
Institut für maschinelle Sprachverarbeitung
Universität Stuttgart
Pfaffenwaldring 5b
D–70569 Stuttgart

Diplomarbeit Nr. 3301

Konzept und Entwicklung eines
Werkzeugs zur automatisierten

Übersetzung natürlichsprachlicher
Anforderungen

Nadine Siegmund

Studiengang: Informatik

Prüfer: Prof. Dr. Hinrich Schütze

Betreuer: Dipl.-Ling. Nadya Stoyanova
Dipl.-Ling. Boris Haselbach

begonnen am: 16. Januar 2012

beendet am: 12. Juli 2012

CR-Klassifikation: I.2.7, D.2.1, D.3.4, F.4.2

Zusammenfassung

Zum erfolgreichen Projektabschluss gehört im automobilen Umfeld die Erstel-
lung einer Anforderungsdokumentation. Diese sollte wegen der immer stärkeren in-
ternationalen Zusammenarbeit und verteilten Entwicklung am besten in mehreren
Sprachen und vor allem in Englisch zur Verfügung stehen. Da aber nicht jeder Pro-
jektbeteiligte aller Sprachen mächtig ist, muss das Anforderungsdokument übersetzt
werden. Die maschinelle Übersetzung bietet sich hierfür an, da dadurch standardi-
sierte Anforderungsdokumente erzeugt werden können und im Gegenteil zu einem
Übersetzer die Übersetzung günstig ist und ohne Verzögerung zur Verfügung steht.
In dieser Arbeit wird das Konzept und die Implementierung einer Methodik, die in
einem Werkzeug umgesetzt wird, vorgestellt. Damit können Anforderungen mittels
maschineller Übersetzung von Deutsch nach Englisch übersetzt werden.
Es wird dazu ein transferbasiertes Verfahren angewandt, das einen Satz mittels
einer mit Merkmalsstrukturen und Restriktionen angereicherten Phrasenstruktur-
grammatik analysiert und in eine Strukturbeschreibung überführt. Die Strukturbe-
schreibung wird mit Hilfe von Transferregeln vom Deutschen ins Englische überführt
und daraus der übersetzte Satz generiert. Das Werkzeug wurde, zum Beispiel durch
die Verwendung von XML, an möglichst vielen Stellen erweiterbar gestaltet, um eine
einfache Weiterentwicklung durch Experten, wie zum Beispiel Computerlinguisten,
zu ermöglichen.
Zur Vereinfachung der Problematik einer maschinellen Übersetzung wird die Tatsa-
che ausgenutzt, dass die Anforderungen mittels einer Schablone formuliert werden
und dadurch die Satzstruktur stark eingeschränkt wird. Außerdem liegt ein Lexikon
mit einer Subsprache vor, durch das weitere Probleme eliminiert werden können.
Diese Arbeit zeigt, dass die maschinelle Übersetzung unter den gegebenen Voraus-
setzungen ein geeigneter Ansatz für die Übersetzung von Anforderungen ist.

Abstract

In the automotive industry, a requirement specification is mandatory, in order to
successfully manage a project. Due to the increasing international collaboration be-
tween OEMs and suppliers as well as more decentralized development requirement
specifications are required in various languages and therefore need to be translated.
This could be achieved by a human translator or a translation system. The focus
of this work is on a standardized and cheap translation without time delay which
could be achieved better by a machine translation system.
In this thesis the concept and implementation of a method is introduced which
could translate requirements from German to English with machine translation.
The method first analyses each sentence with a phrase structure grammar which in-
cludes attribute structures and restrictions. The result of this procedure is a syntax
tree that afterwards is transferred by transfer rules into a tree build by the English
syntax. The final translation of the requirement can therefore easily be generated.
To enable the expand of the range of functionalities through experts like computa-
tional linguistics most parts of the tool are designed extendible for example through
the use of XML.
For an easier translation the requirements have to be written according to a tem-
plate and a dictionary with a sublanguage is used.
The proposed methods are a good solution for an automated translation of require-
ments and to be preferred over human translation.

Danksagung

Ich möchte mich mich bei allen bedanken, die mich während meines Studiums und ins
besondere während meiner Diplomarbeit unterstützt haben.

Im Speziellen geht mein Dank an Herrn Prof. Dr. Hinrich Schütze für das Ermöglichen
und Prüfen dieser Diplomarbeit.

Meine Diplomarbeit ist in Zusammenarbeit mit der Daimler AG am Standort Böblin-
gen/Hulb entstanden. Hier bedanke ich mich besonders bei meiner Betreuerin Nadya
Stoyanova für die vielseitige und vor allem fachliche Unterstützung, die Motivation und
die beruhigenden Worte. Bei meinem Teamleiter Dr. Matthias Recknagel und den Mi-
tarbeitern der Abteilung RD/EST bedanke ich mich für die angenehme Zeit.

Auch von Seiten der Universität wurde ich bestens betreut. Meinem Betreuer Boris
Haselbach möchte ich danken für die kritische Betrachtung meiner Arbeit und sein großes
Engagement. Ebenso gilt mein Dank Herrn Prof. Dr. phil. habil. Grzegorz Dogil, der
mich während meines Studiums stets unterstützt hat.

Zum Schluss möchte ich mich noch bei Thomas Walter und Severa Märker bedanken für
die viele Geduld, die sie mit mir und beim Durchlesen meiner Arbeit hatten. Mein Dank
gilt ebenso meiner Familie, die mich stets in allen Lebenslagen begleitet und bestärkt
hat.

Inhaltsverzeichnis

1. Einleitung 1
1.1. Motivation . 1
1.2. Zielsetzung . 2
1.3. Gliederung der Arbeit . 3

2. Grundlagen 5
2.1. Requirements Engineering . 5

2.1.1. Grundlagen des Requirements Engineering 5
2.1.2. Anforderungsschablonen . 8

2.2. Maschinelle Übersetzung . 10
2.2.1. Grundlagen der maschinellen Übersetzung 10
2.2.2. Verfahren zur maschinellen Übersetzung 11
2.2.3. Probleme der maschinellen Übersetzung 15

2.3. Grammatiken . 16
2.3.1. Grundlagen der Grammatiktheorie 16
2.3.2. Phrasenstrukturgrammatik und X-Bar-Theorie 19
2.3.3. Merkmalsstrukturen . 22

2.4. Parsing . 25
2.4.1. Grundlagen des Parsings . 25
2.4.2. Chart-Parsing . 28

3. Stand der Technik 33

4. Konzept 37
4.1. Auswahl eines Verfahrens zur maschinellen Übersetzung 37
4.2. Grammatik der Anforderungen . 38

4.2.1. Phrasenstrukturregeln . 38
4.2.2. Lexikon (lexikalische Regeln) . 49

4.3. Transferbasierte Übersetzung . 52
4.3.1. Analyse . 52
4.3.2. Transfer . 53
4.3.3. Generierung . 59

5. Implementierung 61
5.1. Systeminformationen . 61
5.2. Analyse . 62

5.2.1. Datenstruktur und implementeller Aufbau der Grammatik 62

I

Inhaltsverzeichnis

5.2.2. Realisierung des Lexikons . 68
5.2.3. Chart Parser . 69
5.2.4. Extraktion des Syntaxbaums . 76
5.2.5. Restriktive Überprüfung des Anforderungstyps 77

5.3. Transfer . 80
5.3.1. Schablonen- und sprachspezifischer Transfer 81
5.3.2. Transfer der Subkategorisierungsrahmen 84

5.4. Generierung . 86
5.5. Benutzeroberfläche . 87

6. Schlussbetrachtung 91
6.1. Zusammenfassung . 91
6.2. Fazit und Ausblick . 92

Literaturverzeichnis 95

A. Auszug aus dem Lexikon 99

II

Abbildungsverzeichnis

2.1. V-Modell nach [Rei09] . 6
2.2. Definition „Anforderung“ nach IEEE [IEE90] 7
2.3. Definition „Anforderung“ nach Rupp [Rup09, S. 14] 7
2.4. Qualitätskriterien nach Rupp [Rup09, S. 24] 8
2.5. Schablone für Anforderungen auf Deutsch ohne Vorbedingung [Rup09, S. 162] 9
2.6. Schablone für Anforderungen auf Deutsch mit Vorbedingung [Rup09, S. 166] 9
2.7. Schablone für Anforderungen auf Englisch [Rup09, S. 177] 10
2.8. Dreieck der maschinellen Übersetzung von Vauquois [CEE+04, S. 565] . . . 12
2.9. Direkte Übersetzung . 13
2.10. Transferbasierte Übersetzung . 13
2.11. Interlinguabasierte Übersetzung . 14
2.12. Head Switching . 15
2.13. Definition „Grammatik“ nach [Sch03a] . 17
2.14. Definition „Formale Sprache“ nach [Sch03a] 17
2.15. Beispielgrammatik 1 . 18
2.16. Syntaxbaum einer Ableitung der Beispielgrammatik G 18
2.17. Phrasenstrukturbaum: „Der Händler fährt mit dem neuen Lieferwagen in

die Stadt.“ . 19
2.18. Beispielgrammatik 2 . 20
2.19. Allgemeine X-Bar-Struktur . 21
2.20. Ungrammatischer Phrasenstrukturbaum: „Dem Händler fährt mit die neu-

en Lieferwagen.“ . 23
2.21. Beispiel für Merkmalsstruktur des Wortes „Händler“ 23
2.22. Beispielgrammatik 3 . 26
2.23. Aufbau einer Strukturbeschreibung bottom-up, links-rechts nach [CEE+04,

S. 255] . 27
2.24. Aufbau einer Strukturbeschreibung top-down, links-rechts nach [CEE+04,

S. 254] . 27
2.25. Expand [CEE+04, S. 268] . 29
2.26. Scan [CEE+04, S. 269] . 29
2.27. Complete [CEE+04, S. 270] . 29
2.28. Earley Algorithmus . 30
2.29. Beispielgrammatik 4 [CEE+04, S. 236] . 30

3.1. Google Translator (http://translate.google.de) 33
3.2. Yahoo Babelfish (http://babelfish.yahoo.com) 34

III

Abbildungsverzeichnis

4.1. Mögliche Phrasenstrukturen für ein Objekt und das folgende Prozesswort
einer Benutzerinteraktion oder Schnittstellenanforderung 39

4.2. Mögliche Phrasenstrukturen für ein Objekt und das folgende Prozesswort
einer selbstständigen Systemaktivität . 39

4.3. Basisphrasenstrukturregeln Deutsch . 40
4.4. Basisphrasenstrukturregeln Englisch . 40
4.5. Selbstständige Systemaktivität auf Deutsch 41
4.6. Selbstständige Systemaktivität auf Englisch 41
4.7. Benutzerinteraktion auf Deutsch . 42
4.8. Benutzerinteraktion auf Englisch . 43
4.9. Schnittstellenanforderung auf Deutsch . 44
4.10. Schnittstellenanforderung auf Englisch . 44
4.11. Übergenerierter Satz der Basisgrammatik 45
4.12. Regel I’ → I VP mit Merkmalsstrukturen und Restriktionen 48
4.13. Übergenerierter Satz aus Abbildung 4.11 mit Merkmalsstrukturen 48
4.14. Restriktionen bezüglich der Grammatik aufgrund der Schablone 49
4.15. Restriktionen bezüglich der Grammatik aufgrund der Schablone 49
4.16. Merkmalsstruktur für Nomen und Artikel 50
4.17. Merkmalsstruktur für Verben . 50
4.18. Merkmalsstruktur für Modalverben . 50
4.19. Merkmalsstruktur für Präpositionen . 51
4.20. Lexikalische Regel für das Wort „System“ 51
4.21. Schablonenspezifische Transferregel . 54
4.22. Beispielsatz für einen Transfer der Subkategorisierungsrahmen 55
4.23. Alle Möglichkeiten für die Zuordnung zwischen den Subkategorisierungs-

rahmen des Beispielsatzes . 56
4.24. Struktur einer Präpositionalphrase (PP) der Basisgrammatik 56
4.25. Sprachspezifische Transferregel 1 . 57
4.26. Sprachspezifische Transferregel 2 . 57
4.27. Sprachspezifische Transferregel 3 . 57
4.28. Erste Übersetzungsmöglichkeit des Beispielsatzes 57
4.29. Zweite Übersetzungsmöglichkeit des Beispielsatzes 58

5.1. Auszug aus der Grammatik-XML-Datei . 62
5.2. Beschriebene Regel in Abbildung 5.1 . 63
5.3. Auszug aus der Grammatik-XML-Datei - Rule 63
5.4. Auszug aus der Grammatik-XML-Datei - Child 63
5.5. Auszug aus der Grammatik-XML-Datei - Attribute 64
5.6. Beispiele für Restriktionen . 65
5.7. Klassendiagramme der Klassen einer Grammatik 66
5.8. Klassendiagramme der Klasse Grammar 66
5.9. Klassendiagramme der Klasse Category . 67
5.10. Klassendiagramm der Klasse Attribute . 67
5.11. Klassendiagramm der Klasse Rule . 67

IV

Abbildungsverzeichnis

5.12. Klassendiagramme des Lexikons . 68
5.13. Klassendiagramme des Earley-Parser . 69
5.14. Klassendiagramm der Klasse EarleyParser 70
5.15. Klassendiagramm der Klasse Chart . 70
5.16. Klassendiagramm der Klasse Edge . 71
5.17. Klassendiagramm der Klasse DottedRule 71
5.18. Ablauf des Aufbaus einer Chart . 72
5.19. Aufbau der Chart - Schritt 1 . 72
5.20. Aufbau der Chart - Schritt 2 . 73
5.21. Aufbau der Chart - Schritt 3 . 73
5.22. Aufbau der Chart - Schritt 4 . 74
5.23. Aufbau der Chart - Schritt 5 . 74
5.24. Aufbau der Chart - Schritt 6 . 75
5.25. Regel NP → Det N mit Merkmalsstruktur und Restriktionen 75
5.26. Mögliche Merkmalsstruktur für das Wort „Das“ und das Wort „System“ . 75
5.27. Klassendiagramme der Strukturbeschreibung 76
5.28. Syntaxbaum für „Das System“ . 77
5.29. Auszug aus der XML-Datei für die Restriktionen bezüglich der Schablone . 78
5.30. Teilbaumsuche . 79
5.31. Methode getSubTree der Klasse StructureTree 80
5.32. Auszug aus der XML-Datei der sprachspezifischen Transferregeln 81
5.33. Prinzip des sprachspezifischen und schablonenspezifischen Transfers 82
5.34. Klassendiagramme des Transfers . 82
5.35. Ablauf der Methode transferSubTree . 83
5.36. Ablauf der Methoden transferLanguage oder transferTemplate 84
5.37. Matrix mit Permutation der Zahlen 1 bis 3 85
5.38. Zuordnung der Elemente zweier Subkategorisierungsrahmen mit Hilfe von

Permutationen . 85
5.39. Inorder-Durchlauf der Strukturbeschreibung 86
5.40. Screenshot des Werkzeugs - Anforderung- und Vorschaufenster 87
5.41. Screenshot des Werkzeugs - Übersetzungsmöglichkeiten 88
5.42. Screenshot des Werkzeugs - Übersetzungsfunktion 89

6.1. Bewertung einer Übersetzung . 92

V

Tabellenverzeichnis

2.1. Merkmale und Werte für eine Merkmalsstruktur 24
2.2. Chart für den Satz „Der Hund bellt.“ [CEE+04, S. 272] 31

5.1. Chart, dargestellt als Tabelle, für das Phrase „Das System“ 76

A.1. Auszug aus der Artikel-Datei des Lexikons 99
A.2. Auszug aus der Nomen-Datei des Lexikons 99
A.3. Auszug aus der Modalverben-Datei des Lexikons 99
A.4. Auszug aus der Präpositionen-Datei des Lexikons 100
A.5. Auszug aus der Verben-Datei des Lexikons 100

VII

1. Einleitung

1.1. Motivation

Zur erfolgreichen Entwicklung eines Produkts oder eines Systems sind viele Prozesse not-
wendig. Zu den ersten Schritten gehört die Anforderungsanalyse, in der unter anderem die
Wünsche und Anforderungen der Auftraggeber erfasst werden. Der Erfolg des Projekts ist
direkt abhängig von der Qualität, mit welcher diese Anforderungen aufgenommen werden.
Wird eine Anforderung beispielsweise zu ungenau formuliert, kann es zu Missverständ-
nissen kommen oder es müssen Vermutungen über die genaue Funktionalität angestellt
werden.
In der Regel arbeiten an einem Projekt viele verschiedene Menschen. Es treffen verschie-
dene Perspektiven und unterschiedliche Kompetenzen aufeinander. Aber alle entwickeln
an dem Projekt anhand des Anforderungsdokuments. Das Anforderungsdokument hat
einen sehr hohen Stellenwert und die Erstellung gehört zu einer der schwierigsten und
aufwändigsten Aufgaben in der Entwicklung.
Requirements Engineering befasst sich genau mit dieser Problematik. Es werden Strate-
gien, Werkzeuge und Richtlinien entwickelt und zur Verfügung gestellt, um die Anforde-
rungen eines Projekts detailgenau, vollständig und einheitlich zu dokumentieren. Dadurch
können viele Fehler vermieden werden, durch die ein Projekt im schlimmsten Fall schei-
tert. Laut Rupp lassen sich ca. 60% der Fehler während der Systementwicklung auf den
Analyseprozess zurückführen [Rup09, S. 15].
Ingenieuren, Technikern und anderen wird das Schreiben von Anforderungen durch diese
Hilfsmittel zunehmend erleichtert. Meistens allerdings nur in der kommunizierten Sprache
und dies ist in Deutschland hauptsächlich Deutsch. Mittlerweile werden Anforderungen
aber vorallem in Englisch oder wegen der immer häufigeren internationalen Zusammen-
arbeit auch in anderen Sprachen verlangt. Nicht jeder ist in der Lage eine Anforderung
in der gewünschten Sprache zu formulieren und Schulungen kosten ein Unternehmen so-
wohl Geld als auch Zeit. Eine Lösung bietet die maschinelle Übersetzung: geschriebene
Anforderungen können von einer Quellsprache in eine Zielsprache überführt werden, so
dass eine standardisierte Übersetzung entsteht. Dies könnten natürlich auch Übersetzer
leisten aber auch hier sind es die Kosten, wie zum Beispiel Gehaltskosten oder Kosten, die
durch Verzögerungen entstehen, die Unternehmen nach anderen Lösungen suchen lassen.
Der Bedarf an Übersetzern kann wegen dem ständig wachsendem Produktmarkt nicht
gestillt werden. Nahezu jedes Produkt hat ein Handbuch in verschiedenen Sprachen. Die
Produktzahlen steigen und die Produktionszeit sinkt [Ram09, S. 12/13].

1

1. Einleitung

Die maschinelle Übersetzung wird seit 1947 in der wissenschaftlichen Literatur diskutiert
und wurde oft als unerreichbar eingeschätzt [Ram09, S. 57]. Sie ist sehr interdisziplinär
aufgestellt, denn sowohl die Informatik, die Künstliche Intelligenz, die Linguistik als auch
die Computerlinguistik tragen zu ihrer Entwicklung bei [Ram09, S. 13]. Je nach gewähl-
tem Verfahren verlangt das Thema gerade von der Computerlinguistik bzw. der Linguistik
einiges an Wissen. Denn außer der Produktion und dem Verstehen von Sprache sind alle
Bereiche der Sprachverarbeitung gefordert [HS92, S. 3].
Die meisten Anwender kennen die maschinelle Übersetzung durch Dienste aus dem Inter-
net, wie zum Beispiel den Übersetzungsdienst von Google1. Das Urteil über die Qualität
der Übersetzung fällt dabei oft nicht besonders positiv aus. Dies mag daran liegen, dass
die maschinelle Übersetzung nicht für jeden Zweck geeignet ist. Für eine Übersetzung ist
spezifisches Wissen notwendig. Deswegen können domänenspezifische Systeme Fachtexte
gut übersetzen aber kreative Texte, wie zum Beispiel ein Gedicht oder umgangsprachliche
Texte, dagegen eher nicht [Hei04].
Das Empfinden bezüglich der Qualität einer Übersetzung ist teilweise subjektiv. Zur ob-
jektiveren Bewertung können aber Aspekte, wie Inhaltstreue oder Fehlerhäufigkeit her-
angezogen werden [Ram09, S. 158]. Zum aktuellen Forschungszeitpunkt sollte von einem
Übersetzungssystem nicht mehr Leistung erwartet werden, wie von einem menschlichen
Übersetzer. Ein Mensch verfügt über Weltwissen und kann Zusammenhänge im Text
erschließen. Dies ist bei einer maschinellen Übersetzung im Moment nur eingeschränkt
möglich. Auch professionelle Übersetzer lassen ihre Texte Korrektur lesen. Dies sollte
für ein besseres Ergebnis auch einem maschinellen Übersetzungssystem zugestanden wer-
den [HS92, S. 3].
Da Anforderungen domänenspezifisch betrachtet werden können, ist die maschinelle Über-
setzung ein erfolgsversprechender Ansatz. Eine Vereinfachung der Problematik liefert zu-
dem der Sachverhalt, dass Anforderungen mittels einer Schablone für die Satzstellung
geschrieben werden können. Dies bedeutet, dass zulässige Satzstrukturen vorgegeben wer-
den. Die maschinelle Übersetzung wird dadurch erleichtert, da sowohl der Wortschatz als
auch der Satzbau stark eingeschränkt sind.

1.2. Zielsetzung

Ziel dieser Arbeit ist es, ein Werkzeug zu entwickeln, das Anforderungen, die in Deutsch
mittels einer Schablone geschrieben wurden, durch maschinelle Übersetzung ins Engli-
sche überführt. Dazu muss zunächst ein geeignetes Verfahren unter Berücksichtigung der
Voraussetzungen ausgewählt und ein Konzept zur Umsetzung entwickelt werden. Hoedo-
ro hat im Rahmen einer Diplomarbeit ein Werkzeug entwickelt, welches das Schreiben
von Anforderungen durch die Verwendung von Schablonen erleichtert [Hoe11]. In dieses
Werkzeug soll das Ergebnis dieser Arbeit integriert werden. Ein Teil der Arbeit war die
Entwicklung einer Grammatik für Anforderungen im Deutschen gemäß der Schablonen.

1http://translate.google.de/

2

1.3. Gliederung der Arbeit

Wenn möglich soll diese in den Prozess der maschinellen Übersetzung integriert werden.
Zusätzlich soll eine äquivalente Grammatik für das Englische entworfen werden.
Das zu entwickelnde Konzept soll eine Vorstellung ermöglichen, wie die Implementierung
des Systems aussehen muss. Anschließend soll das Werkzeug in Java nach diesem Konzept
umgesetzt werden. Zum Schluss wird das Ergebnis der Arbeitet kritisch beleuchtet um
Verbesserungs-, so wie Erweiterungsmöglichkeiten, aufzuzeigen.

1.3. Gliederung der Arbeit

In Kapitel 2 werden die notwendigen Grundlagen vorgestellt, auf die sich das Konzept
stützen soll. Der erste Teil der Grundlagen widmet sich dem Requirements Engineering,
dies soll der Einordnung der Arbeit dienen. Im zweiten Teil werden die Grundlagen der
maschinellen Übersetzung behandelt, verschiedene Verfahren vorgestellt und auf die Pro-
bleme der maschinellen Übersetzung eingegangen. Der letzte Teil des Grundlagenkapitels
behandelt das Parsing und geht genauer auf Chart-Parser ein.
In Kapitel 3 wird diskutiert, welche Systeme auf dem aktuellen Übersetzungsmarkt exis-
tieren und ob es eine Möglichkeit gibt, diese für die Übersetzung von Anforderungen zu
benutzen.
In Kapitel 4 wird das entwickelte Konzept für das geplante Werkzeug beschrieben. Teil
dieses Kapitels sind die Auswahl eines Übersetungsverfahrens, die Grammatiken für An-
forderungen im Deutschen als auch im Englischen und die Beschreibung der einzelnen
Schritte, die für den Übersetzungsprozess notwendig sind.
Kapitel 5 beschreibt die Implementierung des Werkzeugs und geht auf einige Aspekte
der praktischen Umsetzung des Konzepts ein.
Den Abschluss bildet Kapitel 6 mit einer Zusammenfassung, einem kritischen Fazit und
einem Ausblick. Es werden Verbesserungsmöglichkeiten und Ideen zur Erweiterung ange-
sprochen.

3

2. Grundlagen

Das Grundlagenkapitel soll die nötige Basis für diese Arbeit schaffen und behandelt des-
wegen alle relevanten Bereiche. Das Unterkapitel 2.1 betont die Position des Requirements
Engineerings und enthält grundlegende Begriffe und Definitionen. Genauer wird auf die
für diese Arbeit sehr wichtigen Anforderungsschablonen eingegangen. Abschnitt 2.2 be-
handelt wichtige Begriffe der maschinellen Übersetzung und stellt verschiedene Verfahren
vor. Um Anforderungsschablonen übersetzen zu können werden diese mittels einer Gram-
matik beschrieben. Die Grundlagen hierfür werden in Abschnitt 2.3 erläutert. Bei der
Verarbeitung von Sätzen ist das Parsen meist unumgänglich. Die relevanten Begriffe und
Verfahren hierzu werden in Abschnitt 2.4 behandelt.
Für dieses Kapitel und generell für diese Arbeit werden unter anderem Grundkenntnisse
in der Mengenlehre und in höherer Mathematik vorausgesetzt. Außerdem sollte der Leser
über Basiswissen aus der Graphentheorie und bezüglich XML verfügen.

2.1. Requirements Engineering

2.1.1. Grundlagen des Requirements Engineering

Software Engineering befasst sich mit der Entwicklung zuverlässiger und qualitativer Soft-
ware. Aber trotz großer Bemühungen ist das Entwickeln von softwarelastigen Systemen
immer noch eine Herausforderung. Die meisten Probleme sind dabei auf eine unzureichen-
de Planung zurückzuführen, genauer sogar auf mangelndes Requirements Engineering,
eine Teildisziplin des Software Engineerings [Par10, S. 2–5].
Zur Planung von Projekten werden Vorgehensmodelle genutzt. Diese bieten einen Über-
blick über den generellen organisatorischen Ablauf und können individuell an das eigene
Projekt angepasst werden. Das derzeit meist benutzte Modell ist das V-Modell (siehe Ab-
bildung 2.1). Das V-Modell kann in zwei Teile eingeteilt werden. Einen konstruktiven Teil
und einen verifizierenden Teil. Im konstruktiven Teil werden die Requirements erfasst und
das System entworfen. Anschließend folgt die Implementierung und der verifizierende Teil
in dem das System getestet wird [Gol11, S. 89]. Das V-Modell basiert auf der schrittweisen
Zerlegung des Systems in Teilsysteme. Die einzelnen Bestandteile des V-Modells an das
Projekt anzupassen wird Tailoring genannt [Rup09, S. 37].

