Institut fir Architektur von Anwendungssystemen

Universitat Stuttgart
Universitatsstral3e 38
D-70569 Stuttgart

Diplomarbeit Nr. 3275

Web Services for Human Interaction

Lina Sun
Course of Study: Informatik
Examiner: Jun.-Prof. Dimka Karastoyanova
Supervisor: Dipl.-Inf. David Schumm
Commenced: December 15, 2011
Completed: June 15, 2012

CR-Classification: C.24,H4.1, H5.2

Abstract

In recent years, with the continuous development of the network, the network society has
been built up. To develop a more perfect and more powerful network society, a
communication between members of this society is indispensable. The communication
between human users is very common. There are already many means of communication
between human users, for example, MSN, Mail, Skype, Twitter, etc. Business processes
can also communicate with external services. Since the advent of Web Services, this kind
of communication becomes platform-independent and flexible. However, how to integrate
an automating business process with human users remains to be studied.

There are multiple ways how human users communicate electronically, for example via
Mail, Skype, ICQ message, and SMS. The main task of this work is to implement such
communication channels. To provide a flexible integration between human users and
business processes these communication channels will be implemented via Web
Services.

This work proposes concepts of two communication channels: Mail and Skype. Getting a
request, processing a request, sending a message, and receiving a message are basic
functions. As a very important component a database has been added to store all
information.

To prove these concepts, they have been put in practice as part of this work. Two Web
Services have been developed in this work: Mail Service and Skype Service.

In the very end, a set of test cases illustrates the capabilities of Mail Service and Skype
Service.

Table of Contents

Table of Contents

ADSTTACT ..ot e e e e e e 1
Table Of CONTENES ...oiiiiiiii e 2
1 INEFOTUCTION .t e e e e e e e e e e 5
1.1 Communication SYSIEMcoeiiiiiiii i e e e e e e e e e 5
R V[0 11 V7= Ui (o] o TP PP PPPPPPPPRPN 6
1.3 OBJECHVES ..o 8
1.4 DOCUMENE SITUCIUIE ..o 9

2 Fundamentals and TeChNOlOgieSc..iiiiiiiiiiiiiiiiiieieeee e 10
2.1 BUSINESS PrOCESS.......uuiiiiiiiiiieee ittt e et e e e eas 10
2.2 WED SEIVICES ... 11
2.3 XML, XML SCREIM@ ...eeeiiiiiiiiiiiiiiiiiiietiiitittteeeteeeebeeeeeeeeeeaeeeeeeeebeeeeeeeseeeeeeeeeenneennees 13
2.4 WWSDL .. et aaeaaaae 15
2.0 SO A P et aaaaaae 16

3 (070 g To7=T o) £ T TSP PPTR TR 18
3.1 Participants of COMMUNICALION...........uuiiii i eeens 18
3.2 Classes of COMMUNICALIONccoiiiuriiieiiieee e 20

B0 772000 R\ 11 o= 11T o 20
3.2.2 DBCISION ...ttt ettt e e et e e e e e e e e e e e 20
B.2.3 CONEIOL .ttt 20

3.3 Means of COMMUNICALION........ccccuriiiiiiiiii et 20

G 70 700 1Y/ - 21
3302 SKY P ettt ettt ettt ettt ettt ettt ettt 21
TG TG I I PP UPPPPPRRIN 21
TR I AT 1 1= TR 21

Table of Contents

3.4 MU SEIVICE ...t 22
3.4.1 First Concept of Mail SErviCe........cooooeiiiiiii e 22
3.4.2 Problem of FirSt CONCEPL......ccooevuiiiii e e e e e e e eeeeens 23
3.4.3 RODUSINESS. ...ttt ettt e e e e e e e e e e e e e annne 24
G I LY @ o= o 1 25
3.4.5 DAtabASE CONCEPL....eeiiiiiiiiiiiiiii e ettt e et e e e e e e reeeeeeans 27
3.4.6 ClasSES OF MAIScoceiiiiiiiiiiii e 27
.47 M SEALES ...ttt 28

3.5 SKYPE SEIVICE ... 29

4 SPECIHTICALIONS ..o 31

4.1 INterfaCe ParameterSuuiiiiiiieeiiiiiie et 31
4. 1.1 MU SEIVICE ...t e e e 31
S QY o TSI 1T Y/ o 32

2 @ o110 U = 11T o 32

5 [aT o1 L= g T=T 01 €= U Lo o RO PN 36

5.1 COMPONENTS OVEIVIEWuvviiiiiiieeeieiitiie ettt e e e e s sttt e e e e e e e e e e e aebeeeees 36

5.2 Database MYSQLcooiiiiiiiiiiiiii e 36
5.2.1 Database in Malil SEIVICEccoiiiiiiiiii e 37
5.2.2 MySQLACCESS IN MaIl SEIVICE.......coiiiiiiiiiiiii e 41
5.2.3 Database iN SKYPE SEIVICEcociiiiiiiiiiiiiiieeee et 43
5.2.4 MySQLACCESS IN SKYPE SEIVICE ...uvuueriiiiiiii s e 46

5.3 MAII SEIVICE ...ttt 46
5.3 1 APACNE AXIS2.. .t a7
5.3.2JaVAMAIl APL.....ooiiii 47
5.3.3 GEtREQUESE SEIVICEcoiiiiiiiiiiiieee ettt e e a7
5.3.4 SeNAMAUl SEIVICE.......coi it 51
5.3.5 RECEIVEMAIl SEIVICE ..ot 54
5.3.6 ProCessMalil SEIVICEuuuiiiiiiiiiiiiiiee et 56
R I S = To 1S (=T ST Vo 59

Table of Contents

5.3.8 AULORUNJAVAceiiiiiiiii ettt 60

I S QY o TSI 1T Y o = RS 61
5.4.1 SKYPE AP TOF JAVA ...ceiiiiiiiiiiiiiiiiee ettt e e e 61
5.4.2 SKYPEGEREQUESE SEIVICEcceeiieeiieiii e et e e e e e 61
5.4.3 SENAMESSAGE SEIVICE......uuuiiiiiiiiee ettt e e e e e e e e e e 63
5.4.4 ProCeSSMESSAJE SEIVICE ...t ieiiiiiiiiiiie e e e eeeeeetiiis e e e e e e e eeatta s e e e e e e e eanrea e eeeeees 63
5.4.5 REQISIEI SEIVICE ...uvivuiiiniiiieiiiiiiii s s s s e s s e e s e e e s e e n e e aa e e s 65
5.4.6 SKYPEAUIORUNJAVAcoiiiiiiiiiiiieie ettt e e e 66

5.5 Deployment as WED SEIVICEScccuuiiiiiiiieiiiiiiiee e 66
5.5 T WEDXIMI .o 67
D5 2 WSS et e e e b aaeaeae 68

6 TEST CaASES .. i 72
6.1 TeSt TOOI SOAPUIeiiiiiiiiiiiiie e 72
6.2 TeSt TOOI: BPEL PrOCESSccoiiiiiiiiiiieeee ettt 73
6.3 TESE CASES ..oeeieeiiieieiiiieieeee ettt ettt ee et e et et e et et eeeeneeenn e nneennennnnnennnnes 73
6.3.1 Test Casel—Mail Service Gets Invalid Request Messagecccuvvvennnnns 73
6.3.2 Test Case2—Mail Service ReQISIEr..........uuuuuuuiuiiiiiiiii e 75
6.3.3 Test Case3—Mail Service Gets A Notification Request...........ccccevvvveenennnn. 77
6.3.4 Test Case4—NMail Service Gets A Request Needing a Response............... 79
6.3.5 Test Case5—BPEL Process invokes Mail Service and Skype Service........ 85

7 Summary and OULIOOKuueoiii i e 91
.1 SUMIMAIY ettt e et e e e e s e e et b e e e e et e e e e et e e ee et e e eeabaeeeeebnaaaees 91
7.2 OULIOOK ...ttt 93

8 Table Of FIQUIES ..o 95
9 TabIE OF TADIES ..o 97
10 Table Of LiStiNgsS «oooeee e 98
11 Bibliographny ..o 100
12 ErKIArUNG oo, 102

Introduction

1 Introduction

This chapter introduces a model of communication system in human world. Compared
with it in the virtual world such a communication system should be also existed.

1.1 Communication System

In society, people all interact with messages. Without interactions, a society cannot
survive. Social interaction is always through messages. So communication can be defined
as:

Communication is social interaction process by which a message or information is
exchanged from a sender to a receiver [1].

Figure 1 is a model of communication system [3]. In this communication system there are
three important components, channel, sender and receiver. A sender is a message source
and sends out messages. Channel is a mean of exchanging a message. A receiver gets a
message and can send feedback to the sender. The main function of a communication
system is to share and process information between the members of a society.

Meaning

v

Encode

~

ransmit

Figure 1. A model of communication system [3]

In recent years, with the continuous development of the network, the network society has
been built up. To develop a more perfect and more powerful network society, a
communication between members of this society is indispensable. The communication

Introduction

between human users is very common. There are already many means of communication
between human users, for example, MSN, Mail, Skype, Twitter, etc. In addition to human
users, business processes are also considered as an important member of this society.
Once business process and human users can exchange messages, the entire network
society will have a higher degree of automation and efficiency. Today many systems have
been built the communication up. But the types of communication channels are not rich.
There are many channels that can be developed to support this communication between a
business process and a human user.

1.2 Motivation

All over the world, thousands of business processes are automatically running in many
companies every day. Efficiency and convenience are the great advantages of them. Most
business processes are frequently used, and they can complete tasks independently. In
many cases for users it is not the process but the result of it that is really important. Figure
2 shows a simple business process that calls an external Web Service to complete the
intended goal.

(Start)
kA
. request—»{ Web
| f
<« response—— Service
L A
4 ™
([stop)
St

business process
Figure 2. A business process calls a Web Service

In recent years a concept “Interaction” is proposed [2], and human interaction becomes
increasingly important in the development of Web Services. Figure 2 shows the interaction
between a business process and a Web Service. If in this example the Web Service is
replaced by a human user, the business process will have more extensive range in usage.
The business process is no longer closed to run, but can run in the interaction with human
users. This kind of Interaction is considered as a kind of communication between a

Introduction

process and a human user. Figure 3 shows a business process that interacts with human
user.

request

€ response—

l Human User

- ‘H\\
< _~yes—» task2

rd
(stop | PR
™

J

business process

Figure 3. Business process interacts with human user

The importance of the interaction is the human factor. Similar to calling an external service,
this time the business process just calls a human user. By issuing a request to a human
user and receiving a reply from him, the business process can set some variables and
make a decision based on the values of these variables.

The use of conventional workflow environments and service compositions is suitable for
automating business processes. However, it is not yet completely applicable for
interaction with human users. In particular, different ways of communication for
involvement of human users are required.

Following is a use case: A business process is responsible for a meeting to determine the
attendance list and send a card to everyone. First this process gets a predetermined
contact list. According to this list the process contacts everyone and asks him, whether he
will accept the invitation. After that, the process will receive each reply, check validation,
and count the replies with “yes” from all valid replies to generate an attendance list. Finally

Introduction

it will send a confirmation to everyone in the attendance list. This use case is shown in
Figure 4.

e ™
| Start f]

\T/
invite everyone Do you want

in the‘ to accept
predetermined |, the invitation?
contact list

PN Yes \No
—< P

~ >
~% /

yes
Add :o the ¢

attendance list

No .
l Confirmation

Send a ‘
confirmation

.

s ™y
L—»{ End /l

business process

Figure 4. An instance of business process with human interaction

1.3 Objectives

Based on the motivation following objectives were defined for this work:

O1: Create a concept for communication services for human interaction. It should be able
to deal with some special network communications (for example: Mail, Skype, and File
Transfer Protocol) and enable interaction between a process and human users.

02: According to the concept implement communication services. Communication
services are responsible for getting a request from a business process, sending a
message to a specified user and processing a response from a responding user.

03: Make some instances to test the implemented services.

Introduction

1.4 Document Structure

The document is divided into the following seven chapters:

Chapter 1 “Introduction” contains introductory information, introduces a communication
system, explains the motivation, defines objectives and guides the reader through the rest
of the document.

Chapter 2 “Fundamentals and Technologies” introduces the definition of business
processes and Web Services as the fundamentals for this work. Nowadays many new
technologies are used for Web Services. These technologies include: XML, XML Schema,
WSDL and SOAP.

Chapter 3 “Concept” introduces the concept for communication services. Two channels
are provided: Mail and Skype.

Chapter 4 *“Specifications” defines the detailed information, for example, interface
arguments and configuration data.

Chapter 5 “Implementation” introduces the whole process of implementation according to
the concepts.

Chapter 6 “Test Cases” shows different scenarios to test the functionalities of Mail Service
and Skype Service.

Chapter 7 “Summary and Outlook” summarizes the document and gives an outlook on the
problems that were identified by this work.

Bibliography can be found in the end.

Fundamentals and Technologies

2 Fundamentals and Technologies

This chapter introduces some theoretical concepts in the background and the necessary
technologies are involved in them.

2.1 Business Process

As fundamental asset of companies, enterprise applications and information systems
have become very important. Companies rely on them to be able to perform business
operations. Based on them business processes are modelled to realize a business goal.

A business process consists of a set of activities that are performed in coordination in an
organizational and technical environment. These activities jointly realize a business goal.
Each process is enacted by a single organization, but it may interact with business
process performed by other organization [4]. Following the same well-defined process
model, these activities are repeated over and over. There are three levels of interaction
between the different business processes [5]:

e An activity in a business process invokes another business process. That new
business process executes totally independently of the original business process.

e An activity in a business process invokes another business process and waits until that
new business process has completed.

e An activity in a business process invokes another business process, and an activity
later in the business process waits until that new business process has completed.

An important nature of business processes is dynamic. Business processes should be
optimized and adapted in an agile manner to the customers, thus the responsiveness of
the whole company can be improved.

Some of business process activities can be performed by the company’'s employees
manually or by the help of information systems. The others can be enacted automatically
by information systems and Web Services, without any human involvement. In this thesis
the latter business process is as a research object. The goal is to extend a kind of
interaction between business process and human.

10

Fundamentals and Technologies

2.2 Web Services

The term Web Service is used very often nowadays. The Web Service Architecture
working group of the World Wide Web Consortium (W3C) developed the following
definition for a Web Service [7]:

A Web service is a software system designed to support interoperable machine-to-machine
interaction over a network. It has an interface described in a machine-processable format
(specifically WSDL). Other systems interact with the Web service in a manner prescribed
by its description using SOAP messages, typically conveyed using HTTP with an XML
serialization in conjunction with other Web-related standards.

Web Services provide a standard means of interoperation between software applications,
running on a variety of platforms and/or frameworks. For exchanging information they are
represented by the request/response pattern. They receive a Simple Object Access
Protocol (SOAP) message as request. After processing this message, they send another
SOAP message as response. Web Services have the following characteristics [8]:

e Loose coupling

Web Services enable applications to work cooperatively together using the principle of
loose coupling. In a loosely coupled exchange, applications need not know how their
partner applications behave or are implemented. This greatly reduces the difficulty of
application integration.

e Service granularity

Web Services may vary in function from simple requests to complex systems that access
and combine information from multiple sources. Simple services are atomic.

e Synchronicity

There are two types of services: synchronous and asynchronous. A synchronous service
functions as a method call with a set of arguments, which returns a response. While a
client invokes an asynchronous service and it does not need to wait for a response before
it continues with the remainder of its application.

e Well-definedness

The service interaction must be well defined in a Web Service Definition Language (WSDL)
document.

e Flexibility

Web Services can be dynamically found and can be embedded into remotely located
applications.

e Dependence

11

Fundamentals and Technologies

Web Services are platform-independent. A Web Service is a self-contained software
module that performs a single task. The module describes its own interface, i.e. the
operations available, data type and access protocols. Through this description others can
know what it does, how to invoke its functionality and what result will be returned.

Web Services are the most suitable technology for realization of Service Oriented
Architecture (SOA). Figure 5 illustrates bind/publish/find approach in SOA as described in
[11]. First, the provider must provide an abstract definition of the service, including the
appropriate way to bind this service. Second, the provider needs to publish this service,
including the precise information what it does and how to connect to use it. Third, the
requestors who require services need to find what services are available that meet their
needs.

Requester

Bind Find

Y Y

Discovery
Publish Facility

Service

Figure 5. The SOA Triangle [11]

To implement Web Services several specifications are used in Figure 6. Universal
Description Discovery and Integration (UDDI) is a standard and a mechanism to register
and locate Web Service applications. WSDL describes the interface for a Web Service, i.e.
what methods are present in a Web Service, what parameters and return values each
method uses, and how to communicate with them. SOAP is a message format for a Web
Service. UDDI, WSDL and SOAP are the platform-independent and XML-based format.

12

Fundamentals and Technologies

Finding Web Services
UDDI(Universal Description, Discovery, and Integration)

Describing Web Services
WSDL(Web Service Description Language)

Calling Web Services
SOAP

Data Encoding
XML, XML Schema

Transport
HTTP, SMTP

Figure 6. The web service technology stack [12]

2.3 XML, XML Schema

XML stands for Extensible Markup Language. XML is a set of rules for defining semantic
tags that break a document into parts and identify the different parts of the document. It is
a meta-markup language that defines a syntax used to define other domain-specific,
semantic, structured markup languages [13]. The definition of XML is independent of the
platform and defined using Unicode. Therefore XML has rapidly become the official format
for data interchange between disparate entities.

e XML Basics

XML document consists of elements, which are defined through its name, a set of
attributes and some children. Listing 1 is a simple XML document called “customer.xml”.
Customer element has two children, Name element and Address element. The definition of
an element starts with a start tag <Customer> and ends with an end tag </Customer>.
Attributes are name-value pairs that associated with an element. An element can have any
number of attributes and is written as <Customer namel="valuel” name2="value2”.>.

13

Fundamentals and Technologies

1. <?xml version="1.0"?>

2. <Customer>

= <Name>AAA Company</Name>

4 <Address>

5. <Linel>219-241 Cleveland St</Linel>
6. <Line2>0711-3456-234</Line2>

7 </Address>

8. </Customer>

Listing 1. XML example “customer.xml”

¢ XML Schema

XML Schema is a document structuring and type definition specification that the World
Wide Web Consortium (W3C) developed. It uses XML syntax. But it is powerful to define
the structure of a XML document. It defines a set of primitive data types to define attribute
and element values. Listing 2 is an XML Schema file called “customer.xsd” that defines
the elements of the XML document above (“customer.xml”). Customer element is a
complex type because it contains other elements.

