Institut fiir maschinelle Sprachverarbeitung
Universitat Stuttgart
Pfaffenwaldring 5b
D-70569 Stuttgart

Diplomarbeit Nr.3301

Konzept und Entwicklung eines
Werkzeugs zur automatisierten
Ubersetzung natiirlichsprachlicher
Anforderungen

Nadine Siegmund

Studiengang: Informatik
Priifer: Prof. Dr. Hinrich Schiitze
Betreuer: Dipl.-Ling. Nadya Stoyanova

Dipl.-Ling. Boris Haselbach

begonnen am: 16. Januar 2012

beendet am: 12. Juli 2012

CR-Klassifikation: 1.2.7, D.2.1,D.3.4, F4.2

Zusammenfassung

Zum erfolgreichen Projektabschluss gehort im automobilen Umfeld die Erstel-
lung einer Anforderungsdokumentation. Diese sollte wegen der immer stiarkeren in-
ternationalen Zusammenarbeit und verteilten Entwicklung am besten in mehreren
Sprachen und vor allem in Englisch zur Verfiigung stehen. Da aber nicht jeder Pro-
jektbeteiligte aller Sprachen méchtig ist, muss das Anforderungsdokument iibersetzt
werden. Die maschinelle Ubersetzung bietet sich hierfiir an, da dadurch standardi-
sierte Anforderungsdokumente erzeugt werden kénnen und im Gegenteil zu einem
Ubersetzer die Ubersetzung giinstig ist und ohne Verzégerung zur Verfiigung steht.
In dieser Arbeit wird das Konzept und die Implementierung einer Methodik, die in
einem Werkzeug umgesetzt wird, vorgestellt. Damit kénnen Anforderungen mittels
maschineller Ubersetzung von Deutsch nach Englisch iibersetzt werden.

Es wird dazu ein transferbasiertes Verfahren angewandt, das einen Satz mittels
einer mit Merkmalsstrukturen und Restriktionen angereicherten Phrasenstruktur-
grammatik analysiert und in eine Strukturbeschreibung tiberfithrt. Die Strukturbe-
schreibung wird mit Hilfe von Transferregeln vom Deutschen ins Englische tiberfiihrt
und daraus der Ubersetzte Satz generiert. Das Werkzeug wurde, zum Beispiel durch
die Verwendung von XML, an mdglichst vielen Stellen erweiterbar gestaltet, um eine
einfache Weiterentwicklung durch Experten, wie zum Beispiel Computerlinguisten,
zu ermoglichen.

Zur Vereinfachung der Problematik einer maschinellen Ubersetzung wird die Tatsa-
che ausgenutzt, dass die Anforderungen mittels einer Schablone formuliert werden
und dadurch die Satzstruktur stark eingeschrankt wird. Auflerdem liegt ein Lexikon
mit einer Subsprache vor, durch das weitere Probleme eliminiert werden kénnen.
Diese Arbeit zeigt, dass die maschinelle Ubersetzung unter den gegebenen Voraus-
setzungen ein geeigneter Ansatz fiir die Ubersetzung von Anforderungen ist.

Abstract

In the automotive industry, a requirement specification is mandatory, in order to
successfully manage a project. Due to the increasing international collaboration be-
tween OEMs and suppliers as well as more decentralized development requirement
specifications are required in various languages and therefore need to be translated.
This could be achieved by a human translator or a translation system. The focus
of this work is on a standardized and cheap translation without time delay which
could be achieved better by a machine translation system.

In this thesis the concept and implementation of a method is introduced which
could translate requirements from German to English with machine translation.
The method first analyses each sentence with a phrase structure grammar which in-
cludes attribute structures and restrictions. The result of this procedure is a syntax
tree that afterwards is transferred by transfer rules into a tree build by the English
syntax. The final translation of the requirement can therefore easily be generated.
To enable the expand of the range of functionalities through experts like computa-
tional linguistics most parts of the tool are designed extendible for example through
the use of XML.

For an easier translation the requirements have to be written according to a tem-
plate and a dictionary with a sublanguage is used.

The proposed methods are a good solution for an automated translation of require-
ments and to be preferred over human translation.

Danksagung

Ich mo6chte mich mich bei allen bedanken, die mich wahrend meines Studiums und ins
besondere wahrend meiner Diplomarbeit unterstiitzt haben.

Im Speziellen geht mein Dank an Herrn Prof. Dr. Hinrich Schiitze fiir das Ermoglichen
und Prifen dieser Diplomarbeit.

Meine Diplomarbeit ist in Zusammenarbeit mit der Daimler AG am Standort Boblin-
gen/Hulb entstanden. Hier bedanke ich mich besonders bei meiner Betreuerin Nadya
Stoyanova fiir die vielseitige und vor allem fachliche Unterstiitzung, die Motivation und
die beruhigenden Worte. Bei meinem Teamleiter Dr. Matthias Recknagel und den Mi-
tarbeitern der Abteilung RD/EST bedanke ich mich fiir die angenehme Zeit.

Auch von Seiten der Universitdt wurde ich bestens betreut. Meinem Betreuer Boris
Haselbach mochte ich danken fir die kritische Betrachtung meiner Arbeit und sein grofies
Engagement. Ebenso gilt mein Dank Herrn Prof. Dr. phil. habil. Grzegorz Dogil, der
mich wahrend meines Studiums stets unterstiitzt hat.

Zum Schluss mochte ich mich noch bei Thomas Walter und Severa Mérker bedanken fiir
die viele Geduld, die sie mit mir und beim Durchlesen meiner Arbeit hatten. Mein Dank
gilt ebenso meiner Familie, die mich stets in allen Lebenslagen begleitet und bestarkt
hat.

Inhaltsverzeichnis

(1. Einleitung)
(L1, Motivationl.
[1.2. Zielsetzung|
[1.3. Gliederung der Arbeit|

[2. Grundlagen|
[2.1. Requirements Engineering|
[2.1.1. Grundlagen des Requirements Engineeringf
[2.1.2. Anforderungsschablonen| o000

[2.2. Maschinelle Ubersetzung|
2.2.1. Grundlagen der maschinellen Ubersetzungl
2.2.2. Verfahren zur maschinellen Ubersetzung|
2.2.3. Probleme der maschinellen Ubersetzung|

[2.3.1. Grundlagen der Grammatiktheorie]
[2.3.2. Phrasenstrukturgrammatik und X-Bar-Theorie[.
2.3.3. Merkmalsstrukturen| oo
2.4. Parsing|.
[2.4.1. Grundlagen des Parsings|
[2.4.2. Chart-Parsing|,

(3. Stand der lechnik
[4. Konzept]

4.1. Auswahl eines Verfahrens zur maschinellen Ubersetzung.
[4.2. Grammatik der Anforderungen|
[4.2.1. Phrasenstrukturregelnl
{4.2.2. Lexikon (lexikalische Regeln)
4.3. Transferbasierte Ubersetzung|
[4.3.1. Analysel

[5. Implementierung|

[b.1. Systeminformationen|
0.2. Analysel

[5.2.1. Datenstruktur und implementeller Autbau der Grammatik|

33

37
37
38
38
49
52
52
53
29

61
61
62

Inhaltsverzeichnis

[5.2.2. Realisierung des Lexikons|,

Hh.2.3. Chart Parser]
0.2.4. Extraktion des Syntaxbaums|.
5.2.5. Restriktive Uberpriifung des Anforderungstyps|.

[>.3.1. Schablonen- und sprachspezifischer Iransfer|
[5.3.2. 'Transter der Subkategorisierungsrahmen|
[5.4. Generierung|

6.

Schlussbetrachtung|

[6.1. Zusammenfassung.

62 Fazit und Ausblickl

G hois

[A. Auszug aus dem Lexikon|

IT

Abbildungsverzeichnis

2.1. V-Modell nach |[Rei09]| 6
2.2. Definition ,Anforderung” nach IEEE [IEE9O]. 7
2.3. Definition , Anforderung® nach Rupp [Rup09, S.14] 7
2.4. Qualitatskriterien nach Rupp [Rup09, S.24] 8
2.5. Schablone fiir Anforderungen auf Deutsch ohne Vorbedingung [Rup09, S.162]] 9
2.6. Schablone fiir Anforderungen auf Deutsch mit Vorbedingung [Rup09, S.166] 9
2.7. Schablone fiir Anforderungen auf Englisch [Rup09, S.177]. 10
2.8. Dreieck der maschinellen Ubersetzung von Vauquois [CEET04, S.565] . . . 12
2.9. Direkte Ubersetzung| 13
2.10. Transferbasierte Ubersetzung| 13
2.11. Interlinguabasierte Ubersetzung| 14
[2.12. Head Switching| 00000 15
2.13. Definition ,,Grammatik“ nach [SchO3al| 17
2.14. Definition ,Formale Sprache® nach [Sch03al 17
[2.15. Beispielgrammatik 1} oo oo 18
[2.16. Syntaxbaum einer Ableitung der Beispielgrammatik G| 18
[2.17. Phrasenstrukturbaum: ,Der Handler tahrt mit dem neuen Lieferwagen in |

die StadtX 19
[2.18. Beispielgrammatik 2|o 20
[2.19. Allgemeine X-Bar-Struktur{.o 21
[2.20. Ungrammatischer Phrasenstrukturbaum: ,,Dem Handler fahrt mit die neu- |

en Lieferwagen.”|. 23
[2.21. Beispiel fur Merkmalsstruktur des Wortes . Handler™| 23
2.22. Beispielgrammatik 3|o 26
2.23. Aufbau einer Strukturbeschreibung bottom-up, links-rechts nach [CEE™04] |

S.205[| ... 27
[2.24. Aufbau einer Strukturbeschreibung top-down, links-rechts nach |[CEE™04] |

e 27
2.25 Expand [CEETO4L S 268 o o oo oo 29
2.26. Scan [CEET04, S.269]] 29
2.27. Complete [CEET04, S.270[. 29
[2.28. Barley Algorithmus|o 30
[2.29. Beispielgrammatik 4 [CEET04, S.236]] 30
3.1. Google Translator (http://translate.google.de) 33
3.2. Yahoo Babelfish (http://babelfish.yahoo.com)| 34

I1I

Abbildungsverzeichnis

[4.1. Mogliche Phrasenstrukturen fir ein Objekt und das folgende Prozesswort

1Y

einer Benutzerinteraktion oder Schnittstellenantorderungl 39
[4.2. Mogliche Phrasenstrukturen tur ein Objekt und das folgende Prozesswort |

einer selbststandigen Systemaktivitat|o 39
[4.3. Basisphrasenstrukturregeln Deutsch| 40
[4.4. Basisphrasenstrukturregeln kEnglischl. 40
[4.5. Selbststandige Systemaktivitat aut Deutsch|. 41
[4.6. Selbststandige Systemaktivitat aut Englischl 41
.7, Benutzerinteraktion auf Deutschl 42
[4.8. Benutzerinteraktion aut Englisch| 43
[4.9. Schnittstellenantorderung aut Deutsch| 44
4.10. Schnittstellenanforderung aut Englisch| 44
4.11. Ubergenerierter Satz der Basisgrammatik| 45
4.12. Regel I' — I VP mit Merkmalsstrukturen und Restriktionen| 48
4.13. Ubergenerierter Satz aus Abbildung [4.11 mit Merkmalsstrukturen| 48
[4.14. Restriktionen bezuglich der Grammatik aufgrund der Schablone] 49
[4.15. Restriktionen bezuglich der Grammatik aufgrund der Schablone 49
4.16. Merkmalsstruktur fir Nomen und Artikell. 50
4.17. Merkmalsstruktur fur Verbenl oL 50
.18, Merkmalsstruktur fur Modalverbenlo 50
[4.19. Merkmalsstruktur tur Prapositionen|. 51
[4.20. Lexikalische Regel fur das Wort ,.System™ o1
[4.21. Schablonenspezifische Transterregell 54
[4.22. Beispielsatz fur einen Transter der Subkategorisierungsrahmen| 5%5)
[4.23. Alle Moglichkeiten tur die Zuordnung zwischen den Subkategorisierungs- |

rahmen des Beispielsatzes] o000 56
{4.24. Struktur einer Prapositionalphrase (PP) der Basisgrammatik| 56
[4.25. Sprachspezifische Transferregel 1. o7
[4.26. Sprachspezifische Transferregel 2{. 57
4.27. Sprachspezifische Transterregel 3. 57
4.28. Erste Ubersetzungsméglichkeit des Beispielsatzes| 57
4.29. Zweite Ubersetzungsmoglichkeit des Beispielsatzes| 58
[5.1. Auszug aus der Grammatik-XML-Datel|. 62
[5.2. Beschriebene Regel in Abbildung|5.1| 63
[5.3. Auszug aus der Grammatik-XML-Datei - Rulef 63
[5.4. Auszug aus der Grammatik-XML-Datei - Child| 63
[5.5. Auszug aus der Grammatik-XML-Datei - Attribute] 64
[5.6. Beispiele tiur Restriktionen| 65
[5.7. Klassendiagramme der Klassen einer Grammatikl. 66
[5.8. Klassendiagramme der Klasse Grammar| 66
[5.9. Klassendiagramme der Klasse Category| 67
[5.10. Klassendiagramm der Klasse Attribute] 67
[5.11. Klassendiagramm der Klasse Rule| 67

Abbildungsverzeichnis

[5.12. Klassendiagramme des Lexikons| 68
[5.13. Klassendiagramme des Earley-Parser| 69
[5.14. Klassendiagramm der Klasse FarleyParser| 70
[5.15. Klassendiagramm der Klasse Chart| 70
[5.16. Klassendiagramm der Klasse Fdgel. 71
[5.17. Klassendiagramm der Klasse DottedRulel 71
[H.18. Ablaut des Aufbaus einer Chart] oL 72
[H.19. Autbau der Chart - Schritt 1. o000 72
[5.20. Autbau der Chart - Schritt 2.o 73
[H.21. Autbau der Chart - Schritt 3.o 73
[0.22. Autbau der Chart - Schritt 4.o o000 74
[H.23. Autbau der Chart - Schritt 5.o oo 74
[H.24. Autbau der Chart - Schritt 6.o oo oo 75
[5.25. Regel NP — Det N mit Merkmalsstruktur und Restriktionen|. 75
[5.26. Mogliche Merkmalsstruktur tur das Wort ,,.Das® und das Wort . System®| . 75
[5.27. Klassendiagramme der Strukturbeschreibung| 76
[5.28. Syntaxbaum fur ,Das System™|.o 7
[5.29. Auszug aus der XML-Datei fur die Restriktionen bezuglich der Schablonel . 78
[(£.30. Teilbaumsuchel 79
[5.31. Methode getSubTree der Klasse Structurelree] 80
[5.32. Auszug aus der XML-Datei der sprachspezifischen Transferregeln|. 81
[5.33. Prinzip des sprachspezifischen und schablonenspezifischen Transters| 82
[5.34. Klassendiagramme des Transters|. 82
[5.35. Ablauf der Methode transferSubdree 83
[5.36. Ablauf der Methoden transferLanguage oder transferTemplate] 84
(.37, Matrix mit Permutation der Zahlen 1 bis 3l 85
[5.38. Zuordnung der Elemente zweier Subkategorisierungsrahmen mit Hilfe von |

Permutationenl 85
[5.39. Inorder-Durchlauf der Strukturbeschreibungl 86
5.40. Screenshot des Werkzeugs - Anforderung- und Vorschautenster| 87
5.41. Screenshot des Werkzeugs - Ubersetzungsméglichkeiten| 88
5.42. Screenshot des Werkzeugs - Ubersetzungsfunktion | 89
[6.1. Bewertung einer Ubersetzung| 92

Tabellenverzeichnis

2.1. Merkmale und Werte fur eine Merkmalsstruktur 24
[2.2. Chart fir den Satz ,Der Hund bellt |[CEET04, S.272] 31
[>.1. Chart, dargestellt als Tabelle, fiir das Phrase ,,Das System™| 76
[A.1. Auszug aus der Artikel-Datei des Lexikons| 99
[A.2. Auszug aus der Nomen-Datei des Lexikons| 99
[A.3. Auszug aus der Modalverben-Datei des Lexikons 99
[A.4. Auszug aus der Prapositionen-Datei des Lexikons| 100
[A.5. Auszug aus der Verben-Datei des Lexikons 100

VII

1. Einleitung

1.1. Motivation

Zur erfolgreichen Entwicklung eines Produkts oder eines Systems sind viele Prozesse not-
wendig. Zu den ersten Schritten gehort die Anforderungsanalyse, in der unter anderem die
Wiinsche und Anforderungen der Auftraggeber erfasst werden. Der Erfolg des Projekts ist
direkt abhéngig von der Qualitat, mit welcher diese Anforderungen aufgenommen werden.
Wird eine Anforderung beispielsweise zu ungenau formuliert, kann es zu Missverstand-
nissen kommen oder es miissen Vermutungen iiber die genaue Funktionalitit angestellt
werden.

In der Regel arbeiten an einem Projekt viele verschiedene Menschen. Es treffen verschie-
dene Perspektiven und unterschiedliche Kompetenzen aufeinander. Aber alle entwickeln
an dem Projekt anhand des Anforderungsdokuments. Das Anforderungsdokument hat
einen sehr hohen Stellenwert und die Erstellung gehort zu einer der schwierigsten und
aufwiandigsten Aufgaben in der Entwicklung.

Requirements Engineering befasst sich genau mit dieser Problematik. Es werden Strate-
gien, Werkzeuge und Richtlinien entwickelt und zur Verfiigung gestellt, um die Anforde-
rungen eines Projekts detailgenau, vollstandig und einheitlich zu dokumentieren. Dadurch
konnen viele Fehler vermieden werden, durch die ein Projekt im schlimmsten Fall schei-
tert. Laut Rupp lassen sich ca. 60% der Fehler wiahrend der Systementwicklung auf den
Analyseprozess zuriickfithren [Rup09, S. 15].

Ingenieuren, Technikern und anderen wird das Schreiben von Anforderungen durch diese
Hilfsmittel zunehmend erleichtert. Meistens allerdings nur in der kommunizierten Sprache
und dies ist in Deutschland hauptsachlich Deutsch. Mittlerweile werden Anforderungen
aber vorallem in Englisch oder wegen der immer héufigeren internationalen Zusammen-
arbeit auch in anderen Sprachen verlangt. Nicht jeder ist in der Lage eine Anforderung
in der gewiinschten Sprache zu formulieren und Schulungen kosten ein Unternehmen so-
wohl Geld als auch Zeit. Eine Losung bietet die maschinelle Ubersetzung: geschriebene
Anforderungen koénnen von einer Quellsprache in eine Zielsprache tiberfiihrt werden, so
dass eine standardisierte Ubersetzung entsteht. Dies konnten natiirlich auch Ubersetzer
leisten aber auch hier sind es die Kosten, wie zum Beispiel Gehaltskosten oder Kosten, die
durch Verzogerungen entstehen, die Unternehmen nach anderen Losungen suchen lassen.
Der Bedarf an Ubersetzern kann wegen dem stindig wachsendem Produktmarkt nicht
gestillt werden. Nahezu jedes Produkt hat ein Handbuch in verschiedenen Sprachen. Die
Produktzahlen steigen und die Produktionszeit sinkt [Ram09, S.12/13].

1. Einleitung

Die maschinelle Ubersetzung wird seit 1947 in der wissenschaftlichen Literatur diskutiert
und wurde oft als unerreichbar eingeschitzt [Ram09, S.57]. Sie ist sehr interdisziplinar
aufgestellt, denn sowohl die Informatik, die Kiinstliche Intelligenz, die Linguistik als auch
die Computerlinguistik tragen zu ihrer Entwicklung bei [Ram09, S. 13]. Je nach gewahl-
tem Verfahren verlangt das Thema gerade von der Computerlinguistik bzw. der Linguistik
einiges an Wissen. Denn aufler der Produktion und dem Verstehen von Sprache sind alle
Bereiche der Sprachverarbeitung gefordert [HS92, S. 3.

Die meisten Anwender kennen die maschinelle Ubersetzung durch Dienste aus dem Inter-
net, wie zum Beispiel den Ubersetzungsdienst von Googl Das Urteil tiber die Qualitét
der Ubersetzung fillt dabei oft nicht besonders positiv aus. Dies mag daran liegen, dass
die maschinelle Ubersetzung nicht fiir jeden Zweck geeignet ist. Fiir eine Ubersetzung ist
spezifisches Wissen notwendig. Deswegen konnen domanenspezifische Systeme Fachtexte
gut tUbersetzen aber kreative Texte, wie zum Beispiel ein Gedicht oder umgangsprachliche
Texte, dagegen eher nicht |[Hei04].

Das Empfinden beziiglich der Qualitét einer Ubersetzung ist teilweise subjektiv. Zur ob-
jektiveren Bewertung konnen aber Aspekte, wie Inhaltstreue oder Fehlerhdufigkeit her-
angezogen werden [Ram09, S.158]. Zum aktuellen Forschungszeitpunkt sollte von einem
Ubersetzungssystem nicht mehr Leistung erwartet werden, wie von einem menschlichen
Ubersetzer. Ein Mensch verfiigt iiber Weltwissen und kann Zusammenhinge im Text
erschliefen. Dies ist bei einer maschinellen Ubersetzung im Moment nur eingeschrinkt
moglich. Auch professionelle Ubersetzer lassen ihre Texte Korrektur lesen. Dies sollte
fiir ein besseres Ergebnis auch einem maschinellen Ubersetzungssystem zugestanden wer-
den |[HS92, S. 3].

Da Anforderungen doménenspezifisch betrachtet werden kénnen, ist die maschinelle Uber-
setzung ein erfolgsversprechender Ansatz. Eine Vereinfachung der Problematik liefert zu-
dem der Sachverhalt, dass Anforderungen mittels einer Schablone fiir die Satzstellung
geschrieben werden konnen. Dies bedeutet, dass zuldssige Satzstrukturen vorgegeben wer-
den. Die maschinelle Ubersetzung wird dadurch erleichtert, da sowohl der Wortschatz als
auch der Satzbau stark eingeschréankt sind.

1.2. Zielsetzung

Ziel dieser Arbeit ist es, ein Werkzeug zu entwickeln, das Anforderungen, die in Deutsch
mittels einer Schablone geschrieben wurden, durch maschinelle Ubersetzung ins Engli-
sche iiberfiihrt. Dazu muss zunéchst ein geeignetes Verfahren unter Beriicksichtigung der
Voraussetzungen ausgewéhlt und ein Konzept zur Umsetzung entwickelt werden. Hoedo-
ro hat im Rahmen einer Diplomarbeit ein Werkzeug entwickelt, welches das Schreiben
von Anforderungen durch die Verwendung von Schablonen erleichtert [Hoell|. In dieses
Werkzeug soll das Ergebnis dieser Arbeit integriert werden. Ein Teil der Arbeit war die
Entwicklung einer Grammatik fiir Anforderungen im Deutschen geméf der Schablonen.

thttp:/ /translate.google.de/

1.3. Gliederung der Arbeit

Wenn méglich soll diese in den Prozess der maschinellen Ubersetzung integriert werden.
Zusatzlich soll eine dquivalente Grammatik fiir das Englische entworfen werden.

Das zu entwickelnde Konzept soll eine Vorstellung ermoglichen, wie die Implementierung
des Systems aussehen muss. Anschlielend soll das Werkzeug in Java nach diesem Konzept
umgesetzt werden. Zum Schluss wird das Ergebnis der Arbeitet kritisch beleuchtet um
Verbesserungs-, so wie Erweiterungsmoglichkeiten, aufzuzeigen.

1.3. Gliederung der Arbeit

In Kapitel [2| werden die notwendigen Grundlagen vorgestellt, auf die sich das Konzept
stiitzen soll. Der erste Teil der Grundlagen widmet sich dem Requirements Engineering,
dies soll der Einordnung der Arbeit dienen. Im zweiten Teil werden die Grundlagen der
maschinellen Ubersetzung behandelt, verschiedene Verfahren vorgestellt und auf die Pro-
bleme der maschinellen Ubersetzung eingegangen. Der letzte Teil des Grundlagenkapitels
behandelt das Parsing und geht genauer auf Chart-Parser ein.

In Kapitel |3| wird diskutiert, welche Systeme auf dem aktuellen Ubersetzungsmarkt exis-
tieren und ob es eine Moglichkeit gibt, diese fiir die Ubersetzung von Anforderungen zu
benutzen.

In Kapitel [4| wird das entwickelte Konzept fiir das geplante Werkzeug beschrieben. Teil
dieses Kapitels sind die Auswahl eines Ubersetungsverfahrens, die Grammatiken fiir An-
forderungen im Deutschen als auch im Englischen und die Beschreibung der einzelnen
Schritte, die fiir den Ubersetzungsprozess notwendig sind.

Kapitel [5| beschreibt die Implementierung des Werkzeugs und geht auf einige Aspekte
der praktischen Umsetzung des Konzepts ein.

Den Abschluss bildet Kapitel [6] mit einer Zusammenfassung, einem kritischen Fazit und
einem Ausblick. Es werden Verbesserungsmoglichkeiten und Ideen zur Erweiterung ange-
sprochen.

2. Grundlagen

Das Grundlagenkapitel soll die notige Basis fiir diese Arbeit schaffen und behandelt des-
wegen alle relevanten Bereiche. Das Unterkapitel 2.1 betont die Position des Requirements
Engineerings und enthélt grundlegende Begriffe und Definitionen. Genauer wird auf die
fiir diese Arbeit sehr wichtigen Anforderungsschablonen eingegangen. Abschnitt be-
handelt wichtige Begriffe der maschinellen Ubersetzung und stellt verschiedene Verfahren
vor. Um Anforderungsschablonen iibersetzen zu kénnen werden diese mittels einer Gram-
matik beschrieben. Die Grundlagen hierfiir werden in Abschnitt erlautert. Bei der
Verarbeitung von Satzen ist das Parsen meist unumgénglich. Die relevanten Begriffe und
Verfahren hierzu werden in Abschnitt 2.4] behandelt.

Fir dieses Kapitel und generell fiir diese Arbeit werden unter anderem Grundkenntnisse
in der Mengenlehre und in hoherer Mathematik vorausgesetzt. Auflerdem sollte der Leser
iiber Basiswissen aus der Graphentheorie und beziiglich XML verfiigen.

2.1. Requirements Engineering

2.1.1. Grundlagen des Requirements Engineering

Software Engineering befasst sich mit der Entwicklung zuverléassiger und qualitativer Soft-
ware. Aber trotz grofler Bemithungen ist das Entwickeln von softwarelastigen Systemen
immer noch eine Herausforderung. Die meisten Probleme sind dabei auf eine unzureichen-
de Planung zuriickzufithren, genauer sogar auf mangelndes Requirements Engineering,
eine Teildisziplin des Software Engineerings [Par10, S.2-5].

Zur Planung von Projekten werden Vorgehensmodelle genutzt. Diese bieten einen Uber-
blick {iber den generellen organisatorischen Ablauf und kénnen individuell an das eigene
Projekt angepasst werden. Das derzeit meist benutzte Modell ist das V-Modell (siche Ab-
bildung . Das V-Modell kann in zwei Teile eingeteilt werden. Einen konstruktiven Teil
und einen verifizierenden Teil. Im konstruktiven Teil werden die Requirements erfasst und
das System entworfen. Anschlieend folgt die Implementierung und der verifizierende Teil
in dem das System getestet wird [Goll1}, S.89]. Das V-Modell basiert auf der schrittweisen
Zerlegung des Systems in Teilsysteme. Die einzelnen Bestandteile des V-Modells an das
Projekt anzupassen wird Tailoring genannt [Rup09, S. 37].

