
Institut für Architektur von Anwendungssystemen

 Universität Stuttgart

Universitätsstraße 38

D-70569 Stuttgart

Diplomarbeit Nr. 3275

Web Services for Human Interaction

Lina Sun

 Course of Study: Informatik

Examiner: Jun.-Prof. Dimka Karastoyanova

Supervisor: Dipl.-Inf. David Schumm

Commenced: December 15, 2011

Completed: June 15, 2012

CR-Classification: C.2.4, H.4.1, H.5.2

1

Abstract

In recent years, with the continuous development of the network, the network society has

been built up. To develop a more perfect and more powerful network society, a

communication between members of this society is indispensable. The communication

between human users is very common. There are already many means of communication

between human users, for example, MSN, Mail, Skype, Twitter, etc. Business processes

can also communicate with external services. Since the advent of Web Services, this kind

of communication becomes platform-independent and flexible. However, how to integrate

an automating business process with human users remains to be studied.

There are multiple ways how human users communicate electronically, for example via

Mail, Skype, ICQ message, and SMS. The main task of this work is to implement such

communication channels. To provide a flexible integration between human users and

business processes these communication channels will be implemented via Web

Services.

This work proposes concepts of two communication channels: Mail and Skype. Getting a

request, processing a request, sending a message, and receiving a message are basic

functions. As a very important component a database has been added to store all

information.

To prove these concepts, they have been put in practice as part of this work. Two Web

Services have been developed in this work: Mail Service and Skype Service.

In the very end, a set of test cases illustrates the capabilities of Mail Service and Skype

Service.

Table of Contents

2

Table of Contents

Abstract ... 1

Table of Contents ... 2

1 Introduction .. 5

1.1 Communication System .. 5

1.2 Motivation .. 6

1.3 Objectives .. 8

1.4 Document Structure .. 9

2 Fundamentals and Technologies ... 10

2.1 Business Process .. 10

2.2 Web Services .. 11

2.3 XML, XML Schema ... 13

2.4 WSDL .. 15

2.5 SOAP .. 16

3 Concepts .. 18

3.1 Participants of Communication .. 18

3.2 Classes of Communication .. 20

3.2.1 Notification .. 20

3.2.2 Decision .. 20

3.2.3 Control .. 20

3.3 Means of Communication .. 20

3.3.1 Mail ... 21

3.3.2 Skype .. 21

3.3.3 FTP ... 21

3.3.4 Twitter ... 21

Table of Contents

3

3.4 Mail Service ... 22

3.4.1 First Concept of Mail Service .. 22

3.4.2 Problem of First Concept .. 23

3.4.3 Robustness ... 24

3.4.4 New Concept .. 25

3.4.5 Database Concept .. 27

3.4.6 Classes of Mails ... 27

3.4.7 Mail States .. 28

3.5 Skype Service ... 29

4 Specifications .. 31

4.1 Interface Parameters ... 31

4.1.1 Mail Service .. 31

4.1.2 Skype Service ... 32

4.2 Configuration ... 32

5 Implementation .. 36

5.1 Components Overview .. 36

5.2 Database MySQL .. 36

5.2.1 Database in Mail Service .. 37

5.2.2 MySQLAccess in Mail Service .. 41

5.2.3 Database in Skype Service .. 43

5.2.4 MySQLAccess in Skype Service .. 46

5.3 Mail Service ... 46

5.3.1 Apache Axis2 .. 47

5.3.2 JavaMail API ... 47

5.3.3 GetRequest Service ... 47

5.3.4 SendMail Service .. 51

5.3.5 ReceiveMail Service ... 54

5.3.6 ProcessMail Service ... 56

5.3.7 Register Service ... 59

Table of Contents

4

5.3.8 AutoRun.java .. 60

5.4 Skype Service ... 61

5.4.1 Skype API for Java ... 61

5.4.2 SkypeGetRequest Service ... 61

5.4.3 SendMessage Service .. 63

5.4.4 ProcessMessage Service ... 63

5.4.5 Register Service ... 65

5.4.6 SkypeAutoRun.java .. 66

5.5 Deployment as Web Services ... 66

5.5.1 web.xml .. 67

5.5.2 WSDLs ... 68

6 Test Cases .. 72

6.1 Test Tool: SoapUI ... 72

6.2 Test Tool: BPEL Process .. 73

6.3 Test Cases ... 73

6.3.1 Test Case1—Mail Service Gets Invalid Request Message 73

6.3.2 Test Case2—Mail Service Register .. 75

6.3.3 Test Case3—Mail Service Gets A Notification Request 77

6.3.4 Test Case4—Mail Service Gets A Request Needing a Response 79

6.3.5 Test Case5—BPEL Process invokes Mail Service and Skype Service 85

7 Summary and Outlook .. 91

7.1 Summary ... 91

7.2 Outlook .. 93

8 Table of Figures ... 95

9 Table of Tables ... 97

10 Table of Listings .. 98

11 Bibliography ... 100

12 Erklärung .. 102

Introduction

5

1 Introduction

This chapter introduces a model of communication system in human world. Compared

with it in the virtual world such a communication system should be also existed.

1.1 Communication System

In society, people all interact with messages. Without interactions, a society cannot

survive. Social interaction is always through messages. So communication can be defined

as:

Communication is social interaction process by which a message or information is

exchanged from a sender to a receiver [1].

Figure 1 is a model of communication system [3]. In this communication system there are

three important components, channel, sender and receiver. A sender is a message source

and sends out messages. Channel is a mean of exchanging a message. A receiver gets a

message and can send feedback to the sender. The main function of a communication

system is to share and process information between the members of a society.

Figure 1. A model of communication system [3]

In recent years, with the continuous development of the network, the network society has

been built up. To develop a more perfect and more powerful network society, a

communication between members of this society is indispensable. The communication

Introduction

6

between human users is very common. There are already many means of communication

between human users, for example, MSN, Mail, Skype, Twitter, etc. In addition to human

users, business processes are also considered as an important member of this society.

Once business process and human users can exchange messages, the entire network

society will have a higher degree of automation and efficiency. Today many systems have

been built the communication up. But the types of communication channels are not rich.

There are many channels that can be developed to support this communication between a

business process and a human user.

1.2 Motivation

All over the world, thousands of business processes are automatically running in many

companies every day. Efficiency and convenience are the great advantages of them. Most

business processes are frequently used, and they can complete tasks independently. In

many cases for users it is not the process but the result of it that is really important. Figure

2 shows a simple business process that calls an external Web Service to complete the

intended goal.

Figure 2. A business process calls a Web Service

In recent years a concept “Interaction” is proposed [2], and human interaction becomes

increasingly important in the development of Web Services. Figure 2 shows the interaction

between a business process and a Web Service. If in this example the Web Service is

replaced by a human user, the business process will have more extensive range in usage.

The business process is no longer closed to run, but can run in the interaction with human

users. This kind of Interaction is considered as a kind of communication between a

Introduction

7

process and a human user. Figure 3 shows a business process that interacts with human

user.

Figure 3. Business process interacts with human user

The importance of the interaction is the human factor. Similar to calling an external service,

this time the business process just calls a human user. By issuing a request to a human

user and receiving a reply from him, the business process can set some variables and

make a decision based on the values of these variables.

The use of conventional workflow environments and service compositions is suitable for

automating business processes. However, it is not yet completely applicable for

interaction with human users. In particular, different ways of communication for

involvement of human users are required.

Following is a use case: A business process is responsible for a meeting to determine the

attendance list and send a card to everyone. First this process gets a predetermined

contact list. According to this list the process contacts everyone and asks him, whether he

will accept the invitation. After that, the process will receive each reply, check validation,

and count the replies with “yes” from all valid replies to generate an attendance list. Finally

Introduction

8

it will send a confirmation to everyone in the attendance list. This use case is shown in

Figure 4.

Figure 4. An instance of business process with human interaction

1.3 Objectives

Based on the motivation following objectives were defined for this work:

O1: Create a concept for communication services for human interaction. It should be able

to deal with some special network communications (for example: Mail, Skype, and File

Transfer Protocol) and enable interaction between a process and human users.

O2: According to the concept implement communication services. Communication

services are responsible for getting a request from a business process, sending a

message to a specified user and processing a response from a responding user.

O3: Make some instances to test the implemented services.

Introduction

9

1.4 Document Structure

The document is divided into the following seven chapters:

Chapter 1 “Introduction” contains introductory information, introduces a communication

system, explains the motivation, defines objectives and guides the reader through the rest

of the document.

Chapter 2 “Fundamentals and Technologies” introduces the definition of business

processes and Web Services as the fundamentals for this work. Nowadays many new

technologies are used for Web Services. These technologies include: XML, XML Schema,

WSDL and SOAP.

Chapter 3 “Concept” introduces the concept for communication services. Two channels

are provided: Mail and Skype.

Chapter 4 “Specifications” defines the detailed information, for example, interface

arguments and configuration data.

Chapter 5 “Implementation” introduces the whole process of implementation according to

the concepts.

Chapter 6 “Test Cases” shows different scenarios to test the functionalities of Mail Service

and Skype Service.

Chapter 7 “Summary and Outlook” summarizes the document and gives an outlook on the

problems that were identified by this work.

Bibliography can be found in the end.

Fundamentals and Technologies

10

2 Fundamentals and Technologies

This chapter introduces some theoretical concepts in the background and the necessary

technologies are involved in them.

2.1 Business Process

As fundamental asset of companies, enterprise applications and information systems

have become very important. Companies rely on them to be able to perform business

operations. Based on them business processes are modelled to realize a business goal.

A business process consists of a set of activities that are performed in coordination in an

organizational and technical environment. These activities jointly realize a business goal.

Each process is enacted by a single organization, but it may interact with business

process performed by other organization [4]. Following the same well-defined process

model, these activities are repeated over and over. There are three levels of interaction

between the different business processes [5]:

 An activity in a business process invokes another business process. That new

business process executes totally independently of the original business process.

 An activity in a business process invokes another business process and waits until that

new business process has completed.

 An activity in a business process invokes another business process, and an activity

later in the business process waits until that new business process has completed.

An important nature of business processes is dynamic. Business processes should be

optimized and adapted in an agile manner to the customers, thus the responsiveness of

the whole company can be improved.

Some of business process activities can be performed by the company’s employees

manually or by the help of information systems. The others can be enacted automatically

by information systems and Web Services, without any human involvement. In this thesis

the latter business process is as a research object. The goal is to extend a kind of

interaction between business process and human.

Fundamentals and Technologies

11

2.2 Web Services

The term Web Service is used very often nowadays. The Web Service Architecture

working group of the World Wide Web Consortium (W3C) developed the following

definition for a Web Service [7]:

A Web service is a software system designed to support interoperable machine-to-machine

interaction over a network. It has an interface described in a machine-processable format

(specifically WSDL). Other systems interact with the Web service in a manner prescribed

by its description using SOAP messages, typically conveyed using HTTP with an XML

serialization in conjunction with other Web-related standards.

Web Services provide a standard means of interoperation between software applications,

running on a variety of platforms and/or frameworks. For exchanging information they are

represented by the request/response pattern. They receive a Simple Object Access

Protocol (SOAP) message as request. After processing this message, they send another

SOAP message as response. Web Services have the following characteristics [8]:

 Loose coupling

Web Services enable applications to work cooperatively together using the principle of

loose coupling. In a loosely coupled exchange, applications need not know how their

partner applications behave or are implemented. This greatly reduces the difficulty of

application integration.

 Service granularity

Web Services may vary in function from simple requests to complex systems that access

and combine information from multiple sources. Simple services are atomic.

 Synchronicity

There are two types of services: synchronous and asynchronous. A synchronous service

functions as a method call with a set of arguments, which returns a response. While a

client invokes an asynchronous service and it does not need to wait for a response before

it continues with the remainder of its application.

 Well-definedness

The service interaction must be well defined in a Web Service Definition Language (WSDL)

document.

 Flexibility

Web Services can be dynamically found and can be embedded into remotely located

applications.

 Dependence

Fundamentals and Technologies

12

Web Services are platform-independent. A Web Service is a self-contained software

module that performs a single task. The module describes its own interface, i.e. the

operations available, data type and access protocols. Through this description others can

know what it does, how to invoke its functionality and what result will be returned.

Web Services are the most suitable technology for realization of Service Oriented

Architecture (SOA). Figure 5 illustrates bind/publish/find approach in SOA as described in

[11]. First, the provider must provide an abstract definition of the service, including the

appropriate way to bind this service. Second, the provider needs to publish this service,

including the precise information what it does and how to connect to use it. Third, the

requestors who require services need to find what services are available that meet their

needs.

Figure 5. The SOA Triangle [11]

To implement Web Services several specifications are used in Figure 6. Universal

Description Discovery and Integration (UDDI) is a standard and a mechanism to register

and locate Web Service applications. WSDL describes the interface for a Web Service, i.e.

what methods are present in a Web Service, what parameters and return values each

method uses, and how to communicate with them. SOAP is a message format for a Web

Service. UDDI, WSDL and SOAP are the platform-independent and XML-based format.

Fundamentals and Technologies

13

Figure 6. The web service technology stack [12]

2.3 XML, XML Schema

XML stands for Extensible Markup Language. XML is a set of rules for defining semantic

tags that break a document into parts and identify the different parts of the document. It is

a meta-markup language that defines a syntax used to define other domain-specific,

semantic, structured markup languages [13]. The definition of XML is independent of the

platform and defined using Unicode. Therefore XML has rapidly become the official format

for data interchange between disparate entities.

 XML Basics

XML document consists of elements, which are defined through its name, a set of

attributes and some children. Listing 1 is a simple XML document called “customer.xml”.

Customer element has two children, Name element and Address element. The definition of

an element starts with a start tag <Customer> and ends with an end tag </Customer>.

Attributes are name-value pairs that associated with an element. An element can have any

number of attributes and is written as <Customer name1=”value1” name2=”value2”…>.

Fundamentals and Technologies

14

Listing 1. XML example “customer.xml”

 XML Schema

XML Schema is a document structuring and type definition specification that the World

Wide Web Consortium (W3C) developed. It uses XML syntax. But it is powerful to define

the structure of a XML document. It defines a set of primitive data types to define attribute

and element values. Listing 2 is an XML Schema file called “customer.xsd” that defines

the elements of the XML document above (“customer.xml”). Customer element is a

complex type because it contains other elements.

Listing 2. An example of XML Schema "customer.xsd"

 XML Namespace

To guarantee uniqueness named elements and attributes in an XML document XML

Namespaces is required. It is a way to scope element and attribute names to a

namespace so that their usage is always unique, regardless of their context. In Listing 2

line 2 indicates that the elements and data types used in the schema come from the

“http://www.w3.org/2001/XMLSchema” namespace and should be prefixed with xs:.

XML document and XML Schema are widely used in the network field. All of the Web

Services specifications have associated schemas written using XML Schema. SOAP

1. <?xml version=”1.0”?>
2. <xs:schema xmlns:xs=http://www.w3.org/2001/XMLSchema>
3. <xs:element name=”Customer”>
4. <xs:complexType>
5. <xs:sequence>
6. <xs:element name=”Name” type=”xs:string”>
7. <xs:element name=”Address” type=”AddressType”>
8. </xs:sequence>
9. </xs:complexType>
10. </xs:element>
11. <xs:complexType name=”AddressType”>
12. <xs:sequence>
13. <xs:element name=”Line1” type=”xs:string”/>
14. <xs:element name=”Line2” type=”xs:string”/>
15. </xs:sequence>
16. </xs:complexType>
17. </xs:schema>

1. <?xml version=”1.0”?>
2. <Customer>
3. <Name>AAA Company</Name>
4. <Address>
5. <Line1>219-241 Cleveland St</Line1>
6. <Line2>0711-3456-234</Line2>
7. </Address>
8. </Customer>

Fundamentals and Technologies

15

message is an example of an XML vocabulary. WSDL is another example. Most of the

Web Service specification format is defined by XML vocabulary. A XML document is

well-formed if it adheres to all the XML syntax rules. The validity of a XML document can

be detected by its XML Schema. A well-formed document is also valid if it conforms to

some XML Schema.