<?xml version="1.0"?>
<xs:schema xmlns:xs=http://www.w3.0rg/2001/XMLSchema>
<xs:element name="’Customer’>
<xs:complexType>
<xs:sequence>
<xs:element name="’Name” type="xs:string”’>
<xs:element name="Address” type="AddressType”’>
</Xs:sequence>
</xs:complexType>
10. </xs:element>
11. <xs:complexType name="AddressType’’>

©CoO~NOODhWNE

12. <Xs:sequence>
13. <xs:element name="Linel” type="xs:string’/>
14. <xs:element name=Line2” type="xs:string’/>
15 </xXs:sequence>

16. </xs:complexType>
17. </xs:schema>

Listing 2. An example of XML Schema "customer.xsd"

e XML Namespace

To guarantee uniqueness named elements and attributes in an XML document XML
Namespaces is required. It is a way to scope element and attribute names to a
namespace so that their usage is always unique, regardless of their context. In Listing 2
line 2 indicates that the elements and data types used in the schema come from the
“http://lwww.w3.0rg/2001/XMLSchema” namespace and should be prefixed with xs:.

XML document and XML Schema are widely used in the network field. All of the Web
Services specifications have associated schemas written using XML Schema. SOAP

14

Fundamentals and Technologies

message is an example of an XML vocabulary. WSDL is another example. Most of the
Web Service specification format is defined by XML vocabulary. A XML document is
well-formed if it adheres to all the XML syntax rules. The validity of a XML document can
be detected by its XML Schema. A well-formed document is also valid if it conforms to
some XML Schema.

2.4 WSDL

Web Services Description Language (WSDL) plays an important role in the overall Web
Services Architecture. WSDL is a specification defining how to describe Web Services in a
common XML grammar and describes four critical pieces of services [9]:

1. Interface information describing all publicly available functions

2. Data type information for all message requests and message responses
3. Binding information about the transport protocol to be used

4. Address information for locating the specified service

WSDL uses eight major elements [9]:

definitions

The definitions element is the root element of all WSDL documents. It defines the name of
the Web Service and nhamespaces.

types

The types element is a container for data type. It defines abstract data type using XML
Schema.

message

The Message element describes a message for input or output. It contains O or more part
elements, which can refer to parameters or return values. Name and type are defined for
part elements.

operation

The operation element describes all functions in this Web Service. They are defined by an
exchange of message.

portType
The portType element abstractly describes a set of operations.

port

15

Fundamentals and Technologies

The port element defines an individual endpoint by specifying a single address for a
binding.

binding
The binding element defines the concrete protocol and data format for this service.
service

The service element defines the address for invoking a service. It includes a URL for
invoking the service.

2.5 SOAP

Simple Object Access Protocol (SOAP) [10] is a specification for exchanging structured
information in the implementation of Web Services and its format is based on XML. A valid
SOAP message is a well-formed XML document. There are three elements in following
Figure 7 SOAP message structure: SOAP-ENV: Envelope, SOAP-ENV: Header, and
SOAP-ENV: Body. Envelope defines the start and end of the message. Header contains
any optional attributes of the message used in processing the message. Body contains the
XML data comprising the message being sent. Among of them Envelope and Body
elements are Mandatory, Header element is optional.

/ S0AP-ENV: Envelope \

-

S0AP-ENY: Header

~

SOAP-ENV: Body

A ./

Figure 7. SOAP message structure [11]

The Web Services specification includes: SOAP, UDDI and WSDL. UDDI allows clients to
discover Web Services. WSDL describes the functionality and attributes of Web Services.
Web Services interoperate through SOAP. Figure 8 gives an architectural representation
of the Web Services Model [16]. First, a service provider describes its service using WSDL.
This definition is published to a directory of services. The directory use UDDI here.
Second, a Web Service User locates a service through the directory and determines how

16

Fundamentals and Technologies

to communicate with that service. Third, part of the WSDL provided by the service provider
is passed to the service user. This tells the service user what the requests and responses
are for the service provider. Fourth, the service user uses the WSDL to send a request to

the service provider. Finally, the service provider provides the expected response to the
service user.

Registra-
Retrival of tion of
Services Services
™
ot
. eb Service
(—Web Service Users “Providers
ﬁ ﬁ SOAP WSDL
ﬁ I H\\ \J -ll Document
Q\pphcatmns; '| “Web ™
e | (€
- |I Serwces]
I|I Use
Services

Figure 8. Web Services Model [16]

17

Concepts

3 Concepts

This chapter introduce different aspects of a communication system, for example,
participants, classes and means of the entire communication system. Afterwards, with the
help of these aspects, some concepts are proposed for Mail Service and Skype Service.

3.1 Participants of Communication

In this thesis the mentioned communication is the interaction between a business process
and a human user. Such communication is rather special. Today the interaction between
two processes has been widely used. Due to Web Services, this interaction uses the
principle of loose coupling and it is platform-independent and language-independent. In
contrast, the interaction with human users has not been developed so mature and has
several following problems. First, a human user can have several different contacts, for
example Mail, Skype or MSN. Then which way can a communication system choose to
contact him? Second, if the user does not respond promptly, how will the communication
system deal with this situation? Third, a response from a human user may be a variety of
errors in the content and format. How will the system check it? There are so many similar
problems that this interaction with human has the high complexity.

In a communication system there are four components: a communication initiator, the
human communication manager, communication services and human user [14].

Request Request Request
message message message
A Human c icati —_—
communication communication ommunication
initiator manager services <
% % % Human User
Response Response Response
message
message message

Figure 9. Participants in communication system

1. A communication initiator

18

Concepts

A communication initiator can be an application or a service and wants to communicate
with a human user. It sends a request message to the human communication manager.

2. The human communication manager

The human communication manager establishes a communication between a
communication initiator and a communication service. It is able to do these tasks:

1) receive the request message from initiator

2) check the request message

3) choose the best communication service channel

4) send a special message to this service

5) receive the response message from communication service

6) send a response message to initiator

Communication Human Communication
Initiator Manager Cg:rmgzlzﬁl;m IM Device
SOAP/HTTP SOAP/HTTP (ID:123456789)
SOAP/JIMS SOAP/JMS
Text/XMPP
T A S > b ————— -
\
\
N\
(AN Kt———-— -
\ !
(N /
\ \ /
\ \ !
\ ! . .
\ \ /! Communication Mail Device
v % | Service (E-Mail) (ID:admin@sample.com)
VN Mail/SMTP
VoA - >
(
/\\ q
!
Y S -
[
! \ 7/
1/ /
/ A Worklist Applicati
\
/ /0| Human Task (Userjohnemith)
[\ Manager SOAP/HTTP J
// / \ SOAP/IMS
1, \| S
Kt————— -9 lék ————— ~
- ———— —q

Figure 10. Communication participants [14]

3. Communication services

A communication service is a concrete endpoint for a selected communication channel.
For example, Mail communication channel, Skype communication channel, FTP
communication channel, Twitter communication channel. This thesis is focused on this
component.

4. Human user

19

Concepts

Human user receives a message from the communication system and sends a response
to the system.

3.2 Classes of Communication

As proposed in [17], there are at least three main classes of communication with humans:
notification, decision, and control.

3.2.1 Notification

This class of communication refers to reports sent to a user in order to inform him about a
particular status of an application, service, workflow etc. The reports may be regular status
reports, fault reports, processing completeness updates etc. A notification does not
require any response by the user.

3.2.2 Decision

This class of communication refers to sending information to a user to let him decide how
to react to a particular situation. A decision may be a simple approval/rejection, may offer
multiple choices to select from, may require specifying particular parameters, and may
require a user to check or correct certain data that cannot be checked or corrected
automatically.

3.2.3 Control

This class of communication refers to remote control of an application that can be steered
by a user. Depending on the capabilities of an application for remote control, processing
may be paused, resumed, aborted, retried in case of a fault, iterated, or skipped.

This thesis mainly focuses on two classes of communication, notification and decision. In
this work, a request which doesn’t need a response is defined as a notification request. A
request which needs a response is defined as a decision request.

3.3 Means of Communication

Different means of communication are in the communication system as different channels.
According to the different characteristics of these means, a standard to choose a channel
can be made for the component human communication manager. This thesis focuses on
two means of communication, Mail and Skype.

20

Concepts

3.3.1 Mail

Mail mentioned in this thesis refers to e-mail. It is a kind of asynchronous exchange of
information by electronic means of communication. It allows users to send or receive text,
picture and recorded voice and other forms of information. Mail system is based on
client-server model. Every mail involves the sender and receiver. By mail client, the
sender sends a message to the Simple Mail Transfer Protocol (SMTP) server. To retrieve
a mail from a remote server Post Office Protocol 3 (POP3) is used as an internet standard
protocol and makes it possible to download a message sent by any SMTP server. The
sent message is stored on the server until it is retrieved. Then the message is removed
from the server and stored on the local hard drive of a user.

The advantage of mail is not to require the recipient online, which means that it is an
asynchronous way. Communication system needs only an address from the recipient.

His disadvantage is that attachment size is limited. For example, Yahoo! Mail lets user
send mails up to 10MB in total size. This size encompasses both the message itself and
all its attachments. With Google Mail, user can send and receive messages up to 25MB in
size. This limitation can be one of the criteria for choice of the channel.

3.3.2 Skype

Skype [18] is a service for its users to communicate with each around the world over the
internet, including video and audio calls, chat (instant messaging), sending file and
conference audio calls. In our communication system we use only instant messaging and
sending file. Before user call Skype he must register, sign in and add a new contact. Then
he can send a message to this user if he is online now. This is both its advantage also its
disadvantage. Through Skype the system may receive replies in the shortest time.

3.3.3 FTP

File Transfer Protocol (FTP) is a standard network protocol used to transfer files from one
host to another host over a TCP-based network, such as the Internet. FTP is built on a
client-server architecture and uses separate control and data connections between the
client and the server. FTP users may authenticate themselves using a clear-text sign-in
protocol, normally in the form of a username and password, but can connect anonymously
if the server is configured to allow it.

3.3.4 Twitter

Twitter [19] is an online social networking service and microblogging service that enables
its users to send and read text-based posts of up to 140 characters.

21

Concepts

3.4 Mail Service

This thesis is mainly responsible for design and implementation of component
communication services. There are two subservices in this component, Mail Service and
Skype Service.

3.4.1 First Concept of Mail Service

The main function of Mail Service is to use mail to contact human and return a response to
the process. Mail Service should be able to receive a request from a running process.
According to the request message it should extract all useful information, for example, the
receiver, the subject, the mail text, an attachment and so on, then build a mail message
and use a dedicated mail address to send this mail. Following the sending, Mail Service
should determine, whether this mail needs a response. If this mail needs a response, the
process should wait for a reply until the timeout. Finally, Mail Service will return a message
to notify the process, whether the request is accepted or not.

According to the main function of Mail Service, the architecture for Mail Service can be
shown in Figure 11.

—m» GetRequest —» SendMail

N

S
Request/ Human . . . °
o 4+~ ProcessMail 1« ReceiveMail [¢-—{x
communication NS
manager AdministratolJser Mail Server User
Mail Server

Configurati-

ondata
Userlist.xml Register
Tasklist.xml
log
Mail Service

Figure 11. Architecture of first concept

In the architecture there are six components: 1) a requestor, 2) human communication
manager, 3) Mail Service, 4) administrator mail server, 5) user mail server, 6) human user.
The requestor sends a request to human communication manager, after some processing
the human communication manager calls Mail Service. Mail Service has an
administrator’'s mailbox. All the messages sent by this service are sent through this
administrator’s mailbox.

There are four data files in Mail Service: configurationdata, Userlist.xml, Tasklist.xml, and
a log file.

22

Concepts

Configurationdata: all information for administrator account, log information. For
example, administrator mail address, receive/send host, receive/send port, username
and password.

Userlist.xml: this file stores all registered mail address.
Tasklist.xml: this file records every task in Mail Service.

Log file: this file is a record of everything that happens in Mail Service.

In Mail Service there are two subservices: one is to process the request, another is to
register new user.

Register subservice: every mail address should be in Mail Service registered. The
registration method is to use the mail address to send a mail to the administrator
mailbox with a subject “register” or including a word “register”. Register subservice
checks every mail in administrator mailbox, whether this mail is a register mail or not. If
this mail is a register mail, this mail address will be added into Userlist.xml. For
unregistered address an information mail will be sent from administrator and the
human user can reply this mail to register for Mail Service. This register subservice
runs automatically.

Process request subservice: after this subservice receives a request, a new mail will
be created and sent to the corresponding user through mail server according to this
request. If this request needs a response, the subservice will regularly receive mail
from administrator mailbox until the timeout. If this malil is replied, the reply will be
checked, whether it is valid or not. The valid reply will be as a response returned to
human communication manager.

3.4.2 Problem of First Concept

This concept has a major weakness, it is unreliable. Before Mail Service returns a

response to the requestor, the emergence of the error may cause data loss, shown in
Figure 12.

1. Example:

During the sending server is restarted. After the restart the request is lost.

2. Example:

An error has occurred in register subservice. A mail address is not registered successfully,

and the request to this mail address will be declined.

3. Example:

23

Concepts

The connection to administrator’'s mail server is failed. The request is not completed, but
Mail Service can not process it again.

—» GetRequest —» SendMalil

Request/
| | Response Human 1o L1 processMail +— ReceiveMail [«
» communication
:ﬂ: manager User

Configurati-

ondata]
Userlist.xml \<» Register
Tasklist.xml
log

M Mail Server
v

Mail Service
Figure 12. Data Loss

Second weakness is the independence of function modules. In process request
Subservice there are four function modules: GetRequest, SendMail, ReceiveMail, and
ProcessMail. As long as any function has problem, it will lead to the failure of the entire
subservice.

Third weakness is instability. Two subservices should always repeatedly connect the mail
server and read the content in mailbox of administrator. But the connection is instable.
Once the connection fails, the entire mail service will be in a state of paralysis.

3.4.3 Robustness

Strong robustness [20] is defined in computer science, that computer system has the
ability to cope with errors during execution or the ability of an algorithm to continue to
operate despite abnormalities in input. For interaction between process and human user a
strong robustness is very important. In communication services human users as
respondents can give any form of response. That is uncertainty. This requires that
communication system can handle all kinds of unexpected circumstances. For example,
response’s template should be flexible in order to expand the scope of validation. For a
variety of invalid reply, communication system is not terminated, but can make the
appropriate processing.

24

Concepts

3.4.4 New Concept

In order to overcome the weaknesses mentioned above, a new concept is developed and
makes improvements in the following points. The following Figure 13 is the architecture of
the new concept.

» GetRequest ProcessMail
ReceiveMail
I:l Request/
Response Human nbox L _
communication table” OUtbOX > SendMail
iﬂ manager table Administrator ~ User User
— \] Mail server Mail
database Register Server
A
+— GetResponse Configuaton
log
¥/\
Mail Service

Figure 13. Architecture of new concept

There are two main tables in the database. One stores all requests from external and
internal, similar to the mailbox Outbox. An external request is a request sent by an
external process which wants to call Mail Service. An internal request is a request
generated by Mail Service. The other stores all mails, that the administrator receives,
similar to the mailbox Inbox. Mail Service by GetRequest subservice gets each request
from an external process and puts the request in Outbox table. SendMail subservice reads
every new request in Outbox table and according to this request sends a mail.
ReceiveMail subservice puts each new mail in Inbox table. ProcessMail subservice
processes the mail in Inbox table. Mail Service by GetResponse subservice returns a
message to the external process.

3.4.4.1 Guaranteed Delivery

In communication sender, receiver, and network connecting the two do not all have to be
working at the same time. If the network is not available, the messaging system stores the
message until the network becomes available. Likewise, if the receiver is unavailable, the
messaging system stores the message and retries delivery until the receiver becomes
available [15], shown in Figure 14.

25

Concepts

Sender Receiver

Disk Disk

Computer 1 Computer 2

Figure 14. Guaranteed Delivery

Similarly in Mail Service, in order to improve reliability a database will be added in new
concept. This database stores all mails from the administrator's mailbox, the register
information, all sent mails.

3.4.4.2 Independent subservices

GetRequest subservice is a public service, and other external services can call this
subservice in order to send a request to Mail Service. This GetRequest subservice
receives a request and stores it in database. It runs only when someone calls it.

ReceiveMail, ProcessMail, SendMail, Register as internal subservices run in parallel,
regularly and independently. They should start when the server starts. ReceiveMail stores
any new mails from administrator’'s mailbox in database. SendMail sends a mail according
to a request. ProcessMail processes every mail in database. Register stores a new
registered address in database.

GetResponse subservice is a public service, and an external service can call this
subservice to query whether some request has a response or not. To specify a request an
id for the request is required and passed into GetResponse subservice as input
parameter.

3.4.4.3 Stability

In order to improve stability, only two subservices have to connect with mail server. They
are SendMail and ReceiveMail. Other subservices only need to connect with database to
read and write data. The Connection with database is more stable than the connection
with mail server.

26

Concepts

3.4.5 Database Concept

In the new concept a database is a primary storage. All requests and mails from mail
server will be stored in this database. This approach is to enhance the reliability and
shorten the time for data processing. As public storage this database must provide all
appropriate data for every subservice.

GetRequest subservice

An external process calls GetRequest subservice to send a request, so GetRequest
subservice should store every received valid request in database and return a message
for this request to the process.

Register subservice
Register subservice should store information of every registered mail in database.
ReceiveMail, SendMail, ProcessMail subservices

Similar to the mail account for these three subservices the database should provide all
information of every mail in inbox and in outbox. In order to identify one mail every mail
must have a unique identifier.

GetResponse subservice

GetResponse subservice extracts a response for a request from the database. To specify
a request a unique identifier for the request will be passed into GetResponse subservice
as input parameter.

3.4.6 Classes of Mails

In inbox of mail account all mails can be divided into three types: register mails, response
mails, and other mails. The other mails are generally advertising mails from this mail
account provider and these mails make no sense for Mail Service. In outbox of the mail
account every mail is a request mail. Based on the above analysis there are five classes of
mail in mail service:

e NOTIFICATION: One mail that belongs to this class is a mail sent from the
administrator.

e REGISTER: One mail that belongs to this class is a register mail from a new user.
o REQUEST: One mail that belongs to this class is a request from the process.
¢ RESPONSE: One mail that belongs to this class is a response.

o UNKNOWN: All mails that do not belong to other three classes. They are generally
advertising mails.

