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1 Introduction

A light echo is a delayed reflection of light caused by interstellar gas and dust that was sent out
from a star during a short eruption, like e.g. a nova. In most cases, the gas and dust clouds
that became visible in the reflection were repelled from the star in earlier eruptions. From the
view of an observer the light echo expands in a concentric manner around the star because the
length of the indirect path of the scattered light also constantly expands with an increasing
distance from the star. Thus the arrival time at the observer is also delayed increasingly.

This phenomenon gained quite some fame in 2002, when the Hubble Space Telescope observed
a significant eruption of the star V838 Monocerotis which was followed by a strong light echo
that constantly expanded during the following months and years.

Figure 1.1: Light echo of the star V838 Monocerotis as observed by the Hubble Space
Telescope in September 2006. Image source: http://hubblesite.org/explore_
astronomy/hubbles_universe_unfiltered/12
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1 Introduction

The work of this thesis comprises an implementation of a physically based renderer to sim-
ulate light echoes accompanied by the appendant theoretical background. The approach is
demonstrated with a variety of data sets.

1.1 Overview of the Document

1. The Introduction gives a short overview of the thesis and light echoes in space, which
serve as the primary use case for the time-dependent rendering framework developed in
this context.

2. The Fundamentals present the theory and concepts employed to realize the framework
with a focus on the necessary background in computer graphics.

3. Following up on the fundamentals, the Chapter Implementation discusses the imple-
mentation of the actual framework and also mentions implementation specific details if
their impact is significant.

4. Results showcases a number of images rendered with the framework. Some simple
examples are used to display the various effects in isolation, leading over to more complex
images depicting the combination of all effects.

5. Finally Discussion and Future Work summarizes the thesis as a whole, also mention-
ing shortcomings of the methods and the framework that could be addressed in future
work.

1.2 Scope of Thesis

The goal of this diploma thesis is to establish a method to illuminate volumetric data via time-
dependent light transport respecting the finite speed of light. This also includes participating
media with spatially varying refractive indices that lead to both bent light curves as well as a
modified speed of light propagation. The desired application for the method is the realistic
rendering of astronomical phenomena where light echoes have been observed.

The work on this thesis encompassed the following tasks:

• Establishing an optical model of time-dependent radiative transfer including multiple
scattering.

• Interactive modelling of a function exposed to a graphical user interface to simulate the
varying brightness of a star over time.

• Developing a Monte Carlo based renderer. The algorithm is based on Photon Mapping.
Both photon tracing as well as the radiance estimate have to respect the time dependency
of light propagation. This also includes spatially varying refractive indices within the
volume which lead to bent light curves and a modified speed of light propagation.
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1.3 Light Echoes

• The frontend and photon tracing is implemented in C++. The renderer is accelerated
using a CUDA implementation of the radiance estimate (ray marching and photon
gathering). This includes optimization of the Photon Mapping approach to efficiently
make use of parallelization, especially with regard to the photon map data structure.

• Devising a variety of volumes to showcase the photon mapping implementation and the
extensions to it.

1.3 Light Echoes

A light echo is a phenomenon that can be understood in a way similar to an acoustic echo.
Imagine an explosion on a scale that makes the finite speed of light relevant to the observation.
One such example would be a supernova. A supernova is a stellar explosion of a star that
increases its luminosity up to a factor in the millions through a massive burst of radiation
[NAS]. If there is to be an observer of this event in a distance of a few light years, he or she
will only be able to actually observe the event at a later point in time with respect to the
finite speed of radiative transfer and the distance between the event and the observer.

Figure 1.2: Example of a Supernova: SN 1994D was discovered in 1994 at the Leuschner
Observatory. It is located more than 100 million light years away from Earth
and can be seen as the bright dot on the lower left. Image source: http:
//en.wikipedia.org/wiki/Supernova

If the star is surrounded by e.g. a nebula, the light of the explosion will also reach it after some
time and the light will be scattered by the particles within the nebula in different directions.
A fraction of the light will also be scattered towards the observer, who will then also be able
to see the scattered light from the supernova. Because of the indirection introduced with the
scattering, the total distance of the light path between the supernova and the observer will
be significantly increased compared to the light that has been propagated directly from the
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1 Introduction

supernova to the observer (see Figure 1.3). As a result to this, the viewer will only see the
illuminated nebula at a later point in time compared to the observation of the supernova itself.
Because of the sheer scale of these events, the perceived delay between the primal observation
and the light echo can reach a magnitude of months or even years [hub].

Figure 1.3: Diagram of a light echo. The light was emitted isochronously from the light
source but will be observed with time gaps relative to each other. The viewer
will first see A, then B and finally C. Image source: http://en.wikipedia.org/
wiki/Light_echo

Accordingly a light echo is a glimpse into the past. It shows the reflection of an event whose
primal room for observation has already passed and thus presents an additional way to gain
further insight about it.

The observation of light echoes allows astronomers to analyze the spectrum of supernovae
whose first light had reached Earth before the telescope was invented. For example, in 1572,
the Danish astronomer Tycho Brahe observed the explosion of supernova SN 1572. In 2008, a
scattered light echo of the exact same supernova was obtained more than four centuries after
the direct light swept past the Earth [KTU+re].

Another example for such a process was the deduction of the supernova type that created
Cassiopeia A, which is the name of the remnant of the supernova that created it.
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1.3 Light Echoes

Figure 1.4: False-color image of the supernova remnant Cassiopeia A that was combined
from infrared, visible and x-ray data. Please note that this is a visualization
of the remnant itself and no depiction of the light echo. Image Source: http:
//subarutelescope.org/Pressrelease/2008/05/29/index.html

Cassiopeia A is located around 9,000 light years from Earth and the supernova could have
been observed from Earth around A.D. 1680 [SM]. Over 300 years later the Spitzer Space
Telescope captured an image in 2003 while it was testing its optics, that would lead to the
insight about the nature of the original supernova: The image yielded infrared signatures that
could be associated with a light echo from Cassiopeia A. Further investigation of the spectra
of the reflected light allowed to determine the nature of the original supernova [SM].

Another application of light echoes is the spatial reconstruction of the environment of a
supernova [Pat05]. So in general light echoes can be used as a large scale, time delayed probing
tool to gain more insight about both matter illuminated by it and the origin of the light echo
itself. As this thesis is in the field of computer graphics, we basically invert the task: We
assume to know about the origin of the light echo and the matter that surrounds it and we
would like to develop a tool that renders the light echo that would have been produced by
these known prerequisites.
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1 Introduction

V838 Monocerotis

All information in this section is comprised from [hub].

This section shortly presents another intriguing example of a light echo that highlights the
distinction between the expanding light echo and the comparably static nature of the illuminated
matter.

Until 2002, V838 Monocerotis was just an unidentified star in a distance of around 20,000
light years from the sun until it gained widespread fame for the observation of one of the most
impressive light echoes captured so far.

Figure 1.5: V838 Monocerotis. As observed by the Hubble Space Telescope between May
2002 and February 2004. Image source: http://en.wikipedia.org/wiki/V838_
Monocerotis

As of today the actual event that caused the eruption producing the light echo is not yet
determined with certainty. The outburst lasted for several months during which the star flared
to 10,000 times its usual brightness but unlike a supernova it did not explosively eject its outer
layers [BHL+03].

One very important point in understanding the light echo is the nebula surrounding the star.
On first glance the image sequences appear to show a massive outburst of material caused
by the eruption. In fact the nebula itself is more or less static and the current assumption is
that it originated from one or more outbursts that happened far earlier. So what the images
depict are solely the different stages of the light outburst illuminating different parts of the
nebula surrounding the star. When comparing the stages of e.g. May and September 2002
in Figure (1.5), the particles of the outer part of the nebula visible in September were also
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1.3 Light Echoes

there in May but just not yet illuminated. The same applies to the September image with
respect to the apparent gap of material directly surrounding the red star in the center: As
the brightness outburst lasted only for a few months, the inner layers of the nebula are not
illuminated anymore at this point whereas the outer layers just came into view.
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2 Fundamentals

The theoretical background of this thesis provides information on aspects necessary to under-
stand the light echo rendering technique, as well as the description of the developed framework
in the subsequent chapter.

To ensure a consistent notation, the thesis will comply to the notation set forth in the following
table of quantities

Symbol Description
< A random number in the range [0, 1].
x Indicates a position in 3D-Space.
~ω Normalized direction.
Ω Hemisphere of directions.

L(x, ~ω, t) Radiance at position x and direction ~ω at a time t.
Φ(t) Flux. In this context time-based and associated with a light source.
c Speed of Light in vacuum. 299,792,458 m/s.

n(x) Refractive index at position x.
∇n(x) Gradient of the scalar field of n at position x.
α(x) Absorption coefficient at position x.
σ(x) Scattering coefficient at position x.
κ(x) Extinction coefficient at position x. κ(x) = α(x) + σ(x).
Λ(x) Albedo. Fraction of energy reflected. Λ(x) = σ(x)/κ(x).
τ(x′

,x) Transmittance along a line segment from x′ to x.
f(x, ~ω′

, ~ω) Normalized phase function.
g Henyey-Greenstein phase function parameter.

2.1 Related Work

The original equation of radiative transfer, that is also the base of the volume rendering
equation has been described by Chandrasekhar in [Cha60].

Global illumination in participating media using Photon Maps, which provides a solution/ap-
proximation to the volume rendering equation has originally been introduced in 1998 by Henrik
Wann Jensen [JC98]. The method has been improved in recent years using Photon Beams
[JZJ08] and Query Beams [JNJ11].
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2.2 Light Transport in Participating Media

The extension of Photon Mapping to RGB color channels has been described in [Jen01],
although not in detail and partly ambiguous. An implementation of Volumetric Photon
Mapping using RGB color channels and even a spectral solution can be found in the open-
source renderer Mitsuba [mit].

Nonlinear Photon Mapping that takes into account bent light curves caused by spatially
varying refractive indices has been described in [Gut05].

A method to efficiently port the Photon Mapping algorithm to CUDA has been described in
[Fle09]. The method is based on the description of a particle simulation by NVIDIA [Gre08].
Although the method is described in the context of Photon Mapping for surfaces, it can be
applied to Volumetric Photon Mapping in a straightforward manner.

The novelty of this thesis, the extension of Photon Mapping to include the time dependency of
light propagation is inspired by [Pat05]. This publication describes a Monte Carlo Simulation
of light echoes. It is not directly suitable to be interpreted as a rendering solution, but provided
valuable ideas for our rendering solution.

2.2 Light Transport in Participating Media

In order to render a light echo, the most basic requirement is the ability to render the
galactic nebula that is illuminated by a star at its center. In terms of computer graphics, this
requirement can be restated as the necessity to simulate light transport in participating media
where the star is the emitter of light (simplified as a point light source) and the nebula is the
participating medium (simplified as a 3D volume holding a density value per data point).

In our special case, also taking into account the time dependency of light transport is of the
essence. As this introduces an additional layer of complexity, we first introduce the background
on light transport as it has been commonly used in computer graphics and describe time
dependency as an extension. The first formal description of light transport has been introduced
by Chandrasekhar [Cha60], stated as the equation of radiative transfer. Here the equation is
described using the notation as typically used in computer graphics (see [Jen01]).

Light transport in a participating medium is affected by emission, in-scattering, absorption
and out-scattering.

