
Diplomarbeit Nr. 3264

 Simulation des Verhaltens von

Zellkomponenten in biologischen

Netzwerken

mit Hilfe von Workflow Technologie

Yue Zou

Studiengang:

Prüfer:

begonnen am:

beendet am:

CR-Klassifikation:

Betreuer:

Informatik

Jun.-Prof. Dr.-Ing. Dimka Karastoyanova

Dipl.-Math. Michael Reiter

21. Oktober 2011

07. Mai 2012

H.3.5, H.3.4, I.6.3, I.6.7

Universität Stuttgart
Universitätsstraße 38
D - 70569 Stuttgart

Institut für Architektur von Anwendungssystemen

Inhaltsverzeichnis

1 Einleitung ... 3

1.1. Motivation und Aufgabenstellung ... 4

1.2. Aufbau der Arbeit .. 5

2. Grundlagen .. 6

2.1. SOA und Web Services .. 6
2.1.1. Service-orientierte Architektur (SOA) ··· 6
2.1.2. Web Service ··· 8

2.2. Workflow ... 12
2.2.1. Geschäftsprozesse und Workflows ··· 12
2.2.2. Scientific Workflows ·· 14
2.2.3. Workflow Management Systeme ·· 15
2.2.4. Business Process Execution Language ··· 16

2.3. e-Science .. 18

3. Verwendete Software .. 21

3.1. Simulationssoftware: Octave .. 21

3.2. Web Service Wrapper .. 22
3.2.1. Web Service Interface (WSI) ·· 23

3.3. Serverplattform ... 25

4. Reaktionsnetzwerke .. 27

4.1. Biologische Netzwerke .. 27

4.2. Reaktionsnetzwerke .. 28
4.2.1. Modellierung der Reaktionsnetzwerke ··· 29
4.2.2. Parameteridentifikation ·· 29

5. Spezifikation .. 32

5.1. Anforderungen .. 32

1. Einleitung

2

5.2. Lebenszyklus einer Simulationsinstanz von Octave Service Adapter 33

5.3. Octave Service Adapter ... 35

6. Entwurf .. 41

6.1. Architektur des Octave Adapters .. 41

6.2. Web Service Operationen vom Octave Adapter ... 42

6.3. Octave basierte Workflows ... 46

7. Implementierung ... 49

7.1. Ablauf der Octave-Anwendungen ... 49

7.2. Modifizierter Ablauf mit dem Octave Adapter .. 51

7.3. Weitere Anmerkungen zur Implementierung ... 53
7.3.1. Erstellen eines Dynamic Web Projects ·· 53
7.3.2. Erstellen einer WSDL-Datei ··· 54
7.3.3. Erstellen der Web Service-Klassen mit Axis2 ·· 55
7.3.4. Erstellen eines BPEL-Prozesses ·· 55
7.3.5. Verwendete Verzeichnisse auf dem Server ··· 56
7.3.6. Test ·· 56

8. Laufzeitumgebung ... 58

8.1. Virtualisierte Komponenten .. 58

8.2. Interaktion mit der Laufzeitumgebung ... 59

9. Zusammenfassung und Ausblick .. 61

Anhang ... 63

WSDL-Operationen von Octave Web Service .. 63

Abkürzungsverzeichnis ... 76

Abbildungsverzeichnis .. 77

Tabelleverzeichnis .. 79

Literaturverzeichnis .. 80

1. Einleitung

3

1 Einleitung

In einer zunehmend globalisierten Welt, in der die Bereiche Wirtschaft und Wissenschaft
zusammenwachsen, sorgt die effektive und effiziente Arbeitsweise dafür, die qualitativ
besseren Produkte in kürzerer Zeit zu entwickeln und gleichzeitig die menschliche Arbeit zu
erleichtern. Durch die Globalisierung können die in der Komplexität gewachsenen Aufgaben
nicht mehr zentral an einem Standort erledigt werden, sondern müssen in verschiedene
Arbeitsabläufe aufgegliedert und dezentral auf lokalen Standorten verteilt werden. Dafür
spielen das Koordinieren und das Verwalten der Workflows eine zentrale Rolle. Die
Workflowsysteme, in denen die verschiedenen Workflows gesteuert und ausgeführt werden,
werden durch Rechnerunterstützung optimal strukturiert, mit dem Ziel intelligente und
automatisierte Arbeitsabläufe zu realisieren.

Die Workflow-Technologie wird auch im wissenschaftlichen Bereich, beispielsweise für die
hochkomplexen Simulationen, die hohen Zeitaufwand und hohe Rechenkapazität benötigen,
verwendet und weiterentwickelt. Deshalb wurden Scientific Workflows einführt, mit denen
die während der Simulation und Berechnung entstehenden Daten, zusammenführend
analysiert werden können [6]. Für eine optimale Zusammenführung und Verteilung von Daten
und Rechenkapazitäten ist eine sinnvolle Infrastruktur notwendig, die benutzerfreundlich ist.
Solche Infrastruktur kann auf Basis der serviceorientierten Architektur (SOA) realisiert
werden.

Die Hauptbestandteile der SOA sind Dienstverzeichnis, Dienstanbieter und Dienstnutzer, die
ein sogenanntes SOA Dreieck bilden. Auf der Basis des SOA-Dreieckkonzeptes wurde ein
Web Service entwickelt, der die Zusammenarbeit der auf unterschiedlichen Plattformen
betriebenen Anwendungsprogramme unterstützt. In dieser Arbeit wird eine Anwendung auf
Basis einer Octave1

[6]

-basierten Simulation für ein biologisches Reaktionsnetzwerk betrachtet.
Für diese Anwendungen wird ein Web Service mit der XML-basierten Web Service
Technologie erstellt. Darüber hinaus wird ein entsprechender Workflow aufgebaut, der durch
eine deskriptive Sprache BPEL (Web Services Business Process Execution Language) die
Ausführungsreihenfolge von den erstellten Web Services bestimmt. Dadurch wird eine
automatisierte Ausführung der Simulationsanwendung ermöglicht.

1 GNU Octave: http://www.gnu.org/software/octave/

http://www.gnu.org/software/octave/�

1. Einleitung

4

Diese Arbeit konzentriert sich auf die Bereiche Workflow- und Web Service Technologie
sowie biologische Reaktionsnetzwerke und ist interdisziplinär sowie anwendungsorientiert
ausgelegt. Sie ermöglicht eine Zusammenarbeit von Wissenschaftlern an verschiedenen Orten
und auf weltweit verteilten Ressourcen. Dies kann unter dem Begriff e-Science
zusammengefasst werden. In der Arbeit wird eine computergestützte und modellbasierte
Simulation über Parameteridentifikation im Reaktionsnetzwerk dargestellt.

Eine interdisziplinäre Zusammenarbeit findet im Rahmen des Projektes „Exzellenzclusters
Simtech2

1.1. Motivation und Aufgabenstellung

“ statt. Die in dieser Arbeit erstellten Methoden dienen als Grundlagen für die
Ausführung von systembiologischen Simulationen mit Hilfe der Workflow- und Web
Service-Technologie. Dadurch können die Benutzer mit weniger Programmierhintergrund als
bislang komplexe Simulationen einfach durchführen.

Im Rahmen dieser Arbeit wird eine automatisierte Ausführung von Octave-basierten
Simulationen mit Hilfe von Workflow- und Web Service Technologie vorgestellt.

Auf Basis von einem Web Service Interface [23] soll ein Web Service Plugin erstellt werden,
über den die Simulationsanwendungen angesprochen werden können. Zum Aufbau des Web
Service Plugins gehört die Bereitstellung eines Web Services für die Octave-Anwendungen.
Dabei wird die Web Services Description Language (WSDL) [3] benötigt, um die Web
Service-Schnittstellen zu beschreiben.

Zur Ausführung der Web Service-basierten Simulation werden Java-Klassen verwendet, die
aus WSDL-Operationen generiert und weiter ergänzt werden können. Die Ergebnisdateien der
Simulation sollen in einer Datenbank gespeichert und zu einem anderen Zweck weiter
verwendet werden. In der Simulation wird eine graphische Darstellung als Ergebnis erzeugt,
dafür muss eine Schnittstelle für die Visualisierung unterstützt werden.

Weiterhin soll ein BPEL-Prozess erstellt werden, der dem Ablauf der Simulation entspricht.
Die einzelne Aktivität des Prozesses setzt sich aus den entsprechenden WSDL-Operationen
zusammen, mit deren Hilfe eine Web Service-Schnittstelle aufgerufen und die
Simulationsanwendung ausgeführt wird.

Es soll eine Laufzeitumgebung erstellt werden, in der die Web Service-Schnittstelle, die
Simulationsanwendungen sowie die Workflow-Umgebung zusammen ausgeführt werden
können.

2 Exzellenzclusters Simtech : http://www.simtech.uni-stuttgart.de/

http://www.simtech.uni-stuttgart.de/�

1. Einleitung

5

1.2. Aufbau der Arbeit

Die vorliegende Arbeit gliedert sich wie folgt in neun Kapitel:

Kapitel 2 – Grundlagen: In diesem Kapitel findet sich zunächst eine kurz Vorstellungen von
SOA und Web Service. Danach folgt eine Beschreibung der
Workflow-Technologie. Bei dem Abschluss des Kapitels wird der Begriff
e-Science erläutert.

Kapitel 3 – Verwendete Software: Sowohl die Simulationsprogramm als auch die Softwares
in der Workflow- und Web Service-Umgebung werden in diesem Kapitel
vorgestellt.

Kapitel 4 – Reaktionsnetzwerke: Dieses Kapitel bezieht sich auf den Hintergrund der
Simulationen. Die Parameteridentifikation, die für die Simulation relevant ist,
wird zum Schluss des Kapitels beschrieben.

Kapitel 5 – Spezifikation: Die Anforderungen an den Octave Web Service werden in diesem
Kapitel vorgestellt. Die Idee zum Erstellen eines Web Service Plugin für die
Octave-Anwendungen (auch Octave Adapter genannt) wird beschrieben.

Kapitel 6 – Entwurf: Kapitel sechs zeigt zunächst die Architektur des Octave Adapters. Die
Parameter der einzelnen Web Service Operationen werden erklärt. Schließlich
wird ein Octave-basierter Workflow-Prozess dargestellt.

Kapitel 7 – Implementierung: Der Anfang des Kapitels behandelt den ursprünglichen und
den modifizierten Simulationsablauf. Dann werden die weiteren Möglichkeiten
der Implementierungen vorgestellt.

Kapitel 8 – Laufzeitumgebung: Eine spezielle Laufzeitumgebung wird dargestellt, die von
der Web Service-Schnittstelle sowie der Workflow-Prozess genutzt wird.

Kapitel 9 – Zusammenfassung und Ausblick: Abschließend erfolgen eine
Zusammenfassung der Ergebnisse der Arbeit und ein Ausblick auf mögliche
Erweiterungen.

2. Grundlagen

6

2. Grundlagen

In diesem Kapitel werden die fachlichen Grundlagen der Arbeit dargestellt. Ein Überblick über
SOA und Web Services wird zunächst gegeben (Abschnitt 2.1). Danach folgt eine kurz
Einführung in Workflow, Scientific Workflow, Workflow Management Systeme sowie
Workflow-Sprache (Abschnitt 2.2). Zum Abschluss werden das e-Science und eine Simulation
in Reaktionsnetzwerke erläutert (Abschnitt 2.3)

2.1. SOA und Web Services

Service-orientierte Architekturen (SOA) und Web Service (WS) weisen zahlreiche
Zusammenhänge auf, da der Web Service und eine Vielzahl der damit in Verbindung stehenden
Spezifikationen eine mögliche Implementierungstechnologie bieten, um die Anforderungen
einer SOA zu erfüllen. Aus diesen Gründen ist es sinnvoll auf beide Themen einzugehen.

2.1.1. Service-orientierte Architektur (SOA)

Da eine einheitliche Definition einer SOA nicht existiert, wird im Folgenden auf aufgrund ihrer
Generalität eine Definition nach Dostal et al. [1] angegeben:

 Abbildung. 1 Grundlegende Merkmale einer SOA [1]

2. Grundlagen

7

Unter einer SOA versteht man eine Systemarchitektur, die vielfältige, verschiedene und
eventuell inkompatible Methoden oder Applikationen als wiederverwendbare und offen
zugreifbare Dienste repräsentiert und dadurch eine Plattform und sprachenunabhängige
Nutzung und Wiederverwendung ermöglicht.

Abbildung. 2 verdeutlicht, dass das Fundament der SOA aus offenen Standards, Sicherheit und
Einfachheit besteht. Die tragenden Säulen stellen die verteilten Dienste, die lose Kopplung, der
Verzeichnisdienst und die prozessorientierte Struktur dar.

Wie der Name bereits aufzeigt, liegt der Dienst (engl. Service) einer SOA im Mittelpunkt. Um
den Dienst eines unbekannten Anbieters verstehen zu können, müssen alle Schnittstellen des
Dienstes in maschinenlesbarer Form beschrieben vorliegen. Dazu werden die offenen
Standards genutzt. Die Einfachheit einer SOA bedeutet, dass die Nutzung der Dienste es
ermöglicht, diese in verschiedenen Umgebungen mehrfach ohne Aufwand wiederzuverwenden.
Eine weitere Voraussetzung für eine SOA ist die Sicherheit, die von Anfang an beachtet werden
sollte. Bei der losen Kopplung (loose coupling) werden die Dienste von Anwendungen oder
anderen Diensten bei Bedarf dynamisch gesucht, gefunden und eingebunden [1]. Damit
Funktionalitäten dynamisch eingebunden werden können, müssen die gewünschten Dienste
zunächst ausfindig gemacht werden, was mittels eines Verzeichnisdienstes erfolgen kann, in
dem zur Verfügung stehende Dienste registriert werden.

Unter den Beteiligten der SOA bestehen darüber hinaus drei weitere Rollen: Dienstverzeichnis,
Dienstanbieter, Dienstnutzer. Der Zusammenhang zwischen diesen Rollen lässt sich in einem
SOA-Dreieck darstellen. Abbildung. 1 stellt dem Dienstanbieter eine Plattform zur Verfügung,
welche über ein Netzwerk Zugriff auf mindestens einen Dienst ermöglicht. Um die Dienste von
Nutzern finden zu können, registriert der Dienstanbieter seine Dienste unter einem
Verzeichnisdienst. Das Finden von Diensten erfolgt mittels eines Dienstverzeichnisses. Der
Dienstnutzer greift über die veröffentlichten Schnittstellen auf die Dienste eines
Dienstanbieters zu, um nach den passenden Diensten zu suchen.

Abbildung. 2 Das Dreieck einer SOA [1]

2. Grundlagen

8

2.1.2. Web Service

Ähnlich wie SOA existiert keine verbindliche Definition bezüglich Web Services. Jedoch sind
diese durch eine ständige Weiterentwicklung, und Verfeinerung von Standards gekennzeichnet.
Die Autoren Dostal et al. [2] werten die Entwicklung der Definition von WS des W3C (World
Wide Web Consortium), die im Allgemeinen und Abstrakten folgende Definition liefert:

„A Web Service is a software system designed to support interoperable
machine-to-machine interaction over a network. It has an interface described in a
machine-processable format (specifically WSDL). Other systems interact with the Web
Service in a manner prescribed by its description using SOAP messages, typically
conveyed using HTTP with an XML serialization in conjunction with other
Web-related standards.“ (August 2003)

Dabei werden die SOA-Komponenten Kommunikation, Dienstbeschreibung und
Verzeichnisdienst mit den Web Service Standards SOAP (engl. Simple Object Access Protocol),
WSDL (engl. Web Service Description Language) und UDDI (engl. Universal Description,
Discovery and Integration) konkretisiert.

Abbildung. 2 stellt das so genannte SOA-Dreieck dar. Wenn ein Dienstanbieter einen Dienst
bereitstellen möchte, erstellt dieser zunächst eine Schnittstellenbeschreibung seines Dienstes
mittels eines XML-basierten WSDL-Dokuments, welches sich in einem UDDI-basierten
Verzeichnisdienst veröffentlichen lässt. Ein Dienstnutzer kann im Verzeichnisdienst nach
passenden Diensten suchen, und erhält eine URI-Referenz auf die WSDL-Datei des
gewünschten Web Service als Suchergebnis. Diese WSDL-Beschreibung kann zum Einbinden
des gewünschten Web Service innerhalb der gewünschten Anwendung genutzt werden.
Letztlich kommuniziert der Dienstnutzer über das Protokoll SOAP mit dem Dienstanbieter.

Dienstbeschreibung mittels WSDL

Zur Dienstbeschreibung wird die WSDL eingesetzt, die einen Dienst syntaktisch oder
strukturell in Form eines XML-Dokuments beschreibt. Zwar bestehen zwei Versionen der
WSDL, wobei die Version 1.0 bislang über die größte Unterstützung an Software-Tools
verfügt.

Die WSDL-Spezifikation besteht aus einem abstrakten und einem konkreten Teil (siehe
Abbildung. 3). Der abstrakte Teil beschreibt die Funktionalitäten eines Web Services.
Innerhalb des Elements <wsdl:types> werden die Datentypen definiert. <wsdl:message> stellt
dar, welche Nachrichten zwischen Dienstnutzer und Dienstanbieter ausgetauscht werden. Die
Operationen, die dem Dienstnutzer zur Verfügung gestellt werden, befinden sich in
<wsdl:portType>.

Im konkreten Teil der WSDL-Datei stehen die Informationen zu binding, und service. Mittels
des Elements <wsdl:binding> wird das Nachrichtenformat definiert und dem abstrakten
PortType ein konkretes Transportprotokoll (z.B. SOAP, HTTP) zugeordnet. Zur Modellierung

2. Grundlagen

9

von SOAP Interaktionstypen, kann bei der Bindung an das SOAP-Protokoll zwischen
Document-Style und RPC-Style ausgewählt werden. Im Element <wsdl:service> existieren ein
oder mehrere Elemente <wsdl:port>, die die Endpunkte darstellen. Diese führen die Bindings
mit konkreten Netzwerkadressen (URLs) zusammen, unter denen die Implementation eines
abstrakten PortTypes zu erreichen ist.

Kommunikation mittels SOAP

Bei SOAP handelt es sich um „ ein XML-basiertes und sprach- und plattformunabhängiges
Kommunikationsprotokoll zum Austausch strukturierter Informationen.“ [2] Zur
Kommunikation senden und empfangen Web Services SOAP-Nachrichten. Eine
SOAP-Nachricht besteht aus bis zu drei Teilen (siehe Abbildung. 4): dem SOAP-Envelope als
Root-Element der SOAP-Nachricht, einem optionalen SOAP-Header und dem SOAP-Body,
der die eigentlichen Nutzdaten (engl. payload) enthält.

Eine SOAP-Nachricht kann entweder direkt vom Sender zum Empfänger übermittelt oder über
mehrere Zwischenstationen (engl. intermediaries) übertragen werden; jede Station in der
Übertragungskette (engl. message path) ist ein Knoten (engl. node). Wenn eine Nachricht von
einem Kommunikationspartner nicht verarbeitet werden kann, wird ein SOAP-Fehler (engl.
SOAP fault) als Antwortnachricht versendet.

SOAP schreibt nicht vor, mit welchem Transportprotokoll eine Nachricht übertragen werden
muss, sondern wählt ein passendes Protokoll aus. „Wird allerdings ein gewisses Maß an
Übertragungssicherheit (ähnlich einem Einschreiben) benötigt, dann sollte eher ein
Messaging-System wie WebSphereMQ gewählt werden. Aufgrund seiner Herkunft aus dem
Internet-Umfeld ist das zurzeit am häufigsten genutzte Transportprotokoll für
SOAP-Nachrichten natürlich HTTP.“[2]

Abbildung. 3 Syntaktische Struktur eines WSDL-Dokuments [9]

2. Grundlagen

10

WS-Addressing

In den klassischen Web-Service-Mechanismen werden die Endpunkte lediglich mittels einer
URI in der WSDL-Datei identifiziert, wodurch keine Möglichkeit besteht, zusätzliche
Metadaten auf standardisierte Art und Weise zum Bestandteil der Angaben über den Endpunkt
zu machen.