5

2. Grundlagen

Abbildung 2.1.: V-Modell nach [Rei09]

Requirements Engineering findet je nach Strukturierung des Projekts auf mehreren Ebe-
nen statt. Die Probleme, die aus unzureichender Sorgfalt in diesem Bereich resultieren sind
jeweils die gleichen. Projekte scheitern oder es entstehen hohe Kosten durch das nachträg-
liche Beseitigen von Anforderungsfehlern. Dies liegt häufig am mangelnden Einbeziehen
der Benutzer, unvollständigen Anforderungen, unklaren Zielen oder einer unrealistischen
Erwartung [Par10, S. 6]. Abhilfe schafft das Requirements Engineering, das die Aufgabe
hat, alle relevanten Anforderungen im erforderlichen Detailierungsgrad zu ermitteln, zu
dokumentieren, zu prüfen und zu verwalten. Die Anforderungsspezifikation bietet dann
unter anderem eine Basis für die Kommunikation zwischen allen Beteiligten und eine Basis
für anschließende Tests [Rup09, S. 14].

6

2.1. Requirements Engineering

Der Begriff „Anforderung“ wird im IEEE Standard 610.12-1990, dem „Glossary of Soft-
ware Engineering Terminology“ [IEE90], definiert (siehe Abbildung 2.2).

Definition: Anforderung nach IEEE

(Übersetzung von Rupp [Rup09, S. 13])

Eine Anforderung ist...

1. eine Bedingung oder Fähigkeit, die von einem Benutzer (Person oder System) zur
Lösung eines Problems oder zur Erreichung eines Ziels benötigt wird.

2. eine Bedingung oder Fähigkeit, die ein System oder Teilsystem erfüllen oder be-
sitzen muss, um einen Vertrag, eine Norm, eine Spezifikation oder andere, formell
vorgegebene Dokumente zu erfüllen.

3. eine dokumentierte Repräsentation einer Bedingung oder Eigenschaft gemäß (1)
oder (2).

Abbildung 2.2.: Definition „Anforderung“ nach IEEE [IEE90]

Unter einer „Anforderung“ wird häufig aber nur ein Teil dieser Definiton verstanden. Der
Begriff „Anforderung“ wird auch in dieser Arbeit nach der Definition von Rupp aufgefasst
(siehe Abbildung 2.3).

Definition: Anforderung nach Rupp

Eine Anforderung ist eine Aussage über eine Eigenschaft oder Leistung eines Produktes,
eines Prozesses oder der am Prozess beteiligten Personen.

Abbildung 2.3.: Definition „Anforderung“ nach Rupp [Rup09, S. 14]

Anforderungen lassen sich in funktionale und nicht-funktionale Anforderungen einteilen.
Eine funktionale Anforderung beschreibt eine selbstständige Systemaktivität, eine Benut-
zerinteraktion, eine Interaktion zu einem anderen System oder eine allgemeine funktio-
nale Vereinbarung bzw. Einschränkung. Eine Anforderung die nach gerade beschriebe-
nen Eigenschaften keine funktionale Anforderung ist, ist eine nicht-funktionale Anforde-
rung [Rup09, S. 18].

7

2. Grundlagen

Um qualitative hochwertige Anforderungen schreiben zu können, werden verschiedene
Qualitätskriterien gefordert. Rupp hat in [Rup09] solche Kriterien aufgestellt (siehe Ab-
bildung 2.4).

Qualitätskriterien nach Rupp

• Vollständig
• Korrekt
• Abgestimmt
• Klassifizierbar
• Konsistent
• Prüfbar
• Eindeutig

• Verständlich
• Gültig und aktuell
• Realisierbar
• Notwendig
• Verfolgbar
• Bewertet

Abbildung 2.4.: Qualitätskriterien nach Rupp [Rup09, S. 24]

In der Praxis sind diese Kriterien oft nicht vollständig einhaltbar. Die Aufgabe des Requi-
rements Engineering besteht darin, mit Werkzeugen und Methoden möglichst die Quali-
tätskriterien zu erreichen [Bal09, S. 477].
Um Anforderungen zu ermitteln, gibt es mehrere Möglichkeiten. Sie können unter ande-
rem aus Altsystemen oder Dokumentationen gewonnen werden, die wichtigste Quelle sind
aber die Stakeholder [Gol11, S. 166/167]. Darunter werden Personen verstanden, die di-
rekten Einfluss auf die Anforderungen haben. Nutzer des Systems, Betreiber, Entwickler
und Tester sind nur eine kleine Auswahl an möglichen Personen [Rup09, S. 62].
Bei so vielen unterschiedlichen Personen bietet sich die natürliche Sprache zum Formu-
lieren von Anforderungen an. Ein Vorteil der natürlichen Sprache ist, dass es für den
Menschen einfach ist mittels dieser zu kommunizieren, sofern alle Beteiligten dieselbe
beherrschen. Außerdem ist sie flexibel (abstrakt oder konkret) und universell (für jede
Domäne) einsetzbar. Nachteile sind ihre Mehrdeutigkeit (z.B. die lexikalische Mehrdeu-
tigkeit des Wortes „Bank“) und die Verwendung vager Begriffe (z.B. „neben“). Um diese
Nachteile zu reduzieren, schlägt Balzert in [Bal09, S. 481] unter anderem die Benutzung
sprachlicher Anforderungsschablonen vor.

2.1.2. Anforderungsschablonen

Auch wenn genug Requirements Engineering betrieben wird, finden sich immer noch viele
Probleme, die durch geeignete Beschreibungsmittel, durchgängige Methoden oder unter-
stützende Werkzeuge vermieden werden können [Par10, S. 13]. Eine Möglichkeit bieten

8

2.1. Requirements Engineering

Schablonen. Die Vorteile von Schablonen liegen in der damit zu erreichenden hohen Qua-
lität einer Anforderung und der leichten Erlernbarkeit.
Rupp stellt in [Rup09] Schablonen vor, auf diese soll hier näher eingegangen werden.

Eine Anforderungsschablone für das Deutsche für Anforderungen ohne Vorbedingung ist
in Abbildung 2.5 dargestellt, eine Schablone für Anforderungen mit Vorbedingung in
Abbildung 2.6.

Abbildung 2.5.: Schablone für Anforderungen auf Deutsch ohne Vorbedingung [Rup09,
S. 162]

Abbildung 2.6.: Schablone für Anforderungen auf Deutsch mit Vorbedingung [Rup09,
S. 166]

Die Schablonen von Rupp sind rein syntaktische Schablonen, da nur die Syntax fest-
gelegt wird . Eine Anforderung benötigt, egal ob mit oder ohne Vorbedingung, immer
eine rechtliche Verbindlichkeit. Es wird mittels definierter Hilfsverben unterschieden, ob
es sich bei der Anforderung um eine Pflicht („muss“), einen Wunsch („sollte“) oder eine
Absicht („wird“) handelt. Außerdem muss die Funktionalität festgelegt werden. Zur Wahl
stehen die selbstständige Systemaktivität („-“), die Benutzerinteraktion („<wem?> die
Möglichkeit bieten“) und die Schnittstellenanforderung („fähig sein“). Für Elemente in
spitzen Klammern muss das entsprechende Wort bzw. die entsprechende Beschreibung
eingesetzt werden. Elemente in eckigen Klammern sind optional, wie beispielsweise das
Objekt. Ein weiterer Bestandteil ist das Prozesswort, das die Funktionalität der Anforde-
rung beschreibt. Es ist immer ein Vollverb.
Bei einer Anforderung mit Voraussetzung werden zusätzlich eine oder mehrere Bedingun-
gen vorangestellt unter denen die geforderte Funktionalität durchgeführt wird. Relevant
sind zeitliche (z.B. „nachdem“) und logische (z.B. „falls“) Bedingungen [Rup09, S. 162–
176].

Das Werkzeug, das in dieser Arbeit vorgestellt wird, übersetzt Sätze vom Deutschen ins
Englische. Rupp stellt auch eine Schablone für englische Anforderungen zur Verfügung

9

2. Grundlagen

(siehe Abbildung 2.7). Die Bestandteile sind die gleichen, wie bei deutschen Anforderun-
gen.

Abbildung 2.7.: Schablone für Anforderungen auf Englisch [Rup09, S. 177]

2.2. Maschinelle Übersetzung

Ziel dieser Arbeit ist es, Anforderungen, die mit den in Kapitel 2.1.2 vorgestellten Scha-
blonen geschrieben wurden, automatisiert zu übersetzen. Hierfür gibt es verschiedene
Verfahren, die in diesem Kapitel vorgestellt werden. Die maschinelle Übersetzung ist ein
aktuelles Forschungsthema und beschäftigt sich unter anderem mit verschiedenen Über-
setzungsproblemen. Auf einige wird in Abschnitt 2.2.3 eingegangen. Zunächst wird aber
in 2.2.1 in die Begriffe der maschinellen Übersetzung eingeführt.

2.2.1. Grundlagen der maschinellen Übersetzung

Eine Übersetzung ist allgemein betrachtet die Transformation eines Textes von einer
Quellsprache in eine Zielsprache. Die maschinelle Übersetzung wird von Hutchins und
Somers in [HS92]1 ähnlich definiert. Sie beschreiben die maschinelle Übersetzung als ein
Computersystem, das eine Übersetzung von einer natürlichen Sprache in eine andere pro-
duziert. Dabei kann das System die Unterstützung eines Menschen in Anspruch neh-
men. Hutchins und Somers grenzen stark ab von Systemen, die den Menschen nur durch
die Bereitstellung von Wörterbüchern oder ähnlichem unterstützen. Der Übersetzungpro-
zess wird dann von einem Menschen durchgeführt. Diese Systeme fallen in die Kategorie
„machine-aided human translation“ (MAHT). Die Systeme, die zur maschinellen Überset-
zung gehören, werden unter dem Begriff „human-aided maschine translation“ (HAMT)
zusammengefasst. Hierbei übersetzt der Computer und der Mensch kann das System
durch Interaktion, Vor- oder Nachbearbeitung unterstützen [HS92, S. 149/150].
Ein maschinelles Übersetzungssystem kann die Übersetzung von einer Sprache in genau
eine andere leisten, aber auch mehrere Sprachpaare zur Verfügung stellen. Ersteres ist
ein bilinguales, zweiteres ein multilinguales System [CEE+04, S. 565]. Je nachdem, ob das

1vgl. [HS92] S. 3

10

2.2. Maschinelle Übersetzung

System die Übersetzung dann nur in eine Richtung oder in beide Richtungen beherrscht,
ist es unidirektional oder bidirektional.
Wie oben erwähnt, greifen manche Systeme auf die Hilfe des Menschen zurück. Systeme,
die dies während des Übersetzungsprozesses tun, sind interaktiv. Alle anderen Systeme
werden Batch-Systeme genannt. Ein interaktives System stellt dem Benutzer zum Beispiel
mehrere Übersetzungsmöglichkeiten zur Auswahl und lässt ihn entscheiden. Dadurch kann
nicht vorhandenes Wissen kompensiert werden.
Weitere Möglichkeiten die Übersetzung durch Zuhilfenahme des Benutzers zu verbessern,
sind die Prä- und Postedition. Durch Präedition können vermeindliche Probleme schon
vor der Übersetzung entdeckt und behoben werden. Hutchins und Somers stellen das
System SUSY2 vor, bei dem beispielsweise Eigennamen aber auch ganze Satzteile mit
bestimmten Symbolen markiert werden um dem System mehr Informationen zu liefern
und die Übersetzung zu vereinfachen. Das Ziel sind einfache und eindeutige Sätze. Bei
der Postedition wird der übersetzte Satz vom Benutzer korrigiert. Manche Systeme mar-
kieren Sätze oder Wörter, um daraufhinzuweisen, dass möglicherweise Übersetzungsfehler
im Satz vorkommen.
Systeme können aber auch durch andere Optionen verbessert werden. Die Nutzung ei-
ner kontrollierten Sprache ist eine Möglichkeit. Systeme haben häufig Probleme damit,
bestimmte Satzstrukturen zu analysieren und zu interpretieren oder die Mehrdeutigkeit
von Wörtern aufzulösen. Eine kontrollierte Sprache untersteht Regeln, die zum Beispiel
den Satzbau einschränken oder nur Wörter aus einem Wörterbuch, die dort hinsichtlich
ihrer Bedeutung eindeutig definiert sind, zulassen [Ram09, S. 118]. Außer der Benutzung
einer kontrollierten Sprache kann auch eine Subsprache verwendet werden. Das Ziel, die
Sprache eindeutiger zu machen, bleibt das selbe. Eine Subsprache ist beschränkt auf eine
Domäne, zum Beispiel das Wetter. Die Sprache wird nicht direkt durch Regeln einge-
schränkt aber unterliegt sowohl grammatikalischen als auch semantischen und lexikali-
schen Restriktionen. Die Restriktionen ergeben sich durch die Subsprache selbst. Wörter
haben zum Beispiel abhängig vom Kontext unterschiedliche Bedeutungen (z.B. „Bank “).
In einer Subsprache ist meist klar, welche Bedeutung gemeint ist. Allerdings lassen sich
durch eine Subsprache nur lexikalische Mehrdeutigkeiten beheben [Ram09, S. 117]. Eine
Kombination aus kontrollierter Sprache und Subsprache ist in manchen Fällen sinnvoll.

2.2.2. Verfahren zur maschinellen Übersetzung

Maschinelle Übersetzungssysteme agieren nach verschiedenen Verfahren. Die erste und
zweite Generation der Verfahren sind die regelbasierten Verfahren. Diese sind heutzutage
häufig Basis kommerzieller Systeme. Darunter fallen die direkte, die transferbasierte und
die interlinguabasierte Übersetzung. Die dritte Generation von Systemen gehört zu den
aktuellen Forschungsthemen. Dazu zählen die beispielbasierte, die wissensbasierte und die
statistische Übersetzung [Hei04].

2vgl. [HS92] S. 151

11

2. Grundlagen

Die regelbasierten Verfahren bestehen aus der Analyse des Satzes in der Quellsprache und
der anschließenden Generierung des Satzes in der Zielsprache. Um aus dem analysierten
Satz in der Quellsprache eine Repräsentation zu erhalten, aus der ein Satz in der Ziel-
sprache generiert werden kann, kann ein Transfer notwendig sein. Abbildung 2.8 zeigt,
dass bei einer direkten Übersetzung der Aufwand für die Analyse und auch für die Ge-
nerierung am geringsten ist. Für eine interlinguabasierte Übersetzung sind Analyse und
Generierung am aufwändigsten, dafür ist kein Transfer notwendig. Der transferbasierte
Ansatz liegt vom Aufwand in der Mitte [CEE+04, S. 565].

Abbildung 2.8.: Dreieck der maschinellen Übersetzung von Vauquois [CEE+04, S. 565]

Bei einer direkten Übersetzung wird auf der Basis eines quellsprachlichen Satzes direkt
der Satz in der Zielsprache generiert [Ram09, S. 73]. Der Quelltext (QT) wird nur sehr flach
analysiert, d. h. es findet nur eine Analyse der Morphologie statt, aber keine syntaktische
oder semantische Analyse, dadurch ensteht die Zwischenrepräsentation QT’. Anschließend
wird jedes Wort mithilfe eines bilingualen Lexikons übersetzt. Es entsteht ein Zieltext ZT’,
der noch syntaktisch angepasst werden muss. Deswegen wird die Wortstellung anhand
einfacher Regeln korrigiert. Das Ergebnis ist der übersetzte Satz in Zielsprache (ZT).
Abbildung 2.9 stellt diesen Vorgang dar. Die Vorteile der direkten Übersetzung liegen in
den einfachen Verarbeitungsschritten, der Geschwindigkeit und Robustheit. Allerdings ist
eine ansatzweise gute Qualität nur dann zu erwarten, wenn die Quell- und Zielsprache sich
syntaktisch sehr ähnlich sind [CEE+04, S. 566/567]. Durch die unzureichende linguistische
Analyse des Satzes kann nicht immer entschieden werden, ob ein Satz in Quellsprache
grammatisch korrekt ist und es werden deswegen eventuell auch ungrammatische Sätze
in der Zielsprache generiert [Ram09, S.74].

12

2.2. Maschinelle Übersetzung

QT‘ ZT‘
morphologische Analyse Worstellungskorrektur

wortweise Übersetzung mittels
bilingualem Wörterbuch

QT ZT

Abbildung 2.9.: Direkte Übersetzung

In Abbildung 2.10 wird die transferbasierte Übersetzung dargestellt. Diese baut auf
eine tiefere Analyse. Dadurch steigt allerdings auch der Aufwand zur Generierung des
Satzes in der Zielsprache. Im ersten Schritt wird der Satz syntaktisch analysiert. Das Er-
gebnis der Analyse ist eine abstrakte Repräsentation des Satzes. Diese Repräsentation ist
allerdings immer noch abhängig von der Quellsprache (QS). Im zweiten Schritt wird die
quellsprachliche Repräsentation mittels Transferregeln in eine Repräsentation überführt,
die abhängig von der Zielsprache (ZS) ist. Daraus wird anschließend der endgültige Satz
generiert [Ram09, S. 75–77]. Die Analyse und Generierung ist im Gegensatz zur direkten
Analyse aufwändiger, aber dadurch lassen sich auch wesentlich bessere Ergebnisse erzielen.
Die erzeugten Repräsentationen sind jedoch sprachenabhängig. Wenn eine neue Sprache
in das System integriert werden soll, muss auch für diese ein Analyse- bzw. Generierungs-
modul entwickelt werden. Auch die Transferregeln sind meist unidirektional und müssen
für eine umgekehrte Übersetzungsrichtung neu entworfen werden [CEE+04, S. 567].

QT ZT
Analyse Repräsentation

in QS

Transfer Repräsentation
in ZS

Generierung

Abbildung 2.10.: Transferbasierte Übersetzung

Die meisten Nachteile der transferbasierten Übersetzung werden im interlinguabasier-
ten Ansatz aufgegriffen und verbessert. Die Interlingua ist eine sprachenunabhängige
Repräsentation. Durch die Analyse wird der Satz in diese überführt und mit dem Gene-
rierungsmodul daraus ein Satz in der Zielsprache generiert (siehe Abbildung 2.11). Für
jede Sprache ist genau ein Analyse- und ein Generierungsmodul notwendig. Transferregeln
werden nicht gebraucht, da die Repräsentation dank der Sprachunabhängigkeit für einen
Satz immer dieselbe ist. Bis jetzt ist es aber unmöglich gewesen eine solche Repräsentation
zu finden und ein solches System zu entwickeln. Der Grund hierfür kann leicht eingesehen
werden. Zum Beispiel für das Wort „Beine“ müsste in der Repräsentation unterschieden
werden zwischen menschlichen Beinen, Tischbeinen, Tierbeinen, etc. Es ist nicht möglich
eine vollständige Interlingua zu erstellen. Denkbar ist eine Interlingua nur für eine sehr
eingeschränkte Subsprache oder kontrollierte Sprache [CEE+04, S. 567/568].
Der interlinguabasierte Ansatz hat, wie erwähnt, den größten Aufwand für die Analyse
und die Generierung. Dies kann als Nachteil gesehen werden, da immer eine volle Analyse
und Generierung für jede Sprache durchgeführt werden muss. Bei neueren Verfahren wird
dies durch eine andere Herangehensweise umgangen.

13

2. Grundlagen

QT ZT
Analyse

Interlingua
Generierung

Abbildung 2.11.: Interlinguabasierte Übersetzung

Zur dritten Generation und damit zu den neueren Methoden der maschinellen Überset-
zung, gehört der beispielbasierte Ansatz. Grundlage des Ansatzes bietet ein bilinguales
Korpus, das Zuordnungen zwischen Wörtern, (Teil-)Phrasen und Sätzen der beiden Spra-
chen enthält. Für einen zu übersetzenden Satz werden möglichst große Teile des Satzes
im Korpus gesucht. Umso größer diese Teilsätze sind, desto besser ist die resultieren-
de Übersetzung [CEE+04, S. 568]. Auf linguistische Regeln wird in diesem Ansatz ver-
zichtet. Gibt es keine passenden Elemente im Korpus, kann keine Übersetzung erzeugt
werden [Ram09, S. 79/80].

Ein weiteres Verfahren der dritten Generation ist das statistische Verfahren. Dieses
benötigt ebenso wie der beispielbasierte Ansatz ein großes bilinguales Korpus. Der An-
satz basiert auf drei Basismodellen: dem Alignment-Modell, dem Sprachmodell und dem
Übersetzungsmodell. Das Alignment-Modell enthält die Wahrscheinlichkeit für jedes Wort
in bestimmten Positionen innerhalb eines Satzes vorzukommen. Das Sprachmodell gibt
die Wahrscheinlichkeit an mit der Wörter als Nachfolger anderer Wörter auftauchen und
das Übersetzungsmodell ordnet einem Wort Übersetzungsmöglichkeiten und deren Wahr-
scheinlichkeit zu [Ebe09, S. 46]. Um einen Satz, der in der Quellsprache vorliegt, zu über-
setzen, wird die Übersetzung mit der größten Wahrscheinlichkeit ausgewählt. Auch dieser
Ansatz benutzt kein linguistisches Wissen [Ram09, S. 80–82].

Allen bisher vorgestellten Verfahren fehlt Weltwissen. Weltwissen ist das allgemeine Wis-
sen über die Umwelt, das es möglich macht unbekannte Informationen einzuordnen und
Erkenntnisse daraus abzuleiten. Ein Satz kann eigentlich nur erfolgreich übersetzt wer-
den, wenn die Bedeutung des Satzes erfasst und im Zielsatz wiedergegeben werden kann.
Dazu ist oft Weltwissen notwendig. Der wissensbasierte Ansatz macht vorallem Sinn,
wenn ganze Texte übersetzt werden sollen. Die anderen Verfahren arbeiten derzeit noch
ausschließlich satzweise. Der Kontext der Sätze enthält notwendiges Wissen, das für eine
Übersetzung genutzt werden muss. Zusätzlich ist weiteres Wissen, das als bekannt vor-
ausgesetzt wird, notwendig für eine Übersetzung.
Der Schwerpunkt der Analyse des Verfahrens liegt in der Semantik. Diese wird mittels
vorhandenemWeltwissen interpretiert und in einer sprachenunabhängigen Repräsentation
gespeichert. Daraus wird dann der Text in Zielsprache generiert. Das Verfahren ist stark
an das interlinguabasierte Verfahren angelehnt. Auch hier taucht das Problem auf, dass
nicht das komplette Weltwissen erfasst und gespeichert werden kann. Erfolgversprechend
ist das Verfahren deswegen nur in einer klar abgegrenzten Domäne [Ram09, S. 82].

14

2.2. Maschinelle Übersetzung

Der Trend im Bereich der maschinellen Übersetzung geht zu Hybridsystemen. Angestrebt
wird eine Kombination aus einem regelbasierten System und einem neueren Ansatz. Die
neuen Verfahren werden um linguistisches Wissen angereichert, damit eine bessere Über-
setzungsqualität erreicht werden kann.

2.2.3. Probleme der maschinellen Übersetzung

Bei einer Übersetzung tauchen verschiedene Übersetzungsprobleme auf. Auch menschli-
che Übersetzer werden mit diesen Problemen konfrontiert, sind aber bei der Lösung stets
flexibler als maschinelle Übersetzungssysteme. Auf einge Probleme soll im Folgenden ein-
gegangen und der Sachverhalt an Beispielen erläutert werden.
Die Probleme können unterschieden werden in solche, die bei der Übersetzung und Pro-
bleme, die bei der Analyse einer Sprache auftreten. Eine Kategorie von Problemen, die
bei der Übersetzung vorkommen, sind lexikalische Lücken (gaps) und fehlende Entspre-
chungen (mismatches). Dies liegt vor, wenn ein Wort der einen Sprache nicht direkt mit
einem Wort der anderen Sprache übersetzt werden kann. Als Beispiel gibt es für das deut-
sche Wort „sich verwählen“ keine direkte englische Übersetzung, sondern muss mit der
Umschreibung „dial the wrong number“ übersetzt werden. Ein weiteres Übersetzungspro-
blem, das auftreten kann, ist die unterschiedliche Granularität von Wörtern. Das Wort
„know“ kann sowohl mit „kennen“ als auch mit „wissen“ übersetzt werden. Die richtige
Übersetzung kann allerhöchstens aus dem Kontext erschlossen werden [Hei04].
Auch auf der Satzebene tauchen Probleme auf. Übersetzungen können sich in ihrer syn-
taktischen Struktur unterscheiden. „Das Buch gefällt Eva“ wird übersetzt mit „Eva likes
the book“. Das Subjekt von „gefallen“ wird zum Objekt von „like“ und das Objekt zum
Subjekt. Diese Kategorie von Problemen wird Divergenzen genannt [CEE+04, S. 564].
Eine andere Form der Divergenz ist das Head Switching. Das Adverb „gerne“ im Satz
„John schwimmt gerne.“ hat keine englische Übersetzung in der gleichen Kategorie. Der
Satz muss durch eine Vertauschung des Kopfs (Erklärung „Kopf“ und Phrasenstruktur
siehe Kapitel 2.3.2) übersetzt werden. Die Übersetzung lautet dann „John likes to swim“,
wobei „like“ ein Verb ist (siehe Abbildung 2.12) [Hei04].

VP
�
��

H
HH

V

schwimmt

Adv

gerne

VP
��
�

HH
H

V

likes

VP

to_swim

Abbildung 2.12.: Head Switching

Zu den Problemen, die bei der Analyse auftreten, gehören auch Mehrdeutigkeiten (Am-
biguitäten). Diese können schon während der morphologischen Analyse auftreten. Zum

15

2. Grundlagen

Beispiel das Wort „Staubecken“ kann entweder in Stau-becken oder in Staub-ecken zerlegt
werden. Auf der Syntaxebene gibt es strukturelle oder kategoriale Ambiguitäten. Syntak-
tisch ambig sind Phrasen, wie zum Beispiel „Mütter und Kinder unter 12 Jahren“. Es ist
nicht klar, ob sich die Modifikation „unter 12 Jahren“ nur auf das Wort „Kinder“ oder
auch auf das Wort „Mütter“ bezieht [Hei04]. Eine kategoriale Ambiguität liegt dagegen
vor, wenn ein Wort mehreren Kategorien zugeordnet werden kann. Zum Beispiel kann
das englische Wort „flies“ ein Nomen (im Sinn von „die Fliegen“) oder Verb (im Sinn von
„fliegen“) sein [Ebe09, S. 38/39].
Auch auf der semantischen Ebene können Ambiguitäten auftreten. Bekannt sind vorallem
Homographe. Dies sind Wörter die gleich geschrieben werden aber eine unterschiedliche
Bedeutung haben. Zu dieser Kategorie gehört das Wort „Bank“. Es ist zunächst unklar,
ob es sich dabei um eine Sitzgelegenheit oder eine Finanzinstitution handelt. Ähnlich
sind polyseme Wörter, wie zum Beispiel das Wort „Zweige“. Hier stellt sich die Frage,
ob die Zweige eines Baums oder die verschiedenen Bereiche eines Fachgebiets gemeint
sind [Hei04].
Als letzte Ambiguität sei noch die referentielle Ambiguität erwähnt. Referentiell ambig
ist folgendes Beispiel: „Die Katze spielt mit der Maus. Sie mag das nicht.“ Das Pronomen
„sie“ kann sich sowohl auf die Katze als auch auf die Maus beziehen [Hei04]. Referentielle
Ambiguitäten können bei Übersetzungsstrategien, die satzweise arbeiten, nicht aufgelöst
werden.

