

Institut für Architektur von Anwendungssystemen

Universität Stuttgart
Universitätsstraße 38
D – 70569 Stuttgart

Diplomarbeit Nr. 3251

Framework
for Application Topology Discovery to

enable Migration of Business Processes
 to the Cloud

Jakob Krein

Studiengang: Informatik

Prüfer: Prof. Dr. Frank Leymann

Betreuer: Dipl.-Inf. Tobias Binz

begonnen am: 27.10.2011

beendet am: 27.04.2012

CR-Klassifikation: C.2.4, D.2.11, H.4.1, H.5.2

 2

Abstract 3

Abstract

Today, enterprises often use large and complex software systems to support their

Business Processes. These software systems usually run over years and decades and

have gone through various changes and modifications in order to be able to cope with

changing business requirements. Successful software applications usually grow and

evolve over time, and so does their architecture. The amount of modifications can

reach dimensions where the resulting architecture of the software system has little in

common with the originally designed one.

Knowing the overall architecture of the system is crucial for its management, especially

when it comes to the migration of parts of the application or the application as a whole

to another IT infrastructure, such as a Cloud infrastructure. Before an application can

be migrated, its architecture has to be obtained in its current state, commonly known as

the process of Software Architecture Reconstruction (SAR). This is usually achieved by

running different internal programs on the program code to gather as much information

as possible on the various applications and subsequently visualizing the results.

In contrast to internal discovery, external discovery analyzes which network accessible

sources provide information for a detailed picture of an application topology, e.g. a web

server is not identified by looking at its source code (or code running on the virtual ma-

chine) but by issuing HTTP requests to query the server for information. This diploma

thesis focuses on external application topology discovery in service-oriented applica-

tions that are defined in WS-BPEL and orchestrate multiple lower level Web services.

The goal is to research and evaluate ways for external discovery of application topolo-

gies and the development of a prototypical, plugin-based framework that manages the

topology information in a global model, to facilitate the migration of the application or

parts of it to a cloud.

Table of Contents 4

Table of Contents

Abstract ... 3

Table of Contents .. 4

Table of Figures .. 6

List of Tables ... 7

Table of Listings .. 8

List of Abbreviations ... 9

1 Introduction .. 10

1.1 Motivating Example .. 10

1.2 Problem Statement ... 11

1.3 Outline .. 12

2 Related Work and Fundamentals .. 13

2.1 Software Architecture Reconstruction (SAR) .. 13

2.2 Network-based Discovery ... 16

2.3 Searching Techniques .. 18

2.4 Service-Oriented Architecture (SOA) .. 19

2.5 Cloud Computing .. 20

3 Concepts ... 22

3.1 Framework ... 22

3.2 Functional Requirements Analysis.. 23

3.3 Data Model ... 27

3.4 Scheduler ... 28

3.5 Plugins ... 34

4 Architecture and Design .. 44

4.2 Design Decisions .. 49

4.3 Resulting Architecture .. 54

5 Prototypical Implementation ATDFramework .. 57

5.1 Project Setup and Modeling.. 57

5.2 Framework Implementation .. 65

5.3 Plugins ... 79

6 Summary and Outlook ... 84

Table of Contents 5

Appendix A Framework Manual ... 86

A-1 Framework Installation ... 86

A-2 Plugin Installation ... 87

A-3 Plugin Development ... 87

A-4 Initiate Discovery .. 91

References ... 92

Declaration... 95

Table of Figures 6

Table of Figures

Figure 1 – Motivating Example .. 11

Figure 2 – Software Architecture Reconstruction Life-time flow [3] 13

Figure 3 – Modeling URL as an object... 26

Figure 4 – Modeling URL as an attribute ... 26

Figure 5 – Data model ... 27

Figure 6 – Data model as Diagram .. 28

Figure 7 – Priority List for Tomcat web server ... 31

Figure 8 – Refined scheduling algorithm ... 33

Figure 9 – Relationship between BPEL process and Web Service 35

Figure 10 – Tomcat Web Console ... 40

Figure 11 – Monitoring Apache Tomcat with JConsole .. 41

Figure 12 – ActiveMQ Web Console ... 43

Figure 13 – Use Case Overview and Roles ... 44

Figure 14 – Components of Eclipse RCP (Adapted from [31]) 51

Figure 15 – GMF overview [36] ... 53

Figure 16 – Resulting architecture of the ATDFramework ... 54

Figure 17 – GMF Dashboard ... 57

Figure 18 – Domain model (atdframework.ecore) .. 58

Figure 19 – Project structure after EMF code generation .. 59

Figure 20 – Graphical model definition (atdframework.gmfgraph) 60

Figure 21 – Graphical tooling definition (atdframework.gmftool) 61

Figure 22 – Graphical mapping definition (atdframework.gmfmap) 61

Figure 23 – Project structure of GMF editor ... 62

Figure 24 – Branding Logo of ATDFramework .. 64

Figure 25 – Update Manager of ATDFramework ... 64

Figure 26 – Installed Plugins view ... 71

Figure 27 – Priority Map view .. 73

Figure 28 – Properties view ... 77

Figure 29 – Type-specific properties left side .. 78

Figure 30 – Type-specific properties right side .. 78

Figure 31 – Screenshot of the final application .. 85

Figure 32 – Product export wizard ... 86

Figure 33 – Discovery of the Hello World Example .. 91

List of Tables 7

List of Tables

Table 1 – Relationships between objects .. 25

Table 2 – Use Case: Create New Project .. 45

Table 3 – Use Case: Load Project ... 45

Table 4 – Use Case: Save Project ... 46

Table 5 – Use Case: Edit Project in Framework .. 46

Table 6 – Use Case: Edit Project with Text Editor ... 47

Table 7 – Use Case: Start Discovery ... 48

Table 8 – Use Case: Develop new Plugin ... 48

Table 9 – Use Case: Install new Plugin ... 48

Table 10 – Use Case: Uninstall new Plugin ... 49

Table 11 – Adjustments in atdframework.gmfgen .. 62

Table 12 – IATDFPlugin interface methods ... 67

Table 13 – Settings for the installed plugins view .. 72

Table 14 – Properties of the Others menu item ... 72

Table 15 – Properties of the Installed Plugins menu item .. 73

Table 16 – Properties of the Installed Plugins Show View parameter 73

Table 17 – Settings for the Priority Map view ... 74

Table 18 – Run command ... 75

Table 19 – RunStep command .. 75

Table 20 – Properties of BPEL plugin .. 80

Table 21 – Properties of WSDL plugin... 81

Table 22 – Properties of Web Service plugin ... 81

Table 23 – Properties of web server plugin ... 82

Table 24 – Properties of Tomcat JMX plugin ... 82

Table 25 – Properties of ActiveMQ JMX plugin ... 83

Table of Listings 8

Table of Listings

Listing 1 – Scheduling algorithm in pseudo code ... 31

Listing 2 – Refined scheduling algorithm ... 34

Listing 3 – Import statement in a BPEL file .. 35

Listing 4 – SOAP over HTTP binding example .. 36

Listing 5 – SOAP over JMS binding example .. 38

Listing 6 – Request header .. 38

Listing 7 – Response header ... 39

Listing 8 – Response from Apache 1.3.23 [23] .. 39

Listing 9 – Response from IIS 5.0 [23] ... 39

Listing 10 – Tomcat JMX connection string ... 41

Listing 11 – Calling Tomcat JMX Servlet ... 42

Listing 12 – Result of a JMX Servlet query .. 42

Listing 13 – Running a broker with useJMX property ... 43

Listing 14 – Connecting to URL ... 43

Listing 15 – de.kreinjb.gmf.atdframework.manager.plugins.exsd 66

Listing 16 – IATDFPlugin interface .. 66

Listing 17 – AbstractATDFPlugin ... 68

Listing 18 – AbstractATDFPlugin subclass example .. 69

Listing 19 – Example of ISafeRunnable ... 70

Listing 20 – Detecting plugins that implement the IATDFPlugin interface 71

Listing 21 – RunHandler .. 75

Listing 22 – Part of the scheduler .. 76

Listing 23 – Property tab extension ... 78

Listing 24 – Property section extension ... 79

Listing 25 – Extension provided by BPELPlugin .. 80

Listing 26 – XPath statement to retrieve locations of WSDL documents 80

Listing 27 – HelloWorldPlugin plugin.xml ... 87

Listing 28 – Generated HelloWorldPlugin.java class .. 88

Listing 29 – Modified HelloWorldPlugin.java class ... 89

List of Abbreviations 9

List of Abbreviations

BPEL Business Process Execution Language

DHCP Dynamic Host Configuration Protocol

DNS Domain Name System

IaaS Infrastructure-as-a-Service

IIS Internet Information Services

JMS Java Message Service

JMX Java Management Extensions

LDAP Lightweight Directory Access Protocol

LRU Least Recently Used

OSGi Open Services Gateway initiative

PaaS Platform-as-a-Service

SaaS Software-as-a-Service

SAR Software Architecture Reconstruction

SNMP Simple Network Management Protocol

SOA Service-Oriented Architecture

UDDI Universal Description, Discovery and Integration

WSDL Web Services Description Language

XML Extensible Markup Language

1 Introduction 10

1 Introduction

Nowadays, enterprises are facing rapidly changing market conditions which require

flexible IT systems able to dynamically adjust to those changes. Staying competitive

means reducing time to market, management costs, and costs for infrastructure. Inflex-

ible IT systems, unable to keep up with those fast changes, will lead to the inability of

quickly responding to competitor actions, customer demands, or economic trends, and

thus a loss in sales.

All these difficulties have changed the way application development works nowadays.

One of the architectural styles increasing the flexibility of application development and

emerging over the last years is the service-oriented architecture (SOA) paradigm. It

introduces loose coupling between software components (services) and fosters reuse

of these services. A SOA is commonly realized through the Web service stack, a set of

XML-based open standards like WSDL [1], SOAP, and UDDI. Web services can be

orchestrated using the Web Service Business Process Execution Language (WS-

BPEL) [2], introducing flexibility in application development by separating the business

logic from the underlying services. These orchestrated services are then exposed

again as web services, providing another level of granularity through the reuse of these

services.

Another emerging paradigm is Cloud computing, allowing enterprises to focus on their

core competences by moving parts of applications or an application as a whole from

on-premise to a cloud environment. These environments can be in-house or provided

by third party vendors, providing elasticity, scalability, and high availability of computa-

tional resources, and thus making the migration of a SOA application or parts of it to a

cloud a possible next step on the way to a more flexible IT system.

This diploma thesis focuses on ways to support this migration step by researching and

prototypically implementing discovery of application topologies of a SOA application,

defined as a BPEL composition with multiple Web service calls. In particular, the focus

of this work is on ways of external discovery of the participating components, such as

web servers, messaging systems, databases and operating systems.

1.1 Motivating Example

The example given here illustrates a simple BPEL process that orchestrates different

Web services, hosted on different machines. These Web services can be implemented

using different languages, such as Java or C#, running on different Operating Systems

like Linux or Windows and different Web servers, like Apache Tomcat or Microsoft In-

ternet Information Services (IIS) and using various Database Servers like MySQL or

MSSQL.

1 Introduction 11

Figure 1 – Motivating Example

1.2 Problem Statement

The goal of this thesis is to research and evaluate ways for external discovery of appli-

cation topologies, implement a set of prototypical discovery plugins and manage the

topology information in a global model. The tasks constituting this thesis include the

following:

 A state of the art regarding discovery of service information in research and

products.

 Research which external, network accessible sources provide information help-

ful to get a detailed picture of the application topology of the Web services used

in the composition.

 Implementation of a plugin-based framework which is able to manage the de-

scribed discovery as well as store the gathered information in a structured way

for further processing.

 A prototypical implementation of external discovery plugins including plugins for

WSDL, Tomcat (Java Web service), Apache ODE (BPEL), Apache ActiveMQ

(JMS), and Amazon EC2 (IaaS).

1 Introduction 12

1.3 Outline

This document is divided into 6 chapters – an Introduction, a Related Work and Fun-

damentals, a Concepts, an Architecture and Design, and a Prototypical Implementation

section. The thesis concludes with a Summary and Outlook section, summarizing the

work done in this thesis and giving an outlook to future work. Furthermore the appendix

contains a Framework Manual.

In detail, each chapter covers the following topics:

Chapter 1 - Introduction: The Introduction gives the reader a motivating example fol-

lowed by the problem statement. It also contains the outline of this document.

Chapter 2 - Related Work and Fundamentals: Chapter 2 gives an overview of relat-

ed work others contributed in this area and evaluates the research achievements over

the past years. The focus is mainly directed to methods of software architecture recon-

struction, network-based discovery of IT assets and discovery techniques used by

search engines. It also covers the basic technologies to give the reader the necessary

understanding of paradigms, architectures and technologies used in this thesis. These

include cloud computing, service-oriented architecture, Web services and BPEL.

Chapter 3 - Concepts: Chapter 3 describes the concepts developed during the course

of this writing. This includes concepts of the Framework and the developed plugins.

Chapter 4 - Architecture and Design: The Architecture and Design are described in

chapter 4, giving a high level view on the developed framework and discovery plugins.

It also describes the supported use cases of the resulting architecture.

Chapter 5 - Prototypical Implementation: Implementation aspects are covered in

chapter 5. This provides a low level view on the framework and discovery plugins and

describes the development process.

Chapter 6 - Summary and Outlook: The last chapter summarizes the work done in

this thesis and gives an outlook to future work.

Appendix A - Framework Manual: This appendix provides instructions on how to in-

stall the framework and to start a discovery process. Additionally it describes how the

framework can be extended by developing new plugins.

2 Related Work and Fundamentals 13

2 Related Work and Fundamentals

The following is a summary of related work, done by others over the last years to con-

tribute to the task of migrating SOA applications to the cloud. This includes research in

the area of software architecture recovery, which has received considerable attention

recently. The focus is also on network-based discovery, like methods for asset and

inventory management. Other related work also includes discovery techniques used by

search engines, e.g. crawling and graph traversal. Another focus is on related technol-

ogies that some of the concepts of this diploma thesis are building on.

2.1 Software Architecture Reconstruction (SAR)

Ducasse and Pollet [3] provide a state of the art in software architecture reconstruction

approaches, based on publicly available and trackable articles and documents, like

PhDs and technical reports. According to [3], software architecture reconstruction is a

reverse engineering approach aiming to reconstruct architectural views of a software

application. They structure the field around goals, processes, inputs, techniques and

outputs of SAR approaches (Figure 2). Excluded are works that extend traditional lan-

guages to mix architectural and other programming elements like ArchJava [4], be-

cause in these cases the architecture is not extracted from existing applications. The

following chapters are a quick summary of what Ducasse and Pollet described in detail

in their state of the art.

Figure 2 – Software Architecture Reconstruction Life-time flow [3]

2.1.1 Goals

Garlan [5] identifies six main goals of software architecture in software development:

Understanding, Reuse, Construction, Evolution, Analysis and Management. These

goals are refined by Ducasse and Pollet for architecture reconstruction.

Goals

Processes

TechniquesInputs Outputs

2 Related Work and Fundamentals 14

 Re-documentation and understanding: Architectural views provide a view of the

system on a high level of abstraction, making it easy for reverse engineers to

understand the overall system.

 Reuse investigation and product line migration: Architectural views identify

components, frameworks and patterns that can be reused. These commonali-

ties can be shared in product lines.

 Conformance: As a concrete architecture often does not match the conceptual

one, software architecture reconstruction can be used to check conformance of

concrete and conceptual architecture.

 Co-evolution: SAR can be used to synchronize the deviation of architecture and

implementation, as they usually evolve at different speeds.

 Analysis: Architectural views, provided by a SAR framework, can be used by

analysis frameworks to support the decision-making process of stakeholders.

 Evolution and maintenance: Software architecture recovery may be used as a

way to support application evolution and maintenance. This step often includes

looking at an applications history, not only its current state.

2.1.2 Processes

The different SAR approaches can be categorized as bottom-up, top-down and hybrid

processes.

Bottom-up

Bottom-up processes extract the architecture from source-code, continuously creating

a higher level of abstraction until a sufficient level of understanding is reached. A pro-

cess cycle consists of three steps: populating a repository with source code analyses,

querying the repository for abstract system representations and presenting the results

in an adequate form. The bottom-up approach is also known as software architecture

recovery.

Top-down

Another approach is used by top-down processes, also known as software architecture

discovery. Here, high-level information like architectural styles is used to reconstruct

architecture by matching formulated conceptual hypotheses to the source code.

Hybrid

Hybrid processes use a combination of bottom-up and top-down process, creating

high-level views from source code and matching these with views of high-level infor-

mation. These approaches often use views from both concrete and conceptual archi-

tecture. Sartipi and Kontogiannis [6] describe a hybrid approach, presenting a graph

matching model for software architecture recovery and a tool, implementing their ap-

proach, called Alborz. In a first step, Alborz parses the source code in a bottom-up

phase and generates a graph as a high-level view. A reverse engineer then specifies

2 Related Work and Fundamentals 15

hypothesized views of the architecture in a top-down phase. The graph is then mapped

with the specified views using graph matching.

2.1.3 Inputs

Most software architecture recovery tools use source code as their input, but dynamic

information that is only available during execution, as well as historical data are also

used by different tools. Ducasse and Pollet divide inputs into non-architectural and ar-

chitectural inputs.

Non-architectural Inputs

The most often non-architectural input used is source code, as it is a reliable source of

information. Some tools work directly on the source code, while others use metamodels

to represent the code. Symbolic information, found in comments, method names or file

names are sometimes also used. As static information is often insufficient, some ap-

proaches use dynamic information to analyze the behavior of a system. Another non-

architectural input that is rather rarely used is historical information. While human ex-

pertise may not be as trustworthy as source code, for example, it is very helpful and

usually needed to steer the iterative SAR process and to validate the results.

Architectural Inputs

Architectural inputs used by some tools are architectural styles and viewpoints. These

styles include pipes and filters, layered system, data flow, blackboard and domain

models. Though these abstractions are valuable and expressive, they are usually diffi-

cult to recognize.

