Institut fiir Architektur von Anwendungssystemen

Universitét Stuttgart
Universitétsstrafle 38
D - 70569 Stuttgart

Diplomarbeit Nr. 3264

Simulation des Verhaltens von
Zellkomponenten in biologischen
Netzwerken
mit Hilfe von Workflow Technologie

Yue Zou
Studiengang: Informatik
Priifer: Jun.-Prof. Dr.-Ing. Dimka Karastoyanova
Betreuer: Dipl.-Math. Michael Reiter
begonnen am: 21. Oktober 2011
beendet am: 07. Mai 2012

CR-Klassifikation: H.3.5,H.3.4,1.6.3,1.6.7

Inhaltsverzeichnis

1

5.

[T 1111 0T V- RPNt 3
1.1. Motivation und Aufgabenstellung...........coccviiiiciiiii e 4
O YU 1 o = [V o =T -V o Y= | A 5

(VT e | F=T= = o TN 6
2.1, SOA UNA WED SEIVICES ettt e e e e e e et s e e e e e e e es bbb s eeaaens 6

211 Serv|ce_or|ent|erte Arch|tektur (SOA) ... 6

212 Web Serv|ce ... 8
B VAV oY < i [1Y R RRTTTTORR R 12

221 Geschaftsprozesse und Workﬂows ... 12

222 Sc|ent|f|c Workﬂows .. 14

223 Workﬂow Management Systeme .. 15

224 Bus|ness Process Execu'“on Language ... 16
2.3. LSRN Yol 1] o [ol ST 18

Verwendete SOftWAIEttt reeeie e eneereaseseneserenssesnsesensnsennnes 21
3.1. SIMUIatiONSSOTEWAIE: OCLAVE ... ab e e e bababasesesesenenes 21
I V=T o B = Vi Tl VY = o o 1= PSP RR 22

321 Web Ser\nce |nterface (WSI) .. 23
3.3, SerVerplattformm .o e e e e e 25

ReEaKEIONSNEIZWETKE ..cc.ieeeiiieeiiiieiitii ettt reecreneereasesenessteasesenssennnnenes 27
4.1. BiologisChe NEtZWEIKE ..cccoeeeeieeeeee e e e 27
4.2. REAKEIONSNETZWEIKE .ccvvveeeeeeeeeeeeteeeee ettt e e e et ettt e e s e e e seebaaa s 28

421 Mode”lerung der Reaktionsnetzwerke ... 29

422 Parametendenhﬁkahon .. 29

Y 174111 14 To Lo TSRS 32

20 Y 1Yo} (o o [T U] ¥ =T o ISP PSP 32

1. Einleitung

5.2. Lebenszyklus einer Simulationsinstanz von Octave Service Adapter..........ccc........ 33
5.3, OcCtave Service AaPLer ... ciiee ettt tee e eree et e s e e e e s ta e e e nees 35
6. ENtWUI ..o 41
6.1. Architektur des Octave AJAPLErsScovciei it 41
6.2. Web Service Operationen vom Octave Adaptercccoeereeeniiieneenee e 42
6.3. Octave basierte WOorkflowscoceeiiiiiiiiiieeiiciceieesee et 46
7. IMPIemMeNntierUNgcciiiiieeiiiiiiiicnienicerieniesrennsseeseensssessennsssssesnsssesssnasnans 49
7.1. Ablauf der Octave-ANWENAUNEENcccivviiieiciiee et ceiee e e et e e e eare e e e sbae e e 49
7.2. Modifizierter Ablauf mit dem Octave Adapter.......ccccecciieeecciiee e 51
7.3. Weitere Anmerkungen zur Implementierungccccceevcveeeiicieee e 53
7.3.1. Erstellen eines Dynamic Web Projects « -« sseesesesmninininiiisiiiii 53
7.3.2. Erstellen einer WSDL-Datel «++«++ttrerrrererrrrrrrrrrriiiiiiiiiiiiiinieenee e 54
7.3.3. Erstellen der Web Service-KIassen mit AXiS2 «+++rrererererrrrrrrrrriririiiiieiiineeeeeeenenn, 55
7.3.4. Erstellen €iNes BPEL-PrOzZesSes ++ tttrrrrrrrrrrrrrrrrirriiriiiiiiiiieieiieeieeeeeeeneeeeenenenennns 55
7.3.5. Verwendete Verzeichnisse auf dem SErvar:rrreeeeeeeeeererermsessisinininiiininiiiinnnnn 56
7.3.6. IS TN 56

8. LaufzeitumgebUNg ...t e e 58
8.1. Virtualisierte KOMPONENTENc.uvii ittt e e st e e e st e e e sbaee e 58
8.2. Interaktion mit der Laufzeitumgebungcoocveiiiiiiiii e 59
9. Zusammenfassung und AUSDBIICKccceeerieeriennieirieennierteennreereeneneerneenseeseennnnens 61
ANNANG ...t etreenectteeeneeeteeaseeeteeassessesasssesseenssessssnsssssssnnsssssssnsssssssnnssssennn 63
WSDL-Operationen von Octave WED SEIViCe.......uuuiiiiiiiiciiiiieeee et eeccvieee e e e e esaeens 63
ADbKUrzungsverzeichnisccceeeeeiiieeniiiiieenceiieeenceeteenscereensseeseennsseessensseesssnsssessees 76
AbbildungsverzeiChniscccereiiiieenieiiieereeiieeeeeeteenneeteensseessennsseessensseesssnnssessees 77
Tabelleverzeichnisciciiiiiiiiiieieiiiiiiiicr e 79
Literaturverzeichniseeeieiiiiiiiiiiinniiiciiinnnreere e 80

1. Einleitung

1 Einleitung

In einer zunehmend globalisierten Welt, in der die Bereiche Wirtschaft und Wissenschaft
zusammenwachsen, sorgt die effektive und effiziente Arbeitsweise dafiir, die qualitativ
besseren Produkte in kiirzerer Zeit zu entwickeln und gleichzeitig die menschliche Arbeit zu
erleichtern. Durch die Globalisierung konnen die in der Komplexitdt gewachsenen Aufgaben
nicht mehr zentral an einem Standort erledigt werden, sondern miissen in verschiedene
Arbeitsabldufe aufgegliedert und dezentral auf lokalen Standorten verteilt werden. Dafiir
spielen das Koordinieren und das Verwalten der Workflows eine zentrale Rolle. Die
Workflowsysteme, in denen die verschiedenen Workflows gesteuert und ausgefiihrt werden,
werden durch Rechnerunterstiitzung optimal strukturiert, mit dem Ziel intelligente und
automatisierte Arbeitsabldufe zu realisieren.

Die Workflow-Technologie wird auch im wissenschaftlichen Bereich, beispielsweise fiir die
hochkomplexen Simulationen, die hohen Zeitaufwand und hohe Rechenkapazitit benotigen,
verwendet und weiterentwickelt. Deshalb wurden Scientific Workflows einfiihrt, mit denen
die wihrend der Simulation und Berechnung entstehenden Daten, zusammenfiihrend
analysiert werden konnen [6]. Fiir eine optimale Zusammenfiihrung und Verteilung von Daten
und Rechenkapazitéten ist eine sinnvolle Infrastruktur notwendig, die benutzerfreundlich ist.
Solche Infrastruktur kann auf Basis der serviceorientierten Architektur (SOA) realisiert

werden.

Die Hauptbestandteile der SOA sind Dienstverzeichnis, Dienstanbieter und Dienstnutzer, die
ein sogenanntes SOA Dreieck bilden. Auf der Basis des SOA-Dreieckkonzeptes wurde ein
Web Service entwickelt, der die Zusammenarbeit der auf unterschiedlichen Plattformen
betriebenen Anwendungsprogramme unterstiitzt. In dieser Arbeit wird eine Anwendung auf
Basis einer Octave'-basierten Simulation fiir ein biologisches Reaktionsnetzwerk betrachtet.
Fiir diese Anwendungen wird ein Web Service mit der XML-basierten Web Service
Technologie erstellt. Dariiber hinaus wird ein entsprechender Workflow aufgebaut, der durch
eine deskriptive Sprache BPEL (Web Services Business Process Execution Language) [6] die
Ausfiihrungsreihenfolge von den erstellten Web Services bestimmt. Dadurch wird eine
automatisierte Ausfithrung der Simulationsanwendung ermdglicht.

' GNU Octave: http://www.gnu.org/software/octave/

http://www.gnu.org/software/octave/�

1. Einleitung

Diese Arbeit konzentriert sich auf die Bereiche Workflow- und Web Service Technologie
sowie biologische Reaktionsnetzwerke und ist interdisziplindr sowie anwendungsorientiert
ausgelegt. Sie ermoglicht eine Zusammenarbeit von Wissenschaftlern an verschiedenen Orten
und auf weltweit verteilten Ressourcen. Dies kann unter dem Begriff e-Science
zusammengefasst werden. In der Arbeit wird eine computergestiitzte und modellbasierte
Simulation {iber Parameteridentifikation im Reaktionsnetzwerk dargestellt.

Eine interdisziplindre Zusammenarbeit findet im Rahmen des Projektes ,,Exzellenzclusters
Simtech® statt. Die in dieser Arbeit erstellten Methoden dienen als Grundlagen fiir die
Ausfiihrung von systembiologischen Simulationen mit Hilfe der Workflow- und Web
Service-Technologie. Dadurch kénnen die Benutzer mit weniger Programmierhintergrund als
bislang komplexe Simulationen einfach durchfiihren.

1.1. Motivation und Aufgabenstellung

Im Rahmen dieser Arbeit wird eine automatisierte Ausfilhrung von Octave-basierten
Simulationen mit Hilfe von Workflow- und Web Service Technologie vorgestellt.

Auf Basis von einem Web Service Interface [23] soll ein Web Service Plugin erstellt werden,
tiber den die Simulationsanwendungen angesprochen werden kénnen. Zum Aufbau des Web
Service Plugins gehort die Bereitstellung eines Web Services fiir die Octave-Anwendungen.
Dabei wird die Web Services Description Language (WSDL) [3] bendtigt, um die Web
Service-Schnittstellen zu beschreiben.

Zur Ausfithrung der Web Service-basierten Simulation werden Java-Klassen verwendet, die
aus WSDL-Operationen generiert und weiter ergdnzt werden konnen. Die Ergebnisdateien der
Simulation sollen in einer Datenbank gespeichert und zu einem anderen Zweck weiter
verwendet werden. In der Simulation wird eine graphische Darstellung als Ergebnis erzeugt,
dafiir muss eine Schnittstelle fiir die Visualisierung unterstiitzt werden.

Weiterhin soll ein BPEL-Prozess erstellt werden, der dem Ablauf der Simulation entspricht.
Die einzelne Aktivitdt des Prozesses setzt sich aus den entsprechenden WSDL-Operationen
zusammen, mit deren Hilfe eine Web Service-Schnittstelle aufgerufen und die
Simulationsanwendung ausgefiihrt wird.

Es soll eine Laufzeitumgebung erstellt werden, in der die Web Service-Schnittstelle, die
Simulationsanwendungen sowie die Workflow-Umgebung zusammen ausgefiihrt werden
konnen.

2 Exzellenzclusters Simtech : http://www.simtech.uni-stuttgart.de/

http://www.simtech.uni-stuttgart.de/�

1. Einleitung

1.2. Aufbau der Arbeit

Die vorliegende Arbeit gliedert sich wie folgt in neun Kapitel:

Kapitel 2 — Grundlagen: In diesem Kapitel findet sich zunéichst eine kurz Vorstellungen von
SOA und Web Service. Danach folgt eine Beschreibung der
Workflow-Technologie. Bei dem Abschluss des Kapitels wird der Begriff
e-Science erldutert.

Kapitel 3 — Verwendete Software: Sowohl die Simulationsprogramm als auch die Softwares
in der Workflow- und Web Service-Umgebung werden in diesem Kapitel
vorgestellt.

Kapitel 4 — Reaktionsnetzwerke: Dieses Kapitel bezieht sich auf den Hintergrund der
Simulationen. Die Parameteridentifikation, die fiir die Simulation relevant ist,
wird zum Schluss des Kapitels beschrieben.

Kapitel 5 — Spezifikation: Die Anforderungen an den Octave Web Service werden in diesem
Kapitel vorgestellt. Die Idee zum Erstellen eines Web Service Plugin fiir die
Octave-Anwendungen (auch Octave Adapter genannt) wird beschrieben.

Kapitel 6 — Entwurf: Kapitel sechs zeigt zunichst die Architektur des Octave Adapters. Die
Parameter der einzelnen Web Service Operationen werden erklért. Schlieflich
wird ein Octave-basierter Workflow-Prozess dargestellt.

Kapitel 7 — Implementierung: Der Anfang des Kapitels behandelt den urspriinglichen und
den modifizierten Simulationsablauf. Dann werden die weiteren Moglichkeiten
der Implementierungen vorgestellt.

Kapitel 8 — Laufzeitumgebung: Eine spezielle Laufzeitumgebung wird dargestellt, die von
der Web Service-Schnittstelle sowie der Workflow-Prozess genutzt wird.

Kapitel 9 - Zusammenfassung und Ausblick: AbschlieBend erfolgen eine
Zusammenfassung der Ergebnisse der Arbeit und ein Ausblick auf modgliche
Erweiterungen.

2. Grundlagen

2. Grundlagen

In diesem Kapitel werden die fachlichen Grundlagen der Arbeit dargestellt. Ein Uberblick iiber
SOA und Web Services wird zundchst gegeben (Abschnitt 2.1). Danach folgt eine kurz
Einfithrung in Workflow, Scientific Workflow, Workflow Management Systeme sowie
Workflow-Sprache (Abschnitt 2.2). Zum Abschluss werden das e-Science und eine Simulation
in Reaktionsnetzwerke erlautert (Abschnitt 2.3)

2.1. SOA und Web Services

Service-orientierte Architekturen (SOA) und Web Service (WS) weisen zahlreiche
Zusammenhénge auf, da der Web Service und eine Vielzahl der damit in Verbindung stehenden
Spezifikationen eine mdgliche Implementierungstechnologie bieten, um die Anforderungen
einer SOA zu erfiillen. Aus diesen Griinden ist es sinnvoll auf beide Themen einzugehen.

2.1.1. Service-orientierte Architektur (SOA)

Da eine einheitliche Definition einer SOA nicht existiert, wird im Folgenden auf aufgrund ihrer
Generalitit eine Definition nach Dostal et al. [1] angegeben:

)

Verteiltheit
Lose Kopplung
Verzeichnisdienst
Prozess:
orientiert

Abbildung. 1 Grundlegende Merkmale einer SOA [1]

2. Grundlagen

Unter einer SOA versteht man eine Systemarchitektur, die vielfdltige, verschiedene und
eventuell inkompatible Methoden oder Applikationen als wiederverwendbare und offen
zugreifbare Dienste reprédsentiert und dadurch eine Plattform und sprachenunabhéngige
Nutzung und Wiederverwendung ermdoglicht.

Abbildung. 2 verdeutlicht, dass das Fundament der SOA aus offenen Standards, Sicherheit und
Einfachheit besteht. Die tragenden Saulen stellen die verteilten Dienste, die lose Kopplung, der
Verzeichnisdienst und die prozessorientierte Struktur dar.

Wie der Name bereits aufzeigt, liegt der Dienst (engl. Service) einer SOA im Mittelpunkt. Um
den Dienst eines unbekannten Anbieters verstehen zu konnen, miissen alle Schnittstellen des
Dienstes in maschinenlesbarer Form beschrieben vorliegen. Dazu werden die offenen
Standards genutzt. Die Einfachheit einer SOA bedeutet, dass die Nutzung der Dienste es
ermOglicht, diese in verschiedenen Umgebungen mehrfach ohne Aufwand wiederzuverwenden.
Eine weitere Voraussetzung fiir eine SOA ist die Sicherheit, die von Anfang an beachtet werden
sollte. Bei der losen Kopplung (loose coupling) werden die Dienste von Anwendungen oder
anderen Diensten bei Bedarf dynamisch gesucht, gefunden und eingebunden [1]. Damit
Funktionalitdten dynamisch eingebunden werden kdnnen, miissen die gewiinschten Dienste
zundchst ausfindig gemacht werden, was mittels eines Verzeichnisdienstes erfolgen kann, in

dem zur Verfiigung stehende Dienste registriert werden.

Unter den Beteiligten der SOA bestehen dariiber hinaus drei weitere Rollen: Dienstverzeichnis,
Dienstanbieter, Dienstnutzer. Der Zusammenhang zwischen diesen Rollen lésst sich in einem
SOA-Dreieck darstellen. Abbildung. 1 stellt dem Dienstanbieter eine Plattform zur Verfiigung,
welche tliber ein Netzwerk Zugriff auf mindestens einen Dienst ermdglicht. Um die Dienste von
Nutzern finden zu konnen, registriert der Dienstanbieter seine Dienste unter einem
Verzeichnisdienst. Das Finden von Diensten erfolgt mittels eines Dienstverzeichnisses. Der
Dienstnutzer greift iiber die verdffentlichten Schnittstellen auf die Dienste eines

Dienstanbieters zu, um nach den passenden Diensten zu suchen.

uDDI

Dienstverzeichnis

\“9
&
~ Abfrage der
- . Beschreibung -
Dienstanbieter SOAP Dienstnutzer
/ Nutzung

Abbildung. 2 Das Dreieck einer SOA [1]

2. Grundlagen

2.1.2. Web Service

Ahnlich wie SOA existiert keine verbindliche Definition beziiglich Web Services. Jedoch sind
diese durch eine stindige Weiterentwicklung, und Verfeinerung von Standards gekennzeichnet.
Die Autoren Dostal et al. [2] werten die Entwicklung der Definition von WS des W3C (World
Wide Web Consortium), die im Allgemeinen und Abstrakten folgende Definition liefert:

~A Web Service is a software system designed to support interoperable
machine-to-machine interaction over a network. It has an interface described in a
machine-processable format (specifically WSDL). Other systems interact with the Web
Service in a manner prescribed by its description using SOAP messages, typically
conveyed using HTTP with an XML serialization in conjunction with other
Web-related standards.” (August 2003)

Dabei werden die SOA-Komponenten Kommunikation, Dienstbeschreibung und
Verzeichnisdienst mit den Web Service Standards SOAP (engl. Simple Object Access Protocol),
WSDL (engl. Web Service Description Language) und UDDI (engl. Universal Description,
Discovery and Integration) konkretisiert.

Abbildung. 2 stellt das so genannte SOA-Dreieck dar. Wenn ein Dienstanbieter einen Dienst
bereitstellen mochte, erstellt dieser zundchst eine Schnittstellenbeschreibung seines Dienstes
mittels eines XML-basierten WSDL-Dokuments, welches sich in einem UDDI-basierten
Verzeichnisdienst verdffentlichen ldsst. Ein Dienstnutzer kann im Verzeichnisdienst nach
passenden Diensten suchen, und erhédlt eine URI-Referenz auf die WSDL-Datei des
gewiinschten Web Service als Suchergebnis. Diese WSDL-Beschreibung kann zum Einbinden
des gewiinschten Web Service innerhalb der gewiinschten Anwendung genutzt werden.
Letztlich kommuniziert der Dienstnutzer iiber das Protokoll SOAP mit dem Dienstanbieter.

Dienstbeschreibung mittels WSDL

Zur Dienstbeschreibung wird die WSDL eingesetzt, die einen Dienst syntaktisch oder
strukturell in Form eines XML-Dokuments beschreibt. Zwar bestehen zwei Versionen der
WSDL, wobei die Version 1.0 bislang iiber die grofite Unterstiitzung an Software-Tools
verfiigt.

Die WSDL-Spezifikation besteht aus einem abstrakten und einem konkreten Teil (siche
Abbildung. 3). Der abstrakte Teil beschreibt die Funktionalititen eines Web Services.
Innerhalb des Elements <wsdl:types> werden die Datentypen definiert. <wsdl:message> stellt
dar, welche Nachrichten zwischen Dienstnutzer und Dienstanbieter ausgetauscht werden. Die
Operationen, die dem Dienstnutzer zur Verfliigung gestellt werden, befinden sich in
<wsdlL:portType>.

Im konkreten Teil der WSDL-Datei stehen die Informationen zu binding, und service. Mittels
des Elements <wsdl:binding> wird das Nachrichtenformat definiert und dem abstrakten
PortType ein konkretes Transportprotokoll (z.B. SOAP, HTTP) zugeordnet. Zur Modellierung

2. Grundlagen

von SOAP Interaktionstypen, kann bei der Bindung an das SOAP-Protokoll zwischen
Document-Style und RPC-Style ausgewéhlt werden. Im Element <wsdl:service> existieren ein
oder mehrere Elemente <wsdl:port>, die die Endpunkte darstellen. Diese fiihren die Bindings
mit konkreten Netzwerkadressen (URLs) zusammen, unter denen die Implementation eines
abstrakten PortTypes zu erreichen ist.