27

Concepts

3.4.7 Mail States

State diagrams [21] are used to give an abstract description of the behaviour of a system.
This behaviour is analyzed and represented in series of events that could occur in one or
more possible states. Figure 15 is a state diagram for Mail Service.

[isRegister&®ister]

[response=no]
[valid response]
new

[isRequest&&send

[response=yes] [reply]

replied

[invalid response&& not timeout]
|

[timeout]

) =

[error]

Figure 15. State diagram of Mail Service

7 different states are defined for Mail Service: NEW, SENT, AWAIT_REPLY, REPLIED,
FINISHED, FAILED, TIMEOUT. Among them, NEW is a start state, and FINISHED,
FAILED, TIMEOUT are end states

Whether it is in the Inbox or Outbox, first all mails will be stored as a new mail [NEW].
Then a new mail will be determined, which class of malil it is, REGISTER, REQUEST or
RESPONSE. After registration processing register mail is complete [FINISHED]. If it is a
response mail, it may be a valid response, or it may be an invalid response. So its next
status may be two states, completely processed [FINISHED] or failed [FAILED]. If it is a
request mail, this request is sent out first [SENT], and then is determined whether it needs
to wait for a response, if necessary [AWAIT_REPLY], the corresponding response must
be handled within certain time limitsfREPLIED]. If no response is received within the time
limit, this request will be judged to be timeout [TIMEOUT]. Error will result in processing
incomplete [FAILED].

Concepts

3.5 Skype Service

In this work Skype Service has not been completely implemented and it is written as a
concept in this chapter. An external process can call Skype Service to send a text
message or a file to a human user. Skype Service checks a request, whether it needs a
response or not and return a valid response to the external process.

The concept for Skype Service is very similar to the concept for Mail Service. Figure 16
illustrate the components in the architecture of Skype Service. There are database,
configuration data, GetRequest, ProcessMessage, ReceiveMessage, SendMessage,
GetResponse and Register. Every message has seven different states: NEW, SENT,
AWAIT_REPLY, REPLIED, FINISHED, FAILED, TIMEOUT. Among them, NEW is a start
state, and FINISHED, FAILED, TIMEOUT are end states. There are three classes of the
received messages: RESPONSE, REGISTER, UNKNOWN.

Some tables will be created in the database to store dates for different themes, for
example, a table for all sent text message, a table for all sent file, a table for all received
text message, a table for all received file, and a table for Skype username of all register.

GetRequest gets a request from an external process, checks the validation of this request
and puts the valid request in the database. ProcessMessage, ReceiveMessage,
SendMessage, Register runs in parallel in the background. They get the dates only from
the database and are independent each other. The external process can call
GetResponse to query, whether Skype Service has received a valid response for some
request.

A4

GetRequest 4—7 ProcessMessage

ReceiveM ge — _
Response uman 3 [&
“ —»{ communication Kt Ikr_:l Out » SendMessage > 4

=ﬂ= able |table

manager - N i Admin User User
Register

database

y

4— GetResponse Conf;g;aton

Skype Service

Figure 16. Skype Service architecture

There are several new points for Skype Service:

For Skype Service application Skype is required and must be started and log in with
administrator account before Skype Service runs.

29

Concepts

To send a message to someone via Skype the username of the recipient must be added
into the administrator’s contact list before.

In a mail text and file can be sent at the same time. But in Skype a message to be sent is
either a text or a file at the same time.

All contacts of administrator’s contacts list have different state, for example, online, away,
Do Not Disturb. If a contact is online, the communication with this contact may be
synchronous. Compared to mail system asynchronous communication is one of the most
significant features.

30

Specifications

4 Specifications

Before the implementation starts, the specifications for interface parameter of Mail Service
and Skype Service and configuration dates will be determined in this chapter.

4.1 Interface Parameters

4.1.1 Mail Service

An external process can call GetRequest subservice to send a request. For a mail request
some parameters are required. For example, address of recipient, subject, content and
attachments. In addition, three parameters for a response are also required. One indicates,
whether the request requires a response or not (parameter response). The other defines
the time limit for replying (parameter timeout). The third is the template of a response
(parameter responseTemplate).

According to the above mentioned, 7 parameters will be defined as interface parameters
in GetRequest subservice shown in Figure 17: recipient, subject, message, attachments,
timeout, response, responseTemplate. Among them parameter response indicates,
whether the request requires a response or not. It has two value “yes” or “no”.

[e] getRequest - (getRequestType)
[8] recipient [0.1] string
[e] subject [0.1] string
[e] message [0.1] string
wea | 8] attachments [0.1] string
[8] timeout [0.1] string
[8] response [0.1] string
[8] responseTemplate [0.1] string

Figure 17. Input parameters for GetRequest subservice in Mail Service

As return value a string should be returned to notify, whether calling Mail Service is
successful or not, shown in Figure 18.

31

Specifications

(getRequestResponseType)
sscl €] return [(L1] string

¥

|e| getRequestResponse

Figure 18. Output parameter for GetRequest subservice in Mail Service

4.1.2 Skype Service

SkypeGetRequest subservice in Skype Service is an interface to the external. It is
responsible for getting a request from an external process which sends a request to Skype
Service. To send a message via Skype Skype id and text are required. Similar to the
above input definition of Mail Service parameter response, timeout and responseTemplate
are also required. Because Skype sends either a text message or a file at the same time, a
parameter messageType is required to indicate the type of a message, a text message or
file. Figure 19 shows the definition of input parameters for Skype Service. Output
parameter for Skype Service has the same structure of Mail Service in Figure 18.

|e] skypeGetRequest (skypeGetRequestType)

¥

[8] messageType [0.1] string
(2] message [0.1] string
[8] username [0.1] string
- [2] reply [0.1] string

[8] responseTemplate [0.1] string
[e] timeout [0.1] string

Figure 19. Input parameters for SkypeGetRequest subservice in Skype Service

4.2 Configuration

File configuration.conf is a list of configurationsarguments. After these arguments in this
file are set, they are in the entire communication service fixed. Every time the service is
called, these arguments will be read from this file.

Table 1 lists the arguments for Logging of Mail Service.

Argument Description
GetRequestLogFilePath location of logfile for GetRequest subservice
ReceiveMailLogFilePath location of logfile for ReceiveMail subservice
SendMailLogFilePath location of logfile for SendMail subservice

32

Specifications

RegisterLogFilePath location of logfile for Register subservice
ProcessMailLogFilePath location of logfile for ProcessMail subservice
MailLayout format for the output of an appender
MailLogFileSize size of logfile

MailMaxBackuplndex limit number of backups

MailAppender an output destination

MailPattern message format

Table 1. Arguments for Logging of Mail Service in configuration.conf

Table 2 lists the arguments for Administrator’'s account of Mail Service.

Argument Description
MailAddress address of Administrator’s account
ReceiveHost host for receiving a malil
ReceivePort port for receiving a mail
SendHost host for sending a mail
SendPort port for sending a malil
Username username of administrator’s mailbox
Password password of administrator's mailbox

Table 2. Arguments for Administrator's account of Mail Service in configuration.conf

Table 3 lists the arguments for the Mail Service database in configuration.conf.

Argument Description
db_username username of database
db_password password of database
db_url url of database
db_table_mailbox tablename
db_table_sentmails tablename
db_table _mailattachments tablename

33

Specifications

db_table mailregister

tablename

Table 3. Arguments for the Mail Service database in configuration.conf

Table 4 lists the argument for saving attachments of Mail Service.

Argument

Description

AttPath

location to save the attachments

Table 4. Argument for saving attachments of Mail Service

Table 5 lists the arguments for Administrator's account of Skype Service.

Argument

Description

skype_username

username of Skype application

skype_password

password

Table 5. Arguments for Administrator's account of Skype Service in configuration.conf

Table 6 lists the arguments for Logging of Skype Service.

Argument

Description

SkypeGetRequestLogFilePath

location of logfile for SkypeGetRequest subservice

ReceiveMessagelLogFilePath

location of logfile for ReceiveMessage subservice

SendMessagelogFilePath

location of logfile for SendMessage subservice

SkypeRegisterLogFilePath

location of logdfile for Register subservice

ProcessMessagel ogFilePath

location of logfile for ProcessMessage subservice

SkypeLayout

format for the output of an appender

SkypeLogFileSize

size of logfile

SkypeMaxBackuplndex

limit number of backups

SkypeAppender

an output destination

SkypePattern

message format

Table 6. Arguments for Logging of Skype Service in configuration.conf

Table 7 lists the arguments for the Skype Service database in configuration.conf, i.e. the

information of connecting to the database.

34

Specifications

Argument Description
skydb_username username of database
skydb_password password of database
skydb_url url of database
skydb_table register tablename
skydb_table senttextmessage tablename
skydb_table sentfilemessage tablename
skydb_table receivedtextmessage tablename
skydb_table receivedfilemessage tablename

Table 7. Arguments for the Skype Service database in configuration.conf

35

Implementation

5 Implementation

This chapter describes all components in Mail Service and Skype Service that have been
implemented. Bottom-up approach is used to develop Web Services. First a component
level is explained — which components exist. Then the internal structure of each
component is described. Afterwards, the corresponding Java classes are described.

5.1 Components Overview

Communication services have two channels, Mail Service and Skype Service. The two
services are independent of each other. Database provides a stable and secure source of
data for two services. All data will be stored in the database and read from it. File
configuration.conf is an external data. It provides arguments to connect to the database,
set properties of log files and read administrator’s data. This file can be modified later.
Figure 20 shows the components of communication services.

Communication Services

Mail Skype
Service Service

/

/

Database configuration
\

Figure 20. Components in communication service

5.2 Database MySQL

In order to improve service reliability and data security, database design is required. In
this thesis MySQL will be used.

36

Implementation

MySQL is a database management system that is particularly well suited for use to the
Internet. It is relatively fast and reliable. The data can be managed using the internal SQL
command set. It is multi-user and multi-tasking capability, and handles large amounts of
data quickly and is relatively stable. MySQL is included in databases, tables and auxiliary
data. There are also tools for editing the data. MySQL also has a set of instructions, which
is similar to the standard database query language SQL. MySQL can also be as

open-source distribution from the Internet and used accordingly.

Specific information of MySQL.:

MySQL Server 5.5 — database server

MySQL Workbench 5.2 — tool for manage the database

Before using MySQL with the plan, an account must be set up.

For Mail Service database “maildb” is

Username: root

Password: root

database.

_| sentmails v
mail_id VARCHAR(45)
mail_to VARCHAR(45)
mail_from VARCHAR(45)
mail_subject V¥ ARCHAR(200)
mail_message TEXT
mail_sentDate DATET IME
mail_response VARCHAR(45)
mail_response_pattern \ ARCHAR(200)
mail_tim eout DATETIME
mail_class VARCHAR(45)
mail_state VARCHAR{45)

m mailregis ter ¥
id INT(11)
mailaddress V ARCHAR(45)

username V ARCHAR.(45)
>

5.2.1 Database in Mail Service

_| commserv_ad_gmx_da ¥
id INT(11)
pop3_uid VARCHAR(45)

created. Figure 21 shows five tables in maildb

—| mailattachments ¥
id INT{11)

@ mail_id VARCHAR(45)
filenam e VARCHAR(100)
content MEDIUMBLOB

| mailbox ¥
mail_id VARCHAR(45)
mail_replyid W ARCHAR{45)
mail_received Date TIMESTAMP
mail_from vV ARCHAR(45)
mail_from_username VARCHAR({45)
mail_to VARCHAR(45)
mail_subject ¥ ARCHAR{200)
mail_message TEXT
mail_dass VARCHAR(45)

mail_state V ARCHAR(45)

Figure 21. Five tables in database maildb

37

Implementation

1) maildb.sentmails
This table stores request data from a business process, which calls Mail Service. A
request requires a unique identifier for Mail Service, the recipient’'s address, the
subject of mail, the context of mail, the information, whether this mail needs a
response, the class of mail, the state of mail. There is also optional information: the
sender’s address; if this mail needs a response, which form the response should have;
the timeout, the current system time, when this mail will be sent by Mail Service.

Column Name Datatype value Description
mail_id VARCHAR(45) UuID unigue identifier
mail_to VARCHAR(45) mail address recipient’s address
mail_from VARCHAR(45) mail address sender’s address
mail_subject VARCHAR(200) string subject of mail
mail_message TEXT string context of mail
mail_sentDate DATETIME YYYY-MM-DD time, when this mail

hh:mm:ss will be sent
mail_response VARCHAR(45) yes or no whether this mail
needs a response
mail_response_pattern | LONGTEXT xml schema form of response
mail_timeout DATETIME tt:hh:mm:ss, time limit

(00:10:15:00 means
10 hours 15 minutes
time limit)

mail_class VARCHAR(45) NOTIFICATION, class of mail
REQUEST,
RESPONSE,
REGISTER,
UNKNOWN

mail_state VARCHAR(45) NEW, SENT, state of mail
AWAIT_REPLY,
REPLIED,
FAILED,
TIMEOUT,
FINISHED

Table 8. Definition of table sentmails

38

Implementation

2) maildb.mailbox

All mails in the inbox of the administrator’s mail box will be imported into this table.

Column Name Datatype Value Description
mail_id VARCHAR(45) uuID unique identifier
mail_replyid VARCHAR(45) UuID unigue identifier of

request

mail_receivedDate TIMESTAMP YYYY-MM-DD when this mail has

hh:mm:ss been received
mail_from VARCHAR(45) mail address sender’s address
mail_from_username | VARCHAR(45) string registered username
mail_to VARCHAR(45) mail address recipient’s address
mail_subject VARCHAR(200) string subject of mail
mail_message LONGTEXT XML context of mail
mail_class VARCHAR(45) NOTIFICATION class of mail

RESPONSE

REGISTER

UNKNOWN
mail_state VARCHAR(45) NEW state of mail

SENT

AWAIT_REPLY

REPLIED

FAILED

TIMEOUT

3) maildb.mailregister

Table 9. Definition of table mailbox

This table mailregister saves mail address and username. After register Mail Service
can send a mail to this address. So every new mail address must be registered by

sending a mail containing the word “register” in its subject or replying a register
request from Mail Service. The username and mail address will be extracted from his

mail.

39

Implementation

Column Name Datatype Description
id INT(11) own id
mailaddress VARCHAR(45)
username VARCHAR(45)

Table 10. Defintion of table mailregister

4) maildb.mailattachments
This mailattachments table manages all attachments of mails in Mail Service. Each
attachment record has own id, from which mail, filename and content.

Column Name Datatype Description
id INT(11) own id
mail_id VARCHAR(45) point to his mail
filename VARCHAR(100)
content MEDIUMBLOB

Table 11. Defintion of table attachments

5) maildb.commserv_ad_gmx_de
The purpose of this table is to judge, whether a mail in the mailbox is a new mail.
POP3 supports no permanent flags. In particular, the Flags.Flag.RECENT flag will
never be set for POP3 message. This is one drawback of POP3 Server. It is up to
determine which messages in a POP3 mailbox are “new”. There are several strategies
to accomplish this, depending on the needs of the application and the environment
[22]:

e A simple approach would be to keep track of the newest message seen by the
application.

¢ An alternative would be to keep track of the unique identifiers (UIDs) of all messages
that have been seen.

e Another approach is to download all messages into a local mailbox, so that all
messages in the POP3 mailbox are, by definition, new.

A unique identifier (UID) [23] is an arbitrary server-determined string, consisting of one to
70 characters in the range 0x21 to Ox7E, which uniquely identifies a message within a mail
drop and which persists across sessions.

40

Implementation

Column Name Datatype Description

id INT(11)

pop3_uid VARCHAR(45)

Table 12. Definition of table commserv_ad_gmx_de

5.2.2 MySQLAccess in Mail Service

This Java class is responsible for connecting and disconnecting to the database maildb. It
is placed in following Java package:

de.unistuttgart.iaas. interaction.mail.database

MySQL offers standard database driver connectivity for using MySQL with applications
and tools that are compatible with industry standards ODBC and JDBC [24]. To connect
to MySQL in Java Program MySQL Connector/J driver is required. It is the official JDBC
driver for MySQL.

The file name of the MySQL Connector/J driver is
mysgl-connector-java-5.1.18-bin.jar

The Path is added into the classpath and the connection url must be changed.
url=jdbc:mysql://localhost/maildb

This class offers two functions:

1) Connect to the database and return an interface object Connection.

2) Disconnect to the databse.

Functionl is implemented by the public method connDataBase. It takes the data from
configuration.conf. First it loads driver class by the method Class.forName(String driver)
(line 4). Then it establishes a connection to specified database URL (line 5). After the
connection is established, all tables for subservices must be checked. If the tables do not
exist in this database, they must be created (line 6- 17). Finally this connection is returned
(line 31). The method, that does this, is shown in Listing 3.

41

Implementation

1. public Connection connDataBase(ConfigFileHandler config) throws Exception{
2.

3. tryl

4. Class.forName(''com.mysql . jdbc.Driver');

b connect=DriverManager.getConnection(db_url, db _username,db_password);
6. String tablelSqgl = 'create table if not exists maildb."+table_mailbox..
7 String table2Sqgl = "'create table if not exists maildb."+ table_sentmails..
8. String table3Sql = ""create table if not exists maildb."+ table attachments..
9. String table4Sql = ''create table if not exists maildb."+ table mailids..
10. String table5Sqgl = "create table if not exists maildb.'+ table_register..
11. if(connect!=null){

12 statement = connect.createStatement();

13. statement.executeUpdate(tablelSql);

14. statement.executeUpdate(table2Sql);

15. statement.executeUpdate(table3Sqgl);

16. statement.executeUpdate(table4Sql);

17 statement.executeUpdate(table5Sqgl);

18. Yelse{

19. logger._error("'No database.');

20. System.out._println(’’'No database.™);

29 }

22_. }catch(ClassNotFoundException e){

23. Session session = AdminConnector.SendConnector(config);

24 ErrorHandler.sendErrorMessageForConnDB(session, config, e);

25 logger._error('Failed to load the MySQL drive');

26. }catch (SQLException el) {

20 Session session = AdminConnector .SendConnector (config);

28. ErrorHandler.sendErrorMessageForSQL(session, config, el);

29. logger._error('Failed to connect database.');

30

31. return connect;

32.}%

Listing 3. Database connection method

The input variable config is defined in class ConfigFileHandler. It reads full information
from the file configuration.conf. In Listing 4 all arguments in the file configuration.conf are
listed (line 8-27).