2.1.4 Techniques

Techniques often match the data they operate on, e.g. queries on facts or queries on

graphs. These are categorized by [3] into quasi-manual, semi-automatic and quasi-

automatic techniques.

Quasi-manual

Here, the reverse engineer uses a tool only to assist in identifying architectural ele-

ments, e.g. using a visualization tool to manually reconstruct the software architecture.

Semi-automatic

With semi-automatic techniques, discovery of refinements is done automatically by the

tool, while the reverse engineer instructs the tool how to do that. Techniques belonging

to this group are query based techniques, e.g. relational queries that abstract data out

of relational databases (by using SQL queries, for example), or graph pattern matching

techniques like they are used in Alborz [6].

Quasi-automatic

There is no fully automated software architecture extraction technique. Reverse engi-

neers always have to guide the SAR process, even at the most automated approaches.

Techniques belonging to this group are clustering algorithms that identify groups of

objects that share similarities, and dominance analysis that identifies related parts in an

application.

2.1.5 Outputs

Outputs of a SAR process are clearly related to the goals of SAR. The usual output of a

SAR tool is a visual representation of the software architecture, e.g. using boxes to

present and group source code entities, or showing components and architectural ele-

ments and layers at different levels of abstraction. Some approaches also provide val-

uable additional information, such as conformance of architecture and implementation

or conceptual and concrete architecture.

2.1.6 Relation to this work

The goals and techniques used in the described SAR approaches can be adopted to

methods of external application topology discovery, but these SAR approaches usually

work on a very low level, e.g. source code and they are usually executed on the same

machine the application is running on. The approach described in this diploma thesis

focuses more on the topology and interaction of different (standalone) applications, like

web servers and databases, and how they can be discovered and accessed externally

over the network. As the framework in this thesis is plugin-based, a possible extension

to the framework could be a plugin that uses a SAR tool to complement information

that cannot be provided by any other plugin.

2.2 Network-based Discovery

Tracking computing devices and assets to understand the operational infrastructure

and its users has become an important aspect for enabling business-driven IT man-

agement, and plays a key role during the negotiation of outsourcing contracts and for

planning mergers and acquisitions. Typical methods for asset and inventory manage-

ment are periodic physical inventories, which require costly human visits or periodic

self-assessment questionnaires to be filled out by individual end-users. Sometimes,

servers and end-user devices are also equipped with software agents for the tracking

of resources and the system, but this assumption cannot be made in every situation [7].

Therefore, a lot of recent work focuses on the discovery and tracking of networked IT

assets and their relationships.

2 Related Work and Fundamentals 17

There are various sophisticated commercial products for managing enterprise net-

works, such as EMC Ionix1, IBM Tivoli2, Microsoft SCOM3 and HP NMC4, but they usu-

ally require too much manual effort, or they are restricted to a particular set of applica-

tions of the same vendor.

2.2.1 Techniques

Techniques for discovery of networked IT assets are classified into online methods

(analyzing the actual state of the network) and historic log information processing (ana-

lyzing recorded network traces). Online discovery techniques are further classified into

active network mapping, passive network mapping and host and service mapping.

Active Network Mapping

The network is explored exhaustively from a starting point by using a repetitive algo-

rithm that walks the entire network up to an endpoint or until the entire IP address

range has been exhausted [7]. The different techniques include SNMP walking of net-

work topology, network-wide IP ping sweeps, DNS network domain name-space walk-

ing, DHCP lease information analysis and LDAP or Active Directory searches. Prob-

lems with this approach can occur when parts of the network are protected by firewalls.

Passive Network Mapping

Network mapping is done passively, i.e. without generating any kind of traffic that stim-

ulates target machines to discover their presence. These techniques include network

packet sniffing and subscription to network and syslogs. A packet capture application

(network probe) must be placed where the traffic actually flows, i.e. packet capture is

location dependent.

Host and Service Mapping

Once a host is discovered, the next step is usually to drill down on each host, e.g. iden-

tifying the operating system and the services a host provides. These techniques in-

clude TCP/IP stack analysis and OS detection as well as UDP/TCP port scans.

2.2.2 Research

Kind et al. [7] present a relationship discovery approach using passive network map-

ping based on NetFlow [8]. Their network profiling system Aurora detects traffic rela-

tionships by identifying flow correlations, i.e. flow pairs or flow chains based on their

starting or ending times and a time-dependent correlation distribution. A flow pair could

represent a database access or a directory access for authentication, for example.

1
 EMC Ionix. http://www.emc.com/products/family/ionix-family.htm

2
 IBM Tivoli. http://www.ibm.com/software/tivoli/

3
 Microsoft SCOM. http://www.microsoft.com/en-us/server-cloud/system-center/operations-

manager.aspx
4
 HP NMC. http://www8.hp.com/us/en/software/software-solution.html?compURI=tcm:245-

936973

http://www.emc.com/products/family/ionix-family.htm
http://www.ibm.com/software/tivoli/
http://www.microsoft.com/en-us/server-cloud/system-center/operations-manager.aspx
http://www.microsoft.com/en-us/server-cloud/system-center/operations-manager.aspx
http://www8.hp.com/us/en/software/software-solution.html?compURI=tcm:245-936973
http://www8.hp.com/us/en/software/software-solution.html?compURI=tcm:245-936973

2 Related Work and Fundamentals 18

Chen et al. [9] introduce Orion, a system that discovers dependencies using packet

headers and timing information in network traffic based on delay spike analysis. It dis-

covers service dependencies by observing the time correlation of messages between

services and uses the delay distribution of service pairs to determine their dependency

relationship. The number of spikes corresponds to the number of executed paths in

services. The delay distribution is treated as a signal so that signal processing tech-

niques like random noise reduction can be applied (random noise is spikes in the delay

distribution due to host and network load variations). This is achieved by using Fast

Fourier Transform (FFT) to decompose the signal across the frequency spectrum and

applying low-pass filtering to mitigate the impact of random noise

Gantenbein et al. [10] propose an approach to complement basic network-based dis-

covery with the combined log information from network and application servers, and

then to compute an aggregate picture of assets and categorize their usage with data-

mining techniques. Log files from selected network and application servers are first

normalized into a denser representation (usage records). Related usage records from

multiple network and application protocols are then aggregated into a server-

independent perception of activities. Finally, usage and activity records are input to

analytic processing and data mining.

2.2.3 Relation to this work

The work done in this diploma thesis uses a variation of the different described tech-

niques, e.g. a lot of information can already be found in the WSDL files but a OS dis-

covery needs more active discovery. This could be a TCP/IP stack analysis to discover

the operating system, for example. Furthermore, already developed programs like port

scanners could be bundled as plugins and hence contribute to the discovery process.

2.3 Searching Techniques

Different discovery techniques, often used in web search engines, also lay a back-

ground for the work in this thesis. This is more in regard to processes that are executed

before a search engine can provide the search service itself to others, i.e. crawling and

indexing [11]. Further important topics are ways of traversing graphs, e.g. depth-first

search or breadth-first search and cycle detection in graphs, as well as the de-

duplication of entities that are found multiple times.

2.3.1 Crawling

A web crawler usually creates a copy of all visited web pages for later processing by an

indexer. The crawler starts with a list of URLs (seed). It then downloads the pages from

these URLs and extracts hyperlinks found on these pages. The newly found links are

added to the list of URLs so that the crawler will eventually download these pages as

well. This step is repeated until there are no further pages to crawl, or a defined limit is

exceeded (e.g. time or network bandwidth) [12]. Periodic crawlers build a brand new

2 Related Work and Fundamentals 19

collection which replaces the old one when it is necessary to refresh the collection.

Incremental crawlers incrementally refresh the local collection by replacing less-

important pages with more-important ones [13].

2.3.2 Graph Traversal

Considering web pages as nodes and hyperlinks as edges in a graph, crawling can be

seen as the traversal of a graph. Traversal can be done either through depth-first

search or through breadth-first search. A breadth-first search algorithm explores the

graph layer by layer, the starting node being layer zero and all direct neighbors being

layer one. This technique is useful when trying to find a path from one node to another

with minimum edges. Opposite to this technique, a depth-first algorithm always contin-

ues to explore from the next node that it finds, and only goes back to previously ex-

plored nodes when it is running out of options. Because these algorithms remember

already visited nodes, cycle detection becomes very easy, as repeatedly (on different

paths) visited nodes will already be marked as visited.

2.3.3 Relation to this work

A crawler can be compared to a plugin in the later described framework for application

topology discovery. For example, a plugin (crawler) searches a WSDL document

(page) and discovers (finds a hyperlink to) a Java Web Service (page). Opposite to

searching through web pages, the nodes (pages) in the framework are of different

types, e.g. WSDL or Java Web Service, so that different crawlers (plugins) have to be

developed. These crawlers can only operate on compatible nodes, e.g. a plugin for

WSDL file searching and a plugin for Java Web Service searching.

2.4 Service-Oriented Architecture (SOA)

Service-Oriented Architecture [14] is an architectural style that supports the integration

of applications as connected and reusable business applications or business services.

A service represents a function provided at a network address that is available via dif-

ferent transports, formats, and quality of service, and which is always on, i.e. it does

not have to be created or destroyed. The term loose coupling is often used in conjunc-

tion with SOA. Components in a loosely coupled system make little or no assumptions

about other separate components.

2.4.1 Web Services, SOAP, and WSDL

An often misconception is the equality of SOA and Web Services. Web Services are a

concrete implementation of a SOA while a SOA does also have other implementations.

The goal of Web Services is to achieve interoperability between applications using

Web standards [2]. Web Services usually take the HTTP protocol as transport because

it provides the most interoperability. This is due to the fact that most firewalls are con-

2 Related Work and Fundamentals 20

figured to allow access via the HTTP protocol while other ports and protocols may be

blocked.

SOAP [15] is one of the most used application protocols in Web Services that allows

for the exchange of data between different systems. It is an XML format that wraps

SOAP messages into an envelope. The envelope is split into a message header that

contains Meta information, and a body that contains the payload. Data exchange does

not have to be synchronous as it must be with remote procedure calls, for example.

Web Services are described using the Web Services Description Language (WSDL) [1]

which is also an XML-based format. It is used for describing network services as a set

of endpoints operating on messages containing either document-oriented or procedure-

oriented information. The operations and messages are described abstractly, and then

bound to a concrete network protocol and message format to define an endpoint. The

format is extensible to allow description of endpoints and messages regardless of what

message formats and network protocols are used [1].

2.4.2 Business Process Execution Language (WS-BPEL)

The Business Process Execution Language (WS-BPEL) [2] is a language for specifying

business process behavior based on Web Services. These business processes can be

separated into two kinds. Executable business processes that model actual behavior of

a participant in a business interaction and abstract business processes that are speci-

fied only partially and which are note intended for execution [2]. The latter can be seen

as process views to hide internal details, for example.

BPEL describes workflows as orchestration of Web Services. It is a recursive aggrega-

tion model which means that tasks in BPEL processes are Web Services and the pro-

cess itself is a Web Service again. It is based on XML and originated from the Web

Service Flow Language (WSFL) by IBM [16] and XML Business Process Language

(XLANG) by Microsoft [17]. In 2002 the two companies released the first version under

the name BPEL4WS [18]. The second version was released in 2007 under the name

WS-BPEL by the OASIS consortium that took over standardization. It supports primari-

ly automated business processes but BPEL4People [19] is an extension that allows the

integration of people.

2.5 Cloud Computing

Cloud computing [20] is one of the new models for data processing that emerged over

the last years. It should cope with the fast grow in devices with internet connectivity and

the growing presence of IT in business- and personal environments. Applications and

data is not processed and stored on a local device anymore but on an external infra-

structure. The basic principle is the outsourcing of software and hardware of the user,

so that the user does not have to care, where the applications or information is actually

2 Related Work and Fundamentals 21

stored in the cloud. IT services are provided as services over the internet and account-

ed on basis of utilization of the service.

Depending on the sort of the service a distinction is drawn between Infrastructure-as-a-

Service (IaaS – e.g. storage space over the internet), Platform-as-a-Service (PaaS –

e.g. providing development tools over the internet), and Software-as-a-Service (SaaS –

e.g. usage of an application over the internet). Further distinction is drawn between

private clouds for a limited user group and public clouds for a variety of users. The of-

ten found solution is usually a combination of the two mixed with traditional IT environ-

ments called hybrid clouds.

The great advantage of cloud computing is the possibility to outsource tasks to external

companies. This way, servers and applications do not have to be bought and managed

by a business enterprise itself but can be rented from specialized companies. This re-

duces costs especially for the management of the infrastructure and provides flexibility.

But concerns are the security and reliability aspects of cloud services, e.g. because of

different laws in data privacy protection in different countries. Another problem is the

missing interoperability between cloud service providers which prevents a user from

changing the provider [21].

3 Concepts 22

3 Concepts

This chapter presents the fundamental concepts developed in this thesis: The overall

framework (3.1) and its plugin-based approach (3.5), data model (3.3), plugin sched-

uler (3.4), and the concepts on how to discover different artifacts like applications and

servers with their respective properties (3.2).

3.1 Framework

The framework is an application that is responsible for the external discovery of the

application topology of a composite application. Its job is to take a BPEL file as input,

manage the discovery, and store the gathered information in a structured way for fur-

ther processing. The name of the prototypical implementation of the framework will be

ATDFramework – the abbreviation for Application Topology Discovery Framework.

As stated by the assignment of tasks, the developed framework should be a plugin-

based framework. The idea of a plugin is to bundle code as an installable form so that it

can be installed to the framework. It is the only way additional functionality can be add-

ed to the framework. At the same time, the framework stays independent from the de-

veloped plugins making the overall architecture of the application modular and extensi-

ble. Providing a plugin-based framework has many advantages for the framework de-

veloper as well as the plugin developer, but it also introduces difficulties for both sides.

Advantages of using plugins:

- Extensibility: The framework can be dynamically extended with additional fea-

tures, allowing the application to grow with increasing user requirements.

- Independent Development: Additional features can be developed independent-

ly, allowing different development teams to implement different components,

even at the same time.

- Clear development direction: The framework provides a well-defined interface

for the plugin developer, giving him a direction for development of additional

components.

- Simplicity: A plugin usually has one goal, allowing developers to focus on that

goal.

3 Concepts 23

Disadvantages of using plugins:

- Restriction: The design of the plugin interface is always a trade-off between de-

fining ways for extension and on the other hand restrict the possibilities for ex-

tension. Designing extensibility needs a good requirement analysis to meet all

use cases.

- Evolution: Managing versions and backward compatibility can be very hard, es-

pecially when the plugin interface evolves. Often plugin developers have to up-

date their plugin with each new version.

- Complexity: While plugins may work when running alone, new problems may

arise when plugins interact with each other, with bugs appearing only with cer-

tain combinations of plugins.

- Testing: Testing a plugin may only be possible by running the plugin (inside the

framework), slowing down the development process.

Of course, depending on the implementation of the framework some of the disad-

vantages may not be relevant, e.g., some frameworks may provide a possibility to test

a plugin without running the framework.

The idea for the framework developed during the course of this diploma thesis is to

define a global data model and to provide the necessary management functionality to

the plugins that is necessary to operate on the data. The data model will contain the

topology information discovered throughout the discovery process. Individual plugins

will operate on the data and add information during the discovery process. The order in

which plugins are executed must be determined by the framework, e.g. through a

scheduling component.

3.2 Functional Requirements Analysis

Before defining the data model, the functional requirements of the framework have to

be analyzed. Most of these requirements can be obtained by looking at how a discov-

ery proceeds. This will help finding a suitable representation for the topology.

The discovery process takes a BPEL process as its input and outputs the application

topology. During the discovery process the discovered topology will go through differ-

ent iterations and eventually reach a final state. A plugin should take the currently dis-

covered topology (or part of it) as its input and try to discover new information based on

the provided information (e.g. a plugin gets a URL to a web server as input and outputs

the type and version of the server).

The framework has the responsibility to orchestrate the execution of the various

plugins. On the basis of the currently discovered topology and the currently installed

plugins, the framework should determine the plugins that are allowed to operate on the

model. One question to answer is whether a plugin can modify the whole topology or

just parts of it. Either way, a plugin should concentrate only on specific areas of the

3 Concepts 24

topology, e.g. concentrating on the discovery of web servers or the detection of operat-

ing systems.

3.2.1 Type System

This requires a mechanism that defines how plugins recognize parts of the topology as

being compatible, i.e. the framework knows which areas can be processes by which

plugin and the plugins know what to do with the provided information in a specific area

of the topology. A possible solution would be a type system that allows typing of

plugins and topology areas. This way the framework can determine which plugin

should operate on which part of the topology. In this case it would also be reasonable

to provide only the relevant parts as an input to the plugin so a plugin modifies only the

area that it is assigned to. Depending on how the topology itself is represented, this

approach can even be refined from areas to a single point of the topology (e.g. a single

node).

The type system should also provide sub types, e.g. a Tomcat web server and an IIS

are both web servers. A plugin may discover the existence of a web server without

knowing whether it is a Tomcat, an IIS, or any other web server. Still it must have the

possibility to add the information to the model. In a type system that allows for sub typ-

ing the web server type can be modeled as the parent of a Tomcat type and an IIS

type. Then a plugin that discovers the existence of the web server can add the server

to the model, while other plugins later specify the exact type of web server.

The type system should be build up implicitly by the plugins. This means that the

plugins provide the types they support and these types are installed to the framework

when the plugins are installed. The framework builds up the type system with all type

dependencies when it loads the plugins. This type system is then used to determine

which plugin can operate on which part of the topology, e.g. when scheduling the exe-

cution order. The definition of a type should also be kept simple, e.g. through the rep-

resentation of a type by a namespace. A plugin developer then just specifies the types

it supports and the types it creates (e.g. when discovering new topologies) through a

simple definition of the QNames of a namespace. The definition of a type should also

support the specification of a parent type, e.g. when specifying a new type called

tomcat, the plugin developer should have the possibility to specify this type as a sub

type of a web server type. The responsibility to manage these dependencies in a type

system lies with the framework.