<definitions>

— | <types>

</types> H

<message name="...">
abstract —

</message> i

E:

<portType name="...">

| </portType> i

I
I
<binding name="...">

</binding> -

concrete —

I
<service name="...">

</service> -

—

</definitions>

Abbildung. 3 Syntaktische Struktur eines WSDL-Dokuments [9]

Kommunikation mittels SOAP

Bei SOAP handelt es sich um ,, ein XML-basiertes und sprach- und plattformunabhéngiges
Kommunikationsprotokoll zum Austausch strukturierter Informationen.” [2] Zur
Kommunikation senden und empfangen Web Services SOAP-Nachrichten. Eine
SOAP-Nachricht besteht aus bis zu drei Teilen (siche Abbildung. 4): dem SOAP-Envelope als
Root-Element der SOAP-Nachricht, einem optionalen SOAP-Header und dem SOAP-Body,
der die eigentlichen Nutzdaten (engl. payload) enthélt.

Eine SOAP-Nachricht kann entweder direkt vom Sender zum Empféanger iibermittelt oder tiber
mehrere Zwischenstationen (engl. intermediaries) libertragen werden; jede Station in der
Ubertragungskette (engl. message path) ist ein Knoten (engl. node). Wenn eine Nachricht von
einem Kommunikationspartner nicht verarbeitet werden kann, wird ein SOAP-Fehler (engl.
SOAP fault) als Antwortnachricht versendet.

SOAP schreibt nicht vor, mit welchem Transportprotokoll eine Nachricht iibertragen werden
muss, sondern wiahlt ein passendes Protokoll aus. ,,Wird allerdings ein gewisses Mal} an
Ubertragungssicherheit (dhnlich einem Einschreiben) benétigt, dann sollte eher ein
Messaging-System wie WebSphereMQ gewéhlt werden. Aufgrund seiner Herkunft aus dem
Internet-Umfeld ist das zurzeit am hédufigsten genutzte Transportprotokoll fiir
SOAP-Nachrichten natiirlich HTTP.“[2]

2. Grundlagen

SOAP Envelope

SOAP Header
‘ Header Block 1 ‘

| Header Block M |

SOAP Body

| Body sub-element 1 |

‘ Body sub-element N ‘

Abbildung. 4 Aufbau von SOAP-Nachrichten [9]

WS-Addressing

In den klassischen Web-Service-Mechanismen werden die Endpunkte lediglich mittels einer
URI in der WSDL-Datei identifiziert, wodurch keine Moglichkeit besteht, zusétzliche
Metadaten auf standardisierte Art und Weise zum Bestandteil der Angaben iiber den Endpunkt
zu machen.

Das Web-Addressing liefert u.a. die Moglichkeit, die Endpunkte als XML-Dokument zu
formulieren und weitere Metadaten (z.B. Policy-Informationen) zu kodieren. Dazu fiihrt es
noch zwei neue Konzepte ein: Die Endpunkt-Referenz(engl. endpoint reference) sowie
zusitzliche Nachrichten-Adressierungseigenschaften (engl. message addressing properties).

Eine Endpunkt-Referenz enthdlt alle notwendigen Informationen fiir die
Webservice-Kommunikation. Fiir den jeweiligen Endpunkt kdnnen zusétzliche Metadaten als
Referenz-Parameter (engl. reference parameters) im Dokument formuliert, und bei der
Nachrichteniibertragung auf eigenstindige SOAP-Header-Elemente abgebildet werden.

Neben den Endpunkt-Referenzen bestehen zudem die von WS-Addressing definierten
zusdtzlichen Nachrichten-Adressierungseigenschaften, die diverse Angaben flir die
SOAP-Interaktion beziiglich Routing und Kommunikationspfad umfassen. Alle Angaben
befinden sich in den SOAP-Header-Elementen.

Listing 1 stellt ein Beispiel einer SOAP-Nachricht —mit eingebetteten
WS-Addressing-Informationen dar, wobei die Angabe ,,To* die Ziel-Adresse des Empfangers
als URI enthilt. ,MessageID“ identifiziert die Nachrichten in Zeit und Raum.
,»ReplayTo* definiert den Antwort-Endpunkt als Endpunkt-Referenz und ,,Action® enthélt die
angedachte Service-Aktivitiat, welche typischerweise an ein Element aus der zugehdrigen
WSDL-Datei gebunden wird.

10

2. Grundlagen

<S:Envelope xmlns:S=http://www.w3.0rg/2003/05/soap-envelope
xmlns:wsa="http://www.w3.0rg/2005/08/addressing"
xmlns:example="...">
<S:Header>

<wsa:MessageID> uuid:6B29FC40-CA47-1234-ABCD-00DD010662DA

</wsa:MessagelD>

<example:subsidiary> foo street </example:subsidiary>

<example:session> 42bdjhd8hw </example:session>

<wsa:ReplyTo>

<wsa:Address>http://example.org/customerNotify</wsa:Addre

ss></wsa:ReplyTo>
<wsa:To>http://example.com/Purchasing</wsa:To>
<wsa:Action>http://example.com/SubmitOrder</wsa:Action>
</S:Header>
<S:Body>

</S:Body>
</S:Envelope>

Listing 1. Beispiel fiir SOAP 1.2-Nachricht mit WS-Addressing-Informationen [1]

Verzeichnisdienst

Der Verzeichnisdienst bildet ein weiteres zentrales Bestandteil einer SOA. Mittels
standardisierter Schnittstellen wird eine lose Kopplung von Anwendungen ermoglicht. Die
,wuniversal Description, Discovery and Integration“(UDDI) zihlt zu einem der grundsétzlich
verschiedenen Spezifikationen fiir Verzeichnisdienste.

Innerhalb eines UDDI-Verzeichnisses kann ein Dienst mit einer Dienstbeschreibung (z.B. in
Form eines WSDL-Dokuments) in einer Datenbank verwahrt werden, damit ein potentieller
Nutzer diesen Dienst und eine Anleitung zu dessen Nutzung finden kann.

businessEntity tModel

Referenz

businessService @ binding Template

Abbildung. 5 UDDI-Datenmodell [2]

11

http://example.org/customerNotify%3c/wsa:Address�
http://example.org/customerNotify%3c/wsa:Address�

2. Grundlagen

Das UDDI-XML-Schema und die UDDI-API sind zwei gro3e Komponenten von UDDI. Beim
UDDI-XML-Schema werden vier Hauptentititen unterschieden. In der businessEntity stehen
Informationen beziiglich Organisationen oder Unternehmen durch Serviceanbieter zur
Verfligung. Im Teil BusinessService werden die von businessEntity bereitgestellten Dienste
zusammengefasst, die jeweils weiter an verschiedene Ubertragungsprotokolle gebunden
werden. Das bindingTemplate liefert sowohl technische Informationen zur Nutzung eines
Dienstes als auch eine Adresse, unter der ein Dienst aufgerufen werden kann. Ein oder mehrere
Dokumente werden durch das bindingTemplate zusammengefasst, welche eindeutige
technische Beschreibungen zum Dienst beinhalten (das sog. tModel).

2.2. Workflow

Das vorliegende Unterkapitel soll zunédchst einen Einblick in die Workflows geben, um
anschlieBend genauer auf Scientific Workflows und Workflow Management Systeme
eingehen zu kénnen. Zum Schluss erfolgt die Beschreibung der Business Process Execution
Language (BPEL).

2.2.1. Geschaftsprozesse und Workflows

Die Begriffe Geschiftsprozess (kurz genannt Prozess) und Workflow liegen sehr eng
zusammen, jedoch konnen je nach Sichtweise die Begriffe unterschieden werden. In
Abbildung 6 wird der Prozess in der reellen Welt durch Prozessmodelle dargestellt, wiahrend
der Workflow einen Prozess technisch unterstitzt.

Ein Prozess wird durch die Modellierung eines Verlaufs festgelegt, mit dem Leistungen oder
Informationen transportiert werden. Dieser Verlauf wird als ein Prozessmodell bezeichnet.
Nach [8] enthilt ein Prozessmodell alle Aktivititen eines Prozesses sowie die Pfade zwischen
diesen Aktivititen und dient zudem als eine Vorlage, die ein Prozess initiiert. Aus dem
Prozessmodell entsteht durch die Ausfithrung eine sogenannte Prozessinstanz.

REAL WORLD COMPUTER

Process Model —— Workflow Model

Instance
Instance

Process Workflow

Abbildung. 6 Geschiftsprozess und workflow [8]

12

2. Grundlagen

Prozesse konnen nicht nur im Alltag von Personen durchgefiihrt, sondern auch auf Rechnern
ausgefiihrt werden. Dieser Anteil eines Prozesses beziiglich der Rechner fiihrt zum Begriff
des Workflow-Modells. Analog zum Prozessmodell kann das Workflow-Modell zur
Erstellung eines Workflows verwendet werden.

Da alle Prozesse der vorliegenden Arbeit lediglich auf Rechnern ausgefiihrt wurden, besteht
kein Unterschied zwischen den Begriffen Prozessmodell und Workflow-Modell, sowie
Prozessinstanz und Workflow-Instanz. Daher werden diese im Folgenden jeweils als

Synonym verwendet.

Workflow Dimensionen

Nach [8] werden Workflows mittels drei verschiedener Dimensionen dargestellt, die in einem
Wiirfel graphisch gezeichnet werden.

What

In dieser Dimension spiegelt sich die Geschiftslogik eines Workflows wieder und beschreibt
zugleich, welche Aktivititen wie in dem Prozess ausgefiihrt werden miissen. Zwischen den
Aktivitdten stehen die Control Flows, die sowohl sequentiell als auch parallel definiert
werden konnen.

Who

Diese Dimension spezifiziert die Organisationsstruktur eines Unternehmens in Hinblick auf
Abteilungen, Rollen und Personen. Verwendet werden all diese Informationen, um zu
beschreiben, wer die Aktivitdten ausfilhren kann. Dazu kann eine entsprechende Query
erstellt werden, um die Durchfiihrung der Aktivititen durch passende Personen zu
koordinieren.

Process Logic,

" S)
ol
&

= o

IT Infrastructure

Abbildung. 7 Drei Workflow Dimensionen [8]

13

2. Grundlagen

With

Diese Dimension bestimmt IT-Ressourcen (Anwendungen, Hardware usw.), die flir die
Ausfiihrung der Aktivititen notwendig sind.

2.2.2. Scientific Workflows

In den letzten Jahren schenkte man nicht nur im Geschéftsbereich den Workflows mehr
Beachtung, sondern auch im wissenschaftlichen Bereich. Aufgrund von Berechnungen grof3er
komplexer und heterogener Datenmengen konnte auf Basis von Workflows eine Technologie
geschaffen werden, mit dessen Hilfe derartige Berechnungen automatisiert durchgefiihrt
werden konnen. Entsprechend wurde der Begriff Scientific Workflow eingefiihrt.

Scientific Workflows werden verwendet, um beispielsweise Simulationen in der Wissenschaft
zu beschreiben und auszufiihren. Solche Simulationen sind oftmals lang laufend, was die
Aufteilung einer Aufgabe in verschiedene kleine Aufgaben erfordert. Die Ergebnisse konnen
in einem Repository zwischengespeichert oder als Eingabe fiir den nichsten Schritt weiter
verwendet werden.

Zu den positiven Eigenschaften von Scientific Workflows zéhlen beispielsweise, der nahtlose
Zugriff auf Ressourcen und Services sowie die Komposition auf Basis von
wiederverwendbaren Workflow-Fragmenten. Einige Workflow Management Systeme
unterstiitzen lang laufende Workflows durch den asynchronen Aufruf von Services. Dies
gestattet der Workflow-Engine im Hintergrund zu laufen, ohne stdndigen Kontakt zu den
Services haben zu miissen. Weitere Eigenschaften von Scientific Workflows werden in [10]
aufgezeigt.

Analysis

Modeling

Legend
[/
User .

Execution & ‘
Monitoring \-/
Abbildung. 8 Lebenszyklus eines Scientific Workflows [11]

Abbildung. 8 prisentiert ein Lebenszyklus von Scientific Workflows. Auf den ersten Blick

14

2. Grundlagen

sicht es so aus, dass in der ersten Phase die Modellierung des Workflows erfolgt.
AnschlieBend werden diese Workflows ausgefiihrt, und die Informationen der
Prozessinstanzen durch eine Monitoring-Komponente gesammelt und bearbeitet. Schlieflich
werden die Workflows nach der Ausfiihrung analysiert, wobei zum Beispiel die Qualitit der
gelieferten Daten iiberpriift oder nach Fehlern gesucht werden kann. Dadurch konnen
notwendige Anderungen des Modells erkannt und umgesetzt werden.

Nach [11] unterliegen die Phasen der Modellierung und Ausfiithrung in der Tat nicht einer
strengen Reihenfolge, da Wissenschaftler normalerweise die Scientific Workflows
selbststindig erstellen und sich die Workflows sehr hdufig dndern konnen. In der Regel
erfolgt die Erstellung von Scientific Workflows mittels eines Trial-and-Error Verfahrens.
Durch die in [11] beschriebene Suspend-Aktion kann die Ausfiihrungsphase erneut zuriick zur
Modellierungsphase gefiihrt werden. Ausfithrung und Monitoring werden in eine Phase
zusammengelegt, da nach Meinung von Wissenschaftlern das Monitoring hdufig nur die
Daten einer laufenden Workflow Instanz visualisiert.

2.2.3. Workflow Management Systeme

Fiir die Analyse, Modellierung, Simulation sowie fiir die Ausfilhrung und Steuerung von
Workflows wird ein Workflow Management System benoétigt, welches iiber die einzelnen
organisatorischen Arbeitsschritte und Abldufe verfiigt, die dem Lebenszyklus eines Workflow
entsprechen. Ein Workflow Management System (WfMS) ist ein System, das das Workflow
Management durch IT-Werkzeuge unterstiitzt. Die Workflow Management Coalition
(WMC) *wie folgendermaBen definiert:

A system that defines, creates and manages the execution of workflows through
the use of software, running on one or more workflow engines, which is able to
interpret the process definition, interact with workflow participants and, where
required, invoke the use of IT tools and applications.

Das WfWS ist nach [7] in folgende vier Bereiche aufgeteilt:
Buildtime

Dieser Bereich dient zur Modellierung von Workflows. Alle Komponenten werden
bereitgestellt, um alle Workflow betreffende Informationen erstellen, testen und
verwalten zu kdnnen.

Metamodel

Das Metamodel ist gewissermaBlen das Modell eines Modells. Es unterstiitzt die
Erstellung von Regeln, um einen Prozess, eine Organisation oder eine bendtigte
Technologie zu modellieren. Ein Metamodell eignet sich insbesondere zur Darstellung

3 Workflow Management Coalition :http:/www.wfmec.org/

15

http://www.wfmc.org/�

2. Grundlagen

der grundlegenden Elemente eines Konzeptes oder Systems sowie zur Strukturierung
von Methoden.

Runtime

Der Runtime-Bereich ist zustidndig fiir die korrekte Ausfithrung eines modellierten Prozesses.
Die Prozesse aus der realen Welt werden auf Basis der Funktionalitit des Runtime-Bereichs
in eine Computer-ausfiihrbare Sprache iibersetzt. Fiir die Instanziierung und Steuerung der
Prozesse sowie fiir die Interaktion zwischen Anwender und computergestiitztem Prozess stellt
der Runtime-Bereich alle Komponenten zur Verfiigung, die zur Ausfiihrung einer
Prozessinstanz bendtigt werden.

Datebase

Die Database speichert die kompletten Informationen, die vom Buildtime- und
Runtime-Bereich verwendet werden. In diesem Bereich konnen beliebig viele
Datenbanken genutzt werden.

Fiir weitere Informationen zu den WfMS-Komponenten sei auf das Buch [7] verwiesen.

2.2.4. Business Process Execution Language

In diesem Abschnitt wird die Business Process Execution Language (nachfolgend BPEL
genannt) beschrieben, die auf der WS-BPEL2.0 Spezifikation® basiert und zudem in dem
Buch [9] beschrieben wird.

BPEL ist eine XML-basierte Sprache, mit der ein Prozess beschrieben und abgebildet werden
kann. Die einzelnen Aktivititen des Prozesses werden durch Web Services implementiert.
BPEL basiert auf der Kalkiil-basierten Sprache XLANG® und der Graph-basierten Sprache
WSFL°. Aktuell stellt BPEL in der Version 2.0 zur Verfiigung.

Listing 2 stellt ein Beispiel fir den Aufbau eines BPEL-Prozesses dar. Die jeweiligen
Bestandteile werden im Folgenden erléutert.

<process name='"prozessname" >
<partnerLinks> ... </partnerLinks>
<partners> ... </partners>
<variables> ... </variables>
<correlationSets> ... </correlationSets>
<faultHandlers> ... </faultHandlers>
<compensationHandler> ... </compensationHandler>

* WS-BPEL2.0 Spezifikation: http://docs.oasis-open.org/wsbpel/2.0/0S/wsbpel-v2.0-OS.html
SXLANG: http://msdn.microsoft.com/de-de/library/aa577463.aspx
SWSFL: http:/www.ibm.com/developerworks/webservices/library/ws-wsfl1/

16

http://docs.oasis-open.org/wsbpel/2.0/OS/wsbpel-v2.0-OS.html�
http://msdn.microsoft.com/de-de/library/aa577463.aspx�
http://www.ibm.com/developerworks/webservices/library/ws-wsfl1/�

2. Grundlagen

<eventHandlers> ... </eventHandlers>
<!—Aktivitaten -->
</activity>

</process>

Listing 2 Beispiel flir den Aufbau eines BPEL-Prozesses

Prozess

Nach [9] existieren zwei unterschiedliche Arten von BPEL-Prozessen: abstrakte und
ausfiihrbare Prozesse. Erster beschreibt ein Business Protokoll, das die Kommunikation
zwischen zwei Partnern abbildet, ohne die dahinter stehende Logik genauer zu spezifizieren.
Bei den ausfiihrbaren Prozessen werden die konkrete Implementierung von Prozessen sowie
die eigentliche Logik konkret beschrieben.

Aktivitit

Aktivitidten aus einem BPEL-Prozess konnen Web Services aufrufen, Daten manipulieren,
Fehler erkennen oder einen Prozess beenden. Man unterscheidet zwischen strukturierten
Aktivititen und Basisaktivititen.

Basisaktivitidten konnen nicht zur Gruppierung andere Basisaktivititen verwendet werden.
Ihre Ausfithrung innerhalb des jeweiligen Prozesses wird als atomare Operation betrachtet.
Beispielsweise wird ein Web Service mit der Aktivitit <invoke> synchron oder asynchron
aufgerufen. Eine Aktivitdit <receive> muss stets einer Aktivitit <reply> vorangegangen
sein, wihrend <receive> nicht unbedingt durch <reply> beantwortet werden muss.

Strukturierende Aktivititen konnen andere strukturierte Aktivititen oder Basisaktivititen
enthalten und daher rekursiv verwendet, beliebig verschachtelt und kombiniert werden. Sie
beschreiben eine Kontrollflusslogik zwischen den enthaltenen Aktivititen. Ein Beispiel
hierfiir ist die Aktivitit <sequence>. Diese stellt dar, wie die enthaltenen Aktivitidten in
einer angegebenen Reihenfolge ausgefiihrt werden. Mittels der Aktivitit <while> konnen
die enthaltenen Aktivitdten mehrfach in einer Schleife laufen, wihrend die Aktivitit <flow>

eine parallele Ausfithrung realisiert.

Variablen

Mit Variablen kdnnen bestimmte Werte in den Prozessen zwischengespeichert werden. Diese
Variablen sind nur in den Scopes sichtbar, in welchen sie definiert werden. Zur Steuerung
eines Kontrollflusses konnen sie verwendet werden, um den Prozess zu beeinflussen.

Korrelationsmengen

Mittels Korrelationsmengen (Correlation Sets) konnen unterschiedliche Instanzen eines

17

2. Grundlagen

Prozesses voneinander unterschieden werden. Sobald zu einem Zeitpunkt mehrere
BPEL-Instanzen vorliegen, werden Korrelationsmengen zur Weiterleitung von Nachrichten
an die richtige Instanz verwendet.

Partner Links

Um die in der WSDL-Datei definierten Web Service Schnittstellen innerhalb eines
BPEL-Prozesses zu nutzen, werden Partner Links verwendet. In einem Partner Link werden
eine oder mehrere Rollen definiert, die jeweils einem wsd1 : portType zugeordnet sind.

Scopes und Handler

In BPEL kann ein Prozess aus hierarchisch verschachtelten Scopes bestehen. Ein Scope
umfasst Aktivitdten, die Definition von Daten, Partner Links, Korrelationsmengen und
Handler.

In einem Scope existieren drei verschiedene Handler: Event Handler, Fault Handler und
Compensation Handler. Beispielsweise wird ein Event Handler dazu verwendet, im
synchronen Fall den Prozess weiter zu verarbeiten, nachdem ein entsprechendes Ereignis
eingetroffen ist. Sollten bei der Ausfithrung eines BPEL-Prozesses Fehler auftreten, konnen
diese mit Hilfe von Fault Handler behandelt werden. Compensation Handler werden
aufgerufen, wenn die dazugehdrige Scope riickgingig gemacht werden soll.

2.3. e-Science

Heutzutage arbeiten Wissenschaftler zunehmend vernetzt und interdisziplindr an
verschiedenen Orten und auf weltweit verteilten Ressourcen. Laut Ball [12] wird unter dem
Begriff e-Science (Abkiirzung von Enhanced Science) zusammengefasst, dass neue
Plattformen fiir netzbasierte kooperative Forschung und Zusammenarbeit im
Wissenschaftsbereich entstehen. E-Science beschreibt eine wissenschaftliche
Arbeitsumgebung, die den Austausch von Ressourcen, die Zusammenarbeit in verteilten
Teams und optimierte Kommunikationsprozesse umfasst. Oftmals wird es im Zusammenhang
mit rechenintensiven Anwendungen in verteilten Systemen verwendet, wie beispielsweise im
Umfeld von Grid-Computing. Zudem werden die Bereiche Wissensvernetzung, Open Access
und e-Learning in e-Science gefordert.