2.4 WSDL

Web Services Description Language (WSDL) plays an important role in the overall Web

Services Architecture. WSDL is a specification defining how to describe Web Services in a

common XML grammar and describes four critical pieces of services [9]:

1. Interface information describing all publicly available functions

2. Data type information for all message requests and message responses

3. Binding information about the transport protocol to be used

4. Address information for locating the specified service

WSDL uses eight major elements [9]:

definitions

The definitions element is the root element of all WSDL documents. It defines the name of

the Web Service and namespaces.

types

The types element is a container for data type. It defines abstract data type using XML

Schema.

message

The Message element describes a message for input or output. It contains 0 or more part

elements, which can refer to parameters or return values. Name and type are defined for

part elements.

operation

The operation element describes all functions in this Web Service. They are defined by an

exchange of message.

portType

The portType element abstractly describes a set of operations.

port

Fundamentals and Technologies

16

The port element defines an individual endpoint by specifying a single address for a

binding.

binding

The binding element defines the concrete protocol and data format for this service.

service

The service element defines the address for invoking a service. It includes a URL for

invoking the service.

2.5 SOAP

Simple Object Access Protocol (SOAP) [10] is a specification for exchanging structured

information in the implementation of Web Services and its format is based on XML. A valid

SOAP message is a well-formed XML document. There are three elements in following

Figure 7 SOAP message structure: SOAP-ENV: Envelope, SOAP-ENV: Header, and

SOAP-ENV: Body. Envelope defines the start and end of the message. Header contains

any optional attributes of the message used in processing the message. Body contains the

XML data comprising the message being sent. Among of them Envelope and Body

elements are Mandatory, Header element is optional.

Figure 7. SOAP message structure [11]

The Web Services specification includes: SOAP, UDDI and WSDL. UDDI allows clients to

discover Web Services. WSDL describes the functionality and attributes of Web Services.

Web Services interoperate through SOAP. Figure 8 gives an architectural representation

of the Web Services Model [16]. First, a service provider describes its service using WSDL.

This definition is published to a directory of services. The directory use UDDI here.

Second, a Web Service User locates a service through the directory and determines how

Fundamentals and Technologies

17

to communicate with that service. Third, part of the WSDL provided by the service provider

is passed to the service user. This tells the service user what the requests and responses

are for the service provider. Fourth, the service user uses the WSDL to send a request to

the service provider. Finally, the service provider provides the expected response to the

service user.

Figure 8. Web Services Model [16]

Concepts

18

3 Concepts

This chapter introduce different aspects of a communication system, for example,

participants, classes and means of the entire communication system. Afterwards, with the

help of these aspects, some concepts are proposed for Mail Service and Skype Service.

3.1 Participants of Communication

In this thesis the mentioned communication is the interaction between a business process

and a human user. Such communication is rather special. Today the interaction between

two processes has been widely used. Due to Web Services, this interaction uses the

principle of loose coupling and it is platform-independent and language-independent. In

contrast, the interaction with human users has not been developed so mature and has

several following problems. First, a human user can have several different contacts, for

example Mail, Skype or MSN. Then which way can a communication system choose to

contact him? Second, if the user does not respond promptly, how will the communication

system deal with this situation? Third, a response from a human user may be a variety of

errors in the content and format. How will the system check it? There are so many similar

problems that this interaction with human has the high complexity.

In a communication system there are four components: a communication initiator, the

human communication manager, communication services and human user [14].

Figure 9. Participants in communication system

1. A communication initiator

Concepts

19

A communication initiator can be an application or a service and wants to communicate

with a human user. It sends a request message to the human communication manager.

2. The human communication manager

The human communication manager establishes a communication between a

communication initiator and a communication service. It is able to do these tasks:

1) receive the request message from initiator

2) check the request message

3) choose the best communication service channel

4) send a special message to this service

5) receive the response message from communication service

6) send a response message to initiator

Figure 10. Communication participants [14]

3. Communication services

A communication service is a concrete endpoint for a selected communication channel.

For example, Mail communication channel, Skype communication channel, FTP

communication channel, Twitter communication channel. This thesis is focused on this

component.

4. Human user

Concepts

20

Human user receives a message from the communication system and sends a response

to the system.

3.2 Classes of Communication

As proposed in [17], there are at least three main classes of communication with humans:

notification, decision, and control.

3.2.1 Notification

This class of communication refers to reports sent to a user in order to inform him about a

particular status of an application, service, workflow etc. The reports may be regular status

reports, fault reports, processing completeness updates etc. A notification does not

require any response by the user.

3.2.2 Decision

This class of communication refers to sending information to a user to let him decide how

to react to a particular situation. A decision may be a simple approval/rejection, may offer

multiple choices to select from, may require specifying particular parameters, and may

require a user to check or correct certain data that cannot be checked or corrected

automatically.

3.2.3 Control

This class of communication refers to remote control of an application that can be steered

by a user. Depending on the capabilities of an application for remote control, processing

may be paused, resumed, aborted, retried in case of a fault, iterated, or skipped.

This thesis mainly focuses on two classes of communication, notification and decision. In

this work, a request which doesn’t need a response is defined as a notification request. A

request which needs a response is defined as a decision request.

3.3 Means of Communication

Different means of communication are in the communication system as different channels.

According to the different characteristics of these means, a standard to choose a channel

can be made for the component human communication manager. This thesis focuses on

two means of communication, Mail and Skype.

Concepts

21

3.3.1 Mail

Mail mentioned in this thesis refers to e-mail. It is a kind of asynchronous exchange of

information by electronic means of communication. It allows users to send or receive text,

picture and recorded voice and other forms of information. Mail system is based on

client-server model. Every mail involves the sender and receiver. By mail client, the

sender sends a message to the Simple Mail Transfer Protocol (SMTP) server. To retrieve

a mail from a remote server Post Office Protocol 3 (POP3) is used as an internet standard

protocol and makes it possible to download a message sent by any SMTP server. The

sent message is stored on the server until it is retrieved. Then the message is removed

from the server and stored on the local hard drive of a user.

The advantage of mail is not to require the recipient online, which means that it is an

asynchronous way. Communication system needs only an address from the recipient.

His disadvantage is that attachment size is limited. For example, Yahoo! Mail lets user

send mails up to 10MB in total size. This size encompasses both the message itself and

all its attachments. With Google Mail, user can send and receive messages up to 25MB in

size. This limitation can be one of the criteria for choice of the channel.

3.3.2 Skype

Skype [18] is a service for its users to communicate with each around the world over the

internet, including video and audio calls, chat (instant messaging), sending file and

conference audio calls. In our communication system we use only instant messaging and

sending file. Before user call Skype he must register, sign in and add a new contact. Then

he can send a message to this user if he is online now. This is both its advantage also its

disadvantage. Through Skype the system may receive replies in the shortest time.

3.3.3 FTP

File Transfer Protocol (FTP) is a standard network protocol used to transfer files from one

host to another host over a TCP-based network, such as the Internet. FTP is built on a

client-server architecture and uses separate control and data connections between the

client and the server. FTP users may authenticate themselves using a clear-text sign-in

protocol, normally in the form of a username and password, but can connect anonymously

if the server is configured to allow it.

3.3.4 Twitter

Twitter [19] is an online social networking service and microblogging service that enables

its users to send and read text-based posts of up to 140 characters.

Concepts

22

3.4 Mail Service

This thesis is mainly responsible for design and implementation of component

communication services. There are two subservices in this component, Mail Service and

Skype Service.

3.4.1 First Concept of Mail Service

The main function of Mail Service is to use mail to contact human and return a response to

the process. Mail Service should be able to receive a request from a running process.

According to the request message it should extract all useful information, for example, the

receiver, the subject, the mail text, an attachment and so on, then build a mail message

and use a dedicated mail address to send this mail. Following the sending, Mail Service

should determine, whether this mail needs a response. If this mail needs a response, the

process should wait for a reply until the timeout. Finally, Mail Service will return a message

to notify the process, whether the request is accepted or not.

According to the main function of Mail Service, the architecture for Mail Service can be

shown in Figure 11.

Figure 11. Architecture of first concept

In the architecture there are six components: 1) a requestor, 2) human communication

manager, 3) Mail Service, 4) administrator mail server, 5) user mail server, 6) human user.

The requestor sends a request to human communication manager, after some processing

the human communication manager calls Mail Service. Mail Service has an

administrator’s mailbox. All the messages sent by this service are sent through this

administrator’s mailbox.

There are four data files in Mail Service: configurationdata, Userlist.xml, Tasklist.xml, and

a log file.

Concepts

23

 Configurationdata: all information for administrator account, log information. For

example, administrator mail address, receive/send host, receive/send port, username

and password.

 Userlist.xml: this file stores all registered mail address.

 Tasklist.xml: this file records every task in Mail Service.

 Log file: this file is a record of everything that happens in Mail Service.

In Mail Service there are two subservices: one is to process the request, another is to

register new user.

 Register subservice: every mail address should be in Mail Service registered. The

registration method is to use the mail address to send a mail to the administrator

mailbox with a subject “register” or including a word “register”. Register subservice

checks every mail in administrator mailbox, whether this mail is a register mail or not. If

this mail is a register mail, this mail address will be added into Userlist.xml. For

unregistered address an information mail will be sent from administrator and the

human user can reply this mail to register for Mail Service. This register subservice

runs automatically.

 Process request subservice: after this subservice receives a request, a new mail will

be created and sent to the corresponding user through mail server according to this

request. If this request needs a response, the subservice will regularly receive mail

from administrator mailbox until the timeout. If this mail is replied, the reply will be

checked, whether it is valid or not. The valid reply will be as a response returned to

human communication manager.

3.4.2 Problem of First Concept

This concept has a major weakness, it is unreliable. Before Mail Service returns a

response to the requestor, the emergence of the error may cause data loss, shown in

Figure 12.

1. Example:

During the sending server is restarted. After the restart the request is lost.

2. Example:

An error has occurred in register subservice. A mail address is not registered successfully,

and the request to this mail address will be declined.

3. Example:

Concepts

24

The connection to administrator’s mail server is failed. The request is not completed, but

Mail Service can not process it again.

Mail Service

GetRequest

Human
communication

manager

ProcessMail

SendMail

Register

ReceiveMail

Administrator
Mail Server

User

Request/
Response

1

2

3

User Mail Server

Configurati-
ondata

Userlist.xml
Tasklist.xml

log

Figure 12. Data Loss

Second weakness is the independence of function modules. In process request

Subservice there are four function modules: GetRequest, SendMail, ReceiveMail, and

ProcessMail. As long as any function has problem, it will lead to the failure of the entire

subservice.

Third weakness is instability. Two subservices should always repeatedly connect the mail

server and read the content in mailbox of administrator. But the connection is instable.

Once the connection fails, the entire mail service will be in a state of paralysis.

3.4.3 Robustness

Strong robustness [20] is defined in computer science, that computer system has the

ability to cope with errors during execution or the ability of an algorithm to continue to

operate despite abnormalities in input. For interaction between process and human user a

strong robustness is very important. In communication services human users as

respondents can give any form of response. That is uncertainty. This requires that

communication system can handle all kinds of unexpected circumstances. For example,

response’s template should be flexible in order to expand the scope of validation. For a

variety of invalid reply, communication system is not terminated, but can make the

appropriate processing.

Concepts

25

3.4.4 New Concept

In order to overcome the weaknesses mentioned above, a new concept is developed and

makes improvements in the following points. The following Figure 13 is the architecture of

the new concept.

Mail Service

database

GetRequest ProcessMail

ReceiveMail

SendMail

Register

User
Mail

Server

Administrator
Mail server

User

Human
communication

manager

Request/
Response

GetResponse Configuaton
log

Inbox
table outbox

table

Figure 13. Architecture of new concept

There are two main tables in the database. One stores all requests from external and

internal, similar to the mailbox Outbox. An external request is a request sent by an

external process which wants to call Mail Service. An internal request is a request

generated by Mail Service. The other stores all mails, that the administrator receives,

similar to the mailbox Inbox. Mail Service by GetRequest subservice gets each request

from an external process and puts the request in Outbox table. SendMail subservice reads

every new request in Outbox table and according to this request sends a mail.

ReceiveMail subservice puts each new mail in Inbox table. ProcessMail subservice

processes the mail in Inbox table. Mail Service by GetResponse subservice returns a

message to the external process.

3.4.4.1 Guaranteed Delivery

In communication sender, receiver, and network connecting the two do not all have to be

working at the same time. If the network is not available, the messaging system stores the

message until the network becomes available. Likewise, if the receiver is unavailable, the

messaging system stores the message and retries delivery until the receiver becomes

available [15], shown in Figure 14.

Concepts

26

Computer 2Computer 1

Disk Disk

Sender Receiver

Figure 14. Guaranteed Delivery

Similarly in Mail Service, in order to improve reliability a database will be added in new

concept. This database stores all mails from the administrator’s mailbox, the register

information, all sent mails.

3.4.4.2 Independent subservices

GetRequest subservice is a public service, and other external services can call this

subservice in order to send a request to Mail Service. This GetRequest subservice

receives a request and stores it in database. It runs only when someone calls it.

ReceiveMail, ProcessMail, SendMail, Register as internal subservices run in parallel,

regularly and independently. They should start when the server starts. ReceiveMail stores

any new mails from administrator’s mailbox in database. SendMail sends a mail according

to a request. ProcessMail processes every mail in database. Register stores a new

registered address in database.

GetResponse subservice is a public service, and an external service can call this

subservice to query whether some request has a response or not. To specify a request an

id for the request is required and passed into GetResponse subservice as input

parameter.

3.4.4.3 Stability

In order to improve stability, only two subservices have to connect with mail server. They

are SendMail and ReceiveMail. Other subservices only need to connect with database to

read and write data. The Connection with database is more stable than the connection

with mail server.

Concepts

27

3.4.5 Database Concept

In the new concept a database is a primary storage. All requests and mails from mail

server will be stored in this database. This approach is to enhance the reliability and

shorten the time for data processing. As public storage this database must provide all

appropriate data for every subservice.

GetRequest subservice

An external process calls GetRequest subservice to send a request, so GetRequest

subservice should store every received valid request in database and return a message

for this request to the process.

Register subservice

Register subservice should store information of every registered mail in database.

ReceiveMail, SendMail, ProcessMail subservices

Similar to the mail account for these three subservices the database should provide all

information of every mail in inbox and in outbox. In order to identify one mail every mail

must have a unique identifier.

GetResponse subservice

GetResponse subservice extracts a response for a request from the database. To specify

a request a unique identifier for the request will be passed into GetResponse subservice

as input parameter.

3.4.6 Classes of Mails

In inbox of mail account all mails can be divided into three types: register mails, response

mails, and other mails. The other mails are generally advertising mails from this mail

account provider and these mails make no sense for Mail Service. In outbox of the mail

account every mail is a request mail. Based on the above analysis there are five classes of

mail in mail service:

 NOTIFICATION: One mail that belongs to this class is a mail sent from the

administrator.