13



2 Fundamentals

Figure 2.1: Illustration of emission, absorption, in- and out-scattering at a specific position
and direction in a participating medium. Image Source: http://www.cescg.
org/CESCG-2004/web/Zdrojewska-Dorota/

A medium is called homogeneous if the scattering and absorption is constant throughout the
entire volume, otherwise it is called non-homogeneous. The change in radiance L at a position
x in direction ~ω can be written as

(~ω · ∇)L(x, ~ω) = α(x)Le(x, ~ω) + σ(x)Li(x, ~ω)− α(x)L(x, ~ω)− σ(x)L(x, ~ω)
= α(x)Le(x, ~ω) + σ(x)Li(x, ~ω)− κ(x)L(x, ~ω) (2.1)

Le is the emitted radiance, Li is the in-scattered radiance, σ is the scattering coefficient,
α the absorption coefficient and κ is the extinction coefficient. In general the radiance is
also dependent on the wavelength, so this equation can be seen as a reduction to a single
wavelength.

The in-scattered radiance Li depends on the radiance L from all directions ~ω over the sphere Ω

Li(x, ~ω) =
∫

Ω
f(x, ~ω′

, ~ω)L(x, ~ω′)d~ω′ (2.2)

where f(x, ~ω′
, ~ω) is the normalized phase function that determines how much light at position x

is scattered from the incident direction ~ω′ into direction ~ω.

Combining Equation (2.1) and (2.2) yields the following integro-differential equation

(~ω · ∇)L(x, ~ω) = α(x)Le(x, ~ω) + σ(x)
∫

Ω
f(x, ~ω′

, ~ω)L(x, ~ω)dω′ − κ(x)L(x, ~ω) (2.3)

Integrating both sides of the equation along a straight path from x0 to x in direction ~ω gives
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2.2 Light Transport in Participating Media

L(x, ~ω) =
∫ x

x0
τ(x′

, x)α(x′)Le(x
′
, ~ω)dx′

+
∫ x

x0
τ(x′

, x)σ(x′)
∫

Ω
f(x′

, ~ω
′
, ~ω)L(x′

, ~ω
′)dω′

dx
′

+τ(x0, x)L(x0, ~ω) (2.4)

where τ(x′
, x) is the transmittance along the line segment from x

′ to x

τ(x′
, x) = e−

∫ x

x
′ κ(y)dy

The integral
∫ x
x′ κ(y)dy is also called the optical depth of the medium between x′ and x.

Equation (2.4) is the Volume Rendering Equation. Solving this equation is the goal of
volume rendering techniques that strive to depict a physically based simulation.

Note

For practical applications, rendering an image using the equation usually brakes
down to finding a numerical solution/approximation to the equation. A typical
ray tracing/ray marching approach identifies a viewing ray for each pixel with the
straight path that has been used to derive the equation. We identify x with the
position of the camera and need to find the direction ω for each viewing ray and
then solve or rather approximate L(x, ω) for each pixel using an algorithm and
finally use a tone mapper to reduce the high-range radiance result to a viewable
image.

2.2.1 Transient Volume Rendering Equation

As we would like to capture the time dependency of light propagation, the volume rendering
equation is not sufficient to describe this. In this section we show the extended version of the
volume rendering equation that takes into account the time dependency. The equations are
adapted from [Bun09].
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2 Fundamentals

Figure 2.2: Illustration of factors influencing the change of radiance, analog to Figure 2.1. In
this case we consider the change of radiance regarding both a differential change
in position ds, as well as a differential advance of time dt.

dL is a total derivative, describing the change of a function (in this case L) depending on all
parameters (in this case both time and direction).

dL = ∂L

∂t
dt+ ∂L

∂s
ds

= ∂L

∂t

ds

c
+ ∂L

∂s
ds

= (∂L
∂t

1
c

+ ∂L

∂s
)ds

dL

ds
= ∂L

∂t

1
c

+ ∂L

∂s

The term ∂L
∂s is a directional derivative that may also be rewritten as a dot product of direction

and gradient.

dL

ds
= ∂L

∂t

1
c

+ ~ω · ∇L

dL

ds
= α(x)Le(x, ~ω, t) + σ(x)

∫
Ω
f(x, ~ω′

, ~ω)L(x, ~ω′
, t)dω′ − κ(x)L(x, ~ω, t) (2.5)

16



2.2 Light Transport in Participating Media

We adapt the equation from integrating along arc length to time:

The differential ds equals the differential time dt multiplied with the modified speed of light
with respect to the refractive index: ds = c

ndt.

dL

ds
= dL

c
ndt

= dL

dt

n

c
= α(x)Le(x, ~ω, t) + σ(x)

∫
Ω
f(x, ~ω′

, ~ω)L(x, ~ω′
, t)dω′ − κ(x)L(x, ~ω, t)

We define v(t) = c
n . Multiplying both sides with v(t) yields

dL

dt
= v(t) · (α(x)Le(x, ~ω, t) + σ(x)

∫
Ω
f(x, ~ω′

, ~ω)L(x, ~ω′
, t)dω′ − κ(x)L(x, ~ω, t))

Now we can integrate along time, using a mapping x(t) from time to position (written as x′(t)
in the equation to distinguish from the fixed position x). We assume to have valid boundary
conditions.

L(x, ~ω, t) =
∫ t

t0
τ(x′(t′),x)α(x′(t′))v(t′)Le(x

′(t′), ~ω, t)dt′

+
∫ t

t0
τ(x′(t′),x)σ(x′(t′))v(t′)

∫
Ω
f(x′(t′), ~ω′

, ~ω)L(x′(t′), ~ω′
, t

′)dω′
dt

′

+τ(x′(t0),x′(t))L(x′(t0), ~ω, t) (2.6)

The mapping from time to position can be written as follows, assuming a straight line
segment:

x(t) = x(t0) +
∫ t

t0
ω
c

n
dt

Figure 2.3: Illustration of mapping from time to position.

17



2 Fundamentals

There is one important addition that we have to forestall at this point: In general x(t) will
be a curve and not a line in our framework, as we will introduce an extension to incorporate
refractive media. For more information on this, see Section 2.4.4.

Approximating the transient rendering equation is one of the main goals of this thesis as it will
enable to capture the time dependency of light propagation, making it possible to visualize
light echoes.

2.3 Scattering and Phase Functions

The way we visually perceive objects in our environment is strongly influenced by the effects
of absorption and scattering. As we are working with geometrical optics, we may work under
the assumption of discrete light particles (photons) that move along a deterministic trajectory.
In this context scattering then denotes the deviation of a photon from its current trajectory
caused by an interaction with the environment. This can be caused by e.g. surfaces, particles
or density fluctuations.

Basically all things we see are influenced by the effects of scattering. If we look into a mirror,
we perceive an almost ideal specular reflection where the light is scattered according to the law
of reflection. On the other hand if we imagine a very matte, white, concrete surface we see the
effects of diffuse reflections where light from an incident direction is scattered almost uniformly
in all directions leaving the surface. From sunlight that is scattered by raindrops to produce a
rainbow, yielding the effect of dispersion, to the blue sky showcasing the varying amount of
scattering with different wavelengths, all these phenomena are governed by scattering.

Figure 2.4: The way we see things is strongly influenced by the way how light interacts with
the environment, especially through means of scattering.

In our case we are especially interested in scattering of light within volumes described by the
spatial density of particles within the volume. In general light scattering can be categorized
into three domains [BS09]:

• Rayleigh scattering - The particles are small compared to the wavelength of the light.

• Mie scattering - The particles are about the same size as the wavelength of light.

• Geometric scattering - The particles are much larger than the wavelength of light.
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2.3 Scattering and Phase Functions

For approximating light interaction with a galactic nebula, the category we are most interested
in is Mie scattering [Pat05]. Solutions to Mie scattering exist for various types of simplified
particle geometries, most notably spheres. Unfortunately these solutions are too expensive
and involved for most practical applications ([Goo95], p. 323). As a result to this, simplified
phase functions have been developed that can be used in practical applications.

Phase functions

A phase function f(x, ~ω′
, ~ω) describes the angular distribution of light scattered from direction

~ω
′ to direction ~ω at a position x. A phase function is called normalized if the condition∫

Ω
f(x, ~ω′

, ~ω)d~ω = 1

holds. In this case the phase function defines a probability distribution for scattering from a
specific direction into another specified direction ([Jen01], p. 582). This attribute will come in
handy for the stochastic approach used in Photon Mapping.

Isotropic phase function
f(x, ~ω′

, ~ω) = 1
4π

The phase function is normalized and states that light is scattered uniformly in any direction.
Thus the scattering does not depend on the incoming or outgoing direction. This simple
function however is not sufficient to describe the anisotropic scattering by intergalactic dust.

Henyey-Greenstein phase function

f(x, ~ω′
, ~ω) = 1− g2

4π(1 + g2 − 2gcosΘ)1.5 (2.7)

The Henyey-Greenstein (H-G) phase function is the most commonly used phase function to
describe scattering by e.g. dust, clouds, oceans or skin [HG41]. It can be influenced by the
parameter g ∈ [−1, 1], is also normalized for the valid range of g and otherwise only depends
on the angle Θ between ~ω′ and ~ω. A positive and increasing g value gives an increasing amount
of forward scattering, g = 0 is isotropic scattering and finally a decreasing negative value of g
implies increasing backward scattering. The value assumed to yield the best approximation for
galactic dust is g ≈ 0.6 ([Pat05], p. 1163). The framework uses this function for all calculations
involving a phase function.
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Figure 2.5: Visualization of the Henyey-Greenstein phase function using polar coordinates.
For each sample the black dot marks the origin. The phase function angle
parameter Θ is used as the polar angle, whereas the phase function result is
mapped to the polar radius. This results in the red ellipses. Sample (a) uses
g=0.6, sample (b) g=0.35 and (c) uses g=0.04. Image Source: Reconstructed from
http://www.sciencedirect.com/science/article/pii/S0165232X11002667

Employing the H-G phase function for our Photon Mapping algorithm also requires that we
need to determine a new direction for each photon after a scattering event with respect to
the phase function. Sampling the phase function can be achieved by inverting it as follows
([Pat05], p. 1167):

cosΘ = 1
2g [(1 + g2 − (1− g2)2

(1 + 2g<− g)2 ]

cosΘ is the cosine of the scattering angle between an incident direction and the scattered
direction, g is the H-G parameter and < is a normalized random number. As the scattering
angle alone does not determine a unique new direction, the scattering azimuth φ is also
determined by φ = π(2<− 1), a random number in the range of −π ≤ φ ≤ π.

With these prerequisites and given a direction ~ω0 = (x0, y0, z0), a new sampled direction
~ω1 = (x1, y1, z1) can be obtained:
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x1 = x0 · cosΘ−
y0√

1− z2
0

sinΘsinφ+ x0z0√
1− z2

0

sinΘcosφ

y1 = y0 · cosΘ−
x0√

1− z2
0

sinΘsinφ+ y0z0√
1− z2

0

sinΘcosφ

z1 = z0 · cosΘ−
√

1− z2
0sinΘsinφ (2.8)

2.4 Volumetric Photon Mapping

Information in this section is compiled from [Jen01] if not noted otherwise.

Volumetric Photon Mapping is a global illumination technique that can be used in scenes
with participating media. It has been introduced in 1998 by Henrik Wann Jensen and can
be seen as an extension to the Photon Mapping technique for surfaces [Jen96]. Since for our
use case the scene only consists of volumes without any surface representations, this section
directly introduces Photon Mapping for volumes from scratch, but skips aspects relevant
for rendering surfaces. Please note that, while ultimately our goal is to describe a transient
Photon Mapping algorithm that captures time-dependent effects, we start with the classical
non-transient approach as a basis and introduce transient Photon Mapping as an extension to
the original approach later on.

In general photon mapping is a two-pass technique:

• Photon Tracing Stage - Photons are emitted from a light source and stored within a
dedicated photon map data structure.

• Photon Gathering Stage - During the rendering pass based on ray tracing/ray
marching, photons are gathered to get a local radiance estimate.
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Figure 2.6: Illustration of the two pass approach used in Photon Mapping. Photons are
emitted from the light source in the first stage, and will be collected during
gathering in the second stage.