2. Grundlagen

Iteration

System- System-
Anforderungs- P Integration, Verifikation
Analyse und Entwurf und Validation

Systemebene \ //

Subsystem- Subsystem-
Anforderungs- I Integration und
Analyse und Entwurf Verifikation

Subsystemebene \\ //

Teil- Realisierung- Teil-Realisierung-
Anforderungs- P> Integration und
Analyse und Entwurf Verifikation
Erstellung,

Implementierung

Teilrealisierungsebene

Abbildung 2.1.: V-Modell nach [Rei09]

Requirements Engineering findet je nach Strukturierung des Projekts auf mehreren Ebe-
nen statt. Die Probleme, die aus unzureichender Sorgfalt in diesem Bereich resultieren sind
jeweils die gleichen. Projekte scheitern oder es entstehen hohe Kosten durch das nachtrag-
liche Beseitigen von Anforderungsfehlern. Dies liegt hdufig am mangelnden Einbeziehen
der Benutzer, unvollstandigen Anforderungen, unklaren Zielen oder einer unrealistischen
Erwartung |Parl0, S.6]. Abhilfe schafft das Requirements Engineering, das die Aufgabe
hat, alle relevanten Anforderungen im erforderlichen Detailierungsgrad zu ermitteln, zu
dokumentieren, zu priiffen und zu verwalten. Die Anforderungsspezifikation bietet dann
unter anderem eine Basis fiir die Kommunikation zwischen allen Beteiligten und eine Basis
fiir anschlieBende Tests [Rup09, S. 14].

2.1. Requirements Engineering

Der Begriff , Anforderung” wird im IEEE Standard 610.12-1990, dem ,,Glossary of Soft-
ware Engineering Terminology* [IEE90], definiert (siehe Abbildung [2.2).

Definition: Anforderung nach IEEE
(Ubersetzung von Rupp [Rup09, S.13])

Eine Anforderung ist...

1. eine Bedingung oder Fahigkeit, die von einem Benutzer (Person oder System) zur
Losung eines Problems oder zur Erreichung eines Ziels bendtigt wird.

2. eine Bedingung oder Fahigkeit, die ein System oder Teilsystem erfiillen oder be-
sitzen muss, um einen Vertrag, eine Norm, eine Spezifikation oder andere, formell
vorgegebene Dokumente zu erfillen.

3. eine dokumentierte Reprasentation einer Bedingung oder Eigenschaft gemaf (1)
oder (2).

Abbildung 2.2.: Definition ,Anforderung“ nach IEEE [IEE9Q]

Unter einer ,,Anforderung® wird haufig aber nur ein Teil dieser Definiton verstanden. Der
Begrift ,,Anforderung® wird auch in dieser Arbeit nach der Definition von Rupp aufgefasst

(siehe Abbildung [2.3).

Definition: Anforderung nach Rupp

Eine Anforderung ist eine Aussage iiber eine Eigenschaft oder Leistung eines Produktes,
eines Prozesses oder der am Prozess beteiligten Personen.

Abbildung 2.3.: Definition , Anforderung“ nach Rupp [Rup09, S. 14]

Anforderungen lassen sich in funktionale und nicht-funktionale Anforderungen einteilen.
Eine funktionale Anforderung beschreibt eine selbststiandige Systemaktivitéit, eine Benut-
zerinteraktion, eine Interaktion zu einem anderen System oder eine allgemeine funktio-
nale Vereinbarung bzw. Einschriankung. FEine Anforderung die nach gerade beschriebe-
nen Eigenschaften keine funktionale Anforderung ist, ist eine nicht-funktionale Anforde-
rung [Rup09, S. 18].

2. Grundlagen

Um qualitative hochwertige Anforderungen schreiben zu koénnen, werden verschiedene
Qualitatskriterien gefordert. Rupp hat in [Rup09] solche Kriterien aufgestellt (siehe Ab-

bildung .

Qualitatskriterien nach Rupp

« Vollstandig e Verstandlich

» Korrekt o Giiltig und aktuell
o Abgestimmt o Realisierbar

o Klassifizierbar » Notwendig

» Konsistent o Verfolgbar

o Prifbar o Bewertet

» Eindeutig

Abbildung 2.4.: Qualitétskriterien nach Rupp [Rup09, S. 24]

In der Praxis sind diese Kriterien oft nicht vollstandig einhaltbar. Die Aufgabe des Requi-
rements Engineering besteht darin, mit Werkzeugen und Methoden moglichst die Quali-
tatskriterien zu erreichen [Bal09, S. 477].

Um Anforderungen zu ermitteln, gibt es mehrere Moglichkeiten. Sie kénnen unter ande-
rem aus Altsystemen oder Dokumentationen gewonnen werden, die wichtigste Quelle sind
aber die Stakeholder |Golll, S.166/167]. Darunter werden Personen verstanden, die di-
rekten Einfluss auf die Anforderungen haben. Nutzer des Systems, Betreiber, Entwickler
und Tester sind nur eine kleine Auswahl an méoglichen Personen [Rup09, S. 62].

Bei so vielen unterschiedlichen Personen bietet sich die natiirliche Sprache zum Formu-
lieren von Anforderungen an. Ein Vorteil der natiirlichen Sprache ist, dass es fiir den
Menschen einfach ist mittels dieser zu kommunizieren, sofern alle Beteiligten dieselbe
beherrschen. Aulerdem ist sie flexibel (abstrakt oder konkret) und universell (fir jede
Doméne) einsetzbar. Nachteile sind ihre Mehrdeutigkeit (z.B. die lexikalische Mehrdeu-
tigkeit des Wortes ,,Bank“) und die Verwendung vager Begriffe (z.B. neben“). Um diese
Nachteile zu reduzieren, schlégt Balzert in [Bal09, S.481] unter anderem die Benutzung
sprachlicher Anforderungsschablonen vor.

2.1.2. Anforderungsschablonen

Auch wenn genug Requirements Engineering betrieben wird, finden sich immer noch viele
Probleme, die durch geeignete Beschreibungsmittel, durchgéngige Methoden oder unter-
stutzende Werkzeuge vermieden werden konnen [Parl0, S.13]|. Eine Moglichkeit bieten

2.1. Requirements Engineering

Schablonen. Die Vorteile von Schablonen liegen in der damit zu erreichenden hohen Qua-
litdt einer Anforderung und der leichten Erlernbarkeit.
Rupp stellt in [Rup09] Schablonen vor, auf diese soll hier ndher eingegangen werden.

Eine Anforderungsschablone fiir das Deutsche fiir Anforderungen ohne Vorbedingung ist
in Abbildung dargestellt, eine Schablone fiir Anforderungen mit Vorbedingung in

Abbildung [2.6]

MUSS
DAS SYSTEM _ <wem?> DIE [<Obijekt &
<Systemname> SOLLTE MOGLICHKEIT BIETEN Erganzung des Objektes>] <Prozesswort>
WIRD FAHIG SEIN

Abbildung 2.5.: Schablone fiir Anforderungen auf Deutsch ohne Vorbedingung [Rup09,

Muss
[<Wann?> DAS SYSTEM _ <wem?>DIE [<Objekt & | |
<Unter welcher Bedingung?>] SOLLTE <Systemname> MOGLICHKEIT BIETEN Erginzung des Objektes>] <Prozesswort>
WIRD FAHIG SEIN

Abbildung 2.6.: Schablone fir Anforderungen auf Deutsch mit Vorbedingung [Rup09,
S. 166]

Die Schablonen von Rupp sind rein syntaktische Schablonen, da nur die Syntax fest-
gelegt wird . Eine Anforderung benétigt, egal ob mit oder ohne Vorbedingung, immer
eine rechtliche Verbindlichkeit. Es wird mittels definierter Hilfsverben unterschieden, ob
es sich bei der Anforderung um eine Pflicht (,muss“), einen Wunsch (,sollte“) oder eine
Absicht (,wird*) handelt. Aulerdem muss die Funktionalitét festgelegt werden. Zur Wahl
stehen die selbststandige Systemaktivitat (,,-“), die Benutzerinteraktion (,,<wem?> die
Moglichkeit bieten“) und die Schnittstellenanforderung (,,fahig sein®). Fiir Elemente in
spitzen Klammern muss das entsprechende Wort bzw. die entsprechende Beschreibung
eingesetzt werden. Elemente in eckigen Klammern sind optional, wie beispielsweise das
Objekt. Ein weiterer Bestandteil ist das Prozesswort, das die Funktionalitat der Anforde-
rung beschreibt. Es ist immer ein Vollverb.

Bei einer Anforderung mit Voraussetzung werden zusétzlich eine oder mehrere Bedingun-
gen vorangestellt unter denen die geforderte Funktionalitat durchgefiihrt wird. Relevant
sind zeitliche (z.B. ,nachdem®) und logische (z.B. ,falls“) Bedingungen [Rup09, S.162-
176].

Das Werkzeug, das in dieser Arbeit vorgestellt wird, tibersetzt Sétze vom Deutschen ins
Englische. Rupp stellt auch eine Schablone fiir englische Anforderungen zur Verfiigung

2. Grundlagen

(siche Abbildung [2.7)). Die Bestandteile sind die gleichen, wie bei deutschen Anforderun-

gen.

SHALL <process>
PROVIDE <whom?>
, \/ e
[<When.>. . | | THE SYSTEM SHOULD WITH THE ABILITY TO <object> [<additional c!etans about
<Under what conditions?>] <systemname> A the object>]

<process>

WILL BE ABLE TO
<process>

Abbildung 2.7.: Schablone fiir Anforderungen auf Englisch [Rup09, S. 177]

2.2. Maschinelle Ubersetzung

Ziel dieser Arbeit ist es, Anforderungen, die mit den in Kapitel vorgestellten Scha-
blonen geschrieben wurden, automatisiert zu tibersetzen. Hierfiir gibt es verschiedene
Verfahren, die in diesem Kapitel vorgestellt werden. Die maschinelle Ubersetzung ist ein
aktuelles Forschungsthema und beschéftigt sich unter anderem mit verschiedenen Uber-
setzungsproblemen. Auf einige wird in Abschnitt eingegangen. Zunachst wird aber
in in die Begriffe der maschinellen Ubersetzung eingefiihrt.

2.2.1. Grundlagen der maschinellen Ubersetzung

Eine Ubersetzung ist allgemein betrachtet die Transformation eines Textes von einer
Quellsprache in eine Zielsprache. Die maschinelle Ubersetzung wird von Hutchins und
Somers in [HSQQ] dhnlich definiert. Sie beschreiben die maschinelle Ubersetzung als ein
Computersystem, das eine Ubersetzung von einer natiirlichen Sprache in eine andere pro-
duziert. Dabei kann das System die Unterstiitzung eines Menschen in Anspruch neh-
men. Hutchins und Somers grenzen stark ab von Systemen, die den Menschen nur durch
die Bereitstellung von Worterbiichern oder dhnlichem unterstiitzen. Der Ubersetzungpro-
zess wird dann von einem Menschen durchgefithrt. Diese Systeme fallen in die Kategorie
,machine-aided human translation* (MAHT). Die Systeme, die zur maschinellen Uberset-
zung gehoren, werden unter dem Begriff | human-aided maschine translation“ (HAMT)
zusammengefasst. Hierbei tibersetzt der Computer und der Mensch kann das System
durch Interaktion, Vor- oder Nachbearbeitung unterstiitzen [HS92, S.149/150).

Ein maschinelles Ubersetzungssystem kann die Ubersetzung von einer Sprache in genau
eine andere leisten, aber auch mehrere Sprachpaare zur Verfiigung stellen. Ersteres ist
ein bilinguales, zweiteres ein multilinguales System [CEET04, S. 565]. Je nachdem, ob das

Lygl. [HS92] S.3

10

2.2. Maschinelle Ubersetzung

System die Ubersetzung dann nur in eine Richtung oder in beide Richtungen beherrscht,
ist es unidirektional oder bidirektional.

Wie oben erwéhnt, greifen manche Systeme auf die Hilfe des Menschen zuriick. Systeme,
die dies wiahrend des Ubersetzungsprozesses tun, sind interaktiv. Alle anderen Systeme
werden Batch-Systeme genannt. Ein interaktives System stellt dem Benutzer zum Beispiel
mehrere Ubersetzungsmoglichkeiten zur Auswahl und lisst ihn entscheiden. Dadurch kann
nicht vorhandenes Wissen kompensiert werden.

Weitere Moglichkeiten die Ubersetzung durch Zuhilfenahme des Benutzers zu verbessern,
sind die Pra- und Postedition. Durch Praedition kénnen vermeindliche Probleme schon
vor der Ubersetzung entdeckt und behoben werden. Hutchins und Somers stellen das
System SUSYP| vor, bei dem beispielsweise Eigennamen aber auch ganze Satzteile mit
bestimmten Symbolen markiert werden um dem System mehr Informationen zu liefern
und die Ubersetzung zu vereinfachen. Das Ziel sind einfache und eindeutige Sitze. Bei
der Postedition wird der iibersetzte Satz vom Benutzer korrigiert. Manche Systeme mar-
kieren Sétze oder Worter, um daraufhinzuweisen, dass moglicherweise Ubersetzungsfehler
im Satz vorkommen.

Systeme konnen aber auch durch andere Optionen verbessert werden. Die Nutzung ei-
ner kontrollierten Sprache ist eine Moglichkeit. Systeme haben haufig Probleme damit,
bestimmte Satzstrukturen zu analysieren und zu interpretieren oder die Mehrdeutigkeit
von Wortern aufzulésen. Eine kontrollierte Sprache untersteht Regeln, die zum Beispiel
den Satzbau einschranken oder nur Worter aus einem Worterbuch, die dort hinsichtlich
ihrer Bedeutung eindeutig definiert sind, zulassen [Ram09, S.118]. Aufler der Benutzung
einer kontrollierten Sprache kann auch eine Subsprache verwendet werden. Das Ziel, die
Sprache eindeutiger zu machen, bleibt das selbe. Eine Subsprache ist beschrankt auf eine
Doméne, zum Beispiel das Wetter. Die Sprache wird nicht direkt durch Regeln einge-
schrankt aber unterliegt sowohl grammatikalischen als auch semantischen und lexikali-
schen Restriktionen. Die Restriktionen ergeben sich durch die Subsprache selbst. Worter
haben zum Beispiel abhéngig vom Kontext unterschiedliche Bedeutungen (z.B. ,Bank).
In einer Subsprache ist meist klar, welche Bedeutung gemeint ist. Allerdings lassen sich
durch eine Subsprache nur lexikalische Mehrdeutigkeiten beheben [Ram09, S.117]. Eine
Kombination aus kontrollierter Sprache und Subsprache ist in manchen Fallen sinnvoll.

2.2.2. Verfahren zur maschinellen Ubersetzung

Maschinelle Ubersetzungssysteme agieren nach verschiedenen Verfahren. Die erste und
zweite Generation der Verfahren sind die regelbasierten Verfahren. Diese sind heutzutage
haufig Basis kommerzieller Systeme. Darunter fallen die direkte, die transferbasierte und
die interlinguabasierte Ubersetzung. Die dritte Generation von Systemen gehort zu den
aktuellen Forschungsthemen. Dazu zahlen die beispielbasierte, die wissensbasierte und die
statistische Ubersetzung [Hei04].

2vgl. [HS92] S. 151

11

2. Grundlagen

Die regelbasierten Verfahren bestehen aus der Analyse des Satzes in der Quellsprache und
der anschliefenden Generierung des Satzes in der Zielsprache. Um aus dem analysierten
Satz in der Quellsprache eine Reprasentation zu erhalten, aus der ein Satz in der Ziel-
sprache generiert werden kann, kann ein Transfer notwendig sein. Abbildung zeigt,
dass bei einer direkten Ubersetzung der Aufwand fiir die Analyse und auch fiir die Ge-
nerierung am geringsten ist. Fiir eine interlinguabasierte Ubersetzung sind Analyse und
Generierung am aufwéndigsten, dafiir ist kein Transfer notwendig. Der transferbasierte
Ansatz liegt vom Aufwand in der Mitte [CEET04, S. 565].

Interlingua

Transfer

direkte Ubersetzung
Quellsprache » Zielsprache

Abbildung 2.8.: Dreieck der maschinellen Ubersetzung von Vauquois [CEET 04, S. 565]

Bei ciner direkten Ubersetzung wird auf der Basis eines quellsprachlichen Satzes direkt
der Satz in der Zielsprache generiert [Ram09, S. 73]. Der Quelltext (QT') wird nur sehr flach
analysiert, d. h. es findet nur eine Analyse der Morphologie statt, aber keine syntaktische
oder semantische Analyse, dadurch ensteht die Zwischenreprasentation QT". Anschlielend
wird jedes Wort mithilfe eines bilingualen Lexikons tibersetzt. Es entsteht ein Zieltext ZT",
der noch syntaktisch angepasst werden muss. Deswegen wird die Wortstellung anhand
einfacher Regeln korrigiert. Das Ergebnis ist der tbersetzte Satz in Zielsprache (ZT).
Abbildung stellt diesen Vorgang dar. Die Vorteile der direkten Ubersetzung liegen in
den einfachen Verarbeitungsschritten, der Geschwindigkeit und Robustheit. Allerdings ist
eine ansatzweise gute Qualitat nur dann zu erwarten, wenn die Quell- und Zielsprache sich
syntaktisch sehr dhnlich sind [CEET04, S. 566/567]. Durch die unzureichende linguistische
Analyse des Satzes kann nicht immer entschieden werden, ob ein Satz in Quellsprache
grammatisch korrekt ist und es werden deswegen eventuell auch ungrammatische Satze
in der Zielsprache generiert [Ram09, S.74].

12

2.2. Maschinelle Ubersetzung

wortweise Ubersetzung mittels

morphologische Analyse ar bilingualem Wérterbuch 7T Worstellungskorrektur |

QT y4)

Abbildung 2.9.: Direkte Ubersetzung

In Abbildung wird die transferbasierte Ubersetzung dargestellt. Diese baut auf
eine tiefere Analyse. Dadurch steigt allerdings auch der Aufwand zur Generierung des
Satzes in der Zielsprache. Im ersten Schritt wird der Satz syntaktisch analysiert. Das Er-
gebnis der Analyse ist eine abstrakte Reprasentation des Satzes. Diese Repréasentation ist
allerdings immer noch abhéingig von der Quellsprache (QS). Im zweiten Schritt wird die
quellsprachliche Représentation mittels Transferregeln in eine Représentation tuberfiihrt,
die abhéngig von der Zielsprache (ZS) ist. Daraus wird anschlieend der endgtiltige Satz
generiert [Ram09, S. 75-77|. Die Analyse und Generierung ist im Gegensatz zur direkten
Analyse aufwéndiger, aber dadurch lassen sich auch wesentlich bessere Ergebnisse erzielen.
Die erzeugten Reprasentationen sind jedoch sprachenabhéngig. Wenn eine neue Sprache
in das System integriert werden soll, muss auch fiir diese ein Analyse- bzw. Generierungs-
modul entwickelt werden. Auch die Transferregeln sind meist unidirektional und miissen
fiir eine umgekehrte Ubersetzungsrichtung neu entworfen werden [CEET 04, S. 567].

art Analyse Repréasentation Transfer Reprasentation Generierung
in QS in ZS

ZT

Abbildung 2.10.: Transferbasierte Ubersetzung

Die meisten Nachteile der transferbasierten Ubersetzung werden im interlinguabasier-
ten Ansatz aufgegriffen und verbessert. Die Interlingua ist eine sprachenunabhéngige
Représentation. Durch die Analyse wird der Satz in diese tiberfiihrt und mit dem Gene-
rierungsmodul daraus ein Satz in der Zielsprache generiert (siehe Abbildung . Fiir
jede Sprache ist genau ein Analyse- und ein Generierungsmodul notwendig. Transferregeln
werden nicht gebraucht, da die Reprasentation dank der Sprachunabhangigkeit fiir einen
Satz immer dieselbe ist. Bis jetzt ist es aber unmoglich gewesen eine solche Représentation
zu finden und ein solches System zu entwickeln. Der Grund hierfiir kann leicht eingesehen
werden. Zum Beispiel fiir das Wort , Beine® miisste in der Repréasentation unterschieden
werden zwischen menschlichen Beinen, Tischbeinen, Tierbeinen, etc. Es ist nicht moglich
eine vollstdndige Interlingua zu erstellen. Denkbar ist eine Interlingua nur fiir eine sehr
eingeschrankte Subsprache oder kontrollierte Sprache [CEET04] S. 567 /568].

Der interlinguabasierte Ansatz hat, wie erwidhnt, den grofiten Aufwand fir die Analyse
und die Generierung. Dies kann als Nachteil gesehen werden, da immer eine volle Analyse
und Generierung fiir jede Sprache durchgefiihrt werden muss. Bei neueren Verfahren wird
dies durch eine andere Herangehensweise umgangen.

13

2. Grundlagen

Analyse A Generierun
Y Interlingua g

A 4

T

v

QT

Abbildung 2.11.: Interlinguabasierte Ubersetzung

Zur dritten Generation und damit zu den neueren Methoden der maschinellen Uberset-
zung, gehort der beispielbasierte Ansatz. Grundlage des Ansatzes bietet ein bilinguales
Korpus, das Zuordnungen zwischen Wortern, (Teil-)Phrasen und Sétzen der beiden Spra-
chen enthélt. Fiir einen zu iibersetzenden Satz werden moglichst grofie Teile des Satzes
im Korpus gesucht. Umso grofler diese Teilsatze sind, desto besser ist die resultieren-
de Ubersetzung [CEET04, S.568]. Auf linguistische Regeln wird in diesem Ansatz ver-
zichtet. Gibt es keine passenden Elemente im Korpus, kann keine Ubersetzung erzeugt
werden [Ram09, S.79/80].

Ein weiteres Verfahren der dritten Generation ist das statistische Verfahren. Dieses
benotigt ebenso wie der beispielbasierte Ansatz ein grofles bilinguales Korpus. Der An-
satz basiert auf drei Basismodellen: dem Alignment-Modell, dem Sprachmodell und dem
Ubersetzungsmodell. Das Alignment-Modell enthélt die Wahrscheinlichkeit fiir jedes Wort
in bestimmten Positionen innerhalb eines Satzes vorzukommen. Das Sprachmodell gibt
die Wahrscheinlichkeit an mit der Worter als Nachfolger anderer Worter auftauchen und
das Ubersetzungsmodell ordnet einem Wort Ubersetzungsméglichkeiten und deren Wahr-
scheinlichkeit zu [Ebe09, S. 46]. Um einen Satz, der in der Quellsprache vorliegt, zu tiber-
setzen, wird die Ubersetzung mit der groften Wahrscheinlichkeit ausgewéhlt. Auch dieser
Ansatz benutzt kein linguistisches Wissen |[Ram09, S. 80-82].

Allen bisher vorgestellten Verfahren fehlt Weltwissen. Weltwissen ist das allgemeine Wis-
sen tber die Umwelt, das es moglich macht unbekannte Informationen einzuordnen und
Erkenntnisse daraus abzuleiten. Ein Satz kann eigentlich nur erfolgreich tibersetzt wer-
den, wenn die Bedeutung des Satzes erfasst und im Zielsatz wiedergegeben werden kann.
Dazu ist oft Weltwissen notwendig. Der wissensbasierte Ansatz macht vorallem Sinn,
wenn ganze Texte iibersetzt werden sollen. Die anderen Verfahren arbeiten derzeit noch
ausschlieBlich satzweise. Der Kontext der Sétze enthélt notwendiges Wissen, das fiir eine
Ubersetzung genutzt werden muss. Zusétzlich ist weiteres Wissen, das als bekannt vor-
ausgesetzt wird, notwendig fiir eine Ubersetzung.

Der Schwerpunkt der Analyse des Verfahrens liegt in der Semantik. Diese wird mittels
vorhandenem Weltwissen interpretiert und in einer sprachenunabhangigen Reprasentation
gespeichert. Daraus wird dann der Text in Zielsprache generiert. Das Verfahren ist stark
an das interlinguabasierte Verfahren angelehnt. Auch hier taucht das Problem auf, dass
nicht das komplette Weltwissen erfasst und gespeichert werden kann. Erfolgversprechend
ist das Verfahren deswegen nur in einer klar abgegrenzten Doméne [Ram09, S. 82].

14

2.2. Maschinelle Ubersetzung

Der Trend im Bereich der maschinellen Ubersetzung geht zu Hybridsystemen. Angestrebt
wird eine Kombination aus einem regelbasierten System und einem neueren Ansatz. Die
neuen Verfahren werden um linguistisches Wissen angereichert, damit eine bessere Uber-
setzungsqualitat erreicht werden kann.

2.2.3. Probleme der maschinellen Ubersetzung

Bei einer Ubersetzung tauchen verschiedene Ubersetzungsprobleme auf. Auch menschli-
che Ubersetzer werden mit diesen Problemen konfrontiert, sind aber bei der Losung stets
flexibler als maschinelle Ubersetzungssysteme. Auf einge Probleme soll im Folgenden ein-
gegangen und der Sachverhalt an Beispielen erlautert werden.

Die Probleme konnen unterschieden werden in solche, die bei der Ubersetzung und Pro-
bleme, die bei der Analyse einer Sprache auftreten. Eine Kategorie von Problemen, die
bei der Ubersetzung vorkommen, sind lexikalische Liicken (gaps) und fehlende Entspre-
chungen (mismatches). Dies liegt vor, wenn ein Wort der einen Sprache nicht direkt mit
einem Wort der anderen Sprache iibersetzt werden kann. Als Beispiel gibt es fir das deut-
sche Wort ,sich verwihlen“ keine direkte englische Ubersetzung, sondern muss mit der
Umschreibung ,,dial the wrong number* iibersetzt werden. Ein weiteres Ubersetzungspro-
blem, das auftreten kann, ist die unterschiedliche Granularitat von Wortern. Das Wort
y,know* kann sowohl mit kennen“ als auch mit ,wissen® iibersetzt werden. Die richtige
Ubersetzung kann allerhochstens aus dem Kontext erschlossen werden [Hei04].

Auch auf der Satzebene tauchen Probleme auf. Ubersetzungen konnen sich in ihrer syn-
taktischen Struktur unterscheiden. ,,Das Buch gefallt Eva“ wird tibersetzt mit ,,Eva likes
the book® Das Subjekt von , gefallen® wird zum Objekt von ,like“ und das Objekt zum
Subjekt. Diese Kategorie von Problemen wird Divergenzen genannt [CEET04, S.564].
Eine andere Form der Divergenz ist das Head Switching. Das Adverb , gerne“ im Satz
,John schwimmt gerne* hat keine englische Ubersetzung in der gleichen Kategorie. Der
Satz muss durch eine Vertauschung des Kopfs (Erklarung ,,Kopf* und Phrasenstruktur
siche Kapitel iibersetzt werden. Die Ubersetzung lautet dann ,,John likes to swim*,
wobei ,like ein Verb ist (sieche Abbildung [Hei04].

VP VP
/\ P
\Y [Adw > [V VP

| \ |

schwimmt gerne likes to_swim

Abbildung 2.12.: Head Switching

Zu den Problemen, die bei der Analyse auftreten, gehoren auch Mehrdeutigkeiten (Am-
biguitaten). Diese kénnen schon wéhrend der morphologischen Analyse auftreten. Zum

15

2. Grundlagen

Beispiel das Wort ,,Staubecken“ kann entweder in Stau-becken oder in Staub-ecken zerlegt
werden. Auf der Syntaxebene gibt es strukturelle oder kategoriale Ambiguitdten. Syntak-
tisch ambig sind Phrasen, wie zum Beispiel ,,Miitter und Kinder unter 12 Jahren® Es ist
nicht klar, ob sich die Modifikation ,unter 12 Jahren“ nur auf das Wort ,Kinder* oder
auch auf das Wort ,Miitter® bezieht [Hei04]. Eine kategoriale Ambiguitat liegt dagegen
vor, wenn ein Wort mehreren Kategorien zugeordnet werden kann. Zum Beispiel kann
das englische Wort ,flies ein Nomen (im Sinn von , die Fliegen“) oder Verb (im Sinn von
Hfliegen“) sein [Ebe09, S.38/39].

