 [23]coiiiiiiiiiiiiiiiei e 39
Listing 9 — Response from 1S 5.0 [23].....ccoiiiiiiiiiii et 39
Listing 10 — Tomcat JIMX CONNECLION SIHNG ...eevvviviiiiiiiiiiiiiiiiiiiieeeeeeeeeeeeeee e 41
Listing 11 — Calling Tomcat IMX SerVIetcoovviiiiiiiiiiiiiiiiiiiiiieeeeeeeeeeeeeeee e 42
Listing 12 — Result of @ IMX SEerVIEt QUEIYuuueiiiii e 42
Listing 13 — Running a broker with useJMX Property........cccceeeieeeriiieiiiiiiee e 43
Listing 14 — ConNeCtiNg t0 URLuuuiiiiiieiiieeiice et e e ar s 43
Listing 15 — de.kreinjb.gmf.atdframework.manager.plugins.exsd............ccccccvvvvvvvreennen. 66
Listing 16 — IATDFPIUGIN INTEITACEcovviiiiiiiiiiiiiiiiiiiiieeeeeeeeeeee e 66
Listing 17 — AbStraCtATDFPIUGINuueei e 68
Listing 18 — AbstractATDFPIlugin subclass example..........ccccooooeiiiiiiiiiiin e, 69
Listing 19 — Example of ISafeRunnable..............cccooooiiiiiii e, 70
Listing 20 — Detecting plugins that implement the IATDFPIlugin interface 71
Listing 21 — RUNHANAIETcoiiiiiiiiiiiiiiiieeeeeeeeeeeeeeeeeee e 75
Listing 22 — Part of the SChEAUIETcooeeiiieee e 76
Listing 23 — Property tab eXtENSIONccoiiiiiiiiiiie e 78
Listing 24 — Property SECtion EXIENSIONccuviiiiiiiiiiiiiiiiiiiieeeee ettt 79
Listing 25 — Extension provided by BPELPIUQINooovviiiiiiiiiiiii 80
Listing 26 — XPath statement to retrieve locations of WSDL documents...................... 80
Listing 27 — HelloWorldPlugin plugin.Xml...........ccooiiiiiiiiiiice e, 87
Listing 28 — Generated HelloWorldPlugin.java class...........ccccoooeeiiiiiiiiiiiii e, 88

Listing 29 — Modified HelloWorldPlugin.java Class ..., 89

List of Abbreviations

List of Abbreviations

BPEL
DHCP
DNS
laaS
s
JMS
JMX
LDAP
LRU
OSGi
PaaS
SaaS
SAR
SNMP
SOA
UDDI
WSDL
XML

Business Process Execution Language
Dynamic Host Configuration Protocol
Domain Name System
Infrastructure-as-a-Service

Internet Information Services

Java Message Service

Java Management Extensions
Lightweight Directory Access Protocol
Least Recently Used

Open Services Gateway initiative
Platform-as-a-Service
Software-as-a-Service

Software Architecture Reconstruction
Simple Network Management Protocol

Service-Oriented Architecture

Universal Description, Discovery and Integration

Web Services Description Language

Extensible Markup Language

1 Introduction 10

1 Introduction

Nowadays, enterprises are facing rapidly changing market conditions which require
flexible IT systems able to dynamically adjust to those changes. Staying competitive
means reducing time to market, management costs, and costs for infrastructure. Inflex-
ible IT systems, unable to keep up with those fast changes, will lead to the inability of
quickly responding to competitor actions, customer demands, or economic trends, and
thus a loss in sales.

All these difficulties have changed the way application development works nowadays.
One of the architectural styles increasing the flexibility of application development and
emerging over the last years is the service-oriented architecture (SOA) paradigm. It
introduces loose coupling between software components (services) and fosters reuse
of these services. A SOA is commonly realized through the Web service stack, a set of
XML-based open standards like WSDL [1], SOAP, and UDDI. Web services can be
orchestrated using the Web Service Business Process Execution Language (WS-
BPEL) [2], introducing flexibility in application development by separating the business
logic from the underlying services. These orchestrated services are then exposed
again as web services, providing another level of granularity through the reuse of these
services.

Another emerging paradigm is Cloud computing, allowing enterprises to focus on their
core competences by moving parts of applications or an application as a whole from
on-premise to a cloud environment. These environments can be in-house or provided
by third party vendors, providing elasticity, scalability, and high availability of computa-
tional resources, and thus making the migration of a SOA application or parts of it to a
cloud a possible next step on the way to a more flexible IT system.

This diploma thesis focuses on ways to support this migration step by researching and
prototypically implementing discovery of application topologies of a SOA application,
defined as a BPEL composition with multiple Web service calls. In particular, the focus
of this work is on ways of external discovery of the participating components, such as
web servers, messaging systems, databases and operating systems.

1.1 Motivating Example

The example given here illustrates a simple BPEL process that orchestrates different
Web services, hosted on different machines. These Web services can be implemented
using different languages, such as Java or C#, running on different Operating Systems
like Linux or Windows and different Web servers, like Apache Tomcat or Microsoft In-
ternet Information Services (IIS) and using various Database Servers like MySQL or
MSSQL.

1 Introduction 11

b 4

Examplesof BPEL Process Model

information sources
WSDL Information (in BPEL)

WSDL Information (in BPEL)
Invoke WS

Invoke WS

SOAP Message Headers = = SOAP Message Headers ==

Invoked Web

JMX Java Web Invoked Web JMS Binding IMS Web
WAR (Service service Service service
IMX P] [] IMX) .]{ .]
| ApacheTomcat MySQLDB [ActiveMQ Microsoft IS

HTTP p, HTTP p,

Hosted-on \mosted-on

Linux Operating JMX Windows
L Operating System
Hosted-on
Based on IP

Amazon EC2

Figure 1 — Motivating Example

1.2 Problem Statement

The goal of this thesis is to research and evaluate ways for external discovery of appli-
cation topologies, implement a set of prototypical discovery plugins and manage the
topology information in a global model. The tasks constituting this thesis include the
following:

o A state of the art regarding discovery of service information in research and
products.

e Research which external, network accessible sources provide information help-
ful to get a detailed picture of the application topology of the Web services used
in the composition.

¢ Implementation of a plugin-based framework which is able to manage the de-
scribed discovery as well as store the gathered information in a structured way
for further processing.

e A prototypical implementation of external discovery plugins including plugins for
WSDL, Tomcat (Java Web service), Apache ODE (BPEL), Apache ActiveMQ
(JMS), and Amazon EC2 (laaS).

1 Introduction 12

1.3 Outline

This document is divided into 6 chapters — an Introduction, a Related Work and Fun-
damentals, a Concepts, an Architecture and Design, and a Prototypical Implementation
section. The thesis concludes with a Summary and Outlook section, summarizing the
work done in this thesis and giving an outlook to future work. Furthermore the appendix
contains a Framework Manual.

In detail, each chapter covers the following topics:

Chapter 1 - Introduction: The Introduction gives the reader a motivating example fol-
lowed by the problem statement. It also contains the outline of this document.

Chapter 2 - Related Work and Fundamentals: Chapter 2 gives an overview of relat-
ed work others contributed in this area and evaluates the research achievements over
the past years. The focus is mainly directed to methods of software architecture recon-
struction, network-based discovery of IT assets and discovery techniques used by
search engines. It also covers the basic technologies to give the reader the necessary
understanding of paradigms, architectures and technologies used in this thesis. These
include cloud computing, service-oriented architecture, Web services and BPEL.

Chapter 3 - Concepts: Chapter 3 describes the concepts developed during the course
of this writing. This includes concepts of the Framework and the developed plugins.

Chapter 4 - Architecture and Design: The Architecture and Design are described in
chapter 4, giving a high level view on the developed framework and discovery plugins.
It also describes the supported use cases of the resulting architecture.

Chapter 5 - Prototypical Implementation: Implementation aspects are covered in
chapter 5. This provides a low level view on the framework and discovery plugins and
describes the development process.

Chapter 6 - Summary and Outlook: The last chapter summarizes the work done in
this thesis and gives an outlook to future work.

Appendix A - Framework Manual: This appendix provides instructions on how to in-
stall the framework and to start a discovery process. Additionally it describes how the
framework can be extended by developing new plugins.

2 Related Work and Fundamentals 13

2 Related Work and Fundamentals

The following is a summary of related work, done by others over the last years to con-
tribute to the task of migrating SOA applications to the cloud. This includes research in
the area of software architecture recovery, which has received considerable attention
recently. The focus is also on network-based discovery, like methods for asset and
inventory management. Other related work also includes discovery techniques used by
search engines, e.g. crawling and graph traversal. Another focus is on related technol-
ogies that some of the concepts of this diploma thesis are building on.

2.1 Software Architecture Reconstruction (SAR)

Ducasse and Pollet [3] provide a state of the art in software architecture reconstruction
approaches, based on publicly available and trackable articles and documents, like
PhDs and technical reports. According to [3], software architecture reconstruction is a
reverse engineering approach aiming to reconstruct architectural views of a software
application. They structure the field around goals, processes, inputs, techniques and
outputs of SAR approaches (Figure 2). Excluded are works that extend traditional lan-
guages to mix architectural and other programming elements like ArchJava [4], be-
cause in these cases the architecture is not extracted from existing applications. The
following chapters are a quick summary of what Ducasse and Pollet described in detail
in their state of the art.

Goals ’
Processes ’
{ Inputs H Techniques H Outputs }

Figure 2 — Software Architecture Reconstruction Life-time flow [3]

2.1.1 Goals

Garlan [5] identifies six main goals of software architecture in software development:
Understanding, Reuse, Construction, Evolution, Analysis and Management. These
goals are refined by Ducasse and Pollet for architecture reconstruction.

2 Related Work and Fundamentals 14

e Re-documentation and understanding: Architectural views provide a view of the
system on a high level of abstraction, making it easy for reverse engineers to
understand the overall system.

¢ Reuse investigation and product line migration: Architectural views identify
components, frameworks and patterns that can be reused. These commonali-
ties can be shared in product lines.

e Conformance: As a concrete architecture often does not match the conceptual
one, software architecture reconstruction can be used to check conformance of
concrete and conceptual architecture.

e Co-evolution: SAR can be used to synchronize the deviation of architecture and
implementation, as they usually evolve at different speeds.

e Analysis: Architectural views, provided by a SAR framework, can be used by
analysis frameworks to support the decision-making process of stakeholders.

e Evolution and maintenance: Software architecture recovery may be used as a
way to support application evolution and maintenance. This step often includes
looking at an applications history, not only its current state.

2.1.2 Processes

The different SAR approaches can be categorized as bottom-up, top-down and hybrid
processes.

Bottom-up

Bottom-up processes extract the architecture from source-code, continuously creating
a higher level of abstraction until a sufficient level of understanding is reached. A pro-
cess cycle consists of three steps: populating a repository with source code analyses,
querying the repository for abstract system representations and presenting the results
in an adequate form. The bottom-up approach is also known as software architecture
recovery.

Top-down

Another approach is used by top-down processes, also known as software architecture
discovery. Here, high-level information like architectural styles is used to reconstruct
architecture by matching formulated conceptual hypotheses to the source code.

Hybrid

Hybrid processes use a combination of bottom-up and top-down process, creating
high-level views from source code and matching these with views of high-level infor-
mation. These approaches often use views from both concrete and conceptual archi-
tecture. Sartipi and Kontogiannis [6] describe a hybrid approach, presenting a graph
matching model for software architecture recovery and a tool, implementing their ap-
proach, called Alborz. In a first step, Alborz parses the source code in a bottom-up
phase and generates a graph as a high-level view. A reverse engineer then specifies

2 Related Work and Fundamentals 15

hypothesized views of the architecture in a top-down phase. The graph is then mapped
with the specified views using graph matching.

2.1.3 Inputs

Most software architecture recovery tools use source code as their input, but dynamic
information that is only available during execution, as well as historical data are also
used by different tools. Ducasse and Pollet divide inputs into non-architectural and ar-
chitectural inputs.

Non-architectural Inputs

The most often non-architectural input used is source code, as it is a reliable source of
information. Some tools work directly on the source code, while others use metamodels
to represent the code. Symbolic information, found in comments, method names or file
names are sometimes also used. As static information is often insufficient, some ap-
proaches use dynamic information to analyze the behavior of a system. Another non-
architectural input that is rather rarely used is historical information. While human ex-
pertise may not be as trustworthy as source code, for example, it is very helpful and
usually needed to steer the iterative SAR process and to validate the results.

Architectural Inputs

Architectural inputs used by some tools are architectural styles and viewpoints. These
styles include pipes and filters, layered system, data flow, blackboard and domain
models. Though these abstractions are valuable and expressive, they are usually diffi-
cult to recognize.

2.1.4 Techniques

Techniques often match the data they operate on, e.g. queries on facts or queries on
graphs. These are categorized by [3] into quasi-manual, semi-automatic and quasi-
automatic techniques.

Quasi-manual

Here, the reverse engineer uses a tool only to assist in identifying architectural ele-
ments, e.g. using a visualization tool to manually reconstruct the software architecture.

Semi-automatic

With semi-automatic techniques, discovery of refinements is done automatically by the
tool, while the reverse engineer instructs the tool how to do that. Techniques belonging
to this group are query based techniques, e.g. relational queries that abstract data out
of relational databases (by using SQL queries, for example), or graph pattern matching
techniques like they are used in Alborz [6].

Quasi-automatic

There is no fully automated software architecture extraction technique. Reverse engi-
neers always have to guide the SAR process, even at the most automated approaches.
Techniques belonging to this group are clustering algorithms that identify groups of
objects that share similarities, and dominance analysis that identifies related parts in an
application.

2.1.5 Outputs

Outputs of a SAR process are clearly related to the goals of SAR. The usual output of a
SAR tool is a visual representation of the software architecture, e.g. using boxes to
present and group source code entities, or showing components and architectural ele-
ments and layers at different levels of abstraction. Some approaches also provide val-
uable additional information, such as conformance of architecture and implementation
or conceptual and concrete architecture.

2.1.6 Relation to this work

The goals and techniques used in the described SAR approaches can be adopted to
methods of external application topology discovery, but these SAR approaches usually
work on a very low level, e.g. source code and they are usually executed on the same
machine the application is running on. The approach described in this diploma thesis
focuses more on the topology and interaction of different (standalone) applications, like
web servers and databases, and how they can be discovered and accessed externally
over the network. As the framework in this thesis is plugin-based, a possible extension
to the framework could be a plugin that uses a SAR tool to complement information
that cannot be provided by any other plugin.

2.2 Network-based Discovery

Tracking computing devices and assets to understand the operational infrastructure
and its users has become an important aspect for enabling business-driven IT man-
agement, and plays a key role during the negotiation of outsourcing contracts and for
planning mergers and acquisitions. Typical methods for asset and inventory manage-
ment are periodic physical inventories, which require costly human visits or periodic
self-assessment questionnaires to be filled out by individual end-users. Sometimes,
servers and end-user devices are also equipped with software agents for the tracking
of resources and the system, but this assumption cannot be made in every situation [7].
Therefore, a lot of recent work focuses on the discovery and tracking of networked IT
assets and their relationships.

2 Related Work and Fundamentals 17

There are various sophisticated commercial products for managing enterprise net-
works, such as EMC lonix*, IBM Tivoli®, Microsoft SCOM?® and HP NMC*, but they usu-
ally require too much manual effort, or they are restricted to a particular set of applica-
tions of the same vendor.

2.2.1 Techniques

Techniques for discovery of networked IT assets are classified into online methods
(analyzing the actual state of the network) and historic log information processing (ana-
lyzing recorded network traces). Online discovery techniques are further classified into
active network mapping, passive network mapping and host and service mapping.

Active Network Mapping

The network is explored exhaustively from a starting point by using a repetitive algo-
rithm that walks the entire network up to an endpoint or until the entire IP address
range has been exhausted [7]. The different techniques include SNMP walking of net-
work topology, network-wide IP ping sweeps, DNS network domain name-space walk-
ing, DHCP lease information analysis and LDAP or Active Directory searches. Prob-
lems with this approach can occur when parts of the network are protected by firewalls.

Passive Network Mapping

Network mapping is done passively, i.e. without generating any kind of traffic that stim-
ulates target machines to discover their presence. These techniques include network
packet sniffing and subscription to network and syslogs. A packet capture application
(network probe) must be placed where the traffic actually flows, i.e. packet capture is
location dependent.

Host and Service Mapping

Once a host is discovered, the next step is usually to drill down on each host, e.g. iden-
tifying the operating system and the services a host provides. These techniques in-
clude TCP/IP stack analysis and OS detection as well as UDP/TCP port scans.

2.2.2 Research

Kind et al. [7] present a relationship discovery approach using passive network map-
ping based on NetFlow [8]. Their network profiling system Aurora detects traffic rela-
tionships by identifying flow correlations, i.e. flow pairs or flow chains based on their
starting or ending times and a time-dependent correlation distribution. A flow pair could
represent a database access or a directory access for authentication, for example.

L EMC lonix. http://www.emc.com/products/family/ionix-family.htm

2 |BM Tivoli. http://www.ibm.com/software/tivoli/

® Microsoft SCOM. http://www.microsoft.com/en-us/server-cloud/system-center/operations-
manager.aspx

* HP NMC. http://www8.hp.com/us/en/software/software-solution.html?compURI=tcm:245-
936973

http://www.emc.com/products/family/ionix-family.htm
http://www.ibm.com/software/tivoli/
http://www.microsoft.com/en-us/server-cloud/system-center/operations-manager.aspx
http://www.microsoft.com/en-us/server-cloud/system-center/operations-manager.aspx
http://www8.hp.com/us/en/software/software-solution.html?compURI=tcm:245-936973
http://www8.hp.com/us/en/software/software-solution.html?compURI=tcm:245-936973

2 Related Work and Fundamentals 18

Chen et al. [9] introduce Orion, a system that discovers dependencies using packet
headers and timing information in network traffic based on delay spike analysis. It dis-
covers service dependencies by observing the time correlation of messages between
services and uses the delay distribution of service pairs to determine their dependency
relationship. The number of spikes corresponds to the number of executed paths in
services. The delay distribution is treated as a signal so that signal processing tech-
nigues like random noise reduction can be applied (random noise is spikes in the delay
distribution due to host and network load variations). This is achieved by using Fast
Fourier Transform (FFT) to decompose the signal across the frequency spectrum and
applying low-pass filtering to mitigate the impact of random noise

Gantenbein et al. [10] propose an approach to complement basic network-based dis-
covery with the combined log information from network and application servers, and
then to compute an aggregate picture of assets and categorize their usage with data-
mining techniques. Log files from selected network and application servers are first
normalized into a denser representation (usage records). Related usage records from
multiple network and application protocols are then aggregated into a server-
independent perception of activities. Finally, usage and activity records are input to
analytic processing and data mining.