 REGISTER: One mail that belongs to this class is a register mail from a new user.

 REQUEST: One mail that belongs to this class is a request from the process.

 RESPONSE: One mail that belongs to this class is a response.

 UNKNOWN: All mails that do not belong to other three classes. They are generally

advertising mails.

Concepts

28

3.4.7 Mail States

State diagrams [21] are used to give an abstract description of the behaviour of a system.

This behaviour is analyzed and represented in series of events that could occur in one or

more possible states. Figure 15 is a state diagram for Mail Service.

Figure 15. State diagram of Mail Service

7 different states are defined for Mail Service: NEW, SENT, AWAIT_REPLY, REPLIED,

FINISHED, FAILED, TIMEOUT. Among them, NEW is a start state, and FINISHED,

FAILED, TIMEOUT are end states

Whether it is in the Inbox or Outbox, first all mails will be stored as a new mail [NEW].

Then a new mail will be determined, which class of mail it is, REGISTER, REQUEST or

RESPONSE. After registration processing register mail is complete [FINISHED]. If it is a

response mail, it may be a valid response, or it may be an invalid response. So its next

status may be two states, completely processed [FINISHED] or failed [FAILED]. If it is a

request mail, this request is sent out first [SENT], and then is determined whether it needs

to wait for a response, if necessary [AWAIT_REPLY], the corresponding response must

be handled within certain time limits[REPLIED]. If no response is received within the time

limit, this request will be judged to be timeout [TIMEOUT]. Error will result in processing

incomplete [FAILED].

Concepts

29

3.5 Skype Service

In this work Skype Service has not been completely implemented and it is written as a

concept in this chapter. An external process can call Skype Service to send a text

message or a file to a human user. Skype Service checks a request, whether it needs a

response or not and return a valid response to the external process.

The concept for Skype Service is very similar to the concept for Mail Service. Figure 16

illustrate the components in the architecture of Skype Service. There are database,

configuration data, GetRequest, ProcessMessage, ReceiveMessage, SendMessage,

GetResponse and Register. Every message has seven different states: NEW, SENT,

AWAIT_REPLY, REPLIED, FINISHED, FAILED, TIMEOUT. Among them, NEW is a start

state, and FINISHED, FAILED, TIMEOUT are end states. There are three classes of the

received messages: RESPONSE, REGISTER, UNKNOWN.

Some tables will be created in the database to store dates for different themes, for

example, a table for all sent text message, a table for all sent file, a table for all received

text message, a table for all received file, and a table for Skype username of all register.

GetRequest gets a request from an external process, checks the validation of this request

and puts the valid request in the database. ProcessMessage, ReceiveMessage,

SendMessage, Register runs in parallel in the background. They get the dates only from

the database and are independent each other. The external process can call

GetResponse to query, whether Skype Service has received a valid response for some

request.

Figure 16. Skype Service architecture

There are several new points for Skype Service:

For Skype Service application Skype is required and must be started and log in with

administrator account before Skype Service runs.

Concepts

30

To send a message to someone via Skype the username of the recipient must be added

into the administrator’s contact list before.

In a mail text and file can be sent at the same time. But in Skype a message to be sent is

either a text or a file at the same time.

All contacts of administrator’s contacts list have different state, for example, online, away,

Do Not Disturb. If a contact is online, the communication with this contact may be

synchronous. Compared to mail system asynchronous communication is one of the most

significant features.

Specifications

31

4 Specifications

Before the implementation starts, the specifications for interface parameter of Mail Service

and Skype Service and configuration dates will be determined in this chapter.

4.1 Interface Parameters

4.1.1 Mail Service

An external process can call GetRequest subservice to send a request. For a mail request

some parameters are required. For example, address of recipient, subject, content and

attachments. In addition, three parameters for a response are also required. One indicates,

whether the request requires a response or not (parameter response). The other defines

the time limit for replying (parameter timeout). The third is the template of a response

(parameter responseTemplate).

According to the above mentioned, 7 parameters will be defined as interface parameters

in GetRequest subservice shown in Figure 17: recipient, subject, message, attachments,

timeout, response, responseTemplate. Among them parameter response indicates,

whether the request requires a response or not. It has two value “yes” or “no”.

Figure 17. Input parameters for GetRequest subservice in Mail Service

As return value a string should be returned to notify, whether calling Mail Service is

successful or not, shown in Figure 18.

Specifications

32

Figure 18. Output parameter for GetRequest subservice in Mail Service

4.1.2 Skype Service

SkypeGetRequest subservice in Skype Service is an interface to the external. It is

responsible for getting a request from an external process which sends a request to Skype

Service. To send a message via Skype Skype id and text are required. Similar to the

above input definition of Mail Service parameter response, timeout and responseTemplate

are also required. Because Skype sends either a text message or a file at the same time, a

parameter messageType is required to indicate the type of a message, a text message or

file. Figure 19 shows the definition of input parameters for Skype Service. Output

parameter for Skype Service has the same structure of Mail Service in Figure 18.

Figure 19. Input parameters for SkypeGetRequest subservice in Skype Service

4.2 Configuration

File configuration.conf is a list of configurationsarguments. After these arguments in this

file are set, they are in the entire communication service fixed. Every time the service is

called, these arguments will be read from this file.

Table 1 lists the arguments for Logging of Mail Service.

Argument Description

GetRequestLogFilePath location of logfile for GetRequest subservice

ReceiveMailLogFilePath location of logfile for ReceiveMail subservice

SendMailLogFilePath location of logfile for SendMail subservice

Specifications

33

RegisterLogFilePath location of logfile for Register subservice

ProcessMailLogFilePath location of logfile for ProcessMail subservice

MailLayout format for the output of an appender

MailLogFileSize size of logfile

MailMaxBackupIndex limit number of backups

MailAppender an output destination

MailPattern message format

Table 1. Arguments for Logging of Mail Service in configuration.conf

Table 2 lists the arguments for Administrator’s account of Mail Service.

Argument Description

MailAddress address of Administrator’s account

ReceiveHost host for receiving a mail

ReceivePort port for receiving a mail

SendHost host for sending a mail

SendPort port for sending a mail

Username username of administrator’s mailbox

Password password of administrator’s mailbox

Table 2. Arguments for Administrator's account of Mail Service in configuration.conf

Table 3 lists the arguments for the Mail Service database in configuration.conf.

Argument Description

db_username username of database

db_password password of database

db_url url of database

db_table_mailbox tablename

db_table_sentmails tablename

db_table_mailattachments tablename

Specifications

34

db_table_mailregister tablename

Table 3. Arguments for the Mail Service database in configuration.conf

Table 4 lists the argument for saving attachments of Mail Service.

Argument Description

AttPath location to save the attachments

Table 4. Argument for saving attachments of Mail Service

Table 5 lists the arguments for Administrator’s account of Skype Service.

Argument Description

skype_username username of Skype application

skype_password password

Table 5. Arguments for Administrator's account of Skype Service in configuration.conf

Table 6 lists the arguments for Logging of Skype Service.

Argument Description

SkypeGetRequestLogFilePath location of logfile for SkypeGetRequest subservice

ReceiveMessageLogFilePath location of logfile for ReceiveMessage subservice

SendMessageLogFilePath location of logfile for SendMessage subservice

SkypeRegisterLogFilePath location of logfile for Register subservice

ProcessMessageLogFilePath location of logfile for ProcessMessage subservice

SkypeLayout format for the output of an appender

SkypeLogFileSize size of logfile

SkypeMaxBackupIndex limit number of backups

SkypeAppender an output destination

SkypePattern message format

Table 6. Arguments for Logging of Skype Service in configuration.conf

Table 7 lists the arguments for the Skype Service database in configuration.conf, i.e. the

information of connecting to the database.

Specifications

35

Argument Description

skydb_username username of database

skydb_password password of database

skydb_url url of database

skydb_table_register tablename

skydb_table_senttextmessage tablename

skydb_table_sentfilemessage tablename

skydb_table_receivedtextmessage tablename

skydb_table_receivedfilemessage tablename

Table 7. Arguments for the Skype Service database in configuration.conf

Implementation

36

5 Implementation

This chapter describes all components in Mail Service and Skype Service that have been

implemented. Bottom-up approach is used to develop Web Services. First a component

level is explained – which components exist. Then the internal structure of each

component is described. Afterwards, the corresponding Java classes are described.

5.1 Components Overview

Communication services have two channels, Mail Service and Skype Service. The two

services are independent of each other. Database provides a stable and secure source of

data for two services. All data will be stored in the database and read from it. File

configuration.conf is an external data. It provides arguments to connect to the database,

set properties of log files and read administrator’s data. This file can be modified later.

Figure 20 shows the components of communication services.

Communication Services

Mail
Service

Skype
Service

configurationDatabase

Figure 20. Components in communication service

5.2 Database MySQL

In order to improve service reliability and data security, database design is required. In

this thesis MySQL will be used.

Implementation

37

MySQL is a database management system that is particularly well suited for use to the

Internet. It is relatively fast and reliable. The data can be managed using the internal SQL

command set. It is multi-user and multi-tasking capability, and handles large amounts of

data quickly and is relatively stable. MySQL is included in databases, tables and auxiliary

data. There are also tools for editing the data. MySQL also has a set of instructions, which

is similar to the standard database query language SQL. MySQL can also be as

open-source distribution from the Internet and used accordingly.

Specific information of MySQL:

 MySQL Server 5.5 – database server

 MySQL Workbench 5.2 – tool for manage the database

Before using MySQL with the plan, an account must be set up.

 Username: root

 Password: root

5.2.1 Database in Mail Service

For Mail Service database “maildb” is created. Figure 21 shows five tables in maildb

database.

Figure 21. Five tables in database maildb

Implementation

38

1) maildb.sentmails

This table stores request data from a business process, which calls Mail Service. A

request requires a unique identifier for Mail Service, the recipient’s address, the

subject of mail, the context of mail, the information, whether this mail needs a

response, the class of mail, the state of mail. There is also optional information: the

sender’s address; if this mail needs a response, which form the response should have;

the timeout, the current system time, when this mail will be sent by Mail Service.

Column Name Datatype value Description

mail_id VARCHAR(45) UUID unique identifier

mail_to VARCHAR(45) mail address recipient’s address

mail_from VARCHAR(45) mail address sender’s address

mail_subject VARCHAR(200) string subject of mail

mail_message TEXT string context of mail

mail_sentDate DATETIME YYYY-MM-DD
hh:mm:ss

time, when this mail
will be sent

mail_response VARCHAR(45) yes or no whether this mail
needs a response

mail_response_pattern LONGTEXT xml schema form of response

mail_timeout DATETIME tt:hh:mm:ss,
(00:10:15:00 means
10 hours 15 minutes
time limit)

time limit

mail_class VARCHAR(45) NOTIFICATION,

REQUEST,

RESPONSE,

REGISTER,

UNKNOWN

class of mail

mail_state VARCHAR(45) NEW, SENT,

AWAIT_REPLY,

REPLIED,

FAILED,

TIMEOUT,

FINISHED

state of mail

Table 8. Definition of table sentmails

Implementation

39

2) maildb.mailbox

All mails in the inbox of the administrator’s mail box will be imported into this table.

Column Name Datatype Value Description

mail_id VARCHAR(45) UUID unique identifier

mail_replyid VARCHAR(45) UUID unique identifier of
request

mail_receivedDate TIMESTAMP YYYY-MM-DD
hh:mm:ss

when this mail has
been received

mail_from VARCHAR(45) mail address sender’s address

mail_from_username VARCHAR(45) string registered username

mail_to VARCHAR(45) mail address recipient’s address

mail_subject VARCHAR(200) string subject of mail

mail_message LONGTEXT XML context of mail

mail_class VARCHAR(45) NOTIFICATION

RESPONSE

REGISTER

UNKNOWN

class of mail

mail_state VARCHAR(45) NEW

SENT

AWAIT_REPLY

REPLIED

FAILED

TIMEOUT

state of mail

Table 9. Definition of table mailbox

3) maildb.mailregister

This table mailregister saves mail address and username. After register Mail Service

can send a mail to this address. So every new mail address must be registered by

sending a mail containing the word “register” in its subject or replying a register

request from Mail Service. The username and mail address will be extracted from his

mail.

Implementation

40

Column Name Datatype Description

id INT(11) own id

mailaddress VARCHAR(45)

username VARCHAR(45)

Table 10. Defintion of table mailregister

4) maildb.mailattachments

This mailattachments table manages all attachments of mails in Mail Service. Each

attachment record has own id, from which mail, filename and content.

Column Name Datatype Description

id INT(11) own id

mail_id VARCHAR(45) point to his mail

filename VARCHAR(100)

content MEDIUMBLOB

Table 11. Defintion of table attachments

5) maildb.commserv_ad_gmx_de

The purpose of this table is to judge, whether a mail in the mailbox is a new mail.

POP3 supports no permanent flags. In particular, the Flags.Flag.RECENT flag will

never be set for POP3 message. This is one drawback of POP3 Server. It is up to

determine which messages in a POP3 mailbox are “new”. There are several strategies

to accomplish this, depending on the needs of the application and the environment

[22]:

 A simple approach would be to keep track of the newest message seen by the

application.

 An alternative would be to keep track of the unique identifiers (UIDs) of all messages

that have been seen.

 Another approach is to download all messages into a local mailbox, so that all

messages in the POP3 mailbox are, by definition, new.

A unique identifier (UID) [23] is an arbitrary server-determined string, consisting of one to

70 characters in the range 0x21 to 0x7E, which uniquely identifies a message within a mail

drop and which persists across sessions.

Implementation

41

Column Name Datatype Description

id INT(11)

pop3_uid VARCHAR(45)

Table 12. Definition of table commserv_ad_gmx_de

5.2.2 MySQLAccess in Mail Service

This Java class is responsible for connecting and disconnecting to the database maildb. It

is placed in following Java package:

 de.unistuttgart.iaas.interaction.mail.database

MySQL offers standard database driver connectivity for using MySQL with applications

and tools that are compatible with industry standards ODBC and JDBC [24]. To connect

to MySQL in Java Program MySQL Connector/J driver is required. It is the official JDBC

driver for MySQL.

The file name of the MySQL Connector/J driver is

 mysql-connector-java-5.1.18-bin.jar

The Path is added into the classpath and the connection url must be changed.

 url=jdbc:mysql://localhost/maildb

This class offers two functions:

1) Connect to the database and return an interface object Connection.

2) Disconnect to the databse.

Function1 is implemented by the public method connDataBase. It takes the data from

configuration.conf. First it loads driver class by the method Class.forName(String driver)
(line 4). Then it establishes a connection to specified database URL (line 5). After the

connection is established, all tables for subservices must be checked. If the tables do not

exist in this database, they must be created (line 6- 17). Finally this connection is returned

(line 31). The method, that does this, is shown in Listing 3.

Implementation

42

Listing 3. Database connection method

The input variable config is defined in class ConfigFileHandler. It reads full information

from the file configuration.conf. In Listing 4 all arguments in the file configuration.conf are

listed (line 8-27).