2.4.1 Photon Tracing

During the first pass the photon map is constructed by emitting photons from a light source
and each time a photon interacts with the volume, it is deposited in the volume photon map.

Caution

Please note that photons in Photon Mapping are not supposed to directly represent
their physical counterparts, as the energy transported by one photon depends on
both the overall count of photons used for the simulation as well as the flux of the
light source. So in Photon Mapping the overall number of photons emitted from a
light source is a qualitative term strongly influencing the accuracy of the radiance
estimate whereas in reality the number of photons emitted during a time would be
a measurement of light power.

The probability density function (PDF) describing the probability of a photon interacting with
the participating medium at position x is
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F (x) = 1− τ(xs,x) = 1− e−
∫ x

xs
κ(y)dy

where xs is the entry point of the photon in the volume. In order to practically determine the
position of interaction for a photon we identify F (x) with a normalized random number <:

< = F (x)
< = 1− τ(xs,x)
< = τ(xs,x)

< = e
−

∫ x
xs
κ(y)dy

ln(<) = −
∫ x

xs
κ(y)dy

−ln(<) =
∫ x

xs
κ(y)dy (2.9)

This means that we can derive a new interaction point, given a starting point xs and a direction
~ωs, by using a normalized random number <, guessing the optical depth −ln(<) at which the
interaction will occur and stepping through the volume using ray marching, accumulating
optical depth until that value is reached and thus setting the position of interaction.

After the position of interaction is determined, there is more than one option for the next step.
One possibility is to use russian roulette using the albedo Λ to determine if the interaction
event is either scattering or absorption of the photon. More precise: We take another random
number <. If < ≤ Λ the photon is scattered, otherwise it is absorbed. In this case the power
of the photon does not have to be scaled.

We do not use this approach as it cannot easily be combined with the RGB extension. For more
information on this, see section 2.4.3. Instead of using russian roulette in conjunction with
absorption and scattering, we scale the photon’s power with the albedo for each interaction
event and only use russian roulette to terminate the path.

There is one last ingredient required for stating a complete tracing algorithm. In our case we
assume that the star we would like to simulate is approximated using a point light (a light
that shines isotropically, assuming a quadratic distance falloff of the light power Φ). So the
starting position for each photon in the simulation can always be set to the position of the
light source, but we also need to generate a random set of initial directions for the simulation.
In order to generate a normalized random direction ~ωs = (xs, ys, zs) using two normalized
random numbers <0 and <1 we can use [Pat05], p. 1167:

zs = 2<0 − 1
xs =

√
1− z2

scos[π(2<1 − 1)]

ys =
√

1− z2
ssin[π(2<1 − 1)] (2.10)
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Finally we can derive a complete algorithm for tracing and storing a photon in the photon
map. The algorithm is listed as it is implemented in the framework, so we use the option to
scale the photon’s power with the albedo instead of an absorption/scattering decision using
russian roulette.

1. Generate a photon at the position of the light source with a random initial direction
according to Equation (2.10).

2. Check if there is an intersection with the volume and the initial ray. If so, determine the
entry point, otherwise stop tracing the photon.

3. Determine the interaction point within the volume using Equation(2.9). If the interaction
point is outside the volume, quit tracing.

4. Multiply the photon’s power with the albedo and store it in the photon map.

5. Use russian roulette using the albedo to terminate the path after a number of minimum
scattering events.

6. If the decision is to continue with the path, generate a new tracing direction using
Equation (2.8) and continue with step (3).

A desired number of photons stored in the photon map is set. The tracing algorithm is placed
in a loop and the number of currently stored photons is tracked. New traces are launched until
the desired number of photons is reached.

Note

Usually Volumetric Photon Mapping splits the calculation of single scattering and
multiple scattering in two separate parts. Single scattering is computed using ray
marching whereas multiple scattering is computed via the photon map. In this case
the photon tracing algorithm just skips the first interaction by not storing it in the
photon map. In our case however, we cannot separate the calculations (see Section
2.4.4) and thus also store the first hit in the photon map.

2.4.2 Photon Gathering

In order to derive a radiance estimate for volumes using photons that represent flux, the
relationship between scattered flux Φ and radiance L in a participating medium is used:

L(x, ~ω) = d2Φ(x, ~ω)
σ(x)dωdV (2.11)

Combining Equation (2.11) with Equation (2.2) yields

24



2.4 Volumetric Photon Mapping

Lii(x, ~ω) =
∫

Ω
f(x, ~ω′

, ~ω)L(x, ~ω′)d~ω′

=
∫

Ω
f(x, ~ω′

, ~ω) d
2Φ(x, ~ω′)

σ(x)d~ω′dV
d~ω

′

= 1
σ(x)

∫
Ω
f(x, ~ω′

, ~ω)d
2Φ(x, ~ω′)
dV

≈ 1
σ(x)

n∑
p=1

f(x, ~ω′
p, ~ω)

∆Φp(x, ~ω
′
p)

4
3πr

3 (2.12)

The last step means that the integral is approximated by discretization, replacing the differential
volume with the smallest sphere of radius r containing the n nearest photons to the position x.
The flux carried by each photon ∆Φp is determined by dividing the flux of the light source
with the number of photons that were emitted (as opposed to stored) in the photon tracing
stage.

Figure 2.7: Visualization of the photon density estimate. To estimate in-scattered radiance,
photons within a sphere of radius r around the current position are taken into
account. Source: [JC98]

In general the computation is split into single scattering and multiple scattering, and thus the
equation for in-scattered radiance is split accordingly. Please note that in this framework the
single scattering term is included in the photon map. Regarding the equation, the only change
would be to remove the direct term as all first interactions are also stored in the photon map.
This is valid but requires a significantly increased number of photons in the simulation but is
unavoidable in this context (see 2.4.4).

Li(x, ~ω) = Li,d(x, ~ω) + σ(x)
κ(x)Li,i(x, ~ω)

The direct term Li,d is computed using ray marching. More specifically in the case of a point
light, the direct in-scattered radiance is computed by attenuating the flux of the light source
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with the squared distance from the current position to the light source, and further attenuating
it with the transmittance between the current position and the light source. The indirect term
Li,i has to be multiplied with the scattering albedo in case absorbed photons are stored in the
photon map. In our case this factor drops out of the equation as we already scale the photon’s
power using the albedo during photon tracing.

To render an image using photon mapping, ray marching is employed to iteratively compute
radiance along a ray that passes through the medium. For each step in the volume the radiance
from the previous step is attenuated and the emitted and in-scattered radiance at the current
position is added:

L(xk, ~ω) = α(xk)Le(xk, ~ω)∆xk

+ σ(xk)Li(xk, ~ω)∆xk

+ e−κ(xk)∆xkL(xk−1, ~ω) (2.13)

with ∆xk = |xk − xk−1| being the step size and x0 the entry point of the ray in the volume.
The step size can be fixed, but various optimizations are possible, e.g. recursively halving the
step size if the radiance differs too much, or jittering the starting position for ray marching to
reduce banding artifacts.

2.4.3 RGB Extension

In order to introduce more than a single color band (in our case we use RGB channels) to
achieve effects like color bleeding, a few adjustments for a practical implementation have
to be made. First and foremost data types have to be extended for all values involving or
calculating the Radiance L from a single valued type to a three component type. Alongside,
the absorption α and scattering σ values are extended to three valued types, representing
the color of the volume (or the material of the volume so to speak). Following this, also the
extinction coefficient and albedo naturally extend to three valued types.

In general the RGB radiance is calculated like the single valued radiance, just extending the
calculation to more than one but separately treated channels. There are some points however
that cannot be treated in isolation for each channel:

• Photon Interaction Position - During photon tracing the optical depth is accumulated
to determine the next point of interaction. As this includes the extinction coefficient that
is now three valued, the optical depth is also three valued. Here we track all channels
and set the interaction position to the position where the transmittance is reached first
on any of the channels.

• Photon Material Interaction - Photons have to store a power/weight value in order
to be able to capture interactions with colored materials. In this case [Jen01], p. 123
states the options to either scale the scattered photon with the albedo or use russian
roulette to decide between scattering or absorption. For colored photons the latter poses
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a problem as the individual components of the photon still have to be scaled somehow to
capture the material interaction, but neither [Jen01], nor any other literature reviewed
for this thesis provided a plausible answer or method for this. We thus choose to discard
the russian roulette for an absorption/scattering decision and instead use the first option
to multiply with the multi-channeled albedo. This is also the method used in the Mitsuba
Renderer [mit].

• Photon Interaction Type - In this framework no russian roulette is used to decide
between absorption and scattering because of the aforementioned albedo multiplication.
Instead we only use russian roulette to terminate the path after a certain number of
minimum bounces or when a number of maximum bounces is reached. In-between, the
maximum value over all albedo channels is used to determine if the path continues and
the weight per channel is divided by the maximum albedo over all channels. This follows
the implementation of Mitsuba [mit].

Caution

In general an extension to multiple color channels would yield the effect of dispersion
when also taking into account refraction indices. That is, when a scattering event
takes place, light waves of different wave lengths would be scattered into different
directions according to the wavelength. We ignore this effect as we pack all channels
into a single photon and trace a single path for the photon, only adjusting the
photon color/power for each interaction, but not separating the directions by e.g.
having separate photons for each color channel.

2.4.4 Nonlinear Extension

The method described in this section is adapted from [Gut05].

Another effect that we would like to capture in this framework are bent light curves that are
caused by spatially varying refractive indices throughout a volume. A well known phenomenon
showcasing this effect is a mirage:

27



2 Fundamentals

Figure 2.8: A mirage: The air close to the ground is hotter than the air above. As colder air is
denser it has a larger refractive index than hot air, thus resulting in the air volume
having spatially varying refractive indices. This causes light rays that pass through
the air to be bent in the direction of the refractive index gradient, resulting in
the distorted image. Image Source: http://en.wikipedia.org/wiki/Mirage

In our framework we do not include any type of temperature, but as we still employ a non-
homogeneous volume we work under the assumption of spatially varying refractive indices and
would like to include this in the Photon Mapping algorithm. Please note that the refraction
indices in the framework are directly derived from the density at the current position in the
volume using a simple quadratic curve. This is a strongly simplifying heuristic, as a physically
plausible calculation of the refractive index would be much more complicated, having to
account for the current material, density, temperature and wavelength. Using this heuristic
however does not restrict the generality of the method used to calculate the bent light curves,
it only biases the refraction indices that are used as a parameter in the calculation.

One restriction using this method is the simplification of using a single refractive index at
a position. In reality, the refractive index also varies with the wavelength and thus results
in dispersion of the light because it is bent with a varying magnitude according to the
wavelength.

To derive a method to bend the light curve, we start with the relationship of the curved light
path l(s) and the scalar field n(x) of refractive indices with the ray equation of geometric
optics [Sun08]

d

dl
(n dl
ds

) = ∇n (2.14)

Equation (2.14) can be rewritten as a system of first-order differential equations using v =
n dlds :

dl

ds
= v

n
dv

ds
= ∇n
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Now a piecewise-linear approximation of the curve can be acquired using an Euler forward
discretization:

li+1 = li + ∆s
n

vi

vi+1 = vi + ∆s∇n (2.15)

∆s is an arbitrary step size and ∇n is the gradient of the scalar field of refractive indices.
Please note that the real step size in the sense of the euclidean distance between two adjacent
curve points using this equation is (in general) not ∆s and also not constant because it depends
on the refractive index and the gradient.

To anticipate one question that might arise with the following section on time dependency:
In the framework the time of flight in-between two adjacent curve points is determined by
calculating the distance between the current and the next curve point and calculating the
required time with respect to the modified speed of light by the refractive index at the current
position. Without the nonlinear extension, the time of flight could be calculated directly using
∆s but using this extension, the actual non-constant step size has to be taken into account.