Allerdings muss e-Science in einem weiteren Sinn verstanden werden. Das britische National
e-Science Centre (NESC)’ hat dies folgendermafBen zusammengefasst:

In the future, e-Science will refer to the large scale science that will increasingly be
carried out through distributed global collaborations enabled by the Internet. Typically,

7 National e-Science: http://www.nesc.ac.uk

18

http://www.nesc.ac.uk/�

2. Grundlagen

a feature of such collaborative scientific enterprises is that they will require access to
very large data collections, very large scale computing resources and high
performance visualization back to the individual user scientists.

In vielen wissenschaftlichen Bereichen, wie auch im Bereich von e-Science, spielt die
Simulation eine wichtige Rolle. Im Folgenden soll ein Uberblick zur Simulation geschaffen
werden.

Simulation

Eine Simulation, die normalerweise auf Rechnern durchgefiihrt wird, stellt neben Theorie und
Experiment einen dritten Weg der Wissenschaften dar. Wie bereits erwédhnt wurde, erfordert
e-Science die vernetzte und interdisziplindre Zusammenarbeit sowie den Austausch von
weltweit verteilten Ressourcen. Daher wird eine computergestiitzte Simulation benotigt.
Diese lassen sich hdufig als numerische Losungen der formalisierten Theorien und als
numerische Computerexperimente darstellen.

Fiir die Realisierung von Simulationen ist in der vorliegenden Arbeit die Zusammenarbeit von
Biologie, angewandter Mathematik und Informatik besonders wichtig. Dabei liefert die
Mathematik die numerischen Verfahren zu den computergestiitzten Ldsungen der
biologischen Modelle, wihrend die Informatik fiir diese Modelle verantwortlich ist, die durch
effiziente Algorithmen und Programme computergestiitzt bearbeitet werden.

Es bedarf viel Vorarbeit, um biologische Prozesse mit Hilfe von Rechnern zu simulieren. Zu
den fiir diese Arbeit geltenden Vorarbeiten zdhlen beispielsweise eine mathematische
Modellierung und das Erstellen von Algorithmen fiir die wissenschaftliche Berechnung und
die Visualisierung. Mathematische Modelle zur Beschreibung von biologischen Prozessen
miissen dazu zundchst computergerecht aufbereitet werden: Algorithmen geben somit
Vorschriften zur Ermittlung von Lésungen an. Schlie8lich kénnen die Simulationsresultate je

nach Bedarf visuell umgesetzt werden.

Simulation in biologischen Reaktionsnetzwerken

Die Simulation, die in der vorliegenden Arbeit eingesetzt wurde, setzt ihren Fokus auf die
Analyse und Visualisierung durch die biologische Modellierung fiir Parameteridentifikation
in biologischen Reaktionsnetzwerken. Die biologischen Modelle, die in dieser Arbeit
verwendet werden, sind in verschiedenen nicht-linearen Gleichungen umgesetzt worden, die
auf der chemischen Reaktionskinetik basieren. Dabei werden dauerhafte Messungen des
Status in dem biologischen Netzwerk benotigt, da Strukturinderung in diesen Modellen
spontan erfolgen konnen und daher beriicksichtigt werden miissen. Um eine Realitdtsndhe zu
schaffen, werden so genannte Gaufl'sche Messfehler in den Modellen auf Basis von
Zufallszahlen erzeugt.

Um die biologischen Modelle zu entwickeln, miissen Parameter aus experimentellen Daten
verwendet werden. Dies flihrt jedoch zu folgenden zahlreichen Problemen ,,the data available

19

2. Grundlagen

for this purpose is usually scarce and noisy, and time resolution is low, the optimization
problem is ill-posed, and the performance of standard methods such as least-squares or
maximum likelihood estimation is poor “[15]. Um diese Probleme bei der Nutzung von
Standardmethoden zu umgehen, wird eine so genannte Parameteridentifikation zur Auswahl
des passenden Modells genutzt. Bei einer solchen Parameteridentifikation kann beispielsweise
nach [16] ein bayes'sche Framework eingesetzt werden, mit dem Schitzwerte fiir die
Parameterverteilung verwendet werden und anschlieBend deren ,,Unsicherheit” berechnet
werden konnen. Um eine moglichst genaue Parameterverteilung gewéhrleisten zu konnen,
wird versucht, die Unsicherheiten im Laufe der Simulation zu minimieren. Das Ergebnis der
Simulation wird visualisiert, damit der Fortschritt {iberpriift und die aktuelle Unsicherheit des
Modells visuell analysiert werden kann.

Die ausfiihrliche Beschreibung der Reaktionsnetzwerke und Parameteridentifikation befindet
sich in Kapitel 4.

20

3. Verwendete Software

3. Verwendete Software

In diesem Kapitel werden lediglich die Softwares dargestellt, die im Rahmen dieser Arbeit von
wesentlicher Bedeutung sind.

3.1. Simulationssoftware: Octave

GNU Octave kann als Open-Source Implementierung von MatLab® betrachtet werden und
stellt eine interaktive Skriptsprache dar, die speziell fiir numerische Berechnungen optimiert
wird. Zusétzlich zu der Losung von Problemen der linearen Algebra und der Integralrechnung,
dem Losen von Gleichungssystemen und Polynomen etc., ermoglicht es die Definition eigener
Funktionen oder Module, die in C++, C oder Fortran geschrieben sind, zu verwenden. Dadurch
kann Octave problemlos mit individuell bendtigten Funktionen erweitert werden.

Die Syntax von Octave ist sehr dhnlich zu der von Matlab. Octave-Programme kdnnen meist
von Matlab ausgefiihrt werden. Umgekehrt ist dies jedoch aufgrund des groBeren
Funktionsumfangs von Matlab nicht immer gewihrleistet.

Fiir die grafische Ausgabe von zwei- oder dreidimensionalen Ergebnisdaten verwendet Octave
das Visualisierungsprogramm GNUplot.

Datentypen

Der wichtigste Datentyp in Octave ist Matrix, da fast alle Datentypen in Octave als Matrizen
intern bearbeitet werden. Auch Skalare werden intern als 1 x 1 Matrix behandelt. Die
Datentypen unterscheiden sich durch:

* Numerische Objekte: sowohl Skalare als auch Matrizen sind durch die numerischen

Werte zugewiesen. Der Wertebereich liegt zwischen —2,2251x10*®und 1,7977 x10°* .

* String-Objekte: sie sind Zeichenfolgen, die zwischen einfachen oder doppelten
Anfiihrungszeichen eingeschlossen sind (” oder ’). Intern speichert Octave Strings als Matrizen
von Zeichen. Alle fiir Matrizen definierten Indizierungsoperationen arbeiten auch auf Strings.

¢ Datenstrukturen: Zusammenfassung von Objekten verschiedener Typen. Die Syntax ist
dhnlich wie die C-style Strukturen.

8 http://www.mathworks.de/products/matlab/

21

http://www.mathworks.de/products/matlab/�

3. Verwendete Software

Beispiel:

octave:1> [1 2; 3 4]

ans =

12

3 4

octave:2> y = ["a for apple"]

y = a for apple

Operationen

Bei Octave sind normale Operatoren wie z.B. Wertzuweisung (variable = expression),
logische Operatoren (<, <=, >, >=...) und Skalaroperationen (-,*,/ ...) vorhanden. Zudem
bestehen zahlreiche Operationen zur Matrixmanipulation, da Matrizen die wichtigsten
Bausteine zur Programmierung in Octave darstellen. Dariiber hinaus kommen die iiblichen
mathematischen Funktionen z.B. sin, cos, exp, log usw. bei Octave vor. Zuséitzlich bietet
Octave viele weitere Funktionen an, die sich mit bestimmten Themengebieten der
Mathematik befassen (lineare Algebra, nicht-lineare Gleichungen, Bildverarbeitung und
Sprachverarbeitung usw.).

Skript und Funktionen

Bei Octave kann eine Skript-Datei so aufgebaut werden, dass die Befehlssequenzen mit einem
beliebigen Texteditor in einer ascii-File mit der Endung .m (sogenannt m-File) abgespeichert
werden konnen. Zur Ausfiihrung lésst sich das Skript aus der Octave- Kommandozeile mit
dem Dateinamen aufrufen.

In einer Skript-Datei konnen mehrere Funktionen definiert werden. Die Funktionen werden
wie Skripte innerhalb von Textdateien mit dem Suffix .m gespeichert und analog aufgerufen.
Diesen konnen jedoch Parameter iibergeben werden. In der ersten Zeile der Skript-Datei steht
hierzu:

function[Ausgabeparameter]= nameDerFunction (Eingabeparameter)

Ausgabeparameter steht hier fiir eine Liste von Parametern, in denen Ergebnisse gespeichert
werden konnen. Eingabeparameter steht hier fiir die Liste der Eingabeparameter der Funktion.

3.2. Web Service Wrapper

Eine der Aufgaben dieser Arbeit ist es, Octave-basierte Anwendungen als Web Service zu
erstellen. Dazu wird ein Programm bendtigt, welches die Funktionen der
Octave-Anwendungen tiber eine Web Service Schnittstelle verfiigbar machen. Diese Aufgabe
libernimmt ein Web Service Wrapper. Laut Freund [22] ist ein Web Service Wrapper ein

22

3. Verwendete Software

Programm, ,,das sich wie eine Schale um die einzelnen Funktionen der Anwendung legt, sie
nach innen iiber verschiedenste Kanéle anbindet und nach aullen als Web Service kapselt*.

Die Funktionalitit eines Wrappers lédsst sich durch zwei Szenarien beschreiben. Das erste
Szenario zielt auf Legacy-Applikationen, die auf Web Services zugreifen wollen. Da dieses
Szenario nicht Bestandteil dieser Arbeit ist, wird darauf nicht weiter eingegangen.

Der Schwerpunkt dieser Arbeit liegt auf dem zweiten Szenario, bei dem eine
Legacy-Applikation die Funktionalitit fiir einen Web Service bereit stellt. Hierbei wird ein
Request in der Regel als SOAP-Message an den Wrapper versendet. Bei jedem Request ruft
der Wrapper die Applikation auf, die die Anforderungen des Requests erfiillt. Zudem schickt
der Wrapper die Nachrichten in der Regel als SOAP-Message zuriick.

Um ein Wrapper fiir die Octave-Anwendung zu entwickeln, wird das in der Diplomarbeit [23]
beschriebene Konzept des Web Service Interface (WSI) als Basis verwendet. Im Folgenden
soll dieses vorgestellt werden.

3.2.1. Web Service Interface (WSI)

Der Zweck des Web Service Interfaces ist es, Web Services auf Basis von
Simulationsanwendungen zu erstellen. Aufgrund der Vielzahl der verschiedenen
Anwendungen und Bibliotheken wurde das Web Service Interface generisch verwendbar

/Generischer Callback \

Adapter WS

Basis Programm
WS Manager
Instanz
Pool

aufgebaut.

Statische
Anwendung

Octave-Plugin .
Interaktive Octave-
Anwendung
Service

=) °

Abbildung. 9 Architektur des Web Service Interfaces [23]

Octave Octave
Web

Service

Fiir eine Simulationsanwendung, die bisher noch nicht unterstiitzt wurde, kann das Web
Service Interface durch Entwicklung eines Plugins erweitert werden (siche Abbildung. 9). Da
die Octave-Anwendung nicht direkt als Web Service erstellt werden kann, soll ein Octave
Adapter als Plugin entwickelt werden, um eine Octave-basierte Simulation durchzufiihren.

23

3. Verwendete Software

Ein generisches Basismodul (auch generischer Adapter genannt) des Web Service Interfaces
wurde im Rahmen der Diplomarbeit [23] erstellt.

Der Java-basierte Basis Web Service lduft im Applikationsserver Apache Tomcat. Der Basis
Web Service beschreibt mit Hilfe von WSDL grundlegende Operationen, die bendtigt werden,
damit ein Client eine Simulationsanwendung aufrufen kann. Dazu gehort etwa das Erstellen
einer eindeutigen ID oder einer Verzeichnisstruktur auf einem Rechner, auf dem die
Simulationsanwendung ablaufen soll. Der Basis Web Service bietet allerdings keine
anwendungsspezifischen Operationen an.

Im Instanz Pool werden die Simulationsinstanzen verwaltet. Eine Simulationsinstanz besitzt
stets eine eindeutige ID und umfasst eine Menge von Daten und Verzeichnissen, die
Ausfiihrung eines oder mehrerer Programme sowie deren aktueller Zustand. Als Beispiel soll
Abbildung. 10 dienen, die die mdglichen Uberginge zwischen den verschiedenen Zustinden
aufzeigt. Diese Zustéinde entsprechen den WSDL-Operationen im Basis Web Service.

~ InstanceState

Create new Start unpacking

~ NonExisting

— Created — Unpacking

Finished
unpacking

— DirectoryPrepared
Remove Clear

Needs
building

Execute —
— Runnable

Build
finished

Executed

St
[: Stopping] op O Ready

Finished executingT \LExecute command

Abbildung. 10 Lebenszyklus einer Simulationsinstanz aus [23]

Die externen Programme (wie z.B. ein Entpacker) werden durch den Programm Manager
ausgefiihrt. Sobald Anwendungen oder Skripts in einem Archive gespeichert sind, kénnen
diese vom Programm Manager entpackt werden. Weiterhin bietet der Programm Manager die
Moglichkeit, die Ausgabedaten nach der Ausfiihrung eines Programms zu speichern, um die
Daten zu einem spiteren Zeitpunkt weiterverwenden zu konnen.

Der generische Adapter stellt Callback Web Service als einen weiteren Web Service zur
Verfiigung. Diese Schnittstelle dient zur Benachrichtigung mittels Simulationsanwendung.
Sobald die Anwendung bereit ist, erhdlt das Web Service Interface eine Mitteilung, die
Anfragen zu bearbeiten. Anschlielend schickt das Web Service Interface eine entsprechende

24

3. Verwendete Software

Benachrichtigung weiter an den Client.

Octave-Plugin enthilt das auf Octave-Anwendung aufgebaute Web Service sowie ein Service
Stub. In dem Octave Web Service werden beispielsweise die Grundfunktionalititen der
Octave-Anwendungen durch WSDL-Operationen dargestellt. Durch Octave Service Stub
kann das Octave-Plugin mit interaktiven Simulationsanwendungen kommunizieren. Dies soll
im folgenden Kapitel ausfiihrlich behandelt werden.

3.3. Serverplattform

Fiir die Erstellung wie auch den Betrieb des Web Service Interfaces und Plugins wird ein
Applikationsserver benétigt. In der vorliegenden Arbeit wird Apache Tomcat als Plattform
verwendet. Der Applikationsserver wird zudem von Service Bus Apache Axis2 und
BPEL-Engine Apache ODE verwendet. Im Folgenden soll auf diese ndher eingegangen
werden.

Apache Tomcat

Apache Tomcat dient als Applikationsserver und Basis fiir die Ausfithrung von Java-basierten
Anwendungen und fungiert somit als die grundlegende Server-Komponente. Es basiert auf
einem Open Source Projekt der Apache Software Foundation und ist ein in Java geschriebenr
Servlet Container. In seiner aktuellen Version vereint der Apache Tomcat Technologieansitze
wie JSP-Compiler Jasper’ und Java Server Pages'® mit einem kompletten HTTP-Server.

Zur Entwicklung von Web Service auf Basis von Otave wird ein "Dynamic Web Project" in
Eclipse erstellt. Dazu wird zundchst eine eigene Serverumgebung konfiguriert. In der
vorliegenden Arbeit wird die Version V6.0 von Tomcat eingesetzt.

Apache Axis2/Java

Bei Apache Axis 2/Java handelt sich um ein Service Bus sowie ein Java-Framework zur
Entwicklung von Webservice-Anwendungen auf Basis von SOAP oder REST "
(Representational State Transfer). Es wird hiufig in einen Servlet Container (hier Apache
Tomcat) genutzt und als Java Servlet betrieben.

Axis2 integriert verschiedene Binding-Frameworks. Zudem bietet es ein eigenes
Binding-Framework ,,Axis2 Data Binding Framework (ADB) an. Da die Ubertragung von
XML-Daten in Java-Strukturen keine Probleme mit sich bringen. Mit dem ADB wird der
Client einfach generiert, wobei die bendtigten Klassen auch im Stub als innere Klassen

? JSP-Compiler Jasper : http:/tomcat.apache.org/tomcat-4.1-doc/jasper-howto.html

1% Java Server Pages : http://www.oracle.com/technetwork/java/javaee/jsp/index.html

"' REST: http://www.ics.uci.edu/~fielding/pubs/dissertation/rest_arch_style.htm

25

http://tomcat.apache.org/tomcat-4.1-doc/jasper-howto.html�
http://www.oracle.com/technetwork/java/javaee/jsp/index.html�
http://www.ics.uci.edu/~fielding/pubs/dissertation/rest_arch_style.htm�

3. Verwendete Software

realisiert werden.

In Axis2 wird ein eigenes Objektmodell namens AXIOM verwendet, welches eine
XML-Datenstruktur in eine Objektstruktur umwandelt. AXIOM ist leichtgewichtig und
bewusst so aufgebaut, dass eine flache Klassenhierarchie mit wenigen Methoden und
Attributen genutzt werden kann.

Eine weitere Komponente von Axis2 ist, dass es Tools zur Generierung von WSDL-Dateien
sowie serverseitigen und clientseitigen Java Klassen durch die Batchdateien bzw. Shell Skripte
java2wsdl und wsdl2java bietet. In der vorliegenden Arbeit werden die Java Klassen
sowie ein Java Skeleton aus einer WSDL-Datei mit der Unterstiitzung von wsdl2java
generiert. Mit dem Java Skeleton konnen Kommunikationskomponenten in externe
Anwendungen integriert werden, sodass sie in der Lage sind, Webservices aufzurufen oder
anzubieten.

Apache ODE

Als WS-BPEL-Engine kommt Apache ODE zum Einsatz. Die Abkiirzung ODE steht fiir
Orchestration Director Engine. Es handelt sich um ein Open Source Projekt der Apache
Software Foundation und unterstiitzt die BPEL-Standards 1.1 und 2.0"%. Es dient hierbei als
Laufzeitumgebung fiir die BPEL-Prozesse, mit der Web Services aufgerufen, Messages
gesendet und empfangen sowie Daten bearbeitet und Fehler behandelt werden kénnen.

Apache ODE besteht aus folgenden Komponenten [24]:

* ODE BPEL Compiler: kompiliert die einzelnen BPEL-Artefakte, das
BPEL-Prozess-Dokument, WSDL-Dokumente und XML Schemas in einen ausfiihrbaren
Prozess

* ODE BPEL Engine Runtime: stellt eine Umgebung fiir die Ausfiihrung der kompilierten
BPEL-Prozesse zur Verfligung.

* ODE Integration Layer: stellt die Verbindung von ODE BPEL Engine Runtime mit der
Umgebung bereit. Beispielsweise ermoglicht der Integration Layer in Zusammenspiel
mit Axis2 der BPEL Engine Runtime den Aufruf von Web Service.

* ODE Data Access Objects (DAO): zusténdig flir die Interaktion zwischen der ODE BPEL
Engine Runtime und der darunterliegenden Datenbank, die normalerweise eine JDBC
Datenbank " ist.

12 BPEL-Standards 2.0: http://ode.apache.org/ws-bpel-20.html

13 http://www.oracle.com/technetwork/java/javase/jdbc/index.html

26

http://ode.apache.org/ws-bpel-20.html�
http://www.oracle.com/technetwork/java/javase/jdbc/index.html�

4. Reaktionsnetzwerke

4. Reaktionsnetzwerke

Dieses Kapitel verschafft einen Uberblick iiber die biologische Netzwerke sowie
Reaktionsnetzwerke, die im Rahmen dieser Arbeit einen wesentlichen Hintergrund fiir die
Simulationsanwendungen gebracht haben. Den Abschluss bilden einige Moglichkeiten zur
Parameteridentifikation in Reaktionsnetzwerke.

4.1. Biologische Netzwerke

Zahlreiche aktuelle Forschungen im Bereich der Biowissenschaften befassen sich aktuell mit
Gene, Proteine und Metabolite sowie mit deren komplexen Zusammenspiel. Dabei steht ein
besseres Verstindnis der molekularen Prozesse als Grundlage primédr im Zentrum der
Forschungen.

Um das Verhalten und die Abhéngigkeiten aller Elemente eines biologischen Systems auf einer
globalen Ebene zu studieren, hat sich der Begriff Systembiologie durchgesetzt. Dabei ist die
Integration von experimentellen Methoden sowie Datenanalyse und Simulation in einem
iterativen Prozess erforderlich. Daher wird sie oftmals als synergetische Integration von
Theorie, rechnergestiitzte systembiologischer Modellierung und Experiment charakterisiert.

In der Systembiologie spielen die biologischen Netzwerke eine entscheidende Rolle, da sie ein
geeignetes Medium zur Integration der unterschiedlichen Bestandteile darstellen.
Ublicherweise werden biologische Netzwerke durch Graphen modelliert, die aus Knoten und
Kanten bestehen. Diese Elemente der Graphen werden oft durch Attribute wie Namen,
numerische Werte usw. reprisentiert.