Auch auf der semantischen Ebene kénnen Ambiguitdten auftreten. Bekannt sind vorallem
Homographe. Dies sind Worter die gleich geschrieben werden aber eine unterschiedliche
Bedeutung haben. Zu dieser Kategorie gehort das Wort ,Bank®. Es ist zunachst unklar,
ob es sich dabei um eine Sitzgelegenheit oder eine Finanzinstitution handelt. Ahnlich
sind polyseme Worter, wie zum Beispiel das Wort ,Zweige“. Hier stellt sich die Frage,
ob die Zweige eines Baums oder die verschiedenen Bereiche eines Fachgebiets gemeint
sind [Hei04].

Als letzte Ambiguitat sei noch die referentielle Ambiguitat erwahnt. Referentiell ambig
ist folgendes Beispiel: ,,Die Katze spielt mit der Maus. Sie mag das nicht“ Das Pronomen
,sie kann sich sowohl auf die Katze als auch auf die Maus beziehen [Hei04]. Referentielle
Ambiguitdten konnen bei Ubersetzungsstrategien, die satzweise arbeiten, nicht aufgeldst
werden.

2.3. Grammatiken

Im Rahmen dieser Arbeit wird ein transferbasiertes Ubersetzungssystem entwickelt. Eine
Diskussion tiber die Auswahl des Verfahrens findet sich in Kapitel £.1] Dieses Verfahren
beinhaltet zunédchst eine Analyse des zu iibersetzenden Satzes. Fiir eine Analyse der An-
forderungen, die mit den in Kapitel vorgestellten Schablonen geschrieben wurden,
wird ein Beschreibungsmittel benotigt. Hierfiir eignen sich Grammatiken, die in diesem
Kapitel vorgestellt werden.

AuBerdem konnen, wenn eine Grammatik fiir deutsche Anforderungen und eine Gramma-
tik fir englische Anforderungen existiert, leichter Transferregeln definiert und der iiber-
setzte Satz auf syntaktische Richtigkeit tiberpriift werden.

2.3.1. Grundlagen der Grammatiktheorie

Mit einer Grammatik konnen Worter erzeugt werden, welche dann eine formale Sprache
bilden. Formale Sprachen kommen aus dem Bereich der theoretischen Informatik, sind
aber gerade fiir die maschinelle Sprachverarbeitung von groler Bedeutung. Denn, um die
natiirliche Sprache zu verarbeiten, muss bekannt sein, mit welchen Mitteln diese analy-

16

2.3. Grammatiken

siert werden kann. Dazu ist es moglich die natiirliche Sprache oder relevante Ausschnitte
in eine Hierarchie formaler Sprachen einzuordnen. Den Hierarchiestufen sind jeweils ge-
eignete Verarbeitungsmoglichkeiten zugeordnet. Mit Grammatiken lassen sich also nicht
nur formale Sprachen, sondern auch natiirliche Sprachen beschreiben [CEET04, S.63].
Abbildung zeigt die Definition einer Grammatik.

Definition: Grammatik

Eine Grammatik G ist ein Viertupel (V, X, P, S), wobei

e V die endlichen Menge der Nichtterminale,
o Y die endlichen Menge der Terminale,

o P die Menge der Regeln und

e S das Startsymbol

ist.

Zusatzlich muss gelten:

« VNY=10
o P ist eine endliche Teilmenge von (VU X)" x (V U X)*
e SeV

Abbildung 2.13.: Definition ,Grammatik“ nach [Sch03a]

Ein Terminalzeichen ist ein Zeichen, das nicht allein auf der linken Seite einer Regel vor-
kommen kann. Es ist nicht moglich ein Terminalzeichen alleine zu ersetzen, im Gegensatz
zu einem Nichtterminalzeichen, welches nicht in einem terminalen Wort der Sprache vor-
kommen kann und durch Regeln ersetzt werden muss. Eine Regel besteht aus u € (VUX)™T,
v € (V UX)* und sieht folgendermafien aus: u — v. Dies bedeutet, dass v unmittelbar
in v iibergeht bzw. u durch v ersetzt wird. Das Anwenden einer Regel entspricht einem
Ableitungsschritt. Eine Ableitung ist das mehrmalige Anwenden der Regeln um ein Wort
der Sprache zu erzeugen, die durch G beschrieben wird. Die erzeugte Sprache wird L(QG)
genannt (Definiton siche Abbildung [Sch03ay, S.13/14].

Definition: Formale Sprache

Sei G = (V, X, P, S) eine Grammatik. Dann ist die durch G erzeugte formale Sprache
L(G) ={we X |S="w}

Abbildung 2.14.: Definition ,Formale Sprache® nach |Sch03a]

17

2. Grundlagen

Beispielgrammatik 1
G =(V, %, P, S) wobei V= {S,A,B,C}, ¥ = {a,b} und
P={S— AC,B—b, A —a, C— BA C— AB}

Abbildung 2.15.: Beispielgrammatik 1

Mit der Beispielgrammatik in Abbildung kann unter anderem folgendes Wort mittels
Ableitung produziert werden: S = AC = ABA = aBA = abA = aba
Die durch G beschriebene Sprache L(G) besteht nur aus zwei Wortern: L(G) = {aba, aab}

Eine Ableitung kann auch durch einen Syntaxbaum dargestellt werden. Die Wurzel des
Baums ist die Startvariable S. Wird in einem Ableitungsschritt die Regel u — v ange-
wandt, dann hat der Knoten w im Syntaxbaum |v| viele Kinder. Diese werden mit den
Symbolen vy, vq, ete. (wegen v = vyvs...v, € (V U X)*) beschriftet [Sch03al, S. 23].

Abbildung zeigt einen Syntaxbaum fiir die Ableitung in obigem Beispiel.

S

N
A C

‘ P

a B A
.
b a

Abbildung 2.16.: Syntaxbaum einer Ableitung der Beispielgrammatik G

Um Grammatiken zu kategorisieren und Verarbeitungsmittel zuzuordnen, hat Noam Choms-
ky, die nach ihm benannte Chomsky-Hierarchie definiert. Diese hat er 1956 zum ersten
Mal in seinem Werk ,, Three models for the description of language® [Cho56| vorgestellt. Es
existieren Grammatiken vom Typ 0 bis Typ 3. Jede Grammatik ist eine Typ 0-Grammatik,
denn fiir sie gelten keine Einschrankungen. Bei den anderen Typen miissen die Regeln be-
stimmten Kriterien entsprechen.

In einer Typ 1-Grammatik oder auch kontextsensitiven Grammatik gibt es nur Regeln
u — v fir die Folgendes gilt: |u| < |v|. Eine Grammatik ist konteztfrei bzw. vom Typ 2,
wenn fir alle Regeln ©v — v in P gilt, dass u eine einzelne Variable ist d.h. v € V. Typ 3
oder reguldr ist eine Grammatik, wenn die rechte Seite aller Regeln entweder aus einem
einzelnen Terminalzeichen oder aus einem Terminalzeichen gefolgt von einem Nichtter-
minalzeichen besteht. Die Regeln werden fiir jeden hoheren Typ starker eingeschrankt.
Die Typen sind deswegen jeweils Teilmengen des vorhergehenden Typs d. h., eine Typ 3-
Grammatik ist auch immer eine Grammatik vom Typ2, Typ1l und TypO, eine Typ 2-
Grammatik immer auch vom Typ1l und TypO0, usw. Die im obigen Beispiel angegeben
Grammatik ist vom Typ 2 [Sch03a, S.17].

18

2.3. Grammatiken

2.3.2. Phrasenstrukturgrammatik und X-Bar-Theorie

Ein Satz ist im Prinzip eine lineare Folge von Wortern. Wiirde dies in der Syntax genau-
so aufgefasst werden, wiirde, je nach Andwendung, notwendiges Wissen iiber die innere
Struktur eines Satzes verloren gehen. Deswegen werden weitere Kenntnisse hinzugezo-
gen, um eine tiefere Struktur zu konstruieren. Zu diesen Kenntnissen gehort, dass die
Worter eines Satzes in Gruppen unterteilt sind, den so genannten Konstituenten. Diese
Konstituenten sind wiederum Teil einer grofleren Konstituente bis irgendwann der Satz
den Abschluss bildet |[Car02, S.27].

Um Konstituenten zu bilden werden zunéchst den Woértern Wortarten zugeordnet. An-
schliefend konnen Aussagen dariiber gemacht werden, welche Konstituenten (auch Phra-
sen genannt) aus welchen Wortarten bestehen. Anstatt von Wortarten wird hier auch von
syntaktischen Kategorien gesprochen. Es gibt lexikalische und funktionale Kategorien.
Zu den lexikalischen gehoren die Nomen N, Verben V, Prépositionen P und Adjekti-
ve A. Die iibrigen Kategorien (z.B. Det oder I) gehéren zu den funktionalen Kategori-
en [Car02) S.33-41].

Eine Grammatik, die den Aufbau des Satzes durch Phrasen und die Struktur der Phrasen
selbst beschreibt, heifit Phrasenstrukturgrammatik. Diese besteht aus lexikalischen Regeln
(z.B. N — Héndler) und Phrasenstrukturregeln (z. B. NP — Det N’) [Sah09, S. 1].

S
NP \Y

P
/\
Det N’
DLzr A] VP PP
Handler v PP P NP
| m D N
. n €
fahrt P NP | |
\ die N
mit Det/\N, |
| Stadt
dem AP N
| |
A N

neuen Lieferwagen

Abbildung 2.17.: Phrasenstrukturbaum: ,Der Handler fihrt mit dem neuen Lieferwagen
in die Stadt.”

19

2. Grundlagen

Lexikalische Regeln bestehen aus einem Nichtterminal auf der linken Seite und einem Ter-
minal auf der rechten Seite. Phrasenstrukturregeln beschreiben die Struktur des Satzes
und beinhalten weder auf der linken noch auf der rechten Seite Terminale.

Abbildung zeigt den Aufbau eines Satzes durch eine Phrasenstrukturgrammatik,
dargestellt als Ableitungsbaum. Der Phrasenstrukturbaum besteht aus der Satzkonstitu-
ente S, diese wiederum aus der Nominalphrase NP | Der Héandler* und der Verbalphrase
VP | fihrt mit dem neuen Lieferwagen in die Stadt“. Die NP Der Héandler” ist unter-
teilt in das Nomen ,Héndler* und den Artikel ,der“. Auch die Verbalphrase besteht aus
zwei Teilen, der VP fahrt mit dem neuen Lieferwagen* und der Prépositionalphrase PP
,in die Stadt“. Die VP | fihrt mit dem neuen Lieferwagen* enthélt das Verb ,fdhrt“ und
die PP ,mit dem neuen Lieferwagen“. Die Préposition ,mit* und die NP ,dem neuen
Lieferwagen® bilden zusammen die eben erwahnte PP. Die NP , dem neuen Lieferwagen*
ist unterteilt in eine Zwischenprojektion N’ (Erklarung siehe Seite und einen Artikel
,dem® Zum Schluss kommt zuséatzlich zum Nomen , Lieferwagen“ in der Zwischenprojek-
tion N’ noch eine Adjektivphrase vor, die nur aus dem Adjektiv ,neuen* besteht. Die PP
,in die Stadt“ ist analog aufgebaut.

Eine Phrasenstrukturgrammatik fiir dieses Beispiel kann aussehen, wie in Abbildung
dargestellt.

Beispielgrammatik 2
Phrasenstrukturregeln: lexikalische Regeln:
S — NP VP Det — der
NP — Det N’ Det — dem
N — N Det — die
N — AP N’ N — Lieferwagen
VP — VP PP N — Stadt
VP — V PP N — Handler
PP — P NP P — mit
AP — A P —in
A — neuen
V — fahrt

Abbildung 2.18.: Beispielgrammatik 2

Der Aufbau der Phrasenstrukturregeln wurde in einer einheitlichen Theorie formuliert,

der X-Bar-Theorie. Danach sind alle Phrasenstrukturregeln nach dem gleichen Prinzip
aufgebaut |Car02, S.114]. Dieses Prinzip wird in Abbildung dargestellt.

20

2.3. Grammatiken

XP

XP Adjunkt

Spezifikator X’

X Komplement

Abbildung 2.19.: Allgemeine X-Bar-Struktur

Eine allgmeine Phrase XP besitzt ein obligatorisches Element X. Dieses Element ist der
Kopf der Phrase. Bezogen auf die vorher genannten Phrasen bedeutet das, dass zum
Beispiel eine Verbalphrase als Kopf immer ein Verb V und eine Nominalphrase immer
ein Nomen N hat [Sah06| S.3]. X vererbt seine lexikalischen Merkmale an die gesam-
te Phrase, indem es diese liber eine Zwischenprojektion X’ auf die maximale Projektion
XP projiziert. Eine Zwischenprojektion kann notwendig sein, da Phrasen sehr komplex
sein konnen, um eine weitere Verzweigung zu erlauben. Mehrere Zwischenprojektionen
sind denkbar. Zur Vereinfachung wird oft abgekiirzt und die Zwischenprojektionen weg-
gelassen (siehe Abbildung [2.17). Durch das X-Bar-Prinzip sind nur binére Verzweigungen
erlaubt [BEWO06| S.2-4].

Zusatzlich zur maximalen Projektion XP, der Zwischenprojektion X’ und dem Kopf X
kann es optional noch Spezifikatoren, Komplemente und Adjunkte geben. Alle sind wie-
derum Phrasen mit eigenen Kopfen.

Ein Spezifikator liefert weitere Informationen iiber den Kopf, spezifiziert diesen genau-
er [BEWO06|. Er ist immer der Schwesterknoten einer Zwischenprojektion X'. Welcher
Phrasentyp als Spezifikator vorkommt, ist abhéngig vom Kopf.

Komplemente und Adjunkte werden meist durch den Subkategorisierungsrahmen des
Kopfs verlangt. Ein Subkategorisierungsrahmen gibt die Beziehungen zwischen dem Kopf
und anderen Bestandteilen des Satzes an. Besonders bei Verben ist eine Angabe, welche
Kategorien mit welchen Merkmalen in Beziehung stehen, sinnvoll. Ein Verb kann mehrere
Subkategorisierungsrahmen haben. Das Verb ,fahren“, zum Beispiel, hat sowohl den Sub-
kategorisierungsrahmen <np:mom, pp:in (akk)> als auch den Subkategorisierungsrahmen
<np:nom, np:akk> und <np:nom>. Der erste Subkategorisierungsrahmen ermoglicht Sat-
ze, wie zum Beispiel ,,(Der Handler),p.nom fahrt (in die Stadt),p.in ok, der zweite Subka-
tegorisierungsrahmen ermoglicht Satze, wie zum Beispiel ,,(Der Héndler),,p.nom fahrt (den
Lieferwagen),.qrr " und der dritte Subkategorisierungsrahmen ermdglicht Sétze, wie ,,(Der
Héndler),,p.nom fahrt.“. Der Subkategorisierungsrahmen driickt aus, dass das Verb ,fahren®
entweder nur eine Nominalphrase im Nominativ oder eine Nominalphrase im Nominativ
und eine Nominalphrase im Akkusativ oder eine Nominalphrase im Nominativ und eine
Prépositionalphrase mit der Praposition ,in“ im Akkusativ verlangt.

21

2. Grundlagen

Das Komplement ist immer der Schwesterknoten des Kopfs X und das Adjunkt immer
der Schwesterknoten der maximalen Projektion XP. Ob das Komplement links oder rechts
vom Kopf steht ist sprachspezifisch. Im Deutschen steht es bei VPs und APs links, bei
den PPs rechts vom Kopf. Im Englischen steht das Komplement generell rechts vom
Kopf [Sah09, S.4]. Im Phrasenstrukturbaum der Abbildung auf Seite ist zum
Beispiel der Artikel ,der” Spezifikator des nominalen Kopfs ,Handler“ und die Praposi-
tionalphrase ,,mit dem neuen Lieferwagen® ist das Komplement des Kopfs V. Die Prapo-
sitionalphrase ,in die Stadt* hingegen ist ein Adjunkt zur Verbalphrase ,fihrt mit dem
neuen Lieferwagen®.

Die Begriffe ,,Spezifikator®, ,Adjunkt® und ,,Komplement“ sind nur im syntaktischen Sinn
und nach obiger Definition zu verstehen.

Eine Phrasenstrukturgrammatik, aufgebaut nach dem X-Bar-Schema, kann mit Verweis
auf die im vorherigen Unterkapitel 2.3.1] vorgestellte Chomsky-Hierarchie als Typ 2-Grammatik
eingeordnet werden.

Auf den hier verwendeten Grundlagen, speziell dem X-Bar-Schema, basieren auch ande-
re Grammatikmodelle, wie zum Beispiel die LFG (Lexikalisch-Funktionale Grammatik).
Das in dieser Arbeit verwendete Prinzip ist stark an die LFG angelehnt. Naheres zur LFG
kann in [Bre01] nachgelesen werden.

2.3.3. Merkmalsstrukturen

Ein grofies Problem fiir die maschinelle Ubersetzung stellen iibergenerierende Grammati-
ken dar. D.h. es konnen Sétze konstruiert werden, die es in der jeweiligen Sprache nicht
gibt. Mit der in Kapitel in Abbildung einfachen Beispielgrammatik konnen zum
Beispiel Sétze, wie ,Dem Héndler fahrt mit die neuen Lieferwagen®, generiert werden.
Der zugehorige Phrasenstrukturbaum ist in Abbildung dargestellt.

Um dies bei kontextfreien Sprachen zu verhindern, konnen viele neue Regeln und Nicht-
terminale hinzugefiigt werden, wie zum Beispiel N FP;, und N P,;. Oder es werden Merk-
malsstrukturen eingefiihrt. Eine Merkmalsstruktur besteht aus Attribut-Wert-Paaren und
wird meist in Form einer Matrix dargestellt. Dadurch konnen zum Beispiel Worter aber
auch Nichtterminale genauer beschrieben werden. Mogliche Merkmale und Werte sind in
Tabelle [2.1] aufgelistet.

Die Merkmalsstruktur des Wortes ,,Héandler”, dargestellt in Abbildung kann bei-
spielsweise aus den Merkmalen Numerus (NUM), Genus (GEND), Person (PERS) und
Kasus (KAS) bestehen. NUM wird dann der Wert Singular (sg), GEND der Wert mas-
kulin (masc), PERS der Wert & fiir dritte Person und KAS der Wert Nominativ (nom)
zugewiesen. Bezogen auf die Beispielgrammatik kann verlangt werden, dass die Merkmale
und die dazugehorigen Werte der Merkmalsstrukturen der Nomen, Artikel und Verben
iibereinstimmen. Auflerdem kann tiber die Merkmale gepriift werden, ob der Subkatego-
risierungsrahmen der Verben mit den vorhandenen Elemente erfiillt ist. Durch die Merk-
malsstrukturen sollen ungrammatische Satze verhindert werden |[CEET04, S. 94].

22

2.3. Grammatiken

S
NP VP
/\ /\
Det N \% PP
Dem N fé'i}‘ll"t /\
| P NP
Handler \
Det N
| P
die AP N7
| |
A N

neuen Lieferwagen

Abbildung 2.20.: Ungrammatischer Phrasenstrukturbaum: ,Dem Héndler fahrt mit die
neuen Lieferwagen .

NUM sg
GEND masc
PERS 3
KAS nom

Abbildung 2.21.: Beispiel fir Merkmalsstruktur des Wortes ,,Héandler*

23

2. Grundlagen

MERKMALE WERTE
Numerus NUM Plural pl
Singular Sg
Genus GEND maskulin masc
feminin fem
neutrum neut
Person PERS erste Person 1
zweite Person 2
dritte Person 3
Kasus KAS Nominativ nom
Genitiv gen
Dativ dat
Akkusativ akk

Tabelle 2.1.: Merkmale und Werte fiir eine Merkmalsstruktur

24

2.4. Parsing

2.4. Parsing

Grundlage fiir das Parsen von Sétzen sind die in Kapitel [2.3| beschriebenen Grammatiken.
Eine Grammatik ist ein Beschreibungsmittel, um die Struktur von Satzen darzustellen.
Parsen bedeutet, die syntaktische Struktur eines Satzes zu erkennen. Besonders bei der
maschinellen Sprachverarbeitung wird das Parsen fiir die Analyse benétigt. Im folgenden
Kapitel werden die Grundlagen des Parsings erlautert und auf ein Parsingverfahren, das
Chart-Parsen, naher eingegangen.

2.4.1. Grundlagen des Parsings

Ein Parser ist ein Programm, das Sétze, Teilstrukturen oder Worter analysiert, auf ihre
Korrektheit priift und als Ausgabe eine Strukturbeschreibung liefert. Ein Parsingalgo-
rithmus baut auf einem Erkennungsalgorithmus auf. Die Aufgabe eines Erkennungsalgo-
rithmus ist es, fiir eine Folge von Symbolen zu entscheiden, ob sie zur Sprache L(G),
die durch die Grammatik G beschrieben wird, gehort. Ein Parsingalgorithmus macht das
gleiche, geht aber noch einen Schritt weiter und liefert eine Strukturbeschreibung der
Folge |[NL94, S.19]. Eine solche Folge von Symbolen kann zum Beispiel ein natiirlich-
sprachlicher Satz sein. Zusétzlich muss noch eine beschreibende Grammatik G vorliegen,
fiir die entschieden wird, ob der Satz mit dieser erzeugt werden kann. Ein Parser gibt
dann zusétzlich als Strukturbeschreibung zum Beispiel einen Syntaxbaum bzw. Ablei-
tungsbaum des Satzes aus.

Das Parsen natiirlichsprachlicher Sétze ist im Vergleich zum Parsen formaler Sprachen,
wie zum Beispiel Programmiersprachen, deutlich aufwandiger. Denn es muss mit Ambigui-
taten, einer groflen Strukturvielfalt und einer erheblich hoheren Komplexitat umgegangen
werden [NL94, S. 14].

Zur Klassifikation von Parsingalgorithmen werden in der Regel drei Kriterien betrachtet
[NL94, S. 22]:

1. Verarbeitungsrichtung,

2. Analyserichtung und

3. Suchstrategie.

Die Verarbeitungsrichtung kann unidirektional oder bidirektional sein. Unter den Begriff
unidirektionale Verarbeitungsrichtung fallt die inkrementelle Verarbeitung von links nach
rechts oder von rechts nach links. Bei einer bidirektionale Verarbeitung wird von zwei
Richtungen gleichzeitig analysiert. Die Analyse kann zum Beispiel gleichzeitig am Sat-
zende und Satzanfang beginnen, oder in der Mitte des Satzes und dann zu beiden Seiten

laufen [NL94, S.22].

25

2. Grundlagen

Das zweite Kriterium ist die Analyserichtung. Die meisten Parser arbeiten entweder
bottom-up oder top-down. Selten kann es auch Mischformen der beiden geben. Bottom-
up bedeutet, dass der Ausgangspunkt der Analyse der zu analysierende Satz ist. Durch
Anwendung der Regeln der Grammatik als Reduktion, d. h. die Elemente der rechten Re-
gelseite werden durch das Symbol der linken Regelseite ersetzt, wird eine Ableitung des
Satzes gesucht. Das Verfahren terminiert, wenn der Satz auf das Startsymbol S reduziert
wurde. Top-down Analysen beginnen dagegen beim Startsymbol und finden eine Ablei-
tung des Satzes durch Expansion der Regeln, d. h. die linke Seite der Regel wird ersetzt
durch die rechte [CEET04, S. 254].

In Abbildung bzw. Abbildung wird der Satz ,,Der Hund bellt, der ein Wort der
Sprache der in Abbildung dargestellten Beispielgrammatik ist, von links nach rechts
und bottom-up bzw. top-down geparst.

Das Parsen besteht zu einem Teil aus Suchprozessen. Immer wenn es verschiedene Analy-
semoglichkeiten gibt, wird eine Suchtstrategie benotigt um die Moglichkeiten strategisch
durchzugehen |[NL94, S.22]. Die bekanntesten Suchstrategien sind die Tiefen- und die
Breitensuche. Aber auch eine Best-First-Suche oder Beam-Suche ist moglich [CEE™04,
S. 255]. Fiir eine ausfiihrliche Beschreibung der Strategien sei auf [RN04] verwiesen.

Eine weitere Einteilung der Parsingalgorithmen kénnte nach der Grammatikkategorie
(siche Chomsky-Hierarchie in Kapitel , die von ihnen akzeptiert wird, geschehen.
Im Folgenden werden aber nur Parsingalgorithmen fiir kontextfreie Sprachen betrachtet,
da von einer Phrasenstrukturgrammatik, die nach dem X-Bar-Schema aufgebaut ist (siehe

Kapitel [2.3.2)), ausgegangen wird.

Ein Problem der elementaren Parsingverfahren, wie zum Beispiel einfacher Bottom-Up-
oder Top-Down-Parser, ist, dass Teilstrukturen mehrfach analysiert werden. Dies macht
sie sehr ineffizient [NL94, S.102]. Chart-Parser, die auf kontextfreien Sprachen arbeiten,
speichern die schon analysierten Teile und koénnen diese wiederverwenden. Das néchste
Unterkapitel beschreibt das Verfahren des Chart-Parsings naher.

Beispielgrammatik 3

S — NP VP Det — der
NP — Det N N — Hund
VP —- V V — bellt

Abbildung 2.22.: Beispielgrammatik 3

26

2.4. Parsing

@ NP
D Det (2 Det N PN
Det N
der der Hund \ \
der Hund
© S
@ NP \Y ® NP VP
N | N | NP VP
Det N bellt Det N 'V P
Det N V
der Hund der Hund bellt \ \ |

der Hund bellt

Abbildung 2.23.: Aufbau einer Strukturbeschreibung bottom-up, links-rechts nach
[CEET04, S.255]

€ S
@D S P NP VP
PN NP VP P
NP VP P Det N
Det N
der
@ S ® S ©® S
/\ /\
NP VP NP VP NP VP
Det N Det N Vv Det N Vv
der Hund der Hund der Hund bellt

Abbildung 2.24.: Aufbau einer Strukturbeschreibung top-down, links-rechts nach
[CEET04, S.254]

27

2. Grundlagen

2.4.2. Chart-Parsing

Ein Chart-Parser speichert Teilresultate in einer Datenstruktur, der sogenannten Chart.
Dieser Vorgang entspricht dem Prinzip des dynamischen Programmierens. Durch Nach-
schlagen der Teilresultate werden unnotige Rekursionen vermieden. Chart-Parsing kann
als Top-Down-Chart-Parsing, Bottom-Up-Chart-Parsing, etc. realisiert werden [CEET 04,
S. 267).

Die bekanntesten Chart-Parser-Algorithmen sind der Earley-Algorithmus und der Cocke-
Younger-Kasami-Algorithmus (CYK-Algorithmus) [CEET04, S.267]. Die Grammatik fiir
den CYK-Algorithmus muss in Chomsky-Normalform’| vorliegen. Jede epsilonfreie Gram-
matik kann in Chomsky-Normalform umgeformt werden, dies bedeutet aber zusétzlichen
Aufwand und die Grammatik wiirde nicht mehr dem X-Bar-Schema entsprechen. Aufler-
dem arbeitet der CYK-Algorithmus ausschliefllich bottom-up. Dadurch kann es vorkom-
men, dass Konstituenten gebildet werden, ohne dass klar ist, ob diese zu grofleren Kon-
stituenten weiter kombiniert werden konnen. Der Vorteil des Earley-Parsers hingegen ist,
dass beliebige kontextfreie Grammatiken genutzt werden kénnen. Er kommt sowohl mit
Tilgungsregeln, als auch mit zyklischen Regeln und links- bzw. rechts-rekursiven Regeln
zurecht. Aulerdem arbeitet er sowohl bottom-up als auch top-down. Das Weiterverfolgen
von nicht erfolgsversprechenden Konstituenten wird weitgehend vermieden [NL94| S. 267].
Deswegen wird im Folgenden nur das Prinzip des Earley-Parsers beschrieben, das in der
vorliegenden Arbeit verwendet werden soll.