Das Web-Addressing liefert u.a. die Möglichkeit, die Endpunkte als XML-Dokument zu
formulieren und weitere Metadaten (z.B. Policy-Informationen) zu kodieren. Dazu führt es
noch zwei neue Konzepte ein: Die Endpunkt-Referenz(engl. endpoint reference) sowie
zusätzliche Nachrichten-Adressierungseigenschaften (engl. message addressing properties).

Eine Endpunkt-Referenz enthält alle notwendigen Informationen für die
Webservice-Kommunikation. Für den jeweiligen Endpunkt können zusätzliche Metadaten als
Referenz-Parameter (engl. reference parameters) im Dokument formuliert, und bei der
Nachrichtenübertragung auf eigenständige SOAP-Header-Elemente abgebildet werden.

Neben den Endpunkt-Referenzen bestehen zudem die von WS-Addressing definierten
zusätzlichen Nachrichten-Adressierungseigenschaften, die diverse Angaben für die
SOAP-Interaktion bezüglich Routing und Kommunikationspfad umfassen. Alle Angaben
befinden sich in den SOAP-Header-Elementen.

Listing 1 stellt ein Beispiel einer SOAP-Nachricht mit eingebetteten
WS-Addressing-Informationen dar, wobei die Angabe „To“ die Ziel-Adresse des Empfängers
als URI enthält. „MessageID“ identifiziert die Nachrichten in Zeit und Raum.
„ReplayTo“ definiert den Antwort-Endpunkt als Endpunkt-Referenz und „Action“ enthält die
angedachte Service-Aktivität, welche typischerweise an ein Element aus der zugehörigen
WSDL-Datei gebunden wird.

Abbildung. 4 Aufbau von SOAP-Nachrichten [9]

2. Grundlagen

11

<S:Envelope xmlns:S=http://www.w3.org/2003/05/soap-envelope

xmlns:wsa="http://www.w3.org/2005/08/addressing"
xmlns:example="...">

<S:Header>
<wsa:MessageID> uuid:6B29FC40-CA47-1234-ABCD-00DD010662DA
</wsa:MessageID>
<example:subsidiary> foo street </example:subsidiary>
<example:session> 42bdjhd8hw </example:session>
<wsa:ReplyTo>
<wsa:Address>http://example.org/customerNotify</wsa:Addre

ss></wsa:ReplyTo>
<wsa:To>http://example.com/Purchasing</wsa:To>
<wsa:Action>http://example.com/SubmitOrder</wsa:Action>

</S:Header>
<S:Body>
...
</S:Body>

</S:Envelope>

Listing 1. Beispiel für SOAP 1.2-Nachricht mit WS-Addressing-Informationen [1]

Verzeichnisdienst

Der Verzeichnisdienst bildet ein weiteres zentrales Bestandteil einer SOA. Mittels
standardisierter Schnittstellen wird eine lose Kopplung von Anwendungen ermöglicht. Die
„Universal Description, Discovery and Integration“(UDDI) zählt zu einem der grundsätzlich
verschiedenen Spezifikationen für Verzeichnisdienste.

Innerhalb eines UDDI-Verzeichnisses kann ein Dienst mit einer Dienstbeschreibung (z.B. in
Form eines WSDL-Dokuments) in einer Datenbank verwahrt werden, damit ein potentieller
Nutzer diesen Dienst und eine Anleitung zu dessen Nutzung finden kann.

Abbildung. 5 UDDI-Datenmodell [2]

http://example.org/customerNotify%3c/wsa:Address�
http://example.org/customerNotify%3c/wsa:Address�

2. Grundlagen

12

Das UDDI-XML-Schema und die UDDI-API sind zwei große Komponenten von UDDI. Beim
UDDI-XML-Schema werden vier Hauptentitäten unterschieden. In der businessEntity stehen
Informationen bezüglich Organisationen oder Unternehmen durch Serviceanbieter zur
Verfügung. Im Teil BusinessService werden die von businessEntity bereitgestellten Dienste
zusammengefasst, die jeweils weiter an verschiedene Übertragungsprotokolle gebunden
werden. Das bindingTemplate liefert sowohl technische Informationen zur Nutzung eines
Dienstes als auch eine Adresse, unter der ein Dienst aufgerufen werden kann. Ein oder mehrere
Dokumente werden durch das bindingTemplate zusammengefasst, welche eindeutige
technische Beschreibungen zum Dienst beinhalten (das sog. tModel).

2.2. Workflow

Das vorliegende Unterkapitel soll zunächst einen Einblick in die Workflows geben, um
anschließend genauer auf Scientific Workflows und Workflow Management Systeme
eingehen zu können. Zum Schluss erfolgt die Beschreibung der Business Process Execution
Language (BPEL).

2.2.1. Geschäftsprozesse und Workflows

Die Begriffe Geschäftsprozess (kurz genannt Prozess) und Workflow liegen sehr eng
zusammen, jedoch können je nach Sichtweise die Begriffe unterschieden werden. In
Abbildung 6 wird der Prozess in der reellen Welt durch Prozessmodelle dargestellt, während
der Workflow einen Prozess technisch unterstützt.

Ein Prozess wird durch die Modellierung eines Verlaufs festgelegt, mit dem Leistungen oder
Informationen transportiert werden. Dieser Verlauf wird als ein Prozessmodell bezeichnet.
Nach [8] enthält ein Prozessmodell alle Aktivitäten eines Prozesses sowie die Pfade zwischen
diesen Aktivitäten und dient zudem als eine Vorlage, die ein Prozess initiiert. Aus dem
Prozessmodell entsteht durch die Ausführung eine sogenannte Prozessinstanz.

 Abbildung. 6 Geschäftsprozess und workflow [8]

2. Grundlagen

13

Prozesse können nicht nur im Alltag von Personen durchgeführt, sondern auch auf Rechnern
ausgeführt werden. Dieser Anteil eines Prozesses bezüglich der Rechner führt zum Begriff
des Workflow-Modells. Analog zum Prozessmodell kann das Workflow-Modell zur
Erstellung eines Workflows verwendet werden.

Da alle Prozesse der vorliegenden Arbeit lediglich auf Rechnern ausgeführt wurden, besteht
kein Unterschied zwischen den Begriffen Prozessmodell und Workflow-Modell, sowie
Prozessinstanz und Workflow-Instanz. Daher werden diese im Folgenden jeweils als
Synonym verwendet.

Workflow Dimensionen

Nach [8] werden Workflows mittels drei verschiedener Dimensionen dargestellt, die in einem
Würfel graphisch gezeichnet werden.

What

In dieser Dimension spiegelt sich die Geschäftslogik eines Workflows wieder und beschreibt
zugleich, welche Aktivitäten wie in dem Prozess ausgeführt werden müssen. Zwischen den
Aktivitäten stehen die Control Flows, die sowohl sequentiell als auch parallel definiert
werden können.

Who

Diese Dimension spezifiziert die Organisationsstruktur eines Unternehmens in Hinblick auf
Abteilungen, Rollen und Personen. Verwendet werden all diese Informationen, um zu
beschreiben, wer die Aktivitäten ausführen kann. Dazu kann eine entsprechende Query
erstellt werden, um die Durchführung der Aktivitäten durch passende Personen zu
koordinieren.

Abbildung. 7 Drei Workflow Dimensionen [8]

2. Grundlagen

14

With

Diese Dimension bestimmt IT-Ressourcen (Anwendungen, Hardware usw.), die für die
Ausführung der Aktivitäten notwendig sind.

2.2.2. Scientific Workflows

In den letzten Jahren schenkte man nicht nur im Geschäftsbereich den Workflows mehr
Beachtung, sondern auch im wissenschaftlichen Bereich. Aufgrund von Berechnungen großer
komplexer und heterogener Datenmengen konnte auf Basis von Workflows eine Technologie
geschaffen werden, mit dessen Hilfe derartige Berechnungen automatisiert durchgeführt
werden können. Entsprechend wurde der Begriff Scientific Workflow eingeführt.

Scientific Workflows werden verwendet, um beispielsweise Simulationen in der Wissenschaft
zu beschreiben und auszuführen. Solche Simulationen sind oftmals lang laufend, was die
Aufteilung einer Aufgabe in verschiedene kleine Aufgaben erfordert. Die Ergebnisse können
in einem Repository zwischengespeichert oder als Eingabe für den nächsten Schritt weiter
verwendet werden.

Zu den positiven Eigenschaften von Scientific Workflows zählen beispielsweise, der nahtlose
Zugriff auf Ressourcen und Services sowie die Komposition auf Basis von
wiederverwendbaren Workflow-Fragmenten. Einige Workflow Management Systeme
unterstützen lang laufende Workflows durch den asynchronen Aufruf von Services. Dies
gestattet der Workflow-Engine im Hintergrund zu laufen, ohne ständigen Kontakt zu den
Services haben zu müssen. Weitere Eigenschaften von Scientific Workflows werden in [10]
aufgezeigt.

Abbildung. 8 präsentiert ein Lebenszyklus von Scientific Workflows. Auf den ersten Blick

Abbildung. 8 Lebenszyklus eines Scientific Workflows [11]

2. Grundlagen

15

sieht es so aus, dass in der ersten Phase die Modellierung des Workflows erfolgt.
Anschließend werden diese Workflows ausgeführt, und die Informationen der
Prozessinstanzen durch eine Monitoring-Komponente gesammelt und bearbeitet. Schließlich
werden die Workflows nach der Ausführung analysiert, wobei zum Beispiel die Qualität der
gelieferten Daten überprüft oder nach Fehlern gesucht werden kann. Dadurch können
notwendige Änderungen des Modells erkannt und umgesetzt werden.

Nach [11] unterliegen die Phasen der Modellierung und Ausführung in der Tat nicht einer
strengen Reihenfolge, da Wissenschaftler normalerweise die Scientific Workflows
selbstständig erstellen und sich die Workflows sehr häufig ändern können. In der Regel
erfolgt die Erstellung von Scientific Workflows mittels eines Trial-and-Error Verfahrens.
Durch die in [11] beschriebene Suspend-Aktion kann die Ausführungsphase erneut zurück zur
Modellierungsphase geführt werden. Ausführung und Monitoring werden in eine Phase
zusammengelegt, da nach Meinung von Wissenschaftlern das Monitoring häufig nur die
Daten einer laufenden Workflow Instanz visualisiert.

2.2.3. Workflow Management Systeme

Für die Analyse, Modellierung, Simulation sowie für die Ausführung und Steuerung von
Workflows wird ein Workflow Management System benötigt, welches über die einzelnen
organisatorischen Arbeitsschritte und Abläufe verfügt, die dem Lebenszyklus eines Workflow
entsprechen. Ein Workflow Management System (WfMS) ist ein System, das das Workflow
Management durch IT-Werkzeuge unterstützt. Die Workflow Management Coalition
(WfMC) 3

A system that defines, creates and manages the execution of workflows through
the use of software, running on one or more workflow engines, which is able to
interpret the process definition, interact with workflow participants and, where
required, invoke the use of IT tools and applications.

wie folgendermaßen definiert:

Das WfWS ist nach [7] in folgende vier Bereiche aufgeteilt:

Buildtime

Dieser Bereich dient zur Modellierung von Workflows. Alle Komponenten werden
bereitgestellt, um alle Workflow betreffende Informationen erstellen, testen und
verwalten zu können.

Metamodel

Das Metamodel ist gewissermaßen das Modell eines Modells. Es unterstützt die
Erstellung von Regeln, um einen Prozess, eine Organisation oder eine benötigte
Technologie zu modellieren. Ein Metamodell eignet sich insbesondere zur Darstellung

3 Workflow Management Coalition :http://www.wfmc.org/

http://www.wfmc.org/�

2. Grundlagen

16

der grundlegenden Elemente eines Konzeptes oder Systems sowie zur Strukturierung
von Methoden.

Runtime

Der Runtime-Bereich ist zuständig für die korrekte Ausführung eines modellierten Prozesses.
Die Prozesse aus der realen Welt werden auf Basis der Funktionalität des Runtime-Bereichs
in eine Computer-ausführbare Sprache übersetzt. Für die Instanziierung und Steuerung der
Prozesse sowie für die Interaktion zwischen Anwender und computergestütztem Prozess stellt
der Runtime-Bereich alle Komponenten zur Verfügung, die zur Ausführung einer
Prozessinstanz benötigt werden.

Datebase

Die Database speichert die kompletten Informationen, die vom Buildtime- und
Runtime-Bereich verwendet werden. In diesem Bereich können beliebig viele
Datenbanken genutzt werden.

Für weitere Informationen zu den WfMS-Komponenten sei auf das Buch [7] verwiesen.

2.2.4. Business Process Execution Language

In diesem Abschnitt wird die Business Process Execution Language (nachfolgend BPEL
genannt) beschrieben, die auf der WS-BPEL2.0 Spezifikation4

[9]
 basiert und zudem in dem

Buch beschrieben wird.

BPEL ist eine XML-basierte Sprache, mit der ein Prozess beschrieben und abgebildet werden
kann. Die einzelnen Aktivitäten des Prozesses werden durch Web Services implementiert.
BPEL basiert auf der Kalkül-basierten Sprache XLANG5 und der Graph-basierten Sprache
WSFL6

Listing 2

. Aktuell stellt BPEL in der Version 2.0 zur Verfügung.

 stellt ein Beispiel für den Aufbau eines BPEL-Prozesses dar. Die jeweiligen
Bestandteile werden im Folgenden erläutert.

<process name="prozessname" >

<partnerLinks> ... </partnerLinks>
<partners> ... </partners>
<variables> ... </variables>
<correlationSets> ... </correlationSets>
<faultHandlers> ... </faultHandlers>
<compensationHandler> ... </compensationHandler>

4 WS-BPEL2.0 Spezifikation: http://docs.oasis-open.org/wsbpel/2.0/OS/wsbpel-v2.0-OS.html
5XLANG: http://msdn.microsoft.com/de-de/library/aa577463.aspx
6WSFL: http://www.ibm.com/developerworks/webservices/library/ws-wsfl1/

http://docs.oasis-open.org/wsbpel/2.0/OS/wsbpel-v2.0-OS.html�
http://msdn.microsoft.com/de-de/library/aa577463.aspx�
http://www.ibm.com/developerworks/webservices/library/ws-wsfl1/�

2. Grundlagen

17

<eventHandlers> ... </eventHandlers>
<!—Aktivitäten -->
</activity>

</process>

Listing 2 Beispiel für den Aufbau eines BPEL-Prozesses

Prozess

Nach [9] existieren zwei unterschiedliche Arten von BPEL-Prozessen: abstrakte und
ausführbare Prozesse. Erster beschreibt ein Business Protokoll, das die Kommunikation
zwischen zwei Partnern abbildet, ohne die dahinter stehende Logik genauer zu spezifizieren.
Bei den ausführbaren Prozessen werden die konkrete Implementierung von Prozessen sowie
die eigentliche Logik konkret beschrieben.

Aktivität

Aktivitäten aus einem BPEL-Prozess können Web Services aufrufen, Daten manipulieren,
Fehler erkennen oder einen Prozess beenden. Man unterscheidet zwischen strukturierten
Aktivitäten und Basisaktivitäten.

Basisaktivitäten können nicht zur Gruppierung andere Basisaktivitäten verwendet werden.
Ihre Ausführung innerhalb des jeweiligen Prozesses wird als atomare Operation betrachtet.
Beispielsweise wird ein Web Service mit der Aktivität <invoke> synchron oder asynchron
aufgerufen. Eine Aktivität <receive> muss stets einer Aktivität <reply> vorangegangen
sein, während <receive> nicht unbedingt durch <reply> beantwortet werden muss.

Strukturierende Aktivitäten können andere strukturierte Aktivitäten oder Basisaktivitäten
enthalten und daher rekursiv verwendet, beliebig verschachtelt und kombiniert werden. Sie
beschreiben eine Kontrollflusslogik zwischen den enthaltenen Aktivitäten. Ein Beispiel
hierfür ist die Aktivität <sequence>. Diese stellt dar, wie die enthaltenen Aktivitäten in
einer angegebenen Reihenfolge ausgeführt werden. Mittels der Aktivität <while> können
die enthaltenen Aktivitäten mehrfach in einer Schleife laufen, während die Aktivität <flow>
eine parallele Ausführung realisiert.

Variablen

Mit Variablen können bestimmte Werte in den Prozessen zwischengespeichert werden. Diese
Variablen sind nur in den Scopes sichtbar, in welchen sie definiert werden. Zur Steuerung
eines Kontrollflusses können sie verwendet werden, um den Prozess zu beeinflussen.

Korrelationsmengen

Mittels Korrelationsmengen (Correlation Sets) können unterschiedliche Instanzen eines

2. Grundlagen

18

Prozesses voneinander unterschieden werden. Sobald zu einem Zeitpunkt mehrere
BPEL-Instanzen vorliegen, werden Korrelationsmengen zur Weiterleitung von Nachrichten
an die richtige Instanz verwendet.

Partner Links

Um die in der WSDL-Datei definierten Web Service Schnittstellen innerhalb eines
BPEL-Prozesses zu nutzen, werden Partner Links verwendet. In einem Partner Link werden
eine oder mehrere Rollen definiert, die jeweils einem wsdl:portType zugeordnet sind.

Scopes und Handler

In BPEL kann ein Prozess aus hierarchisch verschachtelten Scopes bestehen. Ein Scope
umfasst Aktivitäten, die Definition von Daten, Partner Links, Korrelationsmengen und
Handler.

In einem Scope existieren drei verschiedene Handler: Event Handler, Fault Handler und
Compensation Handler. Beispielsweise wird ein Event Handler dazu verwendet, im
synchronen Fall den Prozess weiter zu verarbeiten, nachdem ein entsprechendes Ereignis
eingetroffen ist. Sollten bei der Ausführung eines BPEL-Prozesses Fehler auftreten, können
diese mit Hilfe von Fault Handler behandelt werden. Compensation Handler werden
aufgerufen, wenn die dazugehörige Scope rückgängig gemacht werden soll.

2.3. e-Science

Heutzutage arbeiten Wissenschaftler zunehmend vernetzt und interdisziplinär an
verschiedenen Orten und auf weltweit verteilten Ressourcen. Laut Ball [12] wird unter dem
Begriff e-Science (Abkürzung von Enhanced Science) zusammengefasst, dass neue
Plattformen für netzbasierte kooperative Forschung und Zusammenarbeit im
Wissenschaftsbereich entstehen. E-Science beschreibt eine wissenschaftliche
Arbeitsumgebung, die den Austausch von Ressourcen, die Zusammenarbeit in verteilten
Teams und optimierte Kommunikationsprozesse umfasst. Oftmals wird es im Zusammenhang
mit rechenintensiven Anwendungen in verteilten Systemen verwendet, wie beispielsweise im
Umfeld von Grid-Computing. Zudem werden die Bereiche Wissensvernetzung, Open Access
und e-Learning in e-Science gefördert.

Allerdings muss e-Science in einem weiteren Sinn verstanden werden. Das britische National
e-Science Centre (NESC)7

In the future, e-Science will refer to the large scale science that will increasingly be
carried out through distributed global collaborations enabled by the Internet. Typically,

 hat dies folgendermaßen zusammengefasst:

7 National e-Science: http://www.nesc.ac.uk

http://www.nesc.ac.uk/�

2. Grundlagen

19

a feature of such collaborative scientific enterprises is that they will require access to
very large data collections, very large scale computing resources and high
performance visualization back to the individual user scientists.