In der Abbildung. 11 wird eine vereinfachte Form der biologischen Netzwerke dargestellt.
Typischerweise existiert nicht nur ein homogenes biologisches Netzwerk, sondern eine
Vielzahl verschiedenster, miteinander interagierender Netzwerke. Auf unterster Ebene
befinden sich die intrazelluliren Netzwerke, die auf vier Elementen basieren: Gene,
Transkripte, Proteine und Metabolite. Ein Gen ist ein DNA-Abschnitt, der fiir die Synthese
eines biologischen Produkts erforderlich ist. Proteine werden durch die Informationen gebildet,
die entsprechend in Genen gespeichert und durch Transkripte iibermittelt werden. Viele
Proteine wiederum sind Enzyme, die biochemische Reaktionen in Zellen ermdglichen. Durch
Enzyme werden Metabolite umgewandelt.

27

4. Reaktionsnetzwerke

Neben diesen Beziehungen existiert zudem eine Vielzahl weiterer Interaktionen zwischen den
vier Bausteinen. So konnen Proteine miteinander interagieren, Proteine die Aktivitidt von
Genen regulieren, und Metabolite die Aktivitdt von Proteinen beeinflussen usw. Somit ergibt
sich ein komplexes Netzwerk vielfiltiger Interaktionen und Abhingigkeiten zwischen den
Bausteinen [18].

Auf den intrazelluldren Netzwerken aufbauend befinden sich weitere verschiedene biologische
Netzwerke, welche in den niachsten Ebenen in Abbildung. 11 dargestellt werden.
Die biologischen Netzwerke dieser Ebenen umfassen beispielsweise 6kologische Netzwerke,
die die Abhangigkeiten zwischen Organismen in einer Lebensgemeinschaft zeigen, hormonelle
Netzwerke, die die Kommunikation zwischen Geweben und Organen repriasentieren, sowie
neuronale Netzwerke, welche die Verschaltungen von Neuronen darstellen [18].

[

z.B.:
Okologische
Netzwerke,

homonelle
Netzwerke,

neuronale
Netzwerke

./. d intrazelluldre
(]

[©) Netzwerke

[Gene | [Transkripte | [Proteine | [Metabolite |

Abbildung. 11 Vereinfachte Darstellung von interagierenden biologischen Netzwerken [18]

4.2. Reaktionsnetzwerke

Wie in Abschnitt 4 beschrieben wird, werden viele Netzwerk-Modelle fiir die Untersuchungen
im Bereich der Systembiologie erstellt. Die meisten Modelle basieren auf mathematischen
Darstellungen und héngen oftmals von einer Vielzahl unbekannter oder nur ungenau bekannter
Reaktionsparameter ab. Aufgrund der hohen Kosten, des Zeitaufwands zur Durchfithrung der
Experimente oder der Komplexitit durch die Vielzahl an Einzelreaktionen erweist sich die
direkte Messung dieser Parameter als unrealistisch. Deshalb miissen diese Parameter aus

28

4. Reaktionsnetzwerke

indirekten Messungen an der realen Zelle, zum Beispiel aus Zeitreiheninformationen,
gewonnen werden.

Im Folgenden werden eine kurze FEinfilhrung in die biologische Modellierung der
Reaktionsnetzwerke und ein Uberblick iiber die Parameteridentifikation gegeben.

4.2.1. Modellierung der Reaktionsnetzwerke

Die Basis zur Modellierung biologischer Reaktionsnetzwerke bildet zumeist eine Beschreibung
der auftretenden Reaktionen in der Form

oS +..+a, S, — B.P +...+,B,,anp €))

Hierbei werden die Substrate S; in die Produkte P; umgewandelt. Die Faktoren o; und f3;
beschreiben die stochiometrischen Verhéltnisse der beteiligten Reaktionspartner.

Aus den stochiometrischen Faktoreno;, [; der Reaktionen sowie etwaiger
Umrechnungsfaktoren zur Kompensation unterschiedlicher Einheiten Ildsst sich die
stochiometrische Matrix (folgend durch S dargestellt) erstellen. Die stochiometrische Matrix
beschreibt, welche chemischen Verbindungen in welchen Reaktionen miteinander reagieren
und welche neuen Verbindungen dabei entstehen. Die Matrix besteht aus m Zeilen und n
Spalten. Die m Zeilen reprisentieren die Verbindungen (Molekiile, Metabolite), und jede der n
Spalten stellt eine Reaktion dar. In komplexen Reaktionsnetzwerken ist in der Regel die Anzahl
der Reaktionen grof3er als die Anzahl der beteiligten Molekiile (n > m).

Werden die rdumlichen wund stochastischen Effekte vernachlédssigt, konnen die
Reaktionsnetzwerke mittels gewdhnlicher Differenzialgleichungen beschrieben werden. Die
Modelle bestehen dann aus dem Fluss (Flux) jeder Reaktion und den Differenzialgleichungen:

X(t)=S-v 2)

Der Flux v beschreibt die Reaktionsintensitidten pro Zeiteinheit fiir die n Reaktionen. Die
Anderungsraten der Verbindungskonzentrationen X(z) ergeben sich aus dem Produkt der
stochiometrischen Matrix S mit den Reaktionsraten (Flux v).

4.2.2. Parameteridentifikation

In der Systembiologie werden zumeist zeitkontinuierliche Modelle, der in Abschnitt 4.2.1
beschriebenen Form, verwendet. Ein Grund dafiir ist, dass derartige Modelle der
physikalischen Wirklichkeit eher entsprechen. AuBlerdem gewéhrleisten diese die Linearitit in
den Parametern. Ein weiterer Grund fiir die Nutzung zeitkontinuierlicher Modelle ist, dass in
der Biologie hdufig stark verrauschte Messungen auftreten. Fiir ein solches Rauschen sind
zeitkontinuierliche Modelle oftmals weniger anfillig als zeitdiskrete Modelle.

29

4. Reaktionsnetzwerke

Fir die =zeitkontinuierlichen Modelle werden globale, und optimierungsbasierte
Parameterschitzverfahren eingesetzt. Im Bereich der Reaktionstechnik sind in Bezug auf
zahlreiche Reaktionsmechanismen nur unzureichende Informationen oder Parameterwerte zu
finden. Beispielsweise fiihrt die Parameterschitzung oftmals zu nichtkonvexen Problemen,
weshalb die Komplexitit dieser Verfahren mit der Dimension des Parameterraumes stark zu
nimmt. Alternativ kommen lokale Suchstrategien zum FEinsatz, die jedoch einen gut
geschitzten Initialwert benotigen. Aufgrund dieser Nachteile werden mathematische Verfahren
bendtigt, die die Anpassung der Modellparameter an reale Experimente unterstiitzen. Man
spricht hierbei von der Parameteridentifikation.

Fiir die Parameteridentifikation existieren verschiedene Methoden. Beispielsweise wird in [19]
ein Verfahren zur Parameteridentifikation biochemischer Reaktion vorgestellt. Zunichst wird
das Modell (2) (auf der vorherigen Seite) in eine parameterunabhéngige Systemdarstellung
transformiert. Anschlieend wird ein Entwurf eines Beobachters aufgebaut, der zur
Rekonstruierung des aus den Messungen erweiterten Zustandsvektors und zur Konvergenz des
Schétzfehlers dient. SchlieBlich erfolgt eine Schitzung der Parameter auf Basis der geschétzten
Systemzustiande. Zur Illustrierung wird in diesem Beispiel das Verfahren auf Basis eines
einfachen Modells des zirkadischen Rhythmus angewendet.

X; = 61xg — Xy PKD
X2 = bhx —x2 P](‘i}KH]l‘.’!
e e X3 =631 — x3 Pl(4)P
. X1Xg
* Xy = O4x3 — x4 — 0Oy CERT
1+ x4
e e X5 = Osxy — Ogxs — Uy 5 ceramide
I +xs
X = —Oixg + Oy 5 DAG.
1+ x5

Abbildung. 12 Interaktionsgraph in der trans-Golgi Netzwerk
und Modelle der Differenzialgleichungen [16]

In [16] und [17] werden andere Methoden zur Parameteridentifikation verwendet, die die
Modellierung mit Hilfe von Bayesian Framework beinhalten. Bei der Modellierung werden
gewohnliche Differenzialgleichungen, die auf chemische Reaktionskinetik basieren, in
folgender Form definiert:

i=f(x,0), xeR,0eR",f R xR’ >R"eC'(x,0) 3)

Wobei das Vektorfeld f kontinuierlich differenzierbar ist. Der Vektor @ enthélt Parameter,

die aus Daten stammen. In diesem Modell werden zufillige Gau'sche Messfehler eingebettet,
um ein statistisches Bayesian Framework nutzen zu kénnen. Bei der Modellierung wird hierbei
versucht, ein ideales Experiment zur Parameteridentifikation durch die Maximierung der

30

4. Reaktionsnetzwerke

Entropie einer Posterior Distribution zu erstellen, die durch so genannte Markov Chain Monte
Carlo (MCMC)" Samplings approximiert werden miissen. Basieren auf solchen effizienten
Einschitzungen der Entropie wird ein Bayesian Framework erstellt. Dieses kann in ein
Netzwerkmodell iiberfiihrt werden, wie beispielsweise an das Netzwerkmodell von Secretory
Pathway Control im trans-Golgi Netzwerk *. Auf der linken Seite der Abbildung. 12 befindet
sich ein Interaktionsgraph der trans-Golgi Netzwerk. Auf der rechten Seite sind verschiedene
Differenzialgleichungsmodelle zu sehen, die der Beschreibung des Graphs dienen sollen.

Zum Verstidndnis werden zahlreiche mathematische Vorkenntnisse benétigt. [19] geht tiefer
auf das Thema ein.

"“Markov Chain Monte Carlo:
http://www.cs.princeton.edu/courses/archive/spr06/cos598C/papers/AndrieuFreitasDoucetJordan2003.

pdf
' trans-Golgi Netzwerk : http://www.zytologie-online.net/golgi-apparat.php

31

http://www.cs.princeton.edu/courses/archive/spr06/cos598C/papers/AndrieuFreitasDoucetJordan2003.pdf�
http://www.cs.princeton.edu/courses/archive/spr06/cos598C/papers/AndrieuFreitasDoucetJordan2003.pdf�
http://www.zytologie-online.net/golgi-apparat.php�

5. Spezifikation

5. Spezifikation

In diesem Kapitel wird ein Web Service fiir Octave-Anwendungen spezifiziert. Es wird
zundchst auf die Anforderungen an den Web Service eingegangen. Danach folgt eine
Beschreibung des Lebenszyklus des Octave Adapters inklusive der moglichen Zustdnde, die
er annehmen kann. SchlieBlich werden die Anwendungsfalle des Octave Adapters dargestellt.

5.1. Anforderungen

Die Anforderungen an den Octave Web Service werden in diesem Abschnitt erldutert.

Bereitstellung der Octave-Anwendung als Web Service

Der Web Service fiir Octave-Anwendungen soll folgende Anforderungen erfiillen. Ein Client
schickt eine SOAP-Nachricht an den Octave Web Service. Der Tomcat Server bekommt die
Nachricht, extrahiert und analysiert den Inhalt der Nachricht. Die Web Service Operationen
sollen dabei den Anwendungsfillen eines Ablaufs entsprechen, mit dem die
Octave-Anwendungen gestartet werden konnen. Diese Operationen werden zunichst als
WSDL-Operationen definiert, dann sollen sie mit Hilfe von Axis2 in eine
Java-Implementierung Uberfiilhrt werden. Mit den Java Codes kann die konkrete
Implementierung ergidnzt werden. z.B. indem ein Verzeichnis erstellt wird, in dem die
Octave-Anwendungen abgelegt werden konnen. Riickmeldungen von den
Octave-Anwendungen sollen als SOAP-Nachricht vom Octave Web Service an den Client
zuriickgeschickt werden.

Visualisierung des Ergebnisses

Nach der Ausfiihrung der Octave-Anwendung entsteht eine graphische Darstellung als
Ergebnis, die die Qualitdt der Simulation beschreibt. Da die Web Service Operationen als
WSDL-Operationen definiert sind, in denen der Output nur die Formate string, long usw.
enthélt, kann eine graphische Darstellung nicht als Output einer WSDL-Operation genutzt
werden. Es soll daher die graphische Darstellung in einer Datenbank gespeichert werden und
ein Pfad fiir sie angegeben werden. Durch die Nutzung des Pfades kann der Client die
Ergebnis-Darstellung abholen.

32

5. Spezifikation

BPEL-Prozess fiir die Durchfithrung der Simulation

Ein BPEL-Prozess soll erstellt werden, der den Octave Web Service verwendet. In dem Prozess
sollen Aktivitidten, Kontrolllogik usw. definiert werden, damit die Simulation richtig
durchgefiihrt werden kann.

5.2. Lebenszyklus einer Simulationsinstanz von Octave Service

Adapter

In dem Abschnitt 3.2.1 wird eine Simulationsinstanz des generischen Adapters dargestellt
(Abbildung. 10), die die mdglichen Uberginge zwischen den verschiedenen Zustéinden zeigt.
Im Octave Plugin (auch Octave Service Adapter genannt) wird eine Simulationsinstanz auf
Basis des generischen Adapters nach der Octave Anwendung erstellt. In dieser Arbeit wird der
Lebenszyklus der Simulationsinstanz nach der Octave-Simulation wie folgt definiert. Hierbei
ist zu beachten, dass nicht alle Zustandsiibergidnge in der Abbildung. 13 dargestellt werden.

Vielen Zustinden kénnen auch in andere Zustinde wechseln.

NonExisting

Dieser Zustand beschreibt, dass eine Instanz noch nicht oder nicht mehr existiert. Er
kann als einen Anfangszustand dargestellt werden. Falls ein existierendes
Simulationsprogramm nicht mehr ausgefiihrt werden soll, wird es von der Datenbank
entfernt und der Zustand wird auf ,,NonExisting* zuriickgesetzt.

Ausgangszustinde: -
Folgezustinde: SimID

D InstanceState

Prepare
directory

Create new

—— DirectoryPrepared]

) NonkExisting

Copy

) CopyFile

Prepare
run

Execute

Executed

—— PlotSample — Runnable

Abbildung. 13 Lebenszyklus der Simulationsinstanz von Octave Adapter

33

5. Spezifikation

SimID

Eine neue Simulationsinstanz ist erstellt. Dazu wurde eine eindeutige
Identifikationsnummer fiir die Instanz vergeben.

Ausgangszustinde: NonExisting

Folgezustinde: DirectoryPrepared, NonExisting

DirectoryPrepared

Ein Instanzverzeichnis wurde erstellt, in dem Programmdateien spéter vorliegen konnen.
In diesem Zustand stehen aber noch keine ausfiihrbaren Programme zu Verfiigung.

Ausgangszustinde: -
Folgezustinde: SimID, CopyFile, NonExisting
CopyFile

Alle Dateien zur Ausfithrung der Simulationsanwendung sind in diesem Zustand in das
erstellte Instanzverzeichnis kopiert worden.

Ausgangszustinde: DirectoryPrepared
Folgezustinde: SimID, Runnable, NonExisting
Runnable

Nachdem die Simulationsanwendung und alle benétigten Dateien im Instanzverzeichnis
kopiert wurden, ldsst sich die Simulation starten. Dieser Zustand kann im Verlauf einer
Simulation mehrmals verwendet werden. Wenn die Simulation nicht gestartet wird,
konnen die SimID und das Instanzverzeichnis geldscht werden, dann geht der
Lebenszyklus wieder zum Anfangszustand zuriick.

Ausgangszustinde: CopyFile, Executing
Folgezustinde: SimID, Executing, NonExisting
Executing

Dieser Zustand wird der Ausfithrung der Simulation zugeordnet. Sobald die Ausfiihrung
terminiert, wechselt die Instanz in den Zustand ,,PlotSample*. Das heif3t, das Ergebnis der
Simulation wird zum ,,PlotSample geliefert.

Ausgangszustinde: Runnable
Folgezustinde: PlotSample
PlotSample

Dieser Zustand beschreibt ein Ergebnis nach der Ausfilhrung der
Simulationsanwendungen. In dieser Arbeit wird ein Bild als Ergebnis dargestellt. Die

34

5. Spezifikation

Visualisierung des Simulationsergebnisses wird in diesem Zustand realisiert.

Ausgangszustinde: Executing
Folgezustiinde: -

5.3. Octave Service Adapter

Dieser Abschnitt stellt die einzelne Anwendungsfille des Octave Service Adapters (kurz
Octave Adapter genannt) dar, die die Funktionalitit des Octave Adapters beschreibt. Der Client
des Adapters wird durch Akteur reprisentiert. Ein Uberblick iiber diese Anwendungsfille wird
in der Abbildung. 14 gezeigt.

PrepareSimulation

Beschreibung: Eine neue Simulationsinstanz wird erstellt, um eine Simulation mit dem
Octave Adapter verwalten zu konnen. Diese Aktion muss als Anfangsaktion ausgefiihrt
werden. Eine Identifikationsnummer (im Folgenden wird SimID genannt) und ein
Instanzverzeichnis werden in dieser Aktion erzeugt, damit die Instanz als existierend
registriert werden kann.

Vorbedingungen: Der Octave Adapter sowie der generischer Adapter miissen aktiv sein.

Get
Plotting
Path
Set
Plotting Prepare
Simulation
Pat
Remove Create
Directory

File

Start
Programm
Get Octave Set Octave

Path Set Octave Call

Path

Abbildung. 14 Ubersicht iiber die Anwendungsfille

35

5. Spezifikation

Nachbedingungen: Die Instanz existiert und wird mit der SimID registriert, dazu wird ein
entsprechendes Instanzverzeichnis erzeugt. Jede Instanz verfiigt liber eine eindeutige SimlID,
die nicht mehr an andere Instanz vergeben kann. Andere Aktionen lassen sich auf Basis von
dieser SimlID erstellen oder ausfiihren.

Fehler:

* Die Simulationsinstanz sowie Instanzverzeichnis konnen nicht erstellt werden.
Regulirer Ablauf:

* Die Instanz wird erzeugt und registriert.

* Eine SimID und ein Instanzverzeichnis werden zur Instanz erstellt.
CreateDirectory

Beschreibung: ein neues Verzeichnis wird mit Hilfe von SSH auf Basis der SimID erstellt,
auf dem alle Datei der Octave-Anwendungen kopiert werden kdnnen. Diese Aktion ist eine
Vorbedingung fiir die Ausfithrung der Anwendung.

Vorbedingung: Die Instanz sowie das Instanzverzeichnis existieren. Zugangsrechte iiber
SSH sind erlaubt.

Nachbedingung: Das neue Verzeichnis existiert unter Instanzverzeichnis.
Fehler:

* Die Instanz sowie das Instanzverzeichnis existieren nicht.

e Zugangsrecht {iber SSH ist nicht erlaubt.

* Das neue Verzeichnis kann nicht erstellt werden.

Reguliirer Ablauf:

¢ FEin neues Verzeichnis wird erstellt.

CopyFile

Beschreibung: Nachdem ein neues Verzeichnis erstellt wurde, werden Dateien aus einem
Quellverzeichnis in das neue Verzeichnis kopiert. Diese Dateien enthalten die
Octave-Anwendungen, die spiter ausgefiihrt werden. Die Datei wird mit WinSCP vom
Ursprungsort (hier ein Windows Server) zum Zielort (hier ist Linux Server) kopiert.

Vorbedingung: Das neue Verzeichnis sowie die Datei miissen existieren. Die Instanz muss
das Kopieren der Datei erlauben.

Nachbedingung: Die Datei befindet sich im Verzeichnis.

Fehler:

36

5. Spezifikation

Die zu kopierende Datei existiert nicht.
* Das Verzeichnis, auf dem die Dateien kopiert werden, existiert nicht.

¢ Die Datei kann nicht richtig kopiert werden. Es kann sein, dass der Akteur {iber kein
Zugangsrecht verfiigt, auf die Datei zuzugreifen. Wenn ein Fehler wihrend dem
Kopieren auftritt, kann die Datei auf den Zielort nicht vollstiandig sein.

Regulirer Ablauf:
* Die Datei wird auf neues Verzeichnis kopiert.
SetOctaveCall

Beschreibung: Es kann sein, dass Octave auf verschiedenen Rechnern in unterschiedlichem
Pfad installiert wird. Daher wird diese Aktion dazu verwendet, ein Kommando zur
Ausfiihrung eines Octave-Anwendungsfiles (ndmlich m-File) in einer bestimmten
Simulationsinstanz festzulegen. Ein Property-File wird, fals es noch nicht existiert, bei dieser
Aktion erstellt der den konkreten Octave-Aufruf enthilt.

Vorbedingung: Die Simulationsinstanz und SimID existieren.

Nachbedingung: Ein Property-File wird erstellt.

Fehler:

* Die Simulationsinstanz und SimID existieren nicht.

Regulérer Ablauf:

* Ein Property-File fiir einen Octave-Aufruf wird erstellt.

* Ein neuer Wert mit dem Property-File wird zurlickgeliefert, sonst wird das Property-File
neu erzeugt.