1. public Connection connDataBase(ConfigFileHandler config) throws Exception{
2. …
3. try{
4. Class.forName("com.mysql.jdbc.Driver");
5. connect=DriverManager.getConnection(db_url, db_username,db_password);
6. String table1Sql = "create table if not exists maildb."+table_mailbox…
7. String table2Sql = "create table if not exists maildb."+ table_sentmails…
8. String table3Sql = "create table if not exists maildb."+ table_attachments…
9. String table4Sql = "create table if not exists maildb."+ table_mailids…
10. String table5Sql = "create table if not exists maildb."+ table_register…
11. if(connect!=null){
12. statement = connect.createStatement();
13. statement.executeUpdate(table1Sql);
14. statement.executeUpdate(table2Sql);
15. statement.executeUpdate(table3Sql);
16. statement.executeUpdate(table4Sql);
17. statement.executeUpdate(table5Sql);
18. }else{
19. logger.error("No database.");
20. System.out.println("No database.");
21. }
22. }catch(ClassNotFoundException e){
23. Session session = AdminConnector.SendConnector(config);
24. ErrorHandler.sendErrorMessageForConnDB(session, config, e);
25. logger.error("Failed to load the MySQL drive");
26. }catch (SQLException e1) {
27. Session session = AdminConnector.SendConnector(config);
28. ErrorHandler.sendErrorMessageForSQL(session, config, e1);
29. logger.error("Failed to connect database.");
30. }
31. return connect;
32. }

Implementation

43

Listing 4. Arguments in configuration.conf are listed in class ConfigFileHandler

Function 2 is implemented by another public method close. It closes object resultSet,

statement and connection. The method, that does this, is shown in Listing 5.

Listing 5. Database close() methode

5.2.3 Database in Skype Service

For Skype Service database “skydb” and five tables are created.

1. public void close() {
2. try {
3. if (resultSet != null) {
4. resultSet.close();
5. }
6. if (statement != null) {
7. statement.close();
8. }
9. if (connect != null) {
10. connect.close();
11. }
12. } catch (Exception e) {
13. }

1. public class ConfigFileHandler
2. {
3. protected String strFile = "";
4. FileInputStream propInFile = null;
5. public Properties propConfig = new Properties();
6. private static Logger logger =
7. Loger.getLogger(ConfigFileHandler.class);
8. static String MailAddress = "MailAddress";
9. static String RecieveHost = "RecieveHost";
10. static String RecievePort = "RecievePort";
11. static String SendHost = "SendHost";
12. static String SendPort = "SendPort";
13. static String Username = "Username";
14. static String Password = "Password";
15. static String AttPath = "AttPath";
16. static String db_username ="db_username";
17. static String db_password ="db_password";
18. static String db_url = "db_url";
19. static String db_table_mailbox = "db_table_mailbox";
20. static String db_table_sentmails = "db_table_sentmails";
21. static String db_table_mailattachments = "db_table_mailattachments";
22. static String db_table_mailregister = "db_table_mailregister";
23. static String xsdHeader = "xsdHeader";
24. static String xsdFoot = "xsdFoot";
25. static String xmlHeader = "xmlHeader";
26. static String xmlFoot = "xmlFoot";
27. static String tag = "tag";
28. …}

Implementation

44

1) skydb.register

This table register saves id and username of a Skype user. After register Skype

Service can send a message to this Skype user.

Column Name Datatype Description

idregister INT(11) own id

skype_username VARCHAR(45) Skype id

name VARCHAR(45) Skype username

Table 13. Defintion of table skydb.register

2) skydb.senttextmessage

This table saves all requests which want to send a text message to a Skype user. This

text message will be stored as a string.

Column Name Datatype Description

id VARCHAR(45) UUID

to_username VARCHAR(45) Skype id of recipient

from_username VARCHAR(45) Skype id of Administrator

textMessage LONGTEXT content of message

sentDate DATETIME time, when this message will
be sent

reply VARCHAR(45) whether this request needs a
response

responsePattern LONGTEXT form of response

timeout DATETIME time limit

state VARCHAR(45) state of message

Table 14. Definition of table skydb.senttextmessage

3) skydb.sentfilemessage

This table saves all requests which want to send a file message to a Skype user.

Column Name Datatype Description

id VARCHAR(45) UUID

to_username VARCHAR(45) Skype id of recipient

Implementation

45

from_username VARCHAR(45) Skype id of Administrator

fileMessage BLOB content of message

sentDate DATETIME time, when this message has
been received

reply VARCHAR(45) whether this request needs a
response

responsePattern LONGTEXT form of response

timeout DATETIME time limit

state VARCHAR(45) state of message

Table 15. Definition of table skydb.sentfilemessage

4) skydb.receivedtextmessage

This table saves all text messages which are received by administrator’s Skype client.

Column Name Datatype Description

id VARCHAR(45) UUID

requestId VARCHAR(45) UUID of the request

from_username VARCHAR(45) Skype id of Administrator

textMessage LONGTEXT content of message

receivedDate DATETIME time, when this mail will be
sent

class VARCHAR(45) class of message

state VARCHAR(45) state of message

Table 16. Definition of table skydb.receivedtextmessage

5) skydb.receivedfilemessage

This table saves all files which are received by administrator’s Skype client.

Column Name Datatype Description

id VARCHAR(45) UUID

requestId VARCHAR(45) UUID of the request

from_username VARCHAR(45) Skype id of Administrator

Implementation

46

fileMessage LONGTEXT content of message

filename VARCHAR(45) name of the file

receivedDate DATETIME the time, when this message
has been received.

class VARCHAR(45) class of message

state VARCHAR(45) state of message

Table 17. Definition of table skydb.receivedfilemessage

5.2.4 MySQLAccess in Skype Service

This Java class is responsible for connecting and disconnecting to the database skydb. It

is placed in following Java package:

 de.unistuttgart.iaas.interaction.skype.database

The Path is added into the classpath and the connection url must be changed.

 url=jdbc:mysql://localhost/skydb

This class also offers two functions:

1) Connect to the database and return an interface object Connection.

2) Disconnect to the databse.

5.3 Mail Service

Mail Service consists of multiple subservices. Each will be described in this chapter.

Figure 22 shows the components diagram from Mail Service.

Implementation

47

Figure 22. Components diagram for Mail Service

5.3.1 Apache Axis2

Apache Axis2 [27] is a Web Services/ SOAP/ WSDL engine, which is present with

program languages Java and C and it is supported by Apache-Licence 2.0. It is the

successor to the widely used Apache Axis SOAP stack. The W3C specifications have

been realized for Axis2, for example, WS-Addressing, WS-ReliableMessaging,

WS-MetadataExchange, WS-Policy, WS-AtomicTransaction and WS-Security.

A tool in Axis2 is Java2WSDL, which reads a java class and generates a WSDL for invoking

the class methods as a Web Service. This is known as Bottom-Up approach to Web

Service development.

5.3.2 JavaMail API

Mail Service in this thesis uses JavaMail API [28]. This API is used to receive and send

mail via SMTP, POP3 and IMAP. Through the JavaMail API these mailing functionalities

can be added to a Java application. The JavaMail API provides a platform-independent

and protocol-independent framework to build mail and messaging applications.

5.3.3 GetRequest Service

This subservice’s main purpose is to get a request from a business process, check the

validity and save it in the table maildb.sentmails. It is placed in following Java package:

 de.unistuttgart.iaas.interaction.mail.services

Main function is implemented by the public and static method getRequest. Figure 23

shows the function of GetRequest service step by step.

Implementation

48

Figure 23. Flow Diagram for GetRequest

GetRequest service takes a list of input variables and checks the validity of a request.

After some transformations it saves a valid request in the database, table

maildb.sentmails.

Request validity is defined as follows:

1) recipient, subject, message, response can not be null.

2) Format for timeout is 00:00:00:00. The first number from the left means days; the

second number means hours; the third number means minutes and the last number

means seconds. For example 00:10:05:00 represents that time limit is 10 hours and 5

minutes. Timeout can be null.

3) If the value response is yes, responseTemplate can be not null.

All requests in line with the above conditions are valid for Mail Service. Mail Service will

generate a universally unique identifier (UUID) for each valid request. This UUID will be

Implementation

49

stored in the database table maildb.sentmails as mail_id. Then some transformations

must be done to meet the structure of the database table. In Table 18 timeout and

responseTemplate must be transformed. The transformation from timeout to

mail_timeout is simple, for instance, current time is 2012-05-03 13:00:56 and the value of

timeout is 00:03:05:00, then the value mail_timeout is 2012-05-03 16:05:56.

Input variable Field in the table

maildb.sentmails

Transformation

recipient mail_to the same value

subject mail_subject the same value

message mail_message the same value

timeout mail_timeout current time + timeout

response mail_response the same value

responseTemplate mail_response_pattern convert into Xml Schema

Table 18. Input variable transformations

The transformation from responseTemplate to mail_response_pattern is a

transformation from XML format to XML Schema format. This function implemented by the

public and static method getResponseTemplate. It takes the context of

responseTemplate and finally returns a string which context is based on XML Schema.

The context of responseTemplate is respresented by a string, which is based on xml

format. It contains four tags, <wsResponse>, <name>, <type>, <enumeration>, <min>,

<max>. For multiple questions in a request each question must be named. This name is

the correlation between question and its answer. An answer can be an integer or a string.

It can be enumerated. If it is an integer, his range can be set. Listing 6 is an instance of

responseTemplate. This instance contains two templates of two answers. One is for the

question with the name “question”. This answer is a natural number between 1 and 10.

The other is for the question with the name “question2”. This answer is a string, either yes

or no.

Implementation

50

Listing 6. An instance of responseTemplate

The transformation function is implemented by the public and static method

getResponseTemplate. It is placed in following Java package and class:

de.unistuttgart.iaas.interaction.mail.util

and

CommonTools.java

After the transformation a piece of XML Schema code will be generated. Listing 7 is the

XML Schema code corresponding the above responseTemplate instance in Listing 6.

GetRequest service set the felds mail_class and mail_state in the maildb.sentmails for

a request as fixed value, REQUEST and NEW. If a request has an attachment, then the

UUID, the name and the content of attachment will be stored in the database table

maildb.attachments.

Once a request is stored in the database maildb.sentmails, another service SendMail

service can process this request.

1. <ser:responseTemplate>
2. <wsResponse>
3. <name>question1</name>
4. <type>integer</type>
5. <enumeration/>
6. <min>1</min>
7. <max>10</max>
8. </wsResponse>
9. <wsResponse>
10. <name>question2</name>
11. <type>string</type>
12. <enumeration>yes|no</enumeration>
13. <min/>
14. <max/>
15. </wsResponse>
16. </ser:responseTemplate>

Implementation

51

Listing 7. Xml Schema code for response template

5.3.4 SendMail Service

This subservice selects all requests with mail_state=NEW in the database table

maildb.sentmails and according to a selected request SendMail service sends a mail by

the administrator’ mailbox. It is placed in following Java package:

de.unistuttgart.iaas.interaction.mail

1. <element name='response'>
2. <complexType>
3. <sequence>
4. <element name='question1' type='tns:question1'/>
5. <element name='question2' type='tns:question2'/>
6. </sequence>
7. </complexType>
8. </element>
9. <simpleType name='question1'>
10. <restriction base='integer'>
11. <minInclusive value='0'></minInclusive>
12. <maxInclusive value='10'></maxInclusive>
13. </restriction>
14. </simpleType>
15. <simpleType name='question2'>
16. <restriction base='string'>
17. <enumeration value='yes'></enumeration>
18. <enumeration value='no'></enumeration>
19. </restriction>
20. </simpleType>

Implementation

52

Figure 24. Flow Diagram for SendMail

Main function is implemented by the public and static method sendMail. Figure 24 shows

the function of SendMail service step by step.

It connects the database, selects each new request in the database table

maildb.sentmails and according to this request set all required arguments for a message

object to send a mail. Listing 8 is a series of data processing in SendMail service. As the

correlation between request mail and response mail mail_id is added in the subject of

message (line 3). By transformation a response format is generated. This transformation is

implemented by the public and static method xsdToXml. It takes the content of field

mail_response_pattern and transforms it to the xml formatted string (line 8-9). Then this

string will be added in the body of mail (line 20-22). Listing 9 is a response instance

according to the above response template. Later when the recipient replies to the mail,

with this format he just has a slight modification and then he can make an accurate

response.

Implementation

53

Listing 8. Data process in SendMail service

Listing 9. A response instance

The attachment processing is shown in Listing 10. If a request has no attachment, then

only the corresponding message text will be set. If a request has some attachments, then

a MimeBodyPart object will be created and the message text will be set (line 4-25).

<response>
<tns:question1>[1-0(integer)]</tns:question1>
<tns:question2>yes|no</tns:question2>
</response>

1. mail_id = (String)sentmail.get(0);
2. mail_to = (String)sentmail.get(1);
3. mail_subject = (String)sentmail.get(3)+" Mail-ID:"+mail_id;
4. mail_message = (String)sentmail.get(4)+"\n";
5. mail_response = (String)sentmail.get(6);
6. mail_responseTemplate = (String)sentmail.get(7);
7. if(!mail_responseTemplate.equals("")){
8. mail_responseTemplate=
9. CommonTools.xsdToXml(config,mail_responseTemplate);
10. }
11. Statement usernameStatement = conn.createStatement();
12. ResultSet usernameResultset = usernameStatement.executeQuery(
13. "select username from maildb." + config.getTable_mailregister()+
14. " where mailaddress='"+mail_to +"'");
15. if(usernameResultset.next()){
16. mail_message="Hello "+usernameResultset.getString("username")+
17. ",\n"+mail_message;
18. }
19. if(mail_response.equalsIgnoreCase("yes")){
20. mail_message = mail_message+"\n\n Requested result for
21. mat:\n"+mail_responseTemplate+"\n You can modify this format
22. and copy it in your reply.";
23. }
24. msg.setFrom(new InternetAddress(config.getMailAddress()));
25. msg.setRecipients(Message.RecipientType.TO,
26. InternetAddress.parse(mail_to, false));
27. msg.setSubject(mail_subject);
28. msg.setText(mail_message);

Implementation

54

Listing 10. Add an attachment in a mail

5.3.5 ReceiveMail Service

This subservice’s main purpose is to receive new mails from administrator’s mail account.

It is placed in following Java package:

 de.unistuttgart.iaas.interaction.mail

Main function is implemented by the public and static method receiveMail. The flow

diagram depicted in Figure 25 shows the function of ReceiveMail service step by step.

1. if(list_attId.size()!= 0)
2. {
3. //create the message part
4. MimeBodyPart messageBodyPart = new MimeBodyPart();
5. messageBodyPart.setText(mail_message);
6. Multipart multipart = new MimeMultipart();
7. multipart.addBodyPart(messageBodyPart);
8. for(int k=0;k<ii;k++)
9. {
10. String attId = (String) list_attId.get(k);
11. Statement sendStatement3 = conn.createStatement();
12. ResultSet rsAtt = sendStatement3.executeQuery("select * from maildb."
13. + config.getTable_mailattachments()+" where id='" + attId +"'");
14. while(rsAtt.next()){
15. filename=rsAtt.getString("filename");
16. file = rsAtt.getBlob("content");
17. CommonTools.saveFile(config.getAttPath()+filename, file);
18. messageBodyPart = new MimeBodyPart();
19. DataSource fileDataSource =
20. new FileDataSource(config.getAttPath()+filename);
21. messageBodyPart.setDataHandler(new DataHandler(fileDataSource));
22. messageBodyPart.setFileName(filename);
23. multipart.addBodyPart(messageBodyPart);
24. msg.setContent(multipart);
25. }
26. }

Implementation

55

Figure 25. Flow Diagram for ReceiveMail

The main problem is how to determine that a mail in the administrator’s mail account is a

new mail. For each mail in administrator’s mailbox there is a UID. For this mailbox this

UID is unique and is saved in a relevant database table. By the method getUID in Listing

11 a UID can be read. In this work the table’s name is maildb.commserv_ad_gmx_de. All

UIDs are saved in this table.