Eine Chart wird meistens als Vektor, Matrix oder azyklischer Graph dargestellt [N1.94,
S.103]. Ein Eintrag in der Chart wird Item oder Kante genannt. Er beinhaltet unter
anderem immer den Abschnitt des Satzes, auf den sich das Item bezieht, und die Regel der
Grammatik, die angewandt wurde. Im zu analysierenden Satz werden die Zwischenrdaume
der Worter von 0 bis n nummeriert, so dass der Satzabschnitt durch zwei Zahlen angegeben
werden kann. Die erste Zahl entspricht dem Anfang und die zweite Zahl dem Ende des
Abschnitts [CEET04, S. 266].

Soll zum Beispiel der Satz ,,der Hund bellt* analysiert werden, wird er wie folgt annotiert:
oDer1 Hundybellts. Verwendet der Chart-Parser die Grammatik in Abbildung [2.22] kann
ein Eintrag in einer entsprechenden Chart, der den Satzabschnitt 0 bis 2 als NP analysiert,
folgendermaflen aussehen: 02 NP — Det N

Chart-Parser konnen in aktive und passive Chart-Parser unterteilt werden. Bei aktiven
Chart-Parsern wird die Regel eines Items in zwei Abschnitte, einen aktiven und einen
inaktiven, geteilt. Trennzeichen ist ein Punkt (,dot*). Diese Items werden auch ,dotted
Items* genannt. Alle Kategorien vor dem Punkt sind im passiven Abschnitt und alle nach
dem Punkt im aktiven. Durch die Trennung kann eine Aussage tiber den Analysezustand
getroffen werden. Sieht ein Charteintrag wie folgt aus: 01 NP — Det @ N, dann bedeutet
dies, dass das erste Wort als Artikel erkannt wurde und anschliefend ein Nomen erwartet
wird. Die Bereiche rechts oder links des Punktes konnen auch leer sein. Ist der Punkt ganz

3vgl. |Sch03a] S. 52

28

2.4. Parsing

am Ende einer Regel, wird dieser Itemeintrag auch passive Kante genannt. Alle anderen
Kanten sind aktive Kanten, diese miissen noch vervollstdndigt werden |[CEET04, S. 267].

Earley Parser basieren auf drei Basisoperationen: der Expansion der Regeln (EXPAND),
der Verarbeitung eines Terminalsymbols (SCAN) und der Kombination zweier Eintrige
(COMPLETE).

Die Basisoperationen sind definiert, wie in Abbildung [2.25] Abbildung und Abbil-
dung dargestellt. Es gilt o, € (VUX)* und v € (VUX)*.

EXPAND (top-down)

Existiert in der Chart eine Kante der Form ij A —a e Bf mit i<j,
dann wird fiir jede Grammatikregel B —~y

ein neues Item der Form jj B — ey

in die Chart eingefiigt.

Abbildung 2.25.: Expand [CEE104, S. 268]

SCAN

Existiert in der Chart ein Item der Form ij1 A —a e w;f mit i<j-1
und ist w; das j-te Wort der Eingabekette w = wiws...w, mit 1 < n,

dann wird ein neues Item der Form ij A —aw;ef

in die Chart eingefiigt.

Abbildung 2.26.: Scan [CEET04, S.269]

COMPLETE (bottom-up)
Enthélt die Chart ein Item der Form ij A —a e BfS mit i<j

und eine weiteres Item der Form jk B —~ve mit j<k,

dann wird ein neues Item der Form ik A —aBef

in die Chart eingefiigt.

Abbildung 2.27.: Complete [CEE*04, S.270]

29

2. Grundlagen

Der Algorithmus eines Earley Parser kann ganz allgemein wie in Abbildung formuliert
werden.

ALGORITHMUS

Eingabe: Eine Eingabekette w = wiws...w, mit 1 < n

1. Fige 00 S — e S zur Initialisierung in die Chart ein (S entspricht dem
Startsymbol der Grammatik, S’ ist ein Nichtterminalsymbol, das nicht in der
Grammatik vorkommt)

2. Wende EXPAND, SCAN und COMPLETE solange an, bis keine weiteren Char-

teintrage erzeugt werden konnen.

Ausgabe: JA, falls On S — S e in der Chart, sonst NEIN

Abbildung 2.28.: Earley Algorithmus

Der vorgestellte Algorithmus ist nur ein Erkenner, aber aus der Chart kann eine Struk-
turbeschreibung extrahiert werden.

Fir die Beispielgrammatik in Abbildung und den Satz ,der Hund bellt“ soll eine
Chart nach dem Schema in Abbildung erstellt werden. Der Ablauf wird in Tabelle
2.2] beschrieben.

Beispielgrammatik 4

S — NP VP Det — der

NP — Det N Det — die

VP —- V N — Hund

VP — V NP N — Katze
V — bellt
V — sieht

Abbildung 2.29.: Beispielgrammatik 4 [CEET04, S. 236]

30

2.4. Parsing

Nr. | Item Begriindung

1 00 S’ — eSS Initialisierung

2 00 S — e NP VP EXPAND 1.

3 00 NP — e Det N EXPAND 2.

4 00 Det — o der EXPAND 3.

5 00 Det — o die EXPAND 3.

6 01 Det — der o SCAN 4.

7 01 NP — Det o N COMPLETE 3. mit 6.

8 11 N — e Hund EXPAND 7.

9 11 N — o Katze EXPAND 7.

10 12 N — Hund e SCAN 8.

11 102 NP — Det N o COMPLETE 7. mit 10.
12 102 S — NP e VP COMPLETE 2. mit 11.
13 |22 VP — eV EXPAND 12.

14 122 VP — ¢ V NP EXPAND 12.

15 |22 V — e bellt EXPAND 13. oder 14.
16 |22 V — e sieht EXPAND 13. oder 14.
17 123 V — bellt o SCAN 15.

18 123 VP - Ve COMPLETE 13. mit 17.
19 123 VP — V e NP COMPLETE 14. mit 17.
20 100 S— NP VP e COMPLETE 12. mit 18.

Tabelle 2.2.: Chart fiir den Satz ,Der Hund bellt.* [CEET04, S.272]

31

3. Stand der Technik

Dieses Kapitel soll einen Einblick in den aktuellen Markt der Ubersetzungssysteme bieten
und abwégen, ob diese als Grundlage fiir diese Arbeit verwendet werden kénnen.

Ubersetzungsprogramme gibt es mittlerweile viele. Die bekanntesten Systeme sind der
Google Translatorﬂ und Yahoo Babelﬁshﬂ. Der Google Translator (siche Abbildung [3.1)
wird sehr hiufig als Basis fiir andere frei verfiighare Ubersetzungssysteme genutzt. Er
basierte viele Jahre auf dem kommerziellen System SYSTRANEL mittlerweile hat Google
aber ein eigenes statistisches System entwickelt, das sogar Benutzerinteraktionen zulasst.
Der Benutzer kann zwischen Ubersetzungsoptionen wéhlen, oder eine eigene Ubersetzung
eingeben.

Google
Ubersetzer Von: Deutsch ~ A Nach: Englisch ~

Deutsch Englisch Franzdsisch Deutsch = Englisch Franzdsisch

Das System muss dem Benutzer die Maglichkeit bieten eine Eingabe zu x The system must provide the user the option to make an entry.

machen the user the ability
the user the opportunity
users the ability

— the user the possibility v
the user with the abity

MNeu! Halten Sie zum Andern der Reihenfolge die Umschalttaste gedrickt, klicken Sie und ziehen Sie
die ob

die obigen Wirter. Schliefen

Abbildung 3.1.: Google Translator (http://translate.google.de)

Yahoo Babelfish (sieche Abbildung dagegen bietet dem Benutzer nur die Moglichkeit
die Ubersetzung zu editieren, macht aber keine Alternativvorschlige. Es basiert immer
noch auf SYSTRAN. SYSTRAN ist eins der bekanntesten kommerziellen Systeme, das
zunéchst als regelbasiertes System entwickelt und mittlerweile zu einem Hybridsystem,
bestehend aus einem regelbasierten und einem statistischen System, erweitert wurde.

Ein bekanntes nichtkommerzielles maschinelles Ubersetzungssystem ist GramTran. Auch

Thttp://translate.google.de
Zhttp:/ /babelfish.yahoo.com
3http://www.systran.de
4http://gramtrans.com

33

3. Stand der Technik

dies war ein regelbasiertes, genauer sogar ein transferbasiertes System und wurde mittler-
weile weiterentwickelt zu einem Hybridsystem. Es beinhaltet aber keine Ubersetzung von
Deutsch nach Englisch.

YAHOO!a BABEL FISH Anmelden

DEUTSCHLAND euer Nutzer? Registrieren

In English

The system must offer the possibility to the user an
input to make

[Suchen Sie im Web nach diezem Text]

Erneut iibersetzen A { Maximal 150 Wiirter)

Das System muss dem Benutzer die Maglichkeit bieten
eine Eingabe zu machen

Deutzch ing Englische w

Abbildung 3.2.: Yahoo Babelfish (http://babelfish.yahoo.com)

Die meisten Systeme auf dem Markt sind multilingual und bidirektional. Haufig werden
als maschinelle Ubersetzungssysteme auch Systeme aufgelistet, die dem Anwender nur
Worterbiicher zur Verfiigung stellen. Diese Systeme sind damit streng genommen aber
keine Ubersetzungssysteme.

Auf dem Markt existiert kein System, das ausschliefllich fiir Anforderungen (Require-
ments) entwickelt wurde. Eine Ubersetzung kénnte aber durch die Benutzung einer Sub-
sprache optimiert werden. Andere Systeme erzielen bei der Ubersetzung weniger gute
Ergebnisse. Zum aktuellen Zeitpunkt gibt es nur ein System zur Unterstiitzung bei der
Ubersetzung von Anforderungen vom Arabischen ins Englische und umgekehrt. Das Sys-
tem heiBt ARATP| und erweitert das RAT-System. Das RAT-System unterstiitzt den An-
wender beim Schreiben von Anforderungen durch das Bereitstellen von Schablonen und
analysiert die geschriebenen Anforderungen. ARAT realisiert aber keine automatische ma-
schinelle Ubersetzung, sondern es gehért in die Kategorie MAHT (siehe Kapitel . Es
analysiert den zu iibersetzenden Satz und zerlegt ihn dazu in Phrasen. Auf der Syntax-
ebene gibt es ein Mapping zwischen der arabischen und der englischen Syntax. So kann
ein arabischer Satz, nachdem er zerlegt wurde, in die englische Syntax transferiert werden.
Die eigentliche Ubersetzung wird vom Anwender geleistet, indem er die einzelnen Phrasen
manuell iibersetzt.

Das ARAT-System ist wegen der manuellen Ubersetzung kein maschinelles Ubersetzungs-
system. Ein solches System ist aber Ziel dieser Arbeit. Die Benutzung des Google Trans-

Svgl. |[Elall]

34

lators wiirde sich anbieten, da dieser schon sehr gute Ergebnisse liefert, aber der Benutzer
briuchte zu viele Kenntnisse iiber die Schablonen und die Subsprache, um die Uberset-
zung editieren zu konnen, als dass er ihn sinnvoll einsetzen konnte. Eine Moglichkeit wére
es den Google Translator in die eigene Software zu integrieren und die Ausgabe maschinell
anzupassen. Da der Google Translator aber nur online verfiighar ist und die zu tiberset-
zenden Daten an Google geschickt werden miissten, ist dies keine Alternative. Besonders
bei Spezifikationen fiir Neuentwicklungen ist es nicht erwiinscht geheime Daten an Dritte
weiterzugeben.

Da fiir die Ubersetzung von Anforderungen bis jetzt kein System existiert, die Quali-
tat der allgemeinen maschinellen Ubersetzungssysteme nicht iiberzeugt, sowie auch nicht
fiir schablonenbasierte Anforderungen ausgelegt oder nur online verfiigbar ist, lohnt es
sich im Rahmen dieser Arbeit ein neues System zu entwickeln und nicht auf vorhandene
zuriickzugreifen.

35

4. Konzept

In diesem Kapitel soll das Konzept des im Rahmen dieser Arbeit zu entwickelnden Werk-
zeugs beschrieben werden. Zunéchst wird in Abschnitt ein Verfahren zur maschinel-
len Ubersetzung ausgewihlt. Die Ubersetzung wird fiir die in Kapitel vorgestellten
Schablonen entwickelt. Dazu ist eine Grammatik fiir die deutschen, ebenso wie fiir die
englischen Anforderungen notig. Diese werden in Abschnitt vorgestellt. Anschliefend
werden die einzelnen durchzufithrenden Schritte der Ubersetzung in den Abschnitten [4.3.1]
14.3.2l und 4.3.3| ndher spezifiziert.

4.1. Auswahl eines Verfahrens zur maschinellen
Ubersetzung

In Kapitel werden verschiedene Verfahren zur maschinellen Ubersetzung vorgestellt.
Nicht jedes Verfahren ist fiir jeden Anwendungszweck geeignet. Deswegen muss fiir die
gegebenen Voraussetzungen ein Verfahren ausgewéhlt werden.

Das schnellste und einfachste Verfahren ist die direkte Ubersetzung. Allerdings gibt es
mittlerweile Verfahren, die zum Beispiel durch eine strukturelle Analyse des Satzes, eine
bessere Ubersetzung erzielen. Es ist méglich eine solche Analyse des zu iibersetzenden
Satzes zu realisieren. Damit kommt eine transferbasierte Ubersetzung in Frage. Betrach-
tet werden muss noch die Tiefe und Art der Analyse.

Auch fir eine Interlingua wird der Satz detailliert analysiert. Allerdings kann dieses Ver-
fahren ausgeschlossen werden, da es nicht moglich ist eine vollstdndige Interlingua zu
modellieren. Es kann zwar von einer Subsprache ausgegangen werden, diese ist aber im
Bezug auf die Semantik nicht hinreichend eingeschréankt, da sie sténdig um neue Begriffe
erweitert wird. Selbes gilt fiir den neueren Ansatz der wissensbasierten Ubersetzung. Das
notwendige Wissen, um Ambiguititen aufzulésen, oder andere Ubersetzungsprobleme zu
vermeiden, kann bislang und im Speziellen in dieser Arbeit nicht vollsténdig erfasst wer-
den.

Die beispielbasierte oder statistische Ubersetzung benétigt unter anderem ein groBes par-
alleles, bilinguales Korpus, bestehend aus schablonenbasierten Anforderungen. Dies ist
nicht vorhanden, da die bisher verfassten Anforderungsdokumente ohne Schablonen ge-
schrieben wurden und nicht fiir jedes eine Ubersetzung vorhanden ist. Es existieren andere
parallele Korpora, die allerdings auch nicht geeignet sind, weil die Struktur und Art der

37

4. Konzept

Satze bei allgemeinsprachlichen Texten oder auch anderen Doménen verschieden ist. Satz-
teile aus diesen Korpora fiir eine Ubersetzung zu verwenden fithrt nicht zum gewiinschten
Ergebnis, da die iibersetzten Séatze dann nicht der englischen Schablone entsprechen.
Ein Hybridsystem, das ein regelbasiertes und ein beispielbasiertes oder statistisches Ver-
fahren kombiniert, ist im Rahmen dieser Arbeit nicht moglich. Es stellt aber eine Erwei-
terungsmoglichkeit dar.

Nach Betrachtung der verschiedenen Verfahren kommt nur ein transferbasiertes maschi-
nelles Ubersetzungssystem in Frage. Ein Konzept dazu wird in den folgenden Kapiteln
erlautert.

4.2. Grammatik der Anforderungen

Das Werkzeug beschrinkt sich auf die Ubersetzung von funktionalen Anforderungen. Fiir
diese gibt es Schablonen, die in Kapitel erlautert sind. Es wird eine Grammatik
fiir diese Schablonen benotigt, um die Sétze analysieren und iibersetzen zu kénnen. Hoe-
doro analysiert in seinem Werkzeugl Anforderungen, die nach eben genannten Schablo-
nen aufgebaut sind [Hoell]. Er benutzt dazu allerdings einen deterministischen Automa-
ten. Deterministische Automaten kénnen nur Grammatiken vom Typ 3 verwenden (siehe
Chomsky-Hierarchie Kapitel [2.3.1), allerdings kann mit diesen nur eine sehr flache Ana-
lyse erreicht werden. Fiir eine Ubersetzung ist aber, wie in Abschnitt motiviert, eine
etwas tiefere Analyse sinnvoll. Dies ist mit einer Phrasenstrukturgrammatik, deren Prin-
zip in Kapitel vorgestellt wird, moglich. Dadurch kénnen Strukturinformationen
fiir eine bessere Ubersetzung genutzt werden. Die Grammatik von Hoedoro kann daher
nicht verwendet werden. Allerdings konnen als Ansatz fiir die Entwicklung einer Phrasen-
strukturgrammatik die von Hoedoro beschriebenen Phrasen[| die er als Basis fiir seinen
Automat benutzt, verwendet werden.

Im Folgenden wird eine kontextfreie Phrasenstrukturgrammatik fiir ein transferbasiertes
maschinelles Ubersetzungssystem vorgestellt, mit der Sitze, deren Struktur den Schablo-
nen entpricht, (re-)konstruiert werden konnen. Diese Grammatik besteht aus Phrasen-
strukturregeln und lexikalischen Regeln. Es wird sowohl eine Grammatik fiir deutsche als
auch fiir englische Anforderungen vorgestellt.

4.2.1. Phrasenstrukturregeln

Zunéchst wird eine Basisgrammatik verwendet, die Anforderungen ohne Vorbedingungen
abdeckt. Dies entspricht der Schablone in Abbildung Zusatzlich gilt, dass der Sys-
temname nur aus einem bestimmten oder unbestimmten Artikel und einem Nomen be-

lygl. [Hoell] S.33-41

38

4.2. Grammatik der Anforderungen

stehen darf. Ein Objekt und dessen Ergéinzung ist optional. In einer Benutzerinteraktion
oder Schnittstellenanforderung ist das Objekt, wenn es vorhanden ist, eine Nominalphra-
se (NP) oder eine Prépositionalphrase (PP). Mogliche Strukturen sind in Abbildung
dargestellt. Bei einer selbststandigen Systemaktivitdt kann das Objekt komplexer aufge-
baut sein und aus zwei Phrasen bestehen. Die moglichen Strukturen eines Objekts mit
dem folgenden Prozesswort sind in Abbildung [.2] dargestellt. Fur das ,X*“ kann eine
Nominalphrase oder eine Prapositionalphrase eingesetzt werden.

1P 1P
N |
X I I
| |
Prozesswort Prozesswort

Abbildung 4.1.: Mégliche Phrasenstrukturen fiir ein Objekt und das folgende Prozesswort
einer Benutzerinteraktion oder Schnittstellenanforderung

VP VP VP
X A X V Vv
X \Y Prozesswort Prozesswort
|
Prozesswort

Abbildung 4.2.: Mogliche Phrasenstrukturen fiir ein Objekt und das folgende Prozesswort
einer selbststandigen Systemaktivitét

Die Basisgrammatik fiir deutsche Anforderungen ist in Abbildung[4.3] die Basisgrammatik
fir englische Anforderungen ist in Abbildung [4.4] dargestellt. Diese Grammatiken kénnen
um zusétzliche Komponenten erweitert werden, um noch mehr Séatze abzudecken. Sowohl
mit der in Abbildung als auch mit der in Abbildung dargestellten Grammatik
lassen sich drei verschiedene Typen von Anforderungen beschreiben. Abbildung [4.5] zeigt
die erste Moglichkeit, eine deutsche Anforderung, die eine selbststidndige Systemaktivitit
beschreibt. Abbildung ist die dazugehorige Ubersetzung auf Englisch.

Der zweite Typ Anforderung ist eine Benutzerinteraktion. Ein Beispiel fiir das Deutsche
ist in Abbildung gegeben. Die englische Ubersetzung ist in Abbildung dargestellt.
Abbildung [4.9] zeigt ein Beispiel fiir den letzten Typ Anforderung, eine Schnittstellenan-
forderung. Die entsprechende Ubersetzung ist in Abbildung dargestellt.

Variieren kann bei diesen drei Typen der Systemname, die rechtliche Verbindlichkeit
(Hilfsverb), der Benutzer, das Prozesswort (Verb) und das damit eventuell verbundene
subkategorisierte Objekt.

Aufgebaut sind die Grammatiken nach dem in Kapitel 2.3.2] erlauterten X-Bar-Schema.

39

4. Konzept

Basisphrasenstrukturregeln Deutsch

IP - NPT
IP — NP I

IP - PP1I

IP =1

NP — Det N
PP — P NP
r—1VP

VP — VP IP
VP — NP V’
VP — PPV’
VP =+ V

VP —- NP V
VP —- PPV
V' — NPV
V' —= PPV

Abbildung 4.3.: Basisphrasenstrukturregeln Deutsch

Basisphrasenstrukturregeln Englisch

IP - NPT
IP - I NP

IP - IPP

IP — 1

NP — Det N
PP — P NP
r—-1VP

VP — VP IP
VP — V' NP
VP — V' PP
VP — V

VP — V NP
VP — V PP
V' — V NP
V' — V PP

40

Abbildung 4.4.: Basisphrasenstrukturregeln Englisch

4.2. Grammatik der Anforderungen

P
NP I

/\
Det N

| |
Das System I VP

muss
NP AY
/\ \
Det N anwenden

die Anforderungen

Abbildung 4.5.: Selbststédndige Systemaktivitdt auf Deutsch

/IP\

\Y NP

| P

execute et N

the specifications

Abbildung 4.6.: Selbststandige Systemaktivitat auf Englisch

41

4. Konzept

P
NP r
/\
Det N
I VP
|

Das System
muss
VP IP
/\ NE i
NP Vv’ P \
P /\ Det N zu__machen
Det N \ \
\ \ NP v eine Eingabe
dem Benutzer /\ _\
Det, N bieten

| |
die Moglichkeit

Abbildung 4.7.: Benutzerinteraktion auf Deutsch

42

4.2. Grammatik der Anforderungen

/\

NP

P /\
Det N

The system
Shaﬂ /\
/\ I P
vV’ PP

‘ /\
P to make Det N
V NP with the ability | . |
| o~ a Input

provide Det N
| |

the user

Abbildung 4.8.: Benutzerinteraktion auf Englisch

43

4. Konzept

IP
NP r

N
Det N
| |
Das System .
muss /\

P

V /\
T~
fahig sein /\

Det N anzuwenden

|
die Anforderung

Abbildung 4.9.: Schnittstellenanforderung auf Deutsch

P
IJ
/\
Det N
| \ I VP

The system |
shall /\
VP IP

|
M NP
—

I
be able | /\

to_execute Det N

the specification

Abbildung 4.10.: Schnittstellenanforderung auf Englisch

44

4.2. Grammatik der Anforderungen

Die Grammatiken aus Abbildung 4.3 und Abbildung [£.4] generieren tiber, d.h. es kénnen
auch Sétze konstruiert werden, die nicht erwiinscht sind, wie zum Beispiel der Satz in
Abbildung [4.T1] Bei diesem Satz verlangt der hier angenommene Subkategorisierungs-
rahmen des Verbs ,bieten“ (<np:nom, np:dat, np:akk, ip:inf>) noch einen Infinitivsatz
(ip:inf). Der Subkategorisierungsrahmen ist nicht vollstandig gesattigt und der Satz daher
ungrammatisch.

IP
NP r

/\
Det N

Das System I VP

|
Muss
NP Vv’

Det/\N /\

| NP \Y

|
dem Benutzer " |

Det N bieten

| |
die Moglichkeit

Abbildung 4.11.: Ubergenerierter Satz der Basisgrammatik

Mit Merkmalsstrukturen (siche Kapitel und Restriktionen beziiglich dieser Merk-
malsstrukturen kann ein solches Ubergenerieren verhindert werden. Es geniigt Merkmalss-
trukturen und Restriktionen fiir die deutsche Basisgrammatik anzugeben. Die Merkmalss-
trukturen fir die verschiedenen Wortarten werden in Abschnitt beschrieben. Die
Restriktionen fiir die Phrasenstrukturreglen sind nach folgendem Schema aufgebaut:

XP — YP X'
M1: W1 M1: W1 M1:W1
M2 : W2 M3 :W3 M3 :W3

M2 : W2 M4 : W4

Sei XP — YP X eine beliebige Regel. Uber die Merkmalsstrukturen kann verlangt werden,
dass bestimmte Merkmale (M) vorhanden sein miissen und deren Werte (W) tibereinstim-
men oder dass ein Merkmal einen bestimmten Wert hat. In dieser Grammatik werden nur
gleiche Merkmale miteinander verglichen.

45

4. Konzept

Eine Merkmalsstruktur besteht immer aus Merkmal-Wert-Paaren (M:W). Bei den Re-
striktionen kann als Wert ein exakter Wert verlangt oder eine Variable angegeben wer-
den. Uber eine Variable wird sichergestellt, dass die Werte der Merkmale verschiedener
Kategorien tibereinstimmen. Das Merkmal M7 von XP muss beispielsweise den gleichen
Wert haben wie das Merkmal M7 von YP und das Merkmal M1 von X' Selbes gilt fiir
das Merkmal M2 von XP das den gleichen Wert haben muss, wie das Merkmal M2 von
YP. X’ hat kein Merkmal M2. Der Eintrag M/ : W/ macht beispielsweise nur Sinn, wenn
W4 ein Wert ist und keine Variable, da das Merkmal M/ bei keiner anderen Kategorie
vorkommt.