In vielen wissenschaftlichen Bereichen, wie auch im Bereich von e-Science, spielt die
Simulation eine wichtige Rolle. Im Folgenden soll ein Überblick zur Simulation geschaffen
werden.

Simulation

Eine Simulation, die normalerweise auf Rechnern durchgeführt wird, stellt neben Theorie und
Experiment einen dritten Weg der Wissenschaften dar. Wie bereits erwähnt wurde, erfordert
e-Science die vernetzte und interdisziplinäre Zusammenarbeit sowie den Austausch von
weltweit verteilten Ressourcen. Daher wird eine computergestützte Simulation benötigt.
Diese lassen sich häufig als numerische Lösungen der formalisierten Theorien und als
numerische Computerexperimente darstellen.

Für die Realisierung von Simulationen ist in der vorliegenden Arbeit die Zusammenarbeit von
Biologie, angewandter Mathematik und Informatik besonders wichtig. Dabei liefert die
Mathematik die numerischen Verfahren zu den computergestützten Lösungen der
biologischen Modelle, während die Informatik für diese Modelle verantwortlich ist, die durch
effiziente Algorithmen und Programme computergestützt bearbeitet werden.

Es bedarf viel Vorarbeit, um biologische Prozesse mit Hilfe von Rechnern zu simulieren. Zu
den für diese Arbeit geltenden Vorarbeiten zählen beispielsweise eine mathematische
Modellierung und das Erstellen von Algorithmen für die wissenschaftliche Berechnung und
die Visualisierung. Mathematische Modelle zur Beschreibung von biologischen Prozessen
müssen dazu zunächst computergerecht aufbereitet werden: Algorithmen geben somit
Vorschriften zur Ermittlung von Lösungen an. Schließlich können die Simulationsresultate je
nach Bedarf visuell umgesetzt werden.

Simulation in biologischen Reaktionsnetzwerken

Die Simulation, die in der vorliegenden Arbeit eingesetzt wurde, setzt ihren Fokus auf die
Analyse und Visualisierung durch die biologische Modellierung für Parameteridentifikation
in biologischen Reaktionsnetzwerken. Die biologischen Modelle, die in dieser Arbeit
verwendet werden, sind in verschiedenen nicht-linearen Gleichungen umgesetzt worden, die
auf der chemischen Reaktionskinetik basieren. Dabei werden dauerhafte Messungen des
Status in dem biologischen Netzwerk benötigt, da Strukturänderung in diesen Modellen
spontan erfolgen können und daher berücksichtigt werden müssen. Um eine Realitätsnähe zu
schaffen, werden so genannte Gauß'sche Messfehler in den Modellen auf Basis von
Zufallszahlen erzeugt.

Um die biologischen Modelle zu entwickeln, müssen Parameter aus experimentellen Daten
verwendet werden. Dies führt jedoch zu folgenden zahlreichen Problemen „the data available

2. Grundlagen

20

for this purpose is usually scarce and noisy, and time resolution is low, the optimization
problem is ill-posed, and the performance of standard methods such as least-squares or
maximum likelihood estimation is poor “[15]. Um diese Probleme bei der Nutzung von
Standardmethoden zu umgehen, wird eine so genannte Parameteridentifikation zur Auswahl
des passenden Modells genutzt. Bei einer solchen Parameteridentifikation kann beispielsweise
nach [16] ein bayes'sche Framework eingesetzt werden, mit dem Schätzwerte für die
Parameterverteilung verwendet werden und anschließend deren „Unsicherheit“ berechnet
werden können. Um eine möglichst genaue Parameterverteilung gewährleisten zu können,
wird versucht, die Unsicherheiten im Laufe der Simulation zu minimieren. Das Ergebnis der
Simulation wird visualisiert, damit der Fortschritt überprüft und die aktuelle Unsicherheit des
Modells visuell analysiert werden kann.

Die ausführliche Beschreibung der Reaktionsnetzwerke und Parameteridentifikation befindet
sich in Kapitel 4.

3. Verwendete Software

21

3. Verwendete Software

In diesem Kapitel werden lediglich die Softwares dargestellt, die im Rahmen dieser Arbeit von
wesentlicher Bedeutung sind.

3.1. Simulationssoftware: Octave

GNU Octave kann als Open-Source Implementierung von MatLab8

Die Syntax von Octave ist sehr ähnlich zu der von Matlab. Octave-Programme können meist
von Matlab ausgeführt werden. Umgekehrt ist dies jedoch aufgrund des größeren
Funktionsumfangs von Matlab nicht immer gewährleistet.

 betrachtet werden und
stellt eine interaktive Skriptsprache dar, die speziell für numerische Berechnungen optimiert
wird. Zusätzlich zu der Lösung von Problemen der linearen Algebra und der Integralrechnung,
dem Lösen von Gleichungssystemen und Polynomen etc., ermöglicht es die Definition eigener
Funktionen oder Module, die in C++, C oder Fortran geschrieben sind, zu verwenden. Dadurch
kann Octave problemlos mit individuell benötigten Funktionen erweitert werden.

Für die grafische Ausgabe von zwei- oder dreidimensionalen Ergebnisdaten verwendet Octave
das Visualisierungsprogramm GNUplot.

Datentypen

Der wichtigste Datentyp in Octave ist Matrix, da fast alle Datentypen in Octave als Matrizen
intern bearbeitet werden. Auch Skalare werden intern als 1 × 1 Matrix behandelt. Die
Datentypen unterscheiden sich durch:
 Numerische Objekte: sowohl Skalare als auch Matrizen sind durch die numerischen

Werte zugewiesen. Der Wertebereich liegt zwischen 308102251,2 ×− und 308107977,1 × .

 String-Objekte: sie sind Zeichenfolgen, die zwischen einfachen oder doppelten
Anführungszeichen eingeschlossen sind (”oder ’). Intern speichert Octave Strings als Matrizen
von Zeichen. Alle für Matrizen definierten Indizierungsoperationen arbeiten auch auf Strings.

 Datenstrukturen: Zusammenfassung von Objekten verschiedener Typen. Die Syntax ist
ähnlich wie die C-style Strukturen.

8 http://www.mathworks.de/products/matlab/

http://www.mathworks.de/products/matlab/�

3. Verwendete Software

22

Beispiel:
octave:1> [1 2; 3 4]
ans =
1 2
3 4
octave:2> y = ["a for apple"]
y = a for apple

Operationen

Bei Octave sind normale Operatoren wie z.B. Wertzuweisung (variable = expression),
logische Operatoren (<, <=, >, >=…) und Skalaroperationen (-,*,/ …) vorhanden. Zudem
bestehen zahlreiche Operationen zur Matrixmanipulation, da Matrizen die wichtigsten
Bausteine zur Programmierung in Octave darstellen. Darüber hinaus kommen die üblichen
mathematischen Funktionen z.B. sin, cos, exp, log usw. bei Octave vor. Zusätzlich bietet
Octave viele weitere Funktionen an, die sich mit bestimmten Themengebieten der
Mathematik befassen (lineare Algebra, nicht-lineare Gleichungen, Bildverarbeitung und
Sprachverarbeitung usw.).

Skript und Funktionen

Bei Octave kann eine Skript-Datei so aufgebaut werden, dass die Befehlssequenzen mit einem
beliebigen Texteditor in einer ascii-File mit der Endung .m (sogenannt m-File) abgespeichert
werden können. Zur Ausführung lässt sich das Skript aus der Octave- Kommandozeile mit
dem Dateinamen aufrufen.

In einer Skript-Datei können mehrere Funktionen definiert werden. Die Funktionen werden
wie Skripte innerhalb von Textdateien mit dem Suffix .m gespeichert und analog aufgerufen.
Diesen können jedoch Parameter übergeben werden. In der ersten Zeile der Skript-Datei steht
hierzu:

function[Ausgabeparameter]= nameDerFunction(Eingabeparameter)

Ausgabeparameter steht hier für eine Liste von Parametern, in denen Ergebnisse gespeichert
werden können. Eingabeparameter steht hier für die Liste der Eingabeparameter der Funktion.

3.2. Web Service Wrapper

Eine der Aufgaben dieser Arbeit ist es, Octave-basierte Anwendungen als Web Service zu
erstellen. Dazu wird ein Programm benötigt, welches die Funktionen der
Octave-Anwendungen über eine Web Service Schnittstelle verfügbar machen. Diese Aufgabe
übernimmt ein Web Service Wrapper. Laut Freund [22] ist ein Web Service Wrapper ein

3. Verwendete Software

23

Programm, „das sich wie eine Schale um die einzelnen Funktionen der Anwendung legt, sie
nach innen über verschiedenste Kanäle anbindet und nach außen als Web Service kapselt“.

Die Funktionalität eines Wrappers lässt sich durch zwei Szenarien beschreiben. Das erste
Szenario zielt auf Legacy-Applikationen, die auf Web Services zugreifen wollen. Da dieses
Szenario nicht Bestandteil dieser Arbeit ist, wird darauf nicht weiter eingegangen.

Der Schwerpunkt dieser Arbeit liegt auf dem zweiten Szenario, bei dem eine
Legacy-Applikation die Funktionalität für einen Web Service bereit stellt. Hierbei wird ein
Request in der Regel als SOAP-Message an den Wrapper versendet. Bei jedem Request ruft
der Wrapper die Applikation auf, die die Anforderungen des Requests erfüllt. Zudem schickt
der Wrapper die Nachrichten in der Regel als SOAP-Message zurück.

Um ein Wrapper für die Octave-Anwendung zu entwickeln, wird das in der Diplomarbeit [23]
beschriebene Konzept des Web Service Interface (WSI) als Basis verwendet. Im Folgenden
soll dieses vorgestellt werden.

3.2.1. Web Service Interface (WSI)

Der Zweck des Web Service Interfaces ist es, Web Services auf Basis von
Simulationsanwendungen zu erstellen. Aufgrund der Vielzahl der verschiedenen
Anwendungen und Bibliotheken wurde das Web Service Interface generisch verwendbar
aufgebaut.

Für eine Simulationsanwendung, die bisher noch nicht unterstützt wurde, kann das Web
Service Interface durch Entwicklung eines Plugins erweitert werden (siehe Abbildung. 9). Da
die Octave-Anwendung nicht direkt als Web Service erstellt werden kann, soll ein Octave
Adapter als Plugin entwickelt werden, um eine Octave-basierte Simulation durchzuführen.

Abbildung. 9 Architektur des Web Service Interfaces [23]

3. Verwendete Software

24

Ein generisches Basismodul (auch generischer Adapter genannt) des Web Service Interfaces
wurde im Rahmen der Diplomarbeit [23] erstellt.

Der Java-basierte Basis Web Service läuft im Applikationsserver Apache Tomcat. Der Basis
Web Service beschreibt mit Hilfe von WSDL grundlegende Operationen, die benötigt werden,
damit ein Client eine Simulationsanwendung aufrufen kann. Dazu gehört etwa das Erstellen
einer eindeutigen ID oder einer Verzeichnisstruktur auf einem Rechner, auf dem die
Simulationsanwendung ablaufen soll. Der Basis Web Service bietet allerdings keine
anwendungsspezifischen Operationen an.

Im Instanz Pool werden die Simulationsinstanzen verwaltet. Eine Simulationsinstanz besitzt
stets eine eindeutige ID und umfasst eine Menge von Daten und Verzeichnissen, die
Ausführung eines oder mehrerer Programme sowie deren aktueller Zustand. Als Beispiel soll
Abbildung. 10 dienen, die die möglichen Übergänge zwischen den verschiedenen Zuständen
aufzeigt. Diese Zustände entsprechen den WSDL-Operationen im Basis Web Service.

Die externen Programme (wie z.B. ein Entpacker) werden durch den Programm Manager
ausgeführt. Sobald Anwendungen oder Skripts in einem Archive gespeichert sind, können
diese vom Programm Manager entpackt werden. Weiterhin bietet der Programm Manager die
Möglichkeit, die Ausgabedaten nach der Ausführung eines Programms zu speichern, um die
Daten zu einem späteren Zeitpunkt weiterverwenden zu können.

Der generische Adapter stellt Callback Web Service als einen weiteren Web Service zur
Verfügung. Diese Schnittstelle dient zur Benachrichtigung mittels Simulationsanwendung.
Sobald die Anwendung bereit ist, erhält das Web Service Interface eine Mitteilung, die
Anfragen zu bearbeiten. Anschließend schickt das Web Service Interface eine entsprechende

Abbildung. 10 Lebenszyklus einer Simulationsinstanz aus [23]

3. Verwendete Software

25

Benachrichtigung weiter an den Client.

Octave-Plugin enthält das auf Octave-Anwendung aufgebaute Web Service sowie ein Service
Stub. In dem Octave Web Service werden beispielsweise die Grundfunktionalitäten der
Octave-Anwendungen durch WSDL-Operationen dargestellt. Durch Octave Service Stub
kann das Octave-Plugin mit interaktiven Simulationsanwendungen kommunizieren. Dies soll
im folgenden Kapitel ausführlich behandelt werden.

3.3. Serverplattform

Für die Erstellung wie auch den Betrieb des Web Service Interfaces und Plugins wird ein
Applikationsserver benötigt. In der vorliegenden Arbeit wird Apache Tomcat als Plattform
verwendet. Der Applikationsserver wird zudem von Service Bus Apache Axis2 und
BPEL-Engine Apache ODE verwendet. Im Folgenden soll auf diese näher eingegangen
werden.

Apache Tomcat
Apache Tomcat dient als Applikationsserver und Basis für die Ausführung von Java-basierten
Anwendungen und fungiert somit als die grundlegende Server-Komponente. Es basiert auf
einem Open Source Projekt der Apache Software Foundation und ist ein in Java geschriebenr
Servlet Container. In seiner aktuellen Version vereint der Apache Tomcat Technologieansätze
wie JSP-Compiler Jasper9 und Java Server Pages10

Zur Entwicklung von Web Service auf Basis von Otave wird ein "Dynamic Web Project" in
Eclipse erstellt. Dazu wird zunächst eine eigene Serverumgebung konfiguriert. In der
vorliegenden Arbeit wird die Version V6.0 von Tomcat eingesetzt.

 mit einem kompletten HTTP-Server.

Apache Axis2/Java

Bei Apache Axis 2/Java handelt sich um ein Service Bus sowie ein Java-Framework zur
Entwicklung von Webservice-Anwendungen auf Basis von SOAP oder REST 11

Axis2 integriert verschiedene Binding-Frameworks. Zudem bietet es ein eigenes
Binding-Framework „Axis2 Data Binding Framework“ (ADB) an. Da die Übertragung von
XML-Daten in Java-Strukturen keine Probleme mit sich bringen. Mit dem ADB wird der
Client einfach generiert, wobei die benötigten Klassen auch im Stub als innere Klassen

(Representational State Transfer). Es wird häufig in einen Servlet Container (hier Apache
Tomcat) genutzt und als Java Servlet betrieben.

9 JSP-Compiler Jasper : http://tomcat.apache.org/tomcat-4.1-doc/jasper-howto.html
10 Java Server Pages : http://www.oracle.com/technetwork/java/javaee/jsp/index.html
11 REST: http://www.ics.uci.edu/~fielding/pubs/dissertation/rest_arch_style.htm

http://tomcat.apache.org/tomcat-4.1-doc/jasper-howto.html�
http://www.oracle.com/technetwork/java/javaee/jsp/index.html�
http://www.ics.uci.edu/~fielding/pubs/dissertation/rest_arch_style.htm�

3. Verwendete Software

26

realisiert werden.

In Axis2 wird ein eigenes Objektmodell namens AXIOM verwendet, welches eine
XML-Datenstruktur in eine Objektstruktur umwandelt. AXIOM ist leichtgewichtig und
bewusst so aufgebaut, dass eine flache Klassenhierarchie mit wenigen Methoden und
Attributen genutzt werden kann.

Eine weitere Komponente von Axis2 ist, dass es Tools zur Generierung von WSDL-Dateien
sowie serverseitigen und clientseitigen Java Klassen durch die Batchdateien bzw. Shell Skripte
java2wsdl und wsdl2java bietet. In der vorliegenden Arbeit werden die Java Klassen
sowie ein Java Skeleton aus einer WSDL-Datei mit der Unterstützung von wsdl2java
generiert. Mit dem Java Skeleton können Kommunikationskomponenten in externe
Anwendungen integriert werden, sodass sie in der Lage sind, Webservices aufzurufen oder
anzubieten.

Apache ODE

Als WS-BPEL-Engine kommt Apache ODE zum Einsatz. Die Abkürzung ODE steht für
Orchestration Director Engine. Es handelt sich um ein Open Source Projekt der Apache
Software Foundation und unterstützt die BPEL-Standards 1.1 und 2.012

Apache ODE besteht aus folgenden Komponenten

. Es dient hierbei als
Laufzeitumgebung für die BPEL-Prozesse, mit der Web Services aufgerufen, Messages
gesendet und empfangen sowie Daten bearbeitet und Fehler behandelt werden können.

[24]:

 ODE BPEL Compiler: kompiliert die einzelnen BPEL-Artefakte, das
BPEL-Prozess-Dokument, WSDL-Dokumente und XML Schemas in einen ausführbaren
Prozess

 ODE BPEL Engine Runtime: stellt eine Umgebung für die Ausführung der kompilierten
BPEL-Prozesse zur Verfügung.

 ODE Integration Layer: stellt die Verbindung von ODE BPEL Engine Runtime mit der
Umgebung bereit. Beispielsweise ermöglicht der Integration Layer in Zusammenspiel
mit Axis2 der BPEL Engine Runtime den Aufruf von Web Service.

 ODE Data Access Objects (DAO): zuständig für die Interaktion zwischen der ODE BPEL
Engine Runtime und der darunterliegenden Datenbank, die normalerweise eine JDBC
Datenbank13

12 BPEL-Standards 2.0:

 ist.

http://ode.apache.org/ws-bpel-20.html
13 http://www.oracle.com/technetwork/java/javase/jdbc/index.html

http://ode.apache.org/ws-bpel-20.html�
http://www.oracle.com/technetwork/java/javase/jdbc/index.html�

4. Reaktionsnetzwerke

27

4. Reaktionsnetzwerke

Dieses Kapitel verschafft einen Überblick über die biologische Netzwerke sowie
Reaktionsnetzwerke, die im Rahmen dieser Arbeit einen wesentlichen Hintergrund für die
Simulationsanwendungen gebracht haben. Den Abschluss bilden einige Möglichkeiten zur
Parameteridentifikation in Reaktionsnetzwerke.

4.1. Biologische Netzwerke

Zahlreiche aktuelle Forschungen im Bereich der Biowissenschaften befassen sich aktuell mit
Gene, Proteine und Metabolite sowie mit deren komplexen Zusammenspiel. Dabei steht ein
besseres Verständnis der molekularen Prozesse als Grundlage primär im Zentrum der
Forschungen.

Um das Verhalten und die Abhängigkeiten aller Elemente eines biologischen Systems auf einer
globalen Ebene zu studieren, hat sich der Begriff Systembiologie durchgesetzt. Dabei ist die
Integration von experimentellen Methoden sowie Datenanalyse und Simulation in einem
iterativen Prozess erforderlich. Daher wird sie oftmals als synergetische Integration von
Theorie, rechnergestützte systembiologischer Modellierung und Experiment charakterisiert.

In der Systembiologie spielen die biologischen Netzwerke eine entscheidende Rolle, da sie ein
geeignetes Medium zur Integration der unterschiedlichen Bestandteile darstellen.
Üblicherweise werden biologische Netzwerke durch Graphen modelliert, die aus Knoten und
Kanten bestehen. Diese Elemente der Graphen werden oft durch Attribute wie Namen,
numerische Werte usw. repräsentiert.