Listing 11. Method getUID()

Before saving a mail in the database its UID will be read and compared to each UID in the

table maildb.commserv_ad_gmx_de. If this UID exists already in this table, then the mail

related to this UID is not a new mail for Mail Service. If this UID does not exist in this table,

then the mail is a new mail. This mail will be saved in the database by following a few

steps:

String uid = ((POP3Folder) folder).getUID(msgs[i]);

Implementation

56

1) Get one mail object. This object is a message object.

2) Get information from this mail object, for example, sender, recipient, subject and

context.

3) Set mail_class by the method mailClassIdentifier. This method determines the

class of a mail. Each mail belongs to a class, for example, NOTIFICATION, REQUEST,

RESPONSE and UNKNOWN. A NOTIFICATION mail is from the administrator and

needs no response. This mail is finished after sending it. A REQUEST mail is got by

GetRequest Service. A RESPONSE mail is a mail starting with a string ”RE:” or “AW:”

and containing a UUID in subject. An UNKNOWN mail is a mail which does not belong

to the above three classes.

4) Generate a UUID for this mail, set mail_id

5) Set mail_receivedDate by the method getSentDate(),

6) Set mail_state as NEW

7) Check whether this mail has attachments. If there is no attachment, put all dates in the

database. If there are some attachments, first put the name of each attachment and

the content of it in the database table maildb.mailattachements, then put all dates for

this mail in the database table maildb.mailbox.

5.3.6 ProcessMail Service

This subservice’s main purpose is to process each mail in the table maildb.sentmails. It is

placed in following Java package:

 de.unistuttgart.iaas.interaction.mail

Implementation

57

Figure 26. Flow Diagram for ProcessMail

Main function is implemented by the public and static method ProcessMail. Figure 26

shows the function of ProcessMail service step by step.

This method processes the mails with “SENT”, “AWAIT_REPLY” or “REPLIED” state.

Each mail has a status indicator mail_state in the database and the content of this

indicator changes at some time. For example, when GetRequest service gets a request

from an external process and stores this request in the database, at this time mail_state

is set as NEW. SendMail service chooses the mails with NEW state in the table

maildb.sentmails and processes these mails. If these mails are sent successfully, the

states of them are set as SENT. If an error occurs during the sending, then the states of

this mail is set as FAILED. In Listing 12 there are three different methods for three different

states:

Implementation

58

Listing 12. According to mail_state ProcessMail calls the different submethods:

ProcessSentMail, ProcessAwaitReplyMail, ProcessRepliedMail

 Method ProcessSentMail (line 3)

It has two input variables: config and mail. Variable config is ConfigFileHandler and by

this object all information in the file configuration.conf can be read. Variable mail is an

ArrayList, which contains all dates of the mail with the state SENT in the database.

One element in ArrrayList is mail_response. If the value of mail_response is no, this

means that this mail is a notification and does not need a response. Then the mail_state

of this mail in the database will be set as FINISHED. If the value is yes, this means that

this mail waits for a response. Then the mail_state in the database will be set as

AWAIT_REPLY. Finally the method ProcessAwaitReplyMail will be called to process

this mail.

 Method ProcessAwaitReplyMail (line 6)

It has two input variables: config and mail. Variable config is described above. Variable

mail is an ArrayList, which contains the dates of the mail with the state AWAIT_REPLY

in the database.

One element in ArrayList is mail_id. According to this id method

ProcessAwaitReplyMail looks for a response in the table maildb.mailbox, which is a

response for the input mail. If such response exists in the database and it received in the

time limit, then the mail_state in the database will be set as REPLIED. If this response is

timeout, then the mail_state will be set as TIMEOUT.

 Method ProcessRepliedMail (line 9)

It has also two input variables: config and mail. Variable mail is an ArrayList, which

contains the dates of the mail with the state REPLIED in the database.

The main function of this method is to check the validation for a response. This function is

implemented by a public and static method isValidResponse in Listing 13. This method

1. if(mail_state.equalsIgnoreCase("SENT"))
2. {
3. ProcessSentMail(config,mail);
4. }else if(mail_state.equalsIgnoreCase("AWAIT_REPLY"))
5. {
6. ProcessAwaitReplyMail(config,mail);
7. }else if(mail_state.equalsIgnoreCase("REPLIED"))
8. {
9. ProcessRepliedMail(config, mail);
10. }else{
11. }

Implementation

59

use javax.xml.validation API. The javax.xml.validation API uses three classes to

validate documents: SchemaFactory, Schema, and Validator. SchemaFactory reads the

schema document from which it creates a Schema object (line 11). The Schema object

creates a Validator object (line 12). Finally, the Validator object validates an XML

document represented as a Source (line 14). To check the Validation these two strings

must be transformed into two well-defined XML documents (line 4 and line 5). If a Source

is invalid, the validate() method throws a Exception and returns “false” (line 17-20).

Otherwise, it returns “true” (line 16).

Listing 13. Method isValidResponse()

5.3.7 Register Service

This subservice’s main purpose is to add every new user as registered user in Mail

Service. It is placed in following Java package:

 de.unistuttgart.iaas.interaction.mail

Main function is implemented by the public and static method register. Each recipient in

a request must be a registered user in Mail Service. The table maildb.mailregister saves

the address and username of each registered user. If the recipient in a request is invalid

user for Mail Service, then Mail Service builds an internal request. This request is to send

a register mail from the administrator’s mailbox to this recipient, and ask the recipient to

reply this register mail. The content of this reply is not required. The most important is the

subject containing a word “register”. ReceiveMail service puts the mail with

mail_class=REGISTER and mail_state=NEW in the database table maildb.mailbox.

1. public static boolean isValidResponse(ConfigFileHandler config,
2. String xmlStr, String xsdStr){
3. boolean isValidResponse = false;
4. xmlStr = config.getXmlHeader()+xmlStr+config.getXmlFoot();
5. xsdStr = config.getXsdHeader()+xsdStr + config.getXsdFoot();
6. SchemaFactory factory = SchemaFactory.newInstance(SCHEMA_LANGUAGE);
7. Reader xmlReader = new BufferedReader(new StringReader(xmlStr));
8. Reader xsdReader = new BufferedReader(new StringReader(xsdStr));
9. try{
10. Source xsdSource = new StreamSource(xsdReader);
11. Schema schema = factory.newSchema(xsdSource);
12. Validator validator = schema.newValidator();
13. Source xmlSource = new StreamSource(xmlReader);
14. validator.validate(xmlSource);
15. isValidResponse = true;
16. return isValidResponse;
17. }catch(Exception ex)
18. {
19. return isValidResponse;
20. }
21. }

Implementation

60

Register service chooses these mails, extracts the address and username from these

mails, and adds the dates in the database table maildb.mailregister.

5.3.8 AutoRun.java

Send a mail, Receive mails, register a new user, and process mails, these functions

should run repeatedly after the server starts. Java class AutoRun is responsible for this.

Listing 14 shows the Java code in the class AutoRun to schedule ReceiveMail to run

repeatedly after the server starts.

AutoRun extends the javax.servlet.http.HttpServlet class of the

javax.servlet.http package. The HttpServlet class is a subclass of

GenericServlet, an implementation of the Servlet interface. There are three methods

init(), service(), and destroy(). They are implemented by every servlet and are

invoked at specific times by the server.

Class AutoRun uses two classes: java.util.Timer and Java.util.TimerTask [25]. A

TimerTask object represents a task. The task can be called by the Timer any number of

times at regular intervals. Threads can be assigned for different tasks. Timer class is

capable to schedule the threads by the method Timer.schedule(TimerTask task, long

delay, long period)(line 3). Method Timer.schedule() schedules the specified task for

repeated fixed-delay execution, beginning after the specified delay. In Listing 14

ReceiveMail runs repeatedly every two minutes (RECEIVE_PERIOD= 2*60*1000) once the

server starts.

The TimerTask is an abstract class and implements Runnable interface. So, as Runnable

interface is implemented, run() method must be overridden when TimerTask is extended

(line 4-line 10). Listing 14 illustrates the usage of Timer and TimerTask classes.

The other three functions are similar to ReceiveMail.

Listing 14. ReceiveMail runs repeatedly

1. Timer timer = new Timer(true);
2. /**TimerTask for ReceiveMail()*/
3. timer.schedule(new TimerTask(){
4. public void run()
5. {
6. try{
7. ReceiveMail.ReceiveMail(config);
8. }catch(Exception e){}
9. }
10. },0,RECEIVE_PERIOD);

Implementation

61

5.4 Skype Service

Skype Service consists of multiple subservices. Figure 27 shows the components diagram

from Skype Service. Among the components SkypeGetRequest, SendMessage, Register,

and ProcessMessage have been implemented to send a notification message.

SkypeGetResponse and ReceiveMessage have not been implemented.

Figure 27. Components diagram for Skype Service

5.4.1 Skype API for Java

Skype Service in this thesis uses skype-java-api-1.1.jar. This Skype API [29] is used to

integrate Skype services and functionalities inside a Java program. Skype API provides

access to much of the functionality of the Skype client such as contact lists, making and

receiving calls or conference calls, application to application messaging, moods, status,

and chat. To use this Skype API Skype must be running, otherwise an error will be sent.

Text message and files exchanging are used in Skype Service.

5.4.2 SkypeGetRequest Service

This subservice’s main purpose is to get a request from a business process, check the

validity and type of the request message. Because at the same time Skype can send

either a text message or a file, so the type of the message must be indicated. Then

according to the type of the request message SkypeGetRequest saves the request in the

database table skydb.senttextmessage or skydb.sentfilemessage. Finally it returns a

message to the process. It is placed in following Java package:

 de.unistuttgart.iaas.interaction.skype

Implementation

62

Figure 28. Flow Diagram for SkypeGetRequest

Main function is implemented by the public and static method skypeGetRequest. Figure

28 shows the function of SkypeGetRequest service step by step. Input parameter

messageType indicates where a request should be saved, in skydb.senttextmesage or

skydb.sentfilemessage. Parameter messageType has two values, “text” or “file”.

Implementation

63

5.4.3 SendMessage Service

This subservice selects all requests with state=NEW in the database table

skydb.senttextmessage and according to a selected request SendMessage service sends

a message by Skype. It is placed in following Java package:

de.unistuttgart.iaas.interaction.skype

Main function is implemented by the public and static method sendMessage, shown in

Listing 15 . This method selects all requests with state= NEW in the database table

skydb.senttextmessage (line 1-8), and calls Skype API to send a text message (line

27-28). Finally database skydb will be updated.

Listing 15. Method sendMessage()

5.4.4 ProcessMessage Service

This subservice’s main purpose is to process each request in the table

skydb.senttextmessage and skydb.sentfilemessage. It is placed in following Java

package:

1. Statement statementText = conn.createStatement();
2. ResultSet rsText = statementText.executeQuery("select id from
3. skydb."+config.getSkydb_table_sentTextMessage()+" where state='NEW'");
4. ArrayList list_new = new ArrayList();
5. while(rsText.next()){
6. list_new.add(rsText.getString(1));
7. i++;}
8. statementText.close();
9. for(int j=0;j<i;j++){
10. String lv = (String) list_new.get(j);
11. Statement sendStatement1 = conn.createStatement();
12. ResultSet sendResultset = sendStatement1.executeQuery("select * from
13. skydb."+config.getSkydb_table_sentTextMessage()+
14. " where id='"+lv+"'");
15. ArrayList skype_message = new ArrayList();
16. if(sendResultset.next()){
17. for(int k=1; k<=9;k++){
18. skype_message.add(sendResultset.getString(k));}
19. }
20. skype_id = (String)skype_message.get(0);
21. skype_to = (String)skype_message.get(1);
22. skype_textmessage = (String)skype_message.get(3)+"\n";
23. skype_reply = (String)skype_message.get(5);
24. skype_responseTemplate = (String)skype_message.get(6);
25. Chat chat = Skype.getContactList().getFriend(skype_to).chat();
26. chat.send(skype_textmessage); …
27. update.executeUpdate("update skydb."
28. +config.getSkydb_table_sentTextMessage()+" set sentDate='"
29. +sentTime+"', state='SENT' where id='" +skype_id+"'");
30. update.close();
31. }

Implementation

64

 de.unistuttgart.iaas.interaction.skype

Main function is implemented by the public and static method processMessage. This

method processes the requests with “SENT”, “AWAIT_REPLY” or “REPLIED” state. Each

request has a status indicator state in the database and the content of this indicator

changes at some time. For example, when SkypeGetRequest service gets a request from

an external process and stores this request in the database, at this time state is set as

NEW. SendMessage service chooses the requests with NEW state in the table

skydb.senttextmessage and skydb.sentfilemessage and processes these requests. If

these requests are sent successfully, the states of them are set as SENT. If an error

occurs during the sending, then the states of this mail is set as FAILED. There are three

different methods for three different states, shown in Listing 16.

Listing 16. According to skype_state ProcessMessage calls the different submethods:

ProcessSentMessage, ProcessAwaitReplyMessage, ProcessRepliedMessage

Only ProcessSentMessage method is completely implemented, shown in Listing 17. If the

value of reply is no, that means this request do not need a response.

ProcessSentMessage updates the database, sets the value of state as FINISHED. If the

value of reply is yes, that means this request has been sent and is waiting for a response.

ProcessSentMessage sets the value of state as AWAIT_REPLY, and then calls method

ProcessAwaitReplyMessage().

1. if(skype_state.equalsIgnoreCase("SENT"))
2. {
3. ProcessSentMessage(config,message);
4. }else if(skype_state.equalsIgnoreCase("AWAIT_REPLY"))
5. {
6. ProcessAwaitReplyMessage(config,message);
7. }else if(skype_state.equalsIgnoreCase("REPLIED"))
8. {
9. ProcessRepliedMessage(config, message);
10. }else{
11. }

Implementation

65

Listing 17. Method ProcessSentMessage()

5.4.5 Register Service

This subservice’s main purpose is to add every new user as registered user in Skype

Service. It is placed in following Java package:

 de.unistuttgart.iaas.interaction.skype

Main function is implemented by the public and static method register. Each recipient in

a request must be a registered user in Skype Service. The table skydb.register saves

Skype id and username of each registered user. If the recipient in a request is invalid user

for Skype Service, then Skype Service builds an error message and returns to the process.

A new user must add administrator of Skype Service in his contract list of Skype. Skype

sends automatically a request to the administrator. Listing 18 lists the main function of

method register(). Register service gets all users which are waiting for authorization

(line 3). If the Skype id of a user among them exists in the database table skydb.register,

then this user is not new for Skype Service. Otherwise, Register service extracts his id and

full name (line 7 and line 13) and saves the two values in the database table

skydb.register. Then property Authorized is set as true and property Blocked is set as

false (line 21-22). Finally Skype Service generates an internal request and will send a

confirmation message to this new user (line 23).