SetOctavePath

Beschreibung: Ein Pfad zur Ausfiihrung der Octave-Anwendung wird definiert. Dabei ist zu
beachten, dass es viele m-Files in der auf neuem Verzeichnis kopierten Datei gibt. Wie in
dem Abschnitt 3.1 beschrieben existiert ein m-File als Skript-Datei, die die Organisation des
Programmablaufs beschreibt. Die in der Skript-Datei benétigten Funktionen werden in
weiteren m-Files definiert. Der Pfad bestimmt die Skript-Datei, die ausgefiihrt werden soll.

Vorbedingung: Die Datei von Octave-Anwendung muss vollstdndig kopiert werden. Sie
enthélt mindestens eine Skript-Datei und alle bendtigte Funktionen.

Nachbedingung: Ein Pfad wird an der Skript-Datei gesetzt.
Fehler:

* Die Octave-Files wurden nicht vollstiandig kopiert.

37

5. Spezifikation

e Skript-Datei existiert nicht.
* Pfad wird aus verschiedenen Griinden nicht erfolgreich gesetzt.
Reguliirer Ablauf:

* Ein absoluter Pfad ist einem m-File zugeordnet.

GetOctavePath

Beschreibung: Der in der Aktion SetOctavePath erstellte Pfad wird hier zuriickgegeben. Zum
Starten der Octave-Anwendung werden dieser Pfad und die SimID usw. bendtigt.

Vorbedingung: Der Pfad zu einem m-File existiert.
Nachbedingung: Ein Pfad wird zuriickgegeben.
Regulirer Ablauf:

* Ein Pfad zur Ausfiihrung der Octave-Anwendung wird gespeichert.

StartProgram

Beschreibung: Uber einen SSH-Aufruf wird die Octave-Anwendung gestartet. Dazu wird ein
cmd-Befehl definiert, in der ein Pfad verwendet wird, der liber GetOctavePath erfragt wird.
Zur Ausfiihrung der Octave-Anwendung werden auBler dem cmd-Befehl noch eine
Shell-Datei, SimID sowie weitere Pfadangaben bendtigt. Die Shell-Datei dient zum Starten
des Octave-Programms.

Vorbedingung: Das Instanzverzeichnis, Octave-Anwendungen, Skript-Datei und alle
bendtigte Funktionen existieren. Das Octave-Programm muss auf den Server installiert sein.
Die Zugangsrechte stehen zu dem Zeitpunkt zur Verfiigung, zudem der Aufruf per SSH
stattfindet. Alle zum Starten der Octave Anwendungen benétigte Dateien beispielsweise die
Shell-Datei, sowie der cmd-Befehl miissen definiert sein. Wenn die Octave-Anwendungen in
dieser Aktion nicht gestartet werden konnen, kann das Verzeichnis mit der Aktion
RemoveFile aufgerdaumt werden.

Nachbedingung: Die Octave-Anwendungen werden auf den Server ausgefiihrt.

Fehler:

* Das Octave-Programm wird nicht gestartet.

* Das Octave-Pakete zur Ausfiihrung der Anwendungen fehlt.
* Die auszufithrende Skript-Datei existiert nicht.

* Zugang zur Anwendung per SSH kommt nicht zu Stande.

* Die Shell-Datei ist nicht vorhanden.

Regulirer Ablauf:

* Eine SSH-Verbindung wird aufgebaut.

38

5. Spezifikation

* Die Octave-Anwendung wird gestartet und ausgefiihrt.

RemoveFile

Beschreibung: Wenn die Octave-Anwendungen nicht ausgefiihrt werden oder die Datei, die
die diese Anwendungen enthélt, nicht mehr bendtigt wird, kann die Aktion RemoveFile
durchgefiihrt werden. Uber SSH werden die Dateien von dem Server aufgeriumt. Dadurch
kann Speicherplatz gespart werden.

Vorbedingung: Die zu I8schende Datei muss existieren. Zugangsrecht {iiber einen
SSH-Aufruf steht zur Verfiigung.

Nachbedingung: Die Datei wird aufgeraumt.

Fehler:

* Die Datei existiert auf den Zielort nicht.

e Zugangsrecht oder das Schreibrecht per SSH sind nicht vorhanden.
Regulérer Ablauf:

* Die Datei, die die Octave-Anwendungen enthélt, wird iiber SSH-Befehl geloscht.

SetPlottingPath

Beschreibung: Nach der Ausfiihrung der Octave-Anwendungen werden Ergebnisse erzeugt,
die durch verschiedene Koordinatenachsen auf ein Bild dargestellt werden. Ein Beispiel zeigt
in Abbildung. 15. Die Visualisierung der Simulationsergebnisse ist eine Aufgabe dieser
Arbeit. Eine Aktion wird dhnlich der die Aktion SetOctavePath durchgefiihrt. In dieser
Aktion ist dem Ergebnisbild ein Pfad zugeordnet.

Vorbedingung: Die Octave-Anwendungen wurden erfolgreich ausgefiihrt. Der Octave
Adapter wartet bis alle Ergebnisse in einem Bild erzeugt worden sind. Das Bild kann
beispielsweise im Verzeichnis WebContent des Octave Adapters gespeichert werden.

Nachbedingung: Das Ergebnisbild wird gespeichert und ist einem Pfad zugeordnet.
Fehler:
* Die Octave-Anwendungen wurden nicht erfolgreich ausgefiihrt.

¢ Die Entstehung der Ergebnisse dauert zu lang, der Octave Adapter beendet sich per
,timeout®.

* Das Ergebnisbild kann nicht gespeichert werden.
Reguliirer Ablauf:

¢ Ein Pfad wird fiir das Ergebnisbild erstellt.

39

5. Spezifikation

GetPlottingPath

Beschreibung: Diese Aktion wird dazu verwendet, ein Pfad zum Ergebnisbild zu erhalten.
Durch Aufruf des Pfads konnen die Ergebnisse dargestellt werden.

Vorbedingung: Der Pfad zum Ergebnisbild existiert.

Fehler:

* Der Pfad kann nicht zuriickgegeben werden.

Regulérer Ablauf:

* Der Pfad, der in der Aktion SetPlottingPath definiert wurde, wird zuriickgegeben.

* Fiir die Visualisierung der Simulationsergebnisse wird dieser Pfad benétigt.

10 T T T T
| S
[. =
4 = =
2 B . -
0 I i i]
0 20 40 50 50 100
10 T T T T
8 (_—'—'_'_
A i
B
2 —
0 1 1 1 1
;0 20 40 50 0 100
1 1 1 1
E jm— —
5]
. .
: - -
5= —
§ B 1 1 I 1 =
10 0 20 40 50 50 100

L= e e =Y

Abbildung. 15 Ergebnisbilder nach der Ausfiihrung der Octave-Anwendungen

40

6. Entwurf

6. Entwurf

Dieses Kapitel beschreibt die Architektur und die Web Service-Operationen vom Octave

Plugin. Die im Abschnitt 5.2 beschriebenen Anwendungsfille des Octave Plugins werden

durch Web Service Operationen und deren Parameter ausfiihrlich dargestellt.

6.1. Architektur des Octave Adapters

Im Kapitel 3.2.1 wurde der generische Adapter des WSIs dargestellt, wobei das Octave Plugin

bereits erwahnt wurde. Da Octave-Anwendungen nicht direkt als Web Service erstellt werden

koénnen, braucht man einen Adapter, der auf das WSI basiert und auf dem ein entsprechenden

Web Service fiir die Octave-Anwendung bereitgestellt wird. In diesem Abschnitt wird dies

genauer beschrieben.
/Generischer Callback
Adapter ws

Basis
wWs

Programm
Manager
Instanz
Pool

=%

]

Octave Adapter

Octave
Web
Service

Octave
Service
Stub

/ Interaktive Octave-

Anwendung

f

Octave
WS
(intern)

—

Callback

\

N -

Stub

NS

Abbildung. 16 Architektur des Octave Adapters

In der Abbildung. 16 wird die Architektur des Octave Adapters gezeigt, die die Interaktion
dem Octave Adapter und einer interaktiven

zwischen dem generischen Adapter,

Octave-Anwendung darstellt. Der Octave Adapter stellt einerseits einen Web Service fiir den

41

6. Entwurf

Client bereit, andererseits stellt er die Kommunikation mit der Octave-Anwendung zur
Verfligung. Er kann die Funktionalitidten des generischen Adapters verwenden, zum Beispiel
greift es auf den Instanz-Pool und den Programm-Manager zu, um eine Simulationsinstanz zu
erzeugen. Mit Hilfe des Adapters kann die Octave-Anwendung synchron oder asynchron
gestartet werden. Durch den Octave Service Stub kann der Octave Adapter die Web Service
Anfragen an die Octave-Anwendung weiterleiten. Ein Callback Stub wird fiir die
Benachrichtigung bereitgestellt. Wenn die Octave-Anwendungen bereit sind, schickt dieses
Callback Stub eine Riickmeldung an den Callback Web Service des generischen Adapters.
Dann féangt der Web Service an, die Anfragen zu bearbeiten.

6.2. Web Service Operationen vom Octave Adapter

In diesem Abschnitt werden die Web Service Operationen beschrieben. Diese Web Service
Operationen entsprechen der Anwendungsfille des Octave-Adapter in Abbildung. 14. Die
WSDL-Beschreibung liegt im Anhang dieser Arbeit.

prepareSimulation

Eine neue Simulationsinstanz wird in dieser Operation erstellt.

Anwendungsfall: Erstellen von Simulation ID

Input/Output | Parametername Parametertyp | Beschreibung

Input Name String Name der Applikationsanwendung
Output simID Long Die Simulation ID der neuen Instanz
Output ReturnMessage | String Return message

Tabelle 1 Parametre der Operation prepareSimulation

Mogliche Fehlerfille: InvalidStateFault, CommandFault

createDirectory
Ein neues Verzeichnis wird tiber SSH auf dem Zielrechner erstellt

Anwendungsfall: Erstellen eines Verzeichnisses auf Zielrechner.

Input/Output | Parametername Parametertyp | Beschreibung

Input SimID Long Simulation ID der Instanz

Input User String Username des Rechners, wo das
Verzeichnis steht

Input Host String Hostname, wo das Verzeichnis steht

Input Directory String Der Pfade des erstellten

42

6. Entwurf

Verzeichnisses

Output

ReturnMessage

String

Nachricht zuriick: ,.error oder ,,no

error

Tabelle 2 Parametre der Operation createDirectoty

Mogliche Fehlerfille: InvalidStateFault, CommandFault

copyFile

Eine Datei wird tiber WinSCP von einem Ursprungspfad zu einem Zielpfad kopiert. Die Datei

existiert in neuem Ort mit neuem Pfad.

Anwendungsfall: Kopieren der Dateien zwischen Rechnern

Input/Output | Parametername Parametertyp | Beschreibung

Input SimID Long Simulation ID der Instanz

Input SourceUser String Username des Rechners, wo die
Quelledatei steht

Input SourceHost String Hostname, wo die Quelledatei steht

Input SourceFile String Der Ursprungspfad der Datei

Input TargetUser String Username des Zielrechners, wo die
Datei hin kopiert wird

Input TargetHost String Hostname, wo die Datei hin kopiert
wird

Input TargetFile String Der Zielpfad der Datei

Output ReturnMessage | String Nachricht zuriick: ,.error” oder ,,no

error

Mogliche Fehlerfille: InvalidStateFault,

setOctavePath

Tabelle 3 Parametre der Operation copyFile

CommandFault

Ein absoluter Pfad zur Ausfiihrung einer Instanz einer Octave-Anwendung wird gesetzt.

Anwendungsfall: Setzten des Pfads fiir Aufruf der Octave-Anwendung.

Input/Output | Parametername Parametertyp | Beschreibung

Input SimID Long Simulation ID der Instanz

Input OctavePath String Der Pfad zur Octave-Anwendung
Output ReturnMessage | String Nachricht mit ,,OctavePath set oder

error! OctavePath not set!* zuriick

43

6. Entwurf

Tabelle 4 Parametre der Operation setOctavePath

Mogliche Fehlerfille: InvalidStateFault, CommandFault

getOctavePath

Der gesetzte Pfad fiir Aufruf der Octave-Anwendung wird nach Nennung der SimID
ausgegeben.

Anwendungsfall: Erhalten des Pfads fiir Aufruf der Octave-Anwendung.

Input/Output | Parametername Parametertyp | Beschreibung

Input SimID Long SimID der Instanz

Output OctavePath String Der Pfad zur Octave-Anwendung

Tabelle 5 Parametre der Operation getOctavePath

Mogliche Fehlerfille: InvalidStateFault, CommandFault

startProgram

Die Octave-basierte Anwendung wird iiber SSH ausgefiihrt. Die Voraussetzung fiir die
Ausfiihrung ist, dass der Pfad fiir Octave schon gesetzt worden ist.

Anwendungsfall: Ausfiihrung des Anwendungsprogramms von Octave

Input/Output | Parametername Parametertyp | Beschreibung

Input SimID Long Simulation ID der Instanz

Input User String Username des Rechners, auf dem
Octave installiert ist.

Input Host String Hostname des Rechners, auf dem
Octave installiert ist

Input Path String Pfad, unter dem ein installiertes
Octave zu finden ist.

Input Program String Der Name des zu auszufiihrenden

Octave-Programms

Output ReturnMessage | String Nachricht mit ,no errors“ oder

errore zuriick

Tabelle 6 Parametre der Operation startProgram

Mogliche Fehlerfille: InvalidStateFault, CommandFault

44

6. Entwurf

removekFile

Wenn die Octave-Anwendungen nicht gestartet werden, wird die Datei iiber SSH auf dem

Zielrechner geldscht.

Anwendungsfall: Entfernung einer Datei.

Input/Output | Parametername Parametertyp | Beschreibung

Input SimID Long Simulation ID der Instanz

Input User String Username des Rechners, auf dem
Octave installiert ist.

Input Host String Hostname des Rechners, auf dem
Octave installiert ist.

Input Path String Pfad, unter dem ein installiertes
Octave zu finden ist.

Output ReturnMessage | String Nachricht mit ,no errors“ oder
,.error zuriick

Tabelle 7 Parametre der Operation removeFile
setPlottingPath

Das Ergebnis der Ausfiihrung einer Octave-Anwendung, ist beispielsweise ein Bild. Es wird

ein Pfad gesetzt, damit das Ergebnis durch Aufruf des Pfads abgeholt werden kann.

Anwendungsfall: Setzten des Pfads fiir die Ergebnisdaten (Bilder) nach der Ausfiihrung der

Octave-Anwendung

Input/Output | Parametername Parametertyp | Beschreibung
Input SimID Long Simulation ID der Instanz
Input PlottingPath | String Der Pfad von Plotting
Output ReturnMessage | String Nachricht mit ,Path set“ oder
,werror! Path not set!* zuriick
Tabelle 8 Parametre der Operation setPlottingPath
getPlottingPath

Der gesetzte Pfad zu den Ergebnisdateien stimmt mit SimID iiberein.

Anwendungsfall: Erhalten des Pfads zu den Ergebnisdateien

Input/Output | Parametername Parametertyp | Beschreibung
Input SimID Long Simulation ID der Instanz
Output PlottingPath String Der Pfad von Plotting

45

6. Entwurf

Tabelle 9 Parametre der Operation getPlottingPath

6.3. Octave basierte Workflows

Ein Octave-basierter Workflow wird mit Hilfe eines BPEL-Prozesses in Eclipse erstellt.
Wobei der Prozess den Ablauf der Octave-Anwendungen darstellt. Der BPEL-Prozess ist in
der Abbildung. 17 zu sehen.

Wenn der BPEL-Prozess gestartet wird, fingt der Teilprozess Prepare Steps als erster
Schritt an. Dieser Teilprozess wird als eine Schleife definiert. Es wird eine Simulationsinstanz
fiir die Octave-Anwendungen mit der ersten Aktion Create Octave Instance erzeugt
(siche Abbildung. 18). Dann wird mit der Aktion Create Directory ein
Simulationsverzeichnis auf dem Rechner erstellt, auf dem Octave ausgefiihrt wird. Als
néchste Aktion Copy m. £ile wird die Anwendungsdatei in das erstellte Verzeichnis kopiert.
Das auszufiihrende Octave Script File wird dann durch die Aktion set a path tom.file
mit einem Pfad gesetzt. AnschlieBend wird mit der Aktion get the path from m.file
der Pfad zuriickgegeben.

Start octave

Run m.file

Save result

Y

| Stop octave

r

Show the results

k[mJ

Abbildung. 17 Workflow-Prozess fiir die Octave-Anwenudng

Ein Grund fiir die Definition des Schrittes Prepare Steps als Schleife ist, dass sich die
Octave-Anwendungen verdndern konnen. Sie werden so oft modifiziert, um bessere
Simulationsergebnisse zu bekommen. Diese Schleife kann so oft ausgefiihrt werden, bis man
die neuesten modifizierten Anwendungen und den entsprechenden Pfad bekommt.

46

6. Entwurf

create create copy set a path get the path
octave directory m.file to m.file from m.file
instance ' : ’

O

Abbildung. 18 Prepare Steps

Nachdem die Aktivitit Prepare Steps durchgefiihrt wurden, wird Octave mit der Aktion
Start Octave gestartet. Danach wird eine Riickmeldung vom Web Service Server an den
Octave Adapter geschickt, um dem Client mitzuteilen, dass Octave gestartet wird, die
Simulationsanwendungen bereit sind und die Anfragen bearbeitet werden kdnnen. Als
Néchstes wird die Octave-Anwendung (auf Basis eines m-File) mit einer aktuellen SimID und
einem erstellten Pfad als Startparameter ausgefiihrt, wobei dies in der Aktion Run m.file
stattfindet. Nach der Durchfiihrung der Anwendungen bekommt man die Ergebnisse, die bei
der Aktion Save results in der Datenbank gespeichert werden. SchlieBlich wird Octave
mit der Aktion Stop octave beendet.

Je nach Anspruch konnen die Octave-Anwendungen modifiziert werden um unterschiedliche
Ergebnis-Typen zu erstellen. Hier in der Arbeit wird eine visuelle Darstellung als Ergebnis
erzeugt, die durch die letzte Aktion Show the results behandelt wird. Zur
Visualisierung der Ergebnis-Darstellung wird der Pfad zu den Ergebnisdaten iibergeben.
Ahnlich wie Prepare Steps ist Show the results wieder ein Teilprozess, und wird
auch als eine Schleife definiert. In der Abbildung. 19 sieht man, dass bei dem Aufruf des
Workflowfragments Show the results die erste Aktion set plotting path gestartet
wird. Damit wird ein Pfad zur zuvor von Octave abgespeicherten Darstellung gesetzt. Der
Pfad wird mit Hilfe der Aktivitit get plotting path iibergeben. Wenn man die
Ergebnis-Darstellung anschauen mochte, wird dies durch Aufruf des Pfads realisiert.

set get call the
plotting plotting plotting
path path path

0) i

Abbildung. 19 show the results

In folgenden Tabellen sind die Parameter der Workflow-Operationen aufgelistet.

47

6. Entwurf

Parametername | Datentyp Beschreibung

SimID long Identifikationsnummer der Simulationsinstanz
User string der Benutzername auf Zielrechner

Host string der Hostname auf Zielrechner

SrcUser string der Benutzername auf Ursprungsrechner
SrcHost string der Hostname auf Ursprungsrechner

SrcFile string urspriingliches File

File string File auf Zielrechner

OctavePath string Pfad zur auszufiihrenden Octave-Anwendung

Tabelle 10 Parameter der Workflow-Operationen

48

7. Implementierung

7. Implementierung

Im Rahmen dieser Arbeit wurden die Octave-Anwendungen betrachtet und modifiziert. In
diesem Kapitel wird zunéchst der urspriingliche Ablauf der Octave-Anwendung dargestellt.
Danach folgt die Beschreibung der interaktiven Ausfiihrung auf Basis eines modifizierten
Simulationsablaufs und des Octave Adapters (sieche dazu auch die Abschnitte 5.2 und 5.3).

Die Implementierungen des Octave Adapters und die Modifikation an den
Octave-Anwendungen wurden in der Umgebung Eclipse 3.7 entwickelt, wobei Apache
Tomcat und Axis2 installiert waren. Die einzelnen Web Service Operationen wurden im
WSDL-Editor erstellt. Ein entsprechendes Java Skeleton wurde mit Axis2 generiert.
SchlieBlich wurde der Octave Service Adapter mit Hilfe von Tomcat verdffentlicht.

7.1. Ablauf der Octave-Anwendungen

Die Octave-Anwendungen wurden je nach Anspruch unterschiedlich aufgebaut. Es gibt
jedoch keinen groBen Unterschied zwischen den Abldufen der verschiedenen Anwendungen.
Als ein représentatives Beispiel wird ein Octave m-File insulin.m vorgestellt, das auf
Basis einer Skript-Datei definiert wird. Der entsprechende urspriingliche Ablauf ist in der
Abbildung. 20 zu sehen und wird im Folgenden beschrieben:

* Vor der Ausfithrung muss Octave gestartet werden.
* Das Octave Main Script File (hier die Datei insulin.m) wird wie folgend ausgefiihrt.

1. Ein Modell, das zur Ausfiihrung des Script Files verwendet wird, soll von dem
Benutzer je nach Anspruch erstellt werden. Es kann direkt im Script File definiert
werden oder als ein zusétzliches m.File gespeichert werden, das vom Script File
eingelesen werden kann. Im Beispiel insulin.m wird ein Modell, das eine
Dosiswirkung von Insulin beschreibt, mit Hilfe eines parameterfreien
Modeling-Frameworks direkt im Script File definiert.