3.2.2 Objects, Relationships, and Properties

A simple representation of the topology could be one that models only objects and their

relations to each other. For example, a BPEL process may contain references to

WSDL files, a Web Service may be hosted on a web server, and a web server is host-

ed on an operating system. The operating system again may run on a specific hard-

ware. Then, BPEL files, WSDL files, web server, operating systems, and hardware

3 Concepts 25

nodes may be modeled as an object while their relations may be modeled as directed

connections between the objects.

Relationship From Object To Object

Contains BPEL file WSDL file

Contains WSDL file Port

Hosted on Web Service Web Server

Provided By JMS Web Service Messaging System

Hosted on Web Server Operating System

Running on Operating System Specific Hardware

Table 1 – Relationships between objects

But modeling everything as an object or a relationship may be insufficient in some cas-

es. Assuming the discovery process starts with a BPEL process, a user would first

have to provide some information on what BPEL process to use and where to find it.

This requires that the framework provides a mechanism for the user to manually add

information to the model. It is also worth noticing that in this case the user provides two

sorts of information.

1. What type of object should be added to the topology, e.g., a BPEL object

2. Where to find the object, e.g., the location to the BPEL file

The question is, whether the location to the BPEL file (e.g., an URL) is modeled as an

object itself or a property of an object. If the location is modeled as an object, the BPEL

object would have a relationship with the location object. Then the relationship could be

modeled as a connection between BPEL object and location object. While this ap-

proach seems to be adequate for different sets of objects - e.g. the relationship be-

tween BPEL file and WSDL files or web server and operating system - some infor-

mation like the URL to a BPEL file, the URL to a web server, or the version number of a

web server should be added to an object as a property or an attribute.

This illustrates better the affiliation of the attributes to the object. The URL for the loca-

tion of a BPEL file is something that is directly dedicated to the BPEL file, while the

referenced WSDL files in a BPEL file are objects themselves which can even be refer-

enced from different BPEL files. Furthermore, this allows for the specification of specific

properties that must be available in every instance of an object, e.g. a BPEL file must

have a location but it does not need to contain any WSDL references.

Another benefit of properties is the possibility to identify objects according to their

properties, either by generating a special identifier or using an existing property that

uniquely identifies an object. For example, a URL to a BPEL file uniquely identifies the

BPEL file because no two files can be at the same location. This can be used by the

3 Concepts 26

framework if a plugin request the creation of a new object. The framework could then

check, whether there is already an object available that has the specified unique prop-

erties matching the one that should be created. Figure 3 and Figure 4 show a URL

modeled as an object and as an attribute.

Figure 3 – Modeling URL as an object

Figure 4 – Modeling URL as an attribute

If the type system supports sub types then it would also be reasonable to type proper-

ties, e.g. a web server as the parent type of Tomcat could contain the URL to the web

server, while a Tomcat as the sub type can contain Tomcat specific properties, e.g.

installed modules.

3 Concepts 27

3.2.3 Summary

A first summary of the functions and concepts that must be provided by the framework

are a simple representation of the model consisting only of objects, relationships and

properties. Plugins need to know what they can do with the discovered topology which

requires the adding of a type structure to the topology. The order of execution of differ-

ent plugins is handled by the framework, e.g. through a scheduler. Furthermore, the

user should have the possibility to add information to the model manually.

3.3 Data Model

The concepts developed in the previous chapter lead to the following data model illus-

trated in Figure 5 and Figure 6.

Figure 5 – Data model

3 Concepts 28

Figure 6 – Data model as Diagram

The topology information and referenced artifacts should be stored in a global data

model. This data model contains all the discovered information and must be stored

persistently for further processing, e.g., software that use this information to steer the

cloud migration process. The top level object is a project that contains all the infor-

mation that is found during a discovery, namely nodes and connections. A name can

also be assigned to the project.

Each object is represented as a node that has a name, a type, and a set of properties.

The type attribute is used for the typing of nodes so that plugins can check whether

they support the node type (i.e. they can operate on the node). The properties element

contains all properties of the node. Properties are typed themselves so they can be

grouped and assigned to specific types. This allows different plugins to add properties

to the node that belong to a certain group. Plugins may even read or write only proper-

ties of a certain type.

The project also contains a set of connections. Each connection has a name attribute

and a reference to a source and a target node.

3.4 Scheduler

The scheduler is one of the most important and at the same time one of the most com-

plex components of the framework, because it has to decide which plugin is allowed to

execute at which time. The execution strategy can influence the order of information

discovery and route the discovery process into different directions. For example, a

3 Concepts 29

plugin may modify some information that another plugin is depending on. Depending

on the execution order, the second plugin may not be executed at all because the in-

formation has now become invalid for the plugin, i.e. they are not compatible anymore.

3.4.1 Iterations

Based on the data model described in 3.3 the scheduler will have to conform to some

guidelines. The discovery process will most likely start at a single node and produce an

amount of nodes and connections. The execution process can be partitioned into itera-

tions. Each iteration step starts with a set of nodes forming a topology and ends with a

set of nodes representing a more complete topology. The first iteration will start with a

single node. The last iteration should end with the complete discovered topology. This

has the advantage that (1) the discovery process can be paused at a specifically de-

fined point of the execution, allowing the user to view the current state of the discovery

as well as possibly saving a snapshot or a copy of the process to the file system, and

(2) a user may intervene between iteration steps, e.g. by modifying or adding infor-

mation to the model, or by specifying a certain plugin that should be executed next,

hence providing the possibility to route the discovery process into individual directions.

Of course this requires several functions to be provided by the framework, e.g. mecha-

nisms for running all iterations at once or just a single iteration. In a graphical frame-

work this could be realized through different buttons, one for running all iterations which

means running till the topology does not change any more, and one for running just a

single iteration step. Furthermore, the framework would have to provide the functionali-

ty to manually add or modify information, as well as the functionality for saving and

loading of discovery processes to and from the file system.

The ability to save the topology at different points in time opens a new set of possibili-

ties, e.g. a process may be stored and reloaded at another time, allowing the discovery

process to start not at a single node, but at an already discovered set of nodes. Or the

process may be shared with others allowing it to be executed on different frameworks

that may contain a different set of plugins that are only available on specific systems,

e.g. a plugin may require a license or a specific operating system to work properly.

3.4.2 Processing Order

As the topology can be seen as a directed acyclic graph, one question is which pro-

cessing order should be applied and whether the processing order affects the discov-

ered topology. For example, the processing order could be a depth-first-searching or a

breadth-first-searching algorithm.

It is already clear that the order of execution of different plugins on a single node af-

fects the discovered topology because a plugin may modify information that is needed

by other plugins. Subsequent plugins may not be executed any more if the information

has become invalid from a plugins perspective, i.e. the plugin does not know what to do

with the information though it would have been able to be executed if the information

3 Concepts 30

was not changed. For example, a plugin discovers the version number of a web server

and stores the version number as a property of the web server node. A subsequent

plugin may not be able to work anymore with that node because some functionality

may only be available with certain version numbers of the web server, e.g. Java Man-

agement Extensions (JMX) [22] support may be recently added to newer version of the

web server.

It is worth noticing that the information here represents a property of an object and not

objects themselves, hence a plugin only becomes incompatible with a node if the prop-

erties of the node or the node itself changes and not the environment of the node, i.e.

the relationships of the node with other nodes. To keep the scheduler as well as the

type system – and hence the development of plugins – as simple as possible, it is rea-

sonable to make the compatibility between node and plugin only depending on the

availability of certain properties and not the relationships a node has with other nodes.

This mainly affects the scheduling of plugins and the mechanism that checks for com-

patibility. Though using this approach may in some cases produce an overhead it is in

no way a restriction of the possibilities a plugin developer has. A plugin may still de-

pend on the environment of the node, but the responsibility to check for the availability

of certain connected nodes lies in the hands of the plugin developer. The overhead

occurs when plugins are scheduled for execution though they will not be able to exe-

cute because of a missing connected node. These so called false positives produce

only little overhead when plugins check at the beginning if all required information for

their execution is available and return if something is missing.

This approach even makes a specific processing order obsolete, because a processing

order only affects the environment of the node. The node itself and its properties are

independent from the processing order. They only depend on the execution order of

multiple plugins on the same node. If the scheduler would also have to check the envi-

ronment for the availability or existence of specific partner nodes, then the searching

technique could influence what is actually discovered. In this case the order of the exe-

cution of plugins would furthermore depend on the environment of a node and hence

produce a different execution order. Because the scheduling of plugins in the imple-

mented framework does not consider relationships between objects, no specific pro-

cessing order is favorable to the other. The scheduler can rely on the preferences of

the selected system for the management of the nodes to select the order of execution.

For example, if the managing system stores the nodes in an unordered list, the algo-

rithm does not care about the order of nodes. It simply starts with the first node of the

list.

3.4.3 Basic Scheduling Algorithm

Listing 1 illustrates the basic scheduling algorithm in pseudo code which is refined later

in this section. In each iteration step, the scheduler would get the current set of nodes,

calculate a scheduling list that contains a task for each node with the belonging plugin

and finally execute each task on the scheduling list.

3 Concepts 31

while last iteration discovered new information

 get all nodes;

 for each node of the current topology

 calculate scheduling list;

 execute scheduling list;

 end for

end while

Listing 1 – Scheduling algorithm in pseudo code

The difficult part is the calculation of the scheduling list which includes for each node

the calculation of the plugin that is allowed to execute next on the node. This is trivial if

there is only one compatible plugin for each node type. In this case, the plugin is se-

lected for execution in the next iteration step. The difficult part is when several plugins

can operate on a node. This requires the implementation of a strategy that defines pri-

orities for plugins, either statically or dynamically, e.g. through the use of a history list

and a strategy like Least Recently Used (LRU).

3.4.4 Priority List and Execution History

The scheduler should contain a priority list for each node type that contains the order in

which plugins are executed when there are multiple plugins for the same node type. Of

course, this list would have to be initialized first by the framework, e.g. generating the

list when the plugins are loaded initially. This list should also be editable by the user so

that a user can define which plugin should execute first. The priorities must be man-

aged centrally by the framework not the plugin developer. Otherwise, each plugin de-

veloper could set its priority to the highest level. Managing priorities centrally leaves the

control in the hand of the user.

An example priority list for a Tomcat web server type is illustrated in Figure 7. In this

example there are four plugins that can execute on a Tomcat type, a general web

server plugin and three Tomcat specific plugins that use different methods to discover

information (see Section 3.5.3).

Figure 7 – Priority List for Tomcat web server

3. Tomcat JMX Plugin

Tomcat Type

2. Tomcat HTML Plugin

1. General Web Server Plugin

4. Tomcat JMX Servlet Plugin

3 Concepts 32

Since almost all common scheduling strategies base their decisions on what happened

in the past, it seems to be reasonable to store an execution history for each node in the

model (e.g. in the properties section of the node). This way, this information is portable,

for example, when moving the data to another system. The scheduler uses the saved

history for each node to determine the next plugin that should be executed.

3.4.5 Change of the Environment

A plugin will execute only once on a node, except another plugin changes some infor-

mation after the plugin has worked on the node the last time. This is because another

plugin may have added some information that the plugin can use now to discover addi-

tional information. That means that the plugin must be scheduled again if another

plugin made changes, just to give it the chance to discover additional information.

Furthermore, one must consider that the environment itself has changed after a plugin

has executed the last time, e.g. a plugin that wants to discover information about a web

server based on a provided URL. If the server is down while the plugin is executed, the

plugin will not be able to discover any information. The framework must provide a

mechanism to schedule plugins after they already executed once without success.

There may be cases where a plugin may be informed by an application that it is up

again after being down so that a plugin may start executing again, but this will rather be

the exception. A plugin could also repeatedly check for availability of the server till it is

up again, but this could produce additional traffic on the network. Though it may be

uncommon that an application or server is not available, still the framework must be

able to handle those situations.

3.4.6 User defined Scheduling

The simplest way is to let the user decide, when to check again. For example, the user

could request a complete re-check of the whole topology, e.g. by clearing the history of

scheduled plugins on a node which could then force the scheduler to re-schedule all

plugins again. Another possibility is to allow the user to exactly specify the plugin that

should execute the next time on a node. This could be achieved by adding a property

like nextAction to the node where the user can enter a specific plugin for execution in

the next iteration step. The scheduler can check for the availability of this property and

execute the specified plugin (if it actually exists). Else the scheduler continues with the

usual scheduling of plugins.

The scheduler must also be notified if the user changes properties manually, e.g. the

user can provide a username and a password to access an application via JMX which

then enables a JMX-based plugin to execute. To inform the scheduler of the changes,

the framework could listen for user actions and add an entry to the execution history list

of the modified node. Based on this entry, the scheduler could re-schedule all plugins

for that node that know what to do with that information. If the framework does not sup-

port listening for user actions, the user could also manually set a property that indicates

3 Concepts 33

that the last action was performed manually by the user, e.g. through a property like

lastActionWasUserAction.

3.4.7 Refined Scheduling Algorithm

The basic scheduling algorithm described in Chapter 3.4.3 is refined based on the con-

cepts of the previous chapters to the algorithm described in this chapter and illustrated

in Figure 8.

Figure 8 – Refined scheduling algorithm

When no user interaction changes the order of the scheduling of the plugins, the

scheduler will work according to the following principle:

 When a plugin is executed on a node, it is added to the end of the scheduling

history with a timestamp of the execution date. If the plugin modified the node, it

is marked as a modifying plugin. Else, it is added as a non-modifying plugin.

 If no priority list exists for a node, an initial priority list is calculated from the

available plugins.

 The scheduler takes the (initial) priority list and calculates a filtered priority list

that contains the next scheduled plugin as the first element.

 The filtered priority list is calculated by taking the initial priority list and removing

all plugins in descending timestamp order that are also contained in the sched-

uling history until a plugin is reached that modified the node.

In the example above P1, P3, P6, and then P4 are removed, because P4 was the last

modifying plugin. As P4 was the last modifying plugin, it does not need to execute

again, because nothing has changed since the last execution. Plugins P1, P3, and P6

also do not need to execute, because they executed and could not discover any infor-

mation with the provided information. After removal of the plugins, P2 is the top ele-

ment of the filtered priority list and will be scheduled for execution. The algorithm is

illustrated by pseudo code in Listing 2.

3 Concepts 34

For each node

 If node has no priority list

 Generate initial priority list;

 Fi

 Copy priority list to filtered priority list;

 Get last executing plugin from scheduling history;

 While plugin did not modify node

 Remove plugin from priority list;

 Move one step back in history list;

 End while

 If plugin modified node

 Remove plugin from priority list;

 Fi

 Use first plugin in filtered list;

End for

Listing 2 – Refined scheduling algorithm

The user may intervene between iteration steps by selecting a specific plugin for next

execution. In this case, the plugin is selected for next execution. Afterwards the sched-

uler continues with normal execution. Also, all plugins may have executed already with

no changes but the user wants to re-schedule all. This can either be done by clearing

the history and hence leading to a re-scheduling of all plugins, or by adding a dummy

plugin (e.g. a ClearHistory or IgnoreHistory plugin) to the history that simulates a modi-

fication and forces all other plugins to be re-scheduled.

3.5 Plugins

The discovery work is driven by node type-specific plugins which extract the respective

information and add them to the data model. The framework should provide the mech-

anism of plugin installation and un-installation and contain prototypical discovery plug-

ins for BPEL processes, WSDL files, Tomcat application servers, and Active MQ.

There are different ways to discover the existence of such servers and applications,

each of them described in the following chapters.

3.5.1 BPEL

As the discovery process will be built up from the BPEL process (Section 2.4.2) to the

overall topology of the application, it must be determined which information of the

3 Concepts 35

BPEL process can be used to discover the topology. A BPEL process is an orchestra-

tion of Web Services, so a starting point could be the determination of the participating

Web Services. The information that is of interest is not the orchestration itself with its

control flow and data flow, but only the participating Web Services. These Web Ser-

vices can be hosted on different machines and different locations and hence already

represent a part of the local distribution of the topology.

While the control flow and data flow can be of interest for a deeper analysis of the ap-

plication – like it is done in software architecture reconstruction – it is not of high im-

portance when the goal of the analysis is the migration of the application to the cloud.

Because the process model will most likely be obtained in its current state, it is enough

to represent only the relationship between the BPEL process and the invoked Web

Services (WSDL file) as simple directed connections, without any additional control or

data flow (see Figure 9).

Figure 9 – Relationship between BPEL process and Web Service

A BPEL process uses partnerLinks or partnerLinkTypes to define the external services

it interacts with. These partnerLinks are used by invoke, receive and reply activities to

actually invoke a service or to receive a reply. A partnerLinkType amongst other things

contains the port types of the participating services that are specified in the respective

WSDL files. The BPEL process must contain an import statement for each WSDL file

with the attribute importType having a value of http://schemas.xmlsoap.org/wsdl/.

<bpel:import location="file1.wsdl"

 namespace="http://www.example.com/somenamespace"

 importType="http://schemas.xmlsoap.org/wsdl/" />

Listing 3 – Import statement in a BPEL file

In a prototypical implementation it is sufficient to check only for these import statements

at the beginning of a BPEL processes, whether they are actually used or not.

It is also worth noticing that the BPEL process – or rather the BPEL file – must be

made available for parsing by the plugin, e.g. providing the file directly or via a URL to

a download link.

http://schemas.xmlsoap.org/wsdl/

3 Concepts 36

3.5.2 WSDL

Some of the BPEL concepts can be applied to the concepts for WSDL (Section 2.4.1)

files, namely that the WSDL file must be made available for parsing. A WSDL file de-

scribes the interface of a web service. The information that is important for a migration

is where the web service is hosted on e.g., is the service hosted on a Tomcat web

server.

A WSDL file consists of many constructs like messages, operations, ports, portTypes,

bindings and services. While messages, operations and portTypes describe the func-

tions that a web service provides, they do not give any information about the implemen-

tation. For example, the actual implementation can be an Enterprise Java Bean (EJB)

developed in Java and hosted on a Tomcat or a .NET application hosted on an IIS. A

first indicator of the implementation can be the WSDL binding and the port.