1. if(reply.equalsIgnoreCase("no"))
2. {
3. update.executeUpdate("update
4. skydb."+config.getSkydb_table_sentTextMessage()
5. +" set state='FINISHED' where id='"+id+"'");
6. System.out.println("id "+ id+"needs no response, set state=finished.");
7. }else if(reply.equalsIgnoreCase("yes")){
8. System.out.println("id "+ id +" needs response,
9. set state=await_reply.");
10. update.executeUpdate("update
11. skydb."+config.getSkydb_table_sentTextMessage()
12. +" set state='AWAIT_REPLY' where id='"+id+"'");
13. list_SentMessage.set(8, "AWAIT_REPLY");
14. list_AwaitReplyMessage= list_SentMessage;
15. ProcessAwaitReplyMessage(config, list_AwaitReplyMessage);
16. }else
17. {
18. System.out.println("Error in ProcessSentMail()");
19. }

Implementation

66

Listing 18. Method register() in Skype Service

5.4.6 SkypeAutoRun.java

Similar to Mail Service, SendMessage, Register, ProcessMessage run repeatedly after

the server starts. Java class SkypeAutoRun is responsible for this and it has the same

structure with Java class AutoRun in Mail Service, see in Chapter 5.3.8

5.5 Deployment as Web Services

In this work Web Service is implemented by a bottom up approach. In short, the steps are

as follows:

1) Create a project in the Eclipse workspace of type “Dynamic Web Project”, which will

host Web Service.

2) Write the Java code that implements Web service functionality.

3) Use Eclipse to automatically generate the components (WSDL etc.) that will transform

the Java code into a Web Service, and the ask Eclipse to run that Web Service.

In Chapter 5.3 and 5.4 Mail Service and Skype Service functionalities have been

implemented in Java program. In this work five Java classes GetRequest,

AutoRun,GetResponse in Mail Service and SkypeGetRequest, SkypeAutoRun in Skype

1. Connection conn = dao.connDataBase(config);
2. Friend[] friends =
3. Skype.getContactList().getAllUserWaitingForAuthorization();
4. int friendNum = friends.length;
5. for(int i = 1; i<=friendNum;i++)
6. {
7. String skype_username = friends[i-1].getId();
8. Statement statement = conn.createStatement();
9. ResultSet rs = statement.executeQuery("select skype_username from
10. skydb."+config.getSkydb_table_register()+" where skype_username='"+
11. skype_username +"'");
12. if(!rs.next()){
13. String name = friends[i-1].getFullName();
14. PreparedStatement preStatementRegister=
15. conn.prepareStatement("insert into skydb.register
16. (skype_username,name) values(?,?)");
17. preStatementRegister.setString(1,skype_username);
18. preStatementRegister.setString(2,name);
19. preStatementRegister.executeUpdate();
20. preStatementRegister.close();
21. friends[i-1].setAuthorized(true);
22. friends[i-1].setBlocked(false);
23. SkypeGetRequest.skypeGetRequest("text", "Your register is
24. successful!", skype_username, "no", "", "");
25. }
26. }
27.

Implementation

67

Service are deployed as Web Services. Eclipse generates automatically WSDL document

for each Java class. Another important document is web.xml file in the path

/WEB-INF/web.xml.

5.5.1 web.xml

The web.xml file is the Web Application Deployment Descriptor [26]. This is an XML file

describing the servlets and other components that make up web application, along with

any initial parameters and container-managed security constraints the server can start up

and run with the specified servlets. The following Table 19 is the description of servlet

elements in web.xml:

Element Required/

Optional

Description

<servlet-name> Required Defines the canonical name of the servlet, used to
reference the servlet definition elsewhere in the
deployment descriptor.

<servlet-class> Required The fully-qualified class name of the servlet.

<init-param> Optional Contains a name/value pair as an initialization attribute
of the servlet.

<load-on-startup> Optional The optional content of this element must be a positive
integer indicating the order in which the servlet should
be loaded. Lower integers are loaded before higher
integers.

Table 19. Elements defintion in the file web.xml

To load a servlet on startup of the server, the following configuration in Fehler!

Verweisquelle konnte nicht gefunden werden. must be added into web.xml. Servlet

AutoRun is referred to the class

de.unistuttgart.iaas.interaction.mail.services.AutoRun. It has one initial

parameter with the name “ConfigFile” and the value

“C:\CommunicationService\configuration.conf”. The content of <load-on-startup> is

1. That means once the server starts up, this servlet will be loaded.

Implementation

68

Listing 19. Configuration in web.xml

To get the value of initial parameter a piece of code in Listing 20 must be added in the

class AutoRun.java

Listing 20. The way to use an initial parameter in the file web.xml

5.5.2 WSDLs

Class GetRequest is deployed as a Web Service. A generated WSDL document

GetRequest.wsdl describes GetRequest Web Service.

<servlet>
<servlet-name>AutoRun</servlet-name>

 <servlet-class>
de.unistuttgart.iaas.interaction.mail.services.AutoRun

</servlet-class>
 <init-param>

<param-name>ConfigFile</param-name>
 <param-value>

C:\CommunicationService\configuration.conf
</param-value>

</init-param>
<load-on-startup>1</load-on-startup>

</servlet>
<servlet>

<servlet-name>SkypeAutoRun</servlet-name>
<servlet-class>

de.unistuttgart.iaas.interaction.skype.services.SkypeAutoRun
</servlet-class>

 <init-param>
<param-name>ConfigFile</param-name>
<param-value>

C:\CommunicationService\configuration.conf</param-value>
 </init-param>
 <load-on-startup>1</load-on-startup>
</servlet>

1. public class AutoRun extends HttpServlet
2. {…
3. public void init()
4. {
5. final String config = getServletConfig().getInitParameter("ConfigFile");
6. …

Implementation

69

Figure 29. Graphical representation of GetRequest.wsdl

Figure 29, Figure 32, Figure 35 show three graphical representations of GetRequest.wsdl,

GetResponse.wsdl and SkypeGetRequest.wsdl. Because this WSDL documents are

generated automatically by Eclipse, three endpoints are defined for this services:

GetRequestHttpSoap11Endpoint

GetRequestHttpSoap12Endpoint

GetRequestHttpEndpoint

Each endpoint is related to a binding. The <portType> element in GetRequest.wsdl

defines that, in GetRequest Web Service operation getRequest can be performed and for

this operation message getRequest is an input parameter and message

getRequestResponse is an output parameter. Figure 30 and Figure 31 show the

definitions for input parameter and output parameter.

Figure 30. Definition of input parameter

Implementation

70

Figure 31. Definition of output parameter

The <portType> element in GetResponse.wsdl defines that, in GetResponse Web Service

operation getResponse can be performed and for this operation message getResponse is

an input parameter and message getResponseResponse is an output parameter. Figure

33 and Figure 34 show the definitions for input parameter and output parameter.

Figure 32. Graphical representation of GetResponse.wsdl

Figure 33. Definition of input parameter for GetResponse

Figure 34. Definition of output parameter for GetResponse

The <portType> element in SkypeGetRequest.wsdl defines that, in SkypeGetRequest

Web Service operation skypeGetRequest can be performed and for this operation

message skypeGetRequest is an input parameter and message getRequestResponse is

Implementation

71

an output parameter. Figure 36 and Figure 37 show the definitions for input parameter and

output parameter.

Figure 35. Graphical representation of SkypeGetRequest.wsdl

Figure 36. Definition of input parameters for SkypeGetRequest

Figure 37. Definition of output parameter for SkypeGetRequest

In Chapter 6 test tool SoapUI and BPEL process use the link of the GetRequest WSDL

document to test Mail Servcie.

Test Cases

72

6 Test Cases

This chapter presents test cases that were executed using Communication Services.

6.1 Test Tool: SoapUI

SoapUI [30] is a tool for Testing Web Services. Its functionality covers Web Service

inspection, invoking, development, simulation and mocking, and functional testing.

In order to begin testing a service a WSDL file describing it is required. In this Chapter

SoapUI uses GetRequest.wsdl, GetResponse.wsdl and SkypeGetRequest.wsdl. SoapUI

can directly generate the SOAP messages from WSDL. The parameters can be manually

filled in the SOAP message. Then the tests can be performed. Figure 38 illustrates the

SOAP message for GetRequest.wsdl in Mail Service.

Figure 38. SoapUI generates a SOAP message

Test Cases

73

6.2 Test Tool: BPEL Process

Business Process Execution Language (BPEL) [31] is an OASIS (Organization for the

Advancement of Structured Information Standards) standard executable language for

specifying actions within business processes with Web Services.

Processes in BPEL export and import information by using Web Service interfaces

exclusively. Figure 39 shows a simple BPEL process. In this process there are five

activities: receiveInput, Assign, Invoke, Assign1, replyOutput. The combination of a

receiveInput activity and a resplyOutput activity forms a request-response operation on

the WSDL port type for the process. Assign activity provides a method for data

manipulation, such as copying the content of one variable to another. Invoke activity

invokes a synchronous Web Service or initiates an asynchronous Web Service. In the

following test case, a BPEL process will be created to invoke Mail Service and Skype

Service.

Figure 39. BPEL process

6.3 Test Cases

6.3.1 Test Case1—Mail Service Gets Invalid Request Message

There are several following reasons that a request message is invalid for Mail Service:

1) recipient, subject, message, response can be null.

Test Cases

74

2) timeout has false format.

3) responseTemplate can be null, but response is yes.

Listing 21 is an example for invalid request message. In this example recipient parameter

is null.

Listing 21. An example for invalid request message for Mail Service

Before GetRequest service accepts a SOAP message from SoapUI, it checks the

validation of each parameter in this SOAP message. Once a parameter is invalid, the

service will be stopped and a string will be returned. This request will not be saved in the

database. The return message indicates that this request is rejected. The reason for

rejecting this request will be saved in the log file and the reason is invalid recipient

parameter. Listing 22 shows this message in SOAP message format.

Listing 22. The response message for the request in Listing 21

<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/">
<soapenv:Body>
<ns:getRequestResponse
xmlns:ns="http://services.mail.interaction.iaas.unistuttgart.de">

<ns:return>ERROR</ns:return>

 </ns:getRequestResponse>
 </soapenv:Body>
</soapenv:Envelope>

<soapenv:Envelope xmlns:soapenv=http://schemas.xmlsoap.org/soap/envelope/
xmlns:ser="http://services.mail.interaction.iaas.unistuttgart.de"
xmlns:xsd="http://mail.interaction.iaas.unistuttgart.de/xsd">
 <soapenv:Header/>
 <soapenv:Body>
 <ser:getRequest>
 <!--Optional:-->
 <ser:recipient></ser:recipient>
 <!--Optional:-->
 <ser:subject>Notification from mail service</ser:subject>
 <!--Optional:-->
 <ser:message>
 We will maintain our system from 1:00 to 4:00. Mail Service
 is suspended during this period. Please understand it.
 </ser:message>
 <!--Optional:-->
 <ser:attachments></ser:attachments>
 <!--Optional:-->
 <ser:timeout></ser:timeout>
 <!--Optional:-->
 <ser:response>no</ser:response>
 <!--Optional:-->
 <ser:responseTemplate></ser:responseTemplate>
 </ser:getRequest>
 </soapenv:Body>

</soapenv:Envelope>

Test Cases

75

6.3.2 Test Case2—Mail Service Register

In this test case, the mail address commserv.user@yahoo.de from an unregistered user in

mail service is the recipient in the request message. That means, this address does not

exist in the table maildb.mailregister.

Listing 23. The request message with an unregistered recipient

If a request message is passed the validation check, as next step GetRequest service

must check, whether the recipient exists in the database or not. If the recipient is an

unregistered user in mail service, the following SOAP message in Listing 24 are generated

and returned. In this SOAP message a string “ERROR” are returned to SoapUI.

Listing 24. The response message for the request with an unregistered user in Listing 23

At the same time GetRequest service generates another new register request and puts

the register request in the database table maildb.sentmails. Now the request is ready to be

sent. Table 20 shows the complete information of a register request. SendMail service

which runs periodically processes this request. It sends a mail to

commserv.user@yahoo.de, asks the user to register in mail service and updates

mail_state from “NEW” to “SENT”.

<soapenv:Envelop
 xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/">

 <soapenv:Body>
 <ns:getRequestResponse

 xmlns:ns="http://services.mail.interaction.iaas.unistuttgart.de">

 <ns:return>ERROR</ns:return>

 </ns:getRequestResponse>
 </soapenv:Body>
</soapenv:Envelope>

<ser:getRequest>
 <ser:recipient>commserv.user@yahoo.de</ser:recipient>
 <ser:subject>Notification from mail service</ser:subject>
 <ser:message>

We will maintain our system from 1:00 to 4:00. Mail service
is suspended during this period. Please understand it.

</ser:message>
 <ser:attachments></ser:attachments>
 <ser:timeout></ser:timeout>
 <ser:response>no</ser:response>
 <ser:responseTemplate></ser:responseTemplate>
</ser:getRequest>

Test Cases

76

Columns in maildb.sentmails Value

mail_id eb3b8340-9f33-11e1-8d32-0021869473a9

mail_to commserv.user@yahoo.de

mail_from CommServ.ad@gmx.de

mail_subject Please register for mail service!

mail_message you are invalid user. Please answer this mail for register.

mail_sentDat 2012-05-16 10:50:38

mail_response

mail_response_pattern

mail_timeout NULL

mail_class Request

mail_state NEW

Table 20. An example of a register request

RegisterMail service runs also periodically and for it the subject of a reply is important. The

key to confirm a Reply as a register mail is, whether the subject contains “register” this

word or contains a word which is very similar to “register”, for example, “regiter” or

“resgiter”. After the user receives this mail, the user can directly send a reply without any

modification, or he can also send a new mail to the address CommServ.ad@gmx.de and

the subject of the mail contains “register” or a word which is similar to “register”. Table 21

is an example. The user directly replies the register request, and then ReceiveMail service

gets this mail from the administrator’s account, puts it in the database table

maildb.mailbox and set mail_state as “NEW”.

Column in maildb.mailbox Value

mail_id 98c97c50-9f35-11e1-8d32-0021869473a9

mail_replyid

mail_receivedDate 2012-05-16 11:00:36

mail_from commserv.user@yahoo.de

mail_from_username CommServ User

mail_to CommServ.ad@gmx.de

Test Cases

77

mail_subject Re: Please register for mail service!
Mail-ID:eb3b8340-9f33-11e1-8d32-0021869473a9

mail_message ________________________________ Von:
"CommServ.ad@gmx.de" <CommServ.ad@gmx.de> An:
commserv.user@yahoo.de Gesendet: 1:00 Donnerstag,
1.Januar 1970 Betreff: Please register for mail service!
Mail-ID:eb3b8340-9f33-11e1-8d32-0021869473a9 you are
invalid user. Please answer this mail for register.

mail_class REGISTER

mail_state NEW

Table 21. An example of a reply for a register request

When Register service runs automatically and periodically, it processes the above reply.

Register service extracts mail_from and mail_from_username, adds them into the

database table maildb.mailregister and then set mail_state in the above table as

“FINISHED”. Finally, Register service generates a confirmation request to tell the user that

his register is successful. After this confirmation mail is sent, the registration process is

completely.

6.3.3 Test Case3—Mail Service Gets a Notification Request

6.3.3.1 A Text-Notification Request

A Notification Request means that the recipient does not reply the mail which is sent

according to this request from Mail Service. The important key in a request message is

variable response which must be set as “no”. Listing 25 is a notification request message

in SoapUI.

Listing 25. An example of a notification request

<ser:getRequest>
 <ser:recipient>commserv.user@yahoo.de</ser:recipient>
 <ser:subject>Notification from mail service</ser:subject>
 <ser:message>

We will maintain our system from 1:00 to 4:00. Mail service
is suspended during this period. Please understand it.