42

Implementation

1. public class ConfigFileHandler

2. |

3. protected String strFile = "

4. FilelnputStream proplnFile = null;

5 public Properties propConfig = new Properties();

6. private static Logger logger =

7 Loger.getLogger(ConfigFileHandler.class);

8. static String MailAddress = "MailAddress'';

9. static String RecieveHost = '""RecieveHost"';

10. static String RecievePort = '"RecievePort";

11 static String SendHost = ''SendHost'';

12 static String SendPort = "SendPort';

13 static String Username = '"'Username'';

14. static String Password = *‘Password’;

5 static String AttPath = "AttPath';

16. static String db_username ="db_username';

17 static String db_password ="db_password";

18. static String db_url = "“db _url";

19. static String db_table mailbox = "db_table mailbox";

20. static String db_table sentmails = "db_table sentmails';
21 static String db_table mailattachments = "db_table mailattachments";
22. static String db_table mailregister = 'db_table mailregister’;
23 static String xsdHeader = ''xsdHeader'';

24. static String xsdFoot = ''xsdFoot";

25. static String xmlHeader = "'xmlHeader'';

26. static String xmlFoot = "xmlFoot";

20 static String tag = ''tag’;

28. .}

Listing 4. Arguments in configuration.conf are listed in class ConfigFileHandler

Function 2 is implemented by another public method close. It closes object resultSet,
statement and connection. The method, that does this, is shown in Listing 5.

1. public void close() {

2 try {

3. if (resultSet != null) {
4. resultSet._close();

5. ¥

6. if (statement != null) {
7 statement.close();

8.

9. if (connect !'= null) {
10. connect.close();

11. }

12. } catch (Exception e) {
13 3

Listing 5. Database close() methode

5.2.3 Database in Skype Service

For Skype Service database “skydb” and five tables are created.

43

Implementation

1) skydb.register
This table register saves id and username of a Skype user. After register Skype
Service can send a message to this Skype user.

Column Name Datatype Description
idregister INT(11) own id
skype_username VARCHAR(45) Skype id
name VARCHAR(45) Skype username

Table 13. Defintion of table skydb.register

2) skydb.senttextmessage
This table saves all requests which want to send a text message to a Skype user. This
text message will be stored as a string.

Column Name Datatype Description

id VARCHAR(45) uuibD

to_username VARCHAR(45) Skype id of recipient

from_username VARCHAR(45) Skype id of Administrator

textMessage LONGTEXT content of message

sentDate DATETIME time, when this message will
be sent

reply VARCHAR(45) whether this request needs a
response

responsePattern LONGTEXT form of response

timeout DATETIME time limit

state VARCHAR(45) state of message

Table 14. Definition of table skydb.senttextmessage

3) skydb.sentfilemessage
This table saves all requests which want to send a file message to a Skype user.

Column Name Datatype Description
id VARCHAR(45) uuID
to_username VARCHAR(45) Skype id of recipient

44

Implementation

from_username VARCHAR(45) Skype id of Administrator

fileMessage BLOB content of message

sentDate DATETIME time, when this message has
been received

reply VARCHAR(45) whether this request needs a
response

responsePattern LONGTEXT form of response

timeout DATETIME time limit

state VARCHAR(45) state of message

Table 15. Definition of table skydb.sentfilemessage

4) skydb.receivedtextmessage
This table saves all text messages which are received by administrator’'s Skype client.

Column Name Datatype Description
id VARCHAR(45) uuID
requestld VARCHAR(45) UUID of the request
from_username VARCHAR(45) Skype id of Administrator
textMessage LONGTEXT content of message
receivedDate DATETIME time, when this mail will be

sent

class VARCHAR(45) class of message
state VARCHAR(45) state of message

Table 16. Definition of table skydb.receivedtextmessage

5) skydb.receivedfilemessage
This table saves all files which are received by administrator's Skype client.

Column Name Datatype Description
id VARCHAR(45) uuiD
requestld VARCHAR(45) UUID of the request
from_username VARCHAR(45) Skype id of Administrator

45

Implementation

fileMessage LONGTEXT content of message
filename VARCHAR(45) name of the file
receivedDate DATETIME the time, when this message

has been received.

class VARCHAR(45) class of message

state VARCHAR(45) state of message

Table 17. Definition of table skydb.receivedfilemessage

5.2.4 MySQLAccess in Skype Service

This Java class is responsible for connecting and disconnecting to the database skydb. It
is placed in following Java package:

de.unistuttgart.iaas. interaction.skype.database

The Path is added into the classpath and the connection url must be changed.
url=jdbc:mysql://localhost/skydb

This class also offers two functions:

1) Connect to the database and return an interface object Connection.

2) Disconnect to the databse.

5.3 Mail Service

Mail Service consists of multiple subservices. Each will be described in this chapter.
Figure 22 shows the components diagram from Mail Service.

46

Implementation

Mail Service
Apache| GetRequest AUtOBUn
i Service
Service
Register SendMail ||ReceiveMail|| ProcessMail
GetResponse Service Cervice celven ocessi
Service
Java

Figure 22. Components diagram for Mail Service

5.3.1 Apache Axis2

Apache Axis2 [27] is a Web Services/ SOAP/ WSDL engine, which is present with
program languages Java and C and it is supported by Apache-Licence 2.0. It is the
successor to the widely used Apache Axis SOAP stack. The W3C specifications have
been realized for Axis2, for example, WS-Addressing, WS-ReliableMessaging,
WS-MetadataExchange, WS-Policy, WS-AtomicTransaction and WS-Security.

A tool in Axis2 is Java2WSDL, which reads a java class and generates a WSDL for invoking
the class methods as a Web Service. This is known as Bottom-Up approach to Web
Service development.

5.3.2 JavaMail API

Mail Service in this thesis uses JavaMail API [28]. This API is used to receive and send
mail via SMTP, POP3 and IMAP. Through the JavaMail API these mailing functionalities
can be added to a Java application. The JavaMail API provides a platform-independent
and protocol-independent framework to build mail and messaging applications.

5.3.3 GetRequest Service

This subservice’s main purpose is to get a request from a business process, check the
validity and save it in the table maildb.sentmails. It is placed in following Java package:

de._.unistuttgart.iaas.interaction.mail.services

Main function is implemented by the public and static method getRequest. Figure 23
shows the function of GetRequest service step by step.

47

Implementation

GetRequest

4 A
| START |

-

GetRequest
receives a request

eck the
validation of
input

Return error
message

valid

generate a UUID
mail_class=REQUEST
mail_state=NEW

put the request in the database
return mail_id

2
(/ END \<
N

Figure 23. Flow Diagram for GetRequest

GetRequest service takes a list of input variables and checks the validity of a request.
After some transformations it saves a valid request in the database, table
maildb.sentmails.

Request validity is defined as follows:
1) recipient, subject, message, response can not be null.

2) Format for timeout is 00:00:00:00. The first number from the left means days; the
second number means hours; the third number means minutes and the last number
means seconds. For example 00:10:05:00 represents that time limit is 10 hours and 5
minutes. Timeout can be null.

3) If the value response is yes, responseTemplate can be not null.

All requests in line with the above conditions are valid for Mail Service. Mail Service will
generate a universally unique identifier (UUID) for each valid request. This UUID will be

48

Implementation

stored in the database table maildb.sentmails as mail_id. Then some transformations
must be done to meet the structure of the database table. In Table 18 timeout and
responseTemplate must be transformed. The transformation from timeout to
mail_timeout is simple, for instance, current time is 2012-05-03 13:00:56 and the value of
timeout is 00:03:05:00, then the value mail_timeout is 2012-05-03 16:05:56.

Input variable Field in the table Transformation
maildb.sentmails

recipient mail_to the same value

subject mail_subject the same value

message mail_message the same value

timeout mail_timeout current time + timeout
response mail_response the same value
responseTemplate mail_response_pattern convert into Xml Schema

Table 18. Input variable transformations

The transformation from responseTemplate to mail_response pattern is a
transformation from XML format to XML Schema format. This function implemented by the
public and static method getResponseTemplate. It takes the context of
responseTemplate and finally returns a string which context is based on XML Schema.

The context of responseTemplate is respresented by a string, which is based on xml
format. It contains four tags, <wsResponse>, <name>, <type>, <enumeration>, <min>,
<max>. For multiple questions in a request each question must be named. This name is
the correlation between question and its answer. An answer can be an integer or a string.
It can be enumerated. If it is an integer, his range can be set. Listing 6 is an instance of
responseTemplate. This instance contains two templates of two answers. One is for the
guestion with the name “question”. This answer is a natural number between 1 and 10.
The other is for the question with the name “question2”. This answer is a string, either yes
or no.

49

Implementation

1. <ser:responseTemplate>

2. <wsResponse>

3. <name>questionl</name>
4. <type>integer</type>
5 <enumeration/>

6. <min>1</min>

T <max>10</max>

8. </wsResponse>

9. <wsResponse>

10. <name>question2</name>
Tl <type>string</type>
12. <enumeration>yes|no</enumeration>
13 <min/>

14. <max/>

15. </wsResponse>

16. </ser:responseTemplate>

Listing 6. An instance of responseTemplate

The transformation function is implemented by the public and static method
getResponseTemplate. It is placed in following Java package and class:

de._unistuttgart.iaas.interaction.mail_util
and

CommonTools. java

After the transformation a piece of XML Schema code will be generated. Listing 7 is the
XML Schema code corresponding the above responseTemplate instance in Listing 6.
GetRequest service set the felds mail_class and mail_state in the maildb.sentmails for
a request as fixed value, REQUEST and NEW. If a request has an attachment, then the
UUID, the name and the content of attachment will be stored in the database table
maildb.attachments.

Once a request is stored in the database maildb.sentmails, another service SendMail
service can process this request.

50

Implementation

<element name="response”>
<complexType>
<sequence>
<element name="questionl” type="tns:questionl”/>
<element name="question2® type="tns:question2"/>
</sequence>
</complexType>
</element>
<simpleType name="questionl®">
<restriction base="integer">
<minlnclusive value="0"></minlnclusive>
12 <maxInclusive value="10"></maxInclusive>
13. </restriction>
14. </simpleType>
15. <simpleType name="question2®>
16. <restriction base="string">
17 <enumeration value="yes"></enumeration>
18. <enumeration value="no"></enumeration>
19. </restriction>
20. </simpleType>

OCO~NOUOAWNE

B
RO

Listing 7. Xml Schema code for response template

5.3.4 SendMail Service

This subservice selects all requests with mail_state=NEW in the

database table

maildb.sentmails and according to a selected request SendMail service sends a mail by

the administrator’ mailbox. It is placed in following Java package:

de.unistuttgart.iaas. interaction.mail

51

Implementation

SendMail
VR
([START |
o 4
find this request
send a mail

no

yes
\ 4

Send a error
message

mail_state=SENT

Figure 24. Flow Diagram for SendMail

Main function is implemented by the public and static method sendMail. Figure 24 shows
the function of SendMail service step by step.

It connects the database, selects each new request in the database table
maildb.sentmails and according to this request set all required arguments for a message
object to send a mail. Listing 8 is a series of data processing in SendMail service. As the
correlation between request mail and response mail mail_id is added in the subject of
message (line 3). By transformation a response format is generated. This transformation is
implemented by the public and static method xsdToXml. It takes the content of field
mai l_response_pattern and transforms it to the xml formatted string (line 8-9). Then this
string will be added in the body of mail (line 20-22). Listing 9 is a response instance
according to the above response template. Later when the recipient replies to the mail,
with this format he just has a slight modification and then he can make an accurate
response.

52

Implementation

mail_id = (String)sentmail.get(0);
mail_to = (String)sentmail _get(1);
mail_subject = (String)sentmail .get(3)+" Mail-ID:"+mail_id;
mail_message = (String)sentmail _get(4)+'"\n"';
mail_response = (String)sentmail .get(6);
mail_responseTemplate = (String)sentmail.get(7);
if(Imail_responseTemplate.equals('")){

mail_responseTemplate=

CommonTools.xsdToXml (config,mail_responseTemplate);

©CoO~NOODWNE

10. }

11. Statement usernameStatement conn.createStatement();

12. ResultSet usernameResultset usernameStatement.executeQuery(
13. "select username from maildb." + config.getTable mailregister(+

14. " where mailaddress=""+mail_to +""");

15. if(usernameResultset._next()){

16. mail_message=""Hello 'tusernameResultset._getString(''username')+
17 “,\n"+mail_message;

18. }

19. if(mail_response.equalslignoreCase('yes')){

20. mail_message = mail_message+'"\n\n Requested result for

21. mat:\n"+mail_responseTemplate+''\n You can modify this format
22. and copy it in your reply.";

23 ¥

24. msg.setFrom(new InternetAddress(config.getMailAddress()));
25. msg.setRecipients(Message.RecipientType.TO,

26. InternetAddress.parse(mail_to, false));

27. msg.setSubject(mail_subject);

28. msg.setText(mail_message);

Listing 8. Data process in SendMail service

<response>
<tns:questionl>[1-0(integer)]</tns:questionl>
<tns:question2>yes|no</tns:question2>
</response>

Listing 9. A response instance

The attachment processing is shown in Listing 10. If a request has no attachment, then

only the corresponding message text will be set. If a request has some attachments, then
a MimeBodyPart object will be created and the message text will be set (line 4-25).

53

Implementation

1. if(list_attld.size(Q)!= 0)

- i

3. //create the message part

4. MimeBodyPart messageBodyPart = new MimeBodyPart();

5 messageBodyPart.setText(mail_message);

6. Multipart multipart = new MimeMultipart();

7 multipart.addBodyPart(messageBodyPart);

8. for(int k=0;k<ii;k++)

9. {

10. String attld = (String) list_attld.get(k);

1= Statement sendStatement3 = conn.createStatement();

12. ResultSet rsAtt = sendStatement3.executeQuery(‘'select * from maildb.*"
13 + config.getTable mailattachments()+" where id="" + attld +""");
14. while(rsAtt.next()){

15. filename=rsAtt.getString('filename');

16. file = rsAtt._getBlob(’content™);

i CommonTools.saveFile(config.getAttPathQQ+filename, file);

18. messageBodyPart = new MimeBodyPart();

19. DataSource fileDataSource =

20. new FileDataSource(config.getAttPath()+filename);

21 messageBodyPart.setDataHandler(new DataHandler(fileDataSource));
22. messageBodyPart.setFileName(filename);

23 multipart.addBodyPart(messageBodyPart) ;

24 msg.setContent(multipart);

25.

26.}

Listing 10. Add an attachment in a mail

5.3.5 ReceiveMail Service

This subservice’s main purpose is to receive new mails from administrator’s mail account.
It is placed in following Java package:

de.unistuttgart.iaas. interaction.mail

Main function is implemented by the public and static method receiveMail. The flow
diagram depicted in Figure 25 shows the function of ReceiveMail service step by step.

54

Implementation

ReceiveMail

S
[START \\

e

Get all UIDs in
administrator’s
mailbox

get this mail

REGISTER mail_class=? >—_NKNOWN

i RESPONSE l
\ 4

mail_class= | |mail_class= mail_class=
REGISTER RESPONSE UNKNOWN

|

' N
—>»(END |
: J

Figure 25. Flow Diagram for ReceiveMail

The main problem is how to determine that a mail in the administrator’s mail account is a
new mail. For each mail in administrator’s mailbox there is a UID. For this mailbox this
UID is unique and is saved in a relevant database table. By the method getUID in Listing
11 a UID can be read. In this work the table’s name is maildb.commserv_ad_gmx_de. All
UIDs are saved in this table.

String uid = ((POP3Folder) folder).getUID(msgs[i]);

Listing 11. Method getUID()

Before saving a mail in the database its UID will be read and compared to each UID in the
table maildb.commserv_ad_gmx_de. If this UID exists already in this table, then the mail
related to this UID is not a new mail for Mail Service. If this UID does not exist in this table,
then the mail is a new mail. This mail will be saved in the database by following a few

steps:

55

Implementation

1)
2)

3)

4)
5)
6)
7

Get one mail object. This object is a message object.

Get information from this mail object, for example, sender, recipient, subject and
context.

Set mail_class by the method mailClassldentifier. This method determines the
class of a mail. Each mail belongs to a class, for example, NOTIFICATION, REQUEST,
RESPONSE and UNKNOWN. A NOTIFICATION mail is from the administrator and
needs no response. This mail is finished after sending it. A REQUEST mail is got by
GetRequest Service. A RESPONSE mail is a mail starting with a string "RE:” or “AW.”
and containing a UUID in subject. An UNKNOWN mail is a mail which does not belong
to the above three classes.

Generate a UUID for this mail, set mail_id
Set mail_receivedDate by the method getSentDate(),
Setmail_state as NEW

Check whether this mail has attachments. If there is no attachment, put all dates in the
database. If there are some attachments, first put the name of each attachment and
the content of it in the database table maildb.mailattachements, then put all dates for
this mail in the database table maildb.mailbox.

5.3.6 ProcessMail Service

This subservice’s main purpose is to process each mail in the table maildb.sentmails. It is
placed in following Java package:

de.unistuttgart.iaas. interaction.mail

56

Implementation

ProcessMail

T
| START
mail_state= 1.
AWAIT_REPLY 'j‘\
T M REPLIED

YES

"

,/ . N
mail_response=?

yes
no 5
¢ . no
mail_state=
mail_state= FINISHED
FINISHED mail_state=
REPLIED
no
) 4
yes
mail_state=FAILED
mail_state= (for the response)
TIMEOUT

'

—>| END

Ax A

Figure 26. Flow Diagram for ProcessMail

Main function is implemented by the public and static method ProcessMail. Figure 26
shows the function of ProcessMail service step by step.

This method processes the mails with “SENT”, “AWAIT_REPLY” or “REPLIED” state.
Each mail has a status indicator mail_state in the database and the content of this
indicator changes at some time. For example, when GetRequest service gets a request
from an external process and stores this request in the database, at this time mail_state
is set as NEW. SendMail service chooses the mails with NEW state in the table
maildb.sentmails and processes these mails. If these mails are sent successfully, the
states of them are set as SENT. If an error occurs during the sending, then the states of
this mail is set as FAILED. In Listing 12 there are three different methods for three different
states:

57

Implementation

if(mail_state.equalslgnoreCase(’'SENT'))
{
ProcessSentMail (config,mail);
}else if(mail_state._equalslgnoreCase("'AWAIT _REPLY'™))
{
ProcessAwaitReplyMail (config,mail);
}else if(mail_state.equalslgnoreCase("'REPLIED™))
{
ProcessRepliedMail (config, mail);
- Jelse{
-

PPRPOO~NOOBRWNE

RO

Listing 12. According to mail_state ProcessMail calls the different submethods:
ProcessSentMail, ProcessAwaitReplyMail, ProcessRepliedMail

¢ Method ProcessSentMail (line 3)

It has two input variables: config and mail. Variable config is ConfigFileHandler and by
this object all information in the file configuration.conf can be read. Variable mail is an
ArrayList, which contains all dates of the mail with the state SENT in the database.