2. Das erstellte Modell kann iiberpriift werden, ob es zur Simulation passt. In der Datei
insulin.m wird das Modell nach der Uberpriifung als eine Variable in dem
»current working directory gespeichert, auf dem Octave installiert wurde und der
Octave-Befehl aufgerufen wird.

3. Wie die Erstellung von ,Modell“ kann die Variable ,Data® auch in einem

49

7. Implementierung

zusitzlichen m.File definiert werden, das vom Script File eingelesen wird. Oder die
Variable ,,Data® wird direkt im Script File definiert. In diesem Fall soll zuerst ein
Wert der Variable ,,Prior vor der Definition des ,Data” zuordnen. Im File
insulin.m wird ein Wert a (a={0.4, ones(m,1)}) der Variablen

,Prior zugewiesen.

‘ Octave main script file ‘

|

(1)[load model]<————>[check model]

2

(4)[load data]f---->[check data]
6)

i

>| check sample

Abbildung. 20 Ablauf der Octave-Anwendungen

4. Nach der Zuweisung eines Wertes an die Variable ,Prior wird die Variable
»Data® definiert. Die Erstellung der Variable ,,Data* erfolgt auch in der Datei
insulin.m.

5. Die erstellte Variable ,Data® kann getestet werden. Dann kann sie im
Arbeitsverzeichnis gespeichert werden.

6. Ahnlich wie in Schritt 1, wenn kein zusitzliches m.File fiir die Variable ,tune
sampler* erstellt wurde, wird sie direkt im Script File definiert. Zur Definition von
»tune sampler® wird eine der fiinf Funktionen verwendet, die zusétzlich als m.Files
erstellt wurden. Diese Funktionen sind ssHMClf.m, ssME.m, ssaME.m,
ssHMC.m und xssHMC.m. Mit Hilfe von den Funktionen wird die Variable ,,tune
sampler* erstellt und im Arbeitsverzeichnis gespeichert. In der Datei insulin.m
wird die Variable ,,ftuned” als ,,tune sampler* gespeichert.

7. Die Variable ,,sampling wird in insulin.m als ,fsample* definiert. Nach der

50

7. Implementierung

Uberpriifung wird sie im Arbeitsverzeichnis gespeichert.
8. Statistische Daten fiir ,,plot sample* werden erstellt.

9. Der letzte Schritt ,,plot sample* verwendet alle in den vorherigen Schritten erstellte
Variable und entstandene Daten, damit die Ergebnis-Darstellung erzeugt werden
kann. Im File insulin.m wird die Darstellung schlielich gespeichert.

* Alle Variable und die Ergebnis-Darstellung wurden im Script File insulin.m nicht als
zusitzliche Dateien sondern nur im Arbeitsverzeichnis gespeichert. Dies soll modifiziert
werden, da die Darstellung in einer Datenbank gespeichert werden soll, auf die der Web
Service zugreifen kann.

* Wenn das Octave-Programm das Script File ausfiihrt, werden die erstellten Variablen
und die Funktionen automatisch aus anderen Dateien eingelesen.

7.2. Modifizierter Ablauf mit dem Octave Adapter

Wie im Abschnitt 6.1 beschrieben stellt der Octave Adapter einerseits einen Web Service flir
den Client bereit, andererseits stellt er die Kommunikation mit der Octave-Anwendung zur
Verfligung. Damit werden die Anfragen des Clients an den richtigen TCP-Port weitergeleitet
und der Zustand der Simulationsinstanz wird gepriift.

Eine Simulationsanwendung kann im Normalfall mit dem generischen Adapter synchron oder
asynchron ausgefiihrt werden. Im Rahmen dieser Arbeit wird die Anwendung durch den
Octave Adapter nur synchron gestartet. Da die Ergebnis-Darstellung nun am Ende des
Anwendungsablaufs entsteht, muss die Anwendung auf die Terminierung der Darstellung

~

Zusatzliche m.Files
einlesen

warten.

Octave-Anwendung
starten

\{ Simulationsschritt }

durchfihren

Abbildung. 21 Aufteilung der Octave-Anwendungen

Ergebnis speichern }

51

7. Implementierung

Eine Zeitiiberschreitung kann ausgeschlossen werden, da sich die Octave-Anwendung und die
entsprechenden Adapter auf demselben Rechner befinden. Fiir HTTP-Anfragen kann die
Zeitbeschrankung auf den maximalen Wert, ca. 290 Millionen Jahre, erweitert werden [23].
Zu Verbindungsproblemen kann es aber wegen fehlender oder nicht passender Zugangsrechte
bei der Nutzung von SSH oder WinSCP kommen.

Der urspriingliche Ablauf der Octave-Anwendung musste stark modifiziert werden, damit
sich die Funktionalititen des Octave Adapters nutzen lassen konnen. Abbildung. 21 zeigt
einen modifizierten Anwendungsablauf, der in entsprechende Teile unterteilt wird. ,,.Diese
Teile entsprechen teilweise den Methoden, die in der urspriinglichen Anwendung enthalten
waren bzw. verwendet wurden und nun als Web Service-Operationen aufgerufen werden
konnen* [23]. Nicht alle Teile werden verwendet, je nach Anwendungsfall kdnnen sie
weggelassen werden. Zum Beispiel wurden in der Anwendung insulin.m keine

zusitzliche m.Files eingelesen.

Abbildung. 22 zeigt eine Interaktion zwischen den Web Services und den modifizierten
Ablauf, der durch einen gelben Kasten repréisentiert wird. Es wird im Folgenden beschrieben.

Octave Qctave
Adapter

main

script file
|
[

1.SimID |

Ny,
>

2, Script File
initialisieren

3, SimID
bestimmen

Callback 5, Simip, TCP poy 4 Web Service

et] e N BN

o /
WS o WS N‘“‘ag |7, Web Service
Anfrage / AnfragenL—>
Octave

bearbeiten

WS 8, Web Service|

stoppen

w e O

Abbildung. 22 Modifizierter Ablauf mit Interaktion vom Octave Adapter

1. Das Octave Programm wird iiber den Octave Adapter gestartet. Dazu wird eine
Simulationsinstanz fiir die Anwendungen erstellt und eine Identifikationsnummer
(SimID) als Kommandozeilenparameter genutzt.

52

7. Implementierung

2. Die Octave-Anwendung, hier das Script File insulin.m, wird mit dem Octave
Adapter iiber SSH gestartet.

3. Die SimID wird aus den Kommandozeilenparametern ausgelesen.

4. Der von Axis2 erstellte Octave Web Service Server wird gestartet und an einen freien
TCP-Port gebunden.

5. Sobald das Callback Stub die Information iiber die SimID und den TCP-Port bekommen,
teilt es dem Web Service Interface mit, dass die Anwendung bereit ist, damit die Anfrage
des Clients weiterleitet werden und die Simulationsinstanz den korrekten TCP-Port

zuordnen kann.

6. Der Client schickt eine Anfrage an den in Octave integrierte Web Service Server, der
dann diese Anfrage bearbeitet.

7. Wenn diese Anfrage vom Web Service Server aufgenommen und weiter bearbeitet wird,
werden die entsprechenden Operationen des Web Services aufgerufen. Die Antwort wird
an den Octave Adapter zuriickgesendet. Dann wartet der Server auf eine nichste Anfrage
des Clients.

8. Der Web Service stoppt, wenn eine Operation zum Stoppen vom Client bzw. Octave
Adapter aufgerufen wird. Weitere Operationen des Octave Adapters sowie die
Octave-Anwendungen konnen dann nicht mehr ausgefiihrt werden.

7.3. Weitere Anmerkungen zur Implementierung

In diesem Abschnitt befinden sich weitere Beschreibungen zur Implementierung in den
Bereichen von Web Service und Simulationstest.

7.3.1. Erstellen eines Dynamic Web Projects

Es gibt zwei Moglichkeiten, das Erstellen eines Web Services in Eclipse zur Verfiigung zu
stellen: die Top-Down-Methode und die Bottom-Up-Methode. Fiir die Implementierung des
Octave Web Services kommt die Top-Down Methode zum FEinsatz. Bei dieser
Vorgehensweise erzeugt Eclipse auf Basis einer vorliegenden WSDL-Datei alle notwendigen
Java-Klassen, die um die konkrete Implementierung ergdnzt werden miissen.

Zum Erstellen des Octave Web Services muss ein ,,Dynamic Web Project” in Eclipse genutzt
werden. Es bietet eine Umgebung an, bei der der Service erstellt, modifiziert und
verdffentlicht werden kann. Dabei miissen zwei Voraussetzungen erfiillt werden: zunéchst
muss Tomcat korrekt in Eclipse installiert sein, dann muss Axis2 mit Eclipse verbunden
werden. In dieser Arbeit werden Tomcat 6.0 und Axis2-1.6.1 in Eclipse verwendet.

53

7. Implementierung

Beim Erstellen des Web Services kann man unter Target Runtime den Server Tomcat 6.0
auswidhlen. Die eigentliche Konfiguration des Servers erfolgt nach dem Einstellen des
Dynamic Web Projects. Dann werden eine ganze Reihe von Verzeichnissen und Dateien im
Dynamic Web Projects erzeugt.

7.3.2. Erstellen einer WSDL-Datei

Die in dem Abschnitt 6.2 dargestellten Web Service Operationen werden im Eclipse WSDL-
Editor definiert. Die WSDL-Operationen dienen zur Beschreibung des Web Services. Auf der
linken Seite der Abbildung. 23 sieht man den Octave Web Service, der einen Port besitzt. In
diesem Fall ist dieser Port unter einer lokalen Adresse des Tomcat-Servers erreichbar, die sich
je nach Anspruch verdndern kann. Rechts steht das Interface des Web Services, das durch ein
entsprechendes Binding mit dem Web Service verbunden ist. Die WSDL-Operationen werden
in diesem Web Service Interface definiert. Jede Operation verfiigt iiber Input- und
Output-Elemente, wobei beliebige Fault-Elemente auch hinzugefiigt werden konnen. Als
Beispiel zeigt die Abbildung. 23 zwei WSDL-Operationen. Die Operation
»createDirectory® erhélt SimID, User, Host sowie Directory als Eingabe (siehe Abbildung. 24)
und liefert eine Message als Ergebnis zurtick.

5 WSI Octave (@) @ WSl Octave
(= WSI_OctaveSOAP ## prepareSimulation
http://localhost:8080/ax... Plinput parameters (€] prepareSimulation
T Blndlng <l output parameters = [€] prepareSimulationResponse
@ InvalidStateFault | [P fault (€] InvalidStateFault
Web g CommandFault fault [e] ExecuteCommandSyncFault
Service % createDirectory
linput parameters (€] createDirectory —
WSDL- _— 1 output parameters (€] createDirectoryResponse
Operationen g InvalidStateFault fault [e] InvalidStateFault
@ CommandFault [fault [€] ExecuteCommandSyncFault

Abbildung. 23 Ansicht der WSDL-Datei im Eclipse WSDL-Editor

(createDirectoryType)

[e] SirnID [1.1] long
(6] User [1.1] string
[e] Host [1.1] string
[g] Directory [1.1] string

Abbildung. 24 Input-Typ der Operation “createDirectory”

54

7. Implementierung

7.3.3. Erstellen der Web Service-Klassen mit Axis2

Mit den WSDL-Operationen in einer WSDL-Datei kann ein Web Service erstellt werden.
Dazu kommt das Tool ,,wsdl2java‘“ von Axis2 zum Einsatz, das im Abschnitt 3.3
vorgestellt wurde.

Durch Ausfithrung der Batchdatei wsd12java konnen die Web Service-Klassen und ein
Java Skeleton generiert werden. Mit unterschiedlichen Kommandos konnen verschiedene
Java-Klassen erstellt werden, zum Beispiel die Java Stubs, die Bestandteil des Plugins fiir
interaktive Simulationsanwendungen sind. Die durch unterschiedliche Kommandos erstellten
Java-Klassen werden innerhalb des Eclipse-Projekts in verschiedenen Verzeichnissen
gespeichert.

7.3.4. Erstellen eines BPEL-Prozesses

Eine Aufgabe dieser Arbeit ist es einen BPEL-Prozess zu erstellen. Dies wird durch das
Erstellen eines BPEL Projects oder eines BPEL Process Files in Eclipse durchgefiihrt. Dabei
wird vorausgesetzt, dass Apache ODE in Eclipse eingebunden ist. Hier wird die Version
apache-ode-war-1.3.5 verwendet.

Die Definition eines BPEL-Prozesses setzt sich aus einem BPEL Process File sowie einer
oder mehreren WSDL-Dateien zusammen. Diese WSDL-Dateien definieren sowohl die Web
Service-Schnittstellen als auch die Schnittstelle, unter der der Prozess selbst erreicht werden
kann. Die WSDL-Datei, die die Schnittstellen des Octave Web Services beschreiben, sind im
Abschnitt 6.2 beschrieben. Fiir den aufzurufenden Service wird diese WSDL-Datei im
BPEL-Prozess importiert.

= Sequence

= prepare_createOctavelnstance
<§> createOctavelnstance
= saveSimID
L3
If

= Sequence

= prepare_setOctavePath

& setOctavePath

Abbildung. 25 Beispiel eines Octave-basierten Workflow-Prozesses

55

7. Implementierung

Um einen Web Service aufzurufen, muss eine Invoke-Aktivitit erstellt werden. Sie existiert
normalerweise zwischen Receive- und Reply-Aktivititen, die die eingehende Nachricht
empfingt bzw. die Antwortnachricht an den Aufrufer zuriicksendet. Uber die Eigenschaften
des Invokes kann man einen Partnerlink sowie die verwendete Operation angeben, iiber den
der Service aufgerufen werden kann.

Ein Beispiel des Octave-basierten BPEL-Prozesses ist in der Abbildung. 25 zu sehen. Ein
Sequence-Konstrukt des Prozesses wird dargestellt, mit dem alle in diesem Konstrukt
enthaltenen Aktivititen sequenziell abgearbeitet werden. Im Beispiel wird zuerst eine
Assign-Aktivitit ausgefiihrt, die normalerweise durch ein Task oder ein Sub-Process
dargestellt wird. Hier wird sie dazu verwendet, einen neuen Wert den Variablen zuzuweisen.
Ein Request der Operation ,prepareSimulation” wird der Assign-Aktivitit zugewiesen. Im
nichsten Schritt folgt eine Invoke-Aktivitit, die die Operation ,prepareSimulation des
Octave Web Services aufruft. In der Abbildung sieht man noch eine If-Aktivitit, die eine
bedingte Ausfilhrung der Aktivititen ermoglicht. Optional kann diese Aktivitdt mit einer
Elseif- oder Else-Aktivitdt verbunden sein. Im Beispiel werden die If-Aktivitidt und ihre
nachfolgenden Aktivititen nur ausgefiihrt, nur wenn die definierte Bedingung erfiillt ist.

7.3.5. Verwendete Verzeichnisse auf dem Server

Java System Properties werden von dem Web Service Interface verwendet, um bestimmte
Einstellungen dynamisch zu dndern. Diese System Properties werden immer erst ausgelesen,
wenn sie bendtigt werden. In dieser Arbeit beschreiben die System Properties drei Pfade zu
Verzeichnissen (siche Tabelle 11), auf die wihrend der Laufzeit zugegriffen werden muss.

Pfad Beschreibung

/srv/wsi/octave/instance | Der absolute Pfad des Instanzverzeichnisses

/srv/wsi/octave/src Der absolute Pfad des Verzeichnisses, in dem die Dateien
der Octave-Anwendungen gespeichert werden.

/srv/wsi/octave/export Der absolute Pfad des Verzeichnisses, in das die

Ergebnis-Dateien exportiert werden konnen.

Tabelle 11 System Properties

7.3.6. Test

Wihrend der Implementierung kann man den erstellten Octave Web Service testen. Z.B. kann
man den Web Service unter Tomcat-Server laufen lassen, damit man sieht, welcher Service
und welche Service-Operationen zur Verfiigung zu stehen.

Zum Testen der Web Service Operationen wird das Werkzeug SoapUI verwendet. Man kann
die WSDL-Datei in den SoapUI Client laden, um die entsprechenden Funktionen zu testen.

56

7. Implementierung

Bei jeder auf SoapUI importierten WSDL-Operation steht einen entsprechender Eintrag.
Durch die Aktivierung dieses Eintrags wird eine Anfrage an den Server geschickt und man
kann sehen, ob die Anfrage den Server erreicht.

Die Simulation soll ohne Interaktion mit dem Octave Adapter ausgefiihrt werden. Bei der
Ausfiihrung der Octave-Anwendungen kann man testen, ob alle Octave-Pakete installiert sind.
Fir die Visualisierung des Ergebnisses wird noch ein Xming-Server bendtigt. Die
notwendigen Ergebnis-Dateien werden in der Datenbank gespeichert. Dann werden die
modifizierten Anwendungen durchgefiihrt, die {iber den Octave Adapter kontrolliert werden.
Man kann die Ergebnisdateien und die Ausfiihrungszeit in beiden Simulationsabléufe
vergleichen.

57

8. Laufzeitumgebung

8. Laufzeitumgebung

In diesem Kapitel wird eine Laufzeitumgebung dargestellt, in der alle bendtigten Softwares
enthalten sind. Zunichst wird eine virtuelle Maschine erldutert, mit der eine Arbeit in einer
Unix-Umgebung unter Windows ermdglicht. AnschlieBend befindet sich eine Beschreibung
iber die Interaktion zwischen Client und Laufzeitumgebung.

8.1. Virtualisierte Komponenten

Im Rahmen dieser Arbeit wurden die Octave-Anwendungen und der auf Web Service
Interface basierte Octave Service Adapter in einem unix-artigen Betriebssystem entwickelt.
Dazu wurde eine Laufzeitumgebung in Form einer virtuellen Maschine verwendet, in der
Octave und alle notwendigen Softwares installiert und lauftéhig sind.

Diese Umgebung wird mit einem VMware Player'® erstellt, der als eine Software zur
vollstdndigen Visualisierung verwendet wird und ermdglicht, mehrere Betriebssysteme auf
einem Rechner auszufithren oder eine isolierte virtuelle Maschine zu erstellen. Hierbei wird
ein virtuelles Ubuntu in Form von einer ISO'’-Abbild-Datei im VMware Player importiert.
Zudem wird ein virtuelles Laufwerk mit einer Datei Ubuntu.vindk erstellt. Zur Konfiguation
des Ubuntus und zur Verbindung mit dem VMware Player wird eine Datei Ubuntu.vmx
bendtigt, die mit einem Texteditor gedffnet werden kann und beispielsweise die
Speichergréfie des Ubuntus dndert

Harware-Komponente: | Einstellung:

Version Workstation 6,5-7,x virtual machine
Hauptspeicher 512 MB

Prozessoren 2

Festplatte 20 GB

Betriebssystem Ubuntu 10.04

Netzwerke-Adapter Network Address Translation (NAT)

Tabelle 12 Hardware-Komponenten der Laufzeitumgebung

' VMware Player :http:/www.vmware.com/de/products/desktop_virtualization/player/overview

7 ISO: http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue _detail.htm?csnumber=17505

58

http://www.vmware.com/de/products/desktop_virtualization/player/overview�
http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=17505�

8. Laufzeitumgebung

Ein Grund fiir die Verwendung des Ubuntus liegt an einer kostenlosen und auf Debian'®
basierten Linux-Distribution'®, die sich sehr leicht an spezielle Bediirfnisse anpassen lisst.
Wihrend der mehrmals grundlegenden Uberarbeitung von GNU Octave wurde es in Debian
oder Linux integriert. Daher kann das Debian- und Linux-basierte Ubuntu bei der
Entwicklung einer Octave- Anwendung eine gute Umgebung anbieten.

Tabelle 12 zeigt die Hardware-Komponenten, die das Profil des Ubuntus darstellen. Zudem
wurden noch folgende Softwares installiert, die zur Erstellung des Octave Service Adapters
sowie zur Ausfiihrung der Octave-Anwendung benotigt werden:

* GNU Octave 3.6.1 mit dem Pakete Multicore
e Eclipse IDE for Java EE Developers mit Axis2, Apache Tomcat und Apache ODE

e Java Runtime Environment 1.6

Benutzung des Betriebssystems

Die erstelle virtuelle Maschine bietet die Moglichkeit, das Betriebssystem Ubuntu unter
Windows direkt zu verwenden und die sdmtliche Laufzeitumgebung zu modifizieren und zu
verwalten. Daher werden gewisse Grundkenntnisse iiber die Verwendung des Betriebssystems
in Anspruch genommen. Im Folgenden wird ein Uberblick iiber die Verwendung und oft
verwendete Befehle von Ubuntu gegeben.

¢ Der VMware Player muss zunichst gestartet werden, um das importierte Betriebssystem
Ubuntu auszufithren. Dann erfolgt das Starten des Ubuntus, wobei normalerweise ein
Benutzername und ein Passwort benétigt werden. Schlielich kann man einfach auf die
Taste ,,log out* klicken, um das Ubuntus zu stoppen.