2.2.3 Relation to this work

The work done in this diploma thesis uses a variation of the different described tech-
nigues, e.g. a lot of information can already be found in the WSDL files but a OS dis-
covery needs more active discovery. This could be a TCP/IP stack analysis to discover
the operating system, for example. Furthermore, already developed programs like port
scanners could be bundled as plugins and hence contribute to the discovery process.

2.3 Searching Techniques

Different discovery techniques, often used in web search engines, also lay a back-
ground for the work in this thesis. This is more in regard to processes that are executed
before a search engine can provide the search service itself to others, i.e. crawling and
indexing [11]. Further important topics are ways of traversing graphs, e.g. depth-first
search or breadth-first search and cycle detection in graphs, as well as the de-
duplication of entities that are found multiple times.

2.3.1 Crawling

A web crawler usually creates a copy of all visited web pages for later processing by an
indexer. The crawler starts with a list of URLs (seed). It then downloads the pages from
these URLs and extracts hyperlinks found on these pages. The newly found links are
added to the list of URLs so that the crawler will eventually download these pages as
well. This step is repeated until there are no further pages to crawl, or a defined limit is
exceeded (e.g. time or network bandwidth) [12]. Periodic crawlers build a brand new

2 Related Work and Fundamentals 19

collection which replaces the old one when it is necessary to refresh the collection.
Incremental crawlers incrementally refresh the local collection by replacing less-
important pages with more-important ones [13].

2.3.2 Graph Traversal

Considering web pages as nodes and hyperlinks as edges in a graph, crawling can be
seen as the traversal of a graph. Traversal can be done either through depth-first
search or through breadth-first search. A breadth-first search algorithm explores the
graph layer by layer, the starting node being layer zero and all direct neighbors being
layer one. This technique is useful when trying to find a path from one node to another
with minimum edges. Opposite to this technique, a depth-first algorithm always contin-
ues to explore from the next node that it finds, and only goes back to previously ex-
plored nodes when it is running out of options. Because these algorithms remember
already visited nodes, cycle detection becomes very easy, as repeatedly (on different
paths) visited nodes will already be marked as visited.

2.3.3 Relation to this work

A crawler can be compared to a plugin in the later described framework for application
topology discovery. For example, a plugin (crawler) searches a WSDL document
(page) and discovers (finds a hyperlink to) a Java Web Service (page). Opposite to
searching through web pages, the nodes (pages) in the framework are of different
types, e.g. WSDL or Java Web Service, so that different crawlers (plugins) have to be
developed. These crawlers can only operate on compatible nodes, e.g. a plugin for
WSDL file searching and a plugin for Java Web Service searching.

2.4 Service-Oriented Architecture (SOA)

Service-Oriented Architecture [14] is an architectural style that supports the integration
of applications as connected and reusable business applications or business services.
A service represents a function provided at a network address that is available via dif-
ferent transports, formats, and quality of service, and which is always on, i.e. it does
not have to be created or destroyed. The term loose coupling is often used in conjunc-
tion with SOA. Components in a loosely coupled system make little or no assumptions
about other separate components.

2.4.1 Web Services, SOAP, and WSDL

An often misconception is the equality of SOA and Web Services. Web Services are a
concrete implementation of a SOA while a SOA does also have other implementations.
The goal of Web Services is to achieve interoperability between applications using
Web standards [2]. Web Services usually take the HTTP protocol as transport because
it provides the most interoperability. This is due to the fact that most firewalls are con-

2 Related Work and Fundamentals 20

figured to allow access via the HTTP protocol while other ports and protocols may be
blocked.

SOAP [15] is one of the most used application protocols in Web Services that allows
for the exchange of data between different systems. It is an XML format that wraps
SOAP messages into an envelope. The envelope is split into a message header that
contains Meta information, and a body that contains the payload. Data exchange does
not have to be synchronous as it must be with remote procedure calls, for example.

Web Services are described using the Web Services Description Language (WSDL) [1]
which is also an XML-based format. It is used for describing network services as a set
of endpoints operating on messages containing either document-oriented or procedure-
oriented information. The operations and messages are described abstractly, and then
bound to a concrete network protocol and message format to define an endpoint. The
format is extensible to allow description of endpoints and messages regardless of what
message formats and network protocols are used [1].

2.4.2 Business Process Execution Language (WS-BPEL)

The Business Process Execution Language (WS-BPEL) [2] is a language for specifying
business process behavior based on Web Services. These business processes can be
separated into two kinds. Executable business processes that model actual behavior of
a participant in a business interaction and abstract business processes that are speci-
fied only partially and which are note intended for execution [2]. The latter can be seen
as process views to hide internal details, for example.

BPEL describes workflows as orchestration of Web Services. It is a recursive aggrega-
tion model which means that tasks in BPEL processes are Web Services and the pro-
cess itself is a Web Service again. It is based on XML and originated from the Web
Service Flow Language (WSFL) by IBM [16] and XML Business Process Language
(XLANG) by Microsoft [17]. In 2002 the two companies released the first version under
the name BPEL4WS [18]. The second version was released in 2007 under the name
WS-BPEL by the OASIS consortium that took over standardization. It supports primari-
ly automated business processes but BPEL4People [19] is an extension that allows the
integration of people.

2.5 Cloud Computing

Cloud computing [20] is one of the new models for data processing that emerged over
the last years. It should cope with the fast grow in devices with internet connectivity and
the growing presence of IT in business- and personal environments. Applications and
data is not processed and stored on a local device anymore but on an external infra-
structure. The basic principle is the outsourcing of software and hardware of the user,
so that the user does not have to care, where the applications or information is actually

2 Related Work and Fundamentals 21

stored in the cloud. IT services are provided as services over the internet and account-
ed on basis of utilization of the service.

Depending on the sort of the service a distinction is drawn between Infrastructure-as-a-
Service (laaS — e.g. storage space over the internet), Platform-as-a-Service (PaaS —
e.g. providing development tools over the internet), and Software-as-a-Service (SaaS —
e.g. usage of an application over the internet). Further distinction is drawn between
private clouds for a limited user group and public clouds for a variety of users. The of-
ten found solution is usually a combination of the two mixed with traditional IT environ-
ments called hybrid clouds.

The great advantage of cloud computing is the possibility to outsource tasks to external
companies. This way, servers and applications do not have to be bought and managed
by a business enterprise itself but can be rented from specialized companies. This re-
duces costs especially for the management of the infrastructure and provides flexibility.
But concerns are the security and reliability aspects of cloud services, e.g. because of
different laws in data privacy protection in different countries. Another problem is the
missing interoperability between cloud service providers which prevents a user from
changing the provider [21].

3 Concepts 22

3 Concepts

This chapter presents the fundamental concepts developed in this thesis: The overall
framework (3.1) and its plugin-based approach (3.5), data model (3.3), plugin sched-
uler (3.4), and the concepts on how to discover different artifacts like applications and
servers with their respective properties (3.2).

3.1 Framework

The framework is an application that is responsible for the external discovery of the
application topology of a composite application. Its job is to take a BPEL file as input,
manage the discovery, and store the gathered information in a structured way for fur-
ther processing. The name of the prototypical implementation of the framework will be
ATDFramework — the abbreviation for Application Topology Discovery Framework.

As stated by the assignment of tasks, the developed framework should be a plugin-
based framework. The idea of a plugin is to bundle code as an installable form so that it
can be installed to the framework. It is the only way additional functionality can be add-
ed to the framework. At the same time, the framework stays independent from the de-
veloped plugins making the overall architecture of the application modular and extensi-
ble. Providing a plugin-based framework has many advantages for the framework de-
veloper as well as the plugin developer, but it also introduces difficulties for both sides.

Advantages of using plugins:

- Extensibility: The framework can be dynamically extended with additional fea-
tures, allowing the application to grow with increasing user requirements.

- Independent Development: Additional features can be developed independent-
ly, allowing different development teams to implement different components,
even at the same time.

- Clear development direction: The framework provides a well-defined interface
for the plugin developer, giving him a direction for development of additional
components.

- Simplicity: A plugin usually has one goal, allowing developers to focus on that
goal.

3 Concepts 23

Disadvantages of using plugins:

- Restriction: The design of the plugin interface is always a trade-off between de-
fining ways for extension and on the other hand restrict the possibilities for ex-
tension. Designing extensibility needs a good requirement analysis to meet all
use cases.

- Evolution: Managing versions and backward compatibility can be very hard, es-
pecially when the plugin interface evolves. Often plugin developers have to up-
date their plugin with each new version.

- Complexity: While plugins may work when running alone, new problems may
arise when plugins interact with each other, with bugs appearing only with cer-
tain combinations of plugins.

- Testing: Testing a plugin may only be possible by running the plugin (inside the
framework), slowing down the development process.

Of course, depending on the implementation of the framework some of the disad-
vantages may not be relevant, e.g., some frameworks may provide a possibility to test
a plugin without running the framework.

The idea for the framework developed during the course of this diploma thesis is to
define a global data model and to provide the necessary management functionality to
the plugins that is necessary to operate on the data. The data model will contain the
topology information discovered throughout the discovery process. Individual plugins
will operate on the data and add information during the discovery process. The order in
which plugins are executed must be determined by the framework, e.g. through a
scheduling component.

3.2 Functional Requirements Analysis

Before defining the data model, the functional requirements of the framework have to
be analyzed. Most of these requirements can be obtained by looking at how a discov-
ery proceeds. This will help finding a suitable representation for the topology.

The discovery process takes a BPEL process as its input and outputs the application
topology. During the discovery process the discovered topology will go through differ-
ent iterations and eventually reach a final state. A plugin should take the currently dis-
covered topology (or part of it) as its input and try to discover new information based on
the provided information (e.g. a plugin gets a URL to a web server as input and outputs
the type and version of the server).

The framework has the responsibility to orchestrate the execution of the various
plugins. On the basis of the currently discovered topology and the currently installed
plugins, the framework should determine the plugins that are allowed to operate on the
model. One question to answer is whether a plugin can modify the whole topology or
just parts of it. Either way, a plugin should concentrate only on specific areas of the

3 Concepts 24

topology, e.g. concentrating on the discovery of web servers or the detection of operat-
ing systems.

3.2.1 Type System

This requires a mechanism that defines how plugins recognize parts of the topology as
being compatible, i.e. the framework knows which areas can be processes by which
plugin and the plugins know what to do with the provided information in a specific area
of the topology. A possible solution would be a type system that allows typing of
plugins and topology areas. This way the framework can determine which plugin
should operate on which part of the topology. In this case it would also be reasonable
to provide only the relevant parts as an input to the plugin so a plugin modifies only the
area that it is assigned to. Depending on how the topology itself is represented, this
approach can even be refined from areas to a single point of the topology (e.g. a single
node).

The type system should also provide sub types, e.g. a Tomcat web server and an II1S
are both web servers. A plugin may discover the existence of a web server without
knowing whether it is a Tomcat, an IIS, or any other web server. Still it must have the
possibility to add the information to the model. In a type system that allows for sub typ-
ing the web server type can be modeled as the parent of a Tomcat type and an IIS
type. Then a plugin that discovers the existence of the web server can add the server
to the model, while other plugins later specify the exact type of web server.

The type system should be build up implicitly by the plugins. This means that the
plugins provide the types they support and these types are installed to the framework
when the plugins are installed. The framework builds up the type system with all type
dependencies when it loads the plugins. This type system is then used to determine
which plugin can operate on which part of the topology, e.g. when scheduling the exe-
cution order. The definition of a type should also be kept simple, e.g. through the rep-
resentation of a type by a namespace. A plugin developer then just specifies the types
it supports and the types it creates (e.g. when discovering new topologies) through a
simple definition of the QNames of a namespace. The definition of a type should also
support the specification of a parent type, e.g. when specifying a new type called
tomcat, the plugin developer should have the possibility to specify this type as a sub
type of a web server type. The responsibility to manage these dependencies in a type
system lies with the framework.

3.2.2 Objects, Relationships, and Properties

A simple representation of the topology could be one that models only objects and their
relations to each other. For example, a BPEL process may contain references to
WSDL files, a Web Service may be hosted on a web server, and a web server is host-
ed on an operating system. The operating system again may run on a specific hard-
ware. Then, BPEL files, WSDL files, web server, operating systems, and hardware

3 Concepts 25

nodes may be modeled as an object while their relations may be modeled as directed
connections between the objects.

Relationship From Object To Object
Contains BPEL file WSDL file
Contains WSDL file Port

Hosted on Web Service Web Server
Provided By JMS Web Service Messaging System
Hosted on Web Server Operating System
Running on Operating System Specific Hardware

Table 1 — Relationships between objects

But modeling everything as an object or a relationship may be insufficient in some cas-
es. Assuming the discovery process starts with a BPEL process, a user would first
have to provide some information on what BPEL process to use and where to find it.
This requires that the framework provides a mechanism for the user to manually add
information to the model. It is also worth noticing that in this case the user provides two
sorts of information.

1. What type of object should be added to the topology, e.g., a BPEL object
2. Where to find the object, e.g., the location to the BPEL file

The question is, whether the location to the BPEL file (e.g., an URL) is modeled as an
object itself or a property of an object. If the location is modeled as an object, the BPEL
object would have a relationship with the location object. Then the relationship could be
modeled as a connection between BPEL object and location object. While this ap-
proach seems to be adequate for different sets of objects - e.g. the relationship be-
tween BPEL file and WSDL files or web server and operating system - some infor-
mation like the URL to a BPEL file, the URL to a web server, or the version number of a
web server should be added to an object as a property or an attribute.

This illustrates better the affiliation of the attributes to the object. The URL for the loca-
tion of a BPEL file is something that is directly dedicated to the BPEL file, while the
referenced WSDL files in a BPEL file are objects themselves which can even be refer-
enced from different BPEL files. Furthermore, this allows for the specification of specific
properties that must be available in every instance of an object, e.g. a BPEL file must
have a location but it does not need to contain any WSDL references.

Another benefit of properties is the possibility to identify objects according to their
properties, either by generating a special identifier or using an existing property that
uniquely identifies an object. For example, a URL to a BPEL file uniquely identifies the
BPEL file because no two files can be at the same location. This can be used by the

3 Concepts 26

framework if a plugin request the creation of a new object. The framework could then
check, whether there is already an object available that has the specified unique prop-
erties matching the one that should be created. Figure 3 and Figure 4 show a URL
modeled as an object and as an attribute.

<+ Process.bpel

= Filelwsdl < File2.wsdl 4 URL

Al
Al

Figure 3 — Modeling URL as an object

4+ Process.bpel
+ URL

< Filel.wsdl < File2.wsdl
+URL +URL

Figure 4 — Modeling URL as an attribute

If the type system supports sub types then it would also be reasonable to type proper-
ties, e.g. a web server as the parent type of Tomcat could contain the URL to the web
server, while a Tomcat as the sub type can contain Tomcat specific properties, e.g.
installed modules.

3 Concepts 27

3.2.3 Summary

A first summary of the functions and concepts that must be provided by the framework
are a simple representation of the model consisting only of objects, relationships and
properties. Plugins need to know what they can do with the discovered topology which
requires the adding of a type structure to the topology. The order of execution of differ-
ent plugins is handled by the framework, e.g. through a scheduler. Furthermore, the
user should have the possibility to add information to the model manually.

3.3 Data Model

The concepts developed in the previous chapter lead to the following data model illus-
trated in Figure 5 and Figure 6.

H Project

connections
I:I £

E| Connection
nl:uﬂu:les.

EOUrce

target
arg 0.1

0.1
H Meode

properties
0.1

H Properties

property
|:|“?.'

H Property

Figure 5 — Data model

3 Concepts 28

4 8 atdframework
a4 [Project
- = name: E5tring
- 2 nodes: Mode
- £ connections : Connection
4 [Mode
. = name: EString
. = type: EString
. =+ properties : Properties
4 [Connection
- = name: EString
. = source: MNode
. = target: Mode
4 [Property
. = type: EString
. = name: EString
. = value: EString
a4 [Properties
- &% property : Property

Figure 6 — Data model as Diagram

The topology information and referenced artifacts should be stored in a global data
model. This data model contains all the discovered information and must be stored
persistently for further processing, e.g., software that use this information to steer the
cloud migration process. The top level object is a project that contains all the infor-
mation that is found during a discovery, namely nodes and connections. A name can
also be assigned to the project.

Each object is represented as a node that has a name, a type, and a set of properties.
The type attribute is used for the typing of nodes so that plugins can check whether
they support the node type (i.e. they can operate on the node). The properties element
contains all properties of the node. Properties are typed themselves so they can be
grouped and assigned to specific types. This allows different plugins to add properties
to the node that belong to a certain group. Plugins may even read or write only proper-
ties of a certain type.

The project also contains a set of connections. Each connection has a name attribute
and a reference to a source and a target node.

3.4 Scheduler

The scheduler is one of the most important and at the same time one of the most com-
plex components of the framework, because it has to decide which plugin is allowed to
execute at which time. The execution strategy can influence the order of information
discovery and route the discovery process into different directions. For example, a

3 Concepts 29

plugin may modify some information that another plugin is depending on. Depending
on the execution order, the second plugin may not be executed at all because the in-
formation has now become invalid for the plugin, i.e. they are not compatible anymore.

3.4.1 Iterations

Based on the data model described in 3.3 the scheduler will have to conform to some
guidelines. The discovery process will most likely start at a single node and produce an
amount of nodes and connections. The execution process can be partitioned into itera-
tions. Each iteration step starts with a set of nodes forming a topology and ends with a
set of nodes representing a more complete topology. The first iteration will start with a
single node. The last iteration should end with the complete discovered topology. This
has the advantage that (1) the discovery process can be paused at a specifically de-
fined point of the execution, allowing the user to view the current state of the discovery
as well as possibly saving a snapshot or a copy of the process to the file system, and
(2) a user may intervene between iteration steps, e.g. by modifying or adding infor-
mation to the model, or by specifying a certain plugin that should be executed next,
hence providing the possibility to route the discovery process into individual directions.

Of course this requires several functions to be provided by the framework, e.g. mecha-
nisms for running all iterations at once or just a single iteration. In a graphical frame-
work this could be realized through different buttons, one for running all iterations which
means running till the topology does not change any more, and one for running just a
single iteration step. Furthermore, the framework would have to provide the functionali-
ty to manually add or modify information, as well as the functionality for saving and
loading of discovery processes to and from the file system.

The ability to save the topology at different points in time opens a new set of possibili-
ties, e.g. a process may be stored and reloaded at another time, allowing the discovery
process to start not at a single node, but at an already discovered set of nodes. Or the
process may be shared with others allowing it to be executed on different frameworks
that may contain a different set of plugins that are only available on specific systems,
e.g. a plugin may require a license or a specific operating system to work properly.

