
Institute of Architecture of Application Systems
University of Stuttgart
Universitätsstraße 38

D–70569 Stuttgart

Diplomarbeit Nr. 3255

Splitting BPEL Processes

Daojun Cui

Course of Study: Computer Science

Examiner: Prof. Dr. F. Leymann

Supervisor: Dipl.-Inf. O. Kopp, Dipl.-Inf. S. Wagner

Commenced: November 03, 2011

Completed: May 04, 2012

CR-Classification: H.4.1, K.1

Abstract

Khalaf presents a concept to split BPEL processes. This thesis illustrates how to extend the
work of Khalaf to go from a BPEL process to a BPEL4Chor choreography. First, the main BPEL
process given is split into fragment BPEL processes, in a way that the operational semantic
of the main BPEL process is preserved in the collective behavior of the fragmented BPEL
processes. The dataflow depependencies of the given BPEL process are analyzed and reflected
in the fragmented BPEL processes. Based on the results of the splitting algorithm, a BPEL4Chor
choreography is generated: The fragmented BPEL processes are converted into participants in
the generated BPEL4Chor choreography.

3

Contents

1 Introduction 11

2 Background and Related Works 15
2.1 Background . 15
2.2 Related Work . 18

3 Process Fragmentation 19
3.1 Main Process Specification . 19
3.2 Partition Specification . 20
3.3 Creating WSDL Definitions and Fragment Processes 24

3.3.1 Creating WSDL Definitions . 24
3.3.2 Creating Fragment Processes . 30

3.4 Collecting Information for BPEL4Chor . 32
3.5 Summary . 33

4 Control Link Fragmentation 35
4.1 Concept to Fragment Control Link . 36
4.2 Fragmenting Control Link in BPEL . 38

4.2.1 Algorithm for Control Link Fragmentation 38
4.2.2 Constructing Prerequisite . 40
4.2.3 Creating Sending Block . 41
4.2.4 Creating Receiving Block . 45

4.3 Summary . 46

5 Data Dependency Fragmentation 47
5.1 Data-Flow Analysis of BPEL Process . 48
5.2 Writer Dependency Graph (WDG) . 51

5.2.1 Definition of WDG . 51
5.2.2 Construction of WDG . 53

5.3 Partitioned Writer Dependency Graph (PWDG) 54
5.3.1 Definition of PWDG . 54
5.3.2 Construction of PWDG . 56

5.4 Local Resolver and Receiving Flow . 64
5.4.1 Message Specification . 65

5

5.4.2 Creating Prerequisites . 66
5.4.3 Creating Message Links for Participant Topology and Grounding 69

5.5 Putting All Together . 69
5.6 Summary . 71

6 Output in BPEL4Chor Choreography 73
6.1 Participant Behavior Description (PBD) . 73
6.2 Participant Topology . 74
6.3 Participant Grounding . 75

7 Architecture and Implementation 77
7.1 Architecture . 77

7.1.1 Application Infrastructure . 77
7.1.2 Component and Data Flow Overview . 78

7.2 Implementation . 83
7.2.1 Partition Specification Model . 83
7.2.2 BPEL4Chor Data Model . 84
7.2.3 WDG and PWDG Graph Model . 85

8 Summary and Future Work 87

A Errata of Related Works 89

B Definitions and Notions 91
B.1 Definitions . 91

B.1.1 Public Functions . 91
B.1.2 Partition Specification . 91
B.1.3 Data-Flow Analysis . 92
B.1.4 Writer Dependency Graph (WDG) . 92
B.1.5 Partitioned Writer Dependency Graph (PWDG) 93
B.1.6 Local Resolver and Receiving Follow . 93

B.2 Notion Summary . 94

Bibliography 97

6

List of Figures

1.1 In- and Output of Splitting Process . 12
1.2 Architecture of the Process Fragmentation . 13

2.1 BPEL4Chor Artifacts . 17

3.1 Overview of Splitting Module with Process Fragmentation 19
3.2 Sample Ordering Process . 21
3.3 Partition Specification P1 . 22
3.4 Conceptual Inter-Communication and References in Processes 25
3.5 Scenario Split PortType . 29
3.6 Result after Activities are Copied . 32

4.1 Overview of Splitting Module - Fragmenting Control Link 35
4.2 Splitting Control Link Concept . 36
4.3 Splitting Control Link Concept with Variable Initialization 44

5.1 Overview of Splitting Module - Fragmenting Data Dependency 47
5.2 Construction of WDG . 52
5.3 WDG with Partition . 56
5.4 Construction of a PWDG from a WDG . 63
5.5 Example PWDG Illustrating Scenario for Creating Prerequisites 67

6.1 Overview of Splitting Module - Output in BPEL4Chor 73

7.1 Splitting Process Infrastructure . 78
7.2 Splitting Component Overview . 79
7.3 Splitting Module Full . 82
7.4 Partition Specification Model . 83
7.5 Model of Participant Topology and Grounding 84
7.6 Model of WDG and PWDG . 85

7

List of Tables

3.1 WSDL Artifacts Re-usability and Multiplicity . 28

4.1 Status Evaluation by Original Link l(a, b, q) . 37
4.2 Status Evaluation by Exchanging Message . 37

5.1 Sample Data-Flow Analysis Results . 48

7.1 Description of the WDG and PWDG Graph Model 86

B.1 Notion Summary . 94

List of Listings

3.1 Partition File Syntax . 23
3.2 Partition File upon Partition P1 (cf. Figure 3.3) 24
3.3 Example Snippet for Link (B->D) . 27

4.1 Control Link Message Specification . 40
4.2 Syntax for Declaring Variable referred in Sending Block 42
4.3 From-Spec Variants in BPEL [OAS07] . 42

5.1 Sample Message Snippet for Sending Variable with Single Query-Set 65
5.2 Sample Message Snippet for Sending Variable with Multiple Query-Sets 65
5.3 Construct Snippet Assigning Value of Variable into Message Part 66

6.1 Participant Topology File Syntax [Kop11c] . 74
6.2 Participant Grounding File Syntax [Kop11b] . 75

8

List of Algorithms

4.1 Splitting Control Link . 39

5.1 Construct WDG . 53
5.2 Construction of PWDG . 57
5.3 Creation of PWDG Nodes . 59
5.4 Add to PWDG Node with Satisfaction of Path Constraint 61
5.5 Creation of Prerequisites for Local Resolver and Receiving Flow 68
5.6 Splitting Data Dependency . 70

9

List of Abbreviations

BPEL Web Services Business Process Execution Language

BPEL4Chor BPEL for Choreography

BPMN Business Process Model and Notion

BPR Business Process Re-engineering

CIP Continuous Improvement Process

CPS Cross Partner Scope

DOM Document Object Model

DPE Death Path Elimination

EPR Endpoint Reference

PBD Participant Behavior Description

PWDG Partitioned Writer Dependency Graph

SOA Service-Oriented Architecture

StAX Streaming API for XML

WDG Writer Dependency Graph

WS-CDL Web Service Choreography Description Language

WSDL Web Service Description Language

10

1 Introduction

Nowadays globally integrated enterprises are demanding more and more agility in the business.
They pursue the ways to reinvent the business process rapidly, such as business process re-
engineering (BPR) [DS90, Off97] and continuous improvement process (CIP) [Ima86]. The
enterprises that embrace CIP improve their business process via modification of the non-
competitive part. If improvement goal in the non-competitive business cannot be reached, the
out-sourcing or off-shore of the business process will usually be carried out in order to keep
the company’s portfolio profitable.

To specify business process behavior based on Web services, the Business Process Execution
Language (BPEL) has been introduced into industry in recent years. Companies applying BPEL
can improve their business process by doing process modification. In the case of out-sourcing,
the non-competitive part will be cut-out. The part can be regarded as a cut-out sub-process,
which should be run by the third party companies. This cut-out sub-process is called “process
fragment” [KKL08a]. The number of the process fragments depends on how the original
process is “cut”. The challenge is how to do the process fragmentation so that the collective
behavior of the process fragments preserve the operational semantic of the original process.

An approach is proposed in [KL06] to decompose the process. In that approach, a BPEL process
is firstly transformed into an intermediate form i.e. BPEL-D process in which the data flow is
represented by explicit data-links. The transformation is aided by a GUI process editor like
Eclipse BPEL Designer1. Then the control link and data link are split in the same way that
sending block and receiving block are created and the control (true or false) and data (value)
are passed by messaging between the two blocks. At the end, the result is a BPEL process per
participant, the corresponding WSDL definition per BPEL process, and a global wiring file.

Although the BPEL-D process presents the data flow explicitly and can easily be split, it is
not sufficient to split the data dependency in a BPEL process while keeping the operational
semantic of that original process, due to the parallelism and Death-Path-Elimination (DPE) in
BPEL process. Therefore, a more BPEL compliant approach for splitting data dependency of a
BPEL process is introduced in [KKL08a]. The mechanism of splitting data dependency in that
approach differs from the explicit data-links in BPEL-D in a way that the data dependencies
across the BPEL process fragments are maintained in an implicit manner.

1Eclipse BPEL Designer: http://www.eclipse.org/bpel

11

http://www.eclipse.org/bpel

1 Introduction

Partition Specification

WSDL

{PBD1,…,PBDn}

{WSDL1,…,WSDLn}

Participant topology

CPS Information
BPEL

Participant groundingSplit

Data-flow
analysis

BPEL,
analysis result

Figure 1.1: In- and Output of Splitting, the Input includes (1) partition specification, (2) BPEL,
(3) WSDL, (4) and data-flow analysis result , the Output includes (1) a Participant
Behavior Description (PBD) per fragment, (2) Participant Topology, (3) Participant
Grounding, (4) a WSDL definition per fragment and (5) Cross-Partner-Scope (CPS)
information .

The work in this thesis is based on the above mentioned approach. Nevertheless, we lack in
[KKL08a] a specific definition or description of the out-coming wiring file after the process
fragmentation. Thus, we choose BPEL4Chor presented in [DKLW07] as the out-coming wiring
specification. BPEL4Chor is a BPEL extension for defining choreographies and is suitable for
the global wiring information.

This thesis aims to extend the works of Khalaf et al. [KL06, KKL08a, Kha08] and to demonstrate
how one can go from a BPEL process to a BPEL4Chor choreography. In other words, we show
how to accept a BPEL process, its associated WSDL definition and the partition specification as
input, how to split the BPEL process into process fragments, and eventually how to output the
corresponding BPEL4Chor artifacts. Figure 1.1 illustrates the input and output of the splitting
process that is the main focus in this thesis.

In this thesis, the control dependency is split as the concept introduced in [KL06]. On the
other hand, the splitting approach against data dependency can be stated as follows: assume
there is a BPEL process, a partition specification and the result of data-flow analysis on that
BPEL process we fragment the BPEL process into smaller ones first, and each process fragment
contains a subset of the activities from the non-split process. As second step for every reader
of a variable, the writers of the variable will be retrieved by means of the data-flow analysis.
Appropriate BPEL constructs will then be created to collect the information from the writers
either in the same participant or in the different participants. The information includes variable
value and whether the writer succeeded. The participant’s process, which the reader resides in,
receives the information and assembles the value of the variable regarding the race order of
the writers. The principle of dealing with writers conflict is that last writer wins. Consequently,
the writers’ race condition in the non-split process is recreated [KKL08a].

12

CPS-
Coordinator

Eclipse Plug-in

Data-flow Analysis

BPEL, WSDL,
Partition Specification

BPEL4Chor,
CPS info

Workflow engine

Choreography
Interpreter

Splitting
Module

Figure 1.2: Architecture of the Process Fragmentation, the consumer of the output is workflow
engines, Choreography Interpreter and CPS-Coordinator [Bor10, Abbildung 4.2].

Architecturally, the split module (cf. Figure 1.2) functions as an Eclipse Plug-in in the Eclipse
BPEL designer. It takes a BPEL, an associated WSDL, the provided partition specification along
with the data-flow analysis on that BPEL process as input and outputs the BPEL4Chor as well
as split loop/scope information. The outputs can be consumed by Choreography interpreter
and CPS-Coordinator in the workflow engine.

The details of the thesis are structured as follows:

Chapter 2 – Background and Related Works: The background knowledge that is necessary to
read this thesis and the related works are introduced.

Chapter 3 – Process Fragmentation: The main process definition, the partition specification,
and splitting the main process into smaller fragment processes with the partition specifi-
cation are elaborated.

Chapter 4 – Control Link Fragmentation: The concept of fragmenting explicit control depen-
dency, the issue of variable initialization and its resolution when one realizes the concept,
and what should be prepared for fragmenting control dependency are introduced in this
chapter.

Chapter 5 – Data Dependency Fragmentation: The third part of the splitting procedure is frag-
menting implicit data dependency. It includes parsing the result of data-flow analysis
of the main process, construction of Writer Dependency Graph (WDG) and Partitioned
Writer Dependency Graph (PWDG), creation of Local Resolver and creation of Receiving
Flow. Each of them will be addressed.

Chapter 6 – Output in BPEL4Chor Choreography: Outputting the BPEL4Chor artifacts from the
results of splitting process will be specified.

13

1 Introduction

Chapter 7 – Architecture and Implementation: The architecture and implementation of the ap-
plication for splitting process are elaborated in the chapter.

Chapter 8 – Summary and Future Work: The conclusion of this thesis and the outlook for the
future will be given.

14

2 Background and Related Works

In this chapter the background knowledge needed for reading this thesis is briefly introduced
then the related works are presented.

2.1 Background

Web Service Description Language (WSDL)

Web Service Description Language (WSDL) is an XML standard for describing Web Services.
A WSDL document is used to describe what a service does and how to consume the service.
Typically a WSDL document consists of a reusable abstract part that describes “what” the
service does and a concrete part that describes “how” to interact with the service. The abstract
part refers to the <types>, <message>, and <portType> element, and the concrete part refers to
the <binding> and <service> element. The up-to-date version of WSDL is 2.0, however, we use
WSDL 1.1 in this thesis due to the BPEL being based on that WSDL version.

Web Service Business Process Language (BPEL)

Web Service Business Process Execution Language (BPEL for short) [OAS07] is “an extensible
work-flow-based language that aggregates services by choreographing service interactions”
[WCL+05], in other words BPEL is a work-flow language to operate in the service-oriented
architecture (SOA) environment. BPEL provides a set of (basic and structured) activities to
model the service interactions. The control flow in a BPEL process is explicitly modeled by the
control links between the activities, while the data flow in a BPEL process is implicitly realized
by sharing the global or local variables. In a BPEL process, one can access and manipulate the
data that belongs to the BPEL process using XPath [W3C99]. Additionally, the parallelism and
Death-Path-Elimination (DPE) [CKLW03] are supported by BPEL.

A BPEL process is usually an executable process that can be run in a target work-flow engine.
If the intention of the process is to describe the business contract and therefore some concrete
operation detail should be hidden, then a partially specified (abstract) process should be
created. Such a process is called abstract process and must be explicitly declared as ‘abstract’.

15

2 Background and Related Works

BPEL-D

BPEL-D is a variant of BPEL. Unlike the implicit data flow in BPEL, BPEL-D has the explicit data
flow. BPEL-D covers all the constructs in BPEL 1.1, and provides the data-links that facilitate
the explicit data flow. Each activity in BPEL-D contains a set of containers, and each container
of the set is used to store the incoming or outgoing data. The container for incoming data is
called input container and similarly the one for outgoing data is called output container. A
data-link in BPEL-D contains a set of maps and defines a transition of data between the source
activity and the target activity by mapping the output container of the source activity to the
input container of the target activity. Interested readers are referred to [Kha07, Fer07, Kha08]
for the detail about BPEL-D.

Based on the data-links in BPEL-D, the data dependency can be split in the same way as the
control dependency is split. However, this approach is not sufficient to split the data dependency
while maintaining operational semantic of the original BPEL process. The reason is that the
data-links in BPEL-D can not deal with the parallelism and the Death-Path-Elimination in the
BPEL process.

Data-Flow Analysis

Data-Flow Analysis is an approach to “derive explicit data links between the activities of a
BPEL process” [KKL08b]. In that approach, the current state of the writing to a given variable
element is given by the function “writes◦” and “writes•”. Given a variable element and a reader
activity, the former function returns the tuples which contain the possible writers, the invalid
writers, the disabled writers and the “may be dead” (boolean) value. The latter function does
the same thing. Although the tuples returned by the writes◦ reflect the state before the reader
activity is executed, and the tuples returned by the writes• does the state after the reader
activity is executed.

BPEL4Chor Choreography

BPEL4Chor is an extension of BPEL that defines web service choreographies. In contrast to
the top-down approach in the Web Service Choreography Description Language (WS-CDL,
[W3C05]), BPEL4Chor provides a bottom-up approach to specify choreography. Furthermore
BPEL4Chor is based on the interconnected interface behavior models, which can also be expressed
in Business Process Modeling Notion (BPMN, cf. [OMG11]). More specifically, BPEL4Chor
provides the interconnected interface behavior descriptions by utilizing the Abstract Process
Profile for Observable Behavior of BPEL [OAS07] and by adding an interconnection layer on top
of the abstract BPEL process. As in Figure 2.1, the artifacts of BPEL4Chor are explained as
follows [DKLW07]:

16

2.1 Background

Participant topology

BPEL4Chor choreography

Participant groundings

Message LinksParticipant Declaration

Participant behavior
descriptions (PBDs)

Figure 2.1: BPEL4Chor Artifacts, derived and simplified from [DKLW07, Fig. 2]

1. Participant Behavior Description (PBD)

A PBD is an abstract BPEL process which is adapted to provide the communication
activities, their behavioral dependencies, and their interconnections. In order to sep-
arate the technical configuration such as the WSDL portTypes that are referred to in
the communication activities, the attribute partnerLink, portType, and operation in the
communication activity are to be omitted. Additionally, a new attribute wsu:id which is
of type “xsd:id” is introduced into each communication activity specially the “onMessage”
branches in activity <pick>. The wsu:id serves as an identifier of the associated sending
activity and receiving activity in different participants.

2. Participant Topology

The participant topology gives the description of the choreographic structure. The
notions of participantType, participant, and messageLink are used in a participant topology.
Each participant is of certain participantType, and there may only be one participant of
certain participantType in one conversation. The messageLink represents a communication
between two participants.

3. Participant Grounding

The web service specific configuration, which has been avoided in PBD and participant
topology, is presented in the participant grounding. The notions of participantRef and
messageLink are used in the participant grounding. A messageLink in a grounding
differentiates from the messageLink in a topology by providing the WSDL portType and
operation.

17

2 Background and Related Works

2.2 Related Work

Multiple places in this thesis have mentioned Dead Path Elimination (DPE). The understand-
ing of how a BPEL process with the attribute “suppressJoinFailure=yes” (DPE on) behaves
when exception is thrown is critical. A comprehensive introduction of DPE is presented in
[CKLW03].

An approach for data-flow analysis of BPEL process is proposed in [KKL08b] by Kopp et al.
Unlike the mainstream data-flow analysis, the data-flow analysis of BPEL process deals with
the parallelism in BPEL, and is simultaneously aware of the Dead Path Elimination (DPE).
The algorithms of that approach are extended by Breier [Bre08] and implemented by Gao
[Gao10]. The analysis result can be consumed in the splitting step of this thesis, where the
data dependencies are fragmented (cf. Chapter 5).

Khalaf’s [KL06] introduces an approach to decompose the BPEL process. In that approach
the control dependency is split by exchanging messages between the fragment processes.
Furthermore, a BPEL process is transformed into an intermediate representation of BPEL i.e.
BPEL-D in which the explicit data-link is used, then the data dependency is split in the same
manner as the control dependency. The BPEL-D approach is also illustrated in [Kha07].

Due to the intricacies of the dealing with parallelism and Death Path Elimination in BPEL, a
more comprehensive mechanism compared to [KL06] is presented in [KKL08a] for splitting
BPEL process while maintaining the data dependencies. In that approach from [KKL08a],
the fragmentation of data dependency is directly run on the BPEL process instead of BPEL-D
process, i.e. the implicit data dependency in BPEL process is split without using any other
intermediate form or framework. Consequently, messages are sent between the ‘local resolver’
and ‘receiving flow’ instead of between ‘sending block’ and ’receiving block’ for passing data.

[Kha08] summarizes the approaches to split business process by using BPEL and without losing
the operational semantic. Fernandez [Fer07] illustrates the approach to create a GUI to help
splitting BPEL process with BPEL-D. It is the most relevant work for this thesis. Nevertheless,
the approach to split BPEL process without BPEL-D is the focus of this thesis.

BPEL4Chor, which is used as the target format of the splitting output in this thesis, is intro-
duced in [DKLW07] by Decker el at. A more concrete elaboration of BPEL4Chor is given in
[DKLW09].