* Ein Vorteil von Ubuntu ist, dass die Software-Programme gleich auf ihrem Rechner
installiert werden und ihr System ausprobieren konnen, ohne stundenlang nach den
passenden Programmen suchen zu miissen. Dies wird durch eine Konsole apt-get im
Terminal realisiert, die ermdglicht, die Anwendung zu installieren und zu aktualisieren.
Weiterhin koénnen auch alle unnétigen Komponenten durch Konsole gleich weggelassen
werden, um den Speicherplatz zu sparen.

8.2. Interaktion mit der Laufzeitumgebung

In der Arbeit [23] wurden drei Benutzungsmoglichkeiten dargestellt, die eine Interaktion
zwischen den Client-Rechner, den WfMS-Server und den (virtuellen) Rechner der

18 Debian: http://www.debian.org/intro/about

¥ Linux-Distribution: http://distrowatch.com/dwres.php?resource=popularity

59

http://www.debian.org/intro/about�
http://distrowatch.com/dwres.php?resource=popularity�

8. Laufzeitumgebung

Laufzeitumgebung beschreiben. Im Rahmen dieser Arbeit erfolgt nur eine Interaktion, die
sich in dem Client und in der Laufzeitumgebung befindet. Hierbei wird ein Uberblick in der
Abbildung. 26 verschafft.

In der Laufzeitumgebung werden folgende Komponenten enthalten: ein Workflow-Prozess
(hier der BPEL-Prozess), das Web Service Interface, der erstellte Octave Service Adapter und
die Octave-Simulationsanwendungen. Zunéchst kommuniziert der Client iber Web Service
mit dem BPEL-Prozess in der Laufzeitumgebung. Dies wird durch Versendung einer Anfrage
des Client realisiert. Nach Empfangen der Anfrage geht der BPEL-Prozess zur Ausfiihrung
los, der in der BPEL-Engine Apache ODE bereitgestellt und eine automatisierte Ausfiihrung
der Simulation ermoglicht. Ein BPEL-Prozess besteht aus verschiedenen Aktivitéten, die sich
mit unterschiedlichen = Kontrollen verbinden lassen. Zur Ausfiihrung der
Simulationsanwendungen iiber Web Services muss die Web Service-Operation in der
entsprechenden Aktivitit des BPEL-Prozesses integriert werden. Dadurch werden die Web
Service-Operationen wihrend der Durchfilhrung des BPEL-Prozess aufgerufen und die

/ Laufzeitumgebung \
/ Tomcat \

Octave-Anwendungen ausgefiihrt.

Client
Computer

Client
Anwendung

Octave-
Anwendungen

Octave
Adapter /

Abbildung. 26 Kommunikation in der Laufzeitumgebung [23]

60

9. Zusammenfassung und Ausblick

9. Zusammenfassung und Ausblick

Aufgrund der Berechnungen der kontinuierlich wachsenden und heterogenen Datenmengen
wird eine Zusammenarbeit zwischen Simulationen, Workflow- und Web Service
Technologien entwickelt. Dies ermoglicht, bereits definierte Funktionalitdten der Simulation
in Form von Web Services iliber das Internet zu integrieren. Ein Vorteil der Web Services ist,
dass sie von einer gewissen Struktur verwendet werden konnen, die oft mittels sogenanntes
Workflow-Prozess definiert wird. Um Orchestrierungen der Web Service zu definieren und
ausfithrbar zu machen, wird die Workflow-Technologie eingefiihrt.

Im Rahmen der vorliegenden Arbeit wurde eine Octave-basierte Simulationsanwendung
betrachtet. Es wurde =zundchst ein Octave Service Adapter auf Basis eines
plattformunabhéngig generischen Web Service Interface aufgebaut. Dieser Adapter wurde als
Web Service Plugin angesehen. Weiterhin verfiligt dieser Adapter eigene Simulationsinstanz,
die stets eine eindeutige Identifikationsnummer besitzt und eine Menge von Verzeichnissen
und Daten umfasst sowie Simulationsanwendungen ausfiihrt. Einerseits bietet der Adapter die
Kommunikation mit den Anwendungen an. Hierfiir wurde ein Web Service zur Beschreibung
der Funktionalitdten bei ihren Anwendungen erstellt. Andererseits stellt er einen weiteren
Web Service fiir den Client zur Verfiigung. Ein Callback Stub wurde hierbei bereitgestellt,
um den Client mitzuteilen, dass die Anwendungen bereit sind und die Anfrage des Clients
bearbeitet werden kann.

Anschlieend wurde ein BEPL-Prozess mit Hilfe des Octave Adapters aufgebaut. Dieser
Prozess dient dazu, den Ablauf fiir Ausfiihrung der Octave-Anwendungen darzustellen. Die
Anwendungen konnen dann in einem BPEL-Prozess koordiniert werden, wenn die
Aktivitdten des Prozesses eine Verbindung mit den Web Service-Operationen gesetzt wurden.
AnschlieBend wurde der BPEL-Prozess durch die Verwendung von BPEL-Engine
automatisiert ausgefiihrt.

Die Simulationsanwendungen und das Web Service Interface wurden unter Unix-artigen
Betriebssystemen definiert. Aus diesem Grund wurde eine Laufzeitumgebung Ubuntu in einer
virtuellen Maschine VMware Player erstellt. In dieser Umgebung wurden alle in dieser Arbeit
verwendeten Software installiert und Programme ausgefiihrt. Der Web Service und seine
WSDL-Operationen wurden mittels Apache Tomcat und Axis2 in Eclipse erstellt. Die
Ausfiihrung des BPEL-Prozesses wurde anhand der BPEL-Engine Apache ODE realisiert.

61

9. Zusammenfassung und Ausblick

Die Integration der Workflow- und Web Service Technologie ermoglicht weitere
anwendungsorientierte Aufgaben. Beispielsweise konnen mehrere Web Service-Operationen
bereitgestellt werden, um mehrere Funktionalititen der Simulationsanwendung zu
beschreiben. Die Simulationen, die aus verschiedenen Plattformen erstellt werden, konnen in
einem Workflow System ausgefithrt werden. Weiterhin konnen Workflow-Prozesse
asynchron durchgefithrt werden, damit mehr Flexibilitit bei der Anderung und bei der
Ausfiihrung der Prozesse erzeugt werden kann

62

0. Anhang

Anhang

WSDL-Operationen von Octave Web Service

1. <7?xmlversion="1.0" encoding="UTF-8" standalone="no"?>

2. <wsdl:definitions name="WSI_Octave"

3. targetNamespace="http://wsi.simtech.de/WSI_Octave/"

4, xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"

5. xmlns:tns="http://wsi.simtech.de/WSI_Octave/"

6. xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"

7. xmlns:types="http://wsi.simtech.de/ws/types/"

8. xmlns:xsd="http://www.w3.0rg/2001/XMLSchema">

9.

10. <wsdl:types>

11. <xsd:schema xmlns:xsd="http://www.w3.0rg/2001/XMLSchema">

12. <xsd:import namespace="http://wsi.simtech.de/ws/types/"

13. schemaLocation="types.xsd">

14. </xsd:import>

15. </xsd:schema>

16. <xsd:schema xmlns:xsd="http://www.w3.0rg/2001/XMLSchema”

17. targetNamespace="http://wsi.simtech.de/WSI_Octave/">

18.

19. <xsd:element name="prepareSimulation">

20. <xsd:complexType>

21. <xsd:sequence>

22. <xsd:element name="name" type="xsd:string" minOccurs="1"
maxOccurs="1"></xsd:element>

23. </xsd:sequence>

24, </xsd:complexType>

25. </xsd:element>

26.

27. <xsd:element name="prepareSimulationResponse">

28. <xsd:complexType>

29. <xsd:sequence>

30. <xsd:element name="retrunMessage"

31. type="xsd:string" minOccurs="1"maxOccurs="1">

63

0. Anhang

32.
33.
34.
35.
36.
37.
38.
39.
40.
41.
42.
43.
44,
45.
46.
47.
48.
49.
50.

51.
52.
53.
54.
55.
56.
57.
58.
59.
60.
61.
62.
63.
64.
65.
66.
67.
68.
69.
70.
71.
72.

</xsd:element>

<xsd:element name="SimID"
type="xsd:long"” minOccurs="1" maxOccurs="1">
</xsd:element>
</xsd:sequence>
</xsd:complexType>

</xsd:element>

<xsd:element name="ExecuteCommandSyncFault"
type="tns:ExecuteCommandSyncFaultType">

</xsd:element>

<xsd:complexType name="ExecuteCommandSyncFaultType">
<xsd:sequence>
<xsd:element name="returnCode" type="xsd:int"
minOccurs="1"maxOccurs="1">

</xsd:element>

<xsd:element name="errorMessage" type="xsd:string" minOccurs="1"

maxOccurs="1"></xsd:element>
</xsd:sequence>

</xsd:complexType>

<xsd:element name="createDirectory">
<xsd:complexType>
<xsd:sequence>
<xsd:element name="SimID" type="xsd:long"
minOccurs="1"maxOccurs="1">
</xsd:element>
<xsd:element name="User" type="xsd:string"
minOccurs="1" maxOccurs="1">
</xsd:element>
<xsd:element name="Host" type="xsd:string"
minOccurs="1" maxOccurs="1">
</xsd:element>
<xsd:element name="Directory”
type="xsd:string"” minOccurs="1"maxOccurs="1">
</xsd:element>
</xsd:sequence>
</xsd:complexType>

</xsd:element>

64

0. Anhang

73.
74.
75.
76.

77.
78.
79.

80.
81.
82.
83.
84.
85.
86.
87.
88.
89.
90.
91.
92.
93.
94.
95.
96.
97.
98.
99.

100.
101.
102.
103.
104.
105.
106.
107.
108.
109.
110.
111.

<xsd:element name="createDirectoryResponse">
<xsd:complexType>
<xsd:sequence>
" n " . n
<xsd:element name="returnMessage" type="xsd:string
minOccurs="1"maxOccurs="1"></xsd:element>
</xsd:sequence>
</xsd:complexType>

</xsd:element>

<xsd:element name="copyFile">
<xsd:complexType>
<xsd:sequence>

<xsd:element name="SimID" type="xsd:long"
minOccurs="1" maxOccurs="1">

</xsd:element>

<xsd:element name="SrcUser" type="xsd:string"
minOccurs="1" maxOccurs="1">

</xsd:element>

<xsd:element name="SrcHost" type="xsd:string"
minOccurs="1" maxOccurs="1">

</xsd:element>

<xsd:element name="SrcFile" type="xsd:string"
minOccurs="1"maxOccurs="1">

</xsd:element>

<xsd:element name="DstUser" type="xsd:string"
minOccurs="1"maxOccurs="1">

</xsd:element>

<xsd:element name="DstHost" type="xsd:string"
minOccurs="1" maxOccurs="1">

</xsd:element>

<xsd:element name="DstFile"
type="xsd:string"” minOccurs="1" maxOccurs="1">

</xsd:element>

</xsd:sequence>
</xsd:complexType>

</xsd:element>

<xsd:element name="copyFileResponse">
<xsd:complexType>
<xsd:sequence>
<xsd:element name="returnMessage" type="xsd:string"

minOccurs="1"maxOccurs="1"></xsd:element>

65

0. Anhang

112.
113.
114.
115.
116.
117.
118.
119.
120.
121.
122.
123.
124.
125.
126.
127.
128.
129.
130.
131.
132.

</xsd:sequence>
</xsd:complexType>

</xsd:element>

<xsd:element name="setOctavePath">
<xsd:complexType>
<xsd:sequence>
<xsd:element name="SimID" type="xsd:long"
minOccurs="1" maxOccurs="1">
</xsd:element>
<xsd:element name="OctavePath"
type="xsd:string"” minOccurs="1"maxOccurs="1">
</xsd:element>
</xsd:sequence>
</xsd:complexType>

</xsd:element>

<xsd:element name="setOctavePathResponse">
<xsd:complexType>
<xsd:sequence>

<xsd:element name="returnMessage" type="xsd:string"

minOccurs="1"maxOccurs="1"></xsd:element>

133.
134.
135.
136.
137.
138.
139.
140.

</xsd:sequence>
</xsd:complexType>

</xsd:element>

<xsd:element name="getOctavePath">
<xsd:complexType>
<xsd:sequence>

<xsd:element name="SimID" type="xsd:long" minOccurs="1"

maxOccurs="1"></xsd:element>

141.
142.
143.
144.
145.
146.
147.
148.

</xsd:sequence>
</xsd:complexType>

</xsd:element>

<xsd:element name="getOctavePathResponse">
<xsd:complexType>

<xsd:sequence>

<xsd:element name="OctavePath" type="xsd:string" minOccurs="1"

maxOccurs="1"></xsd:element>

149.
150.

</xsd:sequence>

</xsd:complexType>

66

0. Anhang

151.
152.
153.
154.
155.
156.
157.
158.
159.
160.
161.
162.
163.
164.
165.
166.
167.
168.
169.
170.
171.
172.
173.
174.
175.
176.
177.
178.
179.
180.
181.
182.
183.
184.
185.
186.
187.
188.
1809.
190.
191.
192.

</xsd:element>

<xsd:element name="startProgram">
<xsd:complexType>
<xsd:sequence>

<xsd:element name="SimID" type="xsd:long"
minOccurs="1" maxOccurs="1">

</xsd:element>

<xsd:element name="User" type="xsd:string"
minOccurs="1" maxOccurs="1">

</xsd:element>

<xsd:element name="Host" type="xsd:string"
minOccurs="1" maxOccurs="1">

</xsd:element>

<xsd:element name="Path" type="xsd:string"
minOccurs="1" maxOccurs="1">

</xsd:element>

<xsd:element name="Program”
type="xsd:string" minOccurs="1" maxOccurs="1">

</xsd:element>

</xsd:sequence>
</xsd:complexType>

</xsd:element>

<xsd:element name="startProgramResponse">
<xsd:complexType>
<xsd:sequence>
<xsd:element name="plotSample”
type="tns:plot">
</xsd:element>
<xsd:element name="DataFilel"
type="xsd:string">
</xsd:element>
</xsd:sequence>
</xsd:complexType>

</xsd:element>

<xsd:element name="setPlottingPath">
<xsd:complexType>
<xsd:sequence>
<xsd:element name="SimID" type="xsd:long"></xsd:element>

<xsd:element name="PlottingPath"

67

0. Anhang

193.
194.
195.
196.
197.
198.
199.
200.
201.
202.

type="xsd:string">
</xsd:element>
</xsd:sequence>
</xsd:complexType>

</xsd:element>

<xsd:element name="setPlottingPathResponse">
<xsd:complexType>
<xsd:sequence>

<xsd:element name="returnMessage" type="xsd:string"

minOccurs="1"maxOccurs="1"></xsd:element>

203.
204.
205.
206.
207.
208.
209.
210.

</xsd:sequence>
</xsd:complexType>

</xsd:element>

<xsd:element name="getPlottingPath">
<xsd:complexType>
<xsd:sequence>

<xsd:element name="SimID" type="xsd:long" minOccurs="1"

maxOccurs="1"></xsd:element>

211.
212.
213.
214,
215.
216.
217.
218.

</xsd:sequence>
</xsd:complexType>

</xsd:element>

<xsd:element name="getPlottingPathResponse">
<xsd:complexType>
<xsd:sequence>

<xsd:element name="returnMessage" type="xsd:string"

minOccurs="1"maxOccurs="1"></xsd:element>

219.
220.
221.
222.
223.
224.
225.
226.
227.
228.
229.
230.
231.

</xsd:sequence>
</xsd:complexType>

</xsd:element>

<xsd:element name="removeFile">
<xsd:complexType>
<xsd:sequence>

<xsd:element name="SimID" type="xsd:long"
minOccurs="1"maxOccurs="1">

</xsd:element>

<xsd:element name="User" type="xsd:string"
minOccurs="1"maxOccurs="1">

</xsd:element>

68

0. Anhang

232. <xsd:element name="Host" type="xsd:string"

233. minOccurs="1" maxOccurs="1">

234, </xsd:element>

235. <xsd:element name="Path"

236. type="xsd:string"” minOccurs="1"maxOccurs="1">
237. </xsd:element>

238. </xsd:sequence>

239. </xsd:complexType>

240. </xsd:element>

241.

242. <xsd:element name="removeFileResponse">

243. <xsd:complexType>

244, <xsd:sequence>

245. <xsd:element name="returnMessage" type="xsd:string"

minOccurs="1"maxOccurs="1"></xsd:element>

246. </xsd:sequence>
247. </xsd:complexType>
248, </xsd:element>

249, </xsd:schema>

250. </wsdl:types>

251.

252. <wsdl:message name="prepareSimulationRequest">

253. <wsdl:part name="parameters" element="tns:prepareSimulation"></wsdl:part>

254. </wsdl:message>

255.

256. <wsdl:message name="prepareSimulationResponse">

257. <wsdl:part name="parameters”
element="tns:prepareSimulationResponse"></wsdl:part>

258. </wsdl:message>

259.

260. <wsdl:message name="InvalidStateException">

261. <wsdl:part name="fault"” element="types:InvalidStateFault"></wsdl:part>

262. </wsdl:message>

263.

264. <wsdl:message name="ExecuteCommandException">

265. <wsdl:part name="fault"” element="tns:ExecuteCommandSyncFault">< /wsdl:part>

266. </wsdl:message>

267.

268. <wsdl:message name="createDirectoryRequest">

269. <wsdl:part name="parameters" element="tns:createDirectory"></wsdl:part>

270. </wsdl:message>

271.

0. Anhang

272.
273.
274.
275.
276.
277.
278.
279.
280.
281.
282.
283.
284.
285.
286.
287.
288.
289.
290.
291.
292.
293.
294.
295.
296.
297.
298.
299.
300.
301.
302.
303.
304.
305.
306.
307.
308.
309.
310.
311.
312.
313.

<wsdl:message name="createDirectoryResponse">
<wsdl:part name="parameters" element="tns:createDirectoryResponse"></wsdl:part>

</wsdl:message>

<wsdl:message name="copyFileRequest">
<wsdl:part name="parameters" element="tns:copyFile"></wsdl:part>

</wsdl:message>

<wsdl:message name="copyFileResponse">
<wsdl:part name="parameters" element="tns:copyFileResponse"></wsdl:part>

</wsdl:message>

<wsdl:message name="setOctavePathRequest">
<wsdl:part name="parameters" element="tns:setOctavePath"></wsdl:part>

</wsdl:message>

<wsdl:message name="setOctavePathResponse">
<wsdl:part name="parameters" element="tns:setOctavePathResponse"></wsdl:part>

</wsdl:message>

<wsdl:message name="getOctavePathRequest">
<wsdl:part name="parameters" element="tns:getOctavePath"></wsdl:part>

</wsdl:message>

<wsdl:message name="startProgramRequest">
<wsdl:part name="parameters" element="tns:startProgram"></wsdl:part>

</wsdl:message>

<wsdl:message name="startProgramResponse">
<wsdl:part name="parameters" element="tns:startProgramResponse"></wsdl:part>

</wsdl:message>

<wsdl:message name="setPlottingPathRequest">
<wsdl:part name="parameters" element="tns:setPlottingPath"></wsdl:part>

</wsdl:message>
<wsdl:message name="getPlottingPathRequest">
<wsdl:part name="parameters" element="tns:getPlottingPath">< /wsdl:part>

</wsdl:message>

<wsdl:message name="getPlottingPathResponse">

<wsdl:part name="parameters" element="tns:getPlottingPathResponse">< /wsdl:part>

70

0. Anhang

314. </wsdl:message>

315.

316. <wsdl:message name="removeFileRequest">

317. <wsdl:part name="parameters" element="tns:removeFile"></wsdl:part>

318. </wsdl:message>

3109.

320. <wsdl:message name="removeFileResponse">

321. <wsdl:part name="parameters" element="tns:removeFileResponse"></wsdl:part>

322. </wsdl:message>

323.

324. <wsdl:portType name="WSI_Octave">

325.

326. <wsdl:operation name="prepareSimulation">

327. <wsdl:input message="tns:prepareSimulationRequest"></wsdl:input>
328. <wsdl:output message="tns:prepareSimulationResponse"></wsdl:output>
329. <wsdl:fault name="InvalidStateFault"

message="tns:InvalidStateException"></wsdl:fault>
330. <wsdl:fault name="CommandFault"

message="tns:ExecuteCommandException"></wsdl:fault>

331. </wsdl:operation>

332.

333. <wsdl:operation name="createDirectory">

334, <wsdl:input message="tns:createDirectoryRequest"></wsdl:input>
335. <wsdl:output message="tns:createDirectoryResponse"></wsdl:output>
336. <wsdl:fault name="InvalidStateFault"

message="tns:InvalidStateException"></wsdl:fault>
337. <wsdl:fault name="CommandFault"

message="tns:ExecuteCommandException"></wsdl:fault>

338. </wsdl:operation>

3309.

340. <wsdl:operation name="copyFile">

341. <wsdl:input message="tns:copyFileRequest"></wsdl:input>
342. <wsdl:output message="tns:copyFileResponse"></wsdl:output>
343. <wsdl:fault name="InvalidStateFault"

message="tns:InvalidStateException"></wsdl:fault>
344, <wsdl:fault name="CommandFault"

message="tns:ExecuteCommandException"></wsdl:fault>

345. </wsdl:operation>

346.