2.3. Grammatiken

Im Rahmen dieser Arbeit wird ein transferbasiertes Übersetzungssystem entwickelt. Eine
Diskussion über die Auswahl des Verfahrens findet sich in Kapitel 4.1. Dieses Verfahren
beinhaltet zunächst eine Analyse des zu übersetzenden Satzes. Für eine Analyse der An-
forderungen, die mit den in Kapitel 2.1.2 vorgestellten Schablonen geschrieben wurden,
wird ein Beschreibungsmittel benötigt. Hierfür eignen sich Grammatiken, die in diesem
Kapitel vorgestellt werden.
Außerdem können, wenn eine Grammatik für deutsche Anforderungen und eine Gramma-
tik für englische Anforderungen existiert, leichter Transferregeln definiert und der über-
setzte Satz auf syntaktische Richtigkeit überprüft werden.

2.3.1. Grundlagen der Grammatiktheorie

Mit einer Grammatik können Wörter erzeugt werden, welche dann eine formale Sprache
bilden. Formale Sprachen kommen aus dem Bereich der theoretischen Informatik, sind
aber gerade für die maschinelle Sprachverarbeitung von großer Bedeutung. Denn, um die
natürliche Sprache zu verarbeiten, muss bekannt sein, mit welchen Mitteln diese analy-

16

2.3. Grammatiken

siert werden kann. Dazu ist es möglich die natürliche Sprache oder relevante Ausschnitte
in eine Hierarchie formaler Sprachen einzuordnen. Den Hierarchiestufen sind jeweils ge-
eignete Verarbeitungsmöglichkeiten zugeordnet. Mit Grammatiken lassen sich also nicht
nur formale Sprachen, sondern auch natürliche Sprachen beschreiben [CEE+04, S. 63].
Abbildung 2.13 zeigt die Definition einer Grammatik.

Definition: Grammatik

Eine Grammatik G ist ein Viertupel (V, Σ, P, S), wobei

• V die endlichen Menge der Nichtterminale,
• Σ die endlichen Menge der Terminale,
• P die Menge der Regeln und
• S das Startsymbol

ist.

Zusätzlich muss gelten:

• V ∩ Σ = ∅
• P ist eine endliche Teilmenge von (V ∪ Σ)+ × (V ∪ Σ)∗

• S ∈ V

Abbildung 2.13.: Definition „Grammatik“ nach [Sch03a]

Ein Terminalzeichen ist ein Zeichen, das nicht allein auf der linken Seite einer Regel vor-
kommen kann. Es ist nicht möglich ein Terminalzeichen alleine zu ersetzen, im Gegensatz
zu einem Nichtterminalzeichen, welches nicht in einem terminalen Wort der Sprache vor-
kommen kann und durch Regeln ersetzt werden muss. Eine Regel besteht aus u ∈ (V ∪Σ)+,
v ∈ (V ∪ Σ)∗ und sieht folgendermaßen aus: u → v. Dies bedeutet, dass u unmittelbar
in v übergeht bzw. u durch v ersetzt wird. Das Anwenden einer Regel entspricht einem
Ableitungsschritt. Eine Ableitung ist das mehrmalige Anwenden der Regeln um ein Wort
der Sprache zu erzeugen, die durch G beschrieben wird. Die erzeugte Sprache wird L(G)
genannt (Definiton siehe Abbildung 2.14) [Sch03a, S. 13/14].

Definition: Formale Sprache

Sei G = (V, Σ, P, S) eine Grammatik. Dann ist die durch G erzeugte formale Sprache

L(G) = {w ∈ Σ∗ | S ⇒∗ w}

Abbildung 2.14.: Definition „Formale Sprache“ nach [Sch03a]

17

2. Grundlagen

Beispielgrammatik 1

G = (V, Σ, P, S) wobei V = {S,A,B,C}, Σ = {a,b} und

P = {S → AC, B → b, A → a, C → BA, C → AB}

Abbildung 2.15.: Beispielgrammatik 1

Mit der Beispielgrammatik in Abbildung 2.15 kann unter anderem folgendes Wort mittels
Ableitung produziert werden: S ⇒ AC ⇒ ABA ⇒ aBA ⇒ abA ⇒ aba
Die durch G beschriebene Sprache L(G) besteht nur aus zwei Wörtern: L(G) = {aba, aab}

Eine Ableitung kann auch durch einen Syntaxbaum dargestellt werden. Die Wurzel des
Baums ist die Startvariable S. Wird in einem Ableitungsschritt die Regel u → v ange-
wandt, dann hat der Knoten u im Syntaxbaum |v| viele Kinder. Diese werden mit den
Symbolen v1, v2, etc. (wegen v = v1v2...vn ∈ (V ∪ Σ)∗) beschriftet [Sch03a, S. 23].

Abbildung 2.16 zeigt einen Syntaxbaum für die Ableitung in obigem Beispiel.

S
�� HH

A

a

C
��HH
B

b

A

a

Abbildung 2.16.: Syntaxbaum einer Ableitung der Beispielgrammatik G

UmGrammatiken zu kategorisieren und Verarbeitungsmittel zuzuordnen, hat Noam Choms-
ky, die nach ihm benannte Chomsky-Hierarchie definiert. Diese hat er 1956 zum ersten
Mal in seinemWerk „Three models for the description of language“ [Cho56] vorgestellt. Es
existieren Grammatiken vom Typ 0 bis Typ 3. Jede Grammatik ist eine Typ 0-Grammatik,
denn für sie gelten keine Einschränkungen. Bei den anderen Typen müssen die Regeln be-
stimmten Kriterien entsprechen.
In einer Typ 1-Grammatik oder auch kontextsensitiven Grammatik gibt es nur Regeln
u → v für die Folgendes gilt: |u| ≤ |v|. Eine Grammatik ist kontextfrei bzw. vom Typ 2,
wenn für alle Regeln u→ v in P gilt, dass u eine einzelne Variable ist d. h. u ∈ V . Typ 3
oder regulär ist eine Grammatik, wenn die rechte Seite aller Regeln entweder aus einem
einzelnen Terminalzeichen oder aus einem Terminalzeichen gefolgt von einem Nichtter-
minalzeichen besteht. Die Regeln werden für jeden höheren Typ stärker eingeschränkt.
Die Typen sind deswegen jeweils Teilmengen des vorhergehenden Typs d. h., eine Typ 3-
Grammatik ist auch immer eine Grammatik vom Typ 2, Typ 1 und Typ 0, eine Typ 2-
Grammatik immer auch vom Typ 1 und Typ 0, usw. Die im obigen Beispiel angegeben
Grammatik ist vom Typ 2 [Sch03a, S. 17].

18

2.3. Grammatiken

2.3.2. Phrasenstrukturgrammatik und X-Bar-Theorie

Ein Satz ist im Prinzip eine lineare Folge von Wörtern. Würde dies in der Syntax genau-
so aufgefasst werden, würde, je nach Andwendung, notwendiges Wissen über die innere
Struktur eines Satzes verloren gehen. Deswegen werden weitere Kenntnisse hinzugezo-
gen, um eine tiefere Struktur zu konstruieren. Zu diesen Kenntnissen gehört, dass die
Wörter eines Satzes in Gruppen unterteilt sind, den so genannten Konstituenten. Diese
Konstituenten sind wiederum Teil einer größeren Konstituente bis irgendwann der Satz
den Abschluss bildet [Car02, S. 27].
Um Konstituenten zu bilden werden zunächst den Wörtern Wortarten zugeordnet. An-
schließend können Aussagen darüber gemacht werden, welche Konstituenten (auch Phra-
sen genannt) aus welchen Wortarten bestehen. Anstatt von Wortarten wird hier auch von
syntaktischen Kategorien gesprochen. Es gibt lexikalische und funktionale Kategorien.
Zu den lexikalischen gehören die Nomen N, Verben V, Präpositionen P und Adjekti-
ve A. Die übrigen Kategorien (z.B. Det oder I) gehören zu den funktionalen Kategori-
en [Car02, S. 33–41].
Eine Grammatik, die den Aufbau des Satzes durch Phrasen und die Struktur der Phrasen
selbst beschreibt, heißt Phrasenstrukturgrammatik. Diese besteht aus lexikalischen Regeln
(z.B. N → Händler) und Phrasenstrukturregeln (z. B. NP → Det N’) [Sah09, S. 1].

S

��
��

�
��

��

HH
HH

H
HH

HH

NP
��
�

HH
H

Det

Der

N’

N

Händler

VP

��
��

�
��

HH
HH

H
HH

VP

��
��

HH
HH

V

fährt

PP

��
��

HH
HH

P

mit

NP

��
��

HH
HH

Det

dem

N’
�
��

H
HH

AP

A

neuen

N’

N

Lieferwagen

PP
��
�

HH
H

P

in

NP
�� HH

Det

die

N’

N

Stadt

Abbildung 2.17.: Phrasenstrukturbaum: „Der Händler fährt mit dem neuen Lieferwagen
in die Stadt.“

19

2. Grundlagen

Lexikalische Regeln bestehen aus einem Nichtterminal auf der linken Seite und einem Ter-
minal auf der rechten Seite. Phrasenstrukturregeln beschreiben die Struktur des Satzes
und beinhalten weder auf der linken noch auf der rechten Seite Terminale.
Abbildung 2.17 zeigt den Aufbau eines Satzes durch eine Phrasenstrukturgrammatik,
dargestellt als Ableitungsbaum. Der Phrasenstrukturbaum besteht aus der Satzkonstitu-
ente S, diese wiederum aus der Nominalphrase NP „Der Händler“ und der Verbalphrase
VP „fährt mit dem neuen Lieferwagen in die Stadt“. Die NP „Der Händler“ ist unter-
teilt in das Nomen „Händler“ und den Artikel „der“. Auch die Verbalphrase besteht aus
zwei Teilen, der VP „fährt mit dem neuen Lieferwagen“ und der Präpositionalphrase PP
„in die Stadt“. Die VP „fährt mit dem neuen Lieferwagen“ enthält das Verb „fährt“ und
die PP „mit dem neuen Lieferwagen“. Die Präposition „mit“ und die NP „dem neuen
Lieferwagen“ bilden zusammen die eben erwähnte PP. Die NP „dem neuen Lieferwagen“
ist unterteilt in eine Zwischenprojektion N’ (Erklärung siehe Seite 21) und einen Artikel
„dem“. Zum Schluss kommt zusätzlich zum Nomen „Lieferwagen“ in der Zwischenprojek-
tion N’ noch eine Adjektivphrase vor, die nur aus dem Adjektiv „neuen“ besteht. Die PP
„in die Stadt“ ist analog aufgebaut.

Eine Phrasenstrukturgrammatik für dieses Beispiel kann aussehen, wie in Abbildung 2.18
dargestellt.

Beispielgrammatik 2

Phrasenstrukturregeln: lexikalische Regeln:

S → NP VP Det → der

NP → Det N’ Det → dem

N’ → N Det → die

N’ → AP N’ N → Lieferwagen

VP → VP PP N → Stadt

VP → V PP N → Händler

PP → P NP P → mit

AP → A P → in

A → neuen

V → fährt

Abbildung 2.18.: Beispielgrammatik 2

Der Aufbau der Phrasenstrukturregeln wurde in einer einheitlichen Theorie formuliert,
der X-Bar-Theorie. Danach sind alle Phrasenstrukturregeln nach dem gleichen Prinzip
aufgebaut [Car02, S. 114]. Dieses Prinzip wird in Abbildung 2.19 dargestellt.

20

2.3. Grammatiken

XP

��
�
��

��

HH
H

HH
HH

XP

��
��

HH
HH

Spezifikator X’
��
�

HH
H

X Komplement

Adjunkt

Abbildung 2.19.: Allgemeine X-Bar-Struktur

Eine allgmeine Phrase XP besitzt ein obligatorisches Element X. Dieses Element ist der
Kopf der Phrase. Bezogen auf die vorher genannten Phrasen bedeutet das, dass zum
Beispiel eine Verbalphrase als Kopf immer ein Verb V und eine Nominalphrase immer
ein Nomen N hat [Sah06, S. 3]. X vererbt seine lexikalischen Merkmale an die gesam-
te Phrase, indem es diese über eine Zwischenprojektion X’ auf die maximale Projektion
XP projiziert. Eine Zwischenprojektion kann notwendig sein, da Phrasen sehr komplex
sein können, um eine weitere Verzweigung zu erlauben. Mehrere Zwischenprojektionen
sind denkbar. Zur Vereinfachung wird oft abgekürzt und die Zwischenprojektionen weg-
gelassen (siehe Abbildung 2.17). Durch das X-Bar-Prinzip sind nur binäre Verzweigungen
erlaubt [BEW06, S. 2–4].
Zusätzlich zur maximalen Projektion XP, der Zwischenprojektion X’ und dem Kopf X
kann es optional noch Spezifikatoren, Komplemente und Adjunkte geben. Alle sind wie-
derum Phrasen mit eigenen Köpfen.
Ein Spezifikator liefert weitere Informationen über den Kopf, spezifiziert diesen genau-
er [BEW06]. Er ist immer der Schwesterknoten einer Zwischenprojektion X’. Welcher
Phrasentyp als Spezifikator vorkommt, ist abhängig vom Kopf.
Komplemente und Adjunkte werden meist durch den Subkategorisierungsrahmen des
Kopfs verlangt. Ein Subkategorisierungsrahmen gibt die Beziehungen zwischen dem Kopf
und anderen Bestandteilen des Satzes an. Besonders bei Verben ist eine Angabe, welche
Kategorien mit welchen Merkmalen in Beziehung stehen, sinnvoll. Ein Verb kann mehrere
Subkategorisierungsrahmen haben. Das Verb „fahren“, zum Beispiel, hat sowohl den Sub-
kategorisierungsrahmen <np:nom, pp:in (akk)> als auch den Subkategorisierungsrahmen
<np:nom, np:akk> und <np:nom>. Der erste Subkategorisierungsrahmen ermöglicht Sät-
ze, wie zum Beispiel „(Der Händler)np:nom fährt (in die Stadt)pp:in_akk“, der zweite Subka-
tegorisierungsrahmen ermöglicht Sätze, wie zum Beispiel „(Der Händler)np:nom fährt (den
Lieferwagen)np:akk“ und der dritte Subkategorisierungsrahmen ermöglicht Sätze, wie „(Der
Händler)np:nom fährt.“. Der Subkategorisierungsrahmen drückt aus, dass das Verb „fahren“
entweder nur eine Nominalphrase im Nominativ oder eine Nominalphrase im Nominativ
und eine Nominalphrase im Akkusativ oder eine Nominalphrase im Nominativ und eine
Präpositionalphrase mit der Präposition „in“ im Akkusativ verlangt.

21

2. Grundlagen

Das Komplement ist immer der Schwesterknoten des Kopfs X und das Adjunkt immer
der Schwesterknoten der maximalen Projektion XP. Ob das Komplement links oder rechts
vom Kopf steht ist sprachspezifisch. Im Deutschen steht es bei VPs und APs links, bei
den PPs rechts vom Kopf. Im Englischen steht das Komplement generell rechts vom
Kopf [Sah09, S. 4]. Im Phrasenstrukturbaum der Abbildung 2.17 auf Seite 19 ist zum
Beispiel der Artikel „der“ Spezifikator des nominalen Kopfs „Händler“ und die Präposi-
tionalphrase „mit dem neuen Lieferwagen“ ist das Komplement des Kopfs V. Die Präpo-
sitionalphrase „in die Stadt“ hingegen ist ein Adjunkt zur Verbalphrase „fährt mit dem
neuen Lieferwagen“.
Die Begriffe „Spezifikator“, „Adjunkt“ und „Komplement“ sind nur im syntaktischen Sinn
und nach obiger Definition zu verstehen.
Eine Phrasenstrukturgrammatik, aufgebaut nach dem X-Bar-Schema, kann mit Verweis
auf die im vorherigen Unterkapitel 2.3.1 vorgestellte Chomsky-Hierarchie als Typ 2-Grammatik
eingeordnet werden.
Auf den hier verwendeten Grundlagen, speziell dem X-Bar-Schema, basieren auch ande-
re Grammatikmodelle, wie zum Beispiel die LFG (Lexikalisch-Funktionale Grammatik).
Das in dieser Arbeit verwendete Prinzip ist stark an die LFG angelehnt. Näheres zur LFG
kann in [Bre01] nachgelesen werden.

2.3.3. Merkmalsstrukturen

Ein großes Problem für die maschinelle Übersetzung stellen übergenerierende Grammati-
ken dar. D. h. es können Sätze konstruiert werden, die es in der jeweiligen Sprache nicht
gibt. Mit der in Kapitel 2.3.2 in Abbildung 2.18 einfachen Beispielgrammatik können zum
Beispiel Sätze, wie „Dem Händler fährt mit die neuen Lieferwagen“, generiert werden.
Der zugehörige Phrasenstrukturbaum ist in Abbildung 2.20 dargestellt.
Um dies bei kontextfreien Sprachen zu verhindern, können viele neue Regeln und Nicht-
terminale hinzugefügt werden, wie zum Beispiel NPsg und NPpl. Oder es werden Merk-
malsstrukturen eingeführt. Eine Merkmalsstruktur besteht aus Attribut-Wert-Paaren und
wird meist in Form einer Matrix dargestellt. Dadurch können zum Beispiel Wörter aber
auch Nichtterminale genauer beschrieben werden. Mögliche Merkmale und Werte sind in
Tabelle 2.1 aufgelistet.
Die Merkmalsstruktur des Wortes „Händler“, dargestellt in Abbildung 2.21, kann bei-
spielsweise aus den Merkmalen Numerus (NUM), Genus (GEND), Person (PERS) und
Kasus (KAS) bestehen. NUM wird dann der Wert Singular (sg), GEND der Wert mas-
kulin (masc), PERS der Wert 3 für dritte Person und KAS der Wert Nominativ (nom)
zugewiesen. Bezogen auf die Beispielgrammatik kann verlangt werden, dass die Merkmale
und die dazugehörigen Werte der Merkmalsstrukturen der Nomen, Artikel und Verben
übereinstimmen. Außerdem kann über die Merkmale geprüft werden, ob der Subkatego-
risierungsrahmen der Verben mit den vorhandenen Elemente erfüllt ist. Durch die Merk-
malsstrukturen sollen ungrammatische Sätze verhindert werden [CEE+04, S. 94].

22

2.3. Grammatiken

S

�
��

��

H
HH

HH

NP
��
�

HH
H

Det

Dem

N’

N

Händler

VP

��
��

HH
HH

V

fährt

PP

�
��
�

H
HH

H

P

mit

NP

��
��

HH
HH

Det

die

N’
�
��

H
HH

AP

A

neuen

N’

N

Lieferwagen

Abbildung 2.20.: Ungrammatischer Phrasenstrukturbaum: „Dem Händler fährt mit die
neuen Lieferwagen.“


NUM sg
GEND masc
PERS 3
KAS nom



Abbildung 2.21.: Beispiel für Merkmalsstruktur des Wortes „Händler“

23

2. Grundlagen

MERKMALE WERTE

Numerus NUM Plural pl

Singular sg

Genus GEND maskulin masc

feminin fem

neutrum neut

Person PERS erste Person 1

zweite Person 2

dritte Person 3

Kasus KAS Nominativ nom

Genitiv gen

Dativ dat

Akkusativ akk

Tabelle 2.1.: Merkmale und Werte für eine Merkmalsstruktur

24

2.4. Parsing

2.4. Parsing

Grundlage für das Parsen von Sätzen sind die in Kapitel 2.3 beschriebenen Grammatiken.
Eine Grammatik ist ein Beschreibungsmittel, um die Struktur von Sätzen darzustellen.
Parsen bedeutet, die syntaktische Struktur eines Satzes zu erkennen. Besonders bei der
maschinellen Sprachverarbeitung wird das Parsen für die Analyse benötigt. Im folgenden
Kapitel werden die Grundlagen des Parsings erläutert und auf ein Parsingverfahren, das
Chart-Parsen, näher eingegangen.

2.4.1. Grundlagen des Parsings

Ein Parser ist ein Programm, das Sätze, Teilstrukturen oder Wörter analysiert, auf ihre
Korrektheit prüft und als Ausgabe eine Strukturbeschreibung liefert. Ein Parsingalgo-
rithmus baut auf einem Erkennungsalgorithmus auf. Die Aufgabe eines Erkennungsalgo-
rithmus ist es, für eine Folge von Symbolen zu entscheiden, ob sie zur Sprache L(G),
die durch die Grammatik G beschrieben wird, gehört. Ein Parsingalgorithmus macht das
gleiche, geht aber noch einen Schritt weiter und liefert eine Strukturbeschreibung der
Folge [NL94, S. 19]. Eine solche Folge von Symbolen kann zum Beispiel ein natürlich-
sprachlicher Satz sein. Zusätzlich muss noch eine beschreibende Grammatik G vorliegen,
für die entschieden wird, ob der Satz mit dieser erzeugt werden kann. Ein Parser gibt
dann zusätzlich als Strukturbeschreibung zum Beispiel einen Syntaxbaum bzw. Ablei-
tungsbaum des Satzes aus.
Das Parsen natürlichsprachlicher Sätze ist im Vergleich zum Parsen formaler Sprachen,
wie zum Beispiel Programmiersprachen, deutlich aufwändiger. Denn es muss mit Ambigui-
täten, einer großen Strukturvielfalt und einer erheblich höheren Komplexität umgegangen
werden [NL94, S. 14].

Zur Klassifikation von Parsingalgorithmen werden in der Regel drei Kriterien betrachtet
[NL94, S. 22]:

1. Verarbeitungsrichtung,

2. Analyserichtung und

3. Suchstrategie.

Die Verarbeitungsrichtung kann unidirektional oder bidirektional sein. Unter den Begriff
unidirektionale Verarbeitungsrichtung fällt die inkrementelle Verarbeitung von links nach
rechts oder von rechts nach links. Bei einer bidirektionale Verarbeitung wird von zwei
Richtungen gleichzeitig analysiert. Die Analyse kann zum Beispiel gleichzeitig am Sat-
zende und Satzanfang beginnen, oder in der Mitte des Satzes und dann zu beiden Seiten
laufen [NL94, S. 22].

25

2. Grundlagen

Das zweite Kriterium ist die Analyserichtung. Die meisten Parser arbeiten entweder
bottom-up oder top-down. Selten kann es auch Mischformen der beiden geben. Bottom-
up bedeutet, dass der Ausgangspunkt der Analyse der zu analysierende Satz ist. Durch
Anwendung der Regeln der Grammatik als Reduktion, d. h. die Elemente der rechten Re-
gelseite werden durch das Symbol der linken Regelseite ersetzt, wird eine Ableitung des
Satzes gesucht. Das Verfahren terminiert, wenn der Satz auf das Startsymbol S reduziert
wurde. Top-down Analysen beginnen dagegen beim Startsymbol und finden eine Ablei-
tung des Satzes durch Expansion der Regeln, d. h. die linke Seite der Regel wird ersetzt
durch die rechte [CEE+04, S. 254].
In Abbildung 2.23 bzw. Abbildung 2.24 wird der Satz „Der Hund bellt.“, der ein Wort der
Sprache der in Abbildung 2.22 dargestellten Beispielgrammatik ist, von links nach rechts
und bottom-up bzw. top-down geparst.

Das Parsen besteht zu einem Teil aus Suchprozessen. Immer wenn es verschiedene Analy-
semöglichkeiten gibt, wird eine Suchtstrategie benötigt um die Möglichkeiten strategisch
durchzugehen [NL94, S. 22]. Die bekanntesten Suchstrategien sind die Tiefen- und die
Breitensuche. Aber auch eine Best-First-Suche oder Beam-Suche ist möglich [CEE+04,
S. 255]. Für eine ausführliche Beschreibung der Strategien sei auf [RN04] verwiesen.

Eine weitere Einteilung der Parsingalgorithmen könnte nach der Grammatikkategorie
(siehe Chomsky-Hierarchie in Kapitel 2.3.1), die von ihnen akzeptiert wird, geschehen.
Im Folgenden werden aber nur Parsingalgorithmen für kontextfreie Sprachen betrachtet,
da von einer Phrasenstrukturgrammatik, die nach dem X-Bar-Schema aufgebaut ist (siehe
Kapitel 2.3.2), ausgegangen wird.

Ein Problem der elementaren Parsingverfahren, wie zum Beispiel einfacher Bottom-Up-
oder Top-Down-Parser, ist, dass Teilstrukturen mehrfach analysiert werden. Dies macht
sie sehr ineffizient [NL94, S. 102]. Chart-Parser, die auf kontextfreien Sprachen arbeiten,
speichern die schon analysierten Teile und können diese wiederverwenden. Das nächste
Unterkapitel beschreibt das Verfahren des Chart-Parsings näher.

Beispielgrammatik 3

S → NP VP Det → der

NP → Det N N → Hund

VP → V V → bellt

Abbildung 2.22.: Beispielgrammatik 3

26

2.4. Parsing

l1 Det

der

l2 Det

der

N

Hund

l3 NP
�� HH

Det

der

N

Hund

l4 NP
�� HH

Det

der

N

Hund

V

bellt

l5 NP
�� HH

Det

der

N

Hund

VP

V

bellt

l6 S
��
�

HH
H

NP
�� HH

Det

der

N

Hund

VP

V

bellt

Abbildung 2.23.: Aufbau einer Strukturbeschreibung bottom-up, links-rechts nach
[CEE+04, S. 255]

l1 S
�� HH

NP VP

l2 S
�� HH

NP
��HH

Det N

VP

l3 S
�� HH

NP
��HH

Det

der

N

VP

l4 S
��
�

HH
H

NP
�� HH

Det

der

N

Hund

VP

l5 S
��
�

HH
H

NP
�� HH

Det

der

N

Hund

VP

V

l6 S
�
��

H
HH

NP
�� HH

Det

der

N

Hund

VP

V

bellt

Abbildung 2.24.: Aufbau einer Strukturbeschreibung top-down, links-rechts nach
[CEE+04, S. 254]

27

2. Grundlagen

2.4.2. Chart-Parsing

Ein Chart-Parser speichert Teilresultate in einer Datenstruktur, der sogenannten Chart.
Dieser Vorgang entspricht dem Prinzip des dynamischen Programmierens. Durch Nach-
schlagen der Teilresultate werden unnötige Rekursionen vermieden. Chart-Parsing kann
als Top-Down-Chart-Parsing, Bottom-Up-Chart-Parsing, etc. realisiert werden [CEE+04,
S. 267].
Die bekanntesten Chart-Parser-Algorithmen sind der Earley-Algorithmus und der Cocke-
Younger-Kasami-Algorithmus (CYK-Algorithmus) [CEE+04, S. 267]. Die Grammatik für
den CYK-Algorithmus muss in Chomsky-Normalform3 vorliegen. Jede epsilonfreie Gram-
matik kann in Chomsky-Normalform umgeformt werden, dies bedeutet aber zusätzlichen
Aufwand und die Grammatik würde nicht mehr dem X-Bar-Schema entsprechen. Außer-
dem arbeitet der CYK-Algorithmus ausschließlich bottom-up. Dadurch kann es vorkom-
men, dass Konstituenten gebildet werden, ohne dass klar ist, ob diese zu größeren Kon-
stituenten weiter kombiniert werden können. Der Vorteil des Earley-Parsers hingegen ist,
dass beliebige kontextfreie Grammatiken genutzt werden können. Er kommt sowohl mit
Tilgungsregeln, als auch mit zyklischen Regeln und links- bzw. rechts-rekursiven Regeln
zurecht. Außerdem arbeitet er sowohl bottom-up als auch top-down. Das Weiterverfolgen
von nicht erfolgsversprechenden Konstituenten wird weitgehend vermieden [NL94, S. 267].
Deswegen wird im Folgenden nur das Prinzip des Earley-Parsers beschrieben, das in der
vorliegenden Arbeit verwendet werden soll.