The most common binding is SOAP over HTTP as it provides the most interoperability

by using the HTTP protocol as transport. If the binding is SOAP over HTTP, the port

tag will contain a soap:address tag that contains the location (i.e. the URL) where the

endpoint is found. Other plugins can take this URL and check which web server is be-

hind that URL.

<wsdl:binding name="GlobalWSoap" type="tns:GlobalWeatherSoap">

 <soap:binding transport="http://schemas.xmlsoap.org/soap/http"

 style="document"/>

 <wsdl:operation name="GetWather">

 <soap:operation soapAction="http://webserviceX.NET/GetWeather"

 style="document"/>

 <wsdl:input>

 <soap:body use="literal"/>

 </wsdl:input>

 <wsdl:output>

 <soap:body use="literal"/>

 </wsdl:output>

 </wsdl:operation>

</wsdl:binding>

<wsdl:service name="GlobalWeather">

 <wsdl:port name="GlobalWSoap"

 binding="tns:GlobalWeatherSoap">

 <soap:address

 location="http://webservicex.net/globalweather.asmx"/>

 </wsdl:port>

</wsdl:service>

Listing 4 – SOAP over HTTP binding example

If guaranteed delivery is more important than interoperability, another binding that can

be used is SOAP over JMS that allows for specification of the location of a Message

Oriented Middleware (MOM) via the Java Naming and Directory Interface (JNDI). The

3 Concepts 37

existence of the SOAP over JMS binding already gives a hint that a MOM must be in-

volved. This information can be used by other plugins, e.g. a plugin can check whether

Apache ActiveMQ is running on the provided location.

<wsdl:definitions name="JMSGreeterService"

 <wsdl:binding name="JMSGreeterPortBinding" type="tns:JMSGreeterPortType">

 <soap:binding style="document"

 transport="http://www.w3.org/2010/soapjms/" />

 <soapjms:jndiContextParameter name="name" value="value" />

 <soapjms:jndiConnectionFactoryName>

 ConnectionFactory

 </soapjms:jndiConnectionFactoryName>

 <soapjms:jndiInitialContextFactory>

 org.apache.activemq.jndi.ActiveMQInitialContextFactory

 </soapjms:jndiInitialContextFactory>

 <soapjms:jndiURL>tcp://localhost:61616</soapjms:jndiURL>

 <soapjms:deliveryMode>PERSISTENT</soapjms:deliveryMode>

 <wsdl:operation name="greetMe">

 <soap:operation soapAction="test" style="document" />

 <wsdl:input name="greetMeRequest">

 <soap:body use="literal" />

 </wsdl:input>

 <wsdl:output name="greetMeResponse">

 <soap:body use="literal" />

 </wsdl:output>

 </wsdl:operation>

 </wsdl:binding>

 <wsdl:service name="JMSGreeterService">

 <soapjms:jndiConnectionFactoryName>

 ConnectionFactory

 </soapjms:jndiConnectionFactoryName>

 <soapjms:jndiInitialContextFactory>

 org.apache.activemq.jndi.ActiveMQInitialContextFactory

 </soapjms:jndiInitialContextFactory>

 <wsdl:port binding="tns:JMSGreeterPortBinding" name="GreeterPort">

 <soap:address location="jms:jndi:dynQ/test.cxf.jmstransport.queue" />

 </wsdl:port>

 </wsdl:service>

</wsdl:definitions>

3 Concepts 38

Listing 5 – SOAP over JMS binding example

The information in jndiConectionFactoryName, jndiInitialContextFactory, jndiURL and

soap:address can be used to lookup the message broker via JNDI. Once the broker is

looked up it can be queried for information, e.g. via JMX if JMX is supported.

3.5.3 Web Server / Application Server

There are different methods to identify a web server. The most obvious and easy one is

to view the corresponding server HTTP-header that is usually sent with the HTTP re-

sponse of a server, e.g. using a tool like Web-Sniffer5 to view request- and response

headers. This header usually contains information about the server name and version

number, sometimes even information about the operating system and server exten-

sions, e.g., Apache modules. But sometimes there is no information available at all, or

worse, the provided information is forged, e.g. because revealing this information might

allow the server to become vulnerable to attacks. Most web servers can be configured

to hide or forge this information. Listing 6 and Listing 7 show a request and a response

header. The request is sent from a Firefox6 web browser to the host at

192.168.29.130:8080. In this example, the HTTP response that is sent from the server

contains the server element with a value of Apache-Coyote/1.1 which indicates that

there is an Apache server running on that host.

GET / HTTP/1.1

Host: 192.168.29.130:8080

User-Agent: Mozilla/5.0 (Windows NT 6.1; WOW64; rv:11.0) Gecko/20100101

Firefox/11.0

Accept: text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8

Accept-Language: de-de,de;q=0.8,en-us;q=0.5,en;q=0.3

Accept-Encoding: gzip, deflate

Connection: keep-alive

Listing 6 – Request header

HTTP/1.1 200 OK

Server: Apache-Coyote/1.1

Content-Type: text/html;charset=ISO-8859-1

Transfer-Encoding: chunked

Date: Tue, 10 Apr 2012 21:00:27 GMT

5
 http://web-sniffer.net

6
 http://www.mozilla.org/

http://web-sniffer.net/

3 Concepts 39

Listing 7 – Response header

Another popular but difficult way is to use fingerprinting. This technique is used, when

web servers are obfuscated by changing the server banner strings. Fingerprinting uses

the fact that almost all HTTP servers differ in the way they implement the HTTP proto-

col [23], like human fingerprints do. This is especially the case when those servers are

confronted with malformed requests, see Listing 8 and Listing 9.

$ nc apache.example.com 80

HEAD / HTTP/1.0

HTTP/1.1 200 OK

Date: Sun, 15 Jun 2003 17:10:49 GMT

Server: Apache/1.3.23

Last-Modified: Thu, 27 Feb 2003 03:48:19 GMT

ETag: "32417-c4-3e5d8a83"

Accept-Ranges: bytes

Content-Length: 196

Connection: close

Content-Type: text/html

Listing 8 – Response from Apache 1.3.23 [23]

$ nc iis.example.com 80

HEAD / HTTP/1.0

HTTP/1.1 200 OK

Server: Microsoft-IIS/5.0

Content-Location: http://iis.example.com/Default.htm

Date: Fri, 01 Jan 1999 20:13:52 GMT

Content-Type: text/html

Accept-Ranges: bytes

Last-Modified: Fri, 01 Jan 1999 20:13:52 GMT

ETag: W/"e0d362a4c335be1:ae1"

Content-Length: 133

Listing 9 – Response from IIS 5.0 [23]

This response represents a unique fingerprint or signature. The fingerprints are then

usually compared to fingerprints in a database. In this example, it is easy to see that

the server element and the date element are swapped. Some information is available

only in one response, e.g. the connection element in the Apache response.

Apache Tomcat

3 Concepts 40

To identify an Apache Tomcat Server, there are a number of things to consider when

using some of these techniques. Though sometimes Tomcat is declared as being a

web server, it is actually a servlet container implementing the Java Servlet [24] and

JavaServer Pages (JSP) [25] specifications. Additionally, it contains the Apache Coy-

ote connector that supports the HTTP/1.1 protocol, which enables Tomcat to function

as a stand-alone web server [26]. When used in stand-alone mode, Tomcat will identify

itself as “apache coyote/1.1” in the server header of an HTTP response.

Tomcat should not be confused with the Apache HTTP Server7, a popular web server

in the internet. There are a lot of scenarios where Tomcat is not used as a stand-alone

web server but behind an Apache HTTP Server and connected through the Tomcat

redirector module (mod_jk), e.g. when the web server has to provide additional func-

tions like supporting PHP or CGI scripts. Other scenarios use an Apache HTTP Server

for load balancing of multiple Tomcat servers, or using a Tomcat behind a firewall that

is only accessible through the HTTP Server. In these cases, the HTTP Server will iden-

tify itself as “Apache [version number]”. If the HTTP response contains mod_jk in the

Apache modules, then this could be a hint that there is also a Tomcat running some-

where. Of course, the Tomcat instance (or instances) could be hosted on a complete

different machine.

For Tomcat, there are additional ways to discover information about it, e.g. Tomcat

provides a management console that is (remotely) accessible via a web browser at

http://localhost/manager/status (Figure 10).

Figure 10 – Tomcat Web Console

Through parsing of this HTML document, one could detect the exact Tomcat version,

e.g. in this example Apache Tomcat 7.0.26. Additionally the console provides infor-

mation about the operating system (see next section). In this case, the OS name is

Linux and the version is 2.6.35-22-generic.

7
 http://httpd.apache.org/

http://localhost/manager/status
http://httpd.apache.org/

3 Concepts 41

Furthermore, Tomcat can be configured to use JMX for managing and monitoring of

the server. Through the use of a JMX console (e.g. JConsole8) one could gain access

to a running Tomcat instance. The example in Figure 11 shows a screenshot of

JConsole being connected to a Tomcat instance.

Figure 11 – Monitoring Apache Tomcat with JConsole

The connection string to connect to Tomcat via JMX is shown in Listing 10, where host

and port have to be adapted to the host name and port number that Tomcat is listening

on.

service:jmx:rmi:///jndi/rmi://host:port/jmxrmi

Listing 10 – Tomcat JMX connection string

As seen in Figure 11, the serverInfo attribute of the server object shows the server

name and the server version. In this example, the name is Apache Tomcat and the

version number is 7.0.26. Additionally, the operating systems name and version num-

ber could also be determined through JMX as it was with the management console

shown above.

Another way to query Tomcat for information is to use the JMX-Proxy of the manager

application, provided the application is installed. The following Listing shows a call to

the servlet.

8
 http://docs.oracle.com/javase/1.5.0/docs/guide/management/jconsole.html

http://docs.oracle.com/javase/1.5.0/docs/guide/management/jconsole.html

3 Concepts 42

http://host:port/manager/jmxproxy?qry=Catalina:type=Server

Listing 11 – Calling Tomcat JMX Servlet

The result of the query is shown in Listing 12.

OK - Number of results: 1

Name: Catalina:type=Server

modelerType: org.apache.tomcat.util.modeler.BaseModelMBean

port: 8005

managedResource: StandardServer[8005]

address: localhost

stateName: STARTED

serviceNames: Array[javax.management.ObjectName] of length 1

Catalina:type=Service

serverInfo: Apache Tomcat/7.0.26

shutdown: SHUTDOWN

Listing 12 – Result of a JMX Servlet query

The result shows again the serverInfo element which contains the server name and

version number. The possibilities for JMX queries through the servlet match the ones of

a real JMX connection. Hence, the operating system can also be identified through the

JMX servlet.

3.5.4 Operating System

Detecting the Operating System (OS) is similar to web server detection – more specific

– the use of fingerprinting. Like HTTP responses are used to fingerprint web servers,

OS detection programs analyze how systems respond to TCP/IP probes. These re-

sponses represent a fingerprint. Tools like Nmap [27] usually have a huge database of

heuristics to identify different systems.

Another way to detect the OS is using programs that run on the machine where the OS

is running which provide this information, assuming one has access to these programs,

e.g. a web server like Tomcat usually knows the OS it is running on and sometimes

even provides this information with an HTTP response or via a web console (see previ-

ous section). This way, a web server plugin that detects the web server type could also

detect the operating system.

3 Concepts 43

3.5.5 ActiveMQ

There are various ways to monitor ActiveMQ, e.g. using the Web Console by pointing

the browser at http://localhost:8161/admin, which is available since version 4.2 and

later (Figure 1).

Figure 12 – ActiveMQ Web Console

For external discovery of a running ActiveMQ instance, the HTML content of this gen-

erated website could be parsed for the actual version number of ActiveMQ, much like it

can be done with the Tomcat management console.

Alternatively, one can use JMX support to view the running state of ActiveMQ. JMX

support can be enabled or disabled by

1. Running a broker with the broker property useJMX set to true, e.g.

broker:(tcp://host:port)?useJmx=true

Listing 13 – Running a broker with useJMX property

2. Running a JMX console (e.g. JConsole)

3. And connecting to the given URL, e.g.

service:jmx:rmi:///jndi/rmi://host:port/jmxrmi

Listing 14 – Connecting to URL

The host and port elements again have to be set to the corresponding values.

http://localhost:8161/admin

4 Architecture and Design 44

4 Architecture and Design

The previous chapters already covered the different technologies and the concepts that

the framework and plugins must support. This chapter explains the resulting architec-

ture and design decisions. It also highlights the possible advantages and disad-

vantages of the approach and identifies potential difficulties and problems.

4.1.1 Use Cases

The following is a description of the different use cases that the framework has to sup-

port. This includes use cases for the creation of a new (empty) project, loading and

saving of projects, editing of a project (internally or externally via a text editor) and the

start – respective restart – of the discovery process (Figure 1). The user should also

have the possibility to develop new plugins, and to install or uninstall them.

Figure 13 – Use Case Overview and Roles

Framework

User

Create new Project

Load Project

Save Project

Edit Project in
Framework

Edit Project with
Text Editor

Start Discovery

«uses»

Text Editor«extends»

«extends»

«extends»

«extends»

Install new Plug-in

Uninstall plugin

Administrator

Develop new Plug-in

Developer

4 Architecture and Design 45

Name Create New Project

Goal The framework should provide the user with a newly created

(empty) project.

Actor A user that wants to use the framework to start a new application

topology discovery process.

Pre-Condition The framework is running.

Post-Condition A new, empty project is created and presented to the user.

Post-Condition in

Special Case

No project was created by the framework. The user is notified

that the project could not be created. The framework reverts

back to the state before the user action.

Normal Case The framework creates an empty project with the name and loca-

tion provided by the user.

Special Case The framework is unable to create a project.

Table 2 – Use Case: Create New Project

Name Load Project

Goal The framework should load the provided file into the framework

and present it to the user.

Actor A user that wants to use the framework to view a previously cre-

ated discovery project.

Pre-Condition The framework is running.

Post-Condition The project is loaded and presented to the user.

Post-Condition in

Special Case

The project is not loaded. The user is notified that the framework

was unable to load the project. The framework continues with the

state before user action.

Normal Case The framework loads the project with the given filename from the

provided location.

Special Case The framework is unable to load the project.

Table 3 – Use Case: Load Project

4 Architecture and Design 46

Name Save Project

Goal The framework should save the currently active project at the

user provided location.

Actor A user that wants to save the current discovery project as a file.

Pre-Condition The framework is running and the user has either loaded or cre-

ated a new project.

Post-Condition The currently active project is saved to the file system at the giv-

en location with the given file name.

Post-Condition in

Special Case

The project is not saved to the file system. The user is notified

that the framework was unable to save the project. The frame-

work continues where it stopped before user action.

Normal Case The Framework stores the currently active project to the file sys-

tem.

Special Case The Framework is unable to store the project.

Table 4 – Use Case: Save Project

Name Edit Project in Framework

Goal The user can edit the currently active project.

Actor A user that wants to change or add information to the project.

Pre-Condition The framework is running and the user has either loaded or cre-

ated a new project.

Post-Condition Project contains new information or certain information changed

according to the users request (e.g. a new BPEL node was add-

ed to the project)

Post-Condition in

Special Case

No changes were made to the active project. The framework

continues in the state it was before user action. The user is in-

formed that the requested action could not be completed.

Normal Case The framework changes information or adds information accord-

ing to the request of the user.

Special Case The framework is unable to complete the request of the user.

Table 5 – Use Case: Edit Project in Framework

4 Architecture and Design 47

Name Edit Project with Text Editor

Goal The user should be able to modify a saved project with a (text)

editor so that projects can be modified outside of the framework.

Actor A user that wants to add or change information in a project with-

out using the framework (e.g. because the framework is not

available at the moment).

Pre-Condition A project has been saved to the file system and that project is

available as a file. Furthermore, an editor (e.g. a text editor) that

is able to read the file format of the project must be available.

Post-Condition The project was altered and the changed project has been saved

to the file system.

Post-Condition in

Special Case

No changes were made to the project. The file remains in its

state without being altered.

Normal Case The user edits the project in an editor and saves the changes.

Special Case The user makes no changes to the project (e.g. the file is only

viewed with an editor).

Table 6 – Use Case: Edit Project with Text Editor

Name Start Discovery

Goal The framework should start the discovery process on the cur-

rently active project. The provided information in the project is

used to discover more information by using programs (plugins).

The order and execution of the programs is managed by the

framework.

Actor A user that wants to start a discovery on a certain infrastructure.

Pre-Condition The framework is running and currently there is an open and

active project. Furthermore, the current project contains enough

information for the start of the discovery process. To restart the

discovery (if there was a previous discovery on the project), ei-

ther additional information has been added to the project, or ad-

ditional programs have been added to the framework.

Post-Condition The discovery process discovered new information that is added

to the project.

Post-Condition in

Special Case

The discovery process did not discover any new information. The

project is not altered.

Normal Case The discovery process uses the provided information in the pro-

ject to discover new information. This information is added to the

4 Architecture and Design 48

project.

Special Case The discovery process tries to discover new information with the

provided information, but no additional information is discovered.

Table 7 – Use Case: Start Discovery

Name Develop new Plugin

Goal Develop a new plugin so that additional functionality is bundled

as a plugin and later installed to the framework.

Actor Developer that bundles additional functionality in a plugin.

Pre-Condition A development tool must be available.

Post-Condition A new plugin is created and bundled as an installable form for

the framework.

Post-Condition in

Special Case

No plugin was created.

Normal Case The plugin is created and bundled as an installable form.

Special Case The plugin is not created. Development is paused or canceled.

Table 8 – Use Case: Develop new Plugin

Name Install new Plugin

Goal Add additional programs (plugins) to the framework so that they

can be used by the framework to discover additional information.

Actor Administrator that is allowed to install new plugins to the frame-

work.

Pre-Condition The framework is available (i.e. on the file system)

Post-Condition The provided plugin is installed to the framework.

Post-Condition in

Special Case

No plugin was installed to the framework. The user is informed

that the request could not be completed. No changes were made

to the framework.

Normal Case The plugin is installed to the framework and added to the list of

known plugins.

Special Case The plugin is not installed to the framework.