Die deutsche Basisgrammatik sieht mit Restriktionen beziiglich der Merkmalsstrukturen
folgendermaflen aus:

IP — NP I
NUM : N NUM : N
PERS : 3 PERS : 3
KAS : nom FIN : +
IpP — NP I
FIN : F [KAS;K} FIN : F
U : 7 ZU . Z
SUBKAT : X1 Xo SUBKAT : X1(np : K) X
IpP — PP I
FIN:F [KAS:K] FIN:F
ZU . 7 PREP: P U . 7
SUBKAT : X1 X5 SUBKAT : X1(pp: P_K)X>
IpP — I
FIN:F FIN:F
72U . 7 ZU . 7
SUBKAT : S SUBKAT : S
NP — Det N
NUM : N NUM : N NUM : N
PERS: P PERS : P PERS : P
KAS: K KAS: K KAS: K
GEND : G GEND : G GEND : G
PP — P NP
[KAS K] [KAS K] [KAS : K}
PREP: P PREP: P

46

4.2. Grammatik der Anforderungen

I — I VP
NUM : N NUM : N FIN : —
PERS: P PERS : P ZU : —
FIN : F FIN : F SUBKAT :np: nom
VP — VP IP
FIN : F FIN : F FIN : —
ZU: Z ZU: Z ZU : +
SUBKAT : X1 Xo SUBKAT : X, (ip : inf) X SUBKAT : np : nom
VP — NP %4
FIN: F lPERS : 3] FIN:F
ZU: 7 KAS: K ZU: 7
SUBKAT : X1 X SUBKAT : X,(np : K)Xo
VP — PP v’
FIN:F [KAS:K] FIN:F
ZU: Z PREP: P ZU: Z
SUBKAT : X1 Xo SUBKAT : X,(pp: P_K)X>
VP — \%
FIN:F FIN: F
U : Z ZU : Z
SUBKAT : S SUBKAT : S
VP — NP Vv
FIN:F [KAS;K} FIN:F
AV ZU: 7
SUBKAT : X1 Xo SUBKAT : X, (np : K)X,
VP — PP 1%
FIN: F KAS: K FIN: F
ZU : 7 [PREP : P} ZU: Z
SUBKAT : X1X> SUBKAT : X1(pp: P_K)X>
1% — NP 1%
FIN:F [KAs:K} FIN:F
ZU: Z ZU: Z
SUBKAT : X1X> SUBKAT : Xi(np : K)X,
Vv’ — PP 1%
FIN: F KAS: K FIN : F
ZU: Z [PREP : P] ZU: Z
SUBKAT : X1Xo SUBKAT : X,(pp: P_K)X>

47

4. Konzept

Wird der in Abbildung dargestellte iibergenerierte Satz um Merkmalsstrukturen und
Restriktionen erganzt, scheitert der Aufbau. Abbildung zeigt den Syntaxbaum mit
den relevanten Merkmalsstrukturen. Es ist nicht moglich die Restriktionen der Regel
I’ — 1 VP, die nochmals in Abbildung dargestellt sind, anzuwenden, da eine VP mit
einem Subkategorisierungsrahmen <np:nom> verlangt wird aber die VP des Satzes den
Subkategorisierunsgrahmen <np:nom, ip:inf> hat.

I — 1 VP
NUM : N NUM : N FIN : —
PERS : P PERS: P ZU : —
FIN : F FIN : F SUBKAT : np : nom

Abbildung 4.12.: Regel I' — I VP mit Merkmalsstrukturen und Restriktionen

NP %
PN
Det N
I I .

DaS System I SUBKAT np:nom, ip: mf

muss

NUM sg
GEND ma LSL 7
PER9 3

KAS dat
D et N m

FH\ -
SUBI\ AT npmom, np:dat, ip:inf

FIN -
GEND fem 7U -
| | NP PERS 3 v SUBKAT np:nom, np:dat, np:akk, ip:inf:|
KAS akk
dem Benutzer —_— U N
Det N bieten

I |
die Moglichkeit
Abbildung 4.13.: Ubergenerierter Satz aus Abbildung 4.11) mit Merkmalsstrukturen

Zusatzlich zu den Restriktionen beziiglich der Merkmalsstrukturen werden drei weitere
Bedingungen zur Uberpriifung des Anforderungstyps aufgestellt. Es wird verlangt, dass
der Strukturbaum des Satzes entweder eine der beiden Strukturen aus Abbildung
enthélt, wobei wirklich nur eine der beiden Strukturen im Baum wieder gefunden werden
darf, oder die Struktur aus Abbildung[4.15| nicht vorhanden ist. Der linke Strukturbaum in
Abbildung [4.14]findet sich in einem Strukturbaum, der eine Benutzerinteraktion reprasen-
tiert wieder. Der rechte Strukturbaum dagegen entspricht einer Schnittstellenanforderung.

48

4.2. Grammatik der Anforderungen

Kommen diese beiden Strukturen nicht im Satz vor, darf auch die Struktur aus Abbildung
nicht vorkommen, sonst ware der Satz auch keine selbststandige Systemaktivitat.

<
-

VP 1P fahig sein
NP Vv’
NP Vv
|
Det N bieten

| |
die Moglichkeit

Abbildung 4.14.: Restriktionen beziiglich der Grammatik aufgrund der Schablone

I?
N
I VP
PN
VP IP

Abbildung 4.15.: Restriktionen beziiglich der Grammatik aufgrund der Schablone

Schon durch die Basisgrammatik wird weitestgehend gewahrleistet, dass die Struktur des
Satzes der Schablone entspricht. Allerdings besteht die Basisgrammatik nur aus Phrasen-
strukturregeln. Durch die Restriktionen wird iiberpriift, ob auch die lexikalischen Kate-
gorien korrekt sind.

4.2.2. Lexikon (lexikalische Regeln)

Das Lexikon, aus dem die lexikalischen Regeln extrahiert werden, besteht fiir die in Ab-
schnitt vorgestellte Basisgrammatik aus Nomen, Verben, Modalverben, Prapositionen
und Artikeln. Ein Auszug aus dem Lexikon ist als Anhang [A] beigefiigt. Die enthaltenen
Worter stammen aus einem grofien monolingualen Korpus, extrahiert aus verschiedenen
Spezifikationsdokumenten. Dadurch ist eine doméanenspezifische Sprache gewahrleistet.

49

4. Konzept

Die Worter werden aus diesem Korpus extrahiert und um Informationen, die fiir die
Merkmalsstrukturen relevant sind, erganzt.

Wie in Abschnitt angesprochen, konnen mit der Basisgrammatik unerwiinschte Sat-
ze generiert werden. Deswegen werden Restriktionen beziiglich der Merkmalsstrukturen
fiir die Phrasenstrukturregeln benotigt.

Die Merkmalsstruktur fiir Nomen und Artikel hat vier Argumente. Angegeben werden
muss, wie in Abbildung dargestellt, Numerus, Genus, Person und Kasus.

NUM sg, pl
GEND masc, fem, neut
PERS 1,2,3

KAS nom, akk, dat, gen

Abbildung 4.16.: Merkmalsstruktur fiir Nomen und Artikel

Die Merkmalsstruktur fiir Verben (siche Abbildung [4.17)) verlangt die Angabe der Fini-
theit und des Subkategorisierungsrahmens. Zusétzlich wird angegeben, ob das Verb ein
zu-Infinitiv ist.

FIN + /-
ZU + /-
SUBKAT *

Abbildung 4.17.: Merkmalsstruktur fiir Verben

Fir die Modalverben muss in der Merkmalsstruktur, welche in Abbildung [£.1§ dargestellt
ist, wie bei den Nomen und Artikeln der Numerus und die Person angegeben werden,
zusatzlich wie bei den Verben die Finitheit.

NUM sg, pl
PERS 1,2,3
FIN + /-

Abbildung 4.18.: Merkmalsstruktur fiir Modalverben

Die Prépositionen sind durch Angabe des Kasus vollstandig beschrieben. Bei den Restrik-
tionen fiir die Basisgrammatik tauchen bei den Prépositionen zusatzlich das Merkmal

20

4.2. Grammatik der Anforderungen

PREP auf. Dieses wird aus iibersetzungstechnischen Griinden benotigt und entspricht der
Praposition (z.B. an, auf, ...).

KAS nom, akk, dat, gen
PREP auf, an, ...

Abbildung 4.19.: Merkmalsstruktur fiir Préapositionen

Mit diesen Merkmalen sind die Wérter, fiir die im Rahmen dieser Arbeit zu tibersetzenden
Satze, ausreichend beschrieben. Die Werte der Merkmale eines Wortes konnen direkt aus
dem entsprechenden Lexikoneintrag entnommen und eine lexikalische Regel erzeugt wer-
den. Die Abbildung zeigt eine mogliche lexikalische Regel fiir das Wort ,,System®.

N — System
NUM : sg NUM : sg
GEND : fem GEND : fem
PERS : 3 PERS : 3
KAS : nom KAS :nom

Abbildung 4.20.: Lexikalische Regel fiir das Wort ,,System*

Die Daten fiir das Lexikon stammen hauptsachlich aus SMOR, einem Werkzeug, das am
IMSﬂ entwickelt wurde und die Morphologie deutscher Worter analysiert [SFH02]. Es kon-
nen damit unter anderem Grundform, Kasus, Genus, Numerus und Person eines Wortes
ermittelt werden. Aulerdem funktioniert diese Analyse auch in die umgekehrte Richtung,
d.h. wenn Grundform, Kasus, Numerus usw. bekannt sind, kann die entsprechende Wort-
form ausgegeben werden. Dadurch war es zum Beispiel moglich die Form eines Verbs in
der dritten Person im Plural automatisch zu ermitteln.

Bei dem Lexikon handelt es sich um ein Vollformenlexikon, d. h. alle moglichen und not-
wendigen Formen eines Wortes konnen direkt nachgeschlagen werden. In anderen Lexika
ist zum Beispiel bei den Verben nur der Infinitiv gespeichert und andere Formen miissen
iiber Regeln aus diesem generiert werden.

Die Subkategorisierungsrahmen der Verben stammen aus der Arbeit von Schulte im Wal-
de [Sch03b]. Diese und alle bisher genannten Daten standen fiir diese Diplomarbeit schon
aufbereitet zur Verfiigung. Im Rahmen dieser Arbeit wurden die Daten in ein einheitli-
ches Format zusammengefasst und wenn moglich mit Ubersetzungen aus den Daten von
Hoedoro erganzt.

In dieser Arbeit werden in den Subkategorisierungsrahmen nur Nominalphrasen, Prapo-
sitionalphrasen und Infinitvphrasen berticksichtigt. Eine NP wird im deutschen Subate-
gorisierungsrahmen beschrieben durch ,np:KAS“, wobei KAS das Kasus-Merkmal der

2Institut fiir maschinelle Sprachverarbeitung der Universitit Stuttgart

o1

4. Konzept

Nominalphrase ist. Eine PP wird angegeben durch ,pp:PREP__KAS“ PREP und KAS
sind die Merkmale aus der Merkmalsstruktur. Eine Infintivphrase wird ohne zuséatzlich
Merkmale mit ,,ip:inf* beschrieben.

Die Subkategorisierungsrahmen fiir die englischen Verben hingegen stammen aus einer
Liste mit englischen Verben und deren mégliche Subkategorisierungsrahmen. Diese Liste
wurde aus dem englischen Wikipedia mit dem BitPaiff| Parser im Rahmen des Word-
Graph Projekts am IMS erstellt. Die Subkategorisierungsrahmen wurden statistisch ex-
trahiert und sind daher nicht vollstandig korrekt. Fiir einen repréisentativeren Datensatz
werden nur die am haufigsten vorkommenden Subkategorisierungsrahmen fiir jedes Verb
verwendet. Die Notation der englischen Subkategorisierungsrahmen wurde fast vollstandig
iibernommen und nur teilweise an die Notation der deutschen Subkategorisierungsrahmen
angepasst. Beispielsweise ein Subjekt wird in englischen Subkategorisierungsrahmen mit
,subj* und in deutschen mit ,np:nom* beschrieben. Eine Nominalphrase wird nur durch
,np“angegeben und die Prépositionalphrase durch ,,pp:PREP*

4.3. Transferbasierte Ubersetzung

Ergebnis der Diskussion zur Auswahl eines Verfahrens fiir die maschinelle Ubersetzung
in Abschnitt ist das transferbasierte Verfahren. Eine transferbasierte Ubersetzung,
wie sie in Kapitel beschrieben wird, beinhaltet die Analyse des zu iibersetzenden
Satzes, den Transfer von einer quellsprachlichen in eine zielsprachliche Reprisentation
und die Generierung des Satzes in der Zielsprache. In den folgenden Abschnitten soll auf
das Konzept der einzelnen Schritte naher eingegangen werden.

4.3.1. Analyse

Die transferbasierte Ubersetzung beginnt mit der Analyse des zu iibersetzenden Satzes.
Diese Analyse kann aufgeteilt werden, in die morphologische und die strukturelle Analyse.
Auf eine morphologische Analyse kann im Moment verzichtet werden, da ein Vollformen-
lexikon zur Verfiigung steht. Alle Worter des Satzes werden direkt darin nachgeschlagen
und miissen nicht erst auf ihre Grundform reduziert werden. Eine morphologische Analyse
macht Sinn, um zum Beispiel die GroBe des Lexikons zu reduzieren [HS92, S.82]. Dies
kann als Erweiterung fiir das Werkzeug in Frage kommen.

Die strukturelle Analyse iibernimmt ein Earley Parser. Das Vorgehen des Earley Parsers
wurde in Kapitel beschrieben. Als Eingabe erhalt dieser den zu iibersetzenden Satz

3vgl. [Sch04]
4http://wiki.ims.uni-stuttgart.de/extern/Word Graph

52

4.3. Transferbasierte Ubersetzung

und die deutsche Basisgrammatik aus Abschnitt [£.2.1] Die Basisgrammatik wird um le-
xikalische Regeln, durch das Nachschlagen der Worter im Lexikon, erweitert. Dann kann
der Satz analysiert werden.

Um zu vermeiden, dass nicht gewollte Sétze akzeptiert werden, miissen die Restriktionen
beziiglich der Merkmale eingehalten werden. Aulerdem wird durch zuséatzliche Restrik-
tionen (siche SH9) tberpriift, ob der Satz geméaB der Schablone geschrieben wurde.

In Kapitel werden einige Probleme der maschinellen Ubersetzung erértert. Ein Teil
dieser Probleme betrifft die Analyse, genauer sind dies die Probleme, die nur eine Sprache
betreffen. Darunter fallen strukturelle und kategoriale Ambiguitaten auf Syntaxebene.
Diese treten bei den Anforderungen, die von der Grammatik akzeptiert werden nicht auf,
da die Grammatik eindeutig ist. Eine eindeutige Grammatik ist sinnvoll, da eindeutige
Anforderungen verlangt werden. Ambiguitdten auf Morphologieebene treten auch nicht
auf, denn in der Subsprache sind alle Worter eindeutig definiert. Gleiches gilt fiir Ambi-
guititen auf der Semantikebene, wie zum Beispiel Homographe oder Polyseme. Auch diese
Worter sind in der doménenspezifischen Sprache eindeutig. Die referentielle Ambiguitéat
hingegen kann, wie in Kapitel bereits erwihnt, bei einer satzweisen Ubersetzung
nicht aufgelost werden.

4.3.2. Transfer

Der zweite Schritt der transferbasierten Ubersetzung ist der Transfer der Reprisenta-
tion des Satzes in Quellsprache in eine Repréisentation des Satzes in Zielsprache. Nach
Hutchins und Somers in [HS92J"| kann dieser Schritt in den lexikalischen und den syntak-
tischen Transfer aufgeteilt werden.

Der lexikalische Transfer iiberfiihrt die Worter des Satzes mittels eines bilingualen Lexi-
kons von der Quellsprache in die Zielsprache. Die Eintrédge der Worter, die im Rahmen
der Analyse im Lexikon nachgeschlagen werden, enthalten auch immer eine Ubersetzung,
die hier verwendet wird.

Der strukturelle Transfer wird durch Transferregeln beschrieben. Er iiberfiithrt die Struk-
turbeschreibung der Analyse, die abhéangig ist von der Quellsprache, mittels der Trans-
ferregeln in eine Strukturbeschreibung in der Zielsprache. Der strukturelle Transfer lasst
sich in mehrere Schritte aufteilen.

Zuerst werden schablonenspezifische Transferregeln angewandt. Im Moment beinhalten
diese nur die in Abbildung dargestellt Regel. Durch die schablonenspezifischen Trans-
ferregeln wird gewahrleistet, dass die Struktur der deutschen Schablone in die Struktur
der englischen Schablone tiberfiihrt wird.

Svgl. [HS92] S.113

23

4. Konzept

:[7 I7
I VP I VP
NPy v v PP
NP, \ Vv NP; p NP,
| 3 | TN
Det N provide provide with Det N
| | | |
the ability the ability

Abbildung 4.21.: Schablonenspezifische Transferregel

Die Transferregel in Abbildung betrifft nur den Anforderungstyp ,,Benutzerinterakti-
on“. Die anderen beiden Anforderungstypen benotigen keinen speziellen Transfer und kon-
nen mit den folgenden sprachspezifischen Transferregeln korrekt tibersetzt werden. Auch
der dargestellte Transfer fiir die Benutzerinteraktion konnte mit den folgenden Regeln
transferiert werden. Es wiirden dadurch allerdings mehrere Ubersetzungsmoglichkeiten
(siehe S. entstehen, wobei nur eine davon richtig ist, da die Ubersetzung wegen der
Schablone an dieser Stelle eindeutig ist. Mit den schablonenspezifischen Transferregeln
wird diese eindeutige Ubersetzung umgesetzt.

Vor dem Transfer mittels sprachspezifischen Regeln werden zunéchst noch die Subkate-
gorisierungsrahmen der Verben transferiert. Dieser Schritt soll anhand des Beispielsatzes
,Das System muss dem Benutzer eine Antwort geben.”“, dessen Phrasenstrukturbaum in
Abbildung dargestellt ist, erlautert werden.

Das Prozesswort ,, geben“ hat in diesem Fall den Subkategorisierungsrahmen <np:nom,
np:dat, np:akk>. Als Ubersetzung fiir ,,geben* steht im Lexikon ,,give“ mit folgenden mog-
lichen Subkategorisierungsrahmen: <subj, np>, <subj, np, np> und <subj, np, pp:to>.
Es wiére natiirlich ein groier Vorteil fiir die Ubersetzung, wenn eine eindeutige Zuordnung
zwischen den deutschen Subkategorisierungsrahmen und den englischen Subkategorisie-
rungsrahmen vorliegen wiirde. Da fiir eine automatische Zuordnung keine Werkzeuge und
Daten zur Verfiigung stehen und die Entwicklung solcher den Rahmen dieser Arbeit spren-
gen wirden, wurde auf eine eindeutige Zuordnung verzichtet. Eine manuelle Zuordnung
ist aus Kosten- und Zeitgriinden zu aufwandig.

Um ,,geben und die Elemente aus dessen Subkategorisierungsrahmen korrekt zu tiberset-
zen, wird der dazugehorige englische Subkategorisierungsrahmen ermittelt. Dafiir kommen
nur jene in Frage, die gleich viele Elemente haben, wie der deutsche Subkategorisierungs-
rahmen. Subkategorisierungsrahmen mit mehr oder weniger Elemente konnen nicht ver-
wendet werden, da das Werkzeug nicht fahig ist zu entscheiden, ob und wenn ja welche

54

4.3. Transferbasierte Ubersetzung

Elemente weggelassen werden sollen und dem Werkzeug das Wissen fehlt, um ein neues
Element hinzuzufiigen. In dem Beispiel kommt nur der englische Subkategorisierungs-
rahmen <subj, np, pp:to> fiir den Transfer in Frage. Es ist generell moglich, dass auch
mehrere Subkategorisierungsrahmen passen.

/\

A

Das System

|
muss
NP vV’

T

dem Benutzer NP AV
|

eine Antwort geben

Abbildung 4.22.: Beispielsatz fiir einen Transfer der Subkategorisierungsrahmen

Fiir jeden moglichen Subkategorsierungsrahmen wird gepriift, ob der englische ebenso wie
der deutsche ein Subjekt (subj bzw. np:nom) enthélt. Da die Position des Subjekts im
Satz feststeht und in der deutschen, so wie der englischen Schablone gleich ist, kénnen
diese Elemente der Subkategorisierungsrahmen als bearbeitet angesehen werden. Sie wer-
den nicht weiter berticksichtigt. Es bleibt noch der Transfer zwischen <np:dat, np:akk>
und <np, pp:to>.

Aufgrund der Kenntnisse tiber die Daten aus dem Lexikon wird davon ausgegangen, dass
die Reihenfolge der Elemente im englischen Subkategorisierungsrahmen auch der Reihen-
folge der Elemente im Satz entspricht. Deswegen werden den englischen Elementen die
deutschen Elemente zugeordnet und nicht umgekehrt. Die Reihenfolge der englischen Ele-
mente und die Reihenfolge der deutschen Elemente muss allerdings nicht tibereinstimmen,
d.h. alle moglichen Zuordnungen bestimmen die verschiedenen Ubersetzungsméglichkei-
ten. Bezogen auf die Subkategorisierungsrahmen aus dem Beispiel bedeutet dies, dass es
sowohl Sétze gibt in denen np:dat mit np und np:akk mit pp:to als auch Sitze existieren
in denen np:dat mit pp:to und np:akk mit np tbersetzt wird (vgl. Abbildung . Dem
Benutzer werden deswegen beide bzw. generell alle Ubersetzungsmoglichkeiten angeboten.
Das Ubersetzungssystem ist nicht in der Lage zu entscheiden, welche der Méglichkeiten
korrekt ist, da dazu notwendiges Wissen fehlt.

25

4. Konzept

EN: | np | -—|—>| pp:to | -—|—0

X_|

D: | np:dat | °-|—>| np:akk | '-l—‘

Abbildung 4.23.: Alle Moglichkeiten fir die Zuordnung zwischen den Subkategorisierungs-
rahmen des Beispielsatzes

Bei dem Transfer der Merkmale der Subkategorisierungsrahmen wird von einem Phrasen-
typ in einen anderen transferiert. In der Basisgrammatik ist nur ein Transfer von NP in
NP, PP in PP, NP in PP und PP in NP méglich. Der Transfer einer NP in eine NP erfor-
dert keine strukturelle Anderung, die NP wird direkt iibernommen. Bei einem Transfer
von einer PP in eine PP andert sich die Praposition. Diese wird bei einer PP im Subka-
tegorisierungsrahmen immer mit angegeben. Strukturelle Anderungen tauchen bei einem
Transfer von einer NP in eine PP oder bei einem Transfer in die umgekehrte Richtung
auf. In Abbildung ist die Struktur einer PP dargestellt. Bei einem Transfer einer
NP in eine PP wird die zu transferierende NP an die Stelle der NP in der PP gehangt
und die PP um die Préposition P aus dem Subkategorisierungsrahmen ergénzt. In der
umgekehrten Richtung, also beim Transfer einer PP in eine NP, wird die NP der PP als
NP genommen.

PP

PR
P NP

Abbildung 4.24.: Struktur einer Préapositionalphrase (PP) der Basisgrammatik

Mit dem Transfer des Subkategorisierungsrahmen ist die Strukturbeschreibung noch nicht
vollstandig transferiert. Es folgen als Letztes die schon erwahnten sprachspezifischen
Transferregeln, dargestellt in Abbildung [4.25], [4.26] und [4.27] Diese Regeln sind abhén-
gig von der Quell- und der Zielsprache. Bei einem Transfer von deutsch nach englisch
wird die Verbstellung im Satz verdndert. In der deutschen Basisgrammatik wird von einer
Verbletztstellung, in der englischen Basisgrammatik von einer Verberststellung gespro-
chen. Durch die sprachspezifischen Transferregeln wird diese strukturelle Veranderung
durchgefiihrt.

26

4.3. Transferbasierte Ubersetzung

VP VP
/\ /\
X,V - VX
N PN
Xs V V X5

Abbildung 4.25.: Sprachspezifische Transferregel 1

VP VP
PN > PN
X V vV X

Abbildung 4.26.: Sprachspezifische Transferregel 2

IP IP

P PN
X 1 I X

L J

Abbildung 4.27.: Sprachspezifische Transferregel 3

Der Beispielsatz aus Abbildung ist nach der deutschen Schablone eine selbststandi-
ge Systemaktivitat, d.h. die schablonenspezifische Regel wird nicht angewandt. Nachdem
alle anderen Transferregeln angewandt und damit der lexikalische, so wie auch der struk-
turelle Transfer beendet ist, sind die in Abbildung und dargestellten Phrasen-
strukturbdume das Ergebnis der Ubersetzung. Diese représentieren alle vorgeschlagenen
Ubersetzungsmoglichkeiten des Beispielsatzes.

/\

A
The system /\
\
shall
PP

\Y NP p NP

give aanswer to the user

Abbildung 4.28.: Erste Ubersetzungsmoglichkeit des Beispielsatzes

o7

4. Konzept

/\

A
The system /\
‘ /\
shall
V’ PP

/\ /\
Vv NP P NP
|

give the user to a answer

Abbildung 4.29.: Zweite Ubersetzungsméglichkeit des Beispielsatzes

Die Reihenfolge der Transferschritte muss eingehalten werden, da sonst die Ubersetzung
nicht korrekt ist. Werden beispielsweise die sprachspezifischen vor den schablonenbasier-
ten Transferregeln angewandt, kann die linke Seite der Regel aus Abbildung 4.21] im
Strukturbaum einer Benutzerinteraktion nicht wieder gefunden werden. Der schablonen-
basierte Transfer wiirde also nicht ausgefithrt werden und der korrekte Transfer zwischen
der deutschen und der englischen Schablone wére nicht gewéhrleistet.

Wie die Analyse betreffen die Probleme der maschinellen Ubersetzung aus Kapitel ,
auch den Transferschritt. Dies sind Probleme, die bei der Ubersetzung zwischen zwei
Sprachen auftreten. Dazu gehoren die lexikalischen Liicken (lexical gaps), die fehlenden
Entsprechungen (mismatches), die unterschiedliche Granularitét, die unterschiedliche syn-
taktische Struktur und das Head Switching. Das erste Problem, die lexikalischen Liicken,
wird ganz konsequent behandelt. Findet sich eine Liicke im Lexikon, gibt es keine Uber-
setzung. Es kann als Erweiterung eine Benutzerinteraktion eingebaut werden, welche dem
Benutzer die Moglichkeit bietet, eine eigene Ubersetzung einzugeben. Gleich behandelt
werden fehlende Entsprechungen. Lexikalische Liicken und fehlende Entsprechungen kom-
men, wenn iiberhaupt, nur als Ausnahmefall vor, da eine doménenspezifische Sprache
verwendet wird. Gleiches gilt fiir eine unterschiedliche Granularitat der Worter. In einer
doménenspezifischen Sprache ist die Ubersetzung meist eindeutig. Falls dieses Problem
denoch auftritt kann dem Benutzer die Wahl gelassen werden, welche der moglichen Uber-
setzungen er wahlt. Das Problem der unterschiedlichen syntaktischen Strukturen oder des
Head Switchings wird, wenn es nicht schon durch die Verwendung der Schablonen ausge-
schlossen ist, iiber die Transferregeln oder den Subkategorisierungsrahmen bewaltigt.

o8

4.3. Transferbasierte Ubersetzung

4.3.3. Generierung

Die Generierung ist der letzte Schritt in der transferbasierten Ubersetzung. Diese kann
ebenso, wie die beiden anderen Schritte, in zwei Teile, die syntaktische und die morpho-
logische Generierung, aufgeteilt werden [HS92, S. 133].

Zuerst wird die syntaktische Generierung durchgefithrt. Alle Strukturbeschreibungen, die
Ergebnis des Transferschritts sind, werden Inorder durchlaufen, um den englischen Satz
zu extrahieren. Inorder bedeutet, dass fiir jeden Knoten des binaren Strukturbaums zu-
erst der linke Teilbaum des Knotens betrachtet wird, anschlieSend der Knoten selbst und
zuletzt der rechte Teilbaum. Der Satz besteht aus den Eintrégen der Blatter des Baums in
der Reihenfolge in der sie angetroffen werden, wenn der Baum inorder durchlaufen wird.
Eine morphologische Generierung ist anschliefend nicht notwendig, da die Worter im
Analyseschritt nicht auf ihre Grundform reduziert werden und daher die richtige Form im
Transferschritt direkt tibersetzt wird.

29

5. Implementierung

Im vorliegenden Kapitel |5 wird die Implementierung des Werkzeugs und die praktische
Umsetzung des Konzepts aus Kapitel [4 betrachtet. Der Aufbau dieses Kapitels ahnelt des-
wegen dem des Kapitel [l Nach Einfithrung der grundlegenden Systeminformationen in
Abschnitt werden die Analyse, der Transfer und die Generierung einer transferbasier-
ten Ubersetzung in den Abschnitten , und nochmals beleuchtet. Der Abschnitt
behandelt die Benutzeroberfliche des Werkzeugs.