Eine Chart wird meistens als Vektor, Matrix oder azyklischer Graph dargestellt [NL94,
S. 103]. Ein Eintrag in der Chart wird Item oder Kante genannt. Er beinhaltet unter
anderem immer den Abschnitt des Satzes, auf den sich das Item bezieht, und die Regel der
Grammatik, die angewandt wurde. Im zu analysierenden Satz werden die Zwischenräume
der Wörter von 0 bis n nummeriert, so dass der Satzabschnitt durch zwei Zahlen angegeben
werden kann. Die erste Zahl entspricht dem Anfang und die zweite Zahl dem Ende des
Abschnitts [CEE+04, S. 266].
Soll zum Beispiel der Satz „der Hund bellt“ analysiert werden, wird er wie folgt annotiert:
0Der1Hund2bellt3. Verwendet der Chart-Parser die Grammatik in Abbildung 2.22, kann
ein Eintrag in einer entsprechenden Chart, der den Satzabschnitt 0 bis 2 als NP analysiert,
folgendermaßen aussehen: 0 2 NP → Det N

Chart-Parser können in aktive und passive Chart-Parser unterteilt werden. Bei aktiven
Chart-Parsern wird die Regel eines Items in zwei Abschnitte, einen aktiven und einen
inaktiven, geteilt. Trennzeichen ist ein Punkt („dot“). Diese Items werden auch „dotted
Items“ genannt. Alle Kategorien vor dem Punkt sind im passiven Abschnitt und alle nach
dem Punkt im aktiven. Durch die Trennung kann eine Aussage über den Analysezustand
getroffen werden. Sieht ein Charteintrag wie folgt aus: 0 1 NP→Det • N, dann bedeutet
dies, dass das erste Wort als Artikel erkannt wurde und anschließend ein Nomen erwartet
wird. Die Bereiche rechts oder links des Punktes können auch leer sein. Ist der Punkt ganz

3vgl. [Sch03a] S. 52

28

2.4. Parsing

am Ende einer Regel, wird dieser Itemeintrag auch passive Kante genannt. Alle anderen
Kanten sind aktive Kanten, diese müssen noch vervollständigt werden [CEE+04, S. 267].

Earley Parser basieren auf drei Basisoperationen: der Expansion der Regeln (EXPAND),
der Verarbeitung eines Terminalsymbols (SCAN) und der Kombination zweier Einträge
(COMPLETE).

Die Basisoperationen sind definiert, wie in Abbildung 2.25, Abbildung 2.26 und Abbil-
dung 2.27, dargestellt. Es gilt α, β ∈ (V ∪ Σ)∗ und γ ∈ (V ∪ Σ)+.

EXPAND (top-down)

Existiert in der Chart eine Kante der Form i j A →α •Bβ mit i≤j,

dann wird für jede Grammatikregel B → γ

ein neues Item der Form j j B → •γ

in die Chart eingefügt.

Abbildung 2.25.: Expand [CEE+04, S. 268]

SCAN

Existiert in der Chart ein Item der Form i j-1 A →α • wjβ mit i≤j-1

und ist wj das j-te Wort der Eingabekette w = w1w2...wn mit 1 ≤ n,

dann wird ein neues Item der Form i j A →αwj • β

in die Chart eingefügt.

Abbildung 2.26.: Scan [CEE+04, S. 269]

COMPLETE (bottom-up)

Enthält die Chart ein Item der Form i j A →α •Bβ mit i≤j

und eine weiteres Item der Form j k B →γ• mit j≤k,

dann wird ein neues Item der Form i k A →αB • β

in die Chart eingefügt.

Abbildung 2.27.: Complete [CEE+04, S. 270]

29

2. Grundlagen

Der Algorithmus eines Earley Parser kann ganz allgemein wie in Abbildung 2.28 formuliert
werden.

ALGORITHMUS

Eingabe: Eine Eingabekette w = w1w2...wn mit 1 ≤ n

1. Füge 0 0 S’ → • S zur Initialisierung in die Chart ein (S entspricht dem
Startsymbol der Grammatik, S’ ist ein Nichtterminalsymbol, das nicht in der
Grammatik vorkommt)

2. Wende EXPAND, SCAN und COMPLETE solange an, bis keine weiteren Char-
teinträge erzeugt werden können.

Ausgabe: JA, falls 0 n S’ → S • in der Chart, sonst NEIN

Abbildung 2.28.: Earley Algorithmus

Der vorgestellte Algorithmus ist nur ein Erkenner, aber aus der Chart kann eine Struk-
turbeschreibung extrahiert werden.

Für die Beispielgrammatik in Abbildung 2.29 und den Satz „der Hund bellt“ soll eine
Chart nach dem Schema in Abbildung 2.28 erstellt werden. Der Ablauf wird in Tabelle
2.2 beschrieben.

Beispielgrammatik 4

S → NP VP Det → der

NP → Det N Det → die

VP → V N → Hund

VP → V NP N → Katze

V → bellt

V → sieht

Abbildung 2.29.: Beispielgrammatik 4 [CEE+04, S. 236]

30

2.4. Parsing

Nr. Item Begründung

1 0 0 S’ → • S Initialisierung

2 0 0 S → • NP VP EXPAND 1.

3 0 0 NP → • Det N EXPAND 2.

4 0 0 Det → • der EXPAND 3.

5 0 0 Det → • die EXPAND 3.

6 0 1 Det → der • SCAN 4.

7 0 1 NP → Det • N COMPLETE 3. mit 6.

8 1 1 N → • Hund EXPAND 7.

9 1 1 N → • Katze EXPAND 7.

10 1 2 N → Hund • SCAN 8.

11 0 2 NP → Det N • COMPLETE 7. mit 10.

12 0 2 S → NP • VP COMPLETE 2. mit 11.

13 2 2 VP → • V EXPAND 12.

14 2 2 VP → • V NP EXPAND 12.

15 2 2 V → • bellt EXPAND 13. oder 14.

16 2 2 V → • sieht EXPAND 13. oder 14.

17 2 3 V → bellt • SCAN 15.

18 2 3 VP → V • COMPLETE 13. mit 17.

19 2 3 VP → V • NP COMPLETE 14. mit 17.

20 0 0 S → NP VP • COMPLETE 12. mit 18.

Tabelle 2.2.: Chart für den Satz „Der Hund bellt.“ [CEE+04, S. 272]

31

3. Stand der Technik

Dieses Kapitel soll einen Einblick in den aktuellen Markt der Übersetzungssysteme bieten
und abwägen, ob diese als Grundlage für diese Arbeit verwendet werden können.

Übersetzungsprogramme gibt es mittlerweile viele. Die bekanntesten Systeme sind der
Google Translator1 und Yahoo Babelfish2. Der Google Translator (siehe Abbildung 3.1)
wird sehr häufig als Basis für andere frei verfügbare Übersetzungssysteme genutzt. Er
basierte viele Jahre auf dem kommerziellen System SYSTRAN3, mittlerweile hat Google
aber ein eigenes statistisches System entwickelt, das sogar Benutzerinteraktionen zulässt.
Der Benutzer kann zwischen Übersetzungsoptionen wählen, oder eine eigene Übersetzung
eingeben.

Abbildung 3.1.: Google Translator (http://translate.google.de)

Yahoo Babelfish (siehe Abbildung 3.2) dagegen bietet dem Benutzer nur die Möglichkeit
die Übersetzung zu editieren, macht aber keine Alternativvorschläge. Es basiert immer
noch auf SYSTRAN. SYSTRAN ist eins der bekanntesten kommerziellen Systeme, das
zunächst als regelbasiertes System entwickelt und mittlerweile zu einem Hybridsystem,
bestehend aus einem regelbasierten und einem statistischen System, erweitert wurde.
Ein bekanntes nichtkommerzielles maschinelles Übersetzungssystem ist GramTrans4. Auch

1http://translate.google.de
2http://babelfish.yahoo.com
3http://www.systran.de
4http://gramtrans.com

33

3. Stand der Technik

dies war ein regelbasiertes, genauer sogar ein transferbasiertes System und wurde mittler-
weile weiterentwickelt zu einem Hybridsystem. Es beinhaltet aber keine Übersetzung von
Deutsch nach Englisch.

Abbildung 3.2.: Yahoo Babelfish (http://babelfish.yahoo.com)

Die meisten Systeme auf dem Markt sind multilingual und bidirektional. Häufig werden
als maschinelle Übersetzungssysteme auch Systeme aufgelistet, die dem Anwender nur
Wörterbücher zur Verfügung stellen. Diese Systeme sind damit streng genommen aber
keine Übersetzungssysteme.
Auf dem Markt existiert kein System, das ausschließlich für Anforderungen (Require-
ments) entwickelt wurde. Eine Übersetzung könnte aber durch die Benutzung einer Sub-
sprache optimiert werden. Andere Systeme erzielen bei der Übersetzung weniger gute
Ergebnisse. Zum aktuellen Zeitpunkt gibt es nur ein System zur Unterstützung bei der
Übersetzung von Anforderungen vom Arabischen ins Englische und umgekehrt. Das Sys-
tem heißt ARAT5 und erweitert das RAT-System. Das RAT-System unterstützt den An-
wender beim Schreiben von Anforderungen durch das Bereitstellen von Schablonen und
analysiert die geschriebenen Anforderungen. ARAT realisiert aber keine automatische ma-
schinelle Übersetzung, sondern es gehört in die Kategorie MAHT (siehe Kapitel 2.2.1). Es
analysiert den zu übersetzenden Satz und zerlegt ihn dazu in Phrasen. Auf der Syntax-
ebene gibt es ein Mapping zwischen der arabischen und der englischen Syntax. So kann
ein arabischer Satz, nachdem er zerlegt wurde, in die englische Syntax transferiert werden.
Die eigentliche Übersetzung wird vom Anwender geleistet, indem er die einzelnen Phrasen
manuell übersetzt.
Das ARAT-System ist wegen der manuellen Übersetzung kein maschinelles Übersetzungs-
system. Ein solches System ist aber Ziel dieser Arbeit. Die Benutzung des Google Trans-

5vgl. [Ela11]

34

lators würde sich anbieten, da dieser schon sehr gute Ergebnisse liefert, aber der Benutzer
bräuchte zu viele Kenntnisse über die Schablonen und die Subsprache, um die Überset-
zung editieren zu können, als dass er ihn sinnvoll einsetzen könnte. Eine Möglichkeit wäre
es den Google Translator in die eigene Software zu integrieren und die Ausgabe maschinell
anzupassen. Da der Google Translator aber nur online verfügbar ist und die zu überset-
zenden Daten an Google geschickt werden müssten, ist dies keine Alternative. Besonders
bei Spezifikationen für Neuentwicklungen ist es nicht erwünscht geheime Daten an Dritte
weiterzugeben.
Da für die Übersetzung von Anforderungen bis jetzt kein System existiert, die Quali-
tät der allgemeinen maschinellen Übersetzungssysteme nicht überzeugt, sowie auch nicht
für schablonenbasierte Anforderungen ausgelegt oder nur online verfügbar ist, lohnt es
sich im Rahmen dieser Arbeit ein neues System zu entwickeln und nicht auf vorhandene
zurückzugreifen.

35

4. Konzept

In diesem Kapitel soll das Konzept des im Rahmen dieser Arbeit zu entwickelnden Werk-
zeugs beschrieben werden. Zunächst wird in Abschnitt 4.1 ein Verfahren zur maschinel-
len Übersetzung ausgewählt. Die Übersetzung wird für die in Kapitel 2.1.2 vorgestellten
Schablonen entwickelt. Dazu ist eine Grammatik für die deutschen, ebenso wie für die
englischen Anforderungen nötig. Diese werden in Abschnitt 4.2 vorgestellt. Anschließend
werden die einzelnen durchzuführenden Schritte der Übersetzung in den Abschnitten 4.3.1,
4.3.2 und 4.3.3 näher spezifiziert.

4.1. Auswahl eines Verfahrens zur maschinellen
Übersetzung

In Kapitel 2.2.2 werden verschiedene Verfahren zur maschinellen Übersetzung vorgestellt.
Nicht jedes Verfahren ist für jeden Anwendungszweck geeignet. Deswegen muss für die
gegebenen Voraussetzungen ein Verfahren ausgewählt werden.
Das schnellste und einfachste Verfahren ist die direkte Übersetzung. Allerdings gibt es
mittlerweile Verfahren, die zum Beispiel durch eine strukturelle Analyse des Satzes, eine
bessere Übersetzung erzielen. Es ist möglich eine solche Analyse des zu übersetzenden
Satzes zu realisieren. Damit kommt eine transferbasierte Übersetzung in Frage. Betrach-
tet werden muss noch die Tiefe und Art der Analyse.
Auch für eine Interlingua wird der Satz detailliert analysiert. Allerdings kann dieses Ver-
fahren ausgeschlossen werden, da es nicht möglich ist eine vollständige Interlingua zu
modellieren. Es kann zwar von einer Subsprache ausgegangen werden, diese ist aber im
Bezug auf die Semantik nicht hinreichend eingeschränkt, da sie ständig um neue Begriffe
erweitert wird. Selbes gilt für den neueren Ansatz der wissensbasierten Übersetzung. Das
notwendige Wissen, um Ambiguitäten aufzulösen, oder andere Übersetzungsprobleme zu
vermeiden, kann bislang und im Speziellen in dieser Arbeit nicht vollständig erfasst wer-
den.
Die beispielbasierte oder statistische Übersetzung benötigt unter anderem ein großes par-
alleles, bilinguales Korpus, bestehend aus schablonenbasierten Anforderungen. Dies ist
nicht vorhanden, da die bisher verfassten Anforderungsdokumente ohne Schablonen ge-
schrieben wurden und nicht für jedes eine Übersetzung vorhanden ist. Es existieren andere
parallele Korpora, die allerdings auch nicht geeignet sind, weil die Struktur und Art der

37

4. Konzept

Sätze bei allgemeinsprachlichen Texten oder auch anderen Domänen verschieden ist. Satz-
teile aus diesen Korpora für eine Übersetzung zu verwenden führt nicht zum gewünschten
Ergebnis, da die übersetzten Sätze dann nicht der englischen Schablone entsprechen.
Ein Hybridsystem, das ein regelbasiertes und ein beispielbasiertes oder statistisches Ver-
fahren kombiniert, ist im Rahmen dieser Arbeit nicht möglich. Es stellt aber eine Erwei-
terungsmöglichkeit dar.

Nach Betrachtung der verschiedenen Verfahren kommt nur ein transferbasiertes maschi-
nelles Übersetzungssystem in Frage. Ein Konzept dazu wird in den folgenden Kapiteln
erläutert.

4.2. Grammatik der Anforderungen

Das Werkzeug beschränkt sich auf die Übersetzung von funktionalen Anforderungen. Für
diese gibt es Schablonen, die in Kapitel 2.1.2 erläutert sind. Es wird eine Grammatik
für diese Schablonen benötigt, um die Sätze analysieren und übersetzen zu können. Hoe-
doro analysiert in seinem Werkzeugl Anforderungen, die nach eben genannten Schablo-
nen aufgebaut sind [Hoe11]. Er benutzt dazu allerdings einen deterministischen Automa-
ten. Deterministische Automaten können nur Grammatiken vom Typ 3 verwenden (siehe
Chomsky-Hierarchie Kapitel 2.3.1), allerdings kann mit diesen nur eine sehr flache Ana-
lyse erreicht werden. Für eine Übersetzung ist aber, wie in Abschnitt 4.1 motiviert, eine
etwas tiefere Analyse sinnvoll. Dies ist mit einer Phrasenstrukturgrammatik, deren Prin-
zip in Kapitel 2.3.2 vorgestellt wird, möglich. Dadurch können Strukturinformationen
für eine bessere Übersetzung genutzt werden. Die Grammatik von Hoedoro kann daher
nicht verwendet werden. Allerdings können als Ansatz für die Entwicklung einer Phrasen-
strukturgrammatik die von Hoedoro beschriebenen Phrasen1, die er als Basis für seinen
Automat benutzt, verwendet werden.
Im Folgenden wird eine kontextfreie Phrasenstrukturgrammatik für ein transferbasiertes
maschinelles Übersetzungssystem vorgestellt, mit der Sätze, deren Struktur den Schablo-
nen entpricht, (re-)konstruiert werden können. Diese Grammatik besteht aus Phrasen-
strukturregeln und lexikalischen Regeln. Es wird sowohl eine Grammatik für deutsche als
auch für englische Anforderungen vorgestellt.

4.2.1. Phrasenstrukturregeln

Zunächst wird eine Basisgrammatik verwendet, die Anforderungen ohne Vorbedingungen
abdeckt. Dies entspricht der Schablone in Abbildung 2.5. Zusätzlich gilt, dass der Sys-
temname nur aus einem bestimmten oder unbestimmten Artikel und einem Nomen be-

1vgl. [Hoe11] S. 33–41

38

4.2. Grammatik der Anforderungen

stehen darf. Ein Objekt und dessen Ergänzung ist optional. In einer Benutzerinteraktion
oder Schnittstellenanforderung ist das Objekt, wenn es vorhanden ist, eine Nominalphra-
se (NP) oder eine Präpositionalphrase (PP). Mögliche Strukturen sind in Abbildung 4.1
dargestellt. Bei einer selbstständigen Systemaktivität kann das Objekt komplexer aufge-
baut sein und aus zwei Phrasen bestehen. Die möglichen Strukturen eines Objekts mit
dem folgenden Prozesswort sind in Abbildung 4.2 dargestellt. Für das „X“ kann eine
Nominalphrase oder eine Präpositionalphrase eingesetzt werden.

IP
�
��

H
HH

X I

Prozesswort

IP

I

Prozesswort

Abbildung 4.1.: Mögliche Phrasenstrukturen für ein Objekt und das folgende Prozesswort
einer Benutzerinteraktion oder Schnittstellenanforderung

VP
�
��

H
HH

X V’
�
��

H
HH

X V

Prozesswort

VP
�
��

H
HH

X V

Prozesswort

VP

V

Prozesswort

Abbildung 4.2.: Mögliche Phrasenstrukturen für ein Objekt und das folgende Prozesswort
einer selbstständigen Systemaktivität

Die Basisgrammatik für deutsche Anforderungen ist in Abbildung 4.3, die Basisgrammatik
für englische Anforderungen ist in Abbildung 4.4 dargestellt. Diese Grammatiken können
um zusätzliche Komponenten erweitert werden, um noch mehr Sätze abzudecken. Sowohl
mit der in Abbildung 4.3 als auch mit der in Abbildung 4.4 dargestellten Grammatik
lassen sich drei verschiedene Typen von Anforderungen beschreiben. Abbildung 4.5 zeigt
die erste Möglichkeit, eine deutsche Anforderung, die eine selbstständige Systemaktivität
beschreibt. Abbildung 4.6 ist die dazugehörige Übersetzung auf Englisch.
Der zweite Typ Anforderung ist eine Benutzerinteraktion. Ein Beispiel für das Deutsche
ist in Abbildung 4.7 gegeben. Die englische Übersetzung ist in Abbildung 4.8 dargestellt.
Abbildung 4.9 zeigt ein Beispiel für den letzten Typ Anforderung, eine Schnittstellenan-
forderung. Die entsprechende Übersetzung ist in Abbildung 4.10 dargestellt.
Variieren kann bei diesen drei Typen der Systemname, die rechtliche Verbindlichkeit
(Hilfsverb), der Benutzer, das Prozesswort (Verb) und das damit eventuell verbundene
subkategorisierte Objekt.
Aufgebaut sind die Grammatiken nach dem in Kapitel 2.3.2 erläuterten X-Bar-Schema.

39

4. Konzept

Basisphrasenstrukturregeln Deutsch

IP → NP I’ VP → VP IP

IP → NP I VP → NP V’

IP → PP I VP → PP V’

IP → I VP → V

NP → Det N VP → NP V

PP → P NP VP → PP V

I’ → I VP V’ → NP V

V’ → PP V

Abbildung 4.3.: Basisphrasenstrukturregeln Deutsch

Basisphrasenstrukturregeln Englisch

IP → NP I’ VP → VP IP

IP → I NP VP → V’ NP

IP → I PP VP → V’ PP

IP → I VP → V

NP → Det N VP → V NP

PP → P NP VP → V PP

I’ → I VP V’ → V NP

V’ → V PP

Abbildung 4.4.: Basisphrasenstrukturregeln Englisch

40

4.2. Grammatik der Anforderungen

IP

�
��

�
��
�

H
HH

H
HH

H

NP
��
�

HH
H

Det

Das

N

System

I’

��
�
��
�

HH
H
HH

H

I

muss

VP

��
�
��
�

HH
H

HH
H

NP
�
��

H
HH

Det

die

N

Anforderungen

V

anwenden

Abbildung 4.5.: Selbstständige Systemaktivität auf Deutsch

IP

��
��
�

HH
HH

H

NP
�� HH

Det

The

N

system

I’

�
��
�

H
HH

H

I

shall

VP

�
��
�

H
HH

H

V

execute

NP
�
��

H
HH

Det

the

N

specifications

Abbildung 4.6.: Selbstständige Systemaktivität auf Englisch

41

4. Konzept

IP

��
�
��
�

HH
H

HH
H

NP
��
�

HH
H

Det

Das

N

System

I’

�
��

�
��

H
HH

H
HH

I

muss

VP

��
��

�
��
�
��
�

HH
HH

H
HH

H
HH

H

VP

��
�
��

��

HH
H
HH

HH

NP
��
�

HH
H

Det

dem

N

Benutzer

V’

��
��
�

HH
HH

H

NP
�
��

H
HH

Det

die

N

Möglichkeit

V

bieten

IP

�
��

��

H
HH

HH

NP
�
��

H
HH

Det

eine

N

Eingabe

I

zu_machen

Abbildung 4.7.: Benutzerinteraktion auf Deutsch

42

4.2. Grammatik der Anforderungen

IP

�
��

�
��

H
HH

H
HH

NP
�� HH

Det

The

N

system

I’

�
��

�
��

H
HH

H
HH

I

shall

VP

�
��

�
��

��
�

H
HH

H
HH

H
HH

VP

��
��

��

HH
HH

HH

V’
��
�

HH
H

V

provide

NP
�� HH

Det

the

N

user

PP
��

���
PP

PPP

with the ability

IP
��

��
HH

HH

I

to_make

NP
�� HH

Det

a

N

input

Abbildung 4.8.: Benutzerinteraktion auf Englisch

43

4. Konzept

IP

��
��

�
��

HH
HH

H
HH

NP
�
��

H
HH

Det

Das

N

System

I’

��
��

��

HH
HH

HH

I

muss

VP

��
��

�
��

HH
HH

H
HH

VP

V
��
�

PP
P

fähig sein

IP

�
��

�
��

H
HH

H
HH

NP
�
��

H
HH

Det

die

N

Anforderung

I

anzuwenden

Abbildung 4.9.: Schnittstellenanforderung auf Deutsch

IP

��
��

��

HH
HH

HH

NP
�� HH

Det

The

N

system

I’

��
��
�

HH
HH

H

I

shall

VP

�
��

�
��

HH
H

HH
H

VP

V
��� PPP

be able

IP

�
��
�

H
HH

H

I

to_execute

NP
��
�

HH
H

Det

the

N

specification

Abbildung 4.10.: Schnittstellenanforderung auf Englisch

44

4.2. Grammatik der Anforderungen

Die Grammatiken aus Abbildung 4.3 und Abbildung 4.4 generieren über, d. h. es können
auch Sätze konstruiert werden, die nicht erwünscht sind, wie zum Beispiel der Satz in
Abbildung 4.11. Bei diesem Satz verlangt der hier angenommene Subkategorisierungs-
rahmen des Verbs „bieten“ (<np:nom, np:dat, np:akk, ip:inf>) noch einen Infinitivsatz
(ip:inf). Der Subkategorisierungsrahmen ist nicht vollständig gesättigt und der Satz daher
ungrammatisch.

IP

�
��

�
��
�

H
HH

H
HH

H

NP
��
�

HH
H

Det

Das

N

System

I’

��
��

�
��

H
HH

HH
HH

I

muss

VP

��
�
��

��

HH
H

HH
HH

NP
��
�

HH
H

Det

dem

N

Benutzer

V’

�
��

��

H
HH

HH

NP
��
�

HH
H

Det

die

N

Möglichkeit

V

bieten

Abbildung 4.11.: Übergenerierter Satz der Basisgrammatik

Mit Merkmalsstrukturen (siehe Kapitel 2.3.3) und Restriktionen bezüglich dieser Merk-
malsstrukturen kann ein solches Übergenerieren verhindert werden. Es genügt Merkmalss-
trukturen und Restriktionen für die deutsche Basisgrammatik anzugeben. Die Merkmalss-
trukturen für die verschiedenen Wortarten werden in Abschnitt 4.2.2 beschrieben. Die
Restriktionen für die Phrasenstrukturreglen sind nach folgendem Schema aufgebaut:

XP[
M1 : W1
M2 : W2

] → Y PM1 : W1
M3 : W3
M2 : W2


X ′M1 : W1

M3 : W3
M4 : W4



Sei XP→ YP X’ eine beliebige Regel. Über die Merkmalsstrukturen kann verlangt werden,
dass bestimmte Merkmale (M) vorhanden sein müssen und deren Werte (W) übereinstim-
men oder dass ein Merkmal einen bestimmten Wert hat. In dieser Grammatik werden nur
gleiche Merkmale miteinander verglichen.

45

4. Konzept

Eine Merkmalsstruktur besteht immer aus Merkmal-Wert-Paaren (M:W). Bei den Re-
striktionen kann als Wert ein exakter Wert verlangt oder eine Variable angegeben wer-
den. Über eine Variable wird sichergestellt, dass die Werte der Merkmale verschiedener
Kategorien übereinstimmen. Das Merkmal M1 von XP muss beispielsweise den gleichen
Wert haben wie das Merkmal M1 von YP und das Merkmal M1 von X’. Selbes gilt für
das Merkmal M2 von XP das den gleichen Wert haben muss, wie das Merkmal M2 von
YP. X’ hat kein Merkmal M2. Der Eintrag M4 : W4 macht beispielsweise nur Sinn, wenn
W4 ein Wert ist und keine Variable, da das Merkmal M4 bei keiner anderen Kategorie
vorkommt.