One element in ArrrayList is mail_response. If the value of mail_response is no, this
means that this mail is a notification and does not need a response. Then the mail_state
of this mail in the database will be set as FINISHED. If the value is yes, this means that
this mail waits for a response. Then the mail_state in the database will be set as
AWAIT_REPLY. Finally the method ProcessAwaitReplyMail will be called to process
this mail.

o Method ProcessAwaitReplyMail (line 6)

It has two input variables: config and mail. Variable config is described above. Variable
mail is an ArrayList, which contains the dates of the mail with the state AWAIT_REPLY
in the database.

One element in ArrayList is mail_id. According to this id method
ProcessAwaitReplyMail looks for a response in the table maildb.mailbox, which is a
response for the input mail. If such response exists in the database and it received in the
time limit, then the mail_state in the database will be set as REPLIED. If this response is
timeout, then the mail_state will be set as TIMEOUT.

e Method ProcessRepliedMail (line 9)

It has also two input variables: config and mail. Variable mail is an ArrayList, which
contains the dates of the mail with the state REPLIED in the database.

The main function of this method is to check the validation for a response. This function is
implemented by a public and static method isValidResponse in Listing 13. This method

58

Implementation

use javax.xml.validation API. The javax.xml_.validation API uses three classes to
validate documents: SchemaFactory, Schema, and Val idator. SchemaFactory reads the
schema document from which it creates a Schema object (line 11). The Schema object
creates a Validator object (line 12). Finally, the validator object validates an XML
document represented as a Source (line 14). To check the Validation these two strings
must be transformed into two well-defined XML documents (line 4 and line 5). If a Source
is invalid, the validate() method throws a Exception and returns “false” (line 17-20).
Otherwise, it returns “true” (line 16).

public static boolean isValidResponse(ConfigFileHandler config,
String xmlStr, String xsdStr){

boolean isValidResponse = false;

xmlStr = config.getXmlHeader Q+xmlStr+config.getXmlFoot();

xsdStr = config.getXsdHeader()+xsdStr + config.getXsdFoot();

SchemaFactory factory = SchemaFactory.newlnstance(SCHEMA LANGUAGE) ;

Reader xmlReader new BufferedReader(new StringReader(xmiStr));

Reader xsdReader new BufferedReader(new StringReader(xsdStr));

try{

10. Source xsdSource = new StreamSource(xsdReader);

ilik Schema schema = factory.newSchema(xsdSource);

12. Validator validator = schema.newValidator();

13. Source xmlSource = new StreamSource(xmlReader);

14. validator.validate(xmlSource);

15. isValidResponse = true;

16. return isValidResponse;

17. }catch(Exception ex)

18. {

19. return isValidResponse;

20. }

21}

OCO~NOUILDA WN P

Listing 13. Method isValidResponse()

5.3.7 Register Service

This subservice’'s main purpose is to add every new user as registered user in Mail
Service. It is placed in following Java package:

de.unistuttgart.iaas. interaction.mail

Main function is implemented by the public and static method register. Each recipient in
a request must be a registered user in Mail Service. The table maildb.mailregister saves
the address and username of each registered user. If the recipient in a request is invalid
user for Mail Service, then Mail Service builds an internal request. This request is to send
a register mail from the administrator's mailbox to this recipient, and ask the recipient to
reply this register mail. The content of this reply is not required. The most important is the
subject containing a word “register”. ReceiveMail service puts the mail with
mail_class=REGISTER and mail_state=NEW in the database table maildb.mailbox.

59

Implementation

Register service chooses these mails, extracts the address and username from these
mails, and adds the dates in the database table maildb.mailregister.

5.3.8 AutoRun.java

Send a mail, Receive mails, register a new user, and process mails, these functions
should run repeatedly after the server starts. Java class AutoRun is responsible for this.
Listing 14 shows the Java code in the class AutoRun to schedule ReceiveMail to run
repeatedly after the server starts.

AutoRun extends the javax.servlet_http.HttpServlet class of the
javax.servlet.http package. The HttpServlet class is a subclass of
GenericServlet, an implementation of the Servlet interface. There are three methods
initQ), service(), and destroy(). They are implemented by every servlet and are
invoked at specific times by the server.

Class AutoRun uses two classes: java.util _Timer and Java.util .TimerTask [25]. A
TimerTask object represents a task. The task can be called by the Timer any number of
times at regular intervals. Threads can be assigned for different tasks. Timer class is
capable to schedule the threads by the method Timer.schedule(TimerTask task, long
delay, long period)(line 3). Method Timer.schedule() schedules the specified task for
repeated fixed-delay execution, beginning after the specified delay. In Listing 14
ReceiveMail runs repeatedly every two minutes (RECEI1VE_PERI10D= 2*60*1000) once the
server starts.

The TimerTask is an abstract class and implements Runnable interface. So, as Runnable
interface is implemented, run() method must be overridden when TimerTask is extended
(line 4-line 10). Listing 14 illustrates the usage of Timer and TimerTask classes.

The other three functions are similar to ReceiveMail.

1 Timer timer = new Timer(true);

2 /**TimerTask for ReceiveMail(Q*/

3 timer.schedule(new TimerTask(){

4 public void run(Q)

5. {

6 try{

7 ReceiveMail .ReceiveMail (config);
8 }catch(Exception e){}

9

1

: 3
0.},0,RECEIVE_PERIOD);

Listing 14. ReceiveMail runs repeatedly

60

Implementation

5.4 Skype Service

Skype Service consists of multiple subservices. Figure 27 shows the components diagram
from Skype Service. Among the components SkypeGetRequest, SendMessage, Register,
and ProcessMessage have been implemented to send a notification message.
SkypeGetResponse and ReceiveMessage have not been implemented.

Skype Service

SkypeAutoRun

Apache| SkypeGetRequest :
Service

Service

SkypeGetResponse Regis.ter SendMessagel | |[ReceiveMessage||ProcessMessage
Service Service Service Service Service
Java

Figure 27. Components diagram for Skype Service

5.4.1 Skype API for Java

Skype Service in this thesis uses skype-java-api-1.1.jar. This Skype API [29] is used to
integrate Skype services and functionalities inside a Java program. Skype API provides
access to much of the functionality of the Skype client such as contact lists, making and
receiving calls or conference calls, application to application messaging, moods, status,
and chat. To use this Skype API Skype must be running, otherwise an error will be sent.
Text message and files exchanging are used in Skype Service.

5.4.2 SkypeGetRequest Service

This subservice’s main purpose is to get a request from a business process, check the
validity and type of the request message. Because at the same time Skype can send
either a text message or a file, so the type of the message must be indicated. Then
according to the type of the request message SkypeGetRequest saves the request in the
database table skydb.senttextmessage or skydb.sentfilemessage. Finally it returns a
message to the process. It is placed in following Java package:

de._unistuttgart.iaas. interaction.skype

61

Implementation

SkypeGetRequest

START \‘

b

SkypeGetRequest
receives a request

return error
message

valid

messageType

text _
file

generate a UUID

state=NEW

put the request in the database
table skydb.senttextmessage
return id

v
generate a UUID

state=NEW

put the request in the database
table skydb.sentfilemessage
return id

P ‘—I
END

()

Figure 28. Flow Diagram for SkypeGetRequest

Main function is implemented by the public and static method skypeGetRequest. Figure
28 shows the function of SkypeGetRequest service step by step. Input parameter
messageType indicates where a request should be saved, in skydb.senttextmesage or
skydb.sentfilemessage. Parameter messageType has two values, “text” or “file”.

62

Implementation

5.4.3 SendMessage Service

This subservice selects all requests with state=NEW in the database table
skydb.senttextmessage and according to a selected request SendMessage service sends
a message by Skype. It is placed in following Java package:

de.unistuttgart.iaas.interaction.skype

Main function is implemented by the public and static method sendMessage, shown in
Listing 15 . This method selects all requests with state= NEW in the database table
skydb.senttextmessage (line 1-8), and calls Skype API to send a text message (line
27-28). Finally database skydb will be updated.

1. Statement statementText = conn.createStatement();

2. ResultSet rsText = statementText.executeQuery(''select id from
3. skydb."+config.getSkydb table sentTextMessage()+" where state="NEW"'");
4. ArraylList list new = new ArrayList();

5. while(rsText.next()){

6. list new.add(rsText.getString(1));

7 i++;}

8. statementText.close();

9. for(int j=0;j<i;j++){

10. String lv = (String) list new.get(j);

11. Statement sendStatementl = conn.createStatement();

12. ResultSet sendResultset = sendStatementl.executeQuery(*'select * from
13 skydb.""+config.getSkydb_table sentTextMessage()+

14. " where id=""+lv+""");

15. ArrayList skype message = new ArrayList();

16. if(sendResultset.next()){

17 for(int k=1; k<=9;k++){

18. skype_message.add(sendResultset.getString(k));}
19. ¥

20. skype_id = (String)skype_ message.get(0);

21 skype_to = (String)skype message.get(l);

22. skype_textmessage = (String)skype_message.get(3)+'"\n";

23. skype_reply = (String)skype_message.get(5);

24. skype_responseTemplate = (String)skype _message.get(6);

25 Chat chat = Skype.getContactList() .getFriend(skype_to).chat();
26. chat.send(skype_textmessage); ..

27 . update.executeUpdate(‘'update skydb.'*

28. +config.getSkydb_table_sentTextMessage()+'" set sentDate="""
29. +sentTime+'"", state="SENT" where id="" +skype_id+""");

30. update.close();

31

Listing 15. Method sendMessage()

5.4.4 ProcessMessage Service

This subservice’s main purpose is to process each request in the table
skydb.senttextmessage and skydb.sentfilemessage. It is placed in following Java
package:

63

Implementation

de.unistuttgart.iaas. interaction.skype

Main function is implemented by the public and static method processMessage. This
method processes the requests with “SENT”, “AWAIT_REPLY” or “REPLIED” state. Each
request has a status indicator state in the database and the content of this indicator
changes at some time. For example, when SkypeGetRequest service gets a request from
an external process and stores this request in the database, at this time state is set as
NEW. SendMessage service chooses the requests with NEW state in the table
skydb.senttextmessage and skydb.sentfilemessage and processes these requests. If
these requests are sent successfully, the states of them are set as SENT. If an error
occurs during the sending, then the states of this mail is set as FAILED. There are three
different methods for three different states, shown in Listing 16.

iT(skype_state._equalslgnoreCase(’'SENT'))

ProcessSentMessage(config,message);
}else if(skype_state.equalslgnoreCase(""AWAIT_REPLY'))
{
ProcessAwaitReplyMessage(config,message);
}else if(skype state._equalslgnoreCase(''REPLIED'))
{
ProcessRepl iedMessage(config, message);
0. }else{
1. }

PRPOO~NOOUOBRAWNE

Listing 16. According to skype_state ProcessMessage calls the different submethods:
ProcessSentMessage, ProcessAwaitReplyMessage, ProcessRepliedMessage

Only ProcessSentMessage method is completely implemented, shown in Listing 17. If the
value of reply is no, that means this request do not need a response.
ProcessSentMessage updates the database, sets the value of state as FINISHED. If the
value of reply is yes, that means this request has been sent and is waiting for a response.
ProcessSentMessage sets the value of state as AWAIT_REPLY, and then calls method
ProcessAwaitReplyMessage().

64

Implementation

1. if(reply.equalslgnoreCase(''no™))

2. {

3 update.executeUpdate("'update

4. skydb."+config.getSkydb_table_ sentTextMessage()

5 +" set state="FINISHED" where id=""+id+"""");

6. System.out._printIn(C'id "+ id+'"needs no response, set state=finished.");
7. Z}else if(reply.equalsignoreCase('yes')){

8. System.out.printin(’id "+ id +" needs response,

9. set state=await reply.');

10. update .executeUpdate(*'update

11. skydb."+config.getSkydb table sentTextMessage()

12. +" set state="AWAIT REPLY®" where id="""+id+"""");

13. list_SentMessage.set(8, "AWAIT_REPLY™);

14. list AwaitReplyMessage= list_SentMessage;

15 ProcessAwaitReplyMessage(config, list AwailtReplyMessage);
16. }else

17 £

18. System.out.printIn(C’Error in ProcessSentMail()');

19.

Listing 17. Method ProcessSentMessage()

5.4.5 Register Service

This subservice’s main purpose is to add every new user as registered user in Skype
Service. It is placed in following Java package:

de.unistuttgart.iaas. interaction.skype

Main function is implemented by the public and static method register. Each recipient in
a request must be a registered user in Skype Service. The table skydb.register saves
Skype id and username of each registered user. If the recipient in a request is invalid user
for Skype Service, then Skype Service builds an error message and returns to the process.
A new user must add administrator of Skype Service in his contract list of Skype. Skype
sends automatically a request to the administrator. Listing 18 lists the main function of
method register(). Register service gets all users which are waiting for authorization
(line 3). If the Skype id of a user among them exists in the database table skydb.register,
then this user is not new for Skype Service. Otherwise, Register service extracts his id and
full name (line 7 and line 13) and saves the two values in the database table
skydb.register. Then property Authorized is set as true and property Blocked is set as
false (line 21-22). Finally Skype Service generates an internal request and will send a
confirmation message to this new user (line 23).

65

Implementation

1. Connection conn = dao.connDataBase(config);

2. Friend[] friends =

3. Skype.getContactList().getAllUserWaitingForAuthorization();

4_ int friendNum = friends.length;

5. for(int i = 1; i<=friendNum;i++)

6. {

e String skype_username = friends[i-1].getld();

8. Statement statement = conn.createStatement();

9. ResultSet rs = statement.executeQuery(''select skype username from
10. skydb."+config.getSkydb table register()+" where skype username=""+
11. skype_username +""');

12 iT(lrs.next()){

3 String name = friends[i-1].getFullName();

14. PreparedStatement preStatementRegister=

15 conn.prepareStatement(''insert into skydb.register

16. (skype_username,name) values(?,?)");

17 preStatementRegister.setString(l,skype_username);

18. preStatementRegister._setString(2,name);

19. preStatementRegister.executeUpdate();

20. preStatementRegister.close();

21. friends[i-1].setAuthorized(true);

22 friends[i-1].setBlocked(false);

23 SkypeGetRequest. skypeGetRequest('text”, ''Your register is
24. successful!", skype_username, '"no", ', "'");

25 }

268

27.

Listing 18. Method register() in Skype Service

5.4.6 SkypeAutoRun.java

Similar to Mail Service, SendMessage, Register, ProcessMessage run repeatedly after
the server starts. Java class SkypeAutoRun is responsible for this and it has the same
structure with Java class AutoRun in Mail Service, see in Chapter 5.3.8

5.5 Deployment as Web Services

In this work Web Service is implemented by a bottom up approach. In short, the steps are
as follows:

1) Create a project in the Eclipse workspace of type “Dynamic Web Project”, which will
host Web Service.

2) Write the Java code that implements Web service functionality.

3) Use Eclipse to automatically generate the components (WSDL etc.) that will transform
the Java code into a Web Service, and the ask Eclipse to run that Web Service.

In Chapter 5.3 and 5.4 Mail Service and Skype Service functionalities have been
implemented in Java program. In this work five Java classes GetRequest,
AutoRun,GetResponse in Mail Service and SkypeGetRequest, SkypeAutoRun in Skype

66

Implementation

Service are deployed as Web Services. Eclipse generates automatically WSDL document
for each Java class. Another important document is web.xml file in the path
/WEB-INF/web.xml.

5.5.1 web.xml

The web.xml file is the Web Application Deployment Descriptor [26]. This is an XML file
describing the servlets and other components that make up web application, along with
any initial parameters and container-managed security constraints the server can start up
and run with the specified servlets. The following Table 19 is the description of servlet
elements in web.xml:

Element Required/ Description
Optional
<servlet-name> Required Defines the canonical name of the servlet, used to

reference the servlet definition elsewhere in the
deployment descriptor.

<servlet-class> Required The fully-qualified class name of the servlet.

<init-param> Optional Contains a hame/value pair as an initialization attribute
of the servlet.

<load-on-startup> | Optional The optional content of this element must be a positive
integer indicating the order in which the servlet should
be loaded. Lower integers are loaded before higher
integers.

Table 19. Elements defintion in the file web.xml

To load a servlet on startup of the server, the following configuration in Fehler!
Verweisquelle konnte nicht gefunden werden. must be added into web.xml. Servlet
AutoRun is referred to the class
de.unistuttgart.iaas.interaction.mail.services.AutoRun. It has one initial
parameter with the name “ConfigFile” and the value
“C:\CommunicationService\configuration.conf’. The content of <load-on-startup> is
1. That means once the server starts up, this servlet will be loaded.

67

Implementation

<servlet>
<servlet-name>AutoRun</servlet-name>
<servlet-class>
de.unistuttgart.iaas. interaction.mail.services.AutoRun
</servlet-class>
<init-param>
<param-name>ConfigFile</param-name>
<param-value>
C:\CommunicationService\configuration.conf
</param-value>
</init-param>
<load-on-startup>1</load-on-startup>
</servlet>
<servlet>
<servlet-name>SkypeAutoRun</servlet-name>
<servlet-class>
de.unistuttgart.iaas. interaction.skype.services.SkypeAutoRun
</servlet-class>
<init-param>
<param-name>ConfigFile</param-name>
<param-value>
C:\CommunicationService\configuration.conf</param-value>
</init-param>
<load-on-startup>1</load-on-startup>
</servlet>

Listing 19. Configuration in web.xml

To get the value of initial parameter a piece of code in Listing 20 must be added in the
class AutoRun. java

. public class AutoRun extends HttpServlet
-
public void Init(Q)

{

final String config = getServletConfig() .-getlnitParameter('ConfigFile');

OO WNPE

Listing 20. The way to use an initial parameter in the file web.xml

5.5.2 WSDLs

Class GetRequest is deployed as a Web Service. A generated WSDL document
GetRequest.wsdl describes GetRequest Web Service.