In der Abbildung. 11 wird eine vereinfachte Form der biologischen Netzwerke dargestellt.
Typischerweise existiert nicht nur ein homogenes biologisches Netzwerk, sondern eine
Vielzahl verschiedenster, miteinander interagierender Netzwerke. Auf unterster Ebene
befinden sich die intrazellulären Netzwerke, die auf vier Elementen basieren: Gene,
Transkripte, Proteine und Metabolite. Ein Gen ist ein DNA-Abschnitt, der für die Synthese
eines biologischen Produkts erforderlich ist. Proteine werden durch die Informationen gebildet,
die entsprechend in Genen gespeichert und durch Transkripte übermittelt werden. Viele
Proteine wiederum sind Enzyme, die biochemische Reaktionen in Zellen ermöglichen. Durch
Enzyme werden Metabolite umgewandelt.

4. Reaktionsnetzwerke

28

Neben diesen Beziehungen existiert zudem eine Vielzahl weiterer Interaktionen zwischen den
vier Bausteinen. So können Proteine miteinander interagieren, Proteine die Aktivität von
Genen regulieren, und Metabolite die Aktivität von Proteinen beeinflussen usw. Somit ergibt
sich ein komplexes Netzwerk vielfältiger Interaktionen und Abhängigkeiten zwischen den
Bausteinen [18].

Auf den intrazellulären Netzwerken aufbauend befinden sich weitere verschiedene biologische
Netzwerke, welche in den nächsten Ebenen in Abbildung. 11 dargestellt werden.
Die biologischen Netzwerke dieser Ebenen umfassen beispielsweise ökologische Netzwerke,
die die Abhängigkeiten zwischen Organismen in einer Lebensgemeinschaft zeigen, hormonelle
Netzwerke, die die Kommunikation zwischen Geweben und Organen repräsentieren, sowie
neuronale Netzwerke, welche die Verschaltungen von Neuronen darstellen [18].

4.2. Reaktionsnetzwerke

Wie in Abschnitt 4 beschrieben wird, werden viele Netzwerk-Modelle für die Untersuchungen
im Bereich der Systembiologie erstellt. Die meisten Modelle basieren auf mathematischen
Darstellungen und hängen oftmals von einer Vielzahl unbekannter oder nur ungenau bekannter
Reaktionsparameter ab. Aufgrund der hohen Kosten, des Zeitaufwands zur Durchführung der
Experimente oder der Komplexität durch die Vielzahl an Einzelreaktionen erweist sich die
direkte Messung dieser Parameter als unrealistisch. Deshalb müssen diese Parameter aus

Abbildung. 11 Vereinfachte Darstellung von interagierenden biologischen Netzwerken [18]

4. Reaktionsnetzwerke

29

indirekten Messungen an der realen Zelle, zum Beispiel aus Zeitreiheninformationen,
gewonnen werden.

Im Folgenden werden eine kurze Einführung in die biologische Modellierung der
Reaktionsnetzwerke und ein Überblick über die Parameteridentifikation gegeben.

4.2.1. Modellierung der Reaktionsnetzwerke

Die Basis zur Modellierung biologischer Reaktionsnetzwerke bildet zumeist eine Beschreibung
der auftretenden Reaktionen in der Form

npnpnnsns PPSS ββαα ++→++ 1111 (1)

Hierbei werden die Substrate Si in die Produkte Pi umgewandelt. Die Faktoren αi und βi
beschreiben die stöchiometrischen Verhältnisse der beteiligten Reaktionspartner.

Aus den stöchiometrischen Faktorenαi, βi der Reaktionen sowie etwaiger
Umrechnungsfaktoren zur Kompensation unterschiedlicher Einheiten lässt sich die
stöchiometrische Matrix (folgend durch S dargestellt) erstellen. Die stöchiometrische Matrix
beschreibt, welche chemischen Verbindungen in welchen Reaktionen miteinander reagieren
und welche neuen Verbindungen dabei entstehen. Die Matrix besteht aus m Zeilen und n
Spalten. Die m Zeilen repräsentieren die Verbindungen (Moleküle, Metabolite), und jede der n
Spalten stellt eine Reaktion dar. In komplexen Reaktionsnetzwerken ist in der Regel die Anzahl
der Reaktionen größer als die Anzahl der beteiligten Moleküle (n > m).

Werden die räumlichen und stochastischen Effekte vernachlässigt, können die
Reaktionsnetzwerke mittels gewöhnlicher Differenzialgleichungen beschrieben werden. Die
Modelle bestehen dann aus dem Fluss (Flux) jeder Reaktion und den Differenzialgleichungen:

vS = (t)X ⋅ (2)

Der Flux v beschreibt die Reaktionsintensitäten pro Zeiteinheit für die n Reaktionen. Die
Änderungsraten der Verbindungskonzentrationen X(t) ergeben sich aus dem Produkt der
stöchiometrischen Matrix S mit den Reaktionsraten (Flux v).

4.2.2. Parameteridentifikation

In der Systembiologie werden zumeist zeitkontinuierliche Modelle, der in Abschnitt 4.2.1
beschriebenen Form, verwendet. Ein Grund dafür ist, dass derartige Modelle der
physikalischen Wirklichkeit eher entsprechen. Außerdem gewährleisten diese die Linearität in
den Parametern. Ein weiterer Grund für die Nutzung zeitkontinuierlicher Modelle ist, dass in
der Biologie häufig stark verrauschte Messungen auftreten. Für ein solches Rauschen sind
zeitkontinuierliche Modelle oftmals weniger anfällig als zeitdiskrete Modelle.

4. Reaktionsnetzwerke

30

Für die zeitkontinuierlichen Modelle werden globale, und optimierungsbasierte
Parameterschätzverfahren eingesetzt. Im Bereich der Reaktionstechnik sind in Bezug auf
zahlreiche Reaktionsmechanismen nur unzureichende Informationen oder Parameterwerte zu
finden. Beispielsweise führt die Parameterschätzung oftmals zu nichtkonvexen Problemen,
weshalb die Komplexität dieser Verfahren mit der Dimension des Parameterraumes stark zu
nimmt. Alternativ kommen lokale Suchstrategien zum Einsatz, die jedoch einen gut
geschätzten Initialwert benötigen. Aufgrund dieser Nachteile werden mathematische Verfahren
benötigt, die die Anpassung der Modellparameter an reale Experimente unterstützen. Man
spricht hierbei von der Parameteridentifikation.

Für die Parameteridentifikation existieren verschiedene Methoden. Beispielsweise wird in [19]
ein Verfahren zur Parameteridentifikation biochemischer Reaktion vorgestellt. Zunächst wird
das Modell (2) (auf der vorherigen Seite) in eine parameterunabhängige Systemdarstellung
transformiert. Anschließend wird ein Entwurf eines Beobachters aufgebaut, der zur
Rekonstruierung des aus den Messungen erweiterten Zustandsvektors und zur Konvergenz des
Schätzfehlers dient. Schließlich erfolgt eine Schätzung der Parameter auf Basis der geschätzten
Systemzustände. Zur Illustrierung wird in diesem Beispiel das Verfahren auf Basis eines
einfachen Modells des zirkadischen Rhythmus angewendet.

In [16] und [17] werden andere Methoden zur Parameteridentifikation verwendet, die die
Modellierung mit Hilfe von Bayesian Framework beinhalten. Bei der Modellierung werden
gewöhnliche Differenzialgleichungen, die auf chemische Reaktionskinetik basieren, in
folgender Form definiert:

),,(θxfx =),(:,, 1 θθ xCfx nmnmn ∈ℜ→ℜ×ℜℜ∈ℜ∈ ++ (3)

Wobei das Vektorfeld f kontinuierlich differenzierbar ist. Der Vektorθ enthält Parameter,

die aus Daten stammen. In diesem Modell werden zufällige Gauß'sche Messfehler eingebettet,
um ein statistisches Bayesian Framework nutzen zu können. Bei der Modellierung wird hierbei
versucht, ein ideales Experiment zur Parameteridentifikation durch die Maximierung der

Abbildung. 12 Interaktionsgraph in der trans-Golgi Netzwerk
und Modelle der Differenzialgleichungen [16]

4. Reaktionsnetzwerke

31

Entropie einer Posterior Distribution zu erstellen, die durch so genannte Markov Chain Monte
Carlo (MCMC)14 Samplings approximiert werden müssen. Basieren auf solchen effizienten
Einschätzungen der Entropie wird ein Bayesian Framework erstellt. Dieses kann in ein
Netzwerkmodell überführt werden, wie beispielsweise an das Netzwerkmodell von Secretory
Pathway Control im trans-Golgi Netzwerk15 Abbildung. 12. Auf der linken Seite der befindet
sich ein Interaktionsgraph der trans-Golgi Netzwerk. Auf der rechten Seite sind verschiedene
Differenzialgleichungsmodelle zu sehen, die der Beschreibung des Graphs dienen sollen.

Zum Verständnis werden zahlreiche mathematische Vorkenntnisse benötigt. [19] geht tiefer
auf das Thema ein.

14Markov Chain Monte Carlo:
http://www.cs.princeton.edu/courses/archive/spr06/cos598C/papers/AndrieuFreitasDoucetJordan2003.
pdf
15 trans-Golgi Netzwerk : http://www.zytologie-online.net/golgi-apparat.php

http://www.cs.princeton.edu/courses/archive/spr06/cos598C/papers/AndrieuFreitasDoucetJordan2003.pdf�
http://www.cs.princeton.edu/courses/archive/spr06/cos598C/papers/AndrieuFreitasDoucetJordan2003.pdf�
http://www.zytologie-online.net/golgi-apparat.php�

5. Spezifikation

32

5. Spezifikation

In diesem Kapitel wird ein Web Service für Octave-Anwendungen spezifiziert. Es wird
zunächst auf die Anforderungen an den Web Service eingegangen. Danach folgt eine
Beschreibung des Lebenszyklus des Octave Adapters inklusive der möglichen Zustände, die
er annehmen kann. Schließlich werden die Anwendungsfälle des Octave Adapters dargestellt.

5.1. Anforderungen

Die Anforderungen an den Octave Web Service werden in diesem Abschnitt erläutert.

Bereitstellung der Octave-Anwendung als Web Service

Der Web Service für Octave-Anwendungen soll folgende Anforderungen erfüllen. Ein Client
schickt eine SOAP-Nachricht an den Octave Web Service. Der Tomcat Server bekommt die
Nachricht, extrahiert und analysiert den Inhalt der Nachricht. Die Web Service Operationen
sollen dabei den Anwendungsfällen eines Ablaufs entsprechen, mit dem die
Octave-Anwendungen gestartet werden können. Diese Operationen werden zunächst als
WSDL-Operationen definiert, dann sollen sie mit Hilfe von Axis2 in eine
Java-Implementierung überführt werden. Mit den Java Codes kann die konkrete
Implementierung ergänzt werden. z.B. indem ein Verzeichnis erstellt wird, in dem die
Octave-Anwendungen abgelegt werden können. Rückmeldungen von den
Octave-Anwendungen sollen als SOAP-Nachricht vom Octave Web Service an den Client
zurückgeschickt werden.

Visualisierung des Ergebnisses

Nach der Ausführung der Octave-Anwendung entsteht eine graphische Darstellung als
Ergebnis, die die Qualität der Simulation beschreibt. Da die Web Service Operationen als
WSDL-Operationen definiert sind, in denen der Output nur die Formate string, long usw.
enthält, kann eine graphische Darstellung nicht als Output einer WSDL-Operation genutzt
werden. Es soll daher die graphische Darstellung in einer Datenbank gespeichert werden und
ein Pfad für sie angegeben werden. Durch die Nutzung des Pfades kann der Client die
Ergebnis-Darstellung abholen.

5. Spezifikation

33

BPEL-Prozess für die Durchführung der Simulation

Ein BPEL-Prozess soll erstellt werden, der den Octave Web Service verwendet. In dem Prozess
sollen Aktivitäten, Kontrolllogik usw. definiert werden, damit die Simulation richtig
durchgeführt werden kann.

5.2. Lebenszyklus einer Simulationsinstanz von Octave Service

Adapter

In dem Abschnitt 3.2.1 wird eine Simulationsinstanz des generischen Adapters dargestellt
(Abbildung. 10), die die möglichen Übergänge zwischen den verschiedenen Zuständen zeigt.
Im Octave Plugin (auch Octave Service Adapter genannt) wird eine Simulationsinstanz auf
Basis des generischen Adapters nach der Octave Anwendung erstellt. In dieser Arbeit wird der
Lebenszyklus der Simulationsinstanz nach der Octave-Simulation wie folgt definiert. Hierbei
ist zu beachten, dass nicht alle Zustandsübergänge in der Abbildung. 13 dargestellt werden.
Vielen Zuständen können auch in andere Zustände wechseln.

NonExisting

Dieser Zustand beschreibt, dass eine Instanz noch nicht oder nicht mehr existiert. Er
kann als einen Anfangszustand dargestellt werden. Falls ein existierendes
Simulationsprogramm nicht mehr ausgeführt werden soll, wird es von der Datenbank
entfernt und der Zustand wird auf „NonExisting“ zurückgesetzt.

Ausgangszustände: -
Folgezustände: SimID

Abbildung. 13 Lebenszyklus der Simulationsinstanz von Octave Adapter

5. Spezifikation

34

SimID

Eine neue Simulationsinstanz ist erstellt. Dazu wurde eine eindeutige
Identifikationsnummer für die Instanz vergeben.
Ausgangszustände: NonExisting
Folgezustände: DirectoryPrepared, NonExisting

DirectoryPrepared

Ein Instanzverzeichnis wurde erstellt, in dem Programmdateien später vorliegen können.
In diesem Zustand stehen aber noch keine ausführbaren Programme zu Verfügung.

Ausgangszustände: -
Folgezustände: SimID, CopyFile, NonExisting

CopyFile

Alle Dateien zur Ausführung der Simulationsanwendung sind in diesem Zustand in das
erstellte Instanzverzeichnis kopiert worden.

Ausgangszustände: DirectoryPrepared
Folgezustände: SimID, Runnable, NonExisting

Runnable

Nachdem die Simulationsanwendung und alle benötigten Dateien im Instanzverzeichnis
kopiert wurden, lässt sich die Simulation starten. Dieser Zustand kann im Verlauf einer
Simulation mehrmals verwendet werden. Wenn die Simulation nicht gestartet wird,
können die SimID und das Instanzverzeichnis gelöscht werden, dann geht der
Lebenszyklus wieder zum Anfangszustand zurück.

Ausgangszustände: CopyFile, Executing
Folgezustände: SimID, Executing, NonExisting

Executing

Dieser Zustand wird der Ausführung der Simulation zugeordnet. Sobald die Ausführung
terminiert, wechselt die Instanz in den Zustand „PlotSample“. Das heißt, das Ergebnis der
Simulation wird zum „PlotSample“ geliefert.

Ausgangszustände: Runnable
Folgezustände: PlotSample

PlotSample

Dieser Zustand beschreibt ein Ergebnis nach der Ausführung der
Simulationsanwendungen. In dieser Arbeit wird ein Bild als Ergebnis dargestellt. Die

5. Spezifikation

35

Visualisierung des Simulationsergebnisses wird in diesem Zustand realisiert.

Ausgangszustände: Executing
Folgezustände: -

5.3. Octave Service Adapter

Dieser Abschnitt stellt die einzelne Anwendungsfälle des Octave Service Adapters (kurz
Octave Adapter genannt) dar, die die Funktionalität des Octave Adapters beschreibt. Der Client
des Adapters wird durch Akteur repräsentiert. Ein Überblick über diese Anwendungsfälle wird
in der Abbildung. 14 gezeigt.

PrepareSimulation

Beschreibung: Eine neue Simulationsinstanz wird erstellt, um eine Simulation mit dem
Octave Adapter verwalten zu können. Diese Aktion muss als Anfangsaktion ausgeführt
werden. Eine Identifikationsnummer (im Folgenden wird SimID genannt) und ein
Instanzverzeichnis werden in dieser Aktion erzeugt, damit die Instanz als existierend
registriert werden kann.

Vorbedingungen: Der Octave Adapter sowie der generischer Adapter müssen aktiv sein.

Abbildung. 14 Übersicht über die Anwendungsfälle

5. Spezifikation

36

Nachbedingungen: Die Instanz existiert und wird mit der SimID registriert, dazu wird ein
entsprechendes Instanzverzeichnis erzeugt. Jede Instanz verfügt über eine eindeutige SimID,
die nicht mehr an andere Instanz vergeben kann. Andere Aktionen lassen sich auf Basis von
dieser SimID erstellen oder ausführen.

Fehler:

 Die Simulationsinstanz sowie Instanzverzeichnis können nicht erstellt werden.

Regulärer Ablauf:

 Die Instanz wird erzeugt und registriert.
 Eine SimID und ein Instanzverzeichnis werden zur Instanz erstellt.

CreateDirectory

Beschreibung: ein neues Verzeichnis wird mit Hilfe von SSH auf Basis der SimID erstellt,
auf dem alle Datei der Octave-Anwendungen kopiert werden können. Diese Aktion ist eine
Vorbedingung für die Ausführung der Anwendung.

Vorbedingung: Die Instanz sowie das Instanzverzeichnis existieren. Zugangsrechte über
SSH sind erlaubt.

Nachbedingung: Das neue Verzeichnis existiert unter Instanzverzeichnis.

Fehler:

 Die Instanz sowie das Instanzverzeichnis existieren nicht.

 Zugangsrecht über SSH ist nicht erlaubt.

 Das neue Verzeichnis kann nicht erstellt werden.

Regulärer Ablauf:

 Ein neues Verzeichnis wird erstellt.

CopyFile

Beschreibung: Nachdem ein neues Verzeichnis erstellt wurde, werden Dateien aus einem
Quellverzeichnis in das neue Verzeichnis kopiert. Diese Dateien enthalten die
Octave-Anwendungen, die später ausgeführt werden. Die Datei wird mit WinSCP vom
Ursprungsort (hier ein Windows Server) zum Zielort (hier ist Linux Server) kopiert.

Vorbedingung: Das neue Verzeichnis sowie die Datei müssen existieren. Die Instanz muss
das Kopieren der Datei erlauben.

Nachbedingung: Die Datei befindet sich im Verzeichnis.

Fehler:

5. Spezifikation

37

 Die zu kopierende Datei existiert nicht.

 Das Verzeichnis, auf dem die Dateien kopiert werden, existiert nicht.

 Die Datei kann nicht richtig kopiert werden. Es kann sein, dass der Akteur über kein
Zugangsrecht verfügt, auf die Datei zuzugreifen. Wenn ein Fehler während dem
Kopieren auftritt, kann die Datei auf den Zielort nicht vollständig sein.

Regulärer Ablauf:
 Die Datei wird auf neues Verzeichnis kopiert.

SetOctaveCall

Beschreibung: Es kann sein, dass Octave auf verschiedenen Rechnern in unterschiedlichem
Pfad installiert wird. Daher wird diese Aktion dazu verwendet, ein Kommando zur
Ausführung eines Octave-Anwendungsfiles (nämlich m-File) in einer bestimmten
Simulationsinstanz festzulegen. Ein Property-File wird, fals es noch nicht existiert, bei dieser
Aktion erstellt der den konkreten Octave-Aufruf enthält.

Vorbedingung: Die Simulationsinstanz und SimID existieren.

Nachbedingung: Ein Property-File wird erstellt.

Fehler:

 Die Simulationsinstanz und SimID existieren nicht.

Regulärer Ablauf:

 Ein Property-File für einen Octave-Aufruf wird erstellt.

 Ein neuer Wert mit dem Property-File wird zurückgeliefert, sonst wird das Property-File
neu erzeugt.