Die deutsche Basisgrammatik sieht mit Restriktionen bezüglich der Merkmalsstrukturen
folgendermaßen aus:

IP → NPNUM : N
PERS : 3
KAS : nom


I ′NUM : N

PERS : 3
FIN : +


IPFIN : F

ZU : Z
SUBKAT : X1X2


→ NP[

KAS : K
] IFIN : F

ZU : Z
SUBKAT : X1(np : K)X2


IPFIN : F

ZU : Z
SUBKAT : X1X2


→ PP[

KAS : K
PREP : P

] IFIN : F
ZU : Z
SUBKAT : X1(pp : P_K)X2


IPFIN : F

ZU : Z
SUBKAT : S


→ IFIN : F

ZU : Z
SUBKAT : S


NP

NUM : N
PERS : P
KAS : K
GEND : G


→ Det

NUM : N
PERS : P
KAS : K
GEND : G


N

NUM : N
PERS : P
KAS : K
GEND : G


PP[

KAS : K
PREP : P

] → P[
KAS : K
PREP : P

] NP[
KAS : K

]

46

4.2. Grammatik der Anforderungen

I ′NUM : N
PERS : P
FIN : F


→ INUM : N

PERS : P
FIN : F


V PFIN : −

ZU : −
SUBKAT : np : nom


V PFIN : F

ZU : Z
SUBKAT : X1X2


→ V PFIN : F

ZU : Z
SUBKAT : X1(ip : inf)X2


IPFIN : −

ZU : +
SUBKAT : np : nom


V PFIN : F

ZU : Z
SUBKAT : X1X2


→ NP[

PERS : 3
KAS : K

] V ′FIN : F
ZU : Z
SUBKAT : X1(np : K)X2


V PFIN : F

ZU : Z
SUBKAT : X1X2


→ PP[

KAS : K
PREP : P

] V ′FIN : F
ZU : Z
SUBKAT : X1(pp : P_K)X2


V PFIN : F

ZU : Z
SUBKAT : S


→ VFIN : F

ZU : Z
SUBKAT : S


V PFIN : F

ZU : Z
SUBKAT : X1X2


→ NP[

KAS : K
] VFIN : F

ZU : Z
SUBKAT : X1(np : K)X2


V PFIN : F

ZU : Z
SUBKAT : X1X2


→ PP[

KAS : K
PREP : P

] VFIN : F
ZU : Z
SUBKAT : X1(pp : P_K)X2


V ′FIN : F

ZU : Z
SUBKAT : X1X2


→ NP[

KAS : K
] VFIN : F

ZU : Z
SUBKAT : X1(np : K)X2


V ′FIN : F

ZU : Z
SUBKAT : X1X2


→ PP[

KAS : K
PREP : P

] VFIN : F
ZU : Z
SUBKAT : X1(pp : P_K)X2



47

4. Konzept

Wird der in Abbildung 4.11 dargestellte übergenerierte Satz um Merkmalsstrukturen und
Restriktionen ergänzt, scheitert der Aufbau. Abbildung 4.13 zeigt den Syntaxbaum mit
den relevanten Merkmalsstrukturen. Es ist nicht möglich die Restriktionen der Regel
I’ → I VP, die nochmals in Abbildung 4.12 dargestellt sind, anzuwenden, da eine VP mit
einem Subkategorisierungsrahmen <np:nom> verlangt wird aber die VP des Satzes den
Subkategorisierunsgrahmen <np:nom, ip:inf> hat.

I ′NUM : N
PERS : P
FIN : F


→ INUM : N

PERS : P
FIN : F


V PFIN : −

ZU : −
SUBKAT : np : nom



Abbildung 4.12.: Regel I’ → I VP mit Merkmalsstrukturen und Restriktionen

Abbildung 4.13.: Übergenerierter Satz aus Abbildung 4.11 mit Merkmalsstrukturen

Zusätzlich zu den Restriktionen bezüglich der Merkmalsstrukturen werden drei weitere
Bedingungen zur Überprüfung des Anforderungstyps aufgestellt. Es wird verlangt, dass
der Strukturbaum des Satzes entweder eine der beiden Strukturen aus Abbildung 4.14
enthält, wobei wirklich nur eine der beiden Strukturen im Baum wieder gefunden werden
darf, oder die Struktur aus Abbildung 4.15 nicht vorhanden ist. Der linke Strukturbaum in
Abbildung 4.14 findet sich in einem Strukturbaum, der eine Benutzerinteraktion repräsen-
tiert wieder. Der rechte Strukturbaum dagegen entspricht einer Schnittstellenanforderung.

48

4.2. Grammatik der Anforderungen

Kommen diese beiden Strukturen nicht im Satz vor, darf auch die Struktur aus Abbildung
4.15 nicht vorkommen, sonst wäre der Satz auch keine selbstständige Systemaktivität.

I’

��
��
�

HH
HH

H

I VP

��
�
��
�

HH
HH

HH

VP

��
�
��

HH
H

HH

NP V’

�
��

��

H
HH

HH

NP
�
��

H
HH

Det

die

N

Möglichkeit

V

bieten

IP

I’

��
��

HH
HH

I VP
��
�

HH
H

V

fähig_sein

IP

Abbildung 4.14.: Restriktionen bezüglich der Grammatik aufgrund der Schablone

I’
�� HH

I VP
�� HH

VP IP

Abbildung 4.15.: Restriktionen bezüglich der Grammatik aufgrund der Schablone

Schon durch die Basisgrammatik wird weitestgehend gewährleistet, dass die Struktur des
Satzes der Schablone entspricht. Allerdings besteht die Basisgrammatik nur aus Phrasen-
strukturregeln. Durch die Restriktionen wird überprüft, ob auch die lexikalischen Kate-
gorien korrekt sind.

4.2.2. Lexikon (lexikalische Regeln)

Das Lexikon, aus dem die lexikalischen Regeln extrahiert werden, besteht für die in Ab-
schnitt 4.2 vorgestellte Basisgrammatik aus Nomen, Verben, Modalverben, Präpositionen
und Artikeln. Ein Auszug aus dem Lexikon ist als Anhang A beigefügt. Die enthaltenen
Wörter stammen aus einem großen monolingualen Korpus, extrahiert aus verschiedenen
Spezifikationsdokumenten. Dadurch ist eine domänenspezifische Sprache gewährleistet.

49

4. Konzept

Die Wörter werden aus diesem Korpus extrahiert und um Informationen, die für die
Merkmalsstrukturen relevant sind, ergänzt.
Wie in Abschnitt 4.2.1 angesprochen, können mit der Basisgrammatik unerwünschte Sät-
ze generiert werden. Deswegen werden Restriktionen bezüglich der Merkmalsstrukturen
für die Phrasenstrukturregeln benötigt.
Die Merkmalsstruktur für Nomen und Artikel hat vier Argumente. Angegeben werden
muss, wie in Abbildung 4.16 dargestellt, Numerus, Genus, Person und Kasus.


NUM sg, pl
GEND masc, fem, neut
PERS 1, 2, 3
KAS nom, akk, dat, gen



Abbildung 4.16.: Merkmalsstruktur für Nomen und Artikel

Die Merkmalsstruktur für Verben (siehe Abbildung 4.17) verlangt die Angabe der Fini-
theit und des Subkategorisierungsrahmens. Zusätzlich wird angegeben, ob das Verb ein
zu-Infinitiv ist. 

FIN + / -
ZU + / -
SUBKAT *



Abbildung 4.17.: Merkmalsstruktur für Verben

Für die Modalverben muss in der Merkmalsstruktur, welche in Abbildung 4.18 dargestellt
ist, wie bei den Nomen und Artikeln der Numerus und die Person angegeben werden,
zusätzlich wie bei den Verben die Finitheit.

NUM sg, pl
PERS 1, 2, 3
FIN + / -



Abbildung 4.18.: Merkmalsstruktur für Modalverben

Die Präpositionen sind durch Angabe des Kasus vollständig beschrieben. Bei den Restrik-
tionen für die Basisgrammatik 4.3 tauchen bei den Präpositionen zusätzlich das Merkmal

50

4.2. Grammatik der Anforderungen

PREP auf. Dieses wird aus übersetzungstechnischen Gründen benötigt und entspricht der
Präposition (z.B. an, auf, ...).KAS nom, akk, dat, gen

PREP auf, an, ...



Abbildung 4.19.: Merkmalsstruktur für Präpositionen

Mit diesen Merkmalen sind die Wörter, für die im Rahmen dieser Arbeit zu übersetzenden
Sätze, ausreichend beschrieben. Die Werte der Merkmale eines Wortes können direkt aus
dem entsprechenden Lexikoneintrag entnommen und eine lexikalische Regel erzeugt wer-
den. Die Abbildung 4.20 zeigt eine mögliche lexikalische Regel für das Wort „System“.

N
NUM : sg
GEND : fem
PERS : 3
KAS : nom


→ System

NUM : sg
GEND : fem
PERS : 3
KAS : nom



Abbildung 4.20.: Lexikalische Regel für das Wort „System“

Die Daten für das Lexikon stammen hauptsächlich aus SMOR, einem Werkzeug, das am
IMS2 entwickelt wurde und die Morphologie deutscher Wörter analysiert [SFH02]. Es kön-
nen damit unter anderem Grundform, Kasus, Genus, Numerus und Person eines Wortes
ermittelt werden. Außerdem funktioniert diese Analyse auch in die umgekehrte Richtung,
d.h. wenn Grundform, Kasus, Numerus usw. bekannt sind, kann die entsprechende Wort-
form ausgegeben werden. Dadurch war es zum Beispiel möglich die Form eines Verbs in
der dritten Person im Plural automatisch zu ermitteln.
Bei dem Lexikon handelt es sich um ein Vollformenlexikon, d. h. alle möglichen und not-
wendigen Formen eines Wortes können direkt nachgeschlagen werden. In anderen Lexika
ist zum Beispiel bei den Verben nur der Infinitiv gespeichert und andere Formen müssen
über Regeln aus diesem generiert werden.
Die Subkategorisierungsrahmen der Verben stammen aus der Arbeit von Schulte im Wal-
de [Sch03b]. Diese und alle bisher genannten Daten standen für diese Diplomarbeit schon
aufbereitet zur Verfügung. Im Rahmen dieser Arbeit wurden die Daten in ein einheitli-
ches Format zusammengefasst und wenn möglich mit Übersetzungen aus den Daten von
Hoedoro ergänzt.
In dieser Arbeit werden in den Subkategorisierungsrahmen nur Nominalphrasen, Präpo-
sitionalphrasen und Infinitvphrasen berücksichtigt. Eine NP wird im deutschen Subate-
gorisierungsrahmen beschrieben durch „np:KAS“, wobei KAS das Kasus-Merkmal der

2Institut für maschinelle Sprachverarbeitung der Universität Stuttgart

51

4. Konzept

Nominalphrase ist. Eine PP wird angegeben durch „pp:PREP_KAS“. PREP und KAS
sind die Merkmale aus der Merkmalsstruktur. Eine Infintivphrase wird ohne zusätzlich
Merkmale mit „ip:inf“ beschrieben.
Die Subkategorisierungsrahmen für die englischen Verben hingegen stammen aus einer
Liste mit englischen Verben und deren mögliche Subkategorisierungsrahmen. Diese Liste
wurde aus dem englischen Wikipedia mit dem BitPar3 Parser im Rahmen des Word-
Graph4 Projekts am IMS erstellt. Die Subkategorisierungsrahmen wurden statistisch ex-
trahiert und sind daher nicht vollständig korrekt. Für einen repräsentativeren Datensatz
werden nur die am häufigsten vorkommenden Subkategorisierungsrahmen für jedes Verb
verwendet. Die Notation der englischen Subkategorisierungsrahmen wurde fast vollständig
übernommen und nur teilweise an die Notation der deutschen Subkategorisierungsrahmen
angepasst. Beispielsweise ein Subjekt wird in englischen Subkategorisierungsrahmen mit
„subj“ und in deutschen mit „np:nom“ beschrieben. Eine Nominalphrase wird nur durch
„np“angegeben und die Präpositionalphrase durch „pp:PREP“.

4.3. Transferbasierte Übersetzung

Ergebnis der Diskussion zur Auswahl eines Verfahrens für die maschinelle Übersetzung
in Abschnitt 4.1 ist das transferbasierte Verfahren. Eine transferbasierte Übersetzung,
wie sie in Kapitel 2.2.2 beschrieben wird, beinhaltet die Analyse des zu übersetzenden
Satzes, den Transfer von einer quellsprachlichen in eine zielsprachliche Repräsentation
und die Generierung des Satzes in der Zielsprache. In den folgenden Abschnitten soll auf
das Konzept der einzelnen Schritte näher eingegangen werden.

4.3.1. Analyse

Die transferbasierte Übersetzung beginnt mit der Analyse des zu übersetzenden Satzes.
Diese Analyse kann aufgeteilt werden, in die morphologische und die strukturelle Analyse.
Auf eine morphologische Analyse kann im Moment verzichtet werden, da ein Vollformen-
lexikon zur Verfügung steht. Alle Wörter des Satzes werden direkt darin nachgeschlagen
und müssen nicht erst auf ihre Grundform reduziert werden. Eine morphologische Analyse
macht Sinn, um zum Beispiel die Größe des Lexikons zu reduzieren [HS92, S. 82]. Dies
kann als Erweiterung für das Werkzeug in Frage kommen.
Die strukturelle Analyse übernimmt ein Earley Parser. Das Vorgehen des Earley Parsers
wurde in Kapitel 2.4.2 beschrieben. Als Eingabe erhält dieser den zu übersetzenden Satz

3vgl. [Sch04]
4http://wiki.ims.uni-stuttgart.de/extern/WordGraph

52

4.3. Transferbasierte Übersetzung

und die deutsche Basisgrammatik aus Abschnitt 4.2.1. Die Basisgrammatik wird um le-
xikalische Regeln, durch das Nachschlagen der Wörter im Lexikon, erweitert. Dann kann
der Satz analysiert werden.
Um zu vermeiden, dass nicht gewollte Sätze akzeptiert werden, müssen die Restriktionen
bezüglich der Merkmale eingehalten werden. Außerdem wird durch zusätzliche Restrik-
tionen (siehe S.49) überprüft, ob der Satz gemäß der Schablone geschrieben wurde.

In Kapitel 2.2.3 werden einige Probleme der maschinellen Übersetzung erörtert. Ein Teil
dieser Probleme betrifft die Analyse, genauer sind dies die Probleme, die nur eine Sprache
betreffen. Darunter fallen strukturelle und kategoriale Ambiguitäten auf Syntaxebene.
Diese treten bei den Anforderungen, die von der Grammatik akzeptiert werden nicht auf,
da die Grammatik eindeutig ist. Eine eindeutige Grammatik ist sinnvoll, da eindeutige
Anforderungen verlangt werden. Ambiguitäten auf Morphologieebene treten auch nicht
auf, denn in der Subsprache sind alle Wörter eindeutig definiert. Gleiches gilt für Ambi-
guitäten auf der Semantikebene, wie zum Beispiel Homographe oder Polyseme. Auch diese
Wörter sind in der domänenspezifischen Sprache eindeutig. Die referentielle Ambiguität
hingegen kann, wie in Kapitel 2.2.3 bereits erwähnt, bei einer satzweisen Übersetzung
nicht aufgelöst werden.

4.3.2. Transfer

Der zweite Schritt der transferbasierten Übersetzung ist der Transfer der Repräsenta-
tion des Satzes in Quellsprache in eine Repräsentation des Satzes in Zielsprache. Nach
Hutchins und Somers in [HS92]5 kann dieser Schritt in den lexikalischen und den syntak-
tischen Transfer aufgeteilt werden.
Der lexikalische Transfer überführt die Wörter des Satzes mittels eines bilingualen Lexi-
kons von der Quellsprache in die Zielsprache. Die Einträge der Wörter, die im Rahmen
der Analyse im Lexikon nachgeschlagen werden, enthalten auch immer eine Übersetzung,
die hier verwendet wird.
Der strukturelle Transfer wird durch Transferregeln beschrieben. Er überführt die Struk-
turbeschreibung der Analyse, die abhängig ist von der Quellsprache, mittels der Trans-
ferregeln in eine Strukturbeschreibung in der Zielsprache. Der strukturelle Transfer lässt
sich in mehrere Schritte aufteilen.
Zuerst werden schablonenspezifische Transferregeln angewandt. Im Moment beinhalten
diese nur die in Abbildung 4.21 dargestellt Regel. Durch die schablonenspezifischen Trans-
ferregeln wird gewährleistet, dass die Struktur der deutschen Schablone in die Struktur
der englischen Schablone überführt wird.

5vgl. [HS92] S. 113

53

4. Konzept

I’

��
�
��

HH
H

HH

I VP

��
��

��

HH
HH

HH

VP

�
��
��

H
HH

HH

NP1 V’

��
��

HH
HH

NP2
�� HH

Det

the

N

ability

V

provide

IP

I’

��
��
�

HH
HH

H

I VP

�
��

�
��

H
HH

H
HH

VP

�
��

��

H
HH

HH

V’
�
��

H
HH

V

provide

NP1

PP
��
�

HH
H

P

with

NP2
�� HH

Det

the

N

ability

IP

Abbildung 4.21.: Schablonenspezifische Transferregel

Die Transferregel in Abbildung 4.21 betrifft nur den Anforderungstyp „Benutzerinterakti-
on“. Die anderen beiden Anforderungstypen benötigen keinen speziellen Transfer und kön-
nen mit den folgenden sprachspezifischen Transferregeln korrekt übersetzt werden. Auch
der dargestellte Transfer für die Benutzerinteraktion könnte mit den folgenden Regeln
transferiert werden. Es würden dadurch allerdings mehrere Übersetzungsmöglichkeiten
(siehe S. 56) entstehen, wobei nur eine davon richtig ist, da die Übersetzung wegen der
Schablone an dieser Stelle eindeutig ist. Mit den schablonenspezifischen Transferregeln
wird diese eindeutige Übersetzung umgesetzt.
Vor dem Transfer mittels sprachspezifischen Regeln werden zunächst noch die Subkate-
gorisierungsrahmen der Verben transferiert. Dieser Schritt soll anhand des Beispielsatzes
„Das System muss dem Benutzer eine Antwort geben.“, dessen Phrasenstrukturbaum in
Abbildung 4.22 dargestellt ist, erläutert werden.
Das Prozesswort „geben“ hat in diesem Fall den Subkategorisierungsrahmen <np:nom,
np:dat, np:akk>. Als Übersetzung für „geben“ steht im Lexikon „give“ mit folgenden mög-
lichen Subkategorisierungsrahmen: <subj, np>, <subj, np, np> und <subj, np, pp:to>.
Es wäre natürlich ein großer Vorteil für die Übersetzung, wenn eine eindeutige Zuordnung
zwischen den deutschen Subkategorisierungsrahmen und den englischen Subkategorisie-
rungsrahmen vorliegen würde. Da für eine automatische Zuordnung keine Werkzeuge und
Daten zur Verfügung stehen und die Entwicklung solcher den Rahmen dieser Arbeit spren-
gen würden, wurde auf eine eindeutige Zuordnung verzichtet. Eine manuelle Zuordnung
ist aus Kosten- und Zeitgründen zu aufwändig.
Um „geben“ und die Elemente aus dessen Subkategorisierungsrahmen korrekt zu überset-
zen, wird der dazugehörige englische Subkategorisierungsrahmen ermittelt. Dafür kommen
nur jene in Frage, die gleich viele Elemente haben, wie der deutsche Subkategorisierungs-
rahmen. Subkategorisierungsrahmen mit mehr oder weniger Elemente können nicht ver-
wendet werden, da das Werkzeug nicht fähig ist zu entscheiden, ob und wenn ja welche

54

4.3. Transferbasierte Übersetzung

Elemente weggelassen werden sollen und dem Werkzeug das Wissen fehlt, um ein neues
Element hinzuzufügen. In dem Beispiel kommt nur der englische Subkategorisierungs-
rahmen <subj, np, pp:to> für den Transfer in Frage. Es ist generell möglich, dass auch
mehrere Subkategorisierungsrahmen passen.

IP

�
��

�
��
�

H
HH

H
HH

H

NP
��

��
PP

PP

Das System

I’

��
�
��

��

HH
H

HH
HH

I

muss

VP

��
��

�
��

HH
HH

H
HH

NP
��

���
PP

PPP

dem Benutzer

V’

�
��
�

H
HH

H

NP
��

��
PP

PP

eine Antwort

V

geben

Abbildung 4.22.: Beispielsatz für einen Transfer der Subkategorisierungsrahmen

Für jeden möglichen Subkategorsierungsrahmen wird geprüft, ob der englische ebenso wie
der deutsche ein Subjekt (subj bzw. np:nom) enthält. Da die Position des Subjekts im
Satz feststeht und in der deutschen, so wie der englischen Schablone gleich ist, können
diese Elemente der Subkategorisierungsrahmen als bearbeitet angesehen werden. Sie wer-
den nicht weiter berücksichtigt. Es bleibt noch der Transfer zwischen <np:dat, np:akk>
und <np, pp:to>.
Aufgrund der Kenntnisse über die Daten aus dem Lexikon wird davon ausgegangen, dass
die Reihenfolge der Elemente im englischen Subkategorisierungsrahmen auch der Reihen-
folge der Elemente im Satz entspricht. Deswegen werden den englischen Elementen die
deutschen Elemente zugeordnet und nicht umgekehrt. Die Reihenfolge der englischen Ele-
mente und die Reihenfolge der deutschen Elemente muss allerdings nicht übereinstimmen,
d.h. alle möglichen Zuordnungen bestimmen die verschiedenen Übersetzungsmöglichkei-
ten. Bezogen auf die Subkategorisierungsrahmen aus dem Beispiel bedeutet dies, dass es
sowohl Sätze gibt in denen np:dat mit np und np:akk mit pp:to als auch Sätze existieren
in denen np:dat mit pp:to und np:akk mit np übersetzt wird (vgl. Abbildung 4.23). Dem
Benutzer werden deswegen beide bzw. generell alle Übersetzungsmöglichkeiten angeboten.
Das Übersetzungssystem ist nicht in der Lage zu entscheiden, welche der Möglichkeiten
korrekt ist, da dazu notwendiges Wissen fehlt.

55

4. Konzept

np pp:to

np:dat np:akk D:

EN:

Abbildung 4.23.: Alle Möglichkeiten für die Zuordnung zwischen den Subkategorisierungs-
rahmen des Beispielsatzes

Bei dem Transfer der Merkmale der Subkategorisierungsrahmen wird von einem Phrasen-
typ in einen anderen transferiert. In der Basisgrammatik ist nur ein Transfer von NP in
NP, PP in PP, NP in PP und PP in NP möglich. Der Transfer einer NP in eine NP erfor-
dert keine strukturelle Änderung, die NP wird direkt übernommen. Bei einem Transfer
von einer PP in eine PP ändert sich die Präposition. Diese wird bei einer PP im Subka-
tegorisierungsrahmen immer mit angegeben. Strukturelle Änderungen tauchen bei einem
Transfer von einer NP in eine PP oder bei einem Transfer in die umgekehrte Richtung
auf. In Abbildung 4.24 ist die Struktur einer PP dargestellt. Bei einem Transfer einer
NP in eine PP wird die zu transferierende NP an die Stelle der NP in der PP gehängt
und die PP um die Präposition P aus dem Subkategorisierungsrahmen ergänzt. In der
umgekehrten Richtung, also beim Transfer einer PP in eine NP, wird die NP der PP als
NP genommen.

PP
��HH
P NP

Abbildung 4.24.: Struktur einer Präpositionalphrase (PP) der Basisgrammatik

Mit dem Transfer des Subkategorisierungsrahmen ist die Strukturbeschreibung noch nicht
vollständig transferiert. Es folgen als Letztes die schon erwähnten sprachspezifischen
Transferregeln, dargestellt in Abbildung 4.25, 4.26 und 4.27. Diese Regeln sind abhän-
gig von der Quell- und der Zielsprache. Bei einem Transfer von deutsch nach englisch
wird die Verbstellung im Satz verändert. In der deutschen Basisgrammatik wird von einer
Verbletztstellung, in der englischen Basisgrammatik von einer Verberststellung gespro-
chen. Durch die sprachspezifischen Transferregeln wird diese strukturelle Veränderung
durchgeführt.

56

4.3. Transferbasierte Übersetzung

VP
�� HH

X1 V’
��HH

X2 V

VP
�� HH

V’
��HH
V X2

X1

Abbildung 4.25.: Sprachspezifische Transferregel 1

VP
��HH
X V

VP
��HH
V X

Abbildung 4.26.: Sprachspezifische Transferregel 2

IP
��HH
X I

IP
��HH
I X

Abbildung 4.27.: Sprachspezifische Transferregel 3

Der Beispielsatz aus Abbildung 4.22 ist nach der deutschen Schablone eine selbstständi-
ge Systemaktivität, d.h. die schablonenspezifische Regel wird nicht angewandt. Nachdem
alle anderen Transferregeln angewandt und damit der lexikalische, so wie auch der struk-
turelle Transfer beendet ist, sind die in Abbildung 4.28 und 4.29 dargestellten Phrasen-
strukturbäume das Ergebnis der Übersetzung. Diese repräsentieren alle vorgeschlagenen
Übersetzungsmöglichkeiten des Beispielsatzes.

IP

��
�
��
�

HH
H

HH
H

NP
��

��
PP

PP

The system

I’

�
��

�
��

H
HH

H
HH

I

shall

VP

��
�
��

HH
H
HH

V’
��
�

HH
H

V

give

NP
��
�

PP
P

a answer

PP
��
�

HH
H

P

to

NP
��
�

PP
P

the user

Abbildung 4.28.: Erste Übersetzungsmöglichkeit des Beispielsatzes

57

4. Konzept

IP

�
��

�
��

H
HH

H
HH

NP
��

��
PP

PP

The system

I’

�
��

�
��

H
HH

H
HH

I

shall

VP

��
�
��

HH
H
HH

V’
��
�

HH
H

V

give

NP
��
�

PP
P

the user

PP
��
�

HH
H

P

to

NP
��
�

PP
P

a answer

Abbildung 4.29.: Zweite Übersetzungsmöglichkeit des Beispielsatzes

Die Reihenfolge der Transferschritte muss eingehalten werden, da sonst die Übersetzung
nicht korrekt ist. Werden beispielsweise die sprachspezifischen vor den schablonenbasier-
ten Transferregeln angewandt, kann die linke Seite der Regel aus Abbildung 4.21 im
Strukturbaum einer Benutzerinteraktion nicht wieder gefunden werden. Der schablonen-
basierte Transfer würde also nicht ausgeführt werden und der korrekte Transfer zwischen
der deutschen und der englischen Schablone wäre nicht gewährleistet.

Wie die Analyse betreffen die Probleme der maschinellen Übersetzung aus Kapitel 2.2.3,
auch den Transferschritt. Dies sind Probleme, die bei der Übersetzung zwischen zwei
Sprachen auftreten. Dazu gehören die lexikalischen Lücken (lexical gaps), die fehlenden
Entsprechungen (mismatches), die unterschiedliche Granularität, die unterschiedliche syn-
taktische Struktur und das Head Switching. Das erste Problem, die lexikalischen Lücken,
wird ganz konsequent behandelt. Findet sich eine Lücke im Lexikon, gibt es keine Über-
setzung. Es kann als Erweiterung eine Benutzerinteraktion eingebaut werden, welche dem
Benutzer die Möglichkeit bietet, eine eigene Übersetzung einzugeben. Gleich behandelt
werden fehlende Entsprechungen. Lexikalische Lücken und fehlende Entsprechungen kom-
men, wenn überhaupt, nur als Ausnahmefall vor, da eine domänenspezifische Sprache
verwendet wird. Gleiches gilt für eine unterschiedliche Granularität der Wörter. In einer
domänenspezifischen Sprache ist die Übersetzung meist eindeutig. Falls dieses Problem
denoch auftritt kann dem Benutzer die Wahl gelassen werden, welche der möglichen Über-
setzungen er wählt. Das Problem der unterschiedlichen syntaktischen Strukturen oder des
Head Switchings wird, wenn es nicht schon durch die Verwendung der Schablonen ausge-
schlossen ist, über die Transferregeln oder den Subkategorisierungsrahmen bewältigt.