18

3 Process Fragmentation

Process fragmentation is the beginning of the splitting procedure, therefore, it is the part where
the input of the split procedure is taken care of. After the input, a main BPEL process is created,
and it is about to be fragmented into smaller ones upon the partition specification given.

In this chapter, the specification of the main process is presented in section 3.1, then the
partition specification will be introduced, after that creation of the fragment BPEL processes
and the associated WSDL definitions will be addressed in detail. At the end of this chapter, the
results of process fragmentation will be reviewed.

3.1 Main Process Specification

The Figure 3.1 shows that one of the input for the splitting procedure is a BPEL process, which
one can call main BPEL process or original BPEL process, since it will be split into multiple
smaller fragment processes. Input that is associated to the BPEL process is the WSDL definition.
For the split, it provides the message type referred by variable in BPEL process, the PortType
referred by in-bound and out-bound activity, and the PartnerLinkType referred by PartnerLink

Split Module

Partition
Specificati

on

BPEL
Process

PBDs,
WSDLs,

topology,
grounding

results

Designer

read

3.a

assign

3.b

BPEL file

WSDL
DefinitionWSDL file

Partition
file

read

2

read

1

Fragment
processes
, WSDLs

Fragment
processes,

WSDLs,
MessagLin

ks

fragment
control link

5

fragment
process

4
fragment

data
dependency

6

write

7

Figure 3.1: The Overview of the Split Module with Process Fragmentation (step 4) emphasized

19

3 Process Fragmentation

in the BPEL process. The deployment information of the main process is absent since it is not
deployed in this thesis, it is split instead. Further more, the main process is monitored in both
source code mode and graph mode using GUI, e.g. Eclipse BPEL Designer.

Due to the complexity of supporting all BPEL activities, there is a need to set up a subset so
that the task can be achieved in this thesis. Since the splitting concept and algorithms are
across the [KL06], [Kha08], and [KKL08a], and they set up some restrictions for main process,
therefore the subset of BPEL in this thesis also agrees with them and is defined as follows:

1. Process with “suppressJoinFailure=yes”(DPE [CKLW03] on) [KL06, KKL08a]

2. Only global variables are used for data handling in the process [KL06, KKL08a]

a) The variable is of message type, which is usually defined in WSDL definition.

b) The message consists of parts that are of simple type in the XML Schema.

c) In [KL06] variables are not constrained in global scope or local scope.

3. Exactly one correlation set for the inter-routing between fragment processes [KL06,
KKL08a]

a) The correlation set contains a property named “correlProperty” of type string and
an associated propertyAlias is given in WSDL definition.

b) The type of the property is explicitly pre-defined in this thesis.

4. PartnerLinks [KL06, KKL08a]

5. A <flow> activity is used as top level activity of the process. In other cases, <flow> activity,
as well as the other structured activities, is not supported. Note that in this point the
usage of the structured activities is not explicitly stated in [KL06, KKL08a].

6. All basic activities except <terminate>, <throw>, <compensate>, and <assign> activity that
copies to a process’s endpoint references(EPR) [KL06, KKL08a].

7. A <receive> and its combined <reply> are not to be separated in different participants
[KL06, KKL08a]. Interested readers can find more information about this point in [Kha08,
Section 5.7.1].

3.2 Partition Specification

Partition specification is one part of the input for splitting procedure besides the BPEL and
WSDL. It informs the splitting procedure which activity in the main process is assigned to
which participant. The participants together constitute the partition of the BPEL process. The
term ‘participant’ indicates a fragment of the main process, and it has one or more activities in
the main process.

20

3.2 Partition Specification

orderInfo

paymentInfo

response

delivered

Variables:

orderInfo.status==“gold” orderInfo.status==“silver”

orderInfo

processOrder(orderInfo)

A

KEY :

receive

reply

invoke

assign

orderInfo.orderStatus=“price calculated”
delivered=0 E

response H

F

response.text+=“5% discount”
paymentInfo.amt=paymentInfo.amt*0.95

D

response.text+=“10% discount”
paymentInfo.amt=paymentInfo.amt*0.9

C

processPayment(paymentInfo)
G

paymentInfo.actNum = orderInfo.accountNumber
response.text = “Dear customer, …”

paymentInfo.amt = orderInfo.totalPrice + 5*size(deliveries))
B

Figure 3.2: Ordering process that provides discounts to Gold and Silver customers [KKL08a,
Fig. 1]

The concept to describe the partition of a process with formal definition is firstly introduced in
[KL06, Section 4.1]. The main idea is that one divides the activities in different sets, and each
set is regarded as a participant.

The concept is described here in more detail. First of all, we introduce the function π :

(x1, x2, . . . , xi, . . .) × i 7→ xi, which is also used in the other equations and algorithms in
this thesis. Let x = (x1, x2) be a tuple, then π1(x) = x1 denotes the projection onto the first
coordinate of x, and π2(x) = x2 denotes the projection onto the second coordinate of x. Let N
be the natural numbers i.e. {1, 2, 3, . . . }. Let A be the set of all basic activities in the process,
pi be one participant, and P be the set of participants. A participant pi consists of a name si,
which is in {s1, s2, . . . }, and a set of activities Mi ⊆ A, which is in {M1,M2, . . . } and holds
one or more activities. Furthermore, each basic activity must be assigned to exactly one set Mi,
i.e.

⋃
i∈NMi = A. The formal definition of the set of participants is as follows [KL06]:

P := {pi | ∀i ∈ N : pi = (si,Mi)} (3.1)

There are several general conditions that a partition defined per equation (3.1) must satisfy.
The conditions are initially stated in [KL06] and revised here:

21

3 Process Fragmentation

G

A

w x y z

B
C

E

D

F

H

Figure 3.3: A Partition P1 derived from [KKL08a, Fig. 2] regarding the Ordering process
in Figure 3.2. P1 = {p1, p2, p3, p4}, p1 = (w, {G}), p2 = (x, {A,B,H}), p3 =

(y, {C,E}), p4 = (z, {D,F})

1. ∀pi ∈ P : |π2(pi)| > 1 where π2(pi) = Mi as defined above, i.e. a participant pi must
have at least one activity.

2. ∀pi, pj ∈ P : pi 6= pj ⇒ π1 (pi) 6= π1 (pj) ∧ π2 (pi) ∩ π2 (pj) = ∅ , i.e. two participants
do not share a same name or an activity.

3.
⋃

pi∈P π2(pi) =
⋃

i∈NMi = A, where A is the set of all basic activities in the process.

When we combine the second point with the third point we can also conclude that each basic
activity must be assigned to exactly one participant, and a designer assigns only basic activities
(no scope or loop) to a participant.

In Figure 3.3, a partition specification P1 for the sample process in Figure 3.2 is shown. Each
swim-lane in the figure represents a participant. Each of the symbols w, x, y, and z is the name
of one participant. The round circles are basic activities, which are named by the letter in
the middle of the circle. Each basic activity is assigned to one participant. To illustrate how
one reads the information from the formal definition of a participant, we take the participant
p2 = (x, {A,B,H}) in partition P1 for instance:

• the activities A, B, and H are in participant p2, i.e. π2 (p2) = {A,B,H},

• and the name of participant p2 is x, i.e. π1 (p2) = x.

22

3.2 Partition Specification

1 <partitionSpecification>
2 <participant name="NCName">+
3 <activity path="String"/>+
4 </participant>
5 </partitionSpecification>

Listing 3.1: Partition File Syntax

Recall that the ‘step 4 - fragment process’ in Figure 3.1 needs a partition specification. There
are two alternative inputs for partition specification. First is the partition file, second is the
designer assignment aided by GUI.

The Listing 3.1 is the syntax for partition file. We use the partition file to store the partition
specification as described in the equation (3.1). A partition file serves also as input of the split
procedure in this thesis. The partition file syntax can be interpreted as follows:

1. The <partitionSpecification> element (line 1) has one or multiple <participant> ele-
ments.

2. The <participant> element (line 2) contains an attribute name and has one or multiple
<activity> elements (line 3).

3. The attribute path in the <activity> element (line 3) is XPath string.

Note that the Listing 3.1 uses the same informal syntax as in BPEL specification [OAS07] to
describe the XML grammar. It means that the “+” appended to the elements stands for “one or
more”.

Upon the partition file input, it is assumed that the BPEL process is loaded, but given the
circumstance that one does not have direct access to specific BPEL activity in memory. The
process is in the memory, but not visible for us. To start the splitting, the split procedure must
be told where to find the activity in the BPEL process and which activity is in which participant.
A concept to provide the information can be stated as follows: (1) the position of activity
is given via XPath stored in the partition file, (2) information about participant is given by
grouping the activity XPaths, and (3) the group is labeled with the participant name. This
concept is reflected in the Listing 3.1, which is used in this thesis.

The operation pattern upon the partition file input is that the partition file is parsed at the
starting time, then the activity XPaths are retrieved, finally the activities in the BPEL process
(in memory) are located with help of the XPath, and put into the corresponding participant.

The example partition file shown in Listing 3.2 is given to illustrate how one defines a partition
specification for a BPEL process using the syntax in Listing 3.1.

As for the GUI input, normally one expects that the BPEL process has been represented in
the GUI. It means the user or designer just needs several mouse clicks to assign the basic

23

3 Process Fragmentation

1 <!-- Partition Specification for OrderingProcess -->
2 <partitionSpecification>
3 <participant name="w">
4 <activity path="/bpel:process/bpel:flow/bpel:invoke[@name=’G’]"/>
5 </participant>
6 <participant name="x">
7 <activity path="/bpel:process/bpel:flow/bpel:receive[@name=’A’]"/>
8 <activity path="/bpel:process/bpel:flow/bpel:assign[@name=’B’]"/>
9 <activity path="/bpel:process/bpel:flow/bpel:reply[@name=’H’]"/>

10 </participant>
11 <participant name="y">
12 <activity path="/bpel:process/bpel:flow/bpel:assign[@name=’C’]"/>
13 <activity path="/bpel:process/bpel:flow/bpel:assign[@name=’E’]"/>
14 </participant>
15 <participant name="z">
16 <activity path="/bpel:process/bpel:flow/bpel:assign[@name=’D’]"/>
17 <activity path="/bpel:process/bpel:flow/bpel:invoke[@name=’F’]"/>
18 </participant>
19 </partitionSpecification>

Listing 3.2: Partition File upon Partition P1 (cf. Figure 3.3)

activities to the corresponding participant. At the moment there are already tools like Eclipse
BPEL Designer which can load a BPEL process. Nevertheless, a graphic representation of the
participant and the logic to assign activities to the participant still needs to be done.

3.3 Creating WSDL Definitions and Fragment Processes

Upon the partition specification, the BPEL process can now be fragmented into several smaller
fragment processes (in this thesis, fragment process is used as synonym for participant).
Consequently, for each participant a WSDL definition and a BPEL skeleton is created. The
corresponding artifacts are copied from the original BPEL process/WSDL definition in the
fragment processes/WSDL definitions.

3.3.1 Creating WSDL Definitions

A WSDL definition will be created for each fragment process. In this thesis, generally, the
WSDL definition’s name attribute will be the same as the participant’s name. Its targetNamespace

attribute will come from the original process’s WSDL definition.

It is explained in [KL06, Section 4.2] and [Kha08, Section 5.7.1] that (1) to support the
inter-communications between the fragment processes some new artifacts are created in their
WSDL definitions, and that (2) some artifacts are copied from the WSDL definition of original

24

3.3 Creating WSDL Definitions and Fragment Processes

BPEL Process

Variables
 variable
 message type

PartnerLinks
 partnerLink
 partnerLinkType
 partnerRole
...
invoke (A)
 partnerLink
 portType
 inputVariable
 operation

WSDL Definition Variables
 variable
 message type

proca

...
receive (B)
 partnerLink
 portType
 inputVariable
 operation

procb

defnb

(1)
(2)
(3)
(4)

partnerLinkType
 name
 role
 portType

portType
 operation
 input

message
 name

(1)
(2)
(3)

PartnerLinks
 partnerLink
 partnerLinkType
 partnerRole

PL

a A b

proca procb

BPEL Process

(4)

B

Figure 3.4: Conceptual Inter-Communication (top) and References in Processes (bottom)

process in the proper fragment process to enable the communication between the clients and
the fragment processes.

First of all, we go into detail about what are to be created in the WSDL definitions of the
fragment processes in regard to the inter-communication between the fragment processes,
using the partition P1 (cf. Figure 3.3) as example.

Assume that the participant’s activities are already placed in corresponding fragment process
upon the partition P1. Consider the scenario that two activities that were directly connected
by one link in original process, are now separated in two fragment processes. For instance,
the activity B and D were directly connected and are in two participants in partition P1.
More specifically, activity B is in participant p2=(x, {A,B,H}) and activity D is in participant
p4=(z, {D,F}). A side-effect of the separation is that the participant p2 and participant p4
are logically connected due to the link from activity B to activity D, therefore there will be
inter-communication between them. It may be interpreted as p2 invokes p4. In this scenario,
necessary artifacts are to be created in the WSDL definition of the invoked participant p4 to
facilitate this communication.

25

3 Process Fragmentation

Figure 3.4 is an observation of the inter-communication between two simple processes i.e.
proca and procb. Upside of that figure where the <invoke> activity A in proca sends a message
and the <receive> activity B in procb receives the message, is the conceptual communication.
The technical configuration of the activity A and the activity B is illustrated in the downside
of that figure. The defnb is WSDL definition of process procb. Some structures of the process
proca, procb, and definition defnb are left out, since our focus is the artifacts in the WSDL
definition that are referred in the <invoke> and <receive> activity.

The arrows with dash line below the middle line of the Figure 3.4 indicate the references
from the BPEL processes to the WSDL definition. The common point in the references of
the Invoke and the Receive is that all of the references (partnerLink, portType, operation,
inputVariable) trace back to the WSDL definition defnb of the process procb. Now, it is obvious
that to facilitate the inter-communication the artifacts for WSDL are created in the party which
is invoked or requested.

Based on that observation, we are able to tell what are to be created for the inter-
communication. The WSDL artifacts to be created for the link (B->D) in Figure 3.3 include:

1. WSDL messages and uniquely named WSDL operations to transmit the control- and data
dependency as introduced in chapter 4 and chapter 5 separately

a) They are created in the WSDL definition of p4=(z, {D,F}).

2. A WSDL portType for p2=(x, {A,B,H}) to send communication via <invoke> activity and
for p4 to receive communication via <receive> activity

a) It is created in the WSDL definition of p4

3. A WSDL partnerLinkType to characterize the conversational relationship between p2 and
p4

a) In the parternLinkType, roles should be created too, in this scenario, there is only
one role because it is one way conversation (B->D).

b) The role that gets created is referred in the myRole attribute of the partnerLink
element of the p4’s fragment process and in partnerRole for the p2.

c) Usually the partnerLinkType is created in WSDL definition of p4 as extensibilityElement,
which is WSDL extension for BPEL specification.

The Listing 3.3 is an example snippet that gets created for link (B->D) in the the WSDL defini-
tion of p4. A portType named “pxpzPT” (line 10-17) and a partnerLinkType named “pxpzPLT”
(line 3-5) are created for the communication from participant p2 to participant p4. Inside the
portType “pxpzPT” are two operations “B2DOperation” (line 11-13) and “xzVarNameOp” (line
14-16) created. Both operations have only input message. One refers to message “control-
LinkMessage” (line 7), and the other refers to message “statusAndDataXZVarNameMessage”
(line 8). Note that some details in the messages such as the ‘parts’ are hidden here. Interested

26

3.3 Creating WSDL Definitions and Fragment Processes

1 <wsdl:definitions name="pz" targetNamespace="www.bpel4chor.org" ...>
2 ...
3 <plnk:partnerLinkType name="pxpzPLT">
4 <plnk:role name="pxpzRole" portType="tns:pxpzPT" />
5 </plnk:partnerLinkType>
6 ...
7 <message name="controlLinkMessage"/>
8 <message name="statusAndDataXZVarNameMessage"/>
9 ...

10 <portType name="pxpzPT">
11 <operation name="B2DOperation">
12 <input message="tns:controlLinkMessage"/>
13 </operation>
14 <operation name="xzVarNameOP">
15 <input message="tns:statusAndDataXZVarNameMessage"/>
16 </operation>
17 </portType>
18 ...
19 </wsdl:definitions>

Listing 3.3: Example Snippet for Link (B->D)

reader is referred to Listing 4.1 in Section 4.2.2 for message “controlLinkMessage”, and to
Listing 5.1 and 5.2 in Section 5.4.1 for message “statusAndDataXZVarNameMessage”.

Since a link that crosses the fragment processes and gets split, requires the communication
between the source and target fragment process, and therefore new artifacts to be created
on the fragment processes and their WSDL definitions. The more links crossing the fragment
processes there are, the more artifacts are to be created. So there is a need to assess which
artifact, once created, can be reused, and which artifact should be uniquely created each
time.

Table 3.1 is general analysis about which artifact can be reused and how often it can be reused.
It shows two points: (1) the PartnerLinkType, Role, PortType can be reused between one pair
of the invoking- and invoked participant, (2) the Message and Operation are not reusable, with
the exception that the message for control link can be reused, as illustrated in the Chapter 4 –
Control Link Fragmentation.

As one may realize, if we generate all the facilities in the early stage in the WSDL definitions,
which enable the communication between the fragment processes, it requires an expensive
analysis through all pairs of participants that interact with each other. Therefore, in this
thesis, the creation of the artifacts that are necessary for the inter-communication between
fragment processes is delayed until the link is being split and the constructs sending message
and receiving message are being created. That way, the artifacts for fragment processes and
WSDL definitions will be created together and one does not need to do the creation of artifacts
in WSDL definitions at the beginning.

27

3 Process Fragmentation

Artifact Reusable Multiplicity
Message for control Y Only one such message is to be created (cf. Chapter 4 –

Control Link Fragmentation)
Message for data N One for each local resolver and receiving flow (cf. Chap-

ter 5 – Data Dependency Fragmentation)
Operation N Multiple uniquely named operations are to be created for

each link respecting control and data
PortType Y One for each pair of invoking- and invoked participant
Role Y One for each pair of invoking- and invoked participant
PartnerLinkType Y One for each pair of invoking- and invoked participant

Table 3.1: WSDL Artifacts Re-usability and Multiplicity

One then needs to do the creation of constructs for inter-communication, which refers to
control links and data dependencies, between fragment processes extra in next stages. When
we do these separately, one must consider how to propagate the necessary information e.g.
portType name to the next stage, when the constructs , which send or receive message and thus
need e.g. portType name in the attribute portType, for fragment processes are being created.
Based on that consideration this part will be dealt with in the succeeding steps, i.e. Chapter 4 –
Control Link Fragmentation, and Chapter 5 – Data Dependency Fragmentation.

Until now we have discussed the communication between the fragment processes. Some
artifacts are to be created, and therefore the fragment process will not look like the part in the
original process. However, from the perspective of the clients, which the service of the original
process is exposed to, the collective behaviors of the split processes shouldn’t be different from
the original process, except that the ERP1 of the fragment process, where the request from the
client is received, must be informed.

To maintain the communication between the clients and the original process while splitting
the process, the artifacts that serve the communication with clients should be located and
copied from the original process’s WSDL definition to that of the corresponding fragment.
The looking up and copying of artifacts should happen along with copying activity from
original process into fragment process as shown in Section 3.3.2, because the communication
activity will be referencing the underlying WSDL artifacts. E.g. a normal <receive> activity will
set the partnerLink, portType, operation, and variable. The portType and operation are direct
references in the WSDL definition, while partnerLink and variable indirectly associate to the
PartnerLinkType and MessageType in the WSDL definition.

A special case is that a <reply> activity is replying to a message that is received by an inbound
message activity e.g. <receive> [OAS07, Page 25 of 264]. Their combination forms a two-

1ERP - Endpoint Reference

28

3.3 Creating WSDL Definitions and Fragment Processes

op1Request-Response

One Way

PTOne Way

op1input

op1output

PT

PT 1
2

3

Figure 3.5: Scenario Split PortType, (1) PortType in non-split process’s WSDL definition (2) in-
put part of the PortType in one participant’s WSDL definition (3) output part of
the PortType in another participant’s WSDL definition

way (request-reply) operation on the WSDL portType of the original process. If we place
the <receive> and <reply> activity in different participants, it means that we must copy the
operation separately from the portType to each of the WSDL definition of the fragment process,
where each of the <receive> and the <reply> presents. In other words, we split the portType by
assigning the <receive> and <reply> to different participant. The impact on the client is that
the client is enforced to update its communication activities so that they know the correct port
they should point to, since the original portType, after splitting, is in two participants, one for
receiving, one for replying. Figure 3.5 illustrates that scenario we discussed.