3.4.2 Processing Order

As the topology can be seen as a directed acyclic graph, one question is which pro-
cessing order should be applied and whether the processing order affects the discov-
ered topology. For example, the processing order could be a depth-first-searching or a
breadth-first-searching algorithm.

It is already clear that the order of execution of different plugins on a single node af-
fects the discovered topology because a plugin may modify information that is needed
by other plugins. Subsequent plugins may not be executed any more if the information
has become invalid from a plugins perspective, i.e. the plugin does not know what to do
with the information though it would have been able to be executed if the information

3 Concepts 30

was not changed. For example, a plugin discovers the version number of a web server
and stores the version number as a property of the web server node. A subsequent
plugin may not be able to work anymore with that node because some functionality
may only be available with certain version humbers of the web server, e.g. Java Man-
agement Extensions (JMX) [22] support may be recently added to newer version of the
web server.

It is worth noticing that the information here represents a property of an object and not
objects themselves, hence a plugin only becomes incompatible with a node if the prop-
erties of the node or the node itself changes and not the environment of the node, i.e.
the relationships of the node with other nodes. To keep the scheduler as well as the
type system — and hence the development of plugins — as simple as possible, it is rea-
sonable to make the compatibility between node and plugin only depending on the
availability of certain properties and not the relationships a node has with other nodes.
This mainly affects the scheduling of plugins and the mechanism that checks for com-
patibility. Though using this approach may in some cases produce an overhead it is in
no way a restriction of the possibilities a plugin developer has. A plugin may still de-
pend on the environment of the node, but the responsibility to check for the availability
of certain connected nodes lies in the hands of the plugin developer. The overhead
occurs when plugins are scheduled for execution though they will not be able to exe-
cute because of a missing connected node. These so called false positives produce
only little overhead when plugins check at the beginning if all required information for
their execution is available and return if something is missing.

This approach even makes a specific processing order obsolete, because a processing
order only affects the environment of the node. The node itself and its properties are
independent from the processing order. They only depend on the execution order of
multiple plugins on the same node. If the scheduler would also have to check the envi-
ronment for the availability or existence of specific partner nodes, then the searching
technique could influence what is actually discovered. In this case the order of the exe-
cution of plugins would furthermore depend on the environment of a node and hence
produce a different execution order. Because the scheduling of plugins in the imple-
mented framework does not consider relationships between objects, no specific pro-
cessing order is favorable to the other. The scheduler can rely on the preferences of
the selected system for the management of the nodes to select the order of execution.
For example, if the managing system stores the nodes in an unordered list, the algo-
rithm does not care about the order of nodes. It simply starts with the first node of the
list.

3.4.3 Basic Scheduling Algorithm

Listing 1 illustrates the basic scheduling algorithm in pseudo code which is refined later
in this section. In each iteration step, the scheduler would get the current set of nodes,
calculate a scheduling list that contains a task for each node with the belonging plugin
and finally execute each task on the scheduling list.

3 Concepts 31

while last iteration discovered new information
get all nodes;
for each node of the current topology
calculate scheduling list;
execute scheduling list;
end for

end while

Listing 1 — Scheduling algorithm in pseudo code

The difficult part is the calculation of the scheduling list which includes for each node
the calculation of the plugin that is allowed to execute next on the node. This is trivial if
there is only one compatible plugin for each node type. In this case, the plugin is se-
lected for execution in the next iteration step. The difficult part is when several plugins
can operate on a node. This requires the implementation of a strategy that defines pri-
orities for plugins, either statically or dynamically, e.g. through the use of a history list
and a strategy like Least Recently Used (LRU).

3.4.4 Priority List and Execution History

The scheduler should contain a priority list for each node type that contains the order in
which plugins are executed when there are multiple plugins for the same node type. Of
course, this list would have to be initialized first by the framework, e.g. generating the
list when the plugins are loaded initially. This list should also be editable by the user so
that a user can define which plugin should execute first. The priorities must be man-
aged centrally by the framework not the plugin developer. Otherwise, each plugin de-
veloper could set its priority to the highest level. Managing priorities centrally leaves the
control in the hand of the user.

An example priority list for a Tomcat web server type is illustrated in Figure 7. In this
example there are four plugins that can execute on a Tomcat type, a general web
server plugin and three Tomcat specific plugins that use different methods to discover
information (see Section 3.5.3).

Tomcat Type

1. General Web Server Plugin

2. Tomcat HTML Plugin

3. Tomcat JMX Plugin

4. Tomcat JMX Servlet Plugin

Figure 7 — Priority List for Tomcat web server

3 Concepts 32

Since almost all common scheduling strategies base their decisions on what happened
in the past, it seems to be reasonable to store an execution history for each node in the
model (e.g. in the properties section of the node). This way, this information is portable,
for example, when moving the data to another system. The scheduler uses the saved
history for each node to determine the next plugin that should be executed.

3.4.5 Change of the Environment

A plugin will execute only once on a node, except another plugin changes some infor-
mation after the plugin has worked on the node the last time. This is because another
plugin may have added some information that the plugin can use now to discover addi-
tional information. That means that the plugin must be scheduled again if another
plugin made changes, just to give it the chance to discover additional information.

Furthermore, one must consider that the environment itself has changed after a plugin
has executed the last time, e.g. a plugin that wants to discover information about a web
server based on a provided URL. If the server is down while the plugin is executed, the
plugin will not be able to discover any information. The framework must provide a
mechanism to schedule plugins after they already executed once without success.
There may be cases where a plugin may be informed by an application that it is up
again after being down so that a plugin may start executing again, but this will rather be
the exception. A plugin could also repeatedly check for availability of the server till it is
up again, but this could produce additional traffic on the network. Though it may be
uncommon that an application or server is not available, still the framework must be
able to handle those situations.

3.4.6 User defined Scheduling

The simplest way is to let the user decide, when to check again. For example, the user
could request a complete re-check of the whole topology, e.g. by clearing the history of
scheduled plugins on a node which could then force the scheduler to re-schedule all
plugins again. Another possibility is to allow the user to exactly specify the plugin that
should execute the next time on a node. This could be achieved by adding a property
like nextAction to the node where the user can enter a specific plugin for execution in
the next iteration step. The scheduler can check for the availability of this property and
execute the specified plugin (if it actually exists). Else the scheduler continues with the
usual scheduling of plugins.

The scheduler must also be notified if the user changes properties manually, e.g. the
user can provide a username and a password to access an application via JMX which
then enables a JMX-based plugin to execute. To inform the scheduler of the changes,
the framework could listen for user actions and add an entry to the execution history list
of the modified node. Based on this entry, the scheduler could re-schedule all plugins
for that node that know what to do with that information. If the framework does not sup-
port listening for user actions, the user could also manually set a property that indicates

3 Concepts 33

that the last action was performed manually by the user, e.g. through a property like
lastActionWasUserAction.

3.4.7 Refined Scheduling Algorithm

The basic scheduling algorithm described in Chapter 3.4.3 is refined based on the con-
cepts of the previous chapters to the algorithm described in this chapter and illustrated
in Figure 8.

Last modifying

Plugin
Scheduling history
(ascending) —= ~Ir
ﬂ P3| P2 ﬂ P6 | P3| P1 | Initial Priority

List
P4

. Modifying Plugin ‘
P2 Next scheduled

Non-modifying Plugin P2 | = candidate

P8 | —

P5

P4

P5

P6

Figure 8 — Refined scheduling algorithm

When no user interaction changes the order of the scheduling of the plugins, the
scheduler will work according to the following principle:

¢ When a plugin is executed on a node, it is added to the end of the scheduling
history with a timestamp of the execution date. If the plugin modified the node, it
is marked as a modifying plugin. Else, it is added as a non-modifying plugin.

e If no priority list exists for a node, an initial priority list is calculated from the
available plugins.

e The scheduler takes the (initial) priority list and calculates a filtered priority list
that contains the next scheduled plugin as the first element.

e The filtered priority list is calculated by taking the initial priority list and removing
all plugins in descending timestamp order that are also contained in the sched-
uling history until a plugin is reached that modified the node.

In the example above P1, P3, P6, and then P4 are removed, because P4 was the last
modifying plugin. As P4 was the last modifying plugin, it does not need to execute
again, because nothing has changed since the last execution. Plugins P1, P3, and P6
also do not need to execute, because they executed and could not discover any infor-
mation with the provided information. After removal of the plugins, P2 is the top ele-
ment of the filtered priority list and will be scheduled for execution. The algorithm is
illustrated by pseudo code in Listing 2.

3 Concepts 34

For each node
If node has no priority list
Generate initial priority list;
Fi
Copy priority list to filtered priority list;
Get last executing plugin from scheduling history;
While plugin did not modify node
Remove plugin from priority list;
Move one step back in history list;
End while
If plugin modified node
Remove plugin from priority list;
Fi

Use first plugin in filtered list;

End for

Listing 2 — Refined scheduling algorithm

The user may intervene between iteration steps by selecting a specific plugin for next
execution. In this case, the plugin is selected for next execution. Afterwards the sched-
uler continues with normal execution. Also, all plugins may have executed already with
no changes but the user wants to re-schedule all. This can either be done by clearing
the history and hence leading to a re-scheduling of all plugins, or by adding a dummy
plugin (e.g. a ClearHistory or IgnoreHistory plugin) to the history that simulates a modi-
fication and forces all other plugins to be re-scheduled.

3.5 Plugins

The discovery work is driven by node type-specific plugins which extract the respective
information and add them to the data model. The framework should provide the mech-
anism of plugin installation and un-installation and contain prototypical discovery plug-
ins for BPEL processes, WSDL files, Tomcat application servers, and Active MQ.
There are different ways to discover the existence of such servers and applications,
each of them described in the following chapters.

3.5.1 BPEL

As the discovery process will be built up from the BPEL process (Section 2.4.2) to the
overall topology of the application, it must be determined which information of the

3 Concepts 35

BPEL process can be used to discover the topology. A BPEL process is an orchestra-
tion of Web Services, so a starting point could be the determination of the participating
Web Services. The information that is of interest is not the orchestration itself with its
control flow and data flow, but only the participating Web Services. These Web Ser-
vices can be hosted on different machines and different locations and hence already
represent a part of the local distribution of the topology.

While the control flow and data flow can be of interest for a deeper analysis of the ap-
plication — like it is done in software architecture reconstruction — it is not of high im-
portance when the goal of the analysis is the migration of the application to the cloud.
Because the process model will most likely be obtained in its current state, it is enough
to represent only the relationship between the BPEL process and the invoked Web
Services (WSDL file) as simple directed connections, without any additional control or
data flow (see Figure 9).

4 Process.bpel

& Filel.wsdl & File2.wsdl 4 File3.wsdl

Figure 9 — Relationship between BPEL process and Web Service

A BPEL process uses partnerLinks or partnerLinkTypes to define the external services
it interacts with. These partnerLinks are used by invoke, receive and reply activities to
actually invoke a service or to receive a reply. A partnerLinkType amongst other things
contains the port types of the participating services that are specified in the respective
WSDL files. The BPEL process must contain an import statement for each WSDL file
with the attribute importType having a value of http://schemas.xmlsoap.org/wsdl/.

<bpel:import location="filel.wsdI"

namespace="http://www.example.com/somenamespace"
importType="http://schemas.xmlsoap.org/wsdl/" />

Listing 3 — Import statement in a BPEL file

In a prototypical implementation it is sufficient to check only for these import statements
at the beginning of a BPEL processes, whether they are actually used or not.

It is also worth noticing that the BPEL process — or rather the BPEL file — must be
made available for parsing by the plugin, e.g. providing the file directly or via a URL to
a download link.

http://schemas.xmlsoap.org/wsdl/

3 Concepts 36

3.5.2 WSDL

Some of the BPEL concepts can be applied to the concepts for WSDL (Section 2.4.1)
files, namely that the WSDL file must be made available for parsing. A WSDL file de-
scribes the interface of a web service. The information that is important for a migration
is where the web service is hosted on e.g., is the service hosted on a Tomcat web
server.

A WSDL file consists of many constructs like messages, operations, ports, portTypes,
bindings and services. While messages, operations and portTypes describe the func-
tions that a web service provides, they do not give any information about the implemen-
tation. For example, the actual implementation can be an Enterprise Java Bean (EJB)
developed in Java and hosted on a Tomcat or a .NET application hosted on an IIS. A
first indicator of the implementation can be the WSDL binding and the port.

The most common binding is SOAP over HTTP as it provides the most interoperability
by using the HTTP protocol as transport. If the binding is SOAP over HTTP, the port
tag will contain a soap:address tag that contains the location (i.e. the URL) where the
endpoint is found. Other plugins can take this URL and check which web server is be-
hind that URL.

<wsdl:binding name="GlobalWSoap" type="tns:GlobalWeatherSoap">
<soap:binding transport="http://schemas.xmlsoap.org/soap/http"

style="document"/>
<wsdl:operation name="GetWather">
<soap:operation soapAction="http://webserviceX.NET/GetWeather"

style="document"/>

<wsdl:input>

<soap:body use="literal"/>
</wsdl:input>
<wsdl:output>

<soap:body use="literal"/>
</wsdl:output>

</wsdl:operation>
</wsdl:binding>

<wsdl:service name="GlobalWeather" >
<wsdl:port name="GlobalWSoap"

binding="tns:GlobalWeatherSoap" >
<soap:address

location="http://webservicex.net/globalweather.asmx"/>
</wsdl:port>
</wsdl:service>

Listing 4 — SOAP over HTTP binding example

If guaranteed delivery is more important than interoperability, another binding that can
be used is SOAP over JMS that allows for specification of the location of a Message
Oriented Middleware (MOM) via the Java Naming and Directory Interface (JNDI). The

3 Concepts 37

existence of the SOAP over JMS binding already gives a hint that a MOM must be in-
volved. This information can be used by other plugins, e.g. a plugin can check whether
Apache ActiveMQ is running on the provided location.

<wsdl:definitions name="JMSGreeterService"
<wsdl:binding name="]IMSGreeterPortBinding" type="tns:JMSGreeterPortType">
<soap:binding style="document"
transport="http://www.w3.0rg/2010/soapjms/" />
<soapjms:jndiContextParameter name="name" value="value" />
<soapjms:jndiConnectionFactoryName>
ConnectionFactory
</soapjms:jndiConnectionFactoryName>
<soapjms:jndilnitialContextFactory>
org.apache.activemgq.jndi.ActiveMQInitialContextFactory
</soapjms:jndilnitialContextFactory>
<soapjms:jndiURL>tcp://localhost:61616</soapjms:jndiURL>
<soapjms:deliveryMode>PERSISTENT</soapjms:deliveryMode>
<wsdl:operation name="greetMe">
<soap:operation soapAction="test" style="document" />
<wsdl:input name="greetMeRequest">
<soap:body use="literal" />
</wsdl:input>
<wsdl:output name="greetMeResponse" >
<soap:body use="literal" />
</wsdl:output>
</wsdl:operation>
</wsdl:binding>
<wsdl:service name="JMSGreeterService">
<soapjms:jndiConnectionFactoryName>
ConnectionFactory
</soapjms:jndiConnectionFactoryName>
<soapjms:jndilnitialContextFactory>
org.apache.activemq.jndi.ActiveMQInitialContextFactory
</soapjms:jndilnitialContextFactory>
<wsdl:port binding="tns:JMSGreeterPortBinding" name="GreeterPort">
<soap:address location="jms:jndi:dynQ/test.cxf.jmstransport.queue" />
</wsdl:port>
</wsdl:service>

</wsdl:definitions>

3 Concepts 38

Listing 5 — SOAP over JMS binding example

The information in jndiConectionFactoryName, jndilnitialContextFactory, jndiURL and
soap:address can be used to lookup the message broker via JNDI. Once the broker is
looked up it can be queried for information, e.g. via JIMX if JMX is supported.

3.5.3 Web Server / Application Server

There are different methods to identify a web server. The most obvious and easy one is
to view the corresponding server HTTP-header that is usually sent with the HTTP re-
sponse of a server, e.g. using a tool like Web-Sniffer® to view request- and response
headers. This header usually contains information about the server name and version
number, sometimes even information about the operating system and server exten-
sions, e.g., Apache modules. But sometimes there is no information available at all, or
worse, the provided information is forged, e.g. because revealing this information might
allow the server to become vulnerable to attacks. Most web servers can be configured
to hide or forge this information. Listing 6 and Listing 7 show a request and a response
header. The request is sent from a Firefox® web browser to the host at
192.168.29.130:8080. In this example, the HTTP response that is sent from the server
contains the server element with a value of Apache-Coyote/1.1 which indicates that
there is an Apache server running on that host.

GET / HTTP/1.1
Host: 192.168.29.130:8080

User-Agent: Mozilla/5.0 (Windows NT 6.1; WOW64; rv:11.0) Gecko/20100101
Firefox/11.0

Accept: text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8
Accept-Language: de-de,de;q=0.8,en-us;q=0.5,en;q=0.3
Accept-Encoding: gzip, deflate

Connection: keep-alive

Listing 6 — Request header

HTTP/1.1 200 OK

Server: Apache-Coyote/1.1

Content-Type: text/html;charset=1S0-8859-1
Transfer-Encoding: chunked

Date: Tue, 10 Apr 2012 21:00:27 GMT

® http://web-sniffer.net
® http://www.mozilla.org/

http://web-sniffer.net/

3 Concepts 39

Listing 7 — Response header

Another popular but difficult way is to use fingerprinting. This technique is used, when
web servers are obfuscated by changing the server banner strings. Fingerprinting uses
the fact that almost all HTTP servers differ in the way they implement the HTTP proto-
col [23], like human fingerprints do. This is especially the case when those servers are
confronted with malformed requests, see Listing 8 and Listing 9.

$ nc apache.example.com 80
HEAD / HTTP/1.0

HTTP/1.1 200 OK

Date: Sun, 15 Jun 2003 17:10:49 GMT

Server: Apache/1.3.23

Last-Modified: Thu, 27 Feb 2003 03:48:19 GMT
ETag: "32417-c4-3e5d8a83"

Accept-Ranges: bytes

Content-Length: 196

Connection: close

Content-Type: text/html

Listing 8 — Response from Apache 1.3.23 [23]

$ nc iis.example.com 80
HEAD / HTTP/1.0

HTTP/1.1 200 OK

Server: Microsoft-1IS/5.0

Content-Location: http://iis.example.com/Default.htm
Date: Fri, 01 Jan 1999 20:13:52 GMT

Content-Type: text/html

Accept-Ranges: bytes

Last-Modified: Fri, 01 Jan 1999 20:13:52 GMT

ETag: W/"e0d362a4c335bel:ael"

Content-Length: 133

Listing 9 — Response from IIS 5.0 [23]

This response represents a unique fingerprint or signature. The fingerprints are then
usually compared to fingerprints in a database. In this example, it is easy to see that
the server element and the date element are swapped. Some information is available
only in one response, e.g. the connection element in the Apache response.