58

4.3. Transferbasierte Übersetzung

4.3.3. Generierung

Die Generierung ist der letzte Schritt in der transferbasierten Übersetzung. Diese kann
ebenso, wie die beiden anderen Schritte, in zwei Teile, die syntaktische und die morpho-
logische Generierung, aufgeteilt werden [HS92, S. 133].
Zuerst wird die syntaktische Generierung durchgeführt. Alle Strukturbeschreibungen, die
Ergebnis des Transferschritts sind, werden Inorder durchlaufen, um den englischen Satz
zu extrahieren. Inorder bedeutet, dass für jeden Knoten des binären Strukturbaums zu-
erst der linke Teilbaum des Knotens betrachtet wird, anschließend der Knoten selbst und
zuletzt der rechte Teilbaum. Der Satz besteht aus den Einträgen der Blätter des Baums in
der Reihenfolge in der sie angetroffen werden, wenn der Baum inorder durchlaufen wird.
Eine morphologische Generierung ist anschließend nicht notwendig, da die Wörter im
Analyseschritt nicht auf ihre Grundform reduziert werden und daher die richtige Form im
Transferschritt direkt übersetzt wird.

59

5. Implementierung

Im vorliegenden Kapitel 5 wird die Implementierung des Werkzeugs und die praktische
Umsetzung des Konzepts aus Kapitel 4 betrachtet. Der Aufbau dieses Kapitels ähnelt des-
wegen dem des Kapitel 4. Nach Einführung der grundlegenden Systeminformationen in
Abschnitt 5.1 werden die Analyse, der Transfer und die Generierung einer transferbasier-
ten Übersetzung in den Abschnitten 5.2, 5.3 und 5.4 nochmals beleuchtet. Der Abschnitt
5.5 behandelt die Benutzeroberfläche des Werkzeugs.

5.1. Systeminformationen

Das Werkzeug wurde in der Programmiersprache Java mithilfe der Entwicklungsumge-
bung Eclipse1 implementiert. Für die Wahl der Programmiersprache gab es mehrere Grün-
de. Der wichtigste Grund ist, dass Java in der Softwareentwicklung allgemein, aber beson-
ders auch bei der Daimler AG sehr verbreitet ist. Deshalb ist unter anderem eine einfache
Anbindung an andere Werkzeuge, wie z. B. das Werkzeug von Hoedoro [Hoe11] in das die
Übersetzungsfunktion integriert und welches bereits in Java implementiert wurde, mög-
lich. Aus denselben Gründen wird auch die SWT(Standard Widget Toolkit)-Bibliothek2

für die Erweiterung der Benutzeroberfläche verwendet.
Um das Werkzeug möglichst erweiterbar zu gestalten, wird unter anderem die Grammatik
in eine XML3-Datei ausgelagert (siehe Abschnitt 5.2.1). XML ist eine Sprache, die relativ
leicht erlernbar ist und auch ohne tiefere Programmierkenntnisse verwendet werden kann.
So muss beispielsweise zur Erweiterung der Grammatik die Implementierung des Werk-
zeugs nicht geändert werden.
Um eine XML-Datei mit Java zu verarbeiten wird JDOM4 verwendet, eine API mit der
XML-Dokumente eingelesen, verarbeitet und erzeugt werden können.
Damit das Debuggen des Werkzeugs bezüglich einer möglichen Weiterentwicklung erleich-
tert wird, gibt es toString-Funktionen für die verschiedenen Klassen. Dadurch ist es zum
Beispiel möglich eine Chart oder einen Syntaxbaum als String auszugeben.

1http://www.eclipse.org/
2http://www.eclipse.org/swt/
3http://www.w3.org/XML/
4http://www.jdom.org

61

5. Implementierung

5.2. Analyse

Zur Vorbereitung der Analyse wird die Grammatik und das Lexikon eingelesen. Anschlie-
ßend nutzt der Chart-Parser beides, um den eingegebenen Satz zu analysieren und be-
züglich der Restriktionen zu prüfen.

5.2.1. Datenstruktur und implementeller Aufbau der
Grammatik

Die Grammatik aus Kapitel 4.2.1 liegt, wie in Abschnitt 5.1 motiviert, in XML vor. Ein
Auszug aus der XML-Datei wird in Abbildung 5.1, die dazugehörige Regel in Abbildung
5.2 gezeigt.

<rule name="IP">
<child name="NP">

<attribute>KAS</attribute>
</child>
<child name="I">

<attribute>FIN</attribute>
<attribute>ZU</attribute>
<attribute>SUBKAT</attribute>

</child>

<attribute name="FIN">
<assignment>

<child name="I" pos="2" attribute="FIN"/>
</assignment>

</attribute>
<attribute name="ZU">

<assignment>
<child name="I" pos="2" attribute="ZU"/>

</assignment>
</attribute>
<attribute name="SUBKAT">

<assignment>
<subkat>

<child name="I" pos="2" attribute="SUBKAT"/>
<child name="NP" pos="1"/>

</subkat>
</assignment>

</attribute>

<restriction>
<subkat>

<child name="I" pos="2" attribute="SUBKAT"/>
<child name="NP" pos="1"/>

</subkat>
</restriction>

</rule>

Abbildung 5.1.: Auszug aus der Grammatik-XML-Datei

62

5.2. Analyse

IPFIN : F
ZU : Z
SUBKAT : X1X2


→ NP[

KAS : K
] IFIN : F

ZU : Z
SUBKAT : X1(np : K)X2



Abbildung 5.2.: Beschriebene Regel in Abbildung 5.1

Für die Grammatik sind verschiedene XML-Elemente vordefiniert, die das Werkzeug in-
terpretieren kann. Eine Regel in der Grammatik steht zwischen den Tags <rule> und
</rule>. Die Regel muss einen Namen haben, dieser enspricht der linken Seite der Regel
(siehe Abbildung 5.3). Innerhalb der <rule>-Tags werden die Merkmale der linken Seite,
die rechte Seite und die Restriktionen beschrieben.

<rule name="IP">
...

</rule>

Abbildung 5.3.: Auszug aus der Grammatik-XML-Datei - Rule

Die Elemente der rechten Seite der Regel bzw. im weiteren auch Kinder genannt, wer-
den durch die <child>-Tags beschrieben. Die Reihenfolge dieser <child>-Tags im XML-
Dokument entspricht der Reihenfolge der Elemente in der Regel. Die Regel in Abbildung
5.2 hat, wie auch in Abbildung 5.4 wieder erkannt werden kann, als erstes Kind eine NP
und als zweites Kind ein I. Für jedes Element der rechten Seite sind dessen Merkmale
durch <attribute>-Tags mit angegeben.

<rule name="IP">
....
<child name="NP">

<attribute>KAS</attribute>
</child>
<child name="I">

<attribute>FIN</attribute>
<attribute>ZU</attribute>
<attribute>SUBKAT</attribute>

</child>
...

</rule>

Abbildung 5.4.: Auszug aus der Grammatik-XML-Datei - Child

63

5. Implementierung

Auch die linke Seite der Regel besitzt Merkmale (siehe Abbildung 5.5). Diese sind ebenso
wie die Merkmale der Kinder durch <attribute>-Tags angegeben. Erforderlich für ein
Merkmal ist ein Name und bei den Merkmalen für die linke Seite auch eine Zuweisungs-
regel. Einem Merkmal auf der linken Seite kann direkt ein Wert über <value>-Tags oder
der Wert eines Merkmals eines Elements der rechten Seite über <child>-Tags zugewiesen
werden. Eine Besonderheit ist das <subkat>-Tag. Steht dieses innerhalb <assignment>-
Tags und hat zwei Kinder (eines mit dem Attribut „attribute“) wird dem Merkmal der
Wert des Subkategorisierungsrahmen des einen Kindes ohne den Anteil des zweiten Kin-
des zugewiesen. Hat zum Beispiel das Merkmal SUBKAT des Elements I aus Abbildung
5.2 den Wert <np:nom#np:akk> und das Element NP das Merkmal KAS mit dem Wert
„akk“, dann wird dem Merkmal SUBKAT des Elements IP der Wert <np:nom> zugewie-
sen.
Abbildung 5.2 zeigt beispielsweise, dass der Wert des Merkmals ZU des Kindes I dem
Merkmal ZU der IP zugewiesen wird (Erklärung siehe Kapitel 2.3.3). Da der betreffen-
de Schritt in der Analyse bottom-up (siehe Kapitel 2.4.1) arbeitet werden die Werte der
Merkmale der rechten Seite den Merkmalen der linken Seite der Regel zugewiesen. In dem
Auszug aus der XML-Datei in Abbildung 5.5 kann diese Zuweisung wieder erkannt wer-
den. Bei der Definition des Merkmals ZU wird die Zuweisungsregel durch ein <child>-Tag
angegeben. Dies kann später ausgewertet werden, d.h. der Wert des Merkmals des Kindes
wird ermittelt und dem Merkmal ZU der linken Seite der Regel zugewiesen.

<rule name="IP">
....
<attribute name="FIN">

<assignment>
<child name="I" pos="2" attribute="FIN"/>

</assignment>
</attribute>
<attribute name="ZU">

<assignment>
<child name="I" pos="2" attribute="ZU"/>

</assignment>
</attribute>
<attribute name="SUBKAT">

<assignment>
<subkat>

<child name="I" pos="2" attribute="SUBKAT"/>
<child name="NP" pos="1"/>

</subkat>
</assignment>

</attribute>
...

</rule>

Abbildung 5.5.: Auszug aus der Grammatik-XML-Datei - Attribute

Die Restriktionen werden innerhalb von <restriction>-Tags angegeben. Es gibt zwei ver-
schiedene Typen von Restriktionen. Diese beiden Typen sind in Abbildung 5.6 dargestellt,
gehören allerdings zu keiner spezifischen Regel. Der erste Typ wird durch <subkat>-Tags

64

5.2. Analyse

angegeben und wird ähnlich interpretiert, wie die <subkat>-Tags bei den Zuweisungsre-
geln. Der Unterschied besteht darin, dass bei den Restriktionen kein Wert weitergegeben
wird, sondern lediglich geprüft wird, ob das eine Kind im Subkategorisierungsrahmen des
anderen Kindes vorkommt. Da in der Basisgrammatik nur Nominalphrasen, Präpositio-
nalphrasen und Infinitivphrasen in den Subkategorisierungsrahmen vorkommen können,
müssen die Elemente, die darin wieder gefunden werden sollen NP, PP oder IP heißen
(Beschreibung der Subkategorisierungsrahmen siehe Seite 51 in Kapitel 4.2.2)
Die zweite Möglichkeit eine Restriktion anzugeben ist mittels <equal>-Tags. Innerhalb
dieser <equal>-Tags können beliebig viele Argumente mit <argument>-Tags angegeben
werden. Ein <argument>-Tag kann ein <child>-Tag oder ein <value>-Tag beinhalten.
Bei <value>-Tags wird der Inhalt direkt als Wert verwendet, bei <child>-Tags wird über
die Position des Kindes und ein Merkmal der Wert bestimmt. Die Angabe der Position
ist obligatorisch. Es reicht nicht nur den Namen des Kindes anzugeben, da es mehrere
Kinder mit dem gleichen Namen geben kann. Alle <argument>-Tags werden ausgewertet
und die Ergebnisse miteinander verglichen. Sind diese ungleich ist die Restriktion nicht
erfüllt.

<restriction>
<subkat>

<child name="I" pos="2" attribute="SUBKAT"/>
<child name="NP" pos="1"/>

</subkat>

<equal>
<argument>

<child name= "IP" pos="2" attribute="SUBKAT"/>
</argument>
<argument>

<value>np:nom</value>
</argument>

</equal>

<equal>
<argument>

<child name="Det" pos="1" attribute="NUM"/>
</argument>
<argument>

<child name="N" pos="2" attribute="NUM"/>
</argument>

</equal>
</restriction>

Abbildung 5.6.: Beispiele für Restriktionen

Eine XML-Datei, die nach eben beschriebenen Kriterien aufgebaut ist, kann von dem
Werkzeug mit Hilfe von JDOM eingelesen und alle wichtigen Informationen daraus ent-
nommen werden um eine Grammatik aufzubauen. Die Datenstruktur einer Grammatik
innerhalb des Werkzeugs ist in Abbildung 5.7 dargestellt. Die Klassendiagramme enthal-
ten aus Gründen der Übersichtlichkeit nur die wichtigsten Attribute und Methoden.

65

5. Implementierung

Grammar
rules: Map < Category, Set <Rule> >
+ Grammar ()
+ addRule (Rule rule): boolean
+ containsRules (Category left): boolean
+ getRules (Category left): Set<Rule>
+ getSingletonPreterminal(Category left, String token): List<Rule>
+ getStartRules(Category left): Set<Rule>

Category
name: String
terminal: boolean
attributes: Set<Attribute>
+ Category (...)
+ addAttribute(Attribute att): void
+ subsetOfAttributes(Category cat): boolean
+ equivalentAttributes(Category cat): boolean
+ transferAttributes (Category cat): boolean

Attribute
name: String
value: String
+ Attribute (...)

Rule
left: Category
right: Category[]
restrictions: List<Element>
assignments: Map<Attribute, Element>
+ Rule (...)
+ isPreterminal(): boolean
+ assign(): void
+ checkRestrictions(): boolean
+ assignSubkat(Element element): String

Abbildung 5.7.: Klassendiagramme der Klassen einer Grammatik

Die Grammatik besteht aus einer Klasse Grammar, die eine Hash-Tabelle (in Java Hash-
Map) mit Regeln enthält. Eine Hash-Tabelle ist ideal um viele Elemente zu speichern und
über einen Schlüssel, hier die Kategorie der linken Regelseite, schnell wieder zu finden.
Die Klasse Grammar ist in Abbildung 5.8 dargestellt.

Grammar
rules: Map < Category, Set <Rule> >
+ Grammar ()
+ addRule (Rule rule): boolean
+ containsRules (Category left): boolean
+ getRules (Category left): Set<Rule>
+ getSingletonPreterminal(Category left, String token): List<Rule>
+ getStartRules(Category left): Set<Rule>

Abbildung 5.8.: Klassendiagramme der Klasse Grammar

Eine Kategorie wird implementiert durch die Klasse Category, die die Attribute name,
terminal und attributes besitzt (siehe Abbildung 5.9). Name gibt den Namen der Kategorie
an, terminal nimmt einen boolschen Wert an und ist „true“, wenn es sich bei der Kategorie
um ein Terminal handelt. Das Attribut attributes ist ein HashSet, das die Merkmale der
Kategorie speichert. Ein Set ist eine ungeordnete Menge von Elementen, wobei jedes
Element nur einmal darin vorkommen darf.

66

5.2. Analyse

Category
name: String
terminal: boolean
attributes: Set<Attribute>
+ Category (...)
+ addAttribute(Attribute att): void
+ subsetOfAttributes(Category cat): boolean
+ equivalentAttributes(Category cat): boolean
+ transferAttributes (Category cat): boolean

Abbildung 5.9.: Klassendiagramme der Klasse Category

Ein Merkmal ist gegeben durch ein Objekt der Klasse Attribute und besteht aus einem
Namen und einem Wert. Die Klasse Attribute wird in Abbildung 5.10 gezeigt.

Attribute
name: String
value: String
+ Attribute (...)

Abbildung 5.10.: Klassendiagramm der Klasse Attribute

Die Regeln der Grammatik werden implementiert durch die Klasse Rule. Diese ist in Ab-
bildung 5.11 abgebildet und besteht aus dem Attribut left für die linke Kategorie der
Regel, einem Array right mit den Kategorien der rechten Seite, einer Liste von Restriktio-
nen und einer Hash-Tabelle in der zu jedem Merkmal aus attributes eine Zuweisungsregel
gespeichert ist.

Rule
left: Category
right: Category[]
restrictions: List<Element>
assignments: Map<Attribute, Element>
+ Rule (...)
+ isPreterminal(): boolean
+ assign(): void
+ checkRestrictions(): boolean
+ assignSubkat(Element element): String

Abbildung 5.11.: Klassendiagramm der Klasse Rule

Mit dieser Datenstruktur stehen alle notwendigen Informationen über eine Grammatik
zur Verfügung.

67

5. Implementierung

5.2.2. Realisierung des Lexikons

Zur Vollständigkeit der Grammatik, die aus der XML-Datei aufgebaut wurde (siehe Ab-
schnitt 5.2.1), fehlen noch die lexikalischen Regeln. Da die Grammatik immer gleich bleibt,
wird diese beim Start des Werkzeugs nur einmal eingelesen und aufgebaut, ebenso wie
das Lexikon. Die lexikalischen Regeln werden für jeden eingegeben Satz aus dem Lexikon
erzeugt und zur Basisgrammatik hinzugefügt. Mit der daraus entstandenen Grammatik
wird dann der Satz analysiert.
Das Lexikon nur beim Start des Werkzeugs einzulesen und dann dauerhaft in einer Daten-
struktur zu speichern, benötigt zwar mehr Speicherplatz, dafür ist dann die Generierung
der Übersetzung schneller. Im Moment hat das Lexikon noch eine Größe bei der es möglich
ist das Lexikon in einer Datenstruktur zu speichern, wird es erweitert muss ab einer ge-
wissen Größe (je nach System auf dem das Werkzeug ausgeführt wird) eine andere Lösung
gesucht werden. Wie im Kapitel 4.3 angesprochen ist eine Möglichkeit den Speicherbedarf
zu reduzieren, der Verzicht auf ein Vollformenlexikon und die Einführung einer morpho-
logischen Analyse. In dieser Arbeit ist aber die aktuelle Lösung legitim.
Das Lexikon ist in mehreren Textdateien gespeichert. Ein Eintrag im Lexikon entspricht
einer Zeile in einer dieser Dateien. Jede Datei beinhaltet eine andere Wortart, jede Zeile
enthält ein Wort und abhängig von der Wortart wichtige Merkmale. Diese Informationen
werden aus den Dateien gelesen und in der Datenstruktur, die in Abbildung 5.12 darge-
stellt ist, gespeichert.
Die Klasse DictionaryTranslation beinhaltet für jede Wortart eine Liste. Jede Wortart
wird durch eine eigene Klasse repräsentiert und enthält die Merkmale, die wichtig sind
für die Merkmalsstrukturen aus Kapitel 4.2.2 und eine eindeutige Übersetzung.

DictionaryTranslation
art_list: ArrayList<Article>
noun_list: ArrayList<Noun>
prep_list: ArrayList<Preposition>
verb_list: ArrayList<Verb>
modalverb_list: ArrayList<ModalVerb>
+ DictionaryTranslation ()
+ getRuleforWord(String word): List<Rule>

Article
word: String
num: String
gend: String
pers: String
caseform: String
translation: String

Noun
word: String
num: String
gend: String
pers: String
caseform: String
translation: String

Preposition
word: String
caseform: String

Verb
inf: String
zuInf: String
subkatD: String
translation: String
subkatE: String

Modalverb
word: String
num: String
pers: String
fin: String
translation: String

Abbildung 5.12.: Klassendiagramme des Lexikons

68

5.2. Analyse

Wenn ein Satz übersetzt werden soll, muss, wie erwähnt, die Basisgrammatik um die
notwendigen lexikalischen Regeln erweitert werden. Dazu wird der eingegebene Satz zu-
nächst in die einzelnen Tokens unterteilt. Eine Besonderheit dabei ist die Erkennung der
Wortkombination „fähig sein“ und „zu“ gefolgt von einem Verb im Infinitiv. Diese Wort-
kombinationen werden auch als ein Token aufgefasst. Für jedes Token wird die Metho-
de getRuleforWord (String word) der Klasse DictionaryTranslation aufgerufen. Innerhalb
dieser Methode werden die Wörterlisten nach dem Token durchsucht und für jeden gefun-
denen Eintrag ein Objekt der Klasse Rule erzeugt. Die Kategorie der linken Seite dieser
Regel wird bestimmt durch die Liste aus der der Treffer stammt. Die rechte Seite der Re-
gel ist eine terminale Kategorie, die nach dem Token benannt ist und mit den Merkmalen
aus dem Eintrag der Wörterliste ergänzt wird. Wurden alle Listen durchsucht, wird eine
Liste mit den erzeugten Regeln zurückgegeben und zur Basisgrammatik hinzugefügt.

5.2.3. Chart Parser

Zur Analyse des Satzes mit der Grammatik, die aus der Basisgrammatik und den lexika-
lischen Regeln besteht, wird ein Chart Parser, genauer ein Earley-Parser (siehe Kapitel
2.4.2), verwendet. Die Implementierung des Earley-Parsers ist angelehnt an die Imple-
mentierung von Scott [Sco07]. Der Earley-Parser von Scott verwendet allerdings keine
Merkmalsstrukturen oder Restriktionen. Die Datenstruktur des Earley-Parsers ist in Ab-
bildung 5.13 dargestellt.

EarleyParser
grammar: Grammar
dic: DictionaryTranslation
start: Category
+ EarleyParser (...)
+ parse (String tokens): StructureTree
- expand(Chart chart, int index): void
- expandForEdge(Chart chart, Edge edge, int index): void
- scan (Chart chart, Integer index, String token): void
- complete(Chart chart, Integer index): void
- completeForEdge(Chart chart, Edge edge, Integer index): void
- checkForm (StructureTree tree): boolean

Chart
edgeSets: SortedMap<Integer, Set<Edge»
+ Chart (...)
+ containsEdges(Integer index): boolean
+ getEdges(Integer index): Set<Edge>
+ addEdge(Integer index, Edge edge): boolean

Rule
left: Category
right: Category[]
restrictions: List<Element>
assignments: Map<Attribute, Element>
+ Rule (...)
+ isPreterminal(): boolean
+ assign(): void
+ checkRestrictions(): boolean
+ assignSubkat(Element element): String

DottedRule
dotPosition: int
activeCategory: Category
+ DottedRule (...)
+ advanceDot (DottedRule dottedRule): DottedRule
+ getActiveCategory()

Edge
dottedRule: DottedRule
origin: int
bases: Set<Edge>
+ Edge (...)
+ expandFor(Rule rule, int origin): Edge
+ scan(Edge edge, String token): Edge
+ complete(Edge toComplete, Edge basis): Edge
+ isPassive(): void
+ expandFor(Rule rule, int origin): Edge
+ scan(Edge edge, String token): Edge
+ complete(Edge toComplete, Edge basis): Edge

Abbildung 5.13.: Klassendiagramme des Earley-Parser

69

5. Implementierung

Die Klasse EarleyParser beinhaltet Attribute, wie das Lexikon, die Grammatik und die
Startkategorie. Die Startkategorie wird in der XML-Datei der Grammatik durch das Attri-
but start=„true“ gekennzeichnet. Die einzige sichtbare Methode der Klasse EarleyParser
ist die Methode parse(String tokens) zum Parsen eines Satzes. Die anderen Methoden
werden nur intern verwendet.

EarleyParser
grammar: Grammar
dic: DictionaryTranslation
start: Category
+ EarleyParser (...)
+ parse (String tokens): StructureTree
- expand(Chart chart, int index): void
- expandForEdge(Chart chart, Edge edge, int index): void
- scan (Chart chart, Integer index, String token): void
- complete(Chart chart, Integer index): void
- completeForEdge(Chart chart, Edge edge, Integer index): void
- checkForm (StructureTree tree): boolean

Abbildung 5.14.: Klassendiagramm der Klasse EarleyParser

Beim Parsen des Satzes wird eine Chart aufgebaut, diese wird durch die Klasse Chart
implementiert. Die Chart wird durch eine SortedMap realisiert, dies kann auch als eine
Art Adjazenzliste eines azyklischen Graphen aufgefasst werden. Eine Adjazenzliste ist eine
Liste, in der für jeden Knoten des Graphen dessen Nachfolgeknoten gespeichert werden
oder wie in diesem Fall, werden für jeden Knoten, repräsentiert durch eine Zahl, die
Kanten gespeichert die zu diesem Knoten führen.

Chart
edgeSets: SortedMap<Integer, Set<Edge»
+ Chart (...)
+ containsEdges(Integer index): boolean
+ getEdges(Integer index): Set<Edge>
+ addEdge(Integer index, Edge edge): boolean

Abbildung 5.15.: Klassendiagramm der Klasse Chart

Eine Kante ist ein Objekt der Klasse Edge, unter anderem mit dem Attribut origin, durch
das nachvollziehbar ist, welcher Knoten der Startknoten dieser Kante ist. Zu jeder Kan-
te gehört außerdem die im Analyseschritt entstandene Regel und eine Referenz auf die
Kanten aufgrund derer diese entstanden ist. Diese Referenz ist wichtig, um eine Struktur-
beschreibung des geparsten Satzes extrahieren zu können.

70

5.2. Analyse

Edge
dottedRule: DottedRule
origin: int
bases: Set<Edge>
+ Edge (...)
+ expandFor(Rule rule, int origin): Edge
+ scan(Edge edge, String token): Edge
+ complete(Edge toComplete, Edge basis): Edge
+ isPassive(): void
+ expandFor(Rule rule, int origin): Edge
+ scan(Edge edge, String token): Edge
+ complete(Edge toComplete, Edge basis): Edge

Abbildung 5.16.: Klassendiagramm der Klasse Edge

Bei den Regeln handelt es sich um Objekte der Klasse DottedRule. Diese erbt von der
Klasse Rule und hat die zusätzlichen Attribute dotPosition, um eine Unterteilung in ak-
tiven und passiven Teil der rechten Seite zu ermöglichen und activeCategory, welches die
aktive Kategorie rechts neben dem „dot“ angibt.

Rule
left: Category
right: Category[]
restrictions: List<Element>
assignments: Map<Attribute, Element>
+ Rule (...)
+ isPreterminal(): boolean
+ assign(): void
+ checkRestrictions(): boolean
+ assignSubkat(Element element): String

DottedRule
dotPosition: int
activeCategory: Category
+ DottedRule (...)
+ advanceDot (DottedRule dottedRule): DottedRule
+ getActiveCategory()

Abbildung 5.17.: Klassendiagramm der Klasse DottedRule

Ein Item wie es in Kapitel 2.4.2 beschrieben wird, besteht in dieser Datenstruktur aus
einem Knoten und einer Kante, die bei diesem endet.

71

5. Implementierung

Die Implementierung des Earley-Algorithmus soll durch die Abbildung 5.18 verdeutlicht
werden.

l1 l2 l3

l4 l5

l6

Abbildung 5.18.: Ablauf des Aufbaus einer Chart

Analysiert wird die Phrase „Das System“ mit der Basisgrammatik aus Kapitel 4.2.1. Die
Knoten des Graphen entsprechen den Zwischenräume der Wörter. Es ergibt sich folgender
Aufbau: 0Das1System2
Als Initialisierung des Parsers wird, wie in Abbildung 5.19 dargestellt, eine Kante mit der
Startregel in den Graph eingefügt. Die Regel der Kante ist aktiv, startet und endet am
Knoten 0, d.h. es wurde noch kein Wort erkannt.