The gradient at an arbitrary position within a volume, represented by a voxel grid, can be
approximated using e.g. Central Differences [IK]:

∇n(x) ≈


V (x+∆Vx)−V (x−∆Vx)

2·‖∆Vx‖
V (x+∆Vy)−V (x−∆Vy)

2·‖∆Vy‖
V (x+∆Vz)−V (x−∆Vz)

2·‖∆Vz‖

 (2.16)

Where V(x) is the value of a volume V at position x and the ∆Vx,∆Vy,∆Vz vectors represent
the distances between two voxels of the volume in all three directions (assuming the grid is
equidistant).

Now we have the tools to calculate curved light paths, but how do we employ it in volumetric
photon mapping?

First, a problem has to be addressed that cannot be solved easily. Assuming a typical
Volumetric Photon Mapping implementation, the single scattering term would be calculated
by sampling the light source using ray marching from the current position to the light source,
giving us the transmittance, incident light direction and distance from the light source. Under
the assumption of bent light curves, this information cannot be gained using ray marching, as
the light curve that would pass the current position is unknown. In fact it is not only unknown,
but ambiguous as the following Figure 2.9 demonstrates:
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Figure 2.9: At the position marked as the red dot, the incident light direction is highly am-
biguous because light is bent to this position from multiple possible paths. Please
note that this does not depict multiple-scattering, but light that is exclusively
bent because of spatially varying refractive indices. The result at the focus point
cannot only be treated like a single scattering event.

So if we decide to ray march from the current sampling position towards the light source,
we do not know the direction where the ray would pass by the position of the light source.
Conversely, ray marching from the light source yields the same problem. In this framework
we implemented and tested an approach to pre-calculate a single scattering grid by tracing
bent light curves from the light source, splatting the necessary values to the grid using an
interpolation scheme and looking up the saved grid values during rendering. This works fairly
well for volumes with only very small variations in the scalar field of refractive indices. But
this does not solve the general case, as easily seen in Figure 2.9: At the focus point of the
light, the incident light direction is ambiguous and thus cannot be properly captured in a grid
that expects unique values per data point. As a consequence to this, calculating the single
scattering term via ray marching is restrained from and the direct term is also calculated via
the photon map. The only changes necessary for this are to skip the secondary ray marching
to the light source completely, and also to store the first interaction in the photon map during
photon tracing. The downside of this change is that the number of photons required to achieve
renderings that are both detailed and noise-free is increased multiple orders of magnitude
compared to the split approach.

By including the direct term in the photon map, we meet the prerequisite of only having to
forward-trace bent light curves in the photon mapping algorithm:

• Photon Tracing - For tracing the path of a single emitted photon, we bend the photon
curve in the volume according to Equation (2.15), still accumulating optical depth until
we reach the next interaction point. We directly couple the step size for accumulating
optical depth with the step size for calculating the next position on the bent photon
curve. The new direction after scattering is still determined using the phase function
and the same steps are then repeated for finding the next point of interaction.
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• Photon Gathering - Here we directly apply Equation (2.15) to the ray marching per
pixel that is already in place. Also the ray marching step size is used for the step size
parameter ∆s in Equation (2.15). So the actual step size is determined by the distance
between the current position and the next position that is calculated using Equation
(2.15).

This captures both the effect of bent viewing rays, as well as the bent photon curves, which in
turn will allow us to capture effects such as volumetric caustics.

2.4.5 Time Dependency Extension

This section introduces the main novelty of this thesis. As we want to visualize the propagation
of light echoes over time, the distance scales we work on are rather light years than meters.
Taking into account the finite speed of light propagation, the time dependency of light
propagation is essential to properly display a light echo. Traditionally CG lighting methods
ignore the finite speed of light as it simply does not have a notable visual impact on earthly
distances. In this case, we present an approximation to the transient rendering equation (see
Equation 2.6).

Please note that by definition, if we talk about the current time in this context, this always
refers to the time of the observer, or in terms of rendering, the time at the current position of
the camera.

Another very different but also very interesting use case for the time dependency extension
is the work of Prof. Ramesh Raskar at the MIT Media Lab1. In December 2011 his lab
received a lot of attention with the publication of an ultrafast imaging system that is able to
reconstruct and visualize sequences of how light propagates through liquids and objects of a
scale encountered in everyday life [Mar].

1http://web.media.mit.edu/~raskar/
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(a) (b)

Figure 2.10: Left: A single frame captured within two-trillionths of a second shows how the
light propagates along objects. Image Source: Camera Culture Group, MIT
Media Lab. Right: A comparable scene built with Maya and rendered with our
framework. For more images from this sequence, see Chapter Results.

As the time dependency extension will treat parameters like the current time and the speed
of light as arbitrary values, our framework will also allow to render sequences similar to the
sequences presented by the Raskar group (in the sense that the framework renders the sequence,
as opposed to the sequence being captured and reconstructed with a high-speed camera).

The only changes required in the framework to visualize light propagation on small scales are
to revert the size of the volumes used from extends in the range of light years to a centimeter
or meter object size and then to reduce the playback speed until light propagation becomes
visible. Thus we also present renderings depicting light propagation on small scale objects in
Section 4.3. For the rest of this section however, the descriptions are still matched to the light
echo use case.

The extension of Volumetric Photon Mapping to take into account the finite speed of light
propagation is relatively straightforward, since we impose three important restrictions:

• The light source itself is an isotropic point light. Thus we do not need to store the initial
direction and initial position of photons during emission as it would be required for e.g.
an area light source.

• The light source position is static. The only thing allowed to change over time is the
light flux. This still meets our requirements as we regard the star’s position as constant
and emulate the supernova as a short but strong variation of the light’s flux over time.

• The volume itself as well as its position in space is static. This also complies with
observations of real light echoes: Although real supernovae certainly dash a significant
amount of matter into space, the main contribution to the visual impression of the light
echo stems from now illuminated intergalactic dust and nebulae that have surrounded
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the star for a long time and whose positional dynamic during the timeframe of a light
echo is negligible.

This allows for a very important simplification. The distribution of photons in the photon
map does not change over time. The original Photon Mapping algorithm also deviates from a
physical model in the sense that photons represent a certain amount of energy thus abstracting
the fact that real light flux is governed by the amount of photons passing a certain position
per unit time. As we only want to change the light flux over time, photons do not have to
be re-emitted over time because of this simplification and additionally because both the light
source’s position as well as the volume’s position are fixed, the photon map can be precomputed
for the entire simulation.

The most important change is that photons cannot store the flux they carry, because this is
unknown at emission time and changes during runtime. Traditional Photon Mapping assigns
the flux a single photon carries by assigning each photon the flux of the light source divided by
the number of photons that have been emitted during the tracing stage. Assuming an RGB
color model, the stored flux along a path of stored photons in the photon map may change
because of interactions with the volume/material. We have to adapt this approach to enable a
dynamic integration of light flux depending on the current time.

Light flux

The light flux is represented by a per-channel flux curve Φl(t). The lookup parameter t of the
curve is in the local time of the light source.

Time-dependent Photon Tracing

The photon is changed to not store the flux it carries anymore, but the time of flight (the time
passed since the emission from the light source up to the time of the photon interaction) and
a weight for each photon. The time difference since the emission is needed for the photon
gathering stage to be able to compute a lookup time for the flux the photon carries at a specific
point in time. The weight is needed to still be able to reflect interactions of the photon with a
material. Usually in Photon Mapping a material interaction would be achieved by changing
the flux of the stored photon, but since the flux is not known at this point, we store a weight
per channel. Photons emitted from the light source always start with a weight of 1.0 that is
subsequently multiplied with the albedo for each scattering event according to the description
in Section 2.4.3. During rendering we reconstruct the flux of each photon by multiplying the
photon’s weight with the dynamically queried flux at the current time for the photon.

Storing the time since emission along with the photon is straightforward. The most important
thing is to pay attention to the spatially varying refractive indices as the speed of light varies
with the refractive index. The photon tracing now keeps track of the time as follows:

1. Photon tracing starts with the emission at the light source at time t0 = 0.
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2. If the curve between the starting point and the first interaction point contains a segment
outside the volume, determine the length of this line and assume a refractive index of n
= 1.0, thus directly using the vacuum speed of light c for calculating the photon travel
time for this part.

3. When calculating a new position li+1 of the nonlinear photon tracing algorithm within
the volume according to Equation (2.15), calculate the euclidian distance dstep between
li and li+1.

4. The time stored for the photon at li+1 is

ti+1 = ti + dstep · n(li)
c

This means that we assume the refractive index n at position li to be constant between
li and li+1. This will modify the speed of light in the volume to c/n for this segment
and calculate the time difference accordingly.

5. Accumulate and store the time for each stored photon. Reset the time to zero each time
a new photon is emitted.

Figure 2.11: Illustration of a light path during time-dependent photon tracing. The solid
line is the path of the photon when it is not yet affected by spatially varying
refractive indices. The dashed curve shows the bent path of the photon. The
dots represent the photons stored at scattering events on this path along with
the time since emission (t1 to t4).
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This approach provides the basis to collect all information necessary during photon gathering
to render the scene at any point in time.

Time-dependent Photon Gathering

In general the photon gathering algorithm stays the same. The equation for the in-scattered
radiance is modified only slightly compared to the original Equation (2.12):

Li(x, ~ω, t) ≈
1

σ(x)

n∑
p=1

f(x, ~ω′
p, ~ω)Φl,p(tlookup(t))

4
3πr

3 (2.17)

The only change is the time parameter of the in-scattered radiance that is passed to
Φl,p(tlookup(t)), representing the time-dependent flux of the photon. As Φl(t

′) is defined
to be in the local time of the light source, and t is defined to be in the local time of the
observer, tlookup(t) is used convert the observer time to the time of the light source and include
the required time of flight:

tlookup(t) = t− (tr + td + tp)

• t - is the current time of the observer.

• tr - is the time required for the light to travel from the observer to the current position in
the viewing-ray ray marching algorithm. tr just has to be tracked during ray marching,
also taking into account the modified speed of light. This can be done using the same
approach as proposed for photon tracing.

• td - is the time required to travel the distance from the current ray marching position to
the stored photon position. We use the refractive index at the viewing-ray ray marching
position to modify the speed of light for the time calculation.

• tp - is the time since emission that is stored in the photon, so the time required for the
light to travel from the light source to the photon.

So we take the current time at the observer, subtract the time required for the light to travel
from the light source to the observer and thus get the local time at the light source, which
enables us to make a lookup at the light source for the flux that has been emitted at this point
in time.
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2 Fundamentals

Figure 2.12: Illustration of time-dependent photon gathering. The black path shows a bent
viewing ray, the green line the query of a single photon during the nearest
neighbor search and the red path shows the path the photon originated from.

Dimensions

As already noted, the dimensions that are usually observed in the context of light echoes are
rather light years than meters and years instead of seconds. Because we would like to use
realistic values, light years are the base distance unit and years are the base time unit in this
framework. Values are converted back to meters or seconds if required.

So in itself, the dimensions used do not demand for a special extension but enforce that some
calculations in the framework have to be done using double precision to prevent numerical
issues. As the volume’s extends can reach a magnitude of light years, scattering and absorption
coefficients are very low. On the other hand, the light flux values are very large since the light
source is supposed to represent a star. For example, the sun has a power of about 1026 Watts
[Wil04].