Recall that we disallow the <receive> and <reply> pair for synchronous operation to be assigned
in two different participants. Its intention is to minimize the effect on the client. Since the
both activities of the two-way conversation are in the same participant, then the portType will
not be split. Thus, nothing needs to be changed at the client.

Wider perspective on this topic can be found in [Kha08, Section 5.7.1].

29

3 Process Fragmentation

3.3.2 Creating Fragment Processes

A fragment process will be created for each participant. The newly created process is an empty
process. In the run-time, necessary artifacts will be copied into the fragment process. What is
copied into the fragment process depends on the participant associated.

The new fragment process will be named after the participant. The targetNamespace will
be inherited from the original process. And as mentioned before the “suppressJoinFailure”
attribute in the <process> must be set as ‘yes’ (turn on DPE), since the default value of the
attribute is ‘no’.

Upon the participant, the artifacts that are copied into the fragment process include:

• partnerLink referred by the activity in the participant

• variable referred by the activity in the participant

• correlationSet

• activities assigned in the participant, and the activities’ parents.

The last bullet is particularly to be noticed, since the parent of the activity assigned in the
participant is usually a structured activity. The third condition of the participant specification
in Section 3.2 Partition Specification implies that all activities in the participant are basic
activities. It means that if one basic activity is assigned in a participant, then its parent
(structured activity) should also be added into the fragment process. The addition of the parent
activity is due to the rubber-band effect [Kha08, Section 5.4], in which it is stated that violating
the rubber-band effect leads to an inconsistent scope state.

To illustrate the rubber-band effect. Let’s assume that in a original process p, a basic activity
,‘a’, is in a <flow> activity, ‘flow’, which contains a fault handler, ‘fh’, if error happens in ‘a’, an
exception would be thrown by ‘a’ and be caught by the ‘fh’, and be handled properly, so that
the process would not crash. While creating the fragment process, if we do not copy the parent
of the ‘a’ in its fragment process, there is no proper faultHandler to handle the error exception
that is thrown by ‘a’, the exception will be passed on further to the ascendant, where it will
be unexpected exception, and will very likely result the crash of the process. The violating
scenario is shown in [Kha08, Figure 28].

In this thesis, the algorithms in [Kha08, Section 5.7.2] are adapted to handle the creation of
the process fragment. The function PROCESS_CHILD in that chapter is the main algorithm
to add activity in the fragment process. The main idea is that given the main process, the
participant, and the fragment process, we iterate through all activities in the main process in a
top-down manner, in each iteration an activity will be handled. In an iteration, the activity ‘a’
will be added (copied) into the fragment process under either of the two conditions: (1) the
activity is basic activity and is assigned in the participant; (2) the activity is not basic activity,
however it has child activity that is assigned in the participant. Any activity that does not

30

3.3 Creating WSDL Definitions and Fragment Processes

satisfy either of the conditions and does not belong to the given fragment process will therefore
simply be skipped. After an activity is handled, the function iterates recursively further in its
children, until there are no children anymore.

So far, the placement of the links that connect the basic activities is not mentioned. In fact,
they are handled while the activities are being added into the fragment process, because they
are member of the standard elements in an activity. From the splitting aspect, the links can be
categorized based on whether they cross the boundary. But at this stage they are still regarded
as the same and are not handled differently.

Recall that in the BPEL model, a ‘link’ has two members: one is its ‘source’; the other is
its ‘target’. The ‘source’/‘target’ has a member ‘activity’, which is the source/target activ-
ity of the link. It means that manipulating a ‘link’ involves 4 other objects: (1) ‘source’,
(2) ‘source-activity’, (3) ‘target’, and (4) ‘target-activity’ .

In this stage, the links are copied, while their associated activities are being copied in the
fragment processes. More particularly, if an activity is source or target of one link, then, copying
the activity means also copying the link. Recall that the activity gets copied in one fragment
process if it is in the process fragment, or contains a child that is in the process fragment. Note
that while copying a link, one end of it is the activity that is being copied, the other end (which
is also an activity) of the link is in this moment not the subject to be handled.

The following is how the activity including its links is copied:

1. a new empty activity regarding the original activity type will be created at first, then
configuration of the original activity will be copied respectively.

2. if the original activity is source of any link, then copy the link for the new activity too.
Copying the link means that a new link is generated, its source is set as the newly created
activity, and its name is set as same as the original link’s. The new link’s ‘target’ is left
empty.

3. if the original activity is target of any link, then copy the link for the new activity too.
The copying operation is similar to the last point, the difference is that the new link’s
‘source’ is left empty.

It is based on the consideration that the main task of this stage is to place the activities in the
fragment process, the task is not to determine whether a link crosses the boundary and when
yes, to split it. It is the task of next chapter, i.e. Chapter 4 – Control Link Fragmentation. As
such, we just need to leave enough information for the next stage, so that the original link can
be precisely located in the original process and be properly handled.

Figure 3.6 illustrates the results after the fragment processes are created and activities are
copied. Given the Partition P2, the main process p is fragmented in 2 fragment processes,
p1 and p2. We can realize that (1) the parent of the basic activities <flow> is copied in both
fragment processes due to the rubber-band effect, (2) and there are 2 copies for each link out of

31

3 Process Fragmentation

a

b

flow

linkA2B

c

flow

a

flow

linkB2C

p p1
p2

linkA2B

b

linkA2B

linkB2C

c

linkB2C

Figure 3.6: Result after Activities are copied, p is the main process, p1 and p2 are fragment
processes upon the Partition P2 = {p1, p2}, p1 = (x, {a}), p2 = (y, {b, c}).

the original process, both having the same name, although, one end of either link is bound
to an activity, and the other end is empty. We take the linkA2B as an example to explain how
are they generated. As the activity ‘a’ is being copied in the fragment process p1, it is detected
that ‘a’ is source of the link linkA2B, so the link is copied too, but, its target is left empty. As the
activity ‘b’ is being copied in the fragment process p2, it is detected that ‘b’ is target of linkA2B,
then the link is copied as well. However, the source of the link is left empty. As a result, there
are two copies of the linkA2B, and each has only one end that is bound to an activity.

3.4 Collecting Information for BPEL4Chor

The ultimate aim of the splitting process in this thesis is to output the BPEL4Chor Choreography
on the process upon the partition specification given. The idea is to prepare the output so that
we collect the information pieces available in each stage of the splitting procedure, store the
them in intermediate data, at the end assemble all pieces together for output.

After Process Fragmentation, the information useful for BPEL4Chor in the run-time is:

32

3.5 Summary

• For <topology>

– <participantTypes> can be created, since we now know about the BPEL fragment
processes, for each <participantType> we can get the information for attribute
participantBehaviorDescription.

– <participants> can be created, since we already know the participantType, for each
fragment process there is a <participant>. We can get information for the attribute
name and type, but the attribute selects will not be available until next stage Chapter
4 – Control Link Fragmentation.

– <messageLinks> will not be available until next stage Chapter 4 – Control Link
Fragmentation.

• For <grounding>, so far, there is nothing to collect, because the handling of the message
link comes in Chapter 4 – Control Link Fragmentation and Chapter 5 – Data Dependency
Fragmentation.

3.5 Summary

In this chapter, the results can be summarized as follows: (1) one WSDL definition per
fragment process is created. In addition, artifacts for maintaining the communication between
clients and the fragment processes are copied from original process’s WSDL definition into the
corresponding WSDL definition, (2) one fragment process, which sets the global DPE as on
(“suppressJoinFailure=yes”), is created for each participant defined by partition specification
file or designer, and (3) available information for BPEL4Chor is also collected.

33

4 Control Link Fragmentation

Fragmenting Control Link is to split the control link on the base of whether or not the control
link crosses over processes given a specific partition specification. In the former case the control
flow is transmitted by exchanging message between the processes. In the step 5 of the Figure
4.1, we can see that in this stage the control link is to be fragmented. The results of step 4 (cf.
Chapter 3 – Process Fragmentation) are taken as input, and “step 5 - fragmenting control link”
will be run, output of the procedure will be the modified fragment processes, WSDL definitions,
and BPEL4Chor artifacts i.e. message links. In this chapter the details of fragmenting control
link will be explained.

The concept to fragment control link is presented at the beginning, then we dive into the topic
fragmenting the control link in BPEL, at the end a summary is given.

Split Module

Partition
Specificati

on

BPEL
Process

PBDs,
WSDLs,

topology,
grounding

results

Designer

read

3.a

assign

3.b

BPEL file

WSDL
DefinitionWSDL file

Partition
file

read

2

read

1

Fragment
processes
, WSDLs

Fragment
processes,

WSDLs,
MessagLin

ks

fragment
control link

5

fragment
process

4
fragment

data
dependency

6

write

7

Figure 4.1: The Overview of the Split Module with Fragment Control Link (Step 5) emphasized

35

4 Control Link Fragmentation

a bq

a

Nonsplit Process Participant 1 Participant 2

STa

SFa

q

b

true

false

inVar REbs

fh

No modification
to joinCondition

REb

suppressJoinFailure=false

Figure 4.2: Concept for Splitting Control Link across Processes [Kha08], left: Non-Split Process,
right: Participant 1 and 2

4.1 Concept to Fragment Control Link

The fragmenting control link procedure in this thesis follows the concept introduced in [KL06,
Section 4.3] and [Kha08, Section 5.8] with some adjustment due to the variable initialization
as shown in next section.

The concept is introduced as follows. Figure 4.2 illustrates the concept of fragmenting control
link. The non-split process (left) in the figure contains two activities, a and b, with is connected
by a link l(a, b, q). The notion l(a, b, q) is used to indicate the link from activity a to activity
b with q, which is a Boolean expression and can be omitted if it is not specified. The activity
a is placed in Participant 1 (right) after the fragmentation, and the activity b in Participant
2 (right). Besides the placement of a and b, some constructs are created in Participant 1
and 2. In Participant 1, the constructs include a <scope> activity s which contains an <invoke>

activity named STa and a <faultHandler> named fh, which contains an <invoke> activity named
SFa. The activity a is routed to activity STa via link l(a, STa, q). In Participant 2, the new
construct is a <receive> activity named REb which goes to activity b, via a link l(REb, b, inVar).
The inVar is inputVariable of <receive> REb. The <invoke> activity STa sends the message,
whose value contains the evaluation result (true or false) of the transition condition q to
the <receive> activity REb in Participant 2 while the <invoke> activity SFa sends a false in
case of exception is thrown. To note is that the <invoke> activity STa turns the DPE off by
setting “suppressJoinFalure=false”, so a joinFailure Exception will be thrown and caught by
<faultHandler> fh, once activity STa’s joinCondition evaluates to false and consequently the
activity is not executed.

The original link l(a, b, q) is split across the participants. We regard the newly created
constructs in Participant 1 as sending block, and the one in Participant 2 as receiving block. The

36

4.1 Concept to Fragment Control Link

a transitionCondition of l(a, b, q) joinCondition of b
succeed true true

fail false false

Table 4.1: Status Evaluation by Original Link l(a, b, q)

a transitionCondition
of l(a, STa, q)

joinCondition
of STa

transitionCondition
of l(REb, b, inVar)

joinCondition
of b

succeed true true true true
fail false false false false

Table 4.2: Status Evaluation by Exchanging Message

control is propagated from activity a to activity b, via message exchange between sending block
and receiving block. The message encodes whether the control is in valid- or faulty status.

Normally, after the activity a in Participant 1 is run, the transition condition of the link l(a,
STa, q) evaluates to true. Then <invoke> activity STa is executed and invokes the process
of Participant 2 by sending message containing the value true. The <receive> activity REb

receives the message and fires the link l(REb, b, inVar with value from the message. As the
join condition of activity b is not changed, the control flow arrives at activity b. That way, the
behavior of the original link in the non-split process is reproduced in the fragment processes.

In scenarios that the activity a in Participant 1 fails, the failure is suppressed in the succes-
sive activity, since the global DPE is turned on in the non-split process, and the fragment
processes inherit it along with the fragmentation. The joinCondition of <invoke> activity STa
will evaluate to false. Recall that <invoke> activity STa overrides the global DPE by setting
“suppressJoinFailure=false” for itself, which literally means that a bpel:joinFailure will be
thrown due to the value of joinCondition of activity STa evaluating to false. Because the fail-
ure was thrown the activity STa will not be performed. On the other hand, the <faultHandler>

activity fh at that moment is triggered by the fault, i.e. it contains a corresponding <catch>

construct. After the fault is caught, the <invoke> activity SFa is executed and sends the message
containing false to Participant 2. The <receive> activity REb receives the message and fires
the link l(REb, b, inVar) with value of the incoming message. The value of inVar therefore is
false. Consequently, joinCondition of activity b fails. This behavior is also analogous to the
original link.

Table 4.1 illustrates the evaluation of the transitionCondition of link l(a, b, q), and the
joinCondition of activity b, while Table 4.2 illustrates the evaluation of transitionCondition

of link l(a, STa, q), transitionCondition of link l(REb, b, inVar), joinCondition of activity STa,
and joinCondition of activity b. In both tables, which use whether activity a succeeds as
beginning condition, the evaluation result of each column is listed. In fact, the evaluation of

37

4 Control Link Fragmentation

the transition condition of the link depends on both the success of the activity a and the value
of the q, for the calculation in both tables we simply assume that q evaluates to true.

In both Table 4.1 and Table 4.2, if activity a succeeds, then joinCondition of activity b evaluates
to true, otherwise to false. In other words, in this concept, the operational semantic of the
original link l(a, b, q) is kept by exchanging message between Participant 1 and 2 (cf. Figure
4.2).

4.2 Fragmenting Control Link in BPEL

In the last section, the conceptual fragmenting control link is introduced. A simplified scenario
where a control link across processes is given, and the solution was that one re-produces the
control flow of the original link by creating the sending block and receiving block each in the
corresponding fragment process. In this section we focus on how one fragments the control
link in BPEL.

Consider a more general scenario, based on the previous chapter, where we get fragment
processes by splitting the main process with the help of partition specification. As shown in
Figure 3.6 the control links in the fragment processes are still not handled. The question is
how to apply the concept for fragmenting control link on those control links that are split, and
how to handle the links that are not split.

Besides the link, we will encounter an issue that relates to the variables referred in the sending
block. The variable in BPEL has to be initialized before it is used. It leads to the question of
how should the variables referred in sending block should get initialized before the sending
block sends the message. The following subsections will cover the questions here mentioned.

4.2.1 Algorithm for Control Link Fragmentation

Procedure SPLIT-CONTROL-LINK in Algorithm 4.1 splits the control links based on the fragment
processes (S) and their WSDL definitions (D) that are given as input parameters.

First we introduce several functions used in the procedure SPLIT-CONTROL-LINK. The function
basicActivities(proc) at line 3 is for getting all the basic activities of a process given, i.e. the
‘proc’, while the function sources(a) at line 4 gets all associated sources of the activity ‘a’.
And the function link(s) at line 5 returns the link associated to the source ‘s’. The function
definition(proc,D) at line 8 and analogous at line 9 looks up corresponding WSDL definition of
the process ‘proc’, in the set of WSDL definition ‘D’.

The procedure SPLIT-CONTROL-LINK goes through all the fragment processes (line 2) and
checks for each basic activity of the current fragment process (line 3) whether each of its
outgoing control links (line 4) cross over processes: (i) If the expression in line 7 evaluates to

38

4.2 Fragmenting Control Link in BPEL

Algorithm 4.1 Splitting Control Link
1: procedure SPLIT-CONTROL-LINK(S, D) // S: set of processes, D: set of definitions
2: for all proc ∈ S do
3: for all a ∈ basicActivities(proc) do
4: for all s ∈ sources(a) do
5: l← link(s)
6: proct ← GET-TARGET-FRAGMENT-PROCESS(l, S)
7: if proc 6= proct then // whether link l crosses over processes
8: dfn← definition(proc, D)
9: dfnt ← definition(proct, D)

10: CONSTRUCT-PREREQUISITE(dfn, dfnt)
11: CREATE-SENDING-BLOCK(proc, dfn, l)
12: CREATE-RECEIVING-BLOCK(proct, dfnt, l)
13: else
14: COMBINE-NONSPLIT-LINK(proc, l)
15: end if
16: end for
17: end for
18: end for
19: end procedure

true, i.e. the link does crosses over processes, then split the explicit control dependency by
creating sending- and receiving block (line 8-12) in the source- and target process. (ii) If the
expression in line 7 evaluates to false, which means the If-branch in line 13 will be run, then
combine the link l’s source and target together (line 14).

The GET-TARGET-FRAGMENT-PROCESS(l, S) at line 6 gets the fragment process targeted by the
link given. Note that behind the lines (5-7) is the idea of how one determines whether the link
crosses over processes.

We examine the lines (5-7) with the example in Figure 3.6. Assume that l in line 5 is currently
linkA2B and the proc is p1, then the result of the line 6 is that the value of proct is the target
fragment process of linkA2B, p2. Since p1 6= p2, the expression proc 6= proct in line 7 evaluates
to true. Now we know that the linkA2B crosses process boundaries. On the other hand, if we
take the linkB2C as l (line 5) and the proc = p2, after GET-TARGET-FRAGMENT-PROCESS(l, S)
at line 6 is executed, we get proct = p2. Given values of proc and proct the expression
proc 6= proct will evaluate to false, which means that the linkB2C does not cross processes.

In the CONSTRUCT-PREREQUISITE(dfn, dfnt) at line 10, the prerequisites, will be created
in the definition dfn and dfnt. As mentioned in Table 3.1, the underlying WSDL artifacts
(prerequisites) such as message and portType will be created there. That procedure will be intro-
duced in section 4.2.2–Constructing Prerequisite. The CONSTRUCT-PREREQUISITE(dfn, dfnt)

39

4 Control Link Fragmentation

1 <wsdl:message name="ControlLinkMessage">
2 <wsdl:part name="status" type="xsd:boolean"/>
3 <wsdl:part name="correlation" type="xsd:string"/>
4 </wsdl:message>

Listing 4.1: Control Link Message Specification

enables the CREATE-SENDING-BLOCK(proc, dfn, l) at line 11 and the CREATE-RECEIVING-
BLOCK(proct, dfnt, l) at line 12. The former procedure will be introduced in section 4.2.3–
Creating Sending Block and the latter in section 4.2.4–Creating Receiving Block.

In the If -branch at line 13, the expression proc 6= proct evaluates to false, which means that
the link l does not cross processes. The COMBINE-NONSPLIT-LINK(proc, l) at line 14 will
combine the link l with its other part in the process proc.

The procedure SPLIT-CONTROL-LINK terminates after each fragment process has been processed.
It iterates in the following sequence: (1) process (2) activity (3) source (4) link. Each iteration
consumes one outgoing link of an activity and the corresponding incoming link that associated
to another activity. As a result, when the procedure is ended, all the outgoing links and their
associated incoming links are processed.

4.2.2 Constructing Prerequisite

The procedure CONSTRUCT-PREREQUISITE(dfn, dfnt) in Algorithm 4.1 at line 10 creates the
prerequisite artifacts for the sending block and receiving block. The dfn is WSDL definition of
the fragment process that contains the source of the link l, and the dfnt is WSDL definition of
the fragment process that contains the target of the link l.

Note that the construction of prerequisites for sending block and receiving block agrees with the
Table 3.1–WSDL Artifacts Re-usability and Multiplicity.

The major steps of the procedure are as follows:

1. Create Control Link Message

2. Create PortType and Operation

3. Create PartnerLinkType and Role

We now examine these steps in a more concrete manner.

1. Create Control Link Message

As shown in the Listing 4.1, the control link message contains two parts: one part is
named “status” of type boolean, the other part is named “correlation” of type string. The
part “status” (true or false) represents the transition condition of the split control link,

40

4.2 Fragmenting Control Link in BPEL

and the part “correlation” is previously set in main process and should be copied from
main process for message routing in the scenarios of parallel process instances.

Only one control link message is necessary for the inter-communication between two
fragment processes. The message is to be generated in the WSDL definition of the
process to which one sends the message. Consider that before a control link l2 crossing
process boundaries, there was already another control link l1, which also crosses the
same fragment processes and was handled previously. In that scenario, the reusable
control link message should have been created in the WSDL definition, which is exactly
the same place we want to create the prerequisite message definition for splitting the
control link l2. So at the beginning it should be tested whether the message existed in
the WSDL definition dfnt. Should it not exist, then a new such control link message is
generated, otherwise, skip.

2. Create PortType and Operation

The PortType between two processes is reusable, thus, the existence of the PortType for
control flow from invoking process proc to invoked process proct is tested, before a new
one gets created in the WSDL definition of the invoked process, in our case defnt. The
test condition for existence in this thesis is based on some naming conventions that all
the PortTypes agree with.