Abbildung 5.19.: Aufbau der Chart - Schritt 1

72

5.2. Analyse

Auf diesem Graph bzw. dieser Chart werden nun die Methoden Expand, Scan und Com-
plete ausgeführt, solange bis keine neue Kante mehr hinzugefügt wird5.
Die Abbildung 5.20 zeigt den Graph, nachdem zum ersten Mal die Methode Expand aus-
geführt wurde. Eine neue Kante mit der Regel NP → • Det N wurde hinzugefügt.

Abbildung 5.20.: Aufbau der Chart - Schritt 2

Als nächstes wird die Methode Scan ausgeführt, in der zunächst für jede lexikalische Regel
mit dem Wort „Das“ auf der rechten Seite, eine Kante, die von und zum aktuell betrach-
teten Knoten geht, zum Graph hinzugefügt wird. Für jede dieser Kanten wird danach
eine weitere Kante mit der selben Regel aber eine um rechts bzw. ans Ende der rechten
Seite verschobene „dot“-Position, hinzugefügt. In Abbildung 5.21 wird exemplarisch für
die lexikalischen Regeln mit verschiedenen Merkmalsstrukturen eine Regel eingefügt.

Abbildung 5.21.: Aufbau der Chart - Schritt 3

Wird eine Regel passiv, d.h. der „dot“ steht am Ende der rechten Seite, werden die
Merkmale der Kategorie der linken Seite mittels der dazugehörigen Zuweisungsregeln mit
Werten der rechten Seite versehen. Eine Regel wird entweder im Scan- oder Complete-
Schritt passiv. Innerhalb des Scan-Schritts wurde das Wort „Das“ erkannt und der nächste
Knoten wird bearbeitet.

5Definition der Methoden findet sich in Kapitel 2.4.2

73

5. Implementierung

Der folgende Schritt ist die Ausführung der Methode Complete. Die Kante mit der Regel
NP → • Det N kann mittels der Kante mit der passiven Regel Det → Das • um einen
Schritt vervollständigt werden. Es wird die Kante mit der Regel NP → Det • N, die von
Knoten 0 bis zum Knoten 1 geht, eingefügt. Intern wird für die vervollständigte Kante
ein Verweis auf die passive Kante mit der sie vervollständigt wurde, gespeichert. Dieser
Schritt wird in Abbildung 5.22 dargestellt.

Abbildung 5.22.: Aufbau der Chart - Schritt 4

In Abbildung 5.23 wird der Graph nach Ausführung der Methoden Expand und Scan
gezeigt. Während der Methode Expand wurden keine neuen Kanten hinzugefügt und im
Schritt Scan die Kanten mit den Regeln N→ • System und N→ System •, das Vorgehen
ist das selbe, wie beim „scannen“ des Wortes „Das“ in Abbildung 5.21.

Abbildung 5.23.: Aufbau der Chart - Schritt 5

Die Abbildung 5.24 zeigt die Ausführung der Methode Complete für den Knoten 2. Die
Kante mit der Regel NP → Det • N kann mit der Kante deren Regel N → System •
lautet, vervollständigt werden. Da innerhalb des Complete-Schritts nun eine Regel passiv
wird, werden die Merkmale der linken Seite mit Werten versehen, zuvor wird allerdings
geprüft, ob die Regel auch tatsächlich vervollständigt werden kann, indem die Restriktio-
nen bezüglich der Merkmalsstrukturen dieser Regel geprüft werden. Die Regel NP→ Det
N hat die in Abbildung 5.25 dargestellten Restriktionen.

74

5.2. Analyse

Abbildung 5.24.: Aufbau der Chart - Schritt 6

NP
NUM : N
PERS : P
KAS : K
GEND : G


→ Det

NUM : N
PERS : P
KAS : K
GEND : G


N

NUM : N
PERS : P
KAS : K
GEND : G



Abbildung 5.25.: Regel NP → Det N mit Merkmalsstruktur und Restriktionen

Die Merkmalsstruktur für das Wort „Das“ und die Merkmalsstruktur für das Wort „Sys-
tem“ können wie in Abbildung 5.26 aussehen. In den Restriktionen wird verlangt, dass
Merkmale mit dem gleichen Namen auch den gleichen Wert haben. Dies trifft hier zu, d.h.
die Restriktionen sind erfüllt und die Regel kann vervollständigt und als Kante in den
Graph eingefügt werden.


NUM sg
GEND neut
PERS 3
KAS nom



Abbildung 5.26.: Mögliche Merkmalsstruktur für das Wort „Das“ und das Wort „System“

Die Kante mit der Regel IP → NP • I’ kann daraufhin auch um einen Schritt vervoll-
ständigt werden. Die Restriktionen werden allerdings nicht geprüft, da die Regel durch
die Vervollständigung nicht passiv wird.

75

5. Implementierung

Die Tabelle 5.1 zeigt den Aufbau, der in Abbildung 5.18 beschriebenen Chart, als Tabelle.
Diese ist aufgebaut, wie die Chart für das Beispiel in Kapitel 2.4.2 auf Seite 31. Die Reprä-
sentation als Graph und die Repräsentation als Tabelle lassen sich ineinander überführen.
Für die praktische Umsetzung innerhalb des Werkzeugs ist allerdings die Repräsentation
als Graph geeigneter.

Nr. Item Begründung
1 0 0 IP → • NP I’ Initialisierung
2 0 0 NP → • Det N EXPAND 1.
3 0 0 Det → • Das EXPAND 2.
4 0 1 Det → Das • SCAN 3.
5 0 1 NP → Det • N COMPLETE 2. mit 4.
6 1 1 N → • System EXPAND 5.
7 1 2 N → System • SCAN 6.
8 0 2 NP → Det N • COMPLETE 5. mit 7.
9 0 2 IP → NP • I’ COMPLETE 1. mit 8.

Tabelle 5.1.: Chart, dargestellt als Tabelle, für das Phrase „Das System“

5.2.4. Extraktion des Syntaxbaums

Für die Übersetzung des Satzes wird eine Strukturbeschreibung des Satzes benötigt. Nach-
dem die Chart mittels des Earley-Algorithmus vollständig aufgebaut ist, kann diese daraus
extrahiert werden.

StructureTree
root: StructureTreeNode
+ StructureTree (...)
+ getSubTree (...): StructureTreeNode
+ hasSubTree (...): boolean
+ getNode (...): StructureTreeNode
+ inOrder(): String

StructureTreeNode
category: Category
parent: StructureTreeNode
left: StructureTreeNode
right: StructureTreeNode
+ StructureTreeNode (...)

Abbildung 5.27.: Klassendiagramme der Strukturbeschreibung

Die Datenstruktur der Strukturbeschreibung, welche einem binären Syntaxbaum ent-
spricht, ist in Abbildung 5.27 dargestellt. Sie besteht aus den Klassen StructureTree und
StructureTreeNode. StructureTree ist die Klasse zur Verwaltung der Strukturbeschreibung.
Sie besitzt ein Attribut root, welches ein Zeiger auf den Wurzelknoten des Syntaxbaums

76

5.2. Analyse

ist. Die Klasse StructureTreeNode entspricht einem Knoten im Syntaxbaum. Als Attribu-
te besitzt die Klasse Zeiger auf einen rechten und einen linken Teilbaum, sowie auf den
Elternknoten. Außerdem entspricht jeder Knoten im Baum einer Kategorie und besitzt
deswegen ein Attribut category vom Typ Category.

Um die Strukturbeschreibung aus der Chart extrahieren zu können, muss die Kante mit
der passiven Startregel, die vom ersten bis zum letzten Knoten verläuft, gefunden werden.
Diese Kante ist der Startpunkt für die Extraktion der Strukturbeschreibung. Für jede
Kante wurde gespeichert, mit welchen anderen passiven Kanten die Regel vervollständigt
wurde. Damit kann der Analyseweg zurückverfolgt werden. Die Kante mit der Regel
NP → Det N • wurde in der Abbildung 5.18 beispielsweise mit den Kanten deren Regeln
Det → Das • und N → System • sind, vervollständigt. Für jede Regel wird ein Teilbaum
erzeugt, der linke Teil der Regel ist der Elternknoten, die rechte Seite entspricht den
Kindsknoten. Ist die Regel keine lexikalische Regel werden die Kindsknoten des rechten
und linken Kindes mit Hilfe der gemerkten Kanten ergänzt. Es ergibt sich für die Kante
mit der Regel NP → Det N • der Teilbaum in Abbildung 5.28.

NP
��
�

HH
H

Det

Das

N

System

Abbildung 5.28.: Syntaxbaum für „Das System“

5.2.5. Restriktive Überprüfung des Anforderungstyps

Die Strukturbeschreibung des zu übersetzenden Satzes wird mit Hilfe der in Kapitel 4.2.1
auf Seite 49 beschriebenen Restriktionen überprüft, ob diese einer der drei Anforderungs-
typen, die durch die Schablone aus Kapitel 2.1.2 beschrieben werden, zugeordnet werden
kann. Wenn dies nicht der Fall ist, wird der Satz nicht automatisiert übersetzt.

Die XML-Datei der Restriktionen beschreibt Teilbäume. Es gibt positiv und negativ ge-
kennzeichnete Teilbäume. Die negativ gekennzeichneten Teilbäume sind durch umschlie-
ßende <not>-Tags gekennzeichnet. Wird einer der in der XML-Datei beschriebenen posi-
tiven Bäume als Teilbaum im Syntaxbaum des Satzes gefunden, ist der Anforderungstyp
bestimmt. Findet sich keiner dieser Bäume im Syntaxbaum wieder und kommt auch einer
der mit <not>-Tags umschlossenen Teilbäume nicht vor, ist der Anforderungstyp auch
bekannt.

77

5. Implementierung

Ein Auszug aus der XML-Datei ist in Abbildung 5.29 dargestellt. Ein Teilbaum wird be-
schrieben durch ein hierarchisches Konstrukt aus öffnenden und schließenden Tags. Die
Knoten werden durch das <node>-Tag und die Angabe des Namens der Kategorie be-
schrieben. Außerdem können sie Kindsknoten enthalten. Diese werden wiederum duch
<node>-Tags innerhalb der <node>-Tags des Elternknoten beschrieben. Die Reihenfol-
ge der <node>-Tags der Kindsknoten beschreiben auch die Reihenfolge der Kinder im
Baum. Die Blätter des Teilbaums müssen nicht unbedingt, wie die Blätter des Syntax-
baums, terminale Knoten sein.

<restriction>
<node name="IS">

<node name = "I"/>
<node name = "VP">

<node name = "VP">
<node name = "V">

<node name = "f\"ahig sein"/>
</node>

</node>
<node name = "IP"/>

</node>
</node>

<not>
<node name="IS">

<node name = "I"/>
<node name = "VP">

<node name = "VP"/>
<node name = "IP"/>

</node>
</node>

</not>
</restriction>

Abbildung 5.29.: Auszug aus der XML-Datei für die Restriktionen bezüglich der
Schablone

Die XML-Datei mit den Restriktionen wird eingelesen und für jeden Teilbaum eine Da-
tenstruktur mit Hilfe der Klassen StructureTree und StructureTreeNode aufgebaut. Die
Klasse StructureTree stellt die Methode getSubTree (StructureTreeNode subtree) zur Ver-
fügung, welche einen Zeiger auf den Knoten im Syntaxbaum zurückgibt, der Wurzelknoten
des Teilbaums ist (siehe Abbildung 5.30).
Für die Teilbaumsuche wird der Syntaxbaum in Preorder durchlaufen. Preorder bedeutet,
dass zuerst der Knoten selbst betrachtet wird und anschließend der linke und dann der
rechte Teilbaum. Wird der Wurzelknoten des Teilbaums gefunden, wird die Rekursion
abgebrochen. Beim Betrachten eines Knoten wird für diesen die Methode hasSubTree(...)
aufgerufen. Die Methode hasSubTree prüft, ob der aktuell betrachtete Knoten des Syn-
taxbaums dem Wurzelknoten des Teilbaums entspricht. Rekursiv werden bei Überein-
stimmung die Kinder der linken und rechten Teilbäume der beiden Bäume miteinander

78

5.2. Analyse

verglichen. Stimmen auch diese überein, ist der betrachtete Knoten der Wurzelknoten des
zu suchenden Teilbaums und es wird „true“ zurückgegeben.

Zeiger auf Knoten im
Syntaxbaum, der Wurzelknoten
des gefundenen Teilbaums ist

Abbildung 5.30.: Teilbaumsuche

Ist der Rückgabewert der Methode hasSubTree „true“, wird der aktuell betrachtete Kno-
ten als Rückgabewert der Methode getSubTree zurückgegeben. Falls der Rückgabewert
„false“ ist, wird die Methode getSubTree rekursiv mit dem linken Teilbaum des aktuel-
len Knoten und dem Wurzelknoten des Teilbaums aufgerufen. Ist der Rückgabewert des
rekursiven Aufrufs mit dem linken Kind nicht der Null-Zeiger, wird der Rückgabewert
auch als Ergebnis dieses getSubTree Aufrufs zurückgegeben. Wenn der Rückgabewert des
rekursiven Aufrufs der Methode getSubTree allerdings ein Null-Zeiger ist, wird diese auch
rekursiv für den rechten Kindsknoten und den Wurzelknoten des Teilbaums aufgerufen.
Der Rückgabewert dieses Aufrufs ist dann endgültig auch Rückgabewert des ursprüngli-
chen Aufrufs der Methode getSubTree. Der Programmcode der Methode getSubTree ist
zum besseren Nachvollziehen des Ablaufs in Abbildung 5.31 dargestellt.

Wurde die Analyse bis hierhin durchgeführt ist der Satz korrekt geparst, d.h. sämtli-
che Restriktionen bezüglich der Merkmalsstrukturen wurden beachtet und überprüft, die
Strukturbeschreibung wurde extrahiert und auf Richtigkeit bezüglich der Schablone kon-
trolliert.

79

5. Implementierung

StructureTreeNode getSubTree (StructureTreeNode subtree, StructureTreeNode node)
{

// Teilbaum leer?
if (subtree == null) {

return node;
}
else if (subtree != null && node != null) {

if (hasSubTree(subtree, node)) {
return node;

}
else {

if (node.left != null) {
// rekursiver Aufruf fuer linkes Kind
StructureTreeNode left = getSubTree (subtree, node.left);
if (left != null) {

return left;
}
else {

if (node.right != null) {
// rekursiver Aufruf fuer rechtes Kind
return getSubTree(subtree, node.right);

}
}

}
else {

if (node.right != null) {
// rekursiver Aufruf fuer rechtes Kind
return getSubTree(subtree, node.right);

}
}

}
}

// Teilbaum nicht gefunden
return null;

}

Abbildung 5.31.: Methode getSubTree der Klasse StructureTree

5.3. Transfer

Beim Transfer wird die aus der Analyse entstandene Strukturbeschreibung, in diesem
Werkzeug ein Syntaxbaum, des eingegebenen Satzes von der Repräsentation in Quellspra-
che in eine Repräsentation in der Zielsprache überführt. Dabei heißt Quellsprache oder
Zielsprache nicht nur, dass die Blätter des Syntaxbaums in der jeweiligen Sprache vor-
liegen, sondern auch, dass die Strukturbeschreibung in diesem Fall entweder durch die
deutsche oder englische Basisgrammatik beschrieben wird.
Der Transfer, der in Kapitel 4.3.2 beschrieben ist, ist in mehrere Schritte aufgeteilt. Zu-
nächst werden schablonenspezifische Transferregeln angewandt, anschließend die Subkate-
gorisierungsrahmen der Verben übersetzt und zum Schluss die sprachspezifischen Transfer-
regeln eingesetzt. Da das Prinzip des Transfers mittels schablonenspezifischer und sprach-
spezfischer Transferregeln gleich ist, wird beides in Abschnitt 5.3.1 beschrieben. Die Be-

80

5.3. Transfer

schreibung des Transfers der Subkategorisierungsrahmen folgt in Abschnitt 5.3.2.
Trotz des gleichen Prinzips ist es wichtig, dass zuerst der schablonenspezifischen Transfer,
anschließend der Transfer der Subkategorisierungsrahmen und als letztes der sprachspe-
zifische Transfer angewandt wird (siehe Seite 58 des Kapitels 4.3.2).
Der Transfer wird von der Klasse Transfer gesteuert. Dazu wird dieser Klasse bei der
Initialisierung die Strukturbeschreibung, die Ergebnis der Analyse ist, übergeben. Die
Klasse Transfer besitzt eine Methode transferTree(...), deren Ergebnis eine Liste von
Strukturbeschreibungen, die die Übersetzungsmöglichkeiten darstellen, ist.

5.3.1. Schablonen- und sprachspezifischer Transfer

Die Transferregeln für den schablonen- bzw. sprachspezifischen Transfer wurden zur leich-
teren Erweiterbarkeit, wie schon in Abschnitt 5.1 motiviert, in eine XML-Datei ausgela-
gert. Einen Ausschnitt aus der XML-Datei der sprachspezifischen Transferregeln zeigt die
Abbildung 5.32.

<transfer>
<rule>

<from>
<node name = "VP" index = "1">

<node name = "_" index = "2"/>
<node name = "V" index = "3"/>

</node>
</from>
<to>

<node name = "VP" index = "1" transfer="true">
<node name = "V" index = "3" transfer="true"/>
<node name = "_" index = "2" transfer="true"/>

</node>
</to>

</rule>
...

</transfer>

Abbildung 5.32.: Auszug aus der XML-Datei der sprachspezifischen Transferregeln

Eine Transferregel besteht aus einer Beschreibung des Teilbaums, der transferiert werden
soll und einer Beschreibung des transferierten Teilbaums. Über eindeutige Indizes kann
eine Zuordnung zwischen den beiden Teilbäumen gemacht werden.
Der zu transferierende Teilbaum (Startbaum) wird innerhalb von <from>-Tags definiert
und ist, wie schon die Bäume in Abschnitt 5.2.5, über geschachtelte <node>-Tags auf-
gebaut. Zusätzlich zum Namen der Kategorie eines Knoten wird ein eindeutiger Index
angegeben.
Der transferierte Baum (Zielbaum) wird innerhalb von <to>-Tags definiert. Der Index
eines Knoten muss schon aus dem zu tranferierenden Teilbaum bekannt sein. Werden neue

81

5. Implementierung

Knoten eingeführt haben diese keinen Index. Eine Transferregel besteht immer aus einem
Teilbaum innerhalb von <from>-Tags und einem Teilbaum innerhalb von <to>-Tags.
In Abbildung 5.32 existiert ein Knoten mit Namen „_“. Dieses Zeichen dient als Platz-
halter für eine beliebige Kategorie, die an dieser Stelle stehen kann. In Abbildung 5.33,
die auch die Transferregel darstellt, steht statt einem Unterstrich ein X als Platzhalter.

VP1
��HH

X2 V3

VP1
��HH

V3 X2

Abbildung 5.33.: Prinzip des sprachspezifischen und schablonenspezifischen Transfers

Der Transfer an sich kann als Umordnung der Knoten angesehen werden. Durch die Indizes
ist die Position des Knotens nach dem Transfer bekannt. Knoten können an ihrer Position
bleiben, die Position ändern, wegfallen oder hinzu kommen. Abbildung 5.33 zeigt die
Umordnung der Knoten nach Vorgabe durch die Transferregel.

TransferTree
root:TransferTreeNode
+ StructureTree (...)
+ getNode (): StructureTreeNode
+ inOrder(): String

TransferTreeNode
category: Category
parent: TransferTreeNode
left: TransferTreeNode
right: TransferTreeNode
index: int
+ TransferTreeNode (...)
+ inOrder(): String

Transfer
tree: StructureTree
treelist: List<StructureTree>
+ Transfer (...)
+ transferTree (...): List<StructureTreeNode>
- transferTemplate(): void
- transferLanguage(): void
- transferSubkat(): void
- transferBase(): StructureTreeNode
- permutation: int

StructureTree
root: StructureTreeNode
+ StructureTree (...)
+ getSubTree (...): StructureTreeNode
+ hasSubTree (...): boolean
+ getNode (...): StructureTreeNode
+ inOrder(): String

StructureTreeNode
category: Category
parent: StructureTreeNode
left: StructureTreeNode
right: StructureTreeNode
transferred: boolean
+ StructureTreeNode (...)

Abbildung 5.34.: Klassendiagramme des Transfers

Die Datenstruktur für den Transfer ist in Abbildung 5.34 dargestellt. Die Klasse Transfer
steuert den Transfer der Strukturbeschreibung. Dazu bietet sie die Methode transferTree
an, innerhalb derer nacheinander die Methoden transferTemplate(), transferSubkat() und
transferLanguage() aufgerufen werden. In den Methoden transferTemplate() und trans-
ferLanguage() wird als erstes die eben beschriebene XML-Datei mit den schablonenspezi-
fischen bzw. sprachspezifischen Transferregeln eingelesen. Für jede Regel wird ein Start-
baum und ein Zielbaum aufgebaut. Diese Bäume sind Objekte der Klasse TransferTree,

82

5.3. Transfer

die ein Attribut root enthält, das auf den Wurzelknoten, ein Objekt der Klasse Transfer-
TreeNode, zeigt.
Die Klasse TransferTree erbt von der Klasse StructureTree und die Klasse TransferTreeNo-
de von der Klasse StructureTreeNode. Um den Index, der jedem Knoten in der XML-Datei
zugewiesen wird, zu speichern, bekommt die Klasse TransferTreeNode ein zusätzliches At-
tribut index. Mit der Methode getSubTree der Klasse StructureTree wird der Startbaum
als Teilbaum im Syntaxbaum gesucht (siehe Abschnitt 5.2.5). Rückgabe der Methode ist
ein Zeiger auf den Wurzelknoten des Teilbaums im Syntaxbaum. Dieser Teilbaum soll nun
transferiert werden, falls er nicht schon als transferiert markiert wurde (Attribut trans-
ferred). Für den Transfer eines Teilbaums wird die Methode transferSubTree der Klasse
Transfer aufgerufen. Dieser Methode wird unter anderem der Startbaum, der Zielbaum
und der Teilbaum des Syntaxbaums übergeben.

Zielbaum
(To)

Startbaum
(From)

Syntaxbaum
VOR dem Transfer

neuer Teilbaum

Teilbaum mit selber
Struktur wie Startbaum

Abbildung 5.35.: Ablauf der Methode transferSubTree

Mit transferSubTree wird der Zielbaum in Preorder durchlaufen (Erklärung für Preorder
siehe Seite 78). Parallel zum Zielbaum wird ein äquivalenter Baum aufgebaut allerdings
werden die Knoten mit den Informationen aus dem Syntaxbaum gefüllt. Für jeden Knoten
des Zielbaums wird mit Hilfe des Index der zugehörige Knoten im Startbaum gesucht. Da
der Startbaum die selbe Struktur hat, wie der ermittelte Teilbaum des Syntaxbaums, ist
auch der Knoten im Syntaxbaum bekannt. Aus diesem werden nun die Informationen
z.B. die Kategorie und Merkmale für die Erzeugung eines neuen Knotens genommen. Die
Kinder werden zunächst auch übernommen, allerdings kann es sein, dass diese im weiteren
Verlauf des Transferschritts verändert, also zum Beispiel durch einen neuen Knoten ersetzt
werden.
Hat der Knoten des Zielbaums keinen Index wird ein neuer Knoten erzeugt. Er wird
gefüllt mit den Informationen des Knotens aus dem Zielbaum. Rückgabe der Methode
transferSubTree ist der neu aufgebaute und damit transferierte Teilbaum (siehe Abbildung
5.35). Dieser muss dann noch innerhalb von transferLanguage oder transferTemplate an
der richtigen Stelle im ursprünglichen Syntaxbaum eingehängt werden (siehe Abbildung
5.36).

83

5. Implementierung

Syntaxbaum
VOR dem Transfer

Syntaxbaum
NACH dem Transfer

neuer Teilbaum

Abbildung 5.36.: Ablauf der Methoden transferLanguage oder transferTemplate

5.3.2. Transfer der Subkategorisierungsrahmen

Der Transfer der Subkategorisierungsrahmen wird zwischen dem schablonenspezifischen
und sprachspezifischen Transfer durchgeführt. Das Prinzip des Transfers der Subkatego-
risierungsrahmen wurde bereits in Kapitel 4.3.2 erläutert. Im Gegensatz zu den beiden
anderen Transferschritten gibt es hierfür keine expliziten Transferregeln, die in eine XML-
Datei ausgelagert werden können. Für den Transfer der Subkategorisierungsrahmen wird
nur die Strukturbeschreibung, der deutsche Subkategorisierungsrahmen, sowie die dazu-
gehörigen englischen Subkategorisierungsrahmen jedes Verbs benötigt.
Zunächst muss ein Verb, das noch nicht transferiert wurde, im Syntaxbaum gefunden wer-
den. Dazu wird der Baum in Preorder durchlaufen und nach terminalen Knoten gesucht,
die das Merkmal „SUBKAT“ (deutscher Subkategorisierungsrahmen) und „SUBKAT E“
(englische Subkategorisierungsrahmen) besitzen. Dann werden für jedes Verb die pas-
senden englischen Subkategorisierungsrahmen, für die eine Übersetzung generiert werden
soll, ermittelt, dies sind alle Subkategorisierungsrahmen mit gleich vielen Elementen, wie
die Anzahl der Elemente im deutschen Subkategorisierungsrahmen. Für jeden passen-
den englischen Subkategorisierungrahmen wird eine Übersetzung erzeugt. Dazu werden
die Elemente des deutschen und englischen Subkategorisierungsrahmen in je einer Liste
gespeichert. Nachdem aus der englischen Liste das Element „subj“ und aus der deut-
schen Liste das Element „np:nom“ gelöscht wurde, wird für jede Zuordnungsmöglichkeit
zwischen den verbleibenden Elementen eine Übersetzung generiert 6. Bevor dies jedoch
möglich ist, müssen erst noch die Elemente des deutschen Subkategorisierungsrahmen im
Syntaxbaum gesucht werden. Dies wird durch die Anwendung der Zuweisungsregeln auf
dem Baum, in denen die Elemente der Subkategorisierungsrahmen identifiziert werden,
realisiert. Die Zeiger auf die Elemente des deutschen Subkategorisierungrahmen werden
den Elementen, die in der deutschen Liste gespeichert wurden, zugewiesen. So ist die Po-
sition jedes Elements im Baum bekannt.

6Beschreibung der Subkategorisierungsrahmen siehe Seite 51 in Kapitel 4.2.2

84

5.3. Transfer

Die Zuordnungsmöglichkeiten zwischen den beiden Subkategorisierungsrahmen mit je
n Elementen, entspricht der Anordnungsmöglichkeit von n Elementen, da die Position
der englischen Elemente fix ist und diesen die deutschen Elemente in jeder möglichen
Kombination zugeordnet werden. Damit keine der n! Möglichkeiten vergessen wird, wird
eine Matrix mit allen Permutationsmöglichkeiten der deutschen Elemente zur Hilfe ge-
nommen. Die Matrix enthält die permutierten Indexpositionen der deutschen Elemente.
Abbildung 5.37 zeigt eine solche Matrix für zwei Subkategorisierungsrahmen mit je drei
Elementen. Die Nummerierung der Spalten entspricht den Indizes der englischen Elemen-
te, die Zahlen in der jeweiligen Zeile entsprechen den dazugehörigen Indizes der deutschen
Elemente.