5.1. Systeminformationen

Das Werkzeug wurde in der Programmiersprache Java mithilfe der Entwicklungsumge-
bung Eclipsd']implementiert. Fiir die Wahl der Programmiersprache gab es mehrere Griin-
de. Der wichtigste Grund ist, dass Java in der Softwareentwicklung allgemein, aber beson-
ders auch bei der Daimler AG sehr verbreitet ist. Deshalb ist unter anderem eine einfache
Anbindung an andere Werkzeuge, wie z. B. das Werkzeug von Hoedoro [Hoell] in das die
Ubersetzungsfunktion integriert und welches bereits in Java implementiert wurde, mog-
lich. Aus denselben Griinden wird auch die SWT(Standard Widget Toolkit)-Bibliothek?|
fiir die Erweiterung der Benutzeroberflache verwendet.

Um das Werkzeug moglichst erweiterbar zu gestalten, wird unter anderem die Grammatik
in eine XMIﬂ-Datei ausgelagert (siehe Abschnitt . XML ist eine Sprache, die relativ
leicht erlernbar ist und auch ohne tiefere Programmierkenntnisse verwendet werden kann.
So muss beispielsweise zur Erweiterung der Grammatik die Implementierung des Werk-
zeugs nicht gedndert werden.

Um eine XML-Datei mit Java zu verarbeiten wird JDOM[| verwendet, eine API mit der
XML-Dokumente eingelesen, verarbeitet und erzeugt werden kénnen.

Damit das Debuggen des Werkzeugs beziiglich einer moglichen Weiterentwicklung erleich-
tert wird, gibt es toString-Funktionen fiir die verschiedenen Klassen. Dadurch ist es zum
Beispiel moglich eine Chart oder einen Syntaxbaum als String auszugeben.

thttp://www.eclipse.org/
Zhttp:/ /www.eclipse.org/swt/
3http://www.w3.org/XML/
4http:/ /www.jdom.org

61

5. Implementierung

5.2. Analyse

Zur Vorbereitung der Analyse wird die Grammatik und das Lexikon eingelesen. Anschlie-
Bend nutzt der Chart-Parser beides, um den eingegebenen Satz zu analysieren und be-
zuglich der Restriktionen zu priifen.

5.2.1. Datenstruktur und implementeller Aufbau der
Grammatik

Die Grammatik aus Kapitel liegt, wie in Abschnitt motiviert, in XML vor. Ein
Auszug aus der XML-Datei wird in Abbildung [5.1} die dazugehorige Regel in Abbildung

[0.2) gezeigt.

<rule name="IP">

<child name="NP">
<attribute>KAS</attribute>

</child>

<child name="I">
<attribute>FIN</attribute>
<attribute>ZU</attribute>
<attribute>SUBKAT</attribute>

</child>

<attribute name="FIN">
<assignment>
<child name="I" pos="2" attribute="FIN"/>
</assignment>
</attribute>
<attribute name="ZU">
<assignment>
<child name="I" pos="2" attribute="ZU"/>
</assignment>
</attribute>
<attribute name="SUBKAT">
<assignment>
<subkat>
<child name="I" pos="2" attribute="SUBKAT"/>
<child name="NP" pos="1"/>
</subkat>
</assignment>
</attribute>

<restriction>
<subkat>
<child name="I" pos="2" attribute="SUBKAT"/>
<child name="NP" pos="1"/>
</subkat>
</restriction>
</rule>

Abbildung 5.1.: Auszug aus der Grammatik-XML-Datei

62

5.2. Analyse

IP — NP I
FIN:F [KAS;K} FIN:F
ZU: Z ZU: Z
SUBKAT : X1 X, SUBKAT : X (np : K)X>

Abbildung 5.2.: Beschriebene Regel in Abbildung

Fiir die Grammatik sind verschiedene XML-Elemente vordefiniert, die das Werkzeug in-
terpretieren kann. Eine Regel in der Grammatik steht zwischen den Tags <rule> und
< /rule>. Die Regel muss einen Namen haben, dieser enspricht der linken Seite der Regel
(sieche Abbildung . Innerhalb der <rule>-Tags werden die Merkmale der linken Seite,
die rechte Seite und die Restriktionen beschrieben.

<rule name="IP">

</rule>

Abbildung 5.3.: Auszug aus der Grammatik-XML-Datei - Rule

Die Elemente der rechten Seite der Regel bzw. im weiteren auch Kinder genannt, wer-
den durch die <child>-Tags beschrieben. Die Reihenfolge dieser <child>-Tags im XML-
Dokument entspricht der Reihenfolge der Elemente in der Regel. Die Regel in Abbildung
hat, wie auch in Abbildung [5.4] wieder erkannt werden kann, als erstes Kind eine NP
und als zweites Kind ein I. Fiir jedes Element der rechten Seite sind dessen Merkmale
durch <attribute>-Tags mit angegeben.

<rule name="IP">

<child name="NP">
<attribute>KAS</attribute>

</child>

<child name="I">
<attribute>FIN</attribute>
<attribute>ZU</attribute>
<attribute>SUBKAT</attribute>

</child>

</rule>

Abbildung 5.4.: Auszug aus der Grammatik-XML-Datei - Child

63

5. Implementierung

Auch die linke Seite der Regel besitzt Merkmale (siehe Abbildung [5.5)). Diese sind ebenso
wie die Merkmale der Kinder durch <attribute>-Tags angegeben. Erforderlich fiir ein
Merkmal ist ein Name und bei den Merkmalen fiir die linke Seite auch eine Zuweisungs-
regel. Einem Merkmal auf der linken Seite kann direkt ein Wert iiber <value>-Tags oder
der Wert eines Merkmals eines Elements der rechten Seite iiber <child>-Tags zugewiesen
werden. Eine Besonderheit ist das <subkat>-Tag. Steht dieses innerhalb <assignment>-
Tags und hat zwei Kinder (eines mit dem Attribut ,attribute“) wird dem Merkmal der
Wert des Subkategorisierungsrahmen des einen Kindes ohne den Anteil des zweiten Kin-
des zugewiesen. Hat zum Beispiel das Merkmal SUBKAT des Elements I aus Abbildung
den Wert <np:nom#np:akk> und das Element NP das Merkmal KAS mit dem Wert
yakk“ dann wird dem Merkmal SUBKAT des Elements IP der Wert <np:nom> zugewie-
sen.

Abbildung zeigt beispielsweise, dass der Wert des Merkmals ZU des Kindes I dem
Merkmal ZU der IP zugewiesen wird (Erklarung siche Kapitel . Da der betreffen-
de Schritt in der Analyse bottom-up (siche Kapitel arbeitet werden die Werte der
Merkmale der rechten Seite den Merkmalen der linken Seite der Regel zugewiesen. In dem
Auszug aus der XML-Datei in Abbildung kann diese Zuweisung wieder erkannt wer-
den. Bei der Definition des Merkmals ZU wird die Zuweisungsregel durch ein <child>-Tag
angegeben. Dies kann spéter ausgewertet werden, d.h. der Wert des Merkmals des Kindes
wird ermittelt und dem Merkmal ZU der linken Seite der Regel zugewiesen.

<rule name="IP">

<attribute name="FIN">
<assignment>
<child name="I" pos="2" attribute="FIN"/>
</assignment>
</attribute>
<attribute name="ZU">
<assignment>
<child name="I" pos="2" attribute="ZU"/>
</assignment>
</attribute>
<attribute name="SUBKAT">
<assignment>
<subkat>
<child name="I" pos="2" attribute="SUBKAT"/>
<child name="NP" pos="1"/>
</subkat>
</assignment>
</attribute>

</rule>

Abbildung 5.5.: Auszug aus der Grammatik-XML-Datei - Attribute

Die Restriktionen werden innerhalb von <restriction>-Tags angegeben. Es gibt zwei ver-
schiedene Typen von Restriktionen. Diese beiden Typen sind in Abbildung dargestellt,
gehoren allerdings zu keiner spezifischen Regel. Der erste Typ wird durch <subkat>-Tags

64

5.2. Analyse

angegeben und wird ahnlich interpretiert, wie die <subkat>-Tags bei den Zuweisungsre-
geln. Der Unterschied besteht darin, dass bei den Restriktionen kein Wert weitergegeben
wird, sondern lediglich gepriift wird, ob das eine Kind im Subkategorisierungsrahmen des
anderen Kindes vorkommt. Da in der Basisgrammatik nur Nominalphrasen, Prapositio-
nalphrasen und Infinitivphrasen in den Subkategorisierungsrahmen vorkommen koénnen,
miussen die Elemente, die darin wieder gefunden werden sollen NP, PP oder IP heiflen
(Beschreibung der Subkategorisierungsrahmen siehe Seite |51 in Kapitel

Die zweite Moglichkeit eine Restriktion anzugeben ist mittels <equal>-Tags. Innerhalb
dieser <equal>-Tags konnen beliebig viele Argumente mit <argument>-Tags angegeben
werden. Ein <argument>-Tag kann ein <child>-Tag oder ein <value>-Tag beinhalten.
Bei <value>-Tags wird der Inhalt direkt als Wert verwendet, bei <child>-Tags wird iiber
die Position des Kindes und ein Merkmal der Wert bestimmt. Die Angabe der Position
ist obligatorisch. Es reicht nicht nur den Namen des Kindes anzugeben, da es mehrere
Kinder mit dem gleichen Namen geben kann. Alle <argument>>-Tags werden ausgewertet
und die Ergebnisse miteinander verglichen. Sind diese ungleich ist die Restriktion nicht
erfiillt.

<restriction>
<subkat>
<child name="I" pos="2" attribute="SUBKAT"/>
<child name="NP" pos="1"/>
</subkat>

<equal>
<argument>
<child name= "IP" pos="2" attribute="SUBKAT"/>
</argument>
<argument>
<value>np:nom</value>
</argument>
</equal>

<equal>
<argument>
<child name="Det" pos="1" attribute="NUM"/>
</argument>
<argument>
<child name="N" pos="2" attribute="NUM"/>
</argument>
</equal>
</restriction>

Abbildung 5.6.: Beispiele fiir Restriktionen

Eine XML-Datei, die nach eben beschriebenen Kriterien aufgebaut ist, kann von dem
Werkzeug mit Hilfe von JDOM eingelesen und alle wichtigen Informationen daraus ent-
nommen werden um eine Grammatik aufzubauen. Die Datenstruktur einer Grammatik
innerhalb des Werkzeugs ist in Abbildung dargestellt. Die Klassendiagramme enthal-
ten aus Griinden der Ubersichtlichkeit nur die wichtigsten Attribute und Methoden.

65

5. Implementierung

Grammar
rules: Map < Category, Set <Rule> >
+ Grammar ()
+ addRule (Rule rule): boolean
+ containsRules (Category left): boolean
+ getRules (Category left): Set<Rule>
+ getSingletonPreterminal(Category left, String token): List<Rule>
+ getStartRules(Category left): Set<Rule>

Category Rule Attribute
name: String left: Category name: String
terminal: boolean right: Category(] value: String
attributes: Set<Attribute> restrictions: List<Element> + Attribute (...)
+ Category (...) assignments: Map<Attribute, Element>
+ addAttribute(Attribute att): void +Rule (...)
+ subsetOfAttributes(Category cat): boolean + isPreterminal(): boolean
+ equivalentAttributes(Category cat): boolean + assign(): void
+ transferAttributes (Category cat): boolean + checkRestrictions(): boolean

+ assignSubkat(Element element): String

Abbildung 5.7.: Klassendiagramme der Klassen einer Grammatik

Die Grammatik besteht aus einer Klasse Grammar, die eine Hash-Tabelle (in Java Hash-
Map) mit Regeln enthélt. Eine Hash-Tabelle ist ideal um viele Elemente zu speichern und
iiber einen Schliissel, hier die Kategorie der linken Regelseite, schnell wieder zu finden.
Die Klasse Grammar ist in Abbildung dargestellt.

Grammar
rules: Map < Category, Set <Rule> >
+ Grammar ()
+ addRule (Rule rule): boolean
+ containsRules (Category left): boolean
+ getRules (Category left): Set<Rule>
+ getSingletonPreterminal(Category left, String token): List<Rule>
+ getStartRules(Category left): Set<Rule>

Abbildung 5.8.: Klassendiagramme der Klasse Grammar

Eine Kategorie wird implementiert durch die Klasse Category, die die Attribute name,
terminal und attributes besitzt (siehe Abbildung. Name gibt den Namen der Kategorie
an, terminal nimmt einen boolschen Wert an und ist ,,true”, wenn es sich bei der Kategorie
um ein Terminal handelt. Das Attribut attributes ist ein HashSet, das die Merkmale der
Kategorie speichert. Ein Set ist eine ungeordnete Menge von Elementen, wobei jedes
Element nur einmal darin vorkommen darf.

66

5.2. Analyse

Category

name: String

terminal: boolean

attributes: Set<Attribute>

+ Category (...)

+ addAttribute(Attribute att): void

+ subsetOfAttributes(Category cat): boolean
+ equivalentAttributes(Category cat): boolean
+ transferAttributes (Category cat): boolean

Abbildung 5.9.: Klassendiagramme der Klasse Category

Ein Merkmal ist gegeben durch ein Objekt der Klasse Attribute und besteht aus einem
Namen und einem Wert. Die Klasse Attribute wird in Abbildung [5.10] gezeigt.

Attribute

name: String
value: String
+ Attribute (...)

Abbildung 5.10.: Klassendiagramm der Klasse Attribute

Die Regeln der Grammatik werden implementiert durch die Klasse Rule. Diese ist in Ab-
bildung [5.11] abgebildet und besteht aus dem Attribut left fir die linke Kategorie der
Regel, einem Array right mit den Kategorien der rechten Seite, einer Liste von Restriktio-
nen und einer Hash-Tabelle in der zu jedem Merkmal aus attributes eine Zuweisungsregel
gespeichert ist.

Rule

left: Category

right: Category([]

restrictions: List<Element>

assignments: Map<Attribute, Element>
+ Rule (...)

+ isPreterminal(): boolean

+ assign(): void

+ checkRestrictions(): boolean

+ assignSubkat(Element element): String

Abbildung 5.11.: Klassendiagramm der Klasse Rule

Mit dieser Datenstruktur stehen alle notwendigen Informationen iiber eine Grammatik
zur Verfiigung.

67

5. Implementierung

5.2.2. Realisierung des Lexikons

Zur Vollstandigkeit der Grammatik, die aus der XML-Datei aufgebaut wurde (sieche Ab-
schnitt , fehlen noch die lexikalischen Regeln. Da die Grammatik immer gleich bleibt,
wird diese beim Start des Werkzeugs nur einmal eingelesen und aufgebaut, ebenso wie
das Lexikon. Die lexikalischen Regeln werden fiir jeden eingegeben Satz aus dem Lexikon
erzeugt und zur Basisgrammatik hinzugefiigt. Mit der daraus entstandenen Grammatik
wird dann der Satz analysiert.

Das Lexikon nur beim Start des Werkzeugs einzulesen und dann dauerhaft in einer Daten-
struktur zu speichern, bendtigt zwar mehr Speicherplatz, dafiir ist dann die Generierung
der Ubersetzung schneller. Im Moment hat das Lexikon noch eine Groe bei der es méglich
ist das Lexikon in einer Datenstruktur zu speichern, wird es erweitert muss ab einer ge-
wissen Grofle (je nach System auf dem das Werkzeug ausgefiihrt wird) eine andere Losung
gesucht werden. Wie im Kapitel angesprochen ist eine Moglichkeit den Speicherbedarf
zu reduzieren, der Verzicht auf ein Vollformenlexikon und die Einfithrung einer morpho-
logischen Analyse. In dieser Arbeit ist aber die aktuelle Losung legitim.

Das Lexikon ist in mehreren Textdateien gespeichert. Ein Eintrag im Lexikon entspricht
einer Zeile in einer dieser Dateien. Jede Datei beinhaltet eine andere Wortart, jede Zeile
enthalt ein Wort und abhéngig von der Wortart wichtige Merkmale. Diese Informationen
werden aus den Dateien gelesen und in der Datenstruktur, die in Abbildung darge-
stellt ist, gespeichert.

Die Klasse DictionaryTranslation beinhaltet fiir jede Wortart eine Liste. Jede Wortart
wird durch eine eigene Klasse reprasentiert und enthalt die Merkmale, die wichtig sind
fir die Merkmalsstrukturen aus Kapitel und eine eindeutige Ubersetzung.

DictionaryTranslation
art_list: ArrayList<Article>
noun_list: ArrayList<Noun>
prep_list: ArrayList<Preposition>
verb_list: ArrayList<Verb>
modalverb_list: ArrayList<ModalVerb>
+ DictionaryTranslation ()
+ getRuleforWord(String word): List<Rule>

68

Noun Article Verb Modalverb Preposition
word: String word: String inf: String word: String word: String
num: String num: String zulnf: String num: String caseform: String
gend: String gend: String subkatD: String pers: String
pers: String pers: String translation: String fin: String

caseform: String
translation: String

caseform: String
translation: String

subkatE: String

translation: String

Abbildung 5.12.: Klassendiagramme des Lexikons

5.2. Analyse

Wenn ein Satz tibersetzt werden soll, muss, wie erwahnt, die Basisgrammatik um die
notwendigen lexikalischen Regeln erweitert werden. Dazu wird der eingegebene Satz zu-
néchst in die einzelnen Tokens unterteilt. Eine Besonderheit dabei ist die Erkennung der
Wortkombination ,fahig sein“ und ,zu“ gefolgt von einem Verb im Infinitiv. Diese Wort-
kombinationen werden auch als ein Token aufgefasst. Fiir jedes Token wird die Metho-
de getRuleforWord (String word) der Klasse Dictionary Translation aufgerufen. Innerhalb
dieser Methode werden die Worterlisten nach dem Token durchsucht und fiir jeden gefun-
denen Eintrag ein Objekt der Klasse Rule erzeugt. Die Kategorie der linken Seite dieser
Regel wird bestimmt durch die Liste aus der der Treffer stammt. Die rechte Seite der Re-
gel ist eine terminale Kategorie, die nach dem Token benannt ist und mit den Merkmalen
aus dem Eintrag der Worterliste erganzt wird. Wurden alle Listen durchsucht, wird eine
Liste mit den erzeugten Regeln zurtiickgegeben und zur Basisgrammatik hinzugefiigt.

5.2.3. Chart Parser

Zur Analyse des Satzes mit der Grammatik, die aus der Basisgrammatik und den lexika-
lischen Regeln besteht, wird ein Chart Parser, genauer ein Earley-Parser (siche Kapitel
, verwendet. Die Implementierung des Earley-Parsers ist angelehnt an die Imple-
mentierung von Scott [Sco07]. Der Earley-Parser von Scott verwendet allerdings keine
Merkmalsstrukturen oder Restriktionen. Die Datenstruktur des Earley-Parsers ist in Ab-

bildung dargestellt.

EarleyParser

Rule

grammar: Grammar
dic: DictionaryTranslation
start: Category

+ EarleyParser (...)

+ parse (String tokens): StructureTree

- expand(Chart chart, int index): void

- expandForEdge(Chart chart, Edge edge, int index): void

- scan (Chart chart, Integer index, String token): void

- complete(Chart chart, Integer index): void

- completeForEdge(Chart chart, Edge edge, Integer index): void
- checkForm (StructureTree tree): boolean

left: Category

right: Category(]

restrictions: List<Element>
assignments: Map<Attribute, Element>

+Rule (...)

+ isPreterminal(): boolean

+ assign(): void

+ checkRestrictions(): boolean

+ assignSubkat(Element element): String

i

DottedRule

Edge

dottedRule: DottedRule
origin: int
bases: Set<Edge>

dotPosition: int
activeCategory: Category

+ Edge (...)

+ expandFor(Rule rule, int origin): Edge

+ scan(Edge edge, String token): Edge

+ complete(Edge toComplete, Edge basis): Edge
+ isPassive(): void

+ expandFor(Rule rule, int origin): Edge

+ scan(Edge edge, String token): Edge

+ complete(Edge toComplete, Edge basis): Edge

+ DottedRule (...)
+ advanceDot (DottedRule dottedRule): DottedRule
+ getActiveCategory()

Chart

edgeSets: SortedMap<Integer, Set<Edge»

+ Chart (...)

+ containsEdges(Integer index): boolean

+ getEdges(Integer index): Set<Edge>

+ addEdge(Integer index, Edge edge): boolean

Abbildung 5.13.: Klassendiagramme des Earley-Parser

69

5. Implementierung

Die Klasse FarleyParser beinhaltet Attribute, wie das Lexikon, die Grammatik und die
Startkategorie. Die Startkategorie wird in der XML-Datei der Grammatik durch das Attri-
but start=,true” gekennzeichnet. Die einzige sichtbare Methode der Klasse EarleyParser
ist die Methode parse(String tokens) zum Parsen eines Satzes. Die anderen Methoden
werden nur intern verwendet.

EarleyParser

grammar: Grammar

dic: DictionaryTranslation

start: Category

+ EarleyParser (...)

+ parse (String tokens): StructureTree

- expand(Chart chart, int index): void

- expandForEdge(Chart chart, Edge edge, int index): void
- scan (Chart chart, Integer index, String token): void

- complete(Chart chart, Integer index): void

- completeForEdge(Chart chart, Edge edge, Integer index): void
- checkForm (StructureTree tree): boolean

Abbildung 5.14.: Klassendiagramm der Klasse FarleyParser

Beim Parsen des Satzes wird eine Chart aufgebaut, diese wird durch die Klasse Chart
implementiert. Die Chart wird durch eine SortedMap realisiert, dies kann auch als eine
Art Adjazenzliste eines azyklischen Graphen aufgefasst werden. Eine Adjazenzliste ist eine
Liste, in der fiir jeden Knoten des Graphen dessen Nachfolgeknoten gespeichert werden
oder wie in diesem Fall, werden fiir jeden Knoten, reprasentiert durch eine Zahl, die
Kanten gespeichert die zu diesem Knoten fiithren.

Chart
edgeSets: SortedMap<Integer, Set<Edge»
+ Chart (...)
+ containsEdges(Integer index): boolean
+ getEdges(Integer index): Set<Edge>
+ addEdge(Integer index, Edge edge): boolean

Abbildung 5.15.: Klassendiagramm der Klasse Chart

Eine Kante ist ein Objekt der Klasse Fdge, unter anderem mit dem Attribut origin, durch
das nachvollziehbar ist, welcher Knoten der Startknoten dieser Kante ist. Zu jeder Kan-
te gehort auBerdem die im Analyseschritt entstandene Regel und eine Referenz auf die
Kanten aufgrund derer diese entstanden ist. Diese Referenz ist wichtig, um eine Struktur-
beschreibung des geparsten Satzes extrahieren zu koénnen.

70

5.2. Analyse

Edge
dottedRule: DottedRule
origin: int
bases: Set<Edge>
+ Edge (...)
+ expandFor(Rule rule, int origin): Edge
+ scan(Edge edge, String token): Edge
+ complete(Edge toComplete, Edge basis): Edge
+ isPassive(): void
+ expandFor(Rule rule, int origin): Edge
+ scan(Edge edge, String token): Edge
+ complete(Edge toComplete, Edge basis): Edge

Abbildung 5.16.: Klassendiagramm der Klasse Edge

Bei den Regeln handelt es sich um Objekte der Klasse DottedRule. Diese erbt von der
Klasse Rule und hat die zusétzlichen Attribute dotPosition, um eine Unterteilung in ak-
tiven und passiven Teil der rechten Seite zu ermoglichen und active Category, welches die
aktive Kategorie rechts neben dem ,dot“ angibt.

Rule

left: Category

right: Category[]

restrictions: List<Element>

assignments: Map<Attribute, Element>

+ Rule (...)

+ isPreterminal(): boolean

+ assign(): void

+ checkRestrictions(): boolean

+ assignSubkat(Element element): String

7

DottedRule

dotPosition: int

activeCategory: Category

+ DottedRule (...)

+ advanceDot (DottedRule dottedRule): DottedRule
+ getActiveCategory()

Abbildung 5.17.: Klassendiagramm der Klasse DottedRule

Ein Item wie es in Kapitel 2.4.2] beschrieben wird, besteht in dieser Datenstruktur aus
einem Knoten und einer Kante, die bei diesem endet.

71

5. Implementierung

Die Implementierung des Earley-Algorithmus soll durch die Abbildung [5.18] verdeutlicht
werden.

MP-= Deth

NP -> DetN IP-= NPT

IP-> NP I IP-= NPT DEt'DaS

@ D@ @ D& @ }o Det-= Das.
MNP -= DetM MP-= DetM
IP-= MNP IP-= NP
Det-= Das Det-= Das
M -= System
A MNP -=Det M MP-=Det. N
@ }o Det-> Das. @ 0 Det-= Das,] M -= Systam. {D

NP -= DetN IP-= NP . I
IP-= NP MP -= Det M.

Det-= Das

M -= System

NP -> Det N \/@\
Det-= Das. M -= System.

U

Abbildung 5.18.: Ablauf des Aufbaus einer Chart

Analysiert wird die Phrase ,,Das System® mit der Basisgrammatik aus Kapitel Die
Knoten des Graphen entsprechen den Zwischenrdume der Worter. Es ergibt sich folgender
Aufbau: ¢Das;Systems

Als Initialisierung des Parsers wird, wie in Abbildung dargestellt, eine Kante mit der
Startregel in den Graph eingefiigt. Die Regel der Kante ist aktiv, startet und endet am
Knoten 0, d.h. es wurde noch kein Wort erkannt.

IP-= MNP

Abbildung 5.19.: Aufbau der Chart - Schritt 1

72

5.2. Analyse

Auf diesem Graph bzw. dieser Chart werden nun die Methoden Ezpand, Scan und Com-
plete ausgefiihrt, solange bis keine neue Kante mehr hinzugefiigt wirdﬂ

Die Abbildung [5.20] zeigt den Graph, nachdem zum ersten Mal die Methode Ezpand aus-
gefiihrt wurde. Eine neue Kante mit der Regel NP — o Det N wurde hinzugefiigt.

MP -= DetM
IP-= MNP

Abbildung 5.20.: Aufbau der Chart - Schritt 2

Als néachstes wird die Methode Scan ausgefiihrt, in der zunéchst fiir jede lexikalische Regel
mit dem Wort ,,Das“ auf der rechten Seite, eine Kante, die von und zum aktuell betrach-
teten Knoten geht, zum Graph hinzugefiigt wird. Fiir jede dieser Kanten wird danach
eine weitere Kante mit der selben Regel aber eine um rechts bzw. ans Ende der rechten
Seite verschobene ,dot“-Position, hinzugefiigt. In Abbildung wird exemplarisch fiir
die lexikalischen Regeln mit verschiedenen Merkmalsstrukturen eine Regel eingefiigt.

NP -= Deth
IP-= MNP I
Det-= Das

Det-= Das.

Abbildung 5.21.: Aufbau der Chart - Schritt 3

Wird eine Regel passiv, d.h. der ,dot“ steht am Ende der rechten Seite, werden die
Merkmale der Kategorie der linken Seite mittels der dazugehorigen Zuweisungsregeln mit
Werten der rechten Seite versehen. Eine Regel wird entweder im Scan- oder Complete-
Schritt passiv. Innerhalb des Scan-Schritts wurde das Wort ,,Das* erkannt und der nachste
Knoten wird bearbeitet.

5Definition der Methoden findet sich in Kapitel

73

5. Implementierung

Der folgende Schritt ist die Ausfithrung der Methode Complete. Die Kante mit der Regel
NP — e Det N kann mittels der Kante mit der passiven Regel Det — Das e um einen
Schritt vervollstandigt werden. Es wird die Kante mit der Regel NP — Det o N, die von
Knoten 0 bis zum Knoten 1 geht, eingefiigt. Intern wird fiir die vervollstandigte Kante
ein Verweis auf die passive Kante mit der sie vervollstandigt wurde, gespeichert. Dieser
Schritt wird in Abbildung [5.22] dargestellt.