Apache Tomcat

3 Concepts 40

To identify an Apache Tomcat Server, there are a number of things to consider when
using some of these techniques. Though sometimes Tomcat is declared as being a
web server, it is actually a servlet container implementing the Java Servlet [24] and
JavaServer Pages (JSP) [25] specifications. Additionally, it contains the Apache Coy-
ote connector that supports the HTTP/1.1 protocol, which enables Tomcat to function
as a stand-alone web server [26]. When used in stand-alone mode, Tomcat will identify
itself as “apache coyote/1.1” in the server header of an HTTP response.

Tomcat should not be confused with the Apache HTTP Server’, a popular web server
in the internet. There are a lot of scenarios where Tomcat is not used as a stand-alone
web server but behind an Apache HTTP Server and connected through the Tomcat
redirector module (mod_jk), e.g. when the web server has to provide additional func-
tions like supporting PHP or CGI scripts. Other scenarios use an Apache HTTP Server
for load balancing of multiple Tomcat servers, or using a Tomcat behind a firewall that
is only accessible through the HTTP Server. In these cases, the HTTP Server will iden-
tify itself as “Apache [version number]”. If the HTTP response contains mod_jk in the
Apache modules, then this could be a hint that there is also a Tomcat running some-
where. Of course, the Tomcat instance (or instances) could be hosted on a complete
different machine.

For Tomcat, there are additional ways to discover information about it, e.g. Tomcat
provides a management console that is (remotely) accessible via a web browser at
http://localhost/manager/status (Figure 10).

e Apache

Software Foundation
http://www.apache.org/

Server Status

Manager
List Applications | Manager Help Complete Server Status
Server Information
Tomcat Version 0S5 Name 0S5 Version Hostname IP Address
< Apache Tomcat/7.0.26 _Linux_> 2.6.35-22-genenc ubuntu 127.0.1.1

Figure 10 — Tomcat Web Console

Through parsing of this HTML document, one could detect the exact Tomcat version,
e.g. in this example Apache Tomcat 7.0.26. Additionally the console provides infor-
mation about the operating system (see next section). In this case, the OS name is
Linux and the version is 2.6.35-22-generic.

" http://httpd.apache.org/

http://localhost/manager/status
http://httpd.apache.org/

3 Concepts 41

Furthermore, Tomcat can be configured to use JMX for managing and monitoring of
the server. Through the use of a JMX console (e.g. JConsole®) one could gain access
to a running Tomcat instance. The example in Figure 11 shows a screenshot of
JConsole being connected to a Tomcat instance.

-

[£] Java Monitoring & Management Console - controlRole@service:jmxrmiz/{/jndi/rmi://192.168.29.... [=NACY ﬁj

| £ Connection Window Help - & »
| Overview | Memory IThreads I Classes | WM Summary | MBeans | ==
[#- || GlobalReguestProcessor . || attribute value
-- , Host
[| IspMonitor Marme
-- | Loader serverInfo |Apad‘ueTu:umcatf?.D.26
[MBeanFactory L —
[#- | Mapper
--|f¢§] NamingResources MEeanAttributeInfo
-- , ProtocolHandler Name Value
5y Realm E| | lattribute: o
.. . RequestProcessor Name cerverinfo |?
|‘¢§_‘| ;:rs::rrce Description Tomcat server release identifier |i
= : Readable true
- Writable false Y.
-~port 4
~managedResource Descriptor
W Mame Value
--stateMName
--gerviceMames
-~modelerType
--ghutdown
[H-Operations -

Figure 11 — Monitoring Apache Tomcat with JConsole

The connection string to connect to Tomcat via JMX is shown in Listing 10, where host
and port have to be adapted to the host name and port number that Tomcat is listening
on.

service:jmx:rmi:///jndi/rmi://host:port/jmxrmi

Listing 10 — Tomcat JMX connection string

As seen in Figure 11, the serverinfo attribute of the server object shows the server
name and the server version. In this example, the name is Apache Tomcat and the
version number is 7.0.26. Additionally, the operating systems name and version num-
ber could also be determined through JMX as it was with the management console
shown above.

Another way to query Tomcat for information is to use the JMX-Proxy of the manager
application, provided the application is installed. The following Listing shows a call to
the servlet.

8 http://docs.oracle.com/javase/1.5.0/docs/quide/management/jconsole.html

http://docs.oracle.com/javase/1.5.0/docs/guide/management/jconsole.html

3 Concepts 42

http://host:port/manager/jmxproxy?qry=Catalina:type=Server

Listing 11 — Calling Tomcat JMX Servlet

The result of the query is shown in Listing 12.

OK - Number of results: 1

Name: Catalina:type=Server

modelerType: org.apache.tomcat.util.modeler.BaseModelMBean
port: 8005

managedResource: StandardServer[8005]

address: localhost

stateName: STARTED

serviceNames: Array[javax.management.ObjectName] of length 1
Catalina:type=Service

serverInfo: Apache Tomcat/7.0.26

shutdown: SHUTDOWN

Listing 12 — Result of a JIMX Servlet query

The result shows again the serverinfo element which contains the server name and
version number. The possibilities for IMX queries through the servlet match the ones of
a real JMX connection. Hence, the operating system can also be identified through the
JMX servlet.

3.5.4 Operating System

Detecting the Operating System (OS) is similar to web server detection — more specific
— the use of fingerprinting. Like HTTP responses are used to fingerprint web servers,
OS detection programs analyze how systems respond to TCP/IP probes. These re-
sponses represent a fingerprint. Tools like Nmap [27] usually have a huge database of
heuristics to identify different systems.

Another way to detect the OS is using programs that run on the machine where the OS
is running which provide this information, assuming one has access to these programs,
e.g. a web server like Tomcat usually knows the OS it is running on and sometimes
even provides this information with an HTTP response or via a web console (see previ-
ous section). This way, a web server plugin that detects the web server type could also
detect the operating system.

3 Concepts 43

3.5.5 ActiveMQ

There are various ways to monitor ActiveMQ, e.g. using the Web Console by pointing
the browser at http://localhost:8161/admin, which is available since version 4.2 and
later (Figure 1).

ActiveMO

Home | Queues | Topics | Subscribers | Connections | Network | Scheduled | Send

Welcome!

Welcome to the ActiveMQ Console of localhost (ID:ubuntu-43333-1331490604282-0:1)

You can find more information about ActiveMQ on the Apache ActiveMQ Site

Broker
Name localhost
Wersion
e ID:ubuntu-42323-13314906042582-0:1
Store percent used o

Memory percent used 0

Temp percent used o

Figure 12 — ActiveMQ Web Console

For external discovery of a running ActiveMQ instance, the HTML content of this gen-
erated website could be parsed for the actual version number of ActiveMQ, much like it
can be done with the Tomcat management console.

Alternatively, one can use JMX support to view the running state of ActiveMQ. JMX
support can be enabled or disabled by

1. Running a broker with the broker property useJMX set to true, e.g.

broker:(tcp://host:port)?uselmx=true

Listing 13 — Running a broker with useJMX property

2. Running a JMX console (e.g. JConsole)
3. And connecting to the given URL, e.g.

service:jmx:rmi:///jndi/rmi://host:port/jmxrmi

Listing 14 — Connecting to URL

The host and port elements again have to be set to the corresponding values.

http://localhost:8161/admin

4 Architecture and Design 44

4 Architecture and Design

The previous chapters already covered the different technologies and the concepts that
the framework and plugins must support. This chapter explains the resulting architec-
ture and design decisions. It also highlights the possible advantages and disad-
vantages of the approach and identifies potential difficulties and problems.

4.1.1 Use Cases

The following is a description of the different use cases that the framework has to sup-
port. This includes use cases for the creation of a new (empty) project, loading and
saving of projects, editing of a project (internally or externally via a text editor) and the
start — respective restart — of the discovery process (Figure 1). The user should also
have the possibility to develop new plugins, and to install or uninstall them.

Framework

Edit Project with
Text Editor

Load Project
«extegeh

NS
«e

«uses»

Text Editor

ends»

Edit Project in
Framework
»

User

«extends
Create new Project A

Develop new Plug-in

Developer .
Install new Plug-in

Uninstall plugin

Administrator

Figure 13 — Use Case Overview and Roles

4 Architecture and Design

45

Name Create New Project

Goal The framework should provide the user with a newly created
(empty) project.

Actor A user that wants to use the framework to start a new application

Pre-Condition
Post-Condition

Post-Condition in
Special Case

Normal Case

Special Case

topology discovery process.
The framework is running.
A new, empty project is created and presented to the user.

No project was created by the framework. The user is notified
that the project could not be created. The framework reverts
back to the state before the user action.

The framework creates an empty project with the name and loca-
tion provided by the user.

The framework is unable to create a project.

Table 2 — Use Case: Create New Project

Name Load Project

Goal The framework should load the provided file into the framework
and present it to the user.

Actor A user that wants to use the framework to view a previously cre-

Pre-Condition
Post-Condition

Post-Condition in
Special Case

Normal Case

Special Case

ated discovery project.
The framework is running.
The project is loaded and presented to the user.

The project is not loaded. The user is notified that the framework
was unable to load the project. The framework continues with the
state before user action.

The framework loads the project with the given filename from the
provided location.

The framework is unable to load the project.

Table 3 — Use Case: Load Project

4 Architecture and Design

46

Name Save Project

Goal The framework should save the currently active project at the
user provided location.

Actor A user that wants to save the current discovery project as a file.

Pre-Condition

Post-Condition

Post-Condition in
Special Case

Normal Case

Special Case

The framework is running and the user has either loaded or cre-
ated a new project.

The currently active project is saved to the file system at the giv-
en location with the given file name.

The project is not saved to the file system. The user is notified
that the framework was unable to save the project. The frame-
work continues where it stopped before user action.

The Framework stores the currently active project to the file sys-
tem.

The Framework is unable to store the project.

Table 4 — Use Case: Save Project

Name Edit Project in Framework
Goal The user can edit the currently active project.
Actor A user that wants to change or add information to the project.

Pre-Condition

Post-Condition

Post-Condition in
Special Case

Normal Case

Special Case

The framework is running and the user has either loaded or cre-
ated a new project.

Project contains new information or certain information changed
according to the users request (e.g. a new BPEL node was add-
ed to the project)

No changes were made to the active project. The framework
continues in the state it was before user action. The user is in-
formed that the requested action could not be completed.

The framework changes information or adds information accord-
ing to the request of the user.

The framework is unable to complete the request of the user.

Table 5 — Use Case: Edit Project in Framework

4 Architecture and Design 47

Name Edit Project with Text Editor

Goal The user should be able to modify a saved project with a (text)
editor so that projects can be modified outside of the framework.

Actor A user that wants to add or change information in a project with-
out using the framework (e.g. because the framework is not
available at the moment).

Pre-Condition A project has been saved to the file system and that project is
available as a file. Furthermore, an editor (e.g. a text editor) that
is able to read the file format of the project must be available.

Post-Condition The project was altered and the changed project has been saved
to the file system.

Post-Condition in No changes were made to the project. The file remains in its

Special Case state without being altered.
Normal Case The user edits the project in an editor and saves the changes.
Special Case The user makes no changes to the project (e.g. the file is only

viewed with an editor).

Table 6 — Use Case: Edit Project with Text Editor

Name Start Discovery

Goal The framework should start the discovery process on the cur-
rently active project. The provided information in the project is
used to discover more information by using programs (plugins).
The order and execution of the programs is managed by the

framework.
Actor A user that wants to start a discovery on a certain infrastructure.
Pre-Condition The framework is running and currently there is an open and

active project. Furthermore, the current project contains enough
information for the start of the discovery process. To restart the
discovery (if there was a previous discovery on the project), ei-
ther additional information has been added to the project, or ad-
ditional programs have been added to the framework.

Post-Condition The discovery process discovered new information that is added
to the project.

Post-Condition in The discovery process did not discover any new information. The
Special Case project is not altered.

Normal Case The discovery process uses the provided information in the pro-
ject to discover new information. This information is added to the

4 Architecture and Design 48

Special Case

project.

The discovery process tries to discover new information with the
provided information, but no additional information is discovered.

Table 7 — Use Case: Start Discovery

Name Develop new Plugin

Goal Develop a new plugin so that additional functionality is bundled
as a plugin and later installed to the framework.

Actor Developer that bundles additional functionality in a plugin.

Pre-Condition

Post-Condition

Post-Condition in
Special Case

Normal Case

Special Case

A development tool must be available.

A new plugin is created and bundled as an installable form for
the framework.

No plugin was created.

The plugin is created and bundled as an installable form.

The plugin is not created. Development is paused or canceled.

Table 8 — Use Case: Develop new Plugin

Name

Install new Plugin

Goal

Actor

Pre-Condition
Post-Condition

Post-Condition in
Special Case

Normal Case

Special Case

Add additional programs (plugins) to the framework so that they
can be used by the framework to discover additional information.

Administrator that is allowed to install new plugins to the frame-
work.

The framework is available (i.e. on the file system)
The provided plugin is installed to the framework.

No plugin was installed to the framework. The user is informed
that the request could not be completed. No changes were made
to the framework.

The plugin is installed to the framework and added to the list of
known plugins.

The plugin is not installed to the framework.

Table 9 — Use Case: Install new Plugin

4 Architecture and Design 49

Name Uninstall Plugin

Goal Remove installed plugins from the framework.

Actor Administrator that is allowed to uninstall plugins from the frame-
work.

Pre-Condition The framework is available.

Post-Condition The selected plugins are no longer available in the framework.

Post-Condition in No plugin was uninstalled from the framework. The user is in-
Special Case formed that the request could not be completed. No changes
were made to the framework.

Normal Case The framework removes the selected plugins.

Special Case The framework is unable to remove the plugins.

Table 10 — Use Case: Uninstall new Plugin

4.2 Design Decisions

At the beginning of the decision process for a specific architecture or design, there is
always the question whether there are parts of the architecture that are already devel-
oped or available and what parts must be developed newly. Some decision require-
ments where already provided by the assignment of tasks for this diploma thesis, e.g.
that the framework should be plugin-based. The advantages and disadvantages of this
plugin-based approach are already explained in detail in the conceptual chapter of this
document (Section 3.1).

4.2.1 Java

Other decisions are based on the knowledge and experience that the author of this
document has with different technologies, in due consideration of the possible ad-
vantages and disadvantages and the applicability of these technologies. For example,
the author was familiar with the development of applications in Java. Though Java was
the preferred programming language of the author, it is at the same time one of the
most common programming languages and characterized by its ability to run on a wide
range of systems. The interoperability of Java predestinates the language for the de-
velopment of a plugin-based framework, making the application available on different
systems and through its wide acceptance by developers the ideal solution for a frame-
work that should be extendable by other developers.

On a low level basis a Java class or a Java interface could already represent a plugin.
A framework — represented by a class — could lookup all classes that implement a cer-
tain interface. Adding of plugins could be done by adding additional classes to the

4 Architecture and Design 50

CLASSPATH. But adding plugins dynamically could become very difficult. This is why
an advanced approach that supports installation and management of plugins is desira-
ble, e.g. like an OSGi-based approach.

4.2.2 OSGi

The Open Services Gateway initiative (OSGi) [28] is a dynamic module system for Ja-
va. While Java provides the technology to run programs on different platforms, OSGi
provides the technology to construct applications from reusable and collaborative com-
ponents. One benefit of the service platform is the possibility to install, update, start,
stop and uninstall service applications (bundles) both dynamically and controlled at run
time. Those independent and modular bundles can run in parallel inside the same Java
Virtual Machine (JVM) and they can be managed and updated throughout the whole
lifecycle. Dependencies between bundles are automatically resolved and version man-
agement is available.

The origin of OSGi is in embedded systems and that is why it is often used in automo-
biles, mobile devices, and building automation like assisted living and facility manage-
ment. In addition, a famous example of the usage of OSGi is the Eclipse IDE’. Eclipse
uses the Equinox OSGi framework'® and since version three of Eclipse, every plugin is
an OSGi bundle. As of this writing the current version of the OSGi specification is 4.3.

An OSGi framework is an open, modular and scalable service delivery platform based
on Java and provides a standardized environment to applications (bundles). It is a
component model with a service registry but the term service means nothing more than
an interface and is not to be mistaken with the term service in a Service Oriented Archi-
tecture (SOA), though OSGi can be used as a fundamental component model for a
SOA. The OSGi Alliance specifies only the execution environment, the APl and the test
cases for third party OSGi implementations. A reference implementation of an OSGi
framework is provided by the OSGi Alliance but it is not intended for productive use
[29].

The benefits of using an OSGi framework over a simple (self-developed) Java applica-
tion for the framework developed in this diploma thesis are obvious. Considering a
plugin as a bundle in an OSGi environment, an OSGi framework already provides eve-
rything that is needed for installation, un-installation, and managing of these plugins.
The concept of OSGi has proven itself to be valuable in various projects, and many
OSGi implementations are technically mature. This is why OSGi is the chosen envi-
ronment for the developed application.

® http://www.eclipse.org/
19 hitp:/lwvww.eclipse.org/equinox/

http://www.eclipse.org/
http://www.eclipse.org/equinox/

4 Architecture and Design 51

4.2.3 Eclipse RCP

The previous chapter already identified the Eclipse IDE as an OSGi framework through
the use of the Equinox OSGi framework. While the Eclipse platform is designed to
serve as an open tools platform, it is architected in a way that its components can be
reused to build almost any client application [30]. The minimal set needed to build a
rich client application is commonly known as the Eclipse Rich Client Platform (RCP)'.
That is why many of the aspects and components of the Eclipse IDE can be found in
other Eclipse-based applications, for example the workbench design of the user inter-
face, the extensible plugin system, the help components, and the update manager [31].
The strength of the platform is its set of mature components for graphical applications,
a consistent elaborated concept of operations, an amount of extensions, tools and
support, and the integration of development tools for plugin development into the
Eclipse IDE (Eclipse for RCP/plugin developers) [31]. As the components can be used
separately — i.e. independent from the IDE — Eclipse RCP is the predestinated solution
for the plugin-based framework for application topology discovery, developed through-
out the course of this diploma thesis. The components that make up Eclipse RCP are
illustrated in Figure 14.

Own Plugins
p2
Help (update) Forms

Eclipse Ul, Workbench

JFace
Core

Runtime

Standard Widget Toolkit (SWT)

OSGi Runtime Equinox

Java Runtime

Figure 14 — Components of Eclipse RCP (Adapted from [31])

M hitp://www.eclipse.org/rcp/

http://www.eclipse.org/rcp/

4 Architecture and Design 52

o OSGi Runtime Equinox: OSGi specifies the runtime for the execution of mod-
ules. Eclipse Equinox implements this specification. Eclipse plugins are execut-
ed in Equinox.

o Core Runtime: provides general, non-Ul functionality for Eclipse applications,
e.g. life-cycle management and initialization of applications.

o Standard Widget Toolkit (SWT): the Ul toolkit of the Eclipse platform. It pro-
vides a minimal abstraction layer for the Ul-widgets of the operating system.

o JFace: provides advanced functionality like the supplying of Ul-widgets with da-
ta from Java objects.

o Eclipse Ul: provides the workbench, an empty graphical application that sup-
ports Views, Editors, Perspectives, Menu-structures, etc. which can be extend-
ed by plugins.