In contrast to PortType, a new operation must be created with a unique name for each
control link, and be placed in the PortType that the operation is associated to.

As a result, the PortType is referred by attribute portType in the <invoke> activities and
the <receive> activities that are responsible for exchanging message from the invoking
process proc to the invoked process proct. And the attribute operation in <invoke> and
<receive> activities varies each time.

3. Create PartnerLinkType and Role

PartnerLinkType and Role are also reusable, analog to the PortType. One PartnerLinkType
with a Role is created to describe the Partner-Relationship between the invoking process
proc and the invoked process proct. The existence checking happens to the creation of
PartnerLinkType and Role too.

4.2.3 Creating Sending Block

The procedure CREATE-SENDING-BLOCK(proc, dfn, l) creates the constructs for sending mes-
sage, which contains the status of the control link l, in the process proc.

Before the details of the procedure are explained, we go in the issue of variable initialization
mentioned at the beginning of the ascendant section 4.2. Variables in the process proc are
of message type as defined in section 3.1. The attribute variable in out-bound activity of

41

4 Control Link Fragmentation

1 <variable name="NCName" messageType="ControlLinkMessage">+
2 from-spec?
3 </variable>

Listing 4.2: Syntax for Declaring Variable referred in Sending Block

1 (1)<from variable="BPELVariableName" part="NCName"?>
2 <query queryLanguage="anyURI"?>?
3 queryContent
4 </query>
5 </from>
6 (2)<from partnerLink="NCName" endpointReference="myRole|partnerRole" />
7 (3)<from variable="BPELVariableName" property="QName" />
8 (4)<from expressionLanguage="anyURI"?>expression</from>
9 (5)<from><literal>literal value</literal></from>

10 (6)<from/>

Listing 4.3: From-Spec Variants in BPEL [OAS07]

the sending block will refer to a pre-defined message of type ControlLinkMessage as shown
in Listing 4.1. Implicitly, the out-bound activity e.g. <invoke> in the sending block must be
equipped with a variable of type ControlLinkMessage, whose ‘status’ part is set to true or false,
before it sends the message.

Variable Initialization

There are three possible ways to initialize variable in BPEL process:

1. Variable initialization with <assign> activity

The conventional method to initialize a BPEL variable is to use <assign> activity. The idea
is to create a <assign> activity in front of each out-bound activity, and assign the true or
false value to the message referred by the out-bound activity. Regarding the concept
introduced (cf. Figure 4.2), we create two <assign> activities. One is for assigning true

to the variable referred by the out-bound activity, and the other for assigning false.

It is obvious that this method is straightforward and simple. The disadvantage is there
will be two <assign> more for each link. The generated artifact will look quite complex.

2. Variable initialization within the variable declaration

An alternative to initialize BPEL variable is to use a from-spec inside the variable decla-
ration. It is stated in the WS-BPEL 2.0 Specification that “a variable can optionally be
initialized by using an in-line from-spec” [OAS07, Section 8.1, Page 48].

42

4.2 Fragmenting Control Link in BPEL

We now do some analysis about the BPEL variable declaration and the from-spec, then
see how it can be used in our scenario.

The BPEL variables that are used in the sending block are of message type “Control-
LinkMessage” (cf. Listing 4.1). The BPEL compliant syntax for declaration is illustrated in
Listing 4.2. The from-spec, if given, works like a virtual-assign, which copies the value
specified by the from-spec to the variable.

In the BPEL specification there are 6 variants of from-spec shown in the Listing 4.3. Since
the variable we used is of message type and the endpoint assignment is also not relevant
(cf. BPEL subset definition in page 20), the <from>-variants that can copy value to the
sending block variable narrow down to variant (1) and (5).

If variant (1) is used to assign our variable, it means that we need another variable that
can be set in the attribute of the <from>. It must be of exact the same message type so
that it can be copied to the sending block variable directly. Because in this so called
virtual assign, the target is the whole sending block variable, which makes it not possible
to do the copy operations from different parts of the other variables to the corresponding
parts of the sending block variable. Since we do not have such a variable in the process
previously, now just variant (5) may work.

Variant (5) requires that one creates the whole XML structure as the desired message with
the information we want for the sending block and set it to the sub-element <literal> in
the <from>. In our scenario it is not trivial.

3. Variable initialization within the out-bound activity <invoke>

Another alternative to initialize BPEL variable is to use the <toParts> inside the <invoke>.
<toParts> is used to have data from WS-BPEL variables directly copied into an anonymous
WSDL message used by the <invoke>. The <toParts> contains one or multiple <toPart>,
each of the <toPart> matches to one part of the WSDL message i.e. “ControlLinkMessage”.
It is like an anonymous message of type “ControlLinkMessage”. The desired value for
each part of this message is given explicitly in the <toParts>, and instead of being labeled
with a name, it is directly used by the <invoke> activity as inputVariable. Note that if
the <toParts> presents in the <invoke>, the attribute inputVariable must not exist. The
co-existence of both the <toParts> and the attribute inputVariable in <invoke> is forbidden
[OAS07, Section 10.3.1, Page 88].

The target work-flow engine1 in this thesis does not support the advanced feature with virtual
assign via in-line from-spec, nor the <toParts> in <invoke>. Therefore, the second and third
choices are excluded. The first one is the only candidate, therefore it is chosen to initialize the
variables. After the variable initialization emerges into the concept introduced in Figure 4.2, a
representation of that concept with variable initialization presents in Figure 4.3.

1http://ode.apache.org/ Apache ODE

43

http://ode.apache.org/

4 Control Link Fragmentation

qa b

a

Non-Split Process Participant 1 Participant 2

q

b

true
inVar REbs

false No modification
to joinCondition

REb

suppressJoinFailure=false

STa

SFa

ATa

sqt

fh

AFa
sqf

Figure 4.3: Splitting Control Link Concept with Variable Initialization

Figure 4.3 shows the renewed concept for fragmenting control link. Comparing with the
concept in Figure 4.2, the difference is that an <assign> activity (ATa and AFa) is created
before each of the two <invoke> activities in the sending block. Since the <scope> ‘s’ can not
accommodate multiple activities, a <sequence> activity ‘sqt’ is introduced into the <scope> ‘s’.
Similarly, the <sequence> activity ‘sqf ’ is created in the <faultHandler> ‘fh’.

Procedure Details

The procedure CREATE-SENDING-BLOCK(proc, dfn, l) at line 11 in Algorithm 4.1 creates the
sending block shown in the renewed concept (cf. Participant 1 in Figure 4.3) in process proc.
The dfn is WSDL definition of proc and the l is the link which crosses processes. The procedure
contains the following main steps:

1. Create constructs to send message containing true

2. Create constructs to send message containing false

3. Add all constructs into process proc

4. Combine the source activity of the link l (cross processes) to sending block

5. Collecting Information for message link in BPEL4Chor artifact <topology> and <grounding>

Now we examine the steps in details:

1. Create constructs to send message containing true

As shown in Participant 1 in the Figure 4.3, a <invoke> activity (STa) , whose attribute
suppressJoinFailure is set to false, is created. A variable of message type ControlLinkMes-
sage is created and set into the attribute inputVariable of STa. A <assign> activity (ATa)

44

4.2 Fragmenting Control Link in BPEL

is created to initialize the inputVariable of STa, such that the variable’s status part
evaluates to true.

A <sequence> activity (sqt) is created to contain the ATa and STa, with the execute
sequence that sqt comes before STa. The sqt then is set as the child of a new <scope> (s).

2. Create constructs to send message containing false

A <invoke> activity (SFa) is created. Its attribute inputVariable is set by a new created
variable of message type ControlLinkMessage. Then a <assign> activity (AFa) is created.
It sets the status part of the inputVariable in the SFa as false.

A new <sequence> activity (sqf) is created. The AFa and SFa are added into sqf with the
execute sequence that AFa is before SFa. After that, a <faultHandler> (fh) is created.
Then sqf is set as child of the fh.

Add the fh into the scope s.

3. Add all constructs into process proc

After all the constructs are created add the <scope> s into top level <flow> activity in the
process proc.

4. Combine the source activity of the link l (cross processes) to sending block

We set the target activity of the link l as the <sequence> activity sqt in the <scope> activity
s.

5. Collecting Information for message link in BPEL4Chor artifact <topology> and <grounding>

For each split link, there is a new <messageLink> created in both the <topology> and
<grounding>. Note that only a part of the attributes in each of the new message links
are known in this procedure. The attributes such as ‘name’ and ‘sender’ are related to the
sending block, therefore are available. The rest of the information for the message links
will be filled in the procedure CREATE-RECEIVING-BLOCK.

4.2.4 Creating Receiving Block

The procedure CREATE-RECEIVING-BLOCK(proct, dfnt, l) at line 12 in Algorithm 4.1 creates
the receiving block shown in the renewed concept (cf. Participant 2 in Figure 4.3) in process
proct. The dfnt is WSDL definition of the process proct and the l is the link from the process
proc where the sending block is created. Recall that in proct exists one link lt that has the same
name as l. The procedure has the following steps:

45

4 Control Link Fragmentation

1. Create <receive> activity and add into process proct

create the <receive> activity (REb) and its inputVariable (inV ar). The inV ar is of
message type ControlLinkMessage. After the creation, add it into the top level <flow>
activity.

2. Combine the <receive> activity to the target of the link l (cross processes)

We lookup the corresponding link lt in the process proct, then put the source activity of
lt as the receive activity REb. The attribute transitionCondition in the link lt must be set
as the status part of the inV ar from REb, i.e. the transition condition of lt contains an
expression that accesses the part of status in “ControlLinkMessage”.

3. Add information to the message link (BPEL4Chor artifact) regarding the link l

We continue to update the message links created in the CREATE-SENDING-BLOCK. The
attributes e.g. ‘receiver’ and the ‘portType’ that relate to the receiving block can be set in
this procedure.

4.3 Summary

In this chapter, an algorithm (Algorithm 4.1) applying the concept for splitting control link
in [Kha08, Section 5.8] is introduced. In the algorithm, if the original control link crosses
partition boundaries, it is split by creating sending block in it source process, creating receiving
block in its target process, and exchanging message between the sending- to receiving block. If
the original link does not cross partition boundaries, then the source and target of the link are
reconnected. Additionally, the issue of variable initialization is discussed and addressed. Some
information for BPEL4Chor message links is also collected inside the algorithm.

46

5 Data Dependency Fragmentation

As depicted in Figure 5.1, data dependency fragmentation (step 6) will be executed after the
control link fragmentation.

Unlike the BPEL-D method, the data dependency fragmentation in this thesis splits the data
dependency in an implicit way. We analyze the data-flow of the main process (cf. Section 5.1)
first. Then against a (data) variable and its reader (activity), the analysis result is able to tell us
which writers the reader is dependent on. Based on that knowledge we create the constructs
(local resolver and receiving flow, cf. Section 5.4) in the fragment process that contains the
writers of the data and in the fragment process in which the reader of the data presents. The
local resolver is responsible for summarizing the data from the various writers and sending it
to the receiving flow per message (in the case of the writers and the reader being in different
fragment processes), while the receiving flow is responsible for collecting the data sent by the
local resolver, assembling that data in its previous order, and eventually rerouting the data to
the reader. The message, which is exchanged between the two sides, contains not only the data
but also the information of whether the writers succeed (true or false). A Writer Dependency
Graph (WDG) is created in order to re-generate the control dependency of the writers in the

Split Module

Partition
Specificati

on

BPEL
Process

PBDs,
WSDLs,

topology,
grounding

results

Designer

read

3.a

assign

3.b

BPEL file

WSDL
DefinitionWSDL file

Partition
file

read

2

read

1

Fragment
processes
, WSDLs

Fragment
processes,

WSDLs,
MessagLin

ks

fragment
control link

5

fragment
process

4
fragment

data
dependency

6

write

7

Figure 5.1: The Overview of the Split Module with Fragment Data Dependency (Step 6)
emphasized

47

5 Data Dependency Fragmentation

Writes◦
Activity Variable Query Possible

Writers
(poss◦)

Disabled
Writers
(dis◦)

Invalid
Writers
(inv◦)

May Be
Dead
(mbd◦)

a x .m {w1, w2} ∅ ∅ false
a x .n {w3, w4} ∅ ∅ false
a x .k {w3, w4} ∅ ∅ false
a x ε {w5} ∅ ∅ false

Table 5.1: Sample Data-Flow Analysis Results

receiving flow and therefore realize the ‘last writer wins’ policy. Then a Partitioned Writer
Dependency Graph (PWDG) based on the WDG is created to reduce the quantity of those
exchanged messages. The WDG and PWDG are explained in Section 5.2 and 5.3.

5.1 Data-Flow Analysis of BPEL Process

One input of the algorithm for fragmenting data dependency in this thesis is the data-flow
analysis of the main BPEL process. It serves the purpose of determining the data dependencies
between activities. Such a concept for data-flow analysis has been presented by Kopp et al.
[KKL08b, KKL07]. It has been extended by Breier [Bre08] and implemented by Gao [Gao10].

Assume that a variable x, which contains two parts, i.e. ‘m’ and ‘n’, is read by activity a in a
process. An example of the write state of variable x when activity a is reached is presented in
Table 5.1.

In Table 5.1, the query is stated as e.g. ‘.m’ which means the part ‘m’ in variable x is read. The
column of “Possible Writers” in that table provides the set of writers, which possibly write to
the variable element (interpreted by concatenating the variable and the query) as the activity
a is reached.

The white circle (◦) in the subscript position indicates the write state of the variable x before
the activity a is executed. The ‘poss◦(a, x.m)’ is the function that returns the possible writers of
‘x.m’ before the execution of the activity a. It is the only function we are interested in due to
the data dependencies. As shown in the table, ‘write◦’ is a tuple set, each of the tuples contains
a set of possible writers (poss◦), a set of disabled writers (dis◦), a set of invalid writers (inv◦),
and the boolean value for ‘May Be Dead (mbd◦)’. Regarding the possible writers in Table 5.1,
we also use the function ‘poss◦’ as in [KKL08b], which results in follows:

1. poss◦(a, x.m)=π1(writes◦(a, x.m))={w1, w2} for row 1

2. poss◦(a, x.n)=π1(writes◦(a, x.n))={w3, w4} for row 2

48

5.1 Data-Flow Analysis of BPEL Process

3. poss◦(a, x.k)=π1(writes◦(a, x.k))={w3, w4} for row 3

4. poss◦(a, x)=π1(writes◦(a, x))={w5} for row 4, in this case the symbol ε represents query
to the whole variable, therefore the poss◦ contains the writers that write to the whole
variable x, furthermore the writers that only write to part of the variable x do not belong
to that writer set.

Recall that πi(f) is used to project the i-th component of the tuple f. The first component of
the write◦ tuple is poss◦, therefore, π1(writes◦(a, x.m)) is equal to poss◦(a, x.m). The symbol
ε is used as an empty string and indicates the query on the whole variable, thus, when we
concatenate the variable x to ε, the outcome is still x.

To encode the data dependencies determined by the data-flow analysis, we use the function
Qs(a, x) as in [KKL08a] to describe a set of tuples. Each of those tuples consists of a query
set and a writer set, and both of the sets are based on a variable x that is read by activity a.
Given a tuple in Qs(a, x), the writers in the writer set write to variable x with the queries in
the associated query set. Let a tuple be ({.n, .k}, {w3, w4}) ∈ Qs(a, x), that means writer w3

and w4 specifically write to the part ‘.n’ and ‘.k’ of the variable x i.e. the writer set {w3, w4}
writes to variable x with query set {.n, .k}.

Let qs be a tuple in the Qs(a, x) for variable x read by activity a. Let (qs, ws) be a tuple in the
Qs(a, x) with the qs as a query set and ws as a writer set. qs contains the queries {q1, q2, . . . }
on variable x and ws contains the writers {w1, w2, . . . } that write to variable x using that
queries in qs. The function Qs(a, x) is defined as follows:

Qs(a, x) := { qs | qs = (qs, ws) ∧ qs = {q1, q2, . . . } ∧ ws = {w1, w2, . . . }} (5.1)

Qs(a, x) (equation (5.1)) is designed for the algorithms used in this thesis and therefore has
the properties as follows:

1. ∀qs ∈ Qs(a, x) : π1(qs) = qs = {q1, q2, . . . } 6= ∅ and π2(qs) = ws = {w1, w2, . . . } 6= ∅.

2. ∀qsi , qsj ∈ Qs(a, x), i, j ∈ N : qsi 6= qsj ⇒ π1(qsi) 6= π1(qsj) ∧ π2(qsi) 6= π2(qsj), i.e.
each of the tuples in Qs(a, x) has a different query set and a different writer set. If either
the query sets or the writer sets were equal, the tuples would have been merged. Assume
that ({.m}, {w3, w4}) and ({.k}, {w3, w4}) are two tuples in Qs(a, x), in this case, they
must be merged into one tuple by merging the query sets, that is ({.m, .k}, {w3, w4}).

Now we investigate the generation of Qs(a, x) from the data-flow analysis of the main process.
For an instance, based on the analysis results on the variable x and activity a in Table 5.1, we
can create the Qs(a, x) as follows:

Qs(a, x) = {({.m}, {w1, w2})︸ ︷︷ ︸
qs1

, ({.n, .k}, {w3, w4})︸ ︷︷ ︸
qs2

, ({ε}, {w5})︸ ︷︷ ︸
qs3

} (5.2)

49

5 Data Dependency Fragmentation

Note that in this example the qs2 is merged from the row 2 and 3 in the Table 5.1, due to the
same writer set. In other words, the results of the data-flow analysis must be parsed properly
into Qs(a, x), so that they can meet the expectation from the algorithms in this thesis.

An observation over the Table 5.1 implies that the results of the data-flow analysis for variable
x read by activity a are tuples, each of which is a pair of an individual query and a writer set.
The difference from the tuple Qs(a, x) is that the first part of the tuple is a query instead of a
query set in Qs(a, x). Based on that we merge the tuples from that results whose writer set is
the same by forming a query set out of the single queries. At the end, we get the Qs(a, x). The
calculation for Qs(a, x) based on Table 5.1 is given as follows:

(.m, {w1, w2}),
(.n, {w3, w4}),
(.k, {w3, w4}),
(ε, {w5})

⇒ Qs(a, x) =


({.m}, {w1, w2}),
({.n, .k}, {w3, w4}),
({ε}, {w5})


Function PARSE-RESULT(res, a, x) is created to parse the data-flow analysis against the variable x
and the activity a that reads it, then the function returns the Qs(a, x). The input ‘res’ of the
function is the result of data-flow analysis on a BPEL process.

The main steps of the procedure are as follows:

1. Retrieve the tuples for variable x and activity a

2. Create a single query to writer set map

3. Merge single queries that have equal writer set

4. Return Qs(a, x)

The steps are detailed as follows:

1. Retrieve the tuples for variable x and activity a

From the result res, we get all the queries, that are pointed to variable x and read by
activity a, and their corresponding writers set, e.g. for query ‘.m’ in Table 5.1 get the
poss◦(a, ‘x.m’) = {w1, w2}.

2. Create a single query to writer set map

Based on the tuples from last steps, we create a map m with the single query as key and
its associated writers set as value, e.g. m(.m) = {w1, w2}.

3. Merge single queries that have equal writer set

Create a new tuple set for Qs(a, x). Check every two tuples of m whether their writers set
are equal, if yes then merge them as a new tuple for Qs(a, x), e.g. the m(.n)={w3, w4},

50

5.2 Writer Dependency Graph (WDG)

and m(.k)={w3, w4}, so they get merged as qs=({.n, .k}, {w3, w4}) and the qs is inserted
into Qs(a, x). The rest of the tuples in the map m make it self a tuple for Qs(a, x).

4. Return Qs(a, x)

The created Qs(a, x) is returned.

5.2 Writer Dependency Graph (WDG)

Consider a data-flow analysis of the main process against variable x for activity a has been
done. The outcome is Qs(a, x). By projecting the second part of the tuples qs ∈ Qs(a, x) and
by adding them up, we get all the writers that activity a is dependent on. In order to describe
the control dependencies between the writers, a Writer Dependency Graph (WDG), in which
the nodes represent the writer activities and the edges between them represent the control
dependencies, is needed.