MNP -= Deth
IP-= NP I
Det-= Das

MNP ->Det. M
Det-= Das.

Abbildung 5.22.: Aufbau der Chart - Schritt 4

In Abbildung wird der Graph nach Ausfithrung der Methoden Fzpand und Scan
gezeigt. Wiahrend der Methode Ezpand wurden keine neuen Kanten hinzugefiigt und im
Schritt Scan die Kanten mit den Regeln N — e System und N — System e, das Vorgehen
ist das selbe, wie beim ,scannen“ des Wortes ,Das“ in Abbildung [5.21]

MNP -= . Deth
IP-= NPT

Det-= Das
M-= System

MP-=Det. M

. Det-> Das. \A M -> System.)Q

Abbildung 5.23.: Aufbau der Chart - Schritt 5

Die Abbildung [5.24] zeigt die Ausfithrung der Methode Complete fiir den Knoten 2. Die
Kante mit der Regel NP — Det e N kann mit der Kante deren Regel N — System e
lautet, vervollstandigt werden. Da innerhalb des Complete-Schritts nun eine Regel passiv
wird, werden die Merkmale der linken Seite mit Werten versehen, zuvor wird allerdings
gepriift, ob die Regel auch tatsachlich vervollstdndigt werden kann, indem die Restriktio-
nen beziiglich der Merkmalsstrukturen dieser Regel gepriift werden. Die Regel NP — Det
N hat die in Abbildung dargestellten Restriktionen.

74

5.2. Analyse

NP -> DetN IP-= P . I
P = NP NP -> Det .
Det-> Das
M-= System
NP -> Det. N
Det-= Das. M -= System.

Abbildung 5.24.: Aufbau der Chart - Schritt 6

NP — Det N
NUM : N NUM : N NUM : N
PERS : P PERS : P PERS : P
KAS: K KAS: K KAS: K
GEND : G GEND : G GEND : G

Abbildung 5.25.: Regel NP — Det N mit Merkmalsstruktur und Restriktionen

Die Merkmalsstruktur fiir das Wort ,,Das“ und die Merkmalsstruktur fir das Wort ,,Sys-
tem® konnen wie in Abbildung aussehen. In den Restriktionen wird verlangt, dass
Merkmale mit dem gleichen Namen auch den gleichen Wert haben. Dies trifft hier zu, d.h.
die Restriktionen sind erfiillt und die Regel kann vervollstindigt und als Kante in den
Graph eingefiigt werden.

NUM sg
GEND neut
PERS 3
KAS nom

Abbildung 5.26.: Mogliche Merkmalsstruktur fir das Wort ,,Das* und das Wort , System*

Die Kante mit der Regel IP — NP e I' kann daraufhin auch um einen Schritt vervoll-
stindigt werden. Die Restriktionen werden allerdings nicht gepriift, da die Regel durch
die Vervollstandigung nicht passiv wird.

75

5. Implementierung

Die Tabelle [5.1] zeigt den Aufbau, der in Abbildung beschriebenen Chart, als Tabelle.
Diese ist aufgebaut, wie die Chart fiir das Beispiel in Kapitel [2.4.2] auf Seite[31]. Die Repré-
sentation als Graph und die Repréasentation als Tabelle lassen sich ineinander iiberfithren.
Fiir die praktische Umsetzung innerhalb des Werkzeugs ist allerdings die Reprasentation
als Graph geeigneter.

Nr. | Item Begriindung

1 00 IP - e NPT Initialisierung

2 00 NP — e Det N EXPAND 1.

3 00 Det — e Das EXPAND 2.

4 01 Det — Das o SCAN 3.

5 01 NP — Det o N COMPLETE 2. mit 4.
6 11 N — e System EXPAND 5.

7 12 N — System e SCAN 6.

8 02 NP — Det N o COMPLETE 5. mit 7.
9 02 IP - NP el COMPLETE 1. mit 8.

Tabelle 5.1.: Chart, dargestellt als Tabelle, fiir das Phrase ,Das System*

5.2.4. Extraktion des Syntaxbaums

Fiir die Ubersetzung des Satzes wird eine Strukturbeschreibung des Satzes benétigt. Nach-
dem die Chart mittels des Earley-Algorithmus vollstandig aufgebaut ist, kann diese daraus
extrahiert werden.

StructureTree StructureTreeNode
root: StructureTreeNode category: Category
+ StructureTree (...) parent: StructureTreeNode
+ getSubTree (...): StructureTreeNode left: StructureTreeNode
+ hasSubTree (...): boolean right: StructureTreeNode
+ getNode (...): StructureTreeNode + StructureTreeNode (...)

+ inOrder(): String

Abbildung 5.27.: Klassendiagramme der Strukturbeschreibung

Die Datenstruktur der Strukturbeschreibung, welche einem bindren Syntaxbaum ent-
spricht, ist in Abbildung dargestellt. Sie besteht aus den Klassen StructureTree und
StructureTreeNode. Structure Tree ist die Klasse zur Verwaltung der Strukturbeschreibung.
Sie besitzt ein Attribut root, welches ein Zeiger auf den Wurzelknoten des Syntaxbaums

76

5.2. Analyse

ist. Die Klasse StructureTreeNode entspricht einem Knoten im Syntaxbaum. Als Attribu-
te besitzt die Klasse Zeiger auf einen rechten und einen linken Teilbaum, sowie auf den
Elternknoten. Auflerdem entspricht jeder Knoten im Baum einer Kategorie und besitzt
deswegen ein Attribut category vom Typ Category.

Um die Strukturbeschreibung aus der Chart extrahieren zu kénnen, muss die Kante mit
der passiven Startregel, die vom ersten bis zum letzten Knoten verlauft, gefunden werden.
Diese Kante ist der Startpunkt fiir die Extraktion der Strukturbeschreibung. Fiir jede
Kante wurde gespeichert, mit welchen anderen passiven Kanten die Regel vervollstandigt
wurde. Damit kann der Analyseweg zuriickverfolgt werden. Die Kante mit der Regel
NP — Det N o wurde in der Abbildung beispielsweise mit den Kanten deren Regeln
Det — Das e und N — System e sind, vervollstandigt. Fiir jede Regel wird ein Teilbaum
erzeugt, der linke Teil der Regel ist der Elternknoten, die rechte Seite entspricht den
Kindsknoten. Ist die Regel keine lexikalische Regel werden die Kindsknoten des rechten
und linken Kindes mit Hilfe der gemerkten Kanten ergidnzt. Es ergibt sich fiir die Kante
mit der Regel NP — Det N e der Teilbaum in Abbildung [5.28

NP

/\
Det N

| |
Das System

Abbildung 5.28.: Syntaxbaum fiir ,Das System*

5.2.5. Restriktive Uberpriifung des Anforderungstyps

Die Strukturbeschreibung des zu tibersetzenden Satzes wird mit Hilfe der in Kapitel
auf Seite 49| beschriebenen Restriktionen iiberpriift, ob diese einer der drei Anforderungs-
typen, die durch die Schablone aus Kapitel beschrieben werden, zugeordnet werden
kann. Wenn dies nicht der Fall ist, wird der Satz nicht automatisiert tibersetzt.

Die XML-Datei der Restriktionen beschreibt Teilbdume. Es gibt positiv und negativ ge-
kennzeichnete Teilbaume. Die negativ gekennzeichneten Teilbdume sind durch umschlie-
Bende <not>-Tags gekennzeichnet. Wird einer der in der XML-Datei beschriebenen posi-
tiven Baume als Teilbaum im Syntaxbaum des Satzes gefunden, ist der Anforderungstyp
bestimmt. Findet sich keiner dieser Baume im Syntaxbaum wieder und kommt auch einer
der mit <not>-Tags umschlossenen Teilbdume nicht vor, ist der Anforderungstyp auch
bekannt.

7

5. Implementierung

Ein Auszug aus der XML-Datei ist in Abbildung dargestellt. Ein Teilbaum wird be-
schrieben durch ein hierarchisches Konstrukt aus 6ffnenden und schlieBenden Tags. Die
Knoten werden durch das <node>-Tag und die Angabe des Namens der Kategorie be-
schrieben. Auflerdem konnen sie Kindsknoten enthalten. Diese werden wiederum duch
<node>-Tags innerhalb der <node>-Tags des Elternknoten beschrieben. Die Reihenfol-
ge der <node>-Tags der Kindsknoten beschreiben auch die Reihenfolge der Kinder im
Baum. Die Blatter des Teilbaums miissen nicht unbedingt, wie die Blatter des Syntax-
baums, terminale Knoten sein.

<restriction>
<node name="IS">

<node name = "I"/>
<node name = "VP">
<node name = "VP">
<node name = "V">
<node name = "f\"ahig sein"/>
</node>
</node>
<node name = "IP"/>
</node>
</node>
<not>
<node name="IS">
<node name = "I"/>
<node name = "VP">
<node name = "VP"/>
<node name = "IP"/>
</node>
</node>
</not>
</restriction>

Abbildung 5.29.: Auszug aus der XML-Datei fiir die Restriktionen beziiglich der
Schablone

Die XML-Datei mit den Restriktionen wird eingelesen und fiir jeden Teilbaum eine Da-
tenstruktur mit Hilfe der Klassen StructureTree und StructureTreeNode aufgebaut. Die
Klasse StructureTree stellt die Methode getSubTree (StructureTreeNode subtree) zur Ver-
fiigung, welche einen Zeiger auf den Knoten im Syntaxbaum zuriickgibt, der Wurzelknoten
des Teilbaums ist (sieche Abbildung [5.30)).

Fiir die Teilbaumsuche wird der Syntaxbaum in Preorder durchlaufen. Preorder bedeutet,
dass zuerst der Knoten selbst betrachtet wird und anschliefend der linke und dann der
rechte Teilbaum. Wird der Wurzelknoten des Teilbaums gefunden, wird die Rekursion
abgebrochen. Beim Betrachten eines Knoten wird fiir diesen die Methode hasSubTree(...)
aufgerufen. Die Methode hasSubTree priift, ob der aktuell betrachtete Knoten des Syn-
taxbaums dem Wurzelknoten des Teilbaums entspricht. Rekursiv werden bei Uberein-
stimmung die Kinder der linken und rechten Teilbdume der beiden Bidume miteinander

78

5.2. Analyse

verglichen. Stimmen auch diese iiberein, ist der betrachtete Knoten der Wurzelknoten des
zu suchenden Teilbaums und es wird ,true® zuriickgegeben.

Zeiger auf Knoten im
Syntaxbaum, der Wurzelknoten
des gefundenen Teilbaums ist

IP

NP
/\
Det N
| |
Das System
I'/
I VP
A 1
| N ——
muss VP P fahig sein
[Det N anzuwenden
_ die Anforderung
fahig sein

Abbildung 5.30.: Teilbaumsuche

Ist der Riickgabewert der Methode hasSubTree ,true®, wird der aktuell betrachtete Kno-
ten als Riickgabewert der Methode getSubTree zuriickgegeben. Falls der Riickgabewert
Jfalse“ ist, wird die Methode getSubTree rekursiv mit dem linken Teilbaum des aktuel-
len Knoten und dem Wurzelknoten des Teilbaums aufgerufen. Ist der Riickgabewert des
rekursiven Aufrufs mit dem linken Kind nicht der Null-Zeiger, wird der Riickgabewert
auch als Ergebnis dieses getSubTree Aufrufs zuriickgegeben. Wenn der Riickgabewert des
rekursiven Aufrufs der Methode getSubTree allerdings ein Null-Zeiger ist, wird diese auch
rekursiv fiir den rechten Kindsknoten und den Wurzelknoten des Teilbaums aufgerufen.
Der Riickgabewert dieses Aufrufs ist dann endgiiltig auch Riickgabewert des urspriingli-
chen Aufrufs der Methode getSubTree. Der Programmcode der Methode getSubTree ist
zum besseren Nachvollziehen des Ablaufs in Abbildung dargestellt.

Wurde die Analyse bis hierhin durchgefiihrt ist der Satz korrekt geparst, d.h. sdmtli-
che Restriktionen beziiglich der Merkmalsstrukturen wurden beachtet und iiberpriift, die
Strukturbeschreibung wurde extrahiert und auf Richtigkeit beziiglich der Schablone kon-
trolliert.

79

5. Implementierung

StructureTreeNode getSubTree (StructureTreeNode subtree, StructureTreeNode node)

{
if (subtree == null) {
return node;
}
else if (subtree !'= null && node != null) {
if (hasSubTree(subtree, node)) {
return node;
}
else {
if (node.left != null) {
StructureTreeNode left = getSubTree (subtree, node.left);
if (left != null) {
return left;
}
else {
if (node.right != null) {
return getSubTree(subtree, node.right);
}
}
}
else {
if (node.right != null) {
return getSubTree(subtree, node.right);
}
}
}
}
return null;
}

Abbildung 5.31.: Methode getSubTree der Klasse StructureTree

5.3. Transfer

Beim Transfer wird die aus der Analyse entstandene Strukturbeschreibung, in diesem
Werkzeug ein Syntaxbaum, des eingegebenen Satzes von der Reprasentation in Quellspra-
che in eine Repréasentation in der Zielsprache tiberfithrt. Dabei heifit Quellsprache oder
Zielsprache nicht nur, dass die Blatter des Syntaxbaums in der jeweiligen Sprache vor-
liegen, sondern auch, dass die Strukturbeschreibung in diesem Fall entweder durch die
deutsche oder englische Basisgrammatik beschrieben wird.

Der Transfer, der in Kapitel beschrieben ist, ist in mehrere Schritte aufgeteilt. Zu-
nachst werden schablonenspezifische Transferregeln angewandt, anschlieBend die Subkate-
gorisierungsrahmen der Verben tibersetzt und zum Schluss die sprachspezifischen Transfer-
regeln eingesetzt. Da das Prinzip des Transfers mittels schablonenspezifischer und sprach-

spezfischer Transferregeln gleich ist, wird beides in Abschnitt beschrieben. Die Be-

80

5.3. Transfer

schreibung des Transfers der Subkategorisierungsrahmen folgt in Abschnitt [5.3.2

Trotz des gleichen Prinzips ist es wichtig, dass zuerst der schablonenspezifischen Transfer,
anschliefend der Transfer der Subkategorisierungsrahmen und als letztes der sprachspe-
zifische Transfer angewandt wird (siehe Seite 58| des Kapitels .

Der Transfer wird von der Klasse Transfer gesteuert. Dazu wird dieser Klasse bei der
Initialisierung die Strukturbeschreibung, die Ergebnis der Analyse ist, {ibergeben. Die
Klasse Transfer besitzt eine Methode transferTree(...), deren Ergebnis eine Liste von
Strukturbeschreibungen, die die Ubersetzungsmoglichkeiten darstellen, ist.

5.3.1. Schablonen- und sprachspezifischer Transfer

Die Transferregeln fiir den schablonen- bzw. sprachspezifischen Transfer wurden zur leich-
teren Erweiterbarkeit, wie schon in Abschnitt motiviert, in eine XML-Datei ausgela-
gert. Einen Ausschnitt aus der XML-Datei der sprachspezifischen Transferregeln zeigt die

Abbildung [5.32

<transfer>
<rule>
<from>
<node name = "VP" index = "1">
<node name = "_" index = "2"/>
<node name = "V" index = "3"/>
</node>
</from>
<to>
<node name = "VP" index = "1" transfer="true">
<node name = "V" index = "3" transfer="true"/>
<node name = "_" index = "2" transfer="true"/>
</node>
</to>
</rule>
</transfer>

Abbildung 5.32.: Auszug aus der XML-Datei der sprachspezifischen Transferregeln

Eine Transferregel besteht aus einer Beschreibung des Teilbaums, der transferiert werden
soll und einer Beschreibung des transferierten Teilbaums. Uber eindeutige Indizes kann
eine Zuordnung zwischen den beiden Teilbdumen gemacht werden.

Der zu transferierende Teilbaum (Startbaum) wird innerhalb von <from>-Tags definiert
und ist, wie schon die Bdume in Abschnitt [5.2.5 tiber geschachtelte <node>-Tags auf-
gebaut. Zusatzlich zum Namen der Kategorie eines Knoten wird ein eindeutiger Index
angegeben.

Der transferierte Baum (Zielbaum) wird innerhalb von <to>-Tags definiert. Der Index
eines Knoten muss schon aus dem zu tranferierenden Teilbaum bekannt sein. Werden neue

81

5. Implementierung

Knoten eingefiihrt haben diese keinen Index. Eine Transferregel besteht immer aus einem
Teilbaum innerhalb von <from>-Tags und einem Teilbaum innerhalb von <to>-Tags.
In Abbildung [5.32] existiert ein Knoten mit Namen ,_“ Dieses Zeichen dient als Platz-
halter fiir eine beliebige Kategorie, die an dieser Stelle stehen kann. In Abbildung [5.33],
die auch die Transferregel darstellt, steht statt einem Unterstrich ein X als Platzhalter.

VP, VP,
PN > N
XQ V3 V3 X2

Abbildung 5.33.: Prinzip des sprachspezifischen und schablonenspezifischen Transfers

Der Transfer an sich kann als Umordnung der Knoten angesehen werden. Durch die Indizes
ist die Position des Knotens nach dem Transfer bekannt. Knoten kénnen an ihrer Position
bleiben, die Position andern, wegfallen oder hinzu kommen. Abbildung [5.33] zeigt die
Umordnung der Knoten nach Vorgabe durch die Transferregel.

StructureTreeNode
category: Category
parent: StructureTreeNode
left: StructureTreeNode
right: StructureTreeNode
transferred: boolean
+ StructureTreeNode (...)

StructureTree
root: StructureTreeNode
+ StructureTree (...)
+ getSubTree (...): StructureTreeNode
+ hasSubTree (...): boolean
+ getNode (...): StructureTreeNode
+ inOrder(): String

f f

Transfer TransferTree TransferTreeNode

tree: StructureTree
treelist: List<StructureTree>

root:TransferTreeNode

+ Transfer (...)

+ transferTree (...): List<StructureTreeNode>
- transferTemplate(): void

- transferLanguage(): void

- transferSubkat(): void

+ StructureTree (...)
+ getNode (): StructureTreeNode
+ inOrder(): String

category: Category
parent: TransferTreeNode
left: TransferTreeNode
right: TransferTreeNode
index: int

+ TransferTreeNode (...)
+ inOrder(): String

- transferBase(): StructureTreeNode
- permutation: int

Abbildung 5.34.: Klassendiagramme des Transfers

Die Datenstruktur fiir den Transfer ist in Abbildung dargestellt. Die Klasse Transfer
steuert den Transfer der Strukturbeschreibung. Dazu bietet sie die Methode transferTree
an, innerhalb derer nacheinander die Methoden transferTemplate(), transferSubkat() und
transferLanguage() aufgerufen werden. In den Methoden transferTemplate() und trans-
ferLanguage() wird als erstes die eben beschriebene XML-Datei mit den schablonenspezi-
fischen bzw. sprachspezifischen Transferregeln eingelesen. Fiir jede Regel wird ein Start-
baum und ein Zielbaum aufgebaut. Diese Baume sind Objekte der Klasse TransferTree,

82

5.3. Transfer

die ein Attribut root enthélt, das auf den Wurzelknoten, ein Objekt der Klasse Transfer-
TreeNode, zeigt.

Die Klasse TransferTree erbt von der Klasse Structure Tree und die Klasse TransferTreeNo-
de von der Klasse StructureTreeNode. Um den Index, der jedem Knoten in der XML-Datei
zugewiesen wird, zu speichern, bekommt die Klasse TransferTreeNode ein zusétzliches At-
tribut index. Mit der Methode getSubTree der Klasse StructureTree wird der Startbaum
als Teilbaum im Syntaxbaum gesucht (siehe Abschnitt . Riickgabe der Methode ist
ein Zeiger auf den Wurzelknoten des Teilbaums im Syntaxbaum. Dieser Teilbaum soll nun
transferiert werden, falls er nicht schon als transferiert markiert wurde (Attribut trans-
ferred). Fir den Transfer eines Teilbaums wird die Methode transferSubTree der Klasse
Transfer aufgerufen. Dieser Methode wird unter anderem der Startbaum, der Zielbaum
und der Teilbaum des Syntaxbaums iibergeben.

Syntaxbaum

Zielbaum Startbaum P VOR dem Transfer

(To) (From)
! < neuer Teilbaum
Vs X, Xy V3

The system

A% NP
—_—

activate the button

shall

\Y
_ |

the button activate

Teilbaum mit selber —7
Struktur wie Startbaum

Abbildung 5.35.: Ablauf der Methode transferSubTree

Mit transferSubTree wird der Zielbaum in Preorder durchlaufen (Erkléarung fur Preorder
siehe Seite . Parallel zum Zielbaum wird ein dquivalenter Baum aufgebaut allerdings
werden die Knoten mit den Informationen aus dem Syntaxbaum gefiillt. Fiir jeden Knoten
des Zielbaums wird mit Hilfe des Index der zugehorige Knoten im Startbaum gesucht. Da
der Startbaum die selbe Struktur hat, wie der ermittelte Teilbaum des Syntaxbaums, ist
auch der Knoten im Syntaxbaum bekannt. Aus diesem werden nun die Informationen
z.B. die Kategorie und Merkmale fiir die Erzeugung eines neuen Knotens genommen. Die
Kinder werden zunéachst auch iibernommen, allerdings kann es sein, dass diese im weiteren
Verlauf des Transferschritts verandert, also zum Beispiel durch einen neuen Knoten ersetzt
werden.

Hat der Knoten des Zielbaums keinen Index wird ein neuer Knoten erzeugt. Er wird
gefiillt mit den Informationen des Knotens aus dem Zielbaum. Riickgabe der Methode
transferSub Tree ist der neu aufgebaute und damit transferierte Teilbaum (siche Abbildung
. Dieser muss dann noch innerhalb von transferLanguage oder transferTemplate an
der richtigen Stelle im urspriinglichen Syntaxbaum eingehéngt werden (siehe Abbildung
5.30)).

83

5. Implementierung

Syntaxbaum Syntaxbaum
VOR dem Transfer NACH dem Transfer
NP 17 | Np/\lﬂ
T neuer Teilbaum
The system VP The system
|
shall v NP shall

activate, activate the button activate the button

the button

Abbildung 5.36.: Ablauf der Methoden transferLanguage oder transferTemplate

5.3.2. Transfer der Subkategorisierungsrahmen

Der Transfer der Subkategorisierungsrahmen wird zwischen dem schablonenspezifischen
und sprachspezifischen Transfer durchgefiihrt. Das Prinzip des Transfers der Subkatego-
risierungsrahmen wurde bereits in Kapitel [£.3.2) erldutert. Im Gegensatz zu den beiden
anderen Transferschritten gibt es hierfiir keine expliziten Transferregeln, die in eine XML-
Datei ausgelagert werden konnen. Fiir den Transfer der Subkategorisierungsrahmen wird
nur die Strukturbeschreibung, der deutsche Subkategorisierungsrahmen, sowie die dazu-
gehorigen englischen Subkategorisierungsrahmen jedes Verbs benotigt.

Zunéchst muss ein Verb, das noch nicht transferiert wurde, im Syntaxbaum gefunden wer-
den. Dazu wird der Baum in Preorder durchlaufen und nach terminalen Knoten gesucht,
die das Merkmal ,SUBKAT* (deutscher Subkategorisierungsrahmen) und ,SUBKAT E*
(englische Subkategorisierungsrahmen) besitzen. Dann werden fiir jedes Verb die pas-
senden englischen Subkategorisierungsrahmen, fiir die eine Ubersetzung generiert werden
soll, ermittelt, dies sind alle Subkategorisierungsrahmen mit gleich vielen Elementen, wie
die Anzahl der Elemente im deutschen Subkategorisierungsrahmen. Fiir jeden passen-
den englischen Subkategorisierungrahmen wird eine Ubersetzung erzeugt. Dazu werden
die Elemente des deutschen und englischen Subkategorisierungsrahmen in je einer Liste
gespeichert. Nachdem aus der englischen Liste das Element ,subj“ und aus der deut-
schen Liste das Element ,np:nom* geloscht wurde, wird fiir jede Zuordnungsmoglichkeit
zwischen den verbleibenden Elementen eine Ubersetzung generiert ﬁ Bevor dies jedoch
moglich ist, miissen erst noch die Elemente des deutschen Subkategorisierungsrahmen im
Syntaxbaum gesucht werden. Dies wird durch die Anwendung der Zuweisungsregeln auf
dem Baum, in denen die Elemente der Subkategorisierungsrahmen identifiziert werden,
realisiert. Die Zeiger auf die Elemente des deutschen Subkategorisierungrahmen werden
den Elementen, die in der deutschen Liste gespeichert wurden, zugewiesen. So ist die Po-
sition jedes Elements im Baum bekannt.

6Beschreibung der Subkategorisierungsrahmen siehe Seite [51|in Kapitel

84

5.3. Transfer

Die Zuordnungsmoglichkeiten zwischen den beiden Subkategorisierungsrahmen mit je
n Elementen, entspricht der Anordnungsmoglichkeit von n Elementen, da die Position
der englischen Elemente fix ist und diesen die deutschen Elemente in jeder moglichen
Kombination zugeordnet werden. Damit keine der n! Mdoglichkeiten vergessen wird, wird
eine Matrix mit allen Permutationsmoéglichkeiten der deutschen Elemente zur Hilfe ge-
nommen. Die Matrix enthalt die permutierten Indexpositionen der deutschen Elemente.
Abbildung [5.37] zeigt eine solche Matrix fiir zwei Subkategorisierungsrahmen mit je drei
Elementen. Die Nummerierung der Spalten entspricht den Indizes der englischen Elemen-
te, die Zahlen in der jeweiligen Zeile entsprechen den dazugehorigen Indizes der deutschen
Elemente.

W W NN ==
N = W= W N
N =W NN W

Abbildung 5.37.: Matrix mit Permutation der Zahlen 1 bis 3

Abbildung zeigt die beiden Listen des Wortes ,,geben* aus dem Beispiel aus Kapitel
mit den Elementen der Subkategorisierungsrahmen und die Zuordnung bei entspre-
chendem Matrixeintrag. Ist die Zeile in der Matrix beispielsweise der Eintrag ,(2 1),,,
wird dem ersten Element des englischen Subkategorisierungrahmen das zweite Element
des deutschen Subkategorisierungsrahmen und dem zweiten englischen Element das erste
deutsche Element zugeordnet. Ist die Zuordnung zwischen den beiden Listen bestimmt,
muss ein Basistransfer zwischen den Elementpaaren durchgefithrt werden. Dies ist im
Werkzeug fest implementiert und kann in allen Kombinationen zwischen einer NP und
einer PP durchgefiihrt werden. Das neu erzeugte Element wird im Baum an der entspre-
chenden Stelle, die bereits iiber die Zuweisungsregeln bestimmt wurde, eingehédngt.

Fiir jede Zuordnungsmoglichkeit wird ein neuer Syntaxbaum erzeugt, dieser stellt dann
eine Ubersetzungsméglichkeit dar.

EN: np I pp:to T
Index: 1 Index: 2

Zeile Matrix: (1 2)
‘ >< ‘ Zeile Matrix: (2 1)
D: np:dat i np:akk i
Index: 1 Index: 2

Abbildung 5.38.: Zuordnung der Elemente zweier Subkategorisierungsrahmen mit Hilfe
von Permutationen

85

5. Implementierung

5.4. Generierung

Die Generierung ist der letzte Schritt der transferbasierten Ubersetzung. Jede Struktur-
beschreibung, die Ergebnis des Transfers ist, also eine Ubersetzungsmaoglichkeit darstellt,
wird in Inorder durchlaufen, um den Satz daraus zu generieren. Die Reihenfolge in der
die Knoten betrachtet werden, ist in Abbildung dargestellt. Der resutierende Satz
besteht aus den Blattern des Baums, die in der Reihenfolge, in der sie angetroffen werden,
ausgegeben werden.