The decision to use Eclipse RCP (with Equinox as the OSGi implementation) is also
based on the possibility to easily add a graphical user interface to the application,
which was not required by the assignment of tasks, but strongly helps to visualize the
discovered information. Its wide acceptance by developers and its great community
has also led to a good documentation and provides the needed information for devel-
opment.

4.2.4 Eclipse Modeling Framework (EMF)

The Eclipse Modeling Framework (EMF) [32] is a Java/XML framework for generating
tools and other applications based on simple class models. The intension of EMF is to
provide easy formal modeling and code generation. Objects can be saved as XML
documents and models can be created through the use of annotated Java, XML docu-
ments or modeling tools. The modeled objects can be turned into a set of Java classes
that can be extended and regenerated, which means that the developer can add meth-
ods and variables that endure the regeneration of the code. These changes can also
be used to update the model [33]. Furthermore, it provides a set of adapter classes for
viewing and command-based editing of the model, and a basic editor.

EMF consists of three fundamental pieces [32]:

o EMF - The EMF framework contains a Meta model (an Ecore file) for the de-
scription of models and the runtime support for these models, persistence sup-
port, and a reflective API for the manipulation of objects.

o EMF.Edit — The EMF.Edit framework allows for the creation of editors for the
EMF models by providing generic reusable classes. This includes content and
label provider classes, property source support, and classes that support dis-
playing of EMF models using standard desktop viewers (JFace). Additionally it
provides a command framework for building of editors that support automatic
undo and redo.

o EMF.Codegen — The EMF.Codegen framework is responsible for the genera-
tion of the code up to a complete editor for the EMF model.

4 Architecture and Design 53

Basing the developed framework on OSGi or rather Eclipse RCP with the Equinox
OSGi framework already introduces a lot of valuable features that are required by the
framework, especially because these tools and frameworks do not have to be newly
developed. Using EMF for the definition of the data model, with the benefit of the sub-
sequent code generation additionally eases the development process, because the
generated editors already provide editing capabilities as well as persistence of the
model, especially to XML files which is the preferred format for the exchange with other
applications. The generated code is available as plugins that can run inside the Eclipse
framework and hence are perfectly suited for integration with an Eclipse RCP applica-
tion.

4.2.5 Graphical Modeling Framework (GMF)

The Graphical Modeling Framework (GMF) is a framework for building modeling-like
graphical Eclipse-based editors [34], e.g. business process editors, flow editors, and
UML editors. The framework has two components:

o Tooling — consisting of editors to create and edit models describing the nota-
tional, semantic and tooling aspects of a graphical editor and the code genera-
tor.

o Runtime — providing the runtime for the generated plugins

Before GMF was introduced, graphical frameworks often used EMF and the Graphical
Editing Framework (GEF) [35]. As there were different technical challenges integrating
EMF and GEF (e.g. because of different command stacks), the GMF project was de-
veloped to bridge the tow technologies. In the same way EMF generates editors for
EMF models, GMF generates graphical editors. The generation process is illustrated in
Figure 15.

Develop

—= graphical
definition
Develop , Create
Crearte_t GtMF - tooling > == generator
projec definition R model)
-gmfgen
Dormain N
T_Dmodelis} Adjust
—ecora generation
parameters
Develop |
mapping ——
definition Generate
diagram
plug-ins
-gmfmap ;

O

Figure 15 — GMF overview [36]

4 Architecture and Design 54

After the creation of the domain model (Ecore file), the first model to generate is the
graphical definition that defines the visual aspects of the generated editor, e.g. the fig-
ures that are to be displayed on the diagram. The tooling definition contains information
about the editor palettes and menus, while the mapping definition defines the mapping
between the business logic (EMF model) and visual model (graphical and tooling defi-
nition) [36]. The final step of the process is the generation of the code for the editor.

The decision to use GMF to develop a graphical editor has mainly the reason to give
the user a graphical representation of the discovered topology. As the core functionality
is still handled by the EMF framework, e.g. persistence and programmatically editing of
the model, GMF can be seen as an additional feature of the implemented framework,
though GMF has far more features to show than actually used in this implementation.
Eclipse provides a great utility called GMF dashboard that serves as an easy way to go
through the process of generating a graphical editor. Furthermore, a tutorial [37] pro-
vides a good starting point for the development of GMF applications.

4.3 Resulting Architecture

The following architecture is the result of the use of OSGi, Eclipse RCP, and Eclipse
EMF and GMF as design decision.

Plugin Plugin Plugin Plugin

ATDF Plugin Extension Point
Plugin Manager
Type System Scheduler
EMF/GMF
Editors
Hel p2 EMF/GMF
P (update) Runtime
Eclipse Ul, Workbench
JFace
OSGi Runtime
Equinox
Standard Widget Toolkit (SWT)

Rich Client Platform

ATDFramework

Figure 16 — Resulting architecture of the ATDFramework

4 Architecture and Design 55

The architecture mainly consists of three parts: (1) a set of plugins that form an Eclipse
RCP application, (2) a set of plugins that together with the RCP plugins build the
framework, and (3) a set of discovery plugins that are not bundled with the framework
but developed independently to extend the framewaork.

4.3.1 ATDFramework

The ATDFramework contains the set of plugins that make up an Eclipse RCP applica-
tion. These plugins do not need to be developed. They are generated or rather gath-
ered by the code generator of GMF, the descriptor files (plugin.xml) of the different par-
ticipating plugins when they specify a dependency to a specific plugin, and the product
configuration file of the framework. The required components that are integral part of
every user interface-enabled RCP application are the OSGi Runtime Equinox, and the
Workbench that uses JFace and the Standard Widget Toolkit (SWT). Optional compo-
nents, but needed by the ATDFramework, are the help system, p2 update mechanism,
and the EMF/GMF runtime that is needed by the EMF/GMF editors. Figure 16 shows
all these components in red and yellow.

The green parts of the diagram represent the developed parts of the framework. These
are the type system that manages the installed types, the scheduler that controls the
scheduling and the execution of plugins, and the plugin manager that manages the
installed plugins and is mainly used as an agent between framework and plugins to
make the framework more robust, e.g. to prevent the framework from crashing if a sin-
gle plugin crashes. The EMF and GMF editors are generated according to the specified
data model and the graphical, tooling, and mapping definition. A particular component
is the ATDF Plugin Extension Point. Extension points facilitate the possibility to contrib-
ute functionality to a plugin by other plugins. A plugin can open itself up for other
plugins through the definition of an extension point. This extension point then defines a
contract how other plugins can contribute functionality. For example, Eclipse defines
extension points for menu entries of the toolbar of Eclipse. One can add menu entries
by contributing an extension to the menu extension point. The ATDFramework defines
such an extension point so that other plugins can contribute functionality to the
ATDFramework by contributing an extension. This extension point is the contract be-
tween the ATDFramework and the plugins and defines what functions a plugin must
provide to contribute to the ATDFramework.

4.3.2 Plugins

The plugins are independent contributions to the framework by other developers. They
are not an actual part of the framework, but they must conform to the contract that is
defined by the ATDF plugin extension point. This contract is a simple Java interface
that contributing plugins must implement.

It is worth noticing, that the overall application is still an RCP application and hence can
be extended by any plugin type. This allows plugins that extend the ATDFramework by

4 Architecture and Design 56

providing actual discovery functionality also to provide additional functionality to other
extension points, e.g. contributions to the menu of the ATDFramework. This gives the
plugin developer a lot of options, e.g. a BPEL plugin can provide a menu entry that
calls a dialog where the user provides a URL to the BPEL file. The plugin could then
automatically add a new node to the project with the location property set to the speci-
fied URL.

5 Prototypical Implementation ATDFramework 57

5 Prototypical Implementation ATDFramework

The ATDFramework was developed as a prototype using the Eclipse IDE. The source
code is available as different Eclipse projects. This chapter describes the necessary
steps to create the GMF based project and to generate the code based on the created
definition files (5.1), as well as the release to a final product. Furthermore, the exten-
sions to the generated code that make up the framework (5.2) as well as each discov-
ery plugin (5.3) are described in detail.

5.1 Project Setup and Modeling

The project setup follows many of the steps of the Eclipse GMF tutorial [37] with ad-
justments to the different definition files according to the data model of the
ATDFramework. The used versions during development are Eclipse 3.7 (Indigo), GMF
runtime version 1.5, and GMF tooling version 2.4.

Development of GMF-based applications becomes very simple through the use of the
provided dashboard view. It accompanies the user throughout the whole definition pro-
cess, e.g. it defines a diagram where the user creates or adds new definition models
and displays the progress (Figure 17).

Select ' Edit ' Create

Domain Gen Model

Select/ Edit / Reload Select /Edit/ Create Select /Edit/ Create
Generate diagram editor

Figure 17 — GMF Dashboard

The first step is the creation of a new GMF project found under the Graphical Modeling
Framework category in the New dialog (File -> New), with the dashboard option ena-
bled. The name of the project is de.kreinjb.gmf.atdframework. The new created project
contains a model folder where all the model definition files are stored.

5 Prototypical Implementation ATDFramework 58

5.1.1 Domain Model

The next step is the creation of the domain model that is stored in an Ecore file called
atdframework.ecore. The complete model is shown in Figure 18. The model is created
using the integrated modeler in Eclipse. Other possibilities involve the creation of the
Ecore file from an XML schema or an annotated Java interface.

4 |#| platform:/resource/de kreinjb.gmf.atdframework/model/atdframework.ecore
4 8 atdframework
a [Project
. & name: E5tring
- =t nodes: Node
- 5=t connections : Connection
a [Mode
. & name: E5tring
- o lastMedifiedBy : EString
- & nextCheckBy : EString
. & type: Etring
. =+ properties : Properties
. =+ schedulingHistory : SchedulingHistory
a [Connection
- = name: E5tring
» = source: Mode
. = target: Mode
a [Property
. & type: Etring
. & name: E5tring
- & value: EString
a4 [Properties
- 53t property : Property
H SchedulingHistory

4
- =t entry : Entry
a [Entry

- & timestamp : EDate
. o plugin: EString
. o maedified : EBoclean

Figure 18 — Domain model (atdframework.ecore)

The Ecore file is selected as the domain model in the dashboard view.

5.1.2 Domain Gen Model

Afterwards, the genmodel can be derived from the Ecore file in the dashboard view.
The file is named atdframework.genmodel. This genmodel file is almost the same as
the Ecore file but it contains additional Meta information. For example, the genmodel is
used to generate the code for the implemented Java classes and the editors, and
hence allows for specifying of the package names of the generated classes. The pack-
age property in the genmodel is set to atdframework and the base package property is
set to de.kreinjp.gmf. This way, all generated packages will start with

5 Prototypical Implementation ATDFramework 59

de.kreinjb.gmf.atdframework, e.g. the generated editor is generated in the package
de.kreinjb.gmf.atdframework.editor. Other options that are specified are the file exten-
sion for the file that contains the model (.atm) and the resource type (XML). Finally, the
Java classes are generated from the genmodel file. This is done by right-clicking the
file. The popup menu then allows for generating the individual code parts (individual
plugins) or all parts. These are four different plugins. The model code is generated in-
side the original created plugin that contains the model files. Furthermore, the generat-
ed plugins are an Edit plugin (de.kreinjb.gmf.atdframework.edit), an Editor plugin
(de.kreinjb.gmf.atdframework.editor), and an optional test plugin
(de.kreinjb.gmf.atdframework.tests). To show the whole amount of generated classes
would go beyond the scope of this document. The four generated projects and their
packages are illustrated in Figure 19.

4 Tf’_—‘_'lr de.kreinjb.gmf.atdframework
4 [src
. B3 dekreinjb.gmf.atdframework
-} dekreinjb.gmf.atdframework.impl
- B} dekreinjb.gmf.atdframework.util
4 [model
atdframework.ecare
[t atdframework.genmodel

i pluginxml
4 IL—j- de.kreinjb.gmf.atdframmework.edit

4 [src

- B} dekreinjb.gmf.atdframework.provider

% pluginxml
E_Jr de.kreinjb.gmf.atdframework.editor

[
B} dekreinjb.gmf.atdframewerk.presentation
) pluginxml
'L:_lj- de.kreinjb.gmf.atdframework.tests

(% src

B3 dekreinjb.gmf.atdframework.tests

Figure 19 — Project structure after EMF code generation

The packages in the de.kreinjb.gmf.atdframework project contain the interfaces and the
factory to create the Java classes (de.kreinjb.gmf.atdframework), the concrete imple-
mentation of the interfaces defined in the model (de.kreinjb.gmf.atdframework.impl),
and the adapter factory (de.kreinjb.gmf.atdframework.util). Java classes for the editor
are in the de.kreinjb.gmf.atdframework.edit and de.kreinjb.gmf.atdframework.editor
project. Test classes can be found in the de.kreinjb.gmf.atdframework.tests project.

5.1.3 Graphical Def Model

The next step is the graphical definition. The graphical model definition can again be
derived from the domain model using the dashboard. In the opening dialog, the project

5 Prototypical Implementation ATDFramework 60

element must be selected as the diagram element. The domain elements that must be
processed are Node as nodes element, Connection as connections element, and the
Node-Name and Connection-Name as attributes. At the end of the process a new
graphical model definition (atdframework.gmfgraph) is created in the model folder of
the original project. This file contains the graphical representations of the elements in
the domain model, e.g. a rectangle shape for a node and a polyline for a connection.
Adjustments made to the graphical model are mainly a rounded rectangle instead of a
square rectangle for the node and some minor adjustments of the layout of the node.
Figure 20 shows the contents of the file after modification.

i platform:/resource/de.kreinjb.gmf.atdframework/model/atdframework.gmfgraph
4 4 Canvas atdframework
4 < Figure Gallery Default
<+ Polyline Decoration ConnectionFigureTargetDecoration
4 <= Figure Descriptor ModeFigure
4 <» Rounded Rectangle ModeFigure
4 Border Layout
4 <+ Margin Border
4 Insets 5
4 < Label ModeMameFigure
<+ Border Layout Data CEMTER
<= Child Access getFigureModeMameFigure
4 < Figure Descriptor ConnectionFigure
4 4+ Polyline Connection ConnectionFigure
4 Label ConnectionMameFigure
<= Child Access getFigureConnecticnMameFigure
4 Mode Mode (ModeFigure)
<+ Connection Connection
<+ Diagram Label NodeMame
<+ Diagram Label ConnectionMame

Figure 20 — Graphical model definition (atdframework.gmfgraph)

All elements are placed on a Canvas object. The Figure Gallery contains Figure De-
scriptors that describe the visual appearance of an object. There are Figure Descriptors
for a Node Figure and a Connection Figure — the only two graphical figures of the edi-
tor. Further elements are Diagram Labels that define which attributes of an object are
used to label the object, e.g. the name attribute of the node is used to label the node on
the diagram and the name attribute of the connection is used to label the connection on
the diagram.

5.1.4 Tooling Def Model

After the definition of the graphical model, the next step again uses the dashboard to
derive the graphical tooling definition (atdframework.gmftool) from the domain model.
The tooling definition describes the palette and the tools that are available in the graph-
ical editor, giving the user the option of graphical modeling. The final tooling definition
is illustrated in Figure 21.

5 Prototypical Implementation ATDFramework 61

a |22 platform:/resource/de kreinjb.gmf.atdframework/model/atdframework.gmftool
4 <4 Tool Registry
4 Palette atdframeworkPalette
4 4 Tool Group atdframework
4 4= Creation Tool Mode
4 Default Image
4 Default Image
4 4= Creation Tool Connection
4= Default Image
4 Default Image

Figure 21 — Graphical tooling definition (atdframework.gmftool)

It is derived similarly to the graphical definition model by selecting Project as the dia-
gram element and processing Node as a node element and Connection as a connec-
tion element in the opening dialog of the derive action in the dashboard view.

5.1.5 Mapping Model

Finally, the domain model definition, graphical model definition, and graphical tooling
definition must be combined into a mapping definition (atdframework.gmfmap).

a |B® platform:/resource/de.kreinjb.gmf.atdfrarmework/model/atdframework.gmfmap
a 4 Mapping
4 K Top Mode Reference <neodes:Mode/Modes
4 [T Mode Mapping <Mode/Mode>
ab Feature Label Mapping false

) Link Mapping < Connection{Connection.source:Mode-> Connection.target:Node}/Connection>
Canvas Mapping

.] platform:/resource/de kreinjb.gmf.atdframework/model/atdframework.ecore

- de platform:/resource/de kreinjb.gmf.atdframework/model/atdframework.gmfgraph

Figure 22 — Graphical mapping definition (atdframework.gmfmap)

The mapping definition defines how the other models work together, e.g. a new figure
(graphical definition) is created on the canvas and a new node instance (model defini-
tion) is created in the domain model when the user drags a node from the palette (tool-
ing definition) to the canvas. This step is again achieved through the use of the dash-
board. In the opening dialog, the Project was selected as canvas mapping. The Nodes
list in the domain model elements mapping contains only the Node element, the Links
list contains only the Connection element.

Note: the GMF code generator contains a bug which sometimes creates wrong crea-
tion tools in the mapping. This must be checked manually and corrected if necessary.

5.1.6 Diagram Editor Gen Model

The last model that must be created or rather generated is the diagram editor gen
model (atdframework.gmfgen), which is similar to the creation of the genmodel from an

5 Prototypical Implementation ATDFramework 62

Ecore file in EMF. This file contains additional information that is needed for code gen-
eration and is created by using the transform link in the dashboard. The option for RCP
creation is selected because the ATDFramework should be an RCP-based application.
After the file is generated it has to be modified to suit the desired final product. The list
of adjustments is shown in Table 11.

Property Value

Diagram File Extension atd

Domain File Extension atm

Package Name Prefix de.kreinjb.gmf.atdframework.rcp
Editor Plugin Directory /de.kreinjb.gmf.atdframework.rcp/src

Creation Wizard Category Id ATDFramework
(Gen Diagram ProjectEditPart)

Title (Gen Application Application Topology Discovery Framework
AtdframeworkApplication)

Table 11 — Adjustments in atdframework.gmfgen

After adjusting the file, the GMF-related code can be generated which will create an
additional plugin project called de.kreinjb.gmf.atdframework.rcp that contains all the
GMF-related Java classes. The project structure of the generated plugin is illustrated in
Figure 23.