First of all, we introduce a function Ad(a, x) that returns all the writers that activity a depends
on due to reading variable x. The function Ad(a, x) is defined as the union of the writer sets
that get projected from every tuple qs in Qs(a, x) [KKL08a]:

Ad(a, x) :=
⋃

qs∈Qs(a,x)

π2(qs) (5.3)

We compute the Ad(a, x) with the example equation (5.2) in last section, the result is as
follows:

Ad(a, x) = π2(qs1) ∪ π2(qs2) ∪ π3(qs3)
= {w1, w2} ∪ {w3, w4} ∪ {w5}
= {w1, w2, w3, w4, w5}

5.2.1 Definition of WDG

Let Vd be the set of nodes, and Ed be the set of edges. Let the tuple (vs, vt) denote an edge in a
WDG, vs be source of the edge, and vt be target of the edge. The Writer Dependency Graph
(WDG) for the activity a and the variable x is a graph with the nodes Vd and the edges Ed, and
is formally defined as follows [KKL08a]:

WDGa,x := (Vd, Ed) (5.4)

where Vd := Ad(a, x) and Ed ⊂ {Vd×Vd}. The nodes of the WDG are BPEL activities (Ad(a, x))
and each of the edges consists of a source node (vs) and a target node (vt).

51

5 Data Dependency Fragmentation

b

c d

e

a

b

c d

e

Figure 5.2: Construction of WDG, left: Ad(a, x) = {b, c, d, e}, right: WDGa,x

Since the BPEL process graph is acyclic [OAS07], a WDG is a directed acyclic graph, therefore
has the constraints as follows:

1. The edges are directed.

2. The source and the target of the edge are two different individual writers of x in the
BPEL process, i.e. ∀(vs, vt) ∈ Ed : vs 6= vt.

3. The source activity (vs) and the target activity (vt) in an edge are not necessarily in the
main process directly connected. As long as there is a path in the BPEL process from
vs to vt and between them there are no other activities that are WDG nodes too. In
other words, let p = vs, u1, u2, . . . , vt be one path in the main process from vs to vt, then
(vs, vt) ∈ Ed ⇔ ui /∈ Vd.

4. The graph is directed and acyclic, i.e. there is no such path in the graph in which the
start node and the end node is the same one.

5. WDG is independent of the partition specification.

An illustration for generation of the edges is given in Figure 5.2. The process is given on the
left side, and the activities, on which the activity a depends due to reading variable x, are
defined with Ad(a, x) = {b, c, d, e}, which wrote to the variable x before activity a. Additionally,
the blank nodes denote the intermediate activities that do not write to variable x. On the right
side is the WDG derived from left side. In that WDG one can find that the edge (c, e) and (d, e)

52

5.2 Writer Dependency Graph (WDG)

are created because there is a path between them in the process from c (and d) to e, and no
activity that belongs to other WDG nodes is between them. The WDG for Figure 5.2 can be
defined as follows:

WDGa,x = ({b, c, d, e}︸ ︷︷ ︸
Vd

, {(b, c), (b, d), (c, e), (d, e)}︸ ︷︷ ︸
Ed

)

5.2.2 Construction of WDG

Algorithm 5.1 Construct WDG
1: procedure CREATE-WDG(Ad(a, x))
2: Vd ← Ad(a, x)

3: Ed ← ∅
4: for all v1, v2 ∈ Vd ∧ v1 6= v2 do
5: if |Paths(v1, v2)| > 0 ∧ ∃p ∈ Paths(v1, v2) : p ∩ Vd = {v1, v2} then
6: Ed ← Ed ∪ {(v1, v2)}
7: end if
8: end for
9: return (Vd, Ed)

10: end procedure

The Algorithm 5.1 presents the approach to construct a Writer Dependency Graph and requires
the Ad(a, x) and the underlying original process. The original process is implicitly used in
this algorithm, because it is already given in the input of the splitting procedure (cf. Step 6,
Figure 5.1), then we assume that it is also accessible from here. Given the activities Ad(a, x)

(line 1) as input parameter, in order to construct the WDG we take all the activities in Ad(a, x)

as nodes (line 2). Then we create an empty edge set Ed (line 3) to hold the edges that represent
the control dependencies between the writers. To fill the edge set Ed, we test all pairs of the
(vs, vt) in the Vd whether they form an edge, if they do, create a new edge with them in the
edge set (line 4-8). We now examine in particular the condition of being an edge. The function
paths(vs, vt) [Kha08, Section 5.10.4] that finds all ordered paths from vs to vt, is used to test
whether there is such an ordered path, in which there is no activity that belongs to the other
WDG nodes i.e. Vd \ {vs, vt} from vs to vt in the process graph. If the expression in line 5
evaluates to true, then there is an edge combining vs and vt. Consider an example path p from
vs to vt is vs, u1, u2, . . . , vt which make the expression in line 5 evaluate to true, that means
p ∩ Vd = {vs, vt} and furthermore ui /∈ Vd.

The path searching in the underlying BPEL activities presents a challenge in this algorithm. The
issue whether there is an edge between v1 and v2 can be resolved by (1) searching ‘all paths
between two nodes’ in the process graph, and then (2) testing whether any of the intermediate
nodes in a path is another WDG node. All this graph calculation must be run while respecting

53

5 Data Dependency Fragmentation

the BPEL process graph mechanism. In the BPEL world restricted by the previously defined
subset, to navigate from a node b to its only successor c means that (i) one gets the b’s ‘source’,
then (ii) gets the outgoing link from this ‘source’, next, (iii) gets the ‘target’ of the link, finally,
(iv) gets the ‘activity’ c that is associated to the ‘target’. Note that when the node ‘b’ has multiple
successors then the iteration must go in each of the successors.

After the factor in BPEL navigation is considered, the searching paths in the process graph
relates to Breadth-First Search. In this case, we refer the interested readers to [CSRL01, Chapter
22].

Recall that the purpose of creating WDG is to re-create the control dependencies of the writers
of the variable x from which activity a reads when it is reached. The writers normally spread
across different participants. If these writers and the reader are not in the same participant, the
constructs for collecting written results will be created in the process where the writers locate,
and the information including the written data and whether the writers succeeded will be sent
from that constructs to the reader’s process, where the information will be assembled together
before it is passed on to the reader. All these are enabled by messaging. To avoid too many
messages, some of the results from the writers in the same participant can be merged into one
message. The Section 5.4 will handle the creating constructs and sending messages. The next
section addresses how to form the writer sets whose information can be merged together.

5.3 Partitioned Writer Dependency Graph (PWDG)

5.3.1 Definition of PWDG

The partitioned writer dependency graph (PWDG) characterizes the control dependencies among
the subsets of writers, which are in a WDG and write to the variable x before the reader activity
a is reached, based on a partition specification provided [KKL08a].

Consider that we have got the Writer Dependency Graph (WDGa,x) against the activity a and
the variable x, and the Partition Specification P . Recall that

WDGa,x = (Vd, Ed)

is as in equation (5.4). The partition specification P is given as in equation (3.1):

P = {p1, p2, . . . , pk, . . . } = {(s1,M1)︸ ︷︷ ︸
p1

, (s2,M2)︸ ︷︷ ︸
p2

, . . . , (sk,Mk)︸ ︷︷ ︸
pk

, . . . }

where for ∀k ∈ N, pk is a participant, and sk is the name of participant pk i.e. sk=π1(pk), and
Mk is the set of activities that are assigned in the participant pk i.e. Mk=π2(pk).

Khalaf [KKL08a] provided an informal description of the PWDG, which is formalized in the
following. Assume that the WDGa,x and the partition P are given, let Mk,l be a ‘region’ (or

54

5.3 Partitioned Writer Dependency Graph (PWDG)

subset) of the WDG nodes in the participant pk, then the PWDG against the activity a, the
variable x, and the partition specification P is formally defined as follows:

PWDGa,x,P := (VP , EP) (5.5)

with the node set VP := {ni | ni = (sk,Mk,l)} where
⋃

l∈NMk,l = Vd ∩Mk and ni = (sk,Mk,l)

implies pk = (sk,Mk) ∈ P , and the edge set EP ⊂ {VP × VP }.

Note that the difference between the Mk and the Mk,l is subtle. The former is the set of
activities, that are assigned in the participant pk, and the latter is a ‘region’ or a subgraph of the
WDGa,x, which also belongs to participant pk. From the graph aspect, the subgraph Mk,l is a
part of the intersection of the Vd of WDGa,x and the Mk in participant pk, i.e. Mk,l ⊆ Vd ∩Mk.
The subgraph Mk,l and the participant name sk together form a PWDG node ni=(sk,Mk,l) in
the participant pk, which also implies that a participant holds one or multiple PWDG nodes. If
all the subgraphs that belong to the same participant unite, they become the intersection of
the Vd and the Mk, i.e.

⋃
l∈NMk,l = Vd ∩Mk.

Each edge in PWDG represents a control dependency between the source- and target PWDG
node. The necessary condition to create one edge between two nodes is that there is at least
one link whose source and target is in either of the nodes. For instance, let n1=(x, {B}) and
n2=(z, {D}) be two PWDG nodes, and there is a link l(B, D, true). Consequently, there is a
PWDG edge (n1, n2).

Until now we have no means to describe the group of WDG nodes that present in a particular
participant. Let P be a partition specification, p ∈ P with the name s and the set of activities
M that belong in p, and WDGa,x = (Vd, Ed) the Writer Dependency Graph against variable x
for activity a. We introduce a function A(a, x, p) to represent the group of WDG nodes that
are in the participant p. It is defined as the intersection of the node set of the WDG and the
activities in the participant:

Ad(a, x, p) :=Ad(a, x) ∩ π2(p)
=Vd ∩ π2(p)

(5.6)

where p = {s,M} ∈ P = {(si,Mi) | i ∈ N} and π2(p) =M .

Figure 5.3 derives from Figure 5.2. We put the partition P3 additionally on the process
at the left side, so one can see that in one participant there may simultaneously be WDG
nodes and non-WDG nodes. Nonetheless, our focus is the WDG, so, we use Ad(a, x, p) to
describe the group of WDG nodes that are in a certain participant p. As in Figure 5.3, we get
Ad(a, x, p1) = {b, c}, Ad(a, x, p2) = {d, e}, and Ad(a, x, p3) = ∅. Note that in participant p3
there is no WDG node i.e. no activity in p3 writes to variable x, consequently, Ad(a, x, p3) is
empty set.

In this section, the characteristics of the PWDG, particularly about the PWDG nodes and edges,
are described. Nonetheless, how we create a PWDG node is not mentioned, and nor which

55

5 Data Dependency Fragmentation

b

c d

e

a

b

c d

e

p1

p2

p3

p1

p2

Figure 5.3: WDG with Partition P3={p1, p2, p3}, left: Ad(a, x) = {b, c, d, e}, right: WDGa,x

presents in two participants

criterion we choose a WDG node into a PWDG node with. The following section will cover this
topic and introduce the algorithm to create a PWDG base on a given WDG.

5.3.2 Construction of PWDG

The construction of a PWDG based on a given WDG can be divided into two major parts:
(1) creating PWDG nodes (2) creating PWDG edges .

For creating PWDG nodes, the main steps are as follows [Kha08, Section 5.10.5]:

1. Insert one temporary root node for each participant where there are WDG nodes and
connect it to the nodes which present in that participant and have no incoming edge
from that same participant.

2. Create the PWDG nodes by forming the largest weakly connected components in the
WDG subgraph cut out via the participant, which do not violate the path constraint.

a) Recall that a weakly connected component is maximal subgraph of a directed graph,
where for any two of the nodes there is a path between them regardless of the
direction.

56

5.3 Partitioned Writer Dependency Graph (PWDG)

b) Path constraint means that between any two nodes of a (WDG) weakly connected
component in one participant, there is no such path where there are (WDG) nodes
from other participants, i.e. no path may cross participants.

c) The purpose of the path constraint is to avoid the cyclic dependencies. For instance,
let WDG nodes u and v be in one participant p1 and there is a path p=u, k1, k2, . . . , v,
assuming that WDG node ki ∈ {k1, k2, . . .} presents in participant p2. It means if we
put u and v in one WDG component in p1, it would lead to a dependency from this
WDG component (containing u and v) in p1 to that WDG component (containing
ki) in p2, due to the path u, k1, k2, . . . , ki, and a dependency from that component
in p2 to this component p1 due to the path ki, ki+1, ki+2, . . . , v.

3. Remove the temporary roots and the associated edges from the PWDG

For creating edges, it has been mentioned that a PWDG edge is created when at least one link
between the WDG nodes in the source and target PWDG node exists.

Procedure CREATE-PWDG

Algorithm 5.2 Construction of PWDG
1: procedure CREATE-PWDG(WDGa,x, P) // P : partition specification
2: R ← INSERT-TEMP-ROOT-NODE(WDGa,x, P) // R: array of temp root nodes
3: VP ← FORM-PWDG-NODES(WDGa,x, P , R)
4: REMOVE-TEMP-ROOT-NODE(VP , R)
5: EP ← CREATE-PWDG-EDGE(WDGa,x, VP)
6: PWDGa,x,P ← (VP , EP)

7: return PWDGa,x,P

8: end procedure

The procedure CREATE-PWDG in Algorithm 5.2 creates a PWDG using a given WDGa,x and
partition specification P . The steps of the algorithm are identical to what we discussed for
creating PWDG nodes and edges. They are detailed as follows:

1. The function INSERT-TEMP-ROOT-NODE in line 2 takes a WDGa,x and partition P as input,
then creates a temporary node as root for each participant where WDG nodes present
and connect it to the WDG nodes that have no incoming edges from the very participant
by creating new edges between them. As output the function returns a data structure
R, which is an array of temporary root nodes and the array is indexed using participant.
It works like a key-value map, i.e. R[p1] = r1 means that for participant p1 a temporary
root node r1 is created. In case of the participant p1 containing no WDG node, there is
no temporary root node inserted in this participant, then R[p1]=NIL, where the value
of NIL is null.

57

5 Data Dependency Fragmentation

A (temp) root node is inserted in every participant, because at the beginning of forming
largest weakly connected components we need a root to start with, and not every
participant have such one. It will be removed again after all is done.

2. In line 3, the PWDG nodes are created by function FORM-PWDG-NODES as shown in
Algorithm 5.3, which takes the WDGa,x, partition specification P , and the R as input,
and returns the set of newly created PWDG nodes i.e. VP .

3. After the PWDG nodes are formed, the temporary roots are to be removed. It is done by
function REMOVE-TEMP-ROOT-NODE in line 4, which retrieves the root nodes from R and
delete them from VP .

4. Creating the edges happens in function CREATE-PWDG-EDGE (line 5). The function’s
input includes the Writer Dependency Graph for activity a and variable x (WDGa,x) and
the nodes in PWDGa,x,P (VP). What it does is to search in the PWDG nodes VP , once
any link exists between the WDG nodes that present in two PWDG nodes is found, a
PWDG edge is generated between that two PWDG nodes.

5. Finally, the PWDG is instantiated in line 6 and returned in line 7.

In line 2 presents the array of (temp) root nodes, which is likely to raise the question why
we need to explicitly store the information about which root node has been created in which
participant. This array is needed for two reasons: (i) the partition specification P does not
know about these root nodes, since they are inserted in WDG afterward, the (temp) root nodes
will be excluded in Ad(a, x, pi) due to the intersection Ad(a, x, pi) = Ad(a, x) ∩ π2(pi), where
Ad(a, x) is the set of all writers in WDGa,x, therefore, we can not get the root node associated
to participant pi using Ad(a, x, pi) (cf. line 8 and 9 in Algorithm 5.3). Furthermore, (ii) both
the WDG and PWDG are defined as graph, and not designed to facilitate the find-root operation
easily in a ‘subgraph’ of them as in any other ‘tree’ data structure. As a trade-off, we create a
array data structure (R) to save the information about which root node is in which participant
as the temporary root nodes are being created.

Strategy of Forming PWDG Nodes

The Algorithm 5.3 and 5.4 originate in KOPP’s [Kop11a]. They are combined together to form
the PWDG nodes. In these two algorithms the PWDG nodes are formed by applying the Greedy
Strategy [CSRL01, Chapter 16]. They work top-down choosing a WDG node to put into the
weakly connected component (PWDG node) as long as no path constraint is violated.

The pattern is that we navigate from the (temp) root node to nodes that reach the border of
the partition, and we always make a choice first, whether the path between the parent and
the current child violates constraint, before we put the current child node in the component
(PWDG node). During the navigation, we choose the WDG nodes from those children that are
compatible with those already chosen i.e. they are connected and there is no path constraint

58

5.3 Partitioned Writer Dependency Graph (PWDG)

violation, into the weakly connected component. If the path constraint is broken, and the WDG
node that is currently reached still presents in the same partition, then we take that WDG node
as start point and begin to form a new weakly connected component (PWDG node) again;
otherwise it terminates.

Function FORM-PWDG-NODES

Algorithm 5.3 Creation of PWDG Nodes
1: function FORM-PWDG-NODES(WDGa,x, P , R) // P : partition, R: temp root array
2: toCheck ← ∅
3: q ← []

4: n ← NIL

5: VP ← ∅
6: Vd ← π1(WDGa,x)

7: for all pi ∈ P do
8: toCheck ← Ad(a, x, pi)

9: q ← q ∪ {R[pi]} // Begin with (temp) root
10: while |q| > 0 do
11: top ← dequeue(q)

12: n ← (ε, ∅) // new PWDG node
13: π1(n) ← π1(pi)

14: π2(n) ← π2(n) ∪ {top}
15: VP ← VP ∪ {n}
16: for all c ∈ {children(top)} do
17: ADD-TO-PWDG-NODE(top, c) // Recursively, respecting Path Constraint
18: end for
19: end while
20: end for
21: return VP
22: end function

Function FORM-PWDG-NODES in Algorithm 5.3 presents the main function to form the PWDG
nodes. Its input consists of the WDGa,x, the partition specification P , and the array of
temporary root nodes R.

Line 2 to 6 define the prerequisite variables. A set toCheck (line 2) is defined to hold the WDG
nodes that present in a participant. A queue q (line 3) is used to save the start point (line 11)
of each PWDG node. The variable n (line 4) is for new PWDG node, while the VP is the set of
PWDG nodes and the Vd set of WDG nodes.

59

5 Data Dependency Fragmentation

For each participant pi, PWDG nodes are created, filled, and stored into the set VP (line 8-18).
As preparation for forming PWDG nodes, the WDG nodes inside the current participant pi
(cf. equation (5.6)) are assigned to toCheck (line 8), and with the temporary root node of
those WDG nodes, the queue q is initialized (line 9). As long as the queue q is not empty (line
10), we iterate once for forming each new PWDG node. Using the head element of queue
q as first WDG node top (line 11) that is filled in the new PWDG node n (line 12-15), we
navigate recursively down in the children of the WDG node top (line 16), and add recursively
the children satisfying the path constraint into the PWDG node n (line 17). As shown in
Algorithm 5.4, if there is any path from the parent WDG node to the current one that crosses
other participants, then the current WDG node will be appended to the queue q (line 9 in
Algorithm 5.4), and latter be handled as start point for the next new PWDG node (line 11). As
result, the VP is returned in line 21.

A special case of the input parameter R is that in certain participant e.g. pi there is no presence
of any WDG node, then R[pi] evaluates to NIL, therefore the queue q in line 9 is empty, it
leads to |q| > 0 in line 10 evaluating to false, consequently, the iteration for the participant pi
is simply skipped.

One conjoint observation of Algorithm 5.3 and 5.4 is that the WDG nodes in toCheck are
removed one by one and added into corresponding PWDG node. The element of queue q
represents the start point of one PWDG node, each of the elements in q means one iteration of
the loop, where a PWDG node is created and filled.

Additionally, the function children(c) (line 16) find the successors of c in the WDG given (not
in BPEL process). The function dequeue(q) (line 11) removes and returns the head element of
the queue q.

Function ADD-TO-PWDG-NODE

Function ADD-TO-PWDG-NODE in Algorithm 5.4 recursively handles the children of current
WDG node, which is the function’s second parameter. And the first parameter of the function is
the parent of the current node.

Since function ADD-TO-PWDG-NODE recurses in the scope of the Algorithm 5.3, we assume
that the global variables in that algorithm are visible in this function, so that we do not need to
pass them into the function ADD-TO-PWDG-NODE using too many parameters. The global
variables in the scope of Algorithm 5.3 include n, toCheck, and q.

For termination of the function ADD-TO-PWDG-NODE we test whether the node is already
placed in another PWDG node or whether the participant that holds it is different from the
current one. In either case, the function is to be ended (line 2-7).