2.4.6 Materials Extension

In order to be able to construct additional interesting sample scenes for our framework, we
also use an extension to include different materials within a volume. In our context we define
a material as a mapping from volume density at a position x within the volume to the RGB
scattering coefficient σ, the RGB absorption coefficient α, the g parameter of the H-G phase
function and the refractive index n. This allows us to model materials with a different color,
refractive index and scattering behavior.
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We realize the assignment of the material at a position within the volume through an additional
material volume that is devised from the export pipeline we use to construct our sample
scenes:

1. Maya - Used to construct a scene using standard polygon models.

2. OBJ Export - The scene is exported using Maya’s built-in exporter for the OBJ format.

3. Voxelizer - We use the application Voxelizer2 to convert the OBJ surface based scene
to a voxelized representation including a distance field. For each scene, this export has
to be done per object in the scene. The application requires selecting a seed point for the
conversion. If the scene consists of multiple objects, only the object that holds the seed
point will be exported at a time. We exploit this behavior to later on merge multiple
volumes to a single density volume and a volume of material IDs.

4. Voxelizer Converter - This converter application was written in-house by Marco
Ament and converts volumes in the Voxelizer format to a raw density format. Here
we use the distance field to construct a smooth density increase for the boundaries of
the voxelized objects. This helps to significantly reduce artifacts that would appear in
conjunction with the nonlinear ray marching and a volume that was constructed from a
surface using a simple binary inside/outside density with respect to the object.

5. Volume Merger - The volume merger is a component of our framework. It takes an
arbitrary number of exported density volumes as input and constructs a unified density
volume and a material volume. The density volume is a simple additively combined
density volume of all input volumes. The material volume is constructed by assigning an
ID to each input volume and writing the ID to the material volume for every voxel where
the density of the input volume is larger than zero. As we do not support blending of
materials, this means that the objects (areas with a density greater than zero) should be
spatially separated from each other, so that there are no overlaps. In case this happens
anyway, existing IDs will be overwritten by the subsequent input volume.

6. Material Lookup - During rendering, for each sampling position the material values
will be determined by a lookup in the material volume at the current position. The
lookup supplies the material ID at the current position, and the material ID is used to
determine the material parameters during runtime. Since we do not support blended
materials or multiple materials at the same position, the lookup in the material volume
does not use interpolation but a simple nearest neighbor lookup.

The material extension does not require any adaptation of the aforementioned extensions.
It is integrated simply by including the lookup of the material parameters with respect to
the current position within the volume instead of using a set of globally defined material
parameters for the volume.

2http://techhouse.brown.edu/~dmorris/projects/voxelizer/
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2.4.7 Conclusion

Chapter 2.4 presented the necessary background to understand the Volumetric Photon Mapping
method and the extensions for time-dependent light propagation, nonlinear effects caused by
spatially varying refractive indices, the extension to colored materials and multiple materials
within a single volume. Please note that the time dependency extension does not capture
relativistic effects. For a comprehensive examination of this field of study, see [Wei01].

Details on data structures and the implementation have not been discussed so far, but this
will be caught up in the description of the framework in Chapter 3.

In the end the decision to use Volumetric Photon Mapping to visualize light echos was based
on the following points:

• Direct integration of multiple scattering that is especially desirable in conjunction with
the time dependency to show delayed light bounce effects in the volume.

• Direct integration of nonhomogeneous volumes with anisotropic scattering, as this reflects
the composition of galactic dust and nebulae.

• The possibility to include nonlinear effects caused by spatially varying refraction indices.
This however is at the cost of having to include single scattering in the photon map
and thus having to increase the number of photons in the simulation multiple orders of
magnitude.

• Straightforward integration of time dependency by storing the time of flight for each
photon in the photon map.

• Parallelization of the gathering stage by using a grid approach to gather photons. This
enables porting the algorithm to CUDA in an efficient manner. For more information on
this, see Chapter 3.

2.5 Beam Radiance and Photon Beams

Classical Volumetric Photon Mapping as described in [JC98] and [Jen01] has basically been
superseded by the more recent and more efficient Photon Beam and Photon Query methods
described in [JZJ08] and [JNJ11]. This section briefly argues why these methods were not an
ideal candidate to use as a basis for the extensions desired for this framework.

Beam Query

This approach changes the photon gathering process. Classical Volumetric Photon Mapping
collects photons at discrete sampling positions along a viewing ray within a sphere around
the current sampling position. The beam query method changes this approach to collect all
photons along a viewing ray at once, if their distance to the viewing ray is close enough.
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Figure 2.13: The beam query method collects all photons along a viewing ray, eliminating
issues with missed or double-counted photons in classical Volumetric Photon
Mapping. Image source: [JZJ08]

This imposes the requirement to collect all photons along a ray, which is solved using a
Bounding-Box-Hierarchy, which would have to be efficiently parallelized and ported to CUDA.
The set of photons surrounding a discrete location within a specific radius can be ported to
CUDA more easily and efficiently using a grid (see Section 3.2 Photon Tracing). Also in our
context it is unavoidable to ray march along the viewing ray as the ray is bent because of the
spatially varying refractive indices and the need to track the time offset, because the power
of each photon has to be determined dynamically with the time dependency extension. This
invalidates the suggested ray - bounding-box hierarchy intersection traversal to collect the
photons and poses the question on how to efficiently gather all photons along a nonlinear curve
in a way that does not degenerate to the classical discrete sampling approach.

Photon Beams

While the Beam Query approach only affects the photon gathering stage, Photon Beams
extend both the Photon Tracing and Photon Gathering stage. The idea is to store photon
beams instead of photon points during photon tracing.
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Figure 2.14: The photon beam method stores the full trajectory of a photon and increases
the quality of radiance estimation. E.g. a photon query within the blue circle
would yield a better result using photon beams. Image source: [JNJ11]

In conjunction with spatially varying refractive indices, this also poses the problem that a
photon beam cannot be represented by a ray as the trajectory is possibly curved, again posing
the question on how to store photon beams in a way that does not degenerate to storing
samples and thus effectively reverting to classical photon tracing. Also, an efficient way of
querying the nonlinear curves would have to be found. For each point on a photon beam there
would have to be a way to determine the time since emission from the light source for the time
dependency extension, which is also nonlinear because the spatially varying refractive indices
change the speed of light along the trajectory.

Both methods can be used in conjunction, but we also discard this option as this would require
solving the combined issues of both approaches. So in the end the decision not to use the
newer beam approaches as a basis to integrate all aforementioned extensions is primarily based
on the number of additional issues introduced, where developing a solution is not feasible
within the timeframe and scope of this thesis.

2.6 CUDA

All information comprised in this section is contained in [Cor].

The framework developed during the work on this thesis uses CUDA to accelerate the rendering
of the Photon Mapping simulation. In order to understand the possibilities as well as the
restrictions that inherently come with this approach, this section gives a short introduction to
general purpose computation on GPUs and CUDA in general.

2.6.1 Introduction

Nowadays Graphics Processing Units (GPUs) are not only a means to accelerate traditional
rasterization based image synthesis but have evolved into a massively parallel many-core
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processor that can be used for a large variety of applications. It is especially well suited to
problems that can be solved with data-parallel computations. The general term used for
computing on the GPU is GPGPU (General Purpose GPU).

CUDA is a computing architecture for GPUs that was introduced by NVIDIA in 2006. It
features its own dedicated language, called CUDA C but also allows the usage of other
languages such as OpenCL or DirectCompute. CUDA C is a superset of the C programming
language that features a number of extensions to address some necessities associated with
GPU programming.

At the very core of CUDA are Kernels. On first glance a kernel is nothing but a C function
that is tagged with a declaration specifier to mark it as a kernel. A kernel differs from a
regular function because it will be executed on the GPU as opposed to the CPU and it will be
executed N-times in parallel on N different CUDA threads. The number of threads that will
be used in parallel can be specified when the kernel is invoked.

The execution pattern for kernels with respect to threads however is more complex than just
stating a single number to be used as a thread count:

Figure 2.15: CUDA threads are organized in blocks which in turn are associated with a grid.
Image Source: [Cor].
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In general each thread resides in what is called a Thread Block. A block groups threads in
one, two or three dimensions. Each thread has a unique thread ID within the block. It is
important to note that the dimensionality of threads within a block has no firsthand geometric
meaning and can be imagined just like the dimensionality of an array. This however gives the
opportunity to organize threads in a way that matches the dimensionality of the problem that
is due to be solved and can then of course have a sensible geometric meaning, depending on
the problem. For an algorithm that takes a 2D picture as input and manipulates each pixel,
an obvious layout is to organize threads in 2D blocks and let each thread manipulate one pixel,
but in the end the layout is up to the programmer.

One important hardware restriction for blocks is that one block is always executed on a single
CUDA core. One core may execute multiple blocks, but the execution of one block cannot be
shared among multiple cores. On top of this there is another layer of abstraction called Grids.
Blocks are also organized in means of grids. The relationship between blocks and grids is very
similar to that of threads and blocks: Blocks are organized in grids in either one, two or three
dimensions and are given a unique ID within the grid. The hardware restriction for a grid is
that a single grid always has to be executed on a single GPU and the grid is the uppermost
structure of thread organization in CUDA.

The reason why threads are embedded in two layers of abstraction are scalability and the
possibility for both the programmer and the GPU hardware to optimize the execution of
kernels to efficiently use the processing power and memory of the GPU with respect to the
problem that should be solved. In order to properly understand the limitations for thread
organization, the next section presents the memory hierarchy of CUDA. In general the efficient
use of GPU memory, as well as the use of efficient GPU memory, is key to achieve high
performance with CUDA.

2.6.2 Memory Hierarchy

CUDA provides access to a number of different memory spaces that can be used inside a
kernel.
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Figure 2.16: Schematics of different memory types in CUDA. Image source: http://www.
drdobbs.com/parallel/215900921

Global Memory

This equates to the VRAM of the GPU and can be accessed from all threads. The amount of
VRAM is comparably large, but it is also the slowest form of memory available. A typical
VRAM size on current hardware is about one GB. The typical access time on current hardware,
assuming the access is uncached, is a a few hundred cycles. Please note that the memory
access pattern is also an important additional factor with regard to the access time. Coherent
access is faster than random access of memory.

Constant Memory

Constant memory is also global memory and is read-only but provides a caching mechanism
that speeds up parallel memory access of the same location from parallel threads. This type of
memory is suitable for e.g. variables that are read often but do not have to be changed.

Texture Memory

Texture Memory is also global memory, is also read-only but is able to use the GPU’s texture
caching mechanisms. This also enables the use of hardware filtering capabilities, e.g. bilinear
or trilinear hardware filtering. With regard to caching and a 3D volume, organizing memory
in form of a space-filling curve is advantageous when accessing neighboring voxels, but has the
downside of imprecise interpolation.
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Local Memory

This type of memory implies that it is local in the scope of each thread. One important thing
to note is that this is not a dedicated memory component on the GPU but in the end also just
equates to an automatically managed part of the global memory and thus should be avoided
for performance critical parts of a kernel if possible. Local memory is e.g. used when the
amount of local data in the thread is too large to be kept in faster types of memory.

Shared Memory

Shared Memory is memory that is local to a specific block. Shared Memory is in fact a
dedicated memory component that is available per multiprocessor and provides very fast
memory access with a latency of only a few cycles. A typical size of shared memory on current
hardware is 48 KB per multiprocessor. Shared memory is suitable for e.g. a user-managed
cache.

Registers

Registers are used to store kernel parameters and local variables per thread. Registers are
as fast as shared memory and on current hardware a typical size is 32K 32-bit registers per
multiprocessor.

2.6.3 Conclusion

CUDA offers an easy and flexible way to make use of parallelization. The first step in porting
an algorithm to CUDA is to find a sensible way of matching the problem to the offered
dimensionalities of threads and blocks. Regarding the parallel execution of the algorithm
itself, it is important to note that the execution performance is not only restricted by raw
computation power, the pure amount of instructions in the kernel or synchronization points,
but also by the memory bandwidth.