SetOctavePath

Beschreibung: Ein Pfad zur Ausführung der Octave-Anwendung wird definiert. Dabei ist zu
beachten, dass es viele m-Files in der auf neuem Verzeichnis kopierten Datei gibt. Wie in
dem Abschnitt 3.1 beschrieben existiert ein m-File als Skript-Datei, die die Organisation des
Programmablaufs beschreibt. Die in der Skript-Datei benötigten Funktionen werden in
weiteren m-Files definiert. Der Pfad bestimmt die Skript-Datei, die ausgeführt werden soll.

Vorbedingung: Die Datei von Octave-Anwendung muss vollständig kopiert werden. Sie
enthält mindestens eine Skript-Datei und alle benötigte Funktionen.

Nachbedingung: Ein Pfad wird an der Skript-Datei gesetzt.

Fehler:

 Die Octave-Files wurden nicht vollständig kopiert.

5. Spezifikation

38

 Skript-Datei existiert nicht.

 Pfad wird aus verschiedenen Gründen nicht erfolgreich gesetzt.

Regulärer Ablauf:

 Ein absoluter Pfad ist einem m-File zugeordnet.

GetOctavePath

Beschreibung: Der in der Aktion SetOctavePath erstellte Pfad wird hier zurückgegeben. Zum
Starten der Octave-Anwendung werden dieser Pfad und die SimID usw. benötigt.

Vorbedingung: Der Pfad zu einem m-File existiert.

Nachbedingung: Ein Pfad wird zurückgegeben.

Regulärer Ablauf:

 Ein Pfad zur Ausführung der Octave-Anwendung wird gespeichert.

StartProgram

Beschreibung: Über einen SSH-Aufruf wird die Octave-Anwendung gestartet. Dazu wird ein
cmd-Befehl definiert, in der ein Pfad verwendet wird, der über GetOctavePath erfragt wird.
Zur Ausführung der Octave-Anwendung werden außer dem cmd-Befehl noch eine
Shell-Datei, SimID sowie weitere Pfadangaben benötigt. Die Shell-Datei dient zum Starten
des Octave-Programms.

Vorbedingung: Das Instanzverzeichnis, Octave-Anwendungen, Skript-Datei und alle
benötigte Funktionen existieren. Das Octave-Programm muss auf den Server installiert sein.
Die Zugangsrechte stehen zu dem Zeitpunkt zur Verfügung, zudem der Aufruf per SSH
stattfindet. Alle zum Starten der Octave Anwendungen benötigte Dateien beispielsweise die
Shell-Datei, sowie der cmd-Befehl müssen definiert sein. Wenn die Octave-Anwendungen in
dieser Aktion nicht gestartet werden können, kann das Verzeichnis mit der Aktion
RemoveFile aufgeräumt werden.

Nachbedingung: Die Octave-Anwendungen werden auf den Server ausgeführt.

Fehler:
 Das Octave-Programm wird nicht gestartet.
 Das Octave-Pakete zur Ausführung der Anwendungen fehlt.
 Die auszuführende Skript-Datei existiert nicht.
 Zugang zur Anwendung per SSH kommt nicht zu Stande.
 Die Shell-Datei ist nicht vorhanden.

Regulärer Ablauf:

 Eine SSH-Verbindung wird aufgebaut.

5. Spezifikation

39

 Die Octave-Anwendung wird gestartet und ausgeführt.

RemoveFile

Beschreibung: Wenn die Octave-Anwendungen nicht ausgeführt werden oder die Datei, die
die diese Anwendungen enthält, nicht mehr benötigt wird, kann die Aktion RemoveFile
durchgeführt werden. Über SSH werden die Dateien von dem Server aufgeräumt. Dadurch
kann Speicherplatz gespart werden.

Vorbedingung: Die zu löschende Datei muss existieren. Zugangsrecht über einen
SSH-Aufruf steht zur Verfügung.

Nachbedingung: Die Datei wird aufgeräumt.

Fehler:

 Die Datei existiert auf den Zielort nicht.

 Zugangsrecht oder das Schreibrecht per SSH sind nicht vorhanden.

Regulärer Ablauf:

 Die Datei, die die Octave-Anwendungen enthält, wird über SSH-Befehl gelöscht.

SetPlottingPath

Beschreibung: Nach der Ausführung der Octave-Anwendungen werden Ergebnisse erzeugt,
die durch verschiedene Koordinatenachsen auf ein Bild dargestellt werden. Ein Beispiel zeigt
in Abbildung. 15. Die Visualisierung der Simulationsergebnisse ist eine Aufgabe dieser
Arbeit. Eine Aktion wird ähnlich der die Aktion SetOctavePath durchgeführt. In dieser
Aktion ist dem Ergebnisbild ein Pfad zugeordnet.

Vorbedingung: Die Octave-Anwendungen wurden erfolgreich ausgeführt. Der Octave
Adapter wartet bis alle Ergebnisse in einem Bild erzeugt worden sind. Das Bild kann
beispielsweise im Verzeichnis WebContent des Octave Adapters gespeichert werden.

Nachbedingung: Das Ergebnisbild wird gespeichert und ist einem Pfad zugeordnet.

Fehler:

 Die Octave-Anwendungen wurden nicht erfolgreich ausgeführt.

 Die Entstehung der Ergebnisse dauert zu lang, der Octave Adapter beendet sich per
„timeout“.

 Das Ergebnisbild kann nicht gespeichert werden.

Regulärer Ablauf:

 Ein Pfad wird für das Ergebnisbild erstellt.

5. Spezifikation

40

GetPlottingPath

Beschreibung: Diese Aktion wird dazu verwendet, ein Pfad zum Ergebnisbild zu erhalten.
Durch Aufruf des Pfads können die Ergebnisse dargestellt werden.

Vorbedingung: Der Pfad zum Ergebnisbild existiert.

Fehler:

 Der Pfad kann nicht zurückgegeben werden.

Regulärer Ablauf:

 Der Pfad, der in der Aktion SetPlottingPath definiert wurde, wird zurückgegeben.

 Für die Visualisierung der Simulationsergebnisse wird dieser Pfad benötigt.

 Abbildung. 15 Ergebnisbilder nach der Ausführung der Octave-Anwendungen

6. Entwurf

41

6. Entwurf

Dieses Kapitel beschreibt die Architektur und die Web Service-Operationen vom Octave
Plugin. Die im Abschnitt 5.2 beschriebenen Anwendungsfälle des Octave Plugins werden
durch Web Service Operationen und deren Parameter ausführlich dargestellt.

6.1. Architektur des Octave Adapters

Im Kapitel 3.2.1 wurde der generische Adapter des WSIs dargestellt, wobei das Octave Plugin
bereits erwähnt wurde. Da Octave-Anwendungen nicht direkt als Web Service erstellt werden
können, braucht man einen Adapter, der auf das WSI basiert und auf dem ein entsprechenden
Web Service für die Octave-Anwendung bereitgestellt wird. In diesem Abschnitt wird dies
genauer beschrieben.

In der Abbildung. 16 wird die Architektur des Octave Adapters gezeigt, die die Interaktion
zwischen dem generischen Adapter, dem Octave Adapter und einer interaktiven
Octave-Anwendung darstellt. Der Octave Adapter stellt einerseits einen Web Service für den

Abbildung. 16 Architektur des Octave Adapters

6. Entwurf

42

Client bereit, andererseits stellt er die Kommunikation mit der Octave-Anwendung zur
Verfügung. Er kann die Funktionalitäten des generischen Adapters verwenden, zum Beispiel
greift es auf den Instanz-Pool und den Programm-Manager zu, um eine Simulationsinstanz zu
erzeugen. Mit Hilfe des Adapters kann die Octave-Anwendung synchron oder asynchron
gestartet werden. Durch den Octave Service Stub kann der Octave Adapter die Web Service
Anfragen an die Octave-Anwendung weiterleiten. Ein Callback Stub wird für die
Benachrichtigung bereitgestellt. Wenn die Octave-Anwendungen bereit sind, schickt dieses
Callback Stub eine Rückmeldung an den Callback Web Service des generischen Adapters.
Dann fängt der Web Service an, die Anfragen zu bearbeiten.

6.2. Web Service Operationen vom Octave Adapter

In diesem Abschnitt werden die Web Service Operationen beschrieben. Diese Web Service
Operationen entsprechen der Anwendungsfälle des Octave-Adapter in Abbildung. 14. Die
WSDL-Beschreibung liegt im Anhang dieser Arbeit.

prepareSimulation

Eine neue Simulationsinstanz wird in dieser Operation erstellt.

Anwendungsfall: Erstellen von Simulation ID

Input/Output Parametername Parametertyp Beschreibung
Input Name String Name der Applikationsanwendung
Output simID Long Die Simulation ID der neuen Instanz
Output ReturnMessage String Return message

Tabelle 1 Parametre der Operation prepareSimulation

Mögliche Fehlerfälle: InvalidStateFault, CommandFault

createDirectory

Ein neues Verzeichnis wird über SSH auf dem Zielrechner erstellt

Anwendungsfall: Erstellen eines Verzeichnisses auf Zielrechner.

Input/Output Parametername Parametertyp Beschreibung
Input SimID Long Simulation ID der Instanz
Input User String Username des Rechners, wo das

Verzeichnis steht
Input Host String Hostname, wo das Verzeichnis steht
Input Directory String Der Pfade des erstellten

6. Entwurf

43

Verzeichnisses
Output ReturnMessage String Nachricht zurück: „error“ oder „no

error“

Tabelle 2 Parametre der Operation createDirectoty

Mögliche Fehlerfälle: InvalidStateFault, CommandFault

copyFile

Eine Datei wird über WinSCP von einem Ursprungspfad zu einem Zielpfad kopiert. Die Datei
existiert in neuem Ort mit neuem Pfad.

Anwendungsfall: Kopieren der Dateien zwischen Rechnern

Input/Output Parametername Parametertyp Beschreibung
Input SimID Long Simulation ID der Instanz
Input SourceUser String Username des Rechners, wo die

Quelledatei steht
Input SourceHost String Hostname, wo die Quelledatei steht
Input SourceFile String Der Ursprungspfad der Datei
Input TargetUser String Username des Zielrechners, wo die

Datei hin kopiert wird
Input TargetHost String Hostname, wo die Datei hin kopiert

wird
Input TargetFile String Der Zielpfad der Datei
Output ReturnMessage String Nachricht zurück: „error“ oder „no

error“

Tabelle 3 Parametre der Operation copyFile

Mögliche Fehlerfälle: InvalidStateFault, CommandFault

setOctavePath

Ein absoluter Pfad zur Ausführung einer Instanz einer Octave-Anwendung wird gesetzt.

Anwendungsfall: Setzten des Pfads für Aufruf der Octave-Anwendung.

Input/Output Parametername Parametertyp Beschreibung
Input SimID Long Simulation ID der Instanz
Input OctavePath String Der Pfad zur Octave-Anwendung
Output ReturnMessage String Nachricht mit „OctavePath set“ oder

„error! OctavePath not set!“ zurück

6. Entwurf

44

Tabelle 4 Parametre der Operation setOctavePath

Mögliche Fehlerfälle: InvalidStateFault, CommandFault

getOctavePath

Der gesetzte Pfad für Aufruf der Octave-Anwendung wird nach Nennung der SimID
ausgegeben.

Anwendungsfall: Erhalten des Pfads für Aufruf der Octave-Anwendung.

Input/Output Parametername Parametertyp Beschreibung
Input SimID Long SimID der Instanz
Output OctavePath String Der Pfad zur Octave-Anwendung

Tabelle 5 Parametre der Operation getOctavePath

Mögliche Fehlerfälle: InvalidStateFault, CommandFault

startProgram

Die Octave-basierte Anwendung wird über SSH ausgeführt. Die Voraussetzung für die
Ausführung ist, dass der Pfad für Octave schon gesetzt worden ist.

Anwendungsfall: Ausführung des Anwendungsprogramms von Octave

Input/Output Parametername Parametertyp Beschreibung
Input SimID Long Simulation ID der Instanz
Input User String Username des Rechners, auf dem

Octave installiert ist.
Input Host String Hostname des Rechners, auf dem

Octave installiert ist
Input Path String Pfad, unter dem ein installiertes

Octave zu finden ist.
Input Program String Der Name des zu auszuführenden

Octave-Programms
Output ReturnMessage String Nachricht mit „no errors“ oder

„error“ zurück

Tabelle 6 Parametre der Operation startProgram

Mögliche Fehlerfälle: InvalidStateFault, CommandFault

6. Entwurf

45

removeFile

Wenn die Octave-Anwendungen nicht gestartet werden, wird die Datei über SSH auf dem
Zielrechner gelöscht.

Anwendungsfall: Entfernung einer Datei.

Input/Output Parametername Parametertyp Beschreibung
Input SimID Long Simulation ID der Instanz
Input User String Username des Rechners, auf dem

Octave installiert ist.
Input Host String Hostname des Rechners, auf dem

Octave installiert ist.
Input Path String Pfad, unter dem ein installiertes

Octave zu finden ist.
Output ReturnMessage String Nachricht mit „no errors“ oder

„error“ zurück

Tabelle 7 Parametre der Operation removeFile

setPlottingPath

Das Ergebnis der Ausführung einer Octave-Anwendung, ist beispielsweise ein Bild. Es wird
ein Pfad gesetzt, damit das Ergebnis durch Aufruf des Pfads abgeholt werden kann.

Anwendungsfall: Setzten des Pfads für die Ergebnisdaten (Bilder) nach der Ausführung der
Octave-Anwendung

Input/Output Parametername Parametertyp Beschreibung
Input SimID Long Simulation ID der Instanz
Input PlottingPath String Der Pfad von Plotting
Output ReturnMessage String Nachricht mit „Path set“ oder

„error! Path not set!“ zurück

Tabelle 8 Parametre der Operation setPlottingPath

getPlottingPath

Der gesetzte Pfad zu den Ergebnisdateien stimmt mit SimID überein.

Anwendungsfall: Erhalten des Pfads zu den Ergebnisdateien

Input/Output Parametername Parametertyp Beschreibung
Input SimID Long Simulation ID der Instanz
Output PlottingPath String Der Pfad von Plotting

6. Entwurf

46

Tabelle 9 Parametre der Operation getPlottingPath

6.3. Octave basierte Workflows

Ein Octave-basierter Workflow wird mit Hilfe eines BPEL-Prozesses in Eclipse erstellt.
Wobei der Prozess den Ablauf der Octave-Anwendungen darstellt. Der BPEL-Prozess ist in
der Abbildung. 17 zu sehen.

Wenn der BPEL-Prozess gestartet wird, fängt der Teilprozess Prepare Steps als erster
Schritt an. Dieser Teilprozess wird als eine Schleife definiert. Es wird eine Simulationsinstanz
für die Octave-Anwendungen mit der ersten Aktion Create Octave Instance erzeugt
(siehe Abbildung. 18). Dann wird mit der Aktion Create Directory ein
Simulationsverzeichnis auf dem Rechner erstellt, auf dem Octave ausgeführt wird. Als
nächste Aktion Copy m.file wird die Anwendungsdatei in das erstellte Verzeichnis kopiert.
Das auszuführende Octave Script File wird dann durch die Aktion set a path to m.file
mit einem Pfad gesetzt. Anschließend wird mit der Aktion get the path from m.file
der Pfad zurückgegeben.

Ein Grund für die Definition des Schrittes Prepare Steps als Schleife ist, dass sich die
Octave-Anwendungen verändern können. Sie werden so oft modifiziert, um bessere
Simulationsergebnisse zu bekommen. Diese Schleife kann so oft ausgeführt werden, bis man
die neuesten modifizierten Anwendungen und den entsprechenden Pfad bekommt.

Abbildung. 17 Workflow-Prozess für die Octave-Anwenudng

6. Entwurf

47

Nachdem die Aktivität Prepare Steps durchgeführt wurden, wird Octave mit der Aktion
Start Octave gestartet. Danach wird eine Rückmeldung vom Web Service Server an den
Octave Adapter geschickt, um dem Client mitzuteilen, dass Octave gestartet wird, die
Simulationsanwendungen bereit sind und die Anfragen bearbeitet werden können. Als
Nächstes wird die Octave-Anwendung (auf Basis eines m-File) mit einer aktuellen SimID und
einem erstellten Pfad als Startparameter ausgeführt, wobei dies in der Aktion Run m.file
stattfindet. Nach der Durchführung der Anwendungen bekommt man die Ergebnisse, die bei
der Aktion Save results in der Datenbank gespeichert werden. Schließlich wird Octave
mit der Aktion Stop octave beendet.

Je nach Anspruch können die Octave-Anwendungen modifiziert werden um unterschiedliche
Ergebnis-Typen zu erstellen. Hier in der Arbeit wird eine visuelle Darstellung als Ergebnis
erzeugt, die durch die letzte Aktion Show the results behandelt wird. Zur
Visualisierung der Ergebnis-Darstellung wird der Pfad zu den Ergebnisdaten übergeben.
Ähnlich wie Prepare Steps ist Show the results wieder ein Teilprozess, und wird
auch als eine Schleife definiert. In der Abbildung. 19 sieht man, dass bei dem Aufruf des
Workflowfragments Show the results die erste Aktion set plotting path gestartet
wird. Damit wird ein Pfad zur zuvor von Octave abgespeicherten Darstellung gesetzt. Der
Pfad wird mit Hilfe der Aktivität get plotting path übergeben. Wenn man die
Ergebnis-Darstellung anschauen möchte, wird dies durch Aufruf des Pfads realisiert.

In folgenden Tabellen sind die Parameter der Workflow-Operationen aufgelistet.

Abbildung. 19 show the results

Abbildung. 18 Prepare Steps

6. Entwurf

48

Parametername Datentyp Beschreibung
SimID long Identifikationsnummer der Simulationsinstanz
User string der Benutzername auf Zielrechner
Host string der Hostname auf Zielrechner
SrcUser string der Benutzername auf Ursprungsrechner
SrcHost string der Hostname auf Ursprungsrechner
SrcFile string ursprüngliches File
File string File auf Zielrechner
OctavePath string Pfad zur auszuführenden Octave-Anwendung

Tabelle 10 Parameter der Workflow-Operationen

7. Implementierung

49

7. Implementierung

Im Rahmen dieser Arbeit wurden die Octave-Anwendungen betrachtet und modifiziert. In
diesem Kapitel wird zunächst der ursprüngliche Ablauf der Octave-Anwendung dargestellt.
Danach folgt die Beschreibung der interaktiven Ausführung auf Basis eines modifizierten
Simulationsablaufs und des Octave Adapters (siehe dazu auch die Abschnitte 5.2 und 5.3).

Die Implementierungen des Octave Adapters und die Modifikation an den
Octave-Anwendungen wurden in der Umgebung Eclipse 3.7 entwickelt, wobei Apache
Tomcat und Axis2 installiert waren. Die einzelnen Web Service Operationen wurden im
WSDL-Editor erstellt. Ein entsprechendes Java Skeleton wurde mit Axis2 generiert.
Schließlich wurde der Octave Service Adapter mit Hilfe von Tomcat veröffentlicht.

7.1. Ablauf der Octave-Anwendungen

Die Octave-Anwendungen wurden je nach Anspruch unterschiedlich aufgebaut. Es gibt
jedoch keinen großen Unterschied zwischen den Abläufen der verschiedenen Anwendungen.
Als ein repräsentatives Beispiel wird ein Octave m-File insulin.m vorgestellt, das auf
Basis einer Skript-Datei definiert wird. Der entsprechende ursprüngliche Ablauf ist in der
Abbildung. 20 zu sehen und wird im Folgenden beschrieben:

 Vor der Ausführung muss Octave gestartet werden.

 Das Octave Main Script File (hier die Datei insulin.m) wird wie folgend ausgeführt.