68

Implementation

i GetRequest {:I (1) GetRequem ype
= GetRequestHttpSoap11Endpoi... & getRequest
http://localhost:8080/Webs... E#linput [parameters [2] getRequest
= GetRequestHttpSoap12Endpoi... L] output [parameters [&] getRequestResponse
{E‘ |- GetRequestAddressException [parameters [8] GetRequestAddressException
[GetRequestHttpEndpoint |:p GetRequestMessagingException [parameters (2] GetRequestMessagingException
http://localhost:8080/Webs...

E‘

Figure 29. Graphical representation of GetRequest.wsdl

Figure 29, Figure 32, Figure 35 show three graphical representations of GetRequest.wsdl,
GetResponse.wsdl and SkypeGetRequest.wsdl. Because this WSDL documents are
generated automatically by Eclipse, three endpoints are defined for this services:

GetRequestHttpSoapl1Endpoint
GetRequestHttpSoapl2Endpoint
GetRequestHttpEndpoint

Each endpoint is related to a binding. The <portType> element in GetRequest.wsdl
defines that, in GetRequest Web Service operation getRequest can be performed and for
this operation message getRequest is an input parameter and message
getRequestResponse is an output parameter. Figure 30 and Figure 31 show the
definitions for input parameter and output parameter.

le| getRequest > (getRequestType)
[e] recipient [0.1] string
[2] subject [0.1] string
[8] message [0.1] string
sesl | €| gttachments [0.1] string
[e] timeout [0.1] string
[2] response [0.1] string
[e] responseTemplate [0.1] string

Figure 30. Definition of input parameter

69

Implementation

(8| getRequestResponse

¥

(getRequestResponseType)

waa €] return [0.1] string

Figure 31. Definition of output parameter

The <portType> element in GetResponse.wsdl defines that, in GetResponse Web Service
operation getResponse can be performed and for this operation message getResponse is
an input parameter and message getResponseResponse is an output parameter. Figure

33 and Figure 34 show the definitions for input parameter and output parameter.

O

L5 GetResponse EI I ¥ GetResponsePortType
[GetResponseHttpSoapllEndpoint %k getResponse
http://localhost:8080,/ WebSer... [input parammeters [e] getResponse
= GetResponseHttpScapl2Endpoint <1 output parameters [8] getResponseResponse
= GetResponseHttpEndpoint i EI
http://localhost3080/ WebSer... |

Figure 32. Graphical representation of GetResponse.wsd|

¥

(e[getResponse

(getResponseType)

we[€] mailid [0.1]

string

Figure 33. Definition of input parameter for GetResponse

[e] getResponseResponse (getResponseResponseType)

[e] return [0.1] string

Figure 34. Definition of output parameter for GetResponse

The <portType> element in SkypeGetRequest.wsdl defines that, in SkypeGetRequest
Web Service operation skypeGetRequest can be performed and for this operation
message skypeGetRequest is an input parameter and message getRequestResponse is

70

Implementation

an output parameter. Figure 36 and Figure 37 show the definitions for input parameter and

output parameter.

> SkypeGetRequestHttpSoapllEndpoint
http://localhost:8080/ WebService...

E» SkypeGetRequestHttpSoapl2Endpoint

http://localhostB080/ WebService..,

L5 SkypeGetRequest =2

[SkypeGetRequestHttpEndpoint EI

9 SkypeGetRequestPortType

i skypeGetRequest

[¥ input [parameters | [€] skypeGetRequest

<Moutput | [parameters | [e] skypeGetRequestResponse

Figure 35. Graphical representation of SkypeGetRequest.wsdl

[2] skypeGetRequest

¥

(skypeGetRequestType)

[8] messageType [0.1] string

[e] message [0.1] string
[e] username [0.1] string
[2] reply [0.1] string

[8] responseTemplate [0.1] string
[e] timeout [0.1] string

Figure 36. Definition of input parameters for SkypeGetRequest

[e] skypeGetRequestResponse

(skypeGetRequestResponseType)

¥

- [e] return [0.1] string

Figure 37. Definition of output parameter for SkypeGetRequest

In Chapter 6 test tool SoapUl and BPEL process use the link of the GetRequest WSDL

document to test Mail Servcie.

71

Test Cases

6 Test Cases

This chapter presents test cases that were executed using Communication Services.

6.1 Test Tool: SoapUl

SoapUl [30] is a tool for Testing Web Services. Its functionality covers Web Service
inspection, invoking, development, simulation and mocking, and functional testing.

In order to begin testing a service a WSDL file describing it is required. In this Chapter
SoapUl uses GetRequest.wsdl, GetResponse.wsdl and SkypeGetRequest.wsdl. SoapUl
can directly generate the SOAP messages from WSDL. The parameters can be manually
filled in the SOAP message. Then the tests can be performed. Figure 38 illustrates the
SOAP message for GetRequest.wsdl in Mail Service.

in
o

Request 1

& 4

= i E O it B |http://localhostB080/ WebServiceProject/services/ GetRequest. GetReque

anapenv:Envelnpe xmlns:snapenv="http:ffschemas.xmlsoap_:_; &
“zoapenw:Header /=
<soapenwv:Body=

Rawne | XML
Ratne | XML

=ser:getRequests
<! -—Opkicmal - ——+
“zer:recipient Y=/ ser:recipient>
<! --Opdiopal s ——->=
Zser:subject=?< S saer: subject =
<! ——0Opticmal:-->
“zerimessager?Ed/serinessages
<! -—Opkicmal - ——+
<zer:attachments=?</ser: attachment s>
L ==Onkianal - -
<zer timeout=?<sar:timeout =
<! --Opdiopal s ——->=
“seriresponse>?< ser i response
<! ——0Opticmal:-->
Zser:responseTenplates
=) ——Opticnal:-——->
“xsd:wsRBesponsesT</xsd: wsResponse=
=fser:responseTenplateas
=fser:getRequasts
= soapenv: Body-

“fosoopent: Envelope™ — —

Header... Attachmen... W.. W5-.. Y W

Figure 38. SoapUl generates a SOAP message

72

Test Cases

6.2 Test Tool: BPEL Process

Business Process Execution Language (BPEL) [31] is an OASIS (Organization for the
Advancement of Structured Information Standards) standard executable language for
specifying actions within business processes with Web Services.

Processes in BPEL export and import information by using Web Service interfaces
exclusively. Figure 39 shows a simple BPEL process. In this process there are five
activities: receivelnput, Assign, Invoke, Assignl, replyOutput. The combination of a
receivelnput activity and a resplyOutput activity forms a request-response operation on
the WSDL port type for the process. Assign activity provides a method for data
manipulation, such as copying the content of one variable to another. Invoke activity
invokes a synchronous Web Service or initiates an asynchronous Web Service. In the
following test case, a BPEL process will be created to invoke Mail Service and Skype
Service.

rmain

o | receivelnput
= Assign
<§> Invoke
= Assignl

2| replyOutput

©

Figure 39. BPEL process

6.3 Test Cases

6.3.1 Test Casel—Mail Service Gets Invalid Request Message
There are several following reasons that a request message is invalid for Mail Service:

1) recipient, subject, message, response can be null.

73

Test Cases

2) timeout has false format.
3) responseTemplate can be null, but response is yes.

Listing 21 is an example for invalid request message. In this example recipient parameter
is null.

<soapenv:Envelope xmlns:soapenv=http://schemas.xmlsoap.org/soap/envelope/
xmlns:ser="http://services.mail.interaction.iaas.unistuttgart.de"
xmlns:xsd="http://mail.interaction.iaas.unistuttgart.de/xsd">
<soapenv:Header/>
<soapenv:Body>
<ser:getRequest>
<I--Optional :-->
<ser:recipient></ser:recipient>
<I--QOptional:-->
<ser:subject>Notification from mail service</ser:subject>
<I--QOptional:-->
<ser:message>
We will maintain our system from 1:00 to 4:00. Mail Service
is suspended during this period. Please understand it.
</ser :message>
<I--QOptional :-->
<ser:attachments></ser:attachments>
<I--QOptional :-->
<ser:timeout></ser:timeout>
<I--QOptional:-->
<ser:response>no</ser:response>
<I--QOptional:-->
<ser:responseTemplate></ser:responseTemplate>
</ser:getRequest>
</soapenv:Body>
</soapenv:Envelope>

Listing 21. An example for invalid request message for Mail Service

Before GetRequest service accepts a SOAP message from SoapUl, it checks the
validation of each parameter in this SOAP message. Once a parameter is invalid, the
service will be stopped and a string will be returned. This request will not be saved in the
database. The return message indicates that this request is rejected. The reason for
rejecting this request will be saved in the log file and the reason is invalid recipient
parameter. Listing 22 shows this message in SOAP message format.

<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/''>
<soapenv:Body>
<ns:getRequestResponse
xmIns:ns="http://services.mail.interaction.iaas.unistuttgart.de'>

<ns:return>ERROR</ns:return>
</ns:getRequestResponse>

</soapenv:Body>
</soapenv:Envelope>

Listing 22. The response message for the request in Listing 21

74

Test Cases

6.3.2 Test Case2—Mail Service Register

In this test case, the mail address commserv.user@yahoo.de from an unregistered user in
mail service is the recipient in the request message. That means, this address does not
exist in the table maildb.mailregister.

<ser:getRequest>
<ser:recipient>commserv.user@yahoo.de</ser:recipient>
<ser:subject>Notification from mail service</ser:subject>
<ser:message>
We will maintain our system from 1:00 to 4:00. Mail service
is suspended during this period. Please understand it.
</ser:message>
<ser:attachments></ser:attachments>
<ser:timeout></ser:timeout>
<ser:response>no</ser:response>
<ser:responseTemplate></ser:responseTemplate>
</ser:getRequest>

Listing 23. The request message with an unregistered recipient

If a request message is passed the validation check, as next step GetRequest service
must check, whether the recipient exists in the database or not. If the recipient is an
unregistered user in mail service, the following SOAP message in Listing 24 are generated
and returned. In this SOAP message a string “ERROR” are returned to SoapUl.

<soapenv:Envelop
xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/'>
<soapenv:Body>
<ns:getRequestResponse
xmlns:ns="http://services.mail.interaction. iaas.unistuttgart.de">

<ns:return>ERROR</ns:return>
</ns:getRequestResponse>

</soapenv:Body>
</soapenv:Envelope>

Listing 24. The response message for the request with an unregistered user in Listing 23

At the same time GetRequest service generates another new register request and puts
the register request in the database table maildb.sentmails. Now the request is ready to be
sent. Table 20 shows the complete information of a register request. SendMail service
which runs periodically processes this request. It sends a mail to
commserv.user@yahoo.de, asks the user to register in mail service and updates
mail_state from “NEW” to “SENT".

75

Test Cases

Columns in maildb.sentmails Value
mail_id eb3b8340-9f33-11e1-8d32-0021869473a9
mail_to commserv.user@yahoo.de
mail_from CommsServ.ad@gmx.de
mail_subject Please register for mail service!
mail_message you are invalid user. Please answer this mail for register.
mail_sentDat 2012-05-16 10:50:38

mail_response

mail_response_pattern

mail_timeout NULL
mail_class Request
mail_state NEW

Table 20. An example of aregister request

RegisterMail service runs also periodically and for it the subject of a reply is important. The
key to confirm a Reply as a register mail is, whether the subject contains “register” this
word or contains a word which is very similar to “register”, for example, “regiter” or
“resgiter”. After the user receives this mail, the user can directly send a reply without any
modification, or he can also send a new mail to the address CommServ.ad@gmx.de and
the subject of the mail contains “register” or a word which is similar to “register”. Table 21
is an example. The user directly replies the register request, and then ReceiveMail service
gets this mail from the administrator's account, puts it in the database table
maildb.mailbox and set mail_state as “NEW".

Column in maildb.mailbox Value
mail_id 98c97c50-9f35-11e1-8d32-0021869473a9
mail_replyid

mail_receivedDate 2012-05-16 11:00:36

mail_from commserv.user@yahoo.de
mail_from_username CommServ User

mail_to CommServ.ad@gmx.de

76

Test Cases

mail_subject Re: Please register for mail service!
Mail-ID:eb3b8340-9f33-11e1-8d32-0021869473a9

mail_message Von:
"CommServ.ad@gmx.de" <CommServ.ad@gmx.de> An;
commserv.user@yahoo.de Gesendet: 1:00 Donnerstag,
1Januar 1970 Betreff: Please register for mail service!
Mail-1D:eb3b8340-9f33-11e1-8d32-0021869473a9 you are
invalid user. Please answer this mail for register.

mail_class REGISTER

mail_state NEW

Table 21. An example of areply for a register request

When Register service runs automatically and periodically, it processes the above reply.
Register service extracts mail_from and mail_from_username, adds them into the
database table maildb.mailregister and then set mail_state in the above table as
“FINISHED”. Finally, Register service generates a confirmation request to tell the user that
his register is successful. After this confirmation mail is sent, the registration process is
completely.

6.3.3 Test Case3—Mail Service Gets a Notification Request

6.3.3.1 A Text-Notification Request

A Notification Request means that the recipient does not reply the mail which is sent
according to this request from Mail Service. The important key in a request message is
variable response which must be set as “no”. Listing 25 is a notification request message
in SoapUl.

<ser:getRequest>
<ser:recipient>commserv.user@yahoo.de</ser:recipient>
<ser:subject>Notification from mail service</ser:subject>
<ser:message>
We will maintain our system from 1:00 to 4:00. Mail service
is suspended during this period. Please understand it.
</ser:message>
<ser:attachments></ser:attachments>
<ser:timeout></ser:timeout>
<ser:response>no</ser:response>
<ser:responseTemplate></ser:responseTemplate>
</ser:getRequest>

Listing 25. An example of a notification request

77

Test Cases

GetRequest Service receives this request, generates a UUID for it, and puts every data
into the database table maildb.sentmails. In this table two columns mail_class and
mail_state for this request are set as “REQEUST” and “NEW". And the UUID
(<ns:return>16405970-a0bb-11e1-b415-0021869473a9</ns:return>) as the return
value is returned to SoapUl. SendMail service which is running in the background finds
this new request, for it sends a mail to commserv.user@yahoo.de, and the value of
mai l_state is change to “FINISHED".

Figure 40 illustrates the notification mail from Mail Service, which the user
commserv.user@yahoo.de has received.

n - 7y | B matge/de mad.mal yahoo. com/ nec/launch T rand apSim vl cha®/ minty/ pageinbo -4 R =

o MK - E-Mail, FreeMad, Themen- .. = & commservasser - Yahoo! Mal % [+

Berv * | Abmelden | Optionen = | Hilfe ~ Neueste Version von Firefox holen Jetzt mobil nutzen | Mein Y!

INGANG (4) KONTAKTE You have been reg Notification from n This mail from mai

MNotification from mail service Mail-1D:16405970-a0bb-11e1-b415-0021869473a9 Det

Hello CommServ User,
We will maintain our system from 1:00 to 4:00. Mail service is suspended during this period. Please understand it.

Figure 40. The user commserv.user@yahoo.de has recieved a notification from Mail Service.

6.3.3.2 A Request with Attachment

Attachment is an important component of a mail. A mail can contain a piece of text and
some attachment files. A request message containing an attachment which is a piece of
data is shown in Listing 26. The content of this attachment is added into
element<ICDATA[[]]>. This element is marked for the parser to interpret as only character
data, not markup.

78

Test Cases

<ser:getRequest>

<ser:recipient>commserv.user@yahoo.de</ser:recipient>
<ser:subject>This mail from mail service.</ser:subject>
<ser:message>We send a report to you.</ser:message>
<ser:attachments> <ICDATA[[data 6 45 0000000016 00000
0000001490 00000 n 0000001668 00000 n 0000002028 00000
0000003005 00000 n 0000003040 00000 n 0000003085 00000 n 0000003130 00000
0000003175 00000 n 0000004950 00000 n 0000006706 00000 n 0000008357 00000

n 0000001413 00000
n
n
n
0000010149 00000 n 0000011902 00000 n 0000012110 00000 n 0000012312 00000
n
n
n
n
n

0000002517 00000

n
n
n
n
0000014429 00000 n 0000016349 00000 n 0000018546 00000 n 0000021239 00000
0000021939 00000 n 0000022592 00000 n 0000023807 00000 n 0000025041 00000
0000025660 00000 n 0000026218 00000 n 0000027412 00000 n 0000028705 00000
0000029959 00000 n 0000031201 00000
0000033844 00000 n 0000035139 00000 0000036414 00000 0000036642 00000
0000036864 00000 n 0000037098 00000 n 0000037337 00000 n 0000037414 00000
0000037550 00000 n 0000037667 00000 n 0000001196 00000]1]>

</ser:attachments>

<ser:timeout></ser:timeout>

<ser:response>no</ser:response>

<ser:responseTemplate></ser:responseTemplate>
</ser:getRequest>

0000031850 00000 n 0000032589 00000

s s s o i 1 s e |

n
n
n
n
n
n
n
n
n
n

Listing 26. An example of a request containing an attachment file

GetRequest service loads this piece of data as a string in an InputStream, and generates
a filename “fc9c8d50-a451-11e1-b793-0021869473a9.txt” for this InputStream,then puts
the InputStream into the field “content” of the table maildb._mailattachments. Figure
41 shows contents of this table at this time.

id mail_id filename content

1 fe9cBdh0-a451-11e1b793-00218694 7329 [elatiloir-y B N i RV e F e TR
2 c13190702452-11e1-9c 9400212694739 £1319070-2452-1121-9c 5400213694732 tdt

Figure 41. A file is added into the table maildb.mailattachments.

After that, SendMail service reloads the data from the database into a new file with the
name “fc9c8d50-a451-11e1-b793-0021869473a9.txt” and this file is saved in local disk.
The specific path is defined in configuration.conf. Then SendMail service adds the
attachment into a new messageBodyPart of message. Finally, SendMail service sends a
mail containing an attachment fc9c8d50-a451-11e1-b793-0021869473a9.txt to the
recipient.

6.3.4 Test Cased4d—Mail Service Gets a Request Needing a Response

For Mail Service a request can contain one or a few questions, which the recipient has to
answer them in a response. These two cases are shown in the following tests.