The challenge in implementing efficient algorithms for CUDA is often directly associated
with being able to use a fast type of memory. This implies that shared memory should be
used as often as possible but unfortunately many problems require processing quantities that
rule out the usage of shared memory. When having to fall back on the different types of
global memory, striving for caching efficiency is the next important step. This implies that if
possible, algorithms should be optimized for coherent memory access patterns to minimize the
probability of cache misses.

As it will turn out, the CUDA version of the Volumetric Photon Mapping is primarily restricted
by memory bandwidth.
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This chapter describes the framework developed during this thesis. It is not an exhaustive
documentation of the system design, but tries to focus on the aspects most critical and relevant
for the practical implementation. The framework implements Volumetric Photon Mapping
including the RGB, nonlinear, materials and time dependency extension.

3.1 Overview

The framework has been developed using C++ for the backend and photon tracing. The
GUI is realized using Qt. The rendering itself including photon gathering is implemented in
CUDA. OpenGL is used to display the final rendered result, employing CUDA - OpenGL
interoperability.

3.1.1 Frontend

Figure 3.1: Screenshot of the framework frontend.
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The GUI offers the viewport and various options. It was developed using C++ and Qt. The
only component of interest with regard to the photon mapping algorithm is the light flux
timeline:

The timeline controls the light flux over time, separated in RGB color channels. Internally
the timeline is stored as 256 entry, three byte valued lookup table that is uploaded as a
1D-Texture to the kernel. The time range covered by the timeline is adjustable and is only
used in the kernel for time-dependent flux lookup. The dynamic range of the table is steered
by an adjustable base flux value that is multiplied with each color channel (who in turn feature
a value range of [0,1]) to get the light’s flux value during lookup.

3.1.2 Backend

The following diagram depicts the stages involved in rendering an image in the framework.
Photon Tracing and Photon Gathering are explained in more detail in the subsequent sections.

Figure 3.2: Coarse overview of execution workflow in the framework.

1. Load Volume - The volume is loaded from a (RAW) file into main memory as an array.
In case a material volume exists for the density volume, it is also loaded from file.

2. Photon Tracing - The Photon Map is calculated in a preprocessing step. The tracing
itself is run entirely on the CPU but afterward the CPU Photon Map is converted to a
format compatible for GPU usage. If the photon map was already created in a previous
session, it will be loaded from file.
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3. Render loop - Before the rendering is launched, there is an update check for all data
required on the GPU. If the data is not yet available e.g. when rendering the first frame,
or updated during runtime, the data will be (re)uploaded to the GPU. Afterward the
CUDA Kernel is called to render the image.

• Pixel Buffer Object (PBO) - This is the main object for CUDA-OpenGL interoper-
ability. On the CUDA side it is used as an array with write-access. On the OpenGL
side the PBO is bound to a 2D-Texture for rendering. The PBO has the size of the
framebuffer and will be created once during runtime and is then updated per frame.

• GPU Volume - The CPU Volume Array is uploaded and bound to the GPU as a
3D-Texture, using hardware tri-linear interpolation.

• GPU Material Volume - The CPU Material Volume (if it exists) is uploaded and
bound to the GPU as a 3D-Texture, using nearest neighbor sampling.

• GPU Timeline - The light flux timeline curve in the GUI is uploaded and bound as
a 1D-Texture, using hardware linear interpolation during lookup.

• GPU Photon Map - During Photon Tracing the GPU version of the photon map is
prepared and will now be uploaded. More on the data structure, see Section 3.2.

• GPU Noise Map - The noise map is created on the CPU side and uploaded as a
2D-Texture. It is used to offset eye-rays to reduce artifacts.

• GPU Cube Map - This is the cubemap texture that is used for the skybox. It is
load from six image files representing the six sides of the skybox cube.

4. Ray marching - The CUDA kernel is executed with one thread per rendered pixel,
identifying each thread with a viewing ray for ray marching. The viewing ray is offset
using the noise map texture. After the last step of ray marching, there is a lookup in the
cubemap texture using the latest ray marching direction to provide a background to the
scene.

4.1 Photon Gathering - During ray marching photons are collected from the GPU
photon map. For a detailed description, see Section 3.3.

5. Tone Mapping - As the result of ray marching yields a radiance value per color channel,
the value needs to be reduced to a dynamic range that can be displayed before the value
is stored.

6. Write Result - Each thread writes the final color value to the PBO at the respective
pixel’s designated memory position.

7. OpenGL Display Result - After the kernel returns from execution, OpenGL is used
to display the final result. The PBO is bound as a 2D texture resource and OpenGL
renders a fullscreen quad using the texture without lighting to display the result. If in
time-execution mode, the current time is advanced before calling the render loop again.
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Scene Elements

A scene within the framework consists of the following entities:

• Camera - there is exactly one camera that can be placed in the scene, representing the
observer of the light echo. The position and direction of the camera can be modified
between successive frames without repeating any preprocessing steps.

• Light source - there is exactly one point light source in the scene. Its position can be
modified before preprocessing and calculation of the photon map. If the position of the
light source is supposed to be changed, the photon map has to be recalculated.

• Volume - there is exactly one volume in the scene. The volume’s position is always
fixed at the origin, but its extends in the scene can be adjusted. This also requires a
recalculation of the photon map.

• Skybox - to enhance the visuals, a background to the scene can be provided. This is
realized in form of a skybox.

3.2 Photon Tracing

Chapter 2.4.1 on Photon Tracing in the fundamentals already outlined the photon tracing
technique, but left out implementation specific details like the photon map data structure.
In this section we focus on the photon map itself, especially with regard to the CUDA
implementation.

As the photon map itself is decoupled from the scene volume/geometry, it is not inherently
bound to any specific data structure. But of course for the sake of efficiency and render times,
the usage of an optimized data structure with regard to nearest neighbor search is of the
essence. As for our use case the photon map can be precomputed for the entire simulation, the
most important point related to the data structure is the nearest neighbor lookup efficiency
during photon gathering in the CUDA kernel.

Photon Mapping was introduced as a CPU based, non-parallelized technique, employing a
KD-Tree as the data structure for the photon map [JC98]. This however is not optimal for
a parallelized GPU implementation as the measurements in [Fle09] indicate. We adopt the
proposal from [Fle09] to use a grid as the photon map data structure. This technique in turn
was originally described for CUDA in [Gre08] in the context of a particle system, but can be
adapted for photons in a photon map, allowing for a simple space partitioning that is suitable
for GPUs.

The following description of the grid implementation is based on [Fle09] but has a few
simplifications, as in our framework the photon tracing stage is still non-parallelized and CPU
based. This allows to collect photons in a simple list during tracing and then create the
optimized photon map grid from it later on.

The data structure to represent the photon map is composed of a table of all photons from the
photon tracing stage and a hash table that allows efficient access of the photons in the photon
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table. The photon table is implemented as a fixed size array. Its size is determined by the
number of photons that are stored during the photon tracing stage. The hash table is also a
fixed size array, holding a position and an offset for the photon map per entry, as each entry
in the hash table represents a cell within the grid.

The size of the hash table equals the number of cells within the grid. The photons in the
photon table are ordered by cells, so all photons within a specific cell are located next to each
other in terms of the memory layout. The hash table entry for the respective cell holds the
starting index for this cell’s photons in the photon table and the number of photons in this
cell, which can be used as an offset for the index to retrieve all the photons for the respective
cell. The entries within the hash table are also ordered so that the index represents the linear
cell ID. This allows to access the correct entry in the hash table directly by calculating the
linear cell ID from the lookup position in 3D space. A typical size for the grid when using 10
millions photons, that still allows queries with a sufficient search radius, is around 200-300k
cells in the grid.

Figure 3.3: Photons are stored in a grid that consists of a table containing all photons and a
hash table that stores access information for the photon table : Image source
[Fle09].

The grid is uniform and its world space size and position are matched to the volume. The
only parameter of the grid is a maximum search radius that is used to construct it. The same
search radius will be used during photon gathering. The search radius is used as the side
length of a single cell in the grid. The number of cells is calculated accordingly.

Calculating the linear cell ID from a world space position pos within the grid can be done by
using the size of the grid gridSize, the search radius r used to create it and the position’s local
space coordinate within the grid, posLocal:

posGrid = bposLocal/rc

linearCellID = posGridx + gridSizex · posGridy + posGridz · gridSizex · gridSizey (3.1)

The creation of the photon map now works as follows:
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1. During the CPU based photon gathering stage the photon map data structure is a simple
array where photons are just deposited sequentially during tracing.

2. After gathering, the two arrays containing the photon table and the hash table are
created and initialized as empty.

3. The photon array from the tracing stage is analyzed by iterating over it and for each
photon the cell ID is determined using Equation (3.1). The photon count value for this
cell ID is increased by one in the hash table for this entry.

4. Iterate over the hash table and determine the starting positions by summing up the just
calculated photon count per cell and store the current sum in the loop as the memory
offset position.

5. Fill the photon table by placing the photons from the unordered photon array to their
correct position in the photon table. This is achieved with an additional offset counter
per cell, so that already placed photons will not be overwritten by newly inserted ones.

This approach to calculate the grid is not optimized for efficiency but simplicity as it is only
required for preprocessing and not during runtime and it is also not of great importance with
respect to the time dependency extension.

To make the grid accessible to the CUDA kernel, the photon table and the hash table are
uploaded to the GPU as a set of 1D-Textures. This enables the use of the texture cache as
we would like to profit from coherent memory access patterns. The texture access is set to
not use interpolation and value normalization, thus we can use texture fetches as simple array
lookups but powered by the GPU’s caching capabilities.

Regarding the extensions used for Photon Mapping, there are no involved adaptations necessary
to use them in conjunction with the grid-based approach:

• RGB extension - This only changes the struct used to represent a photon by storing a
weight value for each color channel per photon.

• Materials extension - Only changes the way lookups have to be done in the photon
tracing stage, but not the storage of photons.

• Nonlinear extension - This has no effect on the grid technique as it only affects photon
positions and directions during the tracing stage.

• Time dependency extension - This only changes the struct used to represent a photon
by including the time since the emission.

With the photon map grid being precalculated and prepared, the next step is to render the
image which is done entirely on the GPU in the CUDA kernel.
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3.3 Photon Gathering

This section takes a look at some of the implementation specifics of the actual CUDA rendering
pass and the extensions used. The following description explains the steps taken to render a
complete frame.

3.3.1 CPU Side Initialization

Before the CUDA render kernel is launched, all data is uploaded and bound to the GPU in
case of the first frame rendered. This encompasses

• Volume (3D-Texture)

• Flux timeline table (1D-Texture)

• Photon Map: Photon Table (1D-Textures) and Hash Table (1D-Texture)

• Noise Map (2D-Texture)

• Skybox (Cubemap-Texture)

• Render Target (Pixel Buffer Object)

3.3.2 Kernel Launch

The CPU side launches the kernel with a two dimensional thread/block combination, matched
to the resolution of the render target. This means that each thread is matched to render a
specific pixel in the render target. All subsequent descriptions are per thread as each thread
calculates a single pixel in the final image. As the calculation of a single pixel can be done
independently from neighboring pixels, the description of the execution of a single thread is
sufficient to describe the algorithm as a whole.

3.3.3 Eye Ray Generation

The generation of a viewing ray is the first step in the kernel and is achieved via the thread’s
ID and depends on the setting to either use a parallel or a perspective projection. The thread
knows the position of the pixel to render via the x and y thread/block-ID parameter.

For a parallel projection, the ray direction is always the viewing direction of the camera that
is passed as a parameter. The ray start position is the position of the camera with an offset
according to the pixel position.

For a perspective projection, the starting position of the ray is always the position of the
camera and the ray direction is reconstructed geometrically: The kernel receives two parameters
holding a horizontal and vertical difference vector between two pixels and computes the position
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on a virtual plane in front of the camera. An alternative to this approach would be to generate
the direction via the inverse view-projection matrix.