1. Ein Modell, das zur Ausführung des Script Files verwendet wird, soll von dem
Benutzer je nach Anspruch erstellt werden. Es kann direkt im Script File definiert
werden oder als ein zusätzliches m.File gespeichert werden, das vom Script File
eingelesen werden kann. Im Beispiel insulin.m wird ein Modell, das eine
Dosiswirkung von Insulin beschreibt, mit Hilfe eines parameterfreien
Modeling-Frameworks direkt im Script File definiert.

2. Das erstellte Modell kann überprüft werden, ob es zur Simulation passt. In der Datei
insulin.m wird das Modell nach der Überprüfung als eine Variable in dem
„current working directory“ gespeichert, auf dem Octave installiert wurde und der
Octave-Befehl aufgerufen wird.

3. Wie die Erstellung von „Modell“ kann die Variable „Data“ auch in einem

7. Implementierung

50

zusätzlichen m.File definiert werden, das vom Script File eingelesen wird. Oder die
Variable „Data“ wird direkt im Script File definiert. In diesem Fall soll zuerst ein
Wert der Variable „Prior“ vor der Definition des „Data“ zuordnen. Im File
insulin.m wird ein Wert a (a={0.4, ones(m,1)}) der Variablen
„Prior“ zugewiesen.

4. Nach der Zuweisung eines Wertes an die Variable „Prior“ wird die Variable

„Data“ definiert. Die Erstellung der Variable „Data“ erfolgt auch in der Datei
insulin.m.

5. Die erstellte Variable „Data“ kann getestet werden. Dann kann sie im
Arbeitsverzeichnis gespeichert werden.

6. Ähnlich wie in Schritt 1, wenn kein zusätzliches m.File für die Variable „tune
sampler“ erstellt wurde, wird sie direkt im Script File definiert. Zur Definition von
„tune sampler“ wird eine der fünf Funktionen verwendet, die zusätzlich als m.Files
erstellt wurden. Diese Funktionen sind ssHMClf.m, ssME.m, ssaME.m,
ssHMC.m und xssHMC.m. Mit Hilfe von den Funktionen wird die Variable „tune
sampler“ erstellt und im Arbeitsverzeichnis gespeichert. In der Datei insulin.m
wird die Variable „ftuned“ als „tune sampler“ gespeichert.

7. Die Variable „sampling“ wird in insulin.m als „fsample“ definiert. Nach der

Abbildung. 20 Ablauf der Octave-Anwendungen

7. Implementierung

51

Überprüfung wird sie im Arbeitsverzeichnis gespeichert.

8. Statistische Daten für „plot sample“ werden erstellt.

9. Der letzte Schritt „plot sample“ verwendet alle in den vorherigen Schritten erstellte
Variable und entstandene Daten, damit die Ergebnis-Darstellung erzeugt werden
kann. Im File insulin.m wird die Darstellung schließlich gespeichert.

 Alle Variable und die Ergebnis-Darstellung wurden im Script File insulin.m nicht als
zusätzliche Dateien sondern nur im Arbeitsverzeichnis gespeichert. Dies soll modifiziert
werden, da die Darstellung in einer Datenbank gespeichert werden soll, auf die der Web
Service zugreifen kann.

 Wenn das Octave-Programm das Script File ausführt, werden die erstellten Variablen
und die Funktionen automatisch aus anderen Dateien eingelesen.

7.2. Modifizierter Ablauf mit dem Octave Adapter

Wie im Abschnitt 6.1 beschrieben stellt der Octave Adapter einerseits einen Web Service für
den Client bereit, andererseits stellt er die Kommunikation mit der Octave-Anwendung zur
Verfügung. Damit werden die Anfragen des Clients an den richtigen TCP-Port weitergeleitet
und der Zustand der Simulationsinstanz wird geprüft.

Eine Simulationsanwendung kann im Normalfall mit dem generischen Adapter synchron oder
asynchron ausgeführt werden. Im Rahmen dieser Arbeit wird die Anwendung durch den
Octave Adapter nur synchron gestartet. Da die Ergebnis-Darstellung nun am Ende des
Anwendungsablaufs entsteht, muss die Anwendung auf die Terminierung der Darstellung
warten.

 Abbildung. 21 Aufteilung der Octave-Anwendungen

7. Implementierung

52

Eine Zeitüberschreitung kann ausgeschlossen werden, da sich die Octave-Anwendung und die
entsprechenden Adapter auf demselben Rechner befinden. Für HTTP-Anfragen kann die
Zeitbeschränkung auf den maximalen Wert, ca. 290 Millionen Jahre, erweitert werden [23].
Zu Verbindungsproblemen kann es aber wegen fehlender oder nicht passender Zugangsrechte
bei der Nutzung von SSH oder WinSCP kommen.

Der ursprüngliche Ablauf der Octave-Anwendung musste stark modifiziert werden, damit
sich die Funktionalitäten des Octave Adapters nutzen lassen können. Abbildung. 21 zeigt
einen modifizierten Anwendungsablauf, der in entsprechende Teile unterteilt wird. „Diese
Teile entsprechen teilweise den Methoden, die in der ursprünglichen Anwendung enthalten
waren bzw. verwendet wurden und nun als Web Service-Operationen aufgerufen werden
können“ [23]. Nicht alle Teile werden verwendet, je nach Anwendungsfall können sie
weggelassen werden. Zum Beispiel wurden in der Anwendung insulin.m keine
zusätzliche m.Files eingelesen.

Abbildung. 22 zeigt eine Interaktion zwischen den Web Services und den modifizierten
Ablauf, der durch einen gelben Kasten repräsentiert wird. Es wird im Folgenden beschrieben.

1. Das Octave Programm wird über den Octave Adapter gestartet. Dazu wird eine
Simulationsinstanz für die Anwendungen erstellt und eine Identifikationsnummer
(SimID) als Kommandozeilenparameter genutzt.

Abbildung. 22 Modifizierter Ablauf mit Interaktion vom Octave Adapter

7. Implementierung

53

2. Die Octave-Anwendung, hier das Script File insulin.m, wird mit dem Octave
Adapter über SSH gestartet.

3. Die SimID wird aus den Kommandozeilenparametern ausgelesen.

4. Der von Axis2 erstellte Octave Web Service Server wird gestartet und an einen freien
TCP-Port gebunden.

5. Sobald das Callback Stub die Information über die SimID und den TCP-Port bekommen,
teilt es dem Web Service Interface mit, dass die Anwendung bereit ist, damit die Anfrage
des Clients weiterleitet werden und die Simulationsinstanz den korrekten TCP-Port
zuordnen kann.

6. Der Client schickt eine Anfrage an den in Octave integrierte Web Service Server, der
dann diese Anfrage bearbeitet.

7. Wenn diese Anfrage vom Web Service Server aufgenommen und weiter bearbeitet wird,
werden die entsprechenden Operationen des Web Services aufgerufen. Die Antwort wird
an den Octave Adapter zurückgesendet. Dann wartet der Server auf eine nächste Anfrage
des Clients.

8. Der Web Service stoppt, wenn eine Operation zum Stoppen vom Client bzw. Octave
Adapter aufgerufen wird. Weitere Operationen des Octave Adapters sowie die
Octave-Anwendungen können dann nicht mehr ausgeführt werden.

7.3. Weitere Anmerkungen zur Implementierung

In diesem Abschnitt befinden sich weitere Beschreibungen zur Implementierung in den
Bereichen von Web Service und Simulationstest.

7.3.1. Erstellen eines Dynamic Web Projects

Es gibt zwei Möglichkeiten, das Erstellen eines Web Services in Eclipse zur Verfügung zu
stellen: die Top-Down-Methode und die Bottom-Up-Methode. Für die Implementierung des
Octave Web Services kommt die Top-Down Methode zum Einsatz. Bei dieser
Vorgehensweise erzeugt Eclipse auf Basis einer vorliegenden WSDL-Datei alle notwendigen
Java-Klassen, die um die konkrete Implementierung ergänzt werden müssen.

Zum Erstellen des Octave Web Services muss ein „Dynamic Web Project“ in Eclipse genutzt
werden. Es bietet eine Umgebung an, bei der der Service erstellt, modifiziert und
veröffentlicht werden kann. Dabei müssen zwei Voraussetzungen erfüllt werden: zunächst
muss Tomcat korrekt in Eclipse installiert sein, dann muss Axis2 mit Eclipse verbunden
werden. In dieser Arbeit werden Tomcat 6.0 und Axis2-1.6.1 in Eclipse verwendet.

7. Implementierung

54

Beim Erstellen des Web Services kann man unter Target Runtime den Server Tomcat 6.0
auswählen. Die eigentliche Konfiguration des Servers erfolgt nach dem Einstellen des
Dynamic Web Projects. Dann werden eine ganze Reihe von Verzeichnissen und Dateien im
Dynamic Web Projects erzeugt.

7.3.2. Erstellen einer WSDL-Datei

Die in dem Abschnitt 6.2 dargestellten Web Service Operationen werden im Eclipse WSDL-
Editor definiert. Die WSDL-Operationen dienen zur Beschreibung des Web Services. Auf der
linken Seite der Abbildung. 23 sieht man den Octave Web Service, der einen Port besitzt. In
diesem Fall ist dieser Port unter einer lokalen Adresse des Tomcat-Servers erreichbar, die sich
je nach Anspruch verändern kann. Rechts steht das Interface des Web Services, das durch ein
entsprechendes Binding mit dem Web Service verbunden ist. Die WSDL-Operationen werden
in diesem Web Service Interface definiert. Jede Operation verfügt über Input- und
Output-Elemente, wobei beliebige Fault-Elemente auch hinzugefügt werden können. Als
Beispiel zeigt die Abbildung. 23 zwei WSDL-Operationen. Die Operation
„createDirectory“ erhält SimID, User, Host sowie Directory als Eingabe (siehe Abbildung. 24)
und liefert eine Message als Ergebnis zurück.

Abbildung. 23 Ansicht der WSDL-Datei im Eclipse WSDL-Editor

Abbildung. 24 Input-Typ der Operation “createDirectory”

7. Implementierung

55

7.3.3. Erstellen der Web Service-Klassen mit Axis2

Mit den WSDL-Operationen in einer WSDL-Datei kann ein Web Service erstellt werden.
Dazu kommt das Tool „wsdl2java“ von Axis2 zum Einsatz, das im Abschnitt 3.3
vorgestellt wurde.

Durch Ausführung der Batchdatei wsdl2java können die Web Service-Klassen und ein
Java Skeleton generiert werden. Mit unterschiedlichen Kommandos können verschiedene
Java-Klassen erstellt werden, zum Beispiel die Java Stubs, die Bestandteil des Plugins für
interaktive Simulationsanwendungen sind. Die durch unterschiedliche Kommandos erstellten
Java-Klassen werden innerhalb des Eclipse-Projekts in verschiedenen Verzeichnissen
gespeichert.

7.3.4. Erstellen eines BPEL-Prozesses

Eine Aufgabe dieser Arbeit ist es einen BPEL-Prozess zu erstellen. Dies wird durch das
Erstellen eines BPEL Projects oder eines BPEL Process Files in Eclipse durchgeführt. Dabei
wird vorausgesetzt, dass Apache ODE in Eclipse eingebunden ist. Hier wird die Version
apache-ode-war-1.3.5 verwendet.

Die Definition eines BPEL-Prozesses setzt sich aus einem BPEL Process File sowie einer
oder mehreren WSDL-Dateien zusammen. Diese WSDL-Dateien definieren sowohl die Web
Service-Schnittstellen als auch die Schnittstelle, unter der der Prozess selbst erreicht werden
kann. Die WSDL-Datei, die die Schnittstellen des Octave Web Services beschreiben, sind im
Abschnitt 6.2 beschrieben. Für den aufzurufenden Service wird diese WSDL-Datei im
BPEL-Prozess importiert.

 Abbildung. 25 Beispiel eines Octave-basierten Workflow-Prozesses

7. Implementierung

56

Um einen Web Service aufzurufen, muss eine Invoke-Aktivität erstellt werden. Sie existiert
normalerweise zwischen Receive- und Reply-Aktivitäten, die die eingehende Nachricht
empfängt bzw. die Antwortnachricht an den Aufrufer zurücksendet. Über die Eigenschaften
des Invokes kann man einen Partnerlink sowie die verwendete Operation angeben, über den
der Service aufgerufen werden kann.

Ein Beispiel des Octave-basierten BPEL-Prozesses ist in der Abbildung. 25 zu sehen. Ein
Sequence-Konstrukt des Prozesses wird dargestellt, mit dem alle in diesem Konstrukt
enthaltenen Aktivitäten sequenziell abgearbeitet werden. Im Beispiel wird zuerst eine
Assign-Aktivität ausgeführt, die normalerweise durch ein Task oder ein Sub-Process
dargestellt wird. Hier wird sie dazu verwendet, einen neuen Wert den Variablen zuzuweisen.
Ein Request der Operation „prepareSimulation“ wird der Assign-Aktivität zugewiesen. Im
nächsten Schritt folgt eine Invoke-Aktivität, die die Operation „prepareSimulation“ des
Octave Web Services aufruft. In der Abbildung sieht man noch eine If-Aktivität, die eine
bedingte Ausführung der Aktivitäten ermöglicht. Optional kann diese Aktivität mit einer
Elseif- oder Else-Aktivität verbunden sein. Im Beispiel werden die If-Aktivität und ihre
nachfolgenden Aktivitäten nur ausgeführt, nur wenn die definierte Bedingung erfüllt ist.

7.3.5. Verwendete Verzeichnisse auf dem Server

Java System Properties werden von dem Web Service Interface verwendet, um bestimmte
Einstellungen dynamisch zu ändern. Diese System Properties werden immer erst ausgelesen,
wenn sie benötigt werden. In dieser Arbeit beschreiben die System Properties drei Pfade zu
Verzeichnissen (siehe Tabelle 11), auf die während der Laufzeit zugegriffen werden muss.

Pfad Beschreibung

/srv/wsi/octave/instance Der absolute Pfad des Instanzverzeichnisses

/srv/wsi/octave/src Der absolute Pfad des Verzeichnisses, in dem die Dateien
der Octave-Anwendungen gespeichert werden.

/srv/wsi/octave/export Der absolute Pfad des Verzeichnisses, in das die
Ergebnis-Dateien exportiert werden können.

Tabelle 11 System Properties

7.3.6. Test

Während der Implementierung kann man den erstellten Octave Web Service testen. Z.B. kann
man den Web Service unter Tomcat-Server laufen lassen, damit man sieht, welcher Service
und welche Service-Operationen zur Verfügung zu stehen.

Zum Testen der Web Service Operationen wird das Werkzeug SoapUI verwendet. Man kann
die WSDL-Datei in den SoapUI Client laden, um die entsprechenden Funktionen zu testen.

7. Implementierung

57

Bei jeder auf SoapUI importierten WSDL-Operation steht einen entsprechender Eintrag.
Durch die Aktivierung dieses Eintrags wird eine Anfrage an den Server geschickt und man
kann sehen, ob die Anfrage den Server erreicht.

Die Simulation soll ohne Interaktion mit dem Octave Adapter ausgeführt werden. Bei der
Ausführung der Octave-Anwendungen kann man testen, ob alle Octave-Pakete installiert sind.
Für die Visualisierung des Ergebnisses wird noch ein Xming-Server benötigt. Die
notwendigen Ergebnis-Dateien werden in der Datenbank gespeichert. Dann werden die
modifizierten Anwendungen durchgeführt, die über den Octave Adapter kontrolliert werden.
Man kann die Ergebnisdateien und die Ausführungszeit in beiden Simulationsabläufe
vergleichen.

8. Laufzeitumgebung

58

8. Laufzeitumgebung

In diesem Kapitel wird eine Laufzeitumgebung dargestellt, in der alle benötigten Softwares
enthalten sind. Zunächst wird eine virtuelle Maschine erläutert, mit der eine Arbeit in einer
Unix-Umgebung unter Windows ermöglicht. Anschließend befindet sich eine Beschreibung
über die Interaktion zwischen Client und Laufzeitumgebung.

8.1. Virtualisierte Komponenten

Im Rahmen dieser Arbeit wurden die Octave-Anwendungen und der auf Web Service
Interface basierte Octave Service Adapter in einem unix-artigen Betriebssystem entwickelt.
Dazu wurde eine Laufzeitumgebung in Form einer virtuellen Maschine verwendet, in der
Octave und alle notwendigen Softwares installiert und lauffähig sind.

Diese Umgebung wird mit einem VMware Player16 erstellt, der als eine Software zur
vollständigen Visualisierung verwendet wird und ermöglicht, mehrere Betriebssysteme auf
einem Rechner auszuführen oder eine isolierte virtuelle Maschine zu erstellen. Hierbei wird
ein virtuelles Ubuntu in Form von einer ISO17

-Abbild-Datei im VMware Player importiert.
Zudem wird ein virtuelles Laufwerk mit einer Datei Ubuntu.vmdk erstellt. Zur Konfiguation
des Ubuntus und zur Verbindung mit dem VMware Player wird eine Datei Ubuntu.vmx
benötigt, die mit einem Texteditor geöffnet werden kann und beispielsweise die
Speichergröße des Ubuntus ändert

16 VMware Player :http://www.vmware.com/de/products/desktop_virtualization/player/overview
17 ISO: http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=17505

Harware-Komponente: Einstellung:
Version Workstation 6,5-7,x virtual machine
Hauptspeicher 512 MB
Prozessoren 2
Festplatte 20 GB
Betriebssystem Ubuntu 10.04
Netzwerke-Adapter Network Address Translation (NAT)

Tabelle 12 Hardware-Komponenten der Laufzeitumgebung

http://www.vmware.com/de/products/desktop_virtualization/player/overview�
http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=17505�

8. Laufzeitumgebung

59

Ein Grund für die Verwendung des Ubuntus liegt an einer kostenlosen und auf Debian18
basierten Linux-Distribution19

Tabelle 12

, die sich sehr leicht an spezielle Bedürfnisse anpassen lässt.
Während der mehrmals grundlegenden Überarbeitung von GNU Octave wurde es in Debian
oder Linux integriert. Daher kann das Debian- und Linux-basierte Ubuntu bei der
Entwicklung einer Octave- Anwendung eine gute Umgebung anbieten.

 zeigt die Hardware-Komponenten, die das Profil des Ubuntus darstellen. Zudem
wurden noch folgende Softwares installiert, die zur Erstellung des Octave Service Adapters
sowie zur Ausführung der Octave-Anwendung benötigt werden:

 GNU Octave 3.6.1 mit dem Pakete Multicore

 Eclipse IDE for Java EE Developers mit Axis2, Apache Tomcat und Apache ODE

 Java Runtime Environment 1.6

Benutzung des Betriebssystems

Die erstelle virtuelle Maschine bietet die Möglichkeit, das Betriebssystem Ubuntu unter
Windows direkt zu verwenden und die sämtliche Laufzeitumgebung zu modifizieren und zu
verwalten. Daher werden gewisse Grundkenntnisse über die Verwendung des Betriebssystems
in Anspruch genommen. Im Folgenden wird ein Überblick über die Verwendung und oft
verwendete Befehle von Ubuntu gegeben.

 Der VMware Player muss zunächst gestartet werden, um das importierte Betriebssystem
Ubuntu auszuführen. Dann erfolgt das Starten des Ubuntus, wobei normalerweise ein
Benutzername und ein Passwort benötigt werden. Schließlich kann man einfach auf die
Taste „log out“ klicken, um das Ubuntus zu stoppen.

 Ein Vorteil von Ubuntu ist, dass die Software-Programme gleich auf ihrem Rechner
installiert werden und ihr System ausprobieren können, ohne stundenlang nach den
passenden Programmen suchen zu müssen. Dies wird durch eine Konsole apt-get im
Terminal realisiert, die ermöglicht, die Anwendung zu installieren und zu aktualisieren.
Weiterhin können auch alle unnötigen Komponenten durch Konsole gleich weggelassen
werden, um den Speicherplatz zu sparen.