F] 15"' de.kreinjb.gmf.atdframewerk.rcp
a [F§ src
: de.kreinjb.gmf.atdframework.rcp.application
de.kreinjb.gmf.atdframework.rep.edit.commands
de.kreinjb.gmf.atdframework.rep.edit.helpers
de.kreinjb.gmf.atdframework.rcp.edit.parts
de.kreinjb.gmf.atdframework.rep.edit.policies
de.kreinjb.gmf.atdframework.rcp.parsers
de.kreinjb.gmf.atdframework.rep.part
de.kreinjb.gmf.atdframework.rcp.preferences
de.kreinjb.gmf.atdframework.rcp. providers

2 5 S

(=

- de.kreinjb.gmf.atdframework.rcp.sheet
A pluginxml

Figure 23 — Project structure of GMF editor

At this stage, the generated code is a fully functional Eclipse RCP-based GMF editor
that can be extended and executed. For example, the editor allows for graphical model-
ing through the use of the provided palette. The model can also be stored to and load-
ed from a file.

5 Prototypical Implementation ATDFramework 63

5.1.7 Product Configuration

Eclipse projects can be equipped with a product configuration file. This configuration
file can define application-specific branding on top of a configuration of Eclipse plugins
and provides the possibility to export a product as a binary. A product must define a
name, a description, and an ID for the application it is associated with. It also specifies
the application window icon and the information in the About dialog of the application.

A new product configuration can be added via the File -> New dialog. The configuration
file is called atdframework.product and is stored in the original plugin where the models
are stored. The ATDFramework will be feature based which means that plugins first
have to be bundled as a feature. This option is set in the product configuration together
with settings for the application that is launched at startup and the dependencies to
other features. The whole framework will be bundled as a feature
(de.kreinjb.gmf.atdframework.feature) and all other plugins that contribute discovery
functionality to the framework will be bundled as a separate feature as well. These fea-
tures must then be added to the product configuration. The application that is launched
at startup is the AtdframeworkApplication found in de.kreinjb.gmf.atdframework.rcp
project that was generated by GMF.

To run the application a new runtime configuration is created that has the just created
product configuration selected as the product to run. In the plugin section of the runtime
configuration the launch with option is set to selected features below, and the depend-
ent features are selected.

Application branding is added by adding a splash.bmp to the plugin that contains the
product configuration. Furthermore, the product configuration also allows adding of
icons that are used in the window of the application and in the taskbar when the appli-
cation is launched. The icons are also stored in the plugin that contains the product
configuration. After adding of icons and specification of these in the configuration, the
configuration must be synchronized with the product’s defining plugin, or else the icons
will not be recognized when the application is launched. Figure 24 shows the branding
logo of the ATDFramework.

Another benefit of the product configuration file is the possibility to export the product
as binaries, even for different operating systems. Product export is also needed during
development when the p2 update mechanism is used (see Chapter 5.1.8), because the
update mechanism needs a repository that is created during export. This is achieved
by using the generate metadata repository option in the export wizard.

Note: product export only works when the developer has administrative privileges.

5 Prototypical Implementation ATDFramework 64

ion Topology Discovery
Framework

Figure 24 — Branding Logo of ATDFramework

5.1.8 Update Manager

There are different ways to install new plugins into Eclipse or an Eclipse RCP-based
application. One involves simple copying of the plugin or feature into specific folders of
the Eclipse application. When a plugin is exported it has a specific folder hierarchy that
contains the folders features and plugins. To install the plugin or feature one simply has
to copy the contents of these folders into the features and plugins folder of Eclipse or
the Eclipse RCP-based application. The other way, which is recommended by Eclipse,
is via the Update Manager (see Figure 25).

F ™y
EY Available Updates E‘Eﬂ
Available Updates o
(7 >|
Check the updates that you wish to install. \f)‘_.
Mame Version Id
%Application Topology Discovery Framework 0.0.2 de.kreinjb.gmf.atdframework.product
Select All | | Deselect Al
Details
<Back || Net> |[Fnshn || Cancel

Figure 25 — Update Manager of ATDFramework

5 Prototypical Implementation ATDFramework 65

The Update Manager provides the possibility to update an application by specifying a
repository which can be a remote update site or a repository on the local file system. It
is possible to update the framework itself as well as the different plugins and to install
new plugins.

To add the Update Manager to the ATDFramework different dependencies have to be
added to the product configuration, namely org.eclipse.equinox.p2.rcp.feature and
org.eclipse.rcp. They must also be added to the run configuration of the product in the
plugins section. The required version numbers are removed from the features when
specifying them as dependencies, so the framework does not depend on a specific
version but can be update if new versions are released in the future.

5.2 Framework Implementation

The framework extends the GMF-generated plugins with an additional plugin called
de.kreinjb.gmf.atdframework.manager. This plugin contains all the framework related
Java classes that are not generated by EMF and GMF. The plugin.xml, which is the
configuration file of a plugin, additionally contains the definitions of so-called extensions
that are used to contribute to an RCP-based application. Most of the time, these are Ul
extensions, e.g. contributions to the menus or contributions of additional views.

5.2.1 Extension Point ATDFPIlugin

An extension point gives plugins the possibility to open itself up for extension by other
plugins. It defines a contract between a plugin and another plugin that wants to contrib-
ute functionality to the plugin. The ATDFramework defines such an extension point
(Section 4.3.1). This extension point is used by discovery plugins to contribute func-
tionality to the framework.

An extension point is defined in the Extension Points section of the plugins configura-
tion file (plugin.xml) using the provided add wizard. For the extension point of the
ATDFramework the id is de.kreinjb.gmf.atdframework.manager.plugins and the name
is ATDFPIugin. In the definition view of the created schema a new element with the
name plugin must be added. This element must have an attribute with the name class,
a type of java, and de.kreinjb.gmf.atdframework.manager.plugins.IATDFPIlugin as the
implementing interface. This interface is created using the implements link in the defini-
tion view. Furthermore, a choice element must be added to the element extension al-
ready available. Its Max Occurrences must be set to unbounded and a plugin sub ele-
ment must be added to the choice. Listing 15 shows the modified schema.

The interface is modified to meet the needs of the ATDFramework defined in the con-
cepts section of this document (Chapter 3). All discovery plugins must implement this
interface. Listing 16 shows the definition of the interface. The package that contains the
interface must be exported to be accessible by other plugins. This is done by adding
the package to the list of exported packages in the runtime view of the plugin.xml.

5 Prototypical Implementation ATDFramework 66

<?xml version='1.0"' encoding="'UTF-8'?>
<!-- Schema file written by PDE -->
<schema targetNamespace="de.kreinjb.gmf.atdframework.manager"
xmlns="http://www.w3.0rg/2001/XMLSchema" >
<annotation>
<appinfo>
<meta.schema plugin="de.kreinjb.gmf.atdframework.manager"
id="de.kreinjb.gmf.atdframework.manager.plugins" name="ATDFPlugin"/>
</appinfo>

</annotation>

<element name="plugin">
<complexType>
<attribute name="class" type="string">
<annotation>
<appinfo>
<meta.attribute kind="java"
basedOn=":de.kreinjb.gmf.atdframework.manager.plugins.IATDFPlugin"/>
</appinfo>
</annotation>
</attribute>
</complexType>
</element>
</schema>

Listing 15 — de.kreinjb.gmf.atdframework.manager.plugins.exsd

package de.kreinjb.gmf.atdframework.manager.plugins;

import java.util.List;

import de.kreinjb.gmf.atdframework.Node;
import de.kreinjb.gmf.atdframework.manager.type.Type;

public interface IATDFPIlugin {

public String getName();

public String getID();

public List<Type> getTypesOperatingOn();
public List<Type> getTypesCreating();
public List<Node> execute(Node node);

Listing 16 — IATDFPIugin interface

5 Prototypical Implementation ATDFramework 67

The interface contains five methods that must be implemented by every discovery
plugin.

Method Description

getName() A plugin must return a name that will be used to display
the plugin in different views of the framework.

getlD() The Id is very important because it is used to identify a
plugin, e.g. for scheduling. A user can also use this Id to
specify a specific plugin that should be executed in the
next iteration of the discovery.

getTypesOperatingOn() A plugin must specify the types it can operate on so the
scheduler knows which nodes the plugin is compatible
with. The plugin just returns a list of types it supports, e.g.
a BPEL plugin returns a list containing a BPEL type. This
list is also used to build up the type system. The types do
not need to exist in the framework. They are created if
they are not already available.

getTypesCreating() Besides the types a plugin supports, a plugin can also
specify the types it creates. This is mainly used to build
up the type system, e.g. a BPEL plugin creates nodes of
WSDL type.

execute() When a plugin is scheduled for execution the scheduler
calls the execute function of the plugin and provides the
node that the plugin should operate on. The responsibility
of the plugin developer is to return the list of modified or
created nodes.

Table 12 — IATDFPIugin interface methods

A popular method when developing interfaces is to provide an abstract class that im-
plements the defined interface. Instead of implementing the interface other classes
simply inherit from the abstract class. This is especially useful when a lot of the meth-
ods of an interface would have similar or the same content in all implementing classes.
The abstract class provides a standard implementation of the methods of the interface
and classes that inherit from this abstract class use this implementation and override
only the methods where they need unique content. The ATDFramework provides such
an abstract class which is called AbstractATDFPIugin that implements the interface
IATDFPIugin. It is recommended to plugin developers to subclass from this class in-
stead of implementing the interface directly. The class is shown in Listing 17.

5 Prototypical Implementation ATDFramework

68

package de.kreinjb.gmf.atdframework.manager.plugins;

import java.util.ArrayList;

import java.util.List;

import de.kreinjb.gmf.atdframework.Node;

import de.kreinjb.gmf.atdframework.manager.type.Type;

public abstract class AbstractATDFPlugin implements IATDFPlugin {
protected final String id;
protected final String name;
protected final ArraylList<Type> operatingTypes;
protected final ArrayList<Type> creatingTypes;

public AbstractATDFPIugin(String id, String name) {
this.id = id;
this.name = name;
this.operatingTypes = new ArrayList<Type>();
this.creatingTypes = new ArrayList<Type>();

@Override
public String getName() {
return name;

@Override
public String getID() {
return id;

@Override
public List<Type> getTypesOperatingOn() {
return operatingTypes;

@Override
public List<Type> getTypesCreating() {
return creatingTypes;

@Override
public abstract List<Node> execute(Node node);

Listing 17 — AbstractATDFPIlugin

5 Prototypical Implementation ATDFramework 69

The abstract class implements the methods getName(), getiD(),
getTypesOperatingOn(), and getTypesCreating(). These functions return values that
are stored in protected attributes which are also available in subclasses. A plugin can
edit these values and the methods will automatically return the values. This is will usu-
ally be done once in the constructor of the plugin that subclasses the abstract class.
For example, the following class that subclasses AbstractATDFPIlugin will have the id
http://hello.world/Id, the name Hello World, supports the type http://hello.world/type,
and creates the type http://good.bye.world/type.

package hello.world;

public class HelloWorldPlugin extends AbstractATDFPlugin {
private static String ID = "http://hello.world/id";
private static String HELLO_TYPE = "http://hello.world/type";

private static String GOOD_BYE_TYPE = "http://good.bye.world/type";

public HelloWorldPlugin() {
super(ID, "Hello World");

operatingTypes.add(new Type(HELLO_TYPE));
creatingTypes.add(new Type(GOOD_BYE_TYPE));

Listing 18 — AbstractATDFPIugin subclass example

The attributes of the HelloWorldPlugin class are only for illustration purposes. The con-
structor of the class calls the constructor of the super class which will store the provid-
ed id and name. These values will automatically be returned when the plugins
getName() and getID() functions are called. Furthermore, the plugin creates and adds
Types to the operatingTypes and creatingTypes list. These lists are also automatically
returned when the respective getTypesOperatingOn() and getTypesCreating() methods
are called. In this example, all instantiation is done in the constructor and most of the
methods will not have to be implemented because they are already implemented by the
super class. The plugin will only have to implement the execute() method.

5.2.2 PluginManager

The plugin manager acts as a bridge between framework and plugins. Calls from the
framework to the plugins are directed through this plugin manager. It wraps the calls
into an ISafeRunnable which is typically used when a plugin needs to call some un-
trusted code, e.g. code that was contributed by another plugin. This way, a plugin that

5 Prototypical Implementation ATDFramework 70

crashes will not force the whole framework to crash. An example for such a wrapped
method is shown in Listing 19.

public List<Node> executePlugin(final IATDFPIlugin plugin, final Node node) {
final ArrayList<Node> modifiedNodes = new ArrayList<Node>();

ISafeRunnable runnable = new ISafeRunnable() {
@Override
public void handleException(Throwable exception) {
System.out.println("Exception in plugin!");
exception.printStackTrace();

@Override
public void run() throws Exception {
List<Node> pluginModifiedNodes = plugin.execute(node);

if(pluginModifiedNodes != null) {
modifiedNodes.addAll(pluginModifiedNodes);
3

SafeRunner.run(runnable);

return modifiedNodes;

Listing 19 — Example of ISafeRunnable

Instead of calling the execute() method of the plugin directly the framework uses the
wrapped method of the plugin manager. The code is self-explanatory. Un-trusted code
is called inside the run() method. A possible exception can be handled in the
handleException() method. Every method of the IATDFPIlugin interface has a respec-
tive wrapped method in the plugin manager.

The plugin manager also has the responsibility to provide the list of discovery plugins to
the framework. Basically, a discovery plugin differs not from any other Eclipse plugin
that is installed in the Eclipse RCP-based framework. In the list of installed plugins, the
plugin manager must find the plugins that implement the IATDFPIugin interface. The
list of installed plugins is managed by the framework in an extension registry that can
be queried for plugins of a specific type. In Listing 20 the readPlugins() method first
gets all the configuration elements that have an Id of IATDFPLUGIN_ID which has a
value of de.kreinjb.gmf.atdframework.manager.plugins. For every configuration ele-
ment a class executable extension is created. If the created object is an instance of
IATDFPIugin then the plugin is a discovery plugin and it is added to the list of plugins
that are managed by the plugin manager.

5 Prototypical Implementation ATDFramework 71

Private void readPlugins() {

IConfigurationElement[] config = Platform.getExtensionRegistry()
.getConfigurationElementsFor(IATDFPLUGIN_ID);

try {
for (IConfigurationElement e : config) {

final Object o = e.createExecutableExtension("class");

if (o instanceof IATDFPlugin) {
plugins.add((IATDFPIugin)o);

b

} catch (CoreException ex) {
System.out.println(ex.getMessage());

Listing 20 — Detecting plugins that implement the IATDFPIlugin interface

The Ul of the framework is extended by a view that provides the list of installed plugins
and their respective types, illustrated in Figure 26.

) Installed Plugins ©2 i i | ¥ =08
« B ActiveMQ JIMEX Plug-in
4 1 BPEL Plug-in
4 | ¢ Types Creating
@ http://dekreinjb/types/wsdl
4 | i Types Operating On
&7 htpe//dekreinjb/types/bpel
a £ Tomcat JMX Plugin
4 | ¢ Types Creating
@ http://de.kreinjb/types/webserver/tomcat
4 | i Types Operating On
@ http://de.kreinjb/types/webserver
@ http://de.kreinjb/types/webserver/tomcat
4 1 Webzerver Plug-in
4 | ¢ Types Creating
@ http://de.kreinjb/types/webserver/iis
@ http://de.kreinjb/types/webserver/tomcat
4 | & Types Operating On
@ http://de.kreinjb/types/webserver
- 1 WebService Plug-in
» B WSDL Plug-in

Figure 26 — Installed Plugins view

5 Prototypical Implementation ATDFramework 72

For each installed plugin it displays the list of types the plugin creates and the list of
types it supports, i.e. the types it can operate on. In Figure 26 the BPEL Plug-in creates
nodes of type http://de.kreinjb/types/wsdl and in can operate on nodes that have the
type http://de.kreinjb/types/bpel.

To create this view, a new sample view is created through the extension wizard which
is available in the extension section of the plugin.xml when pressing the add button.
Table 13 shows the settings that will create the view for the installed plugins.

Property Value

Java Package Name de.kreinjb.gmf.atdframework.manager.views

View Class Name InstalledPlugins
View Name Installed Plugins
View Category Id de.kreinjb.gmf.atdframework

View Category Name ATDFramework

Viewer Type Tree Viewer

Table 13 — Settings for the installed plugins view

To allow the framework to show this view a new menu item is created in the main menu
of the ATDFramework. This is done by adding a menuContribution to the
org.eclipse.ui.menus extension of the manager plugin. The locationURI of the
menuContribution is set to menu:window which means that the new menu should be
added to the window menu of the main menu. Afterwards, a menu element is added to
the menuContribution with the label property set to Show View. This will create a sub
menu under the window menu. This sub menu again gets two command elements. The
first one with the settings in Table 14 creates a menu item that will open the Show View
window that is provided by Eclipse. This view lists all installed views and lets the user
select the view that should be opened.

Property Value

Commandld org.eclipse.ui.views.showView

Label Others

Table 14 — Properties of the Others menu item

The InstalledPlugins view can also be opened directly without opening the Show View
window first. This is achieved by adding a second command element with the settings
in Table 15, which is basically the same as the one before. But this command is added
a parameter element with the settings in Table 16.

5 Prototypical Implementation ATDFramework 73

Property Value
Commandid org.eclipse.ui.views.showView
Label Installed Plugins

Table 15 — Properties of the Installed Plugins menu item

Property Value
Name org.eclipse.ui.views.showView.viewld
Label de.kreinjb.gmf.atdframework.manager.views.InstalledPlugins

Table 16 — Properties of the Installed Plugins Show View parameter

Adding this command will lead to the direct opening of the Installed Plugins view be-
cause the id of the view is passed as a parameter to the Show View command.

5.2.3 Type System and Type Registry

The type system stores the types and provides a mechanism to check for equality of
nodes of the same type. The type registry manages the installation of types into the
type system and manages the priority list that is used to decide which plugin is allowed
to execute on a node. To give the user a feedback of the current priority list and to al-
low the user to modify the priority list, the Ul is extended with an additional view that
shows for each node type the current priority list (Figure 1).

& Priority Map 2 =
b=

+ ¥

http://dekreinjb/types/activemg
4 @ http://de.kreinjb/types/bpel
1 httpe//de.kreinjb/plugins/bpel
a @ http://dekreinjb/types/jms
1 httpe//dekreinjby/plugins/activerngjmz
@ hitp.//dekreinjb/types/operatingsystem
4 @ httpy//dekreinjb/types/webserver
1 httpe//dekreinjb/plugins/tormcatjmz
1 httpe//dekreinjb/plugins/webserver
@ hitp://dekreinjb/types/webserver/iis
4 @ http://dekreinjb/types/webserver/tomcat
1 httpe//dekreinjb/plugins/tormcatjmz
a @ httpi//dekreinjb/types/webservice
1 httpe//dekreinjb/plugins/webservice
a @ httpy//dekreinjb/types/wsdl
1 http://dekreinjb/plugins/wsd|

Figure 27 — Priority Map view

5 Prototypical Implementation ATDFramework 74

The steps for the creation of this view are similar to the ones of the installed plugins
view, except of the view class name and the view name (Table 17).