Table 9 – Use Case: Install new Plugin

4 Architecture and Design 49

Name Uninstall Plugin

Goal Remove installed plugins from the framework.

Actor Administrator that is allowed to uninstall plugins from the frame-

work.

Pre-Condition The framework is available.

Post-Condition The selected plugins are no longer available in the framework.

Post-Condition in

Special Case

No plugin was uninstalled from the framework. The user is in-

formed that the request could not be completed. No changes

were made to the framework.

Normal Case The framework removes the selected plugins.

Special Case The framework is unable to remove the plugins.

Table 10 – Use Case: Uninstall new Plugin

4.2 Design Decisions

At the beginning of the decision process for a specific architecture or design, there is

always the question whether there are parts of the architecture that are already devel-

oped or available and what parts must be developed newly. Some decision require-

ments where already provided by the assignment of tasks for this diploma thesis, e.g.

that the framework should be plugin-based. The advantages and disadvantages of this

plugin-based approach are already explained in detail in the conceptual chapter of this

document (Section 3.1).

4.2.1 Java

Other decisions are based on the knowledge and experience that the author of this

document has with different technologies, in due consideration of the possible ad-

vantages and disadvantages and the applicability of these technologies. For example,

the author was familiar with the development of applications in Java. Though Java was

the preferred programming language of the author, it is at the same time one of the

most common programming languages and characterized by its ability to run on a wide

range of systems. The interoperability of Java predestinates the language for the de-

velopment of a plugin-based framework, making the application available on different

systems and through its wide acceptance by developers the ideal solution for a frame-

work that should be extendable by other developers.

On a low level basis a Java class or a Java interface could already represent a plugin.

A framework – represented by a class – could lookup all classes that implement a cer-

tain interface. Adding of plugins could be done by adding additional classes to the

4 Architecture and Design 50

CLASSPATH. But adding plugins dynamically could become very difficult. This is why

an advanced approach that supports installation and management of plugins is desira-

ble, e.g. like an OSGi-based approach.

4.2.2 OSGi

The Open Services Gateway initiative (OSGi) [28] is a dynamic module system for Ja-

va. While Java provides the technology to run programs on different platforms, OSGi

provides the technology to construct applications from reusable and collaborative com-

ponents. One benefit of the service platform is the possibility to install, update, start,

stop and uninstall service applications (bundles) both dynamically and controlled at run

time. Those independent and modular bundles can run in parallel inside the same Java

Virtual Machine (JVM) and they can be managed and updated throughout the whole

lifecycle. Dependencies between bundles are automatically resolved and version man-

agement is available.

The origin of OSGi is in embedded systems and that is why it is often used in automo-

biles, mobile devices, and building automation like assisted living and facility manage-

ment. In addition, a famous example of the usage of OSGi is the Eclipse IDE9. Eclipse

uses the Equinox OSGi framework10 and since version three of Eclipse, every plugin is

an OSGi bundle. As of this writing the current version of the OSGi specification is 4.3.

An OSGi framework is an open, modular and scalable service delivery platform based

on Java and provides a standardized environment to applications (bundles). It is a

component model with a service registry but the term service means nothing more than

an interface and is not to be mistaken with the term service in a Service Oriented Archi-

tecture (SOA), though OSGi can be used as a fundamental component model for a

SOA. The OSGi Alliance specifies only the execution environment, the API and the test

cases for third party OSGi implementations. A reference implementation of an OSGi

framework is provided by the OSGi Alliance but it is not intended for productive use

[29].

The benefits of using an OSGi framework over a simple (self-developed) Java applica-

tion for the framework developed in this diploma thesis are obvious. Considering a

plugin as a bundle in an OSGi environment, an OSGi framework already provides eve-

rything that is needed for installation, un-installation, and managing of these plugins.

The concept of OSGi has proven itself to be valuable in various projects, and many

OSGi implementations are technically mature. This is why OSGi is the chosen envi-

ronment for the developed application.

9
 http://www.eclipse.org/

10
 http://www.eclipse.org/equinox/

http://www.eclipse.org/
http://www.eclipse.org/equinox/

4 Architecture and Design 51

4.2.3 Eclipse RCP

The previous chapter already identified the Eclipse IDE as an OSGi framework through

the use of the Equinox OSGi framework. While the Eclipse platform is designed to

serve as an open tools platform, it is architected in a way that its components can be

reused to build almost any client application [30]. The minimal set needed to build a

rich client application is commonly known as the Eclipse Rich Client Platform (RCP)11.

That is why many of the aspects and components of the Eclipse IDE can be found in

other Eclipse-based applications, for example the workbench design of the user inter-

face, the extensible plugin system, the help components, and the update manager [31].

The strength of the platform is its set of mature components for graphical applications,

a consistent elaborated concept of operations, an amount of extensions, tools and

support, and the integration of development tools for plugin development into the

Eclipse IDE (Eclipse for RCP/plugin developers) [31]. As the components can be used

separately – i.e. independent from the IDE – Eclipse RCP is the predestinated solution

for the plugin-based framework for application topology discovery, developed through-

out the course of this diploma thesis. The components that make up Eclipse RCP are

illustrated in Figure 14.

Figure 14 – Components of Eclipse RCP (Adapted from [31])

11

 http://www.eclipse.org/rcp/

OSGi Runtime Equinox

Java Runtime

Standard Widget Toolkit (SWT)

JFace
Core

Runtime

Eclipse UI, Workbench

Help
p2

(update)
Forms

Own Plugins

http://www.eclipse.org/rcp/

4 Architecture and Design 52

o OSGi Runtime Equinox: OSGi specifies the runtime for the execution of mod-

ules. Eclipse Equinox implements this specification. Eclipse plugins are execut-

ed in Equinox.

o Core Runtime: provides general, non-UI functionality for Eclipse applications,

e.g. life-cycle management and initialization of applications.

o Standard Widget Toolkit (SWT): the UI toolkit of the Eclipse platform. It pro-

vides a minimal abstraction layer for the UI-widgets of the operating system.

o JFace: provides advanced functionality like the supplying of UI-widgets with da-

ta from Java objects.

o Eclipse UI: provides the workbench, an empty graphical application that sup-

ports Views, Editors, Perspectives, Menu-structures, etc. which can be extend-

ed by plugins.

The decision to use Eclipse RCP (with Equinox as the OSGi implementation) is also

based on the possibility to easily add a graphical user interface to the application,

which was not required by the assignment of tasks, but strongly helps to visualize the

discovered information. Its wide acceptance by developers and its great community

has also led to a good documentation and provides the needed information for devel-

opment.

4.2.4 Eclipse Modeling Framework (EMF)

The Eclipse Modeling Framework (EMF) [32] is a Java/XML framework for generating

tools and other applications based on simple class models. The intension of EMF is to

provide easy formal modeling and code generation. Objects can be saved as XML

documents and models can be created through the use of annotated Java, XML docu-

ments or modeling tools. The modeled objects can be turned into a set of Java classes

that can be extended and regenerated, which means that the developer can add meth-

ods and variables that endure the regeneration of the code. These changes can also

be used to update the model [33]. Furthermore, it provides a set of adapter classes for

viewing and command-based editing of the model, and a basic editor.

EMF consists of three fundamental pieces [32]:

o EMF – The EMF framework contains a Meta model (an Ecore file) for the de-

scription of models and the runtime support for these models, persistence sup-

port, and a reflective API for the manipulation of objects.

o EMF.Edit – The EMF.Edit framework allows for the creation of editors for the

EMF models by providing generic reusable classes. This includes content and

label provider classes, property source support, and classes that support dis-

playing of EMF models using standard desktop viewers (JFace). Additionally it

provides a command framework for building of editors that support automatic

undo and redo.

o EMF.Codegen – The EMF.Codegen framework is responsible for the genera-

tion of the code up to a complete editor for the EMF model.

4 Architecture and Design 53

Basing the developed framework on OSGi or rather Eclipse RCP with the Equinox

OSGi framework already introduces a lot of valuable features that are required by the

framework, especially because these tools and frameworks do not have to be newly

developed. Using EMF for the definition of the data model, with the benefit of the sub-

sequent code generation additionally eases the development process, because the

generated editors already provide editing capabilities as well as persistence of the

model, especially to XML files which is the preferred format for the exchange with other

applications. The generated code is available as plugins that can run inside the Eclipse

framework and hence are perfectly suited for integration with an Eclipse RCP applica-

tion.

4.2.5 Graphical Modeling Framework (GMF)

The Graphical Modeling Framework (GMF) is a framework for building modeling-like

graphical Eclipse-based editors [34], e.g. business process editors, flow editors, and

UML editors. The framework has two components:

o Tooling – consisting of editors to create and edit models describing the nota-

tional, semantic and tooling aspects of a graphical editor and the code genera-

tor.

o Runtime – providing the runtime for the generated plugins

Before GMF was introduced, graphical frameworks often used EMF and the Graphical

Editing Framework (GEF) [35]. As there were different technical challenges integrating

EMF and GEF (e.g. because of different command stacks), the GMF project was de-

veloped to bridge the tow technologies. In the same way EMF generates editors for

EMF models, GMF generates graphical editors. The generation process is illustrated in

Figure 15.

Figure 15 – GMF overview [36]

4 Architecture and Design 54

After the creation of the domain model (Ecore file), the first model to generate is the

graphical definition that defines the visual aspects of the generated editor, e.g. the fig-

ures that are to be displayed on the diagram. The tooling definition contains information

about the editor palettes and menus, while the mapping definition defines the mapping

between the business logic (EMF model) and visual model (graphical and tooling defi-

nition) [36]. The final step of the process is the generation of the code for the editor.

The decision to use GMF to develop a graphical editor has mainly the reason to give

the user a graphical representation of the discovered topology. As the core functionality

is still handled by the EMF framework, e.g. persistence and programmatically editing of

the model, GMF can be seen as an additional feature of the implemented framework,

though GMF has far more features to show than actually used in this implementation.

Eclipse provides a great utility called GMF dashboard that serves as an easy way to go

through the process of generating a graphical editor. Furthermore, a tutorial [37] pro-

vides a good starting point for the development of GMF applications.

4.3 Resulting Architecture

The following architecture is the result of the use of OSGi, Eclipse RCP, and Eclipse

EMF and GMF as design decision.

Figure 16 – Resulting architecture of the ATDFramework

OSGi Runtime

Equinox
Standard Widget Toolkit (SWT)

JFace

Eclipse UI, Workbench

Help
p2

(update)

EMF/GMF

Runtime

Rich Client Platform

ATDFramework

Plugin Manager

PluginPluginPlugin

ATDF Plugin Extension Point

Scheduler

EMF/GMF

Editors

Type System

Plugin

4 Architecture and Design 55

The architecture mainly consists of three parts: (1) a set of plugins that form an Eclipse

RCP application, (2) a set of plugins that together with the RCP plugins build the

framework, and (3) a set of discovery plugins that are not bundled with the framework

but developed independently to extend the framework.

4.3.1 ATDFramework

The ATDFramework contains the set of plugins that make up an Eclipse RCP applica-

tion. These plugins do not need to be developed. They are generated or rather gath-

ered by the code generator of GMF, the descriptor files (plugin.xml) of the different par-

ticipating plugins when they specify a dependency to a specific plugin, and the product

configuration file of the framework. The required components that are integral part of

every user interface-enabled RCP application are the OSGi Runtime Equinox, and the

Workbench that uses JFace and the Standard Widget Toolkit (SWT). Optional compo-

nents, but needed by the ATDFramework, are the help system, p2 update mechanism,

and the EMF/GMF runtime that is needed by the EMF/GMF editors. Figure 16 shows

all these components in red and yellow.

The green parts of the diagram represent the developed parts of the framework. These

are the type system that manages the installed types, the scheduler that controls the

scheduling and the execution of plugins, and the plugin manager that manages the

installed plugins and is mainly used as an agent between framework and plugins to

make the framework more robust, e.g. to prevent the framework from crashing if a sin-

gle plugin crashes. The EMF and GMF editors are generated according to the specified

data model and the graphical, tooling, and mapping definition. A particular component

is the ATDF Plugin Extension Point. Extension points facilitate the possibility to contrib-

ute functionality to a plugin by other plugins. A plugin can open itself up for other

plugins through the definition of an extension point. This extension point then defines a

contract how other plugins can contribute functionality. For example, Eclipse defines

extension points for menu entries of the toolbar of Eclipse. One can add menu entries

by contributing an extension to the menu extension point. The ATDFramework defines

such an extension point so that other plugins can contribute functionality to the

ATDFramework by contributing an extension. This extension point is the contract be-

tween the ATDFramework and the plugins and defines what functions a plugin must

provide to contribute to the ATDFramework.

4.3.2 Plugins

The plugins are independent contributions to the framework by other developers. They

are not an actual part of the framework, but they must conform to the contract that is

defined by the ATDF plugin extension point. This contract is a simple Java interface

that contributing plugins must implement.

It is worth noticing, that the overall application is still an RCP application and hence can

be extended by any plugin type. This allows plugins that extend the ATDFramework by

4 Architecture and Design 56

providing actual discovery functionality also to provide additional functionality to other

extension points, e.g. contributions to the menu of the ATDFramework. This gives the

plugin developer a lot of options, e.g. a BPEL plugin can provide a menu entry that

calls a dialog where the user provides a URL to the BPEL file. The plugin could then

automatically add a new node to the project with the location property set to the speci-

fied URL.

5 Prototypical Implementation ATDFramework 57

5 Prototypical Implementation ATDFramework

The ATDFramework was developed as a prototype using the Eclipse IDE. The source

code is available as different Eclipse projects. This chapter describes the necessary

steps to create the GMF based project and to generate the code based on the created

definition files (5.1), as well as the release to a final product. Furthermore, the exten-

sions to the generated code that make up the framework (5.2) as well as each discov-

ery plugin (5.3) are described in detail.

5.1 Project Setup and Modeling

The project setup follows many of the steps of the Eclipse GMF tutorial [37] with ad-

justments to the different definition files according to the data model of the

ATDFramework. The used versions during development are Eclipse 3.7 (Indigo), GMF

runtime version 1.5, and GMF tooling version 2.4.

Development of GMF-based applications becomes very simple through the use of the

provided dashboard view. It accompanies the user throughout the whole definition pro-

cess, e.g. it defines a diagram where the user creates or adds new definition models

and displays the progress (Figure 17).

Figure 17 – GMF Dashboard

The first step is the creation of a new GMF project found under the Graphical Modeling

Framework category in the New dialog (File -> New), with the dashboard option ena-

bled. The name of the project is de.kreinjb.gmf.atdframework. The new created project

contains a model folder where all the model definition files are stored.

5 Prototypical Implementation ATDFramework 58

5.1.1 Domain Model

The next step is the creation of the domain model that is stored in an Ecore file called

atdframework.ecore. The complete model is shown in Figure 18. The model is created

using the integrated modeler in Eclipse. Other possibilities involve the creation of the

Ecore file from an XML schema or an annotated Java interface.

Figure 18 – Domain model (atdframework.ecore)

The Ecore file is selected as the domain model in the dashboard view.

5.1.2 Domain Gen Model

Afterwards, the genmodel can be derived from the Ecore file in the dashboard view.

The file is named atdframework.genmodel. This genmodel file is almost the same as

the Ecore file but it contains additional Meta information. For example, the genmodel is

used to generate the code for the implemented Java classes and the editors, and

hence allows for specifying of the package names of the generated classes. The pack-

age property in the genmodel is set to atdframework and the base package property is

set to de.kreinjb.gmf. This way, all generated packages will start with

5 Prototypical Implementation ATDFramework 59

de.kreinjb.gmf.atdframework, e.g. the generated editor is generated in the package

de.kreinjb.gmf.atdframework.editor. Other options that are specified are the file exten-

sion for the file that contains the model (.atm) and the resource type (XML). Finally, the

Java classes are generated from the genmodel file. This is done by right-clicking the

file. The popup menu then allows for generating the individual code parts (individual

plugins) or all parts. These are four different plugins. The model code is generated in-

side the original created plugin that contains the model files. Furthermore, the generat-

ed plugins are an Edit plugin (de.kreinjb.gmf.atdframework.edit), an Editor plugin

(de.kreinjb.gmf.atdframework.editor), and an optional test plugin

(de.kreinjb.gmf.atdframework.tests). To show the whole amount of generated classes

would go beyond the scope of this document. The four generated projects and their

packages are illustrated in Figure 19.

Figure 19 – Project structure after EMF code generation

The packages in the de.kreinjb.gmf.atdframework project contain the interfaces and the

factory to create the Java classes (de.kreinjb.gmf.atdframework), the concrete imple-

mentation of the interfaces defined in the model (de.kreinjb.gmf.atdframework.impl),

and the adapter factory (de.kreinjb.gmf.atdframework.util). Java classes for the editor

are in the de.kreinjb.gmf.atdframework.edit and de.kreinjb.gmf.atdframework.editor

project. Test classes can be found in the de.kreinjb.gmf.atdframework.tests project.

5.1.3 Graphical Def Model

The next step is the graphical definition. The graphical model definition can again be

derived from the domain model using the dashboard. In the opening dialog, the project

5 Prototypical Implementation ATDFramework 60

element must be selected as the diagram element. The domain elements that must be

processed are Node as nodes element, Connection as connections element, and the

Node-Name and Connection-Name as attributes. At the end of the process a new

graphical model definition (atdframework.gmfgraph) is created in the model folder of

the original project. This file contains the graphical representations of the elements in

the domain model, e.g. a rectangle shape for a node and a polyline for a connection.

Adjustments made to the graphical model are mainly a rounded rectangle instead of a

square rectangle for the node and some minor adjustments of the layout of the node.

Figure 20 shows the contents of the file after modification.

Figure 20 – Graphical model definition (atdframework.gmfgraph)

All elements are placed on a Canvas object. The Figure Gallery contains Figure De-

scriptors that describe the visual appearance of an object. There are Figure Descriptors

for a Node Figure and a Connection Figure – the only two graphical figures of the edi-

tor. Further elements are Diagram Labels that define which attributes of an object are

used to label the object, e.g. the name attribute of the node is used to label the node on

the diagram and the name attribute of the connection is used to label the connection on

the diagram.