</ser:message>
 <ser:attachments></ser:attachments>
 <ser:timeout></ser:timeout>
 <ser:response>no</ser:response>
 <ser:responseTemplate></ser:responseTemplate>

</ser:getRequest>

Test Cases

78

GetRequest Service receives this request, generates a UUID for it, and puts every data

into the database table maildb.sentmails. In this table two columns mail_class and

mail_state for this request are set as “REQEUST” and “NEW”. And the UUID

(<ns:return>16405970-a0bb-11e1-b415-0021869473a9</ns:return>) as the return

value is returned to SoapUI. SendMail service which is running in the background finds

this new request, for it sends a mail to commserv.user@yahoo.de, and the value of

mail_state is change to “FINISHED”.

Figure 40 illustrates the notification mail from Mail Service, which the user

commserv.user@yahoo.de has received.

Figure 40. The user commserv.user@yahoo.de has recieved a notification from Mail Service.

6.3.3.2 A Request with Attachment

Attachment is an important component of a mail. A mail can contain a piece of text and

some attachment files. A request message containing an attachment which is a piece of

data is shown in Listing 26. The content of this attachment is added into

element<!CDATA[[]]>. This element is marked for the parser to interpret as only character

data, not markup.

Test Cases

79

Listing 26. An example of a request containing an attachment file

GetRequest service loads this piece of data as a string in an InputStream, and generates

a filename “fc9c8d50-a451-11e1-b793-0021869473a9.txt” for this InputStream,then puts

the InputStream into the field “content” of the table maildb.mailattachments. Figure

41 shows contents of this table at this time.

Figure 41. A file is added into the table maildb.mailattachments.

After that, SendMail service reloads the data from the database into a new file with the

name “fc9c8d50-a451-11e1-b793-0021869473a9.txt” and this file is saved in local disk.

The specific path is defined in configuration.conf. Then SendMail service adds the

attachment into a new messageBodyPart of message. Finally, SendMail service sends a

mail containing an attachment fc9c8d50-a451-11e1-b793-0021869473a9.txt to the

recipient.

6.3.4 Test Case4—Mail Service Gets a Request Needing a Response

For Mail Service a request can contain one or a few questions, which the recipient has to

answer them in a response. These two cases are shown in the following tests.

<ser:getRequest>
 <ser:recipient>commserv.user@yahoo.de</ser:recipient>

<ser:subject>This mail from mail service.</ser:subject>
 <ser:message>We send a report to you.</ser:message>

<ser:attachments> <!CDATA[[data 6 45 0000000016 00000 n 0000001413 00000 n
0000001490 00000 n 0000001668 00000 n 0000002028 00000 n 0000002517 00000 n
0000003005 00000 n 0000003040 00000 n 0000003085 00000 n 0000003130 00000 n
0000003175 00000 n 0000004950 00000 n 0000006706 00000 n 0000008357 00000 n
0000010149 00000 n 0000011902 00000 n 0000012110 00000 n 0000012312 00000 n
0000014429 00000 n 0000016349 00000 n 0000018546 00000 n 0000021239 00000 n
0000021939 00000 n 0000022592 00000 n 0000023807 00000 n 0000025041 00000 n
0000025660 00000 n 0000026218 00000 n 0000027412 00000 n 0000028705 00000 n
0000029959 00000 n 0000031201 00000 n 0000031850 00000 n 0000032589 00000 n
0000033844 00000 n 0000035139 00000 n 0000036414 00000 n 0000036642 00000 n
0000036864 00000 n 0000037098 00000 n 0000037337 00000 n 0000037414 00000 n
0000037550 00000 n 0000037667 00000 n 0000001196 00000]]>
</ser:attachments>
<ser:timeout></ser:timeout>

 <ser:response>no</ser:response>
 <ser:responseTemplate></ser:responseTemplate>
</ser:getRequest>

Test Cases

80

6.3.4.1 Simple Question in a Request

GetRequest service receives the following request from SoapUI. Listing 27 shows a

request message which contains one question. This request needs a response in 10 hours

(line 8) and this response must confirm to a template (line 10-17). In this template only an

answer for “Question1” is defined. This answer should be a string with the values “yes” or

“no”. In element <!CDATA[[]]> character “<” is represented by “<”, character “>” is

represented by “>”, character “&” is represented by “&” as syntax rule. In fact, the

template looks like this:

<![CDATA[[<wsResponse><name>Question1</name><type>string</type><enumeration

>yes|no</enumeration><min></min><max></max><wsResponse>]]>

Listing 27. An example of a one-question request message

SendMail service sends a mail and the user will receive a mail which is shown in Figure 42.

mail_state in the table maildb.sentmails for this request is changed to SENT.

<ser:getRequest>
 <ser:recipient>commserv.user@yahoo.de</ser:recipient>
 <ser:subject>
 This mail from mail service. Questionnaire.
 </ser:subject>
 <ser:message>Question1: Do you like mail service?</ser:message>
 <ser:attachments></ser:attachments>
 <ser:timeout>00:10:00:00</ser:timeout>
 <ser:response>yes</ser:response>
 <ser:responseTemplate><![CDATA[<wsResponse>
 <name>Question1</name>
 <type>string</type>
 <enumeration>yes|no</enumeration>
 <min></min>
 <max></max>
 </wsResponse>]]>
 </ser:responseTemplate>
</ser:getRequest>

Test Cases

81

Figure 42. The user commserv.user@yahoo.de has received a mail which contains one

question from Mail Service.

6.3.4.2 Multi-Questions in a Request

A request message can contain more than one question. The name of a question is a

correlation between question and answer. Therefore the name of a question must be

unique defined in a request. Listing 28 shows a request message which contains two

questions, one question is Question1: Do you like mail service? , another is

Question2: How old are you? Under element <ser:responseTemplate> there are two

elements <wsResponse> for each question (line 12-25). The answer of question

“Question1” should be a string with the values “yes” or “no”. The answer of question

“Question2” should be an integer between 1 and 100.

Test Cases

82

Listing 28. An example of a multi-questions request message

SendMail service sends a mail and the user will receive a mail which is shown Figure 43.

mail_state in the table maildb.sentmails for this request is changed to SENT.

<ser:getRequest>
 <ser:recipient>commserv.user@yahoo.de</ser:recipient>
 <ser:subject>
 This mail from mail service. Questionnaire.
 </ser:subject>
 <ser:message>Question1: Do you like mail service?

 Question2: How old are you?</ser:message>
 <ser:attachments></ser:attachments>
 <ser:timeout>00:10:00:00</ser:timeout>
 <ser:response>yes</ser:response>
 <ser:responseTemplate>
 <![CDATA[<wsResponse>
 <name>Question1</name>
 <type>string</type>
 <enumeration>yes|no</enumeration>
 <min></min>
 <max></max>
 </wsResponse>
 <wsResponse>
 <name>Question2</name>
 <type>integer</type>
 <enumeration></enumeration>
 <min>1</min>
 <max></max>
 </wsResponse>]]>
</ser:responseTemplate>
</ser:getRequest>

Test Cases

83

Figure 43. The user commserv.user@yahoo.de has recieved a mail which contain two

questions from mail service.

6.3.4.3 Get a Valid Response

In the background ProcessMail service checks the value mail_response for the request

with mail_id eb0d9120-a0c2-11e1-b415-0021869473a9. Because the value is “yes”,

then ProcessMail service changes the value of mail_state from SENT to AWAIT_REPLY.

Now ReceiveMail service gets a new mail, the content of this new mail is shown in Figure

44. After, ProcessMail service finds a response for this request in the table

maildb.mailbox, and then it changes the value of mail_state from AWAIT_REPLY to

REPLIED. Next, it checks the validation for this response. Because this response is a valid

response, and then it changes value of mail_state from REPLIED to FINISHED.

Test Cases

84

Figure 44. An example of a valid response for the request with mail_id

eb0d9120-a0c2-11e1-b415-0021869473a9

6.3.4.4 Get an Invalid Response

After ProcessMail service changes the value of mail_state for the request with mail_id

6f945f00-a0cd-11e1-b415-0021869473a9 to AWAIT_REPLY, ReceiveMail service gets a

new mail and the content of this new mail is shown in Figure 45. This mail is an invalid

response, because the answer for the second question is 0 which is out of the range

between 1 and 100.

After, ProcessMail service finds a response for this request in the table maildb.mailbox,

changes the value of mail_state in the request from AWAIT_REPLY to REPLIED. Next,

it checks the validation for this response. Because this response is an invalid response

and the current time is not beyond the time limit, it adds “Invalid response(s)!” into the

value of mail_message of the request as a prompt, changes the value of mail_state

from REPLIED to NEW and the value of mail_sentDate.

This changed request will be resent. This process is a cycle, until the request arrives at an

end state, FAILED, FINISHED or TIMEOUT.

Test Cases

85

Figure 45. An example of a valid response for the request with mail_id

6f945f00-a0cd-11e1-b415-0021869473a9

6.3.5 Test Case5—BPEL Process invokes Mail Service and Skype Service

In this test case a BPEL process shown in Figure 48 is created to invoke Mail Service and

Skype Service. According to input parameters the BPEL process can choose to invoke

Mail Service or Skype Service. Input parameters for the BPEL process combine two input

parameters of Mail Service and Skype Service, shown in Figure 46. Only parameter

channel is new and it is an indicator for the BPEL process, which of Web Services should

be invoked. If the value of channel is “skype”, then the process will invoke Skype Service

to send a request. Otherwise, the process will invoke Mail Service.

Test Cases

86

Figure 46. Input parameters for BPEL process

To send a message to a human user the BPEL process can invoke either GetRequest

service of Mail Service or SkypeGetRequest service of Skype Service. Because Skype

Service can only send a notification at present, so after invoking SkypeGetRequest

service a string message will be returned to the BPEL process. For Mail Service a request

can need a response. After invoking GetRequest service the BPEL process can receive

the id for this request and can invoke GetResponse service of Mail Service with this id to

query, whether Mail Service has received a response for this request. If Mail Service

returns a string “noResponse”, the BPEL process will invoke GetResponse service again.

Until Mail Service returns a valid response, or a string “TIMEOUT”, or a string “FAILED” to

the BPEL process, the process will receive the output parameter and run completely.

Output parameter for the BPEL process is a string, shown in Figure 47.

Figure 47. Output parameter for BPEL process

Test Cases

87

Figure 48. Test BPEL Process

6.3.5.1 Invoke Skype Service

The BPEL process receives the following request shown in Listing 29. According to this

request the BPEL process will invoke Skype Service and send a text message to Skype

user commservuser. In this case Skype user commservuser is a registered user for Skype

Service.

Test Cases

88

Listing 29. A request to invoke Skype Service

After the BPEL process ran, it received the following response:

<soapenv:Envelope

xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/">

<soapenv:Body>

<TestProcessResponse xmlns="http://sample.bpel.org/bpel/sample">

<tns:responseMessage xmlns:tns="http://sample.bpel.org/bpel/sample">

The request is accepted.

</tns:responseMessage>

</TestProcessResponse>

</soapenv:Body>

</soapenv:Envelope>

6.3.5.2 Invoke Mail Service

The BPEL process receives the following request shown in Listing 30. According to this

request the BPEL process will invoke Mail Service and send a message to

commserv.user@yahoo.de and wait for a response in 3 minutes.

<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:sam="http://sample.bpel.org/bpel/sample">
 <soapenv:Header/>
 <soapenv:Body>
 <sam:TestProcessRequest>
 <sam:recipient>commservuser</sam:recipient>
 <sam:subject></sam:subject>
 <sam:message>test case1:skype notification message</sam:message>
 <sam:attachments></sam:attachments>
 <sam:timeout></sam:timeout>
 <sam:response>no</sam:response>
 <sam:responseTemplate></sam:responseTemplate>
 <sam:channel>skype</sam:channel>
 <sam:messageType>text</sam:messageType>
 </sam:TestProcessRequest>
 </soapenv:Body>
</soapenv:Envelope>

Test Cases

89

Listing 30. A timeout request to invoke Mail Service

After the BPEL process ran and the recipient did not reply the mail in 3 minutes, then it

received the following response:

<soapenv:Envelope

xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/">

<soapenv:Body>

<TestProcessResponse xmlns="http://sample.bpel.org/bpel/sample">

<tns:responseMessage xmlns:tns="http://sample.bpel.org/bpel/sample">

TIMEOUT

</tns:responseMessage>

</TestProcessResponse>

</soapenv:Body>

</soapenv:Envelope>

The BPEL process receives the following request shown in Listing 31. According to this

request the BPEL process will invoke Mail Service and send a message to

commserv.user@yahoo.de and wait for a response in 10 hours.

<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:sam="http://sample.bpel.org/bpel/sample">
 <soapenv:Header/>
 <soapenv:Body>
 <sam:TestProcessRequest>
 <sam:recipient>commserv.user@yahoo.de</sam:recipient>
 <sam:subject>test case6:timeout test</sam:subject>
 <sam:message>question1: Is this request timeout?</sam:message>
 <sam:attachments></sam:attachments>
 <sam:timeout>00:00:03:00</sam:timeout>
 <sam:response>yes</sam:response>
 <sam:responseTemplate>

<![CDATA[<wsResponse><name>question1</name><ty
pe>string</type><enumeration>yes|no</enumeration&
gt;<min></min><max></max></wsResponse>
;]]>

</sam:responseTemplate>
 <sam:channel>mail</sam:channel>
 <sam:messageType></sam:messageType>
 </sam:TestProcessRequest>
 </soapenv:Body>
</soapenv:Envelope>

Test Cases

90

Listing 31. A request with response = yes

After the BPEL process ran and the recipient replied the mail in 10 hours, then it received

the following response:

<soapenv:Envelope

xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/">

<soapenv:Body>

<TestProcessResponse xmlns="http://sample.bpel.org/bpel/sample">

<tns:responseMessage xmlns:tns="http://sample.bpel.org/bpel/sample">

<tns:Question1>38</tns:Question1>

</tns:responseMessage>

</TestProcessResponse>

</soapenv:Body>

</soapenv:Envelope>

<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:sam="http://sample.bpel.org/bpel/sample">
 <soapenv:Header/>
 <soapenv:Body>
 <sam:TestProcessRequest>
 <sam:recipient>commserv.user@yahoo.de</sam:recipient>
 <sam:subject>test case3: please answer this question</sam:subject>
 <sam:message>question1: How old are you?</sam:message>
 <sam:attachments></sam:attachments>
 <sam:timeout>00:10:00:00</sam:timeout>
 <sam:response>yes</sam:response>
 <sam:responseTemplate>

<![CDATA[<wsResponse><name>Question1</name><ty
pe>integer</type><min>1</min><max>100<
;/max></wsResponse>]]>

</sam:responseTemplate>
 <sam:channel>mail</sam:channel>
 <sam:messageType></sam:messageType>
 </sam:TestProcessRequest>
 </soapenv:Body>
</soapenv:Envelope>

Summary and Outlook

91

7 Summary and Outlook

7.1 Summary

Communication between human users and business processes will play an increasingly

important role with the development of network. The main task of communication service

is to build a stable and smooth way to communicate with human users. Once anything is

related with humans, it will become more uncertain and difficult. In this work two channel

are chosen for communication services: Mail and Skype.

E-mail is asynchronous way to exchange a message. Sender sends a mail to someone.

To receive this mail a recipient does not need to be online at the same time. This mail will

be saved on a mail server. When a recipient is online again, he can receive this mail.