If the node c has made it to the line 8, it proves that it does still belong to the nodes that
present in the current participant. We test whether there is such a path from the parent p to c

60

5.3 Partitioned Writer Dependency Graph (PWDG)

Algorithm 5.4 Add to PWDG Node with Satisfaction of Path Constraint
1: function ADD-TO-PWDG-NODE(p, c) // p : Parent WDG node, c : child of p
2: if c /∈ toCheck then // Node already in another PWDG node?
3: return
4: end if
5: if participant(c) 6= pi then // Same Participant?
6: return
7: end if
8: if PATH-VIA-OTHER-PARTICIPANT(p, c) then
9: append(c, q)

10: return
11: end if
12: π2(n) ← π2(n) ∪ {c} // Add c to PWDG node n
13: toCheck ← toCheck \ {c} // Remove c from toCheck

14: for all s ∈ children(c) do
15: ADD-TO-PWDG-NODE(c, s)
16: end for
17: end function

that crosses over other participants (line 8). If so, i.e. PATH-VIA-OTHER-PARTICIPANT returns
true, the node is appended in the queue q, and the function is ended returning to the superior
stack (line 9-10). When no path constraint is violated, i.e. PATH-VIA-OTHER-PARTICIPANT

returns false, then the node c is added in to the PWDG node n that is being formed (line 12).
Subsequently, it is removed from the set toCheck (13).

After the current node has been handled, we process its children recursively by calling the
function itself again (line 14-16).

Note that the function participant(c) (line 5) returns the participant of the node given. And
the function append(c, q) inserts the node c in the tail of the queue q. The function PATH-VIA-
OTHER-PARTICIPANT(p, c) is resolved in two steps: (i) find all paths between the parent node
p and child node c in the underlying WDG, (ii) test whether the path crosses participants. If
any such path is found, the return value is true. In the end, if no such path is found, then the
returned value is false. The former point is similar to the “path searching” problem (cf. page
53) in WDG construction, which can normally be resolved by a Breadth-Firth Search with some
tweaks. The difference is that the “path searching” in WDG is based on the BPEL process, and
the “path searching” in PWDG is based on WDG, i.e. its graph calculation relies on WDG.

A PWDG is dependent on a WDG, therefore its construction relies on the graph calculation of
the given WDG. As a matter of fact, if we regard the WDG as a abstract layer on top of the BPEL
process, which consists of the writers as nodes and their control dependencies as edges, then a
PWDG upon this WDG can be regarded as one abstract layer higher, where a PWDG node is

61

5 Data Dependency Fragmentation

an aggregation of one or multiple WDG nodes and an PWDG edge represents the connections
between the WDG nodes in the source- and target PWDG node. When we project a PWDG
node to the underlying main BPEL process, we get the writers in the BPEL process, whose
writing results are what we want to merge, in order to reduce the messages number.

Demonstration of PWDG Construction

Figure 5.4 demonstrates the steps of forming the largest weakly connected components in
the WDG subgraph, which agree to the path constraint i.e. no path between any pair of the
parent-child nodes in the weakly connected component crosses over participants.

To illustrate the construction of PWDG, we examine the Figure 5.4 with the steps in the
algorithms.

In box 1, The WDGa,x and partition P = {p1, p2, p3} are given, with the properties as
follows:

Vd = π1(WDGa,x) = {R,S, T, U, V,W,X, Y }
Ad(a, x, p1) = (R,S,X, Y)

Ad(a, x, p2) = (T,W)

Ad(a, x, p3) = (U, V)

After the procedure CREATE-PWDG in Algorithm 5.2 begins, it inserts a temporary root node
in each participant (line 2), as result, we see three nodes more in box 2 i.e. r1, r2, and r3.
Additionally, we get the R with R[p1] = r1, R[p2] = r2, and R[p3] = r3.

Then, it enters the function FORM-PWDG-NODES in Algorithm 5.3. From box 3 to 7, the
iteration upon the participant p1 between line 7 to 20 in function FORM-PWDG-NODES is
illustrated. In the iteration, the set ‘toCheck’, as well as the queue ‘q’, is maintained. The
toCheck is assigned with WDG nodes in the participant p1 as initial value, i.e. toCheck =

{R,S,X, Y }, and the q with r1, i.e. q = [r1].

We examine the box 3 to 7 as follows:

Box 3 The root node r1 is dequeued from q and inserted into the newly created PWDG node
n1. Next, for each child of r1, we recursively choose the child to add into the PWDG node
n1 if no path constraint is violated and the one still belongs in participant p1 (line 16 to
18 in function FORM-PWDG-NODES).

Box 4 R is removed from toCheck and added into n1 (line 12 in function ADD-TO-PWDG-
NODE), since there is no such path from r1 to R, that crosses participants. The recursion
goes further in R’s children, but stops at T while it is already outside of the participant
p1.

62

5.3 Partitioned Writer Dependency Graph (PWDG)

U V

T W

R S X Y

P3

P2

P1

U V

T W

R S X Y

P3

P2

P1

r3

r2

r1

U V

T W

R S X Y

P3

P2

P1

r3

r2

r1

U V

T W

R S X Y

P3

P2

P1

r3

r2

r1

P3

P2

P1

U V

T W

R S X Y

P3

P2

r3

r2

r1

P1

U V

T W

R S X Y

P3

P2

P1

r3

r2

r1

1 2 3

4 5 6

7 8 9

10

n1 n1

n1 n1

n2 n2

n3

n4

n5

n1 n2

n3

n4 n5
Participant: P1, P2, P3
Activity in WDG: U, V, T, W, R, S, X, Y
Temporary Root: r1, r2, r3

PWDG Node: n1, n2, n3, n4, n5

U V

T W

R S X Y

P3

P2

P1

r3

r2

r1

U V

T W

R S X Y

P3

P2

P1

r3

r2

r1n1

U V

T W

R S X Y

P3

P2

P1

n1 n2

n4 n5

n3

n1

Figure 5.4: Construction of a PWDG (10) from a WDG (1) derives from [Kha08, Fig:41]

63

5 Data Dependency Fragmentation

Box 5 The same routine iterates in the direction of S. As shown in box 5, S is also removed
from toCheck and added into n1, after that the recursion breaks up at T . At the time,
toCheck still contains X and Y .

Box 6 As the procedure goes on, the X is removed from toCheck. However, unlike R and S,
X is not added into n1 due to the path r1, S, T,W,X, where T and W present in other
participant p2. Instead, X is added into q (now q = [X]) and subsequently the function
ADD-TO-PWDG-NODE executes the line 10 and returns to FORM-PWDG-NODES at line
16. Nevertheless, at this moment, all of the children of r1 have been investigated, then
the currently running function jumps back to line 10 in function FORM-PWDG-NODES,
where the expression |q| > 0 is evaluated. As of this moment |q| > 0 evaluates to true

because q = [X], then it runs further. The head element of q is dequeued, in this case the
X, and is added into a new PWDG node n2, whose name is the same as p1’s.

Box 7 The recursion goes out of X to Y , and leads to the Y being removed from toCheck and
added into PWDG node n2. Then recursion stops, since there is no children any more,
i.e. the recursion for forming the PWDG node n2 is finished. Finally, it returns to the
line 10 in function FORM-PWDG-NODES again, this time |q| > 0 evaluates to false (now,
toCheck = ∅ and q = []), then the iteration for the whole participant p1 is finished.

In box 8, the PWDG nodes n3, n4, and n5 are also created in other participants using the same
principle. Then the function FORM-PWDG-NODES ends up with returning the VP back to the
line 3 in procedure CREATE-PWDG.

After line 4 of procedure CREATE-PWDG is ended, the (temp) root nodes are removed from
the PWDG nodes, as in box 9.

Finally, the edges will be created in line 5 of procedure CREATE-PWDG, as in box 10.

5.4 Local Resolver and Receiving Flow

In the construction of local resolver and receiving flow, an expression is needed to describe
which query set is written by which writer set inside a PWDG node. Recall that Qs(a, x) in
equation (5.1) denotes the tuples, each of which contains the query set and the writer set
inside of the main process. Now, let n be a PWDG node in a PWDG, and let Qsp(n, a, x) denote
the tuples out of Qs(a, x) whose writer sets contain only such writers that appear in the PWDG
node n. Similarly, each tuple in Qs(n, a, x) contains a query set qs and a writer set wsn, whose
subscript n denotes a PWDG node. It is formally defined as follows [KKL08a]:

Qsp(n, a, x) = {(qs, wsn)} (5.7)

where qs = {q1, q2, . . .} and wsn = {w|w ∈ π2(qs) ∩ π2(n) ∧ ∀qs ∈ Qs(a, x)}.

64

5.4 Local Resolver and Receiving Flow

1 <!-- Sample definition for message with single status part-->
2 <message name="Y2ZMessage">
3 <part name="status" type="boolean"/>
4 <part name="data" type="any"/>
5 </message>

Listing 5.1: Sample Message Snippet for Sending Variable with Single Query-Set

1 <!-- Sample definition for message with multiple status parts -->
2 <message name="Y2ZMessage">
3 <part name="statusa" type="boolean"/>
4 <part name="statusb" type="boolean"/>
5 <part name="data" type="any"/>
6 </message>

Listing 5.2: Sample Message Snippet for Sending Variable with Multiple Query-Sets

After we have the PWDG graph, the writer conflicts can be resolved locally in each PWDG node,
and constructs are created to collect the writers’ data and send them to the reader’s process.
On the other hand, a <flow> activity is created in the reader’s process to receive the writer’s
data and re-create the writer dependencies. The former is named Local Resolver (LR) and the
latter Receiving Flow (RF) [KKL08a].

Sending values via local resolver in PWDG node and receiving the values in the reader’s process
with <flow> activity are well illustrated in [KKL08a] and [Kha08]. Therefore, the details about
the algorithms i.e. procedure CREATE-LOCAL-RESOLVER-MULTIPLE-WRITERS for local resolver
and procedure CREATE-RECEIVING-FLOW are not handled in this section. Instead, the definition
of the messages that are sent between writers’ processes and reader’s process is addressed.
Then the preparation of the required artifacts that facilitate the inter-communication is also
explained.

5.4.1 Message Specification

The first concern while realizing the splitting data dependency using local resolver and receiving
flow is to setup the proper message to encode the status and data of the variable that is written
when the reader of that variable is reached. The message depends not only on the data of
the variable but also on the status of the write state (true or false). Additionally, if there are
multiple query sets that are required by multiple writers in the PWDG node, then all write
states of these query sets should be sent together to the reader. Consider a PWDGa,x: in the
PWDG there is a PWDG node n = (s1, {B,C}) in which the B writes to x.a and the C writes
to x.b. In this scenario, both the write status of the query set {.a} and {.b} should be sent.
That way the write conflicts are also encoded, because the write state of each of the query sets

65

5 Data Dependency Fragmentation

1 <!-- equivalent construct for b.toPart=("data", x) -->
2 <assign>
3 <copy>
4 <from variable="x" />
5 <to variable="varY2Z" part="data" />
6 </copy>
7 </assign>

Listing 5.3: Construct Snippet Assigning Value of Variable into Message Part

will be sent and the result will be assembled at the reader side while respecting the control
dependencies. As such, the message that is used to convey status and data contains one or
multiple status parts. The count of the status part is dependent of the query sets. The Listing 5.1
and 5.2 present the message setup for a single query set and double query sets of a variable.

The pseudo code b.toPart=(“data”, x) shown in line 21 of Algorithm 1 in [KKL08a] implies
the concept of copying the data that is written by writers into the ‘data’ part of message that is
sent between sending block and receiving flow. Listing 5.3, which copies the variable x to the
data part of the variable “varY2Z”, is equivalent to this pseudo code. Note that the variable
“varY2Z” can be of message type as in Listing 5.1 or 5.2 depending on how many query sets it
has.

A challenge is that the type of the data part in a message must be explicitly defined as one
copies data of a variable into the data part of the message being sent. According to the WSDL
Specification [W3C01] the type attribute of a message part can be either simple data type
such as ‘boolean’ and ‘string’ or complex type that is defined in in-line schema or external
schema. For simplification of the data part assignment, we set the type attribute of the data
part in the message that we send to ‘any’ type as in Listing 5.1 and 5.2. With the ‘any’ type
we take advantage of the XML parsing mechanism in BPEL and can simply set the variable
that is written to the data part of the message without pointing out which type this part is of,
and latter the right message type for the data part of the incoming message will be set at the
receiving flow so that it can be correctly parsed.

5.4.2 Creating Prerequisites

To setup the local resolver and receiving flow, the necessary artifact is not only the message
which is referred in the inputVariable of the <invoke> activity but also the underlying portType,
partnerLinkType, and partnerLink. An argument is that these artifacts are already created as
the control links are being split, wherever there are control links that cross process boundaries.
So one does not need to create them. It is true, when the PWDG nodes are all in the participants
that are directly inter-connected with the participant in which the reader activity presents. If

66

5.4 Local Resolver and Receiving Flow

b

c

d

e

p1

p2

a

p3

n1

n2

reader

b

c d

e

a

p1

p2

p3

Figure 5.5: Example PWDG Illustrating Scenario for Creating Prerequisites, continued with
Figure 5.3. Left: main process with partition P3 = {p1, p2, p3} and the dependent
writers Ad(a, x) = {b, c, d, e}, Right: PWDGa,x,P3 = ({n1, n2}, {(n1, n2)})

the reader is in the participant that is not directly inter-connected with some other participants,
the prerequisite artifacts for the local resolver and receiving flow may not have been created.

Figure 5.5 shows a scenario where new portType, partnerLinkType, and partnerLink (cf. Table
3.1) should be created. On the left is the main process with the given dependent writers
Ad(a, x) = {b, c, d, e} against variable x for reader a. On the right is the PWDGa,x = (VP , EP)

with VP = {n1 = (s1, {b, c}), n2 = (s2, {d, e})} and EP = {(n1, n2)}. The reader a is in partici-
pant p3, which is not directly inter-connected with participant p1. We examine the creation
of the artifacts for the inter-communication in the stage control link fragmentation. We see
that in the main process there are control links crossing between p1 and p2, as well as between
p2 and p3, therefore artifacts should have been created in the control link fragmentation and
these artifacts can be reused. However, there is no control link across p1 and p3 hence no
artifacts have been created for the inter-communication between p1 and p3, when local resolver
and receiving flow are being created due to the PWDG node n1 and reader a. In the case of
p1 and p3 not being directly inter-connected, new artifacts should be created to support the
inter-communication of local resolver and receiving flow.

The function CREATE-PREREQUISITES in Algorithm 5.5 generates the necessary artifacts that are
needed while the local resolver and receiving flow are being created. Before the explanation of
the algorithm, we introduce the utility functions that are used. We use participant(a/n) as an
generic function that can accept both activity and PWDG node to get the participant that is

67

5 Data Dependency Fragmentation

Algorithm 5.5 Creation of Prerequisites for Local Resolver and Receiving Flow
1: function CREATE-PREREQUISITES(PWDG , Qs(a, x))
2: pr ← participant(a)
3: defnr ← definition(pr)
4: for all n ∈ PWDG do
5: pn ← participant(n)
6: Q ← Qsp(n, a, x)

7: if pn 6= pr ∧ |Q| > 0 then
8: CREATE-PREREQUISITE-MESSAGE()
9: CREATE-PREREQUISITE-PARTNERLINKTYPE()

10: CREATE-PREREQUISITE-PORTTYPE-OPERATION()
11: CREATE-PREREQUISITE-PARTNERLINK()
12: end if
13: end for
14: end function

associated to the input. And consider the definition(pr) as the function that can look up and
return the WSDL definition of the input participant pr. The Qsp(n, a, x) is the tuple set as in
equation (5.7) for writers that present in the given PWDG node.

First, the participant pr which contains the reader a and the pr ’s WSDL definition, is detected
(line 2 and 3). The function iterates through all the PWDG nodes (line 4). In each iteration,
the participant pn that contains the current PWDG node n is detected (line 5) as the tuple set
Q is computed using Qsp(n, a, x) (line 6). If the pn is not the same as pr i.e. writers and reader
are not in the same participant and the tuple set Q is not empty, the necessary prerequisites
are created (line 8 to 11).

Note that the functions in line 8 to 11 use the pn, pr, defnr, n, and Q as global variables,
since the functions are under the scope of function CREATE-PREREQUISITES. Function CREATE-
PREREQUISITE-MESSAGE (line 8) creates the messages for local resolver in pn and receiving
flow in pr. Based on the number of the tuples in the Q (|Q| == 1 or |Q| > 1), different message
is created. If Q contains only single tuple, a message with single status part (cf. Listing 5.1) is
created, otherwise a message with multiple status part (cf. Listing 5.2). Should a message with
multiple status parts be needed between pn and pr, it must be newly created. On the other
hand, the message with single status part is reusable between pn and pr, since the data part
(in that message) that is of type “any” can represent all variable and the status part (in that
message) that is of type “boolean” can also be used for all single query set.

Function CREATE-PREREQUISITE-PARTNERLINKTYPE (line 9) creates the necessary partnerLink-
Type in the WSDL definition defnr if in the definition there is no partnerLinkType for both
of the conversational partners (pn and pr). In function CREATE-PREREQUISITE-PORTTYPE-
OPERATION (line 10), a new portType in WSDL definition of pr is to be created and assigned

68

5.5 Putting All Together

to one role inside of the partnerLinkType that is created in function CREATE-PREREQUISITE-
PARTNERLINKTYPE if there is no portType in WSDL definition of pr for the conversation between
pn and pr. After that, a new operation for the link between local resolver and receiving flow
is to be created, and this operation should be added into the portType that has been previ-
ously created. The function CREATE-PREREQUISITE-PARTNERLINK creates the partnerLink for
conversation between pn and pr if there is no partnerLink that describes that conversation.

There is an alternative to doing this preparation of the artifacts that enables the conversation
between local resolver and receiving flow. One may do the preparation while creating local
resolver and receiving flow. The prerequisite artifacts such as a message referred by input-
Variable of the <invoke> or the <receive> activity will be created right before the activities are
created and need to be equipped with the message. A major disadvantage of this approach
is that the abstraction of the logic in the algorithms for creating local resolver and receiving
flow will be compromised, and the implementation of the algorithms might get drastically
complex.

5.4.3 Creating Message Links for Participant Topology and Grounding

While fragmenting control link, the message links for participant topology and grounding
(BPEL4Chor) are created for each split link that crosses process boundaries. The attributes of
each message link are collected when the sending block and receiving block are being created.
Similarly, a new message link will be created for each pair of local resolver and receiving flow,
since a WSDL message will be sent from local resolver to receiving flow. The collection of the
attributes can happen while the local resolver and receiving flow are being created.

Note that the original algorithms for creating local resolver and receiving flow are presented
in [KKL08a] and are not concerned about the needs of collecting information of BPEL4Chor
artifacts, so the logic for creating message link and collecting attributes of that message
link should be injected into the algorithms where the local resolver and receiving flow are
instrumented.

An alternative to creating the message links while generating local resolver and receiving flow
is creating the message links after all the fragmentation of data dependency. In this way one
must have a mechanism to iterate in the fragment processes and identify all pairs of local
resolver and receiving flow that are present in different processes.

5.5 Putting All Together

The procedure SPLIT-DATA-DEPENDENCY in Algorithm 5.6 presents the high level logic to
incorporate the data-flow analysis of the original process, the creation of WDG and PWDG, the

69

5 Data Dependency Fragmentation

Algorithm 5.6 Splitting Data Dependency
1: procedure SPLIT-DATA-DEPENDENCY(S,D, process, P)
2: res ← analyze(process)
3: for all a ∈ A = {

⋃
pi∈P π2(pi)} do

4: for all x ∈ resolveVariable(a) do
5: Qs ← PARSE-RESULT(res, a, x)
6: Ad ←

⋃
qs∈Qs(a,x)

π2(qs)

7: WDG ← CREATE-WDG(Ad)
8: PWDG ← CREATE-PWDG(WDG, P)
9: CREATE-PREREQUISITES(PWDG, Qs)

10: for all n ∈ π1(PWDG) do
11: CREATE-LOCAL-RESOLVER-MULTIPLE-WRITERS(n, a, x)
12: end for
13: CREATE-RECEIVING-FLOW(PWDG)
14: end for
15: end for
16: end procedure

creation of the prerequisites, the construction of the local resolver and receiving flow together,
i.e. to split the data dependency.

Consider analyze(process) as the function that invokes the implementation of data-flow algo-
rithm by [Bre08, Gao10] and does the data-flow analysis on the process given and returns the
result as shown in Table 5.1. The function resolveVariable(a) resolves the variables that are
read by the activity a.

The input of the procedure SPLIT-DATA-DEPENDENCY includes S, D, process, and P . S is the
set of fragment processes, as D is the set of their WSDL definitions. The process is the original
process. And P is the partition specification as in equation (3.1) (cf. page 21).

In line 2 the data-flow analysis is run on the original process and the analysis results are
returned to the variable res. For all the basic activities in all the participants and the variables
that the activities read, i.e. for each possible pair of activity ‘a’ and variable ‘x’, the operations
between line 5 and 13 are carried out.