8.2. Interaktion mit der Laufzeitumgebung

In der Arbeit [23] wurden drei Benutzungsmöglichkeiten dargestellt, die eine Interaktion
zwischen den Client-Rechner, den WfMS-Server und den (virtuellen) Rechner der

18 Debian: http://www.debian.org/intro/about
19 Linux-Distribution: http://distrowatch.com/dwres.php?resource=popularity

http://www.debian.org/intro/about�
http://distrowatch.com/dwres.php?resource=popularity�

8. Laufzeitumgebung

60

Laufzeitumgebung beschreiben. Im Rahmen dieser Arbeit erfolgt nur eine Interaktion, die
sich in dem Client und in der Laufzeitumgebung befindet. Hierbei wird ein Überblick in der
Abbildung. 26 verschafft.

In der Laufzeitumgebung werden folgende Komponenten enthalten: ein Workflow-Prozess
(hier der BPEL-Prozess), das Web Service Interface, der erstellte Octave Service Adapter und
die Octave-Simulationsanwendungen. Zunächst kommuniziert der Client über Web Service
mit dem BPEL-Prozess in der Laufzeitumgebung. Dies wird durch Versendung einer Anfrage
des Client realisiert. Nach Empfangen der Anfrage geht der BPEL-Prozess zur Ausführung
los, der in der BPEL-Engine Apache ODE bereitgestellt und eine automatisierte Ausführung
der Simulation ermöglicht. Ein BPEL-Prozess besteht aus verschiedenen Aktivitäten, die sich
mit unterschiedlichen Kontrollen verbinden lassen. Zur Ausführung der
Simulationsanwendungen über Web Services muss die Web Service-Operation in der
entsprechenden Aktivität des BPEL-Prozesses integriert werden. Dadurch werden die Web
Service-Operationen während der Durchführung des BPEL-Prozess aufgerufen und die
Octave-Anwendungen ausgeführt.

Abbildung. 26 Kommunikation in der Laufzeitumgebung [23]

9. Zusammenfassung und Ausblick

61

9. Zusammenfassung und Ausblick

Aufgrund der Berechnungen der kontinuierlich wachsenden und heterogenen Datenmengen
wird eine Zusammenarbeit zwischen Simulationen, Workflow- und Web Service
Technologien entwickelt. Dies ermöglicht, bereits definierte Funktionalitäten der Simulation
in Form von Web Services über das Internet zu integrieren. Ein Vorteil der Web Services ist,
dass sie von einer gewissen Struktur verwendet werden können, die oft mittels sogenanntes
Workflow-Prozess definiert wird. Um Orchestrierungen der Web Service zu definieren und
ausführbar zu machen, wird die Workflow-Technologie eingeführt.

Im Rahmen der vorliegenden Arbeit wurde eine Octave-basierte Simulationsanwendung
betrachtet. Es wurde zunächst ein Octave Service Adapter auf Basis eines
plattformunabhängig generischen Web Service Interface aufgebaut. Dieser Adapter wurde als
Web Service Plugin angesehen. Weiterhin verfügt dieser Adapter eigene Simulationsinstanz,
die stets eine eindeutige Identifikationsnummer besitzt und eine Menge von Verzeichnissen
und Daten umfasst sowie Simulationsanwendungen ausführt. Einerseits bietet der Adapter die
Kommunikation mit den Anwendungen an. Hierfür wurde ein Web Service zur Beschreibung
der Funktionalitäten bei ihren Anwendungen erstellt. Andererseits stellt er einen weiteren
Web Service für den Client zur Verfügung. Ein Callback Stub wurde hierbei bereitgestellt,
um den Client mitzuteilen, dass die Anwendungen bereit sind und die Anfrage des Clients
bearbeitet werden kann.

Anschließend wurde ein BEPL-Prozess mit Hilfe des Octave Adapters aufgebaut. Dieser
Prozess dient dazu, den Ablauf für Ausführung der Octave-Anwendungen darzustellen. Die
Anwendungen können dann in einem BPEL-Prozess koordiniert werden, wenn die
Aktivitäten des Prozesses eine Verbindung mit den Web Service-Operationen gesetzt wurden.
Anschließend wurde der BPEL-Prozess durch die Verwendung von BPEL-Engine
automatisiert ausgeführt.

Die Simulationsanwendungen und das Web Service Interface wurden unter Unix-artigen
Betriebssystemen definiert. Aus diesem Grund wurde eine Laufzeitumgebung Ubuntu in einer
virtuellen Maschine VMware Player erstellt. In dieser Umgebung wurden alle in dieser Arbeit
verwendeten Software installiert und Programme ausgeführt. Der Web Service und seine
WSDL-Operationen wurden mittels Apache Tomcat und Axis2 in Eclipse erstellt. Die
Ausführung des BPEL-Prozesses wurde anhand der BPEL-Engine Apache ODE realisiert.

9. Zusammenfassung und Ausblick

62

Die Integration der Workflow- und Web Service Technologie ermöglicht weitere
anwendungsorientierte Aufgaben. Beispielsweise können mehrere Web Service-Operationen
bereitgestellt werden, um mehrere Funktionalitäten der Simulationsanwendung zu
beschreiben. Die Simulationen, die aus verschiedenen Plattformen erstellt werden, können in
einem Workflow System ausgeführt werden. Weiterhin können Workflow-Prozesse
asynchron durchgeführt werden, damit mehr Flexibilität bei der Änderung und bei der
Ausführung der Prozesse erzeugt werden kann

0. Anhang

63

Anhang

WSDL-Operationen von Octave Web Service

1. <?xml version="1.0" encoding="UTF-8" standalone="no"?>
2. <wsdl:definitions name="WSI_Octave"
3. targetNamespace="http://wsi.simtech.de/WSI_Octave/"
4. xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
5. xmlns:tns="http://wsi.simtech.de/WSI_Octave/"
6. xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"
7. xmlns:types="http://wsi.simtech.de/ws/types/"
8. xmlns:xsd="http://www.w3.org/2001/XMLSchema">
9.
10. <wsdl:types>
11. <xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema">
12. <xsd:import namespace="http://wsi.simtech.de/ws/types/"
13. schemaLocation="types.xsd">
14. </xsd:import>
15. </xsd:schema>
16. <xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema"
17. targetNamespace="http://wsi.simtech.de/WSI_Octave/">
18.
19. <xsd:element name="prepareSimulation">
20. <xsd:complexType>
21. <xsd:sequence>
22. <xsd:element name="name" type="xsd:string" minOccurs="1"

maxOccurs="1"></xsd:element>
23. </xsd:sequence>
24. </xsd:complexType>
25. </xsd:element>
26.
27. <xsd:element name="prepareSimulationResponse">
28. <xsd:complexType>
29. <xsd:sequence>
30. <xsd:element name="retrunMessage"
31. type="xsd:string" minOccurs="1" maxOccurs="1">

0. Anhang

64

32. </xsd:element>
33.
34. <xsd:element name="SimID"
35. type="xsd:long" minOccurs="1" maxOccurs="1">
36. </xsd:element>
37. </xsd:sequence>
38. </xsd:complexType>
39. </xsd:element>
40.
41. <xsd:element name="ExecuteCommandSyncFault"
42. type="tns:ExecuteCommandSyncFaultType">
43. </xsd:element>
44.
45. <xsd:complexType name="ExecuteCommandSyncFaultType">
46. <xsd:sequence>
47. <xsd:element name="returnCode" type="xsd:int"
48. minOccurs="1" maxOccurs="1">
49. </xsd:element>
50. <xsd:element name="errorMessage" type="xsd:string" minOccurs="1"

maxOccurs="1"></xsd:element>
51. </xsd:sequence>
52. </xsd:complexType>
53.
54. <xsd:element name="createDirectory">
55. <xsd:complexType>
56. <xsd:sequence>
57. <xsd:element name="SimID" type="xsd:long"
58. minOccurs="1" maxOccurs="1">
59. </xsd:element>
60. <xsd:element name="User" type="xsd:string"
61. minOccurs="1" maxOccurs="1">
62. </xsd:element>
63. <xsd:element name="Host" type="xsd:string"
64. minOccurs="1" maxOccurs="1">
65. </xsd:element>
66. <xsd:element name="Directory"
67. type="xsd:string" minOccurs="1" maxOccurs="1">
68. </xsd:element>
69. </xsd:sequence>
70. </xsd:complexType>
71. </xsd:element>
72.

0. Anhang

65

73. <xsd:element name="createDirectoryResponse">
74. <xsd:complexType>
75. <xsd:sequence>
76. <xsd:element name="returnMessage" type="xsd:string"

minOccurs="1" maxOccurs="1"></xsd:element>
77. </xsd:sequence>
78. </xsd:complexType>
79. </xsd:element>

80. <xsd:element name="copyFile">
81. <xsd:complexType>
82. <xsd:sequence>
83. <xsd:element name="SimID" type="xsd:long"
84. minOccurs="1" maxOccurs="1">
85. </xsd:element>
86. <xsd:element name="SrcUser" type="xsd:string"
87. minOccurs="1" maxOccurs="1">
88. </xsd:element>
89. <xsd:element name="SrcHost" type="xsd:string"
90. minOccurs="1" maxOccurs="1">
91. </xsd:element>
92. <xsd:element name="SrcFile" type="xsd:string"
93. minOccurs="1" maxOccurs="1">
94. </xsd:element>
95. <xsd:element name="DstUser" type="xsd:string"
96. minOccurs="1" maxOccurs="1">
97. </xsd:element>
98. <xsd:element name="DstHost" type="xsd:string"
99. minOccurs="1" maxOccurs="1">
100. </xsd:element>
101. <xsd:element name="DstFile"
102. type="xsd:string" minOccurs="1" maxOccurs="1">
103. </xsd:element>
104. </xsd:sequence>
105. </xsd:complexType>
106. </xsd:element>
107.
108. <xsd:element name="copyFileResponse">
109. <xsd:complexType>
110. <xsd:sequence>
111. <xsd:element name="returnMessage" type="xsd:string"

minOccurs="1" maxOccurs="1"></xsd:element>

0. Anhang

66

112. </xsd:sequence>
113. </xsd:complexType>
114. </xsd:element>
115.
116. <xsd:element name="setOctavePath">
117. <xsd:complexType>
118. <xsd:sequence>
119. <xsd:element name="SimID" type="xsd:long"
120. minOccurs="1" maxOccurs="1">
121. </xsd:element>
122. <xsd:element name="OctavePath"
123. type="xsd:string" minOccurs="1" maxOccurs="1">
124. </xsd:element>
125. </xsd:sequence>
126. </xsd:complexType>
127. </xsd:element>
128.
129. <xsd:element name="setOctavePathResponse">
130. <xsd:complexType>
131. <xsd:sequence>
132. <xsd:element name="returnMessage" type="xsd:string"

minOccurs="1" maxOccurs="1"></xsd:element>
133. </xsd:sequence>
134. </xsd:complexType>
135. </xsd:element>
136.
137. <xsd:element name="getOctavePath">
138. <xsd:complexType>
139. <xsd:sequence>
140. <xsd:element name="SimID" type="xsd:long" minOccurs="1"

maxOccurs="1"></xsd:element>
141. </xsd:sequence>
142. </xsd:complexType>
143. </xsd:element>
144.
145. <xsd:element name="getOctavePathResponse">
146. <xsd:complexType>
147. <xsd:sequence>
148. <xsd:element name="OctavePath" type="xsd:string" minOccurs="1"

maxOccurs="1"></xsd:element>
149. </xsd:sequence>
150. </xsd:complexType>

0. Anhang

67

151. </xsd:element>
152.
153. <xsd:element name="startProgram">
154. <xsd:complexType>
155. <xsd:sequence>
156. <xsd:element name="SimID" type="xsd:long"
157. minOccurs="1" maxOccurs="1">
158. </xsd:element>
159. <xsd:element name="User" type="xsd:string"
160. minOccurs="1" maxOccurs="1">
161. </xsd:element>
162. <xsd:element name="Host" type="xsd:string"
163. minOccurs="1" maxOccurs="1">
164. </xsd:element>
165. <xsd:element name="Path" type="xsd:string"
166. minOccurs="1" maxOccurs="1">
167. </xsd:element>
168. <xsd:element name="Program"
169. type="xsd:string" minOccurs="1" maxOccurs="1">
170. </xsd:element>
171. </xsd:sequence>
172. </xsd:complexType>
173. </xsd:element>
174.
175. <xsd:element name="startProgramResponse">
176. <xsd:complexType>
177. <xsd:sequence>
178. <xsd:element name="plotSample"
179. type="tns:plot">
180. </xsd:element>
181. <xsd:element name="DataFile1"
182. type="xsd:string">
183. </xsd:element>
184. </xsd:sequence>
185. </xsd:complexType>
186. </xsd:element>
187.
188. <xsd:element name="setPlottingPath">
189. <xsd:complexType>
190. <xsd:sequence>
191. <xsd:element name="SimID" type="xsd:long"></xsd:element>
192. <xsd:element name="PlottingPath"

0. Anhang

68

193. type="xsd:string">
194. </xsd:element>
195. </xsd:sequence>
196. </xsd:complexType>
197. </xsd:element>
198.
199. <xsd:element name="setPlottingPathResponse">
200. <xsd:complexType>
201. <xsd:sequence>
202. <xsd:element name="returnMessage" type="xsd:string"

minOccurs="1" maxOccurs="1"></xsd:element>
203. </xsd:sequence>
204. </xsd:complexType>
205. </xsd:element>
206.
207. <xsd:element name="getPlottingPath">
208. <xsd:complexType>
209. <xsd:sequence>
210. <xsd:element name="SimID" type="xsd:long" minOccurs="1"

maxOccurs="1"></xsd:element>
211. </xsd:sequence>
212. </xsd:complexType>
213. </xsd:element>
214.
215. <xsd:element name="getPlottingPathResponse">
216. <xsd:complexType>
217. <xsd:sequence>
218. <xsd:element name="returnMessage" type="xsd:string"

minOccurs="1" maxOccurs="1"></xsd:element>
219. </xsd:sequence>
220. </xsd:complexType>
221. </xsd:element>
222.
223. <xsd:element name="removeFile">
224. <xsd:complexType>
225. <xsd:sequence>
226. <xsd:element name="SimID" type="xsd:long"
227. minOccurs="1" maxOccurs="1">
228. </xsd:element>
229. <xsd:element name="User" type="xsd:string"
230. minOccurs="1" maxOccurs="1">
231. </xsd:element>

0. Anhang

69

232. <xsd:element name="Host" type="xsd:string"
233. minOccurs="1" maxOccurs="1">
234. </xsd:element>
235. <xsd:element name="Path"
236. type="xsd:string" minOccurs="1" maxOccurs="1">
237. </xsd:element>
238. </xsd:sequence>
239. </xsd:complexType>
240. </xsd:element>
241.
242. <xsd:element name="removeFileResponse">
243. <xsd:complexType>
244. <xsd:sequence>
245. <xsd:element name="returnMessage" type="xsd:string"

minOccurs="1" maxOccurs="1"></xsd:element>
246. </xsd:sequence>
247. </xsd:complexType>
248. </xsd:element>
249. </xsd:schema>
250. </wsdl:types>
251.
252. <wsdl:message name="prepareSimulationRequest">
253. <wsdl:part name="parameters" element="tns:prepareSimulation"></wsdl:part>
254. </wsdl:message>
255.
256. <wsdl:message name="prepareSimulationResponse">
257. <wsdl:part name="parameters"

element="tns:prepareSimulationResponse"></wsdl:part>
258. </wsdl:message>
259.
260. <wsdl:message name="InvalidStateException">
261. <wsdl:part name="fault" element="types:InvalidStateFault"></wsdl:part>
262. </wsdl:message>
263.
264. <wsdl:message name="ExecuteCommandException">
265. <wsdl:part name="fault" element="tns:ExecuteCommandSyncFault"></wsdl:part>
266. </wsdl:message>
267.
268. <wsdl:message name="createDirectoryRequest">
269. <wsdl:part name="parameters" element="tns:createDirectory"></wsdl:part>
270. </wsdl:message>
271.

0. Anhang

70

272. <wsdl:message name="createDirectoryResponse">
273. <wsdl:part name="parameters" element="tns:createDirectoryResponse"></wsdl:part>
274. </wsdl:message>
275.
276. <wsdl:message name="copyFileRequest">
277. <wsdl:part name="parameters" element="tns:copyFile"></wsdl:part>
278. </wsdl:message>
279.
280. <wsdl:message name="copyFileResponse">
281. <wsdl:part name="parameters" element="tns:copyFileResponse"></wsdl:part>
282. </wsdl:message>
283.
284. <wsdl:message name="setOctavePathRequest">
285. <wsdl:part name="parameters" element="tns:setOctavePath"></wsdl:part>
286. </wsdl:message>
287.
288. <wsdl:message name="setOctavePathResponse">
289. <wsdl:part name="parameters" element="tns:setOctavePathResponse"></wsdl:part>
290. </wsdl:message>
291.
292. <wsdl:message name="getOctavePathRequest">
293. <wsdl:part name="parameters" element="tns:getOctavePath"></wsdl:part>
294. </wsdl:message>
295.
296. <wsdl:message name="startProgramRequest">
297. <wsdl:part name="parameters" element="tns:startProgram"></wsdl:part>
298. </wsdl:message>
299.
300. <wsdl:message name="startProgramResponse">
301. <wsdl:part name="parameters" element="tns:startProgramResponse"></wsdl:part>
302. </wsdl:message>
303.
304. <wsdl:message name="setPlottingPathRequest">
305. <wsdl:part name="parameters" element="tns:setPlottingPath"></wsdl:part>
306. </wsdl:message>
307.
308. <wsdl:message name="getPlottingPathRequest">
309. <wsdl:part name="parameters" element="tns:getPlottingPath"></wsdl:part>
310. </wsdl:message>
311.
312. <wsdl:message name="getPlottingPathResponse">
313. <wsdl:part name="parameters" element="tns:getPlottingPathResponse"></wsdl:part>

0. Anhang

71

314. </wsdl:message>
315.
316. <wsdl:message name="removeFileRequest">
317. <wsdl:part name="parameters" element="tns:removeFile"></wsdl:part>
318. </wsdl:message>
319.
320. <wsdl:message name="removeFileResponse">
321. <wsdl:part name="parameters" element="tns:removeFileResponse"></wsdl:part>
322. </wsdl:message>
323.
324. <wsdl:portType name="WSI_Octave">
325.
326. <wsdl:operation name="prepareSimulation">
327. <wsdl:input message="tns:prepareSimulationRequest"></wsdl:input>
328. <wsdl:output message="tns:prepareSimulationResponse"></wsdl:output>
329. <wsdl:fault name="InvalidStateFault"

message="tns:InvalidStateException"></wsdl:fault>
330. <wsdl:fault name="CommandFault"

message="tns:ExecuteCommandException"></wsdl:fault>
331. </wsdl:operation>
332.
333. <wsdl:operation name="createDirectory">
334. <wsdl:input message="tns:createDirectoryRequest"></wsdl:input>
335. <wsdl:output message="tns:createDirectoryResponse"></wsdl:output>
336. <wsdl:fault name="InvalidStateFault"

message="tns:InvalidStateException"></wsdl:fault>
337. <wsdl:fault name="CommandFault"

message="tns:ExecuteCommandException"></wsdl:fault>
338. </wsdl:operation>
339.
340. <wsdl:operation name="copyFile">
341. <wsdl:input message="tns:copyFileRequest"></wsdl:input>
342. <wsdl:output message="tns:copyFileResponse"></wsdl:output>
343. <wsdl:fault name="InvalidStateFault"

message="tns:InvalidStateException"></wsdl:fault>
344. <wsdl:fault name="CommandFault"

message="tns:ExecuteCommandException"></wsdl:fault>
345. </wsdl:operation>
346.
347. <wsdl:operation name="setOctavePath">
348. <wsdl:input message="tns:setOctavePathRequest"></wsdl:input>
349. <wsdl:output message="tns:setOctavePathResponse"></wsdl:output>

0. Anhang

72

350. <wsdl:fault name="InvalidStateFault"
message="tns:InvalidStateException"></wsdl:fault>

351. <wsdl:fault name="CommandFault"
message="tns:ExecuteCommandException"></wsdl:fault>

352. </wsdl:operation>
353.
354. <wsdl:operation name="getOctavePath">
355. <wsdl:input message="tns:getOctavePathRequest"></wsdl:input>
356. <wsdl:output message="tns:getOctavePathResponse"></wsdl:output>
357. <wsdl:fault name="InvalidStateFault"

message="tns:InvalidStateException"></wsdl:fault>
358. <wsdl:fault name="CommandFault"

message="tns:ExecuteCommandException"></wsdl:fault>
359. </wsdl:operation>
360.
361. <wsdl:operation name="startProgram">
362. <wsdl:input message="tns:startProgramRequest"></wsdl:input>
363. <wsdl:output message="tns:startProgramResponse"></wsdl:output>
364. <wsdl:fault name="InvalidStateFault"

message="tns:InvalidStateException"></wsdl:fault>
365. <wsdl:fault name="CommandFault"

message="tns:ExecuteCommandException"></wsdl:fault>
366. </wsdl:operation>
367.
368. <wsdl:operation name="setPlottingPath">
369. <wsdl:input message="tns:setPlottingPathRequest"></wsdl:input>
370. <wsdl:output message="tns:setPlottingPathResponse"></wsdl:output>
371. <wsdl:fault name="InvalidStateFault"

message="tns:InvalidStateException"></wsdl:fault>
372. <wsdl:fault name="CommandFault"

message="tns:ExecuteCommandException"></wsdl:fault>
373. </wsdl:operation>
374.
375. <wsdl:operation name="getPlottingPath">
376. <wsdl:input message="tns:getPlottingPathRequest"></wsdl:input>
377. <wsdl:output message="tns:getPlottingPathResponse"></wsdl:output>
378. <wsdl:fault name="InvalidStateFault"

message="tns:InvalidStateException"></wsdl:fault>
379. <wsdl:fault name="CommandFault"

message="tns:ExecuteCommandException"></wsdl:fault>
380. </wsdl:operation>
381.