5.1.4 Tooling Def Model

After the definition of the graphical model, the next step again uses the dashboard to

derive the graphical tooling definition (atdframework.gmftool) from the domain model.

The tooling definition describes the palette and the tools that are available in the graph-

ical editor, giving the user the option of graphical modeling. The final tooling definition

is illustrated in Figure 21.

5 Prototypical Implementation ATDFramework 61

Figure 21 – Graphical tooling definition (atdframework.gmftool)

It is derived similarly to the graphical definition model by selecting Project as the dia-

gram element and processing Node as a node element and Connection as a connec-

tion element in the opening dialog of the derive action in the dashboard view.

5.1.5 Mapping Model

Finally, the domain model definition, graphical model definition, and graphical tooling

definition must be combined into a mapping definition (atdframework.gmfmap).

Figure 22 – Graphical mapping definition (atdframework.gmfmap)

The mapping definition defines how the other models work together, e.g. a new figure

(graphical definition) is created on the canvas and a new node instance (model defini-

tion) is created in the domain model when the user drags a node from the palette (tool-

ing definition) to the canvas. This step is again achieved through the use of the dash-

board. In the opening dialog, the Project was selected as canvas mapping. The Nodes

list in the domain model elements mapping contains only the Node element, the Links

list contains only the Connection element.

Note: the GMF code generator contains a bug which sometimes creates wrong crea-

tion tools in the mapping. This must be checked manually and corrected if necessary.

5.1.6 Diagram Editor Gen Model

The last model that must be created or rather generated is the diagram editor gen

model (atdframework.gmfgen), which is similar to the creation of the genmodel from an

5 Prototypical Implementation ATDFramework 62

Ecore file in EMF. This file contains additional information that is needed for code gen-

eration and is created by using the transform link in the dashboard. The option for RCP

creation is selected because the ATDFramework should be an RCP-based application.

After the file is generated it has to be modified to suit the desired final product. The list

of adjustments is shown in Table 11.

Property Value

Diagram File Extension atd

Domain File Extension atm

Package Name Prefix de.kreinjb.gmf.atdframework.rcp

Editor Plugin Directory /de.kreinjb.gmf.atdframework.rcp/src

Creation Wizard Category Id

(Gen Diagram ProjectEditPart)

ATDFramework

Title (Gen Application

AtdframeworkApplication)

Application Topology Discovery Framework

Table 11 – Adjustments in atdframework.gmfgen

After adjusting the file, the GMF-related code can be generated which will create an

additional plugin project called de.kreinjb.gmf.atdframework.rcp that contains all the

GMF-related Java classes. The project structure of the generated plugin is illustrated in

Figure 23.

Figure 23 – Project structure of GMF editor

At this stage, the generated code is a fully functional Eclipse RCP-based GMF editor

that can be extended and executed. For example, the editor allows for graphical model-

ing through the use of the provided palette. The model can also be stored to and load-

ed from a file.

5 Prototypical Implementation ATDFramework 63

5.1.7 Product Configuration

Eclipse projects can be equipped with a product configuration file. This configuration

file can define application-specific branding on top of a configuration of Eclipse plugins

and provides the possibility to export a product as a binary. A product must define a

name, a description, and an ID for the application it is associated with. It also specifies

the application window icon and the information in the About dialog of the application.

A new product configuration can be added via the File -> New dialog. The configuration

file is called atdframework.product and is stored in the original plugin where the models

are stored. The ATDFramework will be feature based which means that plugins first

have to be bundled as a feature. This option is set in the product configuration together

with settings for the application that is launched at startup and the dependencies to

other features. The whole framework will be bundled as a feature

(de.kreinjb.gmf.atdframework.feature) and all other plugins that contribute discovery

functionality to the framework will be bundled as a separate feature as well. These fea-

tures must then be added to the product configuration. The application that is launched

at startup is the AtdframeworkApplication found in de.kreinjb.gmf.atdframework.rcp

project that was generated by GMF.

To run the application a new runtime configuration is created that has the just created

product configuration selected as the product to run. In the plugin section of the runtime

configuration the launch with option is set to selected features below, and the depend-

ent features are selected.

Application branding is added by adding a splash.bmp to the plugin that contains the

product configuration. Furthermore, the product configuration also allows adding of

icons that are used in the window of the application and in the taskbar when the appli-

cation is launched. The icons are also stored in the plugin that contains the product

configuration. After adding of icons and specification of these in the configuration, the

configuration must be synchronized with the product’s defining plugin, or else the icons

will not be recognized when the application is launched. Figure 24 shows the branding

logo of the ATDFramework.

Another benefit of the product configuration file is the possibility to export the product

as binaries, even for different operating systems. Product export is also needed during

development when the p2 update mechanism is used (see Chapter 5.1.8), because the

update mechanism needs a repository that is created during export. This is achieved

by using the generate metadata repository option in the export wizard.

Note: product export only works when the developer has administrative privileges.

5 Prototypical Implementation ATDFramework 64

Figure 24 – Branding Logo of ATDFramework

5.1.8 Update Manager

There are different ways to install new plugins into Eclipse or an Eclipse RCP-based

application. One involves simple copying of the plugin or feature into specific folders of

the Eclipse application. When a plugin is exported it has a specific folder hierarchy that

contains the folders features and plugins. To install the plugin or feature one simply has

to copy the contents of these folders into the features and plugins folder of Eclipse or

the Eclipse RCP-based application. The other way, which is recommended by Eclipse,

is via the Update Manager (see Figure 25).

Figure 25 – Update Manager of ATDFramework

5 Prototypical Implementation ATDFramework 65

The Update Manager provides the possibility to update an application by specifying a

repository which can be a remote update site or a repository on the local file system. It

is possible to update the framework itself as well as the different plugins and to install

new plugins.

To add the Update Manager to the ATDFramework different dependencies have to be

added to the product configuration, namely org.eclipse.equinox.p2.rcp.feature and

org.eclipse.rcp. They must also be added to the run configuration of the product in the

plugins section. The required version numbers are removed from the features when

specifying them as dependencies, so the framework does not depend on a specific

version but can be update if new versions are released in the future.

5.2 Framework Implementation

The framework extends the GMF-generated plugins with an additional plugin called

de.kreinjb.gmf.atdframework.manager. This plugin contains all the framework related

Java classes that are not generated by EMF and GMF. The plugin.xml, which is the

configuration file of a plugin, additionally contains the definitions of so-called extensions

that are used to contribute to an RCP-based application. Most of the time, these are UI

extensions, e.g. contributions to the menus or contributions of additional views.

5.2.1 Extension Point ATDFPlugin

An extension point gives plugins the possibility to open itself up for extension by other

plugins. It defines a contract between a plugin and another plugin that wants to contrib-

ute functionality to the plugin. The ATDFramework defines such an extension point

(Section 4.3.1). This extension point is used by discovery plugins to contribute func-

tionality to the framework.

An extension point is defined in the Extension Points section of the plugins configura-

tion file (plugin.xml) using the provided add wizard. For the extension point of the

ATDFramework the id is de.kreinjb.gmf.atdframework.manager.plugins and the name

is ATDFPlugin. In the definition view of the created schema a new element with the

name plugin must be added. This element must have an attribute with the name class,

a type of java, and de.kreinjb.gmf.atdframework.manager.plugins.IATDFPlugin as the

implementing interface. This interface is created using the implements link in the defini-

tion view. Furthermore, a choice element must be added to the element extension al-

ready available. Its Max Occurrences must be set to unbounded and a plugin sub ele-

ment must be added to the choice. Listing 15 shows the modified schema.

The interface is modified to meet the needs of the ATDFramework defined in the con-

cepts section of this document (Chapter 3). All discovery plugins must implement this

interface. Listing 16 shows the definition of the interface. The package that contains the

interface must be exported to be accessible by other plugins. This is done by adding

the package to the list of exported packages in the runtime view of the plugin.xml.

5 Prototypical Implementation ATDFramework 66

<?xml version='1.0' encoding='UTF-8'?>

<!-- Schema file written by PDE -->

<schema targetNamespace="de.kreinjb.gmf.atdframework.manager"

 xmlns="http://www.w3.org/2001/XMLSchema">

<annotation>

 <appinfo>

 <meta.schema plugin="de.kreinjb.gmf.atdframework.manager"

 id="de.kreinjb.gmf.atdframework.manager.plugins" name="ATDFPlugin"/>

 </appinfo>

 …

 </annotation>

 <element name="plugin">

 <complexType>

 <attribute name="class" type="string">

 <annotation>

 <appinfo>

 <meta.attribute kind="java"

 basedOn=":de.kreinjb.gmf.atdframework.manager.plugins.IATDFPlugin"/>

 </appinfo>

 </annotation>

 </attribute>

 </complexType>

 </element>

</schema>

Listing 15 – de.kreinjb.gmf.atdframework.manager.plugins.exsd

package de.kreinjb.gmf.atdframework.manager.plugins;

import java.util.List;

import de.kreinjb.gmf.atdframework.Node;

import de.kreinjb.gmf.atdframework.manager.type.Type;

public interface IATDFPlugin {

 public String getName();

 public String getID();

 public List<Type> getTypesOperatingOn();

 public List<Type> getTypesCreating();

 public List<Node> execute(Node node);

}

Listing 16 – IATDFPlugin interface

5 Prototypical Implementation ATDFramework 67

The interface contains five methods that must be implemented by every discovery

plugin.

Method Description

getName() A plugin must return a name that will be used to display

the plugin in different views of the framework.

getID() The Id is very important because it is used to identify a

plugin, e.g. for scheduling. A user can also use this Id to

specify a specific plugin that should be executed in the

next iteration of the discovery.

getTypesOperatingOn() A plugin must specify the types it can operate on so the

scheduler knows which nodes the plugin is compatible

with. The plugin just returns a list of types it supports, e.g.

a BPEL plugin returns a list containing a BPEL type. This

list is also used to build up the type system. The types do

not need to exist in the framework. They are created if

they are not already available.

getTypesCreating() Besides the types a plugin supports, a plugin can also

specify the types it creates. This is mainly used to build

up the type system, e.g. a BPEL plugin creates nodes of

WSDL type.

execute() When a plugin is scheduled for execution the scheduler

calls the execute function of the plugin and provides the

node that the plugin should operate on. The responsibility

of the plugin developer is to return the list of modified or

created nodes.

Table 12 – IATDFPlugin interface methods

A popular method when developing interfaces is to provide an abstract class that im-

plements the defined interface. Instead of implementing the interface other classes

simply inherit from the abstract class. This is especially useful when a lot of the meth-

ods of an interface would have similar or the same content in all implementing classes.

The abstract class provides a standard implementation of the methods of the interface

and classes that inherit from this abstract class use this implementation and override

only the methods where they need unique content. The ATDFramework provides such

an abstract class which is called AbstractATDFPlugin that implements the interface

IATDFPlugin. It is recommended to plugin developers to subclass from this class in-

stead of implementing the interface directly. The class is shown in Listing 17.

5 Prototypical Implementation ATDFramework 68

package de.kreinjb.gmf.atdframework.manager.plugins;

import java.util.ArrayList;

import java.util.List;

import de.kreinjb.gmf.atdframework.Node;

import de.kreinjb.gmf.atdframework.manager.type.Type;

public abstract class AbstractATDFPlugin implements IATDFPlugin {

 protected final String id;

 protected final String name;

 protected final ArrayList<Type> operatingTypes;

 protected final ArrayList<Type> creatingTypes;

 public AbstractATDFPlugin(String id, String name) {

 this.id = id;

 this.name = name;

 this.operatingTypes = new ArrayList<Type>();

 this.creatingTypes = new ArrayList<Type>();

 }

 @Override

 public String getName() {

 return name;

 }

 @Override

 public String getID() {

 return id;

 }

 @Override

 public List<Type> getTypesOperatingOn() {

 return operatingTypes;

 }

 @Override

 public List<Type> getTypesCreating() {

 return creatingTypes;

 }

 @Override

 public abstract List<Node> execute(Node node);

}

Listing 17 – AbstractATDFPlugin

5 Prototypical Implementation ATDFramework 69

The abstract class implements the methods getName(), getID(),

getTypesOperatingOn(), and getTypesCreating(). These functions return values that

are stored in protected attributes which are also available in subclasses. A plugin can

edit these values and the methods will automatically return the values. This is will usu-

ally be done once in the constructor of the plugin that subclasses the abstract class.

For example, the following class that subclasses AbstractATDFPlugin will have the id

http://hello.world/Id, the name Hello World, supports the type http://hello.world/type,

and creates the type http://good.bye.world/type.

package hello.world;

public class HelloWorldPlugin extends AbstractATDFPlugin {

 private static String ID = "http://hello.world/id";

 private static String HELLO_TYPE = "http://hello.world/type";

 private static String GOOD_BYE_TYPE = "http://good.bye.world/type";

 public HelloWorldPlugin() {

 super(ID, "Hello World");

 operatingTypes.add(new Type(HELLO_TYPE));

 creatingTypes.add(new Type(GOOD_BYE_TYPE));

 }

 ...

}

Listing 18 – AbstractATDFPlugin subclass example

The attributes of the HelloWorldPlugin class are only for illustration purposes. The con-

structor of the class calls the constructor of the super class which will store the provid-

ed id and name. These values will automatically be returned when the plugins

getName() and getID() functions are called. Furthermore, the plugin creates and adds

Types to the operatingTypes and creatingTypes list. These lists are also automatically

returned when the respective getTypesOperatingOn() and getTypesCreating() methods

are called. In this example, all instantiation is done in the constructor and most of the

methods will not have to be implemented because they are already implemented by the

super class. The plugin will only have to implement the execute() method.

5.2.2 PluginManager

The plugin manager acts as a bridge between framework and plugins. Calls from the

framework to the plugins are directed through this plugin manager. It wraps the calls

into an ISafeRunnable which is typically used when a plugin needs to call some un-

trusted code, e.g. code that was contributed by another plugin. This way, a plugin that

5 Prototypical Implementation ATDFramework 70

crashes will not force the whole framework to crash. An example for such a wrapped

method is shown in Listing 19.

public List<Node> executePlugin(final IATDFPlugin plugin, final Node node) {

 final ArrayList<Node> modifiedNodes = new ArrayList<Node>();

 ISafeRunnable runnable = new ISafeRunnable() {

 @Override

 public void handleException(Throwable exception) {

 System.out.println("Exception in plugin!");

 exception.printStackTrace();

 }

 @Override

 public void run() throws Exception {

 List<Node> pluginModifiedNodes = plugin.execute(node);

 if(pluginModifiedNodes != null) {

 modifiedNodes.addAll(pluginModifiedNodes);

 }

 }

 };

 SafeRunner.run(runnable);

 return modifiedNodes;

}

Listing 19 – Example of ISafeRunnable

Instead of calling the execute() method of the plugin directly the framework uses the

wrapped method of the plugin manager. The code is self-explanatory. Un-trusted code

is called inside the run() method. A possible exception can be handled in the

handleException() method. Every method of the IATDFPlugin interface has a respec-

tive wrapped method in the plugin manager.

The plugin manager also has the responsibility to provide the list of discovery plugins to

the framework. Basically, a discovery plugin differs not from any other Eclipse plugin

that is installed in the Eclipse RCP-based framework. In the list of installed plugins, the

plugin manager must find the plugins that implement the IATDFPlugin interface. The

list of installed plugins is managed by the framework in an extension registry that can

be queried for plugins of a specific type. In Listing 20 the readPlugins() method first

gets all the configuration elements that have an Id of IATDFPLUGIN_ID which has a

value of de.kreinjb.gmf.atdframework.manager.plugins. For every configuration ele-

ment a class executable extension is created. If the created object is an instance of

IATDFPlugin then the plugin is a discovery plugin and it is added to the list of plugins

that are managed by the plugin manager.

5 Prototypical Implementation ATDFramework 71

Private void readPlugins() {

 IConfigurationElement[] config = Platform.getExtensionRegistry()

 .getConfigurationElementsFor(IATDFPLUGIN_ID);

 try {

 for (IConfigurationElement e : config) {

 final Object o = e.createExecutableExtension("class");

 if (o instanceof IATDFPlugin) {

 plugins.add((IATDFPlugin)o);

 }

 }

 } catch (CoreException ex) {

 System.out.println(ex.getMessage());

 }

}

Listing 20 – Detecting plugins that implement the IATDFPlugin interface

The UI of the framework is extended by a view that provides the list of installed plugins

and their respective types, illustrated in Figure 26.

Figure 26 – Installed Plugins view

5 Prototypical Implementation ATDFramework 72

For each installed plugin it displays the list of types the plugin creates and the list of

types it supports, i.e. the types it can operate on. In Figure 26 the BPEL Plug-in creates

nodes of type http://de.kreinjb/types/wsdl and in can operate on nodes that have the

type http://de.kreinjb/types/bpel.

To create this view, a new sample view is created through the extension wizard which

is available in the extension section of the plugin.xml when pressing the add button.

Table 13 shows the settings that will create the view for the installed plugins.

Property Value

Java Package Name de.kreinjb.gmf.atdframework.manager.views

View Class Name InstalledPlugins

View Name Installed Plugins

View Category Id de.kreinjb.gmf.atdframework

View Category Name ATDFramework

Viewer Type Tree Viewer

Table 13 – Settings for the installed plugins view

To allow the framework to show this view a new menu item is created in the main menu

of the ATDFramework. This is done by adding a menuContribution to the

org.eclipse.ui.menus extension of the manager plugin. The locationURI of the

menuContribution is set to menu:window which means that the new menu should be

added to the window menu of the main menu. Afterwards, a menu element is added to

the menuContribution with the label property set to Show View. This will create a sub

menu under the window menu. This sub menu again gets two command elements. The

first one with the settings in Table 14 creates a menu item that will open the Show View

window that is provided by Eclipse. This view lists all installed views and lets the user

select the view that should be opened.

Property Value

CommandId org.eclipse.ui.views.showView

Label Others

Table 14 – Properties of the Others menu item

The InstalledPlugins view can also be opened directly without opening the Show View

window first. This is achieved by adding a second command element with the settings

in Table 15, which is basically the same as the one before. But this command is added

a parameter element with the settings in Table 16.