First, the query set to writer set data structure Qs(a, x) (cf. equation (5.1)) is created and
returned by procedure PARSE-RESULT (line 5), which parses the analysis results, retrieves the
information that is associated to (a, x), and forms the Qs(a, x). Then the control dependencies
of the writers are created by the procedure CREATE-WDG in line 7, whose input i.e. the writers
set Ad as in equation (5.3) is prepared in line 6. In order to reduce messages, a PWDG is
created against the WDG (line 8). Before the local resolver and receiving flow are created, the
prerequisite artifacts for the <invoke> and <receive> activities, that present in the local resolver

70

5.6 Summary

and receiving flow, are prepared by the procedure CREATE-PREREQUISITES in line 9, which is
shown in the previous Section 5.4.2.

Line 10 to 12 present the logic to generate local resolver ([KKL08a, Section 5.3]) for multi-
ple writers in each of the PWDG node. The procedure CREATE-LOCAL-RESOLVER-MULTIPLE-
WRITERS in line 11 creates the corresponding local resolver against the input, i.e. the PWDG
node n, the activity a, and the variable x.

After all local resolvers for all the PWDG nodes are ready and are able to send the necessary
values, the receiving flow as in [KKL08a, Section 5.4] is created in the participant of the reader
(line 13).

5.6 Summary

In this chapter, the details of how to do the fragmentation of data dependency is introduced.
At the beginning we have illustrated parsing results of data-flow analysis of the main process to
the proper forms i.e. Qs(a, x) that can be consumed by the algorithms used in this thesis. After
that, the creation of Writer Dependency Graph (WDG) and Partitioned Writer Dependency
Graph (PWDG) for reducing messages to be sent are elaborated. Then the preparation of
local resolver and receiving flow is explained. Finally, a general algorithm (Algorithm 5.6) is
introduced to put all the parts together to do the fragmentation of the data dependency.

71

6 Output in BPEL4Chor Choreography

After the fragmentation of the data dependency, one has split the main process completely.
The task at the end is to transform the executable fragment BPEL processes into Participant
Behavior Descriptions (PBDs), then output them together with the participant topology and
grounding that have been prepared in the previous steps. This step is emphasized in Figure
6.1.

6.1 Participant Behavior Description (PBD)

In this stage the fragment processes are executable BPEL processes. As mentioned in section
2.1, a PBD is an abstract process profile. Therefore, we need to transform each of the executable
fragment processes into an abstract process that meets the constraints as follows:

1. Each communication activity contains a namespace wide unique identifier. The identifier
is namely the “wsu:id” attribute that is of type “xsd:id”. The attribute “wsu:id” must
present especially in the onMessage branches of activity <pick>.

Split Module

Partition
Specificati

on

BPEL
Process

PBDs,
WSDLs,

topology,
grounding

results

Designer

read

3.a

assign

3.b

BPEL file

WSDL
DefinitionWSDL file

Partition
file

read

2

read

1

Fragment
processes
, WSDLs

Fragment
processes,

WSDLs,
MessagLin

ks

fragment
control link

5

fragment
process

4
fragment

data
dependency

6

write

7

Figure 6.1: The Overview of the Split Module with Output in BPEL4Chor (Step 7) emphasized

73

6 Output in BPEL4Chor Choreography

1 <!-- Syntax definition for participant topology files -->
2 <topology name="NCName" targetNamespace="anyURI">
3 <participantTypes>
4 <participantType name="NCName"
5 (participantBehaviorDescription="QName" processLanguage="anyURI"?)? />+
6 </participantTypes>
7 <participants>
8 <participant name="NCName" type="NCName" selects="NCNames"? scope="QName"? />+
9 <participantSet name="NCName" type="NCName" scope="QName"?

10 forEach="QNames"? >*
11 (<participantSet ... >...</participantSet>
12 |<participant name="NCName" scope="QName"? forEach="QNames"?
13 containment="add-if-not-exists|must-add|required"? />
14)+
15 </participantSet>
16 </participants>
17 <messageLinks>
18 <messageLink
19 name="NCName"? (default: messageName)
20 (sender="NCName" | senders="NCNames")
21 sendActivity="NCName"?
22 receiver="NCName" receiveActivity="NCName"?
23 bindSenderTo="NCName"?
24 messageName="NCName"
25 (participantRefs="NCNames" copyParticipantRefsTo="NCNames"?)?
26 />*
27 </messageLinks>
28 </topology>

Listing 6.1: Participant Topology File Syntax [Kop11c]

2. The partnerLink, portType, and operation attributes in communication activity are
excluded.

3. If there is a pair of combined <receive> and <reply>, an enforced messageExchange is
created.

6.2 Participant Topology

The participant topology is the structure aspect of the BPEL4Chor choreography. It consists
of three main notions: participantType, participant, and messageLink. Listing 6.1 shows the
syntax for participant topology that is the output from the splitting procedure. The lines 3 to 6
provide the definition of participantType, while the line 7 to 16 is the definition of participant.
The messageLink is defined in the line 17 to 27. Note that there is no web service specific
configuration in the topology message link. The participantTypes have been prepared in the

74

6.3 Participant Grounding

1 <!-- Syntax definition for participant grounding -->
2 <grounding topology="QName">
3 <messageLinks>
4 <messageLink name="NCName"
5 ((portType="QName" operation="NCName")
6 |(senders="NCNames"? expectedPortType="QName" expectedOperation="NCName"
7 offeredPortType="QName" offeredOperation="NCName"
8 mediator="anyURI"))
9 />*

10 </messageLinks>
11 <participantRefs>
12 <participantRef name="NCName" WSDLproperty="QName" />+
13 </participantRefs>?
14 <properties>
15 <property name="NCName" WSDLproperty="QName" />+
16 </properties>?
17 </grounding>

Listing 6.2: Participant Grounding File Syntax [Kop11b]

previous section 3.4 and the messageLinks have been prepared in the previous sections: 4.2.3,
4.2.4, as well as 5.4.3.

Note that the syntax in Listing 6.1 uses the informal syntax to describes the XML grammar. The
appended character “?” stands for “zero or one”, “+” for “one or more”, “*” for “zero or more”.
Elements and attributes separated by “|” and grouped by “(” and “)” are meant to be syntactic
alternatives.

6.3 Participant Grounding

The participant grounding provides the web service specific configuration for the choreography.
The two main notions are the messageLink and participantRef. The syntax of the output
participant grounding is shown in Listing 6.2. The definition for messageLink is in the line 3 to
10. And the participantRef is defined in the lines 11 to 17. Note that a port type and operation
combination is given in each messageLink in participant grounding. Similarly, the information
of participant grounding is prepared in the previous sections: 4.2.3, 4.2.4, as well as 5.4.3.

75

7 Architecture and Implementation

In this chapter, the application implemented in this thesis is introduced. We focus on the archi-
tecture, the referred projects, the imported external libraries, and the models that represent
XML artifacts or graph.

Note that the implementation is sightly different from the Figure 1.1 and 1.2 in Chapter 1, as a
matter of fact the data-flow analysis happens inside of the data dependency fragmentation (cf.
Chapter 5).

7.1 Architecture

In this section, the infrastructure of the splitting module is depicted first. Then an overview of
the components is presented, as well as their structural behavior and relationship. At last the
high level business logic of splitting module is described.

7.1.1 Application Infrastructure

In this thesis, an Eclipse application is created to implement the splitting process approaches,
that are presented in [KL06, KKL08a, Kha08]. The main functions of the application are
(i) accepting the given BPEL process, WSDL definition, and partition specification as input, then
(ii) splitting the process, at the end (iii) outputting the result in the format of BPEL4Chor.

Now we introduce the tools and libraries that are utilized in this thesis. First of all, we take
the Eclipse BPEL Model project and its dependent projects out of the Eclipse BPEL Designer
for accessing and manipulating the BPEL process. Note that the BPEL standard is based on
WSDL 1.1 and this relation also reflects on the runtime dependency of Eclipse BPEL Model.
The Eclipse WST WSDL1 project is the underlying project for reading and writing to the WSDL
definition. Besides the projects for BPEL and WSDL, the project implemented by Gao [Gao10]
for data-flow analysis is used for analyzing the BPEL process. All of these projects are Eclipse
Plug-in application, so we can aggregate them together and build an new Eclipse Plug-in
application on top of the Eclipse platform.

1http://www.eclipse.org/webtools/wst/main.php Eclipse Web Standard Tools Platform

77

http://www.eclipse.org/webtools/wst/main.php

7 Architecture and Implementation

Splitting Module

BPEL4Chor
Model

Data-Flow
Analysis

Eclipse BPEL Model

Eclipse Platform

input output

Eclipse WST WSDL

Figure 7.1: Splitting Process Infrastructure

The above mentioned projects can now be regarded as the infrastructure available for the
new application. Based on the infrastructure, two new projects are created: the “Splitting
Module” and the “BPEL4Chor Model”. The former project is mainly responsible for splitting the
BPEL process given. The latter project provides a data model of BPEL4Chor and the capability
of manipulating the model. The Figure 7.1 illustrates the application infrastructure in this
thesis.

As for the external libraries, we utilize StAX2 and DOM3 to interact with XML document, Args4j4

to accept input from command line interface, and JGraphT5 to provide graph representation
for WDG and PWDG.

7.1.2 Component and Data Flow Overview

In this section we observe the design of the application in the aspect of component structure
and the aspect of data flow.

Figure 7.2 provides an overview of the major components in the application. The com-
ponent org.bpel4chor.splitting is the new project for splitting process, and the component
org.bpel4chor.model is the representation of the BPEL4Chor artifacts and provides capability

2Streaming API for XML (StAX)
3Document Object Model (DOM)
4http://java.net/projects/args4j/ (Args4j)
5http://jgrapht.org/ (JGraphT)

78

http://java.net/projects/args4j/
http://jgrapht.org/

7.1 Architecture

dataflowanalysis

partition

utils cli

pwdg

fragmentation
use

use use

org.bpel4chor.model

org.bpel4chor.splitting

de.uni-stuttgart.iaas.bpel-
d.algorithmus

jgrapht

args4j

org.eclipse.bpel.model

bpel, wsdl, partition specification

provide

require

DOM

StAX

org.eclipse.wst.wsdl

Figure 7.2: Splitting Component Overview

to manipulate the artifacts. Inside the org.bpel4chor.splitting are the subcomponents of the
project: cli, utils, partition, dataflowanalysis, pwdg, and fragmentation. They are introduced as
follows:

1. cli

The component utilize the external library args4j to get the input from the command line
and parse the parameters correspondingly.

2. utils

The component provides the utilities for e.g. resolving variables from an activity.

3. partition

The component is responsible to create the partition specification instance from either
the command line input or the GUI. Note that it uses XML library DOM to parse the
partition file from XML format into document object.

4. dataflowanalysis

The component for data-flow analysis provides the wrapper that calls the analyzer of the
process (from the referred project de.uni-stuttgart.iaas.bpel-d.algorithmus) and the

79

7 Architecture and Implementation

parser that converts the analysis result into the format that the algorithms in this thesis
can understand.

5. pwdg

The component is created for construction of WDG and PWDG. It uses the base class
DefaultDirectedAcyclic and DifaultEdge from JGraphT to generate the Writer Dependency
Graph (WDG) and Partitioned Writer Dependency Graph (PWDG).

6. fragmentation

The component is created for the process fragmentation, the control link fragmen-
tation, and the data dependency fragmentation. It refers the projects such as
org.eclipse.bpel.model from Eclipse BPEL Designer for BPEL and WSDL access and
manipulation, and also the project org.bpel4chor.model for outputting BPEL4Chor arti-
facts. Furthermore, it utilizes different subcomponents in different steps. In the process
fragmentation, the subcomponent partition is used for information of the partition
specification. During the data dependency fragmentation, the subcomponents partition,
dataflowanalysis, and pwdg are used. Note that project org.eclipse.bpel.model required
by this component requires the further project org.eclipse.wst.wsdl.

Figure 7.3 is an overview of the high level business logic. The round circle in the figure means
procedure that is executed and the rectangle box in front of and after the round circle means
the input and output data. So the application logic can be described in 7 steps as follows:

Step 1 Read BPEL File

Use the BPELReader from the project org.eclipse.bpel.model to read the BPEL file and
generate a BPEL process.

Step 2 Read WSDL File

Use the WSDLReader from the project org.eclipse.wst.wsdl to read the WSDL file that is
associated to the BPEL file and generate the WSDL definition.

Step 3 Read partition specification either from the designer or from a partition file

Either the partition file is given in command line as parameter, the parameter is parsed
accordingly and passed to the PartitionSpecReader from the component ‘partition’ in
org.bpel4chor.splitting, then the PartitionSpecReader reads in the file and generates the
partition specification, or the designer assigns the activities into partition then partition
specification is generated by GUI.

Step 4 Fragment Process

The ProcessFragmenter in the fragmentation component takes the BPEL process, the
WSDL, and the partition specification as input and creates the fragment processes
correspondingly. In addition to the fragment processes, the associated WSDL definitions

80

7.1 Architecture

are also created. Note that the available information for BPEL4Chor artifacts are also
collected.

Step 5 Fragment Control Link

The ControlLinkFragmenter in the fragmentation component takes the output from the
process fragmentation and continue to split the control link in the fragment processes.
The output of this step is basically the same as the previous step. The differences are
that the control links are split and more message links are collected in the BPEL4Chor
artifacts.

Step 6 Fragment Data Dependency

The DataDependencyFragmenter in the fragmentation component takes the output from
control link fragmentation and split the data dependencies in the fragment processes.
The fragment processes and their WSDL definitions are updated and the information for
BPEL4Chor artifacts are also collected. And the fragment processes, WSDL definitions,
and the message links for BPEL4Chor are output.

Step 7 Write BPEL4Chor

At the end, the BPEL4Chor artifacts are written into files.

Note that the ProcessFragmenter, ControlLinkFragmenter, and DataDependencyFragmenter are the
classes created in the component fragmentation for splitting the process.

81

7
A

rchitecture
and

Im
plem

entation

Split Module

Partition
Specificati

on

BPEL
Process

PBDs,
WSDLs,

topology,
grounding

results

Designer

read

3.a

assign

3.b

BPEL file

WSDL
DefinitionWSDL file

Partition
file

read

2

read

1

Fragment
processes
, WSDLs

Fragment
processes,

WSDLs,
MessagLin

ks

fragment
control link

5

fragment
process

4
fragment

data
dependency

6

write

7

Figure 7.3: The full splitting module

82

7.2 Implementation

-participants : Set<Participant>

PartitionSpecification
-name : String
-activities : Set<Activity>

Participant
Activity

1 1..* 1 1..*

Figure 7.4: Partition Specification Model

7.2 Implementation

In the previous chapters, we have already introduced the algorithms that are combined together
to split the process, while the models used in those individual scenarios have not been talked.
Then the details of the data models and the graph model is presented in this section.

7.2.1 Partition Specification Model

Recall that one input of the splitting procedure is partition specification (cf. Chapter 3). In the
runtime, we need a representation of the partition which tells the splitting algorithm which
activity is in which participant, such as the definition (3.1) does to us. As such, we need to
design a model for partition specification.

There are two main concerns about the partition specification model. One concern is that it
must be reusable, which means it should be resilient to the changes of the underlying BPEL
model, as long as the association is not touched. The other concern is that it should be neutral
to multiple input variants. The Figure 3.1 has implied that the source of a partition specification
can come from a partition file, or it can be provided by designer via some kind of GUI e.g.
Eclipse BPEL Designer.

Based on the concerns mentioned above, a model is designed as shown in Figure 7.4. The
Activity in right side of the model figure presents the BPEL activity. The Participant in the
middle of the model figure consists of a name and a set of activities. On the left side, is the
PartitionSpecification that contains a set of participants. In runtime, if one has got an instance
of participant, it is simple to get access to the activities that are assigned in the participant.

Since the ‘Activity’ is the abstraction of all activity types in the BPEL model, it is very un-
likely that it will be changed, unless there is fundamental re-engineering of the BPEL model.
Therefore, it fulfills the concern about the re-usability.

On the other hand, the model does not constrain how an instance of PartitionSpecification is
established. As in Figure 3.1, there are two alternatives to get a PartitionSpecification. The

83

7 Architecture and Implementation

Topology Grounding

ParticipantType Participant ParticipantSet

1..* 1..* *

* 1
1

*

MessageLink ParticipantRef Property

* * **

Figure 7.5: Model of Participant Topology and Grounding

first alternative is based on the partition file, and the second one is from the designer, namely
based on GUI.

Upon the partition file input, it is assumed that the BPEL process is loaded, but given the
circumstance that one does not have direct access to specific BPEL activity in memory. The
process is in the memory, but not visible for us. To start the splitting, the split procedure must
be told where to find the activity in the BPEL process and which activity is in which participant.
A concept to provide the information can be stated as follows: (1) the position of activity
is given via XPath stored in the partition file, (2) information about participant is given by
grouping the activity XPaths, and (3) the group is labeled with the participant name. This
concept is reflected in the Listing 3.1, which is used in this thesis.

The operation pattern upon the partition file input is that the partition file is parsed at the
starting time, then the activity XPaths are retrieved, finally the activities in the BPEL process
(in memory) are located with help of the XPath, and put into the corresponding participant.

7.2.2 BPEL4Chor Data Model

As introduced in Chapter 6, the participant description behavior (PBD) is an abstract BPEL
process, therefore, we use a BPEL process to represent a PBD by explicitly setting the attribute
“abstractProcess”. Additionally, the unique identifier “wsu:id” should be inserted into the
communication activities, as well as the onMessage branch in the <pick> activity.

84

7.2 Implementation

-activity

WDGNode

-source
-target

DefaultEdge

-wdgNodes
-participant

PWDGNode

-source
-target

DefaultEdge

1
*

1

*

1

*

1

*

WDG

PWDG

DirectedAcyclicGraph

Figure 7.6: Model of WDG and PWDG

Figure 7.5 presents the model for participant topology and grounding. Note that the grounding
and the topology refer to the same message link, because the attribute set of the message
link is the superset of the attributes that belong to the topology message link and grounding
message link. When we write out the message link, which part of the attribute set should be
selected can be decided by checking up whether the container is a topology or a grounding.

A challenge in the implementation of the topology and grounding is that one has to manually
collect the namespaces in the elements which contain the QName attribute, since the XML library
StAX that is used to interact with XML document object is not namespace aware.

7.2.3 WDG and PWDG Graph Model

Figure 7.6 shows the graph models for the writer dependency graph (WDG) and the partitioned
writer dependency graph (PWDG). We utilize the the DefaultDirectedGraph from JGraph as
base for both graphs, and the DefaultEdge as the edge of a graph. A DefaultEdge does not
constraint the object type of the source and target node, therefore we can use the DefaultEdge

to represent edges in both graphs. A WDG edge differs from a PWDG edge in the way that it
contains two WDG nodes, instead of two PWDG node. Table 7.1 explains the details of the
graph models.

85

7 Architecture and Implementation

Class Description
WDG Directed acyclic graph (DAG) which contains a set of nodes and a set of

edges
WDGNode Node of WDG which contains an activity
WDGEdge DefaultEdge (from JGraphT) which contains a source WDGNode and a

target one
PWDG Directed acyclic graph (DAG) which contains a set of nodes and a set of

edges
PWDGNode Node of PWDG which consists of a participant name and a set of WDG nodes
PWDGEdge DefaultEdge (from JGraphT) which contains a source PWDGNode and a

target one

Table 7.1: Description of the WDG and PWDG Graph Model

The advandage of the both graph models is that they have a clear layering. In other words,
from BPEL activity to WDG node, then from WDG node to PWDG node, each layer is just
dependent of its underlying layer. If we extend the WDG e.g. to support loop or scope by
collapsing it as a WDG node (cf. Chapter 8), the change does not affect PWDG, i.e. the PWDG
operates the same way as before.

86

8 Summary and Future Work

The work in this thesis aims to implement the concepts and algorithms of Khalaf [KL06,
KKL08a, Kha08] to generate split BPEL processes out of a plain BPEL process. The concept is
extended to output a BPEL4Chor choreography instead of a set of plain BPEL processes.

The contributions of the work start with the implementation of process fragmentation in which
the syntax for the partition file is designed, the data model of the partition specification is
created, and the main process is split using the partition specification given (cf. Chapter 3).

Based on the fragment processes that are created in the process fragmentation, the control links
that are across process boundaries are split using the concept from [KL06]. The concept for
splitting control link is implemented with some adjustments due to the variable initialization
issue (cf. Chapter 4).