Property Value

Java Package Name de.kreinjb.gmf.atdframework.manager.views

View Class Name PriorityMap
View Name Priority Map
View Category Id de.kreinjb.gmf.atdframework

View Category Name ATDFramework

Viewer Type Tree Viewer

Table 17 — Settings for the Priority Map view

The type registry manages the priority lists and provides two methods to move plugins
up and down in the priority list. These methods are called when the user presses the
up and down buttons in the Priority Map view.

The type system implements two important concepts. One is the mechanism that
checks for equality of nodes, the other manages the installation of duplicate type defini-
tions. Equality of nodes is checked by comparing the identifying properties of two
nodes. This way, the framework can decide that two nodes are the same event if they
do not have the same amount of properties. They only have to match in the identifying
properties. These properties are the ones that identify a type and which are stored with
the type definition in the type system. Hence the type system knows which properties
identify a node of a specific type and only checks whether these properties match.

Another mechanism checks for duplicate type definitions. If two plugins provide a type
definition for the same type and these type definitions do not match, the type system
adds these definitions to a conflicts list. An exception is the definition of a type with an
empty properties list. A plugin that does not specify a list of identifying properties when
defining a type expects another plugin to provide this definition.

5.2.4 Scheduler

Besides the implementation of the scheduler concepts, the workbench must be ex-
tended with different Ul features, e.g. the framework provides two buttons for starting
the discovery.

To add the buttons, first the org.eclipse.ui.command extension is added to the exten-
sion of the plugin.xml of the manager plugin. For each of the two buttons is added a
command to the extension (Table 18 and Table 19).

5 Prototypical Implementation ATDFramework 75

Property Value

Id de.kreinjb.gmf.atdframework.manager.commands.run

Name Run

DefaultHandler de.kreinjb.gmf.atdframework.manager.commands.RunHandler

Table 18 — Run command

Property Value

Id de.kreinjb.gmf.atdframework.manager.commands.runstep

Name RunStep

DefaultHandler de.kreinjb.gmf.atdframework.manager.commands.RunStepHandler

Table 19 — RunStep command

The defaultHandler specifies the class that handles click events, e.g. when the user
presses the run button the RunHandler class is called. Listing 21 shows the implemen-
tation of the RunHandler class.

package de.kreinjb.gmf.atdframework.manager.commands;

import org.eclipse.core.commands.AbstractHandler;
import org.eclipse.core.commands.ExecutionEvent;
import org.eclipse.core.commands.ExecutionException;

import de.kreinjb.gmf.atdframework.manager.Scheduler;
public class RunHandler extends AbstractHandler {
@Override
public Object execute(ExecutionEvent event) throws ExecutionException {

Scheduler.getlnstance().run(false);
return null;

Listing 21 — RunHandler

The execute method is called when the Run button is pressed. It then calls the run
method of the scheduler with a parameter of false. This indicates that the run method
should not pause after each iteration step, but run till there is nothing to discover any-
more (i.e. there is no plugin that could find any additional discovery information). If the

5 Prototypical Implementation ATDFramework 76

method is called with a value of true as parameter, the method will pause after each
iteration step, forcing the user to press the button again to run the next iteration. This is
done by the RunStepHandler, which is similar to the RunHandler, except it uses true as
parameter.

For the adding of the buttons to the framework a menuContribution is added to the
org.eclipse.ui.menus extension of the manager plugin with the locationURI property set
to toolbar:org.eclipse.ui.main.toolbar. This will place the buttons in the main toolbar of
the ATDFramework. Beneath the menuContribution is added a toolbar element with an
id of de.kreinjb.gmf.atdframework.manager.toolbar. For each button of the two run but-
tons are added command elements that contain the commandld of the previously cre-
ated run handlers. This will connect the Ul buttons to the handlers.

The scheduler itself implements the concepts described in 3.4. Besides the run method
that is called to manage the discovery, it contains functions to calculate the next
scheduled plugin for each node and an execute method that executes the scheduling
list. Listing 22 shows the code that calculates the standard scheduling of plugins in the
getScheduledPlugin method of the scheduler.

LinkedList<String> candidateList = new LinkedList<String>(priorityList);

Collections.sort(entries, new Comparator<Entry>() {
@Override
public int compare(Entry el, Entry e2) {
return e2.getTimestamp().compareTo(el.getTimestamp());

}
}F

for(Entry entry : entries) {
if(candidateList == null || candidateList.isEmpty()) {
return null;

candidateList.remove(entry.getPlugin());

if(entry.isModified()) {
return (candidateList.isEmpty() ? null : candidateList.getFirst());

return (candidateList.isEmpty() ? null : candidateList.getFirst());

Listing 22 — Part of the scheduler

5 Prototypical Implementation ATDFramework 77

To determine the next scheduled plugin for a node a candidate list is calculated. At the
beginning, the candidate list is initialized with the current priority list of the node type.
Plugins are removed from this list based on their order in the history list that is repre-
sented in the listing above by the variable entries. To guarantee the order of the entries
the list is first sorted according to the timestamps of the entries. Starting from the last
executed plugin in the history, the scheduler removes the plugin from the candidate list,
because it was the last one that executed on the node. If the plugin was a modifying
plugin (e.g. because it added some information that enables another plugin to execute),
the algorithm stops and takes the top element of the candidate list, because this is the
plugin with the highest priority. If the plugin was not a modifying plugin (e.g. the plugin
executed on the node but it could not discover anything), it is removed from the candi-
date list and the algorithm continues with the next plugin of the history list.

5.2.5 Properties

Eclipse RCP-based applications can use the properties view in Eclipse to display in-
formation. An EMF or GMF editor already makes extensive use of this view, e.g. to
display the current appearance of nodes. Furthermore, all attributes of an element in
the model can automatically be displayed and edited in the properties view. For exam-
ple, each node element has a name attribute. This attribute will be displayed in the
properties view when a node is selected in the editor.

| Properties &2 :~=:{> = ¥ =0
+ Node
Core Property Walue
Appearance Last Maodified By '= http://dekreinjb/plugins/webservice
Tupe Specifi MName 'S Webserver
YPe specitic Next Check By =
Type '= http://de.kreinjb/types/webserver

Figure 28 — Properties view

Of course, attributes can be hidden from this view and also selected as read only so
that these attributes cannot be modified graphically by the user.

One problem during the implementation of the ATDFramework was the displaying of
the type-specific properties list of a node. It varies in size depending on the current
amount of defined properties and hence cannot be determined at build time. The auto-
generated code for the displaying of lists that vary in size was not representative and
not editable. For this special purpose the properties view was extended with an addi-
tional tab that displays the type specific properties (Figure 29 and Figure 30).

5 Prototypical Implementation ATDFramework 78

T Properties 2

4+ Node
P— Property Value
Appearance a4 httpe//dekreinjb/types/webserver
- url http://109.231.67 42
Type Specific
Figure 29 — Type-specific properties left side
#@% 5 - =0
Type:
Marne: Value:

Figure 30 — Type-specific properties right side

Each property of a node is displayed in this view. The type determines the grouping of
properties, e.g. all properties with type http://de.kreinjb/types/webserver are grouped
and displayed together. The right side of this view allows for adding and removing of
properties. The two extensions in Listing 23 and Listing 24 where added to the
plugin.xml of the GMF plugin, to add the tab to the properties view.

<extension point="org.eclipse.ui.views.properties.tabbed.propertyTabs"
id="proptabs">
<?gmfgen generated="true"?>
<propertyTabs contributorld="de.kreinjb.gmf.atdframework.rcp">

<propertyTab
category="typeSpecific"
afterTab="property.tab.domain"
id="property.tab.typeSpecific"
label="%tab.typeSpecific"/>
</propertyTabs>
</extension>

Listing 23 — Property tab extension

5 Prototypical Implementation ATDFramework 79

<extension point="org.eclipse.ui.views.properties.tabbed.propertySections"
id="propsections">
<?gmfgen generated="true"?>
<propertySections contributorld="de.kreinjb.gmf.atdframework.rcp">

<propertySection
id="property.section.typeSpecificSection"
tab="property.tab.typeSpecific"
class="de.kreinjb.gmf.atdframework.rcp.sheet.

AtdframeworkTypeSpecificPropertySection">

<input type="org.eclipse.gmf.runtime.notation.View"/>
<input type="org.eclipse.gef.EditPart"/>

</propertySection>

</propertySections>

</extension>

Listing 24 — Property section extension

The extension to org.eclipse.ui.views.properties.tabbed.propertyTabs in Listing 23
added an additional tab to the properties view, with the specification of the name, id,
and the position to place the tab in the properties view. Listing 24 showed the exten-
sion to org.eclipse.ui.views.properties.tabbed.propertySections which adds a property
section to the tab. A tab can contain multiple sections. The important part is the class
attribute in the propertySection element. It specifies the class that implements the
property section. This class then creates the Ul of the view, e.g. the text fields and the
buttons.

5.3 Plugins

The plugins are bundled in a separate feature apart from the framework. They are im-
plemented prototypically to give an idea of what could be discovered from the different
types of artifacts. The feature project is named
de.kreinjb.gmf.atdframework.pluginsfeature. It contains all the plugins that are devel-
oped. For the prototypical implementation this is only a single plugin named
de.kreinjb.gmf.atdframework.manager.plugincontriubtion to keep the project structure
simple. The specified extension point of the ATDFramework (see Section 5.2.1) must
be extended by every plugin.

<extension point="de.kreinjb.gmf.atdframework.manager.plugins" >
<plugin
class="de.kreinjb.gmf.atdframework.manager.plugincontribution.BPELPlugin" >
</plugin>
</extension>

5 Prototypical Implementation ATDFramework 80

Listing 25 — Extension provided by BPELPIlugin

Listing 25 shows how the BPELPIugin provides an extension by defining a plugin ele-
ment with the class attribute specifying the implementation class.

In the following for each developed plugin the discovery procedure and properties of
the plugin are presented. The operating types property denotes the types of nodes the
plugin can operate on and creating types which types of nodes may be created by the
plugin. A square bracket containing properties at the end of a type means the plugin
needs this property to work correctly or if it creates a node of a type it will add this
property to the node. For example, http://example.com/types/exampletype
[exampleproperty] means a plugin creates or operates on nodes of type
http://example.com/types/exampletype that have a property of exampleproperty. This is
only for illustration here and not the representation used in the code.

Note: The plugins only implement the concepts described earlier. See Section 3.5 for
further information.

5.3.1 BPEL Plugin

Name BPELPIugin
Id http://de.kreinjb/plugins/bpel

Operating Types http://de.kreinjb/types/bpel [location]

Creating Types http://de.kreinjb/types/wsdl [location]

Table 20 — Properties of BPEL plugin

A BPEL node must contain the location property which is used to find and then parse
the document. The plugin uses an external library called Xalan™ to parse the XML doc-
ument. The following listing shows how the locations of WSDL documents can be re-
trieved from a BPEL file using Xalan.

String path = "/bpel:process//bpel:import[@importType=" +
"\"http://schemas.xmlsoap.org/wsdl/\"]/@location";
xPath.evaluate(path, inputSource, XPathConstants.NODESET);

Listing 26 — XPath statement to retrieve locations of WSDL documents

The plugin creates for each found WSDL document a node that has a location property
which contains the actual location of the WSDL document.

12 hitp://xml.apache.org/xalan-j/

http://xml.apache.org/xalan-j/

5 Prototypical Implementation ATDFramework 81

5.3.2 WSDL Plugin

Property Value
Name WSDLPIugin
Id http://de.kreinjb/plugins/wsdl

Operating Types http://de.kreinjb/types/wsdl [location]

Creating Types http://de.kreinjb/types/webservice [address]

Table 21 — Properties of WSDL plugin

As the WSDL document is an XML document the WSDL plugin also uses Xalan to
parse the document. The plugin first looks for port elements in the service definition of
the WSDL file. The port element usually contains an address element, e.g. if the port
uses a SOAP binding the port element will contain a <soap:address> element with a
location attribute. For each found location the plugin creates a Web Service node that
contains a location property which points to the Web Service.

5.3.3 Web Service Plugin

Property Value
Name WebServicePlugin
Id http://de.kreinjb/plugins/webservice

Operating Types http://de.kreinjb/types/webservice [address]

Creating Types http://de.kreinjb/types/webserver [url]

Table 22 — Properties of Web Service plugin

The Web Service plugin just takes the address of the Web Service and extracts the
host and port parts of the address. For example, http://example.com:8080 is extracted
from http://example.com:8080/demo/demoWS. For each of these extracted URLs is
created a web server sub node. A web server sometimes provides an information page
under this URL.

5 Prototypical Implementation ATDFramework 82

5.3.4 Web Server Plugin

Property Value
Name WebServerPlugin
Id http://de.kreinjb/plugins/webserver

Operating Types http://de.kreinjb/types/webserver [url]

Creating Types http://de.kreinjb/types/webserver/tomcat [header-server]

http://de.kreinjb/types/webserver/iis [header-server]

http://de.kreinjb/types/operatingsystem [name]

Table 23 — Properties of web server plugin

The web server plugin uses the URL to send an HTTP request to the server. The HTTP
response usually contains a server header that sometimes contains the name and ver-
sion of the server. The current version supports Apache Tomcat and Microsoft IIS. A
special case is the discovery of an |IS because one can assume that it is running on
Windows. The plugin will then automatically create an operating system node with a
name of Windows.

5.3.5 Tomcat JMX Plugin

Property Value
Name TomcatJMXPlugin
Id http://de.kreinjb/plugins/tomcatjmx

Operating Types http://de.kreinjb/types/tomcat [url, username, password]

Creating Types http://de.kreinjb/types/operatingsystem [name, version]

Table 24 — Properties of Tomcat JMX plugin

The Tomcat JMX plugin uses JMX to query a Tomcat server. Of course, Tomcat must
be enabled on the server. Furthermore, the plugin requires the availability of a URL
property in the Tomcat node and an optional username and password for authentica-
tion. The plugin then connects to a so-called MBean Server where JMX enabled pro-
grams are registered as MBeans. MBeans are identified by an objectName which con-
sists of a domain name and a list of properties. For the Tomcat server this objectName
is Catalina:type=server. This object can then be queried for attributes, e.g. the tomcat
plugin reads the serverinfo attribute. This information is stored as a property in the
node and the node type is changed from web server type to a Tomcat type. Additional-
ly, the MBean server provides information about the operating system. The

5 Prototypical Implementation ATDFramework 83

objectName to use is java.lang:type=OperatingSystem. This object contains the two
attributes name and version which contain the name and version of the operating sys-
tem. If this information is available, the plugin will also create a sub node under the
Tomcat node, indicating that the Tomcat is hosted on a specific operating system.

5.3.6 ActiveMQ JMX Plugin

Property Value

Name ActiveMQJMXPlugin

Id http://de.kreinjb/plugins/activemgjmx

Operating Types http://de.kreinjb/types/jms [url, username, password]

Creating Types http://de.kreinjb/types/activemq [brokername, brokerversion,
brokerid]

http://de.kreinjb/types/operatingsystem [name, version]

Table 25 — Properties of ActiveMQ JMX plugin

The ActiveMQ JMX plugin works pretty much the same as the Tomcat JMX plugin. In
contrast to the Tomcat plugin, it queries the MBean of ActiveMQ which has an
objectName of org.apache.activemq:BrokerName=*,Type=Broker. The three attributes
brokerName, brokerVersion, and brokerld of the object provide the name, version, and
id of the broker. If this information is available the plugin creates a sub node with these
properties. Like the Tomcat JMX plugin, it also tries to identify the operating system
using the same mechanism and adds an operating system node if possible.

6 Summary and Outlook 84

6 Summary and Outlook

Software applications usually grow and evolve over time, and so do their architectures
and the topology of the actual deployment. However, knowledge of the application’s
components and their relations is crucial for enterprise architecture management tasks
like migration and optimization. With the rise of new paradigms like Service-Oriented
Architecture and technologies, like cloud computing, recent approaches tried to find
ways for the external discovery of application topologies. The focus of this diploma the-
sis are to research ways for external application topology discovery, i.e., analyzing
which external, network accessible resources provide information to get a detailed pic-
ture of the application topology. The goal was to develop a plugin-based framework
and a set of prototypical discovery plugins. The developed framework is called
ATDFramework and manages the discovery by scheduling the different installed
plugins. Other developers can contribute their discovery code to the framework by de-
veloping additional plugins.

The discovery framework is built with OSGi, more precise, an Eclipse RCP-based ap-
plication which uses Equinox as its OSGi framework. The framework is supplemented
with graphical editors based on the Eclipse Modeling Framework and Graphical Model-
ing Framework.

A special focus of the framework was to keep the plugin development process as sim-
ple as possible. The plugin developer is supported by a simple data model consisting of
nodes, connections, properties, and a simple type system that is based on namespace
definitions. The types are provided by the plugins themselves and the type system is
build up implicitly when installing the plugins. Furthermore, plugins have a simple code
structure that only requires minimal configuration effort and allows developers to con-
centrate on the actual discovery code.

Along with the framework comes a set of prototypical discovery plugins. Starting point
of the discovery in this work is a BPEL service composition. The set of plugins devel-
oped during the course of this thesis are a BPEL-, WSDL-, Web service-, web server-,
Tomcat-, and ActiveMQ-plugin.

The discovered topology is stored in a file for further processing by other programs or
to resume discovery after changes in the topology. One use case for the discovered
topology is the migration of SOA-based applications to the cloud, e.g. programs can
use the discovered topology to adapt and steer the migration process.

Of course, the current approach has some room for improvement as well. As the
framework is only tested with the set of prototypical plugins, some bugs may remain
undetected and only appear in different plugin scenarios. The Ul has also some room
for improvement and some ideas have not been implemented because of limited de-
velopment time. For example, the framework could use a status bar to present the cur-

6 Summary and Outlook 85

rent discovery status to the user and the overall type system with all dependencies
between types could be visualized in an extra view. Furthermore, conflicts between
plugins are resolved but nut presented to the user in an extra view, e.g. the Eclipse
problems view would be predestinated for this task.

The concept of namespace definitions for types makes the type system easy and
hence also simplifies the development of plugins. But it would be worth to check the
concept of OSGi-based types. This means that types themselves are Eclipse plugins
which can be installed to and un-installed from the framework. The plugins would still
provide these types but the dependency mechanism that is introduced by OSGi could
be used to handle dependency resolution from plugins to types, or types to types. This
would ease the process of checking for identity of nodes. For example, properties could
be defined as attributes of a Java class and the class itself could provide the mecha-
nism to identify a node or to check for equality of nodes. But this approach could re-
quire a modification of the data model and a possible remodeling of the EMF- and
GMF-related models. It must also be deliberated about whether the current, simple
namespace-based type system — which allows for easy creation of types and the speci-
fication of dependencies to these types — can be integrated with this approach. Be-
cause of the limited time for the implementation of the framework, this approach was
not further pursued.