86

IP\
/va\/\l’
Y /\
il wr
e system T
Sillall A
v PP
N TS
\% NP P NP
i = I =X
give Det N to Det N
(L L

Abbildung 5.39.: Inorder-Durchlauf der Strukturbeschreibung

5.5. Benutzeroberfliche

5.5. Benutzeroberflache

Die Benutzeroberfliche des Werkzeugs basiert auf dem Werkzeug von Hoedoro ,
wobei dieses an die neue Funktion angepasst wurde. Der Benutzer gibt in das Textfeld des
Anforderungswidgets eine Anforderung ein. Dartiber wird, wie in Abbildung [5.40] gezeigt,
wahrend der Eingabe die Struktur der Schablone eingeblendet. Das System von Hoedoro
erkennt nach welcher Schablone der Satz geschrieben wird. Hoedoros Werkzeug erkennt
sowohl Satze nach der Schablone aus Abbildung als auch Sétze nach der Schablone
aus Abbildung Im Vorschauwidget werden fiir jedes begonnene Wort Vorschlage zur
Vervollstandigung angeboten. Diese Funktionalitat war schon durch das Werkzeug gege-
ben. Erweitert wurde es um die Ubersetzungsfunktion, die allerdings nur Ubersetzungen
von Sétzen, die nach der in Abbildung gezeigten Schablone geschrieben wurden, an-
bietet.

Anforderung Vorschau

Akteur Verbindlichkeit Objekte Prozesswort Benutzer -
Bereich ‘

Das System muss dern Be Belastungswert

Bezug
Befestigungskonzept
Befestigungselement
beliebigen

belegten

berechneten
hecchriak

]

Ausgabe

Anforderung Deutsch Ubersetzung (Englisch)

Das Systern muss dem Benutzer die Maglichkeit bieten eine Einga... The system shall provide the user with the ability te make a input.
Das Systerm muss fahig sein eine Anforderung zu beachten. The system shall be able to consider a requirement.

Abbildung 5.40.: Screenshot des Werkzeugs - Anforderung- und Vorschaufenster

Fiir die Ubersetzung wurde zur Benutzeroberfliche ein neues Widget hinzugefiigt. Wird in
das Textfeld des Anforderungswidgets eine Anforderung eingegeben und anschlieffend auf
den Button mit dem Pfeil, der sich direkt daneben befindet, geklickt, werden alle Uberset-
zungsmoglichkeiten fiir diesen Satz generiert und in einer scrollbaren Liste angezeigt. Die

87

5. Implementierung

Ubersetzungsmoglichkeiten kénnen durch anklicken ausgewihlt werden. Die ausgewihl-
te Ubersetzung wird in das Textfeld unter der Liste mit den Ubersetzungsmoglichkeiten
eingefiigt. Hier kann diese vom Benutzer noch verbessert oder erganzt werden.

Anforderung
Alteur Verbindlichkeit Objekte Prozesswort

Vorschau

Das System muss die Taste an die Funktion anpassen.

Ubersetzung

The system shall adapt the button to the function. o
The system shall adapt the function te the button,

[

The system shall adapt the button for the function,

The system shall adapt the function from the button.
— |
The system shall adapt the button to the function.

&

Ausgabe

Anforderung Deutsch Ubersetzung (Englisch)
Das System muss dem Benutzer die Mglichkeit bieten eine Einga... The system shall provide the user with the ability to make a input.

Das System muss fahig sein eine Anforderung zu beachten, The systemn shall be able to consider a requirement,

Abbildung 5.41.: Screenshot des Werkzeugs - Ubersetzungsmoglichkeiten

Ist der Benutzer mit der Ubersetzung zufrieden, kann er auf den Button rechts unter
dem Textfeld mit der Ubersetzung klicken, um den Satz und die Ubersetzung in seine
Ausgabe zu tubernehmen. Im unteren Bereich der Benutzeroberfliche befindet sich eine
Tabelle, in der sowohl die deutsche Anforderung als auch die dazugehérige Ubersetzung
angezeigt wird. Mit einem Klick auf das Diskettensymbol konnen alle Anforderungen und
ihre Ubersetzungen in einer Textdatei gespeichert werden. Die Benutzeroberfliche wird
dann wieder zuriickgesetzt, d.h. alle Tabellen, Listen und Textfelder sind leer.

Kann fiir einen Satz keine Ubersetzung erzeugt werden, wird im Ubersetzungswidget, wie
in Abbildung abgebildet, der Satz ,,Die Anforderung konnte nicht iibersetzt werden.”
angezeigt. Dieser Satz kann nicht als Ubersetzung ausgewihlt werden. Es kann aber ge-
nerell immer eine eigene Ubersetzung in das entsprechende Textfeld eingegeben werden.
Falls keine Ubersetzung eingegeben wird bzw. von den angebotenen Ubersetzungsmog-
lichkeiten keine ausgewéahlt wird, kann der Satz nicht in die Ausgabetabelle ibernommen
werden.

88

5.5. Benutzeroberfliche

% =)

Anforderung Vorschau
Alteur Verbindlichkeit Objekte Prozesswort

IDas System muss die Anforderung anzuwenden"'l

Ubersetzung

Die Anforderung konnte nicht dbersetzt werden. I

Ausgabe

Anferderung Deutsch Ubersetzung (Englisch)
Das System muss dem Benutzer die Maglichkeit bieten eine Einga... The system shall provide the user with the ability to make a input.

Das Systern muss fahig sein eine Anforderung zu beachten, The system shall be able to consider a requirement.

Abbildung 5.42.: Screenshot des Werkzeugs - Ubersetzungsfunktion

Ein Satz, der nicht korrekt nach der Schablone geschrieben wurde bzw. dessen Worter
nicht aus dem Lexikon bekannt sind, wird nachdem der Button zur Erzeugung einer
Ubersetzung angeklickt wurde, mit einem Sternchen am Ende markiert. Diese Funktion
hat Hoedoro implementiert.

89

6. Schlussbetrachtung

6.1. Zusammenfassung

In dieser Arbeit wurde eine Methodik zur maschinellen Ubersetzung von Anforderungen
vorgestellt, die in einem Werkzeug umgesetzt wurde. Mit dem Werkzeug koénnen An-
forderungen, die nach einer Schablone geschrieben wurden, von Deutsch nach Englisch
iibersetzt werden. Durch die Schablone wird die Syntax des Satzes auf drei verschiedene
Anforderungstypen eingeschrankt. Es handelt sich damit um eine kontrollierte Sprache,
die leichter iibersetzt werden kann. Zusétzlich wird die Ubersetzung durch die Verwen-
dung eines Lexikons mit einer Subsprache vereinfacht.

Fiir eine maschinelle Ubersetzung gibt es verschiedene Ansitze. In diesem Fall hat sich
das transferbasierte Verfahren als am geeignetsten herausgestellt. Eine transferbasierte
Ubersetzung besteht aus Analyse, Transfer und Generierung.

Zur Analyse wird eine um Merkmalsstrukturen und Restriktionen ergénzte Phrasenstruk-
turgrammatik verwendet. Merkmalsstrukturen und Restriktionen werden bendtigt, weil
die Phrasenstrukturgrammatik iibergeneriert. Die lexikalischen Regeln der Grammatik
werden fiir jedes Token des zu tibersetzenden Satzes aus dem Lexikon erzeugt und zur
Grammatik hinzugefiigt. Diese Grammatik ist dann Grundlage fiir einen Earley-Parser,
der als Analyseergebnis eine Chart liefert, aus der nach erfolgreichem Parsen des Satzes
ein Syntaxbaum extrahiert werden kann. Fiir den extrahierten Syntaxbaum wird mittels
Restriktionen gepriift, ob er einem der drei Anforderungstypen entspricht.

Der néchste Schritt ist der Transfer. Der Syntaxbaum, der nach der deutschen Grammatik
aufgebaut wurde und Ergebnis der Analyse ist, wird iiber Transferregeln in einen Syn-
taxbaum, der durch die englische Grammatik beschrieben wird, transferiert. Der Transfer
ist in mehrere Schritte aufgeteilt. Als erstes wird die deutsche Schablonenstruktur, die
im Baum enthalten ist, in die englische Schablonenstruktur tberfiihrt. Dann wird das
Wissen tiber die Subkategorisierungsrahmen der Verben ausgenutzt um den deutschen
Subkategorisierungsrahmen in die passenden englischen Subkategorisierungsrahmen zu
iiberfithren. Es entstehen unter Umstéinden mehrere Ubersetzungsmoglichkeiten, da es
keine eindeutige Zuordnung zwischen den deutschen und englischen Subkategorisierungs-
rahmen gibt. Es kann wegen fehlendem Wissen auch keine der Ubersetzungsmoglichkeiten
ausgeschlossen werden. Der Transfer wird beendet durch die Anwendung von sprachspe-
zifischen Regeln auf die verschiedenen Syntaxbdume des vorhergehenden Transferschritts.
Die sprachspezifischen Regeln korrigieren die Verbstellung, die in deutschen und engli-
schen Sétzen unterschiedlich ist.

91

6. Schlussbetrachtung

Ergebnis des Transfers ist mindestens ein, eventuell auch mehrere, Syntaxbdume. Jeder
dieser Baume wird in Inorder durchlaufen um den iibersetzten Satz daraus zu generieren.
Das Werkzeug bietet eine Eingabemaske fiir Anforderungen, tibersetzt diese nach dem
beschrieben Verfahren und stellt, falls nétig, dem Benutzer mehrere Ubersetzungsmog-
lichkeiten als Auswahl zur Verfiigung.

6.2. Fazit und Ausblick

Mit dem entwickelten Werkzeug wird demonstriert, dass eine maschinelle Ubersetzung fiir
Anforderungen sinnvoll und umsetzbar ist. Sind alle Tokens des Satzes als Eintrage im
Lexikon vorhanden und entspricht der Satz der Schablone kann auch eine Ubersetzung
generiert werden. Um das Werkzeug allerdings ausgiebig zu testen, ware eine Benutzer-
studie notwendig. Die Kandidaten miissten sich sowohl fachlich mit den Anforderungen
auskennen, als auch am besten englische Muttersprachler sein. Eine andere Evaluierung
ware subjektiv und daher nicht reprasentativ.

Die Abbildung zeigt eine Anregung fir Fragen, die in einer Evaluierung beantwortet
werden konnten. Durch diese Fragen kénnte eine Bewertung des Werkzeugs erfolgen.

Bewertung der
Ubersetzung

Konnte eine Nein -
Ubersetzun Warum konnte keine
generiert werdgen? Ubersetzung erzeugt werden?
Ja
Warum waren die angebotenen
Nein Ubersetzungen falsch?
War die korrekte Wie viel Aufwand wird benétigt
Ubersetzung dabei? um eine der Ubersetzungen in
die korrekt Ubersetzung
Ja abzudndern?

Wie viele Ubersetzungsméglichkeiten gab es?
War die richtige Ubersetzung eindeutig?

Abbildung 6.1.: Bewertung einer Ubersetzung

Dennoch soll im Folgenden ein Eindruck tiber den bisherigen Stand und moégliche Erwei-
terungen gegeben werden.

92

6.2. Fazit und Ausblick

Das Werkzeug ist interaktiv und erlaubt eine Postedition. Dies gibt dem Benutzer die
Moglichkeit eine korrekte Ubersetzung zu wihlen oder die Ubersetzung zu verbessern.
Dadurch wird fehlendes Wissen ausgeglichen und die Ubersetzungsqualitit angehoben.
Zusétzlich nutzt das Werkzeug zur Verbesserung der Ubersetzung eine kontrollierte Spra-
che, gegeben durch die Schablone und eine Subsprache, gegeben durch das Lexikon.

Da das Werkzeug schon interaktiv gestaltet wurde, konnte eine zusatzliche Funktionalitét
sein, den Benutzer beim Start des Werkzeugs auswéhlen zu lassen in welcher Doméne,
z. B. Fahrerassistenzsysteme oder Motoren, er seine Anforderungen schreiben mochte. Dies
macht das Lexikon flexibler und nutzt die Tatsache, dass die Ubersetzung der Worter in
einer kleineren Doméne héufig eindeutig ist.

Es hat sich gezeigt, dass das Einbeziehen der syntaktischen Merkmale aus dem Lexi-
kon, vor allem der Subkategorisierungsrahmen, fiir eine korrekte Ubersetzung besonders
wichtig ist. Dadurch wurde erreicht, dass wenn eine Ubersetzung erzeugt werden kann,
meist auch die korrekte dabei ist. Dieser Eindruck ist natiirlich rein subjektiv und das
Werkzeug wurde daraufhin noch nicht ausreichend getestet. Allerdings kann schon jetzt
festgestellt werden, dass das Lexikon vor allem beziiglich der Ubersetzungen und Subka-
tegorisierungsrahmen noch stark verbesserungswiirdig ist.

Das System wurde an vielen Stellen, zum Beispiel durch das Auslagern der Grammatik
in eine XML-Datei, erweiterbar gestaltet. Die maschinelle Ubersetzung ist ein interdis-
ziplindres Gebiet, in dem nicht nur Informatiker arbeiten. Experten, wie zum Beispiel
Computerlinguisten, kénnen das Werkzeug mit ihrem Wissen erweitern, um zum Beispiel
eine groflere Abdeckung der Anforderungstypen zu ermoglichen. Der Grammatik fehlen
unter anderem Relativséitze und Vorbedingungen. Auch das Lexikon wurde in Textdateien
ausgelagert. Dadurch konnen fehlende Begrifflichkeiten ergénzt oder neue Doménen einge-
fithrt werden. Alternativ kann als Verbesserung das Lexikon von einem Vollformenlexikon
in ein Lexikon mit einer morphologischen Analyse transferiert werden. Dies wiirde vor
allem Speicherplatz sparen und mehr Worter abdecken. Schnellere Zugriffszeiten kénnten
durch die Verwaltung des Lexikons als SQL-Datenbank realisiert werden.

Wichtig wére noch eine Uberpriifung der Werte der Merkmale eines Wortes. Der Kasus
kann beispielsweise nur die Werte Nominativ, Dativ, Genitiv und Akkusativ annehmen.
Andere Werte sind nicht zulassig.

Mit einer zusétzlichen Logik beziiglich der Subkategorisierungrahmen kénnten fehlerhafte
Ubersetzungsmoglichkeiten ausgeschlossen werden. Hat zum Beispiel ein deutsches Verb
den Subkategorisierungrahmen <np:nom, np:akk, pp:auf dat> und ein passender engli-
scher Subkategorisierungsrahmen wére <subj, np, pp:on>, dann ist eine Zuordnung der
beiden PPs und der beiden NPs zueinander am wahrscheinlichsten. Die andere Moglich-
keit der Zuordnung kénnte ausgeschlossen werden. Die beiden Subjekte np:nom und subj
werden immer einander zugeordnet und werden schon jetzt separat betrachtet.

Ein weiterer erheblicher Vorteil der maschinellen Ubersetzung ist die einheitliche Struktur
der Ubersetzungen. Dies kann natiirlich bei einer anschlieBenden Editierung durch den
Benutzer nicht gewahrleistet werden. Das Werkzeug konnte aber dahingehend erweitert
werden, dass nachdem der Benutzer eine Ubersetzung editiert oder eingegeben hat, diese
nochmals auf Korrektheit beziiglich der Schablone tiberpriift wird.

Ein letzter Vorschlag zur Verbesserung des Werkzeugs ist das transferbasierte System zu

93

6. Schlussbetrachtung

einem Hybridsystem zu erweitern. Es konnte beispielsweise mit einem wissensbasierten
oder statistischen Verfahren optimiert oder mit kiinstlicher Intelligenz zu einem lernenden
System ausgebaut werden. Die neusten Systeme sind fast ausschlieSlich Hybridsysteme.
Die maschinelle Ubersetzung hat Zukunft im Bereich der Anforderungsiibersetzung, denn
die Moglichkeiten sind noch nicht ausgeschopft und die Aussichten optimistisch. Diese
Arbeit ist definitv ein Anfang in diesem Bereich.

94

Literaturverzeichnis

[Bal09] H. Balzert. Lehrbuch Der Softwaretechnik: Basiskonzepte und Requirements En-
gineering. Spektrum Lehrbiicher der Informatik. Springer-Verlag New York Inc,
2009.

[BEWO06] J. Butt, C. Eulitz, and Wiemer. Vorlesung: Einfithrung in die Linguis-
tik - Syntax 3. http://ling.uni-konstanz.de/pages/allgemein/study/
introling06/einf_ syntax3-print.pdf, 2006.

[Bra06] H. Bréuer. Generative Grammatik. http://tu-dresden.de/die_tu_
dresden/fakultaeten/philosophische_fakultaet/iph/thph/braeuer/
lehre/putnam_bedeutung/Generative’,20Grammatik.pdf, 2006.

[BreO1] J. Bresnan. Lezical-Functional Syntaz. Blackwell Textbooks in Linguistics.
Blackwell, 2001.

[Car02] A. Carnie. Syntaz: a generative introduction. Introducing linguistics. Blackwell
Publishers, 2002.

[CEET04] K. Carstensen, C. Ebert, C. Endriss, S. Jekat, R. Klabunde, and H. Langer.
Computerlinguistik und Sprachtechnologie - Eine Finfiihung. Spektrum Akade-
mischer Verlag, 2. edition, 2004.

[Cho56] N. Chomsky. Three models for the description of language. IRE Transacti-
ons on Information Theory, 2, 1956. http://www.chomsky.info/articles/
195609--. pdf.

[Ebe09] K. Eberle. Integration von regel- und statistikbasierten Methoden in der ma-
schinellen Ubersetzung. LDV Forum, 24(3):37-70, 2009.

[Elall] H. Elazhary. Translation of Software Requirements. International Journal of
Scientific and Engineering Research, 2, 2011.

[Golll] J. Goll. Methoden und Architekturen der Softwaretechnik. Vieweg Studium.
Vieweg+teubner Verlag, 2011.

[Hei04] U. Heid. Vorlesung: Maschinelle Ubersetzung 1, 2004.

95

http://ling.uni-konstanz.de/pages/allgemein/study/introling06/einf_syntax3-print.pdf
http://ling.uni-konstanz.de/pages/allgemein/study/introling06/einf_syntax3-print.pdf
http://tu-dresden.de/die_tu_dresden/fakultaeten/philosophische_fakultaet/iph/thph/braeuer/lehre/putnam_bedeutung/Generative%20Grammatik.pdf
http://tu-dresden.de/die_tu_dresden/fakultaeten/philosophische_fakultaet/iph/thph/braeuer/lehre/putnam_bedeutung/Generative%20Grammatik.pdf
http://tu-dresden.de/die_tu_dresden/fakultaeten/philosophische_fakultaet/iph/thph/braeuer/lehre/putnam_bedeutung/Generative%20Grammatik.pdf
http://www.chomsky.info/articles/195609--.pdf
http://www.chomsky.info/articles/195609--.pdf

Literaturverzeichnis

[Hoell]

[HS92]

[IEE90]

INL94]

[Par10]

[Ram09]

[Rei09)

[RNO4]

[Rup09]

[Sah06]

[Sah09]

[Sch03a]

[Sch03b]

[Sch04]

96

N. Hoedoro. Entwicklung eines interaktiven Werkzeugs zum Verfassen natiirlich-
sprachlicher Spezifikationen, 2011.

H. Hutchins and H. Somers. An introduction to machine translation. Academic
Press, 1992.

IEEE Standard Glossary of Software Engineering Terminology. I[EEE Std
610.12-1990, 1990.

S. Naumann and H. Langer. Parsing - eine Einfihrung in die maschinelle
Analyse natirlicher Sprache. Teubner, 1994.

H. Partsch. Requirements-Engineering systematisch: Modellbildung fir softwa-
regestiitzte Systeme. Springer, 2010.

M. Ramlow. Die maschinelle Simulierbarkeit des Humanibersetzens.
Frank&Timme, 2009.

K. Reif. Automobilelektronik: Eine Einfihrung fir Ingenieure. Atz/Mtz-
Fachbuch. Vieweg+teubner Verlag, 2009.

S. Russell and P. Norvig. Kiinstliche Intelligenz: Ein moderner Ansatz. Pearson
Studium, 2004.

C. Rupp. Requirements-Engineering und -Management. HANSER, 2009.

S. Sahel. Vorlesung Theorien und Modelle 1 - X-Bar-Syntax. http:
//www.uni-bielefeld.de/1lili/personen/ssahel/theorien modellel/
x-bar-syntax.pdf, 2006.

S. Sahel. Struktur der deutschen Sprache 2: Der Satz. http:
//wwwedit.uni-bielefeld.de/lili/personen/ssahel/struktur2 ss09/
x-bar_theorie.pdf, 2009.

U. Schoning. Theoretische Informatik - kurzgefasst. Spektrum Akademischer
Verlag, 4. edition, 2003.

S. Schulte im Walde. Fzxperiments on the Automatic Induction of German Se-
mantic Verb Classes. PhD thesis, Institut fiir Maschinelle Sprachverarbeitung,
Universitat Stuttgart, 2003. Published as AIMS Report 9(2).

H. Schmid. Efficient Parsing of Highly Ambiguous Context-Free Grammars with
Bit Vectors. Proceedings of the 20th International Conference on Computatio-

http://www.uni-bielefeld.de/lili/personen/ssahel/theorien_modelle1/x-bar-syntax.pdf
http://www.uni-bielefeld.de/lili/personen/ssahel/theorien_modelle1/x-bar-syntax.pdf
http://www.uni-bielefeld.de/lili/personen/ssahel/theorien_modelle1/x-bar-syntax.pdf
http://wwwedit.uni-bielefeld.de/lili/personen/ssahel/struktur2_ss09/x-bar_theorie.pdf
http://wwwedit.uni-bielefeld.de/lili/personen/ssahel/struktur2_ss09/x-bar_theorie.pdf
http://wwwedit.uni-bielefeld.de/lili/personen/ssahel/struktur2_ss09/x-bar_theorie.pdf

Literaturverzeichnis

[Sco07]

[SFH02]

nal Linguistics (COLING 2004), 2004. http://www.ims.uni-stuttgart.de/
projekte/gramotron/PAPERS/COLINGO4/BitPar.pdf.

M. Scott. Pep 0.4: Pep is an Earley parser. http://www.ling.ohio-state.
edu/~scott/projects/pep/docs/api/, 2007.

H. Schmid, A. Fitschen, and U. Heid. SMOR: A German Computatio-
nal Morphology Covering Derivation, Composition and Inflection. Procee-
dings of the 19th International Conference on Computational Linguistics
(COLING 2002), 2002. www.ims.uni-stuttgart.de/projekte/gramotron/
PAPERS/LREC04/smor . pdf.

97

http://www.ims.uni-stuttgart.de/projekte/gramotron/PAPERS/COLING04/BitPar.pdf
http://www.ims.uni-stuttgart.de/projekte/gramotron/PAPERS/COLING04/BitPar.pdf
http://www.ling.ohio-state.edu/~scott/projects/pep/docs/api/
http://www.ling.ohio-state.edu/~scott/projects/pep/docs/api/
www.ims.uni-stuttgart.de/projekte/gramotron/PAPERS/LREC04/smor.pdf
www.ims.uni-stuttgart.de/projekte/gramotron/PAPERS/LREC04/smor.pdf

A. Auszug aus dem Lexikon

Artikel
Wort | Grundorm | Definitheit | Numerus Genus Kasus | Ubersetzung
alle alle + pl masc/fem/neut | nom/akk all
der die + pl masc/fem/neut gen the
der die + sg fem dat/gen the
der die + sg masc nom the
Tabelle A.1.: Auszug aus der Artikel-Datei des Lexikons
Nomen
Wort Grundorm | Numerus | Genus Kasus Ubersetzung
Beschreibung Beschreibung sg fem gen description
Beschreibung | Beschreibung sg fem nom/dat/akk description
Beschreibungen | Beschreibung pl fem dat descriptions
Beschreibungen | Beschreibung pl fem nom/akk/gen descriptions
Information Information sg fem gen information
Information Information Sg fem nom/dat/akk information
System System sg neut | nom/dat/akk system
Tabelle A.2.: Auszug aus der Nomen-Datei des Lexikons
Modalverben
Wort | Grundorm | Numerus | Person | Finitheit | Ubersetzung
muss miissen sg 3 + shall
soll sollen sg 3 + should
wird werden sg 3 + will
miissen miissen pl 3 + shall
sollen sollen pl 3 + should
werden werden pl 3 + will

Tabelle A.3.: Auszug aus der Modalverben-Datei des Lexikons

99

A. Auszug aus dem Lexikon

Praposition

Wort | Kasus
an dat/akk
mittels | dat/gen
nach dat
trotz | dat/gen

Tabelle A.4.: Auszug aus der Prapositionen-Datei des Lexikons

Verben
Grundform | Hilfswort | 3. Person Singular | 3. Person Plural | Partizip
aktivieren haben aktiviert aktivieren aktiviert
anbringen sein bringt an bringen an angebracht
passen haben passt passen gepasst
wechseln haben wechselt wechseln gewechselt
Verbpartikel | zu-Infinitiv Subaktegorisierungsrahmen D
np:nom#np:akk /np:nom#np:akk#pp:bei_ dat

100

+

zu aktivieren

anzubringen
ZU passen

zu wechseln

np:nom#np:akk /np:nom##np:akk#pp:an_ dat
np:nom#pp:in_akk/np:nom/np:nom#np:dat
np:nom#np:akk /np:nom/np:nom#pp:in_ akk

Subkategorisierungsrahmen E

Ubersetzung
activate subj#np
attach subj#np/subj#np#pp:to
fit subj#np/subj#np#pp:with
change subj/subj#np/subj#np#pp:to

Tabelle A.5.: Auszug aus der Verben-Datei des Lexikons

Erklarung

Hiermit versichere ich, diese Arbeit
selbsténdig verfasst und nur die
angegebenen Quellen benutzt zu haben.

(Nadine Siegmund)

	Einleitung
	Motivation
	Zielsetzung
	Gliederung der Arbeit

	Grundlagen
	Requirements Engineering
	Grundlagen des Requirements Engineering
	Anforderungsschablonen

	Maschinelle Übersetzung
	Grundlagen der maschinellen Übersetzung
	Verfahren zur maschinellen Übersetzung
	Probleme der maschinellen Übersetzung

	Grammatiken
	Grundlagen der Grammatiktheorie
	Phrasenstrukturgrammatik und X-Bar-Theorie
	Merkmalsstrukturen

	Parsing
	Grundlagen des Parsings
	Chart-Parsing

	Stand der Technik
	Konzept
	Auswahl eines Verfahrens zur maschinellen Übersetzung
	Grammatik der Anforderungen
	Phrasenstrukturregeln
	Lexikon (lexikalische Regeln)

	Transferbasierte Übersetzung
	Analyse
	Transfer
	Generierung

	Implementierung
	Systeminformationen
	Analyse
	Datenstruktur und implementeller Aufbau der Grammatik
	Realisierung des Lexikons
	Chart Parser
	Extraktion des Syntaxbaums
	Restriktive Überprüfung des Anforderungstyps

	Transfer
	Schablonen- und sprachspezifischer Transfer
	Transfer der Subkategorisierungsrahmen

	Generierung
	Benutzeroberfläche

	Schlussbetrachtung
	Zusammenfassung
	Fazit und Ausblick

	Literaturverzeichnis
	Auszug aus dem Lexikon