347. <wsdl:operation name="setOctavePath">

348. <wsdl:input message="tns:setOctavePathRequest"></wsdl:input>
349. <wsdl:output message="tns:setOctavePathResponse"></wsdl:output>

71

0. Anhang

350. <wsdl:fault name="InvalidStateFault"
message="tns:InvalidStateException"></wsdl:fault>
351. <wsdl:fault name="CommandFault"

message="tns:ExecuteCommandException"></wsdl:fault>

352. </wsdl:operation>

353.

354, <wsdl:operation name="getOctavePath">

355. <wsdl:input message="tns:getOctavePathRequest"></wsdl:input>
356. <wsdl:output message="tns:getOctavePathResponse"></wsdl:output>
357. <wsdl:fault name="InvalidStateFault"

message="tns:InvalidStateException"></wsdl:fault>
358. <wsdl:fault name="CommandFault"

message="tns:ExecuteCommandException"></wsdl:fault>

359. </wsdl:operation>

360.

361. <wsdl:operation name="startProgram">

362. <wsdl:input message="tns:startProgramRequest"></wsdl:input>
363. <wsdl:output message="tns:startProgramResponse"></wsdl:output>
364. <wsdl:fault name="InvalidStateFault"

message="tns:InvalidStateException"></wsdl:fault>
365. <wsdl:fault name="CommandFault"

message="tns:ExecuteCommandException"></wsdl:fault>

366. </wsdl:operation>

367.

368. <wsdl:operation name="setPlottingPath">

369. <wsdl:input message="tns:setPlottingPathRequest"></wsdl:input>
370. <wsdl:output message="tns:setPlottingPathResponse"></wsdl:output>
371. <wsdl:fault name="InvalidStateFault"

message="tns:InvalidStateException"></wsdl:fault>
372. <wsdl:fault name="CommandFault"

message="tns:ExecuteCommandException"></wsdl:fault>

373. </wsdl:operation>

374.

375. <wsdl:operation name="getPlottingPath">

376. <wsdl:input message="tns:getPlottingPathRequest"></wsdl:input>
377. <wsdl:output message="tns:getPlottingPathResponse"></wsdl:output>
378. <wsdl:fault name="InvalidStateFault"

message="tns:InvalidStateException"></wsdl:fault>
379. <wsdl:fault name="CommandFault"
message="tns:ExecuteCommandException"></wsdl:fault>
380. </wsdl:operation>
381.

72

0. Anhang

382.
383.
384.
385.
386.
387.
388.
389.
390.
391.
392.
393.
394.
395.
396.
397.
398.
399.
400.
401.
402.
403.
404.
405.
406.
407.
408.
409.
410.
411.
412.
413.
414.
415.
416.
417.
418.
419.
420.
421.
422.
423.

<wsdl:operation name="removeFile">

<wsdl:input message="tns:removeFileRequest"></wsdl:input>
<wsdl:output message="tns:removeFileResponse"></wsdl:output>
</wsdl:operation>

</wsdl:portType>

<wsdl:binding name="WSI_OctaveSOAP" type="tns:WSI_Octave">
<soap:binding style="document”
transport="http://schemas.xmlsoap.org/soap/http" />
<wsdl:operation name="prepareSimulation">
<soap:operation
soapAction="http://wsi.simtech.de/WSI_Octave/prepareSimulation” />
<wsdl:input>
<soap:body use="literal" />
</wsdl:input>
<wsdl:output>
<soap:body use="literal" />
</wsdl:output>
<wsdl:fault name="InvalidStateFault">
<soap:fault use="literal" name="InvalidStateFault" />
</wsdl:fault>
<wsdl:fault name="CommandFault">
<soap:fault use="literal" name="CommandFault" />
</wsdl:fault>
</wsdl:operation>
<wsdl:operation name="createDirectory">
<soap:operation
soapAction="http://wsi.simtech.de/WSI_Octave/createDirectory” />
<wsdl:input>
<soap:body use="literal" />
</wsdl:input>
<wsdl:output>
<soap:body use="literal" />
</wsdl:output>
<wsdl:fault name="InvalidStateFault">
<soap:fault use="literal" name="InvalidStateFault" />
</wsdl:fault>
<wsdl:fault name="CommandFault">
<soap:fault use="literal" name="CommandFault" />
</wsdl:fault>
</wsdl:operation>

<wsdl:operation name="copyFile">

73

0. Anhang

424,
425.
426.
427.
428.
429.
430.
431.
432.
433.
434,
435.
436.
437.
438.
439.
440.
441.
442.
443.
444,
445.
446.
447.
448.
449,
450.
451.
452.
453.
454,
455.
456.
457.
458.
459.
460.
461.
462.
463.
464.
465.

<soap:operation
soapAction="http://wsi.simtech.de/WSI_Octave/copyFile" />
<wsdl:input>
<soap:body use="literal" />
</wsdl:input>
<wsdl:output>
<soap:body use="literal" />
</wsdl:output>
<wsdl:fault name="InvalidStateFault">
<soap:fault use="literal" name="InvalidStateFault" />
</wsdl:fault>
<wsdl:fault name="CommandFault">
<soap:fault use="literal" name="CommandFault" />
</wsdl:fault>
</wsdl:operation>
<wsdl:operation name="setOctavePath">
<soap:operation
soapAction="http://wsi.simtech.de/WSI_Octave/setOctavePath" />
<wsdl:input>
<soap:body use="literal" />
</wsdlL:input>
<wsdl:output>
<soap:body use="literal" />
</wsdl:output>
<wsdl:fault name="InvalidStateFault">
<soap:fault use="literal" name="InvalidStateFault" />
</wsdl:fault>
<wsdl:fault name="CommandFault">
<soap:fault use="literal" name="CommandFault" />
</wsdl:fault>
</wsdl:operation>
<wsdl:operation name="getOctavePath">
<soap:operation
soapAction="http://wsi.simtech.de/WSI_Octave/getOctavePath" />
<wsdl:input>
<soap:body use="literal" />
</wsdl:input>
<wsdl:output>
<soap:body use="literal" />
</wsdl:output>
<wsdl:fault name="InvalidStateFault">

<soap:fault use="literal" name="InvalidStateFault" />

74

0. Anhang

466.
467.
468.
469.
470.
471.
472.
473.
474.
475.
476.
477.
478.
479.
480.
481.
482.
483.
484.
485.
486.
487.
488.
489.
490.
491.
492.

</wsdl:fault>
<wsdl:fault name="CommandFault">
<soap:fault use="literal" name="CommandFault" />
</wsdl:fault>
</wsdl:operation>
<wsdl:operation name="startProgram">
<soap:operation
soapAction="http://wsi.simtech.de/WSI_Octave/startProgram” />
<wsdl:input>
<soap:body use="literal" />
</wsdl:input>
<wsdl:output>
<soap:body use="literal" />
</wsdl:output>
<wsdl:fault name="InvalidStateFault">
<soap:fault use="literal" name="InvalidStateFault" />
</wsdl:fault>
<wsdl:fault name="CommandFault">
<soap:fault use="literal" name="CommandFault" />
</wsdl:fault>
</wsdl:operation>
</wsdl:binding>
<wsdl:service name="WSI_Octave">
<wsdl:port binding="tns:WSI_OctaveSOAP" name="WSI_OctaveSOAP">

<soap:address location="http://localhost:8080/axis2 /services/WSI_Octave"/>

</wsdl:port>

</wsdl:service>

493. </wsdl:definitions>

75

0. Abkurzungsverzeichnis

Abkiirzungsverzeichnis

ADB: Axis2 Data Binding Framework

BPEL: Business Process Execution Language
HTTP: Hypertext Transfer Protocol

MCMC: Markov Chain Monte Carlo

NAT: Network Address Translation

NESC: National e-Science Centre

REST: Representational State Transfer

SOA: Serviceorientierte Architektur

SOAP: Simple Object Access Protocol

TCP: Transmission Control Protocol

UDDI: Universal Description, Discovery and Integration

URI: Uniform resource identifier

URL: Uniform Resource Locators

W3C: World Wide Web Consortium

WIMC: Workflow Management Coalition
WIMS: Workflow Management System

WS: Web Service

WSDL: Web Services Description Language
WSFL: Web Services Flow Language

WSI: Web Service Interface

XML: Extensible Markup Language

76

0. Abbildungsverzeichnis

Abbildungsverzeichnis

Abbildung. 1 Grundlegende Merkmale @iner SOA [1]« s sesererererersmmenniieece, 6
Abbildung. 2 Das Dreieck einer SOA [1] «+s-ssseessesessesssieiinieiiieiieii 7
Abbildung. 3 Syntaktische Struktur eines WSDL-Dokuments [9] -+seeeseseeseesenimniinsiniinicninnn 9
Abbildung. 4 Aufbau von SOAP-Nachrichten [9] -« -sssesesseresieiinieiiiiiii 10
Abbildung. 5 UDDI-Datenmodell [2] - weeeerereseseseniniiiiiiii 11
Abbildung. 6 Geschiftsprozess Und WOrKFIOW [8] -+ +ws-sesrrserrerrmsemiiniieiiiiieieiiieiene 12
Abbildung. 7 Drei Workflow Dimensionen [8] «+ -+ seseesesusieriininiiiiiiiiiiiiiii 13
Abb||dung 8 Lebenszyklus eines Scientiﬁc WOFkﬂOWS [11] ... 14
Abbildung. 9 Architektur des Web Service Interfaces [23] - wwsresseessrussrinminninisnininae, 23
Abbildung. 10 Lebenszyklus einer Simulationsinstanz aus [23] «««eoeseeereerrreern, 24
Abbildung. 11 Vereinfachte Darstellung von interagierenden biologischen Netzwerken [18]

... 28
Abbildung. 12 Interaktionsgraph in der trans-Golgi Netzwerk -« o eeeeeeeeeeeniinin. 30
Abbildung. 13 Lebenszyklus der Simulationsinstanz von Octave Adapter:::-:-sssseeeeeeeeeiinnnne 33
Abbildung. 14 Ubersicht Uber die Anwendungsfallg: -« eeeememmmieiii 35
Abbildung. 15 Ergebnisbilder nach der Ausfihrung der Octave-Anwendungen ««««---s«xeoeee 40
Abbildung. 16 Architektur des Octave Adapters -« - e 41
Abbildung. 17 Workflow-Prozess fiir die Octave-Anwenudng: -« eeveseeemsininiai.. 46
AbbDIldUNG. 18 Prepare STEPS -+« -t swessestreititititiiste et a7
Abbildung. 19 ShOW the reSUlts -+ - e eeerereiiiii a7
Abbildung. 20 Ablauf der Octave-ANWENAUNGEN ++++-+sseerserrreiisiiiiteiie 50
Abbildung. 21 Aufteilung der Octave-ANWENAUNGEN «++swserereserereieseiminiine, 51
Abbildung. 22 Modifizierter Ablauf mit Interaktion vom Octave Adapter -----eeseeereeesnenns 52
Abbildung. 23 Ansicht der WSDL-Datei im Eclipse WSDL-Editor:««««sseemermemmsmmnnnnennenne, 54

77

0. Abbildungsverzeichnis

Abblldung 24 |nput_Typ der Operatlon ”createDlrectory" .. 54
Abbildung. 25 Beispiel eines Octave-basierten Workflow-Prozesses -« tssereeeeerieiiinnnns 55
Abbildung. 26 Kommunikation in der Laufzeitumgebung [23] «+e-eeeerereeermmiinniin 60

78

0. Tabelleverzeichnis

Tabelleverzeichnis

Tabelle 1 Parametre der Operation prepareSimulationcccceeeeeiiiiveeee e 42
Tabelle 2 Parametre der Operation createDirectotyccccuveeeeeeieicciiiieeee e 43
Tabelle 3 Parametre der Operation COPYFIleccuiiiiiiiiiiiiiiee e 43
Tabelle 4 Parametre der Operation setOctavePath.........cccvvvveeeiiiiiiiiee e 44
Tabelle 5 Parametre der Operation getOctavePath..........ccoceiiiciiiiiiiei e 44
Tabelle 6 Parametre der Operation startProgramcccccccvieeeeeiieecciiieee e eeeene 44
Tabelle 7 Parametre der Operation remMoVeFileccccvivciiiiiiiciiei e 45
Tabelle 8 Parametre der Operation setPlottingPath..........ccoeeeveiiiiiiiieee e 45
Tabelle 9 Parametre der Operation getPlottingPathccccoivvciiiiiiiii e, 46
Tabelle 10 Parameter der Workflow-Operationenccccueeeeeciieeeiciieeeccieee e 48
Tabelle 11 System ProPerti®s...cccueiiiccieeiieieie ettt ettt e e e stre e e e sbae e e e eabee e e sareeeesanees 56
Tabelle 12 Hardware-Komponenten der Laufzeitumgebung..........ccccoveeeeeiiieiiciieecccieeeens 58

79

0. Literaturverzeichnis

Literaturverzeichnis

[1]. Ingo Melz et al. : Serviceorientierte Architekturen mit Webservice: Konzepte-
Standards- Praxis, 2010

[2]. DOSTAL, Wolfgang ; JECKLE, Mario ; MELZER, Ingo ; ZENGLER, Barbara:
Service-orientierte Architekturen mit Web Services. Konzepte — Standards — Praxis,
2005

[3]. F. Christensen, E.; Curbera: Web Services Description Language (WSDL) 1.1, 2001.
URL: http://www.w3.org/TR/wsdl.

[4]. W3C. SOAP Version 1.2,2007. URL:http:/www.w3.org/TR/soap/.

[5]. Microsoft: UDDI Business Registry Shutdown, 2005.

URL: http://uddi.microsoft.com/about/FAQshutdown.htm

[6]. Web Services Business Process Execution Language Version 2.0, 2007
URL :http://docs.oasis-open.org/wsbpel/2.0/0OS/wsbpel-v2.0-OS.html

[7]1. BURGHARDT, Markus: Web Services. Aspekte von Sicherheit, Transaktionalitdit,
Abrechnung und Workflow, 2004

[8]. Frank Leymann, Dieter Roller: Production Workflow: Concepts and Techniques,
2000

[9]. S. Weerawarana, F. Curbera, F. Leymann, T. Storey, D. Ferguson: Web Services
Platform Architecture: SOAP, WSDL, WS-Policy, WS-Addressing, WS-BPEL,
WS-Reliable Messaging and More, 2008.

[10]. Bertram Ludischer, Mathias Weske, Timothy McPhillips, Shawn Bowers:
Scientific Workflows. Business as Usual? 2009

[11]. Katharina Gorlach, Mirko Sonntag, Dimka Karastoyanova,Frank Leymann,
Michael Reiter: Conventional Workflow Technology for Scientific Simulation. 2011

[12]. Rafael Ball: Wissenschaftskommunikation der Zukunft, 2007

[13]. Ute Rusnak, Matthias Razum, Leni Helmes: Wissensvernetzung im
Forschungsprozess, 2007

80

http://www.w3.org/TR/wsdl�
http://www.w3.org/TR/soap/�
http://uddi.microsoft.com/about/FAQshutdown.htm�
http://docs.oasis-open.org/wsbpel/2.0/OS/wsbpel-v2.0-OS.html�

0. Literaturverzeichnis

[14]. Gabriele Gramelsberger: Computersimulationen in den Wissenschaften- Neue
Instrumente der Wissensproduktion: Schnittstellen zwischen Theorie und
Experiment. 2007

[15]. F. Steinke, M. Seeger, K. Tsuda: Experimental design for efficient
identification of gene regulatory networks using sparse bayesian models

[16]. Andrei Kramer, Nicole Radde: Towards experimental design using a Bayesian

framework for parameter identification in dynamic intracellular network models,
2010

[17]. Andrei Kramer, Jan Hasenauer, Frank Allgéwer, Nicole Radde: Computation
of the posterior entropy in a Bayesian framework for parameter estimation in
biological networks,

[18]. Falk Schreiber : Analyse und Visualisierung biologischer Netzwerke, 2009

[19]. Eric Bullinger, Dirk Fey, Marcello Farina und Rolf Findeisen: Identification of
Biochemical Reaction Networks: An Observer based Approach, 2008

[20]. Joachim Pfister: Integration und Modellierung von verteilten
Geschiftsprozessen mittels Web Services am Beispiel eines Prozessportals,2006

[21]. Joachim Miiller : Workflow-based Integration: Grundlagen, Technologien,
Management, 2005

[22]. Jakob Freund, Klaus Gétzer: Vom Geschdfisprozess zum Workflow: Ein
Leitfaden fiir die Praxis, 2008

[23]. Jens Rutschmann: Generisches Web Service Interface um
Simulationsanwendungen in BPEL-Prozesse einzubinden, 2009

[24]. ODE- Architectural Overview: http://ode.apache.org/architectural-overview.html

[25]. David Schumm: Graphische Modellierung von BPEL Prozessen unter
Verwendung der BPMN Notation, 2008

[26]. Enrico Serb: Arbeitsabliufe in der Modellierung und Simulation

[27]. Joachim Miiller: Workflow-Based Integration: Grundlagen, Technologien,
Managemen,

[28]. Brian Skibinski: How to set up Ubuntu under VMWare Player for CS384
http://people.msoe.edu/~durant/courses/cs384/ubuntu-vmwarePlayer/

[29]. Tristan Glatard, David Emsellem, Johan Montagnat: Generic web service
wrapper for efficient embedding of legacy codes in service-based workflows

[30]. Ingo Melzer: Service-oritentierte Architekturen mit Web Services

81

http://ode.apache.org/architectural-overview.html�
http://people.msoe.edu/~durant/courses/cs384/ubuntu-vmwarePlayer/�

0. Literaturverzeichnis

[31]. Joachim Pfister: Integration und Modellierung von verteilten
Geschiftsprozessen mittels Web Services am Beispiel eines Prozessportals,2006

[32]. Roger J. Castaldo, Michael A. McKay, Vladimir Tosic: Exposing GNU
Octave signal processing functions as extensible markup language (XML) web
services, 2006

[33]. Wesal Al Belushi, Youcef Baghdadi: An Approach to Wrap Legacy
Applications into Web Services, 2007

[34]. Michael Stollberg, Martin Hepp, und Dieter Fensel: Semantic Web Services —
Realisierung der SOA Vision mit semantischen Technologien, 2007

[35]. Cornelia Boles, Jorg Friebe, Till Luhmann: Typische Integrationsszenarien
und deren Unterstiitzung durch Web Services und andere Technologien

[36]. Ewa Deelmana, Dennis Gannonb, Matthew Shields, lan Taylor: Workflows
and e-Science: An overview of workflow system features and capabilities, 2007

[37]. Peter Reimann, Michael Reiter, Holger Schwarz, Dimka Karastoyanova,
and Frank Leymann: SIMPL — A Framework for Accessing External Data in
Simulation Workflows

[38]. Katharina Goérlach, Mirko Sonntag, Dimka Karastoyanova, Frank Leymann,
Michael Reiter: Conventional Workflow Technology for Scientific Simulation

[39]. Christoph Marian Miiller: Development of an Integrated Database Architecture
for a Runtime Environment for Simulation Workflows, 2009

82

Erklarung

Hiermit versichere ich, diese Arbeit selbststindig verfasst und nur die angegebenen Quellen
benutzt zu haben.

Unterschrift:

< Ort, Datum >

	Simulation des Verhaltens von Zellkomponenten in biologischen Netzwerken mit Hilfe von Workflow Technologie.pdf
	1 Einleitung
	1.1. Motivation und Aufgabenstellung
	1.2. Aufbau der Arbeit

	2. Grundlagen
	2.1. SOA und Web Services
	2.1.1. Service-orientierte Architektur (SOA)
	2.1.2. Web Service

	2.2. Workflow
	2.2.1. Geschäftsprozesse und Workflows
	2.2.2. Scientific Workflows
	2.2.3. Workflow Management Systeme
	2.2.4. Business Process Execution Language

	2.3. e-Science

	3. Verwendete Software
	3.1. Simulationssoftware: Octave
	3.2. Web Service Wrapper
	3.2.1. Web Service Interface (WSI)

	3.3. Serverplattform

	4. Reaktionsnetzwerke
	4.1. Biologische Netzwerke
	4.2. Reaktionsnetzwerke
	4.2.1. Modellierung der Reaktionsnetzwerke
	4.2.2. Parameteridentifikation

	5. Spezifikation
	5.1. Anforderungen
	5.2. Lebenszyklus einer Simulationsinstanz von Octave Service Adapter
	5.3. Octave Service Adapter

	6. Entwurf
	6.1. Architektur des Octave Adapters
	6.2. Web Service Operationen vom Octave Adapter
	6.3. Octave basierte Workflows

	7. Implementierung
	7.1. Ablauf der Octave-Anwendungen
	7.2. Modifizierter Ablauf mit dem Octave Adapter
	7.3. Weitere Anmerkungen zur Implementierung
	7.3.1. Erstellen eines Dynamic Web Projects
	7.3.2. Erstellen einer WSDL-Datei
	7.3.3. Erstellen der Web Service-Klassen mit Axis2
	7.3.4. Erstellen eines BPEL-Prozesses
	7.3.5. Verwendete Verzeichnisse auf dem Server
	7.3.6. Test

	8. Laufzeitumgebung
	8.1. Virtualisierte Komponenten
	8.2. Interaktion mit der Laufzeitumgebung

	9. Zusammenfassung und Ausblick
	Anhang
	WSDL-Operationen von Octave Web Service

	Abkürzungsverzeichnis
	Abbildungsverzeichnis
	Tabelleverzeichnis
	Literaturverzeichnis