1 2 3
1 3 2
2 1 3
2 3 1
3 1 2
3 2 1



Abbildung 5.37.: Matrix mit Permutation der Zahlen 1 bis 3

Abbildung 5.38 zeigt die beiden Listen des Wortes „geben“ aus dem Beispiel aus Kapitel
4.3.2 mit den Elementen der Subkategorisierungsrahmen und die Zuordnung bei entspre-
chendem Matrixeintrag. Ist die Zeile in der Matrix beispielsweise der Eintrag „(2 1)„,
wird dem ersten Element des englischen Subkategorisierungrahmen das zweite Element
des deutschen Subkategorisierungsrahmen und dem zweiten englischen Element das erste
deutsche Element zugeordnet. Ist die Zuordnung zwischen den beiden Listen bestimmt,
muss ein Basistransfer zwischen den Elementpaaren durchgeführt werden. Dies ist im
Werkzeug fest implementiert und kann in allen Kombinationen zwischen einer NP und
einer PP durchgeführt werden. Das neu erzeugte Element wird im Baum an der entspre-
chenden Stelle, die bereits über die Zuweisungsregeln bestimmt wurde, eingehängt.
Für jede Zuordnungsmöglichkeit wird ein neuer Syntaxbaum erzeugt, dieser stellt dann
eine Übersetzungsmöglichkeit dar.

np pp:to

np:dat np:akk

Zeile Matrix: (1 2)

Zeile Matrix: (2 1)

Index: 1 Index: 2

Index: 1 Index: 2

D:

EN:

Abbildung 5.38.: Zuordnung der Elemente zweier Subkategorisierungsrahmen mit Hilfe
von Permutationen

85

5. Implementierung

5.4. Generierung

Die Generierung ist der letzte Schritt der transferbasierten Übersetzung. Jede Struktur-
beschreibung, die Ergebnis des Transfers ist, also eine Übersetzungsmöglichkeit darstellt,
wird in Inorder durchlaufen, um den Satz daraus zu generieren. Die Reihenfolge in der
die Knoten betrachtet werden, ist in Abbildung 5.39 dargestellt. Der resutierende Satz
besteht aus den Blättern des Baums, die in der Reihenfolge, in der sie angetroffen werden,
ausgegeben werden.

Abbildung 5.39.: Inorder-Durchlauf der Strukturbeschreibung

86

5.5. Benutzeroberfläche

5.5. Benutzeroberfläche

Die Benutzeroberfläche des Werkzeugs basiert auf dem Werkzeug von Hoedoro [Hoe11],
wobei dieses an die neue Funktion angepasst wurde. Der Benutzer gibt in das Textfeld des
Anforderungswidgets eine Anforderung ein. Darüber wird, wie in Abbildung 5.40 gezeigt,
während der Eingabe die Struktur der Schablone eingeblendet. Das System von Hoedoro
erkennt nach welcher Schablone der Satz geschrieben wird. Hoedoros Werkzeug erkennt
sowohl Sätze nach der Schablone aus Abbildung 2.5 als auch Sätze nach der Schablone
aus Abbildung 2.6. Im Vorschauwidget werden für jedes begonnene Wort Vorschläge zur
Vervollständigung angeboten. Diese Funktionalität war schon durch das Werkzeug gege-
ben. Erweitert wurde es um die Übersetzungsfunktion, die allerdings nur Übersetzungen
von Sätzen, die nach der in Abbildung 2.5 gezeigten Schablone geschrieben wurden, an-
bietet.

Abbildung 5.40.: Screenshot des Werkzeugs - Anforderung- und Vorschaufenster

Für die Übersetzung wurde zur Benutzeroberfläche ein neues Widget hinzugefügt. Wird in
das Textfeld des Anforderungswidgets eine Anforderung eingegeben und anschließend auf
den Button mit dem Pfeil, der sich direkt daneben befindet, geklickt, werden alle Überset-
zungsmöglichkeiten für diesen Satz generiert und in einer scrollbaren Liste angezeigt. Die

87

5. Implementierung

Übersetzungsmöglichkeiten können durch anklicken ausgewählt werden. Die ausgewähl-
te Übersetzung wird in das Textfeld unter der Liste mit den Übersetzungsmöglichkeiten
eingefügt. Hier kann diese vom Benutzer noch verbessert oder ergänzt werden.

Abbildung 5.41.: Screenshot des Werkzeugs - Übersetzungsmöglichkeiten

Ist der Benutzer mit der Übersetzung zufrieden, kann er auf den Button rechts unter
dem Textfeld mit der Übersetzung klicken, um den Satz und die Übersetzung in seine
Ausgabe zu übernehmen. Im unteren Bereich der Benutzeroberfläche befindet sich eine
Tabelle, in der sowohl die deutsche Anforderung als auch die dazugehörige Übersetzung
angezeigt wird. Mit einem Klick auf das Diskettensymbol können alle Anforderungen und
ihre Übersetzungen in einer Textdatei gespeichert werden. Die Benutzeroberfläche wird
dann wieder zurückgesetzt, d.h. alle Tabellen, Listen und Textfelder sind leer.
Kann für einen Satz keine Übersetzung erzeugt werden, wird im Übersetzungswidget, wie
in Abbildung 5.42 abgebildet, der Satz „Die Anforderung konnte nicht übersetzt werden.“
angezeigt. Dieser Satz kann nicht als Übersetzung ausgewählt werden. Es kann aber ge-
nerell immer eine eigene Übersetzung in das entsprechende Textfeld eingegeben werden.
Falls keine Übersetzung eingegeben wird bzw. von den angebotenen Übersetzungsmög-
lichkeiten keine ausgewählt wird, kann der Satz nicht in die Ausgabetabelle übernommen
werden.

88

5.5. Benutzeroberfläche

Abbildung 5.42.: Screenshot des Werkzeugs - Übersetzungsfunktion

Ein Satz, der nicht korrekt nach der Schablone geschrieben wurde bzw. dessen Wörter
nicht aus dem Lexikon bekannt sind, wird nachdem der Button zur Erzeugung einer
Übersetzung angeklickt wurde, mit einem Sternchen am Ende markiert. Diese Funktion
hat Hoedoro implementiert.

89

6. Schlussbetrachtung

6.1. Zusammenfassung

In dieser Arbeit wurde eine Methodik zur maschinellen Übersetzung von Anforderungen
vorgestellt, die in einem Werkzeug umgesetzt wurde. Mit dem Werkzeug können An-
forderungen, die nach einer Schablone geschrieben wurden, von Deutsch nach Englisch
übersetzt werden. Durch die Schablone wird die Syntax des Satzes auf drei verschiedene
Anforderungstypen eingeschränkt. Es handelt sich damit um eine kontrollierte Sprache,
die leichter übersetzt werden kann. Zusätzlich wird die Übersetzung durch die Verwen-
dung eines Lexikons mit einer Subsprache vereinfacht.
Für eine maschinelle Übersetzung gibt es verschiedene Ansätze. In diesem Fall hat sich
das transferbasierte Verfahren als am geeignetsten herausgestellt. Eine transferbasierte
Übersetzung besteht aus Analyse, Transfer und Generierung.
Zur Analyse wird eine um Merkmalsstrukturen und Restriktionen ergänzte Phrasenstruk-
turgrammatik verwendet. Merkmalsstrukturen und Restriktionen werden benötigt, weil
die Phrasenstrukturgrammatik übergeneriert. Die lexikalischen Regeln der Grammatik
werden für jedes Token des zu übersetzenden Satzes aus dem Lexikon erzeugt und zur
Grammatik hinzugefügt. Diese Grammatik ist dann Grundlage für einen Earley-Parser,
der als Analyseergebnis eine Chart liefert, aus der nach erfolgreichem Parsen des Satzes
ein Syntaxbaum extrahiert werden kann. Für den extrahierten Syntaxbaum wird mittels
Restriktionen geprüft, ob er einem der drei Anforderungstypen entspricht.
Der nächste Schritt ist der Transfer. Der Syntaxbaum, der nach der deutschen Grammatik
aufgebaut wurde und Ergebnis der Analyse ist, wird über Transferregeln in einen Syn-
taxbaum, der durch die englische Grammatik beschrieben wird, transferiert. Der Transfer
ist in mehrere Schritte aufgeteilt. Als erstes wird die deutsche Schablonenstruktur, die
im Baum enthalten ist, in die englische Schablonenstruktur überführt. Dann wird das
Wissen über die Subkategorisierungsrahmen der Verben ausgenutzt um den deutschen
Subkategorisierungsrahmen in die passenden englischen Subkategorisierungsrahmen zu
überführen. Es entstehen unter Umständen mehrere Übersetzungsmöglichkeiten, da es
keine eindeutige Zuordnung zwischen den deutschen und englischen Subkategorisierungs-
rahmen gibt. Es kann wegen fehlendem Wissen auch keine der Übersetzungsmöglichkeiten
ausgeschlossen werden. Der Transfer wird beendet durch die Anwendung von sprachspe-
zifischen Regeln auf die verschiedenen Syntaxbäume des vorhergehenden Transferschritts.
Die sprachspezifischen Regeln korrigieren die Verbstellung, die in deutschen und engli-
schen Sätzen unterschiedlich ist.

91

6. Schlussbetrachtung

Ergebnis des Transfers ist mindestens ein, eventuell auch mehrere, Syntaxbäume. Jeder
dieser Bäume wird in Inorder durchlaufen um den übersetzten Satz daraus zu generieren.
Das Werkzeug bietet eine Eingabemaske für Anforderungen, übersetzt diese nach dem
beschrieben Verfahren und stellt, falls nötig, dem Benutzer mehrere Übersetzungsmög-
lichkeiten als Auswahl zur Verfügung.

6.2. Fazit und Ausblick

Mit dem entwickelten Werkzeug wird demonstriert, dass eine maschinelle Übersetzung für
Anforderungen sinnvoll und umsetzbar ist. Sind alle Tokens des Satzes als Einträge im
Lexikon vorhanden und entspricht der Satz der Schablone kann auch eine Übersetzung
generiert werden. Um das Werkzeug allerdings ausgiebig zu testen, wäre eine Benutzer-
studie notwendig. Die Kandidaten müssten sich sowohl fachlich mit den Anforderungen
auskennen, als auch am besten englische Muttersprachler sein. Eine andere Evaluierung
wäre subjektiv und daher nicht repräsentativ.
Die Abbildung 6.1 zeigt eine Anregung für Fragen, die in einer Evaluierung beantwortet
werden könnten. Durch diese Fragen könnte eine Bewertung des Werkzeugs erfolgen.

Konnte eine
Übersetzung

generiert werden?

War die korrekte
Übersetzung dabei?

Bewertung der
Übersetzung

Warum konnte keine
Übersetzung erzeugt werden?

Wie viele Übersetzungsmöglichkeiten gab es?
War die richtige Übersetzung eindeutig?

Warum waren die angebotenen
Übersetzungen falsch?

Wie viel Aufwand wird benötigt
um eine der Übersetzungen in

die korrekt Übersetzung
abzuändern?

Nein

Nein

Ja

Ja

Abbildung 6.1.: Bewertung einer Übersetzung

Dennoch soll im Folgenden ein Eindruck über den bisherigen Stand und mögliche Erwei-
terungen gegeben werden.

92

6.2. Fazit und Ausblick

Das Werkzeug ist interaktiv und erlaubt eine Postedition. Dies gibt dem Benutzer die
Möglichkeit eine korrekte Übersetzung zu wählen oder die Übersetzung zu verbessern.
Dadurch wird fehlendes Wissen ausgeglichen und die Übersetzungsqualität angehoben.
Zusätzlich nutzt das Werkzeug zur Verbesserung der Übersetzung eine kontrollierte Spra-
che, gegeben durch die Schablone und eine Subsprache, gegeben durch das Lexikon.
Da das Werkzeug schon interaktiv gestaltet wurde, könnte eine zusätzliche Funktionalität
sein, den Benutzer beim Start des Werkzeugs auswählen zu lassen in welcher Domäne,
z. B. Fahrerassistenzsysteme oder Motoren, er seine Anforderungen schreiben möchte. Dies
macht das Lexikon flexibler und nutzt die Tatsache, dass die Übersetzung der Wörter in
einer kleineren Domäne häufig eindeutig ist.
Es hat sich gezeigt, dass das Einbeziehen der syntaktischen Merkmale aus dem Lexi-
kon, vor allem der Subkategorisierungsrahmen, für eine korrekte Übersetzung besonders
wichtig ist. Dadurch wurde erreicht, dass wenn eine Übersetzung erzeugt werden kann,
meist auch die korrekte dabei ist. Dieser Eindruck ist natürlich rein subjektiv und das
Werkzeug wurde daraufhin noch nicht ausreichend getestet. Allerdings kann schon jetzt
festgestellt werden, dass das Lexikon vor allem bezüglich der Übersetzungen und Subka-
tegorisierungsrahmen noch stark verbesserungswürdig ist.
Das System wurde an vielen Stellen, zum Beispiel durch das Auslagern der Grammatik
in eine XML-Datei, erweiterbar gestaltet. Die maschinelle Übersetzung ist ein interdis-
ziplinäres Gebiet, in dem nicht nur Informatiker arbeiten. Experten, wie zum Beispiel
Computerlinguisten, können das Werkzeug mit ihrem Wissen erweitern, um zum Beispiel
eine größere Abdeckung der Anforderungstypen zu ermöglichen. Der Grammatik fehlen
unter anderem Relativsätze und Vorbedingungen. Auch das Lexikon wurde in Textdateien
ausgelagert. Dadurch können fehlende Begrifflichkeiten ergänzt oder neue Domänen einge-
führt werden. Alternativ kann als Verbesserung das Lexikon von einem Vollformenlexikon
in ein Lexikon mit einer morphologischen Analyse transferiert werden. Dies würde vor
allem Speicherplatz sparen und mehr Wörter abdecken. Schnellere Zugriffszeiten könnten
durch die Verwaltung des Lexikons als SQL-Datenbank realisiert werden.
Wichtig wäre noch eine Überprüfung der Werte der Merkmale eines Wortes. Der Kasus
kann beispielsweise nur die Werte Nominativ, Dativ, Genitiv und Akkusativ annehmen.
Andere Werte sind nicht zulässig.
Mit einer zusätzlichen Logik bezüglich der Subkategorisierungrahmen könnten fehlerhafte
Übersetzungsmöglichkeiten ausgeschlossen werden. Hat zum Beispiel ein deutsches Verb
den Subkategorisierungrahmen <np:nom, np:akk, pp:auf_dat> und ein passender engli-
scher Subkategorisierungsrahmen wäre <subj, np, pp:on>, dann ist eine Zuordnung der
beiden PPs und der beiden NPs zueinander am wahrscheinlichsten. Die andere Möglich-
keit der Zuordnung könnte ausgeschlossen werden. Die beiden Subjekte np:nom und subj
werden immer einander zugeordnet und werden schon jetzt separat betrachtet.
Ein weiterer erheblicher Vorteil der maschinellen Übersetzung ist die einheitliche Struktur
der Übersetzungen. Dies kann natürlich bei einer anschließenden Editierung durch den
Benutzer nicht gewährleistet werden. Das Werkzeug könnte aber dahingehend erweitert
werden, dass nachdem der Benutzer eine Übersetzung editiert oder eingegeben hat, diese
nochmals auf Korrektheit bezüglich der Schablone überprüft wird.
Ein letzter Vorschlag zur Verbesserung des Werkzeugs ist das transferbasierte System zu

93

6. Schlussbetrachtung

einem Hybridsystem zu erweitern. Es könnte beispielsweise mit einem wissensbasierten
oder statistischen Verfahren optimiert oder mit künstlicher Intelligenz zu einem lernenden
System ausgebaut werden. Die neusten Systeme sind fast ausschließlich Hybridsysteme.
Die maschinelle Übersetzung hat Zukunft im Bereich der Anforderungsübersetzung, denn
die Möglichkeiten sind noch nicht ausgeschöpft und die Aussichten optimistisch. Diese
Arbeit ist definitv ein Anfang in diesem Bereich.

94

Literaturverzeichnis

[Bal09] H. Balzert. Lehrbuch Der Softwaretechnik: Basiskonzepte und Requirements En-
gineering. Spektrum Lehrbücher der Informatik. Springer-Verlag New York Inc,
2009.

[BEW06] J. Butt, C. Eulitz, and Wiemer. Vorlesung: Einführung in die Linguis-
tik - Syntax 3. http://ling.uni-konstanz.de/pages/allgemein/study/
introling06/einf_syntax3-print.pdf, 2006.

[Brä06] H. Bräuer. Generative Grammatik. http://tu-dresden.de/die_tu_
dresden/fakultaeten/philosophische_fakultaet/iph/thph/braeuer/
lehre/putnam_bedeutung/Generative%20Grammatik.pdf, 2006.

[Bre01] J. Bresnan. Lexical-Functional Syntax. Blackwell Textbooks in Linguistics.
Blackwell, 2001.

[Car02] A. Carnie. Syntax: a generative introduction. Introducing linguistics. Blackwell
Publishers, 2002.

[CEE+04] K. Carstensen, C. Ebert, C. Endriss, S. Jekat, R. Klabunde, and H. Langer.
Computerlinguistik und Sprachtechnologie - Eine Einfühung. Spektrum Akade-
mischer Verlag, 2. edition, 2004.

[Cho56] N. Chomsky. Three models for the description of language. IRE Transacti-
ons on Information Theory, 2, 1956. http://www.chomsky.info/articles/
195609--.pdf.

[Ebe09] K. Eberle. Integration von regel- und statistikbasierten Methoden in der ma-
schinellen Übersetzung. LDV Forum, 24(3):37–70, 2009.

[Ela11] H. Elazhary. Translation of Software Requirements. International Journal of
Scientific and Engineering Research, 2, 2011.

[Gol11] J. Goll. Methoden und Architekturen der Softwaretechnik. Vieweg Studium.
Vieweg+teubner Verlag, 2011.

[Hei04] U. Heid. Vorlesung: Maschinelle Übersetzung 1, 2004.

95

http://ling.uni-konstanz.de/pages/allgemein/study/introling06/einf_syntax3-print.pdf
http://ling.uni-konstanz.de/pages/allgemein/study/introling06/einf_syntax3-print.pdf
http://tu-dresden.de/die_tu_dresden/fakultaeten/philosophische_fakultaet/iph/thph/braeuer/lehre/putnam_bedeutung/Generative%20Grammatik.pdf
http://tu-dresden.de/die_tu_dresden/fakultaeten/philosophische_fakultaet/iph/thph/braeuer/lehre/putnam_bedeutung/Generative%20Grammatik.pdf
http://tu-dresden.de/die_tu_dresden/fakultaeten/philosophische_fakultaet/iph/thph/braeuer/lehre/putnam_bedeutung/Generative%20Grammatik.pdf
http://www.chomsky.info/articles/195609--.pdf
http://www.chomsky.info/articles/195609--.pdf

Literaturverzeichnis

[Hoe11] N. Hoedoro. Entwicklung eines interaktiven Werkzeugs zum Verfassen natürlich-
sprachlicher Spezifikationen, 2011.

[HS92] H. Hutchins and H. Somers. An introduction to machine translation. Academic
Press, 1992.

[IEE90] IEEE Standard Glossary of Software Engineering Terminology. IEEE Std
610.12-1990, 1990.

[NL94] S. Naumann and H. Langer. Parsing - eine Einführung in die maschinelle
Analyse natürlicher Sprache. Teubner, 1994.

[Par10] H. Partsch. Requirements-Engineering systematisch: Modellbildung für softwa-
regestützte Systeme. Springer, 2010.

[Ram09] M. Ramlow. Die maschinelle Simulierbarkeit des Humanübersetzens.
Frank&Timme, 2009.

[Rei09] K. Reif. Automobilelektronik: Eine Einführung für Ingenieure. Atz/Mtz-
Fachbuch. Vieweg+teubner Verlag, 2009.

[RN04] S. Russell and P. Norvig. Künstliche Intelligenz: Ein moderner Ansatz. Pearson
Studium, 2004.

[Rup09] C. Rupp. Requirements-Engineering und -Management. HANSER, 2009.

[Sah06] S. Sahel. Vorlesung Theorien und Modelle 1 - X-Bar-Syntax. http:
//www.uni-bielefeld.de/lili/personen/ssahel/theorien_modelle1/
x-bar-syntax.pdf, 2006.

[Sah09] S. Sahel. Struktur der deutschen Sprache 2: Der Satz. http:
//wwwedit.uni-bielefeld.de/lili/personen/ssahel/struktur2_ss09/
x-bar_theorie.pdf, 2009.

[Sch03a] U. Schöning. Theoretische Informatik - kurzgefasst. Spektrum Akademischer
Verlag, 4. edition, 2003.

[Sch03b] S. Schulte im Walde. Experiments on the Automatic Induction of German Se-
mantic Verb Classes. PhD thesis, Institut für Maschinelle Sprachverarbeitung,
Universität Stuttgart, 2003. Published as AIMS Report 9(2).

[Sch04] H. Schmid. Efficient Parsing of Highly Ambiguous Context-Free Grammars with
Bit Vectors. Proceedings of the 20th International Conference on Computatio-

96

http://www.uni-bielefeld.de/lili/personen/ssahel/theorien_modelle1/x-bar-syntax.pdf
http://www.uni-bielefeld.de/lili/personen/ssahel/theorien_modelle1/x-bar-syntax.pdf
http://www.uni-bielefeld.de/lili/personen/ssahel/theorien_modelle1/x-bar-syntax.pdf
http://wwwedit.uni-bielefeld.de/lili/personen/ssahel/struktur2_ss09/x-bar_theorie.pdf
http://wwwedit.uni-bielefeld.de/lili/personen/ssahel/struktur2_ss09/x-bar_theorie.pdf
http://wwwedit.uni-bielefeld.de/lili/personen/ssahel/struktur2_ss09/x-bar_theorie.pdf

Literaturverzeichnis

nal Linguistics (COLING 2004), 2004. http://www.ims.uni-stuttgart.de/
projekte/gramotron/PAPERS/COLING04/BitPar.pdf.

[Sco07] M. Scott. Pep 0.4: Pep is an Earley parser. http://www.ling.ohio-state.
edu/~scott/projects/pep/docs/api/, 2007.

[SFH02] H. Schmid, A. Fitschen, and U. Heid. SMOR: A German Computatio-
nal Morphology Covering Derivation, Composition and Inflection. Procee-
dings of the 19th International Conference on Computational Linguistics
(COLING 2002), 2002. www.ims.uni-stuttgart.de/projekte/gramotron/
PAPERS/LREC04/smor.pdf.

97

http://www.ims.uni-stuttgart.de/projekte/gramotron/PAPERS/COLING04/BitPar.pdf
http://www.ims.uni-stuttgart.de/projekte/gramotron/PAPERS/COLING04/BitPar.pdf
http://www.ling.ohio-state.edu/~scott/projects/pep/docs/api/
http://www.ling.ohio-state.edu/~scott/projects/pep/docs/api/
www.ims.uni-stuttgart.de/projekte/gramotron/PAPERS/LREC04/smor.pdf
www.ims.uni-stuttgart.de/projekte/gramotron/PAPERS/LREC04/smor.pdf

A. Auszug aus dem Lexikon

Artikel

Wort Grundorm Definitheit Numerus Genus Kasus Übersetzung
alle alle + pl masc/fem/neut nom/akk all
der die + pl masc/fem/neut gen the
der die + sg fem dat/gen the
der die + sg masc nom the

Tabelle A.1.: Auszug aus der Artikel-Datei des Lexikons

Nomen

Wort Grundorm Numerus Genus Kasus Übersetzung
Beschreibung Beschreibung sg fem gen description
Beschreibung Beschreibung sg fem nom/dat/akk description
Beschreibungen Beschreibung pl fem dat descriptions
Beschreibungen Beschreibung pl fem nom/akk/gen descriptions
Information Information sg fem gen information
Information Information sg fem nom/dat/akk information

System System sg neut nom/dat/akk system

Tabelle A.2.: Auszug aus der Nomen-Datei des Lexikons

Modalverben

Wort Grundorm Numerus Person Finitheit Übersetzung
muss müssen sg 3 + shall
soll sollen sg 3 + should
wird werden sg 3 + will

müssen müssen pl 3 + shall
sollen sollen pl 3 + should
werden werden pl 3 + will

Tabelle A.3.: Auszug aus der Modalverben-Datei des Lexikons

99

A. Auszug aus dem Lexikon

Präposition

Wort Kasus
an dat/akk

mittels dat/gen
nach dat
trotz dat/gen

Tabelle A.4.: Auszug aus der Präpositionen-Datei des Lexikons

Verben

Grundform Hilfswort 3. Person Singular 3. Person Plural Partizip
aktivieren haben aktiviert aktivieren aktiviert
anbringen sein bringt an bringen an angebracht
passen haben passt passen gepasst
wechseln haben wechselt wechseln gewechselt

Verbpartikel zu-Infinitiv Subaktegorisierungsrahmen D
- zu aktivieren np:nom#np:akk/np:nom#np:akk#pp:bei_dat
+ anzubringen np:nom#np:akk/np:nom#np:akk#pp:an_dat
- zu passen np:nom#pp:in_akk/np:nom/np:nom#np:dat
- zu wechseln np:nom#np:akk/np:nom/np:nom#pp:in_akk

Übersetzung Subkategorisierungsrahmen E
activate subj#np
attach subj#np/subj#np#pp:to
fit subj#np/subj#np#pp:with

change subj/subj#np/subj#np#pp:to

Tabelle A.5.: Auszug aus der Verben-Datei des Lexikons

100

Erklärung

Hiermit versichere ich, diese Arbeit
selbständig verfasst und nur die
angegebenen Quellen benutzt zu haben.

(Nadine Siegmund)

	Einleitung
	Motivation
	Zielsetzung
	Gliederung der Arbeit

	Grundlagen
	Requirements Engineering
	Grundlagen des Requirements Engineering
	Anforderungsschablonen

	Maschinelle Übersetzung
	Grundlagen der maschinellen Übersetzung
	Verfahren zur maschinellen Übersetzung
	Probleme der maschinellen Übersetzung

	Grammatiken
	Grundlagen der Grammatiktheorie
	Phrasenstrukturgrammatik und X-Bar-Theorie
	Merkmalsstrukturen

	Parsing
	Grundlagen des Parsings
	Chart-Parsing

	Stand der Technik
	Konzept
	Auswahl eines Verfahrens zur maschinellen Übersetzung
	Grammatik der Anforderungen
	Phrasenstrukturregeln
	Lexikon (lexikalische Regeln)

	Transferbasierte Übersetzung
	Analyse
	Transfer
	Generierung

	Implementierung
	Systeminformationen
	Analyse
	Datenstruktur und implementeller Aufbau der Grammatik
	Realisierung des Lexikons
	Chart Parser
	Extraktion des Syntaxbaums
	Restriktive Überprüfung des Anforderungstyps

	Transfer
	Schablonen- und sprachspezifischer Transfer
	Transfer der Subkategorisierungsrahmen

	Generierung
	Benutzeroberfläche

	Schlussbetrachtung
	Zusammenfassung
	Fazit und Ausblick

	Literaturverzeichnis
	Auszug aus dem Lexikon