79

Test Cases

6.3.4.1 Simple Question in a Request

GetRequest service receives the following request from SoapUl. Listing 27 shows a
request message which contains one question. This request needs a response in 10 hours
(line 8) and this response must confirm to a template (line 10-17). In this template only an
answer for “Questionl” is defined. This answer should be a string with the values “yes” or
“no”. In element <ICDATA][J]> character “<” is represented by “&lIt;", character “>” is
represented by “>”, character “&” is represented by “&” as syntax rule. In fact, the
template looks like this:

<![CDATA[[<wsResponse><name>Questionl</name><type>string</type><enumeration
>yes|no</enumeration><min></min><max></max><wsResponse>]]>

<ser:getRequest>
<ser:recipient>commserv.user@yahoo.de</ser:recipient>
<ser:subject>
This mail from mail service. Questionnaire.
</ser:subject>
<ser:message>Questionl: Do you like mail service?</ser:message>
<ser:attachments></ser:attachments>
<ser:timeout>00:10:00:00</ser:timeout>
<ser:response>yes</ser:response>
<ser:responseTemplate><![CDATA[&I t;wsResponsed>
&1t;name>Questionl</name>
&I1t;type>string</typeégt;
<enumeration>yes|no</enumeration>
&It;min></min>
&It;max></max>
</wsResponse>]]>
</ser:responseTemplate>
</ser:getRequest>

Listing 27. An example of a one-question request message

SendMail service sends a mail and the user will receive a mail which is shown in Figure 42.
mai l_state in the table mai ldb.sentmai Is for this request is changed to SENT.

80

Test Cases

8 commervuser - Yahoo! Mail - Mosil Firefor TR

Duter earbeten Anaicht Cheonik Leceseichen gt Hile

u = C 123 [paipe/de.madl.mail yahoo.com/ nec. 1 rmnd= apsiem il ehal B minty/ page/inbox - 4] R =

e GMX - E-Mail, FreeMad, Themen- .. = O commaervasser - Yahoo! Mad x +

. @ Hallo, CommServ * | Abmelden Optionen = | Hife = Neueste Version von Firefox holen
YaHOO!IMAIL Mails dur
NEUES POSTEINGANG (4) KONTAKTE You have been reg Notification from n This mail from mai
| Cannes 2012 This mail from mail service. Questionnaire. Mail-ID:eb0d9120-a0c2-11e1-b415-0
Dabei sein!

&% pPosteingang ‘ Hello CommServ User,
~om -) -
Entwurf = Question1: Do you like mail service?

Gesendet)
Required result format:

J Spam m <response=><tns:Question1>yes|no</tns.Question1></response=
= Papierkorb i You can modify this format and copy it in your reply.

* Ordner %

* Onlinekontakte ’ m

Oberiragen der Daten von Lyimg.com...

Figure 42. The user commserv.user@yahoo.de has received a mail which contains one
guestion from Mail Service.

6.3.4.2 Multi-Questions in a Request

A request message can contain more than one question. The name of a question is a
correlation between question and answer. Therefore the name of a question must be
unique defined in a request. Listing 28 shows a request message which contains two
guestions, one question is Questionl: Do you like mail service? , another is
Question2: How old are you? Under element <ser:responseTemplate> there are two
elements <wsResponse> for each question (line 12-25). The answer of question
“Questionl” should be a string with the values “yes” or “no”. The answer of question
“Question2” should be an integer between 1 and 100.

81

Test Cases

<ser:getRequest>
<ser:recipient>commserv.user@yahoo.de</ser:recipient>
<ser:subject>
This mail from mail service. Questionnaire.
</ser:subject>
<ser:message>Questionl: Do you like mail service?

Question2: How old are you?</ser:message>
<ser:attachments></ser:attachments>
<ser:timeout>00:10:00:00</ser :timeout>
<ser:response>yes</ser :response>
<ser:responseTemplate>
<I[CDATA[&I1t;wsResponse>
<name>Questionl</name>
<type>string</typedgt;
<enumeration>yes|no</enumeration>
<min>&It;/min>
<max>< /max>
</wsResponse>
<wsResponse>
<name>Question2</name>
&It;type>integer</type>
<enumeration></enumeration>
&Ilt;min>1&1t;/min>
<max></max>
&l1t;/wsResponse>]]>
</ser:responseTemplate>
</ser:getRequest>

Listing 28. An example of a multi-questions request message

SendMail service sends a mail and the user will receive a mail which is shown Figure 43.
mai l_state in the table mai Idb.sentmai I s for this request is changed to SENT.

82

Test Cases

8 o - Vi VR

Doter Gembeten gnicht Cheonk Leceseichen ftias Hole

an - 7y O retgide maan. malyahon.com/ nec/launehl rand= apSimintl chd -4 R =

O HTMLASCR., | [E] . (8] EE BRI —— | B AR - Te EEEAsl. | R HTMUPENE.. | Te HTML, &n..

3 8T e

o MK - E-hail | O commsera, 2 | M B asciid- .

Serv * | Abmelden | Optionen * | Hilfe = Neueste Version von Firefox holen Jetzt mobil nutzen | Mein Y!

@ ..'. MAIL . Mails durchsuchen

INGANG (5) KONTAKTE This mail from mail serv

o This mail from mail service. Questionnaire. Mail-ID:6f945f00-a0cd-11e1-b415-00 De

Hello CommServ User,
Question1: Do you like mail service?

Z Question2: How old are you?
o Required result format:
<response><tns:Question1>yes|no</tns:Question1=<tns:Question2=[1-100(integer)]</tns: Question2></response>
= You can modify this format and copy it in your reply.
+
" rey .

Festig

Figure 43. The user commserv.user@yahoo.de has recieved a mail which contain two
guestions from mail service.

6.3.4.3 Get a Valid Response

In the background ProcessMail service checks the value mail_response for the request
with mail_id eb0d9120-a0c2-11e1-b415-0021869473a9. Because the value is “yes”,
then ProcessMail service changes the value of mail_state from SENT to AWAIT_REPLY.
Now ReceiveMail service gets a new mail, the content of this new mail is shown in Figure
44. After, ProcessMail service finds a response for this request in the table
mai ldb_mai lbox, and then it changes the value of mail_state from AWAIT_REPLY to
REPLIED. Next, it checks the validation for this response. Because this response is a valid
response, and then it changes value of mail_state from REPLIED to FINISHED.

83

Test Cases

Doter Grarbmten Amaicht Chronik Leseseichen Egtias Hidle

an - 7 | retgeiide madd.mad yahoo.com) nec/Taunch ! rand= apSkminsl che -4 R =
o G- E-Mail— | O commser.. e | M B acid- . | P EEWE R | I WTMLASCL, | B8 . | (8] BE BT —— | Do ASCOREE - TeESEASCL. | Q] HTMUPKE... | T MTMUR, & Do
Re: This mail from mail service. Questionnaire. Mail-ID:eb0d9120-¢ AN: 1 Empfanger Details anzeis
* . TP . “ p . T
¢ <response><tns:Question1>yes</tns:Question1></response>

- Von: "CommServ.ad@gmx.de" <CommServ.ad@gmx.de>
= An: commserv.user@yahoo.de
] Gesendet: 1:00 Donnerstag, 1.Januar 1970
Betreff: This mail from mail service. Questionnaire. Mail-ID:eb0d9120-a0c2-11e1-b415-0021869473a9

o Hello CommServ User,
Questionl: Do you like mail service?
Required result format:
<response><tns:Question1>yes|no</tns:Question1></response>
You can modity this format and copy it in your reply.
=

Festig

Figure 44. An example of a valid response for the request with mail_id
eb0d9120-a0c2-11e1-b415-0021869473a9

6.3.4.4 Get an Invalid Response

After ProcessMail service changes the value of mail_state for the request with mail_id
6f945f00-a0cd-11e1-b415-0021869473a9 to AWAIT_REPLY, ReceiveMail service gets a
new mail and the content of this new mail is shown in Figure 45. This mail is an invalid
response, because the answer for the second question is 0 which is out of the range
between 1 and 100.

After, ProcessMail service finds a response for this request in the table maildb.mai Ibox,
changes the value of mail_state in the request from AWAIT_REPLY to REPLIED. Next,
it checks the validation for this response. Because this response is an invalid response
and the current time is not beyond the time limit, it adds “Invalid response(s)!” into the
value of mail_message of the request as a prompt, changes the value of mail_state
from REPLIED to NEW and the value of mail_sentDate.

This changed request will be resent. This process is a cycle, until the request arrives at an
end state, FAILED, FINISHED or TIMEOUT.

84

Test Cases

(8 commservaser - Yahoo! Mail - Mozl

Dot Bebositenn = Aruischt - Choonti s Lasabarchin o Kabimt s il

a - 7y O rtpidemad0.mal yahos.com/ nec/launehT rand= ShOhusdnadinl -4 R =

o G- E-Mail— | O commser.. e | M B acid- . | P EEWE R | I WTMLASCL, | B8R . | [8] BE BT —— | Ba ASCOREE - TeESEASCL. | Q] HTMUPKE... | T HTMUR, &ne Drer

<response><ins:Question>yes</tns:Question] ><ins:Question2>0</tns:Question2></response>

Von: "CommsServ.ad@gmx.de" <CommServ.ad@gmx.de>

An: commserv.user@yahoo.de

Gesendet: 1:00 Donnerstag, 1.Januar 1970

Betreff: This mail from mail service. Questionnaire. Mail-ID:6f345f00-a0cd-11e1-b415-0021869473a9

Hello CommServ User,
Questionl: Do you like mail service?
Question2: How old are you?

Required result format:

<response><tns:Questionl>yeslno</tns:Question] ><tns:Question2>[1-100(integer)]|</tns:Question2>
</response-

You can modify this format and copy it in your reply.

Figure 45. An example of a valid response for the request with mail_id
6f945f00-a0cd-11e1-b415-0021869473a9

6.3.5 Test Case5—BPEL Process invokes Mail Service and Skype Service

In this test case a BPEL process shown in Figure 48 is created to invoke Mail Service and
Skype Service. According to input parameters the BPEL process can choose to invoke
Mail Service or Skype Service. Input parameters for the BPEL process combine two input
parameters of Mail Service and Skype Service, shown in Figure 46. Only parameter
channel is new and it is an indicator for the BPEL process, which of Web Services should
be invoked. If the value of channel is “skype”, then the process will invoke Skype Service
to send a request. Otherwise, the process will invoke Mail Service.

85

Test Cases

(2] TestProcessRequest

¥

(TestProcessRequestType]

[8] recipient [a,
[e] subject [a,
(8] message [a,
[g] attachments [@.
[e] timeout [a,
[e] response [a.
[e] responseTemplate [0,
[g] channel [a.
[8] messageType [0.

1]
1]
1]
1]
1]
1]
1]
1]
1]

string
string
string
string
string
string
string
string

string

Figure 46. Input parameters for BPEL process

To send a message to a human user the BPEL process can invoke either GetRequest
service of Mail Service or SkypeGetRequest service of Skype Service. Because Skype
Service can only send a notification at present, so after invoking SkypeGetRequest
service a string message will be returned to the BPEL process. For Mail Service a request
can need a response. After invoking GetRequest service the BPEL process can receive
the id for this request and can invoke GetResponse service of Mail Service with this id to
qguery, whether Mail Service has received a response for this request. If Mail Service
returns a string “noResponse”, the BPEL process will invoke GetResponse service again.
Until Mail Service returns a valid response, or a string “TIMEOUT”, or a string “FAILED” to
the BPEL process, the process will receive the output parameter and run completely.

Output parameter for the BPEL process is a string, shown in Figure 47.

[e| TestProcessResponse

¥

TestProcessResponseType

[2] responseMessage [0.1] string

Figure 47. Output parameter for BPEL process

86

Test Cases

@
] r_'luirl
& recaivalngut
._IFZ
Cel Ceee |
| =] Sa‘q:\‘.lﬁmz i -] E‘E'q;e'(:ﬁ
= Kssign5 = amign
a SkypeGeRecusst & [zl Gt Request
= Assigné [;';Ila
Gr=e =N S
@ | 5 Sequerce L 24
= Assignt] e]
[@] Sequence g Sequsnce
& é Assignl = Asign2
@] replyOutput @© wart
@ @ Wehliz
g8 Saq_uﬁrmz
& getRespanse
(o]
o |
= Amignt [= Sequence]
=)
= Assign3
&] Reply
<]
&
=
=
=
&
o
=3
=3
=
@

Figure 48. Test BPEL Process

6.3.5.1 Invoke Skype Service

The BPEL process receives the following request shown in Listing 29. According to this
request the BPEL process will invoke Skype Service and send a text message to Skype
user commservuser. In this case Skype user commservuser is a registered user for Skype

Service.

87

Test Cases

<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:sam=""http://sample.bpel .org/bpel/sample'>
<soapenv:Header/>
<soapenv:Body>
<sam:TestProcessRequest>
<sam:recipient>commservuser</sam:recipient>
<sam:subject></sam:subject>
<sam:message>test casel:skype notification message</sam:message>
<sam:attachments></sam:attachments>
<sam:timeout></sam:timeout>
<sam:response>no</sam:response>
<sam:responseTemplate></sam:responseTemplate>
<sam:channel>skype</sam:channel>
<sam:messageType>text</sam:messageType>
</sam:TestProcessRequest>
</soapenv:Body>
</soapenv:Envelope>

Listing 29. A request to invoke Skype Service

After the BPEL process ran, it received the following response:

<soapenv:Envelope
xmlns:soapenv=""http://schemas.xmlsoap.org/soap/envelope/" >

<soapenv:Body>

<TestProcessResponse xmlns="http://sample.bpel.org/bpel/sample'>
<tns:responseMessage xmlns:tns="http://sample._bpel.org/bpel/sample’>
The request is accepted.

</tns:responseMessage>

</TestProcessResponse>

</soapenv:Body>

</soapenv:Envelope>

6.3.5.2 Invoke Mail Service

The BPEL process receives the following request shown in Listing 30. According to this
request the BPEL process will invoke Mail Service and send a message to
commserv.user@yahoo.de and wait for a response in 3 minutes.

88

Test Cases

<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:sam=""http://sample._bpel .org/bpel/sample'>
<soapenv:Header/>
<soapenv:Body>
<sam:TestProcessRequest>
<sam:recipient>commserv.user@yahoo.de</sam:recipient>
<sam:subject>test case6:timeout test</sam:subject>
<sam:message>questionl: Is this request timeout?</sam:message>
<sam:attachments></sam:attachments>
<sam:timeout>00:00:03:00</sam:timeout>
<sam:response>yes</sam:response>
<sam:responseTemplate>
<I[CDATA[&It;wsResponse><name>questionl</name>&Iit;ty
pe>string</typed><enumeration>yes|no</enumeration&
gt;<min>&It;/min>&1t;max></max></wsResponse>
11>
</sam:responseTemplate>
<sam:channel>mail</sam:channel>
<sam:messageType></sam:messageType>
</sam:TestProcessRequest>
</soapenv:Body>
</soapenv:Envelope>

Listing 30. A timeout request to invoke Mail Service

After the BPEL process ran and the recipient did not reply the mail in 3 minutes, then it
received the following response:

<soapenv:Envelope
xmlns:soapenv=""http://schemas.xmlsoap.org/soap/envelope/">

<soapenv:Body>

<TestProcessResponse xmlns="http://sample.bpel.org/bpel/sample'>
<tns:responseMessage xmlns:tns="http://sample._bpel._org/bpel/sample’>
TIMEOUT

</tns:responseMessage>

</TestProcessResponse>

</soapenv:Body>

</soapenv:Envelope>

The BPEL process receives the following request shown in Listing 31. According to this

request the BPEL process will invoke Mail Service and send a message to
commserv.user@yahoo.de and wait for a response in 10 hours.

89

Test Cases

<soapenv:Envelope xmlns:soapenv=""http://schemas.xmlsoap.org/soap/envelope/"
xmIns:sam=""http://sample.bpel .org/bpel/sample'>
<soapenv:Header/>
<soapenv:Body>
<sam:TestProcessRequest>
<sam:recipient>commserv.user@yahoo.de</sam:recipient>
<sam:subject>test case3: please answer this question</sam:subject>
<sam:message>questionl: How old are you?</sam:message>
<sam:attachments></sam:attachments>
<sam:timeout>00:10:00:00</sam:timeout>
<sam:response>yes</sam:response>
<sam:responseTemplate>
<I[CDATA[&It;wsResponse><name>Questionl</name>&It;ty
pe>integer</typed><min>1&It;/min>&I1t;max>100&1t
;/max>&1t;/wsResponse>]]>
</sam:responseTemplate>
<sam:channel>mai l</sam:channel>
<sam:messageType></sam:messageType>
</sam:TestProcessRequest>
</soapenv:Body>
</soapenv:Envelope>

Listing 31. A request with response = yes

After the BPEL process ran and the recipient replied the mail in 10 hours, then it received
the following response:

<soapenv:Envelope
xmlns:soapenv=""http://schemas.xmlsoap.org/soap/envelope/" >

<soapenv:Body>

<TestProcessResponse xmlns="http://sample.bpel.org/bpel/sample'>
<tns:responseMessage xmlns:tns="http://sample._bpel._org/bpel/sample’>
<tns:Questionl>38&It;/tns:Questionl>

</tns:responseMessage>

</TestProcessResponse>

</soapenv:Body>

</soapenv:Envelope>

90

Summary and Outlook

7 Summary and Outlook

7.1 Summary

Communication between human users and business processes will play an increasingly
important role with the development of network. The main task of communication service
is to build a stable and smooth way to communicate with human users. Once anything is
related with humans, it will become more uncertain and difficult. In this work two channel
are chosen for communication services: Mail and Skype.

E-mail is asynchronous way to exchange a message. Sender sends a mail to someone.
To receive this mail a recipient does not need to be online at the same time. This mail will
be saved on a mail server. When a recipient is online again, he can receive this mail.
Skype is another way to send a message to human users. This message can be a text
message or a file.

According to the characteristics of the entire communication system, Mail Service and
Skype Service, some concepts are proposed for Mail Service and Skype Service. As the
first concept of mail service there were a lot of problems in the concept, for example,
instability, data loss. To improve this concept, a hew concept is proposed. In the new
concept a database as a new component is added in the communication services. The
database plays an important role to store every message which has been sent or received
from the communication services. This way is also very good to solve the problem “data
loss”.

After the concepts are determined, all functions of the communication service are
implemented by a bottom-up approach. First, the functions are implemented in Java
Program. Then, some Java classes are deployed as Web Services, and Eclipse generates
the WSDL documents for each Java class. WSDL document describes interface, data
type, binding and operations for a service.

In this work Mail Service is implemented, Skype Service are still partially implemented due
to the time constraint.