Skype is another way to send a message to human users. This message can be a text

message or a file.

According to the characteristics of the entire communication system, Mail Service and

Skype Service, some concepts are proposed for Mail Service and Skype Service. As the

first concept of mail service there were a lot of problems in the concept, for example,

instability, data loss. To improve this concept, a new concept is proposed. In the new

concept a database as a new component is added in the communication services. The

database plays an important role to store every message which has been sent or received

from the communication services. This way is also very good to solve the problem “data

loss”.

After the concepts are determined, all functions of the communication service are

implemented by a bottom-up approach. First, the functions are implemented in Java

Program. Then, some Java classes are deployed as Web Services, and Eclipse generates

the WSDL documents for each Java class. WSDL document describes interface, data

type, binding and operations for a service.

In this work Mail Service is implemented, Skype Service are still partially implemented due

to the time constraint.

So far, the following functions are implemented in Mail Service:

1) Mail Service can get a valid request from an external process and store this request in

the database.

Summary and Outlook

92

2) Mail Service can send a mail to someone according to a request which is saved in the

database.

3) Mail service can receive each new mail from the administrator’s mailbox and store it in

the database.

4) Mail service can check the validation of a response in order to update the state of the

related request.

5) Non-registered user can register per mail in mail service.

The following functions are implemented in Skype Service:

1) Skype Service can get a valid text request from an external process and store this

request in the database.

2) Skype Service can send a text notification to some Skype user according to a request

which is saved in the database.

3) Skype Service can add new users which are waiting for authentication into the contract

list.

Finally, Mail Service and Skype have been tested with the test tool SoapUI and BPEL.

SoapUI calls GetRequest service and GetResponse service and sends some request

messages on behalf of the different test cases in order to test the functionality of Mail

Service. A BPEL process has been created to invoke Mail Service and Skype Service.

Mail Service has the following highlights:

1) In Mail Service all mails are divided into five classes: REQUEST, RESPONSE,

REGISTER, NOTIFICATION, and UNKNOWN. All advertising mails which

administrator receives belong to the class UNKNOWN. This distinguishes between an

advertising mail and the others. These advertising mails will be not processed.

2) In Mail Service each mail has a state variable. The value of this variable can be NEW,

SENT, AWAIT_REPLY, REPLIED, FINISHED, TIMEOUT, FAILED. Once a mail has

been handled a step successfully, the value of the state variable must be changed.

The addition of this variable is convenient for the administrator to manage and inspect

all dates in mail service.

3) In Mail Service the response template is defined in XML Schema format. A response is

defined in XML format. Using the relationship between XML Schema and XML the

validation of a response can be directly checked out through calling the method

validator.validate().

4) By configuration in the file web.xml SendMail, Register, ReceiveMail and ProcessMail

runs regularly and automatically, when the server starts up.

Summary and Outlook

93

7.2 Outlook

In addition to the highlights mentioned in the previous chapter, mail service has the

following shortages:

1) Callback

In the concept Mail service should return a message asynchronously. Because mail is an

asynchronous way to communicate with humans, Mail Service often takes a long time to

return a response message. But in the implementation this part has not been realized. To

complete the functionality of Mail Service a new Java class GetResponse.java is created.

This class has been also deployed as a Web Service. GetRequest service returns a mail

id of a valid request message from an external process. The external process can call

GetResponse, and the mail id as input parameter is passed in it. GetResponse is

responsible for looking for a valid response for the mail id and returns it.

2) Skype Service

In this work the functionality of Skype Service has not been completely implemented.

Current Skype Service can get a request containing only a text message and send a text

messag to a Skype user. It should also get a request containing a file, send a file to a

Skype user, receive a text message or a file from a Skype user, and process all request

needing a response.

3) Error Handling

In this work error handling has been defined incompletely. The following errors in Mail

Service are defined:

 Error in connection with a database

 SQL error

 Error in GetRequest

 Unregistered user

If the first three errors occur, an error message will be per mail sent to the administrator.

For the last error, a warn message will be per mail sent to this unregistered user to notify

the user.

Error handling in Skype Service has not been defined.

4) Attachment

Mail Service can add only an attachment in a mail. And the type of this file can only a a

text file with extension .txt. Another aspect, Mail Service can also not process graphics

files as an attachment.

Summary and Outlook

94

Communication services can be made much better. At least three above mentioned points

are the aspects needing to be improved in the future. In addition, other channels can be

developed for communication services, for example, Skype, ftp and twitter. This work is

just a beginning for the development of the entire communication services.

Table of Figures

95

8 Table of Figures

Figure 1. A model of communication system [3] ... 5

Figure 2. A business process calls a Web Service ... 6

Figure 3. Business process interacts with human user ... 7

Figure 4. An instance of business process with human interaction 8

Figure 5. The SOA Triangle [11] ... 12

Figure 6. The web service technology stack [12] .. 13

Figure 7. SOAP message structure [11] .. 16

Figure 8. Web Services Model [16] ... 17

Figure 9. Participants in communication system ... 18

Figure 10. Communication participants [14] .. 19

Figure 11. Architecture of first concept .. 22

Figure 12. Data Loss ... 24

Figure 13. Architecture of new concept ... 25

Figure 14. Guaranteed Delivery .. 26

Figure 15. State diagram of Mail Service .. 28

Figure 16. Skype Service architecture .. 29

Figure 17. Input parameters for GetRequest subservice in Mail Service 31

Figure 18. Output parameter for GetRequest subservice in Mail Service 32

Figure 19. Input parameters for SkypeGetRequest subservice in Skype Service . 32

Figure 20. Components in communication service ... 36

Figure 21. Five tables in database maildb ... 37

Figure 22. Components diagram for Mail Service ... 47

Figure 23. Flow Diagram for GetRequest .. 48

Figure 24. Flow Diagram for SendMail .. 52

Figure 25. Flow Diagram for ReceiveMail ... 55

Figure 26. Flow Diagram for ProcessMail ... 57

Figure 27. Components diagram for Skype Service .. 61

Figure 28. Flow Diagram for SkypeGetRequest .. 62

Figure 29. Graphical representation of GetRequest.wsdl 69

Figure 30. Definition of input parameter .. 69

Figure 31. Definition of output parameter .. 70

Table of Figures

96

Figure 32. Graphical representation of GetResponse.wsdl 70

Figure 33. Definition of input parameter for GetResponse 70

Figure 34. Definition of output parameter for GetResponse 70

Figure 35. Graphical representation of SkypeGetRequest.wsdl 71

Figure 36. Definition of input parameters for SkypeGetRequest 71

Figure 37. Definition of output parameter for SkypeGetRequest 71

Figure 38. SoapUI generates a SOAP message ... 72

Figure 39. BPEL process .. 73

Figure 40. The user commserv.user@yahoo.de has recieved a notification from
Mail Service. ... 78

Figure 41. A file is added into the table maildb.mailattachments. 79

Figure 42. The user commserv.user@yahoo.de has received a mail which contains
one question from Mail Service. ... 81

Figure 43. The user commserv.user@yahoo.de has recieved a mail which contain
two questions from mail service. .. 83

Figure 44. An example of a valid response for the request with mail_id
eb0d9120-a0c2-11e1-b415-0021869473a9 ... 84

Figure 45. An example of a valid response for the request with mail_id
6f945f00-a0cd-11e1-b415-0021869473a9 ... 85

Figure 46. Input parameters for BPEL process ... 86

Figure 47. Output parameter for BPEL process .. 86

Figure 48. Test BPEL Process .. 87

Table of Tables

97

9 Table of Tables

Table 1. Arguments for Logging of Mail Service in configuration.conf 33

Table 2. Arguments for Administrator's account of Mail Service in configuration.conf
 ... 33

Table 3. Arguments for the Mail Service database in configuration.conf 34

Table 4. Argument for saving attachments of Mail Service 34

Table 5. Arguments for Administrator's account of Skype Service in
configuration.conf ... 34

Table 6. Arguments for Logging of Skype Service in configuration.conf 34

Table 7. Arguments for the Skype Service database in configuration.conf 35

Table 8. Definition of table sentmails .. 38

Table 9. Definition of table mailbox ... 39

Table 10. Defintion of table mailregister .. 40

Table 11. Defintion of table attachments ... 40

Table 12. Definition of table commserv_ad_gmx_de .. 41

Table 13. Defintion of table skydb.register .. 44

Table 14. Definition of table skydb.senttextmessage .. 44

Table 15. Definition of table skydb.sentfilemessage ... 45

Table 16. Definition of table skydb.receivedtextmessage 45

Table 17. Definition of table skydb.receivedfilemessage 46

Table 18. Input variable transformations ... 49

Table 19. Elements defintion in the file web.xml ... 67

Table 20. An example of a register request .. 76

Table 21. An example of a reply for a register request ... 77

Table of Listings

98

10 Table of Listings

Listing 1. XML example “customer.xml” .. 14

Listing 2. An example of XML Schema "customer.xsd"... 14

Listing 3. Database connection method .. 42

Listing 4. Arguments in configuration.conf are listed in class ConfigFileHandler .. 43

Listing 5. Database close() methode .. 43

Listing 6. An instance of responseTemplate ... 50

Listing 7. Xml Schema code for response template .. 51

Listing 8. Data process in SendMail service .. 53

Listing 9. A response instance .. 53

Listing 10. Add an attachment in a mail .. 54

Listing 11. Method getUID() .. 55

Listing 12. According to mail_state ProcessMail calls the different submethods:
ProcessSentMail, ProcessAwaitReplyMail, ProcessRepliedMail 58

Listing 13. Method isValidResponse() ... 59

Listing 14. ReceiveMail runs repeatedly .. 60

Listing 15. Method sendMessage() ... 63

Listing 16. According to skype_state ProcessMessage calls the different
submethods: ProcessSentMessage, ProcessAwaitReplyMessage,
ProcessRepliedMessage ... 64

Listing 17. Method ProcessSentMessage() ... 65

Listing 18. Method register() in Skype Service .. 66

Listing 19. Configuration in web.xml .. 68

Listing 20. The way to use an initial parameter in the file web.xml 68

Listing 21. An example for invalid request message for Mail Service 74

Listing 22. The response message for the request in Listing 21 74

Listing 23. The request message with an unregistered recipient 75

Listing 24. The response message for the request with an unregistered user in
Listing 23 .. 75

Listing 25. An example of a notification request .. 77

Listing 26. An example of a request containing an attachment file 79

Listing 27. An example of a one-question request message 80

Listing 28. An example of a multi-questions request message 82

Listing 29. A request to invoke Skype Service .. 88

Table of Listings

99

Listing 30. A timeout request to invoke Mail Service ... 89

Listing 31. A request with response = yes ... 90

Bibliography

100

11 Bibliography

[1]. National Institute of Open Schooling: Introduction to communication
http://download.nos.org/srsec335new/ch1.pdf

[2]. A. Dix, J. Finlay, G. D. Abowd, R. Beale: Human-Computer Interaction, Second
Edition (1998)

[3]. W. Schramm: Family Communication Model
http://fatherhood.about.com/od/familycommunication/a/A-Model-For-Understandi
ng-Family-Communication.htm

[4]. M. Weske: Business Process Management, Concepts, Languages, Architectures
(2007)

[5]. F. Leymann, D. Roller: Production Workflow, Concepts and Techniques (2000)

[6]. E. Christensen, F. Curbera, G. Meredith, S. Weerawarana: Web Services
Description Language (WSDL) 1.1, W3C Note (2001)
http://www.w3.org/TR/wsdl

[7]. D. Booth, H. Haas, F. McCabe, E. Newcomer, M. Champion, C. Ferris, D.
Orchard: Web Services Architecture, W3C Working Group Note (2004)
http://www.w3.org/TR/ws-arch/#whatis

[8]. M. P. Papazoglou: Web Services: Principles and Technology (2008)

[9]. E. Cerami: Web Services Essentials (2002)

[10].M. Gudgin, M. Hadley, N. Mendelsohn, J.-J. Moreau, H. F. Nielsen, A. Karmarkar,
Y. Lafon: SOAP Version 1.2 specification, W3C Recommendation (2007)
http://www.w3.org/TR/soap12

[11].S. Weerawarana, F. Curbera, F. Leymann, T. Storey, D. F. Ferquson: Web
Services Platform Architecture: SOAP, WSDL, WS-Policy, WS-Addressing,
WS-BPEL, WS-Reliable Messaging, and More (2005)

[12].M. MacDonald, M. Szpuszta: Pro ASP.NET 3.5 in C# 2008, Chapter 31: Creating
Web Service (2008)
http://www.c-sharpcorner.com/uploadfile/prvn_131971/chapter-31creating-web-s
ervices/

[13].E. Rusty Harold: XML Bible (1999)

[14].D. Schumm, C. Fehling, D. Karastoyanova, F. Leymann, J. Rütschlin: Process for
Human Integration in Automated Cloud Application Management (2012)
http://www2.informatik.uni-stuttgart.de/cgi-bin/NCSTRL/NCSTRL_view.pl?id=TR-
2012-02&mod=0&engl=0&inst=IAAS

Bibliography

101

[15].G. Hohpe, B. Woolf: Enterprise Integration Patterns: Designing, Building, and
Deploying Messaging Solutions (2003)

[16].D. K. Barry: Web Services explained
http://www.service-architecture.com/web-services/articles/web_services_explain
ed.html

[17].D. Schumm, D. Karastoyanova: Integrating Humans in Scientific Workflow:
Integrate, Register & Communicate. Poster, The 4th Simtech Status Seminar
(2011)

[18].Skype: http://www.skype.com/intl/de/home

[19].Twitter: http://twitter.com/

[20].L. M. Surhone, M. T. Tennoe, S. F. Henssonow: Robustness (Computer Science)
(2011)

[21].H. Störrle: UML 2 für Studenten [Mit UML-Syntax-Poster] (2005)

[22].JavaMail API documentation:
http://javamail.kenai.com/nonav/javadocs/overview-summary.html

[23].J. Myers, M. Rose: Post Office Protocol – Version 3 (1996)
http://tools.ietf.org/html/rfc1939

[24].MySQL Connector: http://dev.mysql.com/downloads/connector/

[25].API Specification for the Java 2 Platform, Standard Edition, version 1.4.2.
http://docs.oracle.com/javase/1.4.2/docs/api/overview-summary.html

[26].ORACLE Document: web.xml Deployment Descriptor Elements
http://docs.oracle.com/cd/E13222_01/wls/docs81/webapp/web_xml.html

[27].Apache Axis2: http://axis.apache.org/axis2/java/core/

[28].JavaMail API: http://java.sun.com/products/javamail/downloads/index.html

[29].Skype API: Getting Started with Skype4Java
http://graphics.cs.columbia.edu/courses/csw4170/Skype4JavaTutorial.html

[30].SoapUI: http://www.soapui.org/

[31].J. Bolie, M. Cardella, S. Blanvalet, M. Juric, S. Carey, P. Chandran, Y. Coene, K.
Geminiuc, M. Zirn H. Gaur: BPEL Cookbook: Best Practices for SOA-based
integration and composite applications development (2006)

Erklärung

102

12 Erklärung

Hiermit erkläre ich, dass ich die vorliegende Diplomarbeit selbständig angefertigt habe. Es

wurden nur die in der Arbeit ausdrücklich benannten Quellen und Hilfsmittel benutzt.

Wörtlich oder sinngemäß übernommenes Gedankengut habe ich als solches kenntlich

gemacht.

Ort, Datum Unterschrift