A screenshot of the final application is shown in Figure 31.

r N
ﬂApplicatiDn Topology Discovery Framework =RACE X
File Edit Diagram Window Help
: D e oo —
&l il |SegUeUI v|9 '|B 1 | A~ g~ Hvl |f$}_.:'uu';:;'| | . - | oz .
&dInstalled ... 53 | @ Priority.. | — O | [d] default2.atd |d] default.atd |d] default.atd |d) *defaultd.atd 53 | [d] *defaultS.atd =8
i i | = 4 BPEL Test » | 2% Palette b
1 ActiveMQ JMX Plug-in TEAD-
1 BPEL Plug-in
e % Nod,
1 Tomcat JMX Plugin ode
51 Webserver Plug-in 4 Connection
51 WebService Plug-in WSDL (Testl.wsdl WSDL (Test2.wsdl,
1 WSDL Plug-in
‘WebService (Portl ‘WebService (Port2 ‘WebService (Portl ‘WebService ||
e
‘_ 4+ Webser\tell 4 Websen|
!
. I 3
= 57 i ﬂ = A | e . _ = - =
o* Outline =l Properties 2 i ﬁ? g
+ Node
= o < | core Property Value Type:
http:/fdekreinjb/
Appearance . .
= url http://109.231.67.42 Name: Velue:
Type Specific
Add
Remove

Figure 31 — Screenshot of the final application

6 Summary and Outlook 86

Appendix A Framework Manual

This chapter should give the reader a short introduction on how the framework is used
to discover a topology (A-4), including the steps to install the framework (A-1) and
plugins (A-2) and how to create new plugins (A-3).

A-1 Framework Installation

To install the framework the user only must unzip the binary and copy it to the desired
location. For Windows the zipped file will contain a folder called atdframework and in
that folder an executable called atdframework.exe.

For other operating system or if the framework should be build from source code, it is
advised to download the Plugin Development Environment (PDE)™ version of Eclipse
and to install all GMF dependencies®. Once the projects are setup in Eclipse one can
use the product export wizard (see Section 5.1.7) of the atdframework.product file in
the de.kreinjb.gmf.atdframework project to create executables.

(@ Export E=FR™>)

Eclipse product

Destination directery must be specified.

1
Product Cenfiguration

Configuration: /dekreinjb.gmf atdframework/atdframework.product = Browse...

Root directory: eclipse

Synchronization

Synchronization of the product configuration with the product's defining plug-in ensures
that the plug-in does not contain stale data.

| Synchronize before exporting

Destination

@) Directory: - Browse...
Archive file: Browse

Export Options

Export source: | Generate source bundles
/| Generate metadata repository
| Allow for binary cycles in target platform

= —
'\?_,' Finish Cancel

Figure 32 — Product export wizard

Note: Product export may require administrative rights.

13 http://download.eclipse.org/eclipse/downloads/
4 http://www.eclipse.org/modeling/gmp/

http://download.eclipse.org/eclipse/downloads/
http://www.eclipse.org/modeling/gmp/

6 Summary and Outlook 87

A-2 Plugin Installation

The easiest way to install new plugins is to use the Update Manager of the
ATDFramework located in the menu under Help -> Install New Software. A plugin de-
veloper will most likely want to install plugins from the local file system. Anyhow, the
Update Manager allows the user to install plugins from a remote repository, as well as
from a local repository. The Update Manager has to be pointed to the directory that
contains the plugins and features. In general, the update mechanism of the
ATDFramework does not differ from the update mechanism of the Eclipse IDE.

Another way to install plugins is to copy the exported plugin to the Eclipse plugins fold-
er, more specific, the developed feature will contain two folders named features and
plugins. The contents of these folders have to be copied into the ATDFramework fold-
ers with the same name, found in the base folder of the framework that also contains
the executable.

A-3 Plugin Development

The basic steps for plugin development for the ATDFramework match the development
of plugins for the Eclipse IDE, e.g. with the creation of a plugin project, a feature pro-
ject, and the export of the developed feature. But there are few things to consider that
are different, or rather specific to the ATDFramework, namely providing an extension to
the framework-specific extension point. The following leads through the development of
a simple hello world plugin in a tutorial like fashion.

Plugin development requires specific dependencies that must be available in the
Eclipse IDE. The feature that contains the required plugins is the
ATDFrameworkFeature that is available in the repository folder of the zipped file. It
must be installed to the Eclipse IDE using the Eclipse Update Manager.

Once the IDE is set up, create a new plugin project (File -> New -> Plug-in Project) with
a project name of HelloWorldPlugin. Keep the suggested settings and click finish. In
the overview section of the generated MANIFEST.MF select This plug-in is a singleton.
Switch to the dependencies tab and add de.kreinjb.gmf.atdframework dependency and
the de.kreinjb.gmf.atdframework.manager dependency. Open the extension tab and
click the add button. Select de.kreinjb.gmf.atdframework.manager.plugins from the
extension points list and click finish. Switch to the plugin.xml tab and modify the content
to look like the content in Listing 27.

<?xml version="1.0" encoding="UTF-8"?>
<plugin>
<extension point="de.kreinjb.gmf.atdframework.manager.plugins">
<plugin class="hellowordlplugin.HelloWorldPlugin"/>
</extension>
</plugin>

Listing 27 — HelloWorldPlugin plugin.xml

6 Summary and Outlook 88

Note: The class attribute must contain the name of the class that will provide the im-
plementation including the package name.

The project should already contain a helloworldplugin package with an Activator class.
Add a new Java class to the package with the name specified in the plugin.xml, in this
case the class HelloWorldPlugin in the package helloworldplugin. Set a super class of
AbstractATDFPIugin from the de.kreinjb.gmf.atdframework.manager.plugins package
in the class creation dialog. Let the wizard create constructors from the super class and
click finish. The generated class should look like the one in Listing 28.

package helloworldplugin;

import java.util.List;

import de.kreinjb.gmf.atdframework.Node;
import de.kreinjb.gmf.atdframework.manager.plugins.AbstractATDFPIugin;

public class HelloWorldPlugin extends AbstractATDFPlugin {

public HelloWorldPlugin(String id, String name) {
super(id, name);
// TODO Auto-generated constructor stub

@Override

public List<Node> execute(Node arg0) {
// TODO Auto-generated method stub
return null;

Listing 28 — Generated HelloWorldPlugin.java class

The generated code will have a constructor and an execute method. Change the con-
tent to the code in Listing 29.

Note: The generated code contains a constructor with two parameters. These are re-
moved so that the constructor is the standard constructor without any parameters.

6 Summary and Outlook 89

package helloworldplugin;

import java.util.HashMap;
import java.util.List;
import java.util.Map;

import de.kreinjb.gmf.atdframework.Node;

import de.kreinjb.gmf.atdframework.manager.plugins.AbstractATDFPlugin;
import de.kreinjb.gmf.atdframework.manager.plugins.PluginUtil;

import de.kreinjb.gmf.atdframework.manager.type.ConnectionRequest;
import de.kreinjb.gmf.atdframework.manager.type.NodeRequest;

import de.kreinjb.gmf.atdframework.manager.type.Type;

public class HelloWorldPlugin extends AbstractATDFPlugin {

public HelloWorldPlugin() {
super("http://helloWorld.com/id", "Hello World Plugin");

operatingTypes.add(

new Type("http://helloWorld.com/type", new String[]{"name"}));
creatingTypes.add(

new Type("http://goodByeWorld.com/type", new String[]{"greeting"}));

@Override
public List<Node> execute(Node node) {

String nhame = node.getProperties().getProperty().get(0).getValue();

Map<String, String> properties = new HashMap<String, String>();
properties.put(“greeting”, "Hi " + name + "!");

return PluginUtil.connect(
node,
new NodeRequest(
"Good Bye Node", "http://goodByeWorld.com/type", properties),
new ConnectionRequest("Says Hi"),

getID());

Listing 29 — Modified HelloWworldPlugin.java class

6 Summary and Outlook 90

The code presents the basic functionalities provided by the framework. All the proper-
ties of the plugin should be specified in the constructor, e.g. the id and the name of the
plugin, as well as the types the plugin supports. This is achieved by calling the con-
structor of the super class with the id and the name of the plugin. The abstract class
also contains two lists, operatingTypes and creatingTypes. All the supported types
should be added to these lists, e.g. the code declares that the plugin can operate on
nodes that have a type of http://helloWorld/type and will create nodes that have a type
of http://goodByeWorld/type. These declarations also define the identifying properties
that the types will have, e.g. the nodes of type http://helloWorld/type can be uniquely
identified through the name property while nodes of the http://goodByeWorld/type type
will be identified through the greeting property. With these settings, the plugin is ready
to be used by the framework, i.e. the framework can schedule the plugin for execution
if the discovered topology contains a node of type http://helloWorld/type.

When the plugin is scheduled for execution the framework calls the execute method of
the plugin and provides as a parameter the node the plugin should operate on. The
example above assumes that the provided node will have exactly one property and
does not check whether it is available or what type or name the property is of. In a real
world example, a plugin would check for specific properties of a certain type and name
and only proceed if these properties are available. For illustration purposes and to keep
the example simple the code assumes the node has one property — more specific, a
name property. This name is extracted and a greeting message is created that says
“Hi” with the name added to the greeting.

Afterwards, a node is created that will contain a greeting property with the greeting
message as the value of the property and a connection is created between the two
nodes. For this task, the framework provides a utility class with a connect method. The
connect method acts not only as a creation function for the connection but also as a
creation function for the node. What the user does when he calls the function is send-
ing a request to connect to a specific node that has certain properties that the user
specified in a NodeRequest. For example, this NodeRequest contains a name, type,
and list of properties that the node should contain. If the framework finds such a node
in the current discovered topology, it creates a connection to this node. The check for
equality of two nodes is based only on the identifying properties. If the NodeRequest
contained more properties and the framework found a match for the requested node,
then these properties will be added to the found node. Connections can also have a
name which is specified in the ConnectionRequest, e.g. in the code above a connec-
tion with a name of “Says Hi” is created between two nodes.

If the framework does not find a node with the given properties — or more specific, a
node where the identifying properties do not match — it creates a new node that con-
tains the properties of the NodeRequest. This makes the creation of new nodes and
connections very easy because the developer does not have to care whether to create
a node or to connect to an already existing node. The framework automatically detects
nodes and either creates new ones or connects to already existing ones.

6 Summary and Outlook 91

To test the created plugin, create a new feature project (File -> New -> Feature Project)
with a name of HelloWorldFeature. Add the previously created plugin to the referenced
plugins that are contained in the feature and use the Export Wizard in the overview tab
of the feature.xml to export the feature.

A-4 Initiate Discovery

Start the framework and install the feature using the Update Manager. Create a new
project, drag a new node from the palette to the diagram and name it Hello World
Node. In the properties view set the type of the node to http://helloWorld.com/type. Af-
terwards, switch to the type specific tab in the properties view and add a hame property
with some value, e.g. set the type to http://helloWorld.com/type, the name to name and
the value to John Doe. Click the add button and refresh the properties view by select-
ing the node on the diagram. Finally, start the discovery by clicking either the Run but-
ton or the RunStep button. The result should look like Figure 33.

id] *test.atd &2 =0
.2 Palette [
e e
< Hello World Node 4 Mode

<= Connection

4 Good Bye Node

| Properties &3 = = S
+ Node I
Core Property Value Type:
Appearance 4 "http:.-’r.-"hlE”DWDr|d.c0m;’t}rpe" . e "
Type Specific greeting Hi John Doe

Add

Figure 33 — Discovery of the Hello World Example

<References 92

References

[1]. W3C. Web Services Description Language (WSDL) 1.1. [Online] March 15, 2001.
http://www.w3.org/TR/wsdl.

[2]. OASIS. Web Services Business Process Execution Language Version 2.0. [Online]
April 11, 2007. http://docs.oasis-open.org/wsbpel/2.0/0S/wsbpel-v2.0-OS.html.

[3]. Stephane Ducasse, Damien Pollet. Software Architecture Reconstruction: a
Process-Oriented Taxonomy. 2009.

[4]. ArchJava. [Online] http://archjava.fluid.cs.cmu.edul/.
[5]. Garlan, David. Software architecture: a roadmap. 2000.

[6]. Kamran Sartipi, Kostas Kontogiannis. On Modeling Software Architecture
Recovery as Graph Matching. Canada : School of Computer Science and Dept. of
Electrical & Computer Engineering Waterloo, 2003.

[7]. Andreas Kind, Dieter Gantenbein, Hiroaki Etoh. Relationship Discovery with
NetFlow to Enable Business-Driven IT Management. s.l. : In Proceedings of Business-
Driven IT Manageent (BDIM’06), pages 63—-70, 2006.

[8]. Cisco. IOS NetFlow. [Online] October 2007.
http://www.cisco.com/en/US/prod/collateral/iosswrel/ps6537/ps6555/ps6601/prod_whit
e_paper0900aecd80406232.html.

[9]. Xu Chen, Ming Zhang, Z.Morley Mao, Paramvir Bahl. Automating Network
Application Dependency Discovery: Experiences, Limitations, and New Solutions. s.I. :
OSDI USENIX Association, p. 117-130, 2008.

[10]. Dieter Gantenbein, Luca Deri. Categorizing Computing Assets According to
Communication Patterns. 2002.

[11]. Sergey Brin, Lawrence Page. The Anatomy of a Large-Scale Hypertextual Web
Search Engine. s.l. : In Proceedings of the 7th World-Wide Web Conference, 1998.

[12]. Onn Brandman, Junghoo Cho, Hector Garcia-Molina, Narayanan
Shivakumar. Crawler-Friendly Web Servers. s.l. : In Proceedings of the Workshop on
Performance and Architecture of Web Servers , 2000.

[13]. Junghoo Cho, Hector Garcia-Molina. The Evolution of the Web and Implications
for an Incremental Crawler. 1999.

[14]. ACM. Service oriented architecture (SOA) a new paradigm to implement dynamic
e-business solutions. [Online] August 2006.
http://ubiquity.acm.org/article.cfm?id=1159403.

[15]. W3C. SOAP Version 1.2 Part 1: Messaging Framework (Second Edition). [Online]
April 27, 2007. http://www.w3.org/TR/soapl2-partl/.

<References 93

[16]. IBM. Web Services Flow Language Version 1.0 (WSFL 1.0). [Online] 2001.
http://xml.coverpages.org/wsfl.html.

[17]. Microsoft. XML Business Process Language (XLANG). [Online] 2001.
http://xml.coverpages.org/xlang.html.

[18]. IBM, Microsoft. Business Process Execution Language for Web Services Version
1.1. [Online] 2003. http://public.dhe.ibm.com/software/dw/specs/ws-bpel/ws-bpel.pdf.

[19]. OASIS. WS-BPEL Extension for People. [Online] 2007. http://www.oasis-
open.org/committees/bpeldpeople/.

[20]. National Institute of Standards and Technology. The NIST Definition of Cloud
Computing. [Online] September 2011. http://csrc.nist.gov/publications/nistpubs/800-
145/SP800-145.pdf.

[21]. Deutscher Bundestag. Aktueller Begriff: Cloud Computing. [Online] 2010.
http://www.bundestag.de/dokumente/analysen/2010/cloud_computing.pdf.

[22]. Oracle. Java Management Extensions (JMX) Technology. [Online]
http://www.oracle.com/technetwork/java/javase/tech/javamanagement-140525.html.

[23]. Shah, Saumil. An Introduction to HTTP Fingerprinting. [Online] 5 19, 2004.
http://net-square.com/httprint/httprint_paper.html.

[24]. Sun Microsystems, Inc. Java Servlet Specification, Version 3.0. [Online]
December 2009. http://download.oracle.com/otn-pub/jcp/serviet-3.0-fr-eval-oth-
JSpec/servlet-3_0-final-spec.pdf.

[25]. —. JavaServer Pages Specification Version 2.1. [Online] May 8, 2006.
http://download.oracle.com/otn-pub/jcp/jsp-2.1-fr-eval-spec-oth-JSpec/jsp-2_1-fr-
spec.pdf.

[26]. Apache Software Foundation. Coyote HTTP/1.1 Connector. [Online] 2009.
http://tomcat.apache.org/tomcat-4.1-doc/config/coyote.html.

[27]. Lyon, Gordon. Nmap. [Online] http://nmap.org/.

[28]. OSGi Alliance. Open Services Gateway initiative (OSGi). [Online]
http://www.osgi.org.

[29]. Krein, Jakob. Web-based Application Integration: Advanced Business Process
Monitoring in WSO2 Carbon. Stuttgart : Institut fir Architektur von
Anwendungssystemen, 2011.

[30]. Eclipse Foundation. Rich Client Platform. [Online] 2012.
http://wiki.eclipse.org/index.php/Rich_Client_Platform.

[31]. Ebert, Ralf. Eclipse RCP. [Online] August 2011.
http://www.ralfebert.de/eclipse_rcp/EclipseRCP.pdf.

[32]. Eclipse Foundation. Eclipse Modeling EMF. [Online] 2010.
http://www.eclipse.org/modeling/emf/.

<References 94

[33]. — EMF/FAQ. [Online] 2011. http://wiki.eclipse.org/EMF/FAQ.

[34]. Plante, Frederic. Introducing the GMF Runtime. [Online] January 16, 2006.
http://www.eclipse.org/articles/Article-Introducing-GMF/article.html.

[35]. Eclipse Foundation. Eclipse Editing Framework. [Online]
http://www.eclipse.org/gef/.

[36]. Chris Aniszczyk. Learn Eclipse GMF in 15 minutes. [Online] September 12,
2006. http://www.ibm.com/developerworks/opensource/library/os-ecl-gmf/.

[37]. Eclipse Foundation. GMF Tutorial. [Online]
http://wiki.eclipse.org/Graphical_Modeling_Framework/Tutorial#Get_started.

[38]. EMC. lonix. [Online] http://www.emc.com/products/family/ionix-family.htm.
[39]. IBM. Tivoli. [Online] http://www.ibm.com/software/tivoli/.

[40]. Microsoft. System Center Operations Manager. [Onling]
http://www.microsoft.com/en-us/server-cloud/system-center/operations-manager.aspx.

[41]. HP. Network Management Center. [Online]
http://www8.hp.com/us/en/software/software-solution.html?compURI=tcm:245-936973.

All links have been last followed on April 26, 2012.

Declaration 95

Declaration

All the work contained within this thesis, except where otherwise acknowledged, was
solely the effort of the author. At no stage was any collaboration entered into with any
other party.

Stuttgart, on April 26, 2012

Jakob Krein