After the control links have been split, we implement the concept from [KKL08a] to split
the data dependencies in an implicit manner, i.e., we operate directly on the BPEL processes
instead of using explicit data-links in which case one needs to extra transform the BPEL
process to an intermediate form (BPEL-D, [KL06]). Implementation for splitting the data
dependency includes running data-flow analysis of the main process to derive the explicit
data links [KKL08b], creating the writer dependency graph (WDG) and the partitioned writer
dependency graph PWDG for avoiding too many messages to be sent, creating the local
resolvers (LR) for sending information in the possible nodes of a partitioned writer dependency
graph, and creating the receiving flow (RF) for collecting information, reproducing the control
flow in a <flow> activity, and eventually rerouting the assembled information to the reader
activity (cf. Chapter 5).

At the end, the BPEL4Chor artifacts that have been prepared in previous steps are output as
result (cf. Chapter 6).

Future Work

During the course of this thesis, the support of loops and scopes is left out, due to the limited
capacity . The support of loops and scopes affects all of the steps in the splitting procedure.
Therefore these places as follows are identified for future work:

1. Extend process fragmentation to support the loops and scopes (cf. Chapter 3).

87

8 Summary and Future Work

2. Extend the control link fragmentation to support the loops and scopes.

3. Extend the data dependency fragmentation to support loops and scopes collapsing in the
generation of Qs(a, x) and writer dependency graph (WDG).

4. Provide coordination protocol for Cross Partner Scope (CPS) using the concept in [Bor10].

88

A Errata of Related Works

This chapter provides a list of errata found by reading the related works.

Supporting business process fragmentation while maintaining operational semantics : a BPEL
perspective [Kha08]

• Page 109, the PARENT_LOOP_OR_SCOPE(child, proc) in function PROCESS_CHILD,
at line 1, the function’s parameter “proc” should be the main process, NOT a fragment
process, because the logic of line 2 and 3 is that one firstly finds the parent of the “child”
in the main process, then finds the equivalent construct in the process fragment.

• Page 123, two lines under the Figure 40, the universal quantifier ∀ in the equation for an
edge existing between v1 and v2 as follows:

(v1, v2) ∈ Ed :⇔ |Paths(v1, v2)| > 0 ∧ ∀p ∈ Paths(v1, v2) : p ∩ Vd = {v1, v2}

should be changed to existential quantifier ∃, namely as follows:

(v1, v2) ∈ Ed ⇔ |Paths(v1, v2)| > 0 ∧ ∃p ∈ Paths(v1, v2) : p ∩ Vd = {v1, v2}

. The universal quantifier ∀ is not correct because “if there is a path in the process
between any two activities in Vd that contains no other activity in Vd, then there is an
edge in the WDG connecting these two activities” [Kha08, Section 5.10.4, Page 122].

89

B Definitions and Notions

This chapter gives a short version of the critical definitions and the notions that are used in
this thesis, so that readers can review any particular definition easily and quickly.

B.1 Definitions

B.1.1 Public Functions

Before introducing the definitions, we introduce a function π, which is also used in multiple
places in this thesis. Let x = (x1, x2) be a tuple, then π1(x) = x1 denotes the projection onto
the first coordinate of x, and π2(x) = x2 denotes the projection onto the second coordinate of
x.

π : (x1, x2, . . . , xi, . . .)× i 7→ xi

B.1.2 Partition Specification

The partition specification P (cf. page 21) is derived from [KL06]. Let N be the natural
numbers i.e. {1, 2, 3, . . . }. Let A be the set of all basic activities in the process, pi be one
participant, and P be the set of participants. A participant pi consists of a name si, which
is in {s1, s2, . . . }, and a set of activities Mi ⊆ A, which is in {M1,M2, . . . } and holds one or
more activities, i.e. Furthermore, each basic activity must be assigned to exactly one set Mi,
i.e.

⋃
i∈NMi = A. The formal definition of the set of participants is as follows [KL06]:

P := {pi | ∀i ∈ N : pi = (si,Mi)}

There are several general conditions that the partition P must satisfy. The conditions are
initially stated in [KL06] and revised here:

1. ∀pi ∈ P : |π2(pi)| > 1 where π2(pi) = Mi as defined above, i.e. a participant pi must
have at least one activity.

2. ∀pi, pj ∈ P : pi 6= pj ⇒ π1 (pi) 6= π1 (pj) ∧ π2 (pi) ∩ π2 (pj) = ∅ , i.e. two participants
do not share a same name or an activity.

3.
⋃

pi∈P π2(pi) =
⋃

i∈NMi = A where A is the set of all basic activities in the process.

91

B Definitions and Notions

B.1.3 Data-Flow Analysis

Qs(a, x) (cf. page 49) denotes a set of tuples. Each of those tuples consists of a query set and a
writer set, e.g. ({.n, .k}, {w3, w4}) ∈ Qs(a, x). All the tuples are based on the variable x and
the reader activity a. Let qs be a tuple in the Qs(a, x) for variable x read by activity a. Let
(qs, ws) be a tuple in the Qs(a, x) with qs as a query set and ws as a writer set. qs contains
the queries {q1, q2, . . . } on variable x and ws contains the writers {w1, w2, . . . } that write to
variable x using that queries in qs. The function Qs(a, x) is defined as follows [KKL08a]:

Qs(a, x) := { qs | qs = (qs, ws) ∧ qs = {q1, q2, . . . } ∧ ws = {w1, w2, . . . }}

Qs(a, x) is used by the algorithms for fragmenting data dependency in this thesis and therefore
has the properties as follows:

1. ∀qs ∈ Qs(a, x) : π1(qs) = qs = {q1, q2, . . . } 6= ∅ and π2(qs) = ws = {w1, w2, . . . } 6= ∅.

2. ∀qsi , qsj ∈ Qs(a, x), i, j ∈ N : qsi 6= qsj ⇒ π1(qsi) 6= π1(qsj) ∧ π2(qsi) 6= π2(qsj),
i.e. each one of the tuples in Qs(a, x) has a different query set and a different writer
set. If either the query sets or the writer sets were equal, the tuples would have been
merged. Assume that ({.m}, {w3, w4}) and ({.k}, {w3, w4}) were two tuples in Qs(a, x),
in this case, they must be merged into one tuple by merging the query sets, that is
({.m, .k}, {w3, w4}).

B.1.4 Writer Dependency Graph (WDG)

Ad(a, x) (cf. page 51) is the function that presents all the writers that activity a depends on
due to reading variable x. It is defined as the union of the writer sets that gets projected from
all of the qs in Qs(a, x) [KKL08a]:

Ad(a, x) :=
⋃

qs∈Qs(a,x)

π2(qs)

Let Vd be the set of nodes, and Ed be the set of edges. Let the tuple (vs, vt) denote an edge in a
WDG, vs be source of the edge, and vt be target of the edge. The Writer Dependency Graph
(WDG, cf. page 51) for the activity a and the variable x is a graph with the nodes Vd and the
edges Ed and is formally defined as follows [KKL08a]:

WDGa,x := (Vd, Ed)

where Vd := Ad(a, x) and Ed ⊂ {(Vd × Vd)}.

The WDG is directed acyclic Graph, therefore has the constraints as follows:

1. The edges are directed.

92

B.1 Definitions

2. The source and the target of the edge are two different individual writers in process, i.e.
(vs, vt) ∈ Ed : vs 6= vt.

3. The source activity (vs) and the target activity (vt) in an edge of a WDG graph are not
necessarily directly connected in the main process. As long as there is a path in the BPEL
process from vs to vt and between them there are no other activities that are WDG nodes
too. In other words, let p = vs, u1, u2, . . . , vt be the path in the main process from vs to
vt, then (vs, vt) ∈ Ed ⇔ ui /∈ Vd

4. The graph is directed acyclic, i.e. there is no such path in the graph in which the start
node and the end node is the same one.

5. WDG is independent of the partition specification.

B.1.5 Partitioned Writer Dependency Graph (PWDG)

Assume that the WDGa,x = (Vd, Ed) and the partition P are given, let Mk,l be a ‘region’ of the
WDG nodes, which are mutually in the participant pk, the PWDG (cf. equation (5.5) in page
55) against the activity a, the variable x, and the partition specification P is formally defined
as follows:

PWDGa,x,P := (Vp, Ep)

with the node set VP := {ni | ni = (sk,Mk,l)} where
⋃

l∈NMk,l = Vd ∩Mk and ni = (sk,Mk,l)

implies pk = (sk,Mk) ∈ P and the edge set EP ⊂ {VP × VP }

Let p ∈ P be participant with the name s and the set of activities M that belong to p. We
introduce a function A(a, x, p) (cf. equation (5.6), page 55) to represent the group of WDG
nodes that are in the participant p. It is defined as follows:

Ad(a, x, p) :=Ad(a, x) ∩ π2(p)
=Vd ∩ π2(p)

where p = {s,M} ∈ P = {(si,Mi) | i ∈ N} and π2(p) =M .

B.1.6 Local Resolver and Receiving Follow

Let Qs(a, x) be as in equation (5.1), and n be a PWDG node in a PWDG. The Qsp(n, a, x)

denotes the tuples from Qs(a, x) whose writer sets contain only such writers that appear in the
PWDG node n. It is defined as follows [KKL08a]:

Qsp(n, a, x) := {(qs, wsn) | qs = {q1, q2, . . . } ∧ wsn = {w |w ∈ π2(qs) ∩ π2(n) ∧ ∀qs ∈ Qs(a, x)}}

93

B Definitions and Notions

B.2 Notion Summary

Table B.1: Notions used in this thesis

Notion Description First Occurrence
∀i ∈ N : πi(x) πi(x) The projection on the i-th component of the tuple

x = (x1, x2, x3, . . .) [KL06]
Page 21

Ad(a, x) The set of all writers which the reader of variable x, i.e.
activity a depends on [KKL08a]

Page 51

Ad(a, x, p) The set of WDG nodes that present in a certain participant p Page 55
dis◦ The disabled writers before reader activity is executed

[KKL08b]
Page 48

Ed The edge set of the graph WDGa,x = (Vd, Ed) Page 51
EP The edge set of the graph PWDGa,x,P = (VP , EP) Page 55
inv◦ The invalid writers before reader activity is executed

[KKL08b]
Page 48

l(a, b, q) The control link from activity a to b with the condition q
[KL06]

Page 36

mbd◦ The ‘may be dead’ (boolean) value before reader activity is
executed [KKL08b]

Page 48

N The natural numbers i.e. {1, 2, 3, . . . } Page 21
NIL The representation of null in algorithm pseudo code

[CSRL01]
Page 59

P The Partition Specification [KL06] Page 21
PWDGa,x,P The Partitioned Writer Dependency Graph [KKL08a], defined

in equation (5.5) (cf. page 55)
Page 5

poss◦ The possible writers before reader activity is executed
[KKL08b]

Page 48

Qs(a, x) The tuples of query set and writer set against variable x for
activity a [KKL08a]

Page 49

Qsp(n, a, x) The tuples of query set and writer set in a given PWDG node
n [KKL08a]

Page 64

Vd The node set of the graph WDGa,x = (Vd, Ed) Page 51
VP The node set of the graph PWDGa,x,P = (VP , EP) Page 55
WDGa,x The Writer Dependency Graph [KKL08a], defined in page 51 Page 5
writes◦ The current state of the writes to the given variable element

before the reader activity is executed [KKL08b]
Page 16

Continued on next page

94

B.2 Notion Summary

Table B.1 – continued from previous page
Notion Description First Occurrence
writes• analogous to writes◦ but after the reader activity is executed

[KKL08b]
Page 16

95

Bibliography

[Bor10] S. Bors. A Runtime for BPEL4Chor Cross-Partner-Scopes. Diploma thesis nr. 2990,
University of Stuttgart, Faculty of Computer Science, Electrical Engineering, and
Information Technology, Germany, 2010. (Cited on pages 13 and 88)

[Bre08] S. Breier. Extended Data-flow Analysis on BPEL Process. Diploma thesis nr. 2726,
University of Stuttgart, Faculty of Computer Science, Electrical Engineering, and
Information Technology, Germany, 2008. (Cited on pages 18, 48 and 70)

[CKLW03] F. Curbera, R. Khalaf, F. Leymann, S. Weerawarana. Exception handling in the
BPEL4WS language. In Proceedings of the 2003 international conference on Business
process management, BPM’03, pp. 276–290. Springer-Verlag, Berlin, Heidelberg,
2003. (Cited on pages 15, 18 and 20)

[CSRL01] T. H. Cormen, C. Stein, R. L. Rivest, C. E. Leiserson. Introduction to Algorithms.
McGraw-Hill Higher Education, 2nd edition, 2001. (Cited on pages 54, 58 and 94)

[DKLW07] G. Decker, O. Kopp, F. Leymann, M. Weske. BPEL4Chor: Extending BPEL for
Modeling Choreographies. pp. 296–303, 2007. doi:10.1109/ICWS.2007.59. (Cited
on pages 12, 16, 17 and 18)

[DKLW09] G. Decker, O. Kopp, F. Leymann, M. Weske. Interacting services: From specification
to execution. volume 68, pp. 946–972. Elsevier Science Publishers, 2009. doi:
10.1016/j.datak.2009.04.003. (Cited on page 18)

[DS90] T. H. Davenport, J. E. Short. The New Industrial Engineering: Information Tech-
nology and Business Process Redesign. Sloan Management Review, 31(4):11–27,
1990. (Cited on page 11)

[Fer07] J. V. Fernandez. BPEL with Explicit Data Flow: Model, Editor, and Partitioning
Tool. Diploma thesis nr. 2616, University of Stuttgart, Faculty of Computer Science,
Electrical Engineering, and Information Technology, Germany, 2007. (Cited on
pages 16 and 18)

[Gao10] Y. Gao. Implementierung einer Datenflussanalyse für WS-BPEL 2.0. (2246):54,
2010. (Cited on pages 18, 48, 70 and 77)

[Ima86] M. Imai. Kaizen: The Key to Japan’s Competitive Success. McGraw-Hill, New York,
NY, 1986. (Cited on page 11)

97

Bibliography

[Kha07] R. Khalaf. Note on Syntactic Details of Split BPEL-D Business Processes. Technical
Report Computer Science 2007/02, University of Stuttgart, Faculty of Computer
Science, Electrical Engineering, and Information Technology, Germany, University
of Stuttgart, Institute of Architecture of Application Systems, 2007. (Cited on
pages 16 and 18)

[Kha08] R. Khalaf. Supproting business process fragmentation while maintaining operational
semantics : a BPEL perspective. Doctoral thesis, University of Suttgart, Factulty of
Computer Science, Electrical Engineering, and Information Technology, Germany,
2008. (Cited on pages 12, 16, 18, 20, 24, 29, 30, 36, 46, 53, 56, 63, 65, 77, 87
and 89)

[KKL07] O. Kopp, R. Khalaf, F. Leymann. Reaching Definitions Analysis Respecting Dead Path
Elimination Semantics in BPEL Processes. Technischer Bericht Informatik 2007/04,
Universität Stuttgart, Fakultät Informatik, Elektrotechnik und Informationstechnik,
Germany, Universität Stuttgart, Institut für Architektur von Anwendungssystemen,
2007. (Cited on page 48)

[KKL08a] R. Khalaf, O. Kopp, F. Leymann. Maintaining Data Dependencies Across BPEL
Process Fragments. International Journal of Cooperative Information Systems (IJCIS),
17(3):259–282, 2008. doi:10.1142/S0218843008001828. (Cited on pages 11, 12,
18, 20, 21, 22, 49, 51, 54, 64, 65, 66, 69, 71, 77, 87, 92, 93 and 94)

[KKL08b] O. Kopp, R. Khalaf, F. Leymann. Deriving Explicit Data Links in WS-BPEL Processes.
In IEEE International Conference on Services Computing. IEEE, 2008. (Cited on
pages 16, 18, 48, 87, 94 and 95)

[KL06] R. Khalaf, F. Leymann. Role-based Decomposition of Business Processes using
BPEL. In International Conference on Web Services (ICWS 2006), pp. 770–780. IEEE
Computer Society, 2006. doi:10.1109/ICWS.2006.56. (Cited on pages 11, 12, 18,
20, 21, 24, 36, 77, 87, 91 and 94)

[Kop11a] O. Kopp. Algorithm for Weakly Connected Components with Constraint Satisfaction.
E-mail, 2011. (Cited on page 58)

[Kop11b] O. Kopp. Grounding Syntax. E-mail, 2011. (Cited on pages 8 and 75)

[Kop11c] O. Kopp. Topology Syntax. E-mail, 2011. (Cited on pages 8 and 74)

[OAS07] OASIS. Web Services Business Process Execution Language Version 2.0,
2007. URL http://docs.oasis-open.org/wsbpel/2.0/OS/wsbpel-v2.0-OS.
pdf. (Cited on pages 8, 15, 16, 23, 28, 42, 43 and 52)

[Off97] U. S. G. A. Office. Business Process Reengineering Assessment Guide. 1997. (Cited
on page 11)

98

http://docs.oasis-open.org/wsbpel/2.0/ OS/wsbpel-v2.0-OS.pdf
http://docs.oasis-open.org/wsbpel/2.0/ OS/wsbpel-v2.0-OS.pdf

Bibliography

[OMG11] OMG. Business Process Model and Notation (BPMN) Version 2.0, 2011. (Cited on
page 16)

[W3C99] W3C. XML Path Language (XPath), 1999. URL http://www.w3.org/TR/xpath/.
(Cited on page 15)

[W3C01] W3C. Web Services Description Language (WSDL), 2001. URL http://www.w3.
org/TR/wsdl. (Cited on page 66)

[W3C05] W3C. Web Services Choreography Description Language Version 1.0, 2005. URL
http://www.w3.org/TR/ws-cdl-10/. (Cited on page 16)

[WCL+05] S. Weerawarana, F. Curbera, F. Leymann, T. Storey, D. F. Ferguson. Web Services
Platform Architecture: SOAP, WSDL, WS-Policy, WS-Addressing, WS-BPEL, WS-
Reliable Messaging and More. Prentice Hall PTR, Upper Saddle River, NJ, USA,
2005. (Cited on page 15)

All links were last followed on May 4, 2012.

99

http://www.w3.org/TR/xpath/
http://www.w3.org/TR/wsdl
http://www.w3.org/TR/wsdl
http://www.w3.org/TR/ws-cdl-10/

Declaration

All the work contained within this thesis,
except where otherwise acknowledged, was
solely the effort of the author. At no
stage was any collaboration entered into
with any other party.

(Daojun Cui)

	1 Introduction
	2 Background and Related Works
	2.1 Background
	2.2 Related Work

	3 Process Fragmentation
	3.1 Main Process Specification
	3.2 Partition Specification
	3.3 Creating WSDL Definitions and Fragment Processes
	3.3.1 Creating WSDL Definitions
	3.3.2 Creating Fragment Processes

	3.4 Collecting Information for BPEL4Chor
	3.5 Summary

	4 Control Link Fragmentation
	4.1 Concept to Fragment Control Link
	4.2 Fragmenting Control Link in BPEL
	4.2.1 Algorithm for Control Link Fragmentation
	4.2.2 Constructing Prerequisite
	4.2.3 Creating Sending Block
	4.2.4 Creating Receiving Block

	4.3 Summary

	5 Data Dependency Fragmentation
	5.1 Data-Flow Analysis of BPEL Process
	5.2 Writer Dependency Graph (WDG)
	5.2.1 Definition of WDG
	5.2.2 Construction of WDG

	5.3 Partitioned Writer Dependency Graph (PWDG)
	5.3.1 Definition of PWDG
	5.3.2 Construction of PWDG

	5.4 Local Resolver and Receiving Flow
	5.4.1 Message Specification
	5.4.2 Creating Prerequisites
	5.4.3 Creating Message Links for Participant Topology and Grounding

	5.5 Putting All Together
	5.6 Summary

	6 Output in BPEL4Chor Choreography
	6.1 Participant Behavior Description (PBD)
	6.2 Participant Topology
	6.3 Participant Grounding

	7 Architecture and Implementation
	7.1 Architecture
	7.1.1 Application Infrastructure
	7.1.2 Component and Data Flow Overview

	7.2 Implementation
	7.2.1 Partition Specification Model
	7.2.2 BPEL4Chor Data Model
	7.2.3 WDG and PWDG Graph Model

	8 Summary and Future Work
	A Errata of Related Works
	B Definitions and Notions
	B.1 Definitions
	B.1.1 Public Functions
	B.1.2 Partition Specification
	B.1.3 Data-Flow Analysis
	B.1.4 Writer Dependency Graph (WDG)
	B.1.5 Partitioned Writer Dependency Graph (PWDG)
	B.1.6 Local Resolver and Receiving Follow

	B.2 Notion Summary

	Bibliography