So far, the following functions are implemented in Mail Service:

1) Mail Service can get a valid request from an external process and store this request in
the database.

91

Summary and Outlook

2)

3)

4)

5)

Mail Service can send a mail to someone according to a request which is saved in the
database.

Mail service can receive each new mail from the administrator’'s mailbox and store it in
the database.

Mail service can check the validation of a response in order to update the state of the
related request.

Non-registered user can register per mail in mail service.

The following functions are implemented in Skype Service:

1)

2)

3)

Skype Service can get a valid text request from an external process and store this
request in the database.

Skype Service can send a text notification to some Skype user according to a request
which is saved in the database.

Skype Service can add new users which are waiting for authentication into the contract
list.

Finally, Mail Service and Skype have been tested with the test tool SoapUl and BPEL.
SoapUl calls GetRequest service and GetResponse service and sends some request
messages on behalf of the different test cases in order to test the functionality of Malil
Service. A BPEL process has been created to invoke Mail Service and Skype Service.

Mail Service has the following highlights:

1)

2)

3)

4)

In Mail Service all mails are divided into five classes: REQUEST, RESPONSE,
REGISTER, NOTIFICATION, and UNKNOWN. All advertising mails which
administrator receives belong to the class UNKNOWN. This distinguishes between an
advertising mail and the others. These advertising mails will be not processed.

In Mail Service each mail has a state variable. The value of this variable can be NEW,
SENT, AWAIT_REPLY, REPLIED, FINISHED, TIMEOUT, FAILED. Once a mail has
been handled a step successfully, the value of the state variable must be changed.
The addition of this variable is convenient for the administrator to manage and inspect
all dates in mail service.

In Mail Service the response template is defined in XML Schema format. A response is
defined in XML format. Using the relationship between XML Schema and XML the
validation of a response can be directly checked out through calling the method
validator.validate().

By configuration in the file web.xml SendMail, Register, ReceiveMail and ProcessMalil
runs regularly and automatically, when the server starts up.

92

Summary and Outlook

7.2 Outlook

In addition to the highlights mentioned in the previous chapter, mail service has the
following shortages:

1) Callback

In the concept Mail service should return a message asynchronously. Because mail is an
asynchronous way to communicate with humans, Mail Service often takes a long time to
return a response message. But in the implementation this part has not been realized. To
complete the functionality of Mail Service a new Java class GetResponse.java is created.
This class has been also deployed as a Web Service. GetRequest service returns a mail
id of a valid request message from an external process. The external process can call
GetResponse, and the mail id as input parameter is passed in it. GetResponse is
responsible for looking for a valid response for the mail id and returns it.

2) Skype Service

In this work the functionality of Skype Service has not been completely implemented.
Current Skype Service can get a request containing only a text message and send a text
messag to a Skype user. It should also get a request containing a file, send a file to a
Skype user, receive a text message or a file from a Skype user, and process all request
needing a response.

3) Error Handling

In this work error handling has been defined incompletely. The following errors in Malil
Service are defined:

e Error in connection with a database
e SQL error

e Errorin GetRequest

e Unregistered user

If the first three errors occur, an error message will be per mail sent to the administrator.
For the last error, a warn message will be per mail sent to this unregistered user to notify
the user.

Error handling in Skype Service has not been defined.
4) Attachment

Mail Service can add only an attachment in a mail. And the type of this file can only a a
text file with extension .txt. Another aspect, Mail Service can also not process graphics
files as an attachment.

93

Summary and Outlook

Communication services can be made much better. At least three above mentioned points
are the aspects needing to be improved in the future. In addition, other channels can be
developed for communication services, for example, Skype, ftp and twitter. This work is
just a beginning for the development of the entire communication services.

94

Table of Figures

8

Table of Figures

Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.
Figure 6.
Figure 7.
Figure 8.
Figure 9.

Figure 10.
Figure 11.
Figure 12.
Figure 13.
Figure 14.
Figure 15.
Figure 16.
Figure 17.
Figure 18.
Figure 19.
Figure 20.
Figure 21.
Figure 22.
Figure 23.
Figure 24.
Figure 25.
Figure 26.
Figure 27.
Figure 28.
Figure 29.
Figure 30.
Figure 31.

A model of communication SYyStem [3]eeuerruueemmimmmiiiiiiiiiiiiiiineiineennnes 5
A business process calls a Web Serviceccooovveviviiiiiiiii e, 6
Business process interacts with human USer..........ccccoeevieeeiieeiiie e, 7
An instance of business process with human interaction......................... 8
The SOA Triangle [LL] ..o e e 12
The web service technology stack [12]ccovvvvvviviiiiiiiiiiieeieeeeeeeeeeee, 13
SOAP message SIrUCUIe [11]......coocuuvriiiieieeeeieiiiieee e 16
Web Services Model [16]oovveeriiiiiiiiiiiiiieieiieeieeeeeeeeeeeeeeeeeeeeeeee e 17
Participants in communication SYSteMuuuuuuurimirrinniiiiniinans 18
Communication participants [14].........ccuueeeiiiiiiiiiiiieeeee e 19
Architecture of firSt CONCEPL..........uvueeiiiiiiiiiiiiii e 22
DAtA LOSS ... eiiieiiiiiie ettt e et e aaeeae 24
Architecture of NEW CONCEPL.......uvvririiiiiiiiiiiiiiiiii e 25
Guaranteed DeliVErY ... 26
State diagram of Mail SErVICEceeiiiiiiiiiic e, 28
Skype Service architecturecccooeeee e 29
Input parameters for GetRequest subservice in Mail Service............... 31
Output parameter for GetRequest subservice in Mail Service 32

Input parameters for SkypeGetRequest subservice in Skype Service. 32

Components in COMMUNICALION SEIVICEccuvviieiieeeeeiiiiiiiieee e e 36
Five tables in database maildb.............ccooeii 37
Components diagram for Mail Service.........cccccceeeiiiiiiiieeiciii e, 47
Flow Diagram for GetRequest............cccce e 48
Flow Diagram for SendMail..............eeeviiiiiiiiiiiiiiiiieee e 52
Flow Diagram for ReceiveMallceeiiiiiiiiiiiiiiiii e, 55
Flow Diagram for ProcessMailcccccce i 57
Components diagram for SKype ServiCe..........cccovvvveeeiiiiiiiiiiieeeeeeene 61
Flow Diagram for SKypeGetReqUEST............cccuvvieiiiieeiiiiieeeeeeeeee 62
Graphical representation of GetRequest.wsdlccooevviiiiiiieennninn, 69
Definition of iINPUt PAramMeter............eevviiiiiiiiiiiieee e 69
Definition of output parameter ... 70

95

Table of Figures

Figure 32. Graphical representation of GetResponse.wsdl..........ccccccooviivrirrnnnen. 70
Figure 33. Definition of input parameter for GetResponse.........ccccccvvvvveevveeveeennee. 70
Figure 34. Definition of output parameter for GetResponse...........ccceeeeeevvvvevnnnnnnn. 70
Figure 35. Graphical representation of SkypeGetRequest.wsdlcccceevveeee. 71
Figure 36. Definition of input parameters for SkypeGetRequest.............ccccvveeeeee.. 71
Figure 37. Definition of output parameter for SkypeGetRequestccccevvnneen. 71
Figure 38. SoapUl generates a SOAP MESSAQE........c.ccvvvevviieieeeieeeiiieeeeeeeeeeeeeennnns 72
FIgure 39. BPEL PIrOCESSuuiiiiiiiiiiiiiiitiiiee ettt a e e e e 73
Figure 40. The user commserv.user@yahoo.de has recieved a notification from
MU SEIVICE. ... e e e e e e e e e e e eas 78
Figure 41. A file is added into the table maildb.mailattachments. 79
Figure 42. The user commserv.user@yahoo.de has received a mail which contains
one question from Malil SErVICE.ciiii e i e e 81
Figure 43. The user commserv.user@yahoo.de has recieved a mail which contain
two qUEeSHIONS from Mail SEIVICE.ooiiiiiiiiiiiee e 83
Figure 44. An example of a valid response for the request with mail_id
eb0d9120-a0c2-11e1-b415-002186947389........cccemimriieiiiiiiieeiiiiieee e 84
Figure 45. An example of a valid response for the request with mail_id
6f945f00-a0cd-11€1-b415-002186947389.......ccceiiiriiieiiiiieee e e 85
Figure 46. Input parameters for BPEL ProCeSSocvvvviiiiiieiivieiiiine e 86
Figure 47. Output parameter for BPEL ProCeSScevviiiiiiiiiiiiiiiiiiiee e 86
Figure 48. Test BPEL PrOCESScovviiiiiiiiiiiiiieieeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeee e 87

96

Table of Tables

9

Table of Tables

Table 1. Arguments for Logging of Mail Service in configuration.conf 33
Table 2. Arguments for Administrator's account of Mail Service in configuration.conf
... 33
Table 3. Arguments for the Mail Service database in configuration.conf.............. 34
Table 4. Argument for saving attachments of Mail Service...........cccccceeeiiiiiinrennnn, 34
Table 5. Arguments for Administrator's account of Skype Service in
CONTIGUIALION.CONT....coiiiiiiiie e e e 34
Table 6. Arguments for Logging of Skype Service in configuration.conf............... 34
Table 7. Arguments for the Skype Service database in configuration.conf........... 35
Table 8. Definition of table sentmailsccccee e 38
Table 9. Definition of table MailboX ..o 39
Table 10. Defintion of table mailregister.............ceeii i e, 40
Table 11. Defintion of table attaChments..............oeiiiiiiiii e 40
Table 12. Definition of table commserv_ad_gmx_decccoeeiiiiii e 41
Table 13. Defintion of table skydb.register.........ccccoovveiiiiiiiiii e, 44
Table 14. Definition of table skydb.senttextmessage............cccccceeeeiieii . 44
Table 15. Definition of table skydb.sentfilemessagecccccceiiiiiiiiiiiiiiens 45
Table 16. Definition of table skydb.receivedtextmessagecccccceeeeeieieeennn. 45
Table 17. Definition of table skydb.receivedfilemessageccceeeieein. 46
Table 18. Input variable transformationsevvviiiiiniiiiii e 49
Table 19. Elements defintion in the file web.xml ... 67
Table 20. An example of a regisSter reqUESEccovvierriiieiiiiii e e eeeeaeens 76
Table 21. An example of a reply for a register requestccceeeeeeeeeeeeee e, 77

97

Table of Listings

10 Table of Listings

Listing 1. XML example “CUuStOMEr.XmMI”ouiiiiiiiiiiieiiiiiiiieeiieeeeeeeeeeeeeeneenneeeneees 14
Listing 2. An example of XML Schema "customer.xsd"...........cccccvveiiniiieevveenvinnnnnn. 14
Listing 3. Database connection Method ... 42

Listing 4. Arguments in configuration.conf are listed in class ConfigFileHandler .. 43

Listing 5. Database close() methode...........cccoiiiiiiiiieiiii e 43
Listing 6. An instance of responseTemplatecccccccvvviiiiiiiiieeeeeeeeee 50
Listing 7. Xml Schema code for response templateccccvveveeieeiiiiiiiiiiennenn. 51
Listing 8. Data process in SendMail SEIVICe..........oovevvviiiiiieiiiiiiiiiieieeeeeeeeeeeee 53
Listing 9. A reSPONSE INSLANCEcovviiiiiiiiiiiiiieieieeeeeeeeeeeeeeeaeesseasesesseesseeereaerrrrnrne 53
Listing 10. Add an attachment in @ mailcccciiiiiiiiiiiiie e 54
Listing 11. Method getUID()eeveeeiieeiiiiiiiiieiieeieieiieeieeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeneennnes 55
Listing 12. According to mail_state ProcessMail calls the different submethods:
ProcessSentMail, ProcessAwaitReplyMail, ProcessRepliedMail................... 58
Listing 13. Method isValidReSpoNSE().......cvvvvvieiriiiiiiiiiieeiieeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeee 59
Listing 14. ReceiveMail runs repeatedly.........ccccoovvviieiiiiiiiiiiiiece e 60
Listing 15. Method SendMeSSage()vvvvvviiiiiiieiiiieieeeiieeieeeeseesesesvsessaeereeereenrennnnnn 63

Listing 16. According to skype_state ProcessMessage calls the different
submethods: ProcessSentMessage, ProcessAwaitReplyMessage,

ProcessREPIIEAMESSAQEuvvuuuiieeiiiiiii e 64
Listing 17. Method ProcessSentMesSage()........ocvvvvrrrreeeeniiiiiiiiiiieee e e e 65
Listing 18. Method register() in SKype ServiCe.........ccccvvvveiiieeiieeiiieiiieeieeeeeeeeeeee 66
Listing 19. Configuration in web.xml.........ccccccoeii i 68
Listing 20. The way to use an initial parameter in the file web.xml 68
Listing 21. An example for invalid request message for Mail Service 74
Listing 22. The response message for the request in Listing 21cccevvevvnnenn. 74
Listing 23. The request message with an unregistered recipientccc......... 75
Listing 24. The response message for the request with an unregistered user in

S]] T 2 RS 75
Listing 25. An example of a notification request...........ccccoevi i, 77
Listing 26. An example of a request containing an attachmentfile 79
Listing 27. An example of a one-question request message.........ccccevvveeeveeeeeeenee. 80
Listing 28. An example of a multi-questions request messagecceeevvevvvnnnn. 82
Listing 29. A request to invoke SKype SErIVICEccvvvvvvevvieiiiiiiieieeeeeieeeeeeeeeeeaeeaae 88

98

Table of Listings

Listing 30. A timeout request to invoke Mail Service...........ccccvviveeiiiiiiiiiiiiiiieee.

Listing 31. A request with response = yes

99

Bibliography

11 Bibliography

[1]. National Institute of Open Schooling: Introduction to communication
http://download.nos.org/srsec335new/chl.pdf

[2]. A. Dix, J. Finlay, G. D. Abowd, R. Beale: Human-Computer Interaction, Second
Edition (1998)

[3]. W. Schramm: Family Communication Model
http://fatherhood.about.com/od/familycommunication/a/A-Model-For-Understandi
ng-Family-Communication.htm

[4]. M. Weske: Business Process Management, Concepts, Languages, Architectures
(2007)

[5]. F. Leymann, D. Roller: Production Workflow, Concepts and Techniques (2000)

[6]. E. Christensen, F. Curbera, G. Meredith, S. Weerawarana: Web Services
Description Language (WSDL) 1.1, W3C Note (2001)
http://www.w3.org/TR/wsdl

[7]. D. Booth, H. Haas, F. McCabe, E. Newcomer, M. Champion, C. Ferris, D.
Orchard: Web Services Architecture, W3C Working Group Note (2004)
http://www.w3.org/TR/ws-arch/#whatis

[8]. M. P. Papazoglou: Web Services: Principles and Technology (2008)
[9]. E. Cerami: Web Services Essentials (2002)

[10].M. Gudgin, M. Hadley, N. Mendelsohn, J.-J. Moreau, H. F. Nielsen, A. Karmarkar,
Y. Lafon: SOAP Version 1.2 specification, W3C Recommendation (2007)
http://www.w3.0org/TR/soapl2

[11].S. Weerawarana, F. Curbera, F. Leymann, T. Storey, D. F. Ferguson: Web
Services Platform Architecture: SOAP, WSDL, WS-Policy, WS-Addressing,
WS-BPEL, WS-Reliable Messaging, and More (2005)

[12].M. MacDonald, M. Szpuszta: Pro ASP.NET 3.5 in C# 2008, Chapter 31: Creating
Web Service (2008)
http://www.c-sharpcorner.com/uploadfile/prvn _131971/chapter-31creating-web-s
ervices/

[13].E. Rusty Harold: XML Bible (1999)

[14].D. Schumm, C. Fehling, D. Karastoyanova, F. Leymann, J. Rutschlin: Process for
Human Integration in Automated Cloud Application Management (2012)
http://www?2.informatik.uni-stuttgart.de/cgi-bin/NCSTRL/NCSTRL view.pl?id=TR-
2012-02&mod=0&engl=0&inst=1AAS

100

Bibliography

[15].G. Hohpe, B. Woolf: Enterprise Integration Patterns: Designing, Building, and
Deploying Messaging Solutions (2003)

[16].D. K. Barry: Web Services explained
http://www.service-architecture.com/web-services/articles/web services explain
ed.html

[17].D. Schumm, D. Karastoyanova: Integrating Humans in Scientific Workflow:
Integrate, Register & Communicate. Poster, The 4™ Simtech Status Seminar
(2011)

[18].Skype: http://www.skype.com/intl/de/home

[19]. Twitter: http://twitter.com/

[20].L. M. Surhone, M. T. Tennoe, S. F. Henssonow: Robustness (Computer Science)
(2011)

[21].H. Storrle: UML 2 fir Studenten [Mit UML-Syntax-Poster] (2005)

[22].JavaMail API documentation:
http://javamail.kenai.com/nonav/javadocs/overview-summary.html

[23].J. Myers, M. Rose: Post Office Protocol — Version 3 (1996)
http://tools.ietf.org/html/rfc1939

[24].MySQL Connector: http://dev.mysql.com/downloads/connector/

[25].API Specification for the Java 2 Platform, Standard Edition, version 1.4.2.
http://docs.oracle.com/javase/1.4.2/docs/api/overview-summary.html

[26].ORACLE Document: web.xml Deployment Descriptor Elements
http://docs.oracle.com/cd/E13222 01/wls/docs81/webapp/web_xml.html

[27].Apache Axis2: http://axis.apache.org/axis2/javal/core/

[28].JavaMail API: http://java.sun.com/products/javamail/downloads/index.html

[29].Skype API: Getting Started with Skype4Java
http://graphics.cs.columbia.edu/courses/csw4170/Skype4JavaTutorial.html

[30].SoapUl: http://www.soapui.org/

[31].J. Bolie, M. Cardella, S. Blanvalet, M. Juric, S. Carey, P. Chandran, Y. Coene, K.
Geminiuc, M. Zirn H. Gaur: BPEL Cookbook: Best Practices for SOA-based
integration and composite applications development (2006)

101

Erklarung

12 Erklarung

Hiermit erklare ich, dass ich die vorliegende Diplomarbeit selbstandig angefertigt habe. Es
wurden nur die in der Arbeit ausdriicklich benannten Quellen und Hilfsmittel benutzt.
Wortlich oder sinngemafld tbernommenes Gedankengut habe ich als solches kenntlich
gemacht.

Ort, Datum Unterschrift

102