3.3.4 Volume Intersection Test

The viewing ray is tested for intersection with the bounding box of the volume, returning
the first intersection point in case the volume is hit. If the volume is not hit the radiance
calculation in the volume is skipped, but computation still continues with the skybox lookup
and tone mapping.

Advance time to ray marching start position:
This step is required in case the viewing ray intersects the volume but the camera is located
outside the volume. The distance from the camera position to the volume entry point is
calculated and the time required for the light to travel the distance, assuming a vacuum
refractive index, is saved for further calculations.

3.3.5 Noise Map

To reduce artifacts the framework uses a framebuffer sized noise texture to generate offsets for
the CUDA ray marching start positions. The noise texture is generated on the CPU using a
random number generator and is then uploaded to the GPU as a 2D-Texture. The kernel uses
the fetched texture value to offset the starting position of ray marching at the first intersection
with the volume. The offset is

Startpos = IntersectionPos + CamDir ·RaymarchingStepsize ·NoiseLookupV alue.

Thus the offset distance varies between zero and the length of a single ray marching step.

3.3.6 Ray marching Loop

After the starting position and direction for ray marching are known, the ray marching loop
steps through the volume, summing up in-scattered radiance while also tracking time and
summed up attenuation along the view path.

1. Look up the density in the volume at the current position. This is required to calculate
the scattering and absorption coefficients, as well as the refractive index at the current
position.

2. Collect in-scattered radiance at both the current position and time from the photon map
and add it to the tracked radiance, also taking into account the attenuation along the
viewing path so far.

3. Multiply attenuation for the current step with the tracked attenuation factor to update
it for the next step.
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4. Advance the ray marching position with respect to the refractive indices, using Equation
(2.15) for bent rays.

5. Advance the time tracker with respect to the distance between the current and the next
ray marching step position and the current refractive index.

6. Check if the next ray marching position is still within the volume. If not, quit the
marching loop. There is also a hardcoded iteration limit, because with the bent viewing
rays there is the possibility of an infinite loop if the viewing ray goes in circles if the
gradient of the scalar field of refractive indices allows it.

Ray marching Loop - Photon Map Lookup:
This is a closer look at Step (2) of the aforementioned steps. It is the most important part
of the kernel and also computationally the most expensive. The estimate of the in-scattered
radiance at the current position is achieved by a nearest neighbor search around the current
position in the photon map. It is governed by three parameters: the lookup position, a
maximum search radius and a maximum number of collected photons. The lookup position is
determined by the ray marching and needs no further investigation. The maximum search
radius and the maximum number of photons collected per query have to be set by the user
before the kernel is launched. The maximum search radius in fact even has to be set before the
photon map is precalculated, as the photon map grid layout is determined using the maximum
search radius.

To explain this part, we first revisit Equation (2.17) that governs the collection of photons,

Li(x, ~ω, t) ≈
1

σ(x)

knn∑
p=1

f(x, ~ω′
p, ~ω)∆Φl,p(tlookup(t))

4
3πr

3

where x is the current ray marching position, ~ω the current viewing ray direction. knn is
the number of photons that should be collected around the current position for the radiance
estimate and r is the minimum radius of a sphere that contains the n-nearest photons around
the current position. So theoretically, knn is the only parameter, as r could be calculated after
having collected the knn-nearest photons. Practically we also have to restrict the search radius
to look for the knn-nearest photons, as otherwise it would not be possible to profit from the
grid structure. Please note that this is no restriction in comparison with typical CPU Photon
Mapping implementations as the KD-Tree structure also employs a maximum search radius.
So how does the collection of the knn-nearest photons work in detail?
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3 Implementation

Figure 3.4: Collection of the knn-nearest photons in the photon map grid. Blue dots are the
photons in the grid, the green dot is the current ray marching position and the
green area represents the circular search area restricted by the maximum search
radius.

The procedure used is adapted from [Fle09]. The kernel holds an array of size knn to hold the
yet to be determined knn nearest photons. First, the linear cell ID of the cell enclosing the
current lookup position is calculated using Equation (3.1). Using the cell ID, the hash table is
accessed to retrieve the memory locations and count of all photons contained in this cell in
the photon table. The knn-closest photons of this cell that are still within the search radius
are inserted into the array. If there are less than knn-photons, all will be inserted as long as
they are within the maximum search radius. The same procedure is repeated for all 26 cells
neighboring the current cell, inserting photons into the array if their distance is closer than
the furthermost photon in the array and also still within the maximum search radius. This
guarantees the coverage of the search radius in all cases.

In case at least knn nearest photons can be found within the search radius, the radius used
for the radius division in Equation (2.17) is the distance between the current position and
the furthermost of the knn closest photons. In case of areas with only a sparse occurrence of
photons, there is a problem however: The search radius might not even contain knn photons.
On first thought, one might be tempted to just use the radius of the furthermost of the
less-than-knn closest photons, but this introduces grave artifacts as the photon’s flux influence
is highly biased by the distance weighting. We use a heuristic to reduce this kind of artifact:
After photon collection, the ratio of found photons to the desired number of photons is used to
interpolate the division radius between the outermost found photon and the maximum search
radius.
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3.3 Photon Gathering

After the knn nearest photons have been collected, their contribution to the in-scattered
radiance is calculated using the dynamic time dependent flux lookup described in Section
2.4.5.

In practice, the maximum search radius, the number of nearest photons collected, and the
ratio between the two are the dominant factors with regard to the computation time and
resulting image quality. The number of nearest photons can be imagined like the size of a blur
kernel. Using more photons will produce less noise and smoother results. But in that case
the maximum search radius will very likely have to be extended as there will be more areas
where not enough photons can be found within the search radius, yielding the aforementioned
problems. The visual quality is also of course strongly influenced by the number of photons in
the photon map. Using many photons per query might also overblur the result if the photon
map does not contain a huge amount of photons. This problem cannot be solved easily as
even with a huge number of photons in the map, the spatial distributions of the photons in
the map can be highly non-homogeneous.

Another problem that is unique to the time dependency extension is time aliasing. The first
problem arises with the design of the light source flux timeline: Assuming a typical timeline
representing a supernova explosion, being flat most of the time and containing one single short
burst of illumination, there can be a lot of photons with high spatial proximity, that still
have a low temporal proximity. As photons are collected for spatial proximity, the knn closest
photons might not all be of importance with respect to the flux timeline, as their time since
the emission might vary strongly because their path through the volume was very different
because of multiple scattering or the bent photon curves. The other issue has to be seen in
conjunction with the search radius: The greater the distance between the current position and
the photon, the higher the temporal error of the flux lookup, as the compensation for the time
lookup does take into account the travel distance of a straight line between the two, but this
does not account for the different directions of the view path and the photon path.

3.3.7 Skybox

To enhance the visuals of the renderings, the framework uses a skybox to provide a background
for the rendered volumes. The skybox can be seen as a texture mapped box that is infinitely
far away from the viewer. This is realized in CUDA by uploading the background images as a
Cubemap Texture to CUDA. This allows for simple directional lookups using the texCubemap
command that takes a direction as an input parameter and returns the fetched color value
from the virtual six sided cube.

The cubemap is integrated into the ray marching algorithm when the ray marching is at the
last step per viewing ray. The last direction when the viewing ray left the volume (or the
initial direction when it did not intersect the volume) is used as the direction for the cubemap
lookup. The returned RGB color value is mapped to linear space and multiplied with an
exposure factor and then interpreted as the input radiance value for the last ray marching
step. This way it is directly integrated into the ray marching/photon gathering stage and does
not have to be treated separately by tone mapping.
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3 Implementation

The skybox is worth mentioning because it also enhances the visual feedback on the bent
viewing rays caused by spatially varying refractive indices within the volume. As the viewing
ray direction when leaving the volume will be deflected relative to the direction before entering
the volume, the background appears distorted and increases the visibility of the effect.

3.3.8 Tone Mapping

As the result of the ray marching and photon gathering is a radiance value per color channel,
we need a means to reduce the high dynamic range so that the radiance values can be mapped
to a viewable image (technically speaking to byte-valued RGB channels). This process is called
Tone Mapping. An algorithm used to reduce the dynamic range of images is called a Tone
Mapping Operator. Operators are classified as either global or local. Global operators can
be applied per pixel without taking into account neighboring pixels, thus they are usually
simpler and faster. Local operators are also allowed to rely on the luminance information from
neighboring pixels, thus allowing to adapt the tone mapping to local features of the image.
This can yield visually better results but usually comes at the cost of higher complexity and
less performance.

Popular tone mapping techniques are for example Reinhard Tone Mapping [RSS02] and Filmic
Tone Mapping [Hab10]. As the focus of this framework is on the photon mapping and time
dependency extension, the tone mapping operator in the CUDA kernel is a simple operator
using an exposure adjustment and gamma correction:

channelcolor = clamp((radiance · exposure)
1

gamma )

In the implementation the gamma value is fixed to 2.2 and the exposure value is an arbitrary
factor that can be set in the GUI.

3.4 Summary

The Implementation chapter presented the framework developed during this thesis, summarizing
the most important aspects with regard to the implementation, referencing the fundamentals
as required. The chapter also uncovered a number of issues with the technique and the reason
for a strong influence of the render parameters on the quality of the results.
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4 Results

This chapter presents a number of sample images rendered using the CUDA Volumetric Photon
Mapping framework developed during this thesis.

The following list contains the volumes that were used to render the samples and their source
in case they were not self-provided using the Maya export pipeline.

• Smoke - Source: http://www.pbrt.org. Copyright: Duc Nguyen and Ron Fedkiw.

• Foot - Source: http://www.volvis.org/. Copyright: Philips Research, Hamburg,
Germany.

• Bonsai Tree - Source: http://www.volvis.org/. Copyright: S. Roettger, VIS, Uni-
versity of Stuttgart.

• Supernova - Source: http://vis.cs.ucdavis.edu/VisFiles/pages/supernova.php.
The data set is made available by Dr. John Blondin at the North Carolina State University
through US Department of Energy’s SciDAC Institute for Ultrascale Visualization.

• Stanford Bunny - http://www-graphics.stanford.edu/data/3Dscanrep/. Copy-
right: Stanford University Computer Graphics Laboratory.

• Stanford Dragon - http://www-graphics.stanford.edu/data/3Dscanrep/. Copy-
right: Stanford University Computer Graphics Laboratory.

• Stanford Lucy - http://www-graphics.stanford.edu/data/3Dscanrep/. Copy-
right: Stanford University Computer Graphics Laboratory.

The following skyboxes/cubemaps were used to enhance the samples

• Milky Way - Source: http://www.eso.org/public/images/eso0932a/. Copyright:
ESO/S. Brunier.

• Grace Cathedral - Source: http://gl.ict.usc.edu/Data/HighResProbes/. Copy-
right: Paul Debevec.

• Cloudy Sky - Source: http://www.custommapmakers.org/skyboxes/zips/. Copy-
right: Jockum Skoglund.

• Saint Lazarus Church - Source: http://www.humus.name/Textures/SaintLazarusChurch.
zip. Copyright: Emil Persson.

The image annotations use the following notation:

• Photons - Number of photons used for the photon map.
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4 Results

• KNN - Number of photons per nearest neighbor search query.

• g - Henyey-Greenstein parameter.

• n - Maximum refractive index (at the highest density). If not noted, no spatially varying
refractive indices are used.

The first images depict simple samples that do not yet make use of the extensions implemented.
The subsequent samples show the nonlinear and time dependency extensions in isolation
and finally the last section showcases the original use case of the framework: Renderings of
galactic light echoes that make use of all the extensions in conjunction. All sample images
were rendered on a Core 2 Quad Q6600, 4 GB of main memory and an NVIDIA GeForce
GTX 560 graphics card. The default render resolution is 512x512, if not noted otherwise. The
images below are sometimes cropped from the original resolution to better fit the page layout
if needed.