5 Prototypical Implementation ATDFramework 73

Property Value

CommandId org.eclipse.ui.views.showView

Label Installed Plugins

Table 15 – Properties of the Installed Plugins menu item

Property Value

Name org.eclipse.ui.views.showView.viewId

Label de.kreinjb.gmf.atdframework.manager.views.InstalledPlugins

Table 16 – Properties of the Installed Plugins Show View parameter

Adding this command will lead to the direct opening of the Installed Plugins view be-

cause the id of the view is passed as a parameter to the Show View command.

5.2.3 Type System and Type Registry

The type system stores the types and provides a mechanism to check for equality of

nodes of the same type. The type registry manages the installation of types into the

type system and manages the priority list that is used to decide which plugin is allowed

to execute on a node. To give the user a feedback of the current priority list and to al-

low the user to modify the priority list, the UI is extended with an additional view that

shows for each node type the current priority list (Figure 1).

Figure 27 – Priority Map view

5 Prototypical Implementation ATDFramework 74

The steps for the creation of this view are similar to the ones of the installed plugins

view, except of the view class name and the view name (Table 17).

Property Value

Java Package Name de.kreinjb.gmf.atdframework.manager.views

View Class Name PriorityMap

View Name Priority Map

View Category Id de.kreinjb.gmf.atdframework

View Category Name ATDFramework

Viewer Type Tree Viewer

Table 17 – Settings for the Priority Map view

The type registry manages the priority lists and provides two methods to move plugins

up and down in the priority list. These methods are called when the user presses the

up and down buttons in the Priority Map view.

The type system implements two important concepts. One is the mechanism that

checks for equality of nodes, the other manages the installation of duplicate type defini-

tions. Equality of nodes is checked by comparing the identifying properties of two

nodes. This way, the framework can decide that two nodes are the same event if they

do not have the same amount of properties. They only have to match in the identifying

properties. These properties are the ones that identify a type and which are stored with

the type definition in the type system. Hence the type system knows which properties

identify a node of a specific type and only checks whether these properties match.

Another mechanism checks for duplicate type definitions. If two plugins provide a type

definition for the same type and these type definitions do not match, the type system

adds these definitions to a conflicts list. An exception is the definition of a type with an

empty properties list. A plugin that does not specify a list of identifying properties when

defining a type expects another plugin to provide this definition.

5.2.4 Scheduler

Besides the implementation of the scheduler concepts, the workbench must be ex-

tended with different UI features, e.g. the framework provides two buttons for starting

the discovery.

To add the buttons, first the org.eclipse.ui.command extension is added to the exten-

sion of the plugin.xml of the manager plugin. For each of the two buttons is added a

command to the extension (Table 18 and Table 19).

5 Prototypical Implementation ATDFramework 75

Property Value

Id de.kreinjb.gmf.atdframework.manager.commands.run

Name Run

DefaultHandler de.kreinjb.gmf.atdframework.manager.commands.RunHandler

Table 18 – Run command

Property Value

Id de.kreinjb.gmf.atdframework.manager.commands.runstep

Name RunStep

DefaultHandler de.kreinjb.gmf.atdframework.manager.commands.RunStepHandler

Table 19 – RunStep command

The defaultHandler specifies the class that handles click events, e.g. when the user

presses the run button the RunHandler class is called. Listing 21 shows the implemen-

tation of the RunHandler class.

package de.kreinjb.gmf.atdframework.manager.commands;

import org.eclipse.core.commands.AbstractHandler;

import org.eclipse.core.commands.ExecutionEvent;

import org.eclipse.core.commands.ExecutionException;

import de.kreinjb.gmf.atdframework.manager.Scheduler;

public class RunHandler extends AbstractHandler {

 @Override

 public Object execute(ExecutionEvent event) throws ExecutionException {

 Scheduler.getInstance().run(false);

 return null;

 }

}

Listing 21 – RunHandler

The execute method is called when the Run button is pressed. It then calls the run

method of the scheduler with a parameter of false. This indicates that the run method

should not pause after each iteration step, but run till there is nothing to discover any-

more (i.e. there is no plugin that could find any additional discovery information). If the

5 Prototypical Implementation ATDFramework 76

method is called with a value of true as parameter, the method will pause after each

iteration step, forcing the user to press the button again to run the next iteration. This is

done by the RunStepHandler, which is similar to the RunHandler, except it uses true as

parameter.

For the adding of the buttons to the framework a menuContribution is added to the

org.eclipse.ui.menus extension of the manager plugin with the locationURI property set

to toolbar:org.eclipse.ui.main.toolbar. This will place the buttons in the main toolbar of

the ATDFramework. Beneath the menuContribution is added a toolbar element with an

id of de.kreinjb.gmf.atdframework.manager.toolbar. For each button of the two run but-

tons are added command elements that contain the commandId of the previously cre-

ated run handlers. This will connect the UI buttons to the handlers.

The scheduler itself implements the concepts described in 3.4. Besides the run method

that is called to manage the discovery, it contains functions to calculate the next

scheduled plugin for each node and an execute method that executes the scheduling

list. Listing 22 shows the code that calculates the standard scheduling of plugins in the

getScheduledPlugin method of the scheduler.

…

LinkedList<String> candidateList = new LinkedList<String>(priorityList);

Collections.sort(entries, new Comparator<Entry>() {

 @Override

 public int compare(Entry e1, Entry e2) {

 return e2.getTimestamp().compareTo(e1.getTimestamp());

 }

});

for(Entry entry : entries) {

 if(candidateList == null || candidateList.isEmpty()) {

 return null;

 }

 candidateList.remove(entry.getPlugin());

 if(entry.isModified()) {

 return (candidateList.isEmpty() ? null : candidateList.getFirst());

 }

}

return (candidateList.isEmpty() ? null : candidateList.getFirst());

…

Listing 22 – Part of the scheduler

5 Prototypical Implementation ATDFramework 77

To determine the next scheduled plugin for a node a candidate list is calculated. At the

beginning, the candidate list is initialized with the current priority list of the node type.

Plugins are removed from this list based on their order in the history list that is repre-

sented in the listing above by the variable entries. To guarantee the order of the entries

the list is first sorted according to the timestamps of the entries. Starting from the last

executed plugin in the history, the scheduler removes the plugin from the candidate list,

because it was the last one that executed on the node. If the plugin was a modifying

plugin (e.g. because it added some information that enables another plugin to execute),

the algorithm stops and takes the top element of the candidate list, because this is the

plugin with the highest priority. If the plugin was not a modifying plugin (e.g. the plugin

executed on the node but it could not discover anything), it is removed from the candi-

date list and the algorithm continues with the next plugin of the history list.

5.2.5 Properties

Eclipse RCP-based applications can use the properties view in Eclipse to display in-

formation. An EMF or GMF editor already makes extensive use of this view, e.g. to

display the current appearance of nodes. Furthermore, all attributes of an element in

the model can automatically be displayed and edited in the properties view. For exam-

ple, each node element has a name attribute. This attribute will be displayed in the

properties view when a node is selected in the editor.

Figure 28 – Properties view

Of course, attributes can be hidden from this view and also selected as read only so

that these attributes cannot be modified graphically by the user.

One problem during the implementation of the ATDFramework was the displaying of

the type-specific properties list of a node. It varies in size depending on the current

amount of defined properties and hence cannot be determined at build time. The auto-

generated code for the displaying of lists that vary in size was not representative and

not editable. For this special purpose the properties view was extended with an addi-

tional tab that displays the type specific properties (Figure 29 and Figure 30).

5 Prototypical Implementation ATDFramework 78

Figure 29 – Type-specific properties left side

Figure 30 – Type-specific properties right side

Each property of a node is displayed in this view. The type determines the grouping of

properties, e.g. all properties with type http://de.kreinjb/types/webserver are grouped

and displayed together. The right side of this view allows for adding and removing of

properties. The two extensions in Listing 23 and Listing 24 where added to the

plugin.xml of the GMF plugin, to add the tab to the properties view.

<extension point="org.eclipse.ui.views.properties.tabbed.propertyTabs"

 id="proptabs">

 <?gmfgen generated="true"?>

 <propertyTabs contributorId="de.kreinjb.gmf.atdframework.rcp">

 ...

 <propertyTab

 category="typeSpecific"

 afterTab="property.tab.domain"

 id="property.tab.typeSpecific"

 label="%tab.typeSpecific"/>

 </propertyTabs>

</extension>

Listing 23 – Property tab extension

5 Prototypical Implementation ATDFramework 79

<extension point="org.eclipse.ui.views.properties.tabbed.propertySections"

 id="propsections">

 <?gmfgen generated="true"?>

 <propertySections contributorId="de.kreinjb.gmf.atdframework.rcp">

 ...

 <propertySection

 id="property.section.typeSpecificSection"

 tab="property.tab.typeSpecific"

 class="de.kreinjb.gmf.atdframework.rcp.sheet.

 AtdframeworkTypeSpecificPropertySection">

 <input type="org.eclipse.gmf.runtime.notation.View"/>

 <input type="org.eclipse.gef.EditPart"/>

 </propertySection>

 </propertySections>

</extension>

Listing 24 – Property section extension

The extension to org.eclipse.ui.views.properties.tabbed.propertyTabs in Listing 23

added an additional tab to the properties view, with the specification of the name, id,

and the position to place the tab in the properties view. Listing 24 showed the exten-

sion to org.eclipse.ui.views.properties.tabbed.propertySections which adds a property

section to the tab. A tab can contain multiple sections. The important part is the class

attribute in the propertySection element. It specifies the class that implements the

property section. This class then creates the UI of the view, e.g. the text fields and the

buttons.

5.3 Plugins

The plugins are bundled in a separate feature apart from the framework. They are im-

plemented prototypically to give an idea of what could be discovered from the different

types of artifacts. The feature project is named

de.kreinjb.gmf.atdframework.pluginsfeature. It contains all the plugins that are devel-

oped. For the prototypical implementation this is only a single plugin named

de.kreinjb.gmf.atdframework.manager.plugincontriubtion to keep the project structure

simple. The specified extension point of the ATDFramework (see Section 5.2.1) must

be extended by every plugin.

<extension point="de.kreinjb.gmf.atdframework.manager.plugins">

 <plugin

 class="de.kreinjb.gmf.atdframework.manager.plugincontribution.BPELPlugin">

 </plugin>

</extension>

5 Prototypical Implementation ATDFramework 80

Listing 25 – Extension provided by BPELPlugin

Listing 25 shows how the BPELPlugin provides an extension by defining a plugin ele-

ment with the class attribute specifying the implementation class.

In the following for each developed plugin the discovery procedure and properties of

the plugin are presented. The operating types property denotes the types of nodes the

plugin can operate on and creating types which types of nodes may be created by the

plugin. A square bracket containing properties at the end of a type means the plugin

needs this property to work correctly or if it creates a node of a type it will add this

property to the node. For example, http://example.com/types/exampletype

[exampleproperty] means a plugin creates or operates on nodes of type

http://example.com/types/exampletype that have a property of exampleproperty. This is

only for illustration here and not the representation used in the code.

Note: The plugins only implement the concepts described earlier. See Section 3.5 for

further information.

5.3.1 BPEL Plugin

Property Value

Name BPELPlugin

Id http://de.kreinjb/plugins/bpel

Operating Types http://de.kreinjb/types/bpel [location]

Creating Types http://de.kreinjb/types/wsdl [location]

Table 20 – Properties of BPEL plugin

A BPEL node must contain the location property which is used to find and then parse

the document. The plugin uses an external library called Xalan12 to parse the XML doc-

ument. The following listing shows how the locations of WSDL documents can be re-

trieved from a BPEL file using Xalan.

String path = "/bpel:process//bpel:import[@importType=" +

 "\"http://schemas.xmlsoap.org/wsdl/\"]/@location";

xPath.evaluate(path, inputSource, XPathConstants.NODESET);

Listing 26 – XPath statement to retrieve locations of WSDL documents

The plugin creates for each found WSDL document a node that has a location property

which contains the actual location of the WSDL document.

12

 http://xml.apache.org/xalan-j/

http://xml.apache.org/xalan-j/

5 Prototypical Implementation ATDFramework 81

5.3.2 WSDL Plugin

Property Value

Name WSDLPlugin

Id http://de.kreinjb/plugins/wsdl

Operating Types http://de.kreinjb/types/wsdl [location]

Creating Types http://de.kreinjb/types/webservice [address]

Table 21 – Properties of WSDL plugin

As the WSDL document is an XML document the WSDL plugin also uses Xalan to

parse the document. The plugin first looks for port elements in the service definition of

the WSDL file. The port element usually contains an address element, e.g. if the port

uses a SOAP binding the port element will contain a <soap:address> element with a

location attribute. For each found location the plugin creates a Web Service node that

contains a location property which points to the Web Service.

5.3.3 Web Service Plugin

Property Value

Name WebServicePlugin

Id http://de.kreinjb/plugins/webservice

Operating Types http://de.kreinjb/types/webservice [address]

Creating Types http://de.kreinjb/types/webserver [url]

Table 22 – Properties of Web Service plugin

The Web Service plugin just takes the address of the Web Service and extracts the

host and port parts of the address. For example, http://example.com:8080 is extracted

from http://example.com:8080/demo/demoWS. For each of these extracted URLs is

created a web server sub node. A web server sometimes provides an information page

under this URL.

5 Prototypical Implementation ATDFramework 82

5.3.4 Web Server Plugin

Property Value

Name WebServerPlugin

Id http://de.kreinjb/plugins/webserver

Operating Types http://de.kreinjb/types/webserver [url]

Creating Types http://de.kreinjb/types/webserver/tomcat [header-server]

http://de.kreinjb/types/webserver/iis [header-server]

http://de.kreinjb/types/operatingsystem [name]

Table 23 – Properties of web server plugin

The web server plugin uses the URL to send an HTTP request to the server. The HTTP

response usually contains a server header that sometimes contains the name and ver-

sion of the server. The current version supports Apache Tomcat and Microsoft IIS. A

special case is the discovery of an IIS because one can assume that it is running on

Windows. The plugin will then automatically create an operating system node with a

name of Windows.

5.3.5 Tomcat JMX Plugin

Property Value

Name TomcatJMXPlugin

Id http://de.kreinjb/plugins/tomcatjmx

Operating Types http://de.kreinjb/types/tomcat [url, username, password]

Creating Types http://de.kreinjb/types/operatingsystem [name, version]

Table 24 – Properties of Tomcat JMX plugin

The Tomcat JMX plugin uses JMX to query a Tomcat server. Of course, Tomcat must

be enabled on the server. Furthermore, the plugin requires the availability of a URL

property in the Tomcat node and an optional username and password for authentica-

tion. The plugin then connects to a so-called MBean Server where JMX enabled pro-

grams are registered as MBeans. MBeans are identified by an objectName which con-

sists of a domain name and a list of properties. For the Tomcat server this objectName

is Catalina:type=server. This object can then be queried for attributes, e.g. the tomcat

plugin reads the serverInfo attribute. This information is stored as a property in the

node and the node type is changed from web server type to a Tomcat type. Additional-

ly, the MBean server provides information about the operating system. The

5 Prototypical Implementation ATDFramework 83

objectName to use is java.lang:type=OperatingSystem. This object contains the two

attributes name and version which contain the name and version of the operating sys-

tem. If this information is available, the plugin will also create a sub node under the

Tomcat node, indicating that the Tomcat is hosted on a specific operating system.

5.3.6 ActiveMQ JMX Plugin

Property Value

Name ActiveMQJMXPlugin

Id http://de.kreinjb/plugins/activemqjmx

Operating Types http://de.kreinjb/types/jms [url, username, password]

Creating Types http://de.kreinjb/types/activemq [brokername, brokerversion,

brokerid]

http://de.kreinjb/types/operatingsystem [name, version]

Table 25 – Properties of ActiveMQ JMX plugin

The ActiveMQ JMX plugin works pretty much the same as the Tomcat JMX plugin. In

contrast to the Tomcat plugin, it queries the MBean of ActiveMQ which has an

objectName of org.apache.activemq:BrokerName=*,Type=Broker. The three attributes

brokerName, brokerVersion, and brokerId of the object provide the name, version, and

id of the broker. If this information is available the plugin creates a sub node with these

properties. Like the Tomcat JMX plugin, it also tries to identify the operating system

using the same mechanism and adds an operating system node if possible.

6 Summary and Outlook 84

6 Summary and Outlook

Software applications usually grow and evolve over time, and so do their architectures

and the topology of the actual deployment. However, knowledge of the application’s

components and their relations is crucial for enterprise architecture management tasks

like migration and optimization. With the rise of new paradigms like Service-Oriented

Architecture and technologies, like cloud computing, recent approaches tried to find

ways for the external discovery of application topologies. The focus of this diploma the-

sis are to research ways for external application topology discovery, i.e., analyzing

which external, network accessible resources provide information to get a detailed pic-

ture of the application topology. The goal was to develop a plugin-based framework

and a set of prototypical discovery plugins. The developed framework is called

ATDFramework and manages the discovery by scheduling the different installed

plugins. Other developers can contribute their discovery code to the framework by de-

veloping additional plugins.

The discovery framework is built with OSGi, more precise, an Eclipse RCP-based ap-

plication which uses Equinox as its OSGi framework. The framework is supplemented

with graphical editors based on the Eclipse Modeling Framework and Graphical Model-

ing Framework.

A special focus of the framework was to keep the plugin development process as sim-

ple as possible. The plugin developer is supported by a simple data model consisting of

nodes, connections, properties, and a simple type system that is based on namespace

definitions. The types are provided by the plugins themselves and the type system is

build up implicitly when installing the plugins. Furthermore, plugins have a simple code

structure that only requires minimal configuration effort and allows developers to con-

centrate on the actual discovery code.

Along with the framework comes a set of prototypical discovery plugins. Starting point

of the discovery in this work is a BPEL service composition. The set of plugins devel-

oped during the course of this thesis are a BPEL-, WSDL-, Web service-, web server-,

Tomcat-, and ActiveMQ-plugin.