0. Anhang

73

382. <wsdl:operation name="removeFile">
383. <wsdl:input message="tns:removeFileRequest"></wsdl:input>
384. <wsdl:output message="tns:removeFileResponse"></wsdl:output>
385. </wsdl:operation>
386. </wsdl:portType>
387.
388. <wsdl:binding name="WSI_OctaveSOAP" type="tns:WSI_Octave">
389. <soap:binding style="document"
390. transport="http://schemas.xmlsoap.org/soap/http" />
391. <wsdl:operation name="prepareSimulation">
392. <soap:operation
393. soapAction="http://wsi.simtech.de/WSI_Octave/prepareSimulation" />
394. <wsdl:input>
395. <soap:body use="literal" />
396. </wsdl:input>
397. <wsdl:output>
398. <soap:body use="literal" />
399. </wsdl:output>
400. <wsdl:fault name="InvalidStateFault">
401. <soap:fault use="literal" name="InvalidStateFault" />
402. </wsdl:fault>
403. <wsdl:fault name="CommandFault">
404. <soap:fault use="literal" name="CommandFault" />
405. </wsdl:fault>
406. </wsdl:operation>
407. <wsdl:operation name="createDirectory">
408. <soap:operation
409. soapAction="http://wsi.simtech.de/WSI_Octave/createDirectory" />
410. <wsdl:input>
411. <soap:body use="literal" />
412. </wsdl:input>
413. <wsdl:output>
414. <soap:body use="literal" />
415. </wsdl:output>
416. <wsdl:fault name="InvalidStateFault">
417. <soap:fault use="literal" name="InvalidStateFault" />
418. </wsdl:fault>
419. <wsdl:fault name="CommandFault">
420. <soap:fault use="literal" name="CommandFault" />
421. </wsdl:fault>
422. </wsdl:operation>
423. <wsdl:operation name="copyFile">

0. Anhang

74

424. <soap:operation
425. soapAction="http://wsi.simtech.de/WSI_Octave/copyFile" />
426. <wsdl:input>
427. <soap:body use="literal" />
428. </wsdl:input>
429. <wsdl:output>
430. <soap:body use="literal" />
431. </wsdl:output>
432. <wsdl:fault name="InvalidStateFault">
433. <soap:fault use="literal" name="InvalidStateFault" />
434. </wsdl:fault>
435. <wsdl:fault name="CommandFault">
436. <soap:fault use="literal" name="CommandFault" />
437. </wsdl:fault>
438. </wsdl:operation>
439. <wsdl:operation name="setOctavePath">
440. <soap:operation
441. soapAction="http://wsi.simtech.de/WSI_Octave/setOctavePath" />
442. <wsdl:input>
443. <soap:body use="literal" />
444. </wsdl:input>
445. <wsdl:output>
446. <soap:body use="literal" />
447. </wsdl:output>
448. <wsdl:fault name="InvalidStateFault">
449. <soap:fault use="literal" name="InvalidStateFault" />
450. </wsdl:fault>
451. <wsdl:fault name="CommandFault">
452. <soap:fault use="literal" name="CommandFault" />
453. </wsdl:fault>
454. </wsdl:operation>
455. <wsdl:operation name="getOctavePath">
456. <soap:operation
457. soapAction="http://wsi.simtech.de/WSI_Octave/getOctavePath" />
458. <wsdl:input>
459. <soap:body use="literal" />
460. </wsdl:input>
461. <wsdl:output>
462. <soap:body use="literal" />
463. </wsdl:output>
464. <wsdl:fault name="InvalidStateFault">
465. <soap:fault use="literal" name="InvalidStateFault" />

0. Anhang

75

466. </wsdl:fault>
467. <wsdl:fault name="CommandFault">
468. <soap:fault use="literal" name="CommandFault" />
469. </wsdl:fault>
470. </wsdl:operation>
471. <wsdl:operation name="startProgram">
472. <soap:operation
473. soapAction="http://wsi.simtech.de/WSI_Octave/startProgram" />
474. <wsdl:input>
475. <soap:body use="literal" />
476. </wsdl:input>
477. <wsdl:output>
478. <soap:body use="literal" />
479. </wsdl:output>
480. <wsdl:fault name="InvalidStateFault">
481. <soap:fault use="literal" name="InvalidStateFault" />
482. </wsdl:fault>
483. <wsdl:fault name="CommandFault">
484. <soap:fault use="literal" name="CommandFault" />
485. </wsdl:fault>
486. </wsdl:operation>
487. </wsdl:binding>
488. <wsdl:service name="WSI_Octave">
489. <wsdl:port binding="tns:WSI_OctaveSOAP" name="WSI_OctaveSOAP">
490. <soap:address location="http://localhost:8080/axis2/services/WSI_Octave"/>
491. </wsdl:port>
492. </wsdl:service>
493. </wsdl:definitions>

0. Abkürzungsverzeichnis

76

Abkürzungsverzeichnis

ADB: Axis2 Data Binding Framework

BPEL: Business Process Execution Language

HTTP: Hypertext Transfer Protocol

MCMC: Markov Chain Monte Carlo

NAT: Network Address Translation

NESC: National e-Science Centre

REST: Representational State Transfer

SOA: Serviceorientierte Architektur

SOAP: Simple Object Access Protocol

TCP: Transmission Control Protocol

UDDI: Universal Description, Discovery and Integration

URI: Uniform resource identifier

URL: Uniform Resource Locators

W3C: World Wide Web Consortium

WfMC: Workflow Management Coalition

WfMS: Workflow Management System

WS: Web Service

WSDL: Web Services Description Language

WSFL: Web Services Flow Language

WSI: Web Service Interface

XML: Extensible Markup Language

0. Abbildungsverzeichnis

77

Abbildungsverzeichnis

Abbildung. 1 Grundlegende Merkmale einer SOA [1] ·· 6

Abbildung. 2 Das Dreieck einer SOA [1] ··· 7

Abbildung. 3 Syntaktische Struktur eines WSDL-Dokuments [9] ··· 9

Abbildung. 4 Aufbau von SOAP-Nachrichten [9] ·· 10

Abbildung. 5 UDDI-Datenmodell [2] ··· 11

Abbildung. 6 Geschäftsprozess und workflow [8] ·· 12

Abbildung. 7 Drei Workflow Dimensionen [8] ··· 13

Abbildung. 8 Lebenszyklus eines Scientific Workflows [11] ··· 14

Abbildung. 9 Architektur des Web Service Interfaces [23] ·· 23

Abbildung. 10 Lebenszyklus einer Simulationsinstanz aus [23] ··· 24

Abbildung. 11 Vereinfachte Darstellung von interagierenden biologischen Netzwerken [18]
 ··· 28

Abbildung. 12 Interaktionsgraph in der trans-Golgi Netzwerk ·· 30

Abbildung. 13 Lebenszyklus der Simulationsinstanz von Octave Adapter ··························· 33

Abbildung. 14 Übersicht über die Anwendungsfälle ·· 35

Abbildung. 15 Ergebnisbilder nach der Ausführung der Octave-Anwendungen ················· 40

Abbildung. 16 Architektur des Octave Adapters ··· 41

Abbildung. 17 Workflow-Prozess für die Octave-Anwenudng ··· 46

Abbildung. 18 Prepare Steps ·· 47

Abbildung. 19 show the results ·· 47

Abbildung. 20 Ablauf der Octave-Anwendungen ··· 50

Abbildung. 21 Aufteilung der Octave-Anwendungen ·· 51

Abbildung. 22 Modifizierter Ablauf mit Interaktion vom Octave Adapter ·························· 52

Abbildung. 23 Ansicht der WSDL-Datei im Eclipse WSDL-Editor ·· 54

0. Abbildungsverzeichnis

78

Abbildung. 24 Input-Typ der Operation “createDirectory” ·· 54

Abbildung. 25 Beispiel eines Octave-basierten Workflow-Prozesses ·································· 55

Abbildung. 26 Kommunikation in der Laufzeitumgebung [23] ·· 60

0. Tabelleverzeichnis

79

Tabelleverzeichnis

Tabelle 1 Parametre der Operation prepareSimulation .. 42

Tabelle 2 Parametre der Operation createDirectoty ... 43

Tabelle 3 Parametre der Operation copyFile ... 43

Tabelle 4 Parametre der Operation setOctavePath ... 44

Tabelle 5 Parametre der Operation getOctavePath ... 44

Tabelle 6 Parametre der Operation startProgram ... 44

Tabelle 7 Parametre der Operation removeFile .. 45

Tabelle 8 Parametre der Operation setPlottingPath .. 45

Tabelle 9 Parametre der Operation getPlottingPath ... 46

Tabelle 10 Parameter der Workflow-Operationen .. 48

Tabelle 11 System Properties ... 56

Tabelle 12 Hardware-Komponenten der Laufzeitumgebung ... 58

0. Literaturverzeichnis

80

Literaturverzeichnis

[1]. Ingo Melz et al. : Serviceorientierte Architekturen mit Webservice: Konzepte-

Standards- Praxis, 2010

[2]. DOSTAL, Wolfgang ; JECKLE, Mario ; MELZER, Ingo ; ZENGLER, Barbara:
Service-orientierte Architekturen mit Web Services. Konzepte – Standards – Praxis,
2005

[3]. F. Christensen, E.; Curbera: Web Services Description Language (WSDL) 1.1, 2001.
URL: http://www.w3.org/TR/wsdl.

[4]. W3C. SOAP Version 1.2, 2007. URL:http:/www.w3.org/TR/soap/.

[5]. Microsoft: UDDI Business Registry Shutdown, 2005.

URL: http://uddi.microsoft.com/about/FAQshutdown.htm

[6]. Web Services Business Process Execution Language Version 2.0, 2007
URL:http://docs.oasis-open.org/wsbpel/2.0/OS/wsbpel-v2.0-OS.html

[7]. BURGHARDT, Markus: Web Services. Aspekte von Sicherheit, Transaktionalität,
Abrechnung und Workflow, 2004

[8]. Frank Leymann, Dieter Roller: Production Workflow: Concepts and Techniques,
2000

[9]. S. Weerawarana, F. Curbera, F. Leymann, T. Storey, D. Ferguson: Web Services
Platform Architecture: SOAP, WSDL, WS-Policy, WS-Addressing, WS-BPEL,
WS-Reliable Messaging and More, 2008.

[10]. Bertram Ludäscher, Mathias Weske, Timothy McPhillips, Shawn Bowers:

Scientific Workflows: Business as Usual? 2009

[11]. Katharina Görlach, Mirko Sonntag, Dimka Karastoyanova,Frank Leymann,
Michael Reiter: Conventional Workflow Technology for Scientific Simulation. 2011

[12]. Rafael Ball: Wissenschaftskommunikation der Zukunft, 2007

[13]. Ute Rusnak, Matthias Razum, Leni Helmes: Wissensvernetzung im
Forschungsprozess, 2007

http://www.w3.org/TR/wsdl�
http://www.w3.org/TR/soap/�
http://uddi.microsoft.com/about/FAQshutdown.htm�
http://docs.oasis-open.org/wsbpel/2.0/OS/wsbpel-v2.0-OS.html�

0. Literaturverzeichnis

81

[14]. Gabriele Gramelsberger: Computersimulationen in den Wissenschaften- Neue
Instrumente der Wissensproduktion: Schnittstellen zwischen Theorie und
Experiment. 2007

[15]. F. Steinke, M. Seeger, K. Tsuda: Experimental design for efficient
identification of gene regulatory networks using sparse bayesian models

[16]. Andrei Kramer, Nicole Radde: Towards experimental design using a Bayesian
framework for parameter identification in dynamic intracellular network models,
2010

[17]. Andrei Kramer, Jan Hasenauer, Frank Allgöwer, Nicole Radde: Computation
of the posterior entropy in a Bayesian framework for parameter estimation in
biological networks,

[18]. Falk Schreiber : Analyse und Visualisierung biologischer Netzwerke, 2009

[19]. Eric Bullinger, Dirk Fey, Marcello Farina und Rolf Findeisen: Identification of
Biochemical Reaction Networks: An Observer based Approach, 2008

[20]. Joachim Pfister: Integration und Modellierung von verteilten
Geschäftsprozessen mittels Web Services am Beispiel eines Prozessportals,2006

[21]. Joachim Müller : Workflow-based Integration: Grundlagen, Technologien,
Management, 2005

[22]. Jakob Freund, Klaus Götzer: Vom Geschäftsprozess zum Workflow: Ein
Leitfaden für die Praxis , 2008

[23]. Jens Rutschmann: Generisches Web Service Interface um
Simulationsanwendungen in BPEL-Prozesse einzubinden, 2009

[24]. ODE- Architectural Overview: http://ode.apache.org/architectural-overview.html

[25]. David Schumm: Graphische Modellierung von BPEL Prozessen unter
Verwendung der BPMN Notation, 2008

[26]. Enrico Serb: Arbeitsabläufe in der Modellierung und Simulation

[27]. Joachim Müller: Workflow-Based Integration: Grundlagen, Technologien,
Managemen,

[28]. Brian Skibinski: How to set up Ubuntu under VMWare Player for CS384
http://people.msoe.edu/~durant/courses/cs384/ubuntu-vmwarePlayer/

[29]. Tristan Glatard, David Emsellem, Johan Montagnat: Generic web service
wrapper for efficient embedding of legacy codes in service-based workflows

[30]. Ingo Melzer: Service-oritentierte Architekturen mit Web Services

http://ode.apache.org/architectural-overview.html�
http://people.msoe.edu/~durant/courses/cs384/ubuntu-vmwarePlayer/�

0. Literaturverzeichnis

82

[31]. Joachim Pfister: Integration und Modellierung von verteilten
Geschäftsprozessen mittels Web Services am Beispiel eines Prozessportals,2006

[32]. Roger J. Castaldo, Michael A. McKay, Vladimir Tosic: Exposing GNU
Octave signal processing functions as extensible markup language (XML) web
services, 2006

[33]. Wesal Al Belushi, Youcef Baghdadi: An Approach to Wrap Legacy
Applications into Web Services, 2007

[34]. Michael Stollberg, Martin Hepp, und Dieter Fensel: Semantic Web Services –
Realisierung der SOA Vision mit semantischen Technologien, 2007

[35]. Cornelia Boles, Jörg Friebe, Till Luhmann: Typische Integrationsszenarien
und deren Unterstützung durch Web Services und andere Technologien

[36]. Ewa Deelmana, Dennis Gannonb, Matthew Shields, Ian Taylor: Workflows
and e-Science: An overview of workflow system features and capabilities, 2007

[37]. Peter Reimann, Michael Reiter, Holger Schwarz, Dimka Karastoyanova,
and Frank Leymann: SIMPL – A Framework for Accessing External Data in
Simulation Workflows

[38]. Katharina Görlach, Mirko Sonntag, Dimka Karastoyanova, Frank Leymann,
Michael Reiter: Conventional Workflow Technology for Scientific Simulation

[39]. Christoph Marian Müller: Development of an Integrated Database Architecture
for a Runtime Environment for Simulation Workflows, 2009

Erklärung

Hiermit versichere ich, diese Arbeit selbstständig verfasst und nur die angegebenen Quellen
benutzt zu haben.

< Ort, Datum >

Unterschrift:

	Simulation des Verhaltens von Zellkomponenten in biologischen Netzwerken mit Hilfe von Workflow Technologie.pdf
	1 Einleitung
	1.1. Motivation und Aufgabenstellung
	1.2. Aufbau der Arbeit

	2. Grundlagen
	2.1. SOA und Web Services
	2.1.1. Service-orientierte Architektur (SOA)
	2.1.2. Web Service

	2.2. Workflow
	2.2.1. Geschäftsprozesse und Workflows
	2.2.2. Scientific Workflows
	2.2.3. Workflow Management Systeme
	2.2.4. Business Process Execution Language

	2.3. e-Science

	3. Verwendete Software
	3.1. Simulationssoftware: Octave
	3.2. Web Service Wrapper
	3.2.1. Web Service Interface (WSI)

	3.3. Serverplattform

	4. Reaktionsnetzwerke
	4.1. Biologische Netzwerke
	4.2. Reaktionsnetzwerke
	4.2.1. Modellierung der Reaktionsnetzwerke
	4.2.2. Parameteridentifikation

	5. Spezifikation
	5.1. Anforderungen
	5.2. Lebenszyklus einer Simulationsinstanz von Octave Service Adapter
	5.3. Octave Service Adapter

	6. Entwurf
	6.1. Architektur des Octave Adapters
	6.2. Web Service Operationen vom Octave Adapter
	6.3. Octave basierte Workflows

	7. Implementierung
	7.1. Ablauf der Octave-Anwendungen
	7.2. Modifizierter Ablauf mit dem Octave Adapter
	7.3. Weitere Anmerkungen zur Implementierung
	7.3.1. Erstellen eines Dynamic Web Projects
	7.3.2. Erstellen einer WSDL-Datei
	7.3.3. Erstellen der Web Service-Klassen mit Axis2
	7.3.4. Erstellen eines BPEL-Prozesses
	7.3.5. Verwendete Verzeichnisse auf dem Server
	7.3.6. Test

	8. Laufzeitumgebung
	8.1. Virtualisierte Komponenten
	8.2. Interaktion mit der Laufzeitumgebung

	9. Zusammenfassung und Ausblick
	Anhang
	WSDL-Operationen von Octave Web Service

	Abkürzungsverzeichnis
	Abbildungsverzeichnis
	Tabelleverzeichnis
	Literaturverzeichnis