4.1 No extensions

This section shows a few rendered samples using the CUDA Volumetric Photon Mapping
Framework without any of the extensions. Please note that there are no isolated samples for
the RGB and Materials extensions, they are implicitly used after this section.

Figure 4.1: Volumetric smoke. Photons: 10 Mio, KNN: 200, g: 0.1, Render time: 4.63s

Figure 4.2: Foot CT. Photons: 10 Mio, KNN: 200, g: 0.1, Render time: 20.79s
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4.1 No extensions

(a) 1K P. 0.9s (b) 10K P. 2.7s (c) 100K P. 4.8s

(d) 1 Mio P. 24.7s (e) 10 Mio P. 46.5s (f) Reference

Figure 4.3: Comparison of the same volume rendered with an increasing amount of photons.
KNN 200, g 0.1. The figures’ labels mention the amount of photons and the
render time. The figures show that about 10 million photons are required to get
about the same amount of detail as the single scattering ray marching reference
solution yields.

(a) 200 Cells, 0.01s (b) 100 Cells, 0.2s (c) 67 Cells, 0.8s (d) 50 Cells, 2.5s

Figure 4.4: Comparison of different search radii, showing the reduction of noise but also
exponentially increasing render times. KNN 200, 100K Photons, g 0.1. The
labels mention the number of grid cells along the horizontal direction (since a
cell’s sidelength matches the maximum search radius).
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4 Results

4.2 Nonlinear Extension

Figure 4.5: Sphere sample. In the outer shell of the sphere, the density linearly falls off from
the maximum value at the core to zero at the outer bounds. This causes spatially
varying refractive indices that will bend the light. The checkerboard skybox
background helps to visualize the bent light curves. Photons: 1 Mio, KNN: 200,
g: 0.5, n:1.02, Render time: 93.6s.

(a) Render time: 56.2s. (b) Render time: 71.6s.

Figure 4.6: Refractive cloud. This is the smoke dataset rendered with a sky background.
Photons: 10 Mio, KNN: 200, g: 0.1, n:1.03.
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4.2 Nonlinear Extension

(a) Render time: 361s. (b) Render time: 1551s.

Figure 4.7: Rendering of a vase composed of three different materials with different refraction
indices and absorption coefficients. The image depicts caustics within the volume.
1 Mio photons.

(a) Candle n=1. Render time: 364s. (b) Candle n=1.458. Render time: 418s.

Figure 4.8: Candle confined in a vase. 5 Mio Photons, KNN 200, Render resolution: 768x768.
The comparison shows the importance of the nonlinear photon emission. While
the glassy vase effect is solely the result of the bent viewing rays, the caustic
streaks on the vase are a result of the nonlinear photon emission when also using
spatially varying refractive indices for the candle.
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4 Results

(a) Render time: 386s. (b) Render time: 213s.

(c) Render time: 394s. (d) Render time: 305s.

Figure 4.9: Rendering of a volume of the Stanford Bunny. The density within the object
has been modified using Perlin Noise, which leads to volumetric caustics within
the volume because of the resulting spatially varying refractive indices. 1 Mio
Photons, KNN 200, Render resolution 1024x1024.
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4.3 Time Dependency Extension

4.3 Time Dependency Extension

(a) (b) (c)

(d) (e) (f)

Figure 4.10: Light propagation at different points in time along a tree volume. The sidelength
of the volume is two meters. Photons: 5 Mio, KNN: 200, g: 0.1.

Figure 4.11: Light flux timeline of the tree example. The light emits a short red burst with
only a duration of about 1e-9s. The black area shows the time range from which
the images were rendered. The sequence encompasses around 6e-9s.
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4 Results

(a) (b) (c)

(d) (e) (f)

Figure 4.12: This sample has been built analog to the MIT Media Lab recording of light
propagation. Photons: 10 Mio, KNN: 500, Render time: 404s per frame

Figure 4.13: Light flux timeline of the apple example. The black area shows the time range
for the complete passage of the light burst. The white line marks the point at
which image (f) was rendered.
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4.3 Time Dependency Extension

(a) (b)

(c) (d)

Figure 4.14: Rendering of a volume of the Stanford Dragon. A short red light burst propagates
through the dragon. 5 Mio Photons, KNN 200, n=1.4, Render resolution
1024x1024. Render time: 21s per Frame
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4 Results

(a) (b)

(c) (d)

Figure 4.15: Rendering of a volume of Stanford Lucy. A subtle yellowish light burst propa-
gates towards the viewer. 100K Photons, KNN 200, n=1.2, Render resolution
1024x1024. Render time: 30s per Frame
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4.4 Supernova Sample

4.4 Supernova Sample

(a) (b)

(c) (d)

Figure 4.16: Different renderings of the supernova volume using different RGB flux curves for
the light source, different camera positions and different material parameters.
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4 Results

(a) (b) (c)

(d) (e) (f)

Figure 4.17: A large scale light echo of a single red flash from a light source at the center
of the supernova volume. Photons: 10 Mio, KNN: 200, g: 0.6., n:1.01, Render
time: 48s per Frame

Figure 4.18: Light flux timeline of the single red flash example. The black area shows the
time range of the sequence.
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4.4 Supernova Sample

(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 4.19: A large scale light echo with a varying RGB light flux curve over time.
Photons: 10 Mio, KNN: 200, g: 0.6., n:1.01, Render time: 56s per frame
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5 Discussion and Future Work

This thesis presented the theory and implementation of a framework to simulate time-dependent
light propagation in participating media. The intended use is the visualization of intergalactic
light echoes, but the framework is also capable of capturing light propagation on small scale
objects.

The framework is based on volumetric photon mapping and extended to incorporate multiple
color channels, multiple materials per volume and nonlinear effects caused by spatially varying
refractive indices. Also, the photon gathering stage is ported to CUDA to accelerate rendering.
While these extensions are implementations of techniques already known and published, we
introduced the time dependency extension as a novel extension to photon mapping that respects
the finite speed of light propagation. As this is combined with the aforementioned extensions,
these also require some minor modifications to make all extensions work in combination.

For the remainder of this chapter, we take a look at possible future work and improvements to
our framework.

5.1 Multiple Lights

The framework always uses a single point light source. This is sufficient for our primary
use case to visualize light echoes where the point light is supposed to represent a star and
it also proved sufficient for our samples to demonstrate the extensions to photon mapping.
An extension to multiple lights could be implemented in a simple manner: The photon data
structure is extended with an attribute to hold a light source ID. The RGB light flux timeline
is made a component of the light source, so that each light may have its own timeline.

For the tracing stage, we still use a single photon map and execute a tracing pass for each
light. So each light tracing pass stores its photons in the photon map, using the ID of the
current light source.

The photon gathering stage mostly stays the same as before. The most important change is to
read the light ID of all photons collected and use it to select the proper light flux timeline that
is associated with this photon.
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5.2 Dynamic Volume

5.2 Dynamic Volume

So far we always assumed the volume to be static over time, so the density values are not
time-dependent. In this section we shortly outline a possible extension as future work that
would enable the usage and integration of volumes that change over time.

Suppose we have multiple time steps of a volume. We would like to use this dynamic volume
in conjunction with our framework and all the extensions implemented. How could this be
achieved?

One change that applies to both the photon tracing stage, as well as the photon gathering
stage is the way lookups of the material/volume parameters at a position within the volume
have to be done. Each lookup is done at a specific point in time and space and each volume
is associated with a point in time for which it is valid. To get the volume parameters at a
specific time, we need to determine the two volumes where the lookup time is in-between the
time associated with the volumes. We read the volume parameters from both volumes at the
specified position and use linear interpolation between the two values.

Dynamic Volume - Photon Tracing

The photon tracing has to undergo a significant modification. As of now, photons only stored
their time of flight and could be emitted independent of the absolute time at which the volume
was supposed to be rendered because of the static nature of the volume. With the volume now
changing over time, we have to store absolute time values for photons, because the trajectory
of a photon during emission will be influenced by the changing volume. As a consequence to
this, photons have to be emitted over time using time steps ∆t. The photons emitted may
be stored within a single large photon map over all emission time steps. This significantly
increases the storage requirements as we need to compute enough time steps to provide enough
temporal data to cover a full eye-ray traversal of the volume during the photon gathering
stage.

So the photon tracing could be modified in the following way:

1. Start photon emission from the light source at time t = t0.

2. For each photon (until the desired number of photons for this time step is reached).

a) Set the tracking time to t.

b) During tracing, keep track of the absolute time, starting at time t. To read all
necessary parameters at the current position, use the adapted lookup method as
described above.

c) Store the photon at scattering events as usual. The only change is that the absolute
time value is stored instead of the relative time of flight.

3. Advance the emission starting time to t = t+ ∆t.

4. If more time steps should be computed, goto Step 2.
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5 Discussion and Future Work

The number of time steps computed is the factor of how much the storage requirements of the
photon map increases. Currently a photon map containing 10 million photons requires about
400-500 MB. Assuming we would need to calculate 1000 time steps, the photon map would
occupy around 0.5 TB, making it impossible to store the complete map in RAM or VRAM.
This would imply that some sort of streaming mechanism would be required to access the
photon map.

Dynamic Volume - Photon Gathering

The adaptation of the photon gathering stage itself is not too extensive: The lookup of the
volume parameters also would have to use the adapted lookup method as described before,
employing absolute time values.

The most interesting part here would be the changed gathering of photons at the current
sampling position. Photons would have to be collected with respect to both spatial as well as
temporal proximity. We would need to restrict the sampling to a finite time interval, analog to
the sphere that is used to restrict the spatial search. This will make the variance also depend
on the temporal resolution of the photon data. Here future work could include research on
data structures that allow efficient retrieval with respect to both space and time.

The final necessary change is to also associate the RGB flux timeline with absolute time values
as the photons now store an absolute time value. This means that we keep the ability to
dynamically change the light flux timeline without having to recompute the photon map.

In general this extension would then also require to carefully set the initial time values for
photon emission, the flux timeline and photon gathering/ray marching, as otherwise the ray
marching might e.g. traverse the volume at a time where no proper data (photons with a
matching or at least temporal close timestamp) is available.

5.3 Various Improvements

Finally the following list presents a number of additional possible improvements and future
work

• Parallelization/CUDA port of the Photon Tracing stage. A way to achieve this is
described in [Fle09].

• Enhanced performance for the Photon Gathering stage in the CUDA kernel by improving
the sorting of the KNN photons.

• Enhanced quality of nonlinear curve steps with higher order methods like e.g. Runge-
Kutta.

• Enhanced ray marching via e.g. Adaptive Ray marching to enhance performance and
better resolving of small details.
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5.3 Various Improvements

• Research on material parameters. Currently absorption/scattering coefficients and
refractive indices are simply user-controlled values or simple heuristics without a proper
physical background. In order to enhance the validity of the visualization of light echoes,
this should be adapted to values that are backed by research on the actual material
compositions of e.g. intergalactic nebulae.

• Research on how the presented extensions could be included in the new Photon Beam
[JNJ11] and Query Beam [JZJ08] approaches.

• An additional extension to spectral rendering that also allows to capture the effect of
dispersion.

• Finding a solution to the shadow ray problem of nonlinear photon mapping as this
currently forces the inclusion of directly scattered photons in the photon map.

• Research on including relativistic effects in the framework.

Some of these issues could be addressed straightforward with techniques that are already
available and were just not realized because of the time-constraints of this thesis. Others pose
problems that are more general and also generally unsolved at this point and thus are truly to
be categorized as future work.
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