The discovered topology is stored in a file for further processing by other programs or

to resume discovery after changes in the topology. One use case for the discovered

topology is the migration of SOA-based applications to the cloud, e.g. programs can

use the discovered topology to adapt and steer the migration process.

Of course, the current approach has some room for improvement as well. As the

framework is only tested with the set of prototypical plugins, some bugs may remain

undetected and only appear in different plugin scenarios. The UI has also some room

for improvement and some ideas have not been implemented because of limited de-

velopment time. For example, the framework could use a status bar to present the cur-

6 Summary and Outlook 85

rent discovery status to the user and the overall type system with all dependencies

between types could be visualized in an extra view. Furthermore, conflicts between

plugins are resolved but nut presented to the user in an extra view, e.g. the Eclipse

problems view would be predestinated for this task.

The concept of namespace definitions for types makes the type system easy and

hence also simplifies the development of plugins. But it would be worth to check the

concept of OSGi-based types. This means that types themselves are Eclipse plugins

which can be installed to and un-installed from the framework. The plugins would still

provide these types but the dependency mechanism that is introduced by OSGi could

be used to handle dependency resolution from plugins to types, or types to types. This

would ease the process of checking for identity of nodes. For example, properties could

be defined as attributes of a Java class and the class itself could provide the mecha-

nism to identify a node or to check for equality of nodes. But this approach could re-

quire a modification of the data model and a possible remodeling of the EMF- and

GMF-related models. It must also be deliberated about whether the current, simple

namespace-based type system – which allows for easy creation of types and the speci-

fication of dependencies to these types – can be integrated with this approach. Be-

cause of the limited time for the implementation of the framework, this approach was

not further pursued.

A screenshot of the final application is shown in Figure 31.

Figure 31 – Screenshot of the final application

6 Summary and Outlook 86

Appendix A Framework Manual

This chapter should give the reader a short introduction on how the framework is used

to discover a topology (A-4), including the steps to install the framework (A-1) and

plugins (A-2) and how to create new plugins (A-3).

A-1 Framework Installation

To install the framework the user only must unzip the binary and copy it to the desired

location. For Windows the zipped file will contain a folder called atdframework and in

that folder an executable called atdframework.exe.

For other operating system or if the framework should be build from source code, it is

advised to download the Plugin Development Environment (PDE)13 version of Eclipse

and to install all GMF dependencies14. Once the projects are setup in Eclipse one can

use the product export wizard (see Section 5.1.7) of the atdframework.product file in

the de.kreinjb.gmf.atdframework project to create executables.

Figure 32 – Product export wizard

Note: Product export may require administrative rights.

13

 http://download.eclipse.org/eclipse/downloads/
14

 http://www.eclipse.org/modeling/gmp/

http://download.eclipse.org/eclipse/downloads/
http://www.eclipse.org/modeling/gmp/

6 Summary and Outlook 87

A-2 Plugin Installation

The easiest way to install new plugins is to use the Update Manager of the

ATDFramework located in the menu under Help -> Install New Software. A plugin de-

veloper will most likely want to install plugins from the local file system. Anyhow, the

Update Manager allows the user to install plugins from a remote repository, as well as

from a local repository. The Update Manager has to be pointed to the directory that

contains the plugins and features. In general, the update mechanism of the

ATDFramework does not differ from the update mechanism of the Eclipse IDE.

Another way to install plugins is to copy the exported plugin to the Eclipse plugins fold-

er, more specific, the developed feature will contain two folders named features and

plugins. The contents of these folders have to be copied into the ATDFramework fold-

ers with the same name, found in the base folder of the framework that also contains

the executable.

A-3 Plugin Development

The basic steps for plugin development for the ATDFramework match the development

of plugins for the Eclipse IDE, e.g. with the creation of a plugin project, a feature pro-

ject, and the export of the developed feature. But there are few things to consider that

are different, or rather specific to the ATDFramework, namely providing an extension to

the framework-specific extension point. The following leads through the development of

a simple hello world plugin in a tutorial like fashion.

Plugin development requires specific dependencies that must be available in the

Eclipse IDE. The feature that contains the required plugins is the

ATDFrameworkFeature that is available in the repository folder of the zipped file. It

must be installed to the Eclipse IDE using the Eclipse Update Manager.

Once the IDE is set up, create a new plugin project (File -> New -> Plug-in Project) with

a project name of HelloWorldPlugin. Keep the suggested settings and click finish. In

the overview section of the generated MANIFEST.MF select This plug-in is a singleton.

Switch to the dependencies tab and add de.kreinjb.gmf.atdframework dependency and

the de.kreinjb.gmf.atdframework.manager dependency. Open the extension tab and

click the add button. Select de.kreinjb.gmf.atdframework.manager.plugins from the

extension points list and click finish. Switch to the plugin.xml tab and modify the content

to look like the content in Listing 27.

<?xml version="1.0" encoding="UTF-8"?>

<plugin>

 <extension point="de.kreinjb.gmf.atdframework.manager.plugins">

 <plugin class="hellowordlplugin.HelloWorldPlugin"/>

 </extension>

</plugin>

Listing 27 – HelloWorldPlugin plugin.xml

6 Summary and Outlook 88

Note: The class attribute must contain the name of the class that will provide the im-

plementation including the package name.

The project should already contain a helloworldplugin package with an Activator class.

Add a new Java class to the package with the name specified in the plugin.xml, in this

case the class HelloWorldPlugin in the package helloworldplugin. Set a super class of

AbstractATDFPlugin from the de.kreinjb.gmf.atdframework.manager.plugins package

in the class creation dialog. Let the wizard create constructors from the super class and

click finish. The generated class should look like the one in Listing 28.

package helloworldplugin;

import java.util.List;

import de.kreinjb.gmf.atdframework.Node;

import de.kreinjb.gmf.atdframework.manager.plugins.AbstractATDFPlugin;

public class HelloWorldPlugin extends AbstractATDFPlugin {

 public HelloWorldPlugin(String id, String name) {

 super(id, name);

 // TODO Auto-generated constructor stub

 }

 @Override

 public List<Node> execute(Node arg0) {

 // TODO Auto-generated method stub

 return null;

 }

}

Listing 28 – Generated HelloWorldPlugin.java class

The generated code will have a constructor and an execute method. Change the con-

tent to the code in Listing 29.

Note: The generated code contains a constructor with two parameters. These are re-

moved so that the constructor is the standard constructor without any parameters.

6 Summary and Outlook 89

package helloworldplugin;

import java.util.HashMap;

import java.util.List;

import java.util.Map;

import de.kreinjb.gmf.atdframework.Node;

import de.kreinjb.gmf.atdframework.manager.plugins.AbstractATDFPlugin;

import de.kreinjb.gmf.atdframework.manager.plugins.PluginUtil;

import de.kreinjb.gmf.atdframework.manager.type.ConnectionRequest;

import de.kreinjb.gmf.atdframework.manager.type.NodeRequest;

import de.kreinjb.gmf.atdframework.manager.type.Type;

public class HelloWorldPlugin extends AbstractATDFPlugin {

 public HelloWorldPlugin() {

 super("http://helloWorld.com/id", "Hello World Plugin");

 operatingTypes.add(

 new Type("http://helloWorld.com/type", new String[]{"name"}));

 creatingTypes.add(

 new Type("http://goodByeWorld.com/type", new String[]{"greeting"}));

 }

 @Override

 public List<Node> execute(Node node) {

 String name = node.getProperties().getProperty().get(0).getValue();

 Map<String, String> properties = new HashMap<String, String>();

 properties.put("greeting", "Hi " + name + "!");

 return PluginUtil.connect(

 node,

 new NodeRequest(

 "Good Bye Node", "http://goodByeWorld.com/type", properties),

 new ConnectionRequest("Says Hi"),

 getID());

 }

}

Listing 29 – Modified HelloWorldPlugin.java class

6 Summary and Outlook 90

The code presents the basic functionalities provided by the framework. All the proper-

ties of the plugin should be specified in the constructor, e.g. the id and the name of the

plugin, as well as the types the plugin supports. This is achieved by calling the con-

structor of the super class with the id and the name of the plugin. The abstract class

also contains two lists, operatingTypes and creatingTypes. All the supported types

should be added to these lists, e.g. the code declares that the plugin can operate on

nodes that have a type of http://helloWorld/type and will create nodes that have a type

of http://goodByeWorld/type. These declarations also define the identifying properties

that the types will have, e.g. the nodes of type http://helloWorld/type can be uniquely

identified through the name property while nodes of the http://goodByeWorld/type type

will be identified through the greeting property. With these settings, the plugin is ready

to be used by the framework, i.e. the framework can schedule the plugin for execution

if the discovered topology contains a node of type http://helloWorld/type.

When the plugin is scheduled for execution the framework calls the execute method of

the plugin and provides as a parameter the node the plugin should operate on. The

example above assumes that the provided node will have exactly one property and

does not check whether it is available or what type or name the property is of. In a real

world example, a plugin would check for specific properties of a certain type and name

and only proceed if these properties are available. For illustration purposes and to keep

the example simple the code assumes the node has one property – more specific, a

name property. This name is extracted and a greeting message is created that says

“Hi” with the name added to the greeting.

Afterwards, a node is created that will contain a greeting property with the greeting

message as the value of the property and a connection is created between the two

nodes. For this task, the framework provides a utility class with a connect method. The

connect method acts not only as a creation function for the connection but also as a

creation function for the node. What the user does when he calls the function is send-

ing a request to connect to a specific node that has certain properties that the user

specified in a NodeRequest. For example, this NodeRequest contains a name, type,

and list of properties that the node should contain. If the framework finds such a node

in the current discovered topology, it creates a connection to this node. The check for

equality of two nodes is based only on the identifying properties. If the NodeRequest

contained more properties and the framework found a match for the requested node,

then these properties will be added to the found node. Connections can also have a

name which is specified in the ConnectionRequest, e.g. in the code above a connec-

tion with a name of “Says Hi” is created between two nodes.

If the framework does not find a node with the given properties – or more specific, a

node where the identifying properties do not match – it creates a new node that con-

tains the properties of the NodeRequest. This makes the creation of new nodes and

connections very easy because the developer does not have to care whether to create

a node or to connect to an already existing node. The framework automatically detects

nodes and either creates new ones or connects to already existing ones.

6 Summary and Outlook 91

To test the created plugin, create a new feature project (File -> New -> Feature Project)

with a name of HelloWorldFeature. Add the previously created plugin to the referenced

plugins that are contained in the feature and use the Export Wizard in the overview tab

of the feature.xml to export the feature.

A-4 Initiate Discovery

Start the framework and install the feature using the Update Manager. Create a new

project, drag a new node from the palette to the diagram and name it Hello World

Node. In the properties view set the type of the node to http://helloWorld.com/type. Af-

terwards, switch to the type specific tab in the properties view and add a name property

with some value, e.g. set the type to http://helloWorld.com/type, the name to name and

the value to John Doe. Click the add button and refresh the properties view by select-

ing the node on the diagram. Finally, start the discovery by clicking either the Run but-

ton or the RunStep button. The result should look like Figure 33.

Figure 33 – Discovery of the Hello World Example

<References 92

References

[1]. W3C. Web Services Description Language (WSDL) 1.1. [Online] March 15, 2001.

http://www.w3.org/TR/wsdl.

[2]. OASIS. Web Services Business Process Execution Language Version 2.0. [Online]

April 11, 2007. http://docs.oasis-open.org/wsbpel/2.0/OS/wsbpel-v2.0-OS.html.

[3]. Stephane Ducasse, Damien Pollet. Software Architecture Reconstruction: a

Process-Oriented Taxonomy. 2009.

[4]. ArchJava. [Online] http://archjava.fluid.cs.cmu.edu/.

[5]. Garlan, David. Software architecture: a roadmap. 2000.

[6]. Kamran Sartipi, Kostas Kontogiannis. On Modeling Software Architecture

Recovery as Graph Matching. Canada : School of Computer Science and Dept. of

Electrical & Computer Engineering Waterloo, 2003.

[7]. Andreas Kind, Dieter Gantenbein, Hiroaki Etoh. Relationship Discovery with

NetFlow to Enable Business-Driven IT Management. s.l. : In Proceedings of Business-

Driven IT Manageent (BDIM’06), pages 63–70, 2006.

[8]. Cisco. IOS NetFlow. [Online] October 2007.

http://www.cisco.com/en/US/prod/collateral/iosswrel/ps6537/ps6555/ps6601/prod_whit

e_paper0900aecd80406232.html.

[9]. Xu Chen, Ming Zhang, Z.Morley Mao, Paramvir Bahl. Automating Network

Application Dependency Discovery: Experiences, Limitations, and New Solutions. s.l. :

OSDI USENIX Association, p. 117-130, 2008.

[10]. Dieter Gantenbein, Luca Deri. Categorizing Computing Assets According to

Communication Patterns. 2002.

[11]. Sergey Brin, Lawrence Page. The Anatomy of a Large-Scale Hypertextual Web

Search Engine. s.l. : In Proceedings of the 7th World-Wide Web Conference, 1998.

[12]. Onn Brandman, Junghoo Cho, Hector Garcia-Molina, Narayanan

Shivakumar. Crawler-Friendly Web Servers. s.l. : In Proceedings of the Workshop on

Performance and Architecture of Web Servers , 2000.

[13]. Junghoo Cho, Hector Garcia-Molina. The Evolution of the Web and Implications

for an Incremental Crawler. 1999.

[14]. ACM. Service oriented architecture (SOA) a new paradigm to implement dynamic

e-business solutions. [Online] August 2006.

http://ubiquity.acm.org/article.cfm?id=1159403.

[15]. W3C. SOAP Version 1.2 Part 1: Messaging Framework (Second Edition). [Online]

April 27, 2007. http://www.w3.org/TR/soap12-part1/.

<References 93

[16]. IBM. Web Services Flow Language Version 1.0 (WSFL 1.0). [Online] 2001.

http://xml.coverpages.org/wsfl.html.

[17]. Microsoft. XML Business Process Language (XLANG). [Online] 2001.

http://xml.coverpages.org/xlang.html.

[18]. IBM, Microsoft. Business Process Execution Language for Web Services Version

1.1. [Online] 2003. http://public.dhe.ibm.com/software/dw/specs/ws-bpel/ws-bpel.pdf.

[19]. OASIS. WS-BPEL Extension for People. [Online] 2007. http://www.oasis-

open.org/committees/bpel4people/.

[20]. National Institute of Standards and Technology. The NIST Definition of Cloud

Computing. [Online] September 2011. http://csrc.nist.gov/publications/nistpubs/800-

145/SP800-145.pdf.

[21]. Deutscher Bundestag. Aktueller Begriff: Cloud Computing. [Online] 2010.

http://www.bundestag.de/dokumente/analysen/2010/cloud_computing.pdf.

[22]. Oracle. Java Management Extensions (JMX) Technology. [Online]

http://www.oracle.com/technetwork/java/javase/tech/javamanagement-140525.html.

[23]. Shah, Saumil. An Introduction to HTTP Fingerprinting. [Online] 5 19, 2004.

http://net-square.com/httprint/httprint_paper.html.

[24]. Sun Microsystems, Inc. Java Servlet Specification, Version 3.0. [Online]

December 2009. http://download.oracle.com/otn-pub/jcp/servlet-3.0-fr-eval-oth-

JSpec/servlet-3_0-final-spec.pdf.

[25]. —. JavaServer Pages Specification Version 2.1. [Online] May 8, 2006.

http://download.oracle.com/otn-pub/jcp/jsp-2.1-fr-eval-spec-oth-JSpec/jsp-2_1-fr-

spec.pdf.

[26]. Apache Software Foundation. Coyote HTTP/1.1 Connector. [Online] 2009.

http://tomcat.apache.org/tomcat-4.1-doc/config/coyote.html.

[27]. Lyon, Gordon. Nmap. [Online] http://nmap.org/.

[28]. OSGi Alliance. Open Services Gateway initiative (OSGi). [Online]

http://www.osgi.org.

[29]. Krein, Jakob. Web-based Application Integration: Advanced Business Process

Monitoring in WSO2 Carbon. Stuttgart : Institut für Architektur von

Anwendungssystemen, 2011.

[30]. Eclipse Foundation. Rich Client Platform. [Online] 2012.

http://wiki.eclipse.org/index.php/Rich_Client_Platform.

[31]. Ebert, Ralf. Eclipse RCP. [Online] August 2011.

http://www.ralfebert.de/eclipse_rcp/EclipseRCP.pdf.

[32]. Eclipse Foundation. Eclipse Modeling EMF. [Online] 2010.

http://www.eclipse.org/modeling/emf/.

<References 94

[33]. —. EMF/FAQ. [Online] 2011. http://wiki.eclipse.org/EMF/FAQ.

[34]. Plante, Frederic. Introducing the GMF Runtime. [Online] January 16, 2006.

http://www.eclipse.org/articles/Article-Introducing-GMF/article.html.

[35]. Eclipse Foundation. Eclipse Editing Framework. [Online]

http://www.eclipse.org/gef/.

[36]. Chris Aniszczyk. Learn Eclipse GMF in 15 minutes. [Online] September 12,

2006. http://www.ibm.com/developerworks/opensource/library/os-ecl-gmf/.

[37]. Eclipse Foundation. GMF Tutorial. [Online]

http://wiki.eclipse.org/Graphical_Modeling_Framework/Tutorial#Get_started.

[38]. EMC. Ionix. [Online] http://www.emc.com/products/family/ionix-family.htm.

[39]. IBM. Tivoli. [Online] http://www.ibm.com/software/tivoli/.

[40]. Microsoft. System Center Operations Manager. [Online]

http://www.microsoft.com/en-us/server-cloud/system-center/operations-manager.aspx.

[41]. HP. Network Management Center. [Online]

http://www8.hp.com/us/en/software/software-solution.html?compURI=tcm:245-936973.

All links have been last followed on April 26, 2012.

Declaration 95

Declaration

All the work contained within this thesis, except where otherwise acknowledged, was

solely the effort of the author. At no stage was any collaboration entered into with any

other party.

Stuttgart, on April 26, 2012

Jakob Krein